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Abstract

In this thesis we investigate the use of pairwise testing for PLC embedded software. We compare
these automatically generated tests with tests created manually by industrial engineers. The tests
were evaluated in terms of fault detection, code coverage and cost. In addition, we compared pair-
wise testing with randomly generated tests of the same size as pairwise tests.

In order to automatically create test suites for PLC software a previously created tool called Com-
binatorial Test Tool (CTT) was extended to support pairwise testing using the IPOG algorithm.
Once test suites were created using CTT they were executed on real industrial programs. The fault
detection was measured using mutation analysis.

The results of this thesis showed that manual tests achieved better fault detection (8% better muta-
tion score in average) than tests generated using pairwise testing. Even if pairwise testing performed
worse in terms of fault detection than manual testing, it achieved better fault detection in average
than random tests of the same size. In addition, manual tests achieved in average 97.29% code
coverage compared to 93.95% for pairwise testing, and 84.79% for random testing. By looking
closely on all tests, manual testing performed equally good as pairwise in terms of achieved code
coverage.

Finally, the number of tests for manual testing was lower (12.98 tests in average) compared to
pairwise and random testing (21.20 test in average). Interestingly enough, for the majority of the
programs pairwise testing resulted in fewer tests than manual testing.
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Chapter 1

Introduction

Software has rapidly become part of our everyday life and we encounter it multiple times a day. It
handles things like the traffic lights we encounter on the way to work, the phone we check while
on a break, as well as the microwave we use every day. Software has been the main pillar of our
current informational society [1]. This fact show that software needs to be reliable and less faulty.
Developing reliable software systems is not an easy process. In order to ensure reliability different
techniques can be used to verify and validate the software, including software testing. In industrial
applications, software testing is the main way to evaluate the software [2]. According to Myers
et al. [3], a team developing software would spend approximately half of its time and even more
than half of its cost for safety-critical software on testing. This estimated number has supposedly
stayed true for more than 30 years from when the book was first published to the latest updated
version.

Testing can be used to find faults that might lead to software failures. These faults are often caused
by malfunctions in the interactions between programs or a functions parameters [4]. Writing the
tests to find these faults is not only costly, but also very labour intensive. Ways to automatically
generate tests have been widely researched to complement manual testing [5, 6, 7, 8]. There has
even been a study showing that tests created automatically using a combinatorial technique (i.e.,
pairwise testing) detected more errors than manual ones [9]. These results kindled our interest in
investigating how to use pairwise testing for a domain specific software, like the embedded software.

This thesis focused on how well pairwise testing works in comparisons to manually written test
suites created by industrial engineers for PLC embedded software. The rest of the thesis shows
the implementation of pairwise algorithm for PLC software, its evaluation and the results of the
experimental comparison between manual and pairwise testing in terms of fault detection, code
coverage, and cost on real industrial programs provided by Bombardier Transportation AB.
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Chapter 2

Background

Software testing is of the utmost importance [10] for both the developers and the users of the
software. It is a way to assure reliability and validate that software is executing in the desired
way before delivery. The goal is always to create reliable software, which becomes even more
important when concerning real-time safety critical embedded software. These programs need to
function with utmost certainty to ensure the absence of any unwanted behaviour, behaviour that
most likely would lead to disastrous results and possibly the loss of lives.

2.1 Programmable Logic Controllers - PLC

Programmable Logic Controllers (PLC) are a popular and widespread hardware and software choice
when dealing with this kind of real-time and safety critical software. These controllers are used
in many industries such as pharmaceutical manufacturing and nuclear power plants among others
and work by executing the software program in closed loops known as scan cycles. In every cycle
the PLC will execute its three phases; reading inputs; executing logical parts; updating outputs.
Because of this closed loop design, a PLC is able to assure a deterministic behaviour, thus pre-
senting itself as a viable tool for executing real-time software [11].

Programming these controllers differ from your typical desktop application. Nowadays these con-
trollers can follow the IEC (International Electrotechnical Commission) 61131-3 standard. This
standard was introduced to prevent the increasing number of company-specialized solutions of
programming languages as well as improve quality and enhance productivity [12]. The standard
defined five different programming languages to be used for PLC programming [13, 14].

• IL - Instruction List

• ST - Structured Text

• LD - Ladder Diagram

• SFC - Sequential Function Chart

• FBD - Function Block Diagram

These programming languages are designed to be operated by engineers with a limited knowledge
in programming [14], resulting in three of these languages being graphical (LD, SFC and FBD).
The FBD language is becoming increasingly used when it comes to implementing safety critical
software [15].
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2.2 Combinatorial Testing

To test these PLCs and ensuring their correctness, testing the program code is done in a controlled
environment. The goal of testing PLCs is to find the right combinations of inputs that would
reveal problems in the actual functionality. This is done by executing test cases. A test case is
described by Ammann et al. [2] as a test that executes the program to be tested, and it does this
by using a set of test inputs, expected outputs and actual outputs. Only executing one test case is
hardly enough to ensure a programs reliability. Instead by grouping a finite number of test cases
together we obtain a so called test suite. Having more test cases greatly improves the chances of
both covering the entire structure of code and finding all faults in the program.

Creating these test suites manually is a process that consumes a lot of time and is error prone. The
idea of being able to automatically generate test suites for software has been explored profoundly
during the last decades [16]. During the same time many different techniques have been put for-
ward, with the goal to either help reduce the time consumption of testing or improve its accuracy
[5, 6, 8, 17] and effectiveness in terms of fault detection. One of the most popular approaches
to automate test generation is the combinatorial testing strategy of t-way testing, which tries to
match all t-way combinations of input parameters. Pairwise testing is a subset of t-way testing
with a t value of 2. Supposedly this is an effective way to identify software related failures, with a
success rate between 50 and 97% depending on the application [9]. Other algorithms using t-way
matching exist where 2 ≤ t ≤ 6 which achieve even higher accuracy, but these algorithms come
with a higher cost in terms of larger test suites.

P1 P2 P3
0 0 0
0 1 1
1 0 1
1 1 0

Pairwise

P1 P2 P3
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Exhaustive

Table 2.1: Pairwise compared to Exhaustive testing

Table 2.1 shows both a test suite containing all the combinations i.e. exhaustive testing, and
a pairwise test suite created for the same PLC program. It is easy to see that even with this
very small program containing only three boolean values there are a lot fewer test cases achieved
by the pairwise approach then with exhaustive testing. As shown in Table 2.1, pairwise testing
makes sure that every value of each parameter is tested against every value of another parameter,
thus creating a pair. Parameter one has both its zero value and its one value matched with the
zero value of parameter two, and since there are more parameters than two it is also possible for
pairwise to match the pairs of parameter two’s zero value with parameter three’s zero value in
the same test. By matching more than one pair per test case, pairwise is able to greatly reduce
the number of test cases needed by testing all pairs of parameter inputs, compared to exhaustive
testing which tests all combinations of parameter inputs.

There are already available existing tools for generating combinatorial test suites. One of these
tools is ACTS (Advanced Combinatorial Testing System) [18, 19] (seen in Figure 2.1). ACTS
is a powerful tool that allows automatic construction of tests suites from a variety of different
algorithms. Some of them are IPOG, but also IPOG-F, IPOG-F2, IPOG-D and base choice. All
of the IPOG versions in ACTS are t-way compatible, which means that they can handle 2-way
testing up to 6-way testing. Due to the fact that ACTS has a few drawbacks, one of them being
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the lack of ability to import PLC programs. This fact motivates us to investigate other solution
for implementing pairwise testing for PLC software.

Figure 2.1: ACTS user interface showing the modelling of a program.

2.3 Motivation and Research Questions

The Train Control Management System (TCMS) is an embedded system running on PLCs which is
developed and used by Bombardier Transportation AB. This system consist of many other smaller
systems, ranging from hardware to software components, and it is the system ensuring all safety
critical and related operations in a train.

Testing these PLCs from TCMS is usually done manually by engineers. This is a process that
consumes a lot of time, and it would be helpful if parts of the creation of test suites for the TCMS
could be done automatically instead of manually. The problem with generating test suites in an
automatic manner is that the TCMS is a safety critical system, it must be tested thoroughly to
ensure that everything is working as intended. As far as we know, there are no published stud-
ies showing how pairwise testing compares to manual testing for PLC embedded software. This
motivates us to pose the following research questions:

• RQ1: How to implement pairwise testing for automatically generating test suites for PLC
software?

• RQ2: How does automatic generated test suites using pairwise testing compare to manual
ones in terms of fault detection?

• RQ3: How does automatic generated test suites using pairwise testing compare to manual
ones in terms of number of tests?

• RQ4: How does automatic generated test suites using pairwise testing compare to manual
ones in terms of code coverage?
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Chapter 3

Methodology

To perform this thesis an existing Combinatorial Test Tool (CTT), previously created by students
at Mälardalens University, was extended to include the pairwise algorithm. A link to the tool
can be found at the following GitHub repository 1. The tool was previously developed as part of
a project and was intended to help industrial engineers programming PLCs to create test suites
more efficiently, and includes combinatorial algorithms for creating base choice tests as well as
random generated tests. The tool works by loading the PLC program as an XML file containing
the program structure including the input types needed to test the PLC programs. Once a file is
loaded it is possible to choose which algorithm to use to generate a test suite. During this thesis
we focused on implementing and using the pairwise algorithm for PLC software.

Industrial Engineers

Pairwise test 
generator

Test 
Suite

Test 
Suite

Number 
of Tests

Code 
coverage

Mutation 
score

Creates

Generates

Executed on

TCMS 
Programs

Original programs 
+ 

Mutated programs

Random test 
generator

Test 
Suite

Generates

Figure 3.1: An overview of the methodology.

The study was performed according to the diagram shown in Figure 3.1 and done on existing
real world programs provided by Bombardier Transportation AB. For these programs, manual test
suites were already created by industrial engineers. Since these manually created test suites were
used to test software that is already in production, we consider them quite effective when it comes
to fault detection. These test suites were then accompanied with test suites generated by using
CTT and the pairwise algorithm as well as random algorithm before being executed on the original
PLC program to extract their respective data related to cost and code coverage. In addition, these
test suites will be run both on the original programs and on certain faulty versions of the program
(called mutants) with the purpose of providing information on how good the tests are at fault
detection.

1https://github.com/juananinca/DVA313-02
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3.1 Selection of Programs

Bombardier Transportation AB provided us PLC programs from the Train Control Management
System (TCMS). TCMS is a distributed real-time system containing different types of software
subsystems overseeing the operation and safety-related functionality of the train, and runs on
PLCs. TCMS allows for integration of control and communication functions for high speed trains
and contains all functions controlling the functionality of the train. In total 53 programs were
provided by Bombardier Transportation AB. During the execution of these programs 8 programs
had to be excluded for various reasons: one program only contained one parameter, making it
unusable with the pairwise algorithm and another program ran out of memory on the provided
computer. The other 6 programs failed to provide any results after execution due to execution
error or wrong parameter ranges that resulted in an execution error.

3.2 Measuring Fault Detection

Fault detection is measured using mutation analysis. After executing the program, we created
multiple faulty versions of the program [20] using a mutation creation tool. These mutated pro-
grams have small alterations in their code which are created by injecting common faults into the
original program. Examples of this injection could be to replace an instance of the ”equal to”
operator with ”greater or equal to” operator. By measuring how many of these injected faults are
detected by a certain test suite, we are able to obtain a proxy measure for fault detection in the
form of a mutation score. This is a method that has been shown to be suitable when real faults are
not available [21]. The mutation score used is calculated as the number of mutants killed divided
by the total number of mutants injected. This implies that a 100% mutation score results in the
detection of all injected mutants, thus resulting in an ideal test suite regarding fault detection.

3.3 Measuring Code coverage

Code coverage is a criteria that, as the name implies, measures how much of the code has been
covered. To increase chances of finding all faults, high code coverage is desired. Even so, according
to Inozemtseva et al. [22], high coverage is not necessarily a good way to measure of how good the
test suite is. Code coverage should not be used as a proxy for a test suites ability to detect faults.
Inozemtseva claims that code coverage is a good way to identify under tested parts of a program,
but there is no immediate correlation between code coverage and the number of faults detected.
This is also reinforced by Wang et al. [23]. They discovered that when comparing automatically
generated test suites to test suites created in a manual manner by engineers, even though the
automatically generated test suites achieved higher code coverage, these test suites did not achieve
as high a fault detection. Manual testing also showed better capability in finding hard-to-kill faults
and to test hard-to-cover code.

3.4 Measuring Number of tests

The last metric used to measure the efficiency of testing is is the number of tests. This is done
to provide a measure of the cost needed to create, execute and check the results for each testing
technique. Ideally this measurement would involve a direct measurement of the time it takes to
test PLC software using manual or pairwise testing. As we lacked this information we used the
number of tests as a proxy for cost.

To provide a proper baseline for the pairwise algorithm, a suitable test suite size was needed.
Instead of allowing the random algorithm to create as many test cases possible given the same
time as the pairwise algorithm, we chose to generate random test suites with the same number of
tests as pairwise testing. One could argue that the two alternatives focus on different aspects of
evaluation. If you limit random by the number of test cases generated, you will mainly look at the
quality of the test suite compared to pairwise, which is the desired need for the baseline. However,
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if you limit random by time, you will instead indirectly imply that the quality of a single random
test case is lower than that of a single pairwise one, and therefore you allow random to generate
more test cases. All of this, of course hinges on the idea that random is much faster at generating
test cases compared to pairwise.
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Chapter 4

Pairwise Testing of PLC Software

During our experimental study we used the CTT tool and our implementation of the IPOG pair-
wise algorithm. In Section 5 we show the implementation of this algorithm. An overview of the
workflow used during this study can be seen in figure 4.1. By using each program together with
their respective parameter range information (provided with the programs from Bombardier Trans-
portation AB), we have created a testing entity. This testing entity is a collection of parameters
with their respective data type as well as ranges represented as a table (shown in the left container
in figure 4.3). In CTT, the user after choosing a desired test generation algorithm, can generate
tests for a program. CTT creates a test suite before displaying it in the GUI. After this step, the
user has the choice of saving this test suite as a .csv file.

Program

Parameter
Range 

Information

CTT

IPOG 
ALGORITHM

Testing Entity Test Suite .CSV 
File

RANDOM 
ALGORITHM

Figure 4.1: Diagram showing the workflow of the CTT test generation.

When starting the program the user opens the GUI interface of CTT shown in figure 4.2. Using this
interface the user has the ability to either load PLC programs directly from XML files or manually
adding parameters to create a test entity. After choosing a folder specifying from which location to
load the programs, CTT will create a test entity by populating the parameter container with each
parameter available as well as the respective parameters data type (see Figure 4.3). In addition,
the user is supposed to specify each parameters range. This range is producing all possible values
to be tested and can be used by either writing a single value, or by writing the smallest possible
value in the range followed by an underscore and the highest possible value in the range. Multiple
ranges can be added by separating the ranges with a semicolon (;). In the case of the BOOL data
type, 0 is a sufficient interval and does not require any range: 0 1 is used as default. The following
are examples of ranges:

• 0 10⇒ All values from 0 to 10, including 0 and 10.

• 5⇒ Only 5.

• 0 10; 25⇒ All values from 0 to 10 with the addition of 25, including 0 and 10.

12
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Figure 4.2: Image displaying CTT when first starting it.

Figure 4.3: Image displaying CTT after inserting parameters and generating test suite.

After specifying the desired ranges, choosing desired testing algorithm and specifying additional
settings such as the need for randomised Don′tCareV alues for pairwise and number of tests for
random testing, the user is able to generate the tests. These tests are shown in the right container,
see figure 4.3. When choosing pairwise algorithm, additional information are also displayed at the
rightmost part of the tool: Information such as progress when creating larger test suites, time
taken to create the test suite measured in hundreds of a second as well as the total amount of test
cases created will be displayed. The user has the ability to save the test suite as a .csv file where
every parameter is written separated by a comma (,) and every case is separated by a new line.

13



Chapter 5

Pairwise Testing Algorithm

In this section we present how we implemented pairwise testing for PLC software and how test
suites are generated. In the end we compare pairwise testing done by CTT with pairwise testing
done by ACTS.

The pairwise algorithm is a combinatorial testing technique that automatically creates test suites,
also known as covering arrays [24]. Instead of covering every possible combination of inputs, the
algorithm instead focus on covering all pairs [9, 23, 24]. A system with 20 control each having 10
possible inputs will result in 1020 possible combinations. A system like this would be very imprac-
tical to test using exhaustive testing since it will require billions of years to execute [9, 24]. With
the use of a pairwise combinatorial testing algorithm the amount of test cases can in an optimal
situation be reduced to only 180.

5.1 CTT Implementation

CTT is an open source program that is written in C#, Because of this fact the need for an API
(Application Programming Interface) is not required and the pairwise algorithm can be added di-
rectly into the main functionality of CTT. Some additional improvements were also implemented
in the tool, such as the ability of handling other inputs than those originally available. Improve-
ments like extending the list of viable input types was implemented to ease the process of testing
PLC software in CTT. To answer RQ1, we used an algorithm that achieves pairwise combinatorial
coverage: the IPOG algorithm [25]. The algorithm supports extension for 2 ≤ t ≤ 6 combinatorial
testing and works by extending the test suite first horizontally and if needed vertically (see Figure
5.1). Let us consider an example with five parameters. The pairwise algorithm creates all 2-way
combinations of parameters A and B, it will start by first horizontally extending with parameter
C, and if the test suite lacks test cases to cover all AC and BC combinations, it performs a ver-
tical extension by extending the test suite with additional test cases before repeating this for all
remaining parameters.

A+B+C

A+B+C+D

A+B+C+D+E

CA+B D E

Figure 5.1: Representation of how the horizontal and vertical extension works with 5 parameters.
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The old version and the updated version of CTT, together with the raw data used in this thesis can
be found at the following GitHub repository 1. It is worth to note that only 2-way combinations are
possible in CTT. For greater t-way strength the implmented algorithm needs some minor changes.

In addition to extending CTT in terms of the algorithms used, the tool has been updated by
fixing some known bugs and increasing the usability of the CTT tool. Some of the more general
improvements are: the visibility of the row numbers when displaying the created test suite in the
tool as well as the ability to be able to resize the window. Beside these general improvements some
additional changes have been made that only affect the pairwise algorithms of CTT, the most
important one being the extension of data types supported. The original input types were limited
to REAL, INT and BOOL. We implemented the support for UINT, USINT, LONG and ULONG.
Additional we fixed some known problems: in an earlier version of the program the application
crashed when using tests that contained a large number of inputs. This happened because the
operating system saw that the main thread (which handled both GUI and test generation) was
under such tremendous load that the GUI of the program froze for long periods of time. Therefore
the pairwise algorithm was relocated to a background thread allowing it to run in parallel with
the GUI. In addition to the background thread, the interface was improved by adding a coverage
progress meter. The progress meter shows an abstract representation of the test generations com-
pletion. It works by displaying the percentage of all parameters that completed their horizontal
extension. We added a timer which measures the elapsed time for the test suite, as well as a label
that displays the total amount of test cases.

5.2 Algorithm Implementation

The pseudo-code for the implemented pairwise algorithm is described in Section 5.3. The algorithm
starts off by sorting the parameters in a decreasing order and saving them in a list called ps, this
is done to depend less on the vertical extension. It then creates an empty test suite ts before
populating it with every possible combination of the first t parameters. The next task will then
be to extend this test suite with each remaining parameter.

For every remaining parameter, line 10 to 30 in the algorithm, the procedure will start by creating a
collection of every t-way combination of the parameter to be extended and the parameters already
in the test suite. This is named as a collection π. The algorithm then goes through the existing
test suite and for each case checks which available value of this extended parameter will cover
most cases in π (line 14 to 17 in the algorithm). At this point the possibility of a tie exist where
different inputs all cover the same amount of cases in π. There exist multiple ways to execute this
tie-breaker, but since Huang et al. proved that a clean-cut best choice was absent [26], we chose
to implement a first element tie-breaker. After modifying all cases in the test suite, there exist
the possibility that π still contains elements. This is where the need for the vertical extension
arises (line 20 to 29 in the algorithm). The vertical extension checks if there exist a test cases with
”Don′tCareV alues” in the test suite which can be modified to cover a test in π, if it exist then
it modifies it (line 23). If not, it adds a new test case to cover the specific test before removing
it from π (line 26 and 27). The parameter values in this new test case that are not needed to
cover the case in π will be filled with ”Don′tCareV alues” and in this way the case is available for
modification during pending extensions.

1https://github.com/The-Luxs/DVA313-02
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5.3 Implementing IPOG in CTT

Algorithm 1 Pseudo code of IPOG algorithm implemented in CTT

1: procedure IPOG(V arList, Randomise, TWay)
2: VarList - List of parameters and their possible values
3: Randomise - boolean deciding if ”Don′tCare” values should be randomised
4: TWay - integer specifying the desired t-way strength (2 for pairwise)
5:

6: let ps be a list of the parameters (V arList) sorted in a decreasing order
7: let ts be all possible combinations of the first Tway parameters in ps
8: let O be a list containing the index of all sorted in their original order
9: i← TWay

10: for i < pstotal do
11: Create π to be all TWay combinations involving psi and all ps0 to psi−1 parameters
12: for each tsj in ts do (Horizontal Extension)
13: T ← tsj
14: for each k in psik do
15: extend T with psik
16: end for
17: Extend tsj with psik which after extending T covered most cases in π

(in case multiple psik are tied, the first one is chosen)
18: Remove all cases in π that are covered by the extended T
19: end for
20: for each πj in π do (Vertical Extension)
21: L← Index of all changeable values in ts
22: R← Index of L in ts that cover πj after being mutated
23: if R > -1 then (Exists a case that can be mutated to cover πj)
24: Mutate tsR to cover πj
25: else
26: Add πj to ts
27: Remove πj from π
28: end if
29: end for
30: end for
31: Create S [tstotal,pstotal]
32: if Randomise is true then
33: for each tsi in ts do
34: for each tsik in tsi do
35: if tsik is Don′tCareV alue then
36: tsik ← Random value between psj0 and psjmax
37: end if
38: end for
39: end for
40: end if
41: for each tsi in ts do
42: for each tsik in tsi do
43: SiOj ← tsik
44: end for
45: end for
46: return S
47: end procedure
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5.4 CTT vs ACTS

Since we have implemented our own version of pairwise test generation in CTT, a comparison
between CTT and ACTS, an already know combinatorial too, was helpful in providing some
qualitative measures on how well CTT performed. CTT is working well both in terms of the time
it takes to generate all the test cases and the number of test cases needed to provide full pair
coverage on small parameter sets with short intervals (see Figure 5.2). On these small sets CTT is
comparable and in some cases even better than ACTS. However when it comes to larger parameter
sets with longer intervals, CTT is not working as well as ACTS. The difference is most dramatic
when looking at the time consumption of generating test suites for the larger parameter sets with
wider intervals. The fact that CTT has a much longer execution time compared to ACTS tells
us that even though CTT is working fine in terms of pair coverage, it has a much higher time
complexity than ACTS. As shown in Figure 5.2 the small programs with shorter interval ranges
are generated almost as fast in CTT as in ACTS, but when it comes to the longer intervals CTT’s
execution time is quite high compared to ACTS. Due to time constraints during development of
CTT the time complexity was not the priority of this thesis. This is due to the fact that time to
generate test suites is not an important aspect of the evaluation when it comes to test suites quality.
The focus of this thesis was on creating a functioning pairwise algorithm that is comparable to
ACTS in terms of test suite size.
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Figure 5.2: Showing number of test cases and the time it took to generate them with ACTS and
CTT.
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Chapter 6

Results

In this section the data collected from the experiment is presented and analysed. Table 6.1 was
composed. We present the mutation scores, code coverage results and the number of test cases
in each collected test suite (i.e., manually created test suites by industrial engineers, pairwise test
suites, and random test suites of the same size as the ones created using pairwise). This table lists
the minimum, median, mean, maximum and standard deviation values. The data provided are the
results from the case study performed on 45 PLC programs. Additional information regarding a
specific program is available in the raw data provided in the GitHub repository.

Standard Deviation Mean Median MIN MAX

Code Coverage

Pairwise 10.35 93.95 100.00 50.00 100.00

Engineer 6.71 97.29 100.00 63.64 100.00

Random 15.06 84.79 87.50 50.00 100.00

Mutation Score

Pairwise 25.69 81.58 95.24 12.77 100.00

Engineer 14.22 88.90 95.00 44.44 100.00

Random 30.06 75.68 89.47 6.06 100.00

Number of tests

Pairwise 37.05 21.20 6.00 4.00 152.00

Engineer 12.26 12.98 7.00 2.00 56.00

Random 37.05 21.20 6.00 4.00 152.00

Table 6.1: Table displaying an overview of respective methods score.

6.1 Fault detection

From the data shown in Table 6.1 it is clear that manual test suites are better in terms of mutation
score compared to pairwise generated test suites. Even though pairwise generated test suites did
well with an average mutation score of 81.58%, it is still lower than the mutation score achieved
by manual tests (88.90% mutation score in average). The results shown in Table 6.1 also provide
evidence that random tests achieve an average mutation score of 75.68% which is lower than the
mutation score achieved by either manual tests and pairwise generated ones.
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6.2 Number of tests

Based on the data shown in Table 6.1 we can see that manual tests contain in average 12.98 test
cases per test suite. Pairwise and random generated tests have the exact same average value of
21.20 test cases per test suite. The random tests were generated with the same number of tests as
pairwise testing.

6.3 Code coverage

Table 6.1 provides useful results in terms of code coverage. In our study, manual test suites
achieved an average code coverage of 97.29% compared to pairwise generated test suites that
achieved 93.95% code coverage. The results also show that pairwise performs better than random
test suites of the same size.

6.4 Data Distribution

By using boxplots, we are able to represent the distribution of the data collected. Boxes spans
from 1st to 3rd quartile, black middle lines mark the median and the whiskers extend up to 1.5x
the inter-quartile range and the circle symbols represent outliers. Looking at the boxplots shown
in Figure 6.1 we can see that manual test suites written by engineers achieve better results than
both pairwise and randomly generated test suites. The boxplot shows that pairwise had a high
density of mutation scores between 90 and 100%. As shown in Figure 6.2, even though pairwise
testing is worse in average than manual testing regarding to the number of test cases, Figure 6.2
shows that pairwise testing had a low distribution of the number of test cases, around 6 test cases
in a test suite. The biggest contribution to the somewhat misleading average value is due to the
stray values. A boxplot showing the number of tests in a linear scale (figure 8.5) is available in
Appendix in Chapter 8. The ”Program Information” boxplot shows the distribution of the number
of parameters as well as generated mutants in the programs used in this thesis.
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Figure 6.1: Code Coverage and Mutation Score achieved by each testing technique. Pairwise
stands for pairwise testing, Engineer represents the manual tests created by industrial engineers
and Random stands for random tests of the same size as Pairwise tests.
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Figure 6.2: Number of Tests and Program information achieved by each testing technique and
the program studied. Pairwise stands for pairwise testing, Engineer represents the manual tests
created by industrial engineers and Random stands for random tests of the same size as Pairwise
tests.

6.5 Detailed Overall Comparison

To better explain the results shown in Sections 6.1, 6.2, 6.3 and 6.4 we noticed that pairwise testing
did for some programs produce better results than the manual tests. This lead to a detailed eval-
uation of the cases which produced the results shown in Figure 6.3 (a more detailed comparisons
can be found in the appendix in chapter 8).

We can observe that pairwise did in fact perform better than manual tests in 25 of the cases
out of the total number of 45 tests regarding to the number of test cases. For 16 of the investigated
cases manual testing performed better than pairwise testing in terms of number of test cases. Since
the results in Table 6.1 showed slightly different results, we tried to shed some further light on
this issue (see Figure 6.4). Even though pairwise testing in most of the cases produced fewer test
cases, the test suites where it produced more it produced a lot more.

Regarding code coverage, manual testing performed better than pairwise in terms of achieved
coverage for 13 programs. In comparison for only 4 programs were pairwise testing performed
better and for 28 of the programs they performed equally good.
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6.6 Related work

As far as we know this is the first study that looked at pairwise generated test suites and how
they compare to manually created ones when testing PLC embedded software. Since we have not
found any other similar studies we were not sure what results we could expect. However there have
been studies investigating how well pairwise generated test suites preform in other environments
that provided guidelines on what we could expect in terms of code coverage and mutation score.
Comparing some of the previous results with our own we found that Cohen et al. [27] achieved
block coverage of 90% for pairwise generated test suites. These test suites where generated by
a tool called Automatic Efficient Test Generator (AETG). The same tool was used by Burr and
Young [28] to achieve similar results in a different study: their study reached 93% block coverage.
Both theses studies show similar results to what we have achieved with pairwise in terms of decision
coverage. Shown in table 6.1 our average decision coverage achieved by pairwise generated test
suites is 93.95%. Vilkomir and Anderson [29] received MC/DC coverage results in a slightly lower
range of 77.8%. An interesting fact about Vilkomir and Andersons experiment is that it was
conducted on programs with 20 parameters which is significantly higher than our average of 9.3
parameters per program.
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6.7 Threats to validity

In this thesis we used automatically generated of mutants to provide the possibility of measuring
mutation score. It might very well be that faults created by industrial engineers would yield dif-
ferent or even more accurate results. However there are some evidence suggesting that injected
faults are a viable substitute for the ones created by developers [30].

We used CTT and our own version of IPOG pairwise algorithm to automatically generate our
test suites. There is a possibility to get different result if we were to use some other tool such as
ACTS for the generating of test suites. According to the data in Figure 5.2 it is even likely that
the results might be slightly different using ACTS, when considering the number of test cases in
the test suite.

To collect our data we have used a set of programs provided from the engineers at Bombardier.
We used 53 programs at the start of the thesis. Out of these 53 only 45 could be used for various
reasons. To be able to produce more conclusive results a much larger set of programs would have
been needed.

22



Chapter 7

Conclusion

In this thesis we investigated the performance of automatically generated test suites using a pair-
wise algorithm compared to test suites manually created by industrial engineers. To answer this
we took the approach of implementing a pairwise version of the IPOG algorithm in a tool called
CTT, which we used to automatically generate test suites. In terms of mutation score, manual
test suites achieved a mean score of 88.90% whereas pairwise achieved a score of 81.58%. Manual
tests achieved better code coverage of 97.29% compared to 93.95% for pairwise testing.

After investigating the results concerning individual and total number of tests cases for pair-
wise and manual test suites, it is clear that pairwise has a higher over all number of test cases.
Nevertheless, if we direct our attention towards the numbers of test cases in each test suite, we find
that pairwise had a lower number of test cases in a higher amount of test suites compared to manual.

One could argue that the main reason that pairwise is fairing fairly good compared to manual
test suites is that it has been allowed a higher number of test cases than what manual tests are
using. A fair argument, but this is where the use of random as a baseline value comes in very
handy. By the approach taken when generated the random test suites, random has the exact same
number of tests as pairwise and pairwise is still outperforming random on both code coverage and
mutation score see 6.1. These results conclude that pairwise is doing something better than ran-
dom. Another important aspect of how well pairwise is preforming is how high mutation score it
can achieve. According to Kuhn et al. [9] we should expect results to be somewhere in the interval
of 50-97% when it comes to mutation score. Once again we look at table 6.1 and see that our
mutation score of 81.58% is right in the interval that other studies have predicted.
To answer our research questions shown in section 2.3:

• RQ1: The implementation of the pairwise algorithm used was the IPOG algorithm, a thor-
ough description of the implementation and algorithm can be found in chapter 5.

• RQ2: Looking at both mean score and individual cases it is shown that manual tests performs
better at fault detection.

• RQ3: While only measuring mean value, the manual tests suits were the winner here, but
as shown in section 6.5 pairwise is the winner when investigating the number of test suites
instead of mean value. Thus a clear answer is absent.

• RQ4: Similarly to mutation score, manual tests performed better both in terms of mean
value and individual cases, but worth noting here is that the times both pairwise and manual
performed equal is greater than their individual achievements together.
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7.1 Future work

In this thesis we limited the random algorithm to only generate the same amount of tests as pair-
wise does. It would be interesting to see if the results that random achieves improves if we allow
a much higher number of tests to be generated. We would still get a fair comparison between
pairwise and random if we allowed random to generate as many test cases as possible during the
same time it takes for pairwise to generate its test suite. A larger number of tests could very well
provide better results from running a random algorithm.

Number of tests Mutation Score

Example 1

Pairwise 30 86.84%

Engineer 11 78.95%

Random 30 89.47%

Example 2

Pairwise 30 86.84%

Engineer 6 68.42%

Random 30 81.58%

Example 3

Pairwise 6 36.00%

Engineer 29 70.00%

Random 6 29.00%

Table 7.1: Showing three examples of number of tests and mutation score for pairwise, engineer
(manual) and random test suites.

There are examples to be found where all of the three ways to generate test suites out preformed
the others see table 7.1. With this is mind we want to raise the thought of combining either all
three of them or two of them to see if it is possible to enhance the results. Too answer this a study
on which of the different faults each way of testing kills needs to be conducted. If a study of this
kind show that in many cases pairwise, engineers and random algorithm finds and kills different
mutations, there is a good chance that a much higher mutation score can be achieved by combining
different testing techniques.

In the pairwise algorithm, there is a place where a tie breaking has to be done on which value
should be picked first when different values cover the same amount of possible test cases. As
previously mentioned, Huang et al. [26] had discovered that there is no clear choice to handle
these ties. Since CTT is a program developed especially for PLC programs, the tie breaking could
be further investigated to present more distinct results according to their platform and type of
programs. If the study shows that there are specific tie breaking techniques that would benefit
Bombardiers programs, these should be implemented in CTT. By doing this CTT would be even
more tailored for Bombardier and take another step in distinguishing itself from other applications
like ACTS.

As shown in figure 5.2 the time consumption of CTT is sky rocketing when a large program
is entered into the tool. This is happening because the pairwise algorithm that CTT is using have
a high time complexity. The most obvious way to solve the problem with time consumption on
larger programs would be to improve the algorithm in a way that will lower its time complexity.
Just by looking at the time it takes ACTS to run the same large programs we know that it is
possible to make improvements to the time complexity.

There is another way to lower the time consumption of CTT’s pairwise algorithm too. This is
something that can be done either in correlation with rewriting the algorithm or as a free standing
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improvement. At this point the pairwise algorithm in CTT is making sure that every single value
in an interval of a parameter is tested at least one time. If an integer has an interval of 0-3, it
will test 0,1,2,3 at least one time each, the same goes for larger intervals. A way to reduce the
number of test cases in each test suite would be to treat intervals at ranges of interesting values.
For example, if we have the interval of 0-100, a change in the algorithm could be made to instead
of interpret 0-100 as 101 different values it interpret it as an range of interest and then pick a few
values that covers the range, let us say 0, 25, 50, 100 and 101 would be a decent representation of
that range. With this method we have reduced the number of values that needs to be tested on
that specific interval from 101 to 5. A reduction like this would greatly decrease the number of
test cases in a test suite using pairwise algorithm, and by reducing the number of test also reduce
the time it it takes to create the test suite.

As mentioned in ”Threats to validity” in section 6.7, the data used in this study is of a small
quantity. Redoing the study with a larger amount of PLC programs, that is divided into categories
of small, medium and large programs, could provide more trustworthy results.

The last and maybe biggest improvement to CTT would be the addition of greater strength t-
way combinations. The IPOG algorithm CTT has implemented does at the moment only support
2-way, but most of the code has been adapted to handle a higher strength. The biggest exception
to this would be the creation of the π collection. By changing this to support other t values, the
possibility for a follow up study is presented. Are the increased test suite sizes worth it in terms
of fault detection? The biggest test suite in this study was presented to be 152 test cases, this
was with a program with four parameters all with range between 0-10, meaning 11 possible inputs.
Pairwise would in the most optimal case generate 112 = 121 test cases, 3-way would generate
113 = 1331 and 4-way 114 = 14641, this is not adding the vertical extension that could happen.
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Chapter 8

Appendix
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Figure 8.1: Code coverage comparison between pair wise and manual tests for each program.
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Figure 8.2: Mutation score comparison between pair wise and manual tests for each program.
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Figure 8.3: Test suite size comparison between pair wise and manual tests for each program.
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Figure 8.4: Execution time comparison between pair wise and manual tests for each program.
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Figure 8.5: Boxplots showing test test suite size linearly.
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