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SAMMANFATTNING 

Detta examensarbete utfört i samarbete med CorPower Ocean, är det slutgiltiga steget i 

författarens utbildning på masternivå på KTH (Kungliga Tekniska Högskolan) Stockholm. Syftet 

med arbetet är att karakterisera en kaskadväxellåda som används för att omvandla vertikal 

rörelse från vågor till rotation som driver generatorer i företagets framtida vågkraftverk samt att 

utifrån resultat föreslå möjliga förbättringar och belysa eventuella problem. 

Den metod som använts för att karakterisera kaskadväxellådan var att via fysiska mätningar, på 

den testrigg placerad på KTH (Kungliga Tekniska Högskolan) i Stockholm, erhålla data för 

lastfördelningen i den geometriskt överbestämda konstruktionen. Dessa data användes sedan för 

att kalibrera en statisk och en dynamisk modell som också utvecklades för det här projektet. 

Huvudfokus för arbetet har legat i att ta reda på om den konstruktion som används för att fördela 

lasten mellan kugghjulen fungerar tillfredställande samt att säkerställa att inget kugghjul tar mer 

än de 2,5% överlast vid fullast växellådan är dimensionerad för vid något tillfälle. 

Examensarbetet inkluderar även feltoleransers inverkan på lastfördelningen i kaskadväxeln. 

Resultaten visade att den nuvarande konstruktionen presterar inom de specificerade 

dimensioneringsintervallen. Några oväntade karaktärsdrag upptäckdes dock vid analys av 

resultaten. På grund av en avsiktlig geometrisk oregelbundenhet släpade hälften av kugghjulen 

efter åt ena hållet vilket i sin tur resulterade i en ojämn lastfördelning och oönskade sidokrafter 

på kuggracken. Flexenheterna som används för att fördela lasten likvärdigt mellan kugghjulen 

skilde sig åt i styvhet. Den inverkan spridningen av dessa har på lastfördelningen belystes också 

eftersom lastfördelningen konvergerar mot värden direkt proportionella mot styvhetsförhållandet 

mellan dem.  

Slutsatsen från examensarbetet är att den nuvarande konstruktionen, även om den fungerar 

tillfredställande, lämnar utrymme för förbättringar som potentiellt kan förbättra både livslängd 

och lastfördelningsprestanda. 

 

Nyckelord: Dynamisk, Statisk, Modell, Kaskad, Kugghjul, Flankspel 
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ABSTRACT 

This Master Thesis, written in collaboration with CorPower Ocean, serves as the finalization of 

the author’s master degree education at KTH (Royal Institute of Technology) Stockholm. The 

purpose has been to characterize the Cascade gearbox which is used to convert vertical motion 

induced by waves to rotational motion which powers generators in the company’s future wave 

energy power plant. The purpose was also to suggest future improvements and shed light on any 

problems discovered. 

The method for characterizing the Cascade gearbox was to conduct physical measurements of 

the load sharing in the inherently overdetermined geometrical design. These data were then used 

to calibrate a static as well as a dynamic model also developed for this thesis. Focus has been on 

determining that the novel load sharing method is sufficient and that no gear takes more than the 

2,5% overload during max load the gearbox is dimensioned for at any time. Also included in the 

thesis is an analysis of the tolerances effect on the performance of the Cascade gearbox.  

Results showed that the current design perform within the expected dimensioning limits. 

However some unexpected characteristics were discovered after analysis of the results. Because 

of deliberate geometric decisions half of the gears trail behind initially in one direction causing 

uneven load sharing and unwanted lateral forces on the rack. Also discovered was the 

importance of equal stiffness of the flex units, used to divide the load evenly between the gears, 

since the load sharing factor converges towards values directly proportional to the stiffness ratios 

in between them.  

As a conclusion it can be said that although the current design is sufficient, there is still room for 

improvements which could enhance life expectancy as well as load sharing performance of the 

Cascade gearbox. 
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NOMENCLATURE 

In this chapter important notations and abbreviations are presented along with their meaning 

and unit.  

 

 

Notations 

Symbol Description 

𝐴  Gearbox direction (-) 

𝐵⃗⃗  Gearbox direction (-) 

𝐶  Damping matrix (N/m
2
) 

𝐷  Difference between ranks (-) 

𝐸  Young´s modulus (Pa) 

𝐸𝑝𝑢  Pith deviation tolerance (m) 

𝐸𝑟  Gear runout tolerance (m) 

𝐹  Force (N) 

𝐻  Heaviside function 

𝐽  Moment of inertia (kg) 

𝐾  Stiffness matrix (N/m) 

𝐿𝑆  Load sharing (-)  

𝑀  Mass matrix (kg) 

𝑁  Number of iterations (-) 

𝑄  Gear accuracy class (-) 

𝑅  Ranks for 𝑋𝑚𝑎𝑔 (-) 

𝑆  Ranks for 𝑌𝑚𝑎𝑔 (-) 

𝑇  Torque (Nm) 

𝑋  Displacement vector (m) 

𝑏  Backlash (m) 

𝑑  Diameter (m) 

𝑒  Pitch deviation error (m) 

𝑔  Piecewise relative displacement with backlash (m) 

ℎ  Contact constraint (-) 

𝑘  Stiffness (N/m) 

𝑘𝜃  Rotational stiffness (N/deg) 

𝑙  Length (m) 

𝑚  Mass (kg) 
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𝑚𝑛  Gear Module (mm) 

𝑝  Relative gear mesh displacement (m) 

𝑞  Gear radius in relative gear mesh for gear ratio (-) 

𝑟  Radius (m)  

𝑡  Time (s) 

𝑤  Gear mesh frequency (Hz) 

𝑥𝑗  Displacement of gear 𝑗 (m) 

𝜀  Position of gear pitch deviation (rad) 

𝜌̂  Spearman rank correlation (-) 

𝜃  Rotational displacement (deg) 

𝜑  Phase angle (rad) 

𝜓   Gear position angle (rad) 

𝜙  Monte Carlo simulation (-) 

Superscripts 

ℎ  Contact constraint is included 

𝜃  Indicates rotational stiffness 

Subscript 

𝑎  Alternating force vector 

𝑏  Backlash alternating force 

𝑒  Error alternating force 

𝑗1  Driving gear 

𝑗2  Driven gear 

𝑗1,2  Interaction between gear 𝑗1 and 𝑗2 

𝑚  Mean input force vector 

Abbreviations 

FE  Finite element 

GUI  Graphical User Interface 

LVDT  Linear variable displacement transducer 

ODE  Ordinary differential equations 

WEC  Wave Energy Converter 

G1x  Gear name: first gear after pinion 

G2x  Gear name: second gear after pinion 

G3x  Gear name: third gear after pinion 

G4  Gear name: fourth gear after pinion 

px  Gear name: pinion 

r  Gear name: rack 
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1 INTRODUCTION 

In this chapter background information to wave energy as well as the problem description, 

purpose and delimitations is presented along with the method used to characterize the Cascade 

gearbox. 

 

 

1.1 Background 

The force of the ocean and more specifically the force of the waves have inspired inventors as 

early as two centuries ago to attempt to utilize that power for human benefit (Falnes, 2007). 

However when fossil fuels, such as petroleum, became the most important means of power in the 

early 20th century, further development of wave-energy halted (Falnes, 2007). After the oil crisis 

of the 1970s, wave-energy was once again on researcher’s radar. This meant the start of modern 

research on the subject (Hals, 2010) and a number of research initiatives were initiated (Clément 

et al., 2002). When price of petroleum declined in the 1980s further development was once again 

halted due to reduced funding (Falnes, 2007) but the field returned once again after the start of 

the new millennium (Hals, 2010). Even though interest in wave-energy historically somewhat 

fluctuates depending on petroleum availability, it remains a significant potential source of 

sustainable energy (Vicinanza et al., 2013). It is estimated that the global power potential of 

waves hitting all coasts worldwide is in the order of 10
12

 W and in the order of 10
13

 W if that 

energy is harvested out on the open ocean, the latter in the same quantity as the present global 

power consumption (Falnes, 2007). 

Despite this immense unexploited source of energy an insignificant part of the world’s generated 

power originates from wave-energy, EIA (2012). This is largely due to profitability difficulties in 

the sense that no previous technology has proven efficient enough given the expense (Hals, 

2010).  

CorPower Ocean utilizes a new invention called a Cascade gearbox to convert the vertical 

motion induced by a buoy floating on the surface of the ocean to rotational motion which powers 

generators more efficiently and in a smaller package than before. By using phase control and a 

method derived from latching invented in 1980 by Budal and Falnes (Babarit et al., 2004), which 

sets the buoy in resonance with the waves, combined with the Cascade gearbox CorPower Ocean 

expects to be able to extract up to five times as much energy as the competition at one third of 

the price, CorPower Ocean (2012). 

1.2 Purpose 

Since the Cascade gearbox is a new invention, knowledge of its actual behavior is limited. 

Important factors such as load sharing due to its inherent over determination and the dynamic 

effect of tolerances are virtually unknown. This master thesis aims at proposing a method to 

model the gearbox in a way that gives solid quantitative results of its performance which in turn 

may serve as a basis of the solutions feasibility. Important results to determine are the forces in 

each gear, the load sharing between the eight pinion wheels and the winding of the compliant 

load sharing mechanisms. A static as well as dynamic model was developed in MATLAB. In 

order to verify and calibrate the models, physical measurements was conducted. In addition to 

already stated deliverables sufficient data for lifetime calculations are provided to enable future 

work along with the possibility to use the models for future analysis of the tolerances effect on 
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the load sharing. In this specific case the Cascade gearbox is modelled in scale 1:2 to correspond 

with the contemporary test rig located at KTH (Royal Institute of Technology), Stockholm. 

1.3 Delimitations 

Since models considering every aspect of the gearbox would generate work exceeding the 

timeframe given to this project some limitations and simplifications had to be made in order to 

scale down the task to a more suitable size. These are as follows; 

 Load sharing mechanisms are modeled as one rotational/translational spring element. 

 Vibrations are not considered. 

 Losses are not considered. 

 The gear house is considered infinitely stiff and solid. 

 The gear rack is assumed to be perfectly centered. 

 The model includes the gearbox from input to flywheel. 

 No lifetime or stress calculations are included. However sufficient data to enable such 

calculations of the flex units in the future are provided.  

1.4 Method 

The method used to characterize the gearbox was a three step process starting with a static model 

based on classical gear contact mechanics. From that a dynamic differential equation model was 

developed to further improve simulated data. Lastly physical measurements were carried out to 

verify and calibrate the two aforementioned models.  

The chosen software for the modelling of the gearbox is, as stated in a previous section, 

MATLAB. This since it provides the necessary ability to customize the calculations and include a 

tolerance chain analysis based on a Monte Carlo simulation. Analytical models are commonly 

used in order to model gear interactions e.g. (Moradi and Salarieh, 2012), (Chen and Wu, 2009) 

and (Kahraman, 1999). Other commonly used methods are Multi Body Simulation usually with 

ADAMS e.g. (Zhu et al., 2014) alternatively a FE analysis in optional software e.g. (Kahraman 

et al., 2003) and (Fernandez et al., 2013). However these models often demand vast amounts of 

computing power (Bodas and Kahraman, 2004) and usually only cover gear interactions in one 

stage. 

For the physical measurements pre-existing LVDT sensors registering the angle of each 

compliant mechanism were installed and used. These were tested for functionality along with the 

stiffness of each rubber bushing in the compliant mechanisms prior to installation.  

1.5 Report disposition 

The main disposition of this report follows, in many ways, the order described previously in 

Method. Detailed description of the disposition is as follows; 

1. Introduction 

2. Frame of reference 

3. The process 

4. Results 

5. Discussion and conclusion 

6. Recommendations and future work 
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The Introduction chapter describes the background, purpose, delimitations and method used in 

this master thesis project. In Frame of reference important theory and technical knowledge are 

presented to the reader for improved understanding of the thesis. The process describes how the 

static and dynamic models as well as the physical measurements were set up and implemented. 

In Results important graphs, resulting forces and the corresponding load sharing of each pinion 

gear from both models and physical measurements are presented along with matching results 

from the statistical tolerance analysis. Discussion and conclusion consists of a thorough 

discussion of the feasibility of each assumption and all results presented in this thesis as well as 

conclusions drawn with respect to results acquired. Finally in Recommendations and future 

work suggestions for improvements and further development will be discussed. 
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2  FRAME OF REFERENCE 

In this chapter necessary theory and technical knowledge are presented aiming at improving the 

understanding of the reader.   

 

 

2.1 Cascade gearbox 

A Cascade gearbox is a new invention patented by CorPower Ocean, see Figure 1. It is related 

both to a planetary gear and a rack and pinion in the sense that it serves as a combination of the 

two. The largest benefit is the ability to transfer high loads during high speeds in a lightweight 

package and with high efficiency. Contrary to conventional use of gearboxes, CorPower Ocean 

utilizes the Cascade gearbox to increase speed rather than decreasing it.  

 

Figure 1. The cascade gearbox displayed with cover (left) and without (right). 

The Cascade gearbox consists of a rack which drives eight pinion gears, four on each side of the 

rack. Connected to the pinion wheels via a shaft and a compliant flex mechanism are a larger set 

of spur gears, hereafter known as G1 gears, mounted in pairs i.e. one of the G1 gears drives the 

other. Power is further transmitted from the G1 gear pairs to another set of smaller spur gears, 

hereafter known as G2 gears, which connects two pairs of G1 gears. Mounted directly to the G2 

gears via a shaft are the largest sets of spur gears, hereafter known as G3 gears, which transmit 

power to a single output gear, hereafter known as G4 gear which connects two groups of 

identical sets of four pinion gears, see Figure 2. The two gear ratios of the gearbox are between 

the G1 and G2 gears and between the G3 and G4 gears. Mounted to the same shaft as G4 is a 

flywheel denoted, as f in the models as well as a generator. 

  

G1 

G2 
G3 

G4 

Pinion 

Gear rack 
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Figure 2. A schematic overview of the Cascade gearbox. Power is transmitted from the rack (grey) to the eight 

pinions (red). Power is then transferred via a flex unit (orange) and a shaft to the G1 gears (black) and then to the G2 

gears (blue) which in turn transfers the power via a shaft to the G3 gears (yellow). Finally power is transferred to the 

G4 gear (green). 

Since the load of the rack is distributed between eight pinion wheels it is possible to use smaller 

pinions without sacrificing load carrying capacity. This results in lighter and less costly pinions 

with the added positive side effect of higher rotational speed which is beneficial when powering 

a generator.  

The design of the cascade gearbox does however cause some problems for the contact of the gear 

pairs. Firstly Pinion 1 can force Pinion 2 to spin freely i.e. cause the gap between the rack and 

Pinion 2 to remain unchanged and vice versa. This is the case if one of the pinions are in contact 

with the rack and G11 and G12 are in contact before the other pinion are in contact with the rack, 

see Figure 3. The same problem can occur in every gear contact in the gearbox. However when 

the pinion that causes the free spin has closed its power route to gear G4 i.e. closed every gear 

gap from the rack to the output gear, it can no longer cause another gear to spin freely. 

 

Figure 3. Schematic picture of the Cascade gearbox with names of all gears. 

If power is transferred backwards, i.e. a gear that is supposed to be driven by another gear is 

actually driving the other, gear gaps can increase rather than decrease This is however only a 

hypothetical scenario since it requires abnormal tolerance errors to ever occur. 

Because of deliberate geometrical decisions introduced to the gearbox when it is operated in one 

direction the two different directions have been analysed separately. The direction without the 

geometric difference is from now on known as direction 𝐴. The other direction with the 

geometric difference is from now on known as direction 𝐵⃗⃗.  

Pinion 2 Pinion 4 Pinion 6 Pinion 8 

Pinion 1 Pinion 3 Pinion 5 Pinion 7 

G21 G22 

  G4 
G32 G31 

G12 G14 G16 G18 

G11 G13 G15 G17 

Gear rack 
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2.2 Tolerance stackup analysis 

Tolerance stackup analysis is used to calculate the cumulative effect of tolerances for a part or 

assembly (Fisher, 2011). Depending on complexity either a statistical or worst-case approach can 

be used however a general rule of thumb is that a statistical method is more accurate as the 

number of tolerances increase (Oberg et al., 2008) since the likelihood of all tolerances being at 

their maximum or minimum in every instance is highly unlikely (Fisher, 2011). A tolerance 

stackup analysis is performed by adding up tolerances to find the resulting tolerance range, see 

Figure 4. 

 

Figure 4. A tolerance stackup analysis is conducted by adding up all tolerances in a chain to find the resulting 

tolerance range. In this example the actual length of the object could be both longer and shorter than its nominal 

value. 

2.3 Monte Carlo simulation 

A statistical method often presents a more accurate representation of the actual system then a 

worst case method since the sum of all tolerances on a manufactured product most likely will 

approximate a normal distribution (Fisher, 2011). Monte Carlo simulation is a statistical method 

commonly used for computer based tolerance analysis (Fisher, 2011). Even though it is one of 

the most popular tools for statistical tolerance analysis, it requires larger computational time then 

other techniques (Somvir et al., 2012). The fundamental idea of Monte Carlo simulation in 

tolerance analysis is to create a statistical distribution based on several iterations 𝑁 where each 

parameter is assigned a random value within their range, derive a result, save and then repeat the 

process (Fisher, 2011). The equation describing the Monte Carlo simulation of a definite 

parameter is given by 

 max maxmin min

2 2

x x x x

n


 
     (1) 

where 𝑥𝑚𝑎𝑥, 𝑥𝑚𝑖𝑛 is the maximum and minimum tolerance limits,  is a vector with N number 

of random values ranging from -1 to 1 and n determines how large portion of the generated 

tolerances will fall within their limits. A larger number of iterations increase the precision of the 

result proportional to the square root of 𝑁 (Somvir et al., 2012).  

2.4 Spearman rank correlation 

Spearman rank correlation is a non-parametric test to determine the association between data 

(Dunn and Clark, 2009) and is one of the most widely known measures of correlation due to its 

ease of computation and simplicity (Woolson and Clarke, 2002). It was originally proposed by 
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Charles Spearman and builds upon preceding work by Pearson (Spearman, 1904) but has since 

then been slightly changed (Kvam and Vidakovic, 2007). The idea is to rank each data sample 

based of its magnitude, 𝑋, followed by assignment of additional ranks for each parameter 

contributing to the data sample based on the variables individual magnitude, 𝑌, (Woolson and 

Clarke, 2002). The correlation 𝜌̂ is displayed in a range from 1 to -1. A correlation of 1 indicates 

a large positive association and a correlation of 0 indicates a small association between that 

specific variable and the result of the data sample. In the same way -1 indicates a large negative 

association (Kvam and Vidakovic, 2007). The mathematical expression to determine Spearman’s 

rank correlation coefficient is defined according to (Kvam and Vidakovic, 2007) as 

 1

2 2

1 1

( )( )
ˆ

( ) ( )

n

i ii

n n

i ii i

R R S S

R R S S

 

 

 


  



 
  (2) 

where 𝑛 is the number of samples, 𝑅1, … , 𝑅𝑛 are the ranks for 𝑋 and 𝑆1, … , 𝑆𝑛 are the ranks for 

𝑌. If 𝐷 is defined as the difference between ranks, i.e., 𝐷𝑖 = 𝑅𝑖 − 𝑆𝑖 and 𝑅̅ = 𝑆̅ from  𝑅̅ =
∑ 𝑅𝑖 𝑛⁄𝑛

𝑖=1  and 𝑆̅ = ∑ 𝑆𝑖 𝑛⁄𝑛
𝑖=1  a simplified expression for Spearman’s rank correlation 

coefficient is given according to (Woolson and Clarke, 2002) by 

 

2

1

2

6
ˆ 1

( 1)

n

ii
D

n n
  




. (3) 

In tolerance stackup analysis Spearman’s rank correlation is useful to determine a tolerance’s 

significance thus indicating on which individual tolerance to focus additional efforts. A brief 

example of the Spearman rank correlation is presented in Table 1. 

Table 1. An example of Spearman’s rank correlation. Each row represents a data sample,  

𝑋 and 𝑌 are the data components and 𝑅𝑖 and 𝑆𝑖 are the ranks for 𝑋 and 𝑌 respectively. 

𝑋 𝑅𝑖 𝑌 𝑆𝑖 𝐷𝑖
2 

9 3 10 1 4 

2 1 40 2 1 

7 2 50 3 1 
   2

1

2

6
ˆ 1

( 1)

n

ii
D

n n
  




 -0,5 
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3  THE PROCESS 

In this chapter the structure and set up of the static as well as the dynamic and physical 

measurements are presented together with the tolerance analysis. 

 

 

3.1 Tolerance analysis 

A tolerance analysis is vital to understand and evaluate the workings and performance of the 

Cascade gearbox since it is inherently overdetermined. If it was possible to manufacture every 

component with non-existent errors to its nominal value the load sharing between the pinions 

would be perfect even without flex mechanisms since gear gap could virtually be removed. 

However since it is impossible to consistently manufacture something close enough to its 

nominal value to call it perfect, errors will be introduced in the design ultimately leading to 

unequal gaps between gear pairs. In order to obtain good representations of the tolerances effects 

a statistical approach, and more specifically a Monte Carlo simulation was used since the 

probability or risk of a worst case scenario is close to non-existent (Fisher, 2011). In this, all 

tolerances where assumed normally distributed and added up using tolerance stackup according 

to (Fisher, 2011). From this large collection of simulated tolerance errors adjusted for 

probability, random errors for each individual gear interaction were picked to implement in the 

models. This to simulate a production line where there is a small probability of picking the worst 

case. By doing so percentage values of how many gearboxes that would not clear the 

requirements were acquired. 

In order to determine the significance of each tolerance in every tolerance stackup, Spearman’s 

rank correlation coefficient was used. However further analysis of the tolerances impact on the 

performance of the cascade gearbox is not part of this thesis. 

Apart from the dimensional tolerances from the placement of the shafts there are the gear 

tolerances. The gear tolerances used in this tolerance analysis are the pitch deviation 𝐸𝑝𝑢, which 

is the difference between the actual and theoretical pitch between gear teeth, and gear runout 𝐸𝑟, 

which is the difference between the real and theoretical radial flank position of teeth, defined 

according to (Jelaska, 2012) as 

    0,5 5
0,3 1,25 2

Q

pu nE m d


     (4) 

    0,5 5
0,24 5,6 2

Q

r nE m d


      (5) 

where 𝑚𝑛 is the gear module, 𝑑 is the gear diameter and 𝑄 is the gear accuracy grade. All 

tolerances are translated to pitch deviation since that is what will affect the load sharing 

performance of the Cascade gearbox. 

3.2 Stiffness measurements 

The manufacturer of the flex units specifies a vague stiffness which meant some tests had to be 

conducted in order to verify the stiffness of the flex units. These tests were conducted with the 

flex units mounted to the gearbox to avoid complete disassembly of the gears. The test followed 

the test procedure of the manufacturer as close as possible. To simulate a load on the flex 
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mechanism an arm and calibrated weights were used, see Figure 5. The known torques was then 

used to calculate the rotational stiffness of the complete flex unit.  

 

Figure 5. To simulate a load on the flex mechanisms an arm with calibrated weights were used. 

To verify the results from the manual stiffness measurements the total relative displacement of 

all flex units and the rack force during the static test of the load sharing were used. Averaging the 

results from all flex units generated a mean stiffness curve. The mean stiffness curve of the flex 

unit measurements was then compared with the mean stiffness curve from the static load sharing 

tests, see Figure 6.  

  

Figure 6. The mean stiffness curve from the manual stiffness measurements of the flex units compared to the static 

test mean stiffness curve. 
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By the use of MATLABs “Basic Fitting” a general mean stiffness expression could be obtained. 

Based on the overall mean stiffness of all flex units and each respective flex units mean stiffness 

a stiffness ratio for each flex unit was assigned. The mean stiffness expression was then 

multiplied with the stiffness ratios to obtain each flex units individual stiffness curve. 

3.3 Load sharing measurements 

In order to get a good idea of the actual load sharing behaviour of the Cascade gearbox and allow 

proper calibration of the models both static and dynamic measurements where conducted on the 

test rig. The static measurements where done by locking the output shaft of the gearbox with a 

disc brake. This made it possible to apply force to the rack and measure the load sharing in 

conditions resembling static. The dynamic measurements where conducted by running the test 

rig in a regular fashion. Both test setups were executed under varying as well as constant loads of 

different magnitude. 

To evaluate the performance of the Cascade gearbox the load sharing values had to be 

extrapolated to achieve approximated values of the load sharing during higher loads then during 

the measurements. Since the stiffness of the flex units is assumed to be linear after the initial 

deformation the absolute offset from the ideal load would remain the same during the entire 

linear stiffness deformation. With this assumption it is possible to approximate the load sharing 

during higher loads then during the physical measurements. 

A simple frequency analysis were conducted in order to evaluate were the oscillations in the 

input rack load originated with the help of the MATLAB command fft() which provides the 

frequency spectrum for the input vector. 

3.4 Static model 

The static model of the cascade gearbox is primarily based on classical gear mechanics. However 

since the system is overdetermined, i.e. the contact condition between gears are unknown, the 

model is simulating the Cascade gearbox in small steps to allow analysis of every gear contact in 

every step. The model is built up by programming logic with a large number of for- and if- 

conditions in MATLAB regulating how much each gear moves. Twist of the flex units start once 

every gear is in contact from that specific pinion to the output gear. The force ideally transferred 

from the rack to the pinion gears without any losses is proportional to the twist in the flex 

mechanisms and is defined as 
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and the total force transferred by all pinions is defined as 
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where 𝑘𝑖
𝜃 is the rotational stiffness in the flex mechanisms, 𝑛 the number of pinions, 𝜃𝑖 is the 

twist in each flex mechanism and 𝑑𝑝 is the diameter of the pinion gears. No more twist is 

introduced once the total force transferred by all pinions is equal to or larger than the force of the 

rack. The dimensionless load sharing factor is subsequently defined as 
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3.5 Dynamic model 

A nonlinear time-varying model was used to simulate the gearbox’s dynamic behavior. It is 

based on differential equations accounting for the varying gear mesh stiffness depending on the 

momentary number of teeth in contact as well as varying tolerance errors, stiffness of the flex 

mechanisms and whether or not contact between gears are present. The resemblance of a 

planetary gear is taken advantage of in order to implement an existing model which only 

necessitates minor modifications to give an accurate representation of the Cascade gearbox 

where each gear interaction described as Figure 7 and arranged as described in Figure 3.  

 

Figure 7. Model of gear pair interaction. 

In order to give better understanding and simplify the modelling of the Cascade gearbox it is 

possible to describe the system as a translational mass-spring-damper system, see Figure 8. 

 

Figure 8. Simplified translational gearbox model from rack to flywheel for two pinions. 
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Model formulation 

The model is restricted to rotational motion only resulting in a 23 DOF model with 18 gear and 

11 shaft interactions. The translational equations of motion for a gear pair consisting of the 

driving gear-𝑗1 and the driven gear-𝑗2 in general forms are defined according to (Peng and Wu, 

2014) and (Kahraman, 1994a) as  

        
1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2, ,j j j j j j j j m j a jm p h c p h k t g p f t f t      (9)  

where 𝑚𝑗 is the mass, 𝑘𝑗1,2
 and 𝑐𝑗1,2

 are gear mesh stiffness and damping respectively. ℎ𝑗1,2
 

represents a discontinuous step function approximated with the MATLAB function smf() which 

gives an S-shaped curve for improved performance of the MATLAB ode-solver defined as 

   1,2 1,2

10( ) , 0 1 10j jh g smf g p       (10) 

where the values specified inside the hard brackets are the extremes in the slope and 𝑔(𝑝𝑗1,2
) is 

the piecewise relative gear mesh displacement function modelled according to (Kahraman, 

1994a), (Rao et al., 2014) and (Chen and Wu, 2009) which incorporates the backlash defined as 
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Here 𝑝𝑗1,2
(𝑡) is the relative gear mesh displacement, 𝑥𝑗𝑛

 𝑛 = (1 𝑡𝑜 2) the translational 

displacement of driving and driven gear respectively, 𝑞𝑗𝑛
= 1 for gear interactions and 𝑞𝑗𝑛

= 𝑟𝑗𝑛
 

for shaft interactions where 𝑟𝑗3
 is the radius of the flex unit, 𝑒𝑗1,2

(𝑡) is the pitch deviation error 

function and 𝑏𝑗1,2
 the backlash value of each respective gear interaction. 

The total system is represented in matrix form according to (Kahraman, 1994a) as,  

 ( ) ( ) ( ) ( )m aMX C t X K t X F t F t    . (13) 

where 𝑀 is the diagonal mass matrix, 𝐶(𝑡) the damping matrix, 𝐾(𝑡) the time varying mesh 

stiffness matrix, 𝐹𝑚(𝑡) input force vector, see Appendix A: Matrix Representations, 𝐹𝑎(𝑡) the 

alternating force vector compensating for the error and backlash excitation and 𝑋 the 

displacement vector defined as 
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The diagonal mass matrix 𝑀 is defined according to (Kahraman, 1994a) as, 

 
42 4 31 32 21 22 1 11 8 18, , , , , , , , , , , , G fr r G G G G G p G p G f

M diag M M M M M M M M M M M h M 
  

  (15) 

where 𝑀𝑗 = 𝐽𝑗 (𝑑𝑗 2⁄ )
2

⁄  is the rotational inertia of each gear and ℎ𝐺4𝑓 is the discontinues step 

function determining whether the flywheel should be engaged or not. 

The time varying mesh stiffness matrix is given by the equations of motion and builds upon 

previous work by (Kahraman, 2001), (Lim and Li, 1999) and (Rao et al., 2014) and is defined as  
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Where 𝑟𝑗 is gear radius, superscript ℎ represents each respective stiffness contact constraint 

function defined as ℎ𝑗1,2
 above and 𝐾𝑗 represents the combined stiffness of all interactions for 

that specific gear, for example 

 
2

1 1 1 1(t)p rp rp p fK h k r k   . (17) 

The corresponding damping matrix retains the same structure as the stiffness matrix and is found 

in Appendix A: Matrix Representations.  

The alternating force vector compensating for the backlash and error excitation is defined 

according to (Kahraman, 1994a) as 
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with components defined as 

  
1,2 1,2 1,2 1,2

( )bj j j jf h g b k   , (19) 

  
1,2 1,2 1,2 2,2 1,2 1,2

( ) ( ) ( ) ( )ej j j j j jf h g c e t e t k t   . (20) 

The pitch deviation error function simulating the varying error during a full revolution is defined 

according to (Kahraman, 1994a) as  
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where 𝑒𝑎𝑚𝑝𝑗1,2
 is the amplitude of the pitch deviation error, 𝑤𝑗1,2

 is the gear mesh frequency, 𝑍𝑗2
 

the number of gear teeth in the driven gear, 𝜓𝑗2
 the position angle of the driven gear (Kahraman, 

1994b) and 𝜀𝑗2
 the position of the gear pitch deviation error according to (Kahraman, 1994a). 

Similarly the varying stiffness function is defined also according to (Kahraman, 1994a) as 

  
1,2 1,2 1,2 2 2 2

( ) 1 sin ( )j ampj mult j j j jk t k k w t t Z          
 

  (22) 

where 𝑘𝑎𝑚𝑝 is the average stiffness, 𝑘𝑚𝑢𝑙𝑡 the dimensionless constant governing the maximum 

number of gears teeth in contact at any one time and 𝜑𝑗2
 the phase angle according to 

(Kahraman, 1994b).  

Since the aim of the model is to simulate the load sharing characteristics between the pinions 

with the present flex mechanism it is logical to calculate the load sharing at these points. Also 

important is the transmitted force in each flex unit defined as 

 
1,2 1,2 1,2 1,2 1,2 1,2 1,2

( ) ( )j j j j j j jF h c p h k t g p      . (23) 

The load sharing factor is then obtained as the quotient of the transmitted force in one flex unit 

and its ideal counterpart defined as  
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A load sharing factor of 1/8 indicates a perfect load sharing, meaning that the transmitted force 

perfectly correspond with the ideal. A load sharing factor smaller than 1/8 indicates that the 

transmitted force is smaller than the ideal. In the same way does a load sharing factor larger than 

1/8 indicate a transmitted force larger than the ideal.  

Solution 

The nonlinear time-varying model is solved with numerical integration in MATLAB’s built in 

ordinary differential equation solver, from here on known as ode-solver. Since the ode exhibits a 

stiff behavior ode15s is used. It is specifically adapted for stiff ode’s and is a variable order multi 

step solver based on the numerical differentiation formulas (Ashino et al., 2000). 

Frequency analysis 

The natural frequencies of the gearbox were analyzed using the eigenvalue problem of the 

undamped system including only the stiffness and mass matrices, defined according to 

(Lallement and Inman, 1995) as 

 2( ) 0M K u   . (25) 

By solving the eigenvalue problem with MATLAB’s built in function eig() it is possible to get the 

eigenvalues and eigenvectors of the system. Taking the square root of the eigenvalues then gives 

the natural frequencies, (Lallement and Inman, 1995). During these calculations stiffness and 

contact constraints were constant.  
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4  RESULTS 

In this chapter results from both models along with results from the physical measurements are 

presented and compared. 

 

 

4.1 Tolerance analysis 

The tolerance analysis resulted in pitch deviation distributions for each gear interaction. Most 

vital to the load sharing is the error distribution between the rack and pinion, see Figure 9. Pitch 

deviation distributions for the other gear interactions is found in Appendix B: Additional 

Figures. The largest error deviation for these gears was ±70 µm. The overall largest error 

deviation is ±0.1 mm in the G1 to G1 interactions. 

 

Figure 9. Pitch deviation distribution between for the rack/pinion interaction. 

The tolerance with the largest effect on the tolerance chain affecting the rack/pinion interaction 

is the pitch deviation of the rack followed by the pitch deviation caused by the rack runout, see 

Table 2. For the other gear interactions positional errors of the shaft had the biggest effect as 

found from Spearman’s rank coefficient. This indicates that these are the tolerances most effort 

should be devoted to initially for maximum effect.  
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Table 2. Tolerances and their effect on the tolerance chain for the rack/pinion interaction expressed with Spearman’s 

rank coefficient. 

Tolerance Rank 

Pitch deviation pinion 0,34973 

Runout pinion 0,10857 

Pitch deviation rack 0,78369 

Runout rack 0,38744 

Pinion position xy 0,18094 

Pinion axle angle 0,10194 

4.2 Stiffness measurement 

Results from the manual measurements of the flex unit stiffness showed a higher stiffness then 

the 430 Nm/deg specified by the supplier. This was evident in both the manual stiffness tests as 

well as in the static load sharing measurements, for pinion 1 see Figure 10. Stiffness comparisons 

for the remaining pinions are available in Appendix B: Additional Figures.  

  

Figure 10. Stiffness curves for the manual stiffness measurements (red), static load sharing measurements (black) 

and the fitted data (blue) for pinion 1. 

From the results of the manual stiffness measurements and the static load sharing measurements 

a fitted stiffness curve was approximated using MATLABs “Basic fitting”. The equation for the 

approximated rotational stiffness is defined as 
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where 𝑝𝑓𝑖 is the relative flex deformation in the flex unit and 𝐻𝑑,𝑛 (𝑛 = 1 𝑡𝑜 4) is Heaviside’s 

function defined as 
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When the deformation is larger than 0,00042m (0,42mm) the stiffness becomes linear with an 

average spring stiffness of 575 Nm/deg. This stiffness is the mean for all pinions and is assumed 

to be constant during the rest of the deformation, see Figure 11. 

 

Figure 11. The fitted mean stiffness curve plotted against the deformation. 

The stiffness measurements derived from the mean stiffness of the results from the manual 

stiffness measurements and the mean stiffness from each flex unit displayed an overall spread of 

15,8% (-7,3% to +8,5%), see Table 3. This could be compared to the supplier specified ±20% 

stiffness deviation. 
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Table 3. Stiffness ratios derived from the overall mean stiffness and each flex unit’s respective mean stiffness.  

Pinion Ratio [-] 

1 1,06831672 

2 1,01555172 

3 0,9765572 

4 1,08467615 

5 0,95981637 

6 0,96769169 

7 1,04315065 

8 0,92739015 

4.3 Load sharing measurements 

Both the dynamic test results as well as the static ones exhibited the same load sharing 

characteristics regardless of load condition. During very low loads the load sharing was poor, 

especially in direction 𝐵⃗⃗. However when loaded more heavily load sharing improved 

significantly in both directions even though direction 𝐴 still displayed smaller differences and 

better overall performance.  

Static 

The results from the static measurements were, due to its nice behavior, used to verify the 

manual stiffness measurements, serve as data for the fitted stiffness curve, verify the static and 

dynamic models as well as to initially identify specific characteristics of the Cascade gearbox. A 

characteristic behavior of the Cascade gearbox identified from the static measurements was the 

negative effect the deliberate geometrical differences had on the load sharing performance. 

These geometric differences caused the even numbered pinions to carry a smaller load initially, 

see Figure 12. This previously unknown behavior causes the Cascade gearbox to apply a lateral 

force on the gear rack.  

  

Figure 12. The static load sharing together with the rack force plotted against time. The even pinions do not take any 

load in the beginning due to the geometric differences.  
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However this behaviour was only registered when applying load in direction 𝐵⃗⃗. This is due to the 

geometric differences not having any effect on the load sharing in direction 𝐴, see Figure 13. 

  

Figure 13. The static load sharing together with the rack force plotted against time. The pinions all take part of the 

load from the beginning. This is due to the geometric differences not having any effect in direction 𝐴. 

Since the maximum load used in the static measurements is 23 kN and the gearbox is designed 

for a maximum load of 247 kN approximations for the load sharing during higher loads had to be 

made, see Figure 14 and Figure 15. 

  

Figure 14. Extrapolated static load sharing and the dimensioning limit plotted against rack force in direction 𝐵⃗⃗. The 

vertical dashed lines mark loads of 23, 120, 207 and 247 kN respectively. 
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Figure 15. Extrapolated static load sharing and the dimensioning limit plotted against rack force in direction 𝐴. The 

vertical dashed lines mark loads of 23, 120, 207 and 247 kN respectively. 

Assuming constant load differentiation and linear and equal flex unit stiffness above 23 kN 

approximated values for the load sharing could be calculated, see Table 4. These results 

demonstrates that no pinion take more than 0,6% overload during maximum load conditions 

which is less than the 2,5% the gears are dimensioned for.  

Table 4. Measured load sharing factor at 23 kN and approximated values for 120, 207 and 247 kN in direction 𝐵⃗⃗ 

assuming linear stiffness and constant load differentiation after 23 kN. Perfect load sharing is 1/8=0.125. 

Pinion 23 kN 120 kN 207 kN 247 kN 

1 0,195418 0,138541 0,132841 0,131569 

2 0,078937 0,116146 0,119873 0,120704 

3 0,170688 0,133782 0,130085 0,12926 

4 0,047478 0,11001 0,116372 0,117771 

5 0,179358 0,135448 0,13105 0,130069 

6 0,076231 0,115626 0,119572 0,120453 

7 0,168922 0,133442 0,129888 0,129095 

8 0,082933 0,116914 0,120318 0,121077 

Mean LS 

uneven 0,1785965 0,1353033 0,130966 0,1299983 

Mean LS 

even 0,0713948 0,114674 0,119034 0,1200013 

Noticed was that the load sharing behavior differs substantionally between direction 𝐴 and 

direction 𝐵⃗⃗. In direction 𝐵⃗⃗ it is apparent that the uneven pinions initally take no load and then 

start to take load as the total load increases which reduce the effect of the geometric differences. 

Results from direction 𝐴 however show a much smoother load sharing where there is a mix of 

even and uneven pinions taking more than the ideal 1/8 of the total load. As a result, the load 

sharing is much better even at higher loads since the load differentiation is smaller when the flex 

unit stiffness enters its linear phase. 
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Dynamic 

The results from the dynamic measurements showed a much more chaotic behavior then the 

static results. This is due to the rapid changes between high load and low load. However despite 

this the same load sharing behavior could be distinguished when loaded. It is evident that the 

performance is highly dependent on the load since peaks of the load sharing factor indicate 

overload well above 10% during low loads, see Figure 16. This is however no problem since the 

load sharing factor is a relative value. The absolute load on each pinion is, during these 

conditions, nowhere near its dimensioning limit. 

  

Figure 16. Load sharing results from the dynamic measurements over two full periods plotted against time together 

with the rack load. 

Zooming in to just half a period showing the dynamic behavior during one load cycle it is 

possible to analyze the load sharing behavior in direction 𝐵⃗⃗ and 𝐴, see Figure 17 and Figure 18 

respectively. 
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Figure 17. Load sharing results from the dynamic measurements in direction 𝐵⃗⃗ plotted against time together with the 

rack load. 

 

Figure 18. Load sharing results from the dynamic measurements in direction 𝐴 plotted against time together with the 

rack load. 

For the dynamic measurements the maximum rack load reached 14 kN meaning the same 

assumptions as for the static measurements had to be made in order to approximate the load 

sharing during higher loads, see Figure 19 and Figure 20. 
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Figure 19. Extrapolated load sharing plotted against rack force in direction 𝐵⃗⃗. No mixing between the uneven and 

even pinions occurs. The vertical dashed lines mark loads of 23, 120, 207 and 247 kN respectively. 

  

Figure 20. Extrapolated load sharing plotted against rack force in direction 𝐴. Mixing between the uneven and even 

pinions occur. The vertical dashed lines mark loads of 23, 120, 207 and 247 kN respectively. 

The approximated dynamic load sharing results corresponded well with that of the static with a 

maximum overload of 0,5% at 247 kN, again below the dimensioning limit of 2,5% overload, see 

Table 5. 
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Table 5. Measured load sharing factor at 14 kN and approximated values for 120, 207 and 247 kN both in direction 

𝐵⃗⃗ assuming linear stiffness and constant load differentiation after 14 kN. Perfect load sharing is 1/8=0.125. 

 

Dynamic 𝐵⃗⃗ direction 

Pinion 14 kN 120 kN 207 kN 247 kN 

1 0,224558 0,135668 0,131181 0,130118 

2 0,055638 0,117567 0,120694 0,122391 

3 0,203061 0,133365 0,129847 0,129061 

4 0,008211 0,112485 0,117749 0,118924 

5 0,217238 0,134884 0,130727 0,129799 

6 0,042249 0,116133 0,119862 0,120695 

7 0,192549 0,132238 0,129194 0,128914 

8 0,056494 0,117659 0,120748 0,121436 

Mean LS 

1,3,5,7 0,2093515 0,13403875 0,13023725 0,129473 

Mean LS 

2,4,6,8 0,040648 0,115961 0,11976325 0,1208615 

Limiting load 

The supplier of the flex units specify a maximum load of 36 kN per flex unit and a maximum 

deformation of 10% to achieve good lifetime. This translates to a maximum load of 288 kN for 

the entire Cascade gearbox. The 10% deformation limit gives dimensioning loads as specified by 

Table 6. 

Table 6. Maximum possible loads theoretically without geometrical differences and constant flex unit stiffness, from 

measurements in direction 𝐵⃗⃗ and 𝐴 where loads higher then achieved during testing is extrapolated the same way as 

earlier with constant stiffness above 23 kN. 

  
Theoretical with no geometrical differences and constant flex unit 

stiffness 

Pinion 1 2 3 4 5 6 7 8 

Max load per pinion 

[kN] 29,772 28,302 27,0215 30,228 26,749 26,968 29,071 25,845 

Max total load [kN] 224,15 

  Extrapolated from measurements direction 𝑩⃗⃗⃗ 

Pinion 1 2 3 4 5 6 7 8 

Max load per pinion 

[kN] 30,042 31,619 27,470 32,122 26,987 30,169 29,331 29,355 

Max total load [kN] 237,1 

  Extrapolated from measurements direction 𝑨⃗⃗⃗ 

Pinion 1 2 3 4 5 6 7 8 

Max load per pinion 

[kN] 35,746 28,545 32,403 30,497 32,598 27,211 37,057 26,075 

Max total load [kN] 250,13 
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Frequency analysis 

The input rack load displayed an oscillating behavior, as seen above in Figure 16, with sampling 

period determined manually to around 0,122 s. In the frequency analysis of the input rack load, 

the peaks at low frequencies correspond with that of the input force period. The frequency 

response then decreases with higher frequencies apart from a small area around 8 Hz 

corresponding with the sampling period of the oscillations, see Figure 21. 

  

Figure 21. Amplitude spectrum of the input rack load. The highest peaks at low frequencies correspond to the period 

of the rack movement. The higher frequency response around 8 Hz corresponds to the noise of the input load. 

4.4 Static model 

The load sharing of the static model shows the same overall behavior as the measurements 

indicating a good accuracy. However something the measurements did not pick up that was 

evident from the results of the static model was the intersection of the load sharing curves from 

different pinions during higher loads in direction 𝐵⃗⃗, see Figure 22. This is due to the fact that no 

differences apart from the stiffness ratios acquired from the manual stiffness measurements and 

the geometric differences exist between the pinions. Since some of the flex units are stiffer they 

will after all pinions are in contact strive to take more load then others. When the load is 

increased and the deformation in the flex unit grows they will have the ability to do just that. 

This theory is given evidence by the fact that the three pinions taking the highest load during 

high forces are the three pinions corresponding with the highest stiffness. The first crossing of 

the load sharing curves occurs at 152 kN. 
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Figure 22. Load sharing results from static model plotted against rack force. The load sharing curves are crossing 

due to different stiffness ratios. The vertical dashed lines mark loads of 23, 120, 207 and 247 kN respectively. 

With the stiffness ratios removed, crossing of load sharing curves is non-existent, see Figure 23. 

Differences between the even and uneven pinons do however still occur as a result of the 

geometric differences in direction 𝐵⃗⃗.  

  

Figure 23. Load sharing results from static model plotted against rack force without stiffness ratios. The even and 

uneven pinions take exactly the same load within their group due to identical conditions. This removes the crossing 

of load sharing curves since they all have the same stiffness. The vertical dashed lines mark loads of 23, 120, 207 

and 247 kN respectively. 

In direction 𝐴 differences in load sharing is only due to stiffness ratio since there is no geometric 

differences to upset the balance, see Figure 24. If in addition to that the stiffness ratios are 

removed a perfect load sharing between the pinions is achieved.  
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Figure 24. Load sharing results plotted against rack force without geometric difference. Since the conditions 

between the pinions are identical apart from the stiffness ratios the load sharing remains the same regardless of rack 

force. The difference is only due to difference in stiffness. 

As illustrated above the load sharing behaviour is dependent on direction and load. Results in 

both directions for 120, 207 and 247 kN are presented in Table 7. 

Table 7. Load sharing in direction 𝐵⃗⃗ for the static model at 120 kN, 207 kN, 247 kN. Perfect load sharing is 

1/8=0.125. 

Pinion 120 kN 207 kN 247 kN 

1 0,14226 0,13813 0,13721 

2 0,11643 0,12041 0,12129 

3 0,13004 0,12627 0,12542 

4 0,12436 0,1286 0,12955 

5 0,12781 0,1241 0,12327 

6 0,11095 0,11473 0,11558 

7 0,13891 0,13488 0,13398 

8 0,10632 0,10996 0,11076 

Mean LS 1,3,5,7 0,134755 0,130845 0,12997 

Mean LS 2,4,6,8 0,114515 0,118425 0,119295 

Mean LS, no  

stiffness ratio 
0,13389 0,13 0,12913 

0,11538 0,11927 0,12013 

All results presented from the static model up to this point have been ideal in the sense that no 

tolerance errors have been included. With errors included the load sharing behaviour is affected 

with results for a population of 1000 gearboxes as seen in Figure 25 for pinion 1. Results for the 

remaining seven pinions are found in Appendix B: Additional Figures. Noted is that none of the 

gearboxes in the population fail due to overload. 
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Figure 25. Load sharing at 247 N for pinion 1 in direction 𝐵⃗⃗ for a population of 1000 gearboxes. None of the 

gearboxes fail due to overload of more than 2,5% of the total load above the nominal 1/8. 

4.5 Dynamic model 

Results from the dynamic model shared the behavior of the static model and the physical tests 

with the same unique characteristics visible in the load sharing. The dynamic model gives the 

added benefit of studying the load sharing during actual movement of the Cascade gearbox with 

varying mesh stiffness as well as varying errors. This further enhances the understanding of the 

Cascade gearbox. The chaos during low loads previously identified during the dynamic 

measurements was however not visible in the same way even though some chaos was present in 

the results from the dynamic model. This is largely due to a more ideal approach as well as a 

more stable input load, see Figure 26. 
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Figure 26. Load sharing for the dynamic model over on complete period. The rack force showed is the absolute, the 

first peak is in direction 𝐵⃗⃗ and the second in direction 𝐴. 

When studying the load sharing characteristics for the dynamic model in one direction the 

behaviour is more easily distinguished. In direction 𝐵⃗⃗ the same behaviour discovered in the static 

model is identified. The load sharing curves intersect each other when the initial difference due 

to the geometrical differences is equal or small compared to the stiffness ratios, see Figure 27.  

  

Figure 27. Load sharing for the dynamic model over half a period in direction 𝐵⃗⃗. 
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In direction 𝐴 load sharing differences are only due to the stiffness ratios, see Figure 28. 

  

Figure 28. Load sharing for the dynamic model over half a period in direction 𝐴. 

The first occurrence of a load sharing curve intersecting another in direction 𝐵⃗⃗ is at 160 kN when 

the curve representing pinion 1 crosses that of pinion 5, Figure 29. 

 

Figure 29. Load sharing plotted against rack load in direction 𝐵⃗⃗. 

As identified before the load sharing in direction 𝐵⃗⃗ differs from direction 𝐴 due to the 

geometrical differences. The difference remaining in direction 𝐴 is due to the difference in 

stiffness between the flex units further stressing the importance of good control over the flex unit 

stiffness. Load sharing at different loads in direction 𝐵⃗⃗ is displayed in Table 8.  
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Table 8. Load sharing in direction 𝐵⃗⃗ for the dynamic model at 120 kN, 207 kN, 247 kN. Perfect load sharing is 

1/8=0.125. 

Pinion 120 kN 207 kN 247 kN 

1 0,1432 0,139 0,138 

2 0,1159 0,12 0,121 

3 0,1311 0,1272 0,1263 

4 0,1236 0,128 0,129 

5 0,1291 0,1252 0,1243 

6 0,1108 0,1147 0,1156 

7 0,1401 0,1349 0,1324 

8 0,1062 0,11 0,1108 

Mean LS 

uneven 0,135875 0,131575 0,13025 

Mean LS 

even 0,114125 0,118175 0,1191 

Including error tolerances in the model changes both the best possible as well as the momentary 

load sharing behaviour since the errors are both static and dynamic in character. The load sharing 

distribution at 247 kN for the dynamic model show a slightly smaller deviation then the static 

model even though they are almost identical. None of the 1000 gearboxes in the simulated 

population fail due to more then 2,5% overload as seen for pinion 1 in Figure 30. and Appendix 

B: Additional Figures for the remaining pinions. 

 

Figure 30. Load sharing for pinion 1 in direction 𝐵⃗⃗ for a population of 1000 gearboxes at 247 kN. None of the 

gearboxes fail due to overload of more than 2,5% of the total load above the nominal 1/8. 
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Frequency analysis 

Since there are 23 DOF in the dynamic model there is also 23 natural frequencies in the system. 

However since all gear interactions occur multiple times only 11 are unique, see Table 9. 

Table 9. Natural frequencies of the Cascade gearbox based on the dynamic model. 

Frequency 

[Hz] 

79210 

479210 

17374 

4737 

110 

1701 

1168 

740 

2606 

991 

4632 

None of the natural frequencies derived from the dynamic model match that of the input rack 

load oscillations at 8 Hz. 

4.6 Comparison 

A numerical comparison between the physical measurements, static model and dynamic model 

has to be held at the maximum load achieved during the physical measurements since the 

extrapolation has to be seen as a type of model in itself. The highest load was registered at 23 kN 

during the static tests. Results from these runs will because of that be used for comparison, see 

Table 10. An added benefit of using the static tests is the less oscillatory behaviour of the results. 

Table 10. Load sharing comparison between the static tests, static model and dynamic model at 23 kN. Perfect load 

sharing is 1/8=0.125. 

 

Static measurements Static model Dynamic model 

Pinion 𝐵⃗⃗ 𝐴 𝐵⃗⃗ 𝐴 𝐵⃗⃗ 𝐴 

1 0,195418 0,132024 0,1807 0,13247 0,1848 0,1332 

2 0,078937 0,107797 0,076244 0,12592 0,07589 0,1256 

3 0,170688 0,114412 0,16826 0,12109 0,1692 0,1219 

4 0,047478 0,142478 0,081434 0,13449 0,08104 0,134 

5 0,179358 0,128724 0,16538 0,11901 0,1664 0,12 

6 0,076231 0,090939 0,72651 0,11999 0,0726 0,12 

7 0,168922 0,175805 0,17974 0,12935 0,1806 0,1303 

8 0,082933 0,107821 0,069625 0,11499 0,06956 0,1151 

Mean LS 

uneven 0,1785965 0,13774125 0,17352 0,12548 0,17525 0,12635 

Mean LS 

even 0,07139475 0,11225875 0,23845325 0,1238475 0,0747725 0,123675 

Results from the static and dynamic model used for the comparison are derived without error 

tolerances since results are random with error tolerances included and the chances of hitting the 

same tolerances as the test rig are unlikely. The effect on load sharing caused by the error 
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tolerances are presented in an earlier chapter. In addition to that results from the dynamic model 

are derived with the brake applied to simulate the static measurements and the static model as 

closely as possible. 

The similarity between the static measurements, static models and dynamic models load sharing 

curves are more easily seen when displayed in the same graph, see Figure 31. Results from the 

remaining pinions are available in Appendix B: Additional Figures. 

 

Figure 31. Load sharing curves for pinion 1 and 2 from the static measurements, static model and dynamic model 

plotted against rack load. 
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5  DISCUSSION AND CONCLUSIONS 

In this chapter a thorough discussion regarding made assumptions and result in this thesis is 

presented. Also presented are conclusions drawn in respect to the results presented earlier in the 

thesis. 

 

 

5.1 Discussion 

The difference in load sharing when comparing the measurement and the model results could be 

explained by the fact that the measurements are done during such low loads that the flex units 

have not yet entered their linear phase. This means that the pinions taking a smaller load at that 

time are likely to have higher momentary spring stiffness and more deformation left until they 

reach their linear phase. This is especially true in direction 𝐵⃗⃗ but is also valid in direction 𝐴. 

Depending on which pinions this applies to it could possibly give better or worse load sharing 

depending if it cancels or enhances the already present spring stiffness differences. 

The crossing of the load sharing curves was something that was only observed in the models. 

This is due to the fact that the extrapolation of the measurement values assumed constant load 

differences between the ideal and the actual load sharing. Since the results is not the same in 

both instances, that assumption proved faulty although useful to establish approximate values 

and verify the behaviour of the models. From this it could be concluded that if the load keeps 

increasing it will eventually reach a load sharing corresponding to 1/8 times the stiffness ratios. 

This of course assumes that the stiffness of the flex units in fact is linear. This is something that 

needs further testing and evaluation since it could be expected that the stiffness will not be 

completely linear during the entire deformation.  

As discussed earlier the stiffness ratios have a large effect on the load sharing due to the 

converging against a value directly proportional to the stiffness ratios. Subsequently a large 

difference in flex unit stiffness would result in a large load sharing difference. For that reason a 

narrower stiffness spectrum is beneficial and an important component to have good 

understanding and specification of. The present specification from the manufacturer of ±20% 

does in a worst case scenario when one of the pinions are 20% stiffer than the mean result in a 

load sharing which converges against 1.20 ∙ 0.125 = 0.15 which is right at the dimensioning 

limit. This calculation is without any concern of geometrical differences or error tolerances. 

The approximated linear flex unit stiffness is 34% higher than the specified value. This could be 

due to a number of different things. The manufacturer states that it is very hard to accurately 

control the stiffness of the flex units. In addition to that, modifications made to the flex units 

during installation could also have affected the end stiffness. It could also be something in the 

assembly which is obstructing the deformation. Further continuing this reasoning, differences 

between the approximated flex unit stiffness and the specified value could be due to a too small 

testing interval. Since the stiffness beyond the measurements is approximated with the help of 

previous values it must be viewed as a qualified guess rather than an absolute truth. This results 

in a source of error which if possible should be better determined. 

The use of results lacking errors in the comparison between the models and measurements must 

be seen as a simplification which potentially could change the outcome. However it is a 

necessary simplification given the fact that it is impossible to determine all errors perfectly. 

Including errors could both improve and worsen load sharing for specific pinions. As a 

comparison it is because of this better to exclude errors as it gives a median result. 
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From the results of the tolerances effect on the load sharing it was observed that none of the 

gearboxes failed due to more then 2,5% overload on one pinion in either model. However it was 

noted that pinion 1 was closest to fail even though it was still safe. This was due to the 

combination of the second highest flex unit stiffness in one of the uneven pinions. From this it is 

possible to draw the conclusion that the four stiffest flex units are best fitted to the even pinions 

and that the flex units remove much of the effect from the error tolerances. 

The frequency of the oscillations in the input rack load did not match any of the frequencies 

derived from the dynamic model. From this the conclusion is that the origin of the vibrations is 

something outside the gearbox. Since the frequency was low it is most likely the wire 

transferring force to the rack that is the source.  

Simplifications always mean a step away from the reality. In the models they were however 

necessary to speed up the solution and enable the ode-solver in MATLAB to run efficiently. They 

also served as a boundary to reduce the models size and scope. Most simplifications made in this 

thesis are supported by scientific articles on gear modelling giving better credibility and 

assurance of good accuracy. Even though simplifications were made to improve efficiency, 

computing power was still an issue which required optimization of the codes to avoid too long 

solution times. Despite this computing time for the population of 1000 gearboxes with the 

dynamic model reached one and a half days. 

Since the models do not correspond exactly with the measurements it is hard to determine their 

accuracy since the measurements were conducted at such small loads. This is unfortunate 

however measurements at higher loads would give a clearer understanding of the load sharing 

behaviour during those conditions. Reaching the point where the load sharing curves first 

intersect would be a good target since it would provide an additional point for calibration. The 

fact that both models correspond well with each other does however provide a good indication of 

their accuracy.  

Something that potentially could affect the accuracy of the measurement data is the fact that the 

load sharing data from the installed sensors are combined from two identical but separate tests. 

This was due to a hardware problem which prevented all sensors from being connected at the 

same time. However since the tests were identical, differences between them were small in the 

same magnitude as the sensor accuracy. 

5.2 Conclusions 

The results of this thesis have led to number of conclusions regarding the performance and 

improvement of the Cascade gearbox. The first is that the importance of the accuracy of the flex 

unit stiffness increase with the load. At high loads when the initial load difference influence over 

the load sharing is low, the same converges against 1/8 times the stiffness ratio. In the best of 

worlds full control of a variable stiffness would be the ultimate solution. Also discovered was the 

previously unknown load sharing behavior in direction 𝐵⃗⃗ due to the geometric differences. This 

caused the uneven pinions to take higher load initially while the backlash was closed after which 

the even pinions started taking part of the load. 

  



49 

 

6  RECOMMENDATIONS AND FUTURE WORK 

In this chapter recommendations for future work to evolve and further improve the models are 

stated together with general recommendations on subjects treated by this thesis. 

 

 

6.1 Recommendations 

Since the stiffness ratio had such an impact on the load sharing, extra effort to decrease the 

difference in stiffness is recommended. A change in type or method would possibly improve the 

control of the flex unit stiffness. If the flex unit stiffness had a more linear curve meaning lower 

stiffness during low loads it would potentially improve the load sharing. Requiring a more exact 

specification alternatively pre-testing of the flex unit stiffness offers the possibility to mount the 

four flex units with the lowest stiffness to the uneven pinions resulting in better initial load 

sharing as well as, although not much, load sharing during high loads. A reduction of the 

geometric differences would improve the load sharing difference between the uneven and even 

pinions since this is the cause of the initial difference. In order to reduce the lateral force on the 

rack induced by the initial load sharing difference between the even and uneven pinions 

strategically introduced geometric differences could be arranged in such a way that rotational 

forces on the rack could also be avoided. Also possible would be to introduce geometric 

differences affecting both directions which would then reduce the difference between the uneven 

and even pinions by half. The best solution would be to use a method capable of producing a 

variable stiffness. If implemented it would guarantee perfect load sharing at all times regardless 

of errors. 

6.2 Future work 

Future improvements to the models outside of the set delimitations and scope for this thesis 

include implementation of the gearbox friction and determine the stiffness of the flex units 

during their entire deformation range. Also possible is to increase the dynamic model to cover 

three degrees of freedom for each gear. This would allow for further analysis of the gearbox 

movements during operation. Something that could improve user friendliness is to integrate both 

models in a GUI controlling the models and providing useful graphs. Additionally it could be 

useful to control the models the same way as the existing test rig. This would simplify analysis 

and comparison between the two. Implementing the model in large scale modelling could 

possibly also be beneficial to simulate the complete WEC. Results from this thesis should finally 

be used to improve the existing flex unit design. Given the new data collected from the models it 

would also be possible to conduct lifetime analysis of the flex units. In order to improve 

accuracy of those results, testing of the flex unit’s stiffness during their complete deformation 

cycle is the number one priority. 
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APPENDIX A: MATRIX REPRESENTATIONS 
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APPENDIX B: ADDITIONAL FIGURES 

Pitch deviation from Tolerance analysis. 

 

Flex unit stiffness from Stiffness measurement. 
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Load sharing with errors from Static model. 
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Load sharing with errors from Dynamic model. 
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Combined load sharing curves static and dynamic model from Comparison. 

 

 


