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teaching me knowledge on probability. Outside Georgia Tech, I would like to thank

Dr. Mark Squillante, for being a great mentor during my internship at IBM T. J.

Watson Research Center. I am also indebted to Professor Ganesh Janakiraman, for

providing insightful comments on my research and offering generous help during my

job hunting.

My Ph.D. life is certainly less colorful without my fellow students and friends. I

appreciate all their accompany, support, and assistant. I especially want to thank

Luyi Gui, Qie He, Shuangchi He, Fatma Kılınç-Karzan, and Pengyi Shi, for sharing
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SUMMARY

The fundamental problem of managing an inventory over time in the presence of

stochastic demand is one of the core problems of operations research. This thesis is

motivated by the need (in both government and industry) to understand such com-

plex inventory systems used to model many of society’s most important problems.

In particular, we investigate simple, efficient and robust inventory policies for several

fundamental models commonly used in the study of stochastic inventory systems.

Some of these policies have been already implemented in practice and we provide

strong theoretic support for their practical utilization in industry. Furthermore, the

results on the performance of these policies often yield a rule-of-thumb that is appli-

cable in a variety of settings.

There are five chapters in this thesis. In the first chapter, we provide the overall

motivation and problem formulations, and summarize our main contributions. Chap-

ter 2 - 5 constitute the main body of the thesis. In the second chapter, we study lost

sales inventory model with positive lead time. We significantly improve the bound

on the rate of convergence of constant-order policies in the lead time. In particu-

lar, we prove that a simple constant-order policy actually converges exponentially

fast to optimality as the lead time grows. In addition, our bound is simple and ex-

plicit, demonstrating good performance of constant-order policies for realistic lead

time values. Our results provide theoretical justification for the good performance of

such simple policies, and open the window to making the results and methodology

practical.
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In the third chapter, we investigate dual-sourcing inventory systems. These sys-

tems are notoriously difficult to optimize due to the complex structure of the optimal

solution and the curse of dimensionality. Recently, so-called Tailored Base-Surge (TB-

S) policies have been proposed as a heuristic for the dual-sourcing problem. Although

numerical experiments by several authors have suggested that such policies perform

well as the lead time difference between the two sources grows large, providing a

theoretical foundation for this phenomenon has remained a major open problem. We

provide such a theoretical foundation by proving that a simple TBS policy is indeed

asymptotically optimal as the lead time of the regular source grows large, with the

lead time of the express source held fixed. Since many companies are already im-

plementing such TBS policies, our results provide strong theoretical support for the

widespread use of TBS policies in practice.

In the fourth chapter, we explore the concept of time consistency in the context of

distributionally robust inventory models with second moment constraints. Recently,

several communities have observed that a subtle phenomena known as time incon-

sistency, which never happens in the classic (non-robust) setting, can arise in the

framework of distributionally robust optimization. In particular, there have been two

fundamentally different formulations (i.e., the multistage-dynamic and multistage-

static formulations) proposed in the literature, depending on whether the underlying

optimization model is static or dynamic in nature. We provide several illustrative

examples showing that here the question of time consistency can be quite subtle and

complement these observations by providing simple sufficient conditions for time con-

sistency. We also prove that, although the multistage-dynamic formulation always

has an optimal policy of base-stock form, there may be no such optimal policy for the

multistage-static formulation. Interestingly, our results show that time consistency

may hold even when rectangularity does not.

xii



In the fifth chapter, we study distributionally robust inventory control with mar-

tingale demand. Although distributionally robust inventory models have been an-

alyzed previously, the cost and policy implications of positing different dependency

structures remains poorly understood. We combine the framework of distributionally

robust optimization with the theory of martingales, and study a novel distribution-

ally robust model in which the sequence of future demands is assumed to belong to

a family of martingales. We explicitly compute the optimal policy and shed light on

the interplay between the optimal policy and worst-case distribution. We also com-

pare to the analogous setting in which demand is independent across periods. Our

results shed light on several intriguing phenomena regarding the impact of correla-

tions on distributionally robust models, and provide a first step towards developing a

conditional-expectation based theory of dynamic distributionally robust forecasting.
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CHAPTER I

INTRODUCTION

1.1 Motivation

The fundamental problem of managing an inventory over time in the presence of s-

tochastic demand is one of the core problems of operations research. This thesis is

motivated by the need (in both government and industry) to understand such com-

plex inventory systems used to model many of society’s most important problems.

Such models, which arise in applications as diverse as military and sustainable op-

erations (cf. [80]), the provisioning of renewable energy resources (cf. [141]), health

care operations (cf. [144]), the management of global supply chains (cf. [134]), and

cloud computing (cf. [107]), are often characterized by their high-dimensionality,

uncertainty, and complicated dependency structure. Unfortunately, a perfect under-

standing of such systems seems beyond our reach - many associated problems have

been proven to be computationally intractable, or their solutions have complicated

structure. Furthermore, many of the approximations developed in the literature to

understand real-world inventory systems are themselves quite complicated. How can

we expect policy-makers to gain insight from, not to mention implement such results?

The approach we have taken to answer the above question in this thesis is to

investigate simple, efficient and robust inventory policies for several fundamental

models commonly used in the study of stochastic inventory systems, including lost-

sales inventory systems, dual-sourcing inventory systems, and distributionally robust

inventory systems. Some of these policies have been already implemented in practice

and we provide strong theoretic support for their practical utilization in industry.
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Furthermore, the results on the performance of these policies often yield a rule-of-

thumb that is applicable in a variety of settings.

1.2 Model formulation

In this section, we describe the fundamental models studied in this thesis.

1.2.1 Single-sourcing inventory model

Let Dt represent the demand distribution in period t, t ≥ 1. Let T be the time

horizon, representing the total number of time periods we consider. Let L be the

deterministic lead time, i.e., a multi-period delay between when an order for more

inventory is placed and when that order is received. Let ct, ht, bt be the unit ordering

cost, holding cost and under-stocking penalty in period t respectively. In addition, let

It denote the on-hand inventory, and xt = (x1,t, . . . , xL,t) denote the pipeline vector

of orders placed but not yet delivered, at the beginning of time period t, where xi,t is

the order to be received in period i+ t− 1. The ordered sequence of events in period

t is then as follows.

• A new amount of inventory x1,t is delivered and added to the on-hand inventory;

• A new order is placed;

• The demand Dt is realized;

• Costs for period t are incurred, and the on-hand inventory and pipeline vector

are updated.

Note that the on-hand inventory is updated according to

It+1 =


It + x1,t −Dt if unmet demand can be backlogged;

max(0, It + x1,t −Dt) if unmet demand is lost forever.

We call the former model a backlog inventory model and the latter one a lost-sales

inventory model. The pipeline vector is updated such that x1,t is removed, xi,t+1 is

2



set equal to xi+1,t for i ∈ [1, L − 1], and xL,t+1 is set equal to the new order placed.

We require that this new order xL,t+1 be a function of realized demands, but cannot

depend on future demands. We call the corresponding family of policies admissible,

and denote this family by Π. Define Ct to be the sum of the ordering cost, holding

cost and under-stocking penalty in time period t:

Ct
∆
= ctxL,t+1 + ht (It + x1,t −Dt)

+ + bt (It + x1,t −Dt)
− ,

where x+ ∆
= max(x, 0), x−

∆
= max(−x, 0). Then the problem is to find an admissible

inventory control policy that minimizes the total discounted cost over a finite time

horizon T , i.e.,

min
π∈Π

T∑
t=1

ρt−1E [Cπ
t ] ,

where ρ ∈ (0, 1] is a discount factor and Cπ
t is the cost incurred in period t under

policy π, or minimizes the long-run average cost, i.e.,

min
π∈Π

lim sup
T→∞

∑T
t=1 E [Cπ

t ]

T
.

1.2.2 Dual-sourcing inventory model

In a dual-sourcing inventory model with backlogging, the decision-maker has the

choice to order from two different sources, the regular source (R) with longer lead

time but lower per-unit ordering cost, and the express source (E) with shorter lead

time but higher per-unit ordering cost. Let L ≥ 1 be the deterministic lead time of

the regular source (R), and L0 ≥ 0 the deterministic lead time of the express source

(E), where L ≥ L0 + 1. Let cR, cE be the unit purchase costs of the regular and

express sources, and h, b be the unit holding and backorder costs respectively, with

c , cE−cR > 0. In addition, let It denote the on-hand inventory at the start of period

t (before any orders or demands are received), and qRt (qEt ) denote the order placed

from R(E) at the beginning of period t. Note that due to the leadtimes, the order

received from R(E) in period t is qRt−L(qEt−L0
). As a notational convenience, we define

3



qRk = 0, k = −(L− 1), . . . , 0; and qEk = 0, k = −(L0 − 1), . . . , 0. For t = 1, . . . , T , the

events in period t are ordered as follows.

• Ordering decisions from R and E are made (i.e. qEt , q
R
t are chosen);

• New inventory qRt−L + qEt−L0
is delivered and added to the on-hand inventory;

• The demand Dt is realized, costs for period t are incurred, and the inventory is

updated.

Note that the on-hand inventory is updated according to It+1 = It+qRt−L+qEt−L0
−Dt,

and may be negative since backorder is allowed. We require that the new orders qRt

and qEt are non-negative measurable (and thus deterministic) functions of the realized

demands. We call the corresponding family of policies admissible, and denote this

family by Π. Let G(y) be the sum of the holding and backorder costs when the

inventory level equals y in the end of a time period, i.e. G(y)
∆
= hy+ + by−, where

x+ ∆
= max(x, 0), x−

∆
= max(−x, 0). Let Ct be the sum of the ordering, holding and

backorder costs incurred in time period t, i.e.

Ct
∆
= cRq

R
t + cEq

E
t +G(It + qRt−L + qEt−L0

−Dt).

Then the problem is to find an admissible inventory control policy that minimizes

the long-run average cost.

1.2.3 Distributionally robust inventory model

1.2.3.1 Single-period

The models in previous sections require a complete specification of the underlying

demand distribution {Dt}t≥1. However, in applications knowledge of the exact distri-

bution of the demand process is rarely available. This motivates the study of minimax

type (i.e. distributionally robust) formulations, where minimization is performed with

respect to a worst-case distribution from some family of potential distributions. In

4



the distributionally robust optimization paradigm, one assumes that the joint distri-

bution (over time) of the sequence of future demands belongs to some set of joint

distributions, and solves the min-max problem of computing the control policy which

is optimal against a worst-case distribution belonging to this set.

Suppose now that the probability distribution of the demand D is not fully spec-

ified, but instead assumed to be a member of a family of distributions M. Then the

single-period distributionally robust newsvendor problem can be formulated as below:

min
x≥0

sup
Q∈M

EQ [cx+ b[d− x]+ + h[x− d]+] ,

where c, b, h are the per unit ordering, backorder penalty, and holding costs respec-

tively, and the notation EQ emphasizes that the expectation is taken with respect to

the distribution Q of the demand D.

1.2.3.2 Multi-period

In the distributionally robust setting, we assume backlogging and zero ordering lead

time, i.e., orders are delivered immediately. Let ct, bt, ht be the per unit ordering,

backorder penalty, and holding costs in period t respectively. Let Dt be the demand

in period t, and xt, yt be the inventory level at period t before and after placing an

order respectively, t = 1, . . . , T , where we note that the order must be placed in

period t before Dt is known. We will consider policies which are nonanticipative, i.e.

decisions do not depend on realizations of future demand. Let Π denote the family of

all such policies. We assume that x1, the initial inventory level, is a given constant.

We also require that one can only order a nonnegative amount of inventory at each

stage, i.e., yt ≥ xt. The inventory update is according to

xt+1 = yt −Dt, t = 1, ..., T − 1,

and the cost incurred in period t equals

Ct
∆
= ct(yt − xt) + ht[yt −Dt]+ + bt[Dt − yt]+.

5



Let M be a collection of T -dimensional demand distributions. Then the multi-period

distributionally robust inventory problem can be formulated as below:

min
π∈Π

sup
Q∈M

EQ[
T∑
t=1

Cπ
t ]. (1)

In particular, if the set M is a singleton, then it is reduced to a classic (non-robust)

multi-period problem.

1.3 Problem formulation and literature review

In this section, we formally describe the main problems that we will address in this

thesis, and review the relevant literature.

1.3.1 Lost sales

It is a classical result that a so-called base-stock (i.e. order-up-to) policy, based only

on the total inventory position (i.e. sum of the current inventory and all orders in the

pipeline vector), is optimal in backlog models (cf. [170], [99], [193]). However, it is

known that such simple policies are no longer optimal for models with lost sales and

positive lead times (cf. [113]). Although the model has been studied now for over fifty

years, the optimal policy remains poorly understood (cf. [74], [137], [206], [138], [139],

[153], [140], [49], [110], [109], [109]), and we refer to [24] for a comprehensive review.

Furthermore, for over fifty years, inventory models with lost sales and positive lead

times were generally considered intractable, as the primary solution method (dynamic

programming) suffered from the curse of dimensionality as the lead time grew. As

noted in [24], this has led to many researchers using models with backlogging as

approximations for settings in which a lost sales assumption is more appropriate,

which may lead to very suboptimal solutions. Due to the difficulty of computing

the optimal policy, there has been considerable focus on understanding structural

properties of an optimal policy, and analyzing heuristics.
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A very simple and natural policy, which will be the subject of our own investi-

gations, is the so-called constant-order policy, which places the same order in every

period, independent of the state of the system. Perhaps surprisingly, [158] proved that

for lost sales inventory models with positive lead times, sometimes the best constant-

order policy outperforms the more sophisticated base-stock policy, and performed a

detailed analysis under a certain asymptotic scaling. This phenomena was further

illuminated by the computational study of [214], which confirmed that in several sce-

narios the constant-order policy performed favorably. In all of their experiments, the

constant-order policy always incurred an expected cost at most twice that incurred

by the optimal policy; in 62.5% of the cases, it incurred a cost at most 1.33 times

that incurred by the optimal policy; and in 38% of the cases, it incurred a cost at

most 1.12 times that incurred by the optimal policy.

These observations were recently given a solid theoretical foundation by [75], who

proved that for lost sales inventory models with positive lead times, as the lead time

grows with all other parameters remaining fixed, the best constant-order policy is in

fact asymptotically optimal. This is quite surprising, as the policy is so simple, and

performs nearly optimally exactly in the setting which had stumped researchers for

over fifty years. However, the bounds proven there are impractical, requiring the lead

time to be very large before the constant-order policy becomes nearly optimal, e.g.

requiring a lead time which is Ω(ε−2) to ensure a (1 + ε)-approximation guarantee,

and involving a massive prefactor. The authors note that the numerical experiments

of [214] suggest that the constant-order policy performs quite well even for small

lead times, and pose closing this gap (thus making the results practical) as an open

problem. The authors also point out that if one could prove that the constant-order

policy performs well even for small to moderate lead times, this would open the door

for the creation of practical hybrid algorithms, which solve large dynamic programs

when the lead time is small, and gradually transition to more naive algorithms for
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larger lead times.

1.3.2 Dual-sourcing

Although dual-sourcing strategy is attractive and very relevant to practice, optimizing

a dual-sourcing inventory system is notoriously challenging. Such inventory systems

have been studied now for over forty years and there is a vast literature investigating

periodic review dual-sourcing inventory models as well as their variants, but the

structure of the optimal policy remains poorly understood, with the exception of

when the system is consecutive, i.e., the lead time difference between the two sources

is exactly one (cf. [9], [45], [143], [67], [199]). Furthermore, it is well known that

a dual-sourcing inventory system can be regarded as a generalization of a lost-sales

inventory system (cf. [183]). Indeed, the intractability of both the dual-sourcing and

lost-sales inventory models has a common source - as the lead time grows, the state-

space of the natural dynamic programming (DP) formulation grows exponentially,

rendering such techniques impractical.

As an exact solution seems out of reach, the operations research and management

communities have instead investigated certain structural properties of the optimal

policy (cf. [91]), and exerted considerable effort towards constructing various heuristic

policies (cf. [191], [173], [183], [29]). A simple and natural policy that is implemented

in practice, which will be the subject of our own investigations, is the so-called Tailored

Base-Surge (TBS) policy. It was first proposed and analyzed in [3], where we note that

closely related standing order policies had been studied previously (cf. [162, 106]).

Under such a TBS policy, a constant order is placed at the regular source in each

period to meet a base level of demand, while the orders placed at the express source

follow an order-up-to rule to manage demand surges. We refer to Mini-Case 6 in

[131] for more about the motivation and background of TBS policies. Note that

dual-sourcing inventory systems in which a constant-order policy is implemented for
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the regular source are essentially equivalent to single-sourcing inventory systems with

constant returns, which have been investigated in the literature (cf. [64], [46]).

[3] analyzed TBS policies in a continuous review model, and their focus was to

find the best TBS policy. Numerical results in [118], [163] showed that TBS policies

are comparable to DI policies, and outperform DI policies for some problem instances.

[3] conjectured that this policy performs more effectively as the lead time difference

between the two sources grows. [105] analyzed a periodic review model and studied

the performance of TBS policy. They provided an explicit bound on the perfor-

mance of TBS policies compared to the optimal one when the demand had a specific

structure, and provided numerical experiments suggesting that the performance of

the TBS policy improves as the lead time difference grows large. However, to date

there is no theoretical justification for the good behavior of TBS policies as the lead

time difference grows large, and giving a solid theoretical foundation to this observed

phenomena remains a major open question.

1.3.3 Time consistency

In the classical inventory control setting, the problem is stated as a minimization

of the expected value of the relevant ordering, backorder, and holding costs. Such

a formulation requires a complete specification of the probability distribution of

the underlying demand process. However, in applications knowledge of the exac-

t distribution of the demand process is rarely available. This motivates the study

of minimax type (i.e. distributionally robust) formulations, where minimization is

performed with respect to a worst-case distribution from some family of potential

distributions. In a pioneering paper [168] gave an elegant solution for the mini-

max news vendor problem when only the first and second order moments of the

demand distribution are known. His work has led to considerable follow-up work (cf.

[71, 72, 69, 73, 151, 208, 70, 148, 37, 174, 85, 212]).

9



In practice an inventory must often be managed over some time horizon, and

the classical news vendor problem was naturally extended to the multistage setting,

for which there is also a considerable literature (see, e.g., [213] and the references

therein). Recently, distributionally robust variants of such multistage problems have

begun to receive attention in the literature (cf. [73, 2, 43, 174, 180, 117]). It has

been observed that such multistage distributionally robust optimization problems can

exhibit a subtle phenomenon known as time inconsistency. Over the years various

concepts of time consistency have been discussed in the economics literature, in the

context of rational decision making. This can be traced back at least to the work of

[187] - for a more recent overview we refer the reader to the recent survey by [57], and

the references therein. Questions of time consistency have also attracted attention in

the mathematical finance literature, in the context of assessing the risk and value of

investments over time, and have played an important role in the associated theory

of coherent risk measures (cf. [196, 6, 161, 42, 165]). These concepts have also been

studied from the perspective of robust control across various academic communities

(cf. [86, 103, 145, 79, 32, 200]), and have also begun to receive attention in the setting

of inventory control (cf. [38, 39, 205]).

Recently, [180] proved that for the setting in which only the mean and support

of the demand are known, such distributionally robust inventory control problem

is always time consistent. However, it is still an open challenge to understand the

question of time consistency in other distributionally robust settings.

1.3.4 Martingale demand

In many practical settings of interest, demands are correlated over time (cf. [98,

169, 171]). As a result, there is a vast literature investigating inventory models with

correlated demand, including: studies of the so-called bull-whip effect (cf. [35, 122,

167]); models with Markov-modulated demand (cf. [60, 98, 112]); and models with
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forecasting, including models in which demand follows an auto-regressive/moving

average (ARMA) or exponentially smoothed process (cf. [8, 26, 73, 111, 127, 132,

150]); and models obeying the Martingale Model of Forecast Evolution (MMFE)

and its many generalizations (cf. [56, 77, 87, 101, 128, 189]). Although several of

these works offer insights into the qualitative impact of correlations on the optimal

policy (and associated costs) when managing an inventory over time, these results

are typically proven under very particular distributional assumptions, which assume

perfect knowledge of all relevant distributions.

As we discussed in the previous section, recently there has been a growing interest

in developing inventory control policies which are robust to model misspecification.

There are several works which formulate dynamic programming approaches to distri-

butionally robust/risk averse inventory models (cf. [2, 73, 180, 204]). More generally,

such dynamic problems can typically be formulated as so-called robust Markov de-

cision processes (MDP) (cf. [103, 145, 200]). However, to our knowledge, none of

these works consider applications to correlated demand or forecasting models, with

the exception of the very general Bayesian model considered recently in the excellent

work of [117]. Furthermore, there seems to have been no systematic study of the qual-

itative impact of positing different joint dependency structures in such multi-stage

distributionally robust inventory control problems, i.e. seeing which insights previ-

ously derived under specific distributional assumptions extend to the distributionally

robust setting, and furthermore what new insights manifest only in the distributional-

ly robust setting. The quest to develop such an understanding in the broader context

of stochastic optimization (not specifically inventory control) was recently initiated

in [1], where the authors define the so-called price of correlations as the ratio be-

tween the optimal minimax value when all associated random variables (r.v.) are

independent, and the setting where they may take any joint distribution belonging

to the allowed family. Although the authors do not look specifically at any inventory

11



problems, they stress the general importance of understanding how positing different

joint distribution uncertainty impacts the underlying stochastic optimization.

Combining the above, we are led to the following questions:

1. Can we construct effective dynamic distributionally robust variants of the time

series and forecasting models used in Operations Research?

2. Can we develop a theory of how positing different correlation structures quali-

tatively impacts the optimal policy for such models?

1.4 Main contributions of this thesis

1.4.1 Lost sales

In chapter 2, we make significant progress towards resolving the open problem posed

in section 1.3.1. In particular, for the infinite-horizon variant of the finite-horizon

problem considered by [75], we prove that the optimality gap of the same constant-

order policy actually converges exponentially fast to zero, i.e. we prove that a lead

time which is O
(

log(ε−1)
)

suffices to ensure a (1 + ε)-approximation guarantee. We

demonstrate that the corresponding rate of exponential decay is at least as fast as

the exponential rate of convergence of the expected waiting time in a related single-

server queue to its steady-state value, which we prove to be monotone in the ratio

of the lost-sales penalty to the holding cost. We also derive simple and explicit

bounds for the optimality gap. For the special case of exponentially distributed

demand, we further compute all expressions appearing in our bound in closed form,

and numerically evaluate them, demonstrating good performance for a wide range

of parameter values. Our main proof technique combines convexity arguments with

ideas from queueing theory, and is simpler than the coupling argument of [75].
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1.4.2 Dual-sourcing

In chapter 3, we resolve the open question posed in section 1.3.2, by proving that,

when the lead time of the express source is held fixed, a simple TBS policy is asymp-

totically optimal as the lead time of the regular source grows large. Our results

provide a solid theoretical foundation for the conjectures and numerical experiments

of [3] and [105]. Interestingly, the simple TBS policy performs nearly optimally

exactly when standard DP-based methodologies become intractable due to the afore-

mentioned “curse of dimensionality”. Furthermore, as the “best” TBS policy can be

computed by solving a convex program that does not depend on the lead time of the

regular source (cf. [105]), our results lead directly to very efficient algorithms (with

complexity independent of the lead time of the regular source) with asymptotically

optimal performance guarantees. Perhaps most importantly, since many companies

are already implementing such TBS policies (cf. [3]), our results provide strong the-

oretical support for the widespread use of TBS policies in practice. Our main proof

technique combines a steady-state approach, novel convexity and lower-bounding ar-

guments, a certain interchange of limits result, and ideas from the theory of random

walks and queues, significantly extending the methodology and applicability of a nov-

el framework for analyzing inventory models with large lead times recently introduced

in [75] and [202] in the context of lost-sales models with positive lead times.

1.4.3 Time consistency

In chapter 4, we depart from much of the past literature by seeking both negative and

positive results regarding time consistency when no such decomposition holds, i.e. the

underlying family of distributions from which nature can select is non-rectangular.

Our work is in the spirit of [79], in which a definition of (weak) time consistency

similar to ours was analyzed in the context of rectangularity and dynamic consistency

(a concept defined in [54]), albeit in a substantially different context motivated by
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questions in decision theory and artificial intelligence.

We extend the work of [168] (and followup work of [73]) by considering the ques-

tion of time consistency in multistage news vendor problems when the support and

first two moments are known for the demand at each stage, and demand is stage-wise

independent. We provide several illustrative examples showing that here the question

of time consistency can be quite subtle. In particular: (i) the problem can fail to be

weakly time consistent, (ii) the problem can be weakly but not strongly time consis-

tent, and (iii) the problem can be strongly time consistent even if every associated

optimal policy takes different values under the multistage-static and dynamic for-

mulations. We also prove that, although the multistage-dynamic formulation always

has an optimal policy of base-stock form, there may be no such optimal policy for

the multistage-static formulation. We complement these observations by providing

simple sufficient conditions for weak and strong time consistency.

Interestingly, in contrast to much of the related literature, our results show that

time consistency may hold even when rectangularity does not. This stands in con-

trast to the analysis of [180] for the setting in which only the mean and support of

the demand distribution are known, where the problem is always time consistent,

amenable to a simple dynamic programming solution, with both formulations having

the same optimal value. Likewise, in the setting in which only the support is known,

both formulations reduce to the so-called adjustable robust formulation described in

[15], where again time consistency always holds. Here our model is rich enough to

exhibit a variety of interesting behaviors, including both time inconsistency, as well

as strong time consistency even when no dynamic programming formulation exists,

and the two formulations take different values and hence the rectangularity property

does not hold.
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1.4.4 Martingale demand

In chapter 5, we take a first step towards answering the questions raised in section

1.3.4, by analyzing in-depth a distributionally robust multi-stage inventory optimiza-

tion problem which naturally generalizes and unifies a non-trivial family of inventory

models with demand governed by simple time-series and forecasting. In particu-

lar, perhaps the simplest family of time-series and forecasting models are those in

which demand is assumed to evolve as a one-dimensional (additive or multiplicative)

random walk, with increments that form a martingale difference sequence. Such a

forecasting model represents a special case of the MMFE framework, in which all

future demand forecasts are updated by the same (random) amount in each period.

We note that special cases of this model, e.g. that in which demand evolve as a

Gaussian random walk with independent increments, have been studied previously

(cf. [133]). Furthermore, related minimax optimization problems have been consid-

ered more broadly within the economics, finance, and robust control communities (cf.

[10, 41, 58, 86, 146, 160, 190]). Intuitively, the setting we consider provides a unified,

distribution-free approach to models with the property that the expected demand in

period t+ 1 equals the realized demand in period t, for all t.

More formally, we consider a distributionally robust multi-period inventory con-

trol problem (with backlogged demand) in which the sequence of future demands is

assumed to belong to the set of all martingales with given mean and support (assumed

the same in every period). Our contributions are three-fold. First, we explicitly com-

pute the optimal policy in closed form, which is of state-dependent base-stock form.

Our main proof technique involves a non-trivial induction, combining ideas from con-

vex analysis and probability. Second, we shed light on the interplay between the

optimal policy and worst-case distribution. In particular, we show that at optimality,

in each period the adversary always puts some probability at 0, and some probability

on a different quantity. Combined with the martingale property, this implies that at
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optimality, the worst-case demand distribution corresponds to the setting in which

demand may become obsolete at a random time, a scenario of practical interest which

has been studied previously in the literature (cf. [31, 34, 108, 149, 184]). We also

compute the limiting dynamics as the time horizon diverges, by proving convergence

to an appropriate weak limit. Third, in the spirit of [1], we compare to the analogous

setting in which demand is independent across periods (analyzed previously in [180]),

and identify qualitative differences between these two models. In particular, we show

that the cost incurred by an optimal policy in the martingale-demand model is always

no greater than the corresponding cost in the independent-demand model, and their

limiting ratio is exactly 1
2

in the perfectly symmetric case.

1.5 Conclusion

In this thesis, we studied simple, efficient and robust inventory policies for several

fundamental models commonly used in the study of stochastic inventory systems.

We proved several asymptotic results on the performance of simple policies in lost-

sales and dual-sourcing inventory systems. We analyzed the phenomenon of time

(in)consistency in the context of distributionally robust inventory and provided sev-

eral illustrative examples showing that here the question of time consistency can be

quite subtle. We also proposed a novel multi-period inventory model by combining

the framework of distributionally robust optimization with the theory of martingales

and shed light on the interplay between the optimal policy and worst-case distri-

bution, which served as the first step towards establishing a conditional-expectation

based theory of dynamic distributional robust forecasting.

This thesis leaves several interesting directions for future research. In chapters

2 and 3, our methodology lays the foundations for a completely new approach to

analyzing inventory models with large lead times. So far, this approach has been

successful in yielding key insights and efficient algorithms for two settings previously
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believed intractable: lost-sales models with large lead times, and dual-sourcing mod-

els with large lead time gap. We believe that our techniques have the potential to

make similar progress on many other difficult supply chain optimization problems of

practical relevance in which there is a lag between when policy decisions are made

and when those decisions are implemented.

The general question of time consistency remains poorly understood. In addi-

tion, our work in chapter 4 has shown that this question can be quite subtle. For

the particular model we consider here, it would be interesting to develop a better

understanding of precisely when time consistency holds. Of course, it is still an open

challenge to understand the question of time consistency more broadly, how precisely

the various definitions of time consistency presented throughout the literature relate

to one-another, and more generally to understand the relationship between different

ways to model multistage optimization under uncertainty.

We believe that the framework built in chapter 5 towards establishing a conditional-

expectation based theory of dynamic distributional robust forecasting. It would be

interesting to consider more general conditional moment constraints. Furthermore,

although it is often clear how to specify the marginal distribution in each time period,

understanding the effects of positing various joint distributions over time remains an

interesting challenge. It would be interesting to develop a deeper understanding of

such price of correlations in robust stochastic optimization problems.
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CHAPTER II

OPTIMALITY GAP OF CONSTANT-ORDER POLICIES

DECAYS EXPONENTIALLY IN THE LEAD TIME FOR

LOST SALES MODELS

This chapter is based on [202].

2.1 Introduction and literature review

It is well-known that there is a fundamental dichotomy in the theory of inventory

models, depending on the fate of unmet demand. If unmet demand remains in the

system and can be met at a later time, we say the system exhibits backlogged demand ;

if unmet demand is lost to the system, we say the system exhibits lost sales. Which of

these assumptions is appropriate depends heavily on the application of interest. For

example, in many retail applications one must manage an inventory in a competitive

environment, i.e. demand can in principle be met by a competing supplier, making

lost sales a more appropriate assumption. Indeed, as pointed out in [24], recent

studies have shown that retailers across many sectors lose over 85% of the potential

demand which they cannot satisfy immediately, and we refer the interested reader to

[78], and [194] for further details.

A second important feature of many inventory models, intimately related to the

above dichotomy, is that of positive lead times, i.e. settings in which there is a multi-

period delay between when an order for more inventory is placed and when that order

is received. In principle, this feature leads to an enlarged state-space (growing linearly

with the lead time), to track all orders already placed but not yet received, i.e. the

pipeline vector. It is a classical result, indeed one of the foundational results of the
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field, that models with backlogged demand remain tractable even in the presence of

positive lead times. Namely, it can be proven that a so-called base-stock (i.e. order-

up-to) policy, based only on the total inventory position (i.e. sum of the current

inventory and all orders in the pipeline vector), is optimal in this setting (cf. [170],

[99], [193]). Intuitively, this follows from the fact that when demand is backlogged,

inventory is a linear function of orders placed and past demands, along with certain

convexity arguments. However, it is known that such simple policies are no longer

optimal for models with lost sales and positive lead times (cf. [113]). For over fifty

years, inventory models with lost sales and positive lead times were generally con-

sidered intractable, as the primary solution method (dynamic programming) suffered

from the curse of dimensionality as the lead time grew. As noted in [24], this has led

to many researchers using models with backlogging as approximations for settings in

which a lost sales assumption is more appropriate, which may lead to very suboptimal

solutions.

Although the optimal policy for lost-sales models with positive lead times remains

poorly understood, the model has been studied now for over fifty years (cf. [74],

[137], [206], [138], [139], [153], [140], [49], [110], [109], [109]), and we refer to [24] for a

comprehensive review. Due to the difficulty of computing the optimal policy, there has

been considerable focus on understanding structural properties of an optimal policy,

and analyzing heuristics. In particular, convexity results were obtained in [113], [138],

and [215], and used to bound the optimal ordering quantity. [104] compared the

optimal costs between the backlogged and lost sales systems with identical problem

parameters, and showed that the lost sales system always had a lower cost. [93]

further proved that the base-stock policy was asymptotically optimal as the lost-sales

penalty became large compared to the holding cost, and similar results were derived

in [129]. In a breakthrough work, [123] proposed the family of so called dual-balancing

policies, motivated by previous work on other relevant models (cf. [124], [126]), and
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proved that the cost incurred by such a policy was always within a factor of 2 of

optimal. Another recent line of research, based on carefully truncating and rounding

the relevant dynamic programs, yields efficient approximation algorithms for any fixed

lead time, with run-time polynomial in the inverse of the desired approximation error

but possibly growing exponentially in the other problem inputs (e.g. the lead time)

(cf. [83, 84, 36]). Despite this progress, the aforementioned work leaves open the

problem of deriving efficient algorithms with arbitrarily small error, when the lead

time is large.

A very simple and natural policy, which will be the subject of our own investi-

gations, is the so-called constant-order policy, which places the same order in every

period, independent of the state of the system. Perhaps surprisingly, [158] proved that

for lost sales inventory models with positive lead times, sometimes the best constant-

order policy outperforms the more sophisticated base-stock policy, and performed a

detailed analysis under a certain asymptotic scaling. This phenomena was further

illuminated by the computational study of [214], which confirmed that in several sce-

narios the constant-order policy performed favorably. In all of their experiments, the

constant-order policy always incurred an expected cost at most twice that incurred

by the optimal policy; in 62.5% of the cases, it incurred a cost at most 1.33 times

that incurred by the optimal policy; and in 38% of the cases, it incurred a cost at

most 1.12 times that incurred by the optimal policy.

These observations were recently given a solid theoretical foundation by [75], who

proved that for lost sales inventory models with positive lead times, as the lead time

grows with all other parameters remaining fixed, the best constant-order policy is in

fact asymptotically optimal. This is quite surprising, as the policy is so simple, and

performs nearly optimally exactly in the setting which had stumped researchers for

over fifty years. However, the bounds proven there are impractical, requiring the lead

time to be very large before the constant-order policy becomes nearly optimal, e.g.
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requiring a lead time which is Ω(ε−2) to ensure a (1 + ε)-approximation guarantee,

and involving a massive prefactor. The authors note that the numerical experiments

of [214] suggest that the constant-order policy performs quite well even for small

lead times, and pose closing this gap (thus making the results practical) as an open

problem. The authors also point out that if one could prove that the constant-order

policy performs well even for small to moderate lead times, this would open the door

for the creation of practical hybrid algorithms, which solve large dynamic programs

when the lead time is small, and gradually transition to more naive algorithms for

larger lead times.

2.1.1 Outline of chapter

The rest of the chapter is organized as follows. We formulate our problem, and

introduce several elementary properties of the stationary inventory process, in Section

2.2.1. We describe the constant-order policy in Section 2.2.2, and review the results

of [75] in Section 2.2.3. We state our main results in Section 2.2.4. We provide a more

detailed analysis (both analytical and numerical) for the special case of exponentially

distributed demand in Section 2.2.4.1, and discuss the monotonicity of our bounds

in the ratio of the lost-sales penalty to the holding cost in Section 2.2.4.2. The proof

of our main results are given in Section 2.3. Finally, we summarize our main results

and propose directions for future research in Section 2.4. A technical appendix is

provided in Section 2.5.

2.2 Main results

2.2.1 Model description, problem statement, and assumptions

In this section, we formally define our lost-sales inventory optimization problem.

Note that the general framework of lost sales inventory model is already introduced

in Section 1.2.1. Through this whole chapter, we assume that the demand process

and all costs are stationary, and there is no ordering costs. Namely, {Dt, t ≥ 1} is
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a sequence of independent and identically distributed (i.i.d.) demand realizations,

distributed as the non-negative random variable (r.v.) D with distribution D, which

we assume to have finite mean, and (to rule out certain degenerate cases) to have

strictly positive variance. In addition, ct = 0, ht = h and bt = b for all t. Let us

recall other notations here. Let T be the time horizon and L be the deterministic

lead time. Let It denote the on-hand inventory, and xt = (x1,t, . . . , xL,t) denote the

pipeline vector of orders placed but not yet delivered, at the beginning of time period

t, where xi,t is the order to be received in period i + t − 1. Recall that the ordered

sequence of events in period t is then as follows.

• A new amount of inventory x1,t is delivered and added to the on-hand inventory;

• A new order is placed;

• The demand Dt is realized;

• Costs for period t are incurred, and the on-hand inventory and pipeline vector

are updated.

Note that the on-hand inventory is updated according to It+1 = max(0, It+x1,t−Dt),

and the pipeline vector is updated such that x1,t is removed, xi,t+1 is set equal to xi+1,t

for i ∈ [1, L − 1], and xL,t+1 is set equal to the new order placed. We require that

this new order xL,t+1 be a (possibly random) function of realized demands, inventory

levels, ordering quantities, and pipeline vectors, as well as the problem primitives

h, c, T, L,D and current time t, but cannot depend on future demands. We call the

corresponding family of policies admissible, and denote this family by Π. Define Ct

to be the sum of the holding cost and lost-sales penalty in time period t:

Ct
∆
= h (It + x1,t −Dt)

+ + b (It + x1,t −Dt)
− ,

where x+ ∆
= max(x, 0), x−

∆
= max(−x, 0). For simplicity, we suppose that the problem

initial conditions are to start with the all zeros pipeline vector, i.e. x1 = 0, and zero
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inventory, i.e. I1 = 0. We note that our problem will differ from that considered in

[75] in a single important way: we will consider the corresponding infinite-horizon

problem, while [75] considered the finite-horizon problem. Namely, for a policy π, let

C(π) denote the long-run average cost incurred:

C(π)
∆
= lim sup

T→∞

∑T
t=1 E [Ct]

T
.

The corresponding infinite-horizon (i.e. long-run average cost) lost-sales inventory

optimization problem is given by

OPT(L)
∆
= inf

π∈Π
C(π). (2)

Recall that a stationary policy is one that places orders only based on the current

state information (i.e., the on-hand inventory and pipeline vector), as well as the

problem primitives h, c, L,D, but not the current time period t or time horizon T .

Under a stationary policy, the evolution of the on-hand inventory and pipeline vector

evolves as a discrete time, finite-dimensional Markov Chain. It follows from the results

of [95] that: an optimal policy for Problem 2 exists (i.e. is not simply approached),

and furthermore that there always exists at least one such optimal policy which is

stationary, so restricting oneself to the family of stationary policies is without loss

of generality (w.l.o.g.). We will further assume that of these stationary optimal

policies, there exists at least one such policy π∗ whose corresponding induced Markov

chain converges in distribution to a unique stationary measure when initialized with

x1 = 0 and I1 = 0. We will also assume that under this policy π∗ (with the given

initialization), E[xt],E[It],E[Ct] are finite for all t, and converge to the corresponding

expected values under the given stationary measure (which we also assume to be

finite), i.e. L1 convergence. We refer to the set of such policies as convergent. Such

a convergence is to be expected from the basic theory of Markov chains, and we

refer the interested reader to [7] and [130] for further details. We note that this

is especially so, in light of the results of [215], which demonstrate that there exists
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an optimal stationary policy which, under the given initialization, with probability

(w.p.) 1 belongs to a fixed compact set for all time (i.e. the ordering quantities and

inventory levels are uniformly bounded over time as functions of h, c, L,D only). For

any such stationary and convergent policy π, let (Iπ, χπ) denote a vector distributed

as the stationary measure of the corresponding Markov chain, with Iπ corresponding

to the stationary inventory level, and χπ corresponding to the stationary pipeline

vector.

2.2.2 Constant-order policy

In this section, we formally define the constant-order policy, and characterize the best

constant-order policy. As a notational convenience, let us define all empty sums to

equal zero, let 1 denote the vector with all entries equal to unity, e denote Euler’s

number, log(x) denote the natural logarithm of x, 1
∞ denote 0, 1

0
denote ∞, log(∞)

denote ∞, and I(A) denote the indicator of the event A. For any r ∈ [0,E[D]), the

constant-order policy πr is the policy that places the constant order r in every period.

It is well-known (cf. [75]) that the corresponding steady-state on-hand inventory level,

which we denote by Ir∞, has the same distribution as the steady-state waiting time

in the corresponding GI/GI/1 queue with interarrival distribution D and processing

time distribution the constant r. For two r.v.s X, Y , let X ∼ Y denote equivalence

in distribution between X and Y . In that case, it is well-known (cf. [7]) that

Ir∞ ∼ sup
j≥0

(
jr −

j∑
i=1

Di

)
. (3)

We note that in [75], the authors considered a slightly modified constant-order policy

which ordered Ir∞ + r in the first period and r in all subsequent periods, to make the

corresponding sequence of inventory levels stationary. As both policies have the same

steady-state distribution, for our purposes this distinction is irrelevant.

We now formalize the notion of the best constant-order policy, and begin by

briefly reviewing several well-known properties of the stationary inventory level under
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any stationary and convergent policy π (not just the constant-order policy). As the

inventory update dynamics imply that Iπ ∼ (Iπ + χπ1 −D)+, with D independent of

Iπ and χπ1 , it follows that E[Iπ] = E[(Iπ + χπ1 −D)+]. A straightforward algebraic

manipulation further demonstrates that

E
[
(Iπ + χπ1 −D)−

]
= E[D]− E[χπ1 ]. (4)

Combining the above, we conclude that

E[χπ1 ] ≤ E[D], (5)

and

C(π) = hE[Iπ] + bE[D]− bE[χπ1 ]. (6)

Customizing (3) - (6) to the constant-order policy, we conclude that for any r ∈

[0,E[D]),

C(πr) = hE

[
sup
j≥0

(
jr −

j∑
i=1

Di

)]
+ bE[D]− br, (7)

and note that E[Iπr ] < ∞ for all r ∈ [0,E[D]) (cf. [7]). As it is easily verified that

C(πr) is thus a convex function of r on [0,E[D]), to find the best possible constant-

order policy, it suffices to select the r minimizing this one-dimensional convex function

over the compact set [0,E[D]]. We note that the existence of at least one such optimal

r follows from the well-known properties of convex optimization over a compact set,

and that the set of all such optimal solutions must be bounded away from E[D], since

by assumption h > 0, and limr↑E[D] E[Ir∞] =∞ (since D has strictly positive variance,

cf. [7]). Let r∞ ∈ arg min0≤r≤E[D] C(πr) denote the infimum of this set of optimal

ordering quantities, in which case the best constant-order policy will refer to πr∞ .

2.2.3 Review of results of [75]

In this section, we formally review the results of [75], and begin by introducing some

additional notations. Let Q denote the b
b+h

quantile of the demand distribution, i.e.
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Q
∆
= inf{s ∈ R+ : P(D > s) ≤ h

b+h
}. We note that Q is the optimal inventory

level for the corresponding single-stage newsvendor problem, i.e. for any policy π and

any time t, E[Cπ
t ] ≥ g , hE[(Q − D)+] + bE[(D − Q)+] (cf. [213]). Equivalently,

g = OPT(0), the long-run optimal cost when there is zero leadtime, as in this case

one can always order-up to this optimal level Q. That g ∈ (0,∞) follows from the

assumption that D has finite mean and is not deterministic. Also, let σ denote the

standard deviation of D, ζ
∆
= E

[
|D−E[D]|3

]
σ−3 denote the so-called skewness of D,

m , d
(

26
(
3ζ + b(hσ)−1E[D] + 1

))2

e,

and y(ε) ,

max

(
214h(Q+ 2

3
2E[D])(E2[D] + E[D2])3σ−6m3g−1ε−1,

(
12bg−1

(
(2bh−1)

1
2 + 3

))2

ε−2

)
.

Then the main result of [75] is as follows. We only state the implications of those

results for the infinite-horizon problem, as that is our focus in this chapter and to

do otherwise would require several additional definitions and notations, but do note

that the results of [75] also apply to the finite-horizon setting.

Theorem 1 Suppose E[D3] <∞. Then for all ε ∈ (0, 1) and L ≥ y(ε),

C(πr∞)

OPT(L)
≤ 1 + ε.

Theorem 1 represented significant progress in our understanding of lost sales mod-

els with large lead times, as it proved that the simple constant-order policy performs

well exactly when the problem becomes challenging to solve by dynamic programming

and other means, i.e. when L becomes large. However, as discussed in [75], the ex-

plicit bounds of Theorem 1 require L to be so large as to make the results impractical.

In addition to the massive prefactor, they require L to be Ω(ε−2) to achieve a (1 + ε)-

approximation, which requires e.g. a lead time on the order of 400 to be within 5% of

optimal. As pointed out in [75], this massive prefactor and unfavorable scaling with
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ε leave much to be desired, and are a far cry from the good numerical performance of

the constant-order policy even for small lead times demonstrated in [214]. [75] pose

tightening these bounds and closing this gap as a significant open question, as doing

so would represent a large step towards making the bounds practical, e.g. proving

that when L is small one can solve a large dynamic program, and when L becomes

even moderately large one can use simple policies such as the constant-order policy.

2.2.4 Main results

In this section, we present our main results, demonstrating that the optimality gap

of the best constant-order policy decays exponentially in the lead time. For θ ≥ 0,

let us define

φ(θ)
∆
= exp(θr∞)E[exp(−θD)] , γ

∆
= inf

θ≥0
φ(θ),

and ϑ ∈ arg minθ≥0 φ(θ) denote the supremum of the set of minimizers of φ(θ), where

we define ϑ to equal ∞ if the above infimum is not actually attained. Note that φ(θ)

is a continuous and convex function of θ on (0,∞), and right-continuous function of

θ at 0. In addition, it follows from [65] Theorem 2.27 that φ(θ) is right-differentiable

at zero, with derivative equal to r∞ − E[D], assuming only that E[D] < ∞ (along

with our default assumption of non-negativity). As r∞ < E[D], we conclude from the

definition of derivative and a straightforward contradiction argument that ϑ > 0 (i.e.

ϑ is strictly positive), and γ ∈ [0, 1) (i.e. γ is strictly less than 1). It follows from

the celebrated Cramér’s Theorem, and more generally the theory of large deviations,

that up to exponential order (and under appropriate technical assumptions), P(kr∞ ≥∑k
i=1 Di) decays like γk as k →∞ (cf. [48]). Furthermore, as we will explore in detail

later in the proof of our main result, γ corresponds (again up to exponential order,

under appropriate assumptions) to the rate at which the expected waiting time in an

initially empty single-server queue, with inter-arrival distribution D and processing

time distribution (the constant) r∞, converges to its steady-state value (cf. [116]).
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Then our main result is as follows.

Theorem 2 For all L ≥ 1,

C(πr∞)

OPT(L)
≤ 1 + h

(
(1− γ)g

)−1
(
E[D]− r∞ +

(
eϑ(L+ 1)

)−1
)
γL+1. (8)

Our results prove that for the corresponding infinite-horizon problem, the optimal-

ity gap of the constant-order policy converges exponentially fast to zero. In particular,

a lead time which is O
(

log(ε−1)
)

suffices to ensure a (1+ε)-approximation guarantee.

This contrasts with the bounds of [75], which had an inverse polynomial dependence

on ε. Furthermore, our explicit bounds are much tighter than those of [75], and we

only require a finite first moment, i.e. our results also hold for heavy-tailed distri-

butions. This takes a large step towards answering several open questions posed in

[75] with regards to deriving bounds tight enough to be useful in practice. In par-

ticular, our bounds suggest that for small values of L, one can solve a large dynamic

program to derive the optimal policy (whose size may be exponential in L), while

for larger values of L one can simply use the constant-order policy. We again note

that since our results only hold for the infinite-horizon problem, and will use critically

certain stationarity properties that only hold in this regime, our results are not direct-

ly comparable to those of [75], whose bounds also hold for finite-horizon problems.

Closing this gap, and proving tighter bounds for the finite-horizon problem, remains

an interesting open question.

2.2.4.1 Example: exponentially distributed demand

In this section, for the special case of exponentially distributed demand, we further

compute all expressions appearing in our bound in closed form, and numerically

evaluate them, demonstrating good performance for a wide range of parameter values.

Thus suppose demand is exponentially distributed with rate λ, i.e. mean λ−1. In this

case, it is well-known that for r ∈ [0,E[D]), E[Ir∞] is the expected steady-state waiting
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time in a corresponding M/D/1 queue, and equals r2λ
2(1−rλ)

(cf. [81]). For b, h > 0, let

τb,h
∆
=

√
h

2b+ h
, γb,h

∆
= (1− τb,h) exp(τb,h).

It may be easily demonstrated that γb,h ∈ (0, 1). In that case, when demand is

exponentially distributed, Theorem 2 is equivalent to the following bound, for which

we provide a complete derivation in the appendix (Section 2.5).

Corollary 1 (Case of exponentially distributed demand) Suppose D is expo-

nentially distributed with rate λ. Then C(πr∞) = λ−1(
√
h(2b+ h) − h), and for all

L ≥ 1,

C(πr∞)

OPT(L)
≤ 1 +

(
τb,h + (τ−1

b,h − 1)
(
e(L+ 1)

)−1
)(

(1− γb,h) log(1 + bh−1)
)−1

γL+1
b,h . (9)

Note that (9) does not depend on λ, which follows from the scaling properties of

the exponential distribution. We now numerically evaluate (9) under different lost-

demand penalty and lead time scenarios, with the holding cost fixed to 1, and present

the results in Table 1. For each b, we also give the value of the best constant-order

policy, C(πr∞), further assuming E[D] = 1 (i.e. λ = 1).

Table 1: When h = λ = 1, values of (9) and C(πr∞) under different b and L

(9) L=1 L=4 L=10 L=20 L=30 L=50 L=70 L=100 C(πr∞)

b=1/9 1.64 1.01 1.00 1.00 1.00 1.00 1.00 1.00 0.11

b=1/4 2.13 1.08 1.00 1.00 1.00 1.00 1.00 1.00 0.22

b=1 3.36 1.89 1.15 1.01 1.00 1.00 1.00 1.00 0.73

b=4 6.42 3.99 2.62 1.72 1.34 1.08 1.02 1.00 2.00

b=9 12.26 6.77 4.43 3.12 2.45 1.73 1.38 1.15 3.36

b=19 26.56 12.88 7.70 5.36 4.33 3.22 2.58 1.98 5.25

b=39 62.26 27.60 14.86 9.62 7.62 5.75 4.75 3.81 7.89

b=99 204.5 85.21 41.77 24.43 18.20 12.92 10.49 8.49 13.11
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We note that when b
h

is small (i.e. less than or equal to 1), our bounds demonstrate

an excellent performance by the constant-order policy even for lead times as small

as 10. When b
h

is moderate (i.e. less than or equal to 9), our bounds demonstrate a

similarly good performance for lead times on the order of 70. Even when b
h

is very

large, our bounds still imply non-trivial performance guarantees, e.g. the constant-

order policy is always within a factor of 4 of optimal when b = 39 and L = 100.

Combining (9) with our explicit evaluation of C(πr∞) yields tight bounds on OPT(L)

whenever (9) is close to 1. For example, for b = λ = 1, our bounds imply that

OPT(10) ∈ [.63, .73]. Given the complexity of computing OPT(L) exactly using

dynamic programming as L grows (cf. [214, 36]), and the very large values of L

required for the earlier results of [75] to apply, we believe that our bounds provide

the first window into the behavior of OPT(L) for moderate, but realistic, values of

L, b, h.

2.2.4.2 Impact of the ratio b
h

on our bounds

In this section, we discuss the dependence of our demonstrated exponential rate of

convergence γ on the ratio of the lost-sales penalty to the holding cost. Indeed, the

numerical results of Section 2.2.4.1 suggest a degradation in performance as b
h

grows,

and we now formalize this. In particular, we show that γ is non-decreasing in b
h
. Note

that by a simple scaling argument, for any fixed demand distribution D, r∞ (and thus

γ) is a function of b
h

only, as opposed to the particular values of b, h. To make this

dependence explicit, let γ(%) denote the value of γ when b
h

= % (with the dependence

on D implicit).

Lemma 1 Under the same assumptions as Theorem 2, for any fixed demand distri-

bution D, γ(%) is non-decreasing in %.

We include a proof of Lemma 1 in the appendix (Section 2.5). This result suggests

that the optimality gap of the constant-order policy may be larger when b
h

is large.
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Interestingly, this is exactly the regime in which [93] proved that order-up-to poli-

cies are nearly optimal. More formally understanding this connection remains an

interesting open question.

2.3 Proof of Theorem 2

In this section, we prove Theorem 2. Recall that π∗ denotes some fixed stationary

and convergent policy which is optimal for Problem 2, where the existence of such

a policy follows from our assumptions. Let (I∗, χ∗) denote a vector distributed as

the stationary measure of the corresponding Markov chain, and {Di, i ≥ 1} an i.i.d.

sequence of demands, distributed as D, independent of (I∗, χ∗). Let δi,j equal 1 if

i = j, and 0 otherwise. It follows from stationarity, the inventory dynamics, and a

straightforward induction that I∗ ∼ maxj=0,...,L

(∑j
i=1(χ∗L+1−i −DL+1−i) + δj,LI∗

)
.

Thus

E[I∗] = E

[
max
j=0,...,L

(
j∑
i=1

(χ∗L+1−i −DL+1−i) + δj,LI∗
)]

. (10)

The crux of our argument consists of two simple observations. First, we conclude the

following from stationarity and the manner in which the pipeline vector is updated.

Observation 1 χ∗i has the same distribution for all i ∈ [1, L], and E[χ∗i ] = E[χ∗1] for

all i ∈ [1, L].

Second, we note that the right-hand side of (10) is a jointly convex function of χ∗

and I∗, which will allow us to apply the multi-variate Jensen’s inequality (cf. [50]).

In particular, for fixed d ∈ RL, let us define

fd (χ1, . . . , χL, I)
∆
= max

j=0,...,L

(
j∑
i=1

(χL+1−i − dL+1−i) + δj,LI

)
.

Observation 2 For each fixed d ∈ RL, fd (χ1, . . . , χL, I) is a jointly convex func-

tion of (χ1, . . . , χL, I) over RL+1. Combining with Observation 1, the multi-variate

Jensen’s inequality, and the i.i.d. property of {Di, i ≥ 1}, we conclude that

E[I∗] ≥ E

[
max
j=0,...,L

(
jE[χ∗1]−

j∑
i=1

Di + δj,LE[I∗]

)]
. (11)
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We note that the observation of such a convexity in terms of the on-hand inventory and

pipeline vector is not new. Indeed, the so called L-natural-convexity of the relevant

cost-to-functions has been studied extensively (cf. [113, 138, 215, 36]), and used to

obtain both structural results and algorithms. In contrast, here we use convexity

to relate the expected inventory under an optimal policy to the expected inventory

under a particular constant-order policy, intuitively that which orders E[χ∗1] in every

period. Very similar ideas and arguments have appeared previously in the queueing

theory literature, to demonstrate the extremality (with regards to expected waiting

times) of certain queueing systems with constant service (or inter-arrival) times (cf.

[96, 82]). We also note that although a related idea appears in the proofs of [75], the

fact that they do not work in the stationary regime results in their obtaining much

weaker results, since outside of stationarity one can no longer assume that all pipeline

vector components have the same mean.

Before proceeding, let us define several additional notations. In particular, for

r ∈
[
0,E[D]

]
and L ≥ 1, let

IrL
∆
= max

j=0,...,L

(
jr −

j∑
i=1

Di

)
, CL(r)

∆
= hE[IrL] + bE[D]− br,

and rL ∈ arg min0≤r≤E[D] CL(r) denote the infimum of the set of minimizers of CL(r).

We note that IrL is distributed as the waiting time of the L-th customer in the cor-

responding GI/GI/1 queue (initially empty) with interarrival distribution D and

processing time r. We also note that for r ∈ [0,E[D]), Ir∞ is the weak limit, as

L → ∞, of IrL. Similarly, C(πr) = limL→∞CL(r), and CL(r) is monotone increasing

in L.

We now combine (11) with (6), non-negativity, and definitions to bound the opti-

mality gap of the constant-order policy.

Lemma 2 OPT(L) ≥ CL(rL), and

C(πr∞)−OPT(L) ≤ h (E [Ir∞∞ ]− E [Ir∞L ])+h (E [Ir∞L ]− E [IrLL ])− b (r∞ − rL) . (12)
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Proof. Combining (11) with the nonnegativity of E[I∗], we conclude that E[I∗] ≥

E
[
I
E[χ∗1]
L

]
. Thus by (6), OPT(L) ≥ hE

[
I
E[χ∗1]
L

]
+ bE[D]− bE[χ∗1]. Combining with (5)

and the definition of rL, we conclude that OPT(L) ≥ CL(rL). It then follows from

(7) that

C (πr∞)−OPT(L) ≤ (hE [Ir∞∞ ] + bE[D]− br∞)− (hE [IrLL ] + bE[D]− brL)

= h (E [Ir∞∞ ]− E [Ir∞L ]) + h (E [Ir∞L ]− E [IrLL ])− b (r∞ − rL) ,

completing the proof. �

We proceed by bounding the terms appearing in the right-hand side of (12) sep-

arately. We begin by recalling a classical result of [116], which uses the celebrated

Spitzer’s identity to bound the difference between the expected waiting time of the

Lth job to arrive to a single-server queue (initially empty), and the steady-state ex-

pected waiting time. As this difference is exactly E [Ir∞]−E [IrL], the result will allow

us to bound the relevant term of (12). We state Kingman’s results as customized to

our own setting, notations, and assumptions.

Lemma 3 (Theorems 1, 4, [116]) For all r ∈
[
0,E[D]

]
and L ≥ 1,

E[IrL] =
L∑
n=1

1

n
E

[(
nr −

n∑
i=1

Di

)+]
.

If in addition r < E[D], then

E[Ir∞] =
∞∑
n=1

1

n
E

[(
nr −

n∑
i=1

Di

)+]
.

Also,

E [Ir∞∞ ]− E [Ir∞L ] ≤
(
(1− γ)eϑ(L+ 1)

)−1
γL+1.

To bound the remaining term h (E [Ir∞L ]− E [IrLL ])−b (r∞ − rL), we begin by prov-

ing that r∞ ≤ rL for all L. This makes sense at an intuitive level, since rL is minimiz-

ing a function which “penalizes less” for carrying inventory. However, in spite of this

clear intuition, the proof is not entirely trivial, as one function dominating another

does not necessarily imply a similar comparison of the appropriate argmins.
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Lemma 4 r∞ ≤ rL for all L ≥ 1.

Proof. Suppose for contradiction that there exists L ∈ [1,∞) such that rL <

r∞. Note that in this case, both rL, r∞ < E[D], and thus by Lemma 3 both

E[Ir∞∞ ],E[IrL∞ ] < ∞. From definitions and the associated respective optimality of

rL, r∞, we conclude that

hE[Ir∞∞ ] + bE[D]− br∞ ≤ hE[IrL∞ ] + bE[D]− brL,

hE[IrLL ] + bE[D]− brL ≤ hE[Ir∞L ] + bE[D]− br∞.

Summing these two inequalities together implies that

E[Ir∞∞ ] + E[IrLL ] ≤ E[IrL∞ ] + E[Ir∞L ],

which, by Lemma 3, is equivalent to

∞∑
n=L+1

1

n
E

[(
nr∞ −

n∑
i=1

Di

)+]
≤

∞∑
n=L+1

1

n
E

[(
nrL −

n∑
i=1

Di

)+]
<∞. (13)

Here we note that the desired result intuitively follows from (13) and the monotonicity

of the relevant functions, i.e. the fact that x > y implies E
[
(nx−

∑n
i=1Di)

+] ≥
E
[
(ny −

∑n
i=1Di)

+]
. However, we must rule out certain subtle problems that could

potentially arise from the function E
[
(nr −

∑n
i=1Di)

+]
not being strictly monotonic

in r, and proceed as follows. Definitions, non-negativity, and the fact that rL < r∞,

together imply that(
nr∞ −

n∑
i=1

Di

)+

= I

(
nr∞ ≥

n∑
i=1

Di

)(
nr∞ −

n∑
i=1

Di

)

≥ I

(
nrL ≥

n∑
i=1

Di

)(
nr∞ −

n∑
i=1

Di

)
.

Combining with (13), we conclude that

∞∑
n=L+1

1

n
E

[
I

(
nrL ≥

n∑
i=1

Di

)(
nr∞ −

n∑
i=1

Di

)]

≤
∞∑

n=L+1

1

n
E

[
I

(
nrL ≥

n∑
i=1

Di

)(
nrL −

n∑
i=1

Di

)]
< ∞.
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It follows that

∞∑
n=L+1

1

n
E

[
I

(
nrL ≥

n∑
i=1

Di

)
(nr∞ − nrL)

]
≤ 0.

However, since by assumption nr∞ − nrL > 0, it follows from non-negativity that

∞∑
n=L+1

E

[
I

(
nrL ≥

n∑
i=1

Di

)]
= 0,

and thus P (nrL ≥
∑n

i=1 Di) = 0 for all n ≥ L+ 1. Noting that P (nrL ≥
∑n

i=1 Di) ≥

Pn (rL ≥ D1), we conclude that P (rL ≥ D1) = 0. It follows that E[IrL∞ ] = E[IrLL ] = 0,

and thus by (7), C (πrL) = CL (rL). Combining with Lemma 2, which implies that

CL (rL) ≤ C (πr∞), and the optimality of r∞, we conclude rL ∈ arg min0≤r≤E[D] C (πr).

However, as r∞ is by definition the infimum of arg min0≤r≤E[D] C (πr), the fact that

rL < r∞ thus yields a contradiction, completing the proof. �

Before proceeding, we also derive a certain critical inequality, which we will use to

show that the term h (E [Ir∞L ]− E [IrLL ]) and the term b (r∞ − rL) essentially “cancel

out”. This inequality follows from the first-order optimality conditions of the convex

optimization problem associated with r∞, but requires some care, as the relevant

functions are potentially non-differentiable, and the desired statement in principle

involves an interchange of expectation and differentiation.

Lemma 5
∑∞

n=1 P (nr∞ ≥
∑n

i=1Di) ≥ b
h
.

Proof. Since r∞ < E[D], there exists δ > 0 such that r∞+ε < E[D] for all ε ∈ [0, δ].

Let us fix any such ε > 0. The definition and associated optimality of r∞ implies that

E[πr∞ ] ≤ E[πr∞+ε]. Combining with Lemma 3 and (7), we conclude that

h

∞∑
n=1

1

n
E

[
I

(
nr∞ ≥

n∑
i=1

Di

)(
nr∞ −

n∑
i=1

Di

)]
is at most

h

∞∑
n=1

1

n
E

[
I

(
n(r∞ + ε) ≥

n∑
i=1

Di

)(
n(r∞ + ε)−

n∑
i=1

Di

)]
− bε.
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Combining with the fact that

I

(
nr∞ ≥

n∑
i=1

Di

)(
nr∞ −

n∑
i=1

Di

)
≥ I

(
n(r∞ + ε) ≥

n∑
i=1

Di

)(
nr∞ −

n∑
i=1

Di

)
,

it follows that

h
∞∑
n=1

1

n
E

[
I

(
n(r∞ + ε) ≥

n∑
i=1

Di

)(
nr∞ −

n∑
i=1

Di

)]
is at most

h

∞∑
n=1

1

n
E

[
I

(
n(r∞ + ε) ≥

n∑
i=1

Di

)(
n(r∞ + ε)−

n∑
i=1

Di

)]
− bε.

Equivalently (as all relevant sums are finite)

∞∑
n=1

P

(
n(r∞ + ε) ≥

n∑
i=1

Di

)
≥ b

h
.

As this holds for all sufficiently small ε, the only remaining step is to demonstrate

validity at ε = 0. By monotonicity, for each fixed n and all ε ∈ [0, δ],

P

(
n(r∞ + ε) ≥

n∑
i=1

Di

)
≤ P

(
n(r∞ + δ) ≥

n∑
i=1

Di

)
.

Furthermore, since r∞ + δ < E[D], for any fixed ν > 0, there exists Mν < ∞

(depending only on ν,D, r∞, δ) such that

∞∑
n=Mν+1

P

(
n(r∞ + δ) ≥

n∑
i=1

Di

)
≤ ν.

Indeed, the above follows from a standard argument (the details of which we omit) in

which each term is bounded using Chernoff’s inequality, and the terms are summed

as an infinite series (cf. [48]). Combining the above, we conclude that for all ν > 0,

and ε ∈ (0, δ],
Mν∑
n=1

P

(
n(r∞ + ε) ≥

n∑
i=1

Di

)
≥ b

h
− ν.

As P (nx ≥
∑n

i=1Di) is a right-continuous function of x (by the right-continuity of

cumulative distribution functions), it follows that
∑Mν

n=1 P (nx ≥
∑n

i=1 Di) is similarly

right-continuous in x. Right-continuity at ε = 0 follows, and we conclude that

Mν∑
n=1

P

(
nr∞ ≥

n∑
i=1

Di

)
≥ b

h
− ν.
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As this holds for all ν, letting ν ↓ 0 completes the proof. �

With Lemmas 3, 4, and 5 in hand, we now complete the proof of our main result,

Theorem 2.

Proof. [Proof of Theorem 2] Recall that the remaining term on the right-hand side

of (12) which we are yet to bound is

h (E [Ir∞L ]− E [IrLL ])− b (r∞ − rL) . (14)

We first bound E [Ir∞L ]− E [IrLL ], which by Lemma 3 equals

L∑
n=1

1

n
E

[(
nr∞ −

n∑
i=1

Di

)
I

(
nr∞ ≥

n∑
i=1

Di

)]

−
L∑
n=1

1

n
E

[(
nrL −

n∑
i=1

Di

)
I

(
nrL ≥

n∑
i=1

Di

)]
.

Combining with Lemma 4 (i.e. the fact that rL ≥ r∞), which implies that(
nrL −

n∑
i=1

Di

)
I

(
nrL ≥

n∑
i=1

Di

)
≥

(
nrL −

n∑
i=1

Di

)
I

(
nr∞ ≥

n∑
i=1

Di

)
,

we conclude that E [Ir∞L ]− E [IrLL ] is at most

L∑
n=1

1

n
E

[(
nr∞ −

n∑
i=1

Di

)
I

(
nr∞ ≥

n∑
i=1

Di

)]

−
L∑
n=1

1

n
E

[(
nrL −

n∑
i=1

Di

)
I

(
nr∞ ≥

n∑
i=1

Di

)]
,

which itself equals

− (rL − r∞)
L∑
n=1

P

(
nr∞ ≥

n∑
i=1

Di

)
.

It follows that (14) is at most

(rL − r∞)

(
b− h

L∑
n=1

P

(
nr∞ ≥

n∑
i=1

Di

))
. (15)

Note that Lemma 5 implies that

∞∑
n=L+1

P

(
nr∞ ≥

n∑
i=1

Di

)
≥ b

h
−

L∑
n=1

P

(
nr∞ ≥

n∑
i=1

Di

)
. (16)
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Combining (15) and (16), we conclude that (14) is at most

(rL − r∞)h
∞∑

n=L+1

P

(
nr∞ ≥

n∑
i=1

Di

)
.

It follows from the well-known Chernoff’s inequality (cf. [48]) that

P

(
nr∞ ≥

n∑
i=1

Di

)
≤ γn.

By summing the associated geometric series, and combining with the fact that by

definition rL ≤ E[D], we conclude that (14) is at most

h(E[D]− r∞)(1− γ)−1γL+1.

Combining the above bound for (14) with Lemma 3, plugging into (12), and applying

the fact that OPT(L) ≥ g, completes the proof. �

2.4 Conclusion

In this chapter, we proved that for a family of challenging inventory models (i.e.

lost sales models with large lead times), the optimality gap of the simple constant-

order policy converges exponentially fast to zero as the lead time grows with the

other problem parameters held fixed, and derived effective explicit bounds for this

optimality gap. This takes a large step towards answering several open questions of

[75], who recently proved the asymptotic optimality of the constant-order policy in

this setting, but whose bounds on the rate of convergence were impractical, involving a

massive prefactor and an inverse polynomial dependence on the relevant error term.

We also demonstrated that the corresponding rate of exponential decay is at least

as fast as the exponential rate of convergence of the expected waiting time in a

certain single-server queue to its steady-state value, which we proved to be monotone

in the ratio of the lost-sales penalty to the holding cost. For the special case of

exponentially distributed demand, we further computed all expressions appearing in
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our bound in closed form, and numerically evaluated these bounds, demonstrating

good performance for a wide range of parameter values.

This work leaves many interesting directions for future research. First, it would

be interesting to investigate the tightness of our exponential bound, e.g. to determine

whether our exponential rate captures the true exponential rate of convergence of the

optimality gap of the constant-order policy. Although one can come up with patho-

logical examples for which this is not true, e.g. discrete demand distributions with

probability at least b
b+h

at 0 (for which Q = 0, π0 is optimal amongst all policies for

all L ≥ 0, yet γ > 0), we conjecture that under mild assumptions γ indeed captures

the true rate of convergence of the optimality gap. On a related note, it is an open

question to bridge the gap between our own results, which hold only in the stationary

regime, and the results of [75], which also hold for the corresponding finite-horizon

problem. Although (as noted by the authors) the arguments of [75] could likely be

rederived using convexity-type (as opposed to coupling) arguments, resolving the fun-

damental question of whether (and precisely in what sense) the optimality gap decays

exponentially quickly for finite-horizon problems seems to entail overcoming several

challenging problems related to quantifying the “rate of convergence to stationarity”

of optimal policies for lost sales inventory models, i.e. both the rate at which the

finite-horizon problem “converges” to the infinite-horizon problem, and the rate at

which the Markov chains associated with stationary optimal policies for the infinite-

horizon problem converge to their steady-state behavior. Although recent progress

has been made on several related questions (cf. [95]), a complete resolution seems

beyond the reach of current techniques.

Second, it is an interesting open challenge to analyze the performance of more

sophisticated policies for lost sales inventory models, e.g. affine policies, which should

exhibit even better performance. For example, it is an open question whether the

optimality gap of a more sophisticated (but still simple and efficient) policy can be
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made to decay (exponentially) faster as the lead time grows. Another interesting

question involves the formal construction and analysis of “hybrid” algorithms, which

e.g. solve large dynamic programs when L is small and transition to using simpler

policies when L is large, or use base-stock policies when b
h

is large (relative to L)

and a constant-order policy when b
h

is small. More generally, it is an open challenge

to classify the family of all algorithms which are asymptotically optimal as the lead

time grows, and to better understand the relative performance of these policies. For

example, it is an open question whether the order-up-to policy of [93], or the dual-

balancing policy of [123], exhibit such asymptotic optimality.

Third, it would be interesting to prove that a similar phenomena occurs in more

general inventory settings. As a first step, one could extend our results to models in

which demand is not i.i.d., models with a fixed ordering cost, and models with integral-

ity constraints. In these settings, although one would expect that the constant-order

policy may no longer be asymptotically optimal, one can ask what analogous sim-

ple policy should have the asymptotic optimality property. We also believe that our

methodology can be able to prove that simple policies work well for considerably more

complex inventory models. For example, in the next chapter, we demonstrate that the

so-called tailored base-surge policy, which combines the constant-order policy with a

base-stock policy, is asymptotically optimal for the more sophisticated dual-sourcing

inventory model, a natural generalization of the lost sales model considered here (cf.

[105]).

On a final note, our results and methodology (combined with that of [75]) pro-

vide a fundamentally new approach to lost sales inventory models with positive lead

times. We believe that our approach, combined with other recent developments in

inventory theory (e.g. the efficient solution of related dynamic programs), represents

a considerable step towards making these models solvable in practice. Such progress
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may ultimately help to free researchers from having to use backlogged demand in-

ventory models as approximations to lost-sales inventory models, even when such an

approximation is not appropriate, which has been recognized as a major problem in

the inventory theory literature (cf. [24]).

2.5 Appendix

Proof. [Proof of Corollary 1] Suppose D is exponentially distributed with rate λ.

It is well-known that in this case, for all r ∈ [0, λ−1), E[Ir∞] = r2λ
2(1−rλ)

(cf. [81]). It

follows from (7) that for all r ∈ [0, λ−1),

C(πr) = hE[Ir∞] + bE[D]− br = h
r2λ

2(1− rλ)
+ bλ−1 − br.

Recall that C(πr) is a convex function of r on [0, λ−1), and note that

d

dr
C(πr) =

h

2

(
(λr − 1)−2 − 1

)
− b. (17)

As it is easily verified that the right-hand side of (17) strictly increases from −b to∞

on [0, λ−1), it follows that r∞ must be the unique solution to the equation d
dr
C(πr) = 0

on [0, λ−1). It then follows from a straightforward calculation (the details of which

we omit) that

r∞ = λ−1(1− τb,h) , C(πr∞) = λ−1(
√
h(2b+ h)− h).

As E[exp(−θD)] = λ(λ+ θ)−1 for all θ ≥ 0, we conclude that

φ(θ) = exp
(
λ−1(1− τb,h)θ

)
λ(λ+ θ)−1.

As above, it follows from another straightforward calculation (the details of which we

omit) that ϑ equals the unique solution to d
dθ
φ(θ) = 0 on [0,∞), and thus

ϑ = τb,hλ(1− τb,h)−1 , γ = γb,h = (1− τb,h) exp(τb,h).
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Finally, let us compute Q and g. Noting that Q is the b
b+h

quantile of the demand

distribution, i.e., 1− exp (−λQ) = b
b+h

, implies Q = λ−1 log(1 + bh−1). It follows that

g = h

∫ Q

0

(Q− x)λ exp (−λx) dx+ b

∫ ∞
Q

(x−Q)λ exp (−λx) dx

= (h+ b)

∫ Q

0

(Q− x)λ exp (−λx) dx+ b (E[D]−Q)

= (h+ b)
(
Q− λ−1 + λ−1 exp (−λQ)

)
+ b
(
λ−1 −Q

)
= hλ−1 log

(
1 + bh−1

)
.

Combining the above with a straightforward calculation (the details of which we omit)

completes the proof. �

Proof. [Proof of Lemma 1] Suppose b1
h1
< b2

h2
, and let

ri∞ ∈ arg min
0≤r≤E[D]

(hiE[Ir∞] + biE[D]− bir) , i = 1, 2.

From the respective optimality of r1
∞, r

2
∞, we conclude that

E[I
r1
∞∞ ] + b1

h1
E[D]− b1

h1
r1
∞ ≤ E[I

r2
∞∞ ] + b1

h1
E[D]− b1

h1
r2
∞,

E[I
r2
∞∞ ] + b2

h2
E[D]− b2

h2
r2
∞ ≤ E[I

r1
∞∞ ] + b2

h2
E[D]− b2

h2
r1
∞.

Summing these two inequalities together implies(
b2

h2

− b1

h1

)(
r2
∞ − r1

∞
)
≥ 0.

It follows that r2
∞ ≥ r1

∞, and for all θ ≥ 0,

exp(θr2
∞)E[exp(−θD)] ≥ exp(θr1

∞)E[exp(−θD)].

Combining with the definition of γ completes the proof. �
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CHAPTER III

ASYMPTOTIC OPTIMALITY OF TAILORED

BASE-SURGE POLICIES IN DUAL-SOURCING

INVENTORY SYSTEMS

This chapter is based on [203].

3.1 Introduction and literature review

Companies face the challenge of optimizing their sourcing strategies in a globalized

world, and how to best utilize different sources effectively is a billion dollar industry.

In practice, many companies (such as Caterpillar, cf. [157]), often adopt dual-sourcing

strategies for making such decisions. Under a dual-sourcing strategy, the companies

usually purchase their materials from a regular supplier at a lower cost, but they

are also able to obtain materials from an expedited supplier at a higher cost under

emergency circumstances. For example, in the summer of 2003, Amazon used FedEx

to deliver the new Harry Potter more promptly and maintained regular shipping

via UPS (cf. [115], [191]). [3] describes an example of a $10 billion high-tech U.S.

company that has two suppliers, one in Mexico and one in China. The one in Mexico

has shorter lead time but higher per-unit ordering cost; the one in China has longer

lead time (5 to 10 times longer) but lower per-unit ordering cost. The company takes

advantage of the dual-sourcing strategy to meet the demand more responsively (from

Mexico) as well as less expensively (from China).

Although dual-sourcing is attractive, and very relevant to practice, optimizing a

dual-sourcing inventory system is notoriously challenging. Such inventory systems

have been studied now for over forty years, but the structure of the optimal policy
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remains poorly understood, with the exception of when the system is consecutive, i.e.,

the lead time difference between the two sources is exactly one. More specifically, the

earliest studies of periodic review dual-sourcing inventory models include [9], [45], and

[143], which showed that base-stock (also known as order-up-to) policies are optimal

when the lead times of the two sources are zero and one respectively. [67] extended

the result to general lead time settings as long as the lead time difference remains one.

[199] showed that the optimal policy is no longer a simple base-stock policy when the

lead time difference is beyond one and the structure of the optimal policy can be quite

complex. Furthermore, it is well known that a dual-sourcing inventory system can be

regarded as a generalization of a lost-sales inventory system (cf. [183]). Indeed, the

intractability of both the dual-sourcing and lost-sales inventory models has a common

source - as the lead time grows, the state-space of the natural dynamic programming

(DP) formulation grows exponentially, rendering such techniques impractical. This

issue is typically referred to as the “curse of dimensionality” (cf. [113], [138], [214]),

and we refer the reader to [75] and [202] for a relevant discussion in the context of

lost-sales inventory models.

There is a vast literature investigating periodic review dual-sourcing inventory

models as well as their variants (cf. [134]), including: models with multiple suppliers

(cf. [209], [134], [61]); models with two suppliers, one with higher variable costs

but lower setup costs, and one with lower variable costs but higher setup costs (cf.

[66]); models with a long-term contract supplier and a spot market (cf. [207], [40]);

models for which the unmet demand must be satisfied from the expediting source

(cf. [92]); models with expediting and advance demand information (cf. [4]); models

allowing emergency orders within the regular review period (cf. [188]); models with

correlated demand (cf. [176]); models considering capacity cost and flexibility for

sourcing decisions (cf. [29]); multi-echelon models with expediting (cf. [121]); and

models with joint inventory-pricing control (cf. [76], [210]). For continuous review
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models, we refer the reader to [135], [136], [30], [185], and the references therein.

As an exact solution seems out of reach, the operations research and management

communities have instead investigated certain structural properties of the optimal

policy (cf. [91]), and exerted considerable effort towards constructing various heuristic

policies. [191] proposed the family of dual index (DI) policies, which have two base-

stock levels, one for the regular source and one for the express source, and “orders up”

to bring appropriate notions of inventory position up to these levels. [173] analyzed

the closely related class of single index (SI) policies, for which the relevant notions

of inventory position are different. Both families of policies seem to perform well in

numerical studies. [183] considered two generalized classes of policies: one with an

order-up-to structure for the express source, and one with an order-up-to structure

for the regular source. Their numerical experiment showed that such policies can

outperform DI policies. In the presence of production capacity costs, [29] studied

dual-sourcing smoothing policies, under which the order quantities from both sources

in each period are convex combinations of observed past demands. They analyzed

such polices under normally distributed demand, and their numerical results showed

that these policies performed better for higher capacity costs and longer lead time

differences (between the two sources).

A simple and natural policy that is implemented in practice, which will be the

subject of our own investigations, is the so-called Tailored Base-Surge (TBS) policy.

It was first proposed and analyzed in [3], where we note that closely related standing

order policies had been studied previously (cf. [162, 106]). Under such a TBS policy,

a constant order is placed at the regular source in each period to meet a base level

of demand, while the orders placed at the express source follow an order-up-to rule

to manage demand surges. We refer to Mini-Case 6 in [131] for more about the mo-

tivation and background of TBS policies. Note that dual-sourcing inventory systems
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in which a constant-order policy is implemented for the regular source are essential-

ly equivalent to single-sourcing inventory systems with constant returns, which have

been investigated in the literature (cf. [64], [46]).

[3] analyzed TBS policies in a continuous review model, and their focus was to

find the best TBS policy. Numerical results in [118], [163] showed that TBS policies

are comparable to DI policies, and outperform DI policies for some problem instances.

[3] conjectured that this policy performs more effectively as the lead time difference

between the two sources grows. [105] analyzed a periodic review model and studied the

performance of TBS policy. They provided an explicit bound on the performance of

TBS policies compared to the optimal one when the demand had a specific structure,

and provided numerical experiments suggesting that the performance of the TBS

policy improves as the lead time difference grows large.

However, to date there is no theoretical justification for the good behavior of TBS

policies as the lead time difference grows large, and giving a solid theoretical founda-

tion to this observed phenomena remains a major open question. We note that until

recently, a similar state of affairs existed regarding the good performance of constant-

order policies as the lead time grows large in single-source lost-sales inventory models.

However, using tools from applied probability, queueing theory, and convexity, this

phenomena was recently explained in [75] and [202], in which it was proven that a sim-

ple constant-order policy is asymptotically optimal in this setting as the lead time of

the single source grows large. The intuition here is that as the lead time grows large,

so much randomness is introduced into the system between when an order is placed

and when that order is received, that it is essentially impossible for any algorithm to

meaningfully use the state information to make significantly better decisions. Thus

a policy which ignores the state information (i.e. constant-order policy) performs

nearly as well as an optimal policy. We note that the results of [202] (i.e., chapter

2 in this thesis) further demonstrate that the optimality gap of the constant-order
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policy actually shrinks exponentially fast to zero as the lead time grows large, and

provide explicit and effective bounds even for moderate-to-small lead times.

3.1.1 Outline of chapter

The rest of the chapter is organized as follows. We formally define the dual-sourcing

problem in Section 3.2.1, and describe the TBS policy in Section 3.2.2. We state our

main result in Section 3.2.3, and prove our main result in Section 3.3. We summarize

our main contributions and propose directions for future research in Section 3.4. We

also include a technical appendix in Section 3.5.

3.2 Main results

3.2.1 Model description, problem statement and assumptions

In this section, we formally define our dual-sourcing inventory problem, closely follow-

ing the definitions given in [183]. Note that the general framework of dual-sourcing

inventory model is already introduced in Section 1.2.2 and we recall the notations

here. Let {Dt}t≥1, {D′t}t≥1 be mutually independent sequence of nonnegative inde-

pendent and identically distributed (i.i.d.) demand realizations, distributed as the

random variable (r.v.) D. Let T be the time horizon, L ≥ 1 be the deterministic lead

time of the regular source (R), and L0 ≥ 0 the deterministic lead time of the express

source (E), where L ≥ L0 +1. Let cR, cE be the unit purchase costs of the regular and

express sources, and h, b be the unit holding and backorder costs respectively, with

c , cE−cR > 0. In addition, let It denote the on-hand inventory at the start of period

t (before any orders or demands are received), and qRt (qEt ) denote the order placed

from R(E) at the beginning of period t. Note that due to the leadtimes, the order

received from R(E) in period t is qRt−L(qEt−L0
). As we will be primarily interested in

the corresponding long-run-average problem, we without loss of generality (w.l.o.g.)

suppose that the initial conditions are such that the initial inventory is 0, and no

initial orders have been placed from either R or E. As a notational convenience, we
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define qRk = 0, k = −(L−1), . . . , 0; and qEk = 0, k = −(L0−1), . . . , 0. For t = 1, . . . , T ,

recall that the events in period t are ordered as follows.

• Ordering decisions from R and E are made (i.e. qEt , q
R
t are chosen);

• New inventory qRt−L + qEt−L0
is delivered and added to the on-hand inventory;

• The demand Dt is realized, costs for period t are incurred, and the inventory is

updated.

Note that the on-hand inventory is updated according to It+1 = It+qRt−L+qEt−L0
−Dt,

and may be negative since backorder is allowed. We require that the new orders qRt

and qEt are non-negative measurable (and thus deterministic) functions of the realized

demands, inventory levels, and ordering quantities in periods 1, . . . , t − 1, as well

as the problem primitives D,L, L0, cR, cE, h, b and the current time t. We call the

corresponding family of policies admissible, and denote this family by Π. We note

that any policy π ∈ Π can in principle be implemented on such a problem of any time

horizon (even infinite). Let G(y) be the sum of the holding and backorder costs when

the inventory level equals y in the end of a time period, i.e. G(y)
∆
= hy+ +by−, where

x+ ∆
= max(x, 0), x−

∆
= max(−x, 0). Here we note that G is convex and Lipschitz, and

for x, y ∈ R,

|G(x)−G(y)| ≤ max(b, h)|x− y|, and |G(x)| ≥ min(b, h)|x|. (18)

Let Ct be the sum of the ordering, holding and backorder costs incurred in time period

t, i.e. Ct
∆
= cRq

R
t + cEq

E
t +G(It+ qRt−L+ qEt−L0

−Dt). To denote the dependence of the

cost on the policy π, we use the notation Cπ
t . Let C(π) denote the long-run average

cost incurred by a policy π, i.e. C(π)
∆
= lim supT→∞

∑T
t=1 E[Cπt ]

T
. The value of the

corresponding long-run average cost dual-sourcing inventory optimization problem is

denoted by OPT(L)
∆
= infπ∈ΠC(π).
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Before proceeding, it will be useful to review a certain well-known reduction be-

tween the setting in which L0 > 0 and the setting in which L0 = 0 (cf. [183]), where

we note that similar reductions are known to hold for many classical inventory prob-

lems with backlogging (cf. [113, 170]). Let us define the so-called expedited inventory

position at time t ≥ 1 as Ît
∆
= It +

∑t−1
k=t−L0

qEk +
∑t−L+L0

k=t−L qRk , which corresponds to

the net inventory at the start of period t plus all orders to be received in periods

t, . . . , t + L0 (which were placed before period t), and the truncated regular pipeline

at time t as the (L − L0 − 1)-dimensional vector Rt ∆
= (qRt−L+L0+1, . . . , q

R
t−1), with

Rt
k = qRt−L+L0+k, k = 1, . . . , L − L0 − 1. Let Π̂ denote those policies belonging to π

with the additional restriction that the new orders qRt , q
E
t are measurable functions of

only Ît,Rt, as well as the problem primitives D,L, L0, cR, cE, h, b and current time t.

Lemma 6 ([183] Lemma 2.1) infπ∈Π C(π) = infπ∈Π̂ C(π), i.e. one may w.l.o.g.

restrict oneself to policies belonging to Π̂.

For the remainder of the chapter, we thus consider the relevant optimization only

over policies belonging to Π̂, i.e.

inf
π∈Π̂

C(π). (19)

Recall that a stationary Markov policy is one that places orders only based on the

current state information (i.e. Ît and Rt), but independent of the current time period

t and process history. It is generally well-known that for many inventory problems

of interest, the relevant long-run-average optimization problems admit optimal sta-

tionary Markov policies, where such results typically follow from the general theory

of infinite-horizon Markov decision processes (cf. [175, 172]). Explicit sufficient con-

ditions for a rich family of inventory models to admit such an optimal policy were

given in [95], where these conditions were verified to hold for many models of inter-

est (e.g. lost-sales inventory models with positive lead times). Furthermore, it was

commented in [183] that although [95] does not explicitly verify that their conditions
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hold for the dual-sourcing problem, the relevant results still hold, and a proof was

sketched under some additional technical conditions. A proof was also sketched in

[91] under the assumption that demand is bounded. For simplicity and clarity of

exposition, in the remainder of this chapter we simply assume the existence of such

an optimal stationary Markov policy for Problem (19). Furthermore, we also assume

that of these optimal stationary policies, there exists at least one whose correspond-

ing induced Markov chain converges in distribution and in expectation to a unique

stationary measure. Again, the existence of such optimal policies is to be expected

from the basic theory of Markov chains and Markov decision processes, and we refer

the reader to [175, 172, 156, 7, 130, 155], as well as the excellent recent survey of

[5], for further details. We also note that the related work of [202] made a similar

assumption in the context of lost-sales models. Although our precise assumptions

could in principle be relaxed, e.g. to only requiring that for each ε > 0 the stated

assumptions hold for some (possibly randomized) policy which is ε-close to optimal

(as opposed to an exactly optimal deterministic policy), we do not pursue such a

generalization here for the sake of brevity and clarity of exposition.

Assumption 1 Problem (19) has an optimal stationary Markov policy for all L,

whose corresponding induced Markov chain converges in distribution and in expecta-

tion to a stationary measure when the initial inventory is 0, and no initial orders have

been placed from either R or E. Also, we require that D is non-negative and integrable,

satisfying E[D] <∞, and non-degenerate (i.e. not w.p.1 equal to its mean).

Let πL,∗ be such an optimal policy,
(
ÎL,∗,RL,∗

)
be a vector distributed as the sta-

tionary measure of the corresponding Markov Chain (with all r.v.s constructed on

a common probability space with the appropriate joint distribution, independent of

{Dt}t≥1, {D′t}t≥1), and D[t] , (D1, . . . , Dt), where D[0] denotes the empty set ∅. Let

qL,∗t = qL,∗t (ÎL,∗,RL,∗, D[t−1]) denote the quantity ordered from E by π∗ in period

t if the initial expedited inventory position equals ÎL,∗, the initial truncated regular
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pipeline equals RL,∗, and the first t−1 demands equal D[t−1]. As we will be interested

primarily in the setting that L→∞ with L0, cR, cE, b, h held fixed, we will generally

supress notationally dependence on these parameters, only making the dependence on

L explicit. For two r.v.s X, Y , let X ∼ Y denote equivalence in distribution between

X and Y . It follows from stationarity that

OPT(L) = cRE
[
RL,∗

1

]
+ cEE

[
qL,∗1

]
+ E

[
G

(
ÎL,∗ + qL,∗1 −

L0+1∑
i=1

Di

)]
; (20)

E[RL,∗
1 ] + E

[
qL,∗1

]
= E[D1]. (21)

Combining (20) and (21), and w.l.o.g. assuming cR = 0 (cf. [183]), we have

OPT(L) = c
(
E[D]− E[RL,∗

1 ]
)

+ E

[
G

(
ÎL,∗ + qL,∗1 −

L0+1∑
i=1

Di

)]
. (22)

3.2.2 TBS policy

In this section, we formally introduce the family of TBS policies, and characterize

the “best” TBS policy. As a notational convenience, let us define all empty sums

to equal zero, empty products to equal one, and I(A) denote the indicator of the

event A. A TBS policy πr,S with parameters (r, S) is defined (cf. [105]) as the policy

that places a constant order r from R in every period, and follows an order-up-to

rule from E which in each period raises the expedited inventory position to S (if it

is below S), and otherwise orders nothing. More formally, under this policy qRt = r,

and qEt = max(0, S − Ît), for all t.

Let I∞(r)
∆
= supj≥0

(
jr −

∑j
i=1 Di

)
. In that case, it follows from the results of

[105] that

C(πr,S) = c(E[D]− r) + E

[
G

(
I∞(r) + S −

L0+1∑
i=1

D′i

)]
. (23)

Note that for each r, the minimization problem infS∈RC(πr,S) is equivalent to a stan-

dard one-period newsvendor problem. Furthermore, defining F∞(r)
∆
= minS∈RC(πr,S),
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it is proven in [105] that F∞(r) is convex in r on (−∞,E[D]). Combining the above

with standard results for single-server queues (cf. [7]) and (18), we conclude that

there exists at least one pair (r∗, S∗) such that r∗ ∈ arg min0≤r≤E[D] F
∞(r) and

S∗ ∈ arg minS∈RC(πr∗,S); that this pair defines the TBS policy with least long-

run-average cost; and that this pair can be computed efficiently by solving a convex

program which is independent of the larger lead time L.

3.2.3 Main result

Our main result shows that the best TBS policy is asymptotically optimal as L→∞.

Theorem 3 Under Assumption 1, limL→∞OPT(L) = C(πr∗,S∗).

3.3 Proof of Theorem 3

3.3.1 Lower bound for the optimal cost

In this section, we prove a lower bound for OPT(L) by extending the steady-state and

convexity approach of [202] to the dual-sourcing setting. We note that here our lower

bound will involve a non-trivial optimization over measurable functions, in contrast

to the bounds used in [202] which were of a static nature. From stationarity, for each

k = 1, . . . , L− L0,

ÎL,∗ +
k−1∑
i=1

(qL,∗i +RL,∗
i −Di) + qL,∗k −

k+L0∑
i=k

Di ∼ ÎL,∗ + qL,∗1 −
L0+1∑
i=1

Di;

and for each k = 1, . . . , L− L0 − 1,

E[RL,∗
k ] = E[RL,∗

1 ]
∆
= rL.

Combining the above with (22) implies that for any α ∈ (0, 1), OPT(L) equals

c (E[D]− rL) +
1− α
1− αL

L∑
k=1

αk−1E

[
G

(
ÎL,∗ + qL,∗1 −

L0+1∑
i=1

Di

)]
≥ c (E[D]− rL)

+(1− α)

L−L0∑
k=1

αk−1E

[
G

(
ÎL,∗ +

k−1∑
i=1

(qL,∗i +RL,∗
i −Di) + qL,∗k −

k+L0∑
i=k

Di

)]
.
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Here we have introduced the discount factor α to implement the so-called “vanishing

discount factor” approach to analyzing infinite-horizon Markov decision processes

(MDP) (cf. [95]), which will allow for a simpler analysis when we pass to the limit as

L → ∞. Indeed, this discount factor will help us to analyze the lower bound which

arises when we apply Jensen’s inequality, as this lower bound will itself involve the

solution to a non-trivial multi-stage dynamic optimization problem. We note that

the lower bound which arose when related techniques were applied to single-sourcing

systems with lost sales in [202] only involved a static optimization problem, and thus

no such discount factor was introduced.

It then follows from the independence structure of the relevant r.v.s, and the

measurability properties of qL,∗k , that for each k = 1, . . . , L− L0,

E
[
ÎL,∗ +

k−1∑
i=1

(qL,∗i +RL,∗
i −Di) + qL,∗k −

k+L0∑
i=k

Di

∣∣∣∣D[k+L0]

]
equals

E[ÎL,∗] +
k−1∑
i=1

(E[qL,∗i |D[i−1]] + rL −Di) + E[qL,∗k |D[k−1]]−
k+L0∑
i=k

Di.

Further combining with the convexity of G and Jensen’s inequality for conditional

expectations (which applies due to Assumption 1), we obtain the following result.

Proposition 1 For any α ∈ (0, 1) and L ≥ L0 + 1, OPT(L) − c (E[D]− rL) is at

least

(1− α)

L−L0∑
k=1

αk−1E

[
G

(
E[ÎL,∗]− (L0 + 1)rL +

k−1∑
i=1

(
E[qL,∗i |D[i−1]]− (Di − rL)

)
+ E[qL,∗k |D[k−1]]−

k+L0∑
i=k

(Di − rL)

)]
.

(24)

Note that (24) is the discounted cost incurred (during periods L0 + 1, . . . , L) by

the policy ordering E[qL,∗i |D[i−1]] in period i, of a single-sourcing L-period backlog

inventory problem with unit holding cost h, backorder cost b, zero ordering cost,
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discount factor α, i.i.d. demand distributed as D− rL (which we note can be positive

or negative), lead time L0, and initial inventory position (initial net inventory plus

all entries of the initial pipeline vector) E[ÎL,∗]− (L0 + 1)rL (cf. [113]), normalized by

(1 − α). Such models, and their optimal policies, have been studied in-depth in the

literature (cf. [113, 213, 64]), and are well-understood (especially for the case of non-

negative demand, cf. [213]). Let Π̂ denote the family of all feasible non-anticipative

policies for the aforementioned inventory problem (as it is typically defined, cf. [213]),

i.e. those policies for which new orders are non-negative measurable functions of the

realized demands, inventory levels, and ordering quantities in periods 1, . . . , t− 1, as

well as the current time t. For π ∈ Π̂, initial inventory position x ∈ R, r ∈ R, and

i ≥ 1, let Cπ
i (r, x) denote the cost incurred by policy π in the aforementioned inventory

problem in period i + L0, if the demand in each period is i.i.d. distributed as D − r

(with the leadtime L0 and costs b, h as above). For x ∈ R, r ∈ R, α ∈ (0, 1), n ≥ 1,

let us define

V n
α (r, x)

∆
= inf

π∈Π̂
E

[
n∑
i=1

αi−1Cπ
i (r, x)

]
; (25)

and

V ∞α (r, x)
∆
= inf

π∈Π̂
E

[
∞∑
i=1

αi−1Cπ
i (r, x)

]
. (26)

As a notational convenience, we define

V 0
α (r, x) = 0, V n

α (r,−∞)
∆
= inf

x∈R
V n
α (r, x), V ∞α (r,−∞)

∆
= inf

x∈R
V ∞α (r, x).

Then combining the above, we derive the following lower bound for OPT(L).

Lemma 7 Under Assumption 1, for all α ∈ (0, 1) and L ≥ L0 + 1,

OPT(L) ≥ c(E[D]− rL) + (1− α)V L−L0
α (rL,−∞). (27)

The remainder of the proof involves demonstrating a certain interchange-of-limit

results for the right-hand-side (r.h.s.) of (27). We now briefly describe the asso-

ciated logic informally, and formalize all arguments in the next section. Let r∞
∆
=
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lim supL→∞ rL. Examining the r.h.s. of (27) along a subsequence on which rL con-

verges to r∞ and taking limits, one shows that for any fixed α ∈ (0, 1),

lim
L→∞

OPT (L) ≥ c(E[D]− r∞) + (1− α)V ∞α (r∞,−∞).

One then shows that the infinite-horizon problem associated with V ∞α (r∞,−∞) has

an optimal policy which is stationary, Markov, and of order-up-to type, say to level

S∞α (r∞). It follows that for any fixed α ∈ (0, 1), V ∞α (r∞,−∞) is the expected infinite-

horizon discounted cost incurred by the TBS policy with parameters r∞, S
∞
α (r∞), but

possibly initialized not according to the stationary distribution of the associated inven-

tory process, but in the state which minimizes this discounted expected infinite-horizon

cost. One then appropriately bounds the difference in cost incurred under these two

different initializations uniformly in α. Finally, letting α ↑ 1 will demonstrate that

as L → ∞, there exist TBS policies performing arbitrarily close to optimal. This

will imply asymptotic optimality of the best TBS policy (with parameters r∗, S∗),

completing the proof of our main result Theorem 3.

3.3.2 Interchange of limits and proof of Theorem 3

We now complete the proof of Theorem 3 by formalizing the interchange-of-limits

argument sketched at the end of Section 3.3.1. Such interchange arguments are s-

tandard in the literature on Markov decision processes and infinite-horizon inventory

control problems (cf. [99, 175, 172, 64, 59, 95]). We note that the somewhat non-

standard aspect of the interchange of limits which we must demonstrate is that the

demand in each period is distributed as D − rL, and thus may be negative. As such,

the original arguments showing such an interchange for the analogous inventory mod-

els when demand is non-negative (cf. [99]) do not directly apply. The possibility of

negative demand also makes the verification of the conditions of general theorems

which validate such an interchange (cf. [175, 172]) somewhat involved, even when

these theorems are customized to the inventory setting (cf. [147, 95]). We note that
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the verification of closely related interchange-of-limits results have arisen recently in

the context of analyzing inventory systems with returns, which reduce to standard

inventory systems where demand can be positive or negative (cf. [64]). However,

those results (which verify the technical conditions of [175]) do not seem to extend

immediately to our case, and further seem to require that the demand and ordering

quantities take integer values. In light of the above, and for the sake of clarity and

completeness, we now provide a self-contained proof of the desired interchange, which

(combined with Lemma 7) will complete the proof of our main result Theorem 3.

We begin by stating some well-known properties of V n
α (r, x) and V ∞α (r, x), which

follow from the results of [105], [113] and [170]. We note that although in some cases

the proofs there are only explicitly given for the case of non-negative demand, as

noted in [88] and [64], the arguments carry over to the general case (in which demand

may be negative) with only trivial modification.

Lemma 8 ([105, 170]) For all α ∈ (0, 1), r, x ∈ R, and n ≥ 2,

V n
α (r, x) = inf

y≥x

(
E

[
G
(
y −

L0+n∑
k=n

(Dk − r)
)]

+ αE
[
V n−1
α

(
r, y − (DL0+n − r)

)])
.

Furthermore, V n
α (r, x) is: a convex (and thus also continuous) function of x on R

for each fixed n, r; a continuous function of r on R for each fixed n, x; an increasing

function of x on R for each fixed n, r; and an increasing function of n on Z+ for each

fixed x, r. In addition, the infinite-horizon problem stated in the r.h.s. of (26) admits

an optimal stationary Markov policy.

In preparation for demonstrating the desired interchange-of-limits, we now appro-

priately bound the optimal value, and set of minimizers, of V n
α (r, x), uniformly in n.

For α ∈ (0, 1) and r ∈ R, let S
n

α(r) denote the supremum of the set of minimizers

(with respect to x) of V n
α (r, x), where we note that a straightforward contradiction

demonstrates that S
n

α(r) ∈ (−∞,∞) for each α, n, r; and it follows from Lemma 8
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that V n
α (r,−∞) = V n

α

(
r, S

n

α(r)
)
. Then we prove the following uniform bounds, and

defer the proof to the appendix (Section 3.5).

Lemma 9 For α ∈ (0, 1) and r, x ∈ R, supn≥1 V
n
α (r, x) < ∞. Also, for each α ∈

(0, 1), there exist finite-valued strictly positive functions (of r) Sα(r), εα(r), which are

continuous (in r) on R, with the following properties. For all n ≥ 1: |Snα(r)| < Sα(r);

and for all y /∈ [−Sα(r), Sα(r)],

E

[
G
(
y −

L0+n∑
k=n

(Dk − r)
)]

+ αE
[
V n−1
α

(
r, y − (DL0+n − r)

)]
≥ V n

α

(
r, S

n

α(r)
)
) + εα(r).

From Lemma 9 we derive the following two corollaries, whose proofs we defer to

the appendix (Section 3.5).

Corollary 2 For α ∈ (0, 1),

lim
L→∞

OPT (L) ≥ c(E[D]− r∞) + (1− α) lim
L→∞

V L
α

(
r∞,−2Sα(r∞)

)
.

Corollary 3 For all α ∈ (0, 1) and r, x ∈ R, V ∞α (r, x) = limn→∞ V
n
α (r, x). Fur-

thermore, for all α ∈ (0, 1) and r ∈ R, V ∞α (r, x) is a finite-valued, convex, and

non-decreasing function of x on R. Letting S∞α (r) denote the supremum of the set of

minimizers (in x) of V ∞α (r, x), it holds that |S∞α (r)| ≤ Sα(r), and the infinite-horizon

problem stated in the r.h.s. of (26) admits an optimal stationary base-stock policy,

with order-up-to level S∞α (r).

We now formally define the Markov process representing the inventory position

process under such an optimal stationary base-stock policy. Let Sα
∆
= S∞α (r∞), and

{Xα
k , k ≥ 1} denote the following Markov process. Xα

1 equals Sα. For all k ≥ 1,

Xα
k+1 = max

(
Xα
k + r∞ − Dk, Sα

)
. Let Wk

∆
=
∑k

j=1(r∞ − Dj), Zk
∆
= maxi∈[0,k−1]Wi,

Z∞
∆
= supi≥0Wi, Mk

∆
= E[Zk], M∞

∆
= E[Z∞]. It follows from the well-known analysis

of the single-server queue using Lindley’s recursion (cf. [7]) that Xα
k ∼ Sα + Zk; and

Xα
∞

∆
= limk→∞X

α
k is a well-defined r.v. distributed as Sα + Z∞. Combining these

definitions with Lemma 8 and Corollaries 2 and 3, we conclude the following.

57



Corollary 4 For α ∈ (0, 1),

lim
L→∞

OPT (L) ≥ c(E[D]− r∞) + (1− α)
∞∑
k=1

αk−1E
[
G
(
Sα + Zk −

L0+1∑
i=1

(D′i − r∞)
)]
.

We now briefly review some useful (and generally well-known) properties of Zk,

which we will use to complete the proof of our main results, and defer the proof to

the appendix (Section 3.5).

Lemma 10 If r∞ < E[D], then M∞ < ∞. Also, there exists θ∗ > 0 such that

γ∗
∆
= E

[
exp

(
θ∗(r∞ −D)

)]
∈ (0, 1), and M∞ −Mn ≤

(
θ∗(1− γ∗)

)−1
γn∗ for all n ≥ 2.

Alternatively, if r∞ ≥ E[D], then Z∞ is almost surely infinite and M∞ =∞. In both

cases, {Mk, k ≥ 1} is strictly increasing, M∞ = limk→∞Mk, and for all i ≥ j ≥ 1,

Mi−Mj =
∑i−1

k=j k
−1E[max(0,Wk)]. Also, if r∞ = E[D], there exists a strictly positive

finite constant C∗ (depending only on D) such that for all i ≥ j + 1 ≥ 3, Mi −Mj ≥

C∗
(
i

1
2 − j 1

2

)
.

We now combine Corollary 4 with Lemma 10 to complete the proof of our main

result.

Proof. [Proof of Theorem 3] First, we prove that r∞ < E[D], which we will need

to demonstrate the desired uniform convergence in α. We note that this will require

somewhat subtle arguing, since we must show that otherwise (i.e. if r∞ = E[D])

the cost associated with the relevant inventory process grows too quickly (as α ↑ 1)

even when initialized to Sα, which may be converging to −∞ as α ↑ 1. Suppose for

contradiction that r∞ = E[D]. In this case, it follows from Corollary 4, (18), and

Jensen’s inequality that for all α ∈ (0, 1),

lim
L→∞

OPT (L) ≥ min(b, h) inf
S∈R

∞∑
k=1

(1− α)αk−1
∣∣S +Mk

∣∣. (28)

Let Gα denote a geometrically distributed r.v. with success probability 1 − α, in-

dependent of {Zk, k ≥ 1}, and mα
∆
= d− 1

log2(α)
e denote a median of Gα. Note that
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the memoryless property implies P
(
Gα ≥ 2mα

)
= 1

4
, and that we may interpret the

r.h.s. of (28) as an appropriate single-stage newsvendor problem (with ordering level

S and demand distributed as MGα). We conclude from Lemma 10, well-known re-

sults for the newsvendor problem (cf. [213]), and the memoryless property that for

all sufficiently large α ∈ (0, 1), limL→∞OPT (L) is at least

min(b, h)E
[∣∣Mmα−MGα

∣∣] ≥ 1

4
min(b, h)

(
M2mα−Mmα

)
≥ 1

4
min(b, h)C∗

(
(2mα)

1
2−m

1
2
α

)
.

As it is easily verified that limα↑1
(
(2mα)

1
2−m

1
2
α

)
=∞, we conclude that if r∞ = E[D],

then limL→∞OPT (L) = ∞. However, in this case a contradiction is easily reached

by considering the TBS policy π0,0, which incurs long-run average cost C(π0,0) < ∞

for all L ≥ L0 + 1, completing the proof that r∞ < E[D].

In that case, it follows from (23) that for all α ∈ (0, 1), C(πr∞,Sα+(L0+1)r∞) equals

c(E[D]− r∞) + E

[
G

(
Sα + Z∞ + (L0 + 1)r∞ −

L0+1∑
i=1

D′i

)]

= c(E[D]− r∞) + (1− α)
∞∑
k=1

αk−1E

[
G

(
Sα + Z∞ −

L0+1∑
i=1

(D′i − r∞)

)]
.

Combining with Corollary 4, Lemma 10, and (18), we conclude that for all α ∈ (0, 1),

C(πr∗,S∗)− limL→∞OPT (L) is at most

C(πr∗,S∗)− lim
L→∞

OPT (L) ≥ (1− α)
∞∑
k=1

αk−1

(
E

[
G

(
Sα + Z∞ −

L0+1∑
i=1

(D′i − r∞)

)]

− E

[
G

(
Sα + Zk −

L0+1∑
i=1

(D′i − r∞)

)])
.

(29)

Note that (29) is at most

max(b, h)(1− α)

(
M∞ +

∞∑
k=1

αk−1
(
θ∗(1− γ∗)

)−1
γk∗

)
= max(b, h)

(
(1− α)M∞ + γ∗

(
θ∗(1− γ∗)

)−1 1− α
1− γ∗α

)
, (30)

which converges to 0 as α ↑ 1 completes the proof. �
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3.4 Conclusion

In this chapter, we proved that when the lead time of the express source is held fixed,

a simple TBS policy is asymptotically optimal for the dual-sourcing inventory prob-

lem as the lead time of the regular source grows large. Our results provide a solid

theoretical foundation for several conjectures and numerical experiments appearing

previously in the literature regarding the good empirical performance of such poli-

cies. Furthermore, the simple TBS policy performs nearly optimally exactly when

standard DP-based methodologies become intractable due to the curse of dimension-

ality. In addition, since the “best” TBS policy can be computed by solving a convex

program that does not depend on the lead time of the regular source, and is easy to

implement, our results lead directly to very efficient algorithms with asymptotically

optimal performance guarantees. Perhaps most importantly, since many companies

are already implementing such TBS policies, our results provide strong theoretical

support for the widespread use of TBS policies in practice.

This work leaves many interesting directions for future research. First, it would

be interesting to investigate the rate of convergence to optimality of TBS policies as

the lead time grows large, especially in light of their use in practical settings. Such an

analysis would seem to involve estimates for the rate of convergence of finite horizon

inventory optimization problems to their infinite horizon counterparts, which has been

previously investigated for related systems (cf. [89, 90]). We do note that a detailed

analysis of the proofs of our main results in principle yields a computable bound for

this rate. For example, one can minimize the r.h.s. of (27) over rL ∈
[
0,E[D]

]
,

and maximize over α ∈ (0, 1), to yield a (relatively) easy-to-compute bound for

each L ≥ L0 + 1 (which can be further improved by more carefully optimizing our

approach and bounds for this purpose). However, a more precise theoretical analysis

of the performance of TBS policies for small-to-moderate lead times, analogous to

the exponential rate of convergence to optimality of the constant-order policy for
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lost-sales inventory models identified in [202] (i.e., chapter 2 in this thesis), seems to

require fundamentally new ideas.

Second, and related to the aforementioned discussion as regards the rate of con-

vergence to optimality of TBS policies, it would be interesting to identify other more

sophisticated algorithms which perform better for small-to-moderate lead times, yet

remain efficient to implement. Indeed, it remains an interesting open question to

better understand the trade-off between algorithmic run-time and acheivable per-

formance guarantees in this context, i.e. how complex an algorithm is required to

“exploit” the weak correlations which persist even as the lead time grows large. In

the context of dual-sourcing, potential algorithms here include: the so-called dual-

sourcing smoothing policies recently studied in [29]; affine policies more generally (cf.

[14], [20]), of which dual-sourcing smoothing policies are a special case; the single in-

dex and dual index policies discussed earlier; or the dual-balancing policies analyzed

in [123]. On a related note, it would be quite interesting to analyze “hybrid” algo-

rithms, which could e.g. solve a large dynamic program when the lead time is small,

and gradually transition to using simpler heuristics as the lead time grows large; or

combine different heuristics depending on the specific problem parameters.

On a final note, combined with the results of [75] and [202], our methodology

lays the foundations for a completely new approach to analyzing inventory models

with large lead times. So far, this approach has been successful in yielding key

insights and efficient algorithms for two settings previously believed intractable: lost

sales models with large lead times, and dual-sourcing models with large lead time

gap. We believe that our techniques have the potential to make similar progress

on many other difficult supply chain optimization problems of practical relevance

in which there is a lag between when policy decisions are made and when those

decisions are implemented. This includes both more realistic variants of the lost-

sales and dual-sourcing models considered so far (e.g. models with distributional
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dependencies, parameter uncertainty, complex network structure, and more accurate

modeling of costs), as well as fundamentally different models (e.g. inventory systems

with remanufacturing when the manufactured and remanufactured lead times differ,

cf. [211]; multi-echelon systems with lost sales and positive lead times, cf. [94];

or models with perishable goods). In closing, we note that our approach can more

generally be viewed as a methodology to formalize the notion that when there is a

high level of uncertainty and randomness in one’s supply chain, even simple policies

perform nearly as well as very sophisticated policies, since no algorithm can “beat the

noise”. Exploring this concept from a broader perspective may be fruitful in yielding

novel algorithms and insights for a multitude of problems in operations management

and operations research.

3.5 Appendix

Proof. [Proof of Lemma 9] By evaluating the policy which never orders, we conclude

that for all α ∈ (0, 1), r, x ∈ R, supn≥1 V
n
α (r, x) is at most

E

[
∞∑
i=1

αi−1G
(
x−

i∑
j=1

(Dj − r)−
L0+i∑
k=i+1

(Dk − r)
)]
,

which by (18) is itself bounded by

max(b, h)(|x|+|r|+E[D])
∞∑
i=1

(i+L0)αi−1 ≤ 2(L0+1) max(b, h)(|x|+|r|+E[D])(1−α)−2.

Combining with (18) and a straightforward calculation, it follows that for any r, y ∈ R

such that |y| ≥ Sα(r)
∆
= 4(L0 + 1)max(b,h)

min(b,h)
(|r| + E[D])(1 − α)−2, and all n ≥ 1, one

has that E[G
(
y −

∑L0+n
k=n (Dk − r)

)
] − V n

α (r, 0) ≥ εα(r)
∆
= (L0 + 1) max(b, h)E[D].

Combining the above completes the proof. �

Proof. [Proof of Corollary 2] Let {ik, k ≥ 1} be a strictly increasing subsequence of

positive numbers such that i1 ≥ L0 + 1, and limk→∞ rik = r∞ (existence follows from

the definition of lim sup). It follows from Lemmas 7, 8, and 9 that for all k ≥ 1,

OPT (ik) ≥ c(E[D]− rik) + (1− α)V ik−L0
α

(
rik ,−Sα(rik)

)
.
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It follows from the continuity (in r) of Sα(r), and monotonicity (in x) of V n
α (r, x),

that there exists k0 <∞ such that for all k ≥ k0,

OPT (ik) ≥ c(E[D]− rik) + (1− α)V ik−L0
α

(
rik ,−2Sα(r∞)

)
.

It then follows from the monotonicity (in n) of V n
α (r, x) that for all k ≥ k0 and

L ≤ ik − L0,

OPT (ik) ≥ c(E[D]− rik) + (1− α)V L
α

(
rik ,−2Sα(r∞)

)
.

Fixing L ≥ 1, letting k →∞, and applying the continuity (in r) of V n
α (r, x) completes

the proof. �

Proof. [Proof of Corollary 3] We first demonstrate that V ∞α (r, x) = limn→∞ V
n
α (r, x).

The existence of the corresponding limit follows from the monotonicity (in n) guar-

anteed by Lemma 8. That V ∞α (r, x) ≥ limn→∞ V
n
α (r, x) for all α ∈ (0, 1) and r, x ∈ R

follows immediately from the definitions of the associated optimization problems. To

prove the other direction, we note that for any fixed n ≥ 1, it follows from the convex-

ity ensured by Lemma 8 that there exists an optimal policy π for the problem stated

in the r.h.s. of (25) of base-stock form, with order-up-to levels C1, . . . , Cn (i.e. order

up to level Ci in period i if the pre-order inventory level is below Ci, otherwise order

nothing). Furthermore, it follows from Lemma 9 that maxi=1,...,n |Ci| ≤ Sα(r). Now,

consider the policy π′ that orders up to level Ci in period i if the pre-order inventory

level is below Ci and otherwise orders nothing in periods i = 1, . . . , n; and orders

nothing in all remaining periods, irregardless of the inventory level. Note that under

policy π′, w.p.1 the absolute value of the inventory position at the end of period i

is at most |x| + Sα(r) + i|r| +
∑i

k=1Dk. It then follows from an argument nearly

identical to that presented in our proof of Lemma 9 that

E

[
∞∑
i=1

αi−1Cπ′

i (r, x)

]
−V n

α (r, x) ≤ max(b, h)(Sα(r)+|x|+|r|+E[D])
∞∑

i=n+1

(i+L0)αi−1.

(31)
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That V ∞α (r, x) ≤ limn→∞ V
n
α (r, x) then follows from the fact that the r.h.s. of (31)

converges to 0 as n → ∞. The remainder of the corollary follows by combining the

above with Lemma 9, and applying the fact that convexity and monotonicity are

preserved under limits. �

Proof. [Proof of Lemma 10] The entirety of the lemma, barring the lower bound

involving C∗, follows by combining generally well-known results for generating func-

tions, large deviations, single-server queues, and recurrent random walks (cf. [186,

116, 65, 7, 202]), and we omit the details. We now prove the lower bound involv-

ing C∗, which we note would follow from well-known weak-convergence results under

additional assumptions on D (e.g. finite variance, cf. [55]). Let {A+
i , i ≥ 1} de-

note an i.i.d. sequence of r.v.s distributed as E[D] − D conditioned on the event

{E[D] > D}, and {A−i , i ≥ 1} denote an i.i.d. sequence of r.v.s distributed as

D − E[D] conditioned on the event {D ≥ E[D]}. Let Bk denote a binomially dis-

tributed r.v. with parameters k, p
∆
= P({E[D] > D}), independent of {A+

i , i ≥ 1} and

{A−i , i ≥ 1}. Note that we may construct Wk on an appropriate probability space such

that Wk =
∑Bk

i=1A
+
i −

∑k−Bk
i=1 A−i , in which case (by non-negativity) E[max(0,Wk)] is

at least

E
[ Bk∑
i=1

A+
i −

k−Bk∑
i=1

A−i

∣∣∣∣{Bk ≥ pk +
(
p(1− p)k

) 1
2

}]
P
(

Bk − pk(
p(1− p)k

) 1
2

≥ 1

)
.

Furthermore, since pE[A+
1 ] = (1 − p)E[A−1 ], it follows from non-negativity and inde-

pendence that

E
[ Bk∑
i=1

A+
i −

k−Bk∑
i=1

A−i

∣∣∣∣{Bk ≥ pk +
(
p(1− p)k

) 1
2

}]
≥

(
pk +

(
p(1− p)k

) 1
2
)
E[A+

1 ]−
(
(1− p)k −

(
p(1− p)k

) 1
2
)
E[A−1 ]

=
(
p(1− p)k

) 1
2 (E[A+

1 ] + E[A−1 ]).

Combining the above with the central limit theorem, we conclude that

lim inf
k→∞

E[max(0,Wk)]

k
1
2

≥
(
p(1−p)

) 1
2 (E[A+

1 ]+E[A−1 ]) lim inf
k→∞

P
(

Bk − pk(
p(1− p)k

) 1
2

≥ 1

)
> 0.
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It then follows from the strict positivity of E[max(0,Wk)] for all k ≥ 2 that there

exists C ′ > 0 such that E[max(0,Wk)] ≥ C ′k
1
2 for all k ≥ 2. Thus for all i ≥ j ≥ 2,

Mi −Mj =
i−1∑
k=j

k−1E[max(0,Wk)]

≥ C ′
i−1∑
k=j

k−
1
2 ≥ C ′

∫ i

j

x−
1
2dx = 2C ′

(
i

1
2 − j

1
2

)
.

Combining the above completes the proof. �
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CHAPTER IV

TIME (IN)CONSISTENCY OF MULTI-STAGE

DISTRIBUTIONALLY ROBUST INVENTORY MODELS

WITH MOMENT CONSTRAINTS

This chapter is based on [204].

4.1 Introduction and literature review

The news vendor problem, used to analyze the trade-offs associated with stocking an

inventory, has its origin in a seminal paper by [53]. In its classical formulation, the

problem is stated as a minimization of the expected value of the relevant ordering,

backorder, and holding costs. Such a formulation requires a complete specification of

the probability distribution of the underlying demand process. However, in applica-

tions knowledge of the exact distribution of the demand process is rarely available.

This motivates the study of minimax type (i.e. distributionally robust) formulations,

where minimization is performed with respect to a worst-case distribution from some

family of potential distributions. In a pioneering paper [168] gave an elegant solution

for the minimax news vendor problem when only the first and second order moments

of the demand distribution are known. His work has led to considerable follow-up

work (cf. [71, 72, 69, 73, 151, 208, 70, 148, 37, 174, 85, 212]). For a more general

overview of risk analysis for news vendor and inventory models we can refer, e.g., to

[2] and [44]. We also note that a distributionally robust minimax approach is not the

only way to model such uncertainty, and that there is a considerable literature on al-

ternative approaches such as the robust optimization (cf. [114, 14, 22, 12, 20, 33, 68])

and Bayesian (cf. [169, 171, 127, 125, 117]) paradigms.
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In practice an inventory must often be managed over some time horizon, and

the classical news vendor problem was naturally extended to the multistage setting,

for which there is also a considerable literature (see, e.g., [213] and the references

therein). Recently, distributionally robust variants of such multistage problems have

begun to receive attention in the literature (cf. [73, 2, 43, 174, 180, 117]). It has

been observed that such multistage distributionally robust optimization problems can

exhibit a subtle phenomenon known as time inconsistency. Over the years various

concepts of time consistency have been discussed in the economics literature, in the

context of rational decision making. This can be traced back at least to the work of

[187] - for a more recent overview we refer the reader to the recent survey by [57], and

the references therein. Questions of time consistency have also attracted attention in

the mathematical finance literature, in the context of assessing the risk and value of

investments over time, and have played an important role in the associated theory

of coherent risk measures (cf. [196, 6, 161, 42, 165]). These concepts have also been

studied from the perspective of robust control across various academic communities

(cf. [86, 103, 145, 79, 32, 200]). Recently, these concepts have also begun to receive

attention in the setting of inventory control (cf. [38, 39, 205]).

In this chapter, we will consider questions of time (in)consistency in the context of

managing an inventory over time. We will give a formal definition of time consistency,

which is naturally suited to our framework, in Section 4.4. At this point we would

like to give the following intuition. A multistage distributionally robust optimization

problem can be viewed in two ways. In one formulation, the policy maker is allowed to

recompute his/her policy choice after each stage (we will refer to this as the multistage-

dynamic formulation), thus taking prior realizations of demand into consideration

when performing the relevant minimax calculations at later stages. In that case it

follows from known results that there exists a base-stock policy which is optimal. In

the second formulation, the policy maker is not allowed to recompute his/her policy
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after each stage (we will refer to this as multistage-static formulation), in which case

far less is known. If these two formulations have a common optimal policy, i.e. the

policy maker would be content with the given policy whether or not he/she has the

power to recompute after each stage, we say that the policy is time consistent, and the

problem is weakly time consistent. If every optimal policy for the multistage-static

formulation is time consistent, i.e. it is impossible to devise a policy which is optimal

at time zero yet suboptimal at a later time, we say that the problem is strongly time

consistent. Such a property is desirable from a policy perspective, as it ensures that

previously agreed upon policy decisions remain rational when the policy is actually

implemented, possibly at a later time.

Within the optimization and inventory control communities, much of the work on

time consistency restricts its discussion of optimal policies to the setting in which the

family of distributions from which nature can select satisfies a certain factorization

property called rectangularity, which endows the associated minimax problem with a

dynamic programming structure. Outside of this setting, most of the literature focuses

on discussing and demonstrating hardness of the underlying optimization problems

(cf. [103, 145, 200]). We note that this is in spite of the fact that previous literature

has discussed the importance and relevance of such non-decomposable formulations

from a modeling perspective (cf. [103]).

4.1.1 Outline of chapter

The structure of the rest of the chapter is organized as follows. In Section 4.2, we

review the single-stage classical and distributionally robust formulations and their

properties, as well as Scarf’s solution to the single-stage distributionally robust for-

mulation and various generalizations. In Section 4.3, we discuss the extension to

the multi-stage setting, formally define the multistage-static and multistage-dynamic

distributionally robust formulations, and review the notion of rectangularity and its
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relation to both our own formulations and robust Markov Decision Processes (MDP).

In Section 4.4, we formally define time consistency, prove our sufficient conditions for

weak and strong time consistency, and present several illustrative examples showing

that here the question of time consistency can be quite subtle. In Section 4.5, we

provide closing remarks and directions for future research. We include a technical

appendix in Section 4.6.

4.2 Single-stage formulation

In this section we review both the classical and distributionally robust single-stage

formulation, including some relevant results of [168] and [142].

4.2.1 Classical formulation

Consider the following classical formulation of the news vendor problem:

inf
x≥0

E[Ψ(x,D)], (32)

where

Ψ(x, d) := cx+ b[d− x]+ + h[x− d]+, (33)

and c, b, h are the ordering, backorder penalty, and holding costs, per unit, respective-

ly. Unless stated otherwise we assume that b > c > 0 and h ≥ 0. The expectation is

taken with respect to the probability distribution of the demand D, which is modeled

as a random variable having nonnegative support. It is well known that this problem

has the closed form solution x̄ = F−1
(
b−c
b+h

)
, where F (·) is the cumulative distribution

function (cdf) of the demand D, and F−1 is its inverse. Of course, it is assumed here

that the probability distribution, i.e. the cdf F , is completely specified.

4.2.2 Distributionally robust formulation

Suppose now that the probability distribution of the demand D is not fully specified,

but instead assumed to be a member of a family of distributions M. Then we instead
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consider the following distributionally robust formulation:

inf
x≥0

ψ(x), (34)

where

ψ(x) := sup
Q∈M

EQ[Ψ(x,D)], (35)

and the notation EQ emphasizes that the expectation is taken with respect to the

distribution Q of the demand D.

We now introduce some additional notations to describe certain families of dis-

tributions. For a probability measure (distribution) Q, we let supp(Q) denote the

support of the measure, i.e. the smallest closed set A ⊆ R such that Q(A) = 1.

With a slight abuse of notation, for a random variable Z, we also let supp(Z) denote

the support of the associated probability measure. For a given closed (and possibly

unbounded) subset I ⊆ R, we let P(I) denote the set of probability distributions Q

such that supp(Q) ⊆ I. Although we will be primarily interested in the setting that

I ⊆ R+ (i.e. demand is nonnegative), it will sometimes be convenient for us to con-

sider more general families of demand distributions. By δa we denote the probability

measure of mass one at a ∈ R.

In this chapter, we will study families of distributions satisfying moment con-

straints of the form

M :=
{
Q ∈ P(I) : EQ[D] = µ,EQ[D2] = µ2 + σ2

}
. (36)

Unless stated otherwise, it will be assumed that M is indeed of the form (36), and

is nonempty. We let α denote the left-endpoint of I (or −∞ if I is unbounded from

below), and let β denote the right-endpoint of I (or +∞ if I is unbounded from

above); i.e., I = [α, β]. It may be easily verified that the set M is nonempty iff the

following conditions hold:

µ ∈ [α, β] and σ2 ≤ (β − µ)(µ− α), (37)
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which will be assumed throughout. (We assume here that 0×∞ = 0, so that if, e.g.,

µ = α and β = +∞, then the right hand side of (37) is 0.)

Furthermore, one can also identify conditions under which M is a singleton.

Observation 3 If −∞ < α < β < +∞, µ ∈ [α, β], and σ2 = (β − µ)(µ − α), then

M consists of the single probability measure which assigns to the point α probability

p = β−µ
β−α , and to the point β probability 1− p = µ−α

β−α .

We now rephrase ψ(x) as the optimal value of a certain optimization problem.

For use in later proofs, we define the following more general maximization problem,

in terms of a general integrable objective function ζ:

sup
Q∈P(I)

∫
ζ(τ)dQ(τ)

s.t.
∫
τdQ(τ) = µ,

∫
τ 2dQ(τ) = µ2 + σ2.

(38)

Our definitions imply that for all x ∈ R, ψ(x) equals the optimal value of problem

(38) for the special case that ζ(τ) = Ψ(x, τ). Problem (38) is a classical problem

of moments (cf. [120]). By the Richter-Rogosinski Theorem (e.g., [182, Proposition

6.40]) we have the following.

Observation 4 If problem (38) possesses an optimal solution, then it has an optimal

solution with support of at most three points.

We note that the distributionally robust single-stage news vendor problem con-

sidered by [168] is exactly problem (34), when I = R+. As it will be useful for later

proofs, we briefly review Scarf’s explicit solution. We actually state a slight general-

ization of the results of Scarf, and for completeness we include a proof in the appendix

(Section 4.6).

71



Theorem 4 Suppose that b > c, c + h > 0, µ > 0, σ > 0, and I = R+. Let

κ := b−h−2c
b+h

. Then for each x ∈ R,

ψ(x) =


cµ+ b+h

2

(
(x− µ)2 + σ2

) 1
2 − b−h−2c

2
(x− µ), if x ≥ µ2+σ2

2µ
,

(h+c)σ2−(b−c)µ2

µ2+σ2 x+ bµ, if x ∈ [0, µ
2+σ2

2µ
),

bµ− (b− c)x, otherwise.

(39)

As a consequence, a complete solution to the problem infx∈R ψ(x) is as follows.

(i) If σ2

µ2 >
b−c
h+c

, then the unique optimal solution is x = 0, and the optimal value is

µb.

(ii) If σ2

µ2 <
b−c
h+c

, then the unique optimal solution is x = µ + κσ(1 − κ2)−
1
2 , and the

optimal value is cµ+
(
(h+ c)(b− c)

) 1
2σ.

(iii) If σ2

µ2 = b−c
h+c

, then all x ∈ [0, µ+κσ(1−κ2)−
1
2 ] are optimal, and the optimal value

is µb.

Furthermore, in all cases arg maxQ∈M EQ[Ψ(x,D)] is nonempty for every x ∈ R. Also,

the optimal solution set and value of the problem infx∈R ψ(x) is identical to that of

problem (34), i.e. optimizing over x ∈ R, as opposed to x ∈ R+, makes no difference.

For use in later proofs, it will also be useful to demonstrate a particular variant of

Theorem 4. Suppose that in problem (34), we are not forced to select a deterministic

constant x, but can instead select any distribution D1 for x. Specifically, let us

consider the following minimax problem:

inf
Q1∈P(I)

φ(Q1), (40)

where

φ(Q1) := sup
Q2∈M

EQ1×Q2

[
Ψ(D1, D2)

]
,

and the notation EQ1×Q2 indicates that for any choices for the marginal distributions

Q1, Q2 of D1 and D2, the expectation is taken with respect to the associated product
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measure, under which D1 and D2 are independent. In this case, we have the following

result, whose proof we defer to the appendix (Section 4.6).

Proposition 2 Suppose that b > c, c + h > 0, µ > 0, σ > 0, σ2

µ2 >
b−c
h+c

, and I = R.

Then problem (40) has the unique optimal solution Q̄1 = δ0.

We also note that ψ inherits the property of convexity from Ψ.

Observation 5 Ψ(·, d) is a convex function for every fixed d ∈ I, ψ is a convex

function on R, and problem (34) is a convex program.

As several of our later proofs will be based on duality theory, we now briefly review

duality for problem (38).

4.2.3 Duality for Problem (38)

The dual of problem (38) can be constructed as follows (cf. [102]). Consider the

Lagrangian

L(Q, λ) :=

∫ [
ζ(τ)−

2∑
i=0

λiτ
i
]
dQ(τ) + λ0 + λ1µ+ λ2(µ2 + σ2).

By maximizing L(Q, λ) with respect to Q ∈ P(I), and then minimizing with respect

to λ, we obtain the following Lagrangian dual for problem (38):

inf
λ∈R3

λ0 + λ1µ+ λ2(µ2 + σ2)

s.t. λ0 + λ1τ + λ2τ
2 ≥ ζ(τ), τ ∈ I.

(41)

We denote by val(P ) and val(D) the respective optimal values of the primal problem

(38) and its dual problem (41). By convention, if problem (38) is infeasible, we set

val(P ) = −∞, and if problem (41) is infeasible, we set val(D) = +∞. We denote by

SolP (x) the set of optimal solutions of the primal problem, and by SolD(x) the set of

optimal solutions of the dual problem, and note that these sets may be empty, even

when both programs are feasible, e.g. if the respective optimal values are approached

but not attained.

73



Note that val(D) ≥ val(P ). We now give sufficient conditions for there to be no

duality gap, i.e. val(P ) = val(D), as well as conditions for problems (38) and (41)

to have optimal solutions. By specifying known general results for duality of such

programs, e.g., [28, Theorem 5.97], to the considered setting, we have the following.

Proposition 3 If Q̄ is a probability measure which is feasible for the primal problem

(38), λ̄ = (λ̄0, λ̄1, λ̄2) is a vector which is feasible for the dual problem (41), and

supp(Q̄) ⊆
{
τ ∈ I : ζ(τ) = λ̄0 + λ̄1τ + λ̄2τ

2
}
, (42)

then Q̄ is an optimal primal solution, λ̄ is an optimal dual solution, and val(P ) =

val(D). Conversely, if val(P ) = val(D), and Q̄ and λ̄ are optimal solutions of the

respective primal and dual problems, then condition (42) holds.

4.2.4 Explicit solution of Problem (38) for a class of convex, continuous,
piecewise affine functions

[168] gave an explicit solution for problems (38) and (41) when I = R+, and ζ is

a convex, continuous piecewise affine function with exactly two pieces, by explicitly

constructing a feasible primal - dual solution pair satisfying the conditions of Propo-

sition 3 (details of this construction can be found in Section 4.6). [142] generalized

Scarf’s results to a class of convex, continuous, piecewise affine (CCPA) functions

with three pieces. We now state the solution to a special case of the problems studied

in [142], as we will need the solution to such problems for our later studies of time

consistency. For completeness, we provide a proof in the appendix (Section 4.6).

Theorem 5 [142] Suppose that there exist c1, c2 > 0 such that c1 < c2, and ζ(d) =

max{−d+c1, 0, d−c2} for all d ∈ R. Let η := 1
2
(c1 +c2), and f(z) :=

(
(z−µ)2 +σ2

) 1
2

for all z ∈ R. Further suppose that σ > 0, I = R+,

1

4
(2µ− 3c1 + c2)(3c2 − c1 − 2µ) ≤ σ2,
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and η− f(η) ≥ 0. Then the unique optimal solution to the primal problem (38) is the

probability measure Q having support at two points h1 = η − f(η) and h2 = η + f(η),

with

Q(h1) = σ2
(
σ2 +

(
η − f(η)− µ

)2
)−1

, Q(h2) = 1−Q(h1). (43)

Also, the unique optimal solution to the dual problem (41) is

λ0 = 1
2

(
η2 + (η − µ)2 + σ2

)
f−1(η) +

c1 − c2

2
, λ1 = −ηf−1(η), λ2 = 1

2 f
−1(η). (44)

4.3 Multistage formulation

In this section, we study a multistage extension of the distributionally robust news

vendor problem discussed in Section 4.2.2.

4.3.1 Classical formulation

We begin by giving a quick review of the classical (i.e. non-robust) multistage news

vendor problem (called inventory problem), and start by introducing some additional

notations. For a vector z = (z1, ..., zn) ∈ Rn and 1 ≤ i ≤ j ≤ n, denote z[i,j] :=

(zi, ..., zj). In particular for i = 1 we simply write z[j] for the vector consisting of the

first j components of z, and set z[0] := ∅.

We suppose that there is a finite time horizon T , and a (random) vector of demands

D = (D1, . . . , DT ). By d = (d1, . . . , dT ) we usually denote a particular realization of

the random vector D. We assume that the components of random vector D are

mutually independent, and refer to this as the stagewise independence condition. We

now define the family of admissible policies Π by introducing two families of functions,

{yt, t = 1, . . . , T} and {xt, t = 1, . . . , T}. Conceptually, yt will correspond to the

inventory level at the start of stage t, and xt will correspond to the inventory level

after having ordered in stage t, but before the demand in that stage is realized.

We will consider policies which are nonanticipative, i.e. decisions do not depend

on realizations of future demand. We assume that y1, the initial inventory level, is
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a given constant. We also require that one can only order a nonnegative amount

of inventory at each stage. Thus the set of admissible policies Π should consist

of those vectors of (measurable) functions π = {xt(d[t−1]), t = 1, . . . , T}, such that

xt : Rt−1
+ → R satisfies xt(d[t−1]) ≥ yt, for all d[t−1] ∈ Rt−1

+ and t = 1, ..., T , where

yt+1 = xt(d[t−1])− dt, t = 1, ..., T − 1. (45)

It follows that any given choice of π ∈ Π, along with the given y1, completely

determines the associated functions y1, . . . , yT . Sometimes we will explicitly express

xt and yt as a function of the associated policy π and demands D[t] with the notations

xπt (d[t−1]) and yπt (d[t−1]); other times we will suppress this notation. Combining the

above, we can write the classical multistage news vendor problem (inventory problem)

as follows:

inf
π∈Π

E

{
T∑
t=1

ρt−1
[
ct
(
xπt (D[t−1])− yπt (D[t−1])

)
+ Ψt

(
xπt (D[t−1]), Dt

)]}
. (46)

Here ρ ∈ (0, 1] is a discount factor, ct, bt, ht are the ordering, backorder penalty and

holding costs per unit in stage t, respectively, and

Ψt(xt, dt) := bt[dt − xt]+ + ht[xt − dt]+. (47)

Unless stated otherwise, we assume that bt > ct > 0 and ht ≥ 0 for all t = 1, ..., T .

Problem (46) can be viewed as an optimal control problem in discrete time with

state variables yt, control variables xt and random parameters Dt. It is well known

that problem (46) can be solved using dynamic programming equations, which can

be written as

Vt(yt) = inf
xt≥yt

{
ct(xt − yt) + E

[
Ψt(xt, Dt) + ρVt+1(xt −Dt)

]}
, (48)

t = 1, ..., T , with VT+1(·) ≡ 0 (e.g., [213]). Note that the value functions Vt(·) are

convex, and do not depend on the demand data because of the stagewise independence
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assumption. These equations naturally define a set of policies through the relation

xt(yt) ∈ Xt(yt), where Xt(yt), t = 1, ..., T, is the set of optimal solutions of the problem

inf
xt≥yt

{
ct(xt − yt) + E[Ψt(xt, Dt) + ρVt+1(xt −Dt)]

}
, (49)

and the optimal value of problem (46) is given by V1(y1). Note that xt(yt), t =

1, . . . , T , are functions of yt, i.e., it suffices to consider policies (measurable functions)

of the form xt = πt(yt); this fact is well known from optimal control theory (see, e.g.,

[17] for technical details). Of course, the assumption of stagewise independence is

essential for this conclusion.

Under the specified conditions, the objective function of problem (49) tends to +∞

as xt → ±∞. It thus follows from convexity that this objective function possesses a

(possibly non-unique) unconstrained minimizer x∗t over x ∈ R, and x̄t := max{yt, x∗t}

is an optimal solution of problem (49). In particular, the so-called base-stock policy is

optimal for the inventory problem (46), where we note that such a result is classical

in the inventory literature.

Definition 1 A policy π ∈ Π is said to be a base-stock policy if there exist constants

x∗t , t = 1, . . . , T, such that

xπt = max
{
yπt , x

∗
t

}
, t = 1, . . . , T, (50)

That is, problem (46) can be solved using the dynamic programming formulation

(48) and associated policy (49) in the following sense.

Lemma 11 The optimal value of problem (46) equals V1(y1). Any policy π such that

xπt (d[t−1]) ∈ Xt

(
yπt (d[t−1])

)
are for all t = 1, ..., T and d[t−1] ∈ Rt−1

+ , is an optimal

solution to problem (46). Conversely, for any optimal policy π for problem (46), and

any t ∈ {1, ..., T}, there exists a set A ∈ R such that Pr
(
yπt (D[t−1]) ∈ A

)
= 1, and

xπt (D[t−1]) ∈ Xt

(
yπt (D[t−1])

)
conditional on the event {yπt (D[t−1]) ∈ A}.

As we shall see, such an equivalence does not necessarily hold for distributionally

robust multistage inventory problems with moment constraints.
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4.3.2 Distributionally robust formulations

Suppose now that the distribution of the demand process is not known, and we only

have at our disposal information about the support and first and second moments.

In this case, it is natural to use the framework previously developed for the single-

stage problem (see Section 4.2) to handle the distributional uncertainty at each stage.

However, in the multistage setting, there is a nontrivial question of how to model the

associated uncertainty in the joint distribution of demand. We will consider two for-

mulations, one intuitively corresponding to the modeling choices of a policy maker

who does not recompute his/her policy choices after each stage and one correspond-

ing to a policy-maker who does. These two formulations are analogous to the two

optimization models discussed in [103] and [145] in the framework of robust MDP,

and can also be interpreted through the lens of (non)rectangularity of the associated

families of priors (cf. [54, 103, 145]), as we will explore later in this section. We

refer to these formulations as multistage-static and multistage-dynamic, respectively.

Questions regarding the interplay between the sets of optimal policies of these two

formulations are important from an implementability perspective, as a policy deemed

optimal at time 0, but which does not remain optimal if the relevant decisions are

re-examined at a later time, may not be implemented by the relevant stake-holders.

We note that such considerations were one of the original motivations for the study

of time consistency in economics (cf. [187]). We further note that the particular def-

initions and formulations we introduce here are by no means the only way to define

the relevant notions of time consistency, and again refer the reader to the survey by

[57], and other recent papers in the optimization community (cf. [103, 27, 32, 97])

for alternative perspectives.

We suppose that we have been given a sequence of closed (possibly unbounded)

intervals It = [αt, βt] ⊂ R, t = 1, . . . , T , and sequences of the corresponding means

{µt, t = 1, . . . , T}, and variances {σ2
t , t = 1, . . . , T}.
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4.3.2.1 Multistage-static formulation

We first consider the following formulation, referred to as multistage-static, in which

the policy maker does not recompute his/her policy choices after each stage. Let us

define

Mt :=
{
Qt ∈ P(It) : EQt [Dt] = µt, EQt [D2

t ] = µ2
t + σ2

t

}
, t = 1, ..., T ; (51)

M := {Q = Q1 × · · · ×QT : Qt ∈Mt, t = 1, ..., T}. (52)

That is, the set M consists of probability measures given by direct products of prob-

ability measures Qt ∈ Mt. This can be viewed as an extension of the stage-wise

independence condition, employed in Section 4.3.1, to the considered distributionally

robust case. In order for the sets Mt to be nonempty we assume that (compare with

(37))

µt ∈ [αt, βt] and σ2
t ≤ (βt − µt)(µt − αt), t = 1, ..., T. (53)

According to (52), the associated minimax problem supposes that although the

set of associated marginal distributions may be “worst-case”, the joint distribution

will always be a product measure (i.e. the demand will be independent across stages).

The multistage-static formulation for the distributionally robust inventory problem

can then be formulated as follows.

inf
π∈Π

sup
Q∈M

EQ
[
Zπ
]
, (54)

where Zπ = Zπ(D[T ]) is a function of D[T ] = (D1, ..., DT ) given by

Zπ(D[T ]) :=
T∑
t=1

ρt−1
[
ct
(
xπt (D[t−1])− yπt (D[t−1])

)
+ Ψt

(
xπt (D[t−1]), Dt

)]
, (55)

and Π is the set of admissible policies defined previously in Section 4.3.1. Of course,

if the set M = {Q} is a singleton, then formulation (54) coincides with formulation

(46) taken with respect to the distribution Q = Q1 × · · · ×QT of the demand vector

D[T ].
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Very little is known about the set of optimal policies for problem (54), as this

problem does not enjoy a dynamic programming formulation along the lines of (48).

4.3.2.2 Multistage-dynamic formulation

We now consider the formulation which we refer to as multistage-dynamic. In this

formulation the policy maker recomputes his/her policy choices after each stage. To

build intuition, let us think of what it means for the policy maker to recompute

his/her optimal policy at the start of the final stage T . As he/she cannot change past

decisions, the only policy decision he/she still has to make is the determination of the

function xT . However, he/she now has knowledge of D[T−1] and yT , which he/she can

incorporate into his/her minimax computations. We note that here we are faced with

the modeling question of how to reconcile the use of D[T−1] and yT ’s realized values in

performing one’s minimax computations with the previously assumed stagewise in-

dependence of demand. A natural approach, consistent with the economics literature

on time consistency, is to reason as follows. As D[T−1] has already been realized, it

is unreasonable to enforce independence of DT on this realization, as it is no longer

undetermined. Instead, the relevant minimax computation is carried out with this

knowledge of the realization of D[T−1].

We can approach this from the following point of view. Consider the cost Zπ =

Zπ(D[T ]) of a policy π, defined in (55). Let M be a set of probability distributions

of the demand vector D[T ] = (D1, ..., DT ), and let Q ∈M. At the moment we do not

assume that Q is of the product form Q = Q1 × · · · ×QT , we will discuss this later.

We can write

EQ[Zπ] = EQ
[
EQ|D1

[
· · · EQ|D[T−2]

[
EQ|D[T−1]

[Zπ]
]]]

, (56)

where EQ|D[t]
[Zπ] is the conditional expectation, given D[t], with respect to the dis-

tribution Q of D[T ]. Of course, this conditional expectation is a function of D[t].
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Consequently,

sup
Q∈M

EQ[Zπ] ≤ sup
Q∈M

EQ
[

sup
Q∈M

EQ|D1

[
· · · sup

Q∈M
EQ|D[T−1]

[Zπ]
]]
. (57)

The right hand side of (57) leads to the nested formulation

inf
π∈Π

{
sup
Q∈M

EQ
[

sup
Q∈M

EQ|D1

[
· · · sup

Q∈M
EQ|D[T−1]

[Zπ]
]]}

. (58)

We refer to (58) as the multistage-dynamic formulation. It follows from (57) that

the optimal value of the multistage-dynamic problem (58) is greater than or equal to

the optimal value of the multistage-static problem (54). In particular, if the set M is

defined in the form (52), i.e., consists of products of probability measures, then the

multistage-dynamic formulation (58) simplifies to

inf
π∈Π

{
sup

Q1∈M1

EQ1

[
sup

Q2∈M2

EQ2|D1

[
· · · sup

QT∈MT

EQT |D[T−1]
[Zπ]

]]}
. (59)

For the multistage-dynamic formulation it is possible to write dynamic program-

ming equations (cf. [179]). In particular, for the set M of the form (52) and the

corresponding multistage-dynamic problem (59) the dynamic programming equations

become (compare with (48)):

Vt(yt) = inf
xt≥yt

{
ct(xt − yt) + sup

Qt∈Mt

EQt [Ψt(xt, Dt) + ρVt+1(xt −Dt)]

}
, (60)

t = 1, ..., T , with VT+1(·) ≡ 0. The optimal value of problem (59) is given by V1(y1).

These dynamic equations naturally define a set of policies of the form xt = πt(yt),

t = 1, . . . , T , with xt = πt(yt) being measurable selections xt ∈ Yt(yt) from sets

Yt(yt) := arg min
xt≥yt

{
ct(xt − yt) + sup

Qt∈Mt

EQt [Ψt(xt, Dt) + ρVt+1(xt −Dt)]

}
, t = 1, ..., T.

(61)

Let us observe that the nested max-expectation operator in the right hand side of

(57) can be represented as a maximum with respect to a certain set of distributions.

That is, there exists a set M̂ of probability distributions of D[T ] such that

sup
Q∈M̂

EQ[ · ] = sup
Q∈M

EQ
[

sup
Q∈M

EQ|D1

[
· · · sup

Q∈M
EQ|D[T−1]

[ · ]
]]
. (62)
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Proof of existence and a construction of such set M̂ is similar to the corresponding

derivations of conditional risk mappings (cf. [166, section 5]). We refer to [181] for

technical details.

If, moreover, M is of the product form (52), then (62) simplifies to

sup
Q∈M̂

EQ[ · ] = sup
Q1∈M1

EQ1

[
sup

Q2∈M2

EQ2|D1

[
· · · sup

QT∈MT

EQT |D[T−1]
[ · ]
]]
. (63)

We note that the set M̂ is not defined uniquely, and that the largest such set will be

convex and closed in an appropriate topology. Furthermore, it is always possible to

choose M̂ in such a way that M ⊂ M̂.

Definition 2 We refer to a set M̂, satisfying equation (62) as a rectangular set

associated with the set M of probability measures. In particular, if the set M is of

the product form (52), then we say that M̂ is a rectangular set associated with sets

Mt, t = 1, ..., T , if equation (63) holds. Furthermore, we say that a set of measures

M is rectangular if the set M itself is a rectangular set associated with the set M of

probability measures.

For a rectangular set M̂ the static formulation

inf
π∈Π

sup
Q∈M̂

EQ
[
Zπ
]
, (64)

is equivalent to the corresponding dynamic formulation (59), and the dynamic pro-

gramming equations (60) can be applied to (64).

We note that the concept of rectangularity has been central to the past litera-

ture on time consistency (cf. [54, 79, 97]), especially as it relates to optimization

(cf. [103, 145, 200]). In several of these works, connections were made between

tractability of the associated robust MDP and various notions of rectangularity (e.g.

(s,a)-rectangularity, s-rectangularity). We refer the interested reader to [200] and the

references therein for details. Our definition of rectangularity is aimed directly at
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the decomposability property of the static formulation ensuring its equivalence to the

corresponding dynamic formulation (see [181] for details).

We note that for M defined in (51)-(52), we can select one such M̂ to be the set

of all joint distributions Q for D[T ] s.t.

Dt ∈ P(It) , EQ[Dt|D[t−1]] = µt , EQ[D2
t |D[t−1]] = µ2

t + σ2
t , t = 1, ..., T. (65)

As already mentioned, there may be more than one way to construct such a rectan-

gular set. Furthermore, the question of existence of “minimal” rectangular sets seems

to be a delicate issue, beyond the scope of this study, where we note that related

questions (under closely related but different definitions and assumptions) have been

considered previously in the literature (cf. [97]).

4.3.2.3 Dynamic programming solution to the multistage-dynamic formulation

Consider the dynamic programming equations (60)–(61) with associated optimal val-

ue given by V1(y1). Again note that {xt(yt), t = 1, . . . , T} are (measurable) functions

of yt, i.e., it suffices to consider policies of the form xt = πt(yt), t = 1, . . . , T . Then

Problem (58) can be solved using the dynamic programming formulation (60) and

associated policy (61) in the following sense.

Lemma 12 The optimal value of Problem (59) equals V1(y1). Any policy π such that

xπt (d[t−1]) ∈ Yt

(
yπt (d[t−1])

)
for all t = 1, ..., T and d[t−1] ∈ Rt−1

+ , is an optimal solution

to Problem (59). Conversely, for any optimal policy π for Problem (59), and any

associated rectangular set M̂ and measure Q ∈ arg maxQ∈M̂ EQ [Zπ], it holds w.p.1

that xπt (D[t−1]) ∈ Yt

(
yπt (D[t−1])

)
for all t = 1, ..., T .

We note that the same conclusion could also have been drawn by rephrasing our

formulation in the language of coherent risk measures, and applying known results

for so-called nested risk measures (cf. [166], [182, section 6.7.3]), although we do not

pursue such an analysis here.
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We now observe that due to certain convexity properties, the set of policies in-

dicated in Lemma 12 has a particularly simple form. We note that such results

are generally well-known to hold in this setting (cf. [2]). Recall Definition 1 of a

base-stock policy. Let us make the following observation.

Observation 6 It follows from the convexity of the relevant cost-to-go functions

Vt(yt) that both problems (46) and (59) possess optimal base-stock policies. Further-

more, any set of base-stock constants {x∗t , t = 1, . . . , T} such that x∗t ∈ Xt(0) for all

t ∈ [1, T ] will yield an optimal policy for problem (46), while any such set of base-

stock constants such that x∗t ∈ Yt(0) for all t ∈ [1, T ] will yield an optimal policy for

problem (59).

We note that the question of whether or not there exists such an optimal base-

stock policy for the multistage-static formulation is considerably more challenging,

and will be central to our discussion of time consistency.

Non-rectangular (and intractable) formulations for robust MDP are described in

both [103] and [145]. In [103], it is referred to as the static formulation, while in

[145], it is referred to as the stationary formulation. In both of these settings, these

non-rectangular formulations essentially equate to requiring nature to select the same

transition kernel every time a given state (and action, depending on the formulation)

is encountered, as opposed to being able to select a different kernel every time a

given state is visited in the robust MDP, and we refer the reader to [103], [145],

and [200] for details. Although our multistage-static formulation could similarly be

phrased in terms of a particular kind of dependency between the choices of nature

in a robust MDP framework, and would be significantly different from either of the

aforementioned non-rectangular formulations, we do not pursue such an investigation

here, and leave the formalization of such connections as a direction for future research.
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4.4 Time consistency

As discussed in Section 4.3, there is no apriori guarantee that the multistage-static

formulation is equivalent to the corresponding multistage-dynamic formulation in the

distributionally robust setting. Disagreement between these two formulations is unde-

sirable from a policy perspective, as it suggests that a policy which was optimal when

performing one’s minimax computations before seeing any realized demand may no

longer be optimal if one reperforms these computations at a later time. This general

problem goes under the heading of time (in)consistency. Although first addressed

within the economics community, the issue of time (in)consistency has recently start-

ed to receive attention in the stochastic and robust optimization communities (cf.

[159, 27, 6, 177, 165, 79, 32, 180, 40, 97]).

We note that related issues were addressed even in the seminal work of [11] on

dynamic programming, where it is asserted that: “An optimal policy has the property

that whatever the initial state and initial decision are, the remaining decisions must

constitute an optimal policy with regard to the state resulting from the first decision.”

The same principle has been subsequently reformulated by several authors in a some-

what more precise form, e.g., in the recent work of [32], where it is asserted that “The

decision maker formulates an optimization problem at time t0 that yields a sequence

of optimal decision rules for t0 and for the following time steps t1, ..., tN = T . Then,

at the next time step t1, he formulates a new problem starting at t1 that yields a

new sequence of optimal decision rules from time steps t1 to T . Suppose the process

continues until time T is reached. The sequence of optimization problems is said to

be dynamically consistent if the optimal strategies obtained when solving the original

problem at time t0 remain optimal for all subsequent problems.”

From a conceptual point of view this is quite natural - an optimal solution obtained

by solving the problem at the first stage should remain optimal from the point of view

of later stages. The setting in which one re-optimizes at each stage coincides precisely
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with our multistage-dynamic formulation, while the “problem at time t0” coincides

naturally with our multistage-static formulation. We note that given the motivation

behind time consistency, i.e. implementation of policies, a further subtlety must be

considered. Clearly, it is desirable for there to exist at least one policy which is optimal

both at time t0, and if reconsidered at later times. However, it is similarly undesirable

for there to exist even one policy which could potentially be selected (i.e. optimal)

at time t0, but deemed sub-optimal (i.e. non-implementable) at a later time. This

motivates the following definition(s) of time consistency, where we note that similar

definitions were presented in [79] in a different context motivated by considerations

in decision theory and artificial intelligence.

Definition 3 (Time consistency) If a policy π ∈ Π is optimal for both the multistage-

static problem (54) and the multistage-dynamic problem (59), we say that π is time

consistent. If there exists at least one optimal policy π ∈ Π which is time consistent,

we say that problem (54) is weakly time consistent. If every optimal policy of problem

(54) is time consistent, we say that problem (54) is strongly time consistent.

Of course the notion of strong time consistency makes sense only if problem (54)

possesses at least one optimal solution. Otherwise it is strongly time consistent simply

because the set of optimal policies is empty.

We note that our definition of time consistency can, in a certain sense, be viewed

as an extension of the definition typically used in the theory of risk measures to an

optimization context. In Section 4.4.3.3, we show that it is possible for the multistage-

static problem to have an optimal solution and to be strongly time consistent, but

with a different optimal value than the multistage-dynamic formulation. That is, it

is possible for the multistage-static problem to possess an optimal solution and to be

strongly time consistent even when the rectangularity property does not hold. The

definition of consistency typically used in the theory of risk measures, i.e. the notion of
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dynamic consistency coming from [54] and based on a certain stability of preferences

over time, may result in a problem being deemed inconsistent based on the values

that a given optimal policy takes under the different formulations, and even the values

taken by suboptimal policies (cf. [165, 79]). In an optimization setting one may be

primarily concerned only with the implementability of optimal policies, irregardless

of their values and the values of suboptimal policies, and this is the approach we take

here.

Before exploring some of the subtle and interesting features of time (in)consistency

for our model, we briefly review some related previously known results for simpler

models. Note that if the set M is a singleton, then both the multistage-static and

multistage-dynamic formulations collapse to the classical formulation, and strong time

consistency follows. If one only has information about the support It, and hence takes

Mt to be the set of all probability measures supported on the interval It, t = 1, ..., T ,

then both the multistage-static and multistage-dynamic formulations collapse to the

so-called adjustable robust formulation (cf. [15], [178]), which is purely deterministic,

from which strong time consistency again follows. If one only has information about

the support It and first moment µt ∈ It of demand at each stage, and It = [αt, βt]

is bounded for all t, then it follows from the results of [179, section 4.2.2] that the

corresponding problem is again strongly time consistent, as convexity dictates that

in every time period, the adversary’s choice of demand distribution is independent

of all previously realized demands. As we will see, the question of time consistency

becomes considerably more interesting in our setting, when one is also given second

moment information.
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4.4.1 Sufficient conditions for weak time consistency

In this section, we provide simple sufficient conditions for the weak time consistency

of Problem (54). Our condition is essentially equal to monotonicity of the associat-

ed base-stock constants. Intuitively, in this case the inventory manager can always

order up to the optimal inventory level with which to enter the next time period, irre-

gardless of previously realized demand. Thus any potential for the adversary to take

advantage of previously realized demand information in the multistage-dynamic for-

mulation is “masked” by the fact that the actual attained inventory level will always

be this idealized level, under both formulations. We note that several previous works

have identified monotonicity of base-stock levels as a condition which causes various

inventory problems to become tractable, in a variety of settings (cf. [192, 100, 213]).

We begin by providing a different (but equivalent) formulation for Problem (54),

in which all relevant instances of yt are rewritten in terms of the appropriate xt

functions, as this will clarify the precise structure of the relevant cost-to-go functions.

As a notational convenience, let cT+1 = 0, in which case we define

Ψ̂t(xt, dt) := (ct − ρct+1)xt + bt[dt − xt]+ + ht[xt − dt]+, t = 1, ..., T. (66)

Let us define the problem

inf
π∈Π

sup
Q∈M

EQ

[
T∑
t=1

ρt−1Ψ̂t

(
xt(yt), Dt

)]
− c1y1 +

T−1∑
t=1

ρtct+1µt. (67)

Then it follows from a straightforward substitution and calculation that

Observation 7 Problem (54) and Problem (67) are equivalent, i.e. each policy π ∈ Π

has the same value under both formulations.

We now derive a lower bound for any policy, which intuitively comes from allowing

the policy maker to reselect her inventory at the start of each stage, at no cost. As

it turns out, this bound is “realizable” when the set of base-stock levels is monotone
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increasing. For x ∈ R, let us define

ηt(x) := sup
Qt∈Mt

EQt [Ψ̂t(x,Dt)], Γxt := arg max
Qt∈Mt

EQt [Ψ̂t(x,Dt)], (68)

and let

η̂t := inf
x∈R

ηt(x) = inf
x∈R

sup
Qt∈Mt

EQt [Ψ̂t(x,Dt)],

Γ̂t := arg min
x∈R

ηt(x) = arg min
x∈R

sup
Qt∈Mt

EQt [Ψ̂t(x,Dt)].
(69)

For j ≥ 1, and probability measures Q1, . . . , Qj, let us define ⊗jt=1Qt := Q1× . . .×Qj,

i.e. the associated product measure with the corresponding marginals. Then we have

the following.

Lemma 13 Suppose that the sets Γxt , Γ̂t are non-empty for all x ∈ R, t = 1, ..., T . Let

us fix any π = (x1, . . . , xT ) ∈ Π, and i ≥ 0. Then for any given Q1 ∈ M1, . . . , Qi ∈

Mi, there exist Qi+1 ∈Mi+1, . . . , QT ∈MT such that

E⊗Tt=1Qt

[
Ψ̂t

(
xt(yt), Dt

)]
≥ η̂t for all t ≥ i+ 1. (70)

Furthermore, the optimal value of Problem (54) is at least
∑T

t=1 ρ
t−1η̂t − c1y1 +∑T−1

t=1 ρ
tct+1µt.

Proof. Suppose i ∈ {0, ..., T} and Q1, . . . , Qi are fixed. We now prove that (70)

holds for all t ≥ i+ 1, and proceed by induction. Our particular induction hypothesis

will be that there exist Qi+1, . . . , Qi+n such that

E⊗i+nt=1Qt

[
Ψ̂t

(
xt(yt), Dt

)]
≥ η̂t for all t ∈ [i+ 1, i+ n]. (71)

We first treat the base case n = 1. It follows from Jensen’s inequality, and the

independence structure of the measures in M, that for any Qi+1 ∈Mi+1,

E⊗i+1
t=1Qt

[
Ψ̂i+1

(
xi+1(yi+1), Di+1

)]
≥ EQi+1

[
Ψ̂i+1

(
E⊗it=1Qt

[xi+1(yi+1)], Di+1)
]
.

Taking Qi+1 to be any element of Γ
E⊗it=1Qt

[xi+1(yi+1)]

i+1 (Γ
x1(y1)
1 if i = 0) completes the

proof for n = 1.
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Now, suppose the induction holds for some n. It again follows from Jensen’s in-

equality, and the independence structure of the measures in M, that for any Qi+n+1 ∈

Mi+n+1,

E⊗i+n+1
t=1 Qt

[
Ψ̂i+n+1

(
xi+n+1(yi+n+1), Di+n+1

)]
≥ EQi+n+1

[
Ψ̂i+n+1

(
E⊗i+nt=1Qt

[xi+n+1(yi+n+1)], Di+n+1)
]
.

Taking Qi+n+1 to be any element of Γ
E
⊗i+nt=1Qt

[xi+n+1(yi+n+1)]

i+n+1 completes the induction,

and the proof, where the second part of the lemma follows by letting i = 0. �

We now show that the bound of Lemma 13 is “realizable” when the set of base-

stock levels is monotone increasing, and that in this case the associated base-stock

policy is optimal for both the multistage-static and multistage-dynamic formulations.

In particular, in this setting, the associated base-stock policy is time consistent, and

thus the multistage-static problem is weakly time consistent.

Theorem 6 Suppose there exists nondecreasing sequence x∗t , t = 1, ..., T , such that

y1 ≤ x∗1, and x∗t ∈ Γ̂t, t = 1, ..., T , where Γ̂t is defined in (69). Also suppose It ⊂ R+

for all t = 1, ..., T . Then the base-stock policy π for which xt(yt) = max{yt, x∗t} for

all yt ∈ R, is an optimal policy for both the multistage-static and multistage-dynamic

formulations, and attains value
∑T

t=1 ρ
t−1η̂t − c1y1 +

∑T−1
t=1 ρ

tct+1µt. Consequently,

this base-stock policy is time consistent, and the multistage-static problem is weakly

time consistent.

Proof. Note that under these assumptions, if policy π is implemented under

the multistage-dynamic formulation, then w.p.1 xt(yt) = x∗t for all t = 1, ..., T . It

then follows from a straightforward induction that π is an optimal policy for the

multistage-dynamic formulation, and w.p.1, for all t = 2, ..., T ,

Vt(yt) = η̂t − ctx∗t−1 + ctDt−1 +
T∑

s=t+1

ρs−t(η̂s + csµs−1),

and

V1(y1) =
T∑
t=1

ρt−1η̂t − c1y1 +
T−1∑
t=1

ρtct+1µt.
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Combining with Lemma 13 and Observation 6 completes the proof. �

We note that Theorem 6 implies that if the parameters µt, σt, ct, bt, ht and It are

the same for all t = 1, ..., T , and hence the sets Mt are also the same for all t, then

the multistage-static problem is weakly time consistent, and the multistage-static and

multistage-dynamic formulations have the same optimal value.

4.4.2 Sufficient conditions for strong time consistency

In this section, we show that under additional assumptions, which ensure that the

variance in each stage is sufficiently large, the multistage-static problem is strongly

time consistent. As we will see, in this case there is a unique optimal base-stock policy,

and in this policy all base-stock constants equal zero, the intuition being that when

the variance is sufficiently large, it becomes undesirable to give nature any additional

“wiggle room”. Although such a requirement on the family of optimal policies seems

quite stringent, we will later see in Section 4.4.3.2 that deviating slightly from this

setting may lead to a lack of strong time consistency. In particular, our results

demonstrate that strong time consistency is a very fragile property. Our sufficient

conditions are as follows.

Theorem 7 Suppose that b′t := bt−ct+ρct+1 > 0, h′t := ht+ct−ρct+1 > 0, σt, µt > 0,

It = R+, t = 1, . . . , T , y1 = 0, and

σ2
t

µ2
t

>
b′t
h′t
, t = 1, ..., T. (72)

Then the set of optimal policies for the multistage-static problem is exactly the set of

policies

Π0 :=
{
π = (x1, . . . , xT ) ∈ Π : x1(y1) = 0, xt(z) = 0 for all z ≤ 0 and t ∈ [1, T ]

}
,

and the multistage-static problem is strongly time consistent.

Proof. Let Πopt denote the set of optimal policies for the multistage-static problem.

It follows from Theorem 4.(i) and Theorem 6 that Π0 ⊆ Πopt, and every policy
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π ∈ Π0 is time consistent. Thus to prove the theorem, it suffices to demonstrate that

Π0 = Πopt, and we begin by showing that π̄ = (x̄1, . . . , x̄T ) ∈ Πopt implies x̄1(y1) = 0.

Indeed, it follows from Lemma 13 that π̄ ∈ Πopt implies

sup
Q∈M1

EQ
[
Ψ̂1

(
x̄1(y1), D1

)]
= η̂1 = b1µ1.

That x̄1(y1) must equal 0 then follows from Theorem 4.

We now show that π̄ ∈ Πopt implies x̄2(z) = 0 for all z ≤ 0. Suppose for contra-

diction that there exists z′ ≤ 0 such that x̄2(z′) 6= 0. It is easily verified that there

exists Q1 ∈M1 such that Q1(−z′) > 0, and consequently for this choice of Q1, x̄2(y2)

is not a.s. equal to 0. We conclude from Proposition 2 that there exists Q2 ∈ M2

such that

EQ1×Q2

[
Ψ̂2

(
x̄2(y2), D2

)]
> η̂2 = b2µ2.

As we have already demonstrated that x̄1(y1) = 0, and Q1 ∈M1, we conclude that

EQ1

[
Ψ̂1

(
x̄1(y1, D1

)]
= η̂1 = b1µ1.

Combining with Lemma 13 then yields a contradiction. The proof that x̄t(z) = 0 for

all z ≤ 0 and t ≥ 3 follows from a nearly identical argument, and we omit the details.

�

4.4.3 Further investigation of time (in)consistency

We now demonstrate that the question of time (in)consistency becomes quite delicate

for inventory models with moment constraints, by considering a series of examples

in which our model exhibits interesting (and sometimes counterintuitive) behavior.

In particular: (i) the problem can fail to be weakly time consistent, (ii) the problem

can be weakly but not strongly time consistent, and (iii) the problem can be strongly

time consistent even if every associated optimal policy takes different values under

the multistage-static and dynamic formulations; and hence the rectangularity prop-

erty does not hold. We also prove that, although the multistage-dynamic formulation
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always has an optimal policy of the base-stock form, there may be no such optimal

policy for the multistage-static formulation. We note that (i) and (ii) are subtle phe-

nomena which the simpler models discussed in several previous works (e.g. [180])

cannot exhibit. We also note that (iii) emphasizes an interesting and surprising fea-

ture of our model and definitions: (strong) time consistency can hold even when the

underlying family of measures from which nature can select is non-rectangular. This

stands in contrast to much of the related work on time consistency, where rectangu-

larity is essentially taken as a pre-requisite for time consistency. We also note that

(iii) stands in contrast to some alternative, less policy-focused definitions of time con-

sistency, e.g. those definitions appearing in the literature on risk measures (cf. [54]),

under which time consistency could not hold if an optimal policy took different values

under the two formulations. We view our results as a step towards understanding the

subtleties which can arise when taking a policy-centric view of time consistency in

an operations management setting. Throughout this section, we will let Πopt
s denote

the set of all optimal policies for the corresponding multistage-static problem, and

Πopt
d denote the set of all optimal policies for the corresponding multistage-dynamic

problem.

4.4.3.1 Example when the multistage-static problem is not weakly time consistent

In this section, we explicitly provide an example for which the multistage-static prob-

lem is not weakly time consistent, showing that in general, the multistage-static and

multistage-dynamic formulations need not have a common optimal policy. Further-

more, for this example, the multistage-static and multistage-dynamic formulations

have different optimal values.

Let us define y1 = 10, ρ = 1,

I1 = [1, 3], µ1 = 2, σ1 = 1, c1 = 0, b1 = 2, h1 = 2,

I2 = R+, µ2 = 8, σ2 = 2, c2 = 0, b2 = 1, h2 = 1.
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Let Π̃s denote the set of policies π̃ = (x̃1, x̃2) such that x̃1(10) = 10, x̃2(9) = 9,

x̃2(7) = 7, and Π̃d denote the set of policies π̃ = (x̃1, x̃2) such that x̃1(10) = 10,

x̃2(9) = 9, x̃2(7) = 8. Note that the set Π̃s specifies values of x2(y2) only for y2 = 9

and y2 = 7. As we will see in Lemma 14, other values of y2 are irrelevant for the

multistage-static formulation regarding optimality.

Theorem 8 Πopt
s = Π̃s, and the optimal value of the multistage-static problem is 18.

On the other hand, Πopt
d ⊆ Π̃d, and the optimal value of the multistage-dynamic prob-

lem is 17 +
√

5
2
> 18. Consequently, the multistage-static problem is not weakly time

consistent, and the multistage-static and multistage-dynamic problems have different

optimal values.

We first characterize the set of optimal policies for the multistage-static problem.

Lemma 14 Πopt
s = Π̃s, and the multistage-static problem has optimal value 18.

Proof. It follows from Observation 3 that M1 consists of the single probability mea-

sure Q1 such that Q1(1) = Q1(3) = 1
2
. Let D1 denote a random variable distributed

as Q1. Note that for any policy π = (x1, x2) ∈ Π, one has that x1(y1) = x1(10) ≥ 10.

Consequently, Pr(x1(y1) ≥ D1) = 1, and |x1(y1) −D1| = x1(y1) −D1 w.p.1. It then

follows from a straightforward calculation that the cost of any policy π = (x1, x2) ∈ Π

under the multistage-static formulation equals

2x1(10)− 4 + sup
Q2∈M2

EQ2

[
1
2

(∣∣x2

(
x1(10)− 1

)
−D2

∣∣+
∣∣x2

(
x1(10)− 3

)
−D2

∣∣)]. (73)

Let π̄ = (x̄1, x̄2) denote any optimal policy for the multistage-static problem, i.e.

π̄ ∈ Πopt
s . Then it follows from (73) and a straightforward contradiction argument

that

x̄1(10) = 10. (74)

Combining (73) and (74), we conclude that(
x̄2(9), x̄2(7)

)
∈ arg min

(x,y):x≥9,y≥7
sup

Q2∈M2

EQ2

[
1
2

(
|x−D2|+ |y −D2|

)]
. (75)
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Furthermore, it follows from Lemma 13 and Theorem 4 that

inf
(x,y):x≥9,y≥7

sup
Q2∈M2

EQ2

[
1
2

(
|x−D2|+ |y−D2|

)]
≥ sup

Q2∈M2

EQ2

[
|8−D2|

]
= 2. (76)

Noting that

1
2

(
|9−D2|+ |7−D2|

)
= 1 + max(−D2 + 7, 0, D2 − 9),

it then follows from a straightforward calculation and Theorem 5 that

sup
Q2∈M2

EQ2

[
1
2

(
|9−D2|+ |7−D2|

)]
= 2. (77)

Combining the above, we conclude that Π̃s ⊆ Πopt
s . Also, it then follows from a

straightforward calculation that the multistage-static problem has optimal value 18.

We now prove that Π̃s = Πopt
s . Indeed, suppose for contradiction that there exists

some optimal policy π̂ = (x̂1, x̂2) /∈ Π̃s. In that case, it follows from (74) and (75) that

1
2

(
x̂2(9) + x̂2(7)

)
> 8. However, it then follows from Jensen’s inequality, Theorem 4,

and (76) that

sup
Q2∈M2

EQ2

[
1
2

(
|x̂2(9)−D2|+|x̂2(7)−D2|

)]
≥ sup

Q2∈M2

EQ2

[∣∣1
2

(
x̂2(9)+x̂2(7)

)
−D2

∣∣] > 2.

Combining with (76) and (77) yields a contradiction, completing the proof. �

We now characterize the set of optimal policies for the multistage-dynamic prob-

lem.

Lemma 15 Πopt
d ⊆ Π̃d, and the multistage-dynamic problem has optimal value 17 +

√
5

2
.

Proof. Let π̄ = (x̄1, x̄2) denote any optimal policy for the multistage-dynamic

problem, i.e. π̄ ∈ Πopt
d . Then it again follows from a straightforward contradiction

argument that

x̄1(10) = 10. (78)
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It then follows from (61) that

x̄2(9) ∈ arg min
x≥9

sup
Q2∈M2

EQ2 [|x−D2|],

and

x̄2(7) ∈ arg min
x≥7

sup
Q2∈M2

EQ2 [|x−D2|].

The lemma then follows from Theorem 4 and a straightforward calculation. �

Combining Lemmas 14 and 15 completes the proof of Theorem 8.

4.4.3.2 Example when the multistage-static problem is weakly time consistent,
but not strongly time consistent

In this section, we explicitly provide an example showing that it is possible for the

multistage-static problem to be weakly time consistent, but not strongly time consis-

tent. In particular, the multistage-static and multistage-dynamic formulations have

a common optimal base-stock policy π∗, with associated base-stock constants x∗1, x
∗
2,

satisfying the conditions of Theorem 6, yet the multistage-static problem has other

non-trivial optimal policies which are suboptimal for the multistage-dynamic formula-

tion. The intuitive explanation is as follows. In the multistage-static formulation, one

can leverage the randomness in the realization of D1 to construct a policy π′ such that

with positive probability xπ
′

2 (y2) is slightly below x∗2, and with the remaining proba-

bility is slightly above x∗2. Since in the multistage-static formulation nature cannot

observe the realized inventory in stage 2 before selecting a worst-case distribution, it

turns out that such a policy incurs the same cost as π′ under the multistage-static

formulation. Alternatively, this policy is suboptimal in the multistage-dynamic for-

mulation, as the adversary can first see exactly how the inventory level deviated

from that dictated by π∗, and exploit this to achieve a strictly higher cost. We note

that in this example, even though the multistage-static problem is not strongly time

consistent, both formulations have the same optimal value, as dictated by Theorem

6.
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Let us define y1 = 0, ρ = 1,

I1 = [1, 3], µ1 = 2, σ1 = 1, c1 = 0, b1 = 1, h1 = 1,

I2 = R+, µ2 = 10, σ2 = 1, c2 = 0, b2 = 1, h2 = 1.

Then we prove the following.

Theorem 9 The multistage-static problem is weakly time consistent, but not strongly

time consistent.

We first prove that the multistage-static problem is weakly time consistent.

Lemma 16 The multistage-static problem is weakly time consistent, and both the

multistage-static and multistage-dynamic problems have optimal value 2.

Proof. Note that

Ψ̂1(x1, d1) = |x1 − d1|, Ψ̂2(x2, d2) = |x2 − d2|.

It follows from Observation 3 that M1 consists of the single probability measure Q1

such that Q1(1) = Q1(3) = 1
2
. It follows from Theorem 4 and a straightforward

calculation that

Γ̂1 = [1, 3] , Γ̂2 = 10 , η̂2 = 1.

Combining the above with Theorem 6, we conclude that the base-stock policy π such

that x1(y) = max{3, y}, and x2(y) = max{10, y} for all y ∈ R, is optimal for both

the multistage-static and multistage-dynamic problems, which have common optimal

value 2. �

We now prove that the multistage-static problem is not strongly time consistent.

In particular, consider the policy π′ = (x′1, x
′
2) such that

x′1(y) = max{3, y}, and x′2(y) =


9.9, if y ≤ 0,

max{10.1, y}, otherwise.

(79)
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Lemma 17 The policy π′ ∈ Πopt
s , but π′ /∈ Πopt

d . Consequently, the multistage-static

problem is not strongly time consistent.

Proof. We first show that π′ ∈ Πopt
s . It follows from a straightforward calculation

that the cost of π′ under the multistage-static formulation equals

EQ1|3−D1|+ 0.1 + sup
Q2∈M2

EQ2 max
{

9.9−D1, 0, D1 − 10.1
}
. (80)

It is easily verified that the conditions of Theorem 5 are met, and we may apply

Theorem 5 to conclude that arg maxQ2∈M2 EQ2 max
{

9.9 − D1, 0, D1 − 10.1
}

is the

probability measure Q2 such that Q2(9) = 1
2
, Q2(11) = 1

2
. It follows that the value of

expression in (80) equals 2, and we conclude that π′ ∈ Πopt
s , completing the proof.

We now show that π′ /∈ Πopt
d . Suppose, for contradiction, that π′ ∈ Πopt

d . It then

follows from a straightforward calculation that

9.9 ∈ arg min
x≥0

sup
Q2∈M2

EQ2 [|x−D2|] (81)

However, it follows from Theorem 4 that the right-hand side of (81) is the singleton

{10}, completing the proof �

Combining Lemmas 16 and 17 completes the proof of Theorem 9.

4.4.3.3 Example when the multistage-static problem is strongly time consistent,
but the two formulations have a different optimal value

In this section, we explicitly provide an example showing that it is possible for the

multistage-static problem to be strongly time consistent, yet for the two formulations

to have different optimal values. We note that, although it is expected that there will

be settings where the two formulations have different optimal values, it is somewhat

surprising that this is possible even when the two formulations have the same set

of optimal policies. As discussed previously, we note that this possibility stands

in contrast to several related works which consider alternative, less policy-focused

definitions of time consistency, e.g. those definitions appearing in the literature on

risk measures.
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Let us define y1 = 0, ρ = 1,

I1 = [1, 3], µ1 = 2, σ1 = 1, c1 = 0, b1 = 0, h1 = 0,

I2 = R+, µ2 = 100, σ2 = 5, c2 = 2, b2 = 1, h2 = 1.

Let Π̃ denote the set of policies π̃ = (x̃1, x̃2) such that x̃1(0) = 102, x̃2(101) = 101,

x̃2(99) = 99. Then we prove the following.

Theorem 10 Πopt
s = Π̃, and the multistage-static problem is strongly time consistent.

However, the optimal value of the multistage-static problem equals 5, while the optimal

value of the multistage-dynamic problem equals
√

26 > 5.

We first characterize the set of optimal policies for the multistage-static problem.

Lemma 18 Πopt
s = Π̃, and the multistage-static problem has optimal value 5.

Proof. It follows from Observation 3 that M1 consists of the single probability

measure Q1 such that Q1(1) = Q1(3) = 1
2
. In this case, the cost of any policy

π = (x1, x2) ∈ Π under the multistage-static formulation equals

sup
Q2∈M2

EQ2

[
EQ1

[
2
(
x2

(
x1(0)−D1

)
−
(
x1(0)−D1

))
+
∣∣x2

(
x1(0)−D1

)
−D2

∣∣]]. (82)

We now prove that for any policy π̄ = (x̄1, x̄2) ∈ Πopt
s , one has that

x̄2

(
x̄1(0)− 1

)
= x̄1(0)− 1 and x̄2

(
x̄1(0)− 3

)
= x̄1(0)− 3. (83)

Indeed, note that w.p.1, it follows from the triangle inequality that

2
(
x2

(
x1(0)−D1

)
−
(
x1(0)−D1

))
+
∣∣x2

(
x1(0)−D1

)
−D2

∣∣
is at least

2
(
x2

(
x1(0)−D1

)
−
(
x1(0)−D1

))
+
∣∣(x1(0)−D1)−D2

∣∣−∣∣x2

(
x1(0)−D1

)
−
(
x1(0)−D1)

∣∣,
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which equals

x2

(
x1(0)−D1

)
−
(
x1(0)−D1

)
+
∣∣x1(0)−D1 −D2

∣∣. (84)

Now, suppose for contradiction that (83) does not hold. It follows that

EQ1

[
x2

(
x1(0)−D1

)
−
(
x1(0)−D1

)]
> 0,

and combining with (84), we conclude that (82) is strictly greater than

sup
Q2∈M2

EQ2

[
EQ1

[∣∣x1(0)−D1 −D2

∣∣]]. (85)

Noting that (85) is the cost incurred by some policy satisfying (83) completes the

proof.

We now complete the proof of the lemma. It suffices from the above to prove that

arg min
x1∈R+

sup
Q2∈M2

EQ2

[
1
2

(
|x1 − 1−D2|+ |x1 − 3−D2|

)]
= {102}. (86)

It follows from a straightforward calculation that as long as x1 ≥ 3, (x1− 100)(104−

x1) ≤ 25 and x1− 2−
(
(x1− 2− 100)2 + 25

) 1
2 ≥ 0, which holds for all x1 ∈ [100, 104],

the conditions of Theorem 5 are met. We may thus apply Theorem 5 to conclude

that for all x1 ∈ [100, 104],

sup
Q2∈M2

EQ2

[
1
2

(
|x1 − 1−D2|+ |x1 − 3−D2|

)]
(87)

has the unique optimal solution Q̂2 such that

Q̂2

(
x1−2−

(
(x1−2−100)2+25

) 1
2
)

= 25
(

25+
(
x1−2−

(
(x1−2−100)2+25

) 1
2−100

)2
)−1

,

and

Q̂2

(
x1−2+

(
(x1−2−100)2+25

) 1
2
)

= 1−25
(

25+
(
x1−2−

(
(x1−2−100)2+25

) 1
2−100

)2
)−1

.

It then follows from a straightforward calculation that for x1 ∈ [100, 104], (87) has

the value

g(x1) :=
(
x2

1 − 204x1 + 10429
) 1

2 .

100



It is easily verified that g is a strictly convex function on [100, 104], g has its unique

minimum on that interval at the point 102, and g(102) = 5. The desired result then

follows from the fact that (87) is a convex function of x1 on R. �

We now prove that the multistage-static problem is strongly time consistent.

Lemma 19 The multistage-static problem is strongly time consistent, and the opti-

mal value of the multistage-dynamic problem equals
√

26.

Proof. First, we note that as in the multistage-static setting, any policy π̄ =

(x̄1, x̄2) ∈ Πopt
d also satisfies (83). The proof is very similar to that used for the

multistage-static case, and we omit the details. To prove the lemma, it thus suffices

to prove that

arg min
x1∈R+

(
1
2 sup
Q2∈M2

EQ2

[
|x1 − 1−D2|

]
+ 1

2 sup
Q2∈M2

EQ2

[
|x1 − 3−D2|

])
= {102}.

(88)

It is easily verified that for all x1 ∈ [100, 104], we may apply Theorem 4 to conclude

that

sup
Q2∈M2

EQ2

[
|x1 − 1−D2|

]
=
(
(x1 − 101)2 + 25

) 1
2 ,

sup
Q2∈M2

EQ2

[
|x1 − 3−D2|

]
=
(
(x1 − 103)2 + 25

) 1
2 .

We conclude that for all x1 ∈ [100, 104],

1
2 sup
Q2∈M2

EQ2

[
|x1 − 1−D2|

]
+ 1

2 sup
Q2∈M2

EQ2

[
|x1 − 3−D2|

]
(89)

equals

g(x1) := 1
2

((
(x1 − 101)2 + 25

) 1
2 +

(
(x1 − 103)2 + 25

) 1
2

)
. (90)

It is easily verified that g(x) is a strictly convex function of x on [100, 104], g has its

unique minimum on that interval at the point 102, and g(102) =
√

26. The desired

result then follows from the fact that (89) is a convex function of x1 on R. �

Combining Lemmas 18 and 19 completes the proof of Theorem 10.
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4.4.3.4 Example when the multistage-static problem has no optimal policy of
base-stock form

In this section, we explicitly provide an example showing that it is possible for the

multistage-static problem to have no optimal base-stock policy, where we note that in

all our previous examples the associated multistage-static problem did indeed have an

optimal base-stock policy (possibly different from that of the associated multistage-

dynamic problem). Note that this stands in contrast to the multistage-dynamic for-

mulation, which always has an optimal base-stock policy by Observation 6. It remains

an interesting open question to develop a deeper understanding of the set of optimal

policies for the multistage-static problem, where we again note that some preliminary

investigations of such distributionally robust problems with independence constraints

can be found in [119]. Both the results of [119], and our own result, indicate that

the structure of the optimal policy for the multistage-static problem may be very

complicated.

To prove the desired result, it will be useful to consider a family of problems pa-

rameterized by a parameter ε. In particular, let ε ∈
(
0, 1

2
(
√

6− 2)
)

be any sufficiently

small strictly positive number. It may be easily verified that for any such ε, one has

ε ∈ (0, 1
4
), and

1

2
− 2ε− ε2 > 0. (91)

Let us define y1 = 10− ε, ρ = 1,

I1 = [1− ε, 3 + ε], µ1 = 2, σ1 = 1, c1 = 0, b1 = 2, h1 = 2,

I2 = R+, µ2 = 8, σ2 = 3, c2 = 0, b2 = 1, h2 = 1.

Then we prove the following.

Theorem 11 Suppose ε satisfies (91). Then any admissible policy π̃ = (x̃1, x̃2) ∈ Π

satisfying x̃1(y1) = y1, x̃2(D1) = y1 − D1 + ε belongs to Πopt
s , and the corresponding

optimal value equals 19− 2ε. Moreover, no base-stock policy belongs to Πopt
s .
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Let Q̃2 denote the probability measure such that Q̃2(5) = Q̃2(11) = 1
2
. It may be

easily verified that Q̃2 ∈M2. We begin by proving the following auxiliary lemma.

Lemma 20

sup
Q1∈M1, Q2∈M2

EQ1×Q2

[
|10−D1 −D2|

]
= 3.

Proof. Note that

EQ1×Q2

[
|10−D1 −D2|

]
= EQ2

[
EQ1

[
|10−D1 −D2|

∣∣∣D2

] ]
.

Let us define

φQ1(d)
∆
= EQ1

[
|10−D1 −D2|

∣∣∣{D2 = d}
]
,

and

q(d)
∆
=

1

6
(d− 8)2 +

3

2
=

73

6
− 8

3
d+

1

6
d2.

As Q̃2 ∈ M2, to prove the lemma, it follows from Proposition 3 that it suffices to

demonstrate that for all Q1 ∈M1, q(5) = φQ1(5), q(11) = φQ1(11), and q(d) ≥ φQ1(d)

for all d ∈ R, as in this case for any Q1 ∈M1, supQ2∈M2
EQ2 [φQ1(D2)] = EQ2 [q(D2)] =

3. We now prove that q(d) ≥ φQ1(d) for all d ∈ R. For any Q1 ∈ M1, since

10 − D1 ∈ [7− ε, 9 + ε] w.p.1, it follows that φQ1(d) = 10 − µ1 − d = 8 − d if

d ∈ [0, 7 − ε], and φQ1(d) = d + µ1 − 10 = d − 8 if d ∈ [9 + ε,∞). It is easily

verified that q(d)− (8− d) ≥ 0, and q(d)− (d− 8) ≥ 0, for all d ∈ R. It follows that

q(d) ≥ φQ1(d) for all d ∈ (−∞, 7 − ε]
⋃

[9 + ε,∞). Noting that φQ1(d) is a convex

function of d on (−∞,∞), we conclude that φQ1(d) ≤ max
(
φQ1(7−ε), φQ1(9+ε)

)
for

all d ∈ [7− ε, 9 + ε]. As it is easily verified that infd∈R q(d) = 3
2
, to prove that q(d) ≥

φQ1(d) for d ∈ [7− ε, 9 + ε], it suffices to show that max
(
φQ1(7− ε), φQ1(9 + ε)

)
≤ 3

2
.

As φQ1(7 − ε) = 8 − (7 − ε) = 1 + ε < 3
2
, and φQ1(9 + ε) = (9 + ε) − 8 = 1 + ε < 3

2
,

combining the above we conclude that q(d) ≥ φ(d) for all d ∈ R. As it is easily verified

that q(5) = φQ1(5) = 3 and q(11) = φQ1(11) = 3, combining the above completes the

proof. �
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Proof. [Proof of Theorem 11] Note that the cost under any policy π = (x1, x2) ∈ Π

under the multistage-static formulation equals

sup
Q1∈M1, Q2∈M2

EQ1×Q2

[
2|x1(y1)−D1|+ |x2(D1)−D2|

]
.

As D1 ≤ 3 + ε ≤ 10− ε w.p.1, and x1(y1) ≥ y1 = 10− ε, we conclude that w.p.1

|x1(y1)−D1| = x1(y1)−D1 ≥ 10− ε−D1.

Combining with the fact that µ1 = 2, we conclude that

EQ1×Q2

[
2|x1(y1)−D1|

]
≥ 2
(
10− ε− 2) = 2(8− ε).

As
σ2

2

µ2
2

= 9
64
< b2

h2
= 1, and

(
h2b2

) 1
2σ2 = 3, it follows from Lemma 13 and Theorem 4

that

EQ1×Q2

[
|x2(D1)−D2|

]
≥ 3.

Combining the above, we conclude that the cost incurred under any policy π is at

least 19− 2ε.

We now show that the cost incurred under any such policy π̃ achieves this bound,

and is thus optimal. In particular,

sup
Q1∈M1, Q2∈M2

EQ1×Q2

[
2|x̃1(y1)−D1|+ |x̃2(D1)−D2|

]
equals

sup
Q1∈M1, Q2∈M2

EQ1×Q2

[
2|10− ε−D1|+ |10−D1 −D2|

]
= sup

Q1∈M1, Q2∈M2

EQ1×Q2

[
2(10− ε−D1) + |10−D1 −D2|

]
= 2(10− ε− µ1) + sup

Q1∈M1, Q2∈M2

EQ1×Q2

[
|10−D1 −D2|

]
= 19− 2ε,

where the final equality follows from Lemma 20.

Next we show that there is no optimal base-stock policy, i.e. no base-stock policy
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belongs to Πopt
s . Indeed, let us suppose for contradiction that π̂ is a base-stock policy

with constants x̂1, x̂2. The cost incurred under such a policy π̂ equals

sup
Q1∈M1, Q2∈M2

EQ1×Q2

[
2|max(x̂1, y1)−D1|+

∣∣max
(

max(x̂1, y1)−D1, x̂2

)
−D2

∣∣].
It follows from the fact that D1 ≤ 3 + ε < 10 − ε w.p.1 for all Q1 ∈ M1, and a

straightforward contradiction argument (the details of which we omit), that π̂ can

not be optimal unless x̂1 ≤ 10− ε, in which case repeating our earlier arguments, we

conclude that max(x̂1, y1) = 10− ε, and for any Q1 ∈M1, Q2 ∈M2,

EQ1×Q2

[
2|max(x̂1, y1)−D1|

]
= 2(8− ε).

Thus to prove the desired claim, it suffices to demonstrate that

inf
x̂2∈R

sup
Q1∈M1,Q2∈M2

EQ1×Q2

[∣∣∣max{10− ε−D1, x̂2} −D2

∣∣∣] > 3. (92)

We treat two different cases: x̂2 ∈ (−∞, 7 + 1
2
ε] and x̂2 ∈ [7 + 1

2
ε,∞). If x̂2 ≤ 7 + 1

2
ε,

let the probability measure Q̃1 be such that Q̃1(1) = Q̃1(3) = 1
2
, where it is easily

verified that Q̃1 ∈M1. In this case,

sup
Q1∈M1,Q2∈M2

EQ1×Q2

[∣∣∣max{10− ε−D1, x̂2} −D2

∣∣∣] (93)

is at least

sup
Q2∈M2

EQ̃1×Q2

[∣∣∣max{10− ε−D1, x̂2} −D2

∣∣∣]
= sup

Q2∈M2

EQ2

[1

2
|max{7− ε, x̂2} −D2|+

1

2
|9− ε−D2|

]
, (94)

where the final equality follows from the fact that x̂2 ≤ 7+ 1
2
ε implies max{9−ε, x̂2} =

9− ε. It follows from convexity of the absolute value function that (94) is at least

sup
Q2∈M2

EQ2

[ ∣∣∣∣12 max{7− ε, x̂2}+
1

2
(9− ε)−D2

∣∣∣∣ ]. (95)

Note that

1

2
max{7− ε, x̂2}+

1

2
(9− ε) ≥ 1

2
(7− ε) +

1

2
(9− ε)

= 8− ε. (96)
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Letting z
∆
= 1

2
max{7 − ε, x̂2} + 1

2
(9 − ε), note that (95) equals supQ2∈M2

EQ2

[
(z −

D2)+ + (D2 − z)+
]
. Applying Theorem 4 with c = 0, b = h = 1, and noting that

µ2
2+σ2

2

2µ2
= 73

16
< 8− ε = z, we conclude that (95) equals((1

2
max{7− ε, x̂2}+

1

2
(9− ε)− 8

)2
+ 9

) 1
2

. (97)

Combining (96) with the fact that

1

2
max{7− ε, x̂2}+

1

2
(9− ε) ≤ 1

2
(7 +

1

2
ε) +

1

2
(9− ε)

= 8− 1

4
ε,

we conclude that (97) is strictly greater than 3, completing the proof of (92) for the

case x̂2 ≤ 7 + 1
2
ε.

Alternatively, if x̂2 ≥ 7+1
2
ε, let the probability measure Q̃1 be such that Q̃1(1+2ε

1+ε
) =

(1+ε)2

(1+ε)2+1
and Q̃1(3 + ε) = 1

(1+ε)2+1
. Again, it is easily verified that Q̃1 ∈ M1. In this

case, (93) is at least

sup
Q2∈M2

EQ2

[
1

(1 + ε)2 + 1
|x̂2 −D2|+

(1 + ε)2

(1 + ε)2 + 1

∣∣∣∣max

{
10− ε− 1 + 2ε

1 + ε
, x̂2

}
−D2

∣∣∣∣] .
(98)

It follows from convexity of the absolute value function that (98) is at least

sup
Q2∈M2

EQ2

[∣∣∣∣ 1

(1 + ε)2 + 1
x̂2 +

(1 + ε)2

(1 + ε)2 + 1
max

{
10− ε− 1 + 2ε

1 + ε
, x̂2

}
−D2

∣∣∣∣] . (99)

Letting z
∆
= 1

(1+ε)2+1
x̂2 + (1+ε)2

(1+ε)2+1
max

{
10− ε− 1+2ε

1+ε
, x̂2

}
, note that (99) equals

sup
Q2∈M2

EQ2

[
(z −D2)+ + (D2 − z)+

]
.

Furthermore,

1

(1 + ε)2 + 1
x̂2 +

(1 + ε)2

(1 + ε)2 + 1
max

{
10− ε− 1 + 2ε

1 + ε
, x̂2

}
≥ 1

(1 + ε)2 + 1

(
7 +

1

2
ε

)
+

(1 + ε)2

(1 + ε)2 + 1

(
10− ε− 1 + 2ε

1 + ε

)
= 8 +

1
2
− 2ε− ε2

(1 + ε)2 + 1
ε. (100)
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Applying Theorem 4 with c = 0, b = h = 1, and noting that
µ2

2+σ2
2

2µ2
= 73

16
< 8 +

1
2
−2ε−ε2

(1+ε)2+1
ε = z (having applied (91)), we conclude that (99) equals(( 1

(1 + ε)2 + 1
x̂2 +

(1 + ε)2

(1 + ε)2 + 1
max

{
10− ε− 1 + 2ε

1 + ε
, x̂2

}
− 8
)2

+ 9

) 1
2

. (101)

Combining with (100) and (91), we conclude that (101) is strictly greater than 3,

completing the proof of (92) for the case x̂2 ≤ 7 + 1
2
ε, which completes the proof. �

4.5 Conclusion

In this chapter, we analyzed the notion of time consistency in the context of managing

an inventory under distributional uncertainty. In particular, we studied the associ-

ated multistage distributionally robust optimization problem, when only the mean,

variance and distribution support are known for the demand at each stage. Our con-

tributions were three-fold. First, we gave a novel policy-centric definition for time

consistency in this setting, and put our definition in the broad context of prior work

on time consistency and rectangularity. More precisely, we defined two natural formu-

lations for the relevant optimization problem. In the multistage-static formulation,

the policy-maker cannot recompute his/her policy after observing realized demand.

In the multistage-dynamic formulation, he/she is allowed to reperform his/her mini-

max computations at each stage. If these two formulations have a common optimal

policy, we defined the policy to be time consistent, and the multistage-static problem

to be weakly time consistent. If all optimal policies of the multistage-static problem

are also optimal for the multistage-dynamic problem, we defined the multistage-static

problem to be strongly time consistent.

Next, we gave sufficient conditions for weak and strong time consistency. Intu-

itively, our sufficient condition for weak time consistency coincides with the existence

of an optimal base-stock policy in which the base-stock constants are monotone in-

creasing. Our sufficient condition for strong time consistency can be interpreted in

two ways. On the one hand, strong time consistency holds if the unique optimal
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base-stock policy for the multistage-dynamic formulation is to order-up to 0 at each

stage. Alternatively, we saw that this condition also has an interpretation in terms of

requiring that the demand variances are sufficiently large relative to their respective

means.

Third, we gave a series of examples of two-stage problems exhibiting interesting

and counterintuitive time (in)consistency properties, showing that the question of

time consistency can be quite subtle in this setting. In particular: (i) the problem

can fail to be weakly time consistent, (ii) the problem can be weakly but not strongly

time consistent, and (iii) the problem can be strongly time consistent even if every as-

sociated optimal policy takes different values under the multistage-static and dynamic

formulations. We also proved that, although the multistage-dynamic formulation al-

ways has an optimal policy of base-stock form, there may be no such optimal policy

for the multistage-static formulation. This stands in contrast to the analogous setting,

analyzed in [180], in which only the mean and support of the demand distribution

is known at each stage, for which it is known that such time inconsistency cannot

occur. Furthermore, we departed from much of the past literature by demonstrating

both negative and positive results regarding time consistency when the underlying

family of distributions from which nature can select is non-rectangular, a setting in

which most of the literature focuses on demonstrating hardness of the underlying

optimization problems and other negative results.

Furthermore, our example demonstrating that it is possible for the multistage-

static problem to be strongly time consistent, but with a different optimal value than

the multistage-dynamic formulation, stands in contrast to the definition of time con-

sistency typically used in the theory of risk measures, i.e. the notion of dynamic

consistency coming from [54], under which a problem may be deemed time incon-

sistent based on the values that a given optimal policy takes under the different
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formulations, and even the values taken by suboptimal policies. Indeed, our defini-

tions are motivated by the fact that in an optimization setting, one may be primarily

concerned only with the implementability of optimal policies, irregardless of their

values and the values of suboptimal policies.

Our work leaves many interesting directions for future research. The general

question of time consistency remains poorly understood. Furthermore, our work has

shown that this question can be quite subtle. For the particular model we consider

here, it would be interesting to develop a better understanding of precisely when time

consistency holds. It is also an intriguing question to understand how much our two

formulations can differ in optimal value and policy, even when time inconsistency

occurs, along the lines of [97]. On a related note, it is largely open to develop a

broader understanding of the optimal solution to the multistage-static problem, or

even approximately optimal solutions, as well as related algorithms, where we note

that preliminary investigations along these lines were recently carried out in [119].

Of course, it is also an open challenge to understand the question of time consisten-

cy more broadly, how precisely the various definitions of time consistency presented

throughout the literature relate to one-another, and more generally to understand

the relationship between different ways to model multistage optimization under un-

certainty.

4.6 Appendix

4.6.1 Proof of Theorem 4

Proof. [Proof of Theorem 4] We first compute the value of ψ(x) for all x ∈ R,

and proceed by a case analysis. First, suppose x < 0. In this case, EQ[Ψ(x,D)] =

cx+ b(µ− x) for all Q ∈M, and thus

ψ(x) = cx+ b(µ− x). (102)
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Now, suppose x ≥ 0. Then it is easily verified that

ψ(x) = cx+
(h− b)(x− µ)

2
+
b+ h

2
sup
Q∈M

EQ [|x−D|] . (103)

Hence to compute ψ(x), it suffices to solve supQ∈M EQ [|x−D|], and we proceed by

a case analysis. Recall that f(z) :=
(
(z − µ)2 + σ2

) 1
2 for all z ∈ R.

First, suppose x ≥ µ2+σ2

2µ
. Let us define λ̄ = (λ̄0, λ̄1, λ̄2) such that

λ̄0 :=
1

2

(
x2f−1(x) + f(x)

)
, λ̄1 := −xf−1(x), λ̄2 :=

1

2
f−1(x),

and let ḡ(d) := λ̄0 + λ̄1d+ λ̄2d
2 for all d ∈ R. Then it follows from a straightforward

calculation that ḡ(d) and |x− d| are tangent at d̄1 := x− f(x) and d̄2 := x+ f(x), and

consequently ḡ(d) ≥ |x− d| for all d ∈ R+. Hence λ̄ is feasible for the dual Problem

(41). Also, as x ≥ µ2+σ2

2µ
implies d̄1 ≥ 0, it is easily verified that the probability

measure Q̄ such that

Q̄(d̄1) = σ2

(
σ2 +

(
x− f(x)− µ

)2
)−1

, Q̄(d̄2) = 1− σ2

(
σ2 +

(
x− f(x)− µ

)2
)−1

is feasible for the primal Problem (38). It follows from Proposition 3 that Q̄ is an

optimal primal solution. Combining the above and simplifying the relevant algebra,

we conclude that in this case

ψ(x) = ψ1(x) := cµ+
b+ h

2
f(x)− b− h− 2c

2
(x− µ). (104)

Alternatively, suppose x ∈ [0, µ
2+σ2

2µ
). Let us define λ̂ = (λ̂0, λ̂1, λ̂2) such that

λ̂0 := x , λ̂1 := 1− 4xµ(µ2 + σ2)−1 , λ̂2 := 2x
(
µ(µ2 + σ2)−1

)2
,

and let ĝ(d) := λ̂0 + λ̂1d+ λ̂2d
2 for all d ∈ R. Then it follows from a straightforward

calculation that ĝ(d) and |x− d| are tangent at d̂1 := µ−1(µ2 + σ2), and intersect at

d̂2 := 0, with ĝ′(0) ≥ −1. It follows that ĝ(d) ≥ |x − d| for all d ∈ R+. Hence λ̂
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is feasible for the dual Problem (41). Also, it is easily verified that the probability

measure Q̂ such that

Q̂(d̂1) = µ2(µ2 + σ2)−1, Q̂(d̂2) = 1− µ2(µ2 + σ2)−1

is feasible for the primal Problem (38). It follows from Proposition 3 that Q̂ is an

optimal primal solution. Combining the above and simplifying the relevant algebra,

we conclude that in this case

ψ(x) = ψ2(x) :=
(h+ c)σ2 − (b− c)µ2

µ2 + σ2
x+ bµ. (105)

We now use the above to complete the proof of the theorem. Note that since by

assumption b > c, it follows from (102) that arg minx∈R ψ(x) ⊆ R+. Recall that

κ = b−h−2c
b+h

. Furthermore, our assumptions, i.e. b > c, h + c > 0, imply that |κ| < 1.

Let χ := µ + κσ(1 − κ2)−
1
2 . It follows from a straightforward calculation that ψ1

is a strictly convex function on R, and ψ1(χ) = 0, i.e. ψ1 is strictly decreasing on

(−∞, χ), and strictly increasing on (χ,∞). Furthermore, it follows from a similar

calculation that

σ2

µ2
− b− c
h+ c

is the same sign as
µ2 + σ2

2µ
− χ. (106)

We now proceed by a case analysis. First, suppose σ2

µ2 >
b−c
h+c

. In this case, ψ2 is a linear

function with strictly positive slope, and thus arg min
x∈[0,µ

2+σ2

2µ
]
ψ(x) = {0}. Further-

more, it follows from (106) that χ < µ2+σ2

2µ
, which implies that ψ1 is strictly increasing

on [µ
2+σ2

2µ
,∞). It follows from the continuity of ψ that arg min

x≥µ2+σ2

2µ

ψ(x) = {µ2+σ2

2µ
}.

Combining the above, we conclude that arg minx∈R ψ(x) = {0}.

Next, suppose σ2

µ2 < b−c
h+c

. In this case, ψ2 is a linear function with strictly nega-

tive slope, and thus arg min
x∈[0,µ

2+σ2

2µ
]
ψ(x) = {µ2+σ2

2µ
}. Furthermore, it follows from

(106) that χ > µ2+σ2

2µ
, which implies that arg min

x≥µ2+σ2

2µ

ψ(x) = {χ}. Combining the

above, we conclude that arg minx∈R ψ(x) = {χ}.
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Finally, suppose that σ2

µ2 = b−c
h+c

. In this case, ψ2 is a constant function, and thus

arg min
x∈[0,µ

2+σ2

2µ
]
ψ(x) = [0, µ

2+σ2

2µ
]. Furthermore, it follows from (106) that χ = µ2+σ2

2µ
,

which implies that arg min
x≥µ2+σ2

2µ

ψ(x) = {µ2+σ2

2µ
}. Combining the above, we conclude

that arg minx∈R ψ(x) = [0, µ
2+σ2

2µ
].

Combining all of the above with another straightforward calculation completes the

proof of the theorem. �

4.6.2 Proof of Proposition 2

Proof. [Proof of Proposition 2] Let δ := σ2

µ2+σ2 , τ := µ2+σ2

µ
. Let Q∗2 be the probability

measure such that

Q∗2(0) = δ, Q∗2 (τ) = 1− δ.

Recall that b − c > 0, and (h + c)σ2 > (b − c)µ2, which we denote by assumption

A1. Note that the value of any feasible solution Q1 to Problem (40) is at least

EQ1×Q∗2

[
Ψ(D1, D2)

]
, which itself equals the sum of cµ and

EQ1

[(
δ
(
(b−c)[0−D1]++(h+c)[D1−0]+

)
+(1−δ)

(
(b−c)[τ−D1]++(h+c)[D1−τ ]+

))
I(D1 > 0)

]
(107)

+EQ1

[(
δ
(
(b−c)[0−D1]++(h+c)[D1−0]+

)
+(1−δ)

(
(b−c)[τ−D1]++(h+c)[D1−τ ]+

))
I(D1 < 0)

]
(108)

+EQ1

[(
δ
(
(b−c)[0−D1]++(h+c)[D1−0]+

)
+(1−δ)

(
(b−c)[τ−D1]++(h+c)[D1−τ ]+

))
I(D1 = 0)

]
(109)

Note that if P (D1 > 0) > 0, then (107) is at least

E
[ σ2

µ2 + σ2
(h+ c)D1 +

µ2

µ2 + σ2
(b− c)(µ

2 + σ2

µ
−D1)

∣∣D1 > 0
]
P (D1 > 0)

> E
[ µ2

µ2 + σ2
(b− c)D1 +

µ2

µ2 + σ2
(b− c)(µ

2 + σ2

µ
−D1)

∣∣D1 > 0
]
P (D1 > 0) by A1

= (b− c)µP (D1 > 0). (110)
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Similarly, if P (D1 < 0) > 0, then (108) is at least

E
[
− σ2

µ2 + σ2
(b− c)D1 +

µ2

µ2 + σ2
(b− c)(µ

2 + σ2

µ
−D1)

∣∣D1 < 0
]
P (D1 < 0)

= E
[
(b− c)(µ−D1)

∣∣D1 < 0
]
P (D1 < 0) > (b− c)µP (D1 < 0). (111)

Furthermore, if P (D1 = 0) > 0, then (109) equals (b − c)µP (D1 = 0). Combining

with (110), (111), and the fact that the measure δ0 attains value bµ (by Theorem 4),

completes the proof. �

4.6.3 Proof of Theorem 5

Proof. [Proof of Theorem 5] Recall that η := 1
2
(c1 + c2), and f(z) :=

(
(z−µ)2 +σ2

) 1
2

for all z ∈ R. Also, letting h1(d) := −d+c1, h2(d) := d−c2 for all d ∈ R, we have that

ζ(d) = max{h1(d), 0, h2(d)} for all d ∈ R. Let Q be the probability measure described

in (43), and λ = (λ0, λ1, λ2) the vector described in (44). Let g(d) := λ0 +λ1d+λ2d
2.

We now prove that g(d) ≥ ζ(d) for all d ∈ R. It follows from a straightforward

calculation that g(d) is tangent to h1(d) at d1 := η − f(η), and g(d) is tangent to

h2(d) at d2 := η + f(η). Thus g(d) ≥ max
(
h1(d), h2(d)

)
for all d ∈ R, and to prove

the desired claim it suffices to demonstrate that g(d) ≥ 0 for all d ≥ 0. It is easily

verified that for all d ∈ R,

g(d) = 1
2 f
−1(η)(d− η)2 + 1

2

(
f(η) + c1 − c2

)
. (112)

Recall that

1

4
(2µ− 3c1 + c2)(3c2 − c1 − 2µ) ≤ σ2,

which we denote by assumption A2. It follows from another straightforward cal-

culation that assumption A2 is equivalent to requiring that 1
2

(
f(η) + c1 − c2

)
≥ 0.

Combining with (112), we conclude that A2 implies g(d) ≥ 0 for all d ∈ R, completing

the proof that g(d) ≥ ζ(d) for all d ∈ R. Hence λ is feasible for the dual Problem

(41). Also, it is easily verified that Q is feasible for the primal Problem (38). It

follows from Proposition 3 that Q is an optimal primal solution, and λ is an optimal
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dual solution. That these optimal solutions are unique then follows from the second

part of Proposition 3 and a straightforward contradiction argument. Combining the

above and simplifying the relevant algebra completes the proof. �
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CHAPTER V

DISTRIBUTIONALLY ROBUST INVENTORY CONTROL

WHEN DEMAND IS A MARTINGALE

This chapter is based on [201].

5.1 Introduction and literature review

In many practical settings of interest, demands are correlated over time (cf. [98, 169,

171]). As a result, there is a vast literature investigating inventory models with corre-

lated demand, including: studies of the so-called bull-whip effect (cf. [35, 122, 167]);

models with Markov-modulated demand (cf. [60, 98, 112]); and models with forecast-

ing, including models in which demand follows an auto-regressive/moving average

(ARMA) or exponentially smoothed process (cf. [8, 26, 73, 111, 127, 132, 150]); and

models obeying the Martingale Model of Forecast Evolution (MMFE) and its many

generalizations (cf. [56, 77, 87, 101, 128, 189]). Although several of these works offer

insights into the qualitative impact of correlations on the optimal policy (and associ-

ated costs) when managing an inventory over time, these results are typically proven

under very particular distributional assumptions, which assume perfect knowledge

of all relevant distributions. This is potentially a significant problem, since various

authors have previously noted that model misspecification when demand is correlated

can lead to very sub-optimal policies (cf. [8]). Indeed, the use of such time series and

forecasting models in Operations Research practice is well-documented, and concerns

over the practical impact of model mis-specification have been raised repeatedly in

the forecasting and Operations Research literature (cf. [62, 63]).

One approach taken in the literature to correcting for such model uncertainty is
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so-called distributionally robust optimization as we discussed before. In this frame-

work, one assumes that the joint distribution (over time) of the sequence of future

demands belongs to some set of joint distributions, and solves the minimax problem

of computing the control policy which is optimal against a worst-case distribution

belonging to this set. Such a distributionally robust approach is motivated by the

reality that perfect knowledge of the exact distribution of a given random process is

rarely available (cf. [51, 52, 154, 195]). A typical minimax formulation is as below:

min
x∈X

max
Q∈M

EQ [f(x, ξ)] ,

where X is a set of decisions and M is a set of probability measures. The objective is to

pick a decision x that minimizes the average cost of f under a worst-case distribution.

The application of such distributionally robust approaches to the class of inven-

tory control problems was pioneered in [168], where it was assumed that M contains

all probability measures whose associated distributions satisfy certain moment con-

straints. Such an approach has been taken to many variants of the single-stage model

since then (cf. [69, 71, 72, 85, 148, 208, 212]), and the single-stage distributionally

robust model is quite broadly understood.

The analogous questions become more subtle in the multi-stage setting, due to

questions regarding the specification of uncertainty in the underlying joint distribu-

tion. There have been two approaches taken in the literature, depending on whether

the underlying optimization model is static or dynamic in nature. In a static formu-

lation, one specifies a family of joint distributions for demand over time, typically by

fixing various moments and supports (or some generalization thereof), and then solves

an associated global minimax optimization problem (cf. [19, 47, 51, 52, 152, 174]).

Such static formulations generally cannot be decomposed and solved by dynamic pro-

gramming, because the distributional constraints do not contain sufficient information

about how the distribution behaves under conditioning. Put another way, such mod-

els generally do not allow for the incorporation of realized demand information into
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model uncertainty/robustness going forwards (i.e. re-optimization in real time), and

are generally referred to as time-inconsistent in the literature (cf. [54, 97, 204]).

This inability to incorporate realized demand information may make such approaches

undesirable for analyzing models which explicitly consider the forecasting of future

demand (cf. [117]). We note that although some of these static formulations have

indeed been able to model settings in which information is revealed over time, e.g.

the excellent work of [174] on factor-models, the fundamental inability to incorporate

realized demand (in the sense of time in-consistency) remains.

Alternatively, in a dynamic formulation, the underlying family of potential joint

distributions must implicitly satisfy certain conditional independence properties, and

thus allow for a resolution by dynamic programming. The existence of such a de-

composition is generally referred to as the rectangularity property (cf. [54, 97, 103]).

For example, the set of all joint distributions for the vector of demands (D1, D2) such

that: E[D1] = 1,E[D2|D1] = D1, and (D1, D2) has support on the non-negative in-

tegers is rectangular, since the feasible set of joint distributions may be decomposed

as follows. To each possible realized value d for D1 (i.e. each non-negative integer),

we may associate a fixed collection S(d) of possible conditional distributions for D2

(i.e. those distributions with mean d and support on the non-negative integers). Fur-

thermore, every feasible distribution for the vector (D1, D2) may be constructed by

first selecting a feasible distribution D for D1 (i.e. any distribution with mean one

and support on the non-negative integers), and for each element d in the support

of D, setting the conditional distribution of D2 (given {D1 = d}) to be some fixed

element of S(d). Moreover, the set of joint distributions constructible in this manner

is precisely the set of feasible distributions for the vector (D1, D2). Alternatively,

if we had instead required that E[D1] = E[D2] = 1, and E[D1D2] = 2, the corre-

sponding set of feasible joint distributions would not be rectangular, as it may be

verified that such a decomposition is no longer possible. For a formal definition and
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more complete/precise description of the rectangularity property, we refer the reader

to [23, 54, 97, 103, 145, 204], and note that since various communities have studied

several closely related notions at different times, a complete consensus on a common

rigorous definition has not yet been reached.

There are several works which formulate dynamic programming approaches to

distributionally robust/risk averse inventory models (cf. [2, 73, 180, 204]). More

generally, such dynamic problems can typically be formulated as so-called robust

Markov decision processes (MDP) (cf. [103, 145, 200]). However, to our knowledge,

none of these works consider applications to correlated demand or forecasting models,

with the exception of the very general Bayesian model considered recently in the

excellent work of [117].

On a related note, to the best of our knowledge, there seems to have been no sys-

tematic study of the qualitative impact of positing different joint dependency struc-

tures in such multi-stage distributionally robust inventory control problems, i.e. see-

ing which insights previously derived under specific distributional assumptions extend

to the distributionally robust setting, and furthermore what new insights manifest on-

ly in the distributionally robust setting. The quest to develop such an understanding

in the broader context of stochastic optimization (not specifically inventory control)

was recently initiated in [1], where the authors define the so-called price of correla-

tions as the ratio between the optimal minimax value when all associated random

variables (r.v.) are independent, and the setting where they may take any joint distri-

bution belonging to the allowed family. Although the authors do not look specifically

at any inventory problems, they stress the general importance of understanding how

positing different joint distribution uncertainty impacts the underlying stochastic op-

timization.

Combining the above, we are led to the following question.

Question 1 Can we construct effective dynamic distributionally robust variants of
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the time series and forecasting models used in Operations Research? Furthermore,

can we develop a theory of how positing different correlation structures qualitatively

impacts the optimal policy for such models?

We close this section by briefly reviewing a third major branch of literature on

robust inventory control models, namely that of classical (i.e. deterministic) ro-

bust optimization, in which the only constraints made are on the supports of the

associated random variables (cf. [13, 18]). In this setting, the worst-case distribu-

tion is always degenerate, namely a point-mass on a particular worst-case trajectory.

Such models often lead to tractable global optimization problems for fairly com-

plex models, and have been successfully applied to several inventory settings (cf.

[12, 14, 20, 22, 33, 114]). Indeed, this is to be contrasted with the settings of both

static and dynamic formulations for multi-stage distributionally robust optimization,

where the question of tractability (under both the static and dynamic formulations) is

less clear (cf. [21, 174, 200]). In spite of their potential computational advantages, one

drawback of such classical robust approaches is that they may be overly conservative,

and unable to capture the stochastic nature of many real-world problems (cf. [174]).

We note that the precise relationship between classical robust and distributionally

robust approaches remains an intriguing open question. On a related note, questions

of robust time series models and their applications to multi-stage inventory models,

similar to those we will consider in the present work, were very recently studied in

the interesting work of [33]. Although the approach taken there was considerably

more conservative than the approach taken in the present work, the authors were

able to formulate a quite general notion of robust time series, and solve the associ-

ated minimax optimization problems as tractable convex optimization problems. We

leave a more precise understanding of the precise relationship between our own work

on distributionally robust formulations, and alternative approaches based on classi-

cal robust optimization (such as that of [33]), as an interesting direction for future
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research.

5.1.1 Outline of chapter

The rest of the chapter proceeds as follows. In Sections 5.2.1 and 5.2.2, we introduce

the independent-demand and martingale-demand models respectively. Our main re-

sults are stated in Section 5.2.3. In Section 5.3, we present the proof of our main

theorem, the explicit expressions of optimal policy and cost. In Section 5.4, we

prove our asymptotic results. Section 5.5 provides further insights onto our results

and discusses an interesting non-monotonicity of the base-stock level in terms of the

backorder cost. In Section 5.6, we summarize our contributions and present directions

for future research. We also include a technical appendix in Section 5.7.

5.2 Main results

Before stating our main results, we briefly review the inventory model analyzed in

[180], which we refer to as the independent-demand model.

5.2.1 Independent-demand model

Consider the following distributionally robust inventory control problem with back-

logging, finite time horizon T , strictly positive linear backorder per-unit cost b, and a

per-unit holding cost of 1, where we note that assuming a holding cost equal to 1 is

without loss of generality due to a simple scaling argument. Let Dt be the (random)

demand in period t, and xt, be the inventory level at period t after placing an order,

t = 1, . . . , T , where we note that the order must be placed in period t before Dt is

known. In particular, letting D[t]
∆
= (D1, . . . , Dt) and D[0]

∆
= ∅, we require that xt

is a measurable function of D[t−1], t = 1, . . . , T , and let x0 denote the initial inven-

tory level, which we assume throughout to lie in [0, U ]. For t ∈ {1, . . . , T}, the cost

incurred in period t equals

Ct
∆
= b[Dt − xt]+ + [xt −Dt]+.
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We define an admissible policy π to be a T -dimensional vector of measurable functions

{xt, t = 1, . . . , T}, s.t. xt is a measurable map from Rt−1 to R, satisfying x1 ≥

x0, and xt+1(D[t]) ≥ xt(D[t−1]) − Dt, which is equivalent to requiring that a non-

negative amount of inventory is ordered in each period. Let Π denote the family of

all admissible policies. Note that once a particular policy π ∈ Π is specified, the

associated costs {Ct, t = 1, . . . , T} are explicit functions of the vector of demands.

Sometimes we will make this dependence of Ct and xt on the particular policy π

explicit, through the notation Cπ
t , x

π
t . Suppose U, b ∈ R+ are fixed, and for µ ∈ [0, U ],

let M(µ) be the collection of all probability measures with support [0, U ] and mean

µ, where we say that a probability measure P is supported on a set S if P (S) = 1.

Furthermore, let IND denote the collection of all T -dimensional product measures

s.t. all T marginal distributions belong to M(µ). In words, the joint distribution

of demand belongs to IND iff the demand is independent across time periods, and

the demand in each period has support [0, U ] and mean µ. Then the particular

optimization problem considered in [180] Example 5.1.2 is

inf
π∈Π

sup
Q∈IND

EQ[
T∑
t=1

Cπ
t ]. (113)

In Example 5.1.2 of [180], the author proves that due to certain structural properties,

Problem (113) can be reformulated as a dynamic program, as we now describe. For

a measurable function f : R → R, and probability measure Q, let EQ
[
f(D)

]
denote

the expected value of f(D) when D is a random variable with law Q, assuming the

expectation to be well-defined. To formally define the relevant dynamic program, we

now define a sequence of functions {V t, t ≥ 1}, {f t, t ≥ 1}, {gt, t ≥ 1}, where each

V t, f t, gt is a mapping from R2 → R. In general, such a dynamic program would be

phrased in terms of the so-called “cost-to-go” functions, with the t-th such function

representing the remaining cost incurred by an optimal policy during periods t, . . . , T ,

subject to the given state at time t. Here and throughout, we use the fact that the

backorder and holding costs are the same in every period to simplify the relevant
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concepts and notations. In particular, due to this symmetry and the associated self-

reducibility which it induces, for all T ≥ 1, it will suffice to define the aforementioned

cost-to-go function for the first time period only. Indeed, in the following function

definitions, V T (y, µ) will coincide with the optimal value of Problem (113) when the

initial inventory level is y and the associated mean is µ (we leave the dependence on

U implicit), where fT , gT have analogous interpretations.

f 1(x,D)
∆
= b[D − x]+ + [x−D]+, g

1(x, µ)
∆
= sup

Q∈M(µ)

EQf 1(x,D), V 1(y, µ)
∆
= inf

z≥y
g1(z, µ),

Q1(x, µ)
∆
= arg max

Q∈M(µ)
EQf 1(x,D), χ1(µ)

∆
= arg min

z∈[0,U ]
g1(z, µ);

(114)

and for T ≥ 2,

fT (x,D)
∆
= b[D − x]+ + [x−D]+ + V T−1(x−D,µ), gT (x, µ)

∆
= sup

Q∈M(µ)

EQfT (x,D),

V T (y, µ)
∆
= inf

z≥y
gT (z, µ), QT (x, µ)

∆
= arg max

Q∈M(µ)
EQfT (x,D), χT (µ)

∆
= arg min

z∈[0,U ]
gT (z, µ).

(115)

We note that although in principle χt(µ) is an optimization over z ∈ R, it follows

from a straightforward contradiction that restricting χ1(µ) to the interval [0, U ] is

without loss of generality.

Let us recall the formal definition of a base-stock policy for such an inventory

control problem.

Definition 4 (Base-stock policy) A policy π ∈ Π is said to be a base-stock policy

if there exist constants {x∗t ∈ R, t = 2, . . . , T}, s.t.

xπt (D[t−1]) = max
{
xπt−1(D[t−2])−Dt−1, x

∗
t

}
, t = 2, . . . , T.

We now review the results of Lemma 5.1 and Example 5.1.2 of [180], which charac-

terizes the optimal policy, value, and worst-case distribution for Problem 113, and
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relates the solution to dynamic programming formulation (114) - (115). Let us define

χIND(µ, U, b)
∆
=


0 if µ ≤ U

b+1
,

U if µ > U
b+1

;

OptTIND(µ, U, b)
∆
=


Tbµ if µ ≤ U

b+1
,

T (U − µ) if µ > U
b+1

.

Then the following is proven in [180]. Let Dµ be the probability measure s.t. Dµ(0) =

1− µ
U
,Dµ(U) = µ

U
.

Theorem 12 For all U, b ∈ R+, T ≥ 1, and µ, x0 ∈ [0, U ], Problem 113 always

has an optimal base-stock policy π∗, in which the associated base-stock constants

{x∗t , t = 1, . . . , T} satisfy x∗t = χIND(µ, U, b) for all t. If x0 ≤ χIND(µ, U, b), the

optimal value of Problem 113 equals OptTIND(µ, U, b); and for all x0 ∈ [0, U ], the

product measure s.t. all marginals are distributed according to law D belongs to

arg maxQ∈IND EQ[
∑T

t=1C
π∗
t ]. Furthermore, the dynamic programming formulation

(114) - (115) can be used to compute these optimal policies and values. In particular,

for all x0 ∈ [0, U ], V T (x0, µ) is the optimal value of Problem 113, Dµ ∈ QT (x, µ) for

all x ∈ [0, U ], and χIND(µ, U, b) ∈ χT (µ).

5.2.2 Martingale-demand model

In this subsection, we formally define our distributionally robust martingale-demand

model, and state some preliminary results. Let T, b, h,Π, Cπ
t ,M(µ) be exactly as

defined for the independent-demand model in Subsection 5.2.1, i.e. the time horizon,

backorder and holding costs, set of admissible policies, cost incurred in period t under

policy π, and collection of all probability measures with support [0, U ] and mean

µ, respectively. Furthermore, let MAR denote the collection of all discrete-time

martingale sequences (D1, . . . , DT ) s.t. all T marginal distributions belong to M.

In words, the joint distribution of demand belongs to MAR iff the demand is a
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martingale, and the demand in each period has support [0, U ] and mean µ. Then in

analogy with Problem 113, the optimization problem of interest is

inf
π∈Π

sup
Q∈MAR

EQ[
T∑
t=1

Cπ
t ]. (116)

In analogy with the dynamic programming formulation (114) - (115) given for

the independent-demand model, we now define an analogous formulation for the

martingale-demand setting. We define the following functions.

f̂ 1(x,D)
∆
= b[D − x]+ + [x−D]+, ĝ

1(x, µ)
∆
= sup

Q∈M(µ)

EQf̂ 1(x,D), V̂ 1(y, µ)
∆
= inf

z≥y
ĝ1(z, µ),

Q̂1(x, µ)
∆
= arg max

Q∈M(µ)
EQf̂ 1(x,D), χ̂1(µ)

∆
= arg min

z∈[0,U ]
ĝ1(z, µ);

(117)

and for T ≥ 2,

f̂T (x,D)
∆
= b[D − x]+ + [x−D]+ + V̂ T−1(x−D,D), ĝT (x, µ)

∆
= sup

Q∈M(µ)

EQf̂T (x,D),

V̂ T (y, µ)
∆
= inf

z≥y
ĝT (z, µ), Q̂T (x, µ)

∆
= arg max

Q∈M(µ)
EQf̂T (x,D), χ̂T (µ)

∆
= arg min

z∈[0,U ]
ĝT (z, µ).

(118)

We note that as in the independent-demand model, it follows from a straightforward

contradiction that restricting χ̂t(µ) to the interval [0, U ] is without loss of generality.

Let us recall the formal definition of a state-dependent base-stock policy for such

inventory control problems.

Definition 5 (State-dependent base-stock policy) A policy π ∈ Π is said to be

a state-dependent base-stock policy if there exist measurable functions {x∗t (D[t−1]), t =

2, . . . , T}, s.t. xπt (D[t−1]) = max
{
xπt−1(D[t−2])−Dt−1, x

∗
t (D[t−1])

}
, t = 2, . . . , T .

Then the following theorem may be proven by a straightforward induction argu-

ment, in which one demonstrates that V̂ T (y, µ) is a convex function of y for each

fixed µ, and that the set MAR enjoys a suitable variant of the well-known rectan-

gularity property, as defined and applied in, e.g [54], [103], [145]. The demonstration
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of convexity follows nearly identically to the proof of Theorems 3 and 4 given in [2],

and the remainder of the proof follows from a straightforward but tedious argument

combining the definition of a martingale with the structure of our inventory control

problem and certain associated measurability properties, and we omit the details.

Theorem 13 For all U, b ∈ R+, T ≥ 1, and µ, x0 ∈ [0, U ], Problem 116 always has

an optimal state-dependent base-stock policy. Furthermore, the dynamic program-

ming formulation (117) - (118) can be used to compute these optimal policies and

values. In particular, V̂ T (x0, µ) is the optimal value of Problem 113. An optimal

policy π∗ may be constructed by selecting the associated state-dependent base-stock

levels {x∗t (D[t−1]), t = 1, . . . , T} s.t. x∗1 ∈ χ̂T (µ) , and x∗t (D[t−1]) ∈ χ̂T+1−t(Dt−1), t =

2, . . . , T . For such an optimal policy, any random vector D[T ] s.t. D1 ∈ Q̂T (xπ
∗

1 , µ),

and Dt ∈ Q̂t
(
xπ
∗
t (D[t−1]), Dt−1

)
for t = 2, . . . , T belongs to arg maxQ∈MAR EQ[

∑T
t=1C

π∗
t ].

Although the structure of the optimal policy for various inventory problems in

which the demand is assumed to have some kind of martingale-like structure, e.g.

MMFE, has been previously studied, in general it may be computationally intensive

to calculate x∗t (D[t−1]), not to mention to find closed-form solutions. We do note

that there are several known structural results about the associated optimal state-

dependent base-stock levels, and refer the reader to [101], [127], [184], [197] for details.

5.2.3 Main results

We now state our main results. We begin by introducing some additional definitions

and notations. Whenever possible, we will supress dependence on the parameters

µ, U, b for simplicity. As a notational convenience, let us define all empty products to

equal unity, and all empty sums to equal zero. For j ∈ [−1, T ], let

ATj
∆
=


U
∏T−1

k=j+1
k
b+k

if j ≤ T − 1,

b+T
T
U if j = T ;
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and

BT
j

∆
=

j

b+ T
ATj .

Note that AT−1 = BT
−1 = BT

0 = 0, ATT−1 = BT
T = U , and both {ATj , j = −1, . . . , T}

and {BT
j , j = −1, . . . , T} are increasing in j, and decreasing in T . For x, µ ∈ [0, U ],

let qTx,µ be the unique (up to sets of measure zero) probability measure s.t.

qTx,µ(ATj ) =
ATj+1−µ
ATj+1−ATj

, qTx,µ(ATj+1) =
µ−ATj

ATj+1−ATj
if µ ∈ (ATj , A

T
j+1], x ∈ [0, BT

j+1);

qTx,µ(0) = 1− µ
ATk

, qTx,µ(ATk ) = µ
ATk

if µ ∈ (ATj , A
T
j+1], x ∈ [BT

k , B
T
k+1),

k ≥ j + 1;

qTx,µ(0) = 1− µ
U
, qTx,µ(U) = µ

U
if µ = 0 or x = U.

Also, for j ∈ [0, T ], let

GT
j (x, µ)

∆
= (T − b+ T

ATj
µ)x+ (T − j)bµ;

in which case we define

ΓTµ
∆
=


0 if µ = 0,

j + 1 if µ ∈ (AT+1
j , AT+1

j+1 ] , j ∈ [−1, T − 1];

and note that µ ∈ (AT
ΓT−1
µ −1

, AT
ΓT−1
µ

] for all T ≥ 2 and µ ∈ (0, U ], while 0 = AT
ΓT−1

0 −1
.

We also define

χTMAR(µ, U, b)
∆
= βTµ

∆
= BT

ΓTµ
, OptTMAR(µ, U, b)

∆
= GT

ΓTµ
(βTµ , µ).

Then the explicit solution to Problem 116 is as follows.

Theorem 14 For all U, b ∈ R+, T ≥ 1, and µ, x0 ∈ [0, U ], an optimal policy π∗

for Problem 116 may be constructed by selecting the associated state-dependent base-

stock levels s.t. x∗1 = χTMAR(µ, U, b), and x∗t (D[t−1]) = χT+1−t
MAR (Dt−1, U, b). For such an

optimal policy, the random vector D∗[T ] s.t. D∗1 = qT
xπ
∗

1 , µ
, and D∗t = qT+1−t

xπ
∗
t (D∗

[t−1]
), D∗t−1

for

t ∈ [2, T ] belongs to arg maxQ∈MAR EQ[
∑T

t=1C
π∗
t ]. If in addition x0 ≤ χTMAR(µ, U, b),

the optimal value of Problem 116 equals OptTMAR(µ, U, b).
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Interestingly, if the initial inventory level is sufficiently small, and the inventory

manager uses the (optimal) policy π∗ described in Theorem 14, and the adversary

selects the (optimal) sequence of demands (D∗1, . . . , D
∗
T ) described in Theorem 14, the

resulting stochastic inventory process is quite intuitive. Let ΛT ∆
= T − ΓTµ , and for

t ∈ [1,ΛT ], let us also define

DT
t

∆
= AT+1−t

ΓTµ
, XT

t
∆
= BT+1−t

ΓTµ
. (119)

Note that ΛT ∈ [1, T ], and represents the first time that DT
t reaches U . Then the

corresponding inventory dynamics under an optimal inventory manager and adversary

simplify as follows. Consider the following discrete time Markov chain {MT (t)
∆
=(

X T
t ,DTt

)
, t ≥ 1}, with randomized initial conditions, which we will later prove evolves

identically to the optimal sequence of demands and post-ordering inventory levels

described in Theorem 14.

(
X T

1 ,DT1
)

=


(
XT

1 , D
T
1

)
w.p. µ

DT1
,(

XT
1 , 0
)

w.p. 1− µ
DT1

;

for t ∈ [2,ΛT − 1],

(
X T
t ,DTt

)
=



(
X T
t−1, 0

)
w.p. 1, if DTt−1 = 0,(

XT
t , D

T
t

)
w.p.

DTt−1

DTt
, if DTt−1 6= 0,(

XT
t , 0
)

w.p. 1− DTt−1

DTt
, if DTt−1 6= 0;

for t = ΛT ,

(
X T
t ,DTt

)
=



(
X T
t−1, 0

)
w.p. 1, if DTt−1 = 0,(

XT
t , U

)
w.p.

DTt−1

U
, if DTt−1 6= 0,(

XT
t , 0
)

w.p. 1− DTt−1

U
, if DTt−1 6= 0;

for t ≥ min
(
ΛT + 1, T

)
,
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(
X T
t ,DTt

)
=


(
X T

ΛT , 0
)

w.p. 1, if DTΛT = 0;(
U,U

)
w.p. 1, if DTΛT = U.

Corollary 5 Suppose U, b ∈ R+, T ≥ 1, µ ∈ [0, U ], and x0 ∈ [0, χTMAR(µ, U, b)]. Then

one can construct the optimal sequence of post-ordering inventory levels {xπ∗t (D∗[t−1]), t =

1, . . . , T}, and optimal vector of demands D∗[T ], as described in Theorem 14, on

a common probability space with MT s.t. {
(
xπ
∗
t (D∗[t−1]), D

∗
t

)
, t = 1, . . . , T} equals

{
(
X T
t ,DTt

)
, t = 1, . . . , T} w.p.1.

We now give an alternate description of the dynamics described in Corollary 5,

explicitly describing the randon amount of time until the corresponding optimal ad-

versary demands either 0 or U . Let DT
0

∆
= µ, XT

0
∆
=

ΓTµ
b+T+1

DT
0 . Let ZT denote the r.v.,

with support on the integers belonging to [1,ΛT ], whose corresponding probability

measure ZT satisfies

ZT (t) =


(
1− DTt−1

DTt

)
µ

DTt−1
if t ∈ [1,ΛT − 1];

µ
DTt−1

if t = ΛT .

Also, let Y T denote a r.v., with support on {0, U}, independent of ZT , whose corre-

sponding probability measure YT satisfies

YT (x) =


DT

ΛT−1

U
if x = U ;

1−
DT

ΛT−1

U
if x = 0.

Corollary 6 Under the same assumptions, and on the same probability space, as

described in Corollary 5, one can also construct ZT , Y T s.t. all of the following

hold w.p.1. {
(
X T
t ,DTt

)
, t = 1, . . . , ZT − 1} equals {

(
XT
t , D

T
t

)
, t = 1, . . . , ZT − 1}.

If ZT ≤ ΛT − 1, then
(
X T
t ,DTt

)
=
(
XT
ZT , 0

)
for all t ∈ [ZT , T ]. If ZT = ΛT , and

Y T = U , then
(
X T

ΛT ,D
T
ΛT

)
=
(
XT

ΛT , U
)
, and

(
X T
t ,DTt

)
=
(
U,U

)
for all t ∈ [ΛT +1, T ].

If ZT = ΛT , and Y T = 0, then
(
X T
t ,DTt

)
=
(
XT

ΛT , 0
)

for all t ∈ [ΛT , T ].
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In words, the dynamics at optimality described in Corollaries 5 - 6 have the

following interpretation. The adversary will always select a demand distribution with

(at most) two-point support, with one of these points equal to zero. The adversary

reasons that, if her demand in some period t happens to be zero, the martingale

property ensures that she will order zero in all subsequent periods. This ensures

that the inventory manager is “stuck” holding all inventory she held at the start

of period t (after ordering) for the entire remainder of the time horizon. As the

martingale property ensures that the probability mass at zero is maximized when

all other probability mass is put at U , one might guess that the optimal adversary

will always put all probability on 0 and U , as in the independent-demand model.

However, as Corollaries 5 - 6 show, this is not the case. The adversary does not

put any probability mass at U until time ΛT , if ever. The reason is that in the

martingale-demand model, there is an additional “hidden cost” for the adversary

associated with putting support on U . In particular, if a demand of U ever occurs,

then the martingale property ensures that all future demands must be U as well.

However, it is “easy” for an inventory manager to handle an adversary that always

orders U - in particular, she can simply order up to U in every period, incurring

zero cost. In other words, the aforementioned hidden cost to the adversary comes

in the form of a “loss of randomness”, making the adversary perfectly predictable

going forwards. Corollaries 5 - 6 indicate that at optimality, this tradeoff manifests

(at optimality) by having the adversary always put some probability at 0, and some

probability on a different quantity DT
t , which increases monotonically to U as t ↑ ΛT .

This “ramping up” can be explained by observing that although higher values for this

second point of the support result in a greater “loss of randomness”, the cost of such

a loss becomes smaller over time, as the associated window of time during which the

adversary is perfectly predictable shrinks accordingly. The inventory manager will

similarly “ramp up” there post-ordering inventory levels, to levels which similarly
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address the aforementioned trade-offs.

To better understand these dynamics, we now prove that the Markov chainM(t), t =

1, . . . , T converges weakly to a simple limiting process. Let us define

γ
∆
=
µ

U
, Λ∞

∆
= 1− γb−1

.

Let Z∞ denote the mixed (i.e. both continuous and discrete components) random

variable, with continuous support on [0,Λ∞
)
, and discrete support on the singleton

Λ∞, whose corresponding probability measure Z∞ satisfies

Z∞(α) =


b(1− α)b−1dα if α ∈ [0,Λ∞

)
;

γ if α = Λ∞.

For α ∈ [0,Λ∞], where α is again a continuous parameter, let us also define

D∞α
∆
= µ(1− α)−b , X∞α

∆
= µγb

−1

(1− α)−(b+1).

Note that D∞Λ∞ = X∞Λ∞ = U . We now define an appropriate limiting process. Let

M∞(α)0≤α≤1 denote the following two-dimensional process, constructed on the same

probability space as Z∞.

M∞(α) =



(
X∞α , D

∞
α

)
if α ∈ [0, Z∞);(

X∞Z∞ , 0
)

if α ≥ Z∞ and Z∞ < Λ∞;(
U,U

)
if α ≥ Z∞ and Z∞ = Λ∞.

In the definition of M∞(α), Z∞ can be regarded as a “stopping” time that the

limiting demand in the process first reaches 0 or U . The limiting inventory level and

limiting demand both increase before the demand hits 0 or U . When the demand

hits 0, then the inventory manager is forever stuck holding all inventory she held at

that time, which equals X∞Z∞ . When the demand hits U , then the inventory manager

also orders up to U to handle the adversary.
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Then we have the following weak convergence result. For α ∈ [0, 1], letMT (α)
∆
=

M(bαT c). For an excellent review of the formal definition of weak convergence, and

the relevant topological spaces and metrics, we refer the reader to [25] or [198].

Theorem 15 For all U, b > 0 and µ ∈ (0, U), the sequence of stochastic processes

{MT (α)0≤α≤1, T ≥ 1} converges weakly to the process M∞(α)0≤α≤1 on the space

D ([0, 1], R2) under the J1 topology.

We conclude by noting interesting comparative results between the independent-

demand and martingale-demand models. First, we prove that, all other parameters

being equal, the expected cost incurred under the independent-demand model is the

highest one among all models with given support and mean constraints. In particu-

lar, the expected cost incurred under the independent-demand model is at least the

expected cost incurred under the martingale-demand model. In other words, the

“martingale adversary” is, in a sense, “weaker” than the “independent adversary”.

Theorem 16 Let M be a family of T -dimensional measures s.t. all T marginal dis-

tributions belong to M(µ), and OptTM(µ, U, b)
∆
= infπ∈Π supQ∈M EQ[

∑T
t=1C

π
t ]. As-

sume x0 = 0. Then for all U, b > 0, T ≥ 1, and µ ∈ [0, U ], OptTM(µ, U, b) ≤

OptTIND(µ, U, b). In particular, OptTMAR(µ, U, b) ≤ OptTIND(µ, U, b).

Note that OptTMAR(µ, U, b) = OptTIND(µ, U, b) when µ = 0 or µ = U . To gain further

insight into Theorem 16, we analyze this ratio as T →∞.

Theorem 17 For all U, b ∈ R+, and µ ∈ (0, U),

lim
T→∞

OptTMAR(µ, U, b)

OptTIND(µ, U, b)
=


1− γb−1

if µ ≤ U
b+1

,

(1−γb−1
)bµ

U−µ if µ > U
b+1

.

We also note the following corollary, which arises from Theorem 17 in the perfectly

symmetric case.
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Corollary 7 Suppose µ = U
2

and b = 1. Then

lim
T→∞

OptTMAR(µ, U, b)

OptTIND(µ, U, b)
=

1

2
.

5.3 Proof of Theorem 14 and Corollaries 5 - 6

In this section, we complete the proof of our main result, Theorem 14, which yields

an explicit solution to Problem 116, as well as Corollaries 5 - 6. We proceed to prove

Theorem 14 by combining ideas from convex analysis with the fundamental properties

of martingales to explicitly compute all desired functions in an inductive manner. We

actually prove a more general theorem, explicitly computing all quantities relevant to

the dynamic programming formulation 117 - 118. For x, µ ∈ [0, U ], and j ∈ [−1, T−1]

, let

F T
j (x, µ)

∆
= −bx+ (b+ T )BT

j+1 +
(
Tb− (b+ 1)(j + 1)

)
µ.

Also, let us define

gT (x, µ)
∆
=



F T
j (x, µ) if µ ∈ (ATj , A

T
j+1] , x ∈ [0, BT

j+1);

GT
k (x, µ) if µ ∈ (ATj , A

T
j+1] , x ∈ [BT

k , B
T
k+1) , k ≥ j + 1;

GT
k (x, 0) if µ = 0, x ∈ [BT

k , B
T
k+1);

GT
T (U, µ) if x = U.

For later proofs, it will be convenient to note that g may be equivalently expressed

as follows. Let

ΥT
x

∆
=


T if x = U,

j if x ∈ [BT+1
j , BT+1

j+1 );

and note that x ∈ [BT
ΥT−1
x

, BT
ΥT−1
x +1

) for all T ≥ 2 and x ∈ [0, U), while U = BT
ΥT−1
U +1

.

Noting that GT
T (U, µ) = GT

T−1(U, µ) implies

gT (x, µ) =


F T

ΓT−1
µ −1

(x, µ) if x < BT
ΓT−1
µ

;

GT
ΥT−1
x

(x, µ) if x ≥ BT
ΓT−1
µ

.
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In light of Theorem 13, note that to prove Theorem 14, it suffices to prove the

following.

Theorem 18 Under the same assumptions as Theorem 14, ĝT (x, µ) = gT (x, µ),

qTx,µ ∈ Q̂T (x, µ), and χTMAR(µ, U, b) ∈ χ̂T (µ). Furthermore,

V̂ T (x0, µ) = gT
(

max
(
x0, χ

T
MAR(µ, U, b)

)
, µ

)
;

and if x0 ≤ χTMAR(µ, U, b), then V̂ T (x0, µ) = OptTMAR(µ, U, b). Moreover, the above

follows from the fact that:

(I) gT (x, d) is a continuous and convex function of x on (0, U), and a right (left)

continuous function of x at 0 (U);

(II) βTd ∈ arg minz∈[0,U ] g
T (z, d);

(III) gT (x, d) = maxQ∈M(d) EQ
[
b(D−x)++(x−D)++gT−1

(
max

(
x−D, βT−1

D

)
, D

)]
;

(IV) qTx,d ∈ arg maxQ∈M(d) EQ
[
b(D−x)++(x−D)++gT−1

(
max

(
x−D, βT−1

D

)
, D

)]
;

(V) gT
(
βTd , d

)
= OptTMAR(d, U, b).

We proceed to prove Theorem 18 by proving (I) - (V), in order. First, we briefly

provide some intuition behind the form of gT . Note that in the statement of our main

results, namely Theorem 14, the case corresponding to the setting in which gT = F T

does not arise. Indeed, that case corresponds to the setting in which the post-ordering

inventory level is sufficiently small (relative to the mean) that the adversary is not

sufficiently incentivized to put probability mass at 0, as being “stuck” with so little

inventory would not incur significant costs. As can be seen by examining the form of

qT in this setting, the adversary instead puts support on a demand distribution with

two non-zero points. Our results imply that an optimal inventory manager will always
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order up to a level which avoids this setting, i.e. the optimal post-ordering inventory

levels always sufficiently incentivize the adversary to put positive probability at 0.

However, to prove our results, all these cases must be considered.

We begin our analysis by reviewing a well-known sufficient condition for con-

vexity of non-differentiable functions. Recall that for a one-dimensional function

f(x), the right-derivative of f evaluated at x0, which we denote by ∂+
x f(x0), equals

limh↓0
f(x0+h)−f(x0)

h
. When this limit exists, we say that f is right-differentiable at

x0. Then the following sufficient condition for convexity is stated in [164] Section 5,

Proposition 18.

Lemma 21 ([164]) A one-dimensional function f(x), which is continuous and right-

differentiable on an open interval (a, b) with non-decreasing right-derivative on (a, b),

is convex on (a, b).

We now use Lemma 21 to complete the proof of Theorem 18.(I)

Proof. [Proof of Theorem 18.(I)] We first prove continuity. That gT (x, d) is a

continuous function of x on (0, U) \
⋃T−1

i=ΓT−1
d
{BT

i }, and a right-continuous function of

x on [0, U ]\{U}, follows from definitions, and the fact that F T
i (x, d) and GT

i (x, d) are

continuous functions of x on [0, U ] for all i. It similarly follows that limx↑BTi gT (x, d)

exists for all i ∈ [ΓT−1
d , T ] \ {0}. It thus suffices to demonstrate that limx↑BTi gT (x, d)

equals gT (BT
i , d) for all i ∈ [ΓT−1

d , T ] \ {0}. We treat two cases: i = ΓT−1
d , and

i ∈ [ΓT−1
d + 1, T ], and begin with the case i = ΓT−1

d . By assumption we preclude the

case i = 0. Thus suppose i = ΓT−1
d ∈ [1, T ]. In this case,

lim
x↑BTi

gT (x, d) = F T
i−1(BT

i , d)

= −bBT
i + (b+ T )BT

i +
(
Tb− (b+ 1)i

)
d.

= TBT
i +

(
Tb− (b+ 1)i

)
d.
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Alternatively,

gT (BT
i , d) = GT

i (BT
i , d)

= (T − b+ T

ATi
d)BT

i + (T − i)bd

= TBT
i +

(
Tb− (b+ 1)i

)
d.

Combining the above completes the proof for this case. Next, suppose i ∈ [ΓT−1
d +

1, T ]. In this case,

lim
x↑BTi

gT (x, d) = GT
i−1(BT

i , d)

= (T − b+ T

ATi−1

d)BT
i +

(
T − (i− 1)

)
bd

= TBT
i +

(
Tb− (b+ 1)i

)
d.

Alternatively,

gT (BT
i , d) = GT

i (BT
i , d)

= (T − b+ T

ATi
d)BT

i + (T − i)bd = TBT
i +

(
Tb− (b+ 1)i

)
d,

completing the proof.

We now prove convexity. As in our proof of continuity, that gT (x, d) is a right-

differentiable function of x on (0, U)\
⋃T
i=ΓT−1

d
{BT

i }, with non-decreasing right-derivative

on the same set, follows from definitions and the fact that F T
i (x, d) and GT

i (x, d) are

linear functions of x on [0, U ] for all i. It similarly follows that gT (x, d) is a right-

differentiable function of x on [0, U ] \ {U}, and that limx↑BTi ∂
+
x g

T (x, d) exists for all

i ∈ [ΓT−1
d , T − 1] \ {0}. It thus suffices to demonstrate that limx↑BTi ∂

+
x g

T (x, d) ≤

∂+
x g

T (BT
i , d) for all i ∈ [ΓT−1

d , T − 1] \ {0}. We treat two cases: i = ΓT−1
d , and

i ∈ [ΓT−1
d + 1, T − 1], and begin with the case i = ΓT−1

d . By assumption we preclude

the cases i = 0, T . Thus suppose i = ΓT−1
d ∈ [1, T − 1]. Then

lim
x↑BTi

∂+
x g

T (x, d) = lim
x↑BTi

∂+
x F

T
i−1(x, d)

= −b.
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Alternatively,

∂+
x g

T (BT
i , d) = ∂+

x G
T
i (BT

i , d)

= T − b+ T

ATi
d.

≥ T − b+ T

ATi
ATi = −b.

Combining the above completes the proof for this case. Next, suppose i ∈ [ΓT−1
d +

1, T − 1]. Then

lim
x↑BTi

∂+
x g

T (x, d) = lim
x↑BTi

∂+
x G

T
i−1(x, d)

= T − b+ T

ATi−1

d.

Alternatively,

∂+
x g

T (BT
i , d) = ∂+

x G
T
i (BT

i , d)

= T − b+ T

ATi
d.

The desired result then follows from the fact that ATi is increasing in i and d is

non-negative. Combining the above completes the proof. �

We now use Theorem 18.(I) to complete the proof of Theorem 18.(II). Before

proceeding, it will be useful to prove that the sets {ATj , j = 0, . . . , T − 2} and

{AT+1
j , j = 0, . . . , T − 2} interlace, in an appropriate sense. Indeed, since AT+1

j+1 is

trivially strictly less than ATj+1 for all j ∈ [0, T − 2], and
ATj

AT+1
j+1

=
j+1
b+j+1
T
b+T

< 1 for all

j ∈ [0, T − 2], we conclude the following.

Lemma 22 ATj < AT+1
j+1 < ATj+1 for j ∈ [0, T − 2]. It follows that for all T ≥ 2 and

d ∈ [0, U ], ΓTd ∈ {ΓT−1
d ,ΓT−1

d + 1}.

We now complete the proof of Theorem 18.(II)

Proof. [Proof of Theorem 18.(II)] Let i = ΓTd , j = ΓT−1
d . From Theorem 18.(I),

it suffices to prove that ∂+
x g

T (x, d) ≤ 0 for all x < BT
i , and ∂+

x g
T
(
BT
i , d
)
≥ 0; or
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that ∂+
x g

T (x, d) ≤ 0 for all x < U and BT
i = U . It follows from Lemma 22 that

i ∈ {j, j + 1}. We now proceed by a case analysis. First, suppose i = j. In that case,

BT
i = BT

j , j ≤ T − 1, and BT
i < U . We conclude that for all x < BT

i ,

∂+
x g

T (x, d) = ∂+
x F

T
j−1(x, µ) = −b.

Noting that

∂+
x g

T
(
BT
i , d
)

= ∂+
x G

T
i (BT

i , d)

= T − b+ T

ATi
d ≥ T − b+ T

ATi
AT+1
i = 0

completes the proof in this setting.

Alternatively, suppose that i = j + 1. In this case, BT
i > BT

j , and

lim
x↑BTi

∂+
x g

T
(
x, d
)

= lim
x↑BTi

∂+
x G

T
i−1(x, d)

= T − b+ T

ATi−1

d ≤ T − b+ T

ATi−1

AT+1
i−1 = 0.

If BT
i = U , the lemma follows from Theorem 18.(I). Otherwise,

∂+
x g

T
(
BT
i , d
)

= ∂+
x G

T
i (BT

i , d)

= T − b+ T

ATi
d ≥ T − b+ T

ATi
AT+1
i = 0.

Combining the above completes the proof. �

We now embark on the proof of Theorem 18.(III) - (IV). This is where the primary

difficulty lies in the proof of our main results. First, to simplify matters, we will

prove an auxiliary lemma simplifying the expression gT−1

(
max

(
βT−1
D , x − D

)
, D

)
,

and begin with some further definitions. For x, d ∈ [0, U ], and j ∈ [0, T ], let

F
T

j (x, d)
∆
= Tx+

(
(b− 1)T − bj − b+ T

ATj
x
)
d+

b+ T

ATj
d2;

and for j ∈ [−1, T − 1], let

G
T

j (d)
∆
= TBT

j+1 +
(
Tb− (b+ 1)(j + 1)

)
d.
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Note that βTd is monotone increasing in d, with βT0 = 0, and βTU = U . It follows that

for all x ∈ [0, U ],

zTx
∆
= inf{d ≥ 0 s.t. βTd ≥ x− d},

is well defined,

zTx ≤ x for x ∈ [0, U ], (120)

and zTx = 0 iff x = 0. For x, d ∈ [0, U ], let us define

gT (x, d)
∆
=



F
T

j (x, d) if d ∈ [0, zTx
)⋂

(x−BT
j+1, x−BT

j ] , j ∈ [0, T − 1];

G
T

j (d) if d ∈ [zTx , U ]
⋂

(AT+1
j , AT+1

j+1 ] , j ∈ [−1, T − 1];

G
T

−1(0) if d = 0 , x = 0;

F
T

T−1(U, 0) if d = 0 , x = U.

For later proofs, it will be convenient to note that g may be equivalently expressed

as follows.

gT (x, d) =


F
T

ΥT−1
x−d

(x, d) if d < zTx ;

G
T

ΓTd −1(d) if d ≥ zTx .

We now prove that gT (x, d) = gT
(

max
(
βTd , x− d

)
, d

)
.

Lemma 23 For all T ≥ 1, x, d ∈ [0, U ], gT (x, d) = gT
(

max
(
βTd , x− d

)
, d

)
.

Proof. Let us proceed by showing that for each fixed x ∈ [0, U ], gT (x, d) =

gT
(

max
(
βTd , x− d

)
, d

)
for all d ∈ [0, U ]. As the equivalence is easily verified for the

case d = 0, in which case gT (x, d) = gT
(

max
(
βTd , x − d

)
, d

)
= Tx, suppose d > 0.

We proceed by a case analysis, beginning with the setting d ∈ (0, zTx ). In this case,

max
(
βTd , x− d

)
= x− d, and

x > d+BT
ΓTd

≥ d+BT
ΓT−1
d

,
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where the second inequality follows from Lemma 22 and the monotonicity (in i) of

BT
i . Combining with the easily verified fact that F

T

j (x, d) = GT
j (x − d, d) for all j

completes the proof in this case.

Alternatively, suppose d ∈ [zTx , U ], which implies that max
(
βTd , x− d

)
= βTd , and

d ≥ x − βTd . We proceed by a case analysis. First, suppose d ∈ (ATj , A
T+1
j+1 ] for some

j ∈ [−1, T − 2]. In this case, Lemma 22 implies that d ∈ (ATj , A
T
j+1]

⋂
(AT+1

j , AT+1
j+1 ],

and

gT (x, d) = G
T

j (d).

= GT
j+1(BT

j+1, d) = gT (βTd , d).

Alternatively, suppose d ∈ (AT+1
j+1 , A

T
j+1] for some j ∈ [−1, T −2]. In this case, Lemma

22 implies that d ∈ (ATj , A
T
j+1]

⋂
(AT+1

j+1 , A
T+1
j+2 ], and

gT (x, d) = G
T

j+1(d).

= GT
j+2(BT

j+2, d) = gT (βTd , d).

Lemma 22 implies that this treats all cases. Combining the above completes the

proof. �

We now make one further definition, to further simplify notations. Let us define

fT (x, d)
∆
= b(d− x)+ + (x− d)+ + gT−1(x, d).

Then in follows from Lemma 23 that to prove Theorem 18.(III) - (IV), it suffices to

demonstrate the following.

gT (x, d) = sup
Q∈M(d)

EQ[fT (x,D)] , and qTx,d ∈ arg max
Q∈M(d)

EQ[fT (x,D)]. (121)

To accomplish this, we will rely on the following easily verified sufficient condition for

optimality in certain distributionally robust optimization problems.

Lemma 24 Suppose f : [0, U ]→ R is any bounded real-valued function with domain

[0, U ]. Suppose 0 ≤ L ≤ µ < R ≤ U , and the linear function η(d)
∆
= f(R)−f(L)

R−L d +
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Rf(L)−Lf(R)
R−L , i.e. the line intersecting f at the points L and R, satisfies η(d) ≥ f(d) for

all d ∈ [0, U ], i.e. lies above f on [0, U ]. Then the measure q s.t. q(L) = R−µ
R−L , q(R) =

µ−L
R−L , belongs to arg maxQ∈M(µ) EQ[f(D)].

Proof. Note that for any measure Q ∈M(µ), it is true that

EQ[f(D)] ≤ EQ[η(D)] =
f(R)− f(L)

R− L
µ+

Rf(L)− Lf(R)

R− L
.

But since q has support only on points d ∈ [0, U ] s.t. f(d) = η(d), it follows that

Eq[f(D)] = Eq[η(D)] =
f(R)− f(L)

R− L
µ+

Rf(L)− Lf(R)

R− L
.

Combining the above completes the proof. �

In order to apply Lemma 24 to fT , thus solving the distributionally robust op-

timization problem associated with (121), we will prove that fT has a very special

structure. In particular, we will prove that it is a continuous “gluing together” of

convex and concave functions, in an appropriate sense. We begin by proving cer-

tain relevant structural properties for gT , which we will use to prove corresponding

structural properties for fT .

Lemma 25 For each fixed x ∈ [0, U ], gT (x, d) is a continuous function of d on

(0, U), and a right (left) - continuous function of d at 0 (U). Also, gT (x, d) is a

convex function of d on (0, zTx ), and a concave function of d on (zTx , U).

Proof. First, let us treat the case d ∈ [0, zTx ), and begin by proving continuity.

Right-continuity at 0 when x 6= 0 follows from the fact that limd↓0 F
T

j (x, d) = Tx for

all j, and right-continuity at 0 when x = 0 follows from definitions. That gT (x, d) is

a continuous function of d on (0, zTx ) \
⋃T−1
j=1 {x−BT

j }, and a left-continuous function

of d on (0, zTx ), follows from the continuity (in d) of F
T

j (x, d) for all j. It similarly

follows that limd↓x−BTj gT (x, d) exists for all j s.t. x−BT
j ∈ (0, zTx ), and it thus suffices

to demonstrate that limd↓x−BTj gT (x, d) equals gT (x, x−BT
j ) for all j ∈ [1, T − 1] s.t.
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x−BT
j ∈ (0, zTx ). Note that for all such j,

lim
d↓x−BTj

gT (x, d) = F
T

j−1(x, x−BT
j )

= Tx+
(
(b− 1)T − b(j − 1)− b+ T

ATj−1

x
)
(x−BT

j ) +
b+ T

ATj−1

(x−BT
j )2.

Alternatively,

gT (x, x−BT
j ) = F

T

j (x, x−BT
j )

= Tx+
(
(b− 1)T − bj − b+ T

ATj
x
)
(x−BT

j ) +
b+ T

ATj
(x−BT

j )2.

It follows that gT (x, x−BT
j )− limd↓x−BTj gT (x, d) equals

(
− b+ (

b+ T

ATj−1

− b+ T

ATj
)x
)
(x−BT

j )− (
b+ T

ATj−1

− b+ T

ATj
)(x−BT

j )2

= (x−BT
j )
(
− b+ (

b+ T

ATj−1

− b+ T

ATj
)x− (

b+ T

ATj−1

− b+ T

ATj
)(x−BT

j )
)

= (x−BT
j )
(
− b+ (b+ T )BT

j (
1

ATj−1

− 1

ATj
)
)

= 0,

completing the proof of continuity.

We now prove convexity. Again applying Lemma 21, it suffices to demonstrate

that ∂+
d g

T (x, d) exists and is non-decreasing on (0, zTx
)
. Since F

T

j (x, d) is a convex

quadratic function of d for all j, we conclude that: ∂+
d g

T (x, d) exists on (0, zTx );

∂+
d g

T (x, d) is non-decreasing on (0, zTx ) \
⋃T−1
j=1 {x − BT

j }; and limd↑x−BTj ∂
+
d g

T (x, d)

exists for all j ∈ [1, T − 1] s.t. x−BT
j ∈ (0, zTx ). It thus suffices to demonstrate that

limd↑x−BTj ∂
+
d g

T (x, d) ≤ ∂+
d g

T (x, x − BT
j ) for all j ∈ [1, T − 1] s.t. x − BT

j ∈ (0, zTx ).

Note that for any such j,

lim
d↑x−BTj

∂+
d g

T (x, d) = ∂+
d F

T

j (x, x−BT
j )

= (b− 1)T − bj − b+ T

ATj
x+ 2

b+ T

ATj
(x−BT

j )

= (b− 1)T − (b+ 2)j + x
b+ T

ATj
.
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Alternatively, it follows from continuity that

∂+
d g

T (x, x−BT
j ) = ∂+

d F
T

j−1(x, x−BT
j )

= (b− 1)T − b(j − 1)− b+ T

ATj−1

x+ 2
b+ T

ATj−1

(x−BT
j )

= (b− 1)T − (b+ 2)j − b+ x
b+ T

ATj−1

.

It follows that

∂+
d g

T (x, x−BT
j )− lim

d↑x−BTj
∂+
d g

T (x, d) (122)

equals

−b+ x
b+ T

ATj−1

− xb+ T

ATj
,

which will be the same sign as

−bATj−1 + x(b+ T )− x(b+ T )
j

b+ j
= −bATj−1 + x(b+ T )

b

b+ j
. (123)

Noting that b+j
b+T

ATj−1 = BT
j , and multiplying through the right-hand side of (123)

by b+j
b(b+T )

, we further conclude that (122) will be the same sign as x − BT
j . Since by

assumption x− BT
j ∈ (0, zTx ), we conclude that x− BT

j ≥ 0, completing the proof of

continuity and convexity for d ∈ (0, zTx ) and right-continuity at 0.

Next, let us treat the case d ∈ (zTx , U ], and begin by proving continuity. That

gT (x, d) is a continuous function of d on (zTx , U) \
⋃T−1
j=0 {A

T+1
j }, and a left-continuous

function of d on (zTx , U ], follows from the continuity (in d) of G
T

j (d) for all j. It

similarly follows that limd↓AT+1
j

gT (x, d) exist for all j ∈ [0, T − 1] s.t. AT+1
j > zTx . It

thus suffices to demonstrate that limd↓AT+1
j

gT (x, d) = gT (x,AT+1
j ) for all j ∈ [0, T−1]

s.t. AT+1
j > zTx . Note that for any such j,

lim
d↓AT+1

j

gT (x, d) = G
T

j (AT+1
j )

= TBT
j+1 +

(
Tb− (b+ 1)(j + 1)

)
AT+1
j .
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Alternatively,

gT (x,AT+1
j ) = G

T

j−1(AT+1
j )

= TBT
j +

(
Tb− (b+ 1)j

)
AT+1
j .

Thus

gT (x,AT+1
j )− lim

d↓AT+1
j

gT (x, d) = T (BT
j −BT

j+1) + (b+ 1)AT+1
j

=
T

b+ T
(jATj − (j + 1)ATj+1

)
+ (b+ 1)

T

b+ T
ATj

=
T

b+ T

(
(b+ j + 1)ATj − (j + 1)ATj+1

)
= 0,

completing the proof of continuity.

We now prove concavity. Again applying Lemma 21, it suffices to demonstrate that

∂+
d g

T (x, d) exists and is non-increasing on (zTx , U). Since G
T

j (d) is a linear function

of d for all j, it follows from the piece-wise definition of gT (x, d) that demonstrating

the desired concavity is equivalent to showing that ∂+
d G

T

j (0) is non-increasing in j.

Noting that ∂+
d G

T

j (0) = Tb−(b+1)(j+1), which is trivially decreasing in j, completes

the proof.

Finally, let us prove continuity at zTx . We consider two cases, depending on how

ηd
∆
= x− d comes to go from lying above βTd to lying below βTd . This “crossing” can

occur in two ways. In particular, either βTd and ηd actually intersect, or zTx occurs at

a jump discontinuity of βTd and the two functions never truly intersect. We proceed

by a case analysis. Let i = ΓTzTx .

First, suppose that βTd and ηd actually intersect at zTx , namely BT
i = x − zTx . If

zTx ∈
⋃T
j=−1{A

T+1
j }, the proof of right-continuity follows identically to our previous

proof of right-continuity at AT+1
j for all j ∈ [0, T − 1] s.t. AT+1

j > zTx , and we omit

the details. Otherwise, right-continuity at zTx follows from definitions. Either way,
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we need only demonstrate left-continuity. Note that zTx ∈ (x−BT
i+1, x−BT

i ], and

lim
d↑zTx

gT (x, d) = F
T

i (x, zTx )

= Tx+
(
(b− 1)T − bi− b+ T

ATi
x
)
(x−BT

i ) +
b+ T

ATi
(x−BT

i )2

= TBT
i +

(
Tb− (b+ 1)i

)
(x−BT

i ).

Alternatively,

gT (x, zTx ) = G
T

i−1(x−BT
i )

= TBT
i +

(
Tb− (b+ 1)i

)
(x−BT

i ),

completing the proof of continuity in this case.

Alternatively, suppose that βTd and ηd do not truly intersect at zTx . In this case,

zTx = AT+1
i ∈ (x−BT

i+1, x−BT
i ], and

lim
d↑zTx

gT (x, d) = F
T

i (x,AT+1
i )

= Tx+
(
(b− 1)T − bi− b+ T

ATi
x
)
AT+1
i +

b+ T

ATi
(AT+1

i )2

= b(T − i)AT+1
i ,

where the final equality follows from straightforward algebraic manipulations, the

details of which we omit. Alternatively,

gT
(
x, zTx ) = G

T

i−1(AT+1
i )

= TBT
i +

(
Tb− (b+ 1)i

)
AT+1
i

= b(T − i)AT+1
i ,

where the final equality again follows from straightforward algebraic manipulations.

This completes the proof of left-continuity at zTx . The proof of right-continuity in

this case follows identically to our previous proof of right-continuity at AT+1
j for all

j ∈ [0, T−1] s.t. AT+1
j > zTx , and we omit the details. Combining the above completes

the proof of the lemma. �
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We now use Lemma 25 to prove the relevant structural properties for fT , and begin

by introducing some additional notations to simplify our arguments. For x ∈ [0, U ],

let us define αTx
∆
= AT

ΓT−1
x

, ζTx
∆
= ΓTzTx ,A

T
x

∆
= AT

ζT−1
x

, and ℵTx
∆
= AT

ΥT−1
x

. Note that for all

j ∈ {−1, . . . , T − 1},

BT
j+1 =

j + 1

b+ T
ATj+1

≤ j + 1

b+ j + 1
ATj+1 = ATj . (124)

Combining with (120) and a straightforward contradiction argument, we conclude

that for all x ∈ [0, U ] and T ≥ 2,

ΥT
x ≥ ΓTx ≥ ζTx , and ℵTx ≥ αTx ≥ ATx . (125)

Then the following lemma demonstrates the desired structural properties of fT .

Lemma 26 For each fixed x ∈ [0, U ], fT (x, d) is a continuous function of d on (0, U),

and a right (left) - continuous function of d at 0 (U). Also, for all j ∈ [−1, T − 2],

fT (x, d) is a convex function of d on (ATj , A
T
j+1). Furthermore, fT (x, d) is a convex

function of d on (0,ATx ), and a concave function of d on (αTx , U).

Proof. The statements regarding continuity follow from Lemma 25. Noting that

d > αTx implies d > x, concavity on (αTx , U) follows from (120) and Lemma 25. Let

i = ζT−1
x . Convexity on (0, zT−1

x ) follows from (120) and Lemma 25. Supposing

zT−1
x /∈ {0, U}, it follows from definitions that zT−1

x ∈ (ATi−1, A
T
i ], where ATx = ATi .

Combining with the convexity of F
T−1

j (x, d) and G
T−1

j (d) for all j, to prove the lemma,

it suffices to demonstrate that: 1. zT−1
x /∈

⋃T−1
j=−1{ATj } implies that

lim
d↑zT−1

x

∂+
d f

T (x, d) ≤ ∂+
d f

T (x, zT−1
x ); (126)

and 2. x /∈
⋃T−1
j=−1{ATj } implies

lim
d↑x

∂+
d f

T (x, d) ≤ ∂+
d f

T (x, x). (127)

145



We treat several cases, and assume throughout that zT−1
x , x /∈

⋃T−1
j=−1{ATj }. First, sup-

pose zT−1
x = x. In this case, it follows from a straightforward contradiction argument

that ΓTx = i = 0, x ∈ (0, AT0 ), and

lim
d↑zT−1

x

∂+
d f

T (x, d) = −1 + lim
d↑zT−1

x

∂+
d F

T−1

0 (x, d)

= −1 + (b− 1)(T − 1)− b+ T − 1

AT−1
0

x+ 2
b+ T − 1

AT−1
0

zT−1
x

= −1 + (b− 1)(T − 1) +
b+ T − 1

AT−1
0

x

≤ −1 + (b− 1)(T − 1) +
b+ T − 1

AT−1
0

AT0 = bT − (b+ 1).

Alternatively,

∂+
d f

T (x, zT−1
x ) = b+ ∂+

d G
T−1

−1 (x)

= b+ (T − 1)b = bT.

Combining the above completes the proof of both (126) and (127) in this case.

Next, suppose zT−1
x < x. We again consider two cases, depending on how ηd

∆
= x−d

comes to go from lying above βT−1
d to lying below βT−1

d . In the case that the two

actually intersect, it may be easily verified that zT−1
x = x−BT−1

i , and

lim
d↑zT−1

x

∂+
d f

T (x, d) = −1 + lim
d↑zT−1

x

∂+
d F

T−1

i (x, d)

= −1 + (b− 1)(T − 1)− bi− b+ T − 1

AT−1
i

(zT−1
x +BT−1

i )

+2
b+ T − 1

AT−1
i

zT−1
x

= −1 + (b− 1)(T − 1)− (b+ 1)i+
b+ T − 1

AT−1
i

zT−1
x .

Alternatively,

∂+
d f

T
(
x, zT−1

x

)
= −1 + ∂+

d G
T−1

i−1 (zT−1
x )

= −1 + (T − 1)b− (b+ 1)i.
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It follows that

∂+
d f

T (x, zT−1
x )− lim

d↑zT−1
x

∂+
d f

T (x, d) = T − 1− b+ T − 1

AT−1
i

zT−1
x ,

which will be the same sign as

ATi − zT−1
x ≥ ATi − ATi = 0.

Combining the above completes the proof of (126) in this case. Furthermore, the

proof of (127) follows from the fact that x /∈
⋃T−1
j=−1{ATj }, from which it follows that

∂+
d f

T (x, x)− lim
d↑x

∂+
d f

T (x, d) = b+ 1.

Finally, suppose that zT−1
x < x and zT−1

x /∈
⋃T−2
j=1 {x−B

T−1
j }. As x /∈

⋃T−1
j=−1{ATj },

this final case follows nearly identically to the proof of (127) in the previous case,

and we omit the details. Combining all of the above cases completes the proof of the

lemma. �

We now use Lemma 26 to explicitly construct (for each fixed value of x) a family F

of lines {Li}, s.t. each line Li lies above fT (x, d) for all d ∈ [0, U ], each line Li intersects

fT (x, d) at exactly two points p1
i , p

2
i , and for each µ ∈ [0, U ] there exists Li ∈ F s.t.

µ ∈ [p1
i , p

2
i ]. Our construction will ultimately allow us to apply Lemma 24, explicitly

solve the distributionally robust optimization problem maxQ∈M(d) EQ[fT (x,D)], and

complete the proof. We begin by explicitly constructing the family of lines F . For

d ∈ R, let us define

KT (x, d)
∆
=

fT (x,ℵTx )− Tx
ℵTx

d+ Tx;

and for j ∈ [−1, . . . , T − 2],

LTj (x, d)
∆
=

fT (x,ATj+1)− fT (x,ATj )

ATj+1 − ATj
d+

ATj+1f
T (x,ATj )− ATj fT (x,ATj+1)

ATj+1 − ATj
.

Noting that F
T−1

j (x, 0) = (T − 1)x for all j, it follows from Lemma 23 that

fT (x, 0) = Tx. (128)
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It may be easily verified, using (128), that KT defines the unique line passing through

the (x, y) co-ordinates
(
0, fT (x, 0)

)
and

(
ℵTx , fT (x,ℵTx )

)
; and LTj defines the unique

line passing through the (x, y) co-ordinates
(
ATj , f

T (x,ATj )
)

and
(
ATj+1, f

T (x,ATj+1)
)
.

Lemma 27 For each fixed x ∈ [0, U ], KT (x, d) ≥ fT (x, d) for all d ∈ [0, U ]. Also, for

all ` ∈ [ΥT−1
x , T − 2], LT` (x, d) ≥ fT (x, d) for all d ∈ [0, U ].

Proof. We first prove that KT (x, d) ≥ fT (x, d) for all d ∈ [0, U ]. Let i = ζT−1
x , j =

ΓT−1
x , and k = ΥT−1

x . That KT (x, 0) ≥ fT (x, 0) follows from definitions. We now

prove that KT (x,ATl ) ≥ fT (x,ATl ) for all l ∈ [i, j − 1]. First, it will be useful to

rewrite K in a more convenient form. Noting that ℵTx = ATk ,

fT (x,ATk ) = b(ATk − x) +G
T−1

k−1 (ATk )

= b(ATk − x) + (T − 1)BT−1
k +

(
(T − 1)b− (b+ 1)k

)
ATk ,

and

KT (x, d) =
fT (x,ATk )− Tx

ATk
d+ Tx

=
(
Tb− (b+ 1)k +

(T − 1)BT−1
k − (b+ T )x

ATk

)
d+ Tx

=
(
b(T − k)− (b+ T )x

ATk

)
d+ Tx. (129)

Combining with the fact that for all l ∈ [i, j − 1] one has ATl ∈ [zT−1
x , x], proving the

desired statement is equivalent to proving that

(
b(T − k)− (b+ T )x

ATk

)
ATl + Tx ≥ x− ATl + (T − 1)BT−1

l +
(
(T − 1)b− (b+ 1)l

)
ATl ,

which is itself equivalent to demonstrating that

(
b(l + 1− k) + 1− (b+ T )x

ATk

)
ATl + (T − 1)x ≥ 0. (130)

First, it will be useful to prove that the left-hand side of (130),

η(l)
∆
=
(
b(l + 1− k) + 1− (b+ T )x

ATk

)
ATl + (T − 1)x,
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is decreasing in l, for l ∈ [0, j − 1]. Indeed, after simplifying, we find that

η(l + 1)− η(l) =

(
b+

b

b+ l + 1

(
b(l + 1− k) + 1− (b+ T )x

ATk

))
ATl+1,

which will be the same sign as

(
b(l + 2− k) + l + 2

)
ATk − (b+ T )x

≤
(
b(l + 2− k) + l + 2

)
ATk − (b+ T )BT

k

= (b+ 1)(l + 2− k)ATk .

Noting that ` + 1 ≤ j − 1 and (125) implies j ≤ k completes the proof of mono-

tonicity, which we now use to complete the proof of (130). In particular, the above

monotonicity implies that to prove (130), it suffices to prove that η(k− 1) ≥ 0. Note

that

η(k − 1) = ATk−1 +
b(T − 1− k)− k

b+ k
x.

If b(T −1−k)−k ≥ 0, then trivially η(k−1) ≥ 0. Thus suppose b(T −1−k)−k < 0.

In this case, η(k − 1) ≥ 0 iff

x ≤
(b+ k)ATk−1

k − b(T − 1− k)
.

As x ≤ BT
k+1, it thus suffices to prove that

BT
k+1 ≤

b+ k

k − b(T − 1− k)
ATk−1,

which, dividing both sides by ATk−1(b + k) and simplifying, is itself equivalent to

proving that

(b+ T )k ≥
(
k − b(T − 1− k)

)
(b+ k + 1).

Noting that k ≤ T − 1, and thus k − b(T − 1 − k) ≤ k, thus completes the desired

proof that KT (x,ATl ) ≥ fT (x,ATl ) for all l ∈ [i, j − 1].

We now prove that KT (x,ATl ) ≥ fT (x,ATl ) for all l ∈ [j, k]. By construction,

KT (x,ATk ) = fT (x,ATk ),
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and thus it suffices to prove the desired claim for l ∈ [j, k−1]. Note that the degenerate

case for which x = ATk can be ignored, as in that case j = k. Thus suppose x < ATk .

In this case, Lemma 26 implies that fT (x, d) is a continuous, concave, piecewise linear

function of d on [ATj , A
T
k ]. As KT (x, d) is a linear function of d, it follows from the

basic properties of concave functions that to prove the desired claim, it suffices to

demonstrate that

∂+
d K(x,ATk ) ≤ lim

d↑ATk
∂+
d f

T (x, d), (131)

which is equivalent to proving that

b(T − k)− (b+ T )x

ATk
≥ b+ lim

d↑ATk
∂+
d G

T−1

k−1 (d). (132)

It follows from definitions that

ATk =
b+ T

k
BT
k ≤ b+ T

k
x.

Combining with (132), we find that to prove the desired claim, it suffices to demon-

strate that

b(T − k)− k ≥ b+ (T − 1)b− (b+ 1)k. (133)

Noting that both sides of (133) are equivalent completes the proof.

Finally, let us prove that KT (x,ATl ) ≥ fT (x,ATl ) for all l ∈ [k + 1, T − 1], which

will complete the proof. It again follows from Lemma 26 and the basic properties

of concave functions that in this case it suffices to demonstrate that ∂+
d KT (x,ATk ) ≥

∂+
d f

T (x,ATk ), which is equivalent to proving that

b(T − k)− (b+ T )x

ATk
≥ b+ ∂+

d G
T−1

k (ATk ). (134)

It follows from definitions that

ATk =
k + 1

b+ k + 1
ATk+1

=
b+ T

b+ k + 1
BT
k+1 ≥ b+ T

b+ k + 1
x.
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Combining with (134), we find that in this case it suffices to demonstrate that

b(T − k)− (b+ k + 1) ≥ b+ (T − 1)b− (b+ 1)(k + 1). (135)

Noting that both sides of (135) are equivalent completes the proof. Combining all

of the above with the piece-wise convexity guaranteed by Lemma 26 completes the

proof that KT (x, d) ≥ fT (x, d) for all d ∈ [0, U ].

We now prove that for all l ∈ [k, T −2], LTl (x, d) ≥ fT (x, d) for all d ∈ [0, U ]. Note

that fT (x, d) is a concave function on [ATk , U ], and by construction LTl (x, d) is a line

tangent to fT (x, d) at ATl . It follows from the basic properties of concave functions

that

LTl (x, d) ≥ fT (x, d) for all d ∈ [ATk , U ].

Combining those same properties with (131) and the basic properties of linear func-

tions, it follows that LTl (x, d) ≥ KT (x, d) for all d ∈ [0, ATk ]. Combining all of the

above completes the proof. �

We now prove that by combining Lemmas 24 and 27, we can complete the proof

of Theorem 18.(III) - (IV).

Proof. [Proof of Theorem 18.(III) - (IV)] Theorem 18.(IV) follows from Lemmas 24

and 27, definitions, and a straightforward case analysis, the details of which we omit.

We now prove Theorem 18.(III), and proceed by a case analysis. Let j = ΓT−1
d and

k = ΥT−1
x . First, suppose d ∈ [0, ATk ]. In light of Lemmas 24 and 27, in this case it

suffices to demonstrate that

gT (x, d) = KT (x, d). (136)

In this case, the left-hand side of (136) equals

GT
k (x, d) = (T − b+ T

ATk
d)x+ (T − k)bd. (137)

Alternatively, from (129), the right-hand side of (136) equals(
b(T − k)− (b+ T )x

ATk

)
d+ Tx. (138)
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Noting that (137) equals (138) completes the proof in this case.

Alternatively, suppose d > ATk . In this case it suffices to demonstrate that for all

` ∈ [k, T − 2],

gT (x, d) = LTj−1(x, d). (139)

Note that the left-hand side of (139) equals

F T
j−1(x, d) = −bx+ (b+ T )BT

j +
(
Tb− (b+ 1)j

)
d. (140)

Alternatively, it follows from (120) and (124) that the right-hand side of (139) equals

fT (x,ATj )− fT (x,ATj−1)

ATj − ATj−1

d+
ATj f

T (x,ATj−1)− ATj−1f
T (x,ATj )

ATj − ATj−1

=b(d− x) +
G
T−1

j−1 (ATj )−GT−1

j−2 (ATj−1)

ATj − ATj−1

d+
ATj G

T−1

j−2 (ATj−1)− ATj−1G
T−1

j−1 (ATj )

ATj − ATj−1

.

(141)

We now simplify (141) separately. Note that G
T−1

j−1 (ATj )−GT−1

j−2 (ATj−1) equals

(T − 1)(BT−1
j −BT−1

j−1 ) +

(
(T − 1)b− (b+ 1)j

)
(ATj − ATj−1)− (b+ 1)ATj−1

=

(
(T − 1)b− (b+ 1)j

)(
ATj − ATj−1

)
+ (T − 1)

(
j

T − 1
ATj −

j − 1

T − 1
ATj−1

)
−(b+ 1)ATj−1

=

(
(T − 1)b− (b+ 1)j

)(
ATj − ATj−1

)
, (142)

and ATj G
T−1

j−2 (ATj−1)− ATj−1G
T−1

j−1 (ATj ) equals

(T − 1)
(
ATj B

T−1
j−1 − ATj−1B

T−1
j

)
+ (b+ 1)ATj−1A

T
j

= (T − 1)

(
ATj A

T
j−1

j − 1

T − 1
− ATj−1A

T
j

j

T − 1

)
+ (b+ 1)ATj−1A

T
j

= bATj−1A
T
j = jATj

(
ATj − ATj−1

)
. (143)

Plugging (142) and (143) into (141), and comparing to (140), completes the proof.

�

Finally, as it is easily verified that Theorem 18.(V) follows from definitions, com-

bining the above completes the proof of Theorem 18.
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We now complete the proof of Corollaries 5 - 6. In light of Theorems 14 - 18, and

the fundamental inventory dynamics underlying our model, note that it suffices to

prove the following.

Lemma 28 For all U, b ∈ R+, T ≥ 1, µ ∈ [0, U ], and t ∈ {1, . . . ,ΛT},

(I) χT+1−t
MAR

(
DT
t−1, U, b

)
= XT

t = BT+1−t
ΓTµ

;

(II) XT
t ≥ BT+1−t

ΓT−t
DTt−1

;

(III) DT
t = AT+1−t

ΓTµ
;

(IV) DT
t ≥ XT

t .

Proof. The results clearly hold true when µ = 0 from definitions. Suppose µ > 0.

We proceed by induction on t, beginning with the case t = 1, and proving (I) - (IV)

in order. (I) follows from definitions, which guarantee that µ ∈
(
AT+1

ΓTµ−1
, AT+1

ΓTµ

]
, and

thus χTMAR(µ, U, b) = BT
ΓTµ

. (II) follows from (I), and the fact that ΓTµ ≥ ΓT−1
µ , which

itself follows from the fact that Aτj is decreasing in τ . (III) follows from definitions.

Furthermore, (IV) follows from the fact that Aτj ≥ Bτ
j for all τ, j.

Now, suppose the induction is true for all k = 1, . . . , t for some t, and let us

prove the induction holds for k = t+ 1, beginning with the proof of (I). Noting that

DT
t = AT+1−t

ΓTµ
, it follows from definitions that χT−tMAR

(
DT
t , U, b

)
= BT−t

ΓTµ
= XT

t+1. We

next prove (II). From definitions, ΓT−t
DTt

= ΓTµ . The fact that Aτj is decreasing in τ then

ensures that ΓT−t
DTt−1

≤ ΓTµ , and the desired result then follows from the monotonicity

of Bτ
j in j. (III) again follows from definitions, and (IV) again follows from the fact

that Aτj ≥ Bτ
j for all τ, j. Combining the above completes the proof. �

5.4 Asymptotic analysis

In this section, we complete the proof of remaining results, Theorems 15, 16, 17, and

Corollary 7.
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5.4.1 Proof of Theorem 15

We prove Theorem 15 in this section. We begin by proving the following asymptotic

results.

Lemma 29 For any µ ∈ [0, U ], α ≥ 0, β ∈ {0, 1}, define m(T )
∆
= min{bαT c,ΛT −

1}+ β. Then

lim
T→∞

(
ΓTµ/T

)
= γb

−1

, lim
T→∞

AT+1
ΓTµ

= µ, lim
T→∞

(
ΛT/T

)
= Λ∞; (144)

lim
T→∞

DT
m(T ) = D∞min{α,Λ∞}, lim

T→∞
DT
bαT c+β = D∞α , lim

T→∞
DT

ΛT−1+β = D∞Λ∞ ; (145)

lim
T→∞

XT
m(T ) = X∞min{α,Λ∞}, lim

T→∞
XT
bαT c+β = X∞α , lim

T→∞
XT

ΛT−1+β = X∞Λ∞ . (146)

Proof. Let us first prove the three equalities in (144). They clearly hold if µ = 0.

Suppose µ > 0 and let i = ΓTµ . From the definition, AT+1
i−1 < µ ≤ AT+1

i . Noting that

1− x ≤ exp(−x) for all x ≥ 0, we conclude that U−1AT+1
i equals

T∏
k=i+1

k

b+ k
≤

T∏
k=i+1

exp

(
− b

b+ k

)

= exp

(
−b

T∑
k=i+1

1

b+ k

)

≤ exp

(
−b
∫ T+1

i+1

1

b+ x
dx

)
=

(
b+ i+ 1

b+ T + 1

)b
.

(147)

In addition, from the definition, ΓTµ is non-decreasing in T and limT→∞ ΓTµ =∞ if µ >

0. Noting that there exists ε > 0 such that for all x ∈ (0, ε), 1− x ≥ exp
(
−x− x 3

2

)
,

we further conclude that for large T , U−1AT+1
i−1 equals

T∏
k=i

k

b+ k
≥

T∏
k=i

exp

(
− b

b+ k
−
(

b

b+ k

) 3
2

)

= exp

(
−b

T∑
k=i

1

b+ k

)
exp

(
−

T∑
k=i

(
b

b+ k

) 3
2

)

≥ exp

(
−b
∫ T

i−1

1

b+ x
dx

)
exp

(
−

T∑
k=i

(
b

b+ k

) 3
2

)

=

(
b+ i− 1

b+ T

)b
exp

(
−

T∑
k=i

(
b

b+ k

) 3
2

)
.

(148)
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(147) and (148) together imply that

lim sup
T→∞

[(
b+ i− 1

b+ T

)b
exp

(
−

T∑
k=i

(
b

b+ k

) 3
2

)]
≤ γ ≤ lim inf

T→∞

(
b+ i+ 1

b+ T + 1

)b
.

(149)

It follows from the fact that the series
∑∞

k=1

(
b

b+k

) 3
2 converges,

lim
T→∞

exp

(
−

T∑
k=i

(
b

b+ k

) 3
2

)
= 1. (150)

(149) and (150) together prove the three equalities in (144). Let us prove the first

equality in (145). If α = β = 0, then m(T ) = 0 for all T such that the equality clearly

holds from the definition. Otherwise, note that

DT
m(T ) = A

T+1−m(T )
i = AT+1

i

T∏
k=T+1−m(T )

b+ k

k
. (151)

By using a similar argument as we did in proving upper and lower bounds in (147)

and (148), one can show that

lim
T→∞

T∏
k=T+1−m(T )

b+ k

k
= lim

T→∞

(
T

T −m(T )

)b
=

(
1

1−min{α,Λ∞}

)b
. (152)

Combining (151), (152) with (144) completes the proof of the first equality in (145).

The second and third ones are special cases of the first one when α < Λ∞ and α > Λ∞

respectively. Finally, combining (145) with the following fact

XT
m(T ) =

i

b+ T + 1−m(T )
DT
m(T ),

we complete the proofs of the three equalities in (146). �

Let f(z)
∆
= b (1− z)b−1 and it is not difficult to verify that for any α ∈ [0,Λ∞),

P (Z∞ ≤ α) =

∫ α

0

f(z)dz = 1− (1− α)b . (153)

For any α1, α2 ≥ 0 such that α1 < min{α2,Λ
∞}, define

XT
α1,α2

∆
= XT

ZT I
(
bα1T c+ 1 ≤ ZT ≤ min{bα2T c,ΛT − 1}

)
,

X∞α1,α2

∆
= X∞Z∞I

(
α1 ≤ Z∞ < min{α2,Λ

∞}
)
.
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To prove the weak convergence of processes, let us first prove the following weak

convergence of XT
α1,α2

to X∞α1,α2
.

Lemma 30 Assume µ ∈ (0, U). For any α1, α2 ≥ 0 such that α1 < min{α2,Λ
∞},

XT
α1,α2

converges weakly to X∞α1,α2
. As a consequence, for any bounded uniformly

continuous function H : [0, U ]→ R,

lim
T→∞

min{bα2T c,ΛT−1}∑
k=bα1T c+1

H
(
XT
k

)
P(ZT = k) =

∫ min{α2,Λ∞}

α1

H (X∞z ) f(z)dz. (154)

Proof. Let us first prove the weak convergence of XT
α1,α2

. From the definition of

weak convergence, it suffices to show that for any x ∈ R,

lim
T→∞

P
(
XT
α1,α2

≤ x
)

= P
(
X∞α1,α2

≤ x
)
. (155)

Note that if x ∈
[
X∞α1

, X∞min{α2,Λ∞}

]
, there exists a unique αx ∈ [α1, min{α2,Λ

∞}]

such that X∞αx = x due to the strict monotonicity of X∞α in α on [0,Λ∞]. Combining

above with (153) implies that

P
(
X∞α1,α2

≤ x
)

=


1− (1− α1)b + (1−min{α2,Λ

∞})b if 0 ≤ x < X∞α1
;

1− (1− αx)b + (1−min{α2,Λ
∞})b if x ∈

[
X∞α1

, X∞min{α2,Λ∞}

]
;

1 if x > X∞min{α2,Λ∞}.

(156)

Let us proceed to prove (155) by a case analysis. Due to the nonnegativity of XT
α1,α2

and X∞α1,α2
, (155) clearly holds if x < 0. If x > X∞min{α2,Λ∞}, from Lemma 29,

XT
min{bα2T c,ΛT−1} converges to X∞min{α2,Λ∞} as T → ∞ such that P

(
XT
α1,α2

≤ x
)

= 1

for all sufficiently large T . Combining above with (156) proves (155) in this case. If

0 ≤ x < X∞α1
, from Lemma 29, XT

bα1T c converges to X∞α1
as T grows such that for all

sufficiently large T ,

P
(
XT
α1,α2

≤ x
)

= P
(
ZT < bα1T c+ 1 or ZT > min{bα2T c,ΛT − 1}

)
= 1− µ

DT
bα1T c

+
µ

DT
min{bα2T c,ΛT−1}

.
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Combining above with Lemma 29 and (156) proves (155) in this case. If x ∈(
X∞α1

, X∞min{α2,Λ∞}

)
, for any sufficiently small ε > 0 s.t. αx±ε ∈

(
α1, min{α2,Λ

∞}
)

,

let η1
∆
= X∞αx+ε − X∞αx , η2

∆
= X∞αx − X

∞
αx−ε. Note that η1, η2 are strictly positive due

to the fact that X∞α is strictly increasing in α on [0,Λ∞]. Claim that there exist

T1, T2 > 0 such that for all T ≥ max{T1, T2},

P
(
XT
α1,α2

≤ x
)
≤ P

(
ZT ≤ b(αx + ε)T c or ZT > min{bα2T c,ΛT − 1}

)
, (157)

P
(
XT
α1,α2

≤ x
)
≥ P

(
ZT ≤ b(αx − ε)T c or ZT > min{bα2T c,ΛT − 1}

)
. (158)

Indeed, if b(αx + ε)T c + 1 ≤ ZT ≤ min{bα2T c,ΛT − 1}, then XT
α1,α2

= XT
ZT ≥

XT
b(αx+ε)T c+1 from the monotonicity ofXT

j in j. From Lemma 29, limT→∞X
T
b(αx+ε)T c+1 =

X∞αx+ε, which implies that there exists T1 > 0 such that
∣∣∣XT
b(αx+ε)T c+1 −X∞αx+ε

∣∣∣ < η1

for all T ≥ T1. It follows that

XT
α1,α2

≥ XT
b(αx+ε)T c+1

> X∞αx+ε − η1 = X∞αx = x,

which proves (157). Similarly, one may prove that there exists T2 > 0 such that (158)

holds for all T ≥ T2. As a consequence, from Lemma 29,

lim sup
T→∞

P
(
XT
α1,α2

≤ x
)
≤ lim sup

T→∞
P
(
ZT ≤ b(αx + ε)T c or ZT > min{bα2T c,ΛT − 1}

)
= 1− µ

D∞αx+ε

+
µ

D∞min{α2,Λ∞}
, (159)

lim inf
T→∞

P
(
XT
α1,α2

≤ x
)
≥ lim inf

T→∞
P
(
ZT ≤ b(αx − ε)T c or ZT > min{bα2T c,ΛT − 1}

)
= 1− µ

D∞αx−ε
+

µ

D∞min{α2,Λ∞}
. (160)

Since ε is arbitrary and D∞α is continuous in α, we conclude that

lim
T→∞

P
(
XT
α1,α2

≤ x
)

= 1− µ

D∞αx
+

µ

D∞min{α2,Λ∞}
.
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Combining above with (156) completes the proof of (155) in the case. If x = X∞α1
, we

note that (157) and (159) still hold. Combining with the fact that

lim inf
T→∞

P
(
XT
α1,α2

≤ x
)
≥ lim inf

T→∞
P
(
ZT ≤ bα1T c or ZT > min{bα2T c,ΛT − 1}

)
= 1− µ

D∞α1

+
µ

D∞min{α2,Λ∞}
,

and letting ε → 0 in (159) complete the proof of (155) in this case. Finally, if

x = X∞min{α2,Λ∞}, similarly, (158) and (160) still hold. Combining with the fact that

P
(
XT
α1,α2

≤ x
)
≤ 1 and letting ε → 0 in (160) complete the proof of (155) in this

case, which completes the proof of the weak convergence of XT
α1,α2

. For any bounded

uniformly continuous function H, from Portmanteau theorem (cf. Theorem 2.1 in

[25]), E
[
H(XT

α1,α2
)
]

converges to E
[
H(X∞α1,α2

)
]

as T grows. Note that E
[
H(XT

α1,α2
)
]

equals

min{bα2T c,ΛT−1}∑
k=bα1T c+1

H
(
XT
k

)
P(ZT = k) + P

(
ZT ≤ bα1T c or ZT > min{bα2T c,ΛT − 1}

)
H(0),

and

E
[
H(X∞α1,α2

)
]

=

∫ min{α2,Λ∞}

α1

H (X∞z ) f(z)dz + P
(
Z∞ < α1 or Z∞ ≥ min{α2,Λ

∞}
)
H(0).

In addition, from Lemma 29,

lim
T→∞

P
(
ZT ≤ bα1T c or ZT > min{bα2T c,ΛT−1}

)
= P

(
Z∞ < α1 or Z∞ ≥ min{α2,Λ

∞}
)
.

Combining all of the above completes the proof of (154). �

We now complete the proof of Theorem 15, and begin by providing some addition-

al background about the space D
(
[0, 1], Rk

)
. Recall that the space D

(
[0, 1], Rk

)
contains all functions x : [0, 1] → Rk that are right-continuous in [0, 1) and have

left-limits in (0, 1]. Let Λ denote the class of strictly increasing, continuous mappings

λ of [0, 1] onto itself such that λ(0) = 0, λ(1) = 1. The following metric defines the

Skorohod J1 topology:

d(x, y)
∆
=

k∑
j=1

(
inf
λ∈Λ
{||λ− I|| ∨ ||xj − yj ◦ λ||}

)
,
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where x
∆
= (x1, . . . , xk), ||xj||

∆
= supt∈[0,1] |xj(t)|, I is the identity map, “ ◦ ” denotes

the composition of functions, and a ∨ b ∆
= max{a, b}. Furthermore, the norm in

D
(
[0, 1], Rk

)
can be defined as ||x|| ∆

=
∑k

j=1 ||xj||. More details can be found in

Section 3.3, [198].

In general, in order to prove the weak convergence of processes, it is sufficient to

prove the tightness of the processes and the finite-dimensional weak convergence (cf.

Theorem 13.1 in [25]). Assume a set {αi}mi=0 satisfies 0 = α0 < α1 < . . . < αm = 1.

We call {αi}mi=0 δ-sparse if it satisfies min1≤i≤m(αi − αi−1) ≥ δ. Define

wx(δ)
∆
= inf
{αi}

max
1≤i≤m

(
k∑
j=1

sup
α,α′∈[αi−1,αi)

|xj(α)− xj(α′)|

)
,

where the infimum extends over all δ-sparse sets {αi}. We revisit the following nec-

essary and sufficient conditions for tightness in the space D
(
[0, 1], Rk

)
.

Lemma 31 (Theorem 13.2, [25]) A sequence of probability measures {PT}T≥1 on

the space D
(
[0, 1], Rk

)
under the J1 topology is tight if and only if the following two

conditions hold:

1.

lim
a→∞

lim sup
T

PT (x : ||x|| ≥ a) = 0; (161)

2. for each ε,

lim
δ→0

lim sup
T

PT (x : wx(δ) ≥ ε) = 0. (162)

We show the tightness of the processes {MT (α)0≤α≤1, T ≥ 1} in the following

lemma by proving (161) and (162).

Lemma 32 Assume µ ∈ (0, U). {MT (α)0≤α≤1, T ≥ 1} is tight in D ([0, 1], R2).

Proof. (161) follows from the fact thatMT (α) is supported on [0, U ]2 w.p.1 for all

α ∈ [0, 1], T ≥ 1. Let us prove (162). Note that wx(δ) is increasing in δ for any x
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such that lim supT PT (x : wx(δ) ≥ ε) is increasing in δ for each ε. It suffices to prove

that there exists a sequence {δn}∞n=1 that converges to zero such that

lim
n→∞

lim sup
T

PT (x : wx(δn) ≥ ε) = 0.

Define δn
∆
= Λ∞

n+ 1
2

. It follows that nδn < Λ∞ < (n+ 1)δn for each n. From Lemma 29,

there exists T1(δn) such that for all T ≥ T1(δn),

bnδnT c < ΛT − 1 < ΛT < b(n+ 1)δnT c. (163)

There exist m
∆
= m(δn) ∈ Z+, r

∆
= r(δn) ∈ [0, δn) such that 1 = mδn + r. Note that

µ ∈ (0, U) implies Λ∞ ∈ (0, 1). It follows that there exists n1 such that for all n ≥ n1,

(n + 2)δn < Λ∞ + 2δn < 1, which implies n + 2 ≤ m. Combining above with (163)

implies that for all n ≥ n1, T ≥ T1(δn), ΛT/T ≤ (m − 1)δn. If ZT/T ∈ {jδn}m−1
j=0 ,

then choose the following δn-sparse set: {1}
⋃
{jδn}m−1

j=0 . Otherwise, there exists k

such that kδn < ZT/T < (k + 1)δn. In that case, we choose the following δn-sparse

set: {ZT/T, 1}
⋃
{jδn}k−1

j=0

⋃
{jδn}m−1

j=k+2. Such selections above ensure that ZT/T is

in the δn-sparse set. In addition, for any α, α′ ∈ [αi−1, αi), where αi−1, αi are in the

δn-sparse set, |α− α′| ≤ 2δ. We treat two cases. If ZT ≤ ΛT − 1, from Corollary 6,

MT (α) =


(
XT
bαT c, D

T
bαT c

)
if bαT c ≤ ZT − 1;(

XT
ZT , 0

)
if bαT c ≥ ZT .

Combining (163) with the fact that MT (α) is a constant if bαT c ≥ ZT , we conclude

that for all n ≥ n1, T ≥ T1(δn), wMT (δn) ≤M , where

M
∆
= max

{
max

j=0,...,n−2

( ∣∣XT
b(j+2)δnT c −X

T
bjδnT c

∣∣+
∣∣DT
b(j+2)δnT c −D

T
bjδnT c

∣∣ ),
( ∣∣U −XT

b(n−1)δnT c
∣∣+
∣∣U −DT

b(n−1)δnT c
∣∣ )}.
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If ZT = ΛT and Y T = U , from Corollary 6,

MT (α) =



(
XT
bαT c, D

T
bαT c

)
if bαT c ≤ ΛT − 1;(

XT
ΛT , U

)
if bαT c = ΛT ;(

U,U
)

if bαT c ≥ ΛT + 1.

Following from a similar argument, we conclude that for all n ≥ n1, T ≥ T1(δn),

wMT (δn) ≤ max
{
M,

∣∣U −XT
ΛT

∣∣ }. Combining Lemma 29 with the uniform con-

tinuity of X∞α and D∞α on [0,Λ∞], we conclude that for any ε > 0, there exists

n2 > 0 such that for all n ≥ n2, there exists T2(δn) > 0 such that for all T ≥ T2(δn),

wMT (δn) < ε in both cases. As a consequence, for all n ≥ n2,

lim sup
T→∞

PT (x : wx(δn) ≥ ε) ≤ lim sup
T→∞

P
(
Y T = 0

)
= lim sup

T→∞

(
1−

DT
ΛT−1

U

)
= 0,

where the last equality is from Lemma 29. We complete the proof. �

We prove the following finite-dimensional weak convergence.

Lemma 33 Assume µ ∈ (0, U). For any 0 ≤ α1 < . . . < αn ≤ 1,
(
MT (α1), . . . ,MT (αn)

)
converges weakly to (M∞(α1), . . . ,M∞(αn)).

Proof. Since µ ∈ (0, U), we have 0 < Λ∞ < 1. Define α0
∆
= 0 if α1 > 0 and

αn+1
∆
= 1 if αn < 1. Then there exists k0 ∈ {0, . . . , n} such that αk0 ≤ Λ∞ < αk0+1.

From Portmanteau theorem (cf. Theorem 2.1 in [25]), it suffices to show that for any

bounded uniformly continuous function H : [0, U ]2n → R,

lim
T→∞

E
[
H
(
MT (α1), . . . ,MT (αn)

)]
= E [H (M∞(α1), . . . ,M∞(αn))] . (164)
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As a notational convenience, we define for i ≥ 0, j ≥ 1,

H∞ (i,X∞z , 0)
∆
= H

(
X∞α1

, D∞α1
, . . . , X∞αi , D

∞
αi
, X∞z , 0, . . . , X

∞
z , 0

)
,

H∞ (i, U, U)
∆
= H

(
X∞α1

, D∞α1
, . . . , X∞αi , D

∞
αi
, U, U, . . . , U, U

)
,

HT
(
i,XT

j , 0
) ∆

= H
(
XT
bα1T c, D

T
bα1T c, . . . , X

T
bαiT c, D

T
bαiT c, X

T
j , 0, . . . , X

T
j , 0
)
,

HT (i, U, U)
∆
= H

(
XT
bα1T c, D

T
bα1T c, . . . , X

T
bαiT c, D

T
bαiT c, U, U, . . . , U, U

)
,

HT
(
i,XT

ΛT , U
) ∆

= H
(
XT
bα1T c, D

T
bα1T c, . . . , X

T
bαiT c, D

T
bαiT c, X

T
ΛT , U, U, U, . . . , U, U

)
.

From the definition of M∞(α),

E [H (M∞(α1), . . . ,M∞(αn))] = W∞
1 +W∞

2 +W∞
3 ,

where

W∞
1

∆
=

k0−1∑
i=0

∫ αi+1

αi

H∞ (i,X∞z , 0) f(z)dz,

W∞
2

∆
=

∫ Λ∞

αk0

H∞ (k0, X
∞
z , 0) f(z)dz,

W∞
3

∆
= γH∞ (k0, U, U) .

In addition, from Lemma 29 and the fact that αk0 ≤ Λ∞ < αk0+1, we have bαk0−1T c <

ΛT − 1 and ΛT < bαk0+1T c when T is sufficiently large. From Corollary 6,

E
[
H
(
MT (α1), . . . ,MT (αn)

)]
= W T

1 +W T
2 +W T

3 +W T
4 ,
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where

W T
1

∆
=

k0−2∑
i=0

bαi+1T c∑
j=bαiT c+1

HT
(
i,XT

j , 0
)
P(ZT = j)

+

min{bαk0
T c,ΛT−1}∑

j=bαk0−1T c+1

HT
(
k0 − 1, XT

j , 0
)
P(ZT = j),

W T
2

∆
= I

(
bαk0T c < ΛT − 1

) ΛT−1∑
j=bαk0

T c+1

HT
(
k0, X

T
j , 0
)
P(ZT = j),

W T
3

∆
=

[
I
(
bαk0T c = ΛT

)
HT

(
k0 − 1, XT

ΛT , U
)

+ I
(
bαk0T c > ΛT

)
HT (k0 − 1, U, U)

+ I
(
bαk0T c < ΛT

)
HT (k0, U, U)

]
P
(
ZT = ΛT

)
P
(
Y T = U

)
,

W T
4

∆
=

[
I
(
bαk0T c ≥ ΛT

)
HT

(
k0 − 1, XT

ΛT , 0
)

+ I
(
bαk0T c < ΛT

)
HT

(
k0, X

T
ΛT , 0

) ]
P
(
ZT = ΛT

)
P
(
Y T = 0

)
,

and I(.) denotes the indicator function. Note that HT
(
i,XT

j , 0
)

can be decomposed

as the sum of

HT
(
i,XT

j , 0
)
−H

(
X∞α1

, D∞α1
, . . . , X∞αi , D

∞
αi
, XT

j , 0, . . . , X
T
j , 0
)

(165)

and

H
(
X∞α1

, D∞α1
, . . . , X∞αi , D

∞
αi
, XT

j , 0, . . . , X
T
j , 0
)
.

From Lemma 29 and the uniform continuity of H, for each i, (165) converges to zero

uniformly in j as T →∞. Combining above with the boundedness of H, Lemmas 29

and 30, we conclude that as T →∞,

W T
1 → W∞

1 , W T
2 → W∞

2 , W T
3 → W∞

3 , W T
4 → 0,

which completes the proof of (164). �

Lemmas 32 and 33 together imply Theorem 15.
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5.4.2 Proofs of Theorems 16, 17 and Corollary 7

In this section, we prove Theorems 16, 17 and Corollary 7. Note that Corollary 7

immediately follows from Theorem 17.

Proof. [Proof of Theorem 16] Define two admissible policies as below:

π1 : xπ1
1 = 0, xπ1

t (D[t−1]) = 0 for all D[t−1], t = 2, . . . , T,

π2 : xπ2
1 = U, xπ2

t (D[t−1]) = U for all D[t−1], t = 2, . . . , T,

i.e., π1 is the policy always ordering up to 0 and π2 is the one always ordering up to

U . Note that

max
Q∈M

EQ[
T∑
t=1

Cπ1
t ] = max

Q∈M
EQ[

T∑
t=1

bDt] = Tbµ,

max
Q∈M

EQ[
T∑
t=1

Cπ2
t ] = max

Q∈M
EQ[

T∑
t=1

(U −Dt)] = T (U − µ),

which implies

OptTM(µ, U, b) ≤ min

{
max
Q∈M

EQ[
T∑
t=1

Cπ1
t ], max

Q∈M
EQ[

T∑
t=1

Cπ2
t ]

}

= min {Tbµ, T (U − µ)} .

Noting that OptTIND(µ, U, b) = min {Tbµ, T (U − µ)}, completes the proof. �

Proof. [Proof of Theorem 17] From Theorems 12 and 14,

OptTMAR(µ, U, b)

OptTIND(µ, U, b)
=

GT
ΓTµ

(βTµ , µ)

min {Tbµ, T (U − µ)}
=

ΓTµA
T+1
ΓTµ

+
(
Tb− (b+ 1)ΓTµ

)
µ

min {Tbµ, T (U − µ)}
.

Combining above with Lemma 29, we complete the proof of Theorem 17. �

5.5 Discussion

In this section, we provide further insights on our closed form solutions, and discuss

one interesting non-monotonicity of χTMAR(µ, U, b) in terms of b.
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5.5.1 Further insights into XT
t and DT

t

In this section, we provide further insights into the expressions which describe the dy-

namics between the inventory manager and adversary. Although the complete proof

of Theorem 14 follows from a non-trivial induction involving ideas from convex anal-

ysis and probability, there is an intriguing intuition based on a certain “Indifference

principle”, which we now sketch.

First, note that the two-point support property of Dt conditioned on Dt−1 ( 6= 0)

follows from the Richter-Rogosinski Theorem (cf. [182]). Now, let us suppose apriori

that one point in this support is always 0, and let dTt denote the other support point of

Dt. In addition, let xTt denote the order-up-to level in period t supposing no previous

demand equalled zero and assume xTt ≤ dTt . In this case, the cost incurred in period

1 equals
(

1− µ
dT1

)
xT1 + µ

dT1
b
(
dT1 − xT1

)
. Applying the definition of martingale, the

amount of inventory xT1 will be carried-on for the remaining periods conditioned on

D1 = 0, and the cost conditioned on D1 = dT1 equals
(

1− dT1
dT2

)
xT2 +

dT1
dT2
b
(
dT2 − xT2

)
.

Repeating this procedure recursively, we can rewrite the iterated min-max problem

as below:

min
xT1

max
dT1

{(
1− µ

dT1

)
TxT1 +

µ

dT1

[
b
(
dT1 − xT1

)
+ min

xT2

max
dT2

{(
1− dT1

dT2

)
(T − 1)xT2 +

dT1
dT2

[
b
(
dT2 − xT2

)
+ . . .

]}]}
.

Furthermore, for any fixed set of choices {xTt , dTt , t = 1, . . . , T}, it follows from the

above and a straightforward induction that the associated overall expected cost equals{
bµ

T∑
t=1

(
1− xTt

dTt

)
+ µ

T∑
t=1

xTt (T + 1− t)
(

1

dTt−1

− 1

dTt

)}
, (166)

where dT0 = µ. In this expansion, one may compute that the coefficient of xTt+1 equals

µ
(
T−t
dTt
− b+T−t

dTt+1

)
, and the coefficient of 1

dTt
equals µ

(
(T − t)xTt+1− (b+T + 1− t)xTt

)
.

Setting these coefficients equal to 0, so the inventory manager and the adversary are

indifferent to their choices of xTt+1 and dTt , yields xTt+1 = b+T+1−t
T−t xTt , dTt+1 = b+T−t

T−t d
T
t .
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Noting that these are precisely the recursions satisfied by XT
t and DT

t in (119) explains

the particular form of XT
t and DT

t .

Now let us explain the particular form of X∞α and D∞α . Assume α = t
T

and then

(166) equals

bµ
∑

α= 1
T
, 2
T
,...,1

(
1− xTαT

dTαT

)
+ µ

∑
α= 1

T
, 2
T
,...,1

xTαT (T + 1− αT )

(
1

dT
(α− 1

T
)T

− 1

dTαT

)
.

Assume that xTαT , d
T
αT have limits x∞α , d∞α as T →∞ for each α. Then the associated

average cost (i.e., the overall expected cost in (166) divided by T ) converges to

bµ

∫ 1

0

(
1− x∞α

d∞α

)
dα− µ

∫ 1

0

x∞α (1− α)
d

dα

(
1

d∞α

)
dα. (167)

Similarly, one may compute that the coefficient of x∞α equals µ
(
− b
d∞α
− (1− α) d

dα

(
1
d∞α

))
,

and the coefficient of 1
d∞α

equals µ
(
−bx∞α + d

dα
(x∞α (1− α))

)
after integration by parts.

Similar to the pre-limit case, we set these coefficients equal to 0 and obtain

b

d∞α
+ (1− α)

d

dα

(
1

d∞α

)
= 0, −bx∞α +

d

dα
(x∞α (1− α)) = 0.

Solving the differential equations above and plugging in the boundary conditions

x∞Λ∞ = d∞Λ∞ = U , we obtain the exact expressions of X∞α and D∞α .

5.5.2 The non-monotonicity of χTMAR(µ, U, b) in b

The explicit form of χTMAR(µ, U, b) reveals a surprising non-monotonicity in b. Namely,

for fixed T ≥ 2, µ, U , χTMAR(µ, U, b) is not monotone increasing in b. This is surprising,

since one would expect that as the backlogging penalty increases, one would wish to

stock higher inventory levels. We also note that for fixed T, µ, U , χTIND(µ, U, b) is

monotone increasing in b, i.e. such a non-monotonicity does not manifest in the

independent-demand model. We reason as below.

Suppose the inventory manager orders x1 in the first round and the adversary

selects either 0 or U . If the adversary selects U , there will be no cost from period 2 to

period T since the manager can always match the demand; if the adversary selects 0,
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a fixed holding cost x1 will be incurred in the remaining every period. It means that

decreasing x1 results in more backorder cost just in period 1, but less holding cost

from period 1 to period T . Hence if µ is not large such that the adversary does not

put too many weights on U , the inventory manager would like to choose x1 as small as

possible as long as the adversary still selects either 0 or U in period 1. Note that this

critical (smallest) value of x1 is decreasing in b, i.e., when b increases, the adversary

still has incentive to choose 0 or U for smaller x1. It explains the non-monotonicity

of χTMAR(µ, U, b) in terms of b. For example, when T = 2, this critical value equals

U
b+2

(see Appendix, Section 5.7).

An alternative way to explain the non-monotonicity is from the recursion XT
t+1 =

b+T+1−t
T−t XT

t discussed in Section 5.5.1. As we mentioned in the last paragraph, it

is possible to have DT
1 = XT

2 = U . In such case, XT
1 = T−1

b+T
U , which is strictly

decreasing in b.

5.6 Conclusion

In this chapter, we proposed a novel multi-period inventory model by combining the

framework of distributionally robust optimization with the theory of martingales.

More precisely, we considered the setting in which the joint distribution (over time)

must take the form of a martingale with bounded support (called martingale-demand

model) and wished to pick the control policy which was optimal against a worst-

case distribution belonging to this set. We explicitly computed the optimal policy

and derived an interesting interplay between the optimal policy and worst-case dis-

tribution. We performed an asymptotic analysis (as the time horizon diverged) and

proved weak convergence of the inventory process at optimality. We also compared to

an existing model, in which the adversary was restricted to product measures (called

independent-demand model). Interestingly, we found that the limiting ratio of the

optimal cost under the martingale and independent models to be exactly 1
2

in the
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perfectly symmetric case.

This work leaves several interesting directions for future research. First, we have

taken the first step towards establishing a conditional-expectation based theory of

dynamic distributional robust forecasting. In the future, it would be interesting to

consider more general conditional moment constraints, e.g., the conditional mean is

an affine combination of all demands realized. Second, although it is often clear how

to specify the marginal distribution in each time period, understanding the effect-

s of positing various joint distributions over time remains an interesting challenge

(cf. [1]). It would be interesting to develop a deeper understanding of such “price

of correlations” in robust stochastic optimization problems. Third, using moment

information is only one among many other ways to construct an uncertainty set. It

would be very interesting to connect our framework to phi-divergence ambiguity set

(cf. [16]), which uses the empirical probability density function from the historical

data; to distributionally robust Bayesian model [117], which dynamically updates the

uncertainty set following the Bayes Rule; and to the general theory of risk measures

(cf. [182]).

5.7 Appendix

This appendix presents explicit solutions of the martingale-demand model for certain

parameters.

5.7.1 Explicit solutions when T = 1, 2, 3

This section provides explicit expressions of χTMAR(µ, U, b), OptTMAR(µ, U, b) and qTx,µ

for T = 1, 2, 3.

T = 1:

χ1
MAR(µ, U, b) =


0 if 0 ≤ µ ≤ U

b+1
;

U if U
b+1

< µ ≤ U,

Opt1
MAR(µ, U, b) =


bµ if 0 ≤ µ ≤ U

b+1
;

U − µ if U
b+1

< µ ≤ U.
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q1
x,µ is supported on {0, U} for all 0 ≤ µ ≤ U , 0 ≤ x ≤ U .

T = 2:

χ2
MAR(µ, U, b) =


0 if 0 ≤ µ ≤ 2U

(b+1)(b+2)
;

U
b+2

if 2U
(b+1)(b+2)

< µ ≤ 2U
b+2

;

U if 2U
b+2

< µ ≤ U,

Opt2
MAR(µ, U, b) =


2bµ if 0 ≤ µ ≤ 2U

(b+1)(b+2)
;

2U
b+2

+ (b− 1)µ if 2U
(b+1)(b+2)

< µ ≤ 2U
b+2

;

2(U − µ) if 2U
b+2

< µ ≤ U.

q2
x,µ is supported on 

{
0, U

b+1

}
if 0 ≤ µ ≤ U

b+1
, 0 ≤ x < U

b+2
;{

U
b+1

, U
}

if U
b+1

< µ ≤ U, 0 ≤ x < U
b+2

;

{0, U} if U
b+2
≤ x ≤ U.

T = 3:

χ3
MAR(µ, U, b) =



0 if 0 ≤ µ ≤ 6U
(b+1)(b+2)(b+3)

;

2U
(b+2)(b+3)

if 6U
(b+1)(b+2)(b+3)

< µ ≤ 6U
(b+2)(b+3)

;

2U
b+3

if 6U
(b+2)(b+3)

< µ ≤ 3U
b+3

;

U if 3U
b+3

< µ ≤ U,

Opt3
MAR(µ, U, b) =



3bµ if 0 ≤ µ ≤ 6U
(b+1)(b+2)(b+3)

;

6U
(b+2)(b+3)

+ (2b− 1)µ if 6U
(b+1)(b+2)(b+3)

< µ ≤ 6U
(b+2)(b+3)

;

6U
b+3

+ (b− 2)µ if 6U
(b+2)(b+3)

< µ ≤ 3U
b+3

;

3(U − µ) if 3U
b+3

< µ ≤ U.
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q3
x,µ is supported on

{
0, 2U

(b+1)(b+2)

}
if 0 ≤ µ ≤ 2U

(b+1)(b+2)
, 0 ≤ x < 2U

(b+2)(b+3)
;{

2U
(b+1)(b+2)

, 2U
b+2

}
if 2U

(b+1)(b+2)
< µ ≤ 2U

b+2
, 0 ≤ x < 2U

(b+2)(b+3)
;{

0, 2U
b+2

}
if 0 ≤ µ ≤ 2U

b+2
, 2U

(b+2)(b+3)
≤ x < 2U

b+3
;{

2U
b+2

, U
}

if 2U
b+2

< µ ≤ U, 0 ≤ x < 2U
b+3

;

{0, U} if 2U
b+3
≤ x ≤ U.

5.7.2 Explicit solutions when b = 1

This section provides explicit expressions of χTMAR(µ, U, b), OptTMAR(µ, U, b) and qTx,µ

for b = 1.

If µ = 0, χTMAR(µ, U, 1) = OptTMAR(µ, U, 1) = 0. Otherwise, if j
T+1

< µ ≤ j+1
T+1

,

j = 0, . . . , T ,

χTMAR(µ, U, 1) =
j(j + 1)U

T (T + 1)
, OptTMAR(µ, U, 1) =

j(j + 1)U

T + 1
+ (T − 2j)µ.

qTx,µ is supported on

{
jU
T
, (j+1)U

T

}
if jU

T
< µ ≤ (j+1)U

T
, 0 ≤ x < j(j+1)U

T (T+1)
;{

0, (k+1)U
T

}
if jU

T
< µ ≤ (j+1)U

T
, k(k+1)U

T (T+1)
≤ x < (k+1)(k+2)U

T (T+1)
, k ≥ j;

{0, U} if µ = 0 or x = U.
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