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NOMENCLATURE

A Area.

aax Normalized mean axial strain rate.

ac Confidence coefficient.
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α Thermal diffusivity.

AT Instantaneous flame area.

〈c〉 Average progress variable.

c Instantaneous progress variable.

Cd Discharge coefficient.

CTA Constant temperature (hotwire) anemometry.

D Species diffusivity.

d Burner diameter.

DAQ Data acquisition.

δf Laminar flame thickness.

δf,0 Unstretched laminar flame thickness.

δf |SL,max Laminar flame thickness at SL,max.

∆τ Slot width for autocorrelation calculations.

DLN Dry-Low-NOx.

DNS Direct numerical simulations.

η Progress variable normal coordinate.

FBLP Flame brush leading point.

γ Ratio of specific heats.

HHC High hydrogen content.

I0 Flame stretch factor.

ICCD Intensified charge-coupled device.

ILP Instantaneous leading point.

K Proportionality constant.
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κcrit Flame critical stretch rate.

κext Flame extinction stretch rate.

κs Flame tangential strain rate.

KPP Kolmogorov-Petrovskii-Piskunov (theorem).

l Characteristic length scale.

l0 Integral length scale.

LDV Laser Doppler velocimetry.

Le Lewis number.

LES Large eddy simulations.

lη Kolmogorov length scale.

lM Markstein length.

LSB Low swirl burner.

ṁ Mass flow rate.

m Ratio of central channel to swirler mass flow rates.

Ma Markstein number.

ṁc Central channel mass flow rate.

ṁs Swirler mass flow rate.

µ True mean value.

MW Molecular weight.

MWair Molecular weight of air.

MWfuel Molecular weight of fuel.

MWmix Molecular weight of mixture.

~n Unit normal vector.

N number of samples.

NOx Nitrous Oxides.

ν Viscosity.
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OH-PLIF Hydroxyl radical planar laser-induced fluorescence.

p Pressure.

PDF Probability density function.

φ Equivalence ratio.

PID Proportional-integral-derivative controller.

PIV Particle image velocimetry.

PLIF Planar laser-induced fluorescence.

ps Smoothing parameter for cubic smoothing splines.

R Universal gas constant.
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R Radius of curvature.
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Rb Burner radius.
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Re Reynolds number.
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Rel0 Turbulent Reynolds number.

rf Flame ball spatially-averaged radius.

ρ Density.

ρac Autocorrelation function.

ρu Density of the unburned reactant mixture.

S Swirl number.

s Arc length.

SEx̄ Standard error of the mean.

Σ Flame surface density.

SL Laminar flame speed.

SL,0 Unstretched laminar flame speed.

SL,max Maximum stretched laminar flame speed.

ST Turbulent flame speed.
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ST,GD Turbulent global displacement speed.

ST,LC Turbulent local consumption speed.

ST,LD Turbulent local displacement speed.

STP Standard temperature (300 K) and pressure (1 atm).

sx Sample standard deviation.

T Temperature.

τc Flame chemical timescale.

τη Kolmogorov timescale.

τflow Bulk flow timescale.

τint Integral timescale.

τmax Maximum lag time for autocorrelation calculation.

τSL,max Chemical time scale associated with SL,max.

θ Swirler vane angle.

Tp Product temperature.

Tr Reactant temperature.

u′ Turbulence intensity.

~u Reactant velocity.

u Axial velocity.

U0 Bulk flow velocity.

u′ax Axial turbulence intensity.

u′azi Azimuthal turbulence intensity.

Uazi Mean azimuthal flow velocity.

~Uf Mean flame brush velocity (lab referenced).

u′LP Leading point turbulence intensity.

~Ur Mean reactant velocity (lab referenced).

u′rad Radial turbulence intensity.
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SUMMARY

Increasingly stringent pollution and emission controls have caused a rise in the use of

combustors operating under lean, premixed conditions. Operating lean (excess air) lowers

the level of nitrous oxides (NOx) emitted to the environment. In addition, concerns over

climate change due to increased carbon dioxide (CO2) emissions and the need for energy

independence have spurred interest in developing combustors capable of operating with a

wide range of fuel compositions. One method to decrease the carbon footprint of modern

combustors is the use of high hydrogen content (HHC) fuels.

The objective of this research is to develop tools to better understand the physics of

turbulent flame propagation in highly stretch sensitive premixed flames in order to predict

their behavior at conditions realistic to the environment of gas turbine combustors. The

propagation rate of turbulent premixed flames into unburned reactants is characterized by

a parameter known as the turbulent flame speed, ST . ST has a leading order impact on

important combustor phenomena such as the life of hot section components, flashback and

blowoff limits, and the operating limits before damaging combustion dynamics occur [85].

This thesis presents the results of an experimental study into the flame propagation

characteristics of highly stretch-sensitive, turbulent premixed flames generated in a low

swirl burner (LSB). This study uses a scaling law, developed in an earlier thesis [134] from

leading point concepts for turbulent premixed flames, to collapse turbulent flame speed

data over a wide range of conditions. The flow and flame structure are characterized using

high speed particle image velocimetry (PIV) over a wide range of fuel compositions, mean

flow velocities, and turbulence levels. The first part of this study looks at turbulent flame

speeds for these mixtures and applies the previously developed leading points scaling model

in order to test its validity in an alternate geometry. The model was found to collapse the

turbulent flame speed data over a wide range of fuel compositions and turbulence levels,

giving merit to the leading points model as a method that can produce meaningful results
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with different geometries and turbulent flame speed definitions.

The second part of this thesis examines flame front topologies and stretch statistics

of these highly stretch sensitive, turbulent premixed flames. Instantaneous flame front

locations and local flow velocities are used to calculate flame curvatures and tangential strain

rates. Statistics of these two quantities are calculated both over the entire flame surface

and also conditioned at the leading points of the flames. Results presented do not support

the arguments made that the leading points are critically stretched. Only minor effects

of fuel composition are noted on curvature statistics, which are mostly dominated by the

turbulence. There is a stronger sensitivity for tangential strain rate statistics, however, time-

averaged values are still well below the values hypothesized from the leading points model.

The results of this study emphasize the importance of local flame topology measurements

towards the development of predictive models of the turbulent flame speed.
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CHAPTER I

INTRODUCTION

1.1 Motivation

For the past several decades, increasingly stringent pollution and emission controls have

caused a rise in the use of combustors operating under lean, premixed conditions. Operating

lean (excess air) lowers the level of nitrous oxides (NOx) emitted to the environment [38].

However, operating lean does not come without its disadvantages. Combustors operating

under lean conditions are more susceptible to damaging combustion instabilities [35]. In

addition, concerns over climate change due to increased carbon dioxide (CO2) emissions and

the need for energy independence in the United States have spurred interest in developing

combustors capable of operating with a wide range of fuel compositions [85]. One possible

solution to decrease the carbon footprint of modern combustors is the use of high hydrogen

content (HHC) fuels. While these fuels offer the opportunity to reduce pollutant and CO2

emissions, their burning characteristics are not currently well understood. One parameter

that is particularly important to the understanding of turbulent burning characteristics

is the turbulent flame speed. A large focus of this research is on developing better tools

and models to measure and predict turbulent flame speeds over conditions realistic to the

burning environment of gas turbine combustors.

The objective of this research is to improve the understanding of turbulent flame prop-

agation characteristics of high stretch sensitivity, premixed flames. The propagation rate

of turbulent flames into unburned reactants is characterized by a parameter known as the

turbulent flame speed, ST . The turbulent flame speed has a leading order impact on im-

portant combustor phenomena such as the life of hot section components, flashback and

blowoff limits, and the operating limits before damaging combustion dynamics occur [85].

The life of components such as the combustor liner and fuel nozzle is determined by their

thermal loading, which is affected by the proximity of the flame to the components. The
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proximity of the flame to these components is directly related to the flame length; a param-

eter controlled by the turbulent flame speed and reactant flow rate. Flashback occurs when

the flame propagates upstream of its attachment point into a region of the combustor not

designed for high temperature operation, causing serious damage. Blowoff is the opposite

of flashback. This phenomenon occurs when the flame detaches from its stabilization point

and is blown out of the combustor. The propensity of a flame to flashback or blowoff is

influenced by the incoming mass flow rate of reactants and the turbulent flame speed. The

turbulent flame speed also exhibits a leading order influence on combustion dynamics, the

coupling between pressure oscillations in the combustor and heat release oscillations in the

flame, due to its effect on the flame shape [86].

The rest of this chapter presents an overview of the theoretical background for this

research, a review of relevant literature, and an overview of the scope and organization of

the thesis.

1.2 Theoretical Background

This section presents an overview of the main theoretical concepts used in this thesis. These

include an overview of turbulent premixed flames and the concept of flame stretch and its

effects on flame propagation. These sections will present the most important concepts for

this thesis, however, numerous literature exists on these topics; see Poinsot and Veynante

[110], Law [79], and Peters [106] for more detailed coverage of the topics presented.

1.2.1 Turbulent Premixed Flames

Turbulent premixed flames are of significant practical interest towards the development and

understanding of modern, Dry-Low-NOx (DLN) burners for gas turbines and industrial

burners. Operating under lean conditions does not come without side effects, however,

with issues arising from flame stabilization and combustion instabilities. In addition, little

is known about the effects of changing fuel compositions on these and other important

combustor parameters. Therefore, an understanding of turbulent premixed flames and their

properties is important for the continued development of fuel-flexible combustors generating

lower emissions.
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1.2.1.1 The Turbulent Flame Speed

In laminar premixed flames, mixing occurs through molecular diffusion processes only. The

important scales are the flame thickness, δf,0, and the flame speed, SL,0. In turbulent

premixed flames, however, the flame interacts with turbulent eddies, resulting in a wide

range of length and time scales. The turbulence acts to wrinkle the laminar flame front,

leading to an increase in the rate of consumption of reactants. To characterize this increase

in reactant consumption, the concept of the turbulent flame speed, ST , was introduced.

The most basic definition of the turbulent flame speed is that it is the average flow velocity

needed to keep a flame stationary in a fixed control volume [110]. This concept is illustrated

in the graphic shown in Figure 1. In this figure, Af is the inlet area of the control volume,

AT is the instantaneous flame area, and SL is the local flame speed. For this simple

representation, it is assumed that locally the flame is propagating at the laminar flame

speed. Using this control volume and the continuity equation, the turbulent flame speed is

defined as [110]:

ST =
AT
Af

SL (1)

Since AT > Af , the turbulent flame speed is always larger than the laminar flame speed.

Damköhler hypothesized that turbulent flames propagated locally at the unstretched lami-

nar flame speed, SL,0, and that the flame area increased linearly with turbulence intensity,

u′, leading to the following simple correlation [40]:

ST
SL,0

≈ 1 +
u′

SL,0
(2)

This simple model captures the basic physics of the problem, however, it misses some

important physical mechanisms. First, the laminar flame speed, SL, is not constant and

will vary spatially and temporally as a function of the local flame stretch rate κ, discussed

in more detail in Section 1.2.2. These stretch effects on ST are generally observed when

changing fuel composition and are commonly referred to as fuel effects on ST . An example

of these fuel effects is presented in Figure 2 from the work of Nakahara and Kido [97]. In this

dataset, the unstretched laminar flame speed, SL,0, was held constant by simultaneously
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Figure 1: Graphical depiction of the turbulent flame speed, ST .

adjusting both the equivalence ratio, φ, and the fuel composition. According to Equation

2, all these mixtures should have the same ST , however, they observed an approximate

doubling of ST at a given u′ from the lowest ST to the highest.

Second, a number of experimental datasets show that the turbulent flame speed does

not continue to increase linearly with turbulence intensity at higher turbulence intensities

[50]. Instead, as turbulence increases, ST begins to flatten, commonly known as the “bend-

ing effect,” (and in some cases decreases) before finally quenching. This phenomenon is

demonstrated in Figure 3, reproduced from Lipatnikov and Chomiak [88] with original data

by Karpov and Severin [65]. While the bending effect is fairly common, it is not always

observed in experimental data. For example, Littlejohn et al. [90] reported a linear increase

in ST over a very wide range of u′, as shown in Figure 4.

The phenomena discussed in the previous paragraphs and exemplified in Figures 2-4

show that ST cannot be characterized solely by u′ and SL,0; it is also affected by turbulent

length scales [7, 78], experimental configuration [50, 28], and, as discussed in Section 1.1, fuel

composition [88, 97, 70]. These factors will be discussed in further detail in the subsequent

sections.
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Figure 2: Example dataset demonstrating the fuel effect on the turbulent flame speed [97].

Figure 3: Example dataset demonstrating the “bending effect” on the turbulent flame

speed [88].
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Figure 4: Example dataset that does not exhibit the “bending effect” on ST [90].

1.2.1.2 The Regimes of Turbulent Combustion

The manner in which turbulence can modify the flame front is affected by the length and

velocity scales of the turbulence in relation to the length and velocity scales of the laminar

flame front. To compare these scales, a combustion regime diagram was created by Borghi

[13], that plotted the ratio of the turbulence intensity, u′, and laminar flame speed, SL,0,

against the ratio of the turbulent integral length scale, l0, and the laminar flame thickness,

δf,0. A version of this diagram with modifications proposed by Peters [105] is presented in

Figure 5.

This diagram is divided into five regions separated by solid lines: laminar flames, wrin-

kled flamelets, corrugated flamelets, thin reaction zones, and broken reaction zones:

• The laminar flames region is characterized as laminar premixed combustion where

Rel0 < 1. Rel0 is the turbulent Reynolds number and is defined as:

Rel0 =
u′l0
ν

=
u′

SL,0

l0
δf,0

(3)

where ν is the viscosity and the relation δf,0 = ν/SL,0 has been used.

• The flamelets region is where Ka < 1. The Karlovitz number, Ka, is defined as

the ratio of the flame chemical time, τc, to the timescale of turbulent mixing at the
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smallest scales, the kolmogorov timescale τη [110]:

Ka =
τc
τη

=
δf,0/SL,0

(δf,0SL,0l0)1/2 / (u′)3/2
=

(
l0
δf,0

)−1/2( u′

SL,0

)3/2

(4)

In this region the flame chemistry is occurring faster than all scales of the turbulence,

which means that the turbulence cannot affect the flame structure; it can only modify

the flame topology. Locally, the flame is propagating like a laminar flame. This region

can be subdivided further into:

– wrinkled flamelets: in this region the turbulent fluctuations, u′, are slower than

the chemistry, SL,0. The turbulence can only wrinkle the flame front.

– corrugated flamelets: in this region the turbulent fluctuations, u′, are faster than

the chemistry, SL,0. In this regime the wrinkling becomes strong enough to form

pockets of reactants and products.

• The thin reactions zone is characterized by turbulent eddies that are small enough to

disrupt the preheat zone of the flame, but are not small enough to affect the structure

of the reaction zone. In this manner, the reaction zone of the flame still behaves like a

wrinkled, laminar reaction zone. The smallest eddies in turbulence are characterized

by the Kolmogorov length scale, lη, which is related to the largest scale through the

turbulent Reynolds number:

l0
lη

= Re
3/4
l0

(5)

Thus, as the Reynolds number increases the range of scales increases in turbulent flows.

If the Kolmogorov scale is larger than the reaction zone thickness, the turbulence does

not affect the reaction zone of the flame. For most turbulent flames, the reaction zone

can be estimated to be about one tenth of the total flame thickness. Using this

rough order of magnitude approximation we can estimate the upper bound of the
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thin reaction zones regime:

l0
δf,0/10

=

(
u′

SL,0

l0
δf,0

)3/4

(6)

100 =

(
l0
δf,0

)−1/2( u′

SL,0

)3/2

(7)

Ka = 100 (8)

• The broken reactions zone is characterized by turbulent features that are small enough

to enter and disrupt the reaction zone of the flame. At this point, the mixing occurs

so quickly that the overall reaction rate is limited only by the chemical timescales.

The behavior in this region is usually approximated with a well-stirred reactor model

[110].

One method by which the behavior of a turbulent premixed flame can change is due to

the presence of quenching. Quenching occurs along a flame front when the flame experiences

high levels of heat loss or strain, causing pockets of the flame front where no burning is

occurring. In the flamelets region of the turbulent combustion diagram the flame surface

is continuous; no quenching occurs because the scales of turbulence are not small enough

to disrupt the flame. Because of this, the rate at which reactants are consumed increases

proportionally to the increase in surface area. This is a common explanation for the linear

increase of the turbulent flame speed with turbulence intensity at low u′. As the turbulence

scales become smaller, they are able to enter the flame zone and cause local quenching. At

this point the flame surface area is no longer increasing linearly with turbulence intensity,

and this is often used to explain the “bending effect” discussed earlier.

In this research, the primary location of the data analyzed will be within the flamelets

and thin reaction zone regimes. In these regimes the flame propagates locally like wrinkled

laminar flames, or flamelets [104]. Thus, the behavior of the turbulent flame can be modeled

as the ensemble average of a large number of flamelets that occupy a finite volume of space.

This volume of space is known as the flame brush and is illustrated for a Bunsen burner

configuration in Figure 6.

It is important to note that at a given time the probability of finding the flame surface
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(a) (b)

Figure 6: (a) Ensemble of flamelets that occupy a finite volume of space known as (b) the

turbulent flame brush. Figure reproduced from Turns [131].

at any location inside the flame brush is not uniform. In other words, there is a probability

distribution of the flame location and this probability decreases to zero at the boundaries

of the flame brush. The cumulative distribution of the flame location will be zero at the

boundary of the flame brush and the reactants, and will be one at the boundary of the flame

brush and the products. This cumulative distribution is referred to as the average progress

variable 〈c〉 because it is a measure of the progress of the reaction, with one corresponding

to completely burnt and zero corresponding to completely unburned. Instantaneously, the

progress variable can be defined in terms of the temperature as:

c =
T − Tr
Tp − Tr

(9)

where T is the temperature, and the subscripts r and p refer to reactants and products,

respectively. The average progress variable field is a useful parameter for determining

turbulent flame properties. For example, it is used in defining equations to experimentally

determine the turbulent flame speed as discussed in the subsequent section.

1.2.1.3 Turbulent Flame Speed Definitions and Measurement Approaches

The measurement of the turbulent flame speed is also affected by experimental parameters

including the velocity distribution, the size of the burner, the geometry, and the boundary
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conditions [28]. As an example of the large amount of scatter that results in turbulent flame

speed data without consideration of burner geometry, consider the compilation assembled

by Bradley [14] presented in Figure 7. This figure presents correlation lines for over 1650

turbulent flame speed measurements taken from v-flame geometries, Bunsen burners, and

spherical bombs. To address the high degree of scatter and inconsistencies introduced

through the use of different experimental techniques, a group of researchers through a series

of workshops developed a set of guidelines for different turbulent flame speed measurement

approaches [56]. From these workshops, four definitions of the turbulent flame speed were

proposed:

Figure 7: Correlation of turbulent flame speed data developed by Bradley [14] from ap-

proximately 1650 turbulent flame speed measurements.

• Turbulent local displacement speed, ST,LD: Measures the local propagation

velocity of the turbulent flame brush,

ST,LD =
(
~Uf − ~Ur

)
· ~n (10)

where ~Uf and ~Ur are the velocities of the flame brush and reactants, respectively, in

the lab-referenced coordinate system, and ~n, the flame unit normal vector, is pointing
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towards the reactants. This definition is depicted graphically in Figure 8. These

quantities are generally taken at the leading edge of the turbulent flame brush (i.e.,

〈c〉 → 0) [50]. Burner geometries that use this definition of the turbulent flame speed

include v-flame, stagnation flow, and low swirl burners [28].

Figure 8: Definition of the turbulent local displacement speed, ST,LD.

• Turbulent local consumption speed, ST,LC : Measures the local rate of consump-

tion of reactants,

ST,LC = SL,0I0

∫ ∞
−∞

Σdη (11)

where I0 is the stretch factor, Σ is the flame surface density, and η is the progress

variable normal coordinate. The stretch factor I0 accounts for the effects of flame

stretch on the laminar flame speed SL, and the flame surface density Σ is the flame

surface to volume ratio [16].

• Turbulent global displacement speed, ST,GD: Measures the spatially averaged

propagation velocity of the turbulent flame brush,

ST,GD =
∂rf
∂t
− ~Ur · ~n (12)
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and is used in spherically expanding flames where rf is the spatially-averaged flame

radius.

• Turbulent global consumption speed, ST,GC : Measures the total average rate of

consumption of reactants by the turbulent flame,

ST,GC =
ṁ

ρuAf
(13)

where ṁ is the mass flow rate of reactants and ρu is the density of the unburned

reactant mixture. This definition is also illustrated in Figure 1. This method of

determining the turbulent flame speed requires that all of the reactants pass through

the flame and is typically used for envelope flame configurations, such as Bunsen

burners. One issue that can cause disagreement between turbulent flame speed data

acquired using this approach is the choice of the average progress variable value 〈c〉

used to determine the average flame area Af . For the statistically 1D representation

presented in Figure 1, the area is the same regardless. However, for real flames, like

the Bunsen flame depicted in Figure 6, the average area Af will depend on this choice.

Driscoll recommends using the 〈c〉 = 0.5 contour [50].

1.2.2 Flame Stretch

For 1D, laminar premixed flames the flame surface propagates into the reactants at the

unstretched laminar flame speed SL,0. However, most real flames are not 1D but are curved,

strained by the flow, and unsteady, leading to a misalignment of the streamlines and diffusion

lines. This misalignment of streamlines and diffusion lines is known as flame stretch, and,

depending on the circumstances, can strengthen, weaken, or have no effect on the flame

surface. Flame stretch becomes significant when there are large differences between (1)

thermal and species diffusivities, known as non-unity Lewis number effects, or (2) species

diffusivities, known as preferential diffusion effects. These two effects are illustrated in

Figure 9 and will be discussed further in subsequent paragraphs.
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(a) (b)

Figure 9: Depictions of flame stretch from (a) non-unity Lewis number effects and (b)

preferential diffusion effects.
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1.2.2.1 Flame Stretch Rate Definition

The flame stretch rate is defined by Williams [137] as the material derivative of the logarithm

of the flame surface area:

κ =
1

A

DA

Dt
(14)

There are two basic cases of stretch: (1) positive stretch (expanding flame area), and (2)

negative stretch (compressed flame area). An infinitesimal flame area element is considered

positively (negatively) stretched when its area increases (decreases) over time. It is impor-

tant to note that even steady flames can be stretched, even if it appears that their area is

not changing in time. Consider the tip of a Bunsen flame, which is similar to the situation

presented in Figure 9. Drawing flame tangential velocity components along the stream-

tube boundaries shows that the flame element is being compressed, and, thus, is negatively

stretched. A second example is presented in Figure 10 for a stagnation flame geometry.

In this example the flame area is exposed to a positive velocity gradient of magnitude a,

making this a positively stretched flame.

Figure 10: Positively stretched stagnation flame model with k = 0, 1 for Cartesian and

cylindrical coordinates, respectively. Figure reproduced from [79].

Assuming an infinitely thin flame sheet, Equation 14 can be expanded and manipulated

to obtain [19, 110]:

κ = −~n~n : ∇~u+∇ · ~u+ SL
(
∇ · ~n

)
(15)

where ~u is the reactant velocity. The first two terms in this expression are the tangential
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strain rate, κs, and the third term is the stretch rate contribution due to flame curvature,

κc. The term ∇ · ~n is the flame curvature and can be related to the principal radii of

curvature R1 and R2 through:

∇ · ~n =
1

R1
+

1

R2
(16)

where the radii of curvature are positive when convex to the reactants.

As discussed earlier, flame stretch manifests itself as a misalignment of streamlines and

diffusion lines. It can affect the behavior of the flame through non-unity Lewis number

effects and preferential diffusion effects. The next two sections will detail the physical

mechanisms behind these two effects to show how they can change the structure of the

flame, and, thus, affect the laminar flame speed SL.

1.2.2.2 Non-unity Lewis Number Effects

Non-unity Lewis number effects become important when there are large differences between

thermal and species diffusivities [79]. The Lewis number Le is defined as:

Le =
α

D
(17)

where α and D are the thermal and species diffusivities, respectively. The thermal diffusivity

is a mixture-averaged value, whereas the species diffusivity chosen is that of the deficient

reactant species. This convention is chosen because the deficient species will have a steeper

gradient at the flame front and will diffuse faster. Thus, when the flame is lean, the

diffusivity of the fuel is chosen, and when the flame is rich, the diffusivity of the oxidizer

is chosen. When a flame is negatively stretched, as shown in Figure 9, heat conducts

into the control volume defined by the streamtube boundaries and enhances the laminar

flame speed SL. Conversely, the deficient species will diffuse out of the control volume,

moving the equivalence ratio away from unity and diminishing SL. With unity Lewis

number, the increased energy from the added heat is canceled out by the loss of the deficient

species and SL remains unchanged. However, if Le < 1, species diffusion outweighs thermal

conduction and SL decreases. If Le > 1, thermal conduction outweighs species diffusion

and SL decreases.
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The magnitude of the Lewis number will depend on the molecular weight of the fuel

MWfuel in relation to air MWair and the equivalence ratio φ. First consider a negatively

stretched flame, such as that shown in Figure 9:

• If the fuel is lighter than air, then MWfuel < MWmix < MWair. The mixture

molecular weight MWmix is important because the Lewis number uses the mixture

thermal diffusivity. For lean mixtures, φ < 1, Le = α/Dfuel < 1 and the fuel will

diffuse faster than the heat will conduct. This corresponds to SL/SL,0 < 1 that

decreases with decreasing φ. For rich mixtures, φ > 1, Le = α/Dair > 1, SL/SL,0 > 1

and increases with increasing φ.

• If the fuel is heavier than air, MWfuel > MWmix > MWair. For φ < 1, Le =

α/Dfuel > 1. This corresponds to SL/SL,0 > 1 that increases with decreasing φ. For

rich mixtures, φ > 1, Le = α/Dair < 1, SL/SL,0 < 1 and decreases with increasing φ.

Similar arguments can be made for a positively stretched flame, as shown in Figure 10, to

show that the opposite behaviors occur. For clarity, these results are summarized in Tables

1 and 2.

Table 1: Dependence of Lewis number on equivalence ratio and molecular weight of fuel.

Lean (φ < 1) Rich (φ > 1)

MWfuel < MWair Le < 1 Le > 1

MWfuel > MWair Le > 1 Le < 1

Table 2: Effect of flame stretch on the laminar flame speed for different Lewis number.

Le < 1 Le = 1 Le > 1

κ < 0 SL < SL,0 SL = SL,0 SL > SL,0

κ > 0 SL > SL,0 SL = SL,0 SL < SL,0
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1.2.2.3 Preferential Diffusion Effects

Preferential diffusion effects become important when there are large differences in species

diffusivities and the mixture is near-stoichiometric [79], where non-unity Lewis number

effects are weak. Consider, for example, a H2:air mixture burning in a Bunsen burner,

similar to the situation depicted in Figure 9. At the tip of the flame, both species will

diffuse out of the control volume as shown in Figure 9b. Since H2 has a much higher

diffusivity than air, the H2 will diffuse out faster. The equivalence ratio at the tip will

decrease and SL will decrease if the mixture is lean and increase if the mixture is rich. The

opposite effects will occur if the fuel is heavier than the air. For positive stretch, such as

that shown in Figure 10, both species will diffuse into the control volume, with the lighter

one diffusing faster. For the H2:air example, the equivalence ratio will increase, causing SL

to increase if the mixture is lean and decrease if the mixture is rich.

1.2.2.4 Stability of Perturbed Flames

Another aspect to consider when determining the response of a flame to stretch is whether

these perturbations to the flame area will grow or decay over time. If the perturbations

decay over time the flame is said to be thermodiffusively stable, whereas, if the perturbations

grow the flame is thermodiffusively unstable. This is an important concept, for example, in

the study of turbulent premixed flames where it is observed that the turbulent flame speed is

enhanced for thermodiffusively unstable mixtures [88]. To determine the stability of a flame,

first consider the response due to heat conduction. For a positively curved bump on a flat

flame, the heat will be defocused from the center of the bump. This will cause the laminar

flame speed at the tip of the bump to decrease and the bump will decay. For a negatively

curved bump on a flat flame the heat will be focused to the center of the bump and the

bump will speed up and also decay. Thus, heat conduction always causes perturbations to

decay. For species diffusion, a positively curved bump will focus the deficient reactant to

the tip of the bump, causing the perturbation to grow in time. For a negatively curved

bump, the deficient reactant will diffuse away from the center of the bump and the bump

will slow down further, causing the perturbation to grow. Species diffusion will always
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cause perturbations to grow. Thus, a flame will be thermodiffusively stable if Le ≥ 1 and

thermodiffusively unstable if Le < 1. From Table 1, this corresponds to light fuels in lean

mixtures or heavy fuels in rich mixtures.

1.2.2.5 Flame Stretch Rate Calculations

To this point, the discussion of flame stretch has centered around trends and physical

arguments to describe the flame’s behavior when subjected to stretch. The purpose of this

section is to provide a more rigorous and quantitative understanding of the flame’s response.

Through asymptotic analyses, a first order expression for the laminar flame speed can be

developed for weakly stretched flames [137]:

SL = SL,0 − lMκ (18)

where lM is the Markstein length, a measure of the sensitivity of the flame speed to stretch.

The Markstein length is often nondimensionalized to obtain the Markstein number Ma:

Ma =
lM
δf,0

(19)

The stretch rate κ can also be nondimensionalized to form the Karlovitz number Ka:

Ka =
δf,0κ

SL,0
(20)

Note that there are numerous ways to define the Karlovitz number and that this definition

is different from that defined in Equation 4. With these nondimensionalizations, Equation

18 can be modified to obtain:

SL
SL,0

= 1−MaKa (21)

This linear relationship between flame speed and stretch rate has found justification in

experiments, for example in the work of Tseng et al. [129], shown in Figure 11 for CH4:air

flames at various equivalence ratios. Note in this figure that the y-axis is the inverse of the

left side of Equation 21. Since CH4 is lighter than air, these results agree with the previous

discussion that the laminar flame speed under positive stretch should be enhanced for lean

mixtures and diminished for rich mixtures.
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Figure 11: Dependence of the laminar flame speed on Karlovitz number for CH4:air flames

at different equivalence ratios. Figure reproduced from [129].

When a flame becomes strongly stretched, such as in highly turbulent flows, the linear

relationship of Equation 21 is no longer valid. Numerical simulations with detailed kinetics

and transport models are needed to determine the response of a flame to strong stretch. One

method is to use the OPPDIF module [67] in CHEMKIN to simulate symmetric, premixed

flames in an opposed jet burner, as shown in Figure 12. In this simulation the nozzle

exit velocities of both jets are increased to increase the stretch rate on the flames. Figure

13 presents example OPPDIF calculations for several different fuel mixtures. The Davis

mechanism [43] and GRI-Mech 3.0 [119] were used for the chemical kinetics mechanisms

for the H2:CO mixtures and CH4, respectively. Eventually the stretch rate becomes too

strong for the chemistry of the flames to sustain themselves, and extinction occurs at the

extinction stretch rate, κext. Near this point the solver uses an arc length continuation

method to find the extinction stretch rate and the branch of the curve that turns back on

itself. This region where the curve turns around is an unstable solution to the system of

equations.
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Figure 12: Representation of the twin, premixed flames in an opposed jet burner config-

uration used in the OPPDIF software module. Figure reproduced from [67].
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Figure 13: Stretch sensitivity calculations of H2:CO fuel blends and CH4 [133].
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1.2.2.6 Unsteady Stretch Effects

So far the discussion on flame stretch effects has focused on the response of a flame to a

steady stretch rate. However, turbulent flows are unsteady, and the response of a flame to

unsteady stretch becomes important to understand. At high enough frequencies the internal

structure of the flame cannot adjust itself to the perturbations. The frequency at which the

internal flame structure no longer responds in a quasi-steady manner is proportional to the

inverse of the flame’s characteristic chemical time, τc = δf,0/SL,0 [62]. This allows flames

to exist at stretch rates above the steady-state κext. These ideas are illustrated in Figure

14, which plots the laminar flame speed as a function of Karlovitz number for the steady

case and a range of frequencies. Notice from this figure that as the oscillation frequency

increases, the laminar flame speed becomes less sensitive to the stretch rate. At the highest

frequency of 1000 Hz the flame speed is nearly insensitive to the imposed stretch rate.

Figure 14: Dependence of the laminar flame speed on Karlovitz number for steady and

oscillating stretch rates for a H2:air flame at φ = 0.4. Figure reproduced from [62].

1.3 Literature Review

The turbulent flame speed is commonly correlated using:

ST = SL,0f(u′/SL,0) (22)
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where SL,0 is the unstretched laminar flame speed and u′ is the turbulence intensity [87, 88].

The unstretched laminar flame speed is defined as the speed at which an adiabatic, flat,

laminar flame front propagates into unburned reactants. For a given mixture, it is a function

of pressure and temperature [131]. The turbulent flame speed has an analogous definition to

the laminar flame speed, but does not depend solely on the chemical and thermal properties

of the mixture. As suggested by Equation 22, it is also affected by the conditions of the flow

such as the turbulence intensity. However, Equation 22 fails to capture the entire physics

of the problem [87]. Numerous studies have shown that the turbulent flame speed is also

affected by turbulent length scales [7, 78], bulk flow velocity [53], experimental configuration

[50, 28], and fuel composition [88, 97, 70]. The effect of fuel composition on the turbulent

flame speed has been well-documented in the literature [88]. For example, Kido et al.

[97, 70] obtained data for mixtures of H2, methane (CH4), and propane (C3H8) where, by

adjusting the dilution and stoichiometries of the different fuel blends, they obtained different

mixtures with the same unstretched laminar flame speed, SL,0. Their data clearly show

that these mixtures have substantially different turbulent flame speeds, with the high H2

mixtures having an order of magnitude larger ST value than the propane mixture at the same

turbulence intensity for the same experimental configuration. In addition, Venkateswaran

et al. [133] have reported measurements of H2:CO blends showing factor of three variations

in ST across fuel blends with identical SL,0 values, even at turbulence intensities u′rms/SL,0

up to 40. Similar observations were made by Wu et al. [140], Bradley et al. [15], Brutscher

et al. [17] and others, as summarized in the review of Lipatnikov and Chomiak [88].

The sensitivity of the turbulent flame speed to fuel composition is associated with the

stretch sensitivity of the reactant mixture, which leads to variations in the local consumption

speed along the turbulent flame front. In particular, the high mass diffusivity of H2 makes

HHC mixtures highly stretch sensitive. Stretch effects can be manifested through both

non-unity Lewis number and preferential diffusion effects [79]. While various modeling

approaches have been put forth, conceptual models based upon leading points concepts

appear to be one of the most natural approaches for capturing these stretch sensitivities

[88, 78, 64]. Leading points concepts were proposed by Zeldovich [143] and expanded upon
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by a number of groups, as summarized by Lipatnikov and Chomiak [88]. Leading points

are loosely defined as positively curved (convex to the reactants) points on the flame front

that propagate out farthest into the reactant mixture and can be shown to control the

overall propagation velocity of the turbulent flame under certain conditions [78]. This can

be shown, for example, by applying the Kolmogorov-Petrovskii-Piskunov (KPP) theorem

[74] to the propagation of a one-dimensional turbulent premixed flame in frozen turbulence,

where, under certain circumstances, ST is controlled by the conditions at the leading edge

of the flame brush, defined as the point where the average progress variable, 〈c〉, approaches

zero [57, 51]. For negative Markstein length mixtures, the burning rate of this positively

curved leading point increases [79]. As discussed in Section 1.2.2.5, the Markstein length

measures the linear response of the laminar flame speed to stretch rate.

These leading points ideas are particularly revealing for negative Markstein length mix-

tures, as calculations of laminar flame stretch sensitivities show that the positively curved

leading point flame speed can substantially exceed SL,0, as shown in Figure 13 [79]. As-

suming that ST is controlled by the leading point characteristics, the ensemble averaged

laminar burning rate of this leading point turns out to be a very significant turbulent flame

property. Directly following these ideas, Venkateswaran et al. [133, 132] developed a scaling

law for the turbulent flame speed of negative Markstein length flames that collapses a wide

range of turbulent flame speed data. This scaling law uses the maximum stretched laminar

flame speed, SL,max, as the normalizing parameter as opposed to the traditional approach

of using the unstretched laminar flame speed, SL,0. The form of this scaling law is given by

the relation:

ST
SL,max

≤ 1 +
u′LP
SL,max

(23)

where u′LP is the turbulence intensity at the leading point of the flame. SL,max is found

from opposed flow, strained flame calculations using detailed kinetics. An example of these

calculations is shown in Figure 13. The dynamical significance of SL,max in negative Mark-

stein length mixtures arises from the fact that this velocity/strain rate at the leading point

is a steady-state attracting point for constant density flames with positively curved wrinkles

[133]. This idea that SL,max, and not SL,0, is the suitable velocity scale for correlating ST
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was suggested by [78] and has found justification in data from Venkateswaran et al. [133], as

shown in Figure 15, which plots data obtained with a range of H2:CO mixtures normalized

by SL,0 (Figure 15a) and SL,max (Figure 15b). Note the strong fuel effects manifested in

the SL,0 scaled data, but the good collapse of the data using the SL,max scaling.
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(a)

(b)

Figure 15: (a) Measured dependence of the turbulent flame speed, ST,GC , upon turbulence

intensity, u′rms, normalized by SL,0 at various conditions for several H2:CO ratios and pure

CH4. (b) ST,GC data from (a) normalized by SL,max. See Venkateswaran et al. [133] for

details on experimental conditions.
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1.4 Thesis Overview

This simple scaling law is a promising method to correlate turbulent flame speeds, using

a physics-based approach, over a wide range of conditions. However, there are several key

issues that still need to be addressed.

As discussed in Section 1.2.1, the turbulent flame speed can be defined globally over the

entire flame or locally at a point or differential volume element [56]. The measurements

acquired by Venkateswaran et al. [133] with a Bunsen burner measure the turbulent global

consumption speed, ST,GC . Bunsen burners produce a flame that is attached at the burner

exit. Thus, the turbulent flame brush, defined as the time-averaged spatial region that the

flame occupies [131], is spatially varying, and ST,GC measurements average over variations

in the turbulent flame speed along the turbulent flame brush. The scaling law developed by

Venkateswaran et al. [133] is based around the local propagation rate at the leading points

of the flame and should be adjusted to account for the spatially developing flow field and

flame brush.

Thus, measurements of local flame properties, such as the flame stretch rate and turbu-

lence intensity, at these leading points may prove useful to the understanding of the scaling

law. For example, Figure 13 clearly shows the monotonic increase in SL,max with increasing

H2 content. However, it also shows that the flame stretch rate at SL,max varies strongly

with H2 content, a prediction that can be evaluated from computations or measurements. If

the physical arguments leading to this scaling approach are correct, then the flame stretch

characteristics at its leading points should exhibit systematic differences that scale with ST .

In particular, Figure 13 suggests that mixtures with higher ST values should have leading

points with higher stretch rates.

These measurements can be acquired using a burner developed by Cheng et al. [25]

known as the low swirl burner (LSB), discussed in more detail in Section 2.1.3. In addition,

this burner can also be used to obtain turbulent local displacement speed, ST,LD, mea-

surements, discussed in Section 1.2.1. These measurements, along with measurements of

the local turbulence intensity, can be used to test the validity of the leading points scaling

model.
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The rest of this thesis is organized as follows. Chapter 2 discusses the methods used

in this research. This includes a detailed overview of the experimental facility and the

techniques used to obtain measurements of the flow field and flame quantities. Chapter

3 characterizes the flow field of the burner from laser Doppler velocimetry (LDV) and

particle image velocimetry (PIV) experiments. Chapter 4 presents turbulent flame speed

measurements acquired in both the Bunsen burner and low swirl burner configurations over

a wide range of pressures, velocities, fuel compositions, equivalence ratios and turbulence

intensities. In Chapter 5, flame front topology and stretch statistics are extracted from the

high-speed PIV data. This includes measurements of curvature and tangential strain rate

globally across the entire flame brush and locally at the flame leading points. The purpose

of these measurements is to test the validity of the leading points model for collapsing

turbulent flame speeds. Finally, Chapter 6 summarizes the contributions and conclusions

of this work and presents suggested directions for future research in this area. This thesis

also includes two appendices for further details on this work. Appendix A presents details

of the facility used to meter flow rates, methods used to calibrate the meters, and results

of these calibrations. Appendix B presents an expanded flow field dataset compared to the

overview presented in Chapter 3.
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CHAPTER II

METHODS

The purpose of this chapter is to give a detailed overview of the experimental facility used to

perform this research and the methods implemented to obtain and process the data. Section

2.1 details the four most important subsystems of the experimental facility: the flow facility

for control and metering of gas flow rates, the unique turbulence generator, used to create

variable turbulence independent of any other flow quantities, the low swirl burner with inde-

pendent flow control of the central and swirl channels, and the high pressure vessel used to

obtain data at conditions simulating the operating pressures of real combustors. Section 2.2

describes the techniques used to obtain detailed information about the turbulent flow field

characteristics, including single point measurements and 2D velocity field measurements.

Finally, Section 2.3 explains the processing techniques used to obtain information on the

flame front topology and values for the turbulent flame speed.

2.1 Experimental Facility

This research focuses mainly on the measurement of ST,LD using flames generated with

a low swirl burner (LSB), an approach recommended by Gouldin and Cheng [56]. Along

the centerline of flames generated from the LSB, the turbulent flame brush is statistically

stationary in the lab reference frame and normal to the approach flow, thus, ~Uf = 0 and

−~Ur · ~n = |~Ur| = Ur. This leads to the following simplified relationship for ST,LD:

ST,LD = Ur (24)

and reduces the task of determining ST,LD to measuring the mean axial flow velocity along

the axial centerline at some prescribed progress variable or other well-defined feature. An-

other unique aspect of the LSB is that it produces a lifted flame that is quasi-1D in the

central, non-swirling region. This makes the flame convenient to access with laser diagnostic

techniques and amenable to analysis of statistical quantities such as flame curvatures and
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tangential strain rates.

2.1.1 Flow Facility

A significant task in the development of the high pressure experimental facility was the

design and implementation of a fully remotely operable control and metering system for

mixtures containing multicomponent fuels being delivered to two independent flow channels.

In addition, the flow facility is designed to be capable of running with heated or unheated

air over a significant range of flow rates and operating pressures. This section divides the

flow facility into three main systems: the regulators used for controlling fuel flow rates,

the fuel metering and mixing system via critical orifice meters, and, finally, the system for

metering air flow rates and premixing with the fuel before entering the burner.

Figure 16 presents the system developed in order to control multicomponent fuel mix-

tures over a wide range of conditions. Table 3 lists the instruments and valves used in this

system. H2 and CO are supplied from high pressure gas cylinders stored inside of contin-

uously exhausting gas cabinets. Natural gas is supplied from the building high pressure

natural gas system, and, although not pictured, would connect to regulators 2 and 4 in

place of CO. A nitrogen purge/leak check system is used to check for leaks in the gas

supply lines and also to purge H2 from the lines after testing to lessen the damaging ef-

fects of H2 embrittlement. The high pressure gases are controlled via air-loaded regulators

combined with electropneumatic pressure controllers. The downstream pressure setpoint

of the air-loaded regulators is controlled via an electronic pressure transducer coupled to

a proportional-integral-derivative (PID) controller contained in the electropneumatic pres-

sure controllers. A pressure setpoint is commanded from the data acquisition (DAQ) system

and the pressure controller adjusts the air load on the pressure regulator until the desired

setpoint is achieved.

After the regulators, the gases are metered and mixed via critical orifice meters as shown

in Figure 17. Table 4 lists the instruments and valves used in this system. Check valves

are used to prevent back flow of gases. The pressure and temperature are measured just

upstream of the choked orifice, and the pressure is measured downstream of the orifice to
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Figure 16: Diagram of the experimental facility for control of fuel regulators.
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ensure that the flow is choked. A wide range of orifice sizes are used to achieve different

flow rate ranges. Assuming ideal gas behavior and that the flow is choked, the mass flow

rate is calculated from:

ṁ = CdAp

γMW

RT

(
2

γ + 1

)(
γ+1
γ−1

)1/2

(25)

where Cd is the discharge coefficient, A is the choked orifice area, p is the pressure upstream

of the orifice, γ is the ratio of specific heats, MW is the molecular weight, and R is the

universal gas constant. The discharge coefficients for different orifice diameters were found

by calibrating the orifices using a drum-type gas meter. A detailed overview of the methods

and results of these critical orifice calibrations for a wide range of orifice sizes and gases is

presented in Appendix A. The fuel flow rates can be controlled by controlling the upstream

pressure p with the air-loaded regulators as discussed in the previous paragraph.

After the critical orifices, the individual gas components are mixed to create two mul-

ticomponent fuel mixtures. The fuel mixtures then enter the fuel and air delivery system

to be mixed before entering the burner. There is also a system in place that is designed to

purge the lines with N2 in the event that a flashback is detected. This is a safety feature

meant to extinguish the flame as quickly as possible during flashback.

Figure 18 details the system used to deliver premixed fuel and air into the burner. The

building high pressure air supply comes from storage tanks at a pressure of 200 atm with

a storage capacity of 3,000,000 standard liters. The tanks are filled by a five stage piston

compressor. The high pressure air is controlled via a controllable regulator with a maximum

downstream pressure of 50 atm. This air supply then takes two paths: one that is unheated

and the other that is heated by a Stahl air heater capable of producing outlet temperatures

of 800 K at 50 atm. The outlet temperature of the air heater is controlled by a closed-loop

feedback system. In this experimental facility, the hot and cold lines are combined, but

only a single valve is opened for a given experiment. This allows the facility to be run using

either heated or unheated air.

The total air volumetric flow rate is metered using a vortex flow meter, and then con-

verted to a mass flow rate using the pressure and temperature sensors located downstream
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Figure 18: Diagram of the experimental facility for fuel and air delivery to the burner.

of the vortex flow meter. The air is then choked to eliminate acoustic feedback to the control

system. The air then splits into two channels, one of which goes to the swirl channel of the

LSB and the other goes to the central channel of the LSB or the Bunsen burner, depending

on which nozzle is installed. The swirl channel is metered with a vortex flow meter to

determine the split between the two channels and, thus, have the ability to calculate the

swirl number, S. Pneumatically-actuated globe valves are used to control the split between

the swirl and central channels. Along the central channel line, a second pneumatically-

actuated globe valve is used to divert part of the flow through the high pressure seeder for

velocimetry experiments. This seeder also has a pneumatically-actuated ball valve located

upstream of it to turn the air supply to the seeder on and off remotely. Downstream of the

air supply the fuel mixtures are added to both the central and swirl channels in order to

premix the reactants before they enter the burner. On entering the burner, the flow in the

central channel passes through the turbulence generator, which creates a nearly isotropic,

highly turbulent flow [135], before exiting out of the nozzle and burning. The swirl channel

passes through the swirler of the LSB before exiting out of the nozzle and burning. The
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turbulence generator is discussed in the next section, and the LSB is discussed in Section

2.1.3.

2.1.2 Turbulence Generator

2.1.2.1 Background

Understanding the behavior of turbulent flames at conditions that realistically simulate the

operating conditions of practical devices such as boilers and gas turbine burners continues

to be an important need. Typical systems operate at bulk flow velocities, U0, ranging from

a few m/s to values of several hundred m/s, relative turbulence intensities, u′/U0, up to

30%, preheat temperatures of several hundred Kelvin, and pressures from one to 10s of

atmospheres [77]. However, there is relatively little fundamental data of turbulent flame

properties at these conditions, due to the severity of the environment. For example, consider

the premixed, turbulent flame literature, where measurement of quantities such as turbulent

flame speed, flame brush thickness, or various measures of flame front topology (e.g., fractal

dimension, surface density, curvature) are required. Much of the turbulent flame speed data

in the literature is obtained at normalized turbulence intensity, u′/SL,0, values less than

fifty, with the majority of it less than ten or even five. Very little high pressure, preheated

turbulent flame speed data is available. Moreover, much of the data showing sensitivities of

turbulent burning velocity to turbulence intensity have been obtained while varying mean

flow velocity and turbulence intensity simultaneously, despite the fact that it is known that

the flame exhibits separate dependencies upon these quantities [114]. There exists a large

literature on the use of turbulence generating systems to actively manipulate the length

scales and turbulence intensities in combustion and aerodynamics. These involve the use

of perforated plates, spinning/oscillating rods, and auxiliary fluid jets. The rest of this

section briefly reviews several prior approaches and discusses their suitability for turbulent

combustion applications.

Many turbulent flame studies use grid or perforated plate-generated turbulence. While

the characteristics of grid generated turbulence are documented extensively [84], the range

of achievable turbulent fluctuations is on the order of 2-10% [6]. Moreover, either the grid
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or the flow velocity must be changed in order to alter the turbulence intensity. Hardware

changes are inconvenient for combustion studies, particularly high pressure ones involving

pressure vessels, as it requires shutting down and disassembling the experiment for each test

point. Mean velocity changes are problematic as they confuse the underlying sensitivity of

the turbulent flame property to potentially separate dependencies on u′ and U0 [50].

High turbulence intensity levels have been achieved by active-grid turbulence generators

in wind tunnels, which use oscillating rods with diamond-shaped agitator wings to add tur-

bulent kinetic energy to the flow [91, 95, 96]. The rods are oscillated independently using a

random frequency generator to change the direction of oscillation. Using this configuration,

Makita [91] reported relative turbulence intensities up to 37% at 10 grid spacing lengths

behind the turbulence generator. However, the turbulence was highly anisotropic at this

location, and he recommended taking measurements at least 50 grid spacing lengths down-

stream, where the turbulence was more isotropic. At this location, the relative turbulence

intensity was approximately 16%. While this system significantly increases the turbulence

levels compared to traditional grid-generated turbulence, there are drawbacks. The cost of

implementing such a system is high compared to some of the other turbulence generation

systems; e.g., the design described by Makita [91] uses 15 stepper motors and motor drivers.

Variable turbulence levels in high pressure environments can be readily achieved using

fan-stirred bombs [1]. This is a transient experiment where the flame generally is initiated

at the flow centerline and expands spherically. Fans are used to stir the mixture at the

center of the bomb and generate isotropic turbulence [18]. While very useful for some types

of studies, the fact that the experiment is unsteady and that there is no average flow along

the flame limits the range of applicability of data obtained from these systems.

Another method of generating turbulence, developed independently by Thole et al. [126]

and Shavit et al. [113], is based on injecting high speed jets normal to the mean flow. The

advantage of this system is that the turbulence intensity can be varied independently of the

mean flow by adjusting the ratio of the transverse jet velocity to the main flow velocity. In

the study by Thole et al. [126], the configuration was implemented in a wind tunnel to study

surface heat transfer rates in gas turbines. They were able to achieve relative turbulence
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intensities of 20% while maintaining uniform mean and turbulence quantities across the

span of the test plate. In the study by Shavit et al. [113], the principle was applied to

generate turbulence in a twin-fluid atomizer, where the effect of turbulence characteristics

of the outer air jet on the atomization of the inner liquid jet was investigated. In their

study, they were able to achieve relative turbulence intensities ranging from 10% to 24%

over mean flow velocities ranging from 27 m/s to 53 m/s. This approach does not appear

to have been implemented in combustion applications.

Videto and Santavicca [135] developed a system where the flow passes through slots in

a blockage plate, leading to the generation of vortical structures. These vortical structures

impinge on the walls of an axially contracting section, breaking down into fine scale turbu-

lence before exiting the burner [10, 75, 135]. They were able to achieve isotropic turbulence

profiles across the burner width, with relative intensities up to u′/U0 ∼ 40%. The turbu-

lence level can be varied by either changing the plate gap width, thereby changing the flow

velocity through the gap, or by varying the mean flow velocities. The configuration was

only tested for velocities up to 2 m/s, so there is some question as to whether these levels

will be achievable at higher mean flow velocities. Bédat and Cheng [10] iterated upon this

design by utilizing azimuthal slots to enable use of the turbulence generator in axisymmetric

geometries. Coppola and Gomez [37] employed a similar strategy of laser cutting slots with

various shapes into metal plates through which the flow passes.

The approach described in this chapter was motivated by these latter studies, with

some generalizations to enable remote operation in a high pressure, preheated flow. This

approach was pursued for these studies for several reasons. First, as noted above, very high

levels of spatially uniform turbulence intensity can be generated at a fixed flow velocity.

Second, the device is amenable to remote variation of blockage ratio. The rotating plate

design utilized here was selected because of minimal problems with sticking over the wide

range of air preheat temperatures used, and the single access point made high pressure

sealing straightforward. Key features of this system and its characteristics are described in

the rest of this chapter.
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2.1.2.2 Turbulence Generator Setup

This section describes the experimental facility with particular emphasis on the design and

implementation of the turbulence generator. It was important in the development of this

facility to design a robust system capable of operating over a range of mean flow velocities,

inlet temperatures, and pressures. As such, careful consideration had to be taken in regards

to the selection of materials and the method of sealing the system from the surrounding

environment.

Figure 19 shows a schematic of the experimental facility in which the velocity charac-

terization studies were conducted. The facility consists of a contoured nozzle burner used

for turbulent premixed flame experiments. The smoothly contoured nozzle was designed in

order to suppress boundary layer formation along the walls and create a uniform top-hat

velocity profile at the exit. The air supply is delivered from blow down tanks that store

compressed air from the main facility compressors. The air flow is metered upstream of the

burner assembly using a subcritical orifice plate. Once the flow is near the burner, a small

percentage of the flow is bypassed through the seeder and then rejoined to the main air line

to ensure that there is no loss of mass flow rate. The seeded flow then enters the plenum

through four ports and passes through a layer of ball bearings to minimize jetting effects

from the smaller reactant feed lines.

The flow then passes through the turbulence generator plates, shown in Figure 20. The

turbulence generating plates are secured 84 mm upstream of the burner exit, as shown

in Figure 19. Both plates have an identical annular slot pattern milled in them so the

turbulence intensity can be varied by rotating the top plate, resulting in a change in the

blockage ratio, depicted in Figure 20. This design is motivated by the systems developed by

Video and Santavicca [135] and Bdat and Cheng [10]. The main flow passes through these

slots, generating vortical structures that then impinge on the inclined wall of the converging

section of the nozzle, breaking down into finer scale turbulence.

At very high blockage ratios, the mixture passes through the slots at an angle, leading

to swirl in the flow, as shown in Figure 21a. This effect was reduced by the addition of

straighteners shown in Figure 21b. We used the criterion that the swirl velocity remains

38



Figure 19: Schematic of the experimental facility for characterization of the turbulence

generator. Dimensions in mm.

(a) (b)

Figure 20: Schematic of the turbulence generating plates: (a) fully open and (b) partially

closed.
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less than 20% of the mean axial flow velocity, which limited the maximum usable blockage

ratio to 93% for all flame speed experiments.

(a) (b)

Figure 21: Flow characteristics (a) without and (b) with flow straighteners.

After passing through the turbulence generator plates, the flow impinges on the walls

of the contoured nozzle, as detailed in Figure 22. This is an important design element,

as nozzles with too large of a diameter, or blockage plates with too small a diameter of

the open area, allow the large scale structure generated at the blockage plate to exit the

nozzle without impinging upon the walls of the contoured nozzle. Since we are aiming to

achieve homogeneous turbulence with no narrowband spectral features, this is undesirable.

As such, the inner diameter of the radial slots was set to 30 mm, 1.5 times larger than our

largest nozzle diameter. Measurements and characterization studies were conducted under

isothermal flow conditions with burner diameters of 12 and 20 mm to achieve different

ranges of length scales and assess their influence on the turbulent flame properties.

The turbulence generator is a unique aspect of this experimental facility and substantial

effort was invested to meet key goals that were derived from shortcomings of turbulence

generators used in other studies. The criteria set forth in designing the turbulence generator

were to (1) have the ability to vary the turbulence intensity without changing out plates

or changing mean flow velocity, (2) access a wide range of turbulence intensities, (3) have

uniform exit mean and turbulent quantities, (4) be able to operate at high air temperatures

and pressures, (5) be remotely operable, and (6) have very thin boundary layers to prevent

flashback of high flame speed fuels, such as high H2 mixtures. The need for remote oper-

ability and continuously variable turbulence intensity was motivated by the need to access

a range of turbulence intensities in high pressure situations without having to shut down
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(a) (b)

Figure 22: Detailed views of the turbulence generator plates and contoured nozzle (12

mm nozzle diameter shown) (a) with dimensions and (b) isometric cut-away. Dimensions

in mm.

and cool the experiment to replace blockage plates. Furthermore, due to the influence of

the mean flow velocity on the turbulent flame speed, we wanted the ability to change the

turbulence intensity independently of the mean flow velocity.

The turbulence generator system consists of a 3 mm thick bottom plate that is secured

to the plenum and a 6 mm thick top plate attached to a central shaft. This central shaft

passes through the flange as shown in Figure 23. A significant amount of work was put

into the design of the pass-through assembly in order to ensure that the system would not

leak at high pressures. The system was designed so that increased chamber pressure would

induce a force imbalance on the pass-through components (hemispherical nut and outer

seal), thereby effectively enhancing their ability to seal. This pass-through has been leak

tested at pressures up to 20 atm. Outside the flange, the central shaft is coupled to a

DC stepper motor through a 50:1 worm and worm gear. This system has been tested to

successfully rotate the turbulence plates at inlet temperatures up to 600 K and pressures

up to 20 atm. In addition, the worm and worm gear were chosen for the low amount of
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backlash inherent in their design. The plate’s angular position is measured with an optical

encoder, attached to the other end of the central shaft, to an accuracy of ±0.1◦. The range

of blockage ratios possible with this setup is 69-97%, corresponding to angular slot openings

from 30◦-2◦. The 30◦ angular slot opening corresponds to the fully open position, where

the two plates are aligned. It will be shown later that the turbulence intensity increases

monotonically with increasing blockage ratio.

Figure 23: Detailed view of the pass-through assembly for the central shaft of the turbu-

lence generator.

2.1.3 Low Swirl Burner

2.1.3.1 Background

The low swirl burner was developed by Cheng et al. [25] as a method of generating a

freely propagating flame that does not rely on flow recirculation for flame stabilization.

The original design, shown in Figure 24, consists of a central channel of premixed fuel and

air surrounded by a co-flow of swirling air. The swirl in the outer region is generated by

tangential air jets. The outer, swirling region generates flow divergence that causes the axial

velocity to decay linearly in the axial direction. This occurs because the amount of swirl

generated in the outer region is below the threshold where vortex breakdown occurs. The
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flame stabilizes where the flame speed matches the axial velocity. The flame brush in the

central region is flat and, thus, provides a close approximation to a statistically 1D planar

turbulent flame. In Cheng’s follow-up paper, work was done to characterize in more detail

the flow field using laser Doppler velocimetry (LDV) [27]. Results were also compared to

non-reacting flow field data. One of the significant findings from this study was that the

central region of the flow was found to be free of swirl, and, thus, the flame zone was not

influenced by the outer swirl component.

Figure 24: Schematic of the original LSB [25].

In order to obtain higher turbulence levels the burner was modified, as shown in Figure

25, [10] to use a turbulence generator based on the slot design developed by Videto and

Santavicca [135]. The reactant mixture went through an annular slot to generate high levels

of turbulence before the outer region was swirled via the tangential air jets. The higher

turbulence levels generated by this system are closer to the levels observed in real combustors

such as those in gas turbines and furnaces. The wider range of turbulence levels achievable

allowed investigation of the flame structure in different regimes of the Borghi diagram [13],
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from corrugated flamelets into the distributed reaction zones. The boundary separating

these two regions, known as the Klimov-Williams criterion [136], was originally believed

to be the point at which turbulent eddies became small enough to enter the flame and

alter its structure. Below this boundary the turbulence scales are larger than the flame

scales, and eddies can only wrinkle the flame. However, it was found that the flame speed

increased linearly with turbulence intensity even in the high turbulence cases located in the

distributed reaction zones regime. In addition, Rayleigh scattering measurements showed

no significant changes in flame structure between low and high turbulence cases, suggesting

that the Klimov-Williams criterion underestimates the point at which the reaction zone

is affected by turbulence. Peters proposed defining an additional regime where turbulent

eddies may enter the preheat zone but are still too large to penetrate the reaction zone.

He calls this the thin reaction zones regime [105], discussed in detail in Section 1.2.1.2 of

Chapter 1. The next paragraph details experimental work with the LSB to argue for the

reasonableness of the thin reaction zones regime.

Investigations using planar laser-induced fluorescence (PLIF) of the hydroxyl radical

(OH-PLIF) showed that the probability of an eddy entering the reaction zone is low for

cases located in the distributed reaction zones regime [33]. Probability density functions

(PDFs) of flame curvature were generated from the OH-PLIF images in order to deter-

mine the probability of flame wrinkles of a given size. Additional measurements using the

Rayleigh laser sheet technique were obtained to examine the changes in the flame zone with

increasing turbulence [115]. The results were compared against laminar flame situations

to show that there is little evidence of changes in flame parameters as the flames entered

the distributed reaction zones regime. The dominant effect was observed to be from flame

wrinkling, which caused increases in the flame surface density and burning rate and re-

sulted in broader curvature PDFs. They argued that the important length scale parameter

for combustion/turbulence interactions is the reaction zone thickness. Further investiga-

tion using dual-sheet Rayleigh/OH-PLIF measurements showed that the primary effect of

turbulence on the local flame structure for flames in the thin reaction zones regime is to

cause a temperature rise ahead of the preheat zone. This temperature rise is caused by the
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Figure 25: Schematic of the LSB [10] with the turbulence generator of Videto and San-

tavicca [135].
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transport of heat by small eddies entering the preheat zone [75, 46].

A number of studies have performed 2D/3D laser diagnostic techniques on the LSB.

Plessing et al. [109] performed OH-PLIF combined with either Rayleigh thermometry or

PIV. The data showed the turbulent flame brush thickness to be independent of turbulence

intensity, u′/SL,0. Petersson et al. [107] performed simultaneous PIV/OH-PLIF, Rayleigh

thermometry/OH-PLIF and stereo PIV measurements in order to develop a database of

properties for Large Eddy Simulation (LES) model validation. A new LSB was used in this

study, with the tangential air jets replaced by an eight vane annular swirler. Measurements

of conditional velocities, progress variable, Favre-averaged progress variable and scalar fluxes

were obtained. Laser diagnostic data from this new LSB has been compared to an LES

model [101, 99, 100] and direct numerical simulations (DNS) [44] of the LSB to investigate

the structure and stabilization of low swirl flames.

Recently, studies have investigated the effects of fuel composition on flames generated

by the LSB. A summary of the fuels investigated is shown in Table 6. Littlejohn et al.

[89] and Cheng et al. [31] investigated flow field characteristics and turbulent flame speeds

of various hydrocarbon and hydrogen fuels. They found that the flame functions as an

aerodynamic blockage, increasing the divergence rate compared to non-reacting cases at

the same conditions. In addition, a linear correlation of the turbulent flame speed with

turbulence intensity was observed for hydrocarbon fuels and hydrogen-containing fuels with

the slope of the line steeper for the latter class [30, 32, 90].

Another notable feature of the LSB is that the flame remains stationary over a wide

range of flow velocities [89, 90, 98]. This is a result of the self-similarity of the near-field

flow and a linear relation of the turbulent flame speed with turbulence intensity. To better

understand this phenomenon, the linear behavior of the mean axial flow velocity in the

near-field flow can be written as:

Uax
U0

= 1 + aax(y − y0) (26)

where aax = (dU0/dy)/U0 is the normalized mean axial strain rate and y0 is the virtual

origin. The virtual origin is the location where Equation 26 yields Uax = U0. At the leading
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edge of the flame brush, yf , the expression becomes:

ST,LD
U0

= 1 + aax(yf − y0) =
SL,0
U0

+K
u′ax
U0

(27)

where K is a proportionality constant found from experimental data and u′ax is the axial

turbulence intensity. Due to the self-similarity of the near-field, aax, u′ax/U0, and y0 do not

change with U0. The proportionality constant K depends on fuel type [30, 32, 90], but does

not change with U0. The term SL,0/U0 will change with bulk flow velocity, however, this

term is generally small for SL,0 = O(0.1 m/s), U0 = O(10 m/s).

2.1.3.2 Low Swirl Burner Experimental Facility

The LSB nozzle, shown in Figure 26a, was designed to be interchangeable with the Bunsen

burner nozzle presented previously in Figure 22. This allows for the LSB to be run with the

variable turbulence generator presented in Section 2.1.2. This is the only LSB that allows

for on-the-fly variations in the turbulence intensity, without varying the bulk flow velocity

or changing blockage plates. The swirler, shown in Figure 26b, is similar to that of Cheng

et al. [31] except that the central channel blockage plate, used to generate turbulence and

control the split between the central and swirl channels, has been removed. In this setup it

is unnecessary, since the turbulence is generated upstream of the contoured nozzle by the

variable turbulence generator, and the flow facility uses motorized valves to control the flow

split between the central and swirl channels. This gives the added benefit of being able

to vary the swirl number S on-the-fly. S is defined as the ratio of angular to axial flow

momentum nondimensionalized by the burner radius Rb [34]:

S =

∫
ρwurdA

Rb
∫
ρu2dA

(28)

where w and u represent the azimuthal and axial velocities, respectively, and ρ is the density.

Under some simplifying assumptions [29], the following relation for the swirl number is

obtained:

S =
2

3
tan θ

1− R3

1− R2 +m2R2(1/R2 − 1)2
(29)

where θ is the swirler vane angle, R is the ratio of the central channel to burner exit radii,

Rc/Rb, and m is the ratio of the central channel to swirler mass flow rates, ṁc/ṁs. For the
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LSB shown in Figure 26, θ = 41◦ and R = 0.66.

(a)

(b)

Figure 26: Detailed views of the (a) LSB nozzle and (b) swirler model. Dimensions in

mm.

2.1.4 High Pressure Capabilities

The vessel used to perform high pressure experiments is shown in Figure 27. The vessel has

been tested in both non-reacting and reacting conditions at chamber pressures up to 20 atm

and inlet reactant temperatures up to 600 K. The vessel is equipped with four, orthogonal

3” by 8” by 1” quartz windows located at the exit of the burner with effective viewing areas

of 2” by 7”. Fuel and air for the central channel of the LSB enters through four ports located

in the flange that the burner plenum is attached to. The swirl channel enters through two

ports in the flange located outside the diameter of the burner plenum. Inside the vessel

stainless steel tubing is welded to these ports and then routed into the annular region of the

contoured nozzle to supply fuel and air to the swirler of the LSB. To ignite the flame, one

of the quartz windows is replaced with a carbon steel blank with two pass-through ports:

one port passes a ceramic-insulated igniter probe made of tungsten carbide into the vessel

and the second port passes a 1/4” stainless steel tube into the vessel that is connected to
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a tank of H2. The H2 line is opened or closed with two solenoid valves placed in series and

actuated via a 120 VAC supply through a relay switch. The igniter is also controlled via a

120 VAC supply through a relay switch. The igniter arcs from the tungsten carbide probe

to the H2 line, igniting the H2 and producing a nonpremixed flame that penetrates into

the main flow. Once this H2 flame is lit, the fuel for the burner is introduced and the H2

flame is turned off when a stable flame is achieved in the main burner. Two ports located

opposite of each other on the pipe section below the quartz windows are used to supply

a co-flow of cold air to help pressurize and cool the vessel. This co-flow passes through a

layer of ball bearings to help break up large scale features from the inlet air jets. The pipe

sections downstream of the reaction zone are cooled by a water jacket. The pressure inside

the chamber is controlled by a motorized globe valve located downstream of the pressure

vessel (not shown in Figure 27). By changing the choked area of the vessel, this allows for

independent control of the bulk flow velocity and chamber pressure.
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Figure 27: Schematic of the pressure vessel used to perform high pressure experiments.

Pressure vessel is shown with the 20 mm Bunsen burner installed.
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Table 3: Instrument and valve list for Figure 16

Displayed Text Description

I-01 0-3000 psig Pressure Transducer

I-02 0-3000 psig Pressure Transducer

I-03 0-3000 psig Pressure Transducer

I-04 0-3000 psig Pressure Transducer

V-01 N2 Ball Valve

V-02 N2 Check Valve

V-03 H2 Ball Valve

V-04 H2 Check Valve

V-05 Pneumatically Actuated Ball Valve

V-06 Pneumatically Actuated Ball Valve

V-07 Pressure Controller

V-08 Air Loaded Regulator

V-09 CO Check Valve

V-10 Pneumatically Actuated Ball Valve

V-11 Pneumatically Actuated Ball Valve

V-12 Pressure Controller

V-13 Air Loaded Regulator

V-14 3-Way Ball Valve

V-15 3-Way Ball Valve

V-16 Pressure Controller

V-17 Air Loaded Regulator

V-18 Pressure Controller

V-19 Air Loaded Regulator

V-20 3-Way Ball Valve

V-21 3-Way Ball Valve
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Table 4: Instrument and valve list for Figure 17

Displayed Text Description

I-05 Pressure Transducer

I-06 Critical Orifice

I-07 Pressure Transducer

I-08 Type K Thermocouple

I-09 Pressure Transducer

I-10 Critical Orifice

I-11 Pressure Transducer

I-12 Type K Thermocouple

I-13 Pressure Transducer

I-14 Critical Orifice

I-15 Pressure Transducer

I-16 Type K Thermocouple

I-17 Pressure Transducer

I-18 Critical Orifice

I-19 Pressure Transducer

I-20 Type K Thermocouple

V-22 Check Valve

V-23 Check Valve

V-24 Check Valve

V-25 Check Valve

V-41 Spring Loaded Regulator

V-42 Pneumatically Actuated Ball Valve

V-43 Check Valve

V-44 Check Valve
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Table 5: Equipment, instrument and valve list for Figure 18

Displayed Text Description

E-01 High Pressure Air Storage

E-02 Furnace Heater

E-03 Seeder

I-21 Vortex Flowmeter

I-22 Pressure Transducer

I-23 Critical Orifice

I-24 Type K Thermocouple

I-25 Vortex Flowmeter

I-26 Pressure Transducer

I-27 Type K Thermocouple

V-26 Controllable Regulator

V-28 Ball Valve

V-29 Ball Valve

V-30 Pneumatically Actuated Valve

V-31 Pneumatically Actuated Valve

V-32 Pneumatically Actuated Valve

V-34 Pneumatically Actuated Ball Valve

V-35 3-Way Ball Valve

V-36 3-Way Ball Valve

V-37 3-Way Ball Valve

V-46 Gate Valve

V-47 Gate Valve
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Table 6: Summary of literature investigations of fuel effects on the LSB.

Author Year Fuels Investigated (u′/SL,0)max (ST /SL,0)max

Littlejohn [89] 2007 CH4, C2H4, C3H8, H2, CH4/CO2, 5 10

CH4/N2, CH4/H2, H2/CO2

Cheng [31] 2008 Natural Gas (NG), NG/CO2 10 20

Cheng [30] 2008 H2, H2/N2 20 60

Cheng [32] 2009 H2, H2/CH4 30 65

Littlejohn [90] 2010 H2/CO/CH4, H2/CO/CO2, H2/CO 20 60

54



2.2 Flow Field Measurements

2.2.1 Single Point Measurements

Velocity measurements were obtained with a TSI 3-component laser Doppler velocimetry

(LDV) system. The air flow was seeded using 5 µm alumina (Al2O3) particles. The LDV

transmitter probes were mounted on a computer-controlled, three-axis traverse to enable

axial and radial scanning across the burner exit along three orthogonal directions. The

LDV system is comprised of an Innova 90C 2.4 W, 514.5 nm continuous wave argon-ion

laser with an FBL-3 multicolor beam generator. The multicolor beam generator has a Bragg

cell that shifts one beam of each of the three pairs by 40 MHz. Two fiber optic transceiver

probes were mounted 90◦ apart and operated in backward-scatter mode. The signal from

the transceiver probe was connected to a PDM 1000-3 three-channel photodetector module.

The output frequencies were downmixed and sent through a bandpass filter before being

processed by an FSA 3500-3 signal processor to record three components of velocity in non-

coincidence mode. The amount of downmixing and the range of the bandpass filter varied

depending on the channel and the expected measurement velocity range. Approximately

30,000 realizations, divided roughly equally among the three channels, were used to generate

the quoted velocity statistics. Data were taken in two perpendicular radial cuts 3 mm above

the nozzle exit with the distance between sequential data points at 1 mm as illustrated in

Figure 28. The radial cuts were aligned so that one cut would pass over a solid portion

of the turbulence generator, and the other cut would pass over open slots, as depicted in

Figure 29. The purpose of this was to verify azimuthal symmetry in the flow.

Time-series velocity data were also acquired at the burner centerline using a Dantec

Streamline Constant Temperature hotwire Anemometer (CTA) with a 5 µm diameter, 1.25

mm length model 55p11 straight probe. The system was calibrated over the range of

velocities for flow characterization using a Dantec 90H02 calibration unit to an accuracy of

2%. The probe was held in place with a straight probe holder at 1 mm above the nozzle

exit centerline, oriented downward. Data were taken at 100 kHz with sample sizes of 105

points.
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Figure 28: Illustration of direction and orientation of cuts and location of data points

acquired in LDV characterization.

Figure 29: Illustration of direction and orientation of cuts performed in LDV velocity

characterization relative to the turbulence generator top plate.
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2.2.1.1 Flow Length and Time Scales

Longitudinal integral time scales, τint, were calculated from the LDV time series data at the

burner centerline, and also used to calculate a characteristic longitudinal length scale by

multiplying by the mean flow velocity, l = τintU0. For u′/U0 � 1, this characteristic length

scale is equal to the integral length scale, as per Taylor’s hypothesis. However, at the higher

turbulence levels used in this experiment, these two length scales are different [125]. The

longitudinal integral time scale was calculated from the normalized autocorrelation function

as a function of lag time from the LDV time series data. Since the LDV data is sampled

in unequal time intervals, the autocorrelation function ρac was determined from Equation

30 using the slotting technique of Mayo [92] with the local normalization improvement

described by Tummers [130],

ρac(k∆τ) =

N−1∑
i=1

N∑
j=i+1

uiuj(k∆τ)(
N−1∑
i=1

u2
i (k∆τ)

N∑
ji+1

u2
j (k∆τ)

)1/2

for: k = 0, 1, ...,M − 1

(30)

where (k − 1/2)∆τ < ti − tj < (k + 1/2)∆τ , M − 1 = τmax/∆τ , τmax is the maximum lag

time, and ∆τ is the slot width. The integral time scale was defined using the relationship,

τint =

∞∫
0

ρac(τ)dτ (31)

Because of the high uncertainties associated with the autocorrelation at large time lags

(because of its low value), an exponential expression of the form ρac(τ) = ae−bτ +(1−a)e−cτ

was fit to the autocorrelation function and used to evaluate this integral, so that τint is given

by Equation 32,

τint =
a

b
+

1− a
c

(32)

2.2.2 Velocity Field Measurements

Velocity characterizations of non-reacting and reacting flow fields were obtained using PIV.

The laser used in these experiments was a Litron Lasers Ltd. LDY303He Nd:YLF twin
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head frequency doubled laser with a wavelength of 527 nm. The camera was a Photron

FASTCAM SA1.1 high-speed camera with a full resolution of 1024 x 1024 pixels at repetition

rates up to 5 kHz. Velocity vector field calculations were performed using DaVis 7.2 software

from LaVision. The window size used in the calculations was 32×32 pixels with an overlap

of 50% giving a spatial resolution of approximately 2 mm. Experiments were performed

for H2:CH4 and H2:CO mixtures. Experimental parameters and conditions are outlined in

Table 7.

Table 7: Experimental parameters and conditions for the two datasets acquired using PIV

Experiments: H2:CH4 H2:CO

Repetition rate (kHz) 1 9

Pulse energy (mJ/pulse) 23 1.3

Time between shots (µs) 15 18

Resolution (pixels × pixels) 704× 704 384× 704

Viewing area (mm × mm) 87× 87 44× 80

Number of image pairs 1000 10,000

Seed particles 1-2 µm Al2O3 0.3-0.7 µm TiO2

Swirl number, S 0.57-0.6 0.58

Mean flow velocity, U0 (m/s) 20, 30, 40 30, 50

Fuel Composition (% H2) 0-75 50-100

SL,0 (cm/s) 34 34

2.2.2.1 Errors in Particle Image Velocimetry

Before discussing errors and uncertainty in PIV, we start with a brief discussion of the

basics of error and uncertainty analysis. It is important to note that the terms error and

uncertainty are used in similar manners but have different definitions. The error is the

difference between the measured value and the true value and, thus, is never known in

measurements since it requires the true value (if the true value is known, there is no use in
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making a measurement!). The sources of errors can be divided into bias and random errors.

Bias errors, also known as systematic errors or accuracy, occur when the measurement

technique systematically measures values off from the true value. If the bias error is known,

it is usually eliminated or minimized with a proper calibration of the measurement equip-

ment. Random errors, also known as precision errors or noise, are the errors that occur

each time a measurement is taken and a different value is obtained. The effects of random

errors on measurements are usually minimized through averaging over a large number of

samples N . Statistical methods are often used to analyze random errors.

Uncertainty refers to statistical methods used to estimate the error present in a mea-

surement technique. The uncertainty of a measurement is a range around the measured

value that is assumed to contain the true value with some level of statistical confidence.

This range, and its associated confidence value, are known as a confidence interval.

Particle image velocimetry is a relatively new velocimetry technique when compared

to laser Doppler velocimetry (LDV) or hotwire anemometry. The advantage over these

techniques is clear: PIV provides a 2D (or quasi-3D in the case of stereoscopic techniques)

velocity field at very high data rates (10 kHz is a common data acquisition rate in mod-

ern laboratory systems). However, despite the advantages of PIV, there is no standard,

universally accepted error analysis procedure.

One of the first error sources identified in PIV was particle lag. This error causes a

difference in velocity between the fluid and tracer particle due to acceleration in the flow

and the difference in density between the particle and the fluid [93, 94]. This velocity

difference is known as the “slip velocity.” In highly turbulent flows this term can become

significant due to the small length scales present and the unsteadiness of the flow.

The amount of lag as a function of frequency of the flow is estimated in Figure 30, which

plots the ratio of the kinetic energy of the particle to that of the fluid as a function of fre-

quency for various particle relaxation frequencies, C. The Stokes number is a dimensionless

quantity that measures the ratio of inertial to viscous forces for a particle and is related to

the relaxation frequency C through:

Stk =
U0/l0
C

(33)
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where U0 and l0 are the characteristic velocity and length scales, respectively, of the flow.

For these experiments, air at 300 K seeded with TiO2 particles with an average diameter of

0.5 µm, this yields a relaxation frequency of C ≈ 3.1× 105 s−1. For the range of velocities

studied this yields a Stokes number of Stk ≈ 0.005-0.009. According to [127], for Stk � 0.1,

errors in velocity measurements are less than 1%.

Figure 30: Particle kinetic energy normalized by fluid kinetic energy as a function of cutoff

frequency fc for a range of relaxation frequencies C [93].

Thermophoretic effects are another source of error in PIV measurements, where tem-

perature gradients in a flow lead to forces on the particles. Thermophoretic effects in flames

can account for differences in velocities of several centimeters per second [122], as demon-

strated in Figure 31 for particle diameters of 2 and 5 µm. This effect becomes important

in the low velocity regions of the flow where a flame tends to stabilize. If we assume that

the region where the flame stabilizes instantaneously has a velocity near the laminar flame

speed (SL ≈ 40 cm/s), this leads to errors for the Al2O3 particles of around 5-7% and for

the TiO2 particles of around 1.5-3%.

Additional uncertainty in velocities calculated using PIV can arise from a variety of

error sources including loss of seed particles between frames (due to out-of-plane velocities),

inconsistent seeding levels, optical aberration, and error in the calibration technique [121].

Errors from these sources are dependent on the flow field examined and the experimental
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Figure 31: Particle velocity vP and fluid velocity vF versus axial distance in a CH4-air

stagnation flame [122].

setup. Because of this they are difficult to quantify, however, for a well calibrated system

and a uniform flow these errors are on the order of 1-2% [80].

Combining the sources of uncertainty mentioned in the previous paragraphs using the

root sum of the squares yields an uncertainty range from 2-7%. This value is highly depen-

dent on the particles used, the range of flow velocities being considered (which also means

the uncertainty varies depending on the region of the flow under examination), and the

fidelity of the experimental setup.

Another method to estimate errors is to use statistical approaches based around confi-

dence intervals. The advantage of this method is that it does not require identification and

quantification of every individual source of experimental uncertainty. The disadvantage of

this method is that it does not take into account bias errors.

Confidence intervals for a measured quantity x are determined by first calculating the

standard error SEx̄ of the sample mean x̄, defined as:

SEx̄ =
sx√
N

(34)

where sx is the sample standard deviation and N is the number of samples. Assuming that

the measurements are normally distributed, the relationship between the sample mean x̄
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and the true mean µ is given by:

x̄ = µ± acSEx̄ (35)

where ac is the confidence coefficient, determined by selecting a probability c% that the

measured mean lies within the confidence interval defined by Equation 35. For c = 95%,

ac = 1.96. In other words, there is a 95% probability that the true mean lies within

±1.96SEx̄ of the measured sample mean.

In the rest of this thesis, when error bars are presented on a plot, these error bars

represent the 95% confidence interval. The relative standard error is defined to be the

standard error normalized by the sample mean expressed as a percentage. For the PIV

measurements in this thesis, and presented in detail in the subsequent chapter, the relative

standard error is less than 1%, due in large part to the high number of samples taken. It is

important to note that this does not mean the measured values are within 1% of the true

value, but that they are within 1% of the true mean value. The difference between the true

value and the true mean value is the bias error.

2.3 Flame Measurements

2.3.1 Chemical Kinetic Calculations

This section describes the calculation approaches used for relating ST values to detailed

kinetic properties of the mixture. Estimates of the unstretched laminar flame speed, SL,0,

and thickness, δf,0, were determined using the PREMIX module [66] in CHEMKIN with the

Davis mechanism for H2:CO mixtures [43] and GRI-Mech 3.0 for H2:CH4 mixtures [119].

The flame thickness is calculated using:

δf,0 =
Tp − Tr

(dT/dx)max
(36)

where Tp and Tr are the burned and unburned temperatures, respectively. To determine the

response of the mixtures to stretch, symmetric, opposed-flow premixed flame simulations

were performed using the OPPDIF module with an arc-length continuation approach [67]

in CHEMKIN. Typical calculation results are shown in Figure 13 in Chapter 1. Note the

flame’s sensitivity to high stretch is not a unique function of stretch rate, but depends on the
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stretch profile through the flame. Thus, the geometry of the model, as well as unsteadiness,

influences these results, points discussed in greater detail in our other works [3, 132].

2.3.2 Flame Front Topology

The density ratio of seed particles in the reactants and products scales linearly with the

density ratio across the flame due to gas expansion through the flame. Because of this, Mie

scattering images from PIV experiments can be utilized to estimate the instantaneous flame

front positions and have been shown to be in good agreement with contours obtained from

simultaneous OH and CH2O PLIF [108]. The resolution in this work is 0.11 mm/pixel,

smaller than the critically stretched flame thickness for the pure hydrogen case of δf |SL,max

= 0.16 mm.

It is important to note that PIV gives a 2D slice of an inherently 3D flow field and flame

surface. This issue has been addressed by a number of workers. Assuming isotropy, 3D mean

statistics can be estimated from 2D information, e.g., 〈1/R〉3D = π
2 〈1/R〉2D and 〈κs〉3D =

2〈κs〉2D [60]. It is also assumed in this analysis that the out of plane direction is statistically

homogeneous, a fair assumption for the central region of the low swirl burner considered

in this study. In addition, recent experimental work by Kerl et al. [68] have shown that

2D and 3D measured quantities have qualitatively similar PDFs and are correlated to each

other. Finally, Gashi et al. [54] compared curvature from 2D OH-PLIF and 3D direct

numerical simulation (DNS) data and found that the PDFs were qualitatively similar, with

the 3D DNS giving similarly shaped, but broader, distributions, as expected based on the

above expression. Thus, while 2D data cannot be used to obtain absolute measurements of

leading point stretch rates, it can be used for examining trends associated with changing

various quantities such as fuel composition and turbulence intensity.

The procedure for analyzing these images is demonstrated in Figure 32. To better distin-

guish reactants and products, the raw image, shown in Figure 32a, is median-filtered using

a 5× 5 filter to obtain 32b. Once filtered, the image is binarized with the threshold inten-

sity selected using Otsu’s method [102], as shown in Figure 32c, to separate reactants from

products and find the flame edge. Figure 32c shows the resulting instantaneous progress
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variable c field, which is defined to be 0 in the reactants and 1 in the products [110].

This method of binarization chooses a threshold by maximizing the total variance be-

tween the two regions, also known as the class separability [102]. If we imagine a gray-level

histogram of the flame image consisting of a bimodal distribution, with the lower peak

corresponding to the reactants, and the upper peak corresponding to the products, then

Otsu’s method automatically chooses a threshold value nearly halfway between the peaks.

This corresponds to an instantaneous progress variable of c ≈ 0.5. According to laminar

flame theory, the location of this flame front is upstream of the peak heat release rate, which

occurs near the maximum flame temperature [55].

The flame edge, shown in green in Figure 32d, can also be used to calculate 2D flame

front curvatures and tangential strain rates. Information on flame stretch statistics is useful

for examining the effects of flame stretch on the propagation rate of turbulent premixed

flames. In order to extract flame front curvatures, additional processing steps are required.

The arc length of the edge, s, is calculated from the x- and y-coordinates of the flame

edge found from binarization of the image. The 2D curvature 1/R is calculated from the

following equation:

1

R
=

y′x′′ − x′y′′

((x′)2 + (y′)2)3/2
(37)

where ( )′ denotes derivatives with respect to the arc length s. The flame curvature is

defined to be positive when the flame surface is convex to the reactants. Because of pixela-

tion effects and noise, curvatures were not calculated directly from x(s) and y(s) via finite

differences. Instead, an algorithm was developed to fit spline curves to the parameterized

coordinates x(s) and y(s). Two steps were taken in this fitting process in order to further

reduce the effects of pixelation and noise. First, the x- and y-coordinates were resampled

over an arc length interval ds. The choice of interval length ds is an important one. If

the value of ds is too small, the spline curves will capture pixelation and noise artifacts

present in the image. If the value of ds is too large, the spline curves effectively filter out

high curvature values. We used a value of ds based on the laminar flame thickness, δf,0,

following Lee et al. [83], as this is the smallest potential scale of flame wrinkling [82]. Thus,

ds = (π/2)δf,0.
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Figure 32: Demonstration of the post-processing procedure used to identify the flame edge

from PIV images. (a) raw image, (b) median-filtered image, (c) thresholded image used to

identify reactants and products and find the flame edge, and (d) flame edge (green), fitted

spline curve (red), instantaneous leading point (yellow x) and average progress variable,

〈c〉, (white) overlaid onto raw image. Data presented are for a 50:50 H2:CO fuel mixture at

STP for a swirl number of S = 0.58, mean flow velocity U0 = 30 m/s, and equivalence ratio

φ = 0.55.
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The second step taken to minimize errors is the use of cubic smoothing splines to fit the

resampled edge data. For a given edge, the cubic smoothing spline, fps(x), is found from

minimizing [45]:

ps

N∑
i=1

(yi − fps(xi))
2 + (1− ps)

xN∫
x1

(
f ′′ps(x)

)2
dx (38)

where ps is known as the smoothing parameter. Minimization of this function offers a

compromise between following the data and obtaining a smooth function. The smoothing

parameter ps is determined automatically using the generalized cross-validation estimate

[39]. The resulting parameterized curve is overlaid onto the raw image in red in Figure 32d.

One concern in this processing technique was if it would be sufficiently precise to resolve

the smallest curvature associated with critically curved, high hydrogen flames. We spent

significant time checking this point and are confident that this value is able to fully resolve

the curvatures present. First, in Chapter 5, curvature statistics will be presented that show

that the PDF gets broader with turbulence intensity, even for the pure H2 fuel composition

case. If this technique was unable to resolve the finest curvatures present than the PDFs

should experience a saturation at some turbulence intensity. The fact that they continue to

broaden with increasing turbulence intensity is strong evidence that this limit has not yet

been reached. Second, the resolution requirements for capturing critical curvature radii are

approximately δf |SL,max = 0.16 mm, while our resolution is roughly 0.11 mm/pixel. Finally,

we studied the influence of arc length interval ds on the generated statistics and found no

significant changes in the PDFs even under a factor of two decrease in arc length interval,

as shown in Figure 33. This gives further confidence that the technique is resolving the

curvature accurately.

The tangential strain rate is calculated from:

κs = −ninj
∂ui
∂xj

+
∂ui
∂xi

(39)

where ni and nj are the components of the unit normal ~n to the fitted spline curve, and

the spatial derivatives of the velocity are found from finite differences of the instantaneous

velocity fields. Since the spline fitted curve was sampled over an even arc length interval
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Figure 33: Comparison of curvature PDFs generated using two arc length intervals for a

50:50 H2:CO mixture at U0 = 30 m/s.

ds and the velocity vector field is courser than the original image, the derivatives are not

available at the same physical location as the spline curve values.

This leads to an additional error source in the calculation of the tangential strain rate.

Reactant velocities are needed at the flame front in order to calculate the tangential strain

rate; however, if an interrogation window for calculating velocity vectors is intersected by

the flame front, then the downstream, higher product velocities will bias calculations of

velocities at the flame front. This is important to avoid because the flame is not affected

by velocities downstream of the flame surface.

Thus, it is important to mask out the downstream region in the raw Mie scattering

images (described earlier and demonstrated in Figure 32c), process the velocity fields with

these masked images, and then use these reactant-conditioned velocities to calculate flame

front velocities for tangential strain rate calculations. The problem that arises from this

technique is that now there are no velocity vectors at the actual flame front, only up-

stream of the flame front, and this requires an extrapolation technique to fill in the missing

information. This 2D extrapolation is performed using sparse linear algebra and PDE dis-

cretizations [47] to get velocity vectors just downstream of the flame front. Then, because

the resolution of the flame front is higher than the resolution of the velocity field, the
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velocities are interpolated to the flame front using bilinear interpolation.

The error introduced from this procedure is difficult to quantify; however, it is related

to the size of the interrogation window. Making the interrogation window too small will,

unfortunately, increase the errors in the velocity vectors due to too few seed particles to

calculate statistically significant cross correlations between the image pairs. Experimen-

tation with different interrogation window sizes was performed to determine the smallest

dimensions that could be used without compromising the integrity of the velocity data.

From this experimentation, the Mie scattering was processed with an interrogation window

size of 12×12 pixels with 50% overlap, resulting in a velocity vector every six pixels or 0.69

mm, which is on the order of the flame thickness.

The “instantaneous leading points” are defined as the part of the flame that instan-

taneously lies the farthest into the reactants, and are extracted by finding the minimum

y-value of the edge at each time instance, and removing realizations where this location

occurs at the edge of the domain. A representative instantaneous leading point is iden-

tified by the yellow x in Figure 32d. It is important to note that since these images are

two-dimensional slices of a three-dimensional flow that the instantaneous leading point iden-

tified in the images will not generally correspond to the “true” leading point of the flame,

since that point may lie outside of the plane of the laser sheet.

Returning to the binarized images, the values at each pixel are then averaged over

all realizations, leading to the average progress variable 〈c〉-fields. These iso-contours are

overlaid onto the instantaneous Mie scattering image in Figure 32d. In addition, the axial

dependence of 〈c〉 is plotted in Figure 34. The average progress variable can be used to

precisely determine the location of a specific progress variable for ST,LD calculations, flame

brush thicknesses, conditional velocity statistics, and flame front topologies. It can also

be used in combination with binarized images in order to determine the 2D flame surface

density as a function of progress variable, an important quantity used in models [20] and

LES [11, 59].

In addition to calculating flame properties conditioned on the instantaneous leading

68



0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

y/d

〈c
〉

Figure 34: Average progress variable 〈c〉 along the axial centerline of the burner. The red

line is an error function fit to the data. Conditions are the same as in Figure 32.

points of the flame surface, another definition of the leading point of the flame can be ob-

tained by applying the Kolmogorov-Petrovskii-Piskunov (KPP) theorem [74] to the prop-

agation of a one-dimensional turbulent premixed flame in frozen turbulence [57, 51]. This

method shows that the turbulent flame speed is controlled by the conditions at the leading

edge of the flame brush, defined as the point where 〈c〉 → 0. We will refer to this location

as the “flame brush leading point,” to distinguish from the “instantaneous leading point”

illustrated in Figure 32d. Of course, in any finite size data set, a vanishing number of

experimental realizations occur as the 〈c〉 → 0, so the flame characteristics were estimated

by analyzing flame properties conditioned upon 0 < 〈c〉 < 0.1 and 0 < 〈c〉 < 0.01.

The relationship between these two leading point definitions can be understood from

Figure 32d, which overlays average progress variables on top of instantaneous flame fronts.

In addition, Figure 35 presents a PDF of the location of the instantaneous leading point in

〈c〉-space for several fuel compositions; for reference, the average location of the instanta-

neous leading point occurs at 〈c〉 ≈ 0.25.
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Figure 35: PDF of locations of instantaneous leading points in 〈c〉-space for three different

fuel compositions.

2.3.3 Turbulent Flame Speed

ST,LD is an important parameter to study because, unlike ST,GC , it is defined at a specific

point in space and thus does not average over spatial variations in the turbulent flame brush

and flow field. It is directly controlled by the local turbulent flow field and flame speed. By

acquiring measurements of the local turbulent displacement speed and turbulence charac-

teristics at the leading edge of the flame, it is possible to test the validity and applicability

of the leading points modeling approach.

2.3.3.1 Linear Fit Method

As discussed in Section 2.1.3 the velocity along the centerline of the LSB decays linearly

in the near-field and the flame stabilizes where the local axial flow velocity matches the

turbulent flame speed, ST,LD, making determination of the flame speed a relatively simple

task. Figure 36 presents the mean velocity along the centerline of the burner for a reacting

CH4/air case at STP. Figure 36 also contains a linear fit to the near-field region, which is

used in the determination of the virtual origin, y0, the normalized mean axial strain rate,

aax, and the local displacement speed, ST,LD. ST,LD is determined by finding the location
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where the axial velocity deviates from the linear fit. This is defined in this work as the

location preceding the point where the error between the fit and axial velocity exceeds 1%

and is marked in Figure 36 with a red x.
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Figure 36: Mean velocity normalized by U0 in the axial direction along the burner cen-

terline for a reacting (100% CH4, φ = 0.9) case at STP. U0 = 20 m/s, S = 0.57, and

BR = 69%.

2.3.3.2 Average Progress Variable Method

Another definition of ST,LD can be obtained from velocity measurements at a defined average

progress variable value. This can be accomplished using Mie scattering from the raw PIV

images to track the flame edge. This has two advantages for calculating the turbulent

flame speed. One, by identifying regions of reactants and products, vectors fields can be

calculated for just the reactants by masking out the product region and vice versa. This

allows for more accurate measurements of the incoming mean and fluctuating velocities

that the turbulent flame is affected by. Two, an ensemble-averaged progress variable map

for the flame brush can be generated from information about the flame front position as

demonstrated in Figure 34. This allows for rigorously defining the turbulent flame speed

at a specific progress variable value as opposed to taking the velocity characteristics at the
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point identified in Figure 36.
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CHAPTER III

FLOW FIELD CHARACTERIZATION

The purpose of this chapter is to provide an overview of the fluid mechanical aspects of

the experimental facility. It is important in experimental studies of turbulent combustion

to have a detailed understanding of the flow characteristics of the burner. This chapter is

divided into two main sections. Section 3.1 details the behavior and flow characteristics of

the variable turbulence generator using the Bunsen burner nozzle using both laser Doppler

velocimetry (LDV) and hotwire anemometry (CTA). The simpler geometry of the Bunsen

burner was chosen to develop a better understanding of the underlying physics of the turbu-

lence generator without adding unnecessary flow features due to the presence of a swirler.

Section 3.2 examines the two-dimensional flow field of the low swirl burner obtained from

particle image velocimetry (PIV) experiments.

3.1 Turbulence Generator Characterization

The goal of this section is to present a comprehensive characterization of the flow field

behavior of the turbulence generator over a range of operating pressures, preheat tempera-

tures, and mean flow velocities. For benchmarking purposes, the data were acquired using

the simple Bunsen burner configuration detailed in Section 2.1.2.

Data were obtained with a TSI 3-component laser Doppler velocimetry (LDV) system.

The air flow was seeded using 5 µm alumina (Al2O3) particles. Time-series velocity data

were also acquired at the burner centerline using a Dantec Streamline Constant Temperature

hotwire Anemometer (CTA) with a 5 µm diameter, 1.25 mm length model 55p11 straight

probe. Data were obtained at mean flow velocities from U0 = ṁ/ρA = 4-50 m/s, which

correspond to geometric Reynolds numbers of ReD = U0d/ν = 5,100-206,000 and turbulent

Reynolds numbers of Rel0 = u′rmsl0/ν = 140-9000. The following sections give an overview

of the mean and turbulence profiles, followed by an investigation of integral length scales

and power spectra.

73



3.1.1 Mean and Turbulence Profiles

Figure 37 and 38 plot representative profiles of the mean and fluctuating axial, radial, and

azimuthal velocities as a function of the radial distance from the center of the burner for low,

medium and high blockage ratios for the 12 and 20 mm burner diameters, respectively. All

velocities have been normalized by the mean axial velocity calculated in a region including

all points within ±3 mm around the center of the burner. Total turbulence intensity is

calculated from u′rms =
(
(u′ax)2 + (u′rad)

2 + (u′azi)
2
)1/2

. The solid lines correspond to a

chamber pressure of 5 atm, while the dashed lines correspond to atmospheric data. In

order to verify azimuthal symmetry, data are shown for the two perpendicular traverses

described in Section 2.2 and illustrated in Figures 28 and 29. These data show a monotonic

increase in turbulence intensity with blockage ratio, as desired. The data also show a well-

defined top-hat mean axial velocity, along with low radial velocity. The azimuthal velocity

increases with increasing blockage ratio. The radial variation of the mean flow velocity is

low, as noted in Table 8. Also noted in Table 8 are maximum values of the mean radial

and azimuthal velocities relative to the mean axial velocity. As shown in Figure 37, the

radial velocity is low, less than 0.05U0, and independent of blockage ratio while the mean

azimuthal velocity increases monotonically with blockage ratio. These results are typical

for the other velocities and the 20 mm burner diameter.

Table 8: Maximum values of normalized mean axial, radial, and azimuthal velocity at

three different blockage ratios.

BR (%)
∣∣∣Uax(r)−U0

U0

∣∣∣
max

(%)
∣∣∣Urad(r)

U0

∣∣∣
max

(%)
∣∣∣Uazi(r)U0

∣∣∣
max

(%)

69 3.1 4.6 6.9

81 1.4 5.8 13.3

93 1.8 4.3 21.3

These figures also show that the turbulent fluctuations in the axial direction are about

half of the fluctuations in the transverse directions. This is due to the well understood

phenomenon of turbulent flow dynamics through a contraction [111, 123]. Essentially, the
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Figure 37: LDV profiles for the 12 mm burner at (a,b) BR = 69%, (c,d) BR = 81%, and

(e,f) BR = 93%. (left) Mean axial, radial and azimuthal velocities and (right) RMS of the

fluctuating axial, radial, azimuthal and total velocities as a function of radial distance from

the center of the burner for U0 = 30 m/s. Dashed and solid lines correspond to pressures

of 1 and 5 atm, respectively.
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Figure 38: LDV profiles for the 20 mm burner at (a,b) BR = 69%, (c,d) BR = 81%, and

(e,f) BR = 93%. (left) Mean axial, radial and azimuthal velocities and (right) RMS of the

fluctuating axial, radial, azimuthal and total velocities as a function of radial distance from

the center of the burner for U0 = 50 m/s. Dashed and solid lines correspond to pressures

of 1 and 5 atm, respectively.
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vortex tubes that are aligned with the main axis of the burner are elongated as the flow

accelerates through the contraction, increasing their vorticity and increasing the transverse

velocity fluctuations (u′azi, u
′
rad). In addition, the vortex tubes aligned perpendicular to

the main axis are contracted, reducing their vorticity and decreasing the axial velocity

fluctuations (u′ax). This is different from the results reported by Videto and Santavicca

[135], who reported nearly isotropic turbulence. It is common to use a contraction after

a turbulence generator (i.e. grid, perforated plate, etc.) to improve the isotropy of the

turbulence [36], because the resulting flow turbulence is strongest in the axial direction.

The contraction causes vortex stretching which equilibrates the three components. However,

this is generally a weak contraction; an area contraction ratio of 1.27 and 2.6 were used in

the studies of Comte-Bellot [36] and Videto and Santavicca [135], respectively. Our area

contraction ratios are 40 and 14 for nozzle diameters of 12 and 20 mm, respectively. These

high area contraction ratios produce radially uniform velocity profiles as shown above, as

well as flashback-resistant burners, but also lead to this anisotropy in turbulence intensity.

Figure 39 summarizes the performance of the turbulence generator by plotting the total

centerline turbulence intensity, u′rms/U0, as a function of the blockage ratio over a range of

pressures, temperatures, and mean flow velocities for two burner diameters. It shows that

the turbulence intensity monotonically increases with blockage ratio. The 12 mm burner

has lower turbulence intensities than the 20 mm burner at the same blockage ratio, because

the flow velocity through the blockage plate gaps is lower for the smaller burner (note that

the nozzle exit velocity is the fixed parameter, not the velocity through the plates). Figure

39 also presents the linear fit of the combined data with the associated 95% confidence

levels. The data tend to follow the same trend regardless of pressure, temperature, or bulk

flow velocity.

One question that should be considered when performing combustion experiments (such

as determining the turbulent flame speed) is the appropriate location to characterize the

turbulence intensity. This is an important question since (1) the turbulence intensity varies

radially and axially, (2) there is strong shear-generated turbulence at the jet edges, and (3)

the location of the flame surface is constantly changing. While there is no clear consensus
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Figure 39: Dependence of the burner centerline total turbulence intensity on blockage

ratio for the (a) 12 mm and (b) 20 mm diameter burners. The solid line corresponds to the

linear fit of the data, and the dashed lines correspond to the 95% confidence level. Slopes

and R2 values of the linear fits are displayed on the graphs

on the appropriate location, note that the centerline turbulence intensity scales well with

that at other locations. To illustrate, Figure 40 presents a comparison between the shear

layer (or, more precisely, at r = 10 mm) and centerline turbulence intensities for the 20

mm diameter burner. Note the one-to-one correspondence between the two, with u′rms(r =

10 mm) = 0.8u′rms(r = 0 mm) + 6.9U0.

3.1.2 Flow Length and Time Scales

A typical autocorrelation function is shown in Figure 41 for the 20 mm diameter burner.

With the LDV system and experimental configuration used it was difficult to get data rates

high enough to obtain the roll-off region at low time lag constants. The roll-off is noticeable

in Figure 41b; however, it appears to start at an autocorrelation value of approximately

0.9. This occurs in all cases and indicates very low correlation time random noise in the

measurements.

Figure 42 summarizes the calculated l/d values at mean flow velocities of 4, 30, and 50

m/s for the 20 mm burner and 30 and 50 m/s for the 12 mm burner at various blockage

ratios. The data indicate that l/d do exhibit some sensitivity to blockage ratio, but that they
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Figure 40: Comparison of turbulence intensity in the shear layer to turbulence intensity

along the nozzle centerline.
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Figure 41: Autocorrelation function plotted against normalized lag time for the 20 mm

diamter burner at U0 = 4 m/s, BR = 75%. (a) Over one time constant and (b) zoomed in

on initial roll-off region.
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are not changing proportionally to blockage gap width. The blockage gap width changes

by a factor of six from the fully open position to the highest blockage ratio, while l changes

at most by a factor of two. The increase in length scale at the highest blockage ratios is

apparently a manifestation of the growing presence of a large scale organized structure, and

provides another reason to avoid blockage ratios greater than about 93%.
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Figure 42: Comparison of characteristic longitudinal length scale, l (normalized by burner

diameter d) as a function of blockage ratio for the two burner diameters over a range of

mean flow velocities.

3.1.3 Power Spectra

Power spectra were obtained from velocity time-series data using hotwire anemometry.

The power spectra were ensemble-averaged over 50 ensembles with 50% overlap. Figure

43a presents the non-dimensionalized turbulent power spectra at the burner centerline for

several blockage ratios at U0 = 10 m/s. The spectra show a smooth roll-off with increasing

frequency and no discrete peaks, as desired. In addition, the spectra have virtually the

same shape at each blockage ratio. Figure 43b presents the turbulent power spectra at a

fixed blockage ratio of 77% at 4, 10, and 50 m/s for the 20 mm burner to illustrate mean

velocity effects. The figure shows the collapse of the spectra at lower frequencies, but also
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that increasing flow velocity broadens the high frequency spectral range over which kinetic

energy is distributed, as also expected [125].
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Figure 43: Turbulent power spectra for the 20 mm burner at (a) U0 = 10 m/s at three

different blockage ratios and (b) BR = 77% at three different mean flow velocities.

3.1.4 Summary

This section presented a turbulence generation system developed for combustion studies.

While grids, perforated plates, or slots are commonly used for turbulence generators, they

have the disadvantage that the grid or plate must be changed in order to access a different

turbulence level at a given flow velocity. The turbulence generator described in this section

was found to achieve a range of relative turbulence intensities from 10% to 30% and turbu-

lent Reynolds numbers from 240 to 2,200 without exchanging plates or varying the mean

flow velocity. This allowed for independently studying the effects of mean flow velocity and

turbulence on combustion characteristics such as the turbulent flame speed.

The maximum useful turbulence intensities of the device are primarily limited by the

increasing azimuthal flow at high blockage ratios. This is manifested by deterioration in

turbulent flow profiles, as shown in Figures 37 and 38, and indications of an organized

structure in the flow, as shown in Figure 42.
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3.2 Low Swirl Burner Velocity Field Characterization

3.2.1 Mean and Turbulence Profiles

The data presented in this section were acquired at STP. Figure 44 compares mean velocity

fields obtained in non-reacting and reacting flows. These profiles show the typical features of

LSB flow fields. The velocity is higher in the outer swirling region due to the fact that more

of the flow (approximately 68%) passes through the swirler. In the central, non-swirling

portion of the flow the velocity profile is relatively flat with almost no radial component, an

important feature when determining ST,LD. The reacting flow field also exhibits increased

divergence compared to the non-reacting case. This is consistent with the observation that

the flame acts as an aerodynamic blockage against the flow [89].

(a) (b)

Figure 44: Mean velocity normalized by U0 for (a) non-reacting and (b) reacting (100%

CH4, φ = 0.9) cases at STP. U0 = 20 m/s, S = 0.57, and BR = 69%.

The velocity along the centerline of the LSB decays linearly in the near-field and the

flame stabilizes where the axial flow velocity matches the turbulent flame speed, ST,LD.

Figure 45 presents the mean velocity along the centerline of the burner for non-reacting

and reacting cases. For the non-reacting case the axial velocity decays monotonically with

downstream distance. As desired, the radial velocity is near zero for both reacting and

non-reacting cases. The presence of the flame causes an increase in the magnitude of the

mean axial strain rate, dU0/dy, in the near-field region (y/d < 0.65) and an increase in

velocity through the flame (0.65 < y/d < 1) due to gas expansion effects. The axial velocity
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then decays to zero around y/d = 1.4. Figure 5(b) also contains a linear fit to the near-field

region, which is used in the determination of the virtual origin, y0, and the mean axial

strain rate. Figure 46 compares axial velocity profiles for two different mean flow velocities

and fuel compositions. These plots demonstrate the self-similarity of the LSB in the region

upstream of the flame zone.
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Figure 45: Mean velocity normalized by U0 in the axial direction along the burner center-

line for (a) non-reacting and (b) reacting (100% CH4, φ = 0.9) cases at STP. U0 = 20 m/s,

S = 0.57, and BR = 69%.

Figure 47 compares RMS velocities along the centerline for non-reacting and reacting

cases. The turbulence intensities remain relatively constant in the non-reacting case, in-

creasing slightly downstream. The axial turbulence intensity is on average, 75% of the radial

turbulence intensity. The presence of the flame increases the divergence of the flow, caus-

ing the axial flow upstream of the flame to decelerate faster. This deceleration compresses

vortex tubes aligned with the axial direction, decreasing u′rad, and will stretch vortex tubes

aligned with the radial direction, increasing u′ax. This effect is evident in Figure 47b. u′rms

is plotted to compare turbulence levels with the results presented in Figure 39. The red x

in Figure 47b on the u′ax line marks the location of ST,LD given in Figure 45b.
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Figure 46: Mean axial velocity normalized by U0 in the axial direction along the burner

centerline for (a) 70:30 H2:CO (φ = 0.51) and (b) 100% H2 (φ = 0.46) cases at STP for

U0 = 30 and 50 m/s. S = 0.58 and BR = 69%.

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

y/d

u
/
U
0

 

 
u′

ax

u′

rad

u′

rms

(a)

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

y/d

u
/
U
0

 

 

u′

ax

u′

rad

u′

rms

(b)

Figure 47: RMS velocity normalized by U0 in the axial direction along the burner centerline

for (a) non-reacting and (b) reacting (100% CH4, φ = 0.9) cases at STP. U0 = 20 m/s,

S = 0.57, and BR = 69%.
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3.2.2 Integral Length Scales

Figure 48 presents integral length scales l0 of the LSB calculated from the PIV vector fields

along the axial centerline of the burner. The resolution of the camera and the size of the

PIV interrogation windows resulted in a vector spacing of approximately 0.69 mm. This is

the reason for the relatively large error bars present on the plots. From these figures it is

evident that the integral length scale remains relatively constant with downstream distance

up until y/d ≈ 1. These plots also show that the integral length scale is relatively insensitive

to blockage ratio (Figure 48a), bulk flow velocity (Figure 48b), and fuel composition (Figure

48c). In general, the normalized integral length scale is l0/d ≈ 0.08, which corresponds to

an integral length scale of l0 ≈ 3 mm.
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Figure 48: Integral length scale l0 (normalized by burner diameter d) as a function of

downstream distance y/d for (a) low and high blockage ratios (S = 0.58, U0 = 30 m/s,

70:30 H2:CO), (b) low and high bulk flow velocity (S = 0.58, 50:50 H2:CO, BR = 69%),

and (c) three different fuel compositions (S = 0.58, U0 = 30 m/s, BR = 69%). Errors bars

are for the 95% confidence interval.
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CHAPTER IV

TURBULENT FLAME SPEED MEASUREMENTS

The purpose of this chapter is to present and analyze turbulent flame speed data acquired

for this thesis. The first section gives an overview of some of the global consumption turbu-

lent flame speed data acquired by Venkateswaran [134]. The goal of this section is to present

in more detail some of the background work that laid the foundation for the development of

the low swirl burner facility and the acquisition of localized flow and flame measurements for

validation of the leading points model. This section will present global consumption speed

ST,GC measurements with a focus on the effects of fuel composition and pressure. The data

are also analyzed using the leading points model. Some of the deficiencies of the leading

points model are noted from this data, and an attempt to understand these deficiencies

in terms of non-quasi-steady effects on the flame is presented. The next section presents

measurements and analysis of local displacement turbulent flame speed data acquired in the

LSB. These measurements were acquired to supplement the global consumption measure-

ments, and, thus, were acquired at similar operating conditions. In addition, this data is

also analyzed using the leading points model to see how this model works on data acquired

from a different experimental configuration.

As discussed in Section 1.3 of Chapter 1 leading points concepts can be used to develop

an inequality for scaling the turbulent flame speed that is similar to the classical Damköhler

turbulent flame speed scaling [40], except the parameter arising from the analysis is the

maximum stretched laminar flame speed, SL,max [133]. The form of this scaling law is given

by Equation 23. In certain situations this inequality can be replaced by an equality. For

example, because the mixtures investigated in this work are thermodiffusively unstable,

SL,0 is a repelling point since a positively curved perturbation on a flat flame will grow

with increasing curvature and correspondingly increasing flame speeds. In fact, it can be

rigorously shown that SL,max is a steady-state attracting point for constant density flames
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with positively curved wrinkles [133]. As such, if the turbulent eddies evolve over a time

scale that is slow relative to that required for the leading points to be attracted to the

SL,max point, then Equation 23 can be replaced by an equality:

ST
SL,max

= 1 +
u′LP
SL,max

(40)

Another important caveat is that SL,max is itself a frequency dependent quantity. In other

words, the augmentation of the laminar burning velocity by stretch decreases, while the

extinction stretch rate increases, for unsteady flames [62]. Thus, there are two important

non-quasi-steady effects which influence this scaling, one related to the geometry of the

turbulent flame brush, and the other related to the internal flame structure.

4.1 Turbulent Global Consumption Flame Speeds

4.1.1 Overview

This section describes measurements and correlations of turbulent consumption speeds,

ST,GC , of hydrogen and carbon monoxide (H2:CO) fuel mixtures, with a focus on elevated

pressure data. Turbulent consumption speed data were obtained at mean flow velocities

and turbulence intensities of 30 < U0 < 50 m/s and 5 < u′rms/SL,0 < 30, respectively,

for H2:CO mixtures ranging from 30-90% H2 by volume from 1-10 atm. Experiments were

conducted where the mixture equivalence ratio, φ, was adjusted at each fuel composition to

have nominally the same unstretched laminar flame speed, SL,0. In comparing two blends

with the same composition, SL,0 value, and flow conditions, the 5 and 10 atm data have

ST,GC values that are consistently about 1.8 and 2.2 times larger than the 1 atm data,

respectively. These data are also correlated with the scaling law derived from quasi-steady

leading points concepts using detailed kinetics calculations of highly stretched flames. For a

given pressure, these scalings do an excellent job in scaling data obtained across the H2:CO

fuel composition and fuel/air range. However, the pressure sensitivities are not captured by

this scaling. This pressure sensitivity may be more fundamentally a reflection of the non-

quasi-steady nature of the flame leading points. In support of this argument, the spread

in the data can largely be correlated with the ratio of a chemical time scale to a flow time

scale.
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4.1.2 Background

This section analyzes the scaling relation given by Equation 23 as well as coupled pressure

and fuel effects. There are limited data of this kind in the literature. Turbulent consumption

speed measurements of φ = 0.9 CH4/air were reported by Kobayashi et al. [73]. It was

concluded that ST,GC/SL,0 increased with pressure due to SL,0 decreasing but that ST,GC

itself was independent of pressure. Kitagawa et al. [72] reported measurements of turbulent

flame speeds of H2/air mixtures at pressures ranging from 1-5 atm. They found that pressure

had an influence on ST /SL,0 through the pressure effect on SL,0, however, the influence on ST

is unclear. Daniele et al. [41] report ST,GC measurements of H2:CO mixtures for pressures

of 1-20 atm at 623 K. They found that ST,GC/SL,0 increased with pressure at each given

H2:CO ratio and u′rms/SL,0 value.

4.1.3 Methods

4.1.3.1 Image Processing

The image processing methodology has been extensively documented in [133], but is briefly

overviewed here. Global consumption speeds were calculated using Equation 13, whose key

measurement input is the progress variable surface area, Af .

Digital images of the flame emission were captured with a 16-bit intensified charge-

coupled device (ICCD) camera. Line-of-sight images of the flame were obtained over five

seconds and time-averaged. To estimate the time-averaged flame brush location from the

line-of-sight images, a three-point Abel deconvolution scheme [42] was used. The axial

distribution of the centerline intensity was then fit to a Gaussian curve, from which the

location of the maximum intensity was identified. This point is associated with the most

probable location of the flame, and defined as the 〈c〉 = 0.5 progress variable contour. The

estimated uncertainty in identifying this point is 1-2%. Straight lines are then drawn from

this point to the two flame anchoring points and rotated about the line of symmetry to

generate a cone; i.e., the “angle method” [73, 8, 118]. The overall uncertainty in the ST,GC

value is estimated to be 3%.
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4.1.3.2 Stretch Sensitivity Calculations

Stretch sensitivity calculations were performed for the mixtures investigated in Table 9.

Stretch sensitivities were calculated using an opposed flow calculation of two premixed

flames with a nozzle separation distance of 20 mm using the OPPDIF [67] module in

CHEMKIN. An arc length continuation method was used to determine the extinction point.

From these calculations, various stretched properties of the mixture were extracted. In this

work, the displacement laminar flame speed is considered, determined from the minimum

velocity just upstream of the reaction zone as suggested by Wu and Law [139].

4.1.4 Results

4.1.4.1 Experimental Conditions

Measurements of ST,GC were obtained at 1, 5, and 10 atm as a function of u′rms/SL,0 using

a 12 mm diameter Bunsen burner. Data were acquired at mean flow velocities from 20-

50 m/s and volumetric H2:CO ratios ranging from 30:70-90:10, keeping SL,0 and reactant

temperature fixed at 34 cm/s and 300 K, respectively. SL,0 was kept nominally constant

by adjusting the stoichiometry at each H2:CO ratio. SL,0 estimates were determined using

the PREMIX module [66] in CHEMKIN with the Davis H2/CO mechanism for H2:CO

mixtures [43]. The parameter ranges explored in this study along with the symbol type and

color scheme are summarized in Table 9. Figure 49 summarizes where the measured data

are located on the Borghi-Peters diagram [13, 105], where the Karlovitz number Ka was

previously defined in Chapter 1, Equation 4. The data fall within the thin reaction zones

regime (1 < Ka < 100), implying that Kolmogorov eddies may enter the preheat zone but

are still too large to enter the reaction zone where they may lead to quenching [105].

4.1.4.2 H2:CO Sweeps at Constant SL,0

In this section, ST,GC data acquired at 1, 5 and 10 atm are reported. As described ear-

lier, data were acquired for mixtures where the H2:CO ratio and equivalence ratio were

simultaneously adjusted to maintain the same mixture SL,0 of 34 cm/s.

Figure 50 plots ST,GC as a function of u′rms normalized by SL,0 for the range of conditions
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Table 9: Investigated 12 mm burner data set

Parameter Value (Legend Designation)

20 (Green markers)

U0 (m/s) 30 (Red markers)

50 (Blue markers)

H2 (%) 30 ( ) 50 ( ) 70 ( ) 90 ( )

φ (p = 1 atm) 0.61 (no fill) 0.55 (no fill) 0.51 (no fill) 0.48 (no fill)

φ (p = 5 atm) 0.75 (red fill) 0.68 (red fill) 0.63 (red fill) 0.59 (red fill)

φ (p = 10 atm) 0.75 (black fill)

reported in Table 9. Note that the 5 atm data were acquired for mean flow velocities of 30

and 50 m/s and the 10 atm data for 30 m/s.

Several important observations can be made from this figure. First, the “fuel effect” is

clearly present at the elevated pressure conditions; i.e., different H2:CO blends at constant

SL,0 and u′rms have different turbulent flame speeds. Second, it is clear that ST,GC at 5 atm

is approximately double its value at 1 atm, and increases slightly further at 10 atm. This

increase is quantified in Figure 51, which plots the ratio of ST,GC at 5 and 10 atm to 1 atm

for each mixture and mean flow velocity as a function of turbulence intensity. This ratio

has values of about 1.8 and 2.2 at 5 and 10 atm, respectively. Note that this is not an SL,0

effect, as SL,0 is kept fixed at 34 cm/s. The next section describes analysis and discussion

of the data.

4.1.5 Analysis

In this section, the data presented in Figure 50 are correlated using the steady-state leading

points scaling law of Equation 40. Before doing so, it is useful to present pressure effects on

the calculated stretch sensitivity of the mixtures investigated. Figure 52 plots the stretch

sensitivity of 70:30 H2:CO mixtures whose SL,0 is kept constant at 34 cm/s across the

pressures by adjusting the equivalence ratio.
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Figure 49: Borghi-Peters diagram showing location of 12 mm burner data points at 1, 5

and 10 atm.
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Figure 50: ST,GC as a function of u′rms normalized by SL,0 at various mean flow velocities,

H2:CO ratios, and pressures for the 12 mm diameter burner (See Table 9 for the legend of

mixture conditions, flow velocities and pressures).
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intensities investigated.
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constant SL,0.
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Note from Figure 52 that the extinction stretch rate, κext, and the Markstein length,

lM , scale with the pressure. In other words, if the pressure is increased by a factor of

5, the extinction stretch rate and Markstein length increase and decrease by a factor of

approximately 5, respectively. This can be explained by the thinning of the flame with

pressure. These two effects compensate so that SL,max is relatively insensitive to pressure.

In fact, above 5 atm SL,max remains almost constant and actually decreases beyond 12.5

atm.

Similar calculations were performed to normalize the measured turbulent flame speed

data, as shown in Figure 53. This figure shows that both the 5 atm and 1 atm data sets

collapse quite well individually but that there are systematic differences between them. No

similar comparison can be made for the 10 atm data set, since only one composition was

examined.
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Figure 53: ST,GC as a function of u′rms normalized by SL,max at various mean flow veloc-

ities, H2:CO ratios and pressures using the 12 mm diameter burner (See Table 9 for legend

of mixture conditions, flow velocities and pressures).

In addition to the 12 mm diameter burner dataset presented in this section, an extensive

set of atmospheric pressure consumption speed measurements using a 20 mm diameter

burner was also acquired [133]. This data was previously presented in Chapter 1, Figure
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15a and normalized using SL,max in Figure 15b. This normalization produced the interesting

result that the 30 m/s CH4 data did not collapse with the H2:CO data. However, all constant

SL,0 data and equivalence ratio sweep data collapse very well.

To summarize, all the data taken consistently show that Equation 40 collapses data

across all H2:CO and equivalence ratio values at a given pressure. However, it does not

collapse the 30 m/s CH4 data nor does it collapse data taken at different pressures. The

rest of this section analyzes potential reasons for this and particularly focuses on non-quasi-

steady chemistry effects.

In starting this discussion of the data, it is important to note that SL,max is itself not a

fundamental property of the mixture. For example, the burning velocity of highly stretched

flames is a function of the manner in which the flame is stretched, i.e., by tangential flow

straining or curvature, as well as the stretch profile through the flame (manifested by, for

example, moderate sensitivities of SL,max or κext to the opposed flow nozzle separation dis-

tance or velocity profile) [52]. Note that these calculations derive SL,max from a tangentially

stretched flame, while the actual flame leading points are curved. Our research group has

also performed expanding cylindrical flame and tubular flame computations that indicate

that SL,max varies by about 20-40%, depending on the manner in which the flame stretch is

applied [3]. In addition, very different SL,max values are obtained when using consumption

and displacement based burning velocities [103]. Finally, SL,max is itself a frequency de-

pendent quantity [62]; the steady state values used here are only appropriate if the internal

structure of the leading point is quasi-steady. The rest of this discussion focuses on the

non-quasi-steady chemical processes, as the calculations presented next suggest that this is

the largest effect.

To investigate this influence, a chemical time scale associated with SL,max was calculated

from:

τSL,max =
δf |SL,max
SL,max

(41)

where δf |SL,max is the flame thickness at SL,max and is calculated from:

δf =
Tp − Tr

(dT/dx)max
(42)
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The variation in the chemical time scale across H2:CO mixtures and pressures is shown in

Figure 54. The point corresponding to 0% H2 is the pure CH4/air case that was used in

the constant SL,0 studies with the 20 mm burner.
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Figure 54: Variation in τSL,max as a function of H2 content for the different mixtures and

conditions investigated. 0% H2 corresponds to the pure CH4 mixture.

Within the H2:CO mixtures, τSL,max increases by about a factor of 3.5 as the H2 content

is increased from 30% to 90% at 1 atm. The difference between the CH4 case and the 90:10

H2:CO mixture is about a factor of 6.5. In addition, for a fixed H2 content of 30%, there is

a factor of 6 reduction in τSL,max for a pressure increase from 1 to 5 atm.

Figure 55 plots ST,GC/SL,max as a function of τSL,max/τflow, where τflow = D/U0, at

two turbulence intensity conditions for the 12 mm burner. Also shown are power law fits

to the data, where the fit parameter, b, is defined by ST,GC/SL,max ∼
(
τSL,max/τflow

)b
.

Note the clear correlation between turbulent flame speed and time scale ratio across the

entire range of pressure and fuel composition. Slower chemistry is associated with lower val-

ues of the normalized turbulent flame speed, as would be expected, since the effective flame

speed of the non-quasi-steady flame is lower than its quasi-steady value. While the time

scale ratios are much less than unity (indicating that the chemistry is actually quasi-steady

with respect to the large scales), the corresponding ratios calculated using Kolmogorov time
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Figure 55: Dependence of ST,GC/SL,max on τSL,max/τflow at two turbulence intensities

u′rms/SL,max = 7 and 13.5 for the 12 mm diameter burner. Power law fits with the corre-

sponding slopes are also included.

scales range from 20-95 for the same data. In other words, significant non-quasi-steady

chemistry effects would be expected for small flow length scale-flame interactions.

Similar analysis at other turbulence intensities showed good correlations. In addition,

the 1 atm data from the 20 mm burner, shown in Figure 15b, also showed good correlations

for the 4 and 10 m/s data. The 30 m/s CH4 data, however, did not collapse well. Results

for the 20 mm diameter burner are presented in Figure 56 for two turbulence intensities.

Again, notice the clear decreasing trend of turbulent flame speed values with increasing time

scale ratio. In the subsequent section, turbulent local displacement flame speed, ST,LD,

results obtained using the low swirl burner geometry are presented over a wide range of fuel

compositions, mean flow velocities, and turbulence intensities. These results are normalized

using the conventional SL,0 normalization and then normalized with SL,max to compare the

efficacy of the leading points scaling model for a different burner geometry and flame speed

definition.
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Figure 56: Dependence of ST,GC/SL,max on τSL,max/τflow at two turbulence intensities

u′rms/SL,max = 12 and 24 for the 20 mm diameter burner. Power law fits with the corre-

sponding slopes are also included.

4.2 Turbulent Local Displacement Flame Speeds

4.2.1 Overview

This section details measurements and correlations of turbulent local displacement speeds,

ST,LD, of hydrogen - carbon monoxide (H2:CO) and hydrogen - methane (H2:CH4) fuel

mixtures. Turbulent local displacement speed data were obtained at mean flow velocities

and turbulence intensities of 30 < U0 < 50 m/s and 3 < u′ax/SL,0 < 12, respectively,

for H2:CO mixtures ranging from 50-100% H2 and H2:CH4 mixtures from 0-75% H2 by

volume. As for the global consumption measurements, experiments were conducted where

the mixture equivalence ratio, φ, was adjusted at each fuel composition to have nominally

the same unstretched laminar flame speed, SL,0, of 34 cm/s. The data are also correlated

with the leading points scaling law using detailed kinetics calculations of highly stretched

flames.
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4.2.2 Results

4.2.2.1 Experimental Conditions

Measurements of ST,LD were obtained at atmospheric conditions as a function of u′ax/SL,0

using a 36 mm diameter LSB. Data were acquired at mean flow velocities from 30-50 m/s,

keeping SL,0 and reactant temperature fixed at 34 cm/s and 300 K, respectively. SL,0

estimates were determined using the PREMIX module [66] in CHEMKIN with the Davis

H2/CO mechanism for H2:CO mixtures [43] and GRI-Mech 3.0 [119] for CH4-containing

mixtures. Figure 57 summarizes where the measured data are located on the Borghi-Peters

diagram [13, 105], where the Karlovitz number Ka was previously defined in Chapter 1,

Equation 4. As was true for the 12 mm Bunsen burner, the data fall within the thin reaction

zones regime (1 < Ka < 100), implying that Kolmogorov eddies may enter the preheat zone

but are still too large to enter the reaction zone where they may lead to quenching [105].
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Figure 57: Borghi-Peters diagram showing location of LSB data points. See Figures 58

and 59 for legends.

4.2.2.2 H2:CO Sweeps at Constant SL,0

In this section, ST,LD data acquired for H2:CO mixtures are reported. As described ear-

lier, data were acquired for mixtures where the H2:CO ratio and equivalence ratio were
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simultaneously adjusted to maintain the same mixture SL,0 of 34 cm/s.

Figure 58 plots ST,LD as a function of u′ax normalized by SL,0 over a wide range of

conditions. Note that the “fuel effect” is clearly present in this data as it was for the 12

mm Bunsen burner; i.e., different H2:CO blends at constant SL,0 and u′ax have different

turbulent flame speeds. For example, at u′ax/SL,0 ≈ 7, the ST,LD values increase by about

50% from the lowest H2-containing fuel (50:50) to the pure H2 fuel. Again, for all these

data points the equivalence ratio was adjusted to have nominally the same unstretchted

laminar flame speed of 34 cm/s.
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Figure 58: ST,LD as a function of u′ax normalized by SL,0 at various mean flow velocities

and H2:CO ratios for the LSB.

4.2.2.3 H2:CH4 Sweeps at Constant SL,0

In this section, ST,LD data acquired for H2:CH4 mixtures are reported. Again, data were

acquired for mixtures where the H2:CH4 ratio and equivalence ratio were simultaneously

adjusted to maintain the same mixture SL,0 of 34 cm/s.

Figure 59 presents ST,LD as a function of u′ax normalized by SL,0 along with a correlation

line found by Cheng et al. [32]. The results show reasonable agreement with the correlation.

Note that the “fuel effect” is not as clearly present in this data as it was for the 12 mm
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Bunsen burner (Figure 50) and for the H2:CO LSB data (Figure 58); for example, at

u′ax/SL,0 ≈ 7, the ST,LD values increase starting with the 60:40 mixture, the 50:50 mixture,

the pure CH4, and, finally, the 50:50 mixture.
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Figure 59: ST,LD as a function of u′ax normalized by SL,0 at various mean flow velocities

and H2:CH4 ratios for the LSB.

Figure 60 presents ST,LD as a function of u′ax normalized by SL,0 for all of the H2:CO

and H2:CH4 mixtures investigated. Note that the H2:CO mixtures have generally higher

ST,LD values than the H2:CH4 mixtures.

4.2.3 Analysis

In this section, the data presented in Figure 60 are correlated using the steady-state leading

points scaling law of Equation 40.

Figure 61 plots ST,LD as a function of u′ax normalized by SL,max. While the effects of

this normalization are not as drastic as those observed with the Bunsen burner geometry,

note that with the exception of the 50:50 H2:CO points at u′ax/SL,0 = 1.4 and 2, the data

do tend to follow a clear trend-line.

Figure 62 plots ST,LD as a function of u′ax normalized by SL,max. Note that although

there was significant scatter in the data presented in Figure 59, when normalized instead
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Figure 60: ST,LD as a function of u′ax normalized by SL,0 at various mean flow velocities

for H2:CO and H2:CH4 mixtures obtained in the LSB. See Figures 58 and 59 for legends.
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Figure 61: ST,LD as a function of u′ax normalized by SL,max at various mean flow velocities

and H2:CO ratios for the LSB.
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with SL,max that the H2:CH4 data appear to collapse onto a single curve. This indicates

that the data are well-correlated using the leading points model.
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Figure 62: ST,LD as a function of u′ax normalized by SL,max at various mean flow velocities

and H2:CH4 ratios for the LSB.

Finally, combining the two datasets onto one plot results in Figure 63. Note that while

in Figure 60 the H2:CO had consistently higher ST,LD values than the H2:CH4 mixtures,

when normalized instead with SL,max that all the ST,LD data appear to collapse onto a

single curve, indicating again that the leading points model performs well for this data.
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Figure 63: ST,LD as a function of u′ax normalized by SL,max at various mean flow velocities

for H2:CO and H2:CH4 mixtures obtained in the LSB. See Figures 58 and 59 for legends.

4.3 Conclusions

In this chapter, we reported turbulent consumption speed measurements of H2:CO blends

from 1-10 atm and turbulent local displacement speed measurements for H2:CO and H2:CH4

mixtures. Experiments were conducted for mean flow velocities from 30-50 m/s for H2:CO

mixtures ranging from 50-100% H2 by volume and H2:CH4 mixtures ranging from 0-75% H2

by volume. For the consumption speed data it was found that at the same SL,0 when the

pressure was increased by a factor of 5, the consumption speed increased by almost a factor

of 2. For the displacement speed data it was found that the H2:CO mixtures exhibited

clear “fuel effects” whereas the H2:CH4 mixtures did not appear to follow the same trends.

It was also observed that the H2:CO mixtures had generally higher ST,LD values than the

H2:CH4 mixtures.

The data were then normalized with SL,max as per the scaling law discussed in Chapter

1. For the consumption speed data from the Bunsen burner, the data show that, at a

given pressure, different fuel compositions and equivalence ratio data collapse. However,

systematically different trends are observed with the 5 and 10 atm data. There is some

evidence that these systematic differences are more fundamentally due to non-quasi-steady
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effects, as the pressure differences can be reasonably correlated with a computed chemical

time scale for the 12 mm burner. For the displacement speed data acquired with the LSB,

the leading points scaling model did an excellent job in collapsing the data over a very wide

range of turbulence intensities and fuel compositions. This gives merit to the leading points

model as a method that can be implemented across geometries and still produce meaningful

results.
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CHAPTER V

FLAME FRONT TOPOLOGY AND STRETCH STATISTICS

Fuel composition has a strong influence on the turbulent flame speed, even at very high

turbulence intensities. An important implication of this result is that the turbulent flame

speed cannot be extrapolated from one fuel to the next using only the laminar flame speed

and turbulence intensity as scaling variables. These fuels effects are associated with re-

actant thermal-diffusive properties and stretch sensitivities, causing local variations in the

burning rate along the flame front. This chapter is motivated by leading point descriptions

of the turbulent flame speed, which argue that ST is controlled by the flame characteristics

at its positively curved leading edge. It has been argued that the leading edge of the flame

approaches “critically stretched” values in thermo-diffusively unstable flames, implying that

the appropriate laminar flame speed to parameterize the turbulent flame speed is the max-

imum flame speed across all potential values of flame stretch, SL,max, as opposed to its

unstretched value, SL,0.

This chapter presents the results of planar measurements of the curvature and tangential

strain rate for fuel lean, high hydrogen flames, where hydrogen content varies from 50%-

100%. The data were acquired with high speed particle image velocimetry (PIV) in a low

swirl burner (LSB). We attained measurements for several H2:CO mixtures over a range

of mean flow velocities and turbulence intensities. Results are analyzed for the overall

turbulent flame brush (0 ≤ 〈c〉 ≤ 1), as well as those conditioned on its leading edge

(0 ≤ 〈c〉 ≤ 0.01). The latter characterizations are motivated by leading point arguments,

which suggest that the augmentation of the turbulent flame speed can be explained by the

increase in the local, laminar flame speed at the positively curved leading edge of the flame.

Indeed, recent work has shown that global turbulent consumption speed measurements can

be correlated with critically stretched laminar flame speeds for different fuel compositions.

Results of the sensitivity of curvature and tangential strain rate to turbulence intensity
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are consistent with prior computations and measurements; e.g., the mean tangential strain

rate increases and the minimum curvature decreases with increases in turbulence intensity.

The results show that, counter to our expectations, fuel composition has a systematic yet

weak effect on curvatures at the leading points. The effect on tangential strain rates is

stronger, indicating that this term might better explain fuel effects. However, for both

curvature and tangential strain rate, the time-averaged values are observed to be much

lower than what would be expected for critically stretched flames. It has been argued

that the increased turbulent flame speeds seen with increasing hydrogen content are the

result of increasing flame stretch rates, and therefore SL,max values, at the flame leading

points. However, the differences observed with changing fuel compositions are not significant

enough to support this hypothesis. Additional analysis is needed to understand the physical

mechanisms through which the turbulent flame speed is altered by fuel composition effects.

5.1 Introduction

This chapter presents measurements and analysis performed to improve the understanding

of turbulent flame propagation characteristics of premixed, high stretch sensitivity fuel/air

mixtures. A more detailed discussion of the relevant background information was presented

in Chapter 1, however, to reiterate, we will briefly overview the most important background

literature in this section.

Traditional models of the turbulent flame speed commonly use the form:

ST = SL,0f(u′/SL,0) (43)

where SL,0 is the unstretched laminar flame speed and u′ is the turbulence intensity [87, 88].

In reality, the turbulent flame speed exhibits dependencies on other parameters as well, such

as turbulent length scales [7, 78], bulk flow velocity [53], experimental configuration [50, 28],

and fuel composition [69, 88, 97, 132]. Of particular interest to this chapter is the effect of

fuel composition, which has been well-documented in the literature [88]. For example, our

group has reported measurements of H2:CO blends showing factor of three variations in ST

across fuel blends with identical SL,0 values, even at turbulence intensities urms/SL,0 up to

40.
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This fuel composition sensitivity of the turbulent flame speed is attributed to the reac-

tant mixture’s stretch sensitivity, leading to variations in the local flame speed throughout

the turbulent flame surface. In particular, the high mass diffusivity of H2 makes high hy-

drogen content (HHC) mixtures very sensitive to stretch, such as shown in the illustrative

calculations in Figure 64. These calculations, which include detailed kinetics and transport

mechanisms, incorporate both non-unity Lewis number and preferential diffusion effects

[79]. For an infinitely thin flame sheet, these sensitivities are manifested throughout the

turbulent flame brush, due to flame curvature and strain, as given by the following equation

[19, 110]:

κ = −~n~n : ∇~u+∇ · ~u+ SL
(
∇ · ~n

)
(44)

where ~u is the reactant velocity. The first two terms in this expression are the tangential

strain rate, κs, and the third term is the stretch rate contribution due to flame curvature,

κc. The term ∇ · ~n is the flame curvature and can be related to the principal radii of

curvature R1 and R2 through:

∇ · ~n =
1

R1
+

1

R2
(45)

where the radii of curvature are positive when convex to the reactants.
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Figure 64: Stretch sensitivity calculations of H2:CO fuel blends and CH4 [133].

Two-dimensional, experimental measurements of these quantities have been previously
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reported. Planar curvature measurements are the most common [82, 116, 83, 5, 76, 58,

115, 63, 120, 54, 4, 12, 142, 9, 141]. A general observation from these measurements is that

the curvature statistics are nearly symmetric about a zero mean, especially with increasing

turbulence [82, 116, 83, 76, 58, 12, 142]. In addition, a widening of the PDF with increasing

turbulence intensity [82, 116, 83, 76, 58, 115, 63] is always observed. This indicates that

the curvature over the entire flame surface has an equal probability of both positive and

negative values, and the increase in flame wrinkling with turbulence intensity is due to the

presence of finer scales at higher turbulence conditions.

Several studies have examined fuel effects [81, 58, 54, 142], and have shown very little

effect on curvature from fuel composition when examining statistics over the entire flame

surface (0 ≤ 〈c〉 ≤ 1). Lee et al. [81] examined propane/air mixtures in a pulsed flame

flow reactor over lean, stoichiometric, and rich conditions and concluded that curvature

statistics were determined by turbulence conditions. Haq et al. [58] examined methane/air

and iso-octane/air mixtures at 1 and 5 bar pressures in a fan stirred bomb. They similarly

noticed very little effect of the fuel composition, with increasing turbulence and pressure

both serving to broaden the distribution of curvatures equally for both positive and negative

wrinkles. For other work containing high hydrogen content fuels, Gashi et al. [54] studied

methane/air and hydrogen/air mixtures in a fan-stirred bomb at u′/SL values up to 5.25

and 2.21 for CH4/air and H2/air mixtures, respectively. Over these conditions they also

noticed very little difference between CH4/air and H2/air mixtures in terms of curvature

PDFs.

Planar strain rate measurements are less common, most likely due to the added difficulty

associated with planar velocity field measurements. Donbar et al. [48] used simultaneous

planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV) to measure

strain rates in turbulent, non-premixed CH4/N2/O2 jet flames. Unlike curvature measure-

ments, the strain rates were found to have non-zero mean values that increased with in-

creasing turbulence. Renou et al. [112] examined low turbulence, freely propagating flames

for three different mixtures of methane/air, propane/air, and hydrogen/air using PIV with

oil droplets. The oil droplets evaporated through the flame surface, and the authors used
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this in order to define the instantaneous flame surface. They observed that the tangential

strain rate statistics appeared to be independent of the fuel composition.

Three-dimensional measurements of curvature and tangential strain rates are even less

frequent [26, 121, 117, 128, 68], due the added cost and complexity of multi-plane laser

measurement techniques. Chen et al. [26] used two Nd:YAG crossed-plane lasers to get

Mie scattering signals from smoke-seeded flows in order to extract flame front normals

and curvatures. They examined propane/air and hydrogen/air mixtures and found similar

curvature PDFs for these mixtures.

In addition to analysis of these quantities over the entire flame brush, the flame stretch

characteristics at the leading edge (i.e., for 〈c〉 → 0) may be particularly significant. The

reasons for this follow from leading points models [88, 78, 64]. These leading points concepts

were originally proposed by Zeldovich [143] and expanded upon by a number of groups, as

summarized in the review paper by Lipatnikov and Chomiak [88]. To provide a succinct

definition, leading points are the positively curved (convex to the reactants) points on the

flame front that propagate out farthest into the reactant mixture. Under certain conditions

they can be shown to control the overall propagation velocity of the turbulent flame [78].

For example, by applying the Kolmogorov-Petrovskii-Piskunov (KPP) theorem [74] to the

propagation of a one-dimensional turbulent premixed flame in frozen turbulence, it is shown

that, under certain circumstances, ST is controlled by the conditions at the leading edge of

the flame brush, defined as the point where the average progress variable, 〈c〉, approaches

zero [57, 51]. The burning rate of this positively curved leading point increases for negative

Markstein length mixtures [79]. These leading points ideas are particularly important for

negative Markstein length mixtures, as calculations of laminar flame stretch sensitivities

show that the positively curved leading point flame speed can substantially exceed SL,0

[79], as demonstrated in Figure 64.

If we assume that ST is controlled by the characteristics at the flame leading point,

the ensemble averaged laminar burning rate of this leading point turns out to be a very

important turbulent flame property. From this, Venkateswaran et al. [133, 132] developed a

scaling law for the turbulent flame speed of negative Markstein length flames that collapses
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turbulent flame speed data over a wide range of conditions including fuel compositions,

mean flow velocities, and turbulence intensities. Instead of the traditional approach of

using the unstretched laminar flame speed, SL,0, to scale the data, this scaling law uses the

maximum stretched laminar flame speed, SL,max, instead. These two flame speeds are both

identified in Figure 64. A flamelet burning at the flame speed SL,max and the associated

stretch rate κcrit is referred to as “critically stretched.” The form of this scaling law is given

by:

ST
SL,max

≤ 1 +
u′LP
SL,max

(46)

where u′LP is the turbulence intensity at the flame leading point. SL,max is calculated from

opposed flow, strained flame simulations using detailed chemical kinetics. An example of

these calculations is shown in Figure 64.

SL,max in negative Markstein length mixtures is a dynamically significant quantity due to

the fact that this velocity, and the corresponding strain rate κcrit, at the flame leading point

is a steady-state attracting point for constant density flames with positively curved wrinkles

[133]. This idea that SL,max, and not SL,0, is the suitable velocity scale for correlating

ST was suggested by [78] and has found justification in data from Venkateswaran et al.

[133], as shown previously in Chapter 1 and repeated here in Figure 65. This figure plots

data obtained over a wide range of H2:CO mixtures, mean flow velocities, and turbulence

intensities normalized by SL,0 (Figure 15a) and normalized by SL,max (Figure 15b). Note

that in the SL,0 scaled data the effect of fuel composition is strongly evident, but using the

SL,max scaling, the data collapse very well into a single grouping.

However, questions remain concerning the application of leading points ideas to data.

Of particular focus for this chapter is the fact that the scaling in Figure 15 is “global” in

nature and work is needed to assess key assumptions of the leading point model concerning

local attributes of the flame. For example, Figure 64 clearly shows the monotonic increase

in SL,max with increasing H2 content. However, it also shows that the flame stretch rate

at SL,max varies strongly with H2 content, a prediction that can be evaluated from com-

putations or measurements. If the physical arguments leading to this scaling approach are
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(a)

(b)

Figure 65: (a) Measured dependence of the turbulent flame speed, ST,GC , upon turbulence

intensity, u′rms, normalized by SL,0 at various conditions for several H2:CO ratios and pure

CH4. (b) ST,GC data from (a) normalized by SL,max. See Venkateswaran et al. [133] for

details on experimental conditions.
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correct, then the flame stretch characteristics at its leading points should exhibit system-

atic differences that scale with ST . Particularly, Figure 64 suggests that mixtures with

higher ST values should have leading points with higher stretch rates. The objective of this

chapter is to evaluate this hypothesis, by determining the flame stretch characteristics at

the flame leading point, and determining whether systematic differences exist that correlate

with the measured turbulent flame speeds. This is done by obtaining measurements from a

high turbulence intensity burner fueled with several HHC blends, and comparing the flame

leading edge characteristics across these fuels.

5.2 Methods

The low swirl burner (LSB) is a useful geometry for local measurements of turbulent flame

characteristics, and has been recommended as a canonical geometry for turbulent displace-

ment speed measurements [56]. The LSB was developed by Cheng et al. [25] as a method

of generating a freely propagating flame that does not rely on flow recirculation for flame

stabilization; the flame stabilizes where the flame speed matches the axial velocity. The

flame brush in the central region is flat, providing a close approximation to a statistically

1-D planar turbulent flame [27]. The experiments in this work were performed for H2:CO

and H2:CH4 mixtures over a wide range of conditions outlined in Table 10. Further details

on the LSB facility, the PIV setup, and the post-processing procedure can be found in

Chapter 2.
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Table 10: Experimental parameters and conditions for the two datasets acquired using

PIV

Experiments: H2:CH4 H2:CO

Repetition rate (kHz) 1 9

Pulse energy (mJ/pulse) 23 1.3

Time between shots (µs) 15 18

Resolution (pixels × pixels) 704× 704 384× 704

Viewing area (mm × mm) 87× 87 44× 80

Number of image pairs 1000 10,000

Seed particles 1-2 µm Al2O3 0.3-0.7 µm TiO2

Swirl number, S 0.57-0.6 0.58

Mean flow velocity, U0 (m/s) 20, 30, 40 30, 50

Fuel Composition (% H2) 0-75 50-100

SL,0 (cm/s) 34 34

5.3 Results and Discussion

To investigate the effects of flame stretch, we calculated curvatures and tangential strain

rates along the flame front, which represent two components of the overall flame stretch

rate. As demonstrated in Figure 64, as these mixtures become more positively stretched,

their laminar flame speed increases. For negative stretch, the laminar flame speed decreases.

Thus, locally along the flame front, the rate of consumption of reactants varies. Tables 11

and 12 present the key operational conditions and summarize measured results presented in

this chapter, reporting turbulence intensities, u′ax/SL,0, turbulent local displacement speeds,

ST,LD/SL,0, and mean and standard deviations of the curvature (Table 11) and tangential

strain rate (Table 12) at the leading points. Although these blends have nominally the

same SL,0 value, note the increase in measured ST,LD with hydrogen content at nearly

constant turbulence intensity, also shown in the previous chapter for both ST,LD and ST,GC

measurements.
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5.3.1 Global (Unconditioned) Stretch Statistics

We start with global flame statistics – PDFs of flame curvature and tangential strain rate

calculated over the entire extracted surface (i.e., 0 ≤ 〈c〉 ≤ 1). Figure 66 plots curvature and

tangential strain rate PDFs for three different fuel compositions at low and high turbulence

intensities. From these plots it is evident that the overall curvature and tangential strain

rate are only weakly affected by fuel composition.

While there is a slight preference for positive curvatures, the curvature PDFs are still

nearly symmetric about zero, consistent with other measurements [82, 116, 83, 76, 58, 12,

142]. The PDFs tend to shift towards more positive curvatures as the percent of H2 in

the fuel increases (i.e., as the fuel becomes more sensitive to stretch). However, these

changes are slight, and the minor differences make it hard to explain the approximate 1.8×

increase in ST,LD from a 50:50 H2:CO mixture to a pure H2 mixture. To give an idea of

the magnitude of the curvature relative to the flame thickness, the top axis of Figure 66b

is the curvature nondimensionalized by the flame thickness of the pure H2 mixture. From

this we can see that the majority of the flame front features have radii of curvature larger

than the unstretched flame thickness.

Unlike curvature the tangential strain rate PDFs have a non-zero mean, consistent with

other results [48, 53]. Similar to the curvature, they exhibit a weak sensitivity to the fuel

composition. The tangential strain rate PDF of the pure hydrogen case at U0 = 30 m/s

is an exception, as it shows a significantly broader range of strain values. This behavior

may be the result of the flame sitting closer to the exit of the burner, which could give

the pure hydrogen mixture a higher average strain rate than the other fuel compositions.

This behavior is not observed at the higher mean flow velocity of U0 = 50 m/s, where the

tangential strain rate is essentially insensitive to fuel composition.

To examine this further, Figure 67 plots mean strain rates (Eij = ∂〈ui〉/∂xj) with

average progress variable through the flame, for the 50:50 H2:CO and 100% H2 mixtures

at low and high turbulence intensities. The major difference for the pure hydrogen case at

U0 = 30 m/s (Figure 67c) is that the Eyy strain term rises earlier and is at a higher level

throughout the flame region (0 ≤ 〈c〉 ≤ 1).

117



−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1/R (1/mm)

P
D
F

50:50 H2:CO, u
′
ax/SL,0 = 4.79

70:30 H2:CO, u
′
ax/SL,0 = 3.80

100 H2, u
′
ax/SL,0 = 4.88

(a)
(b)

−6000 −4000 −2000 0 2000 4000 6000
0

1

2

3

4

5

6
x 10

−4

κs (1/s)

P
D
F

50:50 H2:CO, u
′

ax/SL,0 = 4.79

70:30 H2:CO, u
′

ax/SL,0 = 3.80

100 H2, u
′

ax/SL,0 = 4.88

(c)

−6000 −4000 −2000 0 2000 4000 6000
0

1

2

3

4

5

6
x 10

−4

κs (1/s)

P
D
F

 

 50:50 H2:CO, u′

ax/SL,0 = 9.39

70:30 H2:CO, u′

ax/SL,0 = 9.33

100 H2, u
′

ax/SL,0 = 11.27

(d)

Figure 66: Unconditioned (0 ≤ 〈c〉 ≤ 1) (a, b) curvature and (c, d) tangential strain

rate PDFs for varying fuel compositions at (a, c) U0 = 30 m/s and (b, d) U0 = 50 m/s.

Secondary top-axis in (b) shows curvature normalized by the unstretched flame thickness

for the 100% H2 case.
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Figure 67: Normalized strain rates as a function of average progress variable along the

burner center line at (a, c) u′rms/SL,0 ≈ 5 and (b, d) u′rms/SL,0 ≈ 10 for (a, b) 50:50 H2:CO

and (c, d) 100% H2.
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To provide some context, consider the corresponding sensitivity of curvature and tangen-

tial strain rate to turbulence intensity. While the effect of fuel composition on the curvature

PDFs is weak, turbulence intensity has a much stronger effect, as shown in Figure 68a,b for

two different fuel compositions over a wide range of turbulence intensities. It is evident from

these figures that as the turbulence intensity increases, the curvature PDF becomes broader,

indicating increased occurrence of both high positive and negative curvature values. This

result is consistent with previous studies [82, 116, 83, 76, 58, 115, 63].
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Figure 68: Unconditioned (a, b) curvature and (c, d) tangential strain rate PDFs for (a,

c) 50:50 H2:CO and (b, d) 100% H2.

The velocity and turbulence intensity sensitivities of the tangential strain rate are quite
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different. For the 50% H2 mixture (Figure 68c), there appears to be a strong similarity

between the shapes of the PDFs at a given mean flow velocity. This could indicate that

the mean strain rate of the flow is a strong determining factor in the shape of the overall

PDF. The pure H2 case (Figure 68d) exhibits an entirely different behavior, and is largely

unaffected by the turbulence level or mean flow velocity.

So far we have examined statistics of curvature and tangential strain rate independently

of each other. To examine the correlation between these two quantities, consider Figure 69,

which plots joint PDFs of curvature and tangential strain rate at low and high turbulence

intensities for the three different fuel compositions studied. In this figure, the low turbulence

condition is the left three figures and the high turbulence intensity is the right three figures.

Hydrogen content, and thus stretch sensitivity, increases from top to bottom.

Here again we can observe the relative insensitivity of the joint PDF to fuel composition

and the much stronger sensitivity to turbulence intensity. The latter effect is observed by

the broadening of the joint PDFs in both directions. The broadening of the tangential strain

rate axis for the pure hydrogen, low turbulence intensity condition was observed in Figure

66 and possibly is attributed to a shift in the mean flame position at the low turbulence

condition that altered the mean strain field.

Correlation coefficients of unconditioned curvature and tangential strain rate were cal-

culated for each condition to get a numerical quantity to describe the sensitivity of one term

to the other. For each case the value was less than 0.1, with no noticeable dependence on

fuel composition or turbulence intensity. This indicates that the curvature and tangential

strain rate in these measurements are uncorrelated.

DNS results show that the correlation between these two quantities is dependent on

the iso-scalar surface c where the curvature and tangential strain rate are measured from

[24, 71]. It is important to note the distinction between c and 〈c〉: c measures the reaction

progress instantaneously within the flame zone, whereas 〈c〉 measures the time-averaged

reaction progress variable. They found that for intermediate values of c (0.4 < c < 0.8),

there is a strong correlation between curvature and tangential strain rate. However, for low

values (0.05 < c < 0.15) the correlation is much weaker. They argue that this correlation
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is due to the dilatation term, ∂ui/∂xi, of the tangential strain rate equation. This effect

manifests itself most strongly near the reaction zone of the flame where this term is most

significant.

As discussed in Section 2.3.2, the velocity measurements for the tangential strain rate

calculations were reactant-conditioned by masking out the product region using Otsu’s

method [102]. This leads to a flame surface at an iso-contour of c ≈ 0.5. However, since

the velocity vectors are spaced apart by roughly one flame thickness, the distance from the

flame front to the nearest upstream, reactant-conditioned velocity vector will be 0 < r < δf .

Assuming that the average distance from the flame front iso-contour to the nearest velocity

vector will be δf/2, and since the chosen iso-contour is located roughly midway through the

flame, leads to the result that these velocities are measured at progress variable values of

c → 0. Thus, these results of low correlation are similar to those observed in DNS results

[24, 71] for the low range of c values.

5.3.2 Instantaneous Leading Point Stretch Statistics

This section analyzes curvature and tangential strain rate PDFs conditioned on the instan-

taneous leading points of the flame. Figure 70 presents instantaneous leading point stretch

statistics for three different fuel compositions at low (Figure 70a,c) and high (Figure 70b,d)

turbulence levels. As must be the case by geometric necessity, curvatures at instantaneous

leading points are always positive.

From the least stretch sensitive mixture (50% H2) to the most stretch sensitive (100%

H2), the measured turbulent displacement speed values, ST,LD/SL,0, increase by 84% for

the low turbulence cases (Figure 70a,c) and 49% for the high turbulence cases (Figure

70b,d); thus, the turbulent displacement speed varies appreciably over this range of fuel

compositions.

These plots show that the curvature at the leading points of the flame is only weakly

influenced by fuel composition. For example, the mean curvature increases by only 7% from

the lowest to highest H2 content for the 50 m/s case, as tabulated in Table 11.

122



−2 −1 0 1 2
−4000

−2000

0

2000

4000

1/R (1/mm)

κ
s
(1
/
s)

(a)

−2 −1 0 1 2
−4000

−2000

0

2000

4000

1/R (1/mm)

κ
s
(1
/
s)

(b)

−2 −1 0 1 2
−4000

−2000

0

2000

4000

1/R (1/mm)

κ
s
(1
/
s)

(c)

−2 −1 0 1 2
−4000

−2000

0

2000

4000

1/R (1/mm)

κ
s
(1
/
s)

(d)

−2 −1 0 1 2
−4000

−2000

0

2000

4000

1/R (1/mm)

κ
s
(1
/
s)

(e)

−2 −1 0 1 2
−4000

−2000

0

2000

4000

1/R (1/mm)

κ
s
(1
/
s)

(f)

Figure 69: Unconditioned joint PDFs of curvature and tangential strain rate at (a, c, e)

u′rms/SL,0 ≈ 5 and (b, d, f) u′rms/SL,0 ≈ 10 for (a, b) 50:50 H2:CO, (c, d) 70:30 H2:CO and

(e, f) 100% H2.
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Figure 70: Instantaneous leading point (a, b) curvature and (c, d) tangential strain rate

PDFs for (a, c) U0 = 30 m/s and (b, d) U0 = 50 m/s.
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On the contrary, for the tangential strain rate there appears to be a stronger fuel compo-

sition effect. From the least stretch sensitive mixture (50% H2) to the most stretch sensitive

(100% H2), the time-averaged tangential strain rate increases by 84% for the low turbulence

cases (Figure 70a,c) and 26% for the high turbulence cases (Figure 70b,d). These increases

are much closer to the observed 84% and 49% increases in the turbulent flame speed for the

low and high turbulence cases, respectively.

A caveat to this, however, is that the time-averaged tangential strain rates for these

mixtures range from 900-1900 1/s, well below the critical stretch rates at SL,max observed

in Figure 64 (∼ 7000-15,000 1/s for these fuel mixtures). Thus, while the relative percent

changes observed in tangential strain rate with increasing stretch sensitivity are similar to

the relative changes in the turbulent flame speed, the mean values of the tangential strain

rate are low compared to critically stretched values. This does not support the argument

that the leading points of these flames are critically stretched.

Next, for context, we present results of the effects of turbulence at the instantaneous

leading points. Figure 71 plots the PDFs of instantaneous leading point curvatures and

tangential strain rates at different turbulence levels for a 50:50 H2:CO mixture and a pure

H2 mixture. As the turbulence increases, the curvature PDF broadens in the direction of

positive curvature. As tabulated in Table 11, the mean curvature of the 50% H2 mixture

increases from 0.88 to 1.47 1/mm (∼ 67%) over this 96% increase in turbulence inten-

sity. Thus, statistically significant differences in leading point curvature exist with varying

turbulence levels and are resolved by these measurements.

For the tangential strain rate PDFs, the 50:50 mixtures further emphasize that the

tangential strain rate is more strongly affected by the mean flow rather than the turbulence

level, especially since the green and blue curves have similar turbulence intensities but

different PDFs. For the pure H2 case, the PDFs are relatively independent of turbulence

level or mean flow velocity. This change in behavior for the pure H2 case is an interesting

phenomenon and requires further examination and analysis.

Another way to look at the effect of fuel composition on stretch statistics is to plot the

time-averaged curvature and tangential strain rate at the instantaneous leading points as a
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Figure 71: Instantaneous leading point (a, b) curvature and (c, d) tangential strain rate

PDFs for (a, c) 50:50 H2:CO and (b, d) 100% H2.
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function of the flame’s critical stretch rate κcrit, as shown in Figure 72. The critical stretch

rate is the stretch rate that the flame experiences at the maximum stretched flame speed

SL,max, which increases monotonically with the stretch sensitivity of the fuel, as shown in

Figure 64.

In Figure 72, the y-axes are normalized by the curvature (Figure 72a) or strain rate

(Figure 72b) at SL,max. The stretch sensitivity of the mixtures increases to the right (i.e.,

with increasing κcrit); however, the average stretch rates at the leadings points do not

increase with increasing stretch sensitivity and are well below the critically-stretched values.

For the normalization in these figures, the flames would be critically-stretched at a y-axis

value of one.

For context, consider the time-averaged curvature and tangential strain rate as a function

of the turbulence intensity, as shown in Figure 73. As the turbulence increases, the time-

averaged curvature and tangential strain rate increase as well, indicating that the stretch

rate at the leading points is affected by turbulence. Notice, however, that even at the

highest turbulence intensities, the flames are still well below the critically-stretched values

of curvature and tangential strain rate; thus, the hypothesis of the leading points model

that these flames should approach critically-stretched values is not justified by this data.

As discussed in detail in Section 2.3.2 of Chapter 2, One concern when considering this

diagnostic technique is whether or not it is capable of resolving the finest curvatures for

critically-stretched high hydrogen content flames. To reiterate our confidence that these

curvatures are resolved, consider again the results (shown previously in Section 2.3.2 of

Chapter 2) presented here in Figure 74 that compare the instantaneous leading point cur-

vature PDFs for two different arc length intervals. Even with a factor of two decrease in the

arc length interval, the shape of the PDF remains the same, indicating that both choices

are fully resolving the finest curvatures present.

Next we present results of the joint PDFs of curvature and tangential strain rate at

the instantaneous leading points of the flame. Similar conclusions are drawn here as for

the unconditioned joint PDFs presented in Figure 69, with low correlation (below 0.1)

between curvature and tangential strain rate. This correlation was again not found to have
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Figure 72: Instantaneous leading point average (a) curvature and (b) tangential strain rate

vs. the critical stretch rate at SL,max for varying fuel compositions at various turbulence

levels.
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Figure 73: Instantaneous leading point average (a) curvature and (b) tangential strain

rate vs. turbulence intensity normalized by the unstretched laminar flame speed for varying

fuel compositions.
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Figure 74: Comparison of curvature PDFs generated using two arc length intervals for a

50:50 H2:CO mixture at U0 = 30 m/s.

any relationship to the turbulence intensity or the fuel composition. Again, this result is

attributed to the velocities being measured at low c values and is consistent with results

from the literature [24, 71].

5.3.3 Flame Brush Leading Point Stretch Statistics

This section presents results for the flame brush based definition of the leading point.

As a reminder, the flame brush leading point is based off of values of stretch statisics

conditioned over a defined range of progress variable values. Figure 76 presents curvature

and tangential strain rate PDFs conditioned on the flame brush leading point for three

different fuel compositions over 0 ≤ 〈c〉 ≤ 0.01.

These results again show only mild changes in the curvature PDFs with changing fuel

composition. For the highest turbulence intensity cases (Figure 76b), Table 2 shows that

for the progress variable range 0 ≤ 〈c〉 ≤ 0.1 the mean curvature actually decreases by

13% while the standard deviation of the curvature increases by only 9% with increasing

H2 content. For 0 ≤ 〈c〉 ≤ 0.01 the mean curvature increases by 18% and the standard

deviation does not change with increasing H2 content. However, care should be taken when

interpreting results over such a narrow range of progress variable values as the number
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Figure 75: Instantaneous leading point conditioned joint PDFs of curvature and tangential

strain rate at (a, c, e) u′rms/SL,0 ≈ 5 and (b, d, f) u′rms/SL,0 ≈ 10 for (a, b) 50:50 H2:CO,

(c, d) 70:30 H2:CO and (e, f) 100% H2.
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Figure 76: Flame brush leading point (0 ≤ 〈c〉 ≤ 0.01) (a, b) curvature and (c, d)

tangential strain rate PDFs for (a, c) U0 = 30 m/s and (b, d) U0 = 50 m/s.
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of experimental realizations is an approximate order of magnitude smaller than the range

0 ≤ 〈c〉 ≤ 0.1, leading to
√

10 ≈ 3.2 increases in error. These changes in time-averaged

curvature are small when compared to the 49% increase in turbulent flame speed and 140%

increase in stretch rate of critically stretched flames at those conditions.

Note that even if the curvature at the leading points does not vary with fuel composi-

tion, the local consumption speed of the leading points will still increase with the stretch

sensitivity of the mixture, a fact that can be observed in Figure 64 (i.e., the laminar flame

speed increases with H2 content at a fixed stretch rate). Furthermore, the curvature-induced

strain rate, κc, also increases, even if the average radius of curvature does not change, since

κc = SL/R. The strain sensitivity calculations in Figure 64 were used to estimate the

magnitude of this effect by estimating the laminar flame speed using κc = SL/R. This cal-

culation shows that, for the high turbulence intensity cases (Figure 76b), the time-averaged

strain rate at the instantaneous leading points increases by 39% and the calculated laminar

consumption speed increases by approximately 20% from the 50% H2 mixture to the pure

H2 mixture. Over the same fuel composition range, the strain rate at SL,max increases by

133%, SL,max increases by 65% and ST,LD increases by 50%. Thus, the measured variations

are much weaker than the calculated increase of local consumption speed at SL,max or the

observed increases in ST,LD.

For the tangential strain rates at the flame brush leading points, the time averaged

values increase by 136% for Figure 76c and 26% for Figure 76d; far more comparable to

the corresponding 84% and 49% increases in the turbulent flame speed. This provides some

evidence that the tangential strain rate is influenced by fuel composition and may play a

role in explaining the stretch sensitivity of the turbulent flame speed.

However, the range of time-averaged tangential strain rates for these mixtures is only

from around 500 to 1,400 1/s, well below the critically stretched values for these mixtures

of 7,000 to 15,000 1/s. This is inconsistent with the change that would be expected based

upon the theoretical explanation put forward in our prior study [133], which used a stability

argument to suggest that the flame stretch rate at the leading point, and the corresponding

SL value, should approach critically stretched values, leading to increased turbulent flame
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speeds.

Another way to examine stretch sensitivities for these mixtures is to plot the time-

averaged curvature and tangential strain rate as functions of the average progress variable

〈c〉, as is done in Figure 77. These plots help to elucidate the behavior of the flame over

the entire flame surface, rather than just the leading point behavior. From these plots it is

evident that both the curvature and tangential strain rate become more positive towards

the leading edge of the flame front. For the curvature, from 0 < 〈c〉 < 0.5 the more stretch

sensitive the mixture is the higher the curvature, but this increase is very slight.
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Figure 77: Time-averaged (a, b) curvature and (c, d) tangential strain rate as a function

of progress variable 〈c〉 for (a, c) U0 = 30 m/s and (b, d) U0 = 50 m/s.

However, these plots do provide evidence that there is a more significant effect of fuel
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composition upon the tangential strain rate at the flame leading points. For example, for the

low turbulence intensity case (Figure 77c) the time-averaged curvature at the lowest progress

variable region increases from ∼ 500 − 1100 from the 50% H2 to the 100% H2 mixtures,

an approximate 120% increase. This aligns well with the results presented throughout this

work that show a stronger sensitivity of the tangential strain rate to fuel composition.

Now consider the sensitivity of the flame brush leading point stretch statistics to turbu-

lence and mean flow velocity. Results are presented in Figure 78 for two fuel compositions

over a wide range of turbulence intensities at two mean flow velocities. For the curvature

PDFs, as the turbulence increases, the peak drops and the tails get broader, indicating

increased occurrence of finer scale wrinkling. Again, the tangential strain rate shows more

dependence on mean flow velocity for the 50:50 H2:CO mixture. The pure H2 mixture is

generally insensitive to both mean flow velocity and turbulence conditions.

As in the previous section, another method to look at the effects of fuel composition on

stretch is to plot average curvatures and tangential strain rates as functions of the critical

stretch rate κcrit as shown in Figure 79. Similar conclusions can be drawn from this figure as

for Figure 72. First, the curvatures and tangential strain rates at the flame leading points

do not increase with increasing stretch sensitivity of the mixture. Second, the leading

point stretch rates are well below critically-stretched. These findings are contrary to the

hypotheses of the leading points model.

Figure 80 presents average values of flame brush leading point curvatures and tangential

strain rates as a function of turbulence intensity. The results presented here are different

than those observed for the instantaneous leading points shown in Figure 73, with almost

no effect of turbulence level on the mean values of curvature and tangential strain rate.

One possible explanation for this is that turbulence will equally increase the likelihood of

both positive and negative stretch rates along the flame front. Since the instantaneous lead-

ing point will always be positively curved, the effect of turbulence on the negative curvature

side of the PDF is not captured. However, for flame brush leading points, the definition is

based off of a region of the flow, thus positive and negative curvature effects are captured.

Because of this, Figure 81 presents the same data except plotting the standard deviations of
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Figure 78: Flame brush leading point (0 ≤ 〈c〉 ≤ 0.01) (a, b) curvature and (c, d)

tangential strain rate PDFs for (a, c) 50:50 H2:CO and (b, d) 100% H2.
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Figure 79: Flame brush leading point average (a) curvature and (b) tangential strain rate

vs. the critical stretch rate at SL,max for varying fuel compositions at various turbulence

levels.
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Figure 80: Flame brush leading point average (a) curvature and (b) tangential strain rate

vs. turbulence intensity normalized by the unstretched laminar flame speed for varying fuel

compositions.
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curvature and tangential strain rate as functions of turbulence intensity. For the curvature,

it is clear to see that the standard deviation increases with increasing turbulence. The

results for the tangential strain rate are not as evident, with no clear trend with increasing

turbulence intensity.

Again we have plotted joint PDFs of curvature and tangential strain rate, now for the

flame brush leading points, in Figure 82 and observe similar trends as in the unconditioned

(Figure 69) and leading point conditioned (Figure 75) versions. Calculations of the corre-

lation coefficient between these two quantities yielded no discernible trend with either fuel

composition or turbulence intensity.
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Figure 81: Flame brush leading point standard deviations of (a) curvature and (b) tan-

gential strain rate vs. turbulence intensity normalized by the unstretched laminar flame

speed for varying fuel compositions.
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Figure 82: Flame brush leading point conditioned (0 ≤ 〈c〉 ≤ 0.01) joint PDFs of curvature

and tangential strain rate at (a, c, e) u′rms/SL,0 ≈ 5 and (b, d, f) u′rms/SL,0 ≈ 10 for (a, b)

50:50 H2:CO, (c, d) 70:30 H2:CO and (e, f) 100% H2.
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5.4 Concluding Remarks

The goal of this chapter was to develop a better physical understanding of the behavior

of the leading points of the turbulent flame in order to test the validity of our previously

developed leading points model for collapsing turbulent flame speed data. Specifically, this

chapter assessed arguments that increasing turbulent flame speeds, observed with high H2

fuels, were due to higher SL,max, and therefore higher flame stretch rates at the leading

points.

The data presented in this chapter do not fully support this argument. Only minor

effects of fuel composition on curvature statistics at the flame leading points are observed.

Rather, curvature statistics are dominated by the turbulence intensity. However, there does

appear to be a stronger effect of fuel composition on the tangential strain rate statistics. We

observed changes in the time-averaged values at the leading points that were similar to the

changes observed in the turbulent flame speeds. However, these values of the time-averaged

tangential strain rate are still well below those for critically stretched conditions. This goes

counter to the argument put forth in our previous study [133] that these leading points will

approach critically stretched values.

Joint PDFs of the curvature and tangential strain rate showed no correlation between

these two quantities over the entire range of fuel compositions and turbulence intensities

studied, regardless of whether the results are taken globally over the entire flame surface or

locally at the flame leading points.

Future work will include estimating the contribution of curvature to the overall flame

stretch rate, which requires multiplication by the local laminar flame speed. This flame

speed will be different for different fuel compositions, and, thus, PDFs of the curvature-

stretch term of the flame stretch equation may show a stronger dependence on fuel com-

position than PDFs of curvature alone. These results show that further work is needed to

understand the physical processes through which the turbulent flame speed is altered by

differential diffusion effects.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

This chapter aims to summarize the major conclusions and contributions of this thesis work.

The chapter concludes with recommendations for future work in this area.

6.1 Conclusions and Contributions

The objective of this research was to develop tools to better understand the physics of

turbulent flame propagation in highly stretch sensitive premixed flames in order to predict

their behavior at conditions realistic to the environment of gas turbine combustors. The

propagation rate of turbulent premixed flames into unburned reactants is characterized by

a parameter known as the turbulent flame speed, ST . ST has a leading order impact on

important combustor phenomena such as the life of hot section components, flashback and

blowoff limits, and the operating limits before damaging combustion dynamics occur [85].

This thesis presented the results of an experimental study into the flame propagation

characteristics of highly stretch-sensitive, turbulent premixed flames. A scaling law, devel-

oped in an earlier thesis [134] from leading point concepts for turbulent premixed flames,

was used to collapse turbulent flame speed data over a wide range of conditions. The flow

and flame structure were characterized using high speed particle image velocimetry (PIV)

over a wide range of fuel compositions, mean flow velocities, and turbulence levels. The

first part of this thesis examined turbulent flame speeds for these mixtures and applied the

previously developed leading points scaling model in order to test its validity in an alter-

nate geometry. The model was found to collapse the turbulent flame speed data over a wide

range of fuel compositions and turbulence levels, giving merit to the leading points model

as a method that can produce meaningful results with different geometries and turbulent

flame speed definitions.

The second part of this thesis examined flame front topologies and stretch statistics

of these highly stretch sensitive, turbulent premixed flames. Instantaneous flame front
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locations and local flow velocities were used to calculate flame curvatures and tangential

strain rates. Statistics of these two quantities were calculated both over the entire flame

surface and also conditioned at the leading points of the flames.

The results presented do not support the arguments made in the development of the

leading points model that the leading points of the flame should be critically stretched.

Only minor effects of fuel composition are noted on curvature statistics, which are mostly

dominated by the turbulence. There is a stronger sensitivity for tangential strain rate

statistics, however, time-averaged values are still well below the critically stretched values

hypothesized from the leading points model.

As discussed in Section 4.1.5 in Chapter 4, analysis by Amato [3] has shown that the

value of SL,max varies by about 20-40% depending on the manner that the flame stretch is

applied. In addition, the stretch rate at SL,max can vary by approximately 15%. As shown

in Section 5.3 of Chapter 5, the average leading point curvatures and tangential strain rates

are approximately 20% of their critically stretched values. On top of this, the SL,max and

κcrit values used in the stretch analysis of this data were obtained with a plane counterflow

flame configuration, whereas using cylindrical counterflow and expanding spherical flames

result in higher SL,max and κcrit values. Thus, changing the manner in which the stretch is

calculated would result in an even larger discrepancy between the measured values and the

calculated critically stretched values.

Another aspect to consider when comparing these stretch statistics to their critically

stretched values is the fact that these are 2D measurements, and higher values are obtained

when full 3D measurements can be obtained. As discussed in Section 2.3.2 of Chapter 2,

correction factors to convert time-averaged 2D stretch measurements to 3D values can be

applied [60]. These correction factors are 〈1/R〉3D = π
2 〈1/R〉2D and 〈κs〉3D = 2〈κs〉2D for

curvature and tangential strain rate, respectively. Applying these correction factors to the

acquired data still results in leading point curvatures and tangential strain rates that are

30-60% of their critically stretched values. While these values are closer, it is important

to emphasize that the relative changes in time-averaged values between fuel compositions

will not change with correction factors applied. For example, when going from a 50% H2
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mixture to a pure H2 mixture, the time-averaged instantaneous leading point curvature

and tangential strain rate increased by 7% and 26%, respectively, compared to the 140%

increased observed in the calculated critical stretch rate. Thus, correction factors do not

help to explain the observed insensitivity of leading point stretch rates to fuel composition.

Finally, there is also the uncertainty associated with the actual PIV measurements, as

discussed in greater detail in Section 2.2.2.1 of Chapter 2. However, in this section it was

estimated that the errors in velocity calculations are on the order of 2-7%, which is a small

error in comparison to the 3-10× differences observed between leading point stretch rates

and corresponding critical stretch rates.

The results of this study emphasize the importance of local flame topology measurements

towards the development of predictive models of the turbulent flame speed. As discussed

in Chapters 1 and 4, the leading points model states that the leading points propagate

at SL,max when the flames are quasi-steady. In the thesis work of Venkateswaran [134]

(and overviewed in Chapter 4) non-quasi-steady arguments were used to explain why some

turbulent flame speed data did not collapse well using the leading points model. In reality,

no leading point in a turbulent flow will ever reach the steady-state value of SL,max, because

all turbulent flames are inherently unsteady. Thus, the appropriate normalizing factor varies

depending on the properties of the mixture and of the flow. Since 2D measurements cannot

be used to calculate the total stretch rate it is not possible to obtain from the measurements

the appropriate leading point flame speed for normalizing the turbulent flame speed data

acquired in this thesis. However, ideas for overcoming this are suggested in Section 6.2.1 as

a possible future research program.

The subsequent section aims to outline some of the significant contributions that this

body of work has contributed to the broader combustion community.

6.1.1 Experimental Methodologies

One of the major contributions from this work is the development of novel experimental

methods that have advanced the state of the art in the development of high pressure,

high turbulence intensity reacting flow facilities. For example, the design of the turbulence
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generator system developed in this work has been used by other research groups in the

development of their own experimental facilities [124].

This turbulence generation system was developed for high pressure, high temperature

combustion experiments. While grids, perforated plates, or slots are commonly used for

turbulence generators, they have the disadvantages that the grid or plate must be changed

in order to access a different turbulence level at a given flow velocity. The turbulence

generator described in this work was found to achieve a large range of relative turbulence

intensities from 10% to 30% and turbulent Reynolds numbers from 140 to 9000 without

exchanging plates or varying the mean flow velocity. This gives the ability to independently

study the effects of mean flow velocity and turbulence on combustion characteristics such

as the turbulent flame speed and stretch statistics.

In addition, the facility was characterized extensively using three component laser

Doppler velocimetry over a wide range of flow velocities, turbulence intensities, temper-

atures, and pressures. These three-dimensional profile measurements provide an extensive

database of turbulence characteristics for the turbulence generator making it one of the bet-

ter characterized systems in the current literature. It is especially difficult to find flow field

characterizations at high pressure, high preheat temperatures. This is due to the difficul-

ties with performing velocimetry studies in high pressure, high temperature environments.

For example, LDV and PIV require that the flow be seeded with very small particles that

follow the flow. A common issue encountered for enclosed, optically accessible experimental

facilities is window fogging from seed particles.

Window fogging occurs when seed particles adhere to the surface of the glass. If the

fogging becomes too severe, the laser will not be able to pass through and, for PIV, the

cameras used cannot get adequate images to track the flow. This is a common problem that

hampers many high pressure experimental facilities looking to perform seeded velocimetry

experiments. The facility used in this thesis work was able to avoid this difficulty for the

Bunsen burner configuration by having a co-flow of unseeded air that surrounded the main

burner and kept the seed particles from impinging on the quartz windows. This eliminated

window fogging altogether and allowed for longer periods of data acquisition; thus, a very
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large database of high pressure measurements was acquired.

6.1.2 Turbulent Flame Speed Measurements

This thesis expanded upon measurements of turbulent flame speeds that were first acquired

in this facility in the thesis work of Venkateswaran [134]. In this thesis, measurements were

acquired in a low swirl burner for fuel mixtures of H2:CO and H2:CH4, and also for pure

CH4 and H2. The amount of local displacement speed data in the literature for mixtures

containing high amounts of hydrogen is relatively small and confined to a few research

groups [89, 31, 30, 32, 90]. This work has expanded these measurements and examined new

fuel mixtures at high turbulence conditions.

These types of measurements are especially important in the development of combustors

operating on alternative fuels that contain hydrogen. With the ever growing concerns over

pollutants and climate change, new regulations on emissions are making the study of alter-

native fuels even more important to manufacturers of gas turbines, reciprocating internal

combustion engines, and other industrial burners. Measurements of the turbulent flame

speed are especially relevant because modern combustors developed for land-based power

generation operate in premixed or partially-premixed mode to reduce emissions of NOx and

CO. The turbulent flame speed has a leading order effect on premixed combustor perfor-

mance issues such as flashback and blowoff limits, combustion instabilities, and combustor

heat loading.

In addition, the leading points model for collapsing turbulent flame speed data was

also used with relative success on the turbulent flame speed data acquired using the LSB.

This model was used previously by Venkateswaran [134] to collapse global consumption

speed ST,GC data over a wide range of mean flow velocities, turbulence intensities, fuel

compositions, and pressures. To find that it also collapses local displacement turbulent

flame speed ST,LD data acquired in the LSB is further validation of the model.

6.1.3 Flame Topology and Stretch Statistics

The primary contribution of this work is in the acquisition and analysis of leading points

properties of thermodiffusively unstable, turbulent, premixed flames. The goal of this effort
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was to validate the hypothesis that went into the development of the leading points model

for collapsing turbulent flame speed data.

Specifically, this hypothesis argued that increasing turbulent flame speeds, observed with

high H2 fuels, were due to higher SL,max and, therefore, higher flame stretch rates at the

leading points. However, as was shown in the previous chapter, the data do not support this

hypothesis. It was shown that, while the stretch statistics at the leading points do show

changing behavior with flow parameters such as the turbulence intensity and mean flow

velocity, that they are relatively insensitive to changes in fuel composition. This behavior

was analyzed over a wide range of turbulence intensities, fuel compositions, and mean flow

velocities. The data do show drastic fuel composition effects in terms of increasing turbulent

flame speeds with H2 content, however, the stretch statistics at the leading points do not

appear to correlate well with the stretch sensitivity of these mixtures.

This work is a good step in developing a stronger understanding of the physical mech-

anisms behind fuel effects on turbulent flames. Although the findings do not support the

hypothesis of the leading points model, this still advances the scientific understanding of the

behavior of thermodiffusively unstable flames. This research highlights that there is still a

significant amount of work needed in order to better understand the complex physical and

chemical processes occurring in turbulent premixed flames.

6.2 Recommendations for Future Work

The field of turbulent premixed flames is a complex and fascinating problem, with so many

different mechanisms at play at the same time, including turbulence, chemical reactions,

and heat and mass transfer. It is a rich research problem that still contains many mysteries,

and a wide open field of research possibilities exist. In this final section of the thesis I will

attempt to address some specific areas of research related to the work presented here to

further advance the understanding of the behavior of turbulent premixed flames.

6.2.1 Advanced Leading Points Measurements and Analysis

Future work towards understanding the behavior of the leading points requires advanced

measurement and analysis techniques. This includes the use of 3D measurement techniques
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such as simultaneous dual plane PLIF and stereoscopic PIV. This allows for more accurate

measurements of the terms of the stretch rate equation. In addition, the contribution of

the flame curvature to the overall flame stretch rate can be determined. This requires

multiplication of the curvature by the local laminar flame speed. This flame speed will

be different for different fuel compositions, and, thus, PDFs of the curvature-stretch term

of the flame stretch equation may show a stronger dependence on fuel composition than

PDFs of curvature alone. The flame displacement speed can be determined locally with

these advanced 3D experimental techniques by finding the flame normal direction and the

distance traveled between successive images from the dual plane PLIF and the incoming

velocity of the reactants from the stereo PIV. DNS measurements at similar conditions can

be used to measure 3D flame stretch statistics and to compare results between computations

and experiments.

With the ability to calculate the curvature-stretch term, it would then be possible to

obtain the total stretch rate at every point along the flame front. There is very limited

data of this kind, especially for high hydrogen content fuels. This information would be a

valuable addition to the literature and to the understanding of thermodiffusively unstable

turbulent premixed flames. It would allow for a better estimation of the stretch rate at the

leading points of the flame, which could then be compared to 1D stretched laminar flame

calculations and also to 3D DNS calculations of turbulent flames. The comparison with 1D

stretched laminar flames would give a better idea of how close these flames come to reaching

the stretch rate at the maximum laminar flame speed, κcrit.

Another area that needs to be studied further is joint PDFs of curvature, tangential

strain rate, displacement speed, and curvature-stretch, both globally conditioned and con-

ditioned on the leading points of the flame. Some 2D joint PDFs were presented for cur-

vature and tangential strain rate in Chapter 5, however, additional understanding can be

developed from leading points analysis from 3D measurement techniques. This analysis in-

cludes contributions of both displacement speeds and curvature-stretch, to develop a more

thorough understanding of the inter-relationship between these terms. Most of the litera-

ture examining joint statistics of the terms of the stretch rate equation does so using DNS
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data [61, 24, 22, 21, 23, 2], with only limited experimental results [112]. Analysis of these

statistics for a wide variety of fuel mixtures at high turbulence levels would be a valuable

contribution to the literature. Comparison with the existing DNS datasets would also be

beneficial for validation purposes.

While 3D measurements provide a more direct and accurate measurement of flame

stretch rate contributions, a first estimate of the curvature effect is possible with the existing

experimental database. This can be accomplished by developing an algorithm to measure

the distance that the flame leading point travels between frames of the PIV images. With

the known data rate this can be converted into a local, instantaneous flame speed. However,

since this is a highly turbulent, three-dimensional environment and PIV provides only a two-

dimensional view, the out-of-plane motion will not be taken into consideration. While this

is true, recent work by Kerl et al. [68] and Gashi et al. [54] have used three dimensional

experimental and numerical techniques, respectively, to show that 2D measurements of the

local flame speed are correlated with 3D measurements. In addition, Hawkes et al. [60] have

shown that in an isotropic turbulence field, with a statistically 1D flow and flame, the out

of plane motion will not have a preferential direction. The LSB is a close approximation to

a statistically 1D flow and flame in a highly turbulent environment. Thus, results obtained

from a 2D view of the flame may not be the true local flame speed, but will provide useful

information in qualitatively determining if statistically significant differences are observed

with changing fuel composition.

6.2.2 High Pressure and Temperature Flame Topology Measurements

An important area of premixed turbulent combustion that needs to be examined further is

the influence of pressure and temperature on the topology characteristics of stretch sensitive

flames. The topology measurements in this thesis were acquired at atmospheric pressure.

However, as was shown in the work of Venkateswaran et al. [132], the turbulent flame speed

is also affected by pressure, even when keeping the unstretched laminar flame speed SL,0

constant across all cases. When normalized with SL,max, the data did not collapse across

pressures. This was discussed previously in Chapter 4.

150



As the pressure increases so does the Reynolds number, leading to shorter time scales

and smaller length scales of the turbulence – an effect on the flow. At the same time, higher

pressures lead to decreases in the length and time scales of the chemistry by increasing the

reaction rate (which leads to thinner flames). These two effects will alter the strain field

that these flames are subjected to and also how these stretch sensitive flames will respond

to this strain field. While increasing the pressure decreases both the flow and chemistry

scales, changing the temperature of the incoming reactants will increase the flow scales

(by reducing Re) and decrease the chemistry scales (by increasing the reaction rate). By

varying temperature and pressure, we can start to better understand the independent effects

of varying the scales of the chemistry and the flow.

Time-resolved flame topology and flow field measurements at high pressures and tem-

peratures are necessary for answers to these outstanding questions about the behavior of

turbulent premixed flames. Measurements of flame stretch statistics at high pressures and

temperatures will provide useful information to the driving force behind the changes in the

turbulent flame speed observed for these thermodiffusively unstable mixtures.

6.2.3 Turbulent Flame Speed Measurements and Analysis

Switching gears to the subject of turbulent flame speeds, there is still a significant amount

of research needed to fill gaps in the available data in the literature. From a fundamental

research perspective, the turbulent flame speed is important in developing a more refined

understanding of turbulent premixed flames, including concepts such as non-unity Lewis

number effects and preferential diffusion. It is also a useful quantity as an input to various

reacting flow models and for validation of simulations. From an industry perspective, the

turbulent flame speed helps in the development of the next generation of fuel flexible, lean,

premixed gas turbines.

One area that is of particular interest to power suppliers is having the flexibility to

run their plants off both gas and liquid fuels. Having the ability to run off of liquid fuels

gives the supplier a safety net in case of a shortage in natural gas due to price fluctuations

or new regulations over extraction techniques. In many developing and growing countries,
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especially in the Middle East, liquid fuels are in high supply and are available at low cost.

Thus, there is significant interest for developers of gas turbines to make their engines dual

fuel capable. These gas turbines are running a combination of nonpremixed and premixed

or partially premixed operation when on liquid fuels. For premixed operation the fuel is

vaporized and mixed with air upstream of burning. Turbulent flame speeds of liquid fuels

are uncommon in the literature [1, 58, 138], and research is necessary to expand the existing

database.

Liquid fuels offer an interesting research problem because they are heavier than air. This

means that, for lean mixtures, they are thermodiffusively stable. Their response to flame

stretch is opposite of the flames studied in this thesis. As lean mixtures of heavier than air

fuels become positively stretched, their flame speeds will decrease, as discussed in Chapter

1. This means that the leading points of the flame will propagate slower than every other

point along the flame front, and the flame will tend to flatten itself. The flame will no longer

be pulled by the leading points, but pushed along by the trailing points of the flame. This

means that the leading points model for the turbulent flame speed is most likely invalid for

thermodiffusively stable flames. An important question to answer for these flames is what

are the important mechanisms affecting the turbulent flame’s propagation rate.

In addition to liquid fuels, there is also interest in gas turbines operating on mixtures

of natural gas and hydrogen. The high diffusivity of hydrogen can be used to expand

flammability limits of the fuel mixture. This allows operation at leaner conditions to reduce

NOx emissions. In addition, the amount of CO and CO2 produced can be decreased with

higher levels of hydrogen relative to natural gas. Turbulent flame speed data for these mix-

tures is needed at gas turbine relevant conditions. Specifically, mixtures at high operating

pressures (up to 20 atm), high preheat temperatures (up to 600 K), and high turbulence

intensities (up to 30%) are needed to better understand the behavior of these flames at

realistic conditions.
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APPENDIX A

FLOW METERING AND CALIBRATION

This appendix presents the flow facility and flow rate calibration data for critical nozzles

used to meter and mix fuels in the experimental facility. For completeness, important details

of the facility are repeated from Chapter 2 in this appendix.

A.1 Flow Metering Facility

As discussed in Chapter 2, a significant task in the development of the experimental facility

was the design and implementation of a flow metering and mixing system for multicompo-

nent fuels.

The gases used in this experimental facility are metered and mixed via critical orifice

meters as shown in Figure 83. Table 13 lists the instruments and valves used in this system.

Check valves are used to prevent back flow of gases. The pressure and temperature are

measured just upstream of the choked orifice, and the pressure is measured downstream of

the orifice to ensure that the flow is choked. Different orifice sizes are used to achieve a

wide range of flow rate.

For choked flow of ideal gases, the mass flow rate is calculated from:

ṁ = CdAp

γMW

RT

(
2

γ + 1

)(
γ+1
γ−1

)1/2

(47)

where Cd is the discharge coefficient, A is the choked orifice area, p is the pressure upstream

of the orifice, γ is the ratio of specific heats, MW is the molecular weight, and R is the

universal gas constant. The discharge coefficients for different orifice diameters were found

by calibrating the orifices using a drum-type gas meter.

After the critical orifices, the individual gas components are mixed to create two mul-

ticomponent fuel mixtures. The fuel mixtures then enter the fuel and air delivery system

to be mixed before entering the burner. There is also a system in place that is designed to
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purge the lines with N2 in the event that a flashback is detected. This is a safety feature

meant to extinguish the flame as quickly as possible during flashback.
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Table 13: Instrument and valve list for Figure 17

Displayed Text Description

I-05 Pressure Transducer

I-06 Critical Orifice

I-07 Pressure Transducer

I-08 Type K Thermocouple

I-09 Pressure Transducer

I-10 Critical Orifice

I-11 Pressure Transducer

I-12 Type K Thermocouple

I-13 Pressure Transducer

I-14 Critical Orifice

I-15 Pressure Transducer

I-16 Type K Thermocouple

I-17 Pressure Transducer

I-18 Critical Orifice

I-19 Pressure Transducer

I-20 Type K Thermocouple

V-22 Check Valve

V-23 Check Valve

V-24 Check Valve

V-25 Check Valve

V-41 Spring Loaded Regulator

V-42 Pneumatically Actuated Ball Valve

V-43 Check Valve

V-44 Check Valve
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A.2 Methods

Shown in Figure 84 is a drum-type gas meter that measures the volume of flowing gases

with very high precision. It was used in this research effort to calibrate the critical orifice

meters discussed in the previous section.

Figure 84: Drum-type gas meter used to measure volume flow rates for critical orifice

calibrations [49].

The drum-type gas meter measures volume displacement by the gas through a rotating

drum partially filled with a low viscosity oil. The drum is essentially a turbine partially

submerged in oil. As the gas enters the drum, it causes this turbine to rotate as the gas fills

one chamber and is exhausted from the next. By keeping the packing oil at a consistent

level within the drum, the amount of volume that is displaced is a known quantity.

The displacement is measured using a rotating dial coupled to the central shaft of the

measuring drum. An optical encoder generates a pulse for every 0.25 liters of displaced

volume. This pulse signal is read by the data acquisition system, which also records the

time between each pulse, in order to calculate the volume flow rate. Because the meter

operates at atmospheric conditions, the volume flow rate can be converted to a mass flow

rate using the gas temperature to calculate the density.

The meter has a measurement accuracy of ±0.5% over the measurement range from 3.33

to 300 liters per minute. The factory calibrated measurement error over the entire operable

range of the meter is presented in Figure 85.

To calibrate the critical orifices, the pressure upstream of the orifice is controlled using

air-loaded regulators combined with electropneumatic pressure controllers. The pressure

setpoint upstream of the orifices is controlled via an electronic pressure transducer coupled
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Figure 85: Measurement error in the drum-type gas meter.

to a PID controller contained in the electropneumatic pressure controllers. A pressure

setpoint is commanded from the DAQ system and the pressure controller adjusts the air

load on the regulator until the desired setpoint is achieved.

Volume flow rates from the drum-type gas meter are measured over a range of pressure

setpoints that covers the operable flow rate range of the meter. This information is used to

generate plots that compare the mass flow rate measured from the meter to the mass flow

rate calculated using Equation 47. The inputs to this equation are gas properties, the orifice

diameter, and the measured pressure and temperature upstream of the orifice. A linear fit

is used to determine the orifice discharge coefficient Cd. The subsequent section presents

results of these calibrations for various input gases over a wide range of orifice sizes.

A.3 Results

This section presents mass flow rate calibration results for a variety of gases over a range

of orifice sizes. The gases that were calibrated include air, CH4, CO, H2, and N2. Orifice

sizes are (in thousandths of an inch): 6, 18, 24, 32, 43, 55, 60, and 79. Each figure presents

the raw data points with error bars representing the 95% confidence interval and a linear fit

for each gas used to determine the discharge coefficient Cd. The values for these discharge

coefficients are given in the legends of each plot.
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Figure 86: Measured mass flow rate as a function of theoretical mass flow rate calculated

using measured pressure and temperature as inputs in Equation 47 for an orifice diameter

of d = 0.006 in.
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Figure 87: Measured mass flow rate as a function of theoretical mass flow rate calculated

using measured pressure and temperature as inputs in Equation 47 for an orifice diameter

of d = 0.018 in.
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Figure 88: Measured mass flow rate as a function of theoretical mass flow rate calculated

using measured pressure and temperature as inputs in Equation 47 for an orifice diameter

of d = 0.024 in.
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Figure 89: Measured mass flow rate as a function of theoretical mass flow rate calculated

using measured pressure and temperature as inputs in Equation 47 for an orifice diameter

of d = 0.032 in.
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Figure 90: Measured mass flow rate as a function of theoretical mass flow rate calculated

using measured pressure and temperature as inputs in Equation 47 for an orifice diameter

of d = 0.043 in.
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Figure 91: Measured mass flow rate as a function of theoretical mass flow rate calculated

using measured pressure and temperature as inputs in Equation 47 for an orifice diameter

of d = 0.055 in.
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Figure 92: Measured mass flow rate as a function of theoretical mass flow rate calculated

using measured pressure and temperature as inputs in Equation 47 for an orifice diameter

of d = 0.060 in.
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Figure 93: Measured mass flow rate as a function of theoretical mass flow rate calculated

using measured pressure and temperature as inputs in Equation 47 for an orifice diameter

of d = 0.079 in.
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APPENDIX B

FLOW FIELD DATA

This appendix presents an expanded flow field dataset compared to the overview presented

in Chapter 3. The sections are organized in a manner similar to Chapter 3.

B.1 12 mm Burner

B.1.1 1 atm

This section presents mean and RMS velocity profiles for the 12 mm burner at a pressure

of 1 atm.
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Figure 94: Mean and RMS velocity profiles for the 12 mm burner at p = 1 atm, T = 300

K, U0 = 30 m/s, BR = 69% for the (a) x and (b) y traverses.
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Figure 95: Mean and RMS velocity profiles for the 12 mm burner at p = 1 atm, T = 300

K, U0 = 30 m/s, BR = 73%.
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Figure 96: Mean and RMS velocity profiles for the 12 mm burner at p = 1 atm, T = 300

K, U0 = 30 m/s, BR = 77%.
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Figure 97: Mean and RMS velocity profiles for the 12 mm burner at p = 1 atm, T = 300

K, U0 = 30 m/s, BR = 81%.
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Figure 98: Mean and RMS velocity profiles for the 12 mm burner at p = 1 atm, T = 300

K, U0 = 30 m/s, BR = 85%.
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Figure 99: Mean and RMS velocity profiles for the 12 mm burner at p = 1 atm, T = 300

K, U0 = 30 m/s, BR = 87%.
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Figure 100: Mean and RMS velocity profiles for the 12 mm burner at p = 1 atm, T = 300

K, U0 = 30 m/s, BR = 89%.
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Figure 101: Mean and RMS velocity profiles for the 12 mm burner at p = 1 atm, T = 300

K, U0 = 30 m/s, BR = 91%.
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Figure 102: Mean and RMS velocity profiles for the 12 mm burner at p = 1 atm, T = 300

K, U0 = 30 m/s, BR = 93%.
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Figure 103: Mean and RMS velocity profiles for the 12 mm burner at p = 1 atm, T = 300

K, U0 = 50 m/s, BR = 69% for the (a) x and (b) y traverses.

−5 0 5

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x (mm)

u
/
U
0

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

x (mm)

u′

ax

u′

rad

u′

azi

u′

totUax

Urad

Uazi

(a)

−5 0 5

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

y (mm)

u
/
U
0

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

y (mm)

u′

ax

u′

rad

u′

azi

u′

totUax

Urad

Uazi

(b)

Figure 104: Mean and RMS velocity profiles for the 12 mm burner at p = 1 atm, T = 300

K, U0 = 50 m/s, BR = 73% for the (a) x and (b) y traverses.
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Figure 105: Mean and RMS velocity profiles for the 12 mm burner at p = 1 atm, T = 300

K, U0 = 50 m/s, BR = 77% for the (a) x and (b) y traverses.

−5 0 5

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x (mm)

u
/
U
0

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

x (mm)

u′

ax

u′

rad

u′

azi

u′

totUax

Urad

Uazi

(a)

−5 0 5

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

y (mm)

u
/
U
0

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

y (mm)

u′

ax

u′

rad

u′

azi

u′

totUax

Urad

Uazi

(b)

Figure 106: Mean and RMS velocity profiles for the 12 mm burner at p = 1 atm, T = 300

K, U0 = 50 m/s, BR = 81% for the (a) x and (b) y traverses.
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Figure 107: Mean and RMS velocity profiles for the 12 mm burner at p = 1 atm, T = 300

K, U0 = 50 m/s, BR = 85% for the (a) x and (b) y traverses.
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Figure 108: Mean and RMS velocity profiles for the 12 mm burner at p = 1 atm, T = 300

K, U0 = 50 m/s, BR = 87% for the (a) x and (b) y traverses.
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Figure 109: Mean and RMS velocity profiles for the 12 mm burner at p = 1 atm, T = 300

K, U0 = 50 m/s, BR = 89% for the (a) x and (b) y traverses.
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Figure 110: Mean and RMS velocity profiles for the 12 mm burner at p = 1 atm, T = 300

K, U0 = 50 m/s, BR = 91% for the (a) x and (b) y traverses.
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Figure 111: Mean and RMS velocity profiles for the 12 mm burner at p = 1 atm, T = 300

K, U0 = 50 m/s, BR = 93% for the (a) x and (b) y traverses.
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B.1.2 5 atm

This section presents mean and RMS velocity profiles for the 12 mm burner at a pressure

of 5 atm.
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Figure 112: Mean and RMS velocity profiles for the 12 mm burner at p = 5 atm, T = 300

K, U0 = 10 m/s, BR = 69% for the (a) x and (b) y traverses.
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Figure 113: Mean and RMS velocity profiles for the 12 mm burner at p = 5 atm, T = 300

K, U0 = 10 m/s, BR = 75% for the (a) x and (b) y traverses.
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Figure 114: Mean and RMS velocity profiles for the 12 mm burner at p = 5 atm, T = 300

K, U0 = 10 m/s, BR = 81% for the (a) x and (b) y traverses.
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Figure 115: Mean and RMS velocity profiles for the 12 mm burner at p = 5 atm, T = 300

K, U0 = 10 m/s, BR = 87% for the (a) x and (b) y traverses.
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Figure 116: Mean and RMS velocity profiles for the 12 mm burner at p = 5 atm, T = 300

K, U0 = 10 m/s, BR = 93% for the (a) x and (b) y traverses.
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Figure 117: Mean and RMS velocity profiles for the 12 mm burner at p = 5 atm, T = 300

K, U0 = 30 m/s, BR = 69% for the (a) x and (b) y traverses.
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Figure 118: Mean and RMS velocity profiles for the 12 mm burner at p = 5 atm, T = 300

K, U0 = 30 m/s, BR = 75% for the (a) x and (b) y traverses.
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Figure 119: Mean and RMS velocity profiles for the 12 mm burner at p = 5 atm, T = 300

K, U0 = 30 m/s, BR = 81% for the (a) x and (b) y traverses.
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Figure 120: Mean and RMS velocity profiles for the 12 mm burner at p = 5 atm, T = 300

K, U0 = 30 m/s, BR = 87% for the (a) x and (b) y traverses.
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Figure 121: Mean and RMS velocity profiles for the 12 mm burner at p = 5 atm, T = 300

K, U0 = 30 m/s, BR = 93% for the (a) x and (b) y traverses.
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Figure 122: Mean and RMS velocity profiles for the 12 mm burner at p = 5 atm, T = 300

K, U0 = 30 m/s, BR = 95% for the (a) x and (b) y traverses.
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Figure 123: Mean and RMS velocity profiles for the 12 mm burner at p = 5 atm, T = 300

K, U0 = 50 m/s, BR = 69% for the (a) x and (b) y traverses.

178



−5 0 5

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x (mm)

u
/
U
0

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

x (mm)

u′

ax

u′

rad

u′

azi

u′

totUax

Urad

Uazi

(a)

−5 0 5

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

y (mm)

u
/
U
0

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

y (mm)

u′

ax

u′

rad

u′

azi

u′

totUax

Urad

Uazi

(b)

Figure 124: Mean and RMS velocity profiles for the 12 mm burner at p = 5 atm, T = 300

K, U0 = 50 m/s, BR = 75% for the (a) x and (b) y traverses.
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Figure 125: Mean and RMS velocity profiles for the 12 mm burner at p = 5 atm, T = 300

K, U0 = 50 m/s, BR = 81% for the (a) x and (b) y traverses.
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Figure 126: Mean and RMS velocity profiles for the 12 mm burner at p = 5 atm, T = 300

K, U0 = 50 m/s, BR = 87% for the (a) x and (b) y traverses.

−5 0 5

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x (mm)

u
/
U
0

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

x (mm)

u′

ax

u′

rad

u′

azi

u′

totUax

Urad

Uazi

(a)

−5 0 5

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

y (mm)

u
/
U
0

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

y (mm)

u′

ax

u′

rad

u′

azi

u′

totUax

Urad

Uazi

(b)

Figure 127: Mean and RMS velocity profiles for the 12 mm burner at p = 5 atm, T = 300

K, U0 = 50 m/s, BR = 93% for the (a) x and (b) y traverses.
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Figure 128: Mean and RMS velocity profiles for the 12 mm burner at p = 5 atm, T = 427

K, U0 = 50 m/s, BR = 69% for the (a) x and (b) y traverses.
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Figure 129: Mean and RMS velocity profiles for the 12 mm burner at p = 5 atm, T = 427

K, U0 = 50 m/s, BR = 81% for the (a) x and (b) y traverses.
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Figure 130: Mean and RMS velocity profiles for the 12 mm burner at p = 5 atm, T = 427

K, U0 = 50 m/s, BR = 93% for the (a) x and (b) y traverses.
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Figure 131: Mean and RMS velocity profiles for the 12 mm burner at p = 5 atm, U0 = 50

m/s, for T = 427 K (solid lines) and T = 300 K (dashed lines) at (a) BR = 69% and (b)

BR = 93%.
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B.1.3 10 atm

This section presents mean and RMS velocity profiles for the 12 mm burner at a pressure

of 10 atm.
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Figure 132: Mean and RMS velocity profiles for the 12 mm burner at p = 10 atm, T = 300

K, U0 = 10 m/s, BR = 69% for the (a) x and (b) y traverses.
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Figure 133: Mean and RMS velocity profiles for the 12 mm burner at p = 10 atm, T = 300

K, U0 = 10 m/s, BR = 75% for the (a) x and (b) y traverses.
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Figure 134: Mean and RMS velocity profiles for the 12 mm burner at p = 10 atm, T = 300

K, U0 = 10 m/s, BR = 81% for the (a) x and (b) y traverses.
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Figure 135: Mean and RMS velocity profiles for the 12 mm burner at p = 10 atm, T = 300

K, U0 = 10 m/s, BR = 87% for the (a) x and (b) y traverses.
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Figure 136: Mean and RMS velocity profiles for the 12 mm burner at p = 10 atm, T = 300

K, U0 = 10 m/s, BR = 93% for the (a) x and (b) y traverses.
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Figure 137: Mean and RMS velocity profiles for the 12 mm burner at p = 10 atm, T = 300

K, U0 = 27 m/s, BR = 69% for the (a) x and (b) y traverses.

185



−5 0 5

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x (mm)

u
/
U
0

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

x (mm)

u′

ax

u′

rad

u′

azi

u′

totUax

Urad

Uazi

(a)

−5 0 5

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

y (mm)

u
/
U
0

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

y (mm)

u′

ax

u′

rad

u′

azi

u′

totUax

Urad

Uazi

(b)

Figure 138: Mean and RMS velocity profiles for the 12 mm burner at p = 10 atm, T = 300

K, U0 = 27 m/s, BR = 75% for the (a) x and (b) y traverses.
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Figure 139: Mean and RMS velocity profiles for the 12 mm burner at p = 10 atm, T = 300

K, U0 = 27 m/s, BR = 81% for the (a) x and (b) y traverses.
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Figure 140: Mean and RMS velocity profiles for the 12 mm burner at p = 10 atm, T = 300

K, U0 = 27 m/s, BR = 87% for the (a) x and (b) y traverses.
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Figure 141: Mean and RMS velocity profiles for the 12 mm burner at p = 10 atm, T = 300

K, U0 = 27 m/s, BR = 93% for the (a) x and (b) y traverses.
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B.1.4 20 atm

This section presents mean and RMS velocity profiles for the 12 mm burner at a pressure

of 20 atm.
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Figure 142: Mean and RMS velocity profiles for the 12 mm burner at p = 20 atm, T = 300

K, U0 = 10 m/s, BR = 69% for the (a) x and (b) y traverses.
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Figure 143: Mean and RMS velocity profiles for the 12 mm burner at p = 20 atm, T = 300

K, U0 = 10 m/s, BR = 81% for the (a) x and (b) y traverses.
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Figure 144: Mean and RMS velocity profiles for the 12 mm burner at p = 20 atm, T = 300

K, U0 = 10 m/s, BR = 93% for the (a) x and (b) y traverses.
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B.2 20 mm Burner

B.2.1 1 atm

This section presents mean and RMS velocity profiles for the 20 mm burner at a pressure

of 1 atm.
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Figure 145: Mean and RMS velocity profiles for the 20 mm burner at p = 1 atm, T = 300

K, U0 = 4 m/s, BR = 69% for the (a) x and (b) y traverses.
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Figure 146: Mean and RMS velocity profiles for the 20 mm burner at p = 1 atm, T = 300

K, U0 = 4 m/s, BR = 73% for the (a) x and (b) y traverses.
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Figure 147: Mean and RMS velocity profiles for the 20 mm burner at p = 1 atm, T = 300

K, U0 = 4 m/s, BR = 75% for the (a) x and (b) y traverses.
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Figure 148: Mean and RMS velocity profiles for the 20 mm burner at p = 1 atm, T = 300

K, U0 = 4 m/s, BR = 77% for the (a) x and (b) y traverses.
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Figure 149: Mean and RMS velocity profiles for the 20 mm burner at p = 1 atm, T = 300

K, U0 = 4 m/s, BR = 81% for the (a) x and (b) y traverses.
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Figure 150: Mean and RMS velocity profiles for the 20 mm burner at p = 1 atm, T = 300

K, U0 = 4 m/s, BR = 83% for the (a) x and (b) y traverses.
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Figure 151: Mean and RMS velocity profiles for the 20 mm burner at p = 1 atm, T = 300

K, U0 = 4 m/s, BR = 85% for the (a) x and (b) y traverses.
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Figure 152: Mean and RMS velocity profiles for the 20 mm burner at p = 1 atm, T = 300

K, U0 = 4 m/s, BR = 89% for the (a) x and (b) y traverses.
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Figure 153: Mean and RMS velocity profiles for the 20 mm burner at p = 1 atm, T = 300

K, U0 = 4 m/s, BR = 91% for the (a) x and (b) y traverses.
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Figure 154: Mean and RMS velocity profiles for the 20 mm burner at p = 1 atm, T = 300

K, U0 = 4 m/s, BR = 93% for the (a) x and (b) y traverses.
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Figure 155: Mean and RMS velocity profiles for the 20 mm burner at p = 1 atm, T = 300

K, U0 = 30 m/s, BR = 69% for the (a) x and (b) y traverses.
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Figure 156: Mean and RMS velocity profiles for the 20 mm burner at p = 1 atm, T = 300

K, U0 = 30 m/s, BR = 75% for the (a) x and (b) y traverses.
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Figure 157: Mean and RMS velocity profiles for the 20 mm burner at p = 1 atm, T = 300

K, U0 = 30 m/s, BR = 81% for the (a) x and (b) y traverses.
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Figure 158: Mean and RMS velocity profiles for the 20 mm burner at p = 1 atm, T = 300

K, U0 = 30 m/s, BR = 87% for the (a) x and (b) y traverses.
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Figure 159: Mean and RMS velocity profiles for the 20 mm burner at p = 1 atm, T = 300

K, U0 = 30 m/s, BR = 93% for the (a) x and (b) y traverses.
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Figure 160: Mean and RMS velocity profiles for the 20 mm burner at p = 1 atm, T = 300

K, U0 = 50 m/s, BR = 69% for the (a) x and (b) y traverses.
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Figure 161: Mean and RMS velocity profiles for the 20 mm burner at p = 1 atm, T = 300

K, U0 = 50 m/s, BR = 75% for the (a) x and (b) y traverses.
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Figure 162: Mean and RMS velocity profiles for the 20 mm burner at p = 1 atm, T = 300

K, U0 = 50 m/s, BR = 81% for the (a) x and (b) y traverses.
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Figure 163: Mean and RMS velocity profiles for the 20 mm burner at p = 1 atm, T = 300

K, U0 = 50 m/s, BR = 87% for the (a) x and (b) y traverses.
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Figure 164: Mean and RMS velocity profiles for the 20 mm burner at p = 1 atm, T = 300

K, U0 = 50 m/s, BR = 93% for the (a) x and (b) y traverses.
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B.2.2 5 atm

This section presents mean and RMS velocity profiles for the 20 mm burner at a pressure

of 5 atm.
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Figure 165: Mean and RMS velocity profiles for the 20 mm burner at p = 5 atm, T = 339

K, U0 = 50 m/s, BR = 69% for the (a) x and (b) y traverses.
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Figure 166: Mean and RMS velocity profiles for the 20 mm burner at p = 5 atm, T = 339

K, U0 = 50 m/s, BR = 75% for the (a) x and (b) y traverses.
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Figure 167: Mean and RMS velocity profiles for the 20 mm burner at p = 5 atm, T = 339

K, U0 = 50 m/s, BR = 81% for the (a) x and (b) y traverses.
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Figure 168: Mean and RMS velocity profiles for the 20 mm burner at p = 5 atm, T = 339

K, U0 = 50 m/s, BR = 87% for the (a) x and (b) y traverses.
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Figure 169: Mean and RMS velocity profiles for the 20 mm burner at p = 5 atm, T = 339

K, U0 = 50 m/s, BR = 93% for the (a) x and (b) y traverses.
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Figure 170: Mean and RMS velocity profiles for the 20 mm burner at p = 5 atm, T = 515

K, U0 = 50 m/s, BR = 69% for the (a) x and (b) y traverses.
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Figure 171: Mean and RMS velocity profiles for the 20 mm burner at p = 5 atm, T = 515

K, U0 = 50 m/s, BR = 75% for the (a) x and (b) y traverses.
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Figure 172: Mean and RMS velocity profiles for the 20 mm burner at p = 5 atm, T = 515

K, U0 = 50 m/s, BR = 81% for the (a) x and (b) y traverses.
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Figure 173: Mean and RMS velocity profiles for the 20 mm burner at p = 5 atm, T = 515

K, U0 = 50 m/s, BR = 87% for the (a) x and (b) y traverses.
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Figure 174: Mean and RMS velocity profiles for the 20 mm burner at p = 5 atm, T = 515

K, U0 = 50 m/s, BR = 93% for the (a) x and (b) y traverses.
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B.2.3 10 atm
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Figure 175: Mean and RMS velocity profiles for the 20 mm burner at p = 10 atm, T = 330

K, U0 = 50 m/s, BR = 69% for the (a) x and (b) y traverses.
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Figure 176: Mean and RMS velocity profiles for the 20 mm burner at p = 10 atm, T = 330

K, U0 = 50 m/s, BR = 75% for the (a) x and (b) y traverses.
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Figure 177: Mean and RMS velocity profiles for the 20 mm burner at p = 10 atm, T = 330

K, U0 = 50 m/s, BR = 81% for the (a) x and (b) y traverses.
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