
Tiling and Asynchronous Communication

Optimizations for Stencil Computations

Thesis by

Tareq Majed Yasin Malas

In Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy

King Abdullah University of Science and Technology, Thuwal,

Kingdom of Saudi Arabia

October, 2015

2

The thesis of Tareq Majed Yasin Malas is approved by the examination committee

Committee Chairperson: Professor David Keyes

Committee Member: Professor Mootaz Elnozahy

Committee Member: Professor Basem Shihada

Committee Member: Professor David Ketcheson

Committee Member: Professor Satoshi Matsuoka

Committee Member: Dr. Hatem Ltaief

3

Copyright ©2015

Tareq Majed Yasin Malas

All Rights Reserved

4

ABSTRACT

Tiling and Asynchronous Communication Optimizations for

Stencil Computations

Tareq Majed Yasin Malas

The importance of stencil-based algorithms in computational science has focused

attention on optimized parallel implementations for multilevel cache-based processors.

Temporal blocking schemes leverage the large bandwidth and low latency of caches

to accelerate stencil updates and approach theoretical peak performance. A key in-

gredient is the reduction of data tra�c across slow data paths, especially the main

memory interface. Most of the established work concentrates on updating separate

cache blocks per thread, which works on all types of shared memory systems, regard-

less of whether there is a shared cache among the cores. This approach is memory-

bandwidth limited in several situations, where the cache space for each thread can be

too small to provide su�cient in-cache data reuse.

We introduce a generalized multi-dimensional intra-tile parallelization scheme for

shared-cache multicore processors that results in a significant reduction of cache size

requirements and shows a large saving in memory bandwidth usage compared to

existing approaches. It also provides data access patterns that allow e�cient hardware

prefetching. Our parameterized thread groups concept provides a controllable trade-

o↵ between concurrency and memory usage, shifting the pressure between the memory

interface and the Central Processing Unit (CPU).

5

We also introduce e�cient diamond tiling structure for both shared memory cache

blocking and distributed memory relaxed-synchronization communication, demon-

strated using one-dimensional domain decomposition. We describe the approach and

our open-source testbed implementation details (called Girih), present performance

results on contemporary Intel processors, and apply advanced performance modeling

techniques to reconcile the observed performance with hardware capabilities. Further-

more, we conduct a comparison with the state-of-the-art stencil frameworks PLUTO

and Pochoir in shared memory, using corner-case stencil operators. We study the

impact of the diamond tile size on computational intensity, cache block size, and en-

ergy consumption. The impact of computational intensity on power dissipation on

the CPU and in the DRAM is investigated and shows that DRAM power is a decisive

factor for energy consumption in the Intel Ivy Bridge processor, which is strongly in-

fluenced by the computational intensity. Moreover, we show that highest performance

does not necessarily lead to lowest energy even if the clock speed is fixed. We apply

our approach to an electromagnetic simulation application for solar cell development,

demonstrating several-fold speedup compared to an e�cient spatially blocked vari-

ant. Finally, we discuss the integration of our approach with other techniques for

future High Performance Computing (HPC) systems, which are expected to be more

memory bandwidth-starved with a deeper memory hierarchy.

6

ACKNOWLEDGEMENTS

I would like to thank sincerely my advisor Professor David Keyes for supporting my

Ph.D. under the Extreme Computing Research Center (ECRC) at KAUST. I thank

my parents and my wife for their continuous encouragement and for bearing with me

for my preoccupation during this journey and their deep moral support at all times.

I am in debt to Georg Hager and Gerhard Wellein from Erlangen University. Their

long experience in High Performance Computing and performance modeling was crit-

ical in improving our research, through our collaboration and regular meetings.

Many thanks to my fellow students and the research scientists of the ECRC for the

long fruitful discussions we had and for their support.

7

TABLE OF CONTENTS

Examination Committee Approval 2

Copyright 3

Abstract 4

Acknowledgements 6

List of Abbreviations 11

List of Figures 13

List of Tables 19

1 Introduction 20

1.1 Problem statement . 20

1.2 Motivation . 21

1.3 Contribution . 22

1.4 Thesis outline . 23

2 Background 24

2.1 Stencil computations . 24

2.2 Contemporary computer processors 27

2.3 Cache blocking . 29

2.3.1 Wavefront temporal blocking 29

2.3.2 Diamond tiling . 32

2.4 Analytic and phenomenological performance modeling 34

3 Motivation: On spatial and temporal blocking performance limits 37

3.1 Test systems: Intel Ivy Bridge and Haswell 37

3.2 Performance prediction and evaluation for pure spatial blocking . . . 39

3.2.1 3D 7-point stencil with constant coe�cients 40

8

3.2.2 3D 25-point stencil with constant coe�cients 44

3.2.3 Other stencils . 45

3.3 Upper performance bounds for in-cache execution 46

3.4 On temporal blocking practical performance limits 47

3.4.1 Single-thread wavefront diamond blocking 47

3.4.2 Cache block size model . 49

3.4.3 Memory tra�c model . 50

3.4.4 Model verification . 50

3.5 Summary . 52

4 Approach: Multi-dimensional intra-tile parallelization 55

4.1 Multi-dimensional intra-tile parallelization algorithm 55

4.2 Girih framework . 57

4.2.1 Multi-core wavefront temporal blocking 58

4.2.2 Auto-tuning . 62

4.2.3 Runtime system . 64

4.2.4 Distributed-memory parallelization 66

5 Performance results 69

5.1 Frameworks setup . 69

5.1.1 PLUTO setup . 70

5.1.2 Pochoir setup . 71

5.1.3 Girih setup . 71

5.2 Performance at increasing grid size 71

5.2.1 7-point stencil with constant coe�cients 73

5.2.2 7-point stencil with variable coe�cients 76

5.2.3 25-point stencil with constant coe�cients 77

5.2.4 25-point stencil with variable coe�cients 79

5.3 Multi-threaded Wavefront Diamond blocking (MWD) tile sharing im-

pact on performance, memory transfer, and energy consumption . . . 81

5.3.1 7-point stencil with constant coe�cients 82

5.3.2 25-point stencil with variable coe�cients 83

5.3.3 25-point stencil with constant coe�cients 84

5.4 Code balance and energy consumption analysis 85

5.5 Thread scaling performance . 86

5.5.1 7-point constant-coe�cient stencil 87

5.5.2 7-point variable-coe�cient stencil 87

9

5.5.3 25-point constant-coe�cient stencil 89

5.5.4 25-point variable-coe�cient stencil 89

5.6 Distributed memory strong scaling performance 90

5.6.1 7-point stencil with variable coe�cients 91

5.6.2 25-point stencil with variable coe�cients 93

6 Application: Accelerating a Maxwell Equations solver for a solar

cell simulation 94

6.1 Introduction . 95

6.2 Intra-tile parallelization implementation 99

6.3 Detailed analysis of the solver’s stencil codes 102

6.3.1 Näıve kernel arithmetic intensity 102

6.3.2 Spatial blocking arithmetic intensity 104

6.3.3 Diamond tiling arithmetic intensity and cache size requirements 105

6.4 Results . 107

6.4.1 Thread scaling results . 109

6.4.2 Increasing grid size results . 111

6.4.3 Thread group size impact on performance and memory transfers 113

6.5 Summary and future work . 115

7 Related work 116

7.1 Related work using separate cache block per thread 118

7.2 Related work utilizing cache block sharing 121

8 Conclusion 124

9 Future work and outlook 128

9.1 Integrating MWD in future systems 128

9.1.1 Handling deeper memory hierarchies with MWD 130

9.1.2 Handling long vectorization units 131

9.2 Tiles software prefetching . 132

9.3 Taking advantage of the memory bandwidth usage saving 133

9.4 Perspective on integration with accelerators 134

9.5 Handling other stencil types . 135

9.6 Integrating intra-tile parallelization techniques in stencil frameworks . 137

9.7 Understanding MWD behavior in the cache subsystem 137

10

9.8 Handling adaptive time stepping of Partial Di↵erential Equation (PDE)

solvers with MWD . 138

9.9 Krylov subspace solvers, a promising applications for MWD 140

9.10 Transferring temporal order derivatives to spatial order derivatives in

finite di↵erence PDE solvers . 140

9.11 Handling thin domains in three-dimensional grids 141

References 142

Appendices 152

11

LIST OF ABBREVIATIONS

1WD Single-threaded Wavefront Diamond blocking

CFL Courant-Friedrichs-Lewy

CL Cache Line

CPU Central Processing Unit

DP Double Precision

DSL Domain Specific Language

ECM Execution-Cache-Memory

FDFD Finite-Di↵erence Frequency Domain

FED Fixed-Execution to Data

FIFO First In First Out

FIT Finite Integration Technique

FMA Fused Multiply-Add

FPU Floating-Point Unit

GPU Graphics Processing Unit

HPC High Performance Computing

KNC Knight’s Corner

LIFO Last In First Out

LLC Last-Level Cache

LUP Lattice-site Update

MPI Message Passing Interface

12

MWD Multi-threaded Wavefront Diamond blocking

NUMA Non-Uniform Memory Access

PDE Partial Di↵erential Equation

PTX Parallel Thread Execution

PV Photovoltaic

RAPL Running Average Power Level

SIMD Single Instruction Multiple Data

SMX Streaming Multiprocessor

TG Thread Group

THIIM Time Harmonic Inverse Iteration Method

TLB Translation Lookaside Bu↵er

UMA Uniform Memory Access

13

LIST OF FIGURES

2.1 Di↵erent stencil update approaches for the 3-point stencil in one di-

mension. Fading gray boxes represent the last three updates. 30

2.2 Diamond tiling on a one-dimensional space grid, with arrows repre-

senting inter-tile data dependencies. The number of diamond tiles per

row represents the maximum attainable concurrency (i.e., concurrency

limit), as the tiles in the row can be executed independently of each

other. 33

3.1 Performance scaling across the cores of a chip with purely spatial block-

ing and data sets larger than L3 cache for the stencil algorithms shown

in listing 3.1 3.2 3.3 3.4. Problem sizes: 9603, 6803, 9603, and 4803

for subfigures a, b, c, and d, respectively. STREAM COPY memory

bandwidth bS ⇡ 40 GB/s . 45

3.2 Performance scaling across the cores of a chip with data sets fitting in

the L3 cache for the stencil algorithms shown in listing 3.1 3.2 3.3 3.4.

Problem sizes: 96⇥96⇥96, 64⇥64⇥48, 128⇥64⇥64, and 64⇥32⇥32

for subfigures a, b, c, and d, respectively. Variable-coe�cient stencils

require smaller grids to fit in cache. 47

3.3 Diamond tiling (along the y-axis) with single-thread wavefront tempo-

ral blocking (along the z-axis) in a three-dimensional space grid using

wavefront width of one cell.] . 48

3.4 Cache block size vs. modeled and measured code balance using four

corner-case stencil operators in Intel 18-core Haswell processor. Sev-

eral diamond tile sizes are evaluated using unit wavefront tile width.

Cache block size and code balance are computed using the models in

sections 3.4.2 and 3.4.3, respectively. All cases show accurate predic-

tion of the code balance when the cache block size falls within the

usable cache size (i.e., half the cache size of the processor). 53

4.1 Girih framework diagram. 57

14

4.2 Example of implementing multi-dimensional intra-tile parallelization

over wavefront diamond tiles in three-dimensional grid. 59

4.3 Girih auto-tuner flow chart. 63

4.4 Distributed memory parallelization along the diamond tiling dimen-

sion. We show a diagram of the diamond tiles tessellation at the sub-

domain boundary in 4.4a and the pseudo code for the computation and

communication order in 4.4b. 68

5.1 Ivy Bridge 7-point constant-coe�cient stencil results, using increas-

ing cubic grid size. Showing performance and memory transfer mea-

surements of MWD, PLUTO, Pochoir, Single-threaded Wavefront Di-

amond blocking (1WD), and spatial blocking. 74

5.2 Haswell 7-point constant-coe�cient stencil results, using increasing cu-

bic grid size. Showing performance and memory transfer measurements

of MWD, PLUTO, Pochoir, 1WD, and spatial blocking. 74

5.3 Ivy Bridge 7-point variable-coe�cient stencil results, using increasing

cubic grid size. Showing performance and memory transfer measure-

ments of MWD, PLUTO, Pochoir, 1WD, and spatial blocking. 76

5.4 Haswell 7-point variable-coe�cient stencil results, using increasing cu-

bic grid size. Showing performance and memory transfer measurements

of MWD, PLUTO, Pochoir, 1WD, and spatial blocking. 77

5.5 Ivy Bridge 25-point constant-coe�cient stencil results, using increasing

cubic grid size. Showing performance and memory transfer measure-

ments of MWD, PLUTO, Pochoir, 1WD, and spatial blocking. 78

5.6 Haswell 25-point constant-coe�cient stencil results, using increasing

cubic grid size. Showing performance and memory transfer measure-

ments of MWD, PLUTO, Pochoir, 1WD, and spatial blocking. 78

5.7 Ivy Bridge 25-point variable-coe�cient stencil results, using increasing

cubic grid size. Showing performance and memory transfer measure-

ments of MWD, PLUTO, Pochoir, 1WD, and spatial blocking. 79

5.8 Haswell 25-point variable-coe�cient stencil results, using increasing cu-

bic grid size. Showing performance and memory transfer measurements

of MWD, PLUTO, Pochoir, 1WD, and spatial blocking. 80

5.9 Haswell performance and memory transfer measurements of the 7-point

constant-coe�cient stencil using increasing cubic grid size. We com-

pare various thread group sizes in MWD. 82

15

5.10 Haswell performance and memory transfer measurements of the 25-

point variable-coe�cient stencil using increasing cubic grid size. We

compare various thread group sizes in MWD. 83

5.11 Ivy Bridge performance, memory transfer measurements, and energy

consumption estimates of the 25-point constant-coe�cient stencil using

increasing cubic grid size. We compare various thread group sizes in

MWD. 84

5.12 Using Intel Ivy Bridge, energy vs. code balance for the seven-point

stencils at several diamond tile sizes, separately for DRAM and CPU

and as a total sum. The corresponding performance of each experiment

is shown on the top x-axis. The annotation at each point represents

the used diamond width. 5WD is used in the experiments. 86

5.13 Thread scaling for the 7-point constant-coe�cient stencil, showing per-

formance and memory transfer measurements. We compare PLUTO,

Pochoir, 1WD, MWD, and spatially blocked code variants on the 18-

core Haswell socket at a grid size of 8963. 88

5.14 Thread scaling for the 7-point variable-coe�cient stencil, showing per-

formance and memory transfer measurements. We compare PLUTO,

Pochoir, 1WD, MWD, and spatially blocked code variants on the 18-

core Haswell socket at a grid size of 7683. 88

5.15 Thread scaling for the 25-point constant-coe�cient stencil, showing

performance and memory transfer measurements. We compare PLUTO,

Pochoir, 1WD, MWD, and spatially blocked code variants on the 18-

core Haswell socket at a grid size of 8963. 89

5.16 Thread scaling for the 25-point variable-coe�cient stencil, showing per-

formance and memory transfer measurements. We compare PLUTO,

Pochoir, 1WD, MWD, and spatially blocked code variants on the 18-

core Haswell socket at a grid size of 7683. 90

5.17 Distributed memory strong scaling performance of the 7-point stencil

with variable coe�cients at a grid size of 7683. Each MPI process uses

a ten core Intel Ivy Bridge processor. 91

5.18 Distributed memory strong scaling performance of the 25-point stencil

with variable coe�cients at a grid size of 5123. Each MPI process uses

a ten core Intel Ivy Bridge processor. 93

16

6.1 Cross-section of a sample simulation setup of a tandem thin-film solar

cell. The amorphous (a-Si:H) and microcrystalline silicon (µc-Si:H)

layers have textured surfaces to increase the light trapping ability of

the cell. SiO2 nano particles are incorporated to further increase light

scattering at the bottom electrode (Ag). 95

6.2 Diamond tile shape along the y-axis for the Time Harmonic Inverse

Iteration Method (THIIM) stencil. Although the Ĥ and Ê fields are

updated in the same iteration of the simulation code, we split them

in our tiling implementation to achieve better data reuse and better

diamond tile tessellation. 100

6.3 Ĥ and Ê field dependencies of the THIIM stencil kernel. Each field

is updated by reading six domain-sized arrays of the other field. The

arrows indicate dependencies over the same location in the grid and

a unit index o↵set. The (red) labels in square brackets indicate the

axis and the direction of the o↵set. The (blue) horizontal lines split

the components in three regions to indicate the components update

parallelism using three threads. 101

6.4 Extruded diamond tiling of the THIIM kernels, showing an example

of Dw = 4 and Ww = 4. The data dependencies of the Ĥ and Ê fields

allow more data reuse in the wavefront. 101

6.5 The cache block size requirements of the application’s kernels at three

wavefront widths (BZ). We use an 18-core Haswell at grid size 4803,

running a single thread with the 1WD approach. Smaller wavefront

tile widths, which provide less concurrency along the z-axis, enable

more data reuse. 108

6.6 The THIIM stencil performance and memory transfer measurements,

comparing 1WD, MWD, and spatially blocked code variants on an 18-

core Haswell socket at increasing number of threads using grid size

3843. 110

6.7 The THIIM stencil kernel performance and memory transfer measure-

ments, comparing 1WD, MWD, and spatially blocked code variants on

an 18-core Haswell socket at increasing cubic grid size. 112

17

6.8 The THIIM stencil kernel performance and memory transfer measure-

ments, comparing various thread group sizes in MWD on an 18-core

Haswell socket at increasing cubic grid size. The results show the

ability of our approach to reduce significantly the required memory

bandwidth and transfer volumes. 114

9.1 Outlook for integrating MWD with other techniques in future archi-

tectures. Figure with courtesy of Pete Beckman, Argonne National

Laboratory. 129

9.2 Utilizing Z-ordering space-filling-curves to visit diamond tiles hierar-

chically. Four tessellation levels are shown using black, green, red, and

blue colors for the diamonds’ boundaries of three tessellation levels.

This recursive tessellation nature of diamond tiles make them good

candidates for cache-oblivious algorithms 131

9.3 An example of box stencil operator, which extends diagonally to the

axes . 136

B.1 Ivy Bridge 7-point constant-coe�cient stencil results, using increasing

cubic grid size. Showing various hardware counters measurements and

tiling parameters of MWD, PLUTO, Pochoir, 1WD, and spatial blocking.156

B.2 Ivy Bridge 7-point variable-coe�cient stencil results, using increasing

cubic grid size. Showing various hardware counters measurements and

tiling parameters of MWD, PLUTO, Pochoir, 1WD, and spatial blocking.157

B.3 Ivy Bridge 25-point constant-coe�cient stencil results, using increasing

cubic grid size. Showing various hardware counters measurements and

tiling parameters of MWD, PLUTO, Pochoir, 1WD, and spatial blocking.158

B.4 Ivy Bridge 25-point variable-coe�cient stencil results, using increasing

cubic grid size. Showing various hardware counters measurements and

tiling parameters of MWD, PLUTO, Pochoir, 1WD, and spatial blocking.159

B.5 Haswell 7-point constant-coe�cient stencil results, using increasing cu-

bic grid size. Showing various hardware counters measurements and

tiling parameters of MWD, PLUTO, Pochoir, 1WD, and spatial blocking.160

B.6 Haswell 7-point variable-coe�cient stencil results, using increasing cu-

bic grid size. Showing various hardware counters measurements and

tiling parameters of MWD, PLUTO, Pochoir, 1WD, and spatial blocking.161

18

B.7 Haswell 25-point constant-coe�cient stencil, using increasing cubic

grid size. Showing various hardware counters measurements and tiling

parameters of MWD, PLUTO, Pochoir, 1WD, and spatial blocking. . 162

B.8 Haswell 25-point variable-coe�cient stencil results, using increasing

cubic grid size. Showing various hardware counters measurements and

tiling parameters of MWD, PLUTO, Pochoir, 1WD, and spatial blocking.163

C.1 Ivy Bridge 7-point constant-coe�cient performance, memory transfer

measurements, and energy consumption estimates using increasing cu-

bic grid size. We compare various thread group sizes in MWD. 165

C.2 Ivy Bridge 7-point variable-coe�cient stencil performance, memory

transfer measurements, and energy consumption estimates using in-

creasing cubic grid size. We compare various thread group sizes in

MWD. 166

C.3 Haswell 7-point variable-coe�cient stencil performance and memory

transfer measurements using increasing cubic grid size. We compare

various thread group sizes in MWD. 166

C.4 Haswell 25-point constant-coe�cient stencil performance and memory

transfer measurements using increasing cubic grid size. We compare

various thread group sizes in MWD. 167

C.5 Ivy Bridge 25-point variable-coe�cient stencil performance, memory

transfer measurements, and energy consumption estimates using in-

creasing cubic grid size. We compare various thread group sizes in

MWD. 167

19

LIST OF TABLES

2.1 Contemporary processor characteristics, showing the trend of memory

bandwidth decreasing per core. 28

5.1 Phenomenological ECM models, predictions, and performance mea-

surements for the four stencils under investigation with MWD at large

grid sizes on the Intel Ivy Bridge CPU. 73

5.2 Phenomenological ECM models, predictions, and performance mea-

surements for the four stencils under investigation with MWD at large

grid sizes on the Intel Haswell CPU. 73

20

Chapter 1

Introduction

In this chapter we introduce the problem, motivation, and the contribution of our

work. We also provide an overview of this thesis.

1.1 Problem statement

In this thesis, we introduce data traversal ordering schemes that o↵er a substantial

reduction in memory bandwidth usage and cache size requirements in the memory

bandwidth demanding stencil computations on multi- and many-core processors. Per-

formance modeling of the baseline and the proposed techniques is utilized to provide

tight bounds on the achievable performance and provide su�cient understanding of

the obtained performance. We investigate the benefit of our techniques on corner-case

stencil kernels and a solar cell simulation application to improve their performance

on both contemporary and future processors. Our proposed approach performs e�-

cient multi-dimensional intra-tile parallelization of wavefront and diamond temporal

blocking/tiling schemes. Diamond tiling provides a convenient data structure for

performing domain decomposition in a distributed memory configuration. Combin-

ing wavefront blocking with diamond tiling maximizes the in-cache data reuse in

three-dimensional solution domains.

21

1.2 Motivation

The evaluation of stencil operators on Cartesian lattices is a classic kernel in compu-

tational science and engineering, arising from systems that are “born” discrete and

from discretizations of PDEs, both explicit and implicit. In the implicit case the

iteration index is analogous to explicit time and stencil evaluation becomes a case

of sparse matrix-vector multiplication with special structure. Lattice values are up-

dated from neighbors at a previous time step or iteration sweep with concurrency

that scales linearly with the number of degrees of freedom. However, low flop-per-

byte ratios put a premium on locality: regular access patterns allow high spatial

locality, in the sense of packing cache blocks. The modest temporal locality within a

single iteration from reuse of a value within several adjacent stencils can be enhanced

across iterations, with the explicit goal of bringing the code balance, i.e., the ratio of

memory data tra�c to arithmetic work, closer to the machine balance, i.e., the ratio

of memory bandwidth to peak arithmetic performance [1]. On modern hardware,

and for most non-optimized stencil algorithm implementations, the machine balance

is usually much smaller than the code balance, which leads to performance being

governed by the memory bandwidth. Any reduction of code balance will thus lead to

a proportional performance increase, up to a point where execution decouples from

memory and other bottlenecks apply.

In future computer architectures each node may have up to a thousand shared-

memory cores with: small memory bandwidth per core, small cache size per core,

complex cache sharing among cores, expensive synchronization among all the cores,

interaction between heterogeneous processors, and expensive intra-node lockstep syn-

chronization after each iteration of stencil computations. The development of al-

gorithms that can run these stencil computations e�ciently on the emerging HPC

systems is essential.

22

1.3 Contribution

We propose a multi-dimensional intra-tile parallelization scheme using multi-core

wavefront diamond blocking for optimizing practically relevant stencil algorithms.

The results demonstrate a substantial reduction in cache block size and memory

bandwidth requirements using four corner-case stencil types that represent a full

range of practically important stencil computations. In contrast to many tempo-

ral blocking approaches in the literature, our approach e�ciently utilizes the shared

cache between threads of modern processors. It also provides a controllable tradeo↵

between memory bandwidth per thread and frequency of synchronization to alleviate

the bottleneck at the CPU or memory interface, as needed when applying a stencil

to a particular architecture. Relaxed synchronization of Message Passing Interface

(MPI) messages and overlapping of computations with communication in distributed

implementations is achieved through the structure of diamond tiling.

Our scheme provides cache block sharing along the leading dimension (the di-

mension of most rapid index advance in a Cartesian ordering) that results in better

utilization of hardware prefetching to the shared cache level. We introduce a novel

Fixed-Execution to Data (FED) wavefront parallelization technique that reduces the

data movement in the cache hierarchy of the processor by using tiling hyperplanes

that are parallel to the time dimension. Our approach achieves hierarchical cache

blocking by using large tiles in the shared cache level and fitting subsets of the tiles

in the private caches of the threads, providing cache blocks that span multiple cache

domains. Our implementation uses an e�cient runtime system to dynamically sched-

ule tiles to thread groups. We also develop an e�cient fine-grained synchronization

scheme to coordinate the work of the thread groups and avoid race conditions. Fi-

nally, coupled with auto-tuning, our cache block sharing algorithm provides a rich set

of run-time configurable options that allow architecture-friendly data access patterns

for various setups.

23

1.4 Thesis outline

Chapter 2 provides a background of stencil computations and temporal blocking tech-

niques relevant to our contribution. We motivate our approach through comprehen-

sive analysis of e�cient spatial and temporal blocking techniques over stencil types

representing corner cases in Chapter 3. Chapter 4 presents our main contribution, a

multi-dimensional intra-tile parallelization scheme that is implemented using MWD

tiling, extending previous state-of-the-art to the many-core frontier. Experimental

results of our proposed approach including an extension to distributed memory are

presented in Chapter 5. We also show the e↵ectiveness of our work in a real applica-

tion in Chapter 6. A review of the related work is described in Chapter 7. Finally, we

conclude in Chapter 8 and present the potential extensions of our work to di↵erent

applications and expected future HPC systems in Chapter 9.

24

Chapter 2

Background

We provide an introduction to stencil computations in this chapter. We also describe

important memory and energy properties of contemporary processors. Cache block-

ing techniques are essential to improve the performance of stencil computations in

contemporary processors, so we describe some very e�cient cache blocking techniques

in detail. To understand the e�ciency of the achieved performance, given the hard-

ware resources limits, we review two important performance modeling techniques, the

Roofline and the Execution-Cache-Memory (ECM) models.

2.1 Stencil computations

Regular stencil computations arise as kernels in structured grid finite-di↵erence, finite-

volume, and finite-element discretizations of partial di↵erential equation conserva-

tion laws and constitute the principal innermost kernel in many temporally explicit

schemes for such problems. They also arise as a co-principal innermost kernel of

Krylov solvers for temporally implicit schemes on regular grids. In [2], they consti-

tute the fifth of the “seven dwarfs,” the class of floating point kernels that receive the

greatest attention in high performance computing.

In iterative stencil computations of explicit or implicit type, each point in a multi-

dimensional spatial grid is updated using weighted contributions from neighboring

25

points, whose locations and weights define the stencil operator. Depending upon the

application, the weights can be constant or variable in space and/or time with some

or no symmetry to be exploited around the updated point.

A major demarcation exists between stencils whose coe�cients are constant in

space and time and those that vary, since variable coe�cients can shift the domi-

nant working set from the lattice values being updated to the coe�cients themselves.

In the PDE context, coe�cient variability can arise from constitutive parameters

(conductivities, elastic moduli, etc.) that depend upon space or time intrinsically or

through dependencies on the evolving field values, themselves, the typical nonlinear

case. Some models can be scaled so that the variability a↵ects only the diagonal

term of the stencil, which is then an important case to which to specialize. Whether

to compute coe�cients on-the-fly is a decision that a↵ects the code balance, since it

both releases all of the memory bandwidth to the lattice values and increases the flop

intensity of the typical lattice update. For this reason, we incorporate examples of

both constant and variable coe�cient operators into our models and experiments.

Another decisive property of stencil operators is their local spatial extent, which

derives from the truncation error order of the finite discretization scheme. In con-

temporary applications that drive fast stencil evaluations, such as seismic imaging,

eighth order is used in industrial applications of which we are aware [3]. This contrasts

with the second-order schemes for which the greatest amount of performance-oriented

research has been done to date.

Another property of stencil operators with fundamental impact on achievable e�-

ciency is the spatial dimension. Our contribution concentrates on the most common

case of three dimensions, though our illustrations of concepts often retreat into one

or two dimensions, so that space and time fronts can be visualized on planar figures.

In principle, each spatial dimension may be treated in the same or in a di↵erent way

with respect to partitioning and participation in wavefronts, as we show in our work

26

and the literature.

Our work includes stencil computation kernels that use a “Jacobi-like” update

scheme where the stencil array (i.e., the data structure with read access to neighbor-

ing grid points) is not written to during the same sweep. Another possible variant

is “Gauss-Seidel” update scheme, where the stencil array is adapted during the same

sweep. The latter is also relevant in practice but saved for an expanded scope of

work. All stencils considered here are “star stencils” of various spatial di↵erential

or truncation orders, where the stencil operator extends along one dimension at a

time, without diagonal o↵sets. “Box stencils”, “diamond stencils”, and multicom-

ponent stencils, in which multiple discrete fields interact on the same (or interlaced,

staggered) lattices, are also important in practice, and can be handled with similar

techniques.

The aforementioned issues put once-humble stencil evaluation in the cross-hairs of

co-design and motivate our examination of several shared-memory (multi-core) and

distributed-memory (message-passing) optimizations of a variety of stencils (see Code

Listings 3.1, 3.2, 3.3, and 3.4, in Chapter 3) on state-of-the-art hardware. We are

especially concerned with the degradation of memory bandwidth per core forecast at

tomorrow’s extreme scale. We test our techniques on a range of star-like stencils ac-

commodating up to eighth-order, constant and variable coe�cient (without on-the-fly

recomputation), noting their salutary e↵ects on memory pressure, power consump-

tion, and obtainable performance, and noting the transition of hardware bottlenecks.

For the fundamental kernel of Cartesian lattice updates, this thesis merely scratches

the surface of co-design. Pipelined or s-step Krylov solvers, time parallelism, and

high-order temporal discretizations that are obtained by using the governing PDE to

estimate high time derivatives from high space derivatives are all potentially stencil-

expanding (and halo-expanding) decisions made at an upstream algorithmic stage.

Their downstream consequences on stencil update performance and code balance can

27

be examined using the analyses and software tools introduced herein, but it remains

to close the loop with analyses and tools that allow how to design the best discrete

schemes in the first place.

2.2 Contemporary computer processors

Computer processors usually have slow and large memory (main memory), where

most or all of the application data lives, together with fast and small memory (cache

memory) near the CPU to bridge the performance gap between the CPU and main

memory. In the past decade, the frequency power wall forced processor designers

to increase processor concurrency. More compute power is obtained by adding more

CPUs instead of increasing the clock frequency of the processors. Modern processors

usually have multiple levels of cache memory, with a trend of having private cache

levels close to the CPUs and shared cache levels among groups of them.

One of the major challenges facing the applications is the increasing performance

gap between the CPU and the memory bandwidth, as shown in Table 2.1. Stencil

computations are among the important kernels that su↵er from this issue. Näıve

implementations of stencil computations leave the CPU idle a significant amount of

time while waiting for data transfer with the main memory to complete.

The cache memory levels utilize temporal and spatial locality principles to bridge

the performance gap between the memory and the CPU. Temporal locality relies on

the fact that when a memory location is accessed, it is likely to be accessed again in

the near future. That is, keeping the data in the cache memory makes consecutive

accesses to it faster. Spatial locality relies on the fact that when a memory location

is accessed, its neighbor is likely to be accessed in the near future. When the CPU

request data from the main memory, its neighbor data is brought with it, to reduce

the data transfer latency penalty. The cache memory size plays a significant role

28

Processor [cores]
Cache Mem. GB/s [/core] Gflops/ Flops/

L3 L2 L1 Theory STREAM Sec Byte

E5-2680 [8] 20M 256k 32k 51.2 38 [4.8] 173 4.6
E5-2695v2 [12] 30M 256k 32k 59.7 51 [4.3] 230 4.5
E5-2699v3 [18] 45M 256k 32k 68 47 [2.6] 662 14.1
IBM BG/Q [16] - 32M 16k 42.6 29 [1.8] 205 7.1
AMD 6380 [16] 16M 1M 16k 51.2 31.6 [2] 160 5.1
KNC SE10P [61] - 512k*61 32k 352 162 [2.7] 1060 6.5
KNL (DRAM) - 2M/2-core - 100 - 3000+ 30+
KNL (MCDRAM) - 2M/2-core - 500 - 3000+ 6+

Table 2.1: Contemporary processor characteristics, showing the trend of memory
bandwidth decreasing per core.

in maintaining high data reuse near the processor to bridge the increasing gap with

main memory bandwidth. Unfortunately, contemporary computer processors exhibit

a trend of having fixed or smaller cache size per CPU, as shown in Table 2.1.

The latency of bringing the data from main memory to the CPU is another chal-

lenging factor to obtaining high performance. Hardware and software prefetching

techniques alleviate this latency issue. Regular or contiguous memory access pat-

terns are important to utilize the hardware prefetching units. Moreover, the hardware

prefetching units of modern Intel processors stream the data within the boundaries

of 4KiB Translation Lookaside Bu↵er (TLB) pages, making long contiguous memory

accesses more important to utilize them.

In summary, careful optimization techniques are required to overcome the memory

bandwidth and cache size limitations. This can be achieved through algorithms with

higher data reuse in the cache memory, while maximizing the regular data access

patterns for proper utilization of the prefetching units.

29

2.3 Cache blocking

Typical scientific applications use larger grid size, on the order of GiBs, than a proces-

sor’s cache memory, which is on the order of MiBs. In the “näıve” approach, the grid

cells are updated in lexicographic order. Each grid cell update involves loading the

neighbor grid cells to perform the stencil computation. This neighbor access results

in loading the same data multiple times from main memory in each iteration, with no

data reuse across iterations. As a result, “näıve” stencil computations are typically

memory-bound due to their low flops/byte ratio [4].

Spatial blocking aims to maximize the in-cache data reuse within the same iter-

ation of the grid sweep by changing the grid point update order. We describe an

e�cient spatial blocking strategy in details in Section 3.2.1. Temporal blocking alle-

viates the memory pressure by allowing even more in-cache data reuse, where several

time step updates are performed to a grid point before evicting the data to main

memory. We describe very e�cient temporal blocking techniques from the literature,

namely, wavefront and diamond blocking.

2.3.1 Wavefront temporal blocking

We use the näıve update order of a 3-point stencil in one dimension to illustrate the

algorithms described here, using the C language syntax:

for(t=0; t<T; t++){

for(x=1; x<Nx-1; x++){

A[(t+1)%2][x] = W1 * A[t%2][x] + W2 * (A[t%2][x-1] + A[t%2][x+1])

}}

Figure 2.1a shows the näıve update order of this stencil. The fading gray color rep-

resents recently updated grid points, with the darkest assigned to the most recent

update. The three “upward pointing” red arrows show the data dependency of each

30

Space&

Ti
m
e&
st
ep

s&
.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

6 .".".
5 .".".
4 .".".
3 .".".
2 o o o o ! .".".
1 o o o o o o o .".". o o
0 o o o o o o o .".". o o

Data&dependency&

(a) näıve: Lattice sites updated in chronolog-

ical order, one time step at a time. Data de-

pendencies example represented by the three

“upward pointing” red arrows.

Space&

Ti
m
e&
st
ep

s&
.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

6 .".".
5 o o ! .".".
4 o o o ! .".".
3 o o o o ! .".".
2 o o o o o o o .".". o o
1 o o o o o o o .".". o o
0 o o o o o o o .".". o o

(b) Single thread wavefront traversal in

space-time blocks. Wavefront tiles are up-

dated sequentially.

Space&

Ti
m
e&
st
ep

s&
.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

6 .".".
5 o o o o o ! .".".
4 + + + + + + + ! .".".
3 # # # # # # # # # ! .".".
2 o o o o o o o o o o o o .".". o o
1 + + + + + + + + + + + + .".". + +
0 # # # # # # # # # # # # .".". # #

(c) Multi-thread wavefront traversal in space-time

blocks. The symbols/colors in the cells represent the

update of di↵erent threads. Each thread updates one

time step of the wavefront tile in this example. Extra

spacing between the threads (i.e., steeper tile slope)

allows concurrent update of the wavefront tile.

Figure 2.1: Di↵erent stencil update approaches for the 3-point stencil in one dimen-
sion. Fading gray boxes represent the last three updates.

31

grid point, which is important to consider at temporal blocking optimizations.

Wavefront temporal blocking is a well-known technique in the literature [5, 6,

7]. Compared to the näıve approach, the grid point update order maximizes the

reuse of the most recently visited grid points while respecting the data dependencies.

Figure 2.1b shows the basic idea of wavefront temporal blocking for the 3-point stencil

in one dimension. Wavefront tiles traverse the space-time block in the direction of the

arrows. The slope S of the wavefront tile is determined by the radius of the stencil

operator R , where high-order (i.e., long-range) stencils require a smaller tile slope

to respect the data dependency (S = �1/R). For example, the 3-point stencil, with

stencil bandwidth unity, has S = �1. The data in the wavefront tile has to fit in

the cache memory (along with the surrounding grid points accessed by the stencil

operator) to achieve the desired cache memory data reuse in the wavefront approach.

The time dimension block size controls the wavefront tile size to fit in the desired

cache level. For example, three time steps are blocked in Figure 2.1b to illustrate the

concept.

On multi-core systems one can perform single-thread wavefronts on separate spa-

tial locations in the grid. There is no need (nor use) for any cache sharing among

the threads, even if the hardware provides it. These concepts are described and im-

plemented in [7, 8]. An explicitly multi-core aware wavefront scheme leveraging the

shared cache among the threads was introduced in [9]. The wavefront tile update is

pipelined over a group of threads sharing a cache memory level. This has the advan-

tage of reducing the cache memory size requirements and allowing the use of larger

cache blocks. As a result, the memory bandwidth pressure can be reduced compared

to the single-thread wavefront. Fig. 2.1c shows the multi-thread wavefront variant

proposed in [9], where each thread’s update is assigned di↵erent symbol/color. Each

thread is assigned to one or more consecutive time steps of the wavefront tile. To en-

able concurrent update in the wavefront tile, the slope of the wavefront is increased to

32

add spacing between the threads. For example, the additional cell spacing in Fig. 2.1c

allows the three threads to update the wavefront tile concurrently. All threads have

the same amount of work for load balancing, and they must be synchronized after

each time step update to ensure correctness. A global barrier is the simplest solution

for this, but a relaxed synchronization scheme may result in better performance if the

workload per thread is small [10].

Combining the wavefront blocking scheme with other tiling techniques is essential

in three-dimensional grids. Otherwise, using only the wavefront scheme in multiple

dimensions would require much larger cache block size than typical cache sizes, when

a reasonable grid size is used. Wavefront tiling is commonly combined with tiling

approaches such as trapezoidal, parallelogram, or diamond tiling. These tiling ap-

proaches limit the tile size in other dimensions, such that the wavefront tile size fits

in the desired cache memory. Since diamond tiling is proven to provide maximum

the data reuse of a loaded spatial cache block [11], we describe it in greater detail in

the next section.

Wavefront blocking is ideal when the block size in time is fixed by a di↵erent factor,

for example, by the tiling approach in a di↵erent spatial dimension. By pipelining the

data to the cache memory, the wavefront method loads each element once to the cache

memory and performs the maximum time updates before evicting the results from

the cache memory. On the other hand, loading data blocks separately and updating

their elements by other tiling techniques would not allow maximum data reuse at the

edges of the loaded block due to the data dependencies.

2.3.2 Diamond tiling

Diamond tiling has received much attention in recent years. Figure 2.2 shows the basic

idea for the one-dimensional 3-point stencil. Arrows represent the data dependency

across the diamond tiles. Diamond tiles that start at the same time step compose a

33

Space&

Ti
m
e&
st
ep

s&
.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

16 .".".
15
14 .".".
13
12 .".".
11
10 .".".
9
8 .".".
7
6 .".".
5
4 .".".
3
2 .".".
1
0 .".".

Figure 2.2: Diamond tiling on a one-dimensional space grid, with arrows representing
inter-tile data dependencies. The number of diamond tiles per row represents the
maximum attainable concurrency (i.e., concurrency limit), as the tiles in the row can
be executed independently of each other.

“row of diamonds”, in which the diamond tiles are independent of each other, hence

can be updated concurrently. Each interior diamond tile has a data dependency on the

two diamond tiles that share edges with it in the lower row of diamonds (“parents”).

Sub-diamond tiles at the boundaries of the spatial domain have only one parent.

The slope of the tile edges depends on the stencil radius, where S = ±1/R. In this

work we consider diamond tile updates that do not perform synchronization with

other tiles until the update is completed. Several advantages of diamond tiling make

it favorable in shared memory systems: it maximizes the data reuse of the loaded

data block [11], has low synchronization requirements, allows concurrent start-up in

updating the diamond tiles, maintains high concurrency in transient state, and uses

a unified tile shape, which simplifies the implementation.

34

2.4 Analytic and phenomenological performance

modeling

Analytic performance models can answer the question what “good enough” perfor-

mance means, in the sense that they predict the optimal performance of an algorithm

and/or an implementation in view of the available resources. The Roofline model is a

well-known example, whose principles date back into the 1980s [12] and which has re-

ceived revived interest in the context of cache-based multi-core processor architectures

in recent years [13]. It predicts the performance of “steady-state” loops or loop nests

on a CPU, assuming that one of two possible bottlenecks apply: either the runtime is

limited by the execution of instructions (execution bottleneck) or by the required data

transfers through the memory hierarchy (data bottleneck), whichever takes longer.

“Steady state” in this context means that start-up and wind-down e↵ects are ignored,

and that the CPU executes the same mix of instructions with the same data require-

ments for a long time. The assumptions behind the Roofline model are fulfilled for

many algorithms in computational science that are either very data-bound or very

compute-bound, i.e., whenever the data transfer and execution times di↵er strongly.

Unfortunately, stencil algorithms with temporal blocking optimizations do not fall in

this category, as we show in our results.

The ECM Model [14, 15] extends the Roofline model. In contrast to the latter, the

ECM model does not assume perfect overlap between in-core and data transfer times.

Instead, it assumes that the in-core execution time, i.e., the time required to execute

a number of loop iterations with data coming from the L1 cache, is composed of an

overlapping and a non-overlapping part. The CPU serializes the non-overlapping part

with all transfer times between adjacent memory hierarchy levels down to where the

data originally resided. We briefly review the model here. See [15] for more details.

The execution unit (pipeline) sets the in-core execution time Tcore by taking the

35

largest number of cycles to execute the instructions for a given number of loop iter-

ations. The non-overlapping part of Tcore, called TnOL, consists of all cycles in which

a LOAD instruction retires. As all data transfers are in units of Cache Lines (CLs),

we usually consider one “cache line’s worth of work.” With a double-precision stencil

code, one unit of work is 8 iterations. The time for all data transfers required to

execute the work unit is the “transfer time.” The ECM model neglects the latency

altogether, so the maximum bandwidth (cache lines per cycle) between adjacent mem-

ory hierarchy levels determines the cost for one CL transfer. For example, on the Intel

Haswell architecture, one CL transfer takes one cycle between the L1 and L2 caches

and two cycles between L2 and L3. Moving a 64-byte CL between memory and L3

takes 64 bytes · f/bS cycles. Here f is the clock frequency of the CPU and bS is the

fully saturated memory bandwidth.

If Tdata is the transfer time, TOL is the overlapping part of the core execution, and

TnOL is the non-overlapping part, then

Tcore = max (TnOL, TOL) and TECM = max(TnOL + Tdata, TOL) . (2.1)

Tdata is the sum of the data transfer times through the memory hierarchy. If, for

example, the data is in the L3 cache, Tdata = TL1L2 + TL2L3.

We use a shorthand notation for the cycle times in the model for executing a unit

of work: {TOL k TnOL | TL1L2 | TL2L3 | TL3Mem} . Adding up the contributions from Tdata

and TnOL and applying (2.1) one can predict the cycles for executing the loop with

data from any given memory level. For example, if the model is {4 k 4 | 2 | 4 | 9} cy,

the prediction for L3 cache will be max (4, 4 + 2 + 4) cy = 10 cy. For predictions, we

use “e” as the separator to present the information in a similar way as in the model.

In the example above this would be TECM = {4 e 6 e 10 e 19} cy. It is easy to get from

time to performance (work divided by time) by calculating the fraction P = W/TECM,

36

where W is the work. If TECM is given in clock cycles but the unit of work is a LUP

and the performance metric is LUP/s then we have to multiply by the clock speed.

For multi-core scalability, we assume that the performance is linear in the num-

ber of cores until the maximum bandwidth of a bottleneck data path is exhausted.

On Intel processors the memory bandwidth is the only bottleneck. Hence, the abso-

lute maximum performance is the Roofline prediction for memory-bound execution:

PBW = I · bS, with I being the computational intensity. Thus, the model allows us to

predict the number of cores required to reach bandwidth saturation.

It is possible in many situations to analyze the data transfer properties of a stencil

code and construct the ECM model from first principles. In practice, one faces

di�culties with this approach when looking at temporally blocked codes. The reason

is that the model requires an accurate analysis of the data transfer volume in di↵erent

cache levels, which becomes very di�cult with small, non-rectangular block shapes

(for example, diamonds). In such situations, the model can only give very rough

upper limits. However, it is still possible to apply the principles of the model in

a phenomenological way by measuring the data transfers by hardware performance

monitoring. If the constructed model agrees with the performance measurements, it

indicates that the code utilizes the hardware in an optimal way, and especially that

the low-level machine code produced by the compiler does not incur any significant

overhead. This phenomenological modeling approach is applied later when analyzing

the performance of our temporal blocking approach.

37

Chapter 3

Motivation: On spatial and

temporal blocking performance

limits

In this chapter we motivate our cache block sharing work by showing the performance

and resource requirements limits of the state-of-the-art spatial and temporal blocking

schemes. We use the roofline model for the spatially blocked codes and we derive

models for highly e�cient temporal blocking schemes. These models are validated

using the corner-case stencils shown in Code Listings 3.1, 3.2, 3.3, and 3.4.

3.1 Test systems: Intel Ivy Bridge and Haswell

Our experiments are performed using Intel 10-core Ivy Bridge (Xeon E5-2660v2) and

Intel 18-core Haswell (E5-2699v3) processors. We use a cluster of dual-socket Intel Ivy

Bridge (Xeon E5-2660v2) nodes with a nominal clock speed of 2.2 GHz. The “Turbo

Mode” feature was disabled. Each CPU has a 25 MiB L3 cache which is shared among

all cores, and core-private L2 and L1 caches of 256 KiB and 32 KiB, respectively. All

data paths between the cache levels are half-duplex, 256-bit wide buses, so the transfer

of one 64-byte cache line between adjacent caches takes two CPU cycles. The core

38

architecture supports all Intel Single Instruction Multiple Data (SIMD) instruction

sets up to AVX (Advanced Vector Extensions). With AVX, one core is able to sustain

one full-width (32 byte) load and one half-width (16 byte) store per cycle. In addition,

one AVX multiply and one AVX add instruction can be executed per cycle. Since

one AVX register can hold either four double precision (DP) or eight single precision

(SP) operands, the peak performance of one core is eight flops per cycle in DP or

sixteen flops per cycle in SP.

Each Ivy Bridge node is equipped with 64 GB of DDR3-1600 RAM per socket

(using four memory modules) and has a maximum attainable memory bandwidth of

bS ⇡ 40 GB/s per socket (as measured with the STREAM COPY [16, 17] benchmark).

The nodes are connected by a full non-blocking, fat-tree QDR InfiniBand network.

We use a node of dual-socket Intel Haswell (Xeon E5-2660v2) processors. The

Haswell processor has several improvements over the Ivy Bridge (Sandy Bridge) mi-

croarchitecture. Mainly, the Haswell’s CPU uses AVX2 instructions that include

Fused Multiply-Add (FMA) operations, double the data transfer bandwidth of the

CPU load/store and L1-L2 caches. We use a Haswell processor with 45 MiB L3 cache,

128 GB DDR4-2133 RAM per socket, a maximum attainable memory bandwidth of

bS ⇡ 47.5 GB/s, and a nominal clock speed of 2.3 GHz.

For compiling and linking in this chapter, we use the Intel C compiler 13 for the

spatial blocking experiments and Intel C compiler 15 for the temporal blocking experi-

ments. Hardware performance counter measurements were done with likwid-perfctr

from the LIKWID multicore tools collection [18].

Apart from standard metrics, likwid-perfctr can also read the power dis-

sipation and energy consumption estimates based on the Running Average Power

Level (RAPL) mechanism. RAPL is an energy model implemented in hardware with

high degree of accuracy [19]. Its technology allows to estimate energy consumption

by using hardware counter technology available on Intel Sandy/Ivy Bridge lines of

39

Listing 3.1: 1st-order-in-time 7-point constant-coe�cient isotropic stencil in three
dimensions, with symmetry. The code shows single time iteration, where this code
is repeated many times in the time loop, with arrays pointer swapping after each
iteration.
for(int k=1; k < N-1; k++) {
for(int j=1; j < N-1; j++) {
for(int i=1; i < N-1; i++) {
U[k][j][i] = c0 * V[k][j][i]

+ c1 * (V[k][j][i+1] + V[k][j][i-1])
+ c1 * (V[k][j+1][i] + V[k][j-1][i])
+ c1 * (V[k+1][j][i] + V[k-1][j][i]);

}}}

multicore processors. On the system used for the tests, RAPL is able to report CPU

energy separately from DRAM energy. To reduce the temperature impact on the en-

ergy estimates, we run long enough experiments to have a steady state temperature

and energy consumption. We assume that RAPL reports consistent estimates of the

energy values, where we compare the relative energy consumption of the examined

cases, rather than measuring absolute energy consumption values.

3.2 Performance prediction and evaluation for pure

spatial blocking

We use Lattice-site Update (LUP) as a basic performance metric, since it does not

contain any uncertainty as to how many flops are actually done during one stencil

update. Specific implementations have a fixed ratio of LUPs to flops and other rel-

evant hardware events (such as bytes transferred, instructions executed, etc.), which

are discussed as required. Unless otherwise noted, the working set does not fit into

any CPU cache.

In the following we describe in detail two “corner cases” of stencil update schemes:

a three-dimensional seven-point stencil with constant coe�cients (Jacobi-type smoother,

see listing 3.1) and a three-dimensional 25-point stencil with constant coe�cients

40

Listing 3.2: 1st-order-in-time 7-point variable-coe�cient stencil in three dimensions,
with no coe�cient symmetry. The code shows single time iteration, where this code
is repeated many times in the time loop, with arrays pointer swapping after each
iteration.
for(int k=1; k < N-1; k++) {
for(int j=1; j < N-1; j++) {
for(int i=1; i < N-1; i++) {
U[k][j][i] = C0[k][j][i] * V[k][j][i]

+ C1[k][j][i] * V[k][j][i+1]
+ C2[k][j][i] * V[k][j][i-1]
+ C3[k][j][i] * V[k][j+1][i]
+ C4[k][j][i] * V[k][j-1][i]
+ C5[k][j][i] * V[k+1][j][i]
+ C6[k][j][i] * V[k-1][j][i];

}}}

(see listing 3.3). These examples were picked because they are simple to model for

memory-bound situations. Later we will show the e↵ectiveness of temporal blocking

for the Jacobi smoother, the variable-coe�cient 7-point stencil shown in listing 3.2,

and the variable-coe�cient 25-point stencil shown in listing 3.4.

We present spatial blocking results for the Ivy Bridge processor. It has better

machine balance (higher) than the Haswell processor, so the memory bandwidth

saturation here would be less severe compared to the Haswell processor.

3.2.1 3D 7-point stencil with constant coe�cients

The standard two-grid three-dimensional “Jacobi” update scheme in listing 3.1 is

probably the best analyzed stencil algorithm to date. From a data flow perspective

the spatial loop nest reads one array and updates another. In double precision, the

minimum code balance is thus BC = 24 bytes/LUP: eight bytes for loading one new

element of the previous time step data, eight bytes for the write-allocate transfer on

the new time step, and eight bytes for evicting the updated data back to memory.

The write-allocate transfer may be avoided by the use of “non-temporal stores,” which

bypass the memory hierarchy, thereby reducing the code balance to 16 bytes/LUP.

41

Listing 3.3: 2nd order in time 25-point constant-coe�cient isotropic stencil in three
dimensions, with symmetry across each axis. The code shows single time iteration,
where this code is repeated many times in the time loop, with arrays pointer swapping
after each iteration.
for(int k=4; k < N-4; k++) {
for(int j=4; j < N-4; j++) {
for(int i=4; i < N-4; i++) {
U[k][j][i] = 2*V[k][j][i] - U[k][j][i] + C[k][j][i] * [

+c0 * V[k][j][i]
+c1 * (V[k][j][i+1]+V[k][j][i-1]

+V[k][j+1][i]+V[k][j-1][i]
+V[k+1][j][i]+V[k-1][j][i])

+c2 * (V[k][j][i+2]+V[k][j][i-2]
+V[k][j+2][i]+V[k][j-2][i]
+V[k+2][j][i]+V[k-2][j][i])

+c3 * (V[k][j][i+3]+V[k][j][i-3]
+V[k][j+3][i]+V[k][j-3][i]
+V[k+3][j][i]+V[k-3][j][i])

+c4 * (V[k][j][i+4]+V[k][j][i-4]
+V[k][j+4][i]+V[k][j-4][i]
+V[k+4][j][i]+V[k-4][j][i])];

}}}

Our experiments show that non-temporal stores can improve the performance of the 7-

point constant-coe�cient stencil by 33%. On the other hand, the non-temporal stores

decrease the performance of the 25-point constant-coe�cient stencil, as it reuses the

updated grid points in the same iteration. The variable-coe�cient stencils may have

minor benefit from the non-temporal stores, as the contribution of the write-allocate

transfers is minor compared to the loaded coe�cient data.

Depending on the grid size and the cache size, spatial blocking may be required

to achieve the minimum code balance of 24 bytes/LUP. If three successive “layers”

of size Nx ⇥ Ny grid points fit into a cache, the only load operation within a LUP

that causes a cache miss goes to V[k+1][j][i], and all other loads can be satisfied

from the cache. If C is the cache size, we assume (as a rule of thumb) that only about

C/2 is available for the previous time step data, and the layer condition for double

precision is

3 ⇥ Nx ⇥ Ny ⇥ 8 bytes <
C

2nthreads

. (3.1)

42

Listing 3.4: 1st-order-in-time 25-point variable-coe�cient anisotropic stencil in three
dimensions, with symmetry across each axis. The code shows single time iteration,
where this code is repeated many times in the time loop, with arrays pointer swapping
after each iteration.
for(int k=4; k < N-4; k++) {
for(int j=4; j < N-4; j++) {
for(int i=4; i < N-4; i++) {
U[k][j][i] = C00[k][j][i]* V[k][j][i]

+C01[k][j][i]*(V[k][j][i+1]+V[k][j][i-1])
+C02[k][j][i]*(V[k][j+1][i]+V[k][j-1][i])
+C03[k][j][i]*(V[k+1][j][i]+V[k-1][j][i])
+C04[k][j][i]*(V[k][j][i+2]+V[k][j][i-2])
+C05[k][j][i]*(V[k][j+2][i]+V[k][j-2][i])
+C06[k][j][i]*(V[k+2][j][i]+V[k-2][j][i])
+C07[k][j][i]*(V[k][j][i+3]+V[k][j][i-3])
+C08[k][j][i]*(V[k][j+3][i]+V[k][j-3][i])
+C09[k][j][i]*(V[k+3][j][i]+V[k-3][j][i])
+C10[k][j][i]*(V[k][j][i+4]+V[k][j][i-4])
+C11[k][j][i]*(V[k][j+4][i]+V[k][j-4][i])
+C12[k][j][i]*(V[k+4][j][i]+V[k-4][j][i]);

}}}

This assumes that OpenMP parallelization is done along the z axis with static

scheduling. If this condition is violated, at least the loads to V[k+1][j][i],

V[k-1][j][i], and V[k][j+1][i] will cause cache misses, which leads to a

code balance of 40 bytes/LUP. If the cache is too small to even hold three successive

rows of the grid, the only loads that come from the cache will be to V[k][j][i-1]

and to V[k][j][i]. The code balance for this case is 56 bytes/LUP.

The layer condition (3.1) is independent of Nz. Hence, it is su�cient to introduce

spatial blocking in the x and/or y dimensions in order to arrive at the minimum code

balance. In practice one should try to keep the inner (x) block size larger than about

one OS page in order to avoid frequent TLB misses and excess data tra�c due to

hardware prefetching [20]. Additionally, we use “static,1” OpenMP scheduling, which

relaxes the layer condition to

(nthreads + 2) ⇥ Nx ⇥ Ny ⇥ 8 bytes <
C

2
, (3.2)

43

since each thread shares both neighboring layers of its current z layer with its neigh-

boring threads (except the first and the last thread, which only share one layer with

their respective neighbor).

Note that the layer condition can be satisfied for any cache in the hierarchy if

the block sizes are chosen appropriately; for memory-bound implementations one

usually tries to establish it for the Last-Level Cache (LLC) to ameliorate the impact

of the memory bandwidth bottleneck. In case of temporal blocking, however, the

bottleneck may not be main memory and the smaller caches need to be taken into

account. Since the overhead at block boundaries becomes significant at small block

sizes, the optimum code balance is a goal that is all but impossible to achieve in this

case.

Figure 3.1a shows the performance of the seven-point stencil algorithm in double

precision on one Ivy Bridge chip with up to ten cores for a grid of 9603 points (circles)

and the memory bandwidth usage as measured by likwid-perfctr (triangles), to-

gether with the estimated saturated performance (solid line) and ideal scaling (dashed

line). The selected grid size is much larger than the L3 cache memory size, which

is more practical in scientific applications. Any similar grid size would have similar

performance since the same number of bytes would be transfered per LUP. We choose

960 because it is divisible by 4, 8, 12, 16, 20, and 24, which correspond to full dia-

mond tile width in this work’s implementation. This results in having less diamond

tile fractions at the boundaries, which would cause interference in our performance

modeling work.

With appropriate spatial blocking the expected saturated performance as given

by the roofline model [1, 13] is

Proof =
bS
BC

=
40 GB/s

24 bytes/LUP
= 1.67 GLUP/s . (3.3)

44

The performance saturates at 6–7 cores, and the available memory bandwidth is

utilized by up to 95%. Since there is strong saturation, we expect a strong benefit

from temporal blocking.

3.2.2 3D 25-point stencil with constant coe�cients

The considerations about layer conditions as shown above for the seven-point stencil

apply in a similar way for long-range stencils. In the particular case of the algorithm

shown in listing 3.3, one sweep of the grid updates one array (read/modify/write)

and reads two more arrays, one of which is accessed in a radius-four (semi-bandwidth

of four) stencil pattern. The minimum code balance for double precision is thus

BC = 32 bytes/LUP.

Due to the long-range stencil the layer condition is changed as compared to the

previous case. With “static,1” scheduling, each thread can share the eight neighbor-

ing layers V[k-4][][]. . .V[k-1][][] and V[k+1][][]. . .V[k+4][][] with

its eight neighboring threads (four in either z direction), but the top and bottom

threads have less sharing. Consequently, the layer condition is

(nthreads + 8) ⇥ Nx ⇥ Ny ⇥ 8 bytes <
C

2
. (3.4)

If this condition is fulfilled, V[k+4][j][i] is the only element from the stencil

array that has to come from main memory.

Figure 3.1c shows the performance and memory bandwidth usage for ideal spa-

tial blocking on a ten-core Ivy Bridge chip. The roofline model predicts an upper

performance limit of

Proof =
bS
BC

=
40 GB/s

32 bytes/LUP
= 1.25 GLUP/s . (3.5)

In contrast to the Jacobi-type stencil there is no clear saturation. The data transfers

45

2 4 6 8 10

Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

G
LU

P
/s

Ideal scaling
Perf. limit
Perf. (GLUP/s)
BW (GBytes/s)

0

5

10

15

20

25

30

35

40

G
B

yt
es

/s

(a) 7-pt const. coe↵.

2 4 6 8 10

Threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0

5

10

15

20

25

30

35

40

(b) 7-pt var. coe↵.

2 4 6 8 10

Threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0

5

10

15

20

25

30

35

40

(c) 25-pt const. coe↵.

2 4 6 8 10

Threads

0.0

0.1

0.2

0.3

0.4

0.5

0

5

10

15

20

25

30

35

40

(d) 25-pt var. coe↵.

Figure 3.1: Performance scaling across the cores of a chip with purely spatial block-
ing and data sets larger than L3 cache for the stencil algorithms shown in list-
ing 3.1 3.2 3.3 3.4. Problem sizes: 9603, 6803, 9603, and 4803 for subfigures a, b,
c, and d, respectively. STREAM COPY memory bandwidth bS ⇡ 40 GB/s

within the cache hierarchy and the execution of the loop code with data from the L1

cache take so much time that there is insu�cient pressure on the memory interface to

saturate the bandwidth even with ten cores, which makes this stencil a bad candidate

for temporal blocking in the Intel Ivy Bridge processor unless there is an opportunity

to save significant time with more e�cient in-core execution [15]. On the other

hand, since the Intel Haswell processor has a larger compute to memory bandwidth

performance gap, temporal blocking techniques would be beneficial for it.

3.2.3 Other stencils

Figures 3.1b and 3.1d show the saturation characteristics and maximum performance

levels for the seven-point stencil with variable coe�cients (ideal code balance of

80 bytes/LUP) and the 25-point stencil with axis-symmetric variable coe�cients (ideal

code balance of 128 bytes/LUP) listed in Lsts. 3.2 and 3.4, respectively. Both show

strong saturation close to the performance levels predicted by the roofline model, and

are thus important targets for temporal blocking optimizations.

46

3.3 Upper performance bounds for in-cache exe-

cution

To find the expected performance of ideal temporal blocking (i.e., when performance

has completely decoupled from the memory bottleneck), we have measured the per-

formance at problems fitting completely in the last-level cache without temporal

blocking. The results for the stencils discussed in the previous section are shown in

Figs. 3.2a–3.2d. Problem sizes have been chosen so that work decomposition across

threads is easy (no “artificial” load imbalance) and the inner loop length is not too

short.

We see that all stencil algorithms scale very well across the cores, which is expected

since the Ivy Bridge architecture does not have a hardware bottleneck except the main

memory interface. It also shows that our implementation has no serious issues with

OpenMP overhead or load balancing even with in-cache data sets.

Assuming 8 flops/LUP, the full-socket performance of the 7-point stencil with con-

stant coe�cients is only about 35 GF/s, whereas the arithmetic peak performance of

the CPU is 176 GF/s. The question arises why the observed performance is just 20%

of peak with an in-cache data set (this is similar for the other stencils). An in-depth

analysis requires employing the Execution-Cache-Memory (ECM) model [14]. The

model reveals that there is no definite bottleneck of in-cache execution; the time is

spent executing instructions (the LOAD pipeline being the limiting factor in the CPU

core) and transferring data through the cache hierarchy in roughly equal shares, with

no overlap between them. The true benefit of an in-cache data set (equivalent to de-

coupling from main memory bandwidth bottleneck through temporal blocking) is not

a large single-core performance but the lifting of the multi-core memory bottleneck,

eliminating saturation. A thorough analysis of this e↵ect using the ECM performance

model is carried out in [15].

47

2 4 6 8 10

Threads

0

1

2

3

4

5

G
LU

P
/s

Performance
Ideal scaling

(a) 7-pt const. coe↵.

2 4 6 8 10

Threads

0.0

0.5

1.0

1.5

2.0

2.5

(b) 7-pt var. coe↵.

2 4 6 8 10

Threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(c) 25-pt const. coe↵.

2 4 6 8 10

Threads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(d) 25-pt var. coe↵.

Figure 3.2: Performance scaling across the cores of a chip with data sets fitting in
the L3 cache for the stencil algorithms shown in listing 3.1 3.2 3.3 3.4. Problem sizes:
96⇥96⇥96, 64⇥64⇥48, 128⇥64⇥64, and 64⇥32⇥32 for subfigures a, b, c, and d,
respectively. Variable-coe�cient stencils require smaller grids to fit in cache.

3.4 On temporal blocking practical performance

limits

In this section we study the performance of highly e�cient temporal blocking schemes

in the literature, while keeping the implementation practical and e�cient for contem-

porary processors. We contribute accurate models to estimate the cache block size

and the memory tra�c of these schemes to show their limits. This work is particularly

important to show the shortcomings of using single-thread per tile in contemporary

processors, even when best tiling techniques are used.

3.4.1 Single-thread wavefront diamond blocking

In Sections 2.3.1 and 2.3.2 we showed that wavefront blocking and diamond tiling

techniques maximize the data reuse in the cache memory. We find it reasonable to use

these techniques over the outer dimensions (y and z) in three-dimensional grids. We

prefer to leave the x dimension intact, at reasonable grid sizes, for e�cient hardware

data prefetching, minimum TLB misses, and longer strides for vectorization. In fact,

48

Z"

Y"T"

.".". !
.".". !!!
.".". !!!!!
.".". !!!!!!!
.".". !!!!!!!
.".". !!!!!
.".". !!!
.".". !

.".". ! " "

.".". ! " " " "

.".". ! " " " " " "

.".". ! " " " " " " " "

.".". ! " " " " " "

.".". ! " " " "

.".". ! " "

T

Z Y

Top"view 3D"view

Y
Front"view Side"view

Figure 3.3: Diamond tiling (along the y-axis) with single-thread wavefront temporal
blocking (along the z-axis) in a three-dimensional space grid using wavefront width
of one cell.]

recent works are adopting these techniques in their implementations. Strzodka et

al. [7] perform the diamond tiling along the y-axis and the wavefront blocking along

the z-axis. Bandisti et al. [21] perform the diamond tiling along the z-axis and the

wavefront blocking along the y-axis in PLUTO framework. As will be shown in

Chapter 5, the auto-tuning of PLUTO tiling parameters shows that longer strides

along the x-axis achieves the best performance, which validates our argument.

We implement a 1WD scheme in this work, as shown in Figure 3.3. The wavefront

traverses along the z-axis. The diamond tiling is performed along the y-axis. Hence,

each grid point in Fig. 3.3 extends along the full x range.

The 1WD scheme is an important ingredient of this work. We construct and

validate cache block size and memory tra�c models in the following subsections for the

1WD implementation to show its requirements and limits on contemporary processors.

49

3.4.2 Cache block size model

We construct a cache block size model of 1WD, validate its correctness, and study its

impact on the code balance at di↵erent diamond sizes. The model calculations require

four parameters: the diamond width Dw in the y axis, the wavefront tile width NF ,

the bytes number in the leading dimension Nxb, the stencil radius R, and the number

of domain-sized streams in the stencil operator, ND. Examples of stencil radius are

R = 1 and R = 4 at the 7- and 25-point stencils, respectively. The 7-point constant-

coe�cient stencil has ND = 2 (Jacobi-like update). The 7-point variable-coe�cient

stencil uses seven additional domain-sized streams to hold the coe�cients. For a

stencil with R = 1, the wavefront width Ww has the size: Ww = Dw +NF �2 and the

total required bytes in the wavefront cache block CS, with some approximations, is:

CS = Nxb ·

ND ·

✓
D2

w

2
+ Dw · (NF � 1)

◆
+ 2 · (Dw + Ww)

�
. (3.6)

The equation is composed of three parts: “Nxb” factor is the size of the leading

dimension tile size, “D2
w/2 + Dw · (NF � 1)” term is the diamond area in the y-z

plane as shown in the top view of Fig. 3.3, and the halo region of the wavefront is

the “2 · (Dw + Ww)” term.

For example, Dw = 8 and NF = 1 in Fig. 3.3, so Ww = 8+1�2 = 7 and the total

block size at 7-point constant-coe�cient stencil is Nxb · (2 · (82/2+8 ·0)+2 · (8+7)) =

94 · Nxb bytes.

The steeper wavefront in higher-order stencils results in di↵erent wavefront width

(Ww = Dw � 2 · R + NF) and di↵erent CS as follows:

CS = Nxb ·

ND · Dw ·

✓
Dw

2
� R + NF

◆
+ 2R(Dw + Ww)

�
. (3.7)

It is worth mentioning that each thread requires a dedicated CS in the blocked

50

cache level. For example, using a 16-core Intel Haswell socket requires fitting 16 · CS

bytes in the L3 cache memory.

3.4.3 Memory tra�c model

In order to validate the e↵ectiveness of the bandwidth pressure reduction on the

memory interface, we set up a model to estimate the code balance for the temporally

blocked case. If the wavefront fits completely in the L3 cache, each grid point is loaded

once from main memory and is stored once after updating it during the extruded

diamond update. In this case, the amount of data transfers during the extruded

diamond update consists of (2Dw � 2) data writes plus (ND · Dw + 2) data reads, all

multiplied by Nz. The number of total LUPs performed through the diamond volume

is: Nz · D2
w/2. The code balance at double precision of a stencil with R = 1 is thus:

BC =
16 · [(2Dw � 2) + (ND · Dw + 2)]

D2
w

bytes

LUP
. (3.8)

When R>1 the amount of data transfers becomes Nz·[(2Dw � 2R) + (ND · Dw + 2R)]

and the extruded diamond volume becomes Nz · D2
w/(2 · R). In total, the equation

becomes:

BC =
16R · [(2Dw � 2R) + (ND · Dw + 2R)]

D2
w

bytes

LUP
. (3.9)

3.4.4 Model verification

In this section, we verify the correctness of our memory tra�c and cache block size

models of the 1WD scheme. Our models and measurements prove the limitation

of using separate cache block per thread, which is common in the literature. The

desired code balance to decouple from the main memory bandwidth requires larger

cache block size than the available cache memory in contemporary processors when

51

separate cache block is used per thread.

We use the four stencils described in Lsts. 3.1, 3.2, 3.3, and 3.4. The grid sizes are

larger than the cache memory size and fit in the main memory of the processor, which

is typical in real applications. We minimize the cache block size in our experiments

by using a unity wavefront tile width (NF = 1), where larger NF would increase the

cache block size without decreasing the code balance. We perform our experiments

using a single thread in the 18-core Haswell processor to dedicate the 45 MiB cache

memory for its use. The single thread experiment allows us to test larger cache block

sizes without having cache capacity misses.

Figure 3.4 shows the cache block size vs. the code balance at various diamond tile

sizes (top x-axis). We compute the “Model” data using our cache block size model

in Eq. 3.7 (bottom x-axis) and the code balance model in Eq. 3.9. The “Measured”

data is the measured code balance in our experiments, which is computed by dividing

the total measured memory tra�c by the total updated grid points. We set the

diamond tiles’ widths to multiples of 4 and 16 for the 7-point and 25-point stencils,

respectively. Data points at zero diamond width correspond to the spatial blocking

scheme described in Sec. 3.2.

Our models are very accurate in predicting the code balance of corner-case stencil

operators. There is a strong agreement between the model and the empirical results

when the cache block fits in the L3 cache (below 22.5 MiB). These findings show that

our implementation of the 1WD blocking scheme can achieve the theoretical memory

tra�c reductions. The measured code balance in Fig. 3.4 starts to deviate from the

model at cache blocks larger than about half the Intel Haswell’s L3 cache size (i.e.,

22.5 MiB). The deviation at this point can be predicted from our cache block size

model, considering the rule-of-thumb that half the cache size is usually usable for

blocking [15].

The results in Fig. 3.4 prove how using separate temporally blocked tile per thread

52

leads to starvation in the cache size requirement. The minimum diamond width

(DW =16) of the 25-point constant-coe�cient stencil, in Fig. 3.4c, requires a tile size

of ⇠ 3 MiB/thread. To run all the 18 cores of the processor with e�cient temporal

blocking, the processor has to provide a minimum of 3 ⇤ 18 = 54 MiB of cache

memory, which is far from the available one. We observe more starvation in the cache

memory in the 25-point variable-coe�cient stencil in Fig 3.4d. The 7-point stencils

in Figs. 3.4b and 3.4a can fit 18 tiles in the cache memory, but the diamond width

has to be limited (i.e., provide limited data reuse) and does not reduce the code

balance su�ciently to prevent main memory bandwidth saturation. We investigate

these observations in more detail in the results in Chapter 5.

Our accurate cache block size model can be used to tune the tiling parameters to

achieve high performance. We can use our model to select the largest tile size that

fits in the usable cache memory size to replace auto-tuning, as performed in [7]. On

the other hand, even an accurate cache block size model is not su�cient to select

the tuning parameters for the best performance. For example, Fig. 3.4c shows a case

when a tile size larger than the usable cache memory (i.e., DW =48 requires ⇠27 MiB

cache block) can still achieve better code balance than the maximum tile size that

fits entirely in the cache memory (i.e., DW = 32 requires ⇠ 12.5 MiB cache block).

This observation shows the importance of auto-tuning even when an accurate model

for the cache block size is available. In fact, we use auto-tuning in our work, assisted

with our modeling techniques to narrow down the parameter search space.

3.5 Summary

In this chapter, we showed how the best practices in spatial and temporal blocking are

not su�cient to overcome the main memory bandwidth limitation in contemporary

processors. These approaches will become less e�cient in future processors as the

53

0 5 10 15 20 25

Cache block size (MiB) PER THREAD

0

5

10

15

20

25

C
od

e
ba

la
nc

e
(B

yt
es

/L
U

P
)

Model
Measured

8 16 24 32 40 48 60

Diamond width

(a) 7-point constant-coe�cient stencil using grid

size N = 960

3

0 5 10 15 20 25 30 35

Cache block size (MiB) PER THREAD

0
10
20
30
40
50
60
70
80

C
od

e
ba

la
nc

e
(B

yt
es

/L
U

P
)

Model
Measured

0 8 20 40

Diamond width

(b) 7-point variable-coe�cient stencil using grid

size N = 680

3

0 5 10 15 20 25

Cache block size (MiB) PER THREAD

0

5

10

15

20

25

30

C
od

e
ba

la
nc

e
(B

yt
es

/L
U

P
)

Model
Measured

0 16 32 48

Diamond width

(c) 25-point constant-coe�cient stencil using

grid size N = 960

3

0 10 20 30 40 50

Cache block size (MiB) PER THREAD

0

20

40

60

80

100

120

C
od

e
ba

la
nc

e
(B

yt
es

/L
U

P
)

Model
Measured

0 16 32 48

Diamond width

(d) 25-point variable-coe�cient stencil using

grid size N = 480

3

Figure 3.4: Cache block size vs. modeled and measured code balance using four corner-
case stencil operators in Intel 18-core Haswell processor. Several diamond tile sizes
are evaluated using unit wavefront tile width. Cache block size and code balance are
computed using the models in sections 3.4.2 and 3.4.3, respectively. All cases show
accurate prediction of the code balance when the cache block size falls within the
usable cache size (i.e., half the cache size of the processor).

54

machine balance decreases, cache size per thread decreases, and concurrency increases.

In particular, variable-coe�cient and high-order stencils su↵er the most from these

limitations as they demand more cache memory to decouple from the main memory

bandwidth bottleneck.

55

Chapter 4

Approach: Multi-dimensional

intra-tile parallelization

In this chapter, we describe our intra-tile multi-dimensional parallelization algorithm

in detail and its wavefront diamond tiling implementation in a structured grid. We

also describe the components of our open-source testbed framework, called Girih [22].

In addition to the shared memory optimizations, the framework includes a proof-of-

concept distributed memory parallelization along the diamond tiling dimension. We

utilize the same diamond tile shape for temporal blocking in shared memory and for

relaxing the communication of the distributed memory MPI communication.

4.1 Multi-dimensional intra-tile parallelization al-

gorithm

We showed in Section 3.4 that using a single thread per cache block is not su�cient to

decouple from main memory in several situations, even with very e�cient temporal

blocking approaches. Larger cache block sizes than available cache memory are re-

quired to reduce the main memory bandwidth requirements. To resolve these issues,

we introduce an advanced cache block sharing scheme. It alleviates the pressure on

56

the cache size to provide su�cient data reuse that decouples the computations from

the main memory bandwidth bottleneck through larger shared cache blocks.

We introduce a (d+1)-dimensional intra-tile parallelization algorithm for tiled d-

dimensional grids. Each Cartesian dimension, i, of the tiles is divided equally into

Ti chunks that can be updated concurrently. Additionally, the components of each

grid cell may be divided into Tc chunks, when at least Tc equations per grid cell can

be updated concurrently. The number of threads updating a tile (“thread group”)

are equal to Tc ⇥
Qd

n=1 Tn. Multiple Thread Groups (TGs) may exist to update

tiles concurrently. The data reuse in the threads’ private caches can be improved by

making the boundaries of the sub-tiles parallel to the time dimension, where each

thread would be reusing its local grid points across the time steps in the tile.

Our multi-dimensional cache block sharing algorithm has several advantages.

First, it requires less main memory bandwidth by enabling more in-cache data reuse

through larger cache blocks in the shared cache levels. It has less penalty on the cache

block size requirement compared to other cache block sharing approaches, where they

require more space to provide su�cient concurrency, as will be shown in the related

work, Chapter 7.

Cache block sharing along the leading dimension reduces the need for tiling along

it, resulting in better utilization of the hardware data prefetching to the LLC. That

is, long contiguous strides are utilized in the shared cache level, while each thread

updates a block of the unit stride. On the other hand, tiling along the leading

dimension would cause the hardware prefetching unit to load data beyond the cache

block boundaries along the leading dimension, which will occupy space in the cache

memory and will be evicted from the cache memory before being used.

Finally, coupled with auto-tuning, our cache block sharing algorithm provides a

rich set of run-time configurable options that allow architecture-friendly data access

patterns for various setups. For example, the auto-tuner finds cases when sharing the

57

Auto%tuning)

MPI)comm.)wrappers)

Parameterized)8ling)

Run8me)system)

Stencil)Kernels)
+)

Specs.)

Figure 4.1: Girih framework diagram.

leading dimension among multiple threads is beneficial to reduce the cache memory

pressure, as will be shown in the results Chapter 5.

4.2 Girih framework

Our system diagram is shown in Fig. 4.1. It consists of our parametrized tiling

kernels that use the loop body of the stencil computation and its specifications, for

example, stencil radius, as described in Sect. 4.2.1. In Sect. 4.2.3 we describe our

runtime system, which dynamically schedules thread groups to the tiles. We use auto-

tuning that searches for the best performing parameter set, as described in Sect. 4.2.2.

Finally, we use MPI wrappers to handle the distributed memory communication for

the tiles at the boundaries of the subdomain, which is described in more detail in

Sect. 4.2.4.

58

4.2.1 Multi-core wavefront temporal blocking

We present a practical implementation of our approach using Multi-threaded Wave-

front Diamond blocking (MWD) in Fig. 4.2. Diamond tiling is performed along the

y-axis and wavefront blocking is performed along the z-axis. Fig. 4.2a shows the tile

decomposition among the threads in three spatial dimensions at a single time step of

the tile update. The thread group size is equal to the product of the threads number

in all dimensions. Fig. 4.2b shows extruded diamond tile, and Fig. 4.2c and 4.2d show

two perspectives of the extruded diamond along the z- and y-axes, respectively. We

use this wavefront-diamond tiling implementation because it uses provably-optimal

tiling techniques, as described earlier in Chapter 2. Slicing the x-axis into small tiles

is known to be impractical as it would negatively a↵ect the TLB misses, hardware

prefetching, and the control-flow overhead. We replaced tiling along x-axis with our

intra-tile parallelization along x-axis, although it may be useful to combine them in

very large grid sizes.

At each time step in the tile update, each thread performs updates of multiple grid

points before proceeding to the next time step. All threads update the equal number

of grid points to maintain load-balanced work, and they synchronize at certain points

to ensure correctness.

We present two wavefront parallelization schemes in Fig. 4.2c and 4.2e. The first

one assigns a fixed location for the thread in the wavefront tile, allowing the use

of a simple relaxed-synchronization scheme in the thread group, where each thread

has data dependency over its left neighbor only. This wavefront approach has the

disadvantage of pipelining the data across the cores, resulting in larger data volume

transfers in the cache hierarchy. The parallelization scheme in Fig. 4.2e resolves this

issue by using a Fixed-Execution to Data (FED) scheme that updates each subset

of grid points by a single thread, regardless of the wavefront tile location, allowing

wavefront cache block to span multiple cache domains. The limitation of this scheme

59

.".". 1 1 .".". 2 2 .".". N ! 1 2

.".". 1 1 .".". 2 2 .".". N ! 1 1 2 2

.".". 1 1 .".". 2 2 .".". N ! 1 1 1 2 2 2

.".". 1 1 .".". 2 2 .".". N ! 1 1 1 1 2 2 2 2

.".". 1 1 .".". 2 2 .".". N ! 1 1 1 2 2 2

.".". 1 1 .".". 2 2 .".". N ! 1 1 2 2

.".". 1 1 .".". 2 2 .".". N ! 1 2

.".". 1 .".". 2 .".". N N 1 ! 1 1 .".". 2 2 .".". L L

.".". 2 .".". N N 1 1 ! 1 1 .".". 2 2 .".". L L

.".". 2 .".". N N 1 1 .".". ! 1 1 .".". 2 2 .".". L L

.".". .".". .".". .".". .".". .".". .".". .".". .".". .".". .".". .".". .".". .".". .".". ! 1 1 .".". 2 2 .".". L L

.".". N N 1 1 .".". 2 .".". ! 1 1 .".". 2 2 .".". L L

.".". N 1 1 .".". 2 .".". N ! 1 1 .".". 2 2 .".". L L

.".". 1 1 .".". 2 .".". N N ! 1 1 .".". 2 2 .".". L L

a)"Threads'"block"decomposition"per"time"step b)"Cache"block

d)"Diamond"viewc)"Regular"wavefront"blocking

"""f)"Block"decomposition"along"Xe)"FixedFexecutionFtoFdata"wavefront"blocking

1""""""""""""2"""""""""""""3"""""…""""L

1
""
""2
"""
3
"…
"N

Z

YT

X

YZ

Z

T

Z

T

X

T

Y

T

Figure 4.2: Example of implementing multi-dimensional intra-tile parallelization over
wavefront diamond tiles in three-dimensional grid.

is the more complex synchronization within the thread group, so we use OpenMP

barrier after each time step update in this FED wavefront. The FED wavefront

scheme is useful for stencils with high number of bytes per grid cell, such as the

variable coe�cient and high-order stencils. It is particularly important for high-order

stencils because almost no reuse is usually achieved between the time steps of the

wavefront due to the steep temporal blocking slope.

Our intra-tile parallelization scheme along the wavefront in Fig. 4.2c and 4.2e

allows an arbitrary number of threads to be assigned along the z-axis, with the cost

of increasing the cache block size, without increasing the data reuse. An arbitrary

number of threads can also be assigned along the x-axis of the tile. The parallelization

along the x-axis replaces the tiling along this dimension, when tiling would be useful

to reduce the cache block size of the thread. The diamond tile, shown in Fig. 4.2d,

uses only one or two threads of parallelization to maintain load-balance and assign the

same data to each thread (i.e., use a tile hyperplane parallel to the time dimension).

60

Relaxed synchronization is used along the z-axis in the regular wavefront approach

(Fig. 4.2c). A software sub-group barrier is used to synchronize threads along y- and

x-axes for each sub-tile along the z-axis.

Listing 4.1 shows a reduced version of our MWD tiling implementation. The

code synchronizes the thread group using an OpenMP barrier after each time step

and uses the regular wavefront blocking strategy (described in Fig. 4.2c). The full

kernel, the relaxed-synchronization variant, and the FED variant are available online

in [22]. We use an OpenMP parallel region to spawn the threads of the thread group.

The three-dimensional coordinates of the threads are calculated in line 4. The tile is

decomposed among the threads along the y-, x-, and z-axes in lines 7-8, 10-12, and

14, respectively.

61

Listing 4.1: A variant of MWD for wavefront steady-state update. Tile’s bounds

along x, z, and time are xb-xe, zb-ze, tb-te, respectively. y base bound is yb-ye.

1 #pragma omp parallel for ...

2 { tid = omp_get_thread_num();

3 //Thread 3D coordinates: tid = tid_z

*

(th_x

*

th_y) + tid_y

*

th_x + tid_x

4 tid_x=tid%th_x; tid_y=(tid/th_x)%th_y; tid_z=tid/(th_x*th_y);

5 //Decompose the tile along the y-axis

6 //Update tile size for each time step using stencil radius (R)

7 if (tid_y == 0){ ye=(yb+ye)/2; b_inc=R; e_inc=0;}

8 else { yb=(yb+ye)/2; b_inc=0; e_inc=R;}

9 //Decompose the tile along the x-axis

10 q=(xe-xb)/th_x; r=(xe-xb)%th_x;

11 if(tid_x<r) { ib=xb+tid_x*(q+1); ie=ib+(q+1);}

12 else { ib=xb+r*(q+1)+(tid_x-r)*q; ie=ib+q;}

13 //Decompose the tile along the z-axis, of size bs_z

14 zbi = bs_z/th_z * tid_z; zei = bs_z/th_z * (tid_z+1);

15 for(zi=zb; zi<ze; zi+=bs_z) { //wavefront loop along z-axis

16 ybi=yb; yei=ye; kt=zi; //Tile’s Base index init. along y- and z-axes

17 for(t=tb; t<te; t++){ //Tile loop in time

18 for(k=kt+zbi; k<kt+zei; k++){ //Tile loop in z

19 for(j=ybi; j<yei; j++) { //Tile loop in y

20 #pragma simd

21 for(i=ib; i<ie; i++) { //Tile loop in x

22 stencil_operator_loop_body_macro()

23 }}}

24 //Update block size along y-axis

25 if(t<diam_height/2) ybi-=b_inc; yei+=e_inc; //Diamond’s lower half

26 else ybi+=e_inc; yei-=e_inc; //Diamond’s upper half

27 kt -= R; // Update wavefront base index for each time step

28 #pragma omp barrier //Synchronize after each time step

29 ptmp=u; u=v; v=ptmp; /

*

Swap pointers

*

/ }}}

62

4.2.2 Auto-tuning

We perform the auto-tuning as a preprocessing step, once the user selects the problem

details, for example, the stencil type and grid size. The auto-tuner allocates and

initialize the required arrays for its own use and deallocates them once it is completed.

This saves significant tuning time when the grid array is very large, in the order of

100 GiB.

Fig. 4.3 shows the details of our auto-tuning approach. It tunes several param-

eters: diamond width, wavefront tile width, threads along x-, y-, and z-axes. The

auto-tuner starts with fixed user-selected parameters, then determines the feasible

set of intra-tile thread dimensions by factorizing the available number of threads. It

tests the performance of all valid TGS combinations. A local search hill-climbing al-

gorithm is applied to tune the diamond and wavefront tile widths for each TGS case.

The auto-tuner uses our cache block size model in Section 3.4.2 and the processor’s

available cache size (specified by the user) to reduce the parameter search space.

Selecting proper test size, i.e., number of time steps, for auto-tuning test cases is

challenging. A very small test may be a↵ected by the system jitter and other sources

of noise, which produces a false indication of the achievable performance of the test

case. A large test, on the other hand, may increase the tuning time significantly.

We use multiples of diamond rows to set the number of time steps. The run time

of a single diamond row has many dependencies. It relies on the grid size, stencil

type, processor speed, tiling e�ciency, etc., so a priori setting of the test size is not

practical. To resolve this issue, for each test case, we dynamically change the test

size until “acceptable performance” is obtained. We repeat running the test case

with increasing number of diamond rows. Once the performance variation between

two repetitions falls within a certain threshold, we consider that the largest test

case size produces “acceptable performance” and we use it to report the test case

performance.

63

Generate'all'possible'
threads'(TX,'TY,'TZ)'
combina9ons'

Machine'info.:'
Threads'#,'cache'

block'size'range,'etc.'

Find'best'DW'using'hill'climbing'search'

Find'best'WW'using'hill'climbing'search'

Performance'test'using'
DW,'WW,'TX,'TY,'and'TX'

Ini9alize:'
allocate'
arrays,'
etc.'

Choose'
best'

opera9ng'
point'

User'selected'
parameters'

Best'params.:'DW,'
WW,'TX,'TY,'and'TX'

Start'

End'

Solu9on'func9on'

Solu9on'func9on'

…' For'each'(TX,'TY,'TZ)'

…
'

(Parameters,''
Performance)'

pairs'

Figure 4.3: Girih auto-tuner flow chart.

64

4.2.3 Runtime system

Threads can be scheduled to the extruded diamonds in a variety of ways. Orozco

et al. [11] and the current diamond tiling implementation in the PLUTO frame-

work [23] use global synchronization after each row of diamonds update to respect

the inter-diamond dependencies. Strzodka et al. [7] preassign the diamond tiles to

threads before starting the stencil computations, taking the inter-diamond data de-

pendency during tile updates into account. These approaches are su�cient to avoid

idling threads as long as the workload is balanced. Workload variation can result

from domain boundary handling: In this work, diamond tiles at the boundary of the

subdomain exchange data and synchronize with neighbor processes. This causes load

imbalance in processing diamond tiles, which varies according to the used network

interconnect. To resolve this issue, we schedule the diamond tiles dynamically to the

thread groups. The runtime system performs dynamic scheduling of the tiles while re-

specting data dependencies using a multi-producer multi-consumer FIFO queue that

holds the available tiles for update. The First In First Out (FIFO) queue maintains

a list of available tiles for update. When a thread has completed updating a tile, it

pushes its dependent diamond tile(s) to the queue if those tiles have no other un-

met dependencies. “Pop” operations are performed to assign available tiles to thread

groups. The FIFO queue is protected from concurrent updates by an OpenMP criti-

cal region. Since the queue updates are performed infrequently, the synchronization

overhead is negligible.

Our implementation relies on OpenMP nested parallelization. The outer parallel

region spawns one thread per thread group (We call them “group masters”), where

the tiles are scheduled to thread groups at this level. The inner parallel region spawns

the threads of each group to update the grid cells in the tile. Spawning the inner

parallel region happens in undefined order many times during runtime, As a result,

threads are grouped in di↵erent subsets during runtime.

65

For example, let us consider a case of running six threads in two groups, with

pinning order {0,3,1,2,4,5}. The outer parallel region uses threads 0 and 3 for the

group master threads. When thread 0 spawns its threads first, the threads are divided

into {0,1,2} and {3,4,5} subsets. Threads may also be divided into {0,4,5} and {3,1,2}

subsets.

Grouping threads in di↵erent subsets does not a↵ect the performance in Uniform

Memory Access (UMA) setups, as in single socket Ivy Bridge processor. On the other

hand, this issue has to be resolved in Non-Uniform Memory Access (NUMA) cases,

such as in the Intel Knight’s Corner (KNC) or when running systems with multiple

processors.

OpenMP 4.0 provides thread a�nity features. The OMP_PLACES environment

variable allows the user to set thread groups or pools of threads. It also supports

thread groups binding in nested parallel regions through the proc_bind clause in

the parallel region OpenMP pragma. The proc_bind feature in the parallel region

initialization allows for setting a certain a�nity. For example, it is possible to use the

scatter option at the outer parallel region, which uses 1 thread from each thread

group. The master option is used at the inner parallel region, so that each thread

is spawned from the same thread group as its parent thread. Unfortunately, using

this feature in the Intel C compiler 15 degraded the performance of our code to 80%

at a single socket. The performance degradation may be a result of sub-optimal use

of these features or the Intel implementation is not well optimized yet for these new

features.

To resolve this issue e�ciently, we use the UNIX low-level interface of sched_setaffinity

to set the threads a�nity manually. Thread a�nity is set inside the inner parallel

region every time it is executed. It does not hurt the performance much, as there

core regions have work in order of hundreds of micro seconds.

It is possible to avoid the thread groups a�nity issue by using the pthreads library

66

instead of OpenMP, where thread pinning is needed only once at the initialization

stage. We believe the pinning overhead in OpenMP is negligible, so we use it to

exploit its portability and usability features.

Another option would be to use single level OpenMP parallel region, but this

adds complexity to the thread group scheduling. It also requires creating point-to-

point synchronization constructs within each thread group, instead of using OpenMP

barriers at the thread groups.

4.2.4 Distributed-memory parallelization

Parallelizing stencil computations over distributed memory nodes is quite straight-

forward if no temporal blocking is involved. Each time step update is followed by

halo data communication. In such a bulk-synchronous scheme, strong scalability is

naturally limited by data transfer overhead. A partial remedy is provided by the

halo-first update scheme, in which domain boundaries are updated first, and then

asynchronous message passing is performed while updating the bulk of the domain.

Distributed memory parallelization can be combined with diamond tiling as shown

in Figure 4.4. The arrows represent the data dependencies across subdomains, and

the same number of adjacent tiles is assigned to each process except the rightmost

one (largest y coordinate). To maintain load balance in terms of computation and

communication, the leftmost half diamond tile is assigned to the rightmost process.

Regular diamond tiles are used at the boundary of subdomains, with the di↵erence of

performing communication before and after the tile update. Thread groups handling

boundary diamond tiles are blocked until their MPI communication is complete. Ex-

tra delay can occur if no thread group is updating the diamond tile at the other end

of the communication. Adding priority in scheduling the tiles at the boundary to

thread groups can alleviate this issue, which is left for future work.

Since domain decomposition is performed along the middle space dimension (y),

67

the boundary data to be communicated does not reside in contiguous memory loca-

tions. User-defined strided MPI data types are not e�cient in our multi-threaded

implementation, as MPI implementations handle the required packing/unpacking op-

erations purely sequentially. We use explicit multi-threaded halo data packing/un-

packing to resolve this issue.

Diamond tiling o↵ers several advantages in distributed memory parallelization.

The tessellation of the diamond tiles allow using a unified tile structure everywhere.

It also allows maximum stencil updates in space-time without relying on exchanging

boundaries with neighbor processes after each grid sweep. Finally, there is a natu-

ral overlap of computation with communication. Communication does not block all

threads, and no thread has to be sacrificed for asynchronous communication. Threads

can handle communication or perform stencil updates as needed.

68

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

.".
"."

16 .".".
15 .".".
14 .".".
13 .".".
12 .".".
11 .".".
10 .".".
9 .".".
8 .".".
7 .".".
6 .".".
5 .".".
4 .".".
3 .".".
2 .".".
1 .".".
0 .".".

.".". P.NP.2P.1
Space&

Ti
m
e&
st
ep

s&

(a) Distributed memory parallelization with diamond tiling for a one-dimensional space grid.

Arrows represent the data dependencies across subdomains. The leftmost column of half

diamonds is assigned to the rightmost process to achieve load balance in computation and

communication.

1 update_tile(y_coord, t_coord){

2 update_tile_grid_points(y_coord);

3 if(y_coord==0 && t_coord%2==0){

4 //Leftmost diamond in even diamonds row

5 send_left(); recv_right();

6 wait_send_left(); wait_recv_right(); }

7 if(y_coord==n-1 && t_coord%2==1){

8 //Rightmost diamond in odd diamonds row

9 send_right(); recv_left();

10 wait_send_right(); wait_recv_left(); }}

(b) MWD pseudo code for the data exchange of the subdomains. y coord/t coord represent the

horizontal/vertical local coordinates of the diamond in the space/time of the subdomain. The number

of the diamonds in the row of the subdoamin is n. t coord is used to identify the even/odd rows to

select the communication direction of the row. Communication is performed at once for both sides to

use single thread for the MPI communication. To maintain the correct tiles update order, boundary

diamonds of the rows are updated in chronological order.

Figure 4.4: Distributed memory parallelization along the diamond tiling dimension.
We show a diagram of the diamond tiles tessellation at the subdomain boundary in
4.4a and the pseudo code for the computation and communication order in 4.4b.

69

Chapter 5

Performance results

In this chapter, we perform our experiments over the four stencils under considera-

tion using Intel 10-core Ivy Bride and 18-core Haswell processors, over a broad range

of grid sizes (cubic domain). Our MWD approach is faster than 1WD/CATS [7],

PLUTO [21, 23], and Pochoir [24] for all stencils on both architectures with most grid

sizes. MWD is also the only approach that provides a significant improvement over an

e�cient spatial blocking implementation in all cases. To understand the strength of

our approach in potentially memory bandwidth-starved future processors, we study

the impact of MWD cache block sharing over the performance, code balance, memory

transfer volumes, and energy consumption. We show significant memory bandwidth

usage and memory transfer volumes saving. In order to have better understanding of

the di↵erent temporal blocking approaches we present thread scaling results. Finally,

we present strong scaling performance results of our distributed memory implemen-

tation.

5.1 Frameworks setup

We set up both PLUTO and Pochoir frameworks in the presented results. To ensure

fair comparison, we investigated and used the best setup of the tested frameworks.

In all the experiments, we run each test case twice and report the performance

70

of the faster one. Since the test cases are large enough, the repeated tests achieve

very similar performance. In Sects. 5.2 and 5.3, we run the experiments several

times to measure di↵erent hardware counter groups. To demonstrate the stability

of our results, we plot the reported performance of the repeated experiments in our

performance figures. In most cases, the results are aggregated in a single point. At

some small grid sizes, where the noise is relatively more significant, the performance

points are stretched vertically.

5.1.1 PLUTO setup

PLUTO framework uses polycc executable to perform the source-to-source trans-

formation. We use the flags “--tile --parallel --pet --partlbtile” to

generate e�cient codes for our stencil computation kernels. Intel compiler version 15

is used with flags:“-O3 -xHost -ansi-alias -ipo -openmp”, which are also

the default configuration in PLUTO examples.

Compiling the tiled stencil codes using the Intel C compiler 15 achieves twice

the performance compared to the Intel C compiler 12. The more recent compiler

optimizes PLUTO tiled codes more e�ciently and have improvements in vectorizing

and using prefetching in the compiled codes.

The selected tiling transformations perform diamond tiling along the z-axis and

parallelepiped tiling along the y- and x-axes. Since parameter tuning is essential to

run the tiled code e�ciently, we implemented a Python script to tune the parameters

of each test case in the presented results. We performed brute-force parameter search

in diverse setups (i.e., di↵erent stencils, processors, and grid sizes) to ensure fair

and e�cient tuning. We found that the parameter search space is convex, where

only a single maximum exists in the tested processors and stencil kernels. In the

results presented here, we use a recursive local search algorithm, in the same manner

discussed earlier in Girih auto-tuner for the MWD code, to tune the three tiling

71

parameters.

5.1.2 Pochoir setup

Pochoir does not have performance-critical tuning parameters for tiling, as it relies

on cache-oblivious algorithms. The default compiler flags of Pochoir examples are

used “-O3 -funroll-loops -xHost -fno-alias -openmp”.

5.1.3 Girih setup

We use Intel compiler options: “-O3 -xAVX -fno-alias -openmp” in Girih

codes. Our autotuning code is used to select the diamond and wavefront tiles widths

and thread group parallelization parameters in the results.

The wavefront implementation parameter is selected according to the stencil type.

A relaxed-synchronization wavefront scheme is used for the 7-point stencils, as this

implementation has lower synchronization overhead. FED is not important here as

su�cient data reuse is possible using reasonable wavefront width. On the other hand,

FED is used in the 25-point stencils, to allow su�cient data reuse in the wavefront

update. The e�ciency of these options are also confirmed by manually testing several

cases.

We also tune the 1WD case separately. This is the nearest implementation we

have to CATS2 algorithm of [7].

5.2 Performance at increasing grid size

In this section, we present a performance comparison between MWD, PLUTO, Pochoir,

1WD/CATS, and spatial blocking. In all the results, we use a range of cubic grid

sizes, where each dimension is set to multiples of 64 in the Ivy Bridge processor and

multiples of 128 in the Haswell processor. We maximize the grid size range such that

72

it reaches the memory capacity limits (32 GiB in the Ivy Bridge and 128 GiB in the

Haswell). For a better identification of relevant bottlenecks we also show memory

bandwidth usage and memory transfer volume per LUP.

Our major finding is that MWD is faster than 1WD, PLUTO, and Pochoir for all

stencils on both architectures with most grid sizes. MWD is also the only approach

that provides a significant improvement over the e�cient spatial blocking in all cases.

Especially for the high-order (25-point) stencils it is the only e�cient solution. In

general, the Haswell processor shows better speedups for temporal blocking vs. spatial

blocking due to its large number of cores (18), which leads to a low machine balance

of 0.14 bytes/flop (assuming fused multiply-add is not used; with FMA, the machine

balance goes down further to 0.07 bytes/flop). In contrast, the Ivy Bridge CPU only

has 10 cores, a 5% lower clock speed, and a 20% lower memory bandwidth for a

better machine balance of 0.23 bytes/flop. A low machine balance generally indicates

a more “bandwidth-starved” situation with a higher potential for temporal blocking

techniques, although a quantitative analysis requires a more elaborate performance

model. See below for details.

More details of the hardware counter measurements of the presented results are

available in Appendix B. We refer to them whenever the hardware counters measure-

ments of the cache levels and the CPU are mentioned in the text.

At large grid sizes, where boundary e↵ects become negligible, it is possible to

construct a phenomenological ECM performance model by combining measured data

tra�c per LUP in all memory levels with code composition characteristics such as

the number of load instructions per LUP, as described in Sect. 2.4. Tables 5.1 and

5.2 summarize the comparison between the phenomenological models and the mea-

surements. Details are discussed below.

73

Stencil Model [cy] Pred. [GLUP/s] Meas. [GLUP/s]

7-pt const. coe↵. {12 k 14 | 14 | 8.3 | 2.2} 4.6 4.1

7-pt var. coe↵. {14 k 28 | 30 | 24 | 11} 1.6 1.4

25-pt const. coe↵. {12 k 56 | 40 | 28 | 11} 1.3 1.2

25-pt var. coe↵. {12 k 76 | 115 | 50 | 40} 0.44 0.36

Table 5.1: Phenomenological ECM models, predictions, and performance measure-
ments for the four stencils under investigation with MWD at large grid sizes on the
Intel Ivy Bridge CPU.

Stencil Model [cy] Pred. [GLUP/s] Meas. [GLUP/s]

7-pt const. coe↵. {12 k 14 | 7 | 7.5 | 1.8} 10 8.0

7-pt var. coe↵. {14 k 21 | 14 | 25 | 4.8} 3.9 2.6

25-pt const. coe↵. {12 k 56 | 20 | 30 | 7.4} 2.5 2.2

25-pt var. coe↵. {12 k 38 | 56 | 50 | 26} 0.71 0.65

Table 5.2: Phenomenological ECM models, predictions, and performance measure-
ments for the four stencils under investigation with MWD at large grid sizes on the
Intel Haswell CPU.

5.2.1 7-point stencil with constant coe�cients

We present the Intel Ivy bridge performance results using di↵erent frameworks in

Fig. 5.1a. We also show the measured memory bandwidth usage in Fig. 5.1b and

the memory transfer volumes normalized by the number of lattice-site updates in

Fig. 5.1c. Likewise, we present the Intel Haswell results in Fig. 5.2

This stencil performs seven flops per LUP and has a code balance for pure spa-

tial blocking of 24 bytes/LUP in double precision. The memory-bound maximum

performance is thus (41 GB/s)/(24 bytes/LUP) ⇡ 1.7 GLUP/s in Ivy Bridge and

(50 GB/s)/(24 bytes/LUP) ⇡ 2.1 GLUP/s in Haswell.

As shown in Figures 5.1a and 5.2a, all temporal blocking variants outperform

optimal spatial blocking by far. MWD and 1WD are consistently faster than PLUTO

and Pochoir, with MWD taking a clear lead for larger grid sizes. MWD also exhibits

the lowest memory bandwidth usage, as shown in Figs. 5.1b and 5.2b and the lowest

code balance (memory tra�c per LUP), as shown in Figs. 5.1c and 5.2c. For most

74

0 200 400 600 800 1000 1200 1400

Size in each dimension

0

1

2

3

4

5

G
LU

P
/s

(a) Performance.

0 200 400 600 800 1000 1200 1400

Size in each dimension

0

5

10

15

20

25

30

35

40

45

M
E

M
G

B
/s

MWD
1WD
Spt.blk.
PLUTO
Pochoir

(b) Measured memory band-

width usage.

0 200 400 600 800 1000 1200 1400

Size in each dimension

0

5

10

15

20

25

30

M
E

M
B

yt
es

/L
U

P

(c) Measured memory transfers

per LUP.

Figure 5.1: Ivy Bridge 7-point constant-coe�cient stencil results, using increasing
cubic grid size. Showing performance and memory transfer measurements of MWD,
PLUTO, Pochoir, 1WD, and spatial blocking.

0 200 400 600 800 1000 1200 1400 1600

Size in each dimension

0

2

4

6

8

10

G
LU

P
/s

(a) Performance.

0 200 400 600 800 1000 1200 1400 1600

Size in each dimension

0

10

20

30

40

50

60

M
E

M
G

B
/s

MWD
1WD
Spt.blk.
PLUTO
Pochoir

(b) Measured memory band-

width usage.

0 200 400 600 800 1000 1200 1400 1600

Size in each dimension

0

5

10

15

20

25

30

M
E

M
B

yt
es

/L
U

P

(c) Measured memory transfers

per LUP.

Figure 5.2: Haswell 7-point constant-coe�cient stencil results, using increasing cu-
bic grid size. Showing performance and memory transfer measurements of MWD,
PLUTO, Pochoir, 1WD, and spatial blocking.

75

grid sizes the auto-tuner selects a thread group size of 2 or 6, except for very large

and very small problems.

We construct a phenomenological ECM performance model [15] from results at

large grid sizes. We combine measured data tra�c per LUP in all memory levels

(presented in Appendix B) with code composition characteristics such as the number

of load instructions per LUP. The 7-point stencil with constant coe�cients uses 28

half-wide (16-byte) load instructions per 8 LUP, which require 14 cycles to execute

on both architectures. The required data tra�c in the L2 cache is 56 bytes/LUP since

the L1 cache is too small to hold three consecutive rows of the source array. Hardware

counter measurements confirm this estimate for MWD. On Ivy Bridge (Haswell), this

transfer takes 14 (7) cycles. The L3 cache tra�c is hard to predict due to the blocking

strategy. We use the measured value of 33 (30) bytes/LUP on Ivy Bridge (Haswell),

leading to a transfer time of about 8.25 (7.5) cycles. In memory, we observe a code

balance of about 5 bytes/LUP. With the chosen input data the ECM model predicts

a socket-level performance of about 4.6 GLUP/s on Ivy Bridge and 10.9 GLUP/s on

Haswell. We observe that our performance prediction is within a 10% margin of the

measurements on Ivy Bridge and about 25% above the measurements on Haswell.

Overall the ECM model describes the performance characteristics of the MWD code

at larger problem sizes quite well, proving that the MWD code is operating at the

limits of the hardware. This observation is also valid for the other stencils described

below. Further substantial performance improvements requires optimizations that

reduce the amount of work.

We work out the details of the ECM model for this stencil in the Ivy Bridge

processor, using the notation described in Section 2.4. The ECM model data is

{12 k 14 | 14 | 8.25 | 2.2} cy, which leads to TECM = {14 e 28 e 36.25 e 38.45} cy. The

performance per core is thus PerfECM = {1.26 e 0.63 e 0.49 e 0.46} GLUP/s, where we

compute it by multiplying the 8 LUPs work unit by the CPU clock frequency (2.2

76

GHz) and dividing by the TECM cycles. The single core ECM prediction leads us to

a full socket performance of 4.6 GLUP/s.

5.2.2 7-point stencil with variable coe�cients

We present the Intel Ivy bridge performance results using di↵erent frameworks in

Fig. 5.3a. We also show the measured memory bandwidth usage in Fig. 5.3b and

the memory transfer volumes normalized by the number of lattice-site updates in

Fig. 5.3c. Likewise, we present the Intel Haswell results in Fig. 5.4

0 100 200 300 400 500 600 700 800

Size in each dimension

0.0

0.5

1.0

1.5

2.0

G
LU

P
/s

(a) Performance.

0 100 200 300 400 500 600 700 800

Size in each dimension

0

5

10

15

20

25

30

35

40

45

M
E

M
G

B
/s MWD

1WD
Spt.blk.
PLUTO
Pochoir

(b) Measured memory band-

width usage.

0 100 200 300 400 500 600 700 800

Size in each dimension

0

10

20

30

40

50

60

70

80

90

M
E

M
B

yt
es

/L
U

P

(c) Measured memory transfers

per LUP.

Figure 5.3: Ivy Bridge 7-point variable-coe�cient stencil results, using increasing
cubic grid size. Showing performance and memory transfer measurements of MWD,
PLUTO, Pochoir, 1WD, and spatial blocking.

This stencil performs 13 flops/LUP, but it has a higher pressure on memory for

purely spatial blocking (80 bytes/LUP instead of 24). Hence, we expect more potential

for temporal blocking and accordingly a higher speedup for MWD, which exhibits the

lowest in-memory code balance of all, as shown in Figs. 5.3c and 5.4c. Indeed the

speedup of MWD compared to spatial blocking is 2.8⇥ – 3.2⇥ on Ivy Bridge and

4.5⇥ – 5.2⇥ on the more bandwidth-starved Haswell.

On Ivy Bridge, Pochoir has the lowest memory bandwidth usage at large problem

sizes, but it is five times slower than even spatial blocking. This memory bandwidth

saving shows that low memory bandwidth usage does not guarantee high performance.

77

0 100 200 300 400 500 600 700 800 900

Size in each dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

G
LU

P
/s

(a) Performance.

0 100 200 300 400 500 600 700 800 900

Size in each dimension

0

10

20

30

40

50

60

M
E

M
G

B
/s

MWD
1WD
Spt.blk.
PLUTO
Pochoir

(b) Measured memory band-

width usage.

0 100 200 300 400 500 600 700 800 900

Size in each dimension

0

10

20

30

40

50

60

70

80

90

M
E

M
B

yt
es

/L
U

P

(c) Measured memory transfers

per LUP.

Figure 5.4: Haswell 7-point variable-coe�cient stencil results, using increasing cu-
bic grid size. Showing performance and memory transfer measurements of MWD,
PLUTO, Pochoir, 1WD, and spatial blocking.

In this particular case, the compiler appears to have generated exceptionally slow

code. Even if the memory bandwidth were fully utilized (40 GB/s instead of 8 GB/s)

the performance would hardly surpass spatial blocking.

The phenomenological ECM model for MWD with stencil predicts a performance

of 1.6 GLUP/s (3.9 GLUP/s) at large problem sizes for the full Ivy Bridge (Haswell)

socket assuming perfect scalability. The deviation from the measurement may be

attributed to the cost of the fine-grain synchronization in large thread groups, which

are used in large grid size to decouple from the main memory bottleneck.

5.2.3 25-point stencil with constant coe�cients

We present the Intel Ivy bridge performance results using di↵erent frameworks in

Fig. 5.5a. We also show the measured memory bandwidth usage in Fig. 5.5b and

the memory transfer volumes normalized by the number of lattice-site updates in

Fig. 5.5c. Likewise, we present the Intel Haswell results in Fig. 5.6

Due to its high ratio of 33 flops/LUP and its large radius this stencil poses a

challenge for temporal blocking schemes. Many layers of grid points have to be

supplied by the caches, so the time needed for memory transfers is rather small [15]

78

0 200 400 600 800 1000 1200

Size in each dimension

0.0

0.2

0.4

0.6

0.8

1.0

1.2

G
LU

P
/s

(a) Performance.

0 200 400 600 800 1000 1200

Size in each dimension

0

5

10

15

20

25

30

35

40

45

M
E

M
G

B
/s

MWD
1WD
Spt.blk.
PLUTO
Pochoir

(b) Measured memory band-

width usage.

0 200 400 600 800 1000 1200

Size in each dimension

0

10

20

30

40

50

M
E

M
B

yt
es

/L
U

P

(c) Measured memory transfers

per LUP.

Figure 5.5: Ivy Bridge 25-point constant-coe�cient stencil results, using increasing
cubic grid size. Showing performance and memory transfer measurements of MWD,
PLUTO, Pochoir, 1WD, and spatial blocking.

0 200 400 600 800 1000 1200 1400

Size in each dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
LU

P
/s

(a) Performance.

0 200 400 600 800 1000 1200 1400

Size in each dimension

0

10

20

30

40

50

60

M
E

M
G

B
/s

MWD
1WD
Spt.blk.
PLUTO
Pochoir

(b) Measured memory band-

width usage.

0 200 400 600 800 1000 1200 1400

Size in each dimension

0

10

20

30

40

50

M
E

M
B

yt
es

/L
U

P

(c) Measured memory transfers

per LUP.

Figure 5.6: Haswell 25-point constant-coe�cient stencil results, using increasing cu-
bic grid size. Showing performance and memory transfer measurements of MWD,
PLUTO, Pochoir, 1WD, and spatial blocking.

79

and the cache size required for temporal blocking is large. As shown in Figs. 5.5a

and 5.6a, only MWD reduces the memory pressure significantly, since it can leverage

the multi-threaded wavefronts to reduce the need for cache size. As a consequence,

only MWD is consistently faster than pure spatial blocking by a factor of 1.1⇥ on Ivy

Bridge and by 1.5⇥ – 1.7⇥ on Haswell. Pochoir and 1WD even exhibit a memory code

balance larger than spatial blocking for most problem sizes, as shown in Figs. 5.5c

and 5.6c.

With MWD the compiler produces some register spilling, adding to the dominance

of the in-core and in-cache contributions to the runtime. At large grid sizes, the ECM

model predicts a full-socket MWD performance of 1.3 GLUP/s on Ivy Bridge and of

2.5 GLUP/s on Haswell. Both predictions are reasonably close to the measurements.

5.2.4 25-point stencil with variable coe�cients

We present the Intel Ivy bridge performance results using di↵erent frameworks in

Fig. 5.7a. We also show the measured memory bandwidth usage in Fig. 5.7b and

the memory transfer volumes normalized by the number of lattice-site updates in

Fig. 5.7c. Likewise, we present the Intel Haswell results in Fig. 5.8

0 100 200 300 400 500 600

Size in each dimension

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

G
LU

P
/s

(a) Performance.

0 100 200 300 400 500 600

Size in each dimension

0

5

10

15

20

25

30

35

40

45

M
E

M
G

B
/s

MWD
1WD
Spt.blk.
PLUTO
Pochoir

(b) Measured memory band-

width usage.

0 100 200 300 400 500 600

Size in each dimension

0

20

40

60

80

100

120

140

160

180

M
E

M
B

yt
es

/L
U

P

(c) Measured memory transfers

per LUP.

Figure 5.7: Ivy Bridge 25-point variable-coe�cient stencil results, using increasing
cubic grid size. Showing performance and memory transfer measurements of MWD,
PLUTO, Pochoir, 1WD, and spatial blocking.

80

0 100 200 300 400 500 600 700 800

Size in each dimension

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

G
LU

P
/s

(a) Performance.

0 100 200 300 400 500 600 700 800

Size in each dimension

0

10

20

30

40

50

60

M
E

M
G

B
/s MWD

1WD
Spt.blk.
PLUTO
Pochoir

(b) Measured memory band-

width usage.

0 100 200 300 400 500 600 700 800

Size in each dimension

0

20

40

60

80

100

120

140

160

180

M
E

M
B

yt
es

/L
U

P

(c) Measured memory transfers

per LUP.

Figure 5.8: Haswell 25-point variable-coe�cient stencil results, using increasing cu-
bic grid size. Showing performance and memory transfer measurements of MWD,
PLUTO, Pochoir, 1WD, and spatial blocking.

This stencil performs 37 flops/LUP but requires much more data due to the vari-

able coe�cients array (128 bytes/LUP for e�cient spatial blocking). Although it has

a lower intensity compared to the 25-point constant-coe�cient stencil, it poses the

same cache size problems. Again, only MWD can reduce the code balance signifi-

cantly, as shown in Figs. 5.7c and 5.8c. MWD is the only scheme that is faster than

spatial blocking at all (by 1.2⇥ – 1.3⇥ on Ivy Bridge and by 1.5⇥ – 2⇥ on Haswell),

as shown in Figs. 5.7a and 5.8a. Pochoir shows low memory bandwidth usage at

the same memory code balance as spatial blocking. Measurements, in Figs. B.4e

and B.8e in Appendix B, show that Pochoir requires a massive amount of data tra�c

between the L1 and L2 cache for this stencil, which is a contributor (in addition to

slow low-level code) to its extremely low performance.

The phenomenological ECM model for MWD yields socket-level estimates of

0.44 GLUP/s on Ivy Bridge and 0.71 GLUP/s on Haswell, both of which are in line

with the measurements.

81

5.3 MWD tile sharing impact on performance, mem-

ory transfer, and energy consumption

While the cache block sharing reduces the memory bandwidth requirements of the

stencil codes, it increases the overhead by performing fine-grain synchronization

among more threads. As a result, the auto-tuner would select the minimum thread

groups size that su�ciently decouple from the main memory bandwidth, when allowed

to tune all the parameters.

In this section, we run the MWD approach using fixed thread group sizes to

study their impact on the performance, memory bandwidth and transfer, and en-

ergy consumption. The auto-tuner selected the parallelization dimensions and tiling

parameters in these experiments. We limit the energy consumption analysis to the

Intel Ivy Bridge processor. The memory modules of the Haswell processor consume

a similar amount of energy regardless of the memory bandwidth usage, making our

optimization techniques oblivious to the energy consumption rate.

We perform our experiments over the four studied stencil kernels in this work.

We observe similarity in the studied characteristics of these stencils, so we describe

representative subset of these results here. The remaining results are moved to Ap-

pendix C.

In all the results, we use a range of cubic grid sizes, where each dimension is set

to multiples of 64 in the Ivy Bridge processor and multiples of 128 in the Haswell

processor.

We describe the Haswell processor’s results of the 7-point constant-coe�cient and

the 25-point variable-coe�cient stencils, to show MWD behavior at two extremes in

the code balance. The energy consumption behavior is illustrated using the 25-point

constant-coe�cient stencil results in the Ivy Bridge processor.

82

5.3.1 7-point stencil with constant coe�cients

We present the Intel Haswell performance results using di↵erent thread group sizes

in Fig. 5.9a. We also show the measured memory bandwidth usage in Fig. 5.9b, and

the memory transfer volumes normalized by the number of lattice-site updates in

Fig. 5.9c.

0 200 400 600 800 1000 1200 1400 1600

Size in each dimension

0

2

4

6

8

10

G
LU

P
/s

(a) Performance.

0 200 400 600 800 1000 1200 1400 1600

Size in each dimension

0

10

20

30

40

50

M
E

M
G

B
/s

1WD
2WD
3WD
6WD
9WD
18WD

(b) Measured memory band-

width usage.

0 200 400 600 800 1000 1200 1400 1600

Size in each dimension

0

1

2

3

4

5

6

7

8

9

M
E

M
B

yt
es

/L
U

P

(c) Measured memory transfers

per LUP.

Figure 5.9: Haswell performance and memory transfer measurements of the 7-point
constant-coe�cient stencil using increasing cubic grid size. We compare various
thread group sizes in MWD.

The 1WD implementation does not saturate the memory bandwidth at smaller

grid size than 8003, as this stencil has small bytes requirements and moderate code

balance. When 1WD runs at grid sizes larger than 8003 the memory bandwidth

saturates and the performance drops, as larger cache blocks cannot fit in the L3

cache memory. 2WD and larger thread group sizes are su�cient to decouple from the

main memory bandwidth bottleneck at large grid sizes.

At small grid sizes, the synchronization overhead of 9WD and 18WD is relatively

significant compared to the computations, resulting less e�cient performance. As

the computations increase at larger grid sizes, the synchronization cost of 9WD and

18WD becomes less significant, where all MWD variants achieve similar performance.

Larger thread group sizes save more cache memory as they keep a smaller number

of tiles in the cache memory. The cache size saving provides space for larger diamond

83

tiles, which increases the in-cache data reuse and decreases the main memory band-

width usage and data tra�c. Figures 5.9b and 5.9c show how larger thread group

sizes consume less memory bandwidth and transfer less data per lattice update. This

memory transfers saving shows that our MWD approach is suitable for the future

processors, which are expected to be more memory bandwidth starved. Although the

synchronization overhead of MWD impacts the performance, we find it acceptable

compared to the memory bandwidth saving and the performance improvements.

5.3.2 25-point stencil with variable coe�cients

We present the Intel Haswell performance results using di↵erent thread group sizes

in Fig. 5.10.

0 100 200 300 400 500 600 700 800

Size in each dimension

0.0

0.2

0.4

0.6

0.8

1.0

G
LU

P
/s

(a) Performance.

0 100 200 300 400 500 600 700 800

Size in each dimension

0

10

20

30

40

50

60

M
E

M
G

B
/s

1WD
2WD
3WD
6WD
9WD
18WD

(b) Measured memory band-

width usage.

0 100 200 300 400 500 600 700 800

Size in each dimension

0

20

40

60

80

100

120

140

160

M
E

M
B

yt
es

/L
U

P

(c) Measured memory transfers

per LUP.

Figure 5.10: Haswell performance and memory transfer measurements of the 25-point
variable-coe�cient stencil using increasing cubic grid size. We compare various thread
group sizes in MWD.

The 25-point variable-coe�cient stencil has high code balance and large cache

block size requirements, so large thread group size is necessary to decouple from the

main memory bandwidth bottleneck. As shown in Fig. 5.10a, 18WD achieves the

best performance at most of grid sizes. Other MWD variants saturate or nearly

saturate the main memory bandwidth at large grid sizes, as shown in Fig. 5.10b, and

incur large memory data volume transfer, as shown in Fig. 5.10c.

84

5.3.3 25-point stencil with constant coe�cients

We present the Intel Ivy bridge performance results using di↵erent thread group sizes

in Fig. 5.11a, along with the measured memory bandwidth usage in Fig. 5.11b. The

memory transfer volumes in Fig. 5.11c and the energy estimates in Figs. 5.11d, 5.11e,

and 5.11f are normalized by the number of lattice updates.

0 200 400 600 800 1000 1200

Size in each dimension

0.0

0.2

0.4

0.6

0.8

1.0

1.2

G
LU

P
/s

(a) Performance.

0 200 400 600 800 1000 1200

Size in each dimension

0

5

10

15

20

25

30

35

40

45

M
E

M
G

B
/s

1WD
2WD
5WD
10WD

(b) Measured memory band-

width usage.

0 200 400 600 800 1000 1200

Size in each dimension

0

10

20

30

40

50

M
E

M
B

yt
es

/L
U

P

(c) Measured memory transfers

per LUP.

0 200 400 600 800 1000 1200

Size in each dimension

0

1

2

3

4

5

6

7

C
P

U
pJ

/L
U

P

⇥101

(d) CPU energy consumption

estimates.

0 200 400 600 800 1000 1200

Size in each dimension

0

1

2

3

4

5

6

D
R

A
M

pJ
/L

U
P

⇥101

(e) DRAM energy consumption

estimates.

0 200 400 600 800 1000 1200

Size in each dimension

0.0

0.2

0.4

0.6

0.8

1.0

1.2
To

ta
lp

J/
LU

P

⇥102

(f) Total energy consumption

estimates.

Figure 5.11: Ivy Bridge performance, memory transfer measurements, and energy
consumption estimates of the 25-point constant-coe�cient stencil using increasing
cubic grid size. We compare various thread group sizes in MWD.

1WD achieves the best performance up to the grid size 5123 before it starts sat-

urating the memory bandwidth interface (shown in Fig. 5.11b) and increase its data

transfer volumes (shown in Fig. 5.11c).

Although 2WD achieves the best performance with grid sizes larger than 5123,

all MWD variants achieve similar performance. This similarity indicates negligible

85

synchronization overhead among all MWD variants.

The energy results in Fig. 5.11f shows that the usual law of “faster code uses less

energy”, or “race-to-halt” as defined by Hennessy and Patterson [25], is not always

true. That is, we observe that 10WD achieves the lowest energy to the solution in

most cases, although it does not achieve the best performance among the other MWD

variants. We obtain this result because the DRAM energy consumption is propor-

tionally correlated to its bandwidth usage. The memory bandwidth saving of 10WD

results in decreasing its DRAM energy consumption, as we observe in Fig. 5.11e,

while consuming the same CPU energy of other variants.

5.4 Code balance and energy consumption analy-

sis

These findings would not justify favoring the maximum thread group size over all

other options on the Ivy Bridge processor. However, these findings show clearly that

if the future moves towards more memory bandwidth-starved systems and higher

relative power dissipation in the memory subsystem, it should use algorithms that

exhibit lowest possible code balance. This view is corroborated by another observation

in our data: The overall energy savings of temporal blocking vs. standard spatial

blocking are roughly accompanied by equivalent runtime savings. But when the

energy consumption of CPU and DRAM are inspected separately it is evident that

this equivalence emerges from the mutual cancellation of two opposing e↵ects: While

the CPU energy is less strongly correlated with the code performance, the DRAM

energy shows an over-proportional reduction for temporal blocking.

This can be seen more clearly in Fig. 5.12 where we have measured the energy

to solution with respect to the code balance for 5WD (as a consequence of setting

di↵erent diamond tile sizes) for both 7-point stencils (the diagram for the 25-point

86

stencil would only contain a single data point per set). In both cases the DRAM

energy depends much more strongly on the code balance than the CPU energy. This

was expected from the observations described above, but the CPU energy dependence

is far from weak. Overall there is an almost linear dependence of energy on code

balance, making the latter a good indicator of the former.

0 2 4 6 8 10 12 14 16

Measured code balance (Bytes/LUP)

0

5

10

15

20

25

30

35

pJ
/L

U
P

4

Dw=8
1216

Total
CPU
DRAM

2.
55

3.
70

3.
92

3.
63

GLUP/s

(a) 7-point constant-coe�cient stencil at grid

size N = 960

3
.

0 10 20 30 40

Measured code balance (Bytes/LUP)

0

20

40

60

80

100

pJ
/L

U
P

4

Dw=8
1216

Total
CPU
DRAM

0.
89

1.
24

1.
35

1.
37

GLUP/s

(b) 7-point variable-coe�cient stencil at grid

size N = 480

3
.

Figure 5.12: Using Intel Ivy Bridge, energy vs. code balance for the seven-point
stencils at several diamond tile sizes, separately for DRAM and CPU and as a total
sum. The corresponding performance of each experiment is shown on the top x-axis.
The annotation at each point represents the used diamond width. 5WD is used in
the experiments.

5.5 Thread scaling performance

All measurement results discussed so far were taken on a full socket. In order to

better understand the shortcomings and advantages of the di↵erent temporal blocking

approaches we present thread scaling results in this section. For each stencil we show

the scaling behavior of performance, memory bandwidth, and measured code balance

at a fixed grid size on the 18-core Haswell socket.

In the cases of 1WD, MWD, and PLUTO, the parameters are tuned only at 18

threads. Experiments with less number of threads use the same parameters of the full

87

socket of the stencil. This results in having less points in MWD plots, as the thread

count must be multiple of the thread group size.

5.5.1 7-point constant-coe�cient stencil

The thread scaling results for the 7-point constant-coe�cient stencil are shown in

Figures 5.13a, 5.13b, and 5.13c. All temporally blocked variants except Pochoir show

a roughly constant code balance with increasing thread count, but only MWD shows

good scaling across the whole chip. Pochoir and 1WD clearly run into the bandwidth

bottleneck; the limited scalability of PLUTO is not caused by tra�c issues. MWD

shows a linearly rising memory bandwidth utilization, indicating bottleneck-free and

balanced execution.

5.5.2 7-point variable-coe�cient stencil

The thread scaling results for the 7-point variable-coe�cient stencil are shown in

Figures 5.14a, 5.14b, and 5.14c. Again, MWD exhibits a constant, low code balance

and good scaling. Starting at six threads, PLUTO also shows constant code balance

but on a 60% higher level. Since the memory bandwidth is roughly the same as with

MWD, performance also scales at a much lower level. An interesting pattern can be

observed with 1WD: at rising thread count the shared cache becomes too small to

accommodate the required tiles for maintaining su�cient locality, leading to a steep

increase in code balance beyond ten cores. Since the memory bandwidth is already

almost saturated at this point, performance starts to break down. This behavior was

expected from the discussion in the earlier sections, but it is evident now that 1WD

would be the best choice on a CPU with only ten cores but with the same cache

size. 1WD is also the only temporal blocking variant that is not decoupled from the

memory bandwidth. In case of Pochoir the data shows that the decoupling is due to

very slow low-level code, as shown before.

88

0 2 4 6 8 10 12 14 16 18

Threads number

0

1

2

3

4

5

6

7

8

9
G

LU
P

/s

(a) Performance.

0 2 4 6 8 10 12 14 16 18

Threads number

0

10

20

30

40

50

60

M
E

M
G

B
/s

MWD
1WD
Spt.blk.
PLUTO
Pochoir

(b) Measured memory band-

width.

0 2 4 6 8 10 12 14 16 18

Threads number

0

5

10

15

20

25

30

M
E

M
B

yt
es

/L
U

P

(c) Measured memory transfers

per LUP.

Figure 5.13: Thread scaling for the 7-point constant-coe�cient stencil, showing per-
formance and memory transfer measurements. We compare PLUTO, Pochoir, 1WD,
MWD, and spatially blocked code variants on the 18-core Haswell socket at a grid
size of 8963.

0 2 4 6 8 10 12 14 16 18

Threads number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
LU

P
/s

(a) Performance.

0 2 4 6 8 10 12 14 16 18

Threads number

0

10

20

30

40

50

60

M
E

M
G

B
/s

MWD
1WD
Spt.blk.
PLUTO
Pochoir

(b) Measured memory band-

width.

0 2 4 6 8 10 12 14 16 18

Threads number

0

10

20

30

40

50

60

70

80

90

M
E

M
B

yt
es

/L
U

P

(c) Measured memory transfers

per LUP.

Figure 5.14: Thread scaling for the 7-point variable-coe�cient stencil, showing per-
formance and memory transfer measurements. We compare PLUTO, Pochoir, 1WD,
MWD, and spatially blocked code variants on the 18-core Haswell socket at a grid
size of 7683.

89

0 2 4 6 8 10 12 14 16 18

Threads number

0.0

0.5

1.0

1.5

2.0

2.5

G
LU

P
/s

(a) Performance.

0 2 4 6 8 10 12 14 16 18

Threads number

0

10

20

30

40

50

60

M
E

M
G

B
/s

MWD
1WD
Spt.blk.
PLUTO
Pochoir

(b) Measured memory band-

width.

0 2 4 6 8 10 12 14 16 18

Threads number

0

10

20

30

40

50

M
E

M
B

yt
es

/L
U

P

(c) Measured memory transfers

per LUP.

Figure 5.15: Thread scaling for the 25-point constant-coe�cient stencil, showing
performance and memory transfer measurements. We compare PLUTO, Pochoir,
1WD, MWD, and spatially blocked code variants on the 18-core Haswell socket at a
grid size of 8963.

5.5.3 25-point constant-coe�cient stencil

Thread scaling results for the 25-point constant-coe�cient stencil are shown in Fig-

ures 5.15a, 5.15b, and 5.15c. Due to the massive cache size requirements of this stencil

only MWD is still able to decouple from the memory bandwidth. All other variants

show strong saturation, or even a slowdown in case of 1WD beyond ten threads, which

is caused by the same cache size issues as with the 7-point variable-coe�cient stencil.

Again, 1WD would be the method of choice if the chip only had ten cores but the

same shared cache size.

5.5.4 25-point variable-coe�cient stencil

Thread scaling results for the 25-point variable-coe�cient stencil are shown in Fig-

ures 5.16a, 5.16b, and 5.16c. Note that there is now only a single data point in each

figure for MWD (at 18 threads). All variants except MWD exceed even the spatial

blocking code balance beyond five threads and thus show strong performance satu-

ration, with the exception of Pochoir, which again su↵ers from code quality issues.

Even if one were able to accelerate the Pochoir code so that it could saturate the

90

0 2 4 6 8 10 12 14 16 18

Threads number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

G
LU

P
/s

(a) Performance.

0 2 4 6 8 10 12 14 16 18

Threads number

0

10

20

30

40

50

60

M
E

M
G

B
/s MWD

1WD
Spt.blk.
PLUTO
Pochoir

(b) Measured memory band-

width.

0 2 4 6 8 10 12 14 16 18

Threads number

0

50

100

150

200

M
E

M
B

yt
es

/L
U

P

(c) Measured memory transfers

per LUP.

Figure 5.16: Thread scaling for the 25-point variable-coe�cient stencil, showing per-
formance and memory transfer measurements. We compare PLUTO, Pochoir, 1WD,
MWD, and spatially blocked code variants on the 18-core Haswell socket at a grid
size of 7683.

bandwidth, it would still end up at a lower performance level than all others (about

0.3 GLUP/s).

5.6 Distributed memory strong scaling performance

We perform strong scaling experiments using the 7-point variable-coe�cient and 25-

point variable-coe�cient stencils using Intel MPI library 5.0. The domain is decom-

posed across the y axis using MPI, as described in Sect. 4.2.4. An Intel Ivy Bridge

socket is assigned to each MPI process, using ten OpenMP threads per socket.

We perform domain decomposition along the diamond tile dimension in this imple-

mentation to show the e↵ectiveness of diamond tiling for both shared and distributed

memory setup. In this thesis, we do not provide fully distributed memory implemen-

tation with multi-dimensional domain decomposition.

91

5.6.1 7-point stencil with variable coe�cients

We show the strong scaling performance results of the 7-point variable-coe�cient

stencil using our distributed memory MWD implementation in Figure 5.17.

2 4 8 12 16 24 32

Processors #

0

5

10

15

20

25

30

35

40

45

A
gg

re
ga

te
G

LU
P

/s

Spt.blk.
1WD
MWD
Ideal scaling

(a) Performance. Ideal scaling

based on MWD performance at a

single process.

1 2 4 8 16 32
Processors #

0

20

40

60

80

100

Ti
m

e
(%

) Others
Idle
Communicate
Compute

S
pt

.b
lk

.

1W
D

M
W

D

S
pt

.b
lk

.

1W
D

M
W

D

(b) Time distribution, showing time percentage

spent in stencil computation, MPI communica-

tion, etc. Each cluster of bars corresponds to a

fixed number of MPI processes. Error bars with

standard deviation under 3% are suppressed.

Figure 5.17: Distributed memory strong scaling performance of the 7-point stencil
with variable coe�cients at a grid size of 7683. Each MPI process uses a ten core
Intel Ivy Bridge processor.

1WD does not work beyond 16 processes because smaller subdomains in the y axis

cannot provide su�cient concurrency to run all the available threads (“concurrency

condition”). To run 1WD at 24 MPI processes the minimum subdomain size would be

4 [min. diamond width] *10 [threads/process] * 24 [processes] = 960 grid points along

the y axis. MWD has less concurrency requirements in the diamond tiling dimension,

as it introduces other dimensions of shared memory concurrency. For example, 10WD

achieves the concurrency condition using 50% of the minimum grid size that satisfies

the concurrency condition at 1WD.

The auto-tuner selects 2WD in processes range 1–16 and 10WD at 24 and 32

processes. 2WD would achieve less performance compared to 10WD at 24 and 32

processes due to the restrictions imposed by the concurrency condition. 2WD is lim-

ited to small diamond tile sizes at 24 and 32 processes (Dw = 4) compared to Dw = 8

92

at 16 processes. On the other hand, 10WD can use larger tile sizes while satisfying the

concurrency condition. For example, 10WD use Dw = 24 at 32 processes. The same

concurrency limitation causes the performance drop of 1WD at 12 and 16 processes.

1WD uses Dw = 4 at 12 and 16 processes compared to Dw = 8 at 8 processes.

We use timing routines in the code to profile the major parts. We present the time

distribution of the distributed memory results in Figure 5.17b. The run time involves

performing stencil updates (“Compute”), communicating the halo data across MPI

processes (“Communicate”), and thread groups idle time when the task queue is

empty in the MWD implementation (“Idle”). Thread groups can have di↵erent time

distribution as they perform their tasks independently from each other. We use error

bars in Fig. 5.17b to present the standard deviation of the thread groups’ run time

for each component in the stacked bars.

When 1WD or MWD approach their concurrency limit, the idle time percentage

increases. For example, in Figure 5.17b, the subdomain of 1WD at 16 processes has 12

diamond tiles in the row (Ny/(Dw⇥P) = 768/(4⇥16) = 12 diamond tiles/row, where

P is the number of processes), which is very close to the concurrency limit of the ten

threads. Updating boundary tiles takes more time compared to updating interior tiles

because of the data exchange. When the runtime updates the interior diamond tiles of

a row before the boundary tiles, less concurrency will be available. This concurrency

limitation causes some thread groups to remain idle when the subdomain size is near

the concurrency limit.

As shown in Figure 5.17a, the MWD implementation scales well up to 16 pro-

cesses and demonstrates the compatibility of MWD for strong thread scaling with

distributed memory scaling, up to a surface-to-volume limitation. The large surface-

to-volume ratio of the subdomains at 24 and 32 processes results in large commu-

nication overhead, as shown in Figure 5.17b. In fact, at 32 sockets the time for

communication with neighboring processes (calculated from the asymptotic network

93

bandwidth and the data volume) is about half the time needed to perform the sten-

cil updates (calculated from the raw update performance and the number of lattice

points and time steps). Performing domain decomposition at additional dimensions

would allow the code to have a scalable performance at more processes.

5.6.2 25-point stencil with variable coe�cients

We present strong scaling performance results of the 25-point variable-coe�cient sten-

cil in Figure 5.18. Because of the larger stencil semi-bandwidth, halos comprise mul-

tiple grid layers. This high-order stencil has large communication volume, causing

the communication time percentage to increase quickly, as shown in Fig. 5.18a). The

auto-tuner uses DW =32 at most of the MWD test cases. As a result, the halo layers

of four time steps are communicated at once. The diamond tile at the subdomain

boundary communicates 4 ⇥ 4 = 16 x-z-planes for each diamonds row update.

2 4 8 16

Processors #

0

1

2

3

4

5

6

A
gg

re
ga

te
G

LU
P

/s

Spt.blk.
1WD
MWD
Ideal scaling

(a) Performance. Ideal scaling

based on MWD performance at a

single process.

1 2 4 8 16
Processors #

0

20

40

60

80

100

Ti
m

e
(%

) Others
Idle
Communicate
Compute

S
pt

.b
lk

.

1W
D

M
W

D

S
pt

.b
lk

.

1W
D

M
W

D

(b) Time distribution, showing time percentage

spent in stencil computation, MPI communication,

etc. Each cluster of bars corresponds to a fixed

number of MPI processes. Error bars with stan-

dard deviation under 3% are suppressed.

Figure 5.18: Distributed memory strong scaling performance of the 25-point stencil
with variable coe�cients at a grid size of 5123. Each MPI process uses a ten core
Intel Ivy Bridge processor.

94

Chapter 6

Application: Accelerating a

Maxwell Equations solver for a

solar cell simulation

Understanding and optimizing the properties of solar cells is becoming a key issue in

the search for alternatives to nuclear and fossil energy sources. A theoretical analysis

via numerical simulations involves solving Maxwell’s Equations in discretized form

and typically requires substantial computing e↵ort. We start from a hybrid-parallel

(MPI+OpenMP) production code that implements the THIIM with Finite-Di↵erence

Frequency Domain (FDFD) discretization, introduced by Pflaum et al. [26]. Although

this algorithm has the characteristics of a strongly bandwidth-bound stencil update

scheme, it is significantly di↵erent from the popular stencil types that have been

exhaustively studied in the high performance computing literature to date. In this

chapter, we apply a our MWD approach and describe in detail the peculiarities that

need to be considered due to the special stencil structure.

It is worth mentioning that we investigated another application with multicompo-

nent and variable-coe�cient stencils for wave equation solvers. Our analysis showed

high arithmetic intensity in the stencil computations, which would result in low or

95

Figure 6.1: Cross-section of a sample simulation setup of a tandem thin-film solar cell.
The amorphous (a-Si:H) and microcrystalline silicon (µc-Si:H) layers have textured
surfaces to increase the light trapping ability of the cell. SiO2 nano particles are
incorporated to further increase light scattering at the bottom electrode (Ag).

no benefit of our temporal blocking techniques in contrast to the fruitful situation

herein, as described in Appendix E. This contrast emphasizes the wide variability of

code balance among computational expressions of physical models.

6.1 Introduction

We apply our stencil optimization technology to a challenging problem in computa-

tional physics. Photovoltaic (PV) devices play a central role in the recent transition

from nuclear and fossil fuels to more environmentally friendly sources of energy. There

exist various di↵erent PV technologies, ranging from well-established polycrystalline

silicon solar cells with thicknesses up to 300 µm to more recent thin-film technologies

with active layer thicknesses of only 1 µm or less. To improve these thin-film PV

devices and make them more competitive against other renewable energy sources,

optimization of their optical properties is decisive. The importance of an optimal

96

collection of the incident light can be seen in any of the recently developed most

e�cient solar cell designs [27].

To understand the e↵ects of di↵erent light trapping techniques incorporated into

PV devices and improve upon them, detailed optical simulations are necessary. The

simulation code we investigate here uses the THIIM [28], which is based on the

staggered grid algorithm originally proposed by Yee [29] and uses the FDFD method

to discretize Maxwell’s Equations.

Although the algorithm performs stencil-like updates on the electric and mag-

netic field components, the code is more complex than the well-studied standard

stencil benchmarks such as the 7-point stencil with constant coe�cients emerging

from a discretized Laplace operator. Multiple components per grid cell are involved

since six coupled partial di↵erential equations discretized by finite di↵erences must

be solved. It uses staggered grids, which results in non-symmetric data dependencies

that a↵ect the tiling structure. The loop kernels of the simulation code have very

low arithmetic intensity (0.18 flops/byte) for the naive implementation), leading to a

memory bandwidth-starved situation. The number of bytes per grid cell is large (40

double-complex numbers), which makes it di�cult to maintain a su�ciently small

working set to have the necessary in-cache data reuse for decoupling from the main

memory bandwidth bottleneck. Despite the complexity, this application lends itself

to the optimizations studied earlier in much simpler contexts.

The time-harmonic variants of Maxwell’s equations are given by

i!Ê =
1

✏
r ⇥ Ĥ � �

✏
Ê , (6.1)

i!Ĥ = � 1

µ
r ⇥ Ê � �?

µ
Ĥ , (6.2)

with permittivity ✏, permeability µ, the electric and magnetic conductivities � and

�?, and the frequency of the incident plane wave !. The time-independent electric

97

and magnetic field components are related to the time-dependent fields by ~E = Êei!⌧

and ~H = Ĥei!⌧ .

After discretization of Maxwell’s equations in time and space the following itera-

tive scheme is obtained:

ei!⌧ Ên+1
h � Ên

h

⌧
=

1

✏
rh ⇥ Ĥ

n+ 1
2

h ei!
⌧
2 � �

✏
Ên+1

h ei!⌧ + SE , (6.3)

ei!
⌧
2 Ĥ

n+ 1
2

h � e�i! ⌧
2 Ĥ

n� 1
2

h

⌧
= � 1

µ
rh ⇥ Ên

h � �?

µ
Ĥ

n+ 1
2

h + SH , (6.4)

with time step ⌧ , time step index n and source terms SE and SH . To model materials

with negative permittivity (✏ < 0, for example, silver electrodes) the THIIM method

applies a “back iteration” scheme to the electric field components of the corresponding

grid points:

ei!⌧ Ên
h � Ên+1

h

⌧
=

1

✏
rh ⇥ Ĥ

n+ 1
2

h ei!
⌧
2 � �

✏
Ên+1

h + SE . (6.5)

With this method, the optical constants of any material can be used directly in the

frequency domain without the need for any approximation or auxiliary di↵erential

equations [30, 31, 32, 33]. THIIM has proven to be numerically stable and give

accurate solutions for setups with metallic back contacts [34, 35] and also for the

simulation of plasmonic e↵ects, for example, around silver nano wires [36].

A perfectly matched layer (PML) is used to allow absorption of outgoing waves,

employing the split-field technique originally presented by Berenger [37]: All six Ê

and Ĥ field components are split into two parts each. For example, the Ê
x

component

of equation 6.1 is split into Ê
x

= Ê
xy

+ Ê
xz

, resulting in two equations:

(i!✏ + �y) Êxy

=
@

@y

⇣
Ĥ

zx

+ Ĥ
zy

⌘
, (6.6)

98

(i!✏ + �z) Êxz

= � @

@z

⇣
Ĥ

yx

+ Ĥ
yz

⌘
. (6.7)

For all six vector components this procedure is performed on Equations 6.3, 6.4 and 6.5

resulting in a total of 12 coupled equations.

In order to overcome the problem of the representation of complicated light-

trapping geometries, such as rough interfaces between layers or curved particle sur-

faces, the Finite Integration Technique (FIT) [38] is applied on the rectangular struc-

tured grids. FIT allows to accurately treat curved interfaces by integrating the ma-

terial data on an unstructured tetrahedron grid and mapping the data back to the

structured grid.

Figure 6.1 shows a sample simulation setup of a thin-film tandem solar cell that

can be simulated by the methods mentioned above [39]. The amorphous and micro-

crystalline silicon layers are used to absorb di↵erent ranges of the incident spectrum.

Their surfaces are etched to increase the trapping of light inside the cell. Atomic force

microscopy is used to obtain height information that is then introduced between the

layers in the simulation. Additionally, at the back electrode (Ag) SiO2 nano particles

can be deposited to increase the scattering of light. For such a setup PML boundary

conditions are chosen vertically. Horizontally periodic boundary conditions are used.

We optimize the multi-threaded (OpenMP-parallel) part of the THIIM code using

our MWD approach. Our multi-dimensional intra-tile parallelization implementation

shows a significant reduction in the cache block size requirement, providing su�cient

data reuse in the cache to decouple from the main memory bandwidth bottleneck. As

a result, we obtain a 3⇥ – 4⇥ speedup compared to an e�cient spatially blocked code.

In addition to the performance improvements, our results show significant memory

bandwidth savings of 38% – 80% o↵ the available memory bandwidth, making it

immune to more memory bandwidth-starved systems. Via appropriate cache block

size and code balance models we prove that cache block sharing is essential for decou-

99

pling from the memory bandwidth bottleneck. We validate these models by analyzing

di↵erent tile sizes and measuring relevant hardware performance counters.

6.2 Intra-tile parallelization implementation

Figure 6.2 shows the diamond tiling implementation of the THIIM stencil kernel. We

split the Ĥ and Ê field updates in the figure as they have di↵erent data dependency

directions. The Ĥ and Ê fields have dependencies over the positive and negative

directions, respectively, as illustrated in Fig. 6.3. Splitting the fields allows more

data reuse in the diamond tile and provides proper tessellation of diamond tiles. As

a result, a full diamond tile update starts and ends with an Ê field update. The

horizontal (blue) lines in Fig. 6.3 divide the components in three regions, which can

be handled by three threads. See below for details.

The extruded diamond tile is shown in Figure 6.4. We perform the wavefront

traversal along the z-axis (outer dimension) and the diamond tiling along the y-axis

(middle dimension). We do not tile the x-axis (fast moving dimension), as we split

its work among multiple threads with simultaneous updates in the TG.

The staggered grid and multicomponent nature of this application requires di↵er-

ent intra-tile parallelization strategies than “standard” structured grid implementa-

tions.

We allow a concurrent update of the x-axis grid cells by the threads in the TG

while the data is in cache. This handling of the x-axis has two advantages: it reduces

the pressure on the private caches of the threads, and it maintains data access patterns

that allow for e�cient use of hardware prefetching.

The fixed amount of work per time step in the z and x-axes leads to good load

balancing, but parallelizing the diamond tile along the y-axis can be ine�cient since

the odd number of grid points at every other time step in the diamond tile makes

100

E
H
E
H
E
H
E
H
E
H
E
H

Y$axis

Ti
m
e,
st
ep

s

Figure 6.2: Diamond tile shape along the y-axis for the THIIM stencil. Although
the Ĥ and Ê fields are updated in the same iteration of the simulation code, we split
them in our tiling implementation to achieve better data reuse and better diamond
tile tessellation.

load balancing impossible for more than one thread along the y-axis. Doubling the

diamond tile width is possible, but it would result in doubling the cache block size

without increasing the data reuse. Moreover, a load-balanced implementation cannot

make the intra-tile split parallel to the time dimension, so more data will have to move

between the private caches of the threads. As a result, we do not perform intra-tile

parallelization along the diamond tiling dimension for this stencil.

We exploit the concurrency in the field component updates by adding a further

dimension of thread parallelism. Each field update can update six fields concurrently.

We parameterize our code to allow 1, 2, 3, and 6-way parallelism in the field update so

that the auto-tuner selects the most performance-e�cient configuration. For example,

Fig. 6.3 shows a case of parallelizing the components update using three threads.

In our spatial blocking and MWD benchmark implementations we use homoge-

neous Dirichlet boundary conditions in all dimensions to study the performance im-

provements of our techniques. We expect no significant changes in performance with

periodic boundary conditions. The code can use periodic boundary conditions along

the x-axis by unrolling the first and last iteration of the x-loop to explicitly specify the

101

Hyx [z&]

Hyz [x&]

Hzx [y&]

Hzy [x&]

Hxy [z&]

Hxz [y&] Eyx [z+]

Eyz [x+]

Ezx [y+]

Ezy [x+]

Exy [z+]

Exz [y+]

Hyx

Hyz

Hzx

Hzy

Hxy

Hxz

Figure 6.3: Ĥ and Ê field dependencies of the THIIM stencil kernel. Each field is
updated by reading six domain-sized arrays of the other field. The arrows indicate
dependencies over the same location in the grid and a unit index o↵set. The (red)
labels in square brackets indicate the axis and the direction of the o↵set. The (blue)
horizontal lines split the components in three regions to indicate the components
update parallelism using three threads.

Z"

Y"T"

!!!!
!!!!!!

!!!!!!!
!!!!!

!!!! E "
!!!! H " "
!!!! E " " "

!!!! H " " " "
!!!! E " " "

!!!! H " "
!!!! E "

Y
T

YZ

Figure 6.4: Extruded diamond tiling of the THIIM kernels, showing an example of
Dw = 4 and Ww = 4. The data dependencies of the Ĥ and Ê fields allow more data
reuse in the wavefront.

102

contributing grid points at the other end of the domain. Diamond tiling is suitable to

apply periodic boundary conditions. We can use the leftmost half-diamond in Fig. 6.2

to complete the rightmost half-diamond. The rightmost new full-diamond will have

data dependency with the leftmost diamond. We can ensure correct update order by

using similar techniques to the distributed memory diamond tiling in Section 4.2.4,

except that we perform memory data copy instead of MPI communication.

6.3 Detailed analysis of the solver’s stencil codes

Here we analyze the data tra�c requirements per lattice site update (i.e., the code

balance) of the stencil code for the näıve, spatially blocked, and temporally blocked

variants. The stencil codes of the solver are listed in Appendix D.

As described above, six components each are used for the electric field Ê and the

magnetic field Ĥ. We show the code of two component updates in the THIIM stencil

in Listings 6.1 and 6.2. The remaining three and seven components updates have very

similar memory access and computation patterns. The HXY update in Listing 6.1

uses three coe�cient arrays (tHyx, cHyx, SrcHy) and the HZX update in Listing 6.2

uses two coe�cient arrays (tHzx, cHzx). Overall (i.e., considering all component

updates) this results in 4 · 3 + 8 · 2 = 28 domain-sized arrays for the coe�cients.

In total, 12 + 28 = 40 domain-sized arrays have to be stored using double-complex

numbers, leading to a storage requirement per grid cell of 16 · 40 bytes = 640 bytes

per grid cell.

6.3.1 Näıve kernel arithmetic intensity

We count the total floating-point operations per LUP in the stencil code. The loop

nests in Listings 6.1 and 6.2 perform 22 flops and 20 flops, respectively. In total we

count 4 · 22 + 8 · 20 = 248 Double Precision (DP) flops/LUP. For calculating the

103

Listing 6.1: Kernel for the magnetic field HY X component update. Accesses with
index shifts along the outer dimension are highlighted. Similar computations and
memory access patterns are performed in HXY , EY X , and EXY updates.
for(k=zb; k<ze; k++) {
for(j=yb; j<ye; j++) {
ib=2*((k*Ny+j)*Nx+xb); ie=2*((k*Ny+j)*Nx+xe);
for(i=ib; i<ie; i+=2) {
ishift = i+2*(-Nx*Ny);
Re=Exy[i]-Exy[ishift]+Exz[i]-Exz[ishift];
Im=Exy[i+1]-Exy[ishift+1]+Exz[i+1]-Exz[ishift+1];
t=Hyx[i]*tHyx[i]-Hyx[i+1]*tHyx[i+1]+SrcHy[i]

-cHyx[i]*Re+cHyx[i+1]*Im;
Hyx[i+1]=Hyx[i]*tHyx[i+1]+Hyx[i+1]*tHyx[i]

+SrcHy[i+1]-cHyx[i]*Im-cHyx[i+1]*Re;
Hyx[i] = t; }}}

data tra�c we note that the loop in Listing 6.1 writes two double precision numbers,

reads twelve numbers with no index shift, and reads four numbers with an outer

dimension index shift (ishift). If we assume that all accesses to arrays with an

outer dimension index shift (in Listing 6.1 these are Exy and Exz) actually go to

main memory we have a total tra�c of 18 double precision numbers in this loop.

Whether this is true or not depends on the problem size: if two successive x-y layers

of those grids fit into the cache, the shifted and non-shifted accesses to the same

arrays come at half the data transfer cost because the access with the smaller index

comes from cache. This reasoning is well known in stencil optimizations [40, 15]. At

a problem size of 5123 two layers take up 5122 · 16 · 2 = 8 MiB of cache per thread and

per array, which exceeds the available cache size by far. See the next section on how

this can be corrected.

The code in Listing 6.2 writes two numbers and reads ten numbers without large

index shifts. The shifted accesses to Exz and Exy can be ignored since the shift is

only along the middle dimension, and two rows of the data easily fit into some cache.

The third variant of array updates is identical to the second in terms of data transfers

since it has a very small shift of �2 along the inner dimension only.

104

Listing 6.2: Kernel for the magnetic field HZX component update. Accesses with
index shifts along the middle dimension are highlighted. Similar computations and
memory access patterns are performed in HZY , HXZ , HY Z , EXZ , EY Z , EZX , EZY

updates. The o↵set direction in ishift variable di↵ers in the components updates
as presented in Fig. 6.3.
for(k=zb; k<ze; k++) {
for(j=yb; j<ye; j++) {
ib=2*((k*Ny+j)*Nx+xb); ie=2*((k*Ny+j)*Nx+xe);
for(i=ib; i<ie; i+=2) {
ishift = i+2*(-Nx);
Re=Exy[ishift]-Exy[i]+Exz[ishift]-Exz[i];
Im=Exy[ishift+1]-Exy[i+1]+Exz[ishift+1]-Exz[i+1];
t = Hzx[i]*tHzx[i]-Hzx[i+1]*tHzx[i+1]

-cHzx[i]*Re+cHzx[i+1]*Im;
Hzx[i+1] = Hzx[i]*tHzx[i+1]+Hzx[i+1]*tHzx[i]

-cHzx[i]*Im-cHzx[i+1]*Re;
Hzx[i] = t; }}}

Overall we thus have a code balance of

BC = 4 · (18 + 12 + 12) · 8 bytes/LUP = 1344 bytes/LUP , (6.8)

leading to an arithmetic intensity of I = 248/1344 flops/byte = 0.18 flops/byte, which

results in very high pressure on the main memory bandwidth.

6.3.2 Spatial blocking arithmetic intensity

The total load/store operations to memory can be reduced by standard spatial block-

ing techniques, which establish “layer conditions” along the outer grid dimensions

(see, for example, [15] and references therein). Spatial blocking results in a reduction

of the memory tra�c in the four loop nests that are structured as shown in Listing 6.1

by four double precision numbers each, if the blocking sizes in the inner and/or middle

dimensions are chosen such that two successive layers of an array with index shifts in

the outer dimension fit into a cache. The new code balance is thus

BC = 4 · ([18 � 4] + 12 + 12) · 8 bytes/LUP = 1216 bytes/LUP , (6.9)

105

and the arithmetic intensity becomes I = 248/1216 flops/byte = 0.20 flops/byte. The

spatial blocking optimization improves the performance of the code by a mere 10%

because the main contributors to the data tra�c are not the electric and magnetic

fields but the coe�cient arrays. Spatial blocking is not e↵ective for these because

they are accessed with no temporal locality.

We can now predict the maximum performance for optimal spatial blocking using

a simple bottleneck model [41]: The limit due to the maximum memory bandwidth

bS of the CPU is Pmem = bS/BC. The Haswell chip we used for our experiments has

bS ⇡ 50 GB/s, hence

Pmem =
bS
BC

=
50 GB/s

1216 bytes/LUP
= 41 MLUP/s . (6.10)

This prediction is in very good agreement with the measurements. See Sect. 6.4 for

details.

6.3.3 Diamond tiling arithmetic intensity and cache size re-

quirements

The performance of temporal blocking techniques relies on a reduction of data tra�c,

especially to and from main memory. Data tra�c models are very useful for under-

standing the expected or observed performance gains. We modify our cache block

size model in Equation 3.6 to estimate the usable tile sizes in this application. We

also use similar code balance model to Equation 3.8. The cache block size model

estimates the maximum tile size that fits in the cache memory for this application by

counting the working data set in the diamond-wavefront tile, such as the one shown

in the y-z plane in Fig. 6.4. The total required number of bytes per tile is:

Cs = 16 · Nx ·

40 ·

✓
D2

w

2
+ Dw · (BZ � 1)

◆
+ 12 · (Dw + Ww)

�
. (6.11)

106

Each point in the diamond-wavefront tile extends over the full length of the x dimen-

sion (Nx) with double-complex values (8 · 2 bytes). The area of the wavefront-tile

is D2
w
2

+ Dw · (BZ � 1), which depends on the diamond tile width (Dw) and the tile

size along the z-axis (BZ). Since each grid cell requires loading 12 components and

32 coe�cients, we multiply the wavefront-diamond tile area by 40 numbers per grid

cell. Finally, the 12 · (Dw + Ww) part corresponds to the neighbor access of the

12 components around the wavefront-diamond tile, where the wavefront tile width

Ww = Dw + BZ � 1. For example, in Fig. 6.4 we have Dw =4, BZ =4, and Ww = 7,

so we have Cs=14912 · Nx bytes per cache block.

For the code balance model we have to estimate the potential reduction of memory

bandwidth pressure by temporal blocking. If the tile fits entirely in the L3 cache, the

code loads each grid point once from main memory and stores it back only after

completing the wavefront updates. We count the total reads and writes per diamond

tile and divide by the diamond area (i.e., data reuse). Each diamond update consists

of writing six Ĥ field components per cell at full diamond width (Dw) and writing six

Ê field components per cell at Dw � 1. In total, each diamond requires 6 · (2 ·Dw � 1)

writes. The diamond tile requires reading 40 numbers per cell and accessing the

neighbors of the 12 components (40 · Dw + 12). The diamond area is (D2
w/2). The

code balance for double-complex numbers of the kernel is thus:

BC =
16 · [6 · (2 · Dw � 1) + (40 · Dw + 12)]

D2
w/2

bytes

LUP
. (6.12)

We validate our models and study the potential impact of our temporal blocking

techniques using our 1WD implementation. Figure 6.5 shows the model predictions

(solid black lines) of the code balance and cache block size and the code balance

measurements (dashed blue lines). The latter is based on a direct measurement of

the memory data tra�c via hardware performance counters. We test four diamond

107

tile widths (4, 8, 12, and 16). The red vertical lines indicate the estimated usable

block size in the L3 cache of the Haswell processor (as a rule of thumb we assume that

half the overall cache size, i.e., 22.5 MiB, is available for tile data). Figures 6.5a– 6.5c

correspond to three wavefront width sizes (BZ =1, 6, and 9), where more concurrency

is achievable along the z-axis at the cost of using a larger cache block size. We perform

our tests at a grid of size 4803 in the 18-core Haswell processor using a single core

and a single cache block.

The measurements show that the model accurately predicts the usable cache block

size. The measured code balance diverges from the model when more than half of the

L3 cache is used (the right side of the vertical red line), which is expected.

Our results also emphasize the importance of multi-dimensional intra-tile paral-

lelism compared to parallelizing the wavefront only, where the maximum number of

threads per tile is restricted by the wavefront tile width. Using BZ = 6 would require

three thread groups at the Haswell processor. As a result, the minimum diamond

width Dw = 4 requires a cache block size Cs = 30 MiB, which exceeds the available

cache memory. Although the cache block size of BZ = 9 would fit in the L3 cache

at Dw = 4, it cannot use larger diamond tiles, to enable more data reuse. On the

other hand, our approach provides parallelism along the other dimensions without in-

creasing the cache block size (i.e., it uses smaller wavefront tile widths), which saves

space for larger diamond tiles. For example, we can set BZ = 1 and use nine threads

per cache block along the other dimensions. This setup provides a Dw = 8 that uses

Cs = 20MiB, allowing more data reuse within the usable cache block size limit.

6.4 Results

We present results for the spatially blocked code, 1WD, and MWD with full parame-

ters auto-tuning to show the performance improvements. In order to get more insight

108

0 5 10 15 20 25 30 35 40

Cache block size (MiB) PER THREAD

0
50

100
150
200
250
300
350
400

C
od

e
ba

la
nc

e
(B

yt
es

/L
U

P
)

Model
Measured
Usable cache size

4 8 12 16

Diamond width

(a) BZ = 1.

0 10 20 30 40 50 60

Cache block size (MiB) PER THREAD

0
50

100
150
200
250
300
350
400

C
od

e
ba

la
nc

e
(B

yt
es

/L
U

P
)

4 8 12 16

Diamond width

(b) BZ = 6.

0 10 20 30 40 50 60 70

Cache block size (MiB) PER THREAD

0
50

100
150
200
250
300
350
400

C
od

e
ba

la
nc

e
(B

yt
es

/L
U

P
)

4 8 12 16

Diamond width

(c) BZ = 9.

Figure 6.5: The cache block size requirements of the application’s kernels at three
wavefront widths (BZ). We use an 18-core Haswell at grid size 4803, running a single
thread with the 1WD approach. Smaller wavefront tile widths, which provide less
concurrency along the z-axis, enable more data reuse.

109

into performance properties we show thread scaling at fixed grid size and full socket

performance at increasing grid size (cubic domain). Since 1WD generally performs

better than PLUTO and Pochoir in the four stencil benchmarks in Chapter 5, we do

not implement the solar stencil in their frameworks to compare their performance.

We also present results using di↵erent thread group sizes to show the impact of the

cache block sharing over the memory transfer volume and the memory bandwidth.

All experiments are performed using the 18-core Haswell processor.

We use our Fixed-Execution to Data (FED) wavefront parallelization approach,

which always assigns the same grid points to each thread while the wavefront tra-

verses the tile. This idea maximizes the data reuse in the thread-private caches,

since only boundary data instead of the full tile has to travel between threads. The

corresponding performance improvement is very limited for simple stencils, but the

THIIM stencil and high-order stencils do benefit from it.

6.4.1 Thread scaling results

We present performance results of the THIIM kernel at increasing number of threads

for a fixed problem size in Figure 6.6a. We also show the memory bandwidth mea-

surements in Fig. 6.6b, measured code balance in Fig. 6.6c, and the auto-tuned MWD

diamond width parameter in Fig. 6.6d.

The spatially blocked code saturates the memory interface already with six cores,

resulting in a performance of around 40 MLUP/s. This is in very good agreement with

the bandwidth-based prediction of 41 MLUP/s that was derived in Sect. 6.3.2. Using

separate cache blocks per thread in 1WD alleviates the memory bandwidth pressure

and achieves better performance than spatial blocking code at smaller thread counts,

but the cache is too small to accommodate su�cient blocks at larger thread counts

so that a performance drop is observed beyond twelve cores. This can be seen more

clearly in Fig. 6.6b: 1WD goes into bandwidth saturation at ten cores. In contrast,

110

0 2 4 6 8 10 12 14 16 18

Threads number

0

20

40

60

80

100

120

140

M
LU

P
/s

(a) Performance.

0 2 4 6 8 10 12 14 16 18

Threads number

0

10

20

30

40

50

60

M
E

M
G

B
/s

MWD
1WD
Spt.blk.

(b) Measured memory bandwidth

usage.

0 2 4 6 8 10 12 14 16 18

Threads number

0

200

400

600

800

1000

1200

1400

M
E

M
B

yt
es

/L
U

P

(c) Measured memory transfers per

LUP.

0 2 4 6 8 10 12 14 16 18

Threads number

0

2

4

6

8

10

12

14

16

D
ia

m
on

d
w

id
th

(d) Diamond width.

Figure 6.6: The THIIM stencil performance and memory transfer measurements,
comparing 1WD, MWD, and spatially blocked code variants on an 18-core Haswell
socket at increasing number of threads using grid size 3843.

111

MWD does not saturate the memory bandwidth and can still profit from more cores

up to the chip limit, showing a parallel e�ciency of about 75% on the full chip. It

can maintain a low code balance of 200–400 bytes/LUP for all thread counts (see

Fig. 6.6c). The comparison of diamond width parameters selected by the autotuner

in Fig. 6.6d is quite revealing: at larger core counts, 1WD requires smaller diamonds

to meet the stringent cache size limit per core, whereas MWD can employ larger

diamonds due to several threads sharing a diamond tile for wavefront updates.

6.4.2 Increasing grid size results

Although thread scaling, as shown in the previous section, reveals many interesting

features of the 1WD and MWD algorithms, it is also instructive to study their be-

havior with changing problem size. We therefore present performance results of the

THIIM kernel at di↵erent (cubic) grid sizes in Figure 6.7a, ranging from 64 to 512

with an increment of 64. We also show the auto-tuned MWD intra-tile paralleliza-

tion parameters in Fig. 6.7b, the memory bandwidth measurements in Fig. 6.7c, and

measured code balance in Fig. 6.7d.

1WD performance decays at larger grid size because of the increasing cache re-

quirements as the leading dimension grows. The rise in the memory transfer volume

seen in Fig. 6.7d suggests that the larger cache blocks cause more capacity misses in

the L3 cache. Our auto-tuner selects a very small DW = 4 at all grid sizes of 1WD,

which already exceeds the available cache memory.

Our MWD implementation is decoupled from the memory bandwidth bottleneck

over the full range of problem sizes. Compared to the spatially blocked code it has

a 6⇥ lower code balance, resulting in a 3⇥ – 4⇥ speedup. The memory bandwidth

measurements in Fig. 6.7c show that our approach is immune to even more memory

bandwidth-starved situations, where the machine balance (ratio of memory band-

width to computational performance) would be lower.

112

0 100 200 300 400 500 600

Size in each dimension

0

20

40

60

80

100

120

140

160

180

M
LU

P
/s

(a) Performance.

0 100 200 300 400 500 600

Size in each dimension

0

2

4

6

8

10

12

14

16

18

In
tra

-ti
le

th
re

ad
s

MWD Group
Along x
Along z
In comp.

(b) Thread group size along x,

z, and the field components. in

comp refers to componentwise par-

allelism.

0 100 200 300 400 500 600

Size in each dimension

0

10

20

30

40

50

M
E

M
G

B
/s

MWD
1WD
Spt.blk.

(c) Measured memory bandwidth

usage.

0 100 200 300 400 500 600

Size in each dimension

0

200

400

600

800

1000

1200

1400

M
E

M
B

yt
es

/L
U

P

(d) Measured memory transfers per

LUP.

Figure 6.7: The THIIM stencil kernel performance and memory transfer measure-
ments, comparing 1WD, MWD, and spatially blocked code variants on an 18-core
Haswell socket at increasing cubic grid size.

113

The auto-tuner selects larger thread groups as the grid size increases, as shown

in Fig. 6.7b, to reduce the cache size requirements. This allows diamond widths in

the range 8–16. For all grid sizes, two or three threads are used for the parallel

components update. The components parallelism is a major contributor in reducing

the cache block size requirements while maintaining high intra-tile concurrency. On

the other hand, parallelizing the wavefront dimension alone would result in a larger

cache block size, as described in Sect. 6.3.3.

6.4.3 Thread group size impact on performance and memory

transfers

In this section we show the impact of the thread group size (i.e., cache block sharing)

on the THIIM kernel performance in Figure 6.8a, on the memory bandwidth mea-

surements in Fig. 6.8c, and on the code balance in Fig. 6.8d. We also show the tuned

MWD diamond tile width in Fig. 6.8b.

The cases 6WD, 9WD, and 18WD are able to decouple from the memory band-

width bottleneck at large grid sizes, allowing them to achieve similar performance.

The small performance variations make the auto-tuner select di↵erent thread group

sizes, as shown in the case of MWD performance at grid size of 512 in Figs. 6.7

and 6.8.

Larger thread group sizes reduce the need for cache size. As a result, increasing

the thread group size allows the auto-tuner to select a larger diamond tile width,

resulting in more in-cache data reuse, less memory bandwidth, and less memory

transfer volumes. The 18WD version uses at least DW =16 at all grid sizes, as shown

in Fig. 6.8b. The massive in-cache data reuse of 18WD results in saving more than

38% of the memory bandwidth at all grid sizes. On a CPU with smaller machine

balance we expect an even more pronounced advantage of large thread group sizes.

114

0 100 200 300 400 500 600

Size in each dimension

0

20

40

60

80

100

120

140

160

180

M
LU

P
/s

(a) Performance.

0 100 200 300 400 500 600

Size in each dimension

0

5

10

15

20

25

30

35

D
ia

m
on

d
w

id
th

(b) Diamond width.

0 100 200 300 400 500 600

Size in each dimension

0

10

20

30

40

50

60

M
E

M
G

B
/s

1WD
2WD
3WD
6WD
9WD
18WD

(c) Measured memory bandwidth

usage.

0 100 200 300 400 500 600

Size in each dimension

0

100

200

300

400

500

600

700

800

900

M
E

M
B

yt
es

/L
U

P

(d) Measured memory transfers per

LUP.

Figure 6.8: The THIIM stencil kernel performance and memory transfer measure-
ments, comparing various thread group sizes in MWD on an 18-core Haswell socket
at increasing cubic grid size. The results show the ability of our approach to reduce
significantly the required memory bandwidth and transfer volumes.

115

6.5 Summary and future work

In this chapter, we applied multicore wavefront diamond temporal blocking with

multi-dimensional intra-tile parallelization to a Maxwell’s Equations solver used in a

solar cell simulation application, achieving a 3⇥ – 4⇥ speedup and a 38% – 80%

memory bandwidth saving. This stencil code has very low arithmetic intensity

(0.20 flop/byte for optimal spatial blocking) and requires many bytes of storage per

grid cell (640 bytes). Applying thread parallelism inside shared cache blocks as well

as across electric and magnetic field components was decisive in lowering the severe

cache size constraints of the code. Using a validated cache block size and code balance

model we were able to describe the impact of the tiling parameters and the cache size

on the memory tra�c and thus limit the e↵ort of the auto-tuner.

The design and optimization process of solar cells requires thousands of parallel

runs of this code. In order to cover the whole visible wavelength spectrum for only

a single solar cell configuration, about 80–160 simulations are needed. Our perfor-

mance improvements reduce the turnaround time of each individual run and also the

overall cost of the computations. We believe that our approach is applicable to many

algorithms with similar characteristics, i.e., where the code has significant demand

for memory bandwidth and cache size.

In the future we plan to investigate further the performance limitations within the

core (in particular the SIMD vectorization) and the cache hierarchy, since the code

runs at only about 5% of the theoretical peak performance of the CPU despite being

cache bound. Hardware performance counter measurements and subsequent chip-

level performance modeling will provide more insight here. The temporal blocking

optimization will change the communication versus computation characteristics of the

code, which also deserve an in-depth analysis.

116

Chapter 7

Related work

The importance of stencil computations and the ine�cient performance of their näıve

implementations on modern processors motivates researchers to study them exten-

sively. The optimizations required to achieve the desired performance depend on the

properties of the stencil operator and the capabilities of di↵erent resources in the

processor. This case is made by Datta [42], where the performance of several combi-

nations of optimization techniques, processors, and stencil operators is reported.

The high Bytes per LUP requirement of many stencil computations and the in-

creasing performance gap between the arithmetic operations and the data transfer

are the major concerns in achieving high performance. Spatial and temporal blocking

improve the performance by increasing the data reuse in the cache memory of modern

processors.

Spatial blocking is an established technique that changes the grid traversal order

to maximize the data reuse in the desired memory level [4, 43]. Temporal blocking

allows more data reuse in the cache memory by reordering grid traversal across space

iterations, where blocks of grid points are accessed multiple times before completing

the traversal of a single spatial grid level.

Temporal blocking techniques require careful handling of data dependencies across

space iterations to ensure correctness. Several tiling techniques are proposed in the

literature including: parallelogram, split, overlapped, diamond, and hexagonal. These

117

block shapes optimize for data locality, concurrency, or both. Reviews of these tech-

niques can be found at Orozco et al. [44] and Zhou [45]. Diamond tiling is promising

for e�ciently providing both concurrency and data locality over the problems and

computer architectures of our interest. Its attractiveness in recent years is evident

in: [44], [45], Strzodka et al. [7], Bandishti et al. [21], and Grosser et al. [46], where a

GPU implementation of hexagonal tiling is proposed, then a study of hexagonal and

diamond tiling is performed [47]. Jin et al. [48] performed parallelogram temporal

blocking on Graphics Processing Units (GPUs) with domain sizes larger than the

GPU memory. They pipeline domain chunks between the GPU and the CPU with

optimization consideration to maximize performance and decrease the memory size

footprint on the GPU.

The wavefront technique, which was introduced by Lamport [5] (using the name

“hyperplane”), performs temporal blocking at adjacent grid points. This technique

has been combined with other tiling approaches using single-thread wavefront tem-

poral blocking as in [7], Wonnacott et al. [6], and Nguyen et al. [8], and using multi-

threaded wavefront temporal blocking, as in Wellein et al. [9].

Cache optimization techniques can be classified into cache-oblivious and cache-

aware techniques. Cache-oblivious techniques [49, 50, 24, 51] do not need prior

knowledge or tuning to find optimal cache block size to achieve high performance sten-

cil computations. On the other hand, cache-aware techniques utilize auto-tuning as

in [42], which performs parameter search over the optimization techniques to achieve

best performance, as defined in [52]: “using computer time rather than human time

to search a space of code variations for a fixed problem”. Another cache-aware al-

gorithm is introduced in [7], where cache block size calculations are used to set the

cache block size that achieves best performance.

Several frameworks have been developed to produce optimized stencil codes. Ph-

ysis, a Domain Specific Language (DSL) framework that generates optimized GPU

118

codes with the necessary MPI calls for heterogeneous GPU clusters, was proposed by

Maruyama et al. [53]. PLUTO [23] is a source-to-source transformation tool that uses

polyhedral model, CATS [7] is a library, Pochoir [24] uses cache-oblivious algorithms

in Domain Specific Languages (DSL), PATUS [54] uses auto-tuning with a DSL, and

Henretty et al. [55] develop a DSL that uses split-tiling. Unat et al. [56] introduced

Mint, a programming model that produces highly optimized GPU code from a user’s

annotated traditional C code. Gysi et al. [57] introduced a stencil framework, named

MODESTO, that uses models to decide on stencil transformations based on the pro-

gram and the target architecture. A recent review paper of stencil optimization tools

that use polyhedral model has been prepared by Wonnacott and Strout [58].

We classify the related work to our MWD approach in two categories: using

separate cache block per thread and utilizing cache block sharing.

7.1 Related work using separate cache block per

thread

We describe the temporal blocking issues in using dedicated cache block per thread

in Section 3.4. Insu�cient data reuse results in these approaches, given the LLC size

limitation, having to use long strides in the leading dimension, and the increasing

number of cores in contemporary processors.

Our work is close to the work of Nguyen et al. [8], the diamond tiling extension of

Bandishti et al. [21] in PLUTO, and CATS2 algorithm of Strzodka et al. [7]. They

combine wavefront temporal blocking with diamond tiling and parallelogram tiling in

the case of [8]

Nguyen et al. [8] introduce a technique called 3.5D blocking. They perform wave-

front blocking along the z-axis and parallelogram tiling along the y-axis. The whole

domain is divided among the threads across the y-axis, where each iteration is ad-

119

vanced at once using a global barrier.

Our 1WD implementation is very similar to CATS2 and PLUTO’s diamond tiling.

While we use CATS2 tiling choices along each dimension, PLUTO performs diamond

tiling along the z-axis, and parallelogram tiling along the y- and x-axes. 1WD is

similar to PLUTO because one diamond tiles is scheduled to each thread, where a

wavefront of short parallelogram tiles is updated in-order along the y-axis. The tiles

along the x-axis are usually kept long, mostly at the length of the domain along the

x-axis.

These three approaches have the advantage of e�ciently utilizing the performance

of multi-core processors. PLUTO and CATS2 require minimal thread synchronization

and o↵er very e�cient data reuse. However, we believe that two particular aspects

make our work important.

First, PLUTO and CATS2 rely on a large domain size in the diamond/parallelo-

gram tiling dimension to have su�cient concurrency for the available threads. If this

condition cannot be met PLUTO does not utilize all the threads if diamond tiling is

used. Strzodka proposes reverting to CATS1, which uses wavefront traversal in the

same dimension of space-time parallelogram tiles. To extract parallelism for many-

core processors, it is possible to use tiling approaches that allow concurrent update,

for example, split-tiling, in more dimensions, but the code complexity would increase.

Moreover, with the emergence of many-core architectures, it would be di�cult to find

su�cient concurrency for hundreds of threads in a reasonable grid size.

Second, no cache sharing among threads is assumed, so each thread requires space

in the cache memory and bandwidth from main memory for its own use. As a re-

sult, memory bandwidth-starved stencil computations run out of cache and memory

bandwidth, as will we show in Section 3.4. Moreover, it is unclear whether the cache

size and memory bandwidth per thread as seen in contemporary multi-core designs

will be available in future architectures. For example, the Intel Xeon Phi has 128KiB

120

and 8KiB cache per thread in the L2 and L1 caches, respectively, and it achieves only

about 3GB/s per core of memory bandwidth in full saturation.

Cache-oblivious stencil computations where introduced by Frigo et al. [50]. Str-

zodka et al. [51] introduced a parallel cache-oblivious approach that uses parallel-

ograms to have the desired recursive tessellation. Tang et al. [24] introduced the

Pochoir stencil compiler. Recursive trapezoidal tiling is used by performing space

and time cuts. The algorithm was improved recently by Tang et al. in [59] by reduc-

ing the artificial data dependencies produced in previous works.

While these implementations use asymptotically optimal algorithms, the constant

factor can be large, more than double compared to other tile shapes in one-dimension.

Trapezoidal and parallelogram tiling are provably sub-optimal in maximizing the

data reuse of loaded cache blocks compared to diamond tiling, as shown in [44],

and compared to wavefront temporal blocking, as shown in this work. The need of

using long strides along the leading dimension significantly increases the cache block

size requirement, making practical implementations far from the ideal promise in the

asymptotically optimal cache-oblivious algorithms.

To the best of our knowledge, utilizing cache block sharing among the thread does

not work in cache-oblivious algorithms. For example, the performance of the selected

thread group size is not only a↵ected by the cache subsystem bandwidth and size,

but also by the synchronization cost of the threads. As a result, cache block sharing

techniques can achieve better performance as they use larger cache blocks than the

optimal ones of dedicated cache block per thread, given the constraint of using long

strides in the leading dimension.

121

7.2 Related work utilizing cache block sharing

The first work to utilize cache block sharing by multiple cores is proposed by Wellein

et al. [9]. They use parallelogram tiling along the y-axis and multi-core wavefront

temporal blocking along the z-axis. This work is extended by Wittmann et al. [10]

and Treibig et al. [60]. They use relaxed synchronization in the thread group and

assign one thread group per cache domain. To maintain the intermediate values

across parallelogram tiles’ update, data is copied to temporary storage to keep the

intermediate time steps from the boundaries of the tiles.

Their work alleviates the cache capacity limitation that appears when using sepa-

rate cache block per thread. It has the advantage of reducing the total cache memory

requirement by using less number of cache blocks, while utilizing all the available

threads. They also introduce the thread group concept, where each thread group

share a tile. This thesis improves on the cache block sharing concept to achieve

further cache block saving, more data reuse, more concurrency, flexibility with pa-

rameterized tiling, and auto-tuning.

The wavefront data is pipelined across the threads in Wellein et al. ’s work, by

assigning one or more time step for each thread. A space is imposed between the

working set of each thread to achieve concurrency while ensuring correctness. This

requires extending the cache block size in the spatial dimension, without increasing

the in-cache data reuse. For example, the cache block size is doubled to achieve

the same data reuse, compared to single thread wavefront variant, when a stencil

radius of unity is used and a single time step is assigned per thread. This cost is

significant when using variable-coe�cient stencils, which load many bytes per grid

cell. Since each thread updates data from di↵erent time steps, equal amount of work

across the time steps of the wavefront is required. They achieve load-balancing by

using parallelogram tiling in the other dimension. This does not allow their work to

explode more advanced tiling techniques, such as diamond tiling.

122

A more recent cache block sharing work is proposed by Shrestha et al. [61]. They

call the it Jagged tiling. Polyhedral model is utilized to generate code for intra-tile

parallelization using PLUTO framework. This work is applied over one- and two-

dimensional stencil computations. They use a multi-core wavefront of tiles, similar

to our work along the z-axis, and use an optimized runtime system for fine grain

parallelization to schedule work to threads. Intra-tile threads synchronization is per-

formed through a dependency mask table of the size of the intra-tile tasks to track the

ready-to-update work. When a thread takes a task, atomics are used to avoid race

conditions. This work is extended by Shrestha et al. [62] They combined their intro-

duced jagged tiling approach with the diamond tiling extension of PLUTO framework,

to allow concurrent start at the inter- and intra-tile levels. The new approach is called

fine-grain (FG) jagged polygon tiling. They show results for the three-dimensional

7-point constant-coe�cient stencil. They run the experiments using grid of size 4803,

which is friendly to cache memory. The major di↵erence in the structure of their tiling

approach is that they provide intra-tile concurrency along the diamond tile dimension

by stretching the diamond tile along the space dimension, i.e., without increasing the

data reuse in time.

Shrestha’s work has the advantage of targeting the polyhedral model in their

cache block sharing algorithm. Their work is implemented in a general source-to-

source transformation framework making it more generic and more usable. Their

work is currently restricted to stencil computations, as diamond tiling in PLUTO

works only with stencil computations.

By providing the diamond tiling and the intra-tile concurrency along the same

dimension, they e↵ectively revert to smaller diamond tile sizes and update groups

of adjacent diamond tiles together. The only reuse in the thread group is at the

boundary of the sub-tiles. On the other hand, our MWD approach allows the thread

group to share one large diamond tile, allowing much more in-cache data reuse. Figure

123

5 of their paper [62] shows an example of their two-level tiling. The diamond tile is

split into 9 sub-tile updates for fine grain parallelization. Using the same cache block

size in space, our MWD approach allows for 15 sub-tile updates (i.e., 67% more data

reuse) and our approach is not limited to thread group size of 3, as in their example.

In other words, they compromises tile cache block size for more intra-tile concurrency.

They also allow the intra-tile task to update more than one time step. This imposes

unnecessary data dependencies across sub-tiles in the same row. Finally our work has

the advantage of providing parameterized thread group size and using auto-tuning.

124

Chapter 8

Conclusion

Stencil computations are important kernels in PDE solver codes and in linear algebra

kernels. These computations tend to be memory bound, resulting in low utilization

of the compute power in contemporary processors. In this thesis, we propose novel

temporal blocking algorithms that provide performance advantages over the state-

of-the-art techniques in the literature. Our approach can also provide significant

memory bandwidth savings that allows it to run in more memory bandwidth-starved

systems.

We study the performance of corner-case stencil kernels (low-order with constant

and variable coe�cients stencils and high-order with constant and variable coe�cients

stencils) over a wide range of grid sizes using two contemporary Intel processors. Even

with e�cient spatial blocking techniques, most of the stencil kernels poorly utilize the

compute resources in contemporary processors, due to the memory bandwidth limita-

tions. We also demonstrate that using separate cache block per thread with advanced

temporal blocking techniques (for example, CATS and cache-oblivious algorithms) is

not su�cient to decouple the stencil computations from the main memory band-

width bottleneck in many situations. This bandwidth saturation is more significant

in high-order and variable-coe�cient stencils than in other stencils, where the cache

memory size becomes a more scarce resource. We also expect them to perform even

more poorly in forecasted future processors, where the machine balance is expected

125

to increase. We also demonstrate in our application chapter that existing cache block

sharing techniques do not provide su�cient cache block size reduction. These tech-

niques incur overhead in the cache block size that is proportional to the provided

intra-tile concurrency.

In this thesis, we introduce a novel multi-dimensional intra-tile parallelization

algorithm. Our approach has several advantages. It allows minimal or no overhead

to the cache block size while maintaining high intra-tile concurrency, which is very

advantageous for stencils with high bytes requirements. We introduce parallelism

along the leading dimension, instead of tiling it, to reduce the working set in the

private caches of the threads. The leading dimension parallelization allows better

utilization of the hardware prefetching to the shared cache level. By making our

intra-tile partitioning parallel to the time axis, we maximize the data reuse in the

private caches of the threads. This tile partitioning allows us to perform hierarchical

tiling; where the shared (large) tile resides in the shared cache level and the sub-tiles

reside in the private caches of the threads.

We implement our algorithms in an open-source testbed framework, called Girih.

Our implementation uses two advanced tiling techniques, diamond tiling and wave-

front blocking. Our parameterized cache block sharing and tiling implementation pro-

vides a controllable trade-o↵ between fine-grain synchronization and memory band-

width usage, moving the pressure between the main memory interface and the CPU.

Our implementation automatically tunes all of the parameters to maximize the perfor-

mance benefit of our approach, by allowing architecture-friendly data access patterns

for various setups. We provide a proof-of-concept distributed memory paralleliza-

tion along the diamond tiling dimension. The MPI domain decomposition provides

relaxed MPI communication and overlaps computation with communication.

We construct accurate models for the data transfer and cache size requirements

of the wavefront diamond tiling approach. Our tra�c model can predict the optimal

126

code balance as a function of the stencil radius, the tile parameters, and the number

of domain-sized streams. We have validated the models’ predictions on two Intel

processors by direct tra�c measurements for the four studied stencil operators and

the solar simulation stencil. The model is very accurate if the required cache block

size (which is also predicted) fits into about half the shared outer level cache size.

We utilize these models to use a model-guided automated tuning to reduce the auto-

tuning work. The models are also important in motivating our work, where they

reveal the cache and memory resources limitations in the other tiling approaches in

the literature. Finally, the models provide an insight of the expected gain before

implementing the MWD optimization to a given stencil code.

We compare our approach with other frameworks in two contemporary Intel pro-

cessors using four stencil benchmarks over a wide range of grid sizes. Our MWD

approach obtains a better performance than PLUTO, Pochoir, 1WD/CATS2, and

an e�cient spatially blocked code with most grid sizes. MWD is the only approach

that constantly achieves better performance over spatial blocking, especially in the

cases of high-order stencil computations. The experiments include hardware coun-

ters’ measurements to have better understanding of the obtained performance. For

example, the memory bandwidth measurements reveal the cases when the memory

bandwidth is the bottleneck. By varying the thread group size, i.e., cache block shar-

ing, in out experiments we show that our MWD approach can significantly save the

memory bandwidth and memory transfers at the cost of slight performance degrada-

tion. On the Ivy Bridge processor, energy consumption reduction results from the

memory bandwidth savings. We show cases where the “race to halt” concept does

not apply all the time, where slower code with lower memory bandwidth usage can be

more energy e�cient than faster code running at the same CPU frequency. Finally,

we present proof-of-concept distributed memory strong scaling performance results

using one-dimension domain decomposition along the diamond tiling dimension. Our

127

MWD has scalable performance, up to a point when the surface-to-volume ratio of

the communication-to-computation becomes significant.

We exploit our intra-tile parallelization techniques to improve the performance

of the stencil code in a scientific application for solar cell simulations. Our MWD

approach achieves 3⇥ – 4⇥ speedup over e�cient spatial blocking implementation and

saves 38% – 80% of the memory bandwidth on the 18-core Haswell processor. This

application uses staggered grids and solves six equations in the simulation using FDFD

discretization. The solar stencil has very low arithmetic intensity (0.22 flop/byte)

and loads 640 bytes per grid cell, leading to high memory bandwidth saturation. To

the extent of our knowledge, existing spatial and temporal blocking techniques are

not e�cient for this stencil, due to its very high data transfer requirements. Our

approach minimizes the cache block size for the solar stencil by introducing intra-

tile parallelization in the components and along the leading dimension of the tile,

leading to the obtained performance improvements. The application requires special

implementation of MWD to handle the staggered grid and multicomponent per grid

cell. We also split the time step of the stencil kernel into two stages to maximize the

temporal blocking data reuse. The runtime speedup of MWD in the solar stencil can

result in a multi-fold reduction in solar cell design process time, as it requires running

many simulations.

Our work shows that using separate cache block per thread may become dep-

recated in future processors, especially for memory bandwidth-starved kernels. On

the other hand, our approach not only decouples the memory bandwidth bottleneck

in stencil computations but also makes further savings in the memory bandwidth,

making it suitable for processors with higher machine balance. Although we apply

our techniques to stencil computations, they can be extended to applications that use

other structures, such as unstructured grids.

128

Chapter 9

Future work and outlook

In this chapter, we discuss the applicability of our proposed approach in future HPC

systems, which are expected to have deeper memory hierarchies and long vectorization

units. We also discuss how the MWD approach can fit in the architecture of GPU

accelerators. Stencil computations have many types and applications. We show how

our method can handle other stencil types and particular application requirements,

such as adaptive time stepping. We discuss a special variant of Krylov subspace

solvers, which is an interesting application for stencil optimization frameworks. Our

work can be integration with existing stencil frameworks, and it can utilize more

optimization techniques, so we discuss these directions further.

9.1 Integrating MWD in future systems

Our MWD approach provides an e�cient way to alleviate memory bandwidth-starved

processors, where cache size per thread is not su�cient to hold a cache block that

provides the required data reuse.

Future processors are anticipated to have deeper memory hierarchies [63] and

long vectorization units. We discuss the integration of our MWD approach with

other techniques to address these issues.

Figure 9.1 shows an example of potential future processors, where our MWD

129

Tiles&
scheduling&
run.me&

MWD&+&
auto7tuning&

Vectoriza.on&
tools&

Figure 9.1: Outlook for integrating MWD with other techniques in future architec-
tures. Figure with courtesy of Pete Beckman, Argonne National Laboratory.

130

approach can be used coherently with two approaches: 1) Scheduling runtime system

of the MWD tiles can be used to perform hierarchical blocking of the larger and

slower memory levels 2) Vectorization tools can utilize the long unit strides memory

accesses provided by MWD tiles.

9.1.1 Handling deeper memory hierarchies with MWD

The runtime system would be invoked infrequently, as each MWD tile involves up-

dating millions of LUPs. It may serialize (i.e., block) thread groups assignment to

MWD blocks only for those requesting/completing new tiles. Our implementation

shows negligible impact of this synchronization on the performance.

Cache oblivious techniques [49, 64, 24] are good candidates for the runtime system.

They use space-filling-curves to provide automated hierarchical cache blocking for

arbitrary memory levels with optimal asymptotic lower bound on the data transfer.

As discussed in the 7, cache-oblivious algorithms face several challenges in utilizing

the CPU and its nearby memory levels. On the other hand, utilizing them in the

runtime system, at the granularity of our MWD tiles, does not a↵ect these resources,

as the smallest building block is large with architecture-friendly memory accesses.

The recursive tessellation nature of diamond tiles makes them good candidates

for space-filling-curve algorithms, as shown in Fig. 9.2.

The extruded MWD tile may be split along the z-axis using parallelepiped-tiling

to control the tile size and provide more concurrency. This would require using

multi-dimensional space-filling-curve similar to the work of Tang et al. [24], with

the di↵erence of using diamond tiling along the y-axis, instead of split-tiling in all

dimensions.

Other approaches may provide better performance with architectural and applica-

tion considerations using priority queues with certain priority setup criteria. combined

with other criterion, Last In First Out (LIFO) can improve data-locality across tiles

131

!! !! !!
!! !! !! !!
!! !! !! !!

!! !! !! !! !!
!! !! !! !! !! !! !! !! !!

!! !! !! !! !! !! !!
!! !! !! !! !! !! !! !! !! !!

!! !! !! !! !! !! !! !! !!
!! !! !! !! !! !! !! !! !! !! !! !!

!! !! !! !! !! !! !! !! !! !! !! !!
!! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!

!! !! !! !! !! !! !! !! !! !! !! !! !!
!! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!

!! !! !! !! !! !! !! !! !! !! !! !! !! !! !!
!! !!

!! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!
!! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!

!! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!
!! !!
!! !! !! !! !! !! !! !! !! !! !! !! !!

!! !! !! !! !! !! !! !! !! !! !! !! !! !! !!
!! !! !! !! !! !! !! !! !! !! !! !!

!! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!
!! !! !! !! !! !! !! !! !! !!

!! !! !! !! !! !! !! !! !!
!! !! !! !! !! !! !! !!

!! !! !! !! !! !! !! !! !! !!
!! !! !! !! !!

!! !! !! !! !!
!! !! !! !!

!! !! !!
!! !!

Y!
T!

Figure 9.2: Utilizing Z-ordering space-filling-curves to visit diamond tiles hierarchi-
cally. Four tessellation levels are shown using black, green, red, and blue colors for the
diamonds’ boundaries of three tessellation levels. This recursive tessellation nature
of diamond tiles make them good candidates for cache-oblivious algorithms

updates for the deeper memory hierarchy.

For example, it is shown in [65] that better performance can be achieved in Intel

KNC many-core processor when the cores are assigned separate data without read

sharing access. This suggests giving higher priority to non-adjacent extruded diamond

tiles to be updated simultaneously by di↵erent cores. Ideally, updating the tiles in

checkerboard fashion can guarantee no adjacent tiles updates by the cores. On the

other hand, maximizing adjacent tiles updates is favorable in multi-core processors

where uniform memory access is available at the shared level cache, as in the work of

Wellein et al. [9].

9.1.2 Handling long vectorization units

In stencil computations, e�cient utilization of long vector units usually require up-

dating long unit-strides and performing register manipulation for adjacent stencil

132

updates. The extruded diamond tiles in our MWD approach provides contiguous

access of long strides along the x-axis. Moreover, our implementation provides array

padding and aligned memory allocation to minimize vector loads across the cache lines

from the L1 cache to the CPU. Contiguous and aligned memory accesses make our

tiles friendly for e�cient vectorization by the compiler and other vectorization tech-

niques, as in [66, 67]. The long unit-strides also result in less loop and vectorization

prologue and epilogue overhead.

9.2 Tiles software prefetching

We can utilize the saved memory bandwidth usage of our MWD approach to cover the

potential latency in the main memory transfers. The software prefetching techniques

can achieve this latency reduction at the cost of using more memory bandwidth.

Our MWD approach utilizes the hardware prefetching e�ciently by allowing access

to long contiguous strides of data. However, the hardware prefetching unit may not

be able to bring all the required data from main memory to the LLC in the right

time, which may be caused by the large number of data streams.

Since our approach successfully reduces the cache size and main memory band-

width requirements, we can utilize the saving in these resources to perform software

prefetching. The wavefront tiles in the extruded diamond tile are updated succes-

sively. A double-bu↵ering technique can be utilized: while updating a given wave-

front tile, use software-prefetching to load the data of the next wavefront tile. Since

the data of successive wavefront tiles largely overlap, the ratio of loaded data to the

performed update is usually minimal.

Prefetching distance is usually tuned to e�ciently load and use the prefetched data

in the right time. In our case, it might be su�cient to set up the code to prefetch the

next block or two. The prefetching distance would be decided implicitly through the

133

wavefront-diamond tile size in the cache memory, as the auto-tuner would select tile

sizes that fill half the usable cache size to save the other half for prefetching.

9.3 Taking advantage of the memory bandwidth

usage saving

High performance computing systems are expected to have significant power con-

straints in the future, as described in details in [68]. This may result in having

insu�cient supply to run the CPU and the DRAM at full power. Modern processors

allow power capping in the DRAM and CPU resources. For example, contempo-

rary Intel processors use RAPL power management interface. It estimates the power

consumption and performs hardware power capping in both the CPU and the DRAM.

Our MWD approach significantly reduces the memory bandwidth requirements in

memory bandwidth-bound stencil computations. As a result, the memory bandwidth

interface is not fully utilized and the power consumption can be reduced in the DRAM.

We propose to utilize this memory bandwidth usage savings to reduce the frequency

of the memory interface and increase CPU frequency, given a particular power cap in

the node. We expect to have performance improvements as the CPU is the bottleneck

in our temporally blocked stencil computations.

This power control idea can be realized by including the power cap parameters

of the CPU and the DRAM in our auto-tuning search space. The objective function

of the current auto-tuning implementation aims to reduce time to solution. Multi-

objective optimizations that accounts for memory transfer and power consumption

are expected to make significant power savings, while maintaining near optimal time

to solution. The current implementation of the auto-tuner utilizes our accurate cache

block size model to prune the tile size parameter in the search space. We can also

utilize our accurate memory transfer model to reduce the auto-tuning search space in

134

the DRAM power capping (i.e., memory bandwidth) parameter.

The threads synchronization cost may be significant under certain conditions.

Overlapped tiling techniques can mitigate this overhead by reducing memory trans-

fers (hence synchronizations) at the expense of performing redundant computations.

Therefore, the saved memory bandwidth may be used in this regard and compensate

the overhead of the overlapped tiling cost.

9.4 Perspective on integration with accelerators

GPUs have been gaining more importance in HPC systems in recent years. Our

generic framework is not only suitable for GPU architectures, but also the diamond

tile shape allows decomposing the domain among CPUs and GPUs with relaxed

synchronization scheme as we do in the distributed memory setup of the work. More-

over, the hierarchical shape of the diamonds (i.e., each diamond can be divided to 4

equal diamonds) allows setting di↵erent tile sizes for the CPUs and the GPUs while

maintaining the tessellation of the subdomains. As for the update mechanism of the

extruded diamond blocks in the GPU, each block can be updated by a Streaming

Multiprocessor (SMX) of contemporary Nvidia GPUs. The threads of the SMX can

be kept busy by exploiting the concurrency along the x-axis. In terms of cache block

size, contemporary GPUs have su�cient cache memory to hold the wavefront data of

small diamond tiles.

We present more ideas for using our MWD approach in GPU accelerators using

NVIDIA GK110 Kepler as an example. The NVIDIA GK110 GPU [69] uses up to

15 SMX units, sharing 1536 KiB of L2 cache memory. Each SMX has 64 KiB of

shared memory that can be configured as L1 cache (hardware-controlled) and shared

memory (programmer-controlled). The hardware allows three L1/shared memory

splits: 16k/48k, 32k/32k, and 48k/16k. Each SMX contains 192 single-precision

135

CUDA cores, 64 double-precision Floating-Point Units (FPUs), 65536 32-bit registers

and is configured with 32 threads/warp.

NVIDIA Kepler provides synchronization mechanisms within the SMX, using

the synchronization features of the Parallel Thread Execution (PTX) programming

model. On the other hand, it may be impractical/di�cult to perform fine-grain shar-

ing across SMX units, as the hardware controls the scheduling order of the SMX

units’ work at runtime. This suggests assigning at least one extruded diamond tile

per SMX. The shared memory of the SMX can be utilized to perform our intra-tile

parallelization approach. This allows the threads of the SMX to maximize the data

reuse in the shared memory and reduce the pressure on the global memory bandwidth.

Every 32 threads in a warp can be considered as a long Single Instruction Multiple

Data (SIMD) unit, as they perform the same operation over multiple adjacent data

elements. Since our MWD approach provides long unit-strides along the x-axis, it

can e�ciently utilize the warp’s threads by assigning them contiguous 32-cells strides

along x-axis.

Since the wavefront tiles in the extruded diamond are updated in-order, double-

bu↵ering technique can be used to reduce the memory latency. However, our relaxed

synchronization scheme might be su�cient to cover the global memory latency, as

the leading thread fetches new data while other threads update the shared in-cache

data.

9.5 Handling other stencil types

We considered Jacobi-style updates in the stencil computation work of this thesis.

Another important variant is the Gauss-Seidel-style, where the successive time itera-

tions update the same solution array, as opposed to Jacobi-style iterations.

Gauss-Seidel-style schemes should work using our method in straightforward man-

136

i

k

j
Figure 9.3: An example of box stencil operator, which extends diagonally to the axes

ner, as our method respects the data dependencies across time steps (i.e., iterations).

However, the updates would not be ordered identically within each time step due

to the spatial blocking performed by diamond tiling and the potential out-of-order

scheduling of the diamond tiles in each row of diamonds. Using color-splitting like

red-black Gauss-Seidel requires doubling the slope of the tiles (both the wavefront

and the diamond) to respect the data dependency imposed by the red-black ordering

in space. In contrast to regular Gauss-Seidel ordering, spatial blocking can obey the

red-black ordering, as each point update has dependency over the direct neighbors in

the same time step.

So far, star-shaped stencil operators are handled in our work, where the stencil

operator extends along each axis separately. Other important stencil operators have

shapes that extend diagonally, such as the 27-point box stencil operator shown in

Fig. 9.3. The major di↵erence in the application of these stencils is the diagonal data

dependency of the stencil operator. The star stencil operator has data dependencies

only over the faces of the tile and the subdomain, while the box stencil operator has

additional dependencies over the corners and the edges. We use our MWD tiling

techniques for a box stencil in our Girih framework. Our MWD implementation of

the box stencil works because the tile shapes already account for data dependencies

137

in the tile’s corners and edges.

9.6 Integrating intra-tile parallelization techniques

in stencil frameworks

Our MWD can be integrated in cache-aware stencil optimization techniques that per-

form explicit tiling. Several well established frameworks, such as PLUTO and Physis,

use these techniques. For example, the tiled stencil codes of PLUTO can incorporate

our techniques. PLUTO has options to perform diamond tiling and parallelepiped

tiling along di↵erent dimensions. Concurrent start is achieved by scheduling diamond

tiles to threads using OpenMP. It also has control over the tiles scheduling scheme.

It may be possible to configure PLUTO to perform diamond tiling along the y-axis

and small parallelepipled tiles along the z-axis. The wavefront-diamond tiling can

be achieved by updating consecutive tiles along the z-axis. These tiles can be then

parallelized using our thread group concept through nested OpenMP parallelization.

OpenMP does not provide straightforward mechanism to perform the intra-tile

parallelization and synchronization. To avoid the complexity of using pthread li-

braries, it is possible to use the “phasers” introduced by Shirako et al. [70]. They

proposed data structures and interface to provide threads point-to-point and sub-

group synchronization that are suitable for parallelizing stencil computations.

9.7 Understanding MWD behavior in the cache

subsystem

Our MWD approach removes the memory bandwidth bottleneck in memory bandwidth-

starved stencil computations. Due to the data access pattern complexity of MWD,

it is unclear how it utilizes the resources in the core and the cache subsystem. It

138

would be interesting to have better understanding of MWD bottlenecks to investi-

gate performance improvements opportunities. Cache simulators, for example, can

be used to have better understanding of MWD intra-cache behavior. Gaining more

insight about MWD can also benefit the hardware and software co-design for future

processors. For example, how would MWD behave in the future architectures if they

have contention over some resources and large latency issues.

9.8 Handling adaptive time stepping of PDE solvers

with MWD

Adaptive time stepping is used in explicit PDE solvers when the maximum wave speed

in the solution domain is not known a priori at the time of the simulation, or may

vary significantly during the iterations of the solver. The Courant-Friedrichs-Lewy

(CFL) condition [71] (the English translation of the paper [72]) determines the time

step size limit to achieve correct convergence in the PDE solver. At any given time

step (i.e., iteration), the ratio of the spatial to temporal discretization size (�x/�t)

has to be smaller than the maximum wave speed in the solution domain. Otherwise,

the solver is vulnerable to numerical instability and will not converge to the correct

solution.

One of the solutions to this problem is to check the maximum wave speed after

each iteration. If the maximum wave speed violates the CFL condition, the solver

reverts to the solution domain of the previous iteration and repeat using smaller time

step size that obeys the CFL condition.

Selecting very small time steps reduces the possibility of repeating iterations, but

requires more iterations to arrive to the desired solution. On the other hand larger

time steps increases the probability of violating the CFL condition that increases the

time to solution. The “sweet spot” is application and data dependent.

139

Temporal blocking approaches advance the solution domain several iterations at

once, which pose challenges to adaptive time stepping approach. Violating the CFL

condition results in reverting multiple time steps, wasting more resource and time

compared to näıve data update order. Moreover, regularly checkpointing at correct

solution domain iterations is important. This is challenging in temporal blocking

approaches that advance many time steps in some parts of the solution domain, such

as the cache-oblivious algorithms.

Our MWD can be modified to handle adaptive time stepping. The most suitable

place for checkpointing is the middle of diamond tiles, where the whole solution do-

main can be stored at one iteration. This requires modifying the wavefront approach

to store the middle time step of certain diamond rows in separate arrays. The cost

of reverting when the CFL condition is violated can be minimized. The runtime tile

scheduler can be modified to increase the priority of tiles at earlier time steps and

decrease the priority of tiles at later time steps. This would decrease the range of the

updated time steps, hence decrease the number of reverted time steps when the CFL

condition is violated.

It is possible to make further reduction in the cost of reverting to correct time

iteration. During the extruded diamond update, the solver tracks the maximum wave

speed after the wavefront update. If the CFL condition is violated at any point, all

the threads halt their operation and the runtime reverts to the checkpoint using the

updated time step size. This reduces the cost of waiting for complete domain update

before reverting.

The same checkpointing for adaptive time stepping can be sued to handle system

failure recovery. This requires storing the data of the checkpoint in a non-volatile

storage for recovery.

140

9.9 Krylov subspace solvers, a promising applica-

tions for MWD

A particular variant of iterative Krylov subspace solvers uses expanded stencil oper-

ations in place of a series of individual SpMV operations [73]. The motivation for

these pipelined methods is synchronization overhead reduction in distributed mem-

ory not cache e�ciency in shared memory, but the interaction must be exploited for

emerging hybrid programming environments. Krylov solvers use expanded stencil

operations through either polynomial pre-conditioners or s-step methods. This ap-

proach is promising in the development of extreme scale Krylov solvers. The benefit

of our MWD approach can be used to improve the intra-node performance of these

approaches.

9.10 Transferring temporal order derivatives to spa-

tial order derivatives in finite di↵erence PDE

solvers

PDE solvers with high-order temporal derivatives require reading from several domain-

sized arrays for each grid point update, which come from several time steps in past

iterations. These solvers have high memory size and high memory bandwidth require-

ments.

This memory pressure issue can be alleviated by using an algorithmic technique

that transfers the high temporal order derivative to a high spatial order derivative in

the finite-di↵erence time-domain PDE solvers. This technique is presented in [74] for

Reverse Time Migration (RTM) applications, where higher-order temporal derivatives

are replaced with multiple evaluations of the Laplacian operator.

141

Combining these algorithmic techniques with our e�cient MWD approach can

improve the performance of these applications.

9.11 Handling thin domains in three-dimensional

grids

The benchmarks and the application in this thesis use a cubic domain shape. In

many applications, from climate models to reservoir models, etc., one dimension is

significantly smaller than the other two, i.e., the domain is “thin.” Our approach can

benefit such applications significantly: Mapping the thin dimension to the leading

array dimension helps both, tiling in shared memory and domain decomposition in

distributed memory setups. For shared memory, we show in Eq. 3.6 that the cache

block size is proportional to the leading dimension size, so we can use larger blocks

in time with more data reuse. Although tiling a long leading dimension can also

reduce the cache block size, it increases the pressure on the TLB and may lead to

ine�cient hardware data prefetching [15]. In distributed memory, decomposing the

leading dimension is usually the most expensive, as the halo layer is not contiguous in

memory. Thin domains reduce the requirement of decomposing the leading dimension

while maintaining a favorable surface-to-volume ratio per subdomain. It is worth

mentioning that very short leading dimensions (i.e., thin domains with less than about

50 cells) are ine�cient because of bad pipeline utilization. This e↵ect is amplified by

long SIMD units, which lead to even shorter loop lengths and slow (scalar) remainder

loops. In this situation the thin domain should be mapped to the middle or outer

dimensions.

142

REFERENCES

[1] W. Schönauer, Scientific Supercomputing: Architecture and Use of Shared and

Distributed Memory Parallel Computers. Self-edition, 2000, http://www.rz.uni-

karlsruhe.de/˜rx03/book.

[2] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,

D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick,

“The landscape of parallel computing research: A view from Berkeley,” Techni-

cal Report UCB/EECS-2006-183, EECS Department, University of California,

Berkeley, Tech. Rep., 2006.

[3] F. Ortigosa, M. A. Polo, F. Rubio, J. Cela, R. de la Cruz, M. Hanzich et al.,

“Evaluation of 3D RTM on HPC platforms,” in 2008 SEG Annual Meeting.

Society of Exploration Geophysicists, 2008.

[4] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and K. Yelick, “Optimization

and performance modeling of stencil computations on modern microprocessors,”

SIAM Review, vol. 51, no. 1, pp. 129–159, 2009.

[5] L. Lamport, “The parallel execution of DO loops,” Communications of

the ACM, vol. 17, no. 2, pp. 83–93, Feb. 1974. [Online]. Available:

http://doi.acm.org/10.1145/360827.360844

[6] D. G. Wonnacott, “Using time skewing to eliminate idle time due to memory

bandwidth and network limitations,” in International Parallel and Distributed

Processing Symposium, 2000, pp. 171–180.

[7] R. Strzodka, M. Shaheen, D. Pajak, and H.-P. Seidel, “Cache accurate time

skewing in iterative stencil computations,” in Proceedings of the International

Conference on Parallel Processing. IEEE Computer Society, Sep. 2011, pp.

571–581.

http://doi.acm.org/10.1145/360827.360844

143

[8] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey, “3.5-D blocking opti-

mization for stencil computations on modern CPUs and GPUs,” in Proceedings

of the International Conference for High Performance Computing, Networking,

Storage and Analysis, 2010, pp. 1–13.

[9] G. Wellein, G. Hager, T. Zeiser, M. Wittmann, and H. Fehske, “E�cient tempo-

ral blocking for stencil computations by multicore-aware wavefront paralleliza-

tion,” in Computer Software and Applications Conference. 33rd Annual IEEE

International, vol. 1, July 2009, pp. 579–586.

[10] M. Wittmann, G. Hager, J. Treibig, and G. Wellein, “Leveraging shared

caches for parallel temporal blocking of stencil codes on multicore processors

and clusters,” Parallel Processing Letters, vol. 20, no. 04, pp. 359–376,

2010. [Online]. Available: http://www.worldscientific.com/doi/abs/10.1142/

S0129626410000296

[11] D. Orozco and G. Gao, “Mapping the FDTD application to many-core chip archi-

tectures,” in Proceedings of the International Conference on Parallel Processing,

Sept 2009, pp. 309–316.

[12] H. T. Kung, “Memory requirements for balanced computer architectures,”

in Proceedings of the 13th Annual International Symposium on Computer

Architecture, ser. ISCA ’86. Los Alamitos, CA, USA: IEEE Computer

Society Press, 1986, pp. 49–54, dOI: 10.1145/17356.17362. [Online]. Available:

http://dl.acm.org/citation.cfm?id=17407.17362

[13] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful visual

performance model for multicore architectures,” Commun. ACM, vol. 52, no. 4,

pp. 65–76, 2009.

[14] G. Hager, J. Treibig, J. Habich, and G. Wellein, “Exploring performance

and power properties of modern multi-core chips via simple machine models,”

Concurrency and Computation: Practice and Experience, 2014. [Online].

Available: http://dx.doi.org/10.1002/cpe.3180

[15] H. Stengel, J. Treibig, G. Hager, and G. Wellein, “Quantifying performance

bottlenecks of stencil computations using the Execution-Cache-Memory Model,”

http://www.worldscientific.com/doi/abs/10.1142/S0129626410000296
http://www.worldscientific.com/doi/abs/10.1142/S0129626410000296
http://dl.acm.org/citation.cfm?id=17407.17362
http://dx.doi.org/10.1002/cpe.3180

144

Proceedings of the 29th ACM on International Conference on Supercomputing,

pp. 207–216, 2015. [Online]. Available: http://doi.acm.org/10.1145/2751205.

2751240

[16] J. D. McCalpin, “STREAM: Sustainable memory bandwidth in high

performance computers,” University of Virginia, Charlottesville, VA, Tech.

Rep., 1991-2007, a continually updated technical report. [Online]. Available:

http://www.cs.virginia.edu/stream/

[17] ——, “Memory bandwidth and machine balance in current high performance

computers,” IEEE Computer Society Technical Committee on Computer Archi-

tecture Newsletter, pp. 19–25, Dec. 1995.

[18] J. Treibig, G. Hager, and G. Wellein, “LIKWID: A lightweight performance-

oriented tool suite for x86 multicore environments,” in Parallel Processing Work-

shops (ICPPW), 2010 39th International Conference on. IEEE, 2010, pp. 207–

216.

[19] E. Rotem, A. Naveh, A. Ananthakrishnan, D. Rajwan, and E. Weissmann,

“Power-management architecture of the Intel microarchitecture code-named

Sandy Bridge,” IEEE Micro, vol. 32, pp. 20–27, 2012.

[20] G. Hager and G. Wellein, Introduction to High Performance Computing for Sci-

entists and Engineers. CRC Press, 2010.

[21] V. Bandishti, I. Pananilath, and U. Bondhugula, “Tiling stencil computations to

maximize parallelism,” in Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, Nov 2012, pp. 1–11.

[22] “Girih stencil optimization framework,” https://github.com/tareqmalas/girih.

[23] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A practical

automatic polyhedral parallelizer and locality optimizer,” ACM SIGPLAN No-

tices, vol. 43, no. 6, pp. 101–113, 2008.

[24] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E.

Leiserson, “The Pochoir stencil compiler,” in Proceedings of the Twenty-third

http://doi.acm.org/10.1145/2751205.2751240
http://doi.acm.org/10.1145/2751205.2751240
http://www.cs.virginia.edu/stream/
https://github.com/tareqmalas/girih

145

Annual ACM Symposium on Parallelism in Algorithms and Architectures.

New York, NY, USA: ACM, 2011, pp. 117–128. [Online]. Available:

http://doi.acm.org/10.1145/1989493.1989508

[25] J. Hennessy, D. Patterson, and K. Asanović, Computer Architecture: A

Quantitative Approach. Morgan Kaufmann/Elsevier, 2012, pp. 26. [Online].

Available: http://books.google.com.sa/books?id=v3-1hVwHnHwC

[26] C. Pflaum and Z. Rahimi, “An iterative solver for the finite-di↵erence

frequency-domain (FDFD) method for the simulation of materials with negative

permittivity,” Numerical Linear Algebra with Applications, vol. 18, no. 4, pp.

653–670, 2011. [Online]. Available: http://dx.doi.org/10.1002/nla.746

[27] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop,

“Solar cell e�ciency tables (version 46),” Progress in Photovoltaics: Research

and Applications, vol. 23, no. 7, pp. 805–812, 2015. [Online]. Available:

http://dx.doi.org/10.1002/pip.2637

[28] C. Pflaum and Z. Rahimi, “An iterative solver for the finite-di↵erence

frequency-domain (FDFD) method for the simulation of materials with negative

permittivity,” Numerical Linear Algebra with Applications, vol. 18, no. 4, pp.

653–670, 2011. [Online]. Available: http://dx.doi.org/10.1002/nla.746

[29] K. Yee, “Numerical solution of initial boundary value problems involving

maxwell’s equations in isotropic media,” Antennas and Propagation, IEEE

Transactions on, vol. 14, no. 3, pp. 302–307, May 1966.

[30] R. Luebbers, F. Hunsberger, K. S. Kunz, R. Standler, and M. Schneider, “A

frequency-dependent finite-di↵erence time-domain formulation for dispersive ma-

terials,” Electromagnetic Compatibility, IEEE Transactions on, vol. 32, no. 3, pp.

222–227, Aug 1990.

[31] D. Kelley and R. Luebbers, “Piecewise linear recursive convolution for dispersive

media using FDTD,” Antennas and Propagation, IEEE Transactions on, vol. 44,

no. 6, pp. 792–797, Jun 1996.

http://doi.acm.org/10.1145/1989493.1989508
http://books.google.com.sa/books?id=v3-1hVwHnHwC
http://dx.doi.org/10.1002/nla.746
http://dx.doi.org/10.1002/pip.2637
http://dx.doi.org/10.1002/nla.746

146

[32] O. Gandhi, B.-Q. Gao, and J.-Y. Chen, “A frequency-dependent finite-di↵erence

time-domain formulation for general dispersive media,” Microwave Theory and

Techniques, IEEE Transactions on, vol. 41, no. 4, pp. 658–665, Apr 1993.

[33] D. M. Sullivan, “Frequency-dependent FDTD methods using Z transforms,” An-

tennas and Propagation, IEEE Transactions on, vol. 40, no. 10, pp. 1223–1230,

Oct 1992.

[34] Z. Rahimi and C. Pflaum, “Studying the e↵ect of scattering layers on the e�-

ciency of thin film solar cells,” in Numerical Simulation of Optoelectronic Devices

(NUSOD), 2014 14th International Conference on, Sept 2014, pp. 169–170.

[35] C. Pflaum, Z. Rahimi, and C. Jandl, “Simulation of optical waves in thin-film

solar cells,” in Electromagnetics in Advanced Applications (ICEAA), 2010 Inter-

national Conference on, Sept 2010, pp. 24–26.

[36] S. Yan, J. Krantz, K. Forberich, C. Pflaum, and C. J. Brabec, “Numerical

simulation of light propagation in silver nanowire films using time-harmonic

inverse iterative method,” Journal of Applied Physics, vol. 113, no. 15,

pp. –, 2013. [Online]. Available: http://scitation.aip.org/content/aip/journal/

jap/113/15/10.1063/1.4801919

[37] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic

waves,” Journal of Computational Physics, vol. 114, no. 2, pp. 185 – 200,

1994. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0021999184711594

[38] Z. Rahimi, A. Erdmann, and C. Pflaum, “Finite integration (FI) method for

modelling optical waves in lithography masks,” in Electromagnetics in Advanced

Applications, 2009. ICEAA ’09. International Conference on, Sept 2009, pp.

809–812.

[39] S. Geißendörfer, M. Theuring, T. Titz, S. Mogck, C. Pflaum, B. Abebe,

F. Schütze, D. Wynands, U. Kirstein, A. Schweitzer, V. Steenho↵, A. Neumüller,

K. Borzutzki, R.-E. Nowak, A. Philipp, P. Klement, O. Sergeev, M. Vehse, and

K. von Maydell, “The SiSoFlex project: Silicon based thin-film solar cells on

http://scitation.aip.org/content/aip/journal/jap/113/15/10.1063/1.4801919
http://scitation.aip.org/content/aip/journal/jap/113/15/10.1063/1.4801919
http://www.sciencedirect.com/science/article/pii/S0021999184711594
http://www.sciencedirect.com/science/article/pii/S0021999184711594

147

flexible aluminium substrates,” in 29th European Photovoltaic Solar Energy Con-

ference and Exhibition, 2014, pp. 1667–1670.

[40] C. Leopold, “Tight bounds on capacity misses for 3D stencil codes,” in Compu-

tational Science – ICCS 2002, ser. Lecture Notes in Computer Science, P. Sloot,

A. Hoekstra, C. Tan, and J. Dongarra, Eds. Springer Berlin Heidelberg, 2002,

vol. 2329, pp. 843–852.

[41] R. W. Hockney and I. J. Curington, “f1/2: A parameter to characterize memory

and communication bottlenecks,” Parallel Computing, vol. 10, no. 3, pp. 277–

286, 1989.

[42] K. Datta, “Auto-tuning stencil codes for cache-based multicore platforms,”

Ph.D. dissertation, EECS Department, University of California, Berkeley, Dec

2009. [Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/

EECS-2009-177.html

[43] H. Dursun, M. Kunaseth, K. Nomura, J. Chame, R. F. Lucas, C. Chen, M. Hall,

R. K. Kalia, A. Nakano, and P. Vashishta, “Hierarchical parallelization and opti-

mization of high-order stencil computations on multicore clusters,” The Journal

of Supercomputing, vol. 62, no. 2, pp. 946–966, 2012.

[44] D. Orozco, E. Garcia, and G. Gao, “Locality optimization of stencil applica-

tions using data dependency graphs,” in Languages and Compilers for Parallel

Computing. Springer Berlin Heidelberg, 2011, pp. 77–91.

[45] X. Zhou, “Tiling optimizations for stencil computations,” Ph.D. dissertation,

University of Illinois at Urbana-Champaign, 2013. [Online]. Available:

http://polaris.cs.uiuc.edu/⇠zhou53/papers/Xing Zhou.pdf

[46] T. Grosser, A. Cohen, J. Holewinski, P. Sadayappan, and S. Verdoolaege, “Hy-

brid hexagonal/classical tiling for GPUs,” in Proceedings of Annual IEEE/ACM

International Symposium on Code Generation and Optimization. ACM, 2014,

p. 66.

[47] T. Grosser, S. Verdoolaege, A. Cohen, and P. Sadayappan, “The

relation between diamond tiling and hexagonal tiling,” Parallel Processing

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-177.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-177.html
http://polaris.cs.uiuc.edu/~zhou53/papers/Xing_Zhou.pdf

148

Letters, vol. 24, no. 03, p. 1441002, 2014. [Online]. Available: http:

//www.worldscientific.com/doi/abs/10.1142/S0129626414410023

[48] G. Jin, T. Endo, and S. Matsuoka, “A multi-level optimization method for

stencil computation on the domain that is bigger than memory capacity of

gpu,” in Proceedings of the 2013 IEEE 27th International Symposium on

Parallel and Distributed Processing Workshops and PhD Forum, ser. IPDPSW

’13. Washington, DC, USA: IEEE Computer Society, 2013, pp. 1080–1087.

[Online]. Available: http://dx.doi.org/10.1109/IPDPSW.2013.58

[49] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-oblivious

algorithms,” in Foundations of Computer Science, 1999. 40th Annual Symposium

on. IEEE, 1999, pp. 285–297.

[50] M. Frigo and V. Strumpen, “Cache oblivious stencil computations,” in

Proceedings of the 19th Annual International Conference on Supercomputing.

New York, NY, USA: ACM, 2005, pp. 361–366. [Online]. Available:

http://doi.acm.org/10.1145/1088149.1088197

[51] R. Strzodka, M. Shaheen, D. Pajak, and H.-P. Seidel, “Cache oblivious

parallelograms in iterative stencil computations,” in Proceedings of the 24th ACM

International Conference on Supercomputing. New York, NY, USA: ACM, 2010,

pp. 49–59. [Online]. Available: http://doi.acm.org/10.1145/1810085.1810096

[52] J. Demmel, S. Williams, and K. Yelick, “Automatic performance tuning (auto-

tuning),” in The Berkeley Par Lab: Progress in the Parallel Computing Land-

scape, M. W. D. Patterson, D. Gannon, Ed. Microsoft Research, 2013, p. 337.

[53] N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka, “Physis: an implicitly par-

allel programming model for stencil computations on large-scale GPU-accelerated

supercomputers,” in Proceedings of the International Conference for High Per-

formance Computing, Networking, Storage and Analysis. IEEE, 2011, pp. 1–12.

[54] M. Christen, O. Schenk, and H. Burkhart, “PATUS: A code generation and auto-

tuning framework for parallel iterative stencil computations on modern microar-

chitectures,” in International Parallel and Distributed Processing Symposium,

May 2011, pp. 676–687.

http://www.worldscientific.com/doi/abs/10.1142/S0129626414410023
http://www.worldscientific.com/doi/abs/10.1142/S0129626414410023
http://dx.doi.org/10.1109/IPDPSW.2013.58
http://doi.acm.org/10.1145/1088149.1088197
http://doi.acm.org/10.1145/1810085.1810096

149

[55] T. Henretty, R. Veras, F. Franchetti, L. N. Pouchet, J. Ramanujam, and P. Sa-

dayappan, “A stencil compiler for short-vector SIMD architectures,” in Proceed-

ings of the 27th international ACM conference on supercomputing. ACM, 2013,

pp. 13–24.

[56] D. Unat, X. Cai, and S. B. Baden, “Mint: realizing CUDA performance in 3D

stencil methods with annotated C,” in Proceedings of the international conference

on Supercomputing. ACM, 2011, pp. 214–224.

[57] T. Gysi, T. Grosser, and T. Hoefler, “MODESTO: Data-centric analytic opti-

mization of complex stencil programs on heterogeneous architectures.” ACM,

Jun. 2015, accepted at ACM International Conference on Supercomputing

(ICS’15).

[58] D. G. Wonnacott and M. M. Strout, “On the scalability of loop tiling techniques,”

in Proceedings of the 3rd International Workshop on Polyhedral Compilation

Techniques, Berlin, 2013, pp. 3–11.

[59] Y. Tang, R. You, H. Kan, J. J. Tithi, P. Ganapathi, and R. A. Chowdhury,

“Cache-oblivious wavefront: Improving parallelism of recursive dynamic

programming algorithms without losing cache-e�ciency,” in Proceedings of

the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, ser. PPoPP 2015. New York, NY, USA: ACM, 2015, pp.

205–214. [Online]. Available: http://doi.acm.org/10.1145/2688500.2688514

[60] J. Treibig, G. Wellein, and G. Hager, “E�cient multicore-aware parallelization

strategies for iterative stencil computations,” Journal of Computational Science,

vol. 2, no. 2, pp. 130–137, 2011, simulation Software for Supercomputers.

[61] S. Shrestha, J. Manzano, A. Marquez, J. Feo, and G. R. Gao, “Jagged tiling for

intra-tile parallelism and fine-grain multithreading,” in Proceedings of the 27th

International Workshop on Languages and Compilers for Parallel Computing,

Hillsboro, OR, USA, 2014.

[62] S. Shrestha, G. R. Gao, J. Manzano, A. Marquez, and J. Feo, “Locality aware

concurrent start for stencil applications,” in Proceedings of the 13th Annual

IEEE/ACM International Symposium on Code Generation and Optimization, ser.

http://doi.acm.org/10.1145/2688500.2688514

150

CGO ’15. Washington, DC, USA: IEEE Computer Society, 2015, pp. 157–166.

[Online]. Available: http://dl.acm.org/citation.cfm?id=2738600.2738620

[63] A. Suresh, P. Cicotti, and L. Carrington, “Evaluation of emerging memory tech-

nologies for HPC, data intensive applications,” in Cluster Computing (CLUS-

TER), 2014 IEEE International Conference on, Sept 2014, pp. 239–247.

[64] M. Frigo and V. Strumpen, “Cache oblivious stencil computations,” in

Proceedings of the 19th Annual International Conference on Supercomputing.

New York, NY, USA: ACM, 2005, pp. 361–366. [Online]. Available:

http://doi.acm.org/10.1145/1088149.1088197

[65] D. Ernst, “Stencil codes on Intels Xeon Phi,” Master’s thesis, University of

Erlangen-Nuremberg, 2014.

[66] T. Malas, A. J. Ahmadia, J. Brown, J. A. Gunnels, and D. E.

Keyes, “Optimizing the performance of streaming numerical kernels on

the IBM Blue Gene/P PowerPC 450 processor,” International Journal

of High Performance Computing Applications, 2012. [Online]. Available:

http://hpc.sagepub.com/content/early/2012/05/17/1094342012444795.abstract

[67] D. Caballero, S. Royuela, R. Ferrer, A. Duran, and X. Martorell, “Optimizing

overlapped memory accesses in user-directed vectorization,” in Proceedings of the

29th ACM on International Conference on Supercomputing, ser. ICS ’15, 2015,

pp. 393–404. [Online]. Available: http://doi.acm.org/10.1145/2751205.2751224

[68] Y. Inadomi, T. Patki, K. Inoue, M. Aoyagi, B. Rountree, M. Schulz,

D. Lowenthal, Y. Wada, K. Fukazawa, M. Ueda, M. Kondo, and I. Miyoshi,

“Analyzing and mitigating the impact of manufacturing variability in power-

constrained supercomputing,” in Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis, ser. SC

’15. New York, NY, USA: ACM, 2015, pp. 78:1–78:12. [Online]. Available:

http://doi.acm.org/10.1145/2807591.2807638

[69] NVIDIA, “Kepler GK110 whitepaper,” 2012. [On-

line]. Available: http://www.nvidia.com/content/PDF/kepler/

NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

http://dl.acm.org/citation.cfm?id=2738600.2738620
http://doi.acm.org/10.1145/1088149.1088197
http://hpc.sagepub.com/content/early/2012/05/17/1094342012444795.abstract
http://doi.acm.org/10.1145/2751205.2751224
http://doi.acm.org/10.1145/2807591.2807638
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

151

[70] J. Shirako, K. Sharma, and V. Sarkar, “Unifying barrier and point-to-point

synchronization in openmp with phasers,” in OpenMP in the Petascale Era, ser.

Lecture Notes in Computer Science, B. Chapman, W. Gropp, K. Kumaran,

and M. Mller, Eds. Springer Berlin Heidelberg, 2011, vol. 6665, pp. 122–137.

[Online]. Available: http://dx.doi.org/10.1007/978-3-642-21487-5 10

[71] R. Courant, K. Friedrichs, and H. Lewy, “Uber die partiellen di↵erenzengle-

ichungen der mathematischen physik,” Mathematische Annalen, vol. 100, no. 1,

pp. 32–74, 1928. [Online]. Available: http://dx.doi.org/10.1007/BF01448839

[72] ——, “On the partial di↵erence equations of mathematical physics,” IBM Jour-

nal of Research and Development, vol. 11, no. 2, pp. 215–234, March 1967.

[73] W. Vanroose, P. Ghysels, D. Roose, and K. Meerbergen, “Hiding global commu-

nication latency and increasing the arithmetic intensity in extreme-scale Krylov

solvers,” Examath position paper, 2013.

[74] E. Dussaud, W. W. Symes, P. Williamson, L. Lemaistre, P. Singer, B. Denel,

and A. Cherrett, “Computational strategies for reverse-time migration,” in Seg

technical program expanded abstracts 2008. Society of Exploration Geophysicists,

2008, pp. 2267–2271.

[75] R. J. LeVeque, Finite volume methods for hyperbolic problems. Cambridge

university press, 2002, vol. 31.

[76] D. I. Ketcheson, M. Parsani, and R. J. LeVeque, “High-order wave propaga-

tion algorithms for hyperbolic systems,” SIAM Journal on Scientific Computing,

vol. 35, no. 1, pp. A351–A377, 2013.

http://dx.doi.org/10.1007/978-3-642-21487-5_10
http://dx.doi.org/10.1007/BF01448839

152

APPENDICES

153

A Relevant papers submitted and

in preparation

• Tareq Malas, Georg Hager, Hatem Ltaief, and David Keyes, “Multi-dimensional

intra-tile parallelization for memory-starved stencil computations.” In prepara-

tion.

• Tareq Malas, Julian Hornich, Georg Hager, Hatem Ltaief, Christoph Pflaum,

and David Keyes, “Optimization of an electromagnetics code with multicore

wavefront diamond blocking and multi-dimensional intra-tile parallelization.”

In preparation.

• Tareq Malas, Georg Hager, Hatem Ltaief, and David Keyes. “Advanced tiling

techniques for memory-starved streaming numerical kernels,” Technical Poster

Session in Supercomputing 2015.

• Tareq Malas, Georg Hager, Hatem Ltaief, and David Keyes.“Towards fast re-

verse time migration kernels using multi-threaded wavefront diamond tiling,”

The Second EAGE Workshop on High Performance Computing for Upstream

in Dubai, UAE. September 2015

• Tareq Malas, Georg Hager, Hatem Ltaief, Holger Stengel, Gerhard Wellein, and

David Keyes. “Multicore-optimized wavefront diamond blocking for optimizing

stencil updates.” SIAM Journal on Scientific Computing, 37(4):439-464, 2015

• Tareq Malas, Georg Hager, Hatem Ltaief, Holger Stengel, Gerhard Wellein, and

154

David Keyes. “Optimizing Stencil Computations: Multicore-optimized wave-

front diamond blocking on Shared and Distributed Memory Systems,” Technical

Poster Session in Supercomputing 2015.

• Tareq Malas, Aron J. Ahmadia, Jed Brown, John A. Gunnels, and David E.

Keyes. “Optimizing the performance of streaming numerical kernels on the

IBM Blue Gene/P PowerPC 450 processor.” International Journal of High

Performance Computing Applications, 27(2):193-209, 2013.

155

B Additional hardware counters

measurements of the results

In this appendix, we show measurements details of the results presented in Sect. 5.2.

The measurements include various hardware counters measurements and tiling pa-

rameters of MWD, PLUTO, Pochoir, 1WD, and spatial blocking results.

We show eleven figures for each stencil and processor combination, where the

y-labels and the legends in the figures indicate the measurements:

• Measured performance (GLUP/s).

• Hardware counters values of L1 cache data TLB loads miss rate average.

• Hardware counters values of the CPU load to store ratio.

• The data transfer volumes from the main memory, L3 cache, and L2 cache,

normalized by the total LUPs updates (in the second row of sub-figures).

• The selected tile size parameters by the auto-tuner, consisting of the diamond

tile and wavefront tile sizes in 1WD, MWD, and PLUTO. In addition, we show

the tile size along the x-axis in PLUTO (in the last sub-figure).

• The total Cache block size estimate by our model for 1WD and MWD.

• The selected intra-tile parallelization of MWD by the auto-tuner (the figure

with ”Intra-tile threads” y-label).

156

0 200 400 600 800 1000 1200 1400

Size in each dimension

0

1

2

3

4

5

G
LU

P
/s

0 200 400 600 800 1000 1200 1400
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

L1
D

TL
B

m
is

s
ra

te
su

m

⇥10�3

MWD
1WD
Spt.blk.
PLUTO
Pochoir

0 200 400 600 800 1000 1200 1400
0

2

4

6

8

10

12

14

Lo
ad

to
S

to
re

ra
tio

av
g

0 200 400 600 800 1000 1200 1400
0

5

10

15

20

25

30

M
E

M
B

yt
es

/L
U

P

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

L2
B

yt
es

/L
U

P

0 200 400 600 800 1000 1200 1400
0

5

10

15

20

25

30

35

40

45

L3
B

yt
es

/L
U

P

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

D
ia

m
on

d
w

id
th

0 200 400 600 800 1000 1200 1400
0

2

4

6

8

10

12

14

16

18

W
av

ef
ro

nt
w

id
th

0 200 400 600 800 1000 1200 1400
0

5

10

15

20

25

C
ac

he
bl

oc
k

si
ze

(M
iB

)

0 200 400 600 800 1000 1200 1400
0

1

2

3

4

5

In
tra

-ti
le

th
re

ad
s

MWD Group
Along x
Along z
Along y

0 200 400 600 800 1000 1200 1400
0

500

1000

1500

2000

2500

P
LU

TO
til

e
si

ze

X

Figure B.1: Ivy Bridge 7-point constant-coe�cient stencil results, using increasing cu-
bic grid size. Showing various hardware counters measurements and tiling parameters
of MWD, PLUTO, Pochoir, 1WD, and spatial blocking.

157

0 100 200 300 400 500 600 700 800

Size in each dimension

0.0

0.5

1.0

1.5

2.0

G
LU

P
/s

0 100 200 300 400 500 600 700 800
0

1

2

3

4

5

6

7

L1
D

TL
B

m
is

s
ra

te
su

m

⇥10�1

MWD
1WD
Spt.blk.
PLUTO
Pochoir

0 100 200 300 400 500 600 700 800
0

5

10

15

20

Lo
ad

to
S

to
re

ra
tio

av
g

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

M
E

M
B

yt
es

/L
U

P

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

120

L2
B

yt
es

/L
U

P

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

120

L3
B

yt
es

/L
U

P

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

35

D
ia

m
on

d
w

id
th

0 100 200 300 400 500 600 700 800
0

1

2

3

4

5

6

7

W
av

ef
ro

nt
w

id
th

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

35

40

45

C
ac

he
bl

oc
k

si
ze

(M
iB

)

0 100 200 300 400 500 600 700 800
0

1

2

3

4

5

In
tra

-ti
le

th
re

ad
s

MWD Group
Along x
Along z
Along y

0 100 200 300 400 500 600 700 800
0

200

400

600

800

1000

P
LU

TO
til

e
si

ze

X

Figure B.2: Ivy Bridge 7-point variable-coe�cient stencil results, using increasing cu-
bic grid size. Showing various hardware counters measurements and tiling parameters
of MWD, PLUTO, Pochoir, 1WD, and spatial blocking.

158

0 200 400 600 800 1000 1200

Size in each dimension

0.0

0.2

0.4

0.6

0.8

1.0

1.2

G
LU

P
/s

0 200 400 600 800 1000 1200
0.0

0.5

1.0

1.5

2.0

2.5

3.0

L1
D

TL
B

m
is

s
ra

te
su

m

⇥10�2

MWD
1WD
Spt.blk.
PLUTO
Pochoir

0 200 400 600 800 1000 1200
0

10

20

30

40

50

Lo
ad

to
S

to
re

ra
tio

av
g

0 200 400 600 800 1000 1200
0

10

20

30

40

50

M
E

M
B

yt
es

/L
U

P

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

140

160

L2
B

yt
es

/L
U

P

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

L3
B

yt
es

/L
U

P

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

140

D
ia

m
on

d
w

id
th

0 200 400 600 800 1000 1200
0

5

10

15

20

25

30

35

W
av

ef
ro

nt
w

id
th

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

140

160

180

C
ac

he
bl

oc
k

si
ze

(M
iB

)

0 200 400 600 800 1000 1200
0

2

4

6

8

10

In
tra

-ti
le

th
re

ad
s

MWD Group
Along x
Along z
Along y

Figure B.3: Ivy Bridge 25-point constant-coe�cient stencil results, using increasing
cubic grid size. Showing various hardware counters measurements and tiling param-
eters of MWD, PLUTO, Pochoir, 1WD, and spatial blocking.

159

0 100 200 300 400 500 600

Size in each dimension

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

G
LU

P
/s

0 100 200 300 400 500 600
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

L1
D

TL
B

m
is

s
ra

te
su

m

⇥10�1

MWD
1WD
Spt.blk.
PLUTO
Pochoir

0 100 200 300 400 500 600
0

10

20

30

40

50

60

Lo
ad

to
S

to
re

ra
tio

av
g

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

180

M
E

M
B

yt
es

/L
U

P

0 100 200 300 400 500 600
0

200

400

600

800

1000

L2
B

yt
es

/L
U

P

0 100 200 300 400 500 600
0

50

100

150

200

250

L3
B

yt
es

/L
U

P

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

D
ia

m
on

d
w

id
th

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

16

W
av

ef
ro

nt
w

id
th

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

180

C
ac

he
bl

oc
k

si
ze

(M
iB

)

0 100 200 300 400 500 600
0

2

4

6

8

10

In
tra

-ti
le

th
re

ad
s

MWD Group
Along x
Along z
Along y

Figure B.4: Ivy Bridge 25-point variable-coe�cient stencil results, using increasing
cubic grid size. Showing various hardware counters measurements and tiling param-
eters of MWD, PLUTO, Pochoir, 1WD, and spatial blocking.

160

0 200 400 600 800 1000 1200 1400 1600

Size in each dimension

0

2

4

6

8

10

G
LU

P
/s

0 200 400 600 800 1000 1200 1400 1600
0.0

0.2

0.4

0.6

0.8

1.0

1.2

L1
D

TL
B

lo
ad

m
is

s
ra

te
av

g

⇥10�4

MWD
1WD
Spt.blk.
PLUTO
Pochoir

0 200 400 600 800 1000 1200 1400 1600
0

2

4

6

8

10

12

14

16

Lo
ad

to
S

to
re

ra
tio

av
g

0 200 400 600 800 1000 1200 1400 1600
0

5

10

15

20

25

30

M
E

M
B

yt
es

/L
U

P

0 200 400 600 800 1000 1200 1400 1600
0

10

20

30

40

50

60

L2
B

yt
es

/L
U

P

0 200 400 600 800 1000 1200 1400 1600
0

10

20

30

40

50

L3
B

yt
es

/L
U

P

0 200 400 600 800 1000 1200 1400 1600
0

5

10

15

20

25

30

35

D
ia

m
on

d
w

id
th

0 200 400 600 800 1000 1200 1400 1600
0

5

10

15

20

25

30

35

W
av

ef
ro

nt
w

id
th

0 200 400 600 800 1000 1200 1400 1600
0

5

10

15

20

25

30

35

40

C
ac

he
bl

oc
k

si
ze

(M
iB

)

0 200 400 600 800 1000 1200 1400 1600
0

2

4

6

8

10

12

14

16

18

In
tra

-ti
le

th
re

ad
s

MWD Group
Along x
Along z
Along y

0 200 400 600 800 1000 1200 1400 1600
0

200

400

600

800

1000

1200

P
LU

TO
til

e
si

ze

X

Figure B.5: Haswell 7-point constant-coe�cient stencil results, using increasing cubic
grid size. Showing various hardware counters measurements and tiling parameters of
MWD, PLUTO, Pochoir, 1WD, and spatial blocking.

161

0 100 200 300 400 500 600 700 800 900

Size in each dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

G
LU

P
/s

0 100 200 300 400 500 600 700 800 900
0

1

2

3

4

5

6

7

8

9

L1
D

TL
B

lo
ad

m
is

s
ra

te
av

g

⇥10�3

MWD
1WD
Spt.blk.
PLUTO
Pochoir

0 100 200 300 400 500 600 700 800 900
0

5

10

15

20

25

Lo
ad

to
S

to
re

ra
tio

av
g

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

70

80

90

M
E

M
B

yt
es

/L
U

P

0 100 200 300 400 500 600 700 800 900
0

20

40

60

80

100

120
L2

B
yt

es
/L

U
P

0 100 200 300 400 500 600 700 800 900
0

20

40

60

80

100

L3
B

yt
es

/L
U

P

0 100 200 300 400 500 600 700 800 900
0

5

10

15

20

25

30

35

D
ia

m
on

d
w

id
th

0 100 200 300 400 500 600 700 800 900
0

5

10

15

20

25

30

35

40

W
av

ef
ro

nt
w

id
th

0 100 200 300 400 500 600 700 800 900
0

5

10

15

20

25

30

35

40

45

C
ac

he
bl

oc
k

si
ze

(M
iB

)

0 100 200 300 400 500 600 700 800 900
0

2

4

6

8

10

12

14

16

18

In
tra

-ti
le

th
re

ad
s

MWD Group
Along x
Along z
Along y

0 100 200 300 400 500 600 700 800 900
0

50

100

150

200

250

300

P
LU

TO
til

e
si

ze

X

Figure B.6: Haswell 7-point variable-coe�cient stencil results, using increasing cubic
grid size. Showing various hardware counters measurements and tiling parameters of
MWD, PLUTO, Pochoir, 1WD, and spatial blocking.

162

0 200 400 600 800 1000 1200 1400

Size in each dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
LU

P
/s

0 200 400 600 800 1000 1200 1400
0.0

0.5

1.0

1.5

2.0

2.5

3.0

L1
D

TL
B

lo
ad

m
is

s
ra

te
av

g

⇥10�3

MWD
1WD
Spt.blk.
PLUTO
Pochoir

0 200 400 600 800 1000 1200 1400
0

5

10

15

20

25

30

35

40

45

Lo
ad

to
S

to
re

ra
tio

av
g

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

M
E

M
B

yt
es

/L
U

P

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

100

120

140

160

L2
B

yt
es

/L
U

P

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

100

120

L3
B

yt
es

/L
U

P

0 200 400 600 800 1000 1200 1400
0

5

10

15

20

25

30

35

D
ia

m
on

d
w

id
th

0 200 400 600 800 1000 1200 1400
0

5

10

15

20

25

30

W
av

ef
ro

nt
w

id
th

0 200 400 600 800 1000 1200 1400
0

50

100

150

200

250

300

C
ac

he
bl

oc
k

si
ze

(M
iB

)

0 200 400 600 800 1000 1200 1400
0

2

4

6

8

10

12

14

16

18

In
tra

-ti
le

th
re

ad
s

MWD Group
Along x
Along z
Along y

0 200 400 600 800 1000 1200 1400
0

500

1000

1500

2000

2500

P
LU

TO
til

e
si

ze

X

Figure B.7: Haswell 25-point constant-coe�cient stencil, using increasing cubic grid
size. Showing various hardware counters measurements and tiling parameters of
MWD, PLUTO, Pochoir, 1WD, and spatial blocking.

163

0 100 200 300 400 500 600 700 800

Size in each dimension

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

G
LU

P
/s

0 100 200 300 400 500 600 700 800
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

L1
D

TL
B

lo
ad

m
is

s
ra

te
av

g

⇥10�3

MWD
1WD
Spt.blk.
PLUTO
Pochoir

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

Lo
ad

to
S

to
re

ra
tio

av
g

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

120

140

160

180

M
E

M
B

yt
es

/L
U

P

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

800

900

L2
B

yt
es

/L
U

P

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250

L3
B

yt
es

/L
U

P

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

D
ia

m
on

d
w

id
th

0 100 200 300 400 500 600 700 800
0

5

10

15

20

W
av

ef
ro

nt
w

id
th

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

C
ac

he
bl

oc
k

si
ze

(M
iB

)

0 100 200 300 400 500 600 700 800
0

2

4

6

8

10

12

14

16

18

In
tra

-ti
le

th
re

ad
s

MWD Group
Along x
Along z
Along y

0 100 200 300 400 500 600 700 800
0

200

400

600

800

1000

P
LU

TO
til

e
si

ze

X

Figure B.8: Haswell 25-point variable-coe�cient stencil results, using increasing cubic
grid size. Showing various hardware counters measurements and tiling parameters of
MWD, PLUTO, Pochoir, 1WD, and spatial blocking.

164

C Additional results for MWD

tile sharing impact on

performance, memory transfer,

and energy consumption

In this appendix, we show complementary results of those presented in Sect. 5.3,

where we show the remaining results of the four corner-case stencils in the Intel Ivy

Bridge and Haswell processors.

The same conclusions of the detailed analysis in Sect. 5.3 apply to the results in

this appendix. For example, larger thread group size leads to less memory bandwidth

usage and less memory tra�c, as shown in all figures. We also observe negligible syn-

chronization overhead in large thread groups when small thread group size decouple

from main memory, as shown in Figs. C.1 and C.2.

We observe performance degradation in some grid sizes in Figs. C.1a and C.2a.

Our measurements show a significant increase in the TLB at these points.

165

0 200 400 600 800 1000 1200 1400

Size in each dimension

0

1

2

3

4

5

G
LU

P
/s

(a) Performance.

0 200 400 600 800 1000 1200 1400

Size in each dimension

0

5

10

15

20

25

30

35

M
E

M
G

B
/s

1WD
2WD
5WD
10WD

(b) Measured memory band-

width usage.

0 200 400 600 800 1000 1200 1400

Size in each dimension

0

1

2

3

4

5

6

7

8

9

M
E

M
B

yt
es

/L
U

P

(c) Measured memory transfers

per LUP.

0 200 400 600 800 1000 1200 1400

Size in each dimension

0.0

0.5

1.0

1.5

2.0

C
P

U
pJ

/L
U

P

⇥101

(d) CPU energy consumption

estimates.

0 200 400 600 800 1000 1200 1400

Size in each dimension

0.0

0.2

0.4

0.6

0.8

1.0

D
R

A
M

pJ
/L

U
P

⇥101

(e) DRAM energy consumption

estimates.

0 200 400 600 800 1000 1200 1400

Size in each dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

To
ta

lp
J/

LU
P

⇥101

(f) Total energy consumption

estimates.

Figure C.1: Ivy Bridge 7-point constant-coe�cient performance, memory transfer
measurements, and energy consumption estimates using increasing cubic grid size.
We compare various thread group sizes in MWD.

166

0 100 200 300 400 500 600 700 800

Size in each dimension

0.0

0.5

1.0

1.5

2.0

G
LU

P
/s

(a) Performance.

0 100 200 300 400 500 600 700 800

Size in each dimension

0

5

10

15

20

25

30

35

40

M
E

M
G

B
/s

1WD
2WD
5WD
10WD

(b) Measured memory band-

width usage.

0 100 200 300 400 500 600 700 800

Size in each dimension

0

5

10

15

20

25

30

35

40

M
E

M
B

yt
es

/L
U

P

(c) Measured memory transfers

per LUP.

0 100 200 300 400 500 600 700 800

Size in each dimension

0

1

2

3

4

5

C
P

U
pJ

/L
U

P

⇥101

(d) CPU energy consumption

estimates.

0 100 200 300 400 500 600 700 800

Size in each dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
D

R
A

M
pJ

/L
U

P
⇥101

(e) DRAM energy consumption

estimates.

0 100 200 300 400 500 600 700 800

Size in each dimension

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

lp
J/

LU
P

⇥102

(f) Total energy consumption

estimates.

Figure C.2: Ivy Bridge 7-point variable-coe�cient stencil performance, memory trans-
fer measurements, and energy consumption estimates using increasing cubic grid size.
We compare various thread group sizes in MWD.

0 100 200 300 400 500 600 700 800 900

Size in each dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

G
LU

P
/s

(a) Performance.

0 100 200 300 400 500 600 700 800 900

Size in each dimension

0

10

20

30

40

50

60

M
E

M
G

B
/s

1WD
2WD
3WD
6WD
9WD
18WD

(b) Measured memory band-

width usage.

0 100 200 300 400 500 600 700 800 900

Size in each dimension

0

10

20

30

40

50

M
E

M
B

yt
es

/L
U

P

(c) Measured memory transfers

per LUP.

Figure C.3: Haswell 7-point variable-coe�cient stencil performance and memory
transfer measurements using increasing cubic grid size. We compare various thread
group sizes in MWD.

167

0 200 400 600 800 1000 1200 1400

Size in each dimension

0.0

0.5

1.0

1.5

2.0

2.5

G
LU

P
/s

(a) Performance.

0 200 400 600 800 1000 1200 1400

Size in each dimension

0

10

20

30

40

50

60

M
E

M
G

B
/s

1WD
2WD
3WD
6WD
9WD
18WD

(b) Measured memory band-

width usage.

0 200 400 600 800 1000 1200 1400

Size in each dimension

0

10

20

30

40

50

M
E

M
B

yt
es

/L
U

P

(c) Measured memory transfers

per LUP.

Figure C.4: Haswell 25-point constant-coe�cient stencil performance and memory
transfer measurements using increasing cubic grid size. We compare various thread
group sizes in MWD.

0 100 200 300 400 500 600

Size in each dimension

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

G
LU

P
/s

(a) Performance.

0 100 200 300 400 500 600

Size in each dimension

0

5

10

15

20

25

30

35

40

45

M
E

M
G

B
/s

1WD
2WD
5WD
10WD

(b) Measured memory band-

width usage.

0 100 200 300 400 500 600

Size in each dimension

0

20

40

60

80

100

120

140

160

M
E

M
B

yt
es

/L
U

P

(c) Measured memory transfers

per LUP.

0 100 200 300 400 500 600

Size in each dimension

0.0

0.5

1.0

1.5

C
P

U
pJ

/L
U

P

⇥102

(d) CPU energy consumption

estimates.

0 100 200 300 400 500 600

Size in each dimension

0.0

0.5

1.0

1.5

2.0

D
R

A
M

pJ
/L

U
P

⇥102

(e) DRAM energy consumption

estimates.

0 100 200 300 400 500 600

Size in each dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

To
ta

lp
J/

LU
P

⇥102

(f) Total energy consumption

estimates.

Figure C.5: Ivy Bridge 25-point variable-coe�cient stencil performance, memory
transfer measurements, and energy consumption estimates using increasing cubic grid
size. We compare various thread group sizes in MWD.

168

D Maxwell equations kernels

We present the stencil kernel we use for the solar simulation solver in the application

chapter. Each grid point update involves updating six components in the H-field

(shown in D.1 and D.2) and six components in the E-field (shown in D.3 and D.4).

The updates can be performed concurrently in each field. The data dependency across

the fields is shown in Fig. 6.3.

169

Listing D.1: Magnetic field kernels (1 of 2), showing HY X , HZX , and HXY updates
for(k=zb; k<ze; k++) {

for(j=yb; j<ye; j++) {
for(i=2*((k*nny+j)*nnx+xb); i<2*((k*nny+j)*nnx+xe); i+=2) {

isub = i+2*(-nnx*nny);
stagDiffR = Exyd[i]-Exyd[isub]+Exzd[i]-Exzd[isub];
stagDiffI = Exyd[i+1]-Exyd[isub+1]+Exzd[i+1]-Exzd[isub+1];
asgn = Hyxd[i]*tHyxd[i]-Hyxd[i+1]*tHyxd[i+1]+Hybndd[i]

-cHyxd[i]*stagDiffR+cHyxd[i+1]*stagDiffI;
Hyxd[i+1] = Hyxd[i]*tHyxd[i+1]+Hyxd[i+1]*tHyxd[i]+Hybndd[i+1]

-cHyxd[i]*stagDiffI-cHyxd[i+1]*stagDiffR;
Hyxd[i] = asgn; }}}

for(k=zb; k<ze; k++) {
for(j=yb; j<ye; j++) {

for(i=2*((k*nny+j)*nnx+xb); i<2*((k*nny+j)*nnx+xe); i+=2) {
isub = i+2*(-nnx);
stagDiffR = Exyd[isub]-Exyd[i]+Exzd[isub]-Exzd[i];
stagDiffI = Exyd[isub+1]-Exyd[i+1]+Exzd[isub+1]-Exzd[i+1];
asgn = Hzxd[i]*tHzxd[i]-Hzxd[i+1]*tHzxd[i+1]

-cHzxd[i]*stagDiffR+cHzxd[i+1]*stagDiffI;
Hzxd[i+1] = Hzxd[i]*tHzxd[i+1]+Hzxd[i+1]*tHzxd[i]

-cHzxd[i]*stagDiffI-cHzxd[i+1]*stagDiffR;
Hzxd[i] = asgn; }}}

for(k=zb; k<ze; k++) {
for(j=yb; j<ye; j++) {

for(i=2*((k*nny+j)*nnx+xb); i<2*((k*nny+j)*nnx+xe); i+=2) {
isub = i+2*(-nnx*nny);
stagDiffR = Eyxd[isub]-Eyxd[i]+Eyzd[isub]-Eyzd[i];
stagDiffI = Eyxd[isub+1]-Eyxd[i+1]+Eyzd[isub+1]-Eyzd[i+1];
asgn = Hxyd[i]*tHxyd[i]-Hxyd[i+1]*tHxyd[i+1]+Hxbndd[i]

-cHxyd[i]*stagDiffR+cHxyd[i+1]*stagDiffI;
Hxyd[i+1] = Hxyd[i]*tHxyd[i+1]+Hxyd[i+1]*tHxyd[i]+Hxbndd[i+1]

-cHxyd[i]*stagDiffI-cHxyd[i+1]*stagDiffR;
Hxyd[i] = asgn; }}}

170

Listing D.2: Magnetic field kernels (2 of 2), showing HZY , HXZ , and HY Z updates
for(k=zb; k<ze; k++) {

for(j=yb; j<ye; j++) {
for(i=2*((k*nny+j)*nnx+xb); i<2*((k*nny+j)*nnx+xe); i+=2) {

isub = i+2*(-1);
stagDiffR = Eyxd[i]-Eyxd[isub]+Eyzd[i]-Eyzd[isub];
stagDiffI = Eyxd[i+1]-Eyxd[isub+1]+Eyzd[i+1]-Eyzd[isub+1];
asgn = Hzyd[i]*tHzyd[i]-Hzyd[i+1]*tHzyd[i+1]

-cHzyd[i]*stagDiffR+cHzyd[i+1]*stagDiffI;
Hzyd[i+1] = Hzyd[i]*tHzyd[i+1]+Hzyd[i+1]*tHzyd[i]

-cHzyd[i]*stagDiffI-cHzyd[i+1]*stagDiffR;
Hzyd[i] = asgn; }}}

for(k=zb; k<ze; k++) {
for(j=yb; j<ye; j++) {

for(i=2*((k*nny+j)*nnx+xb); i<2*((k*nny+j)*nnx+xe); i+=2) {
isub = i+2*(-nnx);
stagDiffR = Ezxd[i]-Ezxd[isub]+Ezyd[i]-Ezyd[isub];
stagDiffI = Ezxd[i+1]-Ezxd[isub+1]+Ezyd[i+1]-Ezyd[isub+1];
asgn = Hxzd[i]*tHxzd[i]-Hxzd[i+1]*tHxzd[i+1]

-cHxzd[i]*stagDiffR+cHxzd[i+1]*stagDiffI;
Hxzd[i+1] = Hxzd[i]*tHxzd[i+1]+Hxzd[i+1]*tHxzd[i]

-cHxzd[i]*stagDiffI-cHxzd[i+1]*stagDiffR;
Hxzd[i] = asgn; }}}

for(k=zb; k<ze; k++) {
for(j=yb; j<ye; j++) {

for(i=2*((k*nny+j)*nnx+xb); i<2*((k*nny+j)*nnx+xe); i+=2) {
isub = i+2*(-1);
stagDiffR = Ezxd[isub]+Ezyd[isub]-Ezxd[i]-Ezyd[i];
stagDiffI = Ezxd[isub+1]+Ezyd[isub+1]-Ezxd[i+1]-Ezyd[i+1];
asgn = Hyzd[i]*tHyzd[i]-Hyzd[i+1]*tHyzd[i+1]

-cHyzd[i]*stagDiffR+cHyzd[i+1]*stagDiffI;
Hyzd[i+1] = Hyzd[i]*tHyzd[i+1]+Hyzd[i+1]*tHyzd[i]

-cHyzd[i]*stagDiffI-cHyzd[i+1]*stagDiffR;
Hyzd[i] = asgn; }}}

171

Listing D.3: Electric field kernels (1 of 2), showing EXZ , EY Z , and EY X updates
for(k=zb; k<ze; k++) {

for(j=yb; j<ye; j++) {
for(i=2*((k*nny+j)*nnx+xb); i<2*((k*nny+j)*nnx+xe); i+=2) {

isub = i+2*(+nnx);
stagDiffR = Hzxd[isub]-Hzxd[i]+Hzyd[isub]-Hzyd[i];
stagDiffI = Hzxd[isub+1]-Hzxd[i+1]+Hzyd[isub+1]-Hzyd[i+1];
asgn = Exzd[i]*tExzd[i]-Exzd[i+1]*tExzd[i+1]

+cExzd[i]*stagDiffR-cExzd[i+1]*stagDiffI;
Exzd[i+1] = Exzd[i]*tExzd[i+1]+Exzd[i+1]*tExzd[i]

+cExzd[i]*stagDiffI+cExzd[i+1]*stagDiffR;
Exzd[i] = asgn; }}}

for(k=zb; k<ze; k++) {
for(j=yb; j<ye; j++) {

for(i=2*((k*nny+j)*nnx+xb); i<2*((k*nny+j)*nnx+xe); i+=2) {
isub = i+2*(+1);
stagDiffR = Hzxd[i]+Hzyd[i]-Hzxd[isub]-Hzyd[isub];
stagDiffI = Hzxd[i+1]+Hzyd[i+1]-Hzxd[isub+1]-Hzyd[isub+1];
asgn = Eyzd[i]*tEyzd[i]-Eyzd[i+1]*tEyzd[i+1]

+cEyzd[i]*stagDiffR-cEyzd[i+1]*stagDiffI;
Eyzd[i+1] = Eyzd[i]*tEyzd[i+1]+Eyzd[i+1]*tEyzd[i]

+cEyzd[i]*stagDiffI+cEyzd[i+1]*stagDiffR;
Eyzd[i] = asgn; }}}

for(k=zb; k<ze; k++) {
for(j=yb; j<ye; j++) {

for(i=2*((k*nny+j)*nnx+xb); i<2*((k*nny+j)*nnx+xe); i+=2) {
isub = i+2*(+nnx*nny);
stagDiffR = Hxyd[isub]-Hxyd[i]+Hxzd[isub]-Hxzd[i];
stagDiffI = Hxyd[isub+1]-Hxyd[i+1]+Hxzd[isub+1]-Hxzd[i+1];
asgn = Eyxd[i]*tEyxd[i]-Eyxd[i+1]*tEyxd[i+1]+Eybndd[i]

+cEyxd[i]*stagDiffR-cEyxd[i+1]*stagDiffI;
Eyxd[i+1] = Eyxd[i]*tEyxd[i+1]+Eyxd[i+1]*tEyxd[i]+Eybndd[i+1]

+cEyxd[i]*stagDiffI+cEyxd[i+1]*stagDiffR;
Eyxd[i] = asgn; }}}

172

Listing D.4: Electric field kernels (2 of 2), showing EZX , EXY , and EZY updates
for(k=zb; k<ze; k++) {

for(j=yb; j<ye; j++) {
for(i=2*((k*nny+j)*nnx+xb); i<2*((k*nny+j)*nnx+xe); i+=2) {

isub = i+2*(+nnx);
stagDiffR = Hxyd[i]+Hxzd[i]-Hxyd[isub]-Hxzd[isub];
stagDiffI = Hxyd[i+1]+Hxzd[i+1]-Hxyd[isub+1]-Hxzd[isub+1];
asgn = Ezxd[i]*tEzxd[i]-Ezxd[i+1]*tEzxd[i+1]

+cEzxd[i]*stagDiffR-cEzxd[i+1]*stagDiffI;
Ezxd[i+1] = Ezxd[i]*tEzxd[i+1]+Ezxd[i+1]*tEzxd[i]

+cEzxd[i]*stagDiffI+cEzxd[i+1]*stagDiffR;
Ezxd[i] = asgn; }}}

for(k=zb; k<ze; k++) {
for(j=yb; j<ye; j++) {

for(i=2*((k*nny+j)*nnx+xb); i<2*((k*nny+j)*nnx+xe); i+=2) {
isub = i+2*(+nnx*nny);
stagDiffR = Hyxd[i]-Hyxd[isub]+Hyzd[i]-Hyzd[isub];
stagDiffI = Hyxd[i+1]-Hyxd[isub+1]+Hyzd[i+1]-Hyzd[isub+1];
asgn = Exyd[i]*tExyd[i]-Exyd[i+1]*tExyd[i+1]+Exbndd[i]

+cExyd[i]*stagDiffR-cExyd[i+1]*stagDiffI;
Exyd[i+1] = Exyd[i]*tExyd[i+1]+Exyd[i+1]*tExyd[i]+Exbndd[i+1]

+cExyd[i]*stagDiffI+cExyd[i+1]*stagDiffR;
Exyd[i] = asgn; }}}

for(k=zb; k<ze; k++) {
for(j=yb; j<ye; j++) {

for(i=2*((k*nny+j)*nnx+xb); i<2*((k*nny+j)*nnx+xe); i+=2) {
isub = i+2*(+1);
stagDiffR = Hyxd[isub]-Hyxd[i]+Hyzd[isub]-Hyzd[i];
stagDiffI = Hyxd[isub+1]-Hyxd[i+1]+Hyzd[isub+1]-Hyzd[i+1];
asgn = Ezyd[i]*tEzyd[i]-Ezyd[i+1]*tEzyd[i+1]

+cEzyd[i]*stagDiffR-cEzyd[i+1]*stagDiffI;
Ezyd[i+1] = Ezyd[i]*tEzyd[i+1]+Ezyd[i+1]*tEzyd[i]

+cEzyd[i]*stagDiffI+cEzyd[i+1]*stagDiffR;
Ezyd[i] = asgn; }}}

173

E Case study: code analysis of

acoustics solvers for wave equations

We perform Roofline model analysis of important PDE solvers to evaluate the ex-

pected performance gain of our temporal blocking techniques.

We analyze part of the Clawpack code [75], which uses finite volume Godunov-

type methods. In particular, we inspect a code in SharpClaw algorithm [76], which

uses strong stability preserving Runge–Kutta time integration, slope limiters, and

Riemann solvers. We analyze a single Runge–Kutta stage, based on using the minmod

limiter and solving the variable-coe�cient acoustic wave equation on a curvilinear

mapped grid. This is a three-dimensional problem with multiple solution components

and multiple material coe�cients per grid cell1.

The computation requires one TVD reconstruction2 and two Riemann solves3 in

each cell. These computational kernels are called from a subroutine that is applied

to one one-dimension slice of the grid at a time4.

The Clawpack code is written with a priority on flexibility rather than e�ciency.

The original code performs the updates dimension by dimension, where the strides are

copied to separate bu↵er and a one-dimensional solver update is performed. In order

1
The solver is available at: https://github.com/clawpack/pyclaw/blob/master/

examples/acoustics_3d_variable/acoustics_3d_interface.py
2
The subroutine tvd2 in https://github.com/clawpack/pyclaw/blob/master/src/

pyclaw/sharpclaw/reconstruct.f90
3
The subroutine in https://github.com/ketch/riemann/blob/acoustics_mapped_

3d/src/rpn3_acoustics_mapped.f90
4https://github.com/clawpack/pyclaw/blob/master/src/pyclaw/sharpclaw/

flux1.f90

https://github.com/clawpack/pyclaw/blob/master/examples/acoustics_3d_variable/acoustics_3d_interface.py
https://github.com/clawpack/pyclaw/blob/master/examples/acoustics_3d_variable/acoustics_3d_interface.py
https://github.com/clawpack/pyclaw/blob/master/src/pyclaw/sharpclaw/reconstruct.f90
https://github.com/clawpack/pyclaw/blob/master/src/pyclaw/sharpclaw/reconstruct.f90
https://github.com/ketch/riemann/blob/acoustics_mapped_3d/src/rpn3_acoustics_mapped.f90
https://github.com/ketch/riemann/blob/acoustics_mapped_3d/src/rpn3_acoustics_mapped.f90
https://github.com/clawpack/pyclaw/blob/master/src/pyclaw/sharpclaw/flux1.f90
https://github.com/clawpack/pyclaw/blob/master/src/pyclaw/sharpclaw/flux1.f90

174

to improve base e�ciency, we inlined all the subroutines into a single function and

removed the unnecessary array copy and redundant computations. This optimization

made the code less flexible and less readable, but this is an important step to get

closer to the best attainable performance.

We calculate a total of 483 flops per grid cell update. The Second order TVD

reconstruction costs 222 flops and the Riemann solves cost 261 flops. The minimum

tra�c to main memory is 27 numbers/cell: 15 auxiliary, 4 solution domain reads (4

equations), 8 solution domain read/write (assuming no non-temporal stores). Thus,

the arithmetic intensity is 483/27 = 18 Flops/number. In double precision, we get

2.25 flops/byte. This calculation assumes perfect spatial blocking, where each number

is brought once to the cache memory and reused completely before evicting it to the

main memory.

The arithmetic intensity of this code is much higher compared to that of the 7-

point constant-coe�cient stencil (0.54 flop/byte). Moreover, the complexity of this

code adds bottlenecks at the core, which results in less memory bandwidth usage

pressure. Because this code is not memory bound on typical current architectures,

we believe that temporal blocking techniques would not improve its performance.

	Examination Committee Approval
	Copyright
	Abstract
	Acknowledgements
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Problem statement
	Motivation
	Contribution
	Thesis outline

	Background
	Stencil computations
	Contemporary computer processors
	Cache blocking
	Wavefront temporal blocking
	Diamond tiling

	Analytic and phenomenological performance modeling

	Motivation: On spatial and temporal blocking performance limits
	Test systems: Intel Ivy Bridge and Haswell
	Performance prediction and evaluation for pure spatial blocking
	3D 7-point stencil with constant coefficients
	3D 25-point stencil with constant coefficients
	Other stencils

	Upper performance bounds for in-cache execution
	On temporal blocking practical performance limits
	Single-thread wavefront diamond blocking
	Cache block size model
	Memory traffic model
	Model verification

	Summary

	Approach: Multi-dimensional intra-tile parallelization
	Multi-dimensional intra-tile parallelization algorithm
	Girih framework
	Multi-core wavefront temporal blocking
	Auto-tuning
	Runtime system
	Distributed-memory parallelization

	Performance results
	Frameworks setup
	PLUTO setup
	Pochoir setup
	Girih setup

	Performance at increasing grid size
	7-point stencil with constant coefficients
	7-point stencil with variable coefficients
	25-point stencil with constant coefficients
	25-point stencil with variable coefficients

	mwd tile sharing impact on performance, memory transfer, and energy consumption
	7-point stencil with constant coefficients
	25-point stencil with variable coefficients
	25-point stencil with constant coefficients

	Code balance and energy consumption analysis
	Thread scaling performance
	7-point constant-coefficient stencil
	7-point variable-coefficient stencil
	25-point constant-coefficient stencil
	25-point variable-coefficient stencil

	Distributed memory strong scaling performance
	7-point stencil with variable coefficients
	25-point stencil with variable coefficients

	Application: Accelerating a Maxwell Equations solver for a solar cell simulation
	Introduction
	Intra-tile parallelization implementation
	Detailed analysis of the solver's stencil codes
	Naïve kernel arithmetic intensity
	Spatial blocking arithmetic intensity
	Diamond tiling arithmetic intensity and cache size requirements

	Results
	Thread scaling results
	Increasing grid size results
	Thread group size impact on performance and memory transfers

	Summary and future work

	Related work
	Related work using separate cache block per thread
	Related work utilizing cache block sharing

	Conclusion
	Future work and outlook
	Integrating mwd in future systems
	Handling deeper memory hierarchies with mwd
	Handling long vectorization units

	Tiles software prefetching
	Taking advantage of the memory bandwidth usage saving
	Perspective on integration with accelerators
	Handling other stencil types
	Integrating intra-tile parallelization techniques in stencil frameworks
	Understanding mwd behavior in the cache subsystem
	Handling adaptive time stepping of pde solvers with mwd
	Krylov subspace solvers, a promising applications for mwd
	Transferring temporal order derivatives to spatial order derivatives in finite difference pde solvers
	Handling thin domains in three-dimensional grids

	References
	Appendices

