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SUMMARY 

The aim of the present Thesis is to develop different platforms based on supramolecular and 

covalent interactions for stable immobilisation of DNA as recognition element in order to 

improve the biosensor performance. 

The Chapter 1 contains a general introduction which includes a brief information of 

genosensors and different DNA immobilisation methods, including host-guest 

supramolecular interactions and covalent bonding. In addition, an overview of detection 

techniques used in this thesis such as amperometry and electrochemiluminescence is 

presented. 

In Chapter 2 the development of an enzyme linked oligonucleotide assay for the detection of 

a human leukocyte antigen allele associated with celiac disease based on cyclodextrin-

modified polymeric surfaces is described. The surface of maleimide-pre-coated plates was 

modified with a layer of thiolated cyclodextrin polymer and used for the supramolecular 

capture of adamantane or ferrocene modified carboxymethylcellulose polymers bearing DNA 

probes. The assay was optimised in terms of incubation time, temperature and surface 

chemistry and applied to the highly sensitive and selective detection of HLA sequences. A 

real sample analysed using this platform showed a good correspondence with traditional 

maleimide activated plates. 

A novel genosensor platform based on supramolecular interactions is reported in Chapter 3. 

It has been developed based on the self-assembly of bifunctionalised polymer bearing 

adamantane and DNA onto cyclodextrin surfaces. The surface chemistry can undergo a 

controlled regeneration, as revealed by SPR and impedance spectroscopy, has an excellent 

detection limit of 0.08 nM and demonstrated high selectivity, clearly differentiating between 

complementary and non-complementary DNA sequences. The performance of the developed 

genosensor was validated by applying it to the detection of DNA in a real patient sample that 

had been previously genotyped. 

Chapter 4 describes a novel route for the immobilisation of an electron transfer mediator on 

electrode surfaces based on the interfacial complexation of a bifunctionalised 

carboxymethylcellulose polymer backbone bearing ferrocene units and a DNA probe on a 

cyclodextrin-functionalised surface. The interfacial self-assembly has been studied using 
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surface plasmon resonance and electrochemical techniques and the applicability of the 

modified surface for the construction of an amperometric genosensor was explored for the 

detection of a celiac disease associated allele. The supramolecular strategy simplifies the 

operation of the biosensor, only requiring the addition of enzyme substrate and the proximity 

of the mediator to the electrode surface greatly improves the detection limits attained (10 pM) 

with respect to a similar supramolecular system based on electrochemically inactive 

adamantane/CD inclusion complexes (80 pM) and requiring addition of the mediator in 

solution. In addition, the use of the hydrophilic CMC backbone contributes to the elimination 

of non-specific interactions and to an optimal spacing of the immobilised DNA probes. 

Looking for more stable surfaces, a controlled, rapid and potentiostat-free method is reported 

in Chapter 5 for grafting the diazonium salt (3,5-bis(4-diazophenoxy)benzoic acid 

tetrafluoroborate, DCOOH) on gold and carbon substrates, based on a Zn-mediated chemical 

dediazonation. The highly stable thin layer organic platforms obtained were characterized by 

cyclic voltammetry, AFM, impedance, XP and Raman spectroscopies. A dediazonation 

mechanism based on radical formation is proposed. Finally DCOOH was proved as a linker 

to an aminated electroactive probe. 

This new method for grafting diazonium salts on gold and carbon surfaces was tested for 

tethering DNA capture probe. In Chapter 6 the viability of using the Zn-mediated diazonium 

grafted surfaces for preparing surfaces for amperometric biosensors is tested. The DNA probe 

was linked to the grafted organic layer through a amide bond formation and a sandwich type 

amperometric detection was achieved.  The genosensor developed using the new approach, 

demonstrated to have higher sensitivity and lower limit of detection in comparison with those 

prepared using traditional electrografting, which could be related with the more controlled 

manner of producing the desired thin layer in our approach. 

Finally in Chapter 7 a carbon electrode tethered ruthenium(II)-tris-bipyridine-DNA probe 

linked to the surface through a thin layer of diazonium salt grafted by controlled Zn mediated 

strategy has been tested as DNA sensor using electrochemiluminescence.  

Overall, this work has contributed to the development of novel biosensing platforms 

exploiting supramolecular host-guest interaction and covalent binding for transducer 

activation. These systems showed very high performances which allow the development 

of new alternatives for the sensitive detection of biomolecules. 
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1 PRINCIPLE OF BIOSENSOR  

Since 1987, when the first personal glucose-meter was commercialised,1 the quality of life of 

diabetic patients changed radically. As a consequence of the construction of this sensor and 

the subsequent updates, patients have the possibility of a continuous control of the glucose 

level with a more adequate and personalised management of the disease.2  

The Era of biosensors began in 1962 when Clark revealed the possibility of the construction 

of an electrochemical sensor using glucose oxidase enclosed in a membrane.3,4 Since this first 

report many biosensor definitions have been used5 and in 1992 the IUPAC gave a general 

definition of biosensor as “a device that uses specific biochemical reactions mediated by 

isolated enzymes, immunosystems, tissues, organelles or whole cells to detect chemical 

compounds usually by electrical, thermal or optical signals”.6 Recently, Turner described 

them as “analytical devices incorporating a biological sensing element. They harness the 

exquisite sensitivity and specificity of biology in conjunction with physicochemical 

transducers to deliver complex bioanalytical measurements with simple, easy-to-use 

formats.” 7 Figure 1.1 is a graphic summary of the concept of biosensor.  

  

Figure 1.1. Biosensor configuration 
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The biological sensing elements (bioreceptor) include organelles, tissues, cell receptors, 

microorganisms, enzymes, antibodies or antigens, nucleic acids, etc.8 In general a biosensor, 

which presents one of these two latter bioreceptors, are classified as immunosensors and 

genosensors, respectively.  

In the construction of efficient biosensors the design of a robust sensing platform and the 

detection method are critical, different immobilisation methods including physical 

adsorption,9 host-guest interactions10 or covalent bonding11 have been developed coupled 

with detection techniques such as electrochemical,12 piezoelectric,13 gravimetric,14 optical,15 

depending on the system under study.  

Many alternatives for the combination of bioreceptors and detection methods have been 

published for clinical applications such as the screening or early detection of diseases,16 for 

monitoring food production and food poisioning,17 for the  detection of biological warfares 

including Bacillus anthracis18 or Francisella tularensis,19 and many others. 

 

1.2 GENOSENSORS 

When the biorecognition element used in the biosensor is a DNA probe, it is usually called 

genosensor, and the knowledge about the intrinsic characteristics of DNA is crucial in 

genosensor development.  

The polymeric structure of the DNA molecule, called a polynucleotide is formed by the 

linking of four monomers (nucleotides). These nucleotides consist of a backbone comprising 

a unit of deoxyribose sugar, a phosphate group with rhe genetic information provided by the 

nitrogenated bases, adenine (A), guanine (G), cytosine (C) or thymine (T), with A and G 

being purine derivatives whilst C and T are pyrimidine derivatives (Figure 1.2).     

As can be seen in Figure 1.2, the formation of the DNA structure is due to the linking of 

the nucleotides via phosphodiester bonds where the phosphate group is shared between 

two sugars. The presence of the OH groups in the carbon 3´ and 5´ facilitates the 

connection of monomers until the formation of a polymer of n units.  

 

 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR AND SUPRAMOLECULAR SURFACE MODIFICATION TOOLS FOR HIGHLY SENSITIVE AMPEROMETRIC AND 
ELECTROCHEMILUMINESCENT BIOSENSORS. 
Mabel Torréns del Valle 
Dipòsit Legal: T 148-2015



Doctoral Thesis 

 

  16 

 

 

Figure 1.2. Basic components and structure of DNA 

The Chargaff ratio exposing the equal percent of A with respect to T and C with respect to G, 

combined with the X-ray diffraction analysis resulted in the elucidation of the DNA double-

helix model in 1953. In this structure two single strands of DNA are bound via hydrogen 

bonds between the A-T and C-G bases. The high specificity of these interactions is explained 

by the linking of pyrimidine (one ring) and purine (two rings) presenting lower steric 

hindrance, avoiding the separation of the helix, and the second factor is the formation of the 

three and two hydrogen bonds between the C and G and A and T bases respectively. 

Furthermore the hydrophobic interaction between the neighboring bases provides stability to 

the double stranded DNA.20, 21  

From the biological point of view, DNA contains the genetic information of living 

organisms. The coding part of the information included in the genes, are transcribed and 

translated to produce RNA molecules and proteins.20 A mistake in the genes, a mutation, 

results in diseases such as phenylketonuria, cystic fibrosis, sickle cell anaemia, 

cardiomyopathy and celiac disease.  
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In addition, the direct detection of DNA target without using any secondary probe can also be 

achieved using surface plasmon resonance, chronocoulometry and impedance spectroscopy.  

 

DNA immobilisation methods 

The relevance of surface engineering for the biosensor development is unquestionable. The 

adequate modification of the transducer is the first point for guaranteeing subsequent 

efficiency of the detection. 

Different surfaces can be functionalised with a large number of receptor molecules. The 

coupling on surfaces can exploit not only covalent bonding,33 for instance, via reversible –S–

S– bridge formation, but also metal coordination. The formation of self-assembled 

monolayers (SAMs) of thiols on gold is one of the more used approaches because of its 

simplicity and versatility.34 In SAMs, each chain of alkylthiol is arranged in parallel with the 

neighbouring chain in the most stable “trans” configuration and the stability of Au-S 

increases in 0.1 eV per carbon atom of the thiol.33 The formation of SAMs can be optimised 

by finding the optimal pH and concentration of the thiol and the length of time of its 

interaction with the surface.34  

Nowadays, there are commercially available derivatised DNAs suitable for immobilisation on 

surfaces and the pH used is around 7.4 in water. In the case of DNA sensors, the accessibility 

of the target to the capture probe immobilised on the surface is crucial and creating the proper 

spacing between tethered DNA for the further DNA target hybridisation is highly desirable. 

Two of the more common methods for spacing the DNA molecules in the surface include co-

immobilising both the DNA and the spacer-small alkyl thiol molecule in one step, and the 

two step strategy where firstly the DNA is immobilised and then a short length thiol is used 

as backfilling.34 

In addition to SAMs created by Au-S bonding, electrostatic interactions, hydrogen bonding,35 

cyclodextrin host–guest complexation,36 or the well-known biotin–streptavidin complexes37  

constitute examples of the DNA immobilisation on surfaces. In general, the non-covalent 

bonding has the advantage of controllable molecular recognition abilities with the possibility 

for error correction.38 
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Figure 1.4 Immobilisation methods of biomolecules. 
 33b, 34e, 37 

 

Supramolecular Chemistry. Applications of Supramolecular Chemistry for biosensor 

platform development 

The possibilities of supramolecular chemistry as a tool used in the development of 

nanotechnology may revolutionise our lives in the near future. For example, metal-organic 

frameworks (MOFs) and porous materials can selectively bind many small molecules by 

noncovalent forces and have gained attention, for instance, for the separation, storage, and 

release of gases.39,40 

Supramolecular interactions41,42 have recently attracted great interest as surface 

modification tools.43,44 These strategies are based on self-assembly and host-guest 

interactions in order to achieve pre-organisation and improved functional properties of 

these assemblies. Among many of the existing natural and synthetic macrocyclic 

structures, cyclodextrins and calixarenes have been the most studied hosts for this purpose 

(Figure 1.5).43,45 
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Cyclodextrins: Structure and properties 

yclodextrins (CD) are cyclic oligosaccharides obtained from the degradation of starch 

glucopyranose units attached by α-1,4-glucosidic linkage 

containing 6, 7, or 8 glucose units and are called α-, β-, γ-cyclodextrin

cyclodextrin shape is similar to a truncated cone, with a cavity diameter in the range of 

CD: 0.49 nm, β-CD: 0.62 nm, γ-CD: 0.83 nm).  

. Structure of cyclodextrin (a) and molecular structure of α,β and γ CDs (b).
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The cavity is lined C-H groups and thus presents a hydrophobic character, which 

combined with the presence of hydroxyl groups located in the borders of the cavity makes 

these unique molecules perfect candidates for the formation of inclusion complexes via 

electrostatic, hydrophobic and van der Waals interactions in an aqueous environment via 

host-guest interaction.50,51 

Host-guest interaction is mainly observed in inclusion complex formation, where the host 

is the cyclodextrin, that presents a large cavity and the guest normally is a molecule able 

to fit in the CD cavity (Figure 1.6). The stability of this complex depends on the shape, 

volume, polarity, number and character of substituting groups of the guest, as well as the 

reaction medium, temperature, ionic strength and other factors.52 

Adamantane and ferrocene are among the more commonly used hosts for βCDs (Figure 

1.6). The β-cyclodextrin-adamantane inclusion complex, with the highest association 

constant (105-106 M-1) has been widely reported for supramolecular constructions.44 

However, the inclusion complexes of βCD with ferrocene also have high values of 

stability constants (K = 104 M -1), having the added value or being electroactive, which has 

been used for interesting electrochemical detection approaches. 

 

Cyclodextrin-based biosensors 

Inclusion complexes can be used not only to create interesting tridimensional supramolecular 

architectures, but also for immobilising the biomolecules on the surface Figure 1.7. 

                              Figure 1.7. Example of platform based on host-guest interaction.36, 53 
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An interesting electrochemical label-free and 'signal-on' method for DNA detection was 

reported by Aoki et al54 using a carbon-based inter-digitated array microelectrode chip.  DNA 

probe was functionalised at both ends: β-CD was attached at the 3’ end while a ferrocene unit 

was attached at the 5’ terminus. Based on the flexibility of the single strand form, the 

inclusion of Fc on the β-CD attached on the other end of the probe was proposed, which 

shifts the Fc/Fc+ potential to positive values and lowers the current values due to 

encapsulation in the CD cavity. After hybridisation a signal-on response was obtained due to 

the rigid structure of the double-strand that breaks the inclusion complex, shifting the redox 

potential towards a more negative potential (-62 mV) and the observed current at 0.3 V was 

increased 5.2-fold. On the other hand, Sato et al. proposed a supramolecular system based on 

a complex formation by ferrocenyl-β-CD and adamantylnaphthalene diimide bound to double 

stranded DNA.55 

The inclusion complexation of cyclodextrins has been used to detect DNA. CdSe quantum 

dots modified by mercapto-β-CD were recently reported for the fluorescent detection of 

DNA. Firstly, fluorescence of CdSe nanoparticles was quenched by inclusion of 

phenanthroline inside β-CD cavities. In the presence of double stranded DNA, the 

included phenanthroline molecule is released from the nanoparticle restoring the 

fluorescence due to its higher tendency to intercalate in the DNA double helix with a 

binding constant of 1.33×107 M-1 which is two orders of magnitude than the binding 

constant of the β-CD/phenanthroline complex.56 

Therefore, molecular sensor design is an active field in supramolecular chemistry.57 

Sensing applications rely on exploiting the forces involved in the formation of non-

covalent host-guest complexes; the more complementary the binding sites of the host to 

those of the guest, the higher the binding energy. Molecular recognition is still a 

challenging topic nowadays, and many efforts have been devoted to the development of 

supramolecular sensors able to selectively detect analytes of chemical or biological 

significance. This fascinating field exploits the recognition abilities of supramolecular 

receptors to yield analytical tools characterized by high sensitivity, specificity, and 

selectivity.  

In the field of biosensors, the improvements in reproducibility, calibration, and 

manufacturability are still some of the challenges for developing reliable devices,58 and the 
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field of supramolecular analytical chemistry opens up new molecular designs and approaches 

for the use of synthetic receptors in analytical sciences.40 

 

Diazonium salts 

Diazonium salt are organic compounds in which one or more diazo groups (-N2
+ ) are linked 

covalently to alkyl or aryl groups (Figure 1.8).59 Aromatic diazonium salts are more 

commonly used since they may have other functional groups that supply a linking point for 

reaction with different molecules or surfaces.  

 

Figure 1.8. General representation of the diazonium salt. 

The salts are obtained from the reaction of nitrous acid (HNO2) with a primary aromatic 

amine in the presence of mineral acid. It is important to consider that the presence of the 

nitrous acid is essential to obtain the diazo group (-N2
+) but the instability of this molecule, in 

many cases, hinders the yield of the reaction. Thus, to avoid the decomposition of HNO2 and 

improve the diazonium production, the temperature is adjusted between 0 and 5 ºC and the 

preparation of the acid is carried out in situ by the reaction of a mineral acid and a nitrite salt. 

In general 3 molar equivalents of the mineral acid per equivalent of amine are used: one 

equivalent is using to achieve amine protonation, the second for nitrosonium ion formation 

and the last one to avoid, in the early stage of the reaction, the coupling of the diazonium with 

a non-protonated amine. The result is the substitution of the hydrogen of the amine by the 

nitrosonium ion and the formation of the diazonium salt. (Figure 1.9) 

 

 

 

Figure 1.9. Synthesis of diazonium salt. 
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However the quantities of this ion are adequate for this mechanism only when concentrated 

acid is used, in the case of strong but diluted acid it has been reported that the diazotation 

proceeds  via amine and N2O3 reaction (Figure 1.10) 60 

Figure 1.10. Synthesis of diazonium salt using diluted acid. 

  

Regarding stability, the resonance contribution of the aromatic rings makes aryl diazonium 

more stable with respect to the alkyl ones, which cannot be isolated due to it instability. 

Although the nature of the aromatic substituents in combination with the counter-anions have 

significant influence on the isolation of stable diazonium salts.59 To date the best anions 

reported are fluoroborate,61 tosylate62 or disulfonimide.63 In addition, if the salt is in solution, 

the use of aqueous acidic medium or aprotic non-nucleophilic solvents and acidic pH, lower 

than 3, are the optimum conditions to maintain the diazonium in solution since pH higher or 

equal to 7 stimulates the formation of the diazohydroxides and diazoates.64 

The preparation of many diazonium salts is feasible due to the high variety of commercial 

amines. Many of these diazonium salts are involved in a plethora of reactions and one of 

them is azo coupling from aromatic amines or phenols due to the electrophilic character of 

the azo groups, another example are the substitution reactions, where the azo group is 

replaced by different nucleophiles including F-, CN- or Cl-.65 

Finally the high stability of the leaving group N2 also facilitates the formation of aryl radical 

or carbocations that are able to interact with different surfaces.  
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Diazonium salt and surface modification 

Despite the tendency to modify surfaces using thiol moieties, the poor long term stability due 

to the easy oxidation of thiol, the narrow working potential window, in the range -1 V to +1 

V (vs SCE), and the lower bonding energy of S-Au with respect to the C-C bond has led to 

the use of diazoniums as an alternative for the development of a stable surface based on 

covalent bonding.66 This system offers the advantage of facile preparation, rapid reduction 

and the possibility of the introduction of different functional groups.66  

Pinson was the first to detail the electrochemical grafting of diazonium on carbon surfaces.67 

Subsequently, this strategy has been exploited in sensors detection of proteins, cofactors, 

enzymes, DNA, etc. The steps involved in this process include the reduction of diazonium 

salt in aprotic or aqueous acidic medium via application of potential of the voltammetric peak 

of diazonium for a period of time using cyclic voltammetry (CV) or via electrolysis.68 The 

reduction potential of diazonium is relatively low due to the stability of the leaving N2 

molecule.  

Figure 1.11. Modification of surfaces by electrochemical reduction of diazonium salts (1) and CV of the 

reduction of diazonium salt, a) first and b) second scan and c) the same electrode in ACN + 0.1 M NBu4BF4. 

(2)69 
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Thus, the typical voltammogram during the electrografting shows an irreversible reduction 

peak around 0 V attributed to the cleavage of N2 group that is related with the electron 

transfer reaction. This one-electron wave almost disappears after the second cycle and it is 

associated with the almost complete blocking of the electrode surface. The proposed 

immobilisation mechanism is based on the formation of highly reactive radicals, observed by 

ESR, which react with the surface but also with the molecules already immobilised.  Taking 

into account the easier reduction of this species, special attention to the potential range 

chosen is needed, because the modification of surfaces is highly affected when other 

reduction products are present. As a consequence of the presence of these free radicals the 

formation of layers with different thickness has been reported, from monolayers to 

multilayers. This grafted surfaces been widely investigated using different techniques such as 

electrochemistry, AFM, X-ray reflectivity.64 The use of reducing agents including 

hypophosphorous acid or iron powder for reduction of the N2 group has also been reported 

for the formation of multilayers. The multilayer formation has been used for the preparation 

of lithium batteries and the development of supercapacitor electrodes.69 However, in the case 

of biosensors this multilayer formation can be a drawback, although some studies reported 

the presence of pinholes in the layers that allow electron transfer from the surface, it has also 

been demonstrated that above a certain thickness, is hindered. Hence a monolayer or layers 

close to monolayer are highly desired to obtain higher electron transferring that can result in a 

good biosensor performances.68  

Some interesting alternatives to obtain these structures are the reduction of diazo group 

controlling the charge consuming during the electrochemical process or via ultrasonic, 

heating and microwave methods. Furthermore, the immobilisation of diazonium on reductive 

surface is an attractive and simple method. On these surfaces the grafting process was in 

agreement with the redox reaction (EOCP(Zn)< EOCP(Fe)< EOCP(Ni) ) demonstrating that both 

the metal surface and the diazonium salt are involved in the mechanism.64  

In addition, spontaneous reduction of nitrogen group is also reported to form monolayers. 

Moreover parameters as concentration, reaction time or the presence of diazoniums salts with 

sterical hindered are reported to have influence in the final layers structures.64 Finally, added 

to the stability of the diazonium derivatives on surfaces and the possibility to activate it with 

a great number of functional groups to link biomolecules to the surfaces, this immobilisation 

strategy can be used to modify carbon or metallic surfaces to construct biosensors. 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR AND SUPRAMOLECULAR SURFACE MODIFICATION TOOLS FOR HIGHLY SENSITIVE AMPEROMETRIC AND 
ELECTROCHEMILUMINESCENT BIOSENSORS. 
Mabel Torréns del Valle 
Dipòsit Legal: T 148-2015



Doctoral Thesis 

 

  27 

 

Detection methods 

Some examples of molecular sensors include colorimetric sensors that have the advantage of 

allowing simple on-site real-time detection without instruments, luminiscence-based sensors 

which offer significant advantages such as high sensitivity,70 and electrochemical sensors 

which provide low detection limits, a wide linear response range, simple instrumentation and 

good stability and reproducibility.71 Depending on the sensing mechanism, electrochemical 

sensors can be classified as potentiometric, conductometric, voltammetric and amperometric.8 

 

Amperometric biosensors 

Amperometric biosensors belong to a class of the most widespread, numerous and 

successfully commercialised devices of biomolecular electronics. In amperometry, a constant 

applied potential value between a working electrode and a reference electrode is applied and 

the response is recorded in terms of absolute current or current density in the electrochemical 

cell. This applied potential promotes a redox reaction, which produces a current.72 The 

current density, defined as the ratio between current and electrode area, is a function of the 

presence in the solution of electrochemically active species, whose oxidation or reduction 

takes place on the surface of a working electrode, proportional to its concentration. During 

measurement the working electrode may act either as an anode or cathode depending on the 

nature of the substance measured and the voltage value applied.73 

Amperometric biosensors can be divided into three main classes: 

1- Amperometric mediatorless biosensors - they are based on measurement of concentration 

of substrates or products directly involved in an enzyme reaction. In the reaction process 

always some products are generated and some substrates are consumed. If they are 

electroactive, their concentration can be measured directly. These reactions are usually 

catalysed by various oxidases, which constitute the most commonly used enzymes in 

amperometric biosensors. Some examples of oxidases applied in these biosensors are: 

peroxidases, glucose oxidase, lactate oxidase, choline oxidase, alcohol oxidase, glutamate 

oxidase, or xantine oxidase, etc.72 
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Several amperometric biosensors are based on monitoring oxygen consumption or detection 

of hydrogen-peroxide formation. Both are electrochemically active, oxygen can be 

electrochemically reduced and hydrogen peroxide can be oxidised and the current generated 

is proportional to the concentration of the enzyme substrate present in the sample.73 The other 

enzymes used in amperometric biosensors are dehydrogenases or hydrolytic enzymes. 

2- Amperometric mediated biosensors – these devices use mediators (alternative -oxidising 

agents) as electron carriers. Mediators have the advantage of requiring low applied potentials 

and therefore the interference of oxygen (in the case of oxidases) and of different interferents 

on the response decreases dramatically. These mediators are low-molecular weight 

molecules, which transfer electrons between redox centre of the enzyme and working 

electrode, for example: 

Mediators can be categorised as a natural or artificial electron carriers. For instance, the 

natural mediators are: cytochrome a3, b, c3, ubiquinone, vitamin K2, flavoproteins or 

ferredoxin, etc. Yet, the artificial electron carriers may be as follow: ferricyanide 

(hexacyanoferrate III), 2,6-dichlorophenol, ferrocene, methylene blue, benzyl violet, 

hydroquinone, catecols etc. From all of them, the ferricyanide and ferrocene are the most 

common and well – known. 

There are two ways to employ a mediator for the measurement, either by adding it to a 

measuring solution or via immobilisation on the electrode surface. The first method is easier 

but has less applicability in packed devices. What is more, organic colorants such as 

methylene blue, phthalocyanide or methyl violet are toxic, unstable to reduction, pH sensitive 

and often could be autooxidised. For that reason, an optimal and more technologically 

attractive method is the second way (immobilised mediators). It has also been observed that 

the mediator solubility can influence the sensor response, for example in the immobilisation 

process of dimethylferrocene and glucose oxidase. Simply, when the sensor is dipped into the 

solution, the insoluble mediator stays at the surface. Following application of voltage, the 

ferrocenium ions are created and being highly soluble in aqueous solutions they leach, thus 

reducing the mediator volume on the electrode surface, which results in decreasing 

response.72 To overcome this disadvantage some conductive polymers modified by mediators 

can be employed,72,74 or the introduction of the mediator and enzyme into colloidal graphite 

emulsion over which the cationic membrane is fixed.75 The proper mediator has to fulfil 

following conditions:  applied voltage should not exceed the oxygen reduction potential, 
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reduced mediator should not react with oxygen, electron transfer between the mediator and 

enzyme should be very fast, mediator should not be influenced by pH, mediator should be 

non toxic. 

3- Amperometric biosensors based on direct electron transfer – these types of sensors are 

based on direct electron transfer between enzyme and electrode (bioelectrocatalysis). This 

process is entirely catalytic, where direct electron transfer from the electrode toward the 

substrate (and vice versa) across active centre of enzyme, undergo without any carriers. In the 

biocatalysis process, an electron itself is a co-substrate of the reaction; therefore enzyme and 

electrode reactions cannot be independent from one another. 

Indeed, some very important aspects for development of amperometric biosensors include: an 

electrochemical redox-enzyme activation and subsequent direct electron transfer between the 

enzyme and electrode. Some reported biosensors have a high sensitivity due to a large current 

density, which enables electrode miniaturisation. Moreover, a non-specific interfering 

response is lower because of the effective electric activation of redox-enzyme providing high 

sensor selectivity and sensitivity.72 

 

Luminescence techniques 

According to the IUPAC, “luminescence is the spontaneous emission of radiation from an 

electronically or vibrationally excited species not in thermal equilibrium with its 

environment”.77 In this optical technique the electromagnetic irradiation generated by 

previous excited molecules is achieved by using different excitation sources. Based in those 

points, the luminescence reaction can be classified according to: 

- Sonoluminescence: In this phenomenon flashing of light are emitted after the implosion of 

the cavitation bubbles.78 (Figure 1.12) 
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-Triboluminescence: The light emission is achieved when a chemical bond break

scratching or fracture of a material.

 

                                                Figure 1.1

 

- Bioluminescence (BL): this is a natural process where the light is emitted after chemical 

reaction catalysed by an enzyme.

Figure 1.1
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12. Schematic representation of sonoluminiscence. 

Triboluminescence: The light emission is achieved when a chemical bond break

or fracture of a material. 79 

 

Figure 1.13. Schematic representation of triboluminiscence.

Bioluminescence (BL): this is a natural process where the light is emitted after chemical 

on catalysed by an enzyme.80 

 

Figure 1.14. Schematic representation of bioluminiscence. 

 30 

 

Triboluminescence: The light emission is achieved when a chemical bond breaks due to the 

Schematic representation of triboluminiscence. 

Bioluminescence (BL): this is a natural process where the light is emitted after chemical 
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- Chemiluminescence (CL): After a chemical reaction the excited species is generated and 

light is originated. Typical CL reaction is the formation of excited 3-aminophthalate after 

reaction of hydrogen peroxide with luminol.81 

 

 

Figure 1.15. Schematic representation of chemiluminescence: the reaction of luminol. 

 

- Electrochemiluminescence (ECL): in this system the light appears after the electron transfer 

reaction of two species generated on the electrode by the application of potential.82 

 

Figure 1.16. Schematic representation of setup for electrochemiluminiscence 
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Despite the fact that these luminescence techniques are widely useful for detection due to the 

high sensitivity, the low limit of detection and non-specific background,83 ECL is a very 

attractive alternative for biosensor detection due the possibility of control of time and 

position of emitting light,84 compatibility with solution-phase and thin-film formats85 and is 

dependent of the system chosen, the regeneration of the luminophore after the emission is 

possible and a new measurement can be carried out.86 

 

Fundamentals and advantages of ECL 

Some studies in the field of genosensors have been the focus of ECL as detection method. 

ECL has become a very powerful analytical technique and has been widely used in the areas 

of, for example, immunoassay, food and water testing, and biowarfare agent detection,87 

highlighting the use of ECL as a powerful tool for ultrasensitive biomolecule detection and 

quantification.88 

ECL is a process whereby species generated at electrodes undergo high-energy electron-

transfer reactions to form excited states that emit light.89 This phenomenon was first detected 

in 1929 when emission of light was observed from luminol at an electrode. However, the first 

ECL work was not published until the early sixties, when Hercules90 reported light emission 

during electrolysis of aromatic hydrocarbons in deoxygenated non aqueous solvents. Since 

this report, different groups have focused their research on this technique as a tool for 

analytical applications because it is possible to detect very low concentrations with high 

sensitivity, a light source is not required for excitation and the instrumentation can be highly 

simplified for the construction of portable devices. Additionally the measurements are not 

affected by impurities or scattered light in contrast to fluorescence.91 The use of ECL has 

found applications in clinical diagnosis, immunoassays and DNA assays, environmental 

applications for water testing and biosensors,92 and can also be coupled to High Performance 

Liquid Chromatography (HPLC). 93  
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ECL mechanism: annihilation and co-reactant  

The most common approaches for generating the ECL signal are annihilation and co-reactant 

pathways. Following the beginning of ECL the first reported system were based on 

annihilation mechanism. In this process alternate potentials are using to generate oxidized 

and reduced species that are able to produce the ECL signal by the electron transfer reaction 

between this two species, that can be identical or not. Depending if the system is energy 

sufficient or deficient the formation of the excited state is occurs via single annihilation (S-

route) or triplet annihilation (T-route) respectively.88  

The co-reactant mechanism is the second pathway to achieve ECL response. In this 

mechanism, the intermediate produced from the oxidation or reduction of the co-reactant is 

able to react with an ECL luminophore and produce the light. ECL measurements can be 

accomplished with the luminophore and co-reactant in solution or confining the former to the 

surface for improving the electron transfer for the excitation and subsequently the sensitivity. 

Furthermore, the use of ruthenium complexes as luminophores and tripropylamine (TPA) as 

co-reactant in this system is largely described in the literature. Electrochemiluminescence 

(ECL) of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)3
2+) is a well-known detection method that 

provides high sensitivity with a low background through generation of an optical signal 

triggered by an electrochemical reaction.94 

To trigger the optical signal, a sacrificial amine (usually tripropylamine, TPA) is oxidised at 

the electrode surface generating a radical that reduces the Ru(II) complex to Ru(I) which is 

further transformed into a Ru(II) excited state that generates the luminescence. 
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Figure 1.17.  Diagram of the ECL mechanism. 

(adapted from www.wellstatdiagnostics.com/diagnostics/ecl.html) 

 

Biosensors based in ECL  

Landers and co-workers have studied the quenching of ECL by ferrocene (Fc) derivatives.95 

Fc showed more efficient quenching of ECL compared with the known quenchers such as 

phenol and methylviologen and the proposed mechanism involved bimolecular energy or 

electron transfer between Ru(bpy)3
2+* and the ferrocenium cation (Fc+), the oxidized species 

of Fc. Using Fc as a quencher label on a complementary DNA sequence, an intramolecular 

ECL quenching in hybridised oligonucleotide strands has been realized, suggesting the 

potential for application of this system to sequence-specific DNA detection. As the technique 

of quenching of ECL is considerably simpler and possesses adequate sensitivity, this new 

approach could open new frontiers in the development of selective and ultrasensitive assays. 

For example, the development of a novel genosensors with limit of detection in the fM range 

was built using a hairpin DNA structure as recognition element and Ru(bpy)3
2+-doped silica 

nanoparticles (Ru-DSNPs) as ECL label and TPA as co-reactant. In this work the 
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amplification of the signal was attributed to the presence of the new structure designed where 

the Rubpy is three dimensionally entrapped in the nanoparticles.96 

Moreover, the interest in ferrocene as a quencher was significantly increased for ECL after 

the report by Cao et al. detailing the higher efficiency of the quenching effect of the ferrocene 

over the ruthenium complexes with respect to other quencher molecules.97 Based on this 

mechanism, a ECL on-off system based on an aptasensor for adenosine triphosphate 

detection was developed. In this work a limit of detection of 0.03 pM was achieved using a 

DNA sandwich structure where the DNA aptamer probe was immobilised on nanoporous 

gold (NPG)-Rubipy modified glassy carbon electrode. The light emitted by the luminophore 

decreased by the quencher effect of the Fc linked to the secondary probe in dependence with 

the adenosine concentration.98 A similar design using the same luminophore and adenosine 

aptamer was presented to detect adenosine but on gold surfaces. The off-on system was 

developed by formation of adenosine/aptamer-Fc complex following previous hybridization 

of Fc-aptamer/DNA-RuSiNPs on surface. The formations of complex allow the de-

hibridisation of Fc-aptamer from the surface and the consequently increase of the ECL signal 

due to the increase in the distance between Fc and ruthenium derivative.99 

Since high potentials should be applied to excite the active center, the presence of a robust 

biorecognition surface is compulsory. The use of diazonium derivatives immobilised on 

metallic or carbon surfaces is an interesting alternative to be used due to the significant 

stability reported for the covalent interaction C-C, metal-C. Taking advantage of this stable 

surface, Piper et. al. studied a potential glassy carbon surface for ECL applications.100 
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1.3 THESIS OBJECTIVES 

Successful biosensors are commercially available and their acceptance in the market is 

increasing. Although there are other fields where the biosensors are highly required and their 

studies are still in the early stage and numerous shortcomings have to be resolved in order to 

lead the market as a fast, sensitive, a user friendly and cheap prototype. This Thesis is a 

contribution of the development of different platforms for the improvement of the biosensor 

performance.  

 

Overall Objective 

To develop novel genosensor platforms based on supramolecular and covalent interactions 

for point-of-care detection of genetic diseases and biological pathogens using amperometric 

and electrochemiluminescence techniques. 

 

Specific objectives: 

The Overall Objective of the Thesis was accomplished through the following specific 

objectives:  

1. To develop stable surface chemistry for development of genosensors exploiting 
supramolecular chemistry and robust organic platforms. 

 

2. Application of developed surface chemistries for highly sensitive and stable 
electrochemical genosensors 

 

3. Enhancement of sensor sensitivity and selectivity using electrochemiluminiscent 
transduction. 
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CHAPTER 2 

HIGHLY SENSITIVE COLORIMETRIC ENZYME LINKED OLIGONUCLEOTIDE 

ASSAY BASED ON CYCLODEXTRIN-MODIFIED POLYMERIC SURFACES 

 

2.1 ABSTRACT 

In this chapter, the development of an enzyme-linked oligonucleotide assay for the detection of 

a human leukocyte antigen allele associated with celiac disease based on cyclodextrin-modified 

polymeric surfaces is described. The surface of maleimide-pre-coated plates was modified with 

a layer of thiolated cyclodextrin polymer and used for the supramolecular capture of 

adamantane or ferrocene-modified carboxy- methylcellulose polymers bearing DNA probes. 

The assay was optimised in terms of incubation time, temperature, and surface chemistry and 

applied to the highly sensitive and selective detection of HLA sequences with a limit of 

detection of 0.7 nM. A real sample analysed using this platform showed an excellent 

correlation with maleimide-activated plates using thiolated DNA probes.  

 

2.2 INTRODUCTION 

Genetic tests are diagnostic tools to detect genes associated with inherited disorders1,2 and the 

enzyme-linked-oligo- nucleotide assay (ELONAs) has emerged as an attractive technique for 

clinical applications.3 The necessity for a sensitive, rapid, reliable, and inexpensive alternative 

for DNA analysis has led to the development of this simple, sensitive, robust, and versatile 

bioanalytical technique that has been used for the colorimetric detection of DNA.3–5 In this 

technique, a probe is immobilised on the surface of a microtitre plate4 and the target DNA is 

detected in a sandwich-type assay, exploiting a secondary-labelled reporter DNA probe,3 for 

example via the use of a fluorescein- labelled oligonucleotide probe and an enzyme-labelled 

anti- fluorescein antibody.5  

To immobilise the DNA probe on the surface of microtitre plates, the most extended strategy is 

the interaction of biotiny- lated probes with streptavidin (or avidin)-coated surfaces.3, 5–7 This 
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type of surface preserves the biological activity of the immobilised molecule better than direct 

passive adsorption and the high biotin–streptavidin affinity constant (Kd ~10-14 M) provides a 

robust system as compared with direct passive adsorption.8 

 

However, in spite of the general acceptance of streptavidin-coated microtitre plates, some 

protein leaching and inter-plate variation between provider sources have been observed.8  

Another alternative for probe immobilisation is via covalent binding using maleimide-activated 

plates. These are useful for binding thiol-containing molecules9 and have been used for the 

colorimetric or fluorescent detection of biomolecules.  

 

The use of supramolecular interactions for the immobilisation of biomolecules on surfaces is 

garnering great interest.10,11 Cyclodextrin-modified gold surfaces have been used to capture 

biomolecules using biotinylated bifunctional linkers terminating in hydrophobic moieties such 

as adamantane,12, 13 or, more recently, using polymeric carriers.14, 15 In this strategy, host–guest 

interactions act as linkers to promote immobilisation under mild conditions and have been 

demonstrated to be a useful platform for the detection of auto-antibodies in serum,16 or DNA 

from PCR products.17 In spite of the robustness of these platforms, the application of host– 

guest interactions as an immobilisation strategy on microtitre plates has not been reported to 

date. These plates are fabricated with cheap polymeric materials such as polystyrene allow high 

throughput genomic and proteomic analysis for many biomedical research and clinical 

diagnostics applications. In this paper we describe the development of an ELONA-type assay 

for the detection of a human leukocyte antigen (HLA) allele associated with celiac disease18 an 

autoimmune condition of known genetic predisposition19 The surface of maleimide-precoated 

microtitre plates was modified with a layer of thiolated cyclodextrin polymer and used for the 

supramolecular capture of adamantane (ADA) or ferrocene (Fc)-modified 

carboxymethylcellulose (CMC) polymers bearing DNA probes (Scheme 1.1). The assay was 

optimised in terms of incubation time, temperature and surface chemistry and applied to the 

highly sensitive and selective detection of HLA-DQ2-associated sequences.  

2.3 EXPERIMENTAL SECTION 

Materials 

All reagents were used as received. CMC (MW 90 kDa), 1- ethyl-3-[3-

dimethylaminopropyl]carbodiimide hydrochloride, (EDC), phosphate buffered saline (PBS; dry 
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powder), and tetrame- thylbenzidine (TMB) liquid substrate system were purchased from 

Sigma-Aldrich. SYBR Green I was purchased from Invitrogen and prepared at a 1:10,000 

dilution in PBS (pH 0 7.4 containing 0.8 M NaCl and 50 mM KCl). All solutions were 

prepared with Milli-Q water (Millipore Inc., Ω 0 18 MΩ·cm). Maleimide-activated microtitre 

plates were purchased from Pierce. Thiolated α, β and γ-cyclodextrin polymers (CDPSH)20 and 

bifunctionalised CMC polymers modified with ADA or Fc residues and DNA probes (ADA- 

CMC-DNA and Fc-CMC-DNA)17 were prepared as previously reported. Synthetic 

oligonucleotides were purchased from Biomers.net (Ulm, Germany).  

 

 

Scheme 2.1. Structure of polymeric carriers 

 

Sequences specific for HLA-DQA1*0201 are shown below: 

HLA-DQA1*0201 aminated capture probe linked to ADA-CMC and Fc-CMC polymers: H2N-

C6-5’-CAA ATC TAA GTC TGT GGA -3’. 

HLA-DQA1*0201 thiolated capture probe: HS-C6-5’-CAA ATC TAA GTC TGT GGA -3’ 
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HLA-DQA1*0201 target: 5’-GAG AGG AAG GAG ACT GTC TGG AAG TTG CCT CTG 

TTC CAC AGA CTT AGA TTT GAC CCG CAA TTT GCA CTG ACA AAC ATG GCT 

GTG CTA AAA CAT A-3’. 

HLA-DQA1*0201 HRP-labeled probe: 5’-GAC AGT CTC CTT CCT CTC-HRP-3’. 

HLA-DQA1*01* (interference 1): 5’-GAG AGG AAG GAG ACT GCC TGG CGG TGG 

CCT GAG TTC AGC AAA TTT GGA GGT TTT GAC CCG CAG GGT GCA CTG AGA 

AAC ATG GCT GTG GCA AAA CAC A-3’.  

HLA-DQA1*03* (interference 2): 5’-GAG AGG AAG GAG ACT GTC TGG CAG TTG CCT 

CTG TTC CGC AGA TTT AGA AGA TTT GAC CCG CAA TTT GCA CTG ACA AAC 

ATC GCT GTG CTA AAA CAT A-3’. 

Instrumentation and methods 

UV–vis spectra were recorded in a temperature controlled Cary 100 Bio spectrophotometer 

(Varian) in 1 cm quartz cells. Plate optical densities were recorded in a Wallac Victor2 1420 

Multilabel counter from Perkin Elmer.  

The fluorescence experiments were performed at 20 °C in a Cary Eclipse spectrofluorimeter 

equipped with a Peltier temperature control and plate reader. The excitation wavelength was set 

at 495 nm, which corresponds to the SYBR Green absorption maximum in aqueous solution. 

The fluo- rescence spectra were recorded in the wavelength interval of 510–570 nm with 

excitation and emission slits of 10 nm and a scan rate of 240 nm/min. All measurements were 

carried out in triplicate and the average value of the fluorescence changes was used.  

Enzyme Linked Oligonucleotide Assay (ELONA)  

Reacti-BindTM Maleimide Activated Plates (8-well strips) were used as received. All washing 

steps were carried out with 0.1 M sodium phosphate, 0.15 M sodium chloride (pH 7.4). After 

washing the strips three times, CDPSH was immobilised via the addition of 150 µL of a 10-

mg/mL solution in binding buffer (0.1 M sodium phosphate, 0.15 M sodium chloride, 10 mM 

EDTA; pH 7.4) to each well and incubated for 3 h at room temperature. Unreacted maleimide 

groups were blocked for 1 h with 200 µL of a 10-µg/mL aqueous solution of mercaptoethanol 

(prepared immediately before use). After washing with PBS, 150 µL of ADA-CMC- DNA or 

Fc-CMC-DNA polymers was added to the wells and incubated overnight at 4 °C, and 
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subsequent to another washing, 100 µL of 10 nM of HLA-DQA1*0201 target in PBS (pH 0 7.4 

with 0.8 M NaCl) was added and incubated for different times (30, 60, 90, and 120 min) and 

temperatures (4 °C, 25 °C, and 37 °C) in order to elucidate optimum assay conditions. 

Detection was facilitated by addition of 100 µL of 10 nM of HLA-DQA1*0201 HRP-labelled 

probe in PBS (pH 7.4 with 0.8 M NaCl), again for 1 h and at room temperature. After a final 

washing step, 50 µL of TMB solution was added and 30 min later, the absorbance was 

recorded at 450 nm following addition of 50 µL of 1 M H2SO4. In the case of the surface 

modified with Fc units, the absorbance was referenced to a CDPSH/Fc-CMC-DNA surface to 

subtract the possible contribution of the Fc chromo- phore to the absorbance at this wavelength.  

 

To prepare the calibration curve, the target was incubated at the optimum conditions (37 °C 

and 1 h) with a range of concentrations of the HLA-DQA1*0201 target (from 0 to 300 nM) in 

PBS (pH=7.4 with 0.8 M NaCl) and the detection was carried out as described above. For 

comparison purposes, a calibration curve was obtained using a thiolated probe instead of the 

supramolecular system. In this case, the plate was initially modified with 150 µL of a 10 nM 

solution of HLA-DQA1*0201 thiolated capture probe in binding buffer (0.1 M sodium 

phosphate, 0.15 M sodium chloride, 10 mM EDTA; pH 7.4), incubated for 3 h at room 

temperature and blocked with mercaptoethanol. All other steps (washes, target incubation, 

detection) were carried out under the same conditions as described above.  

 

 
Determination of amount of DNA attached to the supramolecular surface by polymer 
desorption 
 

In order to determine the amount of DNA probe immobilised using the supramolecular system, 

CDPSH/ADA-CMC-DNA was prepared on maleimide-activated plates as previously 

described, and then the plate was rinsed with PBS and subsequently incubated with 200 µL of 1 

M solution of sodium adamantanecarboxylate for 1 h at 37 °C to dissociate the ADA-CMC-

DNA polymer from the cyclodextrin surface. The released ADA-CMC-DNA polymer was 

incubated with 100 nM of target for 1 h, followed by a 15 min incubation with SYBR Green I 

(1:10,000 dilution) for 15 min.  

 

In order to construct a calibration curve for quantification of the number of DNA probes on the 

released ADA-CMC- DNA polymer, HLA-DQA1*0201 capture probe (0 to 100 nM) in PBS, 
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pH 7.4 containing 0.8 M NaCl and 50 mM KCl, was incubated with a constant amount of 

target (100 nM) for 1 h followed by 15 min of incubation with SYBR Green (1:10,000 

dilution). The fluorescence intensity at 525 nm was recorded and the amount of DNA probe 

present in the released ADA-CMC-DNA was calculated by interpolation in the calibration 

curve obtained.  

 

Determination of intraplate probe distribution homogeneity and stability  

 

A maleimide-activated black microtitre plate for fluorescence measurement was modified with 

the supramolecular surface as previously described. The wells were rinsed with PBS and 

incubated with target (100 nM) and SYBR Green (1:10,000) in the presence of KCl (50 mM) 

before reading the fluorescence at 525 nm using a plate reader coupled to the 

spectrofluorimeter.  

 

The stability of the supramolecular surface chemistry was carried out during 4 weeks at 4 °C. 

Each week the amount of coating DNA was measured in 8 wells of the plate, as previously 

described. 

 

Real sample analysis  

 

A PCR product obtained by amplification of a real HLA typed sample was diluted 1:10 and 

added as target following the procedure described above for the detection of HLA- 

DQA1*0201 target on CDPSH/ADA-CMC-DNA and CDPSH/Fc-CMC-DNA-modified plates. 

The values were interpolated in the respective calibration curves and compared with the results 

obtained using a maleimide plate modified with thiolated DNA.  

 

2.4 RESULTS AND DISCUSSION 

 

Two supramolecular platforms were evaluated using a modification of the Enzyme Linked 

Oligonucleotide Assay (ELONA). The plate was initially incubated with βCDPSH at pH 7.4 in 

order to form the cyclodextrin support layer by addition of the thiol groups to the double bond 

of the maleimide group thus forming a stable thioether linkage. Unreacted maleimide groups 

were then blocked with mercaptoethanol followed by the incubation of the polymeric DNA 

carrier (ADA-CMC-DNA or Fc-CMC-DNA). In these polymers, the presence of adamantane 
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Figure 2.1. Principle of modified EL

probes on cyclodextrin modified plates. a) CDPSH, b) mercaptoethanol, c) ADA

d) target DNA, e) HRP-labeled secondary DNA probe, f) colour development with TMB.
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and ferrocene units has the function of docking the polymer within the cyclodextrin layer via 

guest interactions. After hybridisation with the target DNA, a secondary probe labelled 

with HRP was used as a reporter probe and the detection was carried out colorimetrically by 

addition of tetramethylbenzidine (TMB) as substrate for HRP (Figure 2.1).

modified ELONA platform based on the self-assembly of CMC

probes on cyclodextrin modified plates. a) CDPSH, b) mercaptoethanol, c) ADA-CMC-

labeled secondary DNA probe, f) colour development with TMB. 

supramolecular nature of the CDPSH/CMC interface was tested by comparing the 

response obtained using similar thiolated polymers derived from αCD and 

maller and larger cavity diameters as compared to βCD. Both, αCDPSH and 

immobilised on the maleimide- activated surface in the same way as βC

DNA polymers were allowed to with the host-modified surface. Since the amount of 

both hydrophobic moiety (0.86–0.90 mol/mol glucose) and DNA probe (0.012

of glucose) attached to both polymers is very similar, the differences in the optical response 
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and ferrocene units has the function of docking the polymer within the cyclodextrin layer via 

ion with the target DNA, a secondary probe labelled 

with HRP was used as a reporter probe and the detection was carried out colorimetrically by 

). 

assembly of CMC-polymers bearing DNA 

-DNA or Fc-CMC-DNA, 

 

supramolecular nature of the CDPSH/CMC interface was tested by comparing the 

CD and γCD, which have 

CDPSH and γCDPSH, were 

CDPSH, and ADA or 

urface. Since the amount of 

0.90 mol/mol glucose) and DNA probe (0.012– 0.014 mol/mol 

similar, the differences in the optical response 
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can be attributed to the amount of DNA probe immobilised on the surface. As can be seen from 

Figure 2.2a, the response showed the trend βCDPSH > γCDPSH > αCDPSH with the 

βCDPSH/ADA- CMC-DNA system showing the highest absolute response. Figure 2.2b shows 

the dependence of the optical responses obtained in Figure 2.2a with the reported stability 

constants for cyclodextrin/ferrocene19 and cyclodextrin/adamantanecar- boxylic acid20 systems. 

As can be seen, there is a direct relationship between the stability of the inclusion complex and 

the optical response obtained, clearly demonstrating that the immobilisation of the polymeric 

carrier on the surface takes place through inclusion complexation. The strength of the inclusion 

complex thus modulates the amount of DNA probe immobilised on the surface, and 

consequently, assay sensitivity. The role of the inclusion complexation in the immobilisation of 

the CMC carrier is also demonstrated by the very low signal observed after the interaction of a 

CMC-DNA polymer (i.e. not carrying the hydrophobic moiety) with the βCDPSH- modified 

surface (see Figure 2.2a, inset).  

 

 

Figure 2.2. a) Optical response obtained in the detection of 10 nM HLA-DQA1*0201 target sequences on α, β, 

and γ-CDPSH modified surfaces using ADA-CMC-DNA and Fc-CMC-DNA polymers. Inset: response obtained 

using a CMC-DNA polymer (without hydrophobic moiety) on the βCDPSH surface. b) Dependence of the optical 

responses obtained in Figure 2a with the stability constants for the cyclodextrin/ferrocene and 

cyclodextrin/adamantanecarboxylic acid system. 

To test the homogeneity of probe distribution in a plate (i.e. well–well reproducibility), the 

probes were incubated with the target sequence and the fluorescence of the intercalating agent 

SYBR Green was measured. As can be seen from Figure 2.3a, the resulting fluorescence 

readings were reproducible, with a standard deviation of 8 %, indicating a homogeneous 
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tion of the polymer on the wells of the plate. The supramolecular architecture was 

observed to be completely stable over a period of 4 weeks a 4 °C (Figure 2.3b

3D plot showing the fluorescence values at 525 nm obtained on a 6×8 well section of a plate after 

incubation of the supramolecular surface with 100 nM of target and SYBR green (λexc = 495 nm). b) Stability of 

supramolecular surface coated plates with time at 4ºC. 

Since the assay performance largely depends not only on the amount of capture probe attached 

to the CMC carrier but also on the amount of polymer immobilised on the surface, the ADA

DNA polymer was desorbed from the plate surface using a competitive displacement in 

the presence of a large excess of sodium adamantanecarboxylate in order to truly quantify the 

amount of probes at the surface. The detached DNA-carrying polymer was initially analyzed 

vis spectroscopy at 260 nm but the absorbance values were low and difficult to 

reason, the solution was incubated with a target sequence to form dsDNA, 
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lecular architecture was 

Figure 2.3b).  

8 well section of a plate after 

= 495 nm). b) Stability of 

t only on the amount of capture probe attached 

to the CMC carrier but also on the amount of polymer immobilised on the surface, the ADA-

DNA polymer was desorbed from the plate surface using a competitive displacement in 

f sodium adamantanecarboxylate in order to truly quantify the 

carrying polymer was initially analyzed 

vis spectroscopy at 260 nm but the absorbance values were low and difficult to 

reason, the solution was incubated with a target sequence to form dsDNA, 
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which was then quantified by fluorescence using SYBR Green as intercalating agent (Figure 

2.4). Normalisation of the measured concentration considering the well area gave a surface 

probe density of (8.6±0.6)×10-10 mol/cm2, a value very close to the binding capacity of a 

thiolated peptide indicated by the manufacturer (1.5×10-10 mol/well, equivalent to ~5.8× 10-10 

mol/cm2) and indicative of the formation of an almost complete monolayer at the surface.  

 

 

Figure 2.4. Fluorescence spectra of: SYBR Green intercalated in dsDNA formed by hybridisation of 100 nM 

target with different concentrations of HLA-DQA1*0201 probe in solution (), ADA-CMC-DNA desorbed 

from supramolecular surface (……………) and SYBR green in the absence of any DNA (-------). Excitation 

wavelength: 495 nm. 

 

The optical response for the detection of 10 nM of the target (specific response) at different 

hybridisation times and temperatures in PBS (with 0.8 M NaCl) was studied in order to 

optimise assay conditions and a control measurement was carried out in the absence of target 

(non-specific response). As can be seen in Figure 2.5, the optimum hybridisation conditions 

are 60 min at 37 °C, where the highest Aspecific/Anon-specific ratio was observed representing a 77 

% and 51 % signal increase as compared to the highest response obtained at 4 °C and 25 °C, 

respectively. The decrease of the signal at 37 °C after 60 min in the case of βCDPSH/Fc-CMC-

DNA is due to the stability of the βCD/Fc inclusion complex, whilst in the case of 

CDPSH/ADA-CMC-DNA, this effect is less pronounced due to the higher stability of the 

βCD/ADA (KβCD/ADA~105) inclusion complex, which is two orders of magnitude higher than 

the βCD/Fc system.  
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Figure 2.5. Dependence of the optical response for the detection of 10 nM HLA-DQA1*0201 target with target 

incubation times and temperatures for (a) βCDPSH/Fc-CMC-DNA system, (b) βCDPSH/ADA-CMC-DNA 

system. Conditions: Target concentration: 10 nM in PBS (with 1 M NaCl); Target incubation times: 30, 60, 90, 

120 min; Incubation temperatures: 4, 25 and 37°C. 

 Using the optimum conditions to immobilise the target for both systems the corresponding 

calibration curves were obtained in the concentration range 0–300 nM (Figure 2.6). As can be 

seen, the optical response increased with target concentration and tends to saturation above 100 

nM. At low concentrations (0–10 nM), the response showed a linear dependence with the 

concentration with a sensitivity (taken as the slope of the A vs c curve) of 0.034 and 0.056 

AU/nM for the Fc and ADA systems, respectively and a limit of detection of 0.7 and 0.8 nM, 

respectively. These limits of detection are similar to the value obtained using a thiolated 

capture probe (0.5 nM), whilst the sensitivity of the supramolecular assay is 4 and 7 times 

higher compared with the thiolated probe (0.0086 AU/nM). This highlights the role of the 

CMC backbone in spatially orienting the capture probes, avoiding possible steric hindrance to 

target recognition. The use of an increased number of DNA probes attached to CMC or shorter 

CMC backbones that could be better accommodated on the underlying CDPSH layer may help 
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to extend the linear range and sensitivity if necessary by increasing the density of probes on the 

plate and this is currently being explored. This probe density is more difficult to control in the 

case of the direct reaction of a thiolated probe with the maleimide surface, often requiring 

lengthy optimisation steps of probe/backfiller ratios as well as incubation times and 

temperatures. In addition, the hydrophilic nature of the CMC backbone effectively suppresses 

non-specific interactions, as is evident from the very low response observed in the absence of 

target, indicating that the HRP-labelled probe has a negligible tendency to interact with the 

CDPSH/CMC-modified surface.  

 

Figure 2.6. Calibration curves for the detection of HLA-DQA1*0201 target sequence using (a) βCDPSH/Fc-

CMC-DNA system, (b) βCDPSH/ADA-CMC-DNA system, c) HLA-DQA1*0201 thiolated capture probe. 

 

For DNA detection, selectivity is critical, and Figure 2.7 shows the optical response obtained 

with the βCDPSH surface in the presence of two potential interfering alleles, which only differ 

by base pairs, and no cross-reactivity was observed, and the low signal obtained is attributed to 

a minor amount of non- specific binding of the reporter probe.  
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Figure 2.7. Optical responses obtained in the detection of 10 nM HLA-DQA1*0201 target and two HLA-related 

interferences. 

 

2.5 CONCLUSIONS 

In conclusion, we have demonstrated the applicability of supramolecular host–guest 

interactions in the development of colorimetric DNA tests based on the self-assembly of 

bifunctionalised CMC polymers on cyclodextrin-modified microtitre plates. Adamantane and 

ferrocene-appended polymers were demonstrated to have a preference to interact with βCD-

modified surfaces over αCD and γCD, demonstrating the supramolecular nature of the 

immobilisation process. The CMC polymer facilitated a spatial orientation of the DNA probes 

on the surface giving better access to target DNA, References resulting in a markedly more 

sensitive colorimetric assay than a similar assay based on the immobilisation of thiolated 

probes, with subnanomolar limits of detection. In addition, the presence of the hydrophilic 

cyclodextrin and CMC polymers min- imise non-specific interactions, as demonstrated by the 

very low response obtained in the absence of target. A real PCR- amplified sample of a celiac 

patient, demonstrated to carry the HLA-DQA1*0201 allele using Luminex-based HLA typing, 

was tested using the supramolecularly coated plates and compared with the thiolated probe-

coated plates. The results obtained using supramolecular plates were 0.78 ± 0.07 nM for ADA-

CMC-DNA/CDPSH and 0.96±0.09 nM for Fc-CMC- DNA/CDPSH, showing an excellent 

correlation with thiolated DNA capture probe (0.86±0.05 nM), clearly demonstrating that the 

supramolecular chemistry is not affected by the sample matrix and does not need to be pre-
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treated. The multiplexing ability of this platform in the detection of several HLA alleles is 

currently under investigation.  
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CHAPTER 3 

AMPEROMETRIC SUPRAMOLECULAR GENOSENSOR SELF-ASSEMBLED ON 

CYCLODEXTRIN-MODIFIED SURFACES 

3.1 ABSTRACT  

In this chapter a novel genosensor platform based on supramolecular interactions has been 

developed based on the self-assembly of bifunctionalised polymer bearing adamantane and 

DNA onto cyclodextrin surfaces. The surface chemistry can undergo a controlled regeneration, 

as revealed by SPR and impedance spectroscopy, has an excellent detection limit of 0.08 nM 

and demonstrated high selectivity, clearly differentiating between complementary and non-

complementary DNA sequences. The performance of the developed genosensor was validated 

by applying it to the detection of DNA in a real patient sample that had been previously 

genotyped. 

 

3.2 INTRODUCTION  

Supramolecular architectures1 are an attractive strategy for the construction of biosensor 

platforms as they facilitate the fabrication of highly organised molecular systems on surfaces 

and the design of novel functional materials and devices.2 Recently, the host-guest interactions 

of cyclodextrins (CDs)3 with size-compatible hydrophobic molecules have been used for the 

reversible immobilisation of different biomolecules based on the inclusion of adamantane 

(ADA) containing polymers, dendrimers or enzymes.4 In this strategy, the CD/ADA host-guest 

complex docks the biological element to the surface of the transducer whilst also offering the 

possibility of a stepwise surface regeneration to re-use the supramolecular platform.5 This 

method has been employed to immobilise proteins such as cytochrome c6 and xanthine 

oxidase.7 More recently, our group has reported the construction of a tri-dimensional catalytic 

biosensor surface based on the layer-by-layer technique,8 in which successive layers of 

enzyme-adamantane conjugates are deposited on a CD-modified surface using CD-coated gold 

nanoparticles as the gluing element.  

To the best of our knowledge, this type of supramolecular architecture has not been applied to 

the construction of DNA biosensors. Here we report a novel strategy for the construction of 
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genosensors exploiting the interfacial self-assembly of ADA-modified carboxymethylcellulose 

(CMC) polymers on CD-modified surfaces. We exemplify this approach in the construction of 

a genosensor, where the self-assembled polymer is modified with an oligonucleotide capture 

probe, which acts as the biorecognition element. The target DNA is detected by hybridisation 

in a sandwich format, between the capture probe and an enzyme labelled reporter probe 

(Figure 3.1). 

 

Figure 3.1. Strategy employed for the construction of the supramolecular genosensor. 

 

The surface was characterised using surface plasmon resonance (SPR) and electrochemical 

impedance spectroscopy (EIS).  The genosensor platform was applied to the detection of a 

human leukocyte antigen allele associated with celiac disease,9 an autoimmune condition of 

known genetic predisposition.10  
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3.3 EXPERIMENTAL SECTION 

Materials  

Cyclodextrins were a gift from Wacker Chemie (Germany). Thiolated α, β and γ –cyclodextrin 

polymers (CDPSH)8 and aminated CMC (CMC-NH2)
11 were prepared as reported. Synthetic 

oligonucleotides were purchased from Biomers.net (Ulm, Germany) with the following 

sequences:  

HLA-DQA1*0201 aminated capture probe: NH2-(CH2)6-5’-CAA ATC TAA GTC TGT GGA-

3’ 

HLA-DQA1*0201 target: 5’- GAG AGG AAG GAG ACT GTC TGG AAG TTGttg CCT 

CTG TTC CAC AGA CTT AGA TTT GAC CCG CAA TTT GCA CTG ACA AAC ATGatg 

GCT GTG CTA AAA CAT A-3’ 

HLA-DQA1*0201 HRP-labeled probe: 5’-GAC AGT CTC CTT CCT CTC-HRP-3’ 

Instrumentation and methods 

Synthesis of modified CMC carrying adamantane and DNA (ADA-CMC-DNA) 

0.5 g of adamantane carboxylate sodium salt dissolved in 0.1 M acetate buffer pH 5 were 

treated at 4°C with 0.5 g of EDC for 1 hour and added dropwise over a solution of CMC-NH2 
11 (0.5 g) in 2 mL carbonate buffer pH 9 under stirring conditions overnight. The mixture was 

dialysed against water and concentrated to dryness to give ADA-CMC (Yield: 0.8 g). IR 

(ATR): 3310 (υO-H), 2931 (υC-H), 1106 (υC-O), 1579 (υC=O). 1H-NMR (300 MHz, D2O, 300 K) 

δ (ppm): 0.5-1.2 (m, adamantane protons); 2.0-3.2 (m, N(CH2)6N); 3.2-4.6 (m, glucose skeletal 

protons). 4.9-5.3 (anomeric protons). Integration of the protons in the 0.5-1.2 ppm region with 

respect to the anomeric protons (δ = 4.9-5.3 ppm) indicate an average of 0.9 adamantane 

residues per glucose unit. 

To attach the DNA probe, 0.5 g of ADA-CMC in 5 mL of 0.1 M acetate buffer pH 5 was 

activated with 0.5 g of EDC and the mixture stirred for 1 hour at 4ºC. The DNA probe was 

conjugated by adding 500 µL of 0.5 mM HLA-DQA1*0201 aminated capture probe and the 

solution stirred overnight. The ADA-CMC-DNA conjugate was purified using a Microcon® 

centrifugal filter device (MW cut-off 10 kDa) and absence of DNA in the residual water was 
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tested using UV spectroscopy. The obtained stock solution was stored at -20 ºC. The amount of 

DNA attached to ADA-CMC (0.012 mol of DNA per mol of glucose unit) was estimated using 

UV-Vis spectroscopy at 260 nm.  

Surface plasmon resonance 

SPR studies were carried out using a Biacore® 3000 instrument at 20°C. Clean gold chips were 

modified overnight with a 10 mg/mL solution of thiolated cyclodextrin polymers, mounted in 

the Biacore support and a 5 µL/min flow of running buffer (10 mM PBS pH 7.4) was 

established. After baseline stabilisation a layer of ADA-CMC-DNA polymer was created by 

injecting a 1 mg/mL solution in PBS. Target hybridisations (0.5 and 1 nM) were followed by a 

denaturation step in 10 mM NaOH. The CDPSH surface was regenerated with 0.1% v/v 

sodium dodecylsulfate (SDS).  

Measurements 

Electrochemical measurements were performed using a standard three-electrode configuration; 

working electrode: gold disk (φ = 1.6 mm), reference electrode: Ag/AgCl(sat), counter 

electrode: Pt wire.  The gold electrodes were polished three times with alumina slurry (1, 0.5, 

0.03 µm) followed by cleaning in hot Piranha's solution (30 % H2O2/H2SO4 (conc) = 3/1 (v/v)) 

for 5 minutes (Warning: Piranha's solution is very corrosive).  

To modify the electrodes, 100 µL of a 10 mg/mL βCDPSH solution were incubated on the 

electrodes overnight. After rinsing with water, 100 µL of ADA-CMC-DNA (0.1 mg/mL) were 

incubated overnight. The next incubation steps were carried out immediately prior to the 

amperometric measurements. For this purpose, 100 µL of HLA-DQA1*0201 target (previously 

heated at 70ºC to disrupt any self-folding) at different concentrations (0, 0.1, 0.2, 0.5, 0.75, 1, 

1.5, 2, 5 nM) in PBS pH 7.4 containing NaCl 0.8 M were incubated with the surface modified 

genosensor for 1 hour at 37ºC. Following another rinse with water, a 100 nM solution of HLA-

DQA1*0201 HRP-labelled probe was added and the genosensor was incubated for 1 hour at 

25oC. The amperometric measurements were carried out by first recording the background 

response at 0.2 V in PBS buffer pH 6 followed by injection of 1 mM TMB/H2O2 in 0.1 M PBS 

pH 6 + 0.15 M KCl. 
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3.4 RESULTS AND DISCUSSION 

The formation of the interfacial supramolecular platform involves a two-step process: i) 

deposition of βCDPSH on bare gold electrodes, ii) supramolecular capture of ADA-CMC-

DNA by ADA/CD host-guest interactions. The deposition of a SAM of βCDPSH was 

confirmed via observation of a cathodic desorption peak of the thiolated polymer at -1.02 V in 

alkaline solution (0.5 M KOH), the integration of which indicated a surface concentration of 

2×10-12 mol/cm2. This translates into 2.4 × 10-11 mol/cm2 of cyclodextrin units taking into 

consideration that each βCDPSH molecule has ~12 mol of cyclodextrin per mol of polymer, 

which is in the same order of magnitude of the surface coverage of a monolayer of hepta-6-

thio-6-deoxy-β- cyclodextrin.12  

Electrical impedance spectroscopy (EIS) is a powerful tool to study bimolecular interactions at 

interfaces.13 The formation of the interfacial supramolecular platform was confirmed using EIS 

by observing the variations of the charge transfer resistance (Rct) exerted by the deposition of 

the successive layers on an electroactive ferricyanide probe (Figure 3.2). Deposition of a SAM 

of βCDPSH caused a 175 kΩ increase in Rct with respect to the bare electrode (Rct = 2 kΩ). 

The Rct values further increased to 348 kΩ after interaction of the βCDPSH-modified surface 

with ADA-CMC-DNA and then to 530 kΩ after capture of the HLA-DQA1*0201 target 

sequence by the Au/ βCDPSH/ADA-CMC-DNA surface. In contrast, the interaction of ADA- 

CMC-DNA with a αCDPSH-modified surface provoked only a 6 % variation in Rct, indicating 

that the immobilised αCD hosts cannot recognise the ADA polymer, in agreement with the 

SPR results (see below).  
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Figure 3.2. Complex impedance plots (in 1 mM K3Fe(CN)6 in 0.1 M KCl) obtained alter successive electrode 

modifications. 

The interaction of ADA-CMC-DNA carrier with βCDPSH was also studied by surface 

plasmon resonance (SPR) (Figure 3.3). 

 

 

Figure 3.3. SPR sensorgram of injections of (a) 1 mg/mL βCDPSH, (b) 1 mg/mL βCDPSH, c) 0.5 nM HLA-

DQA1*0201 target, (d) 10 mM NaOH pulses, (e) 1 nM HLA-DQA1*0201 target, (f) 10 mM NaOH pulses, (g) 

0.1% SDS. Conditions: running buffer: 0.1 M PBS pH 7.4, flow rate 5 µL/min. 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR AND SUPRAMOLECULAR SURFACE MODIFICATION TOOLS FOR HIGHLY SENSITIVE AMPEROMETRIC AND 
ELECTROCHEMILUMINESCENT BIOSENSORS. 
Mabel Torréns del Valle 
Dipòsit Legal: T 148-2015



Doctoral Thesis 

 

  67 

 

The individual channels of an SPR Au chip were modified with α, β and γCDPSH polymers. 

When ADA-CMC-DNA was injected to the βCDPSH- modified channel, a significant response 

of 400 RU was observed (Figure 3.3a). Assuming the equivalence 1 RU = 1 pg/mm2,14 this 

response affords a surface coverage of ~2×10-13 mol/cm2 assuming a molecular weight for 

ADA-CMC-DNA of 205 kDa, corresponding to a CMC polymer of molecular weight 90 kDa 

and a degree of substitution of 0.9 adamantane and 0.012 oligonucleotide probes per glucose 

unit, respectively. This represents a probe density of ~ 1.2 × 1011 molecules/ cm2, which is in 

the typical range of 1011–1013 molecules/cm2 considered to be the optimal to avoid inter-probe 

electrostatic repulsions on the surface.15 The SPR response obtained with βCDPSH markedly 

differs from those observed with αCDPSH (19 RU, Figure 3.3b) and γCDPSH (25 RU) 

modified surfaces. These differences are explained by the lower association constants (about 

two orders of magnitude) observed for ADA derivatives with αCD (smaller cavity) and γCD 

(larger cavity) compared with βCD (Kass = 4 × 105 M-1), due to an optimum geometric 

matching of cavity size and ligand size in the ADA/βCD system.16 In addition, when a CMC-

DNA polymer (i.e. not carrying ADA units) was injected on the βCDPSH-modified surface, a 

very small response was obtained (11 RU). Finally, no interaction with the βCDPSH modified 

surface was observed by SPR using a CMC polymer prepared in a similar manner to ADA-

CMC but modified with a bulkier residue (3,5,7-trimethyladamantane-1-carboxylic acid). The 

selectivity observed in the interaction of the ADA-CMC-DNA polymer with the different 

surfaces and the lack of response in the absence of ADA units or presence of bulkier residues 

clearly indicate that the ADA-CMC-DNA polymer is immobilised on the βCDPSH surface via 

specific ADA-βCD host–guest interactions.  

Injection of 0.5 nM of target to a channel modified with the Au/ βCDPSH/ADA-CMC-DNA 

supramolecular platform gave a response of 44 RU (Figure 3.3c). The biosensor surface could 

be regenerated by applying two pulses of 10 mM NaOH to denature the formed DNA duplex. 

This restored the SPR signal at ~ 400 RU corresponding to the Au/βCDPSH/ADA-CMC-DNA 

surface, which indicates that the ADA- βCD assembly is essentially unaltered (Figure 3.3d). 

Subsequently 1 nM of target was injected, obtaining 90 RU, a value that is in good 

correspondence with the value obtained with 0.5 nM target (Figure 3.3e). Finally, the DNA 

probe surface was again regenerated in alkaline conditions (Figure 3.3f), demonstrating the 

reusability of the biosensor surface. Whilst it is not envisaged that the genosensor would be re-

used when applied to clinical diagnostics, re-usability of the sensor surface is very useful 

during developmental work. Injection of a 0.1 % v/v solution of SDS caused desorption of 
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ADA-CMC-DNA from the cyclodextrin support, rendering it available to capture a new probe 

layer (Figure 3.3g).  

The developed βCDPSH/ADA-CMC-DNA surface was then applied to the amperometric 

detection of the HLA-DQA1*0201 target sequence using a peroxidase-labelled secondary 

probe as reporter.  

 

Figure 3.4. a) Amperometric responses for the detection of HLA-DQA1*0201 sequence in the presence () 

and absence of target (-------), absence of cyclodextrin support (⋅-⋅-⋅-⋅-⋅-⋅) and in the presence of a non-

complementary target (⋅⋅⋅⋅⋅⋅⋅⋅⋅). b) Calibration curve for the amperometric detection of HLA-DQA1*0201 target 

sequence. 

 

Figure 3.4a shows a comparison of the specific (presence of target) and non-specific (absence 

of target) signals obtained. The non-specific signal represented only 4 % of the specific signal 

obtained at 1 nM concentration, indicating a very low tendency of the reporter probe to interact 

with the surface in the absence of target. In addition, when the βCDPSH support layer was not 

present, a signal about 10 % was observed demonstrating the importance of the cyclodextrin 

layer in assisting the immobilisation of the probe. Three possible interference sequences were 

added in place of the target and only ~5 % of the signal was observed, demonstrating the high 

selectivity of this biosensor.  

 

Figure 3.4b shows the calibration curve obtained with the βCDPSH/ADA- CMC-DNA 

modified surface, which was linear in the range 0–2 nM with a sensitivity of 0.35 nM/µA and a 

limit of detection of 80 pM. A preliminary study was carried out using a real PCR-amplified 

sample of a coeliac patient, who had been previously genotyped and shown to carry the HLA-
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DQA1*0201 allele using Luminex based HLA typing. Single stranded DNA was generated via 

exonuclease digestion and directly applied to the electrode surface and the quantitative result 

obtained compared to enzyme linked oligonucleotide assay, showing a high degree of 

correlation with values of 0.75 ± 0.09 nM) and 0.86 ± 0.05 nM, obtained respectively, 

demonstrating the genosensor to have detection limits that easily allow it to be applied to the 

direct analysis of real PCR products. Negligible performance changes (<5 %) were observed 

for the supramolecular biosensor in the detection of 1 nM of target sequence after one week of 

storage at 4 °C in a commercial stabilising buffer (StabilCoat® Plus Microarray Stabilizer), 

indicating an excellent stability of the self-assembled structure.  

 

3.5 CONCLUSIONS 

 

A novel biosensor platform based on supramolecular interactions has been developed for 

genosensor construction based on the self-assembly of bi-functionalised polymer bearing 

adamantane and DNA onto cyclodextrin surface. The developed amperometric genosensor has 

an excellent LOD of 0.08 nM as well as high selectivity and was applied to the detection of 

DNA in a real patient's sample. The combination of a hydrophilic support layer (βCDPSH) 

with the controlled attachment of the capture probe to a polymeric backbone minimises non-

specific interactions and provides an optimal probe separation to avoid electrostatic repulsions, 

which is essential in the development of DNA biosensors. The CMC backbone allows an 

optimal spacing of the DNA probes to avoid steric hindrance for target binding due to an 

excessively dense layer of probe DNA, with the negative charge of the CMC vertically 

orienting the probe, and the combination of the CD and the CMC facilitate maximal binding of 

the target DNA. The work reported here highlights the feasibility of using cyclodextrin based 

supramolecular surface chemistries for the detection of DNA and the work is being extended to 

the multiplexed, microsystem packaged, genosensor array with a focus on reducing 

hybridisation time and the number of PCR cycles required.  
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CHAPTER 4 

SUPRAMOLECULAR CONFINEMENT OF POLYMERIC ELECTRON TRANSFER 

MEDIATOR ON GOLD SURFACE FOR PICOMOLAR DETECTION OF DNA 

 

4.1 ABSTRACT  

In this chapter a novel route for the immobilisation of an electron transfer mediator on 

electrode surfaces based on the interfacial complexation of a bifunctionalised 

carboxymethylcellulose (CMC) polymer backbone bearing ferrocene units and a DNA probe 

on a cyclodextrin-functionalised surface is described. The interfacial self-assembly has been 

studied using surface plasmon resonance and electrochemical techniques and the applicability 

of the modified surface for the construction of an amperometric genosensor was explored for 

the detection of a celiac disease associated allele. The supramolecular strategy simplifies the 

operation of the biosensor, only requiring the addition of enzyme substrate and the proximity of 

the mediator to the electrode surface greatly improves the detection limits attained (10 pM) 

with respect to a similar supramolecular system based on electrochemically inactive 

adamantane/CD inclusion complexes (80 pM) and requiring addition of the mediator in 

solution. In addition, the use of the hydrophilic CMC backbone contributes to the elimination 

of non-specific interactions and to an optimal spacing of the immobilised DNA probes. 

 

4.2 INTRODUCTION  

Supramolecular strategies based on self-assembly and host-guest interactions1 have recently 

attracted great interest as surface modification tools to achieve pre-organization and improved 

functional properties in a vast array of molecular assemblies.2 An interesting approach to 

construct organized structures on surfaces exploits the formation of host-guest pairs using 

molecular receptors (cyclodextrins, calixarenes, cyclotriveratrylenes, etc.), allowing the self-

assembly of two-dimensional3-8 and three-dimensional nanoarchitectures.9-12 These systems 

have been used for the immobilisation of different molecules, rendering functional structures 

with high specificity and affinity. In the case of cyclodextrins (CD),13 supramolecular 

immobilisation is in most cases achieved by the interaction of adamantane-appended 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR AND SUPRAMOLECULAR SURFACE MODIFICATION TOOLS FOR HIGHLY SENSITIVE AMPEROMETRIC AND 
ELECTROCHEMILUMINESCENT BIOSENSORS. 
Mabel Torréns del Valle 
Dipòsit Legal: T 148-2015



Doctoral Thesis 

 

  73 

 

bifunctional linkers or biomolecule conjugates with a surface modified with a monolayer of 

thiolated CD.14 This method has been employed to immobilise proteins such as cytochrome c15 

and streptavidin10 or for the construction of catalytic biosensors.16,18 Recently, we reported a 

supramolecular genosensor for the detection of a human leukocyte antigen allele associated 

with celiac disease based on the self-assembly over a cyclodextrin surface of a bifunctionalised 

polymer bearing adamantane units and a DNA probe.19 Using amperometric detection, a very 

low limit of detection (LOD) of 80 pM was obtained and the genosensor was validated using a 

previously genotyped patient sample.  

Ferrocene (Fc) is a redox active metallocene commonly used as an electron transfer mediator in 

oxidase-based biosensors as it undergoes reversible one-electron oxidation at a low potential to 

give a ferrocenium cation. Fc moieties have been incorporated on electrode surfaces for the 

construction of reagentless biosensors via anion-exchange of ferrocenecarboxylate on 

polypyrrole films,20 layer-by-layer deposition of Fc-terminated dendrimers,21 casting of Fc-

polysaccharide derivatives,22 sol-gel,23 and carbon nanotube24 composites, among others. The 

supramolecular deposition of linear Fc-functionalized polymers derived from chitosan and 

poly(allylamine)25 and Fc-appended biotin terminated linkers26 on gold surfaces modified with 

b-cyclodextrin has recently been reported, where a quartz crystal microbalance coupled with 

cyclic voltammetry was used to monitor the deposition of the Fc-polymers and their subsequent 

desorption, triggered by the in situ oxidation of the Fc moieties that destabilize the inclusion 

complex. In another report, layer-by-layer polymer films based on host-guest interactions were 

formed by the stepwise adsorption of poly(allylamine) and poly(N-

hydroxypropylmethacrylamide) derivatives bearing ferrocene or β-cyclodextrin moieties.27  

Here we report the interfacial complexation of a Fc-containing polymer backbone on a 

cyclodextrin surface and explore its applicability in the construction of an amperometric 

genosensor for the detection of DNA (Figure 4.1). A bifunctionalised carboxymethylcellulose 

(CMC) polymer tethers ferrocene units on one side and a short linear DNA probe on the other. 

The target DNA sequence is then detected via hybridization to the immobilised probe using a 

reporter probe labelled with horseradish peroxidase (HRP) in a sandwich type format. Thus, the 

Fc residues present in the structure of the self-assembled platform not only serve to dock the 

polymer structure on the CD-surface by via inclusion complexation but also act as an electron 

transfer mediator for the peroxidise label and the  
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interfacial association constants are measured by surface plasmon resonance (SPR). As a model 

detection system, we selected a target oligonucleotide sequence belonging to the human 

leukocyte antigen HLA-DQA1 allele family, which is associated to celiac disease,28 an 

autoimmune condition showing almost 100% genetic predisposition.29,30 As a consequence of 

the proximity and confinement of the Fc mediator at the electrode surface, a significant signal 

enhancement and a markedly lower detection limit are observed as compared to the use of a 

solution-based mediator. 

 

 

Figure 4.1 Strategy employed for the supramolecular immobilisation of electron transfer mediator. 

 

4.3 EXPERIMENTAL SECTION 

Materials  

All reagents used were commercially available and used as received. 

Carboxymethylcellulose (CMC, MW 90 kDa), N-Ethyl-N′-(3-

dimethylaminopropyl)carbodiimide hydrochloride (EDC), Phosphate Buffered Saline 

(PBS) dry powder and ferrocenecarboxaldehyde were purchased from Sigma-Aldrich. All 

solutions were prepared with Milli-Q water (Millipore Inc., Ω = 18 MΩ·cm). Thiolated α, β 

and γ cyclodextrin polymers were prepared as previously reported.17 The synthesis of Fc-

appended CMC conjugate bearing DNA probes is depicted in Scheme 4.1. 
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Scheme 4.1. Synthesis of Fc-modified polymers: a) EDC, b) 1,6-diaminohexane, c) Fc-CHO, d) NaBH4, e) 

NaIO4, f) aminated DNA, g) NaCNBH3. 

 

Synthetic oligonucleotides were purchased from Biomers.net (Ulm, Germany) and their 

sequences are shown below: 

HLA-DQA1*0201 aminated capture probe: NH2 C6-5’-CAA ATC TAA GTC TGT GGA-

3’. 

HLA-DQA1*0201 target: 5’- GAG AGG AAG GAG ACT GTC TGG AAG TTG CCT 

CTG TTC CAC AGA CTT AGA TTT GAC CCG CAA TTT GCA CTG ACA AAC ATG 

GCT GTG CTA AAA CAT A-3’. 

HLA-DQA1*0201 HRP-labeled probe: 5’- GAC AGT CTC CTT CCT CTC-HRP-3’. 

Interference 1: 5’-GAG AGG AAG GAG ACT GCC TGG CGG TGG CCT GAG TTC 
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AGC AAA TTT GGA GGT TTT GAC CCG CAG GGT GCA CTG AGA AAC ATG GCT 

GTG GCA AAA CAC A-3’.  

Interference 2: 5’-GAG AGG AAG GAG ACT GTC TGG CAG TTG CCT CTG TTC CGC 

AGA TTT AGA AGA TTT GAC CCG CAA TTT GCA CTG ACA AAC ATC GCT GTG 

CTA AAA CAT A-3’.  

Interference 3: GGG AGG AAG GAG ACT GTC TGG TGT TTG CCT GTT CTC AGACAA 

TTT AGA TTT GAC CGG CAA TTT GCA CTG ACA AAC ATC GCT GTC CTA AAA 

CAC A-3’. 

Instrumentation and methods 

Synthesis of Fc-CMC (2) 

0.5 g of aminated CMC31 (1.5 mmol of aminohexane groups) were dissolved in 25 mL of 

Milli-Q water. A solution of 0.32 g (1.5 mmol) of ferrocenecarboxaldehyde in 2 mL of DMSO 

was added dropwise with continuous magnetic stirring. After 3 hours an excess (60 mg, 15 

mmol) of sodium borohydride was added and the solution was stirred overnight at room 

temperature. The mixture was concentrated to about half the initial volume by roto-evaporation 

and dialysed for 24 hours to remove impurities and was then dried in vacuum to give Fc-CMC 

(Yield: 0.31 g). 1H-NMR (300 MHz, D2O, 300 K) δ (ppm): 1.9-3.2 (m, Fc-CH2-N, N(CH2)6N); 

3.2-4.6 (m, overlapped Fc and glucose skeletal protons). 4.9-5.3 (m, anomeric protons). 13C-

NMR (75 MHz, D2O, 300 K); 169 (bs, NC=O), 181 (bs, OC=O). UV-Vis: λmax 430 nm (e = 

1700 cm·M-1, Fc M→L charge transfer). The amount of Fc units in 2 (0.86 mol Fc/mol 

glucose) was estimated by UV-Vis spectroscopy at 400 nm by interpolation of absorbance 

values of a polymer solution in a calibration curve prepared using aminoferrocene. 

Synthesis of Fc-CMC-DNA conjugate (3) 

Sodium meta-periodate (20 mg) was added to 2 (20 mg) in water (5 mL) and stirred for 3 hours 

at room temperature, followed by overnight dialysis to remove non-reacted material. The 

dialysed solution (containing aldehyde-activated Fc-CMC) was used in the next step. The 

presence of aldehyde groups was qualitatively confirmed using 2,4-dinitrophenylhydrazine. 

The dialyzed solution was treated with 2.5 µmol of HLA-DQA1*0201 aminated capture probe 

under stirring for 3 hours, after which 10 mg of sodium cyanoborohydride were added and the 
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solution was stirred overnight. The Fc-CMC-DNA conjugate was purified using a Microcon® 

centrifugal filter device (Mw cut-off 10 kDa) for 3 minutes at 10000 rpm and washed twice 

with water. The absence of DNA in the filtrate was confirmed using UV spectroscopy at 260 

nm and the obtained stock solution was stored at -20 ºC. The amount of DNA in Fc-CMC-

DNA (0.014 mol of DNA per mol of glucose unit) was estimated using UV-Vis spectroscopy 

at 260 nm by interpolation of Fc-corrected absorbance values of a solution of Fc-CMC-DNA in 

a calibration curve prepared using HLA-DQA1*0201 aminated capture probe and considering 

that the molecular weight of the probe is 5700 Da. To correct the absorbance at 260 nm from 

the contribution of Fc, solutions of Fc-CMC-DNA and Fc-CMC having identical absorbance at 

430 nm (where only Fc absorbs) were prepared and the absorbance at 260 nm of the Fc-CMC 

solution was subtracted from Fc-CMC-DNA to calculate the contribution of DNA to the 

overall absorbance at this wavelength. 

Synthesis of CMC-DNA conjugate (4) 

CMC (10 mg) dissolved in 5 mL of water were treated with 20 mg of sodium meta-

periodate with stirring at room temperature. DNA probe was attached in a similar way as 

described for the synthesis of 3.  The CMC-DNA conjugate contained 0.012 mol of DNA 

per mol of glucose unit and was purified as described above. 

Surface plasmon resonance (SPR) studies.  

SPR studies were carried out using a Biacore® 3000 instrument operating at 25°C. Gold chips 

from a Biacore SIA kit were cleaned with Piranha's solution (Warning: Piranha's solution is 

very corrosive) for 3 minutes, washing with water, followed by thorough washing with water 

and finally treated with ozone using a PSD-UVT cleaning instrument (from Novascan, USA) 

for 9 min, rinsed with ethanol and dried under a filtered Ar stream. The chip was modified with 

thiolated cyclodextrin polymer (CDPSH) by overnight immersion in a 10 mg/mL solution 

followed by extensive rinsing with water, after which the chip was mounted in the Biacore 

support and a 5 µL/min flow of running buffer (10 mM PBS pH 7.4) was established. After 

baseline stabilisation (~ 3 hours) a layer of Fc-CMC-DNA polymer was created by injecting 50 

µL of a 1 mg/mL solution in PBS followed by HLA-DQA1*0201 target injection (1 nM in 

PBS pH 7.4 containing NaCl 0.8 M). Surface regeneration was carried out using 10 mM NaOH 

to dehybridise the target-probe complex or 1 mM adamantanecarboxylate to remove the Fc-

containing polymer from the surface. 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR AND SUPRAMOLECULAR SURFACE MODIFICATION TOOLS FOR HIGHLY SENSITIVE AMPEROMETRIC AND 
ELECTROCHEMILUMINESCENT BIOSENSORS. 
Mabel Torréns del Valle 
Dipòsit Legal: T 148-2015



Doctoral Thesis 

 

  78 

 

Electrochemical Instrumentation 

Electrochemical measurements were performed on a PC controlled PGSTAT12 Autolab 

potentiostat (EcoChemie, The Netherlands) with a built-in frequency response analyzer 

FRA2 module using a standard three-electrode configuration (working electrode: gold disk, 

reference electrode: Ag/AgCl(sat), counter electrode: Pt wire).   

The gold disk electrodes (f = 1.6 mm, from Bioanalytical Systems) were first polished three 

times with alumina slurry (1, 0.5, 0.03 µm) until a mirror finish was obtained. After 

sonication in water for one minute, the electrodes were cleaning in hot Piranha solution 

(30% H2O2/H2SO4(conc) = 3/1 (v/v)) for 5 minutes (Warning: Piranha solution is very 

corrosive). The electrodes were then electrocleaned by applying a series of 40 potential 

cycles in 1 M H2SO4 in the range 0-1.7 V vs Ag/AgCl at 0.2 V/s. The quality of the 

cleaning step was checked using cyclic voltammetry in 1 mM K3[Fe(CN)6] in 0.1 M KCl.  

Modification of gold electrodes and DNA detection  

In a first step, 100 µL of a 10 mg/mL CDPSH solution was incubated on the electrodes 

overnight to form a self assembled monolayer (SAM) containing cyclodextrin hosts. After 

rinsing with water, 100 µL of Fc-CMC-DNA (1 µg/mL) was added and incubated 

overnight. The next incubation steps were carried out immediately prior to the 

amperometric measurements. One hundred microlitres of HLA-DQA1*0201 target at 

different concentrations (0 - 5 nM) in PBS pH 7.4 containing NaCl 0.8 M were incubated 

for 1 hour at 37 ºC. Before each incubation, the target solution was briefly heated to 70 ºC 

(above the melting temperature measured spectrophotometrically) in order to disrupt any 

self-folding. After rinsing with PBS, 100 µL of a 100 nM solution of HLA-DQA1*0201 

HRP-labeled probe was further incubated for 1 hour at 25 oC. 

The amperometric measurements were carried out by first recording the background response 

at 0.2 V in PBS buffer pH 6 followed by injection of 1 mM H2O2 in 0.1 M PBS pH 6 in a 2 cm3 

cell. 
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4.4 RESULTS AND DISCUSSION 

Preparation of ferrocene-appended polymeric DNA carrier  

The synthesis of the Fc-CMC-DNA conjugate is shown in Scheme 4.1. CMC was chosen 

as a carrier polymer as it provides two individually addressable modification points for the 

attachment of the DNA probe and Fc residues: the COOH group in the C6 position and the 

vicinal diol group formed between C2 and C3. The COOH groups of the polysaccharide 

were activated with EDC followed by amidation with 1,6-diaminohexane, which acts as a 

spacer. The amino-terminated precursor was reacted with ferrocenecarboxaldehyde under 

reductive alkylation conditions resulting in the Fc-modified CMC polymer. This polymer 

was activated with sodium periodate to oxidise the diol groups yielding a reactive aldehyde 

intermediate that was further reacted with an amino-terminated DNA probe followed by 

reduction of the formed imino-bond with sodium cyanoborohydride to give the desired Fc-

CMC-DNA conjugate. The amounts of Fc and DNA were estimated using UV-Vis 

spectroscopy, indicating 0.86 mol of Fc and 0.014 mol of DNA per mol of glucose unit. For 

comparison purposes, a CMC-DNA conjugate was prepared from CMC by oxidation with 

NaIO4 followed by coupling with amino-terminated DNA in the same reductive alkylation 

conditions as used for the preparation of the Fc-CMC-DNA.  

 

Electrochemical characterisation of Fc-CMC-DNA deposition 

The cyclic voltammogram of the CDPSH/Fc-CMC-DNA platform in PBS buffer pH 7.4 

showed a reversible signal at E1/2 = 0.19 V with a peak-to-peak separation ∆Eac of 24 mV 

(Figure 4.2). ∆Eac is essentially scan rate independent up to 0.3 V/s and the peak currents 

depend linearly on scan rate, indicative of the presence of a surface confined species. The ∆Eac 

value is slightly higher than the ideal value of 0 mV for a surface-confined reversible redox 

couple, which may be by considering the polydispersion of the Fc-CMC-DNA polymer that 

causes the existence of multiple formal potentials for the Fc/Fc+ couple in the monolayer film. 

Integration of the cathodic peak (to calculate the charge associated with the process and thus 

the number of moles of Fc from the Faraday’s Law) and normalisation to the electrode surface 

indicated a surface coverage for the Fc units of 4 × 10-15 mol/cm2. 
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Figure. 4.2. Cyclic voltammogram (in 0.1 M PBS buffer pH 7.4, scan rate: 100 mV/s) obtained after the 

deposition of Fc-CMC-DNA on CDPSH-modified gold electrode. Inset: Dependence of peak currents with scan 

rate. 

Surface plasmon resonance characterisation and measurement of interfacial association 

constants 

The construction of the CDPSH/Fc-CMC-DNA platform was studied using surface 

plasmon resonance (Figure 4.3). Fc-CMC-DNA was injected into the chip previously 

modified with βCDPSH giving a SPR response of 433 RU (Figure 4.3a). This response 

affords a surface coverage of ~2 × 10-15 mol/cm2 assuming a molecular weight for Fc-

CMC-DNA of 213 kDa, which corresponds to a CMC polymer with 80% of COOH groups 

and a degree of substitution of 0.86 Fc and 0.014 DNA residues per glucose unit, 

respectively. 
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Figure. 4.3. SPR sensorgram for the immobilisation of Fc-CMC-DNA on bCDPSH surface (a), interaction of Fc-

CMC-DNA with γCDPSH (b), and αCDPSH (c) modified surfaces, interaction of CMC-DNA with βCDPSH 

surface (d), injection of 1 nM HLA-DQA1*0201 target (e), regeneration of βCDPSH/Fc-CMC-DNA surface with 

three pulses of 10 mM NaOH (f), second 1 nM target injection (g), second NaOH regeneration (h) regeneration of 

βCDPSH surface with 1 mM adamantanecarboxylate (i). Conditions: running buffer: 0.1 M PBS pH 7.4, flow rate 

5 mL/min. 

 

The role of specific Fc/βCD interactions in the immobilisation of the Fc-CMC-DNA was 

confirmed by the low SPR signals observed due to its interaction with γCD (51 RU) or 

αCD (37 RU) modified surfaces (Figure 4.3 b, c). γCD and αCD have, respectively, larger 

and smaller cavity sizes as compared with βCD and, therefore, form weaker inclusion 

complexes.32 This explains the marked difference in SPR response observed in the 

interaction of Fc-CMC-DNA with the three CD-modified surfaces and indicates a major 

contribution of specific Fc/βCD interactions in the immobilisation process. Due to the 

relative structural complexity of the DNA-modified polymer it can be expected that other 

types of interactions might occur between the Fc-CMC-DNA and the βCD-modified 

surface, such as hydrogen bonding to the amine, amide, and hydroxyl groups as well as 

non-specific hydrophobic interactions that do not involve inclusion of the Fc groups into 
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the βCD cavities. To assess the contribution of these interactions, a polymer that carries the 

DNA probe but lacks the Fc units (CMC-DNA), was prepared and allowed to interact with 

the βCD-surface. In this case, the SPR response was 23 RU (Figure 4.3d), which 

represents about 6 % of the signal obtained with the ferrocene functionalised polymer, 

indicative of a minor contribution of these interactions to the immobilisation process. 

The target sequence (1 nM) was hybridised to the βCDPSH/Fc-CMC-DNA surface (Figure 

4.3e), and surface regeneration via rupture of the DNA target-probe interaction was studied 

using a range of NaOH concentrations (1-50 mM) and number of pulses (1-3). 

Regeneration was successfully achieved by applying three pulses of 20 µL of 10 mM 

NaOH (Figure 4.3f). This restored the SPR signal at ~430 RU corresponding to the 

Au/βCDPSH/Fc-CMC-DNA surface, which indicates that the Fc/βCD assembly is 

essentially unaltered. DNA target at the same concentration was injected for a second time 

(Figure 4.3g) obtaining a response of 63 RU, which was very similar to the first 

hybridization value of 67 RU. The βCDPSH/Fc-CMC-DNA surface was easily regenerated 

again with NaOH following the second target injection (Figure 4.3h), demonstrating the 

reusability of the supramolecular platform for the detection of DNA. Injection of a large 

excess of adamantanecarboxylate (1 mM) displaced Fc-CMC-DNA from the βCDPSH 

support indicating the reversibility of the interfacial Fc/βCD complexation and further 

confirming the host-guest nature of the immobilisation process (Figure 4.3i). 

The interfacial association constants for the complexation of Fc-CMC-DNA with the three 

different CD surfaces was determined by SPR using the Langmuir equation: c/Γ = c/Γmax + 

1/KΓmax, where c and Γ are the bulk concentration and surface coverage of the polymers, K is 

the interfacial association constant and Γmax is the maximum surface coverage of the polymers 

(Figure 4.4). Linear regression analysis of the data afforded KβCD = 4.4 × 1010 M-1, KγCD = 2.4 

× 107 M-1 and KαCD = 7.2 × 106 M-1. These values are several orders of magnitude higher than 

those observed for individual Fc/CD complexes in solution32,33 as expected for a multivalent 

interaction and indicate a higher affinity of the Fc units for the βCD hosts although Fc-CMC-

DNA is also able to form interfacial complexes with αCD and γCD modified surfaces. 

Interestingly, the obtained KβCD is very similar to the value recently obtained in our group for 

the complexation of an adamantane-appended CMC polymer.34  
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Figure 4.4. Variations of the surface coverage (Γ) with bulk concentration (c) for the interfacial complexation of 

Fc-CMC-DNA with αCD(♦), βCD(■) and γCD(●) modified surfaces. Inset: Langmuir plots. 

Electrochemical detection 

The possibility to develop an electrochemical genosensor based on the self-assembled 

CDPSH/Fc-CMC-DNA platform was evaluated using amperometry, where the presence of 

the ferrocene units in the platform serves, not only as a docking molecule of the probe to 

the CDPSH-modified surface, but also acts as an electron transfer mediator by shuttling 

electrons between the enzyme and the electrode. Figure 4.5a-c shows a comparison of the 

specific (trace a) and non-specific (trace b) amperometric signals obtained for the 

CDPSH/Fc-CMC-DNA system and the non-specific signal corresponding to the absence of 

target represented ~5 % of the specific signal in these conditions, highlighting the 

multifunctionality of the CMC polymer to not only hold the Fc docking molecules and 

DNA probes but also prevents non-specific interactions due to its hydrophilic nature. The 

role of the βCD support in assisting the immobilisation of the Fc-modified polymer is also 

evident by comparing the response obtained in the presence (trace a) and in the absence of 

the βCDPSH support (trace c). In the latter case, only 12 % or the original signal is 

observed, which can be attributed to some physical adsorption of the polymer on the gold 

surface. 

Figure 4.5d shows the variation of the amperometric signal with target concentration in the 

range 0-5 nM. The excellent analytical performance observed, with a limit of detection of 

10 pM, can be attributed to the presence of the mediator in the same structure of the 
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recognition layer, which avoids a possible slow diffusion of the mediator toward the 

surface. This explains the 8-fold improvement in the LOD found in this case with respect to 

a similar supramolecular platform but using adamantane as docking molecule and thus 

requiring the addition of the mediator in solution.19 Furthermore, the supramolecular 

incorporation of ferrocene as mediator into the platform simplifies its operation as it only 

requires the addition of hydrogen peroxide. Finally, sequence selectivity was studied in the 

presence of three possible interfering sequences also associated to the HLA DQ system. 

These sequences gave less than 5 % amperometric signal with respect to the HLA-

DQA1*0201 target sequence, indicating an excellent selectivity of the system.  

 

Figure. 4.5. Top: Amperometric responses obtained for different systems: a) full detection system, b) absence of 

target DNA, c) absence of CD layer. Conditions: E = 0.2 V, supporting electrolyte: 1 mM H2O2 in 0.1 M PBS + 

0.15 M KCl (pH 6), Bottom: Amperometric calibration curve for the detection of HLA-DQA1*0201 target 

sequence (d). 
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4.5 CONCLUSIONS 

In this work we describe a novel route for the immobilisation of electron transfer mediators on 

electrode surfaces based on the interfacial complexation of a polymer backbone bearing 

ferrocene units on a cyclodextrin surface and explore the applicability of the modified surface 

in the construction of an amperometric genosensor using a sandwich detection system 

involving a peroxidase labeled secondary probe. This strategy simplifies the operation of the 

biosensor, only requiring the addition of enzyme substrate and could be an attractive alternative 

to the development of packaged genosensors as it avoids the need to use and store unstable 

redox mediators such as TMB or hydroquinone. The proximity of the mediator to the electrode 

surface greatly improves the detection limits attained with respect to a similar supramolecular 

system based on electrochemically inactive adamantane/CD inclusion complexes and requiring 

addition of the mediator in solution. In addition, the use of the hydrophilic CMC backbone 

contributes to the elimination non-specific interactions and to an optimal spacing of the 

immobilised DNA probes. Therefore, the excellent performance of this type of self-assembled 

structure opens new perspectives in the development of highly sensitive biosensors. Studies in 

this direction are currently underway. 
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4.7 SUPPLEMENTARY INFORMATION 

 

 

Figure. SI 4.1. Comparison of calibration plots obtained for ADA-CMC-DNA and Fc-DNA-DNA systems. 

 

 

Figure. SI 4.2. Sequence selectivity. Comparison of amperometric responses obtained with the HLA DQA102 

target sequence and with interfering probes 1-3 (see Experimental section for oligonucleotide sequences) 
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CHAPTER 5 

 

 

 

 

 

 

 

CONTROLLED Zn-MEDIATED GRAFTING OF THIN LAYERS OF BIPODAL 

DIAZONIUM SALT ON GOLD AND CARBON SUBSTRATES. 

(Chem. Eur. J. , 2014. DOI: 10.1002/chem.201405121) 
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CHAPTER 5 

CONTROLLED Zn-MEDIATED GRAFTING OF THIN LAYERS OF BIPODAL 

DIAZONIUM SALT ON GOLD AND CARBON SUBSTRATES 

 

5.1 ABSTRACT 

A controlled, rapid and potentiostat-free method has been developed for grafting the diazonium 

salt (3,5-bis(4-diazophenoxy)benzoic acid tetrafluoroborate (DCOOH)) on gold and carbon 

substrates, based on a Zn-mediated chemical dediazonation. The highly stable thin layer 

organic platforms obtained were characterized by cyclic voltammetry, AFM, impedance, XP 

and Raman spectroscopies. A dediazonation mechanism based on radical formation is 

proposed. Finally, DCOOH was proved as a linker to an aminated electroactive probe. 

 

5.2 INTRODUCTION  

The dediazonation reaction, in which a diazonium loses a diazo group, forming aryl radicals or 

cations, has been widely reported for a plethora of chemical reactions.1, 2 In 1992, Pinson et al. 

exploited these radicals for the electrochemical grafting of diazonium salts on carbon surfaces.3 

Initially, the majority of reports focused on the grafting of diazonium salts on carbon,4–7 but 

since then this mechanism has been expanded to different metal substrates including, copper,8 

nickel,8, 9 zinc, 8, 9 iron, 8-11 gold,12 indium oxide,13 and semiconductors.14 These diazonium-

grafted surfaces have found widespread application in diverse areas such as sensors,15, 16 

catalysis,17 nanotubes,18 and anti-corrosive agents.10,11 

The stability of electrografted diazonium layers is well known and can be attributed to the C-C 

and metal–C covalent bond between the aryl groups and carbon or metal surfaces, 

respectively.19 Highlighting this stability, depending on the nature of the carbon used, the 

grafted diazonium film can only be removed by exposure to extreme temperatures or by 

mechanical abrasion.4 Furthermore, grafted layers have been exposed to ultrasound in different 

organic solvents with no effect on the formed film.4, 9 Their stability upon exposure  
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to elevated temperatures20 or positive21,22 and negative13,16 electric potentials has also been 

demonstrated, as well as their long-term stability under atmospheric conditions.4 

The modification of substrates with diazonium salts has been carried out in acidic aqueous 

solution6,23 or organic23,24 media and by electrochemical6,7,20 or spontaneous grafting by 

immersing the substrate in diazonium salt solution8,9,11 or by microcontact printing.25 The 

reduction of the diazo group has also been achieved by ultrasonication,26,27 heating microwave 

assistance,28 photochemistry,29 or through the use of a chemical reducing agent such as iron.30 

The most widely reported of these approaches is that of electrochemical grafting; however, this 

method results in uncontrolled multilayer film structures, which can be ascribed to radical 

attack on surface-grafted aryl groups.31 The thickness of the resulting layers prepared by 

electrochemical grafting has been demonstrated to be dependent on the number of potential 

cycles32 as well as the concentration.4 Thin layers have been obtained taking advantage of 

steric hindrance provided by a bulky silyl protecting group to avoid the post-grafted reaction33 

or in the presence of a radical scavenger.34 Another alternative to obtain an organised platform 

by electrochemical grafting is based on the co-immobilisation of two diazonium salts with 

opposite charges.35 

The spontaneous grafting of the diazonium salt can be accomplished by in situ production of 

the diazonium salt from the corresponding amine in presence of the surface36 or by immersing 

the substrate in a solution of the already synthesised diazonium salt.8,37 Sodium nitrite acts as 

nitrosating agent and the acidic medium required for the reaction can be provided by a mineral 

acid or taking advantage of the acidic effect of organic acid substituents, like carboxylic or 

sulfonic acid moieties.36 The average time needed for spontaneous grafting ranges from just a 

few minutes to 24 h,38 requiring deaerated solutions, and is mainly carried out in organic 

solvents.8,36,38 The concentration8,39 and nature of the functional group36 present in the 

precursor amine determines the thickness of the final organic layer, which ranges from a few 

nanometers to 40 nm.39 Although the covalent nature of the aryl–surface bond has been 

established by X-ray photoelectron spectroscopy (XPS)8,38 the type of formation mechanism 

(homolytic8,38 or heterolytic37) and the nature of the final bond (Ar-N-metal or Ar-C-metal) is 

still controversial and the overall mechanism probably has both radical and cationic 

contributions. Some spontaneously grafted layers have been demonstrated to be stable at 

negative potential39 and under sonication at relatively high temperatures,39,40 although there are 

contrasting reports that outline that during immobilisation of the diazonium salt, both covalent 
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bond formation and physical adsorption are present,23 contributing to an instability of the final 

organic layer. 

Furthermore, the term “spontaneous” is used to describe grafting that is not assisted by 

additional factors such as applied potential, but it is generally accepted that the surface has a 

marked influence on the efficiency of grafting and on the stability of the resulting layer. This 

phenomenon is enhanced on metallic surfaces, in which the higher the reduction potential of 

the surfaces, the higher the number of molecules that will be immobilised, indicating that the 

surface contributes as a reducing agent facilitating dediazonation.9,8 In the case of carbon, 

spontaneous grafting of the diazonium salt has been reported using a core-shell composite of 

carbon-coated LiFePO4, but the metals in the core of the composite contribute to the grafting 

process.38 

In the work reported here, we combine the principal advantage of potentiostat-free spontaneous 

grafting with the rapidness of electrografting. In our method, by exploiting zinc as a reducing 

agent for the formation of aryl radicals, we accomplished the grafting in few minutes with no 

instrumentation required. A carboxylate containing-bipodal diazonium salt (3,5-bis(4-

diazophenoxy)benzoic acid tetrafluoroborate) was used to demonstrate the feasibility of this 

methodology and its potential applicability as surface modification strategy for the 

immobilisation of aminated molecules through the COOH group. The chemically modified 

surface was compared with both electrografted and spontaneously prepared surfaces in terms of 

thickness of the layers, the viability for linking an aminated electroactive probe and stability at 

extremes of temperature, and electric potential, as well as storage stability. 

 

5.3 EXPERIMENTAL SECTION 

Materials  

All reagents were of analytical grade and used as received.N-ethyl-N`-(3-

dimethylaminopropyl) carbodiimide hydrochloride (EDC), NaH2PO4.H2O, Na2HPO4, 

strontium nitrate, tetrafluoroboric acid solution, zinc dust, sodium nitrite 99.5%, potassium 

ferricyanide (III) and potassium ferrocyanide (II), (2,2-diphenyl-1-picrylhydrazyl (DPPH)) 

were purchased from Sigma-Aldrich (Barcelona, Spain). The sulfuric acid, sodium chloride 

and hydrogen peroxide were purchased from Scharlau (Barcelona, Spain), potassium hydroxide 
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was obtained from J.T. Baker, 3,5-bis(4-aminophenoxy) benzoic acid was received from TCI 

and dimethyl sulfoxide from Abcam plc. All solutions were prepared with Milli-Q water 

(Millipore Inc.). SERS substrates for Raman were purchased from Renishaw. 

Instrumentation and methods 

Electrochemical instrumentation and electrode cleaning  

Electrochemical measurements were performed on a PC controlled PGSTAT12 

Autolabpotentiostat (EcoChemie, The Netherlands) with a built-in frequency response analyzer 

NOVA module using two electrode configurations: 1) Screen printed carbon (DRP-110) and 

gold (DRP-250BT) electrodes configuration; working electrode: carbon or (gold) disk (φ=4 

mm), pseudo-reference electrode: silver (silver), counter electrode: carbon (Pt), and 2) a three-

electrode configuration of Ag as a reference (CH Instruments., model CHI111), Pt wire as a 

counter (BAS model MW-1032), and conventional glassy carbon or Au (BAS model MF-2014, 

1.6 mm diameter) as the working electrode. 

Electrode preparation 

Screen-printed electrodes: Gold electrodes were cleaned by cycling three times in 0.5 M 

H2SO4 from -0.4 V to 1.0 V versus Ag at 100 mVs-1 and the carbon electrodes were activated 

by cycling three times from 0 to -1.2 V versus Ag in 0.5 M KOH at 50 mVs-1 scan rate. 

Conventional electrodes: Gold electrodes were polished with alumina powder of 0.3 µm and 

sonicated in ethanol and Milli-Q water twice for 5 min each. The electrodes were then 

immersed in room temperature Piranha’s solution (1:3 v/v H2O2 to H2SO4) for 5 min and once 

again sonicated twice in ethanol and Milli-Q water for 5 min each (Caution! Piranha’s solution 

is highly corrosive and violently reactive with organic materials; this solution is potentially 

explosive and must be used with extreme caution). The electrodes were dried using nitrogen 

and electrochemically cleaned in 0.5 M H2SO4 solution by cycling 40 times from -0.4 to 1.7 V 

versus Ag at 100 mVs-1, and then washed with Milli-Q water and dried with nitrogen. Glassy 

carbon electrodes were sequentially polished with alumina powder (0.3, 0.1, and 0.05 µm) and 

sonicated in ethanol and Milli-Q water twice for 5 min each and cycled 25 times from 0 to -1.2 

V versus Ag in 0.5 M KOH at 50 mVs-1 scan rate, washed with Milli-Q water and dried under 

nitrogen. 
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The quality of the cleaning and subsequent steps was checked by using cyclic voltammetry and 

Electrochemical Impedance Spectroscopy (EIS) in 1 mM K4[Fe(CN)6]/K3[Fe(CN)6] in 50mM 

of [Sr(NO3)2]. The CV was recorded from -0.4 to 0.6 V at 100 mVs-1. EIS was recorded in the 

frequency range from 100 kHz to 0.05 Hz at 0.2 V and amplitude of 5 mV. The Nyquist plots 

obtained were fitted to an equivalent circuit (Figure 5.4) to extract the value of charge-transfer 

resistance. 

Synthesis of 3,5-bis(4-diazophenoxy)benzoic acid tetrafluoroborate (DCOOH) 

The synthesis was carried out according as previously reported32 with minor modifications. 

3,5-bis(4-diazophenoxy)benzoic acid tetrafluoroborate was synthesized by dissolving 0.5 g of 

3,5-bis(4-aminophenoxy) benzoic acid in tetrafluoroboric acid (3 equivalent of tetrafluoroboric 

acid per amine group). Following dissolution of the amine, a cold solution of sodium nitrite 

was added (1.5 equivalent per amine group). The mixture was stirred for 30 min at 48 ºC. A 

white precipitate was separated from solution by filtration and the product was washed with 

cold water three times and dried under vacuum during 24 h, protected from light. Finally, the 

product (DCOOH) was stored at -20 ºC in the dark.  

Modification of gold and carbon electrodes via Zn-mediated grafting, spontaneous 

grafting and electrochemical grafting 

Zn-mediated grafting: To modify the electrodes through Zn-mediated grafting, a mixture of 20 

µL of a 1, 5, or 10 mM 3,5-bis(4-diazophenoxy) benzoic acid tetrafluoroborate in 0.5 M 

sulfuric acid containing an excess of Zn powder was stirred for 5 seconds, added to the 

electrode surface and incubated for 2 or 5 min. To elucidate the grafting mechanism, the 

following experiments were carried out: a) (to study the function of Zn as reducer) the Zn was 

substituted by ZnCl2 and the same procedure was followed b) (to study the radical contribution 

to the overall mechanism) 1 µL of acetonitrile solution of DPPH was added to a sulfuric acid 

solution containing 5 mM of 3,5-bis(4-diazophenoxy)benzoic acid tetrafluoroborate and Zn 

powder. The mixture was then stirred during 5 seconds and added to the surface of gold and 

carbon electrodes and left to react for 5 min. 

Spontaneous grafting: A similar procedure was followed for spontaneous grafting, To modify 

the electrodes via chemical grafting, 20 µL of a 1, 5 or 10 mM 3,5-bis(4-diazophenoxy)benzoic 

acid tetrafluoroborate in 0.5 M sulfuric acid (not containing any Zn) were added to the 

electrode surface and incubated for  5 minutes.  
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Electrochemical grafting: The electrochemical grafting was performed using a solution of 5 

mM of 3,5-bis(4-diazophenoxy)benzoic acid tetrafluoroborate in 0.5 M sulfuric acid. The 

potential was cycled from 0.1 V to -0.6 V for two cycles at 50 mV/s. (In the case of the screen-

printed electrodes a drop of 70 µL of solution was added to the electrode surface, and for the 

conventional electrodes a volume of 1 mL of solution was required for the three electrode 

system). 

Finally, the modified electrodes were rinsed with isopropanol under continuous stirring for 5 

minutes, then with water for 30 minutes and dried with nitrogen. Grafting of the 3,5-bis(4-

diazophenoxy)benzoic acid tetrafluoroborate using the different techniques was monitored 

using CV and EIS using the same methodology as described above for the evaluation of the 

cleanliness of the electrodes. 

FTIR Spectroscopy 

FTIR spectra were recorded on a Jasco FT/IR-600 PlusATRSpecac Golden Gate spectrometer. 

128 scans at 2 cm−1 resolution were recorded. 

Raman Spectroscopy 

Raman spectra were recorded using a Renishaw 2003 spectrometer operating at wavelength of 

514 nm, of HeNe laser, for carbon and of 633 nm for gold.A CCD camera was used as 

detector. The spectra were analyzed using Wire 3.3 version software (Renishaw plc, New 

Mills, Wotton-underEdge, and Gloucestershire, GL12 8JR, United Kingdom). 

Surface enhanced Raman scattering (SERS) surface 

Gold coated nanostructured silicon Klarite® SERS substrates were used for Raman 

characterization and the 3,5-bis(4-diazophenoxy)benzoic acid tetrafluoroborate was 

immobilised as previously described for the screen-printed electrodes but without a previous 

cleaning procedure. 

X-ray Photoelectron spectroscopy (XPS) 

All measurements were recorded in a PHI ESCA-5500 spectrometer with an Aluminum X-ray 

source. The surfaces were analysed in an ultra-high vacuum (UHV) chamber with pressure 
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between 5×10-9 and 2×10-8torr. The samples used for XPS analysis were prepared using a 

concentration of diazonium salt of 5 mM and immobilisation time of 5 minutes. 

Atomic Force Microscopy 

The images were recorded in a 5420 Atomic Force Microscope (AFM) from Agilent 

Technologies (USA) and processed using WSxM 5.0 Develop 3.247 and Pico View 1.8. HOPG 

(from SPI supplier) software. Flat gold prepared by sputtering on mica was used as substrate 

for AFM studies. 

A thin layer of HOPG was freshly cleaved with adhesive tape prior to each experiment and 

fixed in a magnetic support. Using a 300 KHz frequency tip the surface was scanned in 

tapping mode to select a flat section and the surface was then scratched in lithographic 

mode. Different conditions were tested, and finally the optima were: force set point 

voltage: 1 V and speed 0.050 micron/s. In this mode, the organic material is removed from 

the substrate in a well-defined way. Finally the surface was scanned again in tapping mode 

to obtain the image. Where the material was removed, a hole appeared and the thickness of 

the organic layer in the vertical section was determined with the WSxM 5.0 Develop 3.2 

program.47 

5.4 RESULTS AND DISCUSSION 

The 3,5-bis(4-diazophenoxy)benzoic acid tetrafluoroborate (DCOOH) was selected as a model 

diazonium salt for the demonstration of the reported methodology. DCOOH has a singular 

structure with double linking aryl groups and the sp3 oxygen bridge prevents the formation of a 

densely packed layer, which could lead to insulation of the electrode surface. In addition, the 

carboxylate can be used for further functionalization and immobilisation of aminated molecules 

(Figure 5.1). 

The electrophilic character of the diazo group leads to the grafting of diazonium salts on 

surfaces through a dediazonation step, which produces reactive radicals that can attack the 

surface.19 In our potentiostat-free methodology, Zn powder is used as a reducing agent  
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Figure 5.1 Schematic of the Zn-mediated (top) and electrochemical (bottom) graftings on gold and carbon 
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acidic media at 48 ºC in the presence of the surface for grafting

this procedure was rapidly discarded due to the formation of a dark gummy product that

completely insulated the electrode. DCOOH was thus prepared ex-situ, precipitated, dried,

Figure SI5.1). 
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In our methodology, the presence of metallic Zn leads the production of radicals for their 

probed by preparing two diluted sulfuric solution of 3,5

diazophenoxy)benzoic acid tetrafluoroborate, one containing Zn powder and the other, ZnCl

(instead of Zn).They were both added to the gold and carbon surfaces and left to react for

The grafting was evaluated by cyclic voltammetry using [Fe(CN)

Figure 5.2 a and b), following the criteria that the decrease in current is 

a blocking of electron transfer due to the surface insulation due to the grafting of the 

diazonium salt. For surfaces modified in the presence of Zn, a blocking of electron transfer was

observed, whereas a negligible decrease in current was noticed for surfaces modified in the 

, which can be attributed to some spontaneous immobilization.
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4- on gold (a) and carbon (b) at bare 
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). Supporting electrolyte: 0.1 M Sr(NO3)2. Scan rate: 0.1 V/s

To understand the grafting mechanism, the reaction was carried out in the presence and 

absence of a radical scavenger (2,2-diphenyl-1-picrylhydrazyl (DPPH)), which has been 
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already demonstrated to successfully capture radicals originating from the diazonium salt 

produced in situ in acetonitrile.34 A solution of DPPH in acetonitrile was added to a sulfuric 

acid solution containing DCOOH and Zn powder and the mixture was added to the surface of 

gold and carbon electrodes and left to react for 5 min. Figure 5.2 c and d show the cyclic 

voltammograms obtained before and after grafting, in the presence and absence of DPPH. A 

higher current intensity was observed when DPPH was used indicating a lower degree of 

grafting. This is because the aryl radicals produced from diazonium salts are sequestered by 

DPPH and are not able to graft to the surface. This result confirms the hypothesis of a 

significant contribution of homolytic dediazonation to the overall mechanism.34 Nevertheless, 

some potential heterolytic contributions should not be disregarded. In addition, a side reaction 

between DPPH and protons from the acidic media, even if the mixture was left to react just a 

few minutes, cannot be ruled out. 

The product from the reaction of DPPH and DCOOH was isolated and characterized by FTIR 

and Raman and mass spectroscopies (Figures SI 5.3–SI 5.5). In both FTIR and Raman spectra, 

the band corresponding to the diazo group is absent. The most conclusive criteria that the 

reaction took place is elucidated from the obtained m/z ratio (1003), which corresponds to a 

compound with a molar ratio DCOOH/ DPPH of 2:1. The proposed structure is based on a 

suggested mechanism34 in which the aryl radicals from diazonium salt react with one of the 

diphenyl amino moieties of DPPH, and at the same time react with another aryl radical. 

The Zn-mediated grafting was also characterized by X-ray photoelectron spectroscopy (XPS). 

Figure 5.3 shows the XP spectra of both gold and carbon surfaces modified with 3,5-bis(4- 

diazophenoxy)benzoic acid using Zn as reducing agent. The Zn-mediated modified gold 

surface clearly shows immobilisation of DCOOH with the presence of C_O_C and C_H energy 

bands. The typical peaks of diazonium groups (N1s) at 403.8 and 405.1 eV are not present, 

indicating that there is no physical adsorption of diazonium salt,11 although a weak N1s peak 

appears at 398.84 eV on gold and 400.6 eV for carbon. The presence of a peak in this position 

has been extensively discussed in the literature and, in our case, could indicate some 

contribution of a heterolytic mechanism with the formation of Ar_N_Au bonds8 or, 

alternatively, a small amount of multilayer formation bridged by azo groups7 (_N=N_) on the 

electrodes. 
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> Zn-mediated grafting > spontaneous

Figure 5.4. Cyclic voltammograms (left) and faradic complex impedance plots (right) in 1 mM 

/[Fe(CN)6]
4- for the different immobilis

Sr(NO3). Scan rate (in CV): 0.1 V/s. Impedanc

amplitude of 5 mV. (inset) Randles equivalent circuit of faradaic EIS measurement: Rs: electrolyte  solution 

resistance; Ret: electron transfer resistance; W: Warburg impedance; Q: Constant phas

 

In the case of the spontaneous grafting, it can be seen that

on the surface. However, or a 5 min deposition time, it is evident that the presence of

essential to accelerate the grafting process. The sho
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ance (RS) in series with the parallel combination of the constant 

(Q) and the charge-transfer resistance (Rct) and Warburg impedance

transfer resistance for Zn-mediated method were found 30 and 45

and gold, respectively, with respect to those obtained after electrochemical grafting. In 

addition, these values were 3.2- and 2.6-fold higher in comparison to spontaneous 

Thus, the higher electron-transfer resistance in ESI spectra

peak separation and lower current in the voltammograms indicate the presence of more organic 

linked to the substrate in the following order of modification approach: Electrografting

spontaneous grafting. 

Cyclic voltammograms (left) and faradic complex impedance plots (right) in 1 mM 

for the different immobilisation routes on gold and carbon electrodes. Supporting electrolyte: 0.1 M 

Scan rate (in CV): 0.1 V/s. Impedance measurement conditions, frequency range 100 kHz to 0.05 Hz, 

(inset) Randles equivalent circuit of faradaic EIS measurement: Rs: electrolyte  solution 

resistance; Ret: electron transfer resistance; W: Warburg impedance; Q: Constant phase element.

In the case of the spontaneous grafting, it can be seen that some organic material was deposited 

or a 5 min deposition time, it is evident that the presence of

essential to accelerate the grafting process. The short deposition time achievable using the 
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method were found 30 and 45 % lower for 

electrochemical grafting. In 

fold higher in comparison to spontaneous 

transfer resistance in ESI spectra and higher peak-to-

voltammograms indicate the presence of more organic 

approach: Electrografting 

 

Cyclic voltammograms (left) and faradic complex impedance plots (right) in 1 mM [Fe(CN)6]
3-

ation routes on gold and carbon electrodes. Supporting electrolyte: 0.1 M 

frequency range 100 kHz to 0.05 Hz, 

(inset) Randles equivalent circuit of faradaic EIS measurement: Rs: electrolyte  solution 

e element. 

some organic material was deposited 

or a 5 min deposition time, it is evident that the presence of Zn is 

deposition time achievable using the 
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developed Zn-mediated grafting is very important when working with sensitive molecules such 

as diazonium salts, because they can be easily damaged, with a pronounced effect on the final 

organic layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Zn-mediated grafting of the diazonium salt was also studied by using Raman spectroscopy. 

Due to the difficulty in observing a thin molecular layer deposited on a gold substrate, a gold-

coated nanostructured silicon substrate, specifically designed for surface enhanced Raman 

scattering (SERS), was used to study the binding process of DCOOH on gold. A drop of 

DCOOH at micromolar concentration was left for 5 min on the SERS substrate and then dried 

slowly under vacuum to create a thin layer. The recorded spectrum corresponds to the 

compound in its powder form (Figure 5.5). The sample was then re-hydrated in acid media 

containing Zn powder and left to react for 5 min, and then dried again under vacuum. The most 

 
Table 1. Electrochemical and Raman properties of non-modified and 
modified surfaces. 

Surface 
modification 

∆E(mV)* 
 

Rct (kΩ) Raman 
D/G 
ratio 

 

             Gold Surface 
 

 

Bare electrode    75 
 

0.2        -  

Zn-mediated grafting    308 
 

5.6        -  

Electrochemical grafting    547 
 

10.1        -  

Spontaneous grafting    211 
 

2.1         -  

     Carbon Surface 
 

Bare electrode    80 
 

0.9      0.74  

Zn-mediated grafting    364 
 

13.8      1.36  

Electrochemical grafting    589 
 

19.7      1.51  

Spontaneous grafting 
 

   156 
 

4.3      1.23  

*∆E = Eox-Ered 
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notable difference between the Raman spectrum of the modified surfaces and the 

corresponding of starting DCOOH was the absence of the (C_N_N) band at 2260 cm-1. In 

addition, a slight shift in the position of the bands corresponding to the aromatic region was 

observed, which can be attributed to binding to the gold substrate and probably some 

contribution from van der Waals interactions of neighboring molecules, thus clearly 

demonstrating the successful grafting of the diazonium salt.  

Analysis of the D and G Raman bands is very useful for characterising the modification of 

carbon surfaces. The G Raman band appears at 1575 cm-1 and is related with the C_C bond 

vibration and is evidently present in all carbon surfaces. The origin of the D band (at 1353 cm-

1) is related with structural disorders42 produced by mechanical treatments including polishing43 

or chemical reactions due to changes on the hybridisation of carbon from sp2 to sp3. The 

intensity of the D band can range from close to zero in highly organised non-modified surfaces, 

to values comparable with those of the G band in damaged or modified substrates. The 

important parameter is the D/G band intensity ratio, which increases with the modification and, 

in our case, provided useful structural information regarding the different routes for diazonium 

grafting (Figure 5.5, top, and Table 1). As expected, a low D/G Raman band ratio was 

observed for the unmodified carbon electrode following reductive desorption at basic pH, to 

remove any surface localized impurities. When DCOOH is surface bound, an increase of D/G 

band ratio was observed for spontaneous, electrochemical, and the Zn-mediated grafting. 

Although, for the binding of aryl rings to the carbon surface a high sp2 contribution is expected, 

steric hindrance provokes distortion from the planar sp2 surface, as demonstrated by the higher 

intensity of the D bands. This behaviour correlates with the ∆E (Table 1) trend reported above. 

Again, the D/G ratio is markedly higher in the case of electrochemical grafting, possibly due to 

the formation of multilayers. 
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Figure 5.5. Top:Raman spectra of: (a) solid DCOOH, (b) DCOOH from aqueous solution dried on gold SERS 

substrate and (c) DCOOH deposited on gold SERS substrate by Zn

bands of: (d) bare carbon, (e) after Zn

DCOOH. 

 

Atomic force microscopy characteri

AFM facilitates not only the possibility to acquire topographic images

dimensions, but can also be used for the estimation of the number of molecular layers 

deposited on a substrate using the so

controlled removal of the deposited organic material using the 

thickness of the removed layer is determined by scanning the surface.

For this purpose, flat gold, prepared on mica by sputtering technique and freshly cleaved highly 

oriented pyrolitic graphite (HOPG) were used for this experime

on a magnetic support. Zn-mediated chemical grafting was carried out using 5 m
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Raman spectra of: (a) solid DCOOH, (b) DCOOH from aqueous solution dried on gold SERS 

substrate and (c) DCOOH deposited on gold SERS substrate by Zn-mediated method. Bottom: 

bands of: (d) bare carbon, (e) after Zn-mediated grafting of DCOOH and (f) after electrochemical grafting of 

Atomic force microscopy characterisation of modified surfaces  

AFM facilitates not only the possibility to acquire topographic images 

dimensions, but can also be used for the estimation of the number of molecular layers 

deposited on a substrate using the so-called “AFM scratching” method, which allows the 

controlled removal of the deposited organic material using the AFM tip, after which, the 

thickness of the removed layer is determined by scanning the surface.5 

For this purpose, flat gold, prepared on mica by sputtering technique and freshly cleaved highly 

(HOPG) were used for this experiment; both substrates

mediated chemical grafting was carried out using 5 m
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Raman spectra of: (a) solid DCOOH, (b) DCOOH from aqueous solution dried on gold SERS 

Bottom: Raman D and G 

mediated grafting of DCOOH and (f) after electrochemical grafting of 

 of surfaces in two-

dimensions, but can also be used for the estimation of the number of molecular layers 

called “AFM scratching” method, which allows the 

AFM tip, after which, the 

For this purpose, flat gold, prepared on mica by sputtering technique and freshly cleaved highly 

nt; both substrates were fixed 

mediated chemical grafting was carried out using 5 mM DCOOH 
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and 5 min grafting time. After grafting, both surfaces were thoroughly washed to eliminate any 

residual salt. Following scanning of the surfaces using tapping mode AFM, a geometric figure 

was created by scratching the organic layer using the lithographic mode. Following scratching, 

the surface was scanned again in tapping mode to obtain the image, with the organic material 

removed during scratching creating a hole that is equivalent in height to the deposited organic 

layer. 

In the case of gold substrate modified by Zn-mediated grafting, it was difficult to determine the 

thickness of the organic layer because the dimension of the molecule is close to the roughness 

of the clean substrate. The force needed for scratching was tested to ensure that the substrate is 

not damaged and that only the organic layer is removed (Figure SI5.6). Finally the thickness of 

the aryl layer on gold was found to be between 1 and 2 nm, which is close to the dimension of 

one molecule (0.8 nm), whereas a layer with a higher thickness was observed on carbon (≈3 

nm; Figure 5.6). In the case of the electrochemically grafted carbon, surface thicknesses from 

4 to 10 nm (corresponding to 5 to 8 molecules) were obtained, whereas a 5 nm thickness 

(around 6 molecules) was observed for the electrochemically grafted gold surface, in 

agreement with previous reports.5, 32 Scratching the spontaneously grafted surfaces, resulted in 

removal of negligible amounts of material. These results agree with the differences in percent 

of oxygen and nitrogen found by XPS present in both substrates. 
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Figure 5.6. AFM scratched surfaces (left) and the corresponding profiles (right) of Zn-mediated grafted 

diazonium salt in gold a), and in carbon b).  

X-ray photoelectron spectroscopy (XPS) monitoring of different steps of immobilisation 

The XPS analyses of both carbon and gold substrates modified by both electrochemical and 

Zn-mediated immobilisation methods made it possible to follow the different modification 

steps by analysing the percentage of atomic concentration of oxygen (%O) and nitrogen (%N) 

(Figure 5.7). The higher %O for carbon than for gold is in agreement with the voltammetric, 

impedance and AFM results. 

To facilitate the understanding of the layer formation, an additional diazonium salt (3,5-bis(4-

diazophenyl tetrafluoroborate (DH)) with a similar structure to DCOOH but without the 
_COOH moiety was prepared and immobilised by the same procedure as DCOOH to 

corroborate the effect of the negatively charged carboxylate group on the multilayer formation. 

Amino-ferrocene was then linked to the carboxylate group of DCOOH, which transformed the 
_COOH group into _CONH_. Figure 5.7a shows an increment in the oxygen percentage for 

both substrates and immobilization methods in the order: Bare electrode > DH > DCOOH 
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followed by a decrease in %O associated with an amide bond in which the oxygen content is 

lower. 

For the gold substrate, the %O is duplicated

2DCOOH/DH oxygen atomic ratio. In the case of carbon substrate the %O is increased in 

about 10 % for DCOOH respect to DH. This could be related with the higher roughness of 

carbon, which translates into higher s

effect is more significant in the case of DCOOH, in which the negative carboxylate moiety of 

the first layer of immobilis

accelerating the modification of the substrate.

Figure 5.7. Elemental percent of atomic concentration for different surfaces as measured by XPS. The percent of 

the element in unmodified substrates was subtracted. a) % of oxygen 

electrografting on C, ● Zn-mediated on Au,  

mediated on C,  ---�--- electrografting on C, 
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followed by a decrease in %O associated with an amide bond in which the oxygen content is 

For the gold substrate, the %O is duplicated from DH to DCOOH, which correlates with the 

2DCOOH/DH oxygen atomic ratio. In the case of carbon substrate the %O is increased in 

% for DCOOH respect to DH. This could be related with the higher roughness of 

carbon, which translates into higher surface area for the immobilisation of molecules. This 

effect is more significant in the case of DCOOH, in which the negative carboxylate moiety of 

ed aryl molecules interacts with the positive diazonium salt, 

dification of the substrate. 

Elemental percent of atomic concentration for different surfaces as measured by XPS. The percent of 

the element in unmodified substrates was subtracted. a) % of oxygen ■ Zn-mediated on C, 

mediated on Au,  ---○ --- electrografting on Au, b) % of nitrogen 

electrografting on C, � Zn-mediated on Au,  ---�--- electrografting on Au.

 108 

 

followed by a decrease in %O associated with an amide bond in which the oxygen content is 

from DH to DCOOH, which correlates with the 

2DCOOH/DH oxygen atomic ratio. In the case of carbon substrate the %O is increased in 

% for DCOOH respect to DH. This could be related with the higher roughness of 

ation of molecules. This 

effect is more significant in the case of DCOOH, in which the negative carboxylate moiety of 

ed aryl molecules interacts with the positive diazonium salt, 

 

Elemental percent of atomic concentration for different surfaces as measured by XPS. The percent of 

mediated on C, ---□ --- 

electrografting on Au, b) % of nitrogen ▼ Zn-

electrografting on Au. 
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The formation of more than one layer is evidenced by the increased %N from DH to DCOOH 

due to the formation of _N=N_ bridges with a band at 398 eV for gold and 400.6 eV for carbon. 

The amide formation, due to the reaction of DCCOH on the surface with amine-ferrocene, 

increases the final %N. 

In all cases the %N is lower for gold than that of carbon, which is in agreement with the thinner 

layers formed on gold, as observed in AFM. In addition, the band corresponding to the 

stretching vibration mode of _N=N_ bridge is not present in the Raman spectra even when a 

SERS surface was used due to the nanometric thickness of the DCOOH layer evidenced by 

AFM, being higher for electrochemical grafted in comparison with Zn-mediated modified 

surfaces. 

 

 X-ray photoelectron spectroscopy (XPS) of modified surfaces for testing the viability of 

linking a probe molecule 

To evaluate the viability of COOH moieties to bind an aminated molecule, the DCOOH layers 

immobilized on gold and carbon substrate by Zn-mediated, electrochemical, and spontaneous 

grafting were linked to amino-ferrocene through carbodiimide chemical cross-linking, and the 

modified surfaces were analysed by XPS. Figure 5.8 (top) shows the successful linking of 

amino-ferrocene to the Zn-mediated and electrochemically grafted surfaces, as evidenced by 

the presence of Fe2p3/2 and Fe2p1/2 
44 signals at 720.9 and 708.9 eV, respectively. The Fe 

content can be used as a criterion of the presence of ferrocene immobilized on the surface. 

Similar values were obtained for the same type of substrate prepared by Zn-mediated grafting 

when compared with traditional electrochemical method. On gold, the obtained percentages 

were 1.31 and 1.26 for Zn-mediated and electrochemically grafted DCOOH, respectively, 

whereas for carbon the values were 1.51 and 1.45 %.  
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Figure 5.8. Top: High resolution XPS spectra of Fe region of Zn

gold and carbon. Bottom: Dependence of peak current with scan rate of immobilised amino ferrocene for Zn

mediated grafting on carbon (•), chemical grafting on gold (

electrochemical grafting on gold (□).

The surface confinement of the ferrocene group was also confirmed using cyclic voltammetry 

by observing a low peak-to-peak separation a

anodic peak currents versus scan rate (

oxidation/reduction peaks were observed 

Evaluation of stability of Zn

As one of the more notable properties of grafted diazonium

an evaluation of the stability of the Zn

temperatures and upon exposure to high applied potentials,

grafted layers at different temperatures over a four
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: High resolution XPS spectra of Fe region of Zn-mediated (a, c) and electrochemical (b, d) grafted 

: Dependence of peak current with scan rate of immobilised amino ferrocene for Zn

on (•), chemical grafting on gold (○), electrochemical grafting on carbon (

□). 

The surface confinement of the ferrocene group was also confirmed using cyclic voltammetry 

peak separation and obtaining a linear behavio

anodic peak currents versus scan rate (Figure 5.8, bottom). A negligible XPS signal as well as 

oxidation/reduction peaks were observed for 5-minute spontaneously grafted surfaces.

n-mediated grafted layers of diazonium salts

As one of the more notable properties of grafted diazonium layers is their remarkable stability, 

of the Zn-mediated grafted layers on gold and carbon at elevated

pon exposure to high applied potentials, as well as a storage stability of the 

temperatures over a four-week period was carried out. The
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mediated (a, c) and electrochemical (b, d) grafted 

: Dependence of peak current with scan rate of immobilised amino ferrocene for Zn-

), electrochemical grafting on carbon (■), and 

The surface confinement of the ferrocene group was also confirmed using cyclic voltammetry 

nd obtaining a linear behaviour of cathodic and 

, bottom). A negligible XPS signal as well as 

spontaneously grafted surfaces. 

salts 

layers is their remarkable stability, 

mediated grafted layers on gold and carbon at elevated 

as well as a storage stability of the 

week period was carried out. The Zn-
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mediated modified surfaces were stable up to 95 ºC, in which less than 10 % of organic layer 

was removed following exposure of the substrates at this temperature. The surfaces were also 

stable after applying +1 V and after storage at 37 ºC for four weeks, demonstrating the high 

stability of these surfaces in different conditions (Figure SI 5.7 and SI 5.8). Considerably 

higher stability was observed for Zn-mediated surfaces in comparison with the spontaneously 

deposited layers during 5 min. This indicates that in the absence of Zn, mainly physical 

adsorption occurs, which can be easily removed by heating or applying a positive potential. 

This also highlights the role of Zn in our potentiostat-free method. 

 

5.5 CONCLUSIONS 

Zn-mediated grafting of diazonium salts on gold and carbon surfaces was achieved by using 

zinc as a reducing agent. The decrease of the immobilisation of DCOOH on gold and carbon in 

the presence of a radical scavenger demonstrated that there was an important radical 

contribution to the overall mechanism of dediazonation by using the Zn-mediated approach. 

Grafting was extremely rapid (achieved in just five minutes) and was highly controllable, 

resulting in very thin layers. 

Zn-mediated, electrochemically, and spontaneously grafted layers of a bipodal diazonium salt 

model system, on both gold and carbon surfaces were compared. Thinner layers were obtained 

using chemical approach in comparison with electrochemical grafting, in which the formation 

of multilayers is less controllable. In addition, the surface coverage using Zn-mediated grafting 

was markedly higher than spontaneous grafting at 5 min, demonstrating the importance of the 

Zn as reducer. 

In all cases, a notably higher efficiency was achieved on carbon as compared with gold. 

Stability at high-applied potentials, elevated temperatures and upon storage was evaluated and 

the grafted surfaces were shown to be extremely stable. 

In summary, an extremely rapid, potentiostat-free methodology for the grafting, with high 

spatial resolution, of highly stable thin layers of diazonium salts on gold and carbon surfaces, 

exploiting zinc as a reducing agent, has been demonstrated, and the underlying grafting 

mechanism elucidated. Work is ongoing to apply the grafted surfaces to molecular sensing. 
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5.7  SUPPORTING INFORMATION 

 

 

Scheme SI 5.1. Schematic representation of the structure of the starting amine and diazonium salt (DCOOH), and 
synthetic route. 

 

Diazonium salt was synthesised material is formed. This dark material should be discarded and 

for this reason DCOOH was isolated as a tetrafluoroborate salt and characterised using FTIR, 

Raman and NMR (Figure SI 5.1, and SI 5.3 (a)). In the FTIR spectrum, the band 

corresponding to the diazonium salts, with a concomitant appearance of band indicative of the 

(C group at 2260 cm-1, which is also observed in Raman spectrum. In addition the increase in 

electroaceptor properties of diazo group respect to the starting evidenced in a significant shift 

of carboxylic FTIR band from 1677 cm-1 to 1744 cm-1 in DCOOH. It is also evidenced in the 

carbon adjacent to diazo group (102.5 ppm) respect to their initial chemical shift in the 

precursor amine (140.4 ppm). 
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Figure SI 5.1a. ATR-FTIR spectra of (a) 3,5-bis(4-aminophenoxy) benzoic acid and  (b) 3,5-bis(4-

diazophenoxy)benzoic acid tetrafluoroborate. 

 

 

Figure S 5.1b. 100 MHz 13C-NMR spectrum of aromatic region of 3,5-bis(4-diazophenoxy)benzoic acid 

tetrafluoroborate 
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Optimisation of Zn-mediated grafting on gold and carbon substrates 

Several driving forces, including applied potential/potential range, nature of the diazonium salt 

and the diazonium salt concentration have been shown to control electrochemical grafting. In 

order to evaluate them in the proposed Zn-mediated method a study was carried out to optimize 

the duration of the chemical grafting step and the concentration of the diazonium salt. 3,5-

bis(4-diazophenoxy)benzoic acid tetrafluoroborate at 1, 5 and 10 mM concentrations was 

dissolved in deoxygenated acid media in the presence of Zn as a reducing agent and drop 

casted on carbon or gold substrates and left to react for 2 or 5 minutes. After washing and 

drying, cyclic voltammetric measurements were carried out, in triplicate, in a [Fe(CN)6]
3-

/[Fe(CN)6]
4-solution. The percentage decrease in current of the reduction and oxidation peaks 

of Fe(II) /Fe(III), with respect to the clean electrode, was indicative of the formation ofthe 

organic layer on the electrode. 

As can be seen in Figure SI 5.2, using both gold and carbon the highest degree of grafting is 

accomplished at 5 minutes with 5 mM concentration of DCOOH. These conditions were thus 

used for all further experiments. 

 

 

Figure SI 5.2. Effect of different incubation times and concentration of DCOOH on the modification of gold (left) 

and carbon (right) surfaces by measuring the intensity of current of the oxidation peak of [Fe(CN)6]
3- /[Fe(CN)6]

4- 

at same potential of the clean electrode. Error bars represent the relative standard deviation of three measurements. 
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Figure SI 5.3. ATR-FTIR spectra of (a) 3,5-bis(4-diazophenoxy)benzoic acid tetrafluoroborate, b) (2,2-diphenyl-

1-picrylhydrazyl (DPPH)) and c) the coupling product after isolation. 

 

 

Figure SI 5.4. Raman spectra of (a) 3,5-bis(4-diazophenoxy)benzoic acid tetrafluoroborate and b) the coupling 

product after isolation. 
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Figure SI 5.5. ESI-TOF spectrum of the coupling product between DCOOH and DPPH, obtained with negative 

detector. The spectrum was obtained by direct injection of the sample in an Agilent G3250AA LC-MSTOF 

spectrometer. 

 

 

Figure SI 5.6. AFM scratched surfaces (left) and the corresponding profiles (right) of chemical grafted diazonium 

salt in gold a), and in carbon b). 
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Stability studies 

Temperature stability  

Modified electrodes were exposed to different temperatures (from 25 to 95 ºC at 10 ºC 

intervals) during 5 min in a thermomixer (Eppendorf Iberica, Spain) and then gently washed in 

Milli-Q water and dried under nitrogen. The changes in kinetic properties with temperature 

were evaluated using cyclic voltammetry using a 1 mM K4[Fe(CN)6] /K3[Fe(CN)6] solution in 

50 mM of Sr(NO3)2. The CVs were recorded from -0.4 to 0.6 V at 0.1 V/s 

Stability to applied potentials 

Modified electrodes were exposed to different potentials using amperometry during 5 sec in 

buffer phosphate, pH = 7.4. They were then gently washed in Milli-Q water and dried under 

nitrogen. The changes in kinetic properties with temperature were evaluated by cyclic 

voltammetry as described above. 

Storage stability 

The electrodes were modified, dried and stored at different temperatures (4, 25 and 37 ºC) 

during several weeks and following a gentle wash in Milli-Q water and drying under nitrogen, 

the grafted surfaces were evaluated using cyclic voltammetry of 1 mM K4[Fe(CN)6] 

/K3[Fe(CN)6] in 50 mM of Sr(NO3)2. The CV was recorded from -0.4 to 0.6 V at 0.1 V/s. 

Thermal and electrochemical stability of grafted diazonium surface 

In order to probe the thermal stability of the grafted layers, the electrodes were immersed in 

phosphate buffer at pH 7.4 and heated to the desired temperature in a thermostatted bath, and 

subsequently were washed and a cyclic voltammogram was recorded in a [Fe(CN)6]
3-

/[Fe(CN)6]
4- solution. 

For the study of stability at high applied potentials, electrodes grafted with DCOOH 

spontaneously, electrochemically and Zn-mediated, were immersed in phosphate buffer at pH 

7.4 and different potentials were applied, followed by cyclic voltammetric analysis (Figure SI 

5.7). 
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Figure SI 5.7. Stability study with temperatures (from 25 to 95 ºC, during 5 min) and upon exposure to applied 

potentials (from 0.8 to 1.5 V, during 5 s) for gold (left) and carbon (right) by measuring the intensity of current of 

the oxidation peak of [Fe(CN)6]
3- /[Fe(CN)6]

4- at same potential range of the clean electrode. 

 

A higher degree of immobilisation as well as stability at high temperatures and applied 

potentials was observed for the Zn-mediated grafted surfaces in comparison to the 

spontaneously grafted surfaces, clearly demonstrating the importance of the Zn as a reducing 

agent. Indeed, the Zn-mediated grafted surfaces demonstrated a similar behavior to the 

electrochemically grafted surfaces. In the case of carbon modified by Zn-mediated and 

electrochemical grafting, less than 10 % of organic layer was removed following exposure of 

the substrates to 95 ºC, while in the spontaneously grafted surface almost all the aryl molecules 

desorbed. 

When looking at the effect of applied electric potential, a more evident difference was observed 

between carbon and gold surfaces, as well as Zn-mediated/ electrochemically vs spontaneously 

grafted surfaces. As expected, a higher stability was observed using carbon substrates due to 

the higher covalent contribution in DCOOH binding to the carbon rather than the gold 
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substrate. At applied potentials higher than 1 V vs Ag, the organic layer on gold was affected 

and this was observed to be more significant in the case of the spontaneously grafted surface. 

In contrast, on the carbon substrate the signal remains very stable even when potentials as high 

as 1.4 V vs Ag are applied, for both chemically and electrochemically grafted surfaces, while 

the surface prepared by spontaneous grafting was drastically affected. The Zn-mediated grafted 

carbon substrates can thus find application in areas where a high applied potential is required, 

such as electrochemiluminescence of immobilised moieties.21 

 

Storage stability of chemical grafted diazonium surface 

The Zn-mediated grafted surfaces were stored at different temperatures (4 ºC, 25 ºC and 37 ºC) 

over a 4 weeks period, and the stability of the grafted layers was studied using cyclic 

voltammetry, where an increasing signal reflects loss of molecules from the surface. As can be 

seen in Figure SI 5.8, as expected a higher grafting efficiency was achieved using the carbon 

surface, but for both surfaces excellent storage stabilities were observed at all evaluated 

temperatures. 
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Figure SI 5.8. Stability study at different times (4 weeks) and temperature (4, 25 and 37 ºC) of storage of Zn-

mediated grafted DCOOH on gold (top) and on carbon by measuring the intensity of current of the oxidation peak 

of [Fe(CN)6]
3- /[Fe(CN)6]

4- at same potential of the clean electrode, (Scan rate, 0.1 V/s). 
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CHAPTER 6 

AMPEROMETRIC DETECTION OF FRANCISELLA TULARENSIS GENOMIC 

SEQUENCE ON Zn-MEDIATED DIAZONIUM MODIFIED SUBSTRATES 

6.1. ABSTRACT 

A new simple and rapid potentiostat-free method for preparing diazonium salt based platforms 

is applied for biosensor purposes, promoting better analytical performances when comparing 

with traditional electrografting.  

 

6.2 INTRODUCTION 

Biosensors are promising analytical tools for the detection of proteins1 and DNA.2 The success 

of these devices is highly dependent of the transducer surface engineering in which the 

recognition element should be properly confined.3  Self-assembled monolayers (SAM) of 

thiolated molecules on gold have been widely used because its simplicity and possibility of 

functionalisation of, for example, bi-functionalised molecules with an end-thiol moiety and a 

reactive functional group (usually, amine,  carboxylate or maleimide) able to covalently bind 

proteins or DNA4-6. In general, these SAM-based platforms provide an appropriate analytical 

performance for biosensor development in mild conditions. But, the quasi-covalent Au-S bond 

(Ebond(Au-S) = 167 kJ/mol can be affected when exposing to the ambient UV irradiation 7, high 

temperatures7,8 or extreme potentials.9 Significant stability improvement can be achieved when 

grafting thiolated molecules on carbon substrates by increasing the covalent nature of the 

binding (Ebond(C-S) = 272 kJ/mol). In these approaches the carbon surfaces should be 

chemically or electrochemically pre-treated for activation.10-12 

The higher reactivity of diazonium salts versus thiols have made them attractive alternatives for 

surface modification due to an easier grafting without the need of special treatment on 

surfaces.13-16 In addition, the strong binding of diazonium salts to gold and carbon (Ebond (Au-

C) = 290 kJ/mol,17 Ebond(C-C) = 451.9 kJ/mol18) makes possible its derivatisation in similar 

manner to the reactions in solution and use them as biomolecule linkers to the surfaces.7  
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In both of the most common grafting approaches, namely “spontaneous”19 and 

electrochemical,13-16 multilayer formation is difficult to avoid due to the reactive nature of the 

diazonium radical formed. For biosensing applications, a monolayer is highly desirable as it 

permits the availability of the functional group for the subsequent binding of the biomolecules 

without a total blocking of the surface.20 As a combination of the advantages from both 

approaches, we recently developed a controlled Zn-mediated method for grafting thin layers of 

a bipodal diazonium salt on gold and carbon substrates. The grafted molecule demonstrated to 

be able of linking ferrocene groups to the gold and carbon surfaces.21 In the present work the 

viability of using these platforms as linkers for DNA probes on gold and carbon electrodes was 

studied using surface platform resonance (SPR) and chronocoulometry (CC). The developed 

surfaces were applied in the amperometric detection of a DNA sequence associated to 

Francisella tularensis (a potential warfare agent). 

 

6.3. EXPERIMENTAL SECTION 

Materials 

All reagents used were used as received. N-ethyl-N-(3-dimethylaminopropyl) carbodiimide 

hydrochloride (EDC), N-hydroxysuccinimide (NHS), phosphate buffered saline (PBS), 

strontium nitrate (Sr(NO3)2), potassium chloride (KCl), sodium acetate, tetrafluoroboric acid 

solution, zinc dust (Zn), sodium nitrite, hydroquinone, potassium hexacyanoferrate(III) 

(K3Fe(CN)6, 99 + %), and ethanolamine hydrochloride were purchased from Sigma-Aldrich. 

The sulfuric acid (H2SO4), sodium chloride (NaCl) and hydrogen peroxide (H2O2) were 

invested on Sharlau. The potassium hydroxide (KOH) were bought from J. T. Baker and 3,5-

bis(4-aminophenoxy) benzoic acid from TCI. All solutions were prepared with Milli-Q water 

(Millipore Inc., U 1⁄4 18 MU cm). The 5-bis(4-diazophenoxy)benzoic acid tetrafluoborate 

(DCOOH) was prepared as reported.21  

Synthetic HPLC-grade oligonucleotides were purchased from Biomers.net (Ulm, Germany): 

Capture probe: NH2-TEG-5'-CTT AGT AA TTG GGA AGC TTG TAT CAT GGC ACT TAG 

AA-3'  
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Complementary Target: 5-'ATT ACA ATG GCA GGC TCC AGA AGG TTC TAA GTG CCA 

TGA TAC AAG CT TCC CAA TTA CTA AGT ATG CTG AGA AGA ACG ATA AAA CT 

TGG GCA-3' 

HRP-labeled secondary probe: 5'-TCT GGA GCC TGC CAT TGT AAT-HRP-3' 

Non-complementary target: :5’-GAG AGG AAG GAG ACT GTC TGG AAG TTG CCT CTG 

TTC CAC AGA CTT AGA TTT GAC CCG CAA TTT GCA CTG ACA AAC ATG GCT 

GTG CTA AAA CAT A-3’ 

Instrumentation and Methods 

Surface functionalisation 

DNA sequences were immobilised or detected as following: The carboxylate of DCOOH was 

activated with EDC:NHS 4:1 molar ratio in acetate buffer at pH 5.6 during 30 minutes. After 

rinsing with water, 1 µM aminated-DNA capture probe (in 10 mM PBS buffer pH 7.4) was 

added was allowed to interact for 1 hour. The unreacted carboxylate groups were deactivated 

by reacting with ethanolamine (pH 8) during 30 min. After washing with PBS, the electrode 

will be ready for using. 

Electrochemical measurements 

Electrochemical measurements were performed on a PC controlled PGSTAT12 Autolab 

potentiostat (EcoChemie, The Netherlands) using screen printed carbon (DRP-110) and gold 

(DRP-250BT). The electrode configuration was: working electrode: carbon or (gold) disk (φ = 

4 mm), reference electrode: silver (silver), counter electrode: carbon or (platinum). All 

electrochemical experiments were performed a minimum of three times. The electrodes were 

modified and checked as previously described.21   

Cyclic voltammetry (CV) and chronocoulometry (CC) were performed in a Autolab model 

PGSTAT12 potentiostat/galvanostat controlled with the General Purpose Electrochemical 

System (GPES) software (Eco Chemie B.v. The Netherlands). The parameters employed were: 

CV, sweep rate ) 100 mV/s; CC, pulse period:  500 ms, pulse width: 500 mV. 150 µM of 

[Ru(NH3)6]Cl3 was used as electroactive species. The surface excess of redox marker 

[Ru(NH3)6]
3+ (ΓRu in mol/cm2), and the surface coverage of ssDNA (probe on the surface: 

ΓssDNA in molecule/cm2) and  dsDNA (probe+target captured on the surface: ΓsdDNA in 
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and substituting in the equation

 

The areas of electrodes needed for calculations were determined by carrying CV of 2 mM 

K3Fe(CN)6 + 0.2 M KCl at different scan rates and us

equation at 25 ºC,20 being 0.127 

(geometric surface area 0.125 cm

Amperometric detection of Francisella tularensis DNA target.
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labelled DNA (DNA-HRP) 

consecutively and incubated for 1 hour each in electrodes (gold and carbon) tethered ssDNA

25 ºC. The  Step and Swep (SAS) amperometric detection at 

recording the background in PBS buffer at pH 6, followed by

hydroquinone (1 mM) and the substrate of the enzyme, H

Final values were obtaining by subtracting the background from total signal. A 

noncomplementary target was used at 10 nM concentration for specificity studies.

The Surface Plasmon Resonance (SPR) studies

The Surface Plasmon Resonance (SPR)
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corrosive) for 1 minutes, followed by thorough washing with
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ethanol and dried under a filtered nitrogen stream. DCOOH was grafted a) by Zn

method and b) allocating a drop of 

and reference electrodes in the drop, and doing the electrografting 

Eq1. 
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), where calculated from integrated Cottrell expression, extrapolating at time = 0 

and substituting in the equation 1 (Eq1):22-24  
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at different scan rates and using the simplified 
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the background in PBS buffer at pH 6, followed by the addition of the mediator 

and the substrate of the enzyme, H2O2 (1 mM) and measuring again
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UVT cleaning instrument (from Novascan, USA) for 9 min, rinsed with 

and dried under a filtered nitrogen stream. DCOOH was grafted a) by Zn

allocating a drop of DCOOH sulphuric solution on slide, immersing 

electrodes in the drop, and doing the electrografting tacking th
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reduction of Ru(III) to Ru(II)) m is the number of bases 

of ssDNA (37) or dsDNA (ssDNA + complementary 

target) (128) and dsDNA (131) (ssDNA + 

UNIVERSITAT ROVIRA I VIRGILI 
MOLECULAR AND SUPRAMOLECULAR SURFACE MODIFICATION TOOLS FOR HIGHLY SENSITIVE AMPEROMETRIC AND 
ELECTROCHEMILUMINESCENT BIOSENSORS. 
Mabel Torréns del Valle 
Dipòsit Legal: T 148-2015



Doctoral Thesis 

 

  129 

 

electrode. The slide was properly washed as described above and after activation of DCOOH, 

10 µM aminated-ssDNA was added and blocked with 1 mM ethanolamine-HCl pH 8 as 

previously described. An additional blocking was made by immersing in Denhardt´s solution 

during 15 min under stirring in the dark, washed with PBS during 15 min and then dried with 

nitrogen stream. Then the chip was allocated in the glass prism using 4 µL of oil. The 

conditions selected for the study were: Kinetics Angle: 58.20°, Flow rate: 50 µL/min, sample 

loop volume: 200 µL and 37 ºC. Firstly,12 mM of NaOH with 12 % of ethanol was passed at 

50 µL/min, then washed with PBS (with 0.8 M NaCl) and 500 nM of specific or non-specific 

target was injected in 0.8 M NaCl (to achieve target saturation of the surface). After each step 

the surface was regenerated using NaOH and washed with PBS. Target surface coverage 

calculations were provided from the intrinsic software in pg/mm2 of equipment and for ΓdsDNA 

calculation the corresponding duplex molecular weights were taken (MW 

(ssDNA+Complementary Target) = 39837 g/mol and MW (ssDNA + Noncomplementary 

Target = 40759 g/mol)).  

 

6.4. RESULTS AND DISCUSSION 

 

DNA sensing gold and carbon platforms were prepared by linking the capture DNA to the 

already grafted surfaces with 5-bis(4-diazophenoxy)benzoic acid tetrafluoborate (DCOOH) by 

the new potentiostat-free method21 or electrochemically (Figure 6.1a).  After blocking the non-

reacted carboxylates, the surfaces were used for capturing DNA target. The first approximation 

to evaluate the accessibility of target to the grafted capture probe was by Surface Plasmon 

Resonance (SPR) (Figure 6.1b).  DNA target was allowed to interact at 37 ºC with the ssDNA 

surface at high concentration for ensuring surface saturation.  
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Figure 6.1. a) Schematics of diazonium salt grafted surfaces and accesibility of DNA for binding sites. 

 b) SPR of the interaction of complementary (C-Target) and noncomplementary (NC-Target) DNA with Zn-

mediated (Zn-g) and electrografted (E-g) DNA tethered surfaces. ΓsdDNA in molecule/cm2 

Higher surface coverage by the DNA target (43%) was found for the spots where DCOOH was 

grafted following the Zn-mediated method. This could be explained attending to the thinner 

organic layer that can be achieved by the reduction of diazonium salt using Zn in comparison 

with electrografting,21 avoiding multilayer formation that can block the access of the large 

DNA target to the small linker attached to organic surface. In addition, the surface prepared by 

electrografting showed around 4 times higher interaction with a non-complementary DNA 

target in comparison with the Zn-mediated approach, because of the lower accessibility of the 

blocking of the remaining carboxylic groups that can interact in electrostatic unspecific manner 

with DNA target.  

Chronocoulometry (CC) was used to study the different surface modification steps in both gold 

and carbon substrates. CC allows to evaluate the surface coverage of the DNA after linking 
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with DCOOH and also the accessibility of the DNA target to the capture probes.22,23 

[Ru(NH3)6]
3+ cations act as counter ions to compensate the anionic phosphate backbone of 

DNA in 1 to 3 ratio, by replacing the natively entrapped monovalent Na+ or K+ in a low ionic 

strength solution. The pure electrostatic interaction of [Ru(NH3)6]
3+ without either intercalation 

or preference for specific base permits a calculation of DNA surface density (ΓDNA) by 

determining the surface excess of the [Ru(NH3)6]
3+ entrapped in the DNA  layer (ΓRu).

22-24 The 

values of Qdl and nFAΓRu when [Ru(NH3)6]
3+ replaces native Na+ from DNA, were determined 

by measuring the charge before and after immersing in the redox marker solution and 

extrapolating at time 0 in a Q vs time1/2 plot (Figure 6.2). The results are in agreement with 

literature.22-24 

As observed in Figure 6.2, the DNA surface coverage for Zn-mediated grafted substrates was 

increased in a 56% for gold and 34 % for carbon respect to the surfaces prepared by 

electrografting. In consequence, using the Zn-mediated approach, a significant increment of the 

amount of DNA target molecules captured (around 37 % for gold and 43 % for carbon) respect 

to electrografted surfaces was achieved. Lower interaction with a non-complementary DNA 

sequence was observed for the sensors prepared following the Zn-mediated grafting (for gold: 

10% for Zn-mediated and 15% for electrografting; for carbon: 12% for Zn-mediated and 20% 

for electrografting, respect to the signal obtained with complementary target). 

For the carbon surface prepared by Zn-mediated approach, the significant increment of the 

target entrapped is remarkable. The higher roughness and less conductivity of carbon 

comparing with gold enhance the differences between both approaches. They are more evident 

here, because the bigger size of DNA respect to the small ferrocene,21 highlighting the 

importance of having a thin and organised layer, which can be obtained using Zn-mediated 

grafting. 

The agreement of the results obtained from CC and SPR supports the viability of using Zn-

mediated approach for grafting biosensing surfaces.  
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Figure 6.2. Chronocoulometry study (Anson plot) of DNA surface coverage for gold and carbon substrates 

modified using both Zn-mediated (continuous trace) and electrografting (discontinuous trace) approaches. Blue 

arrows: CC in absence of [Ru(NH3)6]Cl3  (Qdl); red arrows CC in presence of 150 µM [Ru(NH3)6]Cl3 (nFAΓRu) 

before (a)  and after adding target (b). ΓDNA in molecule/cm2. 

 

Finally, the surfaces were tested for developing amperometric calibration curves in a sandwich 

type assay using a HRP-modified secondary probe (Figure 6.3). As observed in Figure 6.3, in 

the case of the surfaces prepared using Zn-mediated approach, an increase in the sensitivity 

(around 5-6 times), a decrease in the LOD and lower non-specific interaction percent were 

observed. In addition, around 5% more of interaction with a non specific target was observed 

for electrochemical prepared surfaces in comparison with those grafted by Zn-mediated 

methodology. The higher roughness and less conductivity of carbon comparing with gold 

enhanced the differences between both approaches.  
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The better results obtained for Zn-mediated method can be due to the more controllable 

grafting which results in a thinner and more organised platform for attaching biomolecules. 

The less compact surface, in comparison with the electrografted surface, favours the electronic 

transferring from solution to the transducer. This also can be a justification of the increment of 

current on gold and carbon when the same concentrations are detected using surfaces modified 

by Zn-mediated grafting tethered DNA.  

 

 

Figure 6.3. Amperometric calibration curves for DNA detection using Zn mediated and electrochemical gold and 

carbon grafted surfaces. 

 

6.5. CONCLUSIONS 

The viability of using Zn mediated grafting for preparing DNA biosensing surfaces has been 

demonstrated for both carbon and gold surfaces. The potentiostat-free process is based on the 

reduction of diazonium salt by Zn, which combines the rapidness of electrografting and the 

simplicity of the spontaneous grafting in one single method. The usefulness of the method to 

improve the analytical performance of biosensors respect to the already reported methods has 

also been demonstrated.  
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CHAPTER 7 

ELECTROCHEMILUMINESCENT DNA SENSOR BASED ON CONTROLLED Zn-

MEDIATED GRAFTING OF DIAZONIUM PRECURSORS 

7.1 ABSTRACT 

Controlled Zn mediated grafting of a thin layer of a diazonium salt was used to 

functionalise a carbon electrode with a ruthenium(II)-tris-bipyridine-labelled DNA for use 

as a capture probe in an electrochemiluminescent genosensor. Secondary reporter probe 

was labelled with a ferrocene molecule, and in the presence of single-stranded DNA target, 

a genocomplex formed, where the Fc-label effectively quenched the ECL of the signal 

emitted from the Ru-label. The optimum spacing of the labels for maximum sensitivity 

and minimum detection limit was optimised, and the signal reproducibility and stability of 

the platform was demonstrated.        

 

7.2 INTRODUCTION 

Electrochemiluminescence (ECL) is a detection technique that combines both 

electrochemical and photochemical processes. It has long garnered a plethora of attention 

because it incorporates the advantages of both methods for biomolecule detection, resulting 

in high sensitivity and versatility.1,2 In ECL, high-energy electron-transfer reactions are 

carried out on electrodes via the application of a specific potential to generate excited states 

that emit light.3,4 Exploiting potential provides a more selective source of excitation than 

afforded optically,5 and also simplifies the instrumentation for the construction of portable 

devices6,7 The use of ECL transduction has been reported for the detection of DNA8 and 

proteins9 immobilised on different substrates such as carbon,10 gold11 and indium-tin 

oxide12 using diverse ECL-active species as labels.13,14 To date, the most commonly used 

ECL detection method is based on the co-reactant mechanism15,16 and the coordination 

compounds formed by Ruthenium (II) and pyridinic derivatives as chelates, either as a 

single molecule or in combination with nanostructures,2,17 have been reported as preferable 

luminophores, using tripropylamine (TPA) as co-reactant.18,19 In this system the same 
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applied potential is able to oxidise both, the +2
3)(bpyRu  (luminophore)  and the TPA (co-

reactant), producing strong oxidative species. From the reaction of these two species the 

excited state *2
3)( +bpyRu is formed which emits light.20  ECL “on/off” strategies have recently 

been reported for clinical analytes21 using immuno22 and DNA23 detection, where ferrocene 

derivatives are used to quench the ruthenium complex signal ("off"), as it has good 

quenching efficiency and stability in different chemical media.1,24-26 Whilst ECL is a very 

sensitive method27 one of its' limitations is the high potentials required to excite the active 

centre and this is particularly critical in the case of surface-immobilised ECL strategies. In 

order to solve this, a strong and stable covalent bond able to support the high applied 

potentials is required. The platforms based on diazonium derivatives immobilised on gold 

or carbon surfaces have been demonstrated to to be stable at the potential used in ECL 

detection.28, 29  

In the present work an ECL genosensor for the detection of a Francisella tularensis DNA 

target was developed. The Francisella subspecies tularensis is one of the causative agents 

of the disease tularemia,30 and current methods for the detection of the presence of this 

bacteria involves time-consuming culturing of suspect pathogens 31 or, alternatively, the 

detection of antibodies, which cannot be achieved until at least two weeks following 

infection.32 These drawbacks render rapid DNA detection an attractive strategy and to this 

end, detection of the subspecies tularensis is the use of the specific sequences of tul4,33 

which was used as a model target for the present study. 

 

7.3 EXPERIMENTAL SECTION 

Materials 

All reagents are commercially available and were used as received.  Ruthenium (II) tris-

bipyridine N-hydroxysuccinimide, N-ethyl-N`-(3-dimethylaminopropyl) carbodiimide 

hydrochloride (EDC), N-Hydroxysuccinimide (NHS), streptavidin, NaH2PO4.H2O, 

Na2HPO4, 4-morpholineethanesulfonic acid hydrate (MES), 3-hydroxypicolinic acid 

(HPA), strontium nitrate, potassium ferricyanide (III), potassium ferrocyanide (II) and 

tetramethylbenzidine (TMB) liquid substrate system were purchased from Sigma-Aldrich 

(Barcelona, Spain). The sulphuric acid was purchased from Scharlau (Barcelona, Spain) 

and dimethyl sulfoxide from Abcam plc. The Sephadex G-25 size exclusion column were 
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received from Pierce, the magnetic beads from SIMAG and the 3,5-bis(4-aminophenoxy) 

benzoic acid was received from TCI. All solutions were prepared with Milli-Q water (18 

MΩ.cm/ Millipore Inc.).  All HPLC-grade oligonucleotides were provided by Biomers.net 

(Ulm, Germany). The sequences used in this work are listed below:  

DNA model system designed for analysing the effect of the separation between the 

luminescent Ruthenium (II) tris-bipyridine (Rubpy) group attached to DNA and the 

quencher ferrocene (Fc) linked to the secondary probe 

Probe for preparing the Rubpy-DNA: 5’- TGG GCG TTA AA CGT GAC A-3`-NH2 

Secondary probe: Fc-5’-ACC GAG ACG AAT AGG TAT-3’ 

Targets containing spacer T (n: 0,1,2,3,4,5 and 6):  

5´-ATA CCT ATT CGT CTC GGT (T)n TGT CAC GTT TAA CGC CCA-3` 

Francisella tularensis DNA model system 

Target: 5'-ATT ACA  ATG GCA GGC TCC AGA AGG TTC TAA GTG CCA TGA TAC 

AAG CTT CCC AAT TAC TAA GTA TGC TGA GAA GAA CGA TAA AAC TTG GGC 

A-3' 

Capture probe: Biotin-TEG-5'-CTT AGT AAT TGG GAA GCT TGT ATC ATG GCA CTT 

AGA A-3' 

Probe for preparing the Rubpy-DNA: (same capture probe + NH2 in 3`- position) 

HRP-labeled secondary probe: 5'-TTC TGG AGC CTG CCA TTG TAA T-3'-HRP 

Fc-labeled secondary probe:  Fc-5'-TTC TGG AGC CTG CCA TTG TAA T-3` 

Instrumentation and methods 

Optical instrumentation 

UV–Vis spectra were recorded in a temperature controlled Cary 100 Bio spectrophotometer 

(Varian) in 1 cm quartz cells. Plate optical densities were recorded in a Wallac Victor2 

1420 Multilabel counter from Perkin Elmer.  The fluorescence experiments were performed 

in a Cary Eclipse spectrofluorimeter. The excitation wavelength was set at 460 nm. The 
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fluorescence spectra were recorded in the wavelength interval of 540-700 nm with 

excitation and emission slits of 10 nm and a scan rate of 240 nm/min.  

All experiments were carried out in triplicate and the average value was used. 

Electrochemical and electrochemiluminescence instrumentation 

Electrochemical (EC) measurements were performed on a PC controlled PGSTAT12 

Autolab potentiostat (EcoChemie, The Netherlands). The electrochemiluminescence (ECL) 

experiments were carried out using a device assembled at Institut für Mikrotechnik Mainz 

GmbH (IMM), Germany. The ECL equipment contains a photomultiplier (Hamamatsu 

H10682-01) connected to a potentiostat manufactured by PALM INSTRUMENTS BV to 

supply the voltage to the working electrode.  Screen printed carbon electrodes 

configuration (DRP-110): working electrode: carbon disk (φ = 4 mm), reference electrode: 

silver, counter electrode: carbon, were used in both EC and ECL experiments. The carbon 

electrodes were activated by cycling 3 times from 0 to -1.2 V in 0.5 M KOH at of 50 mV/s 

scan rate. The quality of the cleaning step was checked using cyclic voltammetry in 1 mM 

of K4[Fe(CN)6] /K3[Fe(CN)6] + 50 mM of Sn(NO3)2 as supporting electrolyte. The CV was 

recorded from -0.2 to 0.4 V at 100 mV/s.  

MALDI-TOF analysis of the DNA conjugates 

The analysis of the conjugates were carried out in an Applied Biosystems Voyager STR 

MALDI-TOF spectrometer. Samples were prepared using  3-hydroxypicolinic acid in 50:50 

(v/v) acetonitrile/water buffered with 0.05 M diammonium acetate as matrix. Linear 

positive mode was used for detection. 

Synthesis of the conjugates Rubpy-DNA 

Ruthenium (II) tris-bipyridine N-hydroxysuccinimide was previously dissolved in DMSO 

and then water was slowly dropped for avoiding precipitation (important: % (v:v) of 

DMSO respect the final volume of water was less than 10 % ). Then Rubpy solution was 

mixed with a 25 µΜ solution of biotin-TEG-DNA-NH2 probe in PBS (pH=7.8) in a 1:8 

DNA:Rubpy molar ratio. The reaction was carried out by shaking at room temperature. 

Since the Rubpy is very sensitive to light, the conjugation was carried out in light shielded 

containers. After 1 hour, the product obtained was purified using NAP G-25 size exclusion 
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column DNA quality to separate the uncoupled Rubpy. This step was achieved following 

the step 7 of the procedure MSD® TAG-NHS-Ester, MSD Labeling method. The column was 

pre-equilibrated with PBS and the absorbance of the fractions obtained was measured. 

Finally the non-labeled DNA was isolated from the conjugate using carboxyl magnetic 

beads. 500 µL of the particles were washed with 1 mL of MES two times and the carboxyl 

groups were activated adding EDC and NHS at 80 and 40 mg/mL respectively during 20 

minutes. The activated particles were separated using magnet and washed with PBS. Then 

the DNA conjugate were mixed with the magnetic beads and shaken during 2 hours. The 

beads containing the non-labeled DNA were separated by magnet and the supernatant was 

characterised by mass spectroscopy and UV-Vis.  

TGG GCG TTA AAC GTG ACA-Rubpy m/z = 6370.69   

Biotin-TEG-CTT AGT AAT TGG GAA GCT TGT ATC ATG GCA CTT AGA A-NH-
Rubpy m/z = 12815.74  

 

UV-Vis spectra were very similar for both conjugates: 260 nm (DNA band) and also the 

characteristic bands of Rubpy MLCT at 460 nm and the π→π* ligand charge transfer 

transition at 277 nm. 

Optimisation of Rubpy-DNA and quencher distance in fluorescence and ECL 

detection 

The fluorescence spectrum of Rubpy-DNA dissolved in PB buffer with 0.8 M NaCl was 

recorded ( λexc = 460 nm) at 25 ºC. In order to elucidate the optimum quencher distance, 

targets containing spacer (from 0 to 6 bases) with consecutive numbers of bases were 

incubated with Rubpy-DNA during 1 hour at 25 ºC in light shielded fluorescence cell (on 

carbon electrode). Finally, Fc-DNA was added and the same reaction conditions than for 

target hybridisation were used. In all the steps the molar ratio was 1:1:1. Control 

experiment was performed by mixing Fc-DNA and Rubpy-DNA in molar ratio 1:1, without 

target. The ECL study was carried out using the same system described for fluorescence. A 

potential pulse of +1 V was applied for 5 s and  100 mM TPA as coreactant  in PBS pH 7.8.  
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ELONA study to optimise the pH evaluate the non-specific interaction between probes 

Streptavidin Coated Plates were washed three times with 100 µL of PBS. Secondly, biotin-

TEG-DNA (40 nM in PBS buffer pH 7.4) was immobilised on streptavidin coated plate 

during 30 min. After washing, the target (10 nM) was added and incubated during 1 hour. 

Then the secondary HRP-DNA probe (10 nM) was incubated for 1 hour.  Subsequently, to 

elucidate the optimum working pH, different solutions of 100 mM TPA in PBS at pH from 

7 to 12 were incubated in different strips. After each immobilisation step, the wells were 

three times washed with 100 µL of PBS. Finally after adding TMB as substrate, the 

absorbance was measured. 

ELONA study to evaluate the non-specific interaction between probes 

Streptavidin Coated Plates were washed three times with 100 µL of PBS. Then biotin-TEG-

DNA (40 nM in PBS at pH 7.4) was immobilised on streptavidin coated plate during 30 

min. After washing, the target was added at different concentrations (0, 5, 25, 45, 100 nM) 

and incubated during 1 hour. The secondary DNA probe labeled with HRP (10, 40, 100 

nM) was added at different concentrations.  After each immobilisation step, the wells were 

three times washed with 100 µL of PBS. Finally after adding TMB as substrate, the 

absorbance was measured. 

ECL detection in solution 

Protected from light, DNA target and Rubpy-DNA were pre-incubated for 1 hour at 25 ºC 

and then a solution of Fc-DNA was added and mixed during 1 hour more. The DNA 

sandwich system was prepared in 0.5:0.15:0.5 and 0.5:0.5:0.5 µM  (Rubpy-DNA:target:Fc-

DNA) in PB + 0.8 M NaCl. ECL measurements were carried out before and after mixing 

with Fc-DNA. In addition, the  ECL signal of Rubpy-DNA, Fc-DNA and 100 mM TPA in 

0.1 M of PB at pH 7.8 used for experiment were recorded as controls.  

Preparation of the surface for ECL measurements 

The details of the synthesis of 3,5-bis(4-diazophenoxy) benzoic acid tetrafluoroborate and 

its immobilisation on carbon electrodes via Zn-mediated grafting were reported in previous 

work.29 

After activation of the carboxylate group of the diazonium salt-coated surface using 20 µL 
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EDC/NHS (2:1 molar ratio), 1 µM streptavidin; was linked via amide bond formation. 

Then, after washing, the biotin-Rubpy-DNA capture probe at 1 µM, previously dissolved in 

PBS buffer at pH 7.4 was immobilised on the modified carbon surfaces during 1 hour at 25 

ºC. After rinsing the electrode, ECL signal was recorded using the same parameters 

described above. The measurement was recorded 10 times to check the reproducibility of 

the signal  

Differential Pulse Voltammetry (DPV) to check the presence of Rubpy and ferrocene 

linked to DNA probe and secondary probe respectively on the sandwich after 

detection 

After the modification of the electrode with Rubpy-DNA, a DPV was recorded in 0.1 M PB 

pH 7.4, at potential range from 0.1 to 1.1 V and the scan rate was 50 mV/s. Consequently 

the target and secondary Fc-DNA was hybridised and once more DPV was recorded but in 

the potential range from 0.1 to 0.4 V to detect the ferrocene on surface. In the absence of 

target, the signal from ferrocene was not observed as expected.  

Calibration curve for DNA detection 

After the immobilisation of the Rubpy-DNA capture probe to the surface following the 

same procedure mentioned in session 3.7, the target sequence (0; 0.1; 0.5; 0.7; 0.8; 1; 2; 3; 

4; 5 nM) was dissolved in PBS buffer (pH 7.4 + 0.8 M NaCl) and hybridised to the capture 

element during 1 hour. Finally the secondary Fc-DNA probe was hybridised to the target in 

a molar ratio 1:1 respect the Rubpy-DNA and the detection was carried out using the same 

parameters described in section 3.2. 

7.4 RESULTS AND DISCUSSION 

In the work reported here, an “on/off” approach was developed based on a sandwich type 

detection of DNA by using two DNA sequences complementary to almost consecutive 

regions of the DNA target: a capture DNA probe labeled with ruthenium (II) tris-bipyridine 

(Rubpy), and a secondary DNA reporter probe labeled. In the presence of single stranded 

target DNA, the probes hybridise to their complementary sequences on the target, bringing 

them into close proximity, permitting energy transfer and thus facilitating the quenching 

effect of the ferrocene on the Ru(bpy) signal. This on/off sandwich approach also increases 

the specificity as two regions of the target hybridise with two different probes. The system 
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was optimised in solution-phase and then, using the optimised experimental conditions, a 

solid-phase system exploiting stable diazonium grafting was explored .29 

Firstly, a model system based on short sequences, specifically designed not to have self-

complementarity leading to secondary structures, was used to study the effect of the 

separation between the luminescent Rubpy and the quencher ferrocene (Figure 7.1). Rubpy 

was linked to DNA via amide bond formation between the activated carboxylic group of a 

Rubpy derivative and aminated DNA, and the bioconjugate was purified using column 

chromatography. It was then evaluated using UV-Vis at 260 nm to detect DNA and at 460 

nm to measure the characteristic bands of Rubpy MLCT, as well as at 277 nm  

to measure the the π→π* ligand charge transfer transition, which appears 10 nm shifted to 

blue respect to the starting Rubpy. Additionally, the expected m/z = 12815.74 of the 

bioconjugate was observed using MALDI-TOF.  

Rubpy-DNA and Fc-DNA were added in 1:1 molar ratio to target DNA sequences that 

separate them by 0 to 6 bases, and the genocomplex incubated protected from light. A 

control was carried out in the absence of any target DNA and no quenching was observed. 

The same procedure was followed to study the system using fluorescence detection and the 

results were compared considering the control response as a 100% signal (Figure 7.1). 

Figure 7.1. ECL (grey) and fluorescence (white) study of the effect of the distance on the quenching of the 

luminescent Ru(bpy)3
2+ group. 
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Comparing both methods, two bases in the spacer of target was found as the optimum 

compromise between the proximity (needed for energy transfer) and the steric hindrance 

(which could affect the hybridisation of strands) to obtain the highest quenching effect, 

giving a decrease in signal of 85% and 95% for ECL and fluorescence, respectively 

(Figure 7.1). It should be noted that the concentration of the probes used for ECL analysis 

was four orders of magnitude lower than in case of fluorescence analysis, highlighting the 

increased sensitivity achievable using ECL detection.  Once the spacing of Fc to Rubpy 

labels had been optimised, the target system of Francisella tularensis was studied. Any 

potential cross-reactivity between the two probes to be used was evaluated and no 

interaction was observed (Figure SI 7.2a). The pH for maximal ECL (basic)34 whilst not 

inhibiting hybridisation was evaluated by immobilising the capture probe on a streptavidin 

plate and the secondary probe labeled with HRP was used for detection by colorimetric 

enzyme-linked oligonucleotide assay, and pH 7.8 was chosen as an optimum compromise 

between efficient DNA hybridisation and TPA deprotonation12. Finally, using optimised 

conditions of two base spacing between labels and a pH of 7.8, a 22-mer-Fc-DNA probe 

and a 37-mer-Rubpy probe were hybridised with 91-mer-Francisella tularensis target in 

solution phase as a proof-of-concept with a real system. The evaluation was carried out 

using two concentrations of target DNA (0.15 and 0.5 µM). The controls of Rubpy-DNA 

and Fc-DNA in the absence of DNA target were observed, as expected, to be maximal and 

minimal, respectively. When DNA target was introduced in a quantity of 0.5: 0.15: 0.5 µM, 

a notable quenching of about 60 % was observed, and when the concentration of DNA 

target was increased, the ECL signal was further reduced, indicating that the quenching 

effect is proportional to the target concentration. 
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Figure 7.2. ECL study of system Rubpy-DNA/target/Fc-DNA in solution and using TPA as co-reactant 

(Column 2 and 3). Controls: Rubpy-DNA, Fc- DNA or TPA alone (Column 1, 4, 5). All signals were 

referenced with respect to the initial Rubpy-DNA ECL signal. 

Having demonstrated a proof-of-concept in the homogenous solution phase, the possibility 

of transferring the system to an immobilised, heterogenous phase was pursued. This is 

highly attractive in terms of simplicity and potentially increased sensitivity and 

multiplexing capability. However, it is known that thiolated DNA desorbs from gold 

electrodes at potentials of > ca. 1V vs Ag/AgCl, and thus grafting of a bipodal diazonium 

salt on carbon electrodes was exploited. This diazonium salt 3,5-bis(4-

diazophenoxy)benzoic acid tetrafluoroborate (DCOOH) has recently been demonstrated to 

be stable at high positive potential due to the formation of covalent bonds with carbon. 

Furthermore the immobilisation strategy involves a simple 5-minute Zn-mediated grafting 

without the necessity of using a potentiostat resulting in an almost monolayer formation 

due to a lack of radicals.29  

In the approach studied here this organic platform was linked to streptavidin and used to 

anchor the labeled biotin- Rubpy-DNA capture probe. Stability of immobilisation was 

tested by applying a potential of +1 V vs Ag/AgCl  The stability and reproducibility of the 

signal was recorded and remained unaffected during at least ten cycles of application of 

potential (SD 3%) (Figure 7.3a, inset).  
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Figure 7.3. a) The ECL signal from carbon modified Rubpy-DNA for ten consecutive pulses of potential 

application. b) Initial ECL signal from immobilised Rubpy-DNA, c) Following hybridisation with target 

DNA and Fc-DNA and d) Following denaturation of genocomplex with 0.1 M NaOH. ECL conditions: 

potential pulse of +1 V during 5 s and  100 mM TPA in PB pH 7.8 

 

Figure 7.3 shows the switch on/off process used for detection of DNA target. Firstly, the 

baseline ECL signal from the immobilised Rubpy-DNA was recorded (Figure 7.3b) and 

then following addition of target DNA and the reporter Fc-DNA probe (Figure 7.3c). To 

demonstrate that the quenching of the Rubpy signal is due to the effect of ferrocene and not 

due to damage to platform, alkaline conditions were used to denature the genocomplex and 

reverting to the Rubpy-DNA probe. The ECL signal was successfully recovered (Figure 

7.3d), clearly demonstrating the quenching effect of ferrocene as well as the possibility to 

re-use the platform for repeated measurements of target DNA.  The presence of the Rubpy 

and ferrocene labeled probes was further demonstrated by recording the differential pulse 

voltammograms (Figure 7.4a and b). The significant difference in current intensity 
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ferrocene present on the target DNA concentration, whilst a monolayer of the immobilised 

labelled DNA probe would result in a higher amount of Rubpy being present. The surface 

confinement of the ferrocene group was also confirmed using cyclic voltammetry by 

obtaining a linear behavior of cathodic and anodic peak currents vs. scan rate (Figure 

7.4c.). 

 

Figure 7.4. Evidence of the presence of Rubpy (a) and ferrocene (b) in the system (DCOOH/streptavidin/ 

Rubpy-DNA /target/ Fc-DNA) on carbon surface. c): Dependence of peak current with scan rate of 

immobilised Fc-DNA. 

Finally, this platform was tested to quantitatively detect the Francisella tularensis target 

DNA. A calibration curve was constructed with different target concentrations (Figure 7.5) 

using the optimised experimental parameters. As can be seen in Figure 7.5, the quenching 

of the signal was proportional to the concentration of the DNA target in the range from 0 to 

1 nM with a limit of detection of 0.1 nM. 
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Figure 7.5. Calibration curve for DNA target detection based on the percentage of Rubpy ECL signal 

following quenching by the Fc-DNA via target DNA hybridisation. Inset: Linear range from 0 to 1.0 nM of 

target. ECL conditions: potential pulse of +1 V for 5 s and 100 mM TPA in PB pH 7.8 

 

7.5 CONCLUSIONS 

A platform based on the Zn-mediated immobilised 3,5-bis(4-diazophenoxy)benzoic acid 

tetrafluoroborate (DCOOH) to demonstrated to be efficient for the surface confinement of 

capture Rubpy labeled DNA probe and its subsequent use for DNA target detection by ECL 

quenching by a Fc-labeled reporter probe. As a result of the robustness of the thin layer of 

covalent linker, a stable and reproducible ECL signal from Rubpy-DNA was recorded during 

ten cycles after applying + 1 V. Experimental parameters were optimised and a subnanomolar 

concentration of DNA target was achieved. 
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7.7 SUPPORTING INFORMATION 

Figure SI 7.1. UV-vis spectra of DNA (black), Rubpy (green) and Rubpy-DNA (red). The spectra were registered 

in water in a quartz cell. 

 

 

Figure SI 7.2. ELONA studies to evaluate: (a) the non-specific interaction between the surface tethered and 

labelled reporter probe and (b) evaluation of optimum pH for ECL detection without affecting the hybridisation 

between DNA sequences. 
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Figure SI 7.3. Fluorescence study of interaction between fluorophore Rubpy and quencher Fc-NH2 in solution. 

λexc = 460 nm, Exc/ Em slit = 10 nm. 
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GENERAL CONCLUSIONS  

The feasibility of applying the host-guest interactions for building supramolecular 

platforms to create versatile platforms with biosensor purposes has been demonstrated 

along the Chapters 2-4. These platforms were based on bifunctionalised 

carboxymethylcellulose (CMC) polymer backbone bearing adamantane/ferrocene units and 

a DNA probe on a cyclodextrin surface linked to the gold surface. In these approaches, the 

presences of CMC backbone allowed the improvement in the spatial orientation of the 

DNA probes on the surface and decrease the non-specific interactions.  

In Chapter 2, the applicability of supramolecular host–guest interactions in the 

development of colorimetric DNA tests based on the self-assembly of bifunctionalised 

CMC polymers on cyclodextrin-modified microtitre plates was demonstrated. A real PCR 

amplified sample of a celiac patient, demonstrated to carry the HLA-DQA1*0201 allele 

using Luminex-based HLA typing, was tested using the supramolecularly coated plates and 

compared with the thiolated probe-coated plates. The results obtained using supramolecular 

plates were in subnanomolar ranges and lower than those obtained using a thiolated DNA 

capture probe, clearly demonstrating that the supramolecular chemistry is not affected by 

the sample matrix and does not need to be pre-treated.  

In Chapter 3, the platform based on the self-assembly of bi-functionalized polymer bearing 

adamantane and DNA onto cyclodextrin surface was successfully tested in an amperometric 

genosensor Using this platform  an excellent LOD of 0.08 nM as well as high selectivity 

were achieved. It was also applied to the detection of DNA in a real patient's sample.  

In Chapter 4, a novel route for the immobilisation of electron transfer mediators on electrode 

surfaces based on the interfacial complexation of a polymer backbone bearing ferrocene units 

on a cyclodextrin surface was successfully established. This strategy only requires the addition 

of an enzyme substrate and could be an attractive alternative to the development of packaged 

genosensors avoiding the use of unstable redox mediators. The confinement of the ferrocene 

(mediator) to the electrode surface greatly decreased the detection limits attained with respect 

to a similar supramolecular system based on electrochemically inactive adamantane/CD 

inclusion complexes and requiring addition of the mediator in solution.  

- For both supramolecular systems and in both colorimetric and amperometric detection 

techniques the combination of a hydrophilic support layer (βCDPSH) with the controlled 
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attachment of the capture probe to a polymeric backbone minimises non-specific 

interactions and provides an optimal probe separation to avoid electrostatic repulsions, 

which is essential in the development of DNA biosensors. The CMC backbone allows an 

optimal spacing of the DNA probes to avoid steric hindrance for target binding due to an 

excessively dense layer of probe DNA, with the negative charge of the CMC vertically 

orienting the probe, and the combination of the CD and the CMC facilitate maximal 

binding of the target DNA.  

The second alternative of surface modification studied was based on a covalent organic linker 

to expand the frontier of the surface functionalisation from the gently potential window 

techniques like amperometry to a harsh electrochemiluminiscence, where extreme potentials 

could be applied.   

In Chapter 5, a new approach based on Zn-mediated grafting of a bipodal diazonium salt (3,5-

bis(4-diazophenoxy)benzoic acid tetrafluoroborate (DCOOH)) was developed. This strategy 

successfully combines the principal advantage of potentiostat-free spontaneous grafting with 

the rapidness of electrografting. In this method, by exploiting zinc as a reducing agent for the 

formation of aryl radicals, the grafting in few minutes of a very thin organic layer with no 

instrumentation required was accomplished. The surface was characterised by Raman, XPS, 

AFM and voltammetric techniques. The feasibility of linking a ferrocene derivative was 

demonstrated using cyclic voltammetry and XPS. This work opened the doors for the 

applicability of this surface on biosensors, which were demonstrated in the following chapters. 

In Chapter 6 the efficiency of Zn-mediated grafted diazonium salt surfaces for tethering DNA 

in both gold and carbon substrates was demonstrated. Higher sensitivity and lower limit of 

detection were achieved when these surfaces were used for detecting a Francisella tularensis 

DNA target in comparison with those prepared by traditional electrografting. The systems were 

studied by surface plasmon resonance, choronocoulometry and AFM. It is important to remark 

that although similar amounts of small ferrocene molecules were linked to the surfaces 

modified for both methods; in the case of large DNA molecule the case is different. Probably, 

the DNA is more dependent on the effect of thinner organic layer grafted our approach, which 

achieves better organisation of the probe on surfaces leading the better results in amperometric 

measurements. 
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The robustness of diazonium grafted carbon surface demosntrated in Chapter 5, made posible 

to explore its applicability in electrochemiluminiscence in Chapter 7.  The platform based on 

the Zn-mediated immobilised 3,5-bis(4-diazophenoxy)benzoic acid tetrafluoroborate 

(DCOOH) demonstrated to be efficient for the confinement of luminescent Rubpy labeled 

DNA probe and its subsequent use for DNA target detection by ECL. As a result of the 

robustness of this thin layer of covalent linker, a stable and reproducible ECL signal from 

Rubpy-DNA was recorded during ten cycles after applying +1 V vs Ag/AgCl. Finally, a 

subnanomolar concentration of DNA target was detected by the quenching of the 

fluorescent Rubpy by the ferrocene labeled DNA which can be in contact through the target 

DNA.  

In summary, the approaches reported here, constitute alternatives to apply in the biosensors 

where the detection of biomolecules or pathogen are required with high sensitivity and low 

limit of detection. 

 

FUTURE WORK 

The present Thesis highlights the feasibility of using two types of platforms: cyclodextrin 

based supramolecular and diazonium grafted surface chemistries for the detection of DNA 

and the work will be extended to multiplexed, microsystem packaged, genosensor arrays 

with a focus on reducing hybridisation time and the number of PCR cycles required. 
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