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Abstract

Recent advances in technology have led to large sets of tracking data, which brings

new challenges in statistical modeling and prediction. Built on recent develop-

ments in Gaussian process modeling for spatio–temporal data and stochastic differ-

ential equations (SDEs), we develop a sequence of new models and corresponding

inferential methods to meet these challenges. We first propose Bayesian Meld-

ing (BM) and downscaling frameworks to combine observations from different

sources. To use BM for big tracking data, we exploit the properties of the pro-

cesses along with approximations to the likelihood to break a high dimensional

problem into a series of lower dimensional problems. To implement the downscal-

ing approach, we apply the integrated nested Laplace approximation (INLA) to fit a

linear mixed effect model that connects the two sources of observations. We apply

these two approaches in a case study involving the tracking of marine mammals.

Both of our frameworks have superior predictive performance compared with tra-

ditional approaches in both cross–validation and simulation studies.

We further develop the BM frameworks with stochastic processes that can re-

flect the time varying features of the tracks. We first develop a conditional hetero-

geneous Gaussian Process (CHGP) but certain properties of this process make it

extremely difficult to perform model selection. We also propose a linear SDE with

splines as its coefficients, which we refer to as a generalized Ornstein-Ulhenbeck

(GOU) process. The GOU achieves flexible modeling of the tracks in both mean

and covariance with a reasonably parsimonious parameterization. Inference and

prediction for this process can be computed via the Kalman filter and smoother.

BM with the GOU achieves a smaller prediction error and better credibility inter-

vals in cross validation comparisons to the basic BM and downscaling models.
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Following the success with the GOU, we further study a special class of SDEs

called the potential field (PF) models, which formulates the drift term as the gradi-

ent of another function. We apply the PF approach to modeling of tracks of marine

mammals as well as basketball players, and demonstrate its potential in learning,

visualizing, and interpreting the trends in the paths.
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Chapter 1

Introduction

Recent technological advances have made it feasible to track many things, such

as foraging trips of endangered animals (Wilson et al., 2007), the movements of

basketball players (Miller et al., 2014), and the spread of infectious diseases (Gins-

berg et al., 2009; Lazer et al., 2014b). Foraging trips, for example, reflect the

feeding areas of animals, and can be used to identify critical habitat. Similarly, the

movements of basketball players can be analyzed to identify playing strategies, and

evaluate the players (see e.g., Cervone et al., 2014; Liu et al., 2016). It is also es-

sential to track diseases for controlling epidemics and predicting future outbreaks.

Tracking helps us to understand the processes that determine movement patterns,

and provides a means to forecast and plan for future changes.

The data collection technologies used for tracking involve observations from

both direct and indirect sources. Direct observations are usually accurate but sparse

in space and time, such as GPS observations of an animal’s location in animal

tracking, or the number of infected patients from epidemic reports. In contrast,

indirect sources are usually inaccurate but data rich, and can help to fill in the

gaps in the direct observations, such as inferred locations between GPS observa-

tions (i.e., Dead–Reckoned paths), or the search fraction of flu related queries on

Google (Ginsberg et al., 2009). Combining different systems of observations in

a statistically rigorous manner can ultimately result in more accurate and higher

resolution tracks for objects of interest. This is the primary objective for our study.

After high resolution and accurate tracks have been inferred, it is important

1



to further model and summarize the trends in them, which helps to convert the

tracking data into practical knowledge, such as the animal’s habitat preference or

the basketball players’ strategies. Modeling and learning the trends is another key

objective of our study. A good statistical model for the tracks can in turn further

improve our methods to combine different systems of observations.

The advancement in data collection also results in tracking data in extraordi-

nary high temporal resolution, like the 16Hz animal tracking data and the 25Hz

basketball tracking data, both of which will be studied later in this thesis. Such

high resolution tracking easily constitutes very big (long) data sets even for a short

period. This data rich environment brings remarkable details to the tracking sub-

jects, but also computational challenges in the analysis and modeling. We aim to

design our methods such that they can perform well in the prediction and interpre-

tation, but also have good computational efficiency and scalability.

The rest of this thesis documents our efforts and is organized as follows. Chap-

ter 2 reviews the background of mammal marine tracking and the properties of

different systems for making observations. It also includes the details of a northern

fur seal tracking study, which provides the data set used in much of our work. Our

model and methodology development are built on some recent developments in

the Gaussian process modeling and stochastic differential equations, which will be

reviewed in Chapter 3. We propose and study two frameworks, Bayesian Melding

and downscaling to combine different systems of data in Chapter 4. Both per-

form well relative to competing methods in the seal tracking data. To further im-

prove stochastic models of the tracks, we propose two new stochastic processes, a

conditional heterogeneous Gaussian process (CHGP) and a generalized Ornstein–

Ulhenbeck (GOU) process in Chapter 5 and 6 respectively. Only the GOU process

succeeds in reaching our modeling objectives. To further improve the interpreta-

tion of the tracks, we study the potential field approach for track modeling. It is

applied to both the seal and basketball tracking data in Chapter 7. The discussion

and future work are included in Chapter 8.

In what follows, we describe the mathematical notations in this thesis. Regular

characters, such as t,x,η , denote univariate variables or one dimensional quanti-

ties, while bold characters, such as Y,C,θθθ , denote multivariate variables, vectors,

or matrices. We use {. . .} to denote a process or a collection of variables, (. . .)T to
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denote a vector formed by its elements, and, [. . .] to denote a density function. Due

to the large amount of notation involved in different contexts explored in this thesis,

we have chosen to use the symbols that seem best in the context, i.e., they should

be taken as “local” to each chapter or section. So for example, y in Section 3.1 and

Section 3.3 can have different meanings. We will specify their meaning as they are

first used.
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Chapter 2

Background on Animal Tracking

Marine biologists have been attaching a variety of different electronic tags to ma-

rine animals to track their movements, describe their behaviors and characterize

their habitat preferences, e.g., Benoit-Bird et al. (2013a). Interactions of tracked

animals with other animals or the environment allow for ecological questions re-

garding population structure and dynamics to be addressed (Block et al., 2011;

Benoit-Bird et al., 2013b). Free–ranging animals can serve as sensors to collect

environmental (e.g., oceanographic) data, which is difficult or expensive to ob-

tain via conventional means such as ships or satellites (Boehme et al., 2008, 2010;

Nordstrom et al., 2013). These environmental data can help to better understand

ecosystems and the impact of climate change.

Accurately determining the locations of animals is a fundamental problem in

animal tracking. One means of obtaining locations is to have tags carried by an-

imals communicate with satellite systems such as the Global Positioning System

(GPS) or the ARGOS satellites. However, as detailed in Section 2.1 and 2.3, the

need to communicate with the satellites dramatically limits the resolution of those

devices. One means of collecting data on the animal’s movements between obser-

vations from a satellite tag is to concurrently deploy a “Dead–Reckoning” (DR) tag

consisting of an accelerometer, a magnetometer, a time–depth–recorder (TDR) and

other supporting components (Wilson et al., 2007; Nordstrom et al., 2013). Such

DR tags can sample at infra–second frequencies (e.g., 16Hz) and provide a detailed

record of an animal’s movements. Data downloaded from the tag can be processed
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by a Dead–Reckoning algorithm (DRA) to reconstruct the Dead–Reckoned (DR)

path of the animal (Wilson and Wilson, 1988; Johnson and Tyack, 2003; Wilson

et al., 2007). The details of DRA are further described in Section 2.2. Section 2.3

provides the information about two data sets from tracking northern fur seals with

both GPS and DR devices, which are used throughout this paper.

2.1 Satellite tags
According to Hofmann-Wellenhof et al. (2012), the basic idea of GPS is to first

obtain the sights of over four GPS satellites and then calculate the current loca-

tion by solving a system of equations based on the time and known positions of

those satellites. The ARGOS system works in a similar fashion. The necessity of

“seeing” the satellites is an impediment in tracking the animals, especially marine

animals. These satellite tags cannot work when the animal is diving under the wa-

ter, which accounts for a large proportion of their foraging trip. Also, the satellite

tags have a higher energy consumption rate than the DR tags. To save battery life,

the satellite tags are usually programed to be only turned on for a short period (i.e.,

half a minute) after a long period of hibernation (i.e., 15 minutes) (Battaile et al.,

2015). Thus, satellite systems can only provide a sparse and irregularly spaced

record of animal locations.

As sparse as those satellites observations are, they accurately record the an-

imal’s locations. Extensive experiments (Bryant, 2007; Hazel, 2009) have been

carried out to test the precision of the GPS tags by comparing its readings at some

known locations to the locations’ latitude and longitude. It is found that errors

in latitude and longitude are of mean zero and independently normally distributed

with similar standard deviation, which depends on the number of satellites observ-

able to the device. When over ten satellites are available, the standard deviation

is around 10 meters while it increases to 70 meters when only five satellites are

available.

To fill gaps in the observations from satellite tags, many statistical interpola-

tion methods have been developed. McClintock et al. (2014) provide an extensive

review of this literature. Most of the approaches developed are state–space based

models either in continuous or discrete time and space, such as the continuous time
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correlated random walk (CRAWL, Johnson et al., 2008) or robust state space mod-

els (Jonsen et al., 2005). Recently, Fleming et al. (2016) proposed Kriging to in-

terpolate the satellite observations and compared the performance of several Gaus-

sian processes with different covariance structures. Hooten and Johnson (2017)

developed a continuous-time stochastic integral equation framework, which can

be constructed to mimic behavioral characteristics in realistic paths. However, the

interpolation from those models depends heavily on the model assumptions, such

as the correlated random walk or the Kriging model. Those assumptions may be

difficult to justify in practice and lead to unrealistic predictions, as shown in Sec-

tion 4.5. It is thus compelling to supplement the satellite observations with other

sources of data.

2.2 Dead–Reckoning
Instead of trying to record the location directly, the DR tag is designed to collect

information related to the animal’s movement, such as the animal’s velocity, ac-

celeration and body position (orientation), with a high sampling frequency (e.g.,

16 times per second or higher). All of this information can be measured locally

by the accelerometer, magnetometer, and time–depth–recorder in the DR tag with-

out connecting to the satellites. These measurements are then fed into the Dead–

Reckoning algorithm (DRA) for an “estimate” of the animal’s location. The DRA

is based on the physical rules that produce measurements in the DR tag. The de-

tailed implementation of the DRA may vary in different applications (Wilson and

Wilson, 1988; Elkaim et al., 2006; Wilson et al., 2007), but the basic idea is as

follows.

1. Obtain the earth’s gravity vector g and magnetic field vector m at the loca-

tions being studied.

2. Correct the systematic bias in the accelerometer and magnetometer that are

caused by inadequate calibration (Grewal et al., 2007).

3. Smooth the corrected accelerometer and magnetometer readings with a run-

ning mean or a low-pass filter.
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4. Find the animal’s orientation (often taken to be the tag’s orientation, namely

the three-dimensional direction of velocity) by solving Wahba’s problem (Wahba,

1965), which is to find the rotation matrix O that minimizes the l2 distance

between the rotated gravity and magnetic forces (Og and Om) and the cor-

rected and smoothed accelerometer reading ã and magnetometer readings m̃,

namely,

argmin
O

{
||ã−Og||2 + ||m̃−Om||2

}
.

5. Obtain the animal’s speed (norm of the velocity vector) by one of the follow-

ing approaches:

(a) Assume it is a known constant.

(b) Assume it is measured by a speed meter (a wheel or paddle), which

only measures the speed of the animal with respect to the water, but

not to the earth.

(c) From the data recorded by the TDR, calculate the velocity in the depth

direction vz. Given the animal’s orientation o = {ox,oy,oz}, the three

dimensional velocity is then v = ovz/oz.

6. Starting from a known point, integrate the velocity to obtain the animal’s

trajectory.

The DR path provides remarkably detailed information about an animal’s move-

ments, especially fine–scale fluctuations that the GPS cannot capture. However,

the DR path can be biased because of poor measurements of swim speeds, sys-

tematic as well as random error in the accelerometer and magnetometer sensors,

undocumented animal movements caused by ocean currents, confounding between

movement and gravitational acceleration, and discretization in the integration of

the speed. All of these factors lead to biases and errors in the DR path (Wilson

et al., 2007; Liu et al., 2015), which can be significant if not corrected using the

relatively accurate GPS observations (by as much as 100km at the end of a seven–

day trip in the case study of the next chapter).
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2.2.1 Conventional bias correction for DR path

The conventional approach to correct for DR path bias has been to add a linear bias

correction term to the DR path, which directly shifts the DR path to the locations

indicated by the GPS observations (Wilson et al., 2007). This approach can be

summarized as follows: denote the DR path (in one dimension) by x1,x2, . . . ,xT at

times t = 0,1,2, . . . ,T and the GPS observations at times 0 and T by y0,yT respec-

tively; assume without loss of generality, that x0 = y0 = 0 and that the corrected

path η̂t is calculated as,

η̂t = xt +
t
T
(yT − xT ), (2.1)

which evenly distributes the bias yT − xT over the individual time points. The DR

path between two GPS observations is shifted directly to the locations indicated by

the GPS observations, namely η̂0 = y0 and η̂T = yT . This procedure is repeated for

all the sections separated by the GPS observations to correct the whole path.

Unfortunately, this conventional method to correct for the DR path bias is sim-

plistic, and fails to consider the measurement error in the GPS observations. This

conventional method also fails to provide a statement about the uncertainty in the

corrected path. As a result, the bio–logging community has concern about the

validity of the corrected path (Nordstrom et al., 2013) and has generally been re-

luctant to assign much significance to reconstructed locations. It is these concerns

that prompted us to develop the Bayesian Melding and downscaling approaches

as competing statistically rigorous methods for track reconstruction that overcome

the limitations of the conventional approach. We sought to correct the biased DR

paths and quantify the uncertainty in the corrected paths.

2.3 Data sets in our case study
The application in this paper involves tracking data from two lactating northern fur

seals captured and tagged on Bogoslof Island (Alaska, USA) as part of the Bering

Sea Integrated Research Program (BSIERP) (Benoit-Bird et al., 2013a; Nordstrom

et al., 2013). Two tags were glued to the fur of each seal with five minute epoxy: a

DR “Daily Diary” tag and a TDR MK 10–F with Fastloc R© GPS technology (both
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manufactured by Wildlife Computers). The accelerometer and magnetometer of

the DR tag were set to sample 16 times per second (16Hz) while the TDR pressure

sensor sampled at 1Hz. The GPS sensor was programmed to make one attempt to

connect with the satellite every 15 minutes.

We produced the DR path for two foraging trips made by the two female seals

(denoted as “Trip 1” and “Trip 2”) using the “TrackReconstruction” R package on

the 16Hz data set. This R package was developed based on Wilson and Wilson

(1988); Wilson et al. (2007) and described in detail by Battaile (2014). We later

sub–sampled the DR path to various frequencies to fit the computational capacity

of methods used to get the results. We also projected the GPS observations as

longitude and latitude to Easting and Northing in kilometers (km) in a point–wise

fashion as per Wilson et al. (2007).

The two foraging trips made by the fur seals in our study were each approxi-

mately 1 week in duration. Trip 1 was 7 days and had 274 valid GPS observations,

while Trip 2 lasted about 7.5 days and had 130 GPS observations. A large pro-

portion of the GPS locations had time gaps around 15 minutes (Table 2.1)—the

designed time gap for the GPS device to record the locations. However, non–

negligible proportions of them (13% in Trip 1 and 30% in Trip 2) were greater

than 1 hour, and the longest time gap in both trips was longer than 10 hours. The

distance between GPS observations can be found in the Figure 4.9. Therefore, the

GPS observations were irregularly spaced in time and space, and the duration of

the gaps between them were quite large, making it necessary to incorporate the

high resolution DR path.

Table 2.1: The sample quantiles in minutes of the time gaps between two
consecutive GPS observations in our data.

Min 10% 25% 50% 75% 90% Max
Trip 1 14.75 15.00 15.45 18.40 31.68 82.79 953.65
Trip 2 14.75 15.00 15.05 30.00 113.05 130.77 698.47
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Chapter 3

Review of Some Fundamental
Statistical Methods

In this chapter, we review fundamental statistical methods that serve as building

blocks for our methodology development, including Gaussian processes, stochastic

differential equations (SDE) and the Kalman filter/smoother. Due to our need for

brevity, we review only the knowledge that is used in or related to our following

chapters and thus do not give a complete treatment of these topics.

3.1 Gaussian process in spatio–temporal modeling of big
data

A Gaussian process (GP) is a stochastic process {η(·)}, which is indexed by t

in our cases. It has the property that its realizations at any finite collection of

points t have a joint multivariate Gaussian distribution. The index t can be in the

time domain R+, spatial domain R2, spatio–temporal domain R2×R+, or even

higher dimensional spaces. A GP is completely specified by its mean function

m(t) = Eη(t) and covariance function C(t, t ′) = Cov(η(t),η(t ′)). That is, for

an index set T = {t1, t2, . . . , tn}, the random vector ηηη = (η(t1),η(t2), . . . ,η(tn))T

follows a multivariate Gaussian distribution of mean m = m(T ) and covariance
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matrix C =C(T ,T ). The density function of ηηη is,

π(ηηη ;m,C) = (2π)−n/2|C|−1/2 exp
(
−1

2
(ηηη−m)T C−1(ηηη−m)

)
, (3.1)

where we use π to denote a density function. The inverse of the covariance matrix

is called the precision matrix, Q = C−1. An elegant theoretical result is that a zero

entry Qi, j in the precision matrix indicates that η(ti) and η(t j) are conditionally

independent given the remaining random variables ηηη−i j = ηηη \{η(ti),η(t j)},

π(η(ti),η(t j)|ηηη−i j) = π(η(ti)|ηηη−i j)π(η(t j)|ηηη−i j).

For Qi, j = 0, the conditional independence property also implies the Markovian

property,

π(η(ti)|ηηη−i j,η(t j)) =
π(η(ti),η(t j)|ηηη−i j)

π(η(t j)|ηηη−i j)
=

π(η(ti)|ηηη−i j)π(η(t j)|ηηη−i j)

π(η(t j)|ηηη−i j)

=π(η(ti)|ηηη−i j).

There are many other important properties of GP and they have been reviewed

systematically by Rue and Held (2005).

GP has been ubiquitously used in many statistical studies and applications,

such as random effect models (Rue and Held, 2005), spatio–temporal modeling (Le

and Zidek, 2006; Cressie and Wikle, 2015; Shaddick and Zidek, 2015) and ma-

chine learning for various regression and classification problems (Williams and

Rasmussen, 2006), and the references within. However, it is computationally ex-

pensive to use GP for big n problems. In this setting, n denotes the number of points

or indexes where the GP is observed, i.e., the number of distinct locations where

a spatial GP is observed. Evaluating the likelihood or posterior density usually re-

quires calculating the matrix inverse C−1 or solving a system of linear equations

Mx = f (usually used to calculate M−1f), where M is a matrix of dimension n and

f is a vector of length n. An example of such a quantity appears in Equation (4.9).

Calculating M−1f for a general M has the time complexity of O(n3) and storing the

matrix M requires O(n2) in memory space (Nychka et al., 2015). These complex-

ities can be formidable for big n, e.g., n exceeding 500,000 as in our case study,
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and that prevents us from directly applying the GP for big n data.

Moreover, those large data sets often display some non-stationary features,

e.g., different correlations and variances in different regions, which makes the tra-

ditional stationary (isotropic) GP inadequate when modeling these data. There-

fore, several ingenious statistical methods have been developed to address the non-

stationarity and big n issues in the analysis of spatio–temporal and computer ex-

periments.

In Section 3.1.1, we review methods developed to tackle the big n problem for

GP. Section 3.1.2 reviews some methods designed to address the non-stationarity

issue. The integrated nested Laplace approximation (INLA), which is used in

Chapter 4, is a method designed to handle both big n and non-stationarity prob-

lems. We walk through the steps of INLA in Section 3.1.3.

3.1.1 Methods to deal with big data

To tackle big n problems, the following four paradigms are commonly invoked: 1,

sparse matrix operations; 2, special covariance structures; 3, lower rank models;

4, likelihood approximations. One or more can be used in developing models and

methods. We organize the following reviews based on the most fundamental ideas

embraced by the paradigm.

Methods based on sparse matrix operations

The main bottleneck of using the GP for big n data is in the storage and computation

of the big matrices, but they can be handled more efficiently if the big matrix is

sparse, i.e., a large fraction of its entries are zero. Many special data structures

and algorithms have been developed to handle the storage and computation of the

sparse matrix (see e.g., Bates and Maechler, 2016). The basic idea to reduce the

storage cost is to store the non-zero entries and their indexes. The computation for

sparse matrix decomposition, inversion, calculating determinant, etc., can also be

simplified based on the zero entries (Pissanetzky, 1984).

However, the covariance matrices of most commonly used GPs are not sparse.

The idea of covariance tapering (Furrer et al., 2006; Kaufman et al., 2008) is meant

to force a covariance/correlation matrix into a sparse matrix. For example, the co-
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variance for η(t),η(t ′) is assumed to be zero if |t− t ′| is larger than a threshold.

However, as pointed out by Banerjee et al. (2008) and Datta et al. (2016), tapering

completely destroys the long range correlation and often fails to provide a reason-

able approximation to the true covariance matrix.

The long range correlation can still be preserved if we work with a sparse preci-

sion matrix instead of the covariance matrix. The inverse of a non-diagonal sparse

matrix is often not sparse1, which means that the correlation can still be non-zero

even when |t−t ′| is large. A GP with a sparse precision matrix is also known as the

Gaussian Markov Random Field (GMRF Rue and Held, 2005; Rue et al., 2009).

As discussed at the beginning of this section, the “Markov” in the name denotes the

conditional independence property of such a GP. The Brownian Motion, Brownian

Bridge, autoregressive, Ornstein–Ulhenbeck processes that we later work with can

all be viewed as a GMRF. The GMRF is a fundamental idea that used in the meth-

ods developed in Rue et al. (2009); Lindgren et al. (2011); Nychka et al. (2015),

which will be reviewed later. Besides sparse matrices, the Kalman filter/smoother

with an expanded state space can also be used for the inference of GMRF (Särkkä

et al., 2013). It is unclear to us how the Kalman filter/smoother implementation

compares to the sparse matrix implementation in terms of computation speed.

Methods based on special structures

Gramacy and Lee (2008) proposed a treed Gaussian process (TGP) model that

splits the data domain into different sub-regions as in the Bayesian classification

and regression tree (Chipman, 1998) and fits a Gaussian process within each sub-

region. This approach avoids the big n problem by partitioning the data and also

deals with the non-stationarity via the local process in each sub-region. Nonethe-

less, the GP in each sub-region is fitted separately, which introduces an unnatural

discontinuity into the global process. Although the discontinuity can be allevi-

ated by averaging over the tree space, the averaging procedure and training mul-

tiple trees increases the computational burden of this method. Park et al. (2011)

1This is an empirical statement. For example, the inverse of a tri-diagonal symmetric matrix is
not sparse. We can also construct counter examples such that the inverse of a sparse matrix is still
sparse. To the best of our knowledge, there are no theorems that state what kind of sparse matrix has
a non-sparse inverse.
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modified the TGP by imposing a continuity constraint on the boundaries of the

sub-regions and obtained the continuous tree via a complex constrained numerical

optimization routine.

The tree structure was also considered in the multi-resolution tree structured

models in Huang et al. (2002) and Tzeng et al. (2005). When compared to the

TGP, the multi-resolution models avoid searching for the tree split points by re-

cursively partitioning the spatial domain of interest into equal sized sub-regions.

The space partitioning is done recursively by sub-regions. A spatial autoregres-

sive process (SAP) was proposed in Huang et al. (2002) and Tzeng et al. (2005)

for this tree structure, such that the covariance at two leaf locations equals the

variance of the sub-region that is the parent of both leaf locations. This covariance

structure enables an efficient “change–of–resolution” Kalman filter/smoother algo-

rithm in evaluating the likelihood and posterior, whose time complexity is of order

O(n log(n)). But the SAP results in a “blocky” covariance structure and lacks the

flexibility needed in modeling complex processes (Tzeng et al., 2005).

Low rank methods

Another way to tackle the big n issue is to restrict the expensive computations,

such as the matrix inversion, to a matrix with lower dimension r. This brings us

to the low rank method, which can be viewed as approximating a GP by a linear

transformation of a Gaussian random vector of dimension r. To illustrate how

such a low rank matrix can simplify the computation, we work with an example

of Y = ηηη + εεε , where ηηη is the Gaussian random vector defined in (3.1) and εεε is

also multivariate Gaussian with mean zero and covariance matrix σ2I (I is a n by

n identity matrix) 2. It is easy to show that Y has a covariance matrix of C+σ2I
and its inverse needs to be calculated when evaluating the likelihood or calculating

the conditional distribution of ηηη given Y, i.e.,

E(ηηη |Y) =C(C+σ
2I)−1(Y−m)

Var(ηηη |Y) =C−C(C+σ
2I)−1CT

2This corresponds to the simple kriging model Y (t) = η(t)+ ε(t) (see e.g., Cressie and Wikle,
2015), where {ε(·)} is a white noise process that is independent of {η(·)} and has variance σ2.
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where m and C are the mean and covariance matrix of ηηη from (3.1). As discussed

at the beginning of this section, the storage and inversion of C+σ2I is computa-

tional expensive.

In the low rank method, the full rank covariance matrix C is replaced by KSKT ,

where S is a r× r covariance matrix and K is a n× r matrix. Equivalently, it

assumes that the Gaussian random vector ηηη = Kξξξ , where ξξξ is another Gaussian

random vector of dimension r. To compute the inverse of KSKT + I (without

loss of generality, assume σ2 = 1), we can use the Sherman–Morrison–Woodbury

formula (Henderson and Searle, 1981) to simplify it into

(I+KSKT )−1 = I−K(S−1 +KT K)−1KT , (3.2)

which replaces the inverse of the original n× n matrix by the inverse of two r× r

matrices (S−1 and (S−1 +KT K)−1). When r << n, the right-hand-side of (3.2)

can be much faster to calculate than the left-hand-side. Also, it can take less space

to store the two lower dimensional matrices K and S than the big matrix C. In

the MCMC inference of Bayesian models, the low rank method can also be used

to break a high dimensional density into a sequence of lower dimensional ones,

which is easier to sample from (see e.g., Datta et al., 2016). On the other hand,

we would like to point out that the low rank method cannot preserve the original

dependence structure of ηηη , so that Kξξξ should be viewed as an approximation to

the original process ηηη .

Many different approaches have been developed to construct K and S or equiv-

alently find a good approximation of ηηη based on ξξξ , including the fixed rank krig-

ing (FRK) method in Cressie and Johannesson (2008), Gaussian Predictive Pro-

cess (GPP) in Banerjee et al. (2008), Nearest-Neighbor Gaussian Process (NNGP)

in Datta et al. (2016), and the multi-resolution Gaussian process (MRGP) in Ny-

chka et al. (2015). These approaches are mostly developed for modeling spatial

data with the Gaussian process, but can be generalized to GP defined on other

spaces. To use the same terminology as the original papers, we will call the index

t “location” in this subsection for their review.
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In FRK, a Gaussian process {η(·)} is approximated by

η̂ηη(t) =
r

∑
i=1

φi(t)ξi = φφφ(t)T
ξξξ , (3.3)

where φφφ(·) = (φ1(·),φ2(·), . . . ,φr(·))T is a vector of r basis functions. The vector ξξξ

is usually defined as the random vector formed by a GP evaluated at a set of r grid

locations. The basis function φi(t) often decreases with the increase of the distance

between location t and the i-th grid location.

In the GPP approach, the lower-dimensional GP ξξξ is first defined on a knot

set S of size r < n, which may be a subset of the observed locations and the GP

process is approximated by

η̃ηη(t) =C(t,S )C−1(S ,S )ξξξ , (3.4)

where C(·, ·) is the covariance matrix. If φφφ(t)T = C(t,S )C−1(S ,S ) and the

knots and grids are the same, the FRK and GPP approaches yield exactly the same

approximation process. For both FRK and GPP, the dimension r decides the good-

ness of approximation as well as the computational complexity of the estimation

and prediction procedure. For large n, r has to be fairly large for η̂ or η̃ to ade-

quately approximate the true process (Datta et al., 2016), which, once, again, leads

to computational burden. Also Stein (2014) pointed out these low rank approaches

have poor performance under situations where the neighboring observations are

strongly correlated.

To further improve the FRK approach, Nychka et al. (2015) considered a multi-

resolution Gaussian process (MRGP), such that

η̂ηη(t) =
L

∑
l=1

φφφ l(t)
T

ξξξ l =
L

∑
l=1

rl

∑
j=1

φφφ l, j(t)
T

ξl, j, (3.5)

where ξξξ l = {ξl,1,ξl,2, . . . ,ξl,rl} is a Gaussian Markov process defined on a regular

grid with spacing δl and each φl, j(·) is a basis function similar to that in (3.3).

This MRGP is a summation of FRK models over different resolutions, which are

designed to capture correlations at different scales. In particular, they assume that
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δl = δl−1/2 and the ξξξ l at each resolution are mutually independent. With the

Markov process, a sparse precision matrix is introduced for the lower dimensional

process and reduces the original order of O(r3) in computational complexity to at

most O(r2), which means that we can afford a larger r than FRK with the same

computational power.

In parallel with the MRGP, Datta et al. (2016) modified the GPP into a NNGP

model to overcome the aforementioned shortcomings of the low rank approaches.

To avoid the computational burden of large r in the knot process, the joint density of

ξξξ on the knot set S in GPP is approximated by a product of m−nearest neighbor

conditional distributions, e.g., π(ξ1,ξ2,ξ3) ≈ π(ξ1)π(ξ2|ξ1)π(ξ3|ξ2) for m = 1.

The nearest neighbor structure helps to reduce the computational complexity in

evaluating this density from order O(r3) to O(rm3), which is a huge improvement

when m� r. Also, in the MCMC of Bayesian inference for the NNGP, the non-

knot locations are updated by conditioning on their m-nearest neighbors in the knot

set, such that C(t,S )C−1(S ,S ) in (3.4) is replaced by C(t,w(t))C−1(w(t)),w(t)),

where w(t) are m-nearest neighbors of t in the knot set S . This further reduces the

computational burden of the NNGP.

Because the nearest neighbor structure in NNGP can be viewed as a high order

Markov structure, a NNGP is equivalent to a MRGP with L = 1 and a certain knot

set and parameterization of the covariance matrix. However, both the MRGP and

NNGP only consider constant variance and correlation parameters, i.e. parameters

in the basis functions φφφ l(·) of the MRGP or the covariance function C(·, ·) of the

NNGP, over the whole study space. This essentially assumes that the same depen-

dence structures are repeatedly observed over the whole space. Therefore, neither

the NNGP nor the MRGP has the flexibility to deal with the inhomogeneous co-

variance structure over different sub-regions of the space. We call a process “inho-

mogeneous” (heterogeneous) when it has a non-stationary covariance function with

non-constant variance/correlation parameters. For example, a standard Brownian

Motion is non-stationary but still homogeneous.
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Methods based on approximations

The big n problem can also be tackled by constructing approximations to the full

likelihood via a sequence of conditional likelihoods as in Vecchia (1988) and Stein

et al. (2004). Caragea and Smith (2007) reviewed and compared these approxima-

tion methods based on conditional likelihoods. Eidsvik and Shaby (2014) proposed

another approximation method based on the pairwise composite likelihood. These

likelihood approximation methods are mostly used for inference in adapting a GP

model without a sparse precision matrix, such as the Matérn process. An oversim-

plified view is that they essentially break a large data set into several small ones

and only evaluate the likelihood in these small data sets, which omits certain long

range correlations. A concern about them is that the conditional distributions used

may not result in a proper joint distribution (Datta et al., 2016).

In addition to the conditional/composition likelihood approximation, Lindgren

et al. (2011) developed another approximation to the GP with Matérn covariance

functions by representing the process as a solution to a Stochastic Partial Differen-

tial Equation (SPDE) and then solving for the SPDE with a finite element method.

This can be viewed as approximating a non-Markov GP by a GMRF, whose infer-

ence can then be handle by INLA. To illustrate the approximation process, let’s

consider a Matérn process observed on a regular two dimensional n by n grid

t1,1 = (1,1), t1,2 = (1,2), . . . , t1,n = (1,n), t2,1 = (2,1), t2,2 = (2,2), . . . , tn,n = (n,n).

For expository simplicity, denote η(ti, j) as ηi, j. When the smoothness parameter

of the Matérn process ν approaches 0 and the grid size n is large enough (such

that we can ignore the boundary effects), the Matérn process approximately has

the following conditional distribution

E
(
ηi, j|ηηη−i,− j

)
=

1
a

(
ηi−1, j +ηi+1, j +ηi, j−1 +ηi, j+1

)
, (3.6)

Var
(
ηi, j|ηηη−i,− j

)
=

1
a
. (3.7)

where a > 4 is a parameter that depends on the range parameter of the Matérn

process. Notice that (3.6) and (3.7) define a GMRF through the conditional dis-

tribution (Rue and Held, 2005), i.e., ηi, j is conditionally independent from all the

other ηi′, j′ , |i′− i|> 1, or | j′− j|> 1 given its nearest neighbors. In addition to the
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limiting case of ν → 0, Lindgren et al. (2011) shows that the Matérn process with

ν = 1 can be approximated by a GMRF whose conditional distribution is

E
(
ηi, j|ηηη−i,− j

)
=

2a
4+a2

(
ηi−1, j +ηi+1, j +ηi, j−1 +ηi, j+1

)
− 1

4+a2

(
ηi−2, j +ηi+2, j +ηi, j−2 +ηi, j+2

)
− 2

4+a2

(
ηi−1, j−1 +ηi−1, j+1 +ηi+1, j−1 +ηi+1, j+1

)
,

Var
(
ηi, j|ηηη−i,− j

)
=

1
4+a2 .

Similar approximations can be constructed for other integer νs. For the Matérn

process observed at irregular locations, Lindgren et al. (2011) first uses a finite

element method to construct a mesh (i.e., divide the space into triangles) and then

builds the approximation GMRF on this mesh. The combination of the SPDE and

INLA approximation enables efficient computation of GP’s for some big spatio–

temporal data. It can also offer certain types of non-stationary modeling. However,

Nychka et al. (2015) expressed concern about its computational burden for very

large data sets and its lack of flexibility in non-stationary modeling.

3.1.2 Methods for non-stationarity

The non-stationarity issue of GP in spatial analysis was first addressed in Samp-

son and Guttorp (1992). Their idea was to find a spatial deformation via multi-

dimensional scaling that maps the non-stationary field into a stationary one. This

method was later extended in different ways as in Damian et al. (2001) as well

as Schmidt and O’Hagan (2003). Bornn et al. (2012) addressed the non-stationary

issue by embedding the geographical plane in some higher-dimensional spaces to

restore stationarity. This dimension expansion approach enjoys better flexibility

and interpretability compared to the spatial deformation approach. But both ap-

proaches essentially add one or more dimensions to the domain over which the

data are collected. This intensifies the computational burden in the analysis.

Another approach to non-stationary modeling is the process convolution ap-

proach pioneered by Higdon et al. (1999) and further developed in Paciorek and

Schervish (2006), Lemos and Sansó (2012) and Chu et al. (2014), etc. This ap-
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proach is inspired by the definition of a spatial moving average process η(s):

η(s) =
∫

k(s−u)x(u)du,

where s,u are the locations in a two-dimensional space, {x(·)} is a white noise

process and k(·) is a convolution kernel that does not depend on location s. Higdon

et al. (1999) achieved a non-stationary spatial model by allowing k(s− u) to vary

with s as ks(u), a so–called spatially evolving kernel. Certain parameterizations

of the spatially evolving kernel result in a covariance matrix that appears to be a

weighted average of two covariance matrices as in Paciorek and Schervish (2006)

and Ba and Joseph (2012), where one covariance matrix models the long range de-

pendence and the other captures the short range dependence. The idea of spatially

evolving kernel is also used in Hooten and Johnson (2017).

We observe that the non-stationarity issue is usually caused by the parsimo-

nious parameterizations of the model and can be alleviated by allowing more flexi-

ble parameterizations of the GP. The problem of non-stationarity then becomes that

of finding a good balance between modeling flexibility, identifiability and compu-

tational cost.

3.1.3 Basics of the integrated nested Laplace approximation

The integrated nested Laplace approximation (INLA, Rue et al., 2009; Lindgren

et al., 2011) is a novel approximation technique in Bayesian inference, especially

for latent GMRF models. Basically, the INLA method seeks the posterior mode

via numerical optimization, approximates the integrals of the random effects or

hyper-parameters via the Laplace approximation, and numerically integrates over

the hyper-parameters on a selected grid based on the (approximated) likelihood.

When combined with the approximations to SPDE, INLA can handle the infer-

ence for most commonly used covariance models in spatio–temporal modeling. In

this subsection, we provide a brief review of its basic ideas and readers can refer

to Rue et al. (2009), Martins et al. (2013), and Blangiardo and Cameletti (2015)

for detailed discussion and examples.

Consider the following latent Gaussian model: the observations y depend on a

latent random process or field ηηη through an observation model (it is also called the
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likelihood model in Rue et al. (2009)); The latent process is usually assumed to be

Gaussian, i.e., ηηη |ψψψ ∼ N(0,C(ψψψ)), where the covariance matrix C depends on the

hyper-parameters ψψψ = {ψ1,ψ2, . . . ,}T . For example,

Observation Model: y|ηηη ∼ N(ηηη ,Cy(ψ2))

Latent Model: ηηη |ψψψ ∼ N(0,Cψ(ψ1))

Priors: π(log(ψ j)) ∝ 1, j = 1,2.

Notice that we use π() to denote the density functions, including the prior, condi-

tional, or joint densities. With this model, we are usually interested in calculating

the posterior density π(ψψψ|y) and the posterior predictive density π(y∗|y). This can

be done by Monte Carlo methods, such as MCMC or Gibbs sampler, but they are

usually computationally expensive. The INLA approach is developed as a compu-

tationally simpler alternative to the Monte Carlo methods.

Nested Laplace approximation

The first building block of INLA is the Laplace approximation, which approxi-

mates an arbitrary density function π at its mode x̂ via a second order Taylor series

approximation,

log(π(x))≈ log(π(x̂))+
∂ log(π(x̂))

∂x
(x− x̂)+

1
2

∂ 2 log(π(x̂))
∂x2 (x− x̂)2

= log(π(x̂))+
1
2

∂ 2 log(π(x̂))
∂x2 (x− x̂)2.

The second line follows as ∂ log(π(x))/∂x = 0 at the mode x̂.

Let σ̂2 =−1/(∂ 2 log(π(x̂))/∂x2)

log(π(x))≈ log(π(x̂))− 1
2σ̂2 (x− x̂)2.

Taking the exponential of the above equation, we find that π̃ , the density of N(x̂, σ̂2),

can be a good approximation to π , at least in a small neighborhood near x̂. The den-

sity π̃ is referred to as the Laplace approximation density.

To apply this Laplace approximation to the posterior densities of interest, we
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first work with the following identity of the conditional probabilities,

π(ηηη |ψψψ,y) =
π(ψψψ,ηηη |y)

π(ψψψ|y)
⇒ π(ψψψ|y) = π(ψψψ,ηηη |y)

π(ηηη |ψψψ,y)
. (3.8)

The numerator above may not be evaluated in closed form, but it is proportional to

the product of three densities in closed form,

π(ψψψ,ηηη |y) = π(y,ψψψ,ηηη)

π(y)
∝ π(y,ψψψ,ηηη) = π(y|ψψψ,ηηη)π(ηηη |ψψψ)π(ψψψ)

The factor π(y) does not depend on any of the unknown parameters ηηη or ψψψ .

The denominator in (3.8) can be approximated by the Laplace approximation

density π(ηηη |ψψψ,y)≈ π̃(ηηη |ψψψ,y), yielding

π(ψψψ|y)≈ π̃(ψψψ|y) = π(ψψψ,ηηη |y)
π̃(ηηη |ψψψ,y)

∣∣∣∣
ηηη=argmaxπ(ηηη |y,ψψψ)

.

When the likelihood model is also Gaussian, π̃(ηηη |y,ψψψ) = π(ηηη |y,ψψψ) exactly. For

other models, such as logistic, Poisson, etc., the Laplace approximation density

can be derived by a Taylor expansion of the likelihood function. This gives the

“nested” part of the approximation, as a Laplace approximation density π̃(ηηη |ψψψ,y)
is used to derive another approximate density π̃(ψψψ|y).

Another “nested Laplace” approximation in INLA can be used to improve the

approximation to π(ηηη |y,ψψψ) when the likelihood model is not Gaussian. It calcu-

lates the Laplace approximation iterating through all the elements of ηηη

π(η j|ψψψ,y) =
π(η j,ηηη− j|ψψψ,y)
π(ηηη− j|η j,ψψψ,y)

=
π(η j,ηηη− j,ψψψ|y)

π(ψψψ|y)
1

π(ηηη− j|η j,ψψψ,y)

∝
π(ηηη ,ψψψ|y)

π(ηηη− j|η j,ψψψ,y)
∝

π(y|ψψψ,ηηη)π(ηηη |ψψψ)π(ψψψ)

π(ηηη− j|η j,ψψψ,y)

≈ π(y|ψψψ,ηηη)π(ηηη |ψψψ)π(ψψψ)

π̃(ηηη− j|η j,ψψψ,y)

∣∣∣∣
ηηη− j=η̂ηη− j(η j,ψψψ)

, π̃(η j|ψψψ,y), (3.9)

where , denotes “define as” and η̂ηη− j(η j,ψψψ) = argmax π̃(ηηη− j|η j,y,ψψψ). This im-

proved approximation comes at a high computational cost, because it needs to iter-
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ate through all elements of ηηη .

Integration step of INLA

The approximate Laplace densities are put together for the posterior density of

π(ηηη |y).

π(ηηη |y) =
∫

ψψψ

π(ηηη |y,ψψψ)π(ψψψ|y)dψψψ

≈
∫

ψψψ

π̃(ηηη |y,ψψψ)π̃(ψψψ|y)dψψψ.

The integration is done numerically by first searching the surface of π̃(ψ|y) to

setup a grid of integration points, i.e., ψψψ1,ψψψ2, . . . ,ψψψL. Each grid point is associated

with its own weight wi ∝ π̃(ψψψ i|y)∆i, i = 1,2, . . . ,L, where ∆i is area size.

π(ηηη |y)≈
L

∑
i=1

wiπ̃(ηηη |y,ψψψ i).

This integration scheme is also used in our Bayesian Melding approach in Sec-

tion 4.2. If we are interested in a better approximation to the posterior marginal of

η j, π̃(ηηη |y,ψψψ) can be replaced by π̃(η j|ψψψ,y) from Equation (3.9).

3.2 Stochastic differential equations
Stochastic differential equations have been used in many different areas, such as

physics, finance, and ecology (Iacus, 2009). They model the changes in a process

through a stochastic model. An SDE is usually written in the form of

dθ(t) = µ(θ(t), t)dt +σ(θ(t), t)dW (t), (3.10)

where {W (·)} is the standard Wiener process, µ(·) is the deterministic part, σ(·)
scales the random noise dW (t), and dW (t) is a white noise process. Equation (3.10)

should be understood to be an abbreviation for the following integral,

θ(t) = θ(0)+
∫ t

0
µ(θ(s),s)ds+

∫ t

0
σ(θ(s),s)dW (s).
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The third term
∫ t

0 σ(θ(s),s)dW (s) is a stochastic integral because of the dW (s)

term. Recall that the regular Riemann integral is defined as the limit of the sum-

mation of step functions with respect to a partition of an interval [0, t]. Let Πn =

{0 = tn,0 < tn,1 < tn,2 < .. . < tn,n = t} be any partition of the interval [0, t] and

||Πn||= maxi=0,1,...,n−1(tn,i+1− tn,i). The stochastic integral is most commonly de-

fined as

∫ t

t0
X(s)dWs = lim

||Πn||→0

n−1

∑
i=0

X(tn,i)(W (tn,i+1)−W (tn,i)), (3.11)

where we replace σ(θ(s),s) with X(s) for notational simplicity.

The limit in (3.11) is the limit in quadratic mean (mean square). This stochastic

integral is known as the Itô integral. It is important to notice that X(·) in the interval

[ti, ti+1] is approximated by a step function evaluated at the start of the interval

X(ti) in (3.11). This gives Itô integral properties different from a regular Riemann

integral. For example,
∫ t

0 W (s)dW (s) = (W (t)2− t)/2, different from the Riemann

integral
∫ t

0 s ds = t2/2. Replacing X(ti) by X((ti + ti+1)/2) leads to a different

definition of the stochastic integral. A more formal treatment of the definitions

of stochastic integral can be found in Arnold (1974). For the SDE formulated

in (3.10), the functions µ(θ , t) and σ(θ , t) have to satisfy a few conditions to make

sure there exists an unique continuous solution to (3.10). Notice that we use θ to

represent the first argument in these two functions. First, µ(·, ·) and σ(·, ·) must be

measurable on the domain of θ and t, namelyRd× [0,T ], where d is the dimension

of θ . Second, they need to satisfy the global Lipschitz condition such that there

exist a constant K <+∞ with

|µ(θ , t)−µ(θ ′, t)|+ |σ(θ , t)−σ(θ ′, t)|< K|θ −θ
′| (3.12)

for all θ ,θ ′ ∈ Rd and t ∈ [0,T ]. The final condition requires that there exists a

constant C <+∞, such that

|µ(θ , t)|+ |σ(θ , t)|<C(|θ |+1) (3.13)

for all θ ,θ ′ ∈Rd and t ∈ [0,T ]. This condition ensures that the solution (3.10) does
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not explode in a finite time (see e.g., Iacus, 2009). As seen in Arnold (1974), these

three conditions also ensure that the solution is a Markovian diffusion process, in

which case, µ(θ , t) and σ(θ , t) are refereed to as the drift and diffusion coefficients

respectively. Heuristically, the Markovian property can be deduced from the fact

that the change in the process only depends on the current state, i.e., not on the

previous state. The Markovian property guarantees an efficient computation in the

inference and prediction of this process.

Modeling the derivative dθ(t) can conveniently incorporate our knowledge

about how the process changes and evolves, but this parameterization only results

in closed form solutions in very few cases (Arnold, 1974; Iacus, 2009). One type

of SDE with a closed form solution is the linear SDE discussed in Chapter 6. For

the general SDE without a closed form solution in Chapter 7, approximation tech-

niques are needed for the inference and prediction. The simplest and commonly

used approximation method is the Euler approximation (see e.g., Iacus, 2009). For

a general SDE in (3.10), the Euler approximation defines the approximation pro-

cess θ̃(t0), θ̃(t1), . . . , θ̃(tn) as

θ̃(ti+1)− θ̃(ti) = µ(θ̃(ti), ti)(ti+1− ti)+σ(θ̃(ti), ti)(W (ti+1)−W (ti)),

for i = 0,1,2, . . . ,n− 1. The approximation process θ̃ is a non-standard Brown-

ian Motion process that is locally constant, whose mean and standard deviation

are determined by µ and σ . To improve upon the Euler approximation, Ozaki

(1992) developed a local linear approximation method, which can be viewed as

using a linear SDE to approximate a general SDE. Archambeau et al. (2007), Ar-

chambeau and Opper (2010) and Vrettas et al. (2015) proposed a variational al-

gorithm to minimize the Kullback–Leibler (KL) divergence between the true dis-

tribution and the approximate distribution. The approximate distribution can be

constructed as a GP (Archambeau et al., 2007; Archambeau and Opper, 2010) or

a linear SDE (Vrettas et al., 2015). However, we have not found a complete com-

parison of these approximation techniques in terms of their theoretical/empirical

performance. Also, we notice that the most sophisticated approximation technique

only approximates the SDE with a linear SDE.
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3.3 Kalman filter and smoother
As shown later in Chapter 6, the linear SDE can be expressed as a linear State

Space Model (SSM), alternatively known as the Dynamic Linear Model (DLM,

see e.g., Petris et al., 2009). In general, it is formulated as

Yt =Ftθθθ t +vt vt ∼N m(0,Vt) (3.14)

θθθ t =Gtθθθ t−1 +ut ut ∼N p(0,Ut), (3.15)

when t > 0. The initial condition is θθθ 0 ∼ N(m0,C0).

Yt is the q−dimensional observation vector and θθθ t is the p−dimensional state

vector. In general, the dimension p of the state vector can be allowed to be different

from the dimension q of the observation vector. Equation (3.14) is referred to as

the observation model, where Yt is a linear transformation of θθθ t by a q× p matrix

Ft plus a Gaussian noise vt with mean zero and covariance Vt . Equation (3.15)

describes the state model, where the current state θθθ t is modeled as a linear trans-

formation of the previous state θθθ t−1 by a q×q matrix Gt plus the Gaussian noise

ut with mean zero and covariance Ut . The state θθθ t−1 and two Gaussian noises vt ,

ut are assumed to mutually independent. The initial condition is considered to be

fixed i.e., C0 = 0, in our study.

Notice that the subscripts t for all the notation above, Yt ,θθθ t ,Ft , . . . are sim-

plifications of Y(t),θθθ(t),F(t), . . . and they can have arbitrary gaps either equal or

unequal. We use yt to denote the observation of variable Yt from the DLM in (3.14)

and (3.15) and ψψψ to denote all the parameters in m0,C0,F1:T ,G1:T ,V1:T ,U1:T . No-

tation a : b represents collection of {a,a+1,a+2, . . . ,b}, i.e., θθθ 1:t = {θθθ 1,θθθ 2, . . . ,θθθ t}.
For expository simplicity, we use [· · · ] instead of π() to denote the density func-

tions hereafter in this thesis. Also, 〈〉 is introduced to denote the densities obtained

by conditioning on ψψψ , 〈·|·〉 = [·|·,ψψψ]. All this simplified notation enables us to fit

many equations in one line in the later chapters.

The Kalman filter and smoother can be used to calculate the likelihood [y1:T |ψψψ]

and the posterior [θθθ 1:T |y1:T ,ψψψ] (〈θθθ 1:T |y1:T 〉 in our simplified notation). The Kalman

filter starts with the filtering density, where “filtering” means predicting the state θθθ t

given the current observations y1:t . This is done recursively based on the previous
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filtering density. We denote the previous filtering density at time t−1 as

θθθ t−1|y1:t−1 ∼ N(mt−1,Ct−1), (3.16)

for t > 0. At t = 1, it is equivalent to θθθ 0∼N(m0,C0), which initializes the Kalman

filter. For t > 1, the filtering densities can be derived as follows.

With the state model (3.15), the one step forward filtering density is

〈θθθ t |y1:t−1〉=
∫
〈θθθ t |θθθ t−1〉〈θθθ t−1|y1:t−1〉dθθθ t−1. (3.17)

It corresponds to the following Gaussian density

θθθ t |y1:t−1 ∼ N(at ,Rt)

at = E(θθθ t |y1:t−1) = Gtmt−1 (3.18)

Rt = Var(θθθ t |y1:t−1) = GtCt−1GT
t +Ut . (3.19)

The expression of the conditional mean (3.18) can be proved as

at = E
(
θθθ t |y1:t−1

)
= E

(
E(θθθ t |θθθ t−1,y1:t−1)

)
= E

(
Gtθθθ t−1|y1:t−1

)
= Gtmt−1.

Similarly, the conditional variance (3.19) can be proved as

Rt = Var(θθθ t |y1:t−1) = Var
(
E(θθθ t |θθθ t−1,y1:t−1)

)
+E

(
Var(θθθ t |θθθ t−1,y1:t−1)

)
= Var(Gtθθθ t−1|y1:t−1)+Ut = GtCt−1GT

t +Ut .

Considering the observation model (3.14), we can also easily derive the one

step forward predictive density of yt

〈yt |y1:t−1〉=
∫
〈yt |θθθ t〉〈θθθ t |y1:t−1〉dθθθ t . (3.20)
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It corresponds to the following Gaussian density

yt |y1:t−1 ∼ N(ft ,Qt)

ft = E(yt−1|y1:t−1) = Ftat

Qt = Var(yt−1|y1:t−1) = FtRtFT
t +Vt .

The above quantities can be derived similarly as (3.18) and (3.19). We will skip the

details here and the reader can refer to Petris et al. (2009) for a complete treatment.

Notice with these predictive densities, we can calculate the likelihood of the

SSM,

[y1:T |θθθ ] = 〈y1:T 〉=
T

∏
t=1
〈yt |y1:t−1〉.

Using Bayes rule and conditional independence property of the SSM, the cur-

rent filtering density equals

〈θθθ t |y1:t〉=
〈yt |θθθ t〉〈θθθ t |y1:t−1〉
〈yt |y1:t−1〉

, (3.21)

which depends on the observation model (3.14), the one step forward filtering den-

sity (3.17), and the predictive density (3.20). As all three are Gaussian, the filtering

density is also Gaussian,

θθθ t |y1:t ∼ N(mt ,Ct)

mt = E(θθθ t |y1:t) = at +RtFT
t Q−1

t (yt − ft)

Ct = Var(θθθ t |y1:t) = Rt −RtFT
t Q−1

t FtRt .

So far, we have shown how to derive the current filtering density 〈θθθ t |y1:t〉 based

on the previous filtering density 〈θθθ t−1|y1:t−1〉. An intermediate step (3.20) helps us

calculate the likelihood of the DLM. This procedure is referred to as the Kalman

filter algorithm (Kalman, 1960) and it utilizes the Gaussian Markovian property

of the DLM to sequentialize the calculation. We are only moving forward in time

with the Kalman filter. To calculate the posterior of θθθ 1:T given all the observations,

we also need to move backward in time. The corresponding procedure is usually
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referred as the Kalman smoother.

Similarly as in the Kalman filter, we first set up a backward transition density

θθθ t+1|y1:T ∼ N(st+1,St+1).

At t = T −1, it is equivalent to the filtering density at the last time point θθθ T |y1:T ∼
N(mT ,CT ). With the Markovian property, we can show that

〈θθθ t |θθθ t+1,y1:T 〉= 〈θθθ t |θθθ t+1,y1:t〉=
〈θθθ t+1|θθθ t〉〈θθθ t |y1:t〉
〈θθθ t+1|y1:t〉

.

It helps us to further derive the following smoothing density

〈θθθ t |y1:T 〉= 〈θθθ t |y1:t〉
∫ 〈θθθ t+1|θθθ t〉
〈θθθ t+1|y1:t〉

〈θθθ t+1|y1:T 〉dθθθ t+1.

It depends on the filtering density 〈θθθ t |y1:t〉 (3.21), the state model 〈θθθ t+1|θθθ t〉 (3.15),

the one step forward predictive density 〈θθθ t+1|y1:t〉 (3.17), and the previous smooth-

ing density 〈θθθ t+1|y1:T 〉. All these densities are Gaussian and we can derive the

smoothing density as

θθθ t |y1:T ∼ N(st ,St)

st = mt +CtGT
t R−1

t+1(st+1−at+1)

St = Ct −CtGT
t+1R−1

t+1(Rt+1−St+1)R−1
t+1Gt+1Ct ,

which is how the Kalman smoother calculates the current smoothing density 〈θθθ t |y1:T 〉
based on the previous smoothing density 〈θθθ t+1|y1:T 〉.

One key advantage of the Kalman filter and smoother is that they transfer the

joint density of y1:T and θθθ 1:T into the sequential conditioning densities, such that

the likelihood and posterior can be evaluated in linear time of T . It also pairs

well with the conditional specification of our spline based SDE, as the SDE only

specifies the one time step ahead conditional density instead of the joint density.
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3.4 B-spline
The B-spline (or basis spline) is a popular class of basis functions used to approxi-

mate a non-periodic smooth function (see e.g., De Boor et al., 1978; Ramsay et al.,

2009; Buderman et al., 2015). The B-spline basis functions are piecewise polyno-

mials of order k that are continuous at the knots. Order k is one plus the degree of

the polynomial, e.g., a constant function is of order one and a linear function is of

order 2, etc. In addition, the B-spline has continuous derivatives up to the (k−2)th

derivative. Given knots t0 < t1 < .. . < tn and a desired order k, the B-spline con-

struct J = n+k−1 basis functions recursively from k = 1, i.e., piecewise constant.

B j,1(t) =

{
1 t j ≤ t < t j+1,

0 Otherwise
.

For order k > 1, the basis functions are constructed as follows:

B j,k(t) =
t− t j

t j+k−1− t j
B j,k−1(t)+

t j+k− t
t j+k− t j+1

B j+1,k−1(t).

This recursive construction is implemented in the De Boor algorithm (see e.g.,

De Boor et al., 1978), which makes the B-spline very efficient to evaluate. No-

tice that we need to extend the knots beyond the t0, tn for the boundary cases and

readers can refer to De Boor et al. (1978); Ramsay et al. (2009) for more detailed

description. The knots t0, t1, . . . , tn can have irregular spacing, but we only work

with equally spaced knots in this thesis. We specify a set of B-spline basis func-

tions via its number of basis functions J and order k, i.e., B-spline(J,k) hereafter.

The first derivative of the basis function B j,k with k > 1 is a linear combination

of two basis functions from a set of B-splines with the same knots but order k−1.

B′j,k(t) =
k−1

t j+k−1− t j
B j,k−1(t)−

k−1
t j+k− t j+1

B j,k−1(t).

Recall that J = n+k−1. This indicates that the first derivative of a B-spline with J

basis functions and order k is formed by a B-spline with J−1 basis functions and

order k−1. This property will be used later in Chapter 6.
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Chapter 4

Bayesian Data Fusion
Approaches

In this chapter, we propose two Bayesian data fusion approaches to combine track-

ing data from different sources.

4.1 Introduction
The problem of combining disparate data sets is not new to statisticians. In envi-

ronmental statistics, for example, various approaches have been developed to com-

bine measurements with numerical (computer) model outputs. Two of the most

common approaches are Bayesian Melding (BM, Fuentes and Raftery, 2005) and

downscaling (Berrocal et al., 2010; Zidek et al., 2012). Bayesian Melding was

developed to combine direct observations of air–pollutant concentrations from a

sparse network of monitoring stations with outputs by grid cell from a determinis-

tic chemical transportation (computer) model in a geographical domain based on

known pollutant source and geophysical information. In this approach, the direct

observations and the computer model outputs are connected via a hidden process

of the “true” air pollution level, that is, the monitoring stations observations Z0(s)

at location s measure the true air pollutant level Z(s) with some measurement error

Z0(s) = Z(s)+ e(s), for all s,
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where e(s) iid∼ N(0,σ2
e ) is a white noise process. Notation · iid∼ · means the random

variables on the left hand side are independently and identically distributed from a

certain distribution on the right hand side. In addition, we assume the error process

{ε(·)} is independent of {Z(·)}. The computer model outputs Z1(s) are assumed

to be

Z1(s) = a(s)+b(s)Z(s)+δ (s),

where a(s) is the systematic additive error, b(s) is the multiplicative error, and δ (s)

is the additional noise. Usually, the multiplicative error {b(·)} is assumed to be a

constant, and the additive error {a(·)} is modeled with polynomial or a Gaussian

process with exponential covariance function (Foley and Fuentes, 2008; Fuentes

and Raftery, 2005; Sahu et al., 2010). The BM approach has been adapted for

other uses, such as to model hurricane surface winds (Foley and Fuentes, 2008),

ozone levels (Liu et al., 2011), and wet deposition (Sahu et al., 2010), etc. These

applications have demonstrated the remarkable flexibility and effectiveness of the

BM approach.

Despite its flexibility, the BM approach is computationally cumbersome when

dealing with “change-of-support” problems (Berrocal et al., 2010; Zidek et al.,

2012)—namely where the observations are collected on different spatial scales,

such as in-situ station measurements versus area averages. In response, Berrocal

et al. (2010) developed a spatial or spatio–temporal downscaling approach to com-

bine the air pollutant data, using a linear mixed effect model. This downscaling

approach can be described, using the same notation as above, by the following

regression model with spatially or temporally correlated coefficients,

Z0(s) = β0 + r1(s)+(β1 + r2(s))Z1(s)+ ε(s),

where {r1(·)} and {r2(·)} are some spatio–temporal random processes, such as

the Matérn process. Note that the index s can be time, location, or their combina-

tion. Recently, Rundel et al. (2015) further developed the downscaling approach to

combine speciated PM2.5 (particulate matter with a diameter of 2.5 micro-meters

or less) levels from multiple monitoring networks and computer model outputs.
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In this paper, we adapt both the BM and downscaling approaches to combine

multiple sources of observations for tracking objects. We use both approaches to

combine the GPS locations and Dead-Reckoned paths of marine mammals and ap-

ply them to data from northern fur seals—a species that inhabits the North Pacific

Ocean (Battaile et al., 2015). Unlike combining the observations from monitor-

ing networks and computer model outputs, we are less concerned with the spatial

“change-of-support” problem in tracking, as the observations and model outputs in

our application lie on the same time scale.

In the BM framework, we first choose a random process that reflects the na-

ture of the tracked object or the physics of its evolution, as the prior for {Z(·)}.
For example, we consider {Z(·)} as a Brownian Bridge process in our applica-

tion to northern fur seal tracking, which corresponds to the fact that they return

to their breeding beaches to feed their young after a foraging trip. To track an

infectious disease, we could model {Z(·)} with the susceptible–exposed–infected–

recovered (SEIR) compartmental equation (Dukic et al., 2012). All the systems

of observations are linked to different transformations of {Z(·)}: the direct obser-

vation {Z0(·)} is {Z(·)} plus a white noise process while the indirect observation

{Z1(·)},{Z2(·)}, . . . are functions of {Z(·)} plus some other random processes as

biases that reflect model error. Our BM framework can be summarized as follows:

for all t,

Z(t)∼ A certain random process (4.1)

Z0(t) =Z(t)+ ε0(t)

Z1(t) =g1(Z(t))+ξ1(t)

Z2(t) =g2(Z(t))+ξ2(t)

· · · · · · ,

where {ε0(·)} is a white noise process. Functions g j(·), j = 1,2, . . . can be as-

sumed to have certain parameterized form but with unknown parameters. The

{ξ j(·)}, j = 1,2, . . . are random processes that representing the errors in the indirect

observations. To make inference about {Z(·)}, we need to calculate the posterior

distribution of {Z(·)}|{Z0(·)},{Z1(·)},{Z2(·)}, . . ., whose posterior mean can be
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the smoothed/predicted “track” of the tracking object and the posterior credible

intervals (CI) reflect the uncertainty in the track. Note that the random process

in (4.1), such as the Brownian Bridge or the SEIR process, only reflects our prior

knowledge of the track. Its posterior is updated via the observations.

The downscaling approach for tracking bypasses the modeling of {Z(·)} and

builds the mixed effects model between the direct observations and the other sys-

tems of observation as

Z0(t) = β0 + r0(t)+(β1 + r1(t))Z1(t)+(β2 + r2(t))Z2(t)+ · · ·+ ε(t),

for all t. {r j(·)}, j = 0,1,2, . . ., can be Gaussian processes as in Berrocal et al.

(2010) and Zidek et al. (2012). As with the BM approach, the posterior mean and

CI of the linear predictor can be the predicted “track” and its uncertainty.

For the tracking application, we need to first choose appropriate processes for

the random components, such as {Z(·)},{ξ j(·)}, etc. Besides matching the physics

of the tracked objects, we also need to take account of the computational burden.

For example, devices attached to a northern fur seal, which samples at 16Hz, and

the video tracking of NBA players (Liu et al., 2016), which samples at 25Hz, both

yield incredibly big data sets. As a result, we avoid using MCMC techniques that

have been used in the past for both the BM and downscaling approaches. Instead,

we fit the downscaling model with the integrated nested Laplace approximation

(INLA) method developed in Rue et al. (2009) and Lindgren et al. (2011). Inspired

by the sparse matrix techniques, likelihood approximations, and gradient based nu-

meric integrations in the INLA approach, we exploit the properties of the processes

and designed approximations to the likelihood for the BM approach.

The following describes the BM and downscaling approaches for tracking, and

applies them to a case study of northern fur seals as reviewed in Chapter 2. Sec-

tion 4.2 describes our Bayesian Melding approach while Section 4.3 describes the

downscaling approach. We perform several simulation studies to evaluate our BM

and downscaling approaches, which are reported in Section 4.4. Section 4.5 con-

tains the case study results together with cross–validation comparisons. Conclusion

and discussion are contained in Section 4.6.
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4.2 Bayesian melding
In this section, we introduce the BM approach to combine the information from

the accurate but sparse GPS observations with the biased but dense DR path. For

simplicity, the two dimensions of the path (latitude and longitude) are dealt with

separately. Abstractly, our theory is about a one dimensional path over time, which

we denote by η(t) at discrete time points t = 0,1,2, . . . ,T . The time unit plays no

essential role in our theory. The approach works just as well with unequally spaced

time points, i.e., for arbitrary t0, t1, . . . , tT . But for expository simplicity we work

with 0 : T because the DR path is equally spaced. As in the previous BM literature,

we put a Gaussian process prior on η(t),

ηηη(0 : T )∼ N (f(0 : T ),R(0 : T,0 : T )) , (4.2)

where f(·) denotes the process mean function and R, its covariance matrix. 0 : T de-

notes 0,1,2, . . . ,T . Similarly, f(0 : T ) stands for the vector ( f (0), f (1), . . . , f (T ))T

while R(0 : T,0 : T ) is a (T + 1)× (T + 1) covariance matrix whose (t, t ′) entry

R(t, t ′) equals Cov(η(t),η(t ′)). Throughout this thesis, bold faced characters are

used exclusively to represent vectors or matrices.

Various options are available for this Gaussian process. A common one (Fuentes

and Raftery, 2005; Sacks et al., 1989) assumes that f is a simple parametric model,

e.g., a constant or a linear function of the index (time or location) as well as ad-

ditional covariates that may affect ηηη . The covariance function is usually assumed

as σ2ρ(|t− t ′|), where ρ(·) is an isotropic correlation function such as the Matérn

or power exponential. However, this popular stationary Gaussian process is not

suitable for our application. As noted above, the tracked animal must return to the

starting location of its foraging trip (to reunite with her pup), which means that

the start and end points of the track are fixed, as shown in Figure 4.1. Apart from

the start and end points, the animal’s path is unknown, and hence random in our

Bayesian framework. Its variation is relatively large in the middle and small when

close to the known start and end points. These features of the path led us to model
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it with a Brownian Bridge process, whose mean and covariance functions are:

f (t) =A+(B−A)
t
T

R(s, t) =σ
2
H
(min(s, t))(T −max(s, t))

T

where η(0) =A and η(T ) =B are the known start and end points of the path, while

σ2
H is the variance parameter. Notice that R(0, ·) = R(·,T ) = 0, in accordance with

the known start and end points η(0) and η(T ). Also, R(t, t) increases with t when

t < T/2 and decreases with t for t > T/2, reflecting the fact that the variation of the

path is largest in the middle. Another noteworthy property of our covariance matrix

R is its form as the product of a scalar σ2 and a matrix, the latter depending only

on the time points. To clearly represent the parameters of the Brownian Bridge

process, we introduce the notation

BB(A,B,TS,TE ,σ
2) (4.3)

for a Brownian Bridge process, which starts from A at time TS and ends in B

at time TE with a variance parameter σ2, namely having mean function f (t) =

A + (B− A)(t − TS)/(TE − TS) and covariance function σ2(min(s, t)− TS)(TE −
max(s, t))/((TE −TS)).

Our choice of the Brownian Bridge prior is popular in the literature of biol-

ogy and ecology. According to Humphries et al. (2010), marine mammals tend to

exhibit Brownian–like movements in environments with abundant food resources,

such as the resource filled ocean around Bogoslof island where our case study was

centered (Benoit-Bird et al., 2013b). Also, a Brownian Bridge model was proposed

by Horne et al. (2007) to model the habitat usage of a wide range of animal species.

This model was further improved by Kranstauber et al. (2012, 2014), and Sawyer

et al. (2009). Pozdnyakov et al. (2014) studied different ways of estimating the pa-

rameters of the Brownian Bridge model. Many other examples where animal paths

have been modeled with Brownian Bridge processes can be found in the references

of the above papers.

It should be recognized that the Brownian Bridge prior does not mean that the

animal’s path after being updated with the GPS observations and the DR path is still
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a Brownian Bridge. We use the Brownian Bridge prior to motivate a proper covari-

ance structure, whereby the beginning and end of the animal’s path are known but

there is more uncertainty about the middle part of this path. The Markovian struc-

ture of the Brownian Bridge also helps to simplify the Bayesian computation of

combining this process with the DR path, as discussed later.
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Figure 4.1: The (negative) longitude of the GPS observations of the foraging
trips made by two northern fur seals in our case study. Both trips started
and ended at Bogoslof Island (Alaska) where the females gave birth
and nursed their pups, and the horizontal line indicates the longitude -
168.035E of the island. The time unit is the proportion of the total time
of this foraging trip.

The GPS observations are available at time points t0 = 0 < t1 < t2 < .. . <

tk = T , where the tk’s form a subset of {0,1, . . . ,T}. The GPS observations are

further denoted by Y (tk),k = 0,1, . . . ,K. They are unbiased observations of the

true location:

Y (tk)|η(tk)
iid∼ N(η(tk),σ2

G), (4.4)

for k = 1, . . . ,K − 1. The known start and end points assumption implies that

Y (t0) = η(t0) = A, and Y (tK) = η(tK) = B are known.

Next, X(t), t = 0,1,2, . . . ,T is used to denote the observed DR path. To incor-

porate the bias of the DR path, we assume:

X(t) = η(t)+h(t)+ξ (t), (4.5)
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where h(·;βββ ) is a parametric function designed to capture the systematic bias trend

in the DR path. {ξ (·)} denotes another Gaussian process independent of {η(·)}
that captures any irregular components in the deviation of the DR path from the

truth:

ξξξ (1 : T )∼ N(0,C(1 : T,1 : T )).

For the parametric bias component, we have considered various models, e.g., h(t)=

∑
Q
i=1 βit i−1. The bias process {ξ (·)} is assumed to be a Brownian motion process

(random walk of order 1) whose covariance function is therefore

C(s, t) =σ
2
D min(s, t).

We believe the Brownian motion process to be a reasonable approximation to the

gradually accumulating error in the DRA. If we assume the errors in the velocity

estimates from the DRA, after removing the systematic bias h(t), at each time point

are an i.i.d. normal sequence, the error in the integrated path is then a Brownian

motion.

The final ingredients in our BM model are the prior distributions of the param-

eters. For notational simplicity, all densities are denoted by square brackets [. . .]

throughout this thesis. For σ2
G, we assume a known constant based on the previous

extensive tests of the Fastloc R© GPS device (Bryant, 2007). The priors of the other

two variance parameters are chosen to be [σ2
H ] ∝ 1/σ2

H and [σ2
D] ∝ 1/σ2

D, which are

uniform priors on the log scale ([log(σ2
H)] ∝ 1). For βββ = (β1,β2, . . . ,βQ)

T , a flat

prior [βββ ] ∝ 1 is used. All these parameters are assumed to be independent of each

other in their priors.

For expository simplicity in describing the joint distribution of all the data and

parameters, the following notation is introduced:

• The unknown part of the true path is denoted by ηηη = ηηη(1 : (T −1)), a T −1

dimensional vector.

• The GPS observations of the unknown part of the path are denoted by Y =

(Y (t1),Y (t2), . . . , Y (tK−1))
T , a K−1 dimensional vector.
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• The DR path is X=
(
X(1 : (T −1))T ,X(T )−Y (T )

)T , a vector of dimension

T .

• For the two unknown variance parameters, let φφφ = (σ2
H ,σ

2
D)

T .

The joint likelihood of our model is

[X,Y,ηηη ,βββ ,φφφ ] = [φφφ ] [βββ ] [ηηη |φφφ ] [Y|ηηη ] [X|βββ ,φφφ ,ηηη ]. (4.6)

To obtain an estimate of the animal’s true path and its uncertainty, we need the

posterior distribution

[βββ ,ηηη |X,Y] =
∫

[βββ ,ηηη |X,Y,φφφ ]︸ ︷︷ ︸
(1)

× [φφφ |X,Y]︸ ︷︷ ︸
(2)

dφφφ . (4.7)

We also include the βββ term, which can be used to assess the bias of the DRA.

The posterior mean, denoted by η̃(t), can be an estimate of the animal’s path and

the posterior standard error, denoted by σ̃(t) provides an uncertainty statement

about the estimated path. The point-wise 95% credible interval for η(t) can be

constructed via a normal approximation

[η̃(t)−1.96σ̃(t), η̃(t)+1.96σ̃(t)]. (4.8)

In principle, the “exact” credible intervals can be found via the normal mixtures

in our numerical integration scheme. Yet, we found empirically in our case study

that the exact credible intervals were almost indistinguishable from the normal

approximated intervals in (4.8). This is discussed in detail in Section 4.5.1.

4.2.1 Model inference

To calculate the posterior (4.7), we first fix the variance parameters φφφ and calculate

part (1) in Equation (4.7) and then integrate over the posterior of φφφ . The first part

of this section shows how the components of (4.7) can be efficiently evaluated. We

then use numerical integration on an adaptive grid, as in INLA (Rue et al., 2009), to

marginalize over the randomness in φφφ . The numerical integration part is described

in Appendix A.6.
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For notational simplicity, 〈·|·〉 denotes [·|·,φφφ ], that is 〈ηηη |X,Y〉 = [ηηη |X,Y,φφφ ].

As we specify our model in a Gaussian and linear fashion, it is straightforward to

show that 〈βββ ,ηηη |X,Y〉 is a multivariate Gaussian density,

〈βββ ,ηηη |X,Y〉 ∝ exp
{
−1

2
(
(ζζζ −M−1

1 M2)
T M1(ζζζ −M−1

1 M2)
)}

(4.9)

where ζζζ = (βββ T ,ηηηT )T and M1,M2 are derived in Appendix A.1.

Although the multivariate Gaussian posterior makes inference conceptually

easy in implementation, calculating its posterior mean M−1
1 M2 and covariance ma-

trix M−1
1 actually involves a matrix decomposition with computational complexity

of order O(T 3), which is a tremendous computational burden when T is large. It is

possible to avoid the O(T 3) matrix decomposition with certain sparse matrix tech-

niques together with the Sherman–Morrison–Woodbury formula (Henderson and

Searle, 1981), but those techniques still require the storage of huge matrices and

complicated matrix calculations. This pushes us to further reduce the complexity

of (4.9).

It is easily seen that we have more information (data) about ηηηG ,ηηη(t0:K) where

the GPS observations are available than where they are not. For ηηη(0 : T \ t0:K), we

only have the DR path. So our first step breaks ηηη into two sets, that is

〈βββ ,ηηη |X,Y〉= 〈ηηη(0 : T \ t0:K)|βββ ,ηηηG,X,Y〉〈βββ ,ηηηG|X,Y〉. (4.10)

We can then use the Markovian property of the Brownian Bridge process (see e.g.,

Stirzaker and Grimmett, 2001) to simplify (4.10) as:

〈βββ ,ηηη |X,Y,φφφ〉=

{
K−1

∏
k=0
〈ηηη(tk +1 : tk+1−1)|η(tk),η(tk+1),βββ ,X,Y〉

}
×〈βββ ,ηηηG|X,Y〉. (4.11)

A hidden assumption in (4.11) is that tk+1 > tk +1 for all k, such that each period

has at least one non-GPS observations. When tk+1 = tk + 1, our implementation

skips this period automatically.

In this way, we partition the long ηηη series into small pieces separated by the

40



GPS observations. The next step exploits the Markovian property of the Brownian

Motion and enables us to simplify the kth term in the first part of (4.11) as

〈ηηη(tk +1 : tk+1−1)|η(tk),η(tk+1),βββ ,X,Y〉=

〈ηηη(tk +1 : tk+1−1)|η(tk),η(tk+1),βββ ,X(tk : tk+1)〉. (4.12)

All the derivations for (4.11) and (4.12) are provided in Appendix A.2. In (4.12),

the posterior of η(t) between two GPS points can be evaluated using the corre-

sponding DR path together with the posterior distribution of the two GPS points

and βββ . This remarkably reduces the memory cost when computing the posterior of

the long sequence and enables us to easily parallelize the whole calculation. More-

over, both the Brownian Bridge and Brownian Motion processes conditioned on

two end points are Brownian Bridge processes, such that,

ηηη(tk +1 : tk+1−1)|η(tk),η(tk+1)∼BB(η(tk),η(tk+1), tk, tk+1,σ
2
H)

ξξξ (tk +1 : tk+1−1)|ξ (tk),ξ (tk+1)∼BB(ξ (tk),ξ (tk+1), tk, tk+1,σ
2
D).

This fact is exploited to completely avoid the matrix inverse calculation when eval-

uating (4.12), which further reduces the computational burden. The derivations are

included in Appendix A.3. Also, we found that the bias correction in the most

simplified BM approach (empirical Bayesian, βββ = 0) is a shrinkage of the conven-

tional bias correction, which will account for the signal-noise ratio in the DR path.

This is discussed in Section 4.2.2.

However, the evaluation of 〈βββ ,ηηηG|X,Y〉 in (4.11) still requires us to deal with

the long sequence X. But Y is an unbiased observation of ηηηG and therefore

〈ηηηG|X,Y〉 can be well approximated by 〈ηηηG|Y〉. This approximation is excep-

tionally good when σ2
D > σ2

G. The coefficients βββ can be well inferred from the

difference between XG , X(t1:K) and Y. Thus, we introduce the following approx-

imation:

〈βββ ,ηηηG|X,Y〉 ≈ 〈βββ ,ηηηG|XG,Y〉. (4.13)
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With similar arguments, we can also approximate the posterior of φφφ by,

[φφφ |X,Y]≈ [φφφ |XG,Y] (4.14)

The explicit expressions for (4.13) and (4.14) are included in Appendix A.4. Our

simulations that mimic the real data sets have shown that the impact of the two

approximation errors in (4.13) and (4.14) is negligible. We also verified through

a thinned version of the real data set that the difference between the posterior ob-

tained from (4.13) and (4.14) is not significant.

In summary, the posterior of ηηη and βββ is approximated as follows:

[ηηη ,βββ |X,Y] =
∫
[ηηη ,βββ |X,Y,φφφ ][φφφ |X,Y]dφφφ

=
∫
〈ηηη(0 : T \ t0:K)|βββ ,ηηηG,X,Y〉〈ηηηG,βββ |X,Y〉[φφφ |X,Y]dφφφ

=
∫ {K−1

∏
k=0
〈ηηη(tk +1 : tk+1−1)|βββ ,η(tk),η(tk+1),X〉

}
〈ηηηG,βββ |X,Y〉[φφφ |X,Y]dφφφ

=
∫ {K−1

∏
k=0
〈ηηη(tk +1 : tk+1−1)|βββ ,η(tk),η(tk+1),X(tk : tk+1)〉

}
×〈ηηηG,βββ |X,Y〉[φφφ |X,Y]dφφφ

≈
∫ {K−1

∏
k=0
〈ηηη(tk +1 : tk+1−1)|βββ ,η(tk),η(tk+1),X(tk : tk+1)〉

}
×〈ηηηG,βββ |XG,Y〉[φφφ |XG,Y]dφφφ . (4.15)

The integration in expression (4.15) is calculated on an adaptive grid based on

[φφφ |XG,Y], which is discussed in Appendix A.6. Combining all these techniques

to simplify computation reduces the computational time of our BM approach to a

level similar to that of the DRA. For the two data sets we worked with, the DRA

and BM of the DR path and GPS took less than five minutes in total on a regular

laptop. We implemented the BM approach in an R package “BayesianAnimal-

Tracker” (Liu, 2014). The speed with which calculations can be done using this

package, i.e., Table 3 of Liu et al. (2015), is a huge benefit for marine biologists

who want to follow the animal while aboard a ship or on a remote island using a
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portable laptop without access to the Internet or any high performance computers.

4.2.2 Connection with the conventional correction

When compared to the conventional bias correction method in (2.1), our BM ap-

proach can account for both data and model uncertainty and provide a CI for the es-

timates of the animal’s path. Moreover, there is an interesting connection between

the BM posterior mean η̃ and the conventional corrected path η̂ in Equation (2.1).

Without loss of generality, let K = 1 (no GPS observations except the known start

and end points) and Y (0) = X(0) = 0. So (2.1) can be written as

η̂(t) = Y (T )
t
T
+
(

X(t)−X(T )
t
T

)
.

For BM, if h(t) = 0 for all t and φφφ is known, the posterior mean η̃ηη under the above

assumptions as calculated by (A.15) in Appendix A.5 simplifies to

η̃(t) = Y (T )
t
T
+

σ2
H

σ2
H +σ2

D

(
X(t)−X(T )

t
T

)
.

The first parts of η̂(t) and η̃(t) represent linear interpolations between Y (0) =

0 and Y (T ), which determines the basic trend of the animal’s path between two

known points. The second part is a “bridge” constructed by the X(t), which starts

at X(0) = 0 and ends at 0 = X(T )−X(T )T/T . This bridge can be treated as the

“detail” for the animal’s path, which is then added to the basic trend of the first

part.

The difference between the traditional conventional method and the simplified

BM approach is the weight on the “detail”. In the conventional approach, the

“detail” is directly added to the basic trend while BM shrinks the detail by a factor

of ρ = σ2
H/(σ

2
H +σ2

D). According to our model, we cannot distinguish between

η(t) and ξ (t) in X(t) at those non-GPS points, as we only observe the sum of

them, but we know that η(t) accounts for the σ2
H part of the total σ2

H +σ2
D variance

(they are both of mean zero after Y (T )t/T is removed). In this way, a fraction

ρ = σ2
H/(σ

2
H +σ2

D) of the detail is treated as signal in η(t) and added to the basic

linear trend.

Notice that we only compare the most simplified BM approach to the con-
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ventional approach. In practice, the BM η̃ is far more complicated than the form

shown above with the parametric part from βββ and the integration over φφφ . Accord-

ing to our simulations and cross-validation of real data later in this chapter, our η̃

is remarkably better than the conventional η̂ .

4.3 Downscaling
Using the same notation as in the previous section, we propose the following down-

scaling model for the GPS observations and DR path:

Y (tk) = β0 + γ1(tk)+(β1 + γ2(tk))X(tk)+ ε(tk), (4.16)

where {γ1(·)} and {γ2(·)} are zero–mean Gaussian processes, such as random

walks of order 1 and 2 (RW1, RW2), and autoregressive processes of order 1,

2, and 3 (AR1, AR2, AR3). {ε(·)} is a white–noise process. For expository sim-

plicity, let γγγ denote all the unknown and random components in (4.16), including

β0,β1,γγγ1(0 : T ),γγγ2(0 : T ) and the hyper parameters governing them, e.g., the vari-

ance/correlation parameters of γγγ1,γγγ2,ε . The combined path of the tracked animal

can be learned from the posterior

[Y (t)|X(t),X(t0:K),Y(t0:K)] =
∫

γγγ

[Y (t),γγγ|X(t),X(t0:K),Y(t0:K)]dγγγ

=
∫

γγγ

[Y (t)|γγγ,X(t),X(t0:K),Y(t0:K)] [γγγ|X(t0:K),Y(t0:K)]dγγγ,

for t ∈ (0 : T )\t0:K . Notice that our formulation of the downscaling approach does

not include a “true” process ηηη explicitly as in the BM approach. Such an ηηη can

be calculated as η(t) = β0 + γ1(t)+(β1 + γ2(t))X(t) for all t, which has the same

posterior expectation as Y (t).

Traditionally, the above integral has been calculated using an MCMC approach

such as the Gibbs sampler (Berrocal et al., 2010; Zidek et al., 2012). However, the

MCMC approach is computationally expensive as well as technically challenging

and it sometimes encounters mixing or convergence problems. We therefore cal-

culate the above posterior by the integrated-nested Laplace approximation (INLA)

via the R-INLA package (Martins et al., 2013), as reviewed in Section 3.1.3.
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For the downscaling approach, we use the default priors in R-INLA, which are

all weakly informative priors. It is noteworthy that we do not put an informative

prior on the variance parameter of ε(t) as we do for the BM approach in Equa-

tion (4.4) because ε(t) represents not only the measurement error in Y (t), but also

the lack-of-fit errors of the downscaling model.

So far, we have not found any direct equivalence between the BM and down-

scaling models, but notice that the posterior in both cases is essentially only cal-

culated based on the DR path at the GPS observations X(t0:K), not on the full set

X(0 : T ). This supports the use of our approximation to the likelihood in (4.13)

and (4.14) from another perspective.

4.4 Simulation study
We performed several simulation studies to evaluate the performance of our ap-

proaches. These included a simulation to study the approximation in our BM ap-

proach (Section 4.4.1) and a comparison of all five approaches under three different

data generating models (Section 4.4.2).

4.4.1 Simulation evaluation of the approximations in the BM
approach

We used a simulation to evaluate the impact of our likelihood approximation in (4.13)

and (4.14). For expository reasons, let “full BM” denote the Bayesian Melding

approach based on the full likelihood (left hand side of (4.14)), and “approxi-

mate BM” denote Bayesian Melding approach based on the approximate likelihood

(right hand side of (4.14)).

In this simulation, the data were generated according to our BM model: The

true curve was simulated as a Brownian Bridge with T = 2000; the K = 125 GPS

time points were randomly chosen from the T = 2000 time points; the GPS obser-

vations were i.i.d. normal observations of the true curve at these time points; the

DR path was the true curve plus the bias function h(t) and another Brownian Mo-

tion process. The parameters used in the simulation were the maximum likelihood

estimates from our Trip 2 Northing data set. The results shown below are based on

1000 replicates. Similar findings were found from other settings and thus omitted.
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The first two panels in Figure 4.2, include the box–whisker plots of the poste-

rior mode of log(σ2
H) and log(σ2

D) from the full and approximate BM. As we used a

uniform prior on the log scale, the posterior modes are equivalent to the maximum

likelihood estimates based on either the full or the approximate likelihood. Both

estimates were nearly unbiased in both parameters, but the approximate likelihood

estimates were obviously less efficient than the full likelihood estimates. The ra-

tios between the standard errors of the approximate likelihood estimates and full

likelihood estimates were 1.19 and 1.38 for log(σ2
H) and log(σ2

D) respectively. The

increase in standard error, or equivalently the efficiency loss, was relatively small

as the approximate BM only uses a (125+ 125)/(2000+ 125) = 2/17 fraction

of the observations used in the full BM for parameter inference. For example, if

we assume the standard error of the estimates was proportional to 1/
√

n as in the

i.i.d. case, the ratio between the standard errors would be predicted to be about√
17/2≈ 2.915, far more than the ratio observed in the simulation study.

Moreover, the estimates of log(σ2
H) and log(σ2

D) are relatively unimportant,

given that these are nuisance parameters in our Bayesian inference. What matters

in the real application is the quality of the reconstructed path. Therefore, we calcu-

lated the root mean integrated squared error (RMISE,
√

∑
T
t=0(η(t)− η̄(t))2/(T +1))

between the true curve η(t) and different estimates η̄(t). η̄(t) can generically rep-

resent the posterior mean of η(t) from either the full or approximate posterior, or

the posterior mean of Y (t) in the downscaling approach.

The third panel of Figure 4.2 is the scatter plot of the RMISE among all the

replicates in our simulation. Clearly, most of the points lie on the diagonal line,

indicating little difference between the reconstructed η(t)’s from approximate BM

and full BM. This is because of the small efficiency loss in our likelihood ap-

proximation and the fact that we marginalize over the variance parameters in the

posterior.

4.4.2 Comparison of all five approaches

The above simulation study suggests that our approximate BM inference procedure

is quite accurate. In the following simulation, we compared all the five candidate

methods of estimating the animal’s path: the two methods working with the GPS
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Figure 4.2: Plots from our simulation, from left to right: the box plot of the
posterior mode of log(σ2

H) obtained from the approximate and full like-
lihoods; the box plot of the posterior modes of log(σ2

D); scatter plot of
the RMISE of the posterior mean of η from the approximate Bayesian
Melding approach versus the RMISE of the posterior mean from the full
Bayesian Melding approach.

observations only (1. Linear interpolation and 2. CRAWL with drift term); and the

three methods working with both the GPS and DR path (3. Conventional bias cor-

rection of the DR path, 4. Our Bayesian Melding method, and 5. Our downscaling

method). We only work with the approximate BM because the full BM was very

time consuming to run. The detailed model choices for the BM and downscaling

were chosen to be the same as those selected for our real data application in the

next section. That is, the BM model had h(t) as a constant and the downscaling

model had both γ1 and γ2 as RW1.

The data were generated from three models: the Bayesian Melding model as

mentioned above, the CRAWL model, and the downscaling model. When gen-

erating data from the CRAWL model, a path was first simulated from a CRAWL

model fitted to the real data sets and the DR path was generated by adding a Brow-

nian Motion to this path. In the downscaling model, we fixed the observed DR

path (from the real data), and generated the GPS observations by our downscaling

model. The parameter settings of all the data generation models were the estimates

from our real data from Trip 2. One thousand replicates were generated from each

model.

To summarize the performance in both dimensions, we report the pooled RMISE
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from both the northing and easting dimensions, namely,√
T

∑
t=0

[(ηN(t)− η̄N(t))2 +(ηE(t)− η̄E(t))2]/(2∗ (T +1)),

where N stands for Northing and E stands for Easting dimensions. The pooled

RMISE serves as a general measure of the goodness of approximation in both Nor-

thing and Easting dimensions. The box-plots of the RMISE in the two dimensions

separately were similar and thus omitted. The box–plots of the pooled RMISE are

in Figure 4.3. Our BM and downscaling methods have smaller RMISEs than all

the other competitors regardless of which model generated the real path. That is,

even if the animal’s path were generated from a CRAWL model (with an integrated

OU process) instead of a Brownian Bridge, the BM approach with a mis–specified

prior still manages to outperform CRAWL interpolation with the help from the DR

path. In the comparison of BM and downscaling, their differences were very small.

These findings were consistent with our findings in the cross–validation studies of

the real data.
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Figure 4.3: Pooled RMISE for all five methods of estimating animal’s path,
stratified by the data generating model.

Another interesting finding is that the conventional bias correction of the DR

path outperformed CRAWL when the data were generated from the CRAWL model

but not when the data were generated by the the downscaling model. This is be-

cause in the CRAWL data generation, the error in the DR path is purely additive

while the error is both additive and multiplicative in the downscaling data gener-

ation. The conventional bias correction is only designed to deal with the additive
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error but not the multiplicative one. On the other hand, as the model parameters in

the BM approach are adaptive in accordance with the observations, it still manages

to predict the animal’s path as well as the correctly specified downscaling model.

4.5 Case study results
We used our proposed BM and downscaling approaches to combine the DR path

and GPS observations for high resolution paths of northern fur seals. To simplify

computation and comparing different models, we thinned the original 16Hz DR

path (16 observations per second) into one observation per 5 minutes and added

the GPS time points into this thinned time set. Notice that the thinning was done

after the DR path was produced from the original 16Hz data set. The resulting

Trip 1 data set had 2100 time points, among which 274 were GPS time points.

The resulting Trip 2 data set had 2334 times points, among which 130 were GPS

time points. It is noteworthy that our BM approach could easily be fitted to the

original “big” data sets based on the 1Hz DR path (547803 time points for Trip 1

and 661249 for Trip 2). The results were reported in Liu et al. (2015) but omitted

here as they are almost identical as in the following Table 4.4 or Figure 4.6 and 4.7.

Individually modeling the two dimensions of the paths of the two animals yielded

four data sets denoted as Trip 1 Northing (latitude), Trip 1 Easting (longitude), Trip

2 Northing, and Trip 2 Easting, respectively.

We considered different bias functions h in our BM approach as well as dif-

ferent random processes γ1,γ2 for the downscaling approach. To compare these

different models as well as the two approaches, we conducted leave–5–out cross

validation experiments (L5OCV). In the L5OCV, we removed 5 consecutive GPS

observations at once when fitting our models and compared our model predictions

based on the DR path to the original GPS observations. Such a cross validation

scheme was designed to evaluate the predictive ability of our models when the

time gaps between the GPS observations are of relatively large size. We were

less concerned with the model’s predictive ability for short gaps as there were nat-

ural constraints on the speed of our tracked animal. This means that when the

time gaps were small, the animal’s movements were confined in a small range and

the performance of all methods were similar, i.e., in leave–one–out cross valida-
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tions (Liu et al., 2015). L5OCV in our real data sets created gaps that would be

longer than roughly 90% of the gaps in the observed GPS time points as shown in

Table 2.1 and thus provided us with a good way to evaluate the long term predic-

tive performance. We used the root mean squared error (RMSE) as a measure for

the prediction accuracy and also calculated the actual coverage percentage of the

nominal 95% posterior credible intervals to examine whether the uncertainty in the

combined path is calibrated properly.

In the rest of this section, the goodness of normal approximation credible in-

terval (4.8) in the BM approach is first studied in Section 4.5.1. Next, we summa-

rize the model selection results of the BM and downscaling models (Section 4.5.2

and 4.5.3 respectively). Then the cross–validation comparison with BM and down-

scaling approaches as well as linear interpolation, CRAWL, and conventional bias

correction is described in Section 4.5.4. The corrected path and its credible inter-

vals for both methods are included in Section 4.5.5. We further study the distance

traveled by the animal in Section 4.5.6

4.5.1 Goodness of normal approximation credible intervals

The normal mixture scheme for numerical integration described in Appendix A.6

provides an almost “exact” way to calculate the point-wise credible intervals from

η(t), that is, we can numerically calculate quantiles of the normal mixture at each

time point. However, calculating these exact credible intervals can be time con-

suming for a large number of time points. A simple solution is to approximate the

exact normal mixture posterior distribution of η with a normal distribution with

mean (A.18) and variance (A.19). In our case study, we find that using the nor-

mal approximation interval in (4.8) can provide almost identical credible intervals

as the exact ones. Using the Trip 1 Northing direction as an example, we plotted

the exact normal mixture density and normal approximation density for a few ran-

domly picked time points in Figure 4.4. Similar plots were found for other data

sets and time points, which are thus omitted.

From Figure 4.4, it is clear that the normal approximation density is indis-

tinguishable from the exact density. There are two reasons for this. First, the

“randomness” from φφφ is relatively small comparing to the “randomness” of ηηη con-
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Figure 4.4: The exact credible posterior density (solid line) and normal ap-
proximation density (dotted line) for a few η(t) in Trip 1 Northing di-
rection for a northern fur seal.

ditioning on φφφ , i.e., the full Bayesian posterior [ηηη |X,Y] is not very different from

the empirical Bayesian posterior [ηηη |φ̂φφ ,X,Y], where φ̂φφ is the posterior mode. As

[ηηη |φ̂φφ ,X,Y] is normally distributed, it is not surprising to find that [ηηη |X,Y] is nearly

normal. Second, in our case study, φφφ is well “estimated” from more than one hun-

dred observations XG,YG. The large sample size for two parameters guarantees

that the posterior of φφφ is also centered around the posterior mode and approxi-

mately normal. The full posterior [ηηη |X,Y] can thus be viewed as a multivariate

Gaussian resulting from a Gaussian distribution with Gaussian prior mean.

4.5.2 Model selection for BM

In our BM approach, we used the Brownian Bridge and Brownian Motion pro-

cesses with different bias functions h in the DR path. Among many possible pa-

rameterizations of h, we investigated only the polynomials h(t) = ∑
Q
i=1 βit i−1 of

order Q = 1 (constant) to Q = 4. The RMSE and actual coverage are shown in

Table 4.1.

As seen in Table 4.1, the BM with different h(·) functions had very similar
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RMSE, i.e., they differed little compared to the difference between the BM ap-

proach and linear interpolation, as in Table 4.4. The actual coverages of the cred-

ible intervals were reasonably close to the nominal 95% among the different Q’s.

This indicates that increasing the complexity in h(·) had little impact on the perfor-

mance of our BM approach in our data sets. There was an exception for the Trip 2

Northing direction where increasing Q to 3, 4 reduced the CVRMSE, but it came at

the cost of lowering coverage percentages for the credible intervals. This observa-

tion led us to choose the simple BM approach with Q = 1 for further comparisons.

Table 4.1: RMSEs and actual coverage percentages of 95% credible intervals
(in gray background) in L5OCV comparisons for different bias correction
term h(t) = ∑

Q
i=1 βit i−1 with Q = 1,2,3,4 in the BM approach.

Q=1 Q=2 Q=3 Q=4
Trip 1 Northing 0.80 94.9 0.80 95.2 0.80 95.6 0.80 95.6
Trip 1 Easting 0.75 97.8 0.75 98.2 0.76 97.8 0.76 97.8

Trip 2 Northing 3.06 93.0 3.06 93.0 2.73 92.2 2.83 89.1
Trip 2 Easting 2.62 96.9 2.60 96.1 2.52 93.8 2.53 93.8

Perhaps our findings of little difference among the different BM models should

not seem surprising, as we marginalized over the variance parameters σ2
H ,σ

2
D and

βββ (parameters in h) when evaluating the posterior [ηηη |X,Y]. That marginalization

naturally helps reduce reliance on a good mean model to correct the bias in the DR

path. Therefore, we chose not to pursue that investigation for more sophisticated

parameterization of h.

4.5.3 Model selection for downscaling

For the downscaling model (4.16), we considered random walks of order 1 and 2

(RW1, RW2) and autoregressive processes of order 1, 2, 3 (AR1, AR2, AR3) for

both γ1 and γ2, leading to 25 models in total. They are denoted in “XXX–YYY”

form, (i.e., RW1–AR2 denotes the downscaling model with γ1 as a random walk

of order 1 and γ2 as an autoregressive process of order 2). Not every model fit our

data sets well and INLA failed to converge due to numerical issues when fitting

certain models. It was not feasible with our computational resources to perform

cross–validation for all of the 25 models. Instead, we screened these models using
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the conventional deviance information criterion (Spiegelhalter et al., 2002, DIC),

which can also be calculated by the INLA package. We found that the DIC was

minimized by some simple models for our data sets and have listed the DIC values

for them together with the simplest RW1–RW1 model in Table 4.2.

Table 4.2: Selected DIC values for the downscaling models. “NA” means that
INLA crashed when fitting this model. The AR1–AR2 model minimizes
the DIC for Trip 1 Northing, AR2–RW1 for Trip 1 Easting and Trip 2
Easting, and RW2–RW1 for Trip 2 Northing. The RW1–RW1 model is
included as a benchmark.

RW1–RW1 RW2–RW1 AR1–AR2 AR2–RW1
Trip 1 Northing -1608.41 -51.87 -1641.93 -1542.40
Trip 1 Easting -487.04 -367.29 NA -1683.86
Trip 2 Northing -243.34 -853.31 -729.44 -827.04
Trip 2 Easting -774.80 -91.57 -741.25 -829.27

None of the models involving AR3 components were selected by the DIC cri-

terion, indicating that the dependence in the two random process were of short

memory, i.e., they only depended on the previous two time points. Also, it is clear

from Table 4.2 that none of these models dominated in all four data sets. The RW2–

RW1 model achieved the smallest DIC in the two Easting data sets, but it did not

fit well in the Trip 1 Northing. However, the simplest RW1–RW1 model achieved

reasonable fit in all of the four data sets and thus was included in the following

comparisons.

As pointed out by Spiegelhalter et al. (2014), DIC represents how the model fits

the observed data with certain penalty on the model complexity and is not an ideal

criterion for the predictive power of the models, which was our key objective in re-

constructing the animal’s path. We further compared the four downscaling models

via a leave–5–out cross validation and summarized the results in Table 4.3. Among

the four downscaling models we considered, AR2–RW1 and AR1–AR2 were the

first to be ruled out as they had large prediction errors in the Trip 2 Northing and

Easting data sets. Close examination of the cross–validation results found they

completely failed to correct the DR path for a certain period of the trip and resulted

in errors as large as 100km. In addition, the credible intervals for AR2–RW1 and
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AR1–AR2 failed to achieve the nominal coverage percentage for Trip 1 Northing

or Trip 2 Easting. As for the comparison between the RW2–RW1 and RW1–RW1

models, RW2–RW1 had slightly smaller RMSEs in the two Easting data sets while

RW1–RW1 had smaller RMSEs in the two Northing data sets. Yet these two mod-

els, in general, achieved similar performances in terms of the RMSE and actual

coverage percentage. We therefore chose the simpler RW1–RW1 model for further

comparisons.

Table 4.3: RMSEs and actual coverage percentages of nominally 95% cred-
ible intervals (in gray background) for the L5OCV comparisons of the
different downscaling models with different processes.

Downscaling with different γ1,γ2
RW1–RW1 RW2–RW1 AR1–AR2 AR2–RW1

RMSE (km) 0.95 0.83 1.06 2.73
Trip 1 Northing

Coverage (%) 95.6 91.5 94.9 86.0
RMSE (km) 0.75 0.93 0.71 0.80

Trip 1 Easting
Coverage (%) 98.9 95.2 96.3 96.6

RMSE (km) 2.59 1.61 3.56 5.26
Trip 2 Northing

Coverage (%) 93.0 98.4 92.9 91.1
RMSE (km) 2.56 4.08 18.27 18.32

Trip 2 Easting
Coverage (%) 98.4 93.8 85.2 96.1

4.5.4 Cross–validation comparison of the different approaches

We compared the selected BM model with Q = 1 (BM1 for short) and downscal-

ing RW1–RW1 model (DS11 for short) with the competitors: linear interpolation,

conventional bias correction, and CRAWL (Johnson et al., 2008). Linear interpo-

lation provided the same mean curve as using the Brownian Bridge to interpolate

the GPS observations. CRAWL interpolated the GPS observations via state space

models, whose process model is an integrated Ornstein–Uhlenbeck process with

drift term (but assuming the correlation and process noise parameters are the same

in both dimensions). Linear interpolation and CRAWL were based on the GPS

observations only. Conventional bias correction was previously described in (2.1).

The CV–RMSE and coverage percentages of the credible intervals are summarized
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in Table 4.4.

We first compared the two approaches only with the GPS observations (first

two columns of Table 4.4) to the approaches that combined both the GPS observa-

tions and DR path (the last three columns of Table 4.4). We found that the latter

approaches had better predictive performance in general, which demonstrates the

great value of the DR path in providing fine scale details of the animal’s move-

ment. In the comparison of linear interpolation and CRAWL, the more complex

CRAWL had a larger RMSE than linear interpolation in the two Easting data sets

we considered, which indicates a poor fit for the CRAWL models. In addition, the

coverage percentages of CRAWL were lower than the nominal level in the two data

sets from Trip 2.

We also noticed that the conventional approach had a larger RMSE than linear

interpolation with the Trip 1 Northing data set, which shows that the conventional

approach failed to properly use the high resolution DR path. The same issue was

not found with our BM and downscaling approaches, both of which achieved a

smaller RMSE than the other three approaches uniformly in all the four data sets

we considered. Also the reduction in the RMSE achieved by our BM or downscal-

ing approaches was larger than the differences between the BM or downscaling

approaches with different model components as shown in Tables 4.1 and 4.3.

In the comparison between the selected BM and downscaling models (last two

columns of Table 4.4), the BM1 had a smaller RMSE for Trip 1 Northing while the

DS11 had a smaller RMSE for the Trip 2 Northing. They achieved similar RMSEs

in the two Easting data sets. They also had similar coverage percentages across all

four data sets. Thus, we conclude that the BM and downscaling approaches have

similar performance.

To further explain the results in Table 4.4, we plotted the corrected path for all

five approaches considered above and zoomed in on the time period 12:00—24:00

for 2009-07-23 in Trip 1 to better illustrate their differences (Figure 4.5). Similar

plots were obtained by zooming into other periods and thus omitted. From this plot,

we see that the conventional corrected path went through the GPS observations di-

rectly as did the linear interpolation; but it inferred dramatic changes between the

GPS observations. The reconstructed path from BM and downscaling aligned well

with the GPS observations, while retaining detail from the conventional bias cor-
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Table 4.4: RMSEs and actual coverage percentages of nominally 95% credi-
ble intervals (in gray background) for the L5OCV comparisons of all the
approaches. Two approaches that only use GPS data: Linear interpola-
tion (Linear), and Correlated Random Walk (CRAWL) with drift term.
Three approaches use both GPS and DR path: conventional bias cor-
rection of DR (Convention), Bayesian Melding with Q = 1 (BM1), and
Downscaling with RW1–RW1 model (DS11).

Linear CRAWL Convention BM1 DS11
RMSE (km) 1.16 1.12 1.25 0.80 0.95

Trip 1 Northing
Coverage (%) 94.1 94.9 95.6

RMSE (km) 1.13 1.28 1.04 0.75 0.75
Trip 1 Easting

Coverage (%) 93.8 97.8 98.9
RMSE (km) 4.44 3.70 3.33 3.06 2.59

Trip 2 Northing
Coverage (%) 88.3 93.0 93.0

RMSE (km) 3.84 3.98 2.67 2.62 2.56
Trip 2 Easting

Coverage (%) 90.6 96.9 98.4

rection. As discussed in Section 4.2.2, the BM corrected path shrinks the conven-

tional bias correction toward that of linear interpolation. This shrinkage removes

the noise in the DR path in a statistical way and gives the BM an advantage over

the conventional approach. From this plot, we also found that the corrected path

from BM and downscaling were very close.

However, the path from CRAWL showed some unrealistic trends, like the up-

swing before 19:00, while the DR path indicated that the animal was moving in the

opposite direction. These unrealistic trends likely resulted from the model assump-

tions in CRAWL, which may not fit the data well. These unrealistic trends and the

resulting poor performance of CRAWL in cross–validations seem to have derived

from the lack of fine detail provided by the DRA.

4.5.5 Combined paths and their uncertainty from BM and
downscaling

Figure 4.5 only covered a small period of our data. We applied our proposed BM

and downscaling approaches to the four data sets and found they all successfully

corrected the bias of the DR path and properly quantified the uncertainty. There-
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Figure 4.5: The reconstructed path for a northern fur seal in a selected period
from all the five approaches considered in our study, Bayesian Melding
(BM1), Downscaling (DS11), Conventional bias correction, CRAWL
and linear interpolation. The dots are the GPS observations.

fore, we only present the plots for the corrected path for the Trip 1 Northing data

set. Similar plots and analysis were found in the other three data sets and are thus

omitted.

In Figure 4.6, we show the corrected path from the BM (solid curve) and down-

scaling (dotted curve) approaches, which are the posterior mean of η(t) when BM

was used, and Y (t) when the downscaling approach was used. The point-wise

95% credible intervals (gray solid curve for BM and purple dotted curve for down-

scaling) were included to represent the uncertainty around the corrected path. We

also included the original data—GPS observations (round points) and the DR path

(dashed curve), from which it is clear that the bias of the DR path grew dramatically

over time and reached 100km at the end of this trip. The location estimate in the

DR path was not very useful in predicting the animal’s location, but the fluctuations

in the DR path matched the fluctuations of the GPS observations, meaning that the

DR path has useful high–frequency information that can be further exploited to

fill in the gaps between GPS observations. This was successfully achieved by our

proposed BM and downscaling approaches, as the corrected path from both ap-

proaches lay close to the GPS observations.

For the scale of Figure 4.6, the corrected path and CIs from BM and down-
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Figure 4.6: The Bayesian Melding and downscaling results for a northern fur
seal undertaking Trip 1 Northing from Bogoslof Island, Alaska: Points
are the GPS observations and the dotted curve is the DR path. The
solid curve is the posterior mean of η(t) in the case of BM, whose 95%
credible intervals are shown by the gray solid curve. The dotted curve
is the posterior mean of Y (t) in the downscaling approach, whose 95%
credible intervals are shown by the gray dotted curve.

scaling were almost indistinguishable. To show how our BM and downscaling

approaches worked in fine scale, we zoomed into the Day 2 (2009–07–23) and

Day 6 (2009–07–27) part of this trip. We can confirm from Figure 4.7 that the

corrected paths from the two approaches were similar as the curves of the posterior

means nearly overlaid each other. As well, the CIs from both approaches displayed

a clear “bridge” structure, that is, they were narrower at the GPS time points and

wider in between the GPS observations. This is plausible because we have direct

and accurate observations at the GPS time points and less accurate information

when the GPS locations were not available. The error grows as the track moves

away from the GPS observations and decreases near the next GPS observation.

Also, the longer the gap between the GPS time points, the larger the error, and

thus, the wider the credible intervals, which is seen by comparing Days 2 and 6.

On Day 6, fewer GPS observations were available and the gaps were longer, which

resulted in overall wider credible intervals.

Another interesting finding seen in Figure 4.7 is that the CI from the downscal-
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ing approach was narrower than those from BM on Day 2 while they were wider on

Day 6. This was caused by the two RW1 components in the downscaling model, as

their variance was growing with time (Figure 4.8). On the other hand, the posterior

SD for the BM approach was more stable because it was more constrained with the

Brownian Bridge structure.
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Figure 4.7: Zoomed Bayesian Melding and downscaling results for a north-
ern fur seal undertaking Trip 1 Northing on 2009–07–23 and 2009–07–
27: Red points are the GPS observations. The solid curve is the poste-
rior mean of η(t) in BM, whose 95% credible intervals are shown by
the gray solid curve. The dotted curve is the posterior mean of Y (t)
in downscaling, whose 95% credible intervals are shown by the gray
dotted curve.

59



Wed Thu Fri Sat Sun Mon Tue

0.
0

0.
5

1.
0

1.
5

2.
0

Time

P
os

te
rio

r 
S

D
 (

K
M

)

BM
Downscaling

Figure 4.8: Posterior standard deviation (SD) from Bayesian Melding and
downscaling results for a northern fur seal undertaking Trip 1 Northing.
The solid curve is from BM while dotted curve is from downscaling.

4.5.6 Paths in both dimensions and the distance traveled by the
animal

We plot the corrected paths from the BM approach in both dimensions for these

two trips in Figure 4.9 and omit the similar paths from the downscaling approach,

because the correct paths from downscaling were almost indistinguishable from

those the BM on the scale of the whole trip (seen in Figure 4.6). From Figure 4.9,

it is easy to find that the corrected paths from our approaches not only connect the

GPS observations, but also reserve the tortuosity exhibited by the DR path.

With these corrected paths from our BM approach, we more accurately calcu-

lated the distance traveled by the fur seals during their foraging trip (Table 4.5).

Distances calculated using our approach were 40% greater for Trip 1 and 49%

greater for Trip 2 than those calculated by linear interpolation of the GPS obser-

vations. This, once again, demonstrates that the corrected DR path is needed to

fill in the gaps between the GPS observations. Calculating the distance traveled by

the animal with the conventional bias correction method revealed it to be twice the

distance calculated based on GPS observations, which further illustrates that our
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BM is a compromise between linear interpolation and conventional DR correction.

Table 4.5: Total distance (km) traveled in the two fur seal foraging trips cal-
culated via different methods

Trip Linear Interpolation BM Conventional
1 418.25 585.95 815.36
2 443.30 662.91 1023.88

Figure 4.9: GPS observations of the two trips and the corrected paths from
our BM approach. The GPS measured latitude and longitude of the two
trips of the northern fur seal began and ended at Bogoslof Island in the
summer of 2009. The GPS observations in Trip 1 are indicated by the
round points and those for Trip 2 are indicated by the triangular points.
The pink curve is the corrected path from our BM model for Trip 1 and
the blue curve is for Trip 2.
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4.6 Discussion
We present a Bayesian Melding approach and a downscaling approach to combine

sparse but accurate GPS observations with high resolution but biased DR paths for

the tracking of marine mammals. The posterior mean from our BM and down-
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scaling approaches both offer an accurate and high resolution path for the tracked

animals and the posterior credible intervals provide a reasonable statement of the

uncertainty in our inferences. The good predictive performance of our approaches

is also supported by our simulation studies. Moreover, neither of our methods

requires computationally expensive MCMC methods for computation. Our BM

approach exploits the conditional independence property of the Brownian Bridge

and Brownian Motion to dramatically reduce the heavy computational burden in-

volved in dealing with large data sets. The downscaling approach is fitted via the

computationally efficient INLA approach. The quality of the likelihood approxi-

mation in BM and correctness of downscaling were confirmed in our simulation

study.

We performed cross–validation studies to compare different models in these

two approaches and found that the predictive performance of the simplest ap-

proaches (i.e., BM with a constant bias term and downscaling with both two ran-

dom effects being first order random walks) were as good as or even better than

those of the more complex models, according to our empirical assessments. This

finding is partially explained by the fact that we marginalized over the model pa-

rameters in the posterior distribution for our tracked subjects. In the comparison

between BM and downscaling, we could not find any noteworthy differences be-

tween these two approaches in their prediction accuracy and actual coverage per-

centage of their credible intervals. However, our implementation of BM is better

because it is more scalable to big data sets with more than half a million time

points on a regular computer (Liu et al., 2015), while the downscaling approach

fitted by INLA can only work with thinned data sets on the same computer. Also,

we can build BM on a process that reflects the nature of our tracked subject, which

is discussed in Chapter 6.

McClintock et al. (2014) have shown many disadvantages of using a discrete

time formulation when working with satellite data, which may lead one to question

the discrete time formulation we used. Yet, animal movement, (e.g., the fur seals

we tracked) is ultimately powered by its body movement (e.g., the stroking of

flippers), and there is a maximum frequency of body movement that an animal

is capable of achieving. Therefore, the animal’s movement is essentially discrete

and can thus be sufficiently well described by a discrete process model with an
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observation frequency of no less than twice the maximum frequency of the animal’s

body movement (Nyquist frequency, see e.g., Leis, 2011; Le and Zidek, 2006).

The Nyquist frequency was taken into consideration in data collection, i.e., the

original sampling frequency of the DR path was 16Hz in our northern fur seal

data. The DR path thus captures the fine detail in an animal’s movements and

provides observations of the path in “continuous time” with respect to the animal.

Our discrete time formulation in Bayesian Melding or downscaling is thus backed

up by these “continuous time” observations, which are free of the shortcomings

of discrete time models for satellite data. In addition, the Bayesian Melding with

Brownian Bridge and Brownian Motion have both processes defined in continuous

time, which can be easily modified for a continuous time model.

One concern about our Brownian Bridge prior in the Bayesian Melding ap-

proach is that the GPS observations (Figure 4.1) appear to be much smoother than

a Brownian Bridge process. Yet, it is important to recognize that the Brownian

Bridge is only a prior distribution for the animal’s path. The corrected path, as

seen in Figure 4.7, retains the smoothness and does not become tortuous as a sim-

ulated Brownian Bridge, because the corrected path is the posterior given both the

GPS and DR paths. The smoothness of the DR path is preserved in the posterior.

However, our BM approach can undoubtedly be further improved by replacing the

Brownian Bridge process prior with some other processes, which is the focus of

the following chapters.

63



Chapter 5

Conditional Heterogeneous
Gaussian Process

In this chapter, we propose a conditionally heterogeneous Gaussian process (CHGP)

for the modeling of inhomogeneous spatio–temporal data. Here “inhomogeneous”

means that the process have non-stationary covariance function with changing vari-

ance or correlation parameters. For GP defined on the time domain, “inhomoge-

neous” indicates the process has non-constant variance/correlation parameters. In

a CHGP, a Gaussian process (GP) is specified first on a set of knots. Conditioning

on these knots, the sub-intervals separated by the knots follow GP’s of the same

family but with possibly different parameter values. The knots and sub-intervals

should enable us to handle efficiently large data sets and the “conditionally hetero-

geneous” parameters can capture the non-stationary dependence structure of the

data. It is also possible to learn the hidden behavior from based on different con-

ditional parameters. We first study a special case of the CHGP, the conditionally

heterogeneous Brownian Bridge (CHBB) as an initial investigation. Many metrics

and algorithms are considered for the model selection in the CHBB modeling, but

none of them succeeds in choosing a reasonable knot structure automatically. This

chapter documents our attempts and discusses the reasons why this is an unsuc-

cessful idea.

The rest of this chapter is organized as follows. Section 5.1 introduces the

CHGP and CHBB processes and their relationship to some other recent devel-

64



opments in GP modeling. Section 5.2 introduces and discusses our metrics and

algorithms for model selection in the CHBB modeling. Our reflections on these

efforts are discussed in Section 5.3 .

5.1 Definition of CHGP and CHBB
As in Section 3.1, we find that most of the recent developments in spatio–temporal

modeling with the GP are focused on either the non-stationarity issue or the big

data issue and few methods are good at dealing with both issues. Our proposal of

the conditionally heterogeneous GP (CHGP) is designed to simultaneously handle

the non-stationarity and big data issues. Similarly as in the NNGP modeling (Datta

et al., 2016), we begin with a set of knots in Rd , S = {s0,s1, . . . ,sK} and define a

multivariate Gaussian random vector,

ηηη(S )∼ N(f(S ),C(S ,S ;θθθ 0)),

where f(S ) is the mean vector and C(S ,S ;θθθ 0) is the covariance matrix. In

addition to the knots, we also respectively observe or aim to predict the process

at locations T = {s0,s1, . . . ,sK , sK+1,sK+2, . . . ,sN}. We assume that the knots

S ⊂ T for simplicity in discussion, but the model will work as well without

this assumption. We divide the non-knot locations T \S = {sK+1, . . . ,sN} into J

disjoint blocks T j, j = 1,2, . . . ,J, such that

T j ∩T j′ = /0, for j 6= j′,
J⋃

j=1

T j = T \S .

Conditioning on ηηη(S ) and θθθ 0, ηηη(T j) is assumed to be another GP

ηηη(T j)|ηηη(S )∼ N(F jηηη(S j),C∗j(T j,T j;θθθ 1, j,θθθ 0)),

where θθθ 1, j denotes the additional parameters in the conditional covariance matrix

C∗j . For example, F j and C∗j can be specified as in the Gaussian Predictive Pro-
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cess (GPP, Banerjee et al., 2008):

F j =C(T j,S ;θθθ 0)C−1(S ,S ;θθθ 0) (5.1)

C∗j =C(T j,T j;θθθ 1, j)−C(T j,S ;θθθ 0)C−1(S ,S ;θθθ 0)C(S ,T j.θθθ 0). (5.2)

In this case, θθθ 1, j are the parameters in the marginal covariance matrix for ηηη(S j).

We can also consider other parameterizations for F j and C∗j , such as the radial basis

function1 from the multi-resolution GP (MRGP, Nychka et al., 2015).

It is easy to verify that the CHGP reduces to a GP when S = /0, or S = T ,

or θθθ 1, j = θθθ 0,∀ j in expression (5.2). If Fk,C∗k are specified in the GPP manner as

above, we can choose T k to be the subset whose elements have the same m-nearest

neighbors in S . If Fk,C∗k are specified via radial basis functions as in MRGP, T k

can be chosen to be a subset whose elements have non-zero correlation with the

same set of elements in S . There can be different ways of choosing the T k’s

and it should be chosen to accommodate the non-stationary dependence structure.

In addition to the one layer of knots as specified above, we can consider multiple

layers of knots, i.e., specify another knot set inside T j, similarly as in Katzfuss

(2016).

A key difference in the definition of the CHGP compared with the NNGP (Datta

et al., 2016) and the MRGP (Nychka et al., 2015) is that the CHGP allows the pa-

rameters θθθ to vary among the conditional sets T j, which is designed for inhomo-

geneous modeling. Also, instead of specifying a fixed set of knots or the nearest

neighbors as in MRGP or NNGP, we attempt to compare the model with different

knots and let the data choose an “optimal” set of knots. Our CHGP differs from

the independent block (Stein et al., 2004) or the composite likelihood approach (Ei-

dsvik and Shaby, 2014) due to the fact that the correlation between blocks in CHGP

is still carried by the knot set.

A special case of the CHGP defined for time interval T = [0,T ] is the con-

ditionally heterogeneous Brownian Bridge (CHBB) process. At the knots S =

{s0 = 0 < s1 < s2 . . .sK = T}, the random vector has the same joint distribution a

1Radial basis function is a basis function that only depends on the distance.
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Brownian Bridge with variance parameter σ2
0 ,

ηηη(S ) = ηηη(s0:K)∼ BB(0,0,s0,sK ,σ
2
0 ), (5.3)

where BB(A,B, t, t ′,σ2) is defined the same as in (4.3). The start and end points

η0 = 0,ηT = 0 are fixed for the definition of the BB and the knot set S always

contains 0,T . The knot set S separates T into K disjoint intervals (periods) Tk =

(sk−1,sk),k = 1, . . . ,K. The process in each period is a Brownian Bridge process

with (conditional) variance parameter σ2
1,k conditioning on η(sk−1),η(sk):

ηηη(Tk)|η(sk−1),η(sk)∼ BB(η(sk−1),η(sk),sk−1,sk,σ
2
1,k). (5.4)

In addition, we assume conditional independence of any η(t) and η(t ′) when t and

t ′ is separated by a knot sk,

η(t)⊥ η(t ′)|η(sk), ∀, t < sk < t ′.

Denote the set of all the variance parameters by σσσ2 = {σ2
0 ,σ

2
1,1, . . . ,σ

2
1,K}. Then

the joint distribution of CHBB [ηηη |S ,σσσ2] is

[ηηη |S ,σσσ2] = [ηηη(S )|σ2
0 ]

K

∏
k=1

[ηηη(Tk)|η(sk−1),η(sk),σ
2
1,k]. (5.5)

The joint distribution of CHBB can be viewed as the distribution of a Gaussian

process with changing variance parameters. Clearly, a CHBB reduces to a Brown-

ian Bridge process when σ2
0 = σ2

1,k,∀k or S = T or S = {0,T}. Notice that σ2
1,k

can be different from σ2
0 , which allows this process to have inhomogeneous fea-

tures and adapt to the local data. For modeling of an animal’s track, σ2
0 in CHBB

can reflect the overall range of the foraging trip and the different σ2
1,k can reflect

the animal’s hidden states, e.g., foraging, traveling or sleeping during this trip.

As an illustration, Figure 5.1 plots five simulated realizations of a CHBB ob-

served at T = {0,1, . . . ,60} with knot set S = {0,10, . . . ,60}. The start and end

points of these 5 realizations are fixed at 0 and the variance parameters are set to be

σ2
0 = 10, σ2

1,1 = σ2
1,3 = σ2

1,5 = 2 and σ2
1,2 = σ2

1,4 = σ2
1,6 = 0.1. From Figure 5.1, it is

easy to see that the overall range of these CHBB’s is mainly decided by σ2
0 . Also,
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in the shaded periods, the non-knot points are far away from the lines connecting

the knots because of a large σ2
1,k. On the other hand, in the non-shaded periods,

the non-knot points stay relatively close to the lines connecting the knots. For the

marine mammal tracking application, the shaded periods may represent the ani-

mal’s foraging behavior, where the animal searches its surroundings for food while

the non-shaded periods may present animal’s traveling behavior, where it swims

towards a certain destination, such as its home.

Figure 5.1: Five simulated realizations of a CHBB with knot set S =
{0,10,20, . . . ,60}. The start and end points of this CHBB are fixed at
zero. The variance parameters are chosen to be σ2

0 = 10, σ2
1,1 = σ2

1,3 =

σ2
1,5 = 2 (shaded areas) and σ2

1,2 =σ2
1,4 =σ2

1,6 = 0.1. The vertical dashed
lines indicate the knots S .
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The definition of CHBB is different from the dynamic Brownian Bridge pro-

cess in Gurarie et al. (2009) as well as Kranstauber et al. (2012, 2014), which

assumes that the variance parameter is changing with time. They choose to es-

timate the variance parameter at time t by averaging over the estimates from all

the moving windows that contain t. This produces a sequence of highly correlated

variance parameters and it is unclear to us how to choose the window size. If the

window covers observations from two behavior status of the animal, it is difficult

to explain what the variance parameter represents.
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5.2 Attempts at model selection for the CHBB
An important feature of the CHBB and CHGP is that we allow the data to decide the

knots and the conditional parameters. The conditional parameters can be estimated

given the knots and thus the key issue is how to select the knots S , which involves

two issues: how to enlist the candidate S ’s and how to measure their differences.

For the first issue, we consider sequentially adding knots to an empty knot set, or

deleting knots from a full knot set, because S = {0,T} or T are the same model.

We find empirically that the search direction has little impact on the selected knots

once the metric for S is decided. As a sparse knot set is preferred, sequentially

adding knots is more efficient and used in our following discussion.

5.2.1 Metrics for model comparison

To measure the differences between the CHBB models with different knots, we

have considered the following metrics: the likelihood ratio (LR) statistic, Kullback–

Leibler (KL) divergence and three Bayes factors: original, intrinsic, and fractional.

We use M to denote the CHBB model, including the knots S ⊆T and the variance

parameters σσσ2 = {σ2
0 ,σ

2
1,1, . . . ,σ

2
1,K}. The bracketed subscript on M(i) indexes the

different models.

The LR statistic and KL divergence are two frequentist metrics for model com-

parisons. The LR statistic D is twice the difference between the likelihood of two

nested models M(0), M(1)

D =−2
(

log([y|S(0), σ̂σσ
2
(0)])− log([y|S(1), σ̂σσ

2
(1)])

)
, (5.6)

where [y|S(i),σσσ
2
(i)], i = 0,1 is the joint probability of y as in (5.5) and σ̂σσ

2
(i), i = 0,1

are the maximum likelihood estimates of σσσ2given S and y. Model M(0) is nested

in M(1) when S(0) ⊂S(1).

The KL divergence measures the discrepancy between M(1) and M(0). As with

the LR statistic, we evaluate the divergence at the MLE of the parameter estimates,

KL(M(0)||M(1)) =
∫
[y|S(0), σ̂σσ

2
(0)] log

(
[y|S(0), σ̂σσ

2
(0)]

[y|S(1), σ̂σσ
2
(1)]

)
dy. (5.7)
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A shortcoming of the LR statistic and KL divergence is that they depend on the

MLE of the parameters and do not account for the uncertainty in the parameters.

This shortcoming can be overcome by using the Bayes factor (BF), which compares

two models by the marginal probability of the data y,

[y|M(i)] =
∫
[y|S(i),σσσ

2
(i)][σσσ

2
(i)]dσσσ

2
(i), i = 0,1, (5.8)

where [σσσ2
(i)] is the prior for variance parameter σσσ2

(i). The Bayes factor is defined as

the ratio of the two marginal distributions

BF(M(1),M(0)) =
[y|M(1)]

[y|M(0)]
. (5.9)

Notice that a proper prior for the variance parameter is needed in the calculation of

the marginal distribution and BF (O’Hagan, 1995). In the absence of the prior

knowledge needed for an informative prior, the improper (uninformative) prior

[σ2] ∝ 1 or [log(σ2)] ∝ 1 is a convenient choice, but these improper priors will

lead to an ill–defined BF.

To illustrate this problem, we introduce a normalizing constant c and write the

improper prior as c[σ2]. Notice that c does not exist but we act as if c[σ2] is a

proper prior. Consider M(0) as a BB without knots; it has one variance parameter

ς2
0 . Its marginal density is

[y|M(0)] = c
∫
[y|ς2

0 ][ς
2
0 ]dς

2
0 . (5.10)

Meanwhile, M(1) is a CHBB with K = 2 (three knots) and thus it has three variance

parameters σ2
0 ,σ

2
1,1,σ

2
1,2. The marginal probability becomes

[y|M(1)] = c3
∫
[y|S(1),σ

2
0 ,σ

2
1,1,σ

2
1,2][σ

2
0 ][σ

2
1,1][σ

2
1,2]dσ

2
0 dσ

2
1,1dσ

2
1,2. (5.11)

Dividing (5.11) by (5.10), the BF between M(0) and M(1) has a leading factor of

c2. This non-existent normalizing constant is part of the BF and thus demonstrates

that it is inappropriate to use the BF with improper priors.

Two alternative forms of the BF have been proposed to construct the BF with
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improper priors. The intrinsic BF (Berger and Pericchi, 1996, and references

therein) first calculates the posterior with part of the data and then uses this pos-

terior as the prior for the remaining data. A concern about the intrinsic BF is that

users have to manually decide which observations to use in forming the prior. Such

arbitrariness is avoided by the fractional BF (O’Hagan, 1995) which considers the

following fractional marginal density

Qb(M(i)) =

∫
[y|S(i),σσσ

2
(i)][σσσ

2
(i)]dσσσ2

(i)∫
[y|S(i),σσσ

2
(i)]

b[σσσ2
(i)]dσσσ2

(i)
,

where b ∈ (0,1) is a small fraction that in effect decides how much data is used to

“form the prior”.

For the model selection of CHBB, we have considered all three forms of the

BF. The original BF is applied with informative priors. Small fractions of b =

1/T,2/T,3/T , etc., are considered for the fractional BF. For the intrinsic BF, we

use the posterior of knots [σ2
0 |y(S )] as the prior for T \S . For all the metrics, LR,

KL and the BFs, a larger value indicates a better fit of M(1). Yet, it is unclear how

big an increase means a substantially better fit, except for the LR statistic, where

the AIC or BIC can be used. We skip this issue by listing all candidate models that

can be visited and studying the top models with biggest increases relative to the

null model.

However, none of the above metrics offer satisfactory model selection results

for both simulated and real data sets. They all tend to select two knots that are

close to each other. This issue can be alleviated by a strongly informative prior in

the original BF or a large b in fractional BF, but both have the undesired feature

of sensitivity to the prior choices. For an individual data set, we may compare a

few priors and choose one that yields a seemingly reasonable knot structure, i.e.,

matching our visual examination of the data. However, the prior comparison is

redundant and it is easier to just pick the knots from the visual examination. Visual

examination can also be challenging for big spatio–temporal data sets and prone to

human bias.
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5.2.2 Reason for their failure

To explain why all the metrics fail, we use the following example. Consider y =

{y0,y1, . . . ,yT} to be a realization of a CHBB at time set T = {0,1,2, . . . ,T}. M(0)

is the Brownian Bridge model,

M(0) : y∼ BB(y0,yT ,0,T,ς2).

The end points y0,yT are fixed. Model M1(s) has a single knot at time s∈ (1,T−1)

(no empty periods),

M(1) :


ys|y0,yT ∼BB(y0,yT ,0,T,σ2

0 )

y1:(s−1)|y0,ys ∼BB(y0,ys,0,s,σ2
1,1)

y(s+1):(T−1)|ys,yT ∼BB(ys,yT ,s,T,σ2
1,2)

Under M(0), the twice negative log likelihood is

−2log([y|ς2]) = (T −1)
(
log(2π)+ log(ς2)

)
+ log(|C|)+(y− f)T C−1(y− f)

1
ς2 ,

where C is the covariance matrix of a standard (variance parameter as 1) Brownian

Bridge on T and f is the mean of the Brownian Bridge as in (4.3). The MLE of ς2

can be calculated as

ς̂
2 =

1
T −1

(y− f)T C−1(y− f). (5.12)

Plugging the MLE ς̂2 back into the log likelihood, we have,

−2log([y|ς̂2]) = (T −1)
(
1+ log(2π)+ log(ς̂2)

)
+ log(|C|). (5.13)
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Similarly, under M(1),

−2log([y|σ̂2
0 , σ̂

2
1,1, σ̂

2
1,2]) =

(
1+ log(2π)+ log(σ̃2

0 )
)
+ log(|C0|)

+(s−1)
(
1+ log(2π)+ log(σ̂2

1,1)
)
+ log(|C1,1|)

+(T − s−1)
(
1+ log(2π)+ log(σ̂2

1,2)
)
+ log(|C1,2|).

(5.14)

The estimates of σ̂2
0 , σ̂

2
1,1, σ̂

2
1,2 can be calculated following (5.12). The matrices

C0,C1,1,C1,2 are the covariances of a standard Brownian Bridge process for the

corresponding time points.

Plugging (5.14) and (5.13) into (5.6), the LR statistic between M(0) and M(1) is

D = log
(

ς̂2

σ̂2
0

)
+(s−1) log

(
ς̂2

σ̂2
1,1

)
+(T − s−1) log

(
ς̂2

σ̂2
1,2

)
. (5.15)

A key simplification is the factorization of matrix determinant |C|= |C0||C1,1||C1,2|.
The proof is included in Appendix B.1.

With (5.15), we may further derive the joint distribution for Ds with differ-

ent choices of knot s under the null model M(0), which is denoted as Ds,s =

2,3, . . . ,T − 2. The joint distribution Pr{D2,D3, . . . ,DT−2} can then be used to

calculate Pr
{

argt max{Dt} = s
}

, namely, the probability that knot s is selected as

the best M(1). However, those probabilities become very complicated to derive in

a closed form and therefore we evaluate them by simulation. Figure 5.2 is the his-

togram of the selected s based on 1000 replicates of the BB with T = 100. This

histogram is U–shaped and the s’s near the two end points, s < 5 or s > 95, are

more likely to be selected than the middle s’s. This illustrates the tendency that the

model selection based on LR statistic is very likely to result in short periods in the

CHBB.

The exact form of D in (5.15) provides useful heuristics into this problem with

the LR statistic. When one of the variance estimates σ̂2
0 , σ̂

2
1,1, σ̂

2
1,2 is close to zero,

the metric becomes very large and two very close knots are more likely to produce

a small variance estimate, because the sample size is smaller. For example, σ̂2
1,1

is the MLE of the variance parameter of the BB conditional on y0 and ys, which
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Figure 5.2: Histogram of the selected knot s based on the LR statistic for the
one-knot CHBB model M(1). The data is generated from the null model
M(0)(a Brownian Bridge process with variance 1) and T = 100. The LR
statistic are more likely to select a knot which is near the end points.

has s−1 observations. Under M(0) with ς2 = 1, σ̂2
1,1 follows a gamma distribution

with shape (s− 1)/2 and scale 2/(s− 1), as shown in Appendix B.2. As seen in

Figure B.1, the probability Pr{σ̂2
1,1 < ε} decreases with the increase of s, where

0 < ε < 1 is an arbitrary small number. Now suppose we have two candidate

models, M(1) and M′(1) with the same ς̂2, σ̂2
0 , σ̂

2
1,2, but s = 2 in M(1) while s = 20

in M′(1). It is more likely that M(1) results in a smaller σ̂2
1,1 and thus a larger LR

statistic D. Our model selection procedure will then select M(1), which has a very

short period s = 2.

The sensitivity to small variance estimates is the main reason why model selec-

tion with the LR statistics tends to pick two knots that are very close to each other.

This problem also carries over to the BFs, as the likelihood is a vital part of the

BFs, especially the intrinsic and fractional BF. For small periods, the likelihood is

not very informative about σ2 and thus different priors can heavily affect the BF.

The KL divergence has a similar problem. The KL for the above M(0) and M(1) is

74



derived in Appendix B:

KL(M(0)||M(1)) = g
(

ς̂2

σ̂2
0

)
+(s−1)g

(
ς̂2

σ̂2
1,1

)
+(T − s−1)g

(
ς̂2

σ̂2
1,2

)
,

where g(x) = x− log(x)− 1 with g(x) approaching infinity when x approaches

either 0 or ∞. The KL divergence is also very big when any one of σ̂2
0 , σ̂

2
1,1, σ̂

2
1,2 is

close to zero.

5.3 Reflections and future directions
The idea that led to the CHBB was inspired by the short period updates in our

Bayesian Melding approach in Chapter 4. Our attempts may be viewed as trying

to partition the GPS observations into different periods and to estimate a differ-

ent variance parameter in each period. This might produce better predictions if

we knew where to partition the GPS observations instead of selecting the parti-

tions using the data. Yet, with such information, analyzing each period separately

might work equally well. For the animal tracking data, it is possible to select the

periods based on other information such as the diving records, or simply a visual

examination of the data. Such selection methods are not practical for other spatial

or spatio–temporal data sets, as there is usually no auxiliary information or it is

extremely difficult to perform a visual examination. So it is necessary to have an

automatic model selection procedure.

The problem with our current model selection procedure is that it tends to select

short periods with small variance parameters. For the marine mammal tracking

data, it results in too many behavior changing points. Also, we cannot tell the

animal’s different hidden behavior from the variance parameters, because they are

all small. This disagrees with our initial expectation that a CHBB would have

periods with small variances and other periods with large variances as in Figure 5.1.

This might be fixed by designing informative priors on the σ2s or priors on the knot

structures similar to Bayesian trees (Chipman, 1998; Gramacy and Lee, 2008).

Another direction would be to discard all the metrics above and design a metric

that encourages σ2
1,1,σ

2
1,2, . . . to be different. These ideas would require a lot of

trial–and–error, which is part of our future work.
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Another crucial difficulty in performing model selection for CHBB or CHGP

is that the number of models (i.e., different knot sets) is 2n for data observed at n

locations. Such a number is prohibitive if we try to enumerate all models and find

the optimal model even for moderate n. We avoid this issue in this initial investiga-

tion by performing a sequential greedy search and not revisiting the added/deleted

knots. Yet, there is no guarantee that such a greedy search would converge to the

optimal model.

We start the study of the CHGP by working on the CHBB, because the BB

seems to be a good model in our application to animal tracking and it has a sim-

ple mathematical form that enables us to derive many statistics explicitly. How-

ever, there is only one parameter, the variance parameter, in the BB. As seen in

Section 8.2, the variance parameter estimates can be affected by model misspeci-

fication and the sampling rate, which might not be a good indicator of changes in

conditional dependence. For future developments of CHGP, we should start with a

process that has correlation parameters and a predetermined knot structure.
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Chapter 6

Generalized Ornstein–Ulhenbeck
Process and Its Application in
Animal Tracking

In Chapter 4, we showed that our Bayesian Melding (BM) approach with the Brow-

nian Bridge process works well to combine the GPS observations and DR path for

accurate high resolution track estimation. However, the constant variance σ2
H in

the Brownian Bridge is not able to reflect the inhomogeneous feature of the track.

Attempting to change only σ2
H does not lead to a successful model in Chapter 5.

In this chapter, we propose a generalized Ornstein–Ulhenbeck process (GOU) to

replace the Brownian Bridge process. GOU offers a flexible structure for both

the mean and variance of the path. Unlike the “jumping” variances in CHBB, we

control the mean and covariance of GOU to vary smoothly through our formula-

tion based on B-splines, which also helps GOU retain a reasonably parsimonious

parameterization. In addition, a GOU is still a Gaussian Markov process, which

enables efficient computation via the Kalman filter and smoother.

Our definition of the GOU can be easily modified for a multivariate process,

but we focus on a univariate process in this chapter. The rest of this chapter is

organized as follows. Section 6.1 introduces the definition of the GOU process and

its properties. Its application in our Bayesian Melding framework for combining

the GPS observations and DR path for animal tracking is discussed in Section 6.2.
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6.1 Generalized Ornstein–Ulhenbeck process
As reviewed in Section 3.2, only a few types of SDEs have closed form solutions

and the Ornstein–Ulhenbeck (OU) process is one of them,

dη(t) = ρ(µ−η(t))dt +σdW (t),

with σ > 0. The initial value η0 = η(0) is considered to be fixed in our study.

Using Itô’s lemma (see e.g., Arnold, 1974), the solution of the above SDE is

η(t) = η0e−ρt +µ(1− e−ρt)+σ

∫ t

0
e−ρ(t−u)dW (u).

In addition, {η(·)} can be shown to be a Gaussian process, whose mean and co-

variance are

Eη(t) =η0e−ρt +µ(1− e−ρt)

Cov(η(s),η(t)) =
σ2

2ρ
e−ρ(s+t)(e2ρ min(s,t)−1).

If ρ > 0, η(t) has a stationary distribution of N(µ, σ2

2ρ
) and has a mean–reverting

behavior: when η(t)> µ , η(t) is expected to decrease to µ , when η(t)< µ , η(t)

is expected to increase to µ . This behavior is illustrated in Figure 6.1 with two

different initial values of η0 = 0,10 and µ = 5. Notice that the ρ > 0 condition

is only required to ensure the existence of a stationary distribution and the mean-

reverting behavior, while the definition of the OU process does not require ρ > 0.

When ρ < 0, σ2/(2ρ)< 0 and e2ρ min(s,t) < 1 still results in a positive variance. In

this case, the mean and variance will diverge to infinity as t→∞, when µ−η0 6= 0.

When ρ = 0, limρ→0(e2ρ min(s,t)−1)/(2ρ) = min(s, t) and the OU process reduces

to a Brownian Motion process with variance σ2.

The OU process has desirable properties and therefore has been widely used in

financial models for interest rates and stock prices (see e.g., Chan et al., 1992). Zhu

et al. (2011a,b) applied the OU and integrated OU processes to model longitudinal

data. But the mean function of the OU process is an exponential curve η0e−ρt +

µ(1− e−ρt) as shown by the dashed curves in Figure 6.1, which is not sufficiently
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Figure 6.1: Examples of the Ornstein–Ulhenbeck process of ρ = 1,σ =
1,µ = 5 with different initial value η0. The mean curve is plotted with
the dash lines while the realizations are plotted with the solid lines.

flexible in modeling the tracks. A natural extension of the OU process is the linear

SDE as discussed in Chapter 8 of Arnold (1974),

dη(t) = (A(t)η(t)+a(t))dt +σ(t)dW (t). (6.1)

Notice that the linear SDE reduces to a OU process when A(t) = −ρ,a(t) =

ρµ,σ(t) = σ . When A(t) = 1/(1− t), a(t) = 0, and σ(t) = 1, the linear SDE

results in a Brownian Bridge process defined on [0,1] (see e.g., Chapter IV of

Rogers and Williams, 2000). In general, A(t),a(t),σ(t) need to satisfy a few mild

conditions listed in Section 3.2 to guarantee the existence and uniqueness of the

solution. The mean and covariance functions of the linear SDE are derived in Sec-

tion 6.1.1. We consider only the linear SDE instead of other types of SDE, as

the linear SDE is often used as an approximation base for many other types of

SDE (Ozaki, 1992; Vrettas et al., 2015). So even if we modeled with a non-linear

SDE, we may be forced to use the linear one as an approximation in the inference

and prediction unless we consider particle based Monte Carlo methods, such as the

sequential Monte Carlo (Del Moral et al., 2006) or particle Markov Chain Monte

Carlo (Andrieu et al., 2010), which are computationally intensive.
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Although the linear SDE has been studied extensively in probability theory, we

found few applications with this process except for the OU special case. In our

study, we have merely investigated the special case that σ(t) is a constant function

while A(t) and a(t) are modeled with basis functions,

A(t) =
JA

∑
j=1

γ
(A)
j B′j,kA

(t) (6.2)

a(t) =
Ja

∑
j=1

γ
(a)
j B j,ka(t). (6.3)

Both A(t) and a(t) have equally spaced knots in the time domain. We choose the

B-spline function for an initial investigation but other differentiable basis func-

tions, such as other splines or Fourier basis functions may well be suitable. Notice

that A(t) is modeled by the first derivative of the basis functions. As reviewed in

Section 3.4, the first derivative of the B-spline(J,k) can be represented by a B-

spline(J− 1,k− 1) with one less degree of freedom. The modeling of A(t) via

B′j,kA
(t), j = 1,2, . . . ,JA− 1 is equivalent to using B j,kA−1(t), j = 1,2, . . . ,JA− 1.

As explained later, using B′j,kA
(t) helps to simplify the evaluation of the linear

SDE. We fix γ
(A)
JA

= 0 in this investigation to ensure the identifiability of γ
(A)
j , j =

1,2, . . . ,JA−1.

The idea of modeling A(t) and a(t) through the B-splines allows the process to

have flexible (non-stationary) mean and variance functions. We can easily control

the level of flexibility by tuning the number of basis functions JA, Ja. For notational

simplicity, we call such a linear SDE with coefficients modeled by basis function

as a “generalized Ornstein–Ulhenbeck process” (GOU). As discussed later, GOU

remains a Gaussian Markov process whose computation can be handled efficiently

with sparse matrix or the Kalman smoother techniques.
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6.1.1 Mean and covariance of GOU: our model choice

As seen in Chapter 8 of Arnold (1974), the solution of (6.1) can written in the

following form

η(t) = Ψ(t)
(

η0 +
∫ t

0
Ψ(u)−1a(u)du+

∫ t

0
Ψ(u)−1

σ(u)dW (u)
)
,

where

Ψ(t) = exp
{∫ t

0
A(u)du

}
= exp

{
JA

∑
j=1

γ
(A)
h (B j,kA(t)−B j,kA(0))

}
. (6.4)

Notice that Ψ(u)−1 = 1/Ψ(u), not the inverse function of Ψ(u). When A(t),a(t)

satisfy conditions discussed in Section 3.2, which can be met by simply constrain-

ing the spline coefficients to be bounded in our formulation (6.2) and (6.3), the

above solution is a Gaussian process with mean function

m(t) = Eη(t) = Ψ(t)
(

η0 +
∫ t

0
Ψ(u)−1a(u)du

)
, (6.5)

and covariance function

K(s, t) = Cov(η(s),η(t)) = Ψ(s)
[∫ min(s,t)

0
σ(u)2

Ψ(u)−2du
]

Ψ(t). (6.6)

In the above mean and covariance functions, we notice that the function A needs

to be integrated first to calculate Ψ(t), which in turn needs to be integrated again

for the mean or covariance function. Modeling A(·) with a function whose integral

can be calculated in close form, such as the B-spline or its first derivative, can

help us avoid calculating both layers of integral numerically. We choose to use the

first derivative, because its integral, namely the B-spline, can be easily calculated

in software packages, such as the R package “fda” (Ramsay et al., 2014). This

helps us to simplify the implementation of GOU. If we choose to model A with the

B-spline, the integral expression needs to be manually derived.

The covariance function of GOU in (6.6) depends on both Ψ(t) and σ(t). To

allow for a dynamically changing variance in the GOU, it is sufficient to let one
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of A(t) and σ(t) vary. σ(t) = σ is fixed as a constant hereafter to avoid overly

complex parameterization of the GOU.

6.1.2 Conditional distribution of GOU

As seen in Chapter 8 of Arnold (1974), the conditional distribution η(t)|η(s) = x,

t > s is Gaussian with mean and variance respectively,

E(η(t)|η(s) = x) =Ψ(t)
∫ t

s
Ψ(u)−1a(u)du+ xexp

(∫ t

s
A(u)du

)
(6.7)

Var(η(t)|η(s) = x) =σ
2
Ψ(t)

∫ t

s
Ψ(u)−2du. (6.8)

Notice that the conditional mean of η(t) given η(s) is a linear function of η(s),

which enables us to express the GOU process at a finite set of time points T =

{t0 = 0, t1, t2, . . . , tn} as a state model in a dynamic linear model (DLM) (3.15).

For expository simplicity, define θi = η(ti)−Eη(ti), θi−1 = η(ti−1)−Eη(ti−1) (θi

has mean zero, i.e., we remove the mean of the GOU first). Substituting ti, ti−1

into (6.7) and (6.8), the conditional distribution of θi given θi−1 = x is

E(θi|θi−1 = x) =xexp
(∫ ti

ti−1

A(u)du
)

Var(θi|θi−1 = x) =σ
2
Ψ(t)

∫ ti

ti−1

Ψ(u)−2du.

This is equivalent to the following linear transformation from θi−1 to θi,

θi =Giθi−1 +ui, ui ∼ N(0,Ci), (6.9)

with

Gi =exp
{∫ ti

ti−1

A(u)du
}
= exp

{
JA

∑
j=1

γ
(A)
h

(
B j,kA(ti)−B j,kA(ti−1)

)}
,

Ci =σ
2
Ψ(t)

∫ ti

ti−1

Ψ(u)−2du.
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Equation 6.9 will be used in the next section as part of a DLM representation of

our Bayesian Melding approach.

6.1.3 Sparse precision matrix of GOU

According to Arnold (1974), the solution to the linear SDE that satisfies conditions

in (3.12) and (3.13) is a Gaussian Markov process. Our GOU process is a special

case of the linear SDE and thus a Gaussian Markov process. As seen in Rue and

Held (2005), a realization of a Gaussian Markov process at any finite collection

of points has a multivariate Gaussian distribution whose precision matrix is sparse.

We can derive its covariance and precision matrix as follows. For a finite set of time

points T = {t0 = 0, t1, t2, . . . , tn}, ti < t j for all i< j, we denote the random variable

at these times points by ηi = η(ti). From (6.6), the covariance of ηi,η j, i < j is

Cov(ηi,η j) = K(ti, t j) = hih j

i

∑
k=1

dk,

where

di =
∫ ti

ti−1

Ψ(u)−2du, hi = σΨ(ti).

Now define the following matrices,

D =Diag({d1,d2, . . . ,dn})

H =Diag({h1,h2, . . . ,hn}),

and L as a lower-triangular matrix of 1’s as shown below. The inverse of L
is a sparse matrix where only the diagonal and lower off-diagonal elements are

nonzero.

L =



1 0 0 . . . 0

1 1 0 . . . 0

1 1 1 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1


L−1 =



1 0 0 . . . 0

−1 1 0 . . . 0

0 −1 1 . . . 0
...

...
...

. . .
...

0 0 . . . −1 1


.
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Then covariance and precision matrices for the random vector ηηη =(η1, . . . ,ηn)
T

are:

ΣΣΣ =HLDLT H

Q =ΣΣΣ
−1 = H−1L−T D−1L−1H−1. (6.10)

The precision matrix is the product of three diagonal matrices and two off-diagonal

matrices, which is a tri-diagonal matrix, such that

Qi,i = h−2
i (d−1

i +d−1
i+1), i < n

Qi,i+1 = Qi+1,i =−h−1
i h−1

i+1d−1
i+1 i < n

Qn,n = h−2
n d−1

n

Qi, j = 0, |i− j|> 1.

6.1.4 Implementation of GOU in practice

We discussed two properties of the GOU process that enable its efficient computa-

tion above. With the conditional distribution and the DLM representation (6.9), the

Kalman filter and smoother discussed in 3.3 can be used to calculate the likelihood

and posterior for GOU. We can also consider the sparse matrix techniques dis-

cussed in 3.1.1, as the GOU process has a tri-diagonal precision matrix. A natural

question is which approach is more efficient.

In theory, both the sparse matrix and Kalman filter/smoother approaches, if im-

plemented properly, can have linear complexity O(n) in evaluating the likelihood or

posterior. Notice that the sparse matrix approach usually has super linear complex-

ity, i.e., is larger than O(n), because of the Cholesky decomposition step (Davis,

2006). But for our GOU process, the Cholesky decomposition can be calculated

explicitly in linear time from (6.10).

Although these two have the same theoretical complexity, they still have some

differences in practice depending on the implementation and which programming

language is used. We implemented the DLM approach for the GOU with the R

package “dlm” (Petris et al., 2009) and the sparse matrix approach with the R pack-

age “Matrix” (Bates and Maechler, 2016). The “dlm” package offers the Kalman
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filter/smoother implementation in both the R and Fortran languages. A simulation

was used to compare the three implementations, DLM with R (DLM-R), DLM

with Fortran (DLM-F), and sparse matrix (SparseM), in terms of the computation

time in evaluating different likelihoods involving the GOU. We only consider the

likelihood evaluation because it is the most frequently used calculation in our ap-

plications, i.e., likelihood evaluation is performed many times in the numerical

optimization for the posterior mode and Hessian matrix.

The first likelihood in this simulation was that of a realization (free from obser-

vation noise) of the GOU at its true parameter. We also considered our Bayesian

Melding (BM) model with the GOU, as introduced in the next section, and it can

be viewed as the GOU process with measurement error and other bias components.

We considered the number of time points T ∈ {100,200,500,1000} as close to the

number of GPS time points in our real data. Multiple parameter settings were con-

sidered but the conclusions were invariant to these settings. We only report on one

setting copied from a real data fit. Table 6.1 summarizes the total computational

time for 100 replicates of these likelihood evaluations.

Table 6.1: Computation times (in seconds) for three different approaches to
evaluate the likelihood of models involving the GOU. T is the number of
time points.

Likelihood of GOU Likelihood of BM with GOU
T DLM-R DLM-F SparseM DLM-R DLM-F SparseM

100 1.89 0.28 0.73 1.69 0.32 2.44
200 3.41 0.51 0.96 3.23 0.45 2.80
500 7.59 0.50 1.25 7.41 0.67 3.40

1000 15.31 0.96 2.00 14.66 1.13 5.40

From Table 6.1, we can see that the DLM with Fortran is the clear winner of

the three approaches. Its advantage is moderate for small n and the likelihood of

GOU, but quite remarkable for large n and the complex BM model. It can be more

than 10 times faster than the DLM-R and approximately 5 times faster than the

sparse matrix implementation when T = 1000. We must emphasize that Table 6.1

is a comparison of software packages that we can use to implement our models.

The advantage of the DLM with Fortran might be mainly due to the fact that it is
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using a faster language.

Another advantage of using the DLM implementation is that the same code

can work for T = 100 and big T > 500,000. If we were to use the sparse matrix

approach, we would need to separate such a long sequence into short pieces due

to memory issues and to update them separately. This idea would require a large

amount of derivation and programing, i.e., similar to what we did in Appendix A

for the BM models with the BB. The DLM implementation requires less detailed

programing and thus becomes the only implementation we consider hereafter.

6.2 Application to Bayesian melding for animal’s track
We consider use of the GOU process to replace the Brownian Bridge process in

our Bayesian Melding approach to combine the GPS observations {Y (tk)} and DR

path {X(t)}, namely,

ηηη(0 : T )∼ GOU(γγγ(A),γγγ(a),σ) (6.11)

Y (tk)|η(tk)
iid∼N(η(tk),σ2

G),k = 0,1, . . . ,K (6.12)

X(t) =η(t)+h(t)+ξ (t). (6.13)

As in Section 4.2, we consider a set of equally spaced time points T = {0,1,2, . . . ,T},
but our model works for irregularly spaced time points as well. X(t) denotes the

DR path at time t. Y (tk) denotes the kth GPS observation and {tk,k = 0,1, . . . ,K},
which is a subset of T . We consider the random bias process ξ (t) as a Brownian

Motion process with unknown variance σ2
D. The measurement error in the GPS

observations has a fixed variance σ2
G = 0.0625. The systematic bias in DR h(t) is

considered to be an unknown constant β , which is the best model according to our

model selection analyses in Section 4.5.2. In addition, γγγ(A) = {γ(A)1 ,γ
(A)
2 , . . . ,γ

(A)
JA−1}

and γγγ(a) = {γ(a)1 ,γ
(a)
2 , . . . ,γ

(a)
Ja
} denote all the unknown spline coefficients for A(t)

and a(t) (γ(A)JA
= 0 being fixed). We represent all the unknown hyper-parameters

with φφφ = {γγγ(A),γγγ(a),σ ,σ2
D,β}. The priors for the hyper-parameters are as follows:

[γγγ(A)] ∝1, [γγγ(a)] ∝ 1, [β ] ∝ 1,

[log(σ)] ∝1, [log(σ2
D)] ∝ 1.
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6.2.1 DLM of the BM approach

As seen in (6.9), the zero-mean GOU can be written as a state model in DLM.

Similarly, Brownian Motion over the discrete time set T = {0,1,2, . . . ,T} can be

formulated as

ξt = ξt−1 + εt , εt
iid∼ N(0,σ2

D),

where ξt = ξ (t) for notational simplicity. Given the hyper-parameter vector φφφ , we

first remove the mean from the observations, i.e.,

GPS: Y ∗(t) =Y (t)−m(t)

DR Path: X∗(t) =X(t)−m(t)−h(t),

where m(t) is the mean of the GOU process as in (6.5). Then define Oi = {X∗(ti),Y ∗(ti)}T

and ζζζ i = {η(ti)−m(ti),ξi}T . For the time points that the GPS observation is

not available, we code them by “not available” (NA), which will be automatically

marginalized in the Kalman filter/smoother.

The Bayesian Melding model with GOU (BM-GOU hereafter), is then written

as

Oi =Fiζζζ i +vt vt ∼Nm(0,Vt)

ζζζ i =Giζζζ i−1 +ut ut ∼Np(0,Ut),

with

Fi =

[
1 0

1 1

]
Gi =

[
Gi = exp(

∫ ti
ti−1

A(u)du) 0

0 1

]

Vt =

[
σ2

G 0

0 0

]
Ut =

[
Ci = σ2Ψ(t)

∫ ti
ti−1

Ψ(u)−2du 0

0 σ2
D

]
.

With this state–space representation of our DLM, the Kalman smoother can used

to evaluate the following posterior distributions,

[φφφ |XG,Y] [ηηη |φφφ ,X,Y].
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where the notation is the same as in Section 4.2: X for the DR path, XG for the DR

path at the GPS time points, Y for the GPS observations.

As is Section 4.2, the marginal posterior of [ηηη |X,Y] is approximated by

[ηηη |X,Y] =
∫
[ηηη |φφφ ,X,Y][φφφ |X,Y]dφφφ

≈
∫
[ηηη |φφφ ,X,Y][φφφ |XG,Y]dφφφ , (6.14)

where the integral in the second line is calculated via numerical integration dis-

cussed in Appendix A.6. One may notice that the dimension of the hyper-parameters

is much larger with the GOU than with the Brownian Bridge, which leads to a huge

number of grid points if we perform the grid search in the direction of each eigen-

vector. For example, JA = 3,Ja = 3 already leads to eight hyper-parameters (2 γ
(A)
j s,

3 γ
(a)
h s, σ , σ2

D, and β ) and 5 points in each dimension results in 58 = 390625 total

grid points. We avoid this issue by searching only in the direction of the first few

eigenvectors that explain more than 95% of the variation in the hyper-parameters.

This is acceptable because the purpose of the grids is to explore the likelihood

surface.

6.2.2 Model selection for BM-GOU and comparison with other
approaches

As in Section 4.2, we use leave–5–out cross validation (L5OCV) to perform model

comparison and selection. For the B-spline models in A(t) and a(t) used in the

GOU, we considered B-splines of order ka,KA {2,3,4} (piecewise linear to cubic)

and the number of basis functions Ja,JA in {ka(kA)+1, . . . ,6}, i.e., at least one knot

besides the end points. This results in 81 models in total. Due to the large number

of models and the complexity in evaluating the GOU, we screened those models

based on the CV-RMSE of the empirical Bayes posterior

[ηηη |X,Y]≈ [ηηη |φ̂φφ ,X,Y],

where φ̂φφ is the posterior mode for φφφ . For the ten models with the smallest CV-

RMSE in the empirical Bayes posterior, we further calculated their fully Bayesian

posterior (6.14), whose CV-RMSE was used to decide the final model.
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We report the model with the smallest CV-RMSE in the full Bayesian version

in Table 6.2 with its model specification JA,kA,Ja,ka and the cross validation per-

formance. To compare the BM-GOU with the models we developed in Chapter 4,

Table 6.2 also includes the CV-RMSE and coverage percentage from the selected

Bayesian Melding model with the Brownian Bridge (BM-BB for short) and the

downscaling model, which were shown before as the last two columns of Table 4.4.

Table 6.2: The best GOU model, RMSEs and actual coverage percentages of
95% credible intervals (in gray backgrounds) for the Bayesian Melding
approach with the GOU process (BM-GOU). The CV-RMSE and cover-
age from the Bayesian Melding with the Brownian Bridge (BM-BB), and
the Downscaling approach (DS) are also included from comparison.

Best GOU CV-RMSE and coverage percentages
JA kA Ja ka BM-GOU BM-BB DS

Trip 1 Northing 5 2 6 4 0.80 95.2 0.80 94.9 0.95 95.6
Trip 1 Easting 6 4 4 2 0.68 97.4 0.75 97.8 0.75 98.9
Trip 2 Northing 6 2 6 3 1.83 93.8 3.06 93.0 2.59 93.0
Trip 2 Easting 3 2 5 3 2.58 93.0 2.62 96.9 2.56 98.4

From the first four columns of Table 6.2, the best models for the four data sets

have J > 4 in at least one of A(t) and a(t), so that we have a flexible component for

the animal’s track modeling. These shows that the GOU modeling can be useful

in predicting the animal’s track. When compared to the BM-BB and downscaling

approaches, the BM-GOU performs at least as well. In particular, the BM-GOU

is better than the BM-BB in three out of the four data sets and they are tied for

the Trip 1 Northing. In Trip 2 Northing, the BM with GOU manages to reduce the

CV-RMSE by 40% when compared to the BM-BB. The actual coverage percentage

from the credible intervals for BM-GOU is also close to the nominal level.

To further compare the BM-GOU and BM-BB, we plot the posterior mean and

credible intervals from these two approaches for the Trip 2 Northing data set in

Figure 6.2. Similar plots are obtained in other data sets and therefore omitted. As

in the BM-BB, the posterior mean for BM-GOU lies close to the GPS observations

and indicates a good bias correction of the DR path.

The close-up of the middle part of this trip provided in Figure 6.3 shows that the

89



Table 6.3: The average width of posterior credible intervals from the BM-
GOU and the BM-BB.

Trip 1 Trip 2

Northing Easting Northing Easting
BM-GOU 1.58 1.64 3.78 4.23

BM-BB 1.62 1.90 5.42 4.82

BM-GOU provides a smoother posterior mean and narrower posterior CI than the

BM-BB. It is plausible that the BM-GOU can capture a more complex correlation

structure in the process and thus enable greater smoothing. The BM-GOU borrows

strength from neighboring DR observations to reduce the amount of uncertainty in

the prediction. This results in the narrower CIs as in Table 6.3, which summarizes

the average CIs width in the four data sets. Combining the results in Table 6.2

and 6.3, we find that the BM-GOU provides narrower CIs than the BM-BB without

sacrificing the coverage percentage, another advantage of the BM-GOU over BM-

BB.
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Figure 6.2: The posterior mean and 95% credible intervals from Bayesian
Melding with GOU and Brownian Bridge for Trip 2 Northing data set.

In summary, based on our cross–validation study, we find that the flexible mean

and covariance structure of the GOU process can improve the prediction power of
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Figure 6.3: The posterior mean and 95% credible intervals from Bayesian
Melding with GOU and Brownian Bridge for a period Trip 2 Northing
data set.

Bayesian Melding approach. In addition, the model selection for GOU is much

easier than that for the CHBB in Chapter 5, as the number of models for GOU

is controlled by the number of basis functions in the splines while the CHBB cre-

ates 2n models (n is the number of observations). This is a merit of modeling

non-stationarity in a continuous fashion over the discrete fashion as in the CHBB.

However, we studied the posterior for γγγ(A),γγγ
(a)
h and did not find much useful in-

formation that can help to further interpret the animal’s track. This motivates us to

consider other forms of SDEs in the next chapter.
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Chapter 7

Potential Field Modeling in
Tracking

In the previous chapter, we demonstrated that SDEs can improve the prediction of

our animals’ spatial tracks when compared to the Brownian Bridge. In this chapter,

we introduce more features into SDE modeling so that the fitted SDE can also be

used to interpret the spatial tracks.

We work with a special form of the SDE with drift term formulated as the

negative gradient of a function H:

dr(t) =−∇∇∇H(r(t), t;βββ )dt +ΣΣΣ
1/2(r(t), t;βββ )dW(t), (7.1)

where r(t) denotes the location on the track at time t inRd . The error term W(t) is

a d-dimensional standard Brownian motion with independent increments in each

dimension and ΣΣΣ(r(t), t) is a covariance matrix. We fix it to be a diagonal matrix

ΣΣΣ(r(t), t) = σ2Id for the following two case studies.

The key feature of (7.1) lies in the drift term −∇∇∇H(r(t), t). Function H(·, ·;βββ )

can vary with location and time and depends on other parameters βββ . Its gradient

∇∇∇H = (∂H/∂x,∂H/∂y, . . .)T decides the negative expectation of the velocity of

the object, such that the object is expected to visit locations of low values of H.

This formulation comes from physics originally. Imagine that H represents the

height of a hill and a ball is dropped on top of this hill. Obviously, the ball will
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move down the hill, which is in the direction of locations with lower values of H.

Brillinger et al. (2004), Brillinger et al. (2007), and Brillinger and Stewart (2010)

introduced this approach to modeling the movement of various objects, such as elk,

monk seal, and soccer ball. Russell et al. (2016) extended the potential field model

by including a semi-parametric potential surface and a separate motility surface.

Hooten et al. (2017) reviewed similar models developed for animal telemetry data.

The function H is called the potential field (PF) in these papers, as H(r, t) presents

the potential that the object will move to location r at time t. A lower value of H

indicates a higher likelihood of being visited.

The PF function H offers a versatile interface for modeling the tracks. In ad-

dition to time and location, it can also include covariates, such as the locations of

other animals (Brillinger et al., 2007) or a map of an ocean’s temperature or salin-

ity. The coefficients of the covariates help us understand how an object interacts

with others or the environment. Even without covariates, the PF can still offer an

intuitive map to highlight attractive areas in the field of movement, which will be

shown later in this chapter.

As discussed in Section 3.2, the solution to (7.1) may not have a closed form.

We use the Euler approximation for inference:

rrr(ti+1)− rrr(ti)≈−∇H(rrr(ti), tk;βββ )(tk+1− tk)+ΣΣΣ
1/2(rrr(tk), tk;βββ )

√
tk+1− tkεεεk,

where εεεk,k = 0,1,2, . . . ,K are d-dimensional white noise terms (independent in

each dimension). After this approximation, the parameter βββ can be estimated via

maximum likelihood. When the PF H(·, ·;βββ ) is a linear function of βββ and the dif-

fusion matrix ΣΣΣ
1/2(·, ·;βββ ) is a constant that does not depend on either the location

r or the coefficients βββ , the maximum likelihood estimate can be calculated by least

squares directly.

In this chapter, we further develop the PF approach for two applications, the

tracks of basketball movement in the National Basketball Association (NBA) games

as well as the foraging paths of northern fur seals. They are discussed in Section 7.1

and 7.2 respectively.
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7.1 Potential field for learning basketball strategies
Since the beginning of the 2013-2014 season, the NBA has used SportVU R©1 tech-

nology to track the movement of the players and the basketball in a nearly contin-

uous manner. In each NBA arena, six high speed cameras have been installed to

record images of each game at a rate of 25 readings per second. These images are

then processed by specialized software to obtain the players’ and ball’s locations at

the same rate. This technology has already yielded an array of informative statis-

tics such as speed, distance, and touches. All these extend the ability to summarize

a player’s or team’s performance, thereby allowing teams to assess and optimize

strategy. For example, this technology was used recently to help Duke University

win the 2014-2015 NCAA basketball championship 2.

The player tracking data encodes a vast amount of information for each game

and has sparked a lot of innovative statistical research. For example, Cervone et al.

(2014) modeled basketball possession using a Markov chain and derived the ex-

pected scores from this possession3 to evaluate the efficiency of players’ decisions.

Cervone et al. (2016) further studied the impact of space occupation via hierarchi-

cal spatial models on both the offensive and defensive ends (i.e., expected points

scored or defended resulted from the space occupation). Hidden Markov models

and log Gaussian Cox processes were recently used to quantify players’ defensive

skills and effectiveness in Franks et al. (2015). McIntyre et al. (2016) developed

a multinomial logistic regression model to identify the ball screens4 and then ap-

plied the identified screens to performance assessment. Neural network models

were used to classify different types of offensive play in Wang and Zemel (2016).

Many useful new statistics have arisen from the above cited studies to quantify

players’ or teams’ performance, but few of them have aimed at learning a team/-

player’s playing strategies directly from the massive tracking data. The supervised

learning approaches developed in McIntyre et al. (2016) as well as Wang and Zemel

(2016) can learn certain types of plays, but they require human-annotated data sets

1http://www.stats.com/sportvu/sportvu-basketball-media
2http://www.stats.com/press-releases/duke-utilizes-stats-sportvu-player-tracking-technology-championship-season/
3A possession is the period when a player or a team is in control of the basketball.
4A screen is a basketball tactic that one player uses his/her body to block the defender(s) and thus

create open space for his/her teammate.
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to train the classifier (logistic or neutral network), which can be hard to obtain and

prone to labeling errors. It is also difficult for the models learned in this fashion to

adapt to the new types of plays created in the fast–evolving nature of NBA games.

That leads us to consider an unsupervised learning approach for the massive NBA

tracking data set, such that the play strategies can be learned and visualized without

using human-annotated training data sets. Our PF approach is designed as such an

unsupervised learning approach.

In this section, we illustrate our approach with the NBA tracking data from the

seven game series between the Houston Rockets (HOU) and Los Angeles Clippers

(LAC) in the 2015 NBA Western conference semi-finals. The raw player tracking

data were downloaded from http://stats.nba.com 5 via Python and further processed

by R (R Development Core Team, 2008). The raw tracking data contains the team,

player names and jersey number, game clock6, shot clock7, and the movements

of the ball and the players on the court. We further supplemented these data with

the “play-by-play” record from http://nba.com in order to extract the time periods

when a certain team (HOU or LAC) was in possession of the ball. Two different

PF models are introduced below for different analytical purposes.

7.1.1 Potential field as a tensor product spline over the space

First, we consider the PF as a function over the basketball court, such that some

areas of the court can be more attractive to the ball than other areas. This spatial

function is formulated as a tensor product spline (De Boor et al., 1978)

H(rrr(t), t;βββ ) =
K

∑
j=1

K

∑
k=1

β jkS j
(
x(t)
)
Tk
(
y(t)
)
,

where S j,Tk are spline functions in the x (long edge of the basketball court) and

y (short edge of of the basketball court) directions. The location vector is r(t) =
(x(t),y(t))T . We fit such a PF with K = 5 to the basketball’s movement paths

5Data used in our study was downloaded in Sep 2015. Unfortunately, those data are no longer
available to the public.

6It shows the time remained in the quarter of a basketball game.
7NBA rules specifies that the offensive team must shoot within 24 seconds from the start of this

play. This clock indicates how many seconds are left to shoot the basketball.
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from the offensive plays by HOU in Game 4 (G4) and Game 5 (G5) of this series.

In G4, we have tracks of the basketball movement in 89 HOU offensive plays

which consist of 18,255 records of (x,y) locations. In G5, there are 81 plays,

corresponding to 15,346 moments. The fitted PF is plotted in Figure 7.1.

Figure 7.1: Potential fields parameterized by tensor product splines fitted to
the paths of the ball when HOU was on offence during Games 4 and
5 vs. LAC in the 2015 NBA Conference playoffs. LAC won Game 4
128-95, while HOU won Game 5 124-103. The colors show the values
of the potential field H, whose lowest value is around the basket.

At first, it appears that the two plots in Figure 7.1 are similar. In both games,

we observe that the PFs take on high values around the half court line (blue) and

display a tendency to steadily decrease toward the basket (green, yellow, then red).

The minimum value of the PF is attained near the basket, as can be seen from the

red area surrounding this location. This is plausible, as the ball is supposed to

move toward the basket. Moreover, the PFs quickly decrease near the half court

line because the player dribbling the ball up the court is likely to rush over the half

court line to setup the offense (The gradient of the PF determines the velocity of the

movement). The PFs for both games also indicate that Houston’s usual offensive

patterns are to move the ball inside or to move the ball to the corners for a 3-

point shot8. This can easily be seen from the plot by observing the red and yellow

8Ball shot from somewhere outside the big arch (3-point line).
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regions.

The same PF model can also be applied to analyze player’s movement data. We

work with the tracks of Jason Terry (point guard) and Trevor Ariza (small forward)

from the HOU team in G5 as an illustration. In this game, we have 52 and 50

plays involving Trevor Ariza and Jason Terry, respectively. These are limited to

possessions in which HOU was on offence while Trevor Ariza/Jason Terry was on

the court. The paths of the two players, from the raw data, are shown in Figure 7.2.

Different colors in this figure correspond to different plays. The paths of each play

are plotted as dots, which increase in size as the play develops. That is, the size

of the dot indicates how much time has elapsed on the shot clock, with larger dots

indicating less time remaining.

Figure 7.2: Movement paths for Trevor Ariza (left) and Jason Terry (right) in
Game 5. The points increase in size as the play progresses (and the shot
clock decreases). Different colors corresponds to different plays.

From Figure 7.2, we see that the paths of these two players typically end up

along the sidelines, just beyond the three point lines in the corners. However,

given the amount of overlap, it is difficult to infer anything more from Figure 7.2.

On the other hand, the fitted PFs for these two players (Figure 7.3) display some

interesting trends. The PF for Ariza takes on low values in both corners, but with

preference toward the right corner (R). Conversely, Terry seems to prefer the left

corner (L), indicated by the red region at the top left corner of the plot. It is a good
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strategy for them to occupy different corner, as this can create more opportunities

for inside–out pass.

We also note that the PF for Ariza takes on relatively low values near the basket,

at a similar level to the left corner. This indicates that moving toward the basket

(either by cutting or driving to the basket) versus staying in the corner, are equally

attractive options to Ariza. This pattern is not observed in Terry’s PF. This agrees

with the fact that Ariza can drive to the basketball more often than Terry, because

Ariza is younger and more athletic.

Figure 7.3: The fitted potential fields for Trevor Ariza (left) and Jason Terry
(right) in Game 5. We choose to only show the potential fields away
from the center circle, as to allow for clear visualization of the patterns
in the potential fields. These two players tend to occupy different cor-
ners of the court.

7.1.2 Potential field using the other player’s location as a covariate

The above PF with tensor product splines are useful to illustrate the patterns in ball

or a player’s movement. We can also use the PF approach to characterize how one

player interacts with his four teammates by considering the following PF

H(rrr(t), t;βββ ) = β0‖rrr(t)ball− rrrbasket‖2
2 +

4

∑
j=1

β j‖rrr(t)ball− rrr(t)player j
‖2

2, (7.2)
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where || · ||2 denotes the l2 norm (Euclidean distance). This PF model can be fit-

ted to the moments when a certain player is in possession of the basketball. The

different possessions of the ball by the same player even in the same play are as-

sumed to be mutually independent. Namely, if the player passes the ball to one

of his teammates and later gets the ball back, the two periods (possessions) are

independent observations of the PF. The coefficient, β0 represents the likelihood of

the ball to move toward the basket, i.e., if β0 > 0, the player is likely to move the

ball toward the basket, especially if the distance between the ball and the basket

is large. On the other hand, if β0 < 0, then the player is less likely to move the

ball toward the basket. The interpretations for β j, for j = 1, ...,4, are similar to

β0. These coefficients denote the likelihood of the player to move the ball toward

teammate j.

We fit this model to HOU’s starting lineup in G5, which consists of small for-

ward Trevor Ariza, center Dwight Howard, shooting guard James Harden, point

guard Jason Terry, and, power forward Josh Smith. We found 22 plays (3900 mo-

ments) by this line-up. We fit five separate models of (7.2) to the moments when

each player is in possession of the ball. For expository simplicity, we denote the

fitted coefficient for teammate j, or basket, when player i is in possession, by βi, j

and therefore βi, j and βi′, j are from different models when i 6= i′. For example,

βTerry,Harden is the coefficient corresponding to Terry moving the ball toward Harden

(via passing or dribbling). Similarly, βHarden,Basket is the coefficient corresponding

to Harden moving the ball toward the basket. These coefficients are summarized

in Table 7.1.

We begin by focusing on Houston’s guard, Jason Terry. The negative coeffi-

cients for Terry to all of the players except for Harden and the basket indicate that

Terry is unlikely to move the ball toward any teammates other than Harden. This

corresponds to how HOU usually starts an offensive play: Terry brings the ball over

the half court and passes to Harden to start the offense. James Harden has positive

coefficients corresponding to Ariza and Terry as well as the basket. This agrees

with what we observe by watching this game. Frequently, Harden would drive the

ball to the basket, as indicated by the positive coefficient of 4.90; If he sees either

Ariza or Terry open for a shot, he will make a pass to one of them. This tactic is ef-

fective because Harden has great slashing ability, often drawing defenders toward
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Table 7.1: Fitted coefficients (multiplied by 1000) of the potential fields cor-
responding to HOU’s most commonly used lineup in Game 5. They re-
flect the likelihood of the ball to move toward “column name” when “row
name” is in possession of the ball.

Ariza Smith Howard Harden Terry Basket
Ariza NA -3.35 -1.51 1.90 1.03 5.38
Smith 1.14 NA -1.23 -1.09 0.44 1.59
Howard 1.19 3.98 NA -5.28 2.97 -6.27
Harden 0.72 -2.65 -3.70 NA 1.73 4.90
Terry -1.21 -1.36 -3.04 2.29 NA 4.21

him. This often leaves one teammate open for a shot.

From the third row of Table 7.1, the likelihood of Howard moving the ball

toward the basket is negative (βHoward,Basket =−6.27). This seems counterintuitive,

but is reasonable. In this game, Howard usually receives the ball near the basket

and typically has three options: dunk, execute a post move9, or pass back to the

perimeter. The latter two options were more frequent, which results in the ball

moving away from the basket and thus a negative coefficient.

Meanwhile, we admit that this formulation of PF for the interactions among

player is not ideal. The likelihood of passing or driving is confounded with the

distance between the players (or the basket), which leads to tricky cases in the

interpretation. For example, imagine that Terry has already dribbled the ball close

to the basket free of the defenders while Harden is still far away near the mid-

court. Terry in this case will almost certainly shoot the basketball instead of pass

to Harden. Yet, according to the PF model, Terry should be more likely to pass to

Harden as he is far away (the distance from Terry to Harden is much larger than

Terry to the basket). This is a shortcoming of our current model and should be

addressed in future work. We may borrow ideas from the successful modeling of

animal’s social network as in Scharf et al. (2017) and the references within.

9Some moves/actions that a basketball player plays near the basket to get a better shot.
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7.2 A mixture of potential fields model for seal foraging
tracks

The PF model can also be used to interpret the foraging tracks of northern fur seals.

As in the previous section, the fitted PF can serve as a map of hot foraging spots

of the seals. For initial investigation, the PF is only fitted to the GPS observations

in longitude and latitude without using the high resolution DR paths. As there

are only approximately a few hundred GPS observations, we consider a simpler

parameterization of the PF instead of the tensor product splines in the previous

section:

H(r, t;βββ ) =β1x(t)+β2y(t)+β3x(t)2 +β4y(t)2 +β5x(t)y(t). (7.3)

where r(t) = (x(t),y(t))T are the longitude (Easting) and latitude (Northing) loca-

tion.

This is also the PF model proposed for the movement of monk seals in Brillinger

et al. (2007). Using Trip 2 as an example, the fitted PF (7.3) is shown in the top-

left panel in Figure 7.4. The fitted PF does not offer a good interpretation of the

animal’s movement, as the area with the lowest PF is an area the animal circled

around. This contradicts the interpretation of the PF, the area with lowest PF value

should be most attractive to the animal. The poor fitting of this PF is plausible

as it is impractical to assume that a single PF governs the whole path of the seal.

For most of the trip, the seal aims to collect as much food as possible, so a PF

of food resources would interpret the animal’s movement. Once the animal has

accumulated enough food, it needs to return to the island to feed its pup and the

island becomes the only destination for the return part of this trip, which requires

a different PF.

Brillinger et al. (2007) avoided this issue by manually chopping the trip into

different periods. We attempt to tackle this issue by extending (7.3) into a mixture

of PFs as follows:
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H(x(t),y(t);βββ ) =
K

∑
k=1

Zk(t)
(
β
(k)
1 x(t)+β

(k)
2 y(t)

+β
(k)
3 x(t)2 +β

(k)
4 y(t)2 +β

(k)
5 x(t)y(t)

)
,

where {Z1(t),Z2(t), . . . ,ZK(t)}
iid∼ from a multinomial distribution with n = 1 and

a probability vector p = (p1, p2, . . . , pK)
T . For simplicity, we assume the error

terms in the longitude and latitude components are independent and have the same

variance, such that ΣΣΣ(r(t), t) = σ2I2. Parameter estimates in the Euler approxi-

mated model can be calculated by the Expectation–Maximization (EM) algorithm

of Dempster et al. (1977). For the current analysis, we only consider a two compo-

nent mixture and calculate the parameter estimates with the FlexMix (Grün et al.,

2008) package.

The mixture of PF models appears to be better than the original PF model, as

the maximum of the mixture PF is in an area where the animal appeared to stay for

a long period of time. The advantage of the mixture of PF model is more obvious if

we study its two components separately, as in the bottom two panels of Figure 7.4.

The maxima of the first PF are in two areas where the animal might be foraging

as it went back and forth. The second PF has only one maximum at the island

(start and end points of this trip). The first PF may reflect the food resources in

the ocean, which attracts the foraging animals. The second PF reflects the animal’s

home, where it returns after foraging.

The above interpretation can be verified with the cluster membership10 plotted

in the top right panel. Those GPS observations close to their previous and next

observations mostly belong to the first “foraging” component while those GPS

observations being far from their previous and next observations are mostly in the

second “returning home” component.

10Decided by the posterior probabilities from the EM algorithm
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Figure 7.4: The simple potential field and mixture of potential fields models
fitted for the Trip 2 GPS data set collected in our case study. Top left:
the potential field with the original Brillinger model, which does not fit
the track well; Top right: The mixture potential field and the posterior
clusters; Bottom left: the first component of the mixture. It accounts
for 73% of the observations and may be interpreted as the food map for
the animal; Bottom right: second component of the mixture. It accounts
for 27% of the observations and reflects the returning behavior of the
animal. The top right field is the weighted sum of the bottom two fields
with weight 0.73,0.27.
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Chapter 8

Summary, Discussion, and Future
Work

In the final chapter of this thesis, we first summarize our major contributions in the

previous chapters in Section 8.1. Then we discuss a potential problem of GP mod-

eling under different sampling frequency in Section 8.2. Some additional future

work is discussed in Section 8.3.

8.1 Summary
In this thesis, we developed statistical models for high resolution tracking data,

in particular, marine mammal tracking data with multiple sources of observations.

Chapter 2 reviewed the scientific background of marine mammal tracking and stud-

ied the properties of the two distinctive observations: the accurate but sparse GPS

observations and the high-resolution but biased Dead–Reckoning (DR) path. Such

data from a case study of tracking of northern fur seals were used throughout this

dissertation. The models we developed were built upon recent developments in

spatio–temporal modeling with Gaussian processes (GP) and combined with vari-

ous forms of stochastic differential equations (SDE), which were reviewed in Chap-

ter 3 with special emphasis on how to make inference and predictions with them.

Chapter 4 first reviewed two Bayesian frameworks, Bayesian Melding (BM)

and downscaling, commonly used to combine data from different sources for sta-
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tistical inference. We adapted them to estimate the path of a moving object and

applied them in our case study of tracking northern fur seals. To make the BM

approach computationally feasible for big tracking data, we exploited the prop-

erties of the processes along with approximations to the likelihood to break the

high dimensional problem into a series of lower dimensional problems. To imple-

ment the alternative, downscaling approach, we used the integrated nested Laplace

approximation (INLA) to fit a linear mixed effect model that connects the two

sources of observations. The predictions of the two approaches were compared

by cross–validation as well as simulations. We showed that both approaches yield

similar results—both provide accurate, high resolution estimates of tracks, as well

as Bayesian credible intervals to characterize the uncertainty about the estimated

paths. They outperformed the conventional bias correction of the DR path or inter-

polation methods based on GPS observation only in terms of prediction accuracy

and coverage percentage.

Methods developed in Chapter 4 cannot model the inhomogeneous feature of

the tracks. We first proposed the conditionally heterogeneous Gaussian process

(CHGP) and the conditionally heterogeneous Brownian Bridge (CHBB) process

in Chapter 5. Unfortunately, the idea of conditional heterogeneity produces too

many candidate models and makes the model comparison metrics sensitive to small

variance parameters. We failed to develop an adequate model selection method for

the CHBB.

The generalized Ornstein–Ulhenbeck (GOU) process developed in Chapter 6

tackled the inhomogeneous issue from another angle. Through modeling the co-

efficients in a linear SDE via splines, we achieved a flexible non-stationary mean

and covariance structure with parsimonious parametrization. With the Markovian

property of the SDE, we were able to express the GOU as a dynamic linear model

and thus perform its inference and prediction efficiently via the Kalman filter/s-

moother, which is also computationally scalable for big data. Our cross–validation

studies show that the BM with GOU has better prediction accuracy than the BM

and downscaling approaches from Chapter 4. The BM with GOU also achieved

narrower credible intervals without sacrificing the coverage percentage.

To bring in more interpretable structures in the SDE modeling, we studied the

potential field (PF) approach in Chapter 7. The PF is a SDE with its drift term
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parameterized as the gradient of another function, which can be a function over the

space or include other covariates. The PF was effective in learning and visualizing

the trends in the tracks, which was illustrated by the marine mammal tracking data

as well as the NBA tracking data. We also designed a mixture of PF’s for the

animal track to accommodate the different behaviors of the animal.

In summary, we developed many statistical models that can be used to predict

and interpret tracking data. They were all designed to be scalable and efficient in

computation. For the animal tracking data, the modeling approaches we developed

and tested can facilitate the processing of high resolution in–situ records of the

hydrographic data collected by marine mammals, and can contribute to broadening

knowledge about parts of the ocean that have been hard to observe. They can

contribute to studies seeking to address the effects of climate change on the ocean,

and also contribute to answering many biological and ecological questions about

habitat preference and resource selection (Hooten et al., 2013). The Bayesian data

fusion approaches studied in this thesis can be further applied in other scenarios

for combining data from different sources. The GOU and PF approaches that we

developed can also be used to model other types of tracks.

In addition, we empirically assessed the models and identified best model

choices based on cross–validation or visual examination in the applications con-

sidered in this study. The analyses demonstrated how users in other contexts may

consider choosing models that best suit their applications, particularly where high

dimensional data are involved.

8.2 Another examination of the approximation and
model specification in Bayesian melding

In the Bayesian Melding approach developed in Chapter 4, one of the key approx-

imations we utilized to simplify the posterior evaluation was

[φφφ |X,Y]≈ [φφφ |XG,Y]. (8.1)

A similar approximation is also used in the Bayesian Melding with the GOU in

Chapter 6. This approximation in (8.1) enables us to infer the two variance param-
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eters φφφ = (σ2
H ,σ

2
D)

T from those observations at the GPS time points instead of the

whole data set. In our case studies, X on the left hand side of (8.1) is a vector of

size over half a million, while XG on the right hand side only has a couple of hun-

dreds of elements. This is an approximation first designed for the computational

issue and we have shown in Section 4.4.1 that it has little impact on the inference

of the variance parameter based on simulated data. However, what happens when

we remove this approximation and work with [φφφ |X,Y] directly on our real data?

We do not have enough computing power to evaluate [φφφ |X,Y] but we can

mimic what will happen by thinning X to various resolutions. We thin the orig-

inal 1Hz DR path at various rates R = ∞,600,300,120,60 and then combine them

with the DR path at GPS time points. We denote such a data set by XR ∪XG.

Thinning rate ∞ means that we only work with [φφφ |XG,Y]. The smaller the rate the

more observations from X\XG are used in [φφφ |XR ∪XG,Y]. Sparse matrices have

to be used to make the computation feasible. The first two columns of Table 8.1

summarize the posterior modes of the two variance parameters.

To our surprise, the posterior modes of the variance parameters dramatically

decrease when more of X is used in evaluating [φφφ |XR∪XG,Y]. As the width of CIs

is proportional to the square root of the variance parameters, the posterior CI also

gets narrower, which results in poor coverage percentage in the cross validation.

On the other hand, the “signal–noise ratio” σ̂2
H/(σ̂

2
H + σ̂2

D) stays almost the same at

different Rs. Recall from Section 4.2.2 that this ratio is a key factor in deciding the

corrected path, the stable σ̂2
H/(σ̂

2
H + σ̂2

D) ensures that the posterior mean stays al-

most unchanged and therefore the RMSE’s in the cross-validation are nearly equal

among the different thinning rates.

We discuss the cause for this seemingly surprising phenomenon in Section 8.2.1.

Section 8.2.2 further illustrates the changes in the variance parameter estimates

with other data sets and GP models. The implication of this phenomenon and our

proposals to alleviate it and fix the credible intervals are discussed in Section 8.2.3

and 8.2.4.
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Table 8.1: Posterior modes of φφφ (σ̂2
H , σ̂

2
D) from [φφφ |XR∪XG,Y] and cross val-

idation performance under different rate of thinning for Trip 2 Northing
data set. The cross–validation RMSE and coverage rate of the 95% CI
(in brackets) from both LOOCV and L5OCV are reported.

Rate σ̂2
H σ̂2

D
σ̂2

H
σ̂2

H+σ̂2
D

L5OCV LOOCV
RMSE (Coverage) RMSE (Coverage)

∞ 1.03 1.23 0.45 3.06 (93.0%) 0.85 (100%)
1200 0.41 0.45 0.47 2.99 (82.8%) 0.86 (95.3%)
600 0.25 0.27 0.48 2.99 (78.9%) 0.86 (93.8%)
300 0.14 0.15 0.48 3.01 (63.3%) 0.88 (85.9%)
120 0.061 0.066 0.48 3.08 (53.9%) 0.92 (73.4%)

60 0.032 0.034 0.48 3.17 (41.4%) 0.99 (61.7%)

8.2.1 Why the variance parameters decrease

In our simulation studies in Section 4.4.1, we found that the posterior modes of

σ2
H ,σ

2
D are almost the same no matter whether [φφφ |XG,Y] or [φφφ |X,Y] is used. The

decrease of variance parameters only happens in the real data set and thus it is

probably caused by model misspecification. We provide an explanation for the

Brownian Motion process, i.e., decrease in σ2
D, but similar arguments apply to the

σ2
H of the Brownian Bridge .

Given a sequence x0,x1,x2, . . . ,xn, observed at equally spaced time points t0 =

0, t1 = δ , t2 = 2δ , . . . , tn = nδ , we assume that x0,x1,x2, . . . ,xn are from a zero-

mean Brownian Motion process with variance parameter σ2
D. The posterior mode

of [σ2
D|x0,x1, . . . ,xn] under a uniform prior log([σ2

D]) ∝ 1 equals the maximum like-

lihood estimate (MLE) of σ2
D on the log scale. Its MLE can be computed in closed

form,

σ̂
2
D =

1
n

n

∑
i=1

(xi− xi−1)
2

δ
, (8.2)

because (xi−xi−1)
iid∼N(0,σ2

Dδ ). When xi are really from a Brownian Motion, this

estimate is “correct”, i.e., unbiased and asymptotically consistent. In our simula-

tion studies, X or its subset XG are both from the correct model. When both X and

XG have a fairly large n, the estimates of σ2
D should be similar, i.e., the probability
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that they have a big difference is small. This explains why we do not observe the

dramatic change in the simulation study.

However, we have little idea of the behavior of σ̂2
D when the model is mis-

specified. Now, let’s consider an extreme scenario that the xis are actually from a

smooth function xi = s(ti), e.g., s(x) = sin(x). Equation (8.2) is then roughly

σ̂
2
D =

1
n

n

∑
i=1

(xi− xi−1)
2

δ
=

1
n

n

∑
i=1

(s(ti)− s(ti−1))
2

δ
≈ 1

n

n

∑
i=1

(s′(ti−1))
2
δ .

If we assume |s′(t)|2 ≈C for all t1, the estimate of σ2
D is approximately Cδ . The

smaller δ is, the smaller σ̂2. Under this misspecified model, when δ is large, the

data appear to be wiggly for the model, which results in a big σ2
D estimate. But it

appears to be smoother with smaller δ , which leads to a smaller σ̂2.

Our real data are not such a smooth function, but it certainly has a smooth

component as seen in Figure 4.6. When more of X from X is included in the

inference, the data used (random bias part in DR ξξξ ) appear to be smoother and

resemble a Brownian Motion with smaller variance. This explains the substantial

decrease of the variance parameters in Table 8.1.

8.2.2 Similar phenomenon in other data sets and models

The BM-GOU models developed in Chapter 6 also experience such a decrease

in the variance parameters σ ,σ2
D when more of X is used in [φφφ |XR ∪XG,Y], but

the estimates of the B-spline coefficients γγγ(A) and γγγ(a) stay almost the same. A

similar phenomenon can also be observed even when we work with a “smoother”

process, such as the CRAWL and Matérn process. The CRAWL works with only

the GPS observation, so we create a similar situation by thinning them at different

rates (i.e., thinning rate equals 2 means every other observation). For the Matérn

model, we assume the GPS observations are from a Matérn process with smooth

parameter ν = 1.5 plus observation noises with a known variance σ2
G = 0.0625,

which is a similar setting to that of our Bayesian Melding models. The estimates

of the variance parameters in the CRAWL model and Matérn process at different

thinning rates for the Trip 2 (Northing) data set are summarized in Table 8.2, which

1The square of the first derivative ranges in a range around C.
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shows that the variance parameters for these two models also decrease with the

decrease of subset rate in general. When compared to Table 8.1, the changes in the

variance parameters are relatively moderate and they do not decrease linearly as in

Table 8.1.

Table 8.2: The estimates of variance parameters in CRAWL and Matérn
model with different subset rates for the Trip 2 (Northing) GPS data set.
Thinning rate = 1 gives the original data set.

Thinning Rate 4 3 2 1
σ̂2 in CRAWL 10137.5 9759.5 9172.8 542.3
σ̂2 in Matérn 979.6 1079.1 1042.3 959.4

Besides the animal tracking data, we also performed similar analysis on the

motorcycle data set, which was first published in Silverman (1985). It contains a

series of measurements of head acceleration in a simulated motorcycle accident,

used to test crash helmets. These data are plotted in Figure 8.1. As with our

animal tracks, the data also have a smooth component. The variance parameter

estimates using the model of Brownian Motion or Matérn process with ν = 1.5 are

summarized in Table 8.3. Notice that we assume there is no observation noise, i.e.,

σ2
G = 0. Table 8.3 shows that the σ̂2s change dramatically in both the Brownian

Motion and Matérn model for the motorcycle data set. Unlike the seal tracking data

set, they are not changing monotonically with the thinning rate. This is probably

caused by the fact that a lot of time points are quite close to each other in this data

set and we choose not to consider the observation noise in this illustration. We

only aim to demonstrate changes in the variance parameter estimates and will not

further study this data set.

Table 8.3: Variance parameter estimates of the Brownian Motion and Matérn
process for the motorcycle data set.

Thinning Rate 4 3 2 1
σ̂2 for Brownian Motion 609.6 495.1 991.1 2643.4
σ̂2 for Matérn Process 2152.3 1895.6 2160.8 2401.4
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Figure 8.1: The motorcycle data set.

8.2.3 Ideas to stabilize the variance parameters

From the above tables, it is clear that the sampling rate can have a substantial

impact on the estimates of variance parameters, which then affect the credible in-

tervals for the predictions. The problem is caused by the fact that the GP model

does not fit the smooth component in the data.

The smoother GP’s, such as the CRAWL and Matérn can help to alleviate the

dramatic change to some degree, but they do not completely remove this effect

as shown in Tables 8.2 and 8.3. These smoother GP’s can also involve strong

parametric assumptions on the data, which may not work well for real data. For

example, we have shown that the CRAWL (integrated Ornstein Ulhenbeck pro-

cess) has worse predictive performance than linear interpolation in Section 4.5.4.

The Matérn process is shown to have inconsistent parameter estimates under cer-

tain designs (Zhang, 2004) and we find it is numerically difficult to calculate its

estimates. Those smoother GPs, such as Matérn with ν > 0.5, do not have a

Markovian structure and require extra effort to scale it for big data as reviewed

in Section 3.1 (Lindgren et al., 2011).

Another idea is to model the smooth component with a flexible mean structure
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parametrically, such as with a spline or polynomials (see e.g., Buderman et al.,

2015). The limitation of this idea is that we need many parameters to ensure that

the splines or polynomials are flexible enough, which makes the inference diffi-

cult given the limited data. Also, it is tricky to ensure the quality of extrapolation

or interpolation in periods where we do not have observations, as the parametric

structure of the splines/polynomials will have a strong effect on the predictions. We

have made two attempts in this direction for the seal tracking study: the polynomi-

als for the bias component of DR and the B-splines in the GOU process. Neither

of them is successful in stabilizing the variance parameter at different sampling

frequencies, but the GOU achieves better predictive performance.

In particular, the nature of the seal tracking data set makes it difficult for both

ideas to succeed. Recall that the GPS observations are only available at a sparse

set of time points. Even if the true path were from a smooth GP, like CRAWL

or Matérn, the dependence would be very weak if two GPS observations were far

apart. So a wiggly process such as the Brownian Bridge/Motion may fit the data

adequately. The sparsity of the GPS observations also makes it difficult to fit these

mean curves or high–order dependence models. The DR path has high resolution,

but we cannot distinguish the true path from the noise except at those time points

when GPS sitings are available. This is probably the main reason that the high

order polynomials do not improve the performance as in Section 4.5.2.

We also point out that the flexible mean and smooth covariance can be con-

founded. For example, Watson (1984) and Silverman (1985), have discussed a

certain equivalence between the regression spline and kriging. Fan et al. (2014)

discussed certain equivalence between the higher order stochastic differential equa-

tions and the Chebyshev splines. We should be aware of this issue when trying both

ideas simultaneously.

8.2.4 The variance parameters and the CI

If we are only interested in the mean of the predictions, the variance parameter ac-

tually does not matter, as shown in CV-RMSE in Table 8.1. However, the variance

parameters are important in the prediction uncertainty. We cannot fully explain

why conditioning on XG leads to “correct” coverage percentages in the L5OCV
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regardless of the model (i.e., BM-GOU, BM-BB and DS), but not in the LOOCV.

A similar question is why subset rate r = 1200 leads to almost correct coverage

percentage in the LOOCV, but not the L5OCV. There are two aspects of this ques-

tion: which cross–validation scheme we should use and which subset rate can lead

to a “correct” variance parameter in the cross–validation.

The reason that we chose L5OCV over LOOCV when evaluating our model

performance was discussed in Section 4.5. In short, the left-out observation is

still very close to the nearby remaining observations in the LOOCV, such that the

dependence from the nearby remaining observations helps to determine an interval

that covers the left-out observation. The L5OCV reduces such dependence and

its intervals are mainly decided by our models. We can confirm this point from

Table 8.1 as the LOOCV always has higher coverage percentage than the L5OCV

regardless of the subset rates.

The second part of this question is more complicated as it involves both the

behavior of our model and the true path. Ideally, we desire the model to capture

the data’s uncertainty and automatically adapt to different data and prediction re-

quirements, i.e., same correct coverage percentage regardless of the subset rate or

which cross validation to use. Stabilizing the variance parameter as discussed in

the above subsection can be a first step to tackle this problem.

Given this coverage issue, we cannot claim our models result in CIs with cor-

rect coverage percentage for all the other tracks with GPS and DR paths in any

cross–validation scheme. First, we stress that the cross–validation scheme, i.e.,

how much to leave out, should be decided by the scientific objective of the study,

i.e., how long a time gap the path is expected to predict. Another way to decide the

cross–validation scheme is to make the left-out data nearly independent from the

training data (see e.g., Arlot et al., 2010). After the CV is decided, the amount of

uncertainty in our model can be controlled via the priors in our framework. Infor-

mative priors can force the variance parameters into values that can lead to correct

coverage percentages. The parameters in the prior may be chosen by a combination

of prior knowledge and cross–validation.

This “informative prior + cross–validation selection for priors” scheme of using

our Bayesian Melding model is not ideal, but it should work for practical purposes.

As said by George Box: “All models are wrong, but some are useful.” The seals or
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basketball players do not move according to any mathematical formulas. The mod-

els developed in this project are our best effort to express these tracks statistically

and use them for interpretation or prediction via moderate computational power.

8.3 Future work
Besides the issue of variance parameters discussed above, there are many aspects

of this thesis that can be further developed. The possible rescue of CHGP has been

discussed by the end of Chapter 5. Similarly, the future development of the PF

model for NBA tracking data has been discussed in Section 7.1. The rest of this

section covers the future directions for our BM framework and PF approach.

8.3.1 Future developments for Bayesian melding

Our work has demonstrated the value of using the Bayesian data fusion techniques

to combine observations from different sources for tracking objects. We plan to

adapt the ideas developed in this paper to track the progress of infectious disease.

We will use the Google flu trends data as a biased but high resolution source of ob-

servations and Center for Disease Control (CDC) reports as an accurate but sparse

set of observations. The bias and failure to predict some disease epidemics by

Google flu have been studied in Hooten et al. (2010); Lazer et al. (2014b,a) and

the references within. The media also used it as a serious warning about the use of

“big data”. As noted by Salzberg (2014) “Big data can be great, but not when it is

bad data.” While agreeing with this comment in principle, we point out that “bad

big data”, such as the Google flu trend or the DR path in our paper, can be good

again in cases when it can be combined and corrected by good data. So for exam-

ple, Dugas et al. (2013) and Lazer et al. (2014b) used various regression models to

combine the Google flu and CDC reports and achieved better predictions for infec-

tious disease. Our BM and downscaling approaches also successfully combine the

DR path with GPS observations.

Another interesting direction is to use a SDE parameterized by PF as the prior

process in our BM framework. The implementation of this idea is straightforward

as the Euler approximation can express the SDE in a DLM and then the Kalman

smoother can be used. The main challenge might be how to find a parsimonious
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parameterization for the PF in the spatio–temporal domain. In our current work,

we considered coefficients that vary in the time domain in Chapter 6 and vary in

the spatial domain in Chapter 7. A PF reflecting both changes in the spatial and

temporal domains is key to its success in interpreting the tracks, such as those

from the fur seals. When working with a mixture of PFs in BM, we may need to

design new approximation techniques to avoid obtaining Monte Carlo samples on

the hidden classes. A starting point is marginalizing the latent classes in the PF and

using the marginalized process in the BM framework.

8.3.2 Approximation to non-linear SDE

In the above discussion of the PF, the nonlinear PFs were all approximated by the

local constant Euler approximation. Because our tracking data were observed at

high resolution, the Euler approximation is accurate (Iacus, 2009). Yet, if a better

approximation is desired, we can consider other approximation techniques, such

as Ozaki (1992); Archambeau et al. (2007); Archambeau and Opper (2010); Vret-

tas et al. (2015), which have been briefly reviewed in Section 3.2. It is beyond the

scope of this thesis to introduce their formulation and compare their differences. In

particular, we find that the Euler and Ozaki (Ozaki, 1992) approximations can both

be derived from the Kolmogorov backward equation (see e.g., Arnold, 1974). An

interesting idea is to derive similar approximations from the Kolmogorov forward

equation or combine them in some way.
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118



Royal Statistical Society: Series B (Statistical Methodology), pages 817–832.
→ pages 19

Cressie, N. and Johannesson, G. (2008). Fixed rank kriging for very large spatial
data sets. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 70(1):209–226. → pages 15

Cressie, N. and Wikle, C. K. (2015). Statistics for Spatio-temporal Data. John
Wiley & Sons. → pages 11, 14

Damian, D., Sampson, P. D., and Guttorp, P. (2001). Bayesian estimation of
semi-parametric non-stationary spatial covariance structures. Environmetrics,
12(2):161–178. → pages 19

Datta, A., Banerjee, S., Finley, A. O., and Gelfand, A. E. (2016). Hierarchical
nearest-neighbor Gaussian process models for large geostatistical datasets.
Journal of the American Statistical Association, 111(514):800–812. → pages
13, 15, 16, 17, 18, 65, 66

Davis, T. A. (2006). Direct Methods for Sparse Linear Systems, volume 2. SIAM.
→ pages 84

De Boor, C., De Boor, C., Mathématicien, E.-U., De Boor, C., and De Boor, C.
(1978). A Practical Guide to Splines, volume 27. Springer-Verlag New York.
→ pages 30, 95

Del Moral, P., Doucet, A., and Jasra, A. (2006). Sequential Monte Carlo samplers.
Journal of the Royal Statistical Society: Series B (Statistical Methodology),
68(3):411–436. → pages 79

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood
from incomplete data via the em algorithm. Journal of the Royal Statistical
Society. Series B (Methodological), 39:1–38. → pages 102

Dugas, A. F., Jalalpour, M., Gel, Y., Levin, S., Torcaso, F., Igusa, T., and
Rothman, R. E. (2013). Influenza forecasting with Google flu trends. PLoS
ONE, 8(2):e56176. → pages 114

Dukic, V., Lopes, H. F., and Polson, N. G. (2012). Tracking epidemics with
Google flu trends data and a state-space SEIR model. Journal of the American
Statistical Association, 107(500):1410–1426. → pages 33

Eidsvik, J. and Shaby, B. (2014). Estimation and prediction in spatial models with
block composite likelihoods. Journal of Computational and Graphical
Statistics, 23(2):295–315. → pages 18, 66

119



Elkaim, G. H., Decker, E. B., Oliver, G., and Wright, B. (2006). Marine Mammal
Marker (MAMMARK) dead reckoning sensor for in-situ environmental
monitoring. Proceedings of the ION/IEEE PLANS. → pages 6

Fan, R., Zhu, B., and Wang, Y. (2014). Stochastic dynamic models and Chebyshev
splines. Canadian Journal of Statistics, 42(4):610–634. → pages 112

Fleming, C. H., Fagan, W. F., Mueller, T., Olson, K. A., Leimgruber, P., and
Calabrese, J. M. (2016). Estimating where and how animals travel: An optimal
framework for path reconstruction from autocorrelated tracking data. Ecology.
→ pages 6

Foley, K. M. and Fuentes, M. (2008). A statistical framework to combine
multivariate spatial data and physical models for hurricane surface wind
prediction. Journal of Agricultural, Biological, and Environmental Statistics,
13(1):37–59. → pages 32

Franks, A., Miller, A., Bornn, L., Goldsberry, K., et al. (2015). Characterizing the
spatial structure of defensive skill in professional basketball. The Annals of
Applied Statistics, 9(1):94–121. → pages 94
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Appendix A

Inferential Methods for Bayesian
Melding

This section includes the detailed derivations of the inferential methods needed for

BM.

A.1 Explicit form of 〈β ,η |X,Y〉
Following the model and notation in (4.2) to (4.7), it is easy to find

〈βββ ,ηηη |X,Y〉 ∝〈βββ ,ηηη ,X,Y〉= 〈ηηη〉〈Y|ηηη〉〈X|βββ ,ηηη〉 (A.1)

∝|R|−1/2 exp
{
−1

2
(ηηη− f)T R−1(ηηη− f)

}
×|D|−1/2 exp

{
−1

2
(Y−Gηηη)T D−1(Y−Gηηη)

}
×|C|−1/2 exp

{
−1

2
(X−Zβββ −ηηη)T C−1(X−Zβββ −ηηη)

}
,

where the following notation is used in addition to those from (4.2) to (4.7):

• f = ( f (1), f (2), . . . , f (T − 1))T , is a T − 1 vector as the prior mean of the

random part in ηηη .

• D = σ2
GIK−1 is the covariance matrix of Y conditional on ηηη , where Im stands

for the identity matrix of dimension m.
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• Z is the design matrix for h as in (4.5).

• G is a (K−1)× (T −1) matrix, with

Gk, j =

{
1, j = tk−1

0, Otherwise
,

for k = 1,2, . . . ,K−1. Notice that the first time point is removed.

• R = R(1 : (T −1),1 : (T −1)) is the (T −1)× (T −1) covariance matrix for

the Brownian Bridge.

• C = C(1 : T,1 : T ) is the T ×T covariance matrix for the Brownian Motion

error term ξξξ .

To further simplify (A.1), the following notation is needed:

• ζζζ = (βββ T ,ηηηT )T , which is the joint vector of βββ and ηηη of length Q+T −1.

• U is a T × (Q+T −1) matrix with U(1 : T,1 : Q) = Z, U(1 : (T −1),(Q+

1) : (Q+T − 1)) = IT−1 and U(T,(Q+ 1) : (Q+T − 1)) = 0, which maps

Uζζζ = h+ηηη .

• V is a (T −1)× (Q+T −1) matrix with V(1 : (T −1),1 : Q) = 0 and V(1 :

(T −1),(Q+1) : (Q+T −1)) = IT−1, such that Vζζζ = ηηη .

• W is a (K − 1)× (Q+ T − 1) matrix with W(1 : (K − 1),1 : Q) = 0 and

W(1 : (K−1),(Q+1) : (Q+T −1)) = G, such that Wζζζ = Gηηη .

Some algebra simplifies (A.1) and yields

〈ζζζ |X,Y〉 ∝|R|−1/2|D|−1/2|C|−1/2× (A.2)

exp
{
−1

2
[
(ζζζ −M−1

1 M2)
T M1(ζζζ −M−1

1 M2)+M3−MT
2 M−1

1 M2
]}

,

∝exp
{
−1

2
[
(ζζζ −M−1

1 M2)
T M1(ζζζ −M−1

1 M2)
]}
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where

M1 =VT R−1V+WT D−1W+UT C−1U,

M2 =VT R−1f+WT D−1Y+UT C−1X,

M3 =fT R−1f+YT D−1Y+XT C−1X.

The posterior distribution of βββ ,ηηη conditional on φφφ is a multivariate Gaussian den-

sity. The main computational complexity involved in evaluating this density comes

from the calculation of M−1
1 M2.

A.2 Derivation of (4.11) and (4.12)
It is well known that the Brownian Bridge and Brownian Motion processes are

Markovian (Stirzaker and Grimmett, 2001), such that:

[η(t)|η(t−1),η(t−2)] =[η(t)|η(t−1)]

[ξ (t)|ξ (t−1),ξ (t−2)] =[ξ (t)|ξ (t−1)],

where η(t) is a Brownian Motion process as in our model (4.2) and ξ (t) is a Brow-

nian Motion process as in (4.5). This Markovian property directly suggests the

conditional independence property of these two processes, such that:

[η(t−1),η(t +1)|η(t)] =[η(t−1)|η(t)][η(t +1)|η(t)],and

[ξ (t−1),ξ (t +1)|ξ (t)] =[ξ (t−1)|ξ (t)][ξ (t +1)|ξ (t)].

These properties help us derive (4.11) and (4.12). As an illustration, consider the

case where T = 4 (Recall that η(0) and η(4) are fixed, so only ηηη(1,2,3) are ran-

dom), and one GPS observation is available at t = 2. The first part of (4.10),

〈ηηη(1 : T \ t1:K)|βββ ,ηηηG,X,Y〉 in this situation is

〈η(1),η(3)|η(2),X(1 : 3),Y (2),βββ 〉= 〈η(1),η(3)|η(2),X(1 : 3),βββ 〉, (A.3)

as Y (2) only depends on η(2) and is independent of all the other random vari-

ables. For brevity, we omit the βββ term in all the following derivations and let
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Xi = X(i),ηi = η(i),ξi = ξ (i). Using the conditional independence property of η

and ξ together with certain variable transformations, we can simplify (A.3) into

〈η1,η3|η2,X1:3〉=
〈η1,η2,η3,X1,X2,X3〉
〈η2,X1,X2,X3〉

=
〈η1,η2,η3,ξ1,ξ2,ξ3〉
〈η2,X1,X2,X3〉

=
〈η1,η2,η3〉〈ξ1,ξ2,ξ3〉
〈η2,X1,X2,X3〉

=
〈η1|η2〉〈η3|η2〉〈η2〉〈ξ1|ξ2〉〈ξ3|ξ2〉〈ξ2〉

〈η2,X1,X2,X3〉

=
〈η1|η2〉〈ξ1|ξ2〉〈η3|η2〉〈ξ3|ξ2〉〈η2〉〈ξ2〉

〈η2,X1,X2,X3〉

=
〈η1,X1|η2,X2〉〈η3,X3|η2,X2〉〈η2,X2〉

〈η2,X1,X2,X3〉

=
〈η1,X1|η2,X2〉〈η3,X3|η2,X2〉

〈X1,X3|η2,X2〉
= . . .

=
〈η1,X1|η2,X2〉〈η3,X3|η2,X2〉
〈X1|η2,X2〉〈X3|η2,X2〉

= 〈η1|η2,X1,X2〉〈η3|η2,X2,X3〉.

The above is an illustration on how we prove (4.11) and (4.12) and we omit the

lengthy proof of the general case. On the other hand, these expressions can be

easily proved via the conditional independence property of a graphical model as

in Lauritzen (1996).

A.3 Explicit expression for (4.12)
In the above subsection, we showed that:

〈ηηη(tk +1 : tk+1−1)|η(tk),η(tk+1),βββ ,X,Y〉=

〈ηηη(tk +1 : tk+1−1)|η(tk),η(tk+1),βββ ,X(tk : tk+1)〉.
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We derive the explicit expression of the right-hand side above. First, it is easy to

use the conditional independence property to find,

〈ηηη(tk +1 : tk+1−1)|η(tk),η(tk+1),βββ ,X(tk : tk+1)〉

=
〈ηηη(tk +1 : tk+1−1)|η(tk),η(tk+1),βββ ,X(tk),X(tk+1)〉
〈X(tk +1 : tk+1−1)|η(tk),η(tk+1),βββ ,X(tk),X(tk+1)〉

=
〈ηηη(tk +1 : tk+1−1)|η(tk),η(tk+1)〉

〈X(tk +1 : tk+1−1)|η(tk),η(tk+1),βββ ,X(tk),X(tk+1)〉
.

Define two new variables,

ηηη
c(tk +1 : tk+1−1) =ηηη(tk +1 : tk+1−1)|η(tk),η(tk+1),and

Xc(tk +1 : tk+1−1) =X(tk +1 : tk+1−1)|η(tk),η(tk+1),βββ ,X(tk),X(tk+1),

such that

〈ηηη(tk +1 : tk+1−1)|η(tk),η(tk+1),βββ ,X(tk : tk+1)〉

=〈ηηηc(tk +1 : tk+1−1)|Xc(tk +1 : tk+1−1)〉. (A.4)

With the basic properties of the Brownian Bridge, it is easy to show that

ηηη
c(tk +1 : tk+1−1)∼MVN(fk,σ

2
HRk), (A.5)

where

fk(t) = f (t)+a′k(t)(η(tk)− f (tk))+ak(t)(η(tk+1)− f (tk+1)) (A.6)

=a′k(t)η(tk)+ak(t)η(tk+1), (A.7)

ak(t) =
t− tk

tk+1− tk
,

a′k(t) =1−ak(t) =
tk+1− t
tk+1− tk

,

Rk(s, t) =
(s− tk)(tk+1− t)

tk+1− tk
, tk < s≤ t < tk+1,
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and MVN(·, ·) denotes a multivariate normal distribution. The definition of f (t) =

A+(B−A)t/T is used to simplify (A.6) into (A.7) as follows,

a′k(t) f (tk)+ak(t) f (tk+1) =
tk+1− t
tk+1− tk

(
A+(B−A)

tk
T

)
+

t− tk
tk+1− tk

(
A+(B−A)

tk+1

T

)
=A

tk+1− tk
tk+1− tk

+(B−A)
(tk+1− t)tk +(t− tk)tk+1

(tk+1− tk)T

=A+(B−A)
(tk+1− tk)t
(tk+1− tk)T

= A+(B−A)
t
T

= f (t).

It leads to f (t)−a′k(t) f (tk)−ak(t) f (tk+1) = 0.

The definition of Xc and X in (4.5) implies that Xc is the sum of a deterministic

term and two independent Gaussian processes:

Xc(tk +1 : tk+1−1) =h(tk +1 : tk+1−1)+ηηη
c(tk +1 : tk+1−1)

+ξξξ
c
(tk +1 : tk+1−1),

where h is defined in (4.5) and ξξξ
c is defined similarly as ηηηc:

ξξξ
c
(tk +1 : tk+1−1) = ξξξ (tk +1 : tk+1−1)|ξ (tk),ξ (tk+1)∼MVN(gk,σ

2
DRk)

with gk(t) = a′k(t)ξ (tk)+ak(t)ξ (tk+1).

In this way, the marginal distribution of Xc is

Xc(tk +1 : tk+1−1)∼MVN(uk,(σ
2
H +σ

2
D)Rk), (A.8)

where

uk(t) = h(t)+ fk(t)+gk(t)

= h(t)+a′k(t)(η(tk)+ξ (tk))+ak(t)(η(tk+1)+ξ (tk+1))

= h(t)+a′k(t)(X(tk)−h(tk))+ak(t)(X(tk+1)−h(tk+1)).
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Also, the covariance between ηηηc and Xc is

Cov(ηηηc,Xc) = Cov(ηηηc,ηηηc) = σ
2
HRk. (A.9)

From (A.5), (A.8), and (A.9), we can easily find that there is no need to in-

vert any matrices when computing (A.4). As when the conditional covariance is

calculated, the inverse of Rk will be canceled by Rk, such that,

Cov(ηηηc,Xc)(Cov(Xc))−1 = σ
2
HRk

(
(σ2

H +σ
2
D)Rk)

)−1
=

σ2
H

σ2
H +σ2

D
Itk+1−tk−1

Cov(ηηηc,Xc)(Cov(Xc))−1 Cov(Xc,ηηηc) = σ
2
H(1−

σ2
H

σ2
H +σ2

D
)Rk =

σ2
Hσ2

D

σ2
H +σ2

D
Rk.

We only need to calculate ρ = σ2
H/σ2

H +σ2
D for the conditional mean and covari-

ance. In this way, the desired posterior in (A.4) is

〈ηηη(tk +1 : tk+1−1)|η(tk),η(tk+1),βββ ,X(tk : tk+1)〉 (A.10)

=〈ηηηc(tk +1 : tk+1−1)|Xc(tk +1 : tk+1−1)〉

∼MVN
(
fk +ρ (X(tk +1 : tk+1−1)−uk) ,ρσ

2
DRk

)
.

A.4 Explicit expression of [φ ,β ,ηG|XG,Y]

Following the notation in Appendix A.1

[φφφ ,βββ ,ηηηG|XG,Y] ∝ [φφφ ][ηηηG|φφφ ][Y|ηηηG][X(t1:K)|βββ ,ηηη(t1:K),φφφ ] (A.11)

∝[φφφ ]|RG|−1/2 exp
{
−1

2
(ηηηG− fG)

T R−1
G (ηηηG− fG)

}
×|D|−1/2 exp

{
−1

2
(Y−ηηηG)

T D−1(Y−ηηηG)

}
×|CG|−1/2 exp

{
−1

2
(XG−ZGβββ −ηηηG)

T C−1
G (XG−ZGβββ −ηηηG)

}
where XG =X(t0:K) and RG =R(t0:K , t0:K). Similar notation applies to ηηηG, fG,CG,ZG.

Also, we will introduce the following notation, which is similar to those in Ap-

pendix A.1, specifically the sub-vector or sub-matrix of those in Appendix A.1

135



with respect to the GPS observations:

• ζζζ G = (βββ T ,ηηηT
G)

T , which is the joint vector of βββ and ηηηG of length Q+K−1;

• UG is a K× (Q+K− 1) matrix with UG(1 : K,1 : Q) = ZG, UG(1 : (K−
1),(Q+ 1) : (Q+K − 1)) = IK−1 and UG(K,(Q+ 1) : (Q+K − 1)) = 0,

which maps UGζζζ G = hG +ηηηG;

• VG is a (K− 1)× (Q+K− 1) matrix with VG(1 : (K− 1),1 : Q) = 0 and

VG(1 : (K−1),(Q+1) : (Q+K−1)) = IK−1, such that VGζζζ G = ηηηG;

Some algebra simplifies (A.11) to yield

[φφφ ,βββ ,ηηηG|XG,Y] ∝ (A.12)
1

σ2
H

1
σ2

D
×|RG|−1/2|D|−1/2|CG|−1/2×

exp
{
−1

2
[
(ζζζ G−M−1

G1MG2)
T MG1(ζζζ G−M−1

G1MG2)+MG3−MT
G2M−1

G1MG2
]}

,

where

MG1 =VT
GR−1

G VG +VT
GD−1VG +UT

GC−1UG,

MG2 =VT
GR−1

G fG +VT
GD−1Y+UT

GC−1
G XG,and

MG3 =fT
GR−1

G fG +YT D−1Y+XT
GC−1

G XG.

Following (A.12), it is easy to show that

[ζζζ G|XG,Y,φφφ ]∼ MVN
(
M−1

G1MG2,M−1
G1

)
. (A.13)

Integrating ζζζ G out, we get

[φφφ |XG,Y] ∝
1

σ2
H

1
σ2

D
|RG|−1/2|D|−1/2|CG|−1/2|MG1|−1/2 (A.14)

× exp
{
−1

2
[
MG3−MT

G2M−1
G1MG2

]}
.
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A.5 Marginal distribution of η at the non-GPS points
With (A.13), we can marginalize ηηηG,βββ out in (A.10) to obtain 〈ηηη(tk + 1 : tk+1−
1)|X,Y〉, which is later used in the numerical integration. Let ζζζ k =(βββ T ,η(tk),η(tk+1))

T

and its mean and covariance matrix obtained in (A.13) be denoted as ζ̃ζζ k, Σ̃ΣΣk respec-

tively.

The uk of (A.8) can be written as as a linear transformation of ζζζ k, such that

uk = Bkζζζ k, where Bk =
[
ρ
(
Zk−AkZG

k

)
,Ak
]
. {Zk} are the rows of the design

matrix, Z(tk +1 : tk+1−1,1 : Q), which corresponds to this period of the non-GPS

observation. ZG
k = Z(tk,k+1,1 : Q) corresponds to the rows of the design matrix of

the two GPS observations. Ak is the matrix of the linear weights of a′k(t),ak(t) as

in Equation (A.5). Marginalizing ζζζ k out in (A.10) results in

〈ηηη(tk +1 : tk+1−1)|X,Y〉 ∼MVN
(

Bkζ̃ζζ k,BkΣ̃ΣΣkBT
k

)
. (A.15)

A.6 Integration over the variance parameters φ

In the BM literature (Liu et al., 2011), the integral in (4.15) was usually calculated

by MCMC. However, the heavy computational burden of the MCMC technique

has to be avoided in our application. Moreover, it may not be practical to store the

MCMC samples of the high dimensional parameter ηηη . The first alternative is to

avoid the integration via the empirical Bayesian approach as in Casella (1985):

[βββ ,ηηη |X,Y]≈ [βββ ,ηηη |X,Y, φ̂φφ ],

where φ̂φφ is the maximum likelihood estimate of φφφ after ηηη ,βββ are marginalized out,

φ̂φφ = argmax
φφφ

log([φφφ |XG,Y]). (A.16)

The empirical Bayesian approach is computationally simple, especially when we

can explicitly evaluate the marginal likelihood. However, it fails to reflect the un-

certainty in φφφ and thus it underestimates the uncertainty in the posterior of ηηη . To

overcome this issue, we use a numerical integration method like that in INLA (Rue

et al., 2009), which approximates the integral on a grid decided by the likelihood
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surface.

Let H denote the 2× 2 Hessian matrix of φ̂φφ = (σ̂2
H , σ̂

2
D)

T in (A.16) and ΣΣΣ =

H−1. With the eigenvalue decomposition ΣΣΣ = AΛΛΛAT , the space of φφφ can be ex-

plored by φφφ(z) = φ̂φφ + AΛΛΛ
1/2z, where z is a 2× 1 vector. To find the grid for

numerical integration, we start from z = 0 and search in the positive direction of

z1, that is, we increase j ∈ N+ and z = ( jδz,0) as long as

log([φφφ(0)|XG,Y])− log([φφφ(z)|XG,Y])< δπ ,

where δz is the step size and δπ controls the magnitude of probability mass that will

be included in the numerical integration. After searching on the positive side, we

switch direction and search on the negative side of z1. This procedure is repeated

for both dimensions of z. For our BM model above, if the search stops at J+1 ,J+2
steps in the positive directions of z1 and z2 respectively and J−1 ,J−2 in their negative

directions, a grid of size (J+1 + J−1 + 1)× (J+2 + J−2 + 1) is used in the numerical

integration and the points on this grid are z j1, j2 = δz( j1, j2), with j1 ∈ (−J−1 ,−J−1 +

1, . . . ,−1,0,1, . . . ,J+1 ) and j2 ∈ (−J−2 ,−J−2 +1, . . . ,−1,0,1, . . . ,J+2 ). The integral

in (4.15) is then approximated by

[ηηη ,βββ |X,Y]≈
J+1

∑
j1=−J−1

J+2

∑
j2=−J−2

w j1, j2× [ηηη ,βββ |φφφ(z j1, j2),X,Y], (A.17)

where

w j1, j2 =
[φφφ(z( j1, j2))|XG,Y]

∑ j1 ∑ j2 [φφφ(z( j1, j2))|XG,Y]
.

Note that (A.17) resembles Equation (5) of Rue et al. (2009). As the joint posterior

distribution of ηηη ,βββ conditional on φφφ follows a multivariate Gaussian distribution,

the posterior [ηηη ,βββ |X,Y] can be approximated by a mixture of multivariate Gaus-

sian densities, whose mean and variance can be easily calculated as follows.

The distribution of ζζζ is multivariate normal conditional on φφφ as in (A.13)

and (A.15) and therefore the posterior density of ζζζ can be approximated by a mix-

ture of multivariate normal densities. Let ζ̃ζζ
(i)

and Σ̃ΣΣ
(i) be the posterior mean and

covariance of ζζζ conditional on the ith grid point of φφφ(z( j1, j2)) ( j1, j2 are collapsed
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into a single index set and L = (J+1 +J−1 +1)×(J+2 +J−2 +1)). We simplify (A.17)

into

[ζζζ |X,Y]≈
L

∑
i=1

wi[ζζζ |φφφ (i),X,Y] =
L

∑
i=1

wiΨ(·; ζ̃ζζ
(i)
, Σ̃ΣΣ

(i)
),

where ΨΨΨ represents the probability density function of the multivariate normal dis-

tribution. For our application, we are only interested in finding the posterior mean

and variance of ζζζ . As in (Frühwirth-Schnatter, 2006), the posterior mean equals

ζ̃ζζ =
L

∑
i=1

wiζ̃ζζ
(i)
, (A.18)

and the posterior variance of the k-th element of ζζζ is

σ̃
2
k =

L

∑
i=1

wi

[
Σ̃
(i)(k,k)+

L

∑
i=1

(
ζ̃
(i)(k)− ζ̃ (k)

)2
]
. (A.19)
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Appendix B

Some Mathematical Details for
CHBB

We provide the proofs and derivations for some equations in Section 5.2.2.

B.1 |C|= |C0||C1,1||C1,2|
For a Brownian Bridge at time T = {0,1,2, . . . ,T} with variance parameter of 1,

a decomposition of the joint distribution of [y1:T−1|y0,yT ] gives

[y1:T−1|y0,yT ] =[ys|y0,yT ][y1:s−1|y0,ys,yT ][ys+1:T−1|y0,ys,yT ]

=[ys|y0,yT ][y1:s−1|y0,ys][ys+1:T−1|ys,yT ]. (B.1)

We use the conditional independence property of BB to simplify the first line into

the second line. Both sides of (B.1) are the normal densities

[y1:T−1|y0,yT ] =(2π)−(T−1)/2|C|−1/2 exp
{
(y1:T−1− f)T C−1(y1:T−1− f)

}
[ys|y0,yT ] =(2π)−1/2|C0|−1/2 exp

{
(ys− f0)

T C−1
0 (ys− f0

}
[y1:s−1|y0,ys] =(2π)−(s−1)/2|C1,1|−1/2 exp

{
(y1:s−1− f1,1)

T C−1
1,1(y1:s−1− f(1))

}
[ys+1:T−1|ys,yT ] =(2π)−(T−s−1)/2|C1,2|−1/2 exp

{
(ys+1:T−1− f1,2)

T C−1
1,2(ys+1:T−1− f1,2)

}
,
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where f, f0, . . . are the mean functions of the Brownian Bridge as in (4.3) and all

the other notations are the same as in Section 5.2.2.

Equation (B.1) holds for all y. Let y0:T = 0, which leads to all f = 0, f0 =

0, f1,1 = 0, f1,2 = 0. The exponential part in the above normal densities are all 1.

Plugging them back into (B.1), we have

(2π)−(T−1)/2|C|−1/2 =(2π)−1/2|C0|−1/2(2π)−(s−1)/2|C1,1|−1/2(2π)−(T−s−1)/2|C1,2|−1/2

⇒ |C|−1/2 =|C0|−1/2|C1,1|−1/2|C1,2|−1/2

⇒ |C|=|C0||C1,1||C1,2|

B.2 Short BB are more likely to have a small variance
estimate

As in (5.12), the MLE of the Brownian Bridge variance parameter is calculated as

σ̂
2 =

1
n
(y− f)T C−1(y− f),

where n denotes the number of free observations, i.e., n=T−1 for BB(y0,yT ,0,T,σ2
0 ).

Notation σ2 can denote any one in ς2,σ2
0 ,σ

2
1,1,σ

2
1,2.

Without loss of generality, assume the true value σ2 = 1. Because of the prop-

erties of multivariate normal distribution, (y− f)T C−1(y− f) following χ2
n and

therefore σ̂2 follows a Gamma distribution with shape n/2 and scale 2/n. With

this exact distribution, we can calculate the probability of σ̂2 < z, where z is a

small number for different n. These probabilities are plotted in Figure B.1, which

clearly shows that the probability of a small σ̂2 decreases with the increase of n.

B.3 Derivation of KL divergence for CHBB
The KL divergence for multivariate normal P = N(µ1,ΣΣΣ1) and Q = N(µ2,ΣΣΣ2) is

KL(p||q) = 1
2

(
tr
(
ΣΣΣ
−1
1 ΣΣΣ0

)
+(µ1−µ2)ΣΣΣ

−1
1 (µ1−µ2)

T − k− log
(
|ΣΣΣ0|
|ΣΣΣ1|

))
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Figure B.1: log(P(σ̂2 < z)) for different n and z = 0.001,0.01,0.1.

For p = BB(y0,yT ,0,T,ς2) and q = BB(y0,yT ,0,T,σ2), the KL simplifies into

KL(p||q) = (T −1)
ς2

σ2 − (T −1)− (T −1) log
(

ς2

σ2

)
. (B.2)

Notice that the two BB with different variance parameters still have the same mean

when they are defined on the same time points. Therefore KL(p||q) does not in-

volve the mean.

For the single knot CHBB in Section 5.2.2, we introduce the following nota-

tions for notational simplicity.

p0 =[ys|y0,yT ,ς
2]

q0 =[ys|y0,yT ,σ
2
0 ]

p1 =[y1:s−1|y0,ys,ς
2]

q1 =[y1:s−1|y0,ys,σ
2
1,1]

p2 =[ys+1:T−1|ys,yT ,ς
2]

q2 =[ys+1:T−1|ys,yT ,σ
2
1,2]
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KL(M(0)||M(1)) =
∫

dy1:T−1[y1:T−1|y0,yT ,ς
2] log

(
[y1:T−1|y0,yT ,ς

2]

[y1:T−1|y0,yT ,σ2
0 ,σ

2
1,1,σ

2
1,2]

)

=
∫ ∫ ∫

dysdy1:s−1dys+1:T−1 p0 p1 p2 log
(

p0 p1 p2

q0q1q2

)
=
∫ ∫ ∫

dysdy1:s−1dys+1:T−1 p0 p1 p2 log
(

p0

q0

)
+
∫ ∫ ∫

dysdy1:s−1dys+1:T−1 p0 p1 p2 log
(

p1

q1

)
+
∫ ∫ ∫

dysdy1:s−1dys+1:T−1 p0 p1 p2 log
(

p2

q2

)
=
∫

dys p0 p1 p2 log
(

p0

q0

)
+
∫ ∫

dysdy1:s−1 p0 p1 log
(

p1

q1

)
+
∫ ∫

dysdy1:s−1 p0 p2 log
(

p2

q2

)
=KL(p0||q0)+

∫
dys p0KL(p1||q1)+

∫
dys p0KL(p2||q2).

(B.3)

The last two terms in (B.3) only depends on the variance parameters but not the

mean, which thus does not depend on ys. This enables us to simplify (B.3) into,

KL(M(0)||M(1)) = KL(p0||q0)+KL(p1||q1)+KL(p2||q2).

Plugging (B.2) into the three terms,

KL(M(0)||M(1)) =g

(
ς2

σ2
1,0

)
+(s−1)g

(
ς2

σ2
1,1

)
+(T − s−1)g

(
ς2

σ2
1,2

)
,

where

g(x) = x− log(x)−1.
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