Aalto University
School of Science
Master’s Degree Programme in Security and Mobile Computing

Eduardo Castellanos Néjera

Evaluating mobile edge-computing on
base stations

Case study of a sign recognition application

Master’s Thesis
Espoo, August 18, 2015

Supervisors: Professor Antti Yla-Jaaski, Aalto University
Professor Peter Sjodin, KTH Stockholm
Instructor: Teemu Kémarainen M.Sc. (Tech.)

A' Aalto University
]
Aalto University
School of Science

Master’s Degree Programme in Security and Mobile Comput- ABSTRACT OF

ing MASTER’S THESIS
Author: Eduardo Castellanos Najera
Title:

Evaluating mobile edge-computing on base stations Case study of a sign recogni-
tion application

Date: August 18, 2015 Pages: vi + 53
Major: Security and Mobile Computing Code: T-110
Supervisors: Professor Antti Yla-Jaaski

Professor Peter Sjodin
Instructor: Teemu Kémérdinen M.Sc. (Tech.)

Mobile phones have evolved from feature phones to smart phones with processing
power that can compete with personal computers ten years ago. Nevertheless, the
computing power of personal computers has also multiplied in the past decade.
Consequently, the gap between mobile platforms and personal computers and
servers still exists. Mobile Cloud Computing (MCC) has emerged as a paradigm
that leverages this difference in processing power. It achieve this goal by aug-
menting smart phones with resources from the cloud, including processing power
and storage capacity. Recently, Mobile Edge Computing (MEC) has brought the
benefits from MCC one hop away from the end user. Furthermore, it also pro-
vides additional advantages, e.g., access to network context information, reduced
latency, and location awareness.

This thesis explores the advantages provided by MEC in practice by augmenting
an existing application called Human-Centric Positioning System (HoPS). HoPS
is a system that relies on context information and information extracted from a
photograph of signposts to estimate a user’s location. This thesis presents the
challenges of enabling HoPS in practice, and implement strategies that make
use of the advantages provided by MEC to tackle the challenges. Afterwards, it
presents an evaluation of the resulting system, and discusses the implications of
the results.

To summarise, we make three primary contributions in this thesis: (1) we find out
that it is possible to augment HoPS and improve its response time by a factor of
four by offloading the code processing; (2) we can improve the overall accuracy of
HoPS by leveraging additional processing power at the MEC; (3) we observe that
improved network conditions can lead to reduced response time, nevertheless, the
difference becomes insignificant compared with the heavy processing required.

Keywords: mobile cloud, mobile-edge computing, image recognition,
edge-cloud

Language: English

i

A’, Aalto-universitetet

Aalto-universitetet

Hogskolan for teknikvetenskaper SAMMANDRAG AV
Examensprogram for datateknik DIPLOMARBETET
Utfort av: Eduardo Castellanos Najera

Arbetets namn:
Evaluating mobile edge-computing on base stations Case study of a sign recogni-
tion application

Datum: 3:e augusti, 2015 Sidantal: vi + 53
Huvudiamne: Security and Mobile Computing Kod: T-110
Overvakare: Professor Antti Yla-Jaaski

Professor Peter Sjodin
Handledare: Teemu Kémérdinen M.Sc. (Tech.)

Utvecklingen av mobiltelefoner har skett pa en rusande takt. Dagens smartphones
har mer processorkraft &n vad stationdra datorer hade for tio ar sen. Samtidigt
sa har dven datorernas processorer blivit mycket starkare. Ddarmed sa finns det
fortfarande klyftor mellan mobil plattform och datorer och servrar. Mobile Cloud
Computing (MCC) anvénds idag som en havstang for de olika plattformernas
processorkraft. Den uppnar detta genom att forbattra smartphonens processor-
kraft och datorminne med hjilp fran datormolnet. Pa sistande sa har Mobile
Edge Computing (MEC) gjort sa att formanerna med MCC &r ett steg ifran
slutanvandaren. Dessutom sa finns det andra fordelar med MEC, till exempel
tillgang till ndtverkssammanhangsinformation, reducerad latens, och platsmed-
vetenhet.

Denna tes utforskar de praktiska fordelarna med MEC genom att anvéinda
tillimpningsprogrammet Human-Centric Positioning System (HoPS). HoPS ér
ett system som forsoker att hitta platsen dér anvindaren befinner sig pa genom
att anvinda sammanhéngande information samt information fran bilder med
vagvisare. Tesen presenterar dven de hinder som kan uppsta ndr HoPS imple-
menteras i verkligheten, och anvénder formaner fran MEC for att hitta losningar
till eventuella hinder. Sedan sa utvéirderar och diskuterar tesen det resulterande
systemet.

For att sammanfatta sa bestar tesen av tre huvuddelar: (1) vi tar reda pa att det
ar mojligt att forbéattra HoPS och minska svarstiden med en fjardedel genom att
avlasta kodsprocessen; (2) vi tar reda pa att man kan generellt forbéttra HoPS
noggrannhet genom att anvéinda den utokade processorkraften fran MEC; (3) vi
ser att forbattrade natverksforutséattningar kan leda till minskad svarstid, dock
sa ar skillnaden forsumbar jamfort med hur mycket bearbetning av information
som kravs.

Nyckelord: mobile cloud, mobile-edge computing, image recognition,
edge-cloud

Sprak: Engelska

il

Acknowledgements

I would like to thank Antti Yla-Jadksi, Peter Sjodin, Teemu Kémaréinen and
Zhonghong Ou for their support and guidance in the work on this thesis. 1
would also like to thank Maneesh Chauham, Matti Siekkinen, and Tuomas
Ylipiha for their collaboration in the project.

Special thanks to my friends and family for their unwavering support
throughout my studies.

Espoo, August 18, 2015

Eduardo Castellanos Najera

v

Contents

Introduction

1.1 Motivation
1.2 Problem statement
1.3 Structure of the thesis

Mobile-edge computing

2.1 Mobile cloud computing
2.2 Mobile-edge computingo
2.3 Radio Applications Cloud Server

Human-centered Positioning System

3.1 Location detection process
3.1.1 Sign detection
3.1.2 Sensordata
3.1.3 Databasesearch

3.2 Original implementation
3.2.1 Sign detection and sensor data collection
3.2.2 Remote location service

Analysis and Design

4.1 Application performance measurements
4.1.1 Network transmission latency
4.1.2 Sign detection accuracy
4.1.3 Sign detection processing time
4.1.4 Database location matching

4.2 Design of a RACS-enabled solution
4.2.1 Codeoffloading
4.2.2 Improved network conditions
4.2.3 Location awareness
4.2.4 Distributiono

11
11
12
13
13
14
15
15

5 Implementation 23

5.1 Overview 23
5.2 Client application L. 24
5.2.1 Image and context information 24
5.2.2 Image transmission mechanism 24
5.3 Server processing and matching L 25
5.3.1 Webservice oo 25
5.3.2 Traffic sign detection 26
5.3.3 Optical character recognition 29
5.3.4 Database implementation 30
6 Evaluation 34
6.1 Testing dataset L. 34
6.2 Detection accuracy 35
6.2.1 Sign detection accuracy 36
6.2.2 Candidate selection 38
6.2.2.1 Context information based candidate selection 38
6.2.2.2 OCR based candidate selection 39

6.2.2.3 OCR and context information candidate se-
lection 40
6.3 Transmission and processing time 41
6.3.1 Network transmission delay 42
6.3.2 Processing delay 43
6.3.3 Overalldelay 44
7 Discussion 45
7.1 Codeoffloading 45
7.2 Database distribution00 46
7.3 Improved network conditions 47
7.4 Context information availability 47
7.5 Futurework 47
8 Conclusions 49

vi

Chapter 1

Introduction

In recent years, mobile phones have evolved from feature phones with lim-
ited processing power, to smart phones with processing power that rivals
computers ten years ago. However, personal computers and servers have
not stagnated, and their processing power has multiplied in the past decade.
Accordingly, the gap between mobile platforms and personal computers and
servers will continue to exist. In addition to the limited processing power,
mobile devices are also limited by their battery life.

Cloud computing has been leveraged and analyzed as a solution for the
lack of processing power and limited battery life of mobile devices. Re-
searchers have accomplished significant improvements in battery life and
processing speedup by offloading the most demanding parts of the appli-
cation to the cloud. However, research has shown that cloud computing is
limited for delay-sensitive applications because connecting to a cloud server
has its own restrictions due to bandwidth and latency [1-3].

Mobile Edge-Computing (MEC) introduces a new option for offloading
processing and distributing workloads. It brings the mobile cloud closer to
the end user. If paired with Long-Term Evolution (LTE) technology improve-
ments, it enables new applications and a set of advantages over mobile cloud
computing. Besides the obvious latency benefits that brings the cloud closer
to the user, MEC also augments applications by making network and loca-
tion data available to the applications. Furthermore, MEC can benefit from
their static location by only caching or keeping portions of databases rele-
vant to its geolocation. For example Yelp [4], a crowd-sourced on-line review
platform, can cache information and media only for nearby commerces.

CHAPTER 1. INTRODUCTION 2

1.1 Motivation

MEC is a recent initiative and has only been explored in a few research
papers [5-7]. This creates a situation in which there is little practical knowl-
edge on the applicability and real-world challenges of the specifics of MEC.
In this thesis, we propose to explore this new territory by using the research
application named Human-Centric Positioning System (HoPS).

HoPS is designed to mitigate the weaknesses of the current Global Po-
sitioning System (GPS): (1) in urban areas where tall structures block the
line-of-sight to the satellites, the positioning error can be in the order of hun-
dreds of meters [6]; (2) the initial acquisition time for enough satellites to
calculate the position takes between 10 and 20 seconds [8]; (3) due to the long
initialization delay, it becomes inconvenient to turn it on and off frequently,
and most of the time it is kept on; (4) GPS is one of the most power hungry
services of mobile devices, drawing between 200-300mW [9, 10].

In its current incarnation, HoPS intends to provide a location service
without utilizing low level radio information or assistance from GPS. It is
based on the real-time identification of roadside traffic signposts (which is
referred to as traffic signs or directional traffic signs). The rationale is that
sign posts, by definition, should convey enough information to enable nav-
igation without the need of GPS. The response time of HoPS needs to be
very short in order to provide a usable service.

MEC is advantageous for such a system. A MEC server can take care of
the heavy image processing, save battery life for the mobile device, and speed
up the whole process. This leads to a decreased response time and fulfills
one of the application’s objectives. Furthermore, the application leverages
mobile network context information that is also available through the MEC
interface. Additionally, MEC can contribute to the accuracy of the applica-
tion by enabling further processing of the image data to identify the location
with a lower error margin.

1.2 Problem statement

In order to assess the benefits conveyed by MEC on base stations, this thesis
intends to implement a sign recognition application and deploy it on Nokia’s
RACS platform. Additionally, the application’s performance will be mea-
sured when using computing power from a mobile cloud, as well as just a
mobile handset. The thesis will contrast the benefits and drawbacks of each
method.

In this thesis we focus on the MEC platform implementation by Nokia

CHAPTER 1. INTRODUCTION 3

Networks and the improvement opportunities it enables in terms of location
accuracy and response time reduction. Specifically, we try to answer the
following questions:

1. Previous work has found that the processing time improvements are
frequently offset by the network transmission delay. Is processing of-
floading an effective strategy for improving the response time given the
improved network conditions? What steps must be taken to minimize
the impact of the network delay?

2. Given the additional processing resources available at the MEC server,
is it possible to leverage them to improve the accuracy of the loca-
tion identification algorithm? Are there other strategies that can also
contribute to the accuracy?

3. MEC offers services such as location awareness and mobile network
context information; how can these be leveraged to augment the appli-
cation?

1.3 Structure of the thesis

This thesis is structured as follows:

Chapter 2 introduces the technologies surrounding MEC, and how they
evolved and contributed to the development of the MEC concept.

Chapter 3 introduces the application’s current development status and
the challenges it faces. It provides a snapshot of the current status of the
application.

Chapter 4 analyses and proposes solutions to the identified challenges the
application faces by leveraging multiple strategies enabled by MEC.

Chapter 5 describes the detail of the implementation of the improved
application and it’s integration with Nokia RACS.

Chapter 6 evaluates the effectiveness of the solution and discusses the
results of the experiments we performed to assess the effectiveness of the
implementation.

Chapter 7 discusses the challenges in the implementation and the evalu-
ation results.

Chapter 8 offers a conclusion and future work.

Chapter 2

Mobile-edge computing

Mobile-edge computing (MEC) is a natural evolution of cloud technologies
combined with the rise of mobiles’ popularity. Mobile-edge computing lever-
ages mobile base stations to bring cloud computing as close to the mobile
user as physically possible in a mobile infrastructure. Before delving into
details about MEC, the following sections introduce the technologies that
make it possible.

2.1 Mobile cloud computing

The National Institute of Standards and Technology of the U.S. Depart-
ment of Commerce (NIST) defines cloud computing as a model for accessing
a shared pool of configurable computing resources that can be configured
and provisioned with minimal management effort and service provider in-
volvement [11]. By pooling the resources, cloud computing enables higher
efficiency and cost reductions. This model has become quite popular, and its
flexibility has enabled a wide variety of applications.

Cloud computing is a model that easily adapts to become a promising
solution for mobile computing. One of the main applications of cloud com-
puting is to augment mobile devices capabilities. This particular application
has been called mobile cloud computing (MCC). MCC can augment mobile
devices in terms of data storage, processing resources, and mobility.

MCC has been defined concretely by Sanaei et al. as “A rich mobile com-
puting technology that leverages unified elastic resources of varied clouds and
network technologies toward unrestricted functionality, storage, and mobility
to serve a multitude of mobile devices anywhere, anytime through the channel
of Ethernet or Internet regardless of heterogeneous environments and plat-
forms based on the pay-as-you-use principle” [1]. Most of the research has

CHAPTER 2. MOBILE-EDGE COMPUTING 5

Cloud A

i
Data
i) 1 ‘ DA Centers
T
= Aoes
o Internet
I -
P Data

= o |
ntellle Centers

Mobile devices
¢

Cloud B

Figure 2.1: Mobile cloud computing architecture

been focused on ”cyber foraging” as Satyanarayanan initially described [12].
This approach introduces code offloading as a novel way to expand mobile
devices’ limited resources. Many researchers have demonstrated the benefits
and implemented code offloading frameworks that leverage MCC resources
in novel ways. Commercial products such the Amazon’s Silk browser [13],
the Apple Siri [14] voice activated assistant, and Google Goggles [15] are
examples that use this approach.

The general architecture of MCC is shown in figure 2.1. Mobile devices
can be connected to the Internet through different means. For example,
mobile networks, Wi-Fi, or satellite connections can provide the means to
reach the Internet though Internet Service Providers (ISP). ISPs provide
the network infrastructure that will route the links through the appropriate
paths on the Internet in order to connect the mobile device with the cloud
controller. Cloud controllers then process the incoming requests from mobile
clients and deliver them to the appropriate cloud services. These services
have been developed with the concept of utility computing, virtualization,
and a service oriented architecture [2].

In addition, an alternative interpretation of the term mobile cloud com-
puting exists. It envisions a collection of neighboring mobile devices that
pool together their resources in order to share them. This model is termed
an “ad hoc mobile cloud”. In this model, a task from a mobile device is dis-
tributed and processed in a collaborative fashion on the devices that belong
to the ad hoc mobile cloud as can be seen in Figure 2.2. This model has been

CHAPTER 2. MOBILE-EDGE COMPUTING 6

M

) J Subtask
Mobile ﬁ“b‘a/ \

App 5!\-/ !/

‘(Subtask/l Subtask

Figure 2.2: Mobile ad hoc cloud computing architecture

demonstrated in Virtual Cloud Provider [16] by distributing a Map Reduce
application over a set of mobile devices.

However, there are still challenges in the MCC architecture. Connecting
to servers in the cloud carries a price tag in the form of increased latency,
sensitivity to the application availability, quality of service, and bandwidth
limitations. These factors have limited the diversity of applications that
MCC can enable. For example, augmented reality or assisted cognition rely
on transmitting streams of sensor data and video to a resource rich server that
can process them and deliver a result close to real time [17]. As a consequence,
Satyanarayanan proposes a third vision of mobile cloud computing called a
cloudlet.

A cloudlet is a trusted, resource-rich device that is self-managed, compact
and can be deployed in business’ premises. It is decentralized and owned by
local business, leverages LAN latency and bandwidth, and is intended to
serve few users at a time [17]. In this model a mobile device also leverages
resources in the cloud. In contrast to the MCC architectures discussed earlier,
the cloudlet model proposes bringing the cloud closer to the user by placing
a device on the first hop of the network as shown in Figure 2.3. This is
beneficial for several actors. First, for the end user the applications will
seem more responsive and it will enable delay sensitive applications. In
addition, network providers can exploit the location of the cloudlets to cache
media and data and thus save bandwidth and resources on the core network.
Lastly, application service providers benefit from the increased scalability of
their applications since they can be distributed on the cloudlets.

Cloudlets achieve this by utilizing virtualization technologies. An appli-
cation developer can create a virtual machine (VM) overlay by customizing

CHAPTER 2. MOBILE-EDGE COMPUTING 7

N

=
by &
—
— WiFi AP
] <
@
Q e
3 .
°© @ T S,
) \\
3 ISP
= ellular antenna N L

/ Internet

— Cloudlet

Figure 2.3: Cloudlet architecture

a base VM and then calculating the difference between the base VM and
the customized one. Therefore, the size of the overlay is reduced and can be
stored in the client and then transmitted to the cloudlet where it is combined
with the base VM and executed. Afterwards, the mobile device can make
use of it. Since cloudlets are defined as having a soft state, at the end of the
execution the VM is discarded, along with any data on it.

Several applications in the academic world have exploited Cloudlets to
implement applications that require low latency and high traffic rates. One
such is the Gabriel Architecture for Cognitive Assistance [3]. This architec-
ture proposes a framework to stream sensor data from sources like video,
GPS, accelerometers, etc., to a control virtual machine (VM) in a Cloudlet
which pre-processes and decodes the streams to make the data available to
cognitive VMs specialized in tasks like face recognition, optical character
recognition (OCR), object recognition, etc. The cognitive VMs process the
streaming data and produce a symbolic representation that can be then used
by complex higher level processing to produce an overlay or user feedback [3].
A concrete example is presented by Satyanarayanan, et al. [18] that utilizes
this architecture to assist 2D Lego assembly.

Cloudlets continue to be researched in academia, but it was not until
recently that commercial solutions that implement a similar paradigm have
become available. The industry has termed this model as Mobile-edge com-
puting, which the following will describe in detail.

CHAPTER 2. MOBILE-EDGE COMPUTING 8

2.2 Mobile-edge computing

Mobile-edge computing (MEC) and Cloudlets are very similar: they are
both placed at the first hop of the network, offer storage and computing
to nearby devices, and mobile users access them through wireless links. A
MEC server can be deployed at an LTE macro base station (eNodeB) at the
UMTS radio network controller (RNC), or at a multi-technology cell aggre-
gation site. A multi-technology aggregation site controls a number of local,
multi-technology access points that provide radio coverage on a premise [19].
However, MEC differs from Cloudlets in that it is managed by the mobile
infrastructure provider, it integrates network operator related knowledge,
and MEC servers are widely deployed and available to all mobile users. In
addition, MEC servers have access to position and mobility information [20].

MEC is born as an Furopean Telecommunications Standards Institute
(ETSI) initiative in the form of an industry specification group (ISG). Huaweti,
IBM, Nokia Networks, Intel, NTT DOCOMO, and Vodaphone are the main
sponsors. The purpose of the ISG is to standardize MEC in an open envi-
ronment which will allow the integration of heterogeneous technologies from
different parties to form multi-vendor MEC platforms. According to the
ISG’s Introductory Technical White Paper [21], MEC is characterized by be-
ing on-premises, proximity, lower latency, location awareness, and network
context information.

The first characteristic of MEC is that it is on-premises. This means that
the MEC server is local and can run independently and isolated from the
rest of the network. In the event of connectivity loss to the core network, an
application running on a MEC server would be unaffected and will be able
to continue to operate normally.

MEC servers are also close to the source of information, the mobile de-
vices. This proximity enables MEC servers to become agrregators of data
and enables the capture of big data and analytics. Crowd-sensing applica-
tions and Internet of Things (IoT) devices benefit the most from this char-
acteristic because all the data collected from them can be aggregated and
pre-processed at a MEC server before uploading it to a central repository.
Therefore, the information traffic is reduced and the mobile infrastructure
provider as well as the application developer benefit from the reduction in
bandwidth usage [21].

Another advantage of a MEC server’s point of view is reduced latency
to the end user devices. Reduced latency enables response time sensitive
applications such as augmented reality or cloud gaming.

MEC servers also share information about their location as well as low-

CHAPTER 2. MOBILE-EDGE COMPUTING 9

Applications

Application specific]

VM managers

s =

Application
service

Application
service

Application
service

Application framework
manager

Application platform
Base Platform

Platform hypervisor software

Hardware

Nokia NetAct)

Figure 2.4: RACS Architecture

level signaling information with the applications. This enables location based
services, analytics and differentiation of the content served in regard to the
network conditions and location [21].

MEC had only been discussed as a concept until 2014 when Nokia Net-
works introduced the first example of a complete real-world MEC implemen-
tation [22]. This platform is called Radio Applications Cloud Server (RACS),
and is discussed in further detail in the following section.

2.3 Radio Applications Cloud Server

The Nokia Networks Radio Applications Cloud Server (RACS) [22] is MEC
solution that encompasses all the aspects required to create, deploy, and
manage applications packed as virtual machines. A RACS contains a software
platform that execute the virtual machines containing the applications. In a
real-world deployment, the RACS can be placed in various locations within a
mobile infrastructure provider’s network. Then can be placed at the eNodeB,
RNC, or at aggregation sites. In order to manage the multitude of RACS,
the solution provides application framework managers and a proprietary tool
called NetAct that interfaces with the RACS base system.

The software platform consists of three main components: a base plat-
form, an application platform, and application platform services. The base
platform provides the raw resources such as computing, storage, and con-
nectivity. The application platform provides a hyper-visor upon which ap-

CHAPTER 2. MOBILE-EDGE COMPUTING 10

plication virtual appliances run. Lastly, the application platform services
encompass the RACS programming application user interface (API). These
services include network traffic services that route IP traffic streams to and
from the RACS, and information services that expose APIs that the appli-
cations utilize to retrieve the state of a UE as well as the radio network
subsystem. These components work in conjunction to provide the platform
on which the applications will be executed as shown in Figure 2.4.

The application framework managers are used to manage the virtual ap-
pliances deployed into RACS. It provides a user interface to manage the
deployment of RACS applications. This includes application configuration
management activities such as configuration policies, application deployment,
execution, termination, and suspension. It communicates directly and man-
ages collections of application platforms.

Nokia’s NetAct network element management performs the monitoring
of the base platform. It takes care of fault, configuration, accounting, per-
formance, and security management.

As it is the only implementation of MEC available, this thesis makes use
of Nokia Networks RACS platform to implement a distributed application
and leverage the benefits the platform provides. The most important ones
are the application platform services that provide network information, of
which the CellID is particularly useful as will be described in later chapters;
and low latency to the UE, which is crucial for augmented reality.

Chapter 3

Human-centered Positioning Sys-
tem

Global Navigation Satellite Systems (GNSS) such as Global Positioning Sys-
tem and the European Galileo have dominated the outdoor navigation sys-
tems for the past decades. The strengths of these systems are obvious, in-
cluding weather resiliency and remarkable accuracy. However, these systems
are not always the best choice for real-time applications because the ini-
tial acquisition time takes tens of seconds (10s-20s) and urban areas present
many surfaces such as buildings that reflect and obstruct radio signals, thus
the positioning error can be off by hundreds of meters [23].

The research group in the Aalto University has developed an application
called Human-Centered Positioning System (HoPS) that is able to recognize
traffic signs in an image and then combine this with context information
in order to effectively calculate a user’s position without relying on GPS,
WiFi fingerprinting, or any other radio fingerprinting. The main task of the
thesis is to understand the functionality of the application and identify the
parts that can be offloaded or otherwise augmented by leveraging the MEC
architecture via making use of Nokia’s RACS server. Hence, this chapter
lays the groundwork by describing the implementation of the application.

3.1 Location detection process

The application relies on identifying context information from the mobile
network and combining it with information extracted from a camera snap-
shot. In particular, the application identifies traffic signs within the camera
snapshot and counts them. Then it uses the information gathered from the
detected signs together with the available context information such as the

11

CHAPTER 3. HUMAN-CENTERED POSITIONING SYSTEM 12

altitude, quality of the connection to the base station, and connected base
station Cell ID to determine the location of the user. The overview of the
location algorithm can be seen in Figure 3.1.

e N
N
[j Shrink and expand image
Image acquisition
Capture available sensor Split in 3 channels
data: altitude, signal
strength, connected cell id \l,
(Find traffic signs on image J ’
Find and approximate
Lookup all 3|gns within the [contours into quadrangles J
cellid coverage \1/
Use altitude, S|gnal strength, Select and filter
and sign count to choose the appropriate quadrangles
best matchmg location \ \ll /
Location coordinates] Group detected quadrangles
and remove duplicates
N J

Figure 3.1: Traffic sign location application.

3.1.1 Sign detection

The process of the signs detection in the application starts by first blurring
the image in order to minimize the noise and improve the accuracy of the
contours algorithm. The method utilized to blur the image is by using a
Gaussian pyramid to reduce the image to half of its size and then utilizing a
Laplacian pyramid to reconstruct the image to the original size [24].

After removing the noise, the next step is to split the image into 3 images,
one for each color channel. Next, each of the 3 channels is treated as a
grayscale image.

The algorithm then takes the images and generates 10 images per input
image by choosing a gray value as a threshold and turning every value below
it into a white pixel, and anything above the threshold into a black pixel.
In addition, the algorithm produces 3 more images by using a Canny edge

CHAPTER 3. HUMAN-CENTERED POSITIONING SYSTEM 13

detector [25] 2 times with different settings to highlight the edges on the
images, and an adaptive threshold technique that highlights edges but is
also effective when there is unevenness in lightning [26]. In total, this step
produces 13 black and white images for each one generated on the previous
step. In total 39 black and white images are produced.

Afterwards, each of these 39 images is processed with a function designed
to find contours with an algorithm designed by Satoshi Suzuki [27]. The con-
tours detected are then approximated using the Douglas-Pecker algorithm
into straight lines [28]. Then, the groups of lines that form closed convex
quadrilaterals are selected. Furthermore, the algorithm inspects the inner
angles of the quadrilaterals and discards those that that are more than 5
degrees away from 90 degrees. Next, the area of the the quadrangle is calcu-
lated so that is it between 0.05% and 12.5% that of the original image. These
percentages are needed in order to avoid selecting regions that are too large,
or too small to be considered as traffic signs. This process will typically yield
a multitude of quadrangles believed to be signs. An evaluation of the signs
detection algorithm on a sample set of 95 images yielded an approximate
58% of average identification accuracy.

3.1.2 Sensor data

The Android API provides access to a myriad of sensors on mobile devices.
The application makes use of the pressure sensor to determine the altitude.
However, before being able to accurately measure the altitude, the pressure
sensor must be calibrated with an on-line service. In the application, the
device queries the Finnish Meteorological Institute [29] by using their public
API to find out the reference pressure at the current location. In addition
to the pressure sensor, the algorithm makes use of the signal strength to the
connected base station together with the base station’s Cellld. This informa-
tion is used to narrow down the search to a specific area before performing
further filtering and querying.

3.1.3 Database search

The last step the application has to perform to approximate the user’s loca-
tion is to perform a database search using the gathered and processed data
from the camera and sensors. The first step is to query for all the recorded
locations that are within range of the base station identified by the CelllD
recorded. If this operation produces only one record, then this location is re-
turned. Otherwise, the signal strength and the altitude are compared against
the candidate locations and matched as closely as possible. If there is more

CHAPTER 3. HUMAN-CENTERED POSITIONING SYSTEM 14

than one location that matches, the last operation is to count the number of
traffic signs in the image and use this to select a single location. If there is
still more than one match after this last operation, then the process return
several possible locations.

Data: Context information [cell-ID, signalstrength(ss), altitude(alt)]
associated with the input image
Result: Estimated unique location, or multiple candidate locations
for further processing

Retrieve the set of candidate locations (Set;,.) from the database
using cell-1D
if Size(Set;,) > 1 then
altth +— 0.2
sSi, +— 0.2
while Size(Setandidates) < 0 do
for loc < Set;,. do

if |loclalt] — alt| < alty, and |loc[ss] — ss| < ssy, then

‘ Append loc to Setcandidates

end
end
alty, < alty, + 0.2
SSip, <— SSyp, + 0.2
end

end

else
‘ Setcandidates — Setloc

end
Return the candidate locations to the end user

Algorithm 1: Database matching algorithm.

3.2 Original implementation

The research group already built a first prototype of a HoPS application. In
the original implementation, the mobile device performs the sign recognition,
and afterwards the resulting data is sent to a remote server through an HTTP
post request or looked up in a local database. The advantage of this approach
is that the resulting data is small and takes very little to transmit when
querying a remote service. Keeping a local database is challenging because
the database would have to grow significantly as the application’s coverage

CHAPTER 3. HUMAN-CENTERED POSITIONING SYSTEM 15

area increases. The following describes the implementation specifics of the
system’s first prototype.

3.2.1 Sign detection and sensor data collection

Most of the application is self contained and operates in the mobile device
itself. The sign detection algorithm is implemented in C4++, and leverages
the widely used OpenCV library [30] for the computer vision related tasks
such as thresholding, contour finding, and contour approximation necessary
in the sign recognition process described earlier. This process is executed in
the mobile device and uses the output information to query a local location
database or a remote location service to retrieve candidate locations and
narrow down the real location of the user.

3.2.2 Remote location service

Field Type
location_id integer
cellid integer
signal_strength integer
altitude real
sign_count integer
location_area_code integer
longitude real
latitude real

Table 3.1: Basic location database

The remote location service is implemented to run on the cloud. The
service has been implemented using Python with the Flask framework [31]
as the server. Flask is a lightweight and flexible Python framework. A
MongoDB database stores all the data for the locations, signal strength,
altitude, and sign information. The database consists of a single table, shown
in Table 3.1. The Python application queries the database for all the records
matching a provided CelllD, and then iterates over the results comparing the
signal strength and altitude for the best match.

Chapter 4

Analysis and Design

This thesis focuses on leveraging MEC via Nokia’s RACS to improve the
performance of the HoPS application. Leveraging a remote server also comes
with a new set of challenges. The most evident is the network usage since
it introduces a delay in the form of the data transmission latency and the
response delay. The data transmission latency is more apparent when large
quantities of data, like images, have to be transmitted and processed re-
motely. The response delay is affected by the round-trip time of a packet
in a mobile network. Therefore, the first step in this process is to measure
the performance of the application and identify possible improvement strate-
gies. With these strategies in mind, this chapter will analyze how MEC’s
most prominent characteristics, e.g., on-premises, proximity, lower latency,
location awareness, and network context information, can be leveraged by
the HoPS application while minimizing the effect of the challenges described
above.

4.1 Application performance measurements

The first step before analyzing the advantages of MEC is to define the metrics
on which to base the comparison. The HoPS application aims to provide
a quick response to a user’s positioning query based on an image snapshot.
Thus, the main performance metrics should be the algorithm execution speed
and its accuracy. The execution speed is measured in milliseconds, and the
accuracy is the percentage of correct traffic sign detections. Therefore, we
utilize a data set of 95 images to build the database. The signs within each
image are manually identified to provide a baseline of comparison for the
accuracy of the application.

The sample data set consists of 95 images taken around Helsinki, Finland.

16

CHAPTER 4. ANALYSIS AND DESIGN 17

1200

1000 —

800 —

600
ERACS

Time (ms)

400 EAWS

200

100KB 200KB 1MB

File size

Figure 4.1: Image transmission time

The images are 2448 by 3264 pixels in size and compressed with a JPEG
quality factor of 96. All of the images show signs of varying sizes, some
have more than one, and 5 at most. For our purposes, adjacent signs are
grouped together whenever they form a larger rectangle. In total, the image
set contains 219 signs.

This section then uses the sample data set to perform experiments that
show concretely how much each of the RACS features can affect the perfor-
mance and accuracy of the application.

4.1.1 Network transmission latency

The first step to assess the performance of the application is to evaluate the
impact that the network conditions will have on the response time. The
first experiment focuses on measuring the round trip time (RTT) from the
application on an Android device to a RACS, and also to a remote server in
the cloud. For the remote cloud server we utilize an Amazon Web Services
(AWS) server located in Frankfurt (eu-central-1) since it is the closest to
the Aalto network. We use Internet Control Message Protocol (ICMP) echo
request packets and then wait for the corresponding ICMP echo reply packet
and measure the time difference between the packets to calculate the RTT
by using the Linux ping tool. The average network latency in milliseconds
for a packet from the mobile device to the RACS is 14ms, and the average
latency between AWS and the mobile device from Aalto’s network is 47ms.

The next step is to compare the bandwidth between the Android device

CHAPTER 4. ANALYSIS AND DESIGN 18

and the remote servers. Interestingly, the bandwidth is not used fully when
transmitting a 1MB file, much less when transmitting smaller ones. The
latency and the network conditions impact the congestion window growth,
and thus the transmission time of the image files between the device and the
remote processing server as can be seen in Figure 4.1.

4.1.2 Sign detection accuracy

We propose two different strategies to reduce the file size of the images sent
to the RACS in order to minimize the network transmission delay penalty.
First, we evaluate the how the accuracy is affected when reducing the res-
olution of the image since reducing the resolution has a direct effect on the
image size. The second strategy is to compress the image data. The image
can be compressed by using either lossy or lossless algorithms. A lossless
algorithm won’t affect the accuracy of the algorithm since no data is lost,
but won’t reduce the file size significantly. On the other hand, a lossy algo-
rithm will reduce the file size significantly, but it will affect the accuracy of
the algorithm because it introduces artifacts, or distortions of regions in the
original images [32]. Since lossless algorithms don’t affect the file size much,
we focus on testing how the accuracy is affected by the JPEG Discrete Cosine
Transform (DCT) compression algorithm [33].

First we need to establish a baseline accuracy, and for this, we assessed
the accuracy of the original data set first. For this experiment, the sign
detection accuracy is measured as the percentage of the known signs that
were detected, while the false positives are ignored since they can easily be
filtered out. The accuracy of the sign detection algorithm on the original data
set is 58.45%. Each of the images in the sample set is rescaled to varying
resolutions with representative megapixel (MP) count. The original images
have a pixel count of 8MP, and we generate copies of the sample set in 1
to 7 MP and 0.3MP. At the same time, each new set of rescaled images is
compressed with even JPEG compression levels ranging from 2 to 96. This
amounts to 432 sample sets. The detection algorithm is executed on each of
the sets and the averages calculated for the detection accuracy.

The first test is used to determine exactly how much the information
density varies with the compression and resolution. The results of these
tests are shown in Figure 4.2. From the results, it becomes obvious that using
JPEG compression doesn’t affect the algorithm’s accuracy significantly until
the JPEG quality factor is set below 20. On the other hand, reducing the
resolution of the images does have a greater effect on the detection accuracy.
The accuracy is affected when the resolution is lower than 6MP.

CHAPTER 4. ANALYSIS AND DESIGN 19

JPEG Quality and Accuracy

70.00%

60.00%

1 50.00%
——0.3MP

— 1MP
40.00% e I MP

—3MP

Accuracy

e AMP
| 30.00%

- = 5MP

6MP

20.00% 7MP

8MP

1 10.00%

0.00%
20 80 70 60 50 40 30 20 10

JPEG Quality

Figure 4.2: Algorithm accuracy related to compression and JPEG quality.

4.1.3 Sign detection processing time

Next, we assess the time it takes for the algorithm to execute in different
devices. We choose to compare a wearable device, Google Glass; an aver-
age smartphone, Samsung Galaxy S4+; and a MEC server, Nokia RACS as
shown in Table 4.1. The results of processing the original images are shown
in Figure 4.3.

Device Processor RAM Storage
RACS Intel Xeon 16 GB 400 GB
Galaxy S4+ Qualcomm Snapdragon 800 2 GB 16 GB
Google Glass TT OMAP 4430 SoC 2GB 12GB

Table 4.1: Devices used for testing.

From these results, it is evident that utilizing a RACS server provides an
advantage over processing the images on the mobile or on Google Glass. The
other interesting result is that the processing time is also diminished when
the image resolution is reduced.

CHAPTER 4. ANALYSIS AND DESIGN 20

60.00

50.00

40.00

30.00

Time (s)

20.00

10.00

0.00

8MP ™P 6MP 5MP 4MP 3MP 2MP 1MP 0.3MP
Image resolution

Figure 4.3: Sign detection execution times on different platforms

4.1.4 Database location matching

In the original implementation, the database location matching algorithm
is dependent on the CellID of the station the phone is connected to, the
signal strength, and the altitude. Afterwards, and as a last recourse the
algorithm counts the number of signs found at the location in order to lo-
cate the user. After testing with different mobile devices, we found out that
the signal strength measurement is a reliable factor even though it can vary
slightly depending on the weather and other atmospheric conditions or the
mobile chipset. In addition, the atmospheric pressure sensor is not available
on most devices according to OpenSignal [34], and when it is available, it
needs calibration. In order to calibrate a pressure sensor, one must compare
the sensor’s reading with the expected pressure calculated by taking into ac-
count the temperature and height of the location. This is usually achieved
in smartphones by querying an online service with the current location. Fi-
nally, counting the number of signs is not enough for the algorithm to find a
location. The way a photo is taken can influence on the detection, and a user
could take a picture that doesn’t include all of the signs in the area. The
detection algorithm’s accuracy is also too low at this point for the approach
to be effective.

Database location matching is an area that can be improved. The fol-
lowing section takes into account the above described shortcomings of the
current algorithm to propose a solution to them.

CHAPTER 4. ANALYSIS AND DESIGN 21

4.2 Design of a RACS-enabled solution

Considering the previous results, it becomes evident that the current algo-
rithm can be improved in several ways by using the advantages provided by
the RACS platform. The advantages that the platform provides and we can
readily use are: code offloading, improved network conditions, distribution,
and location awareness.

4.2.1 Code offloading

Code offloading allows not only the faster processing of the data, but it
also allows us to execute more complex processes such as optical character
recognition (OCR) or further image analysis. The previous section shows the
time benefits of code offloading compared to running the application on the
device. Together with the need to find a more reliable way of detecting the
location, OCR is a good candidate for a new location algorithm.

Using the data from the analysis it becomes obvious that the best choice
for the JPEG quality setting is 22. In Figure 4.2 we can see that the 22
is the peak after which the quality starts to degrade. Choosing the lowest
quality setting enables us to reduce the image size considerably. A 2403 kB
image can be compressed to 10% of its size to 235 kB. The resolution also
affects the file size directly since less pixels have to be encoded. However,
it also has a noticeable impact on the sign detection algorithm, and quickly
lowers the detection accuracy. In addition, we intend to use the images for
text detection. This requires higher resolution images for the text extraction
to be successful. Consequently, we chose to sacrifice the resolution of the
image for the benefit of the smaller file size. Consequently, we choose the
TMP resolution setting.

The traffic signs text provides meaningful information about the direction
the user is heading, but often the signs are repeated along a road. However,
even though the signs share the same text, they have slightly different shapes,
icons or direction arrows change, or the text occurs in different positions.
Utilizing this information is not straight forward; The lighting conditions are
varied and the signs appear distorted because of perspective. These factors
have to be taken into account when processing the identified signs.

4.2.2 Improved network conditions

The improved network conditions also mean that the TCP connection can be
established more quickly, the congestion window can grow faster, and thus a
burst of image data can be sent in less time. Establishing a TCP connection

CHAPTER 4. ANALYSIS AND DESIGN 22

requires a handshake which will consume 1 round-trip time (RTT) before
the sender can start sending data. The lower latency to the RACS directly
affects the connection establishment delay because the RTT is lower. In
addition, the congestion window growth in TCP is dependent on the RTT.
The congestion window will grow faster as the RTT is lower because the
congestion window limits the rate at which the sender can send data and
grows with each packet confirmation. A lower RTT means that packets can
be confirmed more quickly, and thus, the congestion window can grow faster
and the data is transmitted at a greater rate.

4.2.3 Location awareness

A RACS’s location awareness and network information services let the ap-
plication query the current CelllD. The amount of information stored in the
local database can be reduced by taking into account the cell’s coverage area
information, and only storing data relevant to the cell’s coverage area. In
this way, the first query for the CelllD can be skipped, and the database
on which the location algorithm searches are performed will be smaller and
produce faster responses to even more complex queries.

4.2.4 Distribution

Another factor that is relevant due to the location of the RACS inside the
base station is that the application can become independent of Internet ser-
vices and rely solely on the RACS. The application can be used without the
need to contact the core network or a server in the cloud. In this way, network
operators can benefit from the reduced bandwidth usage on their back-haul
links between the eNodeB and the core network. Also, in emergency sce-
narios where the link between the eNodeB and the core network is lost, the
application could still provide its service and would remain functional.

Our application benefits directly from the distribution because then each
RACS server would only need to keep a small local portion of the database
that is relevant only to its coverage. However, a central entity is necessary
to manage all the distributed nodes and keep them updated. In our case,
the traffic sign positions are assumed to be static over time and thus the
updates can be performed sporadically. The database is meant to aggregated
from measurements from the mobile clients in a crowd-sourced fashion. The
MEC servers can collect the data, process it, and compare it with their local
databases before contacting the global server to push an update.

Chapter 5

Implementation

Following the analysis and design of the solution, this chapter describes the
system implementation and technical implementation decisions taken. This
chapter deals with the algorithms developed and the technologies and meth-
ods we used to achieve the design goals.

5.1 Overview

After taking into account the system described in Chapter 3, and the anal-
ysis and design from the previous chapter, we propose an improved system
architecture and a new method for extracting information from the image
data.

The system is composed of three main components. The first one is
the client application which runs on the mobile device. The purpose of the
client application is to interact with the end-user and capture the data for
later analysis by the second component. The second component is the server
application, which runs on the remote server. In our approach the remote
server can either be a MCC server located in a third-party provider such as
Amazon or a MEC server installed in an eNodeB. The third component is a
distribution server which would have to reside in the cloud, or somewhere in
the internal network of the mobile infrastructure. This server’s task would
be to coordinate and update the data in the MEC servers. In this thesis, the
implementation of such a server is left for future work.

The basic work flow of the system is that context information and a pho-
tograph is captured at the mobile device via the client application. The client
application then minimizes the size of this data, and queries the remote appli-
cation running on either the MEC or MCC server. We call this process image
optimization. The server offers a web service that accepts these queries and

23

CHAPTER 5. IMPLEMENTATION 24

first produces a set of candidate locations based on the context information.
If the context information produces only one candidate location, then the
server application sends the candidate location back to the application and
it does not perform any further processing on the image data. However, this
is rarely the case, and most of the times the server will need to perform fur-
ther processing on the image to detect the traffic signs present in it, remove
the false positives, and analyze the textual data contained in them. Finally,
after the processing the server application will score each of the candidates
and will pick the best suited one. This candidate is then sent back to the
user. The following sections describe in detail the implementation of such a
system.

5.2 Client application

The purpose of the client application is to capture the context information
and the image on the mobile device. This thesis focuses on Android mobile
devices since it is the dominant platform in the market [35]. The prototype
Android application must provide a simple interface to take a photograph of
road signs, process the image, send the image and the context information
to the server, and retrieve the resulting location. The following describes the
process in detail.

5.2.1 Image and context information

In the previous chapter, we realize that it is necessary to re-size and compress
the images. We can readily achieve this on the Android application because
the Camera API provides a method of specifying how the camera will process
the image before handing it over to the user. The processing compression and
resizing of the image all happen in the camera chipset without a significant
delay. Thus, performing the resizing and image compression on the Android
headset produces no significant overhead.

The Android API also provides a way to query the signal strength via
the PhoneStateListener together with the TelephonyManager. We can also
obtain the CelllD with this API, but it is not longer necessary since the
RACS server also provides this context information.

5.2.2 Image transmission mechanism

After the application collects the relevant query information and the user
has taken a photograph, the application contacts the RACS server by means

CHAPTER 5. IMPLEMENTATION 25

of a Representational State Transfer (REST) request. This means that the
application establishes a TCP connection to the server, and then performs
an Hypertext Transfer Protocol (HTTP) POST request.

The REST API is simple, it consists of a single Uniform Resource Locator
(URL) to which the information is to be sent by a POST request. The
URL is an address of the form: “http://[ServerIP]/query”. Afterwards, the
server produces an HTTP response which contains the location results in a
lightweight data interchange format. The format chosen in JavaScript Object
Notation (JSON) since it is easy for humans to read an write, which aids in
the development and testing, and it is also easy for computers to generate
and parse. The web service is described in further detail in the following
section.

5.3 Server processing and matching

This section describes the server implementation, which receives the data
from the client, performs the bulk of the processing of the image to detect
relevant traffic signs, and then queries the database to determine the location.

5.3.1 Web service

The first step for the server is to publish a service that allows a mobile device
to interact with it. The server must provide a reliable and robust API that
the mobile client will utilize to query the service. The API must consider
that the client needs to transmit image data and context information and
obtain a location as a response. This API has been implemented utilizing
REST.

The REST API exposes only one service: /query. The query service
expects a POST type request with the context information encoded in JSON.
The format of the JSON data is shown in Listing 5.1. However, the image is
not transmitted in the JSON structure because it contains binary data and
JSON enconding would multiply the size of the data. Instead, the image file
is transmitted using HTTP’s standard multipart/form-data encoding, which
is suitable for binary files, and produces little overhead.

S Ot s W NN

S Ot s W N =

CHAPTER 5. IMPLEMENTATION 26

Listing 5.1: JSON query data

"data": {
"cellid": "13745",
"SS": ||_73||

The server can respond to the requests in two ways. The first one is a
successful query without errors. In this case the response consists of a JSON
object that includes the location coordinates like shown in Listing 5.2.

Listing 5.2: JSON response data

"location": {
"latitude": "60.3273",
"longitude": "24.3883"

The server implementation makes the REST service available through
HTTP. For this reason the server leverages Flask to provide the web service.
Flask is a minimal Python framework for web applications. Being minimal,
it is very flexible and can be easily adapted to the needs. Also, previous
research work on the application is in Python. Choosing Flask enables us to
re-utilize this code without much effort and adapt it to the MEC solution.

5.3.2 Traffic sign detection

The next action the server must perform is find the traffic signs in the image
data. For this, we must take into consideration that Python is an inter-
preted language, which makes it slow compared to compiled programming
languages such as C++. Consequently, we implement the traffic sign detec-
tion in C++ and leverage the OpenCV library of computer vision algorithms.
The OpenCV library implements optimized versions of common and popular
computer vision algorithms such as Canny edge filter, thresholding, contour
detection, etc. The sign detection work flow remains unchanged from the

CHAPTER 5. IMPLEMENTATION 27

original application described in Chapter 3, where these filters are first intro-
duced. However, in the following we introduce additional filtering in order
to minimize the unnecessary processing in later stages.

(a
PRIV AR A

Figure 5.1: Detected signs before filtering.

r
FRIFUA AR A

Figure 5.2: Correctly detected signs after filtering.

The traffic sign recognition algorithm produces many candidates of rect-
angular regions in the image as seen in Figure 5.1. Some of them are traffic
signs, while others are just objects that also have a rectangular form, or form
rectangular shapes. Before performing further analysis we need to perform
filtering of the shapes based on their position in the image, their relative
position to each other, inner angles, size, and closeness to the edge. Such
filtering is necessary to avoid wasting processing time on rectangular regions
with no information.

CHAPTER 5. IMPLEMENTATION 28

The first step of the filtering is to detect and merge duplicate rectangular
regions. The traffic sign finding algorithm performs the detection several
times on the same image, but on each iteration the image is processed with
different thresholds. This produces better results, but also a lot of duplicates.
The duplicates are detected by comparing the four vertexes of the rectangular
areas, and if they are close enough (0.5% of the maximum image dimension)
it merges the vertexes by calculating the average position of each vertex in
the detected duplicates.

Afterwards, the rectangular regions are grouped in order to form larger
rectangular units. The grouping is performed when two rectangular regions
share the same edge, and the vertexes are within a 0.4% of the maximum
image dimension. This step is necessary because often the traffic signs are
themselves composed of several rectangular regions. Thus, it is necessary to
stitch together all the rectangular regions into a macro region before further
processing.

After grouping the rectangles into larger regions, we detect if there are any
rectangles inscribed within larger rectangular regions, and finally we remove
rectangles that are too close to the edges of the image. In our samples, we
found that most of the signs in the pictures taken are closer to the middle or
upper-middle areas of the photo as seen in Figure 5.3.

1.0 1.0 0.0 0.0 9.5 1.6

6.7 88.5 1.8 0.8 65.9 222

0.0 0.0 1.0 0.0 0.0 0.0
(a) Arterial road. (b) Freeway.

Figure 5.3: Percentage (%) of locations of traffic signs on the image files
(3 x 3 grid).

The end result is the correct detection of the rectangular images that
contain traffic signs as seen in Figure 5.2. Now that the rectangles have been
filtered and the false positives have been eliminated, we can perform further
computations on the information rich rectangular regions.

CHAPTER 5. IMPLEMENTATION 29

5.3.3 Optical character recognition

Directional traffic signs have text indicating the destination of the road or
highway. Since modern phone’s cameras produce high quality images, it
becomes possible to process the images to extract the text in them. Still, the
biggest challenge we faced in detecting the text in the images is the varying
lighting conditions, shadows, and camera image quality. These challenging
conditions make traditional approaches to applying filters before performing
optical character recognition (OCR) perform poorly. Most of the techniques
have been developed to detect text in books or scanned media. Therefore,
before performing OCR, we apply a custom process that binarizes the images
and segments their irregular layouts so they can be processed by the OCR.

Data: Input image
Result: Noise reduced, binarized image
(1) Apply perspective-correction to the image (Figure 5.4).
(2) Rescale the image down. The optimal resolution for OCR is
300dpi.[36]:
(3) Split the input image into 3 separate channels, one for each colour
channel which is treated as a grayscale image.

A. Apply Canny edge detection [25] to the 3 grayscale images.

B. Recombine the images. (Figure 5.5)
(4) Perform Sobel edge detection [37] on the color image and equalize
the histogram (Figure 5.6).
(5) Remove Canny edges that are below certain threshold value in the
Sobel filtered image.
(6) Perform 8-connected component analysis on the remaining edges
to form connected contours.
(7) Filter and group contours based on their position, size, and
properties shared with neighbouring contours (Figure 5.7).

Algorithm 2: Text pre-processing algorithm. Note that the thresholds are
empirical values from our experiments.

!\l—HL\ I

RING
4+ ms3 1

Figure 5.4: Perspective corrected image.

CHAPTER 5. IMPLEMENTATION 30

N MJQHME D
RINE:

Figure 5.6: Sobel edge detection.

RING KEHA 4 s ¢

Figure 5.7: Resulting segmented text.

After applying the algorithm the image is fed to an OCR library. We chose
Tesseract OCR, [38] by Google because it is open source, freely available, and
it is used widely in academia. Tesseract OCR is one of the top performers
at the Fourth Annual OCR Competition held in 1995 [39]. After the text
detection by Tesseract, the detected text and the context information is
matched against the information in the database as described in the following.

5.3.4 Database implementation

The first step to implement the database matching algorithm is to design a
database that contains the context information and also contains the possible
locations in a way that is easy to search for the right one. The database
consists of 4 tables: signs, locations, connections, and cells as shown in Figure

2.8

CHAPTER 5. IMPLEMENTATION 31

connections locations
PK,FK2 |cell_id PK |location_id
PK,FK1 |location_id .
lat
measurements lon
signal_strength alt
l measurements
signs
cells
PK |sign_id
PK |cell_id

FK1 |location_id
lac text

Figure 5.8: Database design.

The locations table has the coordinates and altitude of the places where
directional traffic signs are located. The cells table has the information about
the base station identifiers and their location area code (LAC), which is a
regional identifier. The signs table contains the information about the text
found in the traffic signs. Finally, the connections table has the information
for the signal strength between a mobile device and a eNodeB. Therefore,
the connection table creates a many-to-many relationship between a location
and a celllD or eNodeB.

The database is populated by measurements of the context information
at each of the locations, and the information of the text in the traffic signs.
The database is meant to be built up by crowd-sourcing the measurements
at each location. This is why in the connections and locations tables have a
measurements counter. We use this counter to keep a running average of the
signal strength and location coordinates of the traffic signs when we update
the database with new data.

When using the database, the first step is to query the connections table
with the celllD of the mobile device connected to it. This way, we get the
candidate locations covered by a specific celllD. After getting the connec-
tions and the associated locations, the next step is to examine the signal
strength from the context information and compare it to the ones in each
connection. We assign a score to each candidate [ocation based on how close
the signal strength in the database is to the one from the query. The score
is the difference between the signal strength values, divided by the sum of
all the differences between the candidate’s signal strength and the query sig-
nal strength. The scores of all the candidates add up to 1. The process is
summarized in Algorithm 3.

CHAPTER 5. IMPLEMENTATION 32

Data: Context information (celllD, signal strength)

Result: Set of candidate locations

(1) Query the database for the connections involving the cellID.

(2) For each connection, extract the associated location and add it to
the candidate set.

(3) Score each location by calculating the difference between the
queried signal strength, and the connection signal strength.

(4) Normalize the scores of all the locations so they all up to 1.

Algorithm 3: Signal strength-based query algorithm.

The second step is to perform the matching with the detected text. For
this, we first obtain the expected text from the candidate locations by fol-
lowing the relationship between the locations and signs tables. We then
match each sign on an individual level in the database. The text matching
algorithm is described in Algorithm 4.

Data: Detected text.

Result: Scores for the candidate locations based on the text
matching.

(1) Retrieve the text from each sign in associated with each location

candidate.

(2) Use the retrieved text to compare it against the detected text in

each of the detected signs and use the Levenshtein distance to

calculate a score.

(3) Choose the highest scoring sign detected sign-database sign

combinations.

(4) Assign scores to the locations based on the scores of each of the

highest scoring sign combinations.

Algorithm 4: Text matching algorithm.

The database is designed in such a way that it can be used either on the
mobile device or on the RACS server. The version of the database in the
RACS server would only have one entry in the cells table, and few ones for
the connections and locations tables. In our implementation, we chose Post-
greSQL as the back-end database, and SQLAlchemy as the object-relational
mapping (ORM) [40] we use to query the database from the Python Flask
server. Choosing SQLAlchemy as the ORM gives us the flexibility to use a
SQLite database on the mobile devices and for testing, and a PostgreSQL
database in the production environment without any changes to the code
since SQLAlchemy abstracts the interaction with the database.

CHAPTER 5. IMPLEMENTATION 33

The final score of each candidate is the sum of the scores of the text
matching, and the context information matching, the signal strength. Using
this score, the system is able to pick the appropriate location and then craft
the HT'TP REST response to send it to the mobile device.

Chapter 6

Evaluation

After re-implementing the system while taking into account the benefits the
MEC server provides, we set out to test measure quantitatively how much of
an impact it had. The objective of this Thesis is to improve the performance
of the application by leveraging a MEC server. The application’s goal is to
provide the user with a quick response to a query based on context informa-
tion such as signal strength, and an image of directional traffic signs. The
response must be a unique location of where the user captured the photo.
Based on this objective, we measure the accuracy of the system and the al-
gorithms in identifying the correct location, and the total time the system
takes to respond to a query in each of the 3 implementations: MEC, MCC,
and on the mobile phone.

In this chapter, the first section introduces the new data sets collected.
Next the second section introduces the experiments and results performed
to compare the accuracy of the new algorithms and the system created for
their use in the MEC environment against the original ones developed for
the mobile only application. Finally, the last section deals with the system
response time experiments and measurements.

6.1 Testing data set

The two data sets consist of images and context information recorded while
driving from Otaniemi to Myllypuro on a 28.4 km section of the Keha I
freeway. Figure 6.1 shows the location of the images. The both sets include
74 matching images of traffic sign locations and the corresponding context
information of each taken on different days. The fist test set was collected
on the 12th of May, 2015 and the second set on the 15th of May, 2015.
The weather conditions on each of the days were opposite. The first day

34

CHAPTER 6. EVALUATION 35

was overcast and there were moments of light rain. The weather conditions
improved on the second day. It was a sunny day with a clear sky. Each of
the days present unique challenges for the detection of the traffic signs.

Name Date Locations Weather
Test set 1 May 12, 2015 82 Overcast, light rain
Test set 2 May 15, 2015 76 Sunny

Table 6.1: Testing data sets.

In addition to the image data sets, we have recorded the context informa-
tion at each of the locations 21 times on different days and with 4 different
mobile devices: a Google Nexus 5, a Samsung S3, and two Samsung S4. It
became necessary to collect 21 measurements of the context information at
each of the points because in each measurement we found that the mobile
phones connected to new base stations in each measurement, and it wasn’t
until we had 20 measurements that we stopped finding new base stations.

11

%MaImlnkar’[an‘(lS
A

H__/\

’|\-__I i
Lepp: /aara®

A % \L/z

Helsmkl Lagjasalo

KAMPPI Degero

Figure 6.1: Map showing the location of the traffic sign sets.

6.2 Detection accuracy

In this section we analyze the impact of optimizing the image sizes on the sign
detection accuracy, and how this in turn affects the OCR detection accuracy.

CHAPTER 6. EVALUATION 36

We also compare the improved candidate selection algorithm which only relies
on the signal strength and cellID information.

6.2.1 Sign detection accuracy

In this experiment we compare how the sign detection accuracy is affected
by the compression and re-sizing required, which we call image optimization,
before transmitting the image over the network. We have manually identified
the traffic signs on both test sets of images. Using the manual identification
data, we can measure the detection accuracy of the sign detection implemen-
tation when processing the optimized images by comparing the positions of
the vertexes of the rectangular regions that the sign detection produces. For
this purpose we process the images in both sets in their original resolution of
8MP and 96 JPEG compression quality, and then compare the results to the
results of optimization of the images with 22 JPEG compression quality and
downscaled to 7TMP resolution. The results of the percentage of the signs
detected on both sets are summarized in Figure 6.2.

Percent (%) of correctly identified signs

90%

74.7%
69.4%

67.7% 65.6%
60%
30%
0%

Test set 1 Test set 2

= QOriginal = Optimized

Figure 6.2: Sign detection accuracy of the image sets.

From Figure 6.2 we can notice the impact of optimization on the images
on the sign detection algorithm. Interestingly, the algorithm performs better
than expected on the new image data sets. When analyzing the detection
data closely, we can notice that, as the figure shows, the difference is not
significant. However, there are slight differences in the sign detection in 13
images from test set 1, and in 14 images from test set 2.

CHAPTER 6. EVALUATION 37

Image file Optimized Original
20150512_123856.jpg 1/1 0/1
20150512_124851.jpg 3/3 1/3
20150512_125342.jpg 2/4 1/4
20150512_131628.jpg 1/3 0/3
20150512_124128.jpg 3/4 4/4
20150512_124508.jpg 0/1 1/1
20150512_124822.jpg 1/3 2/3
20150512_124912.jpg 2/4 3/4
20150512_125215.jpg 0/2 1/2
20150512_125328.jpg 2/3 3/3
20150512_125749.jpg 2/3 3/3
20150512-130259.jpg 0/1 1/1
20150512_131452.jpg 2/3 3/3

Table 6.2: Sign detection differences in test set 1.

First we are going to look at the results from test set 1. Table 6.2 shows
the differences in the detection. In 9 of the optimized images the sign de-
tection algorithm misses one traffic sign that was previously detected in the
original set. This produces the sign detection algorithm to fail completely
in 3 images where it has previously only detected one sign. Interestingly, in
the remaining 4 images the sign detection algorithm performs better. As a
result, the sign detection is able to detect signs in 2 images where it had not
been able to in the original set.

The results of test set 2 are consistent with the ones in test set 1, but the
optimization has a stronger negative effect. Table 6.3 shows the differences
in the detection. In the test set 2, the optimization affects negatively 11
images. It makes the sign detection fail completely in 4 because only one
traffic sign had been detected before. However, the detection is boosted in
3 optimized images. Interestingly, in 2 of them no signs had been detected
before. As a result, the net difference of complete detection failures is only
2 images.

Our approach at comparing the detected signs by matching the vertexes
overlooks the fact that sometimes only portions of the signs can be detected.
For example, if in an image there is only one road sign and only the bottom
section is detected, the comparison will be negative. Still, the partial rect-
angular region may contain enough information that can be extracted with

OCR.

CHAPTER 6. EVALUATION 38

Image file Optimized Original
20150519-105917.jpg 2/4 1/4
20150519_111155.jpg 1/1 0/1
20150519.-112749.jpg 1/2 0/2
20150519-105156.jpg 3/4 4/4
20150519-105652.jpg 0/1 1/1
20150519-105704.jpg 1/3 3/3
20150519-105729.jpg 1/2 2/2
20150519-105748.jpg 1/2 2/2
20150519-105804.jpg 0/2 1/2
20150519-105829.jpg 2/3 3/3
20150519_105856.jpg 2/3 3/3
20150519-110301.jpg 0/2 1/2
20150519-110326.jpg 0/3 1/3
20150519-110744.jpg 2/3 3/3

Table 6.3: Sign detection differences in test set 2.

6.2.2 Candidate selection

The purpose of the following experiments is to measure how accurately the
system, and each of the contributing components can determine the right
location from the subset of locations at a specific cell. The accuracy is
measured by the percent of locations within 50 meters of the expected cor-
responding location. To measure the distance between two coordinate sets,
we use Vincenty’s formula [41] which takes into account Earth’s curvature.

We perform three experiments. First we test the system with only the
context information and compare the accuracy of the two algorithms devel-
oped for this purpose. Next, we test the accuracy of the OCR text matching
applied to to the candidate selection. Finally we combine both approaches
and test the overall accuracy.

6.2.2.1 Context information based candidate selection

In this experiment, we utilize only the context information available to us to
choose the correct location. We compare the original algorithm (Algorithm
1) and and the one proposed in this Thesis (Algorithm 3).

Figure 6.3 summarizes the results by presenting a comparison of the per-
centage of the locations identified correctly by both algorithms in both data
sets.

CHAPTER 6. EVALUATION 39

Percent (%) of correctly identified locations

90.0%
78.9%

68.49% 73.0%
e 64.9%
60.0%
30.0%
0.0%

Test set 1 Test set 2

B Algorithm 1 ® Algorithm 3

Figure 6.3: Location accuracy of both algorithms.

Based on the results, we can readily observe that Algorithm 3 performs
better for this purpose. The main cause for a difference in the accuracy of
the algorithms is due to the altitude measurements. When we look closely at
the data of the altitude measurements, we notice that it varies within a range
of 50 to 100 meters. Having taken the measurements in a portion of Finland,
it is not surprising that most locations are within 10 meters elevation of each
other. This makes the altitude data useless for our purpose, and further, it
has a negative impact on the accuracy of the algorithm. Possibly the altitude
information can be useful in mountainous places, but definitely useless in
most of Finland.

The variability of the signal measurements by different devices is also an
issue that affects the accuracy. Most of the time the signal strength difference
between the expected value at a location and the measured one would be
within 10 units. However, sometimes we would notice that the devices would
stop updating the signal strength value for several minutes. This would lead
to the signal strength difference between the expected value at a location and
the measured one to be more than 30 units off. Fortunately, this is not very
common in our data, it only occurred in 2 out of 63 measurements, but it is
still a factor that contributed to the failure rates of the accurate detection of
the locations.

6.2.2.2 OCR based candidate selection

In this experiment we use only the OCR information together with the celllD
to select the best location candidate according to Algorithm 4. In addition,

CHAPTER 6. EVALUATION 40

we test the algorithm on the original images as well as the compressed and
rescaled ones.

Figure 6.4 summarizes the results by presenting a comparison of the per-
centage of the locations identified correctly by both algorithms in both data
sets.

Percent (%) of correctly identified locations

100.00%
84.2% g1.6% 86.1% 83.3%

75.00%
50.00%
25.00%

0.00%

Test set 1 Test set 2

® Original ™ Optimized

Figure 6.4: Location accuracy of text matching in both data sets.

6.2.2.3 OCR and context information candidate selection

Now we combine the two previous methods of choosing the location candi-
dates, by text matching from the text detected with OCR together with the
signal strength information. In this experiment we find out that combining
both approaches makes them perform better and equally despite the image
optimization.

Figure 6.5 summarizes the results by presenting a comparison of the per-
centage of the locations identified correctly by both algorithms in both data
sets.

CHAPTER 6. EVALUATION 41

Percent (%) of correctly identified locations
100.00%

88.9% 88.9% 86.8% 86.8%
75.00%
50.00%
25.00%
0.00%
Test set 1 Test set 2

® Original = Optimized

Figure 6.5: Location accuracy of text and context information matching in
both data sets.

The results of this experiment are very interesting due to the fact that
apparently the image optimization did not play a big role in the accuracy
when the context information is used. Sign detection failed in most of the
incorrectly chosen candidate locations. However, in some of them the sign
detection worked perfectly and so did the OCR. The OCR was able to narrow
down about 6 candidates to only 2. These 2 candidates did include the correct
one, but the context information score made the algorithm select the wrong
one.

The most common failure case was when neither the OCR or the context
information scores were the same and made the algorithm select the first
candidate, which often was the incorrect one. In one case, the OCR scored
an incorrect candidate slightly higher, but then the context information score
was much higher and ended up in the selection of the correct candidate. In
most of the cases each score complemented the other and that is what is
reflected on the results.

Two strategies remain to further improve the accuracy. One is to improve
the sign detection algorithm, and the other one is to find other features in
the image that can be used to identify the correct location. These features
could be relative sign position and size for example.

6.3 Transmission and processing time

Implementing the MEC-based solution means that we can leverage code-
offloading to process the images faster, but we have to balance it with the
fact that the images still have to be transmitted over the network. In the

CHAPTER 6. EVALUATION 42

analysis and design, we focused on reducing the image file size by using
compression and rescaling. In this section we test how long the optimized
images take to transmit over the network.

6.3.1 Network transmission delay

We use the LTE Netleap network in Aalto together with the RACS servers
provided by Nokia Networks. We deploy the server application on the RACS
server and use a mobile phone to send multiple images and measure the
average time to send them. We perform the same measurements over a Elisa
LTE network, but this time we deploy the application in Amazon Elastic
Computing Cloud (EC2). In this way we are able to compare the network
performance in the MEC and MCC scenarios.

In this experiment, we transmit the rescaled and compressed images from
both data sets, and calculate the average time it takes to transmit them to
the MEC server and to the MCC server. We measured the latency conditions
prior to the test, and found that the latency to the RACS was 14 ms and the
latency to the EC2 server was 79 ms on average.

Network transmission time (ms)
300.0

250.0

56.1
200.0

150.0

100.0 6.5

N .
0.0
RACS AWS

mConnect ®Request Response

Figure 6.6: Comparison transmission time.

In figure 6.6 we can observe the advantage of sending the information
to a server one hop away from the mobile device. Note that in the early
measurements we performed during the analysis, the latency to the EC2
server was lower. We carried out the test in the same physical location while
connected to the NetLeap LTE network. The application was able to transmit
the files in less than 250ms total to the AWS and in less than 150ms to the
RACS server. In augmented reality applications a user can notice 100ms

CHAPTER 6. EVALUATION 43

difference. The upper latency bound for augmented reality applications is
500ms. The additional 100ms provided by the RACS server can mean an
extra feature that cannot be available on the AWS server.

6.3.2 Processing delay

We also execute the application similarly to how we first did it for the anal-
ysis. We deploy the application in the RACS and test the time it takes to
process the images. Similarly we test how long it takes to process the im-
ages on a mobile phone. In our testing we use a Galaxy S4+ mobile phone
running the Android OS. We focus the tests in the sign detection and OCR
processing since they are the most resource consuming and make up most of
the processing time. Figure 6.7 summarizes the results.

Total processing time (s)
25.00

20.00 4.56
15.00

10.00

0.96

0.00 -

S4+ RACS

B Sign detection ®OCR OCR preprocessing

Figure 6.7: Comparison of processing times.

In these results we didn’t expect the OCR pre-processing to consume so
much of the processing time. The pre-processing is necessary to have a good
accuracy when detecting the text, and without it the text detection performs
poorly. In total, the execution of the whole process takes 22.14 seconds on the
mobile phone and 4.82 seconds on the RACS server. Even though the RACS
server provides a considerably faster response time, the application is still
too slow to respond to be considered real-time. The most time consuming
operation is the sign detection. The sign detection has to be performed most
of the time, except for when the CellID filtering produces only one candidate
which occurs about 4% of the time.

CHAPTER 6. EVALUATION 44

6.3.3 Overall delay

In this section we combine both processing and network delays to give an
overall image of the system performance. Table 6.4 summarizes previous
experiments and presents the total execution time for a query on average.

RACS AWS Mobile

Sign recognition 3.4 3.4 14.6
OCR 0.2 0.2 2.9
OCR pre-processing 1.2 1.2 4.6
Network 0.1 0.2 0.0
Total 4.9 5.1 22.1

Table 6.4: Basic location database

The lowest response time is with the RACS server since it has the advan-
tage thanks to the network transmission time. The processing time is the
same on either the RACS or AWS server. In practice, the performance of
the AWS server could even be better thanks to the elasticity of the cloud.
However, an AWS server would have to serve a multitude of users at the
same time, and this extra capacity would become irrelevant. On the other
hand, the RACS server is intended to serve very few users at a time. Only
those that are connected to the current celllD will make use of it services so
the processing capacity won’t need to scale as with the AWS server.

The mobile phone by itself performs the worst because the algorithms are
too demanding for its hardware. The traffic sign processing and the OCR
become too heavy for the phone’s limited processing power, which ends up
taking more than 4 times as much time on average to process an image.

Chapter 7

Discussion

This Thesis starts out with the objective to evaluate the benefits of MEC
in base stations. In particular it focuses on the HoPS application that is
under development by a research group at Aalto. The application takes
context information captured by the user, together with a photograph of a
sign post and using this data it identifies the location of the user by querying
a database. The first step is to identify what services and benefits MEC
can provide to applications, and then, with this knowledge, find ways to
efficiently leverage MEC to improve the application.

The biggest challenges in improving the results further lie in the sign de-
tection algorithm. The sign detection algorithm is a computer vision prob-
lem, and due to its complexity it can be a thesis work in itself. Improving
the sign detection algorithm was out of the scope of this thesis. Any changes
to decrease the processing time and increase the accuracy of it would directly
impact and improve on the text matching and OCR of the traffic signs.

7.1 Code offloading

The Thesis identifies several strategies to improve the performance. The first
and most obvious strategy is processing offloading. The Thesis presents a
benchmark of the current state of the application. Based on this benchmark
it compares the advantages of offloading the image processing and also takes
into account the drawbacks of such an approach.

Among the drawbacks, the most prominent is the network processing de-
lay. It soon becomes apparent that transmitting the full images to the server
is not feasible. The images are commonly more than 2.5 MB in size, which
translates to 1-2 seconds of delay even with the improved network condi-
tions. Consequently, this work proposes to compress and reduce the size of

45

CHAPTER 7. DISCUSSION 46

the images. In order to find out the optimal parameters for compression and
image size, we perform extensive tests on the impact of such transformations
on the accuracy of the sign finding algorithm and the image size reduction.
The analysis of the impact concludes that to be able to transmit the images
to the server and minimize the delay, a small portion of the accuracy must
be sacrificed. This leads to the selection of two methods to reduce the image
size: JPEG compression with a quality factor of 22 and re-scaling the images
to TMP.

JPEG compression visually distorts the image, but it did not seem to
affect the accuracy of the sign finding algorithm. This permitted us to set
the JPEG compression to 22. On the other hand, reducing the size of the
image had an immediate and direct effect on the accuracy. Therefore, the
analysis concluded that the image size can only be marginally reduced from
the original SMP to TMP, while keeping the accuracy penalty low.

Additionally, the Thesis proposes to improve the accuracy of the location
scoring algorithm by leveraging the increased processing power to introduce
OCR as a tool to extract more information from the text in the images.
The reasoning is that while OCR is a processing intensive task, its use will
be limited to small regions of the image that contain the traffic signs, and
the traffic signs themselves have little text in them. Even though OCR
did improve the accuracy and performed better than previous methods, the
processing cost was higher than expected. Successfully extracting text via
OCR required costly and complex image pre-processing that turned out to
be more demanding than the OCR itself.

7.2 Database distribution

A second strategy to improve the performance is to partition and distribute
the database. This Thesis proposes keeping a local small database on each
of the MEC servers. This allows for an easier upkeep of the database, and
independence from the core network. Thus, we leverage MEC’s characteristic
of being on premises.

If the connection between an eNodeB and the core network were to be
disrupted, then the application could still work. While, on the other hand,
keeping such a database in a mobile phone would be prohibitive as the system
expands and more data is added to the database. Arguably, only a geograph-
ically relevant portion of the database could reside on the mobile device. We
could argue that then when the user roams in another country she would need
to update his application and download a new database. However, if MEC
would become commonplace, it is still not clear how applications could be

CHAPTER 7. DISCUSSION 47

deployed and managed cross-infrastructure provider, much less cross-country
borders.

7.3 Improved network conditions

The Thesis also attempted to leverage the improved network conditions,
and it successfully made use of them to achieve a faster transmission of
the images through the queries, and in this way reduced the response time.
Nonetheless, this improvement became insignificant when compared to the
processing time. The network transmission time is only a small fraction
of the total query time, the processing time eclipsed the 75% reduction in
the transmission delay that the improved network conditions provided. In
order to leverage the improved network conditions, the research group must
improve the application’s computer vision algorithms such as traffic sign
detection, and OCR pre-processing. In their current form, these algorithms
are 2000% more time consuming that they should be. The 5 seconds it takes
to process an image should be reduced to no more than 300ms.

Network operators see a larger benefit from the improved network con-
ditions since the images from the application won’t have to be transmitted
over their back-haul links. All the data can be communicated at the edge,
thus freeing the core network.

7.4 Context information availability

Finally, the last strategy this Thesis used was to leverage the context infor-
mation provided by the RACS. The context information includes the celllD
as well as network conditions. However, we soon noticed that the relevant
network information is more easily retrieved from the mobile phone API than
the RACS server’s API since it is not completely implemented yet, and was
only available to Nokia’s applications.

7.5 Future work

Future work on the HoPS application should focus on improving the sign
detection on the images. The current approach works, but it is highly redun-
dant and, more importantly, time consuming. We recommend focusing on
using a feature detection algorithm instead. These tend to be more reliable
and resistance to noise, occlusion, and varying light conditions. In addition,
feature detection algorithms tend to require less processing power compared

CHAPTER 7. DISCUSSION 48

to the sign detection algorithm. In this thesis we have analyzed the applica-
tion in the context of a 4G network. However, in the future 5G will bring
changes to the size of cells, overall improvements to the network, and most
likely MEC will become a standard component of 5G deployments.

Chapter 8

Conclusions

MEC provides a platform to augment mobile applications in several ways.
It provides services comparable to MCC like code offloading, and extended
storage. In addition to these services, MEC also provides network context
information, lower latency, distribution, and geolocation information. MEC
is a recent development that is born from the Cloudlet idea. Since MEC
is so recent, there are very few real-world implementations. One of them is
Nokia Networks RACS. In this thesis we utilize Nokia Networks RACS to
augment an existing HoPS application with the services provided by MEC
with several strategies.

The HoPS application is an ideal candidate to test MEC because it re-
quires heavy processing that is too time consuming on mobiles, and it also
uses context information in order to estimate a the geographical location of
the user. We evaluated the practical advantages of using MEC to augment
this application.

We found that by leveraging MEC we improved on the performance of
both the total query time, and the accuracy of the location selection. The
new implementation reduced the query time by a factor of four, and raised
the accuracy of the algorithm from 65% to 85%. The major contributor to
the improvements was the capacity to offload the processing.

We successfully dealt with the network transmission delay by optimiz-
ing the image sizes while trading off a small amount of accuracy in the sign
finding algorithm. However, the network latency improvements became in-
significant to the response time when compared to the processing time. An
application that is less processor intensive will benefit more from the latency
improvement.

Finally, we also found that the current RACS implementation is immature
since the API to query the context information is described in the manual,
but it is not yet available for non-Nokia applications.

49

Bibliography

1]

Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, “Heterogeneity in mobile
cloud computing: Taxonomy and open challenges,” Communications
Surveys Tutorials, IEEFE, vol. 16, pp. 369-392, First 2014.

X. Fan, J. Cao, and H. Mao, “A survey of mobile cloud computing,”
ZTE Communications, vol. 9, no. 1, pp. 4-8, 2011.

K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan,
“Towards wearable cognitive assistance,” in Proceedings of the 12th an-

nual international conference on Mobile systems, applications, and ser-
vices, pp. 68-81, ACM, 2014.

“Yelp.com.” https://www.yelp.com, 2015. [Online; accessed 1-July-
2015].

S. Nunna, A. Kousaridas, M. Ibrahim, M. Dillinger, C. Thuemmler,
H. Feussner, and A. Schneider, “Enabling real-time context-aware col-
laboration through 5g and mobile edge computing,” in Information
Technology - New Generations (ITNG), 2015 12th International Con-
ference on, pp. 601-605, April 2015.

K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan,
“Towards wearable cognitive assistance,” in Proceedings of the 12th An-

nual International Conference on Mobile Systems, Applications, and
Services, MobiSys 14, (New York, NY, USA), pp. 68-81, ACM, 2014.

G. Orsini, D. Bade, and W. Lamersdorf, “Computing at the mobile edge:
Designing elastic android applications for computation offloading,”

H. Hile, R. Vedantham, G. Cuellar, A. Liu, N. Gelfand, R. Grzeszczuk,
and G. Borriello, “Landmark-based pedestrian navigation from collec-
tions of geotagged photos,” in Proceedings of the 7th International Con-
ference on Mobile and Ubiquitous Multimedia, MUM 08, (New York,
NY, USA), pp. 145-152, ACM, 2008.

50

https://www.yelp.com

BIBLIOGRAPHY 51

[9]

[11]

[12]

[13]

[17]

[18]

Z. Ou, S. Dong, J. Dong, J. K. Nurminen, A. Yla-Jaaski, and R. Wang,
“Characterize energy impact of concurrent network-intensive applica-
tions on mobile platforms,” in Proceedings of the FEighth ACM Inter-

national Workshop on Mobility in the Evolving Internet Architecture,
MobiArch ’13, (New York, NY, USA), pp. 23-28, ACM, 2013.

Z. Ou, J. Dong, S. Dong, J. Wu, A. Yla-Jaaski, P. Hui, R. Wang, and
A. Min, “Utilize signal traces from others? a crowdsourcing perspective
of energy saving in cellular data communication,” Mobile Computing,
IEEFE Transactions on, vol. 14, pp. 194-207, Jan 2015.

P. M. Mell and T. Grance, “SP 800-145. The NIST definition of cloud
computing,” tech. rep., Gaithersburg, MD, United States, 2011.

M. Satyanarayanan, “Pervasive computing: vision and challenges,” Per-
sonal Communications, IEEE, vol. 8, pp. 10-17, Aug 2001.

“Amazon silk browser.” http://docs.aws.amazon.com/silk/latest/
developerguide/introduction.html, 2015. [Online; accessed 4-July-
2015].

“Apple siri virtual personal assistant.” http://www.apple.com/ios/
siri/, 2015. [Online; accessed 23-May-2015].

“Google goggles.” http://www.google.com/mobile/goggles, 2015. [On-
line; accessed 15-May-2015].

G. Huerta-Canepa and D. Lee, “A virtual cloud computing provider for
mobile devices,” in Proceedings of the 1st ACM Workshop on Mobile
Cloud Computing & Services: Social Networks and Beyond, p. 6, ACM,
2010.

M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vim-based cloudlets in mobile computing,” Pervasive Computing, IEEE,
vol. 8, no. 4, pp. 14-23, 2009.

M. Satyanarayanan, Z. Chen, K. Ha, W. Hu, W. Richter, and P. Pillai,
“Cloudlets: at the leading edge of mobile-cloud convergence,” in Mobile
Computing, Applications and Services (MobiCASE), 2014 6th Interna-
tional Conference on, pp. 1-9, Nov 2014.

“Executive Briefing - Mobile Edge Computing (MEC) Initiative,”
tech. rep., ETSI - European Telecommunications Standards Insti-
tute, 2015. https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/
MEC%20Executive%20Brief%20v1%2028-09-14.pdf.

http://docs.aws.amazon.com/silk/latest/developerguide/introduction.html
http://docs.aws.amazon.com/silk/latest/developerguide/introduction.html
http://www.apple.com/ios/siri/
http://www.apple.com/ios/siri/
http://www.google.com/mobile/goggles
https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/MEC%20Executive%20Brief%20v1%2028-09-14.pdf
https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/MEC%20Executive%20Brief%20v1%2028-09-14.pdf

BIBLIOGRAPHY 52

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

M. Beck, M. Werner, S. Feld, and S. Schimper, “Mobile edge comput-
ing: A taxonomy,” in Proc. of the Sizth International Conference on
Advances in Future Internet, 2014.

“Mobile-Edge Computing - Introductory Technical White Paper,” tech.
rep., ETSI - European Telecommunications Standards Institute, 2015.
http://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_
Computing_-_Introductory_Technical_White_Paper_V1%2018-09-14.
pdf.

“Nokia Networks Intelligent base stations white paper,” tech. rep., Nokia
Solutions and Networks Oy, 2012. http://networks.nokia.com/sites/
default/files/document/nokia_intelligent_bts_white_paper.pdf.

Z. Ou and A. Yla-Jaaski, “Towards Human-Centered Wearable Naviga-
tion System.” 2015.

E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M.
Ogden, “Pyramid methods in image processing,” RCA engineer, vol. 29,
no. 6, pp. 33-41, 1984.

J. Canny, “A computational approach to edge detection,” Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on, vol. PAMI-8,
pp. 679-698, Nov 1986.

T. R. Singh, S. Roy, O. I. Singh, T. Sinam, and K. M. Singh, “A
new local adaptive thresholding technique in binarization,” CoRR,
vol. abs/1201.5227, 2012.

S. Suzuki and K. be, “Topological structural analysis of digitized binary
images by border following,” Computer Vision, Graphics, and Image
Processing, vol. 30, no. 1, pp. 32 — 46, 1985.

D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature,”
Cartographica: The International Journal for Geographic Information
and Geovisualization, vol. 10, no. 2, pp. 112-122, 1973.

“FMI Open data WMS services.” http://en.ilmatieteenlaitos.fi/
open-data-manual-fmi-wms-services, 2015. [Online; accessed 6-

August-2015].

“Open Source Computer Vision Library.” http://www.opencv.org/,
2015. [Online; accessed 6-August-2015].

http://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-_Introductory_Technical_White_Paper_V1%2018-09-14.pdf
http://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-_Introductory_Technical_White_Paper_V1%2018-09-14.pdf
http://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-_Introductory_Technical_White_Paper_V1%2018-09-14.pdf
http://networks.nokia.com/sites/default/files/document/nokia_intelligent_bts_white_paper.pdf
http://networks.nokia.com/sites/default/files/document/nokia_intelligent_bts_white_paper.pdf
http://en.ilmatieteenlaitos.fi/open-data-manual-fmi-wms-services
http://en.ilmatieteenlaitos.fi/open-data-manual-fmi-wms-services
http://www.opencv.org/

BIBLIOGRAPHY 23

[31]

32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

“Flask Framework.” http://flask.pocoo.org/, 2015. [Online; accessed
6-August-2015].

K. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages,
Applications. Elsevier Science, 2014.

A. B. Watson, “Image compression using the discrete cosine transform,”
Mathematica journal, vol. 4, no. 1, p. 81, 1994.

OpenSignal, “Barometer.” http://opensignal.com/sensors/barometer,
2015. [Online; accessed 19-July-2015].

IDC, “Smartphone OS Market Share, Q1 2015,” June 2015.

Z. Podobny, “Improving the quality of the output.” https://code.

google.com/p/tesseract-ocr/wiki/ImproveQuality, March 2015. [On-
line; accessed 19-July-2015].

W. Gao, X. Zhang, L. Yang, and H. Liu, “An improved sobel edge
detection,” in Computer Science and Information Technology (ICCSIT),
2010 3rd IEEFE International Conference on, vol. 5, pp. 67-71, July 2010.

R. Smith, “An overview of the tesseract OCR engine,” in Proceedings of
the Ninth International Conference on Document Analysis and Recog-
nition - Volume 02, ICDAR ’07, (Washington, DC, USA), pp. 629-633,
IEEE Computer Society, 2007.

S. V. Rice, F. R. Jenkins, and T. A. Nartker, “The fourth annual test
of OCR accuracy,” 1995.

SQLAlchemy, The Python SQL Toolkit and Object Relational Mapper.
2015. [Online; accessed 6-August-2015].

C. Karney and R. Deakin, “F.W. Bessel (1825): The calculation of
longitude and latitude from geodesic measurements,” Astronomische
Nachrichten, vol. 331, no. 8, pp. 852-861, 2010.

http://flask.pocoo.org/
http://opensignal.com/sensors/barometer
https://code.google.com/p/tesseract-ocr/wiki/ImproveQuality
https://code.google.com/p/tesseract-ocr/wiki/ImproveQuality

	Cover page
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Problem statement
	1.3 Structure of the thesis

	2 Mobile-edge computing
	2.1 Mobile cloud computing
	2.2 Mobile-edge computing
	2.3 Radio Applications Cloud Server

	3 Human-centered Positioning System
	3.1 Location detection process
	3.1.1 Sign detection
	3.1.2 Sensor data
	3.1.3 Database search

	3.2 Original implementation
	3.2.1 Sign detection and sensor data collection
	3.2.2 Remote location service

	4 Analysis and Design
	4.1 Application performance measurements
	4.1.1 Network transmission latency
	4.1.2 Sign detection accuracy
	4.1.3 Sign detection processing time
	4.1.4 Database location matching

	4.2 Design of a RACS-enabled solution
	4.2.1 Code offloading
	4.2.2 Improved network conditions
	4.2.3 Location awareness
	4.2.4 Distribution

	5 Implementation
	5.1 Overview
	5.2 Client application
	5.2.1 Image and context information
	5.2.2 Image transmission mechanism

	5.3 Server processing and matching
	5.3.1 Web service
	5.3.2 Traffic sign detection
	5.3.3 Optical character recognition
	5.3.4 Database implementation

	6 Evaluation
	6.1 Testing data set
	6.2 Detection accuracy
	6.2.1 Sign detection accuracy
	6.2.2 Candidate selection
	6.2.2.1 Context information based candidate selection
	6.2.2.2 OCR based candidate selection
	6.2.2.3 OCR and context information candidate selection

	6.3 Transmission and processing time
	6.3.1 Network transmission delay
	6.3.2 Processing delay
	6.3.3 Overall delay

	7 Discussion
	7.1 Code offloading
	7.2 Database distribution
	7.3 Improved network conditions
	7.4 Context information availability
	7.5 Future work

	8 Conclusions

