
NEW CONSTRUCTIONS OF
CRYPTOGRAPHIC PSEUDORANDOM FUNCTIONS

A Thesis
Presented to

The Academic Faculty

by

Abhishek Banerjee

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in
Algorithms, Combinatorics, and Optimization

School of Computer Science
Georgia Institute of Technology

August 2015

Copyright c© 2015 by Abhishek Banerjee

NEW CONSTRUCTIONS OF
CRYPTOGRAPHIC PSEUDORANDOM FUNCTIONS

Approved by:

Professor Chris Peikert, Advisor
School of Computer Science
Georgia Institute of Technology

Professor Lance Fortnow
School of Computer Science
Georgia Institute of Technology

Professor Alexandra Boldyreva
School of Computer Science
Georgia Institute of Technology

Professor Richard J. Lipton
School of Computer Science
Georgia Institute of Technology

Professor Santanu Dey
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor Alon Rosen
School of Computer Science
IDC Herzliya

Date Approved: 29 June 2015

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

SUMMARY . viii

I INTRODUCTION . 1

1.1 Applications of Pseudorandom Functions 1

1.2 Generic and Algebraic Constructions of PRFs 3

1.3 Lattices for Symmetric Cryptography? 6

1.4 Contributions . 7

1.5 Organization and Credit . 9

II PRELIMINARIES . 11

2.1 Mathematical Background . 11

2.1.1 Subgaussians and Discrete Gaussians 12

2.2 Cryptographic Definitions . 14

2.2.1 Pseudorandom Functions . 15

2.3 Learning With Errors and Ring Learning with Errors 15

2.3.1 Learning with Errors . 16

2.3.2 Ring Learning with Errors 17

2.4 Gadgets and Bit Decomposition . 17

III LWR AND PSEUDORANDOM SYNTHESIZERS 19

3.1 Overview . 19

3.1.1 Derandomizing LWE . 20

3.1.2 LWR-Based Synthesizers and PRFs 21

3.2 Learning With Rounding . 23

3.2.1 Reduction from LWE . 24

3.3 PRFs via the GGM Construction 27

3.4 Synthesizer-Based PRFs . 28

iii

3.4.1 Synthesizer Constructions . 29

3.4.2 PRF Constructions . 31

3.4.3 Efficiency . 33

3.4.4 Parallelism . 33

3.5 Open Problems and Related Work 35

IV DIRECT PRF CONSTRUCTION 37

4.1 Overview . 37

4.2 Direct PRF Construction . 40

4.2.1 Efficiency . 40

4.2.2 Parallelism . 41

4.2.3 Security Proof Under LWE 43

4.2.4 Security Proof Under Interactive LWR 51

4.3 Open Problems and Related Work 54

V KEY-HOMOMORPHIC PRFS . 56

5.1 Overview . 56

5.2 Construction and Analysis . 59

5.2.1 Security . 62

5.2.2 Size, Time, and Depth . 64

5.2.3 Instantiations . 65

5.2.4 Ring Variant . 67

5.3 Security Proof . 69

5.3.1 Proof Outline . 69

5.3.2 Proof of Security Theorem 72

5.4 Related Work . 82

VI CONSTRAINED KEY-HOMOMORPHIC PRFS 84

6.1 Overview . 84

6.1.1 Low-Depth Prefix-Fixing PRFs from LWE 85

6.2 Key-Homomorphic Constrained Pseudorandom Functions 87

iv

6.3 Prefix-Fixing Construction from LWE 90

6.3.1 Preliminaries . 92

6.3.2 “Noisy” Function Family C 93

6.3.3 Parallel Errorless Function Family 106

6.3.4 “Rounded” Function Family C 110

VII FAST PRFS IN PRACTICE . 128

7.1 Overview . 128

7.1.1 Implementations and Performance 131

7.2 SPRING-BCH . 132

7.2.1 Fast Subset Product in Rq 133

7.2.2 Rounding via BCH Code . 133

7.3 SPRING-CRT . 135

7.3.1 Unbiased Rounding of R∗2q 135

7.3.2 Fast Arithmetic in R∗2 . 136

7.4 Security Analysis . 140

7.4.1 Overview of Known Attacks 141

7.4.2 Birthday-type Attack on SPRING-CRT 143

7.5 Implementation Details . 145

7.5.1 Computations in R∗2 . 146

7.5.2 Computations in R∗257 . 147

7.5.3 Reducing Bias with a BCH Code 150

7.6 Conclusions and Future Directions 150

7.7 Cyclic Decomposition of R∗2 . 151

REFERENCES . 157

v

LIST OF TABLES

1 Comparison of various PRF instantiations 9

2 Comparison of various PRF instantiations (full table) 58

3 Implementation results for SPRING-BCH and SPRING-CRT 133

vi

LIST OF FIGURES

1 A typical instantiation – tree T1 . 67

2 The [18] “left spine” tree . 68

3 The “balanced tree” for e = s = 2 . 68

vii

SUMMARY

Pseudorandom functions (PRFs) are the building blocks of symmetric-key

cryptography. Almost all central goals of symmetric cryptography (e.g., encryption,

authentication, identification) have simple solutions that make efficient use of a PRF.

Most existing constructions of these objects are either (a) extremely fast in practice

but without provable security guarantees based on hard mathematical problems [AES,

Blowfish etc.], or (b) provably secure under assumptions like the hardness of factoring,

but extremely inefficient in practice.

Lattice-based constructions enjoy strong security guarantees based on natural

mathematical problems, are asymptotically and practically efficient, and have thus

far even withstood attacks by quantum algorithms. However, most recent lattice-

based constructions are of public-key objects, and it’s natural to ask whether these

advantages can be brought to the world of symmetric-key constructions.

In this thesis, we construct asymptotically fast and parallel pseudorandom func-

tions basing their security on a well known hard lattice problem called the learning

with errors problem. We provide several types of constructions that have their respec-

tive efficiency and security advantages. In addition to this, we also provide improved

constructions of key-homomorphic PRFs that achieve almost optimal quasi-linear

magnitudes of public parameters, key sizes and incremental run times. We also pro-

pose a new cryptographic primitive, constrained key-homomorphic PRFs, provide

secure candidate constructions and applications. Lastly, we detail an implementation

in software of a candidate PRF and analyze its efficiency and security.

viii

CHAPTER I

INTRODUCTION

The focus of this thesis is on pseudorandom function (PRF) families, first rigorously

defined and constructed by Goldreich, Goldwasser, and Micali (“GGM”) [39]. A

PRF family is of the form F = {Fs}, where the functions Fs : D → R are all

deterministic and indexed by the seed or the secret key s. We typically think of the

domain D = {0, 1}k, and call k the input length of the PRF family. Informally, F

is pseudorandom if no efficient adversary, given adaptive oracle access to a randomly

chosen function from the family, can distinguish it from a uniformly random function.

1.1 Applications of Pseudorandom Functions

Pseudorandom function families are central objects in symmetric cryptography. Given

a PRF family, most central goals of symmetric cryptography (e.g., encryption, au-

thentication, identification) admit simple solutions that make efficient use of the PRF.

We detail how two parties sharing a common secret key s would perform these tasks

below. (Note that we need the size of the domain to be superpolynomial in the

security parameter to prevent birthday attacks in all the applications below.)

• Encryption: A message m ∈ R is encrypted by choosing a random x ∈ D and

sending (x,m⊕ Fs(x)) as the ciphertext. The ciphertext (x, y) is consequently

decrypted as x⊕Fs(x). This scheme satisfies indistinguishability against chosen

message attack.

• Authentication: For a message m that is hashed to some x ∈ D, the authen-

tication tag is simply Fs(x). This scheme is unforgable against chosen message

attack.

1

• Identification: To identify themselves to each other on a public channel, the

parties run the following protocol: party A sends some randomly chosen x ∈ D

to party B, who responds with Fs(x), which A can then verify. They then run

the protocol in the other direction.

See [38, 58] for more details on these applications and others, including authenticated

encryption and cryptographic hash functions. Luby and Rackoff [59] show how to

construct pseudorandom permutations from pseudorandom functions by a construc-

tion built using the Feistel cipher. Pseudorandom permutations are the idealized

abstractions of block ciphers (which are simply pseudorandom permutations with an

efficient inverting algorithm), used for format preserving encryption, among other

uses. The cipher block chaining (CBC) mode of operation of a block cipher employs

the efficient inversion algorithm in its decryption phase.

PRF families find use in a variety of applications outside of symmetric cryptogra-

phy. Some of these are detailed below.

• Public Key Cryptography: Using pseudorandom functions, Goldreich [37]

managed to make the signing algorithm in any stateful signature scheme state-

less. Bellare and Goldwasser [14] use PRFs and non-interactive zero knowledge

(NIZK) proofs to create digital signatures secure against adaptive chosen mes-

sage attack.

• Complexity Theory: Razborov and Rudich [85] famously proved in an Gödel

award-winning paper that if pseudorandom functions exist then a wide class of

proof strategies, called natural proofs, cannot be used to prove P 6= NP .

• Learning: In a celebrated result, Valiant [91] proves that the existence of

PRFs in any complexity class C implies that there exist concept classes in C

that cannot be learned under membership queries (PAC learning).

2

Variants. In addition to the applications above involving direct use of a PRF, we

also mention the following variants that enable a wider variety of applications.

1. Verifiable Random Functions (VRFs), first defined by Micali, Rabin and Vad-

han [65]: in this setting, there is a public key that implicitly fixes all function

values, and the holder of the PRF key s can produce non-interactive proofs of

the fact that y = Fs(x) which can be verified using only the public key (along

with the PRF input and output and the proof). VRFs have a variety of appli-

cations, ranging from resettable zero-knowledge proofs [66] and micropayment

schemes [67] to updatable zero-knowledge databases [56], among others.

2. Key-homomorphic Pseudorandom Functions, first defined and constructed, in

the random oracle model, by Naor, Pinkas and Reingold [74], have the property

that Fs(x) + Ft(x) = Fs+t(x), that is, they are additively homomorphic over

their keys. They show how to distribute the operation of a Key Distribution

Center using a key-homomorphic PRF.

3. Constrained Pseudorandom Functions, concurrently defined by Boneh and Wa-

ters [20], Boyle, Goldwasser and Ivan [21] and Kiayias, Papadopoulos, Trian-

dopoulos and Zacharias [49], are constructions where it is possible to derive

constrained keys that enable the evaluation of the PRF on a certain subset of

the inputs only. Among a variety of applications of this primitive are identity-

based key exchange and broadcast encryption.

1.2 Generic and Algebraic Constructions of Pseudoran-
dom Functions

Generic Constructions of PRFs. The seminal GGM construction is based gener-

ically on any length-doubling pseudorandom generator (PRG), which in turn can be

constructed from any one-way function [42, 16]. This construction is exceedingly

simple to describe: the PRF seed is used as the initial input to the PRG, and each

3

bit of the PRF input is used to choose one half of the generator output, which is the

input to the generator for the next bit of the PRF input. More formally, given a PRG

G : {0, 1}` → {0, 1}2`, the function family F = {Fs : {0, 1}k → {0, 1}`} is indexed by

s ∈ {0, 1}` and defined as

Fs(x1 . . . xk) := Gxk(. . . Gx1(s) . . .),

where Gb represents the first or second half of the output, as indicated by the bit b.

We note that the GGM construction above requires k sequential invocations of

the generator when operating on k-bit inputs. Naor and Reingold [76] manage to con-

struct parallelizable PRFs with depth logarithmic in the input length. They do this

by defining a generic object called a “pseudorandom synthesizer” and combining these

objects in a recursive binary tree-like fashion (instead of combining pseudorandom

generators sequentially like the GGM construction). Essentially, a pseudorandom

synthesizer is a deterministic function S(·, ·) that accepts two inputs, and for any m

polynomial in the security parameter and inputs x1, . . . , xm, y1, . . . , ym, the m × m

matrix of all possible output values zi,j = S(xi, yj) is pseudorandom. Using a pseudo-

random synthesizer and two independent PRF instances F0, F1 on k input bits each,

one obtains a PRF on 2k bits as follows

F (x1, . . . , x2k) = S
(
F0(x1, . . . , xk), F1(xk+1, . . . , x2k)

)
.

The base case of a single-bit PRF is defined as Fk0,k1(b) = kb. Naor and Reingold

also provide several candidate constructions of pseudorandom synthesizers. Most of

these constructions are algebraic in nature, and were proven secure under number-

theoretic assumptions like the decision Diffie-Hellman (DDH) assumption, and the

RSA assumption. Their synthesizers are in TC0, and hence the resulting PRFs lie in

TC1.

4

Algebraic PRFs, Applications and Limitations. Naor and Reingold (“NR”) [77]

first provided direct constructions of PRFs that lie in TC0. These PRFs are alge-

braic, and are computed by exponentiating a group generator by an input-dependent

subset-product of secret-key values. NR provide two constructions, one secure under

the DDH assumption, and the second secure under the hardness of factoring Blum

integers. Naor, Reingold and Rosen [78] provide a construction similar in design and

security to the second NR construction, but is an improvement in the following sense:

while the NR construction can only output one bit at a time, this construction can

efficiently output polynomially many bits.

Naor and Reingold show that the operation of the NR construction can be effi-

ciently distributed among various parties that hold shares of the secret key. They

also show that interactive zero knowledge proofs for statements like y = Fs(x) and

y 6= Fs(x) can be provided, once the party computing the PRF Fs(·) has commit-

ted to the seed s. The highly algebraic structure of the NR constructions leads to

several more beautiful applications like oblivious PRFs, which are used for private

keyword search [32] and adaptive oblivious transfer and secure computation of set-

intersection [45].

A series of followup works [54, 19, 30, 43, 74] also construct algebraic PRFs in the

same subset-product and exponentiation framework, employing a variety of hardness

assumptions for various goals like security, efficiency in time or space, and other

applications (VRFs and key-homomorphic PRFs).

The one significant drawback of these algebraic approaches is that achieving low

depth for these constructions requires extensive preprocessing and enormous circuits.

Moreover, modular exponentiation of large integers, a subroutine in all these con-

structions, is a costly operation in practice. This means that such number-theoretic

constructions remain only a proof of theoretical feasibility rather than practical util-

ity. Moreover, these functions (or at least their underlying hard problems, which

5

are all no harder than the discrete log problem) can be broken by polynomial-time

quantum algorithms [90].

1.3 Lattices for Symmetric Cryptography?

The past few years have seen significant progress in constructing public-key, attribute-

based, identity-based, and homomorphic cryptographic schemes using lattices, e.g., [86,

83, 35, 34, 28, 1, 41] and many more. Part of their appeal stems from provable worst-

case hardness guarantees (starting with the seminal work of Ajtai [3]), good asymp-

totic efficiency and parallelism, and apparent resistance to quantum attacks (unlike

the classical problems of factoring integers or computing discrete logarithms).

Perhaps surprisingly, there has been comparatively less progress in using lattices

for symmetric cryptography. Promisingly, the learning with errors [86] problem yields

a pseudorandom generator that can be plugged into the GGM construction to con-

struct PRFs. However, this pseudorandom generator involves sampling discrete gaus-

sian noise from the input randomness, which is a costly operation in practice. More-

over, the natural advantage of lattice-based schemes, that they are relatively efficient

and highly parallelizable in a practical sense (i.e., they can be evaluated by small,

low-depth circuits), are completely lost when plugging them into a generic sequential

construction like GGM.

This motivates the search for specialized lattice-based constructions of symmet-

ric objects, that have comparable parallelism and ideally better efficiency than their

algebraic counterparts discussed in Section 1.2. While there has been some partial

progress in the form of randomized weak PRFs [6] and randomized MACs [84, 50],

constructing an efficient, parallelizable (deterministic) PRF under lattice assump-

tions, remained open for some time now.

6

1.4 Contributions

In this thesis, we make substantial progress in providing new and direct (non-generic)

lattice constructions which are highly efficient and provably secure based on hard

lattice problems.

Derandomizing LWE and Pseudorandom Synthesizers. The decision learn-

ing with errors (LWE) problem, first defined and analyzed by Regev [86], and its

ring variant (RLWE), introduced by Lyubashevsky, Peikert and Regev [62], forms the

cornerstone of most public-key lattice constructions. The decision LWE problem is

to distinguish linear equations with small random perturbations from uniform (see

Section 2.3 for a more detailed discussion). As discussed in Section 1.3 above, the

hardness of this problem leads to a construction of a pseudorandom generator, but

sampling the error using input randomness is a cumbersome step in practice. In

Chapter 3, we present a simple derandomization technique for LWE: we effectively

generate the error terms deterministically by rounding down to a smaller modulus.

We call this problem the learning with rounding (LWR) problem. We show that for

appropriate parameters, LWR is at least as hard as LWE. We also analogously define

RLWR and give a reduction from RLWE in the ring setting. Using this new hard prob-

lem, we subsequently go on to construct pseudorandom generators and pseudorandom

synthesizers in TC0 and obtain our first lattice-based PRFs by plugging them into the

GGM construction and the Naor and Reingold [76] synthesizer-to-PRF construction

respectively.

Direct Pseudorandom Functions. In Chapter 4, we provide a more parallel di-

rect construction of PRFs in the subset-product framework proposed by Naor and

Reingold [77] and Naor, Reingold and Rosen [78]. Instead of performing a subset-

product of secret exponents followed by an exponentiation of a group generator, we

7

perform a similar subset-product of secret matrices or polynomial ring elements fol-

lowed by a rounding operation. The ring-LWE based direct construction lies in TC0,

which matches the best prior results. We prove the security of the direct construction

directly from the (ring-)LWE assumption in a novel proof technique, which bolsters the

LWR security proof to handle adversarial queries. An artifact of this proof technique

is that the LWE approximation factor is exponential in the PRF input length k.

Key-Homomorphic Pseudorandom Functions. Boneh et al. [18] give a key-

homomorphic PRF through a construction that is a variant of the construction in

Chapter 4, and hence inherits the large LWE approximation factors of that con-

struction. In Chapter 5, we propose a family of constructions of key homomorphic

PRFs which are much more general and compact than the Boneh et al. construction,

and achieve significant security and efficiency improvements. In fact, the Boneh et

al. construction is an instantiation of this construction. Unexpectedly, our ring-based

constructions enjoy quasi-linear public parameters and secret-key sizes and incremen-

tal run times, making them the first provably secure low-depth PRFs to achieve any

of these efficiency measures. We summarize these results in Table 1 below.

Constrained Key-Homomorphic Pseudorandom Functions In Chapter 6, we

propose a new cryptographic primitive, constrained key homomorphic pseudorandom

functions. In addition to being able to derive constrained keys which restrict the

PRF operation to subsets of the domain, we also require that these constrain keys

are additively homomorphic. We provide a procedure that constrains the keys of

the construction from Chapter 5 to prefixes of PRF inputs, prove that the obtained

constrained keys are homomorphic and also prove the security of this scheme under

the LWE assumption.

8

Table 1: Example instantiations of our key-homomorphic PRF (for input length λ and
provable 2λ security against the best known lattice algorithms) as compared with prior
lattice-based PRFs. “KH” denotes whether the construction is key homomorphic.
Omitting polylogarithmic logO(1) λ factors, “Key” and “Params” are respectively the
bit lengths of the secret key and public parameters; “Time/Out” is the best known
runtime (in bit operations) per output bit, where ω ∈ [2, 2.373] is the exponent of
matrix multiplication; and “Out” is the output length in bits. The quantities in
brackets refer to the respective ring-based constructions.

Reference KH? Depth Key Params Time/Out Out

Ch. 3 (GGM) N λ λ [λ] λ2 [λ] λ2 [λ] λ [λ]

Ch. 3 (synth) N log2 λ λ3 [λ2] 0 [0] λω−1 [λ] λ2 [λ]

Chapter 4 N 1 λ5 [λ3] 0 [0] λ4 [λ2] λ2 [λ2]

[18] Y 1 λ3 [λ3] λ6 [λ4] λ5 [λ3] λ2 [λ2]

Chapter 5 Y ≈ log4 λ λ [λ] λ2 [λ] λω [λ] λ [λ]

From Theory to Practice. To demonstrate the practical viability of these new

constructions, in Chapter 7, we present an implementation in software and analyze

the security of an instantiation of the ring-based subset-product construction from

Chapter 4. We note that although the theoretical security proofs do not work for the

parameters we choose for these instantiations, a preliminary cryptanalysis suggests

robust 128-bit security. In addition, this implementation comes to within 4.5 times

the throughput of AES-128. A novel contribution is a fast recursive transformation

between the cyclic group representation and the usual polynomial representation of

the multiplicative units in the cyclotomic ring modulo 2, which might find use in

ring-based constructions elsewhere.

1.5 Organization and Credit

This thesis is organized as follows. In Chapter 2, we cover preliminary definitions and

supporting theorems that build a foundation for the rest of this thesis. Definitions

and supporting theorems specific to a particular construction are placed in a more

9

appropriate context as they are needed. In Chapter 3, we derandomize (ring-)LWE

and present the resulting pseudorandom synthesizer construction. We next present

the subset-product based direct PRF construction in Chapter 4. In Chapter 5, we

propose improved constructions of key-homomorphic PRFs (in particular, improving

on the work of [18]). We propose the new primitive of constrained key-homomorphic

PRFs and present candidate constructions and an application in Chapter 6. Finally,

we present a fast and secure implementation in software of a lattice based PRF

instantiation in Chapter 7. Each chapter begins with an overview of the results and

techniques contained therein. Further discussion, open problems and related work

are at the end of each chapter, as needed.

The work in this thesis has appeared in various peer-reviewed cryptographic con-

ferences and workshops. More specifically, Chapters 3 and 4 appreared as [12] (joint

work with Chris Peikert and Alon Rosen), Chapter 5 appeared as [11] (joint work

with Chris Peikert), Chapter 6 appeared as [10] (joint work with Georg Fuchsbauer,

Chris Peikert, Kryszstof Pietrzak and Sophie Stevens), and Chapter 7 appeared as [9]

(joint work with Hai Brenner, Gaëtan Leurent, Chris Peikert and Alon Rosen).

10

CHAPTER II

PRELIMINARIES

2.1 Mathematical Background

In this thesis, we will mainly be dealing with matrices and rings of polynomials over

the integers Z. For accuracy, we will often talk of quantities (lengths, norms etc.) in

the underlying field of reals R, and this will be apparent from the context. Matrices

will be denoted by bold uppercase letters (eg: A,E,S etc.), vectors will be denoted

by bold lowercase letters (eg: s, t, v etc.), and scalars will be denoted by lowercase

letters (eg: k, `,m, n etc.). Unless otherwise specified, all vectors in this thesis will

be row vectors. Unless specified, all additions and multiplications of elements in the

quotient group Zq = Z/qZ are modulo the underlying modulus q ≥ 2.

Rounding. We define the ‘rounding’ function b·ep : Zq → Zp, where q ≥ p ≥ 2 will

be apparent from context, as

bxep = b(p/q) · xe mod p.

We extend b·ep component-wise to vectors and matrices over Zq. Note that we can

use any other common rounding method, like the floor b·c, or ceiling d·e functions,

in Equation 2.1.1 above, with only minor changes to our proofs. In implementations,

it may be advantageous to use the floor function b·c when q and p are both powers

of some common base b (e.g., 2). In this setting, computing b·cp is equivalent to

dropping the least-significant digit(s) in base b. We will use a different definition of

rounding in Chapter 6 ahead for a technical reason that will become apparent later.

11

Spectral norm. The spectral norm s1(S) of a real matrix S is defined as maxu‖uS‖2 =

maxv‖vSt‖2, taken over all unit vectors u,v. Equivalently, it is maxx‖xS‖2/‖x‖2,

taken over all x 6= 0. The spectral norm is clearly submultiplicative: s1(S · T) ≤

s1(S) · s1(T).

Lemma 2.1.1. If S is a binary (i.e., 0-1) m-by-m matrix, then s1(S) ≤ m.

Proof. For any vector x ∈ Rm, we have

‖xS‖2
2 =

m∑
i=1

∣∣∣ m∑
j=1

Sijxj

∣∣∣2 ≤ m
(m∑
j=1

|xj|
)2

≤ m2

m∑
j=1

|xj|2 = m2‖x‖2
2,

where the first equality follows from the definition of the Euclidean norm, the first

inequality follows from the triangle inequality and the fact that |Sij| ≤ 1 for all i, j,

and the second inequality follows from Cauchy-Schwarz. This proves the claim.

Cyclotomic Rings. Throughout this thesis, we let R denote the cyclotomic poly-

nomial ring R = Z[z]/(zn + 1) for n a power of 2. (Equivalently, R is the ring of

integers Z[ω] for ω = exp(πi/n).) For any integer modulus q, define the quotient ring

Rq = R/qR. An element of R can be represented as a polynomial (in z) of degree less

than n having integer coefficients; in other words, the “power basis” {1, z, . . . , zn−1}

is a Z-basis for R. Similarly, it is a Zq-basis for Rq. We extend the rounding operation

b·ep by applying it coefficient-wise (with respect to the power basis) to the quotient

ring Rq (The ring-based constructions in this thesis may be generalized to arbitrary

cyclotomic rings using the tools developed in [63].)

2.1.1 Probability Background: Subgaussians and Discrete Gaussians

For a probability distribution X over a domain D, let Xn denote its n-fold product

distribution over Dn. The uniform distribution over a finite domain D is denoted by

U(D). We use the notation negl(·) to denote an arbitrary negligible function in its

input, one that vanishes faster than the inverse of any polynomial. We say that a

probability is overwhelming (in an underlying parameter λ) if it is 1− negl(λ).

12

The discrete Gaussian probability distribution over Z with parameter r > 0,

denoted DZ,r, assigns probability proportional to exp(−πx2/r2) to each x ∈ Z. It is

possible to efficiently sample from this distribution (up to negl(n) statistical distance)

via rejection [35].

Subgaussian random variables. In our constructions it is convenient to analyze

the behavior of “error” terms using the standard notion of subgaussian random vari-

ables. (For further details and full proofs, see [94].) A real random variable X (or

its distribution) is subgaussian with parameter r ≥ 0 if for all t ∈ R, its (scaled)

moment-generating function satisfies E[exp(2πtX)] ≤ exp(πr2t2). By a Markov ar-

gument, X has Gaussian tails, i.e., for all t ≥ 0 we have (where we define 0/0 = 0 in

case t = r = 0)

Pr[|X| ≥ t] ≤ 2 exp(−πt2/r2).

(If E[X] = 0, then Gaussian tails also imply subgaussianity.) Any B-bounded cen-

tered random variable X (i.e., E[X] = 0 and |X| ≤ B always) is subgaussian with

parameter B
√

2π. In addition, the discrete Gaussian distribution DZ,r over Z is

subgaussian with parameter r ([8] and [70, Lemma 2.8]).

Subgaussian random variables satisfy Pythagorean additivity : if X1, X2 are inde-

pendent subgaussians with respective parameters r1, r2, then X1 +X2 is subgaussian

with parameter
√
r2

1 + r2
2. By induction this extends to the sum of any finite number

of independent subgaussians.

A random real vector x is subgaussian with parameter r if for all fixed unit vec-

tors u, the marginal 〈u,x〉 ∈ R is subgaussian with parameter r. (In particular,

each coordinate of x is subgaussian with parameter r.) It follows directly from the

definition that the concatenation of independent subgaussians with common param-

eter r is also subgaussian with parameter r. Pythagorean additivity clearly extends

13

to subgaussian vectors, by linearity. In addition, if x is subgaussian with parameter r

then xS is subgaussian with parameter r · s1(S), since 〈u,xS〉 = 〈uSt,x〉.

We recall a useful result from the non-asymptotic theory of random matrices [94],

which bounds the spectral norm of a matrix with independent subgaussian entries.

Lemma 2.1.2. Let X ∈ Rn×m be a random matrix (or vector) whose entries are

drawn independently from (not necessarily identical) subgaussian distributions with

common parameter r. There exists a universal constant C > 0 such that s1(X) ≤

r · C(
√
m+

√
n) except with probability at most 2−Ω(m+n).

We next recall a similar result for rings from [62].

Lemma 2.1.3. Let χ be the distribution over the ring R where each coefficient (with

respect to the power basis) is chosen independently from DZ,r for some r > 0, and

let t = ω(
√

log n) denote any function that grows asymptotically faster than
√

log n.

Then in the product of k ≥ 1 independent samples drawn from χ, every coefficient is

bounded in magnitude by (r
√
n · t)k/

√
n, except with exp(−Ω(t2)) = negl(n) proba-

bility.

2.2 Cryptographic Definitions

The main security parameter through this thesis is λ, and all algorithms (including

the adversary) are implicitly given the security parameter λ in unary. All other

parameters and design choices are made such that all the algorithms run in poly(λ)

time.

Games and Computational Indistinguishablity. We consider adversaries in-

teracting as part of probabilistic experiments called games. For an adversary A and

two games H0, H1 with which it can interact, A’s distinguishing advantage (implicitly,

as a function of λ) is AdvH0,H1(A) := |Pr[A accepts in H0]− Pr[A accepts in H1]|.

14

Definition 2.2.1 (Computational Indistinguishability). We say that games H0

and H1 are computationally indistinguishable, written H0
c
≈ H1, if AdvH0,H1(A) =

negl(λ.) for any probabilistic polynomial-time A.

By the triangle inequality,
c
≈ is a transitive relation over any poly(λ)-length sequence

of games. If H0
c
≈ H1 and S is any probabilistic polynomial-time algorithm, then

the outputs of S playing in games H0 and H1 (respectively) are also computationally

indistinguishable.

2.2.1 Pseudorandom Functions

Definition 2.2.2 (Pseudorandom functions). Let A and B be finite sets, and let

F = {Fi : A → B} be a function family, endowed with an efficiently sampleable

distribution (more precisely, F , A and B are all indexed by the security parameter

λ). We say that F is a pseudorandom function (PRF) family if the following two

games are computationally indistinguishable:

1. Choose a function F ← F and give the adversary adaptive oracle access to F (·).

2. Choose a uniformly random function U : A→ B and give the adversary adaptive

oracle access to U(·).

To efficiently simulate access to a uniformly random function U : A → B, one may

think of a process in which the adversary’s queries are “lazily” answered with inde-

pendently and randomly chosen elements in B, while keeping track of the answers so

that queries made more than once are answered consistently.

2.3 Learning With Errors and Ring Learning with Errors

We recall the learning with errors (LWE) problem due to Regev [86] and its ring

analogue (RLWE) by Lyubashevsky, Peikert, and Regev [62]. These problems form

the bedrock of security of most lattice based constructions, and almost all the security

proofs in this thesis are based on the conjectured hardness of these problems.

15

2.3.1 Learning with Errors

For positive integer dimension n = poly(λ) and modulus q ≥ 2, a probability dis-

tribution χ over Z, and a vector s ∈ Znq , define the LWE distribution As,χ to be the

distribution over Znq ×Zq obtained by choosing a vector a← Znq uniformly at random,

an error term e← χ, and outputting (a, b = 〈a, s〉 + e mod q). We use the following

“normal form” of the decision-LWEn,q,χ problem, which is to distinguish (with advan-

tage non-negligible in λ) between any desired number m = poly(λ) of independent

samples (ai, bi) ← As,χ where s ← χn mod q is chosen from the (folded) error distri-

bution, and the same number of samples from the uniform distribution U(Znq × Zq).

This form of the problem is as hard as the one where s ∈ Znq is chosen uniformly at

random [6].

We extend the LWE distribution to w ≥ 1 secrets, defining AS,χ for S ∈ Zn×wq

to be the distribution obtained by choosing a ← Znq , an error vector e ← χw, and

outputting (a,b = aS + e mod q). By a standard hybrid argument, distinguishing

such samples (for S← χn×w) from uniformly random is as hard as decision-LWEn,q,χ,

for any w = poly(λ). It is often convenient to group many (say, m) sample pairs

together in matrices. This allows us to express the LWE problem as: distinguish any

desired number of pairs (A,B = AS + E mod q) ∈ Zm×nq × Zm×wq , for the same S,

from uniformly random.

For certain moduli q and (discrete) Gaussian error distributions χ, the decision-

LWE problem is as hard as the search problem, where the goal is to find s given samples

from As,χ (see, e.g., [86, 80, 6, 69], and [70] for the mildest known requirements on

q, which include the case where q is a power of 2). In turn, for χ = DZ,r with

r = αq ≥ 2
√
n, the search problem is as hard as approximating worst-case lattice

problems to within Õ(n/α) factors; see [86, 80] for precise statements.1

1It is important to note that the original hardness result of [86] for search-LWE is for a continuous
Gaussian error distribution, which when rounded näıvely to the nearest integer does not produce a

16

2.3.2 Ring Learning with Errors

For a modulus q, a probability distribution χ over R, and an element s ∈ Rq, the ring-

LWE (RLWE) distribution As,χ is the distribution over Rq ×Rq obtained by choosing

a ∈ Rq uniformly at random, an error term x ← χ, and outputting (a, b = a · s +

x mod qR). The normal form of the decision-RLWER,q,χ problem is to distinguish

(with non-negligible advantage in λ) between any desired number m = poly(λ) of

independent samples (ai, bi) ← As,χ where s ← χ mod q, and the same number

of samples drawn from the uniform distribution U(Rq × Rq). We will use the error

distribution χ over R where each coefficient (with respect to the power basis) is chosen

independently from the discrete Gaussian DZ,r for some r = αq ≥ ω(
√
n log n).

For a prime modulus q = 1 mod 2n and the error distribution χ described above,

the decision-RLWE problem is as hard as the search problem, via a reduction that

runs in time q · poly(λ) [62]. In turn, the search problem is as hard as quantumly

approximating worst-case problems on ideal lattices.2

2.4 Gadgets and Bit Decomposition

We now recall some useful background about gadgets and bit-decomposition, first

used in [70]. For an integer modulus q ≥ 1, let ` = dlog qe and define the “gadget”

(column) vector

g = (1, 2, 4, . . . , 2`−1) ∈ Z`q,

and the (deterministic) “binary decomposition” function g−1 : Zq → {0, 1}` as fol-

lows: identifying each a ∈ Zq with its integer residue in {0, . . . , q − 1}, let g−1(a) =

(x0, x1, . . . , x`−1) ∈ {0, 1}` where a =
∑`−1

i=0 xi2
i is the binary representation of a.

true discrete Gaussian DZ,r. Fortunately, a suitable randomized rounding method does so [81].
2More accurately, to prove that the search problem is hard for an a priori unbounded number of

RLWE samples, the worst-case connection from [62] requires the error distribution’s parameters to
themselves be chosen at random from a certain distribution. Our constructions are easily modified
to account for this subtlety, but for simplicity, we ignore this issue and assume hardness for a fixed,
public error distribution.

17

Note that by definition, 〈g,g−1(a)〉 = a for all a ∈ Zq, which explains our choice of

notation.3

Similarly, for vectors and matrices over Zq we define the function G−1 : Zn×mq →

{0, 1}n`×m by applying (g−1)t entry-wise. Notice that for all A ∈ Zn×mq we have

G ·G−1(A) = A, where G = In ⊗ g = diag(g, . . . ,g) ∈ Zn×n`q

is the block matrix with n copies of g as diagonal blocks, and zeros elsewhere.

For the ring Rq, define a suitable “gadget” vector g ∈ R`
q and deterministic func-

tion g−1 : Rq → R`, so that g−1(a) is “short” and 〈g,g−1(a)〉 = a for all a ∈ Rq.

(E.g., we may let g = (1, 2, 4, . . . , 2`−1) ∈ R`
q and define g−1(a) so that each of its

R-entries has {0, 1}-coefficients with respect to an appropriate “short” Z-basis of R.)

Extend g−1 to row vectors over Rq by applying g−1 entry-wise.

3These are just particular definitions of g,g−1 that we fix for convenience. Our constructions
and proofs only require that g−1 be deterministic, and that g−1(a) be a “short” integer vector such
that 〈g,g−1(a)〉 = a for all a ∈ Zq. Alternatives include using a signed ternary decomposition, or a
larger (or mixed-radix) base; the bounds in our security theorems are easily adapted to such choices.

18

CHAPTER III

LEARNING WITH ROUNDING AND PSEUDORANDOM

SYNTHESIZERS

In this chapter, we define the (ring)-learning with rounding problem and describe

the construction of a synthesizer-based family of pseudorandom functions that comes

almost immediately from this primitive.

3.1 Overview

We recall that in their work introducing synthesizers as a foundation for PRFs [76],

Naor and Reingold described a synthesizer based on a simple, conjectured hard-to-

learn function. At first glance, this route seems very promising for obtaining PRFs

from lattices, using LWE as the hard learning problem. However, a crucial point is that

Naor and Reingold’s synthesizer uses a deterministic hard-to-learn function, whereas

LWE’s hardness depends essentially on adding random, independent errors to every

output of a mod-q “parity” function. (Indeed, without any error, parity functions are

trivially easy to learn.) Probably the main obstacle so far in constructing efficient

lattice/LWE-based PRFs has been in finding a way to introduce (sufficiently indepen-

dent) error terms into each of the exponentially many function outputs, while still

keeping the function deterministic and its key size a fixed polynomial. As evidence,

consider that recent constructions of weaker primitives such as symmetric authenti-

cation protocols [44, 46, 48], randomized weak PRFs [6], and message-authentication

codes [84, 50] from noisy-learning problems are all inherently randomized functions,

where security relies on introducing fresh noise at every invocation. Unfortunately,

this is not an option for deterministic primitives like PRFs.

19

3.1.1 Derandomizing LWE

To resolve the above-described issues, our first main insight is a way of partially “de-

randomizing” the LWE problem, i.e., generating the errors efficiently and determinis-

tically, while preserving hardness. This technique immediately yields a deterministic

synthesizer and hence a simple and parallelizable PRF, though with a few subtleties

specific to our technique that we elaborate upon below.

Our derandomization technique for LWE is very simple: instead of adding a small

random error term to each inner product 〈ai, s〉 ∈ Zq, we just deterministically round

it to the nearest element of a sufficiently “coarse” public subset of p � q well-

separated values in Zq (e.g., a subgroup). In other words, the “error term” comes

solely from deterministically rounding 〈ai, s〉 to a relatively nearby value. Since there

are only p possible rounded outputs in Zq, it is usually easier to view them as elements

of Zp and denote the rounded value by b〈ai, s〉ep ∈ Zp. We call the problem of

distinguishing such rounded inner products from uniform samples the learning with

rounding (LWRn,q,p) problem. Note that the problem can be hard only if q > p

(otherwise no error is introduced), that the “absolute” error is roughly q/p, and that

the “error rate” relative to q (i.e., the analogue of α in the LWE problem) is on the

order of 1/p.

We show in Theorem 3.2.2 that for appropriate parameters, LWRn,q,p is at least as

hard as LWEn,q,χ for χ = DZ,r for an error rate α = r/q proportional to 1/p, giving

us a worst-case hardness guarantee for LWR. In essence, the reduction relies on the

fact that with high probability, we have b〈a, s〉 + eep = b〈a, s〉ep when e is small

relative to q/p, while bU(Zq)ep ≈ U(Zp) where U denotes the uniform distribution.

Therefore, given samples (ai, bi) of an unknown type (either LWE or uniform), we

can simply round the bi terms to generate samples of a corresponding type (LWR or

uniform, respectively). (The formal proof is somewhat more involved, because it has

to deal with the rare event that the error term changes the rounded value.) In the

20

ring setting, the derandomization technique and hardness proof based on ring-LWE

all go through without difficulty as well. While our proof needs both the ratio q/p

and the inverse LWE error rate 1/α to be slightly super-polynomial in λ, the state

of the art in attack algorithms indicates that as long as q/p is an integer (so that

bU(Zq)ep = U(Zp)) and is at least Ω(
√
n), LWR may be exponentially hard (even for

quantum algorithms) for any p = poly(n), and superpolynomially hard when p = 2n
ε

for any ε < 1.

We point out that in LWE-based cryptosystems, rounding to a fixed, coarse subset

is a common method of removing noise and recovering the plaintext when decrypting

a “noisy” ciphertext; here we instead use it to avoid having to introduce any random

noise in the first place. We believe that this technique should be useful in many

other settings, especially in symmetric cryptography. For example, the LWR problem

immediately yields a simple and practical pseudorandom generator, as we see ahead

in Section 3.3, that does not require extracting biased (e.g., Gaussian) random values

from its input seed, unlike the standard pseudorandom generators based on the LWE

or LPN (learning parity with noise) problems.

3.1.2 LWR-Based Synthesizers and PRFs

Recall from [76] that a pseudorandom synthesizer is a two-argument function S(·, ·)

such that, for random and independent sequences x1, . . . , xm and y1, . . . , ym of inputs

(for any m = poly(λ)), the matrix of all m2 values zi,j = S(xi, yj) is pseudorandom

(i.e., computationally indistinguishable from uniform). A synthesizer can be seen as

an (almost) length-squaring pseudorandom generator with good locality properties,

in that it maps 2m random “seed” elements (the xi and yj) to m2 pseudorandom

elements, and any component of its output depends on only two components of the

input seed.

Using synthesizers in a recursive tree-like construction, Naor and Reingold gave

21

PRFs on k-bit inputs, which can be computed using a total of about k synthesizer

evaluations, arranged nicely in only lg k levels (depth). Essentially, the main idea is

that given a synthesizer S(·, ·) and two independent PRF instances F0 and F1 on t

input bits each, one gets a PRF on 2t input bits, defined as

F (x1 · · · x2t) = S
(
F0(x1 · · ·xt) , F1(xt+1 · · ·x2t)

)
. (3.1.2)

The base case of a 1-bit PRF can trivially be implemented by returning one of two

random strings in the function’s secret key. Using particular NC1 synthesizers based

on a variety of both concrete and general assumptions, Naor and Reingold therefore

obtain k-bit PRFs in NC2, i.e., having circuit depth O(log2 k).

We give a very simple and computationally efficient LWRn,q,p-based synthesizer

Sn,q,p : Znq × Znq → Zp, defined as

Sn,q,p(a, s) = b〈a, s〉ep.

Pseudorandomness of this synthesizer under LWR follows by a standard hybrid ar-

gument, using the fact that the ai vectors given in the LWR problem are public.

(In fact, the synthesizer outputs S(ai, sj) are pseudorandom even given the ai.) Or

for better space and time complexity, we can instead use the ring-LWR synthesizer

SR,q,p(s1, s2) = bs1 · s2ep, since the ring product s1 · s2 ∈ Rq is the same size as

s1, s2 ∈ Rq.

To obtain a PRF using the tree construction of [76], we need the synthesizer

output length to exactly match its input length. To this end, we employ an efficient

bijection, for m ≥ n such that pm = qn, K : Zm×mp → Zn×mq . We then modify the

definition of the pseudorandom synthesizer function as follows

Tn,p,q(S1,S2) := K
(
bSt1 · S2ep

)
∈ Zn×mq ,

for Si ∈ Zn×mq . Analogously, for q = pm, we use the efficient bijectionK : Rm×m
p → Rm

q

to redefine the ring-based synthesizer TR,q,p(s1, s2) = K(bst1 ·s2ep), for si ∈ Rm
q . These

22

synthesizers can be plugged into Equation (3.1.2) to give PRFs whose security under

(ring-)LWRn,q,p follows directly from the security of the synthesizers under (ring-)LWR

and the security proof from [76].

Note that the matrix multiplication can be done with a constant-depth, size-

O(n2) arithmetic circuit over Zq. The ring product can also be computed with a

constant depth, size-O(n2) circuit over Zq, or in O(log n) depth and only O(n log n)

scalar operations using Fast Fourier Transform-like techniques [61, 62]. Moreover, we

see in Section 3.4.4 that these synthesizers are as efficient in parallel depth as those

from [76].

3.2 Learning With Rounding

We now define the “learning with rounding” (LWR) problem and its ring analogue,

which are like “derandomized” versions of the usual (ring)-LWE problems, in that the

error terms are chosen deterministically.

Definition 3.2.1. Let λ ≥ 1 be the main security parameter, dimension n = poly(λ)

and moduli q ≥ p ≥ 2 all be integers.

• For a vector s ∈ Znq , define the LWR distribution Ls to be the distribution

over Znq × Zp obtained by choosing a vector a ← Znq uniformly at random, and

outputting (a, b = b〈a, s〉ep).

• For s ∈ Rq (defined in Section 2.3), define the ring-LWR (RLWR) distribution

Ls to be the distribution over Rq × Rp obtained by choosing a ← Rq uniformly

at random and outputting (a, b = ba · sep).

For a given distribution over s ∈ Znq (e.g., the uniform distribution), the decision-

LWRn,q,p problem is to distinguish (with advantage non-negligible in λ) between any

desired number of independent samples (ai, bi)← Ls, and the same number of samples

23

drawn uniformly and independently from Znq × Zp. The decision-RLWRR,q,p problem

is defined analogously.

Note that we have defined LWR exclusively as a decision problem, as this is the

only form of the problem we will need. By a simple (and by now standard) hybrid

argument, the (ring-)LWR problem is no easier, up to a poly(λ) factor in advantage,

if we reuse each public ai across several independent secrets. That is, distinguishing

samples (ai, b〈ai, s1〉ep, . . . , b〈ai, s`〉ep) ∈ Znq × Z`p from uniform, where each sj ∈ Znq

is chosen independently for any ` = poly(λ), is at least as hard as decision-LWR for a

single secret s. An analogous statement also holds for ring-LWR.

3.2.1 Reduction from LWE

We now show that for appropriate parameters, decision-LWR is at least as hard as

decision-LWE. We say that a probability distribution χ over R (more precisely, a

family of distributions χn indexed by the security parameter λ) is B-bounded (where

B = B(λ) is a function of λ) if Prx←χ[|x| > B] ≤ negl(λ). Similarly, a distribution

over the ring R is B-bounded if the marginal distribution of every coefficient (with

respect to the power basis) of an x← χ is B-bounded.

Theorem 3.2.2. Let χ be any efficiently sampleable B-bounded distribution over Z,

and let q ≥ p · B · λω(1). Then for any distribution over the secret s ∈ Znq , solving

decision-LWRn,q,p is at least as hard as solving decision-LWEn,q,χ for the same distri-

bution over s. The same holds true for RLWRR,q,p and RLWER,q,χ, for any B-bounded

χ over R.

We note that although our proof uses a super-polynomial q = λω(1), as long as

q/p ≥
√
n is an integer, the LWR problem appears to be exponentially hard (in

n) for any p = poly(λ), and super-polynomially hard for p ≤ 2n
ε

for any ε < 1,

given the state of the art in noisy learning algorithms [15, 7] and lattice reduction

24

algorithms [51, 89]. We also note that in our proof, we do not require the error terms

drawn from χ in the LWE samples to be independent; we just need them all to have

magnitude bounded by B with overwhelming probability.

Proof of Theorem 3.2.2. We give a detailed proof for the LWR case; the one for RLWR

proceeds essentially identically. The main idea behind the reduction is simple: given

pairs (ai, bi) ∈ Znq ×Zq which are distributed either according to an LWE distribution

As,χ or are uniformly random, we translate them into the pairs (ai, bbiep) ∈ Znq ×

Zp, which we show will be distributed according to the LWR distribution Ls (with

overwhelming probability) or uniformly random, respectively. Proving this formally

takes some care, however. We proceed via a sequence of games.

Game H0. This is the real attack game against the LWR distribution. That is, we

choose s and upon request generate and give the attacker independent samples from

Ls.

Game H1. Here the attack is against a ‘rounded’ version of the LWE distribution

As,χ. That is, we first choose s. Then each time the attacker requests a sample,

we generate a pair (a, b) distributed according to As,χ (that is, choose a ← Znq and

b = 〈a, s〉 + x for x ← χ), and return the pair (a, bbep), but with one exception: we

define a ‘bad event’ Bad to be

Bad := bb+ [−B,B]ep 6=
{
bbep

}
.

That is, Bad indicates whether b is “too close” to some value in Zq having a different

rounded value. (In other words, rounding the sample (a, b) from As,χ may give a

different result than the corresponding sample (a, b〈a, s〉ep) from the Ls distribution.)

If Bad occurs on any of the attacker’s requests for a sample, we immediately abort

the game.

25

If Bad does not occur for a particular sample (a, b), then we have bbep := b〈a, s〉+

xep = b〈a, s〉ep with overwhelming probability over the choice of x← χ, because χ is

B-bounded. It immediately follows that for any (potentially unbounded) attacker A,

AdvH0,H1(A) ≤ Pr[Bad occurs in H1 with attacker A] + negl(λ). (3.2.2)

We do not directly bound the probability of Bad occurring in H1, instead deferring it

to the analysis of the next game, where we can show that it is indeed negligible.

Game H2. Here whenever the attacker requests a sample, we choose (a, b) ∈ Znq×Zq

uniformly at random and give (a, bbep) to the attacker, subject to the same “bad

event” and abort condition as described in the game H1 above. Under the decision-

LWE assumption and by the fact that Bad can be tested efficiently given b, a straight-

forward reduction implies that AdvH1,H2(A) ≤ negl(λ) for any efficient attacker A.

For the same reason, it also follows that

|Pr[Bad occurs in H1]− Pr[Bad occurs in H2]| ≤ negl(λ).

Now for each uniform b, Pr[Bad occurs on b in H2] ≤ (2B + 1) · p/q = negl(λ), by as-

sumption on q. It follows by a union bound over all the samples, and Equation (3.2.2),

that

Pr[Bad occurs in H1 with A] ≤ negl(λ) ⇒ AdvH0,H1(A) = negl(λ).

Game H3. This game is similar to the game H2, with pairs (a, b) ∈ Znq × Zq being

chosen uniformly at random and Bad being defined similarly. However, in this game

we always return (a, bbep) to the attacker, even when Bad occurs. By the analysis

above, we have that for any (potentially unbounded) attacker A,

AdvH2,H3(A) ≤ Pr[Bad occurs in H3 with A] = Pr[Bad occurs in H2 with A] = negl(λ).

26

Game H4. In this game we give the attacker samples drawn uniformly from Znq×Zp.

The statistical distance between U(Znq ×Zp) and U(Znq)× bU(Zq)ep is at most p/q =

negl(λ) by assumption on q, so by a union bound over all the poly(λ) samples, we

have AdvH3,H4(A) = negl(λ) for any efficient attacker A.

Finally, by the triangle inequality, we have AdvH0,H4(A) = negl(λ) for any efficient

adversary A, which completes the proof. Essentially the same proof works for the

RLWR problem as well.

3.3 PRFs via the GGM Construction

If parallel complexity is not a concern, and one wishes to minimize the total amount

of work per PRF evaluation (or the seed length), then the original GGM construction

with an LWR-based pseudorandom generator may turn out to be even more efficient

in practice. Recall that the GGM construction makes generic use of any length-

doubling pseudorandom generator G : {0, 1}n → {0, 1}2n. The generator’s output

G(s) is viewed as a pair (G0(s), G1(s)), where |G0(s)| = |G1(s)| = n. The key for a

member of the PRF family is a seed s for G, and on input x ∈ {0, 1}k the function is

defined as

Fs(x1 · · ·xk) = Gxk(Gxk−1
(· · ·Gx1(s) · · ·)).

As we see ahead, the LWR problem immediately yields a simple and practical

pseudorandom generator that, in contrast to the generators obtained from the LWE

or LPN problems, does not require extracting biased random error terms from its input

seed. By plugging this generator into the GGM construction we immediately get a

PRF whose evaluation involves precisely k sequential evaluations of the underlying

generator.

The LWR-based generator that we have in mind is a function GA : Znq → Zmp ,

where the moduli q � p and the (uniformly random) matrix A ∈ Zn×mq are publicly

27

known. Given a seed s ∈ Znq , the generator is defined as

GA(s) = bs ·Aep.

The generator’s seed length (in bits) is n log2 q and its output length is m log2 p, which

gives an expansion rate of (m log2 p)/(n log2 q) = (m/n) logq p. For example, to obtain

a length-doubling generator we may set q = p2 = 22k > n and m = 4n. (Other choices

yielding different expansion rates are of course possible.) This choice of parameters

has the additional benefit of admitting a practical implementation of the rounding

and inner-product operations. Note also that when evaluating the resulting PRF, one

can get the required part of GA(s) by computing only the inner products of s with

the corresponding columns of A, not the entire product s ·A.

For an even faster implementation one may replace GA by its analogous ring

variant, obtained by replacing A ∈ Zn×mq with uniform a ∈ Rm
q , and s ∈ Znq with

uniform s ∈ Rq. We note that the ring variant is particularly efficient to evaluate

using Fast Fourier Transform-like algorithms [61, 62]. These efficiency improvements

are expounded in much more detail in the case of pseudorandom synthesizers, which

we detail in Section 3.4.3 ahead.

3.4 Synthesizer-Based PRFs

We now describe the LWR-based synthesizer and our construction of a PRF from

it. We first define a pseudorandom synthesizer, slightly modified from the definition

proposed by Naor and Reingold [76]; our definition differs from theirs only in that we

allow the domain and range to be different.

Let S : A×A→ B be a function (where A and B are finite domains, which along

with S are implicitly indexed by the security parameter n) and let X = (x1, . . . , xk) ∈

Ak and Y = (y1, . . . , y`) ∈ A` be two sequences of inputs. Then CS(X, Y) ∈ Bk×`

is defined to be the matrix with S(xi, yj) as its (i, j)th entry. (Here C stands for

28

combinations.)

Definition 3.4.1 (Pseudorandom Synthesizer). We say that a function S : A×

A→ B is a pseudorandom synthesizer if it is polynomial-time computable, and if for

every poly(λ)-bounded k = k(λ), ` = `(λ),

CS

(
U(Ak) , U(A`)

) c
≈ U

(
Bk×`).

That is, the matrix CS(X, Y) for uniform and independent X ← Ak, Y ← A` is

computationally indistinguishable from a uniformly random k-by-` matrix over B.

3.4.1 Synthesizer Constructions

We now describe synthesizers whose security is based on the (ring-)LWR problem.

Construction 3.4.2 ((Ring-)LWR Synthesizer). For moduli q ≥ p ≥ 2, the LWR syn-

thesizer is the function Sn,q,p : Znq × Znq → Zp defined as

Sn,q,p(x,y) = b〈x,y〉ep.

The RLWR synthesizer is the function SR,q,p : Rq ×Rq → Rp defined as

SR,q,p(x, y) = bx · yep.

Theorem 3.4.3. Assuming the hardness of decision-LWRn,q,p (respectively, decision-

RLWRR,q,p) for a uniformly random secret, the functions Sn,q,p (respectively, SR,q,p)

given in Construction 3.4.2 above are pseudorandom synthesizers.

Proof. Let `, k = poly(λ) be arbitrary. Let X = (x1, . . . ,xk) and Y = (y1, . . . ,y`) be

uniformly random and independent sequences of Znq -vectors. Assuming the hardness

of “multiple secrets” version of decision-LWRn,q,p (see the remark following Defini-

tion 3.2.1), we have that the tuples

(
xi, b〈xi,y1〉ep, . . . , b〈xi,y`〉ep

)
∈ Znq × Z`p

29

for i = 1, . . . , k are computationally indistinguishable from uniform and independent.

That is, (
(xi)i∈[k],CS(X, Y)

) c
≈ U(Zn×kq × Zk×`p).

From this stronger fact, we have that CS(X, Y)
c
≈ U(Zk×`p), as desired.

Note that the input domain Znq of Sn,q,p is much larger than its range Zp. To

construct PRFs, we will need to compose synthesizers, so we need to enlarge the

range substantially. As described in [76], this is easily done by extending the domain

to a Cartesian product of the original one. Specifically, we extend Sn,q,p to map from

Zn×kq × Zn×`q to Zk×`p , for any k, ` = poly(λ), as follows:

Sn,q,p(X,Y) := CSn,q,p(X
t,Yt) = bX ·Ytep. (3.4.4)

It follows directly from the definition that the above function is a pseudorandom

synthesizer, if the original one is.

Enlarging the range allows us to compose the synthesizer with itself in two ways,

which we now describe. The first way involves making the domain and range match

exactly (which corresponds to the original synthesizer definition of [76]). Let pa-

rameters m,n, p, q be such that pm = qn, and let K : Zmp → Znq be some efficiently

computable bijection, which we extend row-wise to map Zk×mp to Zk×nq for any poly-

nomially sized k.1 We then define the function Tn,q,p : Zm×nq × Zm×nq → Zm×nq as

Tn,q,p = K ◦ Sn,q,p. More explicitly,

Tn,q,p(X,Y) := K(Sn,q,p(X,Y)) = K(bX ·Ytep).

Because K is an (efficiently computable) bijection, Tn,q,p is a pseudorandom synthe-

sizer if Sn,q,p is.

1For example, if n divides m, i.e., q = pm/n, then we have the following “change of base” bijection:
for an input vector x ∈ Zm

p , we divide it into n groups of size m/n each, and interpret each group

as the base-p representation of a value in Zq, to obtain a vector y ∈ Zn
q .

30

In the ring setting, we similarly extend SR,q,p to map Rk
q × R`

q to Rk×`
p , and

for q = pm and an efficiently computable bijection K : Rm
p → Rq, we define the

corresponding domain-preserving synthesizer TR,q,p : Rm
q ×Rm

q → Rm
q as

TR,q,p(x,y) := K(SR,q,p(x,y)) = K(bx · ytep).

A second way of making the synthesizer Sn,q,p composable is to set k = ` = n,

yielding a function where the dimensions of the domain Zn×nq and range Zn×np match

exactly, but the moduli q, p are typically different. By using a tower of decreasing

moduli, the corresponding synthesizers can therefore be composed in sequence to

yield a PRF. We give further details at the end of the next subsection, but note that

this method has substantially weaker security guarantees than the domain-preserving

approach.

3.4.2 PRF Constructions

Since the function Tn,q,p (respectively, TR,q,p) is a domain-preserving synthesizer under

the decision-LWR (respectively, decision-RLWR) assumption, we can plug it into the

Naor-Reingold construction to get PRFs. For self-containment, we recall the con-

struction here, specialized to our synthesizers. The security of the construction as

a PRF family follows from the security of the underlying synthesizer, by [76, Theo-

rem 5.1].

Construction 3.4.4 ((Ring-)LWR PRF). For positive integers m ≥ n, q ≥ p ≥ 2 such

that q = pm/n, the LWR family F (j) for j ≥ 0 is defined inductively to consist of

functions from {0, 1}2j to Zn×mq .

• For j = 0, a function F ∈ F (0) is indexed by Sb ∈ Zn×mq for b ∈ {0, 1}, and is

defined simply as F{Sb}(x) = Sx. We endow F (0) with the distribution where

the Sb are uniform and independent.

31

• For j ≥ 1, a function F ∈ F (j) is indexed by some F0, F1 ∈ F (j−1), and is

defined as

FF0,F1(x0, x1) = Tn,q,p
(
F0(x0) , F1(x1)

)
where |x0| = |x1| = 2j−1. We endow F (j) with the distribution where F0 and

F1 are chosen independently from F (j−1).

More explicitly, an F ∈ F (j) is indexed by a set of uniformly random matrices {Si,b}

for i ∈ [2j], b ∈ {0, 1}.

The ring-LWR family RF (j) is defined similarly, but with q = pm, to consist of

functions from {0, 1}2j to Rm
q , where in the base case j = 0 we replace each Sb with

a uniformly random sb ∈ Rm
q , and in the inductive case j ≥ 1 we use the ring-LWR

synthesizer TR,q,p. Therefore, a function RF ∈ RF (j) is indexed by a set of uniformly

random vectors {si,b} for i ∈ [2j], b ∈ {0, 1}.

In the preliminary version of this work [12], we gave an alternative PRF construc-

tion that uses just the synthesizer from Equation (3.4.4) instantiated with k = ` = n,

i.e., Sn,q,p : Zn×nq → Zn×np . Since the input and output moduli are different, Con-

struction 3.4.4 changes as follows: for the family F (d), we have a tower of moduli

q0 ≥ q1 ≥ . . . ≥ qd. For j = 0 the function index is a uniformly random matrix

modulo q0, and for j ≥ 1 we use the synthesizer Sn,qj−1,qj . In the security proof,

which proceeds essentially identically to the one from [76], we rely on the conjectured

hardness of LWRqj−1,qj for all j ∈ [d]. The strongest of these assumptions appears

to be for j = 1 (because it involves the smallest “error rate” 1/q1), and this is cer-

tainly the case when relying on our reduction from LWE to LWR. For example, when

using moduli qj = qd−j+1 where q = nω(1) is just slightly superpolynomial in n, the

strongest assumption is the hardness of LWRqd+1,qd , which involves an inverse error

rate of qd = nω(d) = nω(logL), where L is the PRF input length. This is a significantly

weaker security guarantee than the one we get when using the domain-preserving

synthesizers Tn,q,p.

32

3.4.3 Efficiency

To implement the synthesizer Tn,q,p via an arithmetic procedure, we can use any

fast matrix multiplication algorithm (e.g., Strassen’s). In the case of the ring-based

synthesizer TR,q,p, we can multiply ring elements (in the standard power basis) in

O(n log n) scalar operations mod q (see, e.g., [62]). In a practical parallel implemen-

tation, we can compute a matrix multiplication in the natural way using a size-O(n2),

depth-2 arithmetic circuit over Zq, where the first layer of multiplication gates have

fan-in 2 and the second layer of addition gates has fan-in n. The same is true for a

product of ring elements in Rq, since it can be expressed as a matrix-vector product:

multiplication by any fixed element a ∈ Rq is a linear transformation. The gains in

efficiency obtained by using a ring-based construction will be much more pronounced

in the case of the degree-k synthesizers described in Chapter 4. We discuss these

gains in detail in Section 4.2.1.

We remark that Naor and Reingold [76] describe several nice optimizations and

additional features of their synthesizer-based PRFs, including compression of the

secret key and faster amortized computation for a sequence of related inputs. Our

functions are amenable to all these techniques as well.

3.4.4 Parallelism

We now show that our synthesizers are in TC0 ⊆ NC1 (i.e., they can be computed by

constant-depth, polynomial-sized circuits of threshold gates with unbounded fan-in),

and that the corresponding PRFs are therefore in TC1 ⊆ NC2. These results match

the best constructions from [76].

Theorem 3.4.5. If the bijection K : Zmp → Znq is in TC0, then so is Tn,q,p, and

similarly for TR,q,p when the bijection K : Rm
p → Rq is in TC0.

We note that a wide class of natural bijections K are in TC0. For instance,

the “change of base” bijection described in Footnote 1 is in TC0 because it can be

33

computed as a multisum of scalar products with the fixed powers of p, and both

multisums and binary scalar products are in TC0 [87]. In the ring setting, we can

apply in parallel any TC0 bijection from Zmq to Zq to the coefficients of the input ring

elements (in some arbitrary basis of the ring) to get a TC0 bijection from Rm
p to Rq.

Proof of Theorem 3.4.5. The function Tn,q,p can be computed as a matrix product

modulo q, followed by parallel applications of b·ep to the entries of the matrix, followed

by parallel applications of K. We claim that each of these three stages are in TC0.

Since this is true for K by hypothesis, we only need to analyze the other operations.

First, we note that the matrix product consists of m2 parallel inner products of

n-dimensional vectors, which each are a multisum of n parallel scalar products in

Zq. The rounding step simply amounts to dropping some of the least-significant bits

if q and p are both powers of two, or more generally, multiplying by p/q ∈ Q (with

sufficient precision) and truncating the fractional part. Since modular multiplication

and multisums are in TC0 [87], the claim follows.

In the ring-based synthesizer TR,q,p, instead of a matrix product over Zq we have

an outer product of vectors over Rq. Since ring multiplication is linear in each of

its arguments, it is a special case of matrix multiplication. The translations from a

ring element to its corresponding matrix and back are fixed linear transformations

over Zq, so they also can be computed in TC0.

Finally, to analyze the parallel depth of our synthesizer-based PRFs from Con-

struction 3.4.2, we define a single function F that evaluates any member of the family

F (d) (for any values of n and d) given the index and input, i.e.,

F({Si,b}, x) := F{Si,b}(x)

where Si,b ∈ Zn×mq for i ∈ [2d] and b ∈ {0, 1}, and x ∈ {0, 1}2d . Similarly, we define an

analogous function RF({si,b}, x) = RF{si,b}(x) for the ring-based family RF (d). Since

the PRF families from Construction 3.4.4 compose the synthesizers in a binary tree

34

of depth d, where d is at most logarithmic in the total input length, we immediately

have the following corollary of Theorem 3.4.5 above.

Corollary 3.4.6. The functions F and RF are in TC1 ⊆ NC2.

3.5 Open Problems and Related Work

The quasipolynomial moduli and inverse error rates used in our LWE-based security

proofs are comparable to those used in recent fully homomorphic encryption (FHE)

schemes (e.g., [34, 93, 25, 24, 22]), hierarchical identity-based encryption (HIBE)

schemes (e.g., [28, 1, 2]), and other lattice-based constructions. However, there ap-

pears to be a major difference between our use of such strong assumptions, and that

of schemes such as FHE/HIBE in the public-key setting. Constructions of the latter

systems actually reveal LWE samples having very small error rates (which are needed

to ensure correctness of decryption) to the attacker, and the attacker can break the

cryptosystems by solving those instances. Therefore, the underlying assumptions and

the true security of the schemes are essentially equivalent. In contrast, LWR, and the

subsequent PRF, uses (small) errors only as part of a thought experiment in the se-

curity proof, not for any purpose in the operation of the function itself. This leaves

open the possibility that these functions (or slight variants) remain secure even for

much larger input lengths and smaller moduli than our proofs require. We conjec-

ture that this is the case, even though we have not yet found security proofs (under

standard assumptions) for these more efficient parameters. Certainly, determining

whether there are effective cryptanalytic attacks is a very interesting and important

research direction.

Therefore, the big open problem remains the possibility that LWRn,q,p is indeed

exponentially hard for p = poly(λ) and sufficiently large integers q/p = poly(λ).

Towards this end, Alwen et al. [5] prove the security of LWR for q/p polynomial in λ,

but also linearly dependent on the number of queries to the LWR-oracle in the security

35

proof. They do this by relying on a result [40] which shows a “lossy mode” for LWE.

However, the dependence of the q/p ratio on the number of adversary queries in the

proof results in it not being useful in the synthesizer construction. Also, this proof

technique does not provide an equivalent meaningful statement about RLWR.

Our derandomization technique and LWR problem require working with moduli q

greater than 2. This raises the question of there being an effective derandomization

technique when the modulus q = 2. That is; is there an efficient, parallel PRF family

based on the learning parity with noise (LPN) problem?

Most closely related to the techniques in this section are two results of Brakerski

and Vaikuntanathan [24] and a follow-up work of Brakerski, Gentry, and Vaikun-

tanathan [22] on fully homomorphic encryption from LWE. In particular, the former

work includes a “modulus reduction” technique for LWE-based cryptosystems, which

maps a large-modulus ciphertext to a small-modulus one; this induces a shallower

decryption circuit and allows the system to be “bootstrapped” into a fully homomor-

phic scheme using the techniques of [34]. The modulus-reduction technique involves

a rounding operation much like the one we use to derandomize LWE; while they use

it on ciphertexts that are already “noisy,” we apply it to noise-free LWE samples.

36

CHAPTER IV

DIRECT CONSTRUCTION OF PSEUDORANDOM

FUNCTIONS

In this chapter, we present another, potentially more efficient construction of a pseu-

dorandom function family whose security is based on the intractibility of the LWE

problem.

4.1 Overview

One moderate drawback of the synthesizer based function from Section 3.4 in Chap-

ter 3 is that it involves lg k levels of rounding operations, which appears to lower-

bound the depth of any circuit computing the function by Ω(lg k). (The GGM based

construction from Section 3.3 has k levels of rounding, and is therefore even worse.)

Is it possible to do better?

Recall that in later works, Naor and Reingold [77] and Naor, Reingold, and

Rosen [78] gave direct, more efficient number-theoretic PRF constructions which,

while still requiring exponentiation in large multiplicative groups, can in principle be

computed in very shallow circuit classes like NC1 or even TC0. Their functions can

be interpreted as “degree-k” (or k-argument) synthesizers for arbitrary k = poly(λ),

which immediately yield k-bit PRFs without requiring any composition. With this

in mind, a natural question is whether there are direct LWE/LWR-based synthesizers

of degree k > 2.

In this chapter, we give a positive answer to this question. Much like the functions

of [77, 78], ours have a subset-product structure. We have public moduli q � p, and

the secret key is a set of k matrices Si ∈ Zn×nq (whose distributions may not necessarily

37

be uniform; see below) for i = 1, . . . , k, along with a uniformly random a ∈ Znq .1 The

function F = Fa,{Si} : {0, 1}
k → Znp is defined as the “rounded subset-product”

Fa,{Si}(x1 · · ·xk) =

⌊
a ·

k∏
i=1

Sxii

⌉
p

. (4.1.2)

The ring variant is analogous, replacing a with uniform a ∈ Rq and each Si by

some si ∈ Rq (or R∗q , the set of multiplicatively invertible elements modulo q). This

function is particularly efficient to evaluate using the discrete Fourier transform, as

is standard with ring-based primitives (see, e.g., [61, 62]). In addition, similarly

to [77, 78], one can optimize the subset-product operation via pre-processing, and

evaluate the function in TC0. We elaborate on these optimizations in Section 4.2.1.

For the security analysis of this construction, we have meaningful security proofs

under various conditions on the parameters and computational assumptions, including

standard LWE. In our LWE-based proof, two important issues are the distribution of

the secret key components Si, and the choice of moduli q and p. For the former, it

turns out that our proof needs the Si matrices to be short, i.e., their entries should

be drawn from the LWE error distribution. (LWE is no easier to solve for such short

secrets [6].) This appears to be an artifact of our proof technique, which can be

viewed as a variant of our LWE-to-LWR reduction, enhanced to handle adversarial

queries. Summarizing the approach, define

G(x) = Ga,{Si}(x) := a ·
∏
i

Sxii

to be the subset-product function inside the rounding operation of (4.1.2). The fact

that F = bGep lets us imagine adding independent error terms to each distinct output

of G, but only as part of a thought experiment in the proof. More specifically, we

consider a related randomized function G̃ = G̃a,{Si} : {0, 1}
k → Znq that computes the

subset-product by multiplying by each Sxii in turn, but then also adds a fresh error

1To obtain longer function outputs, we can replace a ∈ Zn
q with a uniformly random matrix

A ∈ Zn×m
q for any m = poly(n).

38

term immediately following each multiplication. Using the LWE assumption and

induction on k, we can show that the randomized function G̃ is itself pseudorandom

(over Zq), hence so is bG̃ep (over Zp). Moreover, we show that for every queried

input, with high probability bG̃ep coincides with bGep = F , because G and G̃ differ

only by a cumulative error term that is small relative to q—this is where we need

to assume that the entries of Si are small. Finally, because bG̃ep is a (randomized)

pseudorandom function over Zp that coincides with the deterministic function F on

all queries, we can conclude that F is pseudorandom as well.

In the above-described proof strategy, the gap between G and G̃ grows exponen-

tially in k, because we add a separate noise term following each multiplication by

an Si, which gets enlarged when multiplied by all the later Si. So in order to ensure

that bG̃ep = bGep on all queries, our LWE-based proof needs both the modulus q

and inverse error rate 1/α to exceed λΩ(k). In terms of efficiency and security, this

compares rather unfavorably with the quasipolynomial λΩ(1) bound in the proof for

our tree-based construction, though on the positive side, the direct degree-k construc-

tion has better circuit depth. However, just as with the synthesizer construction in

Section 3.1.2, it is unclear whether such strong assumptions and large parameters are

actually necessary for security, or whether the matrices Si really need to be short.

In particular, it would be nice if the direct PRF construction were secure if the

Si matrices were uniformly random over Zn×nq , because we could then recursively

compose the function in a k-ary tree to rapidly extend its input length.2 It would be

even better to have a security proof for a smaller modulus q and inverse error rate

1/α, ideally both polynomial in λ even for large k. While we have been unable to

find such a security proof under standard LWE, we do give a very tight proof under

a new, interactive “related samples” LWE/LWR assumption. Roughly speaking, the

2Note that we can always compose the degree-k function with our degree-2 synthesizers from
above, but this would only yield a tree with 2-ary internal nodes.

39

assumption says that LWE/LWR remains hard even when the sampled ai vectors

are related by adversarially chosen subset-products of up to k given random matrices

(drawn from some known distribution). This provides some evidence that the function

may indeed be secure for appropriately distributed Si, small modulus q, and large k.

For full details see Section 4.2.4.

4.2 Direct PRF Construction

Construction 4.2.1 ((Ring-)LWE degree-k PRF). For parameters λ ∈ N, moduli q ≥

p ≥ 2, positive integers m,n = poly(λ), and input length k ≥ 1, the family F consists

of functions from {0, 1}k to Zm×np . A function F ∈ F is indexed by some A ∈ Zm×nq

and Si ∈ Zn×n for each i ∈ [k], and is defined as

F (x) = FA,{Si}(x1 · · ·xk) :=

⌊
A ·

k∏
i=1

Sxii

⌉
p

.

We endow F with the distribution where A is chosen uniformly at random, and below

we consider a number of natural distributions for the Si.

The ring-based family RF is defined similarly to consist of functions from {0, 1}k

to Rp, where we replace A with uniformly random a ∈ Rq and each Si with some

si ∈ R.

4.2.1 Efficiency

Using arithmetic circuits, matrix products and the rounding function can be com-

puted in a fashion similar to the one detailed in Section 3.4.3, and this enables us

to construct a function in the family F from Construction 4.2.1. The ring variant

of Construction 4.2.1 appears to be more efficient to evaluate. Consider a function

F ∈ RF as in Construction 4.2.1. As is standard with ring-based primitives (see,

e.g., [61, 62]), one could store the ring elements a, s1, . . . , sk as vectors in Znq using

the discrete Fourier transform or “Chinese remainder” representation modulo q (that

40

is, by evaluating a and the si as polynomials at the n roots of zn + 1 modulo q), so

that multiplication of two ring elements just corresponds to a coordinate-wise product

of their vectors. Then to evaluate the function, one would just compute a subset-

product of the appropriate vectors, then interpolate the result to the power-basis

representation, using essentially an n-dimensional Fast Fourier Transform over Zq, in

order to perform the rounding operation. For the interesting case of k = ω(log n),

the sequential runtime of this method is dominated by the kn scalar multiplications

in Zq to compute the subset-product; in parallel, the arithmetic depth (over Zq) is

O(log(nk)). Alternatively, the subset-product part of the function might be computed

even faster by storing the discrete logs, with respect to some arbitrary generator g

of Z∗q, of the Fourier coefficients of a and si.
3 The subset-product then becomes a

subset-sum, followed by exponentiation modulo q, or even just a table lookup if q is

relatively small. Assuming that additions mod q − 1 are significantly less expensive

than multiplications mod q, the sequential runtime of this method is dominated by

the O(n log n) scalar operations in the FFT, and the parallel arithmetic depth is again

O(log n).

4.2.2 Parallelism

We now consider the depth of functions from families F and RF from Construc-

tion 4.2.1 when implemented via boolean circuits with threshold gates. As in Sec-

tion 3.4.3, we define a single function RF that evaluates any function in the function

family RF (for any values of n and k) given the index and input as follows:

RF(a, {si}, x) := Fa,{si}(x),

where a ∈ Rq, si ∈ R for i ∈ [k] and x ∈ {0, 1}k.

Theorem 4.2.2. The function RF is in TC0 ⊆ NC1.

3If necessary, one would also store binary mask vectors indicating which Fourier coefficients are
zero, and hence not in Z∗q .

41

We thus establish that the ring-based construction matches (asymptotically) the shal-

lowest known PRFs based on the DDH and factoring problems [77, 78]. This is also

an improvement over the depth of ring-based PRF constructed from pseudorandom

synthesizers in Section 3.4, as shown in Corollary 3.4.6.

Proof. If the inputs a, {si} to the function RF are stored as vectors in Znq using the

discrete Fourier transform or the “Chinese Remainder” representation, the PRF com-

putation is a series of three steps: the coordinate-wise multi-product of the vectors,

and the n-dimensional Fast Fourier Transform over Zq to convert the result into its

coefficient representation in Rq, finally followed by the coordinate-wise rounding step,

as detailed in Section 4.2.1 above. It thus suffices to prove that each of these three

operations are in TC0.

The coordinate-wise multi-product of the vectors can be performed as n modular

multi-products in parallel, and this is in TC0 [87]. The same reference also shows

that Fast Fourier Transform over Zq is also in TC0. The rounding step is also in TC0,

as shown in the proof of Theorem 3.4.5.

Recall that computing a function F ∈ F involves a subset-product of matrices.

Generally speaking, matrix multi-product does not appear to be in TC0 (if it were,

then TC0 would equal NC1 [64]). However, in our case the matrices are known

in advance (the variable input is the subset), so it may be possible to reduce the

depth of the computation via preprocessing, using ideas from [87]. As described in

Section 3.4.3, both binary matrix product and rounding can be implemented in TC0,

so at worst the function F, analogous to the family F from Construction 4.2.1, is

in TC1 by computing the subset product in a tree-like fashion, followed by a final

rounding step.

42

4.2.3 Security Proof Under LWE

Our first theorem says that when the entries of the Si are “small,” i.e., chosen from a

suitable LWE error distribution, the degree-k construction is a PRF under a suitable

LWE assumption.

Theorem 4.2.3. Let χ = DZ,r for some r > 0, and let q ≥ p · k(Cr
√
n)k · λω(1)

for a suitable universal constant C. Endow the family F from Definition 4.2.3 with

the distribution where each Si is drawn independently from χn×n. Then assuming the

hardness of decision-LWEn,q,χ, the family F is pseudorandom.

An analogous theorem holds for the ring-based family RF , under decision-RLWE.

Theorem 4.2.4. Let χ be the distribution over the ring R where each coefficient

(with respect to the power basis) is chosen independently from DZ,r for some r > 0,

and let q ≥ p ·k(r
√
n ·ω(

√
log n))k ·λω(1). Endow the family RF from Definition 4.2.3

with the distribution where each si is drawn independently from χ. Then assuming

the hardness of decision-RLWEn,q,χ, the family RF is pseudorandom.

We first prove Theorem 4.2.3 for the standard LWE construction. To aid the proof, it

helps to define a family G of functions, which are simply the unrounded counterparts

of the functions in F .

Definition 4.2.5. For parameters n, q, m, k as in Construction 4.2.1, the family

G consists of functions G : {0, 1}k → Zn×nq . A function G ∈ G is indexed by some

A ∈ Zm×nq and Si ∈ Zn×n for i ∈ [k], we define

GA,{Si}(x1 · · ·xk) := A ·
k∏
i=1

Sxii .

We endow G with the same distribution over A and the Si as F has; i.e., A is chosen

uniformly at random and Si are chosen from the error distribution χn×n from the

statement of Theorem 4.2.3.

43

Proof of Theorem 4.2.3. We proceed via a sequence of games, much like in the proof

of Theorem 3.2.2. First as a “thought experiment” we define a new family G̃ of

functions from {0, 1}k to Zm×nq . This family is a counterpart to G, but with two

important differences: it is a PRF family without any rounding (and hence, with

rounding as well), but each function in the family has an exponentially large key.

Alternatively, one may think of the functions in G̃ as randomized functions with small

keys. Then we show that with overwhelming probability, the rounding of G̃ ← G̃

agrees with the rounding of the corresponding G ∈ G on all the attacker’s queries,

because the outputs of the two functions are relatively close. It follows that the

rounding of G← G (i.e., F ← F) cannot be distinguished from a uniformly random

function, as desired.

More formally, we define the following games:

Game H0. This is the real PRF attack game against the family F : we choose an

F ← F (so F (·) = bG(·)ep for G← G), and the attacker has oracle access to F (·).

Game H1. Here we instead choose G̃ ← G̃, where the family G̃ is given in Defini-

tion 4.2.6 below. The choice of G̃ induces a corresponding G ∈ G having the same

distribution as in H0. (This is simply because the key of G is just a portion of the

key of G̃.) To be precise, we choose G̃ “lazily” as the attacker makes queries, because

the description of G̃ has exponential size; see the remarks following Definition 4.2.6

for details.

The attacker has oracle access to bG̃(·)ep, but with one exception: on query x,

define the “bad event” Badx for that query to be

⌊
G̃(x) + [−B,B]m×n

⌉
p
6= {bG̃(x)ep},

where B = k(Cr
√
n)k is a constant as chosen in the statement of Lemma 4.2.7. That

is, Badx indicates whether any entry of G̃(x) ∈ Zm×nq is “too close” to another element

44

of Zq that rounds to a different value in Zp. Note that because q � p · B, a value

y ∈ Zq is “too close” in this sense if and only if by−Bep 6= by +Bep, so Badx can be

efficiently detected given only the value of G̃(x). If Badx occurs any of the attacker’s

queries, then the game immediately aborts.

In Lemma 4.2.7 below, we show that for every fixed x ∈ {0, 1}k, with overwhelming

probability over the choice of G̃ ← G̃ and the induced G ∈ G, it is the case that

G(x) ∈ G̃(x) + [−B,B]m×n mod q. Hence bG(x)ep = bG̃(x)ep so long as Badx does

not occur, and the attacker’s queries are answered exactly as they are in H0, subject

to the game not aborting. It follows that for any (potentially unbounded) attacker

A,

AdvH0,H1(A) ≤ Pr[some Badx occurs in H1 with attacker A] + negl(λ). (4.2.3)

We do not directly bound the probability that some Badx occurs in H1, but instead

defer to the analysis of the next game, where we can show that it is indeed negligible.

Game H2. Here we choose U to be a uniformly random function from {0, 1}k to

Zm×nq (defined “lazily” as the attacker makes queries). The attacker has oracle access

to bU(·)ep, with the same “bad event” and abort condition as in H1, but defined

relative to U instead of G̃.

In Theorem 4.2.8 below, we show that under the LWE assumption from the

theorem statement, no efficient adversary can distinguish (given oracle access) be-

tween G̃ ← G̃ and a uniformly random function U . Because the Badx event in H1

(respectively, H2) for a query x can be tested efficiently given query access to G̃

(resp., U), a trivial simulation implies that for any efficient attacker A, we have

AdvH1,H2(A) ≤ negl(λ). For the same reasons, it also follows by a straightforward

simulation that for any efficient attacker A,

|Pr[some Badx occurs in H1 with A]−Pr[some Badx occurs in H2 with A]| ≤ negl(λ).

45

In H2, because U is a uniformly random function, for any particular query x the

probability that Badx occurs is bounded by (2B + 1) · p/q = negl(λ), by assumption

on q. By a union bound over all poly(λ) queries of an efficient A, and then applying

Equation (4.2.3), we therefore have that

Pr[some Badx occurs in H1 with A] = negl(λ) ⇒ AdvH0,H1(A) = negl(λ).

Game H3. Here we still choose a uniformly random function U and give the attacker

oracle access to bU(·)ep. For each query x we define the event Badx as in game H2,

but still answer the query and continue with the game even if Badx occurs. From

the above analysis of H2 it follows that for any (potentially unbounded) attacker A

making poly(λ) queries, we have

AdvH2,H3(A) ≤ Pr[some Badx occurs in H2 with A] = negl(λ).

Finally, observe that bU(·)ep is a truly random function from {0, 1}k to Zm×np ,

up to the bias involved in rounding the uniform distribution on Zq to Zp. Because

q ≥ p · λω(1), this bias is negligible (and there is no bias if p divides q).

By the triangle inequality, it follows that for any efficientA, we have AdvH0,H3(A) =

negl(λ), and this completes the proof.

We now define the family G̃ used in the proof of Theorem 4.2.3.

Definition 4.2.6. For parameters n, q, m, k as in Construction 4.2.1, and error

distribution χ over Z as in Theorem 4.2.3, the family G̃(i) for 0 ≤ i ≤ k is defined

inductively to consist of functions from {0, 1}i to Zm×nq ; we define G̃ = G̃(k).

• For i = 0, a function G̃ ∈ G̃(0) is indexed by some A ∈ Zm×nq , and is defined

simply as G̃A(ε) = A. We endow G̃(0) with the distribution where A is chosen

uniformly at random.

46

• For i ≥ 1, a function G̃ ∈ G̃(i) is indexed by some G̃′ ∈ G̃(i−1), plus an Si ∈ Zn×n

and error matrices Ex′ ∈ Zm×n for each x′ ∈ {0, 1}i−1 (where {0, 1}0 is the

singleton set {ε}). For x = (x′, xi) ∈ {0, 1}i where |x′| = i− 1, the function is

defined as

G̃(x) = G̃G̃′,Si,{Ex′}
(x′, xi) := G̃′(x′) · Sxii + xi · Ex′ mod q.

We endow G̃(i) with the distribution where G̃′ ← G̃(i−1), and all the entries of

Si and every Ex′ are chosen independently from χ.

Note that a function G̃ ∈ G̃ is fully specified by A, {Si}i∈[k], and exponentially (in

k) many error matrices Ex1···xi−1
for all x ∈ {0, 1}k and i ∈ [k]; these error matrices

are what prevents G̃ itself from being used as a PRF family. However, as needed

in the proof of Theorem 4.2.3 (game H1), the error matrices can be chosen “lazily,”

since the value of G̃(x) depends only on A, {Si}, and Ex1···xi−1
for i ∈ [k]. For a

function G̃ = G̃A,{Si},{Ex′} ∈ G̃, we define its induced function in the family G to be

G = GA,{Si}. Note that for G̃ ← G̃, the induced function G has the same marginal

distribution as if it had been chosen from G directly.

The following lemma is used in the analysis of game H1.

Lemma 4.2.7. Let x ∈ {0, 1}k be arbitrary. Then except with 2−Ω(n) = negl(λ)

probability over the choice of G̃ = G̃A,{Si},{Ex′} ← G̃ and its induced function G =

GA,{Si} ∈ G, we have

G(x) ∈ G̃(x) + [−B,B]m×n mod q

for some B = k · (Cr
√
n)k, where C is a universal constant.

Note that it is in this lemma that we require the entries of the seed matrices Si

to be drawn from a subgaussian distribution.

47

Proof of Lemma 4.2.7. Observe that

G̃(x1 · · ·xk) = (· · · ((A · Sx11 + x1 · Eε) · Sx22 + x2 · Ex1) · · ·) · S
xk
k + xk · Ex1···xk−1

mod q

= A ·
k∏
i=1

Sxii︸ ︷︷ ︸
G(x)

+ x1 · Eε ·
k∏
i=2

Sxii + x2 · Ex1 ·
k∏
i=3

Sxii + · · ·+ xk · Ex1···xk−1
mod q.

Now by Lemma 2.1.2, except with probability 2−Ω(n), for every i ∈ [k] we have

s1(Si) ≤ O(r
√
n) and ‖e‖ ≤ O(r

√
n) for every row e of the error matrices Ex1···xi−1

.

Therefore, each row of the k cumulative error matrices Ex1···xi−1
·
∏k

j=i+1 S
xj
j (for

i ∈ [k]) has Euclidean length at most O(r
√
n)k, and so its entries are bounded by the

same quantity in magnitude. The claim follows.

Theorem 4.2.8. Under the LWE assumption from the statement of Theorem 4.2.3,

the family G̃ of functions from {0, 1}k to Zm×nq is pseudorandom for any k = poly(λ).

In the proof we will need the following intermediate function families.

Definition 4.2.9. For n, q, m, and χ as in Construction 4.2.1, and an integer i ≥ 1,

the family H(i) consists of functions from {0, 1}i to Zm×nq . A function H from the

family is indexed by some Si ∈ Zn×n and matrices Ax′ ∈ Zm×nq ,Ex′ ∈ Zm×n for each

x′ ∈ {0, 1}i−1 (where {0, 1}0 = {ε}). It is defined as

H(x) = HSi,{Ax′},{Ex′}(x
′, xi) := Ax′ · Sxii + xi · Ex′ mod q,

where |x′| = i − 1. We endow H with the distribution where each Ax′ is uniformly

random and independent, and all the entries of Si and Ex′ are chosen independently

from χ. We remark that an H ← H(i) can be chosen “lazily” in the natural way.

Proof of Theorem 4.2.8. We prove that each family G̃(i) is pseudorandom by induction

on i, from 0 to k. The base case of i = 0 is trivial by construction. For i ≥ 1, we

prove the claim by the following series of games.

48

Game H0. We (lazily) choose a G̃ ← G̃(i) and give the attacker oracle access to

G̃(·).

Game H1. We (lazily) choose an H ← H(i) (defined above) and give the attacker

oracle access to H(·).

We claim that H0
c
≈ H1 under the inductive hypothesis that G̃(i−1) is a PRF

family. To prove this, we design an efficient simulator S that is given oracle access

to a function F : {0, 1}i−1 → Zm×nq , where F is either G̃′ ← G̃(i−1) or a uniformly

random function, and S emulates either game H0 or H1 (respectively) to an attacker.

The simulator S first chooses an Si ← χn×n, and on each query x = (x′, xi) from

the attacker where |x′| = i − 1, S queries its oracle to get Ax′ = F (x′), chooses an

Ex′ ← χm×n (if it has not already been defined by a previous query), and returns

Ax′ ·Sxii +xi ·Ex′ to the attacker. It is clear by the definitions of G̃(i) and H(i) that if F

is some G̃′ ← G̃(i−1), then S emulates access to G̃G̃′,Si,{Ex′}
∈ G̃(i) with the appropriate

distribution, whereas if F is a uniformly random function, then S emulates access to

H ← H(i).

Game H2. We (lazily) choose a uniformly random function U : {0, 1}i → Zm×nq and

give the attacker oracle access to U(·).

We claim that H1
c
≈ H2 under the decision-LWE assumption from Theorem 4.2.3.

To prove this, we design an efficient simulator S that is given access to an oracle

O that outputs arbitrarily many pairs (A,B) ∈ Zm×nq × Zm×nq , drawn either as a

group of samples (A,B = AS + E mod q) from the LWE distribution AS,χ (for the

same S ← χn×n) or from the uniform distribution, and S emulates either game H1

or H2 (respectively) to an attacker. Under the decision-LWE assumption, this will

establish the claim. The simulator S answers queries x = (x′, xi) where |x′| = i − 1

in the following way: if x′ has never been queried before, then it draws a new sample

(Ax′ ,Bx′) from O and stores it, otherwise it looks up the already stored (Ax′ ,Bx′).

49

It then returns Ax′ if xi = 0, and Bx′ if xi = 1. It is clear by inspection and the

definition of H(i) that S has the claimed behavior given the two types of oracles O.

By the triangle inequality, we have H0
c
≈ H2, i.e., G̃(i) is a pseudorandom function

family. This finishes the induction and the proof.

We remark that in the induction used in the above proof, the total number of

hybrid games obtained by “unrolling” the inductive hypotheses is only linear in k,

because the proof invokes the inductive hypothesis exactly once, in the transition

from game H0 to H1. Therefore, the total distinguishing advantage between G̃← G̃(k)

and a uniformly random function can grow only linearly (in k) relative to the LWE

distinguishing advantage.

We now analyze the ring-LWE construction.

Proof sketch for Theorem 4.2.4. The proof proceeds almost identically to the proof

of Theorem 4.2.3, so we only outline the few small differences. We define the function

families RG and RG̃ in exactly the same fashion as the families G and G̃, respectively,

with a ∈ Rq, si ∈ R and ex′ ∈ R substituting A, Si and Ex′ respectively. In the

games, the bad event Badx occurs if any coefficient of RG̃(x) ∈ Rq (for RG̃ ← RG̃)

is “too close” to another element in Zq having a different rounded value, where “too

close” is defined using the interval [−B,B] for B = k(r
√
n ·ω(

√
log n))k/

√
n. For this

bound B, the analogue of Lemma 4.2.7 (which bounds the cumulative error terms,

i.e., the difference RG̃(x)− RG(x)) follows immediately from Lemma 2.1.3. Finally,

pseudorandomness of the familyRG̃ follows analogously to the proof of Theorem 4.2.8,

via families RH(i) defined similarly to H(i).

Remark 4.2.10. By almost identical proofs, a similar subset-product-like construction

FA,{Si,b}(x1 · · ·xk) =

⌊
A ·

k∏
i=1

Si,xi

⌉
p

,

50

for uniform A ∈ Zm×nq and matrices Si,b ∈ Zn×n (for i ∈ [k], b ∈ {0, 1}), and the anal-

ogous function in the ring setting, are also PRF families for the same parameters and

distributions as in Theorem 4.2.3 and Theorem 4.2.4. (These functions are analogous

to the factoring-based PRF of [78].) While the secret keys are about twice as large as

their counterparts’ from Construction 4.2.1, these functions are more “symmetric,”

which may be important in practice (e.g., to prevent timing attacks).

4.2.4 Security Proof Under Interactive LWR

We now present an “interactive” LWR assumption and prove that under this assump-

tion, the degree-k construction from Construction 4.2.1 is a PRF under an appropriate

distribution of the Si. The advantage of this proof is that it allows us to prove secu-

rity for a small modulus q and inverse error rate (both small polynomials in λ), and

it also works for uniformly random (or uniform invertible) matrices Si, among other

distributions. For example, this allows us to compose the degree-k construction with

itself (or with any other PRF) in a k-ary tree in a synthesizer-like style as outlined

in Section 3.4. The drawback to our proof is that it relies on a stronger assumption

that is harder to evaluate or falsify, because it allows the adversary to make queries

to its challenger.

Definition 4.2.11 (k-subset-product LWR). Let q ≥ p be integer moduli. We

describe a pair of games, which are parameterized by integers k ≥ 1 and m,n =

poly(λ), and a distribution ψ over Zn×nq (e.g., the uniform distribution). In both

games, we choose A ∈ Zm×nq uniformly at random and Si ← ψ independently for

each i ∈ [k], then give A and Si for i ∈ [k − 1] to the attacker. We then allow the

attacker to adaptively make queries to a function H : {0, 1}k−1 → Zm×np . In the first

game, the function H is defined to be

H(x) :=

⌊
A ·

k−1∏
i=1

Sxii · Sk

⌉
p

;

51

in the second game, H is a uniformly random function. The k-subset-product LWR

problem, denoted k-LWRq,p,n,m,ψ, is to distinguish between these two games with an

advantage non-negligible in λ. The k-subset-product ring-LWR problem is defined

analogously. (A subset-product version of (ring-)LWE is also easy to formulate, where

instead of rounding we add random and independent error terms to each answer.)

We make a few simple observations about the k-LWR problem. First note that

Bx = A ·
∏k−1

i=1 Sxii is the part of the product that changes for each new query. Since

A and all the Si for i ∈ [k − 1] are given to the attacker, it can compute each Bx

on its own, and its goal is to determine whether the challenger is returning rounded

products bBx · Skep or uniformly random and independent values. In effect, the k-

LWR problem is therefore to solve LWR when the sampled A matrices are related

by adversarially chosen subset-products of given random matrices Si. To avoid an

efficient attack (as outlined in the introduction), the distribution ψ should be chosen

so that the product of many Si ← ψ does not significantly reduce the entropy of

A
∏

i Si. It appears that restricting ψ to invertible elements is most effective for this

purpose.

We also observe that 1-LWRq,p,n,m,ψ is just the standard LWRn,q,p problem given m

samples, where the secret matrix S is chosen from ψ. The problems form a hierarchy

over k, that is, k-LWRq,p,n,m,ψ no harder than (k−1)-LWRq,p,n,m,ψ, by a reduction that

just prepends 0 to all queries, and withholds S1 from the attacker.

Theorem 4.2.12. Endow the family F from Construction 4.2.1 with the distribution

where each Si is drawn from some distribution ψ. Then, assuming that k-LWRq,p,n,m,ψ

problem is hard, the family F is pseudorandom.

Unlike our inductive proof of Theorem 4.2.8, which transitions from the PRF

family to a random function by “dropping” the secret key components Si from i = 1

to k, the proof of Theorem 4.2.12 drops them from i = k down to 1. This prevents

52

the error terms from growing with k (because the errors are not compounded by

multiplication with other Si), which is what allows us to use a small modulus q

if we so desire. However, this style of proof also seems to require an interactive

assumption, so that a simulator can answer queries involving the component Si that

is being dropped between adjacent games.

Proof of Theorem 4.2.12. We prove this by induction over k. For k = 0, the claim

follows trivially by construction. For k ≥ 1, we again proceed via a series of games.

Game H0. This is the real PRF attack game against the family F : we choose an

F ← F , and the attacker has oracle access to F (·).

Game H1. We choose F ← F . For attacker queries of the form x = x1 . . . xk−11,

we return uniformly random and independent value (consistent with prior answers),

and for queries of the form x = x1 . . . xk−10, we return F (x) =
⌊
A ·
∏k−1

i=1 Sxii

⌉
p
.

We claim that H0
c
≈ H1 by a straightforward reduction assuming the hardness of

k-LWR. As proof, we construction a simulator S that interacts with an oracle O that

implements one of the two games from the k-LWR problem, and emulates either H0

or H1 respectively. The simulator is first given some matrices A and Si for i ∈ [k−1].

It then answers attacker queries x = (x′, 0) ∈ {0, 1}k by returning
⌊
A ·
∏k−1

i=1 Sxii

⌉
p
,

and answers queries x = (x′, 1) ∈ {0, 1}k by returning O(x′) to the attacker. It is

clear by inspection that the behavior of S is as claimed.

Game H2. We lazily choose a uniformly random function U : {0, 1}k → Zm×np and

give the attacker oracle access to U(·).

We claim that H1
c
≈ H2 by the inductive hypothesis. This is because in game

H1, queries ending in 1 are already answered uniformly, while queries ending in 0 are

answered according to a function drawn from the family F of degree (k − 1). This

53

family is pseudorandom by the inductive hypothesis, and the fact that (k − 1)-LWR

is no easier than k-LWR.

This completes the induction and the proof.

4.3 Open Problems and Related Work

As with the discussion in Section 3.5, the major question guiding further research

seems to be the huge exponential moduli and inverse error rates used in the LWE-

based security proofs. As noted earlier, we need the (small) random errors only in the

security proofs as part of a thought experiment. Again, it is our belief that smaller

(polynomial in λ) parameters would also yield secure PRFs.

Note that in the PRF from Construction 4.2.1, if we draw the secret key compo-

nents from the uniform (or error) distribution and allow k to be too large relative to q,

then the function can become insecure via a simple attack (and our new “interactive”

LWR assumption, which yields a tight security proof, becomes false). This is easiest

to see for the ring-based function: representing each si ∈ Rq by its vector of “Fourier

coefficients” over Znq , each coefficient is 0 with probability about 1/q (depending on

the precise distribution of si). Therefore, with noticeable probability the product of

k = O(q log n) random si will have all-0 Fourier coefficients, i.e., will be 0 ∈ Rq. In

this case our function will return zero on the all-1s input, in violation of the PRF

requirement. (A similar but more complicated analysis can also be applied to the

matrix-based function.) Of course, an obvious countermeasure is just to restrict the

secret key components to be invertible; to our knowledge, this does not appear to have

any drawback in terms of security. In fact, it is possible to show that the decision-

(ring-)LWE problem remains hard when the secret is restricted to be invertible (and

otherwise drawn from the uniform or error distribution), and this fact may be useful

in further analysis of the function with more efficient parameters.

In summary, some of the concrete questions raised in this chapter are:

54

• Is there a security proof for the direct degree-k PRF construction from this

chapter (with k = ω(1)) for poly(λ)-bounded moduli and inverse error rates,

under a non-interactive assumption?

• For the direct degree-k PRF construction from this chapter, is there a security

proof (under a non-interactive assumption) for uniformly random Si? Is there

any provable security advantage to using invertible Si?

Along with the related work pointed out in Section 3.5, we note that the “some-

what homomorphic” cryptosystem from [24] that supports degree-k operations (along

with all prior ones, e.g., [34, 93]) involves an inverse error rate of λO(k), much like the

LWE-based proof in Section 4.2.3.

Building on the modulus reduction technique of [24], Brakerski et al. [22] showed

that homomorphic cryptosystems can support certain degree-k functions using a much

smaller modulus and inverse error rate of λO(log k). The essential idea is to interleave

the homomorphic operations with several “small” modulus-reduction steps in a tree-

like fashion, rather than performing all the homomorphic operations followed by one

“huge” modulus reduction. This very closely parallels the difference between the

construction from this chapter and the Naor-Reingold-like [76] composed synthesizer

defined in Chapter 4. Indeed, we found Construction 4.2.1 earlier and the result of [22]

inspired our search for a PRF having similar tree-like structure and quasipolynomial

error rates. Given our degree-2 synthesizer from Chapter 3, the solution turned out

to largely be laid out in the work of [76]. We find it very interesting that the same

quantitative phenomena arise in two seemingly disparate settings (PRFs and FHE).

55

CHAPTER V

KEY-HOMOMORPHIC PSEUDORANDOM FUNCTIONS

In this chapter, we give constructions of LWE-based PRFs that improve on all prior

constructions in the following senses – they are based on weaker LWE assumptions, are

much more efficient in time and space, and are still highly parallel. In addition, these

PRFs are key-homomorphic, which make them useful for additional applications. Re-

markably, some of our RLWE based constructions have key sizes, public parameters,

and incremental runtimes on consecutive inputs are all quasi-linear Õ(λ) in the secu-

rity parameter λ, which is optimal up to polylogarithmic factors. To our knowledge,

these are the first low-depth PRFs (whether key homomorphic or not) enjoying any

of these efficiency measures together with nontrivial proofs of 2λ security under any

conventional assumption.

5.1 Overview

A pseudorandom function family F = {Fs} is key homomorphic if the set of keys

has a group structure and if there is an efficient algorithm that, given Fs(x) and

Ft(x) (but not s or t), outputs Fs+t(x). Naor, Pinkas, and Reingold [74] constructed,

in the random oracle model, a very simple key-homomorphic PRF family based on

the decisional Diffie-Hellman problem, and gave applications like distributing the

operation of a Key Distribution Center. Boneh et al. [18] constructed the first key-

homomorphic PRFs without random oracles, and described many more applications

(all of which are very efficient in their use of the PRF), including symmetric-key proxy

re-encryption, updatable encryption, and PRFs secure against related-key attacks

(cf. [13, 53]). The construction of Boneh et al. is LWE-based, and builds upon ideas

used in the non-key-homomorphic LWE-based PRFs of Chapter 4. Apart from the

56

obvious added functionality of being key-homomorphic, the Boneh et al. construction

improves upon Construction 4.2.1 in a very crucial way – its key-size is independent

of the length of the input, unlike Construction 4.2.1, the key-size of which is linear in

the input length k.

One drawback of the construction and proof from [18] is its rather strong LWE

assumption that it inherits from Construction 4.2.1 (which can be implemented in

TC0 ⊆ NC1 and, by consequence, large parameters and runtimes. For example,

to obtain a PRF of input length λ with exponential 2λ provable security against

known lattice attacks, the secret keys and public parameters respectively need to be

at least λ3 and λ6 bits, and the runtime to evaluate the function is at least λ7 bit

operations (to produce λ2 output bits), not counting some polylogarithmic logO(1) λ

factors. However, the synthesizer-based Construction 3.4.4 (in TC1 ⊆ NC2) and

sequential GGM-based one from Chapter 3 can be proved secure under much weaker

LWE assumptions, and hence can have much better parameters and runtimes. A nat-

ural question, therefore, is whether there exist key-homomorphic PRFs with similar

security and efficiency characteristics.

In this chapter, we answer the above question in the affirmative, by giving new

constructions of key-homomorphic PRFs that have substantially better efficiency, and

still enjoy very high parallelism. As compared with [18], we improve the key size from

λ3 to λ bits, the public parameters from λ6 to λ2 bits, and the runtime from λ7 to λω+1

bit operations (always omitting logO(1) λ factors), where ω ∈ [2, 2.373] is the exponent

of matrix multiplication.

We also give even more efficient key-homomorphic PRFs based on the ring-LWE

problem [62, 63]. Compared with the ring-based analogue of [18], and again ignoring

logO(1) λ factors, here our keys and public parameters are only λ bits (improving

upon λ3 and λ4, respectively), and the runtime is only λ2 bit operations to produce λ

output bits (from λ5 to produce λ2). In addition, the incremental computation of our

57

PRF on successive inputs (e.g., in a counter-like mode) has runtime only λ. Functions

having these parameters can be implemented in TC1 ⊆ NC2, though seemingly not

in TC0 or NC1. See Table 2 for a full comparison with the PRFs in Chapters 3 and 4

and also [18].

Table 2: Example instantiations of our key-homomorphic PRF (for input length λ and
provable 2λ security against the best known lattice algorithms) as compared with prior
lattice-based PRFs. “KH” denotes whether the construction is key homomorphic,
while “Expan” and “Sequen” are respectively the expansion and sequentiality (as
defined in Equations (5.2.4), (5.2.8)) of the tree T used in the instantiation (or,
for prior constructions, their close analogues). Omitting polylogarithmic logO(1) λ
factors, “Key” and “Params” are respectively the bit lengths of the secret key and
public parameters; “Time/Out” is the best known runtime (in bit operations) per
output bit, where ω ∈ [2, 2.373] is the exponent of matrix multiplication; and “Out”
is the output length in bits. The quantities in brackets refer to the corresponding
ring-based constructions.

Reference KH? Expan Sequen Key Params Time/Out Out

Ch. 3 (GGM) N 1 λ λ [λ] λ2 [λ] λ2 [λ] λ [λ]

Ch. 3 (synth) N log2 λ log2 λ λ3 [λ2] 0 [0] λω−1 [λ] λ2 [λ]

Chapter 4 N λ 1 λ5 [λ3] 0 [0] λ4 [λ2] λ2 [λ2]

[18] Y λ− 1 1 λ3 [λ3] λ6 [λ4] λ5 [λ3] λ2 [λ2]

Chapter 5 Y 1 λ− 1 λ [λ] λ2 [λ] λω [λ] λ [λ]

Chapter 5 Y log4 λ log4 λ λ [λ] λ2 [λ] λω [λ] λ [λ]

To our knowledge, these are the first low-depth PRFs (whether key homomor-

phic or not) having nontrivial proofs of exponential 2λ security under any conven-

tional assumption along with quasi-optimal Õ(λ) key sizes or incremental runtimes,

or quasilinear Õ(λ) nonincremental runtime per output bit. For example, the GGM

construction [39] can have small keys and quasilinear nonincremental runtime per

output bit (using a quasi-optimal PRG), but it is highly sequential. The Naor-

Reingold constructions [76, 77], which are highly parallel, have at least quadratic

λ2 key sizes and runtime per output bit, even assuming exponential security of the

58

underlying hard problems. And factoring-based constructions [78] fare much worse

due to subexponential-time factoring algorithms.

In their parallelism and underlying LWE assumptions, our functions are quali-

tatively very similar to the synthesizer- and GGM-based ones from Chapter 3 (see

Table 2); however, the constructions and proofs are completely different. Instead, our

construction can be seen as a substantial generalization of the one of Boneh et al. [18],

in that theirs is an instantiation of ours with a linear-depth “left spine” tree. By con-

trast, our construction can be securely instantiated with any binary tree, thanks to a

new proof technique that may be of use elsewhere. The shape of the tree determines

the final parameters and parallelism of the resulting function: roughly speaking, its

“left depth” determines the strength of the LWE assumption in the proof, while its

“right depth” determines its parallelism. Interestingly, a complete binary tree turns

out to be very far from optimal for the parameters we care about. Optimal trees can

be found efficiently using dynamic programming, and provide input lengths that are

roughly the square of those yielded by complete binary trees.

5.2 Construction and Analysis

In this section we define and analyze our key-homomorphic PRF, and compare it with

prior LWE-based constructions from Chapters 3 and 4 above, and [18]. The construc-

tion involves various parameters (e.g., matrix dimension n, modulus q, tree T) which

are all chosen so that the algorithms are polynomial-time in the security parameter λ,

as usual. As in prior work, we work in a model where the PRF family is defined with

respect to some random public parameters that are known to all parties, including

the adversary. These parameters may be generated by a trusted party, or by the user

along with the secret key.

For a full (but not necessarily complete) binary tree T—i.e., one in which every

non-leaf node has two children—let |T | denote the number of its leaves. If |T | ≥ 1 (i.e.,

59

T is not the empty tree), let T.l, T.r respectively denote the left and right subtrees

of T (which may be empty trees).

For the reader’s convenience, we point out that it will be useful to recall the gadget

matrix and the bit-decomposition operation [70]. We present the needed background

in Section 2.4.

We now define our function families.

Definition 5.2.1. Given matrices A0,A1 ∈ Zn×n`q and a full binary tree T of at least

one node, define the function AT : {0, 1}|T | → Zn×n`q recursively as

AT (x) =


Ax if |T | = 1

AT.l(xl) ·G−1(AT.r(xr)) otherwise,

where in the second case we parse x = xl‖xr for xl ∈ {0, 1}|T.l|, xr ∈ {0, 1}|T.r|.

Construction 5.2.2 (Key-Homomorphic PRF). The function family

FA0,A1,T,p =
{
Fs : {0, 1}|T | → Zn`p

}
is parameterized by matrices A0,A1 ∈ Zn×n`q , a binary tree T , and a modulus p ≤ q,

which may all be considered public parameters. A member of the family is indexed

by some s ∈ Znq , and is defined as

Fs(x) := bs ·AT (x)ep.

For security based on LWE, we take A0,A1 and the secret key s to be uniformly

random over Zq; see Theorem 5.2.3 below for a formal security statement. Similarly

to LWE, it may also be possible to prove security when the entries of s are drawn from

the LWE error distribution (see [6]). However, most applications of key-homomorphic

PRFs need to use uniformly random secret keys anyway, so we do not pursue this

question further.

60

Because rounding is nearly linear, i.e., ba + bep = baep + bbep + e for some e ∈

{0,±1}, it is easy to see that the family FA0,A1,T,p defined above is “almost” additively

key homomorphic, as defined in [18]. That is, for any keys Fs, Ft in the family, we

have

Fs+t(x) = Fs(x) + Ft(x) + e,

where ‖e‖∞ ≤ 1. As long as the entries of the error term e are sufficiently smaller than

the output modulus p, this near-homomorphism is sufficient for all the applications

described in [18], and for obtaining security against related-key attacks [53].

Notice that the vast majority of the cost of computing Fs(x) is in computing

AT (x), which can done “publicly” without any knowledge of the secret key s.1 This

property can be very important for the efficiency of certain applications, such as the

homomorphic evaluation of Fs given an encryption of s. In addition, notice that if

AT (x) has been computed and all the intermediate matrices saved, then AT (x′) can

be incrementally computed much more efficiently for an x′ that differs from x in just

a single bit. Specifically, one only needs to recompute the matrices for the internal

nodes of T on the path from the leaf corresponding to the changed bit to the root.

As in the related constructions from Chapter 4.2 and [18], this can significantly speed

up successive evaluations of Fs on related inputs, e.g., in a counter-like mode using a

Gray code.

Relation to [18]. Our key-homomorphic PRF can be viewed as a substantial gen-

eralization of the one of Boneh et al. [18]. Specifically, their construction can be

obtained from ours by instantiating it with a tree T that consists of a “left spine”

with leaves for all its right children. Because all the right subtrees are just leaves, the

only matrices ever decomposed with G−1 are A0 and A1. Therefore, we can replace

1For a few choices of the tree T , it can be faster to compute s · AT (x) left-to-right without
explicitly computing AT (x), but such trees are rare and yield bad parameters.

61

them in the public parameters by the binary matrices Bb = G−1(Ab), yielding the

construction Fr(x) =
⌊
r ·
∏|x|

i=1 Bxi

⌉
p

from [18].2

The use of a “left-spine” tree T (as in [18]) yields an instantiation which is max-

imally parallel—in our language (defined below), it has sequentiality s(T) = 1. The

major drawback is that it also has maximal expansion e(T) = |T |−1. In our security

theorem (Theorem 5.2.3 below), the LWE approximation factor and modulus q grow

exponentially with e(T), so using a tree with large expansion leads to a very strong

hardness assumption, and therefore large secret keys and public parameters. By con-

trast, using trees T with better expansion-sequentiality tradeoffs allows us obtain

much better key sizes and efficiency. See the discussion in the following subsections

and Table 2 for further details.

5.2.1 Security

In our security proof, the modulus q and underlying LWE error rate, and hence also

the dimension n needed to obtain a desired level of provable security, are largely

determined by a certain parameter of the tree T which we call the expansion e(T).

Essentially, the expansion is the maximum number of terms of the form G−1(·) that

are ever consecutively multiplied together when we unwind the recursive definition

of AT , or AT ′ for related trees T ′ considered in the security proof. Formally, the

expansion of T is defined by the recurrence

e(T) =


0 if |T | = 1

max{e(T.l) + 1 , e(T.r)} otherwise.

(5.2.4)

This is simply the “left depth” of the tree, i.e., the maximum length of a root-to-leaf

path, counting only edges from parents to their left children.

2Here we have ignored the small detail that in our construction, the matrix Ax1
corresponding

to the leftmost leaf in the tree is not decomposed, so our instantiation is actually Fs(x) = bs ·Ax1
·∏|x|

i=2 Bxi
e. However, it is easy to verify that in the construction of [18], the secret key may be of

the form r = sG for some s ∈ Zn
q . Then rBx1

= sAx1
, which corresponds to our construction.

62

We can now state our main security theorem.

Theorem 5.2.3. Let T be any full binary tree, χ be some distribution over Z that is

subgaussian with parameter r > 0 (e.g., a bounded or discrete Gaussian distribution

with expectation zero), and

q ≥ p · r
√
|T | · (n`)e(T) · λω(1).

Then over the uniformly random and independent choice of A0,A1 ∈ Zn×n`q , the

family FA0,A1,T,p with secret key chosen uniformly from Znq is a secure PRF family,

under the decision-LWEn,q,χ assumption.

An outline of the proof, which contains all the main and new ideas, is given in

Section 5.3.1; the formal proof appears in in Section 5.3.2.

Notice that the modulus-to-noise ratio for the underlying LWE problem is q/r ≈

(n log q)e(T), i.e., exponential in the expansion e(T). Known reductions [86, 80, 23] (for

r ≥ 3
√
n) guarantee that such an LWE instantiation is at least as hard as (quantumly)

approximating various lattice problems in the worst case to within ≈ q/r factors

on n-dimensional lattices. Known algorithms for achieving such factors take time

exponential in n/ log(q/r) = Ω̃(n/e(T)), so in order to obtain provable 2λ security

against the best known lattice algorithms, the best parameters we can use are

n = e(T) · Θ̃(λ) and log q = e(T) · Θ̃(1). (5.2.7)

These parameters determine the runtimes and key sizes of the construction, as ana-

lyzed below.

We conclude this discussion of security by reiterating a point we made before in

Sections 3.5 and 4.3, that, as in the constructions from Chapter 4 and [18], and in

contrast with essentially all lattice-based encryption schemes, it is possible that our

PRF is actually secure for much smaller parameters than our proof requires. For

63

example, taking q = poly(n) even for large e(T), with p|q to ensure that rounding

produces “unbiased” output, may actually be secure—but we do not know how to

prove it. (We also do not know of any effective attacks against such parameters.) The

reason for this possibility is that the function itself does not actually expose any low-

error-rate LWE samples to the attacker; they are used only in the proof as part of a

thought experiment. Whether any of the constructions from this chapter, Chapter 4

or [18] can be proved secure for smaller parameters under a standard assumption

is a fascinating open question. For the remainder of the paper, we deal only with

parameters for which we can prove security under (ring-)LWE.

5.2.2 Size, Time, and Depth

Here we briefly analyze the secret key and public parameter sizes, runtime, and circuit

depth of our PRFs, always normalizing to 2λ provable security under standard lattice

assumptions. In some cases these quantities are not very practical (or even asymp-

totically good), especially when the tree T has large expansion. In Section 5.2.4 we

give a much more efficient construction using ring-LWE, which can be quasi-optimal

in key size, public parameters, and depth (simultaneously).

The secret key, which is a uniformly random element of Znq , has size Θ(n log q),

which is e(T)2 · Θ̃(λ) by Equation (5.2.7). The public parameters, being two n× n`

matrices over Zq, are Θ(n2 log2 q) = e(T)4 · Θ̃(λ2) bits.

For runtime, computing AT (x) from scratch takes one decomposition with G−1

and one (n×n`)-by-(n`×n`) matrix multiplication over Zq per internal node of T . (As

mentioned above, incremental computation of AT (x) on related inputs can be much

faster.) Using näıve matrix multiplication, this is a total of Θ(|T | ·n3 log2 q) ring oper-

ations in Zq, which translates to e(T)6 ·Θ̃(λ4) bit operations by Equation (5.2.7) (even

using quasi-linear-time multiplication in Zq, which is needed only when log q 6= Õ(1)).

This can be improved somewhat using asymptotically faster matrix multiplication,

64

but still remains a rather large Ω(|T | · nω log2 q), where ω ≥ 2 is the exponent of

matrix multiplication.

For certain trees T our construction is highly parallelizable, i.e., it can be com-

puted by a low-depth circuit. First, notice that each Zq-entry of s ·AT (x) (and hence

each Zp-entry of the PRF output) can be computed independently. This is because

each column of AT (x) can be computed independently, by induction and the fact that

G−1 works independently on the columns of AT.r(xr). Next, since linear operations

over Zq can be computed by depth-one arithmetic circuits (with unbounded fan-in),

the circuit depth of our construction is proportional to the maximum nesting depth

of G−1(·) expressions when we fully unwind the definition of AT . We call this the

sequentiality s(T) of the tree T , which is formally defined by the recurrence

s(T) =


0 if |T | = 1

max{e(T.l) , e(T.r) + 1} otherwise.

This is simply the “right depth” of the tree, i.e., the maximum length of a root-to-leaf

path, counting only edges from parents to their right children.

5.2.3 Instantiations

Here we discuss some interesting instantiations of the tree T and the efficiency prop-

erties of the resulting functions; see Table 2 for a summary. Generally speaking, for a

given tree size |T | (the PRF input length) there is a tradeoff between expansion e(T)

and sequentiality s(T). Flipping this around, given bounds e, s we are interested in

obtaining a largest possible tree T such that e(T) ≤ e and s(T) ≤ s; let t(e, s) denote

the size of such a tree. At first blush, it may be surprising that under the simplifying

restriction e = s, a complete binary tree of depth s is very far from optimal! To see

65

this, notice that

t(e, s) =


1 if e = 0 or s = 0

t(e− 1, s) + t(e, s− 1) otherwise.

The base cases follow from the fact that only a single leaf satisfies the bounds, and

in the recursive case, the first and second terms respectively denote the sizes of the

optimal left and right subtrees. It is easy to verify that this recurrence is simply the

one that defines the binomial coefficients :

t(e, s) =

(
e+ s

e

)
=

(
e+ s

s

)
.

One can also efficiently construct an optimal tree for given e, s using dynamic pro-

gramming.

For example, if we restrict to e = s, then by Stirling’s approximation we get that

t(e, s) =
(

2s
s

)
≈ 4s/

√
sπ. Said another way, we can get a PRF with input length |T |

where the expansion and sequentiality are both ≈ log4(|T |). By contrast, a complete

binary tree with these parameters has size only 2s ≈
√
|T |. By Theorem 5.2.3 and

Equation (5.2.7), this means we can get a PRF with input length λ and security 2λ

having sequentiality O(log λ) and secret keys of quasi-optimal bit length Õ(λ).

By ignoring parallelism, one can reduce the expansion even further by letting T

be a “right spine” with leaves for all its left children. Then e(T) = 1 and s(T) =

|T |−1, yielding even better parameters: the underlying LWE assumption has a nearly

polynomial nω(1) approximation factor, and for security level 2λ we still obtain secret

keys of quasi-optimal bit length Õ(λ); moreover, here the hidden factors are at least

a log λ factor smaller than in the case above.

Illustrative Examples. We now present a few different instantiations of the tree

T to illustrate the working of the PRF. In the rest of this subsection, we will use Tv

to denote the tree rooted at node v.

66

�
�

�
�

�
�

#
##

S
S

S
S

C
C

c
cc
tt tt t t tt t

r

w1
w3

v1 w2
v4 v5

v2 v3

Figure 1: A typical instantiation – tree T1

We first begin a typical tree T1, displayed in Figure 1, . The root is labelled r,

other internal nodes are labeled wi, and leaf nodes are labeled vi. By Definition 5.2.1,

we expand Fs(x1 . . . x5), to see how the sequentiality is intrinsic to the evaluation of

the PRF.

Fs(x1 . . . x5) = bs ·ATr(x1 . . . x5)ep

=
⌊
s ·ATw1

(x1x2x3) ·G−1(ATw3
(x4x5))

⌉
p

= · · ·

=
⌊
s ·Ax1 ·G−1

(
Ax2 ·G−1(Ax3)

)
·G−1

(
Ax4G

−1(Ax5)
)⌉

p

The running time is dependent upon the bits x3 and x5, because the matrices they

choose Ax3 and Ax5 are nested in two layers of bit-decomposition operations. This

clearly corresponds to the right-depth of the leaves v3 and v5, which corresponds to

the sequentiality of the tree T1. Also to be noted is that the expansion of the tree is

determined by the left-depth of the leaves v1 and v2, and is also two.

We also illustrate the Boneh et al. [18] construction tree and the tree which

achieves the maximum number of leaves, and hence the maximum input length, for

e = s = 2 in Figures 2 and 3 respectively.

5.2.4 Ring Variant

Due to the several matrix multiplications (of dimension at least n) involved in comput-

ing AT (x), our LWE-based construction is not very practically efficient. Fortunately,

67

t t t
t t

t tqqq

�
�
A
A
�
�
A
A
A
A

Figure 2: The [18] “left spine” tree

�
�

�
�

�
�

#
##

S
S

S
S

C
C

c
cc
tt tt t t tt t �� S
St t

Figure 3: The “balanced tree” for e = s = 2

we can obtain a much more efficient analogue based on the ring-LWE problem [62].

Here we just describe the construction and analyze its efficiency. The proof of secu-

rity based on ring-LWE proceeds in essentially the same way as the one for our main

construction, and is therefore omitted.

Construction 5.2.4. Fix some row vectors a0, a1 ∈ R`
q, and for a binary tree T , define

aT : {0, 1}|T | → R`
q recursively as

aT (x) =


ax if |T | = 1

aT.l(xl) · g−1(aT.r(xr)) otherwise,

where in the second case we parse x = xl‖xr for xl ∈ {0, 1}|T.l|, xr ∈ {0, 1}|T.r|.

We define the function family

Fa0,a1,T,p =
{
Fs : {0, 1}|T | → R`

p

}
,

68

which is parameterized by row vectors a0, a1 ∈ R`
q, a binary tree T , and a modulus

p ≤ q. A member of the family is indexed by some s ∈ R (or Rq), and is defined as

Fs(x) := bs · aT (x)ep.

Analysis. Evaluating aT (x) from scratch takes one decomposition with g−1 and

one vector-matrix multiplication of dimension ` = log q over Rq per internal node

of T , for a total of O(|T | · `2) ring operations in Rq. Ring operations in Rq can

be performed in O(n log n) scalar operations over Zq, and g−1 can be computed in

O(n log q) time. Using a tree T with expansion e(T) = Õ(1), by Equation (5.2.7) we

can get a PRF with input length λ and 2λ security (under conventional assumptions)

running in Õ(λ2) bit operations to output at least λ bits. When T has polylogarithmic

depth, the incremental cost per invocation is reduced to Õ(λ) bit operations, which

is quasi-optimal.

As an optimization, and analogously to the LWE-based construction, each Rq-

entry of aT (x) ∈ R`
q can be computed independently in O(|T | ·`) ring operations each.

Therefore, we can compute each Rp-entry of the output (yielding at least n output

bits) in just O(|T | · `) ring operations. This may be useful in applications that do not

need the entire large output length.

5.3 Security Proof

In this section we prove Theorem 5.2.3, which says that Fs(x) = bs · AT (x)ep from

Construction 5.2.2 is a PRF under the LWE assumption, for appropriate parameters.

5.3.1 Proof Outline

We start with an overview of the proof, which highlights the central (new) ideas.

(For technical reasons, the formal proof proceeds a bit differently than this outline,

but the main ideas are the same.) The basic strategy, used in Chapters 3 and 4

69

above, is to define a sequence of hybrid games where the function inside the rounding

operation b·ep changes in ways that are indistinguishable to the adversary, either

statistically or computationally. As in Chapters 3 and 4, and [18], these changes

include introducing small additive terms that are “rounded away” and hence preserve

the input-output behavior (with high probability), and replacing LWE instances with

uniformly random ones. In addition, we introduce a new proof technique described

within.

Let T be any full binary tree, and suppose its leftmost leaf v is at depth d > 1. (If

d = 1, then |T | = 1 and the function is trivially a PRF based on the “learning with

rounding” problem, which is as hard as LWE for our choice of parameters, or even

slightly better ones – see Chapter 3 and [5].) In the real attack game, the adversary

has oracle access to Fs(·), which, by unwinding the definition of AT , is of the form

Fs(x) = bs ·AT (x)ep =

⌊
s ·Ax0 ·

d∏
i=1

G−1(ATi(x
′
i))︸ ︷︷ ︸

ST (x′)

⌉
p

,

where subtree Ti is the right child of v’s ith ancestor, and x = x0‖x′ = x0‖x′1‖ · · · ‖x′d

where |x0| = 1 and |x′i| = |Ti| for all i.

We next consider a hybrid game in which s ·Ab for b ∈ {0, 1} is replaced by an

LWE vector s · Ab + eb, for some short error vectors e0, e1. That is, the adversary

instead has oracle access to the function

F ′s,e0,e1(x) := b(s ·Ax0 + ex0) · ST (x′)ep = bs ·AT (x) + ex0 · ST (x′)ep.

Because ex0 is short, and so is any matrix of the form G−1(·) (with 0/1 entries),

ex0 · ST (x′) is short. More precisely, its entries are of magnitude bounded by ≈

(n log q)d, which is much less than q/p because d ≤ e(T) and by assumption on q.

Therefore, the additive term ex0 ·ST (x′) is very unlikely the change the final rounded

value, i.e., with high probability F ′s,e0,e1(x) = Fs(x) for all the adversary’s queries x.

Therefore, this hybrid game is statistically indistinguishable from the real attack.

70

In the next hybrid game, we replace each s ·Ab + eb for b ∈ {0, 1} by uniformly

random and independent ub, i.e., the adversary has access to the function

F ′′u0,u1
(x) := bux0 · ST (x′)ep =

⌊
ux0 ·G−1(AT1(x

′
1)) ·

d∏
i=2

G−1(ATi(x
′
i))︸ ︷︷ ︸

S′T (x′)

⌉
p

. (5.3.2)

Since ST (x′) can be efficiently computed from the public parameters Ab and the ad-

versary’s queries x, this game is computationally indistinguishable from the previous

one, under the LWE assumption.

At this point, we would like to be able to proceed by replacing the terms ux0 ·

G−1(AT1(x
′
1)) with some “noisy” variants, then replace those with uniform and in-

dependent vectors for all values of x0‖x′1, etc. Indeed, this is possible if x′1 consists

of a single bit (i.e., if |T1| = 1 and hence AT1(x
′
1) = Ax′1

), using “non-uniform LWE”

exactly as is done in [18]. Unfortunately, non-uniform LWE does not appear to be

sufficient when x′1 is more than one bit (i.e., when |T1| > 1), because the matrices

AT1(x
′
1) are not independent for different values of x′1. And requiring |Ti| = 1 for all

i makes T have maximal expansion e(T) = |T | − 1.

Our main new proof technique is a way to deal with the above issue. Going

back to Equation (5.3.2), as “wishful thinking” suppose that each ub was of the form

ub = sb · G for some (uniform, say) sb ∈ Znq . Then the G factor would undo the

decomposition G−1(·), and the adversary would have access to the function

F ′′′s0,s1(x) := bsx0 ·AT1(x
′
1) · S′T (x′)ep = bsx0 ·AT ′(x

′)ep,

where T ′ is the full binary tree obtained from T by removing its leftmost leaf v

and promoting v’s sibling subtree T1 to replace their parent. Notice that the above

function is just two independent members of our function family instantiated with

tree T ′. Moreover, T ′ has expansion e(T ′) ≤ e(T), because expansion is just “left

depth.” Therefore, the above function would be a PRF simply by induction on |T |.

71

Unfortunately, our “wishful thinking” fails in a very strong sense: a uniformly

random u is highly likely to be very far from any vector of the form s ·G. However,

because Znq · G is a subgroup of Zn`q , a uniformly random vector u ∈ Zn`q can be

decomposed as u = s ·G + v where s ∈ Znq is uniform, and v is uniform in (some

canonical set of representatives of) the quotient group Zn`q /(Znq ·G) and independent

of s. Therefore, the function in Equation (5.3.2) is equivalent to the function

F ′′′s0,s1,v0,v1
(x) := bsx0 ·AT ′(x

′) + vx0 · ST (x′)ep,

where T ′ and x′ are exactly as in the previous paragraph. Note that vb is not short,

so the extra additive term above does not simply “round away”—but we do not need

it to. The main point is that vb may be chosen independently of (and hence without

knowledge of) sb by the simulator, and then the additive term may be efficiently

computed from it and other public information. Essentially, this allows us to complete

the proof by induction on |T |. (Again, the actual proof is structured a bit differently,

to allow us to simulate the independent additive terms inside the rounding operation.)

5.3.2 Proof of Security Theorem

In this section we give the formal proof of Theorem 5.2.3. We restate it here for the

reader’s convenience.

Theorem 5.2.3. Let T be any full binary tree, χ be some distribution over Z that is

subgaussian with parameter r > 0 (e.g., a bounded or discrete Gaussian distribution

with expectation zero), and

q ≥ p · r
√
|T | · (n`)e(T) · λω(1).

Then over the uniformly random and independent choice of A0,A1 ∈ Zn×n`q , the

family FA0,A1,T,p with secret key chosen uniformly from Znq is a secure PRF family,

under the decision-LWEn,q,χ assumption.

72

To aid the proof we first define a couple of auxiliary function families. The first

family simply consists of the “pre-rounded” counterparts of the functions Fs ∈ F =

FA0,A1,T,p.

Definition 5.3.1. For A0,A1 ∈ Zn×n`q and a full binary tree T , the family G =

GA0,A1,T is the set of functions Gs : {0, 1}|T | → Zn`q indexed by some s ∈ Znq , and

defined as Gs(x) := s · AT (x) (where we define AT (ε) := G for the empty tree T).

We endow G with the distribution where s← Znq is chosen uniformly at random.

Note that Fs(x) = bGs(x)ep.

The next family G̃ consists of functions that are certain “noisy” versions of the

functions in G. The family E of “error functions” used in the definition is a family

of functions from {0, 1}|T | to Zn`, and is formally defined in Definition 5.3.5 below.

An important point is that the functions in E ∈ E have exponentially large keys, but

they may be efficiently sampled “lazily,” as values E(x) are needed. See the discussion

following Definition 5.3.5 for details.

Definition 5.3.2. For A0,A1 ∈ Zn×n`q and a full binary tree T , the family G̃ =

G̃A0,A1,T is the set of functions G̃s,E : {0, 1}|T | → Zn`q indexed by some Gs ∈ G and

E ∈ E = EA0,A1,T , and defined as G̃s,E(x) := Gs(x) + E(x). We endow G̃ with the

distribution where Gs ← G and E ← E are chosen independently.

Proof of Theorem 5.2.3. We show below that with overwhelming probability, the

rounding ofGs ∈ G agrees with the rounding of essentially any corresponding G̃s,E ∈ G̃

on all the attacker’s queries, because the outputs of the error functions E ∈ E are

small. We also prove in Theorem 5.3.7 below that G̃ is a PRF family without any

rounding, and hence with rounding as well. It follows that the rounding of Gs ← G

(i.e., Fs ← F) cannot be distinguished from a uniformly random function, as desired.

We now proceed more formally, by a sequence of games.

73

Game H0. This is the real PRF attack game: we choose public parameters A0,A1 ←

Zn×n`q and an Fs ← F , and the attacker gets A0,A1 and oracle access to Fs(·). Equiv-

alently, we choose Gs ← G and the attacker gets oracle access to bGs(·)ep.

Game H1. We choose A0,A1 as above and a G̃s,E ← G̃, by choosing Gs ← G and

E ← E . Note that we choose E (and hence G̃) “lazily” as the attacker makes queries

(see the remarks following Definition 5.3.5). The attacker is given A0,A1 and oracle

access to bG̃s,E(·)ep, but with one exception: on query x, define the “bad event” Badx

for that query to be

⌊
G̃s,E(x) + [−R,R]n`

⌉
p
6= {bG̃s,E(x)ep},

where R = r
√
|T | · (n`)e(T) · ω(

√
log λ). That is, Badx indicates whether any entry

of G̃s,E(x) ∈ Zn`q is “too close” to another element of Zq that rounds to a different

value in Zp. Note that because q/p� R, a y ∈ Zq is “too close” in this sense if and

only if by −Rep 6= by +Rep, so Badx can be efficiently detected given only the value

of G̃s,E(x). If Badx occurs any of the attacker’s queries, then the game immediately

aborts.

In Lemma 5.3.6 below, we show that for any fixed x ∈ {0, 1}|T |, with overwhelming

probability over the choice of E ← E , it is the case that E(x) ∈ [−R,R]n`. Therefore,

for any fixed x we have G̃s,E(x) ∈ Gs(x)+[−R,R]n`. Hence bG̃s,E(x)ep = bGs(x)ep as

long as Badx does not occur, and the attacker’s queries are answered exactly as they

are in H0, conditioned on the game not aborting. It follows that for any (potentially

unbounded) attacker A,

AdvH0,H1(A) ≤ Pr[some Badx occurs in H1 with attacker A] + negl(λ). (5.3.4)

We do not directly bound the probability that some Badx occurs in H1, but instead

defer to the analysis of the next game, where we can show that it is indeed negligible.

74

Game H2. We choose A0,A1 as above, and U to be a uniformly random function

from {0, 1}|T | to Zn`q (defined “lazily” as the attacker makes queries). The attacker

is given A0,A1 and oracle access to bU(·)ep, with the same “bad event” and abort

condition as in H1, but defined relative to U instead of G̃s,E.

In Theorem 5.3.7 below, we show that G̃ is a PRF family under the LWE assump-

tion from the theorem statement, i.e., no efficient adversary can distinguish (given

oracle access) between G̃s,E ← G̃ and a uniformly random function U : {0, 1}|T | → Zn`q .

Because the Badx event in H1 (respectively, H2) for a query x can be tested efficiently

given query access to G̃ (resp., U), a trivial simulation implies that for any efficient

attacker A, we have AdvH1,H2(A) ≤ negl(λ). For the same reasons, it also follows by

a straightforward simulation that for any efficient attacker A,

|Pr[some Badx occurs in H1 with A]−Pr[some Badx occurs in H2 with A]| ≤ negl(λ).

In H2, because U is a uniformly random function, for any particular query x the

probability that Badx occurs is bounded by (2R + 1) · (n`) · p/q, which is negl(λ) by

assumption on q. By a union bound over all poly(λ) queries of an efficient A, and

then applying Equation (5.3.4), we therefore have that

Pr[some Badx occurs in H1 with A] = negl(λ) ⇒ AdvH0,H1(A) = negl(λ).

Game H3. We choose A0,A1 and a uniformly random function U as above, and

give the attacker oracle access to bU(·)ep. For each query x we define the event Badx

as in game H2, but still answer the query and continue with the game even if Badx

occurs. From the above analysis of H2 it follows that for any (potentially unbounded)

attacker A making poly(λ) queries, we have

AdvH2,H3(A) ≤ Pr[some Badx occurs in H2 with A] = negl(λ).

Finally, observe that bU(·)ep is a truly random function from {0, 1}|T | to Zn`p ,

75

up to the bias involved in rounding the uniform distribution on Zq to Zp. Because

q ≥ p · λω(1), this bias is negligible (and there is no bias if p divides q).

By the triangle inequality, it follows that for any efficientA, we have AdvH0,H3(A) =

negl(λ), and this completes the proof.

We next define the “error function” family E = EA0,A1,T and prove the claims

used in the above proof. To define the error functions we first need a couple of simple

definitions.

Definition 5.3.3 (Pruning). For a full binary tree T of at least one node, define

its pruning T ′ = pr(T) inductively as follows: if |T.l| ≤ 1 then T ′ := T.r; otherwise,

T ′.l := pr(T.l) and T ′.r := T.r. We let T (i) denote the ith successive pruning of T ,

i.e., T (0) = T and T (i) = pr(T (i−1)).

In other words, pruning a tree node removes its leftmost leaf v and replaces the

subtree rooted at v’s parent (if it exists) with the subtree rooted at v’s sibling. No-

tice that pruning cannot increase the tree’s expansion (i.e., left depth; see Equa-

tion (5.2.4)): e(T ′) ≤ e(T).

Definition 5.3.4. Given A0,A1 ∈ Zn×n`q and a full binary tree T of at least one

node, define the function ST : {0, 1}|T |−1 → Zn`×n` recursively as follows:

ST (x) =


I (the identity matrix) if |T | = 1

ST.l(xl) ·G−1(AT.r(xr)) otherwise,

where x = xl‖xr for |xl| = |T.l| − 1, |xr| = |T.r|.

Notice that if T ′ = pr(T) and x = x1‖x′ ∈ {0, 1}|T | for |x1| = 1, then it follows

directly from the definitions (recalling that Aε(ε) = G) and by induction that

AT (x) = Ax1 · ST (x′), (5.3.6)

G · ST (x′) = AT ′(x
′). (5.3.7)

76

Definition 5.3.5 (Error Functions). For public matrices A0,A1 ∈ Zn×n`q and a

full binary tree T , the family E = EA0,A1,T consists of functions from {0, 1}|T | to Zn`,

defined inductively as follows.

• For |T | = 0, the sole function in E is defined simply as E(ε) := 0.

• For |T | ≥ 1, a function in E is indexed by some e0, e1 ∈ Zn` and E ′0, E
′
1 ∈ E ′ =

EA0,A1,T ′, where T ′ is the pruning of T . For x = x1‖x′ ∈ {0, 1}|T |, the function

is defined as

Ee0,e1,E′0,E
′
1
(x) := ex1 · ST (x′) + E ′x1(x

′).

For a given error function distribution χ over Z, we endow E with the distribu-

tion where e0, e1 ← χn` and E ′0, E
′
1 ← E ′ are all chosen independently.

Note that a function E ∈ E is fully specified by exponentially (in |T |) many

error vectors (namely, one ew for each w ∈ {0, 1}≤|T |), and the value E(x) is fully

determined by those ew where w is a prefix of x (and A0,A1). This large number of

error vectors is what prevents G̃ itself from being usable as a PRF family. However,

as needed in the proof of Theorem 5.2.3 (game H1), a function E ← E can be sampled

“lazily” as values E(x) are needed, since each value of E(x) depends on only a small

number of the error vectors.

We now prove the claim used in the analysis of game H1 above.

Lemma 5.3.6. Let A0,A1 ∈ Zn×n`q , let T be any full binary tree, and let χ be a

subgaussian distribution over Z with parameter r > 0, used to sample the error

functions from the family E = EA0,A1,T . Then for any x ∈ {0, 1}|T | and for E ← E ,

the vector E(x) ∈ Zn` is subgaussian with parameter at most r
√
|T | · (n`)e(T). In

particular, for R = r
√
|T | · (n`)e(T) ·ω(

√
log λ) we have E(x) ∈ [−R,R]n` except with

negligible probability in λ (over the choice of E).

77

Proof. First note that for |T | = 0 we have E(x) = 0, which satisfies the claim. For

|T | ≥ 1 we proceed by induction, assuming the claim for the pruning T ′ of T , for

which e(T ′) ≤ e(T). Let E = Ee0,e1,E′0,E
′
1
← E . By definition, all the eb ← χn` and

E ′b ← EA0,A1,T ′ are mutually independent, and E(x) = ex1 · ST (x′) + E ′x1(x
′), where

x = x1‖x′.

• By unrolling the recursion in Definition 5.3.4, we see that ST (x′) is the product

of d separate G−1(·) components, where d ≤ e(T) is the depth of the leftmost

leaf of T . The G−1(·) components in the product are n`-by-n` binary matrices,

all of which have spectral norm bounded by n`, by Lemma 2.1.1. By submulti-

plicative property of the spectral norm, this implies that s1(ST (x′)) ≤ (n`)e(T).

• Because each vector ex1 ← χn` is subgaussian with parameter r, it follows that

ex1 · ST (x′) is subgaussian with parameter r · s1(ST (x′)) ≤ r · (n`)e(T).

• By the induction hypothesis, E ′x1(x
′) is subgaussian with parameter r

√
|T ′| ·

(n`)e(T
′) ≤ r

√
|T | − 1 · (n`)e(T), and is independent of ex1 .

• By Pythagorean additivity of subgaussians, we conclude that E(x) is subgaus-

sian with parameter r
√
|T | · (n`)e(T), as claimed.

The “in particular” part of the claim follows from the fact that each entry of E(x) is

subgaussian with the same parameter, the Gaussian tail bound for subgaussians, and

the union bound.

We finally prove that the function family G̃ from Definition 5.3.2 is pseudorandom.

Theorem 5.3.7. For any n, q ≥ 1 and error distribution χ over Z, any full binary

tree T , and over the uniformly random and independent choice of A0,A1 ∈ Zn×n`q , the

family G̃ = G̃A0,A1,T is pseudorandom, assuming the hardness of decision-LWEn,q,χ.

78

Proof. We proceed through a series of games, one for each bit of the input. In each

successive game, we modify the function family G̃ a little, until we are left with

the family of all functions from {0, 1}|T | to Zn`q (with uniform distribution), and we

show that each successive game is computationally indistinguishable under the LWE

assumption from the theorem statement.

To define the games formally, we first need some notation. For a bit string x of

length at least i, let x(i) = x1x2 · · ·xi denote the string of its first i bits, and let

x(i) denote the remainder of the string. Where A0,A1 and T are clear from context,

let G(i) = GA0,A1,T (i) and similarly for E (i). Let P ⊂ Zn` denote an arbitrary set of

representatives of the quotient group Zn`q /Znq · G, and define a family of auxiliary

functions V(i) = V(i)
A0,A1,T

as follows.

Definition 5.3.8. For public matrices A0,A1 ∈ Zn×n`q , a full binary tree T , and

0 ≤ i ≤ |T |, the family V(i) = V(i)
A0,A1,T

consists of functions from {0, 1}|T | to Zn`, and

is defined inductively as follows.

• The sole function in V(0) is defined simply as V (x) := 0.

• For i ≥ 1, a function in V(i) is indexed by some vw ∈ Zn` for every w ∈ {0, 1}i,

and some V ′ ∈ V(i−1). The function is defined as

V{vw},V ′(x) := vx(i) · ST (i−1)(x(i)) + V ′(x).

We endow V(i) with the distribution where the vw ← P and V ′ ← V(i−1) are all

chosen independently and uniformly.

Similarly to the family E of error functions, the description of a function in V(i)

consists of an exponential (in i) number of vw vectors, and can be sampled lazily.

We now define game Hi for 0 ≤ i ≤ |T |.

79

Game Hi. Choose A0,A1 ← Zn×n`q independently, and lazily sample Gsw ← G(i)

and Ew ← E (i) for each w ∈ {0, 1}i, and V ← V(i). Give the adversary A0,A1 and

oracle access to the function

H(x) := Gsx(i)
(x(i)) + Ex(i)(x

(i)) + V (x).

Claim 5.3.9. Game H0 corresponds to the real attack game against the family G̃, and

game H|T | corresponds to oracle access to a uniformly random function.

Proof. The first claim follows by definition of G̃ = G̃A0,A1,T , and because V(0) consists

solely of the zero function. For the second claim, for i = |T | we have x(i) = x, x(i) = ε,

and T (i) = ε (the empty tree), so by Definitions 5.3.1, 5.3.5, and 5.3.8,

H(x) = Gsx(ε) + Ex(ε) + V (x) = sx ·G + vx + V ′(x).

Since sx ∈ Znq ,vx ∈ P are uniformly random and independent for each x, and P is a

set of representatives of the quotient group Zn`q /Gt · Znq , the values sx ·G + vx ∈ Zn`q

are uniformly random and independent. Since V ′ is independent of these as well, H

is a uniformly random function.

It remains to prove that successive games are computationally indistinguishable.

To do so we define the following games H ′i for 1 ≤ i ≤ |T |.

Game H ′i. Choose A0,A1 ← Zn×n`q independently, and lazily sample uw ← Zn`q

and Ew ← E (i) for each w ∈ {0, 1}i, and V ′ ← V(i−1). Give the adversary A0,A1 and

oracle access to the function

H ′(x) = ux(i) · ST (i−1)(x(i)) + Ex(i)(x
(i)) + V (x). (5.3.10)

Claim 5.3.10. For 1 ≤ i ≤ |T |, games Hi and H ′i are equivalent.

80

Proof. We can write each uniformly random uw ∈ Zn`q for w ∈ {0, 1}i as uw =

sw · G + vw, where sw ∈ Znq and vw ∈ P are uniformly random and independent.

Therefore, we can rewrite the function H ′(·) from Equation (5.3.10) as

H ′(x) =
(
sx(i) ·G + vx(i)

)
· ST (i−1)(x(i)) + Ex(i)(x

(i)) + V ′(x)

= sx(i) ·G · ST (i−1)(x(i)) + Ex(i)(x
(i)) +

(
vx(i) · ST (i−1)(x(i)) + V ′(x)

)
= Gsx(i)

(x(i)) + Ex(i)(x
(i)) + V (x),

where in the final equality we have used Equation (5.3.7), and we have defined V (x)

to be the second parenthesized component of the previous expression. Notice that

all the functions Gsx(i)
, Ex(i) , and V are drawn independently from G(i), E (i), and V(i)

(respectively), and this proves the claim.

Claim 5.3.11. For 0 ≤ i ≤ |T | − 1, games Hi and H ′i+1 are computationally indistin-

guishable under the LWE assumption from the theorem statement.

Proof. To prove the claim, we design an efficient simulator S which receives as input

a pair of matrices (A,B) ∈ Zn×2n`
q × ZQ×2n`

q , where Q = poly(λ) is the minimum

of 2i and the number of queries that the adversary makes. The simulator parses

A = [A0 | A1] where A0,A1 ∈ Zn×n`q and gives them to the adversary. It lazily

samples a V ← V(i) and an Ew ← E (i+1) for every w ∈ {0, 1}i+1. Then for each

query x from the adversary, if a vector bx(i) has not already been defined, it lets bx(i)

be a previously unused row of B. It parses bx(i) = (bx(i)‖0 | bx(i)‖1), where bx(i)‖b ∈ Zn`q

for each b ∈ {0, 1}. It then answers the query with the value

J(x) := bx(i+1)
· ST (i)(x(i+1)) + Ex(i+1)

(x(i+1)) + V (x).

This completes the description of S.

We now analyze the behavior of S for the two distributions of (A,B) from the

decision-LWE problem. In both cases, A is uniformly random and so the public

81

parameters are properly distributed. When B is uniformly random, it can be seen by

inspection that the function J is drawn from the same distribution as the function

H ′ in game H ′i+1 described in Equation (5.3.10), so the simulator exactly emulates

game H ′i+1.

We now analyze the other case, namely, B = S · A + E for independent S ←

U(ZQ×nq) and E ← χQ×2n`. Then letting sx(i) , (ex(i)‖0 | ex(i)‖1) respectively be the

rows of S,E corresponding to the row of B used as bx(i) , we have

J(x) =
(
sx(i) ·Axi+1

+ ex(i)‖xi+1

)
· ST (i)(x(i+1)) + Ex(i+1)

(x(i+1)) + V (x)

= sx(i) ·AT (i)(x(i)) +
(
ex(i)‖xi+1

· ST (i)(x(i+1)) + Ex(i)‖xi+1
(x(i+1))

)
+ V (x)

= Gsx(i)
(x(i)) + Ex(i)(x

(i)) + V (x),

where in the second equality we have used Equation (5.3.6), and in the last expression

we have defined Ex(i)(x
(i)) to be the parenthesized component from the previous

expression. Notice that by the distributions of all the variables, the functions Gsw ,

Ew (for each queried prefix w ∈ {0, 1}i) and V are all drawn independently from G(i),

E (i), and V(i), so in this case the simulator exactly emulates game Hi.

Because the two LWE input distributions are computationally indistinguishable

by assumption and S is efficient, it follows that Hi and H ′i+1 are computationally

indistinguishable, and the claim is proved.

By repeated application of Claims 5.3.10 and 5.3.11, we have that H0
c
≈ H ′1 ≡

H1
c
≈ H ′2 ≡ · · · ≡ H|T |−1

c
≈ H ′|T | ≡ H|T |, and so H0

c
≈ H|T | by the triangle inequality.

This completes the proof of Theorem 5.3.7.

5.4 Related Work

This construction is reminiscent of those from several works on fully homomorphic

encryption, attribute-based encryption, and garbled circuits, e.g., [36, 26, 17]. In

particular, these works obtain relatively good LWE assumptions and parameters by

82

appropriately scheduling “bit decomposition” operations to ensure small noise growth,

usually at the expense of increased sequentiality. This construction also falls within

this theme, though our proof techniques are completely different.

83

CHAPTER VI

CONSTRAINED KEY-HOMOMORPHIC

PSEUDORANDOM FUNCTIONS

6.1 Overview

Constrained PRFs. A constrained PRF for a family of sets S ⊆ P(X) has the

property that, given any key k and set S ∈ S, one can efficiently compute a “con-

strained” key kS that enables evaluation of Fk(x) on all inputs x ∈ S, while the values

Fk(x) for x /∈ S remain pseudorandom even given kS.

Constrained PRFs were introduced in three independent works [20, 49, 21]. All

three papers note that the classical GGM construction [39] already gives a prefix-

constrained PRF, where from a key k ∈ {0, 1}n, for any w ∈ {0, 1}≤n one can compute

a key kw that enables the computation of Fk(x) for all inputs x that start with w. This

construction is an instance of a prefix-fixing constrained PRF. Boneh and Waters [20]

construct bit-fixing and circuit-fixing constrained PRFs from multilinear maps. In

the bit-fixing construction, for every w ∈ {0, 1, ?} one can compute a key kw that

enables the computation of Fk(x) for any x for which xi = wi when wi 6= ?. The

more general circuit-constrained construction allows generating constrained keys for

any circuit C, where with kC one can evaluate the PRF on input x if and only if

C(x) = 1.

Prefix-constrained PRFs (or rather, “punctured” PRFs, which can be constructed

from them) are a main tool in almost all the applications of indistinguishability ob-

fuscation [33, 88, 79]. The papers [20, 49, 21] discuss many more applications of

constrained PRFs.

84

Key-Homomorphic Constrained PRFs. In this chapter, we construct PRFs

that are simultaneously constrained and key homomorphic, where the homomor-

phic property holds even for constrained keys. We show that the LWE-based key-

homomorphic PRFs from Chapter 5 are essentially already prefix-constrained PRFs,

using a (non-obvious) definition of constrained keys and associated group operation.

Moreover, the constrained keys themselves are pseudorandom, and the constraining

and evaluation functions can all be computed in low depth. The latter feature can

be important for applications of obfuscation, e.g., [33, 88, 79], where the use of low-

depth constrained/punctured PRFs may avoid the need for costly “bootstrapping”

operations and fully homomorphic encryption.

6.1.1 Low-Depth Prefix-Fixing PRFs from LWE

In Section 6.3 we construct key-homomorphic prefix-fixing constrained PRFs from

the LWE assumption, and hence from the conjectured hardness of worst-case lattice

problems [86, 80, 23]. In addition, natural instantiations of this construction have

polylogarithmic circuit depth. To our knowledge, these are the first sublinear-depth

constrained PRFs (whether key-homomorphic or not), and as such they can admit

much more efficient obfuscation under existing paradigms. (Recall that the basic

GGM construction, which yields a prefix-constrained PRF, is highly sequential.)

Our LWE-based construction is an extension of the key-homomorphic PRFs of

Chapter 5. We show that this construction can be made prefix-constrained, and that

the constraining algorithm is also key-homomorphic. Notably, the approximation

factors for the underlying LWE assumption are essentially the same as before, e.g.,

they can be as small as quasi-polynomial λω(1) in the security parameter.

To show all this, we start with the observation that the security proof of the noisy

function in Chapter 5 is very “GGM-like,” i.e., it proceeds in a sequence of hybrids,

one for each successive bit of the PRF input. However, the functions computed in the

85

hybrids do not quite fit the usual GGM paradigm, because each successive output of

the PRG is broken into two pieces: one piece is fed as input into the next PRG step,

while the “leftover” piece is retained and then later “folded” back into the final output

of all the PRG steps. A natural way to define a constrained key for a partial function

evaluation, then, is to include all the leftover pieces in the constrained key—and this

is indeed the approach we take.

The main technical challenge we face is in defining a suitable group structure on

the leftover pieces, for key homomorphism. At first sight, this appears easy: since

the leftover pieces are eventually combined with the final PRG output via a linear

function, it would appear that one could simply add constrained keys by adding their

corresponding leftover pieces. While this does indeed work—at least syntactically—

it yields a useless construction! The problem is that essentially any application of

key-homomorphic (constrained) PRFs will require a statistical “secret sharing”-like

property on the (constrained) secret keys. For example, the sum of any fixed key

with a uniformly random key must be uniformly random, so that the original key

is completely hidden. Formally speaking, for any particular constraint we need the

space of constrained keys to be a finite additive group (so that it supports a uniform

distribution), and for the function to be key-homomorphic under this group structure.

Resolving the difficulty. Going back to Construction 5.2.2, the leftover pieces in

constrained keys come from a certain finite subset P ⊂ Zm, namely, a fundamental

region of a special lattice L. Obviously, the sum of two uniformly random P-elements

is not uniform in P—indeed, it is typically not in P at all! So we cannot näıvely use

the ambient group Zm (which is infinite). Another idea would be to use the finite

quotient group Zm/L, i.e., addition modulo the lattice. This also does not work,

because the function is not key-homomorphic under this form of addition.

Our solution to the above problem involves a novel method of adding modulo L

86

“with carries.” That is, the sum of two leftover P-elements is mapped back to P by

reducing modulo the lattice L, i.e., shifting by an appropriate lattice vector x ∈ L.

The vector x is then treated as a “carry” term that is “folded into” the sum of the

next two P-elements in the key, and so on. (The ultimate effect is analogous to grade-

school addition, except that here the “base” in which the “numbers” are written is

a high-dimensional lattice.) We show that by appropriately defining the effect of the

carry terms, the PRF is indeed key-homomorphic under this form of addition.

All of the above applies to the so-called “noisy” version of the construction, an

intermediate object that has perfect constraining, homomorphic, and pseudorandom-

ness properties, but high circuit depth and (even worse) exponentially large keys.

Similar to Chapters 4 and 5, we show that by appropriately “rounding” this noisy

construction, the keys and depth can be made small while preserving the other desir-

able properties (at least against computationally bounded attackers). Interestingly,

this rounding transformation requires us to work with a “geometrically nice” set P

of representatives modulo the special lattice L (which fortunately exists), whereas

Chapter 5 works with any set of representatives.

6.2 Key-Homomorphic Constrained Pseudorandom Func-
tions

We now formally define key-homomorphic constrained pseudorandom functions. We

model constrainability as a directed acyclic graph (DAG) on some (typically huge)

set of nodes. We restrict our attention to DAGs having a unique node that has no

incoming edges, called the root node.

Definition 6.2.1. A constrained function family C is given by:

• a directed acyclic graph D = (V,E) with unique root node r ∈ V ,

• for each node u ∈ V , a key space Ku with an efficiently samplable probability

distribution Du over it, and a space of auxilliary inputs Vu,

87

• for every edge (u,w) ∈ E, an efficiently computable constraining function

Cu,w : Vu ×Ku → Vw ×Kw.

The functions Cu,w must satisfy the following consistency property: for any nodes

u,w ∈ V and any two paths P = (u = u0, u1, . . . , uk = w) and P ′ = (u =

u′0, u
′
1, . . . , u

′
` = w) from u to w, we have that

Cuk−1,uk ◦ · · · ◦ Cu1,u2 ◦ Cu0,u1 = Cu′`−1,u
′
`
◦ · · · ◦ Cu′1,u′2 ◦ Cu′0,u′1 .

For notational convenience, we let Cu,w : Vu×Ku → Vw×Kw denote the above (com-

posed) functions, and also define Cu := Cr,u for any node u ∈ V that is reachable

from the root node r. For consistency with the typical PRF notation, we define

Fv,k(u) = Cu(v, k) (and to also cover constrained PRFs, if u represents a subset

of inputs then Constrainv,k(u) = Cu(v, k)) for v ∈ Vv and k ∈ Ku.

Lastly, a constrained function family may also have a Setup algorithm, which

accepts the security parameter λ in unary, samples some (public) parameters that are

provided as input to all of the other algorithms and sets up the domains {Ku}, {Vu}.

For the reader who may be familiar with constrained PRFs, we stress that in the

above definition, the DAG nodes roughly correspond with (subsets of) PRF inputs,

while the input key, auxiliary key pairs (vu, ku) for a node u correspond to constrained

keys. Despite these rough correspondences, we stress that in our model there are no

distinct notions of PRF “inputs” or “outputs,” only DAG nodes. This is without loss

of generality: a PRF input can simply be represented as a node w with no outgoing

edges, and the corresponding output is the pair (vw, kw), or even simply the key

kw. In fact, our model is somewhat more general because it allows for defining and

proving the pseudorandomness of constrained keys themselves (even for nodes having

outgoing edges), which can be useful in certain settings.

88

Definition 6.2.2. Pseudorandomness for a constrained function family C = (D =

(V,E), {Ku}, {Vu}, {Cu,v}) is defined as follows. It is parameterized by a subset R ⊆

V of what we call “challenge” nodes. We consider two closely related experiments

(“games”), called “real” and “ideal,” which proceed as follows:

1. Initialize: If the family has a Setup algorithm, it is run and its output is provided

to the adversary, who in turn provides an auxiliary value vr ∈ Vr for the root

node r ∈ V . The key value for the root r, kr ← Kr, is chosen according to the

associated distribution Dr.

2. Query: The adversary adaptively issues queries u ∈ V , subject to the condition

that no query in R and any other query have a common descendant in D. That

is, there are no distinct queries u ∈ R, u′ ∈ V and node w ∈ V such that there

exists a (possibly trivial) path from u to w and one from u′ to w.

• In the “real game,” every query u is answered with (vu, ku) = Fvr,kr(u) =

Cu(vr, kr).

• In the “ideal game,” the auxiliary output vu is answered as in the real

game. For the output key, if u ∈ V \ R then it is also answered as in the

real game, otherwise it is answered with an independent value k∗u ← Du.

(Repeated queries are answered consistently.)

The family C is said to be pseudorandom if for any polynomial-time adversary, its

advantage in distinguishing the real and ideal games is negligible in the security pa-

rameter.

In short, the definition above means that constrained keys for the set R of challenge

nodes are pseudorandom. The condition on legal queries is necessary to prevent trivial

distinguishers that work by observing the inconsistency of the ideal-game answers.

In a bit more detail, given answers (vu, ku), (vu′ , ku′) for some nodes u ∈ R, u′ ∈ V

89

(respectively) that have a common descendant w ∈ V , the distinguisher could check

whether Cu,w(vu, ku) = Cu′,w(vu′ , ku′). This always holds in the real game, but in the

ideal game, where ku is chosen independently of everything else, it would typically

fail to hold.

Definition 6.2.3. A constrained function family is (key) homomorphic if all the key

and auxiliary spaces together Vu × Ku are additive groups and if the constraining

functions Cu,w are additive homomorphisms, i.e., for every (u,w) ∈ E and every

(v1, k1), (v2, k2) ∈ Vu ×Ku, we have

Cu,w(v1, k1) + Cu,v(v2, k2) = Cu,w((v1, k1) + (v2, k2)) .

For key-homomorphic PRFs, all applications we know of implicitly require the

spaces Vu×Ku to be finite groups, and the associated distributions Du to be uniform

distributions. In short, this is because the security proofs all rely on statistical “secret

sharing”-type properties, e.g., the sum of any group element and a uniformly random

one is uniformly random. Our final construction has finite key spaces with uniform

distributions.

6.3 Prefix-Fixing Construction from LWE

In this section we prove that variants of the LWE-based key-homomorphic PRF of

Chapter 5 also support prefix constraints, and that the constraining functions are

key-homomorphic as well. After recalling some standard background and notation in

Section 6.3.1, the contents of this section have the following high-level structure:

• In Section 6.3.2 we define a key-homomorphic, prefix-constrained pseudoran-

dom function family called Constrain, which we refer to as the “noisy” family.

However, the functions in this family are highly sequential, with circuit depth

proportional to the input length. More significantly, they have huge keys, of

90

size exponential in the input length, so they cannot actually be used in reality.

The purpose of defining this family is to give us a baseline object that has “per-

fect” consistency, homomorphic, and pseudorandomness properties (but terrible

space and depth complexity), which we rely upon in the later subsections.

• In Section 6.3.3 we specialize the noisy Constrain family to be “errorless,” i.e.,

all error terms are set to zero. We call the resulting family PConstrain. As

a specialization of Constrain, it inherits that latter’s perfect consistency and

homomorphic properties. We show that the PConstrain functions (1) have small

keys, (2) can be computed in low depth (e.g., logarithmic in the input length)

by a slight modification to the Constrain algorithms, and (3) have outputs that

are “close” to those of the noisy Constrain functions (under a mild condition

on the input). However, we are still not quite done yet, because the errorless

PConstrain functions are not pseudorandom.

• In Section 6.3.4 we combine the previous two families to obtain our final family

PConstrain that has essentially all the desired properties: small keys, low depth,

pseudorandomness, consistency, and almost-homomorphism. (The latter two of

these properties do not hold perfectly, but only computationally : under the LWE

assumption, no efficient adversary can detect a violation of either property.) The

PConstrain functions are defined simply as appropriately rounded functions from

the errorless family PConstrain. As such, they inherit the latter’s small keys

and low depth. In addition, they are pseudorandom because they coincide with

rounded versions of the noisy (and pseudorandom) Constrain functions. This

correspondence follows from the fact that the (unrounded) errorless PConstrain

and noisy Constrain functions are “close,” and the rounding precision is taken

to be sufficiently coarse to conceal this difference. Finally, consistency and

almost-homomorphism hold computationally for PConstrain essentially because

91

rounding can be seen as adding a particular kind of (deterministic) error, so

PConstrain may be seen as an instantiation of Constrain.

6.3.1 Preliminaries

In this chapter for convenience we always let the modulus q = 2` ≥ 2 be a power

of two. We recall the gadget matrix G and the bit-decomposition operation G−1(·)

from Section 2.4. We let P ⊆ Zn` denote a certain set of canonical representatives of

the additive quotient group Zn`q /(Znq ·G). Specifically, as shown in [70], we can use1

P := {− q
4
, . . . , q

4
− 1}n` .

We define a bijection Decode : Zn`q → P × Znq as Decode(u) = (v, s), where

u = v + s ·G .

As shown in [70], there is an efficient algorithm for computing Decode in depth pro-

portional to ` = log q, and clearly Decode−1(v, s) = v + s ·G.

Binary trees. A full binary tree T is one in which each node is either a leaf, or

has two (nonempty) children. We let |T | denote the number of leaves in T , and index

the leaves from 0 to |T | − 1 by the inorder traversal of T . If |T | ≥ 1, we let T.l and

T.r respectively denote its left and right subtrees, both of which are nonempty.

Given matrices A0,A1 ∈ Zn×n`q , we define the function AT (x) : {0, 1}|T | → Zn×n`q ,

similarly to Chapter 5, as follows:

AT (x) :=


Ax if |T | = 1,

AT.l(xl) ·G−1(AT.r(xr)) otherwise,

1This choice of P is possible because we have taken q to be a power of two. It may be possible
to generalize our results to other values of q using the alternative lattice bases given in [70], but it
seems to substantially complicate the proofs.

92

where in the second case we parse the input x = xlxr where |xl| = |T.l| and |xr| =

|T.r|.

Rounding. For a positive integer e, we define the function b·ce : Z→ eZ as bxce :=

bx/ec · e, i.e., it rounds x down to the nearest integer multiple of e.2 We also extend

b·ce component-wise to vectors and matrices.

6.3.2 “Noisy” Function Family C

As in the previous chapters, we first define and analyze a certain family C of “noisy”

constraining functions, which have huge (exponential-size) keys, because each key

contains many error terms. To avoid technical complications related to efficient com-

putation on exponential-size inputs, throughout this section the error terms are al-

ways sampled “lazily,” i.e., not until they are needed. In Section 6.3.2.1 we show

that the constraining functions are consistent, in Section 6.3.2.2 we show that they

are homomorphisms under an appropriate group operation on the key spaces, and in

Section 6.3.2.3 we show that the family is pseudorandom under an appropriate LWE

assumption.

The public parameters of the noisy family are two matrices A0,A1 ∈ Zn×n`q , chosen

uniformly at random. Following Definitions 6.2.1 and 6.2.3, to describe our family

we need to give a DAG with a unique root node, a key space with an additive group

structure for each node in the DAG, and a constraining function for each edge in the

DAG.

DAG. For a full binary tree T , our DAG D corresponds to prefix-fixing constraints

on {0, 1}|T |, i.e., the nodes are identified with the strings in {0, 1}≤|T |, and there is

2We point out that this function differs slightly from the “modular” rounding function considered
in the previous chapters, which mapped Zq to Zp as bxep = bx · p/qe mod p. Here e corresponds
with q/p, but the rounding input and output have the same “scale.” Also, for technical reasons the
floor functions is more natural for our needs here.

93

an edge (w,wx) for every w and x 6= ε such that |wx| ≤ |T |. This DAG clearly has

a unique root node, namely, the empty string ε.

Key Space and Distribution. For any full binary tree T and 0 ≤ j ≤ |T |, we

define,

ET,j :=
∏

y∈{0,1}≤|T |−j
Zn` = (Zn`)2|T |−j+1−1 .

In ET,j, the several Zn`-components (which represent error vectors) are indexed by

the binary strings of length at most |T | − j, which is why there are 2|T |−j+1 − 1

components. We define a distribution WT,j on ET,j as follows

WT,j := (χnl)2|T |−j+1−1 ,

where χ is some error distribution over Z that will be used in the security proofs

later.

For each w ∈ {0, 1}≤|T |, the key space KT,w and associated distribution are defined

as:

KT,w := Znq × ET,|w| ,

DT,w := U(Znq)×WT,|w| .

Note that the set KT,w does not depend on the string w itself, only its length.

Auxiliary Space. We define the auxiliary key spaces VT,w, for w ∈ {0, 1}≤|T | as

VT,w :=



{ε} if |w| = 0,

VT.l,w if 0 < |w| < |T.l|,

P × VT.r,wr if |T.l| ≤ |w| < |T |,

P if |w| = |T |,

(6.3.5)

where we parse w = wlwr for |wl| = |T.l| in the third case above. As in the definition

of the key space, we see that VT,w depends only on the length |w| of w. In words: for

94

0 ≤ |w| < |T |, VT,w has one P-component for each left-child subtree “hanging off” the

path from the root to the |w|th leaf. (Recall that we index the leaves starting from

zero.) In what follows, we often refer to the subtree associated with a particular P-

component of an element of VT,w. The final case is defined so that VT.l,w = VT,w = P

for |w| = |T.l|, which is a convenient identity for our recursive algorithms.

To make VT,w × KT,w an additive group (for |w| > 0), we stress that we do not

simply treat it as a product group of its components—indeed, P ⊂ Zn` is not even

closed under addition, so it is not a group. Instead, in Section 6.3.2.2 below we define

a special addition operation on VT,w × Znq to make it a group. Then VT,w × KT,w is

simply the product group of this group with ET,|w|, with the usual addition operation

on the latter.

Constraining functions. It remains to define (consistent) constraining functions

ConstrainT,w,x : VT,w ×KT,w → VT,wx ×KT,wx

for all strings w, x such that x 6= ε and |wx| ≤ |T |; for convenience, we also define

ConstrainT,w,ε to be the identity function. Functional pseudocode for the constraining

functions is given in Algorithm 1. Note that for clarity and convenience in the analysis

later on, Algorithm 1 actually defines the “helper” functions Constrain′T,w,x : VT,w ×

KT,w → VT,wx × Znq , which take errors as input, but do not output any errors. The

full constraining functions are then defined simply as

ConstrainT,w,x(v, s, (ey)|y|≤|T |−|w|) := (Constrain′T,w,x(v, s, (ey)) , (exy)|y|≤|T |−|wx|) ,

for v ∈ VT,w and s ∈ Znq .

The constraining functions are defined recursively on the tree structure. In the

base case |T | = 1, for key (s, (ex)x∈{0,1}≤1) ∈ VT,ε × KT,ε = Znq × (Zn`)3, we simply

compute and decode the “noisy” value sAx+ex ∈ Zn`q . There are three recursive cases,

95

depending on whether we are constraining entirely within the left subtree, within the

right subtree, or across the two subtrees. In the first two cases, we simply recurse on

the appropriate subtree. In the third case, we recursively constrain over the remainder

of the left subtree, then over the desired portion of the right subtree. Lastly, whenever

we finish constraining over an entire (sub)tree we need to appropriately “fold” the

results—which consist of some value in P ⊂ Zn` from the left subtree, and some value

in P × Znq from the completed right subtree—into a value in P × Znq for the entire

tree.

We remark that it would have been sufficient to define functions ConstrainT,x,w

for |x| = 1 alone. Indeed, by Lemma 6.3.1 below it follows that our pseudocode is

actually equivalent to the sequential composition of such functions, and hence has

circuit depth proportional to |x|. We choose to present the constraining functions for

general x because in Section 6.3.4 we show that a slight modification yields highly

parallel functions. We also point out that although our presentation is (necessarily)

quite different, our constraining functions correspond to the partial evaluations of the

noisy function family from Chapter 5, which the simulator computes internally when

answering queries in the security proof.

6.3.2.1 Consistency

Lemma 6.3.1 (Consistency). For any full binary tree T , parameters A0,A1, and

strings w, x, z where |wxz| ≤ |T |, we have that

ConstrainT,wx,z ◦ ConstrainT,w,x = ConstrainT,w,xz .

Proof. We proceed by induction on |T |. The base case of |T | = 1 is trivial, because

ConstrainT,w,ε is the identity function.

We have three inductive cases. In the first two cases, where |wxz| < |T.l| or

|T.l| ≤ |w|, the claim follows immediately by the inductive hypothesis on T.l or T.r,

96

Algorithm 1 Constrain′T,w,x : VT,w ×KT,w → VT,wx × Znq for |wx| ≤ |T |, x 6= ε

Require: k = (v, s, (ey)|y|≤|T |−|w|) ∈ VT,w × Znq × ET,|w|
1: if |T | = 1 then . Base case.

return Decode(s ·Ax + ex)
2: else if |wx| < |T.l| then . Entirely in left subtree

return Constrain′T.l,w,x
(
v, s, (ey)|y|≤|T.l|−|w|

)
. . . . so just recurse.

3: else if |T.l| ≤ |w| then . Entirely in right subtree
4: parse w = wlwr where |wl| = |T.l| and v = (vl,vr) ∈ P × VT.r,wr
5: let (wr, sr) = Constrain′T.r,wr,x

(
vr, s, (ey)|y|≤|T |−|w|

)
. . . . so recurse.

6: if |wx| < |T | then . Doesn’t complete the tree. . .
return ((vl,wr), sr) so append results.

7: else . Completes tree (so wr ∈ P). . .
return Decode(vl ·G−1(AT.r(wrx)) +Decode−1(wr, sr)) so fold results.

8: end if
9: else . Constrains across both subtrees (|w| < |T.l| ≤ |wx|) . . .

10: parse x = xlxr where |wxl| = |T.l|
11: let (wl, sl) = Constrain′T.l,w,xl

(
v, s, (ey)|y|≤|T.l|−|w|

)
. . . . complete left subtree

return Constrain′T,wxl,xr
(
wl, sl, (exly)|y|≤|T.r|

)
. . . . then self-recurse to finish.

12: end if

respectively. The last inductive case is |w| ≤ |T.l| < |wxz|. We analyze this in two

subcases.

The first subcase is |w| ≤ |T.l| ≤ |wx|. Here we parse x = xlxr with |wxl| = |T.l|.

By definition,

ConstrainT,w,x = ConstrainT,wxl,xr ◦ ConstrainT.l,w,xl ,

ConstrainT,w,xz = ConstrainT,wxl,xrz ◦ ConstrainT.l,w,xl .

The claim then follows by composing ConstrainT,wx,z on the left of both sides of the

first equation above, and invoking the second case above (because |T.l| ≤ |wxl|).

The second subcase is |wx| ≤ |T.l|. This proceeds essentially identically to the

first subcase, where we instead parse z = zlzr with |wxzl| = |T.l|.

6.3.2.2 Homomorphism

Before we can prove that the constraining functions are homomorphisms, we must

make VT,w ×KT,w an additive group. We do so by defining a special group operation

97

⊕ on the set VT,w × Znq . We then treat VT,w × KT,w = VT,w × Znq × ET,|w| as the

product group of VT,w ×Znq , under ⊕, with ET,|w|, under its usual addition operation.

For convenience, we overload ⊕ to also refer to the group operation for this product

group, where the intended domain should be clear by context.

To aid the recursive definitions, we define ⊕t to take an auxiliary input t ∈ Znq ,

which should be thought of as a kind of “carry” term that comes from reducing the

sum of two P-elements (in Zn`) back to P . Initializing this carry input to zero yields

the group operation, and in fact, for simplicity of exposition, we often suppress the

Znq carry term if it is equal to zero. As with any group operation, we remark that

the group VT,w × Znq of the operands is implicit from the context. Note that unlike

the definitions of the domains themselves, this one depends on the bit string w. We

define ⊕t to mirror the definition of VT,w (Equation (6.3.5)).

(v1, s1)⊕t (v2, s2) :=

t + s1 + s2 if |w| = 0,

(v1, s1)⊕t (v2, s2) if 0 < |w| < |T.l|,(
vl,
(
(v1,r, s1)⊕t (v2,r, s2)

))
if |T.l| ≤ |w| < |T |,

Decode
(
t ·AT (w) + Decode−1(v1, s1) + Decode−1(v2, s2)

)
if |w| = |T |,

where in the second case we recurse into T.l, interpreting the operands to be in

VT.l,w × Znq , and in the third case, we parse w = wlwr for |wl| = |T.l| and v1 =

(v1,l,v1,r) ∈ P × VT.r,wr , and similarly for v2 in the third case, and let (vl, t) =

Decode(t ·AT.l(wl) + v1,l + v2,l). It can immediately be seen by definition that ⊕t is

commutative. It also follows by a straightforward proof by induction over |w| that ⊕

is associative, which we state below.

Fact 6.3.2 (Associativity). For any full binary tree T , bit-string w ∈ {0, 1}≤|T |, k1,k2,k3 ∈

98

VT,w × Znq and t1, t2 ∈ Znq , the following is true:

k1 ⊕t1 (k2 ⊕t2 k3) = (k1 ⊕t1 k2)⊕t2 k3 = k1 ⊕t1+t2 (k2 ⊕0 k3) .

We now prove that the Constrain functions are homomorphisms.

Lemma 6.3.3 (Homomorphism). For any parameters A0,A1 and any full binary tree

T , any bit strings w, x such that |wx| ≤ |T |, and any t ∈ Znq and k,k′ ∈ VT,w ×KT,w,

we have

ConstrainT,w,x(k⊕t k′) = ConstrainT,w,x(k)⊕t ConstrainT,w,x(k
′) . (6.3.10)

In particular, by setting t = 0 we have that ConstrainT,w,x is an additive homomor-

phism.

Proof. Because Constrain simply passes an appropriate subset of the input Zn`-components

(the error terms) to the output, and by the product group structure of KT,w, it suffices

to prove the claim for Constrain′T,w,x. The lemma is trivially true for x = ε, so from

now on we assume that x 6= ε. Let k = k⊕t k′.

As usual, we proceed by induction over |T |. In the base case, where w = ε and

|x| = |T | = 1, parse k = (s, (ey)), k′ = (s′, (e′y)), k = (s, (ey)). Then s = t + s + s′

and ex = ex + e′x, so

Constrain′T,ε,x(s, (ey)) = Decode(s ·Ax + ex)

= Decode((t + s + s′) ·Ax + (ex + e′x))

= Decode(t ·Ax + (s ·Ax + ex) + (s′ ·Ax + e′x))

= Constrain′T,w,x(s, (ey))⊕t Constrain
′
T,w,x(s

′, (e′y)) .

We now consider the inductive cases, where we parse k = (v, s, (ey)) and similarly

for k′ and k. The first inductive case, where |wx| < |T.l|, follows immediately by

99

the definitions of Constrain′T,w,x and ⊕ and the inductive hypothesis for T.l. For the

second inductive case, where |T.l| ≤ |w| < |T |, parse w = wlwr for |wl| = |T.l| and

v = (vl,vr),v
′ = (v′l,v

′
r),v = (vl,vr) ∈ P × VT.r,wr , and note that by definition,

(vr, s) = (vr, s)⊕t (v′r, s
′), (6.3.11)

vl + t ·G = t ·AT.l(wl) + vl + v′l (6.3.12)

for some t ∈ Znq . As in the code for Constrain′, let (wr, sr) = Constrain′T.r,wr,x(vr, s)

(for ease of exposition, we suppress the error terms ey in this and what follows)

and similarly for (w′r, s
′
r), (wr, sr). Then by the inductive hypothesis for T.r and

Equation (6.3.11), we have

Constrain′T.r,wr,x(vr, s) = (wr, sr)⊕t (w′r, s
′
r) . (6.3.14)

Now if |wx| < |T |, then by definition of Constrain′T,w,x and ⊕ (respectively), the left-

and right-hand sides of Equation (6.3.10) are respectively just vl prepended to the left-

and right-hand sides of Equation (6.3.14), so they are equal. But if |wx| = |T | (that

is, if VT,wx = P), we proceed by applying Decode−1 to both sides of Equation (6.3.14),

add vl · G−1(AT.r(wrx)), and apply Decode. For the left-hand side we get exactly

Constrain′T,w,x(k), which is the left-hand side of Equation (6.3.10). On the right-hand

side, by definition of ⊕ (over T.r), by Equation (6.3.12), and by definition of AT (·),

we get Decode applied to

vl ·G−1(AT.r(wrx)) + Decode−1((wr, sr)⊕t (w′r, s
′
r)))

= (vl + t ·G) ·G−1(AT.r(wrx)) + Decode−1(wr, sr) + Decode−1(w′r, s
′
r)

= (t ·AT.l(wl) + vl + v′l) ·G−1(· · ·) + Decode−1(wr, sr) + Decode−1(w′r, s
′
r)

= t ·AT (wx) + (vl ·G−1(· · ·) + Decode−1(wr, sr)) + (v′l ·G−1(· · ·)

+ Decode−1(w′r, s
′
r)) .

As desired, this is the right-hand side of Equation (6.3.10), by definition of Constrain′T,w,x

and ⊕.

100

For the third inductive case, where |w| < |T.l| ≤ |wx|, the claim follows by writing

Constrain′T,w,x = Constrain′T,wxl,xr ◦ Constrain
′
T,w,xl

where x = xlxr for |wxl| = |T.l|,

then applying the inductive hypothesis for T.l and T.r. This completes the proof of

Lemma 6.3.3.

6.3.2.3 Pseudorandomness

We now show that the function family C defined above is pseudorandom accord-

ing to Definition 6.2.2. This follows from the PRG-like property demonstrated in

Lemma 6.3.4 below, and Theorem 6.3.6, which is in the style of proof in prior

works [20, 49, 21] that show that the GGM construction [39] instantiated with such

a PRG family yields a prefix-constrained PRF.

Lemma 6.3.4. Let T be any full binary tree, w ∈ {0, 1}|T |−1 be any string and let v

be any auxiliary input provided by the adversary. Then assuming the hardness of

decision-LWEn,q,χ, for (s, (ey))← DT,w we have

(
Constrain′T,w,0(v, s, (ey)),Constrain

′
T,w,1(v, s, (ey))

)
c
≈ U

(
(P × Znq)× (P × Znq)

)
.

We now make a note about the assumption that w ∈ {0, 1}|T |−1. In any evaluation

of Constrain′T,w,b by Algorithm 1, for an arbitrary w ∈ {0, 1}<|T | and b ∈ {0, 1}, after

dealing with all the inductive cases, we reach a point where we are completing some

subtree. If we are recursing in the right subtree without completing it, then we “peel

off” a P-component from the VT,w part which we prepend to the results. We cannot

make any pseudorandomness claim for this part of the output that is essentially just

“passed through” the evaluation of Constrain′T,w,b. Thus, in this lemma, we prove that

Constrain′T,w,b is almost a PRG in the sense that whatever fresh outputs are generated

by the function are distributed uniformly. However, as we will see later, since the

auxiliary inputs are public (and in fact can be chosen adversarially) and we do not

101

make a claim about their pseudorandomness in Definition 6.2.2, we only need that

the key output (that is, the Znq component) be distributed uniformly.

Proof of Lemma 6.3.4. We first observe that for (s, (ey)y∈{0,1}|T |−|w|) ∈ KT,w = Znq ×

ET,|w| distributed according to DT,w, all the components are independent, and the

values ConstrainT,w,b(v, s, (ey)) for b = 0, 1 can be efficiently computed given only v,

bb = s ·Ab+eb. This is done simply by adapting the base case (Line 1) of Algorithm 1

to use bb instead of s, eb.

To prove the lemma, we design an efficient simulator S whose input is a pair

(A,b) ∈ Zn×2n`
q × Z2n`

q . The simulator parses A = [A0 | A1] where A0,A1 ∈ Zn×n`q

and releases them as the public parameters, and also parses b = (b0,b1) for b0,b1 ∈

Zn`q . It then uses v ∈ VT,w to output the (purported) values of ConstrainT,w,b as

described above.

We now analyze the output for the two distributions of (A,b), LWE or uniform.

In either case, A is distributed uniformly at random in the appropriate domain, so

the public parameters are properly distributed. When b is distributed according to

the LWE distribution, that is, b = s ·A + e for independent s ← Znq and e ← χ2n`,

as argued above, the outputs are distributed according to (Constrain′T,w,0(v, s, (ey)),

Constrain′T,w,1(v, s, (ey))) for an appropriately distributed (s, (ey)) ← DT,w (where

(e0, e1) = e).

Finally, in the case that b is distributed uniformly, we prove that the outputs(
(w0, t0), (w1, t1)

)
∈ (P × Znq)2 are uniform and independent by induction on the

tree T . By assumption on w, that is |w| = |T | − 1, we only deal with two inductive

cases. The base case, where |T | = 1 and w = ε, is easily seen to hold by inspection.

In the remaining case, |w| = |T | − 1 ≥ |T.l|, where Constrain recurses on the right

subtree and we parse v = (vl,vr) for vl ∈ P . By the induction hypothesis on T.r,

the Constrain′T.r,wr,b(vr, s, (ey)) outputs for b ∈ {0, 1} are uniform and independent in

P × Znq , and therefore the Decode−1 of these values are is uniform and independent

102

in Zn`q , and since the vl term is fixed, the folded and decoded outputs are distributed

uniformly and independently in P × Znq , as required.

Because the two distributions for (A,b) are computationally indistinguishable by

assumption, and S is efficient by construction, the lemma follows.

This leads to an immediate corollary which we state below and which finds use later.

Corollary 6.3.5. Let T be a full binary tree and let w ∈ {0, 1}≤|T |. For (s, (ey)) ←

DT,ε,

Constrain′T,ε,w(s, (ey))
c
≈ U(VT,w × Znq)

under the LWEn,q,χ assumption.

Proof. As usual, the proof is by induction over |T |. The statement is trivially true if

w = ε. The case when |T | = |w| easily follows by Lemma 6.3.4. The case when

|w| < |T.l| follows from the induction hypothesis. In the remaining case, when

|T.l| ≤ |w| < |T |, we parse w = wlwr for |wl| = |T.l| and note that (w, t) =

Constrain′T.l,ε,wl(s, (ey)|y|≤|T.l|)
c
≈ U(P×Znq) by the discussion above (since |wl| = |T.l|).

We then have that kr = Constrain′T.r,ε,wr(t, (ewly)|y|≤|T.r|)
c
≈ U(VT.r,wr × Znq) by induc-

tion hypothesis on T.r. The final output is then (w,kr)
c
≈ U(VT,w×Znq), as required.

We now prove the pseudorandomness of the function family C.

Theorem 6.3.6 (Pseudorandomness). The construction described in Section 6.3.2

is pseudorandom according to Definition 6.2.2 for the set of challenge nodes R =

{0, 1}≤|T | under the LWEn,q,χ assumption.

Proof. Firstly, note that since R = {0, 1}≤|T |, every query made by the adversary

would be on a challenge node. Secondly, note that since the number of components

in ET,0 is exponential in |T |, we sample lazily fromWT,0 in all the hybrid games ahead.

That is, ET,0 components are sampled as they are needed in the computations. (This

103

ensures all algorithms do not trivially run in exponential time just to enumerate all

such components, most of which are never used.)

We prove this theorem by going through a series of Q + 1 hybrids, H0 to HQ,

where Q = poly(λ) is the number of queries made by the adversary. In hybrid Hi, for

every 0 ≤ i ≤ Q, the root is initialized with a (sε, (ey)) ← DT,ε (note that (1) there

is no auxiliary associated with the root and (2) the error vectors are sampled lazily,

as they are needed), the first i queries are answered according to the ideal game and

the last Q − i queries are answered according to the real game in Definition 6.2.2.

We note that the game H0 corresponds to the real game and HQ corresponds to the

ideal game, and thus, if we can show that Hi
c
≈ Hi+1 for every 0 ≤ i < Q then the

theorem follows by a triangle inequality over the Q = poly(λ) hybrids.

Now, to show that indeed Hi
c
≈ Hi+1, we define a series of |T | + 1 hybrids Hi,0

through Hi,|T |. For any bit-string w, we use the notation wi,j for 1 ≤ i ≤ j ≤ |w| to

denote the substring wi · · ·wj. In particular, w1,i denotes the i bit prefix of w. For

completeness, we define wi,j = ε for i > j. In each hybrid Hi,j, for 1 ≤ j ≤ |T |, the

first i queries are answered exactly as in Hi, that is, according to the ideal game.

Now, when we receive the (i + 1)th query w∗, we let j∗ = min(|w∗|, j) and

sample sw∗1,k−1w
∗
k

for 1 ≤ k ≤ j∗ and sw∗
1,j∗

, all uniformly from Znq . We also store

vw∗1,k−1w
∗
k

for 1 ≤ k ≤ j∗ and vw∗
1,j∗

as follows: each such vw is the VT,w com-

ponent of Constrain′T,ε,w(sε, (ey)). We finally answer this query with the output of

Constrain′T,w∗
1,j∗ ,w

∗
j∗+1,|w|

(vw∗
1,j∗
, sw∗

1,j∗
, (ey)).

For the final Q − (i + 1) queries, we now detail how to answer any legal query

w ∈ {0, 1}≤T in hybrid Hi,j. Since w cannot share descendants with w∗ there has to

be some index 1 ≤ k ≤ min(|w|, |w∗|) such that wk = w∗k. There are then two cases,

depending on whether k ≤ j∗.

• If k ≤ j∗, then we output ConstrainT,w∗1,k−1w
∗
k,wk+1,|w|

(vw∗1,k−1w
∗
k
, sw∗1,k−1w

∗
k
, (ey)).

• If k > j∗, then we output ConstrainT,w∗
1,j∗ ,wj∗+1,|w|(vw∗1,j∗ , sw∗1,j∗ , (ey)).

104

Note that Hi,0 ≡ Hi.

We next prove that for 0 ≤ j < |T |, Hi,j
c
≈ Hi,j+1 under the LWE assumption in

the hypothesis. We note that the only queries that could change in going from Hi,j to

Hi,j+1 are ones which have w∗1,j as a prefix. In particular if |w∗| ≥ j (so that j∗ = j),

then a query of the form w = w∗1,j∗w
∗
j∗+1wj+2,|w| is answered as

• ConstrainT,w∗
1,j∗ ,w

∗
j∗+1

wj∗+2,|w|
(vw∗

1,j∗
, sw∗

1,j∗
, (ey)) in Hi,j, and

• ConstrainT,w∗
1,j∗w

∗
j∗+1

,wj∗+2,|w|
(vw∗

1,j∗w
∗
j∗+1

), sw∗
1,j∗w

∗
j∗+1

, (ey)) in Hi,j+1.

By consistency (Lemma 6.3.1), we have

ConstrainT,w∗
1,j∗ ,w

∗
j∗+1

wj∗+2,|w|
= ConstrainT,w∗

1,j∗w
∗
j∗+1

,wj∗+2,|w| ◦ ConstrainT,w∗1,j∗ ,w∗j∗+1
.

A similar sequence of equations holds for queries of the form w = w∗1,j∗+1wj∗+2,|w|.

Thus, it remains to show that

(
Constrain′T,w∗

1,j∗ ,w
∗
j∗+1

(vw∗
1,j∗
, sw∗

1,j∗
, (ey)),Constrain

′
T,w∗

1,j∗ ,w
∗
j∗+1

(vw∗
1,j∗
, sw∗

1,j∗
, (ey))

)
c
≈
(

(vw∗
1,j∗+1

, sw∗
1,j∗+1

), (vw∗
1,j∗w

∗
j∗+1

, sw∗
1,j∗w

∗
j∗+1

)
)

(6.3.17)

(because the rest of the errors on both sides are chosen from WT,j∗+1, and thus

distributed identically). Now, we know that the part of vw∗
1,j∗

that is passed-through

in the computation of Constrain′T,w∗
1,j∗ ,b

(for b ∈ {0, 1}) is distributed exactly as the

corresponding components of vw∗
1,j∗+1

and vw∗
1,j∗w

∗
j∗+1

, because they are both results

of evaluations of Constrain′T,ε,w∗
1,j∗b

(sε, (ey)). Now, under the LWE assumption from

the hypothesis, Lemma 6.3.4 holds, and thus we know that the rest of the P ×

Znq output of Constrain′T,w∗
1,j∗ ,b

is computationally indistinguishable from uniform for

b = w∗j∗+1, w
∗
j∗+1. To establish the claim that Equation (6.3.17) holds, we just need

the Znq component to be uniform, which we have.

Note that the (i+1)-th query w∗ in game Hi,|T | is answered according to the ideal

game (since in this game j∗ = |w∗|), that is the output key is distributed according

105

to DT,w∗ . However, the subsequent queries are not quite answered according to the

real game. We now go through another series of hybrids H ′i,j for |T | ≥ j ≥ 0, which

in effect “reverse” their Hi,j counterparts. Hybrid H ′i,j is identical to Hi,j, except

that the (i + 1)-th query w∗ is now answered as in the ideal game, that is, the key

output is (vw∗ , sw∗ , (ey)) ← DT,w∗ . Firstly, note that Hi,|T | ≡ H ′i,|T |. Next, note

that H ′i,j+1

c
≈ H ′i,j for every j∗ > j ≥ 0 by exactly the same argument that proves

Hi,j
c
≈ Hi,j+1 above. Lastly, note that H ′i,0 ≡ Hi+1. Summarizing, we have

Hi ≡ Hi,0
c
≈ . . .

c
≈ Hi,|T | ≡ H ′i,|T |

c
≈ . . .

c
≈ H ′i,0 ≡ Hi+1 ,

and this completes the proof.

6.3.3 Parallel Errorless Function Family

In this subsection we consider the “errorless” variants of our Constrain functions,

which we call PConstrain, and show that they can be computed in low depth. We also

show that the output of PConstrain is typically close to that of Constrain, when the

errors used in the latter are small.

6.3.3.1 Defining PConstrain

The PConstrain functions simply correspond to the Constrain functions with all the

error vectors set to zero, i.e., PConstrainT,w,x(v, s) = Constrain′T,w,x(v, s,0). In par-

ticular, this implies that the PConstrain functions are both consistent and homomor-

phisms, because the corresponding Constrain functions are. In addition, the errorless

setting allows PConstrain to be computed with good parallelism (i.e., in low depth) by

an alternative algorithm that “short circuits” the computation via a base case that

constrains over an entire (sub)tree in just one step. More specifically, we modify the

base case (Lines 1 and 2) of Algorithm 1 as shown in Algorithm 2 below. The rest of

the algorithm remains unchanged, apart from the fact that PConstrain does not take

or output any error terms.

106

In Lemma 6.3.7 we prove that the alternative algorithm is correct. Then in Sec-

tion 6.3.3.2 we describe how PConstrain can be evaluated in low depth.

Algorithm 2 PConstrainT,w,x : VT,w × Znq → VT,wx × Znq for |wx| ≤ |T |, x 6= ε

Require: (v, s) ∈ VT,w × Znq
1: if w = ε and |x| = |T | then . base case

return Decode(v ·AT (x))
2: end if
3: The remaining code is the same as in Algorithm 1, but without any error terms

(ey).

Lemma 6.3.7. For any fully binary tree T , any bit strings w, x with |wx| ≤ |T |, and

any (v, s) ∈ VT,w × Znq ,

PConstrainT,w,x(v, s) = Constrain′T,w,x(v, s,0) . (6.3.19)

Proof. Because the two algorithms differ only in the base case, it suffices to show that

Equation (6.3.19) holds when w = ε and |x| = |T |. We prove this by induction on

|T |.

If |T | = 1, then AT (x) = Ax and the claim holds by inspection. In the inductive

case, we parse x = xlxr with |xl| = |T.l|, and adopt the notation from the computation

of Constrain′T,ε,x. In this case, the induction hypothesis on T.l implies that

(w, t) := Constrain′T.l,ε,xl(s,0) = PConstrainT.l,ε,xl(s) = Decode(s ·AT.l(xl)) ,

where (w, t) ∈ P × Znq , as usual. By the induction hypothesis on T.r, we also have

that

Constrain′T.r,ε,xr(t,0) = PConstrainT.r,ε,xr(t) = Decode(t ·AT.r(xr)) .

107

Combining the above, we obtain

Decode−1(Constrain′T,ε,x(s,0))

= w ·G−1(AT.r(xr)) + Decode−1(Constrain′T.r,ε,xr(t,0))

= w ·G−1(AT.r(xr)) + t ·AT.r(xr)

= Decode−1(w, t) ·G−1(AT.r(xr))

= s ·AT.l(xl) ·G−1(AT.r(xr)) = s ·AT (x) ,

where the last line follows by the definition of AT (·). This completes the proof.

6.3.3.2 Parallel Evaluation of PConstrain

We now analyze the parallel complexity of the PConstrain functions according to

Algorithm 2 (and Algorithm 1) above. Our main goal is to bound what we call the

“nonlinear depth” of PConstrainT,w,x in terms of the topology of T and the strings w, x.

Nonlinear depth only takes into account the nonlinear Decode and G−1 operations;

the remaining operations are all linear over Zq. For an implementation of PConstrain

by an arithmetic or boolean circuit, the depth will depend on the precise circuit model

used and the implementation of the linear and nonlinear operations, but in any case

the final depth will be proportional to the nonlinear depth.

To state our claim we recall from Chapter 5 the notions of “left depth” and “right

depth” of the jth leaf in a binary tree T , and of T itself. The left depth lT (j)

(respectively, right depth rT (j)) of the jth leaf is the number of edges from a parent

to its left (resp., right) child on the path from the root to that leaf. The left and right

depths l(T), r(T) are respectively the maximum left and right depths over all leaves

in T .

Lemma 6.3.8. The function PConstrainT,w,x(v, s) can be computed via (1) a prepro-

cessing phase (independent of (v, s)) of nonlinear depth at most r(T), and (2) an

online phase (dependent on (v, s)) of nonlinear depth at most lT (|w|) + rT (|x|) ≤

108

l(T) + r(T).

We remark that in Chapter 5, the nonlinear depth of computing the (non-constrained)

PRF is just r(T), so one can obtain an extremely parallel PRF using a “left spine”

tree with r(T) = 1 and l(T) = |T | − 1 (this corresponds to the function from [18]).

But here, evaluating the PRF from a constrained key can require nonlinear depth pro-

portional to the sum of T ’s left and right depths. Therefore, to get good parallelism

for all w, x we must use a shallow tree T , e.g., one with depth O(log|T |).

Proof. We first observe that in a call to PConstrainT,w,x on a pair (v, s) ∈ VT,w × Znq ,

all the G−1(AT ′(z)) matrices that are required in the evaluation are independent

of (v, s), and hence may be (pre)computed in parallel of everything else. As shown

in Chapter 5, the nonlinear depth of computing AT ′(z) is the right depth of T ′, and

in this case each T ′ is a subtree of T .

Now, assuming that the above G−1(·) matrices have been computed separately,

we analyze the nonlinear depth of PConstrainT,w,x, which is due entirely to Decode

operations. To perform this analysis we first introduce an optimization that eliminates

some redundant nonlinear operations. Notice that in line 7, we apply Decode−1(k)

where k came from a recursive call that completed the right subtree, and hence is an

output of Decode (returned from line 1 or 7). To eliminate this redundancy, in lines 1

and 7 we remove the applications of Decode and Decode−1, and in line 11 we apply

Decode to the result of the recursive call. (Also, we apply Decode to the ultimate

output, if necessary.) With these changes, we have the following observations:

• In the base case w = ε and |wx| = |T |, the nonlinear depth is zero.

• The case |wx| < |T.l|, where we just recurse into the left subtree, has the same

nonlinear depth as its recursive call.

• The case |T.l| ≤ |w|, where we just recurse into the right subtree and condition-

ally fold (using a linear operation), has the same nonlinear depth as its recursive

109

call.

• The case |w| < |T.l| ≤ |wx|, where we recurse to complete the left subtree, then

decode, then recurse into the right subtree, has nonlinear depth one more than

the sum of the depths of the two recursive calls.

We therefore have only two interesting cases to analyze: (1) completing a tree

from some arbitrary nonempty starting string, i.e., 0 < |w| < |wx| = |T |, and

(2) constraining from the empty string to some arbitrary incomplete string, i.e., 0 =

|w| < |wx| < |T |. In the case (1) we can see that the nonlinear depth is simply

the “left depth” of the |w|th leaf of T , by the third and fourth observations above.

Similarly, in case (2) we see that the nonlinear depth is the “right depth” of the |x|th

leaf of T , by the second and third observations above. The lemma follows.

6.3.4 “Rounded” Function Family C

We now define our final “rounded” family of constraining functions, denoted C, which

we prove to be pseudorandom, as well as (computationally) key-homomorphic and

consistent. In C we use the same DAG on {0, 1}≤|T | as in the noisy function family,

but we define somewhat different “rounded” (and errorless) key spaces, and thereby

different constraining functions and group operations.

Rounding Factors and the Modulus. The family C is parameterized by a “round-

ing factor” eT ′ for each subtree T ′ of T . For convenience of analysis, we choose these

factors to all be powers of two. The factors are defined recursively to satisfy the

inequalities

eT ′ ≥


r · λω(1) if |T ′| = 1,

(eT ′.l · (n`) + eT ′.r) · λω(1) otherwise.

(6.3.23)

Using these rounding factors, we define b·cT := b·ceT , for any tree T , to simply

exposition further ahead.

110

Our proofs ahead require eT for the underlying tree T of the function family to

divide the modulus q, which is also chosen to be a power of 2. More concretely, we

require q ≥ eT · λω(1). In particular, this implies that

q ≥ r · λω(d(T)),

where d(T) represents the maximum depth of T . The quantity r is a parameter of

the function family. It corresponds to the parameter of the subgaussian distribution

χ used in the function family C in Section 6.3.2 above.

Key Space and Distribution. The key space for w ∈ {0, 1}≤|T | and its associated

distribution are simply defined to be

KT,w := Znq ,

DT,w := U(KT,w).

Auxiliary Space. Mirroring Equation (6.3.5), we define the “rounded” auxiliary

domain VT,w for w ∈ {0, 1}≤|T | as follows:

VT,w :=



{ε} if |w| = 0,

VT.l,w if 0 < |w| < |T.l|,

bPcT.l × VT.r,wr if |T.l| ≤ |w| < |T |,

bPcT if |w| = |T |,

(6.3.26)

where we parse w = wlwr with |wl| = |T.l| in the third case above. Note that for

every subtree T ′ of T , we have bPcT ′ ⊆ P (because every eT ′ divides q), and therefore

VT,w ⊆ VT,w.

Constraining functions. We first generalize the rounding operator b·c to work

over inputs in VT,w, producing outputs in VT,w for w ∈ {0, 1}≤|T |. As with the

111

addition operator ⊕, the parameters T and w will be apparent from the context. The

definition mirrors Equation (6.3.26) above, as follows:

bvc :=



ε if j = 0,

bvc if 0 < |w| < |T.l|,(
bvlcT.l, bvrc

)
if |T.l| ≤ |w| < |T |,

bvcT if |w| = |T |.

(6.3.28)

where in the second case, we recurse over T.l, recasting the input in VT.l,w and in the

third case we parse w = wlwr (with |wl| = |T.l|), v = (vl,vr) ∈ P × VT.r,wr . For

convenience, we also extend b·c to VT,w × Znq , passing through the Znq component to

the output without modification.

The “rounded” constraining functions PConstrainT,w,x : VT,w × KT,w → VT,wx ×

KT,wx are then defined simply as

PConstrainT,w,x(k) := bPConstrainT,w,x(k)c . (6.3.30)

6.3.4.1 Preliminaries

In this section, we give some more supporting definitions and claims that help us in

proving the properties about C that we want to, viz., pseudorandomness, consistency

and homomorphism.

The following fact follows easily from the definition of b·c in Equation (6.3.28).

Fact 6.3.9. For any w ∈ {0, 1}≤|T | and v ∈ VT,w, let d = bvc−v. Then the following

are true about d:

1. Every component of every P component (with associated tree T ′) d′ of d lies

in the interval {−eT ′ , . . . , 0} and

2. For any s, t ∈ Znq , (v, s)⊕ (d, t) = (bvc, s + t).

112

“Bad” predicates. To aid the proofs ahead, we define two predicates which help us

in characterising certain “bad” elements of VT,w. For every w ∈ {0, 1}≤|T |, BAD1
T,w,B

and BAD2
T,w,B, where B = BT ′ is a function from trees T ′ to positive integersZ+ (like

ΦT ′ or eT ′), are defined as follows.

1. For v ∈ VT,w, BAD1
T,w,B(v) is true if for some P-component v′ (of v) associated

with subtree T ′,

⌊
v′ + {−BT ′ , . . . , BT ′}n`

⌋
T ′
6= {bv′cT ′}.

In words, the predicate indicates that not all vectors in the neighborhood of v

round to the same value. We note that given v, it is efficient to test BAD1
T,w,B(v)

– the (complement of) test comprises simply checking if bv′i ± BT ′cT ′ = bv′icT ′

on each co-ordinate v′i of v′, for P components v′ with associated subtrees T ′.

2. For v ∈ VT,w, BAD2
T,w,B(v) is true if for some P-component v′ (of v) associated

with subtree T ′,

v′ + {−BT ′ , . . . , BT ′}n` 6∈ P .

In words, the predicate indicates that v is “too close” to the border of P .

The efficient test for (the complement of) BAD2
T,w,B(v) comprises checking if

−q/4 +BT ′ ≤ v′i < q/4−BT ′ on each co-ordinate v′i of v′, for P components v′

with associated subtrees T ′.

As with b·c, we extend the BAD predicates to accept inputs in VT,w×Znq , ignoring the

Znq component of the input. Note that BAD1
T,w,B(v) being false immediately implies

that BAD2
T,w,B(v) is false as well.

Bounding Errors and Characterizing Bad Predicates. We need to analyze

the accumulated error in fully constrained keys over arbitrary trees. For this purpose

we define a “growth factor” ΦT associated with an arbitrary full binary tree, defined

113

recursively as follows:

ΦT :=


1 if |T | = 1,√

(ΦT.l · n`)2 + (ΦT.r)2 otherwise.

(6.3.32)

Note that by inspection of Equations (6.3.32) and (6.3.23), for all subtrees T ′ we have

eT ′ ≥ r · ΦT ′ · λω(1) . (6.3.34)

We next prove a lemma that is essentially a restatement of Lemma 5.3.6.

Lemma 6.3.10 (Error Bound). Let T be a full binary tree and let w ∈ {0, 1}≤|T |.

Then if q ≥ 4r · ΦT · ω(
√

log λ), the following are true about Constrain′T,ε,w(0, (ey))

with 1 − negl(λ) probability over the choice of (ey) ← WT,0: (1) its Znq component

is zero, and (2) each P-component, with associated subtree T ′, is subgaussian with

parameter r · ΦT ′ . The same conclusions hold with overwhelming probability for the

output of Constrain′T,w,x(0,0, (ey)) for nonempty w, x ∈ {0, 1}∗ such that |wx| ≤ |T |.

Proof. To prove the first claim, we proceed by induction on |T |. Note that the claim

is trivially true in the case w = ε. In the base case, the output is Decode(ew). By

hypothesis on q, we have that ‖ew‖∞ ≤ q/4 and therefore ew ∈ P with overwhelming

probability. Note that ΦT > ΦT ′ for all subtrees T ′ of T and therefore the hypothesis

on q holds for all inductive cases. The case that |w| < |T.l| follows immediately by

the inductive hypothesis and definition of Constrain′T,ε,w.

If |T.l| ≤ |w|, then parse w = wlwr for |wl| = |T.l|. In this case we know by

hypothesis that Constrain′T.l,ε,wl(0, (ey)|y|≤|T.l|) has a P-component that is subgaussian

with parameter r · ΦT.l and a zero Znq component with overwhelming probability.

Conditioned on this happening, we recurse into the right subtree, where we know that

the output of Constrain′T.r,ε,wr(0, (ewly)|y|≤|T.r|) is of the correct form with overwhelming

probability by hypothesis. Now, if |w| < |T |, then we prepend the P-component

114

output of the computation over T.l to this output, obtaining the complete output in

the desired form.

On the other hand, if |w| = |T |, then Decode−1(Constrain′T.r,ε,wr(0, (ewly)|y|≤|T.r|))

is subgaussian with parameter r ·ΦT.r. By Lemma 2.1.1 on the spectral norm of binary

matrices, the definition of ΦT in terms of ΦT.l and ΦT.r and the Euclidean additivity

of subgaussians, we have that the Decode−1(·) of the final Constrain′T,ε,w output is

subgaussian with parameter r · ΦT . By assumption on q, this lies completely in P

with high probability, and therefore the decoded output is as desired. This completes

the proof of the first claim.

To prove the second claim, we firstly note by the first claim that with overwhelm-

ing probability, Constrain′T,ε,w(0, (ey)) = (d,0) for some d ∈ VT,w with subgaussian

components. We also know that the output of Constrain′T,ε,wx(0, (ey)) is also of similar

form. However, by consistency, we have that

Constrain′T,ε,wx(0, (ey)) = Constrain′T,w,x(Constrain
′
T,ε,w(0, (ey)|y|≤|w|), (ewy)|y|≤|T |−|w|)

= Constrain′T,w,x(d,0, (ewy)|y|≤|T |−|w|) .

Now, we know that with overwhelming probability, Constrain′T,w,x(d,0, (ey)) is sub-

gaussian in all P-components, and has zero Znq component, with a subgaussian input

d ∈ VT,w. It follows that if d were instead zero, the output would only fall in magni-

tude, remaining subgaussian.

We use the fact above to claim that the rounded versions of Constrain′ with errors

and PConstrain are the same, with a few caveats. This is used in the proof of pseu-

dorandomness.

Claim 6.3.11. Let w ∈ {0, 1}≤|T | be arbitrary, let RT ′ = r · ΦT ′ · ω(
√

log λ) and

let (s, (ey)) ← DT,ε, where r is the parameter of the discrete gaussian χ used to

define the distribution WT,0. If BAD1
T,w,RT ′

(Constrain′T,ε,w(s, (ey))) is false, then with

115

overwhelming (1− negl(λ)) probability, it is the case that

bConstrain′T,ε,w(s, (ey))c = PConstrainT,ε,w(s) .

Proof. Recall that by definition, PConstrainT,ε,w(s) = bConstrain′T,ε,w(s,0)c. We let

k = Constrain′T,ε,w(s, (ey)), f = Constrain′T,ε,w(s,0) and d = Constrain′T,ε,w(0, (ey)).

It follows by homomorphism of Constrain′ (Lemma 6.3.3) that k = f ⊕ d. By

Lemma 6.3.10, we have that the Znq component of d is zero, and every P-component

d′ (with associated subtree T ′) is subgaussian with parameter r · ΦT ′ , and thus

‖d′‖∞ ≤ RT ′ with an overwhelming probability. Since BAD1
T,w,RT ′

(k) is false, we

have that bk′ + {−RT ′ , . . . , RT ′}n`cT ′ = {bkc}T ′ for each P-component k′ (with as-

sociated tree T ′), and it follows that k′ + {−RT ′ , . . . , RT ′}n` ∈ P . The previous two

sentences imply that k = f + d, where the addition here happens over Z. Moreover,

since the Znq component of d is zero, we also have that the Znq components of k and

f are equal. It follows that bfc = bk− dc = bkc, and this proves the claim.

Claim 6.3.12. Let w ∈ {0, 1}≤|T | and let v← U(VT,w).

1. Let BT ′ be such that eT ′ ≥ BT ′ · λω(1) for every subtree T ′ of T . Then the

following holds.

Pr
[
BAD1

T,w,BT ′
(v)
]

= negl(λ) . (6.3.37)

2. Let BT ′ be such that q/4 ≥ BT ′ · λω(1) for every subtree T ′ of T . Then the

following holds.

Pr
[
BAD2

T,w,BT ′
(v)
]

= negl(λ) . (6.3.39)

Proof. We first prove the validity of Equation (6.3.37). By a simple counting argu-

ment, it is easy to see that if v ← U({−q/4, . . . , q/4 − 1}), then the following holds

for any T ′ that is a subtree of T .

Pr[bv ±BT ′cT ′ 6= bvcT ′] =
BT ′

eT ′
= negl(λ) , (6.3.41)

116

where the last equality comes from the fact that eT ′ ≥ BT ′ ·λω(1), by hypothesis. The

first result follows by simple union bounds over the individual P components of v

and the co-ordinates of each component, allied with Equation (6.3.41) above.

The validity of Equation (6.3.39) is proven in exactly the same way, except that

instead of Equation (6.3.41), we have the following equation.

Pr[v ±BT ′ 6∈ {−q/4, . . . , q/4− 1}] =
BT ′

q/4
= negl(λ) ,

where the last equality comes from the fact that q/4 ≥ BT ′ · λω(1), by hypothesis.

6.3.4.2 Pseudorandomness

We now show that the construction of the family C from Section 6.3.4 is a constrained

PRF, according to Definition 6.2.2. Here, we prove pseudorandomness of the function

as defined in Definition 6.2.2, and use the Security of the Constrain family of functions,

as defined in Section 6.3.2 above.

Theorem 6.3.13 (Pseudorandomness). The construction described in Section 6.3.4

is pseudorandom according to Definition 6.2.2 for the set of challenge nodes R =

{0, 1}≤|T | under the LWEn,q,χ assumption, where χ = DZ,r and q ≥ eT .

Proof. We proceed though a series of games, as detailed below.

Game H0. This is the “real” world game, as described in Definition 6.2.2. To recall,

the root of the underlying DAG is initialized with a key s ← DT,ε. The adversary

is allowed to (adaptively) query PConstrainT,ε,w such that no query is a prefix of any

other (this is equivalent to the corresponding nodes in the underlying DAG structure

having no common descendant).

Game H1. Here we (lazily) sample the key (s, (ey)) ← DT,ε to initialize the root

of the DAG. For any legal query node w, we compute (w, t) = Constrain′T,ε,w(s, (ey)),

117

and return b(w, t)c, if BAD1
T,w,RT ′

(w) is false, where RT ′ = r · ΦT ′ · ω(
√

log λ). We

abort and abandon the experiment if the predicate evaluates to true. In Claim 6.3.11,

we show that with 1 − negl(λ) probability over the choice of (ey) ← WT,0, as long

as BAD1
T,w,RT ′

is not satisfied, it is true that b(w, s)c = PConstrainT,ε,w(s). It follows

that for any (potentially unbounded) attacker A,

AdvH0,H1(A) ≤Pr[BAD1
T,w,RT ′

(w) is true in H1 with attacker A for some w]

+ negl(λ) . (6.3.43)

We do not directly bound the probability of BAD1
T,w,RT ′

happening in H1, instead

deferring analysis to a future game, where we prove that this is indeed negligible.

Game H2. This game works similarly to the previous one, except that we sample

t← U(Znq) and return bw, tc on all legal queries w, aborting instead if BAD1
T,w,RT ′

(w)

is true, where w is computed as before.

We notice that Games H1 and H2 are exactly the real and ideal games respectively

for the family C, except that the output corresponding to each query w is projected

on to the relevant VT,w×Znq domain, the bad event (and subsequent abort) is tested,

and then the appropriate rounding operation b·c is applied. Since C is pseudorandom

under the LWE assumption from the hypothesis by Theorem 6.3.6; and since the

operation b·c is efficient to apply, and the BAD1
T,w,RT ′

predicate is also efficient to

test, a trivial simulation shows us that for any computationally efficient attacker A,

AdvH1,H2(A) = negl(λ). For the same reasons, it also follows that for any efficient

attacker A

|Pr[Some BAD1
T,w,RT ′

(w) is true in H1]− Pr[Some BAD1
T,w,RT ′

(w) is true in H2]|

= negl(λ) . (6.3.44)

We now try to bound the quantity Pr[BAD1
T,w,RT ′

(w) is true in H2 with attacker A

for some query w]. By Equation (6.3.34), we can infer that eT ′ ≥ RT ′ · λω(1). In

118

H2, if w ← U(VT,w) is uniformly random, for any particular query w, we can use

Claim 6.3.12 to establish that BAD1
T,w,RT ′

(w) is true only with negligible probability.

We also know that if we fix the query w, then by Corollary 6.3.5 (which holds true

under the LWE assumption from the hypothesis), w is pseudorandom. Since A is effi-

cient, a straightforward hybrid simulation proves that Pr[BAD1
T,w,RT ′

(w) is true in H2

with attacker A for the fixed query w] = negl(λ). By a union bound over all the (poly-

nomial) queries ofA, we know that Pr[BAD1
T,w,RT ′

(w) is true in H2 with attackerA for

some query w] = negl(λ) and it follows by Equation (6.3.44) that Pr[BAD1
T,w,RT ′

(w)

is true in H1 with attacker A for some query w] = negl(λ). This, allied with Equa-

tion (6.3.43), establishes that for any efficient attacker A, AdvH0,H1(A) = negl(λ).

Game H3. In this game, for query w, we return (w, t), where w is computed as usual

(that is, according to PConstrainT,ε,w(s)), and t ← DT,w. This is the “ideal” world

game, as described in Definition 6.2.2. By Claim 6.3.11, we know that if BAD1
T,w,RT ′

is

not satisfied in H2, it is true that bConstrain′T,ε,w(s, (ey))c = PConstrainT,ε,w(s). Thus,

it follows that for any efficient attacker A,

AdvH2,H3(A) ≤ Pr[Some BAD1
T,w,RT ′

(w) is true in H2 with attacker A] = negl(λ) .

By the triangle inequality, we have for any efficient A, AdvH0,H3(A) = negl(λ).

This completes the proof.

6.3.4.3 Consistency and Homomorphism

We next show that the family C from Section 6.3.4 is consistent and homomorphic,

using the respective properties, along with the security, of the underlying C family of

functions.

Lemma 6.3.14 (Consistency). For any full binary tree T , public parameters A0,A1,

119

bit-strings w, x, z, where |wxz| ≤ |T |, and v ∈ VT,w, we have that with 1−negl(λ) prob-

ability over the choice of the keys s← DT,w,

PConstrainT,wx,z(PConstrainT,w,x(v, s)) = PConstrainT,w,xz(v, s) , (6.3.46)

under the LWEn,q,χ assumption, where χ = DZ,r and q ≥ eT .

Proof. Firstly, by Lemma 6.3.3 and the definition of PConstrain as Constrain′ with

zero errors, we can claim the following for any w, x ∈ {0, 1}∗ such that |wx| ≤ |T |,

v ∈ VT,w, s ∈ Znq and errors (ey) ∈ ET,|w|:

PConstrainT,w,x(v, s) = Constrain′T,w,x(v, s, (ey))⊕ Constrain′T,w,x(0,0, (−ey)) .

(6.3.48)

By expanding PConstrainT,w,x(·) = bPConstrainT,w,x(·)c (and similarly for other

bit-strings) by Equation (6.3.30), and using the consistency property of PConstrain

(see the discussion in Section 6.3.3.1), we can rewrite Equation (6.3.46) as follows

⌊
PConstrainT,wx,z

(
bPConstrainT,w,x(v, s)c

)⌋
?
=
⌊
PConstrainT,wx,z

(
PConstrainT,w,x(v, s)

)⌋
. (6.3.49)

Without loss of generality, we can assume that there is no “pass-through” in the

execution of PConstrainT,w,xz (and thus, also in Constrain′T,w,xz). This is because any

P components passed through will be untouched by the computations happening on

both the sides of Equation (6.3.46). By a similar inspection of Equation (6.3.49) and

the idempotence of the rounding operation b·cT ′ over P , we can also assume without

loss of generality that there is no pass-through in the execution of PConstrainT,w,x and

PConstrainT,wx,z (and their respective Constrain′ counterparts).

120

By applying the observation in Equation (6.3.48) to the left hand side of Equa-

tion (6.3.49), we get the following, for any (ey) ∈ ET,|w|:⌊
PConstrainT,wx,z

(
bPConstrainT,w,x(v, s)c

)⌋
=
⌊
Constrain′T,wx,z

(⌊
ConstrainT,w,x(v, s, (ey)⊕ ConstrainT,w,x(0,0, (−ey)))

⌋)⌋
=
⌊
Constrain′T,wx,z

(
ConstrainT,w,x(v, s, (ey))⊕ ConstrainT,w,x(0,0, (−ey))⊕ dwx

)⌋
=
⌊
Constrain′T,w,xz(v, s, (ey))⊕ Constrain′T,wx,z

(
ConstrainT,w,x(0,0, (−ey))⊕ dwx

)⌋
,

for some rounding offset dwx, where the second equation follows from Fact 6.3.9 and

the last follows by the consistency (Lemma 6.3.1) and homomorphism (Lemma 6.3.3)

of Constrain′. If (ey)←WT,|w|, by an application of Lemma 6.3.10, we know that every

P component (with associated subtree T ′) of ConstrainT,w,x(0,0, (−ey)) is subgaussian

with parameter r ·ΦT ′ and its Znq component is zero with all but negl(λ) probability.

Thus, we have that every P component of ConstrainT,w,x(0,0, (−ey))⊕dwx is at most

eT ′ + r · ΦT ′ · ω(
√

log λ) in magnitude in every co-ordinate, and its Znq component is

zero, with overwhelming probability. Since there are no pass-throughs, we have by the

definition of eT ′ in Equation (6.3.23) (in particular, the fact that eT ′ ≥ (eT ′.l · (n`) +

eT ′.r) · λω(1)) that every P component of Constrain′T,wx,z
(
ConstrainT,w,x(0,0, (−ey)) ⊕

dwx
)

is bounded in magnitude in every co-ordinate by some BT ′ such that eT ′ ≥

BT ′ · λω(1), and its Znq component is zero with overwhelming probability.

We can similarly apply the observation in Equation (6.3.48) to the right hand side

of Equation (6.3.49), and apply homomorphism of Constrain′ to obtain the following,

for any (ey) ∈ ET,|w|:⌊
PConstrainT,wx,z

(
PConstrainT,w,x(v, s)

)⌋
=
⌊
Constrain′T,w,xz(v, s, (ey))⊕ Constrain′T,w,xz(0,0, (−ey))

⌋
.

Again, if (ey) ← WT,|w|, by an application of Lemma 6.3.10, we have that every

P component (with associated subtree T ′) of ConstrainT,w,xz(0,0,−(ey)) is bounded

121

in magnitude by r ·ΦT ′ ·ω(
√

log λ) in every co-ordinate and its Znq component is zero

with overwhelming probability.

Based on what we have above, we get the following system of equations,

Pr
s←DT,w

[PConstrainT,wx,z(PConstrainT,w,x(v, s)) 6= PConstrainT,w,xz(v, s)]

= Pr
(s,(ey))

[⌊
Constrain′T,w,xz(v, s, (ey))⊕ Constrain′T,wx,z

(
ConstrainT,w,x(0,0, (−ey))⊕ dwx

)⌋

6=
⌊
Constrain′T,w,xz(v, s, (ey))⊕ Constrain′T,w,xz(0,0, (−ey))

⌋]
≤ Pr

(s,(ey))

[
BAD1

T,wxz,BT ′

(
Constrain′T,w,xz(v, s, (ey))

)]
+ negl(λ),

where the inequality follows from the fact that BAD1
T,wxz,BT ′

(Constrain′T,w,xz(v, s, (ey))

is false, then both the left and the right hand sides evaluate to bConstrain′T,w,xz(v, s, (ey))c

with overwhelming probability, since the Znq components of the additive terms are zero

and the P components are bounded in magnitude by BT ′ ≥ r ·ΦT ′ ·ω(
√

log λ) in every

co-ordinate with overwhelming probability.

Now, if we consider efficient adversaries, we can replace Constrain′T,w,xz(v, s, (ey))

with a uniformly chosen u ← U(VT,wxz × Znq), whilst incurring only a negligible

penalty, by Corollary 6.3.5 (which is true under the LWE assumption from the hy-

pothesis), remembering the fact that each of the P components in the output are

freshly generated without loss of generality and the fact that BAD1 is efficient to test.

Therefore, for all efficient adversaries, the above probability expression evaluates as

follows

Pr
(s,(ey))

[
BAD1

T,wxz,BT ′

(
Constrain′T,w,xz(v, s, (ey))

)]
≤ Pr

u

[
BAD1

T,wxz,BT ′
(u)
]
≤ negl(λ) ,

where the final inequality comes from the fact that eT ′ ≥ BT ′ ·λω(1) and Claim 6.3.12.

Before we prove the corresponding claim for homomorphism, we have to define an

addition operation in the domain VT,w × KT,w. Note that this cannot simply be ⊕,

122

because Decode(v1 + v2) for v1,v2 ∈ bPcT ′ (for some left subtree T ′) may return a

P element that is not in bPcT ′ anymore. To deal with this, we define ⊕ t, analogous

to ⊕t, which also takes in an auxiliary input t ∈ Znq , in addition to two VT,w ×KT,w

elements. As with ⊕, we suppress the t term if it is zero. ⊕ t is defined simply as

k1 ⊕ tk2 = bk1 ⊕t k2c .

Lemma 6.3.15 (Homomorphism). For any full binary tree T , parameters A0,A1,

strings w, x where |wx| ≤ |T | and auxiliaries v1,v2 ∈ VT,w, we have that with

1− negl(λ) probability over the choice of the (constrained) keys s1, s2 ← DT,w that

PConstrainT,w,x(v1, s1) ⊕ PConstrainT,w,x(v2, s2)

= PConstrainT,w,x((v1, s1) ⊕ (v2, s2)) + d , (6.3.51)

for some d ∈ VT,wx×Znq such that every co-ordinate of every P component belongs to

{−1, 0, 1} and the Znq component is zero, under the LWEn,q,χ assumption for χ = DZ,r

and q ≥ eT · λω(1).

To simplify exposition, we denote by OFFT,w := {−1, 0, 1}mw × {0}n, where mw

is the number of individual co-ordinates in a vector in VT,w. Clearly, d ∈ OFFT,wx.

Note that this potential offset of ±1 in each co-ordinate implies that this constrained

PRF family is only somewhat-homomorphic, similar to [18] and Chapter 5.

Proof of Lemma 6.3.15. As in the proof of Lemma 6.3.14, we can claim the following

to be true for any w, x ∈ {0, 1}∗ such that |wx| ≤ |T |, vector k ∈ RT,|w|, and error

(ey) ∈ ET,|w|:

PConstrainT,w,x(v, s) = Constrain′T,w,x(v, s, (ey))⊕ Constrain′T,w,x(0,0, (−ey)) .

(6.3.53)

Also, as in the previous proof, we can assume that there are no “pass-throughs” in the

execution of PConstrainT,w,x, because they will simply go through the PConstrainT,w,x

123

evaluations on both sides of Equation (6.3.51) and will be passed as arguments to

⊕ .

By expanding PConstrainT,w,x(·) = bPConstrainT,w,x(·)c by Equation (6.3.30) and

by Equation (6.3.53) above, we can expand the left hand side of Equation (6.3.51) as

follows:

PConstrainT,w,x(v1, s1) ⊕ PConstrainT,w,x(v2, s2)

=
⌊
Constrain′T,w,x(v1, s1, (ey)1)⊕ Constrain′T,w,x(0,0, (−ey)1)

⌋
⊕
⌊
Constrain′T,w,x(v2, s2, (ey)2)⊕ Constrain′T,w,x(0,0, (−ey)2)

⌋
=
(
Constrain′T,w,x(v1, s1, (ey)1)⊕ Constrain′T,w,x(0,0, (−ey)1)⊕ d1

)
⊕
(
Constrain′T,w,x(v2, s2, (ey)2)⊕ Constrain′T,w,x(0,0, (−ey)2)⊕ d2

)
=
⌊(
Constrain′T,w,x(v1, s1, (ey)1)⊕ Constrain′T,w,x(v2, s2, (ey)2)

)
⊕
(
Constrain′T,w,x(0,0, (−ey)1)⊕ Constrain′T,w,x(0,0, (−ey)2)

)
⊕ (d1 ⊕ d2)

⌋
=
⌊
Constrain′T,w,x

(
(v1, s1, (ey)1)⊕ (v2, s2, (ey)2)

)
⊕ Constrain′T,w,x

(
0,0, (−ey)1 + (−ey)2

)
⊕ (d1 ⊕ d2)

⌋
,

for any (ey)1, (ey)2 ∈ ET,|w| and some rounding offsets d1,d2, where the second equal-

ity follows from Fact 6.3.9, the third equality follows from the definition of ⊕ and

rearranging terms and the last by homomorphism of Constrain′ (Lemma 6.3.3). If

(ey)1, (ey)2 ← WT,|w|, we know by subgaussian additivity that (ey)1 + (ey)2 are sub-

gaussian with parameter
√

2r. By an application of Lemma 6.3.10, we know that every

P component (with associated subtree T ′) of ConstrainT,w,x(0,0, (−ey)1 + (−ey)2) is

subgaussian with parameter
√

2r · ΦT ′ (and therefore every co-ordinate is bounded

in magnitude by RT ′ =
√

2r · ΦT ′ · ω(
√

log λ)) and its Znq component is zero with all

but negl(λ) probability. We also have that every co-ordinate of every P component

of d1 ⊕ d2 is in {−2eT ′ , . . . , 0}, and its Znq component is also zero.

We similarly use the definitions of PConstrainT,w,x and ⊕ to expand the right

124

hand side of Equation (6.3.51) as follows:

PConstrainT,w,x
(
(v1, s1) ⊕ (v2, s2)

)
=
⌊
PConstrainT,w,x

(⌊
(v1, s1)⊕ (v2, s2)

⌋)⌋
=
⌊
PConstrainT,w,x

(
(v1, s1)⊕ (v2, s2)⊕ d12

)⌋
=
⌊
PConstrainT,w,x(v1, s1)⊕ PConstrainT,w,x(v2, s2)⊕ PConstrainT,w,x(d12)

⌋
=
⌊(
Constrain′T,w,x(v1, s1, (ey)1)⊕ Constrain′T,w,x(0,0, (−ey)1)

)
⊕
(
Constrain′T,w,x(v2, s2, (ey)2)⊕ Constrain′T,w,x(0,0, (−ey)2)

)
⊕ PConstrainT,w,x(d12)

⌋
=
⌊(
Constrain′T,w,x(v1, s1, (ey)1)⊕ Constrain′T,w,x(v2, s2, (ey)2)

)
⊕
(
Constrain′T,w,x(0,0, (−ey)1)⊕ Constrain′T,w,x(0,0, (−ey)2)

)
⊕ PConstrainT,w,x(d12)

⌋
=
⌊
Constrain′T,w,x

(
(v1, s1, (ey)1)⊕ (v2, s2, (ey)2)

)
⊕ Constrain′T,w,x

(
0,0, (−ey)1 + (−ey)2

)
⊕ PConstrainT,w,x(d12)

⌋
,

for any (ey)1, (ey)2 ∈ ET,|w| and some rounding offset d12, where the second equality

follows from Fact 6.3.9, the third and the last equalities follows from the homo-

morphism of PConstrainT,w,x (Lemma 6.3.3), the fourth equality follows from Equa-

tion (6.3.53) above and the fifth follows by rearranging terms. As before, if (ey)1, (ey)2 ←

WT,|w|, we know that every P component of ConstrainT,w,x(0,0, (−ey)1+(−ey)2), with

associated subtree T ′, is subgaussian with parameter
√

2r · ΦT ′ and its Znq compo-

nent is zero with all but negl(λ) probability. Also, since there are no pass-throughs,

we have by the definition of eT ′ in Equation (6.3.23) (in particular, the fact that

eT ′ ≥ (eT ′.l · (n`) + eT ′.r) · λω(1)) that every P component of PConstrainT,wx,z(d12)) is

bounded in magnitude by some CT ′ in every co-ordinate such that eT ′ ≥ CT ′ · λω(1),

and its Znq component is zero. It follows from these facts that every P component of

Constrain′T,w,x(0,0, (−ey)1 + (−ey)2)⊕PConstrainT,w,x(d12)) is bounded in magnitude

125

in every co-ordinate by BT ′ :=
√

2r·ΦT ′ ·ω(
√

log λ)+CT ′ . Lastly, by Equation (6.3.34),

we know that eT ′ ≥ BT ′ · λω(1).

Based on what we have above, we get the following system of equations,

Pr
s1,s2←DT,w

[PConstrainT,w,x(v1, s1) ⊕ PConstrainT,w,x(v2, s2)

− PConstrainT,w,x((v1, s1) ⊕ (v2, s2)) /∈ OFFT,wx]

= Pr
(s1,(ey)1),(s2,(ey)2)

[⌊
Constrain′T,w,x

(
(v1, s1, (ey)1)⊕ (v2, s2, (ey)2)

)
⊕ Constrain′T,w,x

(
0,0, (−ey)1 + (−ey)2

)
⊕ (d1 ⊕ d2)

⌋
−
⌊
Constrain′T,w,x

(
(v1, s1, (ey)1)⊕ (v2, s2, (ey)2)

)
⊕ Constrain′T,w,x

(
0,0, (−ey)1 + (−ey)2

)
⊕ PConstrainT,w,x(d12)

⌋
/∈ OFFT,wx

]

≤ Pr
(s1,(ey)1),(s2,(ey)2)

[
BAD1

T,wx,BT ′

(
Constrain′T,w,x

(
(v1, s1, (ey)1)⊕ (v2, s2, (ey)2)

))]
+ Pr

(s1,(ey)1),(s2,(ey)2)

[
BAD1

T,wx,BT ′

(
Constrain′T,w,x

(
(v1, s1, (ey)1)⊕ (v2, s2, (ey)2)

))]

+ negl(λ),

where the inequality above comes from the fact that if the BAD1
T,wx,BT ′

predicate is

false for the value Constrain′T,w,x((v1, s1, (ey)1)⊕ (v2, s2, (ey)2)), then the right hand

side of Equation (6.3.51) evaluates to
⌊
Constrain′T,w,x

(
(v1, s1, (ey)1)⊕ (v2, s2, (ey)2)

)⌋
with overwhelming probability, since the Znq components of the additive terms are

zero and the P components are bounded in magnitude by BT ′ in every co-ordinate

with overwhelming probability. If in addition the BAD2
T,wx,RT ′+2eT ′

predicate on the

same value is also false then we know that adding the extra terms does not push

the P components of the main Constrain′ term on the left hand side outside P , and

therefore produces no “carry” terms in the addition. Also, since BT ′ > RT ′ , we have

that the only terms that could alter the rounding in the left hand side are the offset

126

d1,d2 terms, which combined, could only produce an offset of ±1 in the rounding in

the auxiliary part. Since the Znq components of all additive terms are zero, and since

there are no carry terms with high probability, we have that there is no difference in

the Znq components of the output, as needed.

Now, if we consider efficient adversaries, we can replace Constrain′T,w,x(vb, sb, (ey)b)

(for b ∈ {1, 2}) with a uniformly chosen ub ← U(VT,wx × Znq), whilst incurring only a

negligible penalty, by Corollary 6.3.5, remembering the fact that each of the P com-

ponents in the output are freshly generated without loss of generality and the fact

that BAD1 and BAD2 are efficient to test. Lastly, note that u = u1 ⊕ u2 is also

uniform. Therefore, for all efficient adversaries, we have the following

Pr
(s1,(ey)1),(s2,(ey)2)

[
BAD1

T,wx,BT ′

(
Constrain′T,w,x((v1, s1, (ey)1)⊕ (v2, s2, (ey)2))

)]
≤ Pr

u
[BAD1

T,wx,BT ′
(u)] ≤ negl(λ),

Pr
(s1,(ey)1),(s2,(ey)2)

[
BAD2

T,wx,RT ′+2eT ′

(
Constrain′T,w,x((v1, s1, (ey)1)⊕ (v2, s2, (ey)2))

)]
≤ Pr

u
[BAD2

T,wx,RT ′+2eT ′
(u)] ≤ negl(λ),

which follow from the facts that eT ′ ≥ BT ′ · λω(1), q ≥ eT ′ · λω(1) (and thus q is also

superpolynomially bigger than RT ′ + 2eT ′ < 3eT ′) and Claim 6.3.12.

127

CHAPTER VII

FAST PSEUDORANDOM FUNCTIONS IN PRACTICE

7.1 Overview

In this chapter, we give two new, optimized instantiations of the ring variant of the

direct PRF construction, Construction 4.2.1 from Chapter 4, for parameters that offer

high levels of concrete security against known classes of attacks, and provide very

high-performance software implementations. We call this class of PRF candidates

SPRING, which is short for “subset-product with rounding over a ring.” We recall

that these constructions are over some quotient ring Rp. We often identify r ∈ Rp

with the vector r ∈ Znp of its n coefficients in some canonical order. Let R∗p denote

the multiplicative group of units (invertible elements) in Rp. In all our instantiations

in this chapter, we let n be a power of 2.

For a positive integer k, the SPRING family is the set of functions Fa,~s : {0, 1}k →

{0, 1}m indexed by a unit a ∈ R∗p and a vector ~s = (s1, . . . , sk) ∈ (R∗p)
k of units. The

function is defined as the “rounded subset-product”

Fa,~s(x1, . . . , xk) := S

(
a ·

k∏
i=1

sxii

)
,

where S : Rp → {0, 1}m for some m ≤ n is an appropriate “rounding” function. For

example, we use the rounding function b·e2 : Rp → R2 ≡ Zn2 that maps each of its

input’s n coefficients to Z2 = {0, 1}, depending on whether the coefficient is closer

modulo p to 0 or to p/2. (Formally, each coefficient b ∈ Zp is mapped to b2
p
· be ∈ Z2.)

We stress that the known proof of security (under ring-LWE) requires the mod-

ulus p to be very large, i.e., exponential in the input length k. Yet, as discussed

in Section 4.3, the large modulus appears to be an artifact of the proof technique,

128

and the family appears not to require such large parameters for concrete security.

Indeed, based on the state of the art in attacks on “noisy learning” problems like

(ring-)LWE, it is reasonable to conjecture that the SPRING functions can be secure

for rather small moduli p and appropriate rounding functions (see Section 7.4 for

further details).

Because we aim to design practical functions, we instantiate the SPRING family

with relatively small moduli p, rather than the large ones required by the theoretical

security reductions from Section 4.2.3. This allows us to follow the same basic con-

struction paradigm, while taking advantage of the fast integer arithmetic operations

supported by modern processors. We instantiate the parameters as various (but not

all) combinations of

n = 128, p ∈ {257, 514}, k ∈ {64, 128},

which (as explained below in Section 7.1.1) yields attractive performance, and allows

for a comfortable margin of security. The choice of modulus p ∈ {257, 514} is akin to

the one made in SWIFFT, for a practical instantiation of a theoretically sound lattice-

based collision-resistant hash function [61]. Also as in SWIFFT, our implementations

build on Fast Fourier Transform-like algorithms modulo q = 257.

Working with small moduli p requires adjusting the rounding function S(·) in

the SPRING construction so that its output on a uniformly random element of R∗p

does not have any noticeable bias (which otherwise would clearly render the func-

tion insecure as a PRF). We use rounding functions of the form S(b) = G(bbe2),

where b·e2 : Rp → R2 is the usual coefficient-wise rounding function that provides

(conjectured) indistinguishability from a potentially biased random function, and

G : R2 → {0, 1}m for some m ≤ n is an appropriate post-processing function that

reduces or removes the bias. (In the theoretically secure constructions from the pre-

vious sections, G is effectively the identity function, because a huge modulus p ensures

no noticeable bias in the rounded output.)

129

For each value of the modulus p ∈ {257, 514} we have a different concrete instan-

tiation, which we respectively call SPRING-BCH and SPRING-CRT. These instan-

tiations differ mainly in the computation of the subset-products in R∗p, and in the

definition of the bias-reducing function G.

SPRING-BCH. In this instantiation, we use an odd modulus p = q = 257, which

admits very fast subset-product computations in R∗q using Fast Fourier Transform-

type techniques (as mentioned above). However, because p is odd, the usual rounding

function b·e2 : Rp → R2 has bias 1/q on each of the output coefficients (bits). To re-

duce this bias, the function G multiplies the 128-dimensional, 1/q-biased bit vector

by the 64 × 128 generator matrix of a binary (extended) BCH error-correcting code

with parameters [n,m, d] = [128, 64, 22], yielding a syndrome with respect to the dual

code. This simple and very fast “deterministic extraction” procedure (proposed in [4])

reduces the bias exponentially in the distance d = 22 of the code, and yields a 64-

dimensional vector that is 2−145-far from uniform when applied to a 128-dimensional

bit vector of independent 1/q-biased bits. However, this comes at the cost of out-

putting m = 64 bits instead of n = 128, as determined by the rate m/n of the

code.

SPRING-CRT. In this instantiation, we use an even modulus p = 2q = 514, and

decompose the subset-product computation over R∗2q into its “Chinese remainder”

components R∗2 and R∗q . For the R∗q component we use the same evaluation strategy

as in SPRING-BCH, but for fast subset-products in the R∗2 component we need new

techniques. We prove that the multiplicative group R∗2 decomposes into n/2 small

cyclic groups, having power-of-two orders at most n. We also give explicit “sparse”

generators for these cyclic components, and devise fast algorithms for converting

between the “cyclic” representation (as a vector of exponents with respect to the

generators) and the standard polynomial one. These tools allow us to transform a

130

subset-product in R∗2 into a subset-sum of vectors of (small) exponents with respect to

the generators, followed by one fast conversion from the resulting vector of exponents

to the polynomial it represents.

For rounding R∗2q, we show that standard rounding of a uniformly random element

of R∗2q to R2 directly yields n − 1 independent and unbiased bits, so our function G

simply outputs these bits. The main advantage over SPRING-BCH is the larger out-

put size (almost twice as many bits), and hence larger throughput, and in the simpler

and tighter analysis of the bias. On the other hand, we also show that the CRT

decomposition of R∗2q can be exploited somewhat in attacks, by effectively canceling

out the R∗2 component and recognizing the bias of the rounded R∗q component. For-

tunately, for our parameters the best attacks of this type appear to take almost 2128

bit operations, and around 2119 space.

7.1.1 Implementations and Performance

We implement the two variants of SPRING described above, both for standalone

evaluations on single inputs, and in a counter-like (CTR) mode that is able to amortize

much of the work across consecutive evaluations. For the counter itself we use the

Gray code, which is a simple way of ordering the strings in {0, 1}k so that successive

strings differ in only one position. Then when running SPRING in counter mode,

each successive subset-product can be computed from the previous one with just one

more multiplication by either a seed element or its inverse. More precisely, we store

the currently computed subset-product b := a
∏n

i=1 s
xi
i . (The Gray code starts with

0k, so the initial subset-product is simply a.) If the next input x′ flips the ith bit of

x, then we update the old subset-product to b′ = b · si if xi = 0, otherwise b′ = b · s−1
i .

For the SPRING-CRT instantiation, which works in R∗2q
∼= R∗2 × R∗q , we use two

methods for computing (subset-)products in the R∗2 component. The first uses the

cyclic decomposition of R∗2 as described above, and is the fastest method we have

131

found for computing a standalone subset-product “from scratch.” The other method

uses the native “carryless polynomial multiplication” (PCLMUL) instruction available

in recent Intel processors, and/or precomputed tables, for single multiplications in the

Gray code counter mode.

We benchmarked our implementations on a range of CPUs with several differ-

ent microarchitectures. As a point of reference, we use the highly optimized AES

benchmarks from eBACS [31], and the bitsliced implementation for Käsper and

Schwabe [47]. We note that our implementations are in C (using compiler instrin-

sics for SIMD instructions); an optimized assembly implementation could probably

run faster. We report our performances measures in Table 3, using high-end desktop

processors (Core i7), and small embedded CPUs found in tablets and smart-phones

(Atom and ARM Cortex). Even though the architectures of those machine are quite

different, our results are very consistent: in counter mode, SPRING-BCH is between 8

and 10 times slower than AES (as measured by output throughput), while SPRING-

CRT is about 4.5 times slower than AES (disregarding AES implementation with

AES-NI when they are available). We expect similar results on other CPUs with

similar SIMD engines. Finally, we mention that the very latest Intel CPUs (Haswell

microarchitecture) include a new 256-bit wide SIMD engine with support for integer

operations (AVX2). We expect that an AVX2 implementation of SPRING would run

about twice as fast on those processors, yielding very compelling performance.

7.2 SPRING-BCH

Here we describe our first instantiation, SPRING-BCH, which works over R∗q for a

suitable prime q, and uses a BCH code for reducing the bias of the rounded subset-

product.

132

Table 3: Implementation results for SPRING-BCH and SPRING-CRT with n = 128,
in both standalone (SA) and Gray code counter mode (CTR). Speeds are presented
in processor cycles per output byte, and are compared with the best known AES
implementations.

SPRING-BCH SPRING-CRT AES-CTR

SA CTR SA CTR w/o AES-NI w/AES-NI

ARM Cortex A15 220 170 250 77 17.8 N/A
Atom 247 137 235 76 17 N/A

Core i7 Nehalem 74 60 76 29.5 6.9 N/A
Core i7 Ivy Bridge 60 46 62 23.5 5.4 1.3

7.2.1 Fast Subset Product in Rq

Efficient operations in the ring Rq were given in prior work by Lyubashevsky et al. [61]

(following [68, 82, 60]). They give a Chinese Remainder decomposition of this ring as

Rq
∼= Znq , for prime q = 1 (mod 2n), and gave fast FFT-like algorithms for converting

between (the standard polynomial representation of) Rq and Znq . In particular, the

multiplicative group of units R∗q is isomorphic to (Z∗q)n. Since Z∗q is cyclic and of

order q− 1, a subset-product in Rq reduces to a subset-sum of n-dimensional vectors

of exponents modulo q − 1 (with respect to some generator of Z∗q). Once the final

vector of exponents have been computed, the corresponding element in Znq can be

computed by table lookups, and finally converted to its polynomial representation

via the FFT-like algorithm from [61].

7.2.2 Rounding via BCH Code

Since q is odd, the usual rounding function b·e2 : Rq → R2, when applied to a random

input in Rq, outputs a ring element in R2 whose (bit) coefficients are independent

and have bias 1/q. In this subsection we define a function G : R2 → {0, 1}m that

dramatically reduces this bias using a BCH code.

Definition 7.2.1 ([73]). The bias of a distribution X ∈ {0, 1}m with respect to

133

I ⊆ [m] is defined as

biasI(X) =
∣∣∣Pr
[⊕
i∈I

xi = 0
]
− Pr

[⊕
i∈I

xi = 1
]∣∣∣.

Let max-bias(X) denote the maximal bias of X over all nonempty I ⊆ [m].

Theorem 7.2.2 ([73]). Let X ∈ {0, 1}m be a random variable. Then

2 ·∆(X,Um) ≤
√

2m ·max-bias(X)

where ∆(X,Um) denotes the statistical difference of X from the uniform distribution

on m bits.

Proposition 7.2.3 ([4]). Let G be a generator matrix of a binary linear code with

parameters [n,m, d], and let D ∈ {0, 1}n be a distribution of independent bits such

that bias{i}(D) ≤ ε for every i ∈ [n]. Then max-bias(G ·D) ≤ εd.

From the above we get that when applied to a random input b ∈ Rq, the statistical

distance of the distribution S(b) from uniform is at most (1/q)d
√

2m/2. Note that in

SPRING-BCH, we are actually applying G to bbe2 for a random unit b ∈ R∗q , in which

case the coefficients of bbe2 are not quite independent. Since we are anyway only

heuristically modeling the subset-products as uniformly random and independent,

we believe that it is safe to heuristically assume that G provides low bias in our

instantiation.

In terms of implementation, generator matrices of BCH codes over GF (2) are

preferable, since the rows of the matrix are cyclic shifts of a single row, which facili-

tates fast implementation. We note that n is a power of 2, and any BCH code over

GF (2) is of length 2t− 1 for some integer t. To make the matrix compatible with an

n that is a power of two, we use the extended-BCH code, which is obtained in a stan-

dard way by appending a parity bit to the codewords, and increases the code distance

d by one. We finally note that for our chosen parameters n = 128,m = 64, the BCH

134

code with parameters [127, 64, 21] and its extension with parameters [128, 64, 22] have

the largest known minimum distance for these specific rates.

7.3 SPRING-CRT

We now describe our second instantiation, called SPRING-CRT, which uses unbiased

rounding on an even modulus of the form p = 2q, where q is an odd prime as in the

instantiation from the previous section.

By the Chinese Remainder Theorem, the natural ring homomorphism R2q →

R2 × Rq is a ring isomorphism, and moreover, there is an explicit map which lets us

convert back and forth between the two representations. Specifically, it is easy to

verify that the pair (b2, bq) ∈ R2 ×Rq corresponds to

b = q · b2 + (q + 1) · bq (mod 2q) (7.3.2)

for arbitrary b2, bq ∈ R2q such that b2 = b2 (mod 2) and bq = bq (mod q). The CRT

isomorphism also induces a group isomorphism between R∗2q and R∗2 × R∗q , and thus

lets us represent the seed elements and their subset-products as pairs in R∗2×R∗q . We

compute products in the R∗q component as detailed in Section 7.2.1 above. In the

following subsections, we define an unbiased rounding function from R∗2q to R2, and

give fast algorithms for computing products in the R∗2 component.

7.3.1 Unbiased Rounding of R∗2q

We start by describing how the rounding function from R2q to R2 can be computed

directly from the Chinese remainder components (b2, bq) ∈ R2 × Rq of a given b ∈

R2q. As above, let bq, b2 ∈ R2q denote arbitrary mod-2q representatives of b2, bq. By

Equation (7.3.2) and the definition of the rounding function b·e : R2q → R2,

bbe2 =
⌊
q(bq + b2) + bq

⌉
2

=
⌊
(bq + b2) + bq/q

⌉
.

135

If we choose the coefficients of bq from [−q/2, q/2) ∩ Z, then each coefficient of bq/q

is in the interval [−1/2, 1/2), so

bbe2 = bq + b2 mod 2. (7.3.4)

Equivalently, the coefficient vector of bbe2 is the exclusive-or of the coefficient vector

of b2 and the least-significant bits of the coefficients of bq.

In SPRING-CRT, we need an unbiased rounding function S from the unit group

R∗2q
∼= R∗2×R∗q to R2. An element of R2, viewed as a polynomial, is a unit if and only if

the sum of its coefficients is odd. So for a uniformly random element of R∗2, any fixed

choice of n−1 coefficients (e.g., all but the constant term) are uniformly random and

independent, and the remaining one is determined. Because of Equation (7.3.4) above,

any fixed choice of n−1 coefficients of b2 are uniformly random and independent, over

the random choice of b2 ∈ R∗2 alone. Therefore, we define our generalized rounding

function on b ∈ R∗2q to output a fixed n − 1 bits of bbe2 ∈ R2, which is perfectly

unbiased.

Note that the above argument depends only on the random choice of the R∗2

component, and doesn’t use any of the randomness in the R∗q component. Using

such an argument, n− 1 independent and unbiased bits is the most we can possibly

obtain. Since the number of units in R∗2q is exactly (q − 1)n · 2n−1, which is divisible

by 2n, it seems plausible that there could exist a rounding function that outputs n

(nearly) unbiased bits given a random unit in R∗2q, but so far we have not been able

to find such a function. The main difficulty seems to be that the coefficients of the

representative bq are noticeably biased modulo 2.

7.3.2 Fast Arithmetic in R∗2

We now give an algebraic decomposition of the group R∗2, and present fast algorithms

for performing subset-products and associated arithmetic operations.

The following theorem says that the unit group R∗2 decomposes into the product

136

of several small cyclic components, having power-of-2 orders at most n. The full proof

of this theorem appears in Section 7.7.

Theorem 7.3.1 (Combining Lemmas 7.7.4 and 7.7.5). Define g0,0 = 1+(1+x)

and gi,k = 1 + (1 + x)2i+k for 1 ≤ i < lg(n) and odd k ∈ {1, . . . , 2i}. Then

R∗2
∼= C

n/4
2 × Cn/8

4 × . . .× C1
n/2 × C1

n =

lg(n)−1∏
i=1

C2j−i−1

2i × Cn,

with each gi,k being a generator of one of the Cn/2i cyclic components.

There are several ways of representing elements in R∗2, which each allow for certain

arithmetic operations to be performed more or less efficiently. We use the following

three representations, the first of which is very good for fast multiplication, and the

last of which is used for rounding. (As we shall see, the middle one is a convenient

intermediate representation.)

1. Using the cyclic decomposition given in Theorem 7.3.1, we can represent an

element by its tuple of integer exponents with respect to the generators gi,k.

We call this the exponent representation.

2. We can represent elements in R2 by their vectors of Z2-coefficients with respect

to what we call the radix basis {(1 + x)i}0≤i<n. (An element is in R∗2 if and

only if its coefficient for the basis element (1 + x)0 = 1 is 1.) The name of this

basis arises from the fact that (1 +x)n = 1 +xn = 0 (mod 2), and therefore the

coefficients can be thought of as digits in the “radix” 1 + x.

3. Finally, elements in R2 can be represented by their vectors of Z2-coefficients

with respect to the power basis {xi}0≤i<n, i.e., in the usual way as polynomials

in x.

We now give algorithms for efficiently converting from the exponent representation

to the power representation, using the radix representation as an intermediary.

137

From exponents to radix basis. We first make a few useful observations about

the radix basis, and how powers of the generators gi,k look in this basis.

1. In the radix basis, multiplication by an element of the form (1+x)j corresponds

to shifting the input’s coefficient vector j places (and discarding the “top” j

coefficients), since (1 + x)n = 0 in R2. Therefore, multiplication by 1 + (1 + x)j

corresponds to taking the exclusive-or of the input’s coefficient vector with that

vector shifted by j positions.

2. For any j and `, we have that (1 + (1 + x)j)2` = 1 + (1 + x)j·2
` ∈ R∗2, since the

intermediate binomial coefficients
(

2`

i

)
for 0 < i < 2` are all even.

3. Raising any generator gi,k to half its order yields g
n/2i+1

i,k = 1 + (1 + x)j, where

j = n/2 + (n/2i+1)k. Moreover, the product of any two elements of this type,

for n/2 ≤ j1, j2 < n, is

(1 + (1 + x)j1)(1 + (1 + x)j2) = 1 + (1 + x)j1 + (1 + x)j2 .

Thus, a subset-product of elements of this type can be computed as
∏

j∈I(1 +

(1 + x)j) = 1 +
∑

j∈I(1 + x)j, for any I ⊆ {n/2, . . . , n− 1}.

Now let the exponent representation of some b ∈ R∗2 be {ei,k}, where each ei,k

denotes the exponent of the generator gi,k. Write ei,k =
∑lg(n)−i−1

`=0 ei,k,` · 2`, i.e., each

ei,k,` is the `th bit of ei,k, and observe that

g
ei,k
i,k =

lg(n)−i−1∏
`=0

(
g2`

i,k

)ei,k,`
, (7.3.7)

where we know by Item 2 above that g2`

i,k = 1 + (1 + x)(2i+k)·2` .

We can now describe the algorithm that converts from exponent to radix repre-

sentation. We effectively decompose the given powers ei,k of gi,k according to Equa-

tion (7.3.7), which we can then compute by Items 1 and 2 above. We note that Item 3

lets us handle all the most significant bits of all the exponents very quickly in one

138

shot. (This yields a practical but not asymptotic improvement over handling these

bits more naively.) The precise details are given in Algorithm 3 below.

Algorithm 3 Algorithm to convert from exponent to radix representation

1: Input: Exponents ei,k ∈ [0, n/2i) for positive odd k < 2i when 0 < i < lg(n),
and k = 0 when i = 0. . Let ei,k,` denote the `th bit of ei,k.

2: Output: A bit vector b ∈ Zn2 representing the coefficients of b in the radix
basis.

3: b← (1, 0, . . . , 0) . Initialize the vector b to represent 1 ∈ R∗2
4: for every valid (i, k) pair do
5: if ei,k,lg(n)−i−1 = 1 then
6: b[n/2 + k · n/2i+1]← 1
7: end if
8: end for
9: for every valid (i, k) pair do

10: for ` = (lg(n)− 2)− i down to 0 do
11: if ei,k,` = 1 then
12: b← b⊕ (b� ((2i + k) · 2`)) . The shift-and-XOR operation.
13: end if
14: end for
15: end for

If the length of the coefficient vector is considered to be the word-size, then apart

from the most significant bits of the exponents (which are handled in one word opera-

tion in total), the other bits are handled in one shift-and-XOR operation each, which

is a constant number of word operations each. Since the exponents take n− 1 bits in

total, the algorithm performs a total of O(n) word operations. (Since each word is n

bits long, the bit complexity of Algorithm 3 is O(n2).)

From radix basis to power basis. For the second step, we have a bit vector

b ∈ Zn2 representing some b ∈ R2 with respect to the radix basis, and wish to convert

139

to the power basis. We express b as follows:

b =
n−1∑
i=0

bi(1 + x)i =

n/2−1∑
i=0

bi(1 + x)i + (1 + x)n/2
n/2−1∑
i=0

bi+n/2(1 + x)i

=

n/2−1∑
i=0

bi(1 + x)i + (1 + xn/2)

n/2−1∑
i=0

bi+n/2(1 + x)i (7.3.8)

=

(
n/2−1∑
i=0

(bi + bi+n/2)(1 + x)i

)
+ xn/2

n/2−1∑
i=0

bi+n/2(1 + x)i (mod 2),

where (7.3.8) follows from the fact that (1 + x)2j = 1 + x2j (mod 2) (since
(

2j

i

)
is

even for every 0 < i < 2j), and n is a power of 2. Converting the n-bit vector b

therefore reduces to two conversions of n/2-bit vectors, namely, the top half of b and

the exclusive-or of the top and bottom halves of b. This directly yields a simple

divide-and-conquer algorithm to transform the coefficient vector b in place, which

is detailed in Algorithm 4 below. The number of bit operations follows the simple

recursive equation T (n) = 2T (n/2) + n/2, which solves to T (n) = O(n log n).

Algorithm 4 Algorithm to transform from radix basis to power basis of R2

1: procedure Radix-to-Power(b, f, `)
Require: array b, index f and length ` . The initial call is made with f = 0 and

` = n
Ensure: subvector b[f, f + `− 1] converted to power basis

2: if ` > 1 then
3: for i = 0 to `/2− 1 do
4: b[f + i]← b[f + i]⊕ b[f + `/2 + i]
5: end for
6: Radix-to-Power(b, f, `/2)
7: Radix-to-Power(b, f + `/2, `/2)
8: end if
9: end procedure

7.4 Security Analysis

In this section we analyze the security of our construction against known classes of

attacks, and introduce new attacks specific to the structure of R2q.

140

7.4.1 Overview of Known Attacks

The concrete security of the SPRING PRF for practical parameters is not well under-

stood, but to date there are no known attacks that nontrivially exploit the internal

subset-product structure. As discussed earlier, the SPRING construction follows the

paradigm from Chapter 4 which results in a PRF that is secure against all efficient

adversaries, assuming the hardness of the (ring-)LWE problem (appropriately param-

eterized). Informally, the ring-LWE problem asks the adversary to distinguish many

pairs (ai, bi) ∈ Rp × Rp, where each ai is chosen uniformly and bi ≈ ai · s is its noisy

product with a secret ring element s, from uniformly random pairs. The security

reductions make two assumptions that do not hold in our instantiations: (1) the pa-

rameter p is exponential in the input length k of the PRF, and (2) the seed elements

si are all “small” ring elements in R; more precisely, they are drawn from the error

distribution from the underlying ring-LWE assumption. However, as we shall see in

what follows, relaxing these requirements do not appear to introduce any concrete

attacks against the function family.

For the sake of modeling certain attacks against SPRING, we can think of it as a

LWE-type learning problem. The difference here is that all ring elements output by

SPRING have rounding errors in them, whereas ring-LWE releases the multiplicand a

without any error. In this respect, attacking SPRING seems potentially harder than

attacking ring-LWE.

The main classes of attacks against noisy learning problems akin to LWE are:

(1) brute-force attacks on the secret, (2) combinatorial-type attacks following [15,

95, 71], (3) lattice reduction attacks, and (4) algebraic attacks following [7]. We

consider each of these in turn. We note that the lattice and algebraic attack strategies

described below apply to (ring-)LWE with our parameters. It is not clear whether

these attacks will adapt to SPRING, where multiplicands are not known exactly,

but to be conservative we assume that they might. While most of these attacks

141

take a prohibitively large amount of time and/or space (more than 2200), one kind of

birthday-type attack technique performs reasonably well against SPRING-CRT. Even

in this case, its running time is nearly 2128 bit operations and its space requirements

are about 2119, when n = 128.

Brute-force and combinatorial attacks. A brute-force attack involves searching

for a secret si ∈ R∗p, or for the round-off terms in enough samples to uniquely deter-

mine an si. The secret and round-off terms come from sets of size at least (p/2)n,

which is prohibitively large for all our parameters. Combinatorial (or “generalized

birthday”) attacks on noisy learning problems [15, 95] work by drawing an huge num-

ber of samples and finding (via birthday collisions) small combinations that sum to

lie in a small enough subgroup, then testing whether the noise can be detected. This

works for small error rates because the small combinations still retain small error

terms. In the case of SPRING-CRT, this style of attack looks the most promising,

and a concrete attack in this vein is developed further in Section 7.4.2.

Lattice attacks. Lattice attacks on (ring-)LWE typically work by casting it as

a bounded-distance decoding (BDD) problem on a certain class of random lattices

(see for instance [71, 55, 57, 92]). At a high level, the attack draws a sufficiently

large number L of samples (ai, bi) ∈ Rp ×Rp, so that the secret (in the LWE case) is

uniquely determined with good probability. With error rate 1/2, we need L ≥ lg(p/2)

by a simple information-theoretic argument. The attack collects the samples into

vectors ~a,~b ∈ RL
p , and considers the “p-ary” lattice L of dimension N = nL (over Z)

corresponding to the set of vectors s · ~a ∈ RL
p for all s ∈ Rp. It then attempts to

determine whether ~b is sufficiently close to L, which corresponds to whether (ai, bi)

are LWE samples or uniform. In our setting, because the error rate 1/2 is so large, the

distance from ~b to L (in the LWE case) is nearly the minimum distance of the lattice,

up to a constant factor no larger than four (this is a conservative bound). Therefore,

142

for the attack to succeed it needs to solve BDD (or the shortest vector problem SVP)

on L to within an very small constant approximation factor. For the parameters in

our instantiations, the lattice dimension is at least N ≥ n lg(p/2) ≥ 896 (and likely

more). For this setting, the state of the art in BDD and SVP algorithms [29, 57, 72],

take time at least 20.48N ≥ 2430, and likely more. Moreover, the SVP algorithm

of [72], which appears to provide the best heuristic runtime in this setting, as a most

conservative estimate requires space at least 20.18N ≥ 2160.

Algebraic attacks. Finally, the algebraic “linearization” attack of Arora and Ge [7]

yields a lower bound on p for security. The attack is applicable when every coefficient

of every error term is guaranteed to belong to a known set of size d; in our setting,

d = p/2. The attack requires at least N/n ring-LWE samples to set up and solve a

dense linear system of dimension N , where

N =

(
n+ d

n

)
≈ 2(n+d)·H(n/(n+d))

and H(δ) = −δ lg(δ)− (1− δ) lg(1− δ) is the binary entropy function for δ ∈ (0, 1).

Therefore, the attack requires time and space at least N2, which is at least 2384 for

even the most aggressive of all our parameters.

7.4.2 Birthday-type Attack on SPRING-CRT

We now describe a specific birthday-type attack on SPRING-CRT, which exploits the

structure of the ring R2q. The main idea is to cancel out the R2 component and to

detect the bias in the remaining Rq component.

To do this, we first split the input x into two parts, as x = y‖z for y, z of certain

lengths. Then the SPRING-CRT function (for simplicity, without dropping a bit

after rounding) can be written as

F (y‖z) = ba · Sy · Sze2,

143

where Sy and Sz respectively represent the subset product of the keys si indicated by

the bits of y and z.

The basic goal in the attack is to try to find values y and y′ such that Sy =

Sy′ mod 2. If we have two such values, then a · Sy · Sz = a · Sy′ · Sz mod 2 for any z,

so the R2 component of the output will be the same for the inputs y‖z and y′‖z. By

Equation (7.3.4) in Section 7.3.1, this implies that in F (y‖z)⊕F (y′‖z), the respective

R2 components cancel each other out. Since rounding of a uniform element in Rq has

a bias of 1/q in each coefficient, the bits of F (y‖z)⊕ F (y′‖z) will be the sum of two

biased bits, i.e., the bias is 1/q2. This can be detected using q4/4 pairs of output bits

(with varying z).

If we repeat the test for 2n different choices of (y, y′), with high probability, one

choice satisfies Sy + Sy′ = 0 mod 2, and we would be able to detect the bias by the

method detailed above. (By contrast, the test would not detect such bias in a truly

random function, with high probability.) We can collect the data for the attack with

2n/2 distinct choices of y and y′, each of them using q4/(4n) values of z. This requires

2n/2 · q4/(4n) queries and space, and a time complexity of 2n · q4/2.

Generalizing the attack. We can generalize this analysis using y and y′ such that

(Sy + Sy′)
2 = 0 mod 2. This implies that the Sy,2 + Sy′,2 is a multiple of xn/2 + 1,

where Sy,2 = Sy mod 2 and similarly for Sy′,2. Thus, ci and ci+n/2, the coefficients of

xi and xn+i/2 respectively in Sy,2 + Sy′,2, are the same. This implies that if we XOR

the lower and upper halves of F (y‖z) ⊕ F (y′‖z), we can effectively remove the R2

component as above, and then can recognize the bias in the Rq component. Since we

sum four bits to remove the R2 component, we reduce the bias, but a random pair

y, y′ satisfies the condition with probability 2−n/2 instead of 2−n. This gives an attack

with query and space complexity 2n/4 · q8/(4n) and time complexity 2n/2 · q8/4. This

can be generalized further: if we use y and y′ such that (Sy + Sy′)
t = 0 mod 2 (for t

144

a power of 2), we reach a time complexity of 2n/t · q4t/(2t).

With q = 257 and n = 128, our best attack on SPRING-CRT (using t = 2) has

time complexity roughly 264+64−2 = 2126, and query and space complexity roughly

2n/2 · q8/(4n) ≈ 2119.

7.5 Implementation Details

The SPRING design is targeted for efficient implementation using SIMD instructions,

and a well-optimized implemention allows us to reach throughputs that are not too

far from those of classical symmetric-key constructions.

SIMD instructions perform a given operation on multiple data in parallel. Pro-

cessors with a SIMD engine usually come with a set of dedicated registers, which

can contain a vector of integers or floating point data, and the SIMD instruction set

computes arithmetic operations in parallel on the vectors elements, e.g., addition,

multiplication, bitwise operations, rotations, etc. as well as some permutations of the

vector elements. SIMD instructions were introduced in personal computers to improve

the efficiency of multimedia computations, and are now very widely available. SIMD

engines with 128-bit wide vectors are available on all desktop processors (SSE2 on

x86/x86 64, Altivec on PowerPC, NEON on ARM), and even on embedded platforms

such as smart-phones and tablets, with ARM Cortex-A or Intel Atom. Very recently,

Intel has introduced AVX2, with integer operations on 256-bit SIMD vectors.

We implemented the two instantiations of SPRING defined in Sections 7.2 and 7.3.

SPRING-BCH involves a subset-product in R∗q , followed by rounding and bias reduc-

tion (using the BCH code), while SPRING-CRT involves a subset product in R∗2q

followed by rounding. As described in Section 7.3.1, this can be implemented as sep-

arate subset-products in R∗2 and R∗q , followed by an extraction of the least significant

bits in the R∗q component and an exclusive-or with the R∗2 component. For each ver-

sion, we have an implementation of the PRF with standalone subset-products, and

145

an amortized implementation in Gray code counter mode where we just perform one

ring multiplication before each rounding operation. In the following subsections we

explain how to efficiently implement the main operations.

7.5.1 Computations in R∗2

Subset-sum and conversion from exponent to power basis. We use the cyclic

decomposition of R∗2 given in Theorem 7.3.1, and store the key in exponent represen-

tation, so that the subset-product is a subset-sum of the exponents. A polynomial in

R2 (of degree less than 128) is represented by 32 one-bit indices, 16 two-bit indices,

8 three-bit indices, 4 four-bit indices, 2 five-bit indices, 1 six-bit index, and 1 seven-

bit index. We store all 64 indices as 8-bit integers, and use SIMD instructions to

compute the sum. Since all the cyclic groups have an order that is a power of 2, we

can use 8-bit additions, and remove the extra bits at the end. The conversion to the

power basis is done using Algorithms 3 and 4. Algorithm 4 is rewritten iteratively

using shift, mask and xor instructions, taking advantage of the inherent parallelism

of bitwise operations, as shown in Algorithm 5.

Algorithm 5 Iterative version of Algorithm 4 using the parallelism of bitwise oper-
ations

1: procedure Radix-to-Power(b)
Require: 128-bit vector b

2: b← b⊕ (b ∧ 0xffffffffffffffff0000000000000000)� 64
3: b← b⊕ (b ∧ 0xffffffff00000000ffffffff00000000)� 32
4: b← b⊕ (b ∧ 0xffff0000ffff0000ffff0000ffff0000)� 16
5: b← b⊕ (b ∧ 0xff00ff00ff00ff00ff00ff00ff00ff00)� 8
6: b← b⊕ (b ∧ 0xf0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0)� 4
7: b← b⊕ (b ∧ 0xcccccccccccccccccccccccccccccccc)� 2
8: b← b⊕ (b ∧ 0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)� 1
9: end procedure

Polynomial multiplication. In counter mode, we found it more efficient to com-

pute a single ring multiplication directly than to use the exponent representation.

146

On recent Intel CPUs (starting from the Westemere architecture introduced in

2010) and AMD CPUs (starting from the Bulldozer architecture introduced in 2011),

there is a carry-less multiplication operation, pclmulqdq, that computes a 64-bit

polynomial multiplication modulo two. This gives a very efficient implementation of

the R2 multiplication.

Alternatively, we take take advantage of the fact that one of the operands is always

a polynomial from the key (or its inverse). Therefore, we can see it as a multiplication

by a fixed element in R2, which is a linear operation. We can precompute tables

corresponding to this linear operation with 8-bit subsets of the input range, and

compute the full multiplication using n/8 table accesses and xors.

More precisely, we precompute z ·s for all polynomials z of degree less than 8, and

we write a degree-128 polynomial z as z0 +x8 ·z1 +· · ·+x120 ·z15, where all the zi are of

degree at most 7. Then we can compute z ·s as (z0 ·s)+x8 ·(z1 ·s)+ · · ·+x120 ·(z15 ·s),

which requires only 16 table accesses, rotations, and xors. This trick takes about 1MB

of extra memory to store the tables, but this is negligible on the platforms we target.

7.5.2 Computations in R∗257

Following [61], we use the Chinese Remainder Theorem isomorphism of the ring Rq
∼=

Znq when q = 1 (mod 2n) is prime. A product in Rq therefore corresponds to a

component-wise multiplication of vectors in Znq . Moreover, there are fast FFT-like

algorithms, often called “number theoretic transforms” (NTT), for converting between

the polynomial representation of Rq and the n-fold product ring Znq .

Subset-sum and conversion. Since the ring elements we multiply are all part of

the key, we can generate and store them as vectors in the product ring Znq . Moreover,

since these elements are all unit, their entries in Znq are non-zero, and we can actually

store the discrete logarithms of the entries (with respect to some generator of Z∗q), so

that the subset-product becomes a subset-sum.

147

Exponentiation by the final summed exponents can be implemented with a sim-

ple table lookup. However, we found a slightly more efficient version using vector

permutation (pshufb in SSSE3) instructions as a 4-bit to 8-bit parallel table lookup.

We use the fact that ga+16×b = ga · (g16)b, where a and b are both 4-bit values, and

we use 4-bit to 8-bit tables for gx and (g16)x.

Product and conversion. In Gray code counter mode, we do not use the exponent

representation, because a point-wise multiplication is more efficient than a point-wise

addition followed by exponentiations. This is because the point-wise multiplication

can be parallelized easily while the exponentiation requires either serial table lookups,

or a more complex sequence of SIMD operations.

7.5.2.1 NTT

The bottleneck of our function is the NTT computation, therefore we have to optimize

this part aggressively. In our implementation, we reuse the code from the SIMD hash

function [52] which happens to use the same parameters as the transformation needed

in SPRING. The main tricks used in this implementation are:

Representation of elements. Element in Z257 are stored as signed 16-bit words.

The choice of the modulus 257 allows an efficient implementation of the field oper-

ations, because 257 is a prime and 256 = −1 (mod 257). Moreover, Z∗257 is a cyclic

group of 256 elements, where the subset sum of the logarithms can be computed with

a simple 8-bit addition.

Reduction. We use (x&255) - (x>>8) to do a partial reduction modulo 257, with

the output in [−127, 383]. When a full reduction to a smaller range is needed, we

subtract 257 to values greater than 128 to reduce the range to [−128, 128]. This can

be performed completely with SIMD instructions and does not require any division.

148

We note that it is not necessary to perform a reduction after each field operation,

because we have some extra bits in a 16-bit word; we have to study the NTT algorithm

to find out where reductions are needed.

Multiplication. To compute a multiplication in Z257, we reduce both operands

to [−128, 128], and the result can be computed with a single 16-bit multiplication

without any overflow.

Using a two-dimensional NTT. Because SIMD instructions compute the same

operation on each element of the vectors, we do not use the classical radix-2 NTT

algorithm. Instead, we rewrite the one-dimensional NTT as a two-dimensional one.

In our implementation, we rewrite an NTT of size 64 as a two-dimensional NTT of

size 8 × 8. The input data is seen as a 8 × 8 matrix, and the computation of the

NTT64 is done in three steps:

• First we compute 8 parallel NTT8 on the columns of the matrix using a deci-

mation in time algorithm.

• We multiply by the twiddle factors, transpose the matrix, and permute the row

and the columns following the bit reversal order.

• Then we compute 8 parallel NTT8 on the columns of the matrix using a deci-

mation in frequency algorithm.

The first and the last step are easy to parallelize with SIMD instructions because

they compute the same transformation on 8 independent inputs. Moreover, the root

of unity used in the NTT8 is 4, so the multiplications needed for the NTT8 are simply

bit shifts. The transposition can be implemented using merge operations available on

most SIMD instruction sets (e.g., punpcklwd/punpckhwd in SSE).

149

For the 128-dimensional NTT, we reused the code of the NTT64, and we have to

perform an extra layer of butterfly operations and multiplications by twiddle factors

(we decompose the NTT128 as an NTT64 and a NTT2).

7.5.3 Reducing Bias with a BCH Code

After rounding the R257 computation output, we are left with a n-dimensional vector

over Z2, each element with a bias of 1/257. We apply the generator polynomial

of a BCH code in order to reduce the output’s bias. Specifically, for the case of

n = 128 we apply the extension using a parity bit on the BCH code with parameters

[127, 64, 21] in order to gain a generator for a code with distance 22. Therefore, the

whole computation is done using just a few shift and xor instructions, and one final

negate instruction. We use the BCH generator polynomial

1 + x2 + x7 + x8 + x10 + x12 + x14 + x15 + x16 + x23 + x25 + x27 + x28 + x30 + x31

+ x32 + x33 + x37 + x38 + x39 + x40 + x41 + x42 + x44 + x45 + x48 + x58 + x61 + x63

since it matches our desired code parameters and has a minimal number of nonzero

coefficients. The output is 64 bits which makes consecutive outputs easy to maintain

in a packed array of 64-bit words. We note that if the PCLMUL instruction is avail-

able, we can apply the generator polynomial on 127 rounded output bits immediately

by xoring outputs of such two instructions.

7.6 Conclusions and Future Directions

In summary, our main contributions in this chapter are:

1. Two candidate pseudorandom function families called SPRING-BCH and SPRING-

CRT, which is short for “subset-product with rounding over a ring.”

2. A concrete security analysis of the “learning with rounding” (LWR) problems

that underlie our constructions. In particular, we formulate and analyze a new

150

“hidden” variant of learning with rounding/errors, in which a previously public

component of the input is now partly hidden. This small change appears to

significantly increase the concrete hardness of the problem, and in particular

it disables all of the known non-trivial algorithms that outperform exponen-

tial brute-force search, namely generalized birthday attacks [95, 15] and lattice

reduction attacks [71]. We believe that hidden LWR is an excellent target for

further research.

We stress that in this chapter, we focus only on basic (fixed output length) PRFs,

and in particular we do not specifically consider objects like unbounded stream ci-

phers, block ciphers, MACs, etc. (Note, however, that it is possible to construct such

objects relatively efficiently from fixed-length PRFs, e.g., the Feistel/Luby-Rackoff

transformation and variants [59, 75] from a PRF to a block cipher.) Also, at this

point we only consider basic distinguishing attacks, and not more advanced ones such

as side-channel, related-key, or forward-security attacks. These are all very interesting

topics for further research.

Following up on this, Brenner et al. [27] implement SPRING-BCH directly on

FPGA, and explore the vulnerability of the design to side-channel attacks. They

manage to achieve speeds that outperform the software implementation from this

chapter by a factor of 10, whilst using only 4% of the available resources on a typical

FPGA board.

7.7 Cyclic Decomposition of R∗2

In this section, we provide the necessary mathematical background needed to prove

the decomposition theorem for R2, Theorem 7.3.1. As such, this is not used elsewhere

in the chapter, and readers may choose to skip it, if they wish.

We recall the polynomial ring R = Z[x]/〈1 + xn〉 where n is a power of 2, and the

quotient ring Rq = R/qR for any integer q. We denote the multiplicative group of

151

units in any ring T by T ∗.

The fundamental theorem of finite abelian groups says that any such group can be

written uniquely (up to order) as the direct product of cyclic groups of prime-power

order. We let Ck denote the (multiplicative) cyclic group of order k, and C`
k denote

the `-fold direct product of Ck.

The ideal p = 〈2, 1 + x〉 in R is prime and has norm 2, i.e., |R/p| = 2, in fact

R/p = {p, 1+p}. It follows that pk = 〈2, (1+x)k〉 and |R/pk| = 2k. An element a ∈ R

is invertible modulo pk if and only if a(1) = 1 mod p, which implies that exactly half

the elements of R/pk are invertible, and so the multiplicative group (R/pk)∗ of units

modulo pk has order |(R/pk)∗| = 2k−1. Also, since (1 +x)2j = 1 +x2j mod 2 (because(
2j

i

)
is even for every 0 < i < 2j), we have that p2j = 〈2, 1 + x2j〉 for 1 ≤ 2j ≤ n, and

in particular, pn = 〈2, 1 + xn〉 = 〈2〉. We summarize this discussion as follows.

Claim 7.7.1. R2 = R/pn. |R2| = 2n. |R∗2| = 2n−1. In R2 for any k = 2j (and in

particular, for k = n) the ideal pk = 〈2, (1 + x)k〉 = 〈2, 1 + xk〉.

For any a ∈ R that is invertible modulo an ideal I, define ordI(a) to be the order

of a modulo I, i.e., the least positive integer e such that ae = 1 mod I. We typically

take I = pk for some k ≥ 1.

Our goal in this section is to determine the cyclic decomposition, and an explicit

set of corresponding generators, of the multiplicative unit group R∗2. We start with a

simple fact relating the orders of elements modulo pk for different values of k.

Lemma 7.7.2. For j ≥ 0, 1 ≤ k ≤ n, and any a ∈ R, we have aj = 1 mod pk if and

only if a2j = 1 mod p2k. In particular, if ordp2k(a) > 1 (i.e., if a 6= 1 mod p2k) then

ordp2k(a) = 2 ordpk(a).

Proof. First observe that

(aj − 1)2 = (a2j − 1)− 2(aj − 1). (7.7.2)

152

If aj − 1 ∈ pk, then (aj − 1)2 ∈ p2k and 2(aj − 1) ∈ pn+k ⊆ p2k, so a2j − 1 ∈ p2k also.

For the other direction, suppose for the purpose of contradiction that a2j−1 ∈ p2k

but aj − 1 ∈ pi\pi+1 for some nonnegative i < k ≤ n. Then because both 2k and

n + i are at least 2i + 1, the right-hand side of Equation (7.7.2) is in p2i+1, whereas

the left-hand side is not, a contradiction.

For the second claim, it suffices to observe that if ordp2k(a) is greater than 1, then

it must be even, because it must divide |(R/p2k)∗|, which is a power of 2.

Lemma 7.7.3. For any j ≥ 0, k > n, and a ∈ R, we have aj = ±1 mod pk if and

only if a2j = 1 mod pn+k. In particular, if ordpk(a) > 1 (i.e., if a 6= 1 mod pk) then

ordpn+k(a) = ordpk(a) when aord
pk

(a)/2 = −1 mod pk, and ordpn+k(a) = 2 ordpk(a)

otherwise.

Proof. We have

(aj ± 1)2 = (a2j − 1)± 2(aj ± 1).

If aj ± 1 ∈ pk, then (aj ± 1)2 ∈ p2k ⊆ pn+k = pn+k and 2(aj ± 1) ∈ 2pk = pn+k, so

a2j − 1 ∈ pn+k also.

For the other direction, suppose that

a2j − 1 = (aj + 1)(aj − 1) ∈ pn+k. (7.7.4)

Now because (aj +1)− (aj−1) = 2, the largest power of p that can divide both aj +1

and aj − 1 is pn = 〈2〉. Because p is prime, it follows from Equation (7.7.4) that pk

must divide one of aj + 1 or aj − 1, as desired.

To prove the second part of the lemma, we know that ordpn+k(a) ≥ ordpk(a) (be-

cause ae = 1 mod pn+k implies ae = 1 mod pk), and also that ordpn+k(a) ≤ 2 ordpk(a)

by the first part of the lemma. Since both ordpk+n(a) and ordpk(a) are powers of two,

we therefore have ordpn+k(a) ∈ {1, 2} · ordpk(a). The claim then follows immediately

from the first part of the lemma.

153

We now proceed to establish the group structure of R∗2, and also provide a set

of independent generators. Lemma 7.7.4 gives the cyclic decomposition of (R/p2j)∗

for 2 ≤ 2j ≤ 2n; because pn = 〈2〉 this in particular gives the decompositions of R∗2.

Lemma 7.7.5 gives an independent set of generators for this group.

Lemma 7.7.4. For 2 ≤ 2j ≤ 2n, (R/p2j)∗ decomposes into 2j−1 cyclic components as

follows:

(R/p2j)∗ ∼= C2j−2

2 × C2j−3

4 × · · · × C1
2j−1 × C1

2j =

j−1∏
i=1

C2j−i−1

2i × C2j .

Proof. We proceed by induction on j. For the base case, it is easy to see that for

2j = 2, we have (R/p2)∗ = {1, x} ∼= C2.

Now assume the inductive hypothesis for 2j ≤ n, and let h be the natural homo-

morphism from G = (R/p2j+1
)∗ to G′ = (R/p2j)∗, defined as h(a) = a mod p2j . By

the fundamental theorem, we can write G ∼=
∏

i Ski , where each Ski is a nontrivial

cyclic subgroup of G whose order ki is a power of 2. By Lemma 7.7.2, h(Ski) is a (pos-

sibly trivial) cyclic subgroup of G′, of order ki/2. Moreover, because h is surjective

and by definition of direct product, we have G′ = h(G) =
∏

i h(Ski)
∼=
∏

iCki/2.

Now by the inductive hypothesis, we know that G′ ∼=
∏j−1

i=1 C
2j−i−1

2i × C2j . Then

by uniqueness of the cyclic decomposition, and recalling that the C2 components of

G become trivial under h, we therefore have

G ∼= C`
2 ×

j−1∏
i=1

C2j−i−1

2i+1 × C2j+1 = Ck
2 ×

(j+1)−1∏
i=2

C2(j+1)−i−1

2i × C2j+1

for some ` ≥ 0. Since G′ has 2j−1 cyclic components, whose orders are half those of

the corresponding components in G, we see that ` must satisfy

2` = |G|/(|G′| · 22j−1

) = 22j+1−1/(22j−1 · 22j−1

) = 22j−1

,

which completes the proof.

154

To obtain explicit generators of the unit groups, we define the following elements

of R:

g0,0 = 1 + (1 + x)1;

gi,k = 1 + (1 + x)2i+k i ≥ 1, odd k ∈ {1, . . . , 2i}.

Note that these elements are sparse (i.e., they have few monomials), which will be

important later on for efficiently computing multi-products. We also notice that

{gi,k}0≤i≤lg(n) = {1 + (1 + x)k}odd k∈{1,...,2n}.

Lemma 7.7.5. For 2j ≤ 2n, the set {gi,k}0≤i<j is an independent set of generators of

the group (R/p2j)∗. Each gi,k has order 2j−i, i.e., it generates a C2j−i component of

group’s cyclic decomposition.

Proof. We proceed by induction on j, somewhat similarly to the proof of Lemma 7.7.4.

For the base case 2j = 2, we have (R/p2)∗ = {1, x}, which is generated by x = g0,0

(mod 2), which has order 2.

We now assume the inductive hypothesis for 2j < n, and prove the claim for

2j+1 ≤ n. We first show that for G = (R/p2j+1
)∗, the elements gi,k for 0 ≤ i ≤ j

have the claimed orders 2(j+1)−i. For 0 ≤ i < j, by the inductive hypothesis and

Lemma 7.7.2, we have

ordp2
j (gi,k) = 2j−i ⇒ ordp2

j+1 (gi,k) = 2(j+1)−i.

For i = j, since gj,k = 1 mod p2j (because p2j = 〈2, 1+x2j〉), we have ordp2
j+1 (gj,k) = 2.

Since the number of elements gi,k (for 0 ≤ i ≤ j) and their orders match the cyclic

decomposition of G from Lemma 7.7.4, to complete the proof it suffices to show that

these elements generate all of G. Towards this end, recall the natural homomorphism

h(a) = a mod p2j from G to G′ = (R/p2j)∗. Observe that its kernel S = ker(h)

is the subgroup of square roots of unity in G, because a ∈ ker(h) if and only if

155

a2 = 1 mod p2j+1
, by Lemma 7.7.2. By the inductive hypothesis, we can express h(a)

as a product of (powers of) the elements gi,k for 0 ≤ i < j, modulo p2j . Define a ∈ G

to be the same product, but modulo p2j+1
, so that h(a) = h(a) and thus a/a ∈ S.

It therefore remains to prove that the gi,k for 0 ≤ i ≤ j generate the subgroup S; in

fact, we will show that the powers si,k = g2j−i

i,k = 1+(1+x)2j+k·2j−i (mod p2j+1
) do so.

To see this, we first observe that there is a group isomorphism from (R/p2j ,+) to (S, ·)

given by f(a′) = 1 + (1 + x)2j · a′. Indeed, every f(a′) ∈ S by Lemma 7.7.2, and f is

bijective and a homomorphism by inspection. We next observe that f((1+x)k
′
) = si,k

for 0 ≤ k′ < 2j, where k′ = k · 2j−i for odd k < 2i when k′ > 0 and i = k = 0 when

k′ = 0.

It finally remains to prove that (1+x)k
′
for 0 ≤ k′ < 2j additively generate (R/p2j).

Firstly, notice that (R/p2j) can be additively generated by xk
′

for 0 ≤ k′ < 2j. Next,

we show by induction that any xk
′

for 0 ≤ k′ < 2j can be additively generated

by (1 + x)k for 0 ≤ k ≤ k′, and this will suffice to complete the proof. For k′ = 0,

xk
′
= (1+x)k

′
. For k′ > 0, observe that the coefficient of xk

′
in the binomial expansion

of (1 +x)k
′
mod p2j is always 1. For every k < k′ such that the coefficient of xk in the

expansion is nonzero, we can always ‘erase’ this term by adding in a corresponding xk

term, which can be written as a sum of (1 + x)` terms for ` ≤ k < k′ by hypothesis.

Doing this for all k < k′ gives us an expression for xk
′

in terms of (1 + x)k for k ≤ k′,

and this completes the induction, and the proof.

156

REFERENCES

[1] Agrawal, S., Boneh, D., and Boyen, X., “Efficient lattice (H)IBE in the
standard model,” in EUROCRYPT, pp. 553–572, 2010.

[2] Agrawal, S., Boneh, D., and Boyen, X., “Lattice basis delegation in fixed
dimension and shorter-ciphertext hierarchical IBE,” in CRYPTO, pp. 98–115,
2010.

[3] Ajtai, M., “Generating hard instances of lattice problems,” Quaderni di
Matematica, vol. 13, pp. 1–32, 2004. Preliminary version in STOC 1996.

[4] Alberini, G. and Rosen, A., “Efficient rounding procedures of biased sam-
ples.” Manuscript, 2013.

[5] Alwen, J., Krenn, S., Pietrzak, K., and Wichs, D., “Learning with round-
ing, revisited - new reduction, properties and applications,” in CRYPTO, pp. 57–
74, 2013.

[6] Applebaum, B., Cash, D., Peikert, C., and Sahai, A., “Fast cryptographic
primitives and circular-secure encryption based on hard learning problems,” in
CRYPTO, pp. 595–618, 2009.

[7] Arora, S. and Ge, R., “New algorithms for learning in presence of errors,” in
Automata, Languages and Programming - 38th International Colloquium, ICALP
2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part I, pp. 403–415, 2011.

[8] Banaszczyk, W., “Inequalites for convex bodies and polar reciprocal lattices
in Rn,” Discrete & Computational Geometry, vol. 13, pp. 217–231, 1995.

[9] Banerjee, A., Brenner, H., Leurent, G., Peikert, C., and Rosen, A.,
“SPRING: fast pseudorandom functions from rounded ring products,” in Fast
Software Encryption - 21st International Workshop, FSE 2014, London, UK,
March 3-5, 2014. Revised Selected Papers, pp. 38–57, 2014.

[10] Banerjee, A., Fuchsbauer, G., Peikert, C., Pietrzak, K., and
Stevens, S., “Key-homomorphic constrained pseudorandom functions,” in The-
ory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015, War-
saw, Poland, March 23-25, 2015, Proceedings, Part II, pp. 31–60, 2015.

[11] Banerjee, A. and Peikert, C., “New and improved key-homomorphic pseu-
dorandom functions,” in Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceed-
ings, Part I, pp. 353–370, 2014.

157

[12] Banerjee, A., Peikert, C., and Rosen, A., “Pseudorandom functions and
lattices,” in EUROCRYPT, pp. 719–737, 2012.

[13] Bellare, M. and Cash, D., “Pseudorandom functions and permutations prov-
ably secure against related-key attacks,” in Advances in Cryptology - CRYPTO
2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August
15-19, 2010. Proceedings, pp. 666–684, 2010.

[14] Bellare, M. and Goldwasser, S., “New paradigms for digital signatures
and message authentication based on non-interative zero knowledge proofs,” in
Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings,
pp. 194–211, 1989.

[15] Blum, A., Kalai, A., and Wasserman, H., “Noise-tolerant learning, the
parity problem, and the statistical query model,” J. ACM, vol. 50, no. 4, pp. 506–
519, 2003.

[16] Blum, M. and Micali, S., “How to generate cryptographically strong sequences
of pseudo-random bits,” SIAM J. Comput., vol. 13, no. 4, pp. 850–864, 1984.

[17] Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V.,
Segev, G., Vaikuntanathan, V., and Vinayagamurthy, D., “Fully key-
homomorphic encryption, arithmetic circuit abe and compact garbled circuits,”
in EUROCRYPT, 2014.

[18] Boneh, D., Lewi, K., Montgomery, H. W., and Raghunathan, A., “Key
homomorphic PRFs and their applications,” in CRYPTO, pp. 410–428, 2013.

[19] Boneh, D., Montgomery, H. W., and Raghunathan, A., “Algebraic pseu-
dorandom functions with improved efficiency from the augmented cascade,” in
Proceedings of the 17th ACM Conference on Computer and Communications Se-
curity, CCS 2010, Chicago, Illinois, USA, October 4-8, 2010, pp. 131–140, 2010.

[20] Boneh, D. and Waters, B., “Constrained pseudorandom functions and their
applications,” in Advances in Cryptology - ASIACRYPT 2013 - 19th Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security, Bengaluru, India, December 1-5, 2013, Proceedings, Part II, pp. 280–
300, 2013.

[21] Boyle, E., Goldwasser, S., and Ivan, I., “Functional signatures and pseudo-
random functions,” in Public-Key Cryptography - PKC 2014 - 17th International
Conference on Practice and Theory in Public-Key Cryptography, Buenos Aires,
Argentina, March 26-28, 2014. Proceedings, pp. 501–519, 2014.

[22] Brakerski, Z., Gentry, C., and Vaikuntanathan, V., “(Leveled) fully
homomorphic encryption without bootstrapping,” in ITCS, pp. 309–325, 2012.

158

[23] Brakerski, Z., Langlois, A., Peikert, C., Regev, O., and Stehlé, D.,
“Classical hardness of learning with errors,” in STOC, pp. 575–584, 2013.

[24] Brakerski, Z. and Vaikuntanathan, V., “Efficient fully homomorphic en-
cryption from (standard) LWE,” in FOCS, pp. 97–106, 2011.

[25] Brakerski, Z. and Vaikuntanathan, V., “Fully homomorphic encryption
from ring-LWE and security for key dependent messages,” in CRYPTO, pp. 505–
524, 2011.

[26] Brakerski, Z. and Vaikuntanathan, V., “Lattice-based FHE as secure as
PKE,” in ITCS, pp. 1–??, 2014.

[27] Brenner, H., Gaspar, L., Leurent, G., Rosen, A., and Standaert, F.,
“FPGA implementations of SPRING - and their countermeasures against side-
channel attacks,” in Cryptographic Hardware and Embedded Systems - CHES
2014 - 16th International Workshop, Busan, South Korea, September 23-26,
2014. Proceedings, pp. 414–432, 2014.

[28] Cash, D., Hofheinz, D., Kiltz, E., and Peikert, C., “Bonsai trees, or how
to delegate a lattice basis,” in EUROCRYPT, pp. 523–552, 2010.

[29] Chen, Y. and Nguyen, P. Q., “BKZ 2.0: Better lattice security estimates,”
in ASIACRYPT, pp. 1–20, 2011.

[30] Dodis, Y. and Yampolskiy, A., “A verifiable random function with short
proofs and keys,” in Public Key Cryptography - PKC 2005, 8th International
Workshop on Theory and Practice in Public Key Cryptography, Les Diablerets,
Switzerland, January 23-26, 2005, Proceedings, pp. 416–431, 2005.

[31] “eBACS: ECRYPT Benchmarking of Cryptographic Systems.”
http://bench.cr.yp.to, accessed 11 November 2013.

[32] Freedman, M. J., Ishai, Y., Pinkas, B., and Reingold, O., “Keyword
search and oblivious pseudorandom functions,” in Theory of Cryptography, Sec-
ond Theory of Cryptography Conference, TCC 2005, Cambridge, MA, USA,
February 10-12, 2005, Proceedings, pp. 303–324, 2005.

[33] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., and Waters,
B., “Candidate indistinguishability obfuscation and functional encryption for all
circuits,” in 54th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pp. 40–49, 2013.

[34] Gentry, C., “Fully homomorphic encryption using ideal lattices,” in STOC,
pp. 169–178, 2009.

[35] Gentry, C., Peikert, C., and Vaikuntanathan, V., “Trapdoors for hard
lattices and new cryptographic constructions,” in STOC, pp. 197–206, 2008.

159

[36] Gentry, C., Sahai, A., and Waters, B., “Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-
based,” in CRYPTO, pp. 75–92, 2013.

[37] Goldreich, O., “Two remarks concerning the goldwasser-micali-rivest signa-
ture scheme,” in Advances in Cryptology - CRYPTO ’86, Santa Barbara, Cali-
fornia, USA, 1986, Proceedings, pp. 104–110, 1986.

[38] Goldreich, O., Goldwasser, S., and Micali, S., “On the cryptographic
applications of random functions,” in Advances in Cryptology, Proceedings of
CRYPTO ’84, Santa Barbara, California, USA, August 19-22, 1984, Proceed-
ings, pp. 276–288, 1984.

[39] Goldreich, O., Goldwasser, S., and Micali, S., “How to construct random
functions,” J. ACM, vol. 33, no. 4, pp. 792–807, 1986.

[40] Goldwasser, S., Kalai, Y. T., Peikert, C., and Vaikuntanathan, V.,
“Robustness of the learning with errors assumption,” in ICS, pp. 230–240, 2010.

[41] Gorbunov, S., Vaikuntanathan, V., and Wee, H., “Attribute-based en-
cryption for circuits,” in STOC, pp. 545–554, 2013.

[42] Håstad, J., Impagliazzo, R., Levin, L. A., and Luby, M., “A pseudoran-
dom generator from any one-way function,” SIAM J. Comput., vol. 28, no. 4,
pp. 1364–1396, 1999.

[43] Hohenberger, S. and Waters, B., “Constructing verifiable random func-
tions with large input spaces,” in Advances in Cryptology - EUROCRYPT 2010,
29th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, French Riviera, May 30 - June 3, 2010. Proceedings, pp. 656–
672, 2010.

[44] Hopper, N. J. and Blum, M., “Secure human identification protocols,” in
Advances in Cryptology - ASIACRYPT 2001, 7th International Conference on
the Theory and Application of Cryptology and Information Security, Gold Coast,
Australia, December 9-13, 2001, Proceedings, pp. 52–66, 2001.

[45] Jarecki, S. and Liu, X., “Efficient oblivious pseudorandom function with ap-
plications to adaptive OT and secure computation of set intersection,” in Theory
of Cryptography, 6th Theory of Cryptography Conference, TCC 2009, San Fran-
cisco, CA, USA, March 15-17, 2009. Proceedings, pp. 577–594, 2009.

[46] Juels, A. and Weis, S. A., “Authenticating pervasive devices with human
protocols,” in Advances in Cryptology - CRYPTO 2005: 25th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 14-18,
2005, Proceedings, pp. 293–308, 2005.

[47] Käsper, E. and Schwabe, P., “Faster and Timing-Attack Resistant AES-
GCM,” in CHES, pp. 1–17, 2009.

160

[48] Katz, J., Shin, J. S., and Smith, A., “Parallel and concurrent security of the
HB and hb+ protocols,” J. Cryptology, vol. 23, no. 3, pp. 402–421, 2010.

[49] Kiayias, A., Papadopoulos, S., Triandopoulos, N., and Zacharias, T.,
“Delegatable pseudorandom functions and applications,” in 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS’13, Berlin, Ger-
many, November 4-8, 2013, pp. 669–684, 2013.

[50] Kiltz, E., Pietrzak, K., Cash, D., Jain, A., and Venturi, D., “Effi-
cient authentication from hard learning problems,” in Advances in Cryptology -
EUROCRYPT 2011 - 30th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011.
Proceedings, pp. 7–26, 2011.

[51] Lenstra, A. K., Lenstra, Jr., H. W., and Lovász, L., “Factoring polyno-
mials with rational coefficients,” Mathematische Annalen, vol. 261, pp. 515–534,
December 1982.

[52] Leurent, G., Bouillaguet, C., and Fouque, P.-A.,
“SIMD Is a Message Digest.” Submission to NIST, 2008.
http://www.di.ens.fr/ leurent/files/SIMD.pdf.

[53] Lewi, K., Montgomery, H. W., and Raghunathan, A., “Improved con-
structions of prfs secure against related-key attacks,” in ACNS, pp. 44–61, 2014.

[54] Lewko, A. B. and Waters, B., “Efficient pseudorandom functions from
the decisional linear assumption and weaker variants,” in Proceedings of the
2009 ACM Conference on Computer and Communications Security, CCS 2009,
Chicago, Illinois, USA, November 9-13, 2009, pp. 112–120, 2009.

[55] Lindner, R. and Peikert, C., “Better key sizes (and attacks) for LWE-based
encryption,” in CT-RSA, pp. 319–339, 2011.

[56] Liskov, M., “Updatable zero-knowledge databases,” in Advances in Cryptology
- ASIACRYPT 2005, 11th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Chennai, India, December 4-8,
2005, Proceedings, pp. 174–198, 2005.

[57] Liu, M. and Nguyen, P. Q., “Solving BDD by enumeration: An update,” in
CT-RSA, pp. 293–309, 2013.

[58] Luby, M., Pseudorandomness and cryptographic applications. Princeton com-
puter science notes, Princeton University Press, 1996.

[59] Luby, M. and Rackoff, C., “How to construct pseudorandom permutations
from pseudorandom functions,” SIAM J. Comput., vol. 17, no. 2, pp. 373–386,
1988.

161

[60] Lyubashevsky, V. and Micciancio, D., “Generalized compact knapsacks are
collision resistant,” in ICALP (2), pp. 144–155, 2006.

[61] Lyubashevsky, V., Micciancio, D., Peikert, C., and Rosen, A.,
“SWIFFT: A modest proposal for FFT hashing,” in FSE, pp. 54–72, 2008.

[62] Lyubashevsky, V., Peikert, C., and Regev, O., “On ideal lattices and
learning with errors over rings,” Journal of the ACM, vol. 60, pp. 43:1–43:35,
November 2013. Preliminary version in EUROCRYPT ’10.

[63] Lyubashevsky, V., Peikert, C., and Regev, O., “A toolkit for ring-LWE
cryptography,” in EUROCRYPT, pp. 35–54, 2013.

[64] Mereghetti, C. and Palano, B., “Threshold circuits for iterated matrix
product and powering,” ITA, vol. 34, no. 1, pp. 39–46, 2000.

[65] Micali, S., Rabin, M. O., and Vadhan, S. P., “Verifiable random functions,”
in 40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-
18 October, 1999, New York, NY, USA, pp. 120–130, 1999.

[66] Micali, S. and Reyzin, L., “Soundness in the public-key model,” in Advances
in Cryptology - CRYPTO 2001, 21st Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 19-23, 2001, Proceedings, pp. 542–
565, 2001.

[67] Micali, S. and Rivest, R. L., “Micropayments revisited,” in Topics in Cryp-
tology - CT-RSA 2002, The Cryptographer’s Track at the RSA Conference, 2002,
San Jose, CA, USA, February 18-22, 2002, Proceedings, pp. 149–163, 2002.

[68] Micciancio, D., “Generalized compact knapsacks, cyclic lattices, and efficient
one-way functions,” Computational Complexity, vol. 16, no. 4, pp. 365–411, 2007.
Preliminary version in FOCS 2002.

[69] Micciancio, D. and Mol, P., “Pseudorandom knapsacks and the sample com-
plexity of LWE search-to-decision reductions,” in CRYPTO, pp. 465–484, 2011.

[70] Micciancio, D. and Peikert, C., “Trapdoors for lattices: Simpler, tighter,
faster, smaller,” in EUROCRYPT, pp. 700–718, 2012.

[71] Micciancio, D. and Regev, O., “Lattice-based cryptography,” in Post Quan-
tum Cryptography, pp. 147–191, Springer, February 2009.

[72] Micciancio, D. and Voulgaris, P., “Faster exponential time algorithms for
the shortest vector problem,” in SODA, pp. 1468–1480, 2010.

[73] Naor, J. and Naor, M., “Small-bias probability spaces: Efficient constructions
and applications,” SIAM J. Comput., vol. 22, no. 4, pp. 838–856, 1993.

162

[74] Naor, M., Pinkas, B., and Reingold, O., “Distributed pseudo-random func-
tions and kdcs,” in Advances in Cryptology - EUROCRYPT ’99, International
Conference on the Theory and Application of Cryptographic Techniques, Prague,
Czech Republic, May 2-6, 1999, Proceeding, pp. 327–346, 1999.

[75] Naor, M. and Reingold, O., “On the construction of pseudorandom permu-
tations: Luby-rackoff revisited,” J. Cryptology, vol. 12, no. 1, pp. 29–66, 1999.

[76] Naor, M. and Reingold, O., “Synthesizers and their application to the par-
allel construction of pseudo-random functions,” J. Comput. Syst. Sci., vol. 58,
no. 2, pp. 336–375, 1999.

[77] Naor, M. and Reingold, O., “Number-theoretic constructions of efficient
pseudo-random functions,” J. ACM, vol. 51, no. 2, pp. 231–262, 2004.

[78] Naor, M., Reingold, O., and Rosen, A., “Pseudorandom functions and
factoring,” SIAM J. Comput., vol. 31, no. 5, pp. 1383–1404, 2002.

[79] Pass, R., Seth, K., and Telang, S., “Indistinguishability obfuscation
from semantically-secure multilinear encodings,” in Advances in Cryptology -
CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 17-21, 2014, Proceedings, Part I, pp. 500–517, 2014.

[80] Peikert, C., “Public-key cryptosystems from the worst-case shortest vector
problem,” in STOC, pp. 333–342, 2009.

[81] Peikert, C., “An efficient and parallel Gaussian sampler for lattices,” in
CRYPTO, pp. 80–97, 2010.

[82] Peikert, C. and Rosen, A., “Efficient collision-resistant hashing from worst-
case assumptions on cyclic lattices,” in TCC, pp. 145–166, 2006.

[83] Peikert, C. and Waters, B., “Lossy trapdoor functions and their applica-
tions,” in Proceedings of the 40th Annual ACM Symposium on Theory of Comput-
ing, Victoria, British Columbia, Canada, May 17-20, 2008, pp. 187–196, 2008.

[84] Pietrzak, K., “Subspace LWE,” in TCC, pp. 548–563, 2012.

[85] Razborov, A. A. and Rudich, S., “Natural proofs,” J. Comput. Syst. Sci.,
vol. 55, no. 1, pp. 24–35, 1997.

[86] Regev, O., “On lattices, learning with errors, random linear codes, and cryp-
tography,” J. ACM, vol. 56, no. 6, pp. 1–40, 2009. Preliminary version in STOC
2005.

[87] Reif, J. H. and Tate, S. R., “On threshold circuits and polynomial compu-
tation,” SIAM J. Comput., vol. 21, no. 5, pp. 896–908, 1992.

163

[88] Sahai, A. and Waters, B., “How to use indistinguishability obfuscation: de-
niable encryption, and more,” in Symposium on Theory of Computing, STOC
2014, New York, NY, USA, May 31 - June 03, 2014, pp. 475–484, 2014.

[89] Schnorr, C.-P., “A hierarchy of polynomial time lattice basis reduction algo-
rithms,” Theor. Comput. Sci., vol. 53, pp. 201–224, 1987.

[90] Shor, P. W., “Algorithms for quantum computation: Discrete logarithms and
factoring,” in 35th Annual Symposium on Foundations of Computer Science,
Santa Fe, New Mexico, USA, 20-22 November 1994, pp. 124–134, 1994.

[91] Valiant, L. G., “A theory of the learnable,” Commun. ACM, vol. 27, no. 11,
pp. 1134–1142, 1984.

[92] van de Pol, J. and Smart, N., “Estimating key sizes for high dimensional
lattice-based systems,” in Cryptography and Coding (Stam, M., ed.), vol. 8308
of Lecture Notes in Computer Science, pp. 290–303, Springer Berlin Heidelberg,
2013.

[93] van Dijk, M., Gentry, C., Halevi, S., and Vaikuntanathan, V., “Fully
homomorphic encryption over the integers,” in Advances in Cryptology - EU-
ROCRYPT 2010, 29th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, French Riviera, May 30 - June 3, 2010.
Proceedings, pp. 24–43, 2010.

[94] Vershynin, R., Compressed Sensing, Theory and Applications,
ch. 5, pp. 210–268. Cambridge University Press, 2012. Available at
http://www-personal.umich.edu/ romanv/papers/non-asymptotic-rmt-plain.pdf.

[95] Wagner, D., “A generalized birthday problem,” in CRYPTO, pp. 288–303,
2002.

164

