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Abstract

The domain of distributed simulation is growing rapidly. This growth leads
to larger and more complex supporting network architectures with high re-
quirements on availability and reliability. For this purpose, efficient fault-
monitoring is required. This work is an attempt to evaluate the viability
of an Active probing approach in a distributed simulation system in a wide
area network setting. In addition, some effort was directed towards building
the probing-software with future extensions in mind. The Active probing
approach was implemented and tested against certain performance require-
ments in a simulated environment. It was concluded that the approach is
viable for detecting the health of the network components. However, addi-
tional research is required to draw a conclusion about the viability in more
complicated scenarios that depend on more than the responsiveness of the
nodes. The extensibility of the implemented software was evaluated with
the QMOOD-metric and not deemed particularly extensible.

Keywords : Active Probing, Distributed Simulation, Fault localization,
Master thesis, Extensibility
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Chapter 1

Introduction

As modern technology is evolving at a very rapid pace, the networks required
to support such technology are growing larger and more complex very fast.
In any network, faults that can impact the stability and performance of the
system are to be expected. These faults have to be managed and kept under
control to ensure that the system can operate in a reliable way.

Fault detection and localization has been a hot topic over the last few
decades. Many different approaches have been suggested and used. Recent
years have seen a development towards enabling systems to autonomously
detect and localize faults within themselves through the act of probing.

One growing field in technology that is very dependent on large and
complex networks is the distributed simulation-domain, where the simulated
scenarios can contain very high numbers of actors/entities being simulated
together. One of the main issues is that different simulation environments
developed by different vendors have to be able to communicate with one
another to exchange simulation data. Fortunately there are standards avail-
able for this very purpose, the most popular one in recent years being the
High Level Architecture (HLA). However, within the framework of HLA,
there is not much support for fault management.

The fault detection and localization methods (mainly the probing-methods)
have been shown to be beneficial for telecommunication and similar net-
works, this report will explore if these methods can also be used to improve
the maintainability of a distributed simulation system using HLA.
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1.1 Background

The available implemented solutions, as of today (no research in the HLA-
domain has been found, therefore the implementation of Pitch Technologies
will be used as the viewpoint), require great multitasking from the super-
vising party as the error logs are spread out in several different parts of the
system. Hence, manually determining the root cause is not an easy task.
Furthermore, in many cases, the information available in the error messages
is not sufficient enough to pinpoint the root cause of several different errors.
If there is no obvious root cause, the errors are usually handled by rebooting
some part(s) of the system, hoping that it works as intended once the system
is up and running again.

As an example, if a couple of software entities within the system are no
longer responsive, the following issues are a few of the possible root-causes,
and there might be no way of discerning the true cause by only looking at
the errors:

e They all have unrelated issues that cause them to be unresponsive.
e Some unknown link that they all share might be down.
e If they all run on the same hardware, the hardware might be the cause.

Additionally there is currently no tool available that is able to showcase
all errors in a single overview further hindering the mitigation work for the
system overseer.

1.2 Motivation

Due to the complex nature of a large distributed simulation, the task of
manually monitoring the health of the system is very time consuming. Es-
pecially in cases of fault-manifestation, where pinpointing and correcting the
erroneous behaviour is required, preferably very quickly as to not delay the
execution of the simulation. As the simulation scenarios grow, both in size
and complexity, so does the effort required to keep the system healthy.

In multi-national catastrophe scenario exercises like the VIKING-series !
even small faults that stall the progression of the scenario are extremely
wasteful in regards to both time and economy. It is therefore vital to develop
a faster and more efficient way of diagnosing faults in the system.

IVIKING14 was conducted in Enkoping, Sweden 2014 with 2500 participants from
over 50 countries.
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1.3 Purpose

The thesis purpose is to explore the viability of automated fault detection
and localization through Active probing [1] in regards to improving the
maintainability of HLA-based systems. As part of the purpose a software
implementation of Active probing in HLA-based systems will be created
to be used for practical evaluation. It would be of interest to investigate
the possibility of diagnosing more advanced faults than unavailable nodes.
However, as it currently stands, there is very limited support for such exper-
imentation in the target system. Instead efforts will be made to investigate
how to build the software such that it is better prepared for future exten-
sions, the extensibility of the final product will also be evaluated.

1.4 Research Questions

This report will attempt to answer the following questions:

e With regards to real world timing and bandwidth requirements, would
an Active probing solution be viable in the target system and systems
alike?

e What measures should be taken during the design step to ensure the
extensibility of the system and how extensible is the final product?

The requirements will be presented and discussed in detail in chapter 3.

1.5 Delimitations

This thesis work will only focus on the detection and localization of faults,
hence, no efforts will be spent on how to mitigate/repair the discovered
faults.

An assumption about single fault per link-path is made. This means
that the probing system will not be able to detect faults that are masked
by other faults (i.e., if there is a problem with both the hardware and the
software on one node, only the hardware fault will be discovered).

Halfway through the thesis project, the research questions were altered
slightly. Most importantly, the question regarding extensibility was refo-
cused to apply to a more general case of extending the software. How this
change affected the appropriateness of the decisions made throughout the
project will be brought up in chapter 5.
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1.6 Report Structure

The report consist of the following six chapters:

1. Introduction: Introduces the topic of the thesis with the general
topic of discussion, background, scope, research questions to be an-
swered etc.

2. Theory: Describes the theoretical ground on which the thesis stands,
explaining concepts used in the thesis work.

3. Method: Showcasing how the thesis work has been carried out, what
directions were taken and why.

4. Results: Displays the performance of the implementation.

5. Discussion: Relates the results to the background, theory and re-
search questions to discuss the success of the thesis work.

6. Conclusion: Gives the final conclusion of the report, ie. the answers
to the research questions with support in the work that has been con-
ducted.

1.7 Terminology

A short explanation of some of the most important concepts.

Probe : A test transaction that depends on one or more components in the
network. A successful probe returns 0 (indicating that all dependencies
are OK), failure in any of the dependencies returns 1.

Fault detection : The process of detecting the presence of a fault.

Fault localization : The process of pinpointing the exact source of the
error that was detected during fault detection.

Node : A component in the network that is connected to the simulation
environment (causing it to be a probing target).



Chapter 2

Theory

In this chapter, the theoretic basis for the thesis project conducted will be
explained. This is to give the reader an understanding of the concepts used,
making the subsequent chapters more understandable.

2.1 Fault diagnosis

As faults are ever present in the context of networking, fault diagnosis is of
critical importance in a modern network. Unfortunately, most faults are not
directly observable, but have to be inferred from gathered information either
through alarms, probes or other means of information gathering. This is why
the area of fault diagnosis has received plenty of attention in the research-
domain during the last decades. Fault diagnosis has been defined as the
three following steps by Steinder & Sethi [2]:

e Fault detection, discovering the existence of a fault.
e Fault localization, determining exactly what the fault is.

e Testing, verifying the output of the localization.

Fault localization is often described as the most difficult and time con-
suming part of the diagnosis, this due to the detection only needing infor-
mation that something is amiss and testing already having a specific target.
Whereas localization requires searching sometimes large areas of the network
for a possible source for the error. This difference in complexity between de-
tection and localization is especially evident in the area of Active probing [3],
which will be discussed in a later section.
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2.2 Probing

Before being able to diagnose the system health, sufficient information about
the state of the system is required. This information can be gathered either
passively or actively [4].

Passive information gathering is done by instrumenting system compo-
nents to emit a message (or alarm) when its status/state change. The in-
formation in the messages can then be used in a correlation-process (event
correlation [3]) to localize the fault, or as a basis to collect more information
in a more active manner. This approach suffers from the requirement of
heavy instrumentation of the components such that they are able to send
out the appropriate messages for the right status-change [3]. Additionally,
there is no way of ensuring that messages do get sent if a component is
down [3]. Finally, some components may be proprietary and act as a "black
box” in the network, removing the ability to receive event-data from all the
system-components [3]. A positive aspect of the passive approach is that it
does not generate high amounts of traffic, and therefore does not affect the
performance of the network in any major way [5].

In contrast, the active approach consists of asking the components for
information that is considered interesting. In many cases, the active ap-
proach is called "probing”, where a probe is a test transaction carried out in
the system, and the outcome of the transaction is dependant on one or more
components [3]. Due to the end-to-end nature of the probes, they can be
used to make very specific end-to-end measurements, enabling very flexible
options on what to test for [6]. The main drawback of the probing-approach
is its invasive nature; they can in some cases (caused by their own presence)
disturb the very measurement they were intended to take [5].

In the most commonly used probing method, preplanned probing, probes
are selected off-line in such a way that the probes together can diagnose any
fault in the system. These probes are sent out at regular intervals (regardless
if there are any errors present or not), the probe results can then be used to
localize any possible faults through inference methods. Naturally, in a large
and complex system, such a complete set of probes is often very large [7].
This raises an issue, with a large set of probes circulating in the network
at regular intervals, performance can be negatively affected by the excessive
probe-traffic [5]. This very reason is why recent research efforts have been
focused towards Active probing [1], which aims to minimize the number of
probes used for fault diagnosis.
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2.2.1 Active probing

Active probing (also called Adaptive probing), introduced by the research
team of Brodie et al. [1] and further researched by Natu & Sethi [6] and
Lu et al. [8], utilizes probes in a more effective way than its predecessor,
preplanned probing.

It does this through the distinction between detection probes and local-
ization probes. Detection probes are selected as the minimal set of probes
that cover the entire network, and can therefore detect if there is a fault
present somewhere. When a fault is discovered, probes of finer granularity
are selected to localize the error (only the regions corresponding to the failed
detection probe need to be considered for the localization effort).

In most active probing solutions [1, 3, 8|, some form of Bayesian be-
lief network is used to support the decision-making as to what is the most
informative probe, which should be sent next as well as what is the most
probable fault.

Active probing often greatly decrease the amount of probes required for
an accurate diagnosis compared to preplanned probing due to the significant
reduction in probes that are issued at regular time intervals (all probes in
preplanned probing vs. ”a few” detection probes in Active probing). In
comparison, the Active probing approach needs to do more on-line work
when selecting which probe to send next [8] while the preplanned approach
often has to do heavy inference work.

Different strategies of how to approach the localization step to further
decrease the amount of probes used is discussed by Natu & Sethi [6], where
they compare Max-, Min- and Binary-search versions for the probe selection
step.

2.2.2 Hybrid solutions

Some researches have suggested a hybrid solution to fault reasoning by com-
bining the active and preplanned probing [9]. This allows for a tradeoff
between the issues in active probing (slow at reaching a conclusion) and
preplanned probing (generates a large network overhead). The approach
utilizes active probing to detect faults and narrow down the set of suspected
root causes, then switch to preplanned probing once the set of possible faults
goes below a predefined threshold.

Another hybrid solution is Active Integrated fault Reasoning (AIR) [10]
that combines passive data collection for fault detection and enlists the help
of the Active probing approach when passive data collection is not enough



8 2.3. KNOWLEDGE INFERENCE

to reach a definitive conclusion. AIR aims to improve the performance of
fault localization while minimizing its intrusiveness [10].

2.3 Knowledge Inference

Whether preplanned or active probing is used, the probe results need to be
analysed and the knowledge gained need to have some form of representation
that can be used as a basis for further probing or to make a conclusion of
the system state.

2.3.1 Bayesian belief network

Bayesian belief networks are, as mentioned in the previous section, the most
commonly used knowledge-representation format (in Active probing). An
example can be seen in fig 2.1. The reason for this is mainly that the
Bayesian network provides insurance of choosing the optimal path as long as
the probe with the highest conditional probability is chosen in each step [3].
The conditional probability of each node is calculated by combining known
initial relational probabilities with recent probe results to generate the pos-
terior probabilities. This is a process that is done iteratively with every new
probe result until a certain threshold is reached, indicating that the state
represented by this node is the current state of the system. In any itera-
tion, the current conditional probability depends on all the previous probe
results.

Figure 2.1: Bayesian network. (P=probes and S=states)

However, a major drawback is that the computational complexity of
Bayesian inference is NP-hard [11].
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2.3.2 Binary decision-tree

A binary decision-tree (similar to a flowchart), as seen in fig 2.2, is a different
way to describe the knowledge acquired through the activity of probing. It
consists of a binary tree with a question (probe) at cach intersection and
a conclusion (state) represented in each of the leaves. As probe-results are
received, the tree is descended ! until a leaf is reached, this leaf represents
the current state of the system [12]. The binary decision-tree representation
is somewhat closer to a preplanned approach than one using a Bayesian
network, due to the predetermined nature of the tree.

Figure 2.2: Binary desicion-tree. (P=probes and S=states)

The main advantage of decision-trees is that they are simple to imple-
ment and have a very low complexity, making the execution of the tree run in
constant time [12]. Disadvantages are the inflexible structure, making main-
tenance of the tree cumbersome, as well as the inability to ask questions in
a different order, which may in some cases be of interest.

2.4 High Level Architecture

High Level Architecture (HLA) is an interoperability standard for distributed
simulation systems. It is a way to describe how data should be exchanged
and who exchanges this data. An HLA-simulation consists of several differ-
ent important concepts:

Runtime Infrastructure (RTI): Thisis the cornerstone of HLA. In short,
the RTT is the interface to the world of HLA. Through the RTT a joined
federate can send and receive standardized information (defined in a

I Taking solid paths on successful probe-results and dashed paths if probes fail.
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Federation Object Model (FOM)). This information exchange is con-
ducted through a Publish-Subscribe model on a service bus, see fig 2.3.

Federate: A federate is a component connected to the RTI and through
it to a federation.

Federation: A federation is a collection of federates that are intercon-
nected and exchange simulation data in accordance with a FOM.

Federation Object Model (FOM): A document describing how the data
exchange in the federation should be described. It has been referred
to as “the language or the federation” [13].

Federation Execution: A running session of the federation. Ex: A
strategic training exercise scenario for military executives running sev-
eral different military simulators for friendly and hostile tanks and
aircraft. In this case, the Federation Execution would be the actual
run-through of the scenario.

Federate Federate Federate Federate

RTI

Figure 2.3: The service bus of HLA/RTI

There are a number of services supplied by the RTI, these are categorized
into several different groups [14]). The group that is the most interesting
in this case is the Management Object Model (MOM), which is a collection
of inspection and management services for the federation. Through these
services an observing federate can request reports about the other federates,
making the services perfect probe candidates.

2.5 Pitch Systems

The system in which the experimentation part will be conducted is developed
by the company at which the thesis project is done, Pitch Technologies. It is
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set up with several different parts and an example can be seen in figure 2.4.
In short, several sub-networks (often times over a single Local Area Network
(LAN)) are connected through a number of "gateways” (implemented as a
software called PitchBooster). When large scale simulation exercises are
conducted, different simulation sites (located at different geographical posi-
tions) connect behind these gateways to join the network that is supporting
the exercise.

Monitor Federate ——  Federate 4

\ /
B. Atlanta

Federate 2 / \
/ B. Kalmar B. London -
Federate 3 \ AN _—
\

Mon. Fed. 2 Federate 1

Figure 2.4: Example simulation network for a federation.

2.6 Extensibility in design

There are different levels that are interesting when speaking about soft-
ware quality in general; System level, Technology level and finally the Unit
level [15]. However, in this thesis the focus lies only on the unit level.

Extensibility, in the context of this thesis work, is the ability of a software
to be adapted to changes to its specification that might or might not have
been anticipated [16]. This should be possible with minimal or no changes to
the existing internal structure and data-flow of the software. Extensibility
is sometimes equated or linked to the concept of maintainability [16, 17].

Why is extensibility an important aspect of software design? Zenger [16]
mentions the following reasons in his doctoral thesis:

e Software can be seen as a living organism that is constantly evolving
with the help of the maintainers.

e Not all software ends up being used as it is intended when it is devel-
oped, it is therefore good if the software can be somewhat adapted to
new areas of use.
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e It is common for software product lines to heavily depend on earlier
products in the line, creating new products that are based on the old
ones. It is therefore very important that they are easy to extend.

In practice however, even though extensibility is a large boost for soft-
ware reuse, software is generally not developed with extensibility as a main
concern [16]. This due to:

e Extensible software is more complex and therefore harder to develop,
test and deploy.

e As an additional effect of the previous point, it is more time-consuming
and therefore more expensive (initially) to develop extensible software.

e It can affect performance negatively.

Despite the negative aspects presented, in practice the trade-off between
performance and extensibility is most often a minor issue as it turns out
that the parts of the software where extensibility is most beneficial are often
not critical to the performance of the software as a whole. Likewise with the
increased time/economical aspect of developing extensible software, if the
software is known to be used for extension in the future, more often than
not, it is cheaper to develop the initial software with a focus on extensibility
such that it requires less of an effort to further develop it when the time
comes.

A classification of different types of extensibility has been proposed,
based in how invasive the extension work is in relation to the original soft-
ware [16]:

White-box: White-box extensibility is split into two categories; Open-box
and glass-box, where the first requires full access to the source code
as changes are put directly into the original code, while in the former
the source code is fully available but may not be modified.

Open-box in its unrestricted base-form can be rather unsafe as when
code is changed by someone other than the original developer, that
person might not be familiar enough with the core and introduce bugs
or even break the software. It does, however, give the opportunity for
real open-source software, which in some cases can be very beneficial
where someone can copy the original software and change it to release
an own, but slightly different version (ex. some of the Unix-systems,
like Linux).

Glass-box is clearly a safer alternative, due to the separation of the
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extension and the original software. This also makes it easier to un-
derstand and maintain the extensions since they are only that, an
extension with a clear purpose. However, the freedom of modification
is stripped away compared to open-box.

Gray-box: A middle ground between white-box and black-box extensibil-
ity, where the source code is not fully available, instead a more ab-
stract documentation in the form of a system specialization interface
is given. The interface specifies which abstractions can be extended
and how they interact with the original software.

Black-box: This is the most restrictive form of extensibility, where only
an interface specification is available. This is most commonly used
in the case of proprietary software where the manufacturer wishes to
hide all implementation details. Due to the restrictive format, all
types of future extensions need to be anticipated when developing the
original software for them to be available to extend. On the plus side,
these limitations make black-box extensive software the easiest type
of software to extend.

2.6.1 Achieving extensibility

Creating extensible software is often done by conforming with design prin-
ciples and to some extent by applying software design patterns [16, 17].
Examples of design principles identified that support extensibility [17]:

e Dependency Inversion Principle
Proposed by Martin [18] - "Depend upon Abstractions. Do not depend
upon concretions”. Depending upon abstractions (interfaces) instead
of concrete classes increases the extensibility of the software by en-
abling the swapping of a faulty or bad concrete implementation for a
better one without having to modify the parts that depend on said
abstraction.

e Interface Segregation Principle
Another principle proposed by Martin [18] - "Many client specific in-
terfaces are better than one general purpose interface”. When more
than once client class use the same service (containing class specific
functionality), that service should be represented by different inter-
faces for different class types, so as to only give the necessary access
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to the client classes. This principle promotes extensibility by gener-
ating code that is easier to maintain and modify thanks to increased
readability (less method-bloat when calling the service).

e "Don’t repeat yourself”
By having only one unique representation of a certain piece of infor-
mation in the code (i.e. no repeats) there is no need to keep track
of all the places some information is expressed. Naturally, this means
that when something needs to be changed, it only needs to be changed
in one place, witch reduces the risk of introducing new bugs and cause
ripple effects that might end in the software crashing unexpectedly.

e Law of Demeter
Presented by Lieberherr et al. [19], this principle states that software
entities only should talk to their immediate neighbors (this is infor-
mally known as "only one dot per invocation”). A common example
of this in practice is that when you wish to move forward, you don’t
tell your leg-joints to perform the specific angle-movements required
to walk. By staying true to the Law of Demeter, the design will be
tightly connected with the flow of data, causing identification of which
parts of the system should be responsible for which tasks easier as
well as simplifying identification of faulty design elements during im-
plementation [17].

e Modularity

Defined as: "The property of a system that has been decomposed into
a set of cohesive and loosely coupled modules” by Booch [20]. Meaning
that on a class-level, one class should have one clear purpose and only
provide services that are closely related to this specific purpose. For
example, a GUI widget that presents data, writes and reads data from
a database as well as invoking remote services. This widget is filled
with services that are useful together, but not very related [20]. The
principle was referenced by Johansson and Lovgren [17], they argue
that if a system is highly modular, it is easy to replace a component
with another one, that might serve a slightly different purpose, and
therefore the system is more extensible thanks to the property of mod-
ularity. Another good aspect of modularity is that it also increases the
scalability of the software [17].

Even though the research-community is still somewhat divided on how
well software design patterns affect the quality of software, there is support
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for the claim that they help developers communicate better (increasing the
readability of the code) [21], which according to the Consortium for IT Soft-
ware Quality (CISQ) relates closely to maintainability (extensibility) [15].
Zenger [16] also supports the use of software design patterns to increase ex-
tensibility in software, often those that are derived from the AbstractFactory
pattern [22].



Chapter 3

Method

In this chapter, the approach taken in this thesis project will be explained
and motivated.

3.1 Prestudy

The project started by gathering information regarding the subjects relevant
to the thesis by conducting a literature study. To compile an extensive base
of academic literature well established databases ! were searched for works
on fault detection, fault localization, previously tried approaches as well
as different types of knowledge representation and extensibility. Several
different approaches were considered, but as the knowledge gained in the
literature study was put into the perspective of the company software, most
of them had to be dismissed and the direction and scope of the thesis was
defined. Details on this is found in chapter 1 and chapter 2.

3.2 Requirements

The following three aspects of performance are considered important when
judging whether the solution would be deemed viable in a real scenario 2 and
they must therefore be taken into account during the design of the software.

I UniSearch, IEEE Xplore, Google Scholar etc.

2According to discussions with the systems administrators at Pitch, who are most
familiar with the limitations of the systems that would benefit from a new solution to
fault localization in a real scenario.
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3.2.1 Localization time

A simulation execution being delayed is not only a bad user experience, it can
(as mentioned in chapter 1) also be very costly. Therefore, it is important
that this time is kept low.

3.2.2 Bandwidth

In some cases, the bandwidth can be limited, especially at remote simulation-
sites. This limitation can be as low as 10 Mbps or even lower [23, 24]. For
the simulation to work as intended, the diagnostic software needs to have a
low enough bandwidth usage, such that it does not impact the simulation
execution in a significantly negative way.

3.2.3 Correctness

Naturally, it is important that the results reported by the software can be
relied upon to be correct. The correctness will be measured with the well
established F-measure, described in [25] as:

Precision*xRecall

F — measure = 2 x Precicison+Recall

where:

T an _ TruePositives
Precision = TruePositives+ FalsePositives
_ TruePositives
Recall = TruePositives+FalseNegatives

3.3 Implementation

As previously described in chapter 2, HLA-communications are carried out
between a number of federates belonging to a federation. It was therefore
intuitive to create the software that would probe the system as a standalone
federate, it would through this property gain access to the different functions
that are granted to the HLA-federates (i.e., the ability to communicate with
the other federates on a HLA-level).

The federate side is one aspect of the application, it also has to be able
to communicate with the gateway-nodes (boosters) and the hardware of
all nodes, as well as all additional endpoints. This communication will be
further discussed in section 3.3.2.

Throughout the project, the intention was to create a software that
should be easy to extend with additional functionality or adding new faults
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to the detection /localization process. For this purpose, the design principles
of modularity [20], dependency inversion [18] and "Don’t Repeat Yourself”
(DRY) have been used during the development. This was done with the
intent of keeping the coupling in the final product low, making it easy to
introduce new types of objects either by adding new or replacing old ones.

The implemented software is split into three major components, as seen
in fig 3.1. The components are the following:

1. System specific component (SSC) - This component is the interface
between the diagnostic software and the system on which it is applied.
The main responsibilities of the component is creating and keeping the
Network Model up to date as well as calling on the diagnostic process
to run.

2. Network Model - Internal representation of the network, further
explained in section 3.3.1.

3. Fault Diagnostic Component - Using the Network Model, detects
and localizes faults in the network on request from the SSC, more
details in section 3.3.2.

These three components are separated such that one can be easily ex-
changed with a new and different implementation, this is one of the steps
taken towards a modular design.

System Specific Component -—————-——-———-
|
Y
Network Model
N x"?‘x
Fault Diagnostic Component ooomvevierecriniin el

Figure 3.1: Overview of implementation architecture.

3.3.1 System Modeling

The first step in creating an automated fault diagnostic process is creating
an internal representation of the network to be analyzed. Preferably the
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representation should be flexible and easily changed (automatically) when
new components are added and old components are removed or lost. This
to make sure that the internal model is always updated insuring that the
localization effort does not fail due to an inaccurate mapping of the system.

Due to the deterministic nature of the network (the path taken by the
probe is known before it is sent), these requirements could be accommodated
by transforming the network-graph into a tree. The monitoring federate
(NO) is used as the root, and all the end-points (other federates etc.) make
up the set of leaves. This structure made the probing process fairly straight
forward, as will be seen further ahead in the chapter. As an example the
network described in the theory chapter (fig 2.4) is simplified in fig 3.2 and
used as an input producing the tree in fig 3.3.

Ny
175 ~ NS/\\N4
3 >\< | N —

N7 N8

Figure 3.2: Simplified version of the network in fig 2.4.

Figure 3.3: Tree-model representation of figure 3.2.

When new nodes are added or removed from the network, those changes
are propagated to the tree-model, and the changes will be taken into account
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during the next probing iteration.

Some objects in the system (like the nodes, probes..) share large parts
of their behavior with other objects of the same type. In figure 3.4 the
extraction of this common behavior to abstract classes (orange) that are
realizations of the corresponding interfaces (green) can be seen. The specific
implementations (blue) then extend the abstract classes with the behavior
that is unique to that specific class.

Figure 3.4: Relation between different levels of abstraction.

This illustrates all three of the design principles applied during the im-
plementation. First: Instead of the Network Model depending upon the
concrete implementations of different specific nodes and probes, it depends
on their abstractions, in accordance with the dependency inversion princi-
ple. Second: Modularity - Due to the very low coupling achieved as a result
of the dependency inversion, probes and nodes can be seen as modules that
are easy to exchange during runtime. Making the implementation of those
components modular on the class-level. Third: DRY - the abstract classes
collect large parts of general behavior, if that behavior is to be altered, the
changes only need to be applied in one place.

As reasoning about the state of the system was required, a form of
knowledge-representation had to be chosen. The previously mentioned de-
terminism of the network combined with the NP-hard computational com-
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plexity of Bayesian inference [11] motivated the conclusion that the proba-
bilistic approach of Bayesian belief-networks was unnecessarily complex for
the purpose of the thesis project. Therefore, the decision to represent the
knowledge of the current state of the system with a binary decision-tree was
made.

3.3.2 Probing

As described by Rich et al. [3], the probes are either successful (represented
by a 0) or unsuccessful (represented by a 1), this fits well with the binary
decision-tree, where different paths are taken depending on the success of
the probes used so far. Like in most of the literature [1], the probes that are
used in this thesis are split into two groups, detection probes, used only to
find the presence of a fault in the network, and localization-probes, used to
localize the fault responsible in case of a failed detection probe.

Start diagnostics

Fun detection

Failure

Generate decision-treg Wait

Y

Run Localization :FD

ault not found

Fault found
Y

Report Conclusion

Figure 3.5: The flow of the fault-diagnostic process.

The flow of the diagnostic process conducted by the diagnostic compo-
nent is presented in figure 3.5. When the component is instructed to start
its process, the set of detection probes is gathered by asking the leaves of
the model-tree for a detection probe, this will ensure that the entire tree is
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penetrated by the detection probes and therefore, if there is a fault present,
it will not go unnoticed. Each probe is selected to require a minimal amount
of data to be transferred, such that it does not affect the network-load more
than necessarily and different probes are used depending on what kind of
node it is meant to probe. These are some of the probes that are used:

hlaFederateProbe: used to probe other federates with the help of the
HLA-call "requestInteractionsSent()”.

isBoosterAliveProbe: used to diagnose the health of a booster node (with
an internal call to the booster; "sayHelloAndGetCapabilities()”).

”ping”-Probe: formally called ICMP echo request, used to check if the
hardware of a node is up. It is important to mention that this one can
have some firewall issues (ICMP echo request is sometimes blocked in
the firewall to prevent DDOS-attacks).

other endpoint-Probes: as several endpoints in the network might not
be connected to the HLA-world, additional endpoint probes are there-
fore needed, as they cannot be probed by the hlaFederateProbe (some
of these endpoints are the Pitch Commander Agent and Pitch Com-
mander).

If all detection probes return successfully, the software waits for a pre-
determined probing interval and then restarts at the detection step. If,
however, one (or more) failed detection probe(s) indicate that a fault has
been discovered, a decision-tree is generated for each failed probe. Localiza-
tion probes are then used in a combination of binary- and min-search [6] to
further decrease the amount of probes used and thereby reducing the local-
ization time as well as the impact on network-load. An example of a binary
decision-tree for localizing a fault is showcased in fig 3.6. This decision-tree
is a representation of the probes used to check the health status of the nodes
on the path from the observer node, to the destination-node of the failed
detection probe.

The non-leaves represent probes, solid lines are taken in the event of
a successful probe result while dashed lines are used when an unsuccessful
result is received. The leafs represent the states (conclusions) that the local-
ization algorithm arrives at when it is finished. The states are the following;:

1. False alarm, everything is OK.

2. The software of the endpoint is faulty.
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Home booster?
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Figure 3.6: Decision tree for localizing a fault.

3. The hardware of the endpoint is faulty.

4. The software of the foreign booster is faulty.
5. The hardware of the foreign booster is faulty.
6. The software of the home booster is faulty.

7. The hardware of the home booster is faulty.

After the conclusion has been reported to the observing entity, the soft-
ware waits for the probing interval to arrive again, and restarts the detection
step.

3.4 Evaluation

The evaluation of the produced software will be split into two parts, one for
each of the research questions; Performance and Extensibility.

3.4.1 Performance

To be able to answer the first research question, the specific numbers of the
previously mentioned three performance-aspects have to be defined:

1. Time - When specifying the time allowed between a fault manifesta-
tion and the fault being reported to the system overseer it was consid-
ered important that the localization time should be low. However, as
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Localization time 15s
Bandwidth /endpoint | 5kbps
F-measure 1

Table 3.1: Performance requirements on probing software.

a human overseer cannot react or work very fast in comparison to a
computer system, this localization time does not have to be faster than
what a human could utilize efficiently. Other works mention sample
frequencies of 10 minutes [26]. When time is of the essence, like in the
previously mentioned VIKING-exercises, 10 minutes spent waiting to
localize a fault is 10 minutes wasted. Although, a few seconds is neg-
ligible due to the human element of the mending process. The final
time-requirement was settled on 15 seconds.

2. Bandwidth use - The limit of the network-load was estimated to no
more than 0.5 Mbps for 100 endpoints (supported by [27], stating that
no more than 10kbps should be used for each probe path), however
that amount of endpoints on a 10 Mbps connection is extremely rare.

3. Correctness - Due to the highly deterministic structure of the soft-
ware and the fact that it is only tested in a fully controlled environ-
ment, perfect precision and recall is expected, meaning an F-measure
of 1. Because of this, one could consider this part of the evaluation to
be of less significant than the other two. It will, however, show that
the method is implemented correctly and that the effort to achieve the
other two limitations does not negatively affect the correctness of the
reports produced by the software.

The final values of the performance-requirements are displayed in ta-
ble 3.1.

To test if the probing software can achieve these performance limits, sev-
eral testing scenarios were defined. The tests were performed in a simulated
environment with virtual machines that in some scenarios are affected by
artificial network delay to achieve a realistic set-up for a Wide Area Network
(WAN) 3.

The first two scenarios were automated with the help of the Pitch Com-
mander software (this was not feasible in the other scenarios, they were

3Latency numbers retrieved from www.wondernetwork.com at 2015-09-11.
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performed in a more manual manner), which allowed tapping into agents
behind the respective boosters and switch the federates on and off at certain
intervals with a python-script, making the testing of those scenarios signif-
icantly less cumbersome. Further details about the scenarios can be found
in Appendix A.

Scenario 1: Single federate crash

A federate becomes unresponsive despite its hardware still running. The
hardware of the crashed federate (and its booster) has a latency of 25-35ms
(representing a node in Paris, France). This scenario was designed to test
that the software was working and able to make correct conclusions about
the current fault-state.

Scenario 2: Double federate crash

Similar to scenario 1, the difference being that two ”identical” faults occur
at the same time at different locations. Like in the previous scenario, the
first crashed federate has a latency of 25-35ms, in addition, the second is
delayed by 70-100ms (representing a node in Huston, Texas). This scenario
was created to see how much slower the localization process would become
in the presence of more than one fault (this is not expected, but it is a point
of interest).

Scenario 3: Hardware crash

The hardware of several nodes crashes (one hardware node), causing them
to be unreachable. This node is "placed” in Huston, Texas with a latency
of 70-100ms. Similar to scenario 1 in the sense that the intent of the sce-
nario was to showcase basic functionality, in this case the functionality of
distinguishing between a software and hardware fault.

Scenario 4: No fault

In the last scenario there was no fault present, this is the most common state
since faults are not the default state and only an occasional occurrence.
This scenario was run with an increasing amount of federates to see how
well the detection would scale, both in the context of localization time and
bandwidth. Furthermore, in this scenario, there was no artificial latency
since it is not relevant to the scaling aspect. Also relevant (for the test
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of bandwidth usage) to mention that in this scenario, the detection probes
were deployed at an interval of two seconds.

3.4.2 Extensibility

To be able to draw any form of conclusion of how extensible the software is in
the end, an objective evaluation is required. This objective evaluation will be
conducted with the help of the Quality Model for Object-Oriented Design
(QMOOD). QMOOD is a method introduced by Bansiya and Davis [28]
that can be used to assess the quality of different versions of a software-
suite. It takes several different quality attributes into account, each of these
attributes can also be evaluated separately and the one quality attribute that
is of interest for the thesis is extensibility. To calculate the extensibility value
of the software, the four following metrics are considered.

Average Number of Ancestors(ANA) : It is derived from the average
number of classes that each class has as ancestors (i.e., how many
classes it inherits from).

Direct Class Coupling(DCC) : Determined by the average number of
classes that each class is directly dependent upon.

Measure of Functional Abstraction(MFA) : Calculated as the ratio
of the number of methods that are inherited to the total number of
methods available.

Number of Polymorphic Methods(NOP) : A count of the average amount
of methods that can exhibit polymorphic behaviour.

Taking into account abstraction, coupling, inheritance and polymor-
phism, the final extensibility attribute value is calculated as:

Extensibility = 0.5 x Abstraction(AN A) — 0.5 x Coupling(DCC') + 0.5 x
Inheritance(M F A) 4 0.5 x Polymorphism(NOP)

However, the value does not mean much on its own, and can only be
used to compare the evaluated software with earlier/later versions of itself
or very similar software. Similarly to Goyal and Joshi [29], the values of
the metrics will therefore be normalized (based on the highest achievable
values) such that each metric value will be between 0 and 1. This results
in the extensibility attribute value landing in the range of -1 to 3, which is
then scaled so that the final value is between 0 and 1, making it easier to
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interpret. This is done due to the fact that there is only one version available
in this thesis project.



Chapter 4

Result

In this chapter, the results of the more practical parts of the thesis project
will be presented.

4.1 Prestudy

The literature study resulted in a frame of what would be possible in regards
to fault localization in the company systems. Likewise, experimenting with
and discussing the company software gave a clear view of what would be
possible to research in the environment of the systems. Combining the two,
the direction and scope of the thesis could be decided.

Active probing [3] with the help of binary decision-trees [12] was the
approach chosen to receive additional focus in the thesis by implementing
the approach and evaluating its viability in the target system.

The result of the prestudy in a more concrete form is presented as the
first two chapters of the report (chapter 1 and chapter 2).

4.2 Implementation

During the implementation-phase, a software was created that would repre-
sent the approach of Active probing [3]. In this software, binary decision-
trees [12] were used as a representation of what is known about the state of
the system at any given point in time. An overview of the three major soft-
ware components of the final product was shown in fig 3.1 and the general
structure of the approach is presented in the UML-diagram of figure 4.1. In

28
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this diagram, the blue classes are full implementations, orange classes are
partial implementations (abstract classes) and green classes are interfaces.

1. PitchManager | > NetworkModel <I--- NetworkModelimp! |

s v R ;
VA v | ~y
FaultLocalizer “=»  ModelNode i———%}v Probe
_ | _ f{;l tf} 3
FaultLocalizerimp! | GenericNode GenericProbe
2. SpecificNode | SpecificProbe

Figure 4.1: UML of the general approach.

The classes are also partitioned such that each partition belong to dif-
ferent major components:

1. System Specific Component.
2. Fault Diagnostic Component.

3. Model of network.

4.3 Evaluation

4.3.1 Performance

The implemented software was tested in four different scenarios to see how
well it performed in regards to correctness, localization time and bandwidth
usage. These test results are a summary of 100 (in scenario 1-3) to 500 (in
scenario 4) test samples, the difference being due to the testing of scenario
4 going much faster. In all four of the test-scenarios, an F-measure of 1
was achieved meaning that all faults were found and there were no false
positives.
Graphs of the results can be found in Appendix B.
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Total | Detection | Localization | Hardware
Average | 1425.6 755.9 626.1 42.2
Median 1412 742 624 42
Max 1533 862 648 47
Min 1301 636 624 37

Table 4.1: Scenario 1, localization time (ms), sample size=100.

Total | Detection | Localization | Hardware
Average | 2161.7 765.1 1252.2 146.5
Median 2142 743 1249 142
Max 2332 862 1279 244
Min 2016 637 1249 123

Table 4.2: Scenario 2, localization time (ms), sample size=100.

Scenario 1

The first scenario was designed to test the localization time of a single fault
that occurred at a remote location. Table 4.1 presents the results of this
scenario.

Scenario 2

The second scenario was similar to the first scenario, the difference beeing
that an additional fault was introduced simultaneously at another remote
location. This to see how the localization time would vary. See table 4.2 for
detailed results.

Scenario 3

In scenario three, the localization time of a hardware fault at a remote
location was tested, details in table 4.3.

Scenario 4

The last test-scenario tested how well the software would perform in a scaling
situation. The data collected in the scenario was:

e Time required (in table 4.4)..
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Total | Detection | Localization | Hardware
Average | 5151.8 617.8 624 3854.5
Median | 5190.5 649 624 3914
Max 5202 846 624 3926
Min 4186 641 624 2917

Table 4.3: Scenario 3, localization time (ms), sample size=100.

# federates | 10 20 30
Average 72.4 | 140.3 | 182.4
Median 59 123 180
Max 171 248 270
Min 34 87 114

Table 4.4: Scenario 4, detection time (ms), sample size=500.

e Bandwidth required (downlink in table 4.5 and uplink in table 4.6)..

.for the detection step of the implemented algorithm.

4.3.2 Extensibility

The values in table 4.7 are the raw metric values, represented in their nor-
malized form in table 4.8. Computing the final value for the extensibility of
the software resulted in:

Extensibility = 0.5228 ~ 52.3%

The largest contributors to this value is the very low coupling (DCC) and
the somewhat high measure of functional abstraction (MFA), both of which

# federates | 10 20 30 50
Average 0.66 | 1.37 | 2.0 | 3.46

Median 0.63 | 1.39 | 2.08 | 3.34
Max 0.68 | 1.42 | 2.11 | 3.48
Min 0.63 | 1.33 | 1.95 | 3.48

Table 4.5: Scenario 4, downlink bandwidth (kbps), sample size=500.
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# federates | 10 20 30 50

Average 2.08 | 79 | 17.94 | 48.29
Median 2.01 | 8.16 | 18.17 | 49.92
Max 2.15 | 8.16 | 18.17 | 50.2
Min 2.01 | 7.61 | 16.96 | 36.82

Table 4.6: Scenario 4, uplink bandwidth (kbps), sample size=500.

Metric | Value
ANA 2.3333
DCC 4.6944
MFA 0.6048
NOP 2.0857

Table 4.7: Metric values.

links back to the use of software design principles during the implementation.

Metric | Value
ANA 0.1333
DCC 0.1304
MFA 0.6048
NOP 0.4834

Table 4.8:

Metric values (normalized).



Chapter 5

Discussion

This chapter will go through the different parts of the report and discuss
them, linking back to relevant literature and give a basis for the conclusions
that will be presented in the chapter after this one.

5.1 Results

5.1.1 Prestudy

The prestudy was meant to give an insight into the field of fault diagnosis
and the inner workings of the target software system, this to give a frame
of context in which the thesis project could be more clearly defined in the
form of the research questions. The initial process of defining the direction
and scope of the thesis was more difficult than expected and they shifted
significantly in the first few weeks of the thesis. The thesis started as an
investigation into how to report events that occur in certain geographical
areas (in the simulated world) to an investigation into how faults can be
localized with the help of error correlation tools to finally settle on the
chosen approach of fault localization with Active probing.

One can consider the first question the main focus of the thesis, with
the second question as a complement that deals with an interesting aspect,
should the conclusion of the first question confirm that the chosen approach
is indeed viable.

33
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5.2 Implementation

5.2.1 Performance

The performance discussion will be held in three separate parts, one for each
of the performance attributes defined in section 3.4.1.

Localization time

The time-requirement presented in table 3.1 states that the software should
be able to find and report a fault that has occurred within 15 seconds from
when it manifested. Given the response-time results, one can see that the
first two scenarios are significantly faster than the third, where the hardware
is faulty. This is due to the probe chosen (ping) waiting a certain amount of
time before declaring that the probe had failed. This amount of time should
be possible to set with a simple flag !, however, I was unable to make it
work properly in practice in a reasonable amount of time.

Despite the slow response of the hardware probe, scenario 3 shows promis-
ing numbers when comparing to the requirement. If the detection-probes
are sent at an interval of 6 seconds, in the worst case the time from manifes-
tation to report of fault would be under 12 seconds, the timing requirements
are met even for the worst of the scenarios.

Additionally, scenario 4 shows that the detection time scales linearly
with the number of endpoints that are probed. This time increase is only
the additional time it takes to send out the detection probes (scenario 4 had
no faults). In the event of a fault in an environment with a larger number of
endpoints 2, the detection-step is not expected to take an increased amount
of time for a reasonable number of endpoints.

Bandwidth usage

Looking at the results of scenario 4, where the bandwidth usage was mea-
sured with an increasing number of endpoints, it is clear that the downlink
bandwidth is well within the requirement of 5 kbps/endpoint. The other
data direction (uplink) present values that are significantly larger, although
still within the requirement. Additionally, it is important to keep in mind
the frequency used in the scenario (detection probes sent at an interval of

L("-w”) According to the manual entry for ping.
?Estimated number of end points where it gets significant ~100
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# federates | 10 20 30 50

Average 0.69 | 2.63 | 5.98 | 16.1
Median 0.67 | 2.72 | 6.06 | 16.64
Max 0.72 | 2.72 | 6.06 | 16.73
Min 0.67 | 2.54 | 5.65 | 12.27

Table 5.1: Uplink bandwidth (kbps) after altered probing frequency.

two seconds), if that frequency is significantly lowered to the 6 seconds previ-
ously mentioned (in the section on localization time), the load on the uplink
(and downlink) should shrink to roughly one third of what is shown in the
result of scenario 4 resulting in table 5.1.

However, the numbers presented by the uplink results do not scale lin-
early and will at some point surpass the limit set by the requirement (al-
though that would be at a fairly high number of endpoints 3).

As a final note regarding scenario 4, the reason the scenario did not deal
with any faults was that faults are assumed to be infrequent occurrences
and the detection-probes are therefore considered to be the main load on
the network, the localization-load is negligible.

Correctness

In all the different scenarios the probing software developed was able to
conclude the correct state of the system in all of the cases, achieving perfect
precision and recall and therefore also the perfect F-measure of 1.

One of the pitfalls that could cause a decrease in precision would be
not accounting for the correct latency when pressing for a lower localization
time by waiting for a shorter amount of time before declaring a probe as
failed, thus causing false positives. Faults can also be misdiagnosed if the
wrong conclusions are made from the probe results, which can happen if the
inference-method is not implemented correctly (this includes the localization
set being unable to identify all the faults uniquely). Some issues can also be
caused by probabilistic inference, but since it is not used in this thesis, it is
a non-issue.

While in the testing scenarios, most of these issues that can cause the
correctness to decline are not present, the fact that all faults were found and

3An estimation calculates this number of endpoints to ~85
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that there were no false positives further strengthens the confidence in the
solution to be correctly implemented.

5.2.2 Extensibility

As was mentioned in section 1.3, the reason the quality aspect of extensibility
is of interest in this thesis project is the prospect of future additions to the
faults the software is able to localize. In other words: How does one introduce
new fault definitions that the Active probing can start diagnosing?

It is not of interest to modify the software, the only desire is the ability
to extend the fault-definition such that it would include more possible faults
(and as a result their occurrence could be localized). Therefore, this is not
a case where open-box extensibility is relevant, and since the developers of
a company software usually have access to the code base it is closer to a
glass-box approach than gray /black-box.

During the implementation phase efforts were made to ensure that probes
could be hot-swapped during runtime and thereby alter what is currently
considered as "healthy” for the destination node in a dynamic way. This
was achieved through the application of the design principles of modular-
ity [20] and dependency inversion [18]. However, the structure of the binary
decision-tree is very restrictive and only allows for a certain sequence of
probe executions, which might not be suitable when detecting more sophis-
ticated faults occurring in components at one simulation-site that might be
caused by faulty components at another remote site.

A question, produced by this dilemma is: Would it be possible to change
the decision-tree? (and thereby freely be able to design the order of ques-
tioning in whatever order is desired/required to localize a specific fault.)

Technically, this would be possible (with some non-major changes to the
current code-base), however, the major issue in this case would be that when
exchanging the old decision-tree with the new one, the localization will no
longer be able to detect the faults that have been considered in the thesis
(healthy /unhealthy).

For the sake of extending the fault-definition with additional, and more
sophisticated faults Bayesian networks [3] would probably have been more
suitable, even though it would not have been possible to test those sophis-
ticated faults in the target system due to the lacking support structure.
Had Bayesian belief networks been the choice of knowledge representation,
the only addition that would be required to introduce a new type of fault
would be the required probes that are used to diagnose it, and appending
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the dependency-matrix 4 and the software would still be able to diagnose
the old faults just as easy as the new ones.

The result of the extensibility evaluation carried out by applying the
QMOOD-metric [28] for extensibility on the produced software show that
some efforts have been made towards an extensible implementation. While
the result of the evaluation (~52.3% extensible) is by no means an incredi-
bly high value, it seems to indicate that the effort to allow for hot-swapping
of probes paid off (a logical conclusion stemming from the similarity of the
design principles used and the way that the metrics are computed, coupling
, functional abstraction etc.). This achieved extensibility is mainly noticed
in practice when writing new probes or adding new types of nodes to the
network that is to be diagnosed, both which is done very smoothly. Addi-
tionally, the use of "don’t repeat yourself” results in writing new probes and
nodes not requiring much coding-effort, as most of the behavior already is
implemented. The application of dependency inversion and modularity has
also made it easier to replace different modules with others if one would wish
to do so, for example the model of the system is fairly well separated from
the diagnosing algorithm. However, it is clear that there is plenty of room
for improvement in a future version of the software.

5.3 Method

The first period of the thesis project was spent researching what has been
done previously in the area of fault localization. During this initial phase
of the project, the research direction was slightly different than it ended up.
Bayesian networks were deemed unnecessarily complex for the purpose of
determining the health of the nodes in a network following the structure of
the target system. This decision was in large correct, however, when the
research question regarding extensibility was altered to its current form, it
soon became clear that the dismissal of Bayesian networks might have been
a premature decision. As was mentioned in the previous section, extending
the fault-definition would probably have been significantly simpler (or even
possible at all) if Bayesian networks had been used.

For the same reason as Bayesian networks were dismissed, the Tree-
model for the system was introduced. This to simplify the creation of the
individual decision-tree for every node that was added. While it did help
in this thesis work, the tree-structure might not have much use outside of
the scope of the thesis project and might be a complicating factor when the

4A matrix describing which probes are affected by what fault-states [3].
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work is continued towards extending the fault-definition with new and more
complicated faults.

The evaluation of how viable an Active probing approach is depends
mainly on the performance requirements set in collaboration with the Pitch
employees. These requirements were set through the reasoning in chapter 3
(although supported by existing research) in an attempt to mirror an average
(or low-end) real customer system such that it would be applicable in a
more general case. However, it is important to keep in mind that these
requirements are not fixed for all such systems and they may vary depending
on the system that the approach is applied to.

One aspect of fault localization that has been excluded from the thesis
work is how the fault localization is conducted in regards to distribution.
Due to the bottle-neck that is the gateways (boosters) in the network ar-
chitecture, an argument could be made for a distributed solution, a notion
supported by Steinder and Sethi [2]. A solution would be a probing station
behind each gateway monitoring the sub-network of that gateway to decrease
the network load caused by the probing software. These local probing sta-
tions would then exchange information with each other to achieve a global
comprehension about the health-status of the system. However, for more
complicated faults, the distributed approach becomes much more complex
as some fault in a specific region might be depending on something occur-
ring at another location in the network [30]. This would require the local
probing stations to handle more complex inference, the implementation of
which would not fit into the timeframe of the project.

The argument can be made that the extensibility evaluation with QMOOD
is, in a sense, futile. This due to the fact that a number (0.523) without
much context does not tell the reader anything of interest. However, for fur-
ther extension of the produced software a counter argument would be that
a number like that helps the extension developer to estimate the how much
time the extension will take. A very low value would for example indicate
that more time would have to be spent on refactoring the code due to bad
structure. For the general reader however, perhaps it would have been more
interesting to include a step-by-step process on how to extend the software
and through that give an indication on the extensibility of the product.

5.3.1 Source criticism

During the thesis project new information has been gathered continuously,
which has lead to some unforeseen alterations to the focus of the report.
Overall this has not been a major issue.
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While the majority of the references used are primary sources, there are
some exceptions, most importantly there is partial reliance on a candidate-
thesis (although it is partially backed up by a doctoral thesis).

Additionally, in some cases it was hard to find reliable information,
mainly the network characteristics of an HLA-network. In this case, discus-
sions with the Pitch employees were instrumental to move forward without
too much delay. However, the goal has always been to confirm everything
concluded with their help by finding similar conclusions in published litera-
ture.

5.4 The work in a wider context

The probing software that has been developed in the project might not be
ready to be taken into use directly in the realm of simulation networks.
However, it is an indication of the usefulness of Active probing in a larger
network. If further developed, it could come to help mitigate faults in large
simulations for several different sectors that are important to the everyday
life of almost everyone and thereby affect people all over the world. Among
others, those sectors include defense, air- and train-route optimization etc.

As a counterpoint to the positive effects that might come as a result,
since the probing software would be used in cooperation with software con-
nected to such important organizations of society, the invasiveness of probing
deserves a mention. Due to the nature of probes collecting information from
the components that it is probing, it is not impossible to imagine a probing
software being exploited to gain information regarding those organizations
that might not otherwise be available.

It is important to note that although this thesis project was conducted in
a context of HLA, the context is not central to the viability of the approach.
The same results are to be expected in systems with similar network struc-
ture and performance requirement, regardless of what standards are used or
not.



Chapter 6

Conclusion

The purpose of the thesis project was to explore the viability of an Active
probing solution to fault localization in an HLA-based system. After study-
ing the field of research and testing the Active probing approach compared
to realistic requirements, the following conclusions to the research questions
have been made:

With regards to real world timing and bandwidth requirements, would an
Active probing solution be viable in the target system and systems alike?
For the scope of monitoring the health of the nodes, then yes, although some
optimization could be made in regards to the amount of time to wait before
declaring a probe failed and thereby lowering the total time significantly.
The bandwidth requirement could also be relaxed significantly by applying
a distributed approach instead of the centralized one implemented in the
thesis project. In regards to the more advanced faults than unresponsive
nodes, no real conclusion can be made until that path has been explored.

What measures should be taken during the design step to ensure the ez-
tensibility of the system and how extensible is the final product?

When looking at the literature, it is clear that adhering to the design prin-
ciples presented in chapter 2 is the dominant way to currently build systems
that are extensible by design. In the context of the thesis implementation,
the efforts during the implementation phase, application of the design prin-
ciples of dependency inversion, modularity and “don’t repeat yourself” made
the addition of new probes or replacement of modules easier. It also show in
the QMOOD-measure of extensibility reaching the value of ~52.3%. While
this value is not significantly high, it is neither catastrophically low. It is
clear that there is room for improvement on the extensibility side of the

40
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software.

6.1 Future work

This research could be extended by experimenting with Bayesian networks,
paving the way for inclusion of more sophisticated faults in the fault-definition.
Another interesting aspect that would be on top of the priority list would be
making a distributed version of the probing software and explore how that
would affect the performance.
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Appendix A

Test Scenarios

The following is a detailed explanation of the testing scenarios used for the

viability evaluation conducted in this thesis along with explanatory figures .

A.1 Scenario 1
Set-up(figure A.1):

e An example network with several gateway-nodes and federate nodes
are set up.

e TestBoosterd and its sub-network have a delay of 25-35 milliseconds.
Test:

o AgentX5 is used to periodically connect and disconnect the federate
encircled by red.

e The probing software (encircled by green) is running detection at the
same frequency.

Ezxpected result:

Every second iteration of the probing software should localize the fault of
the "crashed” federate to be "software of federate federate_name is faulty”.
Time measurements are also taken and stored.

LAll figures in this appendix are screenshots from the "BoosterGUI”, a software devel-
oped by Pitch to give an overview of the simulation network structure.
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A.2. SCENARIO 2

erc file:PitchDema: DIS Adapter-8[24] O— el

cre filePitchDemo DIS Adapter-521] € b

cre fille
TheCommander = crc fille:PitchDemo: Probe[43]
Viy i
crc fille:PtchDemo: DIS Adapter-6[22] A\ Filip

0 cre file:PitchDemo:DIS Adapter-10[44]

cre fille: PtchDemo: DIS Adapter-7[23] 0

TestBooster5. Ly AgentXs

wﬁﬂbos:l_eM

wvmBooster1 7“’0 cre file:PtchDemo DIS Adapter-9{27]

vrn’lignste‘_r;!’
o/
cre fille: PtchDemo: DIS Adapter-3[19] e
/ ; "
\ v
y 3 > WhiAgentt
cre file: PitchDemo:DIS Adapter-4{20] & VitiHoostetd
cre file:PitchDemo:DIS Adapter[16] cre fille:PitchDemo: DIS Adapter-1[17]

cre fille: PitchDemo:DIS Adapter-2[18]

B RTIExec O Federate A commander W Agent O Booster @ Home Booster O Offline Booster

Figure A.1: Network set-up for scenario 1.

A.2 Scenario 2

Set-up(figure A.2):

Test:

An almost identical network to that of scenario 1 is set up, on difference
is the latencies.

Delay of TestBooster5 (and its sub-network) is set to 25-35 millisec-
onds.

Delay of vmBoosterl (and its sub-network) is set to 70-100 millisec-
onds.

AgentX5 and VMAgent1 is used to periodically connect and disconnect
the federates encircled by red.

The probing software (encircled by green) is running detection at the
same frequency.

Ezxpected result:
Every second iteration of the probing software should localize the faults of
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cre.file
TheCommander = cre fille: PitchDemo: Probe[43]
A >
cri file:PitchDema: DIS Adapter-6[22] Filip

I cre file:PitchDemo:DIS Adapter-10[44]

cre file:PitchDemo: DIS Adapter-7[23] <>
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ere fille:PitchDemo: DIS Adapter-2[18]

W R1IExec <> Federate A commander N7 Agert O Booster @ Home Booster O Offline Booster

Figure A.2: Network set-up for scenario 2.

the "crashed” federates to be "software of federate federate_name is faulty”.
Time measurements are also taken and stored, a slight increase in time can
be expected as there is more localization work involved (and the second
federate has a longer delay).

A.3 Scenario 3
Set-up(figure A.3):

e An identical network to scenario 2 is used.
Test:

e The network-interface of the machine running the nodes encircled by
red is periodically turned on and off (longer periods than the earlier
tests to make sure that the interface has enough time to reconnect
before it is shot down again).

e The probing software (encircled by green) is running detection at the
same frequency.
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cre fill
TheCommander = crc fille:PitchDemo: Probe[43]
Viy &
crc fille:PtchDemo: DIS Adapter-6[22] . Fi y
y LA cre file:PitchDemo:DIS Adapter-10[44]
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cre file:PitchDemo:DIS Adapter[16] cre fille:PitchDemo: DIS Adapter-1[17]
cre fille: PitchDemo:DIS Adapter-2[18]

B RTIExec O Federate A commander W Agent O Booster @ Home Booster O Offline Booster

Figure A.3: Network set-up for scenario 3.

FExpected result:

Every second iteration of the probing software should localize the faults of
the unreachable nodes to be "hardware of nodes node_names.. is faulty”.
Time measurements are also taken and stored.

A.4 Scenario 4

Set-up(figure A.2):

e A network of two gateway-nodes are set up to test the bottleneck of
the gateway.

e An increasing amount of endpoint nodes are added each time the test
scenario is executed.

Test:

e The probing software (encircled by green) is running detection every
two seconds.

Ezxpected result:
A collection of measurements on how the detection-step scales with and
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Figure A.4: Network set-up for scenario 4.

increasing amount of endpoints. Values that are measured is the detection
time and the bandwidth use of the probing software.
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Result-graphs

This is appendix is a collection of test results in graph-representation where
n is sample size of each test run.
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