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Abstract

The process of crystal nucleation, despite being so fundamental and ubiqui-

tous in industrial and natural processes, is still not fully understood because of its

stochastic nature, and the high spatial and temporal resolution needed to observe it

through experiments. This thesis investigates several aspects of nucleation through

the use of molecular dynamics, a computational technique that is able to simulate

systems up to ∼ 1012 atoms (as of today’s computational power).

The projects in this thesis focus on the nucleation from aqueous solution of

alkali halide salts, with supplementary studies on the related processes of dissolution

in water, and crystallization from the melt.

The mechanism of NaCl nucleation from solution is examined in Chapter

3 by direct simulation. The NaCl supersaturated solution was found to contain

many small ionic clusters that continuously form and disappear from solution until

one (or more) of them nucleates and grows irreversibly. An original method was

developed to detect and follow clusters in time, producing results useful in the

study of their characteristics and lifetimes. Most importantly, it was found that

the lifetime of transient clusters is ∼ 1 ns, and that both the cluster lifetime and

nucleation probability are significantly higher if the cluster is more geometrically

ordered. The dissolution of NaCl crystals was also investigated. The process was

found to happen in stages, is characterized by an activation barrier, and can be
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described by a simple rate law.

The crystal nucleation of LiF from supersaturated solution was observed, in

our simulations, only at high pressure and temperature. The growth rate for an

already nucleated crystal was found to have a temperature dependence that follows

the Arrhenius law, and further evidence suggests that the reason for such behavior

is the high activation energy required to dehydrate the ions.

The crystallization from the melt of the Joung-Cheatham and Tosi-Fumi

models for lithium halides was also investigated. We found that, for the Tosi-Fumi

model, all lithium halides crystallize as wurtzite. For the Joung-Cheatham model,

LiF and LiCl crystallize as rock salt, while LiBr and LiI crystallize as wurtzite.

iii



Preface

The Chapters in this thesis are based on work that has been, or will be,

published by G. Lanaro and G. N. Patey.

A version of Chapter 3 has been published by G. Lanaro and G. N. Patey,

The Birth of NaCl Nanocrystals: Insights from Molecular Simulation, The Journal

of Physical Chemistry B 120, 34 (2016), and was inspired by previous work by D.

Chakraborty and G. N. Patey, How Crystals Nucleate and Grow in Aqueous NaCl

Solution, The Journal of Physical Chemistry Letters 4, 4 (2013).

Versions of Chapters 4 and 5 are currently being prepared for publication.

Chapter 6 is based on a publication by G. Lanaro and G. N. Patey, Molecular

Dynamics Simulation of NaCl Dissolution, The Journal of Physical Chemistry B

119, 11 (2015).

In all projects my contribution consisted of performing all of the simulations

and data analysis, writing codes for visualization and analysis, formulating hypoth-

esis, designing the projects along with my supervisor, and producing initial drafts

for the manuscripts. Editing, reviews and production of final drafts were carried

out together with my supervisor.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Phase Transitions and Nucleation . . . . . . . . . . . . . . . . . . . . 1

1.2 Classical Nucleation Theory . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Computer Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Models and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Interaction Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Van der Waals Forces . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Electrostatic Forces . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Water and Ion Models . . . . . . . . . . . . . . . . . . . . . . 16

2.3.4 Infinite Systems . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 System Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

v



2.4.1 Liquid Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.3 Crystal-liquid Interfaces . . . . . . . . . . . . . . . . . . . . . 24

2.5 Time Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Temperature and Pressure Control . . . . . . . . . . . . . . . . . . . 28

2.6.1 Velocity Rescaling Thermostat . . . . . . . . . . . . . . . . . 29

2.6.2 Berendsen Barostat . . . . . . . . . . . . . . . . . . . . . . . 31

2.6.3 Parrinello-Rahman Barostat . . . . . . . . . . . . . . . . . . 32

3 Nucleation of NaCl from solution . . . . . . . . . . . . . . . . . . . . 34

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Models and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Simulation Details . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Cluster Detection . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Cluster Lifetimes . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.2 Crystallinity and Nucleation . . . . . . . . . . . . . . . . . . 55

3.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 67

4 Crystallization of Lithium Halides from Molecular Simulation. . 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Models and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Lattice Energies . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.2 Infinitely Periodic System Simulations . . . . . . . . . . . . . 82

4.3.3 Finite Size Cluster Simulations . . . . . . . . . . . . . . . . . 83

4.3.4 Temperature Effects . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 90

5 Crystallization of Lithium Fluoride in Aqueous solution from Molec-
ular Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

vi



5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Models and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.1 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.2 Growth Barrier . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4.3 Solution Structure and Dynamics . . . . . . . . . . . . . . . . 101

5.4.4 Solubility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 109

6 Dissolution of NaCl nanocrystals . . . . . . . . . . . . . . . . . . . . 111

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3 Models and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4.1 Stages of Dissolution . . . . . . . . . . . . . . . . . . . . . . . 118

6.4.2 Concentration Effects . . . . . . . . . . . . . . . . . . . . . . 132

6.4.3 Temperature Dependence and Activation Energy . . . . . . . 134

6.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 136

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Appendices

A Distribution of Various Properties for Nucleated and Failed Clus-
ters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

vii



List of Tables

3.1 Joung-Cheatham Lennard-Jones parameters for NaCl.1 . . . . . . . . 37

3.2 Summary of the simulations performed. The number of water molecules
(Water), the number of ions (Ions), the mole fraction xNaCl, the run
length (Length), and the number of clusters that achieved nucleation
(Nuclei) are indicated. At xNaCl = 0.3, multiple nucleations occurred
resulting in a polycrystal. The five simulations at xNaCl = 0.22 listed
at the bottom of the table were used for the statistical analysis given
in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Lattice energies for the JC model for the wurtzite (Ewurtz) and rock
salt (Erock) structures. The difference Erock- Ewurtzis reported as ∆E.
The NaCl lattice energies are added for comparison. . . . . . . . . . . 80

4.2 Lattice energies (TF model) for the wurtzite (Ewurtz) and rock salt
(Erock) structures. The difference Erock- Ewurtzis reported as ∆E. The
NaCl lattice energies are added for comparison. . . . . . . . . . . . . 80

4.3 Final structures obtained by melting and freezing periodic crystals.
The final temperature is 300 K, and the periodic box contained 1000
ions. The results are consistent with the lattice energy calculations
(Tables 4.1 and 4.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Final structures obtained by melting and freezing finite size clus-
ters using the JC and TF models, the final temperature is 300 K. A
wurtzite-like structure corresponds to a structure that is not perfectly
crystalline but shows hexagonal motifs similar to that shown in the
left panel of Figure 4.5. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 LiY lattice energies at 0 K and 300 K. The value Ew was obtained
by simulating a box to initialized from the perfect wurtzite structure,
while Ew† is the energy of the crystal obtained from freezing of the
molten salt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1 Joung-Cheatham Lennard-Jones parameters for LiF1 adapted for the
SPC/E water model.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 93

viii



5.2 Summary of the simulations performed to study LiF nucleation and
growth. The temperature at which a simulation was conducted is
indicated by T, the length of the simulation is indicated by Length,
the concentration in mole fraction is abbreviated as m.f., and the time
to nucleation (ttn) is the time at which the first nucleus was observed.
LiF and H2O indicate the number of molecules of each type used in the
simulation. The pressure values for the crystal growth simulations are
reported as a range for some simulations because, when substantial
crystal growth occurs, the pressure drifts to higher values. . . . . . . 94

5.3 Diffusion constants for Li+ (D+) and F− (D−) at different temperatures. 99

5.4 Growth rates at different temperatures . . . . . . . . . . . . . . . . . 101

5.5 Average number of clusters (nc) per time frame at different temper-
atures, for LiF and NaCl supersaturated solutions (see Chapter 3 for
details). nc is normalized by the number of ion pairs in the simulations
to allow comparisons between simulations with different numbers of
ions. The concentration in mole fraction is reported in the m.f. column.106

6.1 Joung-Cheatnam NaCl parameters1 for the Lennard-Jones potential. 114

6.2 Summary of crystal shape, the number of ion pairs, the number of
water molecules, and the temperatures used in the simulations. . . . . 116

6.3 Goodness of fit parameters R2 obtained for different rate laws. The
best fits are indicated in bold. . . . . . . . . . . . . . . . . . . . . . . 130

ix



List of Figures

1.1 Kinetic model of CNT. Droplets can grow only by single molecule
attachments and shrink by single molecule detachments. The forward
rate a(n) = A(n)β is proportional to the surface area of the nucleus,
A(n), and the rate of arrival of single molecules on the droplet, β. The
backward rate b(n) = A(n)α is proportional to the rate of detachment
per unit area, α, and the surface area. . . . . . . . . . . . . . . . . . 4

2.1 The LJ potential with parameters σ = 1 and ε = 1. The σ correspond
to the x-intercept of the potential, while ε corresponds to the well depth. 15

2.2 Positions of the charges in the models employed in our simulations.
The SPC/E water model on the left represents the atoms as point
charges, with a O-H distance of ∼ 0.1 nm and a HOH angle of ∼
109.47 deg. The alkali and halide ions are modeled as single point
charges. The short-range interaction parameters are not shown in
the picture. For the water model, the masses of the oxygen and
hydrogen atoms were employed for the negative and positive charged
sites, respectively. Similarly, the mass for the corresponding element
was chosen for the alkali halide models. . . . . . . . . . . . . . . . . . 17

2.3 Depiction of PBC. The central system is repeated in all directions.
A particle exits from the central box on the right side (black arrow)
and reenters from the opposite side. . . . . . . . . . . . . . . . . . . . 19

2.4 The short-range and long-range contribution to the electrostatic po-
tential for κ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Density of q8 values in a sample crystal (∼ 2000 ions)(blue) and a
supersaturated solution (xNaCl = 0.20) (green). The two distribu-
tions show excellent separation. The vertical orange line indicates
the selected threshold (q8 > 0.35). . . . . . . . . . . . . . . . . . . . . 41

x



3.2 Schematic diagram illustrating the DBSCAN algorithm for η = 4.
Top left panel: an ion is chosen at random and ions within ε are
counted; the value is 4 so the ion is marked as core (red). Its neigh-
bours are labeled as border (pink). Top right panel: the procedure is
repeated for one of the border ions which becomes a core ion. Bottom
panel: all ions in the cluster have been processed, and no more ions
are reachable from the core ions. The isolated ion is labeled as noise
(blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Schematic diagram illustrating the cluster time resolution algorithm.
At t = 0 the clusters are labeled employing the DBSCAN algorithm.
A cluster is compared with clusters in the following frame, and a
connection is made if the clusters are sufficiently similar, judged by
the Jaccard index as described in the text. The procedure is repeated
recursively for the following frames. By performing this procedure
for all clusters, it is possible to obtain a connectivity graph (bottom)
where each connected component represents the time evolution of a
single cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Size (top left) and crystallinity (top right) histograms for clusters at
first detection. The bottom panel shows the joint distribution of size
and crystallinity. Note that very few clusters begin with both high
size and high crystallinity, suggesting that this feature develops as
clusters evolve in time. The red points indicate the thirteen clusters
that achieve nucleation, and we note that these show no obvious
preference for any region of the joint distribution. . . . . . . . . . . . 49

3.5 Examples of clusters of different sizes and crystallinities (given in
parenthesis below each cluster). Na+ and Cl− ions are colored pur-
ple and green, respectively. At inception larger clusters tend to be
elongated and of lower crystallinity (top left), whereas larger high
crystallinity clusters (not observed at early stages) tend to be more
compact (top right). For small clusters structural features associated
with low (bottom left) and high crystallinity (bottom right) are not
so apparent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Histograms of “failed” cluster lifetimes (left) and the overall survival
function (right) for all clusters detected in the simulations. . . . . . . 52

3.7 Survival curves for clusters of size 10 grouped by high (> 0.40) and
low (≤ 0.40) crystallinity. . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.8 Ratio of median lifetimes for high versus low crystallinity clusters of
different size. The high crystallinity clusters always have the higher
median lifetime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xi



3.9 Trajectory shown in (size, crystallinity) space for a nucleated (blue)
and a failed (red) cluster as they evolve in time. In early stages both
clusters oscillate in size up to ∼ 30 ions, but the crystallinity of the
cluster that eventually achieves nucleation reaches higher values than
the failed case. This suggests that it is a combined effect of both size
and crystallinity that promotes nucleation. . . . . . . . . . . . . . . . 56

3.10 Comparison of growth and crystallinity profiles for nucleated (col-
ored) and failed (gray) clusters. After a short period, the nucleated
cluster manages to reach quite a high crystallinity and maintain its
size. In contrast, the failed cluster, while maintaining its size, expe-
riences a steady decrease in crystallinity. . . . . . . . . . . . . . . . . 58

3.11 Size (blue) and crystallinity (orange) profiles for a nucleated cluster.
The fluctuation in crystallinity is fairly high, and, as the crystal in-
creases in size, the crystallinity reaches a plateau at ∼ 0.47. The
snapshots represent the cluster at 0 ns (left), 40 ns (center) and 80
ns (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.12 Crystallinity distributions (blue histogram) of failed clusters of dif-
ferent size (number of ions). Clusters that achieved nucleation are
indicated by single orange lines. Note that clusters that achieve nu-
cleation come preferentially from the upper part of the crystallinity
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.13 Probabilities of high (q̄8 > 0.40) and low (q̄8 < 0.40) crystallini-
ties achieving nucleation. The error bars (vertical black lines) repre-
sent one standard deviation. The lower panel shows the results for
small clusters on an expanded scale. Note that for all cluster sizes
P (N |high) is always larger than P (N |low), and the high/low ratio is
shown as a gray line in the upper panel. . . . . . . . . . . . . . . . . 62

3.14 Joint distribution of crystallinity and cluster energy (kJ mol−1) for
clusters of size 6 (left) and size 10 (right). Values corresponding to
clusters that eventually nucleated are displayed in orange. The cor-
relation coefficient is negative and very low at size 6, and moderately
low at size 10, indicating that crystallinity carries different informa-
tion than energetic stability. . . . . . . . . . . . . . . . . . . . . . . . 64

xii



3.15 Running coordination numbers for: high q8 Na+ with all Cl− (blue);
high q8 Cl− with all Na+ (green); and all Na+ and Cl− (red). In the
first coordination shell (∼ 0.35 nm) both high q8 ions are surrounded
by more counterions (3-4) than average (1). Also, high q8 Na+ are
surrounded by more counterions than high q8 Cl−, suggesting that
on average they occupy positions deeper within the clusters. The
difference in the first shell coordination number decreases at longer
times, as larger crystals develop in the simulation, and the internal
preference of Na+ becomes less noticeable. . . . . . . . . . . . . . . . 65

3.16 ∆q8 as a function of cluster size. The shaded area indicates one
standard deviation. The average value is slightly positive indicating
that Na+ ions tend to occupy ordered environments than Cl− ions. . . 66

4.1 Unit cells used for the rock salt (right) and wurtzite (left) crystal
structures. The configurations are dependent on a single cell pa-
rameter a, all other parameters being constrained. In the rock salt
structure, a is the length of any edge, while for the wurtzite structure
a is the length of any of the two short edges. . . . . . . . . . . . . . . 73

4.2 Radial distribution functions for an infinite LiCl crystal for the TF
model (left panel) and JC model (right panel). The initial rock salt
configuration and the liquid phase are colored in blue and red, respec-
tively, and do not show noticeable differences between models. The
rdf corresponding to the crystallized structures are displayed in green
and correspond to wurtzite on the left and rock salt on the right.
The inset plots show the rdf for ideal wurtzite on the left and ideal
rock salt on the right (black lines) superimposed onto the simulation
result (green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 TF and JC potentials for the pairs Li+-Cl− (top panel), Li+-Li+ (mid-
dle panel) and Cl−-Cl−(bottom panel). The TF model has a shorter
contact radius for the Cl− ion, and is more slowly varying function
at short range. Notice also how at very short range (∼ 0.1 nm),
the TF model becomes attractive (but this does not influence the
simulations). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Lattice energies as a function of the cell length a for the JC (left
column) and TF (right column) potentials. The solid red lines indi-
cate the energy of the wurtzite structure, while the dashed red lines
indicate the rock salt structure. The energy minima are annotated
below each curve. Blue and green lines represent the contributions of
the positive and negative ion sites, respectively. . . . . . . . . . . . . 81

xiii



4.5 Spontaneously crystallized LiCl/TF (left panel) and LiCl/JC (right
panel) clusters of 216 ions. For the cluster on the left, the structure
has hexagonal motifs characteristic of the wurtzite structure, but is
mostly hollow inside. On the right, the cluster crystallizes into a
rock salt structure, without substantial surface deformations. In this
figure, Li+ is represented in purple and Cl− is in green. . . . . . . . . 85

4.6 LiI/JC rdfs at 300 K for the perfect wurtzite crystal (red), and for
the interior of a finite size crystal of 1000 ions (blue). The peaks are
well defined for the perfect wurtzite crystal, while for the finite size
crystal there is wide broadening and merging of adjacent peaks. . . . 86

4.7 Example of surface reconstruction for a LiI crystal (Li+ and I− ions
are colored in purple and grey, respectively). On the left, surface
charges are present on the wurtzite crystal face (0001). After simu-
lating the crystal in vacuum at 300 K, the resulting surface (on the
right) rearranges to reduce the dipole moment. The dipole moment
per ion is reduced from ∼ 6.3 D for the structure on the left, to ∼ 0.7
D for the structure on the right. . . . . . . . . . . . . . . . . . . . . . 87

4.8 Spontaneously crystallized LiBr/JC cluster (1000 ions) using the LiBr/JC
model (Li+ in purple, and Br− in brown). One notices both hexago-
nal motifs, characteristic of the wurtzite structure, as well as square
motifs characteristic of the rock salt structure. . . . . . . . . . . . . 88

5.1 Clustering based on neighbor distance. The dashed lines represent
distances lower than a fixed threshold, and the colors represent dif-
ferent clusters. Free particles form a cluster of their own. . . . . . . . 97

5.2 Schematic diagram of the free energy landscape at different temper-
atures for the crystal growth process. If the driving force (which is
the difference in free energy of initial and final stages) increases and
the barrier is weakly affected by the increase in temperature, the ac-
tivation barrier (which is the height of the curve between inital and
final stages) of the process decreases. . . . . . . . . . . . . . . . . . . 98

5.3 Linear regression to determine the activation energy for the diffusion
process for Li+ ions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 Arrhenius fit to the growth rates . . . . . . . . . . . . . . . . . . . . 101

5.5 Fraction of ions in connectivity based clusters of a certain size at
different temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.6 Li+F− radial distribution functions at different temperatures. The
contact peak, characteristic of ion pairs increases with temperature,
while the second peak (solvent-separated pairs) decreases. . . . . . . . 103

xiv



5.7 Diagram of surviving pairs. Initially, the {1, 2, 3, 4} cluster contains
6 unique pairs, after the cluster splits, 2 of the pairs are still associated.104

5.8 Surviving pairs at a time delay of t ns for a range of different tem-
peratures. As the temperature increases, there are more associated
pairs that decay at a faster rate. . . . . . . . . . . . . . . . . . . . . . 105

5.9 Solution concentration profiles obtained by dissolving a crystal at 300
K (blue), by growing a crystal at 500 K (red, top line), and dissolving
a crystal at 500 K (red, bottom line). The estimated solubilities are
∼ 0.025 mole fraction at 300 K and ∼ 0.01 at 500 K. . . . . . . . . . 108

5.10 Possible free energy landscape for LiF nucleation from solution. A
first barrier is required to go from the free ions (solution) to the clus-
ter aggregates. The cluster aggregates are metastable, continuously
form and disappear from solution, and are more easily found at high
temperature. The second barrier reflects the fact that most clusters
do not nucleate but dissolve back into solution, depending on cluster
related properties such as size, crystallinity, and surface tension. In
absence of nucleation rate measurements, it is not possible to estimate
the relative magnitude of the two barriers, and two possible options
are displayed as solid and dashed lines. . . . . . . . . . . . . . . . . . 110

6.1 A representation of the crystals simulated. The number of NaCl ion
pairs is given below each illustration. . . . . . . . . . . . . . . . . . . 115

6.2 An example of the order parameter applied to a surface ion. The cen-
tral atom (yellow) is surrounded by 14 neighbors (red). The 0.6 nm
cutoff applied to the central atom is highlighted with a gray trans-
parent sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3 Dissolution profiles for the cubical and spherical crystals displayed as
number of ions in the crystal vs time. The starting and final sections
of the profiles are detailed in the zoomed-in plots. . . . . . . . . . . . 120

6.4 Snapshots corresponding to different points in the dissolution profile
of the cubic crystal. After 20 ns, only ions located at edges and
corners are removed. The edges and corners gradually get consumed
(100 ns) and the crystal becomes roughly spherical after about 185
ns. After that point the shape doesn’t change until the final stage of
dissolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xv



6.5 Comparison of the dissolution profiles for different shapes expressed in
terms of fraction of crystal dissolved fcry(t), the derivatives dfcry/dt
(on the order of −10−3 ns−1) are depicted in the inset. The color
coding is: dark blue for the sphere; green for the cube; red for the
tablet; light blue for the rod. The rod-shaped and tablet-shaped
crystals show a higher overall dissolution rate. . . . . . . . . . . . . . 122

6.6 Snapshots along the rod-shaped crystal trajectory. Ions are detached
mainly from the ends of the rod. . . . . . . . . . . . . . . . . . . . . . 122

6.7 Snapshots along the tablet-shaped crystal trajectory. The top and
bottom surfaces are never attacked by water molecules. . . . . . . . . 123

6.8 Three quantities obtained for the spherically shaped crystal as func-
tions of the number of neighbor in the first coordination shell (within
0.37 nm), Left panel: The relative probability of detachment (within
1.6 ns) of a suface ion, given the number of neighbors. Upper right
panel: The total number of ions on the surface at t = 0. Lower right
panel: The total number of ions detached over 1.6 ns. All quantities
are averaged over 50 time slices betwen 20 and 40 ns of the dissolution
simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.9 Radial ion density profile starting from the center of a spherical crys-
tal at 300 ns. The dashed horizontal line in the inset indicates the
density at saturation. The calculated radius of the crystal is ∼ 2 nm,
and a concentration gradient (that could be related to a diffusion
layer) is not observed. . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.10 Snapshots of the last stage of dissolution of the spherical crystal.
When the crystal reaches ∼64 ions, the structure begins to disinte-
grate. In the final snapshot, water quickly penetrates the structure
and breaks apart the remaining crystal nucleus. . . . . . . . . . . . . 132

6.11 Concentration effects on rate. Curves (a), (b), and (c) are for NaCl
mole fractions (calculated assuming complete dissolution of the entire
crystal) of 0.0254, 0.0163, and 0.0127. Note that curve (a) shows
a sharp decrease in rate at ∼120 ns, while there is no substantial
difference between the profiles (b) and (c). . . . . . . . . . . . . . . . 133

6.12 Detachment and reattachment events for the spherical crystal. Dur-
ing the course of dissolution, the detachment rate systematically slows
while the attachment rate remains substantially constant. . . . . . . . 134

6.13 Fits to the cube root law for the spherical crystal at temperatures of
300, 320 and 340 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xvi



6.14 Fits to the Arrhenius equation of the rate constants obtained for the
spherical crystal at 300, 320, and 340 K. Error bars represent one
standard deviation of uncertainty. . . . . . . . . . . . . . . . . . . . . 135

A.1 Distributions of various properties for failed clusters (blue histogram)
of size 10. Clusters that achieved nucleation are indicated by single
orange lines. Note that the property values of the clusters that achieve
nucleation are found around the mean of the distribution. . . . . . . . 159

A.2 Distributions of various properties for failed clusters (blue histogram)
of size 30. Clusters that achieved nucleation are indicated by single
orange lines. At this size, some preference for low radius of gyration,
low surface area and higher sphericity can be observed. . . . . . . . . 160

A.3 Two dimensional representation of the algorithm used to estimate the
volume. The cluster is encased in a grid, and the grid points that lie
within the cluster are represented in red. . . . . . . . . . . . . . . . . 161

xvii



List of Symbols

kB Boltzmann constant

K Kinetic energy

V Potential energy

Tr(A) Trace of matrix A

bcc Body centered cubic

CNT Classical Nucleation Theory

fcc Face centered cubic

JC Joung-Cheatham

LJ Lennard-Jones

PBC Periodic boundary conditions

PME Particle-mesh Ewald

rdf radial distribution function

TF Tosi-Fumi

xviii



To my parents

xix



Chapter 1

Introduction

1.1 Phase Transitions and Nucleation

Physical matter can exist in different phases, and phase transitions are the

processes that describe how matter can transform from one phase to another, after a

change in one or more thermodynamic parameters. In equilibrium thermodynamics,

the stable phase of a system at constant temperature T and pressure p is the one

with the lowest chemical potential µ. In general, as the temperature and pressure of

the system are changed, the chemical potential of each phase will vary by different

amounts, defining the regions of stability in the phase diagram.

While thermodynamics describes systems at equilibrium, it gives no infor-

mation on the time evolution, nor on the atomistic details of phase transitions. The

dynamical aspects of phase transitions are, however, extremely important as the

time scales involved can be very large, and their understanding is crucial in many

applications.

A system that is stable to small fluctuations in thermodynamic parameters,

but can transition to a more stable state given a large enough perturbation, is termed
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metastable. Metastable states are due to the fact that the system is in a local free

energy minimum, and to reach the global minimum it is necessary to overcome a

free energy barrier. An extreme example is the graphite-diamond transition. At

298 K and 1 bar, graphite is the stable phase of carbon, with a free energy that

is ∼ 2.90 kJ mol−1 lower than that of diamond.3 However, the time to convert

diamond to graphite at room temperature and pressure is extremely long, making

diamond remarkably metastable.

The dynamics of phase transitions are usually explained through a process

termed nucleation. In order to form a new phase, particles in the metastable phase

spontaneously arrange to form the initial seed of the new phase, that will grow as

the transition progresses. The formation of the initial seed can happen directly in

the metastable phase (homogeneous nucleation), or on a surface, such as the wall of

the container, or can be initiated by impurities (heterogeneous nucleation).

Nucleation is at the core of many physical and biological processes. For ex-

ample, some organisms in cold environments have developed strategies to prevent

freezing of bodily fluids through the use of antifreeze proteins that inhibit ice nucle-

ation.4,5 Another example are high clouds (clouds that occur between heights of 5 to

13 km above the earth’s surface), where water droplets exist in a supercooled state,

and freezing can be triggered6 at about -15 ◦C, catalyzed by other particles, such

as clay particles, carried into the atmosphere by the wind.7,8 Once water droplets

freeze they can grow and coalesce into snowflakes or hail that precipitate to the

ground.9

In the remainder of this Chapter, we will describe the classical kinetic theory

of nucleation, the experimental and theoretical attempts to validate it, and how

computer simulations have proven to be a valuable tool in the study of nucleation.
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1.2 Classical Nucleation Theory

The kinetic treatment of nucleation dates back to 1926, when Volmer and

Weber10 postulated that the nucleation rate J (number of nuclei formed per unit

time and volume) depends on the negative exponential of the free energy required

to form a new nucleus. Later developments and refinements11–13 gave rise to the

standard treatment for nucleation, often called classical nucleation theory (CNT).

In the original treatment of CNT, applied to a homogeneous gas-liquid tran-

sition, the metastable vapor is characterized to be a mixture of single molecules and

liquid droplets of various sizes. The system is assumed to be in an equilibrium14

characterized by a droplet distribution N(n), that is proportional to the negative

exponential of the free energy ∆G needed to form a droplet of size n

N(n) = N0 exp

(
−∆G(n)

kBT

)
, (1.1)

where N0 is the number density of the nonassociated molecules, and kB is the Boltz-

mann constant. The equilibrium distribution N(n) describes the state of the vapor

before the phase transition, and to characterize the kinetics of the process it is neces-

sary to consider the time evolution of the actual, instantaneous, droplet distribution

f(n, t).

To recover this dynamical quantity, CNT assumes that the interchange of

molecules between the liquid droplets and the vapor happens by single molecule

attachment or detachment, each collision between a molecule and a droplet resulting

in an attachment, and every attachment or detachment event is uncorrelated with

the previous ones (Figure 1.1). If this is true, the droplet formation process described

above can reach a steady state and the nucleation rate, J , can be found solely from
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Figure 1.1: Kinetic model of CNT. Droplets can grow only by single molecule attach-
ments and shrink by single molecule detachments. The forward rate a(n) = A(n)β
is proportional to the surface area of the nucleus, A(n), and the rate of arrival of
single molecules on the droplet, β. The backward rate b(n) = A(n)α is proportional
to the rate of detachment per unit area, α, and the surface area.

time independent quantities, such that9

J =
1

∞∑
n=1

1

βA(n)N(n)

, (1.2)

where A(n) is the surface area of a droplet of size n, and β is the rate of arrival of

single molecules at the droplet per unit area.

Other assumptions are necessary to simplify Equation (1.2). According to

CNT, droplets are postulated as large, homogeneous, spherical, and incompressible

objects. The inside of the droplet is made of bulk liquid, and the surface free energy

of the cluster can be described by the product of a size-independent surface tension,

γ, and the cluster surface area A(n). This set of assumptions is usually referred to

as the capillary approximation.

If the capillary approximation applies, the free energy of formation for a

droplet of size n will depend on the free energy of formation of the new bulk phase,

as well as on the free energy required to form a new surface,

∆G(n) = −n∆µ+ γA(n), (1.3)
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where ∆µ is the difference between the chemical potential of the liquid and the

vapor, and γ is the surface tension of the liquid. Even though CNT was originally

formulated for vapor to liquid transitions, the theory can be applied to other tran-

sitions, such as crystal nucleation, by using the chemical potentials and interfacial

free energies of the phases of interest.

When the cluster is very small, the free energy required to create the new

surface will be higher than the free energy gained by the formation of the more

stable phase, and as the size of the droplet grows, ∆G will go through a maximum,

then decrease to the point of being negative. The size n∗ at which the maximum is

found, also called critical size, is

n∗ =
32π

3

v′2γ3

∆µ3
, (1.4)

and the maximum ∆G(n∗), also termed the nucleation barrier, is

∆G(n∗) =
16π

3

v′2γ3

∆µ2
, (1.5)

where v′ is the volume per particle in the condensed phase.

Given the above assumptions, the sum in Equation (1.2) can be expressed as

a solvable integral9 and the rate J is found to depend on ∆G(n∗) and a prefactor

J0

J = J0 exp

(
−∆G(n∗)

kBT

)
. (1.6)
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The factor J0 can be expressed as

J0 = ZβA(n∗)N0, (1.7)

Z =

√
−∆G′′(n∗)

2πkT
, (1.8)

where Z, also termed Zeldovich factor,9 physically represents the fact that there is

a probability that critical nuclei can revert to vapor, while the term A(n)β is the

frequency of arrival of single particles on a nucleus of size n. The term ∆G′′(n∗) is

the second derivative with respect to n of ∆G, evaluated at n∗. The main parameters

affecting the nucleation rate, J , are the temperature, the difference in the chemical

potential of the two phases, and the surface tension.

The temperature dependence is expressed through the prefactor J0, the ex-

ponential dependency on 1/kBT , as well as on the degree of undercooling that will

affect the chemical potential ∆µ. While lower temperatures tend to increase the

rate because of the higher degree of undercooling, the rate of arrival β will substan-

tially decrease because of decreased mobility. The chemical potential dependency

is expressed through ∆G(n∗). As ∆µ increases, the barrier ∆G(n∗) will decrease,

causing an increase in nucleation rate J . A higher surface tension, γ, leads to an

increase in nucleation barrier and a decrease in nucleation rate.

Early experiments using expansion chambers,15–18 showed that classical nu-

cleation theory predicts the correct dependence of nucleation rate on supersatu-

ration, but fails to reproduce the temperature dependence, a fact that has been

attributed to an inadequate description of the prefactor J0.
19

Auer and Frenkel20 were able to characterize the crystal nucleation rate of

the hard-sphere model using molecular simulation, and compared their results with
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experiments on colloids.21,22 They showed that, albeit CNT adequately describes

the functional form of ∆G(n∗), the nucleation rates are more strongly dependent on

temperature in models than in experiments, suggesting that the problem is, again,

in the description of the temperature dependent prefactor. Further experiments on

colloidal systems also showed issues in considering the surface tension as concentra-

tion independent.23

Very interesting developments on the microscopic mechanism of nucleation

were evidenced by experiments on CaCO3 crystal nucleation.24–26 In this system,

crystal nucleation proceeds quite differently from the molecule-by-molecule growth

process described by CNT. It was observed24 that in the saturated solution, amor-

phous calcium carbonate clusters are first formed, these subsequently undergo tran-

sitions to vaterite and only then, convert to the final structure calcite. This indicates

a nucleation process that happens in stages, similar to a mechanism that was first

postulated by Ostwald27 and termed rule of stages.

In contrast with what was found for CaCO3, the microscopic process de-

scribed in CNT was shown to apply to the description of certain systems. For exam-

ple, Sleutel et al., performed direct observation (through atomic force microscopy)

of nucleation in two dimensions of the protein glucose isomerase and showed that

subcritical nuclei have the same structure as the bulk crystalline phase.28 Measure-

ments of the nucleation rate of NaCl crystals also seem to be in good agreement with

estimates from CNT.29 Additionally, calculations of the critical size for glycine and

NaCl aqueous solutions were found to be consistent with estimates of the average

cluster size.30

Attempts to describe the first stages of nucleation have proven hard to per-

form experimentally, because of the intrinsic small size and the short lifetimes of
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most nuclei.31 Additionally, estimates of the homogeneous nucleation rates are sub-

ject to significant uncertainties, and often complicated by unwanted heterogeneous

nucleation.32

Computer simulations are a great way to avoid many of the shortcomings

that affect experiments. As discussed above, the foundation of CNT relies upon

assumptions about the microscopic nature of the metastable and nascent phases,

and through molecular simulation it is possible to observe nucleation in its very

early stages for a variety of model systems and physical conditions.

1.3 Computer Simulations

Computer simulations have long been used to study phase transitions of sim-

ple atomic systems,33–36 and early studies of nucleation were performed on Lennard-

Jones (LJ) liquids.37–40 It was found that, despite the fact that the stable solid

structure for the LJ system is face centered cubic (fcc), the LJ liquid nucleates at

moderate supercooling with a body centered cubic (bcc) structure and, starting from

the interior, gradually converts to the fcc structure, suggesting that the nucleation

process, even for this very simple system, happens in stages.39

Other early work includes simulations of hard spheres that were used to com-

pare crystal nucleation rates with experimental data for colloids.20,41 More recently,

thanks to a dramatic increase in parallel computational power, simulations are being

used to study homogeneous and heterogeneous nucleation molecular systems,42–45

including aqueous solutions.46–50

One of the most studied processes is perhaps the nucleation of ice in liquid

water.32 Homogeneous nucleation measurements for this system vary by orders of
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magnitude between theory and experiments and also between different studies.32

Attempts to study homogeneous nucleation through unbiased simulations have also

proven to be problematic32 given the very long time scales involved in ice nucle-

ation, but has been observed when an electric field is applied to the system.51–53

Coarse grained simulations have suggested that ice nucleation involves both cubic

and hexagonal variants of ice,42 also observed in unbiased simulations of heteroge-

neous ice nucleation,54–56 and in experiments.57

A considerable body of work, including some of the projects in this thesis,

has been dedicated to the NaCl/water system. Early work on NaCl crystal nucle-

ation46,47 used small systems to study the early stages, and showed that the Na+ ion

tend to be positioned near the center of the cluster aggregates present in NaCl so-

lutions.47 The mechanism of cluster formation was further explored by Hassan,58,59

showing that the supersaturated NaCl solution is characterized by a combination

free ions and ionic clusters with relatively long lifetimes. Later work on larger sys-

tems48–50 gave evidence of a two-stage nucleation process.49,50 The formation of the

NaCl nucleus was characterized by a density fluctuation followed by an ordering

transition, where the cluster rearranges to form a more regular crystal structure,

gradually dehydrating as the crystal grows.

In order to accurately describe highly concentrated alkali halide solutions,

Joung and Cheatham1 developed models tuned to reproduce solid properties, such as

lattice energies and lattice constants, as well as solution properties (such as the free

energy of solvation). Joung-Cheatham (JC) parameter sets have been extensively

used to investigate solubility and crystal nucleation from solution.60–66

The main focus of this thesis is the study of crystallization of alkali halides

from solution. In addition to using more recent models,1 we also employ advanced
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data analysis techniques to observe and study the morphology and dynamical be-

havior of ionic clusters in solution.

In Chapter 2, we describe the molecular dynamics techniques and algorithms

used for the simulations performed in the subsequent chapters.

In Chapter 3 we employ large-scale molecular simulations to investigate the

nucleation of NaCl in water using the JC parameter set, and develop computational

methodology to detect and follow in time a large number of pre- and post-nucleation

clusters. Statistical analysis shows that a very large number of clusters are formed,

and that the cluster lifetime and nucleation probability is strongly affected by the

geometrical arrangement of the ions contained in the cluster.

In Chapter 4, we evaluate pair potentials for pure lithium halides by calcu-

lating lattice energies, and by melting and freezing finite size clusters to assess their

possible role in nucleation studies. The results indicate that for most lithium halide

models, the stable structure is not rock salt but wurtzite, and that, in certain cases,

the finite size structure can differ from that of the bulk.

In Chapter 5, we examine the crystallization of LiF from solution. We per-

form molecular simulations of supersaturated LiF solutions at temperatures ranging

from 300 to 500 K and, while nucleation was observed only at a temperature of 500

K, we were able to measure the growth rate of an already nucleated crystal at lower

temperatures. We found that the growth process is activated and that the barrier

to growth is much larger than that of diffusion. We suggest that the barriers to

growth and nucleation are likely related to ion dehydration.

In Chapter 6, we focus on the NaCl dissolution process. The study of disso-

lution provides insights into the dynamics of ion attachment and detachment, and
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into the stability limit of small ionic clusters in dilute solutions. By simulating the

dissolution of NaCl nanocrystals of different sizes, shapes, and at different temper-

atures, we find that the dissolution process is activated, and that the activation

energy is affected by the position of ions on the crystal surfaces.

A global summary, further remarks, and future directions are presented in

Chapter 7.
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Chapter 2

Models and Methods

2.1 Overview

Molecular dynamics is a simulation method widely used to study model sys-

tems at the microscopic level. To perform a simulation, it is necessary to specify

a system in terms of its initial state and interaction forces that apply. Numerical

integration of the equations of motion is then performed to obtain a trajectory. In

this chapter we explain the main algorithms used to perform molecular dynamics

simulations, and how to include other effects such as periodic boundary conditions,

constraints, temperature, and pressure controls.

2.2 Molecular Dynamics

Molecular dynamics is a computational technique used to simulate the evo-

lution of a molecular system given the initial conditions and a description of the

interatomic forces. The result of a molecular simulation is a time trajectory that

12



can be used to calculate the thermodynamic, structural and dynamic properties of

the system under study.

Atoms in molecular systems are subject to intra and intermolecular inter-

actions that originate from chemical bonds, electrostatic charges, short-range re-

pulsions, and dispersion forces. In molecular simulations, these interactions are

usually approximated employing simple potentials that can be used in the frame-

work of classical mechanics. Even though molecular interactions are best described

by quantum mechanics, this approximation has proven quite successful in describing

many systems of physical and biological interest, especially since molecular dynamics

simulations are typically concerned with nuclear motion.

The time evolution of a system, where the initial interaction site positions

ri(t = 0), velocities ṙi(t = 0), and forces fi are specified, can be described by

Newton’s equations of motion

fi = mir̈i, (2.1)

where mi is the mass associated with the interaction site, and r̈i is the acceleration.

To obtain a trajectory ri(t), the equations of motion are integrated numerically.

In this chapter we discuss the functional forms of the molecular interactions

used in the following chapters, and some of the techniques used to initialize the

atomic positions in our systems of interest. We also describe how numerical integra-

tion is performed, and how to impose further conditions such as periodic boundaries,

bond constraints, temperature and pressure controls.
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2.3 Interaction Potentials

The first step in performing molecular dynamics is the definition of the mod-

els that represent the interactions between the atoms and molecules of interest. The

simulations performed in this thesis involve water and alkali halide ions which are

subject to van der Waals and electrostatic forces. The chemical bonds between oxy-

gen and hydrogen are not explicitly modeled, rather the bond distances and angles

are kept fixed by using constraints (See Section 2.5.1 for details.)

2.3.1 Van der Waals Forces

Van der Waals forces are commonly expressed through the use of Lennard-

Jones (LJ) type potentials. In this model the interaction between a pair of atoms is

characterized by a strong repulsive core and a soft attractive term. The functional

form of the LJ potential requires the specification of two parameters that depend

on the pair of atoms considered, σij and εij,

uLJ(rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]
, (2.2)

where rij = |rij| = |rj − ri| is the interatomic distance. The σij and εij parameters

are usually termed the size and energy parameters, respectively, and they correspond

to the x-intercept and well depth of the potential as shown in Figure 2.1.

Quite often, σij and εij are obtained by combining parameters that depend

on the individual particles σi, σj, εi, εj, effectively reducing the number of parameters

needed from 2
(
N
2

)
to 2(2N), where N is the number of atom (interaction site) types.

The combination rules depend on the specific parameter set and, in this

14



Figure 2.1: The LJ potential with parameters σ = 1 and ε = 1. The σ correspond
to the x-intercept of the potential, while ε corresponds to the well depth.

thesis, the Lorentz-Berthelot rules are used. According to these rules, σi and σj are

combined using the arithmetic mean, while the geometric mean is used to combine

εi and εj

σij =
σi + σj

2
, (2.3)

εij =
√
εiεj. (2.4)

The LJ and other short-range potentials aimed at describing van der Waals

forces decay rapidly with distance, and are typically calculated by truncating the

interactions after a certain distance, also termed the cutoff radius.
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2.3.2 Electrostatic Forces

The electrostatic interactions are modeled using Coulombic potentials, that

depends on the interatomic distance, rij, and the partial charges, qi and qj,

uC(rij) =
1

4πε0

qiqj
rij

, (2.5)

where ε0 is the dielectric constant in vacuum. The electrostatic potential does

not decay rapidly with distance, and cannot be truncated by imposing a cutoff.

Strategies have been developed to deal with electrostatic interactions, as explained

in Section 2.3.4 below.

2.3.3 Water and Ion Models

The modelling of atoms and molecules requires the parameterization of the

potential functions. Parameters can be obtained by fitting molecular properties

obtained from ab initio calculations,67–69 or by fitting the parameters to reproduce

known experimental properties2,61 (e.g. hydrogen bond lengths, densities, local

structures, hydration energies).

To model water, a simple approach is to use single point charges on the

oxygen and hydrogen sites, and to represent the molecule as a sphere centered on

the oxygen atom. In the SPC/E (extended simple point charge) water model2 used

in our simulations, partial charges are positioned on the oxygen and hydrogen atoms

according to the geometry shown in Figure 2.2. The masses for the three interaction

sites correspond to the masses of the oxygen and hydrogen atoms. The hydrogen

atoms lack LJ interaction terms (σH = 0), while the oxygen σO = 0.3166 nm. The
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Figure 2.2: Positions of the charges in the models employed in our simulations. The
SPC/E water model on the left represents the atoms as point charges, with a O-H
distance of ∼ 0.1 nm and a HOH angle of ∼ 109.47 deg. The alkali and halide ions
are modeled as single point charges. The short-range interaction parameters are not
shown in the picture. For the water model, the masses of the oxygen and hydro-
gen atoms were employed for the negative and positive charged sites, respectively.
Similarly, the mass for the corresponding element was chosen for the alkali halide
models.

parameters are obtained to reproduce experimental properties such as the radial

distribution function, diffusion constant, and density at 300K.2

The alkali halide ions used in our simulations are modeled as point charges

plus LJ interaction terms.

2.3.4 Infinite Systems

Currently, typical system sizes used in molecular simulation are on the or-

der of ∼ 105 − 107 atoms with a record holding simulation of ∼ 1012 atoms.70

As macroscopic systems are much larger (a mole of substance is ∼ 1023 particles)

than molecular simulations can handle, special techniques are usually employed as

described below.

A large system can be approximated as a periodic repetition of one of its

parts. Using this construction, the simulation can be performed on a small system
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that interacts with identical copies that extend in all directions, a construction

termed periodic boundary conditions (PBC).

A depiction of a two dimensional cell under PBC is shown in Figure 2.3.

The central cell is surrounded by identical copies and, as the system evolves in

time, particles that exit from one side of the box are reinserted from the opposite

side. As there are an infinite number of copies of the central cell, to calculate the

distance between particles it is necessary to specify a particular periodic image. In

molecular simulation, the image is chosen so that the distance between the atoms

in consideration is minimum. This choice is termed the minimum image convention

and is implemented by calculating each component of the displacement vector rij =

{xij, yij, zij} as follows

xij =


xj − xi − Lx if xj − xi > Lx/2,

xj − xi + Lx if xj − xi < −Lx/2,

xj − xi otherwise,

(2.6)

where Lx is the box length in the x direction. The calculation is performed similarly

for the yij and zij components.

The treatment of interactions is simple for the short-range (van der Waals)

terms. As already mentioned, since they become negligible at a relatively short

distance (e.g. ∼ 1 nm), they can be calculated by truncating all interactions at a

distance larger than a given cutoff radius.

For the long-range electrostatic interactions, the expression of the potential
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Figure 2.3: Depiction of PBC. The central system is repeated in all directions. A
particle exits from the central box on the right side (black arrow) and reenters from
the opposite side.
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energy felt by a charge in the central cell can be written as

ui =
∞∑

n=−∞

∑
j

qiqj
|rij + n|

i 6= j, when n = {0}, (2.7)

where n = {na, nb, nc} is the displacement of the periodic cell, and rij is the dis-

placement vector between the ith and jth atoms in the central cell. Notice that the

term |rij + n| corresponds to the position of the charge in the periodic cell defined

by n. The infinite series expressed in Equation (2.7) is conditionally convergent (i.e.

its result depends on the way the terms are summed), and special methods have

been developed for its evaluation.71

One of the methods used to calculate electrostatic energies is the Ewald

summation,72 that was developed to calculate Madelung constants for ionic crystals,

and can be used to calculate the electrostatic interactions in a simulation subjected

to PBC. It was later shown71 that the evaluation of the sum of Equation (2.7) gives

different results depending on the medium surrounding the infinite system and, in

the case of the original Ewald summation,72 the medium is a perfect conductor (its

relative dielectric constant εr =∞.)

In the Ewald summation method, the contribution of the Coulombic potential

is split into short-range and long-range parts by adding and subtracting an erf(κr)/r

term

1

r
=

1 + erf(κr)− erf(κr)

r
=

erfc(κr)

r
+

erf(κr)

r
, (2.8)

erf(r) =
2√
π

∫ ∞
r

e−z
2

dz, (2.9)

erfc(r) = 1− erf(r). (2.10)

20



Figure 2.4: The short-range and long-range contribution to the electrostatic poten-
tial for κ = 1.

The first term on the right of Equation (2.8) decays rapidly with r (Figure 2.4)

and, similar to the other short-range interactions, its contribution to the sum can

be calculated directly by using a cutoff, while the second term can be Fourier trans-

formed and converges rapidly in reciprocal space.73 The parameter κ can be used

to modulate the convergence of the two terms as explained below.

The expression of the Ewald summation for the potential energy felt by an

charged site i in a cell of volume V can be expressed as follows73

ui = uri + uki + uselfi , (2.11)

uri =
∑
n

∑
j

qiqjerfc(κ|rij + n|)
|rij + n|

i 6= j when n = {0}, (2.12)

uki =
1

πV

∑
k 6=0

∑
j

qiqj(
4π2

|k|2
) exp(−|k|

2

4κ2
) cos(k · rij), (2.13)

uselfi = − κ

π1/2
q2i . (2.14)

The first term in Equation (2.11) uri is simply the direct sum, similar to Equation
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(2.7), of the rapidly decaying part, and n is truncated to include charges up to a

certain cutoff (often the truncation will only include the central cell.) The second

term uki is the sum of the slowly varying part of the potential over the reciprocal

lattice vectors k, and uselfi is a correction needed to remove the interaction of a

particle with itself, introduced by the term uki . The parameter κ can be tuned to

modulate the convergence rate of either of the sums and is often set to 5/L, where

L is the box length. Given the value κ = 5/L, to achieve convergence in reciprocal

space, ∼ 200 reciprocal vectors k are required.73

To retrieve the total electrostatic potential of the cell, it is sufficient to sum

over all particles i in the following way

U =
1

2

∑
i

(uri + uki ) +
∑
i

uselfi . (2.15)

Additionally, if the system is assumed to be surrounded by a medium with a certain

dielectric constant εr, a correction that depends on the dipole of the central cell

must be added to the total

Udip =
2π

(1 + 2εr)V

∣∣∣∣∑
i

qiri

∣∣∣∣2. (2.16)

Notice that, in the case of ionic systems (and in the original Ewald formulation),

this term is neglected, corresponding to a system surrounded by a perfect conductor

(εr =∞).

In terms of computational time, the Ewald summation method (when a con-

stant cutoff on the short-range part is applied) scales as O(N2), where N is the

number of charges. Most simulation programs, however, implement other variants

such as particle-mesh Ewald74 (PME) that evaluates the reciprocal term (i.e., the
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Fourier transform of the charge density) on a grid using the fast Fourier transform

algorithm.75 This reduces the time required to evaluate the electrostatic potential

to O(N log(N)).

2.4 System Initialization

Generating the initial configuration is one of the most important aspect of

molecular simulation, where the computational scientist sets up “experiments” tar-

geted towards the validation of a specific hypothesis. In this section we explain

some of the techniques used to initialize atomic positions, as velocities are usually

randomly sampled from a Maxwell-Boltzmann distribution.

2.4.1 Liquid Systems

Liquid systems can be initialized by placing the molecules on an evenly spaced

grid. This method can be effective when the objects to be placed are of similar size

so that they are able to fit onto a grid without overlapping with each other.

Another option is to insert particles at random and to perform a neighbor

distance test to avoid particle collision. However, as the box becomes filled, random

insertions will likely cause collisions and, in high density systems, the many attempts

required can make this method impractically slow. Despite this drawback, this

method is very general as it doesn’t require specification of a particular grid size,

and for this reason it was used to initialize the liquid phase simulations in this thesis.
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2.4.2 Crystals

Crystals can be generated given information about the unit cell. Typically,

the parameters required to specify the initial structures are the unit cell lengths a, b

and c, the unit cell angles, α, β and γ, the fractional coordinates of the atoms, and

the space group.

This information can be usually found electronically as Crystallographic In-

formation Files,76 that contain the data required to generate the unit cell. The unit

cell can then be repeated and translated along the three crystal axes to yield arbi-

trarily large crystals. Spherical crystals can be obtained by creating a large crystal

and discarding all molecules or ions beyond a certain cutoff radius. Crystals can

also be extracted from molecular simulation after nucleating and growing a crystal,

however, as such crystals are often imperfect, care must be taken to include the

same number of positive and negative ions necessary to maintain electroneutrality.

2.4.3 Crystal-liquid Interfaces

Crystal-liquid interfaces can be generated by placing a crystal in a simulation

box and then positioning liquid particles in the empty spaces using the techniques

described above. Notice that, when using the crystals generated using the procedure

mentioned above, the results may vary greatly depending on the crystal face exposed

and/or the presence of defects.
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2.5 Time Evolution

The equations of motion described by Equation (2.1) can be integrated nu-

merically to yield a trajectory. The method used in the simulations performed in

this thesis is the leap-frog method, termed such because the velocities are updated

at a different time step than the positions

ri(t+ ∆t) = ri(t) + ∆tvi(t+ ∆t/2), (2.17)

vi(t+ ∆t/2) = vi(t−∆t/2) + ∆tai(t), (2.18)

ai(t) =
fi(t)

mi

, (2.19)

fi(t) = −∇ui(ri). (2.20)

This method is particularly effective in molecular dynamics because it is time re-

versible (integrating forward n steps and backward n steps brings the system to the

same initial position) and is able to keep the total energy constant to a good approx-

imation. Care should be taken in choosing a time step ∆t that is small compared

to the motion in the system (a typical value is ∼ 1−2 femtoseconds).

One drawback of the leapfrog integrator is that it doesn’t calculate velocities

at integer time steps, and these need to be approximated from the velocities at half

time steps as follows

vi(t) =
vi(t+ ∆t/2) + vi(t−∆t/2)

2
. (2.21)
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2.5.1 Constraints

The vibration of chemical bonds and bond angles can be approximated in

molecular simulation using a harmonic potential. However, as the vibrational fre-

quency is often high compared to the intermolecular motion, in certain models such

as the SPC/E water model, bonds and angles are kept at a fixed value (the molecule

is modeled as a rigid body). In simulation programs, rigid bonds and angles are usu-

ally kept fixed using a constraining algorithm.

A constraint is a function that introduces a dependency between coordinates,

for example, a constraint that imposes a distance d between two sites l and m can

be expressed as follows

g(r, t) = |rl − rm| − d = 0 (2.22)

r = {r1 . . . rN}. (2.23)

If the constraints are holonomic (i.e., they depend only on the coordinates r and

time t), the equations of motion for the constrained system can be obtained from

the Lagrangian

L = K− V + λ · g, (2.24)

K =
1

2
Mv · v, (2.25)

V =
∑
i

∑
j>i

u(rij), (2.26)

where λ = {λ0, ..., λK} are the K Lagrange multipliers associated with the K con-

straints g = {g0, ..., gK}, K and V are, respectively, the kinetic and potential energy

of the system. M is a diagonal (3N, 3N) matrix containing the mass of each particle
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repeated three times (one for each of the x, y, z coordinates)

M = diag(m1,m1,m1,m2,m2,m2, . . . ,mN ,mN ,mN). (2.27)

The resulting equations of motion can be expressed in matrix notation77

r̈ = (I−TB)M−1f −TḂṙ, (2.28)

T = M−1BT (BM−1BT )−1, (2.29)

where B is the (K, 3N) matrix containing the partial derivatives with respect to the

particle coordinates of the constraints

Bki =
∂gk(r, t)

∂xi
. (2.30)

The matrix I − TB projects the acceleration vector M−1f , and the last term of

Equation (2.28) represents centripetal forces due to rotation.

In our simulations we adopted the LINCS algorithm77, which is a method

to efficiently integrate the constrained equations of motion discussed above. The

integration of Equation (2.28) using the leap-frog algorithm can be performed by

first conducting an unconstrained step to obtain the new coordinates and velocities

(termed ru and vu), and then by projecting them using the matrix I − TB. In

computer implementations, an additional term T(Br−d)/∆t is necessary to prevent

accumulation of numerical errors77

v(t+ ∆t/2) = (I−TB)vu(t+ ∆t/2)− T(Br(t)− d)

∆t
, (2.31)

r(t+ ∆t) = (I−TB)ru(t+ ∆t) + Td. (2.32)
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The slow step in this algorithm is the calculation of the matrix T, as it

contains the inversion of (BM−1BT )−1. In the LINCS method, the inversion is

performed efficiently by rearranging the matrix BM−1BT into a I − A form and

approximating its inverse using the series expansion

(I−A)−1 = I + A + A2 + ... (2.33)

The matrix BM−1BT can be transformed into the I−A form by using the diagonal

matrix S, defined as the inverse square root of the diagonal elements of BM−1BT

as follows

(BM−1BT )−1 = S(SBM−1BTS)−1S = S(I−A)−1S. (2.34)

The advantages of the series expansion in Equation (2.33) are a high storage ef-

ficiency (since A is usually sparse) and a faster computation time, compared to

standard matrix inversion. Nevertheless, Equation (2.33) is only valid when the ab-

solute value of all the eigenvalues is less than 1, a condition that is not verified when

there is a high degree of bond connectivity. The structure of matrix A also allows

for easy parallelization, making the algorithm scalable to very large simulations.

2.6 Temperature and Pressure Control

A system described by the equations of motion presented in Equation (2.1),

will conserve energy and, if we enclose the system in a container or apply periodic

boundary conditions, will conserve its volume (or density). Many systems of interest,

like a laboratory environment, are best described by the conditions of constant

temperature and pressure. In the subsections below we will describe some of the
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algorithms used to keep temperature and pressure to a fixed value in molecular

dynamics simulations.

2.6.1 Velocity Rescaling Thermostat

The instantaneous temperature in a molecular simulation can be calculated

from the kinetic energy of the system K

T =
2K

kBNf

, (2.35)

where Nf is the number of degrees of freedom which, for a system subject to con-

straints, is equal to the number of coordinates minus the number of constraints.

A very simple approach, called the Berendsen thermostat,78 consists of fixing

the temperature by rescaling the velocities so that the kinetic energy assumes a

target value K′ consistent with the target temperature T ′. The scaling factor α,

that is applied to the velocities is defined as

α =

√
K′

K
, (2.36)

K′ =
1

2
kBNfT

′. (2.37)

The factor α is usually applied with a predetermined frequency. The procedure

outlined above will keep the kinetic energy constant but will not reproduce fluctua-

tions characteristic of the canonical ensemble, it was, however, used in some of the

calculations in this thesis to relax the systems to our target temperatures before

running the simulations for data collection.

In order to retrieve the correct sampling for the canonincal ensemble, a dif-
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ferent method, named the velocity rescaling thermostat,79 was used. In this method,

the rescaling factor can be chosen to obtain a target kinetic energy that is sampled

from the canonical ensemble distribution

P (Kt) ∝ K
Nf
2
−1

t e
− Kt

kBT . (2.38)

While, in principle, the kinetic energy could be rescaled to match a value sampled

from this distribution at each time step, in practice this causes abrupt changes in

velocity. In the velocity rescaling thermostat,79 this value is computed by evolving

the kinetic energy according to an auxiliary stochastic process. The kinetic energy

is rescaled to the target value gradually by updating the previous kinetic energy

value according to the equation

K(t+ ∆t) = K(t) + ∆K (2.39)

∆K = (K′ −K(t))
∆t

τ
+ 2

√
K′K(t)

Nf

dW√
τ
, (2.40)

where dW is a Wiener noise (a random displacement) and τ is a parameter, with

the dimensions of time, that can regulate how fast the system equilibrates to the

target kinetic energy.

The velocity rescaling thermostat was used to control the temperature in all

of the simulations performed in this thesis.
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2.6.2 Berendsen Barostat

For a system consisting of N particles, volume V , and at an instantaneous

temperature T , the microscopic pressure can be calculated as

p = kBT
N

V
+

1

3V

∑
i

fi · ri, (2.41)

where fi is the force acting on the ith particle at position ri. Control of the pressure

can be applied, in a manner similar to the velocity-rescaling technique, by rescaling

the particle positions and volume of the system by a factor α

V̇ = 3αV, (2.42)

ẋ = v + αx. (2.43)

In the case of the Berendsen barostat,78 in order to bring the system pressure to a

value p′, the coefficient can be calculated as

α = cβ(p′ − p)/(3τp), (2.44)

where cβ is the isothermal compressibility of the system and the τp is a parameter

with the units of time. As cβ and τp appear as a ratio, only their relative magnitude

is important, and they affect how fast the system will equilibrate to the target

pressure.

The Berendsen barostat does not produce the correct energy fluctuations

for the isobaric-isoenthalpic ensemble, but is often used for its simplicity and to

quickly bring the system to a target pressure. In this thesis, this barostat was used
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when fluctuations generated by other methods would make the system unstable

(more details are provided in Chapter 4), and was also used in other instances, after

testing that it did not produce different results than more advanced methods such

as the Parrinello-Rahman barostat described below.

2.6.3 Parrinello-Rahman Barostat

The Parrinello-Rahman barostat80 is another method to control pressure in

a molecular dynamics simulation. The equations of motion are modified such as

to allow the simulation cell vectors to evolve in time, in a way that produces the

correct statistical properties of the isobaric-isoenthalpic ensemble.

If we identify the cell vectors with a, b and c, we can construct a matrix h

by stacking the vectors as its rows

h = {a,b, c}. (2.45)

The equations of motion for the system subject to an isotropic pressure p can be

obtained from the Lagrangian

L = K− V +
1

2
MTr(ḣT ḣ)− pV, (2.46)

where the additional terms can be interpreted as the kinetic and potential energy

related to a piston. The term 1
2
MTr(ḣT ḣ) represents the kinetic energy of a piston

with mass M that is compressing the cell, while pV is the potential energy driving

the compression.

The resulting equations of motion can be expressed as a function of the scaled
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coordinates of the particles, si = h−1ri,

s̈i = −
∑
i 6=j

du

drij

1

mirij
(si − sj)−G−1Ġṡi, (2.47)

ḧ =
1

M
(π − p)σ. (2.48)

The other quantities defined in the above equations are σ, a matrix contain-

ing the direction of the reciprocal vectors, G also termed the metric tensor, and π,

the stress tensor defined as follows

σ = {b× c, c× a, a× b}, (2.49)

V π =
∑
i

miviv
T
i −

∑
i

∑
j>i

du

drij

1

rij
rijr

T
ji, (2.50)

G = hTh. (2.51)

If the system is far from equilibrium the Parrinello-Rahman barostat can

generate large volume fluctuations and, in this case, the Berendsen barostat can be

used to quickly bring the system to equilibrium before switching to the Parrinello-

Rahman barostat. The Parrinello-Rahman barostat was used to control pressure

in some of the simulations in this thesis. As will be discussed in Chapter 4, the

Berendsen barostat was preferred for simulations where the fluctuations produced

by the Parrinello-Rahman barostat caused the system to become unstable.
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Chapter 3

The Birth of NaCl Crystals:

Insights from Molecular

Simulations

3.1 Introduction

As stated in Chapter 1, the initial process by which one phase transitions

to another is termed nucleation. Nucleation has a central role in a wide range of

physically interesting processes such as crystal and rock formation,81,82 drug de-

velopment,83,84 and the formation of atmospheric aerosols.85,86 There have been a

number of interesting experimental studies of crystal nucleation,28,29,87–89 but there

remain significant challenges for current experimental methods, particularly for the

analysis of early prenucleation events. Therefore, to augment experimental stud-

ies, molecular simulations are being increasingly used to gain physical insight into

crystal nucleation and growth.43–45,47,49,50,66,90
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The usual approach to nucleation, classical nucleation theory (CNT), is a

subject of current debate.26,91,92 In particular, the assumption that early stage po-

tential nuclei can be characterized by properties of the nascent bulk phase (plus a

surface term) is being challenged by both experiments and molecular simulations.

One such example is provided by CaCO3, where experiments suggest that prenu-

cleation clusters serve as precursors to nucleation.25 There is also evidence that

crystallization can occur via a two-step mechanism consisting of an initial density

“transition”, followed by a slower ordering transition whereby the dense liquid region

becomes geometrically ordered.49,93,94

In the present Chapter we use direct molecular dynamics simulations to in-

vestigate the nucleation of NaCl nanocrystals. Supersaturated aqueous NaCl solu-

tions are a good choice for detailed study because relatively accurate models exist,1

and previous work has shown that spontaneous nucleation occurs on simulation

timescales.47,49,50,66 Earlier direct simulation studies of NaCl crystallization from

supersaturated solution suggest a process by which less ordered and more hydrated

NaCl clusters evolve with time into a largely anhydrous crystalline arrangement.49,59

There is also some evidence that the two-step mechanism applies with a large density

(concentration) fluctuation preceding any spatial ordering.49

Nucleation and crystal growth have also been considered employing indirect

simulation techniques. In an early investigation Zahn47 approached the problem

using trajectory sampling methods. He noticed that small NaCl clusters tended to

prefer a Na+ ion at the center, and suggested that such clusters might be important

in nucleation. A recent study reported by Zimmerman et al.66 used a seeded trajec-

tory approach to determine the sizes of critical nuclei, ion attachment frequencies,

and nucleation rates for NaCl in supersaturated solutions.
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However, despite earlier efforts, the factors that influence the formation of

critical nuclei have not been determined, and this is particularly true of the very

early stages or the birth of the crystal. For example, it is interesting to ask if size

alone determines the relative stability of small NaCl clusters, or if other factors such

as the cluster geometry are important. This is one of the questions addressed in the

present Chapter.

Spontaneous nucleation events for NaCl are typically rare (on simulation

timescales) except at very high solute concentration, and multiple nucleation events

must be observed in order to draw any meaningful conclusions. Additionally, it is

necessary to define, detect, and follow in time a great many NaCl clusters that do

not achieve nucleation. Here we carry out multiple direct simulations sufficient to

generate a number of nucleation events. We develop methodology to define and

detect crystal-like NaCl clusters, and to follow them in time from very early stages

(∼ 6 ions) until nucleation is achieved or, much more frequently, the cluster dissolves

back into solution. An important conclusion of our analysis is that cluster size is

not the only factor influencing cluster lifetime and the probability of nucleation. By

introducing a new parameter called the cluster “crystallinity” we show that cluster

geometry is also a very significant factor influencing cluster lifetime and nucleation

probability; moreover, this is true for clusters as small as six ions.

The remainder of this Chapter is divided into three parts. The models and

simulation methods are described in Section 3.2, results are presented in Section

3.3, and our conclusions are summarized in Section 3.4.
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σ (nm) ε (kJ mol−1)

Na+ 0.2160 1.4754533
Cl− 0.4830 0.0534924

Table 3.1: Joung-Cheatham Lennard-Jones parameters for NaCl.1

3.2 Models and Methods

3.2.1 Simulation Details

In our simulations we adopt the Joung-Cheatham parameter set1 for the

Na+ and Cl− ions paired with the SPC/E water model.2 For this parameter set,

the saturation mole fraction of NaCl, xNaCl, at 298 K was calculated60,64,95 to be

∼ 0.06 using the chemical potential route, while results from direct coexistence

methods1,96–98 report a value of ∼ 0.09−0.11 (experimentally,99 the value is ∼ 0.10).

With this force field all nonbonded interactions consist of Lennard-Jones (LJ) plus

electrostatic terms such that the site-site pair potentials have the form

u(rij) = 4εij

[(
σij
rij

)12

−
(
σ

rij

)6
]

+
1

4πε0

qiqj
rij

, (3.1)

where ε0 is the permittivity of free space, qi and qj are the partial charges on sites i

and j, and σij and εij are the usual LJ length and energy parameters, respectively.

The Joung-Cheatham parameters for Na+ and Cl− are given in Table 3.1, and σij and

εij are obtained from these and the SPC/E parameters2 using the Lorenz-Berthelot

combining rules, σij = (σi + σj)/2, and εij =
√
εiεj.

Simulations were carried out under NPT conditions employing the GRO-

MACS100 molecular dynamics package, version 4.5.4. The temperature was con-

trolled using the velocity-rescale thermostat79 with a relaxation time of 0.1 ps, and
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the pressure was kept constant at 1 bar using a Berendsen barostat78 with a com-

pressibility of 4.5 × 10−5 bar−1 and a relaxation time of 1.0 ps. A timestep of 2 fs

was used in all simulations. A spherical cutoff of 0.9 nm was applied to the pair

potentials, and the long-range electrostatic interactions were calculated using the

particle mesh Ewald (PME) method.74

Details of all simulations performed are summarized in Table 3.2. Initial

simulations were carried out for xNaCl ranging from 0.20 to 0.30, and the lowest

concentration where a nucleation event was observed within 200 ns at 300 K was

xNaCl = 0.22. This time frame is feasible for an investigation employing direct

molecular dynamics simulations, so we focus on this concentration. More nucle-

ation events occur at higher concentrations, but the occurrence of many simultane-

ous nucleations can complicate the analysis. Note that xNaCl = 0.22 is, based on

the estimates provided above, between two and four times the saturation value at

298 K. The atomic coordinates for the system were collected at intervals of 0.04

nanoseconds, and the coordinate sets collected with this time interval are referred

to as time frames elsewhere in the paper.

The analysis given in this paper is based on five “replica” simulations at

xNaCl = 0.22 carried out as follows. Initially, 7040 NaCl pairs and 24960 water

molecules were distributed randomly on a lattice within the simulation cell. The

system was then “equilibrated” at 400 K and five configurations were extracted at

intervals of ∼ 10 ns. Five simulations, initiated with these configurations, were

cooled to 300 K, and allowed to evolve for ∼ 500 ns, as summarized in Table 3.2.

The number of nucleation events observed in each simulation is also given in Table

3.2.
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Water Ions xNaCl Length (ns) Nuclei

25600 12800 0.20 157 0
24960 14080 0.22 187 3
24000 16000 0.25 515 5
22400 19200 0.30 202 n.a.

24960 14080 0.22 523 1
547 2
532 3
530 4
550 3

Table 3.2: Summary of the simulations performed. The number of water molecules
(Water), the number of ions (Ions), the mole fraction xNaCl, the run length (Length),
and the number of clusters that achieved nucleation (Nuclei) are indicated. At
xNaCl = 0.3, multiple nucleations occurred resulting in a polycrystal. The five
simulations at xNaCl = 0.22 listed at the bottom of the table were used for the
statistical analysis given in the text.

3.2.2 Cluster Detection

The aim of the present work is to detect NaCl clusters and follow their evo-

lution in time in order to understand the factors influencing (or not) the probability

of achieving crystal nucleation. From the perspective of classical nucleation theory

(CNT), these clusters can be viewed as subcritical nuclei unless and until nucle-

ation is achieved. Since we are trying to observe the very early stages of a phase

transition, it is necessary to find some measure to distinguish local liquid-like and

solid-like structures, and to determine which ions are part of the same solid-like

cluster. Generally, such measures are based on local environments, and several ap-

proaches to this problem have been employed. These include methods based on

ion connectivity,58,59 local ion density,101 local solvent density,47 and local bond or-

der parameters.102,103 The last approach has been used extensively in studies of ice

nucleation.104–106
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In the present paper, the computational procedures used to detect (define) ion

clusters and follow their time evolution consists of three steps: filtering, clustering,

and entity resolution, which are described in detail below.

Filtering

The purpose of this step is to identify for each configuration along a trajectory

the ions that are most likely to be part of a local solid-like structure. To do this

we follow the general bond-orientational order parameter approach of Steinhardt et.

al.107 This method defines potential order parameters of the form

ql =

[
4π

2l + 1

l∑
m=−l

|qlm|2
]1/2

,

where

qlm =
1

N

rN∑
ri=r1

Y m
l (θ(ri), φ(ri)).

In the above equation, Y m
l is a spherical harmonic, ri is the position vector of

the ith neighbor with respect to a central ion, and θ(ri), φ(ri) are, respectively,

the polar and azimuthal angles with respect to an arbitrary frame of reference. The

actual choice of reference frame is irrelevant as the order parameter ql is rotationally

invariant.

The objective is to find the ql that best distinguishes between ions with

liquid-like and solid-like local environments. To do this we examined ql distributions

for l = 2, 4, 6, 8, and 10, using a spherical crystal of ∼ 2000 ions to represent the

solid phase, and a supersaturated solution at xNaCl = 0.20 (that did not nucleate)

as representative of the liquid phase. Both reference systems were held at 300

K. Based on this investigation, the order parameter q8 provides the best separation
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Figure 3.1: Density of q8 values in a sample crystal (∼ 2000 ions)(blue) and a su-
persaturated solution (xNaCl = 0.20) (green). The two distributions show excellent
separation. The vertical orange line indicates the selected threshold (q8 > 0.35).

between liquid and solid phase distributions (Figure 3.1). Also, by testing a reference

solution of lower concentration (xNaCl ≈ 0.025), we found that the q8 distribution

is largely independent of concentration (unlike order parameters based on local ion

densities101). In the remainder of this chapter we refer to q8 as the bond order

parameter.

The order parameter q8 is used to filter out ions that are part of liquid-like

disordered structures. From Figure 3.1, we see that the best separation point be-

tween liquid-like and solid-like structures occurs at q8 ≈ 0.4. However, we select

q8 = 0.35 as the threshold for our analysis to capture structures from the upper end

of the solution distribution. As clusters that achieve nucleation form spontaneously

from solution, selecting a lower threshold value allows us to trace nucleation pro-

cesses from the very initial stages. Selecting a very low threshold would include too
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many transient, short-lived structures, while a very high threshold would filter out

interesting prenucleation stages. The value of 0.35 selected proved to be a good

compromise between these two factors. We verified that our results and conclusions

are not affected by small variations in the selected threshold value. Note that with

the 0.35 threshold only ∼ 10% of the ions are classified as solid-like for each con-

figuration. It is also important to emphasize that in our simulations all clusters

that eventually achieved nucleation originated within the set of ions identified as

solid-like; thus our filtering process does not eliminate any interesting events.

Cluster Identification

While order parameter filtering efficiently detects ions in solid-like local en-

vironments, another algorithm is necessary to identify which of the selected (solid-

like) ions are part of the same cluster or aggregate. For this purpose we adopted the

density-based cluster algorithm DBSCAN108 as implemented in the Python library

scikit-learn.109 In the DBSCAN algorithm, clusters are identified by means of two

parameters, that in the present context are a distance (ε) and the number of neigh-

boring ions (η) within that distance. To find ions connected to each other, an ion is

selected at random, and the number of ions within ε are counted. If the number of

ions within ε is equal to or greater than η, then the central ion is labelled as core and

its neighbors are labelled as border, otherwise, the ion is labelled as noise (Figure

3.2). The procedure is repeated by picking an ion from the border. If that ion is core,

it will generate a new border and the procedure is repeated recursively. Eventually,

no more points are reachable and we label all of the collected core and border ions

as part of the same cluster. The procedure is then repeated by choosing another ion

at random (that might belong to a new cluster) until all ions are processed.
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Figure 3.2: Schematic diagram illustrating the DBSCAN algorithm for η = 4. Top
left panel: an ion is chosen at random and ions within ε are counted; the value is 4
so the ion is marked as core (red). Its neighbours are labeled as border (pink). Top
right panel: the procedure is repeated for one of the border ions which becomes a
core ion. Bottom panel: all ions in the cluster have been processed, and no more
ions are reachable from the core ions. The isolated ion is labeled as noise (blue).
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The value of ε is the minimum distance for which two ions, are considered

part of the same aggregate. A high value of ε causes some clusters that are close

but not connected to each other to be aggregated into a single cluster. On the

other hand, a small value of ε would fail to connect ions that are effectively bonded

(every ion would be detected as a single cluster). The value of η acts as a filter

for very small clusters, as every cluster that has fewer than η ions is discarded. A

very low value of η detects too many short-lived fluctuations that are difficult to

follow and analyse, while a high value would detect only large clusters providing no

opportunity to investigate early stages of cluster formation. In the present analysis

the values ε = 0.3 nm and η = 6 ions are used. The value 0.3 nm is approximately

the NaCl bond length, and η = 6 ions was chosen to be the minimum size cluster.

These values proved to work well in practice, avoiding the problems noted above.

Time Resolution of Clusters

We wish to follow the time evolution of all clusters identified as described

above. Therefore, it is necessary to determine how clusters are connected in time.

This would be a simple question if we had only a single cluster that grew or dissolved

as time progressed. However, in the present case we have many clusters that contin-

ually change (divide, grow, dissolve) as the simulation advances in time. Therefore,

we need to clearly define how we identify and follow clusters in time. Our general

approach is to find “similar” clusters in successive configurations (using an appro-

priate similarity index), and build a time connectivity graph using the following

procedure.

First we initialize an empty graph where each cluster detected appears as a

node labelled ci(s), where i indicates the cluster and s the time frame (configuration).
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Figure 3.3: Schematic diagram illustrating the cluster time resolution algorithm.
At t = 0 the clusters are labeled employing the DBSCAN algorithm. A cluster
is compared with clusters in the following frame, and a connection is made if the
clusters are sufficiently similar, judged by the Jaccard index as described in the
text. The procedure is repeated recursively for the following frames. By performing
this procedure for all clusters, it is possible to obtain a connectivity graph (bottom)
where each connected component represents the time evolution of a single cluster.

Then for all consecutive frames pairwise similarities, dij(s) = sim(ci(s), cj(s + 1)),

are calculated between clusters using the similarity measure defined below. If two

clusters in different frames are detected to be sufficiently similar (satisfy an appro-

priate threshold) they are deemed to be the same cluster at different points in time,

and the nodes representing these clusters are connected through an edge. The out-

come of this procedure is a graph that connects clusters in different time frames,

such that every connected component of this graph is the trajectory of a particular

cluster as illustrated in Figure 3.3.
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Several similarity measures could be used to look for matching clusters, and

here we employ the Jaccard index,110 defined as the size of the intersection divided

by the size of the union of two sets,

J(A,B) =
|A ∩B|
|A ∪B|

.

Here A and B represent two clusters in consecutive time frames, and clearly J(A,B)

is one, if both clusters contain exactly the same ions, and zero if they do not share any

ions. The threshold value of J(A,B) must be selected with care to avoid ambiguities

in cluster identity. For example, if two clusters, a and b, detected in frame one merge

into a single cluster in frame two, it is not clear if the merged cluster is a, b, or an

entirely new cluster c. Similar ambiguities can arise from other possible cluster

evolution scenarios. In order to assign a unique well-defined time line to a cluster,

it is necessary to remove all ambiguities. A natural way to do this is to connect

clusters in consecutive frames only if they satisfy the threshold J(A,B) > 0.5. By

definition of the Jaccard index, this threshold ensures that a cluster will match at

most one cluster in the following frame, giving a set of unique cluster trajectories.

One potential issue with this method of obtaining cluster trajectories is how

to take account of splits and merges that happen over multiple time frames. For

example, if we have a large cluster (e.g., 500 ions) and a piece (e.g., 100 ions) becomes

temporarily detached, the connectivity with the original cluster would be lost and

the detached piece would appear as a newborn cluster of 100 ions. This problems

is handled by detecting abnormally large newborn clusters and merging them with

the original cluster. Fortunately, such events are rare (it happened once in our five

simulations) and the post processing step was sufficient to solve the problem.
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Another possible issue is that small clusters can partially redissolve (in the

sense that some of their ions become less ordered), fall below the 6 ion threshold,

and go undetected for a a few time frames. To solve this problem we modified the

algorithm to look for a match in 10 consecutive frames following the initial cluster

detection. Newborn clusters that had no match in the following 10 frames were

assumed to be short-term fluctuations, and discarded from the analysis.

3.3 Results and Discussion

Ionic clusters form and disintegrate continuously in the supersaturated solu-

tion. These clusters are detected and followed in time as described above. We are

interested in understanding what features (if any) of ionic clusters influence their

ability to survive and eventually achieve nucleation. We considered several cluster

attributes or properties, but only two had a significant easily observable influence

on the nucleation probability of a cluster. One of those, cluster size (calculated as

the number of ions in the cluster), is of rather obvious importance, and is in fact the

crucial parameter in the usual application of CNT, which assumes spherical nuclei

that become critical at a certain radius. The other cluster property that proved very

influential, especially so in smaller clusters, we call q̄8, or the cluster crystallinity.

This property is simply the average value of the q8 bond order parameter defined

above, taken over all ions in a cluster.

Other cluster properties considered include volume, surface area, sphericity,

average neighbor count, hydration, and radius of gyration. These properties are

precisely defined and discussed in Appendix A. For smaller clusters (e.g., 10 ions),

none of these properties showed a significant correlation with the probability of nu-
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cleation. For larger clusters (e.g., 30 ions), we do find noticeable correlations for

three properties, with smaller surface areas, higher sphericities, and smaller radii of

gyration all favoring nucleation. These attributes are all measures of cluster com-

pactness, and it is not surprising that they are correlated with nucleation probability

for larger clusters.

We note that all results reported below are based on the five simulations

of 523 − 550 ns at xNaCl = 0.22, as listed in Table 3.2. In our five simulations a

total of 13 nucleation events were observed. In these simulations we noticed that

clusters with a lifetime of at least 30 ns that reached a size greater than ∼ 50 ions

never redissolved, and continued to grow during the simulation. These clusters were

deemed to have achieved nucleation. Note that we would expect this observational

“definition” of nucleation to be concentration dependent.

At inception (defined as the earliest time a cluster is detected) the ionic

clusters span a rather wide range of size and crystallinity. The size and crystallinity

distributions of all clusters detected are shown in Figure 3.4, the top left and top

right panels, respectively. Note that on average our algorithm detects ∼ 2 new

clusters per time frame, giving a total of ∼ 80000 clusters detected over the course

of the five simulations. It is also worth noting that the filtering step of the algorithm

removes ∼ 90% of the ions, indicating that only ∼ 10% of the ions present in solution

belong to a cluster of any sort.

From the histogram of initial sizes (Figure 3.4, top left panel) we see that

the peak occurs at 6 ions (the smallest cluster detected by our algorithm), and that

the frequency of larger sizes follows an exponential-like decay. Although very rare,

clusters of more than 30 ions are found but, as noted below, these correspond to

elongated, amorphous-looking structures. The distribution of crystallinities (Figure
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Figure 3.4: Size (top left) and crystallinity (top right) histograms for clusters at first
detection. The bottom panel shows the joint distribution of size and crystallinity.
Note that very few clusters begin with both high size and high crystallinity, suggest-
ing that this feature develops as clusters evolve in time. The red points indicate the
thirteen clusters that achieve nucleation, and we note that these show no obvious
preference for any region of the joint distribution.
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3.4, top right panel) is skewed to the right, but one does not observe the high values

characteristic of a bulk crystal (Figure 3.1). A scatter plot of cluster crystallinity

versus size is shown in the bottom panel of Figure 3.4. It is apparent that at cluster

inception the correlation between these variables is modest at most. For smaller

clusters, there are large fluctuations of crystallinity for a given cluster size, with

large and small values occurring with high frequency. For larger cluster sizes, the

crystallinity fluctuations decrease markedly, which is not surprising, since statisti-

cally variance is expected to decrease with increasing sample size, which here is the

number of ions in the cluster.

Ionic clusters exhibit a range of crystallinities and the examples given in

Figure 3.5 provide an idea of how cluster structure and crystallinity are related.

Newly detected small clusters can have low (bottom left panel) or high (bottom right

panel) crystallinity, with high values being associated with more regular structures.

For larger clusters (more than 30 ions) we do not find any very high crystallinities at

the point of initial detection, as such clusters tend to have elongated shapes (Figure

3.5, top left panel.)

3.3.1 Cluster Lifetimes

As discussed above, clusters are born with certain characteristics, and, after

some time, they will either achieve nucleation (very rare) and continue to grow as

a crystal or, much more commonly, dissolve back into solution. Given that one

would expect a connection between cluster lifetime and nucleation, it is of interest

to investigate which cluster characteristics influence their lifetime, defined here as

the total time a cluster is detected (by the algorithm described above) as a distinct

entity in solution. As, by definition, clusters that nucleate have infinite lifetimes,
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Figure 3.5: Examples of clusters of different sizes and crystallinities (given in paren-
thesis below each cluster). Na+ and Cl− ions are colored purple and green, respec-
tively. At inception larger clusters tend to be elongated and of lower crystallinity
(top left), whereas larger high crystallinity clusters (not observed at early stages)
tend to be more compact (top right). For small clusters structural features as-
sociated with low (bottom left) and high crystallinity (bottom right) are not so
apparent.
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Figure 3.6: Histograms of “failed” cluster lifetimes (left) and the overall survival
function (right) for all clusters detected in the simulations.

we excluded these from our statistical analysis. Note that in the five simulations

(Table 3.2) included in the analysis only 13 clusters achieved nucleation, whereas

∼ 80000 failed to nucleate. Focusing on the large number of failures provides us

with excellent statistics, and clearly, the influence of the very few that did nucleate

would have a negligible effect on the lifetime and survival distributions discussed

below.

The overall lifetime distribution of failed clusters (uncontrolled for size or

crystallinity) is shown in the left panel of Figure 3.6. This plot shows that the great

majority of clusters are very short lived (lifetimes less than a nanosecond), but there

are a significant number of clusters that live for more than 10 ns.

A more instructive way to represent lifetime information is to construct sur-

vival functions. The survival function, S(t), is defined as the probability that a

cluster has a lifetime, τ , larger than t, or

S(t) = Pr(τ > t).

The survival function starts at 1 (all clusters have a non-zero lifetime) and
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decreases with t, depending on the surviving fraction of the population. The survival

function can be written as the cumulative product

S(t) = R(1)R(2) . . . R(t) ,

with

R(t) =
Population(t)

Population(t− 1)
,

where Population(t− 1) represents the population at frame t− 1, and Population(t)

is the surviving population at the next frame t. R(t) is the probability of surviving

for one time interval at t. We note that this method of calculating S(t) is commonly

used, and is known as the Kaplan-Meier estimator.111 The overall survival function

including all clusters is shown in the right panel of Figure 3.6, and we note that over

90% of all clusters survive less than 2 ns.

Survival functions can be used to investigate if and how particular cluster

characteristics influence their probability of survival. To isolate the influence of

crystallinity, we divide clusters of fixed size into groups of high (> 0.40) and low

(≤ 0.40) crystallinity, and compare the survival functions. Note that the survival

functions are constructed using the size and crystallinity of a cluster at first detec-

tion. Obviously, neither of these cluster characteristics remains fixed as the cluster

evolves in time. Results for clusters of 10 ions are shown in Figure 3.7, and it is

obvious that crystallinity has a large effect on the survival probability. Clusters in

the higher crystallinity group have a substantially higher survival probability than

clusters in the lower crystallinity group. This is true for all cluster sizes, remarkably,

even in the 6 ion case, which is the smallest cluster size we consider. This is illus-

trated in Figure 3.8, where we plot the ratio (high/low) of the median lifetimes for
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Figure 3.7: Survival curves for clusters of size 10 grouped by high (> 0.40) and low
(≤ 0.40) crystallinity.

clusters of high and low crystallinity as a function of cluster size. We see that the

ratio is significant (∼ 1.5) for clusters of six ions, and rises rapidly with increasing

cluster size, reaches a plateau at clusters of ∼ 10 ions, then rises again for clusters

containing more than ∼ 18 ions. Results for clusters larger than 30 ions are not

included because for the larger clusters the statistical analysis is less reliable due to

small sample sizes. In an analogous manner, one can fix crystallinity and calculate

how survival functions vary with size. This is less interesting, simply showing that,

as expected, larger clusters have a larger survival probability.

While cluster survival is not a direct measure of nucleation probability, one

would expect both phenomena to be related to cluster stability. Therefore, based on

the above analysis, we would expect cluster crystallinity to be an important factor

influencing the probability that a cluster will achieve nucleation. Specifically, for
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Figure 3.8: Ratio of median lifetimes for high versus low crystallinity clusters of
different size. The high crystallinity clusters always have the higher median lifetime.

fixed cluster size higher crystallinities should favor higher nucleation probabilities.

The relationship between cluster crystallinity and nucleation is treated directly in

the following section, and we show that the behavior is indeed as we would anticipate

based on the survival analysis. We remark that the survival analysis has the great

advantage that the large number of clusters (events) included provides convincing

statistics. On the other hand, we observe only a few nucleation events, so a statistical

analysis based on nucleation alone would be less convincing.

3.3.2 Crystallinity and Nucleation

To get a qualitative idea of the influence of cluster size and crystallinity on

nucleation, it is useful to plot cluster trajectories in (size, crystallinity) space. This

is done in Figure 3.9 for a cluster that nucleates (blue) and one that does not (red).
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Figure 3.9: Trajectory shown in (size, crystallinity) space for a nucleated (blue) and
a failed (red) cluster as they evolve in time. In early stages both clusters oscillate
in size up to ∼ 30 ions, but the crystallinity of the cluster that eventually achieves
nucleation reaches higher values than the failed case. This suggests that it is a
combined effect of both size and crystallinity that promotes nucleation.

It is easy to see that after a brief residency at low sizes and low crystallinities, the

cluster that nucleates appears to surpass a “critical region” in the (size, crystallinity)

space and never falls back. This suggests that both size and crystallinity influence

the probability of nucleation.

This can also be seen in the early stage time evolution profiles shown in Fig.

3.10 for the nucleating and failing clusters. We see that while relatively long lived

(∼ 12 ns), and sometimes exceeding 30 ions in size, for most of the trajectory the

crystallinity of the failing cluster lies below that of the nucleating case. Snapshots

(not shown) suggest that the failing cluster grows in an elongated manner with a

resulting lower crystallinity. The growth profile for a nucleating cluster is shown
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in Fig. 3.11. It is interesting to note that the growth rate increases with size,

attributable to the growing surface area of the nucleus. The crystallinity profile

initially grows but plateaus as the cluster becomes larger in size, and the crystallinity

approaches that of a perfect crystal.

The influence of cluster size and crystallinity on nucleation probability can be

explored more quantitatively by comparing statistically these properties for clusters

that nucleate with those that fail. If cluster size were the only factor influencing

nucleation, then two clusters of the same size would have the same probability of nu-

cleation. Therefore, if we fix the cluster size and observe a difference in crystallinity

between nucleations and failures, we can isolate the effect of crystallinity.

One way to fix cluster size is to follow the trajectory of each cluster in time

until it reaches a particular size, at which point the cluster crystallinity is recorded.

Values obtained in this way can be reasonably assumed to be independent because

the clusters exist at different points in time or in different simulations, and we

register only a single crystallinity value for each cluster. Crystallinity distributions

obtained as described are shown in Figure 3.12 for clusters of different size. The

crystallinities of the clusters that achieved nucleation are also indicated in the plots,

and we see that for all cluster sizes, the crystallinities of the nucleated clusters fall

mainly in the upper half of the crystallinity distribution. In other words, the clusters

that eventually nucleate have on average higher crystallinities than clusters that fail,

and it is remarkable that this distinction exists even for clusters as small as six ions.

For comparison, similar plots for other properties are reported in Appendix A.

The influence of cluster crystallinity on nucleation is further demonstrated

in Figure 3.13, where the probability of nucleation, P (N), for clusters of N ions is

shown for clusters of “high” and “low” crystallinities. If the cluster crystallinity is
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Figure 3.10: Comparison of growth and crystallinity profiles for nucleated (colored)
and failed (gray) clusters. After a short period, the nucleated cluster manages to
reach quite a high crystallinity and maintain its size. In contrast, the failed cluster,
while maintaining its size, experiences a steady decrease in crystallinity.
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Figure 3.11: Size (blue) and crystallinity (orange) profiles for a nucleated cluster.
The fluctuation in crystallinity is fairly high, and, as the crystal increases in size,
the crystallinity reaches a plateau at ∼ 0.47. The snapshots represent the cluster at
0 ns (left), 40 ns (center) and 80 ns (right).
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Figure 3.12: Crystallinity distributions (blue histogram) of failed clusters of different
size (number of ions). Clusters that achieved nucleation are indicated by single
orange lines. Note that clusters that achieve nucleation come preferentially from
the upper part of the crystallinity distribution.

60



> 0.40, it is labelled high, otherwise it is labelled low. The nucleation probabilities

P (N |high) and P (N |low) are shown in Figure 3.13 for N ranging from 6 to 35 ions.

Results for larger clusters are not shown because the sample size is too small to give

good estimates of the probabilities. We note that P (N |high) is much higher than

P (N |low) for all cluster sizes. The effect is most pronounced for small clusters (which

have a very low total probability of nucleation) where P (N |high) is up to eight

times larger than P (N |low). The ratio P (N |high)/P (N |low) generally decreases

with increasing N , but remains at ∼ 3 for N = 35.

This analysis highlights the fact that nucleation is substantially influenced

by factors other than cluster size. For a given cluster size, geometrical order, as

captured by the crystallinity parameter, increases cluster lifetime and the probability

of achieving nucleation.

Cluster Binding Energy

It is interesting to ask why high crystallinity leads to increased cluster life-

times and influences the probability that a cluster will achieve nucleation. One

possibility that immediately comes to mind is that in high crystallinity clusters the

direct ion-ion interactions lead to lower cluster energies and hence increased stability.

To investigate this possibility we calculated the energies

Uk =
1

2

Nk∑
i

Nk∑
j

u(rij) , (3.2)

where Nk is the total number of ions in cluster k, and u(rij) is the ion-ion interaction

as defined in Section 3.2. One potential problem with this analysis is that large

fluctuations can occur in the apparent cluster energy depending on whether or not
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Figure 3.13: Probabilities of high (q̄8 > 0.40) and low (q̄8 < 0.40) crystallinities
achieving nucleation. The error bars (vertical black lines) represent one standard
deviation. The lower panel shows the results for small clusters on an expanded scale.
Note that for all cluster sizes P (N |high) is always larger than P (N |low), and the
high/low ratio is shown as a gray line in the upper panel.
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a cluster has a net charge. These fluctuations can be created by a single ion moving

in or out across the defined cluster boundary, and hence can be rather arbitrary

and artificial. Therefore, to avoid this problem we include only electrically neutral

clusters in this analysis.

Joint distributions of crystallinity and cluster energy for clusters of six and

ten ions are shown in Figure 3.14. For clusters of six ions the correlation coefficient

r = −0.074 indicating only a very weak correlation between energy and crystallinity.

For clusters of ten ions, r = −0.22 showing that the correlation increases with cluster

size, but still remains rather weak. Moreover, we see from Figure 3.14, that the

clusters that eventually nucleate come mainly from the high crystallinity tail of the

crystallinity distribution, but are nearly evenly spread over the energy distribution.

These observations show that crystallinity is not a measure of increased cluster

stability due to lower cluster energies coming through the direct ion-ion interactions.

Clearly, other factors must be involved.

The Role of Na+ and Cl− Ions in Small Crystals

It is also of interest to more closely examine the structural nature of small

NaCl clusters, since these clusters represent a fundamental step in the nucleation

process. To do this we divide all ions in the system into two classes, high q8 (≥ 0.4)

and low q8 (< 0.4), and calculate running counterion coordination numbers for Na+

and Cl−.

Results for single frames at 40 and 240 ns are shown in Figure 3.15. For

the high q8 class we see that both Na+ and Cl− have more counterions (3-4) in the

first coordination shell (∼ 0.35 nm) than the solution average (∼ 1). This is not

surprising because the high q8 ions generally belong to ionic clusters. However, from
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Figure 3.14: Joint distribution of crystallinity and cluster energy (kJ mol−1) for
clusters of size 6 (left) and size 10 (right). Values corresponding to clusters that
eventually nucleated are displayed in orange. The correlation coefficient is negative
and very low at size 6, and moderately low at size 10, indicating that crystallinity
carries different information than energetic stability.

Figure 3.15 we also notice that high q8 Na+ ions have more counterion neighbors

than high q8 Cl− ions, suggesting that Na+ ions tend to lie more within the “interior”

of small clusters than Cl− ions, consistent with an earlier observation of Zahn.47 A

possible reason for this is that the smaller Na+ ions interact more strongly with water

molecules, and hence more first shell counterions are needed to compensate for water

molecules lost from the first hydration shell when ionic clusters are formed. Note

that the gap between the coordination numbers of high q8 Na+ and Cl− decreases

in later frames as larger clusters develop in the simulation.

To obtain additional evidence that Na+ and Cl− do not contribute symmet-

rically to the structure of small clusters, for each cluster we calculate the parameter

∆q8 = 〈q+8 〉 − 〈q−8 〉,
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Figure 3.15: Running coordination numbers for: high q8 Na+ with all Cl− (blue);
high q8 Cl− with all Na+ (green); and all Na+ and Cl− (red). In the first coordination
shell (∼ 0.35 nm) both high q8 ions are surrounded by more counterions (3-4) than
average (1). Also, high q8 Na+ are surrounded by more counterions than high q8
Cl−, suggesting that on average they occupy positions deeper within the clusters.
The difference in the first shell coordination number decreases at longer times, as
larger crystals develop in the simulation, and the internal preference of Na+ becomes
less noticeable.

where 〈q+8 〉 and 〈q−8 〉 are the average values q8 for the Na+ and Cl− ions in the

cluster.

Figure 3.16 shows ∆q8 as a function of cluster size. These results are from the

second replica simulation (Table 3.2). We note that for small clusters ∆q8 is positive

on average indicating that Na+ tends to lie in more ordered environments than Cl−.

As we would expect, the distinction between Na+ and Cl− grows smaller as clusters

grow in size, and ∆q8 approaches zero for large clusters. Survival functions and

nucleation probabilities were analysed separately for positive and negative values

of ∆q8, but no significant differences were found. Thus, while there is a structural

distinction for small clusters, this effect does not have a significant influence on

cluster survival or the probability of nucleation.
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Figure 3.16: ∆q8 as a function of cluster size. The shaded area indicates one standard
deviation. The average value is slightly positive indicating that Na+ ions tend to
occupy ordered environments than Cl− ions.
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3.4 Summary and Conclusions

Direct molecular dynamics simulations have been employed to identify and

investigate factors that influence the nucleation of NaCl crystals in model super-

saturated aqueous solutions. We develop methods that allow potential nuclei to

be detected as small clusters (∼ 6 ions), and followed in time until nucleation is

achieved, which occurs very rarely, or the cluster dissolves back into solution.

Our analysis clearly demonstrates that cluster size is not the only property

that has an important influence on the expected lifetime and nucleation probability

of a particular cluster. We show that the geometric arrangement of the ions in the

cluster, as measured by a single parameter which we call the cluster “crystallinity”

is also very influential. For example, for clusters of ten ions the median lifetime

for clusters of high crystallinity is double that of those of low crystallinity, and

their probability of achieving nucleation is ∼ 8 times greater. Similarly, smaller

and larger clusters also have significantly longer lifetimes and greater probabilities

of nucleation.

Physically, it is not entirely clear why crystallinity (as measured by our pa-

rameter) has such a large influence on cluster lifetime and nucleation probability,

and this is especially true for small clusters of six or ten ions. One possibility is that

there is a connection with the binding energy of a cluster. However, we did not find

a strong correlation between binding energy and our crstallinity parameter, indi-

cating that the crystallinity parameter is not merely a proxy for energetic stability.

For small clusters, we did find that Na+ ions had some preference for a “central”

position, in accordance with Zahn’s observation,47 but such cluster arrangements

had no influence on the probability of nucleation.
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Given that there is no obvious energetic explanation for the increased stability

of small clusters of higher crystallinity, it appears that the advantage must lie in

the microscopic dynamics of cluster growth and/or disintegration. One possibility

is that ions in more ordered environments are less exposed to water molecules, and

hence high crystallinity clusters are less susceptible to disintegration.
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Chapter 4

Crystallization of Lithium Halides

from Molecular Simulation.

4.1 Introduction

Alkali halides are inorganic compounds with high melting points that are

usually found in nature as crystalline solids. Due to their importance in industrial

and scientific applications such as corrosion,112 desiccants, nanotube preparation,113

but also because of their simple structure, they have been widely studied for many

years both in experiments and theory.114,115 More recently, sodium chloride has been

used as a model compound in nucleation from solution,47,49 providing important

insights in the nucleation process. However, not much has been done regarding

other compounds, partly because their phase behavior in simulation has not been

thoroughly examined.

In nature, the stable crystal structures for alkali halides are rock salt (FCC)

and CsCl (BCC), however both experimental116–118 and theoretical studies show
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the presence of wurtzite-type crystal structures,119–123 especially in lithium halides.

Using ab-initio methods, the wurtzite-type structure was shown to be metastable at

standard pressure for most of the alkali halides,122 and its existence was confirmed

through low temperature deposition experiments (aimed at capturing metastable

structures) for LiCl,116 LiBr117,118 and LiI.118 Four coordinated structures were also

hypothesized by Pauling,124 who derived the radius ratio rules using a simple hard

sphere model.

Classical simulations of LiCl crystals also showed that, under the Tosi-Fumi125

potential, the preferred structures achieved by melting and freezing small clusters

were described as having hexagonal motifs.121 These structures were found to be

energetically favorable (with respect to the rock salt structure) for sizes up to 64

ions.121 The competition between the hexagonal and cubic structure of LiCl was

later found to be also present in larger systems.119

Despite the evidence of the existence of a metastable wurtzite structure in al-

kali halides, a systematic review of the most commonly used classical potentials with

respect to this structure has not been performed. Such a study is important for the

determination of solid and solution properties (e.g. solubilities) which could greatly

affect the nucleation mechanism from the melt and/or from aqueous solutions.

Through molecular simulation we study the role of the wurtzite structure for

lithium halides in both infinite crystals and finite size clusters. By comparing two

estabilished pair potentials used62–65,126–130 in classical simulations, the Tosi-Fumi125

(TF) and Joung-Cheatham1 (JC) parameter sets, we find that the wurtzite structure

is the lowest potential energy minimum for some of the lithium compounds. This

suggests that current models need to be adjusted to reflect the higher stability of

the rock salt structure, in order to agree with experiments.
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4.2 Models and Methods

As noted above, in this Chapter we consider two commonly used classical

models for alkali halides. The TF potential125,131 is of the Born-Mayer-Huggins,132–134

consisting of a short-range repulsion combined with electrostatic interactions, and

attractive dispersion terms of dipole-dipole and dipole-quadrupole order. The inter-

action uij(r) between ions i and j can be expressed as

uij(r) =
1

4πε0

qiqj
r

+Bije
−αijr − Cij

r6
− Dij

r8
. (4.1)

The parameters required are the charges qi and qj, Bij, Cij, and Dij, which depend

on the particular pair interaction (with different sets for different salts), and αij

which is a constant depending only on the salt. The TF potential was obtained

by fitting experimental data (e.g. equation of state and volume derivatives) for

pure salts. Because of its focus on pure salts, this model has been mainly used for

crystalline and molten salts,102,126–130 but it has also been adapted for use in aqueous

solution.98

The JC model combines electrostatic and Lennard-Jones (LJ) interactions

and has the form

uij(r) =
1

4πε0

qiqj
r

+ 4εij

[(σij
r

)12
−
(σij
r

)6]
, (4.2)

where σij and εij are the usual LJ length and energy parameters. Unlike the TF

potentials, the JC interactions were tuned to reproduce aqueous solution properties

(e.g. solvation free energies), as well as solid state properties (e.g. lattice constants

and energies). However, we note that all solid state calculations assumed the rock
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salt structure, and no attempt was made to determine if a more energetically sta-

ble crystal structure existed. The parameter sets given by JC for a particular salt

vary a little depending on the water model employed in calculations of the solution

properties. Here we use the set given for the SPC/E water model, which is the

model we employ throughout this thesis. We note that the rock salt lattice energies

obtained for these parameters are in good agreement with experiments.1 JC param-

eter sets have been used extensively to study solubility and solid-liquid transitions

in solution.60–65

Lattice energies for LiX (X = F−, Cl−, I−, Br− and I−) salts are obtained

for both rock salt and wurtzite crystal structures. The unit cells (see Figure 4.1) for

the two crystal types were generated by calculating the unit cell parameters (a, b, c),

angles (α, β, γ), and atomic fractional positions given the parameter a (the unit cell

configuration for both the wurtzite and rock salt structures is completely determined

by a, as the other parameters are constrained by symmetry.) The crystal structures,

as well as the final crystals, were generated using the chemlab python library.135 For

the models considered, the lattice energy can be divided into short-range (van der

Waals) and Coulombic contributions, denoted Ew and Ec, respectively, such that

the total energy E = Ew + Ec.

The short-range interaction felt by ion i is given by

Ew
i =

nmax(rc)∑
n=−nmax(rc)

N∑
j

usrij (|sij + n|) with i 6= j, when n = {0} , (4.3)

where usrij is the short-range part of the pair interaction, sij is the difference between

the position vectors of of ions i and j in the unit cell, and n is the displacement of

the periodic cell. The first sum in Eq. (4.3) is over periodic repetitions of the unit
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Figure 4.1: Unit cells used for the rock salt (right) and wurtzite (left) crystal struc-
tures. The configurations are dependent on a single cell parameter a, all other
parameters being constrained. In the rock salt structure, a is the length of any
edge, while for the wurtzite structure a is the length of any of the two short edges.

cell, and nmax is the minimum cell displacement needed to include all ions within a

cutoff radius, rc, of the central ion. In the present calculations, rc is taken to be 2.4

nm.

The electrostatic interactions were calculated using the Ewald summation

method73 with conducting boundary conditions. Note that conducting and vacuum

boundary conditions will give the same lattice energy for rock salt because, for that

crystal structure, the unit cell does not have a dipole moment, but this is not true

for wurtzite where a dipole moment is present. The Ewald parameter κ (see Ref.

73) was set at ∼ 5/a (a is the cell parameter), and 1000 wave vectors were used in

the Fourier space sum. Short-range interactions in the real space part of the Ewald

sum were truncated at a. The lattice energies obtained were in excellent agreement

(within ∼ 0.001 kJ mol−1) with values reported in the literature.136

Since in both rock salt and wurtzite crystals there are only two types of lattice
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site (positive and negative ion sites), the total lattice energy can be written as the

sum of two terms E = E+ +E−, where E+ and E− are contributions from the ions

on different sites interacting with the remainder of the lattice. This decomposition

of E gives some useful insight into the relative stabilities of rock salt and wurtzite

structures for various salts (see Section 4.3).

Molecular dynamics simulations were carried out for both finite clusters and

infinitely periodic systems. Starting configurations were generated by repeating

the rock salt unit cell along the 3 crystal axes, 3, 4 and 5 times for finite clusters

(corresponding to 256, 512, and 1000 ions, respectively), and 5 times for infinitely

periodic systems.

Simulations were conducted using the GROMACS molecular dynamics pack-

age version 4.6.100 Finite clusters were simulated using a cubic simulation cell of

length L that was ∼4-5 times larger than the cluster, such that interactions with its

periodic images were negligibly small. All interactions were spherically truncated at

L/2, and the cell volume was kept constant during the simulation. The temperature

was regulated using the velocity-rescale thermostat.79 These simulation conditions

effectively correspond to a finite size crystal at zero external pressure.

Periodically infinite systems (both liquid and solid) were simulated by apply-

ing periodic boundary conditions in the usual manner.73 All short-range interactions

were spherically truncated at 0.9 nm, and the long-range electrostatic interactions

were calculated using the particle mesh Ewald (PME) method.74 The pressure was

fixed at 1 bar using the Berendsen barostat,78 and the temperature was regulated

using the velocity rescale thermostat.79 The Berendsen barostat was chosen because

it produced less drastic fluctuations during convergence, making the simulation less

likely to become unstable (especially with the TF potential). Some tests were per-
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formed with the Parrinello-Rahman barostat137 to verify that the choice of barostat

did not influence the results.

We are mainly interested in determining crystal structures at finite tem-

perature by spontaneous nucleation and growth. Therefore, the simulations were

performed in the following manner. The simulations were started at 300 K in a rock

salt configuration and equilibrated for ∼ 0.1 − 0.5 ns. The temperature was then

raised to ∼ 1200 − 2000 K (depending on the melting point of the crystal) over a

time period of ∼ 1 ns, causing the salt to melt. The molten salt was then frozen by

cooling the system to ∼ 500− 600 K over a time interval of ∼ 5 ns. The solid was

then maintained at the freezing temperature for ∼ 5− 20 ns to allow the system to

anneal (the difference in annealing times is because small crystals require less times

to anneal). Finally, the temperature was lowered to 300 K to collect properties for

comparison with the initial rock salt crystal equilibrated at the same temperature.

After this procedure, the final structure was determined by visual examina-

tion, and by comparing radial distribution functions of the initial and final frames of

the trajectory, as illustrated in Figure 4.2. A summary of the simulations performed,

along with the resulting crystal structures, is reported in Table 4.4 and 4.3.

4.3 Results and Discussion

4.3.1 Lattice Energies

To illustrate how the TF and JC potentials differ, we compare the pair inter-

actions for LiCl in Figure 4.3. One notices (see the top and bottom panels of Figure

4.3) that the Cl− ion is slightly “larger” for the JC model. Also, the repulsive part
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Figure 4.2: Radial distribution functions for an infinite LiCl crystal for the TF model
(left panel) and JC model (right panel). The initial rock salt configuration and the
liquid phase are colored in blue and red, respectively, and do not show noticeable
differences between models. The rdf corresponding to the crystallized structures are
displayed in green and correspond to wurtzite on the left and rock salt on the right.
The inset plots show the rdf for ideal wurtzite on the left and ideal rock salt on the
right (black lines) superimposed onto the simulation result (green).
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of the potential, which dominates at short range, grows less sharply for the TF than

for the JC model (this is due to the different functional form, ∼ e−r vs ∼ r−12,

employed in the potentials). For the attractive cation-anion interaction (middle

panel of Figure 4.3), there is a difference in the well depth and in the position of

the minimum, with the TF interaction more attractive than JC. At longer range the

potentials are equally dominated by the electrostatic interaction (r−1).

Of course simply comparing pair potentials in this way does not provide much

information on interactions in particular crystal structures, therefore we now turn

to the lattice energies. For lithium halides occupying rock salt or wurtzite lattices,

the electrostatic (Coulombic) interaction is the same for both positive and negative

ion sites such that 2Ec
+ = 2Ec

− = Ec, where Ec is the total electrostatic contribution

to the lattice energy. For the crystal structures we consider

Ec =
1

4πε0

M±
r0

, (4.4)

where r0 is the distance of an ion from its nearest neighbor, and M± is the Madelung

constant, which depends only on the crystal structure. Since M rocksalt
± > Mwurtzite

± ,

the electrostatic contribution to the lattice energy, for fixed r0, is always lower for

the rock salt structure (a consequence of the higher coordination number). The

wurtzite structure can only become electrostatically more stable than rock salt by

allowing the ions to pack more tightly, thus increasing the electrostatic interaction

by reducing r0.

Equilibrium ion-ion distances and the minimum lattice energies are signifi-

cantly influenced by the short-range repulsive part of the pair potential. In the case

of oppositely charged ions, the short-range repulsion counteracts the Coulombic
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Figure 4.3: TF and JC potentials for the pairs Li+-Cl− (top panel), Li+-Li+ (middle
panel) and Cl−-Cl−(bottom panel). The TF model has a shorter contact radius for
the Cl− ion, and is more slowly varying function at short range. Notice also how at
very short range (∼ 0.1 nm), the TF model becomes attractive (but this does not
influence the simulations).
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attractive forces creating a well defined “contact” distance (Figure 4.3, top panel).

The interaction between ions of like charge is always repulsive, with a sharp increase

at short range that strongly penalizes close contact (Figure 4.3, bottom panel). The

balance between the two competing interactions determines the nearneighbor equi-

librium distance and the coordination number.

In general the lattice-positive-ion interaction, E+, will be different from the

lattice-negative-ion interaction, E−, because the short-range, like-charge interactions

are different. To obtain the lattice energy it is necessary to find the structure that

minimizes the sum of those two contributions.

Lattice energies for perfect lithium halide crystals at 0 K are given in Tables

4.1 and 4.2 for the JC and TF models, respectively. We see from that for the JC

model (Table 4.1) the rock salt structure has the lower lattice energy for LiF and

LiCl, but that the wurtzite energy is lower for LiBr and LiI. For the TF model,

(Table 4.2) the wurtzite lattice energy is lower than that of rock salt for all four

lithium halide salts. Thus, only the JC results for LiF and LiCl are in accord with

the rock salt structure experimentally observed for all lithium halides.138 Lattice

energies for NaCl are included in Tables 4.1 and 4.2 for comparison purposes, and

we note that in this case the rock salt structure has the lower lattice energy for both

the JC and TF models.

One can gain some insight into this behavior from Figure 4.4, where the

lattice energies for lithium halides are plotted as functions of the cell parameter a.

The lattice-positive-ion and lattice-negative-ion contributions, respectively, are also

shown. Note that in the figure the actual plots represent 2E+ and 2E−; this preserves

the same vertical scale such that features of all three curves (e.g. the positions of the

minima) can be easily compared. For the JC model (left column, Figure 4.4) we see
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Compound Erock(kJ mol−1) Ewurtz(kJ mol−1) ∆E (kJ mol−1)

LiF -1052.56 -1030.42 -22.14
LiCl -870.31 -863.49 -6.82
LiBr -826.04 -826.67 0.63
LiI -761.83 -770.08 8.25
NaCl -793.15 -769.67 -23.48

Table 4.1: Lattice energies for the JC model for the wurtzite (Ewurtz) and rock salt
(Erock) structures. The difference Erock- Ewurtzis reported as ∆E. The NaCl lattice
energies are added for comparison.

Compound Erock (kJ mol−1) Ewurtz (kJ mol−1) ∆E (kJ mol−1)

LiF -1043.04 -1051.83 8.78
LiCl -844.65 -846.66 2.02
LiBr -795.60 -796.48 0.87
LiI -720.01 -729.20 9.18
NaCl -777.73 -762.51 -15.22

Table 4.2: Lattice energies (TF model) for the wurtzite (Ewurtz) and rock salt (Erock)
structures. The difference Erock- Ewurtzis reported as ∆E. The NaCl lattice energies
are added for comparison.

that as the anion becomes larger the repulsive interactions become more important,

and the minima become less negative for both rock salt and wurtzite structures. The

effect is larger for rock salt, hence the crossover to the wurtzite structure at LiBr.

The apparent reason for this is the fact that for rock salt the minima for E+ (blue

lines) and E− (green lines) are found at very different a values, or, in other words,

the most favorable cell length for the lattice-positive-ion interaction is different from

that of the lattice-negative-ion interaction. A similar effect occurs, but is much less

pronounced for the wurtzite structure, hence wurtzite becomes more stable than

rock salt as the ion size asymmetry becomes larger. For the TF model (right panel,

Figure 4.4), the wurtzite is the more stable structure for all four salts.
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Figure 4.4: Lattice energies as a function of the cell length a for the JC (left column)
and TF (right column) potentials. The solid red lines indicate the energy of the
wurtzite structure, while the dashed red lines indicate the rock salt structure. The
energy minima are annotated below each curve. Blue and green lines represent the
contributions of the positive and negative ion sites, respectively.
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Compound JC TF

LiF rock salt wurtzite
LiCl rock salt wurtzite
LiBr wurtzite wurtzite
LiI wurtzite wurtzite

Table 4.3: Final structures obtained by melting and freezing periodic crystals. The
final temperature is 300 K, and the periodic box contained 1000 ions. The results
are consistent with the lattice energy calculations (Tables 4.1 and 4.2).

4.3.2 Infinitely Periodic System Simulations

The lattice energy calculations given above determine the stable crystal struc-

tures at T = 0 K. It remains interesting to ask if these are in fact the structures

that crystallize spontaneously from the melt at finite temperature. To answer this

question we carried out MD simulations, first heating a rock salt crystal to a tem-

perature above the melting point, then cooling the molten salt until spontaneous

crystallization occurs, following the protocol described in Section 4.2. The results

obtained for both JC and TF models are summarized in Table 4.3, and we see that

in all cases the salt crystallized into the structure predicted by the lattice energy

calculations.

The lattice structures obtained upon spontaneous crystallization can be iden-

tified by inspecting configurational snapshots, or, more quantitatively, by comparing

radial distribution functions with expected results for rock salt and wurtzite crystal

structures. As an example, various rdfs for LiCl/JC and LiCl/TF are shown in

Figure 4.2. Comparing the rdfs, it is apparent that LiCl/JC crystallizes as rock salt

and LiCl/TF as wurtzite, consistent with the lattice energy predictions.

In addition to identifying crystal structures, one can make some other ob-

servations based on the rdfs in Figure 4.2. For the initial rock salt structure both
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models give qualitatively similar rdfs (blue curves), as expected, but the peaks tend

to be lower and broader for the TF model. We attribute this to the softer short-

range repulsion of the TF potential, which allows the ions to have larger oscillations

around their equilibrium positions. We see also that the molten salts give very

similar rdfs for both models.

4.3.3 Finite Size Cluster Simulations

We have also carried out melting/freezing simulations on finite size clusters

of 216, 512, and 1000 ions. This is of interest in the context of crystal nucleation,

for example, from aqueous solution. It is important to know if one can expect small

clusters to nucleate in the stable structure of the bulk phase, or in some other size-

dependent structure. The final structures obtained for finite clusters are summarized

in Table 4.4.

We see from Table 4.4 that for salts where the rock salt and wurtzite lattice

energies differ by ∼ 2 kJ mol−1 or more, the finite cluster structures are consistent

with the infinite system results discussed above, and with predictions based on the

lattice energies. One important difference is that for cases where rock salt is the

stable structure, such as LiCl/JC and LiF/JC, even small clusters achieve well-

defined rock salt structures, whereas this is not true of salts that prefer wurtzite.

Rather, in the wurtzite case, one obtains structures that have a hexagonal motif

characteristic of wurtzite, but are by no means perfect wurtzite structures, and in

the small cluster case can be mostly hollow inside. We refer to these structures as

wurtzite-like.

An example structure obtained for LiCl/TF with 216 ions is shown in Fig-

83



Compound Ions JC TF

LiF 216 rock salt wurtzite-like
512 rock salt wurtzite-like
1000 rock salt wurtzite-like

LiCl 216 rock salt wurtzite-like
512 rock salt wurtzite-like
1000 rock salt wurtzite-like

LiBr 216 rock salt wurtzite-like
512 mixed wurtzite-like
1000 wurtzite-like wurtzite-like

LiI 216 wurtzite-like wurtzite-like
512 wurtzite-like wurtzite-like
1000 wurtzite-like wurtzite-like

Table 4.4: Final structures obtained by melting and freezing finite size clusters using
the JC and TF models, the final temperature is 300 K. A wurtzite-like structure
corresponds to a structure that is not perfectly crystalline but shows hexagonal
motifs similar to that shown in the left panel of Figure 4.5.

ure 4.5 (left panel). We note that these hexagonal structures are similar to those

reported in previous cluster simulations of LiCl employing the TF potential.121 In

fact, based on considering finite and infinite hexagonal structures, Rodrigues and

Silva Fernandes119 suggested that the TF potential does not produce the experi-

mental rock salt structure for LiCl, and our lattice energy and simulations confirm

this conclusion.

It is also interesting to compare the rdf of a perfect wurtzite and a finite size

wurtzite-like crystal. In Figure 4.6, the Li-I rdf for the JC model is shown for both

a perfect, infinite, wurtzite crystal, and a finite size crystal of 1000 ions, both at 300

K. To avoid the influence of surface ions, the rdf is computed by using only the Li+

ion closest to the cluster’s geometric centre. One notices that the rdf peaks for the

finite size structure are broad and, with the exception of the contact peak, by no

means a perfect match for the perfect wurtzite structure.
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Figure 4.5: Spontaneously crystallized LiCl/TF (left panel) and LiCl/JC (right
panel) clusters of 216 ions. For the cluster on the left, the structure has hexagonal
motifs characteristic of the wurtzite structure, but is mostly hollow inside. On the
right, the cluster crystallizes into a rock salt structure, without substantial surface
deformations. In this figure, Li+ is represented in purple and Cl− is in green.

The reason why small wurtzite crystals are not stable is because the wurtzite

unit cell has a non-zero dipole moment directed along the c axis. For a unit cell with

a = 0.45 the dipole moment is ∼ 26 D, therefore a perfect wurtzite crystal will have

a surface dipole with charges of the same sign occurring at the surface. This means

that the surface configuration of a finite wurtzite crystal is energetically unfavorable,

and will undergo surface reconstruction. For small clusters, one observes rather

hollow structures (most of the cluster is surface) with hexagonal patterns on the

surface. This effect is confirmed by noticing that the dipole moments per ion of

the finite 216 ion crystals obtained in our simulations are . 0.1 D, which is much

smaller than the value ∼ 6.5 D expected for a perfect wurtzite crystal.

Surface reconstruction of a larger (2048 ion) wurtzite crystal of LiI/JC is

illustrated in Figure 4.7. Simulated in vacuum at 300 K, the reconstruction of the

(0001) face is apparent in the before and after snapshots shown in Figure 4.7. We
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Figure 4.6: LiI/JC rdfs at 300 K for the perfect wurtzite crystal (red), and for the
interior of a finite size crystal of 1000 ions (blue). The peaks are well defined for
the perfect wurtzite crystal, while for the finite size crystal there is wide broadening
and merging of adjacent peaks.
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Figure 4.7: Example of surface reconstruction for a LiI crystal (Li+ and I− ions are
colored in purple and grey, respectively). On the left, surface charges are present
on the wurtzite crystal face (0001). After simulating the crystal in vacuum at 300
K, the resulting surface (on the right) rearranges to reduce the dipole moment. The
dipole moment per ion is reduced from ∼ 6.3 D for the structure on the left, to
∼ 0.7 D for the structure on the right.
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Figure 4.8: Spontaneously crystallized LiBr/JC cluster (1000 ions) using the
LiBr/JC model (Li+ in purple, and Br− in brown). One notices both hexagonal
motifs, characteristic of the wurtzite structure, as well as square motifs characteris-
tic of the rock salt structure.

note that the reconstruction reduces the dipole moment of the crystal from ∼ 6.3

D per ion initially to ∼ 0.7 D after simulated reconstruction at 300 K.

An interesting situation occurs when the rock salt and wurtzite lattice en-

ergies are very close together, such as LiBr/JC. The rock salt structure crystallizes

spontaneously at small sizes but, as size increases, it crosses over to wurtzite, giving

rise to mixed crystal structures, as shown in Figure 4.8. This confirms that the

rock salt structure has a lower surface tension (due to the lack of surface charges)

than the wurtzite structure and crystallizes more easily. Also, since the standard

procedure we used involved ∼20 ns annealing time at high temperature, (see Section

4.2 for details) we can exclude that this is due to dynamical effects.
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Temp (K) Er Ew Ew† ∆E (kJ mol−1)

0 -894.53 -889.66 n.a. -4.86
300 -886.34 -881.70 -878.71 -4.65

Table 4.5: LiY lattice energies at 0 K and 300 K. The value Ew was obtained by
simulating a box to initialized from the perfect wurtzite structure, while Ew† is the
energy of the crystal obtained from freezing of the molten salt.

4.3.4 Temperature Effects

By constructing a fictitious system, we studied how temperature favors one

or the other crystal structure. In our lithium halide set, we obtained cases where the

wurtzite and rock salt lattice energies are spaced well apart and, for LiBr/JC, where

the wurtzite structure is marginally more stable than the rock salt structure, but

no system was found to have a marginally stable rock salt structure (the compound

closest to this condition is LiCl/JC, where rock salt is ∼ 6.82 kJ mol−1 more stable

than wurtzite).

A fictitious LiY/JC system, based on the LiBr/JC parameter set with a

smaller σBr (in our case, reduced by 0.04 nm) was constructed to have a rock salt

crystal structure that is slightly more stable than the wurtzite structure. According

to lattice energy calculations, the minimum energies for the rock salt and wurtzite

configurations for the LiY/JC were found to be, respectively, −894.53 and −889.66

kJ mol−1, with the rock salt structure being more stable by ∼ 4.87 kJ mol−1.

However, the simulations of crystallization from the melt at 300 K show that,

despite its higher energy (Table 4.5), the preferred structure is wurtzite, suggesting

that the wurtzite structure is favored by entropy.
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4.4 Summary and Conclusions

In this Chapter, we investigated the relative stability of the wurtzite and

rock salt crystal structures for a series of lithium halides using the popular Joung-

Cheatham1 and Tosi-Fumi125 potentials.

While wurtzite crystals are metastable in real systems, the TF model was

found to crystallize preferentially into the wurtzite structure. In contrast, the JC

model correctly predicts the rock salt crystal structure for LiCl and LiF but not for

LiBr and LiI. The origin of this effect can be attributed to the short-range part of

the pair potential and the excessive destabilization of the rock salt structure as ion

size asymmetry increases.

Our simulations of finite size clusters in vacuum suggest that the wurtzite

structure is hard to form at small sizes because of the surface rearragements needed

to avoid surface charge formation. We also found that if the lattice energies of

the rock salt and wurtzite structures are close to each other, like in the case of

the LiBr/JC model, the system may crystallize as rock salt at small sizes, and as

wurtzite at larger sizes.

The behavior of molten salts is interesting in its own right, and an under-

standing of finite size cluster structures can be related to homogeneous nucleation

from aqueous solution. Further work is required to show if the finite size crys-

tal structure could prevent the stable bulk structure from forming or if there are

structure rearrangements during the nucleation process.
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Chapter 5

Crystallization of Lithium

Fluoride in Aqueous solution from

Molecular Simulation.

5.1 Overview

Molecular simulation is employed to study nucleation and growth of lithium

fluoride crystals in aqueous solution. It was possible to observe nucleation on sim-

ulation timescales only at a temperature of 500 K, and a fixed density of ∼ 1.24

g/cm3 to prevent water evaporation. We find that the growth rate is temperature

dependent, and follows Arrhenius’ law, with an activation energy of ∼ 50 kJ mol−1.

Since the activation energy for the diffusion of Li+ and F− ions in solution was found

to be much smaller (∼ 20 kJ mol−1) the growth barrier is likely related to the high

energy required to remove water from the first solvation shell of the ions. The solu-

bility for the model salt was estimated to be ∼ 0.03 mole fraction at 300 K, which
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is much higher than the experimental value (∼ 0.001 mole fraction). Additionally,

a decrease of solubility with temperature was observed, likely due to a decrease in

the dielectric constant of the solvent.

5.2 Introduction

The study of alkali halide phase transitions with molecular simulation has

been an intense subject of study because of the simplicity of the compounds, and

the availablity of models designed to reproduce both properties of their crystals and

aqueous solutions.1 Particular attention has been devoted to NaCl models,1,125,139

for which exist nucleation studies,47,49,66,140 as well as estimates of their solubility.60

Lithium halides crystallization from the melt has also been examined,121,127 but the

study of their nucleation from solution is very limited.141

In this chapter we investigate LiF nucleation from aqueous solution using

molecular simulation. LiF, with an experimental solubility142 of ∼ 0.135 g/100 mL

(∼0.001 mole fraction) at 298 K and 1 bar, is the least soluble of the lithium halides,

and molecular dynamics simulations of its nucleation process provides insights into

how the nucleation mechanism may differ from that of a more soluble salt such as

NaCl. Also, LiF does not introduce the complication of stable hydrate structures

that are common for compounds such as LiCl.143

We find that, within simulation timescales, nucleation from solution can only

be obtained by heating the solution to ∼ 500 K, and that, for LiF, crystal growth is

an activated process with an activation energy of ∼ 50 kJ mol−1. In the remainder

of this Chapter we explore the origin of this temperature dependence by examining

properties of the LiF solution such as diffusion, solubility, as well as the distribution
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σ (nm) ε (kJ mol−1)
Li+ 0.1409 1.4088967
F− 0.4022 0.0309637

Table 5.1: Joung-Cheatham Lennard-Jones parameters for LiF1 adapted for the
SPC/E water model.2

and lifetime of LiF clusters in solution.

5.3 Models and Methods

The model used to simulate LiF aqueous solutions are the Joung-Cheatham1

parameters for the ions, combined with the SPC/E2 parameters for water. In this

model the pairwise interactions are represented by a Lennard-Jones term plus an

electrostatic contribution (cf. Equation (3.1)). The Joung-Cheatham parameters

for Li+ and F− are given in Table 5.1.

All simulations employed the GROMACS version 4.5.5 software package.100

To keep the temperature fixed in our simulation we used the velocity rescaling

thermostat,79 and to keep pressure fixed we used the Parrinello-Rahman barostat.137

The time step used in our simulations was 2 fs. The short-range interactions were

calculate up to a cutoff of 0.9 nm while the electrostatic interactions were calculated

using the particle mesh Ewald method.74

A series of LiF solutions at different concentrations were initialized by ran-

domly placing water molecules, together with Li+ and F− ions, in a cubic simulation

cell of length ∼ 4 nm. The system was relaxed at a fixed temperature of 300 K and

a pressure of 1 bar until its density, the Li+-F− radial distribution function, and the

ion cluster distribution (see below for explanation) were stabilized, which required

∼ 20 ns.
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Nucleation

T (K) Length (ns) ttn (ns) LiF H2O m.f. Pressure (bar)

300 60.60 n/a 419 7977 0.05 1
300 134.12 n/a 878 7903 0.10 1
300 147.20 n/a 1677 7640 0.18 1
300 200.00 n/a 2095 7430 0.22 1
300 158.56 n/a 1369 7761 0.15 1
350 199.74 n/a 1500
400 102.12 n/a 3100
450 136.82 n/a 4800
500 132.84 15 6500
500 80.00 5
500 80.00 3

Growth

T (K) Length (ns) LiF H2O m.f. Pressure (bar)

300 80.00 1369 7761 0.15 1
350 80.00 1500
400 80.00 3100
450 249.30 4800-6000
500 24.64 6500-7200

Table 5.2: Summary of the simulations performed to study LiF nucleation and
growth. The temperature at which a simulation was conducted is indicated by
T, the length of the simulation is indicated by Length, the concentration in mole
fraction is abbreviated as m.f., and the time to nucleation (ttn) is the time at which
the first nucleus was observed. LiF and H2O indicate the number of molecules
of each type used in the simulation. The pressure values for the crystal growth
simulations are reported as a range for some simulations because, when substantial
crystal growth occurs, the pressure drifts to higher values.
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Starting from the ∼ 0.15 mole fraction LiF equilibrated solution (which cor-

responds to ∼ 5 to 15 times the saturation concentration for our model, depending

on the temperature), we simulated the system over a range of temperatures (be-

tween 300 and 500 K) and observed crystal nucleation at a temperature of 500 K.

In all simulations the volume was kept constant (with density ∼ 1.24 g/cm3) to

maintain the solution in the liquid state. Three replica simulations at 500 K were

also performed to have an estimate of the time necessary to achieve the first nucleus,

the replicas showed a substantial variability resulting in a time to first nucleation

ranging from 3 to 15 ns. Lower concentrations were also tested but we were not

able to obtain nucleation at any temperatures (between 300 and 500 K), concentra-

tions higher than ∼ 0.15 mole fraction immediately yielded multiple nucleations at

a temperature of 500 K. A summary of the simulations performed is given in the

left panel of Table 5.2. It is useful to notice that the experimental solubility for LiF

at 300 K is ∼ 0.001 mole fraction,142 which is an order of magnitude lower than our

estimate for the model employed (see next section).

To study crystal growth of a LiF crystal in solution, a configuration con-

taining a partially grown crystal made of ∼ 300 ions was extracted from one of the

simulations at 500 K and 0.15 mole fraction. Beginning with this configuration,

NV T simulations were performed at the temperatures 300, 350, 400, 450 and 500

K (cf. Table 5.2).

The amount of crystal phase present in the growth simulations was estimated

by calculating the Steinardth-Nelson bond order parameter107 q8 for each ion and

by counting the number of ions with q8 > 0.40 (cf. Chapter 3 for further details).
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The order parameter ql is defined as

ql =

[
4π

2l + 1

l∑
m=−l

|qlm|2
]1/2

,

where

qlm =
1

N

rN∑
ri=r1

Y m
l (θ(ri), φ(ri)),

where {r1 . . . rN} are the positions of the first N neighboring ions relative to the

central ion, Y m
l are spherical harmonics, and θ and φ are the polar and azimuthal

angles corresponding to the vector r. The method and parameters used are the

same as those described in Chapter 3 (which correspond to parameters N = 12 and

l = 8).

Another clustering method, equivalent to that employed by Hassan,58 was

used to study dissolution and the properties of the solution, including information

about pairs and other ion aggregates that do not arrange with an octahedral geom-

etry. We will refer to this method as connectivity based clustering.

In this method, given a system configuration, all the pairwise distances be-

tween positive and negative ions are first calculated. Every pair of oppositely charged

ions that are closer than a certain threshold are deemed to be in contact and placed

in the same cluster. The natural threshold for this procedure is a number slightly

larger than the contact radius (which can be found from the first peak of the Li-F

radial distribution function), and it was chosen to be 0.3 nm for LiF. The final result

of the above procedure is a set of clusters where every ion can be reached from every

other ion through a path of consecutive connections. Notice also that free ions are

considered to be in a cluster of their own. See Figure 5.1 for a diagram.
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Figure 5.1: Clustering based on neighbor distance. The dashed lines represent
distances lower than a fixed threshold, and the colors represent different clusters.
Free particles form a cluster of their own.

5.4 Results and Discussion

A series of LiF solutions at different concentrations and temperatures were

simulated at constant volume and it was found that spontaneous, homogeneous

nucleation within ∼ 3 to 15 ns can be obtained at a high temperature (500 K) and

at a concentration ∼ 0.15 mole fraction and higher. Simulations of crystal growth

rate also show an increase with temperature and, as we will show below, the growth

rate dependency on temperature follows an Arrhenius law.

The Arrhenian temperature dependency of the crystal growth simulations

suggests that there is an activation barrier to crystal growth. The origin of the

barrier could be due to the very slow diffusion of ions towards the surface of the

crystal. Another hypothesis is that solvation shells are strongly attached to the ions,

and there is a high barrier to displace water molecules for ion attachment to occur.

Lastly, a temperature-dependent crystal growth rate could also be explained by an
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Figure 5.2: Schematic diagram of the free energy landscape at different temperatures
for the crystal growth process. If the driving force (which is the difference in free
energy of initial and final stages) increases and the barrier is weakly affected by
the increase in temperature, the activation barrier (which is the height of the curve
between inital and final stages) of the process decreases.

increase in the driving force at high temperature. If the solution is less stable at

high temperature, while the energy of the “transition” state may be weakly affected,

the activation barrier might be reduced (see Figure 5.2 for a diagram).

Since we did not observe crystal nucleation at different temperatures, simi-

lar statements are not directly applicable to the nucleation process. However, it is

reasonable to assume that nucleation is affected by growth in the sense that nucle-

ation cannot be observed without crystal growth. In this sense, we would expect the

activation energy for growth to constitute a lower bound for the crystal nucleation

activation energy.

5.4.1 Diffusion

One might expect diffusion to influence the speed at which crystal growth

occurs by decreasing the overall mobility of the ions in solution. The diffusion

constants for the Li+ and F− ions were estimated by calculating the mean square
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T (K) D+ (10−5cm2/s) D− (10−5cm2/s)

300 0.0190 (± 0.0007) 0.0205 (± 0.0002)
350 0.1348 (± 0.0050) 0.1350 (± 0.0106)
400 0.3842 (± 0.0174) 0.4216 (± 0.0133)
450 0.7918 (± 0.0313) 0.8329 (± 0.0115)
500 1.3514 (± 0.0239) 1.4928 (± 0.0089)

Table 5.3: Diffusion constants for Li+ (D+) and F− (D−) at different temperatures.

displacement between 1 and 9 ns of our simulations, while making sure that no

nucleation is taking place, and the results are reported in Table 5.3.

We calculated the diffusion coefficient at different temperatures to estimate

the activation energy of the process using the Arrhenius equation:

ln(D) = − Ea
RT

+ ln(A), (5.1)

where D is the diffusion coefficient, Ea is the activation energy, R is the gas constant,

and A is the preexponential factor. The activation energy for diffusion can be

estimated by performing a linear regression of ln(D) versus 1
T

(see Figure 5.3 for

an example), the resulting Ea for both Li+ and F− diffusion was found to be ∼ 26

kJ mol−1. Interestingly, this value is less than half the activation energy for crystal

growth (see below), suggesting that diffusion is not a controlling factor in the growth

process.

5.4.2 Growth Barrier

By measuring the growth rate at different temperatures it is possible to

estimate an activation energy for the growth process, similarly to the estimation of

the activation energy for diffusion.
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Figure 5.3: Linear regression to determine the activation energy for the diffusion
process for Li+ ions.

The growth simulations summarized in Table 5.2, were initialized by extract-

ing a configuration containing a small cluster of ∼ 300 ions from the simulation at

500 K and ∼ 0.15 mole fraction. This seed was surrounded by the supersaturated

solution, simulations were carried out at the temperatures 300, 350, 400, 450 and

500 K, and the growth profiles were monitored using a threshold on the q8 order

parameter as described in Chapter 5.3. The initial growth rate, rg (over ∼ 1 ns)

was obtained for each temperature (Table 5.4) and fitted to the Arrhenius equation

(Figure 5.4). The activation energy was estimated to be ∼ 50 kJ mol−1.

If we compare the activation energy for growth with the activation energy

for diffusion, it is easy to see that the activation energy for growth is much slower

than that of diffusion, suggesting that the growth rate is not diffusion limited. The

origin of such high activation barrier probably lies in the solvent-ion interaction, for
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T(K) rg (ion ns−1)

300 -0.05
350 0.23
400 1.66
450 11.41
500 32.40

Table 5.4: Growth rates at different temperatures

Figure 5.4: Arrhenius fit to the growth rates

this reason we further explored the structure and dynamics of the supersaturated

solution.

5.4.3 Solution Structure and Dynamics

One important property of the solution is the degree of association of the ions.

To study ion association, we performed connectivity based clustering, as described

in Chapter 5.3. Using this method, every ion is assigned to a cluster, and it is
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Figure 5.5: Fraction of ions in connectivity based clusters of a certain size at different
temperatures.

possible to study how the distribution of free ions, ion pairs, ion triples, and higher

order aggregates varies at different temperatures.

The fraction of ions that are part of a cluster of a certain size at different

temperatures is shown in Figure 5.5. At 300 K, about 40 % of the ions are not

associated (in clusters of size 1), about 35% of the ions are part of clusters of size

2, and the remaining 15% are part of larger clusters up to ∼ 16 ions. As the

temperature increases, the distribution gradually shifts towards clusters of higher

size and, at 500 K only ∼ 15% of the ions are not associated. This shows that as

temperature increases the ions have a tendency to associate into larger aggregates,

thus favoring nucleation.

Further evidence can be found from the Li+F− radial distribution functions of

the solution at different temperatures shown in Figure 5.6. At higher temperatures,
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Figure 5.6: Li+F− radial distribution functions at different temperatures. The con-
tact peak, characteristic of ion pairs increases with temperature, while the second
peak (solvent-separated pairs) decreases.

the LiF contact peak increases substantially, while the second peak, corresponding

to solvent-separated pairs, decreases in intensity. This result is in agreement with

the ion association plots (Figure 5.5) as more ion association increases the number

of contact pairs.

An important point is that the ion association distributions shown in Figure

5.5 describe the metastable “equilibrium” of the solution at different temperatures.

This means that, before nucleation happens, the system spontaneously relaxes to

have a certain ion association pattern. This effect, as well as the change in solu-

bility, is likely to be due to the changing dielectric constant of water at different

temperatures and pressures.

Ion association distributions, however, do not describe the dynamics of the

solution. To assess how clusters exchange ions, it is useful to introduce a new

measure that we will refer to as surviving pairs.

At a given time frame, the ions are associated in a number of clusters. Two

different frames may (and usually) have a different number of clusters and, in order

to define a lifetime, it is necessary to match the clusters in two different frames
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Figure 5.7: Diagram of surviving pairs. Initially, the {1, 2, 3, 4} cluster contains 6
unique pairs, after the cluster splits, 2 of the pairs are still associated.

(this process is usually called entity resolution and is described in detail in Chapter

3). The matching can be quite problematic when there is substantial rearranging

between the frames, as there is a large redistribution of ions between the clusters.

Another approach to the problem is to count the number of pairs that are

associated in a certain time frame, and count the number of pairs that are still

associated at a different time frame. As shown in Figure 5.7, the surviving pairs is

perfectly defined even when clusters split and, while it doesn’t provide information

about the lifetime of individual clusters, can be used as a global measure of how

long lived are ion clusters in solution.

By plotting the surviving pairs as a function of time delay between frames it

is possible to obtain a plot that indicates how many pairs are still associated up to

time t (Figure 5.8). As temperature increases, the initial number of pairs increases

(corresponding to time delay t = 0 ) as there is a higher degree of association,

however, their decay with t is much more pronounced. The 300 K surviving pairs

curve shows that, at this temperature, the associated structures are very stable, and

decay slowly over the course of ∼ 20− 30 nanoseconds (the range is too wide to be
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Figure 5.8: Surviving pairs at a time delay of t ns for a range of different tempera-
tures. As the temperature increases, there are more associated pairs that decay at
a faster rate.

shown on the plot). In contrast, temperatures higher than 400 K show that after

∼ 1 ns most of the pairs have decayed, suggesting fast rearrangements of the ion

aggregates present in solution.

A cluster analysis similar to the one presented in Chapter 3 was performed for

the LiF supersaturated solution. The number of clusters detected per frame, using

the methodology described in Chapter 3, is reported in Table 5.5. An important

finding is that, at low temperatures, no clusters are detected using this method. The

main reason for this effect is that the aggregates that form in the LiF supersaturated

solution do not possess high enough crystallinity to pass through the filtering step

(cf. Chapter 3). At higher temperatures, there is a sharp increase in number of

clusters that, presumably, are a prerequisite for crystal nucleation. In contrast, the
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Compound T (K) nc × 105 m.f.

LiF 300 0 0.15
350 0
400 0.15
450 1.33
500 27.65

NaCl 300 142.33 0.22

Table 5.5: Average number of clusters (nc) per time frame at different temperatures,
for LiF and NaCl supersaturated solutions (see Chapter 3 for details). nc is nor-
malized by the number of ion pairs in the simulations to allow comparisons between
simulations with different numbers of ions. The concentration in mole fraction is
reported in the m.f. column.

NaCl solution, as discussed in Chapter 3, is composed of a large quantity of clusters

with longer lifetimes.

Lifetime analysis was not performed on the cluster data produced from the

LiF simulations because at high temperatures the time interval at which configura-

tions were sampled (0.02 ns) is large compared to the time it takes a typical cluster

to redissolve, hence it was not possible to follow the time evolution of most clusters.

5.4.4 Solubility

If the solubility decreases substantially at high temperature, one would ex-

pect nucleation and growth rates to increase due to a higher driving force (since our

simulations are all at the same concentration, the solubility determines the degree of

supersaturation). Experimentally, the solubility of LiF increases with temperature

(at least in the range ∼ 300 to 350 K at 1 atm).142 However, it is still possible for

our LiF model to show a decrease in solubility with temperature due to changes in

the solvent, for example the dielectric constant.
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We estimated the solubility of LiF at 300 K by dissolving a crystal until

dissolution stops, and at 500 K by both dissolving a crystal and, by growing a nucleus

in a supersaturated solution until growth stops. More specifically, the dissolution

and growth were assumed to be completed when there was no change in the solution

concentration which occurs after ∼ 100 to 200 ns.

The solution concentration was calculated by detecting connectivity based

clusters (see Chapter 5.3) and counting the number of ions that are part of clusters

with size less than 100 ions. As the simulation contains a single cluster of size

∼ 2000 ions, and transient clusters are of size definitely smaller than 100 ions (see

Figure 5.5), these numbers represent a good estimate of the ions present in solution.

The dissolution and growth profiles are shown in Figure 5.9.

It is useful to notice that the starting point of the dissolution at 300 K and

at 500 K is larger than 0 ns. This is due to the fact that, since the initial crystal

was extracted from a particular configuration, it possessed a small net charge due

to ions fluctuating in proximity of the interface. To avoid net charges, extra ions

were added to the solution to retain the electroneutrality. Geometry optimization

was also required and produced slightly different starting condition for the two

temperatures. The fluctuations observed for the dissolution simulation at 500 K

show that the initial conditions are quite close to equilibrium; in fact, after an

initial rapid dissolution, the cluster grows again until the solution stabilizes around

a concentration of ∼ 0.01 mole fraction.

The solubilities estimated using these methods yielded values in the range of

∼ 0.01 to 0.03 mole fraction, which is much larger than the experimental solubility

of ∼ 0.001 mole fraction. Interestingly, at high temperature there is a decrease in

solubility and this could be attributed to a change in solvent nature. To test this
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Figure 5.9: Solution concentration profiles obtained by dissolving a crystal at 300
K (blue), by growing a crystal at 500 K (red, top line), and dissolving a crystal at
500 K (red, bottom line). The estimated solubilities are ∼ 0.025 mole fraction at
300 K and ∼ 0.01 at 500 K.

hypothesis, we measured the dielectric constant of SPC/E water to be ∼ 71 at 300

K and ∼ 40 at 500 K. The decrease in dielectric constant of the solvent is in line

with the decrease in solubility at high temperature.

The degree of supersaturation can certainly influence crystal growth rate as

it is the driving force of the process. However, as it was shown above, the crystal

growth rate shows an Arrhenian dependency on temperature, and is not likely due to

a change in solubility, because we would expect the associated change in activation

energy to yield a nonlinear Arrhenius plot.

Similar effects can also be expected for the nucleation rate; in fact, increasing

the degree of supersaturation by pushing the concentration to ∼ 22 mole fraction
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didn’t result in nucleation at 300 K, showing that an increase in driving force is not

enough to trigger nucleation at that temperature.

5.5 Summary and Conclusions

In this Chapter we focused on the nucleation and growth of LiF crystals

from solution. Our results suggest that ions in the supersaturated solution are

strongly solvated and increasing the temperature helps ions to overcome the barrier

to dehydration, favoring growth.

While we could not directly measure nucleation rate at different tempera-

tures, we were able to measure growth rate of an already nucleated crystal, and we

found that the temperature dependence of the growth rate follows the Arrhenius

law, indicating that the process is activated and has an activation energy of ∼ 50 kJ

mol−1. Such a high activation energy can not be explained by ion diffusion, which

has a much smaller activation energy (∼ 20 kJ mol−1).

At high temperature, the LiF solution contains a large quantity of ion clusters

that form and dissolve very quickly but, despite the fast decay of these structures,

the solution is able to achieve nucleation. This situation is in contrast with what

was observed in Chapter 3, where the NaCl solution was found to have many long

lived clusters that failed to achieve the size and crystallinity for nucleation to occur.

A mechanism consistent with our results for LiF is a two-step nucleation

process.144 The first step involves cluster generation from solution and, in the case

on LiF, clusters appear at high temperature and pressure, where they are easier to

form because dehydration is fast enough to achieve kinetically, and ion clusters are

also favored because the dielectric constant of the water decreases. Once a sufficient
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Figure 5.10: Possible free energy landscape for LiF nucleation from solution. A first
barrier is required to go from the free ions (solution) to the cluster aggregates. The
cluster aggregates are metastable, continuously form and disappear from solution,
and are more easily found at high temperature. The second barrier reflects the fact
that most clusters do not nucleate but dissolve back into solution, depending on
cluster related properties such as size, crystallinity, and surface tension. In absence
of nucleation rate measurements, it is not possible to estimate the relative magnitude
of the two barriers, and two possible options are displayed as solid and dashed lines.

number of clusters are generated from the saturated solution, there is another bar-

rier, similar to that postulated by CNT, that is likely related to cluster properties

such as size and crystallinity as we found for NaCl (Chapter 3). Unfortunately, the

data we collected is not sufficient to determine the magnitude of the second barrier,

as it requires precise measurement of nucleation rates sampled at different temper-

atures. A diagram of possible free energy landscapes of the LiF nucleation process

is shown in Figure 5.10.

The solubility of LiF was estimated to be ∼ 0.03 mole fraction at 300 K, and

was found to decrease at high temperature to reach a value of ∼ 0.01. The variation

is likely due to the decreasing dielectric constant of the solvent. The calculated

value of the solubility is substantially different from the experimental solubility of

∼ 0.001 mole fraction, which likely indicates that, in this respect, the JC model is

not accurate for LiF, and further model improvements are needed.
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Chapter 6

Molecular Dynamics Simulation of

NaCl Dissolution.

6.1 Overview

Molecular dynamics simulations are used to investigate the dissolution of

NaCl nanocrystals (containing ∼ 2400 ions) in water. We focus on systems under

sink conditions at 300 K, but the influences of concentration and temperature are

also investigated. Cubical, spherical, tablet-shaped, and rod-shaped nanocrystals

are considered, and it is shown that the initial shape can influence the dissolution

process. Dissolution is observed to occur in three stages: an initial period where the

most exposed ions are removed from the crystal surface, and the crystal takes on a

solution-annealed shape which persists throughout the second stage of dissolution;

a second long intermediate stage where dissolution roughly follows a fixed rate law;

and a final stage where the small residual crystal (. 200 ions) dissolves at an ever

increasing rate until it disappears. The second stage of dissolution which applies for
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most of the dissolution process is well described by classical rate equations which

simply assume that the dissolution rate is proportional to an active surface area

from which ions are most easily detached from the crystal. The active area depends

on the initial crystal shape. We show that for our model NaCl nanocrystals the rate

determining step for dissolution under sink conditions is ion detachment from the

crystal, and that diffusion layers do not exist for these systems.

6.2 Introduction

Solid dissolution is an important process in many physical systems and sit-

uations, with one obvious example being in the area of drug development.145,146

Many drugs are administered in solid form and dissolve in the gastrointestinal tract

before being absorbed by the body. As the dissolution properties are related to

the drug bioavailablilty,147,148 there is considerable current interest in dissolution

processes.149

During the past century, several dissolution models based on different as-

sumptions have been suggested147,149,150 to describe and interpret dissolution rates,

and identify the factors that affect them. The original model was put forward by

Noyes and Whitney,151 and further generalized by Brunner and Tolloczko152 to ac-

count for varying solid surface area during particle dissolution. For spherical solid

samples, the integrated form of the Brunner-Tolloczko equation is the well-known

cube root law, whereby the cube root of the particle weight decreases linearly in time

during dissolution, first derived by Hixson and Crowell.153 Another early model,

based on the assumption that the dissolution rate is controlled by solute diffusion

from a concentrated layer of solution adjacent to the solid surface, was suggested by
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Nernst154 and Brunner.155 Under some conditions the Nernst-Brunner equation also

leads to the cube root law. Additionally, square root156 and two-thirds root156,157

dissolution laws have been obtained and used in dissolution research. These models

are all based on theoretical assumptions or empirical observation, depending on the

substance being dissolved and its environment; however, little is known from a mi-

croscopic, mechanistic point of view. Furthermore, the classical models do not take

any account of shape and finite size effects (other than surface area) that one might

expect to be of some importance in nanoscale crystals.

Thanks to large increases in computational power, molecular simulation has

started to gain traction as a tool in dissolution research. Studies have been con-

ducted to uncover the mechanics of the first steps of dissolution and growth of small

crystalline compounds.158–160 Gao and Olsen159 have reported simulations of the

drug acetaminophen in water, giving insights into the initial stages of the dissolu-

tion process. Several studies have also been done to analyze the interactions that

take place at the interface between water and NaCl.161–165

In the present paper, we investigate the complete dissolution of NaCl nanopar-

ticles in water employing molecular dynamics simulations. NaCl was chosen because

of its simple structure and because of the availability of force fields developed to re-

produce both solid and solution phase properties.1 Our results provide an atomistic

view of the dissolution process at every stage, from initiation, through a fixed rate

law regime, to the finial disintegration of the residual crystal. Additionally, we ex-

amine the influence of particle shape on dissolution, and compare our results with

suitable, shape-adapted, classical dissolution models. The influences of solution

concentration and temperature on the dissolution rate are considered. The temper-

ature dependence allows us to estimate the activation energy associated with ion
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σ (nm) ε (kJ mol−1)

Na+ 0.2160 1.4754533
Cl− 0.4830 0.0534924

Table 6.1: Joung-Cheatnam NaCl parameters1 for the Lennard-Jones potential.

detachment, which for NaCl crystals controls the dissolution rate.

The remainder of this Chapter is divided into three parts. The models and

methods are given in Section 6.3, our results are described and discussed in Section

6.4, and our conclusions are summarized in Section 6.5.

6.3 Models and Methods

Several simulations of NaCl nanocrystals dissolving in water are reported. In

all simulations, the nonbonded, site-site interactions u(rij) consist of Lennard-Jones

(LJ) plus electrostatic terms such that

u(rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
1

4πε0

qiqj
rij

, (6.1)

where qj and qi are the charges on sites i and j, rij is the site-site separation, σij

and εij are the LJ length and energy parameters, and ε0 is the permittivity of free

space.

To model Na+ and Cl− ions we adopt the parameters of Joung and Cheat-

nam1 (Table 6.1), used together with the SPC/E water model.2 The Joung and

Cheatnam parameters were developed to reproduce both solid and solution prop-

erties, such as the solubility.1 The usual Lorenz-Berthelot combining rules, σij =

(σi + σj)/2, εij =
√
εiεj, were used to calculate the LJ interactions.
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Figure 6.1: A representation of the crystals simulated. The number of NaCl ion
pairs is given below each illustration.

In order to investigate the possible influence of particle shape (number of

crystal layers, surface area, etc.) on dissolution rate, NaCl crystals of different

shapes were generated by repeating the NaCl unit cell along the three crystal axes

directions, to produce the following four structures (Fig. 6.1):

Cubic Crystal (1372 ion pairs) generated by repeating the unit cell 7 times in all

crystal axes directions.

Spherical Crystal (1256 ion pairs) generated by taking a cubic crystal of ∼ 2000

ion pairs and removing all ions pairwise (such as to maintain a charge neutral

crystal) whose distance from the center is greater than 2.28 nm.

Rod-Shaped Crystal (1152 ion pairs) generated by repeating the unit cell 18, 4,

and 4 times along the crystal axes.

Tablet-Shaped crystal (1200 ion pairs) generated by repeating the unit cell 10,

10 and 3 times along the crystal axes.

All dissolution simulations were carried out under NPT conditions with the pressure

fixed at 1 bar. The numbers of NaCl and water molecules in each simulation,

together with the temperatures considered are summarized in Table 6.2.

For the present model the saturation concentration estimates reported by

Aragones et al.98 correspond to NaCl mole fractions in the range 0.08− 0.09. Most

of our simulations were carried out at NaCl mole fractions . 0.015, or at∼ 1/6 of the
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NaCl H2O T (K)

Sphere

1256 97956 300
1256 97956 320
1256 97956 340
1256 75917 300
1256 48238 300

Cube 1372 92838 300

Rod 1152 77952 300

Tablet 1200 81200 300

Table 6.2: Summary of crystal shape, the number of ion pairs, the number of water
molecules, and the temperatures used in the simulations.

saturation concentration. This meets the so-called “sink condition” which refers to

solutions sufficiently dilute that ion reattachments do not significantly influence the

dissolution rate.166 Note that sink conditions are usually attained when the volume

of solvent is 3 − 10 times greater than the saturation volume.166 We tested that

our systems did obey sink conditions by directly monitoring ion attachment and

detachment events, as well as by running simulations at different concentrations, as

described below (Section 6.4).

All simulations were performed employing the GROMACS100 molecular dy-

namics package version 4.5.4. The temperature was controlled using the velocity-

rescale thermostat79 with a relaxation time of 0.1 ps. The pressure was kept constant

by applying the Berendsen barostat78 with a compressibility of 4.5×10−5 bar−1 and

a relaxation time of 1.0 ps. The time step chosen for all the simulations was 2 fs. Pe-

riodic boundary conditions with the usual minimum image convention were applied,

and all short-range interactions were spherically truncated at 0.9 nm. The long-

range electrostatic interactions were accounted for using the particle mesh Ewald

(PME) method74 with a Fourier spacing of 0.20 nm. Constraints on all bonds were
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maintained using the LINCS algorithm.77

Initial configurations were generated by placing the NaCl crystal at the center

of the simulation cell surrounded by water molecules randomly placed on a grid

spaced by 0.3 nm. The system was equilibrated for 1 to 2 ns to obtain a stable

pressure, temperature, and potential energy during which time no substantial part of

the crystal dissolved. The system was then evolved in time until complete dissolution

of the crystal was achieved. For the systems considered here, this required times

ranging from ∼ 100 to ∼ 700 ns, depending on the nature of the crystal, the amount

of water present, and the temperature. Note that all simulations were at 300 K,

except for the spherical crystal, where two additional simulations were performed

at 320 K and 340 K, and used to estimate an activation energy for the dissolution

process.

An order parameter based on the number of neighboring ions is used to clas-

sify the ions as being part of the crystal or part of the solution. Ions belonging to

the crystal have a substantially higher number of neighbors than those in solution,

and this difference is sufficient to define a relatively simple order parameter. The

order parameter for a particular ion is calculated by counting the number of neigh-

boring ions (both positive and negative) within a specified radius. The actual value

of the neighbor search radius did not greatly affect the result as long as there is a

substantial difference between the number of neighbors around ions in the crystal

and in the solution. In the present calculations we selected a search radius of 0.6 nm.

For this radius, ions associated with the crystal have on average 20 neighbors, while

those in solution solution have 6. Therefore, an intermediate value of 11 was chosen

as the classification threshold; ions having 11 or more neighbors were classified as

being part of the crystal, otherwise they were classified as being part of the solution.
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Figure 6.2: An example of the order parameter applied to a surface ion. The central
atom (yellow) is surrounded by 14 neighbors (red). The 0.6 nm cutoff applied to
the central atom is highlighted with a gray transparent sphere.

An illustration of how this order parameter detects an ion at the crystal surface for

a particular configuration is given in Fig. 6.2. Using this order parameter we could

closely follow the dissolution of each crystal independent of its shape.

6.4 Results and Discussion

6.4.1 Stages of Dissolution

We first examine in detail the stages of the dissolution process. Simulations

were used to obtain dissolution profiles for several model NaCl crystals. A dissolu-
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tion profile is a plot of the crystal weight, or, equivalently, the number of ions in the

crystal, as a function of time. The time derivative of this profile is the dissolution

rate, or the change in crystal weight (or ion number) per unit time. The dissolution

profile can be influenced by the solution concentration and structural properties of

the crystal, such as size and shape. Qualitatively, we observed that the dissolu-

tion process occurs in three stages that can be roughly described as follows: Initial

Stage: detachment of the most exposed ions located on any sharp edges. Fixed Rate

Regime: crystal dissolution after the edges are removed appears to closely follow a

fixed rate law. Rapid Dissolution: the crystal reaches a “stability limit” and quickly

disappears.

Initial Stage

During the first few nanoseconds, water interacts with the most exposed ions

and these move readily from crystal to solution. The detachment of these ions leads

to defects on the surface of a geometrically shaped crystal. In the initial stage, the

dissolution rate depends on the crystal shape, as this influences the arrangement of

the most exposed ions.

Dissolution profiles for initially cubic and spherical crystals are plotted in Fig.

6.3, and snapshots of the cubic crystal at various points on the dissolution curve

are shown in Fig. 6.4. For the cubic crystal, one observes (see the magnification

of the short-time region in Fig. 6.3) an initial steep slope between 0 and ∼ 20 ns;

dissolution then quickly slows down, and enters a nearly linear regime (the actual

time dependence is discussed below). During the rapid initial stage ∼ 200 ions leave

the crystal, and as can be seen from Fig. 6.4 (snapshot at 20 ns), these come mainly

from the corners and edges of the crystal. From Fig. 6.4 we see that after the
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Figure 6.3: Dissolution profiles for the cubical and spherical crystals displayed as
number of ions in the crystal vs time. The starting and final sections of the profiles
are detailed in the zoomed-in plots.

corners and edges of the initial crystal are gone, more ions are detached from the

sites generated by their removal, and water continues to gradually consume crystal

edges until they are completely rounded off. At 185 ns (Fig. 6.4), the dissolving

crystal is almost spherical in shape, and its structure and dissolution rate are very

similar to those of the initially spherical crystal. Note from Fig. 6.3 that, after the

initial stage, the dissolution profiles of the cubic and spherical crystals are essentially

parallel to each other. Note also, that the initial rate is much faster for the cube

than for the sphere, which has no corners and edges. Nevertheless, for the sphere

as well, dissolution is faster at the beginning, as the more weakly attached ions are

swept from the surface.
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Figure 6.4: Snapshots corresponding to different points in the dissolution profile of
the cubic crystal. After 20 ns, only ions located at edges and corners are removed.
The edges and corners gradually get consumed (100 ns) and the crystal becomes
roughly spherical after about 185 ns. After that point the shape doesn’t change
until the final stage of dissolution.

The dissolution profiles of rod-shaped and tablet-shaped crystals also show

fast initial stages followed by slower nearly linear behavior (see Fig. 6.5, and the

discussion below). The overall qualitative picture can be seen from snapshots taken

from rod and tablet dissolution trajectories shown in Figs. 6.6 and 6.7, respectively.

For the rod (Fig. 6.6), ions are preferentially removed from the ends, and for the

tablet (Fig. 6.7), water peels layers from the thin sides, while none are removed

from the interior of the larger flat surfaces. In general, as the dissolution continues,

the detachments progressively round the corners of the crystals, giving both the

tablet-shaped and rod-shaped crystals a more cylindrical appearance. After the

initial stage, for the rod and tablet crystals we are left with structures that resemble

long and flat cylinders, respectively. From that point on, the dissolution takes place

from the side in the case of the flat cylinder (originally a tablet) and from the ends

in the case of the long cylinder (originally a rod). These dissolution induced shape

changes are included in the dissolution rate laws discussed below.

Physically, it is not difficult to understand the detachment patterns discussed

above. We would expect ion detachment to be an activated process (see below for

confirmation) and the activation energy of a particular ion will depend on its location
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Figure 6.5: Comparison of the dissolution profiles for different shapes expressed in
terms of fraction of crystal dissolved fcry(t), the derivatives dfcry/dt (on the order of
−10−3 ns−1) are depicted in the inset. The color coding is: dark blue for the sphere;
green for the cube; red for the tablet; light blue for the rod. The rod-shaped and
tablet-shaped crystals show a higher overall dissolution rate.

Figure 6.6: Snapshots along the rod-shaped crystal trajectory. Ions are detached
mainly from the ends of the rod.
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Figure 6.7: Snapshots along the tablet-shaped crystal trajectory. The top and
bottom surfaces are never attacked by water molecules.

in the crystal. We would expect ions at corners and edges to be more weakly bound

to the crystal and hence to have a lower activation energy. Moreover, the edges

and corners are more exposed to water molecules, which should aid in getting over

activation barriers inherent in the crystal.

To further examine this reasoning, we simulated a system with a perfect NaCl

(001) crystal face (no defects, corners, or edges) in contact with water. The crystal

face was constructed by repeating the unit cell 7, 7, and 4 times (for a total of 1578

ions) along the x, y, and z axes, and placing the resulting crystal wall in a simulation

cell periodic in the x and y directions. The crystal wall was in contact with 2855

water molecules, with all conditions, parameters, and potentials identical to our

other dissolution simulations at 300 K. During an ∼ 200 ns simulation, not a single

ion left the crystal wall, demonstrating a much lower probability of detachment for

ions located in large flat crystal surfaces, and highlighting again the importance of

corners, edges etc., in the dissolution process.

The picture that emerges is that the detachment of ions depends on the local
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environment on the surface. To quantify this effect we performed a calculation of

the probability of detachment (within a certain time frame) given the number of

ions present (0 to 6) in the first coordination shell.

The ions detached from the surface of the spherical crystal within 1.6 ns was

recorded and averaged in a time frame between 20 and 40 ns. The distribution of

the order parameter showed that the detached ions assume a value no larger than

22 neighbors. Given that the detached ions come from the surface, this threshold

value was used to classify ions as part of the surface.

The ions on the surface were further classified based on the number of imme-

diate neighbors (within a radius of 0.37 nm), corresponding to the first coordination

shell. This step was necessary to analyse the relationship between the local envi-

ronment and the probability of detachment.

The total number of ions on the surface, given the local environment is re-

ported in Fig. 6.8, top right corner. The number of detached ions is reported in

the bottom right corner, by calculating the fraction of detached ions for each local

environment, it is possible to obtain the probability of detachment (reported on the

left).

The probabilities of detachment show that, as the coordination number in-

creases (the ion is more internal), the probability of detachment greatly decreases.

However, the total number of ions detached shows that most of the ions dissolved

come from an environment containing 3 neighbors. This is due to the fact that, even

if the probability of detachment is very low (∼ 0.08), the larger supply of those ions

on the surface makes them, on the 1.6 ns time frame, the most common kind of ion

to detach.
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Figure 6.8: Three quantities obtained for the spherically shaped crystal as functions
of the number of neighbor in the first coordination shell (within 0.37 nm), Left
panel: The relative probability of detachment (within 1.6 ns) of a suface ion, given
the number of neighbors. Upper right panel: The total number of ions on the surface
at t = 0. Lower right panel: The total number of ions detached over 1.6 ns. All
quantities are averaged over 50 time slices betwen 20 and 40 ns of the dissolution
simulation.
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Fixed Rate Regime

After the initial stage, the dissolution of all crystals follows a similar route.

The dissolution profile is almost linear (the actual behavior is discussed in more

detail below), until the remaining crystal (∼ 200 ions) becomes very unstable and

there is a sudden and continuing increase in dissolution rate as shown in Figure 6.3.

During this stage of dissolution, the crystal surfaces are well annealed by

the water, and dissolution takes place evenly over reasonably well defined “active”

areas of the crystal surface. Roughly, the active areas are spherical surfaces for the

cube and sphere, the cylindrical bases for the rod, and the cylindrical side for the

tablet. For these active surfaces that develop in the partially dissolved crystals, the

probability of detachment appears essentially uniform such that dissolution follows

a fixed rate law until the final rapid dissolution stage.

We next consider more closely the influence of crystal shape, and compare

our dissolution curves with classical models of the type briefly discussed in Section

6.2.

Influence of the crystal shape. The crystals we consider differ not only in

shape, but also a little in size. Therefore, in order to compare dissolution profiles

in Fig. 6.5 we plot the fraction of the crystal dissolved, fcry(t) = (N0 − N(t))/N0,

where N(t) is the number of ions in the crystal at time t, and N0 is the number

present initially. It is apparent that for the crystals we consider the tablet and rod

dissolve substantially faster (∼ 6 ions ns−1) than the cube and sphere (∼ 4 ions

ns−1). For the present examples, this is likely explained by the fact that ions on

the active surfaces of the tablet and rod interact more weakly with the bulk crystal

than those on the surface of the water-annealed cube or sphere. Note that in their
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smallest dimension the tablet and rod have only 8 and 6 crystal layers, respectively,

whereas the cube has 14 layers initially. Thus the faster rates we observe for the

tablet-shaped and rod-shaped crystals, while true for the present examples, are not

only functions of shape, and likely will not apply as general rules.

Comparison with dissolution models. As discussed in Section 6.2, dissolution

processes have been studied for well over a century, and a number of models have

been put forward in the form of differential and integrated rate laws. Recent reviews

of these rate laws and their history are given in refs. 147 and 149. Here we find

that simple rate laws give a reasonably good description of our results in the fixed

rate law regime. If we assume that sink conditions apply, and that detachment from

the surface is the rate-determining step, we would expect the dissolution rate to be

given by

dN(t)

dt
= −kSactive(t) , (6.2)

where N(t) is the number of ions remaining in the crystal at time t, Sactive(t), is the

“active surface area” where ion detachments occur, and k is a constant. This rate

law that takes account of the changing surface area was first suggested by Brunner

and Tolloczko,152 as an extension of the original Noyes-Whitney equation151 (i.e.,

dN(t)/dt = −k) which applies to experimental situations where the surface area

is kept fixed during dissolution. The full Brunner-Tolloczko and Noyes-Whitney

equations also apply if sink conditions are not obeyed, but here we consider only

the sink condition limit. The applicability of the sink condition to our simulations

is confirmed below (Section 6.4).

We also remark that another model of dissolution proposed by Nernst154 and
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Brunner155 assumes that solute diffusion from a surface layer where the concen-

tration approaches the value at saturation, Cs, is the rate determining step in the

dissolution process.149 If we consider a spherical diffusion layer of surface area S(t),

set S(t) = Sactive(t), and k = DCs/δ, where D is a solute diffusion coefficient, and δ

is the thickness of the layer, then Eq. (6.2) becomes the Nernst-Brunner equation.

In principle, both D and δ could be time dependent, but if these quantities are

regarded as constant, then at least for spherical crystals, Eq. (6.2) and the Nernst-

Brunner equation are formally identical, even if the underlying physical mechanisms

and rate constants are different. Below, we show explicitly that the diffusion layer

model does not apply to the dissolution of NaCl.

Integrated rate laws can be obtained by specifying particular forms for Sactive(t).

Above, we argued that in the fixed rate law regime, the active surface areas are ap-

proximately spherical for the sphere and the cube, the area of a nearly cylindrical

wall for the tablet, and mainly the area of the circular base for the rod which an-

neals into a roughly cylindrical shape. Assuming these active surface areas, and

using appropriate area to volume relationships, it is easy to deduce that for the

sphere and the cube Sactive(t) ∝ N2/3(t), for the tablet Sactive(t) ∝ N1/2(t), and for

the rod Sactive is a constant independent of t. From Eq. (6.2), we then obtain the

integrated rate laws

3
√
N(t) = 3

√
N0 − kt (Sphere,Cube) , (6.3)√

N(t) =
√
N0 − kt (Tablet) , (6.4)

N(t) = N0 − kt (Rod) , (6.5)
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where of course k represents a different constant in each rate law. The cube root

law applicable to spherical crystals is just the well-known Hixson-Crowell result153

originally obtained by integrating the Brunner-Tolloczko equation (or, equivalently,

the Nernst-Brunner equation with DCs/δ held fixed) assuming a uniform spherical

surface that decreases with time in proportion to w2/3, where w is the weight of the

crystal. We note that a square root law has been obtained empirically by Niebergall

and Goyan,156 but this is unlikely related to the tablet expression obtained here.

Diffusion controlled assumptions have also been used to obtain two-thirds157,167 and

square root167 laws.

We tested all suggested rate laws by attempting linear least squares fits to

the dissolution profiles. The initial and final portions of the dissolution profiles were

removed from the fit as they constitute a deviation from the laws. The goodness

of fit parameters R2 are given in Table 6.3. Results for a two-thirds root law are

also included since this model is sometimes used in analysis of experimental data.

From Table 6.3 we see that even though for some crystal shapes (sphere and tablet)

the best fits correspond to the rate laws derived above, in general the differences

amongst the goodness of fit parameters are not large enough to draw any firm

conclusions. Essentially, different power laws can fit a particular dissolution profile

nearly equally well, and profiles on much longer time scales would be necessary to

make meaningful distinctions.

We can also easily check to see if a diffusion layer can reasonably explain the

observed dissolution rates. By calculating the ∆N/∆t in for the spherical crystal

in the fixed rate regime (at ≈ 200 ns), we estimate the dissolution rate dN/dt ≈

−2.36 × 10−3 ions ps−1. If a diffusion layer is rate determining, then dN/dt =

−D ∗ S ∗ Cs/δ, and for our model Cs ≈ 3.29 ions nm−3, S at ≈ 200 ns (assuming
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R2 values for the rate laws

Sphere Cube
linear 0.98873 0.99846

cube root 0.99738 0.99291
square root 0.99598 0.99635

two thirds root 0.99407 0.99838
Rod Tablet

linear 0.98962 0.98798
cube root 0.99775 0.99805

square root 0.99808 0.99885
two thirds root 0.99679 0.99733

Table 6.3: Goodness of fit parameters R2 obtained for different rate laws. The best
fits are indicated in bold.

spherical geometry) is 58.08 nm2, and at saturation we obtain D+ ≈ 0.36×10−3 and

D− ≈ 0.42× 10−3 nm2 ps−1. This means that the thickness of the diffusion layer δ

would need to be ∼ 29 nm in order to explain the observed dissolution rate. This is

obviously much too thick to be physically relevant, since it greatly exceeds the size

of our crystal (radius ∼ 2 nm) and system. The ion density as a function of distance

from the crystal center at ∼ 300 ns is shown in Fig. 6.9, and it is obvious that the

ion density in solution is nearly uniform and considerably less than that implied by

Cs, except possibly for a very narrow region near the crystal surface. Therefore, the

diffusion layer model clearly does not apply to NaCl dissolution.

Rapid Dissolution

Dissolution profiles (Fig. 6.3) show that in the final stage of crystal disso-

lution there is a sharp increase in the rate at which ions are lost to solution. The

crystal becomes very unstable and disappears rapidly once it has been sufficiently

reduced in size, in all likelihood due to the decreased lattice energy of the small crys-
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Figure 6.9: Radial ion density profile starting from the center of a spherical crystal
at 300 ns. The dashed horizontal line in the inset indicates the density at saturation.
The calculated radius of the crystal is ∼ 2 nm, and a concentration gradient (that
could be related to a diffusion layer) is not observed.

tal. The dissolution profiles indicate that the onset of increased instability occurs

when the crystal contains ∼ 200 ions.

A closer view of the final stage of dissolution of the spherical crystal is pro-

vided by the snapshots shown in Fig. 6.10. We see that the crystal holds its structure

down to ∼ 64 ions, then deforms and disintegrates completely when only ∼ 12 ions

remain. As one would expect, the onset of the final stage marked by increasing

instability is independent of the initial crystal size. For example, spherical crystals

initially containing 532 and 240 ion pairs also enter an instability region at ∼ 200

ion. A similar picture pertains for crystals of other shapes.

It is worth mentioning a possible connection to the opposite process of crys-

tal nucleation from supersaturated solution. For model NaCl solution, the critical

nucleus just above saturation is estimated to contain ∼ 75 ions,50 which is reason-

ably close to the size where the residual NaCl crystal becomes very unstable in the

dissolution process.
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Figure 6.10: Snapshots of the last stage of dissolution of the spherical crystal. When
the crystal reaches ∼64 ions, the structure begins to disintegrate. In the final
snapshot, water quickly penetrates the structure and breaks apart the remaining
crystal nucleus.

6.4.2 Concentration Effects

In order to confirm that the dissolution profiles discussed above correspond

to sink conditions and are not strongly influenced by increasing salt concentration,

dissolution simulations of the spherical crystal were carried out at three salt mole

fractions (calculated at complete dissolution), 0.0254, 0.0163, and 0.0127, keeping

all other conditions fixed. The dissolution profiles are shown in Fig. 6.11, and we

note that the results are very similar for 0.0163, and 0.0127, indicating that any salt

concentration effects are small, and we are indeed in the sink regime in these systems.

However, at the highest concentration considered, 0.0254, the dissolution rate clearly

slows down after the initial ∼ 120 ns. There are several possible explanations for the

observed concentration effect at the highest salt mole fraction, and it is interesting

to examine some possibilities in more detail.

One possible reason is ion reattachments. When the solution surrounding

the crystal reaches a certain concentration, one might expect some ions to reattach

to the crystal, hence slowing down the net dissolution rate. This possibility can

be eliminated by counting the number of detachments and attachments over time.
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Figure 6.11: Concentration effects on rate. Curves (a), (b), and (c) are for NaCl
mole fractions (calculated assuming complete dissolution of the entire crystal) of
0.0254, 0.0163, and 0.0127. Note that curve (a) shows a sharp decrease in rate at
∼120 ns, while there is no substantial difference between the profiles (b) and (c).

Figure 6.12 shows that the reattachments are approximately constant at a rate of

2 events/ns, while detachments show a sharp rate change at about 120 ns, corre-

sponding to the change in the dissolution profile noted above (Fig. 6.11). Since

there is no substantial variation in the attachment rate, reattachments are not re-

sponsible for the change in the dissolution rate. We further remark that since the

reattachment rate oscillates but does not increase with time (concentration), most

of the reattachments counted are likely due to ions at the crystal-solution interface

moving back and forth across the artificially sharp boundary introduced by our or-

der parameter. Another possibility is that the ions in solution change the properties

of the solvent, for example, by effectively “sequestering” a significant fraction of the

water molecules, hence reducing the dissolution rate. To isolate the effect of the

ions in solution on the dissolution rate, we took the system at 120 ns (before the

crossover) and simply removed the dissolved ions from the solution, while the par-

tially dissolved crystal was left in the system. This procedure completely removed
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Figure 6.12: Detachment and reattachment events for the spherical crystal. Dur-
ing the course of dissolution, the detachment rate systematically slows while the
attachment rate remains substantially constant.

the crossover in the dissolution rate, confirming that the drop in rate is caused by

the presence of ions in solution, and not by any change in the crystal.

6.4.3 Temperature Dependence and Activation Energy

We would expect ion detachment to be an activated process, and in order

to estimate the activation energy dissolution simulations of spherical crystals (∼

1256 ion pairs) were carried out at three temperatures, 300, 320, and 340 K. Rate

constants are found by fitting the cube root law [Eq. (6.2)] in the fixed rate law

regime (i.e., eliminating the initial and final regions of the dissolution profiles).

Excellent linear fits are obtained as shown in Fig. 6.13. The rate constants obtained

follow the Arrhenius equation (Fig. 6.14)

ln(k) = ln(A)− Ea/RT , (6.6)
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Figure 6.13: Fits to the cube root law for the spherical crystal at temperatures of
300, 320 and 340 K.

Figure 6.14: Fits to the Arrhenius equation of the rate constants obtained for the
spherical crystal at 300, 320, and 340 K. Error bars represent one standard deviation
of uncertainty.
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giving an activation energy of 33.46± 1.46 kJ mol−1 (SD).

The standard deviation in the activation energy quoted above and those

included as error bars in Figure 6.14) were estimated as follows. The trajectories

obtained for the three temperatures considered were divided into four equal parts

(time slices), and rate constants for each part were obtained by fitting to the cube

root law (eq. 6.2). The four different estimates were then used to obtain the

error bars shown in Figure 6.14. Similarly, by fitting the four different sets of rate

constants to the Arrhenius equation, four estimates of the activation energy were

obtained and used to estimate the standard deviation in the activation energy.

6.5 Summary and Conclusions

Molecular dynamics simulations were employed to examine in detail the

dissolution of NaCl nanocrystals of different shape. Specifically, cubic, spherical,

tablet-like and rod-like crystals were considered with the dissolution carried out

under so-called sink conditions, where the solution is always very dilute compared

to saturation. In all cases, dissolution was found to occur in three distinct stages.

Initially, the more exposed and/or most weakly bound ions are quickly detached

from the crystal. The initial crystal shape greatly affects the first stage as it mainly

involves ions at edges and corners. After the rapid initial period, the crystals take

on solvent-annealed shapes (cubic crystals become nearly spherical and rods and

tablets roughly cylindrical) that persist until the final stage of dissolution. During

the long intermediate stage the dissolution appears to closely follow a fixed rate law.

In the final stage (. 200 ions) the crystal becomes very unstable and dissolves at

an ever increasing rate until it disappears.
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In the intermediate fixed rate law regime, the dissolution process is well de-

scribed by assuming that the rate is proportional to an active surface area from which

the ions are preferentially detached. For the solvent-annealed cubic and spherical

crystals the active area is the entire spherical surface, and we obtain the classical

cube root law often employed in dissolution studies of macroscopic crystals, assuming

a spherical shape. We show that the cube root law also provides a good description

of the nanoscopic crystals considered here in the intermediate stage. We also show

that ion detachment from the surface, and not the existence of a Nernst-Brunner

diffusion layer,149,154,155 is the rate determining step in the dissolution process for

NaCl. For the spherical crystal, simulations were done at three temperatures and

the rate constants, determined by fitting to the cube root law, closely follow the

Arrhenius equation, giving an activation energy of ∼ 33.5 kJ mol−1.

After the initial stage, both the tablet-shaped and rod-shaped crystals have

acquired roughly cylindrical shapes, and we observed that ions did not leave uni-

formly over the entire surface area for these geometries. Rather, for the annealed

tablet and rod we identified the active surface areas to be the cylinder walls, and the

cylinder base, respectively, giving a square root law for the tablet and a linear law

for the rod. These rate laws give good fits to the dissolution profiles, but the total

dissolution times for the nanocrystals considered here are not long enough to make

clear, unambiguous distinctions amongst the different rate laws. Nevertheless, our

simulations show that, apart from the initial and final stages of dissolution, models

of the classical type give a good description of the dissolution of NaCl nanocrystals.
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Chapter 7

Summary and Conclusions

7.1 Summary

The microscopic mechanism of nucleation is still largely unknown because

the high temporal and spatial resolution needed to observe the process is difficult to

reach using current experimental techniques.32 A considerable body of research has

been conducted using molecular simulation that, thanks to the availability of parallel

computational power, can be used to model nucleation for a range of compounds of

scientific and industrial interest.32 In this thesis, we investigated different aspects of

nucleation using alkali halide salts as a model, and designed data analysis techniques

able to better exploit the results produced by molecular dynamics simulations.

In Chapter 2, the key algorithms and methods of molecular dynamic sim-

ulations are introduced, as well as the models used to represent alkali halides in

aqueous solutions.

Chapter 3 describes an investigation of nucleation of NaCl from aqueous

solution. We found that NaCl nucleation is observable within simulation timescales
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(10 to 200 ns), at 300 K and 1 bar, starting from a solution at about twice the

saturation concentration for the model. A major challenge to the investigation of

the early stages of nucleation was the lack of a reliable method to detect small

clusters in solution. To address this issue, we developed a novel three-step method

to detect cluster formation, and follow cluster evolution over time. Thanks to the

new methodology, it was possible to collect and monitor several properties of the

large number of clusters that continuously form and disappear from solution.

By analyzing a variety of cluster properties we showed, for the first time

by direct measurement, that the lifetime and probability of nucleation of a cluster

depend not only on size, but also on the specific geometrical arrangement of the

cluster. The importance of this result lies in its contrast with the common CNT

assumption that the probability of nucleation depends only on cluster size. A way

to extend CNT to include structural effects could be the addition of a structure

dependent free energy in the exponential term of the nucleation rate. It is also useful

to notice that factors such as geometrical arrangement are not merely surrogates of

surface tension, as they do not scale with surface area.

In Chapter 4 we investigated crystallization from the melt of the TF and JC

models for lithium halides, partially to assess their probable behavior in simulations

of crystallization from aqueous solutions. We found that the TF model incorrectly

predicts the wurtzite crystal structure as the stable structure for lithium salts, while

the more recent JC model reproduces the correct (rock salt) stable crystal structure

for LiF and LiCl, but not for LiBr and LiI. Furthermore, we found that the wurtzite

crystal structure is highly irregular in finite size crystals, and that this can be likely

attributed to surface rearrangements that are necessary to avoid the formation of a

surface dipole moment.
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In Chapter 5 we further explore crystal nucleation from solution focusing on

lithium fluoride. For the JC model, which has the correct rock salt crystal structure,

nucleation and growth can be observed only at high temperature and a high degree

of supersaturation. By measuring the growth rate at different temperatures we

found that growth requires a high activation energy, which is likely associated with

the high barrier required to remove water molecules from the first solvation shell

of an ion. While we couldn’t measure an activation energy for nucleation, it is

reasonable to assume that the activation energy for nucleation is equal to, or greater,

than the activation energy for growth. We also found that the structure of the

metastable solution is quite different from that observed for NaCl. In LiF solutions,

the metastable ionic clusters tend to be much shorter lived and less regular in shape.

Based on our observations, in supersaturated LiF aqueous solutions, a crucial

step to nucleation is the ability of an ion to lose at least part of its solvation shell

and join a cluster. In this system, the applicability of CNT is in question because

the mechanism seems to invalidate some of the foundational assumptions of CNT.

For example, the LiF supersaturated solution is characterized by the presence of

metastable ionic clusters, that, compared to those found in NaCl solutions, are

small and do not resemble the bulk crystal. Interestingly, these metastable species

increase in number at higher temperatures and, their formation likely constitutes a

necessary step to nucleation.

In Chapter 6, the dissolution of NaCl was investigated to gain insight into

the stability of finite size ionic crystals in water, and the dynamics of ion attachment

and detachment. It was found that NaCl dissolution can be modeled as a three-

stage process where the crystal initially loses ions around the edges, then follows

an essentially fixed dissolution rate law until it reaches a certain size (. 200 ions),
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where it becomes very unstable and quickly dissolves into solution. By measuring

the dissolution rate of NaCl at different temperatures, it was found that the process

is activated, with a barrier of ∼ 33 kJ mol−1. Additionally, we found that it is

possible to obtain rate laws from a simple expression involving the surface area of

the crystal.

7.2 Future Directions

Our results suggest that, in general, the mechanism of homogeneous nucle-

ation commonly assumed in CNT does not correctly model the species that precede

the formation of a critical nucleus. In the case of NaCl nucleation, we found that

size is not the only factor affecting nucleation, and geometric arrangement also influ-

ences the probability of nucleation, as well as the survival of prenucleation clusters.

Despite the influence of geometric regularity, the process observed resembles the

CNT process in that there is a distribution of clusters that stochasticly form or dis-

appear in solution, even though the clusters do not have the same properties as the

bulk phase, since they are mostly made of interfacial ions. The presence of small,

metastable clusters can be also seen as evidence of a multi-step nucleation process,

where the prenucleation clusters are intermediate species that convert to the bulk

phase as the cluster grows.

A mechanism that explains the data obtained from LiF simulations of Chap-

ter 5 is a process with two kinetic barriers. The first, is a barrier to cluster formation.

In order to form metastable clusters, it is necessary to surpass a barrier that appears

to be related to the solvent-solute interactions. The second barrier, is a nucleation

barrier that likely depends on cluster related properties (e.g. size, surface tension
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and crystallinity). Characterization of nucleation rates at different temperatures

(through simulation) could help probe the nature of the second barrier, and lead to

comparison, validation, and extension of multi-step nucleation theories.144,168

Further speculating, a compound where the barrier to generating prenu-

cleation clusters is very weak could have a behavior similar to that exhibited by

CaCO3,
25 where there is aggregation into an amorphous phase, followed by rear-

rangement into a crystal structure. Investigation on more limiting cases would be

useful in formalizing a theory that encompasses multiple nucleation mechanisms.

In this respect, a kinetic formulation involving multiple steps such as diffusion, de-

hydration, and aggregation would possibly constitute a more realistic model for

nucleation.

Model development for solute and solvent interactions is also of crucial impor-

tance. Models, in order to give realistic results in simulations of phase transitions,

should reproduce both solution and solid properties such as solubilities and lattice

energies. This is especially important for compounds that form hydrates (e.g. LiCl)

where a model that at least supports the correct stable structure at the pressure

and temperature of interest is necessary. Additionally, increasing attention should

be devoted to the study of finite-size structures since, as we have shown throughout

this thesis, crystallization nuclei can be very small and have different properties

than the bulk crystal phase.

As we have shown, by using medium- and large-scale molecular dynamics sim-

ulations combined with advanced data analysis techniques, it is possible to directly

observe individual nucleation events, degree of ion association, cluster lifetimes and

other properties of interest. More experiments are definitely needed to validate the

models and, while some work has been done for NaCl,29 a better coverage of simple
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compounds would be effective in evaluating the results obtained through molecular

simulation.

A combination of realistic models, experiments, and data analysis techniques

will ultimately lead to a better understanding of crystal nucleation and a refinement

of classical theories.
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Appendix A

Distribution of Various Properties

for Nucleated and Failed Clusters.

In Figures A.1 and A.2, distributions of various properties for nucleated and

failed clusters of size 10 and 30 are reported. A description of such properties is

given below:

• Average neighbor count is calculated by counting for each ion of the cluster

the number of neighbors within 0.6 nm. The counts are then averaged for every

ion in the cluster.

• Volume is approximated by encasing a cluster in a cuboid box, subdivided

into 32× 32× 32 grid points, and counting the number of grid points that are

inside of the cluster, the volume is obtained by multiplying this number by

the volume of the cell (Figure A.3). The radius that each ion covers is chosen

to be the ionic radius plus the solvent radius, according to the definition of

excluded volume.169

• Surface area is approximated by extracting the surface from the volumet-

ric representation described above using the marching cube algorithm,170 the

procedure is inspired by the work of Xu et al.171
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• Sphericity is the ratio of the surface area of a a sphere with equivalent volume

and the surface area of the cluster, and is defined as

π1/3 (6V )2/3

A
,

where V is volume and A is surface area. Its value is 1 when the object is

perfectly spherical and assumes lower values for less spherical objects. It is

often used to represent the compactness of a three dimensional object.

• Hydration is a measure of water content in the cluster and is calculated by

counting for each ion the number of water molecules within 0.3 nm, the counts

are then averaged over all the ions in the clusters.

• Radius of gyration is defined as

R2
g =

1

N

∑
a

(xa − x̄a)2,

where the sum is over the N ions in the cluster, xa is the position of the ion,

and x̄a is the geometric center of the cluster. It is commonly used as a measure

of compactness.

At size 30, the results are consistent with the intuition that more compact

clusters are favored for nucleation. Surface area, sphericity, and the radius of gy-

ration of nucleated cluster tend to assume values compatible with compact shapes.

The effect, however, is not noticeable at size 10, suggesting that those measures are

not sensitive enough to describe the fine structure of smaller clusters, and that these

aspects do not influence the early stages of nucleation.
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Figure A.1: Distributions of various properties for failed clusters (blue histogram) of
size 10. Clusters that achieved nucleation are indicated by single orange lines. Note
that the property values of the clusters that achieve nucleation are found around
the mean of the distribution.
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Figure A.2: Distributions of various properties for failed clusters (blue histogram)
of size 30. Clusters that achieved nucleation are indicated by single orange lines.
At this size, some preference for low radius of gyration, low surface area and higher
sphericity can be observed.
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Figure A.3: Two dimensional representation of the algorithm used to estimate the
volume. The cluster is encased in a grid, and the grid points that lie within the
cluster are represented in red.
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