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SUMMARY

Revenue management is concerned with managing demands of customers and has
been found successful in broad areas such as airline, hotel and retailing industries. In rev-
enue management, decisions of sellers such as designing a product portfolio or choosing
prices of products are often made based on customer choice. It is thus important to un-
derstand customer choice behavior and analyze how it affects sellers’ decisions, especially
when customers’ choice exhibits specific behavioral phenomena that deviate from axioms of
rational choice (e.g., Luce’s axiom of choice) and sellers compete.

My thesis is focused on revenue management problems, with particular emphasis on
customer choice behavior, and it consists of three essential chapters.

In the first chapter, we build a variety of customer booking choice models for a major
airline that operates in a very competitive origin-destination market, including the multi-
nomial logit (MNL) models, nested logit (NL) models, mixed-logit (ML) models and latent
logit class (LCL) models. The latter three types of models are aimed at incorporating
unobserved heterogeneous customer preferences for different departure times of flights and
identifying latent customer types. More interestingly, we incorporate in all our model-
s the context effect that the attractiveness of a fare class is influenced by the other fare
classes offered in the same assortment, which is not standard in the literature of discrete
choice models. The estimation results show that including these factors into choice models
dramatically affects price sensitivity estimates, and therefore matters.

Previously available algorithms are inefficient for estimating choice models from large
sets of data (observations), especially for estimating advanced choice models that usually
involve high-dimensional integrals, such as the ML-type models. In the second chapter, we
present a stochastic trust region algorithm for ML-type model estimations. The algorithm
embeds two sampling processes: (i) a data sampling process and (ii) a Monte Carlo sampling

process. The second process is employed to compute the sample average approximation of

X



a high-dimensional integral. The algorithm dynamically controls the sample sizes based on
the magnitude of the errors incurred due to the two sampling processes. First, the algorithm
controls the size of Monte Carlo samples for each observation in the dataset to minimize
the total sample size subject to a constraint on the variance of the objective estimate.
Second, the algorithm controls sampling from the dataset according to the magnitude of
data sampling error relative to the Monte Carlo sampling error. The first-order convergence
is proved based on generalized uniform law of large numbers theories for both the average
log-likelihood function and its gradient. The efficiency of the algorithm is tested with real
data and compared with existing algorithms.

In the third chapter, we study how a specific behavioral phenomenon, called the decoy
effect, affects the decisions of sellers in product assortment competition in a duopoly. We
propose a discrete choice model to capture decoy effects, and we use the model to provide
a complete characterization of the Nash equilibria and their dependence on choice model
parameters. For the cases in which there are multiple equilibria, we consider dynamical
systems models of the sellers responding to their competitors using Cournot adjustment
or fictitious play to study the evolution of the assortment competition and the stability of
the equilibria. Our results show that all pure-strategy Nash equilibria can provide reliable
forecasts of the outcome of the competition in the sense that they have large domains of
attraction. In contrast, mixed-strategy Nash equilibria have negligible domains of attrac-
tion, except for a special case, and thus we conclude that mixed-strategy Nash equilibria do
not provide reliable forecasts of the outcome of the competition. Our results also provide a
simple geometric characterization of the dynamics of fictitious play for general 2 x 2 games

that is more complete than previous characterizations.



CHAPTER I

DISCRETE CHOICE MODELING AND ESTIMATION

In this chapter we describe discrete choice modeling and estimation with applications to
airline revenue management. We consider a revenue management problem of a major airline
that operates in a fiercely competitive market involving two major hubs and having more
than 30 parallel daily flights. We build a variety of booking choice models to incorporate
unobserved heterogeneous customer preferences for different departure times. The way
departure time preferences are modeled dramatically affects price sensitivity estimates, and
therefore the modeling of heterogeneous departure time preferences matters. We also show
that customer choice behavior exhibits the context effects, with much greater demand for the
cheapest alternative than for the second cheapest alternative even when the price difference
is small, and much greater demand for fully refundable tickets than almost fully refundable

tickets.

1.1 The Airline Ticket Booking Choice

Consider a number of airlines, indexed by ¢ € I, selling tickets for travel on parallel flights
in a single origin-destination (O-D) market. In this section, for ease of notation, airline
XX for whom we estimate customers’ booking choice models is indexed by ¢ = 1, and —i
denotes the competitors {YY, ZZ}.

We now specify the “products” that airlines offer to the market. Airline 7 sells tickets
for a set F; of flights. We consider all the flights for the O-D pair that depart on a particular
day of week (say, Monday, Tuesday, Saturday etc.). Each airline maintains a list of fare
classes each associated with a fixed ticket price, and the airline can sell tickets with the
price associated with each fare class for each of the flights. For each airline, we refer to a
flight-fare class combination as the product of the airline. Let J; be the set of products that
airline i offers to the market. The selling horizon is denoted with [0, 7], where T' denotes

the scheduled departure time of the last flight during the time horizon. There is a set K of



sales channels that can be used to sell airlines’ products, for example, an airline’s own web
site, an airline’s call center, various third-party web sites, and independent travel agents.
Some channels, such as an airline’s own web site or call center, are used by only one airline,
and some, such as third party web sites, are used by multiple airlines.

Customer booking requests arrive in each channel k according to independent nonhomo-
geneous Poisson processes with rates A\;(¢). For each time ¢ € [0, 7] and each sales channel
k € K, each airline i chooses a set A; ;,(t) C J; of products to offer; A; 1 (t) is called the as-
sortment offered by airline ¢ through channel k£ at time ¢t. Let K; denote the set of channels
used by airline 4. If airline ¢ does not use channel k, i.e. k ¢ K;, then A, ;(t) = @. Also,
products in A; x(t) cannot belong to flights that depart before time t. Let A;x(t) C 27
denote the collection of assortments that airline ¢ considers at time ¢ for channel k. Let
A (t) :== Ujer A; (t) denote the assortment offered in channel & at time ¢, by all the airlines
in the market. Given the assortment Ax(t) = A, a customer who arrives at time ¢ using
channel k books alternative j with probability ¢j.a(k,t) (gj.a(k,t) =0if j & A).

Booking requests are indexed by n € N. The corresponding customer is referred to
as customer n. Let t, denote the arrival time of booking request n, let k, denote the
channel used, and let j, denote the alternative chosen (booked) by customer n. Thus, for
a customer n using channel k,, at booking time t,,, A, (t,) denotes the assortment offered
by all airlines to customer n. For ease of notation, let A,, := Ay, (t,) denote the assortment
for customer n, and let gj;.a, denote the probability of customer n choosing j from A,.
In addition, each customer n has a consideration set C,, C U;crJ; of products that the
customer would consider. Thus, each customer n chooses from products in the customer’s
choice set S, := A, N C,. Note that the customer’s observed choice j, must be in S,.
Typically, the consideration set C,, and the choice set 5, of customer n is not observed —

this is one of the challenges encountered in discrete choice modeling.



1.2 Literature Review

Our study falls within a vast literature on discrete choice modeling and estimation. Discrete
choice models have found broad applications to predicting travelers’ choices in transporta-
tion [9] and customers’ choices from a set of products in revenue management [63]. The
classic multinomial logit (MNL) model has been widely used due to its tractability, but it
has a number of shortcomings, including (i) the independence from irrelevant alternatives
(ITA) property, (ii) the assumption that each customer’s choice set is known, and (iii) the
assumption that all customers have the same preferences or taste coefficients. To address
these shortcomings, a variety of other discrete choice models have been developed, includ-
ing the nested logit (NL), mixed logit (ML), latent class logit (LCL) models, and probit
models [24]. There is a significant amount of work, including [54, 55, 1], that incorporate
preference heterogeneity in consumer choice models. Interested readers are referred to [14]
for a detailed review of the MNL model and its many kinds of variants.

The revenue management problem discussed in our study is similar to that of [70] in
the sense that we also use discrete choice models for parallel flights calibrated with airline
data and we also use simulation to evaluate the performance of our policies. However,
our choice models address some issues not addressed in [70]: (i) we develop models that
incorporate the idea that different customers have different preferences (taste heterogeneity)
for different departure times, (ii) we allow differences in price sensitivity depending on
when the customer books and what channel the customer uses, and (iii) we identified and
modeled context effects for the cheapest available fare classes as well as for fully refundable
fare classes. [71] also considered discrete choice models for parallel flights. They studied
structural properties of a Markov decision process formulation, and they compare a number

of heuristics for their model.
1.3 The 2011 and 2012 Airline Data

There are three major airlines that we call XX, YY, and ZZ, in the market, and we consider
to build and estimate customers’ booking choice models for airline XX. For airline XX,

we have booking data. The booking data contain the values of various factors that are



important for the estimation of booking choice models discussed in Section 1.4.

We also have availability data that show snapshots, typically once per day, of the as-
sortment being offered by each airline at that time. The assortment sometimes changes
during a day, and we also use customers’ booking data to identify when such changes took
place, and to construct the historical assortments A;(t) for each airline 7 in channel k as
a function of time ¢.

In Sections 1.4.1-1.4.4 we introduce four booking choice models for applications of gen-
eral purpose. The four booking choice models differ in the way that they incorporate
heterogeneous customer preferences for different departure times. Then we describe the
factors, encoded attributes and our choice models in Section 1.5. The estimation results are

compared and discussed in Section 1.6.
1.4 Various Discrete Choice Models

Discrete choice models predict the probability of customers choosing a specific product
from among an assortment of products offered at market and formulate customer choice
probabilities as functions of utilities of the alternatives in the offered assortment. The utility
of an alternative is further formulated as a function of the alternative’s attributes that are
often encoded into numeral values using the factors of the alternative such as fare price,
departure time, and booking channel (discussed in detail in Section 1.5.1).

Let @y jm denote the value of attribute m € {1,2,...,m} for customer n € N and
alternative j € A, and let @y, j := (Tpj1,...,Tnjm) € R™ denote the attribute vector for
customer n and alternative j. The systematic utility, v, j, of alternative j for customer n

is represented in terms of the following linear function,

Uan = ,BT:Cn’j, (1.1)

where 8 := (31,...,0m) € R™ denotes the parameter vector and 3, denotes the coefficient
or weight of attribute m. Let g;.4, denote the probability of customer n choosing product j
from A,,. We describe four customers’ booking choice models that all use (1.1) either in the

original form or an enhanced form to capture the heterogeneity in customer preferences.



1.4.1 The Multinomial Logit (MINL) Model

One of the most popular discrete choice models is the multinomial logit model. For basic
properties of the MNL model, see for example [9] and [64]. The probability that customer n

chooses alternative j € A, is given by

exp(ng)  _ exp(BTany)
zj'esn exp (Un,j') Zj’esn exp (5”%]”)

In the context of airline demand (and many other applications), different customers consider
different sets of alternatives, but the consideration sets C,, and choice sets S,, := A, N C,
are not observed (but some data related to the consideration sets may be observed). For
example, different customers consider different sets of departure times to be reasonable
for their purposes. Some customers are flexible and may consider all flights in a wide
time window, whereas other customers have tight schedules and want to depart as close as
possible to a specific time. These time preferences are not observed.

The following modeler’s selection of S,, was suggested in [70]: Given that customer n
booked a ticket from A to B for a flight departing on a particular day, it is assumed that
Sn = A, is the set of all flights from A to B on the same day. We used the same selection
of S, for the MNL model results discussed in Section 1.6. However, the following intuitive
argument suggests that such a selection may produce biased parameter estimates. Suppose
that the price of an alternative is an important attribute of the alternative. More specifically,
suppose that each customer chooses the cheapest ticket for a flight that departs in the
customer’s preferred time window. Thus customers are quite price sensitive, with attention
restricted to a subset of alternatives. Now suppose that flights departing at different times
of the day have different cheapest available fares (which is often the case). In a data set
of bookings, a significant fraction of customers do not choose one of the cheapest tickets
over all flights departing on the particular day (because none of the cheapest tickets were
for a flight departing in the customers’ time windows). If it is assumed that each customer
chooses from the set of all flights on the same day, then it appears that customers are not
very price sensitive, and as a result the estimated price coefficients will be biased. As shown

in Section 1.6, our results were consistent with this intuition. Next we discuss a number of



models that attempt to incorporate heterogeneity in customer preferences.
1.4.2 The Nested Logit (NL) Model

In the nested logit model, the set of alternatives is partitioned into subsets called nests,
indexed by [ € {1,2,..., L}. For example, different nests contain tickets for flights departing
during different time windows. Correspondingly, for each customer n, A, is partitioned
into L nests denoted with A, ;. In the NL model, different alternatives in the same nest
have positively correlated utilities. Thus, by choosing different nests to contain tickets for
flights departing during different time windows, the NL model can capture heterogeneous
preferences for different departure times. A restriction of the NL model is that the set of
alternatives has to be partitioned, for example, the NL model does not capture a setting
in which customers either prefer departure times between t; and t3 or departure times
between to and t4, where t7 < ty < t3 < t4. For more detail of the NL model, see for
example [9] and [64]. The systematic utility of customer n for alternative j € A,,; is given
by v j = BTy /oy, where oy € [0,1/a] is the parameter that represents the variation of
preferences for alternatives in A,,;, and o > 0 is a scaling factor. Then the probability that

customer n chooses alternative j € A,,; is given by

Ga = exp(vn, ;) exp (oo ;)
J:An Zj’GAn,l exp(vn’j/) le/’:l exp (Oéal’l_}n,l’)
_ exp(BTan,j /o) exp (v Un,1)
2 jrean, P(BTen, 0 fa1) S exp (aaptn )’
where
Upy = In Z exp(fTan/aq) |, Vie{l,...,L}.

jeAn,l
1.4.3 The Mixed Logit (ML) Model

Let 0 denote the attribute coefficients that reflect the tastes of customers in evaluating
attributes and ¢, ; represent the vector of attribute values. A natural way for a choice model
to capture heterogeneous tastes is to allow variation in the values of #. Let 7wy denote the
probability distribution of a customer’s parameter vector . Thus, the systematic utility

of customer n for alternative j, given by v, j := 67(, ;, is random (given the vector (, ; of



attribute values) with distribution determined by my. Then the probability that customer n

chooses alternative j € A, is given by

exp (Un,;) _ & exp (07¢n,5)
= E,,
Yirea, €D (Vn ) Sirea, D (07Cn 1)

ML models can approximate heterogeneous consideration sets by including random coeffi-

Qj:An(knatn) = E’TI'Q

] . (L3)

cients 6,, for product subsets w C U;csJ;, where a value of 8,, < —M for large M in effect
removes alternatives j € w from the customer’s consideration set. Specifically, to model
departure time preferences, we partition the departure times into hourly time windows in-
dexed by w = 1,...,14. For each customer n, alternative j € A,, and time window w, let
Yn,jw = 1 if the flight for alternative j departs in time window w, let ¥, j ., = 0 otherwise,
and let ypn j := (Yn,j,1,- - -+ YUn,j14). The corresponding parameter vector v := (v1,...,714) is
random. We estimated a model in which the values of v of different customers are indepen-
dent normally distributed with mean p € R and covariance matrix ¥ € R4*14 A large
mean [, indicates a time window w that is on average more popular, a large variance X, 4,
indicates a time window w that some customers strongly like and other customers strong-
ly dislike, and a large positive covariance ¥, ,, indicates a pair of time windows (w,w")
with similar preferences — some customers like both and other customers dislike both.
We can represent v = p + o€, where ¢ € R has independent standard normal compo-

R>x14 is the lower-triangular Cholesky factor such that ¥ = ooT. Let

nents, and o €
B denote the deterministic parameters, that is, the values of 8 are the same across the
customer population, and let z, ; denote the corresponding vector of attribute values for
customer n and alternative j. Then 6 = (5,7), (nj = (Znj,Yn,j), and the systematic utility
is vp; =0"Co = BTCn; +7 Ynj = BTTn; + 1Tyn; +£707yy ;. The parameters (3, i, o) are

estimated by solving a maximum likelihood problem. For more detail of the ML model, see

for example [64].
1.4.4 The Latent Class Logit (LCL) Model

In the LCL model there are discrete customer classes, and different customer classes have
different consideration sets and/or different values of the parameter vector /3, but the class

of each customer is not observed. We consider the case in which all customer classes have



the same value of the parameter vector (3, but different customer classes have different
consideration sets. In general, the modeler enumerates a collection C C 2Y€l”/i of sets of
products that a customer may consider. Let m¢c denote the probability that a customer’s
consideration set is C' € C. As before, the systematic utility of customer n for alternative j
is given by vy, ; := 872, ;. Then the probability that customer n chooses alternative j € A,

is given by

1jjec)exp (vnj) _ Z exp (vn,;)
TC

qj:A, = ETF = .
“ | Zyeannc exp (vny) {Ccec:jecy > jreannc P (Unj7)

The parameters (3, 7) are estimated by solving a maximum likelihood problem subject to
the constraints that 7¢ > 0 for all C' € C and ) ..mc = 1. For example, to model
departure time preferences, we construct the collection C of consideration sets C' as follows:
Fach C' contains all flight-fare class combinations with departure times within the same time
window [t1,te], and C is constructed by taking all combinations of ¢; and ¢ with hourly
increments such that t; < to. Note that UgecC = U;ecrJ;, but, unlike the nests of the nested
logit model, C is not a partition of U;c7J;. For example, some customer types have narrow
time windows and other customer types have wider time windows that intersect multiple

narrow time windows.

1.5 Estimation of Airline Ticket Booking Choice Models
1.5.1 Encoded Attributes using Factors

For all the choice models, attributes are constructed to encode observed factors such as fare
price, departure time, and booking channel. We also consider that that affect the choice
probabilities g;. 4, in such a way that the choice probabilities depend on the factors through
a linear function of the attributes only, as follows.

Table 1 lists the alternative-specific factors (1-5) and the customer-specific factors (6-7)
for which we obtained data, and that affected the booking choice probabilities.

We first discuss the use of the factors in Table 1 for booking choice models.

1. It is natural for booking choices to be affected by ticket prices — everything else being

the same, the lower the price, the greater the probability that the customer chooses



Table 1: Alternative-specific and customer-specific factors used to encode attributes and
estimate the discrete choice models.

’ H Factor ‘ Description
1 || Ticket price the ticket fare, e.g., $1350
2 || Departure time the time when a flight takes off, e.g., 09:00
3 || Ticket change fee | the fee charged for changing to another flight, e.g., $75
4 || Mileage gain the mileage credits earned by a customer if the customer buys
the ticket, e.g., 1140 points
5 || Carrier the airline that sells tickets
6 || Booking time the date, hour, minute at which the booking was made, e.g.,
Tuesday 2011-06-07 09:20
7 || Booking channel the channel via which a ticket is booked, e.g., airline web site,
call center
the alternative. Ticket prices used in the models were the total prices paid by the
customers, including taxes and fees.
2. Customers have preferences regarding departure times. No flights on the schedule

departed between 00:00 and 07:00. We partitioned the departure times from 07:00
to 21:00 into 14 hourly time windows. The time window [21 : 00,07 : 00) represents
the late night flights typically around 21:30 and 22:00. The estimated MNL model
captured the different popularity of different departure times by terms 3,2, j«, where
Bw is an element of vector 3 and xy, ;,, is the corresponding attribute value of vector
Zp,; in expression (1.2) for g;.4,. It has that x,, ., is 1 if alternative j departs in time
window w, and 0 otherwise, and 3,, represents the contribution of alternatives in time

window w to customers’ systematic utility (relative to one of the time windows).

As discussed before, not only are some departure times more popular than other ones,
but different customers have different preferences regarding departure times. The NL
model partitions departure times into three subsets or nests; nest [ = 1 contains the
alternatives with departure times between 07:00 and 11:00, nest [ = 2 contains the
alternatives with departure times between 11:00 and 17:00, and nest [ = 3 consists
of the alternatives with departure times between 17:00 and 07:00. Thus, customers
are modeled as having random preferences for departure times in these three nests.

Customer preferences for departure times within each nest are modeled as in the MNL



model. In the ML model, customers’ preferences for departure times are modeled by
terms Yy ¥n,jw in (1.3) of Section 1.4.3, where (v, w =1,...,14) is a random vector,
with a multivariate normal N(u, ) distribution. A large value of u,, represents a
departure time window that is popular (on average), and a large value of ¥, ,,» means

that customers tend to prefer both time windows w and w’, or neither.

In the LCL model, consideration sets determined by departure times were constructed
as follows: Each consideration set C' contains all tickets with departure times within
the same time window [t1, to], where t1,t2 € {07 : 00,08 : 00, ...,21: 00}, t1 < to (with
the interpretation of to = 07 : 00 as the largest of the times). Customer preferences for

departure times within each consideration set C' was modeled as in the MNL model.

. Different fare classes have different ticket change fees. The effect of change fees on
customers’ preferences is captured by terms [,z ;. in the expressions for g¢;.a,,
where , ;. denotes the amount of the change fee for alternative j, and f3,, represents

the contribution of a unit of change fee to customers’ systematic utility.

. Although the distance flown from O (origin) to D (destination) is the same for all
alternatives, not all tickets contribute the same number of credits to customers’ fre-
quent flyer balances. Some customers’ preferences are influenced by this, and this
effect is captured by terms 3,2 jm in the expressions for ¢;. 4, , where x,, j,, denotes
the frequent flyer credit if a customer purchases alternative j, and (3, represents the

contribution of a unit of frequent flyer credit to customers’ systematic utility.

. The estimated models capture the different popularity of different airlines by terms
Ban, jq in expression (1.2) for g;.a,, where x,, j o is 1 if alternative j is sold by airline a,
and 0 otherwise, and 3, represents the contribution of alternatives sold by airline ¢ to

customers’ systematic utility (relative to one of the airlines).

. The time at which a customer makes a booking is expected to be correlated with the
customer’s price sensitivity. The use of booking time for price coeflicients is discussed

in the later provided examples.
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7. The channel that a customer uses to search for a ticket and make a booking affects the
alternatives that are displayed to the customer, and thus the customer’s choice set.
It is assumed that if customer n uses the web site or the call center of airline ¢, then
the customer considers only alternatives sold by airline ¢. In addition, the booking
channel is also expected to be correlated with the customer’s price sensitivity and the

use of booking channels for price coefficients was discussed in the later given examples.

Next we give an example. It is to be expected that choice probability ¢;.4, depends on
the price of alternative j. However, we also suspected that customers who book at different
times and who use different booking channels have different price sensitivities. For example,
we suspected that customers who book long in advance of departure time are more price
sensitive than customers who book close to departure time, that customers who book during
work hours are less price sensitive than customers who book outside work hours, and that
customers who book using third-party web sites are more price sensitive than customers who
book using the airline’s call center. To capture the effect of booking time on price sensitivity,
we partitioned the booking horizon as follows. First, the number of days until departure
was partitioned into 3 intervals: [0, 6] days before departure, [7,13] days before departure,
and more than 13 days before departure. Second, the booking day-of-week is partitioned
into 2 subsets: weekdays and weekends. Third, the time-of-day when customers make their
booking requests was partitioned into 3 intervals: [00 : 00,09 : 00), [09 : 00,18 : 00), and
[18 : 00,24 : 00). The channels that customers use to make bookings were partitioned into 5
subsets: airline web sites, other well-known web sites, other lesser-known web sites, airline
call centers, and other channels including travel agents. For each of the 90 combinations of
subsets of number of days until departure, booking day-of-week, booking time-of-day, and
booking channel, a separate price coefficient was estimated. Thus, the three factors of ticket
price, booking time, and booking channel were encoded into 3 x 2 x 3 x 5 = 90 attributes
Tnjm, m=1,...,90, where z, ;. is equal to the price of alternative j if customer n booked
in the time interval and used the booking channel represented by index m, and ;. is
equal to zero otherwise. The corresponding coefficient 3, represents the estimate of price

sensitivity given that a customer books in the time interval and uses the booking channel

11



represented by index m. Hence, data on customer-specific factors such as booking time

and booking channel allow us to study the effects of these factors on price sensitivity. The

results are summarized in Section 1.6. Due to lack of good data, other studies such as [22]

and [70] estimated a single price coefficient for all customers.

Table 2 shows the encoded values we assign to the three booking time factors: days to

departure, booking time and booking day, and the factor of booking channel according to

their original values.

Table 2: Encoded Values for Booking Times and Channels.

’ Days to Dep. ‘ # H Time-of-day ‘ # H Day-of-week ‘ # H Channel ‘ # ‘
[0, 6] 1 || [00:00, 09:00) | 1 weekday 1 others | 1
[7, 13] 2 || [09:00, 18:00) | 2 weekend 2 || airline website | 2
[14, c0) 3 || [19:00, 24:00) | 3 call center | 3
large websites | 4
small websites | 5

Next we discuss a context effect that seems to influence the booking choices of customers,

and that we incorporated in all our models. We use Figure 1 to facilitate our explanations

as below.

Fraction of bookings
o © © o o o
=R A O S =

Fare class

>
>

7
= XX 2011 Data == LCL w/o contex effects == « LCL w/ contex effects

6

5

4

3 2

1

Figure 1: Comparison of fraction of XX bookings in each fare class given that Channel 1
was used and given that fare class 7 was the cheapest available fare class for the chosen
flight and channel.
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In Figure 1, the curve labeled “XX 2011 Data” shows the observed fraction of XX
bookings in each fare class given that a particular booking channel 1 was used and given
that a specific fare class 7 was the cheapest available fare class for the chosen flight and
booking channel. Figure 1 shows that when fare class 7 is the cheapest available fare class
for a flight, then about 36.0% of the customers who make a booking for that flight book
in fare class 7, and about 50.4% of the customers who make a booking for that flight book
in fare class 1. It can be seen that a large fraction of customers either book the cheapest
ticket or the most expensive ticket (fare class 1), apparently because it is the only (and
thus cheapest) fully refundable ticket. These effects are called context effects because the
attractiveness of a fare class is influenced by the other fare classes offered (because the other
fare classes offered determine whether a particular fare class is the cheapest available or the
most fully refundable). We also refer to these context effects as “spikes”.

Figure 1 also shows that a LCL model that does not explicitly incorporate coefficients
for spikes does not match the observed fare class distribution well. The curves obtained with
MNL, NL, and ML models that do not explicitly incorporate coeflicients for the context
effect are similar to the curves for the LCL model shown in Figure 1, and are thus omitted.

Also, we note that the relative sizes of the spikes are different depending on what fare
class is the cheapest available fare class and depending on what booking channel is used.
The relative sizes of the spikes are also different for different airlines. We were able to
capture the spikes by using the following attributes and corresponding coefficients: (i) For
each combination of airline and booking channel there is an attribute that is equal to one if
customer n uses the channel and alternative j belongs to the airline and it is the cheapest
available fully refundable fare class on its flight. (ii) For each combination of airline, channel,
and fare class, there is an attribute that is equal to one if customer n uses the channel and
alternative j belongs to the airline and it is the cheapest available fare class on its flight.
Figure 1 also shows that a LCL model that explicitly incorporates coefficients for spikes as
described above matches the observed spikes quite well. The curves obtained with MNL,
NL, and ML models that incorporate coefficients for spikes are similar to the curves for the

MNL model shown in Figure 1, and are omitted.
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The phenomenon of spikes reflects the competition among fare classes for each combina-
tion of airline and booking channel. Other researchers have considered competition among
fare classes. For example, [21] emphasized that the competition among fare classes for a
flight and across different flights on the same departure day may be important. [21] did not
model this competition due to limited data.

In the standard MNL model, the relative choice probabilities of two alternatives do
not depend on the presence of other alternatives in the choice set (the independence from
irrelevant alternatives (IIA) property). Similarly, in standard NL, ML and LCL models,
the relative choice probabilities of two alternatives in the same nest or class do not depend
on the presence of other alternatives in that same nest or class.

The introduction of the spike coefficient for the cheapest available fare class destroys this
property. As a result, the choice models with the spike coefficients for the cheapest available
fare class are not standard and the estimation problems may lose some nice properties
that have been established for the standard versions of these models. For the estimation
problems, we can rectify this potential shortcoming of models with spike coefficients by
extending the set of alternatives in the following way. For each product (i.e., a flight-fare
class combination) j, add a spike counterpart, say j’, that is, for each product, there are
two copies: one copy without a spike coefficient, and one copy with a spike coefficient. If a
fare class is the cheapest in a customer’s choice set, then the choice set contains the spike
counterpart, but not the non-spike counterpart, and if a fare class is not the cheapest in a
customer’s choice set, then the choice set contains the non-spike counterpart, but not the
spike counterpart. With such product representation, the relative choice probabilities of
two (extended) alternatives do not depend on the presence of other alternatives (for MNL)
or the presence of other alternatives in the same nest or class (for NL, ML, and LCL). Thus,
for estimation purposes, the choice models with spike coefficients retain the nice properties

of standard models.
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1.5.2 Description of Estimated Choice Models

In this section we describe in detail various choice models that were estimated from the
dataset of 2011. There are 90 price sensitivity parameters, 11 parameters for each of com-
binations (i), 102 parameters for each of combinations (ii), two parameters for carriers, one
parameter for mileage gain and one for cancel fee, which gives 207 common parameters to
all the four choice models. Combinations (i) and (ii) were introduced at the end previous
section. For all the following three choice models, we take departure times in time window
[21:00, 07:00) as the base case.

For the MNL model, there are 14 parameters to be estimated for attributes of departure
times, which gives 221 parameters to be estimated.

For the NL model, we partition all the alternatives in UA,,, where n € N, into L = 3
nests. Nest [ = 1 contains the alternatives with departure times between 7:00am and
10:00am, nest | = 2 contains the alternatives with departure times between 11:00am and
17:00pm, and nest [ = 3 consists of the alternatives with departure times between 17:00pm
and 7:00am. We set the scaling factor o = 104 and need to estimate dissimilarity factors
ap, 1 =1,2,3, 207 common parameters and 14 parameters for departure times.

For the ML model, to capture the variation of customer preferences in evaluating depar-
ture times, we consider a random parameter vector -, := (%,1, Yn,2y -« - ,'yn714) for departure
times for each customer n € N/, where {7, }nen is a sequence of i.i.d. Gaussian vectors with
mean vector 1 € R and covariance matrix ¥ € R**14, We can represent v, = p + &,
where &, € R is a standard Gaussian vector and o € R is the lower-triangular C-
holesky factor such that ¥ = ooT. Let 5 € R?07 denote the 207 common parameters that
are assumed to be deterministic and the same across the customer population AN. Let
Tnj € R207 denote the vector of attribute values except departure times and Yn,j € R4
denote the vector of attribute values for departure times for alternative j € UA,. The
systematic utility is written as v, ; = 872 j + Vnj = BT%n,; + 1TYn,j +ER0TYn j. We need

to estimate (8, i, o) by maximizing the simulated log-likelihood function

In i
| exp (ﬁT-Tn,jn + 1TYn 4, + (gz)TUTyn,jn)

1 1
max In| — A ,
B I 2 1T 2 55, o (g + 470y + (E)T0T30)
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where |I,,| is the Monte Carlo integration sample size and {5;}11:”4 is a sequence of i.i.d. s-

tandard Gaussian variates and independent for each n.

For the LCL model, define C|[t1,ts] := {j € U?_, P : j has departure time in [tl,tg]} as
the set of tickets sold by airlines XX, YY and ZZ with departure times in time window
[t1,t2], where t1,t2 € {07 : 00,08 : 00,...,21 : 00}. Let C := {Clt1,t2] : t1,to € {07 :
00,08 : 00,...,21:00}} denote the collection of consideration sets (with the interpretation
of t = 07 : 00 as the largest of the times). For the LCL model, it assumed that customers
purchasing via different channels have the same collection C of consideration sets and have
the same type distribution 7(.) defined on the support C. We need to estimate parameter

vector (3, (mc, C € C)) by solving the following optimization problem,

Z | mcliua,ncel exp (BTan,j,)
n
neN  \CeCijneC 2 crec To'Luan0£0] 2jevannc P (BT2n,5)

s.t. Z?TC = 1,

ceC

1
max —
V]

o € 10,1], VC eC.

where 3 € R??! consists of the 207 common parameters and 14 parameters for departure
times, x, ; € R?2! is the vector of encoded attribute values for j € UA,,, where n € N/, and

the choice probability inside the logarithm is calculated conditioning on UA,, N C,, # @.
1.6 Estimation Results

In this section we describe the estimation results for the four choice models with context
effects, including the price coefficients that reflect customers’ price sensitivity as well as
the parameters for departure times that reflect the popularity of different departure time
windows. Each of the four models is estimated with the 2011 data, 2012 data, 1-6/2012
(January-June, 2012) data and 7-12/2012 (July-December, 2012) data. Thus, there are 16

choice models in total.
1.6.1 Price Sensitivity
All the price coefficients are negative for all four choice models, consistent with the intuition

that the more expensive the ticket is, everything else being the same, the less likely it is that a
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customer will choose it. Of particular interest is the behavior of the price coefficients as the
values of various factors are varied. Recall that for each combination of number of days from
booking until departure ([0, 6], [7,13], or [14,00) days), booking day-of-week (weekday or
weekend), booking time-of-day ([00 : 00,09 : 00), [09 : 00, 18 : 00), or [18 : 00,24 : 00)), and
booking channel (airline websites, other well-known websites, other lesser-known websites,
airline call centers, or other channels including travel agents) there is a price coefficient. It
is part of revenue management folk wisdom that customers who book longer in advance of
departure times tend to be more price sensitive. To illustrate the effect of number of days
until departure on the price coefficients, we compare the values of the price coefficients for
[7,13] or [14,00) days before departure with the values of the price coefficients for [0, 6]
days before departure, for each combination of the other factors (booking day-of-week,
booking time-of-day, and booking channel). For example, the price coefficient of ([7,13],
[00:00,09:00), weekday, others) is -7.2397 and the price coefficient of ([0,6], [00:00,09:00),
weekday, others) is -4.8802. Then, the relative price coefficient of [7, 13] relative to [0, 6] for
([00:00,09:00), weekday, others) is [—7.2397—(—4.8802)]/7.2397 = —0.3259. Figure 2a shows
a histogram of the MNL relative price coefficients for [7, 13] relative to [0, 6], and for [14, c0)
relative to [0, 6], for all combinations of booking day-of-the-week, booking time-of-day, and
booking channel. As Figure 2a shows, for most combinations of booking day-of-the-week,
booking time-of-day, and booking channel, the price coefficients for |7, 13] are smaller (more
negative) than the price coefficients for [0, 6], and the price coefficients for [14, c0) are even
more negative relative to the price coefficients for [0,6]. Thus most price coefficients are
consistent with revenue management folk wisdom.

Similarly, Figure 2b shows a histogram of the MNL relative price coefficients for booking
time-of-day [00 : 00,09 : 00) relative to [09 : 00, 18 : 00), and for [18 : 00,24 : 00) relative to
[09 : 00,18 : 00), for all combinations of booking days until departure, booking day-of-the-
week, and booking channel. As Figure 2b shows, customers who book outside work hours
tend to be more price sensitive than customers who book during work hours.

Figure 3a shows a histogram of the MNL relative price coefficients for weekend bookings
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Figure 2: Histograms of relative price coefficients for booking days until departure and
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Figure 3: Histograms of relative price coefficients for booking day-of-week and channel.

relative to weekday bookings, for all combinations of booking days until departure, book-
ing time-of-day, and booking channel. As Figure 3a shows, customers who book during
weekends tend to be more price sensitive than customers who book during weekdays.
Figure 3b shows histograms of the MNL relative price coefficients for airline websites,
large websites, small websites, and other channels, relative to airline call centers, for all
combinations of booking days until departure, booking day-of-week, and booking time-of-

day. As Figure 3b shows, customers who book through airline websites, large websites,
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Figure 4: Histograms of price coefficients for the NL, ML, and LCL models relative to the
price coefficients of the MNL model.

small websites, and other channels, tend to be more price sensitive than customers who
book through airline call centers.

Figure 4 shows histograms of the relative price coefficients for the NL, ML, and LCL
models, relative to the MNL model, for all combinations of booking days until departure,
booking day-of-week, booking time-of-day, and booking channel. As Figure 4 shows, al-
most all the price coefficients for the NL, ML, and LCL models are more negative than the
corresponding price coeflicients for the MNL model, which suggests that the MNL model un-
derestimates the price sensitivity of customers because of its assumption that all customers

consider all flights for the origin-destination pair and departure date.
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Table 3: Choice probabilities for different departure time windows according to the MNL,
NL, ML, and LCL models.

| Index | Time window [ MNL NL ML | LCL |
1 [ [07:00, 08:00) || 0.09387 | 0.09224 | 0.08903 | 0.09675
2 | [08:00, 09:00) || 0.07107 | 0.07693 | 0.06811 | 0.08046
3| [09:00, 10:00) || 0.08454 | 0.09352 | 0.08141 | 0.09089
4 | [10:00, 11:00) || 0.08062 | 0.09185 | 0.07783 | 0.08820
5 | [11:00, 12:00) | 0.06409 | 0.09689 | 0.06630 | 0.07384
6 | [12:00, 13:00) || 0.05851 | 0.08519 | 0.06086 | 0.06602
7 | [13:00, 14:00) || 0.04853 | 0.07015 | 0.05041 | 0.04774
8 | [14:00, 15:00) || 0.06919 | 0.10720 | 0.07294 | 0.07112
9 | [15:00, 16:00) || 0.07958 | 0.12569 | 0.08279 | 0.07511
10 | [16:00, 17:00) || 0.07838 | 0.12127 | 0.08239 | 0.07038
11 [ [17:00, 18:00) [ 0.07062 | 0.00982 | 0.07357 | 0.05964
12 | [18:00, 19:00) || 0.05552 | 0.00853 | 0.05337 | 0.04727
13| [19:00, 20:00) || 0.06705 | 0.00946 | 0.06789 | 0.06061
14 | [20:00, 21:00) || 0.04709 | 0.00688 | 0.04439 | 0.04232
15 | [21:00, 07:00) || 0.03136 | 0.00438 | 0.02870 | 0.02966

1.6.2 Departure Time Popularity

Table 3 shows the probability that a customer chooses a departure time if all other attribute
values (such as price) is the same for all departure times, according to each of the booking
choice models. As Table 3 shows, the estimation results indicate that the flights that depart
in the morning before 11:00 and in the afternoon between 15:00 and 18:00 are more popular,
and flights that depart in the middle of the day and in the late evening are less popular.
Although the choice models incorporate departure time preferences in different ways, the
resulting departure time choice probabilities are quite similar (but, as pointed out before,
these differences have a dramatic impact on price coefficient estimates).

Figure 5 shows a decreasing trend between correlation coefficients of departure time
windows and the distances between indices of departure time windows for the estimated
ML model. As the figure indicates, as two flights depart with a bigger time gap, the less
correlated the two departure times are. In other words, customers who choose a particular
flight would prefer the flights with departure times closer to the chosen flight to those with

departure times more separated from the chosen one.
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Figure 5: Correlation coefficient v.s. distance between indices of departure times for the
ML model.

1.7 Statistical Tests
1.7.1 Likelihood Ratio Tests

The likelihood ratio tests are commonly used to test the estimated models. We give two
example hypotheses and the corresponding likelihood ratio test statistics. Let 3, denote
the vector of 90 price coefficients, and let £* denote the optimal log likelihood value for each
of the 16 choice models. First consider the simple null hypothesis Hy that 8, = 0. Let
Erﬁpzo] denote the optimal log likelihood value under Hg. Table 4 shows the likelihood ratio
test statistic —2(4‘6}7:0} — (*) for each of the 16 choice models. Under Hy, —Q(EE‘BPZO] — %)
is x? distributed with 90 degrees of freedom. Let x?(a,v) denote the a-quantile of the x>
distribution with v degrees of freedom. Note that x2(0.99,90) = 61.754 ~ 62 is the critical

value of the x? distribution with 90 degrees of freedom at a significance level of 99%. As

can be seen in Table 4, Hy can be rejected for each of the choice models.
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Table 4: Likelihood ratio test results: All price coefficients are zero.

Choice model H —* —E’["szo] ‘ —2(5’{&:0] — ") ‘ x2(0.99,90) ‘ Reject Hy?
MNL 2011 Data 2,368,900 | 2,415,530 93,260 62 Yes
MNL 2012 Data 2,842,400 | 2,950,690 216,580 62 Yes
MNL 1-6/2012 Data 1,278,900 | 1,324,900 92,000 62 Yes
MNL 7-12/2012 Data || 1,555,100 | 1,616,470 122,740 62 Yes
NL 2011 Data 2,353,500 | 2,404,720 102,440 62 Yes
NL 2012 Data 2,817,271 | 2,940,290 246,037 62 Yes
NL 1-6/2012 Data 1,265,800 | 1,318,040 104,480 62 Yes
NL 7-12/2012 Data 1,543,427 | 1,612,710 138,565 62 Yes
ML 2011 Data 2,368,400 | 2,415,221 93,641 62 Yes
ML 2012 Data 2,842,000 | 2,934,024 184,048 62 Yes
ML 1-6/2012 Data 1,270,706 | 1,286,439 31,467 62 Yes
ML 7-12/2012 Data 1,554,760 | 1,604,251 98,982 62 Yes
LCL 2011 Data 2,305,800 | 2,358,150 104,700 62 Yes
LCL 2012 Data 2,771,300 | 2,842,980 143,360 62 Yes
LCL 1-6/2012 Data || 1,240,800 | 1,288,500 95,400 62 Yes
LCL 7-12/2012 Data || 1,522,500 | 1,584,300 123,600 62 Yes

Next consider the null hypothesis Hy that all 90 price coefficients are equal (but not

necessarily equal to 0). Let Erﬂp: ] denote the optimal log likelihood value under Hj.

Table 5 shows the likelihood ratio test statistic —2(6?517::] — ¢*) for each of the 16 choice
models. Under Hy, —Q(EE‘ﬂp::] — ¢*) is x? distributed with 89 degrees of freedom. Note

that x2(0.99,89) = 60.928 ~ 61 is the critical value of the x? distribution with 89 degrees
of freedom at a significance level of 99%. As can be seen in Table 5, Hy can be rejected for

each of the choice models.
1.7.2 The Significance of Price Differences between Choice Models

In Section 1.6.1, we point out that most of the price coefficients of the NL, ML, and LCL
models are smaller (more negative) than the corresponding price coefficients of the MNL
models, consistent with the intuition that the MNL model will tend to underestimate cus-
tomers’ price sensitivity. One may wonder whether these differences in price coefficients
are statistically significant. We use the following approach. We have estimated 16 choice
models. For a model i € {1,2,...,16}, let 6" denote any value of the parameter vector, let
6™ denote the (population) optimal parameter vector, let 9 denote the (random) param-

eter vector estimated with a finite data set, and let £’ denote the (population expected)
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Table 5: Likelihood ratio test results: All price coefficients are equal.

Choice model H - L5 ‘ —2(5’{&::] — %) ‘ x2(0.99, 89) ‘ Reject Hy?
MNL 2011 Data 2,368,900 | 2,386,200 34,600 61 Yes
MNL 2012 Data 2,842,400 | 2,873,210 61,620 61 Yes
MNL 1-6/2012 Data || 1,278,900 | 1,291,080 24,360 61 Yes
MNL 7-12/2012 Data | 1,555,100 | 1,572,820 35,440 61 Yes
NL 2011 Data 2.353.500 | 2,372,700 38.400 61 Yes
NL 2012 Data 2,817,271 | 2,849,500 64,457 61 Yes
NL 1-6/2012 Data 1,265,800 | 1,279,410 97,220 61 Yes
NL 7-12/2012 Data 1,543,427 | 1,560,940 35,025 61 Yes
ML 2011 Data 2,368,400 | 2,385,900 35,000 61 Yes
ML 2012 Data 2,842,000 | 2,873,000 62,000 61 Yes
ML 1-6/2012 Data 1,270,706 | 1,290,400 39,389 61 Yes
ML 7-12/2012 Data || 1,554,760 | 1,571,430 33,340 61 Yes
LCL 2011 Data 2,305,800 | 2,324,600 37.600 61 Yes
LCL 2012 Data 2,771,300 | 2,801,100 59,600 61 Yes
LCL 1-6/2012 Data || 1,240,800 | 1,252,700 93,800 61 Yes
LCL 7-12/2012 Data || 1,522,500 | 1,539,300 33,600 61 Yes

log-likelihood function. Consider the following second-order Taylor expansion of £

%

Lo

= VL0

Q

Q

= ¢

The first equality followed from VL (6"*) = 0. Specifically,

To simplify writing, let M* :

0~ 0+ [VELI(0™)] VL@

= [V2L1(6™)] “andlet 2 = VL), so that 6 ~ 6% + M Z!.

Note that M is deterministic and Z* is random. Next, for any two models, say i = 1,2, let

~ 0" o'
0 = , 07 = , M =
62 62"
Then
0 ~ 0*+MZ
Thus,
Cov(é\) ~ Cov(MZ)

Ml

0

0
M2

9

Z

71

Z

2




= E[MZZ'M"]| —E[MZ|E[ZTMT]

= ME[ZZT|M — ME[Z]E[ZT|M

= MCov(Z)M.

Note that, for any two parameters 0,% and 912, the variance of the difference é? — é\i can be

~

calculated from the entries of Cov(6) as follows:
Var(f7 —6}) = Var(07) + Var(9}) — 2Cov(},67)

In our calculations, M and

. Cov(Z')  Cov(Z,Z?)
Cov(Z) = L N
Cov(Z%,ZY)  Cov(Z?)

are calculated as explained next. Let N denote the number of observations in the data
set, let n be the observation index. Let L denote the finite sample average log-likelihood

function. Note that for any model, L' can be written in the following form:

for an appropriate log-likelihood function EﬁL for observation n that depends on the model.

Thus,

N
~ . 1 ~. .
VL) = =Y VL)
n=1

N
~ 1 ~
2 i 0’ - 2 i oy
VELY(O") N;v £,(0")
To simplify writing, let
Z, = VL)
and note that
1M 1M N
$37 = LSVEE) = VE@) = 0
n=1 n=1

Then,
Cov(Z',Z%) = Cov(VLYAY),VLAB?) ~ Cov(VLYHY),VL(6?))
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Similarly,

N
7i i/t 1 E Zi (i
n=1

Also, M := [V2L'(6™)] s approximated by [VQEZ(GZ)} .
The expressions of the gradient and Hessian of each of the four choice models are given

in Appendix B. Let ,Bg/[NL, B}I;IL € R denote the estimated price coefficients for the MNL

and NL models respectively, and let tTNnL’MNL denote the estimated t-statistic of the price

coefficient difference [( };/[NL)m —( EL)m] for each m € {1,2,...,90}. We say that ( yL)m

is statistically significantly less than (ﬁ},\/INL)m at the 95% confidence level if

NLMNL . (@ANL)m - (ﬁ}?L)m

= > 1.645
/Var [(BYN) s — (8)1),n]

The same test is also applied to the price coefficients of the ML and LCL models versus the
MNL model. Table 6 shows the number of price coefficients of the NL, ML, and LCL models
that are significantly less than the corresponding price coefficients of the MNL model.

Table 6: The number of price coefficients out of 90 price coefficients of the NL, ML, and
LCL models that are statistically significantly less than the corresponding price coefficients
of the MNL model at the 95% confidence level.

| Choice model | 2011 data | 2012 data | 1-6/2012 data | 7-12/2012 data

NLI=1 89 89 89 90
NLI!=2 89 89 89 90
NL!=3 89 89 89 90
ML 25 69 44 35
LCL 72 72 65 75
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CHAPTER II

A STOCHASTIC TRUST REGION ALGORITHM FOR ESTIMATING
MIXED LOGIT TYPE MODELS

Motivated by mixed logit estimation problems, we consider stochastic optimization prob-
lems of the form ming ), r(E¢[F,(0,£)]), where 0 is the decision variable, and £ is a random
variable with chosen distribution. In the case of mixed logit estimation, the sum involves
observations in a data set, r is a negative logarithm, and € includes parameters of the sys-
tematic utility as well as parameters of the probability distribution. In many applications,
the dimension of ¢ is sufficiently high to exclude calculation of the expectation using quadra-
ture methods. Thus we propose an algorithm that embeds a sample average approximation
of the expectation. The algorithm controls the sample size for each observation n in the
data set to minimize the total sample size subject to a constraint on the variance of the
objective estimate. In addition, the algorithm controls sampling from the data set. We

provide sufficient conditions for convergence of a trust region based algorithm.
2.1 Introduction

Consider a set N of customers, where |N| < 4o00. Customer n € N makes a choice from a
set of alternatives, S, available to her/him. For each alternative j € S, denote by w,, ; its

utility. We consider that the utility w, ; can be represented by

un,j(xn,jayn,j;ﬁ77n) = Un,j(xn,jayn,j;,@77n)+5n,ja (21)

where (z,;,Yn,;) is the vector of attribute values that characterize alternative j, 8 and
vn are the weights (tastes) the customer has on the corresponding attributes, e, ; is the
random error term, and vy, j(Zn,j, Yn,j, 3, ¥n) is the systematic utility. The error term ¢y, ; is
usually assumed to follow an extreme-value type distribution, e.g., Gumbel distribution with
parameters (0,1). It is also assumed that ¢, ;’s are identically and independent distributed

(i.i.d.) Gumbel random variables for each customer and across customers. The weights
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reflect the tastes of a customer in making choice given the attributes of the alternatives,
where (8 represents the taste coefficients that are deterministic and identical over the entire
customer population and -, denotes the random taste coefficients. It is assumed that ,’s
are 1.i.d. with a certain distribution for n € A. The random taste coefficients are most
widely modeled as Gaussian vectors or log-normal random vectors. Assume furthermore
that €, ;’s and 7,’s are independent.

In general, the distribution of v, is characterized by a parameter vector ¢ such as mean
value and variance. By using the Monte Carlo (MC) sampling technique, we can represent

n = t(¢, &), where &, is a basic random vector with support Z, which is used by the sample
generator such as standard uniform or standard normal random vector with distribution
P,,. For instance, if v, is a Gaussian vector with mean p and covariance matrix % = ooT,
where o is the lower-triangular Cholesky factor of ¥ and ¢ = (u,0), we can represent
Yo = W+ 0&,, where &, is a standard Gaussian vector. Let 6 = (8, ¢) be the parameter
values that need to be estimated. We consider that € is constrained in a nonempty compact
convex set C C R? with fo—norm || - || := || - |2 and we assume that C can be described by
a finite set of smooth equality or inequality constraints, i.e., C := N7, {z € R%: ¢;(x) > 0},
where ¢; : R4 — R is a twice continuously differentiable function and m € N.

Let z,; = 1if j € S, is chosen by customer n from S, and z,; = 0 otherwise. For
customer n, let j, be the chosen alternative such that z;, = 1. Each customer is associated
with one observation of data, (. j, Yn.j, 2n,j,J € Sn). Since we have a finite set of customers,
the dataset can be represented by the customer set /. The likelihood function of parameter

0 is equal to the (joint) probability of the observed customer choices, which is computed as

(uny.]n > un,j’] € Sn;] 7& ]n,vn S N’H)

= Un g (§n) > Un j(6n), 5 € Sny§ # Jn, V1 € N|&n,n € N [ dPu(én)

dx|N
RXII oy

_ exXp {vn Jn (l’n,jnyyn’]n,ﬁ t(¢ gn))} AP
/RdXIN| ng/'[ JES exp {an(xn,jvyn]aﬁa (¢ gn))} m(fn)

eN

3
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where £ has distribution P, and

€xXp {Uan (xn,jn7 Yn,jn s 57 t((bv 5))}
EjESn €xXp {Un,j (mn,ja Yn,j, 67 t(¢7 f)}

is the probability of customer n € N choosing alternative j, € S, conditioning on &, which
has a form of the multinomial logit (MNL) model based on the assumption that &, ;s are
i.i.d. Gumbel variables. Thus, the likelihood function can be written as
LON) = H Pn(0
neN
where p,,(6) is the choice probability of customer n that is given by the mixed logit (ML)

model,
pa(0) = E[Fn(0,8)].
The average log-likelihood function of the ML model is written as,
LOIN) = IN! > In (EBe[Fa(6,€))) .- (2.2)
neN

Our goal is to estimate an optimal hecC by solving the maximum likelihood estimation
(MLE) of the ML model, i.e., to find § that maximizes the average log-likelihood func-
tion (2.2). The problem can be considered as a special case of the following minimization
problem,

min{f = |N|Z ])]:HGCC}RCI}7 (2.3)

neN
where Fy,(+,§) : C — X C R™ is a function for almost every £ € 2, X is a convex set with
norm || - ||x, Fr(0,-) : 2 +— X is measurable for all # € C and r : X — R is a function. In
the average log-likelihood function (2.2), r is the negative logarithm. We refer to (2.3) as
the “true” problem and f(0) as the “true” objective function. Let || - ||,,xq4 denote the norm

for matrices in R™*? for any m,d € N.
2.2 Literature Review

The ML model is one of the most popular variants of the MNL model and it assumes ran-

dom taste/preference coefficients to capture the heterogeneity in customer preference, while
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the MNL assumes a deterministic and identical vector of preference coefficients across the
customer population. [43] showed that any RUM can be approximated to any degree of
accuracy by a ML model with appropriate choice of variables and mixing distribution. One
one hand, the ML model has a flexible structure that enables users to model customer het-
erogeneity; on the other hand, estimating it can be computationally challenging, because it
involves the computation of the high-dimensional integral incorporated in the model (e.g.,
the expectation in (2.2)). The estimation is essentially solving the MLE problem with a set
of observations, and it adds into the estimation another dimension of difficulty if the number
of observations is large. The simulation technique that solves the simulated/approximate
MLE problem seems one of the only a few methods, in real applications, to solve the prob-
lem. There are two branches of studies that all use Monte Carlo (MC) related simulation
techniques to compute multi-variate integrals involved in choice probabilities, but have dif-

ferent ideas to save the computational time.
2.2.1 The MC and Quasi-MC Simulation Methods

The idea to use the MC simulation technique to estimate multi-dimensional integrals in
choice probabilities is not new; one may refer to Daganzo’s monograph [24] in 1979 for a
reference, which covers a comprehensive list of topics related to estimating the probit choice
probability that is an integral based on multi-variate Gaussian distributed random errors
of utilities (which are assumed to be standard Gumbel variables in the MNL model). Some
other studies [16, 15] focused on deriving unbiased estimators of the likelihood in choice
models.

The ML model estimation involves the expectation as the high-dimensional integral
(see (2.2)). The MC simulation is usually used to approximate the expectation by using
its sample average approximation (SAA), resulting in a simulated average log-likelihood
function. [7] showed that the solution of maximizing the simulated average log-likelihood
function of the ML model converges to the true MLE estimators almost surely, in terms of
both the first- and second-order criticality conditions when sample size goes to infinity, which

extends the results about the statistical inference of stochastic programming in [58]. The MC
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simulation technique usually includes a pseudo-random sequence generating process, which
can be slow when the sample size increases. [33] emphasized that faster MC simulations
are needed in practice.

Thus, a trend of studies on using quasi-MC techniques have risen since the end of
1990s. Bhat wrote a series of papers [14, 12, 13] to advocate using the Halton sequence
for estimating ML models and reported a faster estimation results than using standard MC
random samples. [34] proposed a modified Latin hypercube sampling (MLHS) method as an
alternative to the Halton sequence and showed by numerical studies that the MLHS method
performs better than the Halton sequence. However, [47] reported that the quasi-MC
technique outperforms the standard MC sampling technique when the integration dimension
is low, but the advantage of the quasi-MC technique compared to the standard MC technique
is still unclear in computing high-dimensional integrals.

The MC and quasi-MC methods reviewed above concentrate on generating high per-
formance sampling sequences to approximate high-dimensional integrals, but use a given
optimization algorithm or software tool to solve the MLE estimation problem with a fixed

number of sample size to compute the choice probability for each observation.
2.2.2 Optimization Algorithms to Estimate ML-type Models

The ML model estimation problem is a special case of stochastic programming. Another
branch of studies are focused on developing efficient optimization algorithms to solve a
stochastic programming model of such type.

Our work falls within this category of studies and [6] is one of such studies close to
ours, which embeds an adaptive sampling process into the trust region algorithm to control
the sample size for approximating the choice probability of each observation according to
the sampling error incurred in the sampling process. The idea behind this method is that
only a small number of random variables are needed for approximation when the iterate of
the algorithm is not mature. The same idea was also adopted in [59] to solve a two-stage
stochastic programming model. While our work adopts the same idea and also uses the trust

region framework, it differs from [6] in four aspects: (1) our algorithm adaptively controls

30



a different sample size to compute the SAA of the choice probability for each observation,
according to the approximation error incurred in computing the SAA of that observation,
while [6] always uses the sample size for all the observations, (2) [6] requires a maximum
sample size for all the observations, while our algorithm does not have such a cap, (3) We
solve a constrained optimization model by using the projected gradient method, while [6]
solves a unconstrained optimization problem, and (4) Our algorithm also embeds a data
sampling process in order to handle large-scale datasets, which has not been addressed in
[6].

There is another trend of studies [31, 51] that address the problem of choosing the op-
timal sequence of sample sizes (effort) adaptively during solving a stochastic recursion that
approximates a deterministic recursion with random samples and showed the convergence
of the iterates to the true solution of the deterministic recursion in a rigorous sense. These
studies pre-assume an algorithm framework and obtain convergence results under the as-
sumption that the objective function is strongly convex, which points out an interesting
direction of incorporating the mechanism of choosing an optimal sequence of sample sizes

for our problem.
2.3 The Simulated Objective Function
There are two major challenges in solving (2.3).

(1) The population size of observations is often very large (the size can be hundreds of
thousands) so that the size of input data can be enormous. It makes computations of

the objective function, gradient and Hessian inefficient.

(2) The objective function involves an expectation operator that is hard to compute since
it may require multidimensional integral. When the dimension of the integral is greater
than 5, we can hardly expect a high computational accuracy [49]. These challenges
often make it intolerably expensive to evaluate the function value, gradient or Hessian.
The algorithms that are typically used to solve deterministic nonlinear programming
models are not quite applicable to solve (2.3), since the function value, gradient or

Hessian needs to be evaluated at each iteration of the algorithm.
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One idea is to use the sampling techniques to solve the approximation of problem (2.3).
We have two types of samples to generate: (1) the sample from the data set which we call
the data sample, and (2) the sample from the distribution of &, which is used to compute
the expectation in the objective function and we refer to as integration sample.

Let N C N denote the set of customers associated with the sampled data such that
|N| > 2, which we will later refer to as data sample. Let P,y denote the probability that
we sample any N C N with

(NN = [NV

N , VN CN.

Pout(N) —

Note that the elements of NV are dependent if we sample without replacements. For each data
n € N, let I, be a set (sequence) of i.i.d. samples of ¢, i.e., I, = {¢ 1 i =1,2,...,|L,|},
and Z = {I,,n € N} be the set of integration samples associated with all the sample
customers. It is worthwhile to notice that Z is dependent on the set of sample customers
N and |Z| = ), cn [In]. Assume further that the components of integration samples are
independent for each customer and cross customers. Thus, for each n € N, the sample

average approximation (SAA) of p, () can be represented as

[n
For data sample N and integration sample Z, the approzimate objective function is written
as
O = >, 0). 24
neN

We can view the approximate simulated function fé\f (0) as defined on a common prob-
ability space (2, F, P), where Q := (Jycp [[en E% and P = Poy [[,,en P is a product
measure on §2. By the statement “an event happens w.p. 1 for K large enough” we mean that
for P—almost every realization w := {N C N, &1, &3,... 63,62, .,...,§|1N‘,§‘2N|, ..} e
of the random sequence, there exists integer K (w) such that the considered event happen-
s for all samples {N C N,ﬁ,g%,...,ff,&%,&%,...,{g,...,§|1N‘,§‘2N|,...,§ﬁv|} from w with
k> K(w). We use x Ay := min{z,y} and = Vy := max{z,y} for any x,y € R. We also use

X ~ Px to represent that X is a random variable or random sample with distribution Px.
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2.4 Projections on a Convex Set

We consider C to be a nonempty closed convex set on which projections are fairly easy to
compute, such as box-constrained domains or spheres. For any « € R?, define the projection

II¢[x] of x on C as
I¢[z] := argmin |z — yl.
yeC

It is well-known that the above projection exists and is uniquely defined on C. The following
lemma gives the properties of the projection on a convex set.

The following three properties of the projection will be useful and follow from Proposi-
tion 2.2.1 in [10] and its proof.

Let C C R be a nonempty closed convex set and II¢ be the projection operator onto C.
P.1 For any y € C, (z — I¢[z],y — He[z]) <0 for all z € RY.

P.2 (Monotonicity) (Il¢[z] — Hc[y],z —y) > 0 for all 2,y € RL If Tle[z] # Hely], the

strict inequality holds.
P.3 (Nonexpansiveness) ||II¢[z] — IIe[y]|| < ||z — y|| for all z,y € R%.
If C is a box-constrained domain defined by
C = {zeR¥: <[z} <uyi=1,2,...,d},
the projection Il¢[z] of x can be conveniently computed by,

li if [QT]Z c (—OO,ZZ'],
[HC[x]]i = x; if [$]Z S (li,ui),
w; if [x]; € [u;, +00).

Let #H(z) be the normal cone at « € C with respect to C defined by
H(z) = {#eR*:0T(y—2)<0, Vyel},
and 7 (x) be the tangent cone at = € C with respect to C, which is defined by,
T(x) = c{AMy—=2):A2>0, yeC(C},
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where cl(C) denotes the closure of any set C.

For any set C € R?, we organize a list of assumptions that we may use in later results.

A.1. For each n € N, F,,(-,€) : C — X is continuous for almost every £ € = and F,(6,-) :

= — X is measurable for all 8 € C.

A.2. For any 0 € C, there exist a 6 > 0 and K : = — R such that E(K(£)) < oo, and for

almost every £ € Z and every n € N,

1F.(6", &)l < K(€)
for all 6’ € C such that [|§’ — 0| < 0.
A.3. Foreachn € N, F,(+,€) : C — X is continuously differentiable for almost every & € Z.

A.4. For any 6 € C, there exists 6 > 0 and L : £ — R such that E(L(£)) < oo, and for

almost every £ € = and every n € N,

[Fn(0”,8) — Fo(0,9)llx < L]0 -0
for all 0”,0' € B(0) :={0" € C: ||¢' — 0| < 5}.

A.5. For any 0 € C, there exist a 6 > 0 and K : = — R such that E(K(£)) < oo, and for

almost every ¢ € = and every n € N,

10 (6", ) Fn (07, €) Tllmxm < K(€)
for all 6’ € C such that [|§' — 0| < 0.
A.6. r: X — R is continuous.
A.7. r: X — R is continuously differentiable.
A8. r: X — R_ is a continuously differentiable concave function,
A.9. E |supycc [r(Fn(H,ﬁ))rl] < oo for every n € N.

A10. gh,€2, ... ¢l . is asequence of i.i.d. observations with distribution P, for all n € N.
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2.5 The Stochastic Trust-Region Algorithm
2.5.1 The Model Function

In general, an algorithm for solving nonlinear programming models exploits an iterative
search strategy. We propose a stochastic trust-region algorithm to solve the true problem
(2.3), where a sequence of points in C will be iteratively generated until a stopping criterion
is satisfied. At step k, let 6, € C be the current point, N be data sample, I¥ be the
integration sample for n € N and Z; be the integration samples for all data points in Ng.

At step k, we define a quadratic model function that approximates the objective function
in (2.4) within a neighborhood of 6, which is often referred to as the trust region. The

trust region is defined as a ball centered at 0y,
B, = {#eRY: |6 -6, <Ag},

where Ag is the trust-region radius. Under Assumptions A.3 and A.7, the model function

mi(0r + ) is defined as
mp(0k +5) = fr(Ok) +gls+ %STHks, (2.5)
where
fe() = FREC),
gk = Vf(0k),

and Hj, represents the Hessian or the approximation of the Hessian (e.g., the BFGS or SR1
approximations) associated with the approximate function fj.
We then attempt to find a trial step s; to sufficiently reduce the model function while

maintaining the search within the trust region and the feasible set, i.e., we aim to find
Si € arg mir}l {mi(Op +s): 0 +s€CNB}. (2.6)
seR

Exactly solving (2.6) is far from easy and is not necessary. We can approximately solve it
by searching along the projected gradient path and applying the Goldstein-type line search

rule, where the projected gradient path (with respect to data sample Ny and the integral
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sample Zj) is defined by
'Uk(t, Gk) = Hc[ek — tgk] Vit Z 0.

Define

sp(t) = wv(t,0k) — Ok, t>0,

and we aim to find a ¢ > 0 such that the following two conditions

Isk®l < A, (2.7)
mg(0) — me(vi(t,08)) > —kigLsi(t), (2.8)

hold and one of the following conditions
mk(ek) — mk(vk(t, Hk)) < —/ﬁgg;sk(t) (2.9)
Isk(Ol = K3l (2.10)

g5k (t)]
ool < ma=7 = (2.11)
is satisfied, where

k1 € (0,1), k2 € (k1,1),k3 € (0,1),K4 € (0,1/2). (2.12)

If such ¢ is found, we define the point GEC := vg(t, 0%) and consider it as a candidate for
Or+1. Several test criteria need to be satisfied before we formally accept the candidate as
the next point. One test is to evaluate how well the model function approximates the true
objective function and adjust the trust-region radius according the test result, as the basic

trust-region method does. We call
A0k, 05C) = Fu(O) — Fr(65C)
the actual improvement and
Amy(0r,05€) == mg(6)) — mp(05°)

and the predicted improvement. Let

A fr, (61, 05°)

P Amy, (0, 65°)
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be the ratio that measures the agreement between the model function and the simulated
objective function.

For any g € R%, 6 € C and § > 0, define
x(g,0,6) = |min{gTs:0+seC,|s| <}

In the following we lists a variety of properties of x(gk,0k,0), which follow from Theo-
rem 12.1.3, Theorem 12.1.4 and Theorem 12.1.5 (i) and (ii) in [23].

Under Assumptions A.3 and A.7, the following holds for each k:
P.4 Both s(t) and ||si(t)|| are continuous in ¢ and ||sg(¢)|| is nondecreasing for all ¢ > 0.
P.5 The limit lim;— o [|sx(t)|| < oo implies limy—co [|[Tl7(, (1,0, )) [~ 9]l = 0.
P.6 s;(t) is a solution of the problem min{gs : 0 +s € C,||s|| < ||sx(¢)||} for all ¢ > 0.
P.7 x(gk,0k,0) is continuous and nondecreasing as a function of ¢ for all § > 0.
P.8 The function x(gx, 0k, )/ is nonincreasing as a function of ¢ for all § > 0.

It follows from Theorem 12.1.6 of [23] that xx(0) = x(Vfx(0),0,1) is the first-order
criticality measure for the approximate problem (2.4), i.e., it is nonnegative, continuous
and vanishes at 6 € C if and only if —V f;(0) € H(#). Due to the randomness involved,
there exists noise in the actual improvement. We thus need to evaluate the errors incurred
in the sampling processes and compare the errors with the actual improvement before we

calculate pi. By a similar idea, we define the first-order criticality measure function as
x(0) == x(V£(0),0,1).

2.5.2 Sampling Errors

For any point 0 € C, data point n € N, and integration sample I,,, it holds that E[py, (8)] =
pn(0). Under A.7, it follows from Taylor’s first-order expansion and the differentiability of

r that

r(pr(0)) &~ 7 (Pa(0)) + Vr(pa(0))" [pr.(0) — pa(0)),
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which yields that
Elr (pr,(0))] =~ r(pa(0)) ~ r(pr,(0)), (2.13)

Var([r (pr, (0))] ~ Vr(pn(0))" Var[pz, (0)]Vr (pn(6))]. (2.14)

It follows from the law of total variance that the variance of the simulated objective

functions evaluated at 6 is computed as,
Var(f7 (0)) = o3(6,IN.I) +03(0,|N].1),
where

I = (LlneN),
o1 (0,IN|,T) := Var (E[fT (0)|N]),

o3(0,IN[,T) = E(Var[f7 (0)|N]).

Now, consider any two points 61,02 € C. The variance of the difference between the

simulated objective function values evaluated at 61,602 € C is computed as,
Var(ff (01) = f7 (02)) = 07(01,02, N, I) + 03(01,02, N, T),

where

o?(61,02,|N|, 1) Var (E[f7 (61) — f7 (62)|N])

05(01,02,IN|,I) = E (Var[ff (61) — f7 (62)|N]),

and we refer to o1(61,62,|N|,I) as the data sampling error and o2(6y,62,|N|,I) as the
integration sampling error in the change of approximate function values associated with 6,

and 6.
2.5.2.1 Data Sampling Error

For any data sample N and integration sample Z, the data sampling error is measured by
the standard deviation of the difference between the approximate objective function values

with respect to two points 61,0 € C. Thus,

03 (01,02,IN|,I) = Var (E[ff (61) — 7 (62)|N])
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= VarN <‘N Z ]E AY’[n(Ql,@Q)]>

neN
S en E[ATL, (61, 62)] ) 2
— A 9,9 s
|N\|N|Z( 1 (61, 62)) = Ty
where
W=
C |N’_17

Arp, (01,602) = 7(p1,(01)) — r(pr,(62)).

is the correction factor for sampling without replacements from a finite population. It follows
from (2.13) that the data sampling error can be further approximated by the (random)

approximate data sampling error, o1(61, 62, N,Z), which is defined as,

~ N N
where
% 1 S nen Arp, (01,02)\
72 01,02, N, T) = (ATI 01,0,) — neN 2 \U1,
( |N|_17;v (0 02) [N

is the sample approximation of the variance of a data point sampled from the dataset.
2.5.2.2 Monte-Carlo Integration Sampling Error

Note that I, I, ..., Ix are independent. The squared integration sampling error at 61,0, €

C is computed by,

03(61,02,|N|.T) = E(Var [f7 (61) — 7 (62)|N])

([ V)

= Ey (|N|2 ZVar Arln(el,t%)])

neN

| Z Ann 91,02)

neN

- \NHN! ZVar Ary (61,62)].

It follows from (2.14) that the integration sampling error can be approximated by the

following (random) approximate integration sampling error,

o2(01,02,N,I) := \/|NHN| %Var[vr(]?n(el)ﬁpln(@l) — Vr(pn(62))Tpr, (02)]
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%

\/\Nl\Q |1, \Var[Vr(pn(Hl))TFn(th) = Vr(pn(02))TFu (02, €)]

’N’\/ |I‘ n017027 )

%

where
— |
S0 = (=7 06D @) 0.6~ 1, O
[T
Su(002) = g D (Fa(01.€1) e, (00)(Ful0:€5) — 1, (02)',
n i=1

are the sample approximations of Var(F,(6,&)) and Cov(F,(61,&), Frn(02,€)), respectively,

and

Va(01,02,1n) = Vr(pr,(61))7S2(01)Vr(pr, (61)) + Vr(pr, (62))7 57 (62)Vr(pr, (62))

— 2Vr(pr, (01))7Sn (01, 02)Vr(pr, (02)).

Note that 12 (61,62, I,) > 0 is a sample approximation of Var[r’(p, (01))pr, (61)—7' (pn(62))p1, (62)]
and will not change much when |I,,| becomes large enough. The following notations for any
iteration k during the execution of Algorithm 1 will be useful. Define o}, ; := 7; (6, 9,?0, Ni,Zy)

for i € {1,2}.
2.5.3 The Algorithm

The formal stochastic trust-region algorithm (STRA) is described in Algorithm 1. The
algorithm for search for the generalized Cauchy point is described in Algorithm 2 and the

algorithm for sample update is described in Algorithm 3.
2.5.4 Optimal allocation of integration samples

It is desirable to minimize the computational efforts while increasing the integration sample
size to reduce the integration sample error. We describe in this section the method to
allocate Monte Carlo simulation samples to different customers based on the sampling error
of each customer. Consider an iteration with index k. It follows that

2(0 0S¢ I)

~2 - Yn\Yk YL 5dn)

k2 = ,2 Z |IK] =
nENg
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Algorithm 1: STOCHASTIC TRUST-REGION ALGORITHM (STRA)

Step 0.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Initialization. An initial point 6y € C and trust-region radius Ag € (0, 00) are
given. Choose 11, 12, 3 and 71, 79 such that 0 < 71 <172 <1n3 < 1 and

0 <71 <1< 7 together with 79 € (0,1). Choose the initial data Ng C N and
integration sample Zy. Set k < 0.

Model function definition. Compute the simulated objective function fi(6x),
gradient g; and Hessian matrix Hj using the sample sets Ny and Z;. Obtain a
model function my, defined in (2.5) over B NC.

The generalized Cauchy point calculation. If s;(1) = 0, set ag = 0; otherwise,
find ag > 0 such that si(ax) = vg(ag, 0k) — 0 and vg(ag, Oy) satisfy both the trust
region constraint (2.7) and (2.8), and either of (2.9), (2.10) and (2.11) (See
Algorithm 2). Set QIS’C + vg(ag, O) to be the generalized Cauchy point.

Sample update. Compute the predicted improvement Amk(Hk.,G,?C), data
sampling error o)1 and integration sampling error oy 2. Generate N, and Z," by
using Algorithm 3. Set Njyi + N,j, Tiy1 I,j

Acceptance of the trial point. If
Gr1Vora < no(Amg(0k,05°)) (2.15)

holds, compute A fi (0, OSC) and the ratio pg. If pr > n1, then define 61 < 9,?0;
otherwise define 611 < 6; and go to Step 5; If (2.15) fails, define 051 < O, set
k< k41, and go to Step 1.

Trust-region radius update. Set

n1A, if pp € (0,12),
Appr =19 Ap if pg € [n2,m3),
A, if pp € [7]3,00).

Set k < k41 and go to Step 1.
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Algorithm 2: SEARCH FOR THE GENERALIZED CAUCHY POINT

Input: Trust region radius Ay, the iterate 0y € C and the model my (0 + s). The
constants k1, ko and k3 satisfying condition (2.12). Set i, = 0,

2 Uk(tj, Gk) — Hc[ek — t]’gk];
3 | sk(ty) < vi(ts, Ok) — O
4 Compute mk(vk(tj, 0r));
5 if (2.7) or (2.8) is violated then
6 tmax < t]v
7 tjr1 < %(tmin + tmax);
8 1 < j + 1 and stop;
9 else if all the (2.9),(2.10) and (2.11) are violated then
10 tmin = tjv
11 tj+1 = 2tj;
12 else
13 L oy, < t; and stop;
14 for j =i to oo do
15 Uk(tj, Hk) — Hc[gk — tjgk];
16 | sk(ty) < vk(ty, Ok) — Ok;
17 Compute my,(vg(t;,0k));
18 if (2.7) or (2.8) is violated then
19 tmax tj;
20 tj+1 — %(tmin + tmax);
21 else if all the (2.9),(2.10) and (2.11) are violated then
22 tmin tj;
23 tj+1 — %(tmin + tmax);
24 else
25 L oy, < t; and stop;

tl = Ak/Hng and j =1.

Output: oy
1 for j =1 to oo do
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Algorithm 3: SAMPLE UPDATE MECHANISM

N O oA W N

0]

10
11

12
13

14

15

16
17
18
19
20

21
22

23
24
25

26
27

28
29

30
31
32

33

Input: Nj, Zj, 0k.1, Ok 2, Amk(ﬁk,ﬁgc), ng, ng €N, i, € N and i, > 2, o, P,g

Ise

17/’

where i € {1,2} and j € {0,1}, Py,

Output: N;', I,j
if (2.15) holds then

Generate two independent random variables, Xj, 1 ~ Pkl’1 and X o ~ Pk172;
case 1: Xj1 =0 and X2 =0
| N« Ni, It « IF for all n € N,
case 2: Xj1 =1 and X2 =0
IFF < IF for all n € Ny;
Sample a set N34 of n, A (JN| — | Ny|) data points from A\ Ny and
N+ N U N2dd,
Generate a set I,’j‘*‘ of i, observations of £ ~ P, for n € N add;
case 3: Xj1 =0 and Xj2 =1
N+ Ny
Generate a set I;';dd of i, observations of £ ~ P, and Iff“ — Iﬁ U If;dd for
n e Nlj;
case 4: X1 =1 and Xj» =1
Generate a set 1244 of i, observations of £ ~ P, and I¥* « IF U 1344 for
n € N;
Sample a set N34 of n, A (JN| — | Ny|) data points from A"\ Ny and
N+ N U N2dd,
Generate a set Iﬁ‘*‘ of i, observations of £ ~ P, for n € N add;

Q

ase 5: 01 > 02 >0
Generate a random variable X}, o ~ P,SQ;
if X;,2 =1 then
Generate a set 1244 of 4, observations of ¢ ~ Py, and I* « 1% U 1299 for
n € Ng;
else
| I}« I for n € N

Sample a set N2 of ;. data points from N \ Ny and N,j — N, U Nadd.
Generate a set I'g* of i observations of & ~ Py, for n € N2dd,

ase 6: o2 > 01 > 0
Generate {I** : n € N, } by using sample allocation Algorithm 4;
Generate a random variable Xj, 1 ~ P,gl;
if X;,1 =1 then
Sample a set N2 of n, A (JN| — |Ng|) data points from A\ N and
N;F + Ny U N2dd;
Generate a set I,]f+ of i, observations of £ ~ P, for n € N add.

Q

else
| Ny~ N

| I~ {Iit:ne N}
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According to Algorithm 3, the sample allocation Algorithm 4 is executed for the current
sampled set of customers, N, and we might need to expand the Monte-Carlo integration
sample size for each n € Ni to reduce integration sampling error. To save the computa-
tional expense, we allocate samples to each customer with the objective of minimizing the
total number of samples needed subject to decreasing the integration sampling error to a
fractional level. Let y, denote the number of samples allocated to customer n € Ni. Thus,

we need to solve the optimization model,

min Z Un

neNy
V2 (01,65 It
st 30 ORI o G A0, 0
neENg "

Let A > 0 be the Lagrangian multiplier. The Lagrangian function is written as,

v2(6, 05C, IF) GO\ 2
Lymn € Ng) = D yn+A| Y k200 (g N[ Am(0r, 05))? |
neENg nENg Yn

which yields

Vn(9k7 9]?07[7]"3) (ZmGNk Vm(gk’ QSC’LI%))
Yn = GOy 2 » Vn € N,
(0| Ni| Am (0, 05%))

and we define

in = [yn], Vn € Nj. (2.16)

Algorithm 4: SAMPLE ALLOCATION
Input: Ny, Zj, (in,n € Ni) defined in (2.16), 752 and ns
Output: I¥* for all n € Ny,
1 Generate a set 1244 of 4, V (i,, — |I¥]) samples of & ~ Piy;
2 IFt « 1F U124 for n € Ny;

Thus, we have the sample allocation algorithm 4. The following quantities are also

defined for each k in Algorithm 3.

_ V]
M v (A6, 070 ~ 1N, (2.17)
+ | | Dg(glmekGCyNk »Zk)
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1 €+ h(ok,)

T A 0y, 050)
o €+ h(ok,;)

i =y h(Gk,1) + h(0k2)

Vi € {1,2},

Vi € {1,2},

where € > 0 and h : R — [0, 00) is a nondecreasing continuous function. Let P,z , denote the
distribution on a random variable X such that P(X =1) = qi ;and P(X =0) =1— qi ; for

each k, i € {1,2} and j € {0,1}.
2.6 Convergence Analysis

Since N is a finite set, w.l.o.g., we show Theorems 2.1 and 2.2 for a generic data point
n € N and the results remain valid when we consider the entire dataset A'. For notational
convenience we suppress data index n in the statements of the Theorems 2.1 and 2.2 and

their proofs.

Theorem 2.1. Let C be a nonempty compact subset of RS with norm || - ||c. Assume A.1,
A.2, A.6, and A.10. Let p(0) := E(F(0,€)) and pr(0) := %Zle F(0,¢Y) for I € N and

0 €C. Then, p(0) € X, p(0) :=r(p(#)) is continuous, and w.p. 1,

sup |7 (pr(0)) —r(p(0))] — 0 as I — oc.
oeC

Proof: It follows from Assumption A.2 that E[||F(0,¢)|x] < E[K(£)] < oo for all 6§ € C.
Since X is a convex set, it follows from [17, p. 25] that p(0) := E[F(0,¢)] € X for all § € C.

First we show continuity of ¢. Choose any # € C and a sequence {6}32, C C such that
Or — 0 as k — oo. It follows from continuity of » and F and the Dominated Convergence

Theorem (DCT) that

lim r(E(F(0,€))) = r < lim E[F(kaf)o

k—o00 Foee
_ r(E [klirgoF(ekaf)}> (2.18)
= r(E[F(6,8)])
= r(p(9))

which implies that ¢ is continuous.
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Next we show uniform convergence of r (pr(#)) to r(p(#)) as I — oo. Consider any point

By € C. Consider any € > 0. There exists § > 0 such that
r(x) —r(y)] < e forall z,y € B;(p(6h)) such that ||z — yllx < 0. (2.19)
Note that

r (pr(0)) =7 (p(0))] < |r (p1(6)) = (p1(60))|+|r (p1(60)) = (p(60))[+]7 (p(60)) — 7 (p(9))]

We bound each term on the right, and then we address the choice of 6.
Let {5k},‘3°:1 C (0,1) be a decreasing sequence such that limg_,~ d = 0. Consider the
sequence of balls By, := By (6p) = {0 € C : ||§ — bp||c < Ix}. Define
dp(§) = sup [|F(0,§) — F(bo,&)llx-
0€ By,

By Assumption A.1, di(§) — 0 for almost every £ € = as k — oo. By Assumption A.2,
dp(§) < 2K (&) for all k and, by the DCT,

E(dk(§)) > 0as k — oo (2.20)

For all 8 € By, it holds that

Ip1(0) — pr(bo)llx < fZHF9€Z F(6o,€") || x

IN

,Z sup ”F 6 f) (00751)”X

5 0B,

=Y e
=1

which implies

NI

sup |[pr(0) — pr(fo)lla <
0By,

I
Z (2.21)

Since r is continuous on X C R™ by A.6, it follows from [38] that r is locally uniformly
continuous. Thus, there exists some ball B;(p(6p)) := {z € X : ||z — p(o)|lx < 0} such

that r is uniformly continuous on Bj(p(6)).
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It follows from (2.20) that there exists k; € N such that E(di(§)) < (3\/2) A (0/4) for all
k > k1. By the SLLN, there exists 2 C Q with P(Q2}) = 1 such that for any w € 7, there

exists I1(w) € N such that for all I > I1(w) it holds that

I
}del(gi)—ﬂi(dkl({)) < (5/2) A (8/4).

Thus, it follows from (2.21) that for all I > I;(w) it holds that

I
1 .
sup [|pr(6) — pr(fo)llx < TE di, (€")
0€ By, i=1

< E(dy, (€) + (6/2) A (5/4)

< §A(8/2).

Since pr(6p) — p(fo) w.p.1 by the SLLN, there exists Q5 C Q with P(£2%) = 1 such that

for any w € €, there exists I>(w) such that for all I > Is(w) it holds that

Ipr(60) — p(6o)llx < S A(5/2).

Thus, for the given w € 3, it holds that pr(6y) € B;(p(fo)) for all I > Ir(w).
Let Q3 := Q7 N Q5. Then, P(QF) = 1. Thus, for any w € Qf and all I > [3(w) :=

max{[(w), I2(w)}, it holds for all # € By, that

lpr(8) = p(Bo)lx < Ip1(8) = pr(Bo)llx + llpr(fo) — (o) |x < .

Thus, for the given w € 3, it holds that pr(0) € B;s(p(fo)) for all I > I3(w) and all 6 € By, .

To summarize, for all w € 3, there exists I3(w) such that for all I > I3(w) and all € By,

p1(00),p1(0) € Bj(p(6o)) and |[p1(6) — pr(fo)llx < 0.

Hence, it follows from (2.19) that for all & > &y,

sup [r(pr(0)) —r(pr(6o))] < sup [r(pr(9)) —r(pr(fo))| < ¢
9eBy, 9€ By,

and

r(p1(60)) —r(p(6o))| < e
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Since ¢(0) := r(p(#)) is continuous, there exists k2 € N such that for all k& > ko,

sup 7(p(9)) = r(p(60))] < e r(p(8)) = r(p(b0))| < e
In summary, for each 6y € C, there exists B(fy) := By where k' := max{ky, ko} and
Q*(0p) = Q5 with P(2*(fg)) = 1 such that for all w € Q*(6p), there exists I(w,bp) =
I3(w) € N such that

sup |r(pr(9)) —r(pr(6o))| < ¢
0€B(6o)

Ir(pr(6o)) — r(p(6o))]

sup |r(p(0)) —r(p(fo))| < €
0eB(6o)

IA
™

for all I > I(w,0p). Note that C C (Jyee B(6). Since C is compact, there is a finite number of
points 01,0, ...,60,, € Csuch that C C J~; B(#;). Let Q* := ", Q*(0;). Then P(Q*) = 1.
For any w € Q*, let [(w) := max;—1__m{l(w,6;)}.

Consider any 0 € C. Then there exists B(6;) such that § € B(6;). Thus, for all w € Q*
and I > I(w) it holds that

=
)
s
~
—
>
~
SN—
N’
\
<
)
S
—
D
S,
S—
-
IN
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¥
—~
!
—~~
>
S—
SN—
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<
=
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—~
>
~
~
=
IN
™

Therefore

sup [r(pr(0)) — r(p(9)) 3e.

oeC

IN

O]

Remark 2.1. Theorem 2.1 holds if 7 : X — R™%% for any m,d € N is a continuous

function.

Theorem 2.2. Let C be a nonempty compact subset of RY. Assume A.2, A.3, A.4, A.7,
and A.10. Then,

(1) p(0) € X,
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(2) ¢(0) :=r(p(0)) is continuously differentiable,
(3) for each 6 € C, it holds that

Ve(d) = Vp0)Vr(p() = E(VF(,£)Vr(p()),

(4) w.p. 1,

Sup Vp1(8)TVr(pr(6)) — Vp(0)TVr(p(0)| — 0 as I — oco.

Proof: It follows from Theorem 2.1 that p(f) € X. We first show that ¢(0) is d-
ifferentiable at all # € C. By A.2, the convexity of ||||x, and Jensen’s inequality that
lp(@)|lx = 1E(Fn(6,8))]|lx < E[|Fa(0,)|x] < E¢[K(§)] < oo is finite-valued for all § € C.
By Theorem 7.44 in [58], it follows from assumptions A.3 and A.4 that p(6) is differentiable
and Vp(0) = E(VF(0,€)) for each 6§ € C. By assumption A.7 and the chain rule, we have
©(0) is differentiable and result (3) holds.

Next, we show the continuity of Vp(6) and Vi (6). Consider any 6 € C and a sequence
{6} C C such that 0, — 6 as k — co. By assumption A.4, it follows that ||VF(0,£)||mxd <

L(¢) for all # € C. By the DCT and A.3,
lim Vp(0) = lim B(VF(0,€) = E(VF(lim 0,,6) = Vp(o),
k—oco k— 00 k—o0

which shows the continuity of Vp(6). By the continuity of p(6) (See (2.18) in the proof of

Theorem 2.1), A.7 and result (3),

lim Vo(0r) = lim Vp(0i)T lim Vr(p(6r)) = Vp(0)"Vr(p(lim 0;)) = Ve(0),
k—o0 k—o0 k—ro0

k—o0
which implies (2).
By A.7, Vr is continuous. Since p(#) is continuous, we have ||Vr(p(0))|lmx1 is continuous

on C and thus attains maximum due to the compactness of C. Define

Cr = sup|[Vr(p(8))llmx1 < oo,
oeC
and
Co = sup|[Vp()mxa = Sup|E(VEO,E)lmea < E(LE) < oo
oeC oeC
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Choose any ¢ > 0. Since Vr is a continuous function under A.7. By replacing with r
replaced by Vr, it follows from A.2, A.3, Theorem 2.1 and Remark 2.1 that, there exists
Qy with P(€2;) = 1 such that for every w € Q;, there exists I1(w) € N such that for all

I>1(w)and # €C,

[Vr(pr(0)) — Vr(p(0))lmx1 < (g/C2) A1

Thus, it follows that

sup [|[Vr(pr(0)llmx1 < sup [|[Vr(p(@))[lmx1 +1=Cy + 1.
oeC oeC

By A.3, A.4 and Theorem 2.1 again, there exists s with P(Q2) = 1 such that for every

w € Qg , there exists Io(w) € N such that for all I > Ir(w),

Selellc)HvPI(e))_vP(Q)med < g/(Ci+1).

Let Q@ = @ N Q. It follows that for each w € Q, where P(Q) = 1, letting I*(w) :=

max{I(w), I2(w)} gives that for all I > I'*(w)

Sup IVpr(0)TVr(p1(6)) — Vp(0)Tr(p(0))|

Sup IVpr(0)TVr(pr(0)) — Vp(0)TVr(pr(6))]l
+osup IVp(0)TVr(pr(0)) — Vp(0)TVr(p(0))]

Sup IV (pr(0)) lmx1 Sup IVp1(0)) = Vp(0)llmxa

IA

IN

+ sup [Vp(O) lmxasup [ Vr(pr(0)) — Vr(p(0))llmx1
pec peC

< 2g,
which prove (4). O

Lemma 2.1. Consider any nonempty compact set C C R%. Assume A.1, A.5, A.7 and

A.10. Then, the following holds:
(1) Assume further A.8 and A.9. Then, supy, g,cc 01(61, 02, IN[,I) = 0 as |[N| — |N].
(2) supg, g,ec 02(01,02,|N|,I) = 0 as |I,| = oo for each n € N.

3) W.p. 1, supy, g,cc 01(01,02, N,Z) — 0 as |[N| — |N| and |I,| — oo for alln € N.
01,02€C
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(4) W.p. 1, supy, g,ec 02(01,02,N,T) = 0 as [N| = [N| and |I,| — oo for alln € N.
Proof:

(1) Define

E[Ar; (61,602)]\>
a(61,0) = Y (E[Am(el,eg] _ 2nen ElATL, (61, 2)])
neN |N’
Consider any customer n € N'. We first show that,

E ( sup sup|r(p1n(9))|> < oo.

|In|€N 0eC

We suppress n for notational convenience. It follows from Jensen’s inequality and

condition (A.8) that

1| 11|
1 . 1 .
o)) = | =N R, ¢ — F(6. €
Sglélglr(pf( )| sup |7 | ;:1 0.8 || < sup {1 ;:1!?”( (B3N
1]
1 .
< mg SQEIC)|T(F(9»£Z))|
=1

Let 1 = E (supgec |7 (F(6,€))|), where € is identically distributed to %, i =1,...,|I|.
By condition (A.9), u < oo. Define Z; = supgee |7 (F(6,£%)) | — p for i = 1,... |1
and Z = supgee |7 (F(0,€)) | — p. Thus, Z;,i =1,...,|I| are i.i.d. with E(n;) = 0. For

|[I| =1,2,..., define

1]

1

X; = =3 Z
1=
Let
L .
Ci(w) = sup [ > sup|r (F(0.6)) || = sup [Xs(w)|+p
|I|leN |I| i—1 9€C |[I|leN

for w € Q. It follows that

E(CT) = E(Sup IXz(w)Hu)

[I|leN

A

2
< 2E|{ sup [Xr(w)| ]| +24°
|[7|eN

IN

|7|eN

2/ P (sup | X7| > ﬁ) dx + 2°
0

o1



1 0o
= 2/P<sup\X1]>f>da:+2/ ]P’(sup|X1\>\/5>dx+2,u2
0 1

|7]eN |I|eN

< 2/ PlweQ: sup | Xr(w)| >V | de+ 2+ 243
1 |7|leN
< 2/ Plwen: |J{Xiw)>va} | dot2+2
|IleN
< / P(X} > 2?)dz + 2 4 24>
1
II\ 1
< / d + 2+ 242,
b=

and

4
4 2 _
E(X;) = E (}Zz) = E&Z‘?)) + u||1|4u| (E(Z%))%.
By condition (A.9), E <Sup9€c [r(F(Q,f))]4> < 00, thus,

4
E(ZY) = E(supv(F(e,g))r—u)

oeC

IN

SE (sup " (F(6,6)) \)4 T8t

oeC

— 58 (sup[(FO.9)') + 8" <.

oeC

which also implies E(Z2) < oo. Since

1 Sl ER
Cy = E(ZY)) NG +(E(2%)% ) ||II\4|| < oo,
|7]=1 |7]=1

it follows that

E(CT) <

oo 00 I12-|1
o B(2) Yo e+ (B(22))2 S5, Lol
242
1

o
1
= 2420, / —da + 22 (2.22)
1 X

= 2422 +20y < oo,

which implies,

E(sup sup]r(p[(ﬁ))|) < E(C1) < oo, (2.23)
|I|eN 6eC
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which is the desired result.

We next show that ¢,,(6) := E[r(pz,(0))] is continuous on # € C. Choose any 6 € C
and a sequence {0;}7°, C C such that §;, — 6 as k — co. It follows from (2.23), the

continuity of r and F' and the DCT that

Jim en(6r) = lim E[r(pr, (04))]
= E (kli_?;o ”’(pfn(9k))>
= E(r(p1,(0))).

which implies that ¢, is continuous.

Thus, Ary, (01,62) is continuous and «(f1,62) is continuous on C x C, and since C is

compact, (b1, 02) attains its maximality, i.e., supy, g,ec (61, 02) < oo. Thus,

, V] - [N
sup o7(01,02,|N|,I) = sup «(fq,62),
oS0 o100 INLD = (R = 1) o i, (60 02)

which further implies that the result holds.
(2) For each n € N, define Y7, (6) :=r (pr,(0)). Note that
02(01)927 |N‘ I)

= |N||N| ZV&I‘ Ar;n(01,92)]

IN

|N||N|Z ( Y1, (61) — (Yln(el))]2+E[Y1n(92)—E(Yln(GQ))F)

< Mzsup( ¥1,(6) ~E(v1,®)]*)

oeC

Since N is a finite set, it suffices to show for each n € A/ that

lim supE[Y7,(0) —E(Y7,(0)]° = 0.
|In|—00 geC

We suppress n for notational simplicity. It follows from (2.22) that,

[I|eN \oeC

2
E(sup (sup|7"(p1(9))]>> < E(C}) < o (2.24)
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Define C' = sup7en (supgec [Y7(0) — E (Y7(6)) |)°. It follows from (2.24) that

B 2
E(C) = E<sup (supmw)—E(Yf(e))))

|[T|eN \0eC

2 2
< 2E <sup (sup])ﬁ(@)]) + sup (supE|Y1(9)|> )
|[IleN \0eC [T|eN \0eC
2 2
< E <sup (suplvico)1) + sup (Esuplvio))) )
[IleN \0eC |[T|eN oeC
9 2
< 9E <sup (suprme)r) ) +2 (E sup supmw)r)
|[I|eN \0eC |I|eN 0eC
= 2E(CH +2(E(C)))? < .
Note that
2
SwEYI(0)-EGO)F < Bw i) -Emo)] . @2)
€ €

By the DCT, it follows from (2.25) and E(C) < oo that

lim supE[Y7(0) — E (YI(Q))]Q
[7]—00 geC

IN

2
lim E [sup[Y7(6) — E (Y;(6)) l]
[I|=oc0 | gecC

_ 2
= E| lim sup|Y;(0) —E(Y7(6)) @
LI|—00 geC

2
= & Jim suerIw)—r<p<e>>+r<p<e>>—E<Yz<e>>@
LIL]—00 geC

_ 2
< B[ tim sup|vi(8) — r(p(8)] + lim sup\r(p(@))—mme))@ .
LII|—=00 geC [I| =00 geC

By Theorem 2.1, it follows w.p.1 that lim|7_,., supgec [Y7(0) — r(p(0))| = 0. It also

follows from (2.23), the DCT and Theorem 2.1 that

Jim sup|r(p(0) ~ E(V(0) | = lim_sup[E(r(p1(0) ~ (p(0)))
—00 geC [I|—00 geC

< Jm B (s@gg r(pr(6)) — r<p<9>>|)

_ E <|[“i“oo sup (91 (0)) ~ r<p<9>>|) —o,

which implies

lim supE[Y7(0) —E (Y7(0))]* =0
[7|—00 peC

54



and this completes the proof. O

Consider any data sample N C A with |[N| > 2 and integration sample Z. Since
81(91,92,]\7,1—) > 0 for all 61,60, € C, it holds that

2
sup 01(6h,02,N,T) = sup 07(61,62, N, I).
01,02€C 61,02€C

Thus, it suffices to show that w.p. 1 supy, g,cc 07(01,02,N,Z) — 0 as [N| — |N| and

|I,,| = oo for all n € N.

Consider any n € N. It follows from A.1, A.5, A.7 and Theorem 2.1 that r(p,(0)) is
continuous on C. Then, |r(p,(0))| attains its maximum on C due to the compactness
of C and C}, := supgee |7(pn(0))|+1 < co. Thus C' := maxpecp Cp < c0. It also follows
from Theorem 2.1 there exists Q, C  with P(Q,,) = 1 such that for any w € Q,,

there exists My, (w) € N such that for all |I,| > M, (w) it holds that

sup |r(pr, (0)) —r(pa(0))] < 1,

oeC
which implies that
sup |r(pr,(0))] = sup|r(pg, () = r(pa(0)) + r(pn(0))]
eC oeC
< sup |r(pr, (0)) = 7(pn(0))] + sup [r(pn(0))]
feC feC
< C

Let Q* := NpenQy. Then, P(Q*) = 1. Thus, for any w € QF,

sup |Arp, (01,602)] = sup |r(p1,(01)) — 7(p1,(02))]
01,02€C 61,02€C
< 2sup|r(pr,(9))]
peC
< 2C,

holds for all |I,,| > M (w) := max,en My (w) and for all n € A/, Thus,

7 1 Snen Arr, (01,62) )2
7%(01,0oN,I) = ——— (Arlnwl’% _ 2ZunenN 2TL\Y1,
Wik ) i
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N
16N

2
R

holds for all 81,05 € C, which implies that,

—|N
V]~ | |92(91,92,N,I) < 16C?

, (V] = [INDIN
sup 52(0,,05, N, T) = o1V .
,5up 01(01,62 N, ) NV INTAT(N] - 1)

Thus, supy, g,ec 01 (01,02, N,Z) = 0 as [N| — [N] and |I,,| — oo for all n € N, which

completes the proof. O

By the same argument in Result (3), it suffices to show that w.p. 1

sup 33(01,92,N,I) —0
01,02€C

as [N| — |N| and |I,,| — oo for all n € N. Since N is finite, it further reduces to
show that w.p. 1 ﬁsup01792ec v2(61,02,1,) — 0 as |I,| — oo for each n € N'. We
suppress index n and will use I as both a set of integration samples (as its original

definition) and the cardinality of that set for notational convenience.

It follows from Result (3) that p(6) is continuous. Thus, Cp := supyec ||p(0)]|x < o0.
It follows from A.7 that ||[Vr(p(6))||mx1 is continuous on C. Since C is compact,
IVr(p(0))||mx1 attains maximum. Thus, C; := supgee [|Vr(p(0)|lmx1 + 1 < oo.
It follows from A.1 that F(6,&)F(0,£)T is continuous on C for almost all £ € Z=.
It follows from A.5, the DCT and Theorem 2.1 that E[F(0,£)F(0,£)T] is continu-
ous on C. Thus, Cov[F(6,&),F(0,£)] = E[F(0,£)F(6,8)T] — p(0)p(d)T is continu-
ous. Thus, ||Cov[F(0,£), F(0,&)]|lmxm is continuous and attains its maximum. Thus,

Cs := supgec [|Cov[F(0,8), F'(0, )] |lmxm + 1 < oo.

We now show that w.p. 1 supgee [|S?(0)||mxm is bounded for sufficient large I. Since
(Vr(-))? is continuous, it follows from A.1, A.5, A.7 and Theorem 2.1 that there exists
0 € Q with P(Q;) = 1 such that for every w € Q; there exists M;(w) € N such that,

for all I > M;j(w), it holds that

sup [|[Vr(pr(0)) = Vr(p(0)l e < 1,
oeC
which implies

sup [Vr(pr(0)lmx1 = sup[[Vr(pr(0)) — Vr(p(0)) + Vr(p(0))llmx1
oeC oeC
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< sup|[Vr(pr(0)) = Vr(p(0))lmx1 + sup [|[Vr(p(6))llmx1
beC feC

< (.

Note that A.5 implies A.2. Thus, it follows from A.1 and Theorem 2.1 that there
exists Qo C Q with P(Q2) = 1 such that for every w € g there exists Ma(w) € N such

that for all I > My(w),
325\Mn(9)—-P(9NL¥ < (1/(4Co)) A (3/Co) A (Co/3),
which yields
Sup lpr()]x < sup 1p1(0) — p(0)|x + Sup [p@)llx < Co+Co/3 = 4Co/3.

Since F(0,£)F(0,£)T is continuous and A.5 holds, Theorem 2.1 ensures that there
exists Q3 C Q with P(Q23) = 1 such that for every w € 3 there exists M3(w) € N such

that for all I > Ms(w),

sup
oeC

I
LSRR EFO.OF0.OT| < 1/
=1

mXxXm
Consider any £ > 0. Let Q* := Q1 N Qy N Q3. Then, P(Q*) = 1. Thus, for any w € OQ*

and all I > M(w) := max{M;(w), Ma(w), M3(w)},

sup %52(0) - COV[F(97§)7F(97§>]'
oeC mxm
I
= sup 130 FO.)F0.6)7 — prOpn0) - ColF0.9). F0.6))
€ i=1 mxm
I
= sup %ZF(G,S")F(&&Z)T —E[F(0,6)F(0,8)T] — [pr(01)p1(0)T — p(8)p(62)7]
e i=1 mxXm
I
< sup |7 SO FO.EP6.€)T ~EIF(0.OF6.6)1
€ =1 mxXm
+ Sup 1pr(0)p1(0)T — pr(0)p(O)T |lmxm + sup lp1(0)p(0)T — p(@)p(O) ][l mxm
< 1/3+sup [|pr()||x sup [lpr(0) — p(0) || x + sup [[p(0) || x sup [|p1(8) — p(0)]|x
geC oeC oeC oeC

1 4G 1 3

5T 3 10, TG,

IN

=1

Y
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which yields that

sup [[S?(0) mxm < 202 =2 sup [[Cov[F(61,€), F(02,)|lmxm +2 < oo
beC 01,0:2€C

when I > 2. Note that for any 61,0, € C

2|Vr(pr(61))7Sn(01,02)Vr(pr(62))]

< Vr(pr(61))75%(61)Vr(p1(61)) + Vr(pr(62))75%(62) Vr(pr(62))
Thus, for all I > max {M(w), 8C2(Cy /e, 2}, it follows that

1
- Ssup V2(01)927I)
I g, p,ec

< ig sup (Vr(pr (00))7S*(0)Vr(pr(61)) + Vr(pr (02))75%(62)Vr(pr (62)

4 2
< 7 (sup!52(9)!\mxm> <SupHV7“(pz(9))llmx1>
oeC oeC

<

R

which completes the proof. O

Lemma 2.2. Assume A.3, A.7 and ||Hg||axa < C < oo for all k. At iteration k, suppose
that —gi & H(6y). If (2.8) is ever violated for t > 0 in Algorithm 2, there exists an interval

of t between (0,t) strictly satisfying (2.8) and (2.9). If (2.7) is ever violated for t, then
(i) there exists an interval of t between (0,1) satisfying (2.7), (2.8) and (2.10) or
(ii) there exists an interval of t between (0,%) strictly satisfying (2.8) and (2.9).

Proof: We first show that g[si(t) < 0 for all ¢ > 0. Assume by contradiction that

gisk(t;) > 0 for some t; > 0. By P.1,
(Hel0r —tjge] — (Or —tjgr),y — Uelbr —tjgn]) > 0 VyeC.
If Hsk(tj)H = HHc[ek — t]‘gk] — QkH =0, it has Hc[ek — tjgk] = 0, and that

gly—06:) > 0 VyeC,

58



which is —g; € H(0x) and contradicts —gr ¢ H(0x). Thus, ||sk(t;)|| > 0. It follows from

Property P.6 that
sk (tj) € arg min {g;s 0 +seC,s] < ||sk(t])||} )

Consider any y € C. There exists some A > 0 such that ||[A(y —6k)|| = M|y — k|| < |Isk(t;)]

Thus, Agj(y — 0r) > g}.sk(t;) > 0, which implies that —g;, € H(6;) and contradicts —gj, ¢
H(Ok).

Second, we show that there exists a > 0 such that for all ¢ € (0,a], (2.9) is strictly
violated. By the continuity of the solution of convex optimization problem (Theorem 3.2.8,
(23, pp. 44 — 45]), g]lsk(t) is continuous in ¢ and g/ sk(t) — 0 as ¢ | 0. By Property P.4,

both si(t) and ||sx(t)|| are continuous in ¢ and ||sg(t)|| — 0 as ¢ | 0. Define
1
q(t) = mi(ve(t,0)) = mi(0k) = r2gisk(t) = (1= r2)gis(t) + 5 (s ()T Hysi(t)-

Thus, ¢(t) is continuous in ¢ and ¢(0) = 0, since s;(0) = 0. Thus, since ko satisfies (2.12)

and g]si(t) < 0 for all ¢ > 0, it follows

Coeoq) om0 + k() — mk(0) — Kaglsk(t)
lim inf = liminf
10 [lsg(t)]] tl0 s (0]
1-— Tsi(t T
— lming L R2)gese(®) L (s(8)T sk (8)
t10 sk @) 1o 2[sg(t)]]
1 Tsi(t
= liminf m)gksk<)
t10 s ()]
< 0,

which implies there exists some « > 0 such that ¢(¢) < 0 for all ¢ € (0,q], i.e., (2.9) is
strictly violated for all ¢ € (0,a]. Also, condition (2.8) strictly holds for all ¢ € (0, a] since

K1 < Ko, i.e.,

mk(vk(t, Gk)) — mk(ﬁk) — ﬁlggsk(t) < 0, Vt<a,

mk(vk(t, Hk)) — mk(ek) — Hzggsk(t) < 0, Vt<oa.
If condition (2.8) is violated for t>a,ie.,
mg(vi(t, 0k)) — mi(0r) — k1glsk(t) > 0,
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there exists 1 € (a,t) such that
my (v (t1, 01)) — my(0r) — k1glsu(t) = 0,
mis (v (£, 01)) — mu(03) — /ﬁgg;sk(a) > 0.
By a similar argument, there exists ¢y € («, 1) such that
my(vi(t2,0)) — mi(0r) — maglse(t2) < 0,
mi(vk(t2, 0)) = mi () = raglsi(f) = 0.

Consider the following optimization problem:

ta = inf
t3 tlgA t,
where
A = {t € [ta, 1] s m(vi(t, Ok)) — mi(0y) — Kiglsk(t) > O}

Since #; is a feasible point, it holds that A # @. Due to the continuity of my(vg(t, 0)) ==
my (0 + sk(t)), we have A is compact and the optimization problem attains the minimum

at 73 > t3. Thus, (2.8) strictly holds for all [?g,tAg), and that

mi(vk(ts, 0k)) — mi(0k) — Kaglsk(ts) > 0.

Consider the following optimization problem:

ty = sup t,
teB
where
B = {te€[ta,t3] : my(vi(t, 0k)) — my(6)) — kaglse(t) < O}

Since 5 is a feasible point, it holds that B # @. Due to the continuity of my(vy(t, 0;)) :=
my(0k + sx(t)), B is compact, and thus the optimization problem attains the maximum at
1y < t3. Thus, (2.8) and (2.9) strictly hold for all (Z4,¢3). Thus, there exists an interval
between (f2,t1] C (a,t) such that (2.8) and (2.9) strictly hold for all ¢; in the interval.

If condition (2.7) is violated for ¢, it has |[s;(t)|| > Ax. By Property P.4, ||s(t)]| is
continuous and nondecreasing in t > 0. Thus, there exists some interval of ¢ between (0, 1)

such that

k3 < lsk()] < Ag
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for all ¢ in the interval. If all points in the interval satisfy (2.8), the interval satisfies (2.7),
(2.8) and (2.10), which is (i). If there exists some point 71 in the interval that violates (2.8),
there exists an interval between (o, 1) C («, ?) that strictly satisfy (2.8) and (2.9) according

to the above argument, which is (ii). This completes the proof. O

Theorem 2.3. Assume A.3, A.7 and ||Hg|laxqa < C < oo for all k. Suppose —gi ¢ H(0x)

for each k. Algorithm 2 terminates in finite number of iterations.

Proof: If both (2.7) and (2.8) hold but (2.9), (2.10) and (2.11) are violated for an infinite
number of iterations. There exists an increasing sequence of numbers {¢;}72, such that

lsk(t;)|| < k3 for all j. It follows from Properties P.4 and P.5 that

jhj)loHHT(vk(tjﬂk))[—gk]H = 0.

Since g]si(t) < 0 for all t > 0 and |g] sx(t;)| is nondecreasing as j — oo by Properties P.6
and P.7 and t; > tg > 0,
lgkse(t)] = lgpse(to)l > 0,

which yields (2.11) holds after a finite number of iterations. In this case ay, < t; for the
first ¢; that satisfies (2.11) and Algorithm 2 terminates in a finite number of iterations.

Suppose that (2.7) or (2.8) is ever violated for some ¢. It follows from Lemma 2.2 that,
if (2.7) or (2.8) is violated for %, there exists an interval of ¢ that satisfies case (i) (2.7), (2.8)
and (2.10) or that strictly satisfy case (ii) (2.8) and (2.9). For case (i), we have showed that
there exists an interval of ¢ that satisfies the stopping condition of Algorithm 2, i.e., (2.7),
(2.8) and (2.10) are satisfied for that interval.

We next consider case (ii), i.e., there exists an interval of ¢ between (v, ) such that the
interval strictly satisfies (2.8) and (2.9). Let I; be the set of all such ¢ between («,?) that
satisfies (2.8) and (2.9), where o > 0 is such that (2.9) is violated for all ¢ € (0, «]. We have

the following two cases.

C.1. There exists a tg € I such that [[sg(to)| < Ag, i.e., (2.7) holds for ty. It follows from

Lemma 2.2 that gls(t) < 0 for all ¢ > 0. Note to > 0. Since ty € Iy, it follows that

my(vi (o, Ok)) — mu(Ok)
grsk(to)

k1 < q(to) K2.
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C.2.

If g(to) = K1, i.e., (2.8) holds as equality at ¢, it follows from (the proof of) Lemma 2.2
that there exists an interval A C (a,tg] C (a,t) satisfying (2.8) and (2.9). For all
t € A, it holds that ¢t < tg. It follows from P.4 that ||sk(¢)|| < ||sk(to)| < Ag. Thus,
(2.7) holds for all points in A. Then there exists an interval A that satisfies the

stopping condition of Algorithm 2, i.e., (2.7), (2.8) and (2.9) are satisfied for A.

Now consider ¢(t9) > k1. Property P.4 asserts that si(t) is continuous. Thus, ¢(t) is

continuous, and there exists 6 > 0 such that
k1 < q(t) < ko, VtE B:= [to — (5,t0] C (a,to] C (OJ,A),

which implies that (2.8) and (2.9) are satisfied over B. It follows from P.4 that (2.7)
holds for all points in B. Then there exists an interval B that satisfies the stopping

condition of Algorithm 2, i.e., (2.7), (2.8) and (2.9) are satisfied for B.

Suppose all the points in I; violate (2.7). Let #; be such that ||s;(¢)|| = Ag. Thus,
the interval (0,%;] satisfy (2.7). Thus, I; N (0,#;] = @. We claim that all points in
(0,%1] violate (2.9). Assume by contradiction that there exists a point ty € (0,]
that satisfies (2.9). If t, satisfies (2.8) too, it gives to € I; N (0,%], contradicting
1N (0,t] = @. If t5 violates (2.8), it follows from (the proof of) Lemma 2.2 that
there exists an interval D C (0,t] C (0,%;] satisfying (2.8) and (2.9), contradicting
I1N(0,1,] = @. Let 15 be such that ||sg(%2)|| = k3Ag. Thus, (2, %] satisfies (2.7) and

(2.10) and violates (2.9) and thus satisfies (2.8).

Thus, there exists some interval I C (1) that satisfies (2.7), (2.8) and (2.9) or (2.7),

(2.8) and (2.10). In this case, the algorithm sets tyay = t.

If both (2.7) and (2.8) hold but (2.9), (2.10) and (2.11) are violated for some # < tyay.

Note that tmax either violates (2.7) or (2.8). We have the following two cases:

C.3.

tmax violates (2.8). Since t violates (2.9), it follows from the same argument in Lem-
ma 2.2 and the argument for Case C.1 that there exists an interval within (tA, tmax)
that satisfies (2.7), (2.8) and (2.9) by replacing t as . Since ¢ violates (2.10), it follows
from Lemma 2.2 and the argument for Case C.2 that, there exists an interval within

(, tmax) satisfying (2.7), (2.8) and (2.10).
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C.4. tmax violates (2.7). Let ¢; be such that ||sk(¢1)|| = Ag and ta be such that ||si(t2)] =
k3. Since t violates (2.10), [t2,t1] C (£, tmax). Thus, it follows Lemma 2.2, Case C.1
and Case C.2 that there exists an interval within (%, tmay) satisfying (2.7), (2.8) and

(2.9) or (2.7), (2.8) and (2.10).

In this case, we set tyi, := t.

Thus, the interval that satisfies (2.7), (2.8) and (2.9) or (2.7), (2.8) and (2.10) is con-
tained in [tmin, tmax] after each iteration. Assume by contradiction that (2.7) or (2.8) is
violated for infinitely many iterations. Let {fj};?';l be the decreasing sequence of upper
bounds of the interval and {¢;}32, be the increasing sequence of lower bounds of the in-
terval. Since the search is bisection, it follows that ¢; | ¢* and t; Tt as j — oo. By the

definition of the upper bounds, it obtains that
Isk@) > Ar or my(O + sk(t;)) — mr(0r) — k1glsk(t;) > 0.
Taking limit on both sides of the above inequalities with respect to j — oo gives that
skt > Ap or mg(0k + sk(t*)) — mi(0r) — k1glsk(t™) > 0. (2.26)
By the definition of lower bonds, it obtains that
Hsk(ﬁj)H < k3Ag and mg (0 —I—sk(zj)) — my(6x) — ngggsk(tj) < 0.
Taking limit on both sides of the above inequalities with respect to j — oo gives that
|sk(t")]] < k3Ap and my (O + si(t")) — me(0r) — Koglsk(t™) < O,

which contradicts (2.26). Thus, (2.7) or (2.8) is violated only in a finite number of iterations.
It follows from the argument in the first paragrah that, Algorithm 2 terminates in a

finite number of iterations. O

Lemma 2.3. For each k € {0,1,...}, if (2.15) fails and Gy1 > 02, then ny > 1, where

ng is defined in (2.17).

Proof: Since (2.15) fails for k and 0,1 > 0y 2, it follows that

V| = |Ni| o

53 (0r, 05C, Ny, Th) = WV 0k, 05C, Niw T)) > (moAm(0y, 05°))?,
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which indicates that |Ni| < [N]; 53(0k, 05C, Nk, Zi) = 0 otherwise, and yields that

N N
[Nl < U‘OATL(QkﬂG ©))2 = (WLAJn 0;,,05C))2
L+ M3 P (0 09 Ny ) 1+ NV |m
Thus,
_ W]
ng = 1 N (o Am(6y, QGC)) - |Nk| > 17
+ WG, a0 Nz
which is the desired result. n

Lemma 2.4. Assume A.3, A.5, A.7and A.10. For any iteration k in Algorithm 1, if (2.15)

fails for all k,k+1,..., then |Ny| — |N'| and |I¥| — oo for alln € N as k — .

Proof: Consider any iteration k. If (2.15) fails for all k+ 7, where j € Z, then Algorithm 3
will be executed for k + j, where j € Z,, under the condition that (2.15) fails. We suppress
index k for notational convenience.

We first show that for any j € Z; := NU{0} such that |N;| < [N/, there exists j’ € Z,
with j° > j such that |Nj/| > |N;|. Assume by contradiction that there exists some J € Z4
such that |N;| < |V,

IN;| = Ny Viz=J

We now analyze Case 5 and Case 6 in Algorithm 3 and conclude that these cases are

impossible.

C.1. Suppose Case 5 is ever executed at some j > J. Note that |N;| = |N;| < |[N|. It
follows from Lemma 2.3 that ny > 1 and that |Nj1i| = |[N;| + np > |Nj| = |Ny|,

contradicting |N;| = |N;| for all j > J.

C.2. Suppose Case 5 is not executed at all j € Z. Then Case 6 is executed for all j € Z,..
Suppose there exists some j > J such that X;; = 1. Note that |N;| < |[N|. then
INj1| = |Nj| + ng A (IN| — |Nj]). Since nq > 1 and [N| — |N;| > 1, it holds that
|INj+1| > |Nj| + 1, contradicting |N;| = |[Ny| for all j > J. Thus, X;; = 0 for all

Jj=J.
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Consider the event Ag := [ Case 6 holds and X 4,1 =0 for j € {0,1,...}]. Note that

for any j € Z,

h(T;2)
e+ h(dj1)+ h(cj2)

1—¢qj, = Vi e {1,2}.

Assume by contradiction that

(1—q§-)’1) > 0 = 0 > Zlog(l—q?,l) > —00

P(4e) = ][]
j=J =]
ad 6+h(3'1)+h(8‘2)>
= 0 < lo ]7/\ L < o9,
Z:g< h(T2)
7=J
which implies
€+ h(@;1) + 1G;2) —1, as j — oo. (2.27)

h(G;2)

For event Ag, |N;| = |Ny| for all j > J and Y = B+ ia V (i — |I]) > |13 + 1
since i, > 1. Thus, |I}| — oo as j — oo for all n € [Ny|. Since the trust region is
a compact set and A.3, A.5, A.7 and A.10 hold, it follows from Lemma 2.1(4) that
0j2 — 0 as j — oo. Since h is a nondecreasing continuous function, it follows that
h(Gj2) — h(0) as j — co. Note that under Case 6 we have 7,2 > 0;,1 for all j > J,

which implies that 71 < ;2 and 7;; — 0 as j — oo. Thus, since 0 < h(0) < oo.

€+ h(Gj1) + h(d;2) N + 2h(0)
h(G;2) h(0)

# 1, as j — oo,

contradicting (2.27). Thus, P(Ag) = 0 and this case cannot happen and |Ng| — | V|

as k — oo.

Next, we show that for any j € Z, there exists some j' € Z, with j/ > j such that
|Iﬂ:| > |I}| for all n € N. Assume by contradiction that there exists some n € A and
J € Z4 such that ,

1B = L] Y=

We now analyze Case 5 and Case 6 in Algorithm 3 and conclude that these cases are

impossible.
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C.3. Suppose Case 6 is ever executed at some j > J. It follows that [I}7| = |I}] +
max{iq,in — |I4|} > |Ii| + 1 and |I5"] is updated as [I5T|. Thus, [I27 > || + 1

which contradicts || = |I7| for all j > J. This case cannot happen.

C.4. Suppose Case 6 is not executed at all j € Z. Then Case 5 is executed for all j € Z, .
Suppose there exists some j > J such that X;, = 1. Then [T = |I}] + iq. Since
iq > 1, it holds that [I5™'| > |I}| + 1, contradicting |I}}| = |I7| for all j > J. Thus,
Xj2=0forall j > J.

Consider the event As := [ Case 5 holds and X2 =0 for j € {0,1,...}]. By a sim-

ilar argument in C.2, P(A5) = 0 and this case cannot happen and |I¥| — oo for all

n €N as k — oo. O

Theorem 2.4. Assume A.3, A.4, A.5, A.7 and A.10. Suppose that ||Hy||gxq < C < oo for
each k and —V f(0r) ¢ H(0y) at iteration k. Then, w.p. 1, for each iteration k at Step 4

in Algorithm 1, Step 5 will be executed after a finite number of iterations.

Proof: Assume by contradiction that there exists Q* C 2 with P(Q*) = o > 0 such that
for each sampling process w € Q*, (2.15) fails for all k+ j, where j € {0,1,...}, i.e., Step 5
will not be executed after k. We suppress index k for convenience. Fix a sampling process
w € Q*. It follows from Lemma 2.4 that the data and Monte-Carlo sample sizes are updated
such that

IN;| 1|V and |IZ| 1+ 00 Vn € N, as j — oo.

Since the sample update process does not terminate, condition (2.15) is violated after
each sample update j, j = 0,1,.... Denote by 6 the current position 6, and A the current
trust region radius Ay. Recall that HJC-}C = 0+ 5s;(c;). Thus, it follows from Lemma 2.1 that
w.p.1,

Am; (0,659 < 7710max {611,652} — 0. (2.28)

Since s; (o ) satisfies (2.7) and (2.8) for each j, we have that

—ﬁlngsj(ozj) < Amk(G,HJGC) — 0 as j — oo,
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[sjle)ll < A,
which implies |gjs;(c;)| — 0 as j — co. We consider the following two cases.

C.1. ||sj(cj)]| = 0 as j — co. Thus, we can assume ||s;j(a;)| < min{A,1} for all j. Since
condition (2.10) will be eventually violated as ||sj(c;)|| — 0, it follows that there
exists a subsequence {j;}7°, such that either (2.9) or (2.11) is satisfied for each ji,

where k = 1,2,.... Without loss of generality, we use { j} °, as the subsequence.
Suppose (2.9) is satisfied for each j of the subsequence. It follows s;(a;) # 0 since
sj(a;j) = 0 violates (2.9). Moreover, we have gis;(a;) < 0, since gJs;(a;) > 0 does
not satisfy both (2.8) and (2.9). Thus,
Am;(0,0 + sj(aj) = —gisj(a;) — %(Sj(aj))THij(aj)
< —ragjsja;) VY,

which yields,

9;75i(05)  s5(0))TH;s;(a)

—(1 — ka) - < 0V (2.29)
55 (c)l 2||s(e)
By Property P.7 and ||s;(a;)|| < 1, we have H‘Z](i;g” lgjd;|, where d; = v;(0,a;)—0

such that ||d;|| = 1 for some @; > 0. Suppose \gTd | = 0 as j — oo. By Property P.6,
lg]d;l = Ix(g;,0,1)] = |min{g]s:0+seC,|[sl| <1} —0.

By Theorem 3.2.8 in [23, pp. 44-45], x(g;,6,1) is continuous in g;. By ULLN, x(0) =
lim; 00 x(gj,6,1) = 0 and =V f € H(f) contradicting —V f ¢ H(6). Suppose there
exists a subsequence (w.l.o.g, we can still use sequence {j}32, as the subsequence)
gTsiaj)
] S5 J

and some ¢ > 0 such that [gid;| > ¢ for all j. Thus, HS o 2 lgjd;j| > € for all j.

Since sj(cj) = 0 and ||H;|| < C, there exists N € N such that for all j > N,

silag))THjsiag) | (L= ko)e

2|l ()l - 2
which combines (2.29) to imply that
Tsi(a; - Tsi(a;
—(l—mg)g] i) < (1 —r2)e N 95 i) < E,
[l ()l 2 155 (cj)l 2
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—9;55(e)
lls; ()l

contradicting > | g]T.dj| > ¢ for all j. Thus (2.9) cannot be satisfied infinitely

often.

Suppose (2.11) is satisfied for each j of the subsequence. By ULLN, g; — V f(0) as
j — oo. Thus for any ¢ > 0, there exists N; € N such that ||g; — Vf(0)|| < ¢ for all
j > N. Thus, |lg;|| <|[|Vf(0)] +¢e < oo for all j > N. Since ||s;(a;)|| = 0 as j — oo,

we have

ralgjsi(ay)] .
HT(9+5j(aj))[—gj] < # —0asj— o (2.30)

Since tangent cone is a closed convex cone, it follows from Property P.3 that

11704y [V (0 + ;)]

70155 (a;) [= V(0 + 55)] = (o455 (a;)) =95 (0 + Sj)]H

IN

+ 17045500 [—95(0 + 85)] — Lo, (aj))[—gj]H

+ HT(9+8j(aj))[_gj]H
< IVF(0+s5) —g;(0 + s5)|| + |95 (0 + s5) — gjl

+ ML (0ss; () [—95]

By Theorem 2.2, as j — oo,
IV (0 +55) — g0+ s5)]| =0, (2.31)

and

1950 +55) — g5l < Nlg; (0 + s5) = V(0 + s5)]l (2.5
+ VSO +s5) = VIO +VFO) — g5l =0,

where ||g;(0 4+ s;) — V(6 + s;)|| = 0 by Theorem 2.2, |V f(6 + s;) — Vf(6)|| — 0 by
the continuity of Vf and ||V f(6) — g;|| = 0 by ULLN. Combining (2.30), (2.31) and

(2.32) gives that
17 (945 () [= V(O + s5)]| = 0 as j — oo.
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C.2.

By [19, Lemma 3.3], since f is continuously differentiable by Theorem 2.2, it follows

that [[Il7g1s;(a;)[—VF(0 + s5)]|| is lower semicontinuous in s;. Thus,

M7 [=VO] < 1i]Igglf||HT(e+sj(aj))[—Vf(9+Sj)]ll = 0

By [19, Lemma 3.1c], =V f(0) € H(0) if and only if ||[Tl74)[-V f(0)]]] = 0, which

contradicts —V f(6) ¢ H(6). Thus, C.1 cannot happen.

There exists a subsequence of {j}32; (we use {j}32; as the subsequence) and £ > 0
such that [[s;(ay)|| > € for all j. Under this case, we have |g]s;(a;)| — 0 as j — oc.

It follows that
min{gls:0+seCllsl <c}l < [min{gls:0+seC, s < lls;(ay)l}]
= |gjsj(ay)] =0,
since the two minimization problems obtain nonpositive optimal solutions. Thus, as
j — 00
IX(g;,0,€)] = |min{g]s:0+seC,[s]|<el}—0
By Theorem 3.2.8, pp.44 — 45, [23], x(g;,6,¢) is continuous in g;. By ULLN,
x(Vf(0),0,e) = |min{Vf(0)'s:0+secC|s|<el} = 0,
which implies that if € <1,

x(V1(0),6,¢)

and if e > 1
x(0) < x(Vf(0),0,e) = 0,

which implies —V f(0) € H(0) contradicting —V f(8) ¢ H(#). Thus, C.2 cannot

happen.

This completes the proof. ]

Lemma 2.5. Assume A.3, A.5, A.8 and A.9 and A.10. It holds that w.p. 1 |Ng| — |N| as

k — oo and |I¥| = oo as k — oo for alln € N.
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Proof: We first show that for any iteration k € Zy, if |[Ng| < |N], then there exists

m € Zy with m > k such that |N,,| > |Ng|. Assume by contradiction that there exists

some ko € N such that [N,,| = |Ng,| < |N] for all m > ky. We now analyze each of the

cases in Algorithm 3 and conclude that these cases are impossible.

B.1.

B.2.

B.3.

Suppose that Case 2 or Case 4 holds for some k > kg. It follows from the hypothesis
assumption that | Ny, | = |Ni| and |Ni+1| = |Ng|+na A (IN|—|Ng|). Since n, > 1 and
|Ni| = |Ng,| < [N, it follows that |[Ngi1| > |Ng| + 1 = |Ng,| + 1, which contradicts
| N | = | Ng, | for all m > k.

Suppose that Case 5 holds for some k > ko. It follows that |N;"| = |Ng| + ny. It
follows from Lemma 2.3 that ng > 1. Then |[N;7| > |Ni|+1 = |Ny,|+ 1 and | Ny is
updated as [N,'|. Then, |[Nj41| > [Ng|+ 1 = |Nj,|+1 which contradicts |Ny,| = | Nj,|
for all m > kg. Thus, either Case 1, Case 3 or Case 6 in Algorithm 3 holds for an

infinite sequence of iterations.

Consider the event A; := [Case 1 holds for k € {k1,ko,...}]. Note that for any k €

Z+7
0 e+ h(B1)
mi € + h(noAmy (0, 05°))

The probability of this event is

Vi e {1,2}.

oo
1
H 1—% D= 2)-

Assume by contradiction that P(A;) > 0. Then,

oo o0
D log(l—gi, 1)+ > log(1—gf 5) > —
=1 i=1

which implies that

1 B (e+ h(TloAmkjWkﬁ@;%c)))Q Las i
2 1 _ = RNTYN 0 900 h(a —1asj— oo.
(Ili= (X =g, 5)) [T [P0 Ami, (B, 0177)) — h(Dk; )]

Since both the data and integration sample sizes do not change. It follows from the

first-order convergence result of the basic trust-region algorithm, and from P.7 and

|Hi|| < C < oo that

Hskj(akj)H — 0, ’gll:-jskj (O‘kj)’ < Xk?j(ek?j) —0 asj— oo,
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B.4.

which implies that Amkj(ij,OgC) — 0. Note that noAmkj(ij,ngc) > Oy, for i €

{1,2} under this case. Since h is a nondecreasing continuous function, it follows that
h(noAmy, (0x;. 05C)) — 7(0), h(Gy, ) < h(noAmy, (By;,07)) and h(Gy,;) — h(0) as

j — oo. Thus,
1

()
contradicting 1/(H,?:1(1 - q,ij’i)) — 1 as 7 — oo. Thus, P(A;) =

— 00 as j — o0

Consider the event Az := [Case 3 holds for k € {ki, k2, ...}]. The probability of this

event is

oo
Hl—leCIkQ

Assume by contradiction that P(A;) > 0. Then,

o0
> loglgh o(1—gp, 1)) > —oo,
=1

which implies that

; . (e + h(UOAmkj(ekj’egjc)))Q —lasj— o0
q,ijg(l — qéj’l) [e + h(&kj,z)][h(UoAmkj(ka91%-0)) — h(Gk; 1)] )

Since data sample does not change and integration sample size increases up to infinity,
it follows from Lemma 2.1(4) that G; 2 — 0 as j — oo. Thus, h(dy,2) — h(0), and it

follows from the DCT, Theorem 2.1, and (2.23) that
h(Gk;,1) — h(o1), as j— oo.

where o7 is given by,

2
2 Y nen Arp(61,02)
oy = ’NHN‘ Z <A7ﬂn 91792 N‘ )

Ary(01,02) = r(pn(01)) — r(pn(62)).

Suppose that h(noAmy; (ij,ngc)) — h(xp) as j — oco. Then,

(6 + h(nOAmkj (ekg > 9%(3)))2 = f[h(UOAmkj (ek] ) OIS;C)) - h(o-l)]a
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which implies that
€ + h*(mAmy, (Ok;, 05°)) + eh(noAmy, (0, 05°)) = —eh(oz) < 0,
which contradicts € > 0. Thus, P(A3) = 0.

B.5. Consider the event Ag := [ Case 6 holds and X ; = 0 for k € {kq, k2,...}]. It follows

from C.2 in Lemma 2.4 that P(A4g) = 0.

Thus, w.p.1 |[Ng| = |N| as & — oc.

Next, we show that for any iteration k € Z and each customer n € N, there exits
m € Zy with m > k such that |[I"™| > |I¥|. Assume by contradiction that, there exists
ko € Z, and n € Ny such that [I¥| = |I%| for all k > ko. By a similar argument as above,
we analyze each of the 6 cases in Algorithm 3 and make the claim that these cases are

impossible.

C.1. Suppose that Case 3 or Case 4 holds for some k > kg. It follows from the hypothesis
assumption that [IX| = |I¥| and |[I¥*| = |I¥| + i,. Since i, > 1, it follows that

|[IE+Y) > |I¥| + 1 = | Ny, | + 1, which contradicts |I¥| = |I%°| for all k > k.

C.2. Suppose that Case 6 holds for some k > ko. It follows that |I**| = |I¥| + max{i,, i, —
|I¥|} > |I¥|4-1 and |I¥+1|is updated as | I¥T|. It follows that [I¥+1| > |IF|+1 = |I*0|+1
which contradicts |I%| = |I¥0| for all k > kg. Thus, either Case 1, Case 2 or Case 5 in

Algorithm 3 holds for an infinite sequence of iterations.
C.3. By using the same argument as in B.3, the event A; happens with probability zero.
C.4. By using a similar proof as in B.4, P(As) = 0.

C.5. It follows from C.4 in Lemma 2.4 that P(A5) = 0.

Thus, w.p.1 [I¥| = 0o as k — oo for all n € N. O

Theorem 2.5. Assume A.3, A.4, A.5, A.8 and A.9 and A.10. Let C be the nonempty

compact convex set. Suppose furthermore that,
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(1) infgec f(6) = f* > —0Q,
(2) ||Hgllaxa < max{C,1} < oo for each k,
Then, w.p. 1
liminf x(6x) = 0.
k—oo
Proof: Let k denote the index of an iteration. We first show that w.p.1, for any € > 0
there exists K such that

felOr) = [f"—e, VE>K. (2.33)

Fix ¢ > 0. It follows from Lemma 2.5 that |Nj| — |N] and |[I¥| — oo for all n € N as
k — oo, and thus follows from Theorem 2.1 and condition (1) that there exists K € N such

that

fe(Or) = fu(Or) — f(Ok) + f(O) > —|fe(Ok) — f(Or)] + f(Or)

> —sup|fr(0) — f(O)] + f(6k)
peC

Z f*_€7

for all k£ > K. This proves that fi(0y) is lower bounded for sufficiently large K.
Next, note that all the assumptions for Theorem 12.2.2 in [23] hold. It follows from
Theorem 12.2.2 in [23] and condition 2 that there exits some constant kpygc € (0,1) such

that

i 0,),1
Amk(Qk,QSC) > /imdcmin{Xk(Qk),l}min{mm{Xk(k)’},Ak}.

C
Thus, it ensures, with Theorem 6.4.5 in [23] and the lower boundedness of fi(6y), that w.p.1
liminf x%(6x) = 0.
k—ro0

Consider any € > 0. Theorem 3.2.8 of [23, pp.44-45] ensures that x(g,0,1) is continuous

in g = g. Thus, there exists 6 > 0 such that |V f(0;) — gkl < 0 implies

IX(0k) = xk(Ok)] = IX(Vf(Or), 0k, 1) — x(gk, 0, 1) < e
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Theorem 2.2 implies that, supgee || gx(0) —V f(8)|| — 0 as k — oco. Thus, there exists K € N

such that ||V f(0r) — grl| < 0 holds for all £ > K, and that

IX(0k) — xk(Ok)] < e

holds for all £ > K, which implies liminf_, |x(0x) — xx(0x)| = 0. It thus follows that

xX(0k) = Ix(0k) = xk(0k) + xx(Ok)] < [x(0k) — Xx(0k)| + Xk (Ok)]]-
Taking liminf on both sides of the above inequality with respect to k — oo gives that
liminf x(6x) = 0.
k—o00
This completes the proof. O

2.7 Numerical Studies: The ML Model Estimation

The ML model estimation that involves the computation of high-dimensional integrals is
one of the important applications of the STRA, as motivated in Section 2.1. In this section
we use the STRA to estimate ML models with real choice datasets and compare it with
existing algorithms.

In this section, we consider that the utility w, j(@n_j, Yn,j, B, ¥n) in (2.1) is of the following

linear form,

Un,j (wn,]ﬁ Yn,j» 5: 'Yn) = ﬂT.%'an + ’Y;yn,j + En,js

where n € N is the index of the data point corresponding to observation (customer) n,
Jj € Sy is an alternative in the choice set S, of n, z,; € R™! represents the vector of
attribute values corresponding to the deterministic preference coefficient vector g € R™ |
and y,; € R™2 is the vector of attribute values corresponding to the random preference
coefficient vector v, € R™2,

We assume that ~, is the Gaussian vector with mean vector u and covariance matrix

3. By decomposition, we have
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where o is a lower triangular matrix. Note that ¢ is not unique for this the decomposition
of such kind, unless we require all its diagonal entries to be positive and such a o will be
unique and is called the Cholesky factor. Let &, be the my—dimensional standard Gaussian

vector. We can represent the random coefficient v, by

Yn = HTFO 5717
and 0 := (B, u, o) is the vector of parameter values to be estimated. Thus, the probability,
pn(0), of customer n € N choosing j € S,is given by the following ML model,

exp{ BTy 5, + 1 Yn,j, + &TLUTyan}
" Xies, XPIBTTn  + WTYng + &0 TYn ) |

pn(0) = Eg [Fn(0,8)] = Ee¢

where j, € S, is the chosen alternative of customer n. The average log-likelihood of 8 is
defined in (2.2). As explained in Section 2.1, it is of great interest to us to estimate 6 that
maximizes the average log-likelihood, and the estimation problem (i.e., the MLE) can be
considered as an optimization problem, with the objective function f(#) defined in (2.3)
and approximate objective function f& defined in (2.4) and with r(-) = —In(-).

In addition, we incorporate the constraint that the diagonal entries of ¢ are nonneg-
ative; otherwise, we will have 2™2 estimates of o which all give the same p,(¢), which
means we have 22 indistinguishable solutions. Thus, we consider to solve the constrained

optimization model:
b (2.34)
S.t. 0 < oi; < M, Vi€ {172,...,7712},

where M is a big number that we assume to be 264 in our numerical studies. It follows from

[7] that the ML model defined above satisfies A.3, A.4, A.5, A.8 and A.9 and A.10.
The STRA is tested with two real datasets: (i) MobiDrive data and (ii) the Airline data

(described in Section 1.3). We first discuss the numerical results with the MobiDrive data.

2.7.1 The MobiDrive Data

In this section, we test the STRA using the MobiDrive data, and compare the estimation

results with the estimation results obtained under AMLET (version 0.11.0) with the same
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data, where AMLET is a software tool developed by [6] to estimate ML and MNL models.
We highlight below the two differences between the STRA and AMLET for the ML model

estimation with the MobiDrive data.

(1) The STRA uses the sample allocation Algorithm 4 to adaptively update the sample
size for each n according to the integration sampling error incurred in computing
pr, (0) of observation n, while AMLET introduces the same maximum integration

sample size I, for all n.

(2) The STRA computes the Hessian of the approximate objective function (2.2) using
the expression provided in Appendix B.3 for the ML model, while AMLET uses the

approximation of the Hessian based on the BFGS method [50].

For the computational test with the MobiDrive data, the STRA is coded with C and both
the STRA and AMLET are executed under CentOS Linux 7.0 on a PC with Intel i5 2.50GHz
CPU and 8GB RAM.

The MobiDrive dataset describes the travel mode choice of travelers each of which could
choose among from five possible alternatives: (i) car driver, (ii) car passenger, (iii) public
transport, (iv) walk and (v) bike. The dataset involves 10 alternative-specific and traveler-
specific factors, including urban household location, suburban household location, full-time
worker, female and part-time, married with children, annual mileage by car, number of stops,
time, cost and time budget. The data were originally collected from the six-week travel dairy
in Karlsruhe and Halle (Germany) by [5], and later cleaned to only concentrate on Karlsruhe
for a better data quality by [6]. The dataset contains a set N of 5799 observations and
each observation corresponds to a traveler making travel mode choice, but it might be the
case that a traveler cannot access the full set of five alternatives, i.e., a traveler’s choice set
could be a subset of the five alternatives. Readers can refer to [6] for more details about
the MobiDrive data.

The ML model calibrated with this dataset has 14 parameters with three random mem-
bers, time, cost and time budget, and the other 11 deterministic parameters of which there

are four alternative-specific constants with car driver being the base. It thus follows that
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my = 11, mo = 3 and o € R3*3. We suppose furthermore that o is a diagonal covariance
matrix. Thus, 6 := (8, p, 01,1,02,2,023) € R!7 is the vector of parameters to be estimated.

Both the STRA and AMLET are used to solve the optimization model (2.34) with the
MobiDrive data and the same initial point. As the MobiDrive contains only a fair amount
of data (5799 observations), we load the full set of data at the initial step of the STRA and
do not resort to the data sampling process. Let @\Ig’TjR A denote the k-th last solution that
is accepted at Step 4 during executing Algorithm 1 (i.e., the STRA) with random seed
#7, where k € {1,2,...} and j € {1,2,...,10}. For all k£ > 2, we call é\]S’CLlZRA the k-th last
intermediate estimate with seed #j. In addition, we refer @\le to as the stopping estimate
with seed #j obtained at the termination of algorithm i € {STRA, AMLET}. To evaluate
an estimate 0, we feed 0 into an approximate function defined in (2.4) with N = N and
|I,,| = 10,000 for each n € A" and refer

PO = s 3 (0, ()
5799 =

to as the “true” log-likelihood of 9. For any k € {2,...,}, define
1 Qo
7l * k]
ferra = 0 Z f*(Osra)
j=1

as the average true log-likelihood of the k-th last intermediate estimate obtained using the

STRA, and define o

o= i);f*@l’j)
as the average true log-likelihood of the stopping estimates computed using algorithm ¢ €
{STRA, AMLET}.

The AMLET introduces a maximum integration sample size, I ax, as input for comput-
ing pr, (0) for all n, by which that the number of integration samples, |I,|, is constrained
to be bounded above by I. for all n € N. Table 7 shows the true log-likelihoods of
the stopping estimates with 10 seeds, computed using AMLET under nine maximum in-
tegration sample sizes, I = 100,500, 1000, 2000, 3000, 4000, 6000, 8000, 10000, and the

corresponding computational cputimes.
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The STRA, however, does not have a restriction on the number of integration samples
used for computing pr, (0), the SAA of the choice probability of each observation and, it
adaptively controls the sample size for each observation according to the integration sam-
pling error incurred in computing the SAA of that observation (see Algorithm 4). Table 8
shows the true log-likelihoods evaluated at both intermediate and stopping estimates with
10 seeds that are obtained during solving (2.34) by using the STRA, in which a starred
entry denotes the stopping estimate with each of the seeds. Table 9 shows the cputime
that has been consumed at obtaining each intermediate or stopping estimate with each of
the 10 different seeds under the STRA (i.e., at Step 4 in Algorithm 1). For example in
Table 8, f*(ag%RA) = 1.1654159 in column two is the true log-likelihood of the 6-th last
intermediate estimate with seed #1 obtained at Step 4 in Algorithm 1 when running the
STRA. Correspondingly, 112 in column two of Table 9 is the cputime spent when the 6-th

last intermediate estimate, gg%R A» is obtained.
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Figure 6: The STRA v.s. AMLET with the MobiDrive dataset.

We next compare the estimation results obtained using the STRA and AMLET. Fig-
ure 6 shows the average true log-likelihoods of the stopping estimates for both the STRA
and AMLET, and the average true log-likelihoods of intermediate estimates for the STRA.
The nine stars on the dashed line denote the average true log-likelihoods of the stopping
estimates for AMLET under the nine different maximum integration sample sizes versus
their corresponding mean cputimes shown in Table 7. The 18 circles located on the solid
line represent average true log-likelihoods, fé“TR A for ke {1,2,...,18} versus their corre-
sponding mean cputimes shown in Table 9. Note that fSITR A = 1.1646499 is the average
true log-likelihood of the stopping estimates for the STRA.

As Figure 6 shows, the average true log-likelihood for the STRA decreases as the algo-
rithm progresses until the stopping estimate is approached. The average true log-likelihood
of the stopping estimates of the STRA is smaller than that of AMLET no matter which one
of the nine maximum integration sample sizes is adopted in AMLET. This indicates that

the STRA averagely generates a better stopping estimate than AMLET does as far as the
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stopping estimates are concerned. More interestingly, the STRA generates the estimates
that give rise to smaller average true log-likelihoods than AMLET does as the computation-
al time tends to be longer. In particular after 749.9s at which the third last intermediate
estimate is obtained (in an average sense) under the STRA, the estimates of the STRA
perform better than the stopping estimates that are obtained under AMLET. This shows
that the STRA tends to produce a better estimate than AMLET when the two algorithms

are terminated at the same stopping time no earlier than 749.9s.
2.7.2 The Airline Data

An additional difference between the STRA and AMLET is that the STRA embeds a
data sampling process to handle large-scale datasets, which is not, however, implemented
in AMLET. To test the STRA on a larger dataset, we use the 2011 airline data that we
discussed earlier in Sections 1.3 and 1.5.1. The dataset has 326,148 observations and each
observation has a choice set that could include from one to hundreds of alternatives. The
ML model calibrated with this dataset is described in Section 1.5.2

For the large-scale application, both the STRA and SAA-50 are coded with Matlab and
executed under Windows 7 on a PC with Intel i5 2.50GHz CPU and 8GB RAM.

For the large-scale data test, the STRA is stopped if the following criterion is satisfied,

max{||gkll2, ok,1,062} < € and [N = |N]|

where ¢ = 1075,

The estimated parameter coefficients, ¢t-statistics and p-values are summarized in Ta-
ble 16 in Appendix C. In the table, §STRA represents the vector of estimated coefficients
using the STRA and §SAA-50 is the vector of estimated coefficients using the traditional
SAA method [58] with a fixed integration sample size |I,,| = 50 for each n with 2011 data,
which we refer to as the SAA-50.

Note that there are 3 x 3 X 2 x 5 = 90 combinations of encoded number of days to
departure, booking time-of-day, booking day-of-week, and booking channel. As explained
in Section 1.5.1, we expect the price sensitivity of customers to depend on number of days

to departure, booking time-of-day, booking day-of-week, and booking channel. Therefore,
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we estimate a separate price coefficient for each of the 90 combinations. One may refer to
Section 1.5.1 for detailed discussions of the factors and attributes used for the estimation. In
Table 16, each of the 90 combinations is represented by a combination of four codes given in
Table 2, listed in the column headed “Attribute”, with the associated price coefficient listed
in the column headed “é\STRA” of Table 16. For example, the estimated coefficient —12.05400
for combination “1,1,1,2” represents the price coefficient for customers who book [0,6] days
before departure, between 00 : 00 and 09 : 00 on a weekday, and through the airline website.
Also, the estimated coefficient 3.45670 for “XX-1-3 is the most expensive” represents the
coefficient for a fully refundable ticket of airline XX, fare class 1 (the only fully refundable
fare class), and airline call center channel. The estimated coefficient 2.94450 for “XX-13-2
is the cheapest” represents the coefficient for the cheapest ticket for an airline XX flight,
fare class 13, and airline website channel. In addition, the estimated coefficient 0.41643

i

for “og1” represents entry (2,1) of the lower-triangular Cholesky factor of the covariance
matrix for the ML model. The estimate parameter coefficients obtained using the SAA-50
are listed in the column headed “55 AA-50 - It can be observed from Table 16 that the price
coefficients estimated using the STRA are more negative than the coefficients estimated
using the SAA-50, thus rendering the estimation results to capture more price sensitivity
and preference heterogeneity among customers.

Table 10 shows the computational times and approximate average log-likelihoods eval-
uated at the stopping coefficients estimated using the STRA and SAA-50 with the same
initial point. The column headed “ngis/90” shows the number of price coefficients out of
90 price coeflicients of the ML model that are statistically significantly less than the cor-
responding price coefficients of the MNL model estimated with the same 2011 airline data
(see Sections 1.4.1 and 1.6) at the 95% confidence level. The value ngg /g is obtained using
the method described in Section 1.7.2. The results show that, compared with the SAA-50,
the STRA achieves a much better solution by using significantly less computational time,
and generates more price coefficient estimates that are statistically significantly less than

the corresponding price coefficients of the MNL model. This is consistent with our intuition

that the ML model should have more negative price coefficients than the MNL model since
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the ML model is structured to captures customer preference heterogeneity.

Table 10: Comparison between the STRA and the SAA-50 with the 2011 airline data.

‘ Algorithm ‘ Cputime ‘ Approximate average log-likelihood | ng,/90

STRA 2.7075 days 7.2172756 68
SAA-50 > 30 days 7.2617339 25

2.8 Conclusions

The ML-type model estimation usually involves computing high-dimensional integrals, which
excludes the possibility of using quadrature methods. In this chapter, we present an s-
tochastic trust region algorithm (i.e., the STRA) to estimate ML-type choice models. The
algorithm embeds a data sampling process and an integration sampling process under the
framework of the trust region algorithm. The first process is used to sample from a large
set of observations (data), and the second process is used to compute the SAA of the
choice probability associated with each observation, which is expressed in terms of a high-
dimensional integral.

During the sampling processes, the algorithm adaptively controls the data sample size
and integration sample size, according to the magnitude of the sampling errors compared
with the structural error between the approximate average log-likelihood and its model. We
show that the algorithm converges to the first-order criticality points w.p. 1 and test the
algorithm with two real datasets, the small-size MobiDrive dataset and the large-size Airline
dataset. The numerical studies show that the STRA exhibits a competitive performance
compared with AMLET, and it outperforms the traditional SAA-50 when it is applied to

large-size estimation problems.
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CHAPTER III

PRODUCT ASSORTMENT COMPETITION WITH THE
DECOY EFFECT

The fraction of customers who choose a particular item from among a set of available items
can be increased significantly by the inclusion of a related inferior (and apparently irrelevant)
item in the choice set. This violation of the independence from irrelevant alternatives and
the regularity properties is called the decoy effect, dominance effect, or attraction effect.
The decoy effect is one of the robust cognitive biases in the decision-making processes of
customers. We propose a discrete choice model that is simple and that captures decoy
effects. A monopolist may take advantage of the decoy effect to increase profit. However,
exploitation of the decoy effect in a competitive setting requires closer investigation. To
understand the effect of decoys on competition, we study product assortment competition
in a duopoly in which each seller may choose whether to include a decoy in the seller’s
product assortment. We provide a complete characterization of the Nash equilibria and their
dependence on choice model parameters. We study the evolution of assortment competition
and we evaluate the stability of the equilibria in the context of sellers learning about the
behavior of their competitors. Our results indicate under what conditions it is beneficial
for a seller to include a decoy into the seller’s assortment, and under what conditions the
seller obtains a free ride from the competitor’s decoy. Our results also show that every pure-

strategy Nash equilibrium is stable and every mixed-strategy Nash equilibrium is unstable.
3.1 Introduction

It has been observed in many settings that human decision making deviates from axioms of
rational choice [65, 48]. Some of these deviations are sufficiently widespread and predictable
to be useful in forecasting aggregate choice outcomes, for example, in forecasting market
shares. Therefore it may be a good idea for a seller to take such behavioral phenomena

into account when designing a product portfolio or when choosing prices of products. In
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this paper we focus on one such behavioral phenomenon, called the decoy effect, dominance
effect, or attraction effect, and we investigate the possible outcomes if two competing sellers
both try to take the decoy effect into account when selecting their product portfolios.

The decoy effect refers to the phenomenon that the addition of an item to decision
makers’ choice sets significantly increases the market shares of other, usually similar but
superior, items in the choice sets, while getting minimal market share itself. The item
that serves this purpose to increase the market shares of target items is called a “decoy”.
The decoy effect is one of the robust cognitive biases in the decision-making processes of
customers. It has been widely observed and demonstrated in both real-life and experimental
choice situations. The following two examples are excerpted from [62], and [27].

Ezample 1: [62] provided an experimental example. In one setting, 106 people were each
offered a choice between $6 and a Cross pen. In this setting, 36% of the people chose the
pen and the remaining 64% chose the cash. In another setting, 115 people were each offered
a choice among $6, a Cross pen, and another less attractive pen. In this setting, 46% of the
people chose the Cross pen and 52% of them chose the cash. Only 2% of the people chose
the less attractive pen.

Example 2: [27] investigated the sales of baked beans. Initially, the following two brands
were put on the shelves of a local grocery store: 420-g Heinz baked beans for 29 pence
each, and 420-g Spar baked beans for 21 pence each. After one week, Spar baked beans
accounted for only 19% of sales, even though it was offered at a lower price. Then a third
product, 220-g Spar baked beans for 21 pence each, was added (as a decoy). After another
week, the market share of 420-g Spar baked beans increased to 33%. The authors finally
concluded that the decoy effect “is robust, has a wide scope, is quite sizable and is of
practical significance”.

The decoy effect is one of the ways in which human decision making deviates from
axioms of rational choice, such as Luce’s choice axiom [42, p.6]. Here we show how the
decoy effect violates some corollaries of Luce’s choice axiom. One of the corollaries, called
“independence from irrelevant alternatives (IIA)” or “proportionality”, asserts that the ratio

of choice probabilities of any two alternatives is independent of the presence or absence of
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a third alternative in the choice set [42, p.9]. Another corollary is that for each alternative
there exists a nonnegative response strength such that for every choice set, the choice
probability of each alternative in the choice set is equal to the ratio of the response strength
of the alternative to the sum of the response strengths of all the alternatives in the choice
set [42, p.23]. This corollary further implies the so-called “regularity” property in a choice
context. The regularity property states that the choice probability of an alternative from a
choice set cannot be increased by adding more alternatives to the choice set. Widely used
choice models such as attraction models, including the multinomial logit (MNL) model,
satisfy the ITA and regularity properties. However, the IIA and regularity properties are
violated in choice settings with the decoy effect [67, 53], because if the decoy alternative is
included in the choice set, then the choice probability of the target alternative increases,
clearly violating the ITA and regularity properties.

An important decision made by retailers or revenue managers is to choose the set or
assortment of products to offer to customers. As illustrated by Example 2, a revenue
manager might choose an assortment that includes a decoy to increase the market share
and/or revenue of a target item. The objective of this paper is to understand how decoy
effects together with other demand characteristics impact equilibria of product assortment
competition. In a competitive setting, there is quite a rich variety of possible outcomes
resulting from the choices of sellers to include decoys in their assortments or not. For
example, as illustrated by Example 2 above, if one seller includes a decoy and the other
does not, then the first seller may gain revenue and the second seller may lose revenue.
In such a setting a Nash equilibrium may be for both sellers to offer decoys. In a setting
in which sellers have more products, it is also possible that a decoy introduced by one
seller shifts demand from one product offered by that seller to another product (the target
product) offered by that seller, and the same decoy also shifts demand among the other
seller’s products. In such a setting a Nash equilibrium may be for one seller to offer a decoy
and the other seller not to offer decoys (but rather get a “free ride” on the first seller’s
decoy). It is also possible that the overall effect of a decoy, through a shift of demand

among a seller’s products as well as through its effect on demand for the competitor’s
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products, is such that none of the sellers offers decoys in equilibrium.

We consider a duopoly in which both sellers have knowledge of the decoy effect and each
one has to decide whether or not to add a decoy into the assortment offered to customers.
To introduce the model and develop intuition, we first characterize the Nash equilibria for
a setting with simple product sets in which each seller’s product set contains only a target
product and a decoy product. Thereafter we extend the results to assortment competition
with general product sets including decoys. We characterize the conditions under which
different possible outcomes hold. Under some conditions there are multiple Nash equilibria.
To develop a better understanding regarding which of these equilibria are more reliable
as predictors of the outcome of the product assortment competition, we study dynamical
systems models of learning by the competitors, and establish which of the equilibria these
systems converge to. Two widely used learning models, Cournot adjustment and fictitious
play, are employed to analyze the dynamic behavior of sellers’ decisions when the sellers try

to learn the strategies of their competitors.
3.1.1 Contributions

This paper makes the following contributions:

(1) First, we propose a modified attraction discrete choice model that captures the effect
of a seller’s decoy on the market shares of the seller’s own products (the intra-decoy
effect) as well as the market shares of other sellers’ products (the inter-decoy effect).
To the best of our knowledge, this is the first choice model to explicitly incorporate
context-dependent behavioral effects such as the decoy effect, the similarity effect, and

the compromise effect [53] in a competitive setting.

(2) Second, we use the modified attraction discrete choice model to provide a complete
characterization of the pure- and mixed-strategy Nash equilibria for assortment com-

petition in a duopoly.

(3) Third, to evaluate the stability of the equilibria, we consider two learning processes,

Cournot adjustment and fictitious play, of the sellers in assortment competition, and
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characterize the behavior of the resulting dynamical systems. Part of this analysis
also gives a geometric characterization of the dynamics of fictitious play for general
2 x 2 games that is more complete and easier to follow than previous results for such

games.

3.1.2 Managerial Insights

This paper also contributes the following managerial insights:

(1)

In the setting with simple product sets, if the intra-decoy effects dominate the inter-
decoy effects (in a sense specified in Section 3.4.1), then both sellers include decoys
in their assortments. In other words, if introducing a decoy benefits a seller much
more than its competitor, then the seller offers an assortment with the decoy. On
the other hand, if the inter-decoy effects dominate the intra-decoy effects, then no
seller includes a decoy in its assortment. If the intra- and inter-decoy effects are
“approximately equal”, then the equilibrium consists of one seller offering a decoy

and the other seller not offering a decoy.

In some cases a mixed-strategy Nash equilibrium coexists with two pure-strategy
Nash equilibria. In these cases, each pure-strategy Nash equilibrium is a steady state
of the Cournot adjustment process (but a mixed-strategy Nash equilibrium cannot be
a steady state of a Cournot adjustment process). If the two sellers choose an initial
strategy profile that is not a pure-strategy Nash equilibrium, then the Cournot ad-
justment process cycles. The long-run decision frequencies of the Cournot adjustment
process do not correspond to any mixed-strategy Nash equilibrium, nor any correlated

equilibrium, nor any coarse correlated equilibrium.

In the cases where a mixed-strategy Nash equilibrium coexists with two pure-strategy
Nash equilibria, each pure-strategy Nash equilibrium is a steady state of the fictitious
play process, but the mixed-strategy Nash equilibrium is not a steady state of the
fictitious play process. In cases with simple action sets (either include a decoy or not),

the fictitious play process always converges regardless of the initial strategy profile
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chosen by the sellers. In the case of symmetric sellers, and for special initial strategy
profiles that we explicitly give, the fictitious play process converges to the mixed-
strategy Nash equilibrium. In all other cases the fictitious play process converges to

one of the pure-strategy Nash equilibria.

(4) In the sense outlined above, the pure-strategy Nash equilibria are reasonable predictors
of the outcome of assortment competition with decoys, but it is unlikely that sellers

will settle on one of the mixed-strategy Nash equilibria.

The remainder of this paper is organized as follows. The related literature is reviewed
in Section 3.2. In Section 3.3, we present a modified attraction model of consumer choice
that includes the decoy effect, and the duopoly model for product assortment competition
with the decoy effect. We characterize the Nash equilibria and study the dynamics of
two dynamical systems models of learning, for competition with simple product sets in
Section 3.4, for competition with general product sets and simple actions in Section 3.5, and
for competition with general product sets and general actions in Section 3.6. Conclusions
are summarized in Section 3.7. All the proofs and supporting material are provided in the

Appendix A to this paper.
3.2 Literature Review

We classify the literature related to our research into four branches: (1) empirical studies
that identify and investigate the nature of the decoy effect, (2) choice models that explicitly
incorporate the decoy effect, (3) models of assortment planning and competition, and (4)

models of learning in games.
3.2.1 Empirical Studies of the Decoy Effect

Since [36] and [37] identified the decoy effect, and recognized that it violated the ITA and
regularity properties that are implied by some rational choice models, there have been
many experimental studies that identified the decoy effect in consumer product choice
[61, 62, 67, 32]. The decoy effect is deemed to be robust in the sense that it has been

observed in a variety of choice settings, ranging from in-store grocery purchases [27] to
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on-line subscriptions [4], regardless of whether the products in the choice sets are traded in
a market or not [8], or whether the decision makers are humans or honey bees [57]. [2] used
experimental studies to show that the decoy effect can be used to facilitate coordination

among players to reach efficient outcomes.
3.2.2 Models Capturing the Decoy Effect

Compared with the large number of empirical studies, relatively few papers have proposed
choice models that incorporate the decoy effect. [67] modeled the decoy effect (called the
local context effect) by adding the relative advantages of the target product over all other
alternatives in the same choice set to the context-free utility of the target. It is assumed that
the context-free utility of a product has an additive representation as the sum of functions
measuring the contribution of each attribute to the total utility of the product. Then
the advantage of a product over another product is given by the sum of the nonnegative
differences of the attribute function values of the two products. It is shown that the model
is able to account for the decoy effect and some other context-dependent effects. [53]
proposed a unified utility model to incorporate context effects including the compromise,
decoy (attraction), and similarity effects. The contribution of the decoy effect to the utility
of the target is modeled as the distance between the attribute points of the (dominated)
decoy and the (dominating) target parallel to a preference vector in the attribute space,
where the preference vector [66] is chosen to point from the least desirable attribute point
to the most desirable attribute point in the attribute space. These studies model the total
utility of an alternative as the sum of a context-free utility of the alternative and various
utility increments contributed by context effects such as the decoy effect, by using pairwise

comparisons of attribute values.
3.2.3 Assortment Decision Models

In recent years various studies of both static and dynamic assortment decision problems have
appeared. [39] provide a review of static assortment problems and [68] provide a review of
dynamic assortment problems. A number of recent papers, such as [56, 41, 25, 26] and [29],

have addressed assortment optimization problems under a variety of discrete choice models.
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Relatively few papers on assortment competition have appeared. [35] considered price,
service quality, and product assortment competition based on the logit model that satisfies
the ITA property. [18] studied how the adoption of search-facilitating technologies, such as
the internet, affects equilibrium prices and assortments in a game with competing sellers.
[11] considered both assortment-only competition and joint price and assortment compe-
tition between two retailers subject to a constraint that each retailer can offer at most a
certain number of products, and characterized conditions for existence and uniqueness of
a Nash equilibrium. [40] considered assortment and price competition under nested logit
models.

We are particularly interested in assortment decision models that explicitly incorporate
specific features of consumer choice behavior. One such feature is the satiation effect, that
is the phenomenon that consumers’ marginal utilities for a product tend to decrease as more
of the product is consumed. [20] incorporated the satiation effect into an attraction model
of demand, and used the model to analyze price and assortment competition among sellers.
Their paper highlighted the importance of incorporating this feature of consumer behavior
into assortment decision problems. Our paper focuses on assortment competition with the
decoy effect, one of the context-dependent effects in consumer choice. The papers reviewed
here focus on describing equilibrium behavior. In addition to this, we also evaluate the
stability of the equilibria by studying dynamical systems describing sequences of decisions

made by competing sellers under dynamic learning.
3.2.4 Learning Processes in Games

There is a large literature on learning in games that is related to our research. See [28] for
an overview of earlier literature on learning in games. We specifically mention the results
of [52], [44], and [46], who established the convergence of discrete-time fictitious play for
respectively any two-person finite-action zero-sum game, any non-degenerate nonzero-sum
2 x 2 game, and any common-interest game. [45] showed that fictitious play for a 2 x 2 game
converges to a Nash equilibrium, given that each player starts with a degenerate probability

distribution for the other player’s actions. [30] showed that continuous-time fictitious play
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for a two-person zero-sum game converges uniformly at rate 1/¢.

The dynamic behavior of fictitious play for general 3 x 3 (or m x n with m,n > 3) games
can be much more complicated. Fully characterizing it remains a challenge. [60] argued
that fictitious play for a 3 x 3 game with payoff matrices that satisfy certain conditions cycle
without convergence to any Nash equilibrium. More recently, [69] considered a 3x 3 bimatrix
game with a particular structure and showed that fictitious play can exhibit periodic or even
chaotic behavior.

Most of these studies are aimed at verifying whether or not fictitious play converges to
a Nash equilibrium of the game. In addition, our paper provides a complete, but simple
geometric, characterization of the dynamics of fictitious play in 2 x 2 games. In the process
we also extend the results of [45] to the more general setting in which each player starts with
an arbitrary probability distribution for the other player’s actions. Also, our proofs cover
some cases that were missed in the proof in [45]. We also provide an example of assortment
competition with the decoy effect, in which each seller chooses among three assortments,

and fictitious play cycles without converging to any Nash equilibrium.
3.3 Model of Buyer Choice and Seller Competition

First we present a general choice model that incorporates contexts effects in Section 3.3.1,

and then we present a particular version of it for the decoy effect in Section 3.3.2.
3.3.1 A General Choice Model Incoporating Context Effects

Let S denote a set of alternatives of interest, for example, S may represent a set of products
that can be offered to customers (e.g., airline tickets for different fare classes). If a no-
purchase alternative is of interest, then it is denoted with 0, and is understood to be
included in S. For any assortment A C S that can be offered to customers, the fraction of

customers choosing (or the choice probability of) i € A can be written as

¥ (A)v;

qZ(A) ZkeA ’Yk:(A)Uk

(3.1)

Choice model (3.1) is general, because for any given choice probabilities ¢;(A) and v; > 0 for

all A and 4, one can set v;(A) = ¢;(A)/v;. The idea behind this model is to interpret v; > 0
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as the intrinsic attractiveness (the context-effect-free attractiveness) of alternative i € S,
and 7;(A) as factors that capture context effects (such as the decoy effect). The intrinsic
attractiveness can be thought of as a function of the attribute values of alternative ¢ and
the decision maker (but not of the other alternatives in the choice set). One can assume,
without loss of generality, that intrinsic attractiveness is scaled in such a way that the
intrinsic attractiveness of one of the alternatives, such as the no-purchase alternative, is
normalized to be unity, i.e., vg = 1. An important special case of choice model (3.1) is the
attraction demand model with v;(A) = 1 for all A C S and ¢ € A. Attraction demand
models satisfy the ITA and regularity properties. The attraction demand model includes
the multinomial logit (MNL) model and the multiplicative competitive interaction (MCI)
model as special cases. An example of a multinomial logit model with price p; as the only
attribute is choice model (3.1) with v;(A) = 1 and v; = e%~%i for all A C S and i € A\ {0},

where 6 is a constant parameter and 6 > 0 represents the price sensitivity of customers.
3.3.2 A Buyer Choice Model Incorporating the Decoy Effect

First, consider the decoy effect in a monopoly setting. Of particular interest is a target
product t € S and an associated decoy product d € S (d # t). The target product
dominates the decoy product in terms of all attributes. The target product may be of
particular interest to the seller for many reasons, for example because it is a lucrative
product, or because the seller wants to increase its market share, or because it is a new
product and the seller needs to quickly build its brand reputation. To study the decoy

effect, choice model (3.1) with

> 1 if i=teAdeA,
vi(A) ¢ = 0 if i=deAteA,
= 1 for all other cases
forall A C S and i € A, is of particular interest. Note that the ITA and regularity properties
do not hold for the resulting choice model.
Next we present a choice model that incorporates the decoy effect for a duopoly of two

sellers who offer substitutable products (e.g., two airlines); the extension to more than two
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sellers is straightforward with additional notation. The sellers are indexed by m € {—1, 1}.
Each seller m has a set S, of products that can be offered to customers. Each seller m
has a target product t,, € S,, and an associated decoy product d,, € Sy, (dm # tm). As
before, the intrinsic attractiveness of product i is denoted by v; > 0, and the no-purchase
alternative is denoted by 0. Let US := {0} U S_; U S1, and for any given A4,, C Sy,
m = +£1, let UA := {0} U A_; U A;. For any UA and i € UA, let v;(UA) denote the factor
that represents the context effect of choice set UA on product i. Thus, given an assortment

A, C€ S, for each seller m, the probability of a customer choosing i € UA is given by

B ’)/Z'(UA)’UZ'
w(d-1,4) = > reua Ye(UA) v (3:2)

In addition to the effect of each seller’s decoy on the demand for the seller’s target, we are
also interested in the effect of each seller’s decoy on the demand for the other seller’s target,
since in competitive applications the target products of the sellers may be similar. Thus,
of particular interest are the effect of the decoy of seller m on the demand for the target of
seller m, which we call the intra-decoy effect, and the effect of the decoy of seller —m on
the demand for the target of seller m, which we call the inter-decoy effect. Therefore, to

study the decoy effect, we will consider choice model (3.2) with

am > 1 if  i=t, €UAdy, € UAd_,, ¢ UA,
By > 1 if i=t, €UAdp & UA,d_,, € UA,
71i(UA) = amfBom > 1 if  i=t, € UA,dy € UA, d_,, € UA,

0 if i=dy,ecUA(t, € UAort_, € UA),

1 for all other ¢ € UA,

where «,,, m = +£1, are called the intra-decoy factors, and 5,,, m = +1, are called the

inter-decoy factors.
3.3.3 Model of Assortment Competition

In this section we formulate each seller’s assortment problem. We assume that each product ¢
has a given excess p; > 0 of price over marginal cost, and that each seller’s objective is to

maximize the seller’s total profit. (Similar to many airlines, one may choose multiple price
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classes for essentially the same product, and consider each product-price combination as a
“product” in the model.) Then, the objective function m, of each seller m is a function of

the assortments (A;,, A_,,) chosen by the sellers, and is given by

~Yi(UA)v;
Tm(Am, A_p) = E Piqi(A_1, Ay) E .
i€Am i€ Am ZkeuA’Yk( A)vy

For each seller m, let C,, C 2% denote the set of feasible actions (pure strategies) of
seller m, where 2% denotes the collection of subsets of a set S. We assume that each
seller always offers its target product, i.e., we consider action sets of seller m that satisfy
Cpn C {A,, € 25" : t,, € A,}. Bach action A,, € C,, denotes an assortment that seller m
can choose to offer to the market. Let A(Cy,) denote the set of probability distributions
on set Cp,, that is, A(Cy,) denotes the set of mixed-strategies over action set C,,. Thus,
for each z,, € A(C,,) and A,, € Ch,, Tm(As) denotes seller m’s probability of choosing
action A,,. Let C := C_; x C denote the set of joint actions, and let A(C') denote the set
of (joint) distributions over C.

Let BR,, : A(C_,,) — 22(Cm) denote the mixed best response correspondence of seller m
given by

BR,,(T_m) := arg max > m(An, Ap)T o1 (AT (Ay)
ZmEA(Cm) A Tee

and PBR,, : A(C_,,) — 297 denote the pure best response correspondence of seller m given

by

PBR,(Z—yp) = arg max Z T (Amy A_m)T—m(A_pm).
me m

A_meC_m
If z_,(A_y,) = 1 for some A_,, € C_,,, then we also write PBR;,,(A_y,) for PBR,,(Z_).
A mixed-strategy profile z* = (z*,, %) € A(C_1) x A(C) is called a mixed-strategy Nash
equilibrium if z¥, € BR,,,(z*,,) for all m, and a pure-strategy profile (A*,, A}) € C' is called
a pure-strategy Nash equilibrium if AY € PBR,,(A*,,) for all m. Note that for any m,
any T_, € A(C_y,), any Z;, € BRy,(Z_y,), and any A}, such that z;,(A%,) > 0, it holds
that Ay, € argmaxa,ec,, > 4 cc . Tm(Am, Aom)T-m(A-_m), that is, each action with

positive probability under a mixed best response must be a pure best response to T_,,.
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It follows that all actions A}, such that z;,(A;,) > 0 have the same payoff for seller m,
and BRy, (Z_,,) is the convex hull of argmaxy,, cc,, ZA_meC_m T (Amy A_m)Tom(A_p,) in
A(Cp,). If there exists joint actions (A*, A7) € C such that z},(A},) = 1 for all m, then
A% € PBR,,(A*,,) for all m, i.e., (A*, A}) is a pure-strategy Nash equilibrium.

When we consider convergence of strategy profiles, we will also consider the notions of
correlated and coarse correlated Nash equilibria. A probability distribution z* € A(C) is
called a correlated equilibrium if for all m and all A,,, A}, € Cy, it holds that

> mm(Am, A )T (A, A > Y mm(Al, AT (AL AL, (3.3)
A_meC_m A_meC_m

A probability distribution z* € A(C) is called a coarse correlated equilibrium if for all m
and all A7, € Cp, it holds that

> (A AT (AL AY) > > A, AT (AL Ay, (3.4)
(Afl,Al)EC (A,17A1)€C

It is easy to verify that each Nash equilibrium is a correlated equilibrium, and each correlated

equilibrium is a coarse correlated equilibrium.
3.3.4 Models of Seller Learning

It is customary in much of the literature on applications of non-cooperative game theory to
identify equilibria, but not to address the question whether there is reason to be confident
that the players will settle on a specific equilibrium. This question is relevant even when
there is a unique equilibrium, and is especially pertinent when there are multiple equilib-
ria. In this paper we approach this question by considering processes in which the sellers
repeatedly make assortment decisions while they learn about the other sellers’ assortment
decisions. The idea is that if the sellers’ decisions converge to an equilibrium, then the
equilibrium may be a reasonable prediction of the sellers’ long-run behavior, and if the
sellers’ decisions do not converge to an equilibrium, then the equilibrium is a questionable
prediction of the sellers’ decisions.

In general, sellers may learn about many things, including the behavior of their cus-
tomers (i.e., their demand) and their competitors, and their costs. In this paper, we restrict

attention to sellers who learn about the other sellers’ assortment choices. We consider a
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discrete-time process with time indices ¢t € N := {1,2,...}. At each time ¢, each seller m
has observed all previous actions A_,,(0),..., A_,,(t — 1) of the other seller. Each seller m
then chooses an action A,,(t) that is a best response to the seller’s forecast of the action
that the other seller is about to take, where the forecast is based on the observed data
A_n(0),..., A (t —1). Thereafter these steps repeat at the next time ¢ + 1. We are

interested in answering the following questions for the resulting process:

Q.1. What are the steady states (fixed points) of the process? Specifically, do these steady

states coincide with the equilibria?

Q.2. Are these steady states stable? Specifically, does the process converge, and if so, does

it converge to an equilibrium?

Q.3. How does the initial state affect the long-run behavior of the process?
3.4 Assortment Competition with Simple Product Sets

To facilitate explanation of the results, we first consider the setting with simple product sets
Sm = {tm, dm} in this section, and thereafter we consider the setting with general product

sets in Sections 3.5 and 3.6.
3.4.1 Characterization of Equilibria

In this section we consider assortment competition with the decoy effect for the setting in
which each seller has a simple product set S,, = {tm,dn}. The set of actions is C), =
{AY ALY where A = {t,,} and Al = {t,,,d,}. The four possible action pairs are
(A, AY), (AL, AD), (A%, A]), and (A1, A}). Next we give necessary and sufficient
conditions in terms of the decoy factors for each of these action pairs to be a pure-strategy
Nash equilibrium. Intuitively, if a seller’s inter-decoy factor is small relative to the seller’s
intra-decoy factor, then it is attractive to the seller to use the decoy, and if the seller’s
inter-decoy factor is relatively large, then it is attractive not to use the decoy. The following

thresholds for the inter-decoy factors determine what is relatively small and relatively large:

Qm — 1 -
By = am+——— and By = an+
A_mUt_,, Ut

oy — 1

—m
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Note that the thresholds are well defined since oy, a—_,, > 1 and v; > 0 for all . Also,
note that 1 < 8,, < Bm. Proposition 3.1 gives necessary and sufficient conditions for the

different action pairs to be pure-strategy Nash equilibria.
Proposition 3.1. For assortment competition with simple product sets, it holds that
(1) (A%, AY) is a pure-strategy Nash equilibrium iff B > Bm for m = £1,
(2) (AL, A}) is a pure-strategy Nash equilibrium iff Bm < B,, for m = *1,
(3) (A%, A}) is a pure-strategy Nash equilibrium iff B_1 > B_; and p1 < f31,
(4) (AL, AY) is a pure-strategy Nash equilibrium iff B_1 < B_1 and B1 > ;.

Each seller has a finite action set in assortment competition, and thus there always exists
a mixed-strategy Nash equilibrium. Next, Proposition 3.2 provides a sufficient condition
for existence of a strict mixed-strategy Nash equilibrium. For assortment competition with

simple product sets, a probability distribution Z,, = (Zm(A%),Zn(AL)) is specified by

Proposition 3.2. For assortment competition with simple product sets, there exists a
mized-strategy Nash equilibrium (z*,,z%) € (0,1)% if and only if B,, < Bm < Bm for
m = +1. The unique such Nash equilibrium (z*,,7}) € (0,1)? is given by (x*,2}) :=
(1/14+T-1),1/(1 + 1)), where

r — amﬁm(l +uv_,, + Utm)(l +a_pmve_, + Bfmvtm)(g_m - ﬁfm) (3 5)
"o (1 + Oéfmﬁmvt_m + amﬁfmvtm)(l + Bmvt_m + amvtm)(ﬁfm - /Bfm) .

€ (0,00)
form = +1.

We summarize the results of Propositions 3.1 and 3.2 in Table 11. Table 11 and Re-
mark 3.1 give a complete characterization of the Nash equilibrium for simple product sets.
Table 11 shows 9 cases specified by comparing f3,, versus 3,, and f3,, for m = £1, and the
resulting equilibria. In principle, the four comparisons give 16 cases. The cases that are

not listed are not possible because 3,, < B, for m = £1.
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4 _Sufﬁcient condition _ Nash equilibrium
B yvs. By |Boavs By | Byvs B | Bivs. B

1 < > < > (l‘*_l,.ﬁf), (A(llvA%% (Al—hA(l))

2 > > > > (AL, A1)

3 < > > >

4 < < > > (A, A}

5 < < < >

6 > > < >

7 > > < < (AL, A)

8 < > < <

9 < < < < (A, AD)

Table 11: Characterization of the Nash equilibria for assortment competition with simple
product sets.

Remark 3.1. For each case in Table 11, the equilibrium/equilibria are the only equilibria
if the four strict inequalities hold. If we change one or two of the strict inequalities to

equalities, then one of the following cases holds:

1. The resulting conditions are impossible. For example, in Case 9, if the first strict in-
equality B_1 < B—1 is changed to the equality 8_, = B_1, then the resulting conditions
are impossible, because B_, < B_1 and the second inequality in Case 9 is B_1 < [B_1.
Also, since B,, < Bm for m = %1, if for any of the cases both the first inequality
and the second inequality are changed to equalities or both the third inequality and the

fourth inequality are changed to equalities, then the resulting conditions are impossible.

2. The resulting conditions can be obtained from more than one of the cases in Ta-
ble 11 by changing one or two of the strict inequalities in each case to equalities. For
example, the same conditions are obtained from Case 1 by changing the first strict
mequality B_, < P_1 to the equality B_; = [—1 and from Case 6 by changing the
first strict inequality B_; > P—_1 to the equality B_; = B—1. Similarly, the same con-
ditions are obtained from Cases 1, 2, 3, and 6 by changing for each case both the
first and the third inequalities to equalities. Under the resulting conditions, the set of
equilibria is the union of the equilibria for the cases from which the conditions can be
obtained. For example, if the first inequalities in Cases 1 and 6 are changed to equal-

ity, then the resulting set of equilibria is given by {(z*{,2}), (A%, Al), (AL, AD)},
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where ¥ =1/(14+T'_1) and I'_y is given by (3.5), and x = 1. Similarly, if both the
first and the third inequalities in Cases 1, 2, 3, and 6 are changed to equalities, then
the resulting set of equilibria is given by {(z* 1, x%), (A%, Al), (AL, AY), (AL, AD)}.
In this case, x}, = 1 for m = £1, and thus the resulting set of equilibria is equal to

{(AQDA%)v (A£17 A(l))v (A£17 A%)}

If, for any case, three or more inequalities are changed to equalities, then the resulting

conditions are impossible, because B,, < B for m = +1.

Economic Implications. We say that the inter-decoy effect 3,, dominates the intra-
decoy effect ayy, if B > Bm(:= am + [am — 1] /ve_,,), that a,, dominates By, if B < B,,(:=
am + [am — 1]/[a_mvi_,.]), and that a,, and B, are similar if 3,, < B < Bm. If am
dominates (,, for m = +1, then (Al_l,A}) is the Nash equilibrium, i.e., both sellers use
decoys. If 3, dominates oy, for m = +1, then (A%, A}) is the Nash equilibrium, i.e.,
neither seller uses a decoy. We next consider settings in which «,, and 3, are similar. If
By < Bm and By, < By, then (AL, A%) is a Nash equilibrium. In this case, seller —m
uses a decoy but seller m takes a free ride to take advantage of seller —m’s decoy. Hence, if
By < Bm < Bm for m = £1, then both (A° |, A}) and (AY, AY) are Nash equilibria. In that
case, there is also a mixed-strategy Nash equilibrium (z*,z}), but it will be shown that
such a mixed-strategy Nash equilibrium (z*,,z]) is unstable, whereas the pure-strategy

Nash equilibria are stable.
3.4.2 Cournot Adjustment Process

Next we study the dynamics of assortment competition when sellers learn about each other’s
decisions, and we infer from it the stability of the equilibria given in Table 11. We start
with a very simple process called Cournot adjustment, in which, at each time ¢ € N, each
seller m chooses a best response A,,(t) to the other seller’s previous action A_,,(t —1). Let
A(0) := (A-1(0), A1(0)) denote the initial state of the Cournot adjustment process, and let

A(t) == (A_1(t), A1(t)) denote the state of the Cournot adjustment process at time ¢, where

An(t) € arg max mp(Am, A_pn(t—1)). (3.6)

mem
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8.4.2.1 Case 1

Recall from Table 11 that Case 1 holds if 3,, < Bm < Bm for m = %1, and that under
Case 1, one mixed-strategy Nash equilibrium z* = (z* |, z7) coexists with two pure-strategy
Nash equilibria, (A%, Al) and (AL, A?). Theorem 3.1 characterizes the dynamics of the

Cournot adjustment process.
Theorem 3.1. (Behavior of the Cournot adjustment process under Case 1.)

(1) If A0) € {(A%, A}), (AL, AY)}, then A(t) = A(0) for all t € Ng := NU {0}, i.e

(A(ll, Al) and (A, AY) are steady states of the Cournot adjustment process.

(2) If A(0) € {(AY,, AD), (AL, A])}, then A(t) cycles. Specifically, if A(0) = (AL, A7),

then

A (AL, AD) ift>1 andt is even,
t) =
(A%, AY) ift>1 andt is odd.

and if A(0) = (A%, AY), then

Al = (A%, AY) if t>1 andt is even,
(AL, AY) if t>1 andt is odd.

Thus, if A(0) € {(AL, A}), (A%, AD)}, then A(t) cycles as (A, Al) — (4%, AD) —
(AL, A]) = (A2, A7) — ..oor (A2}, AY) — (AL}, A]) — (A2, A7) — (AL}, A}) —
Clearly, neither trajectory converges to a pure-strategy Nash equilibrium. The empirical
frequencies of (A, Al) and (A%, AY) converge to a (joint) probability distribution z* €
A(C) as t — oo, given by 7*((Al,, A])) = 1/2 and z*((A°,, AT)) = 1/2. One may
wonder whether or not z* is a correlated equilibrium or coarse correlated equilibrium.

Proposition 3.3 gives the answer.

Proposition 3.3. The limit empirical distribution T* given by z*((Al,, Al)) = 1/2 and

7*((A%, AD)) = 1/2 is neither a correlated equilibrium nor a coarse correlated equilibrium.
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3.4.2.2 Cases 2-9

First consider Case 2, which holds under condition f3,, < 3y, and B, < 8,,, for m = £1.

Proposition 3.4. (Behavior of the Cournot adjustment process under Case 2.) For any

initial condition A(0) € C, it holds that A(t) = (AL, A}) for all t € N.

The Cournot adjustment process under Cases 3-9 behave in a similar way to the process
under Case 2. Each seller’s action in the unique pure-strategy Nash equilibrium under each
of the Cases 3-9 dominates the other action and as a result the Cournot adjustment process

stays at the equilibrium after the first step.
3.4.3 Fictitious Play Process

The fictitious play process works as follows: At the beginning of period ¢t € N each seller m
constructs an empirical distribution of the decisions of the other seller using the available
data A_p,(0),..., A, (t —1). Then seller m chooses A,,(t) that optimizes the expected
objective value of seller m with respect to the empirical distribution of the decisions of the
other seller. Thereafter each seller observes the decision of the other seller, the empirical
distributions are updated, and the steps repeat.

Let
My (0) + 30—y L4, ()= At ]
M, +t

Tm(t) =

denote the empirical probability based on data A,,(0),..., A, () that seller m chooses
action Al where 1;; denotes the indicator function. One can think of My, as the assessment
of seller —m of the number of observations that the initial value z,,(0) is based on. We
allow any initial value z,,(0) € [0, 1] with weight M,, > 0. However, some notation will be
simplified if M,, > 0, and therefore some later notation is based on the assumption that
M,, > 0; equivalently, one may set time index ¢ = 0 after an observation has been made.
The vector x(t) := (x_1(t),x1(t)) is called the state (of fictitious play) in period t.
Let

PBR,,(2) := arg max z7m,(Am, AL,)+ (1 —2)mm(An, A2,)

mElm
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denote the optimal assortments for seller m given that seller m assesses the probability
that seller —m chooses action Al, to be x. In period t, each seller m chooses an action
Ap(t) € PBRy(z_m(t — 1)). In some cases we want to show how the long-run behavior
of x(t) depends on an initial condition x(ty) for some specific ty € Ng. Therefore it is

convenient to use notation
Gm(ti, to,x) =  xp(t1) given that z(tg) = =
o(ti,to, ) = (p-1(t1,to, ), d1(t1,t0, 7))
to explicitly denote the dependence of x(t1) on the initial value x at time ¢, for t; > tg.
3.4.8.1 Case 1

Recall that Case 1 holds if 3,, < Bm < Bm for m = £1, in which case there are the following
three equilibria: (z*,,z7), (0,1) (i.e., (A%, Al)) and (1,0) (i.e., (AL, AD)).

It follows from 8,, < Bm < Bm that A% € PBRy,(z_p(t — 1)) iff x_p,(t — 1) > 2*,, and
AL € PBRyy (2 (t — 1)) iff 2_,,,(t — 1) < 2*,,. Note that the best response of seller m
in period t is not unique iff z_,,(t — 1) = 2*,,. Therefore, for the dynamics of z(t) to
be well-defined, we choose a tie-breaking rule to be used whenever z_,,(t — 1) = z* .

The choice of tie-breaking rule affects the notation, but it does not substantially affect the

results. Specifically, we choose

) AV i wo g (t—1) > 2, (3.7)
m(t) = .
AL it o (t—1) <z,

m

Thereafter, each seller m observes A_,,(t), and updates the empirical distribution of the

decisions of the other seller as follows:

(M_m + t — 1)J3_m(t — ].) + 1[A7m(t)=A1 }

Tom(t) = YA s (3.8)
Note that
((M,1+ti417):f;i(tfl)+1’ (Mﬁpﬂzﬁgtq)ﬂ) if z(t—1)€e PR,
z(t) = <(M71+;4_*11)i;1(t_1)’ (MIHJ‘Z}?@_U) it ot =1 € B, (3.9)
(Moo () QOHEPn ) e (- 1) € Py,
\ ((M71+t5/[17)91511(t—1)+17 (M1+t]\7[11ft1(t—1)> if z(t—1)e P,
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where Py := [0,2% 1] x [0, 23], P := (2", 1] x (z7,1], P> := [0, 2% ;] x (27, 1], P3 := (z*,1] x
[0,23], and P := [0,1]> = Py U P, U P, U P3. To simplify notation, we define ¢(t1,to, ")
on an extended domain P := Py U P, U P, U P3, where Py := (—o0,z* ] x (—o0,z?],

N

P = (z*,,00) x (x7,00), as follows. For any t € Ny, let

,
(M_1+t)z_1+1  (Mi+t)z1+1 . »

( M_1 i1 0 Mi+itl if zeh,
(M_1+4t)z_1 (Mi+t)z1 . >

( M_14t41 0 Miiiil if ze Py,

ot +1,t,x) = (3.10)

(M_1+t)x_1 (Mi+t)z1+1 .

( M_14t+1 > Mitt+l if zeby,
(M_l-i-t)x_l-i-l (M1+t)x1 .

( M_1+F1 0 M+ if e P,

We first study the dynamics of fictitious play with initial points in the extended domain
P, and the results obtained for P will describe the dynamics of fictitious play on P. It
follows from (3.10) that the directions of movement from x(¢) to x(t + 1) are as given by

Lemma 3.1.
Lemma 3.1. The following holds at any time t € Ng:
(1) If x(t) € Py, then @y, (t + 1) > x,,(t) for m = £1.
(2) If x(t) € Py, then @y, (t + 1) < x,,(t) for m = £1.
(3) If x(t) € Pa, then x_1(t + 1) < x_1(t) and x1(t + 1) > z1(t).
(4) If x(t) € P3, then x_1(t + 1) > x_1(t) and x1(t + 1) < z1(¢).

Figure 7 will be used to describe a generic step of the state z(t) from time ¢ to time ¢+ 1.
First, Theorem 3.2 uses (3.10) and Lemma 3.1 to establish convergence for initial points
x € Py U Ps. Thereafter we consider the more complicated dynamics for initial points

$€POUp1.

Theorem 3.2. For any x € P, and t € Ny, it holds that ¢(t + 7,t,2) — (0,1) (i.e.,
(A_1(1),A1(1)) — (A%, A})) as T — oo. For any x € Ps, it holds that ¢(t+7,t,z) — (1,0)
(i.e., (A_1(1),A1(1)) — (AL}, AD)) as T — oo.

One-step Analysis
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S
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0 aty x(t) 10 z*, z(t+1) 1
(a) At time t. (b) At time ¢ + 1.

Figure 7: One-step evolution of the state x(t) of the discrete-time fictitious play process.

To analyze the dynamics when fictitious play starts from a point in By or pl, we first
characterize one-step changes. For any ¢,7 € Ny and any D C P, let o(t+T7,t,D) := {p(t+
7,t,x) : x € D} denote the image of D under ¢(t + 7,¢,-). Consider any k € {0,1}. Note
from (3.10) that ¢(t+1,¢,-) : P, — ¢(t+1,t, P) is an increasing separable affine mapping,
that is, there are ¢ (t) > 0 and a¥,(t) € R such that ¢, (t + 1,t,2) = €& (O)xy, + af, (1)
for any z € P. For example, for k = 0 and m = 1, £0(t) = (M; +t)/(M; +t + 1) and
ad(t) =1/(My +t+1).

For any set D C R”, we say that D walks to D C R™ if and only if there exists an
increasing separable affine mapping f such that D = f(D). Lemma 3.2 gives a useful
result that rectangles walk to rectangles under increasing separable affine mappings such as

Lemma 3.2. For any t € Ny, any rectangle D C Py, where k € {0,1}, or any rectangle

D C Py, where k € {2,3}, it holds that D walks to ¢(t + 1,t,D), and ¢(t + 1,t,D) is a

rectangle.

We will be particularly interested in special rectangles called cells that are defined next.

For k € {0,1} and m € {—1,1}, let 6% (¢t) := |k — 1+ a,| / (M,, +t) denote the length
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parallel to the axis for x,, of the cells in Pk at time step t € Ny; see Figure 7a. (If M, >0
then 6% (0) is well defined.) The cells are indexed starting at z* = (z* ;,z}), using indices
i,j. Specifically, for P, the index sets at time ¢ are fo(t) = {0,1,..., |21/80(t)] + 1},
and Jo(t) := {0,1,..., [z*,/0°,(t)] + 1}. For P, the index sets at time t are I;(t) :=
{0,1,...,[(1—a%)/6H(t)]} and Jy(t) :== {0,1,...,[(1 —2*,)/6,(t)]}. Then cell Dy ;(t) is

given by
Doij(t) = (2% =462 (t), 2%y = (5 = 1)62, ()] x (27 —id? (1), =} — (i — 1)} (1)]
for indices (i,7) € Io(t) x Jo(t), and cell Dy ; ;(t) is given by
Dyij(t) = (a5 + (= 1)oL(), 2%y + 361, (8)] x (a7 + (i — 1)51(t), @} + 6] (t)]

for indices (i,5) € I;(t) x Ji(t). Note that Dggo(t) C Py and Dy, ;(t) C Py for i,j > 1;
and D1 0(t) C Py and Dy, j(t) C Py for 4,5 > 1; see Figure 7b. Let I(t) := I(t) \ {0},
Je(t) = Jp(t) \ {0}. A cell Dy, ;.4(t) for i € Ii(t) N Ji(t) is called a diagonal cell. The

diagonal cells are shown in gray in Figure 7.

Proposition 3.5. Consider any t € No, and any cell Dy, ; ;(t), where k € {0,1}, i € I1(t)
and j € Ji(t). Then ¢(t + 1,t, Dy (t)) = Dyi—1j-1(t + 1), that is, Dy, ;(t) walks to

Dy i—1,j-1(t+1) from time t to time t + 1.

Multi-step Analysis
As an extension of single-step walking defined before, a set D C R"™ is said to walk to
D C R™ from time ¢ to time ¢ 4+ 7, where ¢,7 € Ny, if and only if there exists a sequence
{fe+s}I_q of increasing separable affine mappings fi+s : R” — R" such that D= fttif (D),
t+7

where f, /] := fiyr0---0 fii1. We will use the property that if a set walks, then all its

subsets walk too, and state it as Lemma 3.3.
Lemma 3.3. Suppose that a set D walks to a set D from time t to time t + 7 under ffif

Then any E C D walks to fttif(E) C D from time t to time t + 7.

Note that the one-step results of Lemma 3.2 and Proposition 3.5 can be applied repeat-

edly to obtain a multi-step characterization of the evolution of fictitious play. For example,
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if rectangle D C Py, where k € {0,1}, and ¢(t+1,¢,D) C P, then it follows from a repeat-
ed application of Lemma 3.2 that D walks to ¢(t + 2,¢, D) from time ¢ to time ¢ + 2, and
o(t + 2,t, D) is a rectangle. Similarly, if i, — 1 € I(t) and j,7 — 1 € Ji(t), then it follows
from a repeated application of Proposition 3.5 that ¢(t + 2,t, Dy ; j(t)) = Dy i—2j—2(t +2),
that is, Dy ; j(t) walks to Dy ;2 j—2(t + 2) from time ¢ to time ¢ 4 2.
Next we discuss what happens once ¢(t+7,t, D) ¢ By ori—1¢ Ix(t), or j —7 & Ji(t).
Theorem 3.3 gives a complete characterization of the evolution of the off-diagonal cells. Let
Dy(t) :={Do;;(t) : i€ Io(t), j € Jo(t), i <jtU{D1,;(t) : i € I1(t), j € Ji(t), i > j} de-
note the cells in PyUP; above the diagonal, and let Ds(t) := {Do;;(t) : i€ Io(t), j € Jo(t), i > j}U

{D1:;(t) : i€ I(t), j € Ji(t), i < j} denote the cells in Py U P, below the diagonal.
Theorem 3.3. Consider any t € Ng. Then, the following holds:

(1) If © € Dy, (t) € Da(t), where k € {0,1}, i € Ii(t), j € Ji(t), then ¢(t + 7,t,x) €
IE’kﬂUDGDZ,(HT)D forT €{0,1,...,min{i, j} -1}, ¢(t+7,t,2)) € Py for 7 > min{i, j},

and ¢(t + 7,t,x) — (0,1) (i.e., (A_1(7), A1(7)) = (A%, A})) as T — oo.

(2) If © € Dy, (t) € D3(t), where k € {0,1}, i € I1(t), j € Ji(t), then ¢(t + 7,t,x) €
]?’kﬂUDGDS(HT)D forT €{0,1,...,min{i,j} -1}, ¢(t+7,t,2)) € P3 for 7 > min{i, j},
and ¢(t + 7,t,7)) = (1,0) (i.e., (A_1(7), A1(7)) — (AL}, AD)) as 7 — .

It remains to describe the evolution of the diagonal cells. If a rectangle D C P, walks
to rectangle D’ C Py from time ¢ to time ¢ 4+ 1, where k, k& € {0,1},k # ¥/, then we say

that D jumps to D’.

Proposition 3.6. Consider any diagonal cell Dy ;(t), where t € Ny, k € {0,1}, and
i€ I(t) N Ji(t). Then Dy ;i(t) walks to Dy 11(t +14—1) from time t to timet+i—1, and

then jumps to Dy o(t +1) C Py, where k' € {0,1}, k' # k.

Figure 8a shows a diagonal cell Dg;1(t) C Py right before a jump, and Figure 8b shows
the corresponding diagonal cell Dggo(t + 1) C P right after the jump. The evolution
of a diagonal cell Dy o(t + 1) right after a jump depends on how D o(t + 1) intersects

with Dy, ;(t+1), i € Ii(t+1), j € Ji(t+1). Specifically, it follows from Lemma 3.3,
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(a) Before Dg1,1(t) jumps. (b) After Do 1.1(t) jumps.
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(c) One step after the jump. (d) Two steps after the jump of Dy 1 1(¢).

Figure 8: Images of diagonal cell Dy ;1 () before and after a jump.

Theorem 3.3, and Proposition 3.6 that Dggo(t + 1) N Dy ;(t + 1) for ¢ > j walks to a
rectangle D C Dy jo(t+1+j) C Py and then ¢(t + 1+ 5+ 7,t + 1+ 4, D) converges
in P, to (0,1) as 7 — o0, Dooo(t+ 1) N Dy, (t+1) for i < j walks to a rectangle
D C Dygj—i(t+1+i) C Py and then ¢(t + 14+ 7,¢t + 1414, D) converges in Py to (1,0)
as T — 00, and Do o(t+ 1) N Dy, ;(t + 1) walks to a rectangle Dc Digo(t+1+1i) C by.
Figure 8c shows the image of Dgoo(t + 1) N Dy j(t + 1) after one step for (,j) = (1,1),
(i,7) = (1,2), and (7,5) = (2,1). The question remains whether every point of a diagonal
cell eventually either converges to (0,1) or (1,0), or whether some points of a diagonal cell
remain in diagonal cells forever. The answer to this question depends on whether 2* ;| = z}

or ¥, # 7. We will consider these two cases separately. First, the next result points out
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that for every initial point = € P, ¢(t,0,z) converges as t — oo, to (0,1), or to (1,0), or
to 2*. Thus, if the sequence {¢(¢,0, z)}$°, remain in diagonal cells, then ¢(¢,0,z) — z* as
t — o0.

Let D_(t) := {Dy,,i(t) : k€ {0,1}, i € I(t) N Ji(t)} denote the collection of diagonal
cells at time t. Let Py(t) := Ujcr, (1) Ujes, 1) Dr,ij(t) for k € {0,1}. Note that Py C Pi(t) C
Py forallt € Ngand k € {0,1}), P C P(t) := Py(t) UP(t) UR, UP; C P, and that

Py(t) U Pi(t) = [Upep,(ty D] U [Upep, 1y D] U [Upep_ (1) D]-
Proposition 3.7. Consider any x € P(0). One of the following three cases holds:
(1) ¢(t,0,z) — (0,1) as t — oo,
(2) ¢(t,0,z) — (1,0) as t — oo,
(3) ¢(t,0,x2) — z* ast — occ.
Lemma 3.4 provides a necessary condition for ¢(¢,0,z) to converge to z*.
Lemma 3.4. Consider any x € P. If $(¢,0,2) — =* ast — oo, then z* | = z].

Characterization of Convergence for z* ;| # z7.
For any z € P, let Q%(z) :=={y € P : y_1 <a_1,y1 >z} and Q(z) == {y e P : y_; >

x_1,y1 < z1}. For any t € Ny and D C P(t), let
¢~1(t,D) := {x €D : there exists T € Ny such that ¢(t + 7,t,z) = 2*}

denote the set of pre-images of z* in D at time ¢. For any k € {0,1}, i € I(t) N Ji(t),
and j € {2,3}, let Dim(t) = Dyii(t)N <Ux€¢71(t7Dk7i,i(t))Qj(a:)) denote the set of points in
Dy, ;.:(t) that will be cut to P; by a pre-image of «* in Dy, ; ;(t). Figures 9a and 9b show the
set of pre-images ¢~ (0, D 11(0)) = {z!, 2%, 23}, as well as the sets Dal,l(O) and DS’JJ(O)
that will be cut to P» and Ps respectively by these pre-images.

Theorem 3.4 provides a complete geometric characterization of the convergence of fic-
titious play for the case with x*; # x]. Figure 9c illustrates the results of Theorems 3.2,

3.3, and 3.4 for the case with z* | # «7.
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Figure 9: Illustrations of the set of preimages in Dy 1.1(0), D67171(0), 7 = 2,3, and Theorem-
s 3.2, 3.3, and 3.4 for the case with z*; # x7.

Theorem 3.4. Consider any k € {0,1} and i € I(0) N Ji(0). Then, the following hold:
(1) If x € D,%VZ.J-(O), then ¢(t,0,2) — (0,1) as t — oo.
(2) If x € D27i7i(0), then ¢(t,0,z) — (1,0) as t — oo.
(8) If x € Dy ;(0)\ (Di”(O) UD,?;,M-(O)) and z* | < x7, then ¢(t,0,2) — (1,0) ast — oo.
(4) If x € Dy ;(0)\ (D,%Vi,i(O) UD%,i7i(0)) and z* | > x7, then ¢(t,0,2) — (0,1) ast — oo.

Characterization of Convergence for z*, = 7.

Theorems 3.5 and 3.6 completely characterize how the convergence of ¢(¢,0,z) depends on
the initial value x € P(0) for the case with *; = 7. First, consider the rational case in
which 2*; = 27 € (0,1) is a rational number. Note that z*; = z7 € (0,1) is a rational
number if and only if 27/(1 — 27) = K + p/q for some K € Ny, p,g € N, p/q < 1, and
ged(p,q) =1,0or K € N, p=0, and ¢ = 1. It will be shown that the images of initial points
in certain small rectangles inside the diagonal cells converge to z*, the images of initial
points above the small rectangles converge to (0,1), and the images of initial points below
the small rectangles converge to (1,0). See Figure 10a for an example of this case. For any

j €7, let

0%, (t) 0%, (1) a7(t)

0
Q;t) = <$*1+(J‘—1) ‘; R ]x(ﬁﬂj—l) . LU
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denote a small rectangle indexed by j. Note that Q;(t)NQ;/(t) = @ if j # j'. Also note that
Q;(t) C By iff j <0, and Q;(t) C Py iff j > 0. Each diagonal cell Dy ;(t) contains exactly
¢ small rectangles, and each diagonal cell D ;;(t) contains exactly qz7/(1 —27) = Kq+p
small rectangles. Let 7y ; denote the set of indices of small rectangles that are contained in

diagonal cell Dy ; ;(t), for k € {0,1} and i € I;(t) N Ji(t), that is,

. {—=ig+1,—ig+2,...,—(i — 1)q} for k=0,
ki =

{G-1)(Kq+p)+1,i—-1)(Kqg+p)+2,...,i(Kg+p)} for k=1.

Let Z(t) := Upeqo1} Yier,6)nJx(t) Lr,i> and let Q(t) := Ujez)Q; (1)

1 1
P, P
A D=(0
.!. I( )
= D(0) Qs(0) e 3y
S Dy (0) =
. 5
T Qul0)
- Dy 33(0) w(0)1 +w)
~Q-30) =
w(0, —1)
--------- P Py
2 w(0,—2) Py
0 x_1(0) Tt 10 aty 24(0) 1
(a)K:Lq:?’ap:l (b)K:LwG(O,l)\Q

Figure 10: Examples to illustrate Theorems 3.5 and 3.6.

Theorem 3.5. Suppose that z* | = z7 and that z7/(1 — x}) = K + p/q, where K € N,

p,q €N, p/qg <1, and ged(p,q) =1, or K €N, p=0 and ¢ = 1. Then, the following hold:

(1) If x € Di,i,i(()) for some k € {0,1} and i € I;(0) N Ji(0), then ¢(t,0,z) — (0,1) as

t — o0.

(2) If v € D%M(O) for some k € {0,1} and i € I;(0) N Ji(0), then ¢(t,0,z) — (1,0) as

t — o0.
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(8) If v € Dy ;4(0) \ (Dz7i7i(0) U D,%’m-(O)) for some k € {0,1} and i € I;(0) N Ji(0), that

is, if x € Q(0), then ¢(t,0,x) — =* ast — co.

Next, consider the irrational case in which z*, = 27 € (0,1) is an irrational number,
which is the case iff x7/(1 — z7) is an irrational number. If 2*; = z7, the diagonal line at
time ¢ is given by D=(t) := {z € P(t) : (@1 — af)(M1 +t) = (w_1 — 2*|)(M_1 +t)}. Also,
let D> (t) := {z € P(t) : (z1 —a})(My+t) > (x—1 — x*;)(M_1 +t)} denote points above
D=(t), and let D<(t) := {& € P(t) : (z1 —a})(My +1t) < (x_1 —a*,)(M_1 + 1)} denote

points below D=(t).

Theorem 3.6. Suppose that x*; = z7 and z7/(1 — 27) = K + w, where K € Ny and

€ (0,1)\ Q. Then, the following hold:

(1) If v € D> (0), then ¢(t,0,z) — (0,1) as t — oo.
(2) If x € D<(0), then ¢(t,0,x) — (1,0) as t — oo.
(3) If x € D=(0), then ¢(t,0,z) — x* as t — oc.

Proposition 3.8 summarizes the implication of the previous results for the stabilities of

the Nash equilibria for Case 1.

Proposition 3.8. (Stability of the Nash equilibria under Case 1) Under fictitious play

dynamics, (0,1) and (1,0) are stable equilibria, but x* is an unstable equilibrium.
3.4.3.2 Cases 2-9

First consider Case 2, that holds under condition 8, < B, and 3, < 3,, for m = +1.

Proposition 3.9. Under Case 2 in Table 11, it holds for all x € P that ¢(t,0,z) — (1,1),

i.e., (A_1(t),A1(t)) — (AL}, AD), as t — oo.

For each of Cases 3-9, a similar result holds, i.e., for any initial value x € P, fictitious

play converges to the unique pure-strategy Nash equilibrium under that case.
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3.5 Assortment Competition with General Product Sets and Simple Ac-
tions

In this section we consider assortment competition with general product sets and simple
actions. Product set S,, may contain other products in addition to the target product t,,
and the decoy product d,,. Each seller m makes a choice between including or excluding the
decoy d,,, from the seller’s assortment. Thus this case holds when sellers consider whether
or not to add the decoy products into their current assortments without redesigning the
remainder of their assortments. Let C,,, = {A4%, AL} denote the action set of seller m,

where AL =S, and A% = S,, \ {dn}.
3.5.1 Characterization of Equilibria

For assortment competition with simple actions, a mixed strategy Z,, = (Z,n(A%), Zm(AL))
is specified by 2., := Ty, (AL). Let

by = Z ViPi

i€S7rL\{tm 7d'm}

c = E (v

i€(S—1US1)\{t—1,d—1,t1,d1}

ﬁm = Bimvtmptm <O[m + O(m - 1 + (Oém - 1)C> bm [a—mvt,m - (am - ]‘)/B*m/utm]

bm + 57metmptm aX_mUt_,, aO_mUt_,, (bm + ﬁfmvtmptm) X_mUt_,,

~ vy Py am—1  (apm —1)e bm [vt_m — (am — 1)Utm]
Bm = (oz + + +
" bm + Utmptm " Ut—m vt—m (bm + /Utmptm) vt—m
\ . A_mUt_,, (B—mvtmptm + bm)
- (1 + B—mvtm +o_mu_,, + C) (1 + amﬂ—mvtm + a—mﬂmvt,m + C)
X — Ut—m (vtmptm + bm)
"o (1 +u, +ve,, + c) (1 + amy,, + Bmvt_,, + c)
—m _— -, = <

Note that, unlike the case with simple product sets, it does not necessarily hold that 3,, <
Bm. Proposition 3.10 characterizes the equilibria for the case with general product sets and

simple actions.

Proposition 3.10. For assortment competition with general product sets and simple ac-
tions, the set of equilibria is completely characterized by the 16 cases in Table 12, with

xh, =1/(14Ty).
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" _Sufﬁment condition _ Nash equilibrium
B_ivs. b1 | Bo1ves. oy | By vs. B | frvs. B

1 > < > < ('r*—lv'f{) ( A%)v ( 17A(1))

2 < > > < (@, a7)

3 > < < > (x2,27)

4 < > < > (xi17x>{) (A017A%)7 ( lvA(l))

5 > > > >

6 > > > < (AL, A}

7 > < > >

8 > > < >

9 > > < < (A%, A}

10 < > < <

11 < > > >

12 < < > > (AL}, AD)

13 < < < >

14 > < < <

15 < < > < (A%, A?)

16 < < < <

Table 12: Characterization of the Nash equilibria for general product sets and simple ac-
tions.

Note that not all 16 cases can occur for all values of 3,, and f3,,. For example, Case 1
can occur only if 3,, > B, for m = +1, Case 5 can occur for all values of 3,, and f3,,,, and
Case 6 can occur only if 8_; > _1. For each of the four settings (1) ,,, < Bm for m = £1,
(2) B,, > Bm for m = 1, (3) B; < By and B3_; > 31, and (4) By > B and B_; < B_1,
exactly nine cases in Table 12 can occur.

Cases in which some of the inequalities in Table 12 are replaced with equalities can be

resolved as explained in Remark 3.1.

3.5.2 Cournot Adjustment Process
3.5.2.1 Cases 1 and 4

The behavior of the Cournot adjustment process under Case 4 in Table 12 is the same as the
behavior described in Theorem 3.1. For Case 1 in Table 12, the result of Theorem 3.1 holds

after interchanging (A',, AY) and (A!,, Al) and interchanging (A°, A}) and (A%, A?).
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3.5.2.2 Cases 2 and 3

We first study Case 3 in Table 12, that holds if 31 < 8.1 < B_; and B < B1 < B1.

Proposition 3.11 asserts that the Cournot adjustment process cycles.

Proposition 3.11. Under Case 3 in Table 12, the Cournot adjustment process A(t) cycles
as follows: -+~ — (AL, Al) — (AL, AY) — (A%, AY) — (A%, AD) — (AL, AD) — ..

By a similar argument, the Cournot adjustment process under Case 2 in Table 12 cycles

as follows: --- — (AL, A}) = (A%, A]) — (A%, AD) — (AL, AD) — (AL, A) — -
3.5.2.83 Cases 5-16

Under Cases 5-16 in Table 12, each seller’s action in the unique pure-strategy Nash equi-
librium for each case dominates the other action, and as a result the Cournot adjustment

process stays at the equilibrium after the first step.

3.5.3 Fictitious Play Process
3.5.3.1 Cases 1 and 4

The dynamics of the fictitious play process under Case 4 in Table 12 is the same as described
in Section 3.4.3.1. By changing variables y_1 = 1 — 27 and y; = x_1, the analysis of the
dynamics of the fictitious play process under Case 4 applies to Case 1 on the (y_1, y1)-plane

with y* = (y*1,y]) as the mixed-strategy equilibrium, where y*; =1 — 2 and yj = z* .
3.5.3.2 Cases 2 and 3

Since the mixed-strategy Nash equilibrium z* is the unique Nash equilibrium for Case 2 or
Case 3, it follows from [44] that, for any initial 2 € P, the fictitious play process converges

to 2* as t — oo.
3.5.8.3 Cases 516

Under Cases 5-16 in Table 12, each seller’s action in the unique pure-strategy Nash equi-
librium for each case dominates the other action, and as a result the fictitious play process

converges to the pure-strategy Nash equilibrium for that case.
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3.6 Assortment Competition with General Product Sets and General
Actions

In this section we consider the setting in which each seller has a general product set (.S,
may contain other products in addition to the target and decoy), and each seller chooses

which subset of the product set to offer.
3.6.1 Characterization of Equilibria

Let C?n ={An € Cy, 1 diy & A} denote the set of assortments of seller m excluding the
decoy, and let C} := {A,, € Cp, : dpn € A} denote the set of assortments of seller m
including the decoy. For any mixed strategy Z,, € A(Cy,), let Cf(Z,) := {Am € Cp, :
Zm(Am) > 0} denote the assortments chosen with positive probability by Z,,. Fori € {0,1},
define the restricted pure best response correspondences PBR!, : A(C_,,) 20m as

PBR! (T ) = argmax Z Tm(AL A )Z (A ),

An€lh A eCm
that is, PBRY, (Z_,,) (PBR. (Z_,,)) is the set of best responses of seller m to assortment
distribution Z_,, among the assortments that exclude (include) the decoy. If z_,,,(A_,;,) =1
for some A_,, € C_,,, then we also write PBR!,(A_,,) for PBR, (T_,,).
Forany A, A" C S, let bn(A) := 375 4\ {tn.dpny ViP5 a0 (A, AT) = 370 4 an (tr.dn b 1.d 1} Vi-

For any A_,, € C_,,, and for any (arbitrarily) chosen A%, € PBR! (A_,,), let
2 Vtm Ptm

am — 1 ame(A_y, AY) — (A, AL )>
A) = . m » “dm
Buldm) = ol <a oty )

b (AL) [1+ v, + v, + (Ao, AD)] — b (AD) [1 4 aumuy,, + (A, AL)]
Vi, (Vi Dt + b (AY))
B—mYt,,Dt,, am =1 amce(A_p, AY) — c(A_,,, AL)
B—mt,, Pt,, + bm(AL) <am + AVt + OVt )
b (AL) [1+ Bomvt,, + a—muve_,, + (A, AY)]
AV, (BomVt,, Pty + b (AY,))
b (A) [1 + amB-mt,, + (A, A,)]
QmVt_, (B—mVt,,Pt,,, + bm(AY,))

Proposition 3.12 shows that for each seller m a best response to the competitor’s assort-

ment contains a decoy iff seller m’s inter-decoy factor (,, is small relative to a threshold.

Proposition 3.12. The following holds:
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(1) For any A°, € C°,. and any AY, € PBRY (A°,.), it holds that AY, € PBR,,(A%,)) iff
Bm > Bm(AY,.). That is, a no-decoy best response for seller m to AY, € C° s

an overall best response iff seller m’s inter-decoy factor B, is greater than threshold

(2) For any AL, € C!, and any Al € PBRL (AL,), it holds that Al € PBR,,(AL,))
iff B < B,,(AL,,). That is, a decoy best response for seller m to AL, € C!

is an overall best response iff seller m’s inter-decoy factor By, is less than threshold

(3) For any A°,, € C°, . and any AL, € PBRL, (A°,.), it holds that A}, € PBR_,,(A%, )

iff B < Bm(AY,.). That is, a decoy best response for seller m to A, € C°

is an owverall best response iff seller m’s inter-decoy factor B, is less than threshold

(4) For any AL, € Cl . and any A% € PBRY (AL, ), it holds that AV, € PBR,,(AL,)) iff

m

Bm > B, (AL,)). That is, a no-decoy best response for seller m to AL, € CL, s

an overall best response iff seller m’s inter-decoy factor By, is greater than threshold

Bm(AL).

For ¢« € {0,1}, and any Z_,,, € A(C_,,), define the restricted mixed best response

correspondences BR!, : A(C_,,) 2A(CH) as

) E(A_hAl)e(Jﬂ'm(AmaAfm)jfm(Afm)jm(Am)
BR,,(Z_m,) := argmax ,

st T € A(Cm)y Dai cci Tm(A},) =1
that is, BRY, (Z_,,) (BRL,(Z_.,)) is the set of best responses of seller m to assortment dis-
tribution Z_,, among the assortment distributions that exclude (include) the decoy w.p.1.
Also, define the restricted mixed best response correspondences BRZ, : A(C_,,) s 228(Cm)

as

9 Z(A717A1)€C77m(AmuA—m)j—m(A—m)jm(Am)
BR;,(T_;,) = argmax ,

m
st T € A(Cm), D0 cci Tm(A},) > 0,0 =0,1
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that is, BR2,(Z_,,) is the set of best responses of seller m to assortment distribution Z_,,
among the assortment distributions that both exclude and include the decoy with positive

probability.
For any Z_,, € A(C_,,) and A_,,, € C*, (Z_,,), and any A% € PBR!, (Z_,,), let

2 -1  amc(A_m, A,) — c(A_m, AL)
A_ ,AO 7141 — Uty Pt am m my Ay, y Ay
ﬁM( " " m) Ut Pt + b"n(A'(r)n) om vt N UVt _

N bm (A7) [1 4 v, +vi_,, + c(Am, AD)] — bm (AD,) [1+ amut,, + c(A_m, A7,)]
Vt_ py (Vty Dby, + b (A9.))

_ 0y _ 1
Bn(A, A%, AL) 1= —— D ‘m”t””t’"(Ao)<am+ om =1 | amc(Azm, Am) C(A—’”’Am))

m m

B—mVt,, Pt + bm AV, a_mUt_,,

N b (AL) [+ Bomvt,, +acmve_, +c(A_m, A9)]
a—mVt_, (B—mVt,, Pty + bm(A9n))
b (AD) [1 4 amBmvt, + c(A_m, AL)]

- X—mVt_,, (ﬂ—mvtmmm + bm(A9n))

Vt_y (Ve Pty + bm(AD))
(14wt +ve_,, +c(Am, AD)) (1 + amvr,, + Bmve_,, + c(A_m, AL))

A t_, (B—mUty, Dt,, + bm(AD))

(1 + B—mVty, + a—mvr_,, + c(A_m, Aom)) (1 + amB-mt,, + —mBmvt_,, +c(A_m, A,ln))

Am(A_m, A2 ALY =

A (A, A, AL) =

my £im

ZAfmeCEm S\m(A—m, A9n7 Awln)Bm(A—m: Agﬂ A}n)j—m(A—m)
Ya et Am(Am, AY AL i (Am) + 304 cor Ap(Aom, AY L AL)Z—m(A—m)
ZA?meClm Am(A—mv Ag@v A'}n)ﬁm(A—mv A(r)nv A'}n)f—m(A—m)
+ = .
ZA,mng Am(A*vagnvA}n)‘f*m(A*m) +ZA7mEC£ Am(A*vaguA}n)ifm(Afm)

m

Bm(ffm) =

Proposition 3.13 shows that for each seller m there is a best response strategy that
always contains a decoy iff seller m’s inter-decoy factor f3,, is small relative to a threshold.
In addition, there is a best response strategy that both contains a decoy and does not

contain a decoy with positive probabilities iff seller m’s inter-decoy factor (5, is equal to a

threshold.
Proposition 3.13. The following holds:

(1) For any T_, € A(C_y,) and any 7°, € BRY (Z_,,), it holds that 7%, € BRy,(Z_) iff
Bm > Bm(2%,,). That is, a no-decoy best response for seller m to T_,, is an overall

best response iff seller m’s inter-decoy factor By, is greater than threshold B (Z—m).

(2) For any Z_,, € A(C_y,) and any Z., € BRL (Z_,,), it holds that T%, € BRy,(T_pm) iff
Bm < Bm(T—m). That is, a decoy best response for seller m to T_, is an overall best

response iff seller m’s inter-decoy factor By, is less than threshold B, (T—p,).
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(3) For anyx_,, € A(C_,,) and any x2, € BR2 (T_,,), it holds that T2, € BRy, (T—_). Also,
BR2,(Z_m) # O iff B = Bm(T—m). That is, a mized decoy/no-decoy best response for
seller m to T_,, is an overall best response, and a mized decoy/no-decoy best response

exists iff seller m’s inter-decoy factor By, is equal to the threshold B, (Z_p,).
3.6.2 Fictitious Play that Cycles

As we showed, the dynamic behavior of fictitious play with simple product sets and simple
actions or general product sets and simple actions can be completely characterized with
quite simple geometry. The dynamic behavior of fictitious play with general product sets
and general actions is qualitatively more complicated, and does not allow a characterization
as simple as that with two actions. Here we illustrate this point by example. We show that
fictitious play for a duopoly in which each seller chooses among three assortments can
cycle without convergence to any equilibrium. The example was constructed to satisfy the
sufficient conditions specified in [60, p.25] for fictitious play to cycle without convergence
to any Nash equilibrium.

Seller -1 has product set S_; = {1,2,...,5} and seller 1 has product set S; = {6,7,...,10},
where products 1 and 2 are respectively the target and decoy products of seller -1, and prod-
ucts 6 and 7 are respectively the target and decoy products of seller 1. Table 13 gives the
attractiveness parameter v; of each product 7. Note that v; > vo and vg > w7, consistent
with the idea that each seller’s target dominates the seller’s decoy in terms of attractiveness
to buyers.

Table 13: The attractiveness parameter v; of each product .

Product # ¢ 1 2 3 4 ) 6 7 8 9 10

Attractiveness v; | 12 | 1.2 | 4.2 x10° | 1073 | 1073 || 12 | 6.8 | 1.6 x10° | 3.7 x103 | 3.2x10°

The decoy factors are a_; = 18, oy = 1.5 x 103, B_; = 660 and B; = 820. Each
seller chooses among three assortments to offer. Specifically, the sellers’ action sets are
C_y = {{1,2,4},{1,5},{1,3}} and C1 = {{6,9},{6,7,10},{6,8}}. Table 14 gives the

profit margins p; (i.e., the unit prices minus unit costs) of each product i.
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Table 14: The profit margin p; of each product i.

Product # i 1 2 3 4 5 6 7 8 9

10

Profit margin p; | 1.8 x10° | 2.1x10° | 570 | 8x10* | 1.5x10° || 350 | 570 | 370 | 400

400

The resulting objective functions 7, (A, A_;,) of the two sellers are given in Table 15.
The unique equilibrium is the mixed-strategy equilibrium z*, = (0.520,0.411,0.069) and
7% = (0.057,0.132,0.811).

Table 15: The objective functions my, (A, A_,) of the two sellers.

seller 1
{6, 9} {6, 7, 10} {6, 8}
{1,2,4} | 3285, 359.1 | 2576, 346.2 | 231.2, 368.6
seller -1 | {1,5} | 579.9, 398.4 | 5092, 386.1 | 13.50, 369.9
{1,3} | 570.1, 3.503 | 2619, 175.0 | 416.5, 102.1

The initial conditions are z_1(0) = (1,0,0), z1(0) = (1,0,0), M_; = 5, and M; = 3.
Figure 11a shows the trajectory of empirical probabilities of seller —1 choosing assortments
{1,2,4} and {1,5}, and Figure 11b shows the trajectory of empirical probabilities of sell-
er 1 choosing assortments {6,9} and {6,7,10}, for t = 0,1,...,107. The trajectories quickly
converge to triangular limit cycles. Figure 11a also shows the regions (with dotted bound-
aries) in which each of the assortments of seller 1 is preferred by that seller, and Figure 11b
shows similar preference regions for seller —1. The unique (mixed-strategy) equilibrium
corresponds to the intersection points of the three regions for each seller. Also note that
when the trajectory of one seller’s empirical probabilities crosses a boundary between two
regions, then the chosen assortment of the other seller changes, and thus the trajectory of
the other seller’s empirical probabilities changes direction. For example, when the trajectory
of seller —1 crosses the boundary at the blue dot in Figure 11a, then the chosen assortment
of seller 1 changes from {6,9} to {6, 8}, and thus the trajectory of seller 1 changes at the

blue dot in Figure 11b from moving in the direction of (1,0) to moving in the direction of

(0,0).
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Figure 11: A trajectory of the fictitious play process for two sellers with three actions each.

3.7 Conclusion

The decoy effect has been observed in a variety of choice settings, both experimental settings
as well as real-life choice settings. We proposed a modified attraction choice model that is
simple and that captures the decoy effect. We also studied assortment competition between
two sellers who take the decoy effect into account. It was found that every type of pure-
strategy Nash equilibrium — with neither seller offering a decoy, with one seller offering
a decoy, and with both sellers offering a decoy — can occur in such a duopoly, and we
characterized the conditions under which each type of equilibrium occurs. In short, it was
found that if the effect of a seller’s decoy on the attractiveness of the other seller’s target (the
inter-decoy effect) is small relative to the effect of the seller’s decoy on the attractiveness of
the seller’s own target (the intra-decoy effect), then the seller chooses to offer the decoy.
We also studied the stability of the Nash equilibria under learning dynamics, to obtain
a sense of whether the equilibria provide a potentially trustworthy forecast of the outcome
of the competition. This is especially interesting and relevant in the settings with multiple
pure-strategy Nash equilibria and a mixed-strategy Nash equilibrium. This type of inves-

tigation is not very common in the supply chain literature, but we think that questions
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and study of equilibrium stability should be more standard. In short, it was found that all
pure-strategy Nash equilibria can provide reliable forecasts of the outcome of the compe-
tition in the sense that they have large domains of attraction. In contrast, mixed-strategy
Nash equilibria have negligible domains of attraction, except for a special case, and thus
we conclude that mixed-strategy Nash equilibria do not provide reliable forecasts of the
outcome of the competition. Our results also provide a simple geometric characterization of
the dynamics of fictitious play for general 2 x 2 games that is more complete than previous
characterizations. The dynamics of fictitious play for more general games, including 3 x 3
games, has been shown to be qualitatively more complicated, and remains to be studied

further.

124



APPENDIX A

PROOFS AND SUPPLEMENTARY MATERIAL FOR CHAPTER III

In this section, we provide proofs for the results in Chapter III that characterize Nash
Equilibira and that characterize the dynamics of the Cournot adjustment and fictitious
play processes. We also provide supporting material, including Lemmas and additional

explanations.

A.1 Assortment Competition with Simple Product Sets
A.1.1 Proofs for the Characterization of Equilibria

Proof of Proposition 3.1: Consider the following four cases.
(1) (A%, AD) is a pure-strategy Nash equilibrium iff, for m = +1,

(A%, A% ) > ma(AL, A )

Uty Dt QmUt,, Pty

_ Utmftm S
1+, +ve,, - 1+ amvy, + Bmvt_,,
ay — 1 -
t—m

(2) (AL, A}) is a pure-strategy Nash equilibrium iff, for m = +1,

o Qn B—mVt,, Dty B—mVt,, Dty
1 + amﬂ—mvtm + a—mﬂmvt,m o 1 + ﬁ—mvtm + Q_mUt_,,
am — 1
& Bm < Qm + —— = ﬁm .
A_mUt_,,

(3) (A°,, Al) is a pure-strategy Nash equilibrium iff

W—I(AQMA%) 2 77—1(141—1’14%)

ﬁlvt_1pt_1 > O‘—lﬁlvt_1pt_1
1+ oy +arvy, = 1+a 1B, +ar1f vy

& 14 a1five, +oafoqvy a_1(1+ Srve_, +aqvyy)

=

v

125



\Y
Q
L
=
+
=
&

& 1+aiBavy

& B =2 aag+ = B
a1V
and
771(14%7 Agl) > 771("4(1)7 Agl)
o A1V Pty > Uty Pty
14 Brve_, + aqoy, 14+wv_, + oy
~ 041(1 + v, +Ut1) > 1 +Blvt_1 + aquy,
= a1(1 + Ut—l) > 1+ 51’1}1571
ap — 1 ~
s B < a+— = fr.
’U,Ll
(4) Case (4) follows from Case (3) by interchanging -1 and 1. O

Proof of Proposition 3.2: The best response problem of seller m in response to z_,, is

mzi,écl] {zm [:C_mﬂ'm(A}n, AL Y+ (1 =z )T (AL, A(im)]
rm€l0,

+(1 = zm) [m,mwm(Agl,Al_m) +(1- xfm)ﬂ'm(AgmA(lm)] }

A necessary and sufficient condition for (z* ,z7) € (0,1)? to be a mixed-strategy Nash equi-

librium is that the objective function of each seller m is invariant in x,, given z*,, and thus

It follows that

* Tm (Agw Agm) —m (A71nv Agm) 1
T = =

o T (AL VAL Y — (AL AY ) — 7 (AD AL Y+ (A9, A9 ) 14T,

WM(A%m Al—m) - Wm(ABm Al—m)
ﬂ-m(A(T)ru Agm) - TI'm(A}n, A(lm)

Qm B—mVtm Pm _ B—mVtm Ptm
1+Oém/87mvtm+a7mﬁmvt,m 1+Bfmvtm+a7mvt,m
Uty Ptm _ AUm Uty Ptm
1+vt,, +ve_,, 1+ amVty, +Bmvt_,,

Boma—m(1 + 1, +vi_, ) (1 + v, + Bmvi_,,) By, — Bm)
(1 + amﬁ—mvtm + a—mﬁmvt,m)(l + /B—mvtm + a—mvt,m)(ﬂm - Bm) '

Note that if 3,, < Bm < Bm then I'_,, € (0,00). O
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A.1.2 Proofs for the Cournot Adjustment Process

A.1.2.1 Case 1
Recall from Table 11 that Case 1 holds under condition

By < PBm < PBm, m==%l (A.1)

We first state Lemma A.1 that will be used to prove Theorem 3.1 and Proposition 3.3.
Lemma A.1. Condition (A.1) holds if and only if
(AL A% ) > 7w (A%, A% ) and ma (A%, AL) > ma(AL,AL,), m =+l
Proof: Note that

wm(A}n,A(lm) > Wm(Agn,A(im)

amvtmptm Utmptm
1 + amvtm + ﬂmvtfm 1 + Utm + /Utfm

=
S Bm < Bm,

ﬂ-m(A?nvAlfm) > ﬂ—m(A}n’Alfm)

B—mVt, Dt O B—m Vi, Dt
>
1+ B—mvtm +a v, 1+ O‘mﬁ—mvtm + O‘—mﬁmvt_m

-

S B < Bme

Proof of Theorem 3.1:

(1) For any t € Ny and m = +1, if A(t) = (4%,,,AL), ie., A_,(t) = A%, and
A (t) = AL it follows from Lemma A.1 that 7, (AL, A% ) > 7, (A%, A% ) and that
Tom(AY,, ALY > 7, (AL, AL). Thus it follows from (3.6) that A_,,(t+1) = A%,

and A, (t + 1) = AL  which implies that (A%, , Al ) is a steady state.

(2) For any t € Ny, it follows from Lemma A.1 that, if A(t) = (AL, A]), then A(t+1) =
(A%, AY), and if A(t) = (A%, AY), then A(t + 1) = (Al;, Al). Thus, if A(0) =
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(A£17 A%)7

Al AL if ¢t >1 and tis even,
(1) 1,41
t:
A% A% if  t>1 and tis odd.
1,41

and if A(0) = (49, 4%,), it follows

A (A%, AD) if t>1 and t is even,
(AL}, AD) if t>1andtis odd.

Proof of Proposition 3.3: It follows from Lemma A.1 that

%ﬂm(A}n,Al,m) < %wm(AQn,Al,m) and %wm(Agn,A(lm) < %wm(A}n,AEm).

Thus, condition (3.3) fails to hold and the limit empirical joint distribution z*(A%,, A1) =
1/2 and z*(A° |, A}) = 1/2 is not a correlated equilibrium. Since 0.5m,(AL AL ) +
0.57m (A%, A% ) < 0.5, (AL, AL, ) + 0.5m,, (AL, A°,.), condition (3.4) fails to hold and
the limit empirical joint distribution z*(A%;, Al) = 1/2 and z*(A°,, A}) = 1/2 is not a

coarse correlated equilibrium. O

A.1.2.2 Case 2

Under Case 2, it holds that

Bm < Pm and Bn < B, m==*l (A.2)
Lemma A.2. Suppose that (A.2) holds. Then, AL, dominates AS, for m = +1.

Proof: Note that, for m = +1

7Tm(A%m A£m) > ﬂ-m(Agm Alfm)

amﬁ—mvtmptm ﬁ—mvtmptm

=
1+ Oémﬁfmvtm + afm/Bm’Ut_m 1+ 67m’Utm +a_mvs_,,

<~ ﬁm < ﬁmv

and

(AL A% Y > (A0, A )
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amvtmptm > Utmptm
1+ amvt, + Bmvi_,, T+, +o,

& Bm < Bm.

This shows that AL dominates A% for m = +1.

Proof of Proposition 3.4: The result follows from Lemma A.2.
A.1.3 Continuous-time Fictitious Play under Case 1

Before investigating the more complicated discrete-time fictitious play process (3.9), we
consider its simpler continuous-time analogue. Similar to (3.7) and (3.9), let z(t) :=
(x—1(t),z1(t)) denote the state at time ¢t € Ry with specified initial condition x(0), and

let the dynamics be given by
.i'm(t) = 1[9:_m(t)§x*_m} - .’L‘m(t), m = %1. <A3)

The resulting trajectory z(t) is given by

(1—e*1=2_1(0)],1 —e[1 —21(0)]) for x(0)€ Py, t€[0,t],
o) = (e7tz_1(0), e tz1(0)) for x(0) e Py, te€0,tq], (A1)
(e7tz_1(0),1 — e~ *[1 — 21(0)]) for xz(0) € Py, t >0,
(1—e 1 —z_1(0)], e "21(0)) for x(0) € P3, t >0,

where #; := min,,—+1 {ln (%Zg?)} and {9 =:= min,,—+1 {ln <x’;;(10)> }

Trajectories x(t) starting from various initial points x(0) are shown in Figure 12a for
x*, # x7 and in Figure 12b for z*; = z}. Note that if z(0) € P, then x(t) reaches the
boundary of Py at tg := minm—+1 {In ([1 — 2,,(0)]/[1 — 2},])}. IfIn ([1 — 2_1(0)]/[1 — 2*]) <
In([1—21(0)]/[1 — z7]), then z_1(to) = =, and at time ¢ the trajectory enters Ps, and
thus 2(t) = (1 — e~ [1 — 2_1(ty)], ez (t9)) for ¢t > to. Similarly, if 2(0) € Py and
In ([1 —2_-1(0)]/1 —z*,]) > In([1 — 21(0)]/[1 — 23]), then z1(to) = =}, and at time ¢y the
trajectory enters P, and thus z(t) = (e~(710)z_y(t),1 — e~ (10)[1 — 21 (to)]) for t > to.
However, if 2(0) € Py and In ([1 — 2_1(0)]/[1 — 2*,]) = In([1 — 21(0)]/[1 — 27]), then (A.3)

allows three solutions:
a(t) = (1= O = oy (tg)], ey (1))
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N7

ETT

7
P, P
0 1 24(0) 1 0 zty 24(0) 1
(a) o7 # 2%, (b) 7 =a*,

Figure 12: Trajectories of the continuous-time fictitious play process starting from various
initial points z(0).

or

or

for t > tg. Similar comments apply to the case with x(0) € P;. Note that (A%, A1) and
(AL, AY) are both attracting equilibria, each with an easily identified domain of attraction,
whereas z* is an unstable equilibrium. The solution given in (A.4) for continuous-time
fictitious play can be regarded as a simplified approximation of the trajectories of the
(discrete-time) fictitious play process; the discrepancies being caused by the discrete steps

taken in the latter process.
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A.1.4 Proofs and Additional Results for Discrete-time Fictitious Play under
Case 1

A.1.4.1 Proof of Convergence from P, and P

Proof of Theorem 3.2: Consider any = € P, and t € Ny. It follows from Lemma 3.1 that

¢(t+7,t,x) € Py for all 7 € Ng. Thus, it follows from (3.10) that

(M +8)zm () + 3271 L, (t4i)=AL )

Om(t+1,t, ) =

My, +t+T1
(M +t)zm (1) : _
_ o b om=-1,
(M +t)zm (t)+7 . _
Wi i om=1,

for all 7 € Ny, and thus ¢_1(t + 7,¢t,2) — 0 and ¢1(t + 7,t,2) — 1 as 7 — oo, that is,
o(t+7,t,x) = (0,1) as 7 — oo.
Consider any = € P3 and t € Ny. It follows from Lemma 3.1 that ¢(t + 7,t,x) € P3 for

all 7 € Ng. Thus it follows from (3.10) that

(Mm~4t)zm (t)+7 i om=—1
¢m(t + 7_’ t7 ﬂj) — Mm+t+7' )
M At)zm(t) — f -1
Jy S —— wm=4
for all 7 € Ny, and hence ¢(t + 7,t,2) — (1,0) as 7 — o0. O

A.1.4.2 Properties of an Increasing Separable Affine Mapping

The following properties of an increasing separable affine mapping will be important. For
any D C R", let D denote the closure of D in R", and let D denote the boundary of D in

R™.

Lemma A.3. Consider any increasing separable affine mapping f : R™ — R™. Then, the

following properties hold:

(1) There exists £ € (0,00)" such that fm(z) — fi(y) = bn(Tm — Ym) for all z,y € R™

andm € {1,...,n}.

(2) For any D C R", f: D w— f(D):={f(x) : x € D} is a bijection, and f : R" — R"

is a bijection.
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(8) For any D C R™, it holds that E C D if and only if f(E) C f(D), E C 9D if and

only if f(E) C O(f(D)), and END = & if and only if f(E)N f(D) = @.

(4) For any D C R™ it holds that f(conv(D)) = conv(f(D)).

Proof: Since f is an increasing separable affine mapping, there exists ¢,, > 0 and a,, €

R such that f,(z) = pxm + ap, for all z € R® and m € {1,2,...,n}. Let lpax =

MaX,,e(1,2,...,n} £y, and fipin = min,,cf12,..n} b

(1)

(2)

For any z,y € R” and m € {1,2,...,n}, it holds that f,(x) — fm(¥) = lm(Tm — Ym)

for all m.

By the definition of f(D), f : D — f(D) is a surjection. Consider any y € R"™.
Choose x € R™ such that z,, = (ym — am)/lm for all m, and note that f(x) = y.
Thus f : R® — R" is a surjection. Consider any x!, 22 € D. Note that f(z!) = f(z?)

1

implies that Zmaz,ln = megn for all m, and thus, ! = z2. Hence f is a bijection.

It follows from f : R™ — R™ being a bijection that E C D if and only if f(E) C f(D)

and END = @ if and only if f(E)N f(D) = .

Suppose that E C dD. Choose any y € f(FE) and any neighborhood B(y,¢) := {y' €
R™ : ||y — yllo < €}, where € > 0. There exists € E such that f(z) = y. Since
r € E C 0D, there exists z!,22 € B(,¢/lmax) such that ' € D and 22 ¢ D. For
i € {1,2}, it holds that [|f(z) — ylee = I£(&) — F@lloe < lmacllzi — 7 < =
Thus, f(x') € B(y,e) for i € {1,2}. Note that f(z') € f(D) but f(x?) ¢ f(D),
since f : R™ — R" is a bijection by Lemma A.3(2). Thus, y € 9(f(D)), and hence
7(E) c a(f(D)).

Suppose that f(E) C 9(f(D)). Choose any = € E and any neighborhood B(z,¢).
Since f(x) € f(E) C 9(f(D)), there exists y',y?> € B(f(x),&lmin) such that y! €
f(D) and y? ¢ f(D). Since f is a bijection, there exists 2! € D and 2? ¢ D
such that f(z') = ' for i € {1,2}. For i € {1,2}, it holds that ||z — 2|/ <
1£) = F@)loo/loin = 15 — F@)lloo/bwin < 2. Thus, &', € Blr,). Thus,

x € 9(D), and hence E C 9D.
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(4) Result (4) holds for any affine mapping f. O

1 2

We will be interested in cases in which D is a rectangle of the form [[ _,[z;,,z7,] or

I3 _,(zL ,22], or the boundaries or vertices of such a rectangle. The following results will

m=1\""m>»*m

be useful.

Lemma A.4. Consider any increasing separable affine mapping f : R™ — R?, x! 22 ¢ R"

such that ' <2, and D := [ _,[zL,, 22 C R™. Then, f(D) =1} _;[fm(@), fm(2?)].

Proof: Let f be given by fn.(z) = lpnzym + am, where £, > 0. Note that, for any

m€{1,2,...,n}, 2t < 22 if and only if f,,(2!) < fn(2?). First consider any € D. Then

Tm € [x}nv m} and thus fm( ) = lTm+am € [£m3771n+am,€m$$n+am] - [fm(xl)vfm(x2)]
Hence, f(D) C [0 [fm(z1), fim(2?)]. Next consider any y € [[ _;[fm(z!), fm(2?)]. Then
Um € [fm(@V), fn(@D)] = [Imzl, + am, bmx2, + am], and thus z,, = (Ym — am)/lm €

[zl x2]. Note that z := (z1,...,2,) € D and f(z) = y, and thus y € f(D). Hence,

m?'m

[I5-1lfm(@h), fmn(2®)] C f(D). Therefore, f(D) = [T}, [fm(z"), fm(2?)]. -

Lemma A.4 has several useful implications that we point out next.

Remark A.l. Let D = [x'|,2%,] x [z}, 23] where 21 < 22, and let E = (21,22 x

(1, 2]

(1) (D) = [f-1(z"), f-1(z®)] x [fi(z"), fi(2?)] and f(z') < f(2?).
(2) f maps a boundary of D to the corresponding boundary of f(D). For example,
Ut} x oy, 2f]) = {fa(@)) x [flah), Aia?))

and
Flzly, 224] x {z1}) = [fa(ah), f-1(@®)] x {fi(")}

forie {1,2}.

(3) f maps a vertex of D into the corresponding vertex of f(D). For example, f((z* {, iL']l)) =
(f1(2'), fi(a?)) fori,j € {1,2}.
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(4) It follows that if the left/right/upper/lower edge of a rectangle is included/excluded
in/from the rectangle, then the left/right/upper/lower edge of the image of the rect-

angle is included/excluded in/from the image of the rectangle. For example, f(E) =
(f=1(@h), fo1(@®)] x (fi(zh), fr(z?)].

A.1.4.83 One-step Analysis

Proof of Lemma 3.2: Because ¢(t + 1,¢,-) : P, = ¢(t + 1,t, Py), where k € {0,1}, and
o(t+1,t,): Pp— ¢(t+1,t, Pr), where k € {2,3}, are increasing separable affine mappings,
the result follows from Remark A.1. O

Proof of Proposition 3.5: Consider k£ = 0. Consider any
@ = (e-1,21) € Dogj(t) = (¢5=58%(8), 51— (—1)02, (1)) x (21 —id7 (1), 7 —(i=1)o7 (1)),

Let i1 := i and i_1 := j. It follows from (3.10) that

(M, +t)xy, + 1

(25 t—l—l t,x =
m( 3 Uy ) Z‘[m t 1
————— 113* — o, (t 417* — — 1), (¢t +
M. t 1 ( m tm m( )7 m (Zm ) m( ))] A[m t 1

= (2 — (im = 1o, (t + 1), @5, — (im — 2)0p, (¢ + 1)),

for m = %1, and thus ¢(t +1, D()J‘J‘(t)) C DO,i—l,j—l(t + 1).
Next we show that D07Z’_17j_1(t—|— 1) C (b(t—i— 1, DO,i,j (t)) Consider any I € D(M_Lj_l(t—l-

1), that is,

Bm € (2, — (im — )00t + 1), 25, — (i — 2)00,(t+ 1)], m = £L.

m

Then consider x = (z_1, 1), where

(My 4+t + 1)Z — 1
M,, +t

Ty =
for m = £1. It is easy to verify that ¢(t + 1,¢,2) = Z. Next we show that x € Dq; ;(t).
Note that

(M, +t 4 1)F, — 1
M, +t
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1
My, +1

My +t+1,, . o
T (zh, = (im — 1), (t+ 1), 23, — (i — 2)00,(t+ 1)] —

= (@h — imOp (1), @, — (im — 1O (1)] -

Thus, z € Dy ; j(t). Hence, Do;—1j-1(t +1) = ¢(t +1,t,Dp; (t)). A similar argument can

be used for the case k = 1. ]
A.1.4.4 Multi-step Analysis

Proof of Lemma 3.3: Let f := ff_tf . Since D walks to D, f is an increasing separable
affine mapping such that D = f(D). For any E C D, it holds that f(E) C f(D) and that
E walks to f(F). O

Recall from Lemma 3.1 that if z(t) < 2* (and thus z(t) € By), then z(t + 1) > (t),
and thus x(t + 7) is increasing in 7 until z,,,(t + 7) > 2, for some m € {—1,1} and some
7 € Ny. Similarly, if z(t) > z* (and thus z(t) € P}), then z(t +1) < x(t), and thus z(t + 7)
is decreasing in 7 until z,,(t + 7) < 2}, for some m € {—1,1} and some 7 € Ny. Given

z(t) € Py (z(t) € P)), we are interested in the first time ¢ + 7 such that z(t + 7) & P,

(z(t+7) ¢ P1). For any t € Ng and z € Py U Py, let

inf{r>1: ¢t +7,t,2) > 2, if zekh
To(ta) = { ( ) } A
inf{r>1: ¢pp(t+7,t,x)<azf} if zeh

and let T'(t,x) := min {T_1(¢,x), T1 (¢, z)} denote the first time at which x(¢ + 7) leaves the

region of z(t). Lemma A.5 relates the time T'(¢,xz) with the cell where z(t) resides.

Lemma A.5. Consider any x € Dy, ; ;(t), wheret € No, k € {0,1}, i € Ii(t), and j € Ji(t).
Ifi < j, then Ty(t,z) =i < T_1(t,x), and if i > j, then T_1(t,x) = j < Ti(t,x). Thus,

T(t,z) = min{i, j}.

Proof: Consider the case with £ = 0 and ¢ < j. Then it follows from Proposition 3.5
that Do ;(t) walks to Dy (i) j—r)(t +7) C Py from time t to time ¢ 4+ 7 for all 7 €
{0,1,...,i —1}. It also follows that Dy ;(t) walks to Dg g j—(t + i) C P from time ¢ to
time ¢ +i. Thus, ¢(t + 7,t,2) € Dy (i—r),(j—r)(t +7) C Byforall T e {0,1,...,i— 1}, and
o(t +i,t,x) € Do j—i)(t +1i) C Po. Hence, ¢1(t + 7,t,2) < 2} for all 7 € {0,1,...,i — 1}

and ¢1(t + i,t,2) > zf, which implies that Ty (¢, z) = i. Also, ¢_1(t + 7,¢,z) < a*, for all
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7 €{0,1,...,i}, which implies that T_1(t,x) > i = T1(¢t,z). The other cases can be proved
by a similar argument. O
Proof of Theorem 3.3: Theorem 3.3 follows from Theorem 3.2 and Lemma A.5. O
Proof of Proposition 3.6: Proposition 3.6 follows from Proposition 3.5 and Lemma A.5.

O
Lemma A.6. For anyt € Ny, it holds that ¢(t + 1,t,P(t)) C P C P(t+1).

Proof: Consider any = € P(t). If © € P, U Ps, then it follows from Lemma 3.1 that
d(t+1,t,x) € BLUPy C P. If x € Py(t), then —8°,(t) < z, < ¥, and ¢y, (t + 1,t,2) =

[(Mp, + )@ + 1)/ (M, + ¢t + 1). Thus,

t+ 1.t c
Om(t+ 1.1, ) M, +t+1 C T M, + 141

B —(1=zy)+1 (Mp+t)z, +1
My, +t+1 ° My, +t+1

(M, +t)(=60,(t)) +1 (M, +t)xk, + 1]

[ : My, +t)z), +1
R T
| My +t+1" My, +t+1

for m = +1. If x € Pi(t), then o}, < x,,, < 1+ 8L (t) and ¢, (t + 1,t,2) = (M, +

) xm/(Mp, +t+1). Thus,

(M + )2, (M +t)[1+ 61, ()]
t+ 1t
Om(t+1,1,2) € (Mm+t+1’ My, +t+1
- M, +t+1" M, +t+1

[0,1]

for m = £1. Therefore, ¢(t + 1,t, P(t)) C P C P(t +1). O
Proof of Proposition 3.7: It follows from Theorems 3.2 and 3.3 that if ¢(¢,0,2) €
Upep,ryD U P2 at any time ¢ > 0 (that is, ¢(¢,0, ) is above the diagonal cells at time t),
then ¢(7,0,x) — (0,1) as 7 — oo, and if ¢(¢,0, ) € Upep,) DU P3 at any time t > 0 (that
is, ¢(t,0,z) is below the diagonal cells at time t), then ¢(7,0,2) — (1,0) as 7 — oc.

Next, suppose that ¢(t,0,2) € Upep_(yD for all t. We show that ¢(¢,0,z) — z* as
t — o0o0. Since ¢(t,0,x) is in a diagonal cell for all ¢, it follows from Lemma A.5 that
T(t,(t,0,x)) = T_1(t,¢(t,0,z)) = T1(t, ¢(t,0,2)) < oo for all t. Let AT,41 denote the

number of steps between the n'" and the (n 4+ 1)' jumps of the sequence {¢(t,0, x)}$2,.
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Thus, {AT,}5°, is given by

ATy = T(0,xz), = AT,

ATy = T(r1,¢(m1,0,2)), T = 11+ AT,
ATy = T(rm2,¢(12,0,z)), T3 = 7o+ ATj3,
AT, = T(Tn—lu ¢(Tn—17 0, I)), Tn = Tpo1+ AT,

Suppose that z € Py(0). Then ¢(12,-1,0,2) € Do 0,0(72n-1) C P1 and ¢(72,,0,2) €

D1 o0(m2n) C Py for all n. Note that z}, — 6L (Ton) < om(t,0,2) < ¥, + 89 (Ton_1) for

all t € {Ton_1,...,7on}, and x¥, — 6L (Ton) < Gm(t,0,2) < af, + 89 (Tony1) for all t €
{T2n, ..., Ton+1}, and for all n. Thus,
v Mo 4 1002) < a4 ——Tm Ve frprs.. . Tk,
My, + Top My + Ton—1
x; S Tm < op(t,0,z) < —i—i Vte{Tom,. ., Tont1}
m Mm+7'2n ~ m\ty Y, =~ m Mm+72n+1 79 y 12n+17>

for all n. Since T'(t,x) > 1 for all ¢ and all z, it follows that AT,, > 1 for all n and 7, — oo
as n — o0o. Therefore, ¢, (t,0,2) — x}, ast — oco. A similar argument applies if z € P;(0).

O
Proof of Lemma 3.4: Since ¢(t,0,x) — x* as t — oo, it follows that ¢(¢, 0, x) is in a diag-
onal cell for all t. Let {AT,}>2, and {7,,}72; be defined as in the proof of Proposition 3.7.

Suppose that z € Py. Then

mem + ZZ:1 ATgk,1

_1,0 =
¢m(7-2n 1 )'T) Mm+7—2n71

Since 7, — o0 as n — 00, it follows that

M _yx_q+ >0 Ao

. .
r_, = nhjgo ¢—1(T2n-1,0,2) = nhjolo M1+ Ton 1
o Myxy + Y ATy ) .
= lim YA lim_ ¢ (rop-1,0,2) = 7.
A similar argument applies if x € Py. O
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A.1.4.5 Characterization of Convergence for x* | # 3}

Let
0
D=(t) = {;1: € Py(t) : w1 —at = 550_11(2) (-1 — x_l)} U
1
{$ eP(t) : v —a] = 55111(2) (x_1— x*_l)}

denote the diagonal line, that is, the line that connects * with the vertices of the diagonal
cells, at time ¢. Let p(t, z) := (p_1(t, z), p1(t, z)) be given by pp, (¢, z) := (zp — 25, ) (M, +1)

for m = 4+1. Then the diagonal line at time ¢ is given by
D=(t) = {zeP(t) : p1(t,2)(1—a]) =pi(t,zx)(1 — 2% )} U
{z e Pi(t) : p_i(t,z)a] = pr(t,z)at ).

Also, let D= (t) and D=(t) denote the sets of points above/on and below/on the diagonal

line respectively, i.e.,
DZ(t) = {z€P(t) : pi(t,z) (1 —a*y) > p_i(t,z)(1—2f)}U
{zePi(t) : pi(t,z)z*) > p_i(t,x)z}} U P,
DE(t) = {zeP(t) : pi(t,z)(1—a*y) < p_ilt,z)(1—2f)}U
{:U e Pi(t) : pr(t,x)x’r, < p_1(t,:r)x’1‘} U Ps.
Let D~ and D= denote the sets of points above and below the diagonal line respectively,
i.e.,
D7 (t) = {zePR(t) : pi(t,z)(1 —a*)) > p_1(t,z)(1 —a})} U
{zeP(t) : pi(t,z)zr, > p_i(t,z)a} U P,
D<(t) = {zeR(t) : pi(t,z)(1 —2*)) < p_1(t,z)(1 —2})} U

{zeP(t) : p1(t,2)a’y < p_i(t,z)ai} U Ps.
Proposition A.1. Consider any t € Ng. Then, the following holds:

(1) If 5 > a* |, then ¢(t + 1,t,D=(t)) C D=(t + 1) and ¢(t + 1,t,D<(t)) C D<(t + 1).
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(2) If 25 < x* |, then ¢(t + 1,t,D=(t)) C D=(t + 1) and ¢(t +1,t,D>(t)) C D> (t + 1).

Proof: Suppose that z% > z*,. Consider any z € D<(t) C Upep_(yups)D U Ps. 1t
r € P3, then it follows from Lemma 3.1 that ¢(t + 1,¢,2) € P3. If ¥ € Upep, ) D, then it
follows from Theorem 3.3 that ¢(t + 1,¢,2) € Upep,ue1yD U P3 C DS(t+1).

Next, suppose that x € Upep_)D N D=(t). First consider the case in which x € Py(t),
and thus € Dg; ;(t) for i > 1. It follows from (3.10) that
(M, + )z + 1

My +t+1
(M, + )2, + pm(t, ) + 1
My +t+1

m M, +t+1

Om(t+ 1,t, )

and thus p,,(t + 1,0(t + 1,t,2)) = pm(t,x) + 1 — z%,. Since x € D=(t) N Py(t), it follows

that

p-1(t,z)(1—27) = pi(t,2)(1—2l,)
& paatr)(I—-2])+ 1 —22)(1—-2]) > po(t,2)(1—2%y) + (1 —22)(1 - 27)
& () +1-a2t)(1—27) > (pu(t,2) +1—a])(1 —2)

& paa(t+Let+1Ltx)(1—2]) > p(t+ 1,00+ 1,62))(1—2%). (AD)

Recall from Proposition 3.5 that ¢(t+1,t,2) € Dg;—1,;-1(t+1). Thus, if i > 1, then ¢(t +
Lt,z)e{z € P(t+1) : pi(t+1,2)(1—af) > pi(t+1,2)(1 —2*4)} C DS(t+1). Next,
suppose i = 1. Then ¢(t+1,t,2) € Dooo(t+1) C Py C Pi(t+1). Note that p,,(t+1, ¢(t +
1,t,x)) > 0. Also, note that since x] > z*; and z}, € (0,1), it follows that z7/(1 — z}) >
x*,/(1—2*;) > 0. Thus it follows from (A.5) that p_1(t+1, p(t+1,t,z))x] > p1(t+1, p(t+
1,t,z))x* ;. Therefore, p(t+1,t,2) € {x eP(t+1): pa(t+1,z)a] > pi(t+ l,m)xil} -
D=(t+1).

Next consider the case in which z € Pi(t), and thus € Dy ;;(t) for ¢ > 1. It follows

from (3.10) that

(Mm + t)xm (Mm + t)x;kn + pm(tv .CL‘) * pm(ta -r) — x;kn

t+1,t = m_Jmm -
Om(t+ 1t 2) M, +t+1 M, +t+1 Tm M, +t+1"
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and thus p,,(t+ 1,0(t + 1,t,2)) = p(t,x) — x¥,. Since x € D=(t) N Py(t), it follows that

p-1(t,x)x] > pi(t,z)z’
& pa(t,z)x] —xt 2] > pi(tx)x* ] — a2t 2]
A (,0_1<t,.%') _‘T’.*—l)lﬁi< > (pl(t7$) _xi)xil

& palt+Lot+1Lta)al = p(t+ 160+ 1,¢x))a,. (A.6)

If i > 1, then ¢(t+ 1,t,2) € {z € Pi(t+1) : p_1(t+ 1, 2)z] > p1(t+1,2)z*  } C DS(t+
1). If i = 1, then ¢(t + 1,t,x) € D1go(t +1) C Py C Py(t + 1). Note that pp,(t + 1, ¢(t +
1,t,2)) < 0 and that 0 < (1 —z7)/a} < (1 —a*,)/2*,. Thus it follows from (A.6) that
p1(t+ 1,6t +1,t,2) (1 —27) > pr1(t+1,06(t+ 1,¢,2))(1 —x* ). Therefore ¢p(t+1,t,z) €
{zePt+1): p(t+1,2)(1—2f) > p1(t+1L,2)(1 —a*,)} C DS(E+1).

By changing the inequalities in (A.5) and (A.6) to strict inequalities, it follows that
o(t+1,t,D<(t)) C D<(t+ 1). This completes the proof for (1). Result (2) follows by a

similar argument. O
Corollary A.1. Consider any t € Ng. Then, the following holds:
(1) If 5 > x* |, then for any x € D=<(t), it holds that ¢(t + 7,t,x) — (1,0) as T — oco.
(2) If 2% < x* |, then for any x € D=(t), it holds that ¢(t + 7,t,2) — (0,1) as 7 — oo.

Proof: Suppose that x > z* ;. It follows from Proposition A.1 that ¢(t+7,t,x) € D=(t+7)
for all 7 € Ny, thus ¢(t+7,t,x) ¢ P, for all 7. Thus ¢(t+7,¢,x) does not converge to (0,1)
as 7 — oo. Also, it follows from Lemma 3.4 that ¢(¢t + 7,t,2) does not converge to x* as
T — oo. Hence it follows from Proposition 3.7 that ¢(t + 7,¢,2) — (1,0) as 7 — oo. This
completes the proof for (1). Result (2) follows by a similar argument. O

Note that, since z* € D=(t) and x* € D=(t), it follows from Corollary A.1 that if
x] > z*, then for all ¢ it holds that ¢(t + 7,t,2*) — (1,0) as 7 — oo, and if 27 < x*,
then for all ¢ it holds that ¢(t + 7,t,2*) — (0,1) as 7 — oo.

For any t € Ny and = € P(t), define the cutting time

x(t,z) = inf{reNy : ¢(t+7,t,x) € P UPs3}
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as the first time (after time t) that the image ¢(t + 7,¢,x) of = is in P, U P3, with the
understanding that x(¢,xz) = oo if ¢(t + 7,t,x) is in Po(t + 7) U Py(t + 7) for all 7 > 0.
We also say that a point x(t) € Py(t) U Pi(t) is cut off at time x(t,x(t)). Suppose that
o(t + x(t,y),t,y) € Py. Then there is a point x such that ¢(t + x(t,y),t,x) = z* and
y—1 < x_1,y1 > x1. We will write that y will be cut to P» by =x.

For any = € ¢~ (¢, P(t)), let
C(t,z) = inf{reNy: ¢(t+rt,z)=2a"}

denote the hitting time of z, i.e., the first time when ¢(t + 7, ¢, z) hits z*. Note that for any
x € ¢~ (¢, P(t)), it holds that ((t,7) < oo and ((t,z) < x(t, ).
Recall that for any =z € P, Q*(z) :={y € P : y_1 < x_1,y1 > x1} and Q3(z) := {y €

Py >x_ 1, < a1} Also, let Q(z) := Q%(z) U Q3(z) denote the cut set of z, let

D(x) :={y € P y1 <wx_1,y1 <21}, and let QY (z) ;= {y € P Y_1> T_1,Y1 > T1}.

Lemma A.7. Consider any t € Ng and x,y € Py(t), where k € {0,1}, such that y € Q(z).
Let S(t) :={z,y, (x—1,11), (y—1,21)}, S(t+7) := ¢(t+7,t,5(t)), and D(t+7) := conv(S(t+
7)) for 7 € Ng. Then, rectangle D(t) walks to rectangle D(t + 7) from time t to time t + T

for all 0 <7 < min{x(¢,z), x(t,y)}.

Proof: Note that x,y € Py(t) implies that D(t) C Pg(t). Recall from Lemma 3.2 that
rectangle D(t) C Py(t) walks to a rectangle ¢(t + 1,¢, D(t)) from time ¢ to time ¢ + 1. In
general, if p(t+7,t,x), p(t+7,t,y) € P (t+7) for k¥ € {0,1}, then D(t+7) C P (t+7), and
rectangle D(t+7) walks to a rectangle ¢(t+7+1,t+7, D(t+7)) from time ¢+ to time t+7+
1. Let T:=inf{r € Ny : ¢(t +7,t,2) € Po(t+7),p(t + 7,t,y) € P (t +7) for k # k'}. If
¢(t+T,t,x) € PoUPs, then the result holds. Otherwise, ¢p(t+T,t,z) € Po(t+T)UP(t+T),
and then ¢(t + T, t,y) € P» U P3 (since y € Q(x)), and the result holds. O

Lemma A.8 follows from Corollary A.1.
Lemma A.8.

(1) If 3 > x*, then for any k € {0,1}, t € Ny, and x € ¢~ (t, Dy 11(t)), it holds that

o(t+ 7,t,x) = (1,0) as 7 — oo.
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(2) If x5 < x*4, then for any k € {0,1}, t € Ny, and x € ¢~ 1(t, Dr11(t)), it holds that

o(t+T7,t,x) = (0,1) as 7 — oo.

Lemma A.9. For any k € {0,1}, t € Ng and D C Py(t), the points in ¢~1(t,D) are

nondecreasing, that is, for any two pre-images x*, x> € ¢~ (¢, D), either ' < 22 or2? < x!.

Proof: Without loss of generality, suppose that ! ; < 2% ,. We show by contradiction that
r1 < 22. Suppose that x] > 22. Then, 2! € Q?(2?) and 22 € Q3(2!).

If ¢(t,x') < ¢(t,2?), then it holds that ((t,2') < ((t,2%) < x(t,2?) and ((t,2!) <
x(t,z'). Thus, ((t,2') < min {x(¢,2"), x(t,z*)}. It follows from Lemma A.7 that ¢(t +
((t,ah),t.a?) € R (d(t+((t,ah),t,al)) = QP (a*) =

contradicting ¢ (¢, ') < ((t, 2?).

P3. Thus, C(t,22) < x(t,22) < ((t, 1),

If ((t,22) < ((t,z'), then it holds that ((t,2?) < ((t,zt) < x(t,z!) and ((t,2?) <
x(t,22). Thus, ((t,2?) < min {X(t,wl),x(t,xz)}. It follows from Lemma A.7 that ¢(t 4+
C(t,2?),t,xt) € Q*(d(t+C(t,2?),t,2%)) = Q%(2z*) = Py. Thus, ((t,z') < x(t,z') < ((t,2?),
contradicting ¢ (t,22) < ((t,z!). O

For any k € {0,1}, t,T € No, D C P(t), let

¢ (t,D.T) = {ze¢ '(t,D) : ((t,x) <T}
denote the set of pre-images in D at time ¢ with hitting time no later than T

Lemma A.10. Consider any k € {0,1}, t,T € Ny, D C P(t). It holds that ¢;1(t, D,T) is

a finite set with cardinality |¢;1(t, D,T)| < oT+1 _ 1.

Proof: If T' = 0, the result holds since z* is the only point x € P(t) with ((¢,z) =
0. Next suppose that T > 0. If x € P, U Ps3, then it follows from Lemma 3.1 that
ot +1,t,x) € PoU Ps, and thus ¢(t + 7,t,2) # o* for all 7 € No. If ©z € Py(t) U Pi(¢),
then it follows from ¢(t + 1,¢,-) : Pu(t) — ¢(t + 1,¢, Py(t)) C P being a separable affine
mapping for k € {0,1}, that for any y € P there exists at most one point = € Py(t)
such that ¢(t + 1,t,z) = y for k € {0,1}. Thus, for any set Y C By U Py, it holds that

Hrx € Po(t) UPi(t) : ¢(t+1,t,x) € Y} < 2]Y|. Next we show by induction on 7 that
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Hx € Po(t)UPi(t) « ¢p(t+7,t,x) € Y} < 27|Y|. Suppose that it holds for some 7 € Ny.

Then
{x € Py(t)UPi(t) : o(t+7+1,t,z) € Y}
= H.% € Py(t)UP(t) : ¢(t+T,t,x) € Po’l(t—l—T)‘
< 2T{ye P(t+1)UP(t+7) : p(t+T7+1,t+7,y) €Y}
< 2m2ly| = 27ty
where
Poa(t+71) = {yePR{t+7)UPI(t+7): ¢(t+7+1t+71,y) €Y}}
Therefore
T
602 (6 D,T)| = S |{we o7 ,D) 5 ((t2) =7}
=0
T
< > HzePR)UP() : ¢(t+7,tz)=a"}
7=0
T
< Hoomo= 2T
7=0
This completes the proof. O

Let cv(Dy;,j(t)) denote the top right corner vertex of cell Dy ;(t), given by

(@2 = (= 102 (1), @1 — (i = 1)3P(1) if k=0, (i,5) € Lo(t) x Jo(t),
cv(Dy,i (1) = . .
(z*, +joL (t), x4+ i1 (1)) if k=1, (i,7) € Ii(t) x Ji(t).
For example, in Figure 7b, Dy 2 2(t+ 1) is indicated by the gray diagonal rectangle with the
top right corner vertex cv(Do22(t+1)) = (x*; — 62, (¢t + 1), 2] — 00(t + 1)), and D1 0,0(t+1)

is represented by the gray rectangle with the top right corner cv(Di o0(t + 1)) = z*.

Lemma A.11. Suppose that x7 # x* . Consider any k € {0,1}, t € Ng, and z € Dy, 11(t)\

(D%,Ll(t) U D£’171(t)). Then, the following hold:

(1) There exist i* € ¢~ (t,Dp11(t)) and #* € ¢~ (t,Dr11(t)), such that ' < &2,
v € B = (@1,3%] x (31, #] C Draa(t), max{((t,#),((t,#%)} < x(t,), and

¢! (t, Draa(t), x(t.2)) N (E\ (2", 3%}) = @.
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(2) E walks to ¢(t + 7,t, E) from time t to time t + 7, and E walks to ¢(t + 1,t, E) from

time t to time t + 7, for all 0 < 7 < min{((¢,2), ((t,7%)}.
Proof:

(1) Note that cv(Dy11(t)) € (;Sgl(t, Dg11(t), x(t,x)), and thus gzﬁgl(t, Di11(t), x(t,z)) #
@. It follows from Lemmas A.9 and A.10 that ¢;1(t, Di11(t), x(t,x)) C ¢~ 1(t, Dr1a(t))

is a finite nondecreasing set. Thus we can represent

¢! (t, Draa(t), x(t,2) = {2} C Dria(t)

such that 2™ # 2"+ forn € {0,1,...,N—1},and 2° < 2! < -+ <2V = cv(Dy 11 (1)),
where if k = 0, then 2° = cv(Dg22(t)), and if k = 1, then 2° = z*. Note that
C(t,2°) <1 < x(t, ).

Consider the case with } > z* ;. Next we show by contradiction that 2, < 2!, <
.- < aN|. Suppose that 2" | = 2" for some n € {0,1,..., N —1}. Then 27 < 2.
First we show that x(t,2") < x(¢,2"*!). Since ¢(t+7,t,2"+') — (1,0) as 7 — oo from
Lemma A.8, it follows that ¢(t+x (¢, 2" 1), t,2"+1) € Ps. If x(¢,2") > x(t,2"1), then
it follows from Lemma A.7 that ¢_y (¢t +x(¢t, 2" 1), ¢, 2") = ¢_1 (t+ x (¢, 2" T1), ¢, 2™ )
and ¢y (t+x(t, "), t,2™) < ¢1(t+x(t, 2", t, 2", Thus ¢(t+x (¢, 2" ), t,2") €
P3, and hence x(t,z") < x(t,z"*!). Then, since ((t,z") < x(t,z") < x(t, "), it
follows from z"*! € Q2?(2™) that ¢(t + ((t,2"),t, 2" 1) € Py and thus x(t, 2" ™) <

¢(t,x™), giving a contradiction.

Since x ¢ D, | (t)U D3, | (t), it follows that for each 2™ it holds that = ¢ Q?(z,) U
O3(x,), and thus = € Q°(x,) U QY (z,). Note that there exists n € {0,1,..., N — 1}
such that 2 < z_1 < 2"T1. Then z € Q' (2™)NQ°(2z"!), and thus 2} < z; < 2]+

L— 2" and 72 = g"t1.

Then choose z
Note that ' € ¢~ (¢, Dp11(t)), % € ¢ (t, Dr11(t)), 2 < 3%, 2 € B := (3L,,22,] x
('%%a ‘%%] - Dk,l,l(t)v maX{C(t’ jl)a C(ta i‘2)} < X(t’ :E)? and gb;l(ta Dk,l,l(t)v X(t’ a:))ﬂ(E\

{#',7%}) = @. The proof for the case with x} < z* is similar.
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(2) If K = 0 and ' = cv(Do22(t)), then min{((¢,#1),((t,7?)} < 1, and E walks to
(t + 7,t, FE) from time t to time ¢t + 7 for all 0 < 7 < min{¢(¢,3'), (¢, 72)}.
If ¥k = 1 and ' = 2*, then min{¢(¢,7'),((¢,%)} = 0, and E walks to ¢(t +
7,t, E) from time t to time ¢ + 7 for all 0 < 7 < min{((¢,2!),{(t,%)}. Oth-
erwise, !, 3% € Dy1,1(t) and E C Dy11(t) C Pg(t). Recall from Lemma 3.2
that rectangle E C Py(t) C P, walks to a rectangle ¢(t + 1,t, E) from time ¢ to
time ¢ + 1. In general, if ¢(t + 7,t,2'),¢(t + 7,t,2%) € Py (t + 7) for ¥’ € {0,1},
then ¢(t + 7,t, E) C Pu(t + 7), and rectangle ¢(t + 7,t, E) walks to a rectangle
d(t+T+1,t+7,0(t+7,t,E)) = ¢(t+7+1,t, E) from time ¢+ 7 to time t +7+ 1. Let
T := inf{r €Ny : ¢(t +7,t,8') € Py(t+7),¢(t + 7,t,3%) € Pp(t + 1) for k # k'}.
Then E walks to ¢(t + 7,t, E) from time ¢ to time ¢ + 7 for all 0 < 7 < T. Nex-
t we show by contradiction that T > min{((t,7!),((t,7?)}. Suppose that T <
min{((t,z'), ((t,7%)}. Then, since T < min{¢(¢,%'), ((t,7%)} < min{x (¢, &), x(t, %)},
it follows that ¢(t+1,t, &), p(t+T,t,3%) € Py(t+T)UPy(t+T). Also, since &' < &2,
and E walks to ¢(t +T,t, E) from time ¢ to time ¢+ T, it follows that ¢(t +7T,t, &) <
o(t + T,t,7%). Thus, ¢(t + T,t,3') € Py(t +T) \ {z*} (since T < ((t,7')), and
¢(t +T,t,3%) € Pi(t+T). Thus, 2* € ¢(t +T,t, E)\ {p(t + T,t,3'), p(t + T,t,3%)}.
Since E walks to ¢(t + T,t,E) from time ¢ to time ¢ + T, it follows that there
exists 2 € E\ {!,#%} such that ¢(t + T,t,2) = z*. Since E C Dy11(t) and
T < min{((t,7%),¢(t, %)} < x(t, ), it follows that & € (ﬁ;l(t,Dk’M(t),X(t,x)) N

(E\ {#',%%}), contradicting gb;l(t, Dk,u(t), x(t,z))n(E\ {z',7%)) = 2.

Thus T > min{¢(¢,#'), {(t,2%)}, and E walks to ¢(t+7,t, E) from time ¢ to time ¢ 47
for all 0 < 7 < min{((¢,2'),((t,#2)}. This also implies that E walks to ¢(t + 7,t, F)

from time ¢ to time ¢ + 7 for all 0 < 7 < min{¢(¢, '), (¢, 7%)}. O

Lemma A.12. Suppose that x5 > z*,. Consider any time t € Ny and any x',2> € P(t
1 1

such that
(a) zt < 22,

(b) x* ¢ E\ {2%}, where E := (z',,2%] x (z1, 22],
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(¢c) x' € D=(t), and
(d) ¢(t+,t,2%) — (1,0) as T — oo.

Then ENPy = @. Also, either E := EN(Py(t)UP,(t)) = @, or there are &', 72 € Py(t)UP(t)

such that
(i) ¥' < 22,
(i) B = (L,,32,] x (21, 3],
(iii) either 2 € P3, or 3% = 2,
(w) E C Py(t) or E C Py(t),
(v) ' € D(t),
(vi) ¢(t+7,t,%%) — (1,0) as T — oo, and
(vii) =* ¢ E\ {#?}.
Proof: Note that the property E = (&',,#2,] x (Z1,#?] and the property E C Py(t) or

E C Py(t) imply the property z* ¢ E\ {Z2}. Consider the following 9 cases regarding the

position of z* relative to E:
(1) z*, <z', and 2 > 23: Then E C P3, and thus EN P, = & and E = @.

(2) 2, <z', and 2} <z} < 2?: Then ENP, = @. Also, E = ENPy(t) = (&' ,3%,] x
(#1,72] C Pi(t), where 7! = (2!,2}) and 7% = 22, Note that 7' < 72 and that

71 € D=(t). Since % = 22, it follows that ¢(t + 7,t,7%) — (1,0) as 7 — oco.
(3) 2*, <z', and 2% < z!: Then E ¢ P(t) and E = E. All the results hold.

(4) 2, < a*, < 2%, and 25 > 23: Then ENP, = @. Also, E = EN PRy(t) =
(#1,,72,] x (#},#2] C Po(t), where 7! = o' and 72 = (2* |, 2?). Note that ¥' < 72

2 1

If 2* | < 2%, then 2 € P3, and if ¥, = 22 |, then #? = 22. Since #! = 2, it follows
that 2! € D=(t). Note that p_1(¢,2?)(1 — 2%) = 0 > p1(t,7%)(1 — 2* ), and thus

72 € D=(t). It follows from Corollary A.1 that ¢(t + 7,¢,%2) — (1,0) as T — oo.
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(5) 2ty <2*) <2?, and 2} < 2} < 2% If 2, < 2*) < 2% and 21 < 27 < 23, then
x* € E\{2?}, which cannot happen. If z1 | < 2* | <22, and 2} = 2}, then ! € Py(¢)
and p_1(t,2')(1 — %) < 0 = p1(t,2')(1 — z*,), contradicting ' € D=(¢). Hence this

case cannot happen.

(6) 21, < 2*; < 2%, and 2} < x{: Then 2! € Py, contradicting x! € D=(t). Hence this

case cannot happen.
(7) 2%, < 2*, and 23 < 2}: Then E C Py(t) and E = E. All the results hold.

(8) 2%, < 2*, and 21 < 2} < x%: Then 22 € P, and it follows from Theorem 3.2 that
o(t + 7,t,2%) — (0,1) as 7 — oo, contradicting ¢(t + 7,t,2?) — (1,0) as 7 — oc.

Hence this case cannot happen.

(9) 22, < *, and 2} < x1: Then 22 € Py, contradicting ¢(t+7,t,2%) — (1,0) as 7 — oo.

Hence this case cannot happen. O

Lemma A.13. Suppose that 2 > x* . Consider any time t € Ny and E := (a1 ,,22] x

(x1,22] C Pi(t) with 2' < 2% and z} = 2%. Suppose that ¢(t + 7,t,2%) — (1,0) as T — o0o.
Then, there are &,i% € P(t + 1) such that &' < #* and FE walks to E = ¢(t + 1,1, E) =

(#L,,22] x (71, %3] from time t to time t + 1, and the following hold:
(i) ' € DS(t+ 1),
(i) ¢(t +1+71,t+1,7%) — (1,0) as T — oo.
Proof: Since ¢(t + 1,¢,-) : Pi(t) — P(t + 1) is an increasing separable affine mapping, it

follows from Remark A.1(4) that E walks to E := ¢(t+ 1,t, E), and that E is a rectangle

of the form (#!,,#2 ] x (#1,7%] with ! < 2. It follows from (3.10) that

o (Mol Ontoet _ (y b o
My +t+1 M +t+1 oMo +t+1TY My +t+1)

Note that #} < 3. Thus, if Z1; > 2*,, then ! € P;, and hence #' € D=S(t + 1). If
1, <a*,, then ' € Py(t +1). Then

(M_q +t)zl,

at+1,7) =

- x*l] (M_y+t+1)
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S (M_1 +t)r*,
- M_1+t+1

-z (M_l—l-t—i-l)

= —{L‘il

and p1(t + 1,2') = [(My +t)ai/(My+t+1) —af] (My +t+ 1) = —2}. Thus p_1(t +
LaY)(1—a%) > —2*  +a* o) > —ai+a* 28 = p1(t+1,31)(1—2* ;). Hence, 7' € DS(t+1).
Also, since 72 € E C Py(t), it follows that % = ¢(t + 1,t,22). Since ¢(t + 7,t,2?) — (1,0)

as T — 00, it holds that ¢(t + 1+ 7, + 1,7%) — (1,0) as 7 — oo. O
Lemma A.14. Consider any time t € Ny and any x', 2> € P(t) such that

(a) zt < 22,

(b) x* ¢ E\ {z', 22}, where E = (1,22 ] x (21,23,

(c) ' € Py(t) U Pi(t) and 2! ¢ D<(t), and

(d) x? € D=(t).
Then EN Py = &. Also, there are 31, 3% € Py(t) U Pi(t) such that

(i) ot = 7! < 72,

(ii) E:= EN(PR(t)UPi(t) = (2,,52,] x (&}, 7],

(iii) =* =z or Ec Py(t) for some k € {0,1},

(iv) 2% € Py or #2 = 22, and

(v) 32 € D=(t).
Proof: Consider the following 15 cases:

(1) 2*, <z, and 2} > 23: Then E C Py, contradicting ! € Py(t) U Py (). Hence this

case cannot happen.

(2) 2*; <!, and 2} < 2% < 22: Then 2! € P3, contradicting ! € Py(t) U Py (t). Hence

this case cannot happen.
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3)
(4)

r*; <zl and 2} < x}: Then E=Ecp (t) and all the results hold.

¥ =2, and 27 > x1: Then 2! € Py(t) and p_1(t,2')(1 —23) = 0 > p(t, 21)(1 —
x* 1), which implies that ' € D<(t), contradicting ' ¢ D<(t). Hence this case

cannot happen.

a*, = z', and 2¥ = z}: Then ' = 2* and E = E C Pi(t). Thus, ' = ' and

72 = 2% € DS(t).

r*; =2, and 2} < x1: Then x! € P, contradicting 2! € Py(t) U Py(t). Hence this

case cannot happen.

2, < 2, < 22, and 2% > 2% Then ENP, = @. Also, E = EN Py(t) =

(#1,,72] x (#1,7% C Py(t), where ' = 2! and 7% = (2* ;,2?). Thus (i) and (ii)
hold. Since #',#? € Py(t), it holds that E c Py(t), and thus (iii) holds. Since
z*, < 22, and 2} > %, it holds that 2? € Ps, and thus (iv) holds. Also note that

72 € Py(t) and p_1(t,7%)(1 — %) = 0 > p1(¢,#2)(1 — 2*;), and thus (v) holds.

vl < 2%, < 2%, and 2} < 27 < 22 Then 2* € E\ {2}, 2}, contradicting x* ¢

E\ {z',2%}. Hence this case cannot happen.

vl <2*, < 2?2, and 2} < x1: Then 2! € P, contradicting ' € Py(t)U P;(t). Hence

this case cannot happen.

a*, = 2%, and 25 > 2?: Then E = E C Py(t) and E=Ec Py(t). Thus 7' = 2! and

72 = a2 € D(1).

r*; =22, and 21 <% < 23 Then 2* € E\ {2}, 2%}, contradicting 2* ¢ E\ {a!, 2%}.

Hence this case cannot happen.

z*; = 2%, and 2} < x1: Then x! € P, contradicting 2! € Py(t) U Py(t). Hence this

case cannot happen.

2%, < z*, and 25 > 2?: Then E = E C Py(t) and E=FEcC Po(t). Thus ! = x! and

72 = 2? € D=(t).
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(14)

(15)

22, < z*, and 21 < 2% < 23 Then 2? € P,, contradicting 22 € D=(¢). Hence this

case cannot happen.

22, < 2%, and 2} < x1: Then x! € P, contradicting 2! € Py(t) U Py(t). Hence this

case cannot happen. O

Proof of Theorem 3.4: Consider any k € {0,1} and i € I(0) N J(0).

(1)

Consider any = € D,%“(O) i= Di3:(0) N (Uyep—1(0,05 1 :0)2%(y)). Thus, there ex-
ists y € ¢71(0,Dy;4(0)) C Dy;:(0) such that z € Q2(y) N Dy;:(0). Note that

#(€(0,y),0,y) = z*. If ((0,y) < x(0,x), then it follows from Lemma A.7 that

$(¢(0,1),0,2) € Q*(4(¢(0,1),0,y)) = Q*(z).

Thus, ¢(¢(0,v),0,2) € P2 (and ¢(0,y) = x(0,z)), and it follows from Theorem 3.2
that ¢(t,0,2) — (0,1) as t = oo. If {(0,y) > x(0, ), then x(0,2) < {(0,y) < x(0,y).
We show by contradiction that ¢(x(0,z),0,z) € P,. Suppose that ¢(x(0,z),0,z) €
Ps. Tt follows from Lemma A.7 that ¢(x(0,),0,7) € Q%(¢(x(0,2),0,y)), and thus
¢-1(x(0,2),0,y) = ¢-1(x(0,2),0,2) > 22, and $1(x(0,2),0,y) < d1(x(0,2),0,2) <
xj. Thus, ¢_1(x(0,2),0,y) € P3, which implies that x(0,y) < x(0,z), contradicting

x(0,z) < x(0,y). Hence it follows from Theorem 3.2 that ¢(¢,0,x) — (0,1) as t — oc.
The proof of (2) is similar to the proof of (1).

Consider any x € Dy, ; ;(0) \ (Dzyi’i(()) UDi”i’i(O)). Thus, for each y' € ¢~1(0, D ;4(0)),
it holds that z € Q°(y") U QL(y'). Tt follows from Proposition 3.6 that Dy ;;(0) walks
to Dy 1,1(i — 1) from time 0 to time ¢ — 1, and & := ¢(i — 1,0,2) € Dy 11(¢ —1). Next
we show by contradiction that & € Dy 1(¢—1)\ (Di’lyl(i —1) UDz,m(i —1)). Suppose
that T € D,%7171(i -1)U D27171(i —1). Then there exists § € ¢~ 1(i — 1, Dg11(i — 1)) C
Dy 1.1(i — 1) such that £ € Q(g). Since Dy ;;(0) walks to Dy 11(¢ — 1), there exists
y € Dy ;i(0) such that ¢(i — 1,0,y) = §. Then it follows that y € ¢~1(0, Dy ,(0))
(and ¢(0,y) <i—1+((i—1,7)). Also, it follows from Proposition 3.6 that = € Q(y).

This contradicts z € Q°(y') U Q(y/) for all ¥/ € ¢ (0, Dy, ;.:(0)).
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Next, consider any ¢ € Ng and any z € Dy 11(t)\ (D7, ,(t)UD3 , | (1)). It follows from
Proposition 3.7 and Lemma 3.4 that ¢(t + 7,t,2) — (0,1) or ¢(t + 7,t,2) — (1,0) as

7 — 00. Thus x(¢,z) < oc.

If v € ¢71(t, Dr11(t)), then it follows from Lemma A.8 that ¢(t + 7,¢,z) — (1,0) as

T — 0.

Next consider the case in which z ¢ ¢~1(¢, Dg.1.1(¢)). It follows from Lemma A.11((1))
that there exist 2! € ¢~ 1(t,Dr11(t)), 22 € ¢1(t, Dr11(t)), such that 2! < 2%
z € E = (z1,2%] x (21,2%] C Dr11(t), max{¢(t,z'),((t,2%)} < x(t,z), and
¢;1(t, Dpaa(t), x(t,z)) N (E\ {z',2%}) = @. Inductively define F(0) := E, E(r) :=
E(r) N (Po(t + ) U Py(t + 7)), and E(T + 1) := ¢(t + 7+ 1,t + 7,E(7)) for 7 =
0,1,...,x(t,z). For any 7 € {0,1,...,x(t,z)}, let 21(7) and 2?(7) denote respec-
tively the left-bottom and right-top vertices of E(7), and let #'(7) and Z2(7) denote
respectively the left-bottom and right-top vertices of E(7). Note that 2! = *(0) and
2?2 = 22(0).

Let 79 := min{((t,z'),(¢,2?)}. It follows from Lemma A.11((2)) that E walks to
d(t+70,t, E) from time ¢ to time t+79. Since ¢p(t+70,t, x') < ¢p(t+70,t, 22), it follows
that either ((t,z') < ((t,22) or ((t,2?) < ((t,z'). Hence, consider the following two

cases:
1 Case 1. ((t,21) < ((t,2?) < x(t, 2):
Then 79 = ((t,2!). It follows from Lemma A.11((2)) that E walks to ¢(t+70,t, F)

from time ¢ to time ¢ + 79, and for all 0 < 7 < 79, it holds that ¢(t + 7,¢, F) C

Pyt +7) or ¢(t +7,t,E) C Pi(t+ 7). Thus, E(r) = E(t) C Py(t +7) or

E(r)=E(r) C Pi(t+7) forall 0 < 7 < 79.
Next we show by induction on 7 € {79,...,x(t,x)} that

(a) there exist z!(7),2%(7) € P(t +7) s.t. 21 (7) < 22(7) and

B(r) = (aLy(r), a2, ()] x (21(7), 25 (7)),

(b) o(t+7,t,z) € E(1),
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(c) E(t) Co(t+ 7,1, E),

(d) «* ¢ E(r)\{2*(1)},

(e) x'(1) € D=(t + 1),

f) ¢t + 7+ 7, t+7,2%7)) — (1,0) as 7" — oo,

(g) E()NP =2,

(h) E(t) C Py(t+7) or E(t) C Pi(t+7), and

(i) E(r) = @, or there exist & (1), 2%(7) € Py(t+7)UP;(t+7) such that # (1) <
#2(1) and E(1) = (& ,(7), 2%, (1)] x (1 (1), Z3(7)], and p(t+7,t,2%) = Z2(7)
or ¢(t + 7,t,22) € Ps.

Consider 7 = 79. Since E walks to E(7), it follows from Remark A.1(3) that

(1) = ¢(t + 70, t,2%) < d(t + 10, t,22%) = 2%(79) and E(7) = ¢(t + 70,1, FE) =

(x1(70), 22 1(70)] % (z}(70), 23(70)]. Since z € E, it follows that ¢(t + 79,t,7) €

(t+70,t, E) = E(79). Since 19 = ((t, '), it holds that 2 (m0) = ¢(t+10,t,21) =

z* € D=(t + 79), and thus E(rg) = E(r9) € Pi(t + 70), * ¢ E(r), E(10) N

Py = @, and #'(19) = 2'(r0) < #%(10) = 2%(10) = ¢(t + 70,t,2%). Since 22 €

¢1(t, D11(t)), it follows from Lemma A.8 that ¢(t + 7/,¢t,2%) — (1,0) as

7/ — oo. It follows that ¢(t +79+ 7/, t + 10, 2%(70)) = d(t + 70+ 7', t,2%) — (1,0)

as 7 — oo. Thus (a)—(i) hold for 7 = 9.

Assume that (a)—(i) hold for some 7 < x(¢,x). Since ¢(t + 7,t,xz) € E(r) and

T < x(t, ), it holds that ¢(t+7,t, ) € E(T)N(Py(t+7)UP,(t4+7)) = E(r). Thus,

E(r) # @. It follows from Lemma A.12 that there are Z!(7),#2(7) € Py(t +7)U

Py (t 4 7) such that #'(7) < #%(7) and E(7) = (2L ,(7), 22 ,(7)] x (&}(1), 23 (7)],

2%(1) € P3 or %(1) = 22(1), E(1) C Po(t + 1) or E(t) C Py(t +71), &' (1) €

D=(t+7), and ¢(t+7+7', t+7,7%(7)) = (1,0) as 7 — co. Since E(1) C Py(t+7),

where k € {0,1}, and ¢(t + 7+ 1, t +7,-) : P, — P is an increasing separable

affine mapping, it follows that E(7) walks to E(7 +1) := ¢(t+7+1,t 47, E(7))

from time ¢t + 7 to time ¢t + 7 + 1.

Next we show that (a)—(i) hold for 7 4 1.
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(a)

(b)

()

(d)

Since #!(7) < #2(7), it follows from Remark A.1(1) that F(7+1) = (z*,(7+
1), 22 (1 +1)] x (21(7 + 1), 23(7 + 1)], where 2! (7 + 1) < 22(7 + 1).
Since E(7) walks to E(7+1) from time t+7 to time t+7+1, and ¢(t+7,t,z) €

E(7), it follows that ¢(t + 7+ 1,t,2) € E(t + 1).

It holds that E(7+1) = ¢(t+7+1,t+7,E(7)) C p(t+7+1,t+7,E(7)) C
ot+17+1L,t+1,0(t+7,t,E)) =d(t+ 7+ 1,¢t, E).

We show by contradiction that x* ¢ E(r + 1) \ {#?(7 + 1)}. Suppose that
v* € E(t+ 1)\ {2?(t +1)}. Since E(t +1) C ¢(t + 7+ 1,t, E), there exists
x' € E such that ¢(t + 7+ 1,t,2") = «*. By property (i) for time ¢t + 7,
o(t + 7,t,2%) = (1) or ¢(t + 7,t,2%) € P3. If ¢(t + 7,t,2°%) = F2(7),
then since E(7) walks to E(r + 1) from time ¢ 4+ 7 to time t 4+ 7 + 1, it
follows from Remark A.1(3) that 2%(7 + 1) = ¢(t + 7 + 1,t + 7,7%(7)) =
P(t+T+1,t+7,¢(t+7,t,2%)) = p(t+7+1,t,2%) # x*, and thus o’ # 22. If
@(t+7,t,2%) € P3, then it follows from Lemma 3.1 that ¢(t+7+41,¢, 22) € P3,
and thus 2’ # 22. Hence, either way 2’ # z2. Thus, 2’ € E \ {z!,2%}. Note
that 7+ 1 < x(¢,x). Thus, 2/ € qﬁ;l(t, Dra1(t), x(t,2)) N (E\ {z*,2%}),
contradicting qﬁ;l(t, Di1a(t), x(t,2)) N (E\ {z1,22}) = @.

Recall that E(r) C Py(t 4+ 7) or E(r) C Py(t + 7). First, note that if

#1,(r) = 2%, and #1(7) > z%, then #!(7) € P,, which contradicts Z!(7) €

D=(t + 7). Thus, it cannot hold that #',(7) = x*; and #i(7) > a}. If
E(7) C P(t47) and Z}(7) = 7, then since E(7) walks to E(7+1), it follows
from Lemma A.13 that z'(r + 1) € DS(t + 7+ 1). If E(1) C P(t +7) and
#1(7) > 2%, then #*(7) € Pi(t+7). Then it follows from Remark A.1(3) that
2l (r+1) = ¢(t+7+1,t+7,2'(7)). Thus, it follows from Proposition A.1(1)
that z' (7 +1) € DS(t+71+1). If E(1) C Py(t+7), then #'(7) € Py(t + 1),
and it follows from Remark A.1(3) that (7 +1) = ¢(t + 7+ 1,t+ 7,7 (7)).
Thus, it follows from Proposition A.1(1) that 2'(7 + 1) € DS(t +7 + 1).

Since ¢(t +7+7,t+7,7%(7)) = (1,0) as 7/ — oo and 2%(7 + 1) = p(t + 7+

1, t+7,3%(7)), it follows that ¢p(t+7+1+ 7", t+7+1,22(1+1)) = ¢(t+ 7+
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T+ t+7+ 1, ¢(t+7+1,t+7,2%(7))) = dp(t+7+ 1+, t+7,3%(7)) — (1,0)
as 71 — oo.

(g) It follows from Lemma A.12 that E(7 +1) N Py = &.

(h) It follows from Lemma A.12 that E(1 +1) C Po(t+7+1) or E(t +1) C
P(t+7+1).

(i) If E(t +1) = @, then result (i) holds. Otherwise, since E(1) # @, it
follows from the induction hypothesis that ¢(t + 7,t,2%) = 2%(7) or ¢(t +
7, t,2%) € P3. If ¢(t + 7,t,2%) € P3, then it follows from Lemma 3.1 that
ot + 7+ 1,t,2%) € P3. If ¢(t + 7,t, %) = #(7), then since E(r) walks
to E(1 + 1), it follows that 22(7 + 1) = ¢(t + 7+ 1,t + 7,32%(7)) = ¢(t +
T+ 1Lt + 7,0+ 7, t,2%) = ¢(t + 7+ 1,t,22). Then, since E(t + 1) # @,
it follows from Lemma A.12 that 2?(7 + 1) = ¢(t + 7 + 1,t,2%) € P3 or
Pr+1)=22(r+1) =0t +7+1,t,2%).

2 Case 2. ((t,2?%) < ((t,2') < x(t,2):
Then 79 = ((t, 22). It follows from Lemma A.11((2)) that E walks to ¢(t+70, t, F)
from time ¢ to time ¢ + 79, and for all 0 < 7 < 7o, it holds that ¢(t + 7,t, E) C

Po(t +7) or ¢(t + 1,t,E) C Pi(t + 7). Thus, E(r) = E(r) C Py(t + 1) or

E(r)=E(r) C Pi(t+7) for all 0 < 7 < 7.

We show by induction on 7 € {79, ...,¢(t,2!)} that

(a) there exist z!(r),22(r) € P(t + 7) such that 2!(r) < 22(7) and E(r) =
(2Ly(7), 221 (7)) x (2{(7), 2}(7)],

(b) ¢(t+7,t,x) € E(1),

(¢) BE(t) C ¢(t+7,t,E) and E(1) C ¢(t + 7,1, E),

(d) op(t+7,t,2) =21 (1) € Po(t +7)UP(t+7) and ¢(t +7,t,2') ¢ D<(t+ 7).

(e) z* ¢ B(r)\ {z'(r),2*()},

(f) 22(1) € D=(t + 1),

(8) E(r)NPy =2,

(h) z'(7) = 2* or E(T) C Pr(t+ ) for some k € {0, 1}, and
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(i) ot +71,t,2%) = 2%(7) or ¢(t + 7,t,2%) € P3.

Consider 7 = 7. Since E walks to E(7), it follows from Remark A.1(3) that

i(m) = ¢t + 10,t,2%) < @t + 10,t,2%) = 2%(10), E(r0) = ¢(t + 70,t, E) =

[z (10), 22 (70)] X [x1(70), 23(70)], where 2%(79) = &(t + 70,t,2%) = 2*. Thus

it holds that z* ¢ E(7) \ {z!(70),2%(10)}, ¢(t + 710, t,21) = 21 (10) € Po(t + 7o),

2(10) = a* € D(t + 79), BE(ro) N Py = @, E(r9) C Pyt + m0) and E(rp) =

E(79) C Po(t+10), and ¢(t + 710, t, 2%) = 22(79). Also, since E walks to E(m), it

follows that E(m9) = ¢(t + 70,t, F). Since x € E, it follows that ¢(t + 19,t,x) €

E(19). It follows from 79 < ((t,z') that ¢(t + 79,t,2) ¢ D<(t + 79); since if

B(t + 10,t, 1) € D<(t + 79) then it would follow from Proposition A.1(1) that

d(t+7,t,2t) € D<(t+7) and thus ¢(t+7,t,2') # z* for all 7 > 79, contradicting

((t,x') > 19. Thus (a)-(i) hold for 7 = 79.

Assume that (a)—(i) hold for some 7 < ((¢,z'). Since ¢(t + 7,t,2) € E(7) and

T < ((t,z') < x(t,z), it holds that ¢(t +7,t,2) € Py(t+7)U Py (t+7), and thus

o(t+7,t,x) € E(t)N(Py(t+7)UP (t+7)) = E(7). Since E(r) C E(7), it holds

that l:?(T) C E(7). It follows from Lemma A.14 that there are Z'(7),#%(7) such
that z'(7) = #'(r) < #%(7) and E(7) = (2-,(7),#2,(7)] x (#1(7),#3(7)], and

#2(1) € DS(t+7). Since T < ((t,x'), it also follows that 2'(7) = ¢(t+7,t,2!) #

x*, and thus E:(T) € Pi(t + 7) for some k € {0,1}. It follows that E(T) walks

to E(r + 1) and E(7) walks to E(r + 1). It also follows from Lemma A.14 that

22(1) € Py or 22(1) = Z%(1).

Next we show that (a)—(i) hold for 7 4 1.

(a) Since E(1) = (2L ,(1), 22 ,(7)] x (#1(7), #3(7)] walks to E(r + 1), it follows
that there exist z'(7+1),22(7+1) € P(t+7) such that z'(7+1) < 2%(7+1)
and BE(t 4+ 1) = (22 (1 + 1), 2%, (71 + 1)] x (21 (7 + 1), 2% (7 + 1)].

(b) Since ¢(t + 7,t,z) € E(7), it follows that ¢(t +7 + 1,t,2) € E(t + 7+ 1).

(c) Tt follows that E(7+1) = ¢(t+7'+1,t+7',]£:'7(7')) Co(t+7+1,t+1,E(1)) C

pt+7+1,t+7,0(t+7,t,E)) =¢(t+7+1,t,E), and E(t+1) = ¢p(t+7+
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Lt+71,E(r) Co(t+7+1,t+71,E(1)) Co(t+7+1,t+71,0(t+7,t,E)) =
o(t+71+ 1t E).

Since E‘(T) walks to E(7 + 1) and 2!(7) = 2'(7) = ¢(t + 7,t,2!), it follows
from Remark A.1(3) that 2'(7 +1) = ¢(t + 7+ L,t + 7,3(7)) = d(t + 7 +
Lt+7ot+7t2h) =¢t+7+1,t,2!). Since 7+ 1 < ((t,2'), it holds
that ¢(t + 7+ 1,t,2%) € Py(t +7) U Pi(t + 7). It also holds that ¢(t + 7 +
1,t,2') ¢ D<(t + 7 + 1); since otherwise it follows from Proposition A.1(1)
that ¢(t+7/,t,2') € D<(t+7') for all 7/ > 7+1, contradicting 7+1 < (¢, z!).
We show by contradiction that z* ¢ E(r+1)\{z!(7+1),2%(7+1)}. Suppose
that 2* € E(r + 1) \ {z}(7 + 1),22(1 + 1)}. Since E(t +1) C ¢(t + 7 +
1,t,E), there exists 2/ € E such that ¢(t + 7 + 1,t,2') = z*. Note that
ot + 7+ 1,t,2Y) = 2(r + 1) # 2%, and thus 2’ # z!. Next, note that
d(t+10+1,t,2%) = d(t+m0+1, t+70,2%) = (2% +0° (t+70+1), 2}+67 (t+70+
1)) € Pi(t+7), and thus pp, (t+70+1, ¢(t+70+1, ¢, 2%)) = 69, (t+70+1) (M +
t+1) = 1—a}, form = £1. Since x] > x* ,, it follows that p_; (t+70+1, (t+
o+ 1,t,2%)at = (1 —a* )z} =2 —a* 2 > 2%, —a* 27 = (1—a})ar | =
p1(t+70+1, d(t+70+1, ¢, 22))z* |, and hence ¢(t+710+1,t,2%) € D<(t+710+1).
Then it follows from Proposition A.1(1) that ¢(t +7/,t,2%) € D<(t +1') for
all 7/ > 19+ 1. Since 7+ 1 > 19 + 1, it follows that ¢(t + 7 + 1,t,22) €
D<(t + 7 + 1), and thus ¢(t + 7 + 1,t,2%) # z*. Hence 2’ # 2%. Note
that 7+ 1 < x(¢,z), and thus, 2’ € gb;l(t, Di11(t), x(t,2)) N (E\ {z!,2%}),
contradicting (;5;1(75, Di1a(t),x(t,2)) N (E\ {z1,22}) = @.

Since #%(7) € D=(t+7) and E(7) walks to E(r + 1), it follows from Propo-
sition A.1(1) that 22(t +1) = ¢(t + 7+ 1,t +7,7%(7)) € DS(t + 7+ 1).

It follows from Lemma A.14 that E(7+ 1) N P, = @.

It follows from Lemma A.14 that z'(7 4 1) = 2* or E(T +1) C Py(t+7+1)
for some k € {0,1}.

By property (i) for time t + 7, ¢(t + 7,t, 2%) = 2%(7) or ¢(t + 7,t,22) € Ps.

Also, recall that 2%(7) € P or 22(7) = (7). If ¢(t + 7,t,2%) € P3, then it
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follows from Lemma 3.1 that ¢(t+7+1,t,22) € Py. If ¢(t+7,¢,2%) = 2(7)
and z2(7) € P, then it follows from Lemma 3.1 that ¢(t +7+ 1,¢,22) € Ps.
If ¢(t +7,t,22) = 22(7) and 22(7) = 72(7), then 2?(7+1) = ¢(t + 7+ 1,t +
7,32(7)) = dp(t + 7+ Lt + 7,0t + 7,1, 22)) = ¢t + 7+ 1,t,22).
Note that at time 7 = ((¢,2'), it holds that z'(7) = ¢(t + 7,t,2!) = 2* €
D=(t + 7). Also, z* = z!(7) ¢ E(7) \ {?(7)}. In addition, z%(7) € DS(t + 7)
and thus it follows from Corollary A.1 that ¢(t + 7+ 7/,t + 7,22(7)) — (1,0) as
7' — co. It also follows that E(r) = E(r) € P (t + 7) and thus #%(7) = 2%(7).
Hence ¢(t + 7,t,2%) = #2(7) or ¢(t + 7,t,2%) € P3. Therefore the induction
hypothesis for Case 1 holds at time 7 = ((¢,2'). Then the same induction
argument as in Case 1 shows that the induction hypothesis for Case 1 holds at

times 7 € {¢(t,z1),..., x(t,z)}.

Thus, ¢(t + 7,t,x) € E(7) and E(1) N P, = &, and hence ¢(t + 7,t,z) ¢ P» for all
Te{t,...,x(t,x)}. Thus, ¢(t + x(t,x),t,z) € P3. It follows from Theorem 3.2 that
o(t+7,t,x) = (1,0) as 7 — oo.

(4) The proof of (4) is similar to the proof of (3). O

A.1.4.6 Characterization of Convergence for x* | = x}

The Rational Case

For j € Z, let v;(t) denote the top right vertex of Q;(¢), i.e., let

vit) = (2t + 0% (8)/a. a7 + 387 (1) /q) -
Lemma A.15. Consider any k € {0,1}, i € I(t)NJx(t), andt € No. Then, Ujer, ,Q;(t) =
Dyii(t) \ (Ujex, ,Qv;(1)))-

Proof: Note that for each j € Zy;, it holds that Q;(t) = Q' (v;_1(¢)) N Q°v;(t)). Con-
sider any = € Ujez, ,Q;(t) C Dg;i(t). Let j € Zy; be such that z € Q;(t). Thus,
€ Q0 (0) N 9°50) = (Nggreze, o yesn? 0 1) 0 (Nggreze, 20905 (1))
Thus, = ¢ Ujez, ,Q(vj(t)). Hence, Ujer, ,Q;(t) C Drji(t) \ (Ujez, . Q(v;(t))).
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Next, consider any = € Dy;i(t) \ (Ujez, ,Q(v;(t))). Thus, € Dy;;(t) and z €
Njez,, (Q0(v;(t)) U QN (v;(t))). Note that 2 € Q%(cv(Dy,4(t))) and thus {j’ € Zp,; : = €
QO (1)} # @. Let j :== min{j’ € Ij; : = € Qv;y(t))}. Then z € Q' (vj_1(2)) N
Q%(v; (1)) = Q;(t). Hence, Dyii(t)\ (Ujez,, 2(v;(t))) C Ujez, ,Q;(t). Therefore, Ujez, ,Q;(t) =
Dyi(t) \ (Ujez, . (v;(2)))- O
Lemma A.16. Suppose that 7 = x*, and that z5/(1 — 27) = K + p/q, where K € Ny,
p,q €N, p/q <1, and ged(p,q) =1, or K € N, p =0, and q = 1. Consider any t € Ny.

Then, the following hold:

(1) If j <0, then ¢(t + 1,t,v;(t)) = vj4q(t + 1), and if j > 0, then ¢(t + 1,t,v;(t)) =

Vi (Kqtp) (E+1)-

(2) If 7 <0, then ¢p(t+ 1,t,Q;(t)) = Qjrq(t + 1), and if j > 0, then ¢(t +1,t,Q;(t)) =

Qj_(Kq+p) (t + 1)
(8) For all x € Q(t) it holds that ¢(t + 7,t,x) = x* as T — oo.
Proof:

(1) If j <0, then it follows from (3.10) that

(M, + t)v;(t) + 1 N S (o )
dm(t+1,t,0;(t) = 7]’\‘4m+tj+ : = x5+ (+q)"— Vjrq(t+1).
If j > 0, then it follows from (3.10) that

(M + t)v;(t) (s O (t + 1)
Om(t+1,1,05(t) = ]\/.f,n+—t+]1 = $m+(J—(KQ+P))T = Uj—(kq+p)(tH+1)-
(2) Consider any x € Q;(t), that is,
69, (t 89, (t
Tm € <:c;‘n+(j—1)”;(),:cfn —I—jmq() for m = +£1. (A.7)
If j <0, then € Py, and it follows from (3.10) that
(M + t)zm + 1
m 1,t, =
fm(t+1,42) My, +t+1
60, (t+1) 89,(t+1)

e (a::n+<j+q—1> ah 4 (+a)
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for m = +1. Thus, ¢(t + 1,£,Q;(t)) C Qjiq(t +1). If 5 > 0, then = € Pp, and it

follows from (3.10) that

(M, + t)xm,

t+1.¢t =
Om(t +1,t,7) My, +1+1

O@t+1)

0
) (“”“U‘(K‘”p)—wqvwm+<j—<Kq+p>>‘W+”

for m = £1. Thus, ¢(t + 1,t,Q;(t)) C Qj—(kg+p) (t +1).

Conversely, consider any j <0, and any y € Qj14(t + 1), that is,
Ym € (23, + (G + = D)ot +1)/q a7, + (7 + Q)0 (¢ + 1) /q]

for m = +1. Note that z with z,, = [ym (M, +t+ 1) — 1] / (M, + t) satisfies x €
Q;(t) C Py and ¢ (t + 1,t,2) = y. Thus, Qjq(t + 1) C é(t + 1,t,Q;(t)). Similarly,
consider any j > 0, and any y € Q;j_(kq+p)(t + 1), that is,

O @t+1)

0
o (x;ﬁ"ﬂ‘j_(Kﬁp)_l)q’xm+(j—(Kq+p))5m(t+1)

for m = £1. Note that x with @, = ym (M +t+ 1) / (M, + t) satisfies z € Q;(t) C

pl and ¢m(t + ].,t,ﬂ?) =Y. ThUS, Qj—(Kq—‘rp)(t + 1) - ¢(t + ]-at, Qj(t))

(3) If x € Q(t), then it follows from a repeated application of (2) that ¢(t + 7,t,z) €
Q(t+7) C Upep_(t4r)D for all 7 € N, and hence it follows from Proposition 3.7 that

ot +1,t,x) > x* as T — o0. O

For any te No, note that CV(DO,i’i(t)) = U—(i—l)q(t) fori € Io(t)ﬂjo(t), and CV(DLi,i(t)) =

Vi(Kq+p) (t) for i € I1(t) N Jy(t).

Proposition A.2. Suppose that x7 = x* | and that 27 /(1 —27) = K +p/q, where K € Ny,
p,q €N, p/g <1, and ged(p,q) =1, or K € N, p =0 and g = 1. Consider any t € Ny,

ke {0,1}, i € I(t) N Jk(t). Then, gf)_l(t,Dk,iﬂ-(t)) ={vj(t) : j € Lp}.

Proof: First we show that {v;(t) : j € I;} C ¢~ (t, Dy,i(t)). Consider any v;(t) with
J € Iy ;. We consider 3 cases.
Case I: K € N, p =0, ¢ = 1: Then, z7/(1 — 2}) = K. First suppose that k& = 0,

that is, 7 < 0. Note that for any i € Iy(t) N Jo(t), it holds that Q1—;(t) = Do i(t) and
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vi1—i(t) = cv(Dy,(t)), and for any j < 0, it holds that v;(t) = cv(Do1—51—;(t)). It follows
from Proposition 3.6 that Dg1—j1—;(t) walks to Dg11(t — j) from time ¢ to time ¢ — j.
Thus, ¢(t — j,t,v;(t)) = z*, and thus v;(t) € ¢~ (¢, Dyi:(t)). Next suppose that k = 1,
thatis, 7 € {(i—1)K+1,(i—1)K+2,...,iK}. Since j > 0, it follows from Lemma A.16(1)
that ¢(t + 7,t,v;(t)) = vj_;x(t+ 7) for all 0 < 7 <. Since j —iK < 0, it follows that
d(t+i,t,vi(t) = vj_irx (t+1) = cv(Do1—j+ik1—j+ik (t+1)). It follows from Proposition 3.6
that ¢(t +i— j +iK,t,vj(t)) = *. Thus, vj(t) € ¢ 1(t, Dx;i(t)).

Case2: K € N,p,q € N, p/q < 1, and ged(p, q) = 1: First suppose that k = 0, that is, j < 0.
Then j = —lg — n, where [ € Ny and n € {0,1,...,q — 1}. It follows from Lemma A.16(1)
that ¢(t + 1,t,v(t)) = vjyie(t +1). Note that j+1lg =-—neZ_:={-qg+1,...,—1,0}.
Next suppose that & = 1, that is, 5 > 0. Then j = I'(Kq + p) + n’, where I’ € Ny
and n' € {1,...,Kq+ p}. It follows from Lemma A.16(1) that ¢(t + ' + 1,¢,v,(t)) =
Vj—(41)(Kg4p)(t + 1"+ 1). Note that j — (I' + 1)(Kq +p) = n' — (Kq+p) < 0. Then
j— U+ 1)(Kq+p) = —lg—n, where | € Ny and n € {0,1,...,q — 1}. Tt follows from
Lemma A.16(1) that ¢(t + 1"+ 1+ 1,t,vj(t)) = vj—@41)(Kgtp)+ig(t + 1"+ 1+ 1). Note that
j—U+1)(Kq+p) +lg=-necT_.

Next, consider v;(t) with j € Z_. We show that there exists 7 € Ny such that ¢(t +
7,t,v;(t)) = z*. For any 7 € Ny, let f(7) denote the negative of the index of ¢p(t+7,t,v;(t)),
that is, ¢(t + 7,%,v;(t)) = v_g(7)(t + 7). Thus, we will show that there exists 7 € Ny such
that f(7) =0.

Inductively define {7,,}72, as follows. Let 79 = 0. Note that —f(7) = j € Z_. For
n=20,1,..., let 7,41 := inf{7 > 7, : —f(7) € Z_}. Suppose that —f(r,) € Z_. Then,
flmm)+pe{p,....,p+q—1}. It follows from Lemma A.16(1) that f(r, +1) = f(mn) —q €
{—¢,...,—1} and that f(r, +2) = f(7n) —q¢+ Kq+p = f(mm) + (K —1)g+ p > 0 since
K > 1. It follows from Lemma A.16(1) that, if f(7,) +p < gq, then 7,41 =7, +2+ K — 1,
and f(mp41) = f(m)+p€{p,...,q—1} C —Z_. If f(tn)+p>gq, then 7p1 =7, + 2+ K,

and f(7n41) = f(mn) +p—q€{0,...,p—1} C —Z_. Thus,

f(m) +p if f(m)+p<gq,

fm)+p—q if f(ma)+p>gq,

f(Tn-i-l) =
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which implies that

f(mn) = (=j+np) mod q

for all n € Ny.
Since p > 1 and ged(p,q) = 1, there exists p* € N such that (p*p) mod ¢ = 1. Thus,

there exists N € N such that p*p = Nq + 1. Note that

fTGtgps) = (=j+(G+q@p'p)modq = (—j+(+q)(Ng+1)modg = 0.

Thus, there exists 7 € Ny such that f(7) = 0. Hence, ¢(t + 7,¢,v;(t)) = vo(t + 7) = ¥,
which implies that v;(t) € ¢~ (¢, Dgii(1)).

Case 3: K =0, p,q €N, p/q <1, and ged(p, q) = 1: Then (1 — z*)/z* = K + m/p, where
K=qeNm=0,p=1,or K €N, m,peN, m/p <1, and ged(m,p) = 1. By changing
variables y», := 1 — z},,, similar arguments as in Cases 1 and 2 apply to this case.

Next we show that ¢~ (t, Dy () C {v;(t) : j € Ty, ;}. Consider any z € ¢~ 1(t, Dy ; :(t)).
Then there exists 7 € Ny such that ¢(t + 7,t,z) = 2* € D=(t + 7). It follows from
Proposition A.1 that ¢(t + 7+ 7/,t,2) € D=(t + 7 + 7'), and thus it follows from Propo-
sition 3.7 that ¢(t + 7 + 7/,t,2) — a* as 7 — oo. We show by contradiction that
z € {vj(t) : j € Ti;}. Since {v;(t) : j € Tp;} C ¢ L(t, Drii(t)), it follows that if
T € Ujer, ,Q2(vj(t)), then x € Dl?:,i,i(t) U D}, ;(t). Then it follows from Theorem 3.4((1))
and 3.4((2)) that ¢(t + 7 + 7',t,2) — (1,0) or ¢(t + 7+ 7', t,z) — (0,1) as 7" — oo,
contradicting ¢(t + 7 + 7/,t,x) — x* as 7 — oo. If & € Dy;(t) \ [Ujez, ,Q2v;(t))], then
it follows from Lemma A.15 that z € UjeI;w-Qj(t)' Thus, there exists some j € Z; such
that € Q;(t). Since = ¢ {v;(t) : j € Iy}, it holds that Q(z) N Q;(t) # @. Consider any
y € Q(z)NQ;(t). Since z € ¢p~1(t, Dy ;i(t)), it follows that y € D,%“(t) UDiﬂ.’i(t). It follows
from Theorem 3.4((1)) and 3.4((2)) that ¢(t + 7,t,y) — (1,0) or ¢(t + 7,t,y) — (0,1) as
T — 00, contradicting ¢(t + 7,¢,y) — 2* by Lemma A.16(3). Thus, x € {v;(t) : j € Zj,},
and hence ¢! (t, Dy;(t)) C {vj(t) : j € Ty} O
Proof of Theorem 3.5: Results (1) and (2) follow from Theorem 3.4((1)) and The-
orem 3.4((2)). It follows from Proposition A.2 that ¢=1(0, Dy;;(0)) = {v;(0) : j €

I]“'}. Thus Dé,i,i(o) = Dk,i,i(o) n Uxe¢*1(0,Dk7i,i(0))Ql(x)] = Dk,i,i(o) N [UjeIkJQI(Uj(O))] .
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Hence Dy ;i(0) \ (D7 ;;(0) U D}, :(0)) = Dyii(0) N DZ,;;(0)° N D}, (0)° = Dyi(0) N
[Mjez, 2% (0(0))°] N [Njez,, ;2% (v3(0))] = Diyii(0) N [Mjez,,; (22(w(0)) U Q3 (v;(0)))°]
Dy,i,i(0)N [Njez;, . 2©5(0))¢] = Dii,i(0)N [Ujez,, , 2v;(0))] = Drii(0)\ [Ujez,, ,2(v;(0))] =
Ujez,, ,@;(0), where the last equality follows from Lemma A.15. Therefore Uye(o,13Uscr, (0)n., (0)
[Dk,i,z’(o) \ (D}, (0)U Dl?;,i,i(o))} = Uge(0,1} Yier (0)nJi(0) Yjez, @5(0) = Q(0). It follows
from Lemma A.16(3) that ¢(¢,0,2) — 2* as t — oo for all z € Q(0). O

The Irrational Case

Let z7/(1—27) = K4w, where K € Ny and w € (0,1)\Q. We show that in the irrational
case, ¢(t + 7,t,x) — x* as T — oo if and only if x € D=(t). For each t € Ny and r € R, let
w(t,r) = (w_1(t,r),wi(t,7)) = (x* ;| +7r6 (t), 21 +7r8(t)). If 27 = x* |, the diagonal line at
time ¢ can be written as D=(t) = {z € P(t) : (z1 — a})(My +t) = (z1 —2* ) (M1 + 8)} =
{w(t,r) € P(t) : r € R}. Forany t,7 € Ny and x € D=(t), let g(7,z) = —riff p(t+7,t,2) =

w(t+ 7,7). That is, for any ¢,7 € Ng and z € D=(¢), ¢(t + 7,t,2) = w(t + 7, —g(T, z)).

Lemma A.17. Suppose that x*, = zi. For any t,7 € Ny it holds that x € D=(t) iff

p(t+7,t,x) € D=(t+ 7). If v € D=(t), then ¢(t + 7,t,x) — =* as T — oo.

Proof: It follows from Proposition A.1 that if x € D=(t), then ¢(t + 7,t,2) € D=(t + 1)
for all 7 € Ny, if x € D<(t) then ¢(t + 7,t,2) € D<(t + 7) for all 7 € Ny, and if x € D~ (t)
then ¢(t+7,t,2) € D7 (t+7) for all 7 € Ng. Hence x € D=(t) iff ¢(t +7,t,2) € D=(t+ 7).

It follows from Proposition 3.7 that if x € D=(t), then ¢(t + 7,t,2) — x* as 7 — oc. O

Lemma A.18. Suppose that z* | = x7 and z7/(1 — x}) = K +w. Consider any t,7 € Ny
and x € D=(t). If g(t,xz) > 0, then g(t + 1,2) = g(1,z) — 1, and if g(7,x) < 0, then

g(T'{'l?x) :g(T,IE)—FK—FW-

Proof: If g(r,x) > 0, then ¢(t + 7,t,2) € Py(t) and

(M, +t+ 7)o (t +7,t,2) + 1 . 0
+1 = = - —1]o,,t+7+1
¢m(t T ,t,%’) Mm P 1 T, [9(7—7'%') ] m( T )

for m = +£1, and thus g(7+1,2) = g(7,x) — 1. If g(7,2) < 0, then ¢(t+7,t,2) € Pi(t) and

(M, +t+ 7)) (t + 7,8, 2) .
Om(t+7+1,t,x) = mMm+th+1 = mm—[g(T,m)+K+w]5%(t+T+1)

162



for m = £1, and thus g(7+ 1,2) = g(7,2) + K + w. O

For any r € R, let frac(r) := r mod 1 denote the fractional part of r. For any i € N,
let R; := {—i + frac(nw) : n € N}. It follows from Kronecker’s Approximation Theorem
for the one-dimensional case [3] that if w is irrational, then {frac(nw) : n € N} is dense
in (0,1). Thus R; is dense in (—i,—i + 1]. Note that if r € R;, then w,,(t,r) € (xf, —

100, (1), %, — (i — 1)69,(t)), and thus w(t,r) € Dy i(t).

Lemma A.19. Suppose that z*, = z} and z7/(1 — z}) = K + w, where K € Ny and
w € (0,1) \ Q. Consider any t € Ny, i € Ip(t) N Jo(t). Then, Do, i(t) \ D=(t) =

(Urer; 2(w(t,7))) N Do, i(t).

Proof: Consider any = € Dy ;;(t)\ D=(t). Thus, x,, € (z3, — 6%, (t), x5, — (i — 1)69,(¢)] for
m = £1. Thus, there exist r_1,71 € (—i, —i+1] such that r_1 # ry, v_1 = 2* { +7_16%(¢),
and z; = o7 + r167(t). Recall that R; is dense in (—i, —i + 1]. If 7_1 > rq, then there
exists r € (r1,7r—1) NR;. Then, z_1 > w_1(t,r) and z7 < wi(t,r), which implies that
z € QD(w(t,r)). If r_y < ry, then there exists r € (r_1,71) N R;. Then, 1 < w_y(t,7)
and z1 > w1 (t,7), which implies z € Q?(w(t,r)). Thus, z € (Urer,Q(w(t,7))) N Doii(t),
and hence Do i(t) \ D=(t) C (Uper, Qw(t,r))) N Doi(t).

Consider any = € (Uper,Q(w(t,7))) N Do, i(t). There exists r € R; such that z €
Qw(t,r)). If z € Q%(w(t,r)), then x_1 < w_1(t,r) = 2*; +r(1 — 2*;)/(M_1 +t) and
x1 > wi(t,r) = af +r(l —27)/(My +t), and thus (z_1 —z* ) (M_; +t) < r(l —z*,) =
r(1 —2}) < (w1 — 23)(M; + t), which implies that z ¢ D=(t). If x € Q3(w(t,r)), then
x_1>w_q(t,r) = +r(l—z*,)/(M_1+1t) and 1 < wi(t,r) =z +r(1—=z7)/ (M1 +1),
and thus (z_; —a* ) (M_1+t) > r(l—2*,) =r(1—=z7) > (x1 —x7)(M; +1), which implies
that @ ¢ D=(t). Thus, x € Dy;;(t) \ D=(t), and hence (Uper,Q(w(t,r))) N Do;i(t) C

Do,i,i(t) \ D=(t). H

Proposition A.3. Suppose that z* | = x} and z7/(1 — z7) = K + w, where K € N and
w e (0,1)\ Q. Consider any t € Ng and i € Ip(t) N Jo(t). Then, {w(t,r) : r € R;} C
¢~ (t, Do,ii(t))-

Proof: Consider any r € R;. Thus, there exists n* € N such that r = —i + frac(n*w).
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Note that g(0,w(t, 7)) = —r € [i —1,4). It follows from Lemma A.18 that g(i — 1, w(t,7)) =
—r — (i —1) € [0,1). Define 7p = ¢ — 1 and inductively define 7,41 := inf{r > 7, :
g(rw(t,r)) €[0,1)}.

Thus, g(10,w(t,r)) € [0,1). Consider any n € Ny, and assume that g(7,, w(t,r)) € [0, 1).
It follows from Lemma A.18 that g(7, + 1,w(t,r)) = g(mn, w(t,r)) — 1 € [-1,0), and that
9(tn + 2,w(t,r)) = g(mn,w(t, 7)) =14+ K +w > 0 since K > 1 and w > 0. Note that
9(Tn,w(t,r)) +w € (0,2). If g(mp,w(t, 7)) + w < 1, then 7,41 = 7, + 2+ K — 1 and
9(Tny1, w(t, 7)) = g(1, w(t,r)) +w € (0,1). If g(7, w(t, 7)) +w > 1, then 7,41 = 7, +2+ K

and g(mp41,w(t,r)) = g(mm,w(t,r)) + w—1€[0,1). Thus

Tn,w(t, T w if T, w(t,r w <1,
e wltir) = g( (t, ) + 9(Tn,w(t,m)) +w < (A8)
g(tn,w(t,r)) +w—1 if g(r,w(t,r)) +w > 1.

which is equivalent to
g(tn,w(t,r)) = frac(—r—(i—1)+nw) = frac(l — frac(n*w) + nw)

for n =0,1,.... Thus, g(m*,w(t,r)) = frac(l — frac(n*w) + n*w) = 0.
Hence, ¢(t + T+, t,w(t, 7)) = w(t + Ty+,0) = z*. Thus, w(t,r) € ¢~ (¢, Do i(t)). O

Proof of Theorem 3.6:

(1) Consider any x € D~(0) C Upep,(oyup_(0)D U P2. Suppose that K € N. If = €
Upep,(0)D U Py, then it follows from Theorems 3.2 and 3.3 that ¢(¢,0,2) — (0,1) as
t — oo. If ¥ € Upep_(o)D, then there exists k € {0,1} and i € I;(0) N Jx(0) such
that € Dy;;(0) \ D=(0). First suppose that k& = 0. Thus, z € Dy ;;(0) \ D=(0).
It follows from Lemma A.19 and Proposition A.3 that z € (Urer,Q(w(0,7))) N
Dy ;,i(0) C (Uye¢—1(07Do,i,i(0))Q(?/)) N Dy;;(0) = Dam(O) U Dam(O). Next suppose
that K = 1. Then it follows from Proposition 3.6 that ¢(i,0,z) € Py. If ¢(:,0,z) €
Upepy(i)ups (i) D, then it follows from Theorem 3.3 that ¢(¢,0,z) — (0, 1) or ¢(¢,0,z) —
(1,0) as t — oo. Otherwise, there exists ' € Iy(i) N Jo(7) such that ¢(i,0,2) €
Doy (i) \ D=(i). Then it follows from Lemma A.19 and Proposition A.3 that

6(3,0,2) € (Urer, 2w(i;r))) 0 Do) © (Uyeo 10y, 2W)) N Doirir(i) =
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D2

5! 5l
0,/ 2

(i)UDgﬂ,’i, (7). Thus it follows from Theorem 3.4((1)) and 3.4((2)) that ¢(¢,0,z) —
(0,1) or ¢(t,0,2) — (1,0) as t — co. Since z € D7 (0) and x*; = «7F, it follows from
Proposition A.1(2) that ¢(¢,0,2) € D~ (t) for all ¢t € Ng. Thus, ¢(¢,0,z) ¢ P5 for all
t € Ny and hence ¢(¢,0,z) — (0,1) as t — oo.

If K =0, then 27/(1 — x}) = w. Then there exist K € N and @ € (0,1) \ Q such that
l/w=K+& and (1 — %) /2t = K + &. After changing variables to y} :== 1 — z}, a

similar argument as for the case with K € N can be used.
(2) Result (2) follows from a similar argument for Result (1).
(3) If x € D=(0), then it follows from Lemma A.17 that ¢(¢,0,z) — z* as t — oo. O

Proof of Proposition 3.8: Consider any € > 0. Choose 6 = min{e,z*;,1—27}. Consider
any x € P such that ||z — (0,1)|lcc < . Note that z € P». By Lemma 3.1, ¢(¢,0,z) € P,

for all t € Ny. Thus, it follows from (3.10) that

)

M _1x_4 Myzy +1¢
¢ - (0,1 = -1
(2, 0,2) = (0, 1)lloo maX{Mth M+t ‘}

—  max M_1|:L’_1| M1‘$1—1|
M_l—i-t’ M+t

}<5§5

for all ¢, and hence (0,1) is stable. By a similar argument, (1,0) is also stable.
Consider any € € (0,min{z*,,1 — 27}/2) and any 6 > 0. There exists x € P, such
that ||z — z*||cc < d. Since ¢(t,0,2) — (0,1) as t — oo, there exists ¢ € N such that

lp(t,0,2) — 2*||0c > €. Thus z* is unstable. O
A.1.5 Proofs for Discrete-time Fictitious Play under Case 2

Lemma A.20. Consider any x € [0,1] and m = £1. Then, PBR,,(z) = {AL}.

Proof: It follows from Lemma A.2 that

x—mﬂ'm(Agm Al—m) + (1 - x—m)ﬂ'm<A9n7 Agm)

< o (An, ALy) + (1= o) mm(Ap,, AL,

which implies PBR,,(z) = {AL }. O
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Proof of Proposition 3.9: It follows from Lemma A.20 that for each m = +1 and 7 € Ny,

R TR D > L VT SR A P,
m o My, +t+7 My +t+7
which implies that ¢(t + 7,¢,2) — (1,1) as 7 — oo. O

A.2 Assortment Competition with General Product sets and Simple
Actions

A.2.1 Proof of Proposition 3.10:
The proof follows from similar arguments as those for Propositions 3.1 and 3.2. O
A.2.2 Cournot Adjustment Process under Case 3

We provide a proof for Proposition 3.11 that describes the behavior of the Cournot adjust-

ment process under Case 3 in Table 12. Under Case 3, it holds that 5_1 < -1 < 8_; and
By < B1 < B

Lemma A.21. Under Case 3 in Table 12, it holds that m (A}, AL)) < m (A9, AL,) and

71 (A9, A% ) < m (AL, A% ) and w1 (AL, AD) > 7 1(A° |, AD) and m_1(A° |, AD) > 71 (AL, AD).
Proof: For m = =+1, note that, A\, > 0, A, > 0 and that

T (A ALp) = T (A AL) - = Ay (B — ),

T (Apyy A% ) = (AN, A% = An(Bm = Brm)-

Thus, the result follows from 3_; < 8.1 < 8_; and 8; < B1 < B1.

Proof of Proposition 3.11: The result follows from Lemma A.21.

A.3 Assortment Competition with General Product Sets and General
Actions

In this section we provide proofs for Propositions 3.12 and 3.13. We also present two
corollaries that follow from the propositions.

Proof of Proposition 3.12:

(1) Consider any A, € CY,  and any AY € PBR), (A", ). Then A% € PBR,,(A",,) iff for

all A}, € PBR;,(AY,) it holds that

(A, ALy) 2 (A, AL,) &
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Utmptm + bm(A(lm? A?n) > amvtmptm + bm(A(im? A'}n) /A 9)
1+, +ve_, +c(A%,  AD) - 1+ amvy,, + Bmvr_,, +c(A%,, A}n)\ '

& Bn > Bm(4Al).

(2) Consider any A!, € C!  and any Al € PBR. (Al ). Then Al € PBR,,(AL,,) iff for

all AY € PBRY (AL, ) it holds that

amﬁfmvtmptm + bm(Al—ma A71n)
1+ amﬁ—mvtm + a—mﬁmvtfm + C(Al—nw A71n)
1+ Bomur, + acmup_, +c(AL,,, A%)

Bm < Bn(AL). (A.10)

=

(3) Consider any A, € CY,  and any Al € PBR. (A" ). Then Al, € PBR,,(A",,) iff for

all A%, € PBRY, (AY, ) it holds that

(AL, A% > (A9, 4%,)
WVt Pt + b (A%, AL) > Oty Pt & b (AL, Apy) (A.11)
1+ cmuve, + Bmvr_, +c(A%, ALY T Tu, +u_, +c(AD AD)

(4) Consider any AL, € C!,  and any AY € PBR), (AL, ). Then A% € PBR,,(AL,,) iff for

all A}, € PBR;, (AL, ) it holds that

Tm(AY AL ) > m (AL AL ) &
BmVt,, Pt + b (AL, AD)
1+ Bomuvy, +a_mup_, +c(AL, AQ)
W BVt Pt + bm (AL, AL)
1+ amBomvt,, + @—mBmvr_,, + (AL, AL)
Bm > B,.(AL.). (A.12)

54

O]

Remark A.2. Note that the left sides of (A.9)-(A.11) do not depend on the choice of A%, €

PBR. (A_y,), and the right sides of (A.9)-(A.11) are the objective values (AL, A_y,), and
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are by definition of PBR. (A_,,) the same for all choices of A, € PBR. (A_,,). It follows
that Bm(A_p) and B,,(A_n) do not depend on the choice of At € PBR. (A_,,), which is

why A% was omitted from the notation for By (A_.,) and B,,(A_n).

Corollary A.2 characterizes the conditions for the existence of pure-strategy Nash equi-

libria.
Corollary A.2. The following holds:

(1) A pair of assortments (A%, AY) € C°,xCY is a Nash equilibrium iff A%, € PBRY (A°,)

and Bm > Bm(AY,,) for m = £1.

(2) A pair of assortments (AL, A1) € CLxC} is a Nash equilibrium iff AL, € PBR} (AL,))

and Bm < B,,(AL,)) for m = £1.

(3) A pair of assortments (A°,,, AL) € C°, x CL is a Nash equilibrium iff A%, €

PBR?, (AL), AL € PBRL (A%,), Bom > B_,.(AL), and B < Bm(A2,,).

Let CYF(z,,) == CY N Cl(z,), and CLH(Z,,) = CL N CH(Zm). Thus, Cf(z,) =
O (Zm) U O (Z)

Proof of Proposition 3.13:

(1) If 20, € BRY, (7_,,), then 20, € BR,,(7_,,) iff for all A%, € C%F(z9,) (note COF(20)

PBRY, (Z_,,)) and all AL € PBRL (Z_,,) it holds that

> mm(AY AT m(A) > > mm(Al, A)Z m(A ) (A13)
A_neC_py A_neC_py

A, €CT (T-m)

+ > [T (A%, AL) — o (Ah, AL )] Zom(AL,) > 0.

Al et (z_m)

Since A%, € CY, A% €%, , and Al € C}, it follows that

Tm, (A9n7 A(lm) — Tm (A71m A(lm)

Utmptm + bm(Agn) _ amvtmptm + bm(A’ll'n)
Lo, + v, +c(A2,A%) 1+ anvy, + Bnve_, + (A%, AL)
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and since A% € €Y AL € Cl, . and Al € CL, it follows that

—m>

7rm(A9n: Alfm) - ﬂ-m(A'}nv Alfm)
BVt Pt + bm (A7) _ U B—m Uty Pt + b (Ara)
1+ Bmvt, + aomvs_,, + (AL AY) 14 amfBomt, + Q@ mfBmvs_,, + (Al

—m?

Af)

= A (AL AN ALY [B — B (AL, AN AL

Then, (A.13) is equivalent to

Do AL, AN AL (B = Bn(AL AT, AL)] T (A2,,)

A, €0 (F-m)

DL An(AL AN AL) [B — Ba(AL, AL AL Tom(AL,) 2 0

Al eOMt (z_m)

& Bm = Bm(@-m).

(2) If 21, € BRL (Z_,,,), then L € BR,,(Z_,y) iff for all AL € CL¥(zl) (note CLF(z)) C

m m

PBR! (Z_,,)) and all A%, € PBRY (Z_,,) it holds that

Y (AL A )T m(Am) = > mm(AY A )T (Ay) (A14)
A_meC_m A_meCm

= Z [ﬂ'm(A}n: Agm) - 7Tm<A9m Agm)] j—m<A9m)

A eCOt (F_p)

+ > [T (AL, AL) — (A%, AL )] Tom(AL,) > 0.
Al eCt (T )

Since AL, € Cl A% €0 and A2 € CY, it follows that
71-m(Ainv Agm) - Wm(Agm Agm)

OmUt,, Pto + bm (A71n) o Ut Ptm + bm(A’E)n)
1+ amvr, + Bmve_,, +c(A%,, ALY 1+, +op,, + c(A°

—m>

45,)

= )‘M(A(im’ Agm Ain) [Bm(A(lmv A?m Avln) - BM] .
and since A) € €Y, AL, € Cl, 5 and A}, € CL, it follows that

ﬂ-m(A'}nJ Al—m) - Wm(A'lOna Al—m)

U BmVt,, Pt + b (Al) B BVt Pt + b (A7)
14 amfBomvt,, + C—mBmvr_,, +c(AL, JAL) 14 B-mue,, + a—mve_,, +c(AL,,,
= Am(A17"“ A?n: A’}n) [Qm (A£m7 A?na A71n) - ﬁ’m} .

AR)
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Then, (A.14) is equivalent to

}: Xm(AgmnA%nA%J[5m7_6m(AgmﬁA%ﬁA%J]j—m(Agm)

Agmecgtn(j*m)

D An(AL AN AL) [Bn — Ba(AL, AL AL Tom(AL,) <0

AL, €01 (T-m)

(3) If 22, € BR2,(Z_,,), then, for any A% € COF(z2), Al € CI+(z2), and A, € Oy, it

holds that
Z Wm(AgwAfm)jfm(Afm) = Z 7Tm(AimILLm)Q_Lm(Aﬂn)
A_peC_pm A_meC_m
> E: ﬂthmnA—wﬁf—m(A—m)
A_meC_p

which implies that Z2, € BRy,(Z_y), and thus BR2, (Z_,,) C BRy (T ).
In addition, since C9(z2,) C PBRY, (Z_,,), it holds for all A% € PBRC, (Z_,,) that
> (AN A m(A) = > (AN, A )T (A,
A_m€eC_pm A_meC_m
Similarly, since C}+(Z2,) C PBRL, (Z_,,), it holds for all AL € PBR. (Z_,,) that

Yo A A ) m(A) = D (A, A )T m(Ay).
A_neC_py A_peC_pm

Thus, it follows that
E: Wm(A%JA—WJj—m(A—m) = E: ﬂ%AA#JA—an—m(A—m%
A_meC_n, A_peC_py
which is equivalent to

3 [wm(AQn,AQ Y — (AL A0 m)] Zom(A%, )

A% ecO

> [l AL,) = (A, AL 3m(4L,) = o,
AL ecl

that is,

E: Xm(Agm7A%nA%J[Bm__BmCAgm7A%JA#}j—m(Agm)
Ad eCO
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T (AL A, AL [Br = B(AL,, A5, AL Em(AL,) = 0,
A

1 1
—mec—m

which is equivalent to 5., = B (T—m)- O

Remark A.3. Note that the left side of (A.13) is the objective value
S Al A ) (Ao,
A_m€C_m

and is by definition of PBRO,(Z_,,) the same for all choices of A € PBRY (%_,,), and thus
for all choices of A%, € C%F(z) c PBR?, (%_,,). Similarly, the right side of (A.13) is the
same for all choices of AL, € PBRL (z_,,). It follows that By, (Z_m) does not depend on the
choice of AY € C%(z%) and AL € PBR. (%_,,), which is why (A%, ALY was omitted from
the argument of B (T—pm). Similar comments apply to the proofs of Proposition 3.13((2))
and 3.13((3)).

Corollary A.3 characterizes the existence of mixed-strategy Nash equilibria.
Corollary A.3. The following holds:

(1) A pair of mived strategies (z°,79) € A(C°;) x A(CY) is a Nash equilibrium iff

29 € BRY (20, ) and By > Bm(z2,,) for m = £1.

(2) A pair of mived strategies (z1,,71) € A(CL)) x A(CY]) is a Nash equilibrium iff

zL €BRL (7L,) and By < Bm(ZL,,) for m = £1.

(3) A pair of mived strategies (z°,,,7L,) € A(CY,,) x A(CL) is a Nash equilibrium iff

z°,  €BRY, (L), L €BRL(2°,.), Bom > Bom(Th), and By < Bm(zY,,).

(4) There exists a pair of mized strategies (72 ,,72) € A(C_1) x A(Cy) such that 2, €
BR2,(72,,) for m = %1 iff B = Bm(T2,,) for m = £1. Any such pair of mived

strategies is a Nash equilibrium.

(5) There exists a pair of mized strategies (2°,,,72,) € A(CY,,) x A(Cyy,) such that 2, €

BR2,(2°,,,) iff B = Bm(2%,,). Such a pair of mized strategies is a Nash equilibrium

iff 2°,, € BRY, (z2)) and B > B_m(T2).
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(6) There exists a pair of mized strategies (z1,,,72) € A(CL,,) x A(Cy,) such that 72, €

BR2,(zL,,) iff B = Bm(ZL,,). Such a pair of mized strategies is a Nash equilibrium

iff L, € BRL,,(z2) and B_m < B_m(72).

172



APPENDIX B

THE GRADIENT AND HESSIAN EXPRESSIONS OF MNL, NL, ML
AND LCL MODELS

In this appendix we give expressions for the calculation of VL£i(#") and V2£(6) for each
model ¢ € {MNL, NL, ML, LCL}. Let j, € A, denote the alternative chosen in observa-

tion n, and let x,, ; denote the attribute vector for observation n and alternative j € A,.
B.1 The Gradient and Hesstian for the MINL Model

Let m denote the number of considered attributes. Thus, @, j := (Znj1,ZTnj2:-- -, Tnjm) €
R™ denotes the vector of attribute values for observation n and alternative j € A,,, and
B := (B1,B2,...,8m) € R™ denotes the vector of parameter values (thus, for the MNL
model, § = ). Then the gradient of the sample average log-likelihood function for the
MNL model can be written as

. N Y jea, eXp(BTTy ;)T ;
VL(B) = N ; (mn’jn - djea, exp(BTen;) )

Hence, if model 7 is the MNL model, then

y N :
71\~ 1 Y ZjeAn exp(S Txn,j)u’ﬂn,j ZjeAn exp(f Txn,j)xnd-
Cov(Z') =~ NINZ=1 Z Tn,j, — ~ T, — —
( ) ZjeAn exp(B'Twy, ;) Z]EA” exp(f Tp,;)

n=1

Also, for k,m € {1,2,...,m}, the second partial derivative of L with respect to 8, and B

is given by
LB _ 1 i X, OP(BTE)Tn k0, m + (EJ'GAn eXp(ﬁTm”’j)x"’j”“) (EiGA" eXp(ﬁTm"’j)xw’m) .
08B~ N 24 X jea, oD(FTens) (Sen, oxp(672n,))’
Let _ -
T
xn,l
T
x
Xn = 2 e RlAnxm
T
_xn,|An|_
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denote the data matrix for observation n, let

exp(BTwy,;)
EjeAn eXp(ﬁchnJ)

dn,i

denote the choice probability for alternative i € A,, and let qy, := (qnj,j € An) € R4l
denote the vector of choice probabilities. Let diag{q,} € Rl4=/xI4nl denote the diagonal

matrix with diag{q,};; = ¢n ;. Then one can write

N
A 1
VLEB) = D (@ng, — Xlan),
n=1
1 N
V2£(5) - N Z (XA-an;rLXn - X;I;diag{qn}Xn) .
n=1

B.2 The Gradient and Hessian for the NL Model

Let A, = U1L:1 A, be the partition of Ay, and z,;; € R™ denote the vector of attribute
values for alternative j € A, ;. According to the nested logit model, the probability that

customer n € N chooses alternative j € A, is given by

qn,j (An) = Qjn,40n;»

where

¢ exp(BTan /)

L=

o Yiea,, BTenii/a)’
exp (aaqn,;)

Un =
T T exp (aartng)

Upy = In Z exp(BTxn,j/cu) |,

JE€AR
and a > 0 is an arbitrary scaling factor, and o € (0,1/«] is a parameter that can be thought
of as representing the dissimilarity of alternatives in subset (nest) [. Let [,, € {1,2,...,L}
denote the nest that contains j,, and let 6 := (a1, as9,...,ar,3) € REY™ be the vector of

parameters to be estimated. Then

En(e) = In (an|n,anIn|n)'
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Let

o1
T
Xny = ni2 e RlAnxm
T

—xnvlv‘An,l‘—
Xn,l
X

X, = 2 c R|An\><m
_Xn,L_

dn; = (qj|"7l’j € An,l) e RlAn

an = (ans,l€{1,2,...,L}) € Rl
1 . B

Iy = ” (dlag{qn’l}XnJ — q”,lquz,an,l) c RHAnilxm

B = B/y € R™
Then, VL, (6) is given by
0L,0) ) all—aqp) (%,z - qIL,an,sz> + & (q;’lelﬁl - xl,zgﬁl) it 1=1,
8 N 7 .
al o (”n,l - q:l,an,lﬁl) di|n if 1#1,
4 1
VLn(0) = o (:cn,ln,jn — XrTz,znqmln) +aX] | dn, — aX]dp.

n

Also, V2£,,(6) is given by the following expressions: For i # [,

%L, (0 ) .
8al8§x) = o (””:l - q;,an,sz) (Um - q;,anyi/Bz) Ujndiln
For | # 1,
%L, (0 ~ 2
8042() - _aﬁlTJJ’an’lﬁlql‘n —a’ <Un,l B q;an,zﬂz) ql|n<1 - QZ|n)
!
For | =1,
%L, (0 1 ) )
8(12( ) - (Oé(l — QI\n) - Oll) /BZTJJ’ZXn,lBl —a? <Un,l — qL7an,lBl) ql|n(1 — Ql\n)
!
2 T X T
T @ (qn,l niBi — xn,l,jnlgl)
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For [ # 1,,,

A~

V2, 5Ln(0) = aqyp [J,Lan,lﬁz -« (T)n,z — QIL,an,zﬂz> (X,IJCIn,l — XJan)}
For [ =1,

V2 5La(0) = aay [T X8 = o (v = ol XuaB) (XT 0 — Xan ) | = @] Xoihy

1 (X} A0t — T,
T [ } + I XnaBy
(07 (87 )
Also,
Qo 1 L
~ ln —
VELa(9) = TX;,szn,ln - anHnX;‘E,Z [aqml (q;an,l - QLXn) + Jn,l:| :

n =1

B.3 The Gradient and Hessian for the ML Model

Let 8 € R™ denote the (deterministic) parameters that are the same across the customer
population, and let x,, ; denote the corresponding vector of attribute values for observation n
and alternative j € A,. In addition to 3, there are also (random) parameters with values
that vary across the customer population. Let ~, € R™2 denote the random vector of
parameter values for observation n. We do not estimate a value for -, for each observation n;
instead, we estimate a distribution for =y, over the customer population. Here we consider
the Gaussian mixture model, that is, we assume that {7}, are i.i.d. normally distributed
random vectors with mean p € R” and covariance matrix 3. Let o denote the lower-
triangular Cholesky factor of ¥, and let £ € R™2 denote a random vector of mq i.i.d.
standard normally distributed components. Let y,, ; € R™?2 denote the corresponding vector
of attribute values for observation n and alternative j € A,. Then, the systematic utility

of alternative j € A,, for observation n has the same distribution as
Unj = 0TCnj = BTnj+ W yn;+ET0Tyn;,
where

Cnii = (TngsYng» EniYng1s EnilYngi2s - - -

gn,i,lyn,j,ra 5n,i,2yn,j,23 o agn,i,Qyn,j,m s 7§n,i,ryn,j7r) € Rmu
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— m
0 = (Oé,u,0'171,0'271,...,O’r71702,2,...,Ung,...,amn)GR .

Thus, the log-likelihood function for observation n is given by

L,(0) = In ( ORI o+ 1T+ ET0 ) d@(@)

Rm2 D e, €XP(BTTn; + 1TYnj + £T0Tyn,j
where ® denotes the standard normal distribution on R”?. Computing ﬁn(O) accurately
is hard because it involves calculation of the r-dimensional integral above (In our model,
mo = 14).
For each observation n, let |I,,| denote the chosen sample size for the Monte Carlo
approximation of the integral, and let {&,; = (&n,i1,&ni2: - &nima)st = 1,...,|In]}
denote the corresponding sample of i.i.d. standard normally distributed vectors.

Then, the simulated log-likelihood function for observation n is given by

I,
2 1 [1n| eXP(BTxn,jn + 1T yn j, + fligTyan)
1] i=1 > iea, ©XP(BTTn; + WTYnj + &) ;0TYn,j)
1 ] o0TC,
== ln e eXp( Cnﬂv]n)
[ ] i=1 > e, xXP(0TCni )
Let
exp(07 L.
qn,i,j = p( Cn,z,]) c R
Zj’eAn eXp(eTCn,i,j’)
Ani = (Gn,ij, J € A,) € RIA=|
5 An,ij
Qn,i,j = Ini c R
ZZ’:l QTL,’L'/7j
An; = (Gnij,t€{1,2,...,I,}) € R~
P
n717j
T .
an = 2,5 c R\Iﬂxm
T
| Sn, I,
e _
n,,1
T .
Whi = 5,2 c R|An|><7‘n
Lo>n,i,|Ap |
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Wn,l
_Wn’|ln|
qan,1 0 0
. 0 an,2 0
diag{qn.1, - . - ,qn7‘1n|} = c  RInAnIX|In]|
00 An,| 1]
q:l,]. 0 0
o . 0 app - 0 [ X1 Ll s
dlag{qml, e ’qn,\lnl} = ' ' . € R
L O 0 T qjl?lln‘-
Inj = (diag{qn,j} - flmjfl:l,j) (Wn] — diag{q, ;- - )q;rl,[n}Wn)

Then, the gradient V£, (0) and Hessian V2L, () for each observation n are given by

VL, (0) = (WJ,M — Widiag{an,1,. .- ,qn,un\}) Anjn
. In|
V2£n (9) = - Z q~n,z‘,jn WJ’Z' (diag{qn,i} - Qn,z’q;z) Wn,z’
i=1

+ (Wg,jn - ngiag{qn,l, .o ,qn’un‘}) Jn,jn'
B.} The Gradient and Hessian for the LCL Model

As before, let @y, j := (Tnj1,Tn,j2s- -+ Tnjm) € R™ denote the vector of attribute values
for observation n and alternative j € A,, and let 3 := (81, 052,...,0m) € R™ denote the
corresponding vector of coefficients. One consideration set C € C is chosen to be the base
consideration set, such that 7(C) = 1 — Y ceeriey T(C). Let m o= (n(C),C € C\{C}) e R°

denote the vector of consideration set probabilities to be estimated. Then 0 := (7, ) €
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R denotes the vector of parameters to be estimated. Let

xl,l
X, = T c RlAnxm
_x;,\AnL
e == (1,1,...,1) € R°
L, = (M%m¢m¢“HN{CO € R°
1: < T )
e ijzec(ii SX(PB(;Z;)JI) € R
(@)= 1w +1£(imfn;i})7;([::fx #2 ©
i o= (M(C),CeC\{C}) e R°
Qe = (neyj€An) € R
Anj = (%mw#760\{5?) € R°
Qn = [Gn1:@n2.- - A fa,] € R
Jnc = (diag{anc} — ancq), o) Xn € RIAn|xm
Jng = gz} — diag{@,;}QnX, € R
Then,
La(0) = W (7dnj, + (1= Fn)a, )
Let

= j;l;?]n'ﬁ'n + (1 - eTfrn)qn’C”jn (xn,jn

= UIr+(1—-e"nm)l

= 1, — el[é‘mAn;éz]

T qn"jn o eqnzémjn

n
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[CnAn#o] € K
Tln g + (1= €Tn)g, ¢, € R

€ R°

e R°

—X;[an C’) S Rm

1 1 -
= —diag{l,} — diag{1,}7rc], € R
an a



Then, the gradient Vﬁn(G) for each observation n is given by

idiag{ln}q‘n - écnﬂdiag{ln}qn )

vﬂﬁn(e) = e R¢

bn

1 _
Vsla®) = ;-du € R”

n

and the Hessian V2£,, () for each observation n is given by

_édiag{ln}@z‘ﬁl - écnq};diag{ln} + %CnC;ﬂTTdiag{ln}Qn B J,anq;[bjn

by, bz
REXE
T . . T _~T
gt Jn,]n - 6qn,C,jn (xnajn qn,éXn) _ qind;g
n by, b%
REXWL

ZCEC\{O} 7(C)n.c.jn |:(‘rn7jn - Xﬁ%,O)(xL,jn - QIL,CXn) - XrTan,c}
Tqn,j, + (1 —eT7)q

n7é’jn
(1= TR)g, e, [(Bagn = Xla, )lal, — ] o Xo) = X1, o]

)

TTdn,j, + (1 —€T7)q
d,,d,

2
(F1, + (1— €T, ., )

Rmxm

n,C\jn
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APPENDIX C

ESTIMATED COEFFICIENTS, T-STATISTICS AND P-VALUES FOR
THE ML MODEL WITH THE 2011 ATIRLINE DATA USING THE
STRA

Table 16: Estimated coeflicients, t-statistics and p-values for the ML model with 2011 airline
data using the STRA.

ML (2011 Data)

Attribute fOsTra | t-Statistic | p-Value OsAA-50
1,1,1,1 -5.04610 | -101.15000 | 0.00000 || -4.91710
1,1,1,2 -12.05400 -32.32300 | 0.00000 || -10.37200
1,1,1,3 -7.51530 -7.15020 | 0.00000 || -6.38970
1,1,1,4 -5.59620 -80.65100 | 0.00000 || -5.34490
1,1,1,5 -6.51300 -28.88800 | 0.00000 || -6.06150
1,1,2,1 -7.28580 -73.54800 | 0.00000 || -6.87900
1,1,2,2 -16.82700 -33.37000 | 0.00000 || -14.08100
1,1,2,3 -6.61210 -3.35920 | 0.00078 || -5.43440
1,1,2,4 -7.24450 -62.21400 | 0.00000 || -6.79410
1,1,2,5 -8.83990 -25.34900 | 0.00000 || -8.15600
1,2,1,1 -5.30580 | -189.87000 | 0.00000 || -4.89050
1,2,1,2 -10.33600 -55.33700 | 0.00000 || -9.15270
1,2,1,3 -5.76640 -10.28400 | 0.00000 || -5.51300
1,2,14 -5.84380 | -164.43000 | 0.00000 || -5.36190
1,2,1,5 -6.58450 -65.53600 | 0.00000 || -5.96090
1,2,2,1 -6.53490 | -169.37000 | 0.00000 || -6.13450
1,2,2,2 -10.05800 -42.76100 | 0.00000 || -8.99900
1,2,2,3 -6.37460 -8.81230 | 0.00000 || -5.64960
1,2,2,4 -6.69640 | -137.78000 | 0.00000 || -6.31370
1,2,2,5 -7.40750 -50.37100 | 0.00000 || -6.85370
1,3,1,1 -6.90210 | -179.70000 | 0.00000 || -6.44530
1,3,1,2 -11.64400 -49.48200 | 0.00000 || -10.14300
1,3,1,3 -7.95940 -9.97140 | 0.00000 || -7.18070
1,3,1,4 -7.16480 | -130.70000 | 0.00000 || -6.61090
1,3,1,5 -8.68420 -55.07100 | 0.00000 || -7.93530
1,3,2,1 -6.39880 | -125.06000 | 0.00000 || -6.00710
1,3,2,2 -10.92200 -38.67100 | 0.00000 || -9.91550
1,3,2,3 -4.70570 -4.11930 | 0.00004 || -4.70470
1,3,2,4 -6.97150 | -118.46000 | 0.00000 || -6.54090
1,3,2,5 -8.05710 -45.19600 | 0.00000 || -7.47470
2,1,1,1 -7.89300 -65.13700 | 0.00000 || -7.35560
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Table 16 (continued.)

ML (2011 Data)

Attribute fsTra | t-Statistic | p-Value OsAr-50
2,1,1,2 -11.96100 -20.25700 | 0.00000 || -10.06000
2,1,1,3 -5.10180 -1.70460 | 0.08827 || -3.15190
2,1,14 -9.53740 -57.56900 | 0.00000 || -8.80450
2,1,1,5 -8.60500 -19.95100 | 0.00000 || -8.22040
2,1,2,1 -8.99200 -35.93800 | 0.00000 || -8.34670
2,1,2,2 -10.33200 -12.93200 | 0.00000 || -9.73490
2,1,2,3 -7.17790 -4.29650 | 0.00002 || -6.38190
2,1,2,4 -10.07500 -36.49800 | 0.00000 || -9.04580
2,1,2,5 -11.59100 -12.73000 | 0.00000 || -10.53300
2,2,1,1 -7.82070 | -229.80000 | 0.00000 || -7.23140
2,2,1,2 -10.82200 -52.44700 | 0.00000 || -9.20950
2,2,1,3 -5.89570 -8.78380 | 0.00000 || -4.90130
2,2,1,4 -8.08310 | -166.32000 | 0.00000 || -7.41320
2,2,1,5 -8.32270 -54.45600 | 0.00000 || -7.65940
2,2,2,1 -9.03820 | -127.72000 | 0.00000 || -8.47730
2,2,2,2 -12.01300 -35.41900 | 0.00000 || -10.06800
2,2,2,3 -10.57300 -4.82770 | 0.00000 || -7.51070
2,2,2,4 -9.12470 -85.02900 | 0.00000 || -8.34350
2,2,2,5 -9.64450 -27.94500 | 0.00000 || -9.13460
2,3,1,1 -9.04300 | -142.41000 | 0.00000 || -8.41070
2,3,1,2 -11.45600 -43.68600 | 0.00000 || -9.86020
2,3,1,3 -6.51770 -7.18180 | 0.00000 || -5.98490
2,3,1,4 -9.39650 | -110.68000 | 0.00000 || -8.71750
2,3,1,5 -9.42410 -39.21900 | 0.00000 || -8.76610
2,3,2,1 -10.59400 -68.38500 | 0.00000 || -9.87610
2,3,2,2 -11.02500 -25.47100 | 0.00000 || -9.88470
2,3,2,3 -5.15810 -4.57270 | 0.00000 || -4.66020
2,3,2,4 -9.59480 -58.42800 | 0.00000 || -8.84860
2,3,2,5 -11.35500 -19.71800 | 0.00000 || -10.86800
3,1,1,1 -8.45200 -79.05600 | 0.00000 || -7.89940
3,1,1,2 -11.88900 -28.57200 | 0.00000 || -10.69800
3,1,1,3 -12.51100 -2.18410 | 0.02895 || -12.10400
3,1,1,4 -10.13100 -59.02100 | 0.00000 || -9.37710
3,1,1,5 -9.19290 -22.10700 | 0.00000 || -8.69540
3,1,2,1 -8.72220 -39.94400 | 0.00000 || -8.14310
3,1,2,2 -13.80200 -13.46500 | 0.00000 || -11.29400
3,1,2,3 -13.80200 -13.46500 | 0.00000 || -11.29400
3,1,24 -10.05500 -39.14000 | 0.00000 || -9.27770
3,1,2,5 -13.22300 -11.02100 | 0.00000 || -12.36700
3,2,1,1 -8.44750 | -239.28000 | 0.00000 || -7.89080
3,2,1,2 -12.22500 -58.73700 | 0.00000 || -10.56300
3,2,1,3 -4.31790 -6.88140 | 0.00000 || -3.70140
3,2,14 -8.99980 | -165.42000 | 0.00000 || -8.40380
3,2,1,5 -9.14720 -57.05800 | 0.00000 || -8.51180
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Table 16 (continued.)

ML (2011 Data)

Attribute fsTra | t-Statistic | p-Value OsAA-50

3,2,2,1 -9.66080 | -118.13000 | 0.00000 || -9.01980

3,2,2,2 -14.23800 -36.94100 | 0.00000 || -12.17000

3,2,2,3 -5.87720 -6.99370 | 0.00000 || -5.07600

3,2,2,4 -9.99720 -83.68200 | 0.00000 || -9.32350

3,2,2,5 -11.32700 -28.80700 | 0.00000 || -10.40400

3,3,1,1 -9.35700 | -145.41000 | 0.00000 || -8.68930

3,3,1,2 -13.31500 -49.05000 | 0.00000 || -11.84900

3,3,1,3 -6.61240 -8.89460 | 0.00000 || -5.65650

3,3,1,4 -10.50500 | -110.72000 | 0.00000 || -9.83110

3,3,1,5 -10.83300 -43.38800 | 0.00000 || -10.09400

3,3,2,1 -10.91600 -64.73000 | 0.00000 || -10.15100

3,3,2,2 -14.13600 -26.88400 | 0.00000 || -12.31300

3,3,2,3 -8.94990 -3.90960 | 0.00009 || -7.91510

3,3,2,4 -10.36800 -64.12300 | 0.00000 || -9.38890

3,3,2,5 -12.39100 -21.59300 | 0.00000 || -11.67200

[07 : 00,08 : 00) popularity -0.10638 -1.32710 | 0.18448 1.13200
[08 : 00,09 : 00) popularity -0.45690 -5.84300 | 0.00000 || 0.86406
[09 : 00,10 : 00) popularity -0.03298 -0.40349 | 0.68659 1.04250
[10 : 00,11 : 00) popularity 0.00344 0.04152 | 0.96688 0.99750
[11: 00,12 : 00) popularity 2.26890 55.09800 | 0.00000 || 0.83717
[12: 00,13 : 00) popularity 2.31610 56.86700 | 0.00000 || 0.75148
[13: 00,14 : 00) popularity 2.15540 47.60000 | 0.00000 || 0.56319
[14 : 00,15 : 00) popularity 2.72060 68.84300 | 0.00000 || 0.93265
[15 : 00,16 : 00) popularity 2.41880 44.62300 | 0.00000 1.05930
[16 : 00,17 : 00) popularity 2.77160 65.83100 | 0.00000 1.05450
[17: 00,18 : 00) popularity 2.27500 44.84900 | 0.00000 || 0.94122
[18 : 00,19 : 00) popularity 1.06630 22.77600 | 0.00000 || 0.62031
[19 : 00,20 : 00) popularity 1.54000 30.39400 | 0.00000 || 0.86083
[20 : 00,21 : 00) popularity 0.59979 15.19100 | 0.00000 || 0.43594
Carrier XX 0.02678 2.66790 | 0.00763 || -0.10668

Carrier YY 0.63769 78.90300 | 0.00000 || 0.52444

Change fee -7.06560 | -160.22000 | 0.00000 || -6.69260

Mileage gain 0.73647 90.17500 | 0.00000 || 0.71424

XX-1-1 is the most expensive 3.16950 | 280.21000 | 0.00000 3.12600
XX-1-2 is the most expensive 3.62990 45.85600 | 0.00000 3.45040
XX-1-3 is the most expensive 3.45670 17.80900 | 0.00000 3.41130
XX-1-4 is the most expensive 2.32030 132.14000 | 0.00000 2.27200
XX-1-5 is the most expensive 2.38040 41.34000 | 0.00000 2.32380
YY-1-1 is the most expensive 1.58870 | 202.30000 | 0.00000 1.64790
YY-1-4 is the most expensive 0.88152 70.22300 | 0.00000 0.96136
YY-1-5 is the most expensive 1.01220 25.05300 | 0.00000 1.06840
77-1-1 is the most expensive 1.39530 72.96400 | 0.00000 1.33620
77-1-4 is the most expensive 1.04420 35.33700 | 0.00000 1.00820
77-1-5 is the most expensive 1.50210 17.72600 | 0.00000 1.39090
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Table 16 (continued.)

ML (2011 Data)

Attribute fsTra | t-Statistic | p-Value || fsaa_50
XX-13-1 is the cheapest | 2.85900 186.74764 | 0.00000 || 2.91800
XX-13-2 is the cheapest | 2.94450 40.11362 | 0.00000 || 3.34000
XX-13-3 is the cheapest | 4.16370 14.50578 | 0.00000 || 4.24980
XX-13-4 is the cheapest | 2.98000 160.44877 | 0.00000 || 2.99640
XX-13-5 is the cheapest | 3.11190 66.72659 | 0.00000 || 3.14470
XX-12-1 is the cheapest | 2.72350 138.86143 | 0.00000 || 2.76330
XX-12-2 is the cheapest | 1.69530 21.95855 | 0.00000 || 1.73560
XX-12-3 is the cheapest | 2.09240 24.48850 | 0.00000 || 2.17850
XX-12—4 is the cheapest | 2.04540 66.03556 | 0.00000 || 2.07920
XX-12-5 is the cheapest | 2.09240 24.48850 | 0.00000 || 2.17850
XX-11-1 is the cheapest | 2.91550 54.86497 | 0.00000 || 3.01490
XX-11-2 is the cheapest | -0.02197 -0.07424 | 0.94171 || 0.08856
XX-11-3 is the cheapest | -0.02197 -0.07424 | 0.94171 || 0.08856
XX-11-4 is the cheapest | 0.79318 4.52877 | 0.00001 || 0.87579
XX-11-5 is the cheapest | -0.02197 -0.07424 | 0.94171 || 0.08856
XX-10-1 is the cheapest | 1.70000 75.29299 | 0.00000 || 1.71860
XX-10-2 is the cheapest | 1.69180 25.18523 | 0.00000 || 1.77740
XX-10-3 is the cheapest | 1.43800 16.24762 | 0.00000 || 1.50110
XX-10-4 is the cheapest | 1.87050 70.10175 | 0.00000 || 1.88120
XX-10-5 is the cheapest | 1.43800 16.24762 | 0.00000 || 1.50110
XX-9-1 is the cheapest 1.48590 78.45685 | 0.00000 || 1.55890
XX—9-2 is the cheapest 1.88340 37.98344 | 0.00000 || 2.11200
XX-9-3 is the cheapest 1.37360 18.93176 | 0.00000 || 1.51420
XX-9-4 is the cheapest 1.53750 65.29314 | 0.00000 || 1.61190
XX-9-5 is the cheapest 1.37360 18.93176 | 0.00000 || 1.51420
XX-8-1 is the cheapest 1.72760 51.68969 | 0.00000 || 1.84110
XX-8-2 is the cheapest | 2.19010 30.15375 | 0.00000 || 2.51040
XX-8-3 is the cheapest 1.39780 9.81710 | 0.00000 || 1.53490
XX—-8—4 is the cheapest 1.71780 40.54765 | 0.00000 || 1.84330
XX-8-5 is the cheapest 1.39780 9.81710 | 0.00000 || 1.53490
XX-7-1 is the cheapest 1.58370 19.29154 | 0.00000 || 1.79400
XX-7-2 is the cheapest 1.87350 11.79308 | 0.00000 || 2.08290
XX-7-3 is the cheapest 1.87350 11.79308 | 0.00000 || 2.08290
XX-7-4 is the cheapest 1.75550 17.83526 | 0.00000 || 1.91580
XX-7-5 is the cheapest 1.87350 11.79308 | 0.00000 || 2.08290
XX-6-1 is the cheapest 1.98410 123.89878 | 0.00000 || 2.07770
XX—6-2 is the cheapest | 2.57500 53.80845 | 0.00000 || 2.84910
XX—-6-3 is the cheapest | 2.30550 12.87816 | 0.00000 || 2.46920
XX—-6-4 is the cheapest 1.91730 90.61544 | 0.00000 || 2.03310
XX—6-5 is the cheapest 1.32130 15.33387 | 0.00000 || 1.50760
XX-5-1 is the cheapest 1.81650 34.40839 | 0.00000 || 1.91520
XX-5-2 is the cheapest | 2.36800 19.38292 | 0.00000 || 2.55200
XX-5-3 is the cheapest 1.45090 5.92795 | 0.00000 || 1.63340
XX—-5—4 is the cheapest 1.59580 21.36461 | 0.00000 || 1.74400
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Table 16 (continued.)

ML (2011 Data)

Attribute fOsTtrA | t-Statistic | p-Value || fOsaa-50
XX-5-5 is the cheapest 1.45090 5.92795 | 0.00000 || 1.63340
XX—4-1 is the cheapest 2.12060 216.51875 | 0.00000 || 2.20360
XX-4-2 is the cheapest | 3.15040 72.69452 | 0.00000 || 3.35860
XX—4-3 is the cheapest | 2.21250 16.66451 | 0.00000 || 2.35440
XX-4-4 is the cheapest | 2.05690 156.99937 | 0.00000 || 2.16350
XX—4-5 is the cheapest 1.35150 25.56215 | 0.00000 || 1.48310
XX-3-1 is the cheapest 1.81210 50.71883 | 0.00000 || 1.91350
XX-3-2 is the cheapest | 2.83050 32.20968 | 0.00000 || 3.03150
XX-3-3 is the cheapest 1.10100 5.21409 | 0.00000 || 1.27970
XX-3-4 is the cheapest 1.79470 37.38379 | 0.00000 || 1.94940
XX-3-5 is the cheapest 1.10100 5.21409 | 0.00000 || 1.27970
XX-2-1 is the cheapest | 2.31230 80.70696 | 0.00000 || 2.50190
XX-2-2 is the cheapest 3.97220 46.65835 | 0.00000 || 4.28360
XX-2-3 is the cheapest 2.51390 20.59935 | 0.00000 || 2.72150
XX—2—4 is the cheapest | 2.47060 66.96073 | 0.00000 || 2.70980
XX-2-5 is the cheapest | 2.51390 20.59935 | 0.00000 || 2.72150
XX-1-1 is the cheapest | 0.46726 64.64781 | 0.00000 || 0.57313
XX-1-2 is the cheapest | 0.98914 26.28173 | 0.00000 || 1.29210
XX-1-3 is the cheapest | 0.50596 5.93366 | 0.00000 || 0.72098
XX-1-4 is the cheapest | 0.89137 61.99222 | 0.00000 || 1.02650
XX-1-5 is the cheapest | 0.35990 6.53902 | 0.00000 || 0.45584
YY—-12-1 is the cheapest | -2.20900 -54.25961 | 0.00000 || -2.19660
YY-12-4 is the cheapest | -1.91570 -39.82236 | 0.00000 || -1.91210
YY-12-5 is the cheapest | -1.61760 -13.61487 | 0.00000 || -1.64130
YY-11-1 is the cheapest | -1.91440 -40.77609 | 0.00000 || -1.90560
YY-11-4 is the cheapest | -1.61080 -30.62775 | 0.00000 || -1.57950
YY-11-5 is the cheapest | -1.68370 -11.13062 | 0.00000 || -1.61470
YY-10-1 is the cheapest | -6.76480 -26.89851 | 0.00000 || -6.56260
YY-10-4 is the cheapest | -6.76480 -26.89851 | 0.00000 || -6.56260
YY-10-5 is the cheapest | -6.76480 -26.89851 | 0.00000 || -6.56260
YY-9-1 is the cheapest | 2.42770 41.06164 | 0.00000 || 2.44130
YY-9-4 is the cheapest | 3.07310 47.33796 | 0.00000 || 2.91590
YY-9-5 is the cheapest | 3.07310 47.33796 | 0.00000 || 2.91590
YY-8-1 is the cheapest | 2.64190 41.76408 | 0.00000 || 2.54650
YY-8-4 is the cheapest 3.08270 41.45569 | 0.00000 || 2.90460
YY-8-5 is the cheapest | 2.55830 12.59262 | 0.00000 || 2.65160
YY-7-1 is the cheapest | 2.84120 76.38378 | 0.00000 || 2.92120
YY-7-4 is the cheapest | 2.88610 57.65762 | 0.00000 || 2.94970
YY-7-5 is the cheapest | 2.61680 16.51603 | 0.00000 || 2.73670
YY—-6-1 is the cheapest | 3.43140 68.25712 | 0.00000 || 3.48160
YY—-6-4 is the cheapest | 3.47280 57.61764 | 0.00000 || 3.52610
YY-6-5 is the cheapest | 3.47280 57.61764 | 0.00000 || 3.52610
YY-5-1 is the cheapest | 3.41080 45.65323 | 0.00000 || 3.60350
YY-5-4 is the cheapest 3.53210 39.26840 | 0.00000 || 3.69440
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Table 16 (continued.)

ML (2011 Data)

Attribute fsTra | t-Statistic | p-Value || Osaa-50
YY-5-5 is the cheapest | 3.53210 39.26840 | 0.00000 || 3.69440
YY—4-1 is the cheapest | 2.26440 56.90378 | 0.00000 || 2.45830
YY-4-4 is the cheapest | 2.34850 47.20660 | 0.00000 || 2.54880
YY—4-5 is the cheapest | 2.41740 15.79645 | 0.00000 || 2.65220
YY-3-1 is the cheapest | 3.38260 41.60418 | 0.00000 || 3.72520
YY—-3-4 is the cheapest | 3.19500 30.24512 | 0.00000 || 3.53850
YY-3-5 is the cheapest | 3.19500 30.24512 | 0.00000 || 3.53850
YY—2-1 is the cheapest | 2.72130 36.27016 | 0.00000 || 3.07900
YY-2-4 is the cheapest | 2.56910 24.16297 | 0.00000 || 2.98200
YY—2-5 is the cheapest | 2.56910 24.16297 | 0.00000 || 2.98200
YY-1-1 is the cheapest | 2.09530 81.14670 | 0.00000 || 2.23410
YY-1-4 is the cheapest | 2.05470 46.30428 | 0.00000 || 2.20380
YY-1-5 is the cheapest | 2.05470 46.30428 | 0.00000 || 2.20380
77-15-1 is the cheapest | -4.83860 -34.96236 | 0.00000 || -4.68410
77-15—4 is the cheapest | -4.83860 -34.96236 | 0.00000 || -4.68410
77-15-5 is the cheapest | -4.83860 -34.96236 | 0.00000 || -4.68410
77-14-1 is the cheapest | -4.83860 -34.96236 | 0.00000 || -4.68410
77-14-4 is the cheapest | 0.58874 7.87538 | 0.00000 || 0.16014
77-14-5 is the cheapest | 0.58874 7.87538 | 0.00000 || 0.16014
77-13-1 is the cheapest | -0.75881 -7.15580 | 0.00000 || -1.17540
77-13-4 is the cheapest | 0.75430 10.25684 | 0.00000 || 0.32832
77-13-5 is the cheapest | 1.61980 11.19344 | 0.00000 || 1.12280
77-12-1 is the cheapest | 1.61980 11.19344 | 0.00000 || 1.12280
77-12—4 is the cheapest | 1.61980 11.19344 | 0.00000 || 1.12280
77-12-5 is the cheapest | 1.61980 11.19344 | 0.00000 || 1.12280
77-11-1 is the cheapest | 1.61980 11.19344 | 0.00000 || 1.12280
77-11-4 is the cheapest | 1.61980 11.19344 | 0.00000 || 1.12280
77-11-5 is the cheapest | 1.61980 11.19344 | 0.00000 || 1.12280
77-10-1 is the cheapest | 4.95000 42.62072 | 0.00000 || 4.97900
77-10-4 is the cheapest | 4.95000 42.62072 | 0.00000 || 4.97900
77-10-5 is the cheapest | 4.95000 42.62072 | 0.00000 || 4.97900
77-9-1 is the cheapest | 3.90880 20.50797 | 0.00000 || 2.99270
77-9-4 is the cheapest | 3.90880 20.50797 | 0.00000 || 2.99270
77-9-5 is the cheapest | 3.90880 20.50797 | 0.00000 || 2.99270
77-8-1 is the cheapest | 3.33510 45.16780 | 0.00000 || 3.26460
77-8-4 is the cheapest | 3.73350 46.02444 | 0.00000 || 3.51290
77-8-5 is the cheapest | 3.73350 46.02444 | 0.00000 || 3.51290
77-7-1 is the cheapest | 3.29980 48.54296 | 0.00000 || 3.44830
77-7—4 is the cheapest | 3.29980 48.54296 | 0.00000 || 3.44830
77-7-5 is the cheapest | 3.29980 48.54296 | 0.00000 || 3.44830
77-6-1 is the cheapest | 3.46890 48.58865 | 0.00000 || 3.60390
77-6-4 is the cheapest | 2.97590 29.77111 | 0.00000 || 3.08350
77-6-5 is the cheapest | 2.97590 29.77111 | 0.00000 || 3.08350
77-5-1 is the cheapest | 2.91690 27.57240 | 0.00000 || 2.88510
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Table 16 (continued.)

ML (2011 Data)

Attribute OsTra | t-Statistic | p-Value || fOsaa_50
77-5-4 is the cheapest | 3.07150 27.30399 | 0.00000 | 3.13920
77-5-5 is the cheapest | 3.07150 27.30399 | 0.00000 || 3.13920
77-4-1 is the cheapest | 3.25340 31.85561 | 0.00000 | 3.42430
77—4—4 is the cheapest | 3.25340 31.85561 | 0.00000 || 3.42430
77-4-5 is the cheapest | 3.25340 31.85561 | 0.00000 | 3.42430
77-3-1 is the cheapest | 3.66900 50.97011 | 0.00000 || 3.88840
77-3-4 is the cheapest | 3.66900 50.97011 | 0.00000 | 3.88840
77-3-5 is the cheapest | 3.66900 50.97011 | 0.00000 || 3.88840
77-2-1 is the cheapest | 2.87180 25.03104 | 0.00000 || 3.08890
77-2-4 is the cheapest | 3.59130 31.10176 | 0.00000 | 3.75020
77-2-5 is the cheapest | 3.59130 31.10176 | 0.00000 | 3.75020
77-1-1 is the cheapest | 3.96940 66.17263 | 0.00000 || 3.95900
77-1-4 is the cheapest | 3.34040 31.10747 | 0.00000 | 3.40230
77-1-5 is the cheapest | 3.34040 31.10747 | 0.00000 | 3.40230

o1,1 0.44762 0.00001 | 1.00000 || 1.08950
02,1 0.41643 0.00001 | 1.00000 || 1.06950
03,1 0.51663 0.00001 | 0.99999 || 1.06620
04,1 0.44788 0.00001 | 1.00000 || 1.01610
05,1 1.27040 0.00002 | 0.99999 || 1.25790
06,1 1.36880 0.00002 | 0.99999 || 1.29880
07,1 1.85380 0.00002 | 0.99998 || 1.42440
08,1 1.64300 0.00002 | 0.99998 | 1.28820
09,1 2.04070 0.00003 | 0.99998 || 1.37330
o10,1 1.79670 0.00002 | 0.99998 || 1.34030
o111 1.94720 0.00002 | 0.99998 || 1.42100
o12,1 2.21660 0.00003 | 0.99998 || 1.54750
o131 2.10410 0.00003 | 0.99998 || 1.43700
o141 2.24960 0.00003 | 0.99998 || 1.59590
02,2 0.24981 6.14990 | 0.00000 || 0.01905
032 0.04706 1.12850 | 0.25911 || 0.03477
042 -0.06011 -1.40750 | 0.15928 || 0.05530
05,2 -2.18980 -25.89600 | 0.00000 || 0.05976
06,2 -2.54650 -26.89800 | 0.00000 || 0.08805
072 -3.90150 -33.24600 | 0.00000 || -0.00264
08,2 -3.14170 -30.09400 | 0.00000 || 0.04369
09,2 -4.22180 -33.57100 | 0.00000 || 0.06362
010,2 -3.65530 -32.62700 | 0.00000 | -0.00772
o11,2 -4.23540 -34.29600 | 0.00000 || 0.08543
0122 -4.93470 -36.99600 | 0.00000 || 0.08420
0132 -4.68470 -35.72600 | 0.00000 || 0.09031
0142 -4.90570 -36.34200 | 0.00000 || 0.06590
033 0.07905 2.05090 | 0.04028 || 0.00153
043 0.09637 2.28820 | 0.02213 || -0.05407
053 2.74290 30.24700 | 0.00000 || -0.19262
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Table 16 (continued.)

ML (2011 Data)

Attribute OsTra | t-Statistic | p-Value || fsaa_s0
063 3.20240 30.46900 | 0.00000 || -0.20901
073 5.09350 39.70400 | 0.00000 || -0.36537
083 4.14340 36.47700 | 0.00000 || -0.30259
093 5.59600 41.52200 | 0.00000 || -0.39453
010,3 4.58620 37.99900 | 0.00000 || -0.30670
o11,3 5.54610 42.20000 | 0.00000 || -0.32174
012,33 6.54740 47.16900 | 0.00000 || -0.56764
013,3 6.29110 45.62300 | 0.00000 || -0.47309
014,3 6.80610 48.94200 | 0.00000 || -0.57822
044 0.01287 0.38173 | 0.70266 || 0.00527
054 1.69200 19.91700 | 0.00000 || 0.14332
06,4 1.93150 19.83200 | 0.00000 || 0.16526
074 3.21530 23.55200 | 0.00000 || 0.32593
084 2.59800 21.85000 | 0.00000 || 0.22060
09,4 3.65330 24.23300 | 0.00000 || 0.35837
010,4 2.91880 23.03600 | 0.00000 || 0.25490
O11,4 3.51800 24.47500 | 0.00000 || 0.30862
012,4 4.31260 26.72500 | 0.00000 || 0.47465
0134 4.14320 26.36800 | 0.00000 || 0.37304
O14,4 4.49510 27.26000 | 0.00000 || 0.44864
055 0.62690 10.12500 | 0.00000 || 0.14797
065 0.76620 10.88000 | 0.00000 || 0.18068
075 0.97971 9.56250 | 0.00000 || 0.24964
085 0.89908 10.11200 | 0.00000 || 0.20416
095 1.00580 8.92360 | 0.00000 || 0.29526
010,5 0.96998 9.89390 | 0.00000 || 0.22662
o115 1.10860 9.81100 | 0.00000 || 0.32326
012,5 1.10060 8.40300 | 0.00000 || 0.37614
013,5 1.11860 8.87080 | 0.00000 || 0.33473
o145 1.14070 8.55340 | 0.00000 || 0.43163
06,6 0.06162 1.81270 | 0.06988 || 0.11402
076 0.18280 3.23950 | 0.00120 || 0.11427
08,6 0.12762 2.82760 | 0.00469 || 0.10241
096 0.19566 2.86380 | 0.00419 || 0.20294
010,6 0.11102 2.06990 | 0.03846 || 0.06878
O11,6 0.21729 3.33930 | 0.00084 || 0.14410
012,6 0.22438 2.78140 | 0.00541 || 0.23448
013,6 0.20685 2.64220 | 0.00824 || 0.13798
014,6 0.17425 2.12260 | 0.03379 || 0.24126
o771 0.43995 8.01050 | 0.00000 || 0.03958
08,7 0.21586 5.16630 | 0.00000 || -0.00793
09,7 0.49250 7.23560 | 0.00000 || 0.04637
010,7 0.36250 7.40060 | 0.00000 || -0.04320
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Table 16 (continued.)

ML (2011 Data)

Attribute OsTra | t-Statistic | p-Value || Osaa_50
o11,7 0.67164 10.14100 | 0.00000 || 0.03208
o127 0.88037 10.29600 | 0.00000 || 0.03596
o137 0.77327 9.54420 | 0.00000 || -0.00900
o147 0.89689 9.75440 | 0.00000 {| 0.01679
088 0.02940 0.89030 | 0.37330 || 0.00967
098 0.04801 1.08210 | 0.27921 || 0.08601
010,8 0.04774 1.24870 | 0.21177 || 0.06084
o11,8 0.05814 1.36520 | 0.17219 || 0.04351
012,8 0.07501 1.50980 | 0.13109 || 0.05106
0138 0.10334 2.14810 | 0.03171 || 0.04802
0148 0.03445 0.68092 | 0.49592 || 0.05453
09,9 0.08749 1.92150 | 0.05467 || 0.05751
010,9 0.00453 0.12902 | 0.89734 || 0.09355
o11,9 -0.03393 -0.81310 | 0.41616 || 0.04615
012,9 -0.01430 -0.30186 | 0.76276 || 0.14551
013,9 0.02819 0.58799 | 0.55654 || 0.10061
014,9 0.01041 0.21137 | 0.83260 || 0.13085
010,10 0.07082 2.08640 | 0.03694 || -0.07082
O11,10 -0.02595 -0.64760 | 0.51724 || 0.02595
012,10 0.02615 0.59126 | 0.55435 || -0.02615
013,10 0.00956 0.20910 | 0.83437 || -0.00956
014,10 0.09193 1.94830 | 0.05138 || -0.09193
o11,11 0.01888 0.48664 | 0.62651 || 0.02695
012,11 -0.08898 -2.15860 | 0.03088 || -0.02597
013,11 -0.02330 -0.56737 | 0.57046 || 0.00967
o14,11 -0.18179 -4.03040 | 0.00006 || 0.00520
012,12 0.07040 1.77690 | 0.07558 || 0.01693
013,12 -0.04401 -1.14380 | 0.25271 || 0.02065
014,12 0.05558 1.24290 | 0.21390 || -0.00416
013,13 0.04380 1.37360 | 0.16957 || 0.02910
014,13 -0.14322 -4.60990 | 0.00000 || 0.00834
014,14 0.06736 2.26310 | 0.02363 || 0.03717
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