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Abstract

In computer vision, scene parsing is the problem of labelling every pixel in an

image or video with its semantic category. Its goal is a complete and consistent se-

mantic interpretation of the structure of the real world scene. Scene parsing forms

a core component in many emerging technologies such as self-driving vehicles and

prosthetic vision, and also informs complementary computer vision tasks such as

depth estimation.

This thesis presents a novel nonparametric scene parsing framework for im-

ages and video. In contrast to conventional practice, our scene parsing framework

is built on nonparametric search-based label transfer instead of discriminative clas-

sification. We formulate exemplar-based scene parsing for both 2D (from images)

and 3D (from video), and demonstrate accurate labelling on standard benchmarks.

Since our framework is nonparametric, it is easily extensible to new categories and

examples as the database grows.

Nonparametric scene parsing is computationally demanding at test time, and

requires methods for searching large collections of data that are time and mem-

ory efficient. This thesis also presents two novel binary encoding algorithms for

large-scale approximate nearest neighbor search: the bank of random rotations is

data independent and does not require training, while the supervised sparse pro-

jections algorithm targets efficient search of high-dimensional labelled data. We

evaluate these algorithms on standard retrieval benchmarks, and then demonstrate

their integration into our nonparametric scene parsing framework. Using 256-bit

codes, binary encoding reduces search times by an order of magnitude and mem-

ory requirements by three orders of magnitude, while maintaining a mean per-class

accuracy within 1% on the 3D scene parsing task.
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This thesis presents original and independent research conducted under the guid-

ance of my supervisor, Dr. James J. Little. Parts of this thesis have been published

as follows.

Chapter 2. An early version of the nonparametric 2D scene parsing algorithm

CollageParsing was published in F. Tung and J. J. Little, CollageParsing: Nonpara-
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tended to the journal article F. Tung and J. J. Little, Scene parsing by nonparametric

label transfer of content-adaptive windows, Computer Vision and Image Under-

standing (CVIU), 143:191-200, 2016 [132]. I conceived the initial idea, developed
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for large-scale retrieval applications, IEEE Winter Conference on Applications of
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algorithm, and designed and executed the experiments described in this thesis. J.

Martinez contributed a training-based extension to the algorithm and additional ex-
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Chapter 1

Introduction

Human vision is fast and versatile. We rapidly recognize familiar faces and objects,

and process complex scenes around us at a glance. Giving machines the same

capacity to interpret still images and moving sequences is an ambitious endeavour,

yet one that has seen much progress in recent years. Computer vision as a field

encompasses a broad range of tasks, from low-level image acquisition to high-

level semantic recognition. Low-level computer vision is concerned with basic

image tasks such as image filtering [48, 148], edge or contour detection [2, 25],

and 3D reconstruction [89, 121]. High-level vision algorithms analyze images and

attempt to draw meaningful inferences about the real-world scenes. The goal of

high-level vision is to bridge the semantic gap [120]: the disconnect between the

raw pixel data and high-level semantics.

High-level semantic inferences about the scene imaged by a camera can be

made at different levels of abstraction. A traditional level of scene inference is

scene categorization, or naming [63, 119]. Scene categorization is concerned with

determining the general semantic category of a scene (e.g. forest, concert hall),

which can be useful for contextual object detection or image retrieval. Instead of a

basic category name, some applications such as guided image search [68] perform

inference at the level of nameable attributes (e.g. cluttered, rugged) [29, 79, 101].

Scene parsing performs high-level semantic inference at the pixel level [82, 127]:

the objective of scene parsing is to assign a semantic category label to every pixel

in an image or video.
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Figure 1.1: Sample output of our nonparametric scene parsing algorithm for
images (Section 2) on the SIFT Flow benchmark [82].

1.1 Scene parsing: task and motivation
Scene parsing is a fundamental problem in computer vision. It is concerned with

constructing a complete and consistent semantic interpretation of the structure of

the real-world scene. In other words, we wish to explain the entire real-world

scene in terms of its semantic components. In contrast to object categorization

[11, 99, 102], scene parsing does not assume the image contains a single dom-

inant object, as in product images [9] for example. Similar to object detection

[31, 41, 107], scene parsing is concerned with identifying spatially well-defined,

foreground objects of interest such as vehicles, but unlike object detection, scene

parsing is also concerned with recognizing amorphous background categories such

as grass or pavement. While the output of an object detection algorithm is typically

a set of bounding boxes around detected objects, the output of scene parsing is a

dense pixelwise labelling of the scene. Fig. 1.1 shows the 2D scene parsing output

for a sample image.

Scene parsing enables many practical applications. It is a core component in

emerging technologies such as prosthetic vision [54] and self-driving vehicles and

mobile robots [113, 135, 138]. Scene parsing is also used to inform complementary

computer vision tasks such as depth estimation [81], 3D scene reconstruction [46,

76], and urban modelling [22, 88].

Many factors make scene parsing a challenging task. Some challenges are

related to imaging: important components of a scene may be occluded, imaged un-

der non-uniform lighting conditions, or appear at different orientations and scales.
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However, another important factor is scalability: scene parsing is intrinsically chal-

lenging due to the breadth of possible foreground and background categories. The

operating range of categories depends on the application. For example, standard

scene parsing benchmarks for self-driving in urban environments focus on a small

set of relevant categories such as road, building, tree, sidewalk, fence, car, and

pedestrian [15, 113, 135]; in practice, the complexity of the self-driving task may

require finer-grained categories such as police officers directing traffic. For image

or video search, a broad vocabulary of dozens or hundreds of categories may be

required. In addition, each of these categories can exhibit significant intra-category

variation in visual appearance.

1.2 The role of big data
In the past several years, “big data” has transformed how we approach high-level

computer vision problems. The emergence and ongoing development of today’s

leading architecture for many recognition tasks, deep neural networks [72, 107],

has been enabled by the creation of massive labelled databases such as ImageNet

[111]. With unprecedented amounts of labelled training examples available for

tasks ranging from image classification [111] to 3D reconstruction [122], increas-

ingly complex models have been trained to achieve exciting new recognition results

[51].

Most of the contemporary research in solving high-level vision problems has

adopted a strategy of improving and applying more sophisticated classification

models. For example, most methods for scene parsing learn domain-specific clas-

sification models to discriminate between different categories of pixels or voxels

[28, 77, 113, 135, 138]. A model may be trained to distinguish a tree voxel from

a voxel of a car, road, building, or any other category in a pre-defined set of cat-

egories. Such methods are said to be parametric: they involve constructing com-

pact models of the categories of interest, in which the parameters of the models are

learned from training examples. Inference on new inputs is performed by evaluat-

ing them against the learned models. While there has been much work in leveraging

big data for training powerful parametric models, another complementary way to

leverage big data for computer vision has been largely underexplored. Nonpara-

3



metric methods are data-driven instead of model-driven: inference on new inputs

is performed by directly comparing them to similar examples in the data. Lever-

aging big data for search allows for the development of powerful exemplar-based

algorithms for visual recognition.

Why might a nonparametric, search-based approach to scene parsing be useful?

Nonparametric approaches are database driven and do not require expensive train-

ing of category models. They can be easily extended to new semantic categories

as the database grows: a new semantic category can be added to the database with-

out having to learn how to distinguish it from all previously learned categories.

Consequently, nonparametric scene parsing is scalable to an online growth in the

database. This scalability can be useful in embedded applications, such as the addi-

tion of new mapped environments to a self-driving vehicle, as well as in web-scale

applications, such as the addition of new user contributions to an open-universe

database (e.g. LabelMe [112]). An open-universe database is one in which users

can continually add new images, annotations, or other content.

From a theory perspective, there are several reasons why nonparametric ap-

proaches are worth studying. Stone [123] proved that, in finite dimensions, the k-

nearest neighbour classifier is universally consistent: as the number of data points

increases, its risk converges to the Bayes risk, for all probability distributions on

the joint input-output space. Hence, nonparametric approaches are sufficient to

solve any learning problem given enough data. Fixed-size deep neural networks

do not share a similar theoretical guarantee, though they can achieve good prac-

tical performance with less data by exploiting the problem structure. In addition,

nonparametric approaches are easy to interpret: it is straightforward to trace the ef-

fects of changes in the input domain to the output domain. It is also easy to explain

why nonparametric approaches make the predictions they do. On the other hand,

the behaviour of deep neural networks is still not fully understood. For example,

Szegedy et al. [125] showed that a small, imperceptible perturbation in the input

to a deep neural network can induce the network to output an arbitrary incorrect

classification label. Such “adversarial examples” can be constructed for practically

any input, suggesting that deep neural networks have “intrinsic blind spots, whose

structure is connected to the data distribution in a non-obvious way” [125].

Nonparametric search and deep learning classification are by no means mu-
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tually exclusive; rather, the two approaches are complementary and can often be

combined to achieve performance superior to either approach by itself. The novel

scene parsing algorithms presented in this thesis leverage the strengths of deep

learning features within a nonparametric search-based framework. In the other

direction, researchers have leveraged advances in large-scale search to accelerate

deep neural network frameworks [142].

1.3 Nonparametric scene parsing
Scalable nonparametric approaches to classic computer vision problems have been

demonstrated in web-scale studies by Torralba et al. [129] and Hays and Efros

[47]. Torralba et al. constructed a database of 80 million tiny (32x32) images

from the web following the WordNet lexical dictionary [30], and demonstrated

that the massive scale of the database enables effective object and scene classifica-

tion using simple nonparametric matching techniques, despite the low resolution

of the images. Scene completion, or inpainting, refers to the task of synthesizing

missing parts of an image such that the output image is semantically consistent

and visually plausible. Hays and Efros [47] proposed a nonparametric scene com-

pletion algorithm that draws on a database of two million unlabelled scenes to

generate potential image completions. Later, Ordonez et al. [98] collected one mil-

lion human-captioned photos from the web to develop a nonparametric approach

for automatic image captioning. These studies demonstrate that high-level vision

tasks can be approached by combining principled nonparametric search with large,

semantically-annotated databases of images.

Although scene parsing is a well studied problem in computer vision, it is only

in recent years that nonparametric solutions have been proposed. Liu et al. [82]

were the first to adopt a search-based approach to scene parsing. Given a query im-

age, Liu et al.’s ‘label transfer’ algorithm finds the image’s nearest neighbors in a

database of scenes annotated with semantic labels, warps the neighbors to the query

image using SIFT Flow [83], and transfers the annotations from the neighbors to

the query image using a Markov random field defined over pixels. A Markov ran-

dom field (MRF) is a probabilistic graphical model that is often used to solve dis-

crete labelling problems. More recent nonparametric scene parsing algorithms per-
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Building Vegetation Car Road
Wall/fence Pavement Pole

Figure 1.2: Sample output of our nonparametric 3D scene parsing algorithm
for video (Section 3) to a depth of 25 metres on the KITTI labelled
benchmark [38].

form label transfer at the level of superpixels [26, 91, 118, 127]. Superpixels offer a

higher level of perceptual abstraction than pixels, enabling more efficient inference

in a random field model. Large, cohesive groups of pixels can be labelled at once.

However, while superpixel-based methods tend to perform well on large regions of

background categories (sometimes referred to as ‘stuff’ in the literature [52]), they

tend to perform less effectively on foreground object categories (‘things’). Though

better than pixels, superpixels are still a relatively low-level unit for label transfer,

and they tend to fragment objects.

1.4 Contributions
In this thesis, we first demonstrate that nonparametric scene parsing of 2D im-

ages can be improved by performing label transfer at a higher level of percep-

tual organization than superpixels. We propose an algorithm called CollageParsing

that performs label transfer at the level of object proposals [1, 151], which un-

like superpixels, are designed to preserve entire objects instead of fragmenting

them. Performing label transfer using object proposals enables the construction of

a more effective Markov random field unary potential than previous approaches.

The name ‘CollageParsing’ refers to the collage-like unary potential computation,

which accumulates evidence from overlapping proposal windows, and derives from

the name of Tighe and Lazebnik’s landmark ‘SuperParsing’ algorithm [127], which

performs superpixel-based scene parsing.

Furthermore, we propose the first nonparametric method for 3D scene parsing
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of video. In 3D scene parsing of video, we are interested in reconstructing a 3D

model of the scene from video data, and densely labelling the reconstructed scene

with a set of semantic categories. A densely labelled 3D reconstruction has appli-

cations in autonomous navigation [113, 135, 138] as well as in urban modelling

[22, 88, 108]. Many applications require the 3D reconstruction and labelling to

be performed online: that is, using only sensory data that has been observed so

far by the platform, as opposed to offline labelling, in which the entire video se-

quence may be loaded for post-analysis. We describe a novel method for online 3D

scene parsing of video that is nonparametric and easy to scale. Fig. 1.2 visualizes

a sample result.

In general, nonparametric algorithms in computer vision are expensive in terms

of both memory and test time requirements. Nonparametric approaches are mem-

ory intensive due to the need to store the large labelled database in memory, and

time intensive since this large database must be searched at test time. To enable ac-

curate nonparametric scene parsing, millions of local feature descriptors may need

to be efficiently stored and searched. Hence, an important question demands our

attention: how can we search “big data” efficiently while maintaining economy of

storage?

One highly successful approach to efficient large-scale retrieval is compact bi-

nary encoding (or hashing) [43, 74, 95, 114, 143]. The idea is to encode each

database feature vector into a short binary signature (or binary code) using a gen-

erated projection matrix. Given a novel feature vector as a query, the query is

similarly projected into a binary code and compared to the binary codes in the

database. Binary encoding is time-efficient because binary code distances can be

computed quickly using bit operations. In particular, the Hamming distance be-

twen two binary codes can be computed by taking an XOR and counting the ones,

which is an operation supported directly in modern hardware. Binary encoding is

also memory-efficient because the generated binary codes are typically at least an

order of magnitude more compact to store than the original features. We propose

two new methods for large-scale search based on binary encoding. The bank of

random rotations method is data-independent and does not require re-training as

the database grows over time. The supervised sparse projections method specif-

ically targets search in high dimensions and enables faster encoding at test time.
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We demonstrate the effectiveness of these methods on standalone retrieval datasets,

and also study their integration into our scene parsing framework.

In summary, this thesis makes the following contributions:

• A novel nonparametric algorithm for 2D scene parsing of images. In contrast

to traditional nonparametric scene parsing methods that perform matching

on the level of pixels or superpixels, we obtain higher labelling accuracy by

integrating information from overlapping object proposals.

• A novel nonparametric algorithm for online 3D scene parsing of video. Our

method constructs a semantically labelled 3D reconstruction of the environ-

ment in an online manner, building on the principles underlying our 2D scene

parsing work.

• A demonstration of how deep learning features can be used in a nonpara-

metric label transfer setting for the first time, and an experiment providing

a positive test case that it is the learned features rather than other aspects of

deep learning that are most important for scene parsing performance.

• Two novel binary encoding algorithms for large-scale nonparametric search.

The first algorithm is data-independent and easily scalable to new exam-

ples and categories. The second algorithm is supervised and targets high-

dimensional feature vectors such as the proposal descriptors in our scene

parsing framework.
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Chapter 2

Nonparametric 2D Scene Parsing
of Images

In this chapter, we are interested in the task of assigning a semantic class label to

every pixel in a single RGB image (Fig. 1.1). We would like to explain the entire

image, including both foreground objects of interest and background elements.

Foreground objects are typically compact objects with well-defined boundaries,

sometimes referred to as ‘things’ in the literature [52]; examples include cars and

people. Background elements are often amorphous in shape or defined by texture,

sometimes referred to as ‘stuff’; examples include grass and mountain.

With few exceptions, the dominant paradigm today for approaching recogni-

tion problems in computer vision is that of parametric, discriminative classifica-

tion (see Section 1.2 for a discussion). For example, we can learn discriminative

classifiers to recognize airplanes or motorbikes in images, or to distinguish a tree

pixel from a pixel of a car, road, or building. On the other hand, a nonparamet-

ric, search-based approach to scene parsing attempts to label the query image by

matching parts of the image to similar parts in a large database of labelled images.

Typically, the problem is formulated within a Markov random field framework in

which unary potentials are computed by nearest-neighbor search. Intuitively, labels

are ‘transferred’ from exemplars in the database to the query image.

State-of-the-art nonparametric scene parsing algorithms perform label transfer

at the level of pixels or superpixels [26, 82, 91, 118, 127]. Superpixels offer a
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higher level of perceptual abstraction than pixels, enabling more efficient inference

in a random field model. Large, cohesive groups of pixels can be labelled at once.

However, while superpixel-based methods tend to perform well on large regions of

background (‘stuff’) categories, they tend to perform less effectively on foreground

object (‘thing’) categories. We argue that, though better than pixels, superpixels are

still a relatively low-level unit for nonparametric label transfer. Superpixels tend

to fragment objects. Is it possible to perform label transfer at a higher level of

organization?

This chapter presents a novel nonparametric algorithm, called CollageParsing,

for 2D scene parsing of images. In contrast to conventional nonparametric scene

parsing methods that perform matching on the level of pixels or superpixels, we ob-

tain higher labelling accuracy by integrating information from overlapping object

proposals [1, 151]. Object proposals provide a higher level of perceptual organiza-

tion than superpixels, and unlike superpixels are designed to preserve entire objects

instead of fragmenting them. Performing label transfer using object proposals en-

ables the construction of a more effective Markov random field unary potential than

previous approaches. On a standard benchmark [82] consisting of outdoor scenes

from the LabelMe database [112], CollageParsing obtains state-of-the-art perfor-

mance with 15 to 19% higher average per-class accuracy than recent nonparametric

scene parsing algorithms.

2.1 Related work

2.1.1 Markov random fields in scene parsing

Markov random fields (MRFs) have been applied in a broad range of computer

vision tasks, and have seen widespread adoption among methods for scene parsing.

An MRF is a probabilistic graphical model that is often used to solve discrete

labelling problems. We can think of an MRF as defining an energy (or cost) over

a graph of random variables reflecting how good or bad a particular labelling is.

Each random variable can be assigned a particular discrete label. The MRF energy

is composed of potential functions defined over cliques of conditionally dependent

random variables, typically singletons and pairs (unary and pairwise potentials,
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respectively). A conditional random field (CRF) is an MRF in which the potentials

are conditioned on observation variables.

Scene parsing lends itself naturally to formulation in an MRF framework, with

random variables corresponding to image pixels or superpixels, and assignments to

those random variables producing an image labelling. Shotton et al.’s TextonBoost

framework [115] consists of a CRF with shape-texture, color, and location unary

potentials and contrast-sensitive pairwise potentials. The shape-texture unary po-

tential uses a boosted classifier of rectangular filter responses on texton maps.

Rabinovich et al. [103] incorporated object class co-occurrences in the pairwise

potential term of a CRF model. Kohli et al. [66] introduced a higher-order poten-

tial that encourages pixels within a segment to share the same label. The authors

showed that approximate inference in a CRF augmented with their higher-order

potential can be performed efficiently using graph cuts. Ladický et al. [77] pro-

posed a hierarchical CRF model in which potentials at multiple spatial scales are

combined; scales in the hierarchy correspond to pixels and superpixels at varying

granularities. Later, Ladický et al. [78] also introduced a higher-order potential

over label co-occurrences that can be efficiently approximately minimized using

graph cuts. The potential is designed to be invariant to the number of pixels as-

signed to a label and to encourage parsimony. Boix et al. [12] proposed a two-level

hierarchical CRF model in which the global node in the hierarchy can be assigned

a set of labels instead of a single label. “Harmony” potentials between local nodes

and the global node encourage local nodes to take on labels in the global node’s set

of labels. A thorough treatment of MRFs in computer vision can be found in the

survey of Wang et al. [139].

Our proposed CollageParsing algorithm is formulated in an MRF framework,

and introduces a novel and effective computation of unary potentials by nonpara-

metric label transfer of overlapping object proposals.

2.1.2 Nonparametric scene parsing

Liu et al. [82] developed the first nonparametric, search-based approach to scene

parsing. Given a query image, Liu et al.’s ‘label transfer’ algorithm finds the im-

age’s nearest neighbors in a database of scenes annotated with semantic labels,
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warps the neighbors to the query image using SIFT Flow [83], and transfers the an-

notations from the neighbors to the query image using an MRF defined over pixels.

Tighe and Lazebnik’s landmark SuperParsing algorithm [127] builds an MRF over

superpixels instead of pixels. Label transfer is performed by matching superpixels

in the query image with similar superpixels in the query’s nearest neighbor images.

The nonparametric label transfer can be combined with additional parametric ge-

ometry classification (sky, vertical, horizontal) to improve labelling consistency.

Since the introduction of SuperParsing, other effective superpixel-based non-

parametric scene parsing algorithms have been developed. Eigen and Fergus [26]

learned weights for each descriptor in the database in a supervised manner to re-

duce the influence of distractor superpixels, and augmented the retrieved set of

neighbor superpixels with examples from rare classes with similar local context.

Myeong et al. [91] applied link prediction techniques to superpixels extracted from

the query image and its nearest neighbors to learn more effective pairwise poten-

tials. Singh and Košecká [118] applied a locally adaptive nearest neighbor tech-

nique to retrieve similar superpixels, and refined the retrieval set of query image

neighbors by comparing spatial pyramids of predicted labels.

Instead of computing the set of nearest neighbor images at test time, the Patch-

MatchGraph method of Gould and Zhang [44] builds offline a graph of patch cor-

respondences across all database images. Patch correspondences are found using

an extended version of the PatchMatch algorithm [8] with additional “move” types

for directing the local search for correspondences.

CollageParsing belongs to this general family of nonparametric scene parsing

approaches, and we compare to this prior body of work in the experiments.

2.1.3 Parametric scene parsing

Besides the traditional MRF approaches in Section 2.1.1, many recent success-

ful methods employ parametric strategies. Farabet et al. [28] developed a scene

parsing algorithm combining several deep learning techniques. Dense multi-scale

features are computed at each pixel and input to a trained neural network to obtain

feature maps. Feature maps are aggregated over regions in a hierarchical segmen-

tation tree. Regions are classified using a second neural network and pixels are
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finally labelled by the ancestor region with the highest purity score. Tighe and

Lazebnik [128] extended the SuperParsing algorithm [127] with per-exemplar de-

tectors (Exemplar-SVMs [86]). A superpixel-based data term is the same as in

SuperParsing. A detector-based data term is obtained by running the per-exemplar

detectors of class instances found in the retrieval set and accumulating a weighted

sum of the detection masks. The final unary potential over pixels is determined

by another SVM trained on the two data terms. Yang et al. [146] also proposed

a hybrid parametric superpixel-based algorithm. The retrieved set of neighbor su-

perpixels is augmented with a fixed (query-independent) set of examples of rare

classes. Rare class examples are extracted offline in a training phase; a class is

considered rare if it falls under the 20% ‘tail’ in the overall distribution of classes

in the database. Superpixel unary potentials are determined by a combination of

non-parametric matching and a parametric SVM classifier trained on the rare class

examples. Predicted labels are used to refine the retrieval sets of query image

neighbors and superpixel neighbors in a second pass through the labelling pipeline.

While the characteristics and assumptions of parametric approaches are differ-

ent from ours (see discussion in Section 1.2), we include parametric baselines in

the experimental comparisons for completeness.

2.1.4 Segmentation methods with overlapping regions

Pantofaru et al. [100] combined multiple image segmentations to create a map

of intersections-of-regions. Each intersection-of-regions is classified by averaging

over the category predictions of a learned region-based classifier on its constituent

regions. Li et al. [80] also formed intersections-of-regions (referred to as super-

pixels in their formulation) using multiple image segmentations. Intersections-

of-regions are aggregated into objects by maximizing a composite likelihood of

predicted object overlap with segments. In contrast, CollageParsing is formulated

in an MRF framework and operates on high-level object proposals instead of in-

tersections of regions generated by low-level image segmentation. CollageParsing

is also a nonparametric method, while Pantofaru et al. [100] and Li et al. [80] are

parametric methods.

Kuettel and Ferrari [73] proposed a figure-ground (foreground-background)
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segmentation algorithm that transfers foreground masks from the training images

by matching object proposals. Matching is independent of the global similarity be-

tween the test and training images. The transferred foreground masks are used to

derive unary potentials in a CRF. CollageParsing performs multi-class scene pars-

ing instead of figure-ground separation, and specifically matches windows from

globally similar images, which form the retrieval set. The retrieval set adds con-

text that is important for multi-class labelling and enables scalable label transfer

in large databases. The label transfer in CollageParsing is nonparametric, while

Kuettel and Ferrari [73] iteratively learns a mixture model of appearance to refine

the figure-ground segmentation.

2.1.5 Scene collage

Isola and Liu [58] proposed a similarly named ‘scene collage’ model and explored

applications in image editing, random scene synthesis, and image-to-anaglyph. In

contrast to CollageParsing, the scene collage is an image representation: it repre-

sents an image by layers of warped segments from a dictionary.

2.1.6 Object proposals

Detecting objects in images can be computationally expensive. A traditional slid-

ing window approach moves a window across an image and evaluates a trained

object classifier within each window [23, 31]. The process is repeated at multi-

ple scales and aspect ratios. Unfortunately, the sliding window approach spends

many computation cycles evaluating windows that have little chance of containing

objects – patches of background texture, for example. As a result, sliding win-

dow detectors can be slow, limiting their feasibility for real-time applications or

restricting the complexity of the underlying trained classifier.

Object proposal algorithms have been developed to address this inefficiency

[1, 3, 16, 20, 27, 70, 87, 136, 151]. Object proposal algorithms attempt to extract

a small number of candidate windows (on the order of thousands) to be evaluated

by the trained object classifier. Object proposal algorithms are designed such that

the proposal windows have high probability of containing objects of any category.

Object proposals are a key component in leading large-scale object detection algo-
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rithms such as R-CNN [41] and its extensions [40, 107].

Alexe et al. [1] first defined the ‘objectness’ of an image window as the like-

lihood that the window contains a foreground object of any kind instead of back-

ground texture such as grass, sky, or road. Objects often have a closed boundary, a

contrasting appearance from surroundings, and/or are unique (salient) in the image.

Alexe et al. proposed an objectness measure integrating multiscale saliency, color

contrast, and superpixels straddling cues. The multiscale saliency cue is a mul-

tiscale adaptation of Hou and Zhang’s visual saliency algorithm [56]. The color

contrast cue measures the difference between the color histograms of the window

and its surrounding rectangular ring. The superpixels straddling cue measures the

extent to which superpixels straddle the window (contain pixels both inside and

outside the window). Windows that tightly bound an object are likely to have low

straddling.

Since the introduction of ‘objectness’ many effective methods have been pro-

posed for generating object proposals. Van de Sande et al. [136] proposed selective

search, in which object proposals are generated using a hierarchical segmentation

process that greedily merges similar segments until a single segment remains. All

generated segments, or their bounding boxes, become candidate windows. Multi-

ple segmentations are performed in color spaces with different sensitivities to shad-

ows, shading, and highlights. Arbelaez et al.’s multiscale combinatorial grouping

[3] also uses hierarchical segmentation. Multiscale combinatorial grouping gen-

erates proposals by considering singletons, pairs, triplets, and 4-tuples of regions

generated by a multiscale hierarchical segmentation algorithm. Proposals are fur-

ther refined using a random forest regressor trained on size, location, shape, and

contour strength features. Manen et al. [87] generated object proposals by growing

random partial spanning trees on a graph defined over superpixels. Edge weights

encode the probability of two adjacent superpixels belonging to the same object.

The trees are grown using a randomized version of Prim’s algorithm that replaces

greedy edge selection with weighted sampling based on edge weights, and adds a

randomized stopping condition.

Another interesting approach to generating object proposals involves solving

multiple figure-ground (foreground-background) segmentation problems from dif-

ferent initial foreground seeds. Carreira and Sminchisescu [16] performed multiple
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foreground-background segmentations from initial seeds on a regular grid using

color features. A random forest regressor trained on mid-level appearance features

is used rank the proposals. Endres and Hoiem [27] selected initial seeds from a

hierarchical segmentation and estimated the affinities between superpixels using

multiple learned classifiers. The classifiers predict whether the region and seed

lie on the same object; whether a region lies on the left, right, top, or bottom of

an object; and whether a region is homogeneously foreground or background. A

structural learning method is used to rank the proposals based on overlap and ap-

pearance features. Krähenbühl and Koltun [70] computed geodesic distances be-

tween foreground seeds and background superpixels. Seeds can be chosen heuris-

tically or using a learned classifier. Geodesic distances refer to shortest paths over

a weighted graph of superpixels, in which edges are weighted by the probability of

boundary between superpixels. Proposals are derived from critical level sets in the

geodesic distance map.

Superpixel-based proposal methods are often sensitive to small changes in the

image content [55]. Some approaches forego superpixel segmentation entirely.

Cheng et al. [20] developed a fast method for generating object proposals based on

image gradients. Given an image window, gradient norms are aggregated in an 8x8

grid and the resulting 64-dimensional feature is scored using a learned linear SVM.

The computation can be accelerated by binarizing the linear model and normed

gradient features, allowing scores to be evaluated via fast bit operations. Zitnick

and Dollár [151] introduced the Edge Boxes algorithm, which generates object

proposals using edge cues: the objectness score of a window is determined by

the number and strength of edges wholly contained within the window. A fast

structured forest method [25] is used for edge detection.

Our CollageParsing algorithm makes use of object proposals, and a key novelty

is the computation of unary potentials by nonparametric label transfer on overlap-

ping object proposals. As described in Section 2.2.3, we compute object proposals

using the Edge Boxes algorithm [151].
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Figure 2.1: High-level overview of the CollageParsing scene parsing
pipeline. CollageParsing constructs a Markov random field over image
pixels and performs nonparametric label transfer at the level of object
proposals. Object proposals are designed to preserve objects instead of
fragmenting them. Each of the four components of the pipeline (blue
boxes) is described in Sections 2.2.2 to 2.2.5.

2.2 Algorithm description: CollageParsing
CollageParsing follows a common nonparametric scene parsing pipeline, in which

an MRF is constructed and nonparametric label transfer is used to determine unary

potentials. The CollageParsing pipeline is illustrated in Fig. 2.1. First, a short

list of the query image’s nearest neighbors in the database is formed using global

image features (Section 2.2.2). The short list is referred to as the retrieval set.

Next, object proposal windows are extracted from the query image (Section 2.2.3).

Unary potentials are then computed by matching these windows to similar object

proposal windows in the retrieval set (Section 2.2.4). The unary potentials are

combined with pairwise potentials, and approximate MRF inference is performed

to obtain a pixelwise labelling of the image (Section 2.2.5). We start by defining the

MRF model (Section 2.2.1) and then proceed to explain each stage of the pipeline

in turn.

2.2.1 Markov random field model

We adopt a Markov random field G = (V, E) defined over a dense pixel lattice,

where V is a set of nodes and E is a set of undirected edges. Let Xi be the ran-

dom variable associated with node i ∈ V . Xi can take on a label from the label

set L = {l1, l2, ..., lk}, corresponding to the vocabulary of semantic category la-
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bels. Denote by xi a realization or assignment of random variable Xi, and by

x ∈ L|V| the assignments of all random variables; that is, x represents a complete

labelling of the image. A clique c is a fully connected set of nodes in G. By the

Hammersley-Clifford theorem, the probability distribution p(x) over labellings is

a Gibbs distribution and can be expressed as

p(x) =
1

Z
exp

(
−
∑
c

ψc(xc)
)

(2.1)

where ψc(xc) are potential functions defined over cliques and Z is the normalizing

factor or partition function. Let E(x) denote the energy of the MRF, defined as

E(x) =
∑
c

ψc(xc) (2.2)

Then the maximum a posteriori (MAP) labelling is given by

x∗ = argmax
x∈L|V|

p(x) = argmin
x∈L|V|

E(x) (2.3)

MRFs in computer vision are often defined over unary and pairwise cliques because

of the availability of efficient approximate inference techniques. Following this

modelling practice, we arrive at an MRF energy composed of unary and pairwise

potentials:

E(x) =
∑
i∈V

ψi(xi) +
∑

(i,j)∈E

ψij(xi, xj) (2.4)

The main novelty of CollageParsing is in the computation of the unary potentials

by nonparametric label transfer of overlapping object proposals, which will be de-

scribed in detail in Section 2.2.4.

2.2.2 Forming the retrieval set

The standard first step in nonparametric scene parsing is the retrieval of database

images that are contextually similar to the query image. In addition to filtering

out semantically irrelevant database images that are likely to be unhelpful, a small

retrieval set makes nearest neighbor based label transfer practical on large datasets.
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Figure 2.2: Examples of image windows with high ‘objectness’, as computed
using Zitnick and Dollár’s Edge Boxes method [151]. In each image,
windows with the top ten objectness scores are shown. Images are from
the SIFT Flow dataset [82].

This coarse filtering step is typically performed using fast global image descriptors.

CollageParsing compares the query image to the database images using Gist [97]

and HOG visual words [82, 145]. The database images are sorted by similarity to

the query image with respect to these two features, and the K best average ranks

are selected as the retrieval set.

An assumption made in this step is that the retrieval set is sufficient for accurate

parsing of the query image. However, the coarse filtering could potentially discard

relevant exemplars, leading to poor matching during label transfer. Rare categories

are at particular risk of being under-represented in the pool of exemplars. We study

the effect of retrieval set size on accuracy later in the experiments (Section 2.3).

2.2.3 Computing object proposal windows

CollageParsing performs label transfer at the level of object proposal windows.

Since the original ‘objectness’ work of Alexe et al. [1], many algorithms have been

developed for generating object proposals (Section 2.1.6). In this chapter, we adopt

a state-of-the-art method called Edge Boxes.

Introduced by Zitnick and Dollár [151], the Edge Boxes algorithm generates

object window proposals using edge cues alone. The objectness score of a window

is determined by the number and strength of edges wholly contained within the

window. A fast structured forest method [25] is used for edge detection. Candidate
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windows for score evaluation are generated by a sliding-window search over posi-

tion, scale, and aspect ratio, with the step size parameterized by the target intersec-

tion over union (IoU). High-scoring windows are further refined by greedy iterative

search. Finally, a non-maximal suppression step parameterized by the target IoU is

performed. We use the publicly available implementation of Edge Boxes with the

default parameter values recommended in Zitnick and Dollár [151]. Fig. 2.2 shows

examples of proposals computed using the Edge Boxes algorithm.

2.2.4 Computing unary potentials

CollageParsing computes unary potentials by performing nearest-neighbor match-

ing on object proposal windows and transferring the category labels. Compared

with previous nonparametric scene parsing methods, label transfer is performed

at a higher level of perceptual organization designed to preserve the integrity of

objects.

This matching requires a way to compare object proposal windows in the query

image with object proposal windows in the retrieval set. To this end, we generate

deep convolutional neural network features using the VGG CNN-M-1024 network,

which was demonstrated to provide high-quality features for object classification

in the experimental evaluation of Chatfield et al. [19]. To obtain the feature de-

scriptor for an object proposal window, we resize the cropped image window to

the canonical size required by the convolutional neural network, perform a forward

pass through the network, and take the 1024-dimensional response. We use Chat-

field et al.’s CNN-M-1024 network pre-trained on ImageNet as an off-the-shelf

feature extractor, without any fine-tuning on our scene parsing images. We ap-

pend the scaled, normalized spatial coordinates of the window centroid to produce

a final 1026-dimensional feature descriptor f , following the common practice of

spatial coding in object recognition [11, 90, 134], which encourages matches to

come from spatially similar regions in the respective images. To our knowledge,

this represents the first use of deep features in a nearest neighbor search setting for

scene parsing.

Let {W1,W2, ...Wm} denote the set of object proposal windows in the query

image. For each window, we search for its closest object proposal window in
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the retrieval set by matching the region descriptors f . Each object proposal win-

dow in the database has an associated ground-truth 2D label field L appropriately

cropped from the labelled database images. The search therefore produces a set

of label fields {L1, L2, ..., Lm}. We warp these retrieved label fields to match

the sizes of the query proposal windows, and denote the resized label fields by

{L′1, L′2, ..., L′m}.
Next, let {M1,M2, ...,Mm} denote label masks constructed from {L′1, L′2, ...,

L′m}. Each mask Mj is the size of the query image and is zero (null) everywhere

except within the corresponding object proposal window Wj , where it is populated

with the values of L′j .

The unary potential associated with assigning a category label l to pixel i is

then given by

ψi,l(xi) = −
m∑
j=1

δ[Mj(i) = l]φ(l) (2.5)

where δ[·] is the indicator function and Mj(i) is the value of Mj at location i,

which can be a category label or null. The term φ(l) is a weight that is inversely

proportional to the frequency of category label l in the retrieval set:

φ(l) =
1

freq(l)γ
(2.6)

where freq(l) denotes the number of pixels with category label l in the retrieval

set. Eq. 2.6 performs a softened inverse document frequency (IDF) re-weighting

to account for differences in the frequency of categories. The constant γ controls

the strength of the penalty given to high frequency categories, and as we show later

in the experiments, influences the tradeoff between overall per-pixel and average

per-class accuracy. After computing ψi,l for all categories and pixels in the query

image, all values are rescaled to be between -1 and 0.

Instead of constructing the label masks {M1,M2, ...,Mm}, the unary potential

computation is implemented more efficiently in practice by the accumulation of

unary factors [76]. Each of the m unary factors has a spatial extent over pixels

corresponding to an object proposal window in the query image. The jth factor

adds a single vote to each pixel within its spatial extent, for the corresponding
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Figure 2.3: Visualization of the computation of the unary potential ψi by la-
bel transfer. The contribution of one object proposal window in the
query image is depicted. The steps are explained in Section 2.2.4.

category label in L′j . Figure 2.3 illustrates matching and label transfer for a single

object proposal window Wj . Conceptually, the unary potential is accumulated in

an overlapping, collage-like manner by transferring the category labels from the

most similar object proposal windows in the retrieval set.

Fig. 2.4 visualizes the unary potential for three example query images from the

SIFT Flow dataset [82] after allm region proposals have been processed. Saturated

colors represent higher values of ψi,l.

2.2.5 Performing MRF inference

The unary potentialψi(xi) is combined in (2.4) with a pairwise potentialψij(xi, xj)

defined over pairs of adjacent pixels. In general, the pairwise potential in an MRF

imposes a smoothness prior in the labelling. We adopt the same pairwise potential

term as in SuperParsing [127], which is based on the co-occurrences of category

labels:
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Figure 2.4: Visualization of the unary potential for three sample query im-
ages. Top row, from left to right: building, car, plant, sidewalk, and sky
categories. Middle row, from left to right: building, car, fence, person,
and road categories. Bottom row, from left to right: building, car, road,
sky, and tree categories.

ψij(xi, xj) = −λ log[(P (xi|xj) + P (xj |xi))/2]δ[xi 6= xj ] (2.7)

where λ is the MRF smoothing constant. Intuitively, this pairwise potential term

biases the labelling towards category transitions that are more frequently observed.

We minimize the MRF energy (2.4) approximately using α/β-swap, a standard

graph cuts technique [13, 14, 67]. A non-metric version of α-expansion [110]

could also be applied for faster inference. We report α/β-swap inference here to

be consistent with our journal publication [132], and because we will adopt an

entirely different and more powerful random field model and inference algorithm

when we extend the CollageParsing framework to 3D scene parsing of video in the

next chapter.

Finally, the labelling is spatially refined in a post-processing step by aligning

the labels to the query image’s superpixels. All pixels within a superpixel are

assigned the most common (mode) label in the superpixel. Following SuperParsing

[127], superpixels are extracted using the graph-based method of Felzenszwalb and
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Figure 2.5: Frequency counts of the semantic categories in the SIFT Flow
dataset

Huttenlocher [32]. Post-processing produces more visually pleasing results and has

only a small effect on labelling accuracy.

2.3 Experiments
We performed experiments on the SIFT Flow dataset [82], a scene parsing bench-

mark consisting of 200 query images and 2,488 database images from LabelMe.

Images span a range of outdoor scene types, from natural to urban. Pixels are

labelled with one of 33 semantic categories. The label frequencies are shown in

Figure 2.5.

Table 2.1 shows the experimental results and a comparison with recent non-

parametric and parametric approaches on this dataset. We set the retrieval set size

K = 400, γ = 0.4, and the MRF smoothing parameter λ to 0.01. We investigate

the effect of these parameters on the algorithm performance later in this section.

Both the overall per-pixel accuracy and the average per-class accuracy are reported.

Average per-class accuracy is a more reliable measure of how well the algorithm

performs across different categories and not just on the most commonly occurring

ones.

By performing label transfer at the level of object proposal windows, Col-

lageParsing obtains state-of-the-art labelling results on the benchmark. An early

version of CollageParsing using traditional HOG features and Alexe et al.’s object-
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Table 2.1: Overall per-pixel and average per-class labelling accuracy on the
SIFT Flow dataset [82]

Per-pixel Per-class

Nonparametric scene parsing methods

Liu et al. [82] 76.7 -
Gould and Zhang [44] 65.2 14.9
Tighe and Lazebnik [127] 77.0 30.1
Myeong et al. [91] 77.1 32.3
Eigen and Fergus [26] 77.1 32.5
Singh and Košecká [118] 79.2 33.8
CollageParsing 79.9 49.3
Parametric scene parsing methods

Tighe and Lazebnik [128] 78.6 39.2
Farabet et al. [28], “natural” 78.5 29.6
Farabet et al. [28], “balanced” 74.2 46.0
Yang et al. [146] 79.8 48.7

ness [1] already obtained a 7 to 11% improvement in average per-class accuracy

over superpixel based nonparametric approaches [26, 91, 118, 127]. By using off-

the-shelf deep features and the Edge Boxes method, the current version of Col-

lageParsing realizes gains of 15 to 19% average per-class accuracy in comparison

to recent nonparametric approaches.

Labelling performance is also comparable to or better than recent paramet-

ric methods, while not requiring expensive model training. For example, on the

LM+SUN dataset (45,000 images with 232 semantic labels), just the per-exemplar

detector component of Tighe and Lazebnik [128] requires four days on a 512-node

cluster to train. On a dataset of 715 images with eight semantic labels [45], Farabet

et al. [28] requires “48h on a regular server” to train. The bulk of our computation

time comes from feature extraction. Once features are computed, matching object

proposal windows and approximately solving the Markov random field by graph

cuts takes 10s in Matlab on a desktop. On average, 855 content-adaptive windows

are generated per database image using Edge Boxes, and the nearest-neighbor win-

dow matching and label transfer account for 8 of those 10 seconds.
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Figure 2.6: Effect of varying the retrieval set size K, the MRF smoothing
parameter λ, and γ on overall per-pixel accuracy and average per-class
accuracy on the SIFT Flow dataset.

Results are comparable to the hybrid parametric approach recently proposed

by Yang et al. [146], which achieves a large increase in average per-class accuracy

(nearly 18% compared to the authors’ baseline system) by augmenting the retrieval

set with examples from rare classes to improve rare class labelling. Interestingly,

this idea of ‘rare class expansion’ is complementary to our work and could be an

interesting direction for future investigation. However, from a nonparametric de-

sign perspective, ‘rare class expansion’ would make CollageParsing more difficult

to scale because as new images or categories are added to the database, the auxil-

iary set needs to be re-composed – both the selection of ‘rare’ categories and the

examples themselves.

Figure 2.6 shows the effect of varying γ, the retrieval set size K, and the MRF

smoothing parameter λ on the overall per-pixel and average per-class accuracy.

Similar to Tighe and Lazebnik [127], we observed that the overall per-pixel accu-

racy drops when the retrieval set is too small for sufficient matches, but also when
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Figure 2.7: Examples of scene parsing results with and without the spatial re-
finement post-processing step. From left to right: query image, labelling
without post-processing, labelling with post-processing.

the retrieval set becomes large, confirming that the retrieval set performs a filtering

role in matching query windows to semantically relevant database images. The

constant γ controls the strength of the penalty given to high frequency categories.

As γ increases, evidence for high frequency categories is discounted more heav-

ily, and labelling is biased towards rarer categories. As reflected in the figure, this

tends to increase the average per-class accuracy but at the expense of overall per-

pixel accuracy. The post-processing step of spatial refinement using superpixels

produces more visually pleasing results and has only a small effect on accuracy:

about 1% overall per-pixel accuracy and 0.1% average per-class accuracy. Fig-

ure 2.7 shows some examples of scene parsing results with and without superpixel

post-processing.

It can be difficult to interpret small differences in per-pixel accuracy between

scene parsing alternatives. When ground truth labellings are crowd-sourced from

a broad pool of users, with varying experiences and pre-conceptions about what

consitutes a correct labelling, it may be unclear if such differences are significant.

To address this common limitation in scene parsing evaluation, we additionally ex-

plored qualitative scene parsing results. Figure 2.8 shows some qualitative scene
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Table 2.2: Overall per-pixel and average per-class labelling accuracy on the
LM+SUN dataset [127]

Per-pixel Per-class

Nonparametric scene parsing methods

Tighe and Lazebnik [127] 54.9 7.1
CollageParsing 60.8 19.3
Parametric scene parsing methods

Tighe and Lazebnik [128] 61.4 15.2
Yang et al. [146] 60.6 18.0

parsing results, including query images, system predicted labellings for both Su-

perParsing [127] and CollageParsing, and ground truth labellings. We found Col-

lageParsing to perform well in a wide range of outdoor scenes, from natural (top) to

urban (bottom) environments. In comparison to SuperParsing [127], CollagePars-

ing more reliably detects smaller and rarer categories, such as the streetlight and

sign in the fourth row, the staircase in the fifth row, and the pedestrians and fence

in the sixth row.

We performed further experiments on a second, larger dataset. The LM+SUN

dataset [127] consists of 500 query images and 45,176 database images from the

LabelMe [112] and SUN datasets [145]. The dataset is complementary to SIFT

Flow in that it contains both indoor and outdoor scenes, while indoor scenes are

not represented in SIFT Flow. LM+SUN is annotated with a broad vocabulary of

232 semantic categories.

Table 2.2 shows evaluation results and a comparison with recent nonparametric

and parametric approaches. Since LM+SUN contains a larger number of images

and categories, we increased the retrieval set size K to 1600. The trade-off of γ

is shown in Fig. 2.9. LM+SUN is a challenging benchmark but CollageParsing

obtains encouraging results. An improvement of 6% per-pixel and 12% average

per-class accuracy is obtained relative to SuperParsing. Compared with state-of-

the-art parametric methods, a modest gain of 1% average per-class accuracy is

achieved (or 7% relative). Inference on LM+SUN is more time consuming than
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Figure 2.8: Examples of scene parsing results on the SIFT Flow dataset.
From left to right: query image, ground truth labelling, SuperParsing
[127] predicted labelling, CollageParsing predicted labelling.
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Figure 2.9: Varying γ to trade off overall per-pixel accuracy and average per-
class accuracy on the LM+SUN dataset

on SIFT Flow because of the increased retrieval set size and number of categories.

Once features are computed, matching and inference take approximately 3 minutes

in Matlab on a desktop, which is about half the runtime of Yang et al. [146] on this

dataset. No model training is required.

Figure 2.10 shows additional qualitative results on indoor scenes, which are

not represented in the SIFT Flow dataset. Similar improvements can be seen on

the indoor scenes as on the outdoor scenes presented earlier: in comparison to Su-

perParsing, CollageParsing is again more accurate for smaller and rarer categories,

as well as overall.
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Figure 2.10: Examples of indoor scene parsing results on the LM+SUN
dataset. Top left: query image; top right: ground truth labelling; bot-
tom left: SuperParsing [127] predicted labelling; bottom right: Col-
lageParsing predicted labelling.
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Chapter 3

Nonparametric 3D Scene Parsing
of Video

In this chapter, we extend CollageParsing to 3D scene parsing of video. We are

interested in semantically reconstructing the 3D scene imaged by a moving camera

in an online manner (Fig. 1.2). Our proposed algorithm is online in the sense that it

uses only sensory data that has been observed so far by the platform, as opposed to

offline semantic reconstruction, in which the entire video sequence may be loaded

for post-analysis. Online operation is required in many applications, including

self-driving vehicles and mobile robots [113, 135, 138].

As in 2D scene parsing, the dominant contemporary paradigm for performing

3D semantic reconstruction is that of parametric, discriminative classification (see

Section 1.2 for a discussion). This chapter presents, to our knowledge, the first

method to approach 3D semantic reconstruction non-parametrically. Our method,

called MF3D (Model-Free 3D), approaches 3D voxel labelling via search-based

label transfer. There is no explicit appearance model or trained classifier to decide

whether a 3D voxel should be labelled a particular class versus others. Instead,

MF3D searches over a database of labelled examples to determine how to best la-

bel a novel 3D voxel. MF3D uses several state-of-the-art techniques to obtain rich

representations of the local scene structure, and applies an intuitive label transfer

operation similar to CollageParsing to accumulate evidence for labels represented

in the database. This evidence is combined in a principled way via dense con-
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ditional random field (CRF) inference [69] to obtain a dense, online semantic la-

belling of the scene in 3D. We demonstrate that our model-free approach enables

accurate online 3D scene parsing while retaining scalability to new categories.

3.1 Related work
The problem of building a dense, semantically-labelled, 3D reconstruction of the

environment has generated broad research interest. Brostow et al. [15] were the first

to propose using structure from motion to inform scene parsing in video. Structure

from motion is used to obtain sparse 3D point clouds, from which several simple

features are extracted and input to a trained random forest classifier. The authors

demonstrated that these structure and motion features can be combined with ap-

pearance features to obtain more accurate results than either feature type by itself.

Sturgess et al. [124] combined Brostow et al.’s structure from motion features with

appearance features in a higher-order CRF model to perform scene parsing of road

scenes in video.

Instead of using structure from motion as a source of complementary features,

other techniques integrate 3D information directly into the scene parsing frame-

work. Xiao and Quan [144] developed an offline scene parsing algorithm for video

captured by a laterally-moving camera (e.g. curb-facing camera on a moving ve-

hicle). The authors construct an MRF over superpixels in the video, in which

superpixels from different frames are connected by pairwise potentials based on

structure from motion correspondences. Unary potentials are computed using a

boosted classifier trained on 2D appearance, height, and 3D geometry features.

Floros and Leibe [33] extended a hierarchical CRF scene parsing model [66, 77]

to video by introducing new potentials for temporal consistency. 3D scene infor-

mation is obtained by a point cloud reconstruction. A higher-order potential is

introduced that encourages projections of the same 3D point to be assigned the

same label. In addition, a 3D unary potential is added. Häne et al. [46] proposed a

joint 3D reconstruction and scene parsing framework that integrates class-specific

geometric priors based on surface normals. Sengupta et al. [113] obtained 3D se-

mantic reconstructions of street scenes by fusing the output of 2D scene parsing

[77] with 3D surface reconstruction from stereo images. Valentin et al. [135] de-
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veloped a mesh-based method in which depth estimates from RGB-D cameras or

stereo pairs are fused into a 3D mesh model and a CRF is defined over the mesh

faces. Unary potentials are computed using a cascaded classifier trained on ge-

ometry, appearance, and contextual features. The method is offline: the full 3D

mesh model is constructed once and then labelled. Riemenschneider et al. [108]

improved the efficiency of offline scene parsing by removing view redundancy and

reducing the number of sites requiring unary potential computation. Multi-view

reconstruction is used to obtain a 3D mesh model. For each triangle (face) in the

mesh, only the single predicted best view is used to compute the unary potential.

Triangles are also ranked and unary potentials are computed at only the top tri-

angles. Kundu et al. [76] combined sparse visual SLAM and 2D scene parsing

in a 3D CRF framework to infer semantically-labelled 3D scene structure with a

monocular camera. However, the projected 2D image labellings tend to be some-

what blocky or voxelated. Vineet et al. [138] proposed an online 3D scene parsing

method that combines large-scale 3D reconstruction with a novel handling of mov-

ing objects. Voxels corresponding to moving object classes (e.g. cars and people)

are allowed to update more quickly. A dense 3D CRF is constructed over voxels in

the current view. Unary potentials are computed by projecting 2D unary potentials

onto the voxels; 2D unary potentials are computed in image space using a random

forest trained on appearance and position features. Martinović et al. [88] parsed

building facades in 3D by performing point cloud labelling using a random forest,

inferring facade separations based on differences in the label structure, and enforc-

ing weak architectural rules such as alignment and co-occurrence (e.g. a balcony

must have at least one window above it).

Similar to this past work, we perform scene parsing in 3D. However, all of these

methods for 3D scene parsing involve the training of discriminative classifiers that

decide whether a pixel or voxel should be labelled a particular category versus

the others in a pre-defined set of categories. For example, a classifier may be

trained to distinguish a tree pixel versus a pixel of car, road, or building. To the

best of our knowledge, MF3D is the first method for 3D scene parsing of video

that is nonparametric. Our experiments confirm that a nonparametric search-based

approach can produce accurate 3D labelling results while retaining extensibility to

novel categories.
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3D semantic scene parsing is distinct from 3D object detection in that the aim

of scene parsing is to produce a fully labelled reconstruction, including both fore-

ground objects and background texture categories. However, 3D object detection

methods may employ similar reconstruction techniques: for example, Tateno et al.

[126] proposed an object recognition framework that builds on top of KinectFusion

reconstruction [92] and can localize pre-trained, fully 3D objects in clutter.

While our focus is on video sequences, 3D semantic scene parsing can also

be approached by other input modalities. Bláha et al. [10] proposed an adaptive

volumetric model for 3D scene parsing at a city scale based on aerial images. Their

volumetric model is hierarchical and the resolution is refined only near surfaces.

Given the point cloud scan of an entire building, Armeni et al. [4] parse the point

cloud into rooms and further parse the rooms into structural elements (e.g. walls,

ceiling) and furniture elements.

3.2 Algorithm description: MF3D
Fig. 3.1 illustrates the MF3D processing pipeline. MF3D takes as input a pair of

calibrated stereo RGB images. From this stereo pair, a disparity map is calculated

and depths are estimated for each imaged scene point. The estimated depths are

used to incrementally construct a 3D volumetric representation of the surroundings.

The 3D reconstruction is stored and indexed efficiently using voxel hashing. Next,

a nonparametric label transfer operation is performed in image space, in which cat-

egory labels from a database of labelled 2D images are transferred to the current

image by nearest neighbor matching. The label evidence is then projected into the

3D scene to form the unary potentials of a 3D CRF defined over voxels. The CRF

is solved in 3D using an efficient approximate inference algorithm to obtain the

current labelling of the 3D scene. The pipeline updates the labelled 3D reconstruc-

tion as new observations arrive (in other words, in an online manner), and does not

require knowledge of the entire video sequence. The following sections describe

each of these components in detail.
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(stereo pair)
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(geometry)

Update unary potentials 
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Solve 3D CRF

Figure 3.1: Overview of the MF3D processing pipeline for 3D scene parsing.
MF3D takes as input a pair of stereo RGB images, from which depth
and the current camera pose with respect to the 3D reconstruction are
estimated (Section 3.2.1). A label transfer operation is performed in im-
age space and projected into the 3D reconstruction as a unary potentials
update. A 3D CRF, defined over visible voxels, is solved to obtain a
semantic labelling of the scene in 3D (Sections 3.2.2 and 3.2.3).
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3.2.1 Preliminaries: 3D reconstruction

The base representation of our 3D scene model is a sparse volumetric represen-

tation in which each allocated voxel stores a truncated signed distance function

(TSDF) value [21] indicating the distance to the closest surface. The TSDF is

an implicit representation of a 3D surface, which is captured as the zero level set

(free space is represented as positive values and occupied space as negative values).

Given a camera pose, a view of the model surfaces can be obtained by raycasting.

Besides the TSDF value, we also store in each voxel a mean RGB value and a k-

dimensional array containing unary potentials (‘evidence’) accumulated so far for

the k semantic categories.

Modern 3D reconstruction pipelines commonly consist of tracking and map-

ping modules. Tracking involves localizing the camera within the 3D reconstruc-

tion, and mapping (or fusion) involves integrating new sensor observations into the

3D reconstruction. Klein and Murray [65] were the first to separate tracking and

mapping into separate tasks that are run in parallel, in contrast to previous SLAM

approaches. Their Parallel Tracking and Mapping (PTAM) method can rapidly

estimate the pose of a calibrated hand-held camera and build a sparse 3D recon-

struction of a small workspace environment. In the tracking task, map points are

projected into the image based on a prior pose estimate given by a motion model,

coarse-to-fine matching of features is performed, and the updated camera pose is

obtained by iterative minimization of the reprojection error. The mapping task is

initialized using a stereo technique and expanded over time with new keyframes,

with bundle adjustment as resources permit. Newcombe et al.’s Dense Tracking

and Mapping (DTAM) method [93] performs dense image alignment instead of

feature matching, enabling more robust tracking under rapid motion.

Newcombe et al.’s KinectFusion method [92] took advantage of the newly in-

troduced Kinect depth sensor and contemporary GPU hardware to obtain real-time

dense 3D reconstruction of room-sized environments. Kinect sensor observations

are fused into a dense TSDF voxel grid. Tracker drift is significantly reduced by

estimating the new camera pose with respect to the complete current reconstruction

instead of the previous frame. The camera pose is estimated using coarse-to-fine

iterative closest point (ICP) alignment between the live depth image and the ray-
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casted surface prediction.

Scaling a 3D reconstruction to large spaces is challenging as the memory re-

quirements can quickly become impractical. Nießner et al. [94] extended dense

TSDF reconstruction to larger scale environments by introducing voxel hashing

(not to be confused with binary hashing methods for efficient search in Section 4).

Voxel hashing reduces the memory requirements of the 3D reconstruction: instead

of allocating a regularly spaced voxel grid, voxels near surfaces are allocated as

needed as observations arrive. Empty space remains unallocated. Voxel blocks are

indexed by world coordinates in a hash table based data structure.

Our 3D reconstruction framework builds on top of InfiniTAM [64], a highly

streamlined implementation of the modern 3D reconstruction pipeline with a dense

TSDF 3D reconstruction indexed using a modified version of voxel hashing. Opti-

mizations of voxel hashing, fusion, and raycasting allow real-time 3D reconstruc-

tion to be achieved on a tablet computer. The authors of InfiniTAM report an order

of magnitude speed-up over KinectFusion [92] and Nießner et al. [94]. We incor-

porate modifications to InfiniTAM’s tracking and mapping (fusion) components.

Instead of using InfiniTAM’s default iterative closest point (ICP) tracker, which

we found to be unreliable for outdoor driving sequences, we track the camera pose

using FOVIS [57]. FOVIS is an algorithm for visual odometry. At each time step,

the algorithm accepts a greyscale image and a depth map as input, and returns

the integrated pose estimate. The visual odometry pipeline consists of feature ex-

traction, initial rotation estimation, feature matching, inlier detection, and finally

motion estimation. First, FAST features [109] are extracted from the image at

multiple scales. An initial rotation is then estimated to constrain feature match-

ing across frames. Next, features are matched and consistent inlier matches are

detected using a greedy maximum-clique technique. Finally, a motion estimate is

obtained by iteratively minimizing the feature reprojection error and updating the

inlier set.

For mapping (fusion) in our modified InfiniTAM implementation, the TSDF,

RGB, and unary potential values associated with each voxel are updated as a run-

ning average in an online manner as new sensor observations arrive. Observations

at each time step include the RGB image and a disparity map estimated using

stereo. Disparity is converted to depth by z = bf/d, where z is the depth, b is the
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stereo baseline, f is the camera’s focal length, and d is the disparity. In particular,

we estimate the disparity map from the stereo RGB pair using the Efficient Large-

scale Stereo (ELAS) method of Geiger et al. [37]. ELAS is a Bayesian method

for stereo matching that forms a prior on the disparities by triangulating a set of

robust point correspondences, referred to as support points. Given a disparity for

a pixel in the left (right) image, an observation likelihood is computed for the cor-

responding pixel in the right (left) image by comparing fast Sobel-based features.

The disparity map is obtained by maximum a-posteriori (MAP) inference at each

pixel, which can be easily parallelized and does not require an expensive global

optimization.

3.2.2 3D CRF model

MF3D constructs a dense conditional random field (CRF) over the 3D reconstruc-

tion visible in the current frame. Let G = (V, E) be a graph defined over the visible

3D reconstruction, where V is a set of nodes corresponding to the visible voxels and

E is a set of undirected edges. Let Xi be the random variable associated with node

i ∈ V . Xi can take on a label from the label set L = {l1, l2, ..., lk}, corresponding

to the vocabulary of k semantic category labels. Denote by xi a realization or as-

signment of random variable Xi, and by x ∈ L|V| the assignments of all random

variables; that is, x represents a complete labelling of the image. The energy (or

cost) function associated with a particular labelling of the CRF is given by

E(x) =
∑
i∈V

ψi(xi) +
∑

(i,j)∈E

ψij(xi, xj) (3.1)

where ψi(xi) are unary potentials and ψij(xi, xj) are pairwise potentials, both im-

plicitly conditioned on the observed data. The task of inference is to find the la-

belling x∗ with the lowest energy:

x∗ = argmin
x∈L|V|

E(x) (3.2)

Unary potentials represent the costs associated with independently assigning a

voxel a particular semantic category label. The conventional practice is to com-

pute the unary potentials using a trained discriminative classifier. This classifier
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is trained to distinguish between instances of the categories in L. In contrast to

conventional practice, MF3D computes the unary potentials via the nonparametric,

search-based label transfer mechanism described in the next section.

Pairwise potentials represent the costs associated with assigning two connected

voxels two particular semantic category labels. For example, the cost of assigning

the same semantic label to two voxels that are close in the 3D world and similar

in color appearance should be low. Connectivity is defined in terms of the edges E
in graph G and does not necessarily correspond to spatial adjacency. In our model,

G is densely connected: that is, there exists a connection between every possible

pairing of voxels in V . This is in contrast to many traditional labelling methods

in which only adjacent neighbours are connected. The dense connectivity enables

encoding of long-range patterns. Krähenbühl and Koltun [69] demonstrated that

approximate inference in a densely connected CRF, in which the pairwise poten-

tials are defined by a linear combination of Gaussian kernels, can be performed

efficiently by optimizing a mean-field approximation to the CRF distribution. Op-

timizing the mean field approximation normally involves iterative message passing

that is quadratic in the number of variables (voxels). Krähenbühl and Koltun’s in-

sight is that the message passing can be implemented as Gaussian filtering in fea-

ture space. By applying a fast approximate high-dimensional filtering technique,

inference becomes linear in the number of variables and sublinear in the number of

edges. We adopt Krähenbühl and Koltun’s inference method to obtain a labelling

over voxels, generalizing their original 2D pairwise appearance kernel to 3D (vox-

els that are close in the 3D world and similar in color are encouraged to share the

same label):

ψij(xi, xj) = λ exp

(
−|pi − pj |2

σ21
− |Ii − Ij |2

σ22

)
δ[xi 6= xj ] (3.3)

where λ is the CRF smoothing constant, pi and pj are voxel positions, Ii and Ij

are color vectors, σ1 and σ2 are Gaussian bandwidth parameters, and δ[·] is the

indicator function.

The 3D CRF is approximately solved each time step in an online manner, using

only sensory data obtained so far, and is constructed only over voxels visible in

the current time step. Unary potentials at each voxel are accumulated online as a
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running average over time (Section 3.2.1).

3.2.3 Unary potentials update by label transfer

Recall that label transfer refers to an accumulation of semantic category evidence

by transferring the labels of matching exemplars in a labelled database. This is a

search-based strategy that differs from the common strategy of training a discrim-

inative classifier to predict the semantic category label. Its main advantages are

flexibility and scalability: the approach is naturally extended to new labelled ex-

amples or new categories because no intensive re-learning stage is necessary. A

new category can be added to the database without having to learn how to discrim-

inate it from all previously learned categories.

In each frame, MF3D computes a unary potential update in image space. The

unary potential update is then projected into the online 3D reconstruction to update

the unary potentials stored in each voxel. Two questions remain: how can we

compute a unary potential update from a database of labelled examples, and what

is the best way to project the unary update into the 3D reconstruction?

In the previous chapter on 2D scene parsing, we demonstrated how using mid-

level region proposals (also known as object proposals) for label transfer produces

more accurate labellings than using low-level superpixels. Intuitively, region pro-

posals are more likely to preserve object boundaries. For MF3D, we generate a set

of region proposals for each frame using a state-of-the-art region proposal network

(RPN) [107]. Each region proposal is a rectangular window. The appearance of

each region proposal is described using a pre-trained VGG-16 network [117] as

an off-the-shelf feature extractor, without any fine-tuning for the 3D scene pars-

ing task. In particular, an appearance-based feature descriptor fa is obtained by

concatenating the activations of the two fully-connected layers of VGG-16. These

descriptors are obtained efficiently using region pooling of the convolutional lay-

ers (region pooling evaluates the expensive convolutional layers only once for the

image instead of once for each window [40, 50]).

In addition, a depth-based feature descriptor fd is computed for each region pro-

posal using the depth map estimated in the 3D reconstruction step (Section 3.2.1).

The depth-based descriptor fd is obtained by taking multiple binary comparisons
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(0,0)

(1,1)

(r1=0.3,c1=0.5)

(r2=0.5,c2=0.8)

Figure 3.2: The depth feature descriptor fd of a window is an nd-dimensional
vector, in which each entry is determined by comparing the estimated
depth at two locations (r1, c1) and (r2, c2). These locations are normal-
ized window coordinates, i.e. 0 ≤ r1, c1, r2, c2 ≤ 1. If the first location
is at a greater depth, the entry in fd is set to +1; otherwise, the entry is
set to -1.

of the estimated depth at random relative locations within the region proposal. Let

R = {(r1, c1), (r2, c2)}nd denote a set of nd relative location pairs within the

region proposal. For the jth pair, we compare the estimated depths at the two lo-

cations within the region. If the first location has a greater depth estimate, the jth

entry of fd is set to +1; otherwise, the jth entry of fd is set to -1. Fig. 3.2 illustrates

this comparison. R is generated once and applied for each region in the database

and in the queries. Each r1, c1, r2, c2 is drawn uniformly at random from the inter-

val [0,1]. The final region descriptor f is a concatenation of fa and fd multiplied by

a scaling factor to make the two types of descriptor comparable: f = [fa, αd · fd].
We transfer labels from the database in a manner similar to CollageParsing in

the previous chapter. Let {W1,W2, ...Wm} denote the set of region proposals in the

current frame. For each region proposal, we search for its closest region proposal

in the database by matching the region descriptors f . Each region proposal in the

database has an associated ground-truth 2D label field L, appropriately cropped

from the ground truth label images. The search therefore produces a set of label

fields {L1, L2, ..., Lm}. We warp these retrieved label fields to match the sizes of

the query region proposals, and denote the resized label fields by {L′1, L′2, ..., L′m}.
Let {M1,M2, ...,Mm} denote label masks constructed from {L′1, L′2, ..., L′m}.

Each mask Mj is the size of the current frame and is zero (null) everywhere ex-

cept within the corresponding region proposal Wj , where it is populated with the
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values of L′j . The image-space unary potential update associated with assigning a

category label l to pixel i is then given by

ψ∗i,l(xi) = −
m∑
j=1

δ[Mj(i) = l]φh(i, l)φsz(j)φidf(l) (3.4)

where δ[·] is the indicator function and Mj(i) is the value of Mj at location i,

which can be a category label or null. The term φh(i, l) is an importance weight

based on the 3D height of pixel i and the height statistics of category label l in the

database:

φh(l) =

exp
(
− (h(i)−µh(l))

2

σ2
h (l)

)
if µh(l) < 0

1 otherwise
(3.5)

where h(i) denotes the 3D height of pixel i, µh(l) is the mean height of label l, and

σh(l) is the variance of the height of label l. The importance weight is defined only

for categories with a mean height below the camera (µh(l) < 0) because height es-

timates are unreliable for objects extending beyond the upper bounds of the camera

field of view. Intuitively, the term φh(i, l) assigns greater importance to matches

with heights that are consistent with the database examples. The height means and

variances of a category can be computed in an online manner as a running average,

and independently of other categories. Height statistics therefore easily scale to

new labelled examples and new categories.

The term φsz(j) assigns higher weight to smaller region proposals, and is de-

fined as the inverse of the smaller dimension of the proposal window. This term

increases the influence of compact object matches and suppresses larger image re-

gions whose labels may be less precisely matched.

Finally, φidf(l) is the inverse document frequency term commonly used in re-

trieval:

φidf(l) =
1

freq(l)
(3.6)

where freq(l) is the number of pixels with label l in the database region propos-

als. MF3D does not compute co-occurrence statistics explicitly but captures co-

43



Wj

ψ* increment

Search for closest 

region proposal 

in database

Lj

Figure 3.3: Visualization of image-space label transfer for a single region
proposal Wj .

occurrence patterns implicitly in the window-based label transfer.

Fig. 3.3 illustrates matching and label transfer for a single region proposal Wj .

Instead of allocating memory for individual masks Mj , in implementation we sim-

ply accumulate energies directly in ψ∗i,l. Fig. 3.4 visualizes the image-space unary

potential updates for the same image after all m region proposals have been pro-

cessed. Saturated colors represent higher values of ψ∗i,l.

We have discussed the question of how we can compute a unary potential up-

date from a database of labelled examples, and now arrive at the remaining ques-

tion: how can we best project the unary potential update into the 3D reconstruction?

A straightforward approach would be to simply project the entire ψ∗i,l into the 3D

reconstruction. However, we observed that this approach can lead to some bleeding

of category energies across object boundaries or discontinuities. This is a conse-

quence of label transfer being coarsely localized and is a limitation of our system

when examples are limited. The spatial characteristics of the transferred evidence

depend on the positions of the objects in the database examples. If the positions

in the database examples do not match the observed frame exactly, there will be

some spatial inexactness in the transferred labels. To address this, MF3D performs

a segmentation of the frame into superpixels, followed by a winner-take-all pool-

ing operation that selects only the most confident category within each superpixel.

Each superpixel S selects a single category label ls as the mode of the highest-

evidenced labels at each pixel:
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Building Vegetation Car Road
Wall/fence Pavement Pole

Figure 3.4: Visualization of the image-space unary potential update for a
sample image. Higher saturation represents higher values of ψ∗i,l.

ls = mode
i∈S

{
argmax

l
ψ∗i,l(xi)

}
(3.7)

With winner-take-all pooling, the projection of the unary potential update is

restricted to a single category label at each point, and this label is the same across

all pixels within a superpixel. The unary potential update is zeroed out for all other

category labels. This pooling operation improves the alignment of transferred evi-

dence to the observed frame and reduces the bleeding effects caused by differences

in the positions of the objects in the database examples. Our experiments indicate

that winner-take-all pooling leads to a modest improvement in labelling accuracy,

though some bleeding is still noticeable, especially for thin structures such as poles

(Fig. 3.7, bottom).

Fig. 3.5 shows a visualization of the 3D voxel unary potentials at the frame

shown in Fig. 3.4. The voxel unary potentials are accumulated over multiple frames

in an online manner as a rolling average.
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Building Vegetation Car Road
Wall/fence Pavement Pole

Figure 3.5: Visualization of the 3D CRF unary potentials for a sample image
to a maximum depth of 25 meters. Voxel unary potentials are accu-
mulated over multiple frames in an online manner as a rolling average.
Higher saturation represents higher values of ψi,l.

3.2.4 Computation time

Most of MF3D’s computation time is spent performing label transfer. As described

so far, MF3D performs an exact nearest neighbour search during label transfer,

which is computationally expensive in terms of both time and memory. It is possi-

ble to speed up this expensive operation, while at the same time reducing the mem-

ory overhead, by integrating efficient methods for large-scale approximate nearest

neighbour search. We address this topic in detail in Chapter 4.

MF3D’s 3D reconstruction pipeline has been demonstrated to be runnable in

real-time given a modern hardware platform and efficient software implementation

[64, 138]. Region proposal generation and description using RPN can performed

at 5 fps on a modern GPU [107].
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3.3 Experiments
Benchmark details. We benchmarked MF3D on the KITTI labelled dataset [38,

113, 135], a standard benchmark for 3D scene parsing of video. We chose KITTI

because it is the common dataset on which the state-of-the-art 3D scene parsing

methods [113, 135, 138] have all been evaluated. The KITTI labelled dataset is

derived from the broader KITTI benchmark for autonomous driving [38] and con-

sists of four training video sequences (KITTI sequences 05 to 08), totally spanning

5957 stereo pairs, and one independent testing video sequence (KITTI sequence

15), totally spanning 1901 stereo pairs. All sequences are captured at 10 frames

per second. The four training sequences are captured at a resolution of 1226×370,

while the testing sequence is captured at a resolution of 1241 × 376. A subset of

45 frames from the training sequences and 25 frames from the testing sequence is

manually annotated by the authors of [113, 135] with semantic ground truth labels.

Since we build the 3D semantic reconstruction incrementally in an online manner,

we process all frames but evaluate only on the 25 in the test sequence with ground

truth annotations. Labelling accuracy is assessed for seven semantic categories:

building, vegetation, car, road, wall/fence, pavement, and pole. Camera calibration

parameters are provided by the authors of KITTI [38].

Implementation details. Since the region proposal network generates windows

of limited aspect ratio (1:2, 1:1, 2:1) and some objects of interest are very thin (in

particular, poles), we augment the set of network proposals with Edge Boxes [151]

narrower than 1:4. Edge Boxes have been independently shown to be good for

localization and fast to compute [55]. The feature descriptors for these proposals

are generated the same way as the regular network proposals.

Evaluation methodology. Labelling performance is measured by the mean per-

class accuracy over the seven classes. Since the ground truth annotations are in

2D, the semantically labelled 3D reconstruction is projected onto the camera plane

for evaluation. Evaluation is performed on the online 3D reconstruction (i.e. using

only the frames observed so far). Pixels beyond a maximum depth of 25 meters are

ignored following Vineet et al. [138].

Results and comparison to state-of-the-art. Fig. 3.6 shows qualitative 3D scene

parsing results at frames 3, 36, and 68 in the testing sequence (KITTI sequence
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Table 3.1: Comparison to state-of-the-art methods for 3D scene parsing of
video on the KITTI labelled benchmark

3D Online Model-
free

Mean per-class accuracy

Valentin et al. [135] X 67.5
Sengupta et al. [113] X 77.2
Vineet et al. [138] X X 82.2
MF3D X X X 83.5

15). These results are generated online, using only the frames observed up to that

time. We also render the labelled 3D reconstruction from alternative viewpoints.

There are many gaps in the alternative renderings because these are virtual cameras

and we have real observations only from the single canonical viewpoint. We can

see that MF3D densely reconstructs the 3D scene around the vehicle with mostly

accurate semantic labels.

Fig. 3.7 shows typical failure cases. The top row shows a reconstruction failure

at frame 639 in the testing sequence, in which the FOVIS tracker fails to accurately

estimate the camera pose. This tracking failure results in local corruption in the

3D model. However, the system is able to robustly recover from the failure as it

incorporates new sensor observations. The second row shows the labelling result

one second later at frame 649. We can see that there only a few erroneous recon-

struction artifacts and the labelling of the scene is mostly accurate. The third row

shows another typical error case. While the winner-take-all pooling reduces the

degree of undesirable ‘bleeding’ during label transfer, some bleeding still occurs

for thin structures such as poles. This is apparent in the bottom row, which shows

the reconstruction result at frame 1050.

Table 3.1 shows the quantitative results as well as a qualitative comparison

with three strong baselines for 3D scene parsing in video [113, 135, 138]. MF3D

achieves labelling accuracy comparable to the state-of-the-art method of Vineet et

al. [138] and leads the other recent methods of Sengupta et al. [113] and Valentin

et al. [135] by several percent.

Fig. 3.8 shows the sensitivity of MF3D to the depth feature parameters and
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Building Vegetation Car Road
Wall/fence Pavement Pole

Figure 3.6: Qualitative 3D scene parsing results on the KITTI benchmark.
Left column: RGB frame and labelling result from the camera pose.
Right column: 3D renderings of the labelling result from different vir-
tual viewpoints. Labelling results are to a maximum depth of 25 meters.
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Building Vegetation Car Road
Wall/fence Pavement Pole

Figure 3.7: Failure cases on the KITTI benchmark (see Section 3.3 for dis-
cussion). Labelling results are to a maximum depth of 25 meters.
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Figure 3.8: Sensitivity experiments on the KITTI labelled benchmark (see
text for discussion).
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the number of region proposals. MF3D is robust to the depth descriptor scaling

factor αd: we set αd = 0.01 and it suffices to be within an order of magnitude. The

depth features are computed using nd = 32 random depth comparisons. Increasing

the number of comparisons up to 8-fold does not improve results consistently; at

any rate, the depth descriptor has only a small effect on labelling accuracy. We

generated 1000 region proposals for each database image, and increased this to

m = 4000 for the test images. Increasing the number of region proposals at test

time does improve the labelling accuracy but with diminishing returns.

Label transfer and discriminative classification. Finally, we completed an ad-

ditional experiment to characterize the effective difference between using model-

free label transfer and discriminative classification. In this experiment, we replaced

the label transfer in our pipeline with the recent SegNet [7]. SegNet is a fully

convolutional neural network architecture comprising an encoder network, a cor-

responding decoder network, and a pixelwise classification layer. The network is

designed for 2D scene parsing, and targets road scene understanding in particu-

lar. The encoder network follows the VGG-16 network architecture [117]. The

decoder performs upsampling based on the max-pooling indices computed during

encoding, and further convolves with learned filters.

We used the public implementation of SegNet built on the Caffe deep learn-

ing framework [61], and fine-tuned it on the KITTI dataset with pre-training on

ImageNet [111]. To fine-tune the network we used stochastic gradient descent

with a learning rate of 0.01 and momentum of 0.9. Differences in class frequency

were handled by median frequency balancing [7]. Holding the rest of the 3D re-

construction pipeline fixed, replacing label transfer with SegNet reduces the mean

per-class accuracy on KITTI to 81.8% (original: 83.5%). While SegNet is effec-

tive in predicting the single most likely class per pixel, our label transfer better

accommodates noisy predictions as it makes use of redundancy via overlapping re-

gions. These independently matched overlapping regions provide multiple sources

of evidence for the classes at a given pixel.
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Chapter 4

Scaling Nonparametric Scene
Parsing: Methods for Large-Scale
Search

In the previous chapter, we presented a nonparametric approach to 3D scene pars-

ing that differs from conventional practice in its use of search-based label transfer

instead of discriminative classification. MF3D achieves competitive labelling ac-

curacy and is easily extensible to new categories as no model training is required.

However, as described so far, MF3D performs an exact nearest neighbor search

during label transfer, which is computationally expensive in terms of both time and

memory. We address this point next, and show how unsupervised binary encod-

ing (or hashing) can be easily incorporated into our nonparametric scene parsing

framework for scalability to larger databases.

In this chapter, we propose two novel binary encoding algorithms for large-

scale approximate nearest neighbor search. The first algorithm is data-independent

and easily scalable to new examples and categories. The second algorithm is super-

vised and targets high-dimensional feature vectors such as the proposal descriptors

in our scene parsing framework. We evaluate these methods on standard retrieval

benchmarks, and then demonstrate their effectiveness in the context of 3D scene

parsing on the KITTI labelled dataset.
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4.1 Related work
One class of methods for performing large-scale approximate nearest neighbor

search is binary encoding, also referred to as hashing (distinct from voxel hash-

ing in Section 3.2.1). Binary encoding methods learn a similarity-preserving trans-

formation of the feature vectors from their original, real-valued, high-dimensional

feature space to a low-dimensional binary-valued space. By transforming feature

vectors to compact binary codes, significant gains in memory and time efficiency

can be achieved. The Hamming distance between two binary codes can addition-

ally be computed by taking an XOR and counting the ones, which is directly sup-

ported in modern hardware.

A broad range of binary encoding algorithms has been developed for large-

scale search, with varying tradeoffs in speed, accuracy, and underlying assump-

tions. Locality-sensitive hashing (LSH) [18, 39] is a traditional, data-independent

binary encoding method that uses randomly generated projections. In LSH, the

probability of two feature vectors hashing to the same value is proportional to some

measure of similarity between the vectors, such as their cosine similarity [18]. LSH

offers theoretical asymptotic guarantees and can be kernelized [62, 75, 104], how-

ever a large number of bits (i.e. a large random projection matrix) is typically

required for good performance in practice.

This performance limitation motivated the development of binary encoding

methods that rely on training or optimization to learn the transformation. For exam-

ple, binary reconstructive embedding [74] uses coordinate descent to minimize the

error between the original pairwise distances and the Hamming pairwise distances.

Spectral hashing [141] solves a relaxed version of a balanced graph partitioning

problem to learn efficient codes. Iterative quantization (ITQ) [43] learns a rota-

tion of PCA (unsupervised) or CCA (supervised) projected data that minimizes the

quantization error, or distortion. The rotation is determined iteratively by alternat-

ing between updating the assignments given the current rotation, and updating the

rotation to minimize the quantization error given the current assignments. Minimal

loss hashing [95] applies structured prediction techniques to minimize a hinge-like

error. Kernel-based supervised hashing [85] sequentially learns a projection in ker-

nel space. K-means hashing [49] clusters the data such that the Euclidean distance
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between two data points is closely approximated by the Hamming distance be-

tween their cluster indices. Graph cuts coding [36] integrates the binary codes into

the optimization as auxiliary variables. Supervised discrete hashing [114] learns a

projection that optimizes the linear classification performance of the binary codes.

The authors formulate a discrete optimization problem that is solved iteratively by

alternating among three sub-problems: optimizing the hash functions, the linear

classifier, and the binary code assignments, given the other two. We compare to

several of these methods in the experiments (Section 4.2.2 and Section 4.3.2).

Gong et al. [42] showed that binary encoding methods are often infeasible for

searching high-dimensional feature vectors such as VLAD [59] and Fisher Vectors

[102]. Their bilinear projections method replaces the usual expensive projection

matrix with two smaller bilinear projections. Circulant binary embedding [147]

learns a projection by a circulant matrix, which can be accelerated using the Fast

Fourier Transform. Xia et al. [143] proposed the unsupervised sparse projection

(SP) method for searching high-dimensional feature vectors. The sparse projec-

tion is obtained by an iterative, ITQ-like optimization with an additional L0 reg-

ularization constraint. SP achieves an order of magnitude faster encoding than

unsupervised dense methods while offering comparable accuracy. In addition, SP

produces much more accurate results than bilinear projections or circulant binary

embedding, while having similar encoding speed. Concurrent with SP, Rastegari et

al. [105] proposed sparse binary embedding, which finds a sparse projection ma-

trix via a different SVM-based optimization. Kronecker binary embedding [149]

computes fast projections using a structured matrix that is the Kronecker product

of small orthogonal matrices. Like these methods, our proposed supervised sparse

projections method (Section 4.3) targets high-dimensional feature vectors.

Besides binary encoding, approximate nearest neighbor search can also be ap-

proached via vector quantization, which encodes data points using learned code-

books that can be combined in product [35, 53, 60, 96] or additive [5, 6] forms.

Vector quantization algorithms tend to achieve high retrieval accuracy but are slower

than hashing algorithms. Binary codes can also be used directly in downstream

clustering or classification modules, which is not possible with vector quantization

algorithms [43].
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Figure 4.1: Toy example illustrating neighbor retrieval under two different
sets of hashing hyperplanes. The hyperplanes in (a) map A and B to the
same binary code, and C to a different binary code. The hyperplanes in
(b) map B and C to the same code, and A to a different code.

4.2 Bank of random rotations
Most modern binary encoding and vector quantization algorithms require training,

whether in the form of learning optimal transformations or codebooks. We propose

a data-independent binary encoding method that, like traditional LSH, requires no

training and is therefore well-suited for reducing the time and memory require-

ments of nonparametric scene parsing.

4.2.1 Algorithm description

Graphically, we can think of the bits in a binary code as the decisions of a set of

hash functions or hyperplanes in the feature space. A wide variety of techniques

have been developed to find the best set of hyperplanes (Section 4.1), which may

depend on the application, or more generally, the loss function to be minimized.

For example, many binary encoding methods optimize for a transformation that

minimizes the overall quantization error, or distortion [43, 49, 143, 147].

We can observe that, for many individual data points, the globally optimal

transformation may not yield good retrieval performance. That is, neighbor re-

lationships in the original feature space may not be well preserved. Figure 4.1

illustrates with a toy example in a two-dimensional feature space. Figure 4.1(a)

shows two hyperplanes determining two bits of the binary code. This transforma-
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tion maps A and B to the code 00 and C to the code 01. From the perspective of B,

this transformation does not preserve its neighbor relationship: B’s true neighbor,

C, is mapped to a different code and appears farther in Hamming space than A,

which is mapped to the same code (i.e., the Hamming distance between the binary

codes of A and B is zero). Consider the alternative transformation in Figure 4.1(b).

From B’s perspective, this is a better transformation because it maps B and C to

the same binary code and A to a different code.

We ask whether a bank of multiple transformations can be more effective than

a single globally optimal transformation. For example, instead of learning a trans-

formation to minimize the overall quantization error, we consider having each data

point select from a bank of transformations the one that minimizes its own quan-

tization error. This approach removes the need for global optimization or training,

and as we will demonstrate later, allows for improved search accuracy at the cost

of extra encoding overhead at query time.

Following binary encoding and vector quantization methods that search for a

globally optimal rotation of the data [35, 43, 96], our method generates a bank

of random rotations R = {R1,R2, ...,RK}. The database is encoded as fol-

lows. Given a database of n points, we first preprocess the database points by

zero-centering and PCA-embedding. Next, for each individual data point x, we

select R∗ ∈ R that satisfies

R∗ = argmax
R∈R

‖xR‖1 (4.1)

where || · || is the L1 norm. Intuitively, R∗ maps x far from the hyperplanes to

reduce the quantization error (e.g. the right transformation in the toy example of

Figure 4.1). We apply the rotation to x and obtain the binary code y by the usual

thresholding at zero:

y = sgn(xR∗) (4.2)

Finally, we store the pair (y, j), where j is the index of R∗ in the bank of

random rotations R. That is, j identifies the rotation used to produce the binary

code y. We allocate bits from our budget to index the best rotation (i.e. to store j)
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Figure 4.2: Toy example illustrating a query with a bank of random rotations

for each individual data point, and therefore incur no additional memory usage for

the database. There is, however, a small memory overhead for storing the bank.

Next, we explain how online queries work in the bank of random rotations

framework. Given a (zero-centered, PCA-embedded) query point xq, we compute

distances to the database points adaptively, using each database point’s selected

rotation. More specifically, for each rotation R in the bank, we quantize xq with

respect to the rotation R via yq = sgn(xqR), and compute the Hamming distance

of yq to all database binary codes that selected R as their rotation. Figure 4.2 illus-

trates with a toy example. For greater clarity, a single query performs K rotations

and then computes only n Hamming distances – not Kn distances. The number of

Hamming-space comparisons is unchanged by the bank of random rotations.

Large-scale applications often involve databases that grow over time as users

continually add images or video. In the proposed bank of random rotations ap-

proach, when a new point is added to the database it selects a rotation from the

bank independently of all other database points. In contrast to training-based meth-

ods, no global optimization problem over the database needs to be re-solved. The
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proposed approach therefore offers a particularly scalable solution in large-scale

scene parsing applications where the database is expected to grow over time.

4.2.2 Experiments

We evaluated the retrieval performance of the bank of random rotations on three

standard unsupervised retrieval benchmarks: SIFT1M, GIST1M [60], and CIFAR-

10 [71]. The bank of random rotations is compared with three binary encoding

baselines: spectral hashing [141], iterative quantization [43], and k-means hashing

[49].

Benchmark details. The SIFT1M dataset [60] consists of 1 million SIFT de-

scriptors for the database and 10,000 independent descriptors for queries. SIFT1M

was used by He et al. [49] in the experimental evaluation of k-means hashing.

The GIST1M dataset [60] consists of 1 million, 960-dimensional Gist descriptors

[97] for the database and 1,000 descriptors for queries. The CIFAR-10 dataset

[71] is a 60,000-image, 10-class subset of the Tiny Images dataset [129]. We com-

puted 384-dimensional Gist descriptors for each CIFAR-10 image. Gong et al. [43]

used a similar 11-class CIFAR dataset in the experimental evaluation of iterative

quantization. We followed their methodology of randomly generating five training-

testing splits, each containing 1,000 test queries, and averaging over the five trials.

Implementation details. We used publicly available implementations of spec-

tral hashing, iterative quantization, and k-means hashing. K-means hashing re-

quires a product-space decomposition [60] to be tractable. The split into product

subspaces is performed following the split used by He et al. [49] in their experi-

ments: 4 bits per subspace for 64-bit and 128-bit codes from SIFT descriptors, and

8 bits per subspace for Gist descriptors. Recall that, for each database point, we

allocate bits from our budget to store the identifier (index) of the rotation selected

from the bank. Experiments on all three datasets use a bank of 256 random rota-

tions. For a fair comparison, we adjusted the number of bits in our binary codes

accordingly. For example, for 64-bit codes and a bank of 256 random rotations, we

computed 56-bit codes since 8 bits are needed to index into the bank.

Evaluation methodology. Retrieval performance is illustrated using recall@N

curves [35, 49, 60, 96], which plot the proportion of true neighbors retrieved in
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Figure 4.3: Retrieval performance on SIFT1M unsupervised retrieval bench-
mark with 32-bit, 64-bit, and 128-bit binary codes (SH: Spectral hash-
ing, ITQ: Iterative quantization, KMH: K-means hashing, BankRR:
Bank of random rotations).

the first N Hamming neighbors. Following the convention of He et al. [49], the

ground truth is considered to be the query’s 10 nearest Euclidean neighbors in the

original feature space.

Results. Figures 4.3, 4.4, and 4.5 show the retrieval performance of 32-bit,

64-bit, and 128-bit codes on the SIFT1M, GIST1M, and CIFAR-10 benchmarks.

Despite not requiring any training or complex sequential optimization, the data-

independent bank of random rotations achieves state-of-the-art results on CIFAR-

10 and GIST1M. On SIFT1M, results at 64 and 128 bits are on par with k-means

hashing, which has been demonstrated to outperform earlier methods including lo-

cality sensitive hashing, PCA hashing, spectral hashing, and minimal loss hashing
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Figure 4.4: Retrieval performance on GIST1M unsupervised retrieval bench-
mark with 32-bit, 64-bit, and 128-bit binary codes (SH: Spectral hash-
ing, ITQ: Iterative quantization, KMH: K-means hashing, BankRR:
Bank of random rotations).

[49]. The bank of random rotations consistently achieves higher retrieval accu-

racy than the natural baseline, iterative quantization, which uses a single globally

optimal rotation.

Figure 4.6 shows qualitative results on CIFAR-10. The bank of random ro-

tations allows for the efficient retrieval of similar neighbors at a fraction of the

memory requirements. Irrelevant images are sometimes retrieved due to the ap-

proximation error of binary encoding, especially at low code lengths. However,

even the full-dimensional Gist descriptors sometimes retrieve incorrect images.

This inexactness is expected because image descriptors only coarsely character-

ize the image appearance, and visually similar instances from different semantic
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Figure 4.5: Retrieval performance on CIFAR-10 unsupervised retrieval
benchmark with 32-bit, 64-bit, and 128-bit binary codes (SH: Spectral
hashing, ITQ: Iterative quantization, KMH: K-means hashing, BankRR:
Bank of random rotations).

categories may be mapped to similar descriptors. Replacing a 384-dimensional

Gist descriptor with a 128-bit binary code represents a reduction in memory by

two orders of magnitude (1,536 or 3,072 bytes to 16 bytes).

The bank of random rotations approach provides efficient unsupervised large-

scale search without training, making it well suited to our nonparametric scene

parsing framework, as both are designed to be easily extensible to an online growth

in the database. In scene parsing we are interested in matching region descriptors

that have associated semantic labels. A natural question to ask is whether we can

achieve even better performance if we leverage this supervisory information. We

next describe a novel supervised binary encoding method that is particularly ap-
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Figure 4.6: Qualitative retrieval results of the bank of random rotations on
the CIFAR-10 dataset. From left to right: query image; feature-space
(Gist) neighbors; 32-bit code neighbors; 128-bit code neighbors.
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Figure 4.7: Sample results. Retrieval accuracy versus encoding time on the
SUN RGB-D benchmark [122] using 4096-dimensional convolutional
neural network features. Binary encoding methods: supervised dis-
crete hashing (SDH) [114]; iterative quantization with canonical corre-
lation analysis (ITQ-CCA) [43]; sparse projections (SP) [143]; locality-
sensitive hashing (LSH) [18, 39]. See Section 4.3.2 for complete results.

plicable to searching high-dimensional feature vectors, such as today’s ubiquitous

deep neural network features.

4.3 Supervised sparse projections
With the growth of big data, computer vision algorithms are relying on increas-

ingly complex models and producing increasingly high dimensional features. From

second-order pooling of traditional hand-crafted features [17], to Fisher Vectors

[102], to the activations of deep neural networks [19], features with thousands or

tens of thousands of dimensions have become the norm. However, high-dimensional

features pose particular challenges for binary encoding algorithms. For exam-

ple, traditional algorithms lack an effective regularizer for the learned projections,

which sometimes leads to overfitting in high dimensions [143]. Moreover, encod-

ing in high dimensions is computationally expensive due to the large projection

matrix [42, 143].
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In this section, we present a novel binary encoding method called Supervised

Sparse Projections (SSP), in which the conventional dense projection matrix is

replaced with a discriminatively-trained sparse projection matrix. This design de-

cision enables SSP to achieve two to three times faster encoding in comparison to

conventional dense methods, while obtaining comparable retrieval accuracy. SSP

is also more accurate than unsupervised high-dimensional binary encoding meth-

ods while providing similar encoding speeds. Fig. 4.7 shows sample experimental

results using 4096-dimensional convolutional neural network features.

4.3.1 Algorithm description

Let X ∈ Rn×d denote a database containing n feature vectors, with each feature

vector being d-dimensional. The goal of a binary encoding algorithm is to learn

a projection matrix P ∈ Rd×b that can be applied to X to produce similarity-

preserving binary codes B ∈ {−1, 1}n×b, where b is the number of bits in the

binary codes. In the case of supervised binary encoding, we also have semantic

class labels Y ∈ Rn×C , where C is the number of classes, and yki = 1 if xi

belongs to class k and 0 otherwise.

Given a novel query xq ∈ Rd, the learned projection P is applied to obtain the

corresponding binary code b ∈ {−1, 1}b:

bq = sgn(xqP) (4.3)

where sgn(·) denotes the sign function applied to a vector, which returns +1 for

positive values and -1 otherwise. It is also possible to learn and apply the pro-

jection to a non-linear mapping of xq: that is, bq = sgn(φ(xq)P) where φ is a

non-linear mapping such as an RBF kernel mapping. For ease of formulation and

experimentation we develop the simple linear case in Eq. 4.3.

What makes for an effective projection matrix P? A good projection matrix

should preserve semantic relationships, as revealed in the supervisory signal Y. It

should be generalizable to new, previously unseen queries. Finally, we argue that it

should be fast to apply at test time – an important criterion as today’s increasingly

complex models produce increasingly high-dimensional features.

To obtain an effective projection matrix, the Supervised Sparse Projections
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(SSP) method finds an approximate solution to the following optimization prob-

lem:

min
B,W,P

||Y −BW||2F + λ||W||2F (4.4)

s.t. B = sgn(XP), ||P||1 ≤ τ

where W ∈ Rb×C , || · ||F denotes the Frobenius norm, λ is a regularization param-

eter, and τ is a sparsity parameter. The objective (4.4) can be seen as a standard L2

classification loss fitting the binary codes B to the supervisory signal Y, with an

additional constraint that B is generated by applying a sparse projection P to the

feature vectors X. We solve this optimization problem approximately following a

sequential approach. In the first subproblem, we find B̂ and Ŵ satisfying

min
B,W
||Y −BW||2F + λ||W||2F (4.5)

s.t. B ∈ {−1, 1}n×b

In the second subproblem, given B̂ from the first subproblem, we solve for the

projection matrix P satisfying

min
P
||B̂−XP||2F (4.6)

s.t. ||P||1 ≤ τ

An alternative approach would be to incorporate the constraint B = sgn(XP) as a

penalty term in a single objective,

min
B,W,P

||Y −BW||2F + λ||W||2F + ν||B−XP||2F

s.t. B ∈ {−1, 1}n×b, ||P||1 ≤ τ,
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and then iterate the following until convergence, similar to [114]: (i) fix B, P, and

update W, (ii) fix W, P, and update B, (iii) fix W, B, and update P. However,

the sequential approach is much faster to optimize and produces similar results in

practice. Concretely, on the SUN RGB-D benchmark with b = 32 bits, the sequen-

tial approach is over 800% faster than iterating (i),(ii),(iii), with less than 0.1%

difference in mAP (averaged over ten trials). Training time is dominated by the

subproblem of solving for P given the sparsity constraint and fixed W and B. We

therefore optimize the original objective (4.4) by solving subproblems (4.5) and

(4.6) sequentially.

Our formulation is similar to that of [114], with two main differences: our

method computes a sparse projection, which allows for two to three times faster

encoding with comparable accuracy; and our optimization procedure is different.

Solving for B̂ and Ŵ

We solve for B̂ and Ŵ in subproblem (4.5) via an iterative alternating optimiza-

tion. First, we keep B fixed and update W; then, we keep W fixed and update

B. The update of W is optimal given fixed B, while the update of B given W

is an approximation. These steps are repeated until convergence or a maximum

number of iterations is reached. The alternating minimization method finds a local

optimum, and so will be sensitive to initialization.

(i) Fix B, update W.

With B fixed in subproblem (4.5), the problem of solving for W becomes

standard L2-regularized least squares regression (ridge regression), which admits

a closed form solution. In particular, we update W as

W = (B>B+ λI)−1B>Y (4.7)

(ii) Fix W, update B.

With W fixed in subproblem (4.5), the resulting problem for B admits an it-

erative solution via the discrete cyclic coordinate descent (DCC) method [114].

DCC allows us to solve for B bit by bit – in other words, one column of B at a

time. Each column is solved in closed form holding the other columns fixed. In

particular, with the other columns fixed, the kth bit (column) of B has the optimal
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Algorithm 1 Learning Supervised Sparse Projections (SSP)

Input: Database feature vectors X ∈ Rn×d; Supervisory labels Y ∈ Rn×C ; λ, τ
Output: Projection matrix P ∈ Rd×b; Binary codes B ∈ {−1, 1}n×b

Initialize P as a random projection and B as sgn(XP).
repeat

Update W by Eq. 4.7.
Update B by discrete cyclic coordinate descent (Eq. 4.8).

until converged or maximum number of iterations reached.
Solve L1-regularized least squares (lasso) problem (Eq. 4.6) to obtain P.

solution

b:k = sgn(q:k −B′W′w>k ) (4.8)

where q:k is kth column of Q = YW>, B′ is B excluding column k, wk is the

kth row of W, and W′ is W excluding row k. We invite the interested reader to

refer to [114] for the complete derivation.

Solving for P

Given B̂ from the previous section, we next solve for P in subproblem (4.6). With

B̂ fixed, we can recognize subproblem (4.6) as an L1-regularized least squares

(lasso) problem. The L1 regularizer ||P ||1 ≤ τ induces sparsity in the solution P,

where the degree of sparsity is controlled by the user parameter τ .

L1-regularized least squares is a well studied problem and we apply one of

the standard algorithms in the optimization community, SPGL1 [137], to solve for

P iteratively. We use the publicly available implementation of SPGL1 with the

default parameter settings.

The entire learning algorithm is summarized in Algorithm 1.

4.3.2 Experiments

We compared SSP with several representative binary encoding methods:

1. Locality-sensitive hashing (LSH) [18, 39] is an unsupervised binary encod-

ing method that has been applied in a variety of computer vision tasks, in-
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cluding image retrieval, feature matching, and object classification [24].

2. Iterative quantization [43] with canonical correlation analysis (ITQ-CCA)

and the recently introduced supervised discrete hashing (SDH) method [114]

are supervised binary encoding methods.

3. Sparse projections (SP) [143] is a state-of-the-art method for fast unsuper-

vised high-dimensional binary encoding.

Our method can be extended to a non-linear embedding by RBF kernel in the

same way as SDH [114]. For a fair comparison with ITQ-CCA, SP, and LSH, we

evaluated all five methods without RBF embedding.

We performed experiments on three large vision datasets from different task

domains:

1. The SUN RGB-D dataset [122] is a state-of-the-art benchmark for 3D scene

understanding. It consists of 10,335 RGB-D images of indoor scenes and

supports a wide range of scene understanding tasks, including scene cate-

gorization, semantic segmentation, object detection, and room layout esti-

mation. We followed the recommended protocol for scene categorization,

which uses the scene categories having more than 80 images (a total of

9,862 images over 21 categories). The SUN RGB-D benchmark provides

convolutional neural network features as a baseline. These convolutional

neural network features have d = 4096 dimensions and are generated us-

ing Places-CNN [150], a leading architecture for scene categorization on the

SUN database [145]. We conducted ten trials, randomly setting aside 1,000

images as queries and using the remainder as the database in each trial.

2. The Animals with Attributes (AwA) dataset [79] was originally introduced

for evaluating zero-shot learning. The task in zero-shot learning is to per-

form image classification for categories that are described in terms of their

semantic attributes [29, 79], but which have no training examples. Here we

use AwA simply for multi-class retrieval. The dataset consists of 30,475 im-

ages covering 50 animal categories, with a minimum of 92 images in each
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category. AwA includes as a baseline 4096-dimensional convolutional neu-

ral network features generated using the VGG-19 “very deep” network [117].

We conducted ten trials, randomly setting aside 1,000 images as queries and

using the remainder as the database in each trial.

3. The ILSVRC (ImageNet Large Scale Visual Recognition Challenge) 2012

dataset [111] is a standard benchmark for image classification algorithms. It

consists of 1.2 million images spanning 1,000 semantic categories. We ex-

tracted 4096-dimensional convolutional neural network features from each

image using the VGG CNN-M network [19]. To hold the database in mem-

ory for training, we conducted ten trials in which 100 classes were randomly

selected each time. Within the subset of 100 classes, we randomly set aside

1,000 images as queries and used the remainder as the database. We sampled

10,000 images from the database to train the binary encoding methods.

We measure retrieval accuracy and encoding speed for all methods. Retrieval

accuracy is measured by the mean average precision (mAP). With labelled data,

we are interested in preserving semantic similarity. The retrieval ground truth for

computing the mean average precision consists of database examples sharing the

same semantic category label as the query. We compute the encoding time as the

processor time required for the matrix multiplication bq = sgn(xqP) (Eq. 4.3),

where xq is the query vector and the projection matrix P may be sparse or dense,

depending on the binary encoding method. In particular, SP and the proposed SSP

produce sparse projections P; LSH, ITQ-CCA, and SDH produce dense projec-

tions P. Both sparse and dense matrix-vector multiplications are executed using

the Intel Math Kernel Library (MKL). All timings are performed on a desktop

computer with a 3.60 GHz CPU.

Fig. 4.8 summarizes the experimental results on SUN RGB-D for b = 32, 64,

96, and 128 bits per feature vector. The vertical axis shows the mean average preci-

sion; the horizontal axis shows the encoding time in milliseconds for 1,000 queries.

Compared to the unsupervised high-dimensional binary encoding method, SP, the

proposed SSP obtains substantially higher retrieval accuracy at similar encoding

speed. For example, at b = 64 bits SSP achieves 64.6% mAP compared to 17.4%

for SP. These results demonstrate the advantage of taking into consideration the
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Figure 4.8: Experimental results on the SUN RGB-D dataset [122] using
4096-dimensional convolutional neural network features (Places-CNN
[150]) and binary code lengths b = 32, 64, 96, and 128. Results are av-
eraged over ten trials. Binary encoding methods: supervised sparse pro-
jections (SSP); supervised discrete hashing (SDH) [114]; iterative quan-
tization with canonical correlation analysis (ITQ-CCA) [43]; sparse
projections (SP) [143]; locality-sensitive hashing (LSH) [18, 39].
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supervisory information available in many large-scale databases.

Because of the sparsity of the projection matrix, SSP provides significantly

faster encoding speed than modern dense methods such as LSH, ITQ-CCA, and

SDH. At the same time, retrieval accuracy is competitive with the dense methods.

SSP achieves higher accuracy than ITQ-CCA and is comparable with SDH across

all bit lengths. In particular, at b = 32, 64, 96, and 128 bits, SSP is 2.3 to 3.4 times

faster than SDH to encode, while matching SDH’s accuracy within 1% mAP. SSP

is similarly faster than ITQ-CCA to encode, while obtaining 6 to 9% higher mAP.

In fact, these experimental results likely underestimate the practical improve-

ment in encoding speed. The recent work on SP [143] reports encoding speeds

that are linearly related to the proportion of nonzeros. For example, encoding with

a projection matrix with 20% nonzeros is reportedly 5 times faster than encoding

with a dense projection matrix. On the other hand, in Fig. 4.8, the sparse projec-

tion matrix for SSP has 20% nonzeros but we observed the encoding to be only

2.3 to 3.4 times faster than SDH, for instance. Since the authors of [143] also use

MKL for timing evaluation1, this difference may be due to optimizations not fully

supported in our implementation. In summary, comparisons with LSH, ITQ-CCA,

and SDH on SUN RGB-D demonstrate that L1 regularization can be used to spar-

sify the projection matrix and improve the encoding efficiency of high-dimensional

feature vectors, with only a minor cost in retrieval accuracy.

We observed similar results on the AwA dataset. Fig. 4.9 shows the mean

average precision versus encoding time for 1,000 queries, for b = 32, 64, 96, and

128 bits per feature vector. SSP achieves significantly faster encoding speed than

the dense methods while providing comparable retrieval accuracy. For example, in

comparison with the best performing dense method SDH, SSP is 2.2 to 3.2 times

faster to encode and within 2% mAP across all bit lengths. SSP is significantly

more accurate than the fast high-dimensional encoding method SP, with a relative

improvement of 49 to 57% mAP across all bit lengths.

Fig. 4.10 summarizes the experimental results on ImageNet (ILSVRC 2012)

for b = 32, 64, 96, and 128 bits per feature vector. Experimental results on Ima-

geNet follow the general trends observed on the SUN RGB-D and AwA datasets.
1Personal communication.
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Figure 4.9: Experimental results on the AwA dataset [79] using 4096-
dimensional convolutional neural network features (VGG-19 [117]) and
binary code lengths b = 32, 64, 96, and 128. Results are averaged
over ten trials. Binary encoding methods: supervised sparse projections
(SSP); supervised discrete hashing (SDH) [114]; iterative quantization
with canonical correlation analysis (ITQ-CCA) [43]; sparse projections
(SP) [143]; locality-sensitive hashing (LSH) [18, 39].
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Figure 4.10: Experimental results on the ImageNet dataset [111] using 4096-
dimensional convolutional neural network features (VGG CNN-M
[19]) and binary code lengths b = 32, 64, 96, and 128. Results
are averaged over ten trials. Binary encoding methods: supervised
sparse projections (SSP); supervised discrete hashing (SDH) [114];
iterative quantization with canonical correlation analysis (ITQ-CCA)
[43]; sparse projections (SP) [143]; locality-sensitive hashing (LSH)
[18, 39].
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Figure 4.11: Retrieval accuracy versus percentage of non-zeros in the SSP
projection matrix P, for SUN RGB-D at b = 64 bits. The sparsity of
P is determined by the parameter τ in Eq. 4.4. We set τ to obtain
approximately 20% non-zeros in P in all other experiments.

Compared to fast high-dimensional binary encoding with SP, SSP obtains more

accurate results at similar encoding speeds, with relative improvements of 43 to

69% mAP across all bit lengths. Compared to the best performing dense method

SDH, SSP is 2.1 to 2.8 times faster to encode and is within 2% mAP across all bit

lengths.

The sparsity of the learned projection matrix in SSP can be controlled by setting

the τ parameter. In the preceding experiments we set τ to obtain approximately

20% non-zeros in the projection matrix P. Fig. 4.11 shows how retrieval accuracy

changes as we vary τ to obtain sparser or denser projection matrices. Experiments

were conducted on the SUN RGB-D dataset with 64-bit codes, averaging over ten

random trials. A tradeoff between projection sparsity and retrieval accuracy can be

seen in the figure. In general, making the projection matrix more sparse enables

faster encoding but at a cost in retrieval accuracy.

On the SUN RGB-D dataset, training requires 5.9 min for b = 32 bits; 10.3 min

for b = 64 bits; 15.9 min for b = 96 bits; and 21.0 min for b = 128 bits, averaging

over ten random trials.
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Figure 4.12: Qualitative results on the SUN RGB-D dataset at b = 64 bits.
The left column shows query images. The right column shows ten of
the top retrieved neighbors (sampled from multi-way ties) using SSP.
The results indicate that SSP reliably preserves semantic neighbors in
the learned binary codes.
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Fig. 4.12 shows typical qualitative results on the SUN RGB-D dataset using

SSP with b = 64 bits. SSP reliably preserves the supervisory information in the

learned binary codes. We observed that even in failure cases, SSP returns semanti-

cally related neighbors. For example, the ground truth class label of the third query

image from the top is ‘lab’, but the top retrieved nearest neighbors are ‘office’ im-

ages. In summary, SSP allows for scalable, fast, and semantics-preserving retrieval

in large labelled databases. Replacing the original d = 4096 dimensional convolu-

tional neural network features with 64-bit SSP binary codes results a reduction in

storage costs by three orders of magnitude (131,072 or 262,144 bits reduced to 64

bits).

4.4 Integration with 3D scene parsing
Having presented two novel binary encoding methods with experimental validation

on standard retrieval datasets, we next study the integration of these methods into

our MF3D framework for nonparametric 3D scene parsing. We follow the same

experimental protocol as described in Section 3.3.

Implementation details. The bank of random rotations method is unsupervised

and can be applied directly on the region proposal descriptors without training. We

generated four random rotations for the bank; an additional overhead of two bits

is required to index the selected rotation per feature vector, and this is reflected in

the slight difference in memory reduction reported later between the two binary

encoding methods.

The supervised sparse projections method takes as input both the region pro-

posal descriptors and a representation of their associated labels. Recall that each

region proposal in the database has an associated ground-truth 2D label field L,

appropriately cropped from the ground truth label images. We divide each pro-

posal window into thirds horizontally and vertically to form a spatial grid. Within

each grid cell, we compute an indicator vector showing the presence or absence of

each class (i.e. the ith entry is 1 if class i is present, or 0 if class i is absent). The

indicator vectors of the nine grid cells are concatenated to form a vector of length

9C, where C is the number of classes, and the concatenated vectors are stacked to

form SSP’s supervisory matrix Y ∈ Rn×9C (Section 4.3.1).
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Table 4.1: MF3D with binary encoding on KITTI labelled benchmark using
256-bit binary codes

Search time (s) Mean per-class accuracy Memory reduction

Baseline MF3D 24.4 83.5 –
MF3D + BankRR 1.34 82.6 ± 0.4 1,020×
MF3D + SSP 1.22 82.2 ± 0.7 1,028×

Quantitative results. Table 4.1 summarizes the time and memory efficiencies

gained via binary encoding, using both the bank of random rotations and supervised

sparse projections to generate 256-bit binary codes. Results are averaged over

five random trials. Timing is performed in Matlab, single threaded execution on

a 3.60 GHz CPU with hardware accelerated popcount for evaluating Hamming

distances. The search time for supervised sparse projections is in fact a slight over-

estimate, as the sparse-dense matrix multiplication executes in Matlab no faster

than the equivalent dense-dense matrix multiplication; however, the search time in

both sparse and dense cases is dominated by the Hamming distance computation

(∼ 1.1s on average). The baseline MF3D searches the full-dimensional descriptors

using a fast exact nearest neighbor search as implemented in the Yael library2.

At 256 bits, binary encoding reduces the search time of the m = 4000 region

proposals by an order of magnitude, while obtaining a mean per-class accuracy

within 1% of the full dimensional descriptors. Replacing the full dimensional de-

scriptors with 256-bit binary codes enables a reduction in memory costs of three

orders of magnitude.

Fig. 4.13 shows the progression of labelling accuracy with respect to the num-

ber of bits in the binary code for the bank of random rotations, supervised sparse

projections, and locality-sensitive hashing (LSH). The bank of random rotations

and supervised sparse projections methods obtain comparable labelling results,

with the bank of random rotations performing slightly better at longer binary code

lengths (128 and 256 bits) and supervised sparse projections performing better

at the shortest code length (32 bits). These results suggest that, for the specific
2http://yael.gforge.inria.fr/
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Figure 4.13: MF3D with binary encoding on KITTI labelled benchmark:
mean per-class accuracy versus binary code length for locality-
sensitive hashing (LSH), bank of random rotations (BRR), and super-
vised sparse projections (SSP).

purpose of label transfer in MF3D, the additional supervisory signal Y provides

added benefit only at high levels of compression. As the number of bits in the bi-

nary code increases, preserving the similarity relationships in the region proposals

feature space becomes sufficient for accurate label transfer; preserving Y becomes

less important. At 64 bits and up, the bank of random rotations is preferred since its

labelling outcomes are as good as the more complex supervised sparse projections

approach, while not requiring training. Increasing the number of bits eventually

produces diminishing returns, with all three binary encoding methods obtaining

mean per-class accuracies within 0.5% by 256 bits.

Label transfer is highly parallelizable because each region proposal is matched

and transferred independently. MF3D can therefore take advantage of multiple

parallel GPU threads, each processing a separate region proposal. We leave this

implementation for future work.

Qualitative results. Fig. 4.14 presents qualitative 3D scene parsing results

at frames 3, 36, and 68 in the testing sequence (KITTI sequence 15), following

Fig. 3.6. Results are generated online, using only the frames observed up to that
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time. In each block, the left column shows the RGB frame and the labelling result

using full dimensional region descriptors. The top right visualizes the labelling

result using the bank of random rotations, and the bottom right visualizes the la-

belling result using supervised sparse projections. 256-bit binary codes are gener-

ated for both methods. We observed that label transfer with the binary encoding

methods produces labellings that are largely consistent with those produced by

label transfer using full dimensional descriptors. Since binary encoding is an ap-

proximation, there are some minor but discernable discrepancies in the labelling

results. For example, in frame 3, MF3D with the bank of random rotations mis-

labels the tree on the left side as building and pole; MF3D with supervised sparse

projections does not capture the full extent of the pavement in frame 3; and neither

binary encoding algorithm preserves the partial detection of the vegetation in the

left foreground of frame 36. However, our qualitative results overall indicate that at

256 bits, binary encoding introduces a small degree of approximation error while

obtaining a significant improvement in both time and space efficiency.
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Building Vegetation Car Road
Wall/fence Pavement Pole

Figure 4.14: Qualitative 3D scene parsing results on the KITTI benchmark
with binary encoding. Left column: RGB frame and labelling result of
MF3D with full dimensional descriptors. Top right: Labelling result of
MF3D with bank of random rotations. Bottom right: Labelling result
of MF3D with supervised sparse projections. 256-bit binary codes are
used and labelling results are to a maximum depth of 25 meters.
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Chapter 5

Conclusion

Computer vision is about developing systems that can “see” and make sense of a

complex visual world. Vision capabilities are being embedded in an increasingly

broad range of computer systems, from smartphone apps, to self-driving vehicles,

to bionics. As our capacity to bridge the semantic gap grows, we will demand more

from our algorithms. It is no longer enough to detect that an image contains a car

instead of a cat. In scene parsing, we aim to explain or reconstruct the entire scene,

identifying all of the objects and background elements of interest.

“Big data” has also enabled us to build more sophisticated data-driven sys-

tems, with exciting advances in particular in deep neural networks for classifica-

tion. These learning algorithms allow us to distinguish, with increasing accuracy,

among pixels of a pre-defined set of semantic categories. In this thesis we have

leveraged big data in a much less commonly explored way: for scene parsing by

large-scale nonparametric search. Leveraging big data for search allows for pow-

erful exemplar-based scene parsing that does not require training and can be easily

extended to novel categories as the database grows. In Chapter 2, we presented

a nonparametric algorithm for 2D scene parsing of images. In contrast to tradi-

tional nonparametric scene parsing methods that perform label transfer on the level

of pixels or superpixels, CollageParsing integrates information from overlapping

object proposals. In Chapter 3, we developed a nonparametric algorithm for 3D

scene parsing of video. MF3D constructs a semantically labelled 3D reconstruc-

tion of the environment in an online manner, using only the frames observed so
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far. Our experimental results, both in 2D using images and in 3D using video,

show that large-scale nonparametric search can be an effective strategy for scene

parsing, producing accurate dense labellings while retaining extensibility to new

categories and examples.

We argued that nonparametric search and parametric classification strategies

are complementary in scene parsing, and we believe their effective combination is

a promising direction for future work. Indeed, since the original publication of Col-

lageParsing in [130], other authors have explored hybrid nonparametric-parametric

approaches to 2D scene parsing. For example, Liu et al. [84] developed a hybrid

approach for parsing humans in images, in which a convolutional neural network is

trained to predict the confidence and displacements for matching labelled regions

from neighbor database images to the query image. Shuai et al. [116] constructed

a graphical model for 2D scene parsing in which unary potentials are computed

locally using a trained convolutional neural network, and global potentials provide

high-level context and are derived non-parametrically from similar exemplars.

Another promising direction for future work in scene parsing is the exploration

of novel sources of relevant side information and unconventional ways to augment

the labelled database of examples. Since obtaining fully labelled databases can be

expensive, it is worth investigating how other sources of information can provide

a useful prior over labellings. For instance, Wang et al. [140] recently leveraged

a crowd-sourced mapping database called OpenStreetMaps to form a geographic

prior for outdoor scene understanding. Given a geo-tagged image and camera pa-

rameters, the map is rendered in 3D to provide priors for geometry (depth) and

semantic labels. Besides novel sources for priors, synthetic data augmentation

may be helpful when real-world labelled data is scarce. Along this line of investi-

gation, Gaidon et al. [34] recently introduced the Virtual KITTI dataset, consisting

of synthetic clones of KITTI sequences photorealistically rendered using the Unity

graphics engine. Their experiments indicate that virtual pre-training improves the

performance of multi-object tracking in real video sequences.

Nonparametric scene parsing requires new techniques for searching large la-

belled collections of data that are time and memory efficient. In Chapter 4, we

proposed two novel binary encoding algorithms for approximate nearest neigh-

bor search and demonstrated how these algorithms can make nonparametric scene
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parsing more scalable to larger databases. The bank of random rotations algorithm

is data-independent and therefore easily scalable to new categories and examples.

The supervised sparse projections algorithm specifically targets search in high di-

mensions and enables faster encoding at test time. These contributions to approxi-

mate nearest neighbor search are general: they are not specific to scene parsing and

can be applied to any unlabelled (bank of random rotations) or labelled (supervised

sparse projections) database.

Section 1.2 briefly touched on the point of synergy between large-scale search

and deep neural network classification frameworks. We believe this will be an

important and fruitful avenue for future work. Though the techniques of binary

encoding and deep learning may seem different at first glance, we are just now

starting to see the exciting potential of their convergence. For example, the re-

cently proposed XNOR-Net [106] is a fast and compact approximation to standard

convolutional neural networks for classification in which filters and/or inputs are

constrained to be binary. Binarizing the weights produces a network that requires

32 times less memory than a conventional network with single-precision weights,

while maintaining comparable classification accuracy. Binarizing the inputs en-

ables a speed-up of 58 times relative to standard 3x3 convolution, with some degra-

dation in classification accuracy. XNOR-Net aims to enable real-time inference on

devices with limited memory and no GPUs.

In closing, this is an exciting time for large-scale, data-driven computer vision.

Tasks which had previously seemed far in the future, such as free-form visual ques-

tion answering, semantic 3D reconstruction at an urban scale, and self-driving ve-

hicles, are becoming more plausible with each year. The success of these projects

will have widespread and lasting impact: on how we work, how we design our

cities, and how we interact with machines.
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