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SUMMARY

This thesis is mainly concerned with problems in the areas of the Calculus

of Variations and Partial Differential Equations (PDEs). The properties of the func-

tional to minimize play an important role in the existence of minimizers of integral

problems. We will introduce the important concepts of quasiconvexity and polycon-

vexity. Inspired by finite element methods from Numerical Analysis, we introduce

a perturbed problem which has some surprising uniqueness properties. This thesis

includes only a part of the article [2, Awi-Gangbo].
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CHAPTER I

INTRODUCTION

This thesis is concerned with problems in the areas of the Calculus of Variations,

Partial Differential Equations (PDEs) and their applications to Geometry, Physics

and Material Science. In order to put this work in context and make our contribution

more transparent, let us start by recalling the following basic principle of the Calculus

Variations. Let X be a topological space and let I : X → R ∪ {∞} be such that

the sublevel sets {I ≤ c} for c ∈ R are precompact. Then infX I admits a minimizer

provided that I is lower semicontinous. Therefore the properties of I with respect to

the topology play a role in the existence of minimizers. In this thesis, we deal with

a functional which does not satisfy properties usually needed to ensure existence of a

minimizer. One of the most central notions in the Calculus of Variations is the notion

of quasiconvexity. Under appropriate growth conditions on L : RN×n → R ∪ {+∞};

ξ 7→ L(ξ), the lower semicontinuity of the functional u 7→
∫

Ω
L(∇u)dx is equivalent

to quasiconvexity of L. Quasiconvexity is the right notion to hope for existence of

solutions in PDEs and the Calculus of Variations. A function L : RN×n → R∪{+∞};

ξ 7→ L(ξ) is said to be polyconvex if it is a convex function of the minors of ξ, a

sufficient condition for quasiconvexity of L. The latter class of functionals is the

one encountered the most in elasticity theory. We will focus on nonlinear elasticity

problems that involve polyconvex integrands.
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1.1 The general setting.

In the Calculus of Variations one is often interested on finding solutions of integral

problems of the form

inf
u∈U

{∫
Ω

L(x,u(x),∇u(x))dx

}
, (1)

with L : Ω × RN × RN×n → R ∪ {+∞} a Carathéodory function (See for instance

Definition 2.2.3 and [6, Dacorogna]). One also tries to characterize the minimizers of

(1) in terms of the partial differential equations they satisfy. These partial differential

equations are the so–called Euler–Lagrange Equations.

In most cases, these Euler–Lagrange Equations are difficult to identify and become

a challenge when for instance L or its derivatives fail to satisfy the following growth

conditions. Firstly a growth condition on L would be

|L(x,u, ξ)| ≤ α1(x) + β (|u|p + |ξ|p) .

Secondly, the function L would be such that for every i = 1, · · · , N and every α =

1, · · · , n one has Lui := ∂L/∂ui and Lξiα := ∂L/∂ξiα are Carathéodory functions that

satisfy for almost every x ∈ Ω and every (u, ξ) ∈ RN × RN×n

|DuL(x,u, ξ)|, |DξL(x,u, ξ)| ≤ α1(x) + β
(
|u|p−1 + |ξ|p−1

)
with β ≥ 0 and α1 ∈ Lp/(p−1)(Ω) (See for instance Theorem 2.2.4 ). These Euler–

Lagrange equations could provide a way to link the minimization problem (1) to the

system of PDEs

∂tu = div (∇ξL(x,∇u)) in (0, T )× Ω; u(0, ·) = u0 (2)

with u0 : Ω → Rd belonging to U ⊂ Lp(Ω). Assume that the map ξ 7→ L(x, ξ)

is polyconvex. In this case, the existence of large time solutions to (2) remains an

outstanding open problem unless L(x, ·) is convex. An even more challenging problem

is the hyperbolic type system of PDEs

∂ttu = div (∇ξL(x,∇u)) . (3)

2



Progress has been made in the two extreme cases L = L0 and L = L1 where L0 ≡

L0(ξ) with L0 convex and L1 ≡ H(det ξ) with H strictly convex. Set Lλ(ξ) =

(1 − λ)L0(ξ) + λL1(ξ). When λ = 0, as just mentioned, (2) has global solution in

time under mild conditions.

When λ = 1 the work of Evans-Gangbo-Savin [9] reduced (2) to a Porous Medium

Type Equation and they obtained existence of a global solution. This equation when

expressed in terms of ρ = det∇u−1 reads off ∂tρ = div ρH̃ ′(ρ)∇ρ with H̃(t) = tH(t−1)

for t > 0.

When L1 is chosen appropriately, adapting the computation of [9, Evans-Gangbo-

Savin], one shows that (3) is nothing but the celebrated Isentropic Euler Equation

and so is a system of conservative laws. In this case, if ρ = det∇u−1 represents the

density of a fluid then H(ρ) represents the internal energy and the pressure P (ρ)

is such that P ′(ρ) = ρH ′′(ρ) (c.f. e.g. [16, Gangbo-Westdickenberg] ). Indeed let

u : [0, 1]×Ω→ Λ. Recall first that if (X,Σ) and (Y,Σ′) are two measurable spaces; µ

is a measure on (X,Σ) and T : X → Y is a measurable map, then the push-forward

of the mesure µ by the map T is the measure denoted T#µ on (Y,Σ′) defined by

T#µ(B) = µ(T−1(B)) for all B ∈ Σ′. If we set

ρ(t, u(t, x)) det∇u(t, x) = 1, (4)

then u(t, ·) pushes the measure 1ΩLd to the measure ρ(t, ·)1ΛLd if we assume in

addition that ut is a diffeomorphism. The equation ∂ttu = divDL(∇u) is equivalent

to

∂ttu = −H ′′(ρ(t, u))∇ρ(t, u).

Thus

∂ttu(t, u−1(t, y)) = −H ′′(ρ)∇ρ. (5)

We have u−1(0, ·) : Λ→ Ω and u(t, ·) : Ω→ Λ. Set

y(t, x) = u(t, u−1(0, x)) for all (t, x) ∈ [0, 1]× Λ

3



and yt = y(t, ·) : Λ→ Λ. We have by Equation (4) that the map u−1
0 pushes ρ(0, ·)Ld

forward to 1ΩLd and the map ut pushes 1ΩLd forward to ρ(t, ·)Ld and so

y(t, ·)#ρ(0, ·) = ρ(t, ·). (6)

We have then

∂ttyt = ∂ttut ◦ u−1
0 = ∂ttut ◦ u−1

t ◦ u−1
0 = ∂ttut ◦ u−1

t ◦ yt.

Hence, by (5)

∂ttyt = −∇(H ′(ρ)) ◦ yt. (7)

Let v be defined by v = ∂ty(t, y−1(t, ·)); in other words v(t, y(t, ·)) = ∂ty(t, ·). We

have then by differentiation with respect to t, ∂tv(t, y) + ∇v(t, y)∂ty = ∂tty. This

together with (7) yields

∂tvt ◦ yt +∇(vt ◦ yt)vt ◦ yt = −∇ (H ′(ρt)) ◦ yt,

and so,

∂tvt +∇vtvt = −∇(H ′(ρt)). (8)

By (6), one has

∂tρ+∇(ρv) = 0. (9)

Combining (8) and (9) we obtain the Isentropic Euler Equation.

The cases of integrands Lλ with 0 < λ < 1, of interest in our work, are the ones

defying any standard theory of Partial Differential Equations. The first difficulties

arise when we consider the approximation

∂tu(kh, ·) ∼ (uk+1 − uk)/h.

The implicit Euler scheme of (2) is

uk+1 − uk
h

= div (∇ξL(x,∇uk+1)) . (10)

4



If the functional

U 3 u 7→
‖u− uk‖2

L2(Ω)

2h
+

∫
Ω

L(x,∇u)dx (11)

admits a minimizer uk+1; formally at least, the Euler-Lagrange equation of the mini-

mization problem is (10). Typically, one requires the growth and coercivity conditions:

c0(|ξ|p − c1) ≤ L(x, ξ) ≤ c2(|ξ|p + 1). (12)

However those conditions cannot be satisfied by materials with stored energy satisfy-

ing:

lim
det ξ→0

L(x, ξ) =∞. (13)

Because Inequality (12) fails, the current theory of the Calculus of Variations cannot

be used to establish any connections between the equation (10) and minimizers of

(11). In addition, no theory gives us any clues about the uniqueness of the minimizer

and the Euler-Lagrange equations associated to (11).

1.2 Main results.

We focus in this study on a minimization problem involving Ogden functionals (see

for instance [18] for a description of Ogden materials) of the form

L(x,u, ξ) := f(ξ) +H(det ξ)

that satisfy Equation (13). More precisely, we are interested in

inf
u∈U

{
I(u) :=

∫
Ω

(
f(∇u) +H(det∇u) +

||uk − u||2

2h

)
dx

}
. (14)

One can convince oneself that from the technical point of view the level of difficulties

in studying (14) is the same as studying

inf
u∈U

{
I(u) :=

∫
Ω

(f(∇u) +H(det∇u)− F · u) dx

}
. (15)

When formulating a problem dual to (14), we were forced to introduce some gene-

ralization of the classical Legendre Transform called c-convex transform, while (15)

5



involves only the classical Legendre Transform. For the sake of simplicity we have

opted to keep our focus on (15).

Let us start with some heuristic discussions. Let

E[u, β] =

∫
Ω

f(∇u) +H(β)− F · u

with “β = det∇u”. When u : Ω → Λ is smooth and invertible, β = det∇u is

equivalent to ∫
Ω

l(u(x))β(x)dx =

∫
Λ

l(y)dy; (16)

for all l ≥ 0 measurable. When u ceases to be smooth or one-to-one, Equation (16)

may continue to have a meaning for u ∈ W 1,p(Ω,Rd). In fact, we showed in [2, Awi-

Gangbo] that β := det∇u
Nu(u)

satisfies (16), where Nu(y) is the cardinality of u−1({y}).

In general, the set of β satisfying (16) is a convex set which may be of cardinality

bigger than 1. We denote it by det ∗∇u. The elements of det ∗∇u of interest are of

course the ones minimizing β 7→
∫

Ω
H(β)dx over det ∗∇u. When H is strictly convex

and the map det ∗∇u 3 β 7→
∫

Ω
H(β)dx is not identically equal to ∞, its minimizer

is unique and we denote it detH∇u. Therefore the variational problem, formally at

least is equivalent to

inf
u

{
I(u) :=

∫
Ω

(
f(∇u) +H(detH∇u)− F · u

)
; u ∈ W 1,p(Ω,Λ)

}
. (17)

Making all the above arguments rigorous is one of our tasks which requires a good

amount of effort.

1.2.1 Main assumptions.

• Ω, Λ are bounded convex open sets of Rd. Ω represents a reference configuration

and Λ represents the region occupied by an elastic body at time t > 0.

• p, q ∈ (1,∞) and p−1 + q−1 = 1.

6



• The function f ∈ C1(Rd×d) is strictly convex and such that for some c > 0 one

has for all ξ ∈ Rd×d:

c−1(|ξ|p − 1) ≤ f(ξ) ≤ c(|ξ|p + 1),

|∇f(ξ)| ≤ c|ξ|p−1,

|∇f ∗(ξ)| ≤ c|ξ|q−1.

• The function H ∈ C2(0,∞) is strictly convex and satisfies

lim
t→0+

H(t) = lim
t→∞

H(t)

t
=∞.

We extend H by setting H(t) =∞ for t ≤ 0.

• The set U is defined to be the set {u ∈ W 1,p(Ω,Rd×d) : u(Ω) = Λ}. This

represents the set of admissible deformations of Ω into Λ. Remark that the map

u : Ω → Λ represents the deformation field of an elastic body in the reference

state Ω and I is the total elastic energy of the body under deformations.

• The map F : Rd → Rd is such that F ∈ L1(Ω,Rd). One can interpret F as a

body force or a displacement.

1.2.2 Main results.

Motivated by finite element methods in Numerical Analysis and in order to contribute

to the understanding of (15), we study the perturbed problems

inf
u∈U0

{
ISτ (u) :=

∫
Ω

(
f(∇Sτu) +H(detH∇u)− F · u

)}
. (18)

Here we have made the following notations.

1. τ ∈ (0, 1).

2. The set Sτ is a finite dimensional subspace of piecewise affine functions in

W 1,q
0 (Ω,Rd×d).

7



3. The set U0 is defined to be the set of all u : Ω→ Λ that are Borel functions.

4. For u ∈ U0, define the set

det ∗∇u =

{
β ∈ L1(Ω) :

∫
Ω

l(u(x))β(x)dx =

∫
Λ

l(y)dy, ∀l ∈ Cb(Rd)

}
.

If there exists β0 ∈ det∗∇u satisfying
∫

Ω
H(β0(x))dx <∞, then detH∇u stands

for the unique minimizer of

inf
β∈det ∗∇u

∫
Ω

H(β)dx.

Otherwise we set
∫

Ω
H(detH∇u) =∞.

5. For u ∈ U0, ∇Sτu stands for the unique minimizer of

inf

∫
Ω

f(G)dx

over the set of all G ∈ Lq(Ω,Rd×d) satisfying∫
Ω

〈u, divψ〉 = −
∫

Ω

〈G,ψ〉 ∀ψ ∈ Sτ .

Observe that (18) is not a finite dimensional approximation problem. Indeed, even

though ∇Sτ is a finite dimensional operator, u 7→ det∇u will remain an infinite di-

mensional operator. Despite the lack of compactness and convexity of the functionals

to minimize in (18), we have proven the existence of a unique minimizer in (18) via

the following sharp characterization:

Theorem 1.2.1 Suppose F is non degenerate (i.e. if N ⊂ Rd has Lebesgue measure

0 then F−1(N) has Lebesgue measure 0). Problem (18) admits a unique minimizer

u0 characterized by u0 = ∇k0(F +divψ0) where (k0, l0, ψ0) is a maximizer of the dual

problem

sup
(k,l,ψ)∈Aτ

{
−J(k, l, ψ) := −

∫
Ω

f ∗(ψ)dx−
∫

Ω

k(F + divψ)−
∫

Λ

ldx

}
.

8



Here Aτ stands for the set of all (k, l, ψ) satisfying ψ ∈ Sτ ; k : Rd → R̄ is Borel

measurable; l : Rd → R̄ is Borel measurable; l ≡ ∞ on Rd \ Λ̄ and

k(v) + tl(u) +H(t) ≥ u · v ∀u,v ∈ Rd.

Moreover, let S0 be the set of all ψ : Ω → Rd×d that are in (Lq(Ω))d×d and such

that divψRd, the distributional divergence of the extension of ψ that takes the value 0

outside Ω, is a bounded Borel measure on Ω̄. Let A to be the set defined by replacing

in the definition of Aτ the set Sτ by the set S0. Then the problem

sup
(k,l,ψ)∈A

{
−J(k, l, ψ) := −

∫
Ω

f ∗(ψ)dx−
∫

Ω

k(F + divψRd)−
∫

Λ

ldx

}
(19)

admits a maximizer and if for all (k, l, ψ) maximizing −J one has k differentiable

at F (x) + divψ(x) for almost every x in Ω, then the minimizer of Problem (15) is

unique.

1.3 Plan of the thesis

This thesis is subdivided in 5 chapters followed by one appendix where we have

collected definitions and tools that are useful. The content of the next chapters is as

follows.

Chapter 2. This chapter contains the preliminaries. It recalls the essence of the

direct methods in the Calculus of Variations, discusses some Numerical Analysis tools;

the existence of homeomorphism between two convex bounded open sets and finally

convex functions of measures.

Chapter 3. In chapter 3, we will discuss some variational problems involving poly-

convex integrand.We present mostly existence results. We start by listing the main

9



assumptions. We will introduce a notion of weak determinant and a notion of pseudo-

projected gradient.We study the variational problem

inf
u

{
I∗(u) :=

∫
Ω

(
f(∇u) +H

(
det∇u

)
− F · u

)
dx |u : Ω̄→ Rd;

u ∈ W 1,p(Ω,Λ); u(Ω̄) = Λ̄; det∇u > 0
}

in the case p > d. We next present existence result for the problem

inf
(β,u)

{
I(u) :=

∫
Ω

(f(∇u) +H(β)− F · u) dx; u ∈ W 1,p(Ω,Λ); β ∈ det ∗∇u

}
.

Further, we discuss why a direct proof of existence is out of reach with the direct

method of the calculus of variation in minimizing the functional

IS(u) =

∫
Ω

(
f(∇Su) +H(detH∇u)− F · u

)
dx.

To finish the chapter, we present a relaxed problem which is the minimization of the

functional

Ī(γ) =

∫
C

(
f(ξ) +H(t)− F(x) · u

)
γ(dx, dt, du, dξ).

over a set of measure Γ which is inspired by the Young Measures.

Chapter 4. This chapter discusses duality results, uniqueness and Euler–Lagrange

equations of some of the problems introduced in Chapter 3. Mainly, we consider the

following problem. Let S0 be the set of all ψ : Ω→ Rd×d that are in (Lq(Ω))d×d and

such that divψRd , the distributional divergence of the extension of ψ that takes the

value 0 outside Ω, is a bounded Borel measure on Ω̄. Let A0 stand for the set of

all (k, l, ψ) satisfying ψ ∈ S0; k : Rd → R̄ is Borel measurable; l : Rd → R̄ is Borel

measurable; l ≡ ∞ on Rd \ Λ̄ and

k(v) + tl(u) +H(t) ≥ u · v ∀u,v ∈ Rd.

We consider the problem

sup
(k,l,ψ)∈A0

{
−J(k, l, ψ) := −

∫
Ω

f ∗(ψ)dx−
∫

Ω

k(F + divψRd)−
∫

Λ

ldx

}
.

We show that it admits a maximizer and discuss how it is related to Problem (15).
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Chapter 5. In chapter five we discuss the limit case H ≡ χ{1} which corresponds

to β = detH∇u = 1. We check that the main result of Chapter 4 is still true in this

extreme case. We present duality, existence and uniqueness results.

1.4 Key Words

They are four key words of importance in this study:

1. Relaxation

2. Duality

3. Euler-Lagrange Equation and Polar Factorization

4. Drastic lack of compactness.

Relaxation. To achieve our goals, we relax the problem (15) to infγ∈Γ Ī(γ) where

Ī(γ) =

∫
C

(
f(ξ) +H(t)− F(x) · u

)
γ(dx, dt, du, dξ)

and the set C is defined by C = Ω̄× [0,∞)× Λ̄× Rd×d.

The set Γ is the set of Radon measures on Rd × R × Rd × Rd×d supported by C

and satisfying for all b ∈ Cb(Rd); l ∈ Cb(Rd); and ψ ∈ C∞c (Ω,Rd×d) the conditions :∫
C

b(x)γ(dx, dt, du, dξ) =

∫
Ω

b dx;∫
C

tl(u)γ(dx, dt, du, dξ) =

∫
Λ

ldy;∫
C

〈ξ, ψ(x)〉γ(dx, dt, du, dξ) =−
∫
C

〈u, divψ(x)〉 γ(dx, dt, du, dξ);∫
C

f(ξ)γ(dx, dt, du, dξ) <∞.

Let

Ub = {(β,u) | u ∈ W 1,p(Ω,Λ),u#β = 1ΛLd}

and suppose (u, β) ∈ Ub. Define the measure γ(u,β) = (id,u, β,∇u)#(1ΩLd) on C.

We have the embedding Ub ⊂ Γ which to (β,u) associates γ ≡ γ(β,u).

11



Let γ ∈ Γ. One sees that if one defines D by D = [0,∞) × Λ̄ × Rd×d. and

Π1 : Ω × D; (x, u, t, ξ) 7→ x, then Π1#γ = 1ΩLd. By the disintegration theorem (cf.

Theorem A.3.16), there exists a family of probability measure {γx}x∈Ω such that for

all L : C → [0,∞] measurable, one has∫
C

L(x, u, t, ξ)γ(dx, du, dt, dξ) =

∫
Ω

(∫
D

L(x, u, t, ξ)γx(du, dt, dξ)

)
dx.

For x ∈ Ω, set Uγ(x) =
∫
D
ξγx(dt, du, dξ) and set uγ(x) =

∫
D
uγx(dt, du, dξ). One

shows that Uγ ∈ Lp(Ω,Rd×d); uγ(x) ∈ Λ̄; ∇uγ = Uγ and uγ ∈ W 1,p(Ω,Rd). Remark

that for all (u, β) ∈ Ub, one has Ī(γ(u,β)) = I(u, β).

Duality. This is one of the tasks we successfully completed and will later better

elaborate on.

Polar factorization. By Theorem 4.4.1, if u1 ∈ W 1,p(Ω,Λ) satisfies

F + div a
(
Df(∇u1)dR

)
∈ ∂k∗(u1), h′(β1) + l(u1) = 0 Ld − a.e. (20)

and

u1 ∈ ∂k∞
(
div sDf(∇u1)dR

)
gs − a.e. (21)

then u1 is the unique minimizer of I over W 1,p(Ω,Λ).

Consider the case H ≡ χ{1}. That is H(t) equals ∞ everywhere except at t = 1 and

H(1) = 0. Formally, u1 preserves Lebesgue measure and (20) can be interpreted as

F = −ε4u1 +∇k∗(u1), Ld − a.e..

When ε = 0 we obtain the polar decomposition of F (cf. [3, Brenier] and [14, Gangbo])

and for ε > 0 we obtain a variant of the polar decomposition where u1 is differentiable.

Lack of compactness. When investigating existence of minimizer in (18), the

direct method fails since the set {u ∈ US : ‖∇Su‖Lp(Ω,Rd×d) ≤ c} is not compact for

any topology useful for the variational point of view. In fact the operator u 7→ ∇Su

behaves like a projection operator (See for instance Theorem 3.6.1).
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CHAPTER II

PRELIMINARIES

In this chapter, we recall the essence of the direct methods in the Calculus of Vari-

ations, discuss some Numerical Analysis tools and the existence of homeomorphism

between convex bounded open sets. This chapter finishes by discussing convex func-

tions of measures.

2.1 An orientation preserving map.

Let Ω and Λ be two open bounded convex sets of Rd. we present here a result that

gives an homeomorphism F : Ω → Λ such that there exists a positif real number α

satisfying for a.e. x ∈ Ω, det∇F (x) ∈ [α−1, α].

First we consider the particular case Ω = B(0, 1).

Lemma 2.1.1 Consider a bounded convex open set Λ ⊂ Rd. Let rΛ > 0 such that

B(0, rΛ) ⊂ Λ ⊂ B(0, r−1
Λ ). Let ρ be the Minkowsky functional of Λ as defined in

Definition A.1.7. Define F : B(0, 1) ⊂ Rd → Rd and G : Λ→ Rd by

F (x) =


0, if x = 0

x|x|
ρ(x)

, if x 6= 0

, G(y) =


0, if y = 0

yρ(y)
|y| , if y 6= 0

.

Then F is an homeomorphism from B(0, 1) to Λ; G is an homeomorphism from Λ to

B(0, 1); F−1 = G; F and G are differentiable a.e. and

rdΛ ≤ det∇F, det∇G ≤ r−dΛ a.e. (22)

Next we present the general case which is obtained from Lemma 2.1.1 by change of

variables.
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Lemma 2.1.2 Consider two bounded convex open sets Ω and Λ of Rd. Then there

exists an homeomorphism F from Ω to Λ that is differentiable a.e. and such that

there exists a strictly positive real number α satisfying

α ≤ det∇F ≤ α−1. (23)

2.2 The direct methods in the Calculus of Variations

2.2.1 General settings

The essence of the direct methods follows from the following lemma.

Lemma 2.2.1 Let X be a topological space. Consider a function f : X → R̄ such

that f is lower semicontinous and there exists a nonempty level set {x ∈ X : f(x) ≤ c}

that is sequentially relatively compact. Then there exists x̄ ∈ X such that f(x̄) =

infx∈X f(x).

Remark 2.2.2 Let X be a reflexive normed vector space. Let a function f : X→ R̄

be weakly lower semicontinuous and such that lim‖x‖→∞ |f(x)| =∞. Then f admits

a minimizer.

2.2.2 Integral Problems

In Calculus of Variations one is often interested on finding solutions of integral prob-

lems of the form

inf
u∈U

F(u), (24)

where :

F(u) :=

∫
Ω

L(x, u(x),∇u(x))dx

with L : Ω × RN × RN×n → R ∪ {+∞} a Carathéodory function. We recall the

definition of Carathéodory functions ([6, Dacorogna])

Definition 2.2.3 The function L : Ω × RN × RN×n → R ∪ {+∞} is said to be a

Carathéodory function if

14



1. For a.e. x ∈ Ω, the map RN × RN×n 3 (u, ξ) 7→ L(x, ξ, ξ) is continuous.

2. For every (u, ξ) ∈ RN × RN×n, the map Ω 3 x 7→ L(x, ξ, ξ) is measurable.

One also tries to find a Partial Differential Equation called Euler-Lagrange Equation

that a solution of (24) would satisfy. The following Theorem has many limitations

as it can not be applied to an important class of problems appearing in Elasticity

Theory. We state it just to indicate the state of the art in the Calculus of Variations.

See for instance [6, Dacorogna] for more details.

Theorem 2.2.4 Let g : RR×N ×RN ×Ω be a Carathéodory function. Assume gui :=

∂g/∂ui and gξiα := ∂g/∂ξiα are Carathéodory functions for every i = 1, · · · , N , α =

1, · · · , n and for almost every x ∈ Ω, for every (u, ξ) ∈ RR×N × RN , one has

|g(ξ, u, x)| ≤ α(x) + β (|u|p + |ξ|p) (25)

and

|Dug(x, u, ξ)|, |Dξg(x, u, ξ)| ≤ α1(x) + β
(
|u|p−1 + |ξ|p−1

)
(26)

with β ≥ 0 and α1 ∈ Lp/(p−1)(Ω).

Let ū be a minimizer of

inf

{∫
Ω

g(x, u,∇u)dx;u = u0 +W 1,p
0 (Ω,RN)

}
(27)

Then∫
Ω

(〈Dξg(x, ū,∇ū),∇ϕ〉+ 〈Dug(x, ū,∇ū), ϕ〉) dx = 0 ∀ϕ ∈ W 1,p
0 (Ω,RN). (28)

Moreover, if ū satisfies Equation (28) and the function (u, ξ) 7→ g(x, u, ξ) is convex

for almost every x ∈ Ω, then ū is a solution of Problem (27).

Remark 2.2.5 For n = 1 or N = 1, the condition “ ξ 7→ f(x, u, ξ) is convex” is ne-

cessary to ensure lower semicontinuity of the map W 1,p(Ω,RN) 3 u 7→
∫

Ω
f(x, u,∇u).

But if n,N > 1, it is far from being necessary.

We next turn our attention to vectorial problems (i.e. n,N > 1 ).

15



2.2.3 Integral Problems in the vectorial case

We first define the notions of Polyconvexity, Quasiconvexity and Rank one convexity

of functions.

Definition 2.2.6 (Rank one convexity) f : RN×n → R ∪ {+∞} is rank one con-

vex if f(λξ + (1− λ)η) ≤ λf(ξ) + (1− λ)f(η) whenever λ ∈ [0, 1], ξ, η ∈ RN×n with

rank{ξ − η} ≤ 1.

Definition 2.2.7 (Quasiconvexity) A Borel measurable and locally bounded func-

tion f : RN×n → R is said to be quasiconvex if f(ξ) ≤ 1
meas D

∫
D
f(ξ + ∇ϕ(x)) for

every bounded open set D ⊂ Rn , for every ξ ∈ RN×n and for every ϕ ∈ W 1,∞
0 (D;RN).

To define Polyconvexity, we need first to introduce some notations. For n,N ∈ N,

define n ∧N := min{n,N};

σ(s) :=

 N

s


 n

s

 =
N !n!

(s!)2(N − s)!(n− s)!
and τ(n,N) :=

n∧N∑
s=1

σ(s).

For a matrix ξ ∈ RN×n, for 2 ≤ s ≤ n ∧N define adjs ξ to be the matrix of all s× s

minors of ξ. Let T : RN×n → Rτ(n,N) be defined by T (ξ) := (ξ, adj2 ξ, · · · , adjn∧N ξ).

Examples. For n = N = 2, one has τ(2, 2) = 5, T (ξ) = (ξ, det ξ).

For n = N = 3, one has τ(2, 2) = 19, T (ξ) = (ξ, adj ξ, det ξ).

We are now ready to define Polyconvexity.

Definition 2.2.8 (Polyconvexity) A function f : RN×n → R∪{+∞} is said to be

polyconvex if there exists F : Rτ(n,N) → R∪{+∞} convex, such that f(ξ) = F (T (ξ)).

Under the growth and coercivity conditions:

α1‖ξ‖p + β2‖u‖q + γ1(x) ≤ g(x, u, ξ)

g(x, u, ξ) ≤ α2‖ξ‖p + β2‖u‖r + γ2(x),

if ξ 7→ g(x, u, ξ) is quasiconvex then Problem (27) has a solution.
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2.3 Approximation of W 1,p(Ω) functions

Throughout this section, Rn for n ∈ N∗ is endowed with the euclidean norm. Ω is a

subset of Rn and its boundary is denoted ∂Ω. The topological dual of a topological

space E is denoted E ′. We mean by domain a Lebesgue-measurable subset of Rn

with nonempty interior.

2.3.1 Definitions

We recall the following definitions:

Definition 2.3.1 (Polyhedral set) A set Ω ⊂ Rn is said to be a polyhedral set if

it is can be expressed as the intersection of a finite family of closed half-spaces or

hyperplanes.

We remind that a closed half-space is a set of the form {x ∈ Rn, a · (x − x0) ≤ 0}

where a, x0 ∈ Rn.

Definition 2.3.2 (Star-shaped domain) A domain Ω ⊂ Rn is said to be star-

shaped with respect to a set B if for all x ∈ Ω the closed convex hull of B ∪ {x} is a

subset of Ω.

Definition 2.3.3 (Finite elements) Let:

1. K ⊂ Rn be a bounded closed set with nonempty interior and piecewise smooth

boundary,

2. P be a finite-dimensional space of functions on K and

3. Σ = {ϕ1, ϕ2, ..., ϕk} be a basis for P ′.

Then (K,P,Σ) is called a finite element, K the element domain, P the space of shape

functions and Σ the set of nodal variables.
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It is assumed that the nodal variables ϕi lie in the dual space of some larger function

space, for instance, a Sobolev space.

Definition 2.3.4 (Subdivision) A subdivision of a bounded domain Ω is a finite

collection of element domains {Ki, i = 1, · · · ,m} such that

1. K◦i ∩K◦j = ∅ if i 6= j and

2. ∪mi=1Ki = Ω̄.

Definition 2.3.5 (Local interpolant) Let (K,P,Σ) be a finite element. Let

Σ = {ϕi, i = 1, · · · , k} ⊂
(
C l(K)

)′
and {pi}ki=1 be a base of P associated to Σ (i.e. ϕi(pj) = δij for i, j ∈ {1, · · · , k}).

The local interpolant operator of K is

ΠK : C l(K)→ P, v 7→
k∑
i=1

ϕi(v)pi.

Definition 2.3.6 (Global interpolant) Let Ω be a bounded domain with a subdivi-

sion T . Let each K ∈ T , be equipped with a space of shape functions PK and nodal

variables ΣK ⊂
(
C l(K)

)′
. For f ∈ C l(Ω̄), the global interpolant ΠT is defined by:

ΠT (f)|K = ΠK(f|K).

We call XT the set ΠT (C l(Ω̄)).

Definition 2.3.7 Let F : Rn → Rn, x 7→ Ax + b where A is a n× n non-degenerate

matrix of real coefficients and b ∈ Rn.

1. The pull-back of f : Rn → R by F is F ∗(f) := f ◦ F.

2. The push-forward by F of ϕ : S → R where S is a space of functions defined

from Rn to R, is defined for f ∈ S by (F∗ϕ)(f) := ϕ(F ∗(f)) = ϕ(f ◦ F ).
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Definition 2.3.8 Let (K,P,Σ) be a finite element. We say that a finite element

(K̄, P̄ , Σ̄) is affine equivalent to (K,P,Σ) if there exists an affine transformation

F : Rn → Rn, x 7→ Ax + b with A a n × n non-degenerate matrix of real coefficients

and b ∈ Rn such that F (K) = K̄; F ∗(P̄ ) = P and F∗(Σ) = Σ̄.

We then recall a particular type of finite element.

2.3.2 The n-simplex of type (1)

Define

Pk = {p : p is a polynomial of degree less than or equal to k on Rn} .

For U ⊂ Rn we define Pk(U) =
{
p|U : p ∈ Pk

}
.

Definition 2.3.9 (n-simplex) A non-degenerate n-simplex is the convex hull K of

n+ 1 points aj = (aij)
n
i=1 ∈ Rn called the vertices such that the n+ 1 points are not

contained in a hyperplane, i.e. the matrix

A =



a11 a12 . . . a1,n+1

a21 a22 . . . a2,n+1

...
...

...

an1 an2 . . . an,n+1

1 1 . . . 1


is regular.

The barycentric coordinates λj(x), 1 ≤ j ≤ n + 1 of any x ∈ Rn with respect to the

n+ 1 points aj are the unique solutions of the linear system
∑n+1

j=1 aijλj(x) = xi, 1 ≤ i ≤ n∑n+1
j=1 λj(x) = 1

The λj’s are affine functions.
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From now on we will simply say n-simplex for non-degenerate n-simplex.

Definition 2.3.10 (m-face of an n-simplex) For m ∈ N, 0 ≤ m ≤ n an m-face

of an n-simplex K is any m-simplex whose vertices are also vertices of K. A (n− 1)-

face is simply called a face, a 1-face an edge or a side.

Lemma 2.3.11 Any polynomial of P1 is uniquely determined by its values at the

n+ 1 vertices of any n-simplex in Rn.

In fact λj(ai) = δij and ∀p ∈ P1, p =
∑n+1

j=1 p(aj)λj.

Definition 2.3.12 (n-simplex of type (1)) An n-simplex of type (1) is a finite

element (K,P,Σ) where K is a n-simplex of vertices aj = (aij)
n
i=1 ∈ Rn, P is P1(K)

and Σ = {ϕi, 1 ≤ i ≤ n+ 1} with ϕi : C0(K)→ R, f 7→ f(ai).

Definition 2.3.13 (Assembly in triangulations) Let Ω be a bounded polyhedral

domain. Let {Ki}mi=1 be a subdivision of Ω into n-simplex. We say that {Ki}mi=1 is a

triangulation of Ω if for any i ∈ {1, · · · ,m} any face of Ki is either a subset of the

boundary ∂Ω or a face of a n-simplex Kj in the subdivision such that i 6= j.

We have the following proposition ( [4, Brenner-Scott], prop 3.3.17).

Proposition 2.3.14 Let T be a triangulation of a bounded polyhedral domain Ω with

n-simplexes of type (1). It is possible to choose edge nodes for (K,P,Σ) , K ∈ T

such that

XT ⊂ C0(Ω) ∩W 1,∞(Ω).

2.3.3 Approximation of W 1,p(Ω) functions

The following theorem is a typical approximation error result in finite elements

method that we recall for convenience. See for instance [4, Brenner-Scott] Theorem.

4.4.4 and 4.4.20 for more details.
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Theorem 2.3.15 Let {τh : 0 < h ≤ 1}, be a family of subdivisions of a polyhedral

domain Ω ⊂ Rn into finite element such that each element K ∈ τh is star-shaped

with respect to some ball. Suppose this family is non-degenerate i.e.

max{diam(K) : K ∈ τh} ≤ h.diam(Ω) ∀0 < h ≤ 1 (29)

and there exists ρ > 0 such that ∀h ∈ (0, 1], ∀K ∈ τh,

diam(BK) ≥ ρ.diam(K) (30)

where BK is the largest ball contained in K such that K is star-shaped with respect

to BK.

Suppose each K ∈ τh, 0 < h ≤ 1 is associated with a finite element (K,PK ,ΣK)

affine-equivalent to a given finite element (K̂, P̂ , Σ̂) which we refer to as a reference

element. We impose that for some m ∈ N∗ and l ∈ N:

1. Pm−1(K̂) ⊂ P̂ ⊂ Wm,∞(K̂◦)

2. Σ̂ ⊂ (C l(K̂))′.

Suppose that 1 ≤ p ≤ ∞, and either m− l − n
p
> 0 when p > 1 or m− l − n ≥ 0

when p = 1.

Then there exists a positive number C depending on the reference element, n, m, p

and ρ such that for all 0 ≤ s ≤ m, we have:(∑
K∈τh

‖v − Πτh(v)‖pW s,p(K)

) 1
p

≤ Chm−s|v|Wm,p(Ω), ∀v ∈ Wm,p(Ω), if p <∞;

and

max
K∈τh

‖v − Πτh(v)‖W s,∞(K) ≤ Chm−s|v|Wm,∞(Ω), ∀v ∈ Wm,∞(Ω) If p =∞.

The aim in the sequel is to establish the following proposition.
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Proposition 2.3.16 Let U be an open bounded domain of Rn with Lipschitz bound-

ary. Let D be a polyhedral bounded domain containing U . For h ∈ (0, 1] let Th be a

triangulation of D into element domains T that are n-simplexes such that

max{diam(T ) : T ∈ Th} ≤ h.diam(U) (31)

and there exists ρ > 0 such that ∀h ∈ (0, 1], ∀T ∈ Th

diam(BT ) ≥ ρdiam(T ), (32)

where BT is the largest ball contained in T such that T is star-shaped with respect to

BT . Define the space Sh by

Sh =
{
v ∈ W 1,∞(D◦) : v|T is affine ∀T ∈ Th

}
.

Then for all u ∈ W 1,p(U), 1 ≤ p < ∞ , for all ε > 0 and all h0 ∈ (0, 1] there exists

hε ∈ (0, h0) such that ‖u− vhε‖W 1,p(U) ≤ ε

Proof. Let u ∈ W 1,p(U). Let ε > 0. As U open and U ⊂ D we have U ⊂ D◦.

Since ∂U is Lipschitz, we can extend u to ū ∈ W 1,p(D◦). Since C∞(D) is dense

in W 1,p(D◦), we can find w ∈ C∞(D) such that ‖ū − w‖W 1,p(D◦) ≤ ε
2
. Th can be

considered as a triangulation of D by an affine family of n-simplex of type (1). Those

element domains are star-shaped with respect to some ball. Moreover, from theorem

(2.3.14), the edge nodes may be chosen in such a way that

XTh ⊂ C0(D◦) ∩W 1,∞(D◦).

Thanks to (31) and (32), we have assumption (29) and (30) in theorem (2.3.15).

Take any reference element (T̄ , P̄ , Σ̄) for this affine family.

Now, take m = 2, l = 0 and q =∞. We have Σ̄ ⊂ (C0(T̄ ))′, m− l − d
q
> 0 and

Pm−1(T̄ ) = P1(T̄ ) = P̄ ⊂ W 1,∞(T̄ ).
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Hence for s = 1, from theorem (2.3.15), there exists a constant C depending on T̄ , n

and ρ such that

max
T∈Th
‖v − ΠTh(v)‖W 1,∞(T ) ≤ Ch|v|W 2,∞(D◦), ∀v ∈ W 2,∞(D◦)

Thus, since ΠTh(v) ∈ W 1,∞(D◦),

‖v − ΠTh(v)‖W 1,∞(D◦) ≤ Ch|v|W 2,∞(D◦), ∀v ∈ W 2,∞(D◦)

and

‖w − ΠTh(w)‖W 1,∞(D◦) ≤ Ch|w|W 2,∞(D◦).

As D is bounded, there exists θ > 0 such that

‖f‖W 1,p(D◦) ≤ θ‖f‖W 1,∞(D◦) ∀f ∈ W 1,∞(D◦).

Choosing hε < h0 small enough, we get ‖w − ΠThε (w)‖W 1,∞(D◦) ≤ ε
2θ
. Thus

‖w − ΠThε (w)‖W 1,p(D◦) ≤
ε

2
.

Take vhε = ΠThε (w). One has vhε ∈ W 1,∞(D◦) and for T ∈ Thε , vhε |T is affine as a

polynomial of degree one. So vhε ∈ Shε and ‖vhε − w‖W 1,p(D◦) ≤ ε
2
. Hence

‖u− vhε‖W 1,p(U) ≤ ε.

�

2.4 Convex functions of measures

Throughout this section, let k : Rd → R be a convex function satisfying

− a+ b|u| ≤ k(u) ≤ c(1 + |u|) (33)

with a, b ∈ Rd and c > 0. Call Ak the domain of k∗. µ = (µ1, ..., µd) is a signed

bounded Borel measure on Rd which has µ = µs + hdx as Radon-Nykodym decom-

position with respect to dx the Lebesgue measure. We assumed that
∫
Ak
k∗dx <∞.

We suppose that 0 ∈ int(Λ).
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2.4.1 Elementary properties of k

Lemma 2.4.1 Let g : Rd → R be defined by g(x) = α|x| + β with α, β ∈ R. Then

g∗(y) = −β+χB(0,α)(y) for all y ∈ Rd where we have made the convention χB(0,α) ≡ ∞

if α ≤ 0.

Proof. For all x, y ∈ Rd, one has x · y − g(x) = x · y − α|x| − β ≤ |x|(|y| − α)− β.

If |y| ≤ α, then x · y − g(x) ≤ −β = 0y − g(0). Hence g∗(y) = −β + χB(0,α)(y).

If |y| > α, then for x = r y
|y| , one has x·y−g(x) = r|y|−β−αr = r(|y|−α)−β ≤ g∗(y).

Hence letting r →∞ we get g∗(y) =∞ = −β + χB(0,α)(y).

Finally, g∗(y) = −β + χB(0,α)(y) for all y ∈ Rd.

�

Remark 2.4.2 Thanks to Equation (33) and Lemma 2.4.1, one has

− c+ χB(0,c)(y) ≤ k∗(y) ≤ a+ χB(0,b)(y); ∀y ∈ Rd. (34)

In particular, k∗(v) ≤ a if |v| < b and k∗(v) =∞ if |v| > c. One deduces further that

since Ak ⊂ B(0, c), the function k is actually c-Lipschitz thanks to Lemma A.3.11.

In view of the growth condition (33) one has

b|y| ≤ k∞(y) ≤ c|y| y ∈ Rd. (35)

In fact, let v ∈ Rd. For t > 0,

−a+ b|tv|
t

≤ k(tv)

t
≤ c(1 + |tv|)

t
−a
t

+ b|v| ≤ k(tv)

t
≤ c

t
+ c|v|.

Taking the limit when t → ∞ gives the inequality as we have, thanks to Lemma

A.1.5, k∞(v) = limt→∞
k(tv)
t
.
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2.4.2 Definition of convex function of measure

We starts with the following definition. We refer the reader to [22, Témam]

Definition 2.4.3 We define∫
Ω̄

k(µ) :=

∫
Ω̄

k(h)dx+

∫
Ω̄

k∞(
dµs

d|µs|
)d|µs|.

We will next work on giving a reformulation of this definition that highlights some

lower semicontinuity properties. The first Lemma we will need is the following:

Lemma 2.4.4 Let B be the set of all Borel measurable functions v : Ω → Rd. One

has

sup
v∈B

{∫
Ω̄

µv −
∫

Ω

k∗(v)dx

}
≤
∫

Ω

k(h)dx+

∫
Ω̄

k∞(
dµs

d|µs|
)d|µs|. (36)

Proof

Let v ∈ Rd. We have k∗(v) ≥ hv − k(h) and −k∗(v) ≤ −hv + k(h).

Thus for v ∈ B, one has∫
Ω

vµ−
∫

Ω

k∗(v)dx ≤
∫

Ω

vhdx+

∫
Ω

vµs +

∫
Ω

(−hv + k(h)) dx ≤
∫

Ω

vµs +

∫
Ω

k(h)dx.

Remark next that

sup
v: Ω→Rd

{∫
Ω̄

µv −
∫

Ω

k∗(v)dx

}
= sup

v: Ω→Rd∫
Ω k
∗(v)dx<∞

{∫
Ω̄

µv −
∫

Ω

k∗(v)dx

}
:= A

and

A ≤ sup
v:Ω→Rd

{∫
Ω̄

µv −
∫

Ω

k∗(v)dx : k∗(v(x)) <∞ for a.e.x ∈ Ω

}
Now for all v : Ω→ Rd satisfying k∗(v(x)) <∞ for a.e. x ∈ Ω, one has using the fact

that

k∞(y) = sup
z∈dom k∗=Ak

z · y; ∀y ∈ Rd,
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∫
Ω̄

µv −
∫

Ω

k∗(v)dx ≤
∫

Ω̄

vµs +

∫
Ω

k(h)dx

=

∫
Ω̄

v
dµs

d|µs|
d|µs|+

∫
Ω

k(h)dx

≤
∫

Ω̄

k∞

(
dµs

d|µs|

)
d|µs|+

∫
Ω

k(h)dx.

Taking the supremum we get Inequality (36).

�

The next Lemma will be used to prove the Proposition 2.4.6.

Lemma 2.4.5 There exists a Borel function v1 : Rd → Rd such that
∫

Ω
hv1− k∗(v1)

is finite and ∫
Ω

(hv1 − k∗(v1)) =

∫
Ω

k(h)dx.

Similarly, there exists a Borel function v2 : Rd → Rd such that
∫

Ω
hv2 − k∗(v2) is

finite and ∫
Ω̄

v2µ
s =

∫
Ω

k∞(
dµs

d|µs|
)d|µs|.

Proof. Since k is convex and continuous, thanks to Corollary A.1.13 there exists a

measurable map s1 : Rd → Rd such that for all y ∈ Rd one has s1(y) ∈ ∂k(y) and

k(y) = y · s1(y)− k∗(s1(y)).

Hence the map Rd 3 x 7→ s1(h(x)) may be used as v1 since by the growth condition

on k, one has that
∫

Ω
k(h)dx is a finite integral.

Furthermore, as k∞ is convex and continuous, thanks to Corollary A.1.13 there

exists a measurable map s2 : Rd → Rd such that for all y ∈ Rd one has s2(y) ∈

∂k∞(y). Thanks to Lemma A.1.12, k∞ being the support function of Ak by Corollary

A.1.6, one has s2(y) ∈ Ak and k∞(y) = y · s2(y). Hence∫
Ω

k∞

(
dµs

d|µs|

)
d|µs| =

∫
Ω

(
dµs

d|µs|

)
· s2

(
dµs

d|µs|

)
d|µs|

=

∫
Ω

s2

(
dµs

d|µs|

)
dµs.
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Set v2 = s2

(
dµs

d|µs|

)
. Thanks to Remark 2.4.2, since v2(Ω̄) ⊂ Ak, one has∫

Ω

(hv2 − k∗(v2)) dx ≥
∫

Ω

(hv2 − a)dx ≥ −aLd(Ω)− c
∫

Ω

|h|dx > −∞.

But ∫
Ω

(hv2 − k∗(v2)) dx ≤
∫

Ω

k(h) <∞.

Thus
∫

Ω
(hv2 − k∗(v2)) dx is finite.

�

Proposition 2.4.6 Let B be the set of all Borel measurable functions v : Ω → Rd.

One has ∫
Ω̄

k(µ) = sup
v∈B

{∫
Ω

µv −
∫

Ω

k∗(v)dx

}
. (37)

Proof. Let δ > 0. From Lemma 2.4.5, there exist Borel functions v1 : Rd → Rd

such that ∫
Ω

k(h)dx =

∫
Ω

(hv1 − k∗(v1)) dx

and v2 such that
∫

Ω
k∞(µs) =

∫
Ω
v2µ

s with

w = (v2 − v1)h− k∗(v2) + k∗(v1) ∈ L1(Ω).

We can find ε > 0 such that for any set U measurable satisfying Ld(U) < ε, one has

|
∫
U
wdx| < δ. Since µs is singular we can find a closed set U satisfying Ld(U) < ε on

which µs is concentrated. Then |
∫
U
wdx| < δ.

Define v by v = v2 on U and v = v1 on Ω \U . The function v is a Borel function. Set

a =

∫
Ω

vµ−
∫

Ω

k∗(v)−
∫

Ω

{hv1 − k∗(v1)}dx−
∫

Ω

v2dµ
s
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and V = Ω \ U . Keeping in mind that µs(V ) = 0, we have

a =

∫
U

v2hdx+

∫
U

v2µ
s +

∫
V

v1hdx+

∫
V

v1µ
s

−
∫
U

k∗(v2)dx−
∫
V

k∗(v1)dx−
∫
U

v1hdx−
∫
V

v1hdx

+

∫
U

k∗(v1)dx+

∫
V

k∗(v1)dx−
∫
U

v2µ
s −

∫
V

v2µ
s

=

∫
U

v2hdx−
∫
U

F ∗(v2)dx−
∫
U

v1hdx+

∫
U

F ∗(v1)dx

=

∫
U

wdx

≥ −δ.

As a+ δ ≥ 0, So∫
Ω

vµ−
∫

Ω

k∗(v) + δ ≥
∫

Ω

{hv1 − k∗(v1)}dx+

∫
Ω

v2µ
s =

∫
Ω

k(h)dx+

∫
Ω

k∞(µs).

We then have that for all δ > 0, there exists vδ a Borel function such that∫
Ω

vδµ−
∫

Ω

k∗(vδ) + δ ≥
∫

Ω

k(h)dx+

∫
Ω

k∞(µs) ≥
∫

Ω

vδµ− k∗(vδ).

The last inequality is obtained from (36). We deduce that∫
Ω

k(µ) =

∫
Ω

k(h)dx+

∫
Ω

k∞(µs) = sup
v∈B

{∫
Ω

µv −
∫

Ω

k∗(v)dx

}
.

�

Lemma 2.4.7 Let B be the set of all Borel measurable functions v : Ω → Rd. One

has

SC := sup
v∈C(Ω,Ak)

{∫
Ω

µv −
∫

Ω

k∗(v)dx

}
= sup

v∈B

{∫
Ω

µv −
∫

Ω

k∗(v)dx

}
=: SB. (38)

Proof. Obviously we have SC ≤ SB.

Remark next that the supremum in SB may be taken only over the Borel functions v

satisfying v(Ω) ⊂ Āk;
∫

Ω
k∗(v)dx <∞ and

∫
Ω
vµ <∞. Set

T (w) :=

∫
Ω

µw −
∫

Ω

k∗(w)dx.
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Let δ > 0 and let us find a function w ∈ C(Ω, Ak) such that T (w) ≥ T (v)− 2δ.

Let ρ stands for the Minkowsky functional of Ak as defined in Definition A.1.7. This

functional is convex, homogenuous and Ak = {x ∈ Rd, ρ(x) ≤ 1}. (See Lemma A.1.8).

We set c̄n(t) := 1[0,1−2n−1)(t) + (nt− n− 1)1[1−2n−1,1−n−1)(t) for n ∈ N and t ∈ [0, 1].

Define cn(x) = c̄n(ρ(x)) for all x ∈ Ω̄ and all n ∈ N. Define vn : Rd → Rd to be cnv

on Ω and 0 elsewhere. One has ρ(vn) < 1− n−1.

Next, Remark that since k satisfies (33), k∗(0) is finite thanks to (34). As k∗ is convex,

we have

k∗(cnv) = k∗(cnv + (1− cn)0) ≤ cnk
∗(v) + (1− cn)k∗(0).

Thus |k∗(cnv)| is bounded by a Lebesgue integrable function on Ω. Applying the

Lebesgue Dominated Convergence Theorem we get

lim
n→∞

∫
Ω

cnvµ−
∫

Ω

k∗(cnv) =

∫
Ω

vµ−
∫

Ω

k∗(v).

This can be read

lim
n→∞

∫
Ω

vnµ−
∫

Ω

k∗(vn) =

∫
Ω

vµ−
∫

Ω

k∗(v).

In the remaining of the proof, we fix n such that I(vn) ≥ I(v)− δ.

Let ε > r > 0. Define {ηr}r a family of standard mollifiers on Rd and set wr(x) =

ηr ∗ vn(x).

One has:

ρ(ηr ∗ vn(x)) = ρ

(∫
Rd
ηr(y)vn(x− y)dy

)
≤

∫
Br(0)

ρ(vn(x− y))ηr(y)dy

≤
∫
Br(0)

(1− n−1)ηr(y)dy

≤ (1− n−1)

∫
Br(0)

ηr(y)dy

≤ (1− n−1),
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where we have used the facts that ηr(y)dy is a probability measure on Br(0) and ρ is

a convex function. Thus wr(Ω̄) ⊂
{
y ∈ Ak : ρ(y) ≤ 1− n−1

}
. Next,

k∗(ηr ∗ vn(x)) = k∗
(∫

Br(0)

vn(x− y)ηr(y)dy

)
≤

∫
Br(0)

k∗(vn(x− y))ηr(y)dy

= (ηr ∗ k∗(vn)) (x).

Thus
∫

Ω
k∗(wr(x)) ≤

∫
Ω
ηr ∗ k∗(vn(x)). As k∗(vn) ∈ L1(Ω), one has

limr→0

∫
Ωr
ηr ∗ k∗(vn) =

∫
Ω
k∗(vn) and lim supr

∫
Ω
k∗(wr(x)) ≤

∫
Ω
k∗(vn). As we also

have limr→0

∫
Ω
wrµ =

∫
Ω
vnµ, we deduce lim supr→0 I(wr) ≥ I(vn). Thus we may find

r1 such that I(wr1) ≥ I(vn)− δ and I(wr1) ≥ I(v)− 2δ. We have wr1 ∈ C(Ω, Ak) and

we may take w = wr1 .

Finally, we deduce that SB = SC .

�

Remark 2.4.8 1. In view of Proposition 2.4.6, we get that the map which to every

bounded Borel measure µ associate
∫

Ω
k(µ) is convex and lower semicontinuous

for the vague topology (the topology of convergence in distribution) of measures.

2. From the proof of Proposition 2.4.6, it is apparent that for all δ > 0 there exists

n ∈ N∗ and wδ ∈ C(Ω̄, Ak) such that wδ(Ω̄) ⊂
{
y ∈ Ak : ρ(y) ≤ 1− n−1

}
and∫

Ω
k(µ) ≤

∫
Ω
wδµ−

∫
Ω
k∗(wδ)dx+ δ.

2.4.3 A lower semicontinuity result

We will need the following Lemma.

Lemma 2.4.9 Let kn : Rd → R be convex functions which converge to k in Cloc(Rd).

Suppose that {k∗n}n converges to b in Cloc(Λ) and supn
∫

Λ
|k∗n| <∞. Then b = k∗.

Proof. Let λ ∈ (0, 1). Consider ρ the Minkowsky functional associated to Λ. The

set {ρ ≤ λ} is compact and contained in Λ.
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Claim 1 k∗(u) ≤ b(u) for all u ∈ {ρ ≤ λ} .

Let u ∈ {ρ ≤ λ} and take ε > 0. Since k is convex and continuous, we can find v in

Rd such that k∗(u) = u · v − k(v). We have:

u · v − k(v) = u · v − kn(v) + kn(v)− k(v)

≤ k∗n(u) + kn(v)− k(v)

≤ b(u) + |k∗n(u)− b(u)|+ |kn(v)− k(v)|

Choose n big enough so that |k∗n(u) − b(u)| ≤ ε and |kn(v) − k(v)| ≤ ε. With those

inequalities, we obtain:

u · v − k(v) ≤ b(u) + ε+ ε = b(u) + 2ε,

and k∗(u) ≤ b(u) + 2ε. As the later is true for all ε > 0, then k∗(u) ≤ b(u).

Claim 2 There exist a constant M not depending on n such that for all n ∈ N and

all u ∈ {ρ ≤ λ}, one has ∂k∗n(u) ⊂ B(0,M).

Using the fact that the sequence {k∗n}∞n=1 is a sequence of convex function satisfying

supn
∫

Λ
|k∗n| < ∞ and the fact that {ρ ≤ λ} is a compact set of λ, one deduces that

there exists a constant M > 0 such that for all n ∈ N, k∗n is M -Lipchitz on {ρ ≤ λ}

and thus for all u ∈ {ρ ≤ λ}, one has ∂k∗n(u) ⊂ B(0,M).

Claim 3 k∗(u) ≥ b(u) for all u ∈ {ρ ≤ λ} .

For u ∈ {ρ ≤ λ} fixed, for all n ∈ N one has ∂k∗n(u) 6= ∅ and we chose vn ∈ ∂k∗n(u).

Recall that thanks to Claim 2 |vn| ≤M. This yield the existence of some subsequence

{vns}s of {vn}n converging to some v ∈ Rd. Set V = {vns , s ∈ N}∪{v}. V is compact.

The following hold:

k∗nk(u) + k∗∗nk(vns) = u · vnk

k∗nk(u) + knk(vnk) = u · vnk .
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Remark that

|kns(vns)− k(v)| ≤ |kns(vns)− k(vns)|+ |k(vns)− k(v)|. (39)

Since V is compact and {kn}∞n=1 converges to k in Cloc(Λ), we have lims→∞ supx∈V |kns(x)−

k(x)| = 0. Thus lims→∞ |kns(vns) − k(vns)| = 0. Moreover, using the continuity of k

one deduces lims→∞ |k(vns) − k(v)| = 0. Therefore, when s → 0 the left hand side

of Inequality (39) converges to 0. Hence lims→∞ kns(vns) = k(v). Combining with

lims→∞ k
∗
ns(u) = b(u) and lims→∞ u · vns = u · v, we get b(u) + k(v) = u · v and

b(u) = u · v − k(v) ≤ k∗(u) ∀u ∈ {ρ ≤ λ} .

Claim 4 k∗(u) = b(u) for all u ∈ {ρ ≤ λ} .

This is a consequence of Claim 1 and claim 3.

Claim 5 k∗ = b.

For all u ∈ Λ, there exists λ ∈ (0, 1) such that u ∈ {ρ ≤ λ} . Thanks to Claim 4 we

have k∗(u) = b(u). Thus k∗ = b.

�

Lemma 2.4.10 Suppose the sequence of bounded measures {µn}∞n=1 converges in

measure to µ. Suppose that {kn}∞n=1 a sequence of a-Lipchitz functions from Rd to R

converges uniformly locally to k. Suppose supn
∫

Λ
|k∗n| <∞ and dom k∗n ⊂ Λ̄. Then∫

Ω

k(µ) ≤ lim inf
n→∞

∫
Ω

kn(µn).

Proof. We use the fact that for all n ∈ N, k∗n is convex and supn
∫

Λ
|k∗n| < ∞ to

deduce that a subsequence of {k∗n}∞n=1 that we denote {k∗mn}
∞
n=1 that converges locally

uniformly to some b : Λ → Rd on Λ. Using Lemma 2.4.9, we deduce that b = k∗ on

Λ and in fact {k∗n}∞n=1 converges locally uniformly to k∗ on Λ.
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Let δ > 0. Remark first that dom k∗n = Λ̄. Let ρ be the Minkowsky functional of

Λ. Thanks to Remark 2.4.8, there exists m ∈ N∗ and wδ ∈ C(Ω̄, Ak) such that

wδ(Ω̄) ⊂
{
y ∈ Λ : ρ(y) ≤ 1−m−1

}
and

∫
Ω
k(µ) ≤

∫
Ω
wδµ−

∫
Ω
k∗(wδ)dx+ δ.

We use one more time the fact that for all n ∈ N, k∗n is convex and supn
∫

Λ
|k∗n| <∞

to deduce that there exists M > 0 such that for all u ∈ wδ(Ω) and all n ∈ N∗, one

has |k∗n(u)| ≤ M . We use next the fact that {k∗n}∞n=1 converges uniformly to k∗ on{
y ∈ Λ : ρ(y) ≤ 1−m−1

}
; to deduce that∫

Ω

wδµ−
∫

Ω

k∗(wδ)dx = lim
n→∞

(∫
Ω

wδµn −
∫

Ω

k∗n(wδ)dx

)
≤ lim inf

∫
Ω

kn(µn).

Therefore
∫

Ω
k(µ) ≤ lim inf

∫
Ω
kn(µn) + δ. And letting δ go to 0, one gets

∫
Ω
k(µ) ≤

lim inf
∫

Ω
kn(µn).

�
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CHAPTER III

THE PRIMAL PROBLEMS

In this chapter, we describe some variational problems involving polyconvex inte-

grand. We discuss mostly existence results. We start by listing the main assumptions.

3.1 Main assumptions

Throughout the chapter, Ω and Λ will denote bounded convex open sets of Rd. We

assume Ld(Ω) = 1 and diam(Λ) ≤ r∗. Consider f ∈ C1(Rd×d) strictly convex such

that for some c1, c2, c3 ∈ R∗+, one has:

c1(|ξ|p − 1) ≤ f(ξ) ≤ c2(|ξ|p + 1); (40)

|∇f(ξ)| ≤ c3|ξ|p−1 and (41)

|∇f ∗(ξ)| ≤ c3|ξ|q−1 (42)

where 1 < p <∞ and p−1 + q−1 = 1. Let H ∈ C2(0,∞) be strictly convex such that

lim
t→0+

H(t) = lim
t→∞

H(t)

t
=∞. (43)

We extend H to the whole R by setting H(t) =∞ for t ≤ 0. Let F : Rd → Rd such

that F ∈ L1(Ω).

We gather in the next section some properties of the function H.

3.1.1 Elementary properties of H

3.1.1.1 Properties of the derivative of H

Lemma 3.1.1 1. The function H ′ : (0,∞) → R is bijective, strictly increasing

and continuous.
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2. Moreover, if C is a bounded set of R then there exists m ∈ N\{0}, (H ′)−1 (C) ⊂

[m−1,m].

Proof. (i) Claim 1 : The function H ′ : (0,∞) → R is continuous and strictly

increasing.

Proof. The function H : (0,∞) → R is convex and C1 so H ′ : (0,∞) → R is

continuous and non decreasing. Assume that for t1 < t2 we have H ′(t1) = H ′(t2) =: a.

Since H ′ is continuous and non decreasing, H ′(s) = a for all s ∈ [t1, t2]. We have

H(t) = H(t1) +

∫ t

t1

adu = H(t1) + (t− t1)a, ∀t ∈ [t1, t2].

Thus

H(t2) = H(t1) + (t2 − t1)a; and H

(
t2 + t1

2

)
= H(t1) + a

t2 − t1
2

.

Hence

H

(
t2 + t1

2

)
=

1

2
(H(t1) +H(t2)) .

This contradicts the fact that H is strictly convex. Therefore H ′ is strictly increasing.

Claim 2 : One has limt→0H
′(t) = −∞.

Proof. Assume H ′(t) ≥ a for some a ∈ R and for all t ∈ (0,∞). We have for 0 < t < 1

H (1)−H(t) =

∫ 1

t

H ′(u)du ≥
∫ 1

t

adu ≥ a(1− t)

and so

lim
t→0+
−H(t) ≥ −H(1) + lim

t→0+
a(1− t) = −H(1) + a.

But, exploiting Equation (43), one gets limt→0+ H (1) − H(t) = −∞. This is a con-

tradiction and so,

lim
t→0+

H ′(t) = −∞. (44)

Claim 3 : One has limt→∞H
′(t) =∞.

Proof. In the same manner, as in the proof of Claim 2, assume H ′(t) ≤ b for some
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b ∈ R and for all t ∈ (0,∞). We have for 1 < t :

H (t)−H(1) =

∫ t

1

H ′(t)du ≤
∫ t

1

bdu ≤ b(t− 1).

But

lim
t→∞

H (t)−H(1)

t
=∞ and lim

t→∞

b(t− 1)

t
= b.

This is a contradiction and so,

lim
t→∞

H ′(t) =∞. (45)

Finally, using (44), (45) and the fact that H ′ : (0,∞)→ R is continuous and strictly

increasing we deduce that H ′ : (0,∞) → R is bijective, continuous and strictly

increasing.

(ii) Let C be a bounded set. Assume there exists {tn}∞n=1 ⊂ (H ′)−1(C) such that

limn→∞ tn = 0+. Since H ′(tn) ∈ C and limn→∞H
′(tn) = −∞, C is unbounded. This

is a contradiction and so, there exists a > 0 such that a < t for all t ∈ (H ′)−1(C).

Assume there exists {tn}∞n=1 ⊂ (H ′)−1(C) such that limn→∞ tn =∞. Since H ′(tn) ∈

C and limn→∞H
′(tn) = ∞, C is unbounded. This is a contradiction and so, there

exists b > 0 such that t < b for all t ∈ (H ′)−1(C).

Finally, since there exists a, b > 0 such that a < t < b for all t ∈ (H ′)−1(C), there

exists m ∈ N, m 6= 0 such that (H ′)−1(C) ⊂ [m−1,m].

�

3.1.2 Properties of the Legendre transform of H

Lemma 3.1.2 We have:

1. The Legendre transform H∗ of H is a strictly increasing bijection from R to R.

2. For every s ∈ R there exists a unique ts > 0 such that H∗(s) = sts − H(ts).

Moreover, ts is the unique solution of the equation s = H ′(t) for t ∈ (0,∞).
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3. Let g : R→ R̄ be defined by g(s) = αs− βH∗(s), with α, β > 0. Then

lim
s→−∞

g(s) = lim
s→∞

g(s) = −∞.

Proof. Claim 1 : The function H∗ is finite.

Proof. We have

H∗(s) = sup
t∈R
{ts−H(t)} = sup

t>0
{ts−H(t)}

since H(t) =∞ for t ≤ 0. The function Hs : (0,∞)→ R, t 7→ st−H(t) is continuous.

We have limt→0+ Hs(t) = limt→∞Hs(t) = −∞ and thus Hs admits a maximun on

(0,∞) and H∗(s) is finite.

Claim 2 : Point 2 holds.

Proof. Let s ∈ R. We have shown there exists a ts > 0 such that

H∗(s) = Hs(ts) = sts −H(ts).

Moreover, as Hs is differentiable, its minimizer ts satisfies the equation s = H ′(t) that

has a unique solution for t ∈ (0,∞).

Claim 3 : H∗ is strictly increasing

Proof. Assume s1 < s2. We have :

ts1 −H(t) <ts2 −H(t) for t > 0

sup
t>0
{ts1 −H(t)} ≤ sup

t>0
{ts2 −H(t)}

H∗(s1) ≤H∗(s2)

Assume H∗(s1) = H∗(s2). We have

s1t1 −H(t1) = H∗(s2) ≥ s2t1 −H(t1).

Thus s1 ≥ s2 which is a contradiction. We deduce that H∗ is strictly increasing.

Claim 4 : One has limt→∞H
∗(s) =∞ and limt→−∞H

∗(s) = −∞.
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Proof. Assume that for m ∈ R, one has m < H∗(s),∀s ∈ R. For all n ∈ N there

exists xn ∈ R+ such that

m ≤ −nxn −H(xn) = H∗(−n).

Now no subsequences of {xn}∞n=1 go to 0 since the right hand side will go to −∞. In

the same way no subsequences of {xn}∞n=1 go to ∞ since the right hand side will go

to −∞. Thus xn is bounded away from 0 and we may find a subsequence {xnk}∞k=1

converging to some x̄ ∈ (0,∞). By taking the limit for k → ∞ we get the right

hand side to be −∞. Thus we can not find m such that m < H∗(s),∀s ∈ R. Then

lims→−∞H
∗(s) = −∞.

Assume next that for M ∈ R, one has H∗(s) ≤M, ∀s ∈ R. For all t ∈ R+, s ∈ R,

it holds that st−H(t) ≤M . When s→∞, the left hand side goes to ∞, leading to

a contradiction. Thus limt→∞H
∗(s) =∞.

Claim 5 : Point 1 holds.

Proof. H∗ is convex finite thus continuous. Adding Claim 1, 3 and 4, H∗ is a bijection

from R to R.

Claim 6 : Point 3 holds.

Proof. Let t > 0. For s ∈ R, one has

H∗(s) +H(t) ≥ts

H(t)− ts ≥−H∗(s)

βH(t)− βts ≥− βH∗(s)

αs+ βH(t)− βts ≥αs−H∗(s)β

βH(t) + s(α− tβ) ≥g(s).

If t < α
β
, then α− tβ > 0 and lims→−∞ g(s) = −∞.

Similarly, if t > α
β
, then α− tβ < 0 and lims→∞ g(s) = −∞.

�
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3.2 A notion of determinant in a weak sense

We begin this section with the following definition.

Definition 3.2.1 Let u : Ω → Λ be a Borel map. We say that β : Ω → (0,∞) is a

weak determinant of u if∫
Ω

l(u(x))β(x)dx =

∫
Λ

l(y)dy; ∀l ∈ Cb(Rd). (46)

Remark that if u ∈ C1(Ω,Λ) is bijective, the change of variable formula (cf Theorem

A.3.2) gives ∫
Ω

l(u(x))| det∇u(x)|dx =

∫
Λ

l(y)dy; ∀l ∈ Cb(Rd).

This inspires the notation det ∗∇u for the set of all weak determinant of u. So

det ∗∇u = {β : Ω→ [0,∞) measurable : Equation (46) holds} . (47)

Remark 3.2.2 1. Let u : Ω → Λ be measurable and suppose that there exists a

compact K ⊂ Λ such that u(Ω) ⊂ K up to a set of zero Lebesgue measure.

Then the set det∗∇u is empty.

2. For u : Ω→ Λ a Borel map. Then the set det∗∇u is convex. This can be seen

by exploiting Equation (46). The same equation for l ≡ 1 shows that det∗∇u

is a subset of the sphere of radius Ld(Λ) with respect to the L1(Ω,Rd) norm.

When u ∈ W 1,r(Ω̄, Λ̄) for r > d, the following Lemma allows us to fully characterize

the set det ∗∇u.

Lemma 3.2.3 Suppose u ∈ W 1,r(Ω̄, Λ̄); r > d; u(Ω) = Λ and Zu, the set of x ∈ Ω

such that det∇u(x) = 0 has zero Lebesgue measure. Then a Borel function β : Ω→

(0,∞) belongs to det∗∇u if and only if for almost every y ∈ Λ, one has

∑
x∈u−1(y)

β(x)

| det∇u(x)|
= 1. (48)
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Proof. We first use Sard’s Theorem for Sobolev functions (cf. e.g. [13]) to infer that

the set u(Zu) is a set of null Lebesgue measure. Let l ∈ C(Rd) and β : Ω→ (0,∞) a

Borel function. Then we have∫
Ω

l(u(x))β(x)dx =

∫
Ω

l(u(x))
β(x)

| det∇u(x)|
| det∇u(x)|dx

Now, by the area formula (c.f. Theorem A.3.2 ) we get∫
Ω

l(u(x))
β(x)

| det∇u(x)|
| det∇u(x)|dx =

∫
Λ

l(y)
( ∑
x∈u−1(y)

β(x)

| det∇u(x)|

)
dy.

Hence β satisfies (46) if and only if for a.e. y ∈ Λ, one has∑
x∈u−1(y)

β(x)

| det∇u(x)|
= 1.

�

Remark 3.2.4 Under the hypothesis of Lemma 3.2.3, one gets in particular that

| det∇u|/Nu(u) ∈ det∗∇u.

Here is an application of Lemma 3.2.3. Consider Ω = (0, 1) and Λ = (−1, 1). Let

u : (0, 1)→ (0, 1) be defined by

u(x) = 4x1(0, 1
4

)(x) + (−4x+ 2)1[ 1
4
, 3
4

](x) + (4x− 4)1( 3
4
,1)(x).

Then | det∇u| = 4. Let β : (0, 1)→ (0,∞). Now if y ∈ [0, 1), one has∑
x∈u−1(y)

β(x)

| det∇u(x)|
= 4−1(β(4−1y) + β(−4−1(y − 2))).

If y ∈ [−1, 0), one has∑
x∈u−1(y)

β(x)

| det∇u(x)|
= 4−1(β(4−1(y + 4)) + β(−4−1(y − 2))).

So β ∈ det ∗∇u if and only if β
(
y+4

4

)
+ β

(−y+2
4

)
= 4 for y ∈ (−1, 0)

β
(
y
4

)
+ β

(−y+2
4

)
= 4 for y ∈ (0, 1)

(49)
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Take a, b ∈ [0, 4]. A family of functions that satisfies Equation (49) is

βa,b = a1(0, 1
4

) + (4− a)1( 1
4
, 1
2

) + b1( 1
2
, 3
4

) + (4− b)1( 3
4
,1) (50)

So βa,b ∈ det∗∇u for all a, b ∈ [0, 4]. In particular β2,2 ≡ 2 ∈ det∗∇u.

3.3 The notation detH ∇u.

Lemma 3.3.1 Let u : Ω→ Λ a Borel map such that the set there exists β0 ∈ det∗∇u

satisfying
∫

Ω
H(β0(x))dx <∞. Then the problem

inf
β∈det∗∇u

∫
Ω

H(β(x))dx (51)

admits a unique minimizer that we will denote detH ∇u.

Proof. The set det∗∇u is strongly closed in L1(Ω) and thus weakly closed in L1(Ω)

since it is convex. A minimizing sequence of (51) is weakly compact in L1(Ω) thanks

to the growth condition (43). Hence, using the convexity and lower semicontinuity

of H we get a minimizer for (51) (c.f. Lemma A.3.13). Uniqueness follows from the

convexity of det∗∇u and the strict convexity of H.

�

3.4 A first variational problem

In this section we will show the following Lemma.

Lemma 3.4.1 If p > d, the variational problem

inf
u

{
I∗(u) :=

∫
Ω

(
f(∇u) +H

(
det∇u

)
− F · u

)
dx |u : Ω̄→ Rd;

u ∈ W 1,p(Ω,Λ); u(Ω̄) = Λ̄; det∇u > 0
}

has a minimizer u∗.

First we will need the following lemma.
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3.4.1 An auxiliary lemma

Lemma 3.4.2 Let Ω,Λ be convex open sets of Rd. Let un : Ω̄ → Λ̄ be continuous,

satisfying un(Ω̄) = Λ̄ and converging uniformly to u : Ω̄→ Rd. Then u(Ω̄) = Λ̄.

Proof. Let y ∈ Λ̄. For all n ∈ N, let xn ∈ Ω̄ such that un(xn) = y. Assume

without lost of generality (having Ω̄ compact ) that {xn}∞n=1 converges to x ∈ Ω̄. One

has

|u(x)− un(xn)| ≤|u(x)− u(xn)|+ |un(xn)− u(xn)|

≤|u(x)− u(xn)|+ |un − u|L∞(Ω̄).

Since {un}∞n=1 converges strongly in C(Ω̄,Rd) to u; we deduce that

y = lim
n→∞

un(xn) = u(x).

Hence y ∈ Λ̄. One deduces that Λ̄ ⊂ u(Ω̄).

Let x ∈ Ω̄. Since for all n ∈ N one has un(x) ∈ Λ̄ and we have the pointwise

convergence of {un}∞n=1 to u, we get that u(x) ∈ Λ̄. Hence u(Ω̄) ⊂ Λ̄.

Finally u(Ω̄) = Λ̄.

�

3.4.2 Proof of Lemma 3.4.1

Let u0 ∈ W 1,p(Ω,Λ) such that u0(Ω̄) = Λ̄ and det∇u0 > 0 as given by Lemma 2.1.2.

Set

c0 :=

∫
Ω

(
f(∇u0) +H

(
det∇u0

)
− F · u0

)
dx.

Let {un}∞n=1 be a minimizing sequence satisfying I∗(un) ≤ c0. It follows that∫
Ω

(
f(∇un) +H

(
det∇un

)
− F · un

)
dx ≤ c0∫

Ω

(
f(∇un) +H

(
det∇un

)
≤ c0 +

∫
Ω

F · un

≤ c0 +

∫
Ω

|F|r∗ := c(c0,F)
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So
∫

Ω
f(∇un) ≤ minH + c(c0,F) and hence ‖∇un‖Lp(Ω,Rd) is bounded.

Exploiting the fact that un(x) ∈ Λ, we have that ‖un‖L1(Ω) is bounded by r∗ and

so a subsequence {unk}∞k=1 of {un}∞n=1 converges weakly in W 1,p(Ω,Λ) to some u. We

deduce that {det∇un}∞n=1 converges weakly to det∇u in L
p
d (Ω) and so in L1(Ω) (c.f.

[10, Evans] ). This leads to∫
Ω

H(det∇u) ≤ lim
k→∞

∫
Ω

H(det∇unk),

Moreover, as {unk}∞k=1 converges weakly in W 1,p(Ω,Λ) u and f is convex, we have:∫
Ω

(
f(∇un)− F · un

)
dx ≤ lim inf

k→∞

∫
Ω

(
f(∇unk)− F · unk

)
dx.

So I∗(u) ≤ lim infk→∞ I∗(unk). We show next that det∇u > 0.

Exploiting the fact that I∗(u) < ∞ we deduce that the set {det∇u ≤ 0} has zero

Lebesgue measure and thus det∇u > 0.

It remains to show that u(Ω̄) = Λ̄. Since p > d, we may suppose that {unk}∞k=1

converges strongly to u in C(Ω̄,Rd). Thanks to Lemma 3.4.2, one has u(Ω̄) = Λ̄.

�

3.5 A Second Variational Problem

Definition 3.5.1 The set Ub will stand for the set of pairs (β,u) such that u ∈

W 1,p(Ω,Λ) and β : Ω→ (0,∞) is a Borel function satisfying β ∈ det∗∇u.

Lemma 3.5.2 The problem

inf
(β,u)∈Ub

{
I(u, β) :=

∫
Ω

(f(∇u) +H(β)− F · u)

}
(52)

admits a minimum.

Proof. Thanks to Lemma 2.1.2, there exists u0 ∈ W 1,p(Ω,Λ) an homeomorphism

such that u0(Ω) = Λ and det∇u > 0. Set β0 = det∇u0. One has β0 ∈ det∗∇u0. Let

c0 :=

∫
Ω

(
f(∇u0) +H

(
β0

)
− F · u0

)
dx.
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Let {un}∞n=1 be a minimizing sequence satisfying I(un) ≤ c0. It holds that∫
Ω

(
f(∇un) +H

(
βn
)
− F · un

)
dx ≤ c0∫

Ω

(
f(∇un) +H

(
βn
)
≤ c0 +

∫
Ω

F · un

≤ c0 +

∫
Ω

|F|r∗ := c(c0,F).

So
∫

Ω
f(∇un) ≤ −minH + c(c0,F) and ‖∇un‖Lp(Ω,R) is bounded.

We also have
∫

Ω
H
(
βn
)
≤ c(c0,F) since f ≥ 0. We deduce that∫

Ω

H
(
βn
)
−minH ≤ c(c0,F)−minH.

We have

lim
t→∞

H(t)−minH

t
= lim

H(t)

t
=∞.

Hence by the Delavalle-Poussin criterion, we may assume without lost of generality

that {βn}∞n=1 converges weakly to β in L1(Ω).

Exploiting the fact that un(x) ∈ Λ, we have that ‖un‖L1(Ω) is bounded by r∗

and so we may assume without lost of generality that {un}∞n=1 converges weakly in

W 1,p(Ω,Λ) to some u. We may suppose in addition that {un}∞n=1 converges a.e. to

some u using the compact embedding of W 1,p(Ω,Rd) into L1(Ω,Rd).

{βn}∞n=1 converges weakly to β in L1(Ω) and H is convex and lower semicontinous.

This leads to ∫
Ω

H(β) ≤ lim
n→∞

∫
Ω

H(βn).

Moreover, as {un}∞n=1 converges weakly in W 1,p(Ω,Λ) u and f is convex, we have:∫
Ω

(
f(∇un)− F · un

)
dx ≤ lim inf

k→∞

∫
Ω

(
f(∇unk)− F · unk

)
dx.

So

I(u, β) ≤ lim inf
k→∞

I(un, βn).
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It remains to show that (u, β) ∈ Ub.

Let l ∈ Cb(Rd). Then {l(un)}n converges a.e. to l(u). Since {βn}∞n=1 converges weakly

to β, thanks to Lemma A.3.14, one has

lim
n→∞

∫
Ω

l(un)βndx =

∫
Ω

l(u)βdx.

But for all n ∈ N∗, one has
∫

Ω
l(un)βndx =

∫
Λ
l(y)dy. Thus

∫
Ω
l(u)βdx =

∫
Λ
l(y)dy

and (u, β) ∈ Ub.

Finally, I(u, β) = min(β,u)∈Ub
{
I(u) :=

∫
Ω

(f(∇u) +H(β)− F · u)
}

.

�

Remark 3.5.3 In fact, every minimizing sequence of Problem (52), has a subse-

quence converging strongly to a minimizer.

Proof. Take a minimizing sequence of problem (52). We have shown in the proof

of Lemma 3.5.2 that we can extract a minimizing subsequence (un, βn)n∈N converging

weakly to some (u, β) ∈ Ub that is a minimizer. Since {un}∞n=1 converges weakly to u

in L1(Ω), one has

lim
n→∞

∫
Ω

f(∇un) +H(βn) = lim
n→∞

∫
Ω

f(∇un) +H(βn)− F · un + F · u

=

∫
Ω

f(∇u) +H(β).

Using the strict convexity of the map

Rd×d × R 3 (ξ, t) 7→ f(ξ) +H(t)

and the fact that

lim
n→∞

∫
Ω

f(∇un) +H(βn) =

∫
Ω

f(∇u) +H(β),

we deduce (thanks to Lemma A.2.12 ) that {∇un}∞n=1 converges strongly to ∇u and

{βn}∞n=1 converges strongly to β. We already had the strong convergence of {un}∞n=1 to
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u in Lp(Ω,Rd) by the the compact embedding of W 1,p(Ω,Λ) into Lp(Ω,Λ). Therefore,

{un}∞n=1 converges strongly to u in W 1,p(Ω,Rd) and {βn}∞n=1 converges strongly to β

in L1(Ω).

�

One has also that

inf
(β,u)∈Ub

I(u, β) = inf
u∈U

(
inf

β∈det ∗∇u
I(u, β)

)
.

But

inf
β∈det ∗∇u

I(u, β) = inf
β∈det ∗∇u

{∫
Ω

(f(∇u) +H(β)− F · u) dx

}
=

∫
Ω

(
f(∇u) +H(detH∇u)− F · u

)
dx.

Hence

inf
(β,u)∈Ub

I(u, β) = inf
u∈U

{∫
Ω

(
f(∇u) +H(detH∇u)− F · u

)
dx

}
.

3.6 A Perturbed problem

We will first need to define pseudo-projected gradients.

3.6.1 A discrete gradient method

Throughout this section, the set S is a finite dimensional subspace of piecewise affine

functions in W 1,∞
0 (Ω,Rd×d). For ψ ∈ S of the form

ψ =



ψ1

ψ2

...

ψd


, set divψ =



divψ1

divψ2

...

divψd


.

Call

U0 = {u : Ω→ Λ| Borel map} .
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Theorem 3.6.1 Let u ∈ U0. Define

G(u) =

{
G ∈ Lp

(
Ω, Rd×d) |∫

Ω

〈u, divψ〉 = −
∫

Ω

〈G,ψ〉 dx,∀ψ ∈ S
}
. (53)

Then there exists a unique G0 ∈ G(u) which satisfies G0 = ∇f ∗(ψ0) for some ψ0 ∈ S.

In fact G0 is the unique minimizer of

inf
G∈G(u)

{∫
Ω

f(G)dx

}
. (54)

We will denote G0 by ∇Su.

Proof. Claim 1 : Problem (54) admits a unique minimizer G0.

Let u ∈ U0. Consider the map T : S → R; ψ 7→
∫

Ω
u · divψ dx. T is linear on S

which is a finite dimensional linear space. Hence T is continuous on S. By the Hahn-

Banach’s Theorem we can extend it to a linear functional T̄ on the all Lq
(
Ω, Rd×d)

with the same norm. Hence by the Riesz Representation Theorem for linear functional

in Lq
(
Ω, Rd×d) there exists G ∈ Lp

(
Ω, Rd×d) such that for all ψ ∈ Lq

(
Ω, Rd×d),

one has T̄ (ψ) =
∫

Ω
〈G,ψ〉 dx. Taking its restriction to S we get that∫

Ω

〈u, divψ〉 dx = −
∫

Ω

〈G,ψ〉 dx,∀ψ ∈ S

and G(u) is nonempty.

The set G(u) is non empty, convex and weakly closed in Lp(Ω,Rd×d). In addition

the map f : Rd×d → R is strictly convex and satisfies the growth condition (40).

Then infG∈G(u)

{∫
Ω
f(G)dx

}
admits a unique minimizer G0 ∈ G(u).

Claim 2 : One has ∇f ∗(ψ0) = G0 for some ψ0 ∈ S.

Define the annihilator set of S by

S⊥ =

{
ϕ ∈ Lp

(
Ω, Rd×d) ∣∣∣∣∫

Ω

〈ϕ, ψ〉 dx = 0 ∀ψ ∈ S
}

(55)

and define

⊥(S⊥) =

{
ψ ∈ Lq

(
Ω, Rd×d) ∣∣∣∣∫

Ω

〈ϕ, ψ〉 dx = 0 ∀ψ ∈ S⊥
}

(56)
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As S is closed in Lq
(
Ω, Rd×d) , we have ⊥(S⊥) = S (cf. [5] Proposition 1.9 p. 9).

Let G ∈ S⊥. Consider the function ϕ : R → R; t 7→
∫

Ω
f(G0 + tG) dx. It attains its

minimum at t = 0. By the Lebesgue Dominated Convergence, for |t| < 1, as

f(G0 + tG) ≤ c1(|G0 + tG|p + 1) ≤ c12p(|G0|p + |G|p + 1),

G0, G ∈ Lp(Ω) and Ω is bounded we have

ϕ′(t) =

∫
Ω

d

dt
f(G0 + tG) dx =

∫
Ω

〈G,∇f(G0 + tG)〉 dx.

Hence ϕ′(0) =
∫

Ω
〈G,∇f(G0)〉 dx. So∫

Ω

〈G,∇f(G0)〉 dx = 0 ∀G ∈ S⊥.

Therefore ∇f(G0) ∈ ⊥
(
S⊥
)

= S. Set ψ0 = ∇f(G0). We then have ∇f ∗(ψ0) = G0

and ψ0 ∈ S.

Claim 3 : If G1 ∈ G(u) is such that ∇f ∗(ψ0) = G1 for some ψ0 ∈ S then G1 is the

minimizer of Problem (54).

Let G ∈ G(u). One has G − G1 ∈ S⊥ thanks to Equation (53). One has ψ0 ∈ S so∫
Ω
〈G−G1, ψ0〉 dx = 0. Since ψ0 = ∇f(G1) and f is strictly convex, one has

0 =

∫
Ω

〈G−G1,∇f(G1)〉 ≤
∫

Ω

f(G)−
∫

Ω

f(G1),

With equality if and only if G = G1. Hence G1 is the unique minimizer of Problem

(54).

�

3.6.2 A minimization problem with the pseudo-projected gradient.

For u ∈ U0, we define

IS(u) =

∫
Ω

(
f(∇Su) +H(detH∇u)− F · u

)
dx
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when det ∗∇u 6= ∅. Otherwise, we set

IS(u) =∞.

We would like to study

inf
u∈U0

IS(u) (57)

which is

inf
(u,β)∈U1

∫
Ω

(f(∇Su) +H(β)− F · u) dx, (58)

where U1 = {(u, β) : u ∈ U0; β ∈ det ∗∇u}. We have the following Lemma.

Lemma 3.6.2 From every minimizing sequence of Problem (58), one can extract a

subsequence {(un, βn)}n∈N ⊂ Ub such that there exist u ∈ U and β ∈ L1(Ω) and

1. {un}n∈N converges weakly in L∞(Ω,Rd) to u.

2. {βn}n∈N converges weakly in L1(Ω) to β.

3. {∇Sun}n∈N converges strongly in Lp(Ω,Rd×d) and a.e. to ∇Su.

Proof. The results of the Lemma follow from the growth conditions on f and H,

the fact that F ∈ L1(Ω,Rd), |u| < r∗ and S is a finite dimensional linear space.

�

Remark that despite Lemma 3.6.2, nothing can be directly said about existence of

minimizers in Problem (58) since nothing a priori tells us that (u, β) found in Lemma

3.6.2 will satisfy β ∈ det ∗∇u.

We have replaced the functional in (52) whose properties favor a direct proof of

existence of minimizers by a worse functional from the direct methods of the Calculus

of Variations point of view. This daring approach will surprisingly be rewarding as

we will not only establish an existence and uniqueness result but we will also obtain

the Euler–Lagrange Equations characterizing the minimizer.
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3.7 A Relaxed Problem

3.7.1 The set over which to minimize.

Let C = Ω̄ × [0,∞) × Λ̄ × Rd×d. Set D = [0,∞) × Λ̄ × Rd×d. We define Π1 : C →

Ω̄; (x, t, u, ξ) 7→ x. Define also Π2 : C → Λ̄; (x, t, u, ξ) 7→ u and finally, define Π3 :

C → [0,∞); (x, t, u, ξ) 7→ t. Let Γ be the set of Radon measures on Rd×R×Rd×Rd×d

supported by C and satisfying the conditions :∫
C

f(ξ)γ(dx, dt, du, dξ) <∞; (59)

Π1
#(γ) =1ΩLd; (60)

Π3
#(Π2γ) =1ΛLd (61)

and for all ψ ∈ C∞c (Ω,Rd×d)∫
C

〈ξ, ψ(x)〉γ(dx, dt, du, dξ) =−
∫
C

〈u, divψ(x)〉 γ(dx, dt, du, dξ). (62)

Let (u, β) ∈ Ub. Define a measure γ(u,β) on C by γ(u,β) = (Id× β×u×∇u)#(1ΩLd).

Lemma 3.7.1 For (u, β) ∈ Ub, the measure γ(u,β) belongs to Γ.

Proof. One has

Π1
#(γ(u,β)) = Π1

#((Id× β × u×∇u)#(1ΩLd)) = Id#(1ΩLd) = 1ΩLd.

Let l ∈ Cb(Rd)∫
C

tl(u)γ(u,β)(dx, dt, du, dξ) =

∫
Ω

β(x)l(u(x))dx =

∫
Λ

ldy.

Let ψ ∈ C∞c (Ω,Rd×d)∫
C

〈ξ, ψ(x)〉γ(u,β)(dx, dt, du, dξ) =

∫
Ω

〈∇u(x), ψ(x)〉 dx

=−
∫

Ω

〈u, ·divψ〉 dx

=−
∫
C

〈u, divψ(x)〉 γ(u,β)(dx, dt, du, dξ).
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Next∫
C

f(ξ)γ(u,β)(dx, dt, du, dξ) =

∫
Ω

f(∇u(x))dx ≤ c1

∫
Ω

(|∇u(x)|p + 1) dx <∞

since u ∈ W 1,p(Ω,Rd) and Ld(Ω) <∞.

In summary, the measure γ(u,β) belongs to Γ.

�

We have the embedding Ub = {(β,u) | u ∈ W 1,p(Ω,Λ),u#β = χΛ} ⊂ Γ, which to

(β,u) associates γ ≡ γ(β,u).

Let γ ∈ Γ. Equation (60) tells us that Π1#γ = 1ΩLd. By the disintegration

theorem (cf. Theorem A.3.16), there exists a family of probability measure {γx}x∈Ω

such that for all L : C → [0,∞] measurable, one has∫
C

L(x, u, t, ξ)γ(dx, du, dt, dξ) =

∫
Ω

(∫
D

L(x, u, t, ξ)γx(du, dt, dξ)

)
dx.

For x ∈ Ω, set

Uγ(x) =

∫
D

ξγx(dt, du, dξ), (63)

uγ(x) =

∫
D

uγx(dt, du, dξ). (64)

Using Jensen’s inequality, one has∫
Ω

f(Uγ(x))dx ≤
∫

Ω

(∫
D

f(ξ)γx(dt, du, dξ)
)
dx =

∫
C

f(ξ)γ(dx, dt, du, dξ) <∞.

Thus the growth condition (40) on f implies that Uγ ∈ Lp(Ω,Rd×d). Moreover, the

fact that the support of γ in the u variables is contained in the convex set Λ̄ yields

that for a.e. x ∈ Ω, one has uγ(x) ∈ Λ̄. In fact, by Jensen’s inequality, the map ρΛ

standing for the Minkowsky function of Λ (cf. Definition A.1.7), one has

ρΛ(uγ) ≤
∫
D

ρΛ(u)γx(dt, du, dξ) ≤
∫
D

γx(dt, du, dξ) = 1.
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By Equation (62), for all ψ ∈ C∞c (Ω,Rd×d), it holds∫
Ω

〈Uγ(x), ψ(x)〉 dx =

∫
Ω

(∫
D

〈ξ, ψ(x)〉 γx(dt, du, dξ)
)
dx

=

∫
C

〈ξ, ψ(x)〉γ(dx, dt, du, dξ)

=−
∫
C

〈u, divψ(x)〉 γ(dx, dt, du, dξ)

=−
∫

Ω

(∫
D

〈u, divψ(x)〉 γx(dt, du, dξ)
)
dx

=−
∫

Ω

〈uγ, divψ(x)〉 dx.

Hence ∇uγ = Uγ and uγ ∈ W 1,p(Ω,Rd).

3.7.2 The functional to minimize.

We define Ī on Γ by

Ī(γ) =

∫
C

(
f(ξ) +H(t)− F(x) · u

)
γ(dx, dt, du, dξ).

Remark that for all (u, β) ∈ Ub, its holds that Ī(γ(u,β)) = I(u, β).

Lemma 3.7.2 The sublevel sets of Ī are compact for the narrow topology on Γ.

Proof. Consider a sequence {γn}∞n=0 ⊂ Γ such that for all n ∈ N∫
C

(
f(ξ) +H(t)− F(x) · u

)
γn(dx, dt, du, dξ) < c.

Then, for all n ∈ N∫
C

(
f(ξ)+H(t)−minH−min f

)
γ(dx, dt, du, dξ) < −minH−min f+r∗‖F‖L1(Ω,Rd) := A.

Define ϕ : C → [0,∞] by

ϕ(x, t, u, ξ) = f(ξ) +H(t)−minH −min f.

Then the sublevel sets {(x, t, u, ξ) ∈ C : ϕ(x, t, u, ξ) < a} are compact in C and

sup
n

∫
C

ϕ(x, t, u, ξ)γn ≤ A <∞.
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Hence the sequence {γn}∞n=0 is tight thanks to Lemma A.2.6. By Prokorov’s theorem,

a subsequence that we still denote {γn}∞n=0 converges weakly to some measure γ. We

show next that γ ∈ Γ.

Let b ∈ Cb(Rd) then by the definition of the weak convergence of measures, one has∫
C

b(x)γ(dx, dt, du, dξ) =

∫
Ω

b dx

and Equation (60) is satisfied for γ.

Let l ∈ Cb(Rd). Suppose l 6≡ 0. The map C 3 (x, t, u, ξ) 7→ tl(u) is continuous.

Moreover |tl(u)| ≤ |l|∞|t|;

sup
n

∫
C

(H(|t|)−minH) <∞;

one has h−minH ≥ 0 and

lim
t→∞

H(t)−minH

t
=∞.

Thus thanks to Lemma A.2.2 and Lemma A.2.3 one gets

lim
n→∞

∫
C

tl(u)dγn =

∫
C

tl(u)dγ.

Having for all n ∈ N
∫
C
tl(u)dγn =

∫
Λ
ldy, one deduces that

∫
C
tl(u)dγ =

∫
Λ
ldy.

Remark that the last equation is trivially true for l ≡ 0 and Equation (61) holds for

γ.

Let ψ ∈ C∞c (Ω,Rd×d). Suppose ψ 6≡ 0. The map C 3 (x, t, u, ξ) 7→ 〈ξ, ψ(x)〉 is

continuous. Moreover | 〈ξ, ψ(x)〉 | ≤ |ψ|∞|ξ|; supn
∫
C

(|ξ|p) <∞ and limt→∞
|t|p
t

=∞.

Thus thanks to Lemma A.2.2 and Lemma A.2.3 one gets

lim
n→∞

∫
C

〈ξ, ψ(x)〉 dγn =

∫
C

〈ξ, ψ(x)〉 dγ.

In addition, the map C 3 (x, t, u, ξ) 7→ 〈u, divψ(x)〉 is continuous bounded. Hence,

by the definition of the weak convergence of measures, one has

lim
n→∞

∫
C

〈u, divψ(x)〉 dγn =

∫
C

〈u, divψ(x)〉 dγ.
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Having for all n ∈ N
∫
C
〈ξ, ψ(x)〉 dγn = −

∫
C
〈u, divψ(x)〉 dγn, one deduces that∫

C

〈ξ, ψ(x)〉 dγ = −
∫
C

〈u, divψ(x)〉 dγ.

Remark that the last equation is trivialy true for ψ ≡ 0 and Equation (62) holds for

γ.

The map C 3 (x, t, u, ξ) 7→ f(ξ) is continuous and bounded below. Using Lemma

A.2.2, ∫
C

f(ξ)γ(dx, dt, du, dξ) < lim inf

∫
C

f(ξ)γn(dx, dt, du, dξ) <∞

and Equation 59 is satisfied for γ.

�

We will further need the following Lemma.

Lemma 3.7.3 Suppose {γn}∞n=1 converges narrowly to γ. Then

lim
m→∞

∫
C

(F (x) · u) γm =

∫
C

(F (x) · u) γ

Proof. Let ε > 0. There exists a continuous and bounded function Fε : Ω → Rd

such that
∫

Ω
|Fε(x)− F (x)|dx < ε. One has∫

C

(F (x) · u) γm −
∫
C

(F (x) · u) γ =

∫
C

(F (x) · u) γm −
∫
C

(Fε(x) · u) γm

+

∫
C

(Fε(x) · u) γm −
∫
C

(Fε(x) · u) γ

+

∫
C

(Fε(x) · u) γ −
∫
C

(F (x) · u) γ

Now ∣∣∣∣∫
C

(F (x) · u) γm −
∫
C

(Fε(x) · u) γm

∣∣∣∣ ≤∫
C

|F (x)− Fε(x)| r∗dγm

=r∗
∫

Ω

|F (x)− Fε(x)| dx

≤εr∗.
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Next, the map C 3 (x, u, t, ξ) 7→ Fε(x) · u is continuous bounded. Hence, as {γn}∞n=1

converges narrowly to γ, it holds that there exists N1 ∈ N such that for all n ≥ N1,

one has ∣∣∣∣∫
C

(Fε(x) · u) γm −
∫
C

(Fε(x) · u) γ

∣∣∣∣ ≤ ε.

Last, ∣∣∣∣∫
C

(F (x) · u) γ −
∫
C

(Fε(x) · u) γ

∣∣∣∣ ≤∫
C

|F (x)− Fε(x)| r∗dγ

=r∗
∫

Ω

|F (x)− Fε(x)| dx

≤εr∗.

Therefore

lim
m→∞

∫
C

(F (x) · u) γm =

∫
C

(F (x) · u) γ.

�

We finish this section by proving the following existence of minimizer result.

Lemma 3.7.4 The functional Ī achieves its minimum over Γ.

Proof. Thanks to Lemma 2.1.2, there exists u0 ∈ W 1,p(Ω,Λ) an homeomorphism

such that u0(Ω) = Λ and det∇u > 0. Set β0 = det∇u0. One has β0 ∈ det∗∇u0. Set

γ0 = γ(u0,β0). Thanks to Lemma 3.7.1, one has γ0 ∈ Γ. Set c0 = Ī(γ0). The sublevel

set {γ ∈ Γ : Ī(γ) ≤ c0} is compact for the weak topology thanks to Lemma 3.7.2.

Hence a minimizing sequence {γn}∞n=1 ⊂ {γ ∈ Γ : Ī(γ) ≤ c0} of Ī converges weakly

to some γ̄ ∈ {γ ∈ Γ : Ī(γ) < c0}. Using Lemma A.2.2 and the fact that the function

C 3 (x, u, t, ξ) 7→ f(ξ) +H(t) is lower semicontinuous and bounded below, one gets∫
C

f(ξ) +H(t)dγ̄ ≤ lim inf
n→∞

∫
C

f(ξ) +H(t)dγn.

Moreover, using Lemma 3.7.3 one has limm→∞
∫
C

(F (x) · u) γm =
∫
C

(F (x) · u) γ.

Thus

inf
γ∈Γ

Ī(γ) ≤ Ī(γ̄) ≤ lim inf
n→∞

Ī(γn) = inf
γ∈Γ

Ī(γ),
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and infγ∈Γ Ī(γ) = Ī(γ̄).

�
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CHAPTER IV

A DUALITY APPROACH

In this chapter we study problems that are dual to some of the problems studied in

Chapter 3. For ψ ∈ (Lq(Ω))d×d we define divψRd to be the distributional divergence

of ψ̄, the extension of ψ that takes the value 0 outside Ω. That is

∀ϕ ∈
(
C∞c (Rd)

)d
,

∫
Rd

divψRd · ϕ = −
∫

Ω

ψ · ∇ϕ,

or

∀ϕ ∈
(
C∞c (Rd)

)d
,

∫
Ω

divψRd · ϕ = −
∫

Ω

ψ · ∇ϕ. (65)

As divψRd and ψ have compact support, Equation (65) holds for all ϕ ∈ C1(Rd,Rd).

Let A0 be the set of (k, l, ψ) such that k : Rd → R̄ Borel measurable, l : Rd → R̄

Borel measurable,

k(v) + tl(u) +H(t) ≥ u · v ∀u, v ∈ Rd; ∀t > 0. (66)

ψ : Ω→ Rd×d, ψ ∈ (Lq(Ω))d×d and divψRd is a bounded Borel measure on Ω̄.

We suppose there exists M0 > 0 such that ‖F‖L1(Ω,Rd×d) ≤M0.

The aim of this chapter is to study

sup
(k,l,ψ)∈A0

{
−J(k, l, ψ) := −

∫
Ω

f ∗(ψ)dx−
∫

Ω

k(F + divψRd)−
∫

Λ

ldx

}
. (67)

4.1 An auxiliary problem

Let S ⊂ (Lq(Ω))d×d be a closed subspace such that for each element ψ ∈ S; the

distributional derivative of ψ̄ is a bounded measure concentrated on Ω̄.

Define C to be the set of couples (k, l) where k : Rd → R is Borel measurable,

l : Rd → R ∪ {∞} is Borel measurable and finite at least at one point and satisfy
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l ≡ ∞ on Rd \ Λ̄

k(v) + tl(u) +H(t) ≥ u · v ∀u, v ∈ Rd; t > 0. (68)

Let A be the set of (k, l, ψ) such that (k, l) ∈ C and ψ ∈ S. Consider:

sup
(k,l,ψ)∈A

−J(k, l, ψ) := −
∫

Ω

f ∗(ψ)− k(F + divψRd)−
∫

Λ

ldx. (69)

4.1.1 Basic regularity properties of maximizers

Definition 4.1.1 We define for l : Rd → (−∞,∞]

l#(v) = sup
u∈Rd,t>0

{u · v − l(u)t−H(t)} .

For k : Rd → [−∞,∞] we define

k#(u) = − inf
v∈Rd,t>0

{
k(v) +H(t)− u · v

t

}
= sup

v∈Rd,t>0

{
u · v − k(v)−H(t)

t

}
.

We have

l#(v) = sup
u∈Λ̄; t>0

{u · v − tl(u)−H(t)}

= sup
t>0

sup
u∈Λ̄

{u · v − tl(u)−H(t)}

= sup
t>0
{tl∗(v

t
)−H(t)}.

But also

l#(v) = sup
u∈Λ̄; t>0

{u · v − tl(u)−H(t)}

= sup
u∈Λ̄

sup
t>0
{u · v − tl(u)−H(t)}

= sup
u∈Λ̄

{u · v +H(−l(u))}

=[−H∗(−l)]∗(v).
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In a similar way,

k#(u) = sup
v∈Rd,t>0

u · v −H(t)− k(v)

t

= sup
t>0

k∗(u)−H(t)

t
.

Now, thanks to Lemma 3.1.2, H∗ is invertible. Set y = (H∗)−1(−k∗(u)). There exists

s > 0 such that H(s) +H(y) = sy. Then for all t > 0 one has

H(t) +H∗(y)

t
≥ y =

H(s) +H∗(y)

s
.

Thus

sup
t>0

k∗(u)−H(t)

t
= −y = −(H∗)−1(−k∗(u)).

We deduce that k#(u) = −(H∗)−1(−k∗(u)).

Remark 4.1.2 We have
((
l#
)

#

)#

= l# and
(

(k#)#
)

#
= k#.

Proof. We have by definition of l#(v) that l#(v) ≥ −l(u)t − H(t) + u · v for any

u ∈ Rd and t > 0. So (l#(v) +H(t)− u · v)t−1 ≥ −l(u) and

inf
v∈Rd,t>0

{
l#(v) +H(t)− u · v

t

}
≥ −l(u).

That is
(
l#
)

#
(u) ≤ l(u). Therefore,

(
H#
)

#

#
(v) ≥ H#(v).

We also have

−
(
l#
)

#
(u) = inf

v∈Rd,t>0

{
l#(v) +H(t)− u · v

t

}
≤ l#(v) +H(t)− u · v

t

for all v ∈ Rd and t > 0. So −t
(
l#
)

#
(u) ≤ l#(v) + H(t) − u · v. We deduce

−t
(
l#
)

#
(u)−H(t) + u · v ≤ l#(v) and

(
l#
)

#

#
(v) ≤ l#(v).

Therefore,
(
l#
)

#

#
(v) = l#(v).

Next, we have

−k#(u) = inf
v∈Rd,t>0

{
k(v) +H(t)− u · v

t

}
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and hence −tk#(u) ≤ k(v) + H(t) − u · v for any v ∈ Rd, t > 0. Next −tk#(u) −

H(t)+u ·v ≤ k(v) for any v ∈ R, t > 0. So (k#)#(u) ≤ k(u) and
(

(k#)#
)

#
(u) ≥ k#.

Furthermore we have for all v ∈ R, t > 0

(k#)#(u) ≥ −t(k#)(u)−H(t) + u · v.

Hence

(k#)#(u) +H(t)− u · v
t

≥ −k#(u).

That is
(

(k#)#
)

#
(u) ≥ −k#(u). Therefore,

(
(k#)#

)
#

(u) = k#(u).

�

Remark 4.1.3 If (k, l, ψ) ∈ A , then (l#, l, ψ) ∈ A and (k, (k)#, ψ) ∈ A . On has

J(l#, l, ψ) ≤ J(k, l, ψ) and J(k, (k)#, ψ) ≤ J(k, l, ψ). Furthermore, one has

sup
A
−J(k, l, ψ) = sup

A ′
−J(k, l, ψ)

where A ′ is the subset of A whose elements (k, l, ψ) are such that l = k# and k = l#.

Proof. Since

l#(v) = sup
u∈Rd,t>0

{−tl(u)−H(t) + u · v}

and k(v) ≥ −tl(u)−H(t) + u · v for all u, v ∈ Rd and t > 0, we have k ≥ l#. Next,

l# satisfies the relation l#(v) ≥ −tl(u)−H(t) +u · v. Thus (l#, l, ψ) ∈ A and clearly

J(k, l, ψ) ≥ J(l#, l, ψ) .

Furthermore, since

−(k)#(u) = inf
v∈Rd,t>0

{k(v) +H(t)− u · v
t

} ≥ −l(u),

we get k#(u) ≤ l(u). Moreover k# satisfies the relation k(v) ≥ −tk#(u)−H(t)+u ·v.

We get them (k, k#, ψ) ∈ A and J(k, l, ψ) ≥ J(k, k#, ψ).

Let (k, l, ψ) ∈ A . We have (k, k#, ψ) ∈ A and ((k#)#, k#, ψ) ∈ A . Set l0 = k# and

k0 = (k#)#. One has

(k0)# = ((k#)#)# = k# = l0
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thanks to Remark 4.1.2 and (l0)# = k0. Thus (k0, l0, ψ) ∈ A ′ and J(k0, l0, ψ) ≤

J(k, l, ψ). So

sup
A
−J(k, l, ψ) = sup

A ′
−J(k, l, ψ).

�

4.1.2 Coercivity properties of J

Lemma 4.1.4 Consider a sequence {(kn, ln, ψn)}n ⊂ A ′ such that for some C ∈ R

one has J(kn, ln, ψn) ≤ C. Then there exist some constants αC and βC such that for

all n ∈ N,

αC ≤ inf
u∈Λ

ln(u) ≤ βC . (70)

Moreover, this constants depends only on Ω, Λ, H and any constant M0 satisfying

‖F‖L1(Ω,Rd) ≤M0.

Proof. Define for all n ∈ N sn := supu∈Λ̄−ln(u) = − infu∈Λ̄ ln(u). As Λ is bounded,

ln is lower semicontinuous, we can find some un ∈ Λ such that ln(un) = sn Now, for

all v ∈ Rd, u ∈ Λ, t > 0, one has

kn(v) ≥− tln(u)−H(t) + u · v.

Thus the following successively hold:

kn(v) ≥− tln(un)−H(t) + un · v ∀t > 0

kn(v) ≥tsn −H(t) + un · v ∀t > 0

kn(v) ≥H∗(sn) + un · v.

Using the last Inequality, one gets∫
Ω

kn(F + div (ψn)Rd) ≥
∫

Ω

H∗(sn) + un · (F + div (ψn)Rd)

≥Ld(Ω)H∗(sn) +

∫
Ω

un · F +

∫
Ω

un · div (ψn)Rd
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But ∫
Ω

un · F ≥ −
∫

Ω

|un|.|F | ≥ −|un|.‖F‖L1(Ω) ≥ −r∗‖F‖L1(Ω).

Furthermore ∫
Ω

un · div (ψn)Rd = −
∫

Ω

∇(un) · ψn = 0

since un is a constant. Hence:∫
Ω

kn(F + div (ψn)Rd) ≥ L
d(Ω)H∗(sn)− r∗‖F‖L1(Ω). (71)

Thanks to Inequality (42), f ∗ is bounded below so there exists Af ∈ R such that∫
Ω

f ∗(ψn)dx ≥ Af . (72)

We also have
∫

Λ
lndx ≥ −Ld(Λ)sn. Then

J(kn, ln, ψn) =

∫
Ω

f ∗(ψn)dx+

∫
Ω

kn(F + div (ψn)Rd) +

∫
Λ

lndx

≥ Af + Ld(Ω)H∗(sn)− Ld(Λ)sn − r∗‖F‖L1(Ω),

and

−C ≤ −Af − Ld(Ω)H∗(sn) + Ld(Λ)sn + r.‖F‖L1(Ω)

Thanks to Lemma 3.1.2, the sequence {sn}∞n=0 must be bounded, and this is equivalent

to the boundedness of infu∈Λ ln(u). Thus there exist some constants αC and βC such

that for all n ∈ N,

αC ≤ inf
u∈Λ

ln(u) ≤ βC .

�

Lemma 4.1.5 Consider a sequence {(kn, ln, ψn)}n ⊂ A ′ such that for some C ∈ R

one has J(kn, ln, ψn) ≤ C. There exists M, b ∈ R; a > 0 such that for all n ∈ N:

1. Lip kn ≤ r∗ Λ. Moreover there exists e > 0 such that for all n ∈ N and for all

v ∈ Rd, one has k(v) ≤ r∗|v|+ e.

2. One has kn(0),
∫

Λ
|ln(u)|,

∫
Ω
|ψn|q,

∫
Ω
|div (ψn)Rd | < M .

3. One has kn(v) ≥ a|v|+ b.
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Proof. (i) Let us show that there exists M1 ∈ R such that for all n ∈ N,

kn(0) < M1.

We have kn(0) = supu∈Rd,t>0{−tln(u)−H(t)}. Let

s0 := sup
n

(
sup
u∈Λ
−ln(u)

)
:= sup

n
(sn) .

Using (70) we have −βC ≤ sn ≤ −αC , ∀n ∈ N for some reals αC and βC . Thus s0

is finite. We have next

sup
u∈Rd,t>0

{−tln(u)−H(t)} ≤ sup
t
{ts0 −H(t)} = H∗(s0) <∞,

where we got the last inequality from Lemma 3.1.2. Thus there exists M1 ∈ R such

that for all n ∈ N, kn(0) < M1.

(ii) Let us show that Lip kn ≤ r∗.

We have ln(u) ≥ αC and thus

kn(v) = l#n (v) = sup
u∈Λ̄, t>0

{u · v − l(u)t−H(t)}

≤ sup
u∈Λ̄, t>0

{u · v − αCt−H(t)}

≤r∗|v|+H∗(−αC).

Let v1, v2 ∈ Rd. Let ε > 0.

There exists some u1, t1 such that kn(v1) − ε ≤ −ln(u1)t1 − H(t1) + u1v1. But

−ln(u1)t1 − H(t1) + u1v2 ≤ k(v2). Thus kn(v1) − kn(v2) ≤ u1v1 − u1v2 + ε. So

kn(v1)− kn(v2) ≤ |v1 − v2|r∗ + ε.

Taking ε going to 0 we get kn(v1)−kn(v2) ≤ |v1−v2|r∗. The inequality kn(v1)−kn(v2) ≤

|v1 − v2|r∗ occurs when we switch v1 and v2.

Thus Lip k0 ≤ r∗.

(iii) Let us show that there exists M2 ∈ R such that for all n ∈ N,∫
Λ
|ln(u)| < M2.

Using inequality (70) we have −βC ≤ sn ≤ −αC , ∀n ∈ N. Since inequality (71)
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gives: ∫
Ω

kn(F + div (ψn)Rd) ≥ L
d(Ω)H∗(sn)− r∗‖F‖L1(Ω),

One has: ∫
Ω

kn(F + div (ψn)Rd) ≥ L
d(Ω)H∗(−βC)− r∗‖F‖L1(Ω) := Ak

as H∗ is nondecreasing by Lemma 3.1.2. Thus

C ≥ J(kn, ln, ψn) =

∫
Ω

f ∗(ψn)dx+

∫
Ω

kn(F + div (ψn)Rd) +

∫
Λ

lndx

≥ Af + Ak +

∫
Λ

lndx,

and
∫

Λ
lndx ≤ C − (Af + Ak). Moreover∫

Λ

lndx ≥
∫

Ω

inf
u∈Ω

ln(u)dx ≥ αCLd(Λ).

Thus there exists M2 ∈ R such that for all n ∈ N,
∫

Λ
|ln(u)| < M2.

(iv) Let us show that there exists M3 ∈ R such that for all n ∈ N,
∫

Ω
|ψn|q <

M3.

One has:

C ≥ J(kn, ln, ψn) =

∫
Ω

f ∗(ψn)dx+

∫
Ω

kn(F + div (ψn)Rd) +

∫
Λ

lndx

≥ −M2 + Ak +

∫
Ω

f ∗(ψn)dx

≥ −M2 + Ak +

∫
Ω

c1(|ψn|q)dx− c1Ld(Ω),

where we have used inequality (42). Hence, there exists M3 ∈ R such that for all

n ∈ N,
∫

Ω
|ψn|q < M3.

(v) Let us prove that there exists b ∈ R, a > 0 such that for all n ∈ N,

v ∈ Rd, kn(v) ≥ a|v|+ b.

Since Λ is open and contains the origin, there exists a > 0 such that B(0, 4a) ⊂ Λ.

Suppose |v| 6= 0. We have :

kn(v) ≥ −ln(−a v
|v|

)f −H(1) + v · a v
|v|
≥ ln(−a v

|v|
)−H(1) + a|v|.
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Since ln is finite on Λ we can find a constant cd depending only on d such that

sup
B(0,2a)

|ln| ≤
cd

Ld(B(0, 4a))

∫
B(0,4a)

|ln| ∀n ∈ N

(See. for instance [11, Evans-Gariepy]). Thus

sup
S(0,a)

|ln| ≤
cd

Ld(B(0, 4a))

∫
Λ

|ln| ≤
cd

Ld(B(0, 4a))
M2.

So kn(v) ≥ b + a|v| where b = H(1) − cd
Ld(B(0,4a)

M2. If v = 0, we have kn(0) ≥

−ln(0)−H(1)− 0 and kn(0) ≥ b = a|0|+ b. Thus there exists b ∈ R, a > 0 such that

for all n ∈ N, v ∈ Rd, kn(v) ≥ a|v|+ b.

(vi) Let us show that there exists M4 ∈ R such that for all n ∈ N,∫
Ω
|div (ψn)Rd | < M4.

We have:

C ≥ J(kn, ln, ψn) =

∫
Ω

f ∗(ψn)dx+

∫
Ω

kn(F + div (ψn)Rd) +

∫
Λ

lndx

≥ Af + αCLd(Λ) +

∫
Ω

kn(F + div (ψn)Rd)

≥ Af + αCLd(Λ) +

∫
Ω

a|F + div (ψn)Rd |+ b

≥ Af + αCLd(Λ) + bLd(Ω)− a
∫

Ω

|F |dx+

∫
Ω

a|div (ψn)Rd|.

Thus there exists M4 ∈ R such that for all n ∈ N,
∫

Ω
|div (ψn)Rd | < M4.

�

Lemma 4.1.6 Consider a sequence {(kn, ln, ψn)}n ⊂ A ′ such that the consequences

of Lemma 4.1.5 hold. Then

1. There exists a function k : Rd → R and a subsequence of {kn}∞n=1 that converges

to k locally uniformly.

2. There exists a function l : Λ → R and a subsequence of {ln}∞n=1 that converges

to l locally uniformly.
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3. There exists ψ ∈ (Lp(Ω))d×d and a bounded Borel measure ξ such that a sub-

sequence of {ψnm}m converges weakly to ψ in (Lp(Ω))d×d and {div (ψnm)|Rd}m

converges weakly to ξ (in measures) and divψRd = ξ.

Proof. Proof of (i). Let BN denote the open ball centered at the origin of radius

N . {kn}∞n=1 is bounded pointwise. Indeed, there exists M1 ∈ R such that for all

n ∈ N, kn(0) < M1 and for all n ∈ N, Lip kn ≤ r∗. Then for all n ∈ N and v ∈ BN ,

we have:

|kn(v)| ≤ |kn(0)|+ (r∗)|v| ≤M1 + (r∗)|v|.

Next {kn}∞n=1 is equicontinuous. To see this, let ε > 0 and take δ = ε
r∗

. For u, v ∈ Rd

such that |u− v| ≤ δ we have:

|kn(u)− kn(v)| ≤ (r∗)|u− v| ≤ (r∗)
ε

r∗
= ε.

Using Ascoli-Arzela’s theorem, there exists a continuous function k̄, and a subse-

quence {knm}∞m=1 such that knm → k̄ in Rd locally uniformly.

Proof of (ii). Let

Km = {x ∈ Λ : d(x, ∂Λ) ≥ 1

m
}.

Assume that m ≥ m0 where m0 is chosen in a way that Km0 is nonempty. Km is

compact. Since for all n ∈ N, ln is convex and
∫

Λ
|ln| < M2, there exists a constant

c depending only on d, Km and M2 such that ‖ln‖W 1,∞(Km) ≤ c. Since W 1,∞(Km)

is embedded in C0,1(Km) we get that the LipKm(ln) is bounded say by some M > 0

and so {ln}∞n=1 is equicontinuous on Km. The sequence {ln}∞n=1 is also equi-bounded

on Km thus using Ascoli-Arzela’s theorem, there exists a subsequence of {ln}∞n=1 that

converges uniformly to some function l(m) on Km.

For m = m0 + 1, construct a subsequence {lm0+1,n}n of {ln}∞n=1 such that lm0+1,n →

l(m0+1) in Km0+1.

For m = m0+2, construct a subsequence {lm0+2,n}n of {lm0+1,n}n such that lm0+2,n →
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l(m0+2) in Km0+2.

Proceed that way for all m > m0 and construct a subsequence {lm,n}n of {lm−1,n}

such that lm,n → l(m) in Km.

Remark that if m′ ≥ m, Km ⊂ Km′ and since lm,n → l(m) in Km uniformly and

lm′,n → l(m
′) in K(m′) uniformly, we have l(m

′) = l(m) on Km.

Now let x ∈ Λ. Let m1 such that x ∈ Km1 . For m > m1, l(m)(x) = l(m1)(x). So

{l(m)(x)} converges. Thus {l(m)} converges pointwise to some function l and therefore

l = l(m) on Km.

Thus there exists a function l : Λ→ R such that ln,n → l locally uniformly.

Proof of (iii). Using Lemma 4.1.5, there exists ψ ∈ (Lp(Ω))d×d and a bounded

Borel measure ξ such that a subsequence {ψnm}m of {ψn}n converges weakly to ψ

in (Lp(Ω))d×d and {div (ψnm)|Rd}m converges weakly to ξ (in measures). Let us prove

divψRd = ξ.

For all n ∈ N and all ϕ ∈
(
C∞c (Rd)

)d
we have:∫

Ω

ϕ · div (ψn)Rd = −
∫

Ω

ψn · ∇ϕ.

Since {ψnm}m converges weakly to ψ in (Lq(Ω))d×d, we have

lim
m→∞

−
∫

Ω

ψnm · ∇ϕ = −
∫

Ω

ψ · ∇ϕ.

Since {div (ψnm)|Rd}m converges weakly to ξ, we have

lim
m→∞

∫
Ω

ϕ · div (ψnm)|Rd =

∫
Ω

ϕ · ξ.

Hence
∫

Ω
ϕ · ξ = −

∫
Ω
ψ · ∇ϕ. Thus divψ = ξ.

�

Lemma 4.1.7 Consider a sequence {(kn, ln, ψn)}n ⊂ A ′ such that for some C ∈

R, one has J(kn, ln, ψn) ≤ C. Then there exist (k, l, ψ) ∈ A ′; a subsequence of

{(kn, ln, ψn)}n denoted {(knm , lnm , ψnm)}m such that J(k, l, ψ) ≤ lim infm J(knm , lnm , ψnm).
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Proof. Thanks to Lemma(4.1.6), there exists a subsequence of {(kn, ln, ψn)}n that

we denote again {(knm , lnm , ψnm)}m such that for some function k : Rd → R, {knm}∞m=1

converges to k locally uniformly; for some function l : Λ→ R, {lnm}∞m=1 converges to

l locally uniformly; for some ψ ∈ (Lp(Ω))d×d and a bounded Borel measure ξ, {ψnm}m

converges weakly to ψ in (Lp(Ω))d×d and {div (ψnm)|Rd}m converges weakly to ξ in

measures and divψRd = ξ. Remark that since S is closed, we have ψ ∈ S. We also

have (k, l) ∈ C.

Let us prove J(k, l, ψ) ≤ lim infm J(knm , lnmψnm).

We recall that

J(knm , lnm , ψnm) =

∫
Ω

f ∗(ψnm)dx+

∫
Ω

knm(F + divψnm) +

∫
Λ

lnmdx.

We have k∗nm(v) ≥ −knm(0) and thanks to Lemma 4.1.5 , there exists M1 > 0 such

that for all m ∈ N∗, one has −knm(0) ≥ −M . It holds also that for all m ∈ N∗, since

(knm)# = lnm , we have k∗nm(u) + H(1) ≤ lnm(u) for all u ∈ Rd. Using Lemma 4.1.5

one more time, there exists M2 > 0 such that for all m ∈ N∗ one has
∫

Λ
|lnm|dx < M2.

We deduce that there exists M3 > 0 such that for all m ∈ N∗, dom k∗nm = Λ̄ and∫
Ω
|k∗nm|dx < M . We are now in position to use Lemma 2.4.10 to deduce that

∫
Ω

k(divψRd + F) ≤ lim inf
m

∫
Ω

kn(divψnm + F).

Furthermore, Since f ∗ is convex and finite, the functional

(Lp(Ω))d×d 3 u 7→
∫

Ω

f ∗(u)dx

is is weakly lower semicontinuous. Hence:∫
Ω

f ∗(ψ) ≤ lim inf
m

∫
Ω

f ∗(ψnm).

Now, using Lemma (4.1.4), there exists αC ∈ R such that αC ≤ lnm(u) for all
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u ∈ Λ and n ∈ N, we may apply Fatou’s lemma to lnm − αC and get∫
Λ

lim inf
m

(lnm(u)− αC) ≤ lim inf
m

∫
Λ

(lnm(u)− αC)∫
Λ

l(u)−
∫

Λ

αC ≤ lim inf
m

∫
Λ

lnm(u)−
∫

Λ

αC∫
Λ

l(u) ≤ lim inf
m

∫
Λ

lnm(u).

Finally, we have

J(k, l, ψ) =

∫
Ω

f ∗(ψ)dx+

∫
Ω

k(F + divψ) +

∫
Λ

ldx

≤ lim inf
m

[∫
Ω

f ∗(ψnm)dx+

∫
Ω

knm(F + div (ψn)Rd) +

∫
Λ

lnmdx

]
= lim inf

m
J(knm , lnm , ψnm).

We have (k, k#, ψ) ∈ A and ((k)#
#, k#, ψ) ∈ A . Set l̄ = k# and k̄ = (k)#

#. One has

k̄# = (k#
#)# = k# = l̄ and l̄# = k̄. Thus (k̄, l̄, ψ) ∈ A ′ and J(k̄, l̄, ψ) ≤ J(k, l, ψ).

Set ψ̄ = ψ. (k̄, l̄, ψ̄) ∈ A ′ and −J(k̄, l̄, ψ̄) ≤ −J(k, l, ψ) ≤ lim infm J(knm , lnm , ψnm).

�

4.1.3 An existence result

Proposition 4.1.8 There exists (k̄, l̄, ψ̄) ⊂ A ′ such that

−J(k̄, l̄, ψ̄) = sup
A
−J(k, l, ψ)

Proof. Remark that for all u ∈ Λ̄ and v ∈ Rd, u · v ≤ r∗|v| and for all t > 0,

0 ≤ t+H(t) +H∗(−1). Thus for all u ∈ Λ̄, v ∈ Rd and for all t > 0

u · v ≤ t+H(t) +H∗(−1) + r∗|v|,

and if we take l0 = 1 + χΛ̄, k0(v) = H∗(−1) + r∗|v| for all v ∈ Rd and ψ0 = 0 then

(k0, l0, ψ0) ∈ A . Set J(k0, l0, ψ0) = C. Thanks to Remark (4.1.3), we can find a se-

quence {(kn, ln, ψn)}n ⊂ A ′ such that J(kn, ln, ψn) ≤ C and limn→∞−J(kn, ln, ψn) =
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supA ′ −J(k, l, ψ). We next use Lemma 4.1.7 to deduce that there exist (k̄, l̄, ψ̄) ∈ A ′

and a subsequence of {(kn, ln, ψn)}n denoted {(knm , lnm , ψnm)}m such that

J(k̄, l̄, ψ̄) ≤ lim inf
m

J(knm , lnm , ψnm) = sup
A ′
−J(k, l, ψ).

Thus J(k̄, l̄, ψ̄) = supA ′ −J(k, l, ψ).

4.1.4 Additional results

Lemma 4.1.9 Suppose a lower semicontinuous function l : Rd → R̄ is such that

infΛ̄ l ≥ α and l is finite on Λ̄, l ≡ +∞ on Rd \ Λ̄ and k = l#. For v ∈ Rd there

exists (u0, t0) such that u0 ∈ Λ̄, t0 > 0 and

k(v) = −t0l(u0)−H(t0)− u0 · v.

Proof. Let v ∈ Rd. We have k(v) = supu∈Λ̄,t>0 {−tl(u)−H(t) + u · v} . Consider

(un, tn) ∈ Λ̄× (0,∞) such that limn→∞ {−tnln(u)−H(tn)− un · v} = k(v). One has

−tnl(un)−H(tn)− un · v ≤ −tnα−H(tn) + |v|.r∗.

Assume that a subsequence of {tn}∞n=1 called {tnm}∞m=1 converges to∞. In that case,

lim
m→∞

−tnmα−H(tnm) + |v|.r∗ = −∞

which contradict the fact that k(v) ≥ l(0)−H(1).

In the same manner, no subsequences of {tn}∞n=1 go to 0+. Thus tn stays in a

closed bounded interval of (0,∞). Since un ∈ Λ̄ we may then find a subsequence

{(unm , tnm)}m of {(un, tn)}n converging to (u0, t0) ∈ Λ̄× (0,∞). Using the continuity

of H and the fact that l is lower semicontinuous ,

k(v) = lim
m→∞

−tnml(unm)−H(tnm)− unm · v ≤ −t0l(u0)−H(t0)− u0 · v ≤ k(v).

Thus −t0l(u0)−H(t0)− u0 · v = k(v).

�
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Lemma 4.1.10 Suppose a lower semicontinuous function l0 : Rd → R̄ is such that

infΛ̄ l0 ≥ α and l0 is finite on Λ, l0 ≡ +∞ on Rd \ Λ̄ and k = l0
#. For all v ∈ Rd

such that k is differentiable at v:

1. There exist unique u0 ∈ Λ̄, t0 > 0 such that

k(v) = −t0l(u0)−H(t0)− u0 · v.

In addition, u0 = ∇k(v) and H ′(t0) + l(u0) = 0.

2. Moreover, let l ∈ Cb(Rd) and let 1 ≥ ε > 0. Define lε = l0 +εl and kε(v) = (lε)
#.

(a) There exist a constant M independent of v and ε such that ,∣∣∣∣kε(v)− k(v)

ε

∣∣∣∣ ≤M.

(b) We have

lim
ε→0

kε(v)− k(v)

ε
= −t0l(u0).

Proof. (i) Thanks to Lemma (4.1.9) there exists (u0, t0) such that u0 ∈ Λ̄, t0 > 0

and k(v) = −t0l(u0)−H(t0)− u0 · v. Remark that we have for u ∈ Λ̄ and t > 0, k(v) + tl0(u) +H(t)− u · v ≥ 0

k(v) + t0.l0(u0) +H(t0)− u0 · v = 0

we get taking the partial derivative with respect to t of k(v) + tl0(u) +H(t)− u · v :

l0(u0) +H ′(t0) = 0. (73)

Since k is differentiable at v, taking the partial derivative with respect to v of k(v) +

tl0(u) +H(t)− u · v, we get :

∇k(v) = u0. (74)

Equality (74) tells us that u0 is uniquely defined. As u0 is uniquely defined, Equality

(73) tells us that t0 is uniquely defined as H ′ : (0,∞) → R is a bijection (Lemma
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(3.1.1)). Thus there exist unique u0 ∈ Λ̄, t0 > 0 such that

k(v) = −t0l(u0)−H(t0)− u0 · v.

(ii.a) Set k0 = k. Remarking that for all ε ≥ 0, infΛ̄ lε ≥ α− |l|∞, we use Part (i) to

deduce that for all v ∈ Rd, there exists unique (uε, tε) ∈ Λ̄× (0,∞) such that

kε(v) = sup
u∈Λ̄,t>0

−flε(u)−H(t) + u · v = −tεlε(uε)−H(tε) + uε · v,

uε ∈ ∂kε(v) and tε = (H ′)−1(−lε(uε)).

We have −lε(uε) ≤ −α + |l|∞. Hence there exists M1 depending only on α and

|l|∞ such that for all ε > 0, one has tε ≤M1.

We have:

kε(v) = −tεlε(uε)−H(tε) + uε · v

= −tεl̄(uε)−H(tε) + uε · v − εtεl(uε)

≤ k(v)− εtεl(uε)

So for ε > 0

kε(v)− k(v)

ε
≤ −tεl(uε) (75)

and

kε(v)− k(v)

ε
≤ |l|∞M1. (76)

We also have

k(v) = −t0.l̄(u0)−H(t0) + u0 · v

= −t0l̄(u0)− εt0l(u0)−H(t0) + u0 · v + εt0l(u0)

= −t0lε(u0)−H(t0) + u0 · v + εt0l(u0)

≤ kε(v) + εt0l(u0).

Thus

− t0l(u0) ≤ kε(v)− k(v)

ε
. (77)
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Using inequalities (76) and (77) we get:
∣∣∣kε(v)−k(v)

ε

∣∣∣ ≤ |l|∞M1.

(ii.b) Using (75) we have:

lim
ε→0

kε(v)− k(v)

ε
≤ lim

ε
−tεl(uε). (78)

There exists a sequence (uεn , fεn) with εn → 0 such that

lim
ε
−tεl(uε) = lim

n→∞
−fεnl(uεn).

As tεn ∈ (0,M1] and uεn ∈ Λ̄, we may find a subsequence {(tεnν , uεnν )}ν such that

(fεnν , uεnν )
ν−→ (t̃, ũ) ∈ (0,M1]× Λ̄.

Remark that we exclude the possibility t̃ = 0 since as kε(v) is bounded uniformly in

ε, no subsequence of {tε}ε goes to 0. Thanks to (ii. a), limε→0+ kε(v) = k(v). Using

the continuity of H and the fact that l is lower semicontinuous we get

k(v) ≤ lim
ν→∞
−tεnν l(uεnν )−H(tεnν ) + uεnν · v ≤ −f̃ l(ũ)−H(f̃) + ũ · v ≤ k(v).

Thus k(v) = −f̃ l(ũ)−H(f̃) + ũ · v and using (i), we have u0 = ũ and t0 = f̃ . Hence:

lim
ε
−tεl(uε) = lim

n→∞
−tεnl(uεn) = lim

ν→∞
−tεnν l(uεnν ) = −t0l(u0).

We deduce that

lim
ε→0

kε(v)− k(v)

ε
≤ −t0l(u0). (79)

Using (77) we get

− t0l(u0) ≤ lim
ε→0+

kε(v)− k(v)

ε
. (80)

Finally, combining (79) and (80) we get

lim
ε→0

kε(v)− k(v)

ε
= −t0l(u0).

�

Lemma 4.1.11 Let γ : Ω → Rd be a piece-wise constant function and λ : Ω → Rd

be a non degenerate function i.e. Ld(λ−1(N)) = 0 whenever N ⊂ Rd and Ld(N) = 0.

Then γ + λ is non degenerate.
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Proof. Let {Ωi}i∈∞ with I countable be a partition of Ω such that γ is constant

on Ωi and takes on that set the value γi. We have γ(x) =
∑

i∈I γi1Ωi
, ∀x ∈ Ω. Let

N ⊂ Rd such that Ld(N) = 0.

(γ + λ)−1(N) = {x ∈ Ω, γ(x) + λ(x) ∈ N}

=
⋃
i∈I

Ωi ∩ {x ∈ Ω, γ(x) + λ(x) ∈ N}

=
⋃
i∈I

Ωi ∩ {x ∈ Ω, γi + λ(x) ∈ N}

=
⋃
i∈I

Ωi ∩ λ−1(N − γi)

Thus

Ld((γ + λ)−1(N)) ≤
∑
i∈I

Ld(Ωi ∩ λ−1(N − γi)) ≤
∑
i∈I

Ld(λ−1(N − γi)).

But, as Ld(N−γi) = Ld(N) = 0 and λ is non degenerate, we have Ld(λ−1(N−γi)) = 0.

Thus Ld((γ+λ)−1(N)) ≤ 0 and Ld((γ+λ)−1(N)) = 0. Hence γ+λ is non degenerate.

�

4.2 A duality result for problem (58)

In this section we suppose that F is non degenerate and the set S is a finite dimensional

subspace of piecewise affine functions in W 1,∞
0 (Ω,Rd×d). Suppose (k̄, l̄, ψ̄) ∈ A ′ is a

maximizer of sup(k,l,ψ)∈A −J(k, l, ψ) as given by Proposition 4.1.8. Our goal in this

section is to make a link between Problem (69) and problem (58).

Let ψ ∈ S. Remark first that divψ
Rd

= divψ1ΩLd and if (k, l) ∈ C, then
∫

Ω
k(F +

divψ
Rd

) =
∫

Ω
k(F+divψ)dx. As div ψ̄ is constant piecewise and F is non degenerate,

we have div ψ̄ + F that is non degenerate thanks to Lemma (4.1.11). As k̄ is convex,

k̄ is differentiable a.e. on Ω. So there exists a set N ⊂ Rd with Ld(N) = 0 such that

k̄ is differentiable for all v ∈ Ω\N . Set N0 = (div ψ̄+F )−1(N). We have Ld(N0) = 0

as div ψ̄ + F is non degenerate. So for x ∈ Ω \ N0, (div ψ̄ + F )(x) 6∈ N and k̄ is
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differentiable at (div ψ̄ + F )(x). Thus for almost every x ∈ Ω, k̄ is differentiable at

div ψ̄(x)+F (x) . So, thanks to Lemma 4.1.10 there exist Ω1 ⊂ Ω with Ld(Ω\Ω1) = 0

and unique measurable functions t0 : Ω1 → (0,∞) and u0 : Ω1 → Λ̄ such that for all

x ∈ Ω1

k̄(div ψ̄(x) + F (x)) = −t0(x)l̄(u0(x))−H(t0(x))− u0(x) ·
(
div ψ̄(x)

)
;

u0(x) = ∇k̄(div ψ̄(x) + F (x)) and t0(x) = (H ′)−1(l̄(u0(x))).

4.2.1 Differential of J(·, ·, ψ) along a special curve

In this subsection we show that performing variations in the l variable in problem

sup(k,l,ψ)∈A −J(k, l, ψ) gives the following result.

Lemma 4.2.1 We have t0 ∈ det∗∇u0.

Proof. Let l ∈ Cb(Rd) and let 1 ≥ ε > 0. Define lε = l̄ + εl and kε = (lε)
#. Since

for all x ∈ Ω1 , k̄ is differentiable at div ψ̄(x) + F (x) we have by Lemma 4.1.10 that

there exist a constant M independent of x and ε such that, for all x ∈ Ω1:∣∣∣∣kε − kε

(
div ψ̄(x) + F (x)

)∣∣∣∣ ≤M. (81)

and

lim
ε→0

kε − k
ε

(
div ψ̄(x) + F (x)

)
= −t0(x)l(u0(x)). (82)

Furthermore, as −J(k̄, l̄, ψ̄) = supA −J(k, l, ψ), we have

J(k̄, l̄, ψ̄) ≤ J(kε, lε, ψ̄)∫
Ω

k̄(divψ + F ) +

∫
Λ

l̄dx ≤
∫

Ω

kε(F + divψ
Rd

) +

∫
Λ

lεdx∫
Ω

(
k̄ − kε

)
(divψ + F ) ≤

∫
Λ

(
lε − l̄

)
dx∫

Ω

(
k̄ − kε

)
(divψ + F ) ≤ ε

∫
Λ

ldx∫
Ω

(
k̄ − kε
ε

)
(divψ + F ) ≤

∫
Λ

ldx.
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As Ld(Ω\Ω1) = 0, (81) and (82) holds for almost every x ∈ Ω and using the Lebesgue

Dominated convergence Theorem, we get

lim
ε→0+

∫
Ω

(
k̄ − kε
ε

)
(divψ + F ) =

∫
Ω

t0(x)l(u0(x))dx.

So ∫
Ω

t0(x)l(u0(x))dx. ≤
∫

Λ

ldx (83)

Remark that Inequality (83) is still true when l is replaced by −l and reads∫
Ω

−t0(x)l(u0(x))dx ≤ −
∫

Λ

ldx,

that is ∫
Ω

t0(x)l(u0(x))dx ≥
∫

Λ

ldx. (84)

Next Inequalities (83) and (84) imply∫
Ω

t0(x)l(u0(x))dx =

∫
Λ

ldx. (85)

Since Equality (85) holds for all l ∈ Cb(Rd) we deduce that t0 ∈ det∗∇u0.

�

4.2.2 Differential of J(k, l, ·) along a special curve

In this subsection we show that performing variations in the ψ variable in problem

sup(k,l,ψ)∈A −J(k, l, ψ) gives the following result.

Lemma 4.2.2 We have ∇f ∗(ψ̄) = ∇Su0.

Proof. Recall that

G(u0) =

{
G ∈ Lp

(
Ω, Rd×d) |∫

Ω

〈u0, divψ〉 = −
∫

Ω

〈G,ψ〉 dx,∀ψ ∈ S
}

and from Theorem 3.6.1, ∇Su0 is the unique G ∈ G such that G = ∇f ∗(ψ0) for some

ψ0 ∈ S.
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Let ψ ∈ S and ε ∈ (0, 1). Define ψε = ψ̄+ εψ. One has J(k̄, l̄, ψ̄) ≤ J(k̄, l̄, ψε). Hence∫
Ω

f ∗(ψ̄) +

∫
Ω

k̄(F + div ψ̄)dx ≤
∫

Ω

f ∗(ψ̄ε) +

∫
Ω

k̄(F + div ψ̄ε)dx∫
Ω

f ∗(ψ̄)− f ∗(ψ̄ + εψ)

ε
≤
∫

Ω

−k̄(F + div ψ̄) + k̄(F + div ψ̄ + εdivψ)

ε
dx.

First, we use the fact that f ∗ is differentiable every where, the growth condition

(42) on f ∗, the fact that ψ, ψ̄ ∈ S ⊂ Lq(Ω,Rd×d) and the Lebesgue Dominated

Convergence Theorem to get

lim
ε→0+

∫
Ω

f ∗(ψ̄)− f ∗(ψ̄ + εψ)

ε
=

∫
Ω

∇f ∗(ψ̄) · ψ.

Next, we use the fact that k is differentiable at F (x) + div ψ̄(x) for a.e. x ∈ Ω, the

fact that there exists e > 0 such that for all v ∈ Rd, k(v) ≤ r∗|v| + e (this is given

by Lemma 4.1.5), the fact that F, div ψ̄ ∈ L1(Ω,Rd) and the Lebesgue Dominated

Convergence Theorem to get

lim
ε→0+

∫
Ω

−k̄(F + div ψ̄) + k̄(F + div ψ̄ + εdivψ)

ε
dx = −

∫
Ω

divψ · ∇k̄(F + div ψ̄)dx.

Hence
∫

Ω
∇f ∗(ψ̄) · ψ ≤ −

∫
Ω

divψ · ∇k̄(F + div ψ̄)dx and since we could replace ψ

by −ψ we deduce that
∫

Ω
∇f ∗(ψ̄) · ψ = −

∫
Ω

divψ · ∇k̄(F + div ψ̄)dx. But we set

u0(x) = ∇k̄(div ψ̄(x) + F (x)). Hence∫
Ω

∇f ∗(ψ̄) · ψ = −
∫

Ω

divψ · u0dx

and ∇f ∗(ψ̄) ∈ G (u0). In addition, since ψ̄ ∈ S, we deduce that ∇Su0 = ∇f ∗(ψ̄).

�

4.2.3 Duality, existence and uniqueness result

Theorem 4.2.3 We have −J(k̄, l̄, ψ̄) =
∫

Ω
(f(∇Su0) +H(t0)− F · u0) dx. Moreover

sup
(k,l,ψ)∈A

−J(k, l, ψ) = inf
(u,β)∈Ub

∫
Ω

(f(∇Su) +H(β)− F · u) dx

and the problem inf(u,β)∈Ub
∫

Ω
(f(∇Su) +H(β)− F · u) dx admit a unique minimizer

characterized by u0(x) = ∇k̄(div ψ̄(x) + F (x)) and t0(x) = (H ′)−1(l̄(u0(x))) for a.e.

x ∈ Ω.
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Proof. Recall that for a.e. x ∈ Ω, one has

k̄(div ψ̄(x) + F (x)) = −t0(x).l̄(u0(x))−H(t0(x))− u0(x) ·
(
div ψ̄(x) + F (x)

)
.

Hence∫
Ω

k̄
(
div ψ̄ + F

)
dx =

∫
Ω

(
−t0l̄(u0)−H(t0) + u0 ·

(
div ψ̄ + F

))
dx

=−
∫

Λ

ldy +

∫
Ω

(−H(t0) + u0 · F ) dx−
∫

Ω

∇f ∗(ψ̄) · ψ̄

=−
∫

Λ

ldy +

∫
Ω

(−H(t0) + u0 · F ) dx−
∫

Ω

f(∇f ∗(ψ̄))− f ∗(ψ̄)

=−
∫

Λ

ldy −
∫

Ω

f ∗(ψ̄)−
∫

Ω

(f(∇Su0) +H(t0)− u0 · F ) dx,

where we have exploited the fact that t0 ∈ det ∗∇u0 ( Lemma 4.2.1) and ∇Su0 =

∇f ∗(ψ̄) (Lemma 4.2.2 ). This shows that−J(k̄, l̄, ψ̄) =
∫

Ω
(f(∇Su0) +H(t0)− F · u0) dx.

Let now (k, l, ψ) ∈ A and (u, β) ∈ Ub. One has∫
Ω

k(F + divψ)dx ≥
∫

Ω

(u · (F + divψ)− βl(u)−H(β)) dx

with equality if and only if for a.e. x ∈ Ω, one has u(x) = ∇k(F (x) + divψ(x)) and

β(x) = (H ′)−1(l(u(x))). Using β ∈ det ∗∇u and ∇Su ∈ G(u), one gets∫
Ω

k(F + divψ)dx ≥
∫

Ω

(−∇Su · ψ −H(β) + u · F )dx−
∫

Λ

ldy

≥
∫

Ω

(−f (∇Su)− f ∗(ψ)−H(β) + u · F )dx−
∫

Λ

ldy

and the last inequality is strict unless ∇Su = ∇f ∗(ψ). We deduce

−
∫

Ω

(f ∗(ψ) + k(F + divψ)dx) dx+

∫
Λ

ldy ≤
∫

Ω

(f (∇Su) +H(β)− u · F )dx

and the equality is strict unless for a.e. x ∈ Ω, one has u(x) = ∇k(F (x) + divψ(x));

β(x) = (H ′)−1(l(u(x))) and ∇Su = ∇f ∗(ψ). Combining with

−J(k̄, l̄, ψ̄) =

∫
Ω

(f(∇Su0) +H(t0)− F · u0) dx
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one deduces that

sup
(k,l,ψ)∈A

−J(k, l, ψ) = inf
(u,β)∈Ub

∫
Ω

(f(∇Su) +H(β)− F · u) dx

and the problem inf(u,β)∈Ub
∫

Ω
(f(∇Su) +H(β)− F · u) dx admit a unique minimizer

characterized by u0(x) = ∇k̄(div ψ̄(x) + F (x)) and t0(x) = (H ′)−1(l̄(u0(x))) for a.e.

x ∈ Ω.

�

4.3 A duality result for the relaxed variational problem

4.3.1 Half way to duality

4.3.1.1 The case F non degenerate

In this section, we consider an increasing family {Sn}n∈N∗ of finite dimensional linear

subspace of W 1,∞
0 (Ω,Rd×d) consisting of functions affine piecewise such that for

all ψ ∈ W 1,∞
0 (Ω,Rd×d), one can find a sequence ψn ∈ Sn for all n ∈ N∗ satisfying

limn→∞ ‖ψ−ψn‖W 1,∞
0 (Ω,Rd×d) = 0. Such family may be provided by Proposition 2.3.16.

Thanks to Lemma 2.1.2, there exists u0 ∈ W 1,p(Ω,Λ) an homeomorphism such that

u0(Ω) = Λ and det∇u > 0. Set β0 = det∇u0. One has β0 ∈ det∗∇u0. Let

c0 :=

∫
Ω

(
f(∇u0) +H

(
β0

)
− F · u0

)
dx.

Since u0 ∈ W 1,p(Ω,Λ), one has∇u0 ∈ G (u0) and thus
∫

Ω
f(∇u0)dx >

∫
Ω
f(∇Seu0)dx.

Hence ISe(u0, β0) ≤ c0.

Now for every e ∈ N∗, thanks to Theorem 4.2.3, there exists unique (ue, βe) ∈ Ub

such that Ise(ue, βe) = min(u,β)∈Ub Ise(u, β). In particular, ISe(ue, βe) ≤ c0 and we

deduce that ∫
Ω

(f(∇Seu0) +H(βe)) dx ≤ c0 + r∗|F|L1(Ω,Rd); ∀e ∈ (0, 1). (86)

Define for every e ∈ N∗ a measure γe on C = Ω̄×D = Ω̄× Λ̄× [0,∞)× Rd×d by∫
C

L(x, u, t, ξ)γe(dx, du, dt, dξ) =

∫
Ω

L(x,ue(x), βe(x),∇Seu(x))dx
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for all L measurable positive. Consider the function ϕ : C → [0,∞) defined by

ϕ(x, u, t, ξ) = f(ξ) + H(t) − min f − minH. Thanks to the growth condition (40)

on f and (43) on H, one deduces that for all α ∈ R, the sublevel sets {ϕ ≤ α} are

compact in C. Next, for all e ∈ N∗∫
C

ϕ(x, u, t, ξ)γe(dx, du, dt, dξ) =

∫
Ω

(f(∇Seue) +H(βe)−min f −minH) dx

≤c0 + r∗|F|L1(Ω,Rd) −min f −minH.

Hence {γe}e is tight (by Lemma A.2.6) and we may find a subsequence {γen}∞n=1

converging weakly to a measure γ̄ on C (by Prokorov’s Theorem ).

Lemma 4.3.1 One has γ̄ ∈ Γ.

Proof. Claim 1 :
∫
E
b(x)dγ̄(dx, du, dt, dξ) =

∫
Ω
b(x)dx, ∀b ∈ Cb(Rd).

We have for b ∈ Cb(Rd), by definition of the weak convergence∫
C

b(x)dγ̄(dx, du, dt, dξ) = lim
n→0

∫
C

b(x)dγen(dx, dt, du, dξ) =

∫
Ω

b(x)dx, ∀b ∈ Cb(Rd).

Thus ∫
C

b(x)dγ̄(dx, du, dt, dξ) =

∫
Ω

b(x)dx ∀b ∈ Cb(Rd) (87)

Claim 2 : We have
∫
C
f(ξ)dγ̄ ≤ ∞.

Since the map C 3 (x, u, t, ξ) 7→ f(ξ) is lower semicontinuous and bounded below, we

have by Lemma A.2.2∫
C

f(ξ)dγ̄ ≤
∫
C

f(ξ)dγen ≤ c0 + r∗‖F‖L1(Ω,Rd) −minh <∞.

Claim 3 : One has
∫
C
tl(u)dγ̄(dx, du, dt, dξ) =

∫
Λ
ldy, ∀l ∈ Cc(Rd).

Let l ∈ Cb(Rd). The map C 3 (x, t, u, ξ) 7→ tl(u) is continuous. Moreover |tl(u)| ≤

|l|∞|t|;

sup
n

∫
C

(H(|t|)−minH) dγen = sup
n

∫
Ω

(H(βen)−minH) dx

≤c0 + r∗‖F‖L1(Ω,Rd) −minh−min f <∞;
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one has H −minH ≥ 0 and

lim
t→∞

H(t)−minH

t
=∞.

Thus thanks to Lemma A.2.2 and Lemma A.2.3 one gets limn→∞
∫
C
tl(u)dγen =∫

C
tl(u)dγ̄. Having for all n ∈ N

∫
C
tl(u)dγ̄en =

∫
Λ
ldy, one deduces that

∫
C
tl(u)dγ̄ =∫

Λ
ldy.

Claim 4 : For all ψ ∈ C∞c (Ω,Rd×d) one has
∫
C
〈ξ, ψ(x)〉 dγ̄ = −

∫
C
〈u, divψ(x)〉 dγ̄.

First Remark that the map C 3 (x, u, t, ξ) 7→ 〈ξ, ψ(x)〉 is continuous, for all (x, u, t, ξ) ∈

C, | 〈ξ, ψ(x)〉 | ≤ |ψ|∞|ξ|; limt→∞
tp

t
=∞ and supn

∫
C
|ξ|pdγen <∞. Hence

lim
n→∞

∫
C

〈ξ, ψ(x)〉 dγen =

∫
C

〈ξ, ψ(x)〉 dγ̄. (88)

Similarly, the map C 3 (x, u, t, ξ) 7→ 〈u, divψ(x)〉 is continuous, for all (x, u, t, ξ) ∈ C,

| 〈u, divψ(x)〉 | ≤ |divψ|∞|u|; limt→∞
t2

t
=∞ and supn

∫
C
|u|2dγen <∞. Hence

lim
n→∞

∫
C

〈u, divψ(x)〉 dγen =

∫
C

〈u, divψ(x)〉 dγ̄. (89)

Remark that∣∣∣∣∫
C

〈u, divψ(x)〉 dγ̄ +

∫
C

〈ξ, ψ(x)〉 dγ̄
∣∣∣∣

≤
∣∣∣∣∫
C

〈u, divψ〉 dγ̄ −
∫
C

〈u, divψ〉 dγen
∣∣∣∣+

∣∣∣∣∫
C

〈u, divψ〉 dγen −
∫
C

〈u, divψem〉 dγen
∣∣∣∣

+

∣∣∣∣∫
C

〈u, divψ〉 dγen +

∫
C

〈ξ, ψem〉 dγen
∣∣∣∣

+

∣∣∣∣−∫
C

〈ξ, ψem〉 dγen +

∫
C

〈ξ, ψ〉 dγen
∣∣∣∣+

∣∣∣∣−∫
C

〈ξ, ψ〉 dγen +

∫
C

〈ξ, ψ〉 dγ̄
∣∣∣∣ .

:=a1 + a2 + a3 + a4 + a5.

Thanks to Equations (89) and (88) we can find N1 ∈ N such that n ≥ N1 implies

a1, a5 < ε. We chose such n. Next, it holds:

a2 ≤
∫

Ω

|uendiv (ψ − ψem)| dx ≤ r∗Ld(Ω)|div (ψ − ψem)|∞

a4 ≤
∫

Ω

∣∣∇Senuen(ψ − ψem)
∣∣ dx ≤ |ψ − ψem|∞ (Ld(Ω)

) 1
q ‖∇Senuen‖Lp(Ω,Rd×d)
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Since there exists M > 0 such that for all n ∈ N∗ one has ‖∇Senuen‖Lp(Ω,Rd×d) < M ,

we may find N2 > N1 such that for all m ≥ N2 one has a1, a4 < ε. We chose such m.

Remark that since m > n, one has Sen ⊂ Sem ;
∫

Ω
∇Senuen ·ψemdx = −

∫
Ω
uendivψemdx

and a3 = 0. Thus
∣∣∫
C
〈u, divψ(x)〉 dγ̄ +

∫
C
〈ξ, ψ(x)〉 dγ̄

∣∣ < 4ε. Since ε has been chosen

to be arbitrary, we deduce that
∫
C
〈u, divψ(x)〉 dγ̄ = −

∫
C
〈ξ, ψ(x)〉 dγ̄.

Lemma 4.3.2 One has∫
C

(f(ξ) +H(t)− F (x) · u) dγ̄ ≤ lim inf
n

∫
Ω

(
f(∇Senuen) +H(βen)− F(x) · uen

)
dx.

Proof. Since {γen}∞n=1 converges weakly to γ̄ on C, we use Lemma 3.7.3 to deduce∫
C
F (x) · udγ̄ = limn→∞

∫
C
F (x) · udγen . We next use the lower semicontinuity of

the map C 3 (x, u, t, ξ) 7→ f(ξ) +H(t) and its boundedness below to infer thanks to

Lemma A.2.2 that
∫
C

(f(ξ) +H(t)) dγ̄ ≤ lim infn
∫
C

(f(ξ) +H(t)) dγen . Hence∫
C

(f(ξ) +H(t)− F (x) · u) dγ̄ ≤ lim inf
n

∫
C

(f(ξ) +H(t)− F (x) · u) dγen

= lim inf
n

∫
Ω

(
f(∇Senuen) +H(βen)− F(x) · uen

)
dx.

�

We summarize this subsubsection as follow:

Remark 4.3.3 If F is nondegenerate, then there exists (k̄, l̄, ψ̄) ∈ A ′ such that∫
C

(f(ξ) +H(t)− F (x) · u) dγ̄ ≤ −J(k̄, l̄, ψ̄)

Proof. From Theorem 4.2.3, we infer that there exists {(kn, ln)}n ⊂ C and {ψn}∞n=1

such that for all n ∈ N∗, one has ψn ∈ Sen and

Isen (uen , βen) = min
(u,β)∈Ub

ISen (u, β) = −J(kn, ln, ψn) = sup
(k,l,ψ)∈An

−J(k, l, ψ)

where An = C × Sen . Exploiting Lemma 4.1.7, we can find (k̄, l̄, ψ̄) ∈ A such

that lim inf −J(kn, ln, ψn) ≤ −J(k̄, l̄, ψ̄). Combining with Lemma 4.3.2, we deduce∫
C

(f(ξ) +H(t)− F (x) · u) dγ̄ ≤ −J(k̄, l̄, ψ̄).

�
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4.3.1.2 The case F ∈ L1(Ω)

Lemma 4.3.4 Let A ⊂ Rd be Lebesgue measurable and bounded. Then for all ε > 0

there exists g ∈ L∞(A,Rd) non degenerate such that ‖g‖L1(A,Rd) ≤ ε.

Proof. Let r > 0 be such that A ⊂ B(0, r). Consider for t > 0 the map g : A →

Rd; x 7→ gt(x) = tx. Then ‖gt‖L∞(A) ≤ tr. Moreover
∫
A
|gt|dx ≤ trLd(A). Choose

t < (rLd(A))−1ε, one has ‖g‖L1(A,Rd) ≤ ε. Let N ⊂ Rd be such that Ld(N) = 0.

Then g−1
t (N) = t−1N ∩ A and hence Ld(g−1

t (N)) = 0. Thus g is non degenerate.

�

Lemma 4.3.5 Let F ∈ L1(Ω,Rd). Then there exists a sequence {Fn}n ⊂ L∞(Ω,Rd)

such that Fn is non degenerate and limn→∞ ‖F− Fn‖L1 = 0.

Proof. Let n ∈ N∗. As the set of simple functions (finite linear combination of

characteristic functions) is dense in L1(Ω,Rd), we can find Hn ∈ L1(Ω,Rd) such that

‖F−Hn‖L1 ≤ 1

2n
and Hn =

N(n)∑
i=0

fiχAi ,

where the Ai are measurable disjoint subsets of Ω.

Thanks to Lemma (4.3.4), we may find Gn ∈ L∞(Ω,Rd) a non-degenerate function

such that ‖Gn‖L1(Ω,Rd) ≤ 1
2n
. Moreover, since Hn has a countable range and Gn is

non-degenerate, thanks to Lemma 4.1.11 we deduce that Fn := Gn + Hn is non-

degenerate. Furthermore,

‖F− Fn‖L1(Ω,Rd) ≤ ‖F−Hn‖L1(Ω,Rd) + ‖Gn‖L1(Ω,Rd) ≤
1

2n
+

1

2n
=

1

n
.

Thus limn→∞ ‖F − Fn‖L1(Ω,Rd) = 0. Remarking that by Gn ∈ L∞(Ω,Rd) and Hn ∈

L∞(Ω,Rd), one deduces that Fn = Gn + Hn ∈ L∞(Ω,Rd).

�

83



Lemma 4.3.6 Assume that {Fν}∞ν=1 ∈ L∞(Ω,Rd) converges to F in L1(Ω,Rd) and

{γν}∞ν=1 ∈ Γ converges narrowly to γ. Then∫
C

(−F (x) · u) γ(dx, dt, du, dξ) = lim
ν→∞

∫
C

(−Fν(x) · u) γν(dx, dt, du, dξ).

Proof. One has:∣∣∣∣∫
C

Fν(x) · udγν −
∫
C

F(x) · udγ
∣∣∣∣

=

∣∣∣∣∫
C

Fν(x) · udγν −
∫
C

F(x) · udγν +

∫
C

F(x) · udγν −
∫
C

F(x) · udγ
∣∣∣∣

≤
∣∣∣∣∫
C

(Fν(x) · u− F(x) · u) dγν

∣∣∣∣+

∣∣∣∣∫
C

F(x) · udγν −
∫
C

F(x) · udγ
∣∣∣∣

≤
∫
C

|Fν(x) · u− F(x) · u| dγν +

∣∣∣∣∫
C

F(x) · udγν −
∫
C

F(x) · udγ
∣∣∣∣ .

Claim 1 limν→∞
∫
C
|Fν(x) · u− F(x) · u| dγν = 0.

One has:∫
C

|Fν(x) · u− F(x) · u| dγν ≤
∫
C

|Fν(x)− F(x)| r∗dγν since u ∈ Λ̄ ⊂ B(0, r∗)

= r∗
∫

Ω

|Fν(x)− F(x)| dx.

In addition to that, we exploit the fact that {Fν}∞ν=1 converges to F in L1(Ω,Rd) to

finish the proof of Claim 1.

Claim 2 : limν→∞
∫
C
F (x) · udγν =

∫
C
F (x) · udγ.

This is basically a consequence of Lemma 3.7.3.

Finally Combining Claim 1 and 2, we finish the proof of the lemma 4.3.6.

Lemma 4.3.7 Assume that {Fν}∞ν=1 ∈ L∞(Ω,Rd) converges to F ∈ L1(Ω,Rd) and

{γν}∞ν=1 ∈ Γ converges narrowly to γ. Then

IF (γ) ≤ lim inf
ν→∞

IFν (γν).
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Proof. Since γν → γ narrowly and the map C 3 (x, u, t, ξ) 7→ f(ξ) + H(t) is lower

semicontinuous and bounded below, we get thanks to Lemma A.2.2∫
C

f(ξ) +H(t)dγ ≤ lim inf
ν→∞

∫
C

f(ξ) +H(t).

This in addition to Lemma 4.3.6 yields

IF (γ) ≤ lim inf
ν→∞

IFν (γν).

�

Lemma 4.3.8 For all F ∈ L1(Ω,Rd) set

JF (k, l, ψ) =

∫
Ω̄

(
f ∗(ψ)dx+ k

(
divψdR + FLd

))
+

∫
Λ

ldy.

and

IF (γ) =

∫
C

(f(ξ) +H(t)− F (x) · u) γ(dx, dt, du, dξ)

Then there exists γ ∈ Γ and (k, l, ψ) ∈ A0 such that −JF (k, l, ψ) ≥ ĪF (γ).

Proof. Thanks to Lemma 4.3.5, we can find {Fn}∞n=1 ⊂ L∞(ω,Rd) a sequence of

nondegenerate functions converging to F in L1(ω,Rd). Thanks to Lemma 4.3.3, for

all n ∈ N∗, there exist γn ∈ Γ and (kn, ln, ψn) ∈ A ′ such that∫
C

(f(ξ) +H(t)− Fn(x) · u) dγn ≤ −J(kn, ln, ψn).

We may further assume that there exists C ∈ R such that for all n ∈ N∗, one has

ĪFn(γn) ≤ C and −JFn(k̄n, l̄n, ψ̄n) ≤ C. Using the boundedness of {‖Fn‖}n and an

adapted version of Lemma 4.1.7 we may find a subsequence of {(kn, ln, ψn)}n still de-

noted {(kn, ln, ψn)}n and (k̄, l̄, ψ̄) ∈ A0 such that JF (k̄, l̄, ψ̄) ≤ lim infn JFn(kn, ln, ψn).

Similarly, using the boundedness of {‖Fn‖}n, we may find a subsequence of {γn}∞n=1

still denoted {γn}∞n=1 that converges weakly to some γ̄ ∈ Γ. We use Lemma 4.3.7 to

deduce ĪF (γ̄) ≤ lim infn ĪFn(γn).

Finally, ĪF (γ̄) ≤ −JF (k̄, l̄, ψ̄).

�
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4.3.2 The full duality result

We have the following result

Lemma 4.3.9

Ī(γ̄) = inf
γ∈Γ

Ī(γ) = sup
(k,l,ψ)∈A0

−J(k, l, ψ) = −J(k̄, l̄, ψ̄).

Moreover if for γ ∈ Γ and (k, l, ψ) ∈ A0 one has Ī(γ) = −J(k, l, ψ) then ∇uγ =

∇f ∗(ψ).

Proof. Thanks to Lemma 4.3.8, it suffices to show that for all (k, l, ψ) ∈ A and all

γ ∈ Γ one has Ī(γ) ≥ −J(k, l, ψ). Recall first that defining uγ by Equation (64), one

has uγ ∈ W 1,p(Ω,Λ). Recall that for ψ ∈ S there exists a Borel map uψ depending

on ψ and uγ such that uγ = uψ Ld a.e. and∫
Ω

〈∇uγ, ψ〉 dx = −
∫

Ω

uψ · divψRd =

∫
C

〈ξ, ψ(x)〉 dγ. (90)

Next, using Jensen’s inequality∫
Ω̄

k∗(uγ)dx ≤
∫
C

k∗(u)γ(dx, dt, du, dξ) ≤
∫
C

(
tl(u) +H(t)

)
γ(dx, dt, du, dξ). (91)

Combining Equations (90) and (91), one has:∫
Ω

k(F + divψRd) ≥
∫

Ω

uψ · (F + divψRd)−
∫

Ω

k∗(uψ)dx

=

∫
Ω

uγ · Fdx+

∫
Ω

uψ · divψRd −
∫

Ω

k∗(uγ)dx

=

∫
C

(u · F(x)− 〈ξ, ψ(x)〉) dγ −
∫

Ω

k∗(uγ)dx

≥
∫
C

(u · F(x)− 〈ξ, ψ(x)〉) dγ −
∫
C

(
tl(u) +H(t)

)
dγ

=−
∫

Λ

l(y)dy +

∫
C

(−H(t) + u · F(x)− 〈ξ, ψ(x)〉) dγ

>−
∫

Λ

l(y)dy +

∫
C

(−H(t) + u · F(x)− f(ξ)− f ∗(ψ(x))) dγ
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unless ξ = ∇f ∗(ψ(x)) γ-a.e. Hence∫
Ω

k(F + divψRd) +

∫
Λ

l(y)dy +

∫
Ω

f ∗(ψ(x)) ≥
∫
C

(−H(t) + u · F(x)− f(ξ)) dγ

and thus Ī(γ) > −J(k, l, ψ) unless ξ = ∇f ∗(ψ(x)) γ-a.e.

�

4.4 Sufficient conditions for uniqueness

In this section we turn our attention back to Problem (52). Recall The set Ub stands

for the set of pairs (β,u) such that u ∈ W 1,p(Ω,Λ) and β : Ω → (0,∞) is a Borel

function satisfying β ∈ det∗∇u. The problem at hand is

inf
(β,u)∈Ub

{
I(u) :=

∫
Ω

(f(∇u) +H(β)− F · u)

}
(92)

Throughout the section; for ψ ∈ S0, we denote div sψRd (resp. div aψRd) the

singular (resp. absolutely continuous) part of divψRd with respect to the Lebesgue

measure and set gsψ = |div sψRd | and bsψ =
d(div sψRd )

dgsψ
.

Theorem 4.4.1 Suppose (k, l, ψ) ∈ A0 and k = l# and k is differentiable at F(x) +

div aψRd(x) for almost every x ∈ Ω. Suppose u ∈ W 1,p(Ω,Λ), β ∈ det∗∇u, satisfies:

∇u = Df ∗(ψ), u = ∇k(F + div aψRd), H ′(β) + l(u) = 0 Ld − a.e. (93)

and

uψ ∈ ∂k∞(bsψ) gs − a.e. (94)

Then u is the unique minimizer of I over W 1,p(Ω,Λ).

Proof. We use Lemma 4.1.10 to deduce from (93) that

k(F + div aψ) + βl(u) +H(β) = u · (F + div aψ)

and so, ∫
Ω

(
k(F + div aψ) + βl(u) + h(β)

)
dx =

∫
Ω

u · (F + div aψ)dx. (95)
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Next, since for all v ∈ Rd and y ∈ ∂k∞(v) one has k∞(v) = v · y (Lemma A.1.6 and

Lemma A.1.12 ), we use (93) to get∫
Ω̄

k∞(div sψ) =

∫
Ω̄

k∞(
d(div sψRd)

dgsψ
)dgsψ =

∫
Ω̄

uψ ·
d(div sψRd)

dgsψ
dgsψ =

∫
Ω̄

uψ · div sψ.

Hence ∫
Ω̄

k∞(div sψ) =

∫
Ω̄

uψ · div sψ. (96)

We combine the definition of uψ, (95), (96) and the fact that β ∈ det∗∇u to deduce∫
Ω̄

k(F+divψ)+

∫
Ω

h(β)dx+

∫
Λ

ldy =

∫
Ω

uψ·(FLd+divψRd) =

∫
Ω

u·Fdx−
∫

Ω

〈∇u, ψ〉dx.

Next from (93), one has ∇u = Df ∗(ψ) and thus∫
Ω̄

k(F + divψ) +

∫
Ω

h(β)dx+

∫
Λ

ldy =

∫
Ω

u · Fdx−
∫

Ω

(
f ∗(ψ) + f(∇u)

)
dx,

and therefore

−J(k, l, ψ) =

∫
Ω

(
f(∇u) + h(β)− u · F

)
dx ≥ I(u) = Ī(γ(u,β)) ≥ −J(k, l, ψ).

We deduce that (u, β) is a minimizer of I over Ub and γ(u,β) minimizes Ī over Γ.

Let (u1, β1) be a minimizer of I over Ub. Then γ(u1,β1) minimizes Ī over Γ. We use

furthermore Lemma 4.3.9 to get that ∇u1 = ∇f ∗(ψ) = ∇u. Since in addition u and

u1 have range Λ up to a set of 0 Lebesgue measure we deduce that u = u1 a.e.

�
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CHAPTER V

MINIMIZATION WITH INCOMPRESSIBLE MATERIALS

In this chapter we turn our attention to some problems with the limit case H = χ{1}.

This corresponds to the case where β = detH∇u = 1. We check that many of the

arguments in the previous chapters can be adapted to such a singular H.

5.1 Settings

Throughout this chapter Ω and Λ stand for two open and bounded convex sets of

Rd. We suppose that Ld(Ω) = Ld(Λ). Let S be a finite dimensional subspace of

W 1,∞(Ω,Rd×d) consisting of function that are affine piecewise. Let v0 ∈ W 1,2(Ω,Rd×d)

and let g ∈ L2(∂Ω,Rd,Hd−1) be its trace. Let

U :=
{

u : Ω→ Λ ; u is a Borel map
}
.

In the next Lemma we define a pseudo-projected gradient of u ∈ U analogue to the

one defined in Theorem 3.6.1.

Lemma 5.1.1 Let u ∈ U . Let G (u) be the set of G ∈ L2(Ω,Rd×d) satisfying the

relation ∫
Ω

udivψ dx = −
∫

Ω

〈G, ψ〉dx +

∫
∂Ω

g(ψ · ν)dHd−1 ∀ψ ∈ S. (97)

There exists a unique ∇Su ∈ L2(Ω,Rd×d) that minimizes
∫

Ω
|G|2/2dx over G (u). In

fact ∇Su is also the unique G ∈ G (u) satisfying G ∈ S.

Proof. First remark that the functional

S 3 ψ 7→ −
∫

Ω

udivψ dx +

∫
∂Ω

g(ψ · ν)dHd−1
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is linear over a finite dimensional space. When we endow S with the L2(Ω,Rd×d)

norm, by Riesz representation theorem, there exists a unique G0 ∈ S such that∫
Ω

udivψ dx = −
∫

Ω

〈G0, ψ〉dx +

∫
∂Ω

g(ψ · ν)dHd−1 ∀ψ ∈ S.

It follows that G (u) is nonempty and since in addition it is a convex set, there exists

a unique G1 ∈ G (u) that minimizes
∫

Ω
|G|2/2dx over G (u). Let

S⊥ = {G ∈ L2(Ω,Rd×d) :

∫
Ω

〈G,ψ〉 dx = 0; ∀ψ ∈ S}.

Remark that since G1 and G0 satisfy Equation 97, one has G1 − G0 ∈ S⊥. Next we

have ∫
Ω

|G1|2/2dx =

∫
Ω

|G1 −G0|2/2dx+

∫
Ω

|G0|2/2dx.

Hence
∫

Ω
|G1|2/2dx ≥

∫
Ω
|G0|2/2dx. Since G0 ∈ G (u), we conclude G1 = G0.

�

Remark 5.1.2 If u ∈ W 1,2(Ω,Rd×d) and we replace S by W 1,2(Ω,Rd×d) in Equation

(97), we get that g is the trace of u on ∂Ω.

Let H be the set of all u ∈ U satisfying:∫
Ω

l(u(x))dx =

∫
Λ

l(y)dy; ∀l ∈ Cb(Rd). (98)

H is the well studied set of measure preserving map. Let F ∈ L1(Ω,Rd). We consider

the problem

inf
u∈H

{
I(u) :=

∫
Ω

|∇Su|2

2
− F · u

}
. (99)

5.2 Dual problem

Call C the set of Borel measurable functions k : Rd → R̄ and l : Rd → R̄ that are

proper and such that l ≡ +∞ on Rd \ Λ̄ and

k(v) + l(u) ≥ u · v, ∀u, v ∈ Rd. (100)
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Remark that if (k, l) ∈ C, then k and l are bounded below. Define

J(k, l, ψ) :=

∫
Ω

(
k(F + divψ) +

|ψ|2

2

)
dx−

∫
∂Ω

g(ψ · ν)dHd−1 +

∫
Λ

l(y)dy.

5.3 The functional −J achieves it maximum over C × S
5.3.1 A regularity result on maximizers

Let (k, l) ∈ C. Then (k, k∗) ∈ C and J(k, l) ≥ J(k, k∗). Similarly, (l∗, l) ∈ C and

J(k, l) ≥ J(l∗, l). Furthermore for all a ∈ R, if (k, l) ∈ C, k∗ = l, l∗ = k, then

(k+a, l−a) ∈ C. Moreover, (k+a)∗ = l−a, (l−a)∗ = k+a and J(k, l) = J(k+a, l−a)

(indeed we have Ld(Ω) = Ld(Λ)). Hence we may assume without lost of generality

that the maximization is performed over the set

C ′ = {(k, l) ∈ C : k∗ = l, l∗ = k, l(0) = 0}.

We have proved the following Lemma:

Lemma 5.3.1 One has:

sup
(k,l)∈C,ψ∈S

−J(k, l, ψ) = sup
(k,l)∈C′,ψ∈S

−J(k, l, ψ).

Remark 5.3.2 Remark that if (k, l) ∈ C, then l∗ and k∗ corresponds respectively to

l# and k# as in Definition 4.1.1.

5.3.2 A lower bound for J

Let u ∈ Ω. It holds that∫
Ω

k(F + divψ)dx ≥
∫

Ω

(u · (divψ + F )− l(u))

=−
∫

Ω

〈0, ψ〉 dx+

∫
∂Ω

u(ψ · ν)dHd−1 +

∫
Ω

u · Fdx−
∫

Ω

l(u)dx

=

∫
∂Ω

u(ψ · ν)dHd−1 +

∫
Ω

u · Fdx−
∫

Λ

l(u)dx

≥− r∗‖F‖L1(Ω,Rd) +

∫
∂Ω

u(ψ · ν)dHd−1 −
∫

Λ

l(u)dx.
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Hence

J(k, l, ψ) ≥ −r∗‖F‖L1(Ω,Rd) +

∫
Ω

|ψ|2

2
dx+

∫
∂Ω

(u−g)(ψ ·ν)dHd−1 +

∫
Λ

(l(y)− l(u)) dy.

(101)

Let us define for u ∈ Ω and ψ ∈ S

A(u, ψ) :=

∫
Ω

|ψ|2

2
dx+

∫
∂Ω

(u− g)(ψ · ν)dHd−1.

5.3.3 A minorant of A.

In this sequel we prove the following Lemma:

Lemma 5.3.3 There exists m ∈ R such that for all u ∈ Ω and all ψ ∈ S, one has∫
Ω

|ψ|2

2
dx+

∫
∂Ω

(u− g)(ψ · ν)dHd−1 ≥ m. (102)

Proof. We have u ∈ Ω and thus |u| is bounded. Remark that for u ∈ Ω fixed, the

functional Au : S → R defined by Au(ψ) := A(u, ψ) is a quadratic form defined on a

finite dimensional space. Hence we can find a uniform lower bound which is an affine

function of |u|. Since Ω is bounded, we can find m ∈ R such that for all u ∈ Ω and

all ψ ∈ S, one has ∫
Ω

|ψ|2

2
dx+

∫
∂Ω

(u− g)(ψ · ν)dHd−1 ≥ m.

�

5.3.4 Sub–level sets of A.

The aim of this sequel is to establish the following Lemma

Lemma 5.3.4 For c ∈ R the sub–level set Sc := {ψ ∈ S : A(u, ψ) ≤ c ∀u ∈ Ω} is

compact.
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Proof. Since S has a finite dimension, it is enough to show that Sc is a closed and

bounded set. Set for all ψ ∈ S:

Lu(ψ) =

∫
∂Ω

(u− g)(ψ · ν)dHd−1.

Since u ∈ Ω is bounded, there exists C depending only on S and r∗ such that

‖Lu‖ ≤ C for all u ∈ Ω. Suppose ‖ψ‖L2(Ω,Rd×d) > 1.

‖ψ|2L2(Ω,Rd×d) + Lu(ψ) ≤ c

‖ψ‖L2(Ω,Rd×d) − C ≤ c(‖ψ‖L2(Ω,Rd×d))
−1 ≤ c

‖ψ‖L2(Ω,Rd×d) ≤ C + c

Thus we deduce that ‖ψ‖L2(Ω,Rd×d) ≤ max(C + c, 1). Hence Sc is bounded. The

closure of Sc comes from the continuity of A. Thus Sc is compact.

�

5.3.5 Restriction to C ′ × S of Sub–level sets of J.

For r > 0, set Ωr = {x ∈ Ω : d(x, ∂Ω) > r} . Let r0 > 0 be small enough so that

B(0, r0) ⊂ Ωr0 . Let (k, l) ∈ C ′ and ψ ∈ S such that J(k, l, ψ) ≤ c. Having l(0) = 0,

one gets k(v) ≥ 0 · v− l(0) = 0, and we deduce that k(v) ≥ 0 for all v ∈ Rd. We have

inf l > −∞. Let u ∈ Ω.

Thanks to Equations (101) and (102) we have

J(k, l, ψ) ≥− r∗‖F‖L1(Ω,Rd) +

∫
Ω

|ψ|2

2
dx+

∫
∂Ω

(u− g)(ψ · ν)dHd−1 +

∫
Λ

(l(y)− l(u)) dy

and there exists m ∈ R such that for all ψ ∈ S and all u ∈ Ω,∫
Ω

|ψ|2

2
dx+

∫
∂Ω

(u− g)(ψ · ν)dHd−1 ≥ m. (103)

Hence J(k, l, ψ) ≤ c implies that

c ≥− r∗‖F‖L1(Ω,Rd) +m+

∫
Λ

(l(y)− l(u)) dy

α := c+ r∗‖F‖L1(Ω) −m ≥
∫

Ω

l(x)− l(u).
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Since the later inequality is true for all u ∈ Ω we have α ≥
∫

Ω
l(x) − infΩ l. Thanks

to Lemma A.3.12, for r ≤ r0 there exists a real number C(α,Ωr,Ω) depending only

on c, Ωr and Ω such that

sup
x∈Ωr

|l − inf l|,Lip (l − inf l)|Ωr ≤C(α,Ωr,Ω).

We also have Lip l|Ωr ≤ C(α,Ωr,Ω). The convex function l is bounded in Ωr0 that

contains the origin. Hence ∂l(0) is non empty and moreover, letting y ∈ ∂l(0), we

have |y| ≤ C(α,Ωr0 ,Ω) (c.f. Lemmas A.3.12 and A.3.10). Thus for u ∈ Ω,

l(u) ≥ l(0) + y · u = y · u ≥ −r∗C(α,Ωr0 ,Ω).

Having k = l∗, we get

k(v) = sup
u∈Ω̄

u · v − l(u) ≤ r∗|v|+ r∗C(α,Ωr0 ,Ω).

We exploit also the fact that k = l∗ and properties of l to deduce that (c.f. Lemma

A.3.11) Lip k ≤ r∗. Hence we have for all 0 < r < r0, v ∈ Rd and u ∈ Ω:

l(0) =0; l(u) ≥C(α,Ωr0 ,Ω); Lip l|Ωr ≤C(α,Ωr,Ω);

Lip k ≤r∗; 0 ≤ k(v) ≤r∗|v|+ r∗C(α,Ωr0 ,Ω).

Using Equation (101) again and the fact that
∫

Λ
l(y) − infΩ l ≥ 0, We get that

J(k, l, ψ) ≤ c implies that

c ≥− r∗‖F‖L1(Ω,Rd) + A(u, ψ)

c+ r∗‖F‖L1(Ω) ≥A(u, ψ).

Hence ψ belongs to a compact set. We deduce that there exists (k0, l0, ψ0) with

(k0, l0) ∈ C and ψ ∈ S such that

−J(k0, l0, ψ0) = sup
(k,l)∈C′,ψ∈S

−J(k, l, ψ) = sup
(k,l)∈C,ψ∈S

−J(k, l, ψ).

Thus we have the following Lemma.
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Lemma 5.3.5 There exists (k0, l0, ψ0) ∈ C × S such that

−J(k0, l0, ψ0) = sup
(k,l)∈C,ψ∈S

−J(k, l, ψ).

5.4 A duality result

5.4.1 Variations of J(·, ·, ψ0) along a special curve.

Take l̄ ∈ Cc(Rd). For ε > 0, define lε = l0 + εl̄. Define kε = (lε)
∗. Assume k0 is

differentiable at v. There exists (Thanks to Lemma A.3.9) T0(v) ∈ Ω̄ such that

k0(v) + l0(T0(v)) = T0(v) · v.

For all ε > 0, (Thanks to Lemma A.3.9) there exists Tε(v) ∈ Ω̄ such that

kε(v) + l0(Tε(v)) + εl̄(Tε(v)) = Tε(v) · v. (104)

Thus we have

kε(v) ≤− εl̄(Tε(v)) + Tε(v) · v − l0(Tε(v))

kε(v) ≤− εl̄(Tε(v)) + k0(v)

kε(v)− k0(v) ≤− εl̄(Tε(v)).

In the same fashion,

kε(v) =T0(v) · v − l0(T0(v))− εl̄(T0(v)) + εl̄(T0(v))

k0(v) ≤εl̄(T0(v)) + kε(v)

kε(v)− k0(v) ≥− εl̄(T0(v)).

We deduce

l̄(Tε(v)) ≤ −kε(v)− k0(v)

ε
≤ l̄(T0(v)), (105)

from which it follows that ∣∣∣∣kε(v)− k0(v)

ε

∣∣∣∣ ≤ ‖l̄‖L∞(Rd) (106)
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limε→0 kε(v) = k0(v). We exploit the later equality, the lower semicontinuity of l0 and

Equation (104) to deduce that

k0(v) + l0(lim
ε
Tε(v)) ≤ lim

ε
Tε(v) · v.

It follows that limε Tε(v) belongs to ∂k(v) which has a unique element T0(v) since k0 is

differentiable at v. Thus limε Tε(v) = T0(v). We use the later fact and the continuity

of l̄ in Equation (105) to deduce

l̄(T0(v)) ≤ lim
ε→0

l̄(Tε(v)) ≤ lim
ε→0
−kε(v)− k0(v)

ε
≤ lim

ε→0
−kε(v)− k0(v)

ε
≤ l̄(T0(v)),

and thus

lim
ε→0+

−kε(v)− k0(v)

ε
= l̄(T0(v)), (107)

Combining equation (107) with Equation (106), since for almost all x ∈ Ω, k is

differentiable at F (x) + divψ(x):

lim
ε→0+

∫
Ω

(
k0(F + divψ0)− kε(F + divψε)

ε

)
dx =

∫
Ω

l̄(T (F + divψ0)). (108)

Set u0 := T (F + divψ0). One has:

lim
ε→0+

J(k0, l0, ψ0)− J(kε, l0, ψ0)

ε

=−
∫

Ω

l̄ + lim
ε→0+

∫
Ω

(
k0(F + divψ0)− kε(F + divψε)

ε

)
dx

=−
∫

Ω

l̄ +

∫
Ω

l̄(u0).

As for all ε > 0, having J(k0,l0,ψ0)−J(kε,l0,ψ0)
ε

≤ 0, we get for all l̄ ∈ Cc(Rd) 0 ≥ −
∫

Ω
l̄+∫

Ω
l̄(u0). Replacing l̄ by −l̄, we get 0 ≤ −

∫
Ω
l̄ +
∫

Ω
l̄(u0) and thus

∫
Ω
l̄(u0)dx =

∫
Ω
l̄.

Thus (u0)#(χΩLd) = χΩLd.

5.4.2 Variations of J(k0, l0, ·) along a special curve.

Let ε ∈ (0, 1). Let ψ̄ ∈ Cc(Rd×d). Set u0 = ∇k0(F + divψ0). Set ψε = ψ + εψ̄.
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The term in k0. Since k0 is r∗-Lipchitz, we have∣∣∣∣k0(F + divψ0)− k0(F + divψε)

ε

∣∣∣∣ ≤ r∗|div ψ̄|. (109)

Moreover, at almost every x ∈ Ω (as F is non degenerate and the range of ψ0 is

countable) k0(F + divψ0) is differentiable and one has

lim
ε→0

k0(F + divψ0)− k0(F + divψε)

ε
=−∇k0(F + divψ0) · div ψ̄

=− u0 · div ψ̄.

Combining with Equation (109), by the Lebesgue Dominated Convergence Theorem,

we get:

lim
ε→0

∫
Ω

(
k0(F + divψ0)− k0(F + divψε)

ε

)
dx = −

∫
Ω

u0 · div ψ̄.

The term in ψ0. We have

|ψ0|2

2
− |ψ0 + εψ̄|2

2
= −ε

〈
ψ0, ψ̄

〉
− ε2 |ψ̄|

2

2
.

Hence

lim
ε→0

1

ε

(∫
Ω

|ψ0|2

2
−
∫

Ω

|ψ0 + εψ̄|2

2

)
= −

∫
Ω

〈
ψ0, ψ̄

〉
.

We also have

lim
ε→0

1

ε

(
−
∫
∂Ω

g(ψ0 · ν)dHd−1 +

∫
∂Ω

g((ψ0 + εψ̄) · ν)dHd−1

)
=

∫
∂Ω

g(ψ̄ · ν)dHd−1.

Wrapping up. One has

lim
ε→0+

J(k0, l0, ψ0)− J(k0, l0, ψε)

ε
= −

∫
Ω

u0 · div ψ̄ + ψ̄ · ψ0 +

∫
∂Ω

g(ψ̄ · ν)dHd−1.

Having for all ε ∈ (0, 1)

J(k0, l0, ψ0)− J(k0, l0, ψε)

ε
≥ 0,

We deduce

0 ≥ −
∫

Ω

u0 · div ψ̄ + ψ̄ · ψ0 +

∫
∂Ω

g(ψ̄ · ν)dHd−1.
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Replacing ψ̄ by −ψ̄, one deduces that

0 ≤ −
∫

Ω

u0 · div ψ̄ + ψ̄ · ψ0 +

∫
∂Ω

g(ψ̄ · ν)dHd−1.

and thus

−
∫

Ω

u0 · div ψ̄ =

∫
Ω

ψ̄ · ψ0 −
∫
∂Ω

g(ψ̄ · ν)dHd−1.

Moreover, as ψ0 ∈ S we have ψ0 = ∇Su0.

5.4.3 A duality result

Suppose F is non degenerate . Let (k, l) ∈ C and ψ ∈ S. Let also u ∈H . One has

J(k, l, ψ) =

∫
Ω

(
k(F + divψ) +

|ψ|2

2

)
dx+

∫
Λ

l(y)dy −
∫
∂Ω

g(ψ̄ · ν)dHd−1

≥
∫

Ω

(
u(x) · (F + divψ)− l(u(x)) +

|ψ|2

2

)
+

∫
Λ

l(y)dy −
∫
∂Ω

g(ψ̄ · ν)dHd−1

=:A1

with equality if and only if u = ∇k(F + divψ) for a.e. x ∈ Ω. Next, Using u ∈ H,

we get:

A1 =

∫
Ω

(
u(x) · (F + divψ) +

|ψ|2

2

)
−
∫
∂Ω

g(ψ̄ · ν)dHd−1∫
Ω

u(x) · F (x) +

∫
Ω

(
u(x) · divψ) +

|ψ|2

2

)
−
∫
∂Ω

g(ψ̄ · ν)dHd−1.

Using the definition of ∇Su, we get

A1 =

∫
Ω

u(x) · F (x)−
∫

Ω

∇Su · ψ +

∫
∂Ω

g(ψ̄ · ν)dHd−1 +

∫
Ω

|ψ|2

2
−
∫
∂Ω

g(ψ̄ · ν)dHd−1

=

∫
Ω

u(x) · F (x)−
∫

Ω

∇Su · ψ +

∫
Ω

|ψ|2

2

≥
∫

Ω

(
u · F (x)− |∇Su|

2

2

)
dx

with equality if and only if ∇Su(x) = ψ(x) a.e. Hence we have shown the following

Lemma
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Lemma 5.4.1 Suppose F is non degenerate . Let (k, l) ∈ C and ψ ∈ S. Let also

u ∈H . Then

−J(k, l, ψ) ≤ Ī(u)

with equality if and only if one has ∇Su(x) = ψ(x) and u(x) = ∇k(F (x) + divψ(x))

a.e. in Ω.

As a consequence we have the following Theorem:

Theorem 5.4.2 Suppose F is non degenerate. Let (k0, l0, ψ0) ∈ C × S be such that

−J(k0, l0, ψ0) = sup
(k,l)∈C, ψ∈S

−J(k, l, ψ).

The problem

inf
u∈H

∫
Ω

|∇Su|2

2
− F · u

admits a unique minimizer u satisfying

u(x) =∇k0(F (x) + divψ0(x))

∇Su(x) =ψ0(x).
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APPENDIX A

USEFUL RESULTS AND DEFINITIONS

A.1 Convex analysis tools

We start this section by recalling the basic definitions in convex analysis. Classical

references are [20, Rockafellar], [6, Dacorogna] and [8, Ekeland- Témam].

Definition A.1.1 • A set A ⊂ Rd is convex whenever for all x, y ∈ A and all

t ∈ [0, 1] one has tx+ (1− t)y ∈ A.

• Let Ω be a convex set. A function f : Ω→ R̄ is said to be convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y), ∀t ∈ [0, 1], ∀x, y ∈ Ω,

whenever the right hand side of the inequality is well defined.

• A function f : Rd → R̄ is said to be lower semi-continuous (or closed) if

whenever limn→∞ xn = x̄ in Rd, one has f(x̄) ≤ lim infn→∞ f(xn).

• The domain of the function f : Rd → R̄ is the set

dom f = {x ∈ Rd : f(x) <∞}.

• Let A be a subset of Rd. The characteristic function of A is the function defined

on Rd by χA(x) = 0 if x ∈ A and χA(x) =∞ if x 6∈ A.

• The epigraph of the function f : Rd → R̄ is the set

epi f = {(x, t) ∈ Rd × R : f(x) ≤ t}.
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Legendre-Fenchel transform.

Definition A.1.2 One calls the Legendre-Fenchel transform of the function f : Rd →

R̄ the function denoted f ∗ defined for all y ∈ Rd by f ∗(y) = supx∈Rd{x · y − f(x)}.

Similarly, one defines f ∗∗ to be the Legendre-Fenchel transform of the function f ∗ so

that for all x ∈ Rd, f ∗∗(x) = supy∈Rd{x · y − f ∗(y)}.

Subdifferentials.

Definition A.1.3 One says that y ∈ Rd is a subgradient of f at the point x if

f(x) ≥ f(z) + y · (x− z), ∀z ∈ Rd.

The set of all subgradients of f at x is called the subdifferential of f at x. It is denoted

∂f(x).

Remark that y ∈ ∂f(x) means either of the following

(1) y · z − f(z) achieves its maximum at x.

(2) y · x− f(x) = f ∗(y).

Recession functions.

Definition A.1.4 Let f : Rd → R be a convex function. The function f∞ : Rd → R̄

defined for all y ∈ Rd by f∞(y) = supx∈dom f{f(x+ y)− f(x)} is called the recession

function of f .

We turn next our attention to recession functions of closed convex functions.

Lemma A.1.5 Let f : Rd → R be a convex function. If f is closed and dom f 6= ∅,

then for any x ∈ dom f ,

f∞(y) = sup
λ>0
{f(x+ λy)− f(x)

λ
} = lim

λ→∞
{f(x+ λy)− f(x)

λ
}, ∀y ∈ Rd.

Lemma A.1.6 Assume f : Rd → R is proper, convex and closed. Then

f∞(x) = sup
x∗∈dom f∗

x∗ · x.
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Minkowsky functional. Throughout this paragraph, Λ ⊂ Rd is an open bounded

convex set and we assume that there exist r, R > 0 such that B(0, r) ⊂ Λ ⊂ B(0, R).

Definition A.1.7 One defines the Minkowsky functional (or gauge ) of Λ for all

x ∈ Rd by ρΛ(x) = inf {t > 0 : x ∈ tΛ} .

The following Lemma gives the main properties of the Minkowsky functional.

Lemma A.1.8 We have

1. For all x ∈ Rd R−1|x| ≤ ρΛ(x) ≤ r−1|x|. In particular ρΛ(x) = 0 if and only if

x = 0.

2. For all x ∈ Rd, ρΛ(x) = inf
{
t > 0 : x ∈ tΛ̄

}
.

3. For all x ∈ Rd such that x 6= 0, one has x
ρΛ(x)

∈ Λ̄. Moreover,

Λ̄ =
{
x ∈ Rd : ρΛ(x) ≤ 1

}
, Λ =

{
x ∈ Rd : ρΛ(x) < 1

}
and

∂Λ =
{
x ∈ Rd : ρΛ(x) = 1

}
.

4. The function ρΛ is semi-linear, i.e

(a) ρΛ(x+ y) ≤ ρΛ(x) + ρΛ(y), for all x, y ∈ Rd;

(b) ρΛ(tx) = tρΛ(x) for all x ∈ Rd, for all t ≥ 0.

Moreover, ρΛ is convex and continuous.

Lemma A.1.9 For x ∈ Rd, one has:

1. w ∈ ∂ρΛ(x)⇒ ρΛ(x) = x · w.

2. ρΛ is differentiable almost every where and for a.e. x, one has:

|∇ρΛ(x)| ∈ [R−1, r−1].
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Support function of a closed convex set Throughout this paragraph, let Λ ⊂ Rd

be open and convex. We assume that there exist r, R > 0 such that B(0, r) ⊂ Λ ⊂

B(0, R). Set g = χΛ̄, the characteristic function of Λ̄. Define the function f : Rd → R̄

by

f(v) = sup
u∈Λ̄

u · v. (110)

Definition A.1.10 The function f defined by Equation 110 is called the support

function of Λ̄.

Lemma A.1.11 (Some properties of f) 1. For all v ∈ Rd there exists u ∈ Λ̄

such that f(v) = u · v. In particular, dom f = Rd.

2. f(v) = 0 if and only if v = 0.

3. For all v ∈ Rd, f(v) ≥ 0.

4. For all 0 6= v ∈ Rd we have

{
u ∈ Λ̄ : f(v) = u · v

}
=
{
u ∈ ∂Λ̄ : f(v) = u · v

}
.

Lemma A.1.12 For all v ∈ Rd, one has

∂f(v) =
{
u ∈ Λ̄ : f(v) = u · v

}
= {u ∈ ∂Λ : f(v) = u · v} .

Measurable selection. We will need the following Lemma.

Lemma A.1.13 Let f : Rd → R̄ be a convex lower-semicontinuous function and let

O be a non-empty open set of int(dom f). Then there exists a measurable function

S : O → Rd such that S(x) ∈ ∂f(x) for all x ∈ O.

See for e.g. [21, Rockafellar-Wets], for more information.
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A.2 Tools from measure theory

A.2.1 Weak convergence of measure

Good references for this topics include [7, Dellacherie, C. and Meyer] and [1, Ambrosio-

Gigli-Savaré].

Definition A.2.1 (weak convergence of measures ) A sequence of bounded mea-

sures {µn}∞n=1 on X is said to converge weakly to µ ∈Mb(X) if and only if

lim
n→∞

∫
X

ϕdµn =

∫
X

ϕdµ, ∀ϕ ∈ Cb(X). (111)

We write µn ⇀ µ.

Here follows a proposition that allows us to get a result similar to Equation (111)

under weaker conditions.

Lemma A.2.2 Let {µn}∞n=1 be a sequence of probability measures on X weakly con-

verging to µ.

1. Let f be a continuous function on X such that lima→∞ supn
∫
|f |>a |f |dµn = 0.

Then we have limn→∞
∫
X
fdµn =

∫
X
fdµ.

2. Let g be a bounded below lower semicontinuous function on X. Then we have

lim
n→∞

∫
X

gdµn ≥
∫
X

gdµ.

We also have

Lemma A.2.3 Let {µn}∞n=1 be a sequence of measures on X. Suppose f : X → R̄

and g : X → R̄ satisfy |f | ≤ α|g| for some constant α ≥ 0. Assume in addition

that there exists ϕ : [0,∞) → [0,∞) measurable such that limt→∞
ϕ(t)
t

= ∞ and

supn
∫
X
ϕ(|g|)µn <∞. Then

lim
a→∞

(
sup
n

∫
{|f |>a}

|f |µn
)

= 0.

104



In the remaining of the sequel X denotes a metric space. LetMb(X) be the space

of bounded measures on X.

Definition A.2.4 (Polish space) A polish space is a separable topological space

which has a compatible metric that is complete.

Definition A.2.5 (Tightness of a family of probability measures) A sequence

{µn}∞n=1 of Mb(X) is said to be tight if for every ε > 0, there exists Kε, a compact

set of X such that :

sup
n
µn(X \Kε) ≤ ε.

Lemma A.2.6 A sequence {µn}∞n=1 of Mb(X) is tight if there exists a function ϕ :

X → [0,∞] whose sublevels {x ∈ X : ϕ(x) ≤ c} are compact in X such that

sup
n

∫
X

ϕ(x)dµn <∞.

Theorem A.2.7 (Prokhorov) Let X be a Polish space. Then a family of probability

measures on X is relatively compact (has a subsequence that converges weakly ) if

and only if it is tight.

A.2.2 Parametrized measures

We begin this subsection by giving definitions of some useful spaces.

Definition A.2.8 Let Ω ⊂ Rd and let X be a Banach space with norm ‖ · ‖ and dual

X ′.

1. A function f : Ω → X is said to be simple if f can be writen in the form

f(x) =
∑m

i=1 ui1Ei for Ei ⊂ Ω measurable and ui ∈ X.

2. A function f : Ω→ X is said to be strongly measurable if f is the a.e. limit of

a sequence of simple functions {fn}∞n=1.
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3. One defines the space

Lp(Ω, X) =

{
f |f : Ω→ X; f is strongly measurable and

∫
Ω

‖f(x)‖pdx <∞
}
.

The space Lp(Ω, X) is endowed with the norm ‖f‖Lp(Ω,X) =
∫

Ω
‖f(x)‖pdx.

4. A function g : Ω→ X ′ is said to be weakly star measurable if for every u ∈ X,

the map gu : Ω → R;x 7→ 〈g(x), u〉 is measurable. The set of weakly star

measurable functions from Ω to X ′ will be denoted L0
w∗(Ω, X

′).

5. One defines the space

Lpw∗(Ω, X
′) =

{
g|g ∈ L0

w∗(Ω, X
′); ‖g(·)‖X′ ∈ L0(Ω),

∫
Ω

‖g(x)‖pX′dx <∞
}
.

The space Lpw∗(Ω, X
′) is endowed with the norm ‖g‖Lp

w∗ (Ω,X′) =
∫

Ω
‖g(x)‖pX′dx.

The next theorem gives the essence of parametrized measures. We refer the reader

to [19, Pedregal].

Theorem A.2.9 Let the sequence {un}∞n=1 ⊂ Lp(Ω,Rd) be such that

lim
M→∞

sup
n
Ld{x ∈ Ω : |un(x)| ≥M} = 0. (112)

then there exists a subsequence {unk}∞k=1 of {un}∞n=1 and µ ∈ L∞w∗(Ω,Mb(Rd)) such

that for a.e. x ∈ Ω, µx is a probability measure on Rd and whenever ψ : Ω×Rd → Rd

is Caratheodory function such that {ψ(·, unk(·))}n is uniformly integrable, then

ψ(·, unk(·)) ⇀ ψ̄ in L1(Ω,Rd) with ψ(x) =

∫
Rd
ψ(x, λ)dµx. (113)

Corollary A.2.10 Assume that the sequence {un}∞n=1 ⊂ Lp(Ω,Rd) is such that un ⇀

u in L1(Ω,Rd). Then a subsequence of {un}∞n=1 generates a parametrized measure µ.

Moreover, for a.e. x ∈ Ω, one has:

u(x) =

∫
Rd
λdµx. (114)

106



Corollary A.2.11 Assume that the sequence {un}∞n=1 ⊂ Lp(Ω,Rd) converges weakly

to u in Lp(Ω,Rd) and {un}∞n=1 generates a parametrized measure µ. Assume that for

a.e. x ∈ Ω, one has: µx = δu(x). Then {un}∞n=1 converges strongly to u in Lp(Ω,Rd).

The next lemma proves to be useful.

Lemma A.2.12 Assume that {un}∞n=1 ⊂ Lp(Ω) converges weakly to u. Assume that

f : Rd → Rd is strictly convex and

lim
n→∞

∫
Ω

f(un) =

∫
Ω

f(u).

Then {un}∞n=1 converges strongly to u in Lp(Ω).

Proof. It is enough to show that every subsequence has a subsequence converging

strongly to u. Consider a subsequence of {un}∞n=1 again denoted {un}∞n=1. Since

{un}∞n=1 ⊂ Lp(Ω) converges weakly to u, thank to Corollary A.2.10, a subsequence

{unk}∞k=1 of {un}∞n=k generates a Young measure µ that satisfies u(x) =
∫
Rd λdµx for

a.e x ∈ Ω.

Thanks to A.2.11 , it is enough to show that µx = δu(x) for a.e. x ∈ Ω. The following

holds ∫
Ω

f(u(x))dx = lim
k→∞

∫
Ω

f(unk(x))dx

=

∫
Ω

(∫
Rd
f(λ)dµx

)
dx

≥
∫

Ω

f

(∫
Rd
λdµx

)
dx

=

∫
Ω

f(u(x))dx.

One deduces that ∫
Ω

(∫
Rd
f(λ)dµx − f

(∫
Rd
λdµx

))
= 0.

Exploiting Jensen Inequality and the fact that for a.e. x ∈ Ω, one has∫
Rd
f(λ)dµx − f

(∫
Rd
λdµx

)
≥ 0,
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one obtains that for a.e. x ∈ Ω, one has∫
Rd
f(λ)dµx − f

(∫
Rd
λdµx

)
= 0.

Using Jensen’s inequality one more time together with the strict convexity of f yields

that for a.e. x ∈ Ω, we have µx is a Dirac measure. Since u(x) =
∫
Rd λdµx, we get

µx = δu(x) for a.e. x ∈ Ω. �

A.3 Other results

A.3.1 Change of variable Formula

In this subsection we assume that Ω ⊂ Rd is an open set and f ∈ W 1,1
loc (Ω,Rd′). We

set Jf (x) := det(Df(x)). For a non zero positive integer k, Jkf (x) denotes a matrix

whose elements are the determinant of the k-dimensional sub-matrices of Df(x). For a

subset E of Ω and y ∈ Rd′ , N(f, y, E) denotes the cardinality of the set E∩f−1({y}).

The proof of the results in this subsection can be found in [17, Maly]. We refer the

reader also to [13, Fonseca-Gangbo] and [11, Evans-Gariepy]

A.3.1.1 Change of variable via the area formula

Definition A.3.1 (Area Formula) Assume d′ ≥ d. One says that the area formula

holds for f if for all measurable set E ⊂ Ω, one has that the function Rd′ 3 y 7→

N(f, y, E) is Hd-measurable and∫
E

|Jf (x)|dx =

∫
Rd′

N(f, y, E)dHd(y). (115)

Theorem A.3.2 Assume d′ ≥ d and the area formula holds for f . If u : Ω → R is

measurable and E ⊂ Ω is measurable, then∫
E

u(x)|Jf (x)|dx =

∫
Rd

 ∑
x∈E∩f−1({y})

u(x)

 dy, (116)

provided that either u ≥ 0 or the left hand side is well defined.

Theorem A.3.3 If p > d, d′ ≥ d and f ∈ W 1,p(Ω,Rd′), then the area formula holds.
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A.3.1.2 Change of variable via the coarea formula

Definition A.3.4 (Coarea Formula) Assume d′ ≤ d. One says that the coarea

formula holds for f if for all measurable set E ⊂ Ω, one has that the function Rd′ 3

y 7→ Hd−d′(E ∩ f−1({y})) is measurable and∫
E

|Jd′f (x)|dx =

∫
Rd′
Hd−d′(E ∩ f−1({y}))dy. (117)

Theorem A.3.5 Assume d′ ≤ d and the coarea formula holds for f . If u : Ω → R

is measurable and E ⊂ Ω is measurable, then∫
E

u(x)|Jf (x)|dx =

∫
Rd

(∫
E∩f−1({y})

u(x)dHd−d′(x)

)
dy, (118)

provided that either u ≥ 0 or the left hand side is well defined.

Theorem A.3.6 If p > d, d′ ≤ d and f ∈ W 1,p(Ω,Rd′), then the Coarea formula

holds.

A.3.2 Ascoli-Arzela theorem

In this subsection we recall the definitions of equicontinuity and the Ascoli-Arzela’s

theorem. A proof of the later can be found for instance in [12, Folland].

Definition A.3.7 (Equicontinuty) A family of functions {fi}i∈I defined on Rd is

said to be uniformly equicontinuous if for all ε > 0, on can find δ(ε) > 0 such that

for all x, y ∈ Rd satisfying |x− y| < δ(ε) and all i ∈ I, one has

|fi(x)− fi(y)| < ε.

Theorem A.3.8 (Ascoli-Arzela) Let {fn}∞n=1 be a family of real valued continuous

functions on Rd that are uniformly equicontinuous and uniformly bounded. Then there

exists a continuous function f and a subsequence {fnk}∞k=1 of {fn}∞n=1 that converges

uniformly to f on every compact sets.
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A.3.3 Results on weak convergence, convexity and Lipchitz functions

Lemma A.3.9 Let Ω be bounded set. Let f : Rd → R̄ be lower semicontinuous.

Assume that f ≡ +∞ on Rd \ Ω̄. Then for every v0 ∈ Rd there exists u0 ∈ Ω̄ such

that f ∗(v0) = u0 · v0 − f(u0).

Proof. Let v0 ∈ Rd. As f ≡ +∞ on Rd \ Ω̄,

f ∗(v0) = sup
u∈Rd
{u · v0 − f(u)} = sup

u∈Ω̄

{u · v0 − f(u)}.

Consider a maximazing sequence {un}∞n=1 of supu∈Ω̄{u · v0 − f(u)}. We assume

without lost of generality that {un}∞n=1 converges to some u0 in Ω̄. Then, as f lower

semicontinuous,

f ∗(v0) = lim inf
n

un · v0 − f(un) ≤ u0 · v0 − f(u0) ≤ f ∗(v0).

Thus f ∗(v0) = u0 · v0 − f(u0).

Lemma A.3.10 Let L,R > 0. Assume f : Rd → R̄ is convex and L−Lipchitz on

B(x0, R). Then ∂f(x0) is nonempty and for all y ∈ ∂f(x0), we have |y| ≤ L.

Proof. The nonemptyness of ∂f(x0) follows from the convexity and the bounded-

ness of f on B(x0, R). Next for y ∈ ∂f(x0)

L|y| = L|y + x0 − x0| ≥ f(y + x0)− f(x0) ≥ y · (y + x0 − x0) = |y|2.

We deduce that |y| ≤ L.

�

Lemma A.3.11 Assume f : Rd → R̄ is proper, bounded below and f ≡ +∞ on

Rd \B(0, r). Then f ∗ is a r−Lipchitz function.
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Proof. Call m := inf f . There exists x0 ∈ B(0, r) such that f(x0) ∈ R. Let y ∈ Rd.

It holds that

−f(x0)− r|y| ≤ −f(x0) + x0 · y ≤ f ∗(y) ≤ r|y| −m.

This implies that f ∗(y) is always a real number.

Let y1, y2 ∈ Rd and ε > 0. As f ∗ is a real valued function, there exists x1 ∈ B(0, r)

such that f ∗(y1)− ε ≤ x1 · y1 − f(x1). furthermore, x1 · y2 − f(x1) ≤ f ∗(y2). Thus

f ∗(y1)− f ∗(y2) ≤ x1 · (y1 − y2) + ε ≤ r|y1 − y2|+ ε.

Having f ∗(y1)− f ∗(y2) ≤ r|y1 − y2|+ ε for all ε, we deduce

f ∗(y1)− f ∗(y2) ≤ r|y1 − y2|.

Similarly, one proves that f ∗(y2)− f ∗(y1) ≤ r|y1 − y2| and deduce

|f ∗(y1)− f ∗(y2)| ≤ r|y1 − y2|,

which shows that f ∗ is a r−Lipchitz function

�

The next Lemma may be drawn from [11, Evans-Gariepy]

Lemma A.3.12 Let Ω ⊂ Rd be a an open set. Let K be a compact set contained in

Ω and let α > 0. Then there exists a real number C(α,K,Ω) depending only on α,

K and Ω such that for all f : Ω→ R̄ convex satisfying
∫

Ω
|f | ≤ α, we have

sup
x∈K
|f(x)| ≤C(α,K,Ω);

ess sup
x∈K
|∇f(x)| ≤C(α,K,Ω);

Lipf|K ≤C(α,K,Ω).
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Lemma A.3.13 If f : Rd → R∪ {∞} is convex, then the functional F : Lp(Ω)→ R̄

defined by

F (u) =

∫
Ω

f(u)dx

is weakly lower semicontinuous. In particular, F is strongly lower semicontinuous.

Lemma A.3.14 Assume Ω ⊂ Rd is is a finite measure measurable set. Consider

a sequence {un}∞n=1 such that |un| ≤ C for all n. Assume the sequence {vn}∞n=1

converges weakly to v in L1(Ω). Moreover, assume that un → u a.e. Then

lim
n→∞

∫
Ω

un · vn =

∫
Ω

u · v.

Proof. Set M := supn |vn|L1(Ω). Take δ > 0. As {vn}∞n=1 converges weakly to v,

there exists ε > 0 such that for all measurable set E,

|E| < ε⇒
∫
E

|vn| < δ, ∀n.

As |Ω| <∞, by Ergorov theorem, there exists a compact set Kε such that |Ω\Kε| < ε

and un → u uniformly on Kε.

Let

In :=

∫
Ω

(un − u)vn =

∫
Ω\Kε

(un − u)vn +

∫
Kε

(un − u)vn =: an + bn

One has |an| ≤
∫

Ω\Kε 2C|vn| ≤ 2Cδ. Moreover

|bn| ≤ sup
Kε

|un − u|
∫
Kε

|vn|

≤M sup
Kε

|un − u|.

As un → u uniformly on Kε, there exists N1 ∈ N such that for all n > N1, one has

supKε |un − u| < δ. Hence for all n > N1, one has |In| ≤ 2Cδ +Mδ.

As {un}∞n=1 ⊂ L∞(Ω) and {vn}∞n=1 converges weakly to v, setting IIn =
∫

Ω
u(v − vn),

there exists N2 > N1 such that n > N2 implies |IIn| < δ. Having
∫

Ω
un ·vn−

∫
Ω
u ·v =

In + IIn, one gets the result.
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A.3.4 Disintegration Theorem

The proof of the next Theorem may be found in [7, Dellacherie, C. and Meyer]. We

refer the reader also to [15, Gangbo]

Theorem A.3.15 (Disintegration Theorem) Let (X, d1) be a separable complete

metric space and let µ be a finite Borel measure on (X,B(X)). Let (Y, d2) be a

separable metric space and let ν be a finite measure on (Y,B(Y )). Suppose T : X → Y

is measurable and satisfies T#µ << ν. Then there exists a family of finite measures

{µy}y∈Y on X unique up to a ν-negligible set such that

1. For ν-a.e y ∈ Y , one has µy({x ∈ X : T (x) 6= y}) = 0.

2. If f : X → [0,∞) and g : Y → [0,∞) are measurable, then

(a) The map Y 3 y 7→
∫
X
f(x)g(y)µy(dx) is measurable.

(b) One has:∫
X

f(x)g(T (x))µ(dx) =

∫
Y

(∫
X

f(x)g(y)µy(dx)

)
ν(dy).

If in addition T#µ = ν, then for ν-a.e y ∈ Y , the measure µy is a probability measure.

We have the following application.

Theorem A.3.16 Let X, Y be two separable metric spaces and let µ be a Borel mea-

sure on X × Y and suppose that the map Π : X × Y → X : (x, y) 7→ x pushes µ

forward to a measure σ on X. Then there exists a familly {µx}x∈Ω of Borel probability

measure unique σ a.e. such that for all f : X × Y → [0,∞] measurable, one has

that the map X 3 x 7→
∫
Y
f(x, y)µx(dy) is measurable and∫

X×Y
f(x, y)µ(dx, dy) =

∫
X

(∫
Y

f(x, y)µx(dy)

)
σ(dx).
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Roméo Awi was born in Benin Republic. After a Bachelor’s degree in Electrical and

Computer Engineering from the Institut Universitaire de Technologie de Lokossa,

University of Abomey-Calavi; he will go to the Faculté des Sciences et Techniques to
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