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SUMMARY

We prove a new bound on a version of the sum-product problem studied by

Chang. By introducing several combinatorial tools, this expands upon a method of

Croot and Hart which used the Tarry-Escott problem to build distinct sums from

polynomials with specific vanishing properties. We also study other aspects of the

sum-product problem such as a method to prove a dual to a result of Elekes and

Ruzsa and a conjecture of J. Solymosi on combinatorial geometry. Lastly, we study

two combinatorial problems on sumsets over the reals. The first involves finding

Freiman isomorphisms of real-valued sets that also preserve the order of the original

set. The second applies results from the former in proving a new Balog-Szemerédi

type theorem for real-valued sets.
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CHAPTER I

INTRODUCTION

For a set A in some group G, the sumset, the difference set, and the h-fold sumset

are defined as

A+ A := {a+ a′ : a, a′ ∈ A},

A− A := {a− a′ : a, a′ ∈ A},

hA := {a1 + . . .+ ah : ai ∈ A}.

Additive combinatorialists are often interested in analyzing the size and structure of

the sumset when A is finite. How large and how small can |A + A| be? How does

|A + A| depend on |A|? Does A + A contain an arithmetic progression, and if so, of

what length?

On the other hand, often one knows something about the sumset – generally its

size in relation to the original set – and one would then like to infer that the original

set contains some structure based on this information. The most well-known result

in this direction is Freiman’s theorem [18] which states that if |A+ A| ≤ K|A|, then

A is contained in a generalized arithmetic progression of size OK(|A|) and dimension

OK(1).

Modern proofs of Freiman’s theorem rely on a so-called ‘good-modeling’ or ‘small-

modeling’ lemma. Such a lemma shows that one can, for most combinatorial purposes,

map a set in one additive group or set to a more convenient one – usually ZN or [1, N ]

– while preserving additive properties of the original set. When doing so with real-

valued sets, one encounters two inconveniences. First, the order of the set is not

usually preserved under the mapping. Second, one would like to control the value of

N when condensing the original set into [1, N ]. Previous results have overcome the
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latter difficulty. In Chapter 3, we present a mapping that overcomes both difficulties

for sets with a sufficiently small sumset.

In the same chapter, we also study several applications. When analyzing the

sumset, one naturally comes across the equation

a+ b = c+ d; a, b, c, d ∈ A.

The number of solutions to this equation is called the additive energy of a set,

E(A,A) := {(a, b, c, d) ∈ A4 : a + b = c + d}. When the additive energy is o(|A|3),

it is easy to see that the sumset has substantial size |A + A| = Ω(|A|). Conversely,

one can have sets where the additive energy is Θ(|A|3), and the sumset still is large

– consider the union of an arithmetic progression and a geometric progression of the

same length. A theorem of Balog and Szemerédi [2] states that any set with large

additive energy must contain some large subset whose sumset hsa size O(|A|). That

is, if E(A,A) = Θ(|A|3), then there exists a subset A′ ⊆ A such that |A′| = Θ(|A|)

and |A′ + A′| = O(|A′|). In Chapter 3, we study an analogue of this theorem which

incorporates the indices of the original set.

If A is contained in a ring R instead of simply a group, we can define the product

set, the quotient set, and the h-fold product set as

A.A := {a · a′ : a, a′ ∈ A},

A/A := {a/a′ : a, a′ ∈ A},

A(h) := {a1 · . . . · ah : ai ∈ A}.

Usually, one is working in a field (or at least an integral domain), and results about the

sumset carry over in a straightforward manner to the product set. More interestingly,

it turns out that there is some interplay between the behavior of the sumset and the

product set. Consider two examples:

A = {1, . . . , n} ⊆ Z,

2



B = {2i : i = 0, . . . , n− 1}.

We see that A + A = {2, . . . , 2n}, and so |A + A| = 2|A| − 1. Similarly, B.B =

{2i : i = 0, . . . , 2n − 2} and so |B + B| = 2|B| − 1. However, by the prime number

theorem, there are Θ(n/ log n) primes in A, and hence |A.A| = Ω(n2/(log n)2). By

uniqueness of binary representation, |B + B| = Θ(|B|2). Hence, we see that in both

examples, either the sumset or the product set is large. By considering A∪B we can

of course have both the sumset and the product set be large, but it seems impossible

to have both sets be small. That is, either the sumset or the product set has size

quadratic in n. Erdős and Szemerédi conjectured this is always the case. We study

this problem, its generalizations and variants, and its connections to combinatorial

geometry in Chapter 2.
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CHAPTER II

THE SUM-PRODUCT PROBLEM

2.1 Pairs of Sums and Products

In 1983, Erdős and Szemerédi stated the following two conjectures [14]:

Conjecture 1. (Sum-Product Problem) For any ε > 0, there exists an n0 = n0(ε)

such that if A ⊆ R is of size n ≥ n0, then

|A.A|+ |A+ A| ≥ |A|2−ε.

Conjecture 2. (h-fold Sum-Product Problem) For any ε > 0 and for any h ∈ N,

there exists an n0 such that if A ⊆ R is of size n ≥ n0, then

|hA|+ |A(h)| ≥ |A|h−ε.

Although resolution of either conjecture is currently out of reach, there has been

considerable progress on Conjecture 1.

Theorem 3. ([14],[24],[11],[15],[28],[29],[22]) There exists an 0 < ε < 1 and an

absolute constant c > 0 such that for any A ⊆ R

|A+ A|+ |A.A| ≥ c|A|1+ε.

Initially, results were only proven when A ⊆ Z. In that case Theorem 3 was

first proved by Erdős and Szemerédi with an unspecified, but fixed value ε > 0 [14].

Their method was refined by Nathanson and then Chen who showed one could take

ε = 1/31 [24] and ε = 1/5 [8] respectively. In the case when one assumes A ⊆ R,

Ford used a similar method to prove one could take ε = 1/15 [15]. Elekes showed one

could take ε = 1/4 in R by exhibiting a beautiful correspondence between incidence

geometry and the sumset and product set [11].
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Theorem 4. There exists a c > 0 such that for any finite A ⊆ R,

|A+ A||A.A|, |A− A||A.A|, |A+ A||A/A|, |A− A||A/A| ≥ c|A|5/2.

Elekes’ proof of Theorem 4 relies on the Szemerédi-Trotter theorem, and hence,

the constant c depends on the so-called Szemerédi-Trotter constant. An incidence

between a point and a line is a pair (p, `) such that p is a point on `.

Theorem 5 (The Szemerédi-Trotter Theorem). [30] For any set of points P ⊆ R2

and any set of lines L in the plane, the number of incidences between P and L,

I(P,L), satisfies

I(P,L) ≤ c
(
|P |2/3|L|2/3 + |P |+ |L|

)
for some absolute constant c > 0.

Originally proved by a complicated combinatorial argument relying on cell de-

compositions in the plane, Szekèly simplified the proof by showing that Theorem 5

follows quickly from the crossing number inequality in graph theory. We now prove

Theorem 4 using the Szemerédi-Trotter theorem.

Proof. Let A = {a1, . . . , an}. Consider the following sets of lines and points:

L1 := {y = ai(x− aj) : ai, aj ∈ A} P1 := A+ A× A.A

L2 := {y = ai(x+ aj) : ai, aj ∈ A} P2 := A− A× A.A

L3 := {y =
1

ai
(x− aj) : ai, aj ∈ A} P3 := A+ A× A/A

L4 := {y =
1

ai
(x+ aj) : ai, aj ∈ A} P4 := A− A× A/A

We finish the argument for L1 and P1, and the others follow an identical argument.

Since y = ai(x − aj) goes through the points (ak + aj) for all k = 1, . . . , n, we have

that the number of incidences is at least |A||L1|. Since ai determines the slope, and

aj determines the y-intercept, |L1| = |A|2, and so

I(P1,L1)) ≥ |A|3.
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On the other hand, by Theorem 5,

I(P1,L1) ≤ c(|A+ A|2/3|A.A|2/3|A|4/3 + |A+ A||A.A|+ |A|2).

Hence,

|A|3

2
≤ |A|3 − c|A|2 ≤ c(|A+ A|2/3|A.A|2/3|A|4/3 + |A+ A||A.A|).

If |A+ A||A.A| is the dominant term, we get a stronger result. Hence,

|A|3

4
≤ c|A+ A|2/3|A.A|2/3|A|4/3

which implies that

c′|A|5/2 ≤ |A+ A||A.A|.

This breakthrough on Conjecture 1 was significant not only because it provides an

improvement on the value of ε in Theorem 3, but it also interpolates in an intermediate

ground where the sumset or the product set is small.

Corollary 6. There exists a c > 0 such that for any A ⊆ R, if |A+A| (or |A.A|) is

at most |A|1+δ, then |A.A| (or |A+ A| respectively) is at least |A|3/2−δ.

Elekes and Ruzsa [13] created another geometric argument to prove a best possible

result, up to the constant c, when the sumset is small.

Theorem 7. There exists a c > 0 such that for any δ > 0, if A ⊆ R and |A + A| ≤

|A|1+δ, then |A.A| ≥ |A|2−cδ for A sufficiently large.

Solymosi [28] expanded upon this geometric connection between sums and prod-

ucts and point-line incidences by showing one can take ε = 3/11 − δ in Theorem 3

for any δ > 0 given that A is sufficiently large. He improved upon this further a

few years later and showed that one can take ε = 1/3− δ [29]. The latter argument

surprisingly avoided the use of the Szemerédi-Trotter theorem despite also relying on

combinatorial geometry.
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Theorem 8. For any set A ⊆ R,

|A.A||A+ A|2 ≥ |A|4

8dlog |A|e
.

Up to a constant factor and the power of the logarithm, one cannot prove a

stronger lower bound on |A.A||A + A|2 as seen by taking A to be an arithmetic

progression.

Theorem 9. [16] For A = {1, . . . , n}, |A+ A| = 2n− 1 and

|A.A| = Θ

(
n2

(log n)c(log log n)3/2

)
where c = − log log 2

log 2
− 1

log 2
+ 1.

Theorem 8 also provides a significant improvement to Corollary 6 (and to the

constant c in Theorem 7) when one assumes that the sumset is small.

Corollary 10. For any A ⊆ R, if |A+ A| ≤ |A|1+δ, then

|A.A| ≥ |A|2−2δ

8dlog |A|e
.

Notice however that if one assumes the product set is small and apply Theorem 8,

we do not get any real improvement over Corollary 6. This direction is still open:

Conjecture 11. There exists a c > 0 such that if A ⊆ R is sufficiently large and if

|A.A| ≤ |A|1+δ, then |A+ A| ≥ |A|2−cδ.

There have been a sequence of results towards this conjecture. First, Chang

proved it for integral sets [7], but her technique relied heavily on prime factorization

properties of the integers. When one assumes that |A.A| = O(|A|), Chang [7] showed

that one can use Freiman’s theorem to deduce that |A+A| = Ω(|A|2). We remind the

reader that Corollary 6 showed that |A.A| ≤ |A|1+δ implies that |A + A| ≥ |A|3/2−δ.

Shkredov and Konyagin improved this recently [22] to the following.

7



Theorem 12. If A ⊆ R and |A.A| ≤ |A|1+δ, then

|A+ A| ≥ |A|
3
2

+ 1
12
− 5

6
δ

and

|A+ A| ≥ |A|
3
2

+ 1
32
− 19

32
δ.

In the same paper, they were even able to improve Theorem 8 slightly past 4/3

in the exponent.

Theorem 13. If A ⊆ R, then

|A+ A|+ |A.A| ≥ c|A|
4
3

+ 1
20599

We now prove Conjecture 11 under the assumption of a certain other conjecture.

This is significant because Iosevich, Roche-Newton, and Rudnev recently presented a

beautiful but flawed argument of the following conjecture [20].

Conjecture 14. Let A ⊆ R. Then,

|{(x1, . . . , x8) ∈ A8 : x1x2 − x3x4 = x5x6 − x7x8}| = O(|A|6 log |A|).

Proposition 15. If Conjecture 14 is true, then there exists an absolute constant c

such that for every 0 < ε < 1
2
, there exists an n ∈ N such that if A ⊆ R is sufficiently

large with |A.A| ≤ |A|1+ε, then |A− A| ≥ c |A|
2−3ε

(log |A|)8 . Equivalently,

|A− A||A.A|3 ≥ c
|A|5

(log |A|)8
.

Proposition 15 is almost a dual to Theorem 8. It would be interesting to see if

one could in fact prove such a dual.

Conjecture 16. If Conjecture 14 is true, then there exists c, d > 0 such that for

every 0 < ε < 1
2
, if A ⊆ R is sufficiently large, then

|A− A||A.A|2 ≥ c
|A|4

(log |A|)d
.

8



Proof of Proposition 15. Let A ⊆ R be a finite set such that |A.A| ≤ |A|1+ε. Letting

r(x) := |{(a, b) ∈ A2 : ab = x}|, we have that

∑
x∈A.A

r(x) = |A|2

and ∑
x∈A.A

r(x)2 = E×(A) = |{(a, b, c, d) : ab = cd}|.

By a dyadic pigeonhole argument, there exists a t ∈ {0, . . . 2 log |A|} such that

∑
x∈A.A:r(x)∈[2t,2t+1]

r(x) ≥ |A|2

2 log |A|
. (1)

Let C := {(x, y) ∈ A× A : r(xy) ∈ [2t, 2t+1)}, and let D := {xy : (x, y) ∈ C} ⊆ A.A.

Note that (1) is counting the size of C, so |C| > |A|2
2 log |A| . Observe that

|A|2

2 log |A|
≤ |C| =

∑
x∈D

r(x) ≤ 2t+1|D|. (2)

Since D ⊆ A.A, and |A.A| ≤ |A|1+ε, we get that

2t ≥ |A|1−ε

4 log |A|
(3)

Now, let Iw := {(a, b) ∈ C : ab ∈ wA}. We have that

∑
w∈A

|Iw| =
∑
w∈A

∑
d∈D

|{(x, y) ∈ C : xy = d ∈ wA}|.

Switching the order of summation, we get that

=
∑
d∈D

∑
w∈A

|{(x, y) ∈ C : xy = d ∈ wA}|.

Observe that this is equal to

=
∑
d∈D

|{(x, y) ∈ C : xy = d}|2 ≥ 22t+2|D|.

So,

Ew(|Iw|) ≥
4 · 22t|D|
|A|

. (4)

9



Let

Jw := {(x1, x2, . . . , x8) ∈ C4 : x1x2 − x3x4 = x5x6 − x7x8;x1x2 ∈ wA}.

We will use Conjecture 14 applied to A to give an upper bound on E(|Jw|). First,

note that

∑
w∈A

|Jw| =
∑
w∈A

∑
(x1,x2)∈C

|{(x1, . . . , x8) ∈ C4 : x1x2 ∈ wA;x1x2 − x3x4 = x5x6 − x7x8}|.

Again, changing the order of summation,

=
∑

(x1,x2)∈C

∑
w∈A

|{(x1, . . . , x8) ∈ C4 : x1x2 ∈ wA;x1x2 − x3x4 = x5x6 − x7x8}|

=
∑

(x1,x2)∈C

|{(x1, . . . , x8) ∈ C4 : x1x2 − x3x4 = x5x6 − x7x8}| · r(x1x2)

≤ |{(x1, . . . , x8) ∈ C4 : x1x2 − x3x4 = x5x6 − x7x8}|2t+1 � |A|6 log |A|2t

by Conjecture 14. Thus,

E(|Jw|)� |A|52t log |A|. (5)

We will show that for some w ∈ A,

|Iw|4 �
|A|2−3ε

(log |A|)8
|Jw|. (6)

The theorem will quickly follow once this is established.

For a contradiction, suppose that for all w ∈ A

|Iw|4 �
|A|2−3ε

(log |A|)8
|Jw|.

If this is true, then ∑
w

|Iw|4 �
|A|2−3ε

(log |A|)8

∑
w

|Jw|.

Using Holder’s inequality on the left sum and (4), we get that

∑
w

|Iw|4 ≥
(
∑

w |Iw|)
4

|A|3
� 28t|D|4

|A|3
.

10



On the other hand, using (5) we have that

∑
w

|Iw|4 <
c|A|2−3ε

(log |A|)8

∑
w

|Jw| �
|A|8−3ε2t log |A|

(log |A|)8

Thus, we have that

28t|D|4

|A|3
� |A|

8−3ε2t

(log |A|)7
.

However, using (2) and (3) on the left side of this inequality gives us a contradiction

for an appropriately chosen constant c. Thus, we may assume there exists a w such

that (6) holds. For such a w, let

G := Iw × Iw = {(x1, x2, x3, x4) ∈ C2 : x1x2 ∈ wA, x3x4 ∈ wA}

and

n(s) := |{(x1, x2, x3, x4) ∈ G : x1x2 − x3x4 = s}|

and let

S := {s : There exists (x1, x2, x3, x4) ∈ G : x1x2 − x3x4 = s }.

Then, we have that by Cauchy-Schwarz

∑
s∈S

n(s)2 ≥ |G|
2

|S|
.

On the other hand, ∑
s∈S

n(s)2 ≤ |Jw| � |Iw|4 ·
(log |A|)8

|A|2−3ε
.

Note that |G| = |Iw|2, so combining the above two inequalities, we get that

|S| � |A|2−3ε

(log |A|)8
.

Lastly, observe that |S| ≤ |A−A| since for each s ∈ S, s = wa1−wa2 = w(a1−a2) ∈

w(A− A).

11



2.2 Combinatorial Geometry

As shown in the proof of Theorem 4, results in combinatorial geometry can have a

significant impact on sum-product theorems. In fact, Elekes’ treatise [12] contained

many connections between combinatorial problems on points and lines and additive

combinatorics. Amirkhanyan et al [1] demonstrated – not for the first time – that

the relationship is reciprocated by using additive combinatorial tools to prove the

following geometric theorem.

Theorem 17. [1] For every ε > 0, there exists 0 < δ < ε such that for sufficiently

large n = n(ε, δ) the following holds: if A ⊆ R has size n, then every set of at least

nε lines in R2, each of which intersects A×A in at least n1−δ points, contains either

two parallel lines or three lines with a common intersection point.

A variant of this theorem was conjectured in Elekes’ treatise. The conjecture was

attributed to Solymosi. We say a set of lines is in general position if no two are

parallel and no three intersect at a point.

Conjecture 18. For any c > 0, if there exists a set of lines, all of whom contain

at least cN points in an N × N Cartesian product, then at most d = d(c) can be in

general position.

Although clearly Theorem 17 and Conjecture 18 are related, Conjecture 18 is still

technically open. It seems possible to perhaps use the techniques in the proof of

Theorem 17 to prove Conjecture 18 directly. One of the main lemmas used in the

proof of Theorem 17 is the following reduction which we prove here. We say a line is

k-rich in a set of points P if it contains at least k points in P .

Theorem 19. For every ε > 0, there exists 0 < δ < ε such that for sufficiently large

n = n(ε, δ), the following holds:

12



If A ⊆ R, |A| = n, then every set of at least n1−ε lines in R2, each of which

intersects A × A in at least n1−δ points, contains either two parallel lines or C =

C(ε) > 0 lines with a common intersection point.

First, we will prove Theorem 19; then, we will prove that Theorem 19 implies

Theorem 17. A key idea in our proofs is that we can combine rich lines in a grid in

a natural way in order to to get more. However, the number of rich lines in a grid is

bounded, and after several iterations, we obtain structural properties on the sumset

and product set of the grid. Function composition is the natural group action on

lines; however, our action will be slightly modified so that (f, g)→ f−1 ◦g. We define

the operation ∗ by f ∗ g = f−1 ◦ g. Given two sets L,L′ of n1−δ-rich lines, we would

like to consider the set of lines f ∗ g which retain a large amount of richness in A×A.

L ∗ L :=
{
f ∗ g : f, g ∈ L and |f ∗ g ∩ (A× A)| ≥ n1−2δ/2

}
. (7)

A priori, one may have that L ∗L does not contain many lines compared to L – why

should f ∗g contain many points in A×A? However, the following lemma shows that

this is not the case since the ∗ operation preserves richness.

Proposition 20. Let A ⊆ R, and let L be a set of lines y = ax + b such that each

line in L is n1−δ-rich in A×A. Then for at least |L|
2

2n2δ pairs of lines f, g ∈ L, f ∗ g is

n1−2δ

2
rich in A× A.

We need the following combinatorial lemma. Let A ⊆ R be a set of size n.

Lemma 21. Given sets A1, . . . , Ak ⊆ A such that |Ai| ≥ n1−δ for all i = 1, . . . , k, we

must have at least k2

2n2δ pairs (Ai, Aj) with |Ai ∩ Aj| ≥ n1−2δ

2
.

Proof. Let B = {(i, j) : |Ai ∩ Aj| ≥ n1−2δ

2
}. For a contradiction, suppose that

|B| < k2

2n2δ
.

13



Then,

∑
i,j

|Ai ∩ Aj| =
∑

(i,j)∈B

|Ai ∩ Aj|+
∑

(i,j)∈Bc
|Ai ∩ Aj|

< n · k
2

2n2δ
+ k2 · n

1−2δ

2

< k2n1−2δ.

However, letting d(x) := |{i ∈ [k] : x ∈ Ai}|, we have by Cauchy-Schwarz

∑
i,j

|Ai ∩ Aj| =
∑
x∈A

d(x)2 ≥

(
n−1/2

∑
x∈A

d(x)

)2

= n−1

∑
i∈[k]

|Ai|

2

≥ k2n1−2δ

which is a contadiction.

Now, we prove Proposition 20.

Proof. For each f ∈ L, let Xf := {x ∈ A : f(x) ∈ A}, and similarly Yf := {y ∈ A :

f−1(y) ∈ A}. Observe that Xf = Yf−1 . Thus, for f, g ∈ L, if |Yf ∩ Yg| ≥ n1−2δ

2
, then

f−1 ◦ g = f ∗ g is n1−2δ

2
-rich in A × A. Apply Lemma 21 to all the sets Xf , and the

result follows.

We need the following deep and technical theorem from [1] as well as its corollary.

A set of lines forms a star family if there is a single point p that is contained in every

line in the family. A set of lines is in near-general position with star families bounded

by C if no two lines are parallel and any star family has size at most C. Roughly

speaking, the following theorem says that not only does the ∗ operation preserve

richness, but it also preserves the property of general position to an extent.

Theorem 22. [1] For all 0 < ε < 1, there exists 0 < α0 < ε such that for all

0 < α < α0, there exists 0 < δ0 < α such that for all 0 < δ < δ0 and for finite sets A

with |A| = n sufficiently large, the following holds:

If L is a set of at least nε lines in near-general position (with star families bounded

by some constant C = C(ε, α) > 0) which are n1−δ-rich in A× A, then:

14



(i) If L ∗ L contains a family P of parallel lines, then |P | ≤ 2 |L ∗ L|n2δ/ |L|.

(ii) If L ∗ L contains a star family S, then |S| ≤ 2C |L ∗ L|n2δ/ |L|.

(iii) If Pλ denotes the set of lines in L ∗ L with common slope λ, then |Pλ| ≥ nα for

at most nα numbers λ.

(iv) If Sp denotes the set of lines in L ∗ L with common meeting point p, then

|Sp| ≥ nα for at most nα points p.

Corollary 23. For all 0 < ε < 1 there exists 0 < α0 < ε such that, for all 0 < α < α0,

there exists 0 < δ0 < α such that for all 0 < δ < δ0 and for sufficiently large n, the

following holds:

Let A ⊆ R be a finite set with |A| = n, and let L be a set of at least nε lines which

are all n1−δ-rich in A × A. If L contains no parallel lines and all star families in L

are bounded above in size by C = C(ε, α), then there exists a subset R ⊆ L ∗ L such

that

• |R| ≥ |L|n−cα for some absolute constant c,

• R contains no two lines which are parallel, and

• at most k = dε/αe lines of R pass through any given point of R2.

2.2.1 Proving Theorem 19, the Weakened Theorem

Using Corollary 23, we are now ready to prove Theorem 19. A major tool used will

be the commutator graph, which we draw from [12].

Let A ⊆ R, let δ > 0, and let L be a set of n1−δ-rich lines in R2. The commutator

graph on L is the graph G = (V,E), where

V (G) = L ∗ L ∪ L−1 ∗ L−1

15



(with the minor change that we require minimum richness only n1−5δ for each line in

L ∗ L and L−1 ∗ L−1) and

E(G) =
{
{f ∗ g, g−1 ∗ f−1} : f, g ∈ L, f ∗ g ∈ L ∗ L, g−1 ∗ f−1 ∈ L−1 ∗ L−1

}
.

We draw attention to the fact that the lines f ∗ g and g−1 ∗ f−1 have the same slope.

Hence, any edge of the commutator graph is between two parallel lines.

Proof of Theorem 19. Let ε > 0, let 0 < δ � ε, and let A ⊂ R with n = |A| > 0.

Suppose for a contradiction that L is a set of at least n1−ε lines, all n1−δ-rich in A×A,

and that L is in near-general position with star families bounded in size by a constant

C > 0 independent of n. Consider the commutator graph on L.

If |V (G)| ≥ n1+4δ, then we contradict Theorem 5, so let us assume that |V (G)| <

n1+4δ. We claim that |E(G)| ≥ n2−6δ. If this is true, then there is a vertex with

degree at least |E(G)| / |V (G)|, so there is a connected component (corresponding to

a set of parallel lines) of size n1−10δ, in contradiction with Theorem 22(i).

Let S(f) = X(f) × Y (f) for each f ∈ L. By applying Proposition 20 to the

collection of sets S(f), where each set S(f) has size at least n2−2δ, we must have at

least n2−4δ/2 ≥ n2−5δ pairs S(f), S(g) with |S(f) ∩ S(g)| ≥ n2−4δ/2 ≥ n2−5δ. Note

that for any sets A1, A2, A3, A4, (A1×A3)∩ (A2×A4) = (A1∩A2)× (A3∩A4). Thus,

since |S(f) ∩ S(g)| ≥ n2−5δ, we have |X(f) ∩X(g)| ≥ n1−5δ and |Y (f) ∩ Y (g)| ≥

n1−5δ. Thus, we have at least n2−5δ pairs f, g ∈ L such that f ∗ g and g−1 ∗ f−1 are

each n1−5δ-rich.

Let fi, gi denote the lines such that Pi := {fi ∗ gi, g−1
i ∗ f−1

i } is a pair of n1−5δ-

rich lines. Given an index i, fi and gi intersect at a unique point (x, y); it then

follows that y is the unique fixed point of fi ∗ gi and x is the unique fixed point of

g−1
i ∗ f−1

i . Suppose there were 2C + 2 indices i1, ..., i2C+2 such that Pij = Pik for all

1 ≤ j, k ≤ 2C + 2. Then there would exist C + 1 indices ij1 , ..., ijC+1
such that

fij1 ∗ gij1 = · · · = fiC+1
∗ giC+1

and g−1
ij1
∗ f−1

ij1
= · · · = g−1

iC+1
∗ f−1

iC+1
.

16



Since for each 1 ≤ k ≤ C + 1 there is a unique (x, y) such that fijk ∗ gijk (y) = y and

g−1
ijk
∗ f−1

ijk
(x) = x, it follows that fijk and gijk all intersect the point (x, y). Since the

fijk ∗ gijk must all have the same slope and L has no parallel lines, we cannot have

that fijk = fij′
k

for k 6= k′ or else gijk = gij′
k

as well, contradicting distinctness of the

pairs. Similarly we must have gijk 6= gij′
k

for k 6= k′. The collection

{fijk : 1 ≤ k ≤ C + 1} ∪ {gijk : 1 ≤ k ≤ C + 1}

must therefore contain at least C + 1 distinct lines (a single line may appear as an

fij at most once and as a gij at most once). But then we have a set of more than

C concurrent lines at (x, y), contradicting the hypothesis that L is in almost-general

position.

Thus, for each edge e, there are at most 2C + 2 pairs {fi ◦ g−1
i , g−1

i ◦ fi} equal to

e, so the total number of edges in G is at least n2−5δ/(2C + 2) � n2−6δ, yielding a

contradiction with Theorem 22(i).

We remark that taking δ < ε/12 is sufficient for the proof to go through.

2.2.2 The Weakened Theorem Implies the Strong Version

For ` ∈ L ∗ L, let P(`) be the set of all pairs (f, g) ∈ L× L such that f ∗ g = `.

Lemma 24. For all 0 < ε < 1, there exists 0 < α0 < ε such that, for all 0 < α < α0,

there exists 0 < δ0 < α such that for all 0 < δ < δ0 and for sufficiently large n, the

following holds:

Let A ⊆ R have size n, and let L be a set of at least nε near-general position lines,

all of which are n1−δ-rich in A× A. Then there exists a set L′ ⊆ L ∗ L such that L′

is a set of lines in near-general position, |L′| > |L|n−5α−4δ, and for all ` ∈ L′,

|P(`)| ≥ |L|2

2 |L ∗ L|n3δ
.
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Proof. Let

S := {(f, g) ∈ L× L : f ∗ g is n1−5δ-rich}.

By Proposition 20, |S| ≥ |L|2 n−3δ. Let

T :=

{
(f, g) ∈ S : |P(f ∗ g)| ≤ |L|2

2 |L ∗ L|n3δ

}
.

If |T | > |S| /2, then we obtain an absurdity:

|L ∗ L| =
∑

(f,g)∈S

1

|P(f ∗ g)|
=

∑
(f,g)∈S\T

1

|P(f ∗ g)|
+
∑

(f,g)∈T

1

|P(f ∗ g)|
≥

1

|L|
|S \ T |+ 2 |L ∗ L|n3δ

|L|2
|T | > |L ∗ L| .

Thus, |S \ T | ≥ |L|2 n−3δ/2 > |L|2 n−4δ. Letting L′ = {f ∗ g : (f, g) ∈ S \ T}, we

then have |L′| ≥ |L|n−4δ. Apply Corollary 23 to deduce that L′ contains a subset of

|L|n−5α−4δ lines in near-general position.

Proposition 25. Theorem 19 implies Theorem 17.

Proof. Let L be a set of nε lines in general position, all of which are n1−δ-rich for some

δ > 0 to be chosen later. Fix α < ε, and suppose
∣∣L∗(k+1)

∣∣ ≥ ∣∣L∗k∣∣n5α for all k up

to m = b2/αc. (By Corollary 23, we may further assume that L∗j is in near-general

position for all j ≤ k at the cost of a factor of n4α each iteration.) Redefining δ if

necessary, we can take 1− 4 · 5mδ > 0. For sufficiently large n, we then have

∣∣L∗(m+1)
∣∣ ≥ nε+mα ≥ n2.

But this violates Theorem 5, so such an m cannot exist. Therefore there exists

k < 2/α such that ∣∣L∗(k+1)
∣∣ < ∣∣L∗k∣∣n5α.

In this case, let L′ = L∗k for the smallest such k (such that the above inequality would

now read |L′ ∗ L′| < |L′|n5α), let α′ < 5α such that α′ � ε, let N = |L′|, and choose

δ′ ≤ 5kδ such that δ′ � α′.
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By applying Lemma 24, we can restrict our attention to a subset L′′ ⊆ L′ ∗ L′ of

size at least Nn−5α′−4δ′ such that all lines in L′′ are in near-general position and, for

all ` ∈ L′′,

|P(`)| ≥ N2

2 |L′ ∗ L′|n3δ′
≥ N

2n5α+3δ′
>

N

2nα′+3δ
.

If ` is a line in L′′, then ` = f ∗ g for some f, g ∈ L′. We will then have at least

1

C
|L′′| (Nn−α′−4δ′)2 ≥ 1

C
N3n−5α′−8δ′ � N3n−6α′

solutions (f, g, f ′, g′) ∈ L× L× L× L to the equation

f ′ ∗ f(0) = g′ ∗ g(0) (8)

(The factor of 1/C comes from the fact that L′′ is a set of lines in near-general position,

so at most C lines will share a y-intercept.)

Now, fixing f ′, g′ in (8) and letting f, g vary, we can interpret (8) as the line f ′∗g′,

where the x and y variables are the y-intercepts of f and g. Letting B be the set

of y-intercepts among lines in L′′, we may interpret the above count of solutions to

(8) as stating that many of the lines f ′ ∗ g′ are Nn−7α′-rich in the new grid B × B.

Indeed, let

S := {(f ′, g′) ∈ L′ × L′ : f ′ ∗ g′ is Nn−7α′-rich in B ×B},

and let p(f ′, g′) denote the number of points that f ′ ∗ g′ intersects in B × B. Then,

for a contradiction, assume |S| < N2n−8α′ . This implies the absurdity:

N3n−6α′ =
∑

(f ′,g′)∈S

p(f ′, g′) +
∑

(f ′,g′)∈Sc
p(f ′, g′) < |S| |B|+ |Sc| (Nn−7α′) <

|S|Nnα′ + (N2 − |S|)Nn−7α′ < |S|Nnα′ +N3n−7α′ < 2N3n−7α′ � N3n−6α′ .

(Note that this requires N � n4α′ , which is satisfied provided α′ � ε because N �

nε.) Thus, |S| ≥ N2n−8α′ , and that implies that we have at least Nn−8α′ lines that

are all Nn−7α′-rich in B ×B. Moreover, since L′ is in near-general position, we may
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extract a set of lines from S ∗S that are in near-general position, and this set has size

at least Nn−11α′ . However, this is in contradiction with Theorem 19, since S∗S is a set

of N1−γ-rich lines in near-general position for some γ > 0, and |S ∗ S| ≥ N1−12γ.

2.3 Multifold Sums and Products

Progress on the h-fold version of Erdős and Szemerédi’s conjecture has been much

slower. Essentially the only real progress towards Conjecture 2 is the following theo-

rem of Bourgain and Chang that only holds for sets of integers.

Theorem 26. [4] For every b > 0, there exists and h ∈ N such that for any A ⊆ Z

|hA|+ |A(h)| ≥ |A|b

One can take b to be on the order of (log h)1/4 – far from the conjectured bound

of Θ(h). This result relies heavily on analytic estimates that only hold over Z, and

it is still open whether Theorem 26 holds over R. Generalizations of the geometric

approach used in the 2-fold sum-product conjecture have typically resulted in bounds

where b is bounded, not an unbounded function of h. Theorem 26 was a generalization

of techniques introduced by Chang who first proved the following weaker theorem.

Theorem 27. [6] For any h ∈ N, there exists a K = K(h) > 0 such that if A ⊆ Z

and |A.A| ≤ K|A|, then

|hA| ≥ c(K,h)|A|h.

A significant shortcoming in Chang’s approach is the dependence of c(K,h) on

K. The conclusion of Theorem 27 becomes trivial when K is taken any larger than

log |A| due to Chang’s use of Freiman’s Structure Theorem. When |A.A| is very close

to |A|, Freiman’s Structure Theorem provides a precise characterization of A – that it

is a large subset of a geometric progression – which allows one to analyze the nature

of the h-fold sumset.

20



A second shortcoming in Theorem 27 is that it only holds for integral sets. Several

years afterward, Chang was able to remedy both shortcomings individually. By an

ingenious use of the Subspace Theorem, Chang proved that Theorem 27 also holds

for real-valued sets.

Theorem 28. [7] For any h ∈ N, there exists a K = K(h) > 0 such that if A ⊆ R

and |A.A| ≤ K|A|, then

|hA| ≥ c(K,h)|A|h.

Additionally, Chang proved a version of Theorem 27 that allowed one to take K

to be up to a small power of |A|.

Theorem 29. [7] For any h ∈ N, there exists an ε > 0 such that if A ⊆ Z and

|A.A| ≤ |A|1+ε, then

|hA| ≥ |A|h−δh(ε)

where δh → 0 as ε→ 0.

Proving a real-valued version of the Bourgain-Chang theorem has been a major

research goal in this area. Hence, one might try to prove a real-valued version of

Theorem 29 as a first step.

Conjecture 30. For any h ∈ N, there exists an ε > 0 such that if A ⊆ R and

|A.A| ≤ |A|1+ε, then

|hA| ≥ |A|h−δh(ε)

where δh → 0 as ε→ 0.

Croot and Hart used the Szemerédi Cube Lemma to prove a weaker form of

Conjecture 30.

Theorem 31. [9] For every h ∈ N there exists an ε′ := ε′(h) such that the following

holds: for any 0 < ε < ε′, there exists an n0 := n0(ε, h) such that if A ⊆ R is of size

21



n ≥ n0 and |A.A| ≤ |A|1+ε, then

|hA| ≥ |A|c log h/2−fh(ε)

where c is an absolute constant, and fh(ε)→ 0 as ε→ 0.

A similar theorem was also proved by Li [23] who generalized Solymosi’s geometric

approach to Theorem 8 to multifold sums by a clever induction argument. Konyagin

[21] proved this theorem in yet another way, but neither Li nor Konyagin could

improve the exponent to a super-logarithmic function. However, in the same paper,

Croot and Hart were able to get a polynomial function in the exponent when one

considered h-fold sums of A.A.

Theorem 32. [9] For every h ∈ N there exists an ε = ε(h) > 0 such that the following

holds: there exists an n0 := n0(ε, h) such that if A ⊆ R is of size n ≥ n0 then

|h(A.A)| ≥ |A|Ω((h/ log h)1/3).

A key ingredient to Theorem 32 is a corollary to the Tarry-Escott problem as

well as combinatorially finding geometric progressions in sets with product sets of

size |A|1+δ. Expanding upon this idea with several technical combinatorial lemmas

involving graph theory, dependent random choice, Ruzsa calculus and other additive

combinatorial tools, we prove the following strengthening of Theorem 31.

Theorem 33. For any h ∈ N, there exists an ε = ε(h) > 0 such that the following

holds: there exists an n0 = n0(ε, h) such that if A ⊆ R is of size n ≥ n0 and

|A.A| ≤ |A|1+ε, then

|hA| ≥ |A|c exp
√

1
100

log h

for some absolute constant c.
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2.3.1 Layout and Notation.

In Section 2, we list some well-known additive combinatorial results that we will

need. We also include several lemmas that are directly from [9]. For completeness,

we include the proofs of these lemmas. In Section 3 and 4, we prove new, key lemmas

that we will need to prove Theorem 33. Section 5 contains the proof of Theorem 33.

In addition to the notation introduced in the beginning, we define the difference and

quotient set as follows:

A−B := {a− b : a ∈ A, b ∈ B}

A/B := {a/b : a ∈ A, b ∈ B \ {0}}

All sets are assumed to be finite subsets of R unless indicated otherwise. The additive

energy E(A,B) is defined as

|{(a, b, a′, b′) ∈ A×B × A×B : a+ b = a′ + b′}|.

We say that f � g if g = O(f) and f �k g if f(n) ≥ c(k)g(n) for n sufficiently

large. We say that a polynomial p(x) vanishes at x = a to order j if x = a is a root

of order j but not j + 1. All graphs are finite and undirected. For a graph (G,E),

∆(G) denotes the maximum degree of G. We will abuse notation and denote |G| as

|V (G)|.

2.3.2 Lemmas and Known Results

The Plünnecke-Ruzsa inequality is ubiquitious in additive combinatorics and will be

needed in our proof.

Lemma 34 (Plünnecke-Ruzsa Inequality). [25][31] Let A be a subset of a finite

abelian group such that |A+ A| ≤ c|A|. Then, |kA− `A| ≤ ck+`|A|.

We will also need the following lemma which exists in many different forms ([31],

Chap. 2).
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Lemma 35. Let X, Y ⊆ R. Then,

|X + Y | ≥ |X||Y |
|(X −X) ∩ (Y − Y )|

.

In particular, if (X −X) ∩ (Y − Y ) = {0}, then |X + Y | = |X||Y |.

Proof. The additive energy of X and Y can be bounded from above by

E(X, Y ) := |{(x, x′, y, y′) ∈ X ×X × Y × Y : x+ y = x′ + y′}|

= |{(x, x′, y, y′) : x− x′ = y − y′}|

=
∑

t∈X−X∩Y−Y

|{(x, x′, y, y′) : x− x′ = t = y − y′}|

≤ |(X −X) ∩ (Y − Y )||X||Y |

On the other hand, one can use Cauchy-Schwarz to bound the additive energy from

below:

E(X, Y ) =
∑

s∈X+Y

|{(x, y) ∈ X × Y : x+ y = s}|2 ≥ |X|
2|Y |2

|X + Y |
.

Combining the two inequalities proves the lemma.

We will use several lemmas from [9] whose proofs we include for completeness.

First, we state a result of Wooley on the Tarry-Escott problem [32].

Theorem 36. For every k ≥ 3, there exists two distinct sets

{a1, . . . , as}, {b1, . . . , bs} ⊆ Z

such that for all j = 1, . . . , k
s∑
i=1

aji =
s∑
i=1

bji

but
s∑
i=1

ak+1
i 6=

s∑
i=1

bk+1
i .

Moreover, s < (5/8)(k + 1)2.

We will need a useful corollary of this result.
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Corollary 37. For all k ≥ 2, there exists a monic polynomial f(x) having coefficients

only 0, 1,−1 having at most 2k2 nonzero terms such that f(x) vanishes at x = 1 to

order exactly k.

Proof. For k = 2, 3, verify the corollary by hand by considering (x − 1)(x2 − 1) and

(x − 1)(x2 − 1)(x4 − 1). For k ≥ 4, we use Theorem 36 as follows. Note that for

k ≥ 4, we have that k2 ≥ (5/8)(k + 1)2. Apply Theorem 36 to get two distinct sets

{a1, . . . , as} and {b1, . . . , bs} with the properties stated in the lemma. If these sets

are not in Z≥0, then let a := min{a1, . . . , as, b1, . . . , bs} otherwise, a := 0. Let

f(x) := x−a
s∑
i=1

xai − xbi .

Since the sets are distinct, it is clear that the polynomial is monic, has at most 2k2

nonzero terms, and only has coefficients 1, and −1. To see that f has the correct

order of vanishing at x = 1, we use the fact that f vanishes at x = 1 to order exactly

k if and only if f and its first k−1 derivatives vanish at x = 1, but the kth derivative

does not. Let 1 ≤ ` ≤ k − 1. Consider the `th derivative of f evaluated at x = 1:

f (`)(1) =
s∑
i=1

(ai − a) . . . (ai − (`− 1)− a)− (bi − a) . . . (bi − (`− 1)− a)

=
s∑
i=1

a`i − b`i + gk−1 · (a`−1
i − b`−1

i ) + . . .+ g1 · (ai − bi) + g0

where gi is some constant depending only on i and a. Since the ai, bi satisfy the

conditions of Theorem 36, the `th derivative is equal to zero if 1 ≤ ` ≤ k − 1.

Moreover, the kth derivative of f at x = 1 then simplifies to

f (k)(1) =
s∑
i=1

aki − bki 6= 0.

So f has a zero at x = 1 of order precisely k.

Lemma 38. For every k ∈ N, there exists an n0 = n0(k) such that if A ⊆ R is of

size n ≥ n0 and no dyadic interval [x, 2x) contains more than s elements of A, then,

|kA| �k
|A|k

sk
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Proof. Without loss of generality, we may assume half the elements of A are nonneg-

ative, else, replace A with −A and repeat the proof since |kA| = |k(−A)|. Denote

the nonnegative elements as A′ := {a1 < . . . < aN}, and let

B := {a2s, a4s, a6s, . . . , a(2bN
2s
c)s}.

Now, consider kB. Suppose

b1 + . . .+ bk = b′1 + . . .+ b′k. (9)

for some b1 < . . . < bk, b
′
1 < . . . < b′k ∈ B. We claim that this implies bi = b′i for

all i = 1, . . . , k. Let t ∈ {1, . . . , k} be the largest integer such that bt 6= b′t. Without

loss of generality, if bt > b′t, then in fact bt > 2b′t since they belong to nonconsecutive

dyadic intervals. Moreover,

b′1 + . . .+ b′t−1 + b′t ≤ b′t + b′t < bt < b1 + . . .+ bt.

Hence, all the sums b1 + . . .+ bk are unique, and so

|kA| ≥ |kB| =
(
|B|
k

)
�k |B|k �k

|A|k

sk
.

Let C ⊆ R. We call C0, . . . , Ck−1 a decreasing partition of C if

C =
k−1⋃
i=0

Ci

and for any distinct i, j ∈ {0, . . . , k− 1}, if i < j, then |c| > |d| for all c ∈ Ci, d ∈ Cj.

Lemma 39. Suppose that C ⊆ R− {0}, and let

1 = δ0 > δ1 > . . . > δk−1 > 0.

Moreover, suppose that C has the property that for any c > d ∈ C,

c

d
− 1 > 2k

δi
δi−1

. (10)
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for all i = 1, . . . , k−1. Then for any decreasing partition C0, . . . , Ck−1 of C, we must

have that the sums

c0δ0 + c1δ1 + . . .+ ck−1δk−1

are distinct for all (c0, c1, . . . , ck−1) ∈ C0 × C1 × . . .× Ck−1.

Proof. Suppose
k−1∑
i=0

ciδi =
k−1∑
i=0

c′iδi (11)

where ci, c
′
i ∈ Ci. Let j be the smallest integer in {0, . . . , k − 1} such that cj 6= c′j.

Hence, we need only consider

k−1∑
i=j

ciδi =
k−1∑
i=j

c′iδi (12)

We will now derive a contradiction proving no such j exists and so (11) only holds

when ci = c′i for all i. For a contradiction, suppose cj > c′j. Dividing by c′jδj on both

sides and rearranging, the sum becomes

cj
c′j
− 1 =

k−1∑
i=j+1

c′i − ci
c′j

· δi
δj
.

By (10), this implies that

k−1∑
i=j+1

c′i − ci
c′j

· δi
δj
> 2k

δj+1

δj
.

On the other hand, since the Ci form a decreasing partition,∣∣∣∣c′i − cic′j

∣∣∣∣ < 2

for all i ≥ j + 1. Also, since δj+1 > δ` > 0 for all ` > j + 1

δi
δj
<
δj+1

δj
.

So we get a contradiction since this would imply∣∣∣∣∣
k−1∑
i=j+1

c′i − ci
c′j

· δi
δj

∣∣∣∣∣ < 2k
δj+1

δj
.
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2.3.3 Finding a Long Geometric Progression in A/A

The following two lemmas are variants of Lemma 2 in the work of Croot and Hart

[9]. The first one is a repackaged version of the main idea in [10] which allows one

to combinatorially find long progressions in difference (or quotient) sets. The second

lemma builds upon the first by taking (N+1)-tuples and showing that one can project

them in a way that satsfies properties we will need later on.

Lemma 40. For any ε > 0 and any integer N ≥ 2, there exists a δ = δ(ε,N) > 0

such that if B ⊆ A ⊆ R with |B| ≥ |A|δ, |A.A| < |A|1+ε, and A sufficiently large,

then the following holds. There exists α ∈ R and θ ∈ B/B \ {1} such that there are

at least |A|N+2−7εN2
tuples (a, y0, . . . , yN) ∈ AN+2 such that

ayiθ
i ∈ αA

for all i = 0, . . . , N .

Proof. Let ε > 0, N ∈ N, and let δ = 7εN2. Let B ⊆ A ⊆ R be such that

|A.A| < |A|1+ε and |B| ≥ |A|δ. Consider the following set E:

{(b1, b2, a1, a2, u, v, y0, . . . , yN , z0, . . . , zN) ∈ B2 × A2N+6 : va1b
i
1zi = ua2b

i
2yi}.

For a vector t = (t0, . . . , tN) ∈ A(3) × A(4) . . .× A(N+3), let

r (t) := |{(b, v, a, z0, . . . , zN) ∈ B × AN+3 : vabizi = ti for i = 0, . . . , N}|.

Note that here is where we use the fact that B ⊆ A in order to assume that vabizi ∈

A(i+3). Now, one can use the Cauchy-Schwarz inequality to bound the size of E:

|E| =
∑
t

r(t)2 ≥ |B|2|A|2N+6

|A(3)||A(4)| . . . |A(N+3)|

By the Plünnecke-Ruzsa inequality, since |A.A| < |A|1+ε, we then have that for all i,

|A(i)| < |A|1+iε. Thus, for N ≥ 2,

|E| ≥ |B|2|A|N+5−ε(3+4+...+N+3) ≥ |B|2|A|N+5−6εN2

.
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We call a tuple in E trivial if b1 = b2 since this would lead to θ = 1. The number of

trivial solutions in E is at most |B||A|N+5. Hence, for our choice of δ = 7εN2 and A

sufficiently large, the number of nontrivial solutions is at least

|B|2|A|N+5−6εN2 − |B||A|N+5

By the pigeonhole principle, there exists a (b1, b2, u, v, a1) ∈ B2 × A3 such that there

are at least

1

|B|2|A|3
(
|B|2|A|N+5−6εN2 − |B||A|N+5

)
≥ |A|N+2−7εN2

tuples (a2, y0, . . . , yN , z0, . . . , zN) such that for i = 0, . . . , N

va1b
i
1zi = ua2b

i
2yi.

Rearranging the above, we get that

zi = a2
u

va1

(
b2

b1

)i
yi.

Letting α = va1
u

and θ = b2
b1

proves the lemma.

Lemma 41. Let N, ` ∈ N, ε > 0 and let c = 2`dlog2Ne. There exists an n0 =

n0(N, `, ε), δ = δ(ε,N) such that if A ⊆ R is of size n ≥ n0 then the following holds.

If |A.A| ≤ |A|1+ε, then for any B ⊆ A with |B| ≥ |A|δ there exist Y0, . . . , YN ⊆ A

such that

1. |Yi| ≥ |A|1−O(εcN4).

2. For any collection of subsets Y ′i ⊆ Yi satisfying |Y ′i | ≤ c there exists an α ∈ R,

θ ∈ B
B
\ {1}, and an A′ ⊆ A of size at least

√
|A| such that

ayiθ
i ∈ αA

for all a ∈ A′, yi ∈ Y ′i , i ∈ {0, . . . , N}.
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We first need a graph theoretic lemma. It is a slight variant of a lemma found in

the excellent survey by Fox and Sudakov about the technique of dependent random

choice [17]. For a graph G and T ⊆ G, let Γ(T ) denote the set of common neighbors

of T ; that is, the set of all vertices adjacent to every vertex in T .

Lemma 42. Let ν,m, r ∈ N. Let G = [X, Y ] be a bipartite graph with |E(G)| edges.

If there exists a t ∈ N such that

|E(G)|t

|X|t|Y |t−1
−
(
|Y |
r

)(
m

|X|

)t
≥ ν

then there exists a set of vertices in Y of size ν such that every r of them have at

least m common neighbors.

Proof. Let T ⊆ X be a set of t vertices chosen uniformly at random with repetition.

Let Γ(T ) denote the set of common neighbors of T , and let Z = |Γ(T )|. Then, by

linearity of expectation and Hölder’s inequality

E(Z) =
∑
y∈Y

P(T ⊆ N(y)) =
∑
y∈Y

(
|N(y)|
|X|

)t
≥ |E(G)|t

|X|t|Y |t−1
.

Now, let W be the random variable associated to the number of sets of r vertices in

Γ(T ) with less than m common neighbors. We want W to be small so that we may

modify all these deficient sets and prove the lemma. First, if a set S ⊆ Y is also a

subset of Γ(T ), then S is adjacent to every vertex in T by the definition of common

neighborhood. Hence, the common neighborhood of S, Γ(S), must contain T . The

probability that we chose only elements from Γ(S) when we chose T is(
|Γ(S)|
|X|

)t
Moreover, there are at most

(|Y |
r

)
such sets S if S has size r. Hence, the expected

number of sets of r vertices in Γ(T ) with less than m common neighbors can be

bounded as follows:

E(W ) ≤
(
|Γ(S)|
|X|

)t(|Y |
r

)
<

mt

|X|t

(
|Y |
r

)
.
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Therefore, there exists a choice of T such that

Z −W >
|E(G)|t

|X|t|Y |t−1
−
(
|Y |
r

)(
m

|X|

)t
≥ ν.

Let T be chosen such that the above holds. For each set S ⊆ Γ(T ) of size r with less

than m common neighbors, remove a vertex arbitrarily from S. After this process,

Γ(T ) still has at least ν vertices left, and every set of size r has at least m common

neighbors.

Proof of Lemma 41. Apply Lemma 40 to get an α ∈ R and a b1 > b2 ∈ B such that

there are |A|N+2−7εN2
tuples

T := (a, y0, . . . , yN) ∈ AN+2

such that

αayiθ
i ∈ A for i = 0, . . . , N (13)

where θ = b1/b2. Let G[X, Y ] be the bipartite graph defined by X = A, Y = AN+1,

and edges defined by the set T . Observe that for any constant r depending only on

` and N there exists a t and an ε such that if A is sufficiently large, then

|A|t(N+2−7εN2)

|A|t|A|(t−1)(N+1)
−
(
|A|N+1

r

)(
|A|t/2

|A|t

)
≥ |A|N+1−7εtN2 − |A|r(N+1)−t/2

≥ 1

2
|A|N+1−7εtN2

.

In particular, one may choose t = 2r(N + 1). Hence, we may apply Lemma 42 with

ν = 1
2
|A|N+1−28εrN3

, m = |A|1/2, and r = c(N + 1). Let Y ′ ⊆ Y denote the set found

by Lemma 42 with the specified property.

Each vertex v ∈ Y ′ is associated to a corresponding (N+1)-tuple; for i = 0, . . . , N ,

let Yi be the projection of Y ′ onto the ith coordinate axis. One can see that |Yi| ≥

|A|1−O(εcN4). Consider an arbitrary collection of subsets Y ′i ⊆ Yi satisfying |Y ′i | ≤ c.

Let yi,j ∈ Y ′i . Our goal is to show there is a fixed set A′ ⊆ A of |A|1/2 elements such

that (13) holds for all yi,j, a ∈ A′, i = {0, . . . , N}.

31



Since yi,j ∈ Y ′i ⊆ Yi, there exists a corresponding (N + 1)-tuple

(u0, u1, . . . , ui−1, yi,j, ui+1, . . . , uN) ∈ Y ′.

For each yi,j, arbitrarily choose such a tuple in Y ′, and denote the tuple as vi,j. Let

V be the collection of all such vi,j. So, letting |V | ≤ c(N + 1) be the constant r in

the application of Lemma 42, we can conclude that there is a set of |A|1/2 vertices

in X adjacent to every vertex in V . Let A′ be this set of |A|1/2 vertices. Hence,

there is a set of |A|1/2 elements such that for any yi,j ∈ Y ′i (13) holds for all a ∈ A′,

i ∈ {0, . . . , N}.

2.3.4 Intersections of Multifold Sumsets

We now prove the following lemma that gives us information when lots of multifold

sumsets intersect trivially. This lemma is what introduces a significant amount of

loss in the strength of our overall bound in Theorem 33 – that is, it is the main

obstruction in improving the exponent exp(c
√

log h) to some fixed power of h.

Lemma 43. Let A ⊆ R and `, t ∈ N. Let Ai ⊆ A for i = 1, . . . , 2t be such that

2t⋂
i=1

f(t, i)`g(t,i)Ai − f(t, i)`g(t,i)Ai = {0}.

Then, if |Ai| ≥ n, then there exists an i ∈ {2, . . . , t + 1} and an j ∈ {1, . . . , 2t} such

that

|(`i−1 + `i)A| ≥ n
1

3t+1 |`iAj|.

The functions f and g in the above lemma are defined as follows. For a ∈ N,

b = 1, . . . 2a, define f(a, b) recursively as follows:

f(1, 1) := 1, f(1, 2) := 2,

f(a, 2b− 1) := f(a− 1, b); b = 1, . . . , 2a−1 (14)

f(a, 2b) := 2f(a, 2b− 1) = 2f(a− 1, b); b = 1, . . . , 2a−1 (15)

32



For the benefit of the reader, we list the first few values of f(a, b):

f(1, 1) = 1; f(1, 2) = 2

f(2, 1) = 1; f(2, 2) = 2; f(2, 3) = 2; f(2, 4) = 4

f(3, 1) = 1; f(3, 2) = 2; f(3, 3) = 2; f(3, 4) = 4;

f(3, 5) = 2; f(3, 6) = 4; f(3, 7) = 4; f(3, 8) = 8

Observe that

f(a, b) = 2k for some k ≤ a. (16)

Denote g(a, b) := log2 f(a, b) + 1. Observe that by (15),

g(a, 2b) = g(a, 2b− 1) + 1 (17)

and by (16),

g(a, b) ≤ a+ 1. (18)

The following covering lemma, which is potentially of independent interest, is the

main tool in proving Lemma 43.

Lemma 44. For any X, Y in an abelian group G and any integer 1 ≤ K ≤
√
|X|,

there exists an X ′ ⊆ X such that either

1. |X ′| ≥ K and X ′ −X ′ ∩ Y − Y = {0}, or

2. |X ′| ≥ |X|
K

and X ′ −X ′ ⊆ 2Y − 2Y .

This follows quickly from the following graph theoretic lemma.

Lemma 45. For any graph G and any 1 ≤ K ≤
√
|G|, G contains an independent

set of size at least K or a vertex of degree at least |G|/K.

Proof. If G has a vertex of degree at least |G|/K, we are done. Hence, the maximum

degree of G, ∆(G) is less than |G|/K. By the greedy algorithm, we can find an

independent set of size ⌊
|G| − 1

∆ + 1

⌋
+ 1 =

⌊
|G|+ ∆

∆ + 1

⌋
. (19)
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If ∆ ≥ K, by the right hand side of (19), we can find an independent set of size⌊
|G|+ ∆

∆ + 1

⌋
>

⌊
|G|+ ∆
|G|
K

+ 1

⌋
=

⌊
K(|G|+ ∆)

|G|+K

⌋
≥ K.

If ∆ < K, then by the left hand side of (19), we can find an independent set of size⌊
|G| − 1

∆ + 1

⌋
+ 1 >

⌊
|G| − 1

K

⌋
+ 1.

Let |G| = q ·K + r where 0 ≤ r ≤ k − 1, and for any x ∈ R, let [x] = x− bxc denote

the fractional part of x. Then,⌊
|G| − 1

K

⌋
+ 1 =

|G| − 1

K
+ 1−

[
|G| − 1

K

]
=
|G|
K

+
K − 1

K
−
[
q +

r − 1

K

]
=
|G|
K

+
K − 1

K
−
[
r − 1

K

]
=
|G|
K

+
K − 1

K
− r − 1

K
>
|G|
K
≥ K.

Note that we used the fact that K ≤
√
|G| in the last inequality. Hence, we can find

an independent set of size K if ∆ < |G|/K.

Proof of Lemma 44. Let G = (V,E) be the graph defined by V (G) := X and {u, v} ∈

E(G) if u − v ∈ Y − Y . Observe that since Y − Y is symmetric, these edges are

undirected. If G contains an independent set X ′ of size at least K, for any distinct

u, v ∈ X ′, u− v /∈ Y − Y . Hence, X ′ −X ′ ∩ Y − Y = {0}. Otherwise, G contains a

vertex, a, of degree at least |X|
K

. Letting the neighborhood of this vertex be X ′, for

any u, v ∈ X ′, {u, a} and {a, v} are edges. Since u− v = u− a+ a− v, we have that

u− v ∈ 2Y − 2Y .

Proof of Lemma 43. We perform the following algorithm to find such an i, j as in the

conclusion of the lemma. We outline steps j = 0, . . . , t− 2.

Step 0: Let A0,i := `g(t,i)Ai. For i = 1, . . . , 2t−1, apply Lemma 44 with

X := A0,2i−1, Y := A0,2i, and K := K0 = n
1
3t ,
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and observe which case holds. If for any i, Case 1 holds, we halt since this implies

that there exists an X ′ ⊆ X with |X ′| ≥ n
1
3t and

|(`g(t,2i−1) + `g(t,2i))A| ≥ |A0,2i−1 + A0,2i| ≥ |X ′ + Y | = |X ′||Y | ≥ n
1
3t |`g(t,2i)A2i|.

This satisfies the conclusion of the lemma with k = g(t, 2i) and j = 2i. Hence, we

may assume Case 2 holds for all i. Therefore, there exists an X ′ ⊆ X such that

X ′ − X ′ ⊆ 2Y − 2Y . Adding X ′ − X ′ to itself multiple times also implies for any

positive integer s, sX ′ − sX ′ ⊆ 2sY − 2sY . In particular for s = f(t, 2i− 1),

f(t, 2i− 1)X ′ − f(t, 2i− 1)X ′ ⊆ 2f(t, 2i− 1)Y − 2f(t, 2i− 1)Y

= 2f(t, 2i− 1)A0,2i − 2f(t, 2i− 1)A0,2i (20)

= f(t, 2i)A0,2i − f(t, 2i)A0,2i.

where we used (15) in the last equality. Also,

f(t, 2i− 1)X ′ − f(t, 2i− 1)X ′ ⊆ f(t, 2i− 1)X − f(t, 2i− 1)X

= f(t, 2i− 1)A0,2i−1 − f(t, 2i− 1)A0,2i−1

(21)

Letting A1,i := X ′, we then have that by (14), (20), and (21)

2t−1⋂
i=1

f(t− 1, i)A1,i − f(t− 1, i)A1,i ⊆
2t⋂
i=1

f(t, i)A0,i − f(t, i)A0,i

=
2t⋂
i=1

f(t, i)`g(t,i)Ai − f(t, i)`g(t,i)Ai = {0}.

And we also have that

|A1,i| ≥
|A0,2i−1|
K0

.

The next steps, Steps j = 1, . . . , t − 2, are iterations of this argument with a very

slight change in the choice of X and Y in the application of Lemma 44.

Step j: For 1 ≤ j ≤ t− 2, let Aj,i ⊆ Aj−1,2i−1 be as specified in Step (j-1) of the

algorithm. In particular, Aj,i satisfies

|Aj,i| ≥
|Aj−1,2i−1|
Kj−1

.

35



An easy inductive argument shows that there exists an r such that

Aj,i ⊆ Aj−1,2i−1 ⊆ . . . ⊆ A0,r ⊆ `g(t−j,i)Ar. (22)

where we draw the reader’s attention to the fact that the subscript Aj,i determines

the exponent at the end, g(t − j, i). For i = 1, . . . , 2t−j−1, apply Lemma 44 with

X = Aj,2i−1, Y = Aj,2i, K := Kj = n
1

3t−j . We first check that K ≤
√
X. We have

that

|X| ≥ n

K0K1 · . . . ·Kj−1

= n1−
∑t
i=t−j+1 3−i ≥

√
n.

On the other hand, since j ≤ t− 2,

K = n
2

3t−j ≤ n
2
9 ≤ n

1
4 ≤

√
|X|.

Now, observe which case holds in our application of Lemma 44. If for any i, Case 1

holds, we halt since by Lemma 35 this implies that

|X ′ + Y | = |X ′||Y | ≥ Kj|Aj,2i|

≥ Kj

Kj−1

|Aj−1,4i−1|

...

≥ Kj

Kj−1Kj−2 . . . K0

|A0,r|

≥ n
1

3t+1 |`g(t−j,2i)Ar|.

(23)

On the other hand, using (22) and (17), we have

|X ′ + Y | ≤ |X + Y | = |Aj,2i−1 + Aj,2i|

≤ |Aj−1,4i−3 + Aj−1,4i−1|
...

≤ |A0,r′ + A0,r| ≤ |(`u + `u+1)A|

(24)

for u = g(t− j, 2i− 1) and some integer r′. Combining (23) and (24) shows that we

have satisfied the conclusion of the Lemma.
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Hence, we may assume Case 2 holds for all i. Therefore, there exists an X ′ ⊆ X

with |X ′| ≥ |X|/Kj such that X ′−X ′ ⊆ 2Y −2Y . Moreover, for any positive integer

s, sX ′ − sX ′ ⊆ 2sY − 2sY . For s = f(t− j − 1, i)

f(t− j − 1, i)X ′ − f(t− j − 1, i)X ′ ⊆ 2f(t− j − 1, i)Y − 2f(t− j − 1, i)Y

= 2f(t− j − 1, i)Aj,2i − 2f(t− j − 1, i)Aj,2i

(25)

= f(t− j, 2i)Aj,2i − f(t− j, 2i)Aj,2i.

where we used (14) in the last equality. Also,

f(t− j − 1, i)X ′ − f(t− j − 1, i)X ′ ⊆ f(t− j − 1, i)X − f(t− j − 1, i)X

= f(t− j, 2i− 1)Aj,2i−1 − f(t− j, 2i− 1)Aj,2i−1

(26)

Letting Aj+1,i := X ′, we then have that by (15), (25), and (26)

2t−j−1⋂
i=1

f(t− j−1, i)Aj+1,i−f(t− j−1, i)Aj+1,i ⊆
2t−j⋂
i=1

f(t− j, i)Ai−f(t− j, i)Ai = {0}.

We now proceed to Step j+1 with Aj+1,i, i = 1, . . . , t− j − 1.

Step t – 1: If we have not halted, then at this point, we only have 2 sets,

At−1,1, At−1,2, such that

f(1, 1)At−1,1 − f(1, 1)At−1,1 ∩ f(1, 2)At−1,2 − f(1, 2)At−1,2 = {0}.

Since f(1, 1) = 1, f(1, 2) = 2, and

At−1,1 − At−1,1 ∩ At−1,2 − At−1,2 ⊆ At−1,1 − At−1,1 ∩ 2At−1,2 − 2At−1,2 = {0}

we then have by Lemma 35

|At−1,1 + At−1,2| = |At−1,1||At−1,2|.
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Tracing back our steps in the algorithms as we did in (23) and (24), we get that

|At−1,1||At−1,2| ≥
|At−2,1||At−2,3|

K2
t−1

≥ |At−3,1||At−3,5|
K2
t−1K

2
t−2

≥ |At−3,1||At−3,9|
K2
t−1K

2
t−2K

2
t−3

...

≥
|A0,1||A0,2t−1+1|

K2
t−1K

2
t−2K

2
t−3 . . . K

2
0

≥ n
1

3t+1 |`2A2t−1+1|

(27)

Note that we used the fact that |A0,1| ≥ n in the last inequality. On the other hand,

|At−1,1 + At−1,2| ≤ |At−2,1 + At−2,3| ≤ |At−3,1 + At−3,5|
...

≤ |A0,1 + A0,2t−1+1|

≤ |`A1 + `2A2t−1+1| ≤ |(`+ `2)A|

(28)

Combining (27) and (28) completes the proof of the lemma.

2.3.5 Proof of Main Theorem

The proof of our main theorem is iterative. The argument splits into two cases: in one

case, we prove our bound directly similar to [9]; the other case we have to iteratively

use Lemma 43 to get a small amount of growth each iteration while passing to subsets

of our original set. After enough iterations, we prove our bound.

Proposition 46. Let h ∈ N. Let

k := exp

√
1

100
log

h

2
and ` := k8.

There exists an ε′ := ε′(h) such that for any 0 < ε < ε′ there exists an n0 := n0(ε, h)

such that if A ⊆ R is of size n ≥ n0 and |A.A| ≤ |A|1+ε, then either

|hA| ≥ |A|Ω(k)

or there exists an A′ ⊆ A and a c := c(h) such that |A′| ≥ |A|1−cε, and

|(`i + `i−1)A| �h |A|
1

22k6 |`iA′|
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for some i ∈ {2, . . . , log (8k5) + 1}.

Proof of Proposition 46. Let A ⊆ R be such that |A.A| ≤ |A|1+ε. Let k, ` be constants

depending on h as specified in the statement of the proposition. Apply Corollary 37

to get a set of polynomials fj(x) for j = 2, . . . , k − 1 such that each polynomial has

coefficients in {−1, 0, 1}, fj(x) has a root at x = 1 of order exactly j, and fj(x) has

at most 2j2 ≤ 2k2 nonzero terms. Let f0(x) := 1, and f1(x) := x− 1.

N := max
j
{deg(fj) : j = 0, . . . , k − 1}

and let S ⊆ {0, . . . , N} be such that i ∈ S if and only if there is an fj(x) such that

the coefficient of xi is nonzero. Let M := |S| and observe that M ≤ 2k3.

Denote A := {a1 < . . . < an}, let 0 < δ < 1/4 be a parameter chosen later, and

let s := bnδc. Let

B′ := {ai, ai+1, . . . , ai+s−1}

be chosen such that ai+s−1/ai is minimal. By Lemma 38, if no dyadic interval contains

more than s elements of A, we are done. Hence, B′ ⊆ [x, 2x) for some x ∈ R. Let

0 < γ < 1 be a small constant depending on h to be chosen later. There exists a

subinterval

[y, y + γx) ⊆ [x, 2x)

with at least γs elements of A in it. Let B be the intersection of A with this subin-

terval. So B ⊆ A has the properties that |B| ≥ γs and for any b, b′ ∈ B,∣∣∣∣ bb′ − 1

∣∣∣∣ < γ.

The latter property will be important when we later consider polynomials with roots

at 1 evaluated at b
b′

.

Apply Lemma 41 with N, `, ε, B to find a set of Yi ⊆ A, α ∈ R, θ ∈ B/B, satisfying

the conclusion of the lemma. We will discard some of the sets from Y0, . . . , YN in the

39



following way. If i /∈ S, then we throw out Yi. Abusing our notation, relabel the

remaining sets as Y1, . . . , YM . Let t = dlog2Me ≤ dlog2 2k3e. If

M⋂
i=1

`tYi − `tYi = {0}

then we may apply Lemma 43 to conclude that there exists an i ∈ {2, . . . , t+ 1} and

a j ∈ {1, . . . , 2t} such that for ε sufficiently small,

|(`i−1 + `i)A| ≥ (n1−O(εcN4))
1

3t+1 |`iYj| ≥ |A|
1

22k6 |`iYj|.

This satisfies the second conclusion of the proposition, so we may assume that there

exists a nonzero β in the above intersection. That is, a nonzero β such that for

i = 1, . . . ,M ,

β =
`t∑
j=1

yi,j −
2`t∑

j=`t+1

yi,j

where yi,j ∈ Yi. Letting Y ′i := {yi,j : j = 1, . . . , 2`t}, by the conclusion of Lemma 41,

there exists an A′ ⊆ A of size at least |A|1/2 such that

ayi,jθ
i ∈ αA for i = 1, . . . ,M , and any a ∈ A′. (29)

Denote A′ := {a1 < a2 < . . . < a|A′|}, and let C := {ai1 , ai2 , . . . , air} where

ij = jbn1/4c and r =

⌊
|A′|
n1/4

⌋
.

This ensures that we have

c

c′
> θ for any c, c′ ∈ C (30)

by our choice of B′ along with the fact that s < bn1/4c. Decompose C into disjoint

sets C0, . . . , Ck−1 where all elements of Ci are greater than all elements of Cj for i < j,

and for all i = 0, . . . , k − 2, |Ci| = b|C|/kc. For i = 0, . . . , k − 1, let δi := fi(θ). Now

consider sums of the form

Σ = {β(c0δ0 + c1δ1 + . . .+ ck−1δk−1) : ci ∈ Ci}. (31)
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We verify that C and δi satisfy the requirements of Lemma 39 as follows. Since

δi
δi−1

=
fi(x)

fi−1(x)
= (x− 1)

gi(x)

gi−1(x)

where the coefficients of gi and gi−1 depend only on k, we may choose γ small enough

such that

θ − 1 <
gi−1(θ)

gi(θ)
.

So we have that δi−1 > δi for all i = 1, . . . , k − 1. Let c, d ∈ C. From (30), we have

that c
d
> θ. However, by choosing δ small enough, we can assume that in fact c

d
> θr

for some r = r(k) to be specified later. Hence,

c

d
− 1 > θr − 1 = (θ − 1)(1 + θ + . . .+ θr−1) ≥ (θ − 1)r.

By choosing r > 2k · gi(θ)
gi−1(θ)

, we have

c

d
− 1 ≥ (θ − 1)2k · gi(θ)

gi−1(θ)
= 2k

δi
δi−1

.

So by Lemma 39, all the sums of the form (31) are distinct, and so

|Σ| ≥
k−1∏
i=0

|Ci|.

We can rewrite (31) by grouping like powers of θ as

β

[(
k−1∑
i=0

ε0,ici

)
θ0 +

(
k−1∑
i=0

ε1,ici

)
θ1 + . . .+

(
k−1∑
i=0

εM,ici

)
θN

]
where εi,j ∈ {−1, 0, 1}. Recall that S is the set of powers of θ that have at least one

nonzero coefficient in some polynomial fj. Denoting S as i1 < i2 < . . . < iM , we can

rewrite the above as

β

[(
k−1∑
i=0

εi1,ici

)
θi1 +

(
k−1∑
i=0

εi2,ici

)
θi2 + . . .+

(
k−1∑
i=0

εiM ,ici

)
θiM

]
.

Distribute β to each summand, and expand it uniquely for each power of θ to get

=
k−1∑
j=0

`t∑
i=1

εi1,jcj(y1,i − y1,`t+i)θ
i1 + . . .+

k−1∑
j=0

`t∑
i=1

εiM ,jcj(yM,i − yM,`t+i)θ
iM (32)
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Since our choices of θ and yi,j satisfy (29), we have that each element in this sum is

in ±α ∗ A. Hence, we have that for `1, `2 large enough,

|`1(α ∗ A)− `2(α ∗ A)| = |`1A− `2A| ≥
k−1∏
i=0

|Ci| ≥
⌊
|C|
k

⌋k−1

�k |A|
k−1
4 .

Recall that ` = k8, M ≤ 2k3, and t = dlog2Me ≤ dlog2 2k3e ≤ loge 8k5. Also, recall

that M is the number of powers of θ that occur in σ. Each θ has at most k coefficients,

and β ∈ `tA− `tA. So, we have at most kM · 2`t nonzero terms in σ ∈ Σ. We bound

this as

kM · 2`t ≤ 2k4k8 loge 8k5 ≤ 2k100 log k

So, choosing k := exp
√

1
100

log h
2

proves our proposition:

|hA| ≥
√
|hA− hA| ≥ |A|Ω(exp

√
1

100
log h)

2.3.6 The Iterative Case

We are now able to prove Theorem 33.

Proof of Theorem 33. We iteratively apply Proposition 46 in the following algorithm.

Step 0: Let k and ` be functions of h as specified in the statement of Proposition 46,

and let 0 < ε < ε′ where ε′ is some unspecified function of h taken to be sufficiently

small. Let `0 := `, A0 := A, and ε0 := ε. Since |A0.A0| ≤ |A0|1+ε0 , we may apply

Proposition 46 to A0. If |hA0| ≥ |A0|Ω(k), then we are done. Else, there exists an

i ∈ {2, . . . , loge (8k5) + 1} and an A′0 ⊆ A0 such that

|(`i + `i−1)A0| �h |A0|
1

22k6 |`iA′0| and |A′0| ≥ |A0|1−cε

where c is a constant depending on h. Let A1 := A′0 and continue to Step 1.

For j = 1, . . . , 1
2
`, we do the following.

Step j: Let Aj be as specified in the previous step. Since

|Aj.Aj| ≤ |Aj−1.Aj−1| ≤ |Aj−1|1+εj−1 ≤ |Aj|
1+εj−1
1−cεj−1 ≤ |Aj|1+2cεj−1
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where we assumed εj−1 is sufficiently small in the last inequality. Let εj := 2cεj−1.

Let `j := `− j. This determines hj and kj as

hj = e
25
36

(log (`−j))2 ; kj = (k8 − j)1/8.

Applying Proposition 46 to Aj with and hj, we get that either

|hA| ≥ |hjAj| ≥ |Aj|Ω(kj) ≥ |Aj|Ω((k8−j)1/8) = |Aj|Ω(k) ≥ |A|(1−(2c)jε)·Ω(k) = |A|Ω(k)

which proves the theorem for ε sufficiently small – so we exit the algorithm. Or, there

exists an A′j ⊆ Aj of size |A′j| ≥ |Aj|1−cεj and a tj ∈ {2, . . . , log (8k5) + 1} such that

|(`tjj + `
tj−1
j )Aj| ≥ |Aj|

1

22k6
j |`tjj A′j| ≥ |Aj|

1
22k6 |`tjj A′j| ≥ n

1
23k6 |`tjj A′j|

where we used the fact that ε is sufficiently small and n is sufficiently large depending

on h in the last inequality. Letting Aj+1 := A′j we continue to Step j + 1.

Analysis of Algorithm: Since `j = ` − j, and we perform at most `/2 steps,

`j ≥ `/2. Assume the algorithm runs and finishes Step `/2. Each step in the algorithm

produces a tj ∈ {2, . . . , log (8k5) + 1}. By averaging, there is some integer s ∈

{2, . . . , log (8k5)+1} that appears in the algorithm at least `
2(log (8k5)+1)

times. Denote

j1, . . . , jq as the steps in which s is chosen. It is easy to verify that by the definition

of `j,

`2
j + `j ≤ `2

j−1,

and so we must also have that

`sj + `s−1
j ≤ `2

j−1 · `s−2
j ≤ `sj−1.

So,

|(`sj1 + `s−1
j1

)Aj1| ≥ n
1

23k6 |`sj1A
′
j1
| ≥

≥ n
1

23k6 |(`sj2 + `s−1
j2

)Aj2| ≥ n
2

23k6 |`sj2A
′
j2
| ≥

...

≥ n
q

23k6 |(`sjq + `s−1
jq

)Ajq | ≥ n
`

2(log (8k5)+1)
· 1
23k6 = nΩ(k)
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where we used the fact that q ≥ `
2(log (8k5)+1)

and ` = k8 in the last inequality. Since

`sj1 ≤ `log 8k5 ≤ k8(log 8k5) ≤ k100 log k = h

we have that

|hA|2 ≥ |(`sj1 + `s−1
j1

)Aj1| ≥ nΩ(k)

proving our theorem.
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CHAPTER III

ORDER-PRESERVING FREIMAN ISOMORPHISMS

Let G1 and G2 be additive groups, and let A ⊆ G1 and B ⊆ G2. A Freiman k-

homomorphism is a map φ : A→ B such that

φ(x1) + . . .+ φ(xk) = φ(y1) + . . .+ φ(yk)

whenever

x1 + . . .+ xk = y1 + . . .+ yk.

Such a map φ is called a Freiman k-isomorphism if the converse holds as well. If A

and B have an ordering, then φ is order-preserving when

φ(a) < φ(b) if and only if a < b.

A Freiman 2-isomorphism will frequently be refered to as just a Freiman isomorphism.

Freiman isomorphisms are used to transfer an additive set A in some arbitrary abelian

group into a more amenable ambient group or set (such as R, ZN , or [1, n]) while

preserving the additive structure of A. We refer the interested reader to Chapter 5

of [31] for a detailed exposition on the various uses of Freiman isomorphisms.

The main tool we introduce in this paper allows one to find an order-preserving

Freiman isomorphism from a set of n integers to the interval [−cn, cn] ∩ Z where c

is not too large provided that the original set is additively structured. We call this

tool a ‘Condensing Lemma’ since, in a sense, it allows one to view sets with small

doubling as dense subsets of an interval.

Theorem 47. [Condensing Lemma] For any K > 0, there exists a c1, c2 such that if

A ⊆ Z is such that |A+A| ≤ K|A| then the following holds: there exists A′ ⊆ A with
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|A′| ≥ c1|A|, and there exists an order-preserving Freiman 2-isomorphism φ : A′ →

[−c2|A′|, c2|A′|] ∩ Z.

Since the constants c1 and c2 depend exponentially on K, we do not bother spec-

ifying their exact value. In order to prove the Condensing Lemma, we need a version

of the so-called Bogolyubov-Ruzsa lemma which guarantees us a large generalized

arithmetic progression G in 2A− 2A when A has a small doubling. For more on this

important result, we refer the reader to the recent work by Sanders [26] who gives

the best-known bounds for the constants c1, c2, and c3 stated below.

Theorem 48 (Bogolyubov-Ruzsa Lemma). Suppose A ⊆ Z satisfies |A+A| ≤ K|A|.

Then, there exists absolute constants c1, c2, c3 dependent only on K such that 2A−2A

contains a proper, symmetric, generalized arithmetic progression G of dimension at

most c1 and size at least c2|A|. Moreover, for each x ∈ G, there are at least c3|A|3

quadruples (a, b, c, d) ∈ A4 with x = a+ b− c− d.

Along with the Plünnecke-Ruzsa estimates, one can also deduce that |G| ≤ K4|A|.

Theorem 49 (Plünnecke-Ruzsa Inequality [31]). If |A + A| ≤ K|A|, then for any

positive integers `,m, we have that |`A−mA| ≤ K`+m|A|.

For our purposes, we will define a generalized arithmetic progression G as G =

{
∑k

i=1 xidi : |xi| ≤ Li}. The proof of the Condensing Lemma consists of first

applying Sanders’ theorem so that we may approximate A by a generalized arith-

metic progression G. Then, after passing to certain subsets, we use some techniques

from convex geometry to show that there is a generalized arithmetic progression

G′ = {
∑k

i=1 xid
′
i : |xi| ≤ Li/4} that shares the additive properties of G and is con-

tained in an interval of length O(|G|).

After we prove the Condensing Lemma, we provide some applications. Let A =

{a1 < a2 < . . . < an} be a finite subset of the integers, and denote the indexed energy
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of A as

EI(A) := {(i, j, k, l) : ai + aj = ak + al and i+ j = k + l}.

The reader may be more familiar with the additive energy of a set which can be used

to control the size of the sumset:

E(A) = |{(i, j, k, l) : ai + aj = ak + al}| ≥
|A|4

|A+ A|
.

We determine the precise relationship between E(A) and EI(A). Although the in-

dexed energy of a set has not been directly studied, the additive properties of a set

and how they interact with the related indices has appeared in various forms. Soly-

mosi [27] studied the situation when ai + aj 6= ak + al for i− j = k− l = c for a fixed

constant c, and in particular when a set A has the property that ai+1 +ai 6= aj+1 +aj

for all pairs i, j. Brown et al [5] asked if one finitely colors the integers {1, . . . , n},

must one be forced to find a monochromatic ‘double’ 3-term arithmetic progression

ai + aj = 2ak where i+ j = 2k?

Layout and Notation. In section 2, we state some basic notions from convex

geometry, and then we prove the Condensing Lemma. In section 3, we study the

indexed energy of a set, providing both an extremal construction of a set with large

additive energy and small indexed energy as well as proving a Balog-Szemerédi-Gowers

type theorem to find a subset with large indexed energy. Section 4 contains further

applications and conjectures related to the Condensing Lemma as well as the indexed

energy.

We write [a, b] for [a, b] ∩ Z, and similarly for [a, b), (a, b), and (a, b]. For two

functions f, g, we write f � g if f(n) ≥ cg(n) for some constant c and n sufficiently

large. We write f �K g if c is allowed to depend on K. The doubling constant

of a set A is |A+A|
|A| . A set has small doubling if its doubling constant is O(1). A

generalized arithmetic progression G is a set {a+ x1d1 + . . . xkdk : |xi| ≤ Li}; we call

k the dimension of G; |G| is the volume of G. Moreover, G is proper if the volume of
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G is maximal – (2Li + 1)k.

3.1 Condensing Lemma

The following lemma in conjunction with Theorem 48 will allow us to prove Theo-

rem 47.

Lemma 50. Let G and G′ be proper generalized arithmetic progressions of the form

G := {
k∑
i=1

aidi : |ai| ≤ Li} and G′ := {
k∑
i=1

aidi : |ai| ≤ 4Li}

where ai, di ∈ Z. Then, there exists a constant c = c(k), d′1, . . . , d
′
k ∈ Z, and a map φ

with the following properties:

1. φ(
∑k

i=1 aidi) =
∑k

i=1 aid
′
i for |ai| ≤ Li.

2. φ is an order-preserving Freiman 2-isomorphism.

3. For any x ∈ G, |φ(x)| ≤ c|G|.

In order to prove this lemma we need some definitions and results from convex

geometry, from which we refer the reader to [3] as a reference.

3.1.1 Convex Geometry

A set K ⊂ Rn is said to be a convex cone if for all α, β ≥ 0 and x,y ∈ K we have

αx + βy ∈ K.

Fact 51. The set of solutions to the system of linear inequalities

k∑
i=1

ai,jxi > 0; ai,j ∈ R and j = 1, . . . , n (33)

is a convex cone.

Proof. Let x and y be solutions to the system of linear inequalities defined above and

let α, β ≥ 0. It is trivial to verify that αx and x + y are also solutions to (33).
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For points x1, . . . ,xm ∈ Rn and non-negative real numbers α1, ..., αm, the point

x =
m∑
i=1

αixi

is called a conic combination of the points x1, ...,xm. The set co(D) is defined as all

conic combinations of points in D ⊂ Rn and is called the conical hull of the set D.

For a non-zero x ∈ Rn the conical hull of x is called a ray spanned by x. A ray R of

the cone K is called an extreme ray if whenever αx + βy ∈ R for α > 0, β > 0 and

x,y ∈ K then x,y ∈ R. An extreme ray is a 1-dimensional face of the cone. A set

B ⊂ K is called a base of K if 0 /∈ B and for every point x ∈ K, x 6= 0, there is a

unique representation x = λy with y ∈ B and λ > 0.

Fact 52. Let

A := {(x1, . . . , xk) ∈ Rk :
k∑
i=1

ai,jxi > 0 for j = 1, . . . , `}

be the solution set to a system of linear inequalities in Rk with a nonempty set of

solution space in the positive quadrant of Rk. Then, the closure of A has a compact

base.

Proof. Observe that A is an open set, and since there is at least one solution, it is

nonempty. By Fact 51, A is also a convex cone. Let cl(A) be the closure of A, and

let H := {(x1, . . . , xk) ∈ Rk : x1 + . . . + xk = 1}. We claim that B := cl(A) ∩ H is

a compact base of cl(A). Clearly B is a subset of cl(A) − {0}. Let y ∈ cl(A) and

consider the line λy. Since A is a convex cone, this line is contained in cl(A) for all

λ ≥ 0. If this line intersects B, then B must be a compact base, but clearly it does

at λ = 1
y1+...+yk

.

Theorem 53 (Cor. 8.5 [3]). If K is a convex cone with a compact base. Then every

point x ∈ K can be written as a conic combination

x =
m∑
i=1

λixi, λi ≥ 0, i = 1, ...,m,

where the xi each span an extreme ray of K.

49



Lastly, we need the well-known linear algebraic result known as Cramer’s rule.

Theorem 54 (Cramer’s Rule). Let A be a k × k matrix over a field F with nonzero

determinant. Then, Ax = b has a unique solution given by

xi =
det(Ai)

det(A)
i = 1, . . . , k

where Ai is obtained by replacing the ith column in A with b.

The broad idea of the proof of Lemma 50 is as follows. We are given a generalized

arithmetic progression G := {
∑k

i=1 aidi : −Li ≤ yi ≤ Li}. In a sense, this can be

indentified with the point (d1, . . . , dk). What we would like to find is another gener-

alized arithmetic progression, H := {
∑k

i=1 bid
′
i : −L′i ≤ bi ≤ L′i} which maintains the

same additive structure as G, but is much more compact. Viewed another way, we

want to find a point (d′1, . . . , d
′
k) much closer to the origin than (d1, . . . , dk) that also

satisfies certain inequalities (these are what maintain the additive structure). Hence,

we reduce our problem to finding an integer solution, relatively close to the origin, to

a set of linear inequalities.

3.1.2 Proof of the Condensing Lemma

The crux in the proof of the Condensing Lemma is to first prove it for generalized

arithmetic progressions; that is, to first prove Lemma 50.

Proof of Lemma 50. Given G as in the statement of the Lemma, consider the follow-

ing set of inequalities:

{
k∑
i=1

aixi > 0 : a1d1 + . . .+ akdk > 0;−4Li ≤ ai ≤ 4Li}. (34)

We will first prove that if (d′1, . . . , d
′
k) is an integer solution to the above system of

inequalities, then the map φ : G→ Z defined by

φ

(
k∑
i=1

aidi

)
=

k∑
i=1

aid
′
i
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is an order-preserving Freiman 2-isomorphism.

To see that φ is order-preserving, if

k∑
i=1

aidi <

k∑
i=1

bidi

for two elements in G, then
k∑
i=1

(bi − ai)xi > 0

is one of the inequalities in (34) that (d′1, . . . , d
′
k) must satisfy; so

φ

(
k∑
i=1

aidi

)
=

k∑
i=1

aid
′
i <

k∑
i=1

bid
′
i = φ

(
k∑
i=1

bidi

)
.

For the converse, if
k∑
i=1

aid
′
i <

k∑
i=1

bid
′
i (35)

and
k∑
i=1

(bi − ai)di ≤ 0,

then we get a contradiction as follows. First, if

k∑
i=1

(bi − ai)di = 0,

then bi = ai because G is a proper generalized arithmetic progression. Hence, (35)

cannot hold in this case. If

k∑
i=1

(bi − ai)di < 0, then
k∑
i=1

(ai − bi)di > 0

which implies that
k∑
i=1

(ai − bi)xi > 0

is an inequality in (34) satisfied by (d′1, . . . , d
′
k), again contradicting (35).

If we have points in G such that

k∑
i=1

aidi +
k∑
i=1

bidi =
k∑
i=1

sidi +
k∑
i=1

tidi

51



then
k∑
i=1

(ai + bi)di =
k∑
i=1

(si + ti)di. (36)

Moreover, |ai + bi|, |si + ti| ≤ 2Li. Hence, each side of (36) corresponds to an element

in G′, and by the fact that G′ is proper, we must have that ai + bi = si + ti for

i = 1, . . . , k. This implies that indeed, φ is a Freiman 2-homomorphism:

k∑
i=1

aid
′
i +

k∑
i=1

bid
′
i =

k∑
i=1

sid
′
i +

k∑
i=1

tid
′
i. (37)

For the converse, if (37) holds and (36) does not, then without loss of generality, we

may assume
k∑
i=1

(ai + bi − si − ti)di > 0.

However, ai + bi − si − ti ∈ [−4Li, 4Li], and so the inequality

k∑
i=1

(ai + bi − si − ti)xi > 0

is satisfied by (d′1, . . . , d
′
k) which contradicts (37). This proves φ is a Freiman 2-

isomorphism.

Now, we bound the image of φ. Consider the system of inequalities defined in

(34); by Fact 51 the solution space forms a convex cone. Moreover, this interior is

nonempty since there is a solution – (d1, . . . , dk). Also, xi > 0 is one of our inequalities

for all i = 1, . . . , k so the solution space is in the positive quadrant of Rk. Let K be the

closure of the cone defined by the inequalities in (34). By Fact 52, K has a compact

base. So, we may apply Theorem 53 to conclude that each x ∈ K can be represented

as conic combinations of the points on its extreme rays. Because all extreme rays have

dimension 1, they are each intersections of k − 1 linearly independent hyperplanes

corresponding to the system (34). For each extreme ray, we show how to find an

integer point on it; then, taking a conic combination of these integer points will allow

us to find an integer point in the interior of the cone.
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Let the following hyperplanes define one of our extreme rays:

{ai,1x1 + . . .+ ai,kxk = 0 : i = 1, . . . , k − 1}. (38)

This system of equations will have all the points along our extreme ray as a solution.

Hence, we may treat one of the variables xi as a free variable while the other variables

depend on it. Without loss of generality, assume that xk is the free variable, and let

us solve the system for the case when xk = 1. We will use Cramer’s rule. Let

∆ :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 . . . a1,k−1

a2,1 . . . a2,k−1

...

ak−1,1 . . . ak−1,k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
and let ∆i be the determinant of the same matrix with the ith row and column

replaced by −aj,k for j = 1, . . . , k − 1:

∆i :=

∣∣∣∣∣∣∣∣∣∣
a1,1 . . . a1,i−1 −a1,k a1,i+1 . . . a1,k−1

...
. . .

ak−1,1 . . . ak−1,i−1 −ak−1,k ak−1,i+1 . . . ak−1,k−1

∣∣∣∣∣∣∣∣∣∣
.

By Cramer’s rule, the solution to the system is given by xi = ∆i

∆
for i = 1, . . . , k − 1.

By instead choosing xk = c instead of xk = 1, we see that we can require that any

multiple of this is also a solution to (38). Hence, (|∆1|, . . . , |∆k−1|, |∆|) is an integer

solution to our system that lies along our edge. For convenience, let ∆k := ∆.

Now, we may get such an integer solution for each of our extreme rays. Because

cone K has interior points, then not all extreme rays belong to the same face, in

particular, we may take a set of k + 1 of such rays that do not all lie along the same

face and get k+1 integer solutions as we did above. Call these solutions p1, . . . ,pk+1.

We can bound the entries of pi by using a trivial bound on the determinant of our

matrices formed above. We have that for i = 1, . . . , k, since each entry |ai,j| ≤ 4Lj,
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the determinant is bounded as follows:

|∆i| ≤ 4kk!
∏
j 6=i

Lj

Moreover, the sum, p1 + . . .+pk+1 =: (d′1, . . . , d
′
k) does not belong to any of the faces

of K; so, it belongs to the interior of the cone, and hence, satisfies (34). Lastly, this

implies that the image of φ is bounded as follows:∣∣∣∣∣φ
(

k∑
i=1

yidi

)∣∣∣∣∣ =

∣∣∣∣∣
k∑
i=1

yid
′
i

∣∣∣∣∣ ≤
∣∣∣∣∣
k∑
i=1

Lid
′
i

∣∣∣∣∣ ≤
∣∣∣∣∣
k∑
i=1

Li(k + 1)(4kk!
∏
j 6=i

Lj)

∣∣∣∣∣
≤ (k + 1)!4k

k∏
j=1

Lj.

So if g ∈ G′, φ(g) ∈ [−4k(k + 1)!|G|, 4k(k + 1)!|G|].

The proof of Theorem 47 follows easily from applying Theorem 48 to a set with

small doubling. We need the following trivial fact.

Fact 55. Let φ1 be an order-preserving Freiman isomorphism, and let φ2(x) = x+ a.

Then φ2, φ1 ◦ φ2 and φ2 ◦ φ1 are order-preserving Freiman isomorphisms.

Proof of Theorem 47. Let A ⊆ Z be such that |A + A| ≤ K|A|. All constants ci in

the following depend only on K. We may apply Theorem 48 to A to get a generalized

arithmetic progression G ⊆ 2A− 2A with |G| ≥ c1|A|, dimension at most c2, and for

each x ∈ G, there are at least c3|A|3 quadruples (a, b, c, d) ∈ A4 with x = a+b−(c+d).

Hence,

|{(a, b, c, d) ∈ A4 : a+ b− (c+ d) ∈ G}| ≥ c3|A|3|G|.

So, we can find a triple (b, c, d) such that

|{a ∈ A : a+ b− (c+ d) ∈ G}| ≥ c3|G|.

Let A′ := {a ∈ A : a + b − c − d ∈ G}. Let G′ = G − b + c + d. So, A′ ⊆ G′,

|A′| ≥ c3|G′|, and G′ is a proper generalized arithmetic progression of the same size

and dimension as G.
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Denote G′ as

G′ = {u+
k∑
i=1

xidi : |xi| ≤ Li}.

By Fact 55, we may assume u = 0, else simply shift everything in A′ and G′ by −u,

and work with those sets instead. Let

G′′ :=

{
k∑
i=1

xidi : |xi| ≤ bLi/4c

}
.

Apply Lemma 50 to G′′ to get an order-preserving Freiman isomorphism φ : G′′ →

[−c4|G′′|, c4|G′′|]. We have that A′ ⊆ G′, but A′ ∩G′′ may not be large. However, by

considering the 4k different translates, G′′ + v, where v = jbLi/4c for j = 0, 1, 2, 3,

i = 1, . . . , k there exists an integer v such that

|A′ ∩ (G′′ + v)| = |(A′ − v) ∩G′′| �k |A′|.

Let A′′ := A′ ∩ (G′′ + v). So, φ is an order-preserving Freiman isomorphism from

A′′ − v to [−c4|G′′|, c4|G′′|], and by Fact 55, φ0(x) := φ(x)− v is an order-preserving

Freiman isomorphism from A′′ to [−c4|G′′|, c4|G′′|]. By Theorem 49, since G ⊆ 2A−

2A and |A + A| ≤ K|A|, we must have |G| �K |A|, and so [−c4|G′′|, c4|G′′|] =

[−c5|A′′|, c5|A′′|], proving the lemma.

3.2 Indexed Energy

One always has the following relationship between the additive energy and indexed

energy:

|A|2 ≤ EI(A) ≤ E(A) ≤ |A|3.

If A is an arithmetic progression the relationship is strengthened to EI(A) = E(A).

Moreover, for an arithmetic progression A, E(A) is maximized. Thus, it is natural

to wonder if one loosens the restriction to E(A) � |A|3 then is EI(A) � |A|3? We

provide a counterexample to show that this is false.

Theorem 56. There exists an integer N such that for every n ≥ N , there exists

A ⊂ [n] such that, E(A) ≥ 1
18
|A|3 and EI(A) ≤ 2000|A|2(log |A|)2.
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Thus, one can indeed have the additive energy Ω(|A|3) while the indexed energy

is O((|A| log |A|)2). However, when the additive energy is large, it turns out that

one can still pass to a large subset A′ ⊆ A, |A′| = Ω(|A|), which has indexed energy

Ω(|A′|3). We note that when passing to a subset, the subset does not inherit the same

indices as the superset, but rather it is reindexed in the natural way. Hence, EI(A′)

is not bounded from above or below by EI(A).

Theorem 57. For any K > 0, there exists c1, c2 dependent only on K such that if A

is a finite set of integers with |A + A| ≤ K|A| then the following holds. There exists

an A′ ⊆ A such that EI(A′) ≥ c1|A′|3 and |A′| ≥ c2|A|.

We mention in passing that the condition that |A + A| �K |A| may easily be

loosened to E(A) �K |A|3 by applying the following well-known result of Balog-

Szemerédi [2] and Gowers [19] to pass to a subset with small doubling.

Theorem 58 (Balog-Szemerédi[2], Gowers[19]). For any K > 0, there exists c1, c2

such that if A ⊆ Z is such that E(A) ≥ K|A|3 then there exists A′ ⊆ A with |A′| ≥

c1|A| and |A′ + A′| ≤ c2|A′|.

3.2.1 Indexed energy in subsets of [1, n]

It turns out that if A is a dense subset of an interval, then there is a simple algorithm

that can find a subset A′ ⊆ A with |A′| � |A| and EI(A′)� |A′|3. Thus, the general

case may then be quickly deduced by applying the Condensing Lemma. We first

begin with a lemma that states, loosely speaking, that if A is a dense subset of [1, n],

then one can choose a large subset A′ ⊆ A that is equidistributed over the interval.

Lemma 59. For every δ > 0, there exists c1, c2, c3, N such that if A ⊆ [1, n] with

n > N and |A| = δn, then the following holds. There exists an A′ ⊆ A, |A′| ≥ c1|A|

and for c3|A|2 pairs of integers 0 ≤ i, j < n/c2, we have that

|A′ ∩ [ic2, jc2)| = j − i. (39)
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It is easy to establish that a set with property (39) has large indexed energy.

Lemma 60. For every δ > 0, there exists c0, c1, N such that if A ⊆ [1, n] with n > N

sufficiently large and |A| = δn, then A has a subset A′ ⊆ A with |A′| ≥ c1|A| and

EI(A′) ≥ c0|A|3.

Proof of Lemma 59. It suffices to prove that there exists an A′ ⊆ A and c1, c2, c3

dependent on δ such that the following holds: |A′| ≥ c1|A|, for c3|A| integers 0 ≤ i <

n/c2,

|A′ ∩ [0, ic2)| = i.

Once this statement is established, then for any pair of integers i, j satisfying the

above, we have |A′∩ [ic2, jc2)| = j− i. This would prove the statement of the lemma.

Denote A = {a1 < a2 < . . . < aδn}. Let d = b2
δ
c. We may assume d|n, if not,

replace n with n ≤ n′ ≤ 2n where d|n′. Such an n′ exists if n is sufficiently large,

and the proof will proceed in the same manner with only a slight modification in our

constants c1, c2, c3. Let Ij = [(j − 1)d, jd) for all j = 1, . . . , n
d
. Let Aj = A ∩ Ij. We

pick our subset A′ as follows:

• Step 1: If A1 6= ∅ then let X1 = {a1}. Else, X1 = ∅.

• Step k: If |Ak ∪ Xk−1| ≤ k, then Xk := Ak ∪ Xk−1. Else, arbitrarily choose

Y ⊆ Ak so that |Y ∪Xk−1| = k and then let Xk := Y ∪Xk−1.

It is clear this algorithm ends after n
d

steps. Let A′ = Xn
d
.

To prove that A′ satisfies the conclusion of the lemma, we analyze the algorithm

as follows. First, note that X1 ⊆ X2 ⊆ . . . ⊆ Xn
d

= A′ and |Xi| ≤ i for all i. Now,

the sets Xi for which |Xi| = i we will call good, and the others we will call bad. Note

that if Xi is good, then |A′ ∩ [0, id)| = i; hence, showing that lots of Xi are good will

prove the lemma. Let J = {j1, j2, . . . , jk} be the set of indices such that Xji is good.

Observe that for indices between ji and ji+1, we must not have enough elements to
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make any of those corresponding sets good. More precisely,

|Aji+k| ≤ k − 1−
k−1∑
s=1

|Aji+s|.

This implies that ∣∣∣∣∣
ji+1−ji−1⋃

k=1

Aji+k

∣∣∣∣∣ ≤ ji+1 − ji − 2.

So, we must have that∣∣∣∣∣
k−1⋃
i=1

ji+1−ji−1⋃
s=1

Aji+s

∣∣∣∣∣ ≤
k−1∑
i=1

ji+1 − ji − 2 = jk − j1 − 2(k − 1) ≤ jk ≤
n

d

Thus, we have that δn− n
d
≥ δn/2 elements of A are distributed over good intervals.

Since each interval is of length d, then we must have that k, the number of good

intervals, is at least

δn

2d
≥ nδ2

4
.

This in turn gives us a lower bound on |A′| = jk ≥ k ≥ nδ2

4
= δ

4
|A|.

Proof of Lemma 60. Apply Lemma 59 to A to get A′, c1, c2, c3 as in the lemma. Let

A′ = {b1 < b2 < . . . < bm}. Let J = {j : |A′ ∩ [0, c2j)| = j}. We know that

|J | ≥ c2|A|. Now, let A′′ = {bj : j ∈ J}. Since EI(A′) ≥ |{(i, j, k, l) ∈ J4 : bi + bj =

bk + bl and i + j = k + l}|, we will simply work with these quadruples from A′′.

However, our final set will still be A′ since we need to keep the indices of elements

the same as they were in A′.

For all of the following, bj will be assumed to be from A′′. Let t ∈ {2, . . . , 2m}.

For t ≤ m, there are t − 1 pairs (i, j) ∈ [1,m] × [1,m] such that i + j = t. For

t > m, there are 2m − (t − 1) pairs (i, j) ∈ [1,m] × [1,m] such that i + j = t. Let

αt be defined so that for t ∈ {2, . . . , 2m} there are αt(t− 1) pairs (i, j) ∈ J × J with

i+ j = t and there are αt(2m− (t− 1)) such pairs for t ∈ {m+ 1, . . . , 2m}. Observe

that for such pairs (i, j) ∈ J ×J , we have bi + bj ∈ [(t− 2)d, td). Thus, there are only

2d values that bi + bj can take. For every i ∈ [0, 2d− 1], let ti denote the number of
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pairs (i, j) ∈ J × J with bi + bj = (t− 2)d+ i. We can bound the indexed energy of

A′ as follows:

EI(A′) ≥
∑
t

2d−1∑
i=0

t2i =
m∑
t=2

2d−1∑
i=0

t2i +
2m∑

t=m+1

∑
i

t2i

Using Cauchy-Schwarz, one has

≥ 1

2d

(
m∑
t=2

(αt(t− 1))2 +
2m∑

t=m+1

(αt(2m− t+ 1))2

)

Using Cauchy-Shwarz again,

≥ 1

2d

1

m

( m∑
t=2

αt(t− 1)

)2

+

(
2m∑

t=m+1

αt(2m− t+ 1)

)2


Since
m∑
t=2

αt(t− 1) +
2m∑

t=m+1

αt(2m− t+ 1) = |J |2

one of the sums must be at least |J |2/2. Hence, we have that

EI(A′) ≥ |J |
4

2md
= c0|A|3

for some constant c0 depending only on δ.

Now, we are ready to prove Theorem Theorem 57.

Proof of Theorem 57. Let A be a finite subset of integers with |A + A| ≤ c|A|. All

constants ci in the following depend only on c. Apply Theorem 47 to A to get a set

A′ ⊆ A with |A′| ≥ c1|A| and an order-preserving Freiman φ : A′ → [−c2|A′|, c2|A′|].

We may assume at least one third of the elements are in [1, c2|A′|] or simply shift A′

by v = c2|A′|. Apply Lemma 60 to φ(A′) to conclude that EI(φ(A′)) ≥ c3|φ(A′)|3 =

c3|A′|3. It is easy to see that EI(φ(A′)) = EI(A′) since φ is an order-preserving

Freiman 2-isomorphism, so the result follows.
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3.2.2 An Extremal Construction

The proof of Theorem 56 follows from the following lemma.

Lemma 61. Let n ∈ N, and let p ∈ (1, 2) and denote p = 1 + ε. Let A = {bapc : 1 ≤

a ≤ bn1/pc}. Then, EI(A) ≤ 16ε−1n2 log n.

Proof of Lemma 61. Let x, y ∈ [1, bn1/pc] with x + 1 < y. The main part of the

argument is to establish the following bound:

xp + yp − (x+ 1)p − (y − 1)p >
ε(y − x)

2y
(40)

For now, assume (40) holds. If x + y = z + w, then by convexity, xp + yp 6= zp + wp

unless z = x and y = w or vice versa. However, it may happen that x + y = z + w

and bxpc + bypc = bzpc + bwpc. Since bapc = ap − [ap], where [ap] is the noninteger

part of ap, we must have that if x+ y = z + w and

bxpc+ bypc = bzpc+ bwpc

then

|xp + yp − zp − wp| < 2.

So, fixing an x and a y, we can bound how many other pairs z and w can have

z +w = x+ y and bzpc+ bwpc = bxpc+ bypc. More specifically, we find the largest t

such that

xp + yp − (x+ t)p − (y − t)p < 2.

Using (40), the triangle inequality, and letting k = y − x we get that

xp + yp − (x+ t)p − (y − t)p ≥ εk

2y
+
ε(k + 2)

2(y − 1)
+ . . .+

ε(k + 2(t− 1))

2(y − (t− 1))

Each term in the sum is greater than or equal to εk
2y

, so we get a lower bound of tεk
2y

.

So, if t ≥ 4y
ε(y−x)

, then we cannot have

bxpc+ bypc = b(x+ t)pc+ b(y − t)pc.
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This allows us to conclude that any quadruple (x, y, z, w) with x + y = z + w, with

x < z < w < y, z < x < y < w, w < y < x < z, or y < w < z < x we must have that

|z − x| < 4y
ε(y−x)

. Accounting for an extra factor of 2 for when x < w < z < y and so

on, we can bound the indexed energy of A

EI(A) ≤ 2
∑
y

∑
x<y

4y

ε(y − x)

Estimating this summation by using the harmonic series gets us that

EI(A) ≤ 16

ε
n2 log n

concluding the proof assuming that (40) holds.

Now, we work to establish (40). First, since f(x) = xp is convex for p > 1, it is

easy to establish the following bound for any k > 1:

p(x+ k)p−1 > (x+ 1)p − xp > pxp−1

Assuming p = 1 + ε < 2, we have that xp−1 is concave. Doing a similar analysis for

g(x) = xp−1, we get that

(p− 1)xp−2 > (x+ k)p−1 − xp−1 > (p− 1)(x+ k)p−2,

Let k = y − x, and we have

xp + yp − (x+ 1)p − (y − 1)p =

= yp − (y − 1)p − ((x+ 1)p − xp) > p(y − 1)p−1 − p(x+ 1)p−1

Since x = y − k, we have

p[(y − 1)p−1 − (y − k + 1)p−1 > p[(k − 2)(p− 1)(y − 1)p−2] >
εk

2y

where we remind the reader p = 1 + ε, ε ∈ (0, 1).

Theorem 56 follows by letting ε = 1
logn

.
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Proof of Theorem 56. Let A be as in the above lemma, let ε = 1
logn

. Then, for n

sufficiently large

|A| = bn
1

1+ε c =

⌊
n

1

1+ 1
logn

⌋
=
⌊n
e
· n

1
1+logn

⌋
≥
⌊ n
e2

⌋
≥ n

9
.

So, A ⊆ [1, n], |A| = n
9
, and A+ A ⊆ [1, 2n]. Thus, |A+ A| ≤ 2n ≤ 18|A|. Hence,

E(A) ≥ |A|4

|A+ A|
≥ |A|

3

18
.

By the lemma above, for A sufficiently large,

EI(A) ≤ 16n2(log n)2 ≤ 16 · (9|A|)2(log 9|A|)2 ≤ 1296|A|2(log 9|A|)2

≤ 2000|A|2(log |A|)2.

3.3 Further Applications and Conjectures

Since |(A×B) + (A×B)| = |A+A||B+B|, it is obvious that if |A+A| ≤ K|A| and

|B + B| ≤ K|A|, then for any C ⊆ A × B of size δ|A||B|, one has |C + C| �K |C|.

However, if |C| = O(
√
|A||B|), one has little control of |C + C|. Does there exist a

C ⊆ A × B with |C| = c
√
|A||B|, and |C + C| �K |C|? Clearly one could simply

take C = {(a, b) : a ∈ A} for a fixed b ∈ B. If we forbid such sets lying on vertical

or horizontal lines by additionally requiring that for any distinct (x, y), (z, w) ∈ C we

have (x− z)(y − w) > 0, the answer is not as obvious.

For a set C ⊆ A1 × . . . × Ak, call C a diagonal set if for any distinct pairs of

elements (x1, . . . , xk), (y1, . . . , yk) ∈ C, one has xi − yi > 0 for all i or xi − yi < 0 for

all i.

Theorem 62. For any k,K ∈ N, there exists c1, c2 such that the following holds.

Let A1, . . . , Ak ⊆ Z be sufficiently large sets of size n such that |Ai + Ai| ≤ K|Ai|

for all i = 1, . . . , k. Then, there exists a diagonal set C ⊂ A1 × . . . × Ak such that

|C + C| ≤ c1|C| and |C| = c2(|A1| . . . |Ak|)1/k.
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Proof. We may apply the Condensing Lemma to each Ai individually to find constants

c1,i, c2,i depending on K such that there exists a subset A′i ⊆ Ai that is Freiman

isomorphic to a set Bi ⊆ [0, c1,kn], and |A′i| ≥ c2,in. Let c1 be the maximum of

{c1,i : i = 1, . . . , k} and let c2 be the minimum of {c2,i : i = 1, . . . , k}. So, we may

view all the Bi as being dense in the interval [0, c1n]. Next, we claim that there exists

t1, . . . , tk ∈ Z such that ∣∣∣∣∣
k⋂
i=1

(Bi + ti)

∣∣∣∣∣ ≥ ck2
2k−1

n.

We prove this by induction on k. For k = 1, it is trivial. For the induction step, let

X, Y ⊂ [1, n] be of size δ1n and δ2n respectively. Then,

n−1∑
t=−(n−1)

|X + t ∩ Y | = |X||Y | = δ1δ2n
2.

Hence, there exists a t such that

|(X + t) ∩ Y | ≥ δ1δ2

2
n.

Letting X := Bk and Y := ∩k−1
i=1Bi + ti finishes the inductive argument. Now, let

C ′ = ∩ki=1Bi + ti for such a set of ti, i = 1, . . . , k. Denote C ′ := {x1 < . . . < xm}. We

let C be the following set:

C := {(xi − t1, xi − t2, . . . , xi − tm) : i = 1, . . . ,m}.

Since xi − tj ∈ Bj, we have that C ⊆ B1 × . . .×Bk. Since xi − tj > x` − tj for i > `,

C must be diagonal. Also, |C| = |C ′| ∈ [
ck2

2k−1n, n]. Lastly, it is easy to see that

|C + C| = |C ′ + C ′| ≤ 2n =
2k

ck2
|C ′|.

Although the above application is similar in spirit to the indexed energy problem

– letting A × B := A × [1, |A|] – there are several subtle differences. Mainly, in the

indexed energy problem, when we pass to a subset, we are forced to reindex the set
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in a very specific way. The following conjecture however would be general enough to

imply Theorem 57.

Conjecture 63. Let A,B ⊆ Z be sets of size N such that |A + A|, |B + B| ≤ KN .

Then, there exists c1, c2 depending only on K such that the following holds. There

exists an A′ ⊆ A with |A′| ≥ c1|A|, and if we denote A′ := {a′1 < . . . < a′k} and

B := {b1 < . . . < bn}, then

|{(a′i, a′j, a′k, a′`) : a′i + a′j = a′k + a′` and bi + bj = bk + b`}| ≥ c2|A′|3.

Conjecture 63 is true in the case where B = [1, N ] (or any arithmetic progression

of size N) since this then becomes the indexed energy result. It would be interesting

to know whether the conjecture is even true in the case where B is a generalized

arithmetic progression of dimension 2.

Another problem closely related to the indexed energy problem is as follows. Let

A ⊆ Z and let f : A→ Z be such that |f(A) + f(A)| ≤ c|A|, and |A+A| ≤ c|A|. Let

Ef (A) := {(a, b, c, d) : a+ b = c+ d, f(a) + f(b) = f(c) + f(d)}.

When f is the indexing function, Ef (A) becomes EI(A). What is the relation between

Ef (A) and E(A)? Does there always exist an A′ ⊆ A with |A′| � |A|, and Ef (A
′)�

|A|3? Here, we point out to the reader a subtle but important difference between this

problem and the indexed energy problem: when passing to a subset, there is a natural

way to reindex a set which is distinctly different than how a function restricted to a

subset behaves. Therefore, Ef (A) is not a generalization of EI(A), but instead, it is

a different quantity altogether. There is not always an A′ ⊆ A with Ef (A
′)�K |A|3

when E(A) ≥ K|A|3. For instance, let f be the indexing function, let A be as in

Theorem 56, and since sets are not reindexed

Ef (A
′) ≤ EI(A)�K |A|2 log |A|.
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Moreover, |{(a + a′, f(a) + f(a′)) : a, a′ ∈ A}| � |A|2/ log |A|. As an openended

question, we ask if there are any reasonable conditions that we can impose on f or A

to arrive at a different conclusion?

Lastly, we remark that the content of Lemma 59 is making a statement about

equidistribution of a set in an interval. This has been a well-studied topic in discrep-

ancy theory; however, we are not aware of it appearing in this specific, combinatorial

form – where one is allowed to pass to a subset of the original set, and one only

requires that for lots of interval, the subset is well-distributed. We tepidly conjecture

a generalization of Lemma 59 to higher dimensions, but it would also be interesting

if a counterexample was found.

Conjecture 64. Let A ⊆ [1, n] × [1, n] be of size |A| = δn2. There exists constants

c1, c2, c3 depending only on δ such that the following holds. There exists an A′ ⊆ A

such that |A′| ≥ c1|A| and for c2n
2 pairs 0 ≤ i, j ≤ n/c3, |A′ ∩ [0, ic3)× [0, jc3)| = ij.
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