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Abstract

Nashorn is a JavaScript engine that compiles JavaScript source code to Java
bytecode and executes it on a Java Virtual Machine. The new bytecode in-
struction invokedynamic that was introduced in Java 7 to make it easier for
dynamic languages to handle linking at runtime is used frequently by Nashorn.
Nashorn also has a type system that optimizes the code by using primitive
bytecode instructions where possible. They are known to be the fastest imple-
mentations for particular operations.

Either types are proved statically or a method called optimistic type guess-
ing is used. That means that expressions are assumed to have an int value, the
narrowest and fastest possible type, until that assumption proves to be wrong.
When that happens, the code is deoptimized to use types that can hold the
current value.

In this thesis a new architecture for Nashorn is presented that makes
Nashorn’s type system reusable to other dynamic language implementations.
The solution is an intermediate representation very similar to bytecode but
with untyped instructions. It is referred to as Nashorn bytecode in this thesis.

A TypeScript front-end has been implemented on top of Nashorn’s cur-
rent architecture. TypeScript is a language that is very similar to JavaScript
with the main difference being that it has type annotations. Performance mea-
surements which show that the type annotations can be used to improve the
performance of the type system are also presented in this thesis. The results
show that it indeed has an impact but that it is not as big as anticipated.



Referat

Nashorn &r en JavaScriptmotor som kompilerar JavaScriptkod till Java bytekod
och exekverar den péa en Java Virtuell Maskin. Nashorn anvinder sig av den
nya bytekodinstruktionen invokedynamic som introducerades i Java 7 for att
gora det lattare for dynamiska sprak att hantera dynamisk lankning. I Nashorn
finns ett typsystem som optimerar koden genom att i sa stor utstrackning som
mojligt anvianda de primitiva bytekodinstruktioner som ar kanda for att vara
de snabbaste implementationerna for specifika operationer. Antingen bevisas
typen for ett uttryck statiskt om det dr mdojligt eller s& anvdnds nagot som
kallas for optimistisk typgissning. Det innebér att uttrycket antas ha typen
int, den kompaktaste och snabbaste typen, dnda tills det antagandet visar sig
vara falskt. Nar det hidnder deoptimeras koden med typer som kan halla det
nuvarande vardet.

I det hér dokumentet presenteras en ny arkitektur for Nashorn som gor det
mojligt for andra dynamiska spréak att ateranvdnda Nashorns typsystem for
béttre prestanda. Losningen ar en intermediate representation som paminner
om bytekod men som &r uttokat men otypade instruktioner. I det har doku-
mentet refereras den som Nashorn bytekod.

En TypeScript front-end har implementerats ovanpa Nashorns nuvaran-
de arkitektur. TypeScript ar ett sprak som liknar JavaScript pd méanga sitt,
den storsta skillnaden &r att det har typannoteringar. Prestandamétningar
som visar att typannoteringarna kan anvdndas for att forbéttra prestandan
av Nashorns typsystem presenteras i det hir dokumentet. Resultaten visar att
typannoteringar kan anviandas for att forbattra prestandan men de har inte sa
stor inverkan som forvéntat.
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Chapter 1

Introduction

The Java Virtual Machone (JVM) provides a solid runtime platform that is convenient
to use by many languages, not only Java. It already contains well performing garbage
collectors and optimizing Just-In-Time (JIT) compilers which have been fine-tuned for
man decades. On top of all this, Java is also platform-independent. Therefore, a lot less
code is required to implement a platform-independent language on the JVM than a native
runtime [11].

This thesis is about implementing dynamic languages and there are several issues with
implementing such languages on the JVM. For instance, JVM bytecode is strongly typed
while dynamic languages typically are not. Dynamic languages often require linking at
runtime and there has not been any mechanism for that prior to the release of Java 7
when invokedynamic was introduced [20].

Despite this, many attempts have been made during the years to implement dynamic
languages on top of the JVM due to the good characteristics mentioned above [20]. The
dynamic linking previously had to be solved by using something like a virtual dispatch
table and the invokeinterface bytecode and when a call site needed to be relinked the
method containing the call site would have to be recompiled. This is a solution that the
JVM can not infer enough about to optimize well.

1.1 Background

1.1.1 Bytecode and the JVM

Initially the JVM was built to execute Java code. The Java code gets compiled to bytecode
which is then executed on the JVM [14]. Because of many good characteristics of the
JVM, bytecode has become a common compile target for other languages as well. Scala,
Groovy and Clojure are all compiled to bytecode and executed on the JVM. Compilers
and runtime environments that compile to bytecode also exists for other languages that
were not initially designed to be executed on the JVM, such as Ruby and Python.

There are several reasons why the JVM is such a popular compile target. The JVM is
available on most of the common operating systems out there and on a variety of processor
architectures. It also contains high performing JIT-compilers and garbage collectors which
makes it possible to execute code efficiently. Making use of these good characteristics
relieves the runtime developers from a big part of the work and makes it possible to
implement a runtime with less code than a native implementation would require [14].

The JVM is a stack machine, meaning that all bytecode instruction operates on a
stack instead of registers, which is common for physical processors [14]. Depending on
the instruction zero or more values are popped from the stack and if the instruction has a
return value it is pushed to the top of the stack. E.g. the bytecode instruction iadd pops
the two topmost int values of the stack and pushes the sum back at the top.

Like the iadd instruction many bytecode instructions specify the type they operate

1
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on. There are other add instructions used for other types, fadd, ladd and dadd are
also available, they operate on float, long and double types. Bytecode also has builtin
support for arrays of all the primitive types. In Java and bytecode the primitive types are
the following:

e byte

e char

o short

e boolean
e int

e long

o float

e double

o references to Objects

The byte, char, short and boolean types do not have any arithmetic instructions
but are represented as ints on the stack. Int instructions are also used to operate on
them but they can be converted to their more memory efficient representation for stor-
age in, for instance, arrays. The reference type is used for references to instances of
java.lang.0Object and its subclasses (every other class is a subclass of java.lang.0Object).
The listed types are commonly referred to as the primitive types of Java/bytecode and
differ from class instances in the sense that they can be placed on the stack, they have no
methods and are not subclasses of or assignable to java.lang.0Object.

1.1.2 Dynamic languages on the JVM

The term dynamic language is vaguely defined but generally refers to languages that
perform actions in runtime that more static programming languages perform at compile
time. What actions those are differs from language to language.

Probably the most common is dynamic linking and dynamic typing. Those are key con-
cepts of many common dynamic programming languages such as JavaScript [9], Ruby [5],
Groovy [10] and Clojure [8]. All those languages have implementations that compile the
source code to bytecode and execute it on the JVM.

With the new Java bytecode instruction invokedynamic came the tools needed for
dynamic linking on the JVM, more about that in Section 1.1.3. Dynamic typing is however
still a big issue on the JVM because of the typed nature of bytecode. The types are
seldom known at compile time and can usually change at runtime. In dynamic runtime
implementations, this is usually solved by using java.lang.0bject as type for everything
since all object types can be assigned to it and instead of primitives their boxed types are
used, e.g. java.lang.Integer and java.lang.Long. While that works fine, it has a lot
worse performance than using the primitive types.

All these languages also implement some kind of concept for closure. A closure is a first-
class function that can access variables that were accessible in the lexical context where
the function was declared. The set of accessible variables of a closure is often referred
to as the lexical scope, or only the scope, of the function. In JavaScript all functions are
closures, Listing 1.1 shows an example of how they can be used, the function call on line 8
will print Hello World! since a is accessible in the lexical context the function is declared
in.



W~ O UL Wi

1.1. BACKGROUND

parent () {
a = "Hello World!";
O {
aj;
}
}
nested = parent () ;

print (nested ());

Listing 1.1: Example of closures in JavaScript

One consequence of closures is that local variables cannot be stored on the stack as
usual since they can live on after the function has returned, like variable a on line 2 does.
This can be solved by, for example, storing variables in a scope object when needed, see
Chapter 2 for more details.

The other dynamic languages mentioned also have support for closures. In Ruby
ordinary methods are not closures but it has special functions called lambdas and procs
which can be used as closures [5]. Groovy has a separate language construct for closures[10]
while regular functions are not closures.

TypeScript

The TypeScript programming language is a superset of JavaScript and is typically com-
piled to JavaScript [16]. It does not have its own runtime environment but is compiled to
JavaScript and executed in a JavaScript runtime environment.

TypeScript was designed to make it easier to build big and complex JavaScript ap-
plications and does so by adding new language constructs such as modules, classes,
interfaces and types [4]. Since the code is compiled to JavaScript and executed in a
JavaScript runtime environment these new constructs are mainly to be considered syntac-
tic sugar. They just provide a different way to express what can already be expressed in
JavaScript [16, 4, 15]. It also means that TypeScript has the same set of builtin functions
as JavaScript [16].

The TypeScript compiler however performs type checking which a JavaScript compiler
does not [16, 4, 15]. Typing variables and functions is optional, if no type is specified the
compiler infers the type for a variable or a function from the assigned expression or return
statements if possible. If that is not possible the default type is any which means that that
expression bypasses the type checking and behaves exactly like it would in JavaScript.

The type inference has the effect that not all valid JavaScript is valid TypeScript even
though that is commonly claimed [15, 4]. For example the code in Listing 1.2 is valid
JavaScript but in TypeScript a is inferred to be of the primitive type number since 5 is
assigned to it when it is declared. So assigning a string to a on line 2 will raise a type
error at compile time.

a = b;
a = "Hello World!";

Listing 1.2: Example of code that is valid JavaScript but not TypeScript

1.1.3 Invokedynamic

In Java 7 the invokedynamic bytecode instruction was introduced to tackle the problem
with dynamic linking for dynamic languages [20, 17].
It gives full control of the linkage to the developers to handle at runtime and does so
in a way that does not require the calling method to be recompiled and replaced [17].
Every invokedynamic instruction specifies a bootstrap method that returns a java.
lang.invoke.CallSite instance. The CallSite instance contains a reference to the
method that should be invoked in the form of a java.lang.invoke.MethodHandle in-
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stance [18]. The first time a invokedynamic instruction is executed, the bootstrap method
is invoked and the instruction is linked to the returned CallSite. For all consecutive ex-
ecutions of an invokedynamic instruction, the linked method is invoked directly without
needing to bootstrap it again [18, 17]. It remains linked until the CallSite gets inval-
idated, that can happen for several reasons, for example if the target MethodHandle is
invalidated manually or because of a guard that fails (an optional check that is executed
before each invocation).

There are different kinds of CallSite classes available, the two most relevant being
ConstantCallSite and MutableCallSite. They differ in the sense that the target of
a ConstantCallSite can never be changed [18] while a MutableCallSite’s target can.
The immutability of ConstantCallSite allows the JVM to optimize the call site more
aggressively since it knows it will never have to deoptimize it due to the target changing.
It is also possible to create custom CallSite classes by extending one of the available
classes [18].

A MethodHandle is in many ways Java’s equivalent of a function pointer in C. It can
be passed around as a regular variable just like a function pointer, invoked like any other
function and it can be exchanged without any need to recompile the class or function that
invokes it [18, 20].

A linked invokedynamic instruction is something that the JVM understands and that
it can optimize and inline with the same mechanisms as for methods invoked by any of the
static invoke instructions. When the CallSite changes it uses its standard deoptimization
mechanisms and can then optimize the newly linked method [20, 17].

1.1.4 Compiler design

This section covers some basic concepts of compiler design that are referred to throughout
this thesis.

A compiler is typically separated into two main parts, a front-end and a back-end, with
an intermediate representation (IR) (or intermediate language) in between them [1]. The
purpose of the compiler front-end is to compile the source language into the IR according
to the language’s syntax and semantics. The compiler back-end compiles the IR into a
language that is executable on a specific platform. Examples of such languages are X86
machine code for an Intel processor and Java bytecode, for the JVM.

Front-end

The compiler front-end typically consists of syntactic and semantic analysis [1].

Syntactic analysis is the process of converting the source code to a representation that
is more suitable for a computer to process. The syntactic analysis is generally divided into
lexical analysis and parsing. The lexer converts the stream of characters that is the source
code to a stream of tokens to be processed by the parser.

An Abstract syntax tree (AST) is what is typically output by the syntactic analysis
and used as representation in the semantic analysis [1]. The AST is directly derived
from the syntax of the programming language and contains language dependant nodes
such as functions, loops, if statements and different kinds of expressions [1]. Unlike the
Concrete syntax tree which contains all information from the grammar the AST contains
only information that is relevant for the compiler. Meaning that semicolons, parentheses
and other tokens needed only to parse the source code are not explicitly represented in
the AST, only implicitly in the sense that they effect how the AST is constructed [1].

The semantic analysis typically outputs an IR derived from the AST and relates all
language dependant syntactic structures with their language independent meaning, ex-
pressed in the intermediate language. For example, if statements could be expressed as
conditional jumps, symbolic references as memory reads or writes etc., depending on what
is supported in the intermediate language.
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Intermediate representation

An IR is typically a lower level representation than an AST but higher level than for in-
stance an assembly language [1]. Such a representation is more suitable for transformations
like control flow analysis and data flow analysis [1].

An IR can be designed in different ways depending on its purpose. The are, for
instance, general purpose [Rs that target any programming language and any platform.
An example of such an IR is LLVM that is described in more detail in Section 1.1.6.

The main benefit of such an IR is that by implementing a front-end for a specific
language one gets the ability to execute the language on all platforms that there are back-
ends for. The same applies the other way around, by implementing a single back-end it
is possible to execute all languages that there are front-ends for on that platform. This
approach is in many ways the school book example of how to design a compiler [1] but
there might be reasons to use other approaches.

JRuby 9000, for instance, has an IR that targets the needs of Ruby, more details in
Section 1.1.7.

Back-end

The purpose of the compiler back-end is, as stated above, to compile the IR into a language
supported by a specific platform. Because of that the back-end has knowledge of that
specific platforms weaknesses and benefits and can perform platform specific optimizations.
The output of the back-end is the language that can be executed on the targeted
platform, typically in machine code form or if the platform is the JVM, Java bytecode.

1.1.5 Nashorn

Nashorn is a JavaScript engine that executes JavaScript on top of the JVM. Unlike its
predecessor Rhino, it relies heavily on the new bytecode instruction invokedynamic that
was introduced in Java 7 [20]. Nashorn is, like Rhino, 100% implemented in Java.

Nashorn has a sophisticated type system that mainly performs two actions. First,
it tries to infer types of expressions statically for as many expressions as possible. In
most cases however, that will not be possible to do. If that is the case, Nashorn resorts
to a concept called optimistic type guessing. That basically means that expressions are
assumed to be of primitive types, preferably ints. If that assumption turns out to be
wrong, the function is recompiled with new types that can hold the current value.

JavaScript has many characteristics in common with other dynamic languages, such as
dynamic linking and dynamic typing. Because of that the intention is to turn Nashorn into
a generic runtime library for dynamic languages rather than a runtime for JavaScript only.
While the JavaScript front-end was implemented by Oracle, they do not at the moment
ailm to implement front-ends for any other languages on top of Nashorn but rather to
provide a tool box for others to use.

1.1.6 LLVM

LLVM was initially a research project with the intent to design a reusable intermediate
representation for a compiler [13], making it possible to implement compiler front-ends that
can be executed on multiple processor architectures by making use of the already existing
back-ends. At the same time it is making it possible to implement compiler back-ends
that automatically can be used by the already implemented front-ends. Initially the name
was an acronym of Low Level Virtual Machine but LLVM is in fact not a virtual machine
so nowadays the name is not considered an acronym but rather a name [13]. There is
support for a variety of languages and architectures on the LLVM platform, many of them
are listed on the official website.!

ILLVM’s official website: http://www.1lvm.org
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1.1.7 JRuby 9000

JRuby is a Ruby implementation? that compiles Ruby code to bytecode and executes it on
the JVM. JRuby 9000 is the new upcoming version of JRuby and it introduces concepts
that are relevant to this thesis.

One of the main differences in the new version is that JRuby’s runtime and compiler
has gone through major design changes. Previously an abstract syntax tree (AST) was
used as internal representation throughout the compiler. In the new version the AST is
transformed to an intermediate representation (IR) for further optimizations before byte-
code generation and/or interpretation [3]. Optimizations such as dead code eliminations,
liveness analysis and other control and data flow optimizations are easier to perform on
a lower level IR representation than on an AST. Séderberg et al. show that the data
and control flow graphs needed to perform such optimizations efficiently can actually be
constructed from an AST [21]. However, they also say that constructing data and control
flow graphs from an AST is mostly useful for constructing text editor tools where it is
beneficial to keep the representation as close to the source code as possible rather than
actual compilers because the construction of the graphs is more complicated and not as
efficient.

Another reason for using an intermediate representation is that the difference from
traditional compiler design practices are reduced [3, 1].

JRuby’s IR does not claim or intend to be a general purpose IR like LLVM’s does [3].
Although it would probably be possible to fit other languages on top of JRuby’s IR, it is
written for Ruby and has some built in constructs and semantics that are Ruby specific.
For example it has builtin support for Ruby’s scope rules with concepts such as class scope,
global scope and local scope which are treated according to JRuby semantics.

1.2 Problem

1.2.1 Motivation

Interest in running dynamic languages on the JVM has increased for the past years [20] and
invokedynamic was a big step for the JVM to support implementation of such languages
since it made it possible to link dynamically in a way that the JVM can optimize. But
despite invokedynamic there are still quite big thresholds to implement dynamic languages
efficiently. The biggest of them all is probably the dynamic typing which is not as easy to
implement on the JVM with good performance.

Dynamic typing is already handled by Nashorn with good performance by the use
of optimistic type guessing. If Nashorn’s solution were made reusable, that would even
further reduce the threshold to implement other dynamic languages with good performance
on the JVM.

1.2.2 Statement

What design changes would be required to make the core concepts of Nashorn reusable
to implement other dynamic languages on top of? What parts of Nashorn are well de-
signed for reuse and can be included in the new architecture and what parts needs to be
redesigned?

A TypeScript frontend should be implemented as a proof-of-concept that the core
concepts of Nashorn can be reused and/or extended. Better performance and warmup
time is expected for TypeScript compared to JavaScript because of the type annotations
and the decreased need to do optimistic type guesses. Because of that, this thesis also
includes analysis of how the more statically typed nature of TypeScript affects the warm

2JRuby’s official website: http://www.jruby.org
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up times and overall performance of Nashorn compared to pure fully dynamically typed
JavaScript.

1.2.3 Goal

The main goal of this thesis is to give recommendations on architectural design changes
for Nashorn to make it easier to plug in frontends for other dynamic languages on top of
Nashorn.

A second goal is to provide performance analysis and compare how typed TypeScript
and weakly typed JavaScript performs on Nashorn.






Chapter 2

Current architecture

Nashorn’s architecture consists of three main phases. First is the parser that creates
an abstract syntax tree (AST) from the source code. The AST is then kept as internal
representation throughout the different phases of the compiler, which is described in more
detail in Section 2.2. The compiler is responsible for, for example, optimizing the AST
and assigning types to all expressions. In the last two phases it generates bytecode and
installs it in the JVM.

Recompilation

R -———_
P -
- -~ o
-
~o

Compilation

phase 1..n Runtime -

1SV

apoovlAg

%)
(@]
C
<~y O
———————— » o | Parser
Q
o
o
(0]

Figure 2.1: Simple overview over Nashorn’s architecture

The runtime’s main responsibilities are dynamic linking and handling of dynamic types.
In many cases it has to trigger recompilation of certain functions, in which case the function
is recompiled from the JavaScript source code.

2.1 Internal representation

The AST in Nashorn is built up by nodes that each represent language constructs in
JavaScript, e.g. function nodes, loop nodes, if nodes and different kinds of expression

nodes.

a = b;
print (a);

Listing 2.1: A simple JavaScript program

A JavaScript program itself is wrapped into a virtual function node, with the same
semantics as a regular JavaScript function. Because of this, the root of every AST is
a function node. The value of the last statement is returned from the function like the
specification says it should [9]. The function that wraps the program is referred to as the
program function throughout this thesis. An AST representation of the simple JavaScript
program in Listing 2.1 is shown in Figure 2.2;

9
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Function

bWt

Block Ident: program

statements

StatementList

T

Var call
iden/\m Wuments
Ident:a NumericLiteral: 5 Ident:print ExpressionList

Ident:a

Figure 2.2: An AST representation of the JavaScript program in Listing 2.1

2.2 Compiler

The compiler consists of several phases that each take an AST as input and output a
transformed AST. The different phases are required to be executed in order since one
phase could depend on the results from a previous phase.
Each of the compilation phases will be described in more details in the following
sections. The different phases are, in order, the following:
Constant folding
Control flow lowering
Program point calculation
Builtins transformation
Function splitting
Symbol assignment
Scope depth computation

Optimistic type assignment

e A A

Local variable type calculation

_
e

Bytecode generation

11. Bytecode installation

All functions are compiled lazily in Nashorn, meaning that they are not compiled
until they are invoked. The initial compilation goes through all the compilation phases to
compute symbols and other data needed in runtime. The only bytecode that is actually
output is a class with a method that instantiate a runtime representation of the program
function. When the program function is invoked initially, Nashorn notices that no compiled
version of that function exists so first, it has to compile a bytecode version of the function.
During that compilation all nested functions are skipped, all data needed to create runtime
representations and to invoke them was already computed in the initial compilation. The
nested functions will be compiled and executed in the same way as the program function.
It might seem unnecessary to not compile the program function at the initial compilation
since it is known that it will be invoked but doing so would mean special treatment and
complicating the code without any significant performance gain.

10
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2.2.1 Constant folding

The constant folding phase simplifies the AST by transforming constant expressions to
equivalent shorter versions. One of the simplest transformations it does is to turn static
expressions like 5 + 3 into 8.

It also performs more complicated transformations such as removing dead code blocks
from if statements where the condition is static. For example, it replaces the code in
Listing 2.2 with a = 5 since it is known that the else-block will never be executed (the
boolean value of 5 is true in JavaScript)

;) {
a =5
} {
a = 17;
}

Listing 2.2: If statement that can be folded

2.2.2 Control flow lowering

The control flow lowering phase finalizes the control flow of the JavaScript program. It
performs actions such as copying finally-blocks of a try-catch to all places that terminates
the control of the try-catch block and guaranteeing return statements to methods to ensure
that the control flow of the program conforms to the ECMAScript specification.

It also replaces high-level AST nodes with lower level runtime nodes, for example it
replaces the node representing builtin operators like instanceof and typeof with nodes
that can be executed directly in runtime.

2.2.3 Program point calculation

Program point calculation is needed for the optimistic type system to work. It assigns
program point numbers to all points in the program that could potentially fail due to opti-
mistic type guessing. When that happens the program point number is used to determine
where to resume the execution of the program after the function has been recompiled.

An example of such a place is a multiplication or addition of two variables that could
overflow a numeric bytecode type such as int or long (JavaScript numbers do not overflow)
or a property getter of an object where the property type is unknown.

2.2.4 Transform builtins

The transform builtins phase replaces calls to builtin JavaScript functions with other,
more efficient function calls where possible. Currently this phase only replaces calls to
Function.apply with Function.call. Those two functions are equivalent in the sense
that they both invoke the function they are called on. The first argument to both of them
is the object that should be bound to this inside of the invoked function. The remaining
arguments are the arguments to the invoked function. How these arguments are passed
to the function is the difference between the two functions, apply has only one parameter
which is an array that contains the arguments to the invoked function while call takes
the arguments as a regular argument list. Examples of them both are shown in Listing 2.3.

f(a, b, c) {

}
f.apply ({}, [1, 2.0, {}1);
f.call({}, 1, 2.0, {});

Listing 2.3: If statement that can be folded
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The problem with apply arises when the arguments are represented with different
types. To be able to put them all in the same array all types need to be widened to
java.lang.0bject and the primitive types will have to be boxed. For call where each
argument is passed separately, they can have different types and the primitive types will
not have to be widened.

There are however limitations to when this transformation is possible to do. In List-
ing 2.3 it is possible, the array passed to the apply function can never change since it is
not accessible outside the call. In Listing 2.4 a global array is passed as argument to the
apply function and in this case it is not possible to replace apply with call. At compile
time, it is not known what that array contains and it could even change from one time to
the other.

f.apply ({}, a);

Listing 2.4: If statement that can be folded

2.2.5 Function splitting

The JVM has a method length limit of 64KB. JavaScript functions have no such limit and
can be of arbitrary length. Functions longer than 64KB cannot be directly mapped to a
bytecode method since the JVM would throw an error when the class is loaded. 64KB is
quite a big limit but since JavaScript is a common target language for compilers, e.g. the
TypeScript compiler (see Section 1.1.2) and Mandreel®, there’s a lot of code around that
is generated by computers that potentially contains longer functions.

To tackle this problem in Nashorn, the function splitting phase splits longer functions
into several shorter functions. The splitting raises a few issues when it comes to variable
scoping since one split part of a function might use variables declared in another one.
That is solved by moving such variables to the lexical scope object of the function. That
costs performance since local variables otherwise can be stored in local variable slots and
accessed with simple memory reads and writes which is faster than the invokedynamic-
instructions lexical scope accesses require, see Section 2.3.4.

No exact computation on how long the generated bytecode would be is performed. The
functions are split heuristically when they are considered to be ”too long”. The reason for
that is simply that it is not known exactly how long the bytecode representation of the
function will be. To know that, the function splitter would have to operate on a lower
level than the AST, preferably bytecode level.

2.2.6 Symbol assignment

This phase assigns symbols to each block in the AST. It has to keep track of which variables
end up as local variables and which need to be kept as fields in the lexical scope objects
to be accessible by nested functions.

2.2.7 Scope depth computation

The scope depth computation phase computes at which depth in the scope a variable is
used. For example on line 4 in Listing 2.5 a is returned and the scope depth of a there is
two since a was declared two scopes up. The scope depths are used in runtime to enable
fast lookup of variables.

!Mandreel’s official website: http://www.mandreel.com/
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a = 4711;
bO{
c() {

Listing 2.5: Small example showing what scope depth means

2.2.8 Optimistic type assignment

The optimistic type assignment phase assigns initial types optimistically to all program
points in the AST. The assigned types are used in the bytecode generation to decide what
type of bytecode instructions to use. Optimistically means that the primitive types that
the JVM can execute fast are chosen first, preferably ints since int instructions are the
fastest [12]. More details on how optimistic types are handled in runtime will be presented
in Section 2.3.4.

Nashorn can execute JavaScript code both with and without the optimistic type system
enabled. If the optimistic type system is disabled all expressions that cannot be statically
proved to be of a certain type are represented as java.lang.Object since all Java ob-
jects can be assigned to that, including boxed primitives such as java.lang.Integer and
java.lang.Double. That reduces the performance a lot since fast bytecode instructions
like iadd and ladd cannot be used to operate on the values directly and the JVM can not
eliminate boxing internally.

2.2.9 Local variable type calculation

The local variable type calculation phase calculates types of expressions that can be proved
statically. It only applies to variables that are local to a function, meaning variables that
do not need to be kept in a lexical scope object. The reason for that is that scope variables
can be accessed and changed elsewhere. For example a variable that is declared in one
function and then changed by a nested function. The nested function can be passed around
to other functions and then finally be invoked and might change type of the variable at a
place that is not anywhere close to where the variable was declared.

If a local variable changes type inside the function it uses different local variable slots
depending on the live range of the variable for each type.

Statically proved types are preferred over optimistic types since they are known to
never overflow and therefore never cause recompilation. The type used is also as narrow
as possible meaning that they will give at least the same performance benefits as optimistic

types.

2.2.10 Bytecode generation

This phase simply generates the bytecode from the AST. Because functions are compiled
lazily, each compilation will in most cases only emit one compiled bytecode method con-
tained in a class. If the function is split, more methods will be emitted.

2.2.11 Bytecode installation

The bytecode installation phase loads the emitted classes to the JVM to prepare the code
for execution.
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2.3 Runtime

The JVM provides a competent runtime environment for Nashorn that already handles
stuff like memory management and optimizing JIT compilation. Despite that, Nashorn
still needs to handle some tasks at runtime. Nashorn relies heavily on invokedynamic and
needs to manage all linking at runtime. The lazy compilation and the dynamic types of
JavaScript means that the runtime has to be able to trigger recompilation of functions.

2.3.1 Runtime representation

At runtime all JavaScript objects and functions are represented by lower level runtime ob-
jects, namely instances of jdk.nashorn.internal.runtime.ScriptObject or subclasses
to it. Functions are represented by jdk.nashorn.internal.runtime.ScriptFunction
objects. There also are classes for representing built in functions and objects and the
lexical scopes.

For objects that are constructed with object literals ({...}) Nashorn generates new
classes as needed.

2.3.2 Dynamic linking

The dynamic linking in Nashorn is done by invokedynamic with the help of a library
called dynalink. Dynalink is a helper library for linking dynamic call sites and handles
most of the actual linking [22]. It was first implemented as a standalone library but is
since Java 8 a part of OpenJDK. The library is initialized by setting up a DynamicLinker
with a list of linkers. Each linker is asked, in priority order, to link the call site as shown
in Figure 2.3. If the linker is able to link the call site it will be asked to do so and returns
a GuardedInvocation object that contains the target MethodHandle and any guards that
can invalidate the call site. Whether a linker can link a specific call site is determined by
the type of the object (or primitive) that the method is invoked on.

Nashorn has several linkers, the main one is the NashornLinker which links all JavaScript
objects and functions (instances of ScriptObject and subclasses). There are other linkers
that link JavaScript primitives, access to the Java standard library, and JavaScript objects
defined externally from Java code among others.

Dynalink also supports type conversions and that is also handled by the linkers, for
example a conversion from a JavaScript object to a string is handled by NashornLinker.

All of this makes the bootstrap method for invokedynamic very simple to define,
Listing 2.6 shows Nashorn’s bootstrap method. It just propagates the control of the
linkage to dynalink.

Dynalink has support for just a few basic operations that links a call site to methods
performing a certain action. The operations are the following:

getProp Returns a property of an object
getElem Returns an element of an array
getMethod Returns a method of an object
setProp Sets a property on an object
setElem Sets an element on an array

call Invokes a method

new Invokes a method as a constructor
These operations are closely related to Nashorn’s object model described in Section 2.4.
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l

linker := nextLinker() [«

No

linker.canLinkCallSite()

guardedInvocation := linker.linkCallSite()

Y

return guardedinvocation

Figure 2.3: Simple flow graph of how dynalink links a call site

CallSite bootstrap( Lookup lookup, String opDesc,
MethodType type, flags) {
dynamicLinker.link (LinkerCallSite.newLinkerCallSite (lookup, opDesc
, type, flags));

Listing 2.6: Bootstrap method when using dynalink

A call site example

Listing 2.7 shows an example of a simple function call in JavaScript. A function named
a is invoked with the number literal 10 as argument. When compiled to bytecode that
function call looks like in Listing 2.8.

1 |a(10);

=W N =

Listing 2.7: A simple JavaScript call site

Line 1 in Listing 2.8 performs a dynamic invocation to fetch the ScriptFunction
instance representing JavaScript function a. The call site descriptor on line 1 is somewhat
interesting, it uses dynalink’s operations in conjunction. What it basically means is ” Give
me a method named a but if you can’t find one, a property or element with the same name
will do”. Then the bootstrap method returns a CallSite with such a MethodHandle which
is then invoked to get the JavaScript function.

dyn:getMethod | getProp|getElem:a(0bject;)0bject;
ScriptRuntime.UNDEFINED : Undefined;
10
dyn:call (Object;Undefined;I)I;

Listing 2.8: Compiled version of the call site in Listing 2.7
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The reason for using the operations in conjunction is that JavaScript has no clear
separation between them. An example of that is shown in Listing 2.9. On line 4 the
property prop is retrieved as an array access. Such code results in the usage of getElem
but there is no element named prop on obj, only a property. That means that getElem
will not be able to link the call site. When that fails, getProp is tried afterwards and that
will find the property and link the call site properly.

obj = {
prop: 5

c = obj["prop"]

Listing 2.9: A property of an object being retrieved as an array access.

The priority order is different depending on how the variable was requested, in List-
ing 2.8 getMethod is first operation since it was a function call, i.e., a(10). Had it been
a property access from the scope instead, i.e., a, getProp would have been prioritized.

The JavaScript function is invoked on line 4 in Listing 2.8 by using the dynalink oper-
ation call. As can be seen on the parameter list, the function expects three arguments.
The function object itself is the first argument to the function and is mainly used inside
the function to access the lexical scope object that belongs to the function.

The second parameter is the object that is bound to this in the function. Line 2
pushes the this object to the stack, In this case this is not defined so the JavaScript
value undefined is loaded to the stack.

The first two arguments are always the function itself and the this-object. Those
arguments are internal to Nashorn and has no equivalent in the JavaScript source code.

After the internal arguments, are the JavaScript source code arguments. Line 3 pushes
the argument from the JavaScript source code to the stack. In this case the number literal
10 is the only argument. If there have been more, they would also have been pushed to
the stack.

The return type of the call site is int, that is not necessarily the actual return type of
the function but rather a guess made by the optimistic type system.

Type specializations and lazy compilation

On line 4 in Listing 2.8 the bootstrap method will return a CallSite with a MethodHandle
that points to a method that takes the listed parameters and has the correct return type.
Since all functions are compiled lazily, one such function might not yet exist in its compiled
form, on the first call to the function, it will certainly not. What happens in that case is
that a type specialization is compiled and a CallSite with a MethodHandle that points
to that function is created and returned from the bootstrap method. The next time a is
called at a different call site with the same type signature, the compiled version will be
found so no additional type specializations will have to be compiled. But as soon as the
function is called with a new type signature a new type specialization will be compiled,
that could for example happen if a double value would be passed as parameter instead of
an int.

Listing 2.10 shows an example of this. Function £ on line 1 will not be compiled until
it is called on line 4. Since the argument is an int, it will be compiled for an int argument
specifically. On line 5 the function is called again but 2.1 can not be represented as an
int so the previously compiled version can not be used. Therefore, a new compilation will
be triggered specifically for when the parameter b has the type double. The invocations
on line 4 and 5 invokes the same JavaScript function but they will in fact end up invoking
different bytecode methods that have different parameter types.
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f(b) {
Some JavaScript code...
}
£(17);
£(2.1);

Listing 2.10: A JavaScript function that is being invoked with different argument types

2.3.3 Relinking

A linked call site will invoke the same method on every consecutive invocation. But what
happens if the function has changed? In JavaScript it is possible to overwrite functions
with new functions or even assign a completely different type to the variable, for example
a number or an object.

Because of that, the call sites are created with a guard using MethodHandles.guardWithTest ().

That method constructs a MethodHandle that executes a guard before each invocation.
If the guard passes it invokes the linked method, if not it invokes a fall-back method. In
the case of JavaScript functions in Nashorn, the guard checks that the function is still the
expected one. If the guard fails, a method that triggers relinking of the call site will be
invoked.

2.3.4 Typing

As mentioned earlier, types are assigned to program points in two different ways: optimistic
type assignment and statically proved types. The types are assigned by the compiler but
the runtime environment needs to handle the optimistically assigned types. This section
will describe how that works.

Statically proved types

The statically proved types do not need any special runtime processing. They are stored
in bytecode local variable slots and it is already known at compile time that they will
never overflow or change to a different type.

Optimistic type guessing

Listing 2.11 shows a simple JavaScript function that is being invoked.

a(b) {
b*b;
}
a((1 << 16) + 1);

Listing 2.11: Simple JavaScript function

The function call on line 4 gets linked to a method that looks like the one in Listing 2.12.
It uses int-instructions throughout the function, since the function was called with an int
argument. It loads the parameter to the stack twice, multiplies them and then returns
the result. As long as the multiplication does not overflow the code will be executed and
return an int as expected.

1
1
(II)I

Listing 2.12: Compiled bytecode for function a in Listing 2.11
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However, the multiplication can overflow and that needs to be handled since JavaScript
numbers do not overflow. The potential overflow is the reason for not using a regular imul
instruction on line 3 but instead a dynamic invocation of a method with the same name.
The imul invocation is surrounded by a try-catch (not shown in Listing 2.12 for visualiza-
tion reasons) and if the multiplication overflow a so called UnwarrantedOptimismException

will be thrown by imul. That will in turn trigger recompilation by throwing a RewriteException

that contains all information needed to resume execution at the same place as the error oc-
curred. That information includes context such as variables on the stack and the program
point number assigned by the compiler in the program point calculation phase.

Two new methods will be compiled when an optimistic assumption fails. First of all a
version with the new types is compiled, in this case the function takes an int argument.
Since the multiplication overflowed, the return type has to be long. That compiled version
of the function looks like in Listing 2.13.

1

1

(JJ)J

Listing 2.13: Compiled bytecode for function a in Listing 2.11 with long return type

A special version of the function is compiled as well. The function is called a rest-of-
method since it is used to execute the rest of the function from the point where the
overflow occurred. The RewriteException that caused the recompilation is passed to the
function as argument. It restores the stack and jumps to the point in the function that
failed. In this case it would convert the two factors to longs, perform a long multiplication
with 1mul and then return a long.

2.4 Object model

The way JavaScript objects are modelled in Nashorn is actually quite simple. There are a
few different kinds of objects in JavaScript that all might not be what one typically refers
to as an object but they are all represented similarly and properties on the objects are
accessed similarly. Some things mentioned in this section can be repetitive from previous
sections but it is still worth emphasizing how objects are handled in Nashorn.

a
b: (ORt 551,
c: "Hello!",
d
e

Listing 2.14: Example of an object literal

First is the scope, each function has a scope object which contains all properties that
were declared inside the function, not including nested functions’ properties. From each
function the parent scope is also accessible to be able access declarations from an outer
function. The scope is represented as a regular Java object and is passed to the function
when it is first instantiated.

Second, there are objects created with JavaScript object literals, Listing 2.14 shows
an example of that. They are represented as a regular Java object, different classes are
used depending on the number of properties and their types. The classes are generated
by Nashorn as they are needed.

In JavaScript the new-operator can be used to invoke a function as a constructor.
What happens when a function is invoked with the new-operator is that an object is
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created and is bound as this inside the function. Then the function is executed as a
normal function but the this object is returned from it. There is actually an exception to
that, if the function’s return value, in the JavaScript source code, is of an object type, that
value is returned instead of this. That is according to the EcmaScript specification [9].
Listing 2.15 shows an example of how such an object can be instantiated in JavaScript.
The constructor function’s prototype is used as the methods and the class wide properties
(static fields in Java) of the object.

Independent of which kind of object, the property getting mechanism described in
Section 2.3.2 is used, namely an invokedynamic instruction with the call site descrip-
tor being something like getProp|getMethod|getElem. To set properties or elements,
setProp|setElem is used as call site descriptor for the dynamic call site.

A (b) {

.b = b;
}
A.prototype.c = O A{

.b;
5
A.prototype.CONSTANT = "a constant';
a = A("argument") ;

print(a.c())
print (a.CONSTANT)

Listing 2.15: JavaScript class example

This object model differs from JVM bytecode’s object model. Bytecode uses the same
object model as Java does with builtin support for classes with methods and fields. In
bytecode a class is the smallest possible execution unit, there are no global or standalone
functions, while in Nashorn every function is a standalone function, either as a property
on a scope or as a property on an object.

2.5 Warmup time

Time to warm up the code is always a concern when executing code on the JVM because
of the JIT compilation. The code has to be executed a few times before it reaches a stable
state where hot methods (methods frequently used) are compiled to native machine code
for faster execution.

A couple of the features mentioned above are other sources for increased warm up time
in Nashorn. First of all are the lazy compilations, before the first execution of the code
there is not a single compiled bytecode version of it and that needs to be compiled. After
the code has been compiled to bytecode, the JVM still has to compile the hot methods to
native machine code before the code reaches a stable state.

The second source of increased warmup time is the optimistic type guessing. With
optimistic type guessing it is not even known if the compiled bytecode can be used and
in many cases it will need to be recompiled as explained in Section 2.3.4. The main
benefit from this is that the stable state will consist of methods with primitive types
making them efficient to execute. However, it will take longer time to get there since
recompilation takes time and depending on the program it can happen very frequently
before the code is warmed up.

The amount of warmup time caused by the optimistic type guessing depends on the
number of program points where type assumptions are made since each assumption could
cause deoptimizing recompilations. Each assumption can cause only a constant number
of recompilations, one for each builtin bytecode type and java.lang.0Object. This means
that the maximum number of recompilations in a program grows linearly with the number
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of assumptions. The number of assumptions is not necessarily directly mappable to the
code size but a safe assumption would be that a program with a bigger code base has more
assumptions and thereby has longer warmup caused by the optimistic type guessing.

There is however an important trick in Nashorn to reduce the warmup time. During
recompilation, type information from runtime is used to prematurely deoptimize program
points whose current runtime type is known to have been wider than the type that would
have been used if no other type information was available.
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Chapter 3

TypeScript implementation

This chapter is about the TypeScript implementation. First it is presented what changes
were made to implement the TypeScript front-end and what limitations the implementa-
tion has. The results presented in the results section are performance measurements that
show how Nashorn performs with TypeScript compared to JavaScript and observations
on how well suited Nashorn is for implementing other dynamic languages on top of it.

3.1 Method

The focus of the TypeScript implementation has not been to fully support TypeScript ac-
cording to the specification. Instead, the focus was to be able to run TypeScript programs
with type annotation and use them during the bytecode generation phase to generate more
efficient bytecode with narrower types. All differences to TypeScript’s specification are
listed in Section 3.1.3.

3.1.1 Parser

The TypeScript parser has a lot of common functionality with the already existing JavaScript
parser, since TypeScript’s syntax is just an extension of JavaScript’s. Therefore, the parser
was implemented by extending the JavaScript parser and adding additional functionality
to parse the additional language constructs from TypeScript. The focus was to parse the
constructs that are related to types, like the types themselves, interfaces, classes and typed
expressions and statements.

3.1.2 Compiler

The purpose of the changes that were made to the compiler is to make use of the TypeScript
types to generate bytecode with more accurate types. Two compilation phases, Type
resolution and Type association, has been added and the symbol assignment phase has
been extended to handle symbols for type references (type annotations referring named

types).

Symbol assignment

The named types in TypeScript live in a separate declaration space from variables and
functions [16] and therefore need to have separate symbols. The symbol assignment phase
assigns symbols to the named types and connects them to all references to the named
type.

Apart from handling symbols for named types this phase also assigns TypeScript types
to all symbols where they are present in the source code.
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Type resolution

There are two different ways to reference a type in TypeScript, type references and type
queries [16]. On line 4 in Listing 3.1 is an example of a type reference and on line 5 an
example of a type query. c’s type is resolved to number since that is the type of property
b in interface A.

interface A {
b: number;

}
a: A = {b: 4711};
@3 a.b = 17;

Listing 3.1: Example of type references and type queries

Type references are resolved by setting a reference to the named type in the type
reference node. There are two difficulties with named type, namely that they can have
generic type parameters and they may contain circular references.

Type queries are resolved by simply replacing the type query with the type that the
referred variable has.

In Listing 3.2 is an example of a generic interface. All generic types are resolved by
copying the interface and replacing all occurrences of the type parameter with the type
argument in the type reference. In this case line 4 would cause one copy of interface A
to be generated with all Ts replaced with string and line 5 would cause another version
to be generated where all Ts are replaced with number. All resolved named types are
stored, and on consecutive references they will not be resolved again but use the result
from previous references. The references to A on line 4 and line 5 are considered different
references since the resulting type is different.

interface A<T> {
b: T;

}
a: A<string> = {b: "Hello world!"};
b: A<number> = {b: 4711};

Listing 3.2: A generic interface

Circular references like the ones in Listing 3.3 would, if not handled specially, cause
infinite recursion when resolving the type references. Circular references are detected in
a depth-first-search manner. All references that are currently being resolved are pushed
to a stack and whenever a reference that is already on the stack is encountered, a circular
reference is detected. When a cycle is detected, it is resolved by simply referencing that
type reference back to the type already on the stack.

interface A {
b:A;
}

a:h;
interface C {
b:D;

}

interface D extends C{
a:string;

}
d:D;

Listing 3.3: Circular references
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At the end of the type resolution phase, all types are resolved and they themselves are
aware of what properties and methods they have and the type of them, so after this phase
they will not have to be edited further.

Type association

The type association phase has two purposes, first it infers the type of expressions and
second it sets boundaries on which internal bytecode types can be used to represent the
expressions.

The two type boundaries are the optimistic boundary and the pessimistic boundary.
The optimistic boundary is the narrowest bytecode type that could be used to represent
the type. The pessimistic boundary is a bytecode type that can fit all possible values that
expression could have. Setting boundary internal types is what will cause the bytecode
generation phase to generate bytecode with more accurate types.

The JavaScript implementation always uses int as the initial optimistic type for un-
known types but the TypeScript implementation can use different types depending on the
TypeScript type of the expression. What the optimistic boundary is for each TypeScript
type follows naturally, for example the optimistic type boundary for number is int and
for an object type such as an interface or class reference it is java.lang.0Object.

Unfortunately the pessimistic boundary needs to be java.lang.0bject for all Type-
Script types. The reason for that is that values of type undefined, null and any can
be assigned to all types. The first two are an issue because there is no way to represent
null or undefined as any of the primitive bytecode types and they must therefore be
represented as java.lang.0Object.

On line 2 in Listing 3.4 the issue with the any type is shown. A value of type any is
assigned to a variable of type number. That is permitted in TypeScript and means that b
could actually contain any value and is by no means restricted to numbers only at runtime.

a:any = {};
b:number = a;
b = ;
b = undefined;

Listing 3.4: Cases that prevent narrow pessimistic boundary

This is not that big of a problem when optimistic types are enabled since the optimistic
type boundary is used at the first compilation and the code will be deoptimized only when
one of the three cases above are encountered. With optimistic types disabled, however it
means that any expression that cannot be statically proved to be of a certain type will be
represented as java.lang.0Object since the type used will have to be able to fit all possible
values. That is unfortunate since that means there can not possibly be any performance
gain from TypeScript compared to JavaScript with optimistic types disabled.

The type inference is done according to the TypeScript specification [16] although it
is currently somewhat limited and does not fulfill all requirements from the specification,
more on that in the following section.

3.1.3 Limitations

As stated in Section 3.1, the goal with the TypeScript implementation was to make use
of the type annotations in TypeScript and not implement the language fully according to
the specification. This section will go through what was not implemented and why it was
left out.

Modules

A TypeScript program typically consists of several source files that each corresponds to a
module. All module files need to be processed together at compile time and type informa-
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tion needs to be shared between them. That is quite a big change compared to JavaScript
where each file is processed individually at compile time and does not interact with each
other until they are linked in runtime. Implementing modules is doable but would require
more work and time. Also, it would not help to achieve the primary goal of the TypeScript
implementation and were therefore left for further development.

Enums

Enums is one of the three kinds of named types supported by TypeScript and is the only
one of them that has not been implemented. The reason for leaving enums out is the
same as for modules, they would not add enough value to this thesis to be worth the
implementation time.

Type inference

Type inference is a key feature in TypeScript that makes it possible for developers to omit
type annotations and still have static type checking. Although type inference is partially
implemented, some parts of it were not.

There is a concept called contextual typing in TypeScript which was not implemented,
Listing 3.5 shows an example of how contextual typing works. The variable a on line 1 is
declared to be a function that returns a value of the number type. Because of that, the
function that a is initialized with is said to be contextually typed to return a number. It
has the consequence that the return value b must be assignable to number.

a:() => number = 01
b = 5;
b;

Listing 3.5: Example of contextual typing

Another concept related to type inference is the best common type. The best common
type is calculated for example when inferring return type of a function with multiple return
statements or the element type of an array literal. Calculation of the best common type
is not implemented and because of that type inferring is not working in those cases. The
reason for not implementing it is the same as for contextual typing, it would not take this
thesis closer to its goal and the same results, performance wise, can be achieved without
them by just making sure to include type annotations in all such cases.

Type checking

Type checking is only partially implemented, to have complete type checking it would be
necessary to fully establish relationships between types. Types can be related in three
different ways in TypeScript, they can have subtype/supertype, assignability and identity
relationship. Type relationships are only implemented for the predefined types so for those
type checking works but not for any other types. The reason again is that it would be
time consuming to implement and it would not take this thesis any closer to its goal.

3.1.4 Performance analysis

In this section it is described how the performance analysis of the TypeScript imple-
mentation was done, which benchmarks were used and how they were used to measure
performance.

The performance was analysed both with and without optimistic type guessing and
the method will differ between them. Why that is and how the measurements were done
is described later in this section.
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Benchmarks

The benchmarks used are from the octane JavaScript benchmark suite [6] and were ported
to TypeScript. The octane suite consists of several benchmarks of different sizes. Four of
the smaller benchmarks have been chosen for the performance analysis. The reason they
are used is that they measure slightly different characteristics of performance and that
they are fairly small (< 2000 lines of code each). It would be interesting to measure warm
up time on some bigger benchmarks as well (the biggest being Mandreel which is 277 377
lines of code) but given the time limitations it was not considered feasible to port them
to TypeScript for this thesis.

Here follows the four different benchmarks and what their main focuses are according
to the authors [6]:

Crypto Bitwise operations

NavierStokes Reading and writing numeric arrays
Richards Property load/store and function/method calls
Deltablue Polymorphism

Without optimistic type guessing

In Section 3.1.2 it is explained why the pessimistic type boundary of expressions in Type-
Script cannot be narrower than they are in JavaScript. However, there are only a few
special cases that cause that unfortunate fact and the benchmarks that were used in this
thesis actually can be executed with narrower types.

Why is that relevant when narrower types cannot be used in the general case? For
TypeScript that is true but this thesis is not only about TypeScript. There are other
dynamic languages where narrower types potentially can be used for certain types and if
that would give a large performance gain it could be something to consider for the new
architecture for Nashorn.

The focus of this measurement will be performance in the stable state since that is
what is expected to be affected by TypeScript when not using optimistic types.

This measurement will be done with the help of JMH [19] which is a tool that is a
part of OpenJDK used for running benchmarks on the JVM. JMH supports the following
features that will be used in this measurement:

e Warmup iterations that are not included in the measurement to be able to measure
performance of the stable state

e Executing the benchmark in fixed time iterations measuring the average execution
time of the benchmark

o Calculate a 99,9% confidence interval of the execution time for a benchmark

With optimistic type guessing

With optimistic type guessing the performance of the stable state is not expected to im-
prove because of the type information in TypeScript, both JavaScript and TypeScript are
expected to reach the same stable state. To verify that the same performance measure-
ments as explained in the last section was done with optimistic type guessing enabled as
well.

TypeScript is however expected to start out closer to the stable state because of the
more accurate type guesses and therefore warm up time is expected to be shorter than for
JavaScript.

The warm up time is presented using warmup slopes, meaning plotting the execution
time of each iteration until the code reaches a stable state. JMH [19] was used for this
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measurement as well but instead of calculating average execution time the execution time
of each iterations was measured individually.

All benchmarks were executed in 60 iterations on the same JVM (one iteration means
executing the benchmark once), measuring the time it takes to execute each iterations.
This operation will in turn be repeated 15 times with a fresh JVM instance.

System used for benchmarking

Cpu 4 Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90GHz with 8 cores each, a total of 32 cores

RAM 16 DIMM DDR3 Synchronous 1600 MHz (0.6 ns) of 16 GB each, a total of 256
GB RAM

Operating system Ubuntu precise (12.04.5 LTS)
Java version Java HotSpot(TM) 64-Bit Server VM (build 1.9.0-ea~-b37, mixed mode)

3.2 Results

In this section, the results from the performance measurements of the TypeScript imple-
mentation is presented and discussed. In the end of the section, some observations that
were made during the TypeScript implementation are presented as well.

3.2.1 Performance without optimistic type guessing

Figure 3.1 shows a bar chart with the results of all the four benchmarks when executed
with optimistic type guessing disabled. All results are normalized on JavaScript execution
time for better visualization. Since the bar chart shows relative execution time, lower is
better.

Without optimistic type guessing

14 - JavaScript /— +
TypeScript s
1.2 .
()
£ 1r = 8
©
g o8 -
g 06 .
S
Z 04 r .
0.2 - _
0 Y 4 Q
%, % 2 %
% O %, %8,
% % 2
O'f Q
Q
&

Figure 3.1: Results from benchmarks without optimistic type guessing, execution time is
normalized on JavaScript performance, the error bars show the 99.9% confidence interval.

It is clear that TypeScript indeed performs better than JavaScript, how big the differ-
ence is differs from benchmark to benchmark. The biggest performance increase can be
seen on the Crypto benchmark. That makes sense, since the main focus of that bench-
mark is bitwise operations of numbers. The biggest difference between TypeScript and
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JavaScript is that JavaScript uses boxed types to represent numbers and TypeScript uses
the pessimistic boundary type of the number type which is the bytecode primitive type
double. Hence, it performs better on numbers and the overall performance is increased.
DeltaBlue however does not show as big difference as the others. This can be explained
by the fact that benchmark is mainly about object polymorphism. For object types the
pessimistic boundary in TypeScript is java.lang.0Object which is the same type that
JavaScript uses and hence the performance gain is not as big as with number intensive
benchmarks such as Crypto. Richards and NavierStokes are quite number intensive as
well and that could explain why the performance gain is almost as big as for Crypto.

3.2.2 Performance with optimistic type guessing
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Figure 3.2: Results from benchmarks with optimistic type guessing, execution time is
normalized on JavaScript performance, the error bars shows the 99.9% confidence interval.

Figure 3.2 shows the same performance measurements as in Figure 3.1 but with opti-
mistic type guessing enabled. The performance difference for NavierStokes, Richards and
DeltaBlue is not statistically significant, their confidence intervals are overlapped. Crypto
however shows a significant difference to TypeScript’s advantage. Even so the difference
is small, under 4%, and given that the other benchmarks did not show any significant
difference the results are as expected, namely no (or only a small) performance difference
in the stable state.

3.2.3 Warmup times with optimistic type guessing

In this section warmup slopes for JavaScript and TypeScript for each benchmark are
presented, they can all be seen in Figures 3.3.

The warmup slopes for Crypto, DeltaBlue and Richards show similar patterns. The
first iteration shows a big improvement in execution time for TypeScript compared to
JavaScript. After that, JavaScript catches up and the difference disappears quickly. Some
benchmarks show unstructured differences in later iterations. That could be caused by
the garbage collector is slowing down the execution on different iterations for the two
implementations.
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Figure 3.3: Warmup slopes for all benchmarks, the candlesticks shows the minimum, 1st
quartile, median, 3rd quartile and maximum values for each iteration. One iteration is
one execution of the whole benchmark. Iteration n is the nth time the benchmarks was
executed on the same JVM. All benchmarks were executed for 60 iterations but only 20
are visualized in the figures because no interesting results can be seen after that.
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Without optimistic type guessing the number intensive benchmarks showed a bigger
performance gain than DeltaBlue which are not as number intensive. That is due to the
fact that they can use narrower types. With optimistic type guessing the opposite is
expected for warmup time. The warmup is caused by the fact that the optimistic type
system initially assumes almost every expression to be an int until proven wrong. For ev-
ery case where that assumption turns out to be false, warmup time increases. For number
intensive, or actually int intensive, benchmarks the initial assumptions will not be false
as often as for less number intensive benchmarks. Meaning that the JavaScript implemen-
tation will not cause as long warmup and making the difference between TypeScript and
JavaScript smaller.

That could explain why NavierStokes shows practically no difference at all, not even
in the first iteration. Both Crypto and Richards are also number intensive but they use
JavaScript classes to hold the number which causes deoptimizing recompilations. Navier-
Stokes, however, only constructs one object in the setup of the benchmark and that is not
included in the measurement.

A general problem with all the four benchmarks is that their code bases are small, less
than 2000 lines of code each. Since the effect optimistic type guessing has on warmup time
grows linearly with the size of the code base (or actually the number of type assumptions,
see Section 2.5) the warmup time reduction from using TypeScript would probably be
bigger and the results more clear for bigger benchmarks. NavierStokes is the smallest of
the four benchmarks which could further reduce the difference in warmup time between
JavaScript and TypeScript.

3.2.4 Lessons learned from implementation

This thesis is not only about TypeScript performance but also about improving the ar-
chitecture of Nashorn. When it comes to implementing TypeScript on top of Nashorn, it
was a fairly easy job to do.

The runtime was easily adapted to be able to set boundary types to be used by
Nashorn’s type system. Actually not even a single line of code in either the optimistic
type assignment phase or the local variable type calculation phase was changed, added or
removed, all changes were made on the effected AST nodes. Only two methods needed
to be changed in a few effected AST nodes (nodes such as property accesses, element
accesses and function calls). The two methods can be seen in Listing 3.6, they return the
optimistic and pessimistic boundary of the node. Previously the return values were hard
coded in each node and the change that was made was to make it possible to override the
hard coded type boundaries.

@0verride
Type getMostOptimisticType () {
(optimismBoundary != ) o
optimismBoundary;
} {
Type.INT;
}
}
@0verride
Type getMostPessimisticType () {
(pessimismBoundary != ) {
pessimismBoundary;
} {
Type.0BJECT;
}
}

Listing 3.6: Methods that were overridden
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Of course there has been work put in to implement TypeScript than this, with the
parser and all other compiler logic to handle all the new language constructs. But this is
the only place where that hooks in to Nashorn’s runtime environment. All other changes
were quite time consuming but there were no major design flaws in Nashorn that caused
any big problems. The fact that it was so easy to take advantage of the TypeScript types
shows that the type system in Nashorn is well designed and that it is easy to reuse and
even extend.

So TypeScript was easy to implement on top of Nashorn but TypeScript is in many
ways the perfect fit since no runtime behaviour differs from JavaScript and most compile
time processing is the same as well, the main difference is the type annotations. What
about other languages? There are issues in Nashorn to overcome before it is suitable for
implementation of other languages. More details on this is presented in Section 4.1.1
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Architecture

Oracle’s intention is, as stated earlier, to turn Nashorn into a generic runtime library for
dynamic languages. The main benefit from this is that Nashorn’s optimistic type system
and dynamic linking would be available for reuse by other dynamic language implementors.
That would make it easier to implement dynamic languages with good performance on
the JVM.

This chapter is about Nashorn’s architecture and what changes that could be made
to simplify reusing Nashorn’s core concepts. The new architecture is partly based on the
observations from the TypeScript implementation presented in Chapter 3.

4.1 Designing a new architecture

4.1.1 Current issues

In many ways Nashorn is well designed, an example of that was discussed in Section 3.2.4.
Namely, that Nashorn’s type system is fairly language agnostic and easily extended. The
biggest problem with it is that the type assignment phases operate on a JavaScript AST,
actually all compilation phases in Nashorn operate on a JavaScript AST. It is not that
surprising since Nashorn was initially written as a runtime for JavaScript only. That is
the underlying cause of most of the design issues mentioned in this section.

Some optimizations, like liveness analysis and control flow analysis, are not trivial
to perform on an AST [1]. Soderberg et al. shows that it can be done in [21] but it
is more complex to do. The AST representation is also structurally very different from
bytecode, which is the target language. This results in a complicated bytecode generation
phase in Nashorn. It consists of around 10 000 lines of code and is by far the most time
consuming phase of them all. If Nashorn had a lower level representation in between the
AST and bytecode representations it would open up the possibility to do more advanced
optimizations and reduce the code size and the execution time of the bytecode generator.

Another problem with the AST is that it represents the abstract syntar of a pro-
gramming language. An abstract syntax is derived from the concrete syntax which is the
grammar of the programming language, hence the abstract syntax and the AST is lan-
guage specific by definition [1]. Although it might be possible to create an AST that could
be used to represent multiple languages one would probably run into problems at some
point and it could be difficult to model some languages with a JavaScript AST. It would
also not be trivial to do language specific optimizations without causing problems, since
those optimizations would affect all languages that are implemented on top of Nashorn.
For example, in Nashorn there are semantics built into the AST nodes. In the node rep-
resenting binary operations, such as addition, the type of the result is inferred inside the
AST node. To be able to reuse the AST for other languages all such usages of the AST
would have to be moved elsewhere.

So if the AST cannot be reused easily, how to reuse the compilation phases that operate
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on the AST? It’s not possible and it would mean that each language implemented on top
of Nashorn would need to implement its own version of for instance the type assignment
phases and the splitting phase. To be able to fully reuse those phases they need to operate
on a representation that is more language independent than an AST.

The AST issue is mostly a compile-time problem, what about Nashorn’s runtime en-
vironment? It contains some JavaScript specific code. The linker links call sites according
to the JavaScript specification. Even though linking is similar between languages in many
cases, there are differences. Also, all builtin JavaScript variables and objects are part of
the runtime.

4.1.2 A design suggestion

Based on the issues with the current design, the solution discussed in this thesis is an
intermediate representation (IR) [1] for Nashorn. All language specific operations could
then be performed on the AST and then it would be transformed into the intermediate
representation for further optimization and type assignment. Apart from enabling reuse
of Nashorn’s solution it would also make the distinction between semantic analysis and
other optimizations clearer. Actually the only operations that would be performed on
AST level is the semantic analysis, quite similar to the compiler design example in [1].
Figure 4.1 shows how Nashorn’s architecture could look like with an IR. One of the main
benefits would be that recompilation could be handled inside Nashorn and would not need
to concern the language implementors.
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Figure 4.1: Overview of architecture with intermediate representation

What should be handled by Nashorn behind the intermediate representation and what
should be left for the language implementor to implement in the compiler front-end?
First of all, in terms of compilation phases that Nashorn has today, the type assignment
phases, the function splitter and bytecode generation and installation phases are definitely
bytecode specific and could perform on the IR rather than an AST.

In Section 1.1.2 a few concepts that are common to most dynamic languages are
discussed. Those are dynamic typing, dynamic linking and closures. Dynamic typing will
be handled in a similar way that Nashorn does today with the two type assignment phases
except that they operate on the IR instead of the AST.

Support for closures in the IR would simplify implementing a dynamic language on
Nashorn. That would require the IR to have support for lexical scopes in a way that
the language implementor has full control of to be able to implement the scope rules of
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the specific language. Although this has been considered, it is not a part of the design
presented in this thesis, the reason for that decision is discussed in Section 4.1.6.

The dynamic linking will also need to be customizable by the language implementor.
Each language has its own semantics and could require linking to be performed differently.

In the design suggestion presented in this thesis the IR is as similar to bytecode as
possible but has additional untyped instructions. For every typed bytecode instruction,
the IR has an equivalent but untyped operation which Nashorn assigns types to before
emitting Java bytecode with correct types. For example an additional untyped addition
operation is included and complements the already existing iadd, 1add, dadd etc. Because
the similarities to Java bytecode, the IR is referred to as Nashorn bytecode in the rest of
this thesis.

4.1.3 Operators

There is an interesting issue with the basic operations such as addition, multiplication
and division etc. in Nashorn bytecode. The +-operator in JavaScript for instance can be
used for multiple purposes. The most intuitive usage is to add two numbers but there are
really no limits to which types the + operates on. For example "2" + "2" evaluates to
"22" [ + [] to the empty string and {} + {} to NaN. This is specific to JavaScript and
is different in other languages, for example in Ruby [] + [] evaluates to the empty array.

a(a, b) {
a + b;

Listing 4.1: Add-operator example

It is common that operators behaves differently depending of the types of the operands,
a compiler for a static language would solve this by emitting different code depending on
the operand types. The problem for dynamic languages, however, is that the compiler
front-end cannot know the types of the operands and can therefore not emit code based
on the types.

Take the JavaScript code snippet in Listing 4.1 as an example. Function a on line 1
just returns the sum of the two variables, how would a Nashorn bytecode representation
of that function look like? Without knowledge of the operand types there are only two
options. The first one is to emit a conditional chain that performs different operations
depending on the runtime type, Listing 4.2 shows parts of a pseudo Nashorn bytecode
representation of that solution.

The code is not really valid Nashorn bytecode and most of the addition is left out since
it would be too long, the code however shows the general problem with this approach. That
amount of code would have to be generated for every add-operation in the program. It
would kill the performance and totally defeat the purpose of both the optimistic type
system and Nashorn bytecode. After all, the purpose of the optimistic type system is to
be able to emit efficient bytecode with as narrow types as possible.

The other approach is to just use the Nashorn bytecode’s add operation, like in List-
ing 4.3 and hope that it works. That seems like a naive approach, how would Nashorn
know what bytecode to emit for the add operation if it ends up with an array and a string?
Should it throw an error? In that case which error? Or should it do something else? If
the Nashorn bytecode was intended for one language only, such as JavaScript, it could
just do what the specification says but now there could be several semantic meanings of
the same operation depending on the language. In some languages, like Ruby, it is even
possible to overload operators for classes. That complicate the add operation in Nashorn
bytecode even more.
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1
Object
0BJ
int
INT
0BJ:
2
Object
0BJADD
int
MIXADD
INT:
0BJADD:
1
2
ScriptRuntime. (Object ,0bject)0bject
MIXADD:
1
2
ScriptRuntime. (Object ,I)0bject

Listing 4.2: Pseudo Nashorn bytecode representation of the JavaScript function in
Listing 4.1.

The solution is that while Nashorn bytecode provides the basic operations, the language
implementor will have to tell Nashorn what to do with them depending on the type of the
operands. Nashorn knows the types and the language implementor knows the semantics of
the operator for the specific language depending on the types of the operands and provides
that knowledge to Nashorn. If both arguments are ints Listing 4.3 could be compiled to
the Java bytecode in Listing 4.4 and the addition would be a regular int-addition. If both
arguments are Object types, code that handles addition of those types can be emitted.
JRuby could for example emit a dynamic call site that links to the overloaded add-operator
as in Listing 4.5.

1

Listing 4.3: Proper Nashorn bytecode representation of the JavaScript function in
Listing 4.1.

To be able to utilize the type system fully, Nashorn has to know two things. First,
to be able to do static type analysis of local variables, it has to know, depending on the
operand types what the return type of the operator is. It could be an unknown type and
that is then handled by the optimistic type system. Second, to be able to emit bytecode,
it has to know how the operation should be executed.

That is the same information as the type system uses in Nashorn currently but it is
slightly hard coded for JavaScript semantics.
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Listing 4.4: Possible Java bytecode representation of the Nashorn bytecode in Listing 4.3
when both arguments are ints.

dyn:getMethod:add () Object

dyn:call(Object ,0Object)Object

Listing 4.5: Possible Java bytecode representation of the Nashorn bytecode in Listing 4.3
when both arguments are Objects. The addition is performed with a dynamic invokation
to a method called add on the first argument.

4.1.4 Semantic analysis

The problem with operators described in the last section can actually be generalized.
In dynamic languages some operations are performed in runtime that would in other,
more static, languages be performed at compile time. One such operation is the semantic
analysis which determines the meaning of each language construct.

For a dynamic language it is just not possible to perform a full semantic analysis at
compile time because the information needed is not available until runtime. In fact, parts
of the semantic analysis needs to be built into the runtime environment instead. The
operator problem is just an instance of that general problem.

What Nashorn needs to achieve with its IR is to return full control of the semantics to
the language implementors. This can not be achieved with a traditional semantic analysis
in the front-end. Instead, the language implementor will have to plug in behavior to
Nashorn’s runtime environment to control the semantics of the language at all applicable
places.

This does not mean that no traditional semantic analysis can be performed in the front-
end. What can be done differs from language to language. For example in TypeScript the
type checking could definitely be implemented as a traditional semantic analysis phase.
But even for TypeScript parts the semantic analysis needs to be built in to the runtime
since type safety is not guaranteed (a value of type any can be assigned to a variable of
all types) and linking has to be done at runtime.

4.1.5 Bytecode analogy

In Section 4.1.2 it was stated that Nashorn bytecode should be as similar to bytecode as
possible but with untyped instructions. Why is that and what does this really mean?

That question relates to what parts of Nashorn that should be made reusable. Nashorn’s
big advantage over other dynamic language implementation on the JVM is the type sys-
tem which improves performance by using narrow types where possible. The reason to
make the type system reusable is partly to simplify implementing new languages on the
JVM with good performance but also to help existing implementations to increase their
performance by making it easy for them to reuse Nashorn’s type system.

JRuby for example already has a language specific intermediate representation designed
for their uses which they perform several optimizations on. They would probably want to
continue using that and do as few changes as possible to adapt to Nashorn bytecode. If
Nashorn provided a library to build a bytecode-like untyped IR and a library to generate

35




CHAPTER 4. ARCHITECTURE

Py
=
o
g’ > Semantic analysis ? Optimizations and =
——————— » < | Parser (11) and JRuby IR Z | bytecode S > § Runtime
3 generation = | generation \ aQ
o Py ’ )
.
o) _-
Q -
o VvV Vv ___-V
-7 Nashorn \
_-
-
z
e © %
’ cg_ o
1 2 g o
N 3 3 | Bytecod 5
. ecode @ .
N > o | Type assignment 4 ) Runtim ~
a LT P 9 & | generation SRS < S
’ @ 15 & S
\ Q
N S [} 7
.. 2 aQ .
e © @ -

\_ " Hooompliatin J

Figure 4.2: Possible design of JRuby when utilizing Nashorn’s type system. They would
get an alternative to generate Nashorn bytecode instead of Java bytecode.

it they would in many ways already know how to utilize it since the difference to what
they are currently doing would not be that big. They can generate classes as they like,
use their own object model, handle lexical scopes in a way that suits Ruby etc. The
only difference would be that some instructions are replaced with untyped ones and that
Nashorn does some intermediate processing before the actual Java bytecode is generated.
Of course they would also have to plug in some language specific semantics for Nashorn
to be able to process the Nashorn bytecode.

JRuby’s design on top of Nashorn could look like in Figure 4.2. The big benefit is
that JRuby’s current solutions can be reused, they would not have to go through another
major change in their design to utilize Nashorn’s type system.

Nashorn bytecode is an alternative compilation target to Java bytecode to be able to
execute code on the JVM that specifically targets dynamic languages.

The same reasoning applies to all other existing dynamic language implementations
on the JVM as well, including Nashorn’s JavaScript front-end. And that is arguably inde-
pendent of their current design, just generate Nashorn bytecode instead of Java bytecode.

4.1.6 Closures

Closures and lexical scopes have been left out from the Nashorn bytecode. The main
reason for that is that it would have enforced design decisions made in Nashorn to the
implementing language.

The scope objects in Nashorn are initialized and attached to the function in the gen-
erated bytecode when the ScriptFunction object is instantiated. The scope object is
stored inside the function throughout its lifetime. The initialization of the function and
the scope object is executed in the parent function where the function is declared in the
JavaScript source code. In that way the parent scope can be set in the created scope
object to be able to access variables in that as well.

With Nashorn’s current object model, that is necessary to be able to implement
JavaScript’s lexical scope rules. After all, the set of accessible variables in a function
is dependant of where the function was declared lexically.

That way of handling scopes is quite general and could probably be adapted to support
other languages lexical scope rules as well. One problem though is that Nashorn would be
in full control of the scope objects with the consequence that the language implementor
would not have that control. Control of the scope objects is needed to be able to add
properties and built in functions to them. Also, existing language implementations might
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have a completely different approach to scopes than Nashorn. Even if they could adapt
to Nashorn’s way of handling scopes and builtins they might choose not to since it might
require them to rewrite a solution that already works for them.

What if the language wants different scopes to be handled differently? For exam-
ple Ruby has several kinds of scopes (local scope, class scope, global scope etc.) while
JavaScript has only one. Although that is solvable it would be difficult to do it in a way
that fits all dynamic languages and especially languages that already have a working im-
plementation on the JVM. Instead, the lexical scopes and closures are completely left to
the language implementors to handle in the way that suits them and their needs.

4.1.7 Dynamic linking

Linking is one of the places where the language implementor will need to be able to plug
in functionality in Nashorn. How a call site is linked is closely related to the semantics of
the language.

Nashorn uses Dynalink to handle the dynamic linking for JavaScript. Dynalink was
first implemented as a standalone library for dynamic linking with invokedynamic and is
not at all written for JavaScript specifically [22]. As described in Section 2.3.2, Nashorn
uses dynalink by implementing its own linker which is then used by the Dynalink frame-
work to link call sites. The nice thing about this is that a language implementor for
another dynamic language could do just the same.

To provide a good interface to dynalink’s linking mechanisms Nashorn bytecode will
have an operation for each of dynalink’s operations, see Section 2.3.2. One other reason for
that is that since invokedynamic is a typed instruction it can not be used directly for call
sites where types are unknown. An untyped invokedynamic instruction could be exposed
but since dynalink will be used nevertheless, having support for dynalink’s operation in
Nashorn bytecode is a good alternative that does not limit flexibility.

A problem with linking is that linking in Nashorn is closely related to typing since
Nashorn must handle compilation of type specializations. In Nashorn today functions
are represented as ScriptFunction objects, those objects are JavaScript specific. They
keep track of both the lexical scope and the JavaScript source code. It also initiates
type specialization compilation when needed and caches the compiled code for future use.
The code part of ScriptFunction could be made language agnostic, just by keeping a
reference to the Nashorn bytecode that was generated from it instead of the JavaScript
source code. Nashorn could provide an object that wraps the Nashorn bytecode that has
a simple interface, like the one in Listing 4.6 with just a single function that returns a
representation of a compiled function of a certain type. That representation should also
contain the information needed to link to it.

NashornBytecodeFunction {
CompiledFunction getTypeSpecialization(MethodType type);
}

Listing 4.6: The interface used to compile type specializations could look like this, here
represented as a Java interface

The benefit of this approach is that the language implementor gets the freedom to
represent functions as they want which means they have the freedom to link it as they
like as well. They just need to keep track of the NashornBytecodeFunction represen-
tation of the function and connect it to their internal function representation. That is
unfortunate but no solution that did not require that and still give the same freedom
to the language implementor has been found. A solution where Nashorn keeps track of
the Nashorn bytecode would involve to force the function representation to be the one
Nashorn uses internally. That would be more complicated to work with and force existing
language implementations to diverge from their current design and solutions.

For Nashorn’s JavaScript implementation this would mean that the ScriptFunction
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object would handle the lexical scope rules in the same way as today. The difference is
that it keeps track of the code and compiles type specializations differently. It would
keep track of Nashorn bytecode instead of JavaScript code and also let Nashorn bytecode
handle type specialization compilation.

Being able to recompile code from Nashorn bytecode rather than the language source
code is a benefit in itself. It gives a cleaner separation between the front-end and the
back-end of the compiler. It also relieves the language implementor from having to do
tricks to account for recompilation in, for example, the parser.

In the TypeScript implementation described in Section 3.1 a few problems occurred
that were caused by recompiling from the source code. Method a on line 2 in Listing 4.7
is an example of that. How to parse the method declaration is contextual, when parsed
eagerly it is no doubt there is a method declared on line 2 since it resides in a class. But
when recompiled the parsing starts at the method declaration which puts the parser out
of context. Without any special treatment the three first characters would actually be
parsed as a function call instead of a method declaration. It is possible to work around
such issues but it is indeed better to not have to.

class A {
a() :number {
5;
}
}

Listing 4.7: A contextual class method.

4.1.8 Type hierarchy

The type hierarchy in the optimistic type system uses four different types, the types and
the way they can be deoptimized is shown in Figure 4.3.

int - = => long - = > double - - =>{ java.lang.Object

Figure 4.3: The type hierarchy in Nashorn, the arrows shows which type each type can
be deoptimized to. Direct jumps from one node to another reachable node are implicit.

The types themselves can hold all values for every possible language since java.lang.0bject

is assignable by every Java object. The hierarchy for the numeric types is however not
sufficient for all languages, currently in Nashorn for example an addition of two numeric
types compiles to the bytecode in Listing 4.8 for each of the primitive types. The problem
is that in the first two cases a dynamic invocation to a method that handles overflow is
used while the double addition uses a regular dadd bytecode instruction. The reason for
that is that a bytecode double can fit all JavaScript numbers so the overflow logic is not
needed there [9]. A JavaScript number can however have the value Inf (infinity) just as
a Java double.

(II)1I
(JJ3)J

Listing 4.8: Numeric additions compiled to bytecode

However, that is not true in all dynamic languages, Ruby for example has no limitations
on how big a numeric value can become [5]. Ruby also has a separation between integer
values and floating point values that JavaScript has not [5, 9]. To tackle the first problem
it needs to be possible to fall back to a java.lang.BigDecimal or java.lang.BigInteger
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representation of numeric values. The second problem is more related to the structure of
the hierarchy, the hierarchy would have to be built up like in Figure 4.4 to be able to
separate integer values from floating point values. Actually both java.lang.BigInteger
and java.lang.BigDecimal can be assigned to java.lang.0Object so the same bytecode
could be used for the three of them. They are in the figure to emphasize that they need
to be used and that they also might require special treatment to invoke the arithmetic
operations.

int - > long - —>| java.lang.Biglnteger
\\ ! \\ ! \
\\ * \\ * \\
A double - > java.lang.BigDecimal [ - java.lang.Object

Figure 4.4: The type hierarchy needed to model Ruby, the arrows shows which type each
type can be deoptimized to. Direct jumps from one node to another reachable node are
implicit.

To make this possible the language implementor has to specify how the type graph
looks like for the specific language. The nodes in the graph are the bytecode types and
the edges are conditions that cause recompilation. Such conditions can for example be
int or long overflows, double-values that become Inf or that references are assigned to
places where the code is compiled with narrower types. This is already abstracted fairly
well but the flexibility needs to be improved.

4.1.9 Type boundaries

Section 3.2 shows the results of how TypeScript performs on Nashorn compared to JavaScript.
The performance and warmup time improvement is due to the fact that the TypeScript
implementation sets type boundaries to expressions.

The question is, would it be worth supporting setting type boundaries on operations
in Nashorn bytecode? There are three things to consider here:

1. How big is the performance gain?
2. How big of an effort would it be to implement support for type boundaries?

3. How useful would it be?

The first question is answered in Section 3.2. The results show that it does have an
impact on the performance when optimistic types are disabled. The performance gain is
almost up to 20% for some benchmarks. With optimistic types, however, the performance
of the stable state is not really effected but that was expected. However, warmup time
was effected, the execution time of the first iteration is significantly reduced for three out
of the four benchmark. After that the difference fades away quickly but on the other
hand, the biggest warmup issue is tied to the first iteration and for large applications
the improvement could matter. Although improved, the first iteration is still magnitudes
slower that the following ones so warmup is still a big issue.

The second question is also answered by the TypeScript implementation. It proved to
be really easy to extend the type system to be able to set boundaries with just a few lines
of code changed in each effected class, see Section 3.2.4.

The third question might also be the most relevant. Dynamic languages are dynam-
ically typed and in many cases that means that there are simply no type information
available to be able to set type boundaries. For JavaScript, Ruby [5] and Groovy [10] that
is the case. Clojure however has support for type annotation and could utilize the type
boundaries [8]. PHP has its type hints for function parameters that could make use of
boundaries [7], but that is limited to function parameters only. TypeScript can also make
use of the boundaries as shown by the TypeScript implementation in this thesis.
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So the usefulness is limited and in the general case, dynamic languages will not be able
to utilize the boundaries. The limited improvements in warmup time is also something that
speaks against supporting type boundaries. This means that supporting type boundaries
should not be first priority but given the small effort it would require it might still be
worth implementing at some point.

4.1.10 Static support

There is no conflict between having untyped operations in Nashorn bytecode and still
provide typed equivalents to the typed Java bytecode instructions. In most cases typed
operations would not be very useful since the dynamic behaviour of a dynamic language
cannot be modelled with them. But they can be useful for handling of internal objects.

Listing 4.9 shows a JavaScript construct that is modelled with invokestatic in
Nashorn. The compiled bytecode can be seen in Listing 4.10. That shows that the static
method TYPEQOF on the ScriptRuntime class is invoked to execute JavaScript’s typeof-
operator.

a = b;
aType = a;

Listing 4.9: JavaScript’s typeof-operator is implemented with an invokestatic
invocation

dyn:getProp|getElem|getMethod:a(0bject;)0bject;
ScriptRuntime . TYPEOF (Object;0Object;)0bject;

Listing 4.10: Bytecode compiled from the JavaScript code in Listing 4.9

There are other usages for invokestatic as well, there is no reason to remove the pos-
sibility to create such solutions and therefore those instructions are supported by Nashorn
bytecode. Even direct use of invokedynamic is allowed but then the language implementor
can not rely on Nashorn’s type system to assign types to it.

4.1.11 Representation and API

Nashorn bytecode could be represented in a number of different ways. In this section three
different representations is considered, binary representation, textual representation and
Java object representation. Benefits and disadvantages of each of them are discussed.

Binary

Nashorn bytecode could be represented in a binary form just like Java bytecode. Since
the instruction set would be similar between the two, most of the design choices done in
Java bytecode could be replicated.

The main benefit with a binary representation would be that a program can be ex-
pressed in Nashorn bytecode in a compact way. Since the Nashorn bytecode will have to
be kept in memory to be able to recompile it, that could actually have a big impact on
Nashorn’s memory usage.

Textual

The main benefit with a textual representation is that it is human readable and that could
simplify for the language implementors that are generating Nashorn bytecode. A textual
representation would not be as compact and memory efficient as a binary representation.
In Nashorn today, the JavaScript source code is kept in memory textually so keeping a
textual representation of Nashorn bytecode is feasible.
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LLVM supports both textual and binary representation of its intermediate represen-
tation [13].

Java objects

The last option discussed is to represent the code as plain Java objects that are connected
to each other in sequences. That is in fact a binary representation but is not as compact
as the one discussed above. A Java object representation is the least compact of the three.

This representation would not be human readable either but has the benefit of not
needing to be parsed. For Nashorn to be able to work with the Nashorn bytecode it would
have to construct this kind of representation no matter how it is represented between com-
pilations. In that sense it might be more efficient to use a Java object representation. The
memory issue could be somewhat limited by serializing the objects between compilations.

API

Each representation has its advantages and disadvantages. One aspect to keep in mind
though is that for the language implementor, what really matters is the interface Nashorn
provides to develop against.

That API could, and probably should, be designed so that the internal representation
in Nashorn does not matter. Given the previous design discussion Nashorn will have to
provide an API with support for four tasks:

1. Construct Nashorn bytecode

2. Plug in logic for basic operations such as add, mul and div
3. Plug in a language specific type hierarchy

4. Define its own Dynalink linker

The first could be done by exposing a library that constructs Nashorn bytecode program-
matically. Similar to what ASM Java bytecode construction library does [2] that Nashorn
uses, except that it would generate Nashorn bytecode instead of Java bytecode. Whatever
representation that produces in the end does not matter to the language implementor and
could even be changed if the chosen one turns out to not fulfill the performance and/or
memory requirements.

The second could be done either through the same API as the code generation or a
separate one. Same reasoning applies here, what is important is that Nashorn provides a
good API not how it is represented internally.

The third one could also be designed independent of representation and might be done
with a separate APIL.

The last point already has an interface, namely the interface that dynalink provides
and it could be used as is.

Given this discussion, the choice of how to represent Nashorn bytecode is left open to
decide in the future since it does not really affect the design discussed in this thesis.

4.2 Results

In this Section the new architecture for Nashorn is presented, the architecture is based on
the discussions in Section 4.1

4.2.1 Operations

Nashorn bytecode is an extension of Java bytecode and therefore supports all instructions
listed in The Java Virtual Machine Specification [14] with the same syntax and semantics.
Based on the discussion in Section 4.1.10, even though Nashorn bytecode adds support
for untyped instructions it still supports typed instructions from Java bytecode.
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Additional operations

Apart from the Java bytecode instructions, Nashorn bytecode has the untyped operations
listed in Table 4.1 and the Dynalink equivalent operations in Table 4.2.

The operations in Table 4.1 are untyped versions of already existing Java bytecode
instructions that lets Nashorn handle type assignment and generation of actual Java byte-
code. Not all the operations listed are subject to failed optimistic assumptions. For
example the compare instructions cmpg and cmpl only produces values -1, 0 or 1 and
can therefore never overflow an int. The reason they are there is that since the compiler
front-end does not know the types of the operands, it would not know which Java bytecode
instructions to use if they were not present.

The dynalink operations in Table 4.2 are just equivalents to the already existing dy-
nalink operations discussed in Section 2.3.2.

Table 4.1: Untyped equivalents to Java bytecode instructions

Operation | Stack Description

add .., valuel, value2 — ..., result Addition, result = valuel + value2

sub .., valuel, value2 — ..., result Subtraction, result = wvaluel —
value2

mul ., valuel, value2 — ..., result Multiplication, result = valuel -
value2

div ey valuel, value2 — ..., result Division, result = valuel — value2

rem ., valuel, value2 — ..., result Modulo, result = valuel / value2

and ., valuel, value2 — ..., result Bitwise and, result = waluel &
value?

or .., valuel, value2 — ..., result Bitwise or, result = valuel | value2

XOT ., valuel, value2 — ..., result Bitwise exclusive or, result =
valuel ™ value2

shl .., valuel, value2 — ..., result Bitshift valuel left by value2 bits

shr .., valuel, value2 — ..., result Arithmetic bitshift left, shift valuel
by value2 bits

ushr ., valuel, value2 — ..., result Logical bitshift right, shift valuel
by value2 bits

neg ., valuel — ..., result Negate valuel

load e = oo, TESUIE Load a local variable to the stack

store ., valuel — ... Store valuel as a local variable

cmpg ., valuel, value2 — ..., result Compare two numeric values, push
1 if valuel is greater than value2, 0
if equal and -1 if valuel is less than
value2. If at least one of the two is
NaN, push 1

cmpl ., valuel, value2 — ..., result Same as cmpg but push -1 if at least
one of valuel and value2 is NaN

4.2.2 Pluggable behaviour

This section covers the different behaviours of Nashorn bytecode that need to be plugged
in by the language implementor. The description is biased towards the general design
discussed in Section 4.1 rather than implementation specific details.
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Table 4.2: Operations equivalent to Dynalink’s operations.

Operation Stack Description

get_prop vy Value — ... result Get a property of value

get__elem oy Value — ... result Get an element of value

get__method | ..., value — ..., result Get a method of value

set_ prop oy value — ..., result Set a property of value

set_ elem oy value — ..., result Set an element of value

call oy [y largl, arg2, ...] — ... Invoke f

new oy [y largliarg2, ...]| — ..., result | Invoke f as a constructor
Operators

The problem with operators is discussed in Section 4.1.3. It consists of the compiler front-
end not being able to chose Nashorn bytecode operations depending on the type of the
operands since that information is not available at compile time. That problem applies to
all Nashorn bytecode operations listed in Table 4.1.

For each operation the language implementor has to specify two things:

1. Depending on the types of the operands, what is the return type of the operation.

2. Depending on the types of the operands, how to perform the operation.

How the APIT for this could look like is discussed shortly in Section 4.1.11, the details of
the API is implementation specific and is left out of this thesis.

A suggestion however, provided that Nashorn bytecode is represented with Java ob-
jects, is to use Java class inheritance to implement language specific operators. That would
mean that an abstract class or interface is provided by the API that requires the language
implementor to specify what is required, the interface for the add-operation could, for
instance, look like the one in Listing 4.11. Then the language specific operator class would
be used when constructing the Nashorn bytecode representation.

NashornAdd {
Type getReturnTypeFromOperandTypes (Type lhs, Type rhs);
BytecodeSnippet getEmittedBytecodeFromOperandTypes (Type lhs, Type rhs);

Listing 4.11: Possible interface for the add-operation.

Type hierarchy

The type hierarchy needed for the optimistic type system might differ between dynamic
languages and needs to be specified by the language implementor. The reason for that is
discussed in more details in Section 4.1.8.

The type hierarchy is a graph where the nodes in the graph are the bytecode types
and the edges are conditions that cause recompilation. Such conditions can for example
be int or long overflows, double-values that become Inf or that references are assigned
to places where the code is compiled with narrower types.

How the API for this should look like is also implementation specific and left out of
this thesis.
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Linking

Linking is handled with the dynalink equivalent operations listed in Table 4.2. To make
use of those the language implementor will have to implement its own dynalink linker just
like Nashorn does for JavaScript currently. How that is done is out of the scope of this
thesis, the interested reader is referred to the dynalink documentation®.

4.2.3 Construction

Nashorn will also have to provide a library for constructing Nashorn bytecode. The details
of how that could be designed is out of the scope of this thesis. In Section 4.1.11 it is
suggested that it can be designed similarly to ASM bytecode construction library but with
support for the new Nashorn bytecode instructions.

!Dynalink’s documentation: https://github.com/szegedi/dynalink/wiki
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Chapter 5

Conclusions

5.1 TypeScript implementation

The performance and warmup measurements on the TypeScript implementation show
that the type annotation indeed can be used to increase the performance of Nashorn.
Without optimistic type guessing enabled there were improvements of up to almost 20%
on some benchmarks, mainly the number intensive benchmarks. Others showed only a
small performance increase.

With optimistic type guessing the performance of the stable state was not expected to
increase but instead warmup time was expected to improve. While that was the case for
most benchmarks the difference was not as big as hoped for and warmup time is still an
issue. The execution time of each iteration for the JavaScript benchmarks catch up with
the TypeScript performance after only a few iterations.

This could be a result of the benchmarks used for the measurements being too small,
the warmup time grows approximately linearly with the code size. It could also be that
the optimistic type system in Nashorn does a good job at deoptimizing functions with
help of the runtime information available when an optimistic assumption fails, and by
that reducing the need of further deoptimizations. The truth probably lies somewhere in
between the two. Measurements on bigger benchmarks, such as Mandreel from the Octane
suite [6], would probably give clearer results on which of the two reasons has the biggest
impact.

Some observations from implementing TypeScript on Nashorn was used when designing
the intermediate representation for Nashorn. Being able to set type boundaries is one such
observation. Although it is not concluded that this should be a part of Nashorn bytecode
it is discussed that it might be worth supporting despite the rather small performance
gain because of the small effort it would require to implement it.

Another observation was that the optimistic type system is well designed and fits well
for other dynamic languages as well. The only problems are that it operates on a JavaScript
AST which is difficult to model other languages on and that the type hierarchy can not
be used for all languages. With Nashorn bytecode it will operate on that representation
instead to make it reusable for other dynamic languages.

5.2 Architecture

A new architecture for Nashorn has been presented that enables reuse of Nashorn’s type
system. The new design includes an intermediate representation that is similar to bytecode
but with additional untyped instructions. It is therefore referred to as Nashorn bytecode
in this thesis. Nashorn should provide an API that language implementors can use to
construct Nashorn bytecode and execute it on Nashorn.

Initially it was not clear exactly what to handle in Nashorn behind the intermediate
representation and what to leave for the language implementor to handle on their own.
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Managing closures and lexical scopes was considered but was intentionally left out. There
are two main reasons for that. First, scope rules differs a lot between languages and it
would be difficult to model in a way that fits all languages. Second, there are a lot of ex-
isting dynamic language implementations on the JVM which could benefit from Nashorn’s
type system. By keeping Nashorn bytecode as close to Java bytecode as possible it gets
easier for them to utilize Nashorn’s type system. It does not require the same effort as
if Nashorn forced a lot of solutions on them, instead they can use their current solutions
when it comes to representing functions and classes, perform optimizations in the compiler
etc. They would only have to rewrite the code generation to generate Nashorn bytecode
instead of Java bytecode.

Section 4.1.4 mentions semantic analysis for dynamic languages and that it can not be
fully performed in a traditional way at compile time since the information needed is often
not available. Instead, parts of the semantic analysis need to be performed at runtime
where there is more information available. Because of that, the new architecture supports
plugging in language specific semantics in Nashorn’s runtime environment in three situa-
tions. The first is basic operations where types are needed to be able to determine what
the operation actually means. The second is dynamic linking, the language implementor
gets full control on how to link call sites, and the third is the type hierarchy.

Implementation specific details are not discussed in great details in this thesis but
rather it focuses on identifying problems and present possible solutions for them. When
this new design gets implemented, new problems will probably arise that need to be solved
but the biggest issues are hopefully identified and a general design that should work is
presented in this thesis.

Nashorn bytecode differs from existing intermediate representations. JRuby’s IR is the
most similar in the sense that it is also designed for a dynamic language on the JVM. But
that is written for Ruby only and has Ruby specific semantics built in. The representation
is also on a somewhat higher level since it includes lexical scope rules for Ruby.

LLVM also provides a IR designed to be used by multiple languages. It also differs from
Nashorn bytecode in many ways. First, it is not written for JVM only, LLVM has multiple
back-ends that target different platforms. Second, it is not designed to handle problems
specific for dynamic languages. It is, however, possible to use LLVM to implement a JIT-
compiler for a dynamic language but it does not have an execution model with built in
support for dynamic languages as Nashorn bytecode has.

The fact that Nashorn bytecode is intended for the JVM and for dynamic languages
only had big impact on the final design. Since the JVM is its only target platform it has
been designed to overcome issues that exist on that platform which are mainly dynamic
typing and dynamic linking. That also ties to the fact that it is designed for dynamic
languages only. Had it been intended for static languages also those two issues might not
have been as prioritized. And of course, the fact that Nashorn bytecode is an extension
of Java bytecode is a result of the JVM being the targeted platform as well.

The solution presented in this thesis is by no means the only possible way to achieve
the same goals and there are probably an endless number of way it could be done. The
design solutions are however motivated and discussed to make it clear why the chosen
approach is a good one.
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