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SUMMARY

Revenue management is concerned with managing demands of customers and has

been found successful in broad areas such as airline, hotel and retailing industries. In rev-

enue management, decisions of sellers such as designing a product portfolio or choosing

prices of products are often made based on customer choice. It is thus important to un-

derstand customer choice behavior and analyze how it affects sellers’ decisions, especially

when customers’ choice exhibits specific behavioral phenomena that deviate from axioms of

rational choice (e.g., Luce’s axiom of choice) and sellers compete.

My thesis is focused on revenue management problems, with particular emphasis on

customer choice behavior, and it consists of three essential chapters.

In the first chapter, we build a variety of customer booking choice models for a major

airline that operates in a very competitive origin-destination market, including the multi-

nomial logit (MNL) models, nested logit (NL) models, mixed-logit (ML) models and latent

logit class (LCL) models. The latter three types of models are aimed at incorporating

unobserved heterogeneous customer preferences for different departure times of flights and

identifying latent customer types. More interestingly, we incorporate in all our model-

s the context effect that the attractiveness of a fare class is influenced by the other fare

classes offered in the same assortment, which is not standard in the literature of discrete

choice models. The estimation results show that including these factors into choice models

dramatically affects price sensitivity estimates, and therefore matters.

Previously available algorithms are inefficient for estimating choice models from large

sets of data (observations), especially for estimating advanced choice models that usually

involve high-dimensional integrals, such as the ML-type models. In the second chapter, we

present a stochastic trust region algorithm for ML-type model estimations. The algorithm

embeds two sampling processes: (i) a data sampling process and (ii) a Monte Carlo sampling

process. The second process is employed to compute the sample average approximation of
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a high-dimensional integral. The algorithm dynamically controls the sample sizes based on

the magnitude of the errors incurred due to the two sampling processes. First, the algorithm

controls the size of Monte Carlo samples for each observation in the dataset to minimize

the total sample size subject to a constraint on the variance of the objective estimate.

Second, the algorithm controls sampling from the dataset according to the magnitude of

data sampling error relative to the Monte Carlo sampling error. The first-order convergence

is proved based on generalized uniform law of large numbers theories for both the average

log-likelihood function and its gradient. The efficiency of the algorithm is tested with real

data and compared with existing algorithms.

In the third chapter, we study how a specific behavioral phenomenon, called the decoy

effect, affects the decisions of sellers in product assortment competition in a duopoly. We

propose a discrete choice model to capture decoy effects, and we use the model to provide

a complete characterization of the Nash equilibria and their dependence on choice model

parameters. For the cases in which there are multiple equilibria, we consider dynamical

systems models of the sellers responding to their competitors using Cournot adjustment

or fictitious play to study the evolution of the assortment competition and the stability of

the equilibria. Our results show that all pure-strategy Nash equilibria can provide reliable

forecasts of the outcome of the competition in the sense that they have large domains of

attraction. In contrast, mixed-strategy Nash equilibria have negligible domains of attrac-

tion, except for a special case, and thus we conclude that mixed-strategy Nash equilibria do

not provide reliable forecasts of the outcome of the competition. Our results also provide a

simple geometric characterization of the dynamics of fictitious play for general 2× 2 games

that is more complete than previous characterizations.
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CHAPTER I

DISCRETE CHOICE MODELING AND ESTIMATION

In this chapter we describe discrete choice modeling and estimation with applications to

airline revenue management. We consider a revenue management problem of a major airline

that operates in a fiercely competitive market involving two major hubs and having more

than 30 parallel daily flights. We build a variety of booking choice models to incorporate

unobserved heterogeneous customer preferences for different departure times. The way

departure time preferences are modeled dramatically affects price sensitivity estimates, and

therefore the modeling of heterogeneous departure time preferences matters. We also show

that customer choice behavior exhibits the context effects, with much greater demand for the

cheapest alternative than for the second cheapest alternative even when the price difference

is small, and much greater demand for fully refundable tickets than almost fully refundable

tickets.

1.1 The Airline Ticket Booking Choice

Consider a number of airlines, indexed by i ∈ I, selling tickets for travel on parallel flights

in a single origin-destination (O-D) market. In this section, for ease of notation, airline

XX for whom we estimate customers’ booking choice models is indexed by i = 1, and −i

denotes the competitors {YY, ZZ}.

We now specify the “products” that airlines offer to the market. Airline i sells tickets

for a set Fi of flights. We consider all the flights for the O-D pair that depart on a particular

day of week (say, Monday, Tuesday, Saturday etc.). Each airline maintains a list of fare

classes each associated with a fixed ticket price, and the airline can sell tickets with the

price associated with each fare class for each of the flights. For each airline, we refer to a

flight-fare class combination as the product of the airline. Let Ji be the set of products that

airline i offers to the market. The selling horizon is denoted with [0, T ], where T denotes

the scheduled departure time of the last flight during the time horizon. There is a set K of
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sales channels that can be used to sell airlines’ products, for example, an airline’s own web

site, an airline’s call center, various third-party web sites, and independent travel agents.

Some channels, such as an airline’s own web site or call center, are used by only one airline,

and some, such as third party web sites, are used by multiple airlines.

Customer booking requests arrive in each channel k according to independent nonhomo-

geneous Poisson processes with rates λk(t). For each time t ∈ [0, T ] and each sales channel

k ∈ K, each airline i chooses a set Ai,k(t) ⊂ Ji of products to offer; Ai,k(t) is called the as-

sortment offered by airline i through channel k at time t. Let Ki denote the set of channels

used by airline i. If airline i does not use channel k, i.e. k /∈ Ki, then Ai,k(t) = ∅. Also,

products in Ai,k(t) cannot belong to flights that depart before time t. Let Ai,k(t) ⊂ 2Ji

denote the collection of assortments that airline i considers at time t for channel k. Let

Ak(t) := ∪i∈IAi,k(t) denote the assortment offered in channel k at time t, by all the airlines

in the market. Given the assortment Ak(t) = A, a customer who arrives at time t using

channel k books alternative j with probability qj:A(k, t) (qj:A(k, t) = 0 if j 6∈ A).

Booking requests are indexed by n ∈ N . The corresponding customer is referred to

as customer n. Let tn denote the arrival time of booking request n, let kn denote the

channel used, and let jn denote the alternative chosen (booked) by customer n. Thus, for

a customer n using channel kn at booking time tn, Akn(tn) denotes the assortment offered

by all airlines to customer n. For ease of notation, let An := Akn(tn) denote the assortment

for customer n, and let qj:An denote the probability of customer n choosing j from An.

In addition, each customer n has a consideration set Cn ⊂ ∪i∈IJi of products that the

customer would consider. Thus, each customer n chooses from products in the customer’s

choice set Sn := An ∩ Cn. Note that the customer’s observed choice jn must be in Sn.

Typically, the consideration set Cn and the choice set Sn of customer n is not observed —

this is one of the challenges encountered in discrete choice modeling.

2



1.2 Literature Review

Our study falls within a vast literature on discrete choice modeling and estimation. Discrete

choice models have found broad applications to predicting travelers’ choices in transporta-

tion [9] and customers’ choices from a set of products in revenue management [63]. The

classic multinomial logit (MNL) model has been widely used due to its tractability, but it

has a number of shortcomings, including (i) the independence from irrelevant alternatives

(IIA) property, (ii) the assumption that each customer’s choice set is known, and (iii) the

assumption that all customers have the same preferences or taste coefficients. To address

these shortcomings, a variety of other discrete choice models have been developed, includ-

ing the nested logit (NL), mixed logit (ML), latent class logit (LCL) models, and probit

models [24]. There is a significant amount of work, including [54, 55, 1], that incorporate

preference heterogeneity in consumer choice models. Interested readers are referred to [14]

for a detailed review of the MNL model and its many kinds of variants.

The revenue management problem discussed in our study is similar to that of [70] in

the sense that we also use discrete choice models for parallel flights calibrated with airline

data and we also use simulation to evaluate the performance of our policies. However,

our choice models address some issues not addressed in [70]: (i) we develop models that

incorporate the idea that different customers have different preferences (taste heterogeneity)

for different departure times, (ii) we allow differences in price sensitivity depending on

when the customer books and what channel the customer uses, and (iii) we identified and

modeled context effects for the cheapest available fare classes as well as for fully refundable

fare classes. [71] also considered discrete choice models for parallel flights. They studied

structural properties of a Markov decision process formulation, and they compare a number

of heuristics for their model.

1.3 The 2011 and 2012 Airline Data

There are three major airlines that we call XX, YY, and ZZ, in the market, and we consider

to build and estimate customers’ booking choice models for airline XX. For airline XX,

we have booking data. The booking data contain the values of various factors that are

3



important for the estimation of booking choice models discussed in Section 1.4.

We also have availability data that show snapshots, typically once per day, of the as-

sortment being offered by each airline at that time. The assortment sometimes changes

during a day, and we also use customers’ booking data to identify when such changes took

place, and to construct the historical assortments Ai,k(t) for each airline i in channel k as

a function of time t.

In Sections 1.4.1–1.4.4 we introduce four booking choice models for applications of gen-

eral purpose. The four booking choice models differ in the way that they incorporate

heterogeneous customer preferences for different departure times. Then we describe the

factors, encoded attributes and our choice models in Section 1.5. The estimation results are

compared and discussed in Section 1.6.

1.4 Various Discrete Choice Models

Discrete choice models predict the probability of customers choosing a specific product

from among an assortment of products offered at market and formulate customer choice

probabilities as functions of utilities of the alternatives in the offered assortment. The utility

of an alternative is further formulated as a function of the alternative’s attributes that are

often encoded into numeral values using the factors of the alternative such as fare price,

departure time, and booking channel (discussed in detail in Section 1.5.1).

Let xn,j,m denote the value of attribute m ∈ {1, 2, . . . , m̄} for customer n ∈ N and

alternative j ∈ An, and let xn,j := (xn,j,1, . . . , xn,j,m̄) ∈ Rm̄ denote the attribute vector for

customer n and alternative j. The systematic utility, vn,j , of alternative j for customer n

is represented in terms of the following linear function,

vn,j := βᵀxn,j , (1.1)

where β := (β1, . . . , βm̄) ∈ Rm̄ denotes the parameter vector and βm denotes the coefficient

or weight of attribute m. Let qj:An denote the probability of customer n choosing product j

from An. We describe four customers’ booking choice models that all use (1.1) either in the

original form or an enhanced form to capture the heterogeneity in customer preferences.

4



1.4.1 The Multinomial Logit (MNL) Model

One of the most popular discrete choice models is the multinomial logit model. For basic

properties of the MNL model, see for example [9] and [64]. The probability that customer n

chooses alternative j ∈ An is given by

qj:An =
exp (vn,j)∑

j′∈Sn exp
(
vn,j′

) =
exp (βᵀxn,j)∑

j′∈Sn exp
(
βᵀxn,j′

) . (1.2)

In the context of airline demand (and many other applications), different customers consider

different sets of alternatives, but the consideration sets Cn and choice sets Sn := An ∩ Cn

are not observed (but some data related to the consideration sets may be observed). For

example, different customers consider different sets of departure times to be reasonable

for their purposes. Some customers are flexible and may consider all flights in a wide

time window, whereas other customers have tight schedules and want to depart as close as

possible to a specific time. These time preferences are not observed.

The following modeler’s selection of Sn was suggested in [70]: Given that customer n

booked a ticket from A to B for a flight departing on a particular day, it is assumed that

Sn = An is the set of all flights from A to B on the same day. We used the same selection

of Sn for the MNL model results discussed in Section 1.6. However, the following intuitive

argument suggests that such a selection may produce biased parameter estimates. Suppose

that the price of an alternative is an important attribute of the alternative. More specifically,

suppose that each customer chooses the cheapest ticket for a flight that departs in the

customer’s preferred time window. Thus customers are quite price sensitive, with attention

restricted to a subset of alternatives. Now suppose that flights departing at different times

of the day have different cheapest available fares (which is often the case). In a data set

of bookings, a significant fraction of customers do not choose one of the cheapest tickets

over all flights departing on the particular day (because none of the cheapest tickets were

for a flight departing in the customers’ time windows). If it is assumed that each customer

chooses from the set of all flights on the same day, then it appears that customers are not

very price sensitive, and as a result the estimated price coefficients will be biased. As shown

in Section 1.6, our results were consistent with this intuition. Next we discuss a number of
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models that attempt to incorporate heterogeneity in customer preferences.

1.4.2 The Nested Logit (NL) Model

In the nested logit model, the set of alternatives is partitioned into subsets called nests,

indexed by l ∈ {1, 2, . . . , L}. For example, different nests contain tickets for flights departing

during different time windows. Correspondingly, for each customer n, An is partitioned

into L nests denoted with An,l. In the NL model, different alternatives in the same nest

have positively correlated utilities. Thus, by choosing different nests to contain tickets for

flights departing during different time windows, the NL model can capture heterogeneous

preferences for different departure times. A restriction of the NL model is that the set of

alternatives has to be partitioned, for example, the NL model does not capture a setting

in which customers either prefer departure times between t1 and t3 or departure times

between t2 and t4, where t1 < t2 < t3 < t4. For more detail of the NL model, see for

example [9] and [64]. The systematic utility of customer n for alternative j ∈ An,l is given

by vn,j := βᵀxn,j/αl, where αl ∈ [0, 1/α] is the parameter that represents the variation of

preferences for alternatives in An,l, and α > 0 is a scaling factor. Then the probability that

customer n chooses alternative j ∈ An,l is given by

qj:An =
exp(vn,j)∑

j′∈An,l exp(vn,j′)

exp (ααlv̄n,l)∑L
l′=1 exp

(
ααl′ v̄n,l′

)
=

exp(βᵀxn,j/αl)∑
j′∈An,l exp(βᵀxn,j′/αl)

exp (ααlv̄n,l)∑L
l′=1 exp

(
ααl′ v̄n,l′

) ,
where

v̄n,l := ln

 ∑
j∈An,l

exp(βᵀxn,j/αl)

 , ∀ l ∈ {1, . . . , L}.

1.4.3 The Mixed Logit (ML) Model

Let θ denote the attribute coefficients that reflect the tastes of customers in evaluating

attributes and ζn,j represent the vector of attribute values. A natural way for a choice model

to capture heterogeneous tastes is to allow variation in the values of θ. Let πθ denote the

probability distribution of a customer’s parameter vector θ. Thus, the systematic utility

of customer n for alternative j, given by vn,j := θᵀζn,j , is random (given the vector ζn,j of
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attribute values) with distribution determined by πθ. Then the probability that customer n

chooses alternative j ∈ An is given by

qj:An(kn, tn) = Eπθ

[
exp (vn,j)∑

j′∈An exp
(
vn,j′

)] = Eπθ

[
exp (θᵀζn,j)∑

j′∈An exp
(
θᵀζn,j′

)] . (1.3)

ML models can approximate heterogeneous consideration sets by including random coeffi-

cients θw for product subsets w ⊂ ∪i∈IJi, where a value of θw < −M for large M in effect

removes alternatives j ∈ w from the customer’s consideration set. Specifically, to model

departure time preferences, we partition the departure times into hourly time windows in-

dexed by w = 1, . . . , 14. For each customer n, alternative j ∈ An, and time window w, let

yn,j,w = 1 if the flight for alternative j departs in time window w, let yn,j,w = 0 otherwise,

and let yn,j := (yn,j,1, . . . , yn,j,14). The corresponding parameter vector γ := (γ1, . . . , γ14) is

random. We estimated a model in which the values of γ of different customers are indepen-

dent normally distributed with mean µ ∈ R14 and covariance matrix Σ ∈ R14×14. A large

mean µw indicates a time window w that is on average more popular, a large variance Σw,w

indicates a time window w that some customers strongly like and other customers strong-

ly dislike, and a large positive covariance Σw,w′ indicates a pair of time windows (w,w′)

with similar preferences — some customers like both and other customers dislike both.

We can represent γ = µ + σξ, where ξ ∈ R14 has independent standard normal compo-

nents, and σ ∈ R14×14 is the lower-triangular Cholesky factor such that Σ = σσᵀ. Let

β denote the deterministic parameters, that is, the values of β are the same across the

customer population, and let xn,j denote the corresponding vector of attribute values for

customer n and alternative j. Then θ = (β, γ), ζn,j = (xn,j , yn,j), and the systematic utility

is vn,j = θᵀζn,j = βᵀxn,j + γᵀyn,j = βᵀxn,j +µᵀyn,j + ξᵀσᵀyn,j . The parameters (β, µ, σ) are

estimated by solving a maximum likelihood problem. For more detail of the ML model, see

for example [64].

1.4.4 The Latent Class Logit (LCL) Model

In the LCL model there are discrete customer classes, and different customer classes have

different consideration sets and/or different values of the parameter vector β, but the class

of each customer is not observed. We consider the case in which all customer classes have
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the same value of the parameter vector β, but different customer classes have different

consideration sets. In general, the modeler enumerates a collection C ⊂ 2∪i∈IJi of sets of

products that a customer may consider. Let πC denote the probability that a customer’s

consideration set is C ∈ C. As before, the systematic utility of customer n for alternative j

is given by vn,j := βᵀxn,j . Then the probability that customer n chooses alternative j ∈ An

is given by

qj:An = EπC

[
1[j∈C] exp (vn,j)∑
j′∈An∩C exp

(
vn,j′

)] =
∑

{C∈C : j∈C}

πC
exp (vn,j)∑

j′∈An∩C exp
(
vn,j′

) .
The parameters (β, π) are estimated by solving a maximum likelihood problem subject to

the constraints that πC ≥ 0 for all C ∈ C and
∑

C∈C πC = 1. For example, to model

departure time preferences, we construct the collection C of consideration sets C as follows:

Each C contains all flight-fare class combinations with departure times within the same time

window [t1, t2], and C is constructed by taking all combinations of t1 and t2 with hourly

increments such that t1 < t2. Note that ∪C∈CC = ∪i∈IJi, but, unlike the nests of the nested

logit model, C is not a partition of ∪i∈IJi. For example, some customer types have narrow

time windows and other customer types have wider time windows that intersect multiple

narrow time windows.

1.5 Estimation of Airline Ticket Booking Choice Models

1.5.1 Encoded Attributes using Factors

For all the choice models, attributes are constructed to encode observed factors such as fare

price, departure time, and booking channel. We also consider that that affect the choice

probabilities qj:An in such a way that the choice probabilities depend on the factors through

a linear function of the attributes only, as follows.

Table 1 lists the alternative-specific factors (1–5) and the customer-specific factors (6–7)

for which we obtained data, and that affected the booking choice probabilities.

We first discuss the use of the factors in Table 1 for booking choice models.

1. It is natural for booking choices to be affected by ticket prices – everything else being

the same, the lower the price, the greater the probability that the customer chooses
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Table 1: Alternative-specific and customer-specific factors used to encode attributes and
estimate the discrete choice models.

Factor Description

1 Ticket price the ticket fare, e.g., $1350
2 Departure time the time when a flight takes off, e.g., 09:00
3 Ticket change fee the fee charged for changing to another flight, e.g., $75
4 Mileage gain the mileage credits earned by a customer if the customer buys

the ticket, e.g., 1140 points
5 Carrier the airline that sells tickets

6 Booking time the date, hour, minute at which the booking was made, e.g.,
Tuesday 2011-06-07 09:20

7 Booking channel the channel via which a ticket is booked, e.g., airline web site,
call center

the alternative. Ticket prices used in the models were the total prices paid by the

customers, including taxes and fees.

2. Customers have preferences regarding departure times. No flights on the schedule

departed between 00:00 and 07:00. We partitioned the departure times from 07:00

to 21:00 into 14 hourly time windows. The time window [21 : 00, 07 : 00) represents

the late night flights typically around 21:30 and 22:00. The estimated MNL model

captured the different popularity of different departure times by terms βwxn,j,w, where

βw is an element of vector β and xn,j,w is the corresponding attribute value of vector

xn,j in expression (1.2) for qj:An . It has that xn,j,w is 1 if alternative j departs in time

window w, and 0 otherwise, and βw represents the contribution of alternatives in time

window w to customers’ systematic utility (relative to one of the time windows).

As discussed before, not only are some departure times more popular than other ones,

but different customers have different preferences regarding departure times. The NL

model partitions departure times into three subsets or nests; nest l = 1 contains the

alternatives with departure times between 07:00 and 11:00, nest l = 2 contains the

alternatives with departure times between 11:00 and 17:00, and nest l = 3 consists

of the alternatives with departure times between 17:00 and 07:00. Thus, customers

are modeled as having random preferences for departure times in these three nests.

Customer preferences for departure times within each nest are modeled as in the MNL
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model. In the ML model, customers’ preferences for departure times are modeled by

terms γwyn,j,w in (1.3) of Section 1.4.3, where (γw, w = 1, . . . , 14) is a random vector,

with a multivariate normal N(µ,Σ) distribution. A large value of µw represents a

departure time window that is popular (on average), and a large value of Σw,w′ means

that customers tend to prefer both time windows w and w′, or neither.

In the LCL model, consideration sets determined by departure times were constructed

as follows: Each consideration set C contains all tickets with departure times within

the same time window [t1, t2], where t1, t2 ∈ {07 : 00, 08 : 00, . . . , 21 : 00}, t1 < t2 (with

the interpretation of t2 = 07 : 00 as the largest of the times). Customer preferences for

departure times within each consideration set C was modeled as in the MNL model.

3. Different fare classes have different ticket change fees. The effect of change fees on

customers’ preferences is captured by terms βmxn,j,m in the expressions for qj:An ,

where xn,j,m denotes the amount of the change fee for alternative j, and βm represents

the contribution of a unit of change fee to customers’ systematic utility.

4. Although the distance flown from O (origin) to D (destination) is the same for all

alternatives, not all tickets contribute the same number of credits to customers’ fre-

quent flyer balances. Some customers’ preferences are influenced by this, and this

effect is captured by terms βmxn,j,m in the expressions for qj:An , where xn,j,m denotes

the frequent flyer credit if a customer purchases alternative j, and βm represents the

contribution of a unit of frequent flyer credit to customers’ systematic utility.

5. The estimated models capture the different popularity of different airlines by terms

βaxn,j,a in expression (1.2) for qj:An , where xn,j,a is 1 if alternative j is sold by airline a,

and 0 otherwise, and βa represents the contribution of alternatives sold by airline i to

customers’ systematic utility (relative to one of the airlines).

6. The time at which a customer makes a booking is expected to be correlated with the

customer’s price sensitivity. The use of booking time for price coefficients is discussed

in the later provided examples.
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7. The channel that a customer uses to search for a ticket and make a booking affects the

alternatives that are displayed to the customer, and thus the customer’s choice set.

It is assumed that if customer n uses the web site or the call center of airline i, then

the customer considers only alternatives sold by airline i. In addition, the booking

channel is also expected to be correlated with the customer’s price sensitivity and the

use of booking channels for price coefficients was discussed in the later given examples.

Next we give an example. It is to be expected that choice probability qj:An depends on

the price of alternative j. However, we also suspected that customers who book at different

times and who use different booking channels have different price sensitivities. For example,

we suspected that customers who book long in advance of departure time are more price

sensitive than customers who book close to departure time, that customers who book during

work hours are less price sensitive than customers who book outside work hours, and that

customers who book using third-party web sites are more price sensitive than customers who

book using the airline’s call center. To capture the effect of booking time on price sensitivity,

we partitioned the booking horizon as follows. First, the number of days until departure

was partitioned into 3 intervals: [0, 6] days before departure, [7, 13] days before departure,

and more than 13 days before departure. Second, the booking day-of-week is partitioned

into 2 subsets: weekdays and weekends. Third, the time-of-day when customers make their

booking requests was partitioned into 3 intervals: [00 : 00, 09 : 00), [09 : 00, 18 : 00), and

[18 : 00, 24 : 00). The channels that customers use to make bookings were partitioned into 5

subsets: airline web sites, other well-known web sites, other lesser-known web sites, airline

call centers, and other channels including travel agents. For each of the 90 combinations of

subsets of number of days until departure, booking day-of-week, booking time-of-day, and

booking channel, a separate price coefficient was estimated. Thus, the three factors of ticket

price, booking time, and booking channel were encoded into 3 × 2 × 3 × 5 = 90 attributes

xn,j,m, m = 1, . . . , 90, where xn,j,m is equal to the price of alternative j if customer n booked

in the time interval and used the booking channel represented by index m, and xn,j,m is

equal to zero otherwise. The corresponding coefficient βm represents the estimate of price

sensitivity given that a customer books in the time interval and uses the booking channel
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represented by index m. Hence, data on customer-specific factors such as booking time

and booking channel allow us to study the effects of these factors on price sensitivity. The

results are summarized in Section 1.6. Due to lack of good data, other studies such as [22]

and [70] estimated a single price coefficient for all customers.

Table 2 shows the encoded values we assign to the three booking time factors: days to

departure, booking time and booking day, and the factor of booking channel according to

their original values.

Table 2: Encoded Values for Booking Times and Channels.

Days to Dep. # Time-of-day # Day-of-week # Channel #

[0, 6] 1 [00:00, 09:00) 1 weekday 1 others 1

[7, 13] 2 [09:00, 18:00) 2 weekend 2 airline website 2

[14,∞) 3 [19:00, 24:00) 3 call center 3

large websites 4

small websites 5

Next we discuss a context effect that seems to influence the booking choices of customers,

and that we incorporated in all our models. We use Figure 1 to facilitate our explanations

as below.
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Figure 1: Comparison of fraction of XX bookings in each fare class given that Channel 1
was used and given that fare class 7 was the cheapest available fare class for the chosen
flight and channel.
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In Figure 1, the curve labeled “XX 2011 Data” shows the observed fraction of XX

bookings in each fare class given that a particular booking channel 1 was used and given

that a specific fare class 7 was the cheapest available fare class for the chosen flight and

booking channel. Figure 1 shows that when fare class 7 is the cheapest available fare class

for a flight, then about 36.0% of the customers who make a booking for that flight book

in fare class 7, and about 50.4% of the customers who make a booking for that flight book

in fare class 1. It can be seen that a large fraction of customers either book the cheapest

ticket or the most expensive ticket (fare class 1), apparently because it is the only (and

thus cheapest) fully refundable ticket. These effects are called context effects because the

attractiveness of a fare class is influenced by the other fare classes offered (because the other

fare classes offered determine whether a particular fare class is the cheapest available or the

most fully refundable). We also refer to these context effects as “spikes”.

Figure 1 also shows that a LCL model that does not explicitly incorporate coefficients

for spikes does not match the observed fare class distribution well. The curves obtained with

MNL, NL, and ML models that do not explicitly incorporate coefficients for the context

effect are similar to the curves for the LCL model shown in Figure 1, and are thus omitted.

Also, we note that the relative sizes of the spikes are different depending on what fare

class is the cheapest available fare class and depending on what booking channel is used.

The relative sizes of the spikes are also different for different airlines. We were able to

capture the spikes by using the following attributes and corresponding coefficients: (i) For

each combination of airline and booking channel there is an attribute that is equal to one if

customer n uses the channel and alternative j belongs to the airline and it is the cheapest

available fully refundable fare class on its flight. (ii) For each combination of airline, channel,

and fare class, there is an attribute that is equal to one if customer n uses the channel and

alternative j belongs to the airline and it is the cheapest available fare class on its flight.

Figure 1 also shows that a LCL model that explicitly incorporates coefficients for spikes as

described above matches the observed spikes quite well. The curves obtained with MNL,

NL, and ML models that incorporate coefficients for spikes are similar to the curves for the

MNL model shown in Figure 1, and are omitted.
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The phenomenon of spikes reflects the competition among fare classes for each combina-

tion of airline and booking channel. Other researchers have considered competition among

fare classes. For example, [21] emphasized that the competition among fare classes for a

flight and across different flights on the same departure day may be important. [21] did not

model this competition due to limited data.

In the standard MNL model, the relative choice probabilities of two alternatives do

not depend on the presence of other alternatives in the choice set (the independence from

irrelevant alternatives (IIA) property). Similarly, in standard NL, ML and LCL models,

the relative choice probabilities of two alternatives in the same nest or class do not depend

on the presence of other alternatives in that same nest or class.

The introduction of the spike coefficient for the cheapest available fare class destroys this

property. As a result, the choice models with the spike coefficients for the cheapest available

fare class are not standard and the estimation problems may lose some nice properties

that have been established for the standard versions of these models. For the estimation

problems, we can rectify this potential shortcoming of models with spike coefficients by

extending the set of alternatives in the following way. For each product (i.e., a flight-fare

class combination) j, add a spike counterpart, say j′, that is, for each product, there are

two copies: one copy without a spike coefficient, and one copy with a spike coefficient. If a

fare class is the cheapest in a customer’s choice set, then the choice set contains the spike

counterpart, but not the non-spike counterpart, and if a fare class is not the cheapest in a

customer’s choice set, then the choice set contains the non-spike counterpart, but not the

spike counterpart. With such product representation, the relative choice probabilities of

two (extended) alternatives do not depend on the presence of other alternatives (for MNL)

or the presence of other alternatives in the same nest or class (for NL, ML, and LCL). Thus,

for estimation purposes, the choice models with spike coefficients retain the nice properties

of standard models.
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1.5.2 Description of Estimated Choice Models

In this section we describe in detail various choice models that were estimated from the

dataset of 2011. There are 90 price sensitivity parameters, 11 parameters for each of com-

binations (i), 102 parameters for each of combinations (ii), two parameters for carriers, one

parameter for mileage gain and one for cancel fee, which gives 207 common parameters to

all the four choice models. Combinations (i) and (ii) were introduced at the end previous

section. For all the following three choice models, we take departure times in time window

[21:00, 07:00) as the base case.

For the MNL model, there are 14 parameters to be estimated for attributes of departure

times, which gives 221 parameters to be estimated.

For the NL model, we partition all the alternatives in ∪An, where n ∈ N , into L = 3

nests. Nest l = 1 contains the alternatives with departure times between 7:00am and

10:00am, nest l = 2 contains the alternatives with departure times between 11:00am and

17:00pm, and nest l = 3 consists of the alternatives with departure times between 17:00pm

and 7:00am. We set the scaling factor α = 10−4 and need to estimate dissimilarity factors

αl, l = 1, 2, 3, 207 common parameters and 14 parameters for departure times.

For the ML model, to capture the variation of customer preferences in evaluating depar-

ture times, we consider a random parameter vector γn := (γn,1, γn,2, . . . , γn,14) for departure

times for each customer n ∈ N , where {γn}n∈N is a sequence of i.i.d. Gaussian vectors with

mean vector µ ∈ R14 and covariance matrix Σ ∈ R14×14. We can represent γn = µ + σξn,

where ξn ∈ R14 is a standard Gaussian vector and σ ∈ R14×14 is the lower-triangular C-

holesky factor such that Σ = σσᵀ. Let β ∈ R207 denote the 207 common parameters that

are assumed to be deterministic and the same across the customer population N . Let

xn,j ∈ R207 denote the vector of attribute values except departure times and yn,j ∈ R14

denote the vector of attribute values for departure times for alternative j ∈ ∪An. The

systematic utility is written as vn,j = βᵀxn,j +γᵀnyn,j = βᵀxn,j +µᵀyn,j + ξᵀnσᵀyn,j . We need

to estimate (β, µ, σ) by maximizing the simulated log-likelihood function

max
β,µ,σ

1

|N |
∑
n∈N

ln

 1

|In|

|In|∑
i=1

exp
(
βᵀxn,jn + µᵀyn,jn + (ξin)ᵀσᵀyn,jn

)∑
j∈∪An exp (βᵀxn,j + µᵀyn,j + (ξin)ᵀσᵀyn,j)

 ,
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where |In| is the Monte Carlo integration sample size and {ξin}
|In|
i=1 is a sequence of i.i.d. s-

tandard Gaussian variates and independent for each n.

For the LCL model, define C[t1, t2] :=
{
j ∈ ∪3

i=1Pi : j has departure time in [t1, t2]
}

as

the set of tickets sold by airlines XX, YY and ZZ with departure times in time window

[t1, t2], where t1, t2 ∈ {07 : 00, 08 : 00, . . . , 21 : 00}. Let C := {C[t1, t2] : t1, t2 ∈ {07 :

00, 08 : 00, . . . , 21 : 00}} denote the collection of consideration sets (with the interpretation

of t2 = 07 : 00 as the largest of the times). For the LCL model, it assumed that customers

purchasing via different channels have the same collection C of consideration sets and have

the same type distribution π(·) defined on the support C. We need to estimate parameter

vector (β, (πC , C ∈ C)) by solving the following optimization problem,

max
1

|N |
∑
n∈N

ln

 ∑
C∈C:jn∈C

πC1[∪An∩C 6=∅]∑
C′∈C πC′1[∪An∩C′ 6=∅]

exp (βᵀxn,jn)∑
j∈∪An∩C exp (βᵀxn,j)


s.t.

∑
C∈C

πC = 1,

πC ∈ [0, 1], ∀C ∈ C.

where β ∈ R221 consists of the 207 common parameters and 14 parameters for departure

times, xn,j ∈ R221 is the vector of encoded attribute values for j ∈ ∪An, where n ∈ N , and

the choice probability inside the logarithm is calculated conditioning on ∪An ∩ Cn 6= ∅.

1.6 Estimation Results

In this section we describe the estimation results for the four choice models with context

effects, including the price coefficients that reflect customers’ price sensitivity as well as

the parameters for departure times that reflect the popularity of different departure time

windows. Each of the four models is estimated with the 2011 data, 2012 data, 1-6/2012

(January-June, 2012) data and 7-12/2012 (July-December, 2012) data. Thus, there are 16

choice models in total.

1.6.1 Price Sensitivity

All the price coefficients are negative for all four choice models, consistent with the intuition

that the more expensive the ticket is, everything else being the same, the less likely it is that a
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customer will choose it. Of particular interest is the behavior of the price coefficients as the

values of various factors are varied. Recall that for each combination of number of days from

booking until departure ([0, 6], [7, 13], or [14,∞) days), booking day-of-week (weekday or

weekend), booking time-of-day ([00 : 00, 09 : 00), [09 : 00, 18 : 00), or [18 : 00, 24 : 00)), and

booking channel (airline websites, other well-known websites, other lesser-known websites,

airline call centers, or other channels including travel agents) there is a price coefficient. It

is part of revenue management folk wisdom that customers who book longer in advance of

departure times tend to be more price sensitive. To illustrate the effect of number of days

until departure on the price coefficients, we compare the values of the price coefficients for

[7, 13] or [14,∞) days before departure with the values of the price coefficients for [0, 6]

days before departure, for each combination of the other factors (booking day-of-week,

booking time-of-day, and booking channel). For example, the price coefficient of ([7,13],

[00:00,09:00), weekday, others) is -7.2397 and the price coefficient of ([0,6], [00:00,09:00),

weekday, others) is -4.8802. Then, the relative price coefficient of [7, 13] relative to [0, 6] for

([00:00,09:00), weekday, others) is [−7.2397−(−4.8802)]/7.2397 = −0.3259. Figure 2a shows

a histogram of the MNL relative price coefficients for [7, 13] relative to [0, 6], and for [14,∞)

relative to [0, 6], for all combinations of booking day-of-the-week, booking time-of-day, and

booking channel. As Figure 2a shows, for most combinations of booking day-of-the-week,

booking time-of-day, and booking channel, the price coefficients for [7, 13] are smaller (more

negative) than the price coefficients for [0, 6], and the price coefficients for [14,∞) are even

more negative relative to the price coefficients for [0, 6]. Thus most price coefficients are

consistent with revenue management folk wisdom.

Similarly, Figure 2b shows a histogram of the MNL relative price coefficients for booking

time-of-day [00 : 00, 09 : 00) relative to [09 : 00, 18 : 00), and for [18 : 00, 24 : 00) relative to

[09 : 00, 18 : 00), for all combinations of booking days until departure, booking day-of-the-

week, and booking channel. As Figure 2b shows, customers who book outside work hours

tend to be more price sensitive than customers who book during work hours.

Figure 3a shows a histogram of the MNL relative price coefficients for weekend bookings

17



 

6

5

4

3

2

1

0
-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

[7,13] v.s. [0,6]

[14;1) v.s. [0; 6]

(a) Booking days until departure

 

 9

8

7

6

5

4

3

2

1

0

-2.5 -2.0 -1.5 -1.0 -0.5 0 0.5

[00:00,09:00) v.s. [09:00, 18:00)

[18:00,24:00) v.s. [09:00, 18:00)

(b) Booking time-of-day

Figure 2: Histograms of relative price coefficients for booking days until departure and
booking time-of-day.

weekend v.s. weekday

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.40 0.2 0.6

9

8

7

6

5

4

3

2

1

0

(a) Booking day-of-week

4

3

2

1

0

others v.s. call center

-0.5-1.5 -1.0 0 0.5
airline website v.s. call center

-0.5-1.5 -1.0 0 0.5-2.0-2.5

4

3

2

1

0

4

3

2

1

0

small website v.s. call center

-0.5-1.5 -1.0 0 0.5-2.0-0.5-1.5 -1.0 0 0.5-2.0
large website v.s. call center

3

2.5

2

1

1.5

0.5

0

(b) Booking channel

Figure 3: Histograms of relative price coefficients for booking day-of-week and channel.

relative to weekday bookings, for all combinations of booking days until departure, book-

ing time-of-day, and booking channel. As Figure 3a shows, customers who book during

weekends tend to be more price sensitive than customers who book during weekdays.

Figure 3b shows histograms of the MNL relative price coefficients for airline websites,

large websites, small websites, and other channels, relative to airline call centers, for all

combinations of booking days until departure, booking day-of-week, and booking time-of-

day. As Figure 3b shows, customers who book through airline websites, large websites,
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(d) The LCL Model

Figure 4: Histograms of price coefficients for the NL, ML, and LCL models relative to the
price coefficients of the MNL model.

small websites, and other channels, tend to be more price sensitive than customers who

book through airline call centers.

Figure 4 shows histograms of the relative price coefficients for the NL, ML, and LCL

models, relative to the MNL model, for all combinations of booking days until departure,

booking day-of-week, booking time-of-day, and booking channel. As Figure 4 shows, al-

most all the price coefficients for the NL, ML, and LCL models are more negative than the

corresponding price coefficients for the MNL model, which suggests that the MNL model un-

derestimates the price sensitivity of customers because of its assumption that all customers

consider all flights for the origin-destination pair and departure date.
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Table 3: Choice probabilities for different departure time windows according to the MNL,
NL, ML, and LCL models.

Index Time window MNL NL ML LCL

1 [07:00, 08:00) 0.09387 0.09224 0.08903 0.09675
2 [08:00, 09:00) 0.07107 0.07693 0.06811 0.08046
3 [09:00, 10:00) 0.08454 0.09352 0.08141 0.09089
4 [10:00, 11:00) 0.08062 0.09185 0.07783 0.08820

5 [11:00, 12:00) 0.06409 0.09689 0.06630 0.07384
6 [12:00, 13:00) 0.05851 0.08519 0.06086 0.06602
7 [13:00, 14:00) 0.04853 0.07015 0.05041 0.04774
8 [14:00, 15:00) 0.06919 0.10720 0.07294 0.07112
9 [15:00, 16:00) 0.07958 0.12569 0.08279 0.07511
10 [16:00, 17:00) 0.07838 0.12127 0.08239 0.07038

11 [17:00, 18:00) 0.07062 0.00982 0.07357 0.05964
12 [18:00, 19:00) 0.05552 0.00853 0.05337 0.04727
13 [19:00, 20:00) 0.06705 0.00946 0.06789 0.06061
14 [20:00, 21:00) 0.04709 0.00688 0.04439 0.04232
15 [21:00, 07:00) 0.03136 0.00438 0.02870 0.02966

1.6.2 Departure Time Popularity

Table 3 shows the probability that a customer chooses a departure time if all other attribute

values (such as price) is the same for all departure times, according to each of the booking

choice models. As Table 3 shows, the estimation results indicate that the flights that depart

in the morning before 11:00 and in the afternoon between 15:00 and 18:00 are more popular,

and flights that depart in the middle of the day and in the late evening are less popular.

Although the choice models incorporate departure time preferences in different ways, the

resulting departure time choice probabilities are quite similar (but, as pointed out before,

these differences have a dramatic impact on price coefficient estimates).

Figure 5 shows a decreasing trend between correlation coefficients of departure time

windows and the distances between indices of departure time windows for the estimated

ML model. As the figure indicates, as two flights depart with a bigger time gap, the less

correlated the two departure times are. In other words, customers who choose a particular

flight would prefer the flights with departure times closer to the chosen flight to those with

departure times more separated from the chosen one.
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Figure 5: Correlation coefficient v.s. distance between indices of departure times for the
ML model.

1.7 Statistical Tests

1.7.1 Likelihood Ratio Tests

The likelihood ratio tests are commonly used to test the estimated models. We give two

example hypotheses and the corresponding likelihood ratio test statistics. Let βp denote

the vector of 90 price coefficients, and let `∗ denote the optimal log likelihood value for each

of the 16 choice models. First consider the simple null hypothesis H0 that βp = 0. Let

`∗[βp=0] denote the optimal log likelihood value under H0. Table 4 shows the likelihood ratio

test statistic −2(`∗[βp=0] − `
∗) for each of the 16 choice models. Under H0, −2(`∗[βp=0] − `

∗)

is χ2 distributed with 90 degrees of freedom. Let χ2(α, ν) denote the α-quantile of the χ2

distribution with ν degrees of freedom. Note that χ2(0.99, 90) = 61.754 ≈ 62 is the critical

value of the χ2 distribution with 90 degrees of freedom at a significance level of 99%. As

can be seen in Table 4, H0 can be rejected for each of the choice models.
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Table 4: Likelihood ratio test results: All price coefficients are zero.

Choice model −`∗ −`∗[βp=0] −2(`∗[βp=0] − `
∗) χ2(0.99, 90) Reject H0?

MNL 2011 Data 2,368,900 2,415,530 93,260 62 Yes
MNL 2012 Data 2,842,400 2,950,690 216,580 62 Yes
MNL 1-6/2012 Data 1,278,900 1,324,900 92,000 62 Yes
MNL 7-12/2012 Data 1,555,100 1,616,470 122,740 62 Yes

NL 2011 Data 2,353,500 2,404,720 102,440 62 Yes
NL 2012 Data 2,817,271 2,940,290 246,037 62 Yes
NL 1-6/2012 Data 1,265,800 1,318,040 104,480 62 Yes
NL 7-12/2012 Data 1,543,427 1,612,710 138,565 62 Yes

ML 2011 Data 2,368,400 2,415,221 93,641 62 Yes
ML 2012 Data 2,842,000 2,934,024 184,048 62 Yes
ML 1-6/2012 Data 1,270,706 1,286,439 31,467 62 Yes
ML 7-12/2012 Data 1,554,760 1,604,251 98,982 62 Yes

LCL 2011 Data 2,305,800 2,358,150 104,700 62 Yes
LCL 2012 Data 2,771,300 2,842,980 143,360 62 Yes
LCL 1-6/2012 Data 1,240,800 1,288,500 95,400 62 Yes
LCL 7-12/2012 Data 1,522,500 1,584,300 123,600 62 Yes

Next consider the null hypothesis H0 that all 90 price coefficients are equal (but not

necessarily equal to 0). Let `∗[βp==] denote the optimal log likelihood value under H0.

Table 5 shows the likelihood ratio test statistic −2(`∗[βp==] − `
∗) for each of the 16 choice

models. Under H0, −2(`∗[βp==] − `
∗) is χ2 distributed with 89 degrees of freedom. Note

that χ2(0.99, 89) = 60.928 ≈ 61 is the critical value of the χ2 distribution with 89 degrees

of freedom at a significance level of 99%. As can be seen in Table 5, H0 can be rejected for

each of the choice models.

1.7.2 The Significance of Price Differences between Choice Models

In Section 1.6.1, we point out that most of the price coefficients of the NL, ML, and LCL

models are smaller (more negative) than the corresponding price coefficients of the MNL

models, consistent with the intuition that the MNL model will tend to underestimate cus-

tomers’ price sensitivity. One may wonder whether these differences in price coefficients

are statistically significant. We use the following approach. We have estimated 16 choice

models. For a model i ∈ {1, 2, . . . , 16}, let θi denote any value of the parameter vector, let

θi∗ denote the (population) optimal parameter vector, let θ̂i denote the (random) param-

eter vector estimated with a finite data set, and let Li denote the (population expected)
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Table 5: Likelihood ratio test results: All price coefficients are equal.

Choice model −`∗ −`∗[βp==] −2(`∗[βp==] − `
∗) χ2(0.99, 89) Reject H0?

MNL 2011 Data 2,368,900 2,386,200 34,600 61 Yes
MNL 2012 Data 2,842,400 2,873,210 61,620 61 Yes
MNL 1-6/2012 Data 1,278,900 1,291,080 24,360 61 Yes
MNL 7-12/2012 Data 1,555,100 1,572,820 35,440 61 Yes

NL 2011 Data 2,353,500 2,372,700 38,400 61 Yes
NL 2012 Data 2,817,271 2,849,500 64,457 61 Yes
NL 1-6/2012 Data 1,265,800 1,279,410 27,220 61 Yes
NL 7-12/2012 Data 1,543,427 1,560,940 35,025 61 Yes

ML 2011 Data 2,368,400 2,385,900 35,000 61 Yes
ML 2012 Data 2,842,000 2,873,000 62,000 61 Yes
ML 1-6/2012 Data 1,270,706 1,290,400 39,389 61 Yes
ML 7-12/2012 Data 1,554,760 1,571,430 33,340 61 Yes

LCL 2011 Data 2,305,800 2,324,600 37,600 61 Yes
LCL 2012 Data 2,771,300 2,801,100 59,600 61 Yes
LCL 1-6/2012 Data 1,240,800 1,252,700 23,800 61 Yes
LCL 7-12/2012 Data 1,522,500 1,539,300 33,600 61 Yes

log-likelihood function. Consider the following second-order Taylor expansion of Li:

Li(θi) ≈ Li(θi∗) +∇Li(θi∗)ᵀ
(
θi − θi∗

)
+

1

2

(
θi − θi∗

)ᵀ∇2Li(θi∗)
(
θi − θi∗

)
= Li(θi∗) +

1

2

(
θi − θi∗

)ᵀ∇2Li(θi∗)
(
θi − θi∗

)
⇒ ∇Li(θi) ≈ ∇2Li(θi∗)

(
θi − θi∗

)
⇒ θi ≈ θi∗ +

[
∇2Li(θi∗)

]−1∇Li(θi)

The first equality followed from ∇Li(θi∗) = 0. Specifically,

θ̂i ≈ θi∗ +
[
∇2Li(θi∗)

]−1∇Li(θ̂i)

To simplify writing, let M i :=
[
∇2Li(θi∗)

]−1
and let Ẑi := ∇Li(θ̂i), so that θ̂i ≈ θi∗+M iẐi.

Note that M i is deterministic and Ẑi is random. Next, for any two models, say i = 1, 2, let

θ̂ :=

 θ̂1

θ̂2

 , θ∗ :=

 θ1∗

θ2∗

 , M :=

 M1 0

0 M2

 , Ẑ :=

 Ẑ1

Ẑ2


Then

θ̂ ≈ θ∗ +MẐ

Thus,

Cov(θ̂) ≈ Cov(MẐ)
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= E[MẐẐᵀMᵀ]− E[MẐ]E[ẐᵀMᵀ]

= ME[ẐẐᵀ]M −ME[Ẑ]E[Ẑᵀ]M

= MCov(Ẑ)M.

Note that, for any two parameters θ1
k and θ2

l , the variance of the difference θ̂2
l − θ̂1

k can be

calculated from the entries of Cov(θ̂) as follows:

Var(θ̂2
l − θ̂1

k) = Var(θ̂2
l ) + Var(θ̂1

k)− 2Cov(θ̂1
k, θ̂

2
l )

In our calculations, M and

Cov(Ẑ) =

 Cov(Ẑ1) Cov(Ẑ1, Ẑ2)

Cov(Ẑ2, Ẑ1) Cov(Ẑ2)


are calculated as explained next. Let N denote the number of observations in the data

set, let n be the observation index. Let L̂i denote the finite sample average log-likelihood

function. Note that for any model, L̂i can be written in the following form:

L̂i(θi) =
1

N

N∑
n=1

L̂in(θi)

for an appropriate log-likelihood function L̂in for observation n that depends on the model.

Thus,

∇L̂i(θi) =
1

N

N∑
n=1

∇L̂in(θi)

∇2L̂i(θi) =
1

N

N∑
n=1

∇2L̂in(θi)

To simplify writing, let

Ẑin := ∇L̂in(θ̂i)

and note that

1

N

N∑
n=1

Ẑin =
1

N

N∑
n=1

∇L̂in(θ̂i) = ∇L̂i(θ̂i) = 0

Then,

Cov(Ẑ1, Ẑ2) = Cov(∇L1(θ̂1),∇L2(θ̂2)) ≈ Cov(∇L̂1(θ̂1),∇L̂2(θ̂2))
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= Cov

(
1

N

N∑
n=1

Ẑ1
n,

1

N

N∑
n=1

Ẑ2
n

)

=
1

N2

N∑
n=1

Cov(Ẑ1
n, Ẑ

2
n)

≈ 1

N(N − 1)

N∑
n=1

(
Ẑ1
n −

1

N

N∑
n=1

Ẑ1
n

)(
Ẑ2
n −

1

N

N∑
n=1

Ẑ2
n

)ᵀ

=
1

N(N − 1)

N∑
n=1

Ẑ1
n(Ẑ2

n)ᵀ.

Similarly,

Cov(Ẑi) = Cov(∇Li(θ̂i)) ≈ 1

N(N − 1)

N∑
n=1

Ẑin(Ẑin)ᵀ.

Also, M i :=
[
∇2Li(θi∗)

]−1
is approximated by

[
∇2L̂i(θ̂i)

]−1
.

The expressions of the gradient and Hessian of each of the four choice models are given

in Appendix B. Let βMNL
p , βNL

p ∈ R90 denote the estimated price coefficients for the MNL

and NL models respectively, and let tNL,MNL
m denote the estimated t-statistic of the price

coefficient difference
[
(βMNL
p )m − (βNL

p )m
]

for each m ∈ {1, 2, . . . , 90}. We say that (βNL
p )m

is statistically significantly less than (βMNL
p )m at the 95% confidence level if

tNL,MNL
m :=

(βMNL
p )m − (βNL

p )m√
Var

[
(βMNL
p )m − (βNL

p )m
] > 1.645

The same test is also applied to the price coefficients of the ML and LCL models versus the

MNL model. Table 6 shows the number of price coefficients of the NL, ML, and LCL models

that are significantly less than the corresponding price coefficients of the MNL model.

Table 6: The number of price coefficients out of 90 price coefficients of the NL, ML, and
LCL models that are statistically significantly less than the corresponding price coefficients
of the MNL model at the 95% confidence level.

Choice model 2011 data 2012 data 1-6/2012 data 7-12/2012 data

NL l = 1 89 89 89 90
NL l = 2 89 89 89 90
NL l = 3 89 89 89 90

ML 25 69 44 35
LCL 72 72 65 75
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CHAPTER II

A STOCHASTIC TRUST REGION ALGORITHM FOR ESTIMATING

MIXED LOGIT TYPE MODELS

Motivated by mixed logit estimation problems, we consider stochastic optimization prob-

lems of the form minθ
∑

n r(Eξ[Fn(θ, ξ)]), where θ is the decision variable, and ξ is a random

variable with chosen distribution. In the case of mixed logit estimation, the sum involves

observations in a data set, r is a negative logarithm, and θ includes parameters of the sys-

tematic utility as well as parameters of the probability distribution. In many applications,

the dimension of ξ is sufficiently high to exclude calculation of the expectation using quadra-

ture methods. Thus we propose an algorithm that embeds a sample average approximation

of the expectation. The algorithm controls the sample size for each observation n in the

data set to minimize the total sample size subject to a constraint on the variance of the

objective estimate. In addition, the algorithm controls sampling from the data set. We

provide sufficient conditions for convergence of a trust region based algorithm.

2.1 Introduction

Consider a set N of customers, where |N | < +∞. Customer n ∈ N makes a choice from a

set of alternatives, Sn, available to her/him. For each alternative j ∈ Sn, denote by un,j its

utility. We consider that the utility un,j can be represented by

un,j(xn,j , yn,j , β, γn) = vn,j(xn,j , yn,j , β, γn) + εn,j , (2.1)

where (xn,j , yn,j) is the vector of attribute values that characterize alternative j, β and

γn are the weights (tastes) the customer has on the corresponding attributes, εn,j is the

random error term, and vn,j(xn,j , yn,j , β, γn) is the systematic utility. The error term εn,j is

usually assumed to follow an extreme-value type distribution, e.g., Gumbel distribution with

parameters (0,1). It is also assumed that εn,j ’s are identically and independent distributed

(i.i.d.) Gumbel random variables for each customer and across customers. The weights
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reflect the tastes of a customer in making choice given the attributes of the alternatives,

where β represents the taste coefficients that are deterministic and identical over the entire

customer population and γn denotes the random taste coefficients. It is assumed that γn’s

are i.i.d. with a certain distribution for n ∈ N . The random taste coefficients are most

widely modeled as Gaussian vectors or log-normal random vectors. Assume furthermore

that εn,j ’s and γn’s are independent.

In general, the distribution of γn is characterized by a parameter vector φ such as mean

value and variance. By using the Monte Carlo (MC) sampling technique, we can represent

γn = t(φ, ξn), where ξn is a basic random vector with support Ξ, which is used by the sample

generator such as standard uniform or standard normal random vector with distribution

Pin. For instance, if γn is a Gaussian vector with mean µ and covariance matrix Σ = σσᵀ,

where σ is the lower-triangular Cholesky factor of Σ and φ = (µ, σ), we can represent

γn = µ + σξn, where ξn is a standard Gaussian vector. Let θ = (β, φ) be the parameter

values that need to be estimated. We consider that θ is constrained in a nonempty compact

convex set C ⊆ Rd with `2−norm ‖ · ‖ := ‖ · ‖2 and we assume that C can be described by

a finite set of smooth equality or inequality constraints, i.e., C := ∩m̄i=1{x ∈ Rd : ci(x) ≥ 0},

where ci : Rd 7→ R is a twice continuously differentiable function and m̄ ∈ N.

Let zn,j = 1 if j ∈ Sn is chosen by customer n from Sn and zn,j = 0 otherwise. For

customer n, let jn be the chosen alternative such that zjn = 1. Each customer is associated

with one observation of data, (xn,j , yn,j , zn,j , j ∈ Sn). Since we have a finite set of customers,

the dataset can be represented by the customer set N . The likelihood function of parameter

θ is equal to the (joint) probability of the observed customer choices, which is computed as

P (un,jn > un,j , j ∈ Sn, j 6= jn, ∀n ∈ N|θ)

=

∫
Rd×|N|

P
[
un,jn(ξn) > un,j(ξn), j ∈ Sn, j 6= jn,∀n ∈ N

∣∣ξn, n ∈ N ] ∏
n∈N

dPin(ξn)

=

∫
Rd×|N|

∏
n∈N

[
exp {vn,jn(xn,jn , yn,jn , β, t(φ, ξn))}∑
j∈Sn exp {vn,j(xn,j , yn,j , β, t(φ, ξn))}

dPin(ξn)

]

=
∏
n∈N

Eξ[Fn(θ, ξ)],
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where ξ has distribution Pin and

Fn(θ, ξ) =
exp {vn,jn(xn,jn , yn,jn , β, t(φ, ξ))}∑
j∈Sn exp {vn,j(xn,j , yn,j , β, t(φ, ξ)}

is the probability of customer n ∈ N choosing alternative jn ∈ Sn conditioning on ξ, which

has a form of the multinomial logit (MNL) model based on the assumption that εn,j ’s are

i.i.d. Gumbel variables. Thus, the likelihood function can be written as

L(θ|N ) :=
∏
n∈N

pn(θ),

where pn(θ) is the choice probability of customer n that is given by the mixed logit (ML)

model,

pn(θ) = Eξ[Fn(θ, ξ)].

The average log-likelihood function of the ML model is written as,

`(θ|N ) =
1

|N |
∑
n∈N

ln (Eξ[Fn(θ, ξ)]) . (2.2)

Our goal is to estimate an optimal θ̂ ∈ C by solving the maximum likelihood estimation

(MLE) of the ML model, i.e., to find θ̂ that maximizes the average log-likelihood func-

tion (2.2). The problem can be considered as a special case of the following minimization

problem,

min

{
f(θ) :=

1

|N |
∑
n∈N

r (Eξ[Fn(θ, ξ)])] : θ ∈ C ⊂ Rd
}
, (2.3)

where Fn(·, ξ) : C 7→ X ⊂ Rm is a function for almost every ξ ∈ Ξ, X is a convex set with

norm ‖ · ‖X , Fn(θ, ·) : Ξ 7→ X is measurable for all θ ∈ C and r : X 7→ R is a function. In

the average log-likelihood function (2.2), r is the negative logarithm. We refer to (2.3) as

the “true” problem and f(θ) as the “true” objective function. Let ‖ · ‖m×d denote the norm

for matrices in Rm×d for any m, d ∈ N.

2.2 Literature Review

The ML model is one of the most popular variants of the MNL model and it assumes ran-

dom taste/preference coefficients to capture the heterogeneity in customer preference, while
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the MNL assumes a deterministic and identical vector of preference coefficients across the

customer population. [43] showed that any RUM can be approximated to any degree of

accuracy by a ML model with appropriate choice of variables and mixing distribution. One

one hand, the ML model has a flexible structure that enables users to model customer het-

erogeneity; on the other hand, estimating it can be computationally challenging, because it

involves the computation of the high-dimensional integral incorporated in the model (e.g.,

the expectation in (2.2)). The estimation is essentially solving the MLE problem with a set

of observations, and it adds into the estimation another dimension of difficulty if the number

of observations is large. The simulation technique that solves the simulated/approximate

MLE problem seems one of the only a few methods, in real applications, to solve the prob-

lem. There are two branches of studies that all use Monte Carlo (MC) related simulation

techniques to compute multi-variate integrals involved in choice probabilities, but have dif-

ferent ideas to save the computational time.

2.2.1 The MC and Quasi-MC Simulation Methods

The idea to use the MC simulation technique to estimate multi-dimensional integrals in

choice probabilities is not new; one may refer to Daganzo’s monograph [24] in 1979 for a

reference, which covers a comprehensive list of topics related to estimating the probit choice

probability that is an integral based on multi-variate Gaussian distributed random errors

of utilities (which are assumed to be standard Gumbel variables in the MNL model). Some

other studies [16, 15] focused on deriving unbiased estimators of the likelihood in choice

models.

The ML model estimation involves the expectation as the high-dimensional integral

(see (2.2)). The MC simulation is usually used to approximate the expectation by using

its sample average approximation (SAA), resulting in a simulated average log-likelihood

function. [7] showed that the solution of maximizing the simulated average log-likelihood

function of the ML model converges to the true MLE estimators almost surely, in terms of

both the first- and second-order criticality conditions when sample size goes to infinity, which

extends the results about the statistical inference of stochastic programming in [58]. The MC
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simulation technique usually includes a pseudo-random sequence generating process, which

can be slow when the sample size increases. [33] emphasized that faster MC simulations

are needed in practice.

Thus, a trend of studies on using quasi-MC techniques have risen since the end of

1990s. Bhat wrote a series of papers [14, 12, 13] to advocate using the Halton sequence

for estimating ML models and reported a faster estimation results than using standard MC

random samples. [34] proposed a modified Latin hypercube sampling (MLHS) method as an

alternative to the Halton sequence and showed by numerical studies that the MLHS method

performs better than the Halton sequence. However, [47] reported that the quasi-MC

technique outperforms the standard MC sampling technique when the integration dimension

is low, but the advantage of the quasi-MC technique compared to the standard MC technique

is still unclear in computing high-dimensional integrals.

The MC and quasi-MC methods reviewed above concentrate on generating high per-

formance sampling sequences to approximate high-dimensional integrals, but use a given

optimization algorithm or software tool to solve the MLE estimation problem with a fixed

number of sample size to compute the choice probability for each observation.

2.2.2 Optimization Algorithms to Estimate ML-type Models

The ML model estimation problem is a special case of stochastic programming. Another

branch of studies are focused on developing efficient optimization algorithms to solve a

stochastic programming model of such type.

Our work falls within this category of studies and [6] is one of such studies close to

ours, which embeds an adaptive sampling process into the trust region algorithm to control

the sample size for approximating the choice probability of each observation according to

the sampling error incurred in the sampling process. The idea behind this method is that

only a small number of random variables are needed for approximation when the iterate of

the algorithm is not mature. The same idea was also adopted in [59] to solve a two-stage

stochastic programming model. While our work adopts the same idea and also uses the trust

region framework, it differs from [6] in four aspects: (1) our algorithm adaptively controls
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a different sample size to compute the SAA of the choice probability for each observation,

according to the approximation error incurred in computing the SAA of that observation,

while [6] always uses the sample size for all the observations, (2) [6] requires a maximum

sample size for all the observations, while our algorithm does not have such a cap, (3) We

solve a constrained optimization model by using the projected gradient method, while [6]

solves a unconstrained optimization problem, and (4) Our algorithm also embeds a data

sampling process in order to handle large-scale datasets, which has not been addressed in

[6].

There is another trend of studies [31, 51] that address the problem of choosing the op-

timal sequence of sample sizes (effort) adaptively during solving a stochastic recursion that

approximates a deterministic recursion with random samples and showed the convergence

of the iterates to the true solution of the deterministic recursion in a rigorous sense. These

studies pre-assume an algorithm framework and obtain convergence results under the as-

sumption that the objective function is strongly convex, which points out an interesting

direction of incorporating the mechanism of choosing an optimal sequence of sample sizes

for our problem.

2.3 The Simulated Objective Function

There are two major challenges in solving (2.3).

(1) The population size of observations is often very large (the size can be hundreds of

thousands) so that the size of input data can be enormous. It makes computations of

the objective function, gradient and Hessian inefficient.

(2) The objective function involves an expectation operator that is hard to compute since

it may require multidimensional integral. When the dimension of the integral is greater

than 5, we can hardly expect a high computational accuracy [49]. These challenges

often make it intolerably expensive to evaluate the function value, gradient or Hessian.

The algorithms that are typically used to solve deterministic nonlinear programming

models are not quite applicable to solve (2.3), since the function value, gradient or

Hessian needs to be evaluated at each iteration of the algorithm.
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One idea is to use the sampling techniques to solve the approximation of problem (2.3).

We have two types of samples to generate: (1) the sample from the data set which we call

the data sample, and (2) the sample from the distribution of ξ, which is used to compute

the expectation in the objective function and we refer to as integration sample.

Let N ⊂ N denote the set of customers associated with the sampled data such that

|N | ≥ 2, which we will later refer to as data sample. Let Pout denote the probability that

we sample any N ⊂ N with

Pout(N) =
|N |!(|N | − |N |)!

|N |!
, ∀N ⊂ N .

Note that the elements ofN are dependent if we sample without replacements. For each data

n ∈ N , let In be a set (sequence) of i.i.d. samples of ξ, i.e., In = {ξin : i = 1, 2, . . . , |In|},

and I = {In, n ∈ N} be the set of integration samples associated with all the sample

customers. It is worthwhile to notice that I is dependent on the set of sample customers

N and |I| =
∑

n∈N |In|. Assume further that the components of integration samples are

independent for each customer and cross customers. Thus, for each n ∈ N , the sample

average approximation (SAA) of pn(θ) can be represented as

pIn(θ) =
1

|In|

|In|∑
i=1

Fn(θ, ξin).

For data sample N and integration sample I, the approximate objective function is written

as

fNI (θ) :=
1

|N |
∑
n∈N

r (pIn(θ)) . (2.4)

We can view the approximate simulated function fNI (θ) as defined on a common prob-

ability space (Ω,F , P ), where Ω :=
⋃
N∈N

∏
n∈N Ξ∞ and P = Pout

∏
n∈N P

∞
in is a product

measure on Ω. By the statement “an event happens w.p. 1 forK large enough” we mean that

for P−almost every realization ω := {N ⊂ N , ξ1
1 , ξ

2
1 , . . . , ξ

1
2 , ξ

2
2 , . . . , . . . , ξ

1
|N |, ξ

2
|N |, . . .} ∈ Ω

of the random sequence, there exists integer K(ω) such that the considered event happen-

s for all samples {N ⊂ N , ξ1
1 , ξ

2
1 , . . . , ξ

k
1 , ξ

1
2 , ξ

2
2 , . . . , ξ

k
2 , . . . , ξ

1
|N |, ξ

2
|N |, . . . , ξ

k
|N |} from ω with

k ≥ K(ω). We use x∧ y := min{x, y} and x∨ y := max{x, y} for any x, y ∈ R. We also use

X ∼ PX to represent that X is a random variable or random sample with distribution PX .
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2.4 Projections on a Convex Set

We consider C to be a nonempty closed convex set on which projections are fairly easy to

compute, such as box-constrained domains or spheres. For any x ∈ Rd, define the projection

ΠC [x] of x on C as

ΠC [x] := arg min
y∈C
‖x− y‖.

It is well-known that the above projection exists and is uniquely defined on C. The following

lemma gives the properties of the projection on a convex set.

The following three properties of the projection will be useful and follow from Proposi-

tion 2.2.1 in [10] and its proof.

Let C ⊂ Rd be a nonempty closed convex set and ΠC be the projection operator onto C.

P.1 For any y ∈ C, 〈x−ΠC [x], y −ΠC [x]〉 ≤ 0 for all x ∈ Rd.

P.2 (Monotonicity) 〈ΠC [x]−ΠC [y], x− y〉 ≥ 0 for all x, y ∈ Rd. If ΠC [x] 6= ΠC [y], the

strict inequality holds.

P.3 (Nonexpansiveness) ‖ΠC [x]−ΠC [y]‖ ≤ ‖x− y‖ for all x, y ∈ Rd.

If C is a box-constrained domain defined by

C = {x ∈ Rd : li ≤ [x]i ≤ ui, i = 1, 2, . . . , d},

the projection ΠC [x] of x can be conveniently computed by,

[ΠC [x]]i =


li if [x]i ∈ (−∞, li],

xi if [x]i ∈ (li, ui),

ui if [x]i ∈ [ui,+∞).

Let H(x) be the normal cone at x ∈ C with respect to C defined by

H(x) := {θ ∈ Rd : θᵀ(y − x) ≤ 0, ∀y ∈ C},

and T (x) be the tangent cone at x ∈ C with respect to C, which is defined by,

T (x) := cl{λ(y − x) : λ ≥ 0, y ∈ C},
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where cl(C) denotes the closure of any set C.

For any set C ∈ Rd, we organize a list of assumptions that we may use in later results.

A.1. For each n ∈ N , Fn(·, ξ) : C 7→ X is continuous for almost every ξ ∈ Ξ and Fn(θ, ·) :

Ξ 7→ X is measurable for all θ ∈ C.

A.2. For any θ ∈ C, there exist a δ > 0 and K : Ξ 7→ R such that E(K(ξ)) < ∞, and for

almost every ξ ∈ Ξ and every n ∈ N ,

‖Fn(θ′, ξ)‖X ≤ K(ξ)

for all θ′ ∈ C such that ‖θ′ − θ‖ ≤ δ.

A.3. For each n ∈ N , Fn(·, ξ) : C 7→ X is continuously differentiable for almost every ξ ∈ Ξ.

A.4. For any θ ∈ C, there exists δ > 0 and L : Ξ 7→ R such that E(L(ξ)) < ∞, and for

almost every ξ ∈ Ξ and every n ∈ N ,

‖Fn(θ′′, ξ)− Fn(θ′, ξ)‖X ≤ L(ξ)‖θ′′ − θ′‖

for all θ′′, θ′ ∈ B(θ) := {θ′ ∈ C : ‖θ′ − θ‖ ≤ δ}.

A.5. For any θ ∈ C, there exist a δ > 0 and K : Ξ 7→ R such that E(K(ξ)) < ∞, and for

almost every ξ ∈ Ξ and every n ∈ N ,

‖Fn(θ′, ξ)Fn(θ′, ξ)ᵀ‖m×m ≤ K(ξ)

for all θ′ ∈ C such that ‖θ′ − θ‖ ≤ δ.

A.6. r : X 7→ R is continuous.

A.7. r : X 7→ R is continuously differentiable.

A.8. r : X 7→ R− is a continuously differentiable concave function,

A.9. E
[
supθ∈C [r(Fn(θ, ξ))]4

]
<∞ for every n ∈ N .

A.10. ξ1
n, ξ

2
n, . . . , ξ

I
n, . . . is a sequence of i.i.d. observations with distribution Pin for all n ∈ N .
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2.5 The Stochastic Trust-Region Algorithm

2.5.1 The Model Function

In general, an algorithm for solving nonlinear programming models exploits an iterative

search strategy. We propose a stochastic trust-region algorithm to solve the true problem

(2.3), where a sequence of points in C will be iteratively generated until a stopping criterion

is satisfied. At step k, let θk ∈ C be the current point, Nk be data sample, Ikn be the

integration sample for n ∈ Nk and Ik be the integration samples for all data points in Nk.

At step k, we define a quadratic model function that approximates the objective function

in (2.4) within a neighborhood of θk, which is often referred to as the trust region. The

trust region is defined as a ball centered at θk,

Bk := {θ ∈ Rd : ‖θ − θk‖ ≤ ∆k},

where ∆k is the trust-region radius. Under Assumptions A.3 and A.7, the model function

mk(θk + s) is defined as

mk(θk + s) := fk(θk) + gᵀks+
1

2
sᵀHks, (2.5)

where

fk(·) := fNkIk (·),

gk := ∇fk(θk),

and Hk represents the Hessian or the approximation of the Hessian (e.g., the BFGS or SR1

approximations) associated with the approximate function fk.

We then attempt to find a trial step sk to sufficiently reduce the model function while

maintaining the search within the trust region and the feasible set, i.e., we aim to find

sk ∈ arg min
s∈Rd
{mk(θk + s) : θk + s ∈ C ∩ Bk} . (2.6)

Exactly solving (2.6) is far from easy and is not necessary. We can approximately solve it

by searching along the projected gradient path and applying the Goldstein-type line search

rule, where the projected gradient path (with respect to data sample Nk and the integral
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sample Ik) is defined by

vk(t, θk) = ΠC [θk − tgk] ∀t ≥ 0.

Define

sk(t) := vk(t, θk)− θk, t ≥ 0,

and we aim to find a t ≥ 0 such that the following two conditions

‖sk(t)‖ ≤ ∆k, (2.7)

mk(θk)−mk(vk(t, θk)) ≥ −κ1g
ᵀ
ksk(t), (2.8)

hold and one of the following conditions

mk(θk)−mk(vk(t, θk)) < −κ2g
ᵀ
ksk(t) (2.9)

‖sk(t)‖ ≥ κ3∆k (2.10)∥∥ΠT (vk(t,θk))[−gk]
∥∥ ≤ κ4

|gᵀksk(t)|
∆k

(2.11)

is satisfied, where

κ1 ∈ (0, 1), κ2 ∈ (κ1, 1), κ3 ∈ (0, 1), κ4 ∈ (0, 1/2). (2.12)

If such t is found, we define the point θGC
k := vk(t, θk) and consider it as a candidate for

θk+1. Several test criteria need to be satisfied before we formally accept the candidate as

the next point. One test is to evaluate how well the model function approximates the true

objective function and adjust the trust-region radius according the test result, as the basic

trust-region method does. We call

∆fk(θk, θ
GC
k ) := fk(θk)− fk(θGC

k )

the actual improvement and

∆mk(θk, θ
GC
k ) := mk(θk)−mk(θ

GC
k )

and the predicted improvement. Let

ρk :=
∆fk(θk, θ

GC
k )

∆mk(θk, θ
GC
k )
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be the ratio that measures the agreement between the model function and the simulated

objective function.

For any g ∈ Rd, θ ∈ C and δ > 0, define

χ(g, θ, δ) := |min{gᵀs : θ + s ∈ C, ‖s‖ ≤ δ}|.

In the following we lists a variety of properties of χ(gk, θk, δ), which follow from Theo-

rem 12.1.3, Theorem 12.1.4 and Theorem 12.1.5 (i) and (ii) in [23].

Under Assumptions A.3 and A.7, the following holds for each k:

P.4 Both sk(t) and ‖sk(t)‖ are continuous in t and ‖sk(t)‖ is nondecreasing for all t ≥ 0.

P.5 The limit limt→∞ ‖sk(t)‖ <∞ implies limt→∞ ‖ΠT (vk(t,θk))[−gk]‖ = 0.

P.6 sk(t) is a solution of the problem min{gᵀks : θk + s ∈ C, ‖s‖ ≤ ‖sk(t)‖} for all t ≥ 0.

P.7 χ(gk, θk, δ) is continuous and nondecreasing as a function of δ for all δ ≥ 0.

P.8 The function χ(gk, θk, δ)/δ is nonincreasing as a function of δ for all δ > 0.

It follows from Theorem 12.1.6 of [23] that χk(θ) := χ(∇fk(θ), θ, 1) is the first-order

criticality measure for the approximate problem (2.4), i.e., it is nonnegative, continuous

and vanishes at θ ∈ C if and only if −∇fk(θ) ∈ H(θ). Due to the randomness involved,

there exists noise in the actual improvement. We thus need to evaluate the errors incurred

in the sampling processes and compare the errors with the actual improvement before we

calculate ρk. By a similar idea, we define the first-order criticality measure function as

χ(θ) := χ(∇f(θ), θ, 1).

2.5.2 Sampling Errors

For any point θ ∈ C, data point n ∈ N , and integration sample In, it holds that E[pIn(θ)] =

pn(θ). Under A.7, it follows from Taylor’s first-order expansion and the differentiability of

r that

r (pIn(θ)) ≈ r (pn(θ)) +∇r (pn(θ))ᵀ [pIn(θ)− pn(θ)],
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which yields that

E[r (pIn(θ))] ≈ r (pn(θ)) ≈ r (pIn(θ)) , (2.13)

Var[r (pIn(θ))] ≈ ∇r (pn(θ))ᵀ Var[pIn(θ)]∇r (pn(θ))]. (2.14)

It follows from the law of total variance that the variance of the simulated objective

functions evaluated at θ is computed as,

Var(fNI (θ)) = σ2
1(θ, |N |, I) + σ2

2(θ, |N |, I),

where

I = (|In|, n ∈ N ) ,

σ2
1(θ, |N |, I) := Var

(
E[fNI (θ)|N ]

)
,

σ2
2(θ, |N |, I) := E

(
Var[fNI (θ)|N ]

)
.

Now, consider any two points θ1, θ2 ∈ C. The variance of the difference between the

simulated objective function values evaluated at θ1, θ2 ∈ C is computed as,

Var(fNI (θ1)− fNI (θ2)) = σ2
1(θ1, θ2, N, I) + σ2

2(θ1, θ2, N, I),

where

σ2
1(θ1, θ2, |N |, I) = Var

(
E[fNI (θ1)− fNI (θ2)|N ]

)
,

σ2
2(θ1, θ2, |N |, I) = E

(
Var[fNI (θ1)− fNI (θ2)|N ]

)
,

and we refer to σ1(θ1, θ2, |N |, I) as the data sampling error and σ2(θ1, θ2, |N |, I) as the

integration sampling error in the change of approximate function values associated with θ1

and θ2.

2.5.2.1 Data Sampling Error

For any data sample N and integration sample I, the data sampling error is measured by

the standard deviation of the difference between the approximate objective function values

with respect to two points θ1, θ2 ∈ C. Thus,

σ2
1(θ1, θ2, |N |, I) := Var

(
E[fNI (θ1)− fNI (θ2)|N ]

)
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= VarN

(
1

|N |
∑
n∈N

E[∆rIn(θ1, θ2)]

)

=
κc

|N ||N |
∑
n∈N

(
E[∆rIn(θ1, θ2)]−

∑
n∈N E[∆rIn(θ1, θ2)]

|N |

)2

,

where

κc =
|N | − |N |
|N | − 1

,

∆rIn(θ1, θ2) = r(pIn(θ1))− r(pIn(θ2)).

is the correction factor for sampling without replacements from a finite population. It follows

from (2.13) that the data sampling error can be further approximated by the (random)

approximate data sampling error, σ̂1(θ1, θ2, N, I), which is defined as,

σ̂1(θ1, θ2, N, I) :=

√
|N | − |N |
|N ||N |

ν̄2(θ1, θ2, N, I),

where

ν̄2(θ1, θ2, N, I) =
1

|N | − 1

∑
n∈N

(
∆rIn(θ1, θ2)−

∑
n∈N ∆rIn(θ1, θ2)

|N |

)2

is the sample approximation of the variance of a data point sampled from the dataset.

2.5.2.2 Monte-Carlo Integration Sampling Error

Note that I1, I2, . . . , IN are independent. The squared integration sampling error at θ1, θ2 ∈

C is computed by,

σ2
2(θ1, θ2, |N |, I) = E(Var

[
fNI (θ1)− fNI (θ2)|N

]
)

= E

(
Var

[
1

|N |
∑
n∈N

∆rIn(θ1, θ2)

∣∣∣∣N
])

= EN

(
1

|N |2
∑
n∈N

Var [∆rIn(θ1, θ2)]

)

=
1

|N ||N |
∑
n∈N

Var[∆rIn(θ1, θ2)].

It follows from (2.14) that the integration sampling error can be approximated by the

following (random) approximate integration sampling error,

σ̂2(θ1, θ2, N, I) :=

√
1

|N ||N |
∑
n∈N

Var[∇r(pn(θ1))ᵀpIn(θ1)−∇r(pn(θ2))ᵀpIn(θ2)]
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≈
√

1

|N |2
∑
n∈N

1

|In|
Var[∇r(pn(θ1))ᵀFn(θ1, ξ)−∇r(pn(θ2))ᵀFn(θ2, ξ)]

≈ 1

|N |

√∑
n∈N

1

|In|
ν2
n(θ1, θ2, In)

where

S2
n(θ) =

1

|In| − 1

|In|∑
i=1

(Fn(θ, ξin)− pIn(θ))(Fn(θ, ξin)− pIn(θ))ᵀ,

Sn(θ1, θ2) =
1

|In| − 1

|In|∑
i=1

(Fn(θ1, ξ
i
n)− pIn(θ1))(Fn(θ2, ξ

i
n)− pIn(θ2))ᵀ,

are the sample approximations of Var(Fn(θ, ξ)) and Cov(Fn(θ1, ξ), Fn(θ2, ξ)), respectively,

and

ν2
n(θ1, θ2, In) = ∇r(pIn(θ1))ᵀS2

n(θ1)∇r(pIn(θ1)) +∇r(pIn(θ2))ᵀS2
n(θ2)∇r(pIn(θ2))

− 2∇r(pIn(θ1))ᵀSn(θ1, θ2)∇r(pIn(θ2)).

Note that ν2
n(θ1, θ2, In) ≥ 0 is a sample approximation of Var[r′(pn(θ1))pIn(θ1)−r′(pn(θ2))pIn(θ2)]

and will not change much when |In| becomes large enough. The following notations for any

iteration k during the execution of Algorithm 1 will be useful. Define σ̂k,i := σ̂i(θk, θ
GC
k , Nk, Ik)

for i ∈ {1, 2}.

2.5.3 The Algorithm

The formal stochastic trust-region algorithm (STRA) is described in Algorithm 1. The

algorithm for search for the generalized Cauchy point is described in Algorithm 2 and the

algorithm for sample update is described in Algorithm 3.

2.5.4 Optimal allocation of integration samples

It is desirable to minimize the computational efforts while increasing the integration sample

size to reduce the integration sample error. We describe in this section the method to

allocate Monte Carlo simulation samples to different customers based on the sampling error

of each customer. Consider an iteration with index k. It follows that

σ̂2
k,2 =

1

|Nk|2
∑
n∈Nk

ν2
n(θk, θ

GC
k , Ikn)

|Ikn|
.
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Algorithm 1: Stochastic trust-region algorithm (STRA)

Step 0. Initialization. An initial point θ0 ∈ C and trust-region radius ∆0 ∈ (0,∞) are
given. Choose η1, η2, η3 and τ1, τ2 such that 0 < η1 < η2 < η3 < 1 and
0 < τ1 < 1 < τ2 together with η0 ∈ (0, 1). Choose the initial data N0 ⊂ N and
integration sample I0. Set k ← 0.

Step 1. Model function definition. Compute the simulated objective function fk(θk),
gradient gk and Hessian matrix Hk using the sample sets Nk and Ik. Obtain a
model function mk defined in (2.5) over Bk ∩ C.

Step 2. The generalized Cauchy point calculation. If sk(1) = 0, set αk = 0; otherwise,
find αk > 0 such that sk(αk) = vk(αk, θk)− θk and vk(αk, θk) satisfy both the trust
region constraint (2.7) and (2.8), and either of (2.9), (2.10) and (2.11) (See
Algorithm 2). Set θGC

k ← vk(αk, θk) to be the generalized Cauchy point.

Step 3. Sample update. Compute the predicted improvement ∆mk(θk, θ
GC
k ), data

sampling error σ̂k,1 and integration sampling error σ̂k,2. Generate N+
k and I+

k by
using Algorithm 3. Set Nk+1 ← N+

k , Ik+1 ← I+
k

Step 4. Acceptance of the trial point. If

σ̂k,1 ∨ σ̂k,2 ≤ η0

(
∆mk(θk, θ

GC
k )

)
(2.15)

holds, compute ∆fk(θk, θ
GC
k ) and the ratio ρk. If ρk ≥ η1, then define θk+1 ← θGC

k ;
otherwise define θk+1 ← θk and go to Step 5; If (2.15) fails, define θk+1 ← θk, set
k ← k + 1, and go to Step 1.

Step 5. Trust-region radius update. Set

∆k+1 =


τ1∆k if ρk ∈ (0, η2),
∆k if ρk ∈ [η2, η3),
τ2∆k if ρk ∈ [η3,∞).

Set k ← k + 1 and go to Step 1.
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Algorithm 2: Search for the generalized Cauchy point

Input: Trust region radius ∆k, the iterate θk ∈ C and the model mk(θk + s). The
constants κ1, κ2 and κ3 satisfying condition (2.12). Set tmin = 0,
t1 = ∆k/‖gk‖ and j = 1.

Output: αk
1 for j = 1 to ∞ do
2 vk(tj , θk)← ΠC [θk − tjgk];
3 sk(tj)← vk(tj , θk)− θk;
4 Compute mk(vk(tj , θk));
5 if (2.7) or (2.8) is violated then
6 tmax ← tj ;
7 tj+1 ← 1

2(tmin + tmax);
8 i← j + 1 and stop;

9 else if all the (2.9),(2.10) and (2.11) are violated then
10 tmin = tj ;
11 tj+1 = 2tj ;

12 else
13 αk ← tj and stop;

14 for j = i to ∞ do
15 vk(tj , θk)← ΠC [θk − tjgk];
16 sk(tj)← vk(tj , θk)− θk;
17 Compute mk(vk(tj , θk));
18 if (2.7) or (2.8) is violated then
19 tmax ← tj ;
20 tj+1 ← 1

2(tmin + tmax);

21 else if all the (2.9),(2.10) and (2.11) are violated then
22 tmin ← tj ;
23 tj+1 ← 1

2(tmin + tmax);

24 else
25 αk ← tj and stop;
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Algorithm 3: Sample update mechanism

Input: Nk, Ik, σ̂k,1, σ̂k,2, ∆mk(θk, θ
GC
k ), nk, na ∈ N, ia ∈ N and ia ≥ 2, η0, P jk,i,

where i ∈ {1, 2} and j ∈ {0, 1}, Pin

Output: N+
k , I+

k

1 if (2.15) holds then
2 Generate two independent random variables, Xk,1 ∼ P 1

k,1 and Xk,2 ∼ P 1
k,2;

3 case 1: Xk,1 = 0 and Xk,2 = 0
4 N+

k ← Nk, I
k+
n ← Ikn for all n ∈ N+

k ;

5 case 2: Xk,1 = 1 and Xk,2 = 0
6 Ik+

n ← Ikn for all n ∈ Nk;

7 Sample a set Nadd of na ∧ (|N | − |Nk|) data points from N \Nk and

N+
k ← Nk ∪Nadd;

8 Generate a set Ik+
n of ia observations of ξ ∼ Pin for n ∈ Nadd;

9 case 3: Xk,1 = 0 and Xk,2 = 1
10 N+

k ← Nk;

11 Generate a set Iadd
n of ia observations of ξ ∼ Pin and Ik+

n ← Ikn ∪ Iadd
n for

n ∈ N+
k ;

12 case 4: Xk,1 = 1 and Xk,2 = 1
13 Generate a set Iadd

n of ia observations of ξ ∼ Pin and Ik+
n ← Ikn ∪ Iadd

n for
n ∈ Nk;

14 Sample a set Nadd of na ∧ (|N | − |Nk|) data points from N \Nk and

N+
k ← Nk ∪Nadd;

15 Generate a set Ik+
n of ia observations of ξ ∼ Pin for n ∈ Nadd;

16 else
17 case 5: σ̂k,1 > σ̂k,2 ≥ 0
18 Generate a random variable Xk,2 ∼ P 0

k,2;

19 if Xk,2 = 1 then
20 Generate a set Iadd

n of ia observations of ξ ∼ Pin and Ik+
n ← Ikn ∪ Iadd

n for
n ∈ Nk;

21 else
22 Ik+

n ← Ikn for n ∈ Nk;

23 Sample a set Nadd of nk data points from N \Nk and N+
k ← Nk ∪Nadd;

24 Generate a set Ik+
n of ia observations of ξ ∼ Pin for n ∈ Nadd;

25 case 6: σ̂k,2 ≥ σ̂k,1 ≥ 0
26 Generate {Ik+

n : n ∈ Nk} by using sample allocation Algorithm 4;
27 Generate a random variable Xk,1 ∼ P 0

k,1;

28 if Xk,1 = 1 then
29 Sample a set Nadd of na ∧ (|N | − |Nk|) data points from N \Nk and

N+
k ← Nk ∪Nadd;

30 Generate a set Ik+
n of ia observations of ξ ∼ Pin for n ∈ Nadd;

31 else
32 N+

k ← Nk;

33 I+
k ← {I

k+
n : n ∈ N+

k };
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According to Algorithm 3, the sample allocation Algorithm 4 is executed for the current

sampled set of customers, Nk, and we might need to expand the Monte-Carlo integration

sample size for each n ∈ Nk to reduce integration sampling error. To save the computa-

tional expense, we allocate samples to each customer with the objective of minimizing the

total number of samples needed subject to decreasing the integration sampling error to a

fractional level. Let yn denote the number of samples allocated to customer n ∈ Nk. Thus,

we need to solve the optimization model,

min
∑
n∈Nk

yn

s.t.
∑
n∈Nk

ν2
n(θk, θ

GC
k , Ikn)

yn
≤ (η0|Nk|∆m(θk, θ

GC
k ))2.

Let λ ≥ 0 be the Lagrangian multiplier. The Lagrangian function is written as,

L(λ, yn, n ∈ Nk) =
∑
n∈Nk

yn + λ

∑
n∈Nk

ν2
n(θk, θ

GC
k , Ikn)

yn
− (η0|Nk|∆m(θk, θ

GC
k ))2

 ,

which yields

yn =
νn(θk, θ

GC
k , Ikn)

(∑
m∈Nk νm(θk, θ

GC
k , Ikm)

)
(η0|Nk|∆m(θk, θ

GC
k ))2

, ∀n ∈ Nk,

and we define

in = dyne, ∀n ∈ Nk. (2.16)

Algorithm 4: Sample allocation

Input: Nk, Ik, (in, n ∈ Nk) defined in (2.16), σ̂k,2 and η4

Output: Ik+
n for all n ∈ Nk

1 Generate a set Iadd
n of ia ∨ (in − |Ikn|) samples of ξ ∼ Pin;

2 Ik+
n ← Ikn ∪ Iadd

n for n ∈ Nk;

Thus, we have the sample allocation algorithm 4. The following quantities are also

defined for each k in Algorithm 3.

nk =


|N |

1 + |N | (η0∆m(θk,θ
GC
k ))2

ν̄2(θk,θ
GC
k ,Nk,Ik)

− |Nk|, (2.17)
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q1
k,i =

ε+ h(σ̂k,i)

ε+ h(η0∆m(θk, θ
GC
k ))

∀i ∈ {1, 2},

q0
k,i =

ε+ h(σ̂k,i)

ε+ h(σ̂k,1) + h(σ̂k,2)
∀i ∈ {1, 2},

where ε > 0 and h : R 7→ [0,∞) is a nondecreasing continuous function. Let P jk,i denote the

distribution on a random variable X such that P(X = 1) = qjk,i and P(X = 0) = 1− qjk,i for

each k, i ∈ {1, 2} and j ∈ {0, 1}.

2.6 Convergence Analysis

Since N is a finite set, w.l.o.g., we show Theorems 2.1 and 2.2 for a generic data point

n ∈ N and the results remain valid when we consider the entire dataset N . For notational

convenience we suppress data index n in the statements of the Theorems 2.1 and 2.2 and

their proofs.

Theorem 2.1. Let C be a nonempty compact subset of Rd with norm ‖ · ‖C. Assume A.1,

A.2, A.6, and A.10. Let p(θ) := E(F (θ, ξ)) and pI(θ) := 1
I

∑I
i=1 F (θ, ξi) for I ∈ N and

θ ∈ C. Then, p(θ) ∈ X , ϕ(θ) := r(p(θ)) is continuous, and w.p. 1,

sup
θ∈C
|r (pI(θ))− r(p(θ))| → 0 as I →∞.

Proof: It follows from Assumption A.2 that E[‖F (θ, ξ)‖X ] < E[K(ξ)] < ∞ for all θ ∈ C.

Since X is a convex set, it follows from [17, p. 25] that p(θ) := E[F (θ, ξ)] ∈ X for all θ ∈ C.

First we show continuity of ϕ. Choose any θ ∈ C and a sequence {θk}∞k=1 ⊂ C such that

θk → θ as k → ∞. It follows from continuity of r and F and the Dominated Convergence

Theorem (DCT) that

lim
k→∞

r(E(F (θk, ξ))) = r

(
lim
k→∞

E[F (θk, ξ)]

)
= r

(
E
[

lim
k→∞

F (θk, ξ)

])
= r (E[F (θ, ξ)])

= r(p(θ))

(2.18)

which implies that ϕ is continuous.
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Next we show uniform convergence of r (pI(θ)) to r(p(θ)) as I →∞. Consider any point

θ0 ∈ C. Consider any ε > 0. There exists δ̂ > 0 such that

|r(x)− r(y)| ≤ ε for all x, y ∈ Bδ̃(p(θ0)) such that ‖x− y‖X < δ̂. (2.19)

Note that

|r (pI(θ))− r (p(θ))| ≤ |r (pI(θ))− r (pI(θ0))|+|r (pI(θ0))− r (p(θ0))|+|r (p(θ0))− r (p(θ))|

We bound each term on the right, and then we address the choice of θ0.

Let {δk}∞k=1 ⊂ (0, 1) be a decreasing sequence such that limk→∞ δk = 0. Consider the

sequence of balls Bk := Bk(θ0) = {θ ∈ C : ‖θ − θ0‖C < δk}. Define

dk(ξ) := sup
θ∈Bk

‖F (θ, ξ)− F (θ0, ξ)‖X .

By Assumption A.1, dk(ξ) → 0 for almost every ξ ∈ Ξ as k → ∞. By Assumption A.2,

dk(ξ) ≤ 2K(ξ) for all k and, by the DCT,

E(dk(ξ))→ 0 as k →∞ (2.20)

For all θ ∈ Bk, it holds that

‖pI(θ)− pI(θ0)‖X ≤ 1

I

I∑
i=1

‖F (θ, ξi)− F (θ0, ξ
i)‖X

≤ 1

I

I∑
i=1

sup
θ∈Bk

‖F (θ, ξi)− F (θ0, ξ
i)‖X

=
1

I

I∑
i=1

dk(ξ
i),

which implies

sup
θ∈Bk

‖pI(θ)− pI(θ0)‖X ≤ 1

I

I∑
i=1

dk(ξ
i). (2.21)

Since r is continuous on X ⊂ Rn by A.6, it follows from [38] that r is locally uniformly

continuous. Thus, there exists some ball Bδ̃(p(θ0)) := {x ∈ X : ‖x − p(θ0)‖X < δ̃} such

that r is uniformly continuous on Bδ̃(p(θ0)).

46



It follows from (2.20) that there exists k1 ∈ N such that E(dk(ξ)) < (δ̂/2)∧ (δ̃/4) for all

k ≥ k1. By the SLLN, there exists Ω∗1 ⊂ Ω with P(Ω∗1) = 1 such that for any ω ∈ Ω∗1, there

exists I1(ω) ∈ N such that for all I ≥ I1(ω) it holds that∣∣∣∣∣1I
I∑
i=1

dk1(ξi)− E(dk1(ξ))

∣∣∣∣∣ < (δ̂/2) ∧ (δ̃/4).

Thus, it follows from (2.21) that for all I ≥ I1(ω) it holds that

sup
θ∈Bk1

‖pI(θ)− pI(θ0)‖X ≤ 1

I

I∑
i=1

dk1(ξi)

< E(dk1(ξ)) + (δ̂/2) ∧ (δ̃/4)

< δ̂ ∧ (δ̃/2).

Since pI(θ0)→ p(θ0) w.p.1 by the SLLN, there exists Ω∗2 ⊂ Ω with P(Ω∗2) = 1 such that

for any ω ∈ Ω∗2, there exists I2(ω) such that for all I ≥ I2(ω) it holds that

‖pI(θ0)− p(θ0)‖X < δ̂ ∧ (δ̃/2).

Thus, for the given ω ∈ Ω∗2, it holds that pI(θ0) ∈ Bδ̃(p(θ0)) for all I ≥ I2(ω).

Let Ω∗3 := Ω∗1 ∩ Ω∗2. Then, P(Ω∗3) = 1. Thus, for any ω ∈ Ω∗3 and all I ≥ I3(ω) :=

max{I1(ω), I2(ω)}, it holds for all θ ∈ Bk1 that

‖pI(θ)− p(θ0)‖X ≤ ‖pI(θ)− pI(θ0)‖X + ‖pI(θ0)− p(θ0)‖X < δ̃.

Thus, for the given ω ∈ Ω∗3, it holds that pI(θ) ∈ Bδ̃(p(θ0)) for all I ≥ I3(ω) and all θ ∈ Bk1 .

To summarize, for all ω ∈ Ω∗3, there exists I3(ω) such that for all I ≥ I3(ω) and all θ ∈ Bk1 ,

pI(θ0), pI(θ) ∈ Bδ̃(p(θ0)) and ‖pI(θ)− pI(θ0)‖X < δ̂.

Hence, it follows from (2.19) that for all k ≥ k1,

sup
θ∈Bk

|r(pI(θ))− r(pI(θ0))| ≤ sup
θ∈Bk1

|r(pI(θ))− r(pI(θ0))| ≤ ε

and

|r(pI(θ0))− r(p(θ0))| ≤ ε
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Since ϕ(θ) := r(p(θ)) is continuous, there exists k2 ∈ N such that for all k ≥ k2,

sup
θ∈Bk

|r(p(θ))− r(p(θ0))| ≤ sup
θ∈Bk2

|r(p(θ))− r(p(θ0))| ≤ ε.

In summary, for each θ0 ∈ C, there exists B(θ0) := Bk′ where k′ := max{k1, k2} and

Ω∗(θ0) := Ω∗3 with P(Ω∗(θ0)) = 1 such that for all ω ∈ Ω∗(θ0), there exists I(ω, θ0) :=

I3(ω) ∈ N such that

sup
θ∈B(θ0)

|r(pI(θ))− r(pI(θ0))| ≤ ε

|r(pI(θ0))− r(p(θ0))| ≤ ε

sup
θ∈B(θ0)

|r(p(θ))− r(p(θ0))| ≤ ε

for all I ≥ I(ω, θ0). Note that C ⊂
⋃
θ∈C B(θ). Since C is compact, there is a finite number of

points θ1, θ2, . . . , θm ∈ C such that C ⊂
⋃m
i=1B(θi). Let Ω∗ :=

⋂m
i=1 Ω∗(θi). Then P(Ω∗) = 1.

For any ω ∈ Ω∗, let I(ω) := maxi=1,...,m{I(ω, θi)}.

Consider any θ ∈ C. Then there exists B(θi) such that θ ∈ B(θi). Thus, for all ω ∈ Ω∗

and I ≥ I(ω) it holds that

|r(pI(θ))− r(pI(θi))| ≤ ε

|r(pI(θi))− r(p(θi))| ≤ ε

|r(p(θ))− r(p(θi))| ≤ ε

Therefore

sup
θ∈C
|r(pI(θ))− r(p(θ))| ≤ 3ε.

Remark 2.1. Theorem 2.1 holds if r : X 7→ Rm×d for any m, d ∈ N is a continuous

function.

Theorem 2.2. Let C be a nonempty compact subset of Rd. Assume A.2, A.3, A.4, A.7,

and A.10. Then,

(1) p(θ) ∈ X ,
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(2) ϕ(θ) := r(p(θ)) is continuously differentiable,

(3) for each θ ∈ C, it holds that

∇ϕ(θ) = ∇p(θ)ᵀ∇r(p(θ)) = E(∇F (θ, ξ))ᵀ∇r(p(θ)),

(4) w.p. 1,

sup
θ∈C
‖∇pI(θ)ᵀ∇r(pI(θ))−∇p(θ)ᵀ∇r(p(θ))‖ → 0 as I →∞.

Proof : It follows from Theorem 2.1 that p(θ) ∈ X . We first show that ϕ(θ) is d-

ifferentiable at all θ ∈ C. By A.2, the convexity of ‖‖X , and Jensen’s inequality that

‖p(θ)‖X = ‖E(Fn(θ, ξ))‖X ≤ E[‖Fn(θ, ξ)‖X ] < Eξ[K(ξ)] < ∞ is finite-valued for all θ ∈ C.

By Theorem 7.44 in [58], it follows from assumptions A.3 and A.4 that p(θ) is differentiable

and ∇p(θ) = E(∇F (θ, ξ)) for each θ ∈ C. By assumption A.7 and the chain rule, we have

ϕ(θ) is differentiable and result (3) holds.

Next, we show the continuity of ∇p(θ) and ∇ϕ(θ). Consider any θ ∈ C and a sequence

{θk} ⊂ C such that θk → θ as k →∞. By assumption A.4, it follows that ‖∇F (θ, ξ)‖m×d ≤

L(ξ) for all θ ∈ C. By the DCT and A.3,

lim
k→∞

∇p(θk) = lim
k→∞

E(∇F (θk, ξ)) = E(∇F ( lim
k→∞

θk, ξ)) = ∇p(θ),

which shows the continuity of ∇p(θ). By the continuity of p(θ) (See (2.18) in the proof of

Theorem 2.1), A.7 and result (3),

lim
k→∞

∇ϕ(θk) = lim
k→∞

∇p(θk)ᵀ lim
k→∞

∇r(p(θk)) = ∇p(θ)ᵀ∇r(p( lim
k→∞

θk)) = ∇ϕ(θ),

which implies (2).

By A.7, ∇r is continuous. Since p(θ) is continuous, we have ‖∇r(p(θ))‖m×1 is continuous

on C and thus attains maximum due to the compactness of C. Define

C1 := sup
θ∈C
‖∇r(p(θ))‖m×1 < ∞,

and

C2 := sup
θ∈C
‖∇p(θ)‖m×d = sup

θ∈C
‖E(∇F (θ, ξ))‖m×d ≤ E(L(ξ)) < ∞.
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Choose any ε > 0. Since ∇r is a continuous function under A.7. By replacing with r

replaced by ∇r, it follows from A.2, A.3, Theorem 2.1 and Remark 2.1 that, there exists

Ω1 with P(Ω1) = 1 such that for every ω ∈ Ω1, there exists I1(ω) ∈ N such that for all

I ≥ I1(ω) and θ ∈ C,

‖∇r(pI(θ))−∇r(p(θ))‖m×1 < (ε/C2) ∧ 1.

Thus, it follows that

sup
θ∈C
‖∇r(pI(θ))‖m×1 ≤ sup

θ∈C
‖∇r(p(θ))‖m×1 + 1 = C1 + 1.

By A.3, A.4 and Theorem 2.1 again, there exists Ω2 with P(Ω2) = 1 such that for every

ω ∈ Ω2 , there exists I2(ω) ∈ N such that for all I ≥ I2(ω),

sup
θ∈C
‖∇pI(θ))−∇p(θ)‖m×d < ε/(C1 + 1).

Let Ω = Ω1 ∩ Ω2. It follows that for each ω ∈ Ω, where P(Ω) = 1, letting I∗(ω) :=

max{I1(ω), I2(ω)} gives that for all I ≥ I∗(ω)

sup
θ∈C
‖∇pI(θ)ᵀ∇r(pI(θ))−∇p(θ)ᵀr(p(θ))‖

≤ sup
θ∈C
‖∇pI(θ)ᵀ∇r(pI(θ))−∇p(θ)ᵀ∇r(pI(θ))‖

+ sup
θ∈C
‖∇p(θ)ᵀ∇r(pI(θ))−∇p(θ)ᵀ∇r(p(θ))‖

≤ sup
θ∈C
‖∇r(pI(θ))‖m×1 sup

θ∈C
‖∇pI(θ))−∇p(θ)‖m×d

+ sup
θ∈C
‖∇p(θ)‖m×d sup

θ∈C
‖∇r(pI(θ))−∇r(p(θ))‖m×1

< 2ε,

which prove (4).

Lemma 2.1. Consider any nonempty compact set C ⊂ Rd. Assume A.1, A.5, A.7 and

A.10. Then, the following holds:

(1) Assume further A.8 and A.9. Then, supθ1,θ2∈C σ1(θ1, θ2, |N |, I)→ 0 as |N | → |N |.

(2) supθ1,θ2∈C σ2(θ1, θ2, |N |, I)→ 0 as |In| → ∞ for each n ∈ N .

(3) W.p. 1, supθ1,θ2∈C σ̂1(θ1, θ2, N, I)→ 0 as |N | → |N | and |In| → ∞ for all n ∈ N .
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(4) W.p. 1, supθ1,θ2∈C σ̂2(θ1, θ2, N, I)→ 0 as |N | → |N | and |In| → ∞ for all n ∈ N .

Proof:

(1) Define

α(θ1, θ2) :=
∑
n∈N

(
E[∆rIn(θ1, θ2)]−

∑
n∈N E[∆rIn(θ1, θ2)]

|N |

)2

.

Consider any customer n ∈ N . We first show that,

E

(
sup
|In|∈N

sup
θ∈C
|r(pIn(θ))|

)
< ∞.

We suppress n for notational convenience. It follows from Jensen’s inequality and

condition (A.8) that

sup
θ∈C
|r(pI(θ))| = sup

θ∈C

∣∣∣∣∣∣−r
 1

|I|

|I|∑
i=1

F (θ, ξi)

∣∣∣∣∣∣ ≤ sup
θ∈C

 1

|I|

|I|∑
i=1

|r
(
F (θ, ξi)

)
|


≤ 1

|I|

|I|∑
i=1

sup
θ∈C
|r
(
F (θ, ξi)

)
|.

Let µ = E (supθ∈C |r (F (θ, ξ)) |), where ξ is identically distributed to ξi, i = 1, . . . , |I|.

By condition (A.9), µ < ∞. Define Zi = supθ∈C |r
(
F (θ, ξi)

)
| − µ for i = 1, . . . , |I|

and Z = supθ∈C |r (F (θ, ξ)) | −µ. Thus, Zi, i = 1, . . . , |I| are i.i.d. with E(ηi) = 0. For

|I| = 1, 2, . . ., define

XI :=
1

|I|

|I|∑
i=1

Zi.

Let

C1(ω) := sup
|I|∈N

 1

|I|

|I|∑
i=1

sup
θ∈C
|r
(
F (θ, ξi)

)
|

 = sup
|I|∈N

|XI(ω)|+ µ

for ω ∈ Ω. It follows that

E(C2
1 ) = E

(
sup
|I|∈N

|XI(ω)|+ µ

)2

≤ 2E

(
sup
|I|∈N

|XI(ω)|

)2

+ 2µ2

≤ 2

∫ ∞
0

P

(
sup
|I|∈N

|XI | >
√
x

)
dx+ 2µ2
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= 2

∫ 1

0
P

(
sup
|I|∈N

|XI | >
√
x

)
dx+ 2

∫ ∞
1

P

(
sup
|I|∈N

|XI | >
√
x

)
dx+ 2µ2

≤ 2

∫ ∞
1

P

(
ω ∈ Ω : sup

|I|∈N
|XI(ω)| >

√
x

)
dx+ 2 + 2µ2

≤ 2

∫ ∞
1

P

ω ∈ Ω :
⋃
|I|∈N

{|XI(ω)| >
√
x}

 dx+ 2 + 2µ2

≤ 2

∫ ∞
1

∞∑
|I|=1

P(X4
I > x2)dx+ 2 + 2µ2

≤ 2

∫ ∞
1

∞∑
|I|=1

E(X4
I )

x2
dx+ 2 + 2µ2,

and

E(X4
I ) = E

 1

|I|

|I|∑
i=1

Zi

4

=
E(Z4)

|I|3
+
|I|2 − |I|
|I|4

(E(Z2))2.

By condition (A.9), E
(

supθ∈C [r(F (θ, ξ))]4
)
<∞, thus,

E(Z4) = E
(

sup
θ∈C
|r (F (θ, ξ)) | − µ

)4

≤ 8E
(

sup
θ∈C
|r (F (θ, ξ)) |

)4

+ 8µ4

= 8E
(

sup
θ∈C

[r(F (θ, ξ)]4
)

+ 8µ4 <∞,

which also implies E(Z2) <∞. Since

C2 := E(Z4)

∞∑
|I|=1

1

|I|3
+ (E(Z2))2

∞∑
|I|=1

|I|2 − |I|
|I|4

< ∞,

it follows that

E(C2
1 ) ≤ 2 + 2

∫ ∞
1

E(Z4)
∑∞
|I|=1

1
|I|3 + (E(Z2))2

∑∞
|I|=1

|I|2−|I|
|I|4

x2
dx+ 2µ2

= 2 + 2C2

∫ ∞
1

1

x2
dx+ 2µ2

= 2 + 2µ2 + 2C2 < ∞,

(2.22)

which implies,

E

(
sup
|I|∈N

sup
θ∈C
|r(pI(θ))|

)
≤ E(C1) < ∞, (2.23)
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which is the desired result.

We next show that ϕn(θ) := E[r(pIn(θ))] is continuous on θ ∈ C. Choose any θ ∈ C

and a sequence {θk}∞k=1 ⊆ C such that θk → θ as k → ∞. It follows from (2.23), the

continuity of r and F and the DCT that

lim
k→∞

ϕn(θk) = lim
k→∞

E[r(pIn(θk))]

= E
(

lim
k→∞

r(pIn(θk))

)
= E(r(pIn(θ))).

which implies that ϕn is continuous.

Thus, ∆rIn(θ1, θ2) is continuous and α(θ1, θ2) is continuous on C × C, and since C is

compact, α(θ1, θ2) attains its maximality, i.e., supθ1,θ2∈C α(θ1, θ2) <∞. Thus,

sup
θ1,θ2∈C

σ2
1(θ1, θ2, |N |, I) =

|N | − |N |
|N ||N |(|N | − 1)

sup
θ1,θ2∈C

α(θ1, θ2),

which further implies that the result holds.

(2) For each n ∈ N , define YIn(θ) := r (pIn(θ)). Note that

σ2
2(θ1, θ2, |N |, I)

=
1

|N ||N |
∑
n∈N

Var[∆rIn(θ1, θ2)]

≤ 1

|N ||N |
∑
n∈N

2
(
E [YIn(θ1)− E (YIn(θ1))]2 + E [YIn(θ2)− E (YIn(θ2))]2

)
≤ 4

|N ||N |
∑
n∈N

sup
θ∈C

(
E [YIn(θ)− E (YIn(θ))]2

)
Since N is a finite set, it suffices to show for each n ∈ N that

lim
|In|→∞

sup
θ∈C

E [YIn(θ)− E (YIn(θ))]2 = 0.

We suppress n for notational simplicity. It follows from (2.22) that,

E

(
sup
|I|∈N

(
sup
θ∈C
|r(pI(θ))|

)2
)
≤ E(C2

1 ) < ∞. (2.24)
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Define C̃ = sup|I|∈N (supθ∈C |YI(θ)− E (YI(θ)) |)2. It follows from (2.24) that

E(C̃) = E

(
sup
|I|∈N

(
sup
θ∈C
|YI(θ)− E (YI(θ)) |

)2
)

≤ 2E

(
sup
|I|∈N

(
sup
θ∈C
|YI(θ)|

)2

+ sup
|I|∈N

(
sup
θ∈C

E|YI(θ)|
)2
)

≤ 2E

(
sup
|I|∈N

(
sup
θ∈C
|YI(θ)|

)2

+ sup
|I|∈N

(
E sup
θ∈C
|YI(θ)|

)2
)

≤ 2E

(
sup
|I|∈N

(
sup
θ∈C
|YI(θ)|

)2
)

+ 2

(
E sup
|I|∈N

sup
θ∈C
|YI(θ)|

)2

= 2E(C2
1 ) + 2(E(C1))2 < ∞.

Note that

sup
θ∈C

E [YI(θ)− E (YI(θ))]
2 ≤ E

[
sup
θ∈C
|YI(θ)− E (YI(θ)) |

]2

. (2.25)

By the DCT, it follows from (2.25) and E(C̃) <∞ that

lim
|I|→∞

sup
θ∈C

E [YI(θ)− E (YI(θ))]
2

≤ lim
|I|→∞

E
[
sup
θ∈C
|YI(θ)− E (YI(θ)) |

]2

= E
[

lim
|I|→∞

sup
θ∈C
|YI(θ)− E (YI(θ)) |

]2

= E
[

lim
|I|→∞

sup
θ∈C
|YI(θ)− r(p(θ)) + r(p(θ))− E (YI(θ)) |

]2

≤ E
[

lim
|I|→∞

sup
θ∈C
|YI(θ)− r(p(θ)|+ lim

|I|→∞
sup
θ∈C
|r(p(θ))− E (YI(θ)) |

]2

.

By Theorem 2.1, it follows w.p.1 that lim|I|→∞ supθ∈C |YI(θ) − r(p(θ))| = 0. It also

follows from (2.23), the DCT and Theorem 2.1 that

lim
|I|→∞

sup
θ∈C
|r(p(θ))− E (YI(θ)) | = lim

|I|→∞
sup
θ∈C
|E(r(pI(θ))− r(p(θ)))|

≤ lim
|I|→∞

E
(

sup
θ∈C
|r(pI(θ))− r(p(θ))|

)
= E

(
lim
|I|→∞

sup
θ∈C
|r(pI(θ))− r(p(θ))|

)
= 0,

which implies

lim
|I|→∞

sup
θ∈C

E [YI(θ)− E (YI(θ))]
2 = 0
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and this completes the proof.

(3) Consider any data sample N ⊂ N with |N | ≥ 2 and integration sample I. Since

σ̂1(θ1, θ2, N, I) ≥ 0 for all θ1, θ2 ∈ C, it holds that(
sup

θ1,θ2∈C
σ̂1(θ1, θ2, N, I)

)2

= sup
θ1,θ2∈C

σ̂2
1(θ1, θ2, N, I).

Thus, it suffices to show that w.p. 1 supθ1,θ2∈C σ̂
2
1(θ1, θ2, N, I)→ 0 as |N | → |N | and

|In| → ∞ for all n ∈ N .

Consider any n ∈ N . It follows from A.1, A.5, A.7 and Theorem 2.1 that r(pn(θ)) is

continuous on C. Then, |r(pn(θ))| attains its maximum on C due to the compactness

of C and Cn := supθ∈C |r(pn(θ))|+1 <∞. Thus C := maxn∈N Cn <∞. It also follows

from Theorem 2.1 there exists Ωn ⊂ Ω with P(Ωn) = 1 such that for any ω ∈ Ωn,

there exists Mn(ω) ∈ N such that for all |In| ≥Mn(ω) it holds that

sup
θ∈C
|r(pIn(θ))− r(pn(θ))| ≤ 1,

which implies that

sup
θ∈C
|r(pIn(θ))| = sup

θ∈C
|r(pIn(θ))− r(pn(θ)) + r(pn(θ))|

≤ sup
θ∈C
|r(pIn(θ))− r(pn(θ))|+ sup

θ∈C
|r(pn(θ))|

≤ C.

Let Ω∗ := ∩n∈NΩn. Then, P(Ω∗) = 1. Thus, for any ω ∈ Ω∗,

sup
θ1,θ2∈C

|∆rIn(θ1, θ2)| = sup
θ1,θ2∈C

|r(pIn(θ1))− r(pIn(θ2))|

≤ 2 sup
θ∈C
|r(pIn(θ))|

≤ 2C,

holds for all |In| ≥M(ω) := maxn∈N Mn(ω) and for all n ∈ N . Thus,

ν̄2(θ1, θ2N, I) =
1

|N | − 1

∑
n∈N

(
∆rIn(θ1, θ2)−

∑
n∈N ∆rIn(θ1, θ2)

|N |

)2
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≤ 16
|N |
|N | − 1

C2

holds for all θ1, θ2 ∈ C, which implies that,

sup
θ1,θ2∈C

σ̂2
1(θ1, θ2, N, I) =

|N | − |N |
|N ||N |

ν̄2(θ1, θ2, N, I) ≤ 16C2 (|N | − |N |)|N |
|N ||N |(|N | − 1)

.

Thus, supθ1,θ2∈C σ̂
2
1(θ1, θ2, N, I)→ 0 as |N | → |N | and |In| → ∞ for all n ∈ N , which

completes the proof.

(4) By the same argument in Result (3), it suffices to show that w.p. 1

sup
θ1,θ2∈C

σ̂2
2(θ1, θ2, N, I)→ 0

as |N | → |N | and |In| → ∞ for all n ∈ N . Since N is finite, it further reduces to

show that w.p. 1 1
|In| supθ1,θ2∈C ν

2
n(θ1, θ2, In) → 0 as |In| → ∞ for each n ∈ N . We

suppress index n and will use I as both a set of integration samples (as its original

definition) and the cardinality of that set for notational convenience.

It follows from Result (3) that p(θ) is continuous. Thus, C0 := supθ∈C ‖p(θ)‖X <∞.

It follows from A.7 that ‖∇r(p(θ))‖m×1 is continuous on C. Since C is compact,

‖∇r(p(θ))‖m×1 attains maximum. Thus, C1 := supθ∈C ‖∇r(p(θ)‖m×1 + 1 < ∞.

It follows from A.1 that F (θ, ξ)F (θ, ξ)ᵀ is continuous on C for almost all ξ ∈ Ξ.

It follows from A.5, the DCT and Theorem 2.1 that E[F (θ, ξ)F (θ, ξ)ᵀ] is continu-

ous on C. Thus, Cov[F (θ, ξ), F (θ, ξ)] = E[F (θ, ξ)F (θ, ξ)ᵀ] − p(θ)p(θ)ᵀ is continu-

ous. Thus, ‖Cov[F (θ, ξ), F (θ, ξ)]‖m×m is continuous and attains its maximum. Thus,

C2 := supθ∈C ‖Cov[F (θ, ξ), F (θ, ξ)]‖m×m + 1 <∞.

We now show that w.p. 1 supθ∈C ‖S2(θ)‖m×m is bounded for sufficient large I. Since

(∇r(·))2 is continuous, it follows from A.1, A.5, A.7 and Theorem 2.1 that there exists

Ω1 ∈ Ω with P(Ω1) = 1 such that for every ω ∈ Ω1 there exists M1(ω) ∈ N such that,

for all I ≥M1(ω), it holds that

sup
θ∈C
‖∇r(pI(θ))−∇r(p(θ))‖m×1 < 1,

which implies

sup
θ∈C
‖∇r(pI(θ))‖m×1 = sup

θ∈C
‖∇r(pI(θ))−∇r(p(θ)) +∇r(p(θ))‖m×1
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≤ sup
θ∈C
‖∇r(pI(θ))−∇r(p(θ))‖m×1 + sup

θ∈C
‖∇r(p(θ))‖m×1

≤ C1.

Note that A.5 implies A.2. Thus, it follows from A.1 and Theorem 2.1 that there

exists Ω2 ⊂ Ω with P(Ω2) = 1 such that for every ω ∈ Ω2 there exists M2(ω) ∈ N such

that for all I ≥M2(ω),

sup
θ∈C
‖pI(θ)− p(θ)‖X ≤ (1/(4C0)) ∧ (3/C0) ∧ (C0/3),

which yields

sup
θ∈C
‖pI(θ)‖X ≤ sup

θ∈C
‖pI(θ)− p(θ)‖X + sup

θ∈C
‖p(θ)‖X ≤ C0 + C0/3 = 4C0/3.

Since F (θ, ξ)F (θ, ξ)ᵀ is continuous and A.5 holds, Theorem 2.1 ensures that there

exists Ω3 ⊂ Ω with P(Ω3) = 1 such that for every ω ∈ Ω3 there exists M3(ω) ∈ N such

that for all I ≥M2(ω),

sup
θ∈C

∥∥∥∥1

I

I∑
i=1

F (θ, ξi)F (θ, ξi)ᵀ − E[F (θ, ξ)F (θ, ξ)ᵀ]

∥∥∥∥
m×m

≤ 1/3.

Consider any ε > 0. Let Ω∗ := Ω1 ∩Ω2 ∩Ω3. Then, P(Ω∗) = 1. Thus, for any ω ∈ Ω∗

and all I ≥M(ω) := max{M1(ω),M2(ω),M3(ω)},

sup
θ∈C

∥∥∥∥I − 1

I
S2(θ)− Cov[F (θ, ξ), F (θ, ξ)]

∥∥∥∥
m×m

= sup
θ∈C

∥∥∥∥1

I

I∑
i=1

F (θ, ξi)F (θ, ξi)ᵀ − pI(θ)pI(θ)ᵀ − Cov[F (θ, ξ), F (θ, ξ)]

∥∥∥∥
m×m

= sup
θ,θ∈C

∥∥∥∥1

I

I∑
i=1

F (θ, ξi)F (θ, ξi)ᵀ − E[F (θ, ξ)F (θ, ξ)ᵀ]− [pI(θ1)pI(θ)
ᵀ − p(θ)p(θ2)ᵀ]

∥∥∥∥
m×m

≤ sup
θ∈C

∥∥∥∥1

I

I∑
i=1

F (θ, ξi)F (θ, ξi)ᵀ − E[F (θ, ξ)F (θ, ξ)ᵀ]

∥∥∥∥
m×m

+ sup
θ∈C
‖pI(θ)pI(θ)ᵀ − pI(θ)p(θ)ᵀ‖m×m + sup

θ∈C
‖pI(θ)p(θ)ᵀ − p(θ)p(θ)ᵀ]‖m×m

≤ 1/3 + sup
θ∈C
‖pI(θ)‖X sup

θ∈C
‖pI(θ)− p(θ)‖X + sup

θ∈C
‖p(θ)‖X sup

θ∈C
‖pI(θ)− p(θ)‖X

≤ 1

3
+

4C0

3

1

4C0
+ C0

3

C0
= 1,
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which yields that

sup
θ∈C
‖S2(θ)‖m×m ≤ 2C2 = 2 sup

θ1,θ2∈C
‖Cov[F (θ1, ξ), F (θ2, ξ)‖m×m + 2 < ∞.

when I ≥ 2. Note that for any θ1, θ2 ∈ C

2|∇r(pI(θ1))ᵀSn(θ1, θ2)∇r(pI(θ2))|

≤ ∇r(pI(θ1))ᵀS2(θ1)∇r(pI(θ1)) +∇r(pI(θ2))ᵀS2(θ2)∇r(pI(θ2))

Thus, for all I ≥ max
{
M(ω), 8C2

1C2/ε, 2
}

, it follows that

1

I
sup

θ1,θ2∈C
ν2(θ1, θ2, I)

≤ 2

I
sup

θ1,θ2∈C

(
∇r(pI(θ1))ᵀS2(θ1)∇r(pI(θ1)) +∇r(pI(θ2))ᵀS2(θ2)∇r(pI(θ2))

)
≤ 4

I

(
sup
θ∈C
‖S2(θ)‖m×m

)(
sup
θ∈C
‖∇r(pI(θ))‖m×1

)2

≤ ε.

which completes the proof.

Lemma 2.2. Assume A.3, A.7 and ‖Hk‖d×d < C < ∞ for all k. At iteration k, suppose

that −gk /∈ H(θk). If (2.8) is ever violated for t̂ > 0 in Algorithm 2, there exists an interval

of t between (0, t̂) strictly satisfying (2.8) and (2.9). If (2.7) is ever violated for t̂, then

(i) there exists an interval of t between (0, t̂) satisfying (2.7), (2.8) and (2.10) or

(ii) there exists an interval of t between (0, t̂) strictly satisfying (2.8) and (2.9).

Proof: We first show that gᵀksk(t) < 0 for all t > 0. Assume by contradiction that

gᵀksk(tj) ≥ 0 for some tj > 0. By P.1,

〈ΠC [θk − tjgk]− (θk − tjgk), y −ΠC [θk − tjgk]〉 ≥ 0 ∀y ∈ C.

If ‖sk(tj)‖ := ‖ΠC [θk − tjgk]− θk‖ = 0, it has ΠC [θk − tjgk] = θk and that

gᵀk(y − θk) ≥ 0 ∀y ∈ C,
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which is −gk ∈ H(θk) and contradicts −gk /∈ H(θk). Thus, ‖sk(tj)‖ > 0. It follows from

Property P.6 that

sk(tj) ∈ arg min
{
gᵀks : θk + s ∈ C, ‖s‖ ≤ ‖sk(tj)‖

}
.

Consider any y ∈ C. There exists some λ > 0 such that ‖λ(y− θk)‖ = λ‖y− θk‖ ≤ ‖sk(tj)‖.

Thus, λgᵀk(y − θk) ≥ gᵀksk(tj) ≥ 0, which implies that −gk ∈ H(θk) and contradicts −gk /∈

H(θk).

Second, we show that there exists α > 0 such that for all t ∈ (0, α], (2.9) is strictly

violated. By the continuity of the solution of convex optimization problem (Theorem 3.2.8,

[23, pp. 44 – 45]), gᵀksk(t) is continuous in t and gᵀksk(t) → 0 as t ↓ 0. By Property P.4,

both sk(t) and ‖sk(t)‖ are continuous in t and ‖sk(t)‖ → 0 as t ↓ 0. Define

q(t) := mk(vk(t, θk))−mk(θk)− κ2g
ᵀ
ksk(t) = (1− κ2)gᵀksk(t) +

1

2
(sk(t))

ᵀHksk(t).

Thus, q(t) is continuous in t and q(0) = 0, since sk(0) = 0. Thus, since κ2 satisfies (2.12)

and gᵀksk(t) < 0 for all t > 0, it follows

lim inf
t↓0

q(t)

‖sk(t)‖
= lim inf

t↓0

mk(θk + sk(t))−mk(θ)− κ2g
ᵀ
ksk(t)

‖sk(t)‖

= lim inf
t↓0

(1− κ2)gᵀksk(t)

‖sk(t)‖
+ lim

t↓0

(sk(t))
ᵀHksk(t)

2‖sk(t)‖

= lim inf
t↓0

(1− κ2)gᵀksk(t)

‖sk(t)‖

< 0,

which implies there exists some α > 0 such that q(t) < 0 for all t ∈ (0, α], i.e., (2.9) is

strictly violated for all t ∈ (0, α]. Also, condition (2.8) strictly holds for all t ∈ (0, α] since

κ1 < κ2, i.e.,

mk(vk(t, θk))−mk(θk)− κ1g
ᵀ
ksk(t) < 0, ∀t ≤ α,

mk(vk(t, θk))−mk(θk)− κ2g
ᵀ
ksk(t) < 0, ∀t ≤ α.

If condition (2.8) is violated for t̂ > α, i.e.,

mk(vk(t̂, θk))−mk(θk)− κ1g
ᵀ
ksk(t̂) > 0,
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there exists t̂1 ∈ (α, t̂) such that

mk(vk(t̂1, θk))−mk(θk)− κ1g
ᵀ
ksk(t̂1) = 0,

mk(vk(t̂1, θk))−mk(θk)− κ2g
ᵀ
ksk(t̂1) > 0.

By a similar argument, there exists t̂2 ∈ (α, t̂1) such that

mk(vk(t̂2, θk))−mk(θk)− κ1g
ᵀ
ksk(t̂2) < 0,

mk(vk(t̂2, θk))−mk(θk)− κ2g
ᵀ
ksk(t̂2) = 0.

Consider the following optimization problem:

t̂3 := inf
t∈A

t,

where

A := {t ∈ [t̂2, t̂1] : mk(vk(t, θk))−mk(θk)− κ1g
ᵀ
ksk(t) ≥ 0}.

Since t̂1 is a feasible point, it holds that A 6= ∅. Due to the continuity of mk(vk(t, θk)) :=

mk(θk + sk(t)), we have A is compact and the optimization problem attains the minimum

at t̂3 > t̂2. Thus, (2.8) strictly holds for all [t̂2, t̂3), and that

mk(vk(t̂3, θk))−mk(θk)− κ2g
ᵀ
ksk(t̂3) > 0.

Consider the following optimization problem:

t̂4 := sup
t∈B

t,

where

B := {t ∈ [t̂2, t̂3] : mk(vk(t, θk))−mk(θk)− κ2g
ᵀ
ksk(t) ≤ 0}.

Since t̂2 is a feasible point, it holds that B 6= ∅. Due to the continuity of mk(vk(t, θk)) :=

mk(θk + sk(t)), B is compact, and thus the optimization problem attains the maximum at

t̂4 < t̂3. Thus, (2.8) and (2.9) strictly hold for all (t̂4, t̂3). Thus, there exists an interval

between (t̂2, t̂1] ⊂ (α, t̂) such that (2.8) and (2.9) strictly hold for all tj in the interval.

If condition (2.7) is violated for t̂, it has ‖sk(t̂)‖ > ∆k. By Property P.4, ‖sk(t)‖ is

continuous and nondecreasing in t ≥ 0. Thus, there exists some interval of t between (0, t̂)

such that

κ3∆k ≤ ‖sk(t)‖ < ∆k
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for all t in the interval. If all points in the interval satisfy (2.8), the interval satisfies (2.7),

(2.8) and (2.10), which is (i). If there exists some point t̂1 in the interval that violates (2.8),

there exists an interval between (α, t̂1) ⊂ (α, t̂) that strictly satisfy (2.8) and (2.9) according

to the above argument, which is (ii). This completes the proof.

Theorem 2.3. Assume A.3, A.7 and ‖Hk‖d×d < C < ∞ for all k. Suppose −gk /∈ H(θk)

for each k. Algorithm 2 terminates in finite number of iterations.

Proof: If both (2.7) and (2.8) hold but (2.9), (2.10) and (2.11) are violated for an infinite

number of iterations. There exists an increasing sequence of numbers {tj}∞j=1 such that

‖sk(tj)‖ < κ3∆k for all j. It follows from Properties P.4 and P.5 that

lim
j→∞

‖ΠT (vk(tj ,θk))[−gk]‖ = 0.

Since gᵀksk(t) < 0 for all t > 0 and |gᵀksk(tj)| is nondecreasing as j → ∞ by Properties P.6

and P.7 and tj ≥ t0 > 0,

|gᵀksk(tj)| ≥ |gᵀksk(t0)| > 0,

which yields (2.11) holds after a finite number of iterations. In this case αk ← tj for the

first tj that satisfies (2.11) and Algorithm 2 terminates in a finite number of iterations.

Suppose that (2.7) or (2.8) is ever violated for some t̂. It follows from Lemma 2.2 that,

if (2.7) or (2.8) is violated for t̂, there exists an interval of t that satisfies case (i) (2.7), (2.8)

and (2.10) or that strictly satisfy case (ii) (2.8) and (2.9). For case (i), we have showed that

there exists an interval of t that satisfies the stopping condition of Algorithm 2, i.e., (2.7),

(2.8) and (2.10) are satisfied for that interval.

We next consider case (ii), i.e., there exists an interval of t between (α, t̂) such that the

interval strictly satisfies (2.8) and (2.9). Let I1 be the set of all such t between (α, t̂) that

satisfies (2.8) and (2.9), where α > 0 is such that (2.9) is violated for all t ∈ (0, α]. We have

the following two cases.

C.1. There exists a t0 ∈ I1 such that ‖sk(t0)‖ ≤ ∆k, i.e., (2.7) holds for t0. It follows from

Lemma 2.2 that gᵀksk(t) < 0 for all t > 0. Note t0 > 0. Since t0 ∈ I1, it follows that

κ1 ≤ q(t0) :=
mk(vk(t0, θk))−mk(θk)

gᵀksk(t0)
< κ2.
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If q(t0) = κ1, i.e., (2.8) holds as equality at t0, it follows from (the proof of) Lemma 2.2

that there exists an interval A ⊂ (α, t0] ⊂ (α, t̂) satisfying (2.8) and (2.9). For all

t ∈ A, it holds that t ≤ t0. It follows from P.4 that ‖sk(t)‖ ≤ ‖sk(t0)‖ ≤ ∆k. Thus,

(2.7) holds for all points in A. Then there exists an interval A that satisfies the

stopping condition of Algorithm 2, i.e., (2.7), (2.8) and (2.9) are satisfied for A.

Now consider q(t0) > κ1. Property P.4 asserts that sk(t) is continuous. Thus, q(t) is

continuous, and there exists δ > 0 such that

κ1 < q(t) < κ2, ∀t ∈ B := [t0 − δ, t0] ⊂ (α, t0] ⊂ (α, t̂),

which implies that (2.8) and (2.9) are satisfied over B. It follows from P.4 that (2.7)

holds for all points in B. Then there exists an interval B that satisfies the stopping

condition of Algorithm 2, i.e., (2.7), (2.8) and (2.9) are satisfied for B.

C.2. Suppose all the points in I1 violate (2.7). Let t̂1 be such that ‖sk(t̂1)‖ = ∆k. Thus,

the interval (0, t̂1] satisfy (2.7). Thus, I1 ∩ (0, t̂1] = ∅. We claim that all points in

(0, t̂1] violate (2.9). Assume by contradiction that there exists a point t2 ∈ (0, t̂1]

that satisfies (2.9). If t2 satisfies (2.8) too, it gives t2 ∈ I1 ∩ (0, t̂1], contradicting

I1 ∩ (0, t̂1] = ∅. If t2 violates (2.8), it follows from (the proof of) Lemma 2.2 that

there exists an interval D ⊂ (0, t2] ⊂ (0, t̂1] satisfying (2.8) and (2.9), contradicting

I1 ∩ (0, t̂1] = ∅. Let t̂2 be such that ‖sk(t̂2)‖ = κ3∆k. Thus, (t̂2, t̂1] satisfies (2.7) and

(2.10) and violates (2.9) and thus satisfies (2.8).

Thus, there exists some interval I ⊂ (α, t̂) that satisfies (2.7), (2.8) and (2.9) or (2.7),

(2.8) and (2.10). In this case, the algorithm sets tmax := t̂.

If both (2.7) and (2.8) hold but (2.9), (2.10) and (2.11) are violated for some t̂ < tmax.

Note that tmax either violates (2.7) or (2.8). We have the following two cases:

C.3. tmax violates (2.8). Since t̂ violates (2.9), it follows from the same argument in Lem-

ma 2.2 and the argument for Case C.1 that there exists an interval within (t̂, tmax)

that satisfies (2.7), (2.8) and (2.9) by replacing t̂ as α. Since t̂ violates (2.10), it follows

from Lemma 2.2 and the argument for Case C.2 that, there exists an interval within

(t̂, tmax) satisfying (2.7), (2.8) and (2.10).

62



C.4. tmax violates (2.7). Let t1 be such that ‖sk(t1)‖ = ∆k and t2 be such that ‖sk(t2)‖ =

κ3∆k. Since t̂ violates (2.10), [t2, t1] ⊂ (t̂, tmax). Thus, it follows Lemma 2.2, Case C.1

and Case C.2 that there exists an interval within (t̂, tmax) satisfying (2.7), (2.8) and

(2.9) or (2.7), (2.8) and (2.10).

In this case, we set tmin := t̂.

Thus, the interval that satisfies (2.7), (2.8) and (2.9) or (2.7), (2.8) and (2.10) is con-

tained in [tmin, tmax] after each iteration. Assume by contradiction that (2.7) or (2.8) is

violated for infinitely many iterations. Let {t̄j}∞j=1 be the decreasing sequence of upper

bounds of the interval and {tj}∞j=1 be the increasing sequence of lower bounds of the in-

terval. Since the search is bisection, it follows that t̄j ↓ t∗ and tj ↑ t∗ as j → ∞. By the

definition of the upper bounds, it obtains that

‖sk(t̄j)‖ > ∆k or mk(θk + sk(t̄j))−mk(θk)− κ1g
ᵀ
ksk(t̄j) > 0.

Taking limit on both sides of the above inequalities with respect to j →∞ gives that

‖sk(t∗)‖ ≥ ∆k or mk(θk + sk(t
∗))−mk(θk)− κ1g

ᵀ
ksk(t

∗) ≥ 0. (2.26)

By the definition of lower bonds, it obtains that

‖sk(tj)‖ < κ3∆k and mk(θk + sk(tj))−mk(θk)− κ2g
ᵀ
ksk(tj) < 0.

Taking limit on both sides of the above inequalities with respect to j →∞ gives that

‖sk(t∗)‖ ≤ κ3∆k and mk(θk + sk(t
∗))−mk(θk)− κ2g

ᵀ
ksk(t

∗) ≤ 0,

which contradicts (2.26). Thus, (2.7) or (2.8) is violated only in a finite number of iterations.

It follows from the argument in the first paragrah that, Algorithm 2 terminates in a

finite number of iterations.

Lemma 2.3. For each k ∈ {0, 1, . . .}, if (2.15) fails and σ̂k,1 > σ̂k,2, then nk ≥ 1, where

nk is defined in (2.17).

Proof : Since (2.15) fails for k and σ̂k,1 > σ̂k,2, it follows that

σ̂2
1(θk, θ

GC
k , Nk, Ik) =

|N | − |Nk|
|N ||Nk|

ν̄2(θk, θ
GC
k , Nk, Ik) > (η0∆m(θk, θ

GC
k ))2,
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which indicates that |Nk| < |N |; σ̂2
1(θk, θ

GC
k , Nk, Ik) = 0 otherwise, and yields that

|Nk| <
|N |

1 + |N | (η0∆m(θk,θ
GC
k ))2

ν̄2(θk,θ
GC
k ,Nk,Ik)

≤


|N |

1 + |N | (η0∆m(θk,θ
GC
k ))2

ν̄2(θk,θ
GC
k ,Nk,Ik)

 .
Thus,

nk =


|N |

1 + |N | (η0∆m(θk,θ
GC
k ))2

ν̄2(θk,θ
GC
k ,Nk,Ik)

− |Nk| ≥ 1,

which is the desired result.

Lemma 2.4. Assume A.3, A.5, A.7 and A.10. For any iteration k in Algorithm 1, if (2.15)

fails for all k, k + 1, . . ., then |Nk| → |N | and |Ikn| → ∞ for all n ∈ N as k →∞.

Proof : Consider any iteration k. If (2.15) fails for all k+j, where j ∈ Z+, then Algorithm 3

will be executed for k+ j, where j ∈ Z+, under the condition that (2.15) fails. We suppress

index k for notational convenience.

We first show that for any j ∈ Z+ := N∪ {0} such that |Nj | < |N |, there exists j′ ∈ Z+

with j′ > j such that |Nj′ | > |Nj |. Assume by contradiction that there exists some J ∈ Z+

such that |NJ | < |N |,

|Nj | = |NJ | ∀ j ≥ J.

We now analyze Case 5 and Case 6 in Algorithm 3 and conclude that these cases are

impossible.

C.1. Suppose Case 5 is ever executed at some j ≥ J . Note that |Nj | = |NJ | < |N |. It

follows from Lemma 2.3 that nk ≥ 1 and that |Nj+1| = |Nj | + nk > |Nj | = |NJ |,

contradicting |Nj | = |NJ | for all j ≥ J .

C.2. Suppose Case 5 is not executed at all j ∈ Z+. Then Case 6 is executed for all j ∈ Z+.

Suppose there exists some j ≥ J such that Xj,1 = 1. Note that |Nj | < |N |. then

|Nj+1| = |Nj | + na ∧ (|N | − |Nj |). Since na ≥ 1 and |N | − |Nj | ≥ 1, it holds that

|Nj+1| ≥ |Nj | + 1, contradicting |Nj | = |NJ | for all j ≥ J . Thus, Xj,1 = 0 for all

j ≥ J .
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Consider the event A6 := [ Case 6 holds and XJ+j,1 = 0 for j ∈ {0, 1, . . .}]. Note that

for any j ∈ Z+,

1− q0
j,i =

h(σ̂j,2)

ε+ h(σ̂j,1) + h(σ̂j,2)
∀i ∈ {1, 2}.

Assume by contradiction that

P(A6) =
∞∏
j=J

(1− q0
j,1) > 0 ⇒ 0 >

∞∑
j=J

log(1− q0
j,1) > −∞

⇒ 0 <

∞∑
j=J

log

(
ε+ h(σ̂j,1) + h(σ̂j,2)

h(σ̂j,2)

)
< ∞,

which implies

ε+ h(σ̂j,1) + h(σ̂j,2)

h(σ̂j,2)
→ 1, as j →∞. (2.27)

For event A6, |Nj | = |NJ | for all j ≥ J and |Ij+1
n | = |Ijn| + ia ∨ (in − |Ijn|) ≥ |Ijn| + 1

since ia ≥ 1. Thus, |Ijn| → ∞ as j → ∞ for all n ∈ |NJ |. Since the trust region is

a compact set and A.3, A.5, A.7 and A.10 hold, it follows from Lemma 2.1(4) that

σ̂j,2 → 0 as j → ∞. Since h is a nondecreasing continuous function, it follows that

h(σ̂j,2) → h(0) as j → ∞. Note that under Case 6 we have σ̂j,2 ≥ σ̂j,1 for all j ≥ J ,

which implies that σ̂j,1 ≤ σ̂j,2 and σ̂j,1 → 0 as j →∞. Thus, since 0 ≤ h(0) <∞.

ε+ h(σ̂j,1) + h(σ̂j,2)

h(σ̂j,2)
→ ε+ 2h(0)

h(0)
6= 1, as j →∞,

contradicting (2.27). Thus, P(A6) = 0 and this case cannot happen and |Nk| → |N |

as k →∞.

Next, we show that for any j ∈ Z+, there exists some j′ ∈ Z+ with j′ > j such that

|Ij
′
n | > |Ijn| for all n ∈ N . Assume by contradiction that there exists some n ∈ N and

J ∈ Z+ such that ,

|Ijn| = |IJn | ∀ j ≥ J.

We now analyze Case 5 and Case 6 in Algorithm 3 and conclude that these cases are

impossible.
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C.3. Suppose Case 6 is ever executed at some j ≥ J . It follows that |Ij+n | = |Ijn| +

max{ia, in − |Ijn|} ≥ |Ijn| + 1 and |Ij+1
n | is updated as |Ij+n |. Thus, |Ij+1

n | ≥ |Ijn| + 1

which contradicts |Ijn| = |IJn | for all j ≥ J . This case cannot happen.

C.4. Suppose Case 6 is not executed at all j ∈ Z+. Then Case 5 is executed for all j ∈ Z+.

Suppose there exists some j ≥ J such that Xj,2 = 1. Then |Ij+1
n | = |Ijn| + ia. Since

ia ≥ 1, it holds that |Ij+1
n | ≥ |Ijn| + 1, contradicting |Ijn| = |IJn | for all j ≥ J . Thus,

Xj,2 = 0 for all j ≥ J .

Consider the event A5 := [ Case 5 holds and XJ+j,2 = 0 for j ∈ {0, 1, . . .}]. By a sim-

ilar argument in C.2, P(A5) = 0 and this case cannot happen and |Ikn| → ∞ for all

n ∈ N as k →∞.

Theorem 2.4. Assume A.3, A.4, A.5, A.7 and A.10. Suppose that ‖Hk‖d×d ≤ C <∞ for

each k and −∇f(θk) /∈ H(θk) at iteration k. Then, w.p. 1, for each iteration k at Step 4

in Algorithm 1, Step 5 will be executed after a finite number of iterations.

Proof : Assume by contradiction that there exists Ω∗ ⊂ Ω with P(Ω∗) = α > 0 such that

for each sampling process ω ∈ Ω∗, (2.15) fails for all k+ j, where j ∈ {0, 1, . . .}, i.e., Step 5

will not be executed after k. We suppress index k for convenience. Fix a sampling process

ω ∈ Ω∗. It follows from Lemma 2.4 that the data and Monte-Carlo sample sizes are updated

such that

|Nj | ↑ |N | and |Ijn| ↑ ∞ ∀n ∈ N , as j →∞.

Since the sample update process does not terminate, condition (2.15) is violated after

each sample update j, j = 0, 1, . . .. Denote by θ the current position θk and ∆ the current

trust region radius ∆k. Recall that θGC
j = θ+sj(αj). Thus, it follows from Lemma 2.1 that

w.p.1,

∆mj(θ, θ
GC
j ) ≤ 1

η0
max {σ̂k,1, σ̂k,2} → 0. (2.28)

Since sj(αj) satisfies (2.7) and (2.8) for each j, we have that

−κ1g
ᵀ
j sj(αj) ≤ ∆mk(θ, θ

GC
j )→ 0 as j →∞,

66



‖sj(αj)‖ ≤ ∆,

which implies |gᵀj sj(αj)| → 0 as j →∞. We consider the following two cases.

C.1. ‖sj(αj)‖ → 0 as j →∞. Thus, we can assume ‖sj(αj)‖ ≤ min{∆, 1} for all j. Since

condition (2.10) will be eventually violated as ‖sj(αj)‖ → 0, it follows that there

exists a subsequence {jk}∞k=0 such that either (2.9) or (2.11) is satisfied for each jk,

where k = 1, 2, . . .. Without loss of generality, we use {j}∞j=1 as the subsequence.

Suppose (2.9) is satisfied for each j of the subsequence. It follows sj(αj) 6= 0 since

sj(αj) = 0 violates (2.9). Moreover, we have gᵀj sj(αj) < 0, since gᵀj sj(αj) ≥ 0 does

not satisfy both (2.8) and (2.9). Thus,

∆mj(θ, θ + sj(αj)) = −gᵀj sj(αj)−
1

2
(sj(αj))

ᵀHjsj(αj)

< −κ2g
ᵀ
j sj(αj) ∀j,

which yields,

−(1− κ2)
gᵀj sj(αj)

‖sj(αj)‖
− sj(αj))

ᵀHjsj(αj)

2‖sj(αj)‖
< 0 ∀j (2.29)

By Property P.7 and ‖sj(αj)‖ ≤ 1, we have
−gᵀj sj(αj)
‖sj(αj)‖ ≥ |g

ᵀ
j dj |, where dj = vj(θ, α̂j)−θ

such that ‖dj‖ = 1 for some α̂j > 0. Suppose |gᵀj dj | → 0 as j →∞. By Property P.6,

|gᵀj dj | = |χ(gj , θ, 1)| := |min{gᵀj s : θ + s ∈ C, ‖s‖ ≤ 1}| → 0.

By Theorem 3.2.8 in [23, pp. 44–45], χ(gj , θ, 1) is continuous in gj . By ULLN, χ(θ) =

limj→∞ χ(gj , θ, 1) = 0 and −∇f ∈ H(θ) contradicting −∇f /∈ H(θ). Suppose there

exists a subsequence (w.l.o.g, we can still use sequence {j}∞j=0 as the subsequence)

and some ε > 0 such that |gᵀj dj | > ε for all j. Thus,
−gᵀj sj(αj)
‖sj(αj)‖ ≥ |g

ᵀ
j dj | ≥ ε for all j.

Since sj(αj)→ 0 and ‖Hj‖ ≤ C, there exists N ∈ N such that for all j ≥ N ,

∣∣∣∣sj(αj))ᵀHjsj(αj)

2‖sj(αj)‖

∣∣∣∣ ≤ (1− κ2)ε

2
,

which combines (2.29) to imply that

−(1− κ2)
gᵀj sj(αj)

‖sj(αj)‖
≤ (1− κ2)ε

2
⇒ −

gᵀj sj(αj)

‖sj(αj)‖
≤ ε

2
,
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contradicting
−gᵀj sj(αj)
‖sj(αj)‖ ≥ |g

ᵀ
j dj | ≥ ε for all j. Thus (2.9) cannot be satisfied infinitely

often.

Suppose (2.11) is satisfied for each j of the subsequence. By ULLN, gj → ∇f(θ) as

j → ∞. Thus for any ε > 0, there exists N1 ∈ N such that ‖gj −∇f(θ)‖ < ε for all

j ≥ N . Thus, ‖gj‖ ≤ ‖∇f(θ)‖+ ε <∞ for all j ≥ N . Since ‖sj(αj)‖ → 0 as j →∞,

we have

ΠT (θ+sj(αj))[−gj ] ≤
κ4|gᵀj sj(αj)|

∆
→ 0 as j →∞ (2.30)

Since tangent cone is a closed convex cone, it follows from Property P.3 that

‖ΠT (θ+sj(αj))[−∇f(θ + sj)]‖

≤
∥∥∥ΠT (θ+sj(αj))[−∇f(θ + sj)]−ΠT (θ+sj(αj))[−gj(θ + sj)]

∥∥∥
+

∥∥∥ΠT (θ+sj(αj))[−gj(θ + sj)]−ΠT (θ+sj(αj))[−gj ]
∥∥∥

+
∥∥∥ΠT (θ+sj(αj))[−gj ]

∥∥∥
≤ ‖∇f(θ + sj)− gj(θ + sj)‖+ ‖gj(θ + sj)− gj‖

+ ‖ΠT (θ+sj(αj))[−gj ]‖

By Theorem 2.2, as j →∞,

‖∇f(θ + sj)− gj(θ + sj)‖ → 0, (2.31)

and

‖gj(θ + sj)− gj‖ ≤ ‖gj(θ + sj)−∇f(θ + sj)‖

+ ‖∇f(θ + sj)−∇f(θ)‖+ ‖∇f(θ)− gj‖ → 0,

(2.32)

where ‖gj(θ + sj)−∇f(θ + sj)‖ → 0 by Theorem 2.2, ‖∇f(θ + sj)−∇f(θ)‖ → 0 by

the continuity of ∇f and ‖∇f(θ)− gj‖ → 0 by ULLN. Combining (2.30), (2.31) and

(2.32) gives that

‖ΠT (θ+sj(αj))[−∇f(θ + sj)]‖ → 0 as j →∞.
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By [19, Lemma 3.3], since f is continuously differentiable by Theorem 2.2, it follows

that ‖ΠT (θ+sj(αj))[−∇f(θ + sj)]‖ is lower semicontinuous in sj . Thus,

‖ΠT (θ)[−∇f(θ)]‖ ≤ lim inf
j→∞

‖ΠT (θ+sj(αj))[−∇f(θ + sj)]‖ = 0.

By [19, Lemma 3.1c], −∇f(θ) ∈ H(θ) if and only if ‖ΠT (θ)[−∇f(θ)]‖ = 0, which

contradicts −∇f(θ) /∈ H(θ). Thus, C.1 cannot happen.

C.2. There exists a subsequence of {j}∞j=1 (we use {j}∞j=1 as the subsequence) and ε > 0

such that ‖sj(αj)‖ > ε for all j. Under this case, we have |gᵀj sj(αj)| → 0 as j → ∞.

It follows that

|min{gᵀj s : θ + s ∈ C, ‖s‖ ≤ ε}| ≤ |min{gᵀj s : θ + s ∈ C, ‖s‖ ≤ ‖sj(αj)‖}|

= |gᵀj sj(αj)| → 0,

since the two minimization problems obtain nonpositive optimal solutions. Thus, as

j →∞

|χ(gj , θ, ε)| := |min{gᵀj s : θ + s ∈ C, ‖s‖ ≤ ε‖}| → 0

By Theorem 3.2.8, pp.44 – 45, [23], χ(gj , θ, ε) is continuous in gj . By ULLN,

χ(∇f(θ), θ, ε) = |min{∇f(θ)ᵀs : θ + s ∈ C, ‖s‖ ≤ ε‖}| = 0,

which implies that if ε ≤ 1,

χ(θ) ≤ χ(∇f(θ), θ, ε)

ε
= 0

and if ε > 1

χ(θ) ≤ χ(∇f(θ), θ, ε) = 0,

which implies −∇f(θ) ∈ H(θ) contradicting −∇f(θ) /∈ H(θ). Thus, C.2 cannot

happen.

This completes the proof.

Lemma 2.5. Assume A.3, A.5, A.8 and A.9 and A.10. It holds that w.p. 1 |Nk| → |N | as

k →∞ and |Ikn| → ∞ as k →∞ for all n ∈ N .
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Proof : We first show that for any iteration k ∈ Z+, if |Nk| < |N |, then there exists

m ∈ Z+ with m > k such that |Nm| > |Nk|. Assume by contradiction that there exists

some k0 ∈ N such that |Nm| = |Nk0 | < |N | for all m ≥ k0. We now analyze each of the

cases in Algorithm 3 and conclude that these cases are impossible.

B.1. Suppose that Case 2 or Case 4 holds for some k ≥ k0. It follows from the hypothesis

assumption that |Nk0 | = |Nk| and |Nk+1| = |Nk|+na∧ (|N |−|Nk|). Since na ≥ 1 and

|Nk| = |Nk0 | < |N |, it follows that |Nk+1| ≥ |Nk| + 1 = |Nk0 | + 1, which contradicts

|Nm| = |Nk0 | for all m ≥ k0.

B.2. Suppose that Case 5 holds for some k ≥ k0. It follows that |N+
k | = |Nk| + nk. It

follows from Lemma 2.3 that nk ≥ 1. Then |N+
k | ≥ |Nk|+ 1 = |Nk0 |+ 1 and |Nk+1| is

updated as |N+
k |. Then, |Nk+1| ≥ |Nk|+1 = |Nk0 |+1 which contradicts |Nm| = |Nk0 |

for all m ≥ k0. Thus, either Case 1, Case 3 or Case 6 in Algorithm 3 holds for an

infinite sequence of iterations.

B.3. Consider the event A1 := [Case 1 holds for k ∈ {k1, k2, . . .}]. Note that for any k ∈

Z+,

q1
k,i =

ε+ h(σ̂k,i)

ε+ h(η0∆mk(θk, θ
GC
k ))

∀i ∈ {1, 2}.

The probability of this event is

P(A1) =
∞∏
j=1

(1− q1
kj ,1

)(1− q1
kj ,2

).

Assume by contradiction that P(A1) > 0. Then,

∞∑
j=1

log(1− q1
kj ,1

) +
∞∑
j=1

log(1− q1
kj ,2

) > −∞,

which implies that

1

(
∏2
i=1(1− q1

kj ,i
))

=
(ε+ h(η0∆mkj (θkj , θ

GC
kj

)))2∏2
i=1[h(η0∆mkj (θkj , θ

GC
kj

))− h(σ̂kj ,i)]
→ 1 as j →∞.

Since both the data and integration sample sizes do not change. It follows from the

first-order convergence result of the basic trust-region algorithm, and from P.7 and

‖Hk‖ ≤ C <∞ that

‖skj (αkj )‖ → 0, |gᵀkjskj (αkj )| ≤ χkj (θkj ) → 0 as j →∞,
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which implies that ∆mkj (θkj , θ
GC
kj

) → 0. Note that η0∆mkj (θkj , θ
GC
kj

) ≥ σ̂kj ,i for i ∈

{1, 2} under this case. Since h is a nondecreasing continuous function, it follows that

h(η0∆mkj (θkj , θ
GC
kj

)) → h(0), h(σ̂kj ,i) ≤ h(η0∆mkj (θkj , θ
GC
kj

)) and h(σ̂kj ,i) → h(0) as

j →∞. Thus,

1

(
∏2
i=1(1− q1

kj ,i
))
→∞ as j →∞

contradicting 1/(
∏2
i=1(1− q1

kj ,i
))→ 1 as j →∞. Thus, P(A1) = 0.

B.4. Consider the event A3 := [Case 3 holds for k ∈ {k1, k2, . . .}]. The probability of this

event is

P(A3) =

∞∏
j=1

(1− q1
kj ,1

)q1
kj ,2

.

Assume by contradiction that P(A1) > 0. Then,

∞∑
j=1

log[q1
kj ,2

(1− q1
kj ,1

)] > −∞,

which implies that

1

q1
kj ,2

(1− q1
kj ,1

)
=

(ε+ h(η0∆mkj (θkj , θ
GC
kj

)))2

[ε+ h(σ̂kj ,2)][h(η0∆mkj (θkj , θ
GC
kj

))− h(σ̂kj ,1)]
→ 1 as j →∞.

Since data sample does not change and integration sample size increases up to infinity,

it follows from Lemma 2.1(4) that σ̂kj ,2 → 0 as j →∞. Thus, h(σ̂kj ,2)→ h(0), and it

follows from the DCT, Theorem 2.1, and (2.23) that

h(σ̂kj ,1)→ h (σ1) , as j →∞.

where σ1 is given by,

σ2
1 =

κc
|N ||N |

∑
n∈N

(
∆rn(θ1, θ2)−

∑
n∈N ∆rn(θ1, θ2)

N |

)2

,

∆rn(θ1, θ2) := r(pn(θ1))− r(pn(θ2)).

Suppose that h(η0∆mkj (θkj , θ
GC
kj

))→ h(x0) as j →∞. Then,

(ε+ h(η0∆mkj (θkj , θ
GC
kj

)))2 = ε[h(η0∆mkj (θkj , θ
GC
kj

))− h(σ1)],
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which implies that

ε2 + h2(η0∆mkj (θkj , θ
GC
kj

)) + εh(η0∆mkj (θkj , θ
GC
kj

)) = −εh(σ2) ≤ 0,

which contradicts ε > 0. Thus, P(A3) = 0.

B.5. Consider the event A6 := [ Case 6 holds and Xk,1 = 0 for k ∈ {k1, k2, . . .}]. It follows

from C.2 in Lemma 2.4 that P(A6) = 0.

Thus, w.p.1 |Nk| → |N | as k →∞.

Next, we show that for any iteration k ∈ Z+ and each customer n ∈ Nk, there exits

m ∈ Z+ with m > k such that |Imn | > |Ikn|. Assume by contradiction that, there exists

k0 ∈ Z+ and n ∈ Nk such that |Ikn| = |Ik0n | for all k ≥ k0. By a similar argument as above,

we analyze each of the 6 cases in Algorithm 3 and make the claim that these cases are

impossible.

C.1. Suppose that Case 3 or Case 4 holds for some k ≥ k0. It follows from the hypothesis

assumption that |Ik0n | = |Ikn| and |Ik+1
n | = |Ikn| + ia. Since ia ≥ 1, it follows that

|Ik+1
n | ≥ |Ikn|+ 1 = |Nk0 |+ 1, which contradicts |Ikn| = |Ik0n | for all k ≥ k0.

C.2. Suppose that Case 6 holds for some k ≥ k0. It follows that |Ik+
n | = |Ikn|+ max{ia, in−

|Ikn|} ≥ |Ikn|+1 and |Ik+1
n | is updated as |Ik+

n |. It follows that |Ik+1
n | ≥ |Ikn|+1 = |Ik0n |+1

which contradicts |Ikn| = |Ik0n | for all k ≥ k0. Thus, either Case 1, Case 2 or Case 5 in

Algorithm 3 holds for an infinite sequence of iterations.

C.3. By using the same argument as in B.3, the event A1 happens with probability zero.

C.4. By using a similar proof as in B.4, P(A2) = 0.

C.5. It follows from C.4 in Lemma 2.4 that P(A5) = 0.

Thus, w.p.1 |Ikn| → ∞ as k →∞ for all n ∈ N .

Theorem 2.5. Assume A.3, A.4, A.5, A.8 and A.9 and A.10. Let C be the nonempty

compact convex set. Suppose furthermore that,
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(1) infθ∈C f(θ) = f∗ > −∞,

(2) ‖Hk‖d×d ≤ max{C, 1} <∞ for each k,

Then, w.p. 1

lim inf
k→∞

χ(θk) = 0.

Proof : Let k denote the index of an iteration. We first show that w.p.1, for any ε > 0

there exists K such that

fk(θk) ≥ f∗ − ε, ∀k ≥ K. (2.33)

Fix ε > 0. It follows from Lemma 2.5 that |Nk| → |N | and |Ikn| → ∞ for all n ∈ N as

k →∞, and thus follows from Theorem 2.1 and condition (1) that there exists K ∈ N such

that

fk(θk) = fk(θk)− f(θk) + f(θk) ≥ −|fk(θk)− f(θk)|+ f(θk)

≥ − sup
θ∈C
|fk(θ)− f(θ)|+ f(θk)

≥ f∗ − ε,

for all k ≥ K. This proves that fk(θk) is lower bounded for sufficiently large K.

Next, note that all the assumptions for Theorem 12.2.2 in [23] hold. It follows from

Theorem 12.2.2 in [23] and condition 2 that there exits some constant κmdc ∈ (0, 1) such

that

∆mk(θk, θ
GC
k ) ≥ κmdc min{χk(θk), 1}min

{
min{χk(θk), 1}

C
,∆k

}
.

Thus, it ensures, with Theorem 6.4.5 in [23] and the lower boundedness of fk(θk), that w.p.1

lim inf
k→∞

χk(θk) = 0.

Consider any ε > 0. Theorem 3.2.8 of [23, pp.44–45] ensures that χ(g, θ, 1) is continuous

in g = gk. Thus, there exists δ > 0 such that ‖∇f(θk)− gk‖ < δ implies

|χ(θk)− χk(θk)| = |χ(∇f(θk), θk, 1)− χ(gk, θk, 1)| < ε.

73



Theorem 2.2 implies that, supθ∈C ‖gk(θ)−∇f(θ)‖ → 0 as k →∞. Thus, there exists K ∈ N

such that ‖∇f(θk)− gk‖ < δ holds for all k ≥ K, and that

|χ(θk)− χk(θk)| ≤ ε.

holds for all k ≥ K, which implies lim infk→∞ |χ(θk)− χk(θk)| = 0. It thus follows that

χ(θk) = |χ(θk)− χk(θk) + χk(θk)| ≤ |χ(θk)− χk(θk)|+ |χk(θk)||.

Taking liminf on both sides of the above inequality with respect to k →∞ gives that

lim inf
k→∞

χ(θk) = 0.

This completes the proof.

2.7 Numerical Studies: The ML Model Estimation

The ML model estimation that involves the computation of high-dimensional integrals is

one of the important applications of the STRA, as motivated in Section 2.1. In this section

we use the STRA to estimate ML models with real choice datasets and compare it with

existing algorithms.

In this section, we consider that the utility un,j(xn,j , yn,j , β, γn) in (2.1) is of the following

linear form,

un,j(xn,j , yn,j , β, γn) = βᵀxn,j + γᵀnyn,j + εn,j ,

where n ∈ N is the index of the data point corresponding to observation (customer) n,

j ∈ Sn is an alternative in the choice set Sn of n, xn,j ∈ Rm1 represents the vector of

attribute values corresponding to the deterministic preference coefficient vector β ∈ Rm1 ,

and yn,j ∈ Rm2 is the vector of attribute values corresponding to the random preference

coefficient vector γn ∈ Rm2 .

We assume that γn is the Gaussian vector with mean vector µ and covariance matrix

Σ. By decomposition, we have

Σ = σσT ,
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where σ is a lower triangular matrix. Note that σ is not unique for this the decomposition

of such kind, unless we require all its diagonal entries to be positive and such a σ will be

unique and is called the Cholesky factor. Let ξn be the m2−dimensional standard Gaussian

vector. We can represent the random coefficient γn by

γn = µ+ σξn,

and θ := (β, µ, σ) is the vector of parameter values to be estimated. Thus, the probability,

pn(θ), of customer n ∈ N choosing j ∈ Snis given by the following ML model,

pn(θ) := Eξn [Fn(θ, ξ)] = Eξn

[
exp{βᵀxn,jn + µᵀyn,jn + ξᵀnσᵀyn,jn}∑
j∈Sn exp{βᵀxn,j + µᵀyn,j + ξᵀnσᵀyn,j}

]
,

where jn ∈ Sn is the chosen alternative of customer n. The average log-likelihood of θ is

defined in (2.2). As explained in Section 2.1, it is of great interest to us to estimate θ that

maximizes the average log-likelihood, and the estimation problem (i.e., the MLE) can be

considered as an optimization problem, with the objective function f(θ) defined in (2.3)

and approximate objective function fNI defined in (2.4) and with r(·) = − ln(·).

In addition, we incorporate the constraint that the diagonal entries of σ are nonneg-

ative; otherwise, we will have 2m2 estimates of σ which all give the same pn(θ), which

means we have 2m2 indistinguishable solutions. Thus, we consider to solve the constrained

optimization model:

min
θ

f(θ)

s.t. 0 ≤ σi,i ≤ M, ∀i ∈ {1, 2, . . . ,m2},
(2.34)

where M is a big number that we assume to be 264 in our numerical studies. It follows from

[7] that the ML model defined above satisfies A.3, A.4, A.5, A.8 and A.9 and A.10.

The STRA is tested with two real datasets: (i) MobiDrive data and (ii) the Airline data

(described in Section 1.3). We first discuss the numerical results with the MobiDrive data.

2.7.1 The MobiDrive Data

In this section, we test the STRA using the MobiDrive data, and compare the estimation

results with the estimation results obtained under AMLET (version 0.11.0) with the same
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data, where AMLET is a software tool developed by [6] to estimate ML and MNL models.

We highlight below the two differences between the STRA and AMLET for the ML model

estimation with the MobiDrive data.

(1) The STRA uses the sample allocation Algorithm 4 to adaptively update the sample

size for each n according to the integration sampling error incurred in computing

pIn(θ) of observation n, while AMLET introduces the same maximum integration

sample size Imax for all n.

(2) The STRA computes the Hessian of the approximate objective function (2.2) using

the expression provided in Appendix B.3 for the ML model, while AMLET uses the

approximation of the Hessian based on the BFGS method [50].

For the computational test with the MobiDrive data, the STRA is coded with C and both

the STRA and AMLET are executed under CentOS Linux 7.0 on a PC with Intel i5 2.50GHz

CPU and 8GB RAM.

The MobiDrive dataset describes the travel mode choice of travelers each of which could

choose among from five possible alternatives: (i) car driver, (ii) car passenger, (iii) public

transport, (iv) walk and (v) bike. The dataset involves 10 alternative-specific and traveler-

specific factors, including urban household location, suburban household location, full-time

worker, female and part-time, married with children, annual mileage by car, number of stops,

time, cost and time budget. The data were originally collected from the six-week travel dairy

in Karlsruhe and Halle (Germany) by [5], and later cleaned to only concentrate on Karlsruhe

for a better data quality by [6]. The dataset contains a set N of 5799 observations and

each observation corresponds to a traveler making travel mode choice, but it might be the

case that a traveler cannot access the full set of five alternatives, i.e., a traveler’s choice set

could be a subset of the five alternatives. Readers can refer to [6] for more details about

the MobiDrive data.

The ML model calibrated with this dataset has 14 parameters with three random mem-

bers, time, cost and time budget, and the other 11 deterministic parameters of which there

are four alternative-specific constants with car driver being the base. It thus follows that
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m1 = 11, m2 = 3 and σ ∈ R3×3. We suppose furthermore that σ is a diagonal covariance

matrix. Thus, θ := (β, µ, σ1,1, σ2,2, σ2,3) ∈ R17 is the vector of parameters to be estimated.

Both the STRA and AMLET are used to solve the optimization model (2.34) with the

MobiDrive data and the same initial point. As the MobiDrive contains only a fair amount

of data (5799 observations), we load the full set of data at the initial step of the STRA and

do not resort to the data sampling process. Let θ̂k,jSTRA denote the k-th last solution that

is accepted at Step 4 during executing Algorithm 1 (i.e., the STRA) with random seed

#j, where k ∈ {1, 2, . . .} and j ∈ {1, 2, . . . , 10}. For all k ≥ 2, we call θ̂k,jSTRA the k-th last

intermediate estimate with seed #j. In addition, we refer θ̂1,j
i to as the stopping estimate

with seed #j obtained at the termination of algorithm i ∈ {STRA, AMLET}. To evaluate

an estimate θ̂, we feed θ̂ into an approximate function defined in (2.4) with N = N and

|In| = 10, 000 for each n ∈ N and refer

f∗(θ̂) = − 1

5799

∑
n∈N

ln
(
pIn(θ̂)

)
to as the “true” log-likelihood of θ̂. For any k ∈ {2, . . . , }, define

f̄kSTRA :=
1

10

10∑
j=1

f∗(θ̂k,jSTRA)

as the average true log-likelihood of the k-th last intermediate estimate obtained using the

STRA, and define

f̄1
i :=

1

10

10∑
j=1

f∗(θ̂1,j
i )

as the average true log-likelihood of the stopping estimates computed using algorithm i ∈

{STRA,AMLET}.

The AMLET introduces a maximum integration sample size, Imax, as input for comput-

ing pIn(θ) for all n, by which that the number of integration samples, |In|, is constrained

to be bounded above by Imax for all n ∈ N . Table 7 shows the true log-likelihoods of

the stopping estimates with 10 seeds, computed using AMLET under nine maximum in-

tegration sample sizes, Imax = 100, 500, 1000, 2000, 3000, 4000, 6000, 8000, 10000, and the

corresponding computational cputimes.
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The STRA, however, does not have a restriction on the number of integration samples

used for computing pIn(θ), the SAA of the choice probability of each observation and, it

adaptively controls the sample size for each observation according to the integration sam-

pling error incurred in computing the SAA of that observation (see Algorithm 4). Table 8

shows the true log-likelihoods evaluated at both intermediate and stopping estimates with

10 seeds that are obtained during solving (2.34) by using the STRA, in which a starred

entry denotes the stopping estimate with each of the seeds. Table 9 shows the cputime

that has been consumed at obtaining each intermediate or stopping estimate with each of

the 10 different seeds under the STRA (i.e., at Step 4 in Algorithm 1). For example in

Table 8, f∗(θ̂6,1
STRA) = 1.1654159 in column two is the true log-likelihood of the 6-th last

intermediate estimate with seed #1 obtained at Step 4 in Algorithm 1 when running the

STRA. Correspondingly, 112 in column two of Table 9 is the cputime spent when the 6-th

last intermediate estimate, θ̂6,1
STRA, is obtained.
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Figure 6: The STRA v.s. AMLET with the MobiDrive dataset.

We next compare the estimation results obtained using the STRA and AMLET. Fig-

ure 6 shows the average true log-likelihoods of the stopping estimates for both the STRA

and AMLET, and the average true log-likelihoods of intermediate estimates for the STRA.

The nine stars on the dashed line denote the average true log-likelihoods of the stopping

estimates for AMLET under the nine different maximum integration sample sizes versus

their corresponding mean cputimes shown in Table 7. The 18 circles located on the solid

line represent average true log-likelihoods, f̄kSTRA, for k ∈ {1, 2, . . . , 18} versus their corre-

sponding mean cputimes shown in Table 9. Note that f̄1
STRA = 1.1646499 is the average

true log-likelihood of the stopping estimates for the STRA.

As Figure 6 shows, the average true log-likelihood for the STRA decreases as the algo-

rithm progresses until the stopping estimate is approached. The average true log-likelihood

of the stopping estimates of the STRA is smaller than that of AMLET no matter which one

of the nine maximum integration sample sizes is adopted in AMLET. This indicates that

the STRA averagely generates a better stopping estimate than AMLET does as far as the
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stopping estimates are concerned. More interestingly, the STRA generates the estimates

that give rise to smaller average true log-likelihoods than AMLET does as the computation-

al time tends to be longer. In particular after 749.9s at which the third last intermediate

estimate is obtained (in an average sense) under the STRA, the estimates of the STRA

perform better than the stopping estimates that are obtained under AMLET. This shows

that the STRA tends to produce a better estimate than AMLET when the two algorithms

are terminated at the same stopping time no earlier than 749.9s.

2.7.2 The Airline Data

An additional difference between the STRA and AMLET is that the STRA embeds a

data sampling process to handle large-scale datasets, which is not, however, implemented

in AMLET. To test the STRA on a larger dataset, we use the 2011 airline data that we

discussed earlier in Sections 1.3 and 1.5.1. The dataset has 326,148 observations and each

observation has a choice set that could include from one to hundreds of alternatives. The

ML model calibrated with this dataset is described in Section 1.5.2

For the large-scale application, both the STRA and SAA-50 are coded with Matlab and

executed under Windows 7 on a PC with Intel i5 2.50GHz CPU and 8GB RAM.

For the large-scale data test, the STRA is stopped if the following criterion is satisfied,

max{‖gk‖2, σk,1, σk,2} ≤ ε and |Nk| = |N |

where ε = 10−6.

The estimated parameter coefficients, t-statistics and p-values are summarized in Ta-

ble 16 in Appendix C. In the table, θ̂STRA represents the vector of estimated coefficients

using the STRA and θ̂SAA-50 is the vector of estimated coefficients using the traditional

SAA method [58] with a fixed integration sample size |In| = 50 for each n with 2011 data,

which we refer to as the SAA-50.

Note that there are 3 × 3 × 2 × 5 = 90 combinations of encoded number of days to

departure, booking time-of-day, booking day-of-week, and booking channel. As explained

in Section 1.5.1, we expect the price sensitivity of customers to depend on number of days

to departure, booking time-of-day, booking day-of-week, and booking channel. Therefore,
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we estimate a separate price coefficient for each of the 90 combinations. One may refer to

Section 1.5.1 for detailed discussions of the factors and attributes used for the estimation. In

Table 16, each of the 90 combinations is represented by a combination of four codes given in

Table 2, listed in the column headed “Attribute”, with the associated price coefficient listed

in the column headed “θ̂STRA” of Table 16. For example, the estimated coefficient−12.05400

for combination “1, 1, 1, 2” represents the price coefficient for customers who book [0,6] days

before departure, between 00 : 00 and 09 : 00 on a weekday, and through the airline website.

Also, the estimated coefficient 3.45670 for “XX–1–3 is the most expensive” represents the

coefficient for a fully refundable ticket of airline XX, fare class 1 (the only fully refundable

fare class), and airline call center channel. The estimated coefficient 2.94450 for “XX–13–2

is the cheapest” represents the coefficient for the cheapest ticket for an airline XX flight,

fare class 13, and airline website channel. In addition, the estimated coefficient 0.41643

for “σ2,1” represents entry (2, 1) of the lower-triangular Cholesky factor of the covariance

matrix for the ML model. The estimate parameter coefficients obtained using the SAA-50

are listed in the column headed “θ̂SAA-50”. It can be observed from Table 16 that the price

coefficients estimated using the STRA are more negative than the coefficients estimated

using the SAA-50, thus rendering the estimation results to capture more price sensitivity

and preference heterogeneity among customers.

Table 10 shows the computational times and approximate average log-likelihoods eval-

uated at the stopping coefficients estimated using the STRA and SAA-50 with the same

initial point. The column headed “nsig/90” shows the number of price coefficients out of

90 price coefficients of the ML model that are statistically significantly less than the cor-

responding price coefficients of the MNL model estimated with the same 2011 airline data

(see Sections 1.4.1 and 1.6) at the 95% confidence level. The value nsig/90 is obtained using

the method described in Section 1.7.2. The results show that, compared with the SAA-50,

the STRA achieves a much better solution by using significantly less computational time,

and generates more price coefficient estimates that are statistically significantly less than

the corresponding price coefficients of the MNL model. This is consistent with our intuition

that the ML model should have more negative price coefficients than the MNL model since
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the ML model is structured to captures customer preference heterogeneity.

Table 10: Comparison between the STRA and the SAA-50 with the 2011 airline data.

Algorithm Cputime Approximate average log-likelihood nsig/90

STRA 2.7075 days 7.2172756 68
SAA-50 > 30 days 7.2617339 25

2.8 Conclusions

The ML-type model estimation usually involves computing high-dimensional integrals, which

excludes the possibility of using quadrature methods. In this chapter, we present an s-

tochastic trust region algorithm (i.e., the STRA) to estimate ML-type choice models. The

algorithm embeds a data sampling process and an integration sampling process under the

framework of the trust region algorithm. The first process is used to sample from a large

set of observations (data), and the second process is used to compute the SAA of the

choice probability associated with each observation, which is expressed in terms of a high-

dimensional integral.

During the sampling processes, the algorithm adaptively controls the data sample size

and integration sample size, according to the magnitude of the sampling errors compared

with the structural error between the approximate average log-likelihood and its model. We

show that the algorithm converges to the first-order criticality points w.p. 1 and test the

algorithm with two real datasets, the small-size MobiDrive dataset and the large-size Airline

dataset. The numerical studies show that the STRA exhibits a competitive performance

compared with AMLET, and it outperforms the traditional SAA-50 when it is applied to

large-size estimation problems.
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CHAPTER III

PRODUCT ASSORTMENT COMPETITION WITH THE

DECOY EFFECT

The fraction of customers who choose a particular item from among a set of available items

can be increased significantly by the inclusion of a related inferior (and apparently irrelevant)

item in the choice set. This violation of the independence from irrelevant alternatives and

the regularity properties is called the decoy effect, dominance effect, or attraction effect.

The decoy effect is one of the robust cognitive biases in the decision-making processes of

customers. We propose a discrete choice model that is simple and that captures decoy

effects. A monopolist may take advantage of the decoy effect to increase profit. However,

exploitation of the decoy effect in a competitive setting requires closer investigation. To

understand the effect of decoys on competition, we study product assortment competition

in a duopoly in which each seller may choose whether to include a decoy in the seller’s

product assortment. We provide a complete characterization of the Nash equilibria and their

dependence on choice model parameters. We study the evolution of assortment competition

and we evaluate the stability of the equilibria in the context of sellers learning about the

behavior of their competitors. Our results indicate under what conditions it is beneficial

for a seller to include a decoy into the seller’s assortment, and under what conditions the

seller obtains a free ride from the competitor’s decoy. Our results also show that every pure-

strategy Nash equilibrium is stable and every mixed-strategy Nash equilibrium is unstable.

3.1 Introduction

It has been observed in many settings that human decision making deviates from axioms of

rational choice [65, 48]. Some of these deviations are sufficiently widespread and predictable

to be useful in forecasting aggregate choice outcomes, for example, in forecasting market

shares. Therefore it may be a good idea for a seller to take such behavioral phenomena

into account when designing a product portfolio or when choosing prices of products. In
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this paper we focus on one such behavioral phenomenon, called the decoy effect, dominance

effect, or attraction effect, and we investigate the possible outcomes if two competing sellers

both try to take the decoy effect into account when selecting their product portfolios.

The decoy effect refers to the phenomenon that the addition of an item to decision

makers’ choice sets significantly increases the market shares of other, usually similar but

superior, items in the choice sets, while getting minimal market share itself. The item

that serves this purpose to increase the market shares of target items is called a “decoy”.

The decoy effect is one of the robust cognitive biases in the decision-making processes of

customers. It has been widely observed and demonstrated in both real-life and experimental

choice situations. The following two examples are excerpted from [62], and [27].

Example 1 : [62] provided an experimental example. In one setting, 106 people were each

offered a choice between $6 and a Cross pen. In this setting, 36% of the people chose the

pen and the remaining 64% chose the cash. In another setting, 115 people were each offered

a choice among $6, a Cross pen, and another less attractive pen. In this setting, 46% of the

people chose the Cross pen and 52% of them chose the cash. Only 2% of the people chose

the less attractive pen.

Example 2 : [27] investigated the sales of baked beans. Initially, the following two brands

were put on the shelves of a local grocery store: 420-g Heinz baked beans for 29 pence

each, and 420-g Spar baked beans for 21 pence each. After one week, Spar baked beans

accounted for only 19% of sales, even though it was offered at a lower price. Then a third

product, 220-g Spar baked beans for 21 pence each, was added (as a decoy). After another

week, the market share of 420-g Spar baked beans increased to 33%. The authors finally

concluded that the decoy effect “is robust, has a wide scope, is quite sizable and is of

practical significance”.

The decoy effect is one of the ways in which human decision making deviates from

axioms of rational choice, such as Luce’s choice axiom [42, p.6]. Here we show how the

decoy effect violates some corollaries of Luce’s choice axiom. One of the corollaries, called

“independence from irrelevant alternatives (IIA)” or “proportionality”, asserts that the ratio

of choice probabilities of any two alternatives is independent of the presence or absence of
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a third alternative in the choice set [42, p.9]. Another corollary is that for each alternative

there exists a nonnegative response strength such that for every choice set, the choice

probability of each alternative in the choice set is equal to the ratio of the response strength

of the alternative to the sum of the response strengths of all the alternatives in the choice

set [42, p.23]. This corollary further implies the so-called “regularity” property in a choice

context. The regularity property states that the choice probability of an alternative from a

choice set cannot be increased by adding more alternatives to the choice set. Widely used

choice models such as attraction models, including the multinomial logit (MNL) model,

satisfy the IIA and regularity properties. However, the IIA and regularity properties are

violated in choice settings with the decoy effect [67, 53], because if the decoy alternative is

included in the choice set, then the choice probability of the target alternative increases,

clearly violating the IIA and regularity properties.

An important decision made by retailers or revenue managers is to choose the set or

assortment of products to offer to customers. As illustrated by Example 2, a revenue

manager might choose an assortment that includes a decoy to increase the market share

and/or revenue of a target item. The objective of this paper is to understand how decoy

effects together with other demand characteristics impact equilibria of product assortment

competition. In a competitive setting, there is quite a rich variety of possible outcomes

resulting from the choices of sellers to include decoys in their assortments or not. For

example, as illustrated by Example 2 above, if one seller includes a decoy and the other

does not, then the first seller may gain revenue and the second seller may lose revenue.

In such a setting a Nash equilibrium may be for both sellers to offer decoys. In a setting

in which sellers have more products, it is also possible that a decoy introduced by one

seller shifts demand from one product offered by that seller to another product (the target

product) offered by that seller, and the same decoy also shifts demand among the other

seller’s products. In such a setting a Nash equilibrium may be for one seller to offer a decoy

and the other seller not to offer decoys (but rather get a “free ride” on the first seller’s

decoy). It is also possible that the overall effect of a decoy, through a shift of demand

among a seller’s products as well as through its effect on demand for the competitor’s
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products, is such that none of the sellers offers decoys in equilibrium.

We consider a duopoly in which both sellers have knowledge of the decoy effect and each

one has to decide whether or not to add a decoy into the assortment offered to customers.

To introduce the model and develop intuition, we first characterize the Nash equilibria for

a setting with simple product sets in which each seller’s product set contains only a target

product and a decoy product. Thereafter we extend the results to assortment competition

with general product sets including decoys. We characterize the conditions under which

different possible outcomes hold. Under some conditions there are multiple Nash equilibria.

To develop a better understanding regarding which of these equilibria are more reliable

as predictors of the outcome of the product assortment competition, we study dynamical

systems models of learning by the competitors, and establish which of the equilibria these

systems converge to. Two widely used learning models, Cournot adjustment and fictitious

play, are employed to analyze the dynamic behavior of sellers’ decisions when the sellers try

to learn the strategies of their competitors.

3.1.1 Contributions

This paper makes the following contributions:

(1) First, we propose a modified attraction discrete choice model that captures the effect

of a seller’s decoy on the market shares of the seller’s own products (the intra-decoy

effect) as well as the market shares of other sellers’ products (the inter-decoy effect).

To the best of our knowledge, this is the first choice model to explicitly incorporate

context-dependent behavioral effects such as the decoy effect, the similarity effect, and

the compromise effect [53] in a competitive setting.

(2) Second, we use the modified attraction discrete choice model to provide a complete

characterization of the pure- and mixed-strategy Nash equilibria for assortment com-

petition in a duopoly.

(3) Third, to evaluate the stability of the equilibria, we consider two learning processes,

Cournot adjustment and fictitious play, of the sellers in assortment competition, and
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characterize the behavior of the resulting dynamical systems. Part of this analysis

also gives a geometric characterization of the dynamics of fictitious play for general

2× 2 games that is more complete and easier to follow than previous results for such

games.

3.1.2 Managerial Insights

This paper also contributes the following managerial insights:

(1) In the setting with simple product sets, if the intra-decoy effects dominate the inter-

decoy effects (in a sense specified in Section 3.4.1), then both sellers include decoys

in their assortments. In other words, if introducing a decoy benefits a seller much

more than its competitor, then the seller offers an assortment with the decoy. On

the other hand, if the inter-decoy effects dominate the intra-decoy effects, then no

seller includes a decoy in its assortment. If the intra- and inter-decoy effects are

“approximately equal”, then the equilibrium consists of one seller offering a decoy

and the other seller not offering a decoy.

(2) In some cases a mixed-strategy Nash equilibrium coexists with two pure-strategy

Nash equilibria. In these cases, each pure-strategy Nash equilibrium is a steady state

of the Cournot adjustment process (but a mixed-strategy Nash equilibrium cannot be

a steady state of a Cournot adjustment process). If the two sellers choose an initial

strategy profile that is not a pure-strategy Nash equilibrium, then the Cournot ad-

justment process cycles. The long-run decision frequencies of the Cournot adjustment

process do not correspond to any mixed-strategy Nash equilibrium, nor any correlated

equilibrium, nor any coarse correlated equilibrium.

(3) In the cases where a mixed-strategy Nash equilibrium coexists with two pure-strategy

Nash equilibria, each pure-strategy Nash equilibrium is a steady state of the fictitious

play process, but the mixed-strategy Nash equilibrium is not a steady state of the

fictitious play process. In cases with simple action sets (either include a decoy or not),

the fictitious play process always converges regardless of the initial strategy profile
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chosen by the sellers. In the case of symmetric sellers, and for special initial strategy

profiles that we explicitly give, the fictitious play process converges to the mixed-

strategy Nash equilibrium. In all other cases the fictitious play process converges to

one of the pure-strategy Nash equilibria.

(4) In the sense outlined above, the pure-strategy Nash equilibria are reasonable predictors

of the outcome of assortment competition with decoys, but it is unlikely that sellers

will settle on one of the mixed-strategy Nash equilibria.

The remainder of this paper is organized as follows. The related literature is reviewed

in Section 3.2. In Section 3.3, we present a modified attraction model of consumer choice

that includes the decoy effect, and the duopoly model for product assortment competition

with the decoy effect. We characterize the Nash equilibria and study the dynamics of

two dynamical systems models of learning, for competition with simple product sets in

Section 3.4, for competition with general product sets and simple actions in Section 3.5, and

for competition with general product sets and general actions in Section 3.6. Conclusions

are summarized in Section 3.7. All the proofs and supporting material are provided in the

Appendix A to this paper.

3.2 Literature Review

We classify the literature related to our research into four branches: (1) empirical studies

that identify and investigate the nature of the decoy effect, (2) choice models that explicitly

incorporate the decoy effect, (3) models of assortment planning and competition, and (4)

models of learning in games.

3.2.1 Empirical Studies of the Decoy Effect

Since [36] and [37] identified the decoy effect, and recognized that it violated the IIA and

regularity properties that are implied by some rational choice models, there have been

many experimental studies that identified the decoy effect in consumer product choice

[61, 62, 67, 32]. The decoy effect is deemed to be robust in the sense that it has been

observed in a variety of choice settings, ranging from in-store grocery purchases [27] to
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on-line subscriptions [4], regardless of whether the products in the choice sets are traded in

a market or not [8], or whether the decision makers are humans or honey bees [57]. [2] used

experimental studies to show that the decoy effect can be used to facilitate coordination

among players to reach efficient outcomes.

3.2.2 Models Capturing the Decoy Effect

Compared with the large number of empirical studies, relatively few papers have proposed

choice models that incorporate the decoy effect. [67] modeled the decoy effect (called the

local context effect) by adding the relative advantages of the target product over all other

alternatives in the same choice set to the context-free utility of the target. It is assumed that

the context-free utility of a product has an additive representation as the sum of functions

measuring the contribution of each attribute to the total utility of the product. Then

the advantage of a product over another product is given by the sum of the nonnegative

differences of the attribute function values of the two products. It is shown that the model

is able to account for the decoy effect and some other context-dependent effects. [53]

proposed a unified utility model to incorporate context effects including the compromise,

decoy (attraction), and similarity effects. The contribution of the decoy effect to the utility

of the target is modeled as the distance between the attribute points of the (dominated)

decoy and the (dominating) target parallel to a preference vector in the attribute space,

where the preference vector [66] is chosen to point from the least desirable attribute point

to the most desirable attribute point in the attribute space. These studies model the total

utility of an alternative as the sum of a context-free utility of the alternative and various

utility increments contributed by context effects such as the decoy effect, by using pairwise

comparisons of attribute values.

3.2.3 Assortment Decision Models

In recent years various studies of both static and dynamic assortment decision problems have

appeared. [39] provide a review of static assortment problems and [68] provide a review of

dynamic assortment problems. A number of recent papers, such as [56, 41, 25, 26] and [29],

have addressed assortment optimization problems under a variety of discrete choice models.
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Relatively few papers on assortment competition have appeared. [35] considered price,

service quality, and product assortment competition based on the logit model that satisfies

the IIA property. [18] studied how the adoption of search-facilitating technologies, such as

the internet, affects equilibrium prices and assortments in a game with competing sellers.

[11] considered both assortment-only competition and joint price and assortment compe-

tition between two retailers subject to a constraint that each retailer can offer at most a

certain number of products, and characterized conditions for existence and uniqueness of

a Nash equilibrium. [40] considered assortment and price competition under nested logit

models.

We are particularly interested in assortment decision models that explicitly incorporate

specific features of consumer choice behavior. One such feature is the satiation effect, that

is the phenomenon that consumers’ marginal utilities for a product tend to decrease as more

of the product is consumed. [20] incorporated the satiation effect into an attraction model

of demand, and used the model to analyze price and assortment competition among sellers.

Their paper highlighted the importance of incorporating this feature of consumer behavior

into assortment decision problems. Our paper focuses on assortment competition with the

decoy effect, one of the context-dependent effects in consumer choice. The papers reviewed

here focus on describing equilibrium behavior. In addition to this, we also evaluate the

stability of the equilibria by studying dynamical systems describing sequences of decisions

made by competing sellers under dynamic learning.

3.2.4 Learning Processes in Games

There is a large literature on learning in games that is related to our research. See [28] for

an overview of earlier literature on learning in games. We specifically mention the results

of [52], [44], and [46], who established the convergence of discrete-time fictitious play for

respectively any two-person finite-action zero-sum game, any non-degenerate nonzero-sum

2×2 game, and any common-interest game. [45] showed that fictitious play for a 2×2 game

converges to a Nash equilibrium, given that each player starts with a degenerate probability

distribution for the other player’s actions. [30] showed that continuous-time fictitious play
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for a two-person zero-sum game converges uniformly at rate 1/t.

The dynamic behavior of fictitious play for general 3×3 (or m×n with m,n ≥ 3) games

can be much more complicated. Fully characterizing it remains a challenge. [60] argued

that fictitious play for a 3×3 game with payoff matrices that satisfy certain conditions cycle

without convergence to any Nash equilibrium. More recently, [69] considered a 3×3 bimatrix

game with a particular structure and showed that fictitious play can exhibit periodic or even

chaotic behavior.

Most of these studies are aimed at verifying whether or not fictitious play converges to

a Nash equilibrium of the game. In addition, our paper provides a complete, but simple

geometric, characterization of the dynamics of fictitious play in 2× 2 games. In the process

we also extend the results of [45] to the more general setting in which each player starts with

an arbitrary probability distribution for the other player’s actions. Also, our proofs cover

some cases that were missed in the proof in [45]. We also provide an example of assortment

competition with the decoy effect, in which each seller chooses among three assortments,

and fictitious play cycles without converging to any Nash equilibrium.

3.3 Model of Buyer Choice and Seller Competition

First we present a general choice model that incorporates contexts effects in Section 3.3.1,

and then we present a particular version of it for the decoy effect in Section 3.3.2.

3.3.1 A General Choice Model Incoporating Context Effects

Let S denote a set of alternatives of interest, for example, S may represent a set of products

that can be offered to customers (e.g., airline tickets for different fare classes). If a no-

purchase alternative is of interest, then it is denoted with 0, and is understood to be

included in S. For any assortment A ⊂ S that can be offered to customers, the fraction of

customers choosing (or the choice probability of) i ∈ A can be written as

qi(A) =
γi(A)vi∑
k∈A γk(A)vk

(3.1)

Choice model (3.1) is general, because for any given choice probabilities qi(A) and vi > 0 for

all A and i, one can set γi(A) = qi(A)/vi. The idea behind this model is to interpret vi > 0
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as the intrinsic attractiveness (the context-effect-free attractiveness) of alternative i ∈ S,

and γi(A) as factors that capture context effects (such as the decoy effect). The intrinsic

attractiveness can be thought of as a function of the attribute values of alternative i and

the decision maker (but not of the other alternatives in the choice set). One can assume,

without loss of generality, that intrinsic attractiveness is scaled in such a way that the

intrinsic attractiveness of one of the alternatives, such as the no-purchase alternative, is

normalized to be unity, i.e., v0 = 1. An important special case of choice model (3.1) is the

attraction demand model with γi(A) = 1 for all A ⊂ S and i ∈ A. Attraction demand

models satisfy the IIA and regularity properties. The attraction demand model includes

the multinomial logit (MNL) model and the multiplicative competitive interaction (MCI)

model as special cases. An example of a multinomial logit model with price pi as the only

attribute is choice model (3.1) with γi(A) = 1 and vi = eθ0−θpi for all A ⊂ S and i ∈ A\{0},

where θ0 is a constant parameter and θ ≥ 0 represents the price sensitivity of customers.

3.3.2 A Buyer Choice Model Incorporating the Decoy Effect

First, consider the decoy effect in a monopoly setting. Of particular interest is a target

product t ∈ S and an associated decoy product d ∈ S (d 6= t). The target product

dominates the decoy product in terms of all attributes. The target product may be of

particular interest to the seller for many reasons, for example because it is a lucrative

product, or because the seller wants to increase its market share, or because it is a new

product and the seller needs to quickly build its brand reputation. To study the decoy

effect, choice model (3.1) with

γi(A)


> 1 if i = t ∈ A, d ∈ A,

= 0 if i = d ∈ A, t ∈ A,

= 1 for all other cases

for all A ⊂ S and i ∈ A, is of particular interest. Note that the IIA and regularity properties

do not hold for the resulting choice model.

Next we present a choice model that incorporates the decoy effect for a duopoly of two

sellers who offer substitutable products (e.g., two airlines); the extension to more than two
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sellers is straightforward with additional notation. The sellers are indexed by m ∈ {−1, 1}.

Each seller m has a set Sm of products that can be offered to customers. Each seller m

has a target product tm ∈ Sm and an associated decoy product dm ∈ Sm (dm 6= tm). As

before, the intrinsic attractiveness of product i is denoted by vi > 0, and the no-purchase

alternative is denoted by 0. Let ∪S := {0} ∪ S−1 ∪ S1, and for any given Am ⊂ Sm,

m = ±1, let ∪A := {0} ∪ A−1 ∪ A1. For any ∪A and i ∈ ∪A, let γi(∪A) denote the factor

that represents the context effect of choice set ∪A on product i. Thus, given an assortment

Am ⊆ Sm for each seller m, the probability of a customer choosing i ∈ ∪A is given by

qi(A−1, A1) =
γi(∪A)vi∑

k∈∪A γk(∪A)vk
. (3.2)

In addition to the effect of each seller’s decoy on the demand for the seller’s target, we are

also interested in the effect of each seller’s decoy on the demand for the other seller’s target,

since in competitive applications the target products of the sellers may be similar. Thus,

of particular interest are the effect of the decoy of seller m on the demand for the target of

seller m, which we call the intra-decoy effect, and the effect of the decoy of seller −m on

the demand for the target of seller m, which we call the inter-decoy effect. Therefore, to

study the decoy effect, we will consider choice model (3.2) with

γi(∪A) =



αm > 1 if i = tm ∈ ∪A, dm ∈ ∪A, d−m /∈ ∪A,

β−m ≥ 1 if i = tm ∈ ∪A, dm 6∈ ∪A, d−m ∈ ∪A,

αmβ−m > 1 if i = tm ∈ ∪A, dm ∈ ∪A, d−m ∈ ∪A,

0 if i = dm ∈ ∪A, (tm ∈ ∪A or t−m ∈ ∪A),

1 for all other i ∈ ∪A,

where αm, m = ±1, are called the intra-decoy factors, and βm, m = ±1, are called the

inter-decoy factors.

3.3.3 Model of Assortment Competition

In this section we formulate each seller’s assortment problem. We assume that each product i

has a given excess pi > 0 of price over marginal cost, and that each seller’s objective is to

maximize the seller’s total profit. (Similar to many airlines, one may choose multiple price
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classes for essentially the same product, and consider each product-price combination as a

“product” in the model.) Then, the objective function πm of each seller m is a function of

the assortments (Am, A−m) chosen by the sellers, and is given by

πm(Am, A−m) :=
∑
i∈Am

pi qi(A−1, A1) =
∑
i∈Am

pi
γi(∪A)vi∑

k∈∪A γk(∪A)vk
.

For each seller m, let Cm ⊂ 2Sm denote the set of feasible actions (pure strategies) of

seller m, where 2S denotes the collection of subsets of a set S. We assume that each

seller always offers its target product, i.e., we consider action sets of seller m that satisfy

Cm ⊂ {Am ∈ 2Sm : tm ∈ Am}. Each action Am ∈ Cm denotes an assortment that seller m

can choose to offer to the market. Let ∆(Cm) denote the set of probability distributions

on set Cm, that is, ∆(Cm) denotes the set of mixed-strategies over action set Cm. Thus,

for each x̄m ∈ ∆(Cm) and Am ∈ Cm, x̄m(Am) denotes seller m’s probability of choosing

action Am. Let C := C−1 ×C1 denote the set of joint actions, and let ∆(C) denote the set

of (joint) distributions over C.

Let BRm : ∆(C−m) 7→ 2∆(Cm) denote the mixed best response correspondence of seller m

given by

BRm(x̄−m) := arg max
x̄m∈∆(Cm)

∑
(A−1,A1)∈C

πm(Am, A−m)x̄−1(A−1)x̄1(A1)

and PBRm : ∆(C−m) 7→ 2Cm denote the pure best response correspondence of seller m given

by

PBRm(x̄−m) := arg max
Am∈Cm

∑
A−m∈C−m

πm(Am, A−m)x̄−m(A−m).

If x̄−m(A−m) = 1 for some A−m ∈ C−m, then we also write PBRm(A−m) for PBRm(x̄−m).

A mixed-strategy profile x̄∗ = (x̄∗−1, x̄
∗
1) ∈ ∆(C−1)×∆(C1) is called a mixed-strategy Nash

equilibrium if x̄∗m ∈ BRm(x̄∗−m) for all m, and a pure-strategy profile (A∗−1, A
∗
1) ∈ C is called

a pure-strategy Nash equilibrium if A∗m ∈ PBRm(A∗−m) for all m. Note that for any m,

any x̄−m ∈ ∆(C−m), any x̄∗m ∈ BRm(x̄−m), and any A∗m such that x̄∗m(A∗m) > 0, it holds

that A∗m ∈ arg maxAm∈Cm
∑

A−m∈C−m πm(Am, A−m)x̄−m(A−m), that is, each action with

positive probability under a mixed best response must be a pure best response to x̄−m.
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It follows that all actions A∗m such that x̄∗m(A∗m) > 0 have the same payoff for seller m,

and BRm(x̄−m) is the convex hull of arg maxAm∈Cm
∑

A−m∈C−m πm(Am, A−m)x̄−m(A−m) in

∆(Cm). If there exists joint actions (A∗−1, A
∗
1) ∈ C such that x̄∗m(A∗m) = 1 for all m, then

A∗m ∈ PBRm(A∗−m) for all m, i.e., (A∗−1, A
∗
1) is a pure-strategy Nash equilibrium.

When we consider convergence of strategy profiles, we will also consider the notions of

correlated and coarse correlated Nash equilibria. A probability distribution x̄∗ ∈ ∆(C) is

called a correlated equilibrium if for all m and all Am, A
′
m ∈ Cm it holds that

∑
A−m∈C−m

πm(Am, A−m)x̄∗(A−1, A1) ≥
∑

A−m∈C−m

πm(A′m, A−m)x̄∗(A−1, A1). (3.3)

A probability distribution x̄∗ ∈ ∆(C) is called a coarse correlated equilibrium if for all m

and all A′m ∈ Cm it holds that

∑
(A−1,A1)∈C

πm(Am, A−m)x̄∗(A−1, A1) ≥
∑

(A−1,A1)∈C

πm(A′m, A−m)x̄∗(A−1, A1). (3.4)

It is easy to verify that each Nash equilibrium is a correlated equilibrium, and each correlated

equilibrium is a coarse correlated equilibrium.

3.3.4 Models of Seller Learning

It is customary in much of the literature on applications of non-cooperative game theory to

identify equilibria, but not to address the question whether there is reason to be confident

that the players will settle on a specific equilibrium. This question is relevant even when

there is a unique equilibrium, and is especially pertinent when there are multiple equilib-

ria. In this paper we approach this question by considering processes in which the sellers

repeatedly make assortment decisions while they learn about the other sellers’ assortment

decisions. The idea is that if the sellers’ decisions converge to an equilibrium, then the

equilibrium may be a reasonable prediction of the sellers’ long-run behavior, and if the

sellers’ decisions do not converge to an equilibrium, then the equilibrium is a questionable

prediction of the sellers’ decisions.

In general, sellers may learn about many things, including the behavior of their cus-

tomers (i.e., their demand) and their competitors, and their costs. In this paper, we restrict

attention to sellers who learn about the other sellers’ assortment choices. We consider a
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discrete-time process with time indices t ∈ N := {1, 2, . . .}. At each time t, each seller m

has observed all previous actions A−m(0), . . . , A−m(t− 1) of the other seller. Each seller m

then chooses an action Am(t) that is a best response to the seller’s forecast of the action

that the other seller is about to take, where the forecast is based on the observed data

A−m(0), . . . , A−m(t − 1). Thereafter these steps repeat at the next time t + 1. We are

interested in answering the following questions for the resulting process:

Q.1. What are the steady states (fixed points) of the process? Specifically, do these steady

states coincide with the equilibria?

Q.2. Are these steady states stable? Specifically, does the process converge, and if so, does

it converge to an equilibrium?

Q.3. How does the initial state affect the long-run behavior of the process?

3.4 Assortment Competition with Simple Product Sets

To facilitate explanation of the results, we first consider the setting with simple product sets

Sm = {tm, dm} in this section, and thereafter we consider the setting with general product

sets in Sections 3.5 and 3.6.

3.4.1 Characterization of Equilibria

In this section we consider assortment competition with the decoy effect for the setting in

which each seller has a simple product set Sm = {tm, dm}. The set of actions is Cm =

{A0
m, A

1
m}, where A0

m = {tm} and A1
m = {tm, dm}. The four possible action pairs are

(A0
−1, A

0
1), (A1

−1, A
1
1), (A0

−1, A
1
1), and (A1

−1, A
0
1). Next we give necessary and sufficient

conditions in terms of the decoy factors for each of these action pairs to be a pure-strategy

Nash equilibrium. Intuitively, if a seller’s inter-decoy factor is small relative to the seller’s

intra-decoy factor, then it is attractive to the seller to use the decoy, and if the seller’s

inter-decoy factor is relatively large, then it is attractive not to use the decoy. The following

thresholds for the inter-decoy factors determine what is relatively small and relatively large:

βm := αm +
αm − 1

α−mvt−m
and β̄m := αm +

αm − 1

vt−m
.
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Note that the thresholds are well defined since αm, α−m > 1 and vi > 0 for all i. Also,

note that 1 < βm < β̄m. Proposition 3.1 gives necessary and sufficient conditions for the

different action pairs to be pure-strategy Nash equilibria.

Proposition 3.1. For assortment competition with simple product sets, it holds that

(1) (A0
−1, A

0
1) is a pure-strategy Nash equilibrium iff βm ≥ β̄m for m = ±1,

(2) (A1
−1, A

1
1) is a pure-strategy Nash equilibrium iff βm ≤ βm for m = ±1,

(3) (A0
−1, A

1
1) is a pure-strategy Nash equilibrium iff β−1 ≥ β−1 and β1 ≤ β̄1,

(4) (A1
−1, A

0
1) is a pure-strategy Nash equilibrium iff β−1 ≤ β̄−1 and β1 ≥ β1.

Each seller has a finite action set in assortment competition, and thus there always exists

a mixed-strategy Nash equilibrium. Next, Proposition 3.2 provides a sufficient condition

for existence of a strict mixed-strategy Nash equilibrium. For assortment competition with

simple product sets, a probability distribution x̄m = (x̄m(A0
m), x̄m(A1

m)) is specified by

xm := x̄m(A1
m).

Proposition 3.2. For assortment competition with simple product sets, there exists a

mixed-strategy Nash equilibrium (x̄∗−1, x̄
∗
1) ∈ (0, 1)2 if and only if βm < βm < β̄m for

m = ±1. The unique such Nash equilibrium (x̄∗−1, x̄
∗
1) ∈ (0, 1)2 is given by (x∗−1, x

∗
1) :=

(1/(1 + Γ−1), 1/(1 + Γ1)), where

Γm :=
αmβm(1 + vt−m + vtm)(1 + α−mvt−m + β−mvtm)(β−m − β−m)

(1 + α−mβmvt−m + αmβ−mvtm)(1 + βmvt−m + αmvtm)(β−m − β̄−m)
(3.5)

∈ (0,∞)

for m = ±1.

We summarize the results of Propositions 3.1 and 3.2 in Table 11. Table 11 and Re-

mark 3.1 give a complete characterization of the Nash equilibrium for simple product sets.

Table 11 shows 9 cases specified by comparing βm versus βm and β̄m for m = ±1, and the

resulting equilibria. In principle, the four comparisons give 16 cases. The cases that are

not listed are not possible because βm < β̄m for m = ±1.
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#
Sufficient condition

Nash equilibrium
β−1 v.s. β−1 β̄−1 v.s. β−1 β1 v.s. β1 β̄1 v.s. β1

1 < > < > (x∗−1, x
∗
1), (A0

−1, A
1
1), (A1

−1, A
0
1)

2 > > > > (A1
−1, A

1
1)

3 < > > >
4 < < > > (A0

−1, A
1
1)

5 < < < >

6 > > < >
7 > > < < (A1

−1, A
0
1)

8 < > < <

9 < < < < (A0
−1, A

0
1)

Table 11: Characterization of the Nash equilibria for assortment competition with simple
product sets.

Remark 3.1. For each case in Table 11, the equilibrium/equilibria are the only equilibria

if the four strict inequalities hold. If we change one or two of the strict inequalities to

equalities, then one of the following cases holds:

1. The resulting conditions are impossible. For example, in Case 9, if the first strict in-

equality β−1 < β−1 is changed to the equality β−1 = β−1, then the resulting conditions

are impossible, because β−1 < β̄−1 and the second inequality in Case 9 is β̄−1 < β−1.

Also, since βm < β̄m for m = ±1, if for any of the cases both the first inequality

and the second inequality are changed to equalities or both the third inequality and the

fourth inequality are changed to equalities, then the resulting conditions are impossible.

2. The resulting conditions can be obtained from more than one of the cases in Ta-

ble 11 by changing one or two of the strict inequalities in each case to equalities. For

example, the same conditions are obtained from Case 1 by changing the first strict

inequality β−1 < β−1 to the equality β−1 = β−1 and from Case 6 by changing the

first strict inequality β−1 > β−1 to the equality β−1 = β−1. Similarly, the same con-

ditions are obtained from Cases 1, 2, 3, and 6 by changing for each case both the

first and the third inequalities to equalities. Under the resulting conditions, the set of

equilibria is the union of the equilibria for the cases from which the conditions can be

obtained. For example, if the first inequalities in Cases 1 and 6 are changed to equal-

ity, then the resulting set of equilibria is given by {(x∗−1, x
∗
1), (A0

−1, A
1
1), (A1

−1, A
0
1)},
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where x∗−1 = 1/(1 + Γ−1) and Γ−1 is given by (3.5), and x∗1 = 1. Similarly, if both the

first and the third inequalities in Cases 1, 2, 3, and 6 are changed to equalities, then

the resulting set of equilibria is given by {(x∗−1, x
∗
1), (A0

−1, A
1
1), (A1

−1, A
0
1), (A1

−1, A
1
1)}.

In this case, x∗m = 1 for m = ±1, and thus the resulting set of equilibria is equal to

{(A0
−1, A

1
1), (A1

−1, A
0
1), (A1

−1, A
1
1)}.

If, for any case, three or more inequalities are changed to equalities, then the resulting

conditions are impossible, because βm < β̄m for m = ±1.

Economic Implications. We say that the inter-decoy effect βm dominates the intra-

decoy effect αm if βm > β̄m(:= αm + [αm− 1]/vt−m), that αm dominates βm if βm < βm(:=

αm + [αm − 1]/[α−mvt−m ]), and that αm and βm are similar if βm ≤ βm ≤ β̄m. If αm

dominates βm for m = ±1, then (A1
−1, A

1
1) is the Nash equilibrium, i.e., both sellers use

decoys. If βm dominates αm for m = ±1, then (A0
−1, A

0
1) is the Nash equilibrium, i.e.,

neither seller uses a decoy. We next consider settings in which αm and βm are similar. If

βm ≤ βm and β−m ≤ β̄−m, then (A1
−m, A

0
m) is a Nash equilibrium. In this case, seller −m

uses a decoy but seller m takes a free ride to take advantage of seller −m’s decoy. Hence, if

βm ≤ βm ≤ β̄m for m = ±1, then both (A0
−1, A

1
1) and (A1

−1, A
0
1) are Nash equilibria. In that

case, there is also a mixed-strategy Nash equilibrium (x∗−1, x
∗
1), but it will be shown that

such a mixed-strategy Nash equilibrium (x∗−1, x
∗
1) is unstable, whereas the pure-strategy

Nash equilibria are stable.

3.4.2 Cournot Adjustment Process

Next we study the dynamics of assortment competition when sellers learn about each other’s

decisions, and we infer from it the stability of the equilibria given in Table 11. We start

with a very simple process called Cournot adjustment, in which, at each time t ∈ N, each

seller m chooses a best response Am(t) to the other seller’s previous action A−m(t− 1). Let

A(0) := (A−1(0), A1(0)) denote the initial state of the Cournot adjustment process, and let

A(t) := (A−1(t), A1(t)) denote the state of the Cournot adjustment process at time t, where

Am(t) ∈ arg max
Am∈Cm

πm(Am, A−m(t− 1)) . (3.6)
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3.4.2.1 Case 1

Recall from Table 11 that Case 1 holds if βm < βm < β̄m for m = ±1, and that under

Case 1, one mixed-strategy Nash equilibrium x∗ = (x∗−1, x
∗
1) coexists with two pure-strategy

Nash equilibria, (A0
−1, A

1
1) and (A1

−1, A
0
1). Theorem 3.1 characterizes the dynamics of the

Cournot adjustment process.

Theorem 3.1. (Behavior of the Cournot adjustment process under Case 1.)

(1) If A(0) ∈
{

(A0
−1, A

1
1), (A1

−1, A
0
1)
}

, then A(t) = A(0) for all t ∈ N0 := N ∪ {0}, i.e.,

(A0
−1, A

1
1) and (A1

−1, A
0
1) are steady states of the Cournot adjustment process.

(2) If A(0) ∈
{

(A0
−1, A

0
1), (A1

−1, A
1
1)
}

, then A(t) cycles. Specifically, if A(0) = (A1
−1, A

1
1),

then

A(t) =

 (A1
−1, A

1
1) if t ≥ 1 and t is even,

(A0
−1, A

0
1) if t ≥ 1 and t is odd.

and if A(0) = (A0
−1, A

0
1), then

A(t) =

 (A0
−1, A

0
1) if t ≥ 1 and t is even,

(A1
−1, A

1
1) if t ≥ 1 and t is odd.

Thus, if A(0) ∈ {(A1
−1, A

1
1), (A0

−1, A
0
1)}, then A(t) cycles as (A1

−1, A
1
1) → (A0

−1, A
0
1) →

(A1
−1, A

1
1) → (A0

−1, A
0
1) → . . . or (A0

−1, A
0
1) → (A1

−1, A
1
1) → (A0

−1, A
0
1) → (A1

−1, A
1
1) → . . ..

Clearly, neither trajectory converges to a pure-strategy Nash equilibrium. The empirical

frequencies of (A1
−1, A

1
1) and (A0

−1, A
0
1) converge to a (joint) probability distribution x̄∗ ∈

∆(C) as t → ∞, given by x̄∗((A1
−1, A

1
1)) = 1/2 and x̄∗((A0

−1, A
0
1)) = 1/2. One may

wonder whether or not x̄∗ is a correlated equilibrium or coarse correlated equilibrium.

Proposition 3.3 gives the answer.

Proposition 3.3. The limit empirical distribution x̄∗ given by x̄∗((A1
−1, A

1
1)) = 1/2 and

x̄∗((A0
−1, A

0
1)) = 1/2 is neither a correlated equilibrium nor a coarse correlated equilibrium.
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3.4.2.2 Cases 2–9

First consider Case 2, which holds under condition βm < β̄m and βm < βm for m = ±1.

Proposition 3.4. (Behavior of the Cournot adjustment process under Case 2.) For any

initial condition A(0) ∈ C, it holds that A(t) = (A1
−1, A

1
1) for all t ∈ N.

The Cournot adjustment process under Cases 3–9 behave in a similar way to the process

under Case 2. Each seller’s action in the unique pure-strategy Nash equilibrium under each

of the Cases 3–9 dominates the other action and as a result the Cournot adjustment process

stays at the equilibrium after the first step.

3.4.3 Fictitious Play Process

The fictitious play process works as follows: At the beginning of period t ∈ N each seller m

constructs an empirical distribution of the decisions of the other seller using the available

data A−m(0), . . . , A−m(t − 1). Then seller m chooses Am(t) that optimizes the expected

objective value of seller m with respect to the empirical distribution of the decisions of the

other seller. Thereafter each seller observes the decision of the other seller, the empirical

distributions are updated, and the steps repeat.

Let

xm(t) :=
Mmxm(0) +

∑t
τ=1 1[Am(τ)=A1

m]

Mm + t

denote the empirical probability based on data Am(0), . . . , Am(t) that seller m chooses

action A1
m, where 1[·] denotes the indicator function. One can think of Mm as the assessment

of seller −m of the number of observations that the initial value xm(0) is based on. We

allow any initial value xm(0) ∈ [0, 1] with weight Mm ≥ 0. However, some notation will be

simplified if Mm > 0, and therefore some later notation is based on the assumption that

Mm > 0; equivalently, one may set time index t = 0 after an observation has been made.

The vector x(t) := (x−1(t), x1(t)) is called the state (of fictitious play) in period t.

Let

PBRm(x) := arg max
Am∈Cm

xπm(Am, A
1
−m) + (1− x)πm(Am, A

0
−m)
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denote the optimal assortments for seller m given that seller m assesses the probability

that seller −m chooses action A1
−m to be x. In period t, each seller m chooses an action

Am(t) ∈ PBRm(x−m(t − 1)). In some cases we want to show how the long-run behavior

of x(t) depends on an initial condition x(t0) for some specific t0 ∈ N0. Therefore it is

convenient to use notation

φm(t1, t0, x) := xm(t1) given that x(t0) = x

φ(t1, t0, x) := (φ−1(t1, t0, x), φ1(t1, t0, x))

to explicitly denote the dependence of x(t1) on the initial value x at time t0, for t1 ≥ t0.

3.4.3.1 Case 1

Recall that Case 1 holds if βm < βm < β̄m for m = ±1, in which case there are the following

three equilibria: (x∗−1, x
∗
1), (0, 1) (i.e., (A0

−1, A
1
1)) and (1, 0) (i.e., (A1

−1, A
0
1)).

It follows from βm < βm < β̄m that A0
m ∈ PBRm(x−m(t− 1)) iff x−m(t− 1) ≥ x∗−m, and

A1
m ∈ PBRm(x−m(t − 1)) iff x−m(t − 1) ≤ x∗−m. Note that the best response of seller m

in period t is not unique iff x−m(t − 1) = x∗−m. Therefore, for the dynamics of x(t) to

be well-defined, we choose a tie-breaking rule to be used whenever x−m(t − 1) = x∗−m.

The choice of tie-breaking rule affects the notation, but it does not substantially affect the

results. Specifically, we choose

Am(t) =

 A0
m if x−m(t− 1) > x∗−m

A1
m if x−m(t− 1) ≤ x∗−m

(3.7)

Thereafter, each seller m observes A−m(t), and updates the empirical distribution of the

decisions of the other seller as follows:

x−m(t) =
(M−m + t− 1)x−m(t− 1) + 1[A−m(t)=A1

−m]

M−m + t
. (3.8)

Note that

x(t) =



(
(M−1+t−1)x−1(t−1)+1

M−1+t , (M1+t−1)x1(t−1)+1
M1+t

)
if x(t− 1) ∈ P0,(

(M−1+t−1)x−1(t−1)
M−1+t , (M1+t−1)x1(t−1)

M1+t

)
if x(t− 1) ∈ P1,(

(M−1+t−1)x−1(t−1)
M−1+t , (M1+t−1)x1(t−1)+1

M1+t

)
if x(t− 1) ∈ P2,(

(M−1+t−1)x−1(t−1)+1
M−1+t , (M1+t−1)x1(t−1)

M1+t

)
if x(t− 1) ∈ P3,

(3.9)
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where P0 := [0, x∗−1]× [0, x∗1], P1 := (x∗−1, 1]×(x∗1, 1], P2 := [0, x∗−1]×(x∗1, 1], P3 := (x∗−1, 1]×

[0, x∗1], and P := [0, 1]2 = P0 ∪ P1 ∪ P2 ∪ P3. To simplify notation, we define φ(t1, t0, ·)

on an extended domain P̂ := P̂0 ∪ P̂1 ∪ P2 ∪ P3, where P̂0 := (−∞, x∗−1] × (−∞, x∗1],

P̂1 := (x∗−1,∞)× (x∗1,∞), as follows. For any t ∈ N0, let

φ(t+ 1, t, x) =



(
(M−1+t)x−1+1
M−1+t+1 , (M1+t)x1+1

M1+t+1

)
if x ∈ P̂0,(

(M−1+t)x−1

M−1+t+1 , (M1+t)x1
M1+t+1

)
if x ∈ P̂1,(

(M−1+t)x−1

M−1+t+1 , (M1+t)x1+1
M1+t+1

)
if x ∈ P2,(

(M−1+t)x−1+1
M−1+t+1 , (M1+t)x1

M1+t+1

)
if x ∈ P3,

(3.10)

We first study the dynamics of fictitious play with initial points in the extended domain

P̂ , and the results obtained for P̂ will describe the dynamics of fictitious play on P . It

follows from (3.10) that the directions of movement from x(t) to x(t + 1) are as given by

Lemma 3.1.

Lemma 3.1. The following holds at any time t ∈ N0:

(1) If x(t) ∈ P̂0, then xm(t+ 1) > xm(t) for m = ±1.

(2) If x(t) ∈ P̂1, then xm(t+ 1) < xm(t) for m = ±1.

(3) If x(t) ∈ P2, then x−1(t+ 1) ≤ x−1(t) and x1(t+ 1) ≥ x1(t).

(4) If x(t) ∈ P3, then x−1(t+ 1) ≥ x−1(t) and x1(t+ 1) ≤ x1(t).

Figure 7 will be used to describe a generic step of the state x(t) from time t to time t+1.

First, Theorem 3.2 uses (3.10) and Lemma 3.1 to establish convergence for initial points

x ∈ P2 ∪ P3. Thereafter we consider the more complicated dynamics for initial points

x ∈ P̂0 ∪ P̂1.

Theorem 3.2. For any x ∈ P2 and t ∈ N0, it holds that φ(t + τ, t, x) → (0, 1) (i.e.,

(A−1(τ), A1(τ))→ (A0
−1, A

1
1)) as τ →∞. For any x ∈ P3, it holds that φ(t+τ, t, x)→ (1, 0)

(i.e., (A−1(τ), A1(τ))→ (A1
−1, A

0
1)) as τ →∞.

One-step Analysis
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Figure 7: One-step evolution of the state x(t) of the discrete-time fictitious play process.

To analyze the dynamics when fictitious play starts from a point in P̂0 or P̂1, we first

characterize one-step changes. For any t, τ ∈ N0 and any D ⊂ P̂ , let φ(t+ τ, t,D) := {φ(t+

τ, t, x) : x ∈ D} denote the image of D under φ(t + τ, t, ·). Consider any k ∈ {0, 1}. Note

from (3.10) that φ(t+ 1, t, ·) : P̂k 7→ φ(t+ 1, t, P̂k) is an increasing separable affine mapping,

that is, there are `km(t) > 0 and akm(t) ∈ R such that φm(t + 1, t, x) = `km(t)xm + akm(t)

for any x ∈ P̂k. For example, for k = 0 and m = 1, `01(t) = (M1 + t)/(M1 + t + 1) and

a0
1(t) = 1/(M1 + t+ 1).

For any set D ⊂ Rn, we say that D walks to D̃ ⊂ Rn if and only if there exists an

increasing separable affine mapping f such that D̃ = f(D). Lemma 3.2 gives a useful

result that rectangles walk to rectangles under increasing separable affine mappings such as

φ(t+ 1, t, ·) : P̂k 7→ φ(t+ 1, t, P̂k).

Lemma 3.2. For any t ∈ N0, any rectangle D ⊂ P̂k, where k ∈ {0, 1}, or any rectangle

D ⊂ Pk, where k ∈ {2, 3}, it holds that D walks to φ(t + 1, t,D), and φ(t + 1, t,D) is a

rectangle.

We will be particularly interested in special rectangles called cells that are defined next.

For k ∈ {0, 1} and m ∈ {−1, 1}, let δkm(t) := |k − 1 + x∗m| / (Mm + t) denote the length
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parallel to the axis for xm of the cells in P̂k at time step t ∈ N0; see Figure 7a. (If Mm > 0

then δkm(0) is well defined.) The cells are indexed starting at x∗ = (x∗−1, x
∗
1), using indices

i, j. Specifically, for P̂0, the index sets at time t are Î0(t) := {0, 1, . . . , bx∗1/δ0
1(t)c + 1},

and Ĵ0(t) := {0, 1, . . . , bx∗−1/δ
0
−1(t)c + 1}. For P̂1, the index sets at time t are Î1(t) :=

{0, 1, . . . , d(1−x∗1)/δ1
1(t)e} and Ĵ1(t) := {0, 1, . . . , d(1−x∗−1)/δ1

−1(t)e}. Then cell D0,i,j(t) is

given by

D0,i,j(t) :=
(
x∗−1 − jδ0

−1(t), x∗−1 − (j − 1)δ0
−1(t)

]
×
(
x∗1 − iδ0

1(t), x∗1 − (i− 1)δ0
1(t)

]
for indices (i, j) ∈ Î0(t)× Ĵ0(t), and cell D1,i,j(t) is given by

D1,i,j(t) :=
(
x∗−1 + (j − 1)δ1

−1(t), x∗−1 + jδ1
−1(t)

]
×
(
x∗1 + (i− 1)δ1

1(t), x∗1 + iδ1
1(t)

]
for indices (i, j) ∈ Î1(t) × Ĵ1(t). Note that D0,0,0(t) ⊂ P̂1 and D0,i,j(t) ⊂ P̂0 for i, j ≥ 1;

and D1,0,0(t) ⊂ P̂0 and D1,i,j(t) ⊂ P̂1 for i, j ≥ 1; see Figure 7b. Let Ik(t) := Îk(t) \ {0},

Jk(t) := Ĵk(t) \ {0}. A cell Dk,i,i(t) for i ∈ Ik(t) ∩ Jk(t) is called a diagonal cell. The

diagonal cells are shown in gray in Figure 7.

Proposition 3.5. Consider any t ∈ N0, and any cell Dk,i,j(t), where k ∈ {0, 1}, i ∈ Ik(t)

and j ∈ Jk(t). Then φ(t + 1, t,Dk,i,j(t)) = Dk,i−1,j−1(t + 1), that is, Dk,i,j(t) walks to

Dk,i−1,j−1(t+ 1) from time t to time t+ 1.

Multi-step Analysis

As an extension of single-step walking defined before, a set D ⊂ Rn is said to walk to

D̃ ⊂ Rn from time t to time t + τ , where t, τ ∈ N0, if and only if there exists a sequence

{ft+s}τs=1 of increasing separable affine mappings ft+s : Rn 7→ Rn such that D̃ = f t+τt+1 (D),

where f t+τt+1 := ft+τ ◦ · · · ◦ ft+1. We will use the property that if a set walks, then all its

subsets walk too, and state it as Lemma 3.3.

Lemma 3.3. Suppose that a set D walks to a set D̃ from time t to time t+ τ under f t+τt+1 .

Then any E ⊂ D walks to f t+τt+1 (E) ⊂ D̃ from time t to time t+ τ .

Note that the one-step results of Lemma 3.2 and Proposition 3.5 can be applied repeat-

edly to obtain a multi-step characterization of the evolution of fictitious play. For example,
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if rectangle D ⊂ P̂k, where k ∈ {0, 1}, and φ(t+ 1, t,D) ⊂ P̂k, then it follows from a repeat-

ed application of Lemma 3.2 that D walks to φ(t + 2, t,D) from time t to time t + 2, and

φ(t+ 2, t,D) is a rectangle. Similarly, if i, i− 1 ∈ Ik(t) and j, j − 1 ∈ Jk(t), then it follows

from a repeated application of Proposition 3.5 that φ(t+ 2, t,Dk,i,j(t)) = Dk,i−2,j−2(t+ 2),

that is, Dk,i,j(t) walks to Dk,i−2,j−2(t+ 2) from time t to time t+ 2.

Next we discuss what happens once φ(t+ τ, t,D) 6⊂ P̂k, or i− τ 6∈ Ik(t), or j− τ 6∈ Jk(t).

Theorem 3.3 gives a complete characterization of the evolution of the off-diagonal cells. Let

D2(t) := {D0,i,j(t) : i ∈ I0(t), j ∈ J0(t), i < j} ∪ {D1,i,j(t) : i ∈ I1(t), j ∈ J1(t), i > j} de-

note the cells in P̂0∪P̂1 above the diagonal, and letD3(t) := {D0,i,j(t) : i ∈ I0(t), j ∈ J0(t), i > j}∪

{D1,i,j(t) : i ∈ I1(t), j ∈ J1(t), i < j} denote the cells in P̂0 ∪ P̂1 below the diagonal.

Theorem 3.3. Consider any t ∈ N0. Then, the following holds:

(1) If x ∈ Dk,i,j(t) ∈ D2(t), where k ∈ {0, 1}, i ∈ Ik(t), j ∈ Jk(t), then φ(t + τ, t, x) ∈

P̂k∩∪D∈D2(t+τ)D for τ ∈ {0, 1, . . . ,min{i, j}−1}, φ(t+τ, t, x)) ∈ P2 for τ ≥ min{i, j},

and φ(t+ τ, t, x)→ (0, 1) (i.e., (A−1(τ), A1(τ))→ (A0
−1, A

1
1)) as τ →∞.

(2) If x ∈ Dk,i,j(t) ∈ D3(t), where k ∈ {0, 1}, i ∈ Ik(t), j ∈ Jk(t), then φ(t + τ, t, x) ∈

P̂k∩∪D∈D3(t+τ)D for τ ∈ {0, 1, . . . ,min{i, j}−1}, φ(t+τ, t, x)) ∈ P3 for τ ≥ min{i, j},

and φ(t+ τ, t, x))→ (1, 0) (i.e., (A−1(τ), A1(τ))→ (A1
−1, A

0
1)) as τ →∞.

It remains to describe the evolution of the diagonal cells. If a rectangle D ⊂ P̂k walks

to rectangle D′ ⊂ P̂k′ from time t to time t + 1, where k, k′ ∈ {0, 1}, k 6= k′, then we say

that D jumps to D′.

Proposition 3.6. Consider any diagonal cell Dk,i,i(t), where t ∈ N0, k ∈ {0, 1}, and

i ∈ Ik(t) ∩ Jk(t). Then Dk,i,i(t) walks to Dk,1,1(t+ i− 1) from time t to time t+ i− 1, and

then jumps to Dk,0,0(t+ i) ⊂ P̂k′, where k′ ∈ {0, 1}, k′ 6= k.

Figure 8a shows a diagonal cell D0,1,1(t) ⊂ P̂0 right before a jump, and Figure 8b shows

the corresponding diagonal cell D0,0,0(t + 1) ⊂ P̂1 right after the jump. The evolution

of a diagonal cell D0,0,0(t + 1) right after a jump depends on how D0,0,0(t + 1) intersects

with D1,i,j(t + 1), i ∈ I1(t + 1), j ∈ J1(t + 1). Specifically, it follows from Lemma 3.3,
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Figure 8: Images of diagonal cell D0,1,1(t) before and after a jump.

Theorem 3.3, and Proposition 3.6 that D0,0,0(t + 1) ∩ D1,i,j(t + 1) for i > j walks to a

rectangle D̃ ⊂ D1,i−j,0(t + 1 + j) ⊂ P2 and then φ(t + 1 + j + τ, t + 1 + j, D̃) converges

in P2 to (0, 1) as τ → ∞, D0,0,0(t + 1) ∩ D1,i,j(t + 1) for i < j walks to a rectangle

D̃ ⊂ D1,0,j−i(t+ 1 + i) ⊂ P3 and then φ(t+ 1 + i+ τ, t+ 1 + i, D̃) converges in P3 to (1, 0)

as τ →∞, and D0,0,0(t+ 1) ∩D1,i,i(t+ 1) walks to a rectangle D̃ ⊂ D1,0,0(t+ 1 + i) ⊂ P̂0.

Figure 8c shows the image of D0,0,0(t + 1) ∩ D1,i,j(t + 1) after one step for (i, j) = (1, 1),

(i, j) = (1, 2), and (i, j) = (2, 1). The question remains whether every point of a diagonal

cell eventually either converges to (0, 1) or (1, 0), or whether some points of a diagonal cell

remain in diagonal cells forever. The answer to this question depends on whether x∗−1 = x∗1

or x∗−1 6= x∗1. We will consider these two cases separately. First, the next result points out

110



that for every initial point x ∈ P , φ(t, 0, x) converges as t → ∞, to (0, 1), or to (1, 0), or

to x∗. Thus, if the sequence {φ(t, 0, x)}∞t=0 remain in diagonal cells, then φ(t, 0, x)→ x∗ as

t→∞.

Let D=(t) := {Dk,i,i(t) : k ∈ {0, 1}, i ∈ Ik(t) ∩ Jk(t)} denote the collection of diagonal

cells at time t. Let Pk(t) := ∪i∈Ik(t) ∪j∈Jk(t)Dk,i,j(t) for k ∈ {0, 1}. Note that Pk ⊂ Pk(t) ⊂

P̂k for all t ∈ N0 and k ∈ {0, 1}, P ⊂ P (t) := P0(t) ∪ P1(t) ∪ P2 ∪ P3 ⊂ P̂ , and that

P0(t) ∪ P1(t) = [∪D∈D2(t)D] ∪ [∪D∈D3(t)D] ∪ [∪D∈D=(t)D].

Proposition 3.7. Consider any x ∈ P (0). One of the following three cases holds:

(1) φ(t, 0, x)→ (0, 1) as t→∞,

(2) φ(t, 0, x)→ (1, 0) as t→∞,

(3) φ(t, 0, x)→ x∗ as t→∞.

Lemma 3.4 provides a necessary condition for φ(t, 0, x) to converge to x∗.

Lemma 3.4. Consider any x ∈ P . If φ(t, 0, x)→ x∗ as t→∞, then x∗−1 = x∗1.

Characterization of Convergence for x∗−1 6= x∗1.

For any x ∈ P̂ , let Ω2(x) := {y ∈ P̂ : y−1 ≤ x−1, y1 > x1} and Ω3(x) := {y ∈ P̂ : y−1 >

x−1, y1 ≤ x1}. For any t ∈ N0 and D ⊂ P (t), let

φ−1(t,D) := {x ∈ D : there exists τ ∈ N0 such that φ(t+ τ, t, x) = x∗}

denote the set of pre-images of x∗ in D at time t. For any k ∈ {0, 1}, i ∈ Ik(t) ∩ Jk(t),

and j ∈ {2, 3}, let Dj
k,i,i(t) := Dk,i,i(t)∩

(
∪x∈φ−1(t,Dk,i,i(t))Ω

j(x)
)

denote the set of points in

Dk,i,i(t) that will be cut to Pj by a pre-image of x∗ in Dk,i,i(t). Figures 9a and 9b show the

set of pre-images φ−1(0, D0,1,1(0)) = {x1, x2, x3}, as well as the sets D2
0,1,1(0) and D3

0,1,1(0)

that will be cut to P2 and P3 respectively by these pre-images.

Theorem 3.4 provides a complete geometric characterization of the convergence of fic-

titious play for the case with x∗−1 6= x∗1. Figure 9c illustrates the results of Theorems 3.2,

3.3, and 3.4 for the case with x∗−1 6= x∗1.
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Figure 9: Illustrations of the set of preimages in D0,1,1(0), Dj
0,1,1(0), j = 2, 3, and Theorem-

s 3.2, 3.3, and 3.4 for the case with x∗−1 6= x∗1.

Theorem 3.4. Consider any k ∈ {0, 1} and i ∈ Ik(0) ∩ Jk(0). Then, the following hold:

(1) If x ∈ D2
k,i,i(0), then φ(t, 0, x)→ (0, 1) as t→∞.

(2) If x ∈ D3
k,i,i(0), then φ(t, 0, x)→ (1, 0) as t→∞.

(3) If x ∈ Dk,i,i(0)\ (D2
k,i,i(0)∪D3

k,i,i(0)) and x∗−1 < x∗1, then φ(t, 0, x)→ (1, 0) as t→∞.

(4) If x ∈ Dk,i,i(0)\ (D2
k,i,i(0)∪D3

k,i,i(0)) and x∗−1 > x∗1, then φ(t, 0, x)→ (0, 1) as t→∞.

Characterization of Convergence for x∗−1 = x∗1.

Theorems 3.5 and 3.6 completely characterize how the convergence of φ(t, 0, x) depends on

the initial value x ∈ P (0) for the case with x∗−1 = x∗1. First, consider the rational case in

which x∗−1 = x∗1 ∈ (0, 1) is a rational number. Note that x∗−1 = x∗1 ∈ (0, 1) is a rational

number if and only if x∗1/(1 − x∗1) = K + p/q for some K ∈ N0, p, q ∈ N, p/q < 1, and

gcd(p, q) = 1, or K ∈ N, p = 0, and q = 1. It will be shown that the images of initial points

in certain small rectangles inside the diagonal cells converge to x∗, the images of initial

points above the small rectangles converge to (0, 1), and the images of initial points below

the small rectangles converge to (1, 0). See Figure 10a for an example of this case. For any

j ∈ Z, let

Qj(t) :=

(
x∗−1 + (j − 1)

δ0
−1(t)

q
, x∗−1 + j

δ0
−1(t)

q

]
×
(
x∗1 + (j − 1)

δ0
1(t)

q
, x∗1 + j

δ0
1(t)

q

]

112



denote a small rectangle indexed by j. Note that Qj(t)∩Qj′(t) = ∅ if j 6= j′. Also note that

Qj(t) ⊂ P̂0 iff j ≤ 0, and Qj(t) ⊂ P̂1 iff j > 0. Each diagonal cell D0,i,i(t) contains exactly

q small rectangles, and each diagonal cell D1,i,i(t) contains exactly qx∗1/(1− x∗1) = Kq + p

small rectangles. Let Ik,i denote the set of indices of small rectangles that are contained in

diagonal cell Dk,i,i(t), for k ∈ {0, 1} and i ∈ Ik(t) ∩ Jk(t), that is,

Ik,i :=

 {−iq + 1,−iq + 2, . . . ,−(i− 1)q} for k = 0,

{(i− 1)(Kq + p) + 1, (i− 1)(Kq + p) + 2, . . . , i(Kq + p)} for k = 1.

Let I(t) := ∪k∈{0,1} ∪i∈Ik(t)∩Jk(t) Ik,i, and let Q(t) := ∪j∈I(t)Qj(t).
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Figure 10: Examples to illustrate Theorems 3.5 and 3.6.

Theorem 3.5. Suppose that x∗−1 = x∗1 and that x∗1/(1 − x∗1) = K + p/q, where K ∈ N0,

p, q ∈ N, p/q < 1, and gcd(p, q) = 1, or K ∈ N, p = 0 and q = 1. Then, the following hold:

(1) If x ∈ D2
k,i,i(0) for some k ∈ {0, 1} and i ∈ Ik(0) ∩ Jk(0), then φ(t, 0, x) → (0, 1) as

t→∞.

(2) If x ∈ D3
k,i,i(0) for some k ∈ {0, 1} and i ∈ Ik(0) ∩ Jk(0), then φ(t, 0, x) → (1, 0) as

t→∞.
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(3) If x ∈ Dk,i,i(0) \ (D2
k,i,i(0) ∪D3

k,i,i(0)) for some k ∈ {0, 1} and i ∈ Ik(0) ∩ Jk(0), that

is, if x ∈ Q(0), then φ(t, 0, x)→ x∗ as t→∞.

Next, consider the irrational case in which x∗−1 = x∗1 ∈ (0, 1) is an irrational number,

which is the case iff x∗1/(1 − x∗1) is an irrational number. If x∗−1 = x∗1, the diagonal line at

time t is given by D=(t) :=
{
x ∈ P (t) : (x1 − x∗1)(M1 + t) = (x−1 − x∗−1)(M−1 + t)

}
. Also,

let D>(t) :=
{
x ∈ P (t) : (x1 − x∗1)(M1 + t) > (x−1 − x∗−1)(M−1 + t)

}
denote points above

D=(t), and let D<(t) :=
{
x ∈ P (t) : (x1 − x∗1)(M1 + t) < (x−1 − x∗−1)(M−1 + t)

}
denote

points below D=(t).

Theorem 3.6. Suppose that x∗−1 = x∗1 and x∗1/(1 − x∗1) = K + ω, where K ∈ N0 and

ω ∈ (0, 1) \Q. Then, the following hold:

(1) If x ∈ D>(0), then φ(t, 0, x)→ (0, 1) as t→∞.

(2) If x ∈ D<(0), then φ(t, 0, x)→ (1, 0) as t→∞.

(3) If x ∈ D=(0), then φ(t, 0, x)→ x∗ as t→∞.

Proposition 3.8 summarizes the implication of the previous results for the stabilities of

the Nash equilibria for Case 1.

Proposition 3.8. (Stability of the Nash equilibria under Case 1) Under fictitious play

dynamics, (0, 1) and (1, 0) are stable equilibria, but x∗ is an unstable equilibrium.

3.4.3.2 Cases 2–9

First consider Case 2, that holds under condition βm < β̄m and βm < βm for m = ±1.

Proposition 3.9. Under Case 2 in Table 11, it holds for all x ∈ P that φ(t, 0, x)→ (1, 1),

i.e., (A−1(t), A1(t))→ (A1
−1, A

1
1), as t→∞.

For each of Cases 3–9, a similar result holds, i.e., for any initial value x ∈ P , fictitious

play converges to the unique pure-strategy Nash equilibrium under that case.
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3.5 Assortment Competition with General Product Sets and Simple Ac-
tions

In this section we consider assortment competition with general product sets and simple

actions. Product set Sm may contain other products in addition to the target product tm

and the decoy product dm. Each seller m makes a choice between including or excluding the

decoy dm from the seller’s assortment. Thus this case holds when sellers consider whether

or not to add the decoy products into their current assortments without redesigning the

remainder of their assortments. Let Cm = {A0
m, A

1
m} denote the action set of seller m,

where A1
m = Sm and A0

m = Sm \ {dm}.

3.5.1 Characterization of Equilibria

For assortment competition with simple actions, a mixed strategy x̄m = (x̄m(A0
m), x̄m(A1

m))

is specified by xm := x̄m(A1
m). Let

bm :=
∑

i∈Sm\{tm,dm}

vipi

c :=
∑

i∈(S−1∪S1)\{t−1,d−1,t1,d1}

vi

βm :=
β−mvtmptm

bm + β−mvtmptm

(
αm +

αm − 1

α−mvt−m
+

(αm − 1)c

α−mvt−m

)
+
bm
[
α−mvt−m − (αm − 1)β−mvtm

]
(bm + β−mvtmptm)α−mvt−m

β̄m :=
vtmptm

bm + vtmptm

(
αm +

αm − 1

vt−m
+

(αm − 1)c

vt−m

)
+
bm
[
vt−m − (αm − 1)vtm

]
(bm + vtmptm) vt−m

λm :=
α−mvt−m (β−mvtmptm + bm)(

1 + β−mvtm + α−mvt−m + c
) (

1 + αmβ−mvtm + α−mβmvt−m + c
)

λ̄m :=
vt−m (vtmptm + bm)(

1 + vtm + vt−m + c
) (

1 + αmvtm + βmvt−m + c
)

Γ−m :=
λm (βm − βm)

λ̄m
(
βm − β̄m

)
Note that, unlike the case with simple product sets, it does not necessarily hold that βm <

β̄m. Proposition 3.10 characterizes the equilibria for the case with general product sets and

simple actions.

Proposition 3.10. For assortment competition with general product sets and simple ac-

tions, the set of equilibria is completely characterized by the 16 cases in Table 12, with

x∗m = 1/(1 + Γm).

115



#
Sufficient condition

Nash equilibrium
β−1 v.s. β−1 β̄−1 v.s. β−1 β1 v.s. β1 β̄1 v.s. β1

1 > < > < (x∗−1, x
∗
1),(A1

−1, A
1
1), (A0

−1, A
0
1)

2 < > > < (x∗−1, x
∗
1)

3 > < < > (x∗−1, x
∗
1)

4 < > < > (x∗−1, x
∗
1), (A0

−1, A
1
1), (A1

−1, A
0
1)

5 > > > >
6 > > > < (A1

−1, A
1
1)

7 > < > >

8 > > < >
9 > > < < (A0

−1, A
1
1)

10 < > < <

11 < > > >
12 < < > > (A1

−1, A
0
1)

13 < < < >

14 > < < <
15 < < > < (A0

−1, A
0
1)

16 < < < <

Table 12: Characterization of the Nash equilibria for general product sets and simple ac-
tions.

Note that not all 16 cases can occur for all values of βm and β̄m. For example, Case 1

can occur only if βm > β̄m for m = ±1, Case 5 can occur for all values of βm and β̄m, and

Case 6 can occur only if β−1 > β̄−1. For each of the four settings (1) βm < β̄m for m = ±1,

(2) βm > β̄m for m = ±1, (3) β1 < β̄1 and β−1 > β̄−1, and (4) β1 > β̄1 and β−1 < β̄−1,

exactly nine cases in Table 12 can occur.

Cases in which some of the inequalities in Table 12 are replaced with equalities can be

resolved as explained in Remark 3.1.

3.5.2 Cournot Adjustment Process

3.5.2.1 Cases 1 and 4

The behavior of the Cournot adjustment process under Case 4 in Table 12 is the same as the

behavior described in Theorem 3.1. For Case 1 in Table 12, the result of Theorem 3.1 holds

after interchanging (A1
−1, A

0
1) and (A1

−1, A
1
1) and interchanging (A0

−1, A
1
1) and (A0

−1, A
0
1).
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3.5.2.2 Cases 2 and 3

We first study Case 3 in Table 12, that holds if β̄−1 < β−1 < β−1 and β1 < β1 < β̄1.

Proposition 3.11 asserts that the Cournot adjustment process cycles.

Proposition 3.11. Under Case 3 in Table 12, the Cournot adjustment process A(t) cycles

as follows: · · · → (A1
−1, A

1
1)→ (A1

−1, A
0
1)→ (A0

−1, A
0
1)→ (A0

−1, A
1
1)→ (A1

−1, A
1
1)→ · · · .

By a similar argument, the Cournot adjustment process under Case 2 in Table 12 cycles

as follows: · · · → (A1
−1, A

1
1)→ (A0

−1, A
1
1)→ (A0

−1, A
0
1)→ (A1

−1, A
0
1)→ (A1

−1, A
1
1)→ · · · .

3.5.2.3 Cases 5–16

Under Cases 5–16 in Table 12, each seller’s action in the unique pure-strategy Nash equi-

librium for each case dominates the other action, and as a result the Cournot adjustment

process stays at the equilibrium after the first step.

3.5.3 Fictitious Play Process

3.5.3.1 Cases 1 and 4

The dynamics of the fictitious play process under Case 4 in Table 12 is the same as described

in Section 3.4.3.1. By changing variables y−1 = 1 − x1 and y1 = x−1, the analysis of the

dynamics of the fictitious play process under Case 4 applies to Case 1 on the (y−1, y1)-plane

with y∗ = (y∗−1, y
∗
1) as the mixed-strategy equilibrium, where y∗−1 = 1− x∗1 and y∗1 = x∗−1.

3.5.3.2 Cases 2 and 3

Since the mixed-strategy Nash equilibrium x∗ is the unique Nash equilibrium for Case 2 or

Case 3, it follows from [44] that, for any initial x ∈ P , the fictitious play process converges

to x∗ as t→∞.

3.5.3.3 Cases 5–16

Under Cases 5–16 in Table 12, each seller’s action in the unique pure-strategy Nash equi-

librium for each case dominates the other action, and as a result the fictitious play process

converges to the pure-strategy Nash equilibrium for that case.
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3.6 Assortment Competition with General Product Sets and General
Actions

In this section we consider the setting in which each seller has a general product set (Sm

may contain other products in addition to the target and decoy), and each seller chooses

which subset of the product set to offer.

3.6.1 Characterization of Equilibria

Let C0
m := {Am ∈ Cm : dm /∈ Am} denote the set of assortments of seller m excluding the

decoy, and let C1
m := {Am ∈ Cm : dm ∈ Am} denote the set of assortments of seller m

including the decoy. For any mixed strategy x̄m ∈ ∆(Cm), let C+
m(x̄m) := {Am ∈ Cm :

x̄m(Am) > 0} denote the assortments chosen with positive probability by x̄m. For i ∈ {0, 1},

define the restricted pure best response correspondences PBRim : ∆(C−m) 7→ 2C
i
m as

PBRim(x̄−m) := argmax
Aim∈Cim

∑
A−m∈C−m

πm(Aim, A−m)x̄−m(A−m),

that is, PBR0
m(x̄−m) (PBR1

m(x̄−m)) is the set of best responses of seller m to assortment

distribution x̄−m among the assortments that exclude (include) the decoy. If x̄−m(A−m) = 1

for some A−m ∈ C−m, then we also write PBRim(A−m) for PBRim(x̄−m).

For anyA,A′ ⊂ S, let bm(A) :=
∑

j∈A\{tm,dm} vjpj and c(A,A′) :=
∑

j∈A∪A′\{t1,d1,t−1,d−1} vj .

For any A−m ∈ C−m, and for any (arbitrarily) chosen Aim ∈ PBRim(A−m), let

β̄m(A−m) :=
vtmptm

vtmptm + bm(A0
m)

(
αm +

αm − 1

vt−m
+
αmc(A−m, A

0
m)− c(A−m, A1

m)

vt−m

)
+

bm(A1
m)
[
1 + vtm + vt−m + c(A−m, A

0
m)
]
− bm(A0

m)
[
1 + αmvtm + c(A−m, A

1
m)
]

vt−m (vtmptm + bm(A0
m))

βm(A−m) :=
β−mvtmptm

β−mvtmptm + bm(A0
m)

(
αm +

αm − 1

α−mvt−m
+
αmc(A−m, A

0
m)− c(A−m, A1

m)

α−mvt−m

)
+

bm(A1
m)
[
1 + β−mvtm + α−mvt−m + c(A−m, A

0
m)
]

α−mvt−m (β−mvtmptm + bm(A0
m))

−
bm(A0

m)
[
1 + αmβ−mvtm + c(A−m, A

1
m)
]

α−mvt−m (β−mvtmptm + bm(A0
m))

.

Proposition 3.12 shows that for each seller m a best response to the competitor’s assort-

ment contains a decoy iff seller m’s inter-decoy factor βm is small relative to a threshold.

Proposition 3.12. The following holds:
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(1) For any A0
−m ∈ C0

−m and any A0
m ∈ PBR0

m(A0
−m), it holds that A0

m ∈ PBRm(A0
−m) iff

βm ≥ β̄m(A0
−m). That is, a no-decoy best response for seller m to A0

−m ∈ C0
−m is

an overall best response iff seller m’s inter-decoy factor βm is greater than threshold

β̄m(A0
−m).

(2) For any A1
−m ∈ C1

−m and any A1
m ∈ PBR1

m(A1
−m), it holds that A1

m ∈ PBRm(A1
−m)

iff βm ≤ βm(A1
−m). That is, a decoy best response for seller m to A1

−m ∈ C1
−m

is an overall best response iff seller m’s inter-decoy factor βm is less than threshold

βm(A1
−m).

(3) For any A0
−m ∈ C0

−m and any A1
m ∈ PBR1

−m(A0
−m), it holds that A1

m ∈ PBR−m(A0
−m)

iff βm ≤ β̄m(A0
−m). That is, a decoy best response for seller m to A0

−m ∈ C0
−m

is an overall best response iff seller m’s inter-decoy factor βm is less than threshold

β̄m(A0
−m).

(4) For any A1
−m ∈ C1

−m and any A0
m ∈ PBR0

m(A1
−m), it holds that A0

m ∈ PBRm(A1
−m) iff

βm ≥ βm(A1
−m). That is, a no-decoy best response for seller m to A1

−m ∈ C1
−m is

an overall best response iff seller m’s inter-decoy factor βm is greater than threshold

βm(A1
−m).

For i ∈ {0, 1}, and any x̄−m ∈ ∆(C−m), define the restricted mixed best response

correspondences BRim : ∆(C−m) 7→ 2∆(Cim) as

BRim(x̄−m) := argmax


∑

(A−1,A1)∈C πm(Am, A−m)x̄−m(A−m)x̄m(Am)

s.t. x̄m ∈ ∆(Cm),
∑

Aim∈Cim x̄m(Aim) = 1

 ,

that is, BR0
m(x̄−m) (BR1

m(x̄−m)) is the set of best responses of seller m to assortment dis-

tribution x̄−m among the assortment distributions that exclude (include) the decoy w.p.1.

Also, define the restricted mixed best response correspondences BR2
m : ∆(C−m) 7→ 2∆(Cm)

as

BR2
m(x̄−m) := argmax


∑

(A−1,A1)∈C πm(Am, A−m)x̄−m(A−m)x̄m(Am)

s.t. x̄m ∈ ∆(Cm),
∑

Aim∈Cim x̄m(Aim) > 0, i = 0, 1

 ,
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that is, BR2
m(x̄−m) is the set of best responses of seller m to assortment distribution x̄−m

among the assortment distributions that both exclude and include the decoy with positive

probability.

For any x̄−m ∈ ∆(C−m) and A−m ∈ C+
−m(x̄−m), and any Aim ∈ PBRim(x̄−m), let

β̄m(A−m, A
0
m, A

1
m) :=

vtmptm
vtmptm + bm(A0

m)

(
αm +

αm − 1

vt−m

+
αmc(A−m, A0

m)− c(A−m, A1
m)

vt−m

)

+
bm(A1

m)
[
1 + vtm + vt−m + c(A−m, A0

m)
]
− bm(A0

m)
[
1 + αmvtm + c(A−m, A1

m)
]

vt−m (vtmptm + bm(A0
m))

βm(A−m, A
0
m, A

1
m) :=

β−mvtmptm
β−mvtmptm + bm(A0

m)

(
αm +

αm − 1

α−mvt−m

+
αmc(A−m, A0

m)− c(A−m, A1
m)

α−mvt−m

)

+
bm(A1

m)
[
1 + β−mvtm + α−mvt−m + c(A−m, A0

m)
]

α−mvt−m (β−mvtmptm + bm(A0
m))

−
bm(A0

m)
[
1 + αmβ−mvtm + c(A−m, A1

m)
]

α−mvt−m (β−mvtmptm + bm(A0
m))

λ̄m(A−m, A
0
m, A

1
m) :=

vt−m

(
vtmptm + bm(A0

m)
)(

1 + vtm + vt−m + c(A−m, A0
m)
) (

1 + αmvtm + βmvt−m + c(A−m, A1
m)
)

λm(A−m, A
0
m, A

1
m) :=

α−mvt−m

(
β−mvtmptm + bm(A0

m)
)(

1 + β−mvtm + α−mvt−m + c(A−m, A0
m)
) (

1 + αmβ−mvtm + α−mβmvt−m + c(A−m, A1
m)
)

βm(x̄−m) :=

∑
A−m∈C0

−m
λ̄m(A−m, A0

m, A
1
m)β̄m(A−m, A0

m, A
1
m)x̄−m(A−m)∑

A−m∈C0
−m

λ̄m(A−m, A0
m, A

1
m)x̄−m(A−m) +

∑
A−m∈C1

−m
λm(A−m, A0

m, A
1
m)x̄−m(A−m)

+

∑
A−m∈C1

−m
λm(A−m, A0

m, A
1
m)βm(A−m, A0

m, A
1
m)x̄−m(A−m)∑

A−m∈C0
−m

λ̄m(A−m, A0
m, A

1
m)x̄−m(A−m) +

∑
A−m∈C1

−m
λm(A−m, A0

m, A
1
m)x̄−m(A−m)

.

Proposition 3.13 shows that for each seller m there is a best response strategy that

always contains a decoy iff seller m’s inter-decoy factor βm is small relative to a threshold.

In addition, there is a best response strategy that both contains a decoy and does not

contain a decoy with positive probabilities iff seller m’s inter-decoy factor βm is equal to a

threshold.

Proposition 3.13. The following holds:

(1) For any x̄−m ∈ ∆(C−m) and any x̄0
m ∈ BR0

m(x̄−m), it holds that x̄0
m ∈ BRm(x̄−m) iff

βm ≥ βm(x̄0
−m). That is, a no-decoy best response for seller m to x̄−m is an overall

best response iff seller m’s inter-decoy factor βm is greater than threshold βm(x̄−m).

(2) For any x̄−m ∈ ∆(C−m) and any x̄1
m ∈ BR1

m(x̄−m), it holds that x̄1
m ∈ BRm(x̄−m) iff

βm ≤ βm(x̄−m). That is, a decoy best response for seller m to x̄−m is an overall best

response iff seller m’s inter-decoy factor βm is less than threshold βm(x̄−m).
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(3) For any x̄−m ∈ ∆(C−m) and any x̄2
m ∈ BR2

m(x̄−m), it holds that x̄2
m ∈ BRm(x̄−m). Also,

BR2
m(x̄−m) 6= ∅ iff βm = βm(x̄−m). That is, a mixed decoy/no-decoy best response for

seller m to x̄−m is an overall best response, and a mixed decoy/no-decoy best response

exists iff seller m’s inter-decoy factor βm is equal to the threshold βm(x̄−m).

3.6.2 Fictitious Play that Cycles

As we showed, the dynamic behavior of fictitious play with simple product sets and simple

actions or general product sets and simple actions can be completely characterized with

quite simple geometry. The dynamic behavior of fictitious play with general product sets

and general actions is qualitatively more complicated, and does not allow a characterization

as simple as that with two actions. Here we illustrate this point by example. We show that

fictitious play for a duopoly in which each seller chooses among three assortments can

cycle without convergence to any equilibrium. The example was constructed to satisfy the

sufficient conditions specified in [60, p.25] for fictitious play to cycle without convergence

to any Nash equilibrium.

Seller -1 has product set S−1 = {1, 2, . . . , 5} and seller 1 has product set S1 = {6, 7, . . . , 10},

where products 1 and 2 are respectively the target and decoy products of seller -1, and prod-

ucts 6 and 7 are respectively the target and decoy products of seller 1. Table 13 gives the

attractiveness parameter vi of each product i. Note that v1 > v2 and v6 > v7, consistent

with the idea that each seller’s target dominates the seller’s decoy in terms of attractiveness

to buyers.

Table 13: The attractiveness parameter vi of each product i.

Product # i 1 2 3 4 5 6 7 8 9 10

Attractiveness vi 12 1.2 4.2 ×105 10−3 10−3 12 6.8 1.6 ×105 3.7 ×103 3.2×105

The decoy factors are α−1 = 18, α1 = 1.5 × 103, β−1 = 660 and β1 = 820. Each

seller chooses among three assortments to offer. Specifically, the sellers’ action sets are

C−1 = {{1, 2, 4}, {1, 5}, {1, 3}} and C1 = {{6, 9}, {6, 7, 10}, {6, 8}}. Table 14 gives the

profit margins pi (i.e., the unit prices minus unit costs) of each product i.
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Table 14: The profit margin pi of each product i.

Product # i 1 2 3 4 5 6 7 8 9 10

Profit margin pi 1.8 ×105 2.1×105 570 8×104 1.5×105 350 570 370 400 400

The resulting objective functions πm(Am, A−m) of the two sellers are given in Table 15.

The unique equilibrium is the mixed-strategy equilibrium x̄∗−1 = (0.520, 0.411, 0.069) and

x̄∗1 = (0.057, 0.132, 0.811).

Table 15: The objective functions πm(Am, A−m) of the two sellers.

seller 1
{6, 9} {6, 7, 10} {6, 8}

seller -1
{1,2,4} 3285, 359.1 2576, 346.2 231.2, 368.6
{1,5} 579.9, 398.4 5092, 386.1 13.50, 369.9
{1,3} 570.1, 3.503 2619, 175.0 416.5, 102.1

The initial conditions are x−1(0) = (1, 0, 0), x1(0) = (1, 0, 0), M−1 = 5, and M1 = 3.

Figure 11a shows the trajectory of empirical probabilities of seller −1 choosing assortments

{1, 2, 4} and {1, 5}, and Figure 11b shows the trajectory of empirical probabilities of sell-

er 1 choosing assortments {6, 9} and {6, 7, 10}, for t = 0, 1, . . . , 107. The trajectories quickly

converge to triangular limit cycles. Figure 11a also shows the regions (with dotted bound-

aries) in which each of the assortments of seller 1 is preferred by that seller, and Figure 11b

shows similar preference regions for seller −1. The unique (mixed-strategy) equilibrium

corresponds to the intersection points of the three regions for each seller. Also note that

when the trajectory of one seller’s empirical probabilities crosses a boundary between two

regions, then the chosen assortment of the other seller changes, and thus the trajectory of

the other seller’s empirical probabilities changes direction. For example, when the trajectory

of seller −1 crosses the boundary at the blue dot in Figure 11a, then the chosen assortment

of seller 1 changes from {6, 9} to {6, 8}, and thus the trajectory of seller 1 changes at the

blue dot in Figure 11b from moving in the direction of (1, 0) to moving in the direction of

(0, 0).
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Figure 11: A trajectory of the fictitious play process for two sellers with three actions each.

3.7 Conclusion

The decoy effect has been observed in a variety of choice settings, both experimental settings

as well as real-life choice settings. We proposed a modified attraction choice model that is

simple and that captures the decoy effect. We also studied assortment competition between

two sellers who take the decoy effect into account. It was found that every type of pure-

strategy Nash equilibrium — with neither seller offering a decoy, with one seller offering

a decoy, and with both sellers offering a decoy — can occur in such a duopoly, and we

characterized the conditions under which each type of equilibrium occurs. In short, it was

found that if the effect of a seller’s decoy on the attractiveness of the other seller’s target (the

inter-decoy effect) is small relative to the effect of the seller’s decoy on the attractiveness of

the seller’s own target (the intra-decoy effect), then the seller chooses to offer the decoy.

We also studied the stability of the Nash equilibria under learning dynamics, to obtain

a sense of whether the equilibria provide a potentially trustworthy forecast of the outcome

of the competition. This is especially interesting and relevant in the settings with multiple

pure-strategy Nash equilibria and a mixed-strategy Nash equilibrium. This type of inves-

tigation is not very common in the supply chain literature, but we think that questions
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and study of equilibrium stability should be more standard. In short, it was found that all

pure-strategy Nash equilibria can provide reliable forecasts of the outcome of the compe-

tition in the sense that they have large domains of attraction. In contrast, mixed-strategy

Nash equilibria have negligible domains of attraction, except for a special case, and thus

we conclude that mixed-strategy Nash equilibria do not provide reliable forecasts of the

outcome of the competition. Our results also provide a simple geometric characterization of

the dynamics of fictitious play for general 2× 2 games that is more complete than previous

characterizations. The dynamics of fictitious play for more general games, including 3 × 3

games, has been shown to be qualitatively more complicated, and remains to be studied

further.
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APPENDIX A

PROOFS AND SUPPLEMENTARY MATERIAL FOR CHAPTER III

In this section, we provide proofs for the results in Chapter III that characterize Nash

Equilibira and that characterize the dynamics of the Cournot adjustment and fictitious

play processes. We also provide supporting material, including Lemmas and additional

explanations.

A.1 Assortment Competition with Simple Product Sets

A.1.1 Proofs for the Characterization of Equilibria

Proof of Proposition 3.1: Consider the following four cases.

(1) (A0
−1, A

0
1) is a pure-strategy Nash equilibrium iff, for m = ±1,

πm(A0
m, A

0
−m) ≥ πm(A1

m, A
0
−m)

⇔ vtmptm
1 + vtm + vt−m

≥ αmvtmptm
1 + αmvtm + βmvt−m

⇔ βm ≥ αm +
αm − 1

vt−m
= β̄m .

(2) (A1
−1, A

1
1) is a pure-strategy Nash equilibrium iff, for m = ±1,

πm(A1
m, A

1
−m) ≥ πm(A0

m, A
1
−m)

⇔ αmβ−mvtmptm
1 + αmβ−mvtm + α−mβmvt−m

≥ β−mvtmptm
1 + β−mvtm + α−mvt−m

⇔ βm ≤ αm +
αm − 1

α−mvt−m
= βm .

(3) (A0
−1, A

1
1) is a pure-strategy Nash equilibrium iff

π−1(A0
−1, A

1
1) ≥ π−1(A1

−1, A
1
1)

⇔
β1vt−1pt−1

1 + β1vt−1 + α1vt1
≥

α−1β1vt−1pt−1

1 + α−1β1vt−1 + α1β−1vt1

⇔ 1 + α−1β1vt−1 + α1β−1vt1 ≥ α−1(1 + β1vt−1 + α1vt1)
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⇔ 1 + α1β−1vt1 ≥ α−1(1 + α1vt1)

⇔ β−1 ≥ α−1 +
α−1 − 1

α1vt1
= β−1

and

π1(A1
1, A

0
−1) ≥ π1(A0

1, A
0
−1)

⇔ α1vt1pt1
1 + β1vt−1 + α1vt1

≥ vt1pt1
1 + vt−1 + vt1

⇔ α1(1 + vt−1 + vt1) ≥ 1 + β1vt−1 + α1vt1

⇔ α1(1 + vt−1) ≥ 1 + β1vt−1

⇔ β1 ≤ α1 +
α1 − 1

vt−1

= β̄1 .

(4) Case (4) follows from Case (3) by interchanging -1 and 1.

Proof of Proposition 3.2: The best response problem of seller m in response to x−m is

max
xm∈[0,1]

{
xm
[
x−mπm(A1

m, A
1
−m) + (1− x−m)πm(A1

m, A
0
−m)

]
+(1− xm)

[
x−mπm(A0

m, A
1
−m) + (1− x−m)πm(A0

m, A
0
−m)

] }
.

A necessary and sufficient condition for (x∗−1, x
∗
1) ∈ (0, 1)2 to be a mixed-strategy Nash equi-

librium is that the objective function of each seller m is invariant in xm given x∗−m, and thus

x∗−mπm(A1
m, A

1
−m)+(1−x∗−m)πm(A1

m, A
0
−m) = x∗−mπm(A0

m, A
1
−m)+(1−x∗−m)πm(A0

m, A
0
−m).

It follows that

x∗−m =
πm(A0

m, A
0
−m)− πm(A1

m, A
0
−m)

πm(A1
m, A

1
−m)− πm(A1

m, A
0
−m)− πm(A0

m, A
1
−m) + πm(A0

m, A
0
−m)

=
1

1 + Γ−m

where

Γ−m :=
πm(A1

m, A
1
−m)− πm(A0

m, A
1
−m)

πm(A0
m, A

0
−m)− πm(A1

m, A
0
−m)

=

αmβ−mvtmptm
1+αmβ−mvtm+α−mβmvt−m

− β−mvtmptm
1+β−mvtm+α−mvt−m

vtmptm
1+vtm+vt−m

− αmvtmptm
1+αmvtm+βmvt−m

=
β−mα−m(1 + vtm + vt−m)(1 + αmvtm + βmvt−m)(βm − βm)

(1 + αmβ−mvtm + α−mβmvt−m)(1 + β−mvtm + α−mvt−m)(βm − β̄m)
.

Note that if βm < βm < β̄m then Γ−m ∈ (0,∞).
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A.1.2 Proofs for the Cournot Adjustment Process

A.1.2.1 Case 1

Recall from Table 11 that Case 1 holds under condition

βm < βm < β̄m, m = ±1. (A.1)

We first state Lemma A.1 that will be used to prove Theorem 3.1 and Proposition 3.3.

Lemma A.1. Condition (A.1) holds if and only if

πm(A1
m, A

0
−m) > πm(A0

m, A
0
−m) and πm(A0

m, A
1
−m) > πm(A1

m, A
1
−m), m = ±1.

Proof : Note that

πm(A1
m, A

0
−m) > πm(A0

m, A
0
−m)

⇔ αmvtmptm
1 + αmvtm + βmvt−m

>
vtmptm

1 + vtm + vt−m

⇔ βm < β̄m,

πm(A0
m, A

1
−m) > πm(A1

m, A
1
−m)

⇔ β−mvtmptm
1 + β−mvtm + α−mvt−m

>
αmβ−mvtmptm

1 + αmβ−mvtm + α−mβmvt−m

⇔ βm < βm.

Proof of Theorem 3.1:

(1) For any t ∈ N0 and m = ±1, if A(t) = (A0
−m, A

1
m), i.e., A−m(t) = A0

−m and

Am(t) = A1
m, it follows from Lemma A.1 that πm(A1

m, A
0
−m) > πm(A0

m, A
0
−m) and that

π−m(A0
−m, A

1
m) > π−m(A1

−m, A
1
m). Thus it follows from (3.6) that A−m(t+1) = A0

−m

and Am(t+ 1) = A1
m, which implies that (A0

−m, A
1
m) is a steady state.

(2) For any t ∈ N0, it follows from Lemma A.1 that, if A(t) = (A1
−1, A

1
1), then A(t+ 1) =

(A0
−1, A

0
1), and if A(t) = (A0

−1, A
0
1), then A(t + 1) = (A1

−1, A
1
1). Thus, if A(0) =
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(A1
−1, A

1
1),

A(t) =

 (A1
−1, A

1
1) if t ≥ 1 and t is even,

(A0
−1, A

0
1) if t ≥ 1 and t is odd.

and if A(0) = (A0
1, A

0
−1), it follows

A(t) =

 (A0
−1, A

0
1) if t ≥ 1 and t is even,

(A1
−1, A

1
1) if t ≥ 1 and t is odd.

Proof of Proposition 3.3: It follows from Lemma A.1 that

1

2
πm(A1

m, A
1
−m) <

1

2
πm(A0

m, A
1
−m) and

1

2
πm(A0

m, A
0
−m) <

1

2
πm(A1

m, A
0
−m).

Thus, condition (3.3) fails to hold and the limit empirical joint distribution x̄∗(A1
−1, A

1
1) =

1/2 and x̄∗(A0
−1, A

0
1) = 1/2 is not a correlated equilibrium. Since 0.5πm(A1

m, A
1
−m) +

0.5πm(A0
m, A

0
−m) < 0.5πm(A1

m, A
1
−m) + 0.5πm(A1

m, A
0
−m), condition (3.4) fails to hold and

the limit empirical joint distribution x̄∗(A1
−1, A

1
1) = 1/2 and x̄∗(A0

−1, A
0
1) = 1/2 is not a

coarse correlated equilibrium.

A.1.2.2 Case 2

Under Case 2, it holds that

βm < β̄m and βm < βm, m = ±1. (A.2)

Lemma A.2. Suppose that (A.2) holds. Then, A1
m dominates A0

m for m = ±1.

Proof : Note that, for m = ±1

πm(A1
m, A

1
−m) > πm(A0

m, A
1
−m)

⇔ αmβ−mvtmptm
1 + αmβ−mvtm + α−mβmvt−m

>
β−mvtmptm

1 + β−mvtm + α−mvt−m

⇔ βm < βm,

and

πm(A1
m, A

0
−m) > πm(A0

m, A
0
−m)
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⇔ αmvtmptm
1 + αmvtm + βmvt−m

>
vtmptm

1 + vtm + vt−m

⇔ βm < β̄m.

This shows that A1
m dominates A0

m for m = ±1.

Proof of Proposition 3.4: The result follows from Lemma A.2.

A.1.3 Continuous-time Fictitious Play under Case 1

Before investigating the more complicated discrete-time fictitious play process (3.9), we

consider its simpler continuous-time analogue. Similar to (3.7) and (3.9), let x(t) :=

(x−1(t), x1(t)) denote the state at time t ∈ R+ with specified initial condition x(0), and

let the dynamics be given by

ẋm(t) = 1[x−m(t)≤x∗−m] − xm(t), m = ±1. (A.3)

The resulting trajectory x(t) is given by

x(t) =



(
1− e−t[1− x−1(0)], 1− e−t[1− x1(0)]

)
for x(0) ∈ P0, t ∈ [0, t̄1] ,(

e−tx−1(0), e−tx1(0)
)

for x(0) ∈ P1, t ∈ [0, t̄2] ,(
e−tx−1(0), 1− e−t[1− x1(0)]

)
for x(0) ∈ P2, t ≥ 0,(

1− e−t[1− x−1(0)], e−tx1(0)
)

for x(0) ∈ P3, t ≥ 0,

(A.4)

where t̄1 := minm=±1

{
ln
(

1−xm(0)
1−x∗m

)}
and t̄2 =:= minm=±1

{
ln
(
xm(0)
x∗m

)}
.

Trajectories x(t) starting from various initial points x(0) are shown in Figure 12a for

x∗−1 6= x∗1 and in Figure 12b for x∗−1 = x∗1. Note that if x(0) ∈ P0, then x(t) reaches the

boundary of P0 at t0 := minm=±1 {ln ([1− xm(0)]/[1− x∗m])}. If ln
(
[1− x−1(0)]/[1− x∗−1]

)
<

ln ([1− x1(0)]/[1− x∗1]), then x−1(t0) = x∗−1, and at time t0 the trajectory enters P3, and

thus x(t) =
(
1− e−(t−t0)[1− x−1(t0)], e−(t−t0)x1(t0)

)
for t > t0. Similarly, if x(0) ∈ P0 and

ln
(
[1− x−1(0)]/[1− x∗−1]

)
> ln ([1− x1(0)]/[1− x∗1]), then x1(t0) = x∗1, and at time t0 the

trajectory enters P2, and thus x(t) =
(
e−(t−t0)x−1(t0), 1− e−(t−t0)[1− x1(t0)]

)
for t > t0.

However, if x(0) ∈ P0 and ln
(
[1− x−1(0)]/[1− x∗−1]

)
= ln ([1− x1(0)]/[1− x∗1]), then (A.3)

allows three solutions:

x(t) =
(

1− e−(t−t0)[1− x−1(t0)], e−(t−t0)x1(t0)
)
,
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Figure 12: Trajectories of the continuous-time fictitious play process starting from various
initial points x(0).

or

x(t) =
(
e−(t−t0)x−1(t0), 1− e−(t−t0)[1− x1(t0)]

)
,

or

x(t) = x∗

for t > t0. Similar comments apply to the case with x(0) ∈ P1. Note that (A0
−1, A

1
1) and

(A1
−1, A

0
1) are both attracting equilibria, each with an easily identified domain of attraction,

whereas x∗ is an unstable equilibrium. The solution given in (A.4) for continuous-time

fictitious play can be regarded as a simplified approximation of the trajectories of the

(discrete-time) fictitious play process; the discrepancies being caused by the discrete steps

taken in the latter process.
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A.1.4 Proofs and Additional Results for Discrete-time Fictitious Play under
Case 1

A.1.4.1 Proof of Convergence from P2 and P3

Proof of Theorem 3.2: Consider any x ∈ P2 and t ∈ N0. It follows from Lemma 3.1 that

φ(t+ τ, t, x) ∈ P2 for all τ ∈ N0. Thus, it follows from (3.10) that

φm(t+ τ, t, x) =
(Mm + t)xm(t) +

∑τ
i=1 1[Am(t+i)=A1

m]

Mm + t+ τ

=


(Mm+t)xm(t)
Mm+t+τ if m = −1,

(Mm+t)xm(t)+τ
Mm+t+τ if m = 1,

for all τ ∈ N0, and thus φ−1(t + τ, t, x) → 0 and φ1(t + τ, t, x) → 1 as τ → ∞, that is,

φ(t+ τ, t, x)→ (0, 1) as τ →∞.

Consider any x ∈ P3 and t ∈ N0. It follows from Lemma 3.1 that φ(t+ τ, t, x) ∈ P3 for

all τ ∈ N0. Thus it follows from (3.10) that

φm(t+ τ, t, x) =


(Mm+t)xm(t)+τ

Mm+t+τ if m = −1,

(Mm+t)xm(t)
Mm+t+τ if m = 1,

for all τ ∈ N0, and hence φ(t+ τ, t, x)→ (1, 0) as τ →∞.

A.1.4.2 Properties of an Increasing Separable Affine Mapping

The following properties of an increasing separable affine mapping will be important. For

any D ⊂ Rn, let D̄ denote the closure of D in Rn, and let ∂D denote the boundary of D in

Rn.

Lemma A.3. Consider any increasing separable affine mapping f : Rn 7→ Rn. Then, the

following properties hold:

(1) There exists ` ∈ (0,∞)n such that fm(x) − fm(y) = `m(xm − ym) for all x, y ∈ Rn

and m ∈ {1, . . . , n}.

(2) For any D ⊂ Rn, f : D 7→ f(D) := {f(x) : x ∈ D} is a bijection, and f : Rn 7→ Rn

is a bijection.
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(3) For any D ⊂ Rn, it holds that E ⊂ D if and only if f(E) ⊂ f(D), E ⊂ ∂D if and

only if f(E) ⊂ ∂(f(D)), and E ∩D = ∅ if and only if f(E) ∩ f(D) = ∅.

(4) For any D ⊂ Rn it holds that f(conv(D)) = conv(f(D)).

Proof: Since f is an increasing separable affine mapping, there exists `m > 0 and am ∈

R such that fm(x) = `mxm + am for all x ∈ Rn and m ∈ {1, 2, . . . , n}. Let `max :=

maxm∈{1,2,...,n} `m and `min := minm∈{1,2,...,n} `m.

(1) For any x, y ∈ Rn and m ∈ {1, 2, . . . , n}, it holds that fm(x)− fm(y) = `m(xm − ym)

for all m.

(2) By the definition of f(D), f : D 7→ f(D) is a surjection. Consider any y ∈ Rn.

Choose x ∈ Rn such that xm = (ym − am)/`m for all m, and note that f(x) = y.

Thus f : Rn 7→ Rn is a surjection. Consider any x1, x2 ∈ D. Note that f(x1) = f(x2)

implies that `mx
1
m = `mx

2
m for all m, and thus, x1 = x2. Hence f is a bijection.

(3) It follows from f : Rn 7→ Rn being a bijection that E ⊂ D if and only if f(E) ⊂ f(D)

and E ∩D = ∅ if and only if f(E) ∩ f(D) = ∅.

Suppose that E ⊂ ∂D. Choose any y ∈ f(E) and any neighborhood B(y, ε) := {y′ ∈

Rn : ‖y′ − y‖∞ < ε}, where ε > 0. There exists x ∈ E such that f(x) = y. Since

x ∈ E ⊂ ∂D, there exists x1, x2 ∈ B(x, ε/`max) such that x1 ∈ D and x2 /∈ D. For

i ∈ {1, 2}, it holds that ‖f(xi) − y‖∞ = ‖f(xi) − f(x)‖∞ ≤ `max‖xi − x‖∞ < ε.

Thus, f(xi) ∈ B(y, ε) for i ∈ {1, 2}. Note that f(x1) ∈ f(D) but f(x2) /∈ f(D),

since f : Rn 7→ Rn is a bijection by Lemma A.3(2). Thus, y ∈ ∂(f(D)), and hence

f(E) ⊂ ∂(f(D)).

Suppose that f(E) ⊂ ∂(f(D)). Choose any x ∈ E and any neighborhood B(x, ε).

Since f(x) ∈ f(E) ⊂ ∂(f(D)), there exists y1, y2 ∈ B(f(x), ε`min) such that y1 ∈

f(D) and y2 /∈ f(D). Since f is a bijection, there exists x1 ∈ D and x2 /∈ D

such that f(xi) = yi for i ∈ {1, 2}. For i ∈ {1, 2}, it holds that ‖xi − x‖∞ ≤

‖f(xi) − f(x)‖∞/`min = ‖yi − f(x)‖∞/`min < ε. Thus, x1, x2 ∈ B(x, ε). Thus,

x ∈ ∂(D), and hence E ⊂ ∂D.
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(4) Result (4) holds for any affine mapping f .

We will be interested in cases in which D is a rectangle of the form
∏n
m=1[x1

m, x
2
m] or∏n

m=1(x1
m, x

2
m], or the boundaries or vertices of such a rectangle. The following results will

be useful.

Lemma A.4. Consider any increasing separable affine mapping f : Rn 7→ Rn, x1, x2 ∈ Rn

such that x1 ≤ x2, and D :=
∏n
m=1[x1

m, x
2
m] ⊂ Rn. Then, f(D) =

∏n
m=1[fm(x1), fm(x2)].

Proof: Let f be given by fm(x) = `mxm + am, where `m > 0. Note that, for any

m ∈ {1, 2, . . . , n}, x1
m ≤ x2

m if and only if fm(x1) ≤ fm(x2). First consider any x ∈ D. Then

xm ∈ [x1
m, x

2
m], and thus fm(x) = `mxm+am ∈ [`mx

1
m+am, `mx

2
m+am] = [fm(x1), fm(x2)].

Hence, f(D) ⊂
∏n
m=1[fm(x1), fm(x2)]. Next consider any y ∈

∏n
m=1[fm(x1), fm(x2)]. Then

ym ∈ [fm(x1), fm(x2)] = [`mx
1
m + am, `mx

2
m + am], and thus xm := (ym − am)/`m ∈

[x1
m, x

2
m]. Note that x := (x1, . . . , xn) ∈ D and f(x) = y, and thus y ∈ f(D). Hence,∏n

m=1[fm(x1), fm(x2)] ⊂ f(D). Therefore, f(D) =
∏n
m=1[fm(x1), fm(x2)].

Lemma A.4 has several useful implications that we point out next.

Remark A.1. Let D := [x1
−1, x

2
−1] × [x1

1, x
2
1] where x1 < x2, and let E := (x1

−1, x
2
−1] ×

(x1
1, x

2
1].

(1) f(D) = [f−1(x1), f−1(x2)]× [f1(x1), f1(x2)] and f(x1) < f(x2).

(2) f maps a boundary of D to the corresponding boundary of f(D). For example,

f({xi−1} × [x1
1, x

2
1]) = {f−1(xi)} × [f1(x1), f1(x2)]

and

f([x1
−1, x

2
−1]× {xi1}) = [f−1(x1), f−1(x2)]× {f1(xi)}

for i ∈ {1, 2}.

(3) f maps a vertex of D into the corresponding vertex of f(D). For example, f((xi−1, x
j
1)) =

(f−1(xi), f1(xj)) for i, j ∈ {1, 2}.
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(4) It follows that if the left/right/upper/lower edge of a rectangle is included/excluded

in/from the rectangle, then the left/right/upper/lower edge of the image of the rect-

angle is included/excluded in/from the image of the rectangle. For example, f(E) =

(f−1(x1), f−1(x2)]× (f1(x1), f1(x2)].

A.1.4.3 One-step Analysis

Proof of Lemma 3.2: Because φ(t + 1, t, ·) : P̂k 7→ φ(t + 1, t, P̂k), where k ∈ {0, 1}, and

φ(t+1, t, ·) : Pk 7→ φ(t+1, t, Pk), where k ∈ {2, 3}, are increasing separable affine mappings,

the result follows from Remark A.1.

Proof of Proposition 3.5: Consider k = 0. Consider any

x = (x−1, x1) ∈ D0,i,j(t) := (x∗−1−jδ0
−1(t), x∗−1−(j−1)δ0

−1(t)]×(x∗1−iδ0
1(t), x∗1−(i−1)δ0

1(t)].

Let i1 := i and i−1 := j. It follows from (3.10) that

φm(t+ 1, t, x) =
(Mm + t)xm + 1

Mm + t+ 1

∈ Mm + t

Mm + t+ 1

(
x∗m − imδ0

m(t), x∗m − (im − 1)δ0
m(t))

]
+

1

Mm + t+ 1

= (x∗m − (im − 1)δ0
m(t+ 1), x∗m − (im − 2)δ0

m(t+ 1)],

for m = ±1, and thus φ(t+ 1, D0,i,j(t)) ⊂ D0,i−1,j−1(t+ 1).

Next we show that D0,i−1,j−1(t+1) ⊂ φ(t+1, D0,i,j(t)). Consider any x̃ ∈ D0,i−1,j−1(t+

1), that is,

x̃m ∈
(
x∗m − (im − 1)δ0

m(t+ 1), x∗m − (im − 2)δ0
m(t+ 1)

]
, m = ±1.

Then consider x = (x−1, x1), where

xm =
(Mm + t+ 1)x̃m − 1

Mm + t

for m = ±1. It is easy to verify that φ(t + 1, t, x) = x̃. Next we show that x ∈ D0,i,j(t).

Note that

xm =
(Mm + t+ 1)x̃m − 1

Mm + t
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∈ Mm + t+ 1

Mm + t

(
x∗m − (im − 1)δ0

m(t+ 1), x∗m − (im − 2)δ0
m(t+ 1)

]
− 1

Mm + t

=
(
x∗m − imδ0

m(t), x∗m − (im − 1)δ0
m(t)

]
.

Thus, x ∈ D0,i,j(t). Hence, D0,i−1,j−1(t+ 1) = φ(t+ 1, t,D0,i,j(t)). A similar argument can

be used for the case k = 1.

A.1.4.4 Multi-step Analysis

Proof of Lemma 3.3: Let f := f t+τt+1 . Since D walks to D̃, f is an increasing separable

affine mapping such that D̃ = f(D). For any E ⊂ D, it holds that f(E) ⊂ f(D) and that

E walks to f(E).

Recall from Lemma 3.1 that if x(t) ≤ x∗ (and thus x(t) ∈ P̂0), then x(t + 1) > x(t),

and thus x(t + τ) is increasing in τ until xm(t + τ) > x∗m for some m ∈ {−1, 1} and some

τ ∈ N0. Similarly, if x(t) > x∗ (and thus x(t) ∈ P̂1), then x(t+ 1) < x(t), and thus x(t+ τ)

is decreasing in τ until xm(t + τ) ≤ x∗m for some m ∈ {−1, 1} and some τ ∈ N0. Given

x(t) ∈ P̂0 (x(t) ∈ P̂1), we are interested in the first time t + τ such that x(t + τ) 6∈ P̂0

(x(t+ τ) 6∈ P̂1). For any t ∈ N0 and x ∈ P̂0 ∪ P̂1, let

Tm(t, x) :=

 inf {τ ≥ 1 : φm(t+ τ, t, x) > x∗m} if x ∈ P̂0

inf {τ ≥ 1 : φm(t+ τ, t, x) ≤ x∗m} if x ∈ P̂1

and let T (t, x) := min {T−1(t, x), T1(t, x)} denote the first time at which x(t+ τ) leaves the

region of x(t). Lemma A.5 relates the time T (t, x) with the cell where x(t) resides.

Lemma A.5. Consider any x ∈ Dk,i,j(t), where t ∈ N0, k ∈ {0, 1}, i ∈ Ik(t), and j ∈ Jk(t).

If i ≤ j, then T1(t, x) = i ≤ T−1(t, x), and if i ≥ j, then T−1(t, x) = j ≤ T1(t, x). Thus,

T (t, x) = min{i, j}.

Proof : Consider the case with k = 0 and i < j. Then it follows from Proposition 3.5

that D0,i,j(t) walks to D0,(i−τ),(j−τ)(t + τ) ⊂ P̂0 from time t to time t + τ for all τ ∈

{0, 1, . . . , i− 1}. It also follows that D0,i,j(t) walks to D0,0,(j−i)(t+ i) ⊂ P2 from time t to

time t + i. Thus, φ(t + τ, t, x) ∈ D0,(i−τ),(j−τ)(t + τ) ⊂ P̂0 for all τ ∈ {0, 1, . . . , i − 1}, and

φ(t + i, t, x) ∈ D0,0,(j−i)(t + i) ⊂ P2. Hence, φ1(t + τ, t, x) ≤ x∗1 for all τ ∈ {0, 1, . . . , i − 1}

and φ1(t + i, t, x) > x∗1, which implies that T1(t, x) = i. Also, φ−1(t + τ, t, x) ≤ x∗−1 for all
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τ ∈ {0, 1, . . . , i}, which implies that T−1(t, x) > i = T1(t, x). The other cases can be proved

by a similar argument.

Proof of Theorem 3.3: Theorem 3.3 follows from Theorem 3.2 and Lemma A.5.

Proof of Proposition 3.6: Proposition 3.6 follows from Proposition 3.5 and Lemma A.5.

Lemma A.6. For any t ∈ N0, it holds that φ(t+ 1, t, P (t)) ⊂ P ⊂ P (t+ 1).

Proof : Consider any x ∈ P (t). If x ∈ P2 ∪ P3, then it follows from Lemma 3.1 that

φ(t + 1, t, x) ∈ P2 ∪ P3 ⊂ P . If x ∈ P0(t), then −δ0
m(t) ≤ xm ≤ x∗m and φm(t + 1, t, x) =

[(Mm + t)xm + 1]/(Mm + t+ 1). Thus,

φm(t+ 1, t, x) ∈
[

(Mm + t)(−δ0
m(t)) + 1

Mm + t+ 1
,

(Mm + t)x∗m + 1

Mm + t+ 1

]
=

[
−(1− x∗m) + 1

Mm + t+ 1
,

(Mm + t)x∗m + 1

Mm + t+ 1

]
=

[
x∗m

Mm + t+ 1
,

(Mm + t)x∗m + 1

Mm + t+ 1

]
⊂ [0, 1]

for m = ±1. If x ∈ P1(t), then x∗m < xm < 1 + δ1
m(t) and φm(t + 1, t, x) = (Mm +

t)xm/(Mm + t+ 1). Thus,

φm(t+ 1, t, x) ∈
(

(Mm + t)x∗m
Mm + t+ 1

,
(Mm + t)[1 + δ1

m(t)]

Mm + t+ 1

)
=

(
(Mm + t)x∗m
Mm + t+ 1

,
(Mm + t)1 + x∗m
Mm + t+ 1

)
⊂ [0, 1]

for m = ±1. Therefore, φ(t+ 1, t, P (t)) ⊂ P ⊂ P (t+ 1).

Proof of Proposition 3.7: It follows from Theorems 3.2 and 3.3 that if φ(t, 0, x) ∈

∪D∈D2(t)D ∪ P2 at any time t ≥ 0 (that is, φ(t, 0, x) is above the diagonal cells at time t),

then φ(τ, 0, x)→ (0, 1) as τ →∞, and if φ(t, 0, x) ∈ ∪D∈D3(t)D∪P3 at any time t ≥ 0 (that

is, φ(t, 0, x) is below the diagonal cells at time t), then φ(τ, 0, x)→ (1, 0) as τ →∞.

Next, suppose that φ(t, 0, x) ∈ ∪D∈D=(t)D for all t. We show that φ(t, 0, x) → x∗ as

t → ∞. Since φ(t, 0, x) is in a diagonal cell for all t, it follows from Lemma A.5 that

T (t, φ(t, 0, x)) = T−1(t, φ(t, 0, x)) = T1(t, φ(t, 0, x)) < ∞ for all t. Let ∆Tn+1 denote the

number of steps between the nth and the (n + 1)th jumps of the sequence {φ(t, 0, x)}∞t=0.
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Thus, {∆Tn}∞n=1 is given by

∆T1 := T (0, x), τ1 := ∆T1,

∆T2 := T (τ1, φ(τ1, 0, x)), τ2 := τ1 + ∆T2,

∆T3 := T (τ2, φ(τ2, 0, x)), τ3 := τ2 + ∆T3,

...
...

∆Tn := T (τn−1, φ(τn−1, 0, x)), τn := τn−1 + ∆Tn.

Suppose that x ∈ P0(0). Then φ(τ2n−1, 0, x) ∈ D0,0,0(τ2n−1) ⊂ P1 and φ(τ2n, 0, x) ∈

D1,0,0(τ2n) ⊂ P0 for all n. Note that x∗m − δ1
m(τ2n) ≤ φm(t, 0, x) ≤ x∗m + δ0

m(τ2n−1) for

all t ∈ {τ2n−1, . . . , τ2n}, and x∗m − δ1
m(τ2n) ≤ φm(t, 0, x) ≤ x∗m + δ0

m(τ2n+1) for all t ∈

{τ2n, . . . , τ2n+1}, and for all n. Thus,

x∗m −
x∗m

Mm + τ2n
≤ φm(t, 0, x) ≤ x∗m +

1− x∗m
Mm + τ2n−1

∀ t ∈ {τ2n−1, . . . , τ2n},

x∗m −
x∗m

Mm + τ2n
≤ φm(t, 0, x) ≤ x∗m +

1− x∗m
Mm + τ2n+1

∀ t ∈ {τ2n, . . . , τ2n+1},

for all n. Since T (t, x) ≥ 1 for all t and all x, it follows that ∆Tn ≥ 1 for all n and τn →∞

as n→∞. Therefore, φm(t, 0, x)→ x∗m as t→∞. A similar argument applies if x ∈ P1(0).

Proof of Lemma 3.4: Since φ(t, 0, x)→ x∗ as t→∞, it follows that φ(t, 0, x) is in a diag-

onal cell for all t. Let {∆Tn}∞n=1 and {τn}∞n=1 be defined as in the proof of Proposition 3.7.

Suppose that x ∈ P0. Then

φm(τ2n−1, 0, x) =
Mmxm +

∑n
k=1 ∆T2k−1

Mm + τ2n−1
.

Since τn →∞ as n→∞, it follows that

x∗−1 = lim
n→∞

φ−1(τ2n−1, 0, x) = lim
n→∞

M−1x−1 +
∑n

k=1 ∆T2k−1

M−1 + τ2n−1

= lim
n→∞

M1x1 +
∑n

k=1 ∆T2k−1

M1 + τ2n−1
= lim

n→∞
φ1(τ2n−1, 0, x) = x∗1.

A similar argument applies if x ∈ P1.
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A.1.4.5 Characterization of Convergence for x∗−1 6= x∗1

Let

D=(t) :=

{
x ∈ P0(t) : x1 − x∗1 =

δ0
1(t)

δ0
−1(t)

(x−1 − x∗−1)

}
∪{

x ∈ P1(t) : x1 − x∗1 =
δ1

1(t)

δ1
−1(t)

(x−1 − x∗−1)

}
denote the diagonal line, that is, the line that connects x∗ with the vertices of the diagonal

cells, at time t. Let ρ(t, x) := (ρ−1(t, x), ρ1(t, x)) be given by ρm(t, x) := (xm−x∗m)(Mm+t)

for m = ±1. Then the diagonal line at time t is given by

D=(t) =
{
x ∈ P0(t) : ρ−1(t, x)(1− x∗1) = ρ1(t, x)(1− x∗−1)

}
∪{

x ∈ P1(t) : ρ−1(t, x)x∗1 = ρ1(t, x)x∗−1

}
.

Also, let D≥(t) and D≤(t) denote the sets of points above/on and below/on the diagonal

line respectively, i.e.,

D≥(t) :=
{
x ∈ P0(t) : ρ1(t, x)(1− x∗−1) ≥ ρ−1(t, x)(1− x∗1)

}
∪{

x ∈ P1(t) : ρ1(t, x)x∗−1 ≥ ρ−1(t, x)x∗1
}
∪ P2,

D≤(t) :=
{
x ∈ P0(t) : ρ1(t, x)(1− x∗−1) ≤ ρ−1(t, x)(1− x∗1)

}
∪{

x ∈ P1(t) : ρ1(t, x)x∗−1 ≤ ρ−1(t, x)x∗1
}
∪ P3.

Let D> and D< denote the sets of points above and below the diagonal line respectively,

i.e.,

D>(t) :=
{
x ∈ P0(t) : ρ1(t, x)(1− x∗−1) > ρ−1(t, x)(1− x∗1)

}
∪{

x ∈ P1(t) : ρ1(t, x)x∗−1 > ρ−1(t, x)x∗1
}
∪ P2,

D<(t) :=
{
x ∈ P0(t) : ρ1(t, x)(1− x∗−1) < ρ−1(t, x)(1− x∗1)

}
∪{

x ∈ P1(t) : ρ1(t, x)x∗−1 < ρ−1(t, x)x∗1
}
∪ P3.

Proposition A.1. Consider any t ∈ N0. Then, the following holds:

(1) If x∗1 ≥ x∗−1, then φ(t+ 1, t,D≤(t)) ⊂ D≤(t+ 1) and φ(t+ 1, t,D<(t)) ⊂ D<(t+ 1).
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(2) If x∗1 ≤ x∗−1, then φ(t+ 1, t,D≥(t)) ⊂ D≥(t+ 1) and φ(t+ 1, t,D>(t)) ⊂ D>(t+ 1).

Proof : Suppose that x∗1 ≥ x∗−1. Consider any x ∈ D≤(t) ⊂ ∪D∈D=(t)∪D3(t)D ∪ P3. If

x ∈ P3, then it follows from Lemma 3.1 that φ(t + 1, t, x) ∈ P3. If x ∈ ∪D∈D3(t)D, then it

follows from Theorem 3.3 that φ(t+ 1, t, x) ∈ ∪D∈D3(t+1)D ∪ P3 ⊂ D≤(t+ 1).

Next, suppose that x ∈ ∪D∈D=(t)D ∩D≤(t). First consider the case in which x ∈ P0(t),

and thus x ∈ D0,i,i(t) for i ≥ 1. It follows from (3.10) that

φm(t+ 1, t, x) =
(Mm + t)xm + 1

Mm + t+ 1

=
(Mm + t)x∗m + ρm(t, x) + 1

Mm + t+ 1

= x∗m +
ρm(t, x) + 1− x∗m

Mm + t+ 1
,

and thus ρm(t + 1, φ(t + 1, t, x)) = ρm(t, x) + 1 − x∗m. Since x ∈ D≤(t) ∩ P0(t), it follows

that

ρ−1(t, x)(1− x∗1) ≥ ρ1(t, x)(1− x∗−1)

⇔ ρ−1(t, x)(1− x∗1) + (1− x∗−1)(1− x∗1) ≥ ρ1(t, x)(1− x∗−1) + (1− x∗−1)(1− x∗1)

⇔ (ρ−1(t, x) + 1− x∗−1)(1− x∗1) ≥ (ρ1(t, x) + 1− x∗1)(1− x∗−1)

⇔ ρ−1(t+ 1, φ(t+ 1, t, x))(1− x∗1) ≥ ρ1(t+ 1, φ(t+ 1, t, x))(1− x∗−1). (A.5)

Recall from Proposition 3.5 that φ(t+ 1, t, x) ∈ D0,i−1,i−1(t+ 1). Thus, if i > 1, then φ(t+

1, t, x) ∈
{
x ∈ P0(t+ 1) : ρ−1(t+ 1, x)(1− x∗1) ≥ ρ1(t+ 1, x)(1− x∗−1)

}
⊂ D≤(t+1). Next,

suppose i = 1. Then φ(t+1, t, x) ∈ D0,0,0(t+1) ⊂ P1 ⊂ P1(t+1). Note that ρm(t+1, φ(t+

1, t, x)) > 0. Also, note that since x∗1 ≥ x∗−1 and x∗m ∈ (0, 1), it follows that x∗1/(1 − x∗1) ≥

x∗−1/(1−x∗−1) > 0. Thus it follows from (A.5) that ρ−1(t+1, φ(t+1, t, x))x∗1 ≥ ρ1(t+1, φ(t+

1, t, x))x∗−1. Therefore, φ(t+1, t, x) ∈
{
x ∈ P1(t+ 1) : ρ−1(t+ 1, x)x∗1 ≥ ρ1(t+ 1, x)x∗−1

}
⊂

D≤(t+ 1).

Next consider the case in which x ∈ P1(t), and thus x ∈ D1,i,i(t) for i ≥ 1. It follows

from (3.10) that

φm(t+ 1, t, x) =
(Mm + t)xm
Mm + t+ 1

=
(Mm + t)x∗m + ρm(t, x)

Mm + t+ 1
= x∗m +

ρm(t, x)− x∗m
Mm + t+ 1

,
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and thus ρm(t+ 1, φ(t+ 1, t, x)) = ρm(t, x)− x∗m. Since x ∈ D≤(t) ∩ P1(t), it follows that

ρ−1(t, x)x∗1 ≥ ρ1(t, x)x∗−1

⇔ ρ−1(t, x)x∗1 − x∗−1x
∗
1 ≥ ρ1(t, x)x∗−1 − x∗−1x

∗
1

⇔ (ρ−1(t, x)− x∗−1)x∗1 ≥ (ρ1(t, x)− x∗1)x∗−1

⇔ ρ−1(t+ 1, φ(t+ 1, t, x))x∗1 ≥ ρ1(t+ 1, φ(t+ 1, t, x))x∗−1. (A.6)

If i > 1, then φ(t+ 1, t, x) ∈
{
x ∈ P1(t+ 1) : ρ−1(t+ 1, x)x∗1 ≥ ρ1(t+ 1, x)x∗−1

}
⊂ D≤(t+

1). If i = 1, then φ(t + 1, t, x) ∈ D1,0,0(t + 1) ⊂ P0 ⊂ P0(t + 1). Note that ρm(t + 1, φ(t +

1, t, x)) < 0 and that 0 < (1 − x∗1)/x∗1 ≤ (1 − x∗−1)/x∗−1. Thus it follows from (A.6) that

ρ−1(t+ 1, φ(t+ 1, t, x))(1− x∗1) ≥ ρ1(t+ 1, φ(t+ 1, t, x))(1− x∗−1). Therefore φ(t+ 1, t, x) ∈{
x ∈ P0(t+ 1) : ρ−1(t+ 1, x)(1− x∗1) ≥ ρ1(t+ 1, x)(1− x∗−1)

}
⊂ D≤(t+ 1).

By changing the inequalities in (A.5) and (A.6) to strict inequalities, it follows that

φ(t + 1, t,D<(t)) ⊂ D<(t + 1). This completes the proof for (1). Result (2) follows by a

similar argument.

Corollary A.1. Consider any t ∈ N0. Then, the following holds:

(1) If x∗1 > x∗−1, then for any x ∈ D≤(t), it holds that φ(t+ τ, t, x)→ (1, 0) as τ →∞.

(2) If x∗1 < x∗−1, then for any x ∈ D≥(t), it holds that φ(t+ τ, t, x)→ (0, 1) as τ →∞.

Proof : Suppose that x∗1 > x∗−1. It follows from Proposition A.1 that φ(t+τ, t, x) ∈ D≤(t+τ)

for all τ ∈ N0, thus φ(t+ τ, t, x) /∈ P2 for all τ . Thus φ(t+ τ, t, x) does not converge to (0, 1)

as τ → ∞. Also, it follows from Lemma 3.4 that φ(t + τ, t, x) does not converge to x∗ as

τ → ∞. Hence it follows from Proposition 3.7 that φ(t + τ, t, x) → (1, 0) as τ → ∞. This

completes the proof for (1). Result (2) follows by a similar argument.

Note that, since x∗ ∈ D≤(t) and x∗ ∈ D≥(t), it follows from Corollary A.1 that if

x∗1 > x∗−1, then for all t it holds that φ(t + τ, t, x∗) → (1, 0) as τ → ∞, and if x∗1 < x∗−1,

then for all t it holds that φ(t+ τ, t, x∗)→ (0, 1) as τ →∞.

For any t ∈ N0 and x ∈ P (t), define the cutting time

χ(t, x) := inf {τ ∈ N0 : φ(t+ τ, t, x) ∈ P2 ∪ P3}
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as the first time (after time t) that the image φ(t + τ, t, x) of x is in P2 ∪ P3, with the

understanding that χ(t, x) = ∞ if φ(t + τ, t, x) is in P0(t + τ) ∪ P1(t + τ) for all τ ≥ 0.

We also say that a point x(t) ∈ P0(t) ∪ P1(t) is cut off at time χ(t, x(t)). Suppose that

φ(t + χ(t, y), t, y) ∈ P2. Then there is a point x such that φ(t + χ(t, y), t, x) = x∗ and

y−1 ≤ x−1, y1 > x1. We will write that y will be cut to P2 by x.

For any x ∈ φ−1(t, P (t)), let

ζ(t, x) := inf {τ ∈ N0 : φ(t+ τ, t, x) = x∗}

denote the hitting time of x, i.e., the first time when φ(t+ τ, t, x) hits x∗. Note that for any

x ∈ φ−1(t, P (t)), it holds that ζ(t, x) <∞ and ζ(t, x) < χ(t, x).

Recall that for any x ∈ P̂ , Ω2(x) := {y ∈ P̂ : y−1 ≤ x−1, y1 > x1} and Ω3(x) := {y ∈

P̂ : y−1 > x−1, y1 ≤ x1}. Also, let Ω(x) := Ω2(x) ∪ Ω3(x) denote the cut set of x, let

Ω0(x) := {y ∈ P̂ : y−1 ≤ x−1, y1 ≤ x1}, and let Ω1(x) := {y ∈ P̂ : y−1 > x−1, y1 > x1}.

Lemma A.7. Consider any t ∈ N0 and x, y ∈ Pk(t), where k ∈ {0, 1}, such that y ∈ Ω(x).

Let S(t) := {x, y, (x−1, y1), (y−1, x1)}, S(t+τ) := φ(t+τ, t, S(t)), and D(t+τ) := conv(S(t+

τ)) for τ ∈ N0. Then, rectangle D(t) walks to rectangle D(t+ τ) from time t to time t+ τ

for all 0 ≤ τ ≤ min {χ(t, x), χ(t, y)}.

Proof : Note that x, y ∈ Pk(t) implies that D(t) ⊂ Pk(t). Recall from Lemma 3.2 that

rectangle D(t) ⊂ Pk(t) walks to a rectangle φ(t + 1, t,D(t)) from time t to time t + 1. In

general, if φ(t+τ, t, x), φ(t+τ, t, y) ∈ Pk′(t+τ) for k′ ∈ {0, 1}, then D(t+τ) ⊂ Pk′(t+τ), and

rectangle D(t+τ) walks to a rectangle φ(t+τ+1, t+τ,D(t+τ)) from time t+τ to time t+τ+

1. Let T := inf {τ ∈ N0 : φ(t+ τ, t, x) ∈ Pk(t+ τ), φ(t+ τ, t, y) ∈ Pk′(t+ τ) for k 6= k′}. If

φ(t+T, t, x) ∈ P2∪P3, then the result holds. Otherwise, φ(t+T, t, x) ∈ P0(t+T )∪P1(t+T ),

and then φ(t+ T, t, y) ∈ P2 ∪ P3 (since y ∈ Ω(x)), and the result holds.

Lemma A.8 follows from Corollary A.1.

Lemma A.8.

(1) If x∗1 > x∗−1, then for any k ∈ {0, 1}, t ∈ N0, and x ∈ φ−1(t,Dk,1,1(t)), it holds that

φ(t+ τ, t, x)→ (1, 0) as τ →∞.
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(2) If x∗1 < x∗−1, then for any k ∈ {0, 1}, t ∈ N0, and x ∈ φ−1(t,Dk,1,1(t)), it holds that

φ(t+ τ, t, x)→ (0, 1) as τ →∞.

Lemma A.9. For any k ∈ {0, 1}, t ∈ N0 and D ⊂ Pk(t), the points in φ−1(t,D) are

nondecreasing, that is, for any two pre-images x1, x2 ∈ φ−1(t,D), either x1 ≤ x2 or x2 ≤ x1.

Proof : Without loss of generality, suppose that x1
−1 < x2

−1. We show by contradiction that

x1
1 ≤ x2

1. Suppose that x1
1 > x2

1. Then, x1 ∈ Ω2(x2) and x2 ∈ Ω3(x1).

If ζ(t, x1) ≤ ζ(t, x2), then it holds that ζ(t, x1) ≤ ζ(t, x2) < χ(t, x2) and ζ(t, x1) <

χ(t, x1). Thus, ζ(t, x1) < min
{
χ(t, x1), χ(t, x2)

}
. It follows from Lemma A.7 that φ(t +

ζ(t, x1), t, x2) ∈ Ω3(φ(t+ ζ(t, x1), t, x1)) = Ω3(x∗) = P3. Thus, ζ(t, x2) < χ(t, x2) ≤ ζ(t, x1),

contradicting ζ(t, x1) ≤ ζ(t, x2).

If ζ(t, x2) ≤ ζ(t, x1), then it holds that ζ(t, x2) ≤ ζ(t, x1) < χ(t, x1) and ζ(t, x2) <

χ(t, x2). Thus, ζ(t, x2) < min
{
χ(t, x1), χ(t, x2)

}
. It follows from Lemma A.7 that φ(t +

ζ(t, x2), t, x1) ∈ Ω2(φ(t+ ζ(t, x2), t, x2)) = Ω2(x∗) = P2. Thus, ζ(t, x1) < χ(t, x1) ≤ ζ(t, x2),

contradicting ζ(t, x2) ≤ ζ(t, x1).

For any k ∈ {0, 1}, t, T ∈ N0, D ⊂ P (t), let

φ−1
≤ (t,D, T ) :=

{
x ∈ φ−1(t,D) : ζ(t, x) ≤ T

}
denote the set of pre-images in D at time t with hitting time no later than T .

Lemma A.10. Consider any k ∈ {0, 1}, t, T ∈ N0, D ⊂ P (t). It holds that φ−1
≤ (t,D, T ) is

a finite set with cardinality |φ−1
≤ (t,D, T )| ≤ 2T+1 − 1.

Proof : If T = 0, the result holds since x∗ is the only point x ∈ P (t) with ζ(t, x) =

0. Next suppose that T > 0. If x ∈ P2 ∪ P3, then it follows from Lemma 3.1 that

φ(t + 1, t, x) ∈ P2 ∪ P3, and thus φ(t + τ, t, x) 6= x∗ for all τ ∈ N0. If x ∈ P0(t) ∪ P1(t),

then it follows from φ(t + 1, t, ·) : Pk(t) 7→ φ(t + 1, t, Pk(t)) ⊂ P̂ being a separable affine

mapping for k ∈ {0, 1}, that for any y ∈ P̂ there exists at most one point x ∈ Pk(t)

such that φ(t + 1, t, x) = y for k ∈ {0, 1}. Thus, for any set Y ⊂ P̂0 ∪ P̂1, it holds that

|{x ∈ P0(t) ∪ P1(t) : φ(t+ 1, t, x) ∈ Y }| ≤ 2|Y |. Next we show by induction on τ that
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|{x ∈ P0(t) ∪ P1(t) : φ(t+ τ, t, x) ∈ Y }| ≤ 2τ |Y |. Suppose that it holds for some τ ∈ N0.

Then

|{x ∈ P0(t) ∪ P1(t) : φ(t+ τ + 1, t, x) ∈ Y }|

=
∣∣{x ∈ P0(t) ∪ P1(t) : φ(t+ τ, t, x) ∈ P0,1(t+ τ)

∣∣
≤ 2τ |{y ∈ P0(t+ τ) ∪ P1(t+ τ) : φ(t+ τ + 1, t+ τ, y) ∈ Y }|

≤ 2τ2|Y | = 2τ+1|Y |,

where

P0,1(t+ τ) := {y ∈ P0(t+ τ) ∪ P1(t+ τ) : φ(t+ τ + 1, t+ τ, y) ∈ Y }
}
.

Therefore ∣∣∣φ−1
≤ (t,D, T )

∣∣∣ =
T∑
τ=0

∣∣{x ∈ φ−1(t,D) : ζ(t, x) = τ}
∣∣

≤
T∑
τ=0

|{x ∈ P0(t) ∪ P1(t) : φ(t+ τ, t, x) = x∗}|

≤
T∑
τ=0

2τ = 2T+1 − 1.

This completes the proof.

Let cv(Dk,i,j(t)) denote the top right corner vertex of cell Dk,i,j(t), given by

cv(Dk,i,j(t)) :=

 (x∗−1 − (j − 1)δ0
−1(t), x∗1 − (i− 1)δ0

1(t)) if k = 0, (i, j) ∈ Î0(t)× Ĵ0(t),

(x∗−1 + jδ1
−1(t), x∗1 + iδ1

1(t)) if k = 1, (i, j) ∈ Î1(t)× Ĵ1(t).

For example, in Figure 7b, D0,2,2(t+ 1) is indicated by the gray diagonal rectangle with the

top right corner vertex cv(D0,2,2(t+1)) =
(
x∗−1 − δ0

−1(t+ 1), x∗1 − δ0
1(t+ 1)

)
, andD1,0,0(t+1)

is represented by the gray rectangle with the top right corner cv(D1,0,0(t+ 1)) = x∗.

Lemma A.11. Suppose that x∗1 6= x∗−1. Consider any k ∈ {0, 1}, t ∈ N0, and x ∈ Dk,1,1(t)\

(D2
k,1,1(t) ∪D3

k,1,1(t)). Then, the following hold:

(1) There exist x̃1 ∈ φ−1(t, D̄k,1,1(t)) and x̃2 ∈ φ−1(t,Dk,1,1(t)), such that x̃1 < x̃2,

x ∈ E := (x̃1
−1, x̃

2
−1] × (x̃1

1, x̃
2
1] ⊂ Dk,1,1(t), max{ζ(t, x̃1), ζ(t, x̃2)} ≤ χ(t, x), and

φ−1
≤ (t, D̄k,1,1(t), χ(t, x)) ∩ (Ē \ {x̃1, x̃2}) = ∅.
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(2) Ē walks to φ(t+ τ, t, Ē) from time t to time t+ τ , and E walks to φ(t+ τ, t, E) from

time t to time t+ τ , for all 0 ≤ τ ≤ min{ζ(t, x̃1), ζ(t, x̃2)}.

Proof :

(1) Note that cv(Dk,1,1(t)) ∈ φ−1
≤ (t, D̄k,1,1(t), χ(t, x)), and thus φ−1

≤ (t, D̄k,1,1(t), χ(t, x)) 6=

∅. It follows from Lemmas A.9 and A.10 that φ−1
≤ (t, D̄k,1,1(t), χ(t, x)) ⊂ φ−1(t, D̄k,1,1(t))

is a finite nondecreasing set. Thus we can represent

φ−1
≤ (t, D̄k,1,1(t), χ(t, x)) = {xn}Nn=0 ⊂ D̄k,1,1(t)

such that xn 6= xn+1 for n ∈ {0, 1, . . . , N−1}, and x0 ≤ x1 ≤ · · · ≤ xN = cv(Dk,1,1(t)),

where if k = 0, then x0 = cv(D0,2,2(t)), and if k = 1, then x0 = x∗. Note that

ζ(t, x0) ≤ 1 ≤ χ(t, x).

Consider the case with x∗1 > x∗−1. Next we show by contradiction that x0
−1 < x1

−1 <

· · · < xN−1. Suppose that xn−1 = xn+1
−1 for some n ∈ {0, 1, . . . , N −1}. Then xn1 < xn+1

1 .

First we show that χ(t, xn) ≤ χ(t, xn+1). Since φ(t+τ, t, xn+1)→ (1, 0) as τ →∞ from

Lemma A.8, it follows that φ(t+χ(t, xn+1), t, xn+1) ∈ P3. If χ(t, xn) ≥ χ(t, xn+1), then

it follows from Lemma A.7 that φ−1(t+χ(t, xn+1), t, xn) = φ−1(t+χ(t, xn+1), t, xn+1)

and φ1(t+χ(t, xn+1), t, xn) < φ1(t+χ(t, xn+1), t, xn+1). Thus φ(t+χ(t, xn+1), t, xn) ∈

P3, and hence χ(t, xn) ≤ χ(t, xn+1). Then, since ζ(t, xn) < χ(t, xn) ≤ χ(t, xn+1), it

follows from xn+1 ∈ Ω2(xn) that φ(t + ζ(t, xn), t, xn+1) ∈ P2 and thus χ(t, xn+1) ≤

ζ(t, xn), giving a contradiction.

Since x /∈ D2
k,1,1(t) ∪D3

k,1,1(t), it follows that for each xn it holds that x /∈ Ω2(xn) ∪

Ω3(xn), and thus x ∈ Ω0(xn) ∪ Ω1(xn). Note that there exists n ∈ {0, 1, . . . , N − 1}

such that xn−1 < x−1 ≤ xn+1
−1 . Then x ∈ Ω1(xn)∩Ω0(xn+1), and thus xn1 < x1 ≤ xn+1

1 .

Then choose x̃1 = xn and x̃2 = xn+1.

Note that x̃1 ∈ φ−1(t, D̄k,1,1(t)), x̃2 ∈ φ−1(t,Dk,1,1(t)), x̃1 < x̃2, x ∈ E := (x̃1
−1, x̃

2
−1]×

(x̃1
1, x̃

2
1] ⊂ Dk,1,1(t), max{ζ(t, x̃1), ζ(t, x̃2)} ≤ χ(t, x), and φ−1

≤ (t, D̄k,1,1(t), χ(t, x))∩(Ē\

{x̃1, x̃2}) = ∅. The proof for the case with x∗1 < x∗−1 is similar.
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(2) If k = 0 and x̃1 = cv(D0,2,2(t)), then min{ζ(t, x̃1), ζ(t, x̃2)} ≤ 1, and Ē walks to

φ(t + τ, t, Ē) from time t to time t + τ for all 0 ≤ τ ≤ min{ζ(t, x̃1), ζ(t, x̃2)}.

If k = 1 and x̃1 = x∗, then min{ζ(t, x̃1), ζ(t, x̃2)} = 0, and Ē walks to φ(t +

τ, t, Ē) from time t to time t + τ for all 0 ≤ τ ≤ min{ζ(t, x̃1), ζ(t, x̃2)}. Oth-

erwise, x̃1, x̃2 ∈ Dk,1,1(t) and Ē ⊂ Dk,1,1(t) ⊂ Pk(t). Recall from Lemma 3.2

that rectangle Ē ⊂ Pk(t) ⊂ P̂k walks to a rectangle φ(t + 1, t, Ē) from time t to

time t + 1. In general, if φ(t + τ, t, x̃1), φ(t + τ, t, x̃2) ∈ Pk′(t + τ) for k′ ∈ {0, 1},

then φ(t + τ, t, Ē) ⊂ Pk′(t + τ), and rectangle φ(t + τ, t, Ē) walks to a rectangle

φ(t+τ +1, t+τ, φ(t+τ, t, Ē)) = φ(t+τ +1, t, Ē) from time t+τ to time t+τ +1. Let

T := inf
{
τ ∈ N0 : φ(t+ τ, t, x̃1) ∈ Pk(t+ τ), φ(t+ τ, t, x̃2) ∈ Pk′(t+ τ) for k 6= k′

}
.

Then Ē walks to φ(t + τ, t, Ē) from time t to time t + τ for all 0 ≤ τ ≤ T . Nex-

t we show by contradiction that T ≥ min{ζ(t, x̃1), ζ(t, x̃2)}. Suppose that T <

min{ζ(t, x̃1), ζ(t, x̃2)}. Then, since T < min{ζ(t, x̃1), ζ(t, x̃2)} < min{χ(t, x̃1), χ(t, x̃2)},

it follows that φ(t+T, t, x̃1), φ(t+T, t, x̃2) ∈ P0(t+T )∪P1(t+T ). Also, since x̃1 < x̃2,

and Ē walks to φ(t+T, t, Ē) from time t to time t+T , it follows that φ(t+T, t, x̃1) <

φ(t + T, t, x̃2). Thus, φ(t + T, t, x̃1) ∈ P0(t + T ) \ {x∗} (since T < ζ(t, x̃1)), and

φ(t+ T, t, x̃2) ∈ P1(t+ T ). Thus, x∗ ∈ φ(t+ T, t, Ē) \ {φ(t+ T, t, x̃1), φ(t+ T, t, x̃2)}.

Since Ē walks to φ(t + T, t, Ē) from time t to time t + T , it follows that there

exists x̂ ∈ Ē \ {x̃1, x̃2} such that φ(t + T, t, x̂) = x∗. Since Ē ⊂ Dk,1,1(t) and

T < min{ζ(t, x̃1), ζ(t, x̃2)} ≤ χ(t, x), it follows that x̂ ∈ φ−1
≤ (t, D̄k,1,1(t), χ(t, x)) ∩

(Ē \ {x̃1, x̃2}), contradicting φ−1
≤ (t, D̄k,1,1(t), χ(t, x)) ∩ (Ē \ {x̃1, x̃2}) = ∅.

Thus T ≥ min{ζ(t, x̃1), ζ(t, x̃2)}, and Ē walks to φ(t+τ, t, Ē) from time t to time t+τ

for all 0 ≤ τ ≤ min{ζ(t, x̃1), ζ(t, x̃2)}. This also implies that E walks to φ(t+ τ, t, E)

from time t to time t+ τ for all 0 ≤ τ ≤ min{ζ(t, x̃1), ζ(t, x̃2)}.

Lemma A.12. Suppose that x∗1 > x∗−1. Consider any time t ∈ N0 and any x1, x2 ∈ P (t)

such that

(a) x1 < x2,

(b) x∗ /∈ E \ {x2}, where E := (x1
−1, x

2
−1]× (x1

1, x
2
1],
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(c) x1 ∈ D≤(t), and

(d) φ(t+ τ, t, x2)→ (1, 0) as τ →∞.

Then E∩P2 = ∅. Also, either Ẽ := E∩(P0(t)∪P1(t)) = ∅, or there are x̃1, x̃2 ∈ P0(t)∪P1(t)

such that

(i) x̃1 < x̃2,

(ii) Ẽ = (x̃1
−1, x̃

2
−1]× (x̃1

1, x̃
2
1],

(iii) either x2 ∈ P3, or x̃2 = x2,

(iv) Ẽ ⊂ P0(t) or Ẽ ⊂ P1(t),

(v) x̃1 ∈ D≤(t),

(vi) φ(t+ τ, t, x̃2)→ (1, 0) as τ →∞, and

(vii) x∗ /∈ Ẽ \ {x̃2}.

Proof : Note that the property Ẽ = (x̃1
−1, x̃

2
−1] × (x̃1

1, x̃
2
1] and the property Ẽ ⊂ P0(t) or

Ẽ ⊂ P1(t) imply the property x∗ /∈ Ẽ \ {x̃2}. Consider the following 9 cases regarding the

position of x∗ relative to E:

(1) x∗−1 ≤ x1
−1 and x∗1 ≥ x2

1: Then E ⊂ P3, and thus E ∩ P2 = ∅ and Ẽ = ∅.

(2) x∗−1 ≤ x1
−1 and x1

1 ≤ x∗1 < x2
1: Then E ∩ P2 = ∅. Also, Ẽ = E ∩ P1(t) = (x̃1

−1, x̃
2
−1]×

(x̃1
1, x̃

2
1] ⊂ P1(t), where x̃1 = (x1

−1, x
∗
1) and x̃2 = x2. Note that x̃1 < x̃2 and that

x̃1 ∈ D≤(t). Since x̃2 = x2, it follows that φ(t+ τ, t, x̃2)→ (1, 0) as τ →∞.

(3) x∗−1 ≤ x1
−1 and x∗1 < x1

1: Then E ⊂ P1(t) and Ẽ = E. All the results hold.

(4) x1
−1 < x∗−1 ≤ x2

−1 and x∗1 ≥ x2
1: Then E ∩ P2 = ∅. Also, Ẽ = E ∩ P0(t) =

(x̃1
−1, x̃

2
−1] × (x̃1

1, x̃
2
1] ⊂ P0(t), where x̃1 = x1 and x̃2 = (x∗−1, x

2
1). Note that x̃1 < x̃2.

If x∗−1 < x2
−1, then x2 ∈ P3, and if x∗−1 = x2

−1, then x̃2 = x2. Since x̃1 = x1, it follows

that x̃1 ∈ D≤(t). Note that ρ−1(t, x̃2)(1 − x∗1) = 0 ≥ ρ1(t, x̃2)(1 − x∗−1), and thus

x̃2 ∈ D≤(t). It follows from Corollary A.1 that φ(t+ τ, t, x̃2)→ (1, 0) as τ →∞.
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(5) x1
−1 < x∗−1 ≤ x2

−1 and x1
1 ≤ x∗1 < x2

1: If x1
−1 < x∗−1 ≤ x2

−1 and x1
1 < x∗1 < x2

1, then

x∗ ∈ E\{x2}, which cannot happen. If x1
−1 < x∗−1 ≤ x2

−1 and x1
1 = x∗1, then x1 ∈ P0(t)

and ρ−1(t, x1)(1− x∗1) < 0 = ρ1(t, x1)(1− x∗−1), contradicting x1 ∈ D≤(t). Hence this

case cannot happen.

(6) x1
−1 < x∗−1 ≤ x2

−1 and x∗1 < x1
1: Then x1 ∈ P2, contradicting x1 ∈ D≤(t). Hence this

case cannot happen.

(7) x2
−1 < x∗−1 and x2

1 ≤ x∗1: Then E ⊂ P0(t) and Ẽ = E. All the results hold.

(8) x2
−1 < x∗−1 and x1

1 ≤ x∗1 < x2
1: Then x2 ∈ P2 and it follows from Theorem 3.2 that

φ(t + τ, t, x2) → (0, 1) as τ → ∞, contradicting φ(t + τ, t, x2) → (1, 0) as τ → ∞.

Hence this case cannot happen.

(9) x2
−1 < x∗−1 and x∗1 < x1

1: Then x2 ∈ P2, contradicting φ(t+τ, t, x2)→ (1, 0) as τ →∞.

Hence this case cannot happen.

Lemma A.13. Suppose that x∗1 > x∗−1. Consider any time t ∈ N0 and E := (x1
−1, x

2
−1] ×

(x1
1, x

2
1] ⊂ P1(t) with x1 < x2 and x1

1 = x∗1. Suppose that φ(t+ τ, t, x2)→ (1, 0) as τ →∞.

Then, there are x̃1, x̃2 ∈ P (t + 1) such that x̃1 < x̃2 and E walks to Ẽ := φ(t + 1, t, E) =

(x̃1
−1, x̃

2
−1]× (x̃1

1, x̃
2
1] from time t to time t+ 1, and the following hold:

(i) x̃1 ∈ D≤(t+ 1),

(ii) φ(t+ 1 + τ, t+ 1, x̃2)→ (1, 0) as τ →∞.

Proof : Since φ(t + 1, t, ·) : P1(t) 7→ P (t + 1) is an increasing separable affine mapping, it

follows from Remark A.1(4) that E walks to Ẽ := φ(t+ 1, t, E), and that Ẽ is a rectangle

of the form (x̃1
−1, x̃

2
−1]× (x̃1

1, x̃
2
1] with x̃1 < x̃2. It follows from (3.10) that

x̃1 =

(
(M−1 + t)x1

−1

M−1 + t+ 1
,
(M1 + t)x1

1

M1 + t+ 1

)
=

(
x1
−1 −

x1
−1

M−1 + t+ 1
, x∗1 −

x∗1
M1 + t+ 1

)
.

Note that x̃1
1 < x∗1. Thus, if x̃1

−1 > x∗−1, then x̃1 ∈ P3, and hence x̃1 ∈ D≤(t + 1). If

x̃1
−1 ≤ x∗−1, then x̃1 ∈ P0(t+ 1). Then

ρ−1(t+ 1, x̃1) =

[
(M−1 + t)x1

−1

M−1 + t+ 1
− x∗−1

]
(M−1 + t+ 1)
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≥
[

(M−1 + t)x∗−1

M−1 + t+ 1
− x∗−1

]
(M−1 + t+ 1)

= −x∗−1

and ρ1(t + 1, x̃1) =
[
(M1 + t)x1

1/(M1 + t+ 1)− x∗1
]

(M1 + t + 1) = −x∗1. Thus ρ−1(t +

1, x̃1)(1−x∗1) ≥ −x∗−1+x∗−1x
∗
1 > −x∗1+x∗−1x

∗
1 = ρ1(t+1, x̃1)(1−x∗−1). Hence, x̃1 ∈ D≤(t+1).

Also, since x2 ∈ E ⊂ P1(t), it follows that x̃2 = φ(t+ 1, t, x2). Since φ(t+ τ, t, x2)→ (1, 0)

as τ →∞, it holds that φ(t+ 1 + τ, t+ 1, x̃2)→ (1, 0) as τ →∞.

Lemma A.14. Consider any time t ∈ N0 and any x1, x2 ∈ P (t) such that

(a) x1 < x2,

(b) x∗ /∈ Ē \ {x1, x2}, where E := (x1
−1, x

2
−1]× (x1

1, x
2
1],

(c) x1 ∈ P0(t) ∪ P1(t) and x1 /∈ D<(t), and

(d) x2 ∈ D≤(t).

Then E ∩ P2 = ∅. Also, there are x̃1, x̃2 ∈ P0(t) ∪ P1(t) such that

(i) x1 = x̃1 < x̃2,

(ii) Ẽ := E ∩ (P0(t) ∪ P1(t)) = (x̃1
−1, x̃

2
−1]× (x̃1

1, x̃
2
1],

(iii) x∗ = x1 or ¯̃E ⊂ Pk(t) for some k ∈ {0, 1},

(iv) x2 ∈ P3 or x̃2 = x2, and

(v) x̃2 ∈ D≤(t).

Proof : Consider the following 15 cases:

(1) x∗−1 < x1
−1 and x∗1 ≥ x2

1: Then E ⊂ P3, contradicting x1 ∈ P0(t) ∪ P1(t). Hence this

case cannot happen.

(2) x∗−1 < x1
−1 and x1

1 ≤ x∗1 < x2
1: Then x1 ∈ P3, contradicting x1 ∈ P0(t) ∪ P1(t). Hence

this case cannot happen.
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(3) x∗−1 < x1
−1 and x∗1 < x1

1: Then ¯̃E = Ē ⊂ P1(t) and all the results hold.

(4) x∗−1 = x1
−1 and x∗1 > x1

1: Then x1 ∈ P0(t) and ρ−1(t, x1)(1 − x∗1) = 0 > ρ1(t, x1)(1 −

x∗−1), which implies that x1 ∈ D<(t), contradicting x1 /∈ D<(t). Hence this case

cannot happen.

(5) x∗−1 = x1
−1 and x∗1 = x1

1: Then x1 = x∗ and Ẽ = E ⊂ P1(t). Thus, x1 = x̃1 and

x̃2 = x2 ∈ D≤(t).

(6) x∗−1 = x1
−1 and x∗1 < x1

1: Then x1 ∈ P2, contradicting x1 ∈ P0(t) ∪ P1(t). Hence this

case cannot happen.

(7) x1
−1 < x∗−1 < x2

−1 and x∗1 ≥ x2
1: Then E ∩ P2 = ∅. Also, Ẽ = E ∩ P0(t) =

(x̃1
−1, x̃

2
−1] × (x̃1

1, x̃
2
1] ⊂ P0(t), where x̃1 = x1 and x̃2 = (x∗−1, x

2
1). Thus (i) and (ii)

hold. Since x̃1, x̃2 ∈ P0(t), it holds that ¯̃E ⊂ P0(t), and thus (iii) holds. Since

x∗−1 < x2
−1 and x∗1 ≥ x2

1, it holds that x2 ∈ P3, and thus (iv) holds. Also note that

x̃2 ∈ P0(t) and ρ−1(t, x̃2)(1− x∗1) = 0 ≥ ρ1(t, x̃2)(1− x∗−1), and thus (v) holds.

(8) x1
−1 < x∗−1 < x2

−1 and x1
1 ≤ x∗1 < x2

1: Then x∗ ∈ Ē \ {x1, x2}, contradicting x∗ /∈

Ē \ {x1, x2}. Hence this case cannot happen.

(9) x1
−1 < x∗−1 < x2

−1 and x∗1 < x1
1: Then x1 ∈ P2, contradicting x1 ∈ P0(t)∪P1(t). Hence

this case cannot happen.

(10) x∗−1 = x2
−1 and x∗1 ≥ x2

1: Then Ẽ = E ⊂ P0(t) and ¯̃E = Ē ⊂ P0(t). Thus x̃1 = x1 and

x̃2 = x2 ∈ D≤(t).

(11) x∗−1 = x2
−1 and x1

1 ≤ x∗1 < x2
1: Then x∗ ∈ Ē \{x1, x2}, contradicting x∗ /∈ Ē \{x1, x2}.

Hence this case cannot happen.

(12) x∗−1 = x2
−1 and x∗1 < x1

1: Then x1 ∈ P2, contradicting x1 ∈ P0(t) ∪ P1(t). Hence this

case cannot happen.

(13) x2
−1 < x∗−1 and x∗1 ≥ x2

1: Then Ẽ = E ⊂ P0(t) and ¯̃E = Ē ⊂ P0(t). Thus x̃1 = x1 and

x̃2 = x2 ∈ D≤(t).
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(14) x2
−1 < x∗−1 and x1

1 ≤ x∗1 < x2
1: Then x2 ∈ P2, contradicting x2 ∈ D≤(t). Hence this

case cannot happen.

(15) x2
−1 < x∗−1 and x∗1 < x1

1: Then x1 ∈ P2, contradicting x1 ∈ P0(t) ∪ P1(t). Hence this

case cannot happen.

Proof of Theorem 3.4: Consider any k ∈ {0, 1} and i ∈ Ik(0) ∩ Jk(0).

(1) Consider any x ∈ D2
k,i,i(0) := Dk,i,i(0) ∩ (∪y∈φ−1(0,Dk,i,i(0))Ω

2(y)). Thus, there ex-

ists y ∈ φ−1(0, Dk,i,i(0)) ⊂ Dk,i,i(0) such that x ∈ Ω2(y) ∩ Dk,i,i(0). Note that

φ(ζ(0, y), 0, y) = x∗. If ζ(0, y) ≤ χ(0, x), then it follows from Lemma A.7 that

φ(ζ(0, y), 0, x) ∈ Ω2(φ(ζ(0, y), 0, y)) = Ω2(x∗).

Thus, φ(ζ(0, y), 0, x) ∈ P2 (and ζ(0, y) = χ(0, x)), and it follows from Theorem 3.2

that φ(t, 0, x)→ (0, 1) as t→∞. If ζ(0, y) > χ(0, x), then χ(0, x) < ζ(0, y) < χ(0, y).

We show by contradiction that φ(χ(0, x), 0, x) ∈ P2. Suppose that φ(χ(0, x), 0, x) ∈

P3. It follows from Lemma A.7 that φ(χ(0, x), 0, x) ∈ Ω2(φ(χ(0, x), 0, y)), and thus

φ−1(χ(0, x), 0, y) ≥ φ−1(χ(0, x), 0, x) > x∗−1 and φ1(χ(0, x), 0, y) < φ1(χ(0, x), 0, x) ≤

x∗1. Thus, φ−1(χ(0, x), 0, y) ∈ P3, which implies that χ(0, y) ≤ χ(0, x), contradicting

χ(0, x) < χ(0, y). Hence it follows from Theorem 3.2 that φ(t, 0, x)→ (0, 1) as t→∞.

(2) The proof of (2) is similar to the proof of (1).

(3) Consider any x ∈ Dk,i,i(0)\ (D2
k,i,i(0)∪D3

k,i,i(0)). Thus, for each y′ ∈ φ−1(0, Dk,i,i(0)),

it holds that x ∈ Ω0(y′) ∪ Ω1(y′). It follows from Proposition 3.6 that Dk,i,i(0) walks

to Dk,1,1(i− 1) from time 0 to time i− 1, and x̃ := φ(i− 1, 0, x) ∈ Dk,1,1(i− 1). Next

we show by contradiction that x̃ ∈ Dk,1,1(i−1)\(D2
k,1,1(i−1)∪D3

k,1,1(i−1)). Suppose

that x̃ ∈ D2
k,1,1(i− 1)∪D3

k,1,1(i− 1). Then there exists ỹ ∈ φ−1(i− 1, Dk,1,1(i− 1)) ⊂

Dk,1,1(i − 1) such that x̃ ∈ Ω(ỹ). Since Dk,i,i(0) walks to Dk,1,1(i − 1), there exists

y ∈ Dk,i,i(0) such that φ(i − 1, 0, y) = ỹ. Then it follows that y ∈ φ−1(0, Dk,i,i(0))

(and ζ(0, y) ≤ i− 1 + ζ(i− 1, ỹ)). Also, it follows from Proposition 3.6 that x ∈ Ω(y).

This contradicts x ∈ Ω0(y′) ∪ Ω1(y′) for all y′ ∈ φ−1(0, Dk,i,i(0)).
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Next, consider any t ∈ N0 and any x ∈ Dk,1,1(t)\(D2
k,1,1(t)∪D3

k,1,1(t)). It follows from

Proposition 3.7 and Lemma 3.4 that φ(t+ τ, t, x)→ (0, 1) or φ(t+ τ, t, x)→ (1, 0) as

τ →∞. Thus χ(t, x) <∞.

If x ∈ φ−1(t,Dk,1,1(t)), then it follows from Lemma A.8 that φ(t+ τ, t, x)→ (1, 0) as

τ →∞.

Next consider the case in which x /∈ φ−1(t,Dk,1,1(t)). It follows from Lemma A.11((1))

that there exist x1 ∈ φ−1(t, D̄k,1,1(t)), x2 ∈ φ−1(t,Dk,1,1(t)), such that x1 < x2,

x ∈ E := (x1
−1, x

2
−1] × (x1

1, x
2
1] ⊂ Dk,1,1(t), max{ζ(t, x1), ζ(t, x2)} ≤ χ(t, x), and

φ−1
≤ (t, D̄k,1,1(t), χ(t, x)) ∩ (Ē \ {x1, x2}) = ∅. Inductively define E(0) := E, Ẽ(τ) :=

E(τ) ∩ (P0(t + τ) ∪ P1(t + τ)), and E(τ + 1) := φ(t + τ + 1, t + τ, Ẽ(τ)) for τ =

0, 1, . . . , χ(t, x). For any τ ∈ {0, 1, . . . , χ(t, x)}, let x1(τ) and x2(τ) denote respec-

tively the left-bottom and right-top vertices of E(τ), and let x̃1(τ) and x̃2(τ) denote

respectively the left-bottom and right-top vertices of Ẽ(τ). Note that x1 = x1(0) and

x2 = x2(0).

Let τ0 := min{ζ(t, x1), ζ(t, x2)}. It follows from Lemma A.11((2)) that E walks to

φ(t+τ0, t, E) from time t to time t+τ0. Since φ(t+τ0, t, x
1) < φ(t+τ0, t, x

2), it follows

that either ζ(t, x1) < ζ(t, x2) or ζ(t, x2) < ζ(t, x1). Hence, consider the following two

cases:

1 Case 1. ζ(t, x1) < ζ(t, x2) ≤ χ(t, x):

Then τ0 = ζ(t, x1). It follows from Lemma A.11((2)) that E walks to φ(t+τ0, t, E)

from time t to time t + τ0, and for all 0 ≤ τ < τ0, it holds that φ(t + τ, t, E) ⊂

P0(t + τ) or φ(t + τ, t, E) ⊂ P1(t + τ). Thus, Ẽ(τ) = E(τ) ⊂ P0(t + τ) or

Ẽ(τ) = E(τ) ⊂ P1(t+ τ) for all 0 ≤ τ < τ0.

Next we show by induction on τ ∈ {τ0, . . . , χ(t, x)} that

(a) there exist x1(τ), x2(τ) ∈ P (t+ τ) s.t. x1(τ) < x2(τ) and

E(τ) = (x1
−1(τ), x2

−1(τ)]× (x1
1(τ), x2

1(τ)],

(b) φ(t+ τ, t, x) ∈ E(τ),
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(c) E(τ) ⊂ φ(t+ τ, t, E),

(d) x∗ /∈ E(τ) \ {x2(τ)},

(e) x1(τ) ∈ D≤(t+ τ),

(f) φ(t+ τ + τ ′, t+ τ, x2(τ))→ (1, 0) as τ ′ →∞,

(g) E(τ) ∩ P2 = ∅,

(h) Ẽ(τ) ⊂ P0(t+ τ) or Ẽ(τ) ⊂ P1(t+ τ), and

(i) Ẽ(τ) = ∅, or there exist x̃1(τ), x̃2(τ) ∈ P0(t+τ)∪P1(t+τ) such that x̃1(τ) <

x̃2(τ) and Ẽ(τ) = (x̃1
−1(τ), x̃2

−1(τ)]×(x̃1
1(τ), x̃2

1(τ)], and φ(t+τ, t, x2) = x̃2(τ)

or φ(t+ τ, t, x2) ∈ P3.

Consider τ = τ0. Since E walks to E(τ0), it follows from Remark A.1(3) that

x1(τ0) = φ(t + τ0, t, x
1) < φ(t + τ0, t, x

2) = x2(τ0) and E(τ0) = φ(t + τ0, t, E) =

(x1
−1(τ0), x2

−1(τ0)]× (x1
1(τ0), x2

1(τ0)]. Since x ∈ E, it follows that φ(t+ τ0, t, x) ∈

φ(t+τ0, t, E) = E(τ0). Since τ0 = ζ(t, x1), it holds that x1(τ0) = φ(t+τ0, t, x
1) =

x∗ ∈ D≤(t + τ0), and thus Ẽ(τ0) = E(τ0) ⊂ P1(t + τ0), x∗ /∈ E(τ0), E(τ0) ∩

P2 = ∅, and x̃1(τ0) = x1(τ0) < x̃2(τ0) = x2(τ0) = φ(t + τ0, t, x
2). Since x2 ∈

φ−1(t,Dk,1,1(t)), it follows from Lemma A.8 that φ(t + τ ′, t, x2) → (1, 0) as

τ ′ →∞. It follows that φ(t+ τ0 + τ ′, t+ τ0, x
2(τ0)) = φ(t+ τ0 + τ ′, t, x2)→ (1, 0)

as τ ′ →∞. Thus (a)–(i) hold for τ = τ0.

Assume that (a)–(i) hold for some τ < χ(t, x). Since φ(t + τ, t, x) ∈ E(τ) and

τ < χ(t, x), it holds that φ(t+τ, t, x) ∈ E(τ)∩(P0(t+τ)∪P1(t+τ)) = Ẽ(τ). Thus,

Ẽ(τ) 6= ∅. It follows from Lemma A.12 that there are x̃1(τ), x̃2(τ) ∈ P0(t+ τ)∪

P1(t+ τ) such that x̃1(τ) < x̃2(τ) and Ẽ(τ) = (x̃1
−1(τ), x̃2

−1(τ)]× (x̃1
1(τ), x̃2

1(τ)],

x2(τ) ∈ P3 or x̃2(τ) = x2(τ), Ẽ(τ) ⊂ P0(t + τ) or Ẽ(τ) ⊂ P1(t + τ), x̃1(τ) ∈

D≤(t+τ), and φ(t+τ+τ ′, t+τ, x̃2(τ))→ (1, 0) as τ ′ →∞. Since Ẽ(τ) ⊂ Pk(t+τ),

where k ∈ {0, 1}, and φ(t + τ + 1, t + τ, ·) : P̂k 7→ P̂ is an increasing separable

affine mapping, it follows that Ẽ(τ) walks to E(τ + 1) := φ(t+ τ + 1, t+ τ, Ẽ(τ))

from time t+ τ to time t+ τ + 1.

Next we show that (a)–(i) hold for τ + 1.
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(a) Since x̃1(τ) < x̃2(τ), it follows from Remark A.1(1) that E(τ+1) = (x1
−1(τ+

1), x2
−1(τ + 1)]× (x1

1(τ + 1), x2
1(τ + 1)], where x1(τ + 1) < x2(τ + 1).

(b) Since Ẽ(τ) walks to E(τ+1) from time t+τ to time t+τ+1, and φ(t+τ, t, x) ∈

Ẽ(τ), it follows that φ(t+ τ + 1, t, x) ∈ E(τ + 1).

(c) It holds that E(τ + 1) = φ(t+ τ + 1, t+ τ, Ẽ(τ)) ⊂ φ(t+ τ + 1, t+ τ, E(τ)) ⊂

φ(t+ τ + 1, t+ τ, φ(t+ τ, t, E)) = φ(t+ τ + 1, t, E).

(d) We show by contradiction that x∗ /∈ E(τ + 1) \ {x2(τ + 1)}. Suppose that

x∗ ∈ E(τ + 1) \ {x2(τ + 1)}. Since E(τ + 1) ⊂ φ(t+ τ + 1, t, E), there exists

x′ ∈ E such that φ(t + τ + 1, t, x′) = x∗. By property (i) for time t + τ ,

φ(t + τ, t, x2) = x̃2(τ) or φ(t + τ, t, x2) ∈ P3. If φ(t + τ, t, x2) = x̃2(τ),

then since Ẽ(τ) walks to E(τ + 1) from time t + τ to time t + τ + 1, it

follows from Remark A.1(3) that x2(τ + 1) = φ(t + τ + 1, t + τ, x̃2(τ)) =

φ(t+τ +1, t+τ, φ(t+τ, t, x2)) = φ(t+τ +1, t, x2) 6= x∗, and thus x′ 6= x2. If

φ(t+τ, t, x2) ∈ P3, then it follows from Lemma 3.1 that φ(t+τ+1, t, x2) ∈ P3,

and thus x′ 6= x2. Hence, either way x′ 6= x2. Thus, x′ ∈ Ē \ {x1, x2}. Note

that τ + 1 ≤ χ(t, x). Thus, x′ ∈ φ−1
≤ (t, D̄k,1,1(t), χ(t, x)) ∩

(
Ē \ {x1, x2}

)
,

contradicting φ−1
≤ (t, D̄k,1,1(t), χ(t, x)) ∩ (Ē \ {x1, x2}) = ∅.

(e) Recall that Ẽ(τ) ⊂ P0(t + τ) or Ẽ(τ) ⊂ P1(t + τ). First, note that if

x̃1
−1(τ) = x∗−1 and x̃1

1(τ) > x∗1, then x̃1(τ) ∈ P2, which contradicts x̃1(τ) ∈

D≤(t + τ). Thus, it cannot hold that x̃1
−1(τ) = x∗−1 and x̃1

1(τ) > x∗1. If

Ẽ(τ) ⊂ P1(t+τ) and x̃1
1(τ) = x∗1, then since Ẽ(τ) walks to E(τ+1), it follows

from Lemma A.13 that x1(τ + 1) ∈ D≤(t+ τ + 1). If Ẽ(τ) ⊂ P1(t+ τ) and

x̃1(τ) > x∗, then x̃1(τ) ∈ P1(t+τ). Then it follows from Remark A.1(3) that

x1(τ+1) = φ(t+τ+1, t+τ, x̃1(τ)). Thus, it follows from Proposition A.1(1)

that x1(τ + 1) ∈ D≤(t+ τ + 1). If Ẽ(τ) ⊂ P0(t+ τ), then x̃1(τ) ∈ P0(t+ τ),

and it follows from Remark A.1(3) that x1(τ + 1) = φ(t+ τ + 1, t+ τ, x̃1(τ)).

Thus, it follows from Proposition A.1(1) that x1(τ + 1) ∈ D≤(t+ τ + 1).

(f) Since φ(t+ τ + τ ′, t+ τ, x̃2(τ))→ (1, 0) as τ ′ →∞ and x2(τ + 1) = φ(t+ τ +

1, t+τ, x̃2(τ)), it follows that φ(t+τ +1+τ ′, t+τ +1, x2(τ +1)) = φ(t+τ +
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1+τ ′, t+τ+1, φ(t+τ+1, t+τ, x̃2(τ))) = φ(t+τ+1+τ ′, t+τ, x̃2(τ))→ (1, 0)

as τ ′ →∞.

(g) It follows from Lemma A.12 that E(τ + 1) ∩ P2 = ∅.

(h) It follows from Lemma A.12 that Ẽ(τ + 1) ⊂ P0(t + τ + 1) or Ẽ(τ + 1) ⊂

P1(t+ τ + 1).

(i) If Ẽ(τ + 1) = ∅, then result (i) holds. Otherwise, since Ẽ(τ) 6= ∅, it

follows from the induction hypothesis that φ(t + τ, t, x2) = x̃2(τ) or φ(t +

τ, t, x2) ∈ P3. If φ(t + τ, t, x2) ∈ P3, then it follows from Lemma 3.1 that

φ(t + τ + 1, t, x2) ∈ P3. If φ(t + τ, t, x2) = x̃2(τ), then since Ẽ(τ) walks

to E(τ + 1), it follows that x2(τ + 1) = φ(t + τ + 1, t + τ, x̃2(τ)) = φ(t +

τ + 1, t + τ, φ(t + τ, t, x2)) = φ(t + τ + 1, t, x2). Then, since Ẽ(τ + 1) 6= ∅,

it follows from Lemma A.12 that x2(τ + 1) = φ(t + τ + 1, t, x2) ∈ P3 or

x̃2(τ + 1) = x2(τ + 1) = φ(t+ τ + 1, t, x2).

2 Case 2. ζ(t, x2) < ζ(t, x1) ≤ χ(t, x):

Then τ0 = ζ(t, x2). It follows from Lemma A.11((2)) that Ē walks to φ(t+τ0, t, Ē)

from time t to time t + τ0, and for all 0 ≤ τ < τ0, it holds that φ(t + τ, t, Ē) ⊂

P0(t + τ) or φ(t + τ, t, Ē) ⊂ P1(t + τ). Thus, ¯̃E(τ) = Ē(τ) ⊂ P0(t + τ) or

¯̃E(τ) = Ē(τ) ⊂ P1(t+ τ) for all 0 ≤ τ < τ0.

We show by induction on τ ∈ {τ0, . . . , ζ(t, x1)} that

(a) there exist x1(τ), x2(τ) ∈ P (t + τ) such that x1(τ) < x2(τ) and E(τ) =

(x1
−1(τ), x2

−1(τ)]× (x1
1(τ), x2

1(τ)],

(b) φ(t+ τ, t, x) ∈ E(τ),

(c) Ē(τ) ⊂ φ(t+ τ, t, Ē) and E(τ) ⊂ φ(t+ τ, t, E),

(d) φ(t+ τ, t, x1) = x1(τ) ∈ P0(t+ τ)∪P1(t+ τ) and φ(t+ τ, t, x1) /∈ D<(t+ τ).

(e) x∗ /∈ Ē(τ) \ {x1(τ), x2(τ)},

(f) x2(τ) ∈ D≤(t+ τ),

(g) E(τ) ∩ P2 = ∅,

(h) x1(τ) = x∗ or ¯̃E(τ) ⊂ Pk(t+ τ) for some k ∈ {0, 1}, and
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(i) φ(t+ τ, t, x2) = x2(τ) or φ(t+ τ, t, x2) ∈ P3.

Consider τ = τ0. Since Ē walks to Ē(τ0), it follows from Remark A.1(3) that

x1(τ0) = φ(t + τ0, t, x
1) < φ(t + τ0, t, x

2) = x2(τ0), Ē(τ0) = φ(t + τ0, t, Ē) =

[x1
−1(τ0), x2

−1(τ0)] × [x1
1(τ0), x2

1(τ0)], where x2(τ0) = φ(t + τ0, t, x
2) = x∗. Thus

it holds that x∗ /∈ Ē(τ0) \ {x1(τ0), x2(τ0)}, φ(t+ τ0, t, x
1) = x1(τ0) ∈ P0(t+ τ0),

x2(τ0) = x∗ ∈ D≤(t + τ0), Ē(τ0) ∩ P2 = ∅, Ē(τ0) ⊂ P0(t + τ0) and ¯̃E(τ0) =

Ē(τ0) ⊂ P0(t+ τ0), and φ(t+ τ0, t, x
2) = x2(τ0). Also, since E walks to E(τ0), it

follows that E(τ0) = φ(t+ τ0, t, E). Since x ∈ E, it follows that φ(t+ τ0, t, x) ∈

E(τ0). It follows from τ0 < ζ(t, x1) that φ(t + τ0, t, x
1) /∈ D<(t + τ0); since if

φ(t + τ0, t, x
1) ∈ D<(t + τ0) then it would follow from Proposition A.1(1) that

φ(t+τ, t, x1) ∈ D<(t+τ) and thus φ(t+τ, t, x1) 6= x∗ for all τ ≥ τ0, contradicting

ζ(t, x1) > τ0. Thus (a)–(i) hold for τ = τ0.

Assume that (a)–(i) hold for some τ < ζ(t, x1). Since φ(t + τ, t, x) ∈ E(τ) and

τ < ζ(t, x1) ≤ χ(t, x), it holds that φ(t+ τ, t, x) ∈ P0(t+ τ)∪P1(t+ τ), and thus

φ(t+ τ, t, x) ∈ E(τ)∩ (P0(t+ τ)∪P1(t+ τ)) = Ẽ(τ). Since Ẽ(τ) ⊂ E(τ), it holds

that ¯̃E(τ) ⊂ Ē(τ). It follows from Lemma A.14 that there are x̃1(τ), x̃2(τ) such

that x1(τ) = x̃1(τ) < x̃2(τ) and Ẽ(τ) = (x̃1
−1(τ), x̃2

−1(τ)] × (x̃1
1(τ), x̃2

1(τ)], and

x̃2(τ) ∈ D≤(t+τ). Since τ < ζ(t, x1), it also follows that x1(τ) = φ(t+τ, t, x1) 6=

x∗, and thus ¯̃E(τ) ∈ Pk(t + τ) for some k ∈ {0, 1}. It follows that ¯̃E(τ) walks

to Ē(τ + 1) and Ẽ(τ) walks to E(τ + 1). It also follows from Lemma A.14 that

x2(τ) ∈ P3 or x2(τ) = x̃2(τ).

Next we show that (a)–(i) hold for τ + 1.

(a) Since Ẽ(τ) = (x̃1
−1(τ), x̃2

−1(τ)] × (x̃1
1(τ), x̃2

1(τ)] walks to E(τ + 1), it follows

that there exist x1(τ+1), x2(τ+1) ∈ P (t+τ) such that x1(τ+1) < x2(τ+1)

and E(τ + 1) = (x1
−1(τ + 1), x2

−1(τ + 1)]× (x1
1(τ + 1), x2

1(τ + 1)].

(b) Since φ(t+ τ, t, x) ∈ Ẽ(τ), it follows that φ(t+ τ + 1, t, x) ∈ E(t+ τ + 1).

(c) It follows that Ē(τ+1) = φ(t+τ+1, t+τ, ¯̃E(τ)) ⊂ φ(t+τ+1, t+τ, Ē(τ)) ⊂

φ(t+ τ + 1, t+ τ, φ(t+ τ, t, Ē)) = φ(t+ τ + 1, t, Ē), and E(τ + 1) = φ(t+ τ +
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1, t+ τ, Ẽ(τ)) ⊂ φ(t+ τ + 1, t+ τ, E(τ)) ⊂ φ(t+ τ + 1, t+ τ, φ(t+ τ, t, E)) =

φ(t+ τ + 1, t, E).

(d) Since ¯̃E(τ) walks to Ē(τ + 1) and x̃1(τ) = x1(τ) = φ(t + τ, t, x1), it follows

from Remark A.1(3) that x1(τ + 1) = φ(t+ τ + 1, t+ τ, x̃1(τ)) = φ(t+ τ +

1, t + τ, φ(t + τ, t, x1)) = φ(t + τ + 1, t, x1). Since τ + 1 ≤ ζ(t, x1), it holds

that φ(t + τ + 1, t, x1) ∈ P0(t + τ) ∪ P1(t + τ). It also holds that φ(t + τ +

1, t, x1) /∈ D<(t+ τ + 1); since otherwise it follows from Proposition A.1(1)

that φ(t+τ ′, t, x1) ∈ D<(t+τ ′) for all τ ′ ≥ τ+1, contradicting τ+1 ≤ ζ(t, x1).

(e) We show by contradiction that x∗ /∈ Ē(τ+1)\{x1(τ+1), x2(τ+1)}. Suppose

that x∗ ∈ Ē(τ + 1) \ {x1(τ + 1), x2(τ + 1)}. Since Ē(τ + 1) ⊂ φ(t + τ +

1, t, Ē), there exists x′ ∈ Ē such that φ(t + τ + 1, t, x′) = x∗. Note that

φ(t + τ + 1, t, x1) = x1(τ + 1) 6= x∗, and thus x′ 6= x1. Next, note that

φ(t+τ0+1, t, x2) = φ(t+τ0+1, t+τ0, x
∗) = (x∗−1+δ0

−1(t+τ0+1), x∗1+δ0
1(t+τ0+

1)) ∈ P1(t+τ), and thus ρm(t+τ0+1, φ(t+τ0+1, t, x2)) = δ0
m(t+τ0+1)(Mm+

t+1) = 1−x∗m for m = ±1. Since x∗1 > x∗−1, it follows that ρ−1(t+τ0+1, φ(t+

τ0 + 1, t, x2))x∗1 = (1− x∗−1)x∗1 = x∗1− x∗−1x
∗
1 > x∗−1− x∗−1x

∗
1 = (1− x∗1)x∗−1 =

ρ1(t+τ0+1, φ(t+τ0+1, t, x2))x∗−1, and hence φ(t+τ0+1, t, x2) ∈ D<(t+τ0+1).

Then it follows from Proposition A.1(1) that φ(t+ τ ′, t, x2) ∈ D<(t+ τ ′) for

all τ ′ ≥ τ0 + 1. Since τ + 1 ≥ τ0 + 1, it follows that φ(t + τ + 1, t, x2) ∈

D<(t + τ + 1), and thus φ(t + τ + 1, t, x2) 6= x∗. Hence x′ 6= x2. Note

that τ + 1 ≤ χ(t, x), and thus, x′ ∈ φ−1
≤ (t, D̄k,1,1(t), χ(t, x)) ∩ (Ē \ {x1, x2}),

contradicting φ−1
≤ (t, D̄k,1,1(t), χ(t, x)) ∩ (Ē \ {x1, x2}) = ∅.

(f) Since x̃2(τ) ∈ D≤(t+ τ) and Ẽ(τ) walks to E(τ + 1), it follows from Propo-

sition A.1(1) that x2(τ + 1) = φ(t+ τ + 1, t+ τ, x̃2(τ)) ∈ D≤(t+ τ + 1).

(g) It follows from Lemma A.14 that E(τ + 1) ∩ P2 = ∅.

(h) It follows from Lemma A.14 that x1(τ + 1) = x∗ or ¯̃E(τ + 1) ⊂ Pk(t+ τ + 1)

for some k ∈ {0, 1}.

(i) By property (i) for time t+ τ , φ(t+ τ, t, x2) = x2(τ) or φ(t+ τ, t, x2) ∈ P3.

Also, recall that x2(τ) ∈ P3 or x2(τ) = x̃2(τ). If φ(t+ τ, t, x2) ∈ P3, then it
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follows from Lemma 3.1 that φ(t+τ +1, t, x2) ∈ P3. If φ(t+τ, t, x2) = x2(τ)

and x2(τ) ∈ P3, then it follows from Lemma 3.1 that φ(t+ τ + 1, t, x2) ∈ P3.

If φ(t+ τ, t, x2) = x2(τ) and x2(τ) = x̃2(τ), then x2(τ + 1) = φ(t+ τ + 1, t+

τ, x̃2(τ)) = φ(t+ τ + 1, t+ τ, φ(t+ τ, t, x2)) = φ(t+ τ + 1, t, x2).

Note that at time τ = ζ(t, x1), it holds that x1(τ) = φ(t + τ, t, x1) = x∗ ∈

D≤(t + τ). Also, x∗ = x1(τ) /∈ E(τ) \ {x2(τ)}. In addition, x2(τ) ∈ D≤(t + τ)

and thus it follows from Corollary A.1 that φ(t+ τ + τ ′, t+ τ, x2(τ))→ (1, 0) as

τ ′ → ∞. It also follows that Ẽ(τ) = E(τ) ∈ P1(t + τ) and thus x̃2(τ) = x2(τ).

Hence φ(t + τ, t, x2) = x̃2(τ) or φ(t + τ, t, x2) ∈ P3. Therefore the induction

hypothesis for Case 1 holds at time τ = ζ(t, x1). Then the same induction

argument as in Case 1 shows that the induction hypothesis for Case 1 holds at

times τ ∈ {ζ(t, x1), . . . , χ(t, x)}.

Thus, φ(t + τ, t, x) ∈ E(τ) and E(τ) ∩ P2 = ∅, and hence φ(t + τ, t, x) /∈ P2 for all

τ ∈ {t, . . . , χ(t, x)}. Thus, φ(t + χ(t, x), t, x) ∈ P3. It follows from Theorem 3.2 that

φ(t+ τ, t, x)→ (1, 0) as τ →∞.

(4) The proof of (4) is similar to the proof of (3).

A.1.4.6 Characterization of Convergence for x∗−1 = x∗1

The Rational Case

For j ∈ Z, let vj(t) denote the top right vertex of Qj(t), i.e., let

vj(t) :=
(
x∗−1 + jδ0

−1(t)/q, x∗1 + jδ0
1(t)/q

)
.

Lemma A.15. Consider any k ∈ {0, 1}, i ∈ Ik(t)∩Jk(t), and t ∈ N0. Then, ∪j∈Ik,iQj(t) =

Dk,i,i(t) \
(
∪j∈Ik,iΩ(vj(t))

)
.

Proof : Note that for each j ∈ Ik,i, it holds that Qj(t) = Ω1(vj−1(t)) ∩ Ω0(vj(t)). Con-

sider any x ∈ ∪j∈Ik,iQj(t) ⊂ Dk,i,i(t). Let j ∈ Ik,i be such that x ∈ Qj(t). Thus,

x ∈ Ω1(vj−1(t)) ∩ Ω0(vj(t)) =
(
∩{j′∈Ik,i : j′≤j−1}Ω

1(vj′(t))
)
∩
(
∩{j′∈Ik,i : j′≥j}Ω

0(vj′(t))
)

.

Thus, x /∈ ∪j∈Ik,iΩ(vj(t)). Hence, ∪j∈Ik,iQj(t) ⊂ Dk,i,i(t) \
(
∪j∈Ik,iΩ(vj(t))

)
.
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Next, consider any x ∈ Dk,i,i(t) \
(
∪j∈Ik,iΩ(vj(t))

)
. Thus, x ∈ Dk,i,i(t) and x ∈

∩j∈Ik,i
(
Ω0(vj(t)) ∪ Ω1(vj(t))

)
. Note that x ∈ Ω0(cv(Dk,i,i(t))) and thus {j′ ∈ Ik,i : x ∈

Ω0(vj′(t))} 6= ∅. Let j := min{j′ ∈ Ik,i : x ∈ Ω0(vj′(t))}. Then x ∈ Ω1(vj−1(t)) ∩

Ω0(vj(t)) = Qj(t). Hence, Dk,i,i(t)\
(
∪j∈Ik,iΩ(vj(t))

)
⊂ ∪j∈Ik,iQj(t). Therefore, ∪j∈Ik,iQj(t) =

Dk,i,i(t) \
(
∪j∈Ik,iΩ(vj(t))

)
.

Lemma A.16. Suppose that x∗1 = x∗−1 and that x∗1/(1 − x∗1) = K + p/q, where K ∈ N0,

p, q ∈ N, p/q < 1, and gcd(p, q) = 1, or K ∈ N, p = 0, and q = 1. Consider any t ∈ N0.

Then, the following hold:

(1) If j ≤ 0, then φ(t + 1, t, vj(t)) = vj+q(t + 1), and if j > 0, then φ(t + 1, t, vj(t)) =

vj−(Kq+p)(t+ 1).

(2) If j ≤ 0, then φ(t + 1, t, Qj(t)) = Qj+q(t + 1), and if j > 0, then φ(t + 1, t, Qj(t)) =

Qj−(Kq+p)(t+ 1).

(3) For all x ∈ Q(t) it holds that φ(t+ τ, t, x)→ x∗ as τ →∞.

Proof :

(1) If j ≤ 0, then it follows from (3.10) that

φm(t+ 1, t, vj(t)) =
(Mm + t)vj(t) + 1

Mm + t+ 1
= x∗m+ (j+ q)

δ0
m(t+ 1)

q
= vj+q(t+ 1).

If j > 0, then it follows from (3.10) that

φm(t+1, t, vj(t)) =
(Mm + t)vj(t)

Mm + t+ 1
= x∗m+(j−(Kq+p))

δ0
m(t+ 1)

q
= vj−(Kq+p)(t+1).

(2) Consider any x ∈ Qj(t), that is,

xm ∈
(
x∗m + (j − 1)

δ0
m(t)

q
, x∗m + j

δ0
m(t)

q

]
for m = ±1. (A.7)

If j ≤ 0, then x ∈ P̂0, and it follows from (3.10) that

φm(t+ 1, t, x) =
(Mm + t)xm + 1

Mm + t+ 1

∈
(
x∗m + (j + q − 1)

δ0
m(t+ 1)

q
, x∗m + (j + q)

δ0
m(t+ 1)

q

]
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for m = ±1. Thus, φ(t + 1, t, Qj(t)) ⊂ Qj+q(t + 1). If j > 0, then x ∈ P̂1, and it

follows from (3.10) that

φm(t+ 1, t, x) =
(Mm + t)xm
Mm + t+ 1

∈
(
x∗m + (j − (Kq + p)− 1)

δ0
m(t+ 1)

q
, x∗m + (j − (Kq + p))

δ0
m(t+ 1)

q

]
for m = ±1. Thus, φ(t+ 1, t, Qj(t)) ⊂ Qj−(Kq+p)(t+ 1).

Conversely, consider any j ≤ 0, and any y ∈ Qj+q(t+ 1), that is,

ym ∈
(
x∗m + (j + q − 1)δ0

m(t+ 1)/q, x∗m + (j + q)δ0
m(t+ 1)/q

]
for m = ±1. Note that x with xm = [ym (Mm + t+ 1)− 1] / (Mm + t) satisfies x ∈

Qj(t) ⊂ P̂0 and φm(t + 1, t, x) = y. Thus, Qj+q(t + 1) ⊂ φ(t + 1, t, Qj(t)). Similarly,

consider any j > 0, and any y ∈ Qj−(Kq+p)(t+ 1), that is,

ym ∈
(
x∗m + (j − (Kq + p)− 1)

δ0
m(t+ 1)

q
, x∗m + (j − (Kq + p))

δ0
m(t+ 1)

q

]
for m = ±1. Note that x with xm = ym (Mm + t+ 1) / (Mm + t) satisfies x ∈ Qj(t) ⊂

P̂1 and φm(t+ 1, t, x) = y. Thus, Qj−(Kq+p)(t+ 1) ⊂ φ(t+ 1, t, Qj(t)).

(3) If x ∈ Q(t), then it follows from a repeated application of (2) that φ(t + τ, t, x) ∈

Q(t+τ) ⊂ ∪D∈D=(t+τ)D for all τ ∈ N0, and hence it follows from Proposition 3.7 that

φ(t+ τ, t, x)→ x∗ as τ →∞.

For any t ∈ N0, note that cv(D0,i,i(t)) = v−(i−1)q(t) for i ∈ I0(t)∩J0(t), and cv(D1,i,i(t)) =

vi(Kq+p)(t) for i ∈ I1(t) ∩ J1(t).

Proposition A.2. Suppose that x∗1 = x∗−1 and that x∗1/(1− x∗1) = K + p/q, where K ∈ N0,

p, q ∈ N, p/q < 1, and gcd(p, q) = 1, or K ∈ N, p = 0 and q = 1. Consider any t ∈ N0,

k ∈ {0, 1}, i ∈ Ik(t) ∩ Jk(t). Then, φ−1(t,Dk,i,i(t)) = {vj(t) : j ∈ Ik,i}.

Proof : First we show that {vj(t) : j ∈ Ik,i} ⊂ φ−1(t,Dk,i,i(t)). Consider any vj(t) with

j ∈ Ik,i. We consider 3 cases.

Case 1: K ∈ N, p = 0, q = 1: Then, x∗1/(1 − x∗1) = K. First suppose that k = 0,

that is, j ≤ 0. Note that for any i ∈ I0(t) ∩ J0(t), it holds that Q1−i(t) = D0,i,i(t) and
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v1−i(t) = cv(D0,i,i(t)), and for any j ≤ 0, it holds that vj(t) = cv(D0,1−j,1−j(t)). It follows

from Proposition 3.6 that D0,1−j,1−j(t) walks to D0,1,1(t − j) from time t to time t − j.

Thus, φ(t − j, t, vj(t)) = x∗, and thus vj(t) ∈ φ−1(t,Dk,i,i(t)). Next suppose that k = 1,

that is, j ∈ {(i−1)K+1, (i−1)K+2, . . . , iK}. Since j > 0, it follows from Lemma A.16(1)

that φ(t + τ, t, vj(t)) = vj−τK(t + τ) for all 0 ≤ τ ≤ i. Since j − iK ≤ 0, it follows that

φ(t+ i, t, vj(t)) = vj−iK(t+ i) = cv(D0,1−j+iK,1−j+iK(t+ i)). It follows from Proposition 3.6

that φ(t+ i− j + iK, t, vj(t)) = x∗. Thus, vj(t) ∈ φ−1(t,Dk,i,i(t)).

Case 2: K ∈ N, p, q ∈ N, p/q < 1, and gcd(p, q) = 1: First suppose that k = 0, that is, j ≤ 0.

Then j = −lq − n, where l ∈ N0 and n ∈ {0, 1, . . . , q − 1}. It follows from Lemma A.16(1)

that φ(t + l, t, vj(t)) = vj+lq(t + l). Note that j + lq = −n ∈ I− := {−q + 1, . . . ,−1, 0}.

Next suppose that k = 1, that is, j > 0. Then j = l′(Kq + p) + n′, where l′ ∈ N0

and n′ ∈ {1, . . . ,Kq + p}. It follows from Lemma A.16(1) that φ(t + l′ + 1, t, vj(t)) =

vj−(l′+1)(Kq+p)(t + l′ + 1). Note that j − (l′ + 1)(Kq + p) = n′ − (Kq + p) ≤ 0. Then

j − (l′ + 1)(Kq + p) = −lq − n, where l ∈ N0 and n ∈ {0, 1, . . . , q − 1}. It follows from

Lemma A.16(1) that φ(t+ l′ + 1 + l, t, vj(t)) = vj−(l′+1)(Kq+p)+lq(t+ l′ + 1 + l). Note that

j − (l′ + 1)(Kq + p) + lq = −n ∈ I−.

Next, consider vj(t) with j ∈ I−. We show that there exists τ ∈ N0 such that φ(t +

τ, t, vj(t)) = x∗. For any τ ∈ N0, let f(τ) denote the negative of the index of φ(t+τ, t, vj(t)),

that is, φ(t + τ, t, vj(t)) = v−f(τ)(t + τ). Thus, we will show that there exists τ ∈ N0 such

that f(τ) = 0.

Inductively define {τn}∞n=0 as follows. Let τ0 = 0. Note that −f(τ0) = j ∈ I−. For

n = 0, 1, . . ., let τn+1 := inf{τ > τn : −f(τ) ∈ I−}. Suppose that −f(τn) ∈ I−. Then,

f(τn) + p ∈ {p, . . . , p+ q− 1}. It follows from Lemma A.16(1) that f(τn + 1) = f(τn)− q ∈

{−q, . . . ,−1} and that f(τn + 2) = f(τn) − q + Kq + p = f(τn) + (K − 1)q + p ≥ 0 since

K ≥ 1. It follows from Lemma A.16(1) that, if f(τn) + p < q, then τn+1 = τn + 2 +K − 1,

and f(τn+1) = f(τn) + p ∈ {p, . . . , q− 1} ⊂ −I−. If f(τn) + p ≥ q, then τn+1 = τn + 2 +K,

and f(τn+1) = f(τn) + p− q ∈ {0, . . . , p− 1} ⊂ −I−. Thus,

f(τn+1) =

 f(τn) + p if f(τn) + p < q,

f(τn) + p− q if f(τn) + p ≥ q,
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which implies that

f(τn) = (−j + np) mod q

for all n ∈ N0.

Since p ≥ 1 and gcd(p, q) = 1, there exists p∗ ∈ N such that (p∗p) mod q = 1. Thus,

there exists N ∈ N such that p∗p = Nq + 1. Note that

f(τ(j+q)p∗) = (−j + (j + q)p∗p) mod q = (−j + (j + q)(Nq + 1)) mod q = 0.

Thus, there exists τ ∈ N0 such that f(τ) = 0. Hence, φ(t + τ, t, vj(t)) = v0(t + τ) = x∗,

which implies that vj(t) ∈ φ−1(t,Dk,i,i(t)).

Case 3: K = 0, p, q ∈ N, p/q < 1, and gcd(p, q) = 1: Then (1− x∗)/x∗ = K̃ +m/p, where

K̃ = q ∈ N, m = 0, p = 1, or K̃ ∈ N, m, p ∈ N, m/p < 1, and gcd(m, p) = 1. By changing

variables y∗m := 1− x∗m, similar arguments as in Cases 1 and 2 apply to this case.

Next we show that φ−1(t,Dk,i,i(t)) ⊂ {vj(t) : j ∈ Ik,i}. Consider any x ∈ φ−1(t,Dk,i,i(t)).

Then there exists τ ∈ N0 such that φ(t + τ, t, x) = x∗ ∈ D=(t + τ). It follows from

Proposition A.1 that φ(t + τ + τ ′, t, x) ∈ D=(t + τ + τ ′), and thus it follows from Propo-

sition 3.7 that φ(t + τ + τ ′, t, x) → x∗ as τ ′ → ∞. We show by contradiction that

x ∈ {vj(t) : j ∈ Ik,i}. Since {vj(t) : j ∈ Ik,i} ⊂ φ−1(t,Dk,i,i(t)), it follows that if

x ∈ ∪j∈Ik,iΩ(vj(t)), then x ∈ D2
k,i,i(t) ∪ D3

k,i,i(t). Then it follows from Theorem 3.4((1))

and 3.4((2)) that φ(t + τ + τ ′, t, x) → (1, 0) or φ(t + τ + τ ′, t, x) → (0, 1) as τ ′ → ∞,

contradicting φ(t + τ + τ ′, t, x) → x∗ as τ ′ → ∞. If x ∈ Dk,i,i(t) \
[
∪j∈Ik,iΩ(vj(t))

]
, then

it follows from Lemma A.15 that x ∈ ∪j∈Ik,iQj(t). Thus, there exists some j ∈ Ik,i such

that x ∈ Qj(t). Since x /∈ {vj(t) : j ∈ Ik,i}, it holds that Ω(x) ∩Qj(t) 6= ∅. Consider any

y ∈ Ω(x)∩Qj(t). Since x ∈ φ−1(t,Dk,i,i(t)), it follows that y ∈ D2
k,i,i(t)∪D3

k,i,i(t). It follows

from Theorem 3.4((1)) and 3.4((2)) that φ(t + τ, t, y) → (1, 0) or φ(t + τ, t, y) → (0, 1) as

τ → ∞, contradicting φ(t + τ, t, y) → x∗ by Lemma A.16(3). Thus, x ∈ {vj(t) : j ∈ Ik,i},

and hence φ−1(t,Dk,i,i(t)) ⊂ {vj(t) : j ∈ Ik,i}.

Proof of Theorem 3.5: Results (1) and (2) follow from Theorem 3.4((1)) and The-

orem 3.4((2)). It follows from Proposition A.2 that φ−1(0, Dk,i,i(0)) = {vj(0) : j ∈

Ik,i}. Thus Dl
k,i,i(0) := Dk,i,i(0) ∩

[
∪x∈φ−1(0,Dk,i,i(0))Ω

l(x)
]

= Dk,i,i(0) ∩
[
∪j∈Ik,iΩl(vj(0))

]
.
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Hence Dk,i,i(0) \ (D2
k,i,i(0) ∪ D3

k,i,i(0)) = Dk,i,i(0) ∩ D2
k,i,i(0)c ∩ D3

k,i,i(0)c = Dk,i,i(0) ∩[
∩j∈Ik,iΩ2(vj(0))c

]
∩
[
∩j∈Ik,iΩ3(vj(0))c

]
= Dk,i,i(0) ∩

[
∩j∈Ik,i

(
Ω2(vj(0)) ∪ Ω3(vj(0))

)c]
=

Dk,i,i(0)∩
[
∩j∈Ik,iΩ(vj(0))c

]
= Dk,i,i(0)∩

[
∪j∈Ik,iΩ(vj(0))

]c
= Dk,i,i(0)\

[
∪j∈Ik,iΩ(vj(0))

]
=

∪j∈Ik,iQj(0), where the last equality follows from Lemma A.15. Therefore ∪k∈{0,1}∪i∈Ik(0)∩Jk(0)[
Dk,i,i(0) \ (D2

k,i,i(0) ∪D3
k,i,i(0))

]
= ∪k∈{0,1} ∪i∈Ik(0)∩Jk(0) ∪j∈Ik,iQj(0) = Q(0). It follows

from Lemma A.16(3) that φ(t, 0, x)→ x∗ as t→∞ for all x ∈ Q(0).

The Irrational Case

Let x∗1/(1−x∗1) = K+ω, where K ∈ N0 and ω ∈ (0, 1)\Q. We show that in the irrational

case, φ(t+ τ, t, x)→ x∗ as τ →∞ if and only if x ∈ D=(t). For each t ∈ N0 and r ∈ R, let

w(t, r) = (w−1(t, r), w1(t, r)) := (x∗−1+rδ0
−1(t), x∗1+rδ0

1(t)). If x∗1 = x∗−1, the diagonal line at

time t can be written asD=(t) =
{
x ∈ P (t) : (x1 − x∗1)(M1 + t) = (x−1 − x∗−1)(M−1 + t)

}
=

{w(t, r) ∈ P (t) : r ∈ R}. For any t, τ ∈ N0 and x ∈ D=(t), let g(τ, x) = −r iff φ(t+τ, t, x) =

w(t+ τ, r). That is, for any t, τ ∈ N0 and x ∈ D=(t), φ(t+ τ, t, x) = w(t+ τ,−g(τ, x)).

Lemma A.17. Suppose that x∗−1 = x∗1. For any t, τ ∈ N0 it holds that x ∈ D=(t) iff

φ(t+ τ, t, x) ∈ D=(t+ τ). If x ∈ D=(t), then φ(t+ τ, t, x)→ x∗ as τ →∞.

Proof : It follows from Proposition A.1 that if x ∈ D=(t), then φ(t + τ, t, x) ∈ D=(t + τ)

for all τ ∈ N0, if x ∈ D<(t) then φ(t+ τ, t, x) ∈ D<(t+ τ) for all τ ∈ N0, and if x ∈ D>(t)

then φ(t+ τ, t, x) ∈ D>(t+ τ) for all τ ∈ N0. Hence x ∈ D=(t) iff φ(t+ τ, t, x) ∈ D=(t+ τ).

It follows from Proposition 3.7 that if x ∈ D=(t), then φ(t+ τ, t, x)→ x∗ as τ →∞.

Lemma A.18. Suppose that x∗−1 = x∗1 and x∗1/(1 − x∗1) = K + ω. Consider any t, τ ∈ N0

and x ∈ D=(t). If g(τ, x) ≥ 0, then g(τ + 1, x) = g(τ, x) − 1, and if g(τ, x) < 0, then

g(τ + 1, x) = g(τ, x) +K + ω.

Proof : If g(τ, x) ≥ 0, then φ(t+ τ, t, x) ∈ P0(t) and

φm(t+ τ + 1, t, x) =
(Mm + t+ τ)φm(t+ τ, t, x) + 1

Mm + t+ τ + 1
= x∗m− [g(τ, x)− 1]δ0

m(t+ τ + 1)

for m = ±1, and thus g(τ + 1, x) = g(τ, x)− 1. If g(τ, x) < 0, then φ(t+ τ, t, x) ∈ P1(t) and

φm(t+ τ + 1, t, x) =
(Mm + t+ τ)φm(t+ τ, t, x)

Mm + t+ τ + 1
= x∗m− [g(τ, x) +K+ω]δ0

m(t+ τ + 1)
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for m = ±1, and thus g(τ + 1, x) = g(τ, x) +K + ω.

For any r ∈ R, let frac(r) := r mod 1 denote the fractional part of r. For any i ∈ N,

let Ri := {−i + frac(nω) : n ∈ N}. It follows from Kronecker’s Approximation Theorem

for the one-dimensional case [3] that if ω is irrational, then {frac(nω) : n ∈ N} is dense

in (0,1). Thus Ri is dense in (−i,−i + 1]. Note that if r ∈ Ri, then wm(t, r) ∈ (x∗m −

iδ0
m(t), x∗m − (i− 1)δ0

m(t)), and thus w(t, r) ∈ D0,i,i(t).

Lemma A.19. Suppose that x∗−1 = x∗1 and x∗1/(1 − x∗1) = K + ω, where K ∈ N0 and

ω ∈ (0, 1) \ Q. Consider any t ∈ N0, i ∈ I0(t) ∩ J0(t). Then, D0,i,i(t) \ D=(t) =

(∪r∈RiΩ(w(t, r))) ∩D0,i,i(t).

Proof : Consider any x ∈ D0,i,i(t) \D=(t). Thus, xm ∈ (x∗m− iδ0
m(t), x∗m− (i− 1)δ0

m(t)] for

m = ±1. Thus, there exist r−1, r1 ∈ (−i,−i+1] such that r−1 6= r1, x−1 = x∗−1 +r−1δ
0
−1(t),

and x1 = x∗1 + r1δ
0
1(t). Recall that Ri is dense in (−i,−i + 1]. If r−1 > r1, then there

exists r ∈ (r1, r−1) ∩ Ri. Then, x−1 > w−1(t, r) and x1 < w1(t, r), which implies that

x ∈ Ω3(w(t, r)). If r−1 < r1, then there exists r ∈ (r−1, r1) ∩ Ri. Then, x−1 < w−1(t, r)

and x1 > w1(t, r), which implies x ∈ Ω2(w(t, r)). Thus, x ∈ (∪r∈RiΩ(w(t, r))) ∩ D0,i,i(t),

and hence D0,i,i(t) \D=(t) ⊂ (∪r∈RiΩ(w(t, r))) ∩D0,i,i(t).

Consider any x ∈ (∪r∈RiΩ(w(t, r))) ∩ D0,i,i(t). There exists r ∈ Ri such that x ∈

Ω(w(t, r)). If x ∈ Ω2(w(t, r)), then x−1 ≤ w−1(t, r) = x∗−1 + r(1 − x∗−1)/(M−1 + t) and

x1 > w1(t, r) = x∗1 + r(1 − x∗1)/(M1 + t), and thus (x−1 − x∗−1)(M−1 + t) ≤ r(1 − x∗−1) =

r(1 − x∗1) < (x1 − x∗1)(M1 + t), which implies that x /∈ D=(t). If x ∈ Ω3(w(t, r)), then

x−1 > w−1(t, r) = x∗−1 + r(1−x∗−1)/(M−1 + t) and x1 ≤ w1(t, r) = x∗1 + r(1−x∗1)/(M1 + t),

and thus (x−1−x∗−1)(M−1 + t) > r(1−x∗−1) = r(1−x∗1) ≥ (x1−x∗1)(M1 + t), which implies

that x /∈ D=(t). Thus, x ∈ D0,i,i(t) \ D=(t), and hence (∪r∈RiΩ(w(t, r))) ∩ D0,i,i(t) ⊂

D0,i,i(t) \D=(t).

Proposition A.3. Suppose that x∗−1 = x∗1 and x∗1/(1 − x∗1) = K + ω, where K ∈ N and

ω ∈ (0, 1) \ Q. Consider any t ∈ N0 and i ∈ I0(t) ∩ J0(t). Then, {w(t, r) : r ∈ Ri} ⊂

φ−1(t,D0,i,i(t)).

Proof : Consider any r ∈ Ri. Thus, there exists n∗ ∈ N such that r = −i + frac(n∗ω).
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Note that g(0, w(t, r)) = −r ∈ [i− 1, i). It follows from Lemma A.18 that g(i− 1, w(t, r)) =

−r − (i − 1) ∈ [0, 1). Define τ0 = i − 1 and inductively define τn+1 := inf{τ > τn :

g(τ, w(t, r)) ∈ [0, 1)}.

Thus, g(τ0, w(t, r)) ∈ [0, 1). Consider any n ∈ N0, and assume that g(τn, w(t, r)) ∈ [0, 1).

It follows from Lemma A.18 that g(τn + 1, w(t, r)) = g(τn, w(t, r)) − 1 ∈ [−1, 0), and that

g(τn + 2, w(t, r)) = g(τn, w(t, r)) − 1 + K + ω > 0 since K ≥ 1 and ω > 0. Note that

g(τn, w(t, r)) + ω ∈ (0, 2). If g(τn, w(t, r)) + ω < 1, then τn+1 = τn + 2 + K − 1 and

g(τn+1, w(t, r)) = g(τn, w(t, r))+ω ∈ (0, 1). If g(τn, w(t, r))+ω ≥ 1, then τn+1 = τn+2+K

and g(τn+1, w(t, r)) = g(τn, w(t, r)) + ω − 1 ∈ [0, 1). Thus

g(τn+1, w(t, r)) =

 g(τn, w(t, r)) + ω if g(τn, w(t, r)) + ω < 1,

g(τn, w(t, r)) + ω − 1 if g(τn, w(t, r)) + ω ≥ 1.
(A.8)

which is equivalent to

g(τn, w(t, r)) = frac(−r − (i− 1) + nω) = frac(1− frac(n∗ω) + nω)

for n = 0, 1, . . .. Thus, g(τn∗ , w(t, r)) = frac(1− frac(n∗ω) + n∗ω) = 0.

Hence, φ(t+ τn∗ , t, w(t, r)) = w(t+ τn∗ , 0) = x∗. Thus, w(t, r) ∈ φ−1(t,D0,i,i(t)).

Proof of Theorem 3.6:

(1) Consider any x ∈ D>(0) ⊂ ∪D∈D2(0)∪D=(0)D ∪ P2. Suppose that K ∈ N. If x ∈

∪D∈D2(0)D ∪ P2, then it follows from Theorems 3.2 and 3.3 that φ(t, 0, x)→ (0, 1) as

t → ∞. If x ∈ ∪D∈D=(0)D, then there exists k ∈ {0, 1} and i ∈ Ik(0) ∩ Jk(0) such

that x ∈ Dk,i,i(0) \ D=(0). First suppose that k = 0. Thus, x ∈ D0,i,i(0) \ D=(0).

It follows from Lemma A.19 and Proposition A.3 that x ∈ (∪r∈RiΩ(w(0, r))) ∩

D0,i,i(0) ⊂
(
∪y∈φ−1(0,D0,i,i(0))Ω(y)

)
∩ D0,i,i(0) = D2

0,i,i(0) ∪ D3
0,i,i(0). Next suppose

that k = 1. Then it follows from Proposition 3.6 that φ(i, 0, x) ∈ P0. If φ(i, 0, x) ∈

∪D∈D2(i)∪D3(i)D, then it follows from Theorem 3.3 that φ(t, 0, x)→ (0, 1) or φ(t, 0, x)→

(1, 0) as t → ∞. Otherwise, there exists i′ ∈ I0(i) ∩ J0(i) such that φ(i, 0, x) ∈

D0,i′,i′(i) \ D=(i). Then it follows from Lemma A.19 and Proposition A.3 that

φ(i, 0, x) ∈
(
∪r∈Ri′Ω(w(i, r))

)
∩ D0,i′,i′(i) ⊂

(
∪y∈φ−1(i,D0,i′,i′ (i))

Ω(y)
)
∩ D0,i′,i′(i) =
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D2
0,i′,i′(i)∪D3

0,i′,i′(i). Thus it follows from Theorem 3.4((1)) and 3.4((2)) that φ(t, 0, x)→

(0, 1) or φ(t, 0, x)→ (1, 0) as t→∞. Since x ∈ D>(0) and x∗−1 = x∗1, it follows from

Proposition A.1(2) that φ(t, 0, x) ∈ D>(t) for all t ∈ N0. Thus, φ(t, 0, x) /∈ P3 for all

t ∈ N0 and hence φ(t, 0, x)→ (0, 1) as t→∞.

If K = 0, then x∗1/(1− x∗1) = ω. Then there exist K̃ ∈ N and ω̃ ∈ (0, 1) \Q such that

1/ω = K̃ + ω̃ and (1 − x∗1)/x∗1 = K̃ + ω̃. After changing variables to y∗1 := 1 − x∗1, a

similar argument as for the case with K ∈ N can be used.

(2) Result (2) follows from a similar argument for Result (1).

(3) If x ∈ D=(0), then it follows from Lemma A.17 that φ(t, 0, x)→ x∗ as t→∞.

Proof of Proposition 3.8: Consider any ε > 0. Choose δ = min{ε, x∗−1, 1−x∗1}. Consider

any x ∈ P such that ‖x − (0, 1)‖∞ < δ. Note that x ∈ P2. By Lemma 3.1, φ(t, 0, x) ∈ P2

for all t ∈ N0. Thus, it follows from (3.10) that

‖φ(t, 0, x)− (0, 1)‖∞ = max

{∣∣∣∣M−1x−1

M−1 + t

∣∣∣∣ , ∣∣∣∣M1x1 + t

M1 + t
− 1

∣∣∣∣}
= max

{
M−1 |x−1|
M−1 + t

,
M1 |x1 − 1|
M1 + t

}
< δ ≤ ε

for all t, and hence (0, 1) is stable. By a similar argument, (1, 0) is also stable.

Consider any ε ∈ (0,min{x∗−1, 1 − x∗1}/2) and any δ > 0. There exists x ∈ P2 such

that ‖x − x∗‖∞ < δ. Since φ(t, 0, x) → (0, 1) as t → ∞, there exists t ∈ N such that

‖φ(t, 0, x)− x∗‖∞ > ε. Thus x∗ is unstable.

A.1.5 Proofs for Discrete-time Fictitious Play under Case 2

Lemma A.20. Consider any x ∈ [0, 1] and m = ±1. Then, PBRm(x) = {A1
m}.

Proof: It follows from Lemma A.2 that

x−mπm(A0
m, A

1
−m) + (1− x−m)πm(A0

m, A
0
−m)

< x−mπm(A1
m, A

1
−m) + (1− x−m)πm(A1

m, A
0
−m),

which implies PBRm(x) = {A1
m}.
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Proof of Proposition 3.9: It follows from Lemma A.20 that for each m = ±1 and τ ∈ N0,

φm(t+ τ, t, x) =
(Mm + t)xm +

∑τ
i=1 1[Am(t+i)=A1

m]

Mm + t+ τ
=

(Mm + t)xm + τ

Mm + t+ τ
,

which implies that φ(t+ τ, t, x)→ (1, 1) as τ →∞.

A.2 Assortment Competition with General Product sets and Simple
Actions

A.2.1 Proof of Proposition 3.10:

The proof follows from similar arguments as those for Propositions 3.1 and 3.2.

A.2.2 Cournot Adjustment Process under Case 3

We provide a proof for Proposition 3.11 that describes the behavior of the Cournot adjust-

ment process under Case 3 in Table 12. Under Case 3, it holds that β̄−1 < β−1 < β−1 and

β1 < β1 < β̄1.

Lemma A.21. Under Case 3 in Table 12, it holds that π1(A1
1, A

1
−1) < π1(A0

1, A
1
−1) and

π1(A0
1, A

0
−1) < π1(A1

1, A
0
−1) and π−1(A1

−1, A
1
1) > π−1(A0

−1, A
1
1) and π−1(A0

−1, A
0
1) > π−1(A1

−1, A
0
1).

Proof : For m = ±1, note that, λ̄m > 0, λm > 0 and that

πm(A1
m, A

1
−m)− πm(A0

m, A
1
−m) = λm(βm − βm),

πm(A0
m, A

0
−m)− πm(A1

m, A
0
−m) = λ̄m(βm − β̄m).

Thus, the result follows from β̄−1 < β−1 < β−1 and β1 < β1 < β̄1.

Proof of Proposition 3.11: The result follows from Lemma A.21.

A.3 Assortment Competition with General Product Sets and General
Actions

In this section we provide proofs for Propositions 3.12 and 3.13. We also present two

corollaries that follow from the propositions.

Proof of Proposition 3.12:

(1) Consider any A0
−m ∈ C0

−m and any A0
m ∈ PBR0

m(A0
−m). Then A0

m ∈ PBRm(A0
−m) iff for

all A1
m ∈ PBR1

m(A0
−m) it holds that

πm(A0
m, A

0
−m) ≥ πm(A1

m, A
0
−m)⇔
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vtmptm + bm(A0
−m, A

0
m)

1 + vtm + vt−m + c(A0
−m, A

0
m)

≥
αmvtmptm + bm(A0

−m, A
1
m)

1 + αmvtm + βmvt−m + c(A0
−m, A

1
m)

(A.9)

⇔ βm ≥ β̄m(A0
−m).

(2) Consider any A1
−m ∈ C1

−m and any A1
m ∈ PBR1

m(A1
−m). Then A1

m ∈ PBRm(A1
−m) iff for

all A0
m ∈ PBR0

m(A1
−m) it holds that

πm(A1
m, A

1
−m) ≥ πm(A0

m, A
1
−m)⇔

αmβ−mvtmptm + bm(A1
−m, A

1
m)

1 + αmβ−mvtm + α−mβmvt−m + c(A1
−m, A

1
m)

≥
β−mvtmptm + bm(A1

−m, A
0
m)

1 + β−mvtm + α−mvt−m + c(A1
−m, A

0
m)
⇔

βm ≤ βm(A1
−m). (A.10)

(3) Consider any A0
−m ∈ C0

−m and any A1
m ∈ PBR1

m(A0
−m). Then A1

m ∈ PBRm(A0
−m) iff for

all A0
m ∈ PBR0

m(A0
−m) it holds that

πm(A1
m, A

0
−m) ≥ πm(A0

m, A
0
−m)

⇔
αmvtmptm + bm(A0

−m, A
1
m)

1 + αmvtm + βmvt−m + c(A0
−m, A

1
m)

≥
vtmptm + bm(A0

−m, A
0
m)

1 + vtm + vt−m + c(A0
−m, A

0
m)

(A.11)

⇔ βm ≤ β̄m(A0
−m).

(4) Consider any A1
−m ∈ C1

−m and any A0
m ∈ PBR0

m(A1
−m). Then A0

m ∈ PBRm(A1
−m) iff for

all A1
m ∈ PBR1

m(A1
−m) it holds that

πm(A0
m, A

1
−m) ≥ πm(A1

m, A
1
−m)⇔

β−mvtmptm + bm(A1
−m, A

0
m)

1 + β−mvtm + α−mvt−m + c(A1
−m, A

0
m)

≥
αmβ−mvtmptm + bm(A1

−m, A
1
m)

1 + αmβ−mvtm + α−mβmvt−m + c(A1
−m, A

1
m)
⇔

βm ≥ βm(A1
−m). (A.12)

Remark A.2. Note that the left sides of (A.9)–(A.11) do not depend on the choice of Aim ∈

PBRim(A−m), and the right sides of (A.9)–(A.11) are the objective values πm(Aim, A−m), and
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are by definition of PBRim(A−m) the same for all choices of Aim ∈ PBRim(A−m). It follows

that β̄m(A−m) and βm(A−m) do not depend on the choice of Aim ∈ PBRim(A−m), which is

why Aim was omitted from the notation for β̄m(A−m) and βm(A−m).

Corollary A.2 characterizes the conditions for the existence of pure-strategy Nash equi-

libria.

Corollary A.2. The following holds:

(1) A pair of assortments (A0
−1, A

0
1) ∈ C0

−1×C0
1 is a Nash equilibrium iff A0

m ∈ PBR0
m(A0

−m)

and βm ≥ β̄m(A0
−m) for m = ±1.

(2) A pair of assortments (A1
−1, A

1
1) ∈ C1

−1×C1
1 is a Nash equilibrium iff A1

m ∈ PBR1
m(A1

−m)

and βm ≤ βm(A1
−m) for m = ±1.

(3) A pair of assortments (A0
−m, A

1
m) ∈ C0

−m × C1
m is a Nash equilibrium iff A0

−m ∈

PBR0
−m(A1

m), A1
m ∈ PBR1

m(A0
−m), β−m ≥ β−m(A1

m), and βm ≤ β̄m(A0
−m).

Let C0+
m (x̄m) := C0

m ∩ C+
m(x̄m), and C1+

m (x̄m) := C1
m ∩ C+

m(x̄m). Thus, C+
m(x̄m) =

C0+
m (x̄m) ∪ C1+

m (x̄m)

Proof of Proposition 3.13:

(1) If x̄0
m ∈ BR0

m(x̄−m), then x̄0
m ∈ BRm(x̄−m) iff for all A0

m ∈ C0+
m (x̄0

m) (note C0+
m (x̄0

m) ⊂

PBR0
m(x̄−m)) and all A1

m ∈ PBR1
m(x̄−m) it holds that

∑
A−m∈C−m

πm(A0
m, A−m)x̄−m(A−m) ≥

∑
A−m∈C−m

πm(A1
m, A−m)x̄−m(A−m) (A.13)

⇔
∑

A0
−m∈C

0+
−m(x̄−m)

[
πm(A0

m, A
0
−m)− πm(A1

m, A
0
−m)

]
x̄−m(A0

−m)

+
∑

A1
−m∈C

1+
−m(x̄−m)

[
πm(A0

m, A
1
−m)− πm(A1

m, A
1
−m)

]
x̄−m(A1

−m) ≥ 0.

Since A0
m ∈ C0

m, A0
−m ∈ C0

−m, and A1
m ∈ C1

m, it follows that

πm(A0
m, A

0
−m)− πm(A1

m, A
0
−m)

=
vtmptm + bm(A0

m)

1 + vtm + vt−m + c(A0
−m, A

0
m)
− αmvtmptm + bm(A1

m)

1 + αmvtm + βmvt−m + c(A0
−m, A

1
m)
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= λ̄m(A0
−m, A

0
m, A

1
m)
[
βm − β̄m(A0

−m, A
0
m, A

1
m)
]
.

and since A0
m ∈ C0

m, A1
−m ∈ C1

−m, and A1
m ∈ C1

m, it follows that

πm(A0
m, A

1
−m)− πm(A1

m, A
1
−m)

=
β−mvtmptm + bm(A0

m)

1 + β−mvtm + α−mvt−m + c(A1
−m, A

0
m)
− αmβ−mvtmptm + bm(A1

m)

1 + αmβ−mvtm + α−mβmvt−m + c(A1
−m, A

1
m)

= λm(A1
−m, A

0
m, A

1
m)
[
βm − βm(A1

−m, A
0
m, A

1
m)
]
.

Then, (A.13) is equivalent to

∑
A0
−m∈C

0+
−m(x̄−m)

λ̄m(A0
−m, A

0
m, A

1
m)
[
βm − β̄m(A0

−m, A
0
m, A

1
m)
]
x̄−m(A0

−m)

+
∑

A1
−m∈C

1+
−m(x̄−m)

λm(A1
−m, A

0
m, A

1
m)
[
βm − βm(A1

−m, A
0
m, A

1
m)
]
x̄−m(A1

−m) ≥ 0

⇔ βm ≥ βm(x̄−m).

(2) If x̄1
m ∈ BR1

m(x̄−m), then x̄1
m ∈ BRm(x̄−m) iff for all A1

m ∈ C1+
m (x̄1

m) (note C1+
m (x̄1

m) ⊂

PBR1
m(x̄−m)) and all A0

m ∈ PBR0
m(x̄−m) it holds that

∑
A−m∈C−m

πm(A1
m, A−m)x̄−m(A−m) ≥

∑
A−m∈C−m

πm(A0
m, A−m)x̄−m(A−m) (A.14)

⇔
∑

A0
−m∈C

0+
−m(x̄−m)

[
πm(A1

m, A
0
−m)− πm(A0

m, A
0
−m)

]
x̄−m(A0

−m)

+
∑

A1
−m∈C

1+
−m(x̄−m)

[
πm(A1

m, A
1
−m)− πm(A0

m, A
1
−m)

]
x̄−m(A1

−m) ≥ 0.

Since A1
m ∈ C1

m, A0
−m ∈ C0

−m, and A0
m ∈ C0

m, it follows that

πm(A1
m, A

0
−m)− πm(A0

m, A
0
−m)

=
αmvtmptm + bm(A1

m)

1 + αmvtm + βmvt−m + c(A0
−m, A

1
m)
− vtmptm + bm(A0

m)

1 + vtm + vt−m + c(A0
−m, A

0
m)

= λ̄m(A0
−m, A

0
m, A

1
m)
[
β̄m(A0

−m, A
0
m, A

1
m)− βm

]
.

and since A0
m ∈ C0

m, A1
−m ∈ C1

−m, and A1
m ∈ C1

m, it follows that

πm(A1
m, A

1
−m)− πm(A0

m, A
1
−m)

=
αmβ−mvtmptm + bm(A1

m)

1 + αmβ−mvtm + α−mβmvt−m + c(A1
−m, A

1
m)
− β−mvtmptm + bm(A0

m)

1 + β−mvtm + α−mvt−m + c(A1
−m, A

0
m)

= λm(A1
−m, A

0
m, A

1
m)
[
βm(A1

−m, A
0
m, A

1
m)− βm

]
.
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Then, (A.14) is equivalent to

∑
A0
−m∈C

0+
−m(x̄−m)

λ̄m(A0
−m, A

0
m, A

1
m)
[
βm − β̄m(A0

−m, A
0
m, A

1
m)
]
x̄−m(A0

−m)

+
∑

A1
−m∈C

1+
−m(x̄−m)

λm(A1
−m, A

0
m, A

1
m)
[
βm − βm(A1

−m, A
0
m, A

1
m)
]
x̄−m(A1

−m) ≤ 0

⇔ βm ≤ βm(x̄−m).

(3) If x̄2
m ∈ BR2

m(x̄−m), then, for any A0
m ∈ C0+

m (x̄2
m), A1

m ∈ C1+
m (x̄2

m), and Am ∈ Cm, it

holds that

∑
A−m∈C−m

πm(A0
m, A−m)x̄−m(A−m) =

∑
A−m∈C−m

πm(A1
m, A−m)x̄−m(A−m)

≥
∑

A−m∈C−m

πm(Am, A−m)x̄−m(A−m),

which implies that x̄2
m ∈ BRm(x̄−m), and thus BR2

m(x̄−m) ⊂ BRm(x̄−m).

In addition, since C0+
m (x̄2

m) ⊂ PBR0
m(x̄−m), it holds for all Â0

m ∈ PBR0
m(x̄−m) that

∑
A−m∈C−m

πm(Â0
m, A−m)x̄−m(A−m) =

∑
A−m∈C−m

πm(A0
m, A−m)x̄−m(A−m).

Similarly, since C1+
m (x̄2

m) ⊂ PBR1
m(x̄−m), it holds for all Â1

m ∈ PBR1
m(x̄−m) that

∑
A−m∈C−m

πm(Â1
m, A−m)x̄−m(A−m) =

∑
A−m∈C−m

πm(A1
m, A−m)x̄−m(A−m).

Thus, it follows that

∑
A−m∈C−m

πm(Â0
m, A−m)x̄−m(A−m) =

∑
A−m∈C−m

πm(Â1
m, A−m)x̄−m(A−m),

which is equivalent to

∑
A0
−m∈C0

−m

[
πm(Â0

m, A
0
−m)− πm(Â1

m, A
0
−m)

]
x̄−m(A0

−m)

+
∑

A1
−m∈C1

−m

[
πm(Â0

m, A
1
−m)− πm(Â1

m, A
1
−m)

]
x̄−m(A1

−m) = 0,

that is,

∑
A0
−m∈C0

−m

λ̄m(A0
−m, Â

0
m, Â

1
m)
[
βm − β̄m(A0

−m, Â
0
m, Â

1
m

]
x̄−m(A0

−m)
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+
∑

A1
−m∈C1

−m

λm(A1
−m, Â

0
m, Â

1
m)
[
βm − βm(A1

−m, Â
0
m, Â

1
m)
]
x̄−m(A1

−m) = 0,

which is equivalent to βm = βm(x̄−m).

Remark A.3. Note that the left side of (A.13) is the objective value

∑
A−m∈C−m

πm(A0
m, A−m)x̄−m(A−m),

and is by definition of PBR0
m(x̄−m) the same for all choices of A0

m ∈ PBR0
m(x̄−m), and thus

for all choices of A0
m ∈ C0+

m (x̄0
m) ⊂ PBR0

m(x̄−m). Similarly, the right side of (A.13) is the

same for all choices of A1
m ∈ PBR1

m(x̄−m). It follows that βm(x̄−m) does not depend on the

choice of A0
m ∈ C0+

m (x̄0
m) and A1

m ∈ PBR1
m(x̄−m), which is why (A0

m, A
1
m) was omitted from

the argument of βm(x̄−m). Similar comments apply to the proofs of Proposition 3.13((2))

and 3.13((3)).

Corollary A.3 characterizes the existence of mixed-strategy Nash equilibria.

Corollary A.3. The following holds:

(1) A pair of mixed strategies (x̄0
−1, x̄

0
1) ∈ ∆(C0

−1) × ∆(C0
1 ) is a Nash equilibrium iff

x̄0
m ∈ BR0

m(x̄0
−m) and βm ≥ βm(x̄0

−m) for m = ±1.

(2) A pair of mixed strategies (x̄1
−1, x̄

1
1) ∈ ∆(C1

−1) × ∆(C1
1 ) is a Nash equilibrium iff

x̄1
m ∈ BR1

m(x̄1
−m) and βm ≤ βm(x̄1

−m) for m = ±1.

(3) A pair of mixed strategies (x̄0
−m, x̄

1
m) ∈ ∆(C0

−m) × ∆(C1
m) is a Nash equilibrium iff

x̄0
−m ∈ BR0

−m(x̄1
m), x̄1

m ∈ BR1
m(x̄0

−m), β−m ≥ β−m(x̄1
m), and βm ≤ βm(x̄0

−m).

(4) There exists a pair of mixed strategies (x̄2
−1, x̄

2
1) ∈ ∆(C−1) × ∆(C1) such that x̄2

m ∈

BR2
m(x̄2

−m) for m = ±1 iff βm = βm(x̄2
−m) for m = ±1. Any such pair of mixed

strategies is a Nash equilibrium.

(5) There exists a pair of mixed strategies (x̄0
−m, x̄

2
m) ∈ ∆(C0

−m)×∆(Cm) such that x̄2
m ∈

BR2
m(x̄0

−m) iff βm = βm(x̄0
−m). Such a pair of mixed strategies is a Nash equilibrium

iff x̄0
−m ∈ BR0

−m(x̄2
m) and β−m ≥ β−m(x̄2

m).
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(6) There exists a pair of mixed strategies (x̄1
−m, x̄

2
m) ∈ ∆(C1

−m)×∆(Cm) such that x̄2
m ∈

BR2
m(x̄1

−m) iff βm = βm(x̄1
−m). Such a pair of mixed strategies is a Nash equilibrium

iff x̄1
−m ∈ BR1

−m(x̄2
m) and β−m ≤ β−m(x̄2

m).
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APPENDIX B

THE GRADIENT AND HESSIAN EXPRESSIONS OF MNL, NL, ML

AND LCL MODELS

In this appendix we give expressions for the calculation of ∇L̂i(θi) and ∇2L̂i(θi) for each

model i ∈ {MNL, NL, ML, LCL}. Let jn ∈ An denote the alternative chosen in observa-

tion n, and let xn,j denote the attribute vector for observation n and alternative j ∈ An.

B.1 The Gradient and Hessian for the MNL Model

Let m̄ denote the number of considered attributes. Thus, xn,j := (xn,j,1, xn,j,2, . . . , xn,j,m̄) ∈

Rm̄ denotes the vector of attribute values for observation n and alternative j ∈ An, and

β := (β1, β2, . . . , βm̄) ∈ Rm̄ denotes the vector of parameter values (thus, for the MNL

model, θ = β). Then the gradient of the sample average log-likelihood function for the

MNL model can be written as

∇L̂(β) =
1

N

N∑
n=1

(
xn,jn −

∑
j∈An exp(βᵀxn,j)xn,j∑
j∈An exp(βᵀxn,j)

)
.

Hence, if model i is the MNL model, then

Cov(Ẑi) ≈ 1

N(N − 1)

N∑
n=1

(
xn,jn −

∑
j∈An exp(β̂i

ᵀ
xn,j)xn,j∑

j∈An exp(β̂iᵀxn,j)

)(
xn,jn −

∑
j∈An exp(β̂i

ᵀ
xn,j)xn,j∑

j∈An exp(β̂iᵀxn,j)

)ᵀ

Also, for k,m ∈ {1, 2, . . . , m̄}, the second partial derivative of L̂ with respect to βk and βm

is given by

∂2L̂(β)
∂βk∂βm

=
1

N

N∑
n=1

−∑j∈An
exp(βᵀxn,j)xn,j,kxn,j,m∑
j∈An

exp(βᵀxn,j)
+

(∑
j∈An

exp(βᵀxn,j)xn,j,k
)(∑

j∈An
exp(βᵀxn,j)xn,j,m

)
(∑

j∈An
exp(βᵀxn,j)

)2
 .

Let

Xn :=



xᵀn,1

xᵀn,2
...

xᵀn,|An|


∈ R|An|×m̄
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denote the data matrix for observation n, let

qn,i :=
exp(βᵀxn,i)∑

j∈An exp(βᵀxn,j)

denote the choice probability for alternative i ∈ An, and let qn := (qn,j , j ∈ An) ∈ R|An|

denote the vector of choice probabilities. Let diag{qn} ∈ R|An|×|An| denote the diagonal

matrix with diag{qn}j,j = qn,j . Then one can write

∇L̂(β) =
1

N

N∑
n=1

(xn,jn −Xᵀ
nqn) ,

∇2L̂(β) =
1

N

N∑
n=1

(Xᵀ
nqnq

ᵀ
nXn −Xᵀ

ndiag{qn}Xn) .

B.2 The Gradient and Hessian for the NL Model

Let An =
⋃L
l=1An,l be the partition of An, and xn,l,j ∈ Rm̄ denote the vector of attribute

values for alternative j ∈ An,l. According to the nested logit model, the probability that

customer n ∈ N chooses alternative j ∈ An,l is given by

qn,j(An) = qj|n,lql|n,

where

qj|n,l :=
exp(βᵀxn,l,j/αl)∑
i∈An,l β

ᵀxn,l,i/αl)
,

ql|n :=
exp (ααlv̄n,l)∑L

l′=1 exp
(
ααl′ v̄n,l′

) ,
v̄n,l := ln

 ∑
j∈An,l

exp(βᵀxn,l,j/αl)

 ,

and α > 0 is an arbitrary scaling factor, and αl ∈ (0, 1/α] is a parameter that can be thought

of as representing the dissimilarity of alternatives in subset (nest) l. Let ln ∈ {1, 2, . . . , L}

denote the nest that contains jn, and let θ := (α1, α2, . . . , αL, β) ∈ RL+m̄ be the vector of

parameters to be estimated. Then

L̂n(θ) = ln
(
qjn|n,lnqln|n

)
.
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Let

Xn,l :=



xᵀn,l,1

xᵀn,l,2
...

xᵀn,l,|An,l|


∈ R|An,l|×m̄

Xn :=



Xn,1

Xn,2

...

Xn,L


∈ R|An|×m̄

qn,l :=
(
qj|n,l, j ∈ An,l

)
∈ R|An,l|

qn := (qn,l, l ∈ {1, 2, . . . , L}) ∈ R|An|

Jn,l :=
1

αl

(
diag{qn,l}Xn,l − qn,lq

ᵀ
n,lXn,l

)
∈ R|An,l|×m̄

βl := β/αl ∈ Rm̄.

Then, ∇L̂n(θ) is given by

∂L̂n(θ)

∂αl
=

 α(1− ql|n)
(
v̄n,l − qᵀ

n,lXn,lβl

)
+ 1

αl

(
qᵀ
n,lXn,lβl − xᵀn,l,jnβl

)
if l = ln

−α
(
v̄n,l − qᵀ

n,lXn,lβl

)
ql|n if l 6= ln

∇βL̂n(θ) =
1

αln

(
xn,ln,jn −X

ᵀ
n,ln

qn,ln

)
+ αXᵀ

n,ln
qn,ln − αXᵀ

nqn.

Also, ∇2L̂n(θ) is given by the following expressions: For i 6= l,

∂2L̂n(θ)

∂αl∂αi
= α2

(
v̄n,l − qᵀ

n,lXn,lβl

)(
v̄n,i − qᵀ

n,iXn,iβi

)
ql|nqi|n

For l 6= ln,

∂2L̂n(θ)

∂α2
l

= −αβᵀl J
ᵀ
n,lXn,lβlql|n − α2

(
v̄n,l − qᵀ

n,lXn,lβl

)2
ql|n(1− ql|n)

For l = ln,

∂2L̂n(θ)

∂α2
l

=

(
α(1− ql|n)− 1

αl

)
βᵀl J

ᵀ
n,lXn,lβl − α2

(
v̄n,l − qᵀ

n,lXn,lβl

)2
ql|n(1− ql|n)

− 2

α2
l

(
qᵀ
n,lXn,lβl − xᵀn,l,jnβl

)
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For l 6= ln,

∇2
αl,β
L̂n(θ) = αql|n

[
Jᵀ
n,lXn,lβl − α

(
v̄n,l − qᵀ

n,lXn,lβl

)(
Xᵀ
n,lqn,l −X

ᵀ
nqn

)]
For l = ln,

∇2
αl,β
L̂n(θ) = αql|n

[
Jᵀ
n,lXn,lβl − α

(
v̄n,l − qᵀ

n,lXn,lβl

)(
Xᵀ
n,lqn,l −X

ᵀ
nqn

)]
− αJᵀ

n,lXn,lβl

+
1

αl

[
Xᵀ
n,lqn,l − xn,l,jn

αl
+ Jᵀ

n,lXn,lβl

]

Also,

∇2
βL̂n(θ) =

ααln − 1

αln
Xᵀ
n,ln

Jn,ln − α
L∑
l=1

ql|nX
ᵀ
n,l

[
αqn,l

(
qᵀ
n,lXn,l − qᵀ

nXn

)
+ Jn,l

]
.

B.3 The Gradient and Hessian for the ML Model

Let β ∈ Rm1 denote the (deterministic) parameters that are the same across the customer

population, and let xn,j denote the corresponding vector of attribute values for observation n

and alternative j ∈ An. In addition to β, there are also (random) parameters with values

that vary across the customer population. Let γn ∈ Rm2 denote the random vector of

parameter values for observation n. We do not estimate a value for γn for each observation n;

instead, we estimate a distribution for γn over the customer population. Here we consider

the Gaussian mixture model, that is, we assume that {γn}n are i.i.d. normally distributed

random vectors with mean µ ∈ Rr and covariance matrix Σ. Let σ denote the lower-

triangular Cholesky factor of Σ, and let ξ ∈ Rm2 denote a random vector of m2 i.i.d.

standard normally distributed components. Let yn,j ∈ Rm2 denote the corresponding vector

of attribute values for observation n and alternative j ∈ An. Then, the systematic utility

of alternative j ∈ An for observation n has the same distribution as

vn,j := θᵀζn,j := βᵀxn,j + µᵀyn,j + ξᵀσᵀyn,j ,

where

ζn,i,j := (xn,j , yn,j , ξn,i,1yn,j,1, ξn,i,1yn,j,2, . . . ,

ξn,i,1yn,j,r, ξn,i,2yn,j,2, . . . , ξn,i,2yn,j,r, . . . , ξn,i,ryn,j,r) ∈ Rm̄,
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θ := (α, µ, σ1,1, σ2,1, . . . , σr,1, σ2,2, . . . , σr,2, . . . , σr,r) ∈ Rm̄.

Thus, the log-likelihood function for observation n is given by

L̂n(θ) := ln

(∫
Rm2

exp(βᵀxn,jn + µᵀyn,jn + ξᵀσᵀyn,jn)∑
j∈An exp(βᵀxn,j + µᵀyn,j + ξᵀσᵀyn,j)

dΦ(ξ)

)

where Φ denotes the standard normal distribution on Rm2 . Computing L̂n(θ) accurately

is hard because it involves calculation of the r-dimensional integral above (In our model,

m2 = 14).

For each observation n, let |In| denote the chosen sample size for the Monte Carlo

approximation of the integral, and let {ξn,i := (ξn,i,1, ξn,i,2, . . . , ξn,i,m2), i = 1, . . . , |In|}

denote the corresponding sample of i.i.d. standard normally distributed vectors.

Then, the simulated log-likelihood function for observation n is given by

ˆ̂Ln(θ) := ln

 1

|In|

|In|∑
i=1

exp(βᵀxn,jn + µᵀyn,jn + ξᵀn,iσ
ᵀyn,jn)∑

j∈An exp(βᵀxn,j + µᵀyn,j + ξᵀn,iσ
ᵀyn,j)


= ln

 1

|In|

|In|∑
i=1

exp(θᵀζn,i,jn)∑
j∈An exp(θᵀζn,i,j)


Let

qn,i,j :=
exp(θᵀζn,i,j)∑

j′∈An exp(θᵀζn,i,j′)
∈ R

qn,i := (qn,i,j , j ∈ An) ∈ R|An|

q̃n,i,j :=
qn,i,j∑In
i′=1 qn,i′,j

∈ R

q̃n,j := (q̃n,i,j , i ∈ {1, 2, . . . , In}) ∈ R|In|

W̃n,j :=



ζᵀn,1,j

ζᵀn,2,j
...

ζᵀn,In,j


∈ R|In|×m̄

Wn,i :=



ζᵀn,i,1

ζᵀn,i,2
...

ζᵀn,i,|An|


∈ R|An|×m̄
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Wn :=



Wn,1

Wn,2

...

Wn,|In|


∈ R|In||An|×m̄

diag{qn,1, . . . ,qn,|In|} :=



qn,1 0 · · · 0

0 qn,2 · · · 0

...
... · · ·

...

0 0 · · · qn,|In|


∈ RIn|An|×|In|

diag{qᵀ
n,1, . . . ,q

ᵀ
n,|In|} :=



qᵀ
n,1 0 · · · 0

0 qᵀ
n,2 · · · 0

...
... · · ·

...

0 0 · · · qᵀ
n,|In|


∈ R|In|×|In||An|

Jn,j :=
(

diag{q̃n,j} − q̃n,jq̃
ᵀ
n,j

)(
W̃n,j − diag{qᵀ

n,1, . . . ,q
ᵀ
n,In
}Wn

)
∈ R|In|×m̄.

Then, the gradient ∇ ˆ̂Ln(θ) and Hessian ∇2 ˆ̂Ln(θ) for each observation n are given by

∇ ˆ̂Ln(θ) =
(
W̃ ᵀ
n,jn
−W ᵀ

ndiag{qn,1, . . . ,qn,|In|}
)

q̃n,jn

∇2 ˆ̂Ln(θ) = −
|In|∑
i=1

q̃n,i,jnW
ᵀ
n,i

(
diag{qn,i} − qn,iq

ᵀ
n,i

)
Wn,i

+
(
W̃ ᵀ
n,jn
−W ᵀ

ndiag{qn,1, . . . ,qn,|In|}
)
Jn,jn .

B.4 The Gradient and Hessian for the LCL Model

As before, let xn,j := (xn,j,1, xn,j,2, . . . , xn,j,m̄) ∈ Rm̄ denote the vector of attribute values

for observation n and alternative j ∈ An, and let β := (β1, β2, . . . , βm̄) ∈ Rm̄ denote the

corresponding vector of coefficients. One consideration set Ĉ ∈ C is chosen to be the base

consideration set, such that π(Ĉ) = 1−
∑

C∈C\{Ĉ} π(C). Let π := (π(C), C ∈ C \{Ĉ}) ∈ Rc̄

denote the vector of consideration set probabilities to be estimated. Then θ := (π, β) ∈
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Rc̄+m̄ denotes the vector of parameters to be estimated. Let

Xn :=



xᵀn,1

xᵀn,2
...

xᵀn,|An|


∈ R|An|×m̄

e := (1, 1, . . . , 1) ∈ Rc̄

1n :=
(
1[C∩An 6=∅], C ∈ C \ {Ĉ}

)
∈ Rc̄

qn,C,j :=
1[j∈C] exp (βᵀxn,j)∑
j′∈C∩An exp(βᵀxn,j′)

∈ R

π̃n(C) :=
1[C∩An 6=∅]π(C)

1ᵀ
nπ + (1− eᵀπ)1[Ĉ∩An 6=∅]

∈ R

π̃n :=
(
π̃n(C), C ∈ C \ {Ĉ}

)
∈ Rc̄

qn,C := (qn,C,j , j ∈ An) ∈ R|An|

q̃n,j :=
(
qn,C,j , C ∈ C \ {Ĉ}

)
∈ Rc̄

Qn := [q̃n,1, q̃n,2, . . . , q̃n,|An|] ∈ Rc̄×|An|

Jn,C := (diag{qn,C} − qn,Cqᵀ
n,C)Xn ∈ R|An|×m̄

J̃n,j := q̃n,jx
ᵀ
n,j − diag{q̃n,j}QnXn ∈ Rc̄×m̄

Then,

L̂n(θ) = ln
(
π̃ᵀnq̃n,jn + (1− eᵀπ̃n)qn,Ĉ,jn

)
.

Let

an := 1ᵀ
nπ + (1− eᵀπ)1[Ĉ∩An 6=∅] ∈ R

bn := π̃ᵀnq̃n,jn + (1− eᵀπ̃n)qn,Ĉ,jn ∈ R

cn := 1n − e1[Ĉ∩An 6=∅] ∈ Rc̄

q̄n := q̃n,jn − eqn,Ĉ,jn ∈ Rc̄

dn := J̃ᵀ
n,jn

π̃n + (1− eᵀπ̃n)qn,Ĉ,jn(xn,jn −Xᵀ
nqn,Ĉ) ∈ Rm̄

Jn :=
1

an
diag{1n} −

1

a2
n

diag{1n}πcᵀn ∈ Rc̄×c̄.

179



Then, the gradient ∇L̂n(θ) for each observation n is given by

∇πL̂n(θ) =

1
an

diag{1n}q̄n − 1
a2n
cnπ

ᵀdiag{1n}q̄n
bn

∈ Rc̄

∇βL̂n(θ) =
1

bn
dn ∈ Rm̄

and the Hessian ∇2L̂n(θ) for each observation n is given by

∇2
πL̂n(θ) =

− 1
a2n

diag{1n}q̄ncᵀn − 1
a2n
cnq̄

ᵀ
ndiag{1n}+ 2

a3n
cnc

ᵀ
nπᵀdiag{1n}q̄n

bn
− Jᵀ

n q̄nq̄
ᵀ
nJn

b2n

∈ Rc̄×c̄

∇π,βL̂n(θ) = Jᵀ
n

 J̃n,jn − eqn,Ĉ,jn(xᵀn,jn − qᵀ
n,Ĉ

Xn)

bn
− q̄nd

ᵀ
n

b2n


∈ Rc̄×m̄

∇2
βL̂n(θ) =

∑
C∈C\{Ĉ} π̃(C)qn,C,jn

[
(xn,jn −X

ᵀ
nqn,C)(xᵀn,jn − qᵀ

n,CXn)−Xᵀ
nJn,C

]
π̃ᵀq̃n,jn + (1− eᵀπ̃)qn,Ĉ,jn

+
(1− eᵀπ̃)qn,Ĉ,jn

[
(xn,jn −X

ᵀ
nqn,Ĉ)(xᵀn,jn − qᵀ

n,Ĉ
Xn)−Xᵀ

nJn,Ĉ

]
π̃ᵀq̃n,jn + (1− eᵀπ̃)qn,Ĉ,jn

− dnd
ᵀ
n(

π̃ᵀq̃n,jn + (1− eᵀπ̃)qn,Ĉ,jn

)2

∈ Rm̄×m̄
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APPENDIX C

ESTIMATED COEFFICIENTS, T -STATISTICS AND P -VALUES FOR

THE ML MODEL WITH THE 2011 AIRLINE DATA USING THE

STRA

Table 16: Estimated coefficients, t-statistics and p-values for the ML model with 2011 airline
data using the STRA.

ML (2011 Data)

Attribute θ̂STRA t-Statistic p-Value θ̂SAA-50

1,1,1,1 -5.04610 -101.15000 0.00000 -4.91710
1,1,1,2 -12.05400 -32.32300 0.00000 -10.37200
1,1,1,3 -7.51530 -7.15020 0.00000 -6.38970
1,1,1,4 -5.59620 -80.65100 0.00000 -5.34490
1,1,1,5 -6.51300 -28.88800 0.00000 -6.06150
1,1,2,1 -7.28580 -73.54800 0.00000 -6.87900
1,1,2,2 -16.82700 -33.37000 0.00000 -14.08100
1,1,2,3 -6.61210 -3.35920 0.00078 -5.43440
1,1,2,4 -7.24450 -62.21400 0.00000 -6.79410
1,1,2,5 -8.83990 -25.34900 0.00000 -8.15600
1,2,1,1 -5.30580 -189.87000 0.00000 -4.89050
1,2,1,2 -10.33600 -55.33700 0.00000 -9.15270
1,2,1,3 -5.76640 -10.28400 0.00000 -5.51300
1,2,1,4 -5.84380 -164.43000 0.00000 -5.36190
1,2,1,5 -6.58450 -65.53600 0.00000 -5.96090
1,2,2,1 -6.53490 -169.37000 0.00000 -6.13450
1,2,2,2 -10.05800 -42.76100 0.00000 -8.99900
1,2,2,3 -6.37460 -8.81230 0.00000 -5.64960
1,2,2,4 -6.69640 -137.78000 0.00000 -6.31370
1,2,2,5 -7.40750 -50.37100 0.00000 -6.85370
1,3,1,1 -6.90210 -179.70000 0.00000 -6.44530
1,3,1,2 -11.64400 -49.48200 0.00000 -10.14300
1,3,1,3 -7.95940 -9.97140 0.00000 -7.18070
1,3,1,4 -7.16480 -130.70000 0.00000 -6.61090
1,3,1,5 -8.68420 -55.07100 0.00000 -7.93530
1,3,2,1 -6.39880 -125.06000 0.00000 -6.00710
1,3,2,2 -10.92200 -38.67100 0.00000 -9.91550
1,3,2,3 -4.70570 -4.11930 0.00004 -4.70470
1,3,2,4 -6.97150 -118.46000 0.00000 -6.54090
1,3,2,5 -8.05710 -45.19600 0.00000 -7.47470
2,1,1,1 -7.89300 -65.13700 0.00000 -7.35560
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Table 16 (continued.)

ML (2011 Data)

Attribute θ̂STRA t-Statistic p-Value θ̂SAA-50

2,1,1,2 -11.96100 -20.25700 0.00000 -10.06000
2,1,1,3 -5.10180 -1.70460 0.08827 -3.15190
2,1,1,4 -9.53740 -57.56900 0.00000 -8.80450
2,1,1,5 -8.60500 -19.95100 0.00000 -8.22040
2,1,2,1 -8.99200 -35.93800 0.00000 -8.34670
2,1,2,2 -10.33200 -12.93200 0.00000 -9.73490
2,1,2,3 -7.17790 -4.29650 0.00002 -6.38190
2,1,2,4 -10.07500 -36.49800 0.00000 -9.04580
2,1,2,5 -11.59100 -12.73000 0.00000 -10.53300
2,2,1,1 -7.82070 -229.80000 0.00000 -7.23140
2,2,1,2 -10.82200 -52.44700 0.00000 -9.20950
2,2,1,3 -5.89570 -8.78380 0.00000 -4.90130
2,2,1,4 -8.08310 -166.32000 0.00000 -7.41320
2,2,1,5 -8.32270 -54.45600 0.00000 -7.65940
2,2,2,1 -9.03820 -127.72000 0.00000 -8.47730
2,2,2,2 -12.01300 -35.41900 0.00000 -10.06800
2,2,2,3 -10.57300 -4.82770 0.00000 -7.51070
2,2,2,4 -9.12470 -85.02900 0.00000 -8.34350
2,2,2,5 -9.64450 -27.94500 0.00000 -9.13460
2,3,1,1 -9.04300 -142.41000 0.00000 -8.41070
2,3,1,2 -11.45600 -43.68600 0.00000 -9.86020
2,3,1,3 -6.51770 -7.18180 0.00000 -5.98490
2,3,1,4 -9.39650 -110.68000 0.00000 -8.71750
2,3,1,5 -9.42410 -39.21900 0.00000 -8.76610
2,3,2,1 -10.59400 -68.38500 0.00000 -9.87610
2,3,2,2 -11.02500 -25.47100 0.00000 -9.88470
2,3,2,3 -5.15810 -4.57270 0.00000 -4.66020
2,3,2,4 -9.59480 -58.42800 0.00000 -8.84860
2,3,2,5 -11.35500 -19.71800 0.00000 -10.86800
3,1,1,1 -8.45200 -79.05600 0.00000 -7.89940
3,1,1,2 -11.88900 -28.57200 0.00000 -10.69800
3,1,1,3 -12.51100 -2.18410 0.02895 -12.10400
3,1,1,4 -10.13100 -59.02100 0.00000 -9.37710
3,1,1,5 -9.19290 -22.10700 0.00000 -8.69540
3,1,2,1 -8.72220 -39.94400 0.00000 -8.14310
3,1,2,2 -13.80200 -13.46500 0.00000 -11.29400
3,1,2,3 -13.80200 -13.46500 0.00000 -11.29400
3,1,2,4 -10.05500 -39.14000 0.00000 -9.27770
3,1,2,5 -13.22300 -11.02100 0.00000 -12.36700
3,2,1,1 -8.44750 -239.28000 0.00000 -7.89080
3,2,1,2 -12.22500 -58.73700 0.00000 -10.56300
3,2,1,3 -4.31790 -6.88140 0.00000 -3.70140
3,2,1,4 -8.99980 -165.42000 0.00000 -8.40380
3,2,1,5 -9.14720 -57.05800 0.00000 -8.51180
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Table 16 (continued.)

ML (2011 Data)

Attribute θ̂STRA t-Statistic p-Value θ̂SAA-50

3,2,2,1 -9.66080 -118.13000 0.00000 -9.01980
3,2,2,2 -14.23800 -36.94100 0.00000 -12.17000
3,2,2,3 -5.87720 -6.99370 0.00000 -5.07600
3,2,2,4 -9.99720 -83.68200 0.00000 -9.32350
3,2,2,5 -11.32700 -28.80700 0.00000 -10.40400
3,3,1,1 -9.35700 -145.41000 0.00000 -8.68930
3,3,1,2 -13.31500 -49.05000 0.00000 -11.84900
3,3,1,3 -6.61240 -8.89460 0.00000 -5.65650
3,3,1,4 -10.50500 -110.72000 0.00000 -9.83110
3,3,1,5 -10.83300 -43.38800 0.00000 -10.09400
3,3,2,1 -10.91600 -64.73000 0.00000 -10.15100
3,3,2,2 -14.13600 -26.88400 0.00000 -12.31300
3,3,2,3 -8.94990 -3.90960 0.00009 -7.91510
3,3,2,4 -10.36800 -64.12300 0.00000 -9.38890
3,3,2,5 -12.39100 -21.59300 0.00000 -11.67200

[07 : 00, 08 : 00) popularity -0.10638 -1.32710 0.18448 1.13200
[08 : 00, 09 : 00) popularity -0.45690 -5.84300 0.00000 0.86406
[09 : 00, 10 : 00) popularity -0.03298 -0.40349 0.68659 1.04250
[10 : 00, 11 : 00) popularity 0.00344 0.04152 0.96688 0.99750
[11 : 00, 12 : 00) popularity 2.26890 55.09800 0.00000 0.83717
[12 : 00, 13 : 00) popularity 2.31610 56.86700 0.00000 0.75148
[13 : 00, 14 : 00) popularity 2.15540 47.60000 0.00000 0.56319
[14 : 00, 15 : 00) popularity 2.72060 68.84300 0.00000 0.93265
[15 : 00, 16 : 00) popularity 2.41880 44.62300 0.00000 1.05930
[16 : 00, 17 : 00) popularity 2.77160 65.83100 0.00000 1.05450
[17 : 00, 18 : 00) popularity 2.27500 44.84900 0.00000 0.94122
[18 : 00, 19 : 00) popularity 1.06630 22.77600 0.00000 0.62031
[19 : 00, 20 : 00) popularity 1.54000 30.39400 0.00000 0.86083
[20 : 00, 21 : 00) popularity 0.59979 15.19100 0.00000 0.43594

Carrier XX 0.02678 2.66790 0.00763 -0.10668
Carrier YY 0.63769 78.90300 0.00000 0.52444
Change fee -7.06560 -160.22000 0.00000 -6.69260

Mileage gain 0.73647 90.17500 0.00000 0.71424
XX–1–1 is the most expensive 3.16950 280.21000 0.00000 3.12600
XX–1–2 is the most expensive 3.62990 45.85600 0.00000 3.45040
XX–1–3 is the most expensive 3.45670 17.80900 0.00000 3.41130
XX–1–4 is the most expensive 2.32030 132.14000 0.00000 2.27200
XX–1–5 is the most expensive 2.38040 41.34000 0.00000 2.32380
YY–1–1 is the most expensive 1.58870 202.30000 0.00000 1.64790
YY–1–4 is the most expensive 0.88152 70.22300 0.00000 0.96136
YY–1–5 is the most expensive 1.01220 25.05300 0.00000 1.06840
ZZ–1–1 is the most expensive 1.39530 72.96400 0.00000 1.33620
ZZ–1–4 is the most expensive 1.04420 35.33700 0.00000 1.00820
ZZ–1–5 is the most expensive 1.50210 17.72600 0.00000 1.39090
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XX–13–1 is the cheapest 2.85900 186.74764 0.00000 2.91800
XX–13–2 is the cheapest 2.94450 40.11362 0.00000 3.34000
XX–13–3 is the cheapest 4.16370 14.50578 0.00000 4.24980
XX–13–4 is the cheapest 2.98000 160.44877 0.00000 2.99640
XX–13–5 is the cheapest 3.11190 66.72659 0.00000 3.14470
XX–12–1 is the cheapest 2.72350 138.86143 0.00000 2.76330
XX–12–2 is the cheapest 1.69530 21.95855 0.00000 1.73560
XX–12–3 is the cheapest 2.09240 24.48850 0.00000 2.17850
XX–12–4 is the cheapest 2.04540 66.03556 0.00000 2.07920
XX–12–5 is the cheapest 2.09240 24.48850 0.00000 2.17850
XX–11–1 is the cheapest 2.91550 54.86497 0.00000 3.01490
XX–11–2 is the cheapest -0.02197 -0.07424 0.94171 0.08856
XX–11–3 is the cheapest -0.02197 -0.07424 0.94171 0.08856
XX–11–4 is the cheapest 0.79318 4.52877 0.00001 0.87579
XX–11–5 is the cheapest -0.02197 -0.07424 0.94171 0.08856
XX–10–1 is the cheapest 1.70000 75.29299 0.00000 1.71860
XX–10–2 is the cheapest 1.69180 25.18523 0.00000 1.77740
XX–10–3 is the cheapest 1.43800 16.24762 0.00000 1.50110
XX–10–4 is the cheapest 1.87050 70.10175 0.00000 1.88120
XX–10–5 is the cheapest 1.43800 16.24762 0.00000 1.50110
XX–9–1 is the cheapest 1.48590 78.45685 0.00000 1.55890
XX–9–2 is the cheapest 1.88340 37.98344 0.00000 2.11200
XX–9–3 is the cheapest 1.37360 18.93176 0.00000 1.51420
XX–9–4 is the cheapest 1.53750 65.29314 0.00000 1.61190
XX–9–5 is the cheapest 1.37360 18.93176 0.00000 1.51420
XX–8–1 is the cheapest 1.72760 51.68969 0.00000 1.84110
XX–8–2 is the cheapest 2.19010 30.15375 0.00000 2.51040
XX–8–3 is the cheapest 1.39780 9.81710 0.00000 1.53490
XX–8–4 is the cheapest 1.71780 40.54765 0.00000 1.84330
XX–8–5 is the cheapest 1.39780 9.81710 0.00000 1.53490
XX–7–1 is the cheapest 1.58370 19.29154 0.00000 1.79400
XX–7–2 is the cheapest 1.87350 11.79308 0.00000 2.08290
XX–7–3 is the cheapest 1.87350 11.79308 0.00000 2.08290
XX–7–4 is the cheapest 1.75550 17.83526 0.00000 1.91580
XX–7–5 is the cheapest 1.87350 11.79308 0.00000 2.08290
XX–6–1 is the cheapest 1.98410 123.89878 0.00000 2.07770
XX–6–2 is the cheapest 2.57500 53.80845 0.00000 2.84910
XX–6–3 is the cheapest 2.30550 12.87816 0.00000 2.46920
XX–6–4 is the cheapest 1.91730 90.61544 0.00000 2.03310
XX–6–5 is the cheapest 1.32130 15.33387 0.00000 1.50760
XX–5–1 is the cheapest 1.81650 34.40839 0.00000 1.91520
XX–5–2 is the cheapest 2.36800 19.38292 0.00000 2.55200
XX–5–3 is the cheapest 1.45090 5.92795 0.00000 1.63340
XX–5–4 is the cheapest 1.59580 21.36461 0.00000 1.74400
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XX–5–5 is the cheapest 1.45090 5.92795 0.00000 1.63340
XX–4–1 is the cheapest 2.12060 216.51875 0.00000 2.20360
XX–4–2 is the cheapest 3.15040 72.69452 0.00000 3.35860
XX–4–3 is the cheapest 2.21250 16.66451 0.00000 2.35440
XX–4–4 is the cheapest 2.05690 156.99937 0.00000 2.16350
XX–4–5 is the cheapest 1.35150 25.56215 0.00000 1.48310
XX–3–1 is the cheapest 1.81210 50.71883 0.00000 1.91350
XX–3–2 is the cheapest 2.83050 32.20968 0.00000 3.03150
XX–3–3 is the cheapest 1.10100 5.21409 0.00000 1.27970
XX–3–4 is the cheapest 1.79470 37.38379 0.00000 1.94940
XX–3–5 is the cheapest 1.10100 5.21409 0.00000 1.27970
XX–2–1 is the cheapest 2.31230 80.70696 0.00000 2.50190
XX–2–2 is the cheapest 3.97220 46.65835 0.00000 4.28360
XX–2–3 is the cheapest 2.51390 20.59935 0.00000 2.72150
XX–2–4 is the cheapest 2.47060 66.96073 0.00000 2.70980
XX–2–5 is the cheapest 2.51390 20.59935 0.00000 2.72150
XX–1–1 is the cheapest 0.46726 64.64781 0.00000 0.57313
XX–1–2 is the cheapest 0.98914 26.28173 0.00000 1.29210
XX–1–3 is the cheapest 0.50596 5.93366 0.00000 0.72098
XX–1–4 is the cheapest 0.89137 61.99222 0.00000 1.02650
XX–1–5 is the cheapest 0.35990 6.53902 0.00000 0.45584
YY–12–1 is the cheapest -2.20900 -54.25961 0.00000 -2.19660
YY–12–4 is the cheapest -1.91570 -39.82236 0.00000 -1.91210
YY–12–5 is the cheapest -1.61760 -13.61487 0.00000 -1.64130
YY–11–1 is the cheapest -1.91440 -40.77609 0.00000 -1.90560
YY–11–4 is the cheapest -1.61080 -30.62775 0.00000 -1.57950
YY–11–5 is the cheapest -1.68370 -11.13062 0.00000 -1.61470
YY–10–1 is the cheapest -6.76480 -26.89851 0.00000 -6.56260
YY–10–4 is the cheapest -6.76480 -26.89851 0.00000 -6.56260
YY–10–5 is the cheapest -6.76480 -26.89851 0.00000 -6.56260
YY–9–1 is the cheapest 2.42770 41.06164 0.00000 2.44130
YY–9–4 is the cheapest 3.07310 47.33796 0.00000 2.91590
YY–9–5 is the cheapest 3.07310 47.33796 0.00000 2.91590
YY–8–1 is the cheapest 2.64190 41.76408 0.00000 2.54650
YY–8–4 is the cheapest 3.08270 41.45569 0.00000 2.90460
YY–8–5 is the cheapest 2.55830 12.59262 0.00000 2.65160
YY–7–1 is the cheapest 2.84120 76.38378 0.00000 2.92120
YY–7–4 is the cheapest 2.88610 57.65762 0.00000 2.94970
YY–7–5 is the cheapest 2.61680 16.51603 0.00000 2.73670
YY–6–1 is the cheapest 3.43140 68.25712 0.00000 3.48160
YY–6–4 is the cheapest 3.47280 57.61764 0.00000 3.52610
YY–6–5 is the cheapest 3.47280 57.61764 0.00000 3.52610
YY–5–1 is the cheapest 3.41080 45.65323 0.00000 3.60350
YY–5–4 is the cheapest 3.53210 39.26840 0.00000 3.69440
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YY–5–5 is the cheapest 3.53210 39.26840 0.00000 3.69440
YY–4–1 is the cheapest 2.26440 56.90378 0.00000 2.45830
YY–4–4 is the cheapest 2.34850 47.20660 0.00000 2.54880
YY–4–5 is the cheapest 2.41740 15.79645 0.00000 2.65220
YY–3–1 is the cheapest 3.38260 41.60418 0.00000 3.72520
YY–3–4 is the cheapest 3.19500 30.24512 0.00000 3.53850
YY–3–5 is the cheapest 3.19500 30.24512 0.00000 3.53850
YY–2–1 is the cheapest 2.72130 36.27016 0.00000 3.07900
YY–2–4 is the cheapest 2.56910 24.16297 0.00000 2.98200
YY–2–5 is the cheapest 2.56910 24.16297 0.00000 2.98200
YY–1–1 is the cheapest 2.09530 81.14670 0.00000 2.23410
YY–1–4 is the cheapest 2.05470 46.30428 0.00000 2.20380
YY–1–5 is the cheapest 2.05470 46.30428 0.00000 2.20380
ZZ–15–1 is the cheapest -4.83860 -34.96236 0.00000 -4.68410
ZZ–15–4 is the cheapest -4.83860 -34.96236 0.00000 -4.68410
ZZ–15–5 is the cheapest -4.83860 -34.96236 0.00000 -4.68410
ZZ–14–1 is the cheapest -4.83860 -34.96236 0.00000 -4.68410
ZZ–14–4 is the cheapest 0.58874 7.87538 0.00000 0.16014
ZZ–14–5 is the cheapest 0.58874 7.87538 0.00000 0.16014
ZZ–13–1 is the cheapest -0.75881 -7.15580 0.00000 -1.17540
ZZ–13–4 is the cheapest 0.75430 10.25684 0.00000 0.32832
ZZ–13–5 is the cheapest 1.61980 11.19344 0.00000 1.12280
ZZ–12–1 is the cheapest 1.61980 11.19344 0.00000 1.12280
ZZ–12–4 is the cheapest 1.61980 11.19344 0.00000 1.12280
ZZ–12–5 is the cheapest 1.61980 11.19344 0.00000 1.12280
ZZ–11–1 is the cheapest 1.61980 11.19344 0.00000 1.12280
ZZ–11–4 is the cheapest 1.61980 11.19344 0.00000 1.12280
ZZ–11–5 is the cheapest 1.61980 11.19344 0.00000 1.12280
ZZ–10–1 is the cheapest 4.95000 42.62072 0.00000 4.97900
ZZ–10–4 is the cheapest 4.95000 42.62072 0.00000 4.97900
ZZ–10–5 is the cheapest 4.95000 42.62072 0.00000 4.97900
ZZ–9–1 is the cheapest 3.90880 20.50797 0.00000 2.99270
ZZ–9–4 is the cheapest 3.90880 20.50797 0.00000 2.99270
ZZ–9–5 is the cheapest 3.90880 20.50797 0.00000 2.99270
ZZ–8–1 is the cheapest 3.33510 45.16780 0.00000 3.26460
ZZ–8–4 is the cheapest 3.73350 46.02444 0.00000 3.51290
ZZ–8–5 is the cheapest 3.73350 46.02444 0.00000 3.51290
ZZ–7–1 is the cheapest 3.29980 48.54296 0.00000 3.44830
ZZ–7–4 is the cheapest 3.29980 48.54296 0.00000 3.44830
ZZ–7–5 is the cheapest 3.29980 48.54296 0.00000 3.44830
ZZ–6–1 is the cheapest 3.46890 48.58865 0.00000 3.60390
ZZ–6–4 is the cheapest 2.97590 29.77111 0.00000 3.08350
ZZ–6–5 is the cheapest 2.97590 29.77111 0.00000 3.08350
ZZ–5–1 is the cheapest 2.91690 27.57240 0.00000 2.88510
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ZZ–5–4 is the cheapest 3.07150 27.30399 0.00000 3.13920
ZZ–5–5 is the cheapest 3.07150 27.30399 0.00000 3.13920
ZZ–4–1 is the cheapest 3.25340 31.85561 0.00000 3.42430
ZZ–4–4 is the cheapest 3.25340 31.85561 0.00000 3.42430
ZZ–4–5 is the cheapest 3.25340 31.85561 0.00000 3.42430
ZZ–3–1 is the cheapest 3.66900 50.97011 0.00000 3.88840
ZZ–3–4 is the cheapest 3.66900 50.97011 0.00000 3.88840
ZZ–3–5 is the cheapest 3.66900 50.97011 0.00000 3.88840
ZZ–2–1 is the cheapest 2.87180 25.03104 0.00000 3.08890
ZZ–2–4 is the cheapest 3.59130 31.10176 0.00000 3.75020
ZZ–2–5 is the cheapest 3.59130 31.10176 0.00000 3.75020
ZZ–1–1 is the cheapest 3.96940 66.17263 0.00000 3.95900
ZZ–1–4 is the cheapest 3.34040 31.10747 0.00000 3.40230
ZZ–1–5 is the cheapest 3.34040 31.10747 0.00000 3.40230

σ1,1 0.44762 0.00001 1.00000 1.08950
σ2,1 0.41643 0.00001 1.00000 1.06950
σ3,1 0.51663 0.00001 0.99999 1.06620
σ4,1 0.44788 0.00001 1.00000 1.01610
σ5,1 1.27040 0.00002 0.99999 1.25790
σ6,1 1.36880 0.00002 0.99999 1.29880
σ7,1 1.85380 0.00002 0.99998 1.42440
σ8,1 1.64300 0.00002 0.99998 1.28820
σ9,1 2.04070 0.00003 0.99998 1.37330
σ10,1 1.79670 0.00002 0.99998 1.34030
σ11,1 1.94720 0.00002 0.99998 1.42100
σ12,1 2.21660 0.00003 0.99998 1.54750
σ13,1 2.10410 0.00003 0.99998 1.43700
σ14,1 2.24960 0.00003 0.99998 1.59590
σ2,2 0.24981 6.14990 0.00000 0.01905
σ3,2 0.04706 1.12850 0.25911 0.03477
σ4,2 -0.06011 -1.40750 0.15928 0.05530
σ5,2 -2.18980 -25.89600 0.00000 0.05976
σ6,2 -2.54650 -26.89800 0.00000 0.08805
σ7,2 -3.90150 -33.24600 0.00000 -0.00264
σ8,2 -3.14170 -30.09400 0.00000 0.04369
σ9,2 -4.22180 -33.57100 0.00000 0.06362
σ10,2 -3.65530 -32.62700 0.00000 -0.00772
σ11,2 -4.23540 -34.29600 0.00000 0.08543
σ12,2 -4.93470 -36.99600 0.00000 0.08420
σ13,2 -4.68470 -35.72600 0.00000 0.09031
σ14,2 -4.90570 -36.34200 0.00000 0.06590
σ3,3 0.07905 2.05090 0.04028 0.00153
σ4,3 0.09637 2.28820 0.02213 -0.05407
σ5,3 2.74290 30.24700 0.00000 -0.19262
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σ6,3 3.20240 30.46900 0.00000 -0.20901
σ7,3 5.09350 39.70400 0.00000 -0.36537
σ8,3 4.14340 36.47700 0.00000 -0.30259
σ9,3 5.59600 41.52200 0.00000 -0.39453
σ10,3 4.58620 37.99900 0.00000 -0.30670
σ11,3 5.54610 42.20000 0.00000 -0.32174
σ12,3 6.54740 47.16900 0.00000 -0.56764
σ13,3 6.29110 45.62300 0.00000 -0.47309
σ14,3 6.80610 48.94200 0.00000 -0.57822
σ4,4 0.01287 0.38173 0.70266 0.00527
σ5,4 1.69200 19.91700 0.00000 0.14332
σ6,4 1.93150 19.83200 0.00000 0.16526
σ7,4 3.21530 23.55200 0.00000 0.32593
σ8,4 2.59800 21.85000 0.00000 0.22060
σ9,4 3.65330 24.23300 0.00000 0.35837
σ10,4 2.91880 23.03600 0.00000 0.25490
σ11,4 3.51800 24.47500 0.00000 0.30862
σ12,4 4.31260 26.72500 0.00000 0.47465
σ13,4 4.14320 26.36800 0.00000 0.37304
σ14,4 4.49510 27.26000 0.00000 0.44864
σ5,5 0.62690 10.12500 0.00000 0.14797
σ6,5 0.76620 10.88000 0.00000 0.18068
σ7,5 0.97971 9.56250 0.00000 0.24964
σ8,5 0.89908 10.11200 0.00000 0.20416
σ9,5 1.00580 8.92360 0.00000 0.29526
σ10,5 0.96998 9.89390 0.00000 0.22662
σ11,5 1.10860 9.81100 0.00000 0.32326
σ12,5 1.10060 8.40300 0.00000 0.37614
σ13,5 1.11860 8.87080 0.00000 0.33473
σ14,5 1.14070 8.55340 0.00000 0.43163
σ6,6 0.06162 1.81270 0.06988 0.11402
σ7,6 0.18280 3.23950 0.00120 0.11427
σ8,6 0.12762 2.82760 0.00469 0.10241
σ9,6 0.19566 2.86380 0.00419 0.20294
σ10,6 0.11102 2.06990 0.03846 0.06878
σ11,6 0.21729 3.33930 0.00084 0.14410
σ12,6 0.22438 2.78140 0.00541 0.23448
σ13,6 0.20685 2.64220 0.00824 0.13798
σ14,6 0.17425 2.12260 0.03379 0.24126
σ7,7 0.43995 8.01050 0.00000 0.03958
σ8,7 0.21586 5.16630 0.00000 -0.00793
σ9,7 0.49250 7.23560 0.00000 0.04637
σ10,7 0.36250 7.40060 0.00000 -0.04320
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σ11,7 0.67164 10.14100 0.00000 0.03208
σ12,7 0.88037 10.29600 0.00000 0.03596
σ13,7 0.77327 9.54420 0.00000 -0.00900
σ14,7 0.89689 9.75440 0.00000 0.01679
σ8,8 0.02940 0.89030 0.37330 0.00967
σ9,8 0.04801 1.08210 0.27921 0.08601
σ10,8 0.04774 1.24870 0.21177 0.06084
σ11,8 0.05814 1.36520 0.17219 0.04351
σ12,8 0.07501 1.50980 0.13109 0.05106
σ13,8 0.10334 2.14810 0.03171 0.04802
σ14,8 0.03445 0.68092 0.49592 0.05453
σ9,9 0.08749 1.92150 0.05467 0.05751
σ10,9 0.00453 0.12902 0.89734 0.09355
σ11,9 -0.03393 -0.81310 0.41616 0.04615
σ12,9 -0.01430 -0.30186 0.76276 0.14551
σ13,9 0.02819 0.58799 0.55654 0.10061
σ14,9 0.01041 0.21137 0.83260 0.13085
σ10,10 0.07082 2.08640 0.03694 -0.07082
σ11,10 -0.02595 -0.64760 0.51724 0.02595
σ12,10 0.02615 0.59126 0.55435 -0.02615
σ13,10 0.00956 0.20910 0.83437 -0.00956
σ14,10 0.09193 1.94830 0.05138 -0.09193
σ11,11 0.01888 0.48664 0.62651 0.02695
σ12,11 -0.08898 -2.15860 0.03088 -0.02597
σ13,11 -0.02330 -0.56737 0.57046 0.00967
σ14,11 -0.18179 -4.03040 0.00006 0.00520
σ12,12 0.07040 1.77690 0.07558 0.01693
σ13,12 -0.04401 -1.14380 0.25271 0.02065
σ14,12 0.05558 1.24290 0.21390 -0.00416
σ13,13 0.04380 1.37360 0.16957 0.02910
σ14,13 -0.14322 -4.60990 0.00000 0.00834
σ14,14 0.06736 2.26310 0.02363 0.03717
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gramming: Modeling and Theory. Philadelphia: SIAM, 2009.

[59] Shapiro, A. and Homem-de-Mello, T., “A simulation-based approach to two-stage
stochastic programming with recourse,” Mathematical Programming: Series A and B,
vol. 81, no. 3, pp. 301–325, 1998.

[60] Shapley, L. S., “Some topics in two-person games,” in Advances in Game Theory
(Dresher, M., Shaply, L. S., and Tucker, A. W., eds.), pp. 1–28, Princeton:
Princeton University Press, 1964.

[61] Simonson, I., “Choice based on reasons: The case of attraction and compromise
effects,” Journal of Consumer Research, vol. 16, no. 2, pp. 158–174, 1989.

[62] Simonson, I. and Tversky, A., “Choice in context: Tradeoff contrast and extreme-
ness aversion,” Journal of Marketing Research, vol. 29, no. 3, pp. 281–295, 1992.

[63] Talluri, K. T. and van Ryzin, G. J., “Revenue management under a general discrete
choice model of consumer behavior,” Management Science, vol. 50, no. 1, pp. 15–33,
2004.

[64] Train, K. E., Discrete Choice Methods with Simulation. Cambridge, UK: Cambridge
University Press, 2003.

[65] Tversky, A. and Kahneman, D., “Judgment under uncertainty: Heuristics and
biases,” Science, vol. 185, no. 4157, pp. 1124–1131, 1974.

[66] Tversky, A., Sattah, S., and Slovic, P., “Contingent weighting in judgment and
choice,” Psychological Review, vol. 95, no. 3, pp. 371–384, 1988.

[67] Tversky, A. and Simonson, I., “Context-dependent preference,” Management Sci-
ence, vol. 39, no. 10, pp. 1179–1189, 1993.
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