

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author

Doctoral program:

 BUSINESS ADMINISTRATION AND MANAGEMENT

Doctoral thesis:

AWALBP-L2: The Accessibility Windows Assembly Line
Balancing Problem Level 2.

Formalization and Solution Methods

by

Gema Calleja Sanz

Thesis advisors:

Dr. Albert Corominas Subias
Dr. Alberto García Villoria

Barcelona, Spain. January 2015.

i

Abstract
Assembly lines are typically found in modern mass production systems. During the design and
operation of an assembly line, the so-called assembly line balancing problem (ALBP) needs to
be solved. It basically consists in assigning a set of tasks to a set of ordered workstations in such
a way that specific constraints are fulfilled and an efficiency-based objective is optimized.

A common assumption in the literature on line balancing is the full access of the workstations to
the workpieces. However, in various environments of automated assembly, as in the
manufacturing of printed circuit boards, the workpieces are larger than the width of the
workstations. This implies that, at any given instant, a workstation cannot reach a whole
workpiece, but only a restricted portion of one workpiece or two consecutive workpieces. To
enable the access of the workstations to different parts of the workpieces, the latter are
transported through the line according to a cyclic stepwise pattern called movement scheme.
Such cycle decomposes into a number of halts, named stationary stages, separated by forward
steps. During a stationary stage each of the workstations can only execute those assigned tasks
that are inside its reachable range. After a stationary stage, the workpieces are moved by some
common forward step and the next stationary stage begins. Once the cycle ends, a fully
assembled workpiece leaves the line, inside which there is the same number of workpieces lying
exactly at the same positions as in the start of the cycle.

This doctoral thesis tackles an assembly line balancing problem with restricted access to the
workpieces that has been entitled AWALBP: the Accessibility Windows Assembly Line
Balancing Problem. The problem is described and a general classification for its main
optimization levels is proposed. The thesis focuses on a specific case of the optimization level
AWALBP-L2. The AWALBP-L2 consists of two subproblems that need to be solved
simultaneously: (i) the computation of a feasible movement scheme and (ii) the assignment of
each task to one workstation and one stationary stage of the cycle. In the particular case of
AWALBP-L2 addressed in this thesis, for each task a single workstation is compatible.

The review of the state of the art reveals that relatively few studies have been published
concerning the AWALBP. Regarding the solution of the AWALBP-L2, the only available
previous work is a mathematical programming model, but the model is not tested or validated.
In order to fill this research gap, the aim of this thesis is three-fold: i) to describe the AWALBP
and characterize its main optimization levels, ii) to propose exact methods for the case of
AWALBP-L2 considered, and iii) to develop solution procedures for the challenging instances
that are out of reach of the former methods.

Consequently, in this doctoral thesis the AWALBP is characterized and the AWALBP-L2 case
is addressed through four main approaches. First, the problem is formalized and solved via two
mixed integer linear programming (MILP) models. Second, an approach combining a
matheuristic and a MILP model is proposed. The third approach considers hybridizing
metaheuristics with mathematical programming models. Finally, the fourth approach proposes
sequential combinations of the aforementioned hybrid metaheuristics and a MILP model.

The performance of all approaches is evaluated via an extensive computational experiment
based on realistic instances, and an optimal solution could be found for a large number of them.
Future research work may include additional assumptions on the problem, such as precedence
relationships among tasks or several workstations compatible for each task. The
methods proposed in this thesis are open in nature and extend perspectives for combining
(meta)heuristics and mathematical programming models, either for improving the solution
of the AWALBP-L2 or for tackling other combinatorial optimization problems.

ii

Resumen
Las líneas de montaje se encuentran habitualmente en los sistemas modernos de fabricación en
serie. Durante el diseño y funcionamiento de una línea de montaje es necesario resolver el
problema de equilibrado de líneas de montaje, denominado assembly line balancing problem
(ALBP). Este consiste básicamente en asignar un conjunto de tareas a un conjunto de estaciones
ordenadas, de manera que se cumplan restricciones específicas y se optimice un objetivo de
eficiencia dado.

Un supuesto habitual en la literatura de equilibrado de líneas es el acceso total de las estaciones
a las piezas. Sin embargo, en varios entornos de montaje automatizado, tales como en la
fabricación de placas de circuitos impresos, las piezas son de mayor tamaño que el ancho de las
estaciones. Esto implica que, en un instante dado, una estación no puede acceder a una pieza
entera, sino únicamente a una porción de una pieza o de dos piezas consecutivas. Para permitir
el acceso de las estaciones a las diferentes partes de las piezas, estas son transportadas a lo largo
de la línea según un patrón cíclico de pasos denominado esquema de movimiento. Dicho ciclo se
descompone en un número de paradas, o etapas estacionarias, separadas entre ellas por pasos
de avance. Durante una etapa estacionaria cada estación solamente puede ejecutar aquellas
tareas asignadas que están dentro de su región accesible. Tras una etapa estacionaria, las piezas
recorren un paso de avance común y la siguiente etapa estacionaria comienza. Una vez
finalizado un ciclo una pieza completamente montada abandona la línea, en la cual hay el
mismo número de piezas y exactamente en las mismas posiciones que al inicio del ciclo.

Esta tesis doctoral aborda un problema de equilibrado de líneas con acceso limitado a las piezas
que ha sido titulado AWALBP: Accessibility Windows Assembly Line Balancing Problem. Se
describe el problema y se propone una clasificación general de sus principales niveles de
optimización. La tesis se centra en un caso específico del nivel AWALBP-L2. El AWALBP-L2
consta de dos subproblemas que deben ser resueltos simultáneamente: (i) cálculo de un esquema
de movimiento factible y (ii) asignación de cada tarea a una estación y a una de las etapas
estacionarias del ciclo. En el caso particular de AWALBP-L2 tratado en esta tesis, para cada
tarea existe una única estación compatible.

La revisión del estado del arte revela que relativamente pocos estudios han sido publicados
sobre el AWALBP. Respecto a la resolución del AWALBP-L2, el único trabajo anterior
disponible es un modelo de programación matemática, el cual no está probado o validado. Con
tal de cubrir este hueco de investigación, el objetivo de la presente tesis es triple: i) describir el
AWALBP y caracterizar sus principales niveles de optimización, ii) proponer métodos exactos
para el caso considerado de AWALBP-L2, y iii) desarrollar métodos de resolución para los
ejemplares más difíciles que quedaron fuera del alcance de los métodos anteriores.

Por consiguiente, en esta tesis doctoral se caracteriza el AWALBP y se aborda el caso de
AWALBP-L2 mediante cuatro enfoques principales. En primer lugar, el problema se formaliza
y se resuelve mediante dos modelos de programación lineal entera mixta (PLEM). En segundo
lugar se propone una mateheurística combinada con un modelo de PLEM. El tercer enfoque
consiste en hibridizar metaheurísticas con modelos de programación matemática. Finalmente, el
cuarto enfoque propone combinaciones secuenciales de las mencionadas metaheurísticas
híbridas con un modelo de PLEM.

Los enfoques propuestos se evalúan mediante una extensa experiencia computacional con
ejemplares realistas, y se obtuvo una solución óptima para un gran número de ellos. Las líneas
propuestas de investigación futura incluyen supuestos adicionales tales como relaciones de
precedencia entre tareas o varias estaciones compatibles para una misma tarea. Los métodos
propuestos en esta tesis son de naturaleza abierta y ofrecen perspectivas para la
combinación de (meta)heurísticas con modelos de programación matemática, tanto para mejorar
la solución del AWALBP-L2 como para abordar otros problemas de optimización combinatoria.

iii

Acknowledgements
First and foremost, my gratitude goes to my two supervisors, Dr. Albert Corominas and Dr.
Alberto García. Their patience, continuous support and knowledge were my motivation during
my doctorate. I am also grateful to Dr. Rafael Pastor, for reviewing my doctoral research and
offering insightful feedback on this thesis. It is a privilege working with all of you.

I would like to thank Ernest Benedito, Amaia Lusa and Jordi Olivella, members of the
Enginyeria d’Organització i Logística Industrial (EOLI) research group for their valuable
comments and advice.

I want to acknowledge as well my fellows from the Department of Management, Rocío de la
Torre and Mariona Vilà, for the professional and personal great moments shared.

I extend my gratitude to the members of the Institute of Industrial and Control Engineering
(IOC). Particular thanks to Vicenç, Leo and Enric for all the help with the computers in the lab.
Thank you to Carme, Noemi and Marta for both the administrative assistance and good humor. I
also wish to thank my colleagues and fellow PhD students in the Institute for their hearty laughs
and great conversations. Thank you (in no particular order) to Carlos A., Leo, Orestes, Carlos
R., Diana, Fernando, Andrés, Abiud, Isiah, Sergi, Josep, Niliana, Marcos, Ali and Henry. I
apologize if I forgot to mention someone.

To my long-life friends, for their support during these four years. Thank you for making my life
colorful and rich.

To Josué, for his understanding, support and motivation all the way.

Finally, yet importantly, I owe my sincere appreciation to my family, for always believing in me
and encouraging me to go further. I dedicate this work to them.

iv

Table of contents
Abstract ... i

Resumen .. ii

Acknowledgements ... iii

Table of contents ... iv

Chapter 1. Introduction .. 1

1.1 Motivation and scope1

1.2 Objectives .. 3

1.3 Structure of the thesis ... 4

Chapter 2. AWALBP: The Accessibility Windows Assembly Line Balancing Problem 5

2.1 Introduction to assembly line balancing problems.. 5

2.1.1 Classification ... 6

2.1.2 Problem constraints .. 8

2.1.3 Solution procedures ... 9

2.2 Definition of the AWALBP .. 11

2.2.1 Assumptions and classification ... 13

2.2.2 Optimization levels ... 14

2.3 The AWALBP-L2 ... 15

Chapter 3. State of the art ... 17

Chapter 4. Solution methods .. 19

4.1 Introduction ... 19

4.2 Mathematical programming models .. 22

4.3 MILP bounding procedure ... 22

4.4 Hybrid metaheuristics .. 24

4.5 Combinations of hybrid metaheuristics and MILP ... 25

Chapter 5. Computational results ... 27

5.1 Experimental conditions .. 27

5.2 Analysis of the results .. 29

Chapter 6. Conclusions, publications and future research .. 37

6.1 Conclusions .. 37

6.2 Derived works ... 39

6.3 Future research .. 40

References ... 43

Annex A1. Articles published in journals included in the JCR ... 51

A MILP model for the Accessibility Windows Assembly Line Balancing Problem

(AWALBP) .. 51

Combining matheuristics and MILP for the Accessibility Windows Assembly Line
Balancing Problem (AWALBP) ... 65

v

Balancing assembly lines with accessibility windows. Problem description and heuristic
solving procedure .. 77

Annex A2. Other works ... 89

A2.1. Articles submitted to journals included in the JCR which are in process
of review .. 89

 Hybrid metaheuristics for the Accessibility Windows Assembly Line Balancing Problem
 Level 2 (AWALBP-L2) ... 89

A2.2. Communications to international conferences .. 117

Exact and heuristic approaches for the Visibility Windows Assembly Line Balancing
Problem (VWALBP) .. 117

Heurísticas para el Visibility Windows Assembly Line Balancing Problem (VWALBP) 121

Enhanced MILP model for the Accessibility Windows Assembly Line Balancing Problem
(AWALBP) .. 129

Modelo de PLEM mejorado para el Accessibility Windows Assembly Line Balancing
Problem (AWALBP) .. 133

Using tabu search and MILP for the Accessibility Windows Assembly Line Balancing
Problem (AWALBP) .. 141

Using simulated annealing and MILP for the Accessibility Windows Assembly Line
Balancing Problem (AWALBP) ... 143

The Accessibility Windows Assembly Line Balancing Problem (AWALBP): A review of
 advances and trends .. 145

MILP-based tabu Search using Corridor Method for an assembly line balancing problem
with accessibility windows .. 147

1

Chapter 1

Introduction

1.1 Motivation and scope

Balancing assembly lines is a prime focus for the manufacturing industry. In today’s world of
fierce competition, the balancing of the operations among the workstations is required in order
to cope with a market that demands increasingly complex products and ever-shorter innovation
cycles. Hence, manufacturers are gearing towards balancing their assembly lines with the aim to
strengthen their competitiveness.

In the literature on line balancing the following scenario is usually considered: at any instant of
the cycle, there is exactly one workpiece inside each workstation, and all the workpiece is
visible from any workstation.

However, the scenario that motivates this thesis is different: the workpieces are longer than the
width of the workstations. This implies that each workstation cannot access one entire
workpiece, but only a portion of one or two consecutive workpieces. As a result, each
workstation may access portions of two consecutive workpieces at any given time, and each
workpiece may be accessed by several workstations at any given time.

The optimization of this type of assembly line with restricted access to the workpieces has
recently emerged from various kinds of advanced manufacturing, such as in the automated
assembly of large printed circuit boards (see Fig. 1). Essentially, such assembly lines use robotic
workstations to place electronic components at predefined locations of the workpieces. A
number of identical workpieces are to be processed in a cyclic fashion. The workstations are
linked together by a transport system, which moves the workpieces forward in steps, according
to a cyclic pattern called movement scheme. At every halt between two forward steps, there is a
stationary stage. In a stationary stage, the workstations perform tasks on the workpieces. A task
can only be performed if it is visible inside the accessibility window of the workstation where it
will be executed. After a stationary stage is finished, the workpieces are moved forward by
some same distance, and the next stationary stage is entered. This scenario, where the
accessibility windows of the workstations do not allow reaching the whole workpiece, gives rise
to the problem which we entitle Accessibility Windows Assembly Line Balancing Problem
(AWALBP).

The scope of this thesis is twofold. First, it presents the AWALBP and proposes a classification
for its main optimization levels. Second, it focuses on the solution of a particular case of the
optimization level AWALBP-L2. More specifically, the addressed case corresponds to the real-
world industrial problem described in Müller-Hannemann and Weihe (2006), where for each

2

task one single compatible workstation is available. In order to solve this case of AWALBP-L2,
two problems are to be solved simultaneously: i) the (cyclic) movement scheme of the
workpieces through the workstations, and ii) the assignment of each task to one stationary stage
of the cycle, in such a way that the cycle time is minimized.

 Figure 1: Inside view of an automated assembly line with accessibility windows1.

Just as most assembly line balancing problems, the AWALBP and optimization levels thereof
are NP-hard due to their combinatorial nature. Even the simplest version of the problem,
AWALBP-L1, is already NP-hard, as is proven in the article Combining matheuristics and
MILP to solve the Accessibility Windows Assembly Line Balancing Problem (AWALBP-L2)
(see Annex A1), and so it is the case of AWALBP-L2 addressed in this thesis (Müller-
Hannemann and Weihe, 2006). With this in mind, mathematical programming models are
proposed first in order to try to solve the problem optimally. Subsequently, in order to tackle
large and difficult instances intractable by mathematical programming models, hybrid
procedures are developed.

The thesis is presented in the format of a collection of published articles (jointly with an article
in review process and conference papers) in accordance with the regulations of the doctoral
program in Business Administration and Management of the Universitat Politècnica de
Catalunya (UPC).

1 Retrieved November 6, 2014, from http://www.lewis-clark.com/product/assembleon-ax5-camera/.

Accessibility window

Workpiece’s length

3

1.2 Objectives

The main objective of this thesis is three-fold:

(a) To formally describe the AWALBP and provide a classification of its main
optimization levels.

(b) To propose exact methods for solving a specific case belonging to the optimization
level AWALBP-L2 and determine the size limit of the instances solved optimally.

(c) To develop solution approaches for solving the challenging large instances.

In order to achieve the main objective, the following sub-objectives are developed:

1. Definition and classification of the AWALBP. Define the main characteristics of the
problem and provide a classification of its optimization levels. Subsequently, give a
detailed description focusing on the specific case of optimization level AWALBP-L2
adressed in this thesis.

2. State of the art review. Analyze the previous works on assembly line balancing problems
involving cyclic movement schemes with accessibility windows.

3. Benchmark generation. Generate a set of benchmark instances for the AWALBP-L2

case and publish it online, such that it can be available to the research community.

4. Mathematical formulation of the AWALBP-L2 case. Develop and test mathematical
programming models in order to identify the best option regarding performance results
and the size limit of the instances that can be solved to optimality.

5. Design and implementation of solution approaches for challenging instances. The
NP-hard nature of the AWALBP-L2 case renders the use of exact methods
computationally intractable for many medium to large instances of the problem. Thus it is
required to develop solution approaches in order to deal with such challenging instances.

6. Performance evaluation and comparison of the developed methods. Conduct

computational experiments on the generated set of benchmark instances to test the
performance of the proposed solution methods. Based on the analysis of these
experimental results, draw conclusions and propose directions for future lines of research.

4

1.3 Structure of the thesis

This thesis is divided into six chapters, including the present one, as follows.

Chapter 1 presents an overview of the Accessibility Windows Assembly Line Balancing
Problem (AWALBP) and outlines the aims of this work.

Chapter 2 introduces and characterizes the AWALBP. It gives a classification of its main
optimization levels and defines the case of AWALBP-L2 addressed in this thesis.

Chapter 3 gives a state of the art review of the optimization levels of AWALBP that have been
tackled in the literature and the solution methods that have been proposed.

Chapter 4 presents the solution methods developed. Firstly, two mathematical programming
formulations are proposed. Secondly, an approach combining a matheuristic and a mixed
integer linear programming (MILP) model is proposed. Furthermore, three hybrid approaches of
metaheuristics and mathematical programming are presented. Finally, sequential combinations
of metaheuristics with a MILP model are proposed.

Chapter 5 describes the computational experiments conducted to validate the proposed solution
methods and discusses the obtained results.

Chapter 6 gives the conclusions, recommendations for further research, and a list of the
publications derived from this thesis.

Finally, in the Annexes, a collection of articles and conference papers is presented, as follows.

Annex A1 contains three articles that have been published in journals included in the JCR.

Annex A2 contains one article submitted to a journal included in the JCR, together with eight
communications presented at international conferences.

Throughout this document, references to works derived from this thesis are highlighted with
bold italic letters. These references are included in chapter 6.2.

5

Chapter 2

AWALBP: The Accessibility
Windows Assembly Line Balancing

Problem

This chapter presents the problem studied in this doctoral thesis, namely the Accessibility
Windows Assembly Line Balancing Problem Level 2 (AWALBP-L2). After an introduction to
assembly line balancing in Section 2.1, the problem of balancing assembly lines with
accessibility windows (AWALBP) is described and a classification for its optimization levels is
proposed in Section 2.2. Finally, in section 2.3 the specific case of AWALBP-L2 considered in
this thesis is detailed.

2.1 Introduction to assembly line balancing problems

In its most basic form, an assembly line consists of a sequence of workstations placed along a
transport mechanism. The workpieces are consecutively launched down the line and moved
from one workstation to the next. At each workstation, a specified set of tasks necessary to
assemble the product is repeatedly performed. Tasks require a certain time to be processed and
are related to each other according to existing technological constraints. Each workstation must
complete the tasks with a time limit called the cycle time.

Generally, an important decision problem arising in the management of the assembly line is to
determine the assignment of tasks to workstations in such a way that some constraints are
satisfied, the workload of each workstation does not exceed the cycle time and an objective
function is optimized. Such problem is called assembly line balancing problem (ALBP).

According to Baybars (1986a), both Tonge (1961) and Prenting and Thomopoulos (1974) credit
the first analytical statement of the ALBP to Bryton (1954). However, the first published
mathematical programming formulation is due to Salveson (1955). Since those pioneer works
extensive research has been done in the field of ALBPs, as can be seen in the reviews of
Baybars (1986a); Ghosh and Gagnon (1989), Erel and Sarin (1998); Kumar and Mahto (2013);
Battaïa and Dolgui (2013); and Pachghare and Dalu (2014).

A well-known early classification of ALBP is the one proposed by Baybars (1986a), which
differentiates between the simple ALBP (SALBP), and the general ALBP (GALBP). The
SALBP considers a single straight assembly line for only one type of product, and its
complexity is significantly reduced by several simplifying assumptions with respect to practice.

6

Despite these simplifying assumptions, SALBP is known to be NP-hard (Wee and Magazine,
1986). As a result, SALBP has been studied intensively in the literature, and numerous
operations research techniques have been developed to solve this problem to optimality or
approximately. Several heuristics (e.g. Helgeson and Birnie, 1961; Pinto, 1978; Baybars, 1986b;
Talbot et al., 1986; Boctor, 1995; Scholl, 1997) and exact methods (e.g. Bowman, 1960;
Johnson, 1981; Baybars, 1986a; Hoffmann, 1992; Erel and Sarin, 1998; Scholl, 1999; Scholl
and Becker, 2006) have been proposed. However, recent publications show that this topic
remains challenging (e.g. Pastor and Ferrer, 2009; Sewell and Jacobson, 2012; Morrison, 2014;
Pape, 2015). GALBP, on the other hand, includes those problems incorporating further
characteristics and constraints in order to address more realistic line configurations and
manufacturing contexts. This class of problems is very large and contains all extensions that are
relevant in practice including parallel workstations (Inman and Leon, 1994), multiple assembly
lines (Lusa, 2008), multi-product lines (Pastor et al., 2002), mixed models (Akpinar, 2014), U-
shaped lines (Miltenburg, 2002), setup times (Andrés et al., 2008), resource constraints
(Corominas et al. (2011), processing task times that depend on the sequence (Kalayci, 2014), or
on the worker (Corominas et al., 2008), or are stochastic (Dong, 2014). An overview of GALBP
variations can be found in Becker and Scholl (2007).

2.1.1 Classification

Despite the classification of Baybars (1986a) is frequently used in the literature, it is insufficient
to reflect the ever-growing heterogeneity of GALB problems. Consequently, more detailed
classifications have been proposed in order to structure the research field of ALBP and provide
a common taxonomy for researchers and practitioners. Such classifications use a compact
notation incorporating a significant number of features to describe real assembly systems. Some
classification schemes based on condensed notation include the ones proposed by Hao (2005),
Boysen et al. (2007) and Battaïa and Dolgui (2013).

Based on the aforementioned proposed schemes, the following classification summarizes some
of the most relevant attributes of assembly lines according to: the number of products or models
produced, shape or layout of the line, task attributes, the workpieces flow, and the level of
automation of the line. Whitout the aim to be exhaustive some references are included below to
illustrate each attribute.

According to the number of models

 Single-model line. It is the standard configuration where only one model of a unique product
is produced (Kara et al., 2009; Dolgui and Proth, 2010; Dou et al., 2011).

 Mixed-model line. Several variants from a basic product, referred to as models, are
manufactured simultaneously. The production process does not involve setup times since all
models require very similar manufacturing tasks (Erel and Gökçen, 1999; Yang et al., 2011;
Tonelli et al., 2013).

 Multi-model line. Several different models are produced in separate batches with setup
times between them (Van Zante-de Fokkert and de Kok, 1997; Hao and Wei, 2013).

According to line layout

 Basic straight lines. Each workpiece visits a sequence of workstations in their order of
installation (Gökçen et al., 2010, Mohd-Hafizuddin et al., 2012).

 Straight lines with multiple workplaces. Workstations are aligned in a serial manner.
However, at each workstation, a number of parallel workplaces (Scholl and Boysen, 2009;

7

Delorme et al., 2012), or serial workplaces (Guschinskaya et al., 2008) are installed in such
a way that the workers or the resources associated with each workplace can operate
simultaneously or sequentially on each workpiece, respectively.

 U-shaped lines. The workstations are arranged in a U-shaped line and have both the
entrance at the exit in the same place. Being commonly manual lines, workers may walk
from one leg to another of the line. Therefore they can work during the same cycle on two
or more workpieces at different positions of the line (Miltenburg and Wijngaard, 1994;
Jayaswal and Argawal, 2014).

 Two-sided lines. This type of line consists of two serial lines in parallel (Bartholdi, 1993;

Kim et al., 2000; Özcan and Toklu, 2009), in which pairs of opposite workstations (left-
hand side and right-hand side) process simultaneously the same workpiece.

 Circular transfer lines. The workstations are installed around a rotating table (o similar

mechanism). Before being completed, a workpiece can stay for a single (Dolgui et al., 2008;
Battaïa et al., 2012) or multi-turn circular transfer (Battini et al., 2007).

 Multiple lines. Using multiple lines can be considered when the production system involves

multiple products, in which each line can be designed for one family of similar products.
The survey presented in Lusa (2008) lists the possible configurations of multiple lines.

According to task attributes

Besides the processing time of a task, a number of other attributes may be relevant when
assigning them to workstations, such as process and ergonomic aspects, probability of failure,
cost, etc. Such attributes may have constant/uncertain/dynamic/dependent values, as described
next.

 Constant: all task attributes are fixed and known (Amen, 2006).

 Uncertain. Uncertain tasks attributes are not known exactly at the point when line balancing

decisions have to be made. For example, in manual lines, the effectiveness of workers may
vary with the work rate, skill level and motivation, which may affect the processing times of
tasks (Xu and Xiao, 2011).

 Dynamic. Task attributes, such as processing time or required resources, may vary over time

and can be reduced in successive cycles due to improvements observed in the assembly line
or learning effects observed for the operators (Digiesi et al., 2009).

 Dependent. Task attributes are not fixed but dependent, for example, on the skill of the

operator (Corominas et al., 2008; Blum and Miralles, 2011), on the processing sequence
(Capacho and Pastor, 2006), or on the type of workstation to which the task is assigned
(Gao et al., 2009).

According to the workpieces flow

 Paced lines. In a paced line, also referred as synchronous line, all operators or workstations
have a common limited span time to work on a workpiece. Therefore, the workpiece stops
at every workstation, and is automatically transferred as soon as a given time span is
elapsed (Lapierre and Ruiz, 2004; Salehi et al., 2013).

 Unpaced lines. In an unpaced line there is no maximum limit imposed on the processing
time available to the operator or the workstation. In unpaced asynchronous lines, the

8

movement of the workpieces is not coordinated, and the workpieces are transferred
whenever the required tasks are completed, as long as the successive workstation is
available (Sabuncuoglu et al., 2006). Buffers are installed in-between workstations to store
the workpieces that cannot be advanced when the successive workstation is blocked by
another workpiece. In unpaced synchronous lines all workstations wait to the lowest
workstation before the workpieces are transferred (Karabati and Sayin, 2003). In contrast to
unpaced asynchronous lines, buffers between workstations are not required.

 Bucket brigades. A bucket brigade is essentially a human chain used to transport and

complete a product through an assembly line. The product is processed and passed from one
worker to the next. When the last worker finishes his product he walks back upstream to
take over the work of the next-to-last worker, who in his turn also walks back and so on,
until the first worker is reached, who then walks back to the start of the line and begins a
new product (Bartholdi and Eisenstein, 1996; Bratcu and Dolgui, 2005).

According to the level of automation

 Manual lines. In manual lines the tasks mainly or completely rely on manual labour. They
are especially common where tasks are difficult and complex to automate (Finnsgård and
Wänström, 2013).

 Robotic or automated lines. Robotic lines are fully automated lines and are mainly
implemented whenever the work environment is somehow hostile for human beings, as for
instance in the paint shops in the automotive industry, or when robots are able to perform
the tasks more economically and with a higher precision (Aghajani et al., 2014).

2.1.2 Problem constraints

As has been mentioned before, many different features of the line balancing problem are vital in
real-life environments other than the precedence and cycle time constraints. Among these
features, the following ones are particularly relevant for the problem studied in this thesis:

 Accessibility constraints and task assignment contraints. In practice, there are usually
constraints related to the positioning of the workpiece on the workstation which restrict the
access of the workstations over the workpieces. For every position there corresponds a set
of tasks which can be executed (Essafi et al., 2010). An example of accessibility constraints
is the case where the workpieces are larger than the workstation width (Müller-Hannemann
and Weihe, 2006). Another case arises if workpieces need to undergo position changes
when they are processed, and a task can only be processed if it is situated in the required
position for performing the task (Lapierre and Ruiz, 2004; Essafi et al., 2010). If the
workpieces are weighty, large and fixed at the conveyor belt and cannot be turned in any
position, may also need to be processed at a certain workstation (Wang and Wilson, 1986).
Another case for workstations restrictions might be if a task that need heavy machinery
have to be processed there (Scholl et al., 2010).

 Movement constraints. Movement constraints refer to the transportation pattern of
workpieces through the line. In contrast to common variants of line balancing problems, the
forward steps may be variable and smaller than the distance between two workstations.
Therefore, the movement of the workpieces through the line should be such that each task is
reachable from the workstation where it will be executed at least in one stage of the cycle
(Müller-Hannemann and Weihe, 2006). On the other hand, another type of assignment
constraint is related to distance restrictions such as the minimum and maximum distances
measured in time, space or workstation positions between the tasks (Buxey, 1974; Pastor
and Corominas, 2000).

9

2.1.3 Solution procedures

Solution procedures for solving assembly line balancing problems are often divided into two
categories: exact or approximate. Since even the simplest case of line balancing problems,
SALBP, is NP-hard, the computational time for obtaining an optimal solution with exact
methods may increase exponentially for most of line balancing problems as the size of the
instance increases. Consequently, approximate methods are needed in order to cope with large
challenging instances, and aiming at obtaining good feasible solutions in an acceptable
computation time. Additionally, simulation can be helpful to analyze the dynamic behavior of
the line (Adham et al., 2013; Junsong, 2014).

Exact methods

Generally, line balancing problems can be solved optimally via one of the two following
approaches: using a standard solver (like IBM ILOG CPLEX, Gurobi, COIN-OR, etc), or an
original dedicated solution method. In the former case, the goal is to define an appropriate
mathematical programming model and to adjust the solver parameters in order to solve it as
quickly as possible. The mathematical models presented in the literature to describe line
balancing problems mostly include mixed integer linear programming models (Miralles et al.,
2007; Corominas et al., 2008; Pastor, 2011; Delorme et al., 2012). Other mathematical models
used include integer linear programming (Bowman, 1960), nonlinear integer programming
(Hamta et al., 2011), goal and fuzzy goal programs (Özcan and Toklu, 2009), and constraint
satisfaction programs (Topalogu et al., 2012).

Since solvers are designed to deal with a large class of optimization problems, they might not be
efficient enough for certain types of line balancing problems or even for a particular structure of
input data. In this case, original dedicated methods can be developed, such as dynamic
programming (Gungor and Gupta, 2001; Dolgui et al., 2008) or branch and bound (Miralles et
al., 2008; Hu et al. 2010; Borisovsky et al., 2012; Sewell and Jacobson, 2012).

Approximate methods

A great variety of approximate methods have been proposed in the literature to solve assembly
line balancing problems (e.g. Talbot et al. 1986; Scholl and Voβ, 1996; Amen, 2001). These
approximate methods can be roughly divided into three categories: bounded exact methods,
simple heuristics, and metaheuristics.

 Bounded exact methods perform an incomplete enumeration of the solution space. They can
be obtained by bounding existing exact methods either by restricting the explored solution
space or by limiting the available computational time (Blum and Miralles, 2011; Bautista
and Pereira, 2011).

 Simple heuristics are usually very specific and problem-dependent techniques. In most of
the cases, priority rules are used to assign tasks. These rules are typically based on task
attributes such as task time or number of followers (Capacho and Pastor 2006; Scholl and
Becker, 2006; Pastor et al., 2012). The category of simple heuristic methods can be divided
into two classes:

 Single-pass heuristics. The tasks are assigned in a single iteration using a greedy
function or a priority rule (Toksari et al., 2008). The solution of this assignment is the
final output, which generally is obtained in a very short time even for large-scale
problems.

10

 Multi-pass heuristics. Due to the randomness nature of these algorithms, different
results can be obtained and the output can be defined as the best solution found after a
number of iterations (Andrés et al., 2008). Randomness may also be used to select a
task to be assigned: task can be selected from a list of candidates (Toksari et al., 2010),
or among tasks having the greatest value of a greedy function (Guschinskaya et al.,
2011), or according to a random priority rule (Gamberini et al., 2009). The stop
criterion may be expressed with a specified number of iterations or a number of
iterations without improving the best obtained solution and/or a resolution time limit.

Simple heuristics can be used to provide an upper bound for an exact method (Baldacci et
al., 2004) or be integrated into metaheuristics for local improvements of intermediate
solutions (Essafi et al. 2012).

 Metaheuristics, hybrid metaheuristics and matheuristics. Metaheuristics are general
methodologies designed to solve a wide range of hard optimization problems without
having to deeply adapt them to each problem. A survey on metaheuristics can be found in
Boussaïd et al. (2013). While such methods are numerous and varied, they can be roughly
divided into the following classes:

 Neighborhood methods such as tabu search (Glover and Laguna, 1997; Özcan and
Toklu, 2009), GRASP (Chica et al., 2010), simulated annealing (Kirkpatrick et al.,
1983; Jayaswal and Argawal, 2014), variable neighborhood search (Hansen and
Mladenović, 1999), etc.

 Evolutionary approaches, such as differential evolution methods (Mozdgir et al., 2013),
genetic algorithms (Kazemi et al., 2011), imperialist competitive algorithms (Bagher et
al., 2011) or memetic algorithms (Gamberini et al., 2009).

 Swarm intelligence based metaheuristics such as particle swarm optimization
algorithms (Nearchou, 2011), bees algorithm (Tapkan et al., 2011), or ant colony
optimization (Bautista and Pereira, 2007).

In the recent years, the focus of research has experienced a noteworthy shift towards the
hybridization of metaheuristics with other techniques of optimization. The main motivation
behind the hybridization of metaheuristics is to exploit the complementary character of
different optimization strategies. The works of Raidl (2006) and Blum et al. (2011) provide
a literature review on hybrid metaheuristics in combinatorial optimization.

A new and promising trend is matheuristics (Maniezzo et al., 2009). These are based on the
interaction of metaheuristics and exact methods. An essential feature is the exploitation in
some part of the algorithms of features derived from the mathematical programming (MP)
model of the problem considered (Boschetti et al., 2009), or the use of an approximate
procedure to deal with the non-feasible or non-optimal solutions yielded by a MP
algorithm. However, because of their novelty, there is not a consolidated classification of
this field, and therefore it is difficult to find a unique definition of these methods. For a
detailed insight into matheuristics the reader is referred to the work of Maniezzo et al.
(2009).

11

2.2 Definition of the AWALBP

This thesis studies a class of general problem (GALBP) which we have entitled AWALBP: the
Accessibility Windows Assembly Line Balancing Problem.

The main characteristic of such a problem is that it considers an assembly line with limited
access of the workstations over the larger workpieces. The specificity of the studied problem
consists in the necessity of taking into account:

 Accessibility constraints related to the position of the tasks, which may fall out of the
accessible area of the workstations.

 Task assignment constraints, to ensure that each task can be performed at one compatible
workstation and in one stage of the process where it is accessible from the workstation.

 Movement constraints to define the stepwise transportation pattern of the workpieces
through the assembly line.

The AWALBP can be stated as follows. An assembly line must process a number of (potentially
infinite) identical workpieces. Several workpieces are placed consecutively on the line and the
distances between two consecutive workpieces are equal. The length of the workpieces is longer
than the width of the workstations. This implies that a workstation cannot reach a whole
workpiece, but only the portion of workpiece(s) that are inside its reachable area (accessibility
window). As a result, each workpiece may be processed by several workstations at the same
time, and each workstation may process either one workpiece or two consecutive workpieces at
the same time.

Fig. 2 shows an example of an assembly line with accessibility windows. Observe that
workstations 1 and 4 can access parts of one single workpiece, whereas workstations 2 and 3
can access parts of two consecutive workpieces simultaneously.

The accessibility window of a workstation i is an interval  ,i iL R of the assembly line (see Fig.

2) where the workstation can only access the limited portion of workpieces that are visible
inside this interval. Li and Ri are, respectively, the abscissae of the left and right limits of the
reachable region of workstation i. Due to the restricted accessibility of workstations to
workpieces, a task can only be executed if its position is accessible from its assigned
workstation.

The assembly tasks are performed by operators or robots during stationary stages, in which the
line is halted. In a task, a component is picked from the workstation and placed on a predefined

Figure 2: An example of an assembly line with accessibility windows.

Moving direction of the workpieces

Placement head Accessibility window Feeder (with component)

 Workstation 1 Workstation 2 Workstation 3 Workstation 4

12

position of the workpiece. After all tasks have been executed in a specified stationary stage, the
workpieces are moved forward by some common distance called forward step. The forward
steps are cyclically repeated and there is a fixed number of forward steps per cycle. In this way,
the transportation of the workpieces through the line is performed according to a pattern called
movement scheme. A movement scheme comprises a number S of stationary stages separated
between them by a forward step. Each of these forward steps defines a distance in the direction
of the assembly line. The distance covered in a forward step s (s = 1, …, S) is denoted by

,s  where  is a length called elementary step, which depends on the technology of the line

(Müller-Hannemann and Weihe, 2006), and s is the number of elementary steps of the forward

step s. The forward steps may cover the same distance (fixed forward steps) or different
(variable forward steps). After S forward steps, the workpieces have been moved forward by a
distance A, which is the distance between the left borders of two consecutive workpieces. Due
to this cyclic behavior, a workpiece, which is at a certain position on the line, will be at the
same position as the preceding workpiece once the whole movement scheme has been executed.
Thus, the movement scheme defines the exact position of each workpiece in the stationary
stages, which is given by:

 The initial position of the first workpiece, x, on the line in the first stationary stage.

 The number S of stationary stages (or equivalently, the number S of forward steps).

 The lengths s  of the forward steps, where s is the number of elementary steps of the

forward step s  1,...,s S .

A movement scheme is feasible if, for each task, there exists at least one stationary stage such
that the task is accessible from a workstation where it can be performed.

Fig. 3 depicts an example of a movement scheme with three stationary stages (S = 3). Each line
is a snapshot representing the positions of the workpieces at each stationary stage (the fourth
stationary stage is identical to the first one). The arrows on each snapshot indicate the moves of
the workpieces from the previous stationary stage to the current one. At the start of the cycle, a
new workpiece enters the line, and after the cycle (i.e., after the third stationary stage), a fully
assembled workpiece leaves the line. Note that, in this example, the lengths of the forward steps
are different (1 2 3, ,       ). Note also that after the third forward step the workpieces have
been conveyed exactly through a distance A.

A number of additional characteristics may be considered in the AWALBP, including the ones
described next:

 Related vs. unrelated tasks. The tasks may be related (or not) by precedence relationships,
in such a way that a task can only be executed after its predecessor task has been completed.

 L1 R1

s = 1

s = 2

s = 3

s = 4 (1)

 L2 R2 L3 R3 L4 R4

 x

A

Figure 3: Four snapshots of a cycle with three stationary stages.

Δֺ·δ1

Δֺ·δ2

Δֺ·δ3

13

 A single vs. multiple compatible workstations for each task. The tasks may be often

classified into several types (for instance, a type of task may embrace the different tasks
corresponding to place a same component in different locations). Each type of task may be
potentially performed on a workstation belonging to a given set, depending on the
characteristics of the workstations. If this set contains more than one workstation, a decision
must be made to define the subset of workstations that will actually be able to perform the
task (for example, deciding which components will be available at the feeders of each
workstation). Finally, if this subset consists of multiple workstations, each task of the
corresponding type must be assigned to one of the workstations of the subset. In all these
cases, however, it is still necessary to determine the assignment of tasks to one of the
stationary stages of the cycle.

 A single vs. several robots per workstation. The utilization of parallel robots in a same

workstation may lead to a better balancing.

 Dependent vs. independent task processing times. The tasks may be workstation-dependent
in the sense that the processing time for a task depends on the workstation to which it is
assigned.

Finally, the objective function is to optimize a given efficiency objective (e.g., number of
workstations, cycle time, cost or profit).

For more details on this type of line the reader is referred to previous work by Müller-
Hannemann and Weihe (2006) and A MILP model for the Accessibility Windows Assembly
Line Balancing Problem (Calleja et al., 2013).

2.2.1 Assumptions and classification

The main assumptions underlying the AWALB Problem are as follows:

 The accessibility windows do not overlap.

 All the forward movement steps must be multiple of a given elementary step ∆.

 All workpieces are identical.

 The workpieces have only two relevant dimensions (in the real-life variant considered by

Müller-Hannemann and Weihe (2006) they are rectangular printed circuit boards).

 The distance between the left borders of two consecutive workpieces is constant, A.

 Each task has a predefined position on the workpiece and this position is defined by a single

coordinate, since the workstations are limited by two values corresponding to the, say,
horizontal axe of coordinates, but can access to any value corresponding to the vertical axe.

 The tasks must be executed without preemption.

 The processing time of the tasks at a given workstation is fixed (deterministic).

Finally, a summary of the main characteristics of AWALBP is presented in Table 1.

14

Table 1: Main characteristics of the AWALBP.

Distance of the forward
steps

Fixed
Variable

They are a multiple of a given
elementary step Δ

Set of workstations able
to perform a task

A single workstation
Several workstations

Precedencies

Exist
Do not exist

Objective function

Minimize Number of workstations
Cycle time
Cost
Combination of objectives

Maximize Efficiency
Profit
Combination of objectives

2.2.2 Optimization levels

In this section, a classification for the different optimization levels of the AWALBP is
proposed. Such classification is based on the different NP-hard subproblems into which this
problem can be divided, which gives rise to the following optimization levels:

L4. Line configuration. In this level the decision problem of determining the number and the
type of the lines and workstations is addressed, along with the moving time and the
acceleration/deceleration times of the lines, the available space for component feeders and
toolbits.

L3. Machine configuration. This level entails the allocation of component types to feeders and
the assignment of toolbit types to workstations. This determines which tasks can be
performed at each workstation.

L2. Movement scheme. This level determines the movement pattern of the workpieces in a
cycle. The initial position of the workpieces on the line, as well as the number and the
lengths of the forwards steps have to be computed. This is required to determine in which
pair of stationary stage and workstation a task can be performed.

L1. Task assignment. Here the assignment of each task to one compatible workstation and one
of the stationary stages of the cycle has to be computed. In this way, an overall solution for
the AWALBP is obtained.

The objective is the optimization of a specific throughput rate such as the cycle-time
minimization.

Depending on which of the optimization levels are addressed, four variants for the problem are
identified: AWALBP-L1, AWALBP-L2, AWALBP-L3 and AWALBP-L4. Each variant
implies solving its own optimization level and its lower levels, assuming that the decisions of its
superior levels have been made. For example, AWALBP-L1 refers to the problem of solving L1
when solutions of superior levels (L2, L3 and L4) are available. AWALBP-L2 concerns the
simultaneous optimization of levels L1 and L2, assuming that the decisions of the superior

15

levels have been already taken. Likewise, the same reasoning is applied to define the variants
AWALBP-L3 and AWALBP-L4.

2.3 The AWALBP-L2

As mentioned before, the AWALBP-L2 addresses the optimization of two problems: i) the
movement scheme of the workpieces through the line and ii) the assignment of each task to one
compatible workstation and one stationary stage of the cycle. At this optimization level, the
decisions about the configurations of the workstations or the line have already been made.

In this doctoral thesis a case of AWALBP-L2 is addressed. The considered case corresponds to
the real-life problem described in Müller-Hannemann and Weihe (2006), which arises in the
automated assembly of large printed circuit boards on a line of modular pick-and-place
machines. The case includes the following characteristics:

 For each task, a single workstation is compatible. Therefore, in the task assignment problem
what has to be determined is the assignment of each task to one stationary stage of the
cycle.

 The tasks are unrelated and workstation-independent, this is, there are not precedencies
between the tasks and their processing times do not depend on the workstations.

 The distances covered in the forward steps may be different.

 Each workstation holds a single robot.

Hereafter, unless stated otherwise, references to AWALBP-L2 are to the specific case of
Müller-Hannemann and Weihe (2006).

The problem can be stated as follows. A number of identical workpieces must be processed by
an assembly line. The workpieces are launched equidistantly down the line. The distance
between the left (right) borders of two consecutive workpieces is denoted by A. The assembly
line is given by a number m of workstations. On each workstation i (1,...,)i N a specified set
of tasks Ji must be executed for each workpiece. The overall number of tasks is denoted by

1

m

i
i

N J


  . Tasks have to be processed without preemption. Each task has a position on the

workpiece. A task can only be processed if its position falls inside the accessibility window of
its workstation. The accessibility window of a workstation is an interval [Li, Ri] of the assembly
line, such that 1 0L  , 1 0R  , and 1i i iR L R   for 2,...,i m . For each task j  1,...,j N the

triple  , ,j j jp a m is known, where pj is the processing time of task j, aj is the horizontal distance

from the task position to the right border of the workpiece, and mj is the the workstation which
has to perform this task. The assembly process decomposes into stationary stages, in which the
line is halted. After a stationary stage is finished, the workpieces are simultaneously moved
forward by some equal distance, and the next stationary stage begins.

The solution of the problem consists of:

i) a movement scheme 1 2 S: , ,...,x     , which includes:

 The initial shift x of the workpieces of the line. It is defined by the distance of the right
border of the first workpiece on the line with the respect to the left limit of the first

16

workstation at the beginning of the cycle,  1
1 min0 min ,x R a A    , where

1

1
min min j J ja a corresponds to the task position that is closest to the right border of the

workpiece (for the set of tasks that could be executed on workstation 1, J1).

 The number S of stationary stages (which it is also the number S of forward steps).

 The sequence 1, ..., S     of the lengths of the forward steps, where s is the

number of elementary steps of the forward step s  1,...,s S .

ii) the assignment of each task to one stationary stage of the cycle.

For a solution to be feasible, the three following conditions are required:

a) First, the sum of the lengths of all forward steps in a cycle must be equal to the distance

A, i.e.,
1

S

s
s

A


   .

b) All forward steps must be a multiple of the elementary step .

c) Each task must be assigned to a stationary stage in which the task is accessible from its
assigned workstation.

The optimization objective (1) is the minimization of the cycle time (CT). Between two
stationary stages, there is a time T to take into account the acceleration and deceleration of the
line, as well as the resetting of the robot arms. Thus the cycle time is equal to the sum of i) the
time T multiplied by the number of stationary stages S plus ii) the time elapsed in the stationary
stages constituting a cycle and iii) the time for transporting a workpiece at steady speed. Since
the latter is a constant it is not considered for optimization purposes:

1

S

s
s

CT T S C


   (1)

where Cs is the completion time, for the whole line, corresponding to the stationary stage s

 1,...,s S .

As it is generally assumed in assembly line balancing problems, without loss of generality we
consider that all data are integers and thus the objective function value is also integer.

17

Chapter 3

State of the art

The optimization of printed circuit board (PCB) assembly problems is well studied (see for
example the survey of Crama et al. (2002)). In the articles of Ammons et al. (1997), Johnson
and Smed (2001) and Crama et al. (2002) a general classification of PCB assembly line
problems is given and a hierarchical solving approach is proposed. However, the solving
strategies proposed in such works cannot be directly used here since the regarded line type
differs too much technically from the problem of this thesis, or it is assumed that each
workstation can access all placement locations.

To the best of our knowledge the studied line types in the literature of line balancing do not fit
the one presented in this thesis. Usually, in the literature it is assumed that each workpiece is
transported from one workstation to the next and that each workstation has full access to all the
tasks of the workpiece. This implies that, contrarily to our problem, the accessibility area of
each workstation is at least as large as the length of a workpiece.

There are relatively few related works considering a cyclic movement scheme with accessibility
windows. Several publications have arisen in the scope of industrial cooperation projects with
Assembléon, a global supplier of surface mount technology solutions for the electronics
manufacturing industry. In the following these works are outlined.

Martin (2002) presents a constraint programming (CP) model for the automated assembly of
printed circuit boards on specific pick-and-place machines with accessibility windows and
cyclic step-wise transport of the workpieces. However, the emphasis of such work is given to
the transformation of the problem formulation into an understandable model in OPL language,
and computational results are not provided.

Gaudlitz (2004) proposes several techniques to solve each subproblem of the AWALBP-L3,
namely algorithms, integer linear programming (ILP) and CP models, and further proposes an
overall solving approach. The proposed ILP formulations are used to model the task assignment
(L1) and the component type allocation subproblems (L3) individually, but no mathematical
work addressing the simultaneous optimization of L1 and L2 (i.e., an AWALBP-L2) is reported.

Müller-Hannemann and Weihe (2006) consider a real-world application with a cyclic movement
scheme and accessibility windows in which for each task only one workstation is compatible.
The authors describe the characteristics of the problem and define the feasibility conditions that
a solution must satisfy. They then present a heuristic algorithm which, for a given movement
scheme, assigns each task to exactly one stationary stage (i.e, an AWALBP-L1 is addressed).
This approach reportedly provides near optimal results under the assumptions that i) the

18

processing times of the tasks do not differ by orders of magnitude from each other, and ii) the
total number of tasks is orders of magnitude larger than the number of forward steps.

Tazari (2006) addresses an AWALBP-L1 where, in contrast to the scenario regarded by Müller-
Hannemann and Weihe (2006), for each task a subset of the workstations is compatible (instead
of just exactly one workstation). A two-stage algorithm is proposed. In the first stage, a branch-
and-bound method is used to compute an optimal solution for the special case of unit task-
lengths and zero reset time. This solution is used in the second stage as the starting solution of a
local search with the aim to obtain an improved solution. An extensive computational study
with real-world cases available to the author is conducted to compare the obtained solution with
an ILP-based approach using CPLEX. The proposed algorithm reportedly comes close to or
even hits the lower bound computed by CPLEX although it is faster than CPLEX by orders of
magnitude.

Stille (2008) considers a specific application of assembly lines for PCB manufacturing of high-
mix low-volume batches of production. The assembly line consists of multiple feeders that hold
the component types. One or more of these feeders can be exchanged during the processing of a
batch. In particular, it must be decided which component types to assign statically, and which
ones on the exchangeable feeders. The problem is regarded as a generalized bin packing
problem with additional constraints, for which an algorithm is proposed.

Van Duijnhoven (2013) deals with a robotic assembly line with accessibility windows and
toolbit exchanges. A robot can only pick a component up if a compatible toolbit is mounted to
it. The actual toolbit can be exchanged during the assembly process. This operation, however,
takes a relatively long time, hence a task assignment solution with the minimum production
time is desired. An algorithm that makes use of simulated annealing is proposed to allocate the
toolbits to the robots, which enables the line to reduce its production time.

All of the last six authors study the same type of assembly line with accessibility windows as
the one addressed in this thesis. However, the proposed solving strategies cannot be directly
used since they address other optimization levels different from AWALBP-L2.

Based on the problem described by Müller-Hannemann and Weihe (2006), Corominas and
Pastor (2009) propose a mixed integer linear programming (MILP) model for the particular case
of AWALBP-L2 in which for each task there is only one compatible workstation, but
computational experiments regarding the performance of the model are not developed.

With the exception of the mathematical formalization of Corominas and Pastor (2009), the
following conclusion can be drawn from the literature review: the solution to the problem that
considers the simultaneous optimization of the movement scheme (L1) and task assignment
subproblems (L2) (i.e., the AWALBP-L2) has not been addressed before.

Consequently, in this doctoral thesis the AWALBP-L2 is defined and addressed via exact and
approximate approaches. On the one hand, two mathematical programming models are
presented in order to find the optimal solution. On the other hand, heuristics and metaheuristic
methods hybridized with mathematical programming are proposed in order to solve the
challenging instances that are out of reach of the former models.

19

Chapter 4

Solution methods

4.1 Introduction

A number of solution methods have been designed, implemented and evaluated in this thesis to
solve the AWALBP-L2. These methods can be roughly divided into four main approaches, as
described next.

1. Mathematical programming models. In the first place mathematical integer linear
programming (MILP) models have been developed, with the aim to observe if the problem
can be solved optimally in a practical time limit (one hour). Specifically, two mathematical
formulations (denoted F1 and F2), have been proposed (section 4.2). An extensive
computational experiment using the commercial solver IBM ILOG CPLEX was carried out
to test the performance of the proposed models, but only small to medium-size instances
could be solved optimally. This is not surprising since, as previously discussed, the
AWALBP-L2 is by nature NP-hard.

2. MILP bounding procedure. The second method involves the incorporation of upper and
lower bounds to a mathematical programming formulation of the problem (F2), with the
aim to improve the solutions yielded by the MILP models of the first approach. For this
purpose, a combined approach has been proposed, which consists of i) a matheuristic,
denoted Initial solution matheuristic, which is used to obtain good feasible solutions and to
compute bounds and ii) a MILP model, denoted Solve model, that incorporates the obtained
bounds. The matheuristic is composed by a heuristic (Move algorithm) and an ILP model
(Task model). The Solve model is an extension of the aforementioned MILP formulation F2,
to which new constraints have been added in order to include bounds on the cycle time and
the number of stationary stages. The computational experiment was carried out with the
same one hour limit, and results showed a significant improvement in the percentage of
instances solved optimally.

3. Hybrid metaheuristics. In order to solve the challenging instances that could not be solved

by the two previous approaches, hybrid metaheuristics that integrate mathematical
programming models and metaheuristic frameworks are developed. More specifically, three
different hybrids metaheuristics are proposed – one based on simulated annealing (SA) and
the other two based on tabu search (TS), relying on different neighborhood definitions. The
two first approaches rely on a classical neighborhood definition, obtained by subjecting the
candidate solution to small changes or moves. The latter approach (TS-CM), in contrast,
draws ideas from of the corridor method (CM) regarding the way to generate and explore
the neighborhood (Sniedovich and Voβ, 2006). In the proposed TS-CM, exogenous

20

constraints are designed and imposed on the original formulation of the problem, and,
subsequently, the constrained problem (denoted Solve-corridor model) is solved using a
MILP solver. The procedure iteratively builds new corridors around the solution found in
each corridor and, therefore, explores adjacent portions of the search space.

4. Combinations of hybrid metaheuristics and MILP. Finally, to further improve the quality of
the solution of the problem, the fourth approach considers combining the use of the Solve
model of approach 2 and the metaheuristics of approach 3. Following the same idea as in the
second approach, a matheuristic is first used to generate an initial solution, and next an
improving solution is sought by either launching first the Solve model and next a hybrid
metaheuristics (combination 4a) , or the other way round (combination 4b).

With the exception of the first one, all of the proposed methods involve the combination of
mathematical programming (MP) models and heuristics or metaheuristics. A general
classification of existing methods combining exact and metaheuristic algorithms has been
proposed by Puchinger and Raidl (2005). Fig. 4 gives an overview of this classification. The
following two main categories are distinguished:

 Collaborative Combinations, where the algorithms exchange information, but are not part
of each other. Exact and heuristic algorithms may be executed sequentially, intertwined or
in parallel.

 Integrative Combinations, where one technique is a subordinate embedded component of

another technique. Thus, there is a master algorithm, which can be either an exact or a
metaheuristic algorithm, and at least one integrated slave.

Fig. 5 depicts a summary of the proposed solution methods. The first approach, labelled with
(1), corresponds to exact methods entailing the execution of the MILP models F1 and F2 with a
one hour time limit. Approaches (2) and (4b) can be seen as bounded exact methods which not
only limit the available computational time but also the explored solution space. Methods (3)
and (4a) are approximate and rely on metaheuristics hybridized with a MILP model. Owing to
the fact that, with the exception of (1) all of the proposed methods comprise a mathematical
programming model and a heuristic or a metaheuristic algorithm, they can be regarded as
matheuristics. According to the classification of Puchinger and Raidl (2005) (Fig. 4), approach
(2) can be seen as a collaborative sequential combination between a matheuristic and a MILP
model, in which the matheuristic is executed as a part of a preprocess before the MILP model.

Combinations of Exact Algorithms and Metaheuristics

Collaborative Combinations

Parallel or Intertwined Execution

Integrative Combinations

Incorporating Exact Algorithms in Metaheuristics

Incorporating Metaheuristics in Exact Algorithms

Sequential Execution

Figure 4: Classification of exact/metaheuristic combinations.

20

candidate solution to small changes or moves. The latter approach (TS-CM), in contrast,
draws ideas from of the corridor method (CM) regarding the way to generate and explore
the neighborhood (Sniedovich and Voβ, 2006). In the proposed TS-CM, exogenous
constraints are designed and imposed on the original formulation of the problem, and,
subsequently, the constrained problem (denoted Solve-corridor model) is solved using a
MILP solver. The procedure iteratively builds new corridors around the solution found in
each corridor and, therefore, explores adjacent portions of the search space.

4. Combinations of hybrid metaheuristics and MILP. Finally, to further improve the quality of
the solution of the problem, the fourth approach considers combining the use of the Solve
model of approach 2 and the metaheuristics of approach 3. Following the same idea as in the
second approach, a matheuristic is first used to generate an initial solution, and next an
improving solution is sought by either launching first the Solve model and next a hybrid
metaheuristics (combination 4a) , or the other way round (combination 4b).

With the exception of the first one, all of the proposed methods involve the combination of
mathematical programming (MP) models and heuristics or metaheuristics. A general
classification of existing methods combining exact and metaheuristic algorithms has been
proposed by Puchinger and Raidl (2005). Fig. 4 gives an overview of this classification. The
following two main categories are distinguished:

 Collaborative Combinations, where the algorithms exchange information, but are not part
of each other. Exact and heuristic algorithms may be executed sequentially, intertwined or
in parallel.

 Integrative Combinations, where one technique is a subordinate embedded component of

another technique. Thus, there is a master algorithm, which can be either an exact or a
metaheuristic algorithm, and at least one integrated slave.

Fig. 5 depicts a summary of the proposed solution methods. The first approach, labelled with
(1), corresponds to exact methods entailing the execution of the MILP models F1 and F2 with a
one hour time limit. Approaches (2) and (4b) can be seen as bounded exact methods which not
only limit the available computational time but also the explored solution space. Methods (3)
and (4a) are approximate and rely on metaheuristics hybridized with a MILP model. Owing to
the fact that, with the exception of (1) all of the proposed methods comprise a mathematical
programming model and a heuristic or a metaheuristic algorithm, they can be regarded as
matheuristics. According to the classification of Puchinger and Raidl (2005) (Fig. 4), approach
(2) can be seen as a collaborative sequential combination between a matheuristic and a MILP
model, in which the matheuristic is executed as a part of a preprocess before the MILP model.

Combinations of Exact Algorithms and Metaheuristics

Collaborative Combinations

Parallel or Intertwined Execution

Integrative Combinations

Incorporating Exact Algorithms in Metaheuristics

Incorporating Metaheuristics in Exact Algorithms

Sequential Execution

Figure 4: Classification of exact/metaheuristic combinations.

21

F
ig

u
re

 5
: O

ve
rv

ie
w

 o
f t

he
 o

pt
im

iz
at

io
n

so
lu

tio
n

m
et

ho
ds

 p
ro

po
se

d
in

 th
is

 th
es

is
.

S
im

u
la

te
d

 A
n

n
ea

li
n

g
(S

A
)

In
it

ia
l s

ol
u

ti
on

 m
at

h
eu

ri
st

ic

IL

P
T

as
k

m
od

el

M
ov

e
al

go
ri

th
m

IL
P
T

as
k

m
od

el

T
ab

u
 S

ea
rc

h
(T

S
)

In
it

ia
l s

ol
u

ti
on

 m
at

h
eu

ri
st

ic

IL

P
T

as
k

m
od

el

M
ov

e
al

go
ri

th
m

IL
P
T

as
k

m
od

el

M
IL

P
So

lv
e

m
od

el

M
IL

P
F

2

In
it

ia
l s

ol
u

ti
on

 m
at

h
eu

ri
st

ic

IL

P
T

as
k

m
od

el

M
ov

e
al

go
ri

th
m

M
at

h
em

at
ic

al
 p

ro
gr

am
m

in
g

m
od

el
s

M
IL

P
F

2
M

IL
P
F

1

1 2
4

T
ab

u
Se

ar
ch

 –
 C

or
ri

do
r

M
et

ho
d

(T
S

-C
M

)

M

IL
P
So

lv
e-

co
rr

id
or

 m
od

el

E
xo

ge
no

us

co
ns

tr
ai

nt
s

M
IL

P
So

lv
e

m
od

el

M
IL

P
F

2

In
it

ia
l s

ol
u

ti
on

 m
at

h
eu

ri
st

ic

IL

P
T

as
k

m
od

el

M
ov

e
al

go
ri

th
m

+
B

o un
ds

+

In
it

ia
l s

ol
u

ti
on

 m
at

h
eu

ri
st

ic

4a

4b

IL
P
T

as
k

m
od

el

M
ov

e
al

go
ri

th
m

In
it

ia
l s

ol
u

ti
on

 m
at

h
eu

ri
st

ic

IL

P
T

as
k

m
od

el

M
ov

e
al

go
ri

th
m

M
IL

P
So

lv
e

m
od

el

M
IL

P
F

2

S
A

 /
T

S
 /

T
S

-C
M

S
A

 /
T

S
 /

T
S

-C
M

M
IL

P
So

lv
e

m
od

el

M
IL

P
F

2

+
B

ou
nd

s

+
B

ou
nd

s

+
B

ou
nd

s

H
yb

ri
d

m
et

ah
eu

ri
st

ic
s

M
IL

P
 b

ou
n

di
n

g
pr

oc
ed

u
re

C

om
bi

n
at

io
n

s
of

 h
yb

ri
d

m
et

ah
eu

ri
st

ic
s

an
d

M
IL

P

3

22

Next, the three metaheuristics developed in (3) were created as integrative combinations
incorporating exact algorithms in a SA, TS or a TS-CM metaheuristic framework. Finally, the
approach proposed in (4) involves a collaborative sequential combination between one of the
three aforementioned metaheuristics and a MILP model, where the model is either applied
before or after the metaheuristic.

All the proposed methods have been evaluated and compared via computational experiments.
The description of these computational experiments and the analysis of the results are reported
further in Chapter 5.

4.2 Mathematical programming models

In order to formalize and solve the AWALBP-L2 optimally, two mixed integer linear
mathematical programming (MILP) models have been proposed, which are referred hereafter as
formulations F1 and F2. Each of these models simultaneously solves the task assignment and
movement scheme subproblems involved in the AWALBP-L2.

The first formulation, F1, is essentially based on the model of Corominas and Pastor (2009).
The modifications made to this model include the addition of new constraints and the
refinement of variable domains.

An alternate MILP formulation, F2, has been developed. The model features significant changes
with respect to F1. The main transformations refer to the suppression of two sets of integer
variables, which have been replaced by a new set of binary variables instead. As a result, the
constraints where these variables appear have also been modified accordingly.

The performance of the proposed models was tested using IBM ILOG CPLEX with a one hour
of computational limit.

The complete proposed mathematical formulations and the result of a computational experiment
are reported in A MILP model for the Accessibility Windows Assembly Line Balancing
Problem (AWALBP) (Calleja et al., 2013).

4.3 MILP bounding procedure

For the AWALBP-L2 the size of the instances that were practically solvable with the proposed
MILP models is rather limited. Therefore, a solution approach that aims at reducing the solution
space has been proposed. The proposed approach consists of:

i) A matheuristic, denoted Initial solution matheuristic, to generate good feasible solutions
and compute upper and lower bounds on the cycle time and the number of stationary
stages. The matheuristic is executed for each possible value of the initial position x and
basically consists of:

 An algorithm, denoted Move algorithm, which computes, for a given value of the
initial position x, a feasible movement scheme with the minimum number of stationary
stages.

 An ILP model, denoted Task model. It computes the optimal task assignment for the
obtained movement scheme.

ii) A MILP model, called Solve model, which incorporates the computed bounds.

23

This approach relies on a key property featured by the proposed Move algorithm. More
specifically, the algorithm has the property of providing a feasible movement scheme with the
minimum number of stationary steps for a given initial position x. This is a very important
characteristic since it is useful for the computation of bounds: it indirectly gives a lower bound
on the number of stationary stages and it allows deriving a lower bound on the cycle time.

The operation of the proposed MILP bounding procedure follows four steps:

Step 1. Initial feasible solutions are computed by using the Initial solution matheuristic, which
is launched for all possible values (multiples of ) of the initial distance x. As a result, this
procedure provides as many initial feasible solutions as values of x.

Step 2. Among all the solutions obtained in the previous step, the solution with the minimum
cycle time, SolCT, and the solution with the minimum number of stationary stages are identified,
which are used to derive upper and lower bounds on the cycle time and the number of stationary
stages. The bounds are added to the Solve model in order to restrict the solution space to those
solutions with an objective function value strictly lower than the known solution SolCT.

Step 3. The optimality of the feasible solution SolCT (identified in Step 2) is checked by
comparing its objective function value with the lower bound on the cycle time. If these values
coincide, this certifies that such solution is optimal. Otherwise, the Solve model, which
incorporates all bounds derived in Step 2, is launched.

Step 4. The Solve model is launched with a one-hour computational time limit with the aim to
obtain a final solution for the problem. Basically, the Solve model is based on the MILP
formulation F2 whose dimension is reduced thanks to both the addition of the bound constraints
and the usage of a lower number of variables and constraints.

With the designed method either a feasible or an optimal solution is always obtained, as
described next.

An optimal solution is certified if one of the three following cases holds:

(i) The values of the objective function and the lower bound on the cycle time coincide,
which certifies that the initial feasible solution SolCT is optimal.

(ii) The Solve model is proved unfeasible, which means that there is no solution whose

objective function value is lower than that of SolCT and thus this solution is optimal.

(iii) The Solve model yields an optimal solution (which improves the initial solution SolCT).

A feasible solution is obtained, but not proven optimal, if one of the two following cases holds:

(i) The Solve model finds a solution which is better than SolCT, but its optimality is not

certified.

(ii) The Solve model does not find a feasible solution in the allowed time limit. In this case,

SolCT is kept as the result of the overall method.

The design of the combined method and the experimental results are detailed in Combining
matheuristics and MILP to solve the Accessibility Windows Assembly Line Balancing
Problem Level 2 (AWALBP-L2) (Calleja et al., 2014a). Additionally, the article provides a
proof to demonstrate that the proposed Move algorithm gives a movement scheme with the

24

minimum number of stationary stages. Furthermore, it proves that the assignment of tasks to
stationary stages in the AWALBP-L1 is a NP-hard problem.

4.4 Hybrid metaheuristics

The main motivation behind the hybridization of metaheuristics with other techniques is to
exploit the complementary characteristics of the different optimization techniques considered.
Initially, pure metaheuristics had a considerable success since they proved to be one of the most
practical approaches for many problems. However, after years of optimization expertise it
became clear that pure metaheuristics had reached their limits, and hence the current interest in
their hybridization (Blum et al., 2011).

The hybrid metaheuristics proposed in this thesis hybridize a metaheuristic, which is the master
mechanism that guides the search, and one mathematical model that acts as an embedded slave.

Such hybrids use two different types of neighborhood definition in the search process:

Type a. The first neighborhood type is defined by the application of small changes or moves to a
current movement scheme. Owing to the fact that the optimal assignment of tasks to
stationary stages, for a given movement scheme, can be obtained fast with a MP model
(the Task model introduced in chapter 4.3) the search is focused in the space of the
movement schemes, and not in the space of complete solutions. For this reason we have
designed a neighborhood that operates the search in the space of the movement
schemes. More specifically, the following neighborhoods were used: i) transference of
one elementary step from a forward step to another forward step (N1), ii) insertion of a
new forward step by transferring one elementary step from an existing forward step to a
new forward step, (N2), and iii) modification of the value of the initial position x (N3).

Type b. The second neighborhood type, in contrast, draws ideas from the Corridor Method

(CM) proposed by Sniedovich and Voβ (2006). The central idea of the CM is to define
constraints on the target problem, such that efficient exact methods can be designed to
solve the neighborhood search problem efficiently. We define the neighborhoods by
iteratively building a corridor around a current movement scheme via the imposition of
exogenous constraints on a MILP model. The aim is to identify smaller portions of the
solution space which are amenable to solving with a MILP solver. Such portions, or
corridors, can be defined by constraining the domains of the variables that are present
in a current solution. Consequently, A MILP model, denoted Solve-corridor model, has
been developed to be used at each iteration of the search. Three types of corridor
structures have been proposed, C1, C2, and C3, which construct a neighborhood around
specified variables of a current movement scheme, as follows:

 Corridor C1 constructs a neighborhood around the variables S of a current

movement scheme, by including all movement schemes whose forward steps have
a length within a specified distance from the current lengths.

 Corridor C2 builds a neighborhood around S and around the number of forward
steps S.

 Corridor C3 constructs a neighborhood around S , the number of forward steps S,
and the initial position x.

25

Three hybrid metaheuristics have been designed: one based in simulated annealing (denoted
SA) (Kirkpatrick et al., 1983) and the other two based on tabu search (denoted TS and TS-CM,
respectively) (Glover, 1986) which use different neighborhood definitions, as follows:

(i) SA: A hybrid metaheuristic based on simulated annealing with a move-based
neighborhood definition (type a) (the proposed SA approach is described in Balancing
assembly lines with accessibility windows. Problem description and heuristic solving
procedure (Calleja et al., 2014b).

(ii) TS: A hybrid metaheuristic based on tabu search with a move-based neighborhood
definition (type a).

(iii) TS-CM: A hybrid metaheuristic based on tabu search with a CM-based neighborhood

definition (type b).

The proposed hybrid metaheuristics SA and TS use the Task model as a subordinate embedded
slave. At each iteration, the Task model is applied to compute the optimal cycle time for the
current neighbor movement scheme, which provides a complete current solution for the
problem. The obtained cycle time value determines whether the candidate movement scheme
(along with its optimal task assignment) will be accepted or rejected as the new current solution
in the local search of the SA or the TS metaheuristic.

On the other hand, the TS-CM hybrid metaheuristic uses the Solve-corridor model as an
embedded slave. The proposed hybrid follows the general scheme of a TS metaheuristic with
the difference that the neighborhoods are not defined via local changes or moves, but
constructed by adding exogenous constraints onto the embedded Solve-corridor model. At each
iteration, the Solve-corridor model receives a current solution as input. Based on this solution,
bounds on the cycle time and the number of stationary stages are derived and incorporated to the
model. Exogenous constraints are also imposed in order to construct the corridors and to define
two tabu lists and the aspiration criterion. Subsequently, the model is used to solve the resulting
reduced portion of the solution space.

The research, proposals and experimental results are reported in Hybrid metaheuristics for the
Accessibility Windows Assembly Line Balancing Problem Level 2 (AWALBP-L2).

4.5 Combinations of hybrid metaheuristics and MILP

With the aim to further improve the quality of the solution of the AWALBP-L2, sequential
combinations of the afore-presented hybrid metaheuristics and the Solve model have been
proposed, as explained next. An initial solution is generated with the Initial solution
matheuristic, and next an improving solution is searched by combining the use of the Solve
model and the hybrid metaheuristic in two alternative ways: i) using the Solve model with the
initial solution obtained with the Initial solution matheuristic and then trying to improve the
solution obtained by the model using one of the proposed hybrids. Or ii) executing one hybrid
and then using the obtained solution as the initial solution for the Solve model.

Table 2 depicts the proposed combinations of hybrid metaheuristics and MILP. The two rows
show, respectively, the two combinations types considered. In the first row MILP is applied
before the hybrid, whereas in the second row MILP is applied after. In each combination type,
running time of the MILP Solve model is limited to 900, 1800 or 2700 s, whereas the Initial
solution matheuristic and the hybrid are executed in the remaining run time with a one hour
time limit.

26

Table 2: Combinations of the proposed hybrid metaheuristics and MILP.

Initial solution
matheuristic

+

 900 s
Solve model 1800 s
 2700 s

+

SA-, TS-, or TS-CM- hybrid
metaheuristic

SA-, TS-, or TS-CM- hybrid
metaheuristic

+

 900 s
Solve model 1800 s
 2700 s

Hereafter, the following notation is used: MILPtime+Hybrid denotes the combination type where
the Solve model is executed before the hybrid, with MILPtime  {900, 1800, 2700} seconds and
Hybrid  {SA, TS, TS-CM}. Accordingly, Hybrid+MILPtime denotes the combination where the
model is executed after the hybrid.

The computational results of the combinations are presented in the article Hybrid
metaheuristics for the Accessibility Windows Assembly Line Balancing Problem Level 2
(AWALBP-L2).

27

Chapter 5

Computational results

5.1 Experimental conditions

To evaluate and compare the performance of the solution methods described in Chapter 4, an
extensive computational experiment was carried out, for which small, medium and large-sized
instances of AWALBP-L2 were considered. Since no benchmark set of data was available in the
literature, a set of 1,200 realistic instances generated at random was used (this set can be found
at https://www.ioc.upc.edu/EOLI/research/). The instances are essentially based on the
description of the real-world test cases given by Gaudlitz (2004). As reported by this source, in
this type of industrial applications the workpiece length may be up to 2.5 times larger than the
width of the workstation, the number of workstations may typically range from 7 to 20 and the
number of tasks may be between 100 and 800. Accordingly, an extended data set was generated,
including workpieces with lengths up to four times larger than the width of the workstations, a
number of workstations comprised between 5 and 40 and a number of tasks varying from 50 to
1,000.

Specifically, the following ranges of data are considered: six ranges of workpiece length
A0={11-15, 16-20, 21-25, 26-30, 31-35, 36-40}, four ranges of number of workstations m = {5-
10, 11-20, 21-30, 31-40} and five ranges of number of tasks N={50-200, 201-400, 401-600,
601-800, 801-1000}. It was then obtained a total number of 6·4·5 = 120 range combinations, by
randomly selecting one value within each range. Subsequently, for each combination 10
instances were generated randomly, resulting in a final set of 1,200 instances.

Additionally, the instances have the following characteristics. The width of the accessibility
windows is 10 length units (lu) and the length of the elementary step  is 1 lu. The time T is 200
time units (tu). The processing time of tasks were randomly generated between 100 and 150 tu,
and were assigned to the workstations according to a equiprobable random policy. The positions
of tasks were also randomly generated along the workpiece length A0. The distance between two
consecutive workpieces in the line is 1 lu and thus A = A0 + 1.

The algorithms were coded and run in Java 7 and the mathematical programming models were
tested using IBM CPLEX 12.2 in an Intel Core 3.33 GHz PC with 4 GB of RAM under
Windows 7 (64 bits). The overall allowed computational time per instance was limited to one
hour. The absolute optimality gap was set to 1-10-6 since without loss of generality, all data are
integer and therefore the value of the objective function is also integer.

The parameter values of hybrids SA and TS were fine-tuned based using CALIBRA (Adenso-
Díaz and Laguna, 2006), a systematic procedure that calibrates the parameter values of heuristic

28

or metaheuristic algorithms. Regarding the proposed TS-CM metaheuristic, a preliminary test
was carried out to examine the performance of the three proposed corridors, C1, C2 and C3
(recall Chapter 4.4) and C3 provided the best performance in terms of the improvement of the
objective function with respect to the initial solution. This corridor was thus selected to be used
in the computational experiment, with a computational time limit for a TS-CM iteration of 300
s.

The computational experiment implied the application of a total of 24 methods. Table 3 lists the
names of the methods conducted and their corresponding approach according to the
classification given in Chapter 4.1.

 Table 3: Proposed solution methods.

No. Name Approach Description

1 F1
1

Mathematical programming
models 2 F2

3 F3 2 MILP bounding procedure

4 SA

3 Hybrid metaheuristics 5 TS

6 TS-CM

7 MILP900 + SA

4a

Combinations of hybrid
metaheuristics and MILP

8 MILP1800 + SA

9 MILP2700 + SA

10 MILP900 + TS

11 MILP1800 + TS

12 MILP2700 + TS

13 MILP900 + TS-CM

14 MILP1800 + TS-CM

15 MILP2700 + TS-CM

16 SA + MILP900

4b

17 SA + MILP1800

18 SA + MILP2700

19 TS + MILP900

20 TS + MILP1800

21 TS + MILP2700

22 TS-CM + MILP900

23 TS-CM + MILP1800

24 TS-CM + MILP2700

29

5.2 Analysis of the results

In order to compare the different approaches proposed, for each method the following
evaluation metrics are considered:

 Percentage of optimal solutions found by the method itself (%OSmethod): the percentage of
instances for which optimality has been proven by the own method.

 Number of optimal solutions (NOS): the number of optimal solutions for which optimality
has been proven by comparison with the known optimum.

 Percentage of optimal solutions (%OS): the percentage of instances for which optimality
has been certified by comparison with the known optimum, with % 100 (/ 1200)OS NOS  .

 Percentage of feasible solutions (%FS): the percentage of instances that are feasible but not
proven optimal.

 Percentage of unsolved instances (%UI): the percentage of instances for which a solution
could not be found after one hour of computational time, thus % % % 100.OS FS UI  

 Maximal, average and minimal gap, (Gapmax, Gapav, Gapmin): the maximal, average and
minimal gap with respect to the best bound, respectively. These gaps have been computed
for the 1,200 instances of each method. For each instance, the relative gap is defined as

  / 100BS BB BS  , where BS is the objective function value of the solution found by the

method and BB is the best bound value known obtained among all proposed methods.
Specifically, the value of BB is the maximal value among the following: i) the best bound
computed by CPLEX among the MILP models of approaches 1 and 2, ii) the lower bound
on the cycle time, LBCT, and iii) the best bound computed by CPLEX among all
combinations of hybrid metaheuristics and MILP of method 4b.

Overall results

Table 4 presents the performance results obtained by all methods defined in Table 3 for the set
of 1,200 instances. From row 1 to 8, the results are given in terms of NOS, %OS, %OSmethod,
%FS, % UI, Gapmax, Gapav, and Gapmin, respectively. Since the methods of categories 4a and 4b
produced very similar results (their %OS do not differ significantly) at this point only the
method in each category with the maximal %OS is discussed, namely MILP2700 + SA and TS-
CM + MILP900. The detailed results for all methods belonging to approach 4 are given at the end
of this section (see Tables 6 and 7). As it can be observed in Table 4 the MILP models were
significantly outperformed by all other methods. The best performance was obtained with
methods of category 4. Specifically, the best %OS corresponds to methods MILP2700 + SA and
TS-CM + MILP900, (81.08% and 80.92%, respectively). Among the hybrid metaheuristics,
methods TS and TS-CM outperformed SA, achieving an optimal solution in 79.75% and
80.67% of the cases, compared to 73.08% in the case of SA. Additionally, the values of Gapmax
and Gapav are very similar for methods of approaches 3 and 4 (between 22.05% and 23.12% for
Gapmax and between 1.13% and 1.85% for Gapav). Another method that had a good performance
is F3, which provided an overall optimal solution of 78.75%, having a Gapmax of 23.12% and a
Gapav of 1.59%. On the other hand, methods F1 and F2 performed the worst, generating an
optimal solution in 41.00% and 55.58% of the cases. Furthermore, Gapmax is considerably high
(above 80%), as well as Gapav (55.36% and 20.15% for F1 and F2, respectively. Finally, F1 was
the only method for which solutions could not be found after one hour of computational time
(53.92% of the cases).

30

Table 4: Performance evaluation of the proposed solution methods.

Category 1 2 3 4a 4b

Description MILP models
 MILP

bounding
procedure

Hybrid metaheuristics

 Combining hybrid
metaheuristics and

MILP

Method F1 F2

F3 SA TS TS-CM MILP2700 +
SA

TS-CM +
MILP900

NOS 492 667 945 877 957 968 973 971

%OS 41.00 55.58 78.75 73.08 79.75 80.67 81.08 80.92

%OSmethod 39.50 53.33 77.50 57.42 57.17 57.25 78.58 78.08

%FS 5.16 44.50 21.25 26.92 20.25 19.33 18.92 19.08

%UI 53.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Gapmax 82.93 83.47 23.12 23.12 22.05 22.05 23.12 22.05

Gapav 55.36 20.15 1.59 1.85 1.16 1.13 1.23 1.13

Gapmin 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.01

The results of Table 4 suggest that the application of bounding techniques and the integration of
MILP models with metaheuristics allow better performance compared to the direct application
of the proposed MILP models and MILP bounding procedure, both for producing a higher
percentage of optimal solutions as for achieving a lower optimality gap.

In the following the results obtained for each approach are discussed in more detail.

MILP models

As mentioned before, the performance of F1 was significantly improved by the proposed
reformulation F2. Specifically, %OS increased by 14.58%. Additionally, for each of the
instances that could not be solved by F1 after one hour of computational time, F2 yielded either
a feasible or an optimal solution. Furthermore, the average computational time decreased by
19.03%, from 2,407 to 1,949s. With this approach only small to medium-size instances could
be solved optimally.

MILP bounding procedure

With respect to the previous MILP models, the MILP bounding procedure showed a significant
improvement not only in the number of optimal solutions but also in terms of computational
time. The %OS rose to 78.75%, and all instances that were solved optimally with methods F1
and F2 were also solved optimally with the proposed approach. Additionally, the average
computational time decreased by 53.25%.

Table 5 details the average results for the MILP bounding procedure. A noteworthy result is that
the proposed Initial solution matheuristic generated a high number of initial solutions (457 out
of 1,200 instances, 38.08%) with an objective function value matching the lower bound on the
cycle time (recall Step 3 of the solving procedure described in Section 4.3), which shows that
the proposed matheuristic provides good feasible initial solutions. In order to further test the
quality of the matheuristic its obtained solutions are compared with the known optimal solutions
of the problem. Specifically, the Initial solution matheuristic provided a NOS, %OS and Gapav
of 519, 43.25% and 4.03%. Finally, the computational times are only around 5 milliseconds on
average.

31

Table 5: Average results obtained for the MILP bounding procedure.

Initial solution
matheuristic

Solve model Total

CT = LBCT
38.08%

Unfeasible model 5.17%
77.50% Optimal solution

Optimal solution 34.25%

Improved feasible solution 19.42%
22.50% Feasible solution

No improved solution after 1h 3.08%

As seen in Table 5, the Solve model resulted unfeasible for 5.17% of the instances. In this case,
it is certified that a feasible solution with a lower value of the objective function does not exist
and that therefore the initial solution is optimal. In addition, 34.25% of the instances could be
improved and were certified as optimal by the model, yielding a total percentage of 77.50%.
When compared to known optima, the overall %OS obtained for the method rises to 78.75%
(recall Table 4). Furthermore, the model provided 19.42% of feasible solutions which, in all
cases, have a better value of the objective function than the initial solution. Finally, 3.08% of
the instances were not solved after 3,600 s of computational time. In this latter case, the initial
feasible solution was kept as the result.

Regarding the average deviation Gapav from the best bound BB, for the 1,200 solutions of the
MILP bounding procedure Δav is 1.59% (recall Table 4). Additionally, in the 3.08% cases where
the Solve model does not provide a solution after the allowed one-hour time limit, the average
gap value is 14.53%.

Hybrid metaheuristics and their combinations with MILP

All methods of this approach use the Initial solution matheuristic as their first step. As
mentioned before, with this matheuristic 457 out of 1,200 instances were certified as optimal.
Therefore, unless stated otherwise, the results presented hereafter are based on the remaining
743 instances.

Table 6 shows the comparative results for the proposed methods with respect to the MILP
bounding procedure on the 743 instances considered. Among these 743 instances, there are 519
known optimal solutions (obtained among all the approaches) which are used to check the
performance of the proposed methods. The table groups the results in four main rows. The first
row shows the results of the MILP bounding procedure and the remaining rows show the results
for SA, TS, TS-CM and their combinations with the Solve model. For each experiment, the first
column (%OSmethod) states the percentage of instances proven optimal by the method. The
second column (%OS) gives the percentage of instances proven optimal by comparing the
obtained solution with the known optimal solutions. Finally, the third column (Gapav) provides
the average relative gap for the 743 instances considered, with respect to the best lower bound
available.

What emerges from the obtained results is that a higher percentage of optimal solutions is
obtained when the proposed hybrid metaheuristics are combined with MILP than when
executed alone (in all cases regarding %OSmethod and %OS for SA and TS, and in all cases with
the exception of MILP2700+TS-CM and TS-CM+MILP2700 for TS-CM). Specifically, the best
optimality percentage was found using the combination TS+MILP2700 (%OSmethod of 67.03) and
MILP2700+SA (%OS of 69.45). On the other hand, a better Gapav is obtained for six different
procedures (1.83; among these six procedures MILP900+TS-CM provided the best result -69.31-
in terms of percentage of overall optimal solutions, %OS).

32

Table 6. Results for the hybrid metaheuristic and their combinations with MILP.

% Optima

Gapav
%OSmethod %OS

MILP bounding procedure 63.66 65.68 2.56
SA 31.22 56.53 2.99
TS 30.82 67.29 1.88
TS-CM 30.96 68.78 1.83
MILP900 + SA 61.78 68.37 2.12
MILP1800 + SA 63.80 68.64 2.05
MILP2700 + SA 65.41 69.45 1.99
MILP900 + TS 61.78 68.78 1.87
MILP1800 + TS 63.93 69.04 1.88
MILP2700 + TS 65.01 68.78 1.92
MILP900 + TS-CM 62.05 69.31 1.83
MILP1800 + TS-CM 63.93 68.91 1.88
MILP2700 + TS-CM 64.47 68.24 2.01
SA + MILP900 62.72 66.89 2.31
SA + MILP1800 64.47 67.70 2.25
SA + MILP2700 66.22 67.83 2.20
TS + MILP900 64.74 68.78 1.83
TS + MILP1800 65.81 68.78 1.83
TS + MILP2700 67.03 68.91 1.83
TS-CM + MILP900 64.60 69.18 1.83
TS-CM + MILP1800 65.55 69.18 1.86
TS-CM + MILP2700 65.95 68.64 1.98

Next the methods yielding the best percentage of optimal solutions certified with known optima
(MILP2700+SA) and average relative gap (MILP900+TS-CM) are discussed in detail. Table 7
summarizes the results for MILP2700+SA (column 1) and for MILP900+TS-CM (column 2)
compared to those obtained for the MILP bounding procedure (column 3). The first row (%
equal CT) shows the percentage of solutions which provided the same objective function value
as in MILP bounding procedure. The second row (% improvement) gives the percentage of
instances that outperform the solution of MILP bounding procedure. Rows 3 (ave.) and 4 (max.)
show, respectively, the average and the maximum improvement among such instances.
Conversely, the percentage of solutions that worsen the objective is given in row 5 (%
decrease), and its average and maximum worsening values are shown in rows 6 (ave.) and 7
(max.), respectively. In both experiments, results show a high percentage of instances that equal
(around 75%) or improve (around 25%) the objective function value of MILP bounding
procedure whereas the percentage of instances that worsen the objective function value is kept
low (0.67% and 1.08% for MILP2700+SA and MILP900+TS-CM, respectively). Row 8 shows the
average gap (Gapav) of the 743 instances considered with respect to the best lower bound
available. Additionally, row 9 gives the maximum gap, Gapmax. Finally, the percentage of
optimal solutions, obtained by comparison with known optima (within the 743 instances
considered) is shown in row 10 (% OS).

33

Table 7: Computational results for MILP2700 +SA and MILP900 + TS-CM
with respect to MILP bounding procedure.

 MILP2700 + SA MILP900+TS-CM
MILP bounding

procedure

% equal CT 76.18 73.76 -

% improvement 23.15 25.17 -

ave. 2.69 3.15 -

max. 10.41 11.81 -

% decrease 0.67 1.08 -

ave. 1.87 1.39 -

max. 3.51 4.03 -

Gapav 1.99 1.83 2.56

Gapmax 23.12 22.05 23.12

% OS 69.45 69.31 65.68

With the proposed approach, the average gap of the solutions that could not be solved optimally by
any method (224 out of the set of 1,200 instances), is 5.83%. Up to date, considering all the
methods proposed in this thesis, the AWALBP-L2 has been solved optimally for 81.33% of the
1,200 instances.

Effects of the characterictics of instances on performance

To study the effects of the characteristics of instances on the performance (in terms of number
of optimal solutions, NOS), the results were grouped according to increasing values of the
parameters workpiece length A0, number of workstations m and number of tasks N. Fig. 6 shows
the NOS obtained according to increasing values of A0 and N. In the upper graphic of Fig. 6 the
instances have been grouped first along the five ranges of N. For each range of N, six ranges of
A0 have been considered, and the total number of instances per combination in any combination
of N-A0 is 40. In the lower graphic of Fig. 6 ranges have been grouped first by A0 and then by N.
As can be seen in Fig. 6, for each range of N the number of optimal solutions decreases as the
value of A0 increases. A0 is the most influencing parameter on performance, since for the lower
values of workpiece length (i.e., up to 15, 20 and 25 lu for methods F1, F2 and all other
methods, respectively) almost all instances are solved, no matter the number of tasks, but for
larger lengths the percentage of optimal solutions falls considerably. Additionally, for medium
to large workpiece lengths the number of optimal solutions decreases as the number of tasks
increase. Specifically, if we consider the overall number of known optimal solutions KOS (976),
all instances with workpieces length up to 15 lu (this is, 1.5 times the width of the workstation)
where optimally solved. For lengths between 16 and 25 lu almost all instances were solved
optimally (99.5%), and a high percentage for instances with lengths between 26-30 was also
obtained (89.5%). On the other hand, for larger lengths the percentage of optimal solutions
dropped considerably (63.0% and 36.5% for instances with 31-35 and 36-40 lu, respectively).

Fig. 7 shows the effect on performance of the number of workstations and the workpiece length,
for all proposed methods. In the upper graphic of Fig. 7 the instances are ordered first by
increasing ranges of m and then by A0, whereas the lower graphic groups them first by A0 and
then by m. As can be observed in both graphics, for instances with small to medium workpieces
lengths the number of workstations has no effect on performance. More specifically, a high
number of instances up to 15 and 20 lu are solved optimally for methods F1 and F2,
respectively, no matter the number of workstations. The same occurs to instances up to 25 lu for
the rest of methods. However, for instances with lengths larger than 26 lu, the number of
optimal solutions found falls significantly as the number of workstations increases.

34

Figure 6: Optimal solutions according to increasing ranges of A0 and N.

0

10

20

30

40

50

11
-1

5

16
-2

0

21
-2

5

26
-3

0

31
-3

5

36
-4

0

11
-1

5

16
-2

0

21
-2

5

26
-3

0

31
-3

5

36
-4

0

11
-1

5

16
-2

0

21
-2

5

26
-3

0

31
-3

5

36
-4

0

11
-1

5

16
-2

0

21
-2

5

26
-3

0

31
-3

5

36
-4

0

11
-1

5

16
-2

0

21
-2

5

26
-3

0

31
-3

5

36
-4

0

50-200 201-400 401-600 601-800 801-1000

Effects of A0 and N on performance
F1 F2 F3
SA TS TS-CM
MILP2700+SA TS-CM+MILP900 NOS

A
0

N

NOS

0

10

20

30

40

50

60

11
-1

5

16
-2

0

21
-2

5

26
-3

0

31
-3

5

36
-4

0

11
-1

5

16
-2

0

21
-2

5

26
-3

0

31
-3

5

36
-4

0

11
-1

5

16
-2

0

21
-2

5

26
-3

0

31
-3

5

36
-4

0

11
-1

5

16
-2

0

21
-2

5

26
-3

0

31
-3

5

36
-4

0

5-10 11-20 21-30 31-40

Effects of A0 and m on performance
F1 F2 F3
SA TS TS-CM
MILP2700+SA TS-CM+MILP900 NOS

0

10

20

30

40

50

60

5-
10

11
-2

0

21
-3

0

31
-4

0

5-
10

11
-2

0

21
-3

0

31
-4

0

5-
10

11
-2

0

21
-3

0

31
-4

0

5-
10

11
-2

0

21
-3

0

31
-4

0

5-
10

11
-2

0

21
-3

0

31
-4

0

5-
10

11
-2

0

21
-3

0

31
-4

0

11-15 16-20 21-25 26-30 31-35 36-40

NOS

A0

m

m

A0

0

10

20

30

40

50

50
-2

00

20
1-

40
0

40
1-

60
0

60
1-

80
0

80
1-

10
00

50
-2

00

20
1-

40
0

40
1-

60
0

60
1-

80
0

80
1-

10
00

50
-2

00

20
1-

40
0

40
1-

60
0

60
1-

80
0

80
1-

10
00

50
-2

00

20
1-

40
0

40
1-

60
0

60
1-

80
0

80
1-

10
00

50
-2

00

20
1-

40
0

40
1-

60
0

60
1-

80
0

80
1-

10
00

50
-2

00

20
1-

40
0

40
1-

60
0

60
1-

80
0

80
1-

10
00

11-15 16-20 21-25 26-30 31-35 36-40

N

A0

Figure 7: Optimal solutions according to increasing ranges of A0 and m.

KOS

KOS

KOS

35

Fig. 8 shows the influence of increasing ranges of the number of tasks N with respect to the
number of workstations m. As it can be observed in the upper graphic of Fig.8, parameter m
generally has the strongest influence on performance since for each range of N the number of
optimal solutions NOS decreases steadily as m increases. This situation, though, is reversed for
methods F1 and F2, for which the NOS drops significantly as N increases, for all ranges of m.

Finally, in order to analyze the size limits of the instances that could be solved optimally, the
overall percentages of optimal solutions grouped by each individual parameter A0, m and N are
depicted in Fig. 9. From left to right, the graphs show the percentage of known optimal
solutions, %KOS, for increasing ranges of A0, m and N, respectively. As it can be observed in
Fig.9, A0 is the parameter with the highest impact on performance followed by m, as the
performance results decrease as those parameters increase. Conversely, parameter N appears to
impact in an opposite way, since for 50 to 400 tasks the percentage of optima decreases,
whereas for instances with more than 400 tasks, performance increases as the number of tasks
increases.

0
10
20
30
40
50
60
70

50
-2

00

20
1-

40
0

40
1-

60
0

60
1-

80
0

80
1-

10
00

50
-2

00

20
1-

40
0

40
1-

60
0

60
1-

80
0

80
1-

10
00

50
-2

00

20
1-

40
0

40
1-

60
0

60
1-

80
0

80
1-

10
00

50
-2

00

20
1-

40
0

40
1-

60
0

60
1-

80
0

80
1-

10
00

5-10 11-20 21-30 31-40

Figure 8: Optimal solutions according to increasing ranges of m and N.

0

20

40

60

80

5-
10

11
-2

0

21
-3

0

31
-4

0

5-
10

11
-2

0

21
-3

0

31
-4

0

5-
10

11
-2

0

21
-3

0

31
-4

0

5-
10

11
-2

0

21
-3

0

31
-4

0

5-
10

11
-2

0

21
-3

0

31
-4

0

50-200 201-400 401-600 601-800 801-1000

Effects of m and N on performance

F1 F2 F3
SA TS TS-CM
MILP270+SA TS-CM+MILP900 NOSKOS

m

N

N

m

Figure 9: Performance results according to increasing size instances.

0

20

40

60

80

100
A0

0

20

40

60

80

100

5-10 11-20 21-30 31-40

m

0

20

40

60

80

100
N

Instance sizes solved optimally
%KOS %KOS %KOS

KOS

37

Chapter 6

Conclusions, publications and future
research

6.1 Conclusions

In this doctoral thesis a variant of an assembly line balancing problem of practical significance
has been addressed, which has been entitled AWALBP: the Accessibility Windows Assembly
Line Balancing Problem. The main characteristic of this problem is that the width of the
workstations is smaller than the length of the workpieces. This means that each workstation can
access in each stationary stage only a restricted set of tasks since its accessibility area is smaller
than the workpiece’s width. The problem is highly complex and each of its optimization levels
implies the solution of one or several NP-hard subproblems. Specifically, the optimization level
tackled in this thesis is the AWALBP-L2. The case addressed entails the solution of the
following two subproblems: (i) the computation of a feasible movement scheme and (ii) the
assignment of each task to one stationary stage of the cycle.

The literature review showed that relatively few studies have addressed line balancing problems
with accessibility windows and a cyclic transportation pattern of the workpieces. In this thesis,
the AWALBP has been described and a classification of its main optimization levels has been
proposed. A specific case of level AWALBP-L2 has been formalized, and four solution
approaches have been designed and implemented.

With these approaches, the objectives of this thesis have been achieved:

a) Regarding the classification and formalization of the AWALB problem, its optimization
levels were identified, and the considered case of AWALBP-L2 was formalized via two
alternate mathematical programming formulations, F1 and F2.

b) With respect to the exact methods developed, models F1 and F2 were implemented and

tested, but only small to medium-sized instances could be solved to optimality, yielding a
55.58% of optimal solutions. To tackle the challenging instances, MILP bounding
procedure was developed, improving the percentage of optimal solutions to 78.75%.

c) Finally, concerning hybrid solution methods for the problem, three metaheuristics
hybridized with mathematical programming models were developed, based on simulated
annealing and tabu search. Two types of neighborhoods were proposed, one relying on the
classical move-based type of neighborhood, and another one inspired by the paradigm of

38

the corridor method. The best result was obtained for a metaheuristic running tabu search
with a corridor method, raising the percentage of optima to 80.67%. Furthermore,
sequential combinations of a hybrid metaheuristic and a MILP model were also considered,
and the best result was obtained with executing the MILP model first and then improving
the obtained solution with a simulated annealing. With this approach, the percentage of
optimal solutions found increased to 81.08%.

Up to date, among all the proposed solution methods for the considered case of AWALBP-L2,
the overall percentage of optimal solutions is 81.33%. If we focus on the feasible solutions of
the best approaches (i.e, approaches 2 to 4), solutions with a moderate gap have been obtained,
being 5.83% the average deviation of a solution with respect to the best bound available.

In order to achieve the objectives of this thesis, the following contributions have been
developed:

1. The AWALBP has been defined and its main levels have been classified. A formal
description of the variant AWALBP-L2 has been provided.

2. A literature review on line balancing problems with accessibility windows and cyclic
movement patterns has been conducted.

3. A collection of benchmark instances has been created and uploaded online in order
to facilitate further research.

4. A number of exact and hybrid solution methods have been designed, implemented and
tested for the solution of the addressed case of AWALBP-L2. Among the proposed
methods, the following developments could be highlighted:

4.1 An algorithm which provides a movement scheme with the minimum number of
stationary stages. This feature is very important since it allows i) obtaining a lower
bound on the number of stationary stages and ii) developing methods that
incorporate bounds.

4.2 A mathematical programming model for the assignment of tasks to stationary stages
whose resolution is very fast. The high efficiency of this model allows finding the
optimal assignment of tasks for a given movement scheme, and thus it enables the
exploration in the space of the movement schemes.

4.3 An original hybrid metaheuristic using tabu search with corridor method. The
proposed method is original in the way how it exploits a MILP model within a tabu
search framework. Such model incorporates exogenous constraints to iteratively
define a “corridor” around a current movement scheme and to incorporate the tabu
lists onto the formulation of the problem.

5. Extensive computational experiments have been conducted for the evaluation of the
proposed solution methods. The main findings have been highlighted and proposals for
future research work have been provided (see Section 6.3).

The study of the AWALBP-L2 allowed for the development of appropriate methods for its
solution, which helps to improve the management of the production processes and to enhance
the competitiveness of the industrial network. Furthermore, the fundamental ideas on which the
proposed methods are based are open in nature and extend encouraging perspectives either for

39

tackling other variants of the AWALBP or for addressing other combinatorial optimization
problems, as most of the production management problems are.

6.2 Derived works

The written works derived from the research undertaken in this thesis are listed below.

Articles in journals included in the JCR

1. Calleja, G., Corominas, A., García-Villoria, A., and Pastor, R. A MILP model for the
Accessibility Windows Assembly Line Balancing Problem (AWALBP). International
Journal of Production Research, 51 (12), 3549-3560, 2013.

2. Calleja, G., Corominas, A., García-Villoria, A., and Pastor, R. Combining matheuristics
and MILP for the Accessibility Windows Assembly Line Balancing Problem Level 2
(AWALBP-L2). Computers and Operations Research, 48, 113-123, 2014a.

3. Calleja, G., Corominas, A., García-Villoria, A., and Pastor, R. Balancing assembly lines
with accessibility windows. Problem description and heuristic solution procedure.
DYNA, 89 (5), 552-559, 2014b.

4. Calleja, G., Corominas, A., García-Villoria, A., and Pastor, R. Hybrid metaheuristics for
the Accessibility Windows Assembly Line Balancing Problem (in review process at
European Journal of Operational Research).

Communications to conferences

5. Calleja, G., Corominas, A., García-Villoria, A., and Pastor, R. Exact and heuristic
approaches for the Visibility Windows Assembly Line Balancing Problem (VWALBP),
in Proceedings of the 12th Annual Congress of the French National Society of
Operations Research and Decision Science, 12è Congrès annuel de la Société Française
de Recherche Opérationnelle et d’Aide à la Décision (ROADEF 2011), 583-584, Saint-
Étienne, France, 2-4 March, 2011.

6. Calleja, G., Corominas, A., García-Villoria, A., and Pastor, R. Heurísticas para el
Visibility Windows Assembly Line Balancing Problem (VWALBP). Book of full
papers: 5th International Conference on Industrial Engineering and Industrial
Management. XV Congreso de Ingeniería de Organización (CIO 2011), 201-205,
Cartagena, Spain, 7-9 September, 2011.

7. Calleja, G., Corominas, A., García-Villoria, A., and Pastor, R. Enhanced MILP model
for the Accessibility Windows Assembly Line Balancing Problem (AWALBP). In
Proceedings of the 13rd Annual Congress of the French National Society of Operations
Research and Decision Science, 13è Congrès Annuel de la Société Française
de Recherche Opérationnelle et d'Aide à la Décision (ROADEF 2012), 117-118,
Angers, France, 11-13 April, 2012.

8. Calleja, G., Corominas, A., García-Villoria, A., and Pastor, R. Modelo de PLEM
mejorado para el Accessibility Windows Assembly Line Balancing Problem
(AWALBP). In Proceedings of the 6th International Conference on Industrial
Engineering and Industrial Management: XVI Congreso de Ingeniería de Organización
(CIO 2012), 879-886, Vigo, Spain, 18-20 July, 2012.

40

9. Calleja, G., Corominas, A., García-Villoria, A., and Pastor, R. Using tabu search and
MILP for the Accessibility Windows Assembly Line Balancing Problem (AWALBP).
In Proceedings of the XXXIV Congreso Nacional de Estadística e Investigación
Operativa (SEIO 2013), 117, Castellón, Spain, 11-13 september, 2013.

10. Calleja, G., Corominas, A., García-Villoria, A., and Pastor, R. Using simulated
annealing and MILP for the Accessibility Windows Assembly Line Balancing Problem
(AWALBP). In Proceedings of the XXVI EURO-INFORMS Joint International
Conference, 26th European Conference on Operational Research (EURO 2013), 38,
Rome, Italy, 1-4 July, 2013.

11. Calleja, G., Corominas, A., García-Villoria, A., and Pastor, R. The Accessibility
Windows Assembly Line Balancing Problem (AWALBP): A review of advances and
trends. In Proceedings of the 20th Conference of the International Federation of
Operational Research Societies (IFORS 2014), 191. Barcelona, 13-18 July, 2014.

12. Corominas, A., Calleja, G., García-Villoria, A., and Pastor, R. MILP-based Tabu Search
using Corridor Method for an assembly line balancing problem with accessibility
windows. In Proceedings of the 20th Conference of the International Federation
of Operational Research Societies (IFORS 2014), 191-192, Barcelona, 13-18 July,
2014.

Books

13. Calleja, G., Corominas, A., García-Villoria, A., and Pastor, R. Balancing assembly lines
with accessibility windows. SpringerBriefs in Operations Management, Springer.
Editor: Sethi, S. (in preparation).

6.3 Future research

The Accessibility Windows Assembly Line Balancing Problem involves multiple optimization
levels and new features of practical relevance that can be addressed. The following extensions
or alternative assumptions can be considered:

Several workstations compatible for each task. This extension adds a higher complexity to the
problem. Now it is necessary not only to decide in which stationary stage a task has to be
assigned, but also in which one of the available workstations.

Precedence relationships among tasks. When dealing with workpieces larger than the
workstations some situations arise that do not occur in assembly lines without restricted
accessibility windows. For example, even in the case of one single workstation compatible per
task, it is necessary to explicitly take into account the precedence relationships among tasks that
are executed in different workstations.

Multiple robot arms at each workstation. What emerges from the analysis of the literature is
that research on line balancing problems considering multiple robot arms per workstation is
scarce or at least it does not involve large workpieces. The research would focus first on testing
existing methods proposed for other balancing problems and subsequently either adapt or design
new efficient procedures for the AWALBP-L2.

Regarding the solution approaches proposed for the problem, the following extensions could be
considered:

Parallel or intertwined execution. In this thesis, collaborative combinations of sequential
executions of MILP and metaheuristics have been proposed, in which the computational time

41

has been divided into two parts. An interesting future line of research concerns the collaborative
combination of MILP and metaheuristics in a parallel or intertwined way. In the parallel
execution, the MILP solver and the metaheuristic are launched in parallel, and they may pass
along information to each other when something relevant for the algorithm occurs (e.g., a new
incumbent solution or a new bound is found). Conversely, in the intertwined execution the
methods are launched sequentially. In this case, either the allowed time for the methods can be
divided in many parts, or each method can be executed until something relevant for the
algorithm occurs.

43

References
Adenso-Díaz, B., and Laguna, M. Fine-tuning of algorithms using fractional experimental
designs and local search. Operations Research, 54 (1), 99-114, 2006.

Adham, A. Zainuddin, H., Siali, F., and Azizan, N. Assembly line balancing in manufacturing
processes: Using simulation model. Advanced Materials Research, 748, 1183-1187, 2013.

Aghajani, M., Ghodsi, R., and Javadi, B. Balancing of robotic mixed-model two-sided assembly
line with robot setup times. The International Journal of Advanced Manufacturing Technology,
DOI: 10.1007/s00170-014-5945-x, article in press, 2014.

Akpinar, S., and Bayhan, G. Performance evaluation of ant colony optimization-based solution
strategies on the mixed-model assembly line balancing problem. Engineering Optimization, 46
(6), 842-862, 2014.

Amen, M. Heuristic methods for cost-oriented assembly line balancing: A comparison on
solution quality and computing time. International Journal of Production Economics, 69, 225-
264, 2001.

Amen, M. Cost-oriented, assembly line balancing: model formulations, solution difficulty,
upper and lower bounds. European Journal of Operational Research, 168 (3), 747-770, 2006.

Ammons, J.C., Carlyle, M., Cranmer, L., Depuy, G., Ellis, K., McGinnis, L.F., Tovey, C.A.,
and Xu, H. Component allocation to balance workload in printed circuit card assembly systems.
IIE Transactions, 29, 265-275, 1997.

Andrés, C., Miralles, C., and Pastor, R. Balancing and sequencing tasks in assembly lines with
sequence-dependent setup times. European Journal of Operational Research, 187 (3), 1212-
1223, 2008.

Bagher, M., Zandieh, M., Farsijani, H., Balancing of stochastic U-type assembly lines: an
imperialist competitive algorithm. International Journal of Advanced Manufacturing
Technology, 54 (1-4), 271-285, 2011.

Baldacci, R., Maniezzo, V., and Mingozzi, A. An exact method for the car pooling problem
based on lagrangean column generation. Operations Research, 52, 3, 422-439, 2004.

Bartholdi, J. Balancing two-sided assembly lines: a case study. International Journal of
Production Research, 31, 10, 2447-61, 1993.

Bartholdi, J., and Eisenstein, D. A production line that balances itself. Operations Research, 44
(1), 21-234, 1996.

Battaïa, O., and Dolgui, A. A taxonomy of line balancing problems and their solution
approaches. International Journal of Production Economics, 142 (2), 259-277, 2013.

Battaïa, O., Dolgui, A., Guschinsky, N., and Levin, G. A decision support system for design of
mass production machining lines composed of stations with rotary or mobile table. Robotics and
Computer-Integrated Manufacturing, 28, 672-680, 2012.

Battini, D., Faccio, M., Ferrari, E., Persona, A., and Sgarbossa, F. Design configuration for a
mixed-model assembly system in case of low product demand. International Journal of
Advanced Manufacturing Technology, 34 (1), 188-200, 2007.

44

Bautista, J., and Pereira, J. Ant algorithms for a time and space constrained assembly line
balancing problem. European Journal of Operational Research, 177 (3), 2016-2032, 2007.

Bautista, J., and Pereira, J. Procedures for the time and space constrained assembly line
balancing problem. European Journal of Operational Research, 212 (3), 473-481, 2011.

Baybars, I. A survey on exact algorithms for the simple assembly line balancing problem.
Management Science, 32 (8), 909-932, 1986a.

Baybars, I. An efficient heuristic method for the simple assembly line balancing problem.
International Journal of Production Research, 24 (1), 149-166, 1986b.

Becker, C., and Scholl, A. A survey on problems and methods in generalized assembly line
balancing. European Journal of Operational Research, 168 (3), 694-715, 2007.

Blum, C., and Miralles, C. On solving the assembly line worker assignment and balancing
problem via beam search. Computers & Operations Research, 38 (1), 328-339, 2011.

Blum, C., Puchinger, J., Raidl, G., and Roli, A. Hybrid metaheuristics in combinatorial
optimization: A survey. Applied Soft Computing, 11 (6), 4135-4151, 2011.

Boctor, F. A multiple-rule heuristic for assembly line balancing. Journal of Operational
Research Society, 46, 62–69, 1995.

Boschetti, M., Maniezzo, V., Roffilli, M., Bolufé, A. Matheuristics: optimization, simulation
and control. In Lecture Notes in Computer Science. Hybrid metaheuristics, 6th international
workshop, HM, 5818, 171-177, 2009.

Borisovsky, P., Dolgui, A., and Kovalev, S. Algorithms and implementation of a set partitioning
approach for modular machining line design. Computers & Operations Research, 39 (12), 3147-
3155, 2012.

Boussaïd, I., Lepagnot, J., and Siarry, P. A survey on optimization metaheuristics, Information
Sciences, 237, 82-117, 2013.

Boysen, N., Fliedner, M., and Scholl, A. A classification of assembly line balancing problems.
European Journal of Operational Research, 183 (2), 674-693, 2007.

Bowman, E. Assembly line balancing problem by linear programming. Operations Research, 8
(3), 385–389, 1960.

Bratcu, A., and Dolgui, A. A survey of the self-balamcing production lines (“bucket brigades”).
Journal of Intelligent Manufacturing, 16 (2), 139-158, 2005.

Bryton, B. Balancing of a continuous production line. M.Sc. Thesis, Northwestern University,
Evanston, Illinois, 1954.

Buxey, G.M. Assembly line balancing with multiple stations. Management Science, 20 (6),
1010-1021, 1974.

Capacho, L., and Pastor, R. The ASALB Problem with processing alternatives involving
different tasks: definition, formalization and resolution. Lecture Notes in Computer Science,
3982, 554-563, 2006.

45

Chica, M., Cordón, O., Damas, S., and Bautista, J. A multiobjective GRASP for the 1/3 variant
of the time and space assembly line balancing problem. Trends in Applied Intelligent Systems,
6098, 656-665, 2010.

Corominas, A., and Pastor, R. A MILP model for the Visibility Windows Assembly Line
Balancing Problem (VWALBP): the case of the Müller-Hannemann & Weihe problem.
Working paper. Universitat Politècnica de Catalunya. Available from:
http://upcommons.upc.edu/e-prints/bitstream/2117/7047/1/IOC-DT-P-2009–09.pdf, 2009.

Corominas, A., Pastor, R., and Plans, J., 2008. Balancing assembly lines with skilled and
unskilled workers. Omega, 36 (6), 1126-1132, 2008.

Corominas, A., Ferrer, L., and Pastor, R. Assembly line balancing: general resource-constrained
case. International Journal of Production Research, 49 (12), 3527-3542, 2011.

Crama, Y., Van de Klundert, J., and Spieksma, F.C.R. Production planning problems in printed
circuit board assembly. Discrete Applied Mathematics, 123 (1-3), 339-361, 2002.

Delorme, X., Dolgui, A., and Kovalyov, M. Combinatorial design of a minimum cost transfer
line. Omega, 40 (1), 31-41, 2012.

Digiesi, S., Kock, A., Mummolo, G., and Rooda, J. The effect of dynamic worker behavior on
flow line performance. International Journal of Production Economics, 120 (2), 368-377, 2009.

Dolgui, A., Guschinsky, N., Levin, G., and Proth, J. Optimisation of multi-position machines
and transfer line. European Journal of Operational Research, 185 (3), 1375-1389, 2008.

Dolgui, A., and Proth, J. Supply Chain Engineering: useful methods and techniques. Springer,
2010.

Dong, D., Zhang, L., Xiao, T., and Mao, H. Balancing and sequencing of stochastic mixed-
model assembly U-lines to minimise the expectation of work overload time. International
Journal of Production Research, DOI: 10.1080/00207543.2014.944280, 2014.

Dou, J., Dai, X., and Meng, Z. A GA-based approach for optimizing single-part flow-line
configurations of RMS. Journal of Intelligent Manufacturing, 22 (2), 301-317, 2011.

Erel, E., and Gökçen, H. Shortest-route formulation of mixed-model assembly line balancing
problem. European Journal of Operational Research, 16 (1), 194-205, 1999.

Erel E., and Sarin, S. A survey of the assembly line balancing procedures. Production, Planning
& Control, 9 (5), 414-434, 1998.

Essafi, M., Delorme, X., Dolgui, A., and Guschinskaya, O. A MIP approach for balancing
transfer line with complex industrial constraints. Computers & Industrial Engineering, 58 (3),
393-400, 2010.

Essafi, M., Delorme, X., and Dolgui, A. A reactive GRASP and Path Relinking for balancing
reconfigurable transfer lines. International Journal of Production Research, 50 (18), 5213-
5328, 2012.

Finnsgård, C., and Wänström, C. Factors impacting manual picking on assembly lines: an
experiment in the automotive industry. International Journal of Production Research, 51 (6),
1789-1798, 2013.

46

Gamberini, R., Grassi, E.G.A., and Regattieri, A. A multiple single-pass heuristic algorithm
solving the stochastic assembly line rebalancing problem. International Journal of Production
Research, 47 (8), 2141-2164, 2009.

Gao, J., Sun, L., Wang, L., and Gen, M. An efficient approach for type II robotic assembly line
balancing problems. Computers & Industrial Engineering, 56 (3), 1065-1080, 2009.

Gaudlitz, R. Optimization algorithms for complex mounting machines in PC board
manufacturing. Doctoral thesis. Technical University of Darmstadt, 2004.

Glover, F. Future paths for integer programming and links to artificial intelligence. Computers
& Operations Research, 13 (5), 533-549, 1986.

Glover, F., and Laguna, M. Tabu Search. Kluwer Academic Publishers, 1997.

Ghosh, S., and Gagnon, R. A comprehensive literature review and analysis of the design,
balancing and scheduling of assembly systems. International Journal of Production Research,
27 (2), 637-670, 1989.

Gökçen, H., Kara, Y., and Atasagun Y. Integrated line balancing to attain Shokinka in a
multiple straight line facility. International Journal of Computer Integrated Manufacturing, 23
(5), 402-411, 2010.

Gungor, A., and Gupta, S. A solution approach to the disassembly line balancing problem in the
presence of task failures. International Journal of Production Research, 39 (7), 1427-1467,
2001.

Guschinskaya, O., Dolgui, A., Guschinsky, N., and Levin, G. A heuristic multi-start
decomposition approach. European Journal of Operational Research, 189 (3), 902-913, 2008.

Guschinskaya, O., Gurevsky, E., Dolgui, A., and Eremeev, A. Metaheuristic approaches for the
design of machining lines. International Journal of Advanced Manufacturing Technology, 55
(1), 11-22, 2011.

Hamta, N. Fatemi Ghomi, S., Jolai, F. and Bahalke, U. Bi-criteria assembly line balancing by
considering flexible operation times. Applied Mathematical Modelling, 35 (12), 5592-5608,
2011.

Hansen, P., and Mladenović, N. An introduction to variable neighborhood search. In Voβ, S.,
Martello, S., Osman, I., and Roucairol, C., editors, Metaheuristics: advances and trends in local
search paradigms for optimization, 433-438. Kluwer Academic Publishers, 1999.

Hao, N. Sequencing and balancing of mixed model assembly line with window cycle time.
Doctoral thesis. Universitat Politècnica de Catalunya, Barcelona, Spain, 2005.

Hao, Y., and Wei, S. A genetic algorithm for multi-model assembly line balancing problem.
Proceeedings of the IEEE International Symposium on Assembly and Manufacturing (ISAM),
369-371, 2013.

Helgeson, W., and Birnie, D. Assembly line balancing using the ranked positional weight
technique. Journal of Industrial Engineering, 12, 394–398, 1961.

Hoffmann, T. Eureka: a hybrid system for assembly line balancing. Management Science, 38
(1), 39-47, 1992.

47

Hu, X., Wu, E., Jinsong, B., and Jin, Y. A branch-and-bound algorithm to minimize the line
length of a two-sided assembly line. European Journal of Operational Research, 206 (3), 703-
707, 2010.

Inman, R., and Leon, M. Scheduling duplicate serial stations in transfer lines. International
Journal of Production Research, 32 (11), 2631-2644, 1994.

Jayaswal, S., and Agarwal, P. Balancing U-shaped assembly lines with resource dependent task
times: A Simulated Annealing approach. Journal of Manufacturing Systems, DOI:
10.1016/j.jmsy.2014.05.002, article in press, 2014.

Johnson, R. Assembly line balancing algorithms. International Journal of Production Research,
19, 277–287, 1981.

Johnson, M., and Smed, J. Observations on PCB assembly optimization. Electronic Packaging
& Production, 41 (5), 38-42, 2001.

Junsong, L. Applied technology in assembly line balancing based on genetic algorithm and
simulation. Advanced Materials Research, 886, 564 -567, 2014.

Kalayci, C., and Gupta, S. A tabu search algorithm for balancing a sequence-dependent
disassembly line. Production, Planning & Control. The Management of Operations, 25 (2),
149-160, 2014.

Kara, Y., Paksoy, T., and Chang, C. Binary fuzzy goal programming approach to single model
straight and U-shaped assembly line balancing. European Journal of Operational Research, 195
(2), 335-347, 2009.

Karabati, S., and Sayin, S. Assembly line balancing in a mixed-model sequencing environment
with synchronous transfers. European Journal of Operational Research, 149, 417-429, 2003.

Kazemi, S., Ghodsi, R., Rabanni, M., and Tavakkoli-Moghaddam, R. A novel two-stage genetic
algorithm for a mixed-model U-line balancing problem with duplicated tasks. International
Journal of Advanced manufacturing Technology, 55 (9-12), 1111-1122, 2011.

Kim. Y.K., Kim, Y., and Kim, Y.J. Two-sided assembly line balancing: a genetic algorithm
approach. Production, Planning & Control, 11 (1), 44-53, 2000.

Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. Optimization by simulated annealing. Science,
220, 671-680, 1983.

Kumar, N., and Mahto, D. Assembly Line Balancing: A review of developments and trends in
approach to industrial application. Global Journal of Researches in Engineering, 13 (2), 29-50,
2013.

Lapierre, S.D., and Ruiz, A.B. Balancing assembly lines: An industrial case study. Journal of
the Operational Research Society, 55 (6), 589-597, 2004.

Lusa, A. A survey of the literature on the multiple or parallel assembly line balancing problem.
European Journal of Industrial Engineering, 2 (1), 50-72, 2008.

Maniezzo, V., Stützle, T., and Voβ, S. Matheuristics: hybridizing metaheuristics and
mathematical programming. Annals Information Systems, 10. Springer, 2009.

48

Martin, R. Modeling an optimization problem from the automated manufacturing of PC boards.
Diploma Thesis. Univerität Konstanz, 2002.

Miltenburg, G. Balancing and scheduling mixed-model U-shaped production lines.
International Journal of Flexible Manufacturing Systems, 14 (2), 119-151, 2002.

Miltenburg; G., and Wijngaard, J. U-line balancing problem. Management Science, 40, 1378–
1388, 1994.

Miralles, C., García-Sabater, J., Andrés, C., and Carlos, M. Advantages of assembly lines in
sheltered work centres for disabled. A case study. International Journal of Production
Economics, 110 (1-2), 187-197, 2007.

Miralles, C., García-Sabater, J., Andrés, C., and Carlos, M. Branch and bound procedure for
solving the assembly line worker assignment and balancing problem: application to sheltered
work centres for disabled. Discrete Applied Mathematics, 156 (3), 352-367, 2008.

Mohd-Hafizuddin, M., Ahmad-Nazif, N.K., Mohd-Needza, Y., and Azila-Nadiah, D. A study
on line balancing in assembly line at automotive component manufacture. Proceedings of the
2012 International Conference on Industrial Engineering and Operations Management,
Istanbul, Turkey, July 3 –6, 2012.

Mozdgir, A., Mahdavi, I., Badeleh, I.S., and Solimanpur, M. Using the Taguchi method to
optimize the differential evolution algorithm parameters for minimizing the workload
smoothness index in simple assembly line balancing. Mathematical and Computer Modelling,
57 (1-2), 137-151, 2013.

Morrison, D. An application of the branch, bound, and remember algorithm to a new simple
assembly line balancing dataset. European Journal of Operational Research, 236 (2), 403-409,
2014.

Müller-Hannemann, M., and Weihe, K. Moving policies in cyclic assembly line scheduling.
Theoretical Computer Science, 351 (3), 425-436, 2006.

Nearchou, A. maximizing production rate and workload smoothing in assembly lines using
particle swarm optimization. International Journal of Production Economics, 129 (2), 242-250,
2011.

Özcan, U, and Toklu, B. Multiple-criteria decision-making in two-sided assembly line
balancing: a goal programming and a fuzzy goal programming models. Computers &
Operations Research, 36 (6), 1955-1965, 2009.

Pachghare, V., and Dalu, R. S. Assembly Line Balancing - A review. International Journal of
Science and Research, 3 (3), 807-811, 2014.

Pape, T. Heuristics and lower bounds for the simple assembly line balancing problem type 1:
Overview, computational tests and improvements. European Journal of Operational Research,
240 (1), 32-42, 2015.

Pastor, R., Andrés, C., Durán, A., and Pérez, M. Tabu search algorithms for an industrial multi-
product and multi-objective assembly line balancing problem, with reduction of the task
dispersion, Journal of the Operation Research Society. 53, 1317-1323, 2002.

Pastor, R., and Corominas, A. Assembly line balancing with incompatibilities and bounded
workstation loads. Ricerca Operativa, 30 (93), 23-45, 2000.

49

Pastor, R., and Ferrer, L. An improved mathematical program to solve the simple assembly line
balancing problem. International Journal of Production Research, 47 (11), 2943-2959, 2009.

Pastor, R. LB-ALBP: the lexicographic bottleneck assembly line balancing problem.
International Journal of Production Research, 49 (8), 2425-2442, 2011.

Pastor, R., Chueca, I., and García-Villoria, A. A heuristic procedure for solving the
lexicographic bottleneck assembly line balancing problema. (LB-ALBP). International Journal
of Production Research, 50 (7), 1862-1876, 2012.

Pinto, P. A heuristic network procedure for the assembly line balancing problem. Naval
Research Logistics Quarterly, 25 (25), 229-307, 1978.

Prenting, T.O., and Thomopoulos, N.T. Humanism and technology in assembly line systems.
Hayden, Rochelle Park, NJ., 1974.

Puchinger, J., and Raidl, G. Combining Metaheuristics and Exact Algorithms in Combinatorial
Optimization: A Survey and Classification. Artificial Intelligence and Knowledge Engineering
Applications: A Bioinspired Approach in Lecture Notes in Computer Science, 3562, 41-53,
2005.

Raidl, G. A unified view on hybrid metaheuristics. Hybrid metaheuristics, in Lecture Notes in
Computer Science, 4030, 1-12, Springer, 2006.

Sabuncuoglu, I., Erel, E., and Gocgun, Y. Analysis of serial production lines: characterisation
study and a new heuristic procedure for optimal buffer allocation. International Journal of
Production Research, 44 (13), 2499-2523, 2006.

Salehi, M., Fattahi, P., Roshani, A., and Zahiri, J. Multi-criteria sequencing problem in mixed
synchronous assembly lines. International Journal of Advanced Manufacturing Technology, 67
(1-4), 983-993, 2013.

Salveson, M. The assembly line balancing problem. Journal of Industrial Engineering, 6 (3),
18-15, 1955.

Scholl, A. Simple assembly line balancing – heuristic approaches. Journal of heuristics, 2 (3),
217-244, 1997.

Scholl, A. Balancing and sequencing of assembly lines. Physica-Verlag, Heidelberg, Second
edition, 1999.

Scholl, A., and Becker, N. State-of-the-art exact and heuristic solution procedures for simple
assembly line balancing. European Journal of Operational Research, 168 (3), 666-693, 2006.

Scholl, A., and Boysen, N. Designing parallel assembly lines with split workplaces: Model and
optimization procedure. International Journal of Production Economics, 119 (1), 90-100, 2009.

Scholl, A., and Voβ, S. Simple assembly line balancing – Heuristic approaches. Journal of
Heuristics, 2, 217-244, 1996.

Scholl, A., Fliedner, M., and Boysen, N. Balancing assembly lines with assignment restrictions.
European Journal of Operational Research, 200 (3), 688-701, 2010.

Sewell, E. and Jacobson, S. A branch, bound, and remember algorithm for the simple assembly
line balancing problem. INFORMS Journal on Computing, 24 (3), 433-442, 2012.

50

Sniedovich, M, and Voβ, S. The corridor method: a dynamic programming inspired
metaheuristic. Control and Cybernetics, 35 (3), 551-578, 2006.

Stille, W. Solution techniques for specific bin packing problems with applications to assembly
line optimization. Diploma thesis. Technical University of Darmstadt, 2008.

Talbot, F., Patterson, J., and Gehrlein, W. A comparative evaluation of heuristic line balancing
techniques. Management Science, 32 (4), 431-453, 1986.

Tapkan, P., Özbakir, L., and Baykasoglu, A. Bees algorithm for constrained fuzzy multi-
objective two-sided assembly line balancing problem. Optimization Letters, 38 (9), 11947-
11957, 2011.

Tazari, S. Algorithmic approaches for two fundamental optimization problems: workload
balancing and planar Steiner trees. Diploma thesis. Technical University of Darmstadt , 2006.

Toksari, M. Isleyen, S. Güner, E., and Baykoç, O. Simple and U-type assembly line balancing
problems with a learning effect. Applied Mathematical Modelling, 32 (12), 2954-2961, 2008.

Toksari, M., Isleyen, S. Güner, E., and Baykoç, O. Assembly line balancing problem with
deterioration tasks and learning effect. Expert Systems with Applications, 37 (2), 1223-1228,
2010.

Tonelli, F., Paolucci, M., Anghinolfi, D., and Taticchi, P. Production planning of mixed-model
assembly lines: a heuristic mixed integer programming based approach. Production, Planning &
Control, 24 (1), 110-127, 2013.

Tonge, F.M. A heuristic program for assembly line balancing. Prentice-Hall, Englewood Cliffs,
NJ., 1961.

Topalogu, S., Salum, L., and Supciller, A. Rule-based modeling and constraint programming
based solution of the assembly line balancing problem. Expert Systems with Applications, 39
(3), 3484-3493, 2012.

Van Duijnhoven, R. Computing a toolbit pre-assignment for the AX machine. Diploma thesis.
Eindhoven University of Technology, 2013.

Van Zante-de Fokkert, J.I., and de Kok, T.G. The mixed and multi model line balancing
problem: a comparison. European Journal of Operational Research, 100 (3), 399-412, 1997.

Xu, W., and Xiao, T. Strategic robust mixed-model assembly line balancing based on scenario
planning. Tsinghua Science & Technology, 16 (3), 308- 314, 2011.

Yang, C., Gao, J., and Sun, L. A multi-objective genetic algorithm for mixed-model assembly
line rebalancing. Computers & Industrial Engineering, 65 (1), 109-116, 2011.

Wang, F., and Wilson, R.C. Comparative analyses of fixed and removable item mixed model
assembly lines. IIE Transactions, 18 (3), 313-317, 1986.

Wee, T. and Magazine, M. Assembly line balancing as generalized bin packing. Operations
Research Letters, 1, 56-58, 1986.

Annex A1. Articles published in journals included in
the JCR

ATTENTION ¡

Pages 52 to 88 of the thesis are available at the editor’s web

• Gema Calleja, Albert Corominas, Alberto Garcia-Villoria and Rafael
Pastor A MILP model for the Accessibility Windows Assembly
Line Balancing Problem (AWALBP)

Article published in [International Journal of Production Research, Volume 56,
12, Pages 3549-3560] [DOI: 10.1080/00207543.2012.751514]© [Copyright Taylor &
Francis Group]

http://www.tandfonline.com/doi/abs/10.1080/00207543.2012.751514#.VS5eruHXtA8

• Gema Calleja, Albert Corominas, Alberto García-Villoria, Rafael
Pastor Combining matheuristics and MILP to solve the
Accessibility Windows Assembly Line Balancing Problem
(AWALBP-L2)

Article published in [Computers & Operations Research, Volume 48, Pages 113-123]
[DOI: 10.1016/j.cor.2014.03.009]© [Copyright Elsevier]

http://www.sciencedirect.com/science/article/pii/S0305054814000641

• Gema Calleja, Albert Corominas, Alberto Garcia-Villoria and Rafael.
Pastor Balancing assembly lines with accessibility windows.
Problem description and heuristic solving procedure

Article published in [DYNA Volume 89, 5, Pages 552-559] [DOI:
http://dx.doi.org/10.6036/7051]© [Copyright Revista de Ingeniería DYNA]

http://www.revistadyna.com/search/balancing-assembly-lines-with-accessibility-
windows-problem-description-and-solving-heuristic-proced

51

http://dx.doi.org/10.6036/7051
http://dx.doi.org/10.6036/7051

89

Annex A2. Other works

A2.1. Articles submitted to journals included in the JCR
which are in process of review

Hybrid metaheuristics for the Accessibility Windows Assembly Line
Balancing Problem (AWALBP)

Hybrid metaheuristics for the Accessibility Windows
Assembly Line Balancing Problem (AWALBP)

Gema Calleja, Albert Corominas, Alberto García-Villoria and Rafael Pastor

 Institute of Industrial and Control Engineering (IOC)
Universitat Politècnica de Catalunya (UPC)

Diagonal 647, 11th floor, 08028, Barcelona, Spain
{gema.calleja,albert.corominas,alberto.garcia-villoria,rafael.pastor}@upc.edu

Abstract. This paper addresses an assembly line balancing problem in which the length of
the workpieces is larger than the width of the workstations. The problem differs from
traditional variants of assembly line balancing in the sense that only a portion of the
workpiece, or portions of two consecutive workpieces, can be reached from any workstation.
Consequently, at any stationary stage of the cycle, each workstation can only process a
portion of the tasks, namely, those which are inside the area of a workpiece that is reachable
from the workstation. The objective is to find a (cyclic) movement scheme of the workpieces
along the line and a task assignment to stationary stages of the production process, while
minimizing the cycle time. We propose three hybrid approaches of metaheuristics and
mathematical programming - one based on simulated annealing and the other two based on
tabu search, relying on different neighborhood definitions. The two former approaches make
use of a classical neighborhood, obtained by applying local changes to a current solution. The
latter approach, in contrast, draws ideas from the corridor method to define a corridor around
the current solution, via the imposition of exogenous constraints on the solution space of the
problem. An extensive computational experiment is carried out to test the performance of the
proposed approaches, improving the best results published to date.

Keywords: Assembly line balancing, accessibility windows, hybrid metaheuristics,
simulated annealing, tabu search, corridor method

1. Introduction

As global competition and technological change accelerates, manufacturers have become
increasingly interested in optimizing their production and assembly systems. In this paper, we
consider a special case of assembly system that widely arises in advanced automated

90

environments, especially in the assembly of electronic components: the assembly line with
accessibility windows. The line consists of a set of workstations sequentially arranged along a
transport system, which must process a number of identical workpieces. Every workstation
contains a feeder with several component types and is equipped with a robot arm, which
performs tasks on the workpieces. Each workstation must process a specific set of tasks on each
workpiece. The tasks correspond to pick-and-place actions; picking a component type from the
feeder inside the workstation and placing it on a predefined position on the workpiece (see Fig.
1).

The workpieces are fed into the assembly line starting from a reference position x (see Fig. 2),
and are moved in forward steps, according to a pattern called movement scheme. In every halt
between two forward steps, the line stands motionless and the workstations perform tasks on the
workpieces. Such a halt is called a stationary stage. The forward steps are cyclic: after S
forward steps, there is an identical number of workpieces lying exactly at the same positions as
in the start of the cycle. The length of each forward step must be a multiple of a distance 
called elementary step, which depends on the technology of the line. After each cycle, a new
workpiece enters the line. At the same time, a fully assembled workpiece leaves the line.

Fig. 2 illustrates an example of a cycle with three stationary stages (thus the fourth stationary
stage is identical to the first stage). Each line is a snapshot representing the positions of the
workpieces in the stationary stage. The initial position of the first workpiece in the beginning of
the cycle is defined by the distance x. The arrows on each snapshot represent the forward steps.
Note that, in this example, the lengths of the forward steps are different.

Unlike common assembly lines, in this kind of line the length of the workpieces is longer than
the width of the workstations. Consequently, one workpiece may be processed by several
workstations at the same time, and one workstation may process portions of either one or two
consecutive workpieces at the same time (recall Fig. 1). Therefore, a task can only be performed
if it is situated inside the reachable interval [,]i iL R (accessibility window) of the workstation i

where it will be executed (see Fig. 2). This environment, where task positioning limits the

Figure 1. An example of an assembly line with accessibility windows

Figure 2. Four snapshots of a cycle with three stationary stages

Movement direction

Robot arm Feeder (with component) Accessibility window

 L2 R2 L3 R3 L4 R4L1 R1

s = 1

s = 2

s = 3

s = 4 (1)

 x δ1

δ2

δ3

91

access to restricted areas of the workpiece, motivates the so-called accessibility windows
assembly line balancing problem (AWALBP) (Calleja et al., 2013).

The AWALBP is a variant of the Generalized Assembly Line Balancing Problem (GALBP),
which includes problems with specific real-world restrictions and has been subject to extensive
research (see, for example, Becker and Scholl, 2006; Capacho et al., 2009; Martino and Pastor,
2010; Corominas et al., 2011; Battaïa and Dolgui, 2012; Tuncel and Topaloglu, 2013; and
Sternatz, 2014). The optimization of AWALBP involves the solution of several NP-hard
subproblems (Gaudlitz, 2004). With regard to the subproblems considered, the AWALBP can
be tackled at four optimization levels (Calleja et al., 2013): the assignment of each task to one
compatible workstation and stationary stage (AWALBP-L1); the initial position of the
workpieces in the cycle, as well as the number and the length of the forward steps (AWALBP-
L2); the component type allocation to feeders (AWALBP-L3); and the number and the type of
workstations (AWALBP-L4). The objective is to minimize the cycle time. Each level addresses
the optimization of its own level as well as its predecessors. For example, in AWALBP-L2
levels L1 and L2 are to be solved when solutions of L3 and L4 are given. A detailed description
of AWALBP and its variants, along with a literature review has been presented in Calleja et al.
(2013).

This paper deals with the case of AWALBP-L2 defined in Müller-Hannemann and Weihe
(2006). To solve this problem, two different approaches have been proposed in the literature. On
the one hand, a variety of mathematical programming models have been presented in order to
find the optimal solution. Corominas and Pastor (2009) formulated the optimization problem as
a mixed-integer linear programming (MILP) model. Based on such formulation, two enhanced
MILP models were proposed by Calleja et al. (2013) and instances up to a certain size were
solved optimally. On the other hand, a different approach to the problem considers hybridizing
heuristics and mathematical programming to solve the instances that are out of reach of the
former models, which is presented in Calleja et al. (2014).

What emerges from the computational results on AWALBP-L2 (Calleja et al., 2013, 2014) is
that computing an optimal solution of the problem might become intractable for large size
instances. For this reason, metaheuristic or hybrid solution methods could be envisioned to
solve this problem. In the last few years, so-called hybrid optimization approaches have become
increasingly popular for tackling complex optimization problems (Blum et al., 2011). One of
the latest trends of hybridization is the interoperation of metaheuristics with mathematical
programming techniques (Boschetti et al., 2009). In this line, the word matheuristic has been
coined to indicate those solution approaches that exploit the complementary strengths of exact
and (meta)heuristic components (Maniezzo et al., 2009). Manifold possibilities of hybridization
within a matheuristic arise. According to their control strategy, such hybrids can be classified
into integrative (coercive) and collaborative (cooperative) combinations (Puchinger and Raidl,
2005). In integrative combinations, one technique is considered as a subordinated, embedded
component of another technique, following a master-slave scheme. Collaborative algorithms, in
contrast, exchange information but are not part of each other.

In this paper, we propose three hybrid metaheuristics (or matheuristics, according to the
aforesaid definitions) in which mathematical programming models are used in a metaheuristic
frame - one based on simulated annealing (SA) and the other two based on tabu search (TS).
The proposed approaches differ in the way the neighborhood is defined. More specifically, the
two former methods utilize a classical move-based neighborhood, whereas the latter one makes
use of the corridor method (CM) (Sniedovich and Voβ, 2006) to draw a corridor around the
current solution via the imposition of exogenous constraints on the problem formulation.
Furthermore, combined approaches of the aforementioned hybrids with a mathematical
programming model are proposed.

92

The remainder of the paper is organized as follows: In Sections 2 and 3, we describe the
AWALBP-L2 considered in this work and introduce the proposed hybrid metaheuristics,
respectively. In Sections 4, 5 and 6, we detail the proposed hybrids based on SA, TS and TS
with CM, respectively. In Section 7, we present combined approaches of the aforementioned
hybrids with a mathematical programming model. Comparative experimental results of the
proposed hybrid metaheuristics and the best in the literature are shown in Section 8. Finally,
Section 9 presents some concluding remarks.

2. Problem specification

We consider the specific case of AWALBP-L2 described in Müller-Hannemann and Weihe
(2006). The considered case can be stated as follows. An assembly line is given with a number
m of workstations. Each workstation i has an accessibility window to the workpieces delimited
by the interval [,]i iL R of the assembly line such that 1 0L  and 1i i iR L R   for

2,...,i m . Therefore, the accessibility windows of the workstations do not overlap. Each task
can be executed only on one given workstation. On each workstation i, a specified set of tasks Ji

must be executed for each workpiece. The total number of tasks is denoted by
1

m

i
i

N J


  . For

each task j  1,...,j N the triple (, ,)j j jp a m is known, where pj is the processing time of task

j, aj is the distance from the task position to the right border of the workpiece, and mj is the
workstation that has to execute this task. Then, the solution of the problem decomposes into:

i) a movement scheme 1 2: , ,..., Sx     , which consists of:

− the initial position x of the workpieces on the line.
− the number S of stationary stages (which coincides with the number S of forward

steps).
− the values δ1,…, δS of the length of the forward steps, where δs is the number of

elementary steps of the forward step s  1,...,s S .

ii) for each task, an assignment to one stationary stage of the cycle where the position of the
task is accessible for the station of this task.

To be feasible, a solution must hold the following conditions. First, the sum of all forward steps
in a cycle must be equal to the distance A between two right (left) borders of two consecutive
workpieces. Second, all forward steps must be a multiple of  (the elementary step). Finally, the
third condition is that each task must be assigned to a stationary stage in which the task is
accessible from its workstation.

The objective function (1) is the minimization of the cycle time (CT). Between two stationary
stages, there is a time T to take into account the acceleration and deceleration of the line as well
as the resetting of the robot arms. Then the total time of the cycle is equal to the sum of i) the
time T multiplied by the number of stationary stages S plus ii) the time elapsed in the stationary
stages constituting a cycle and iii) the time for transporting a workpiece through the assembly
line at steady speed (since the latter is a constant it is not regarded for optimization purposes):

1

·
S

s
s

CT T S C


  (1)

93

where
1

S

s
s

C

 is the total processing time corresponding to all S stationary stages constituting a

cycle, and Cs is the completion time, for the whole line, corresponding to the stationary stage s (
1s ,...,S).

3. The proposed hybrid metaheuristics

The proposed hybrid metaheuristics can be seen as integrative algorithms where the
metaheuristic is used as the master mechanism to guide the search process and one
mathematical model acts as an embedded slave.

Two types of neighborhood definitions are used in the search process. In the first type the
neighborhood is defined by applying local changes or moves to a current movement scheme.
We focus the search in the space of the movement schemes based upon the observation that the
problem can be solved by using the following decomposition approach: i) generation of a
movement scheme, and ii) assignment of each task to one stationary stage. The reasoning
behind this decomposition is the following: if a movement scheme is computed first, then the
optimal assignment of tasks to stationary stages, for the given movement scheme, can be
obtained fast with a mathematical programming model, denoted Task model (Calleja et al.
2014) (see Annex). Therefore, the problem can be reduced to find an optimal movement
scheme.

In contrast, in the second type the neighborhood is defined by building a corridor around a
current solution in order to iteratively solve smaller portions of the target problem. More
specifically, exogenous constraints are imposed on the original formulation of the problem and,
subsequently, the constrained version is solved with a mathematical programming model.

4. Hybrid simulated annealing metaheuristic

Simulated annealing (SA) is a probabilistic optimization method which since its first
introduction by Kirkpatrick et al. (1983), has been recognized as a simple yet powerful
metaheuristic that provides excellent solutions to a wide variety of hard combinatorial
optimization problems (Suman and Kumar, 2006).

Basically, SA is a local search procedure that tries to avoid being trapped in local optima by
allowing probabilistically moves to worse solutions. The algorithm starts from an initial
solution, which is initially the current solution y, and by initializing the value of a parameter t
called temperature. Then, at each iteration, a solution y’ from the neighborhood of the current
solution N(y) is randomly selected. If the neighbor is not worse than the current solution, then
the neighbor is accepted and replaces the current solution. In the case that it is worse, the
neighbor can also be accepted, with a probability that depends on i) how much worse is the
neighbor, and ii) the value of the temperature t. Initially, the algorithm starts at a high
temperature t (that is, the probability of accepting deteriorating moves is high), which then
gradually decreases and approaches zero. The number of iterations for which the temperature
remains constant before being reduced is itt. The SA algorithm is presented in Fig. 3.

94

 SA

 Let f(y) be the objective function to be minimized of the solution y
 Let N(y) be the neighborhood of the solution y
 Let A(t) be a new temperature value obtained from the temperature t

1. Initialize the parameters:
t0 (initial temperature)
itt (number of iterations during which the temperature remains constant)

2. t := t0
3. y:= Generation of the initial solution
4. while the stopping criterion is not satisfied do
5. for (i: = 0; i < itt; i := i +1):
6. y’:= randomly select y’ from N(y)
7. if f(y’) ≤ f(y) then y := y’
8. else y := y’ with a probability exp(-(f(y’)-f(y))/t)
9. end
10. end
11. t :=A(t)
12. end
13. return the best solution found

__

The proposed hybrid combines the general scheme of SA (Fig. 3) with the Task model. As
mentioned in Section 3, the search is performed in the space of the movement schemes. In each
iteration, the Task model is employed to compute the optimal cycle time for the current
neighbor movement scheme, which provides a complete current solution for the problem. The
obtained cycle time value determines whether the candidate movement scheme (along with its
optimal task assignment) will be accepted or rejected as the new current solution in the SA local
search.

The efficiency of the general scheme of SA depends on some key decisions. Some of these
decisions are problem-specific, whereas some others are generic to SA. Specific decisions for
the AWALBP-L2 include the definition of neighborhood of a solution (N(y)), and the
generation of the initial solution. General decisions are the cooling schedule to decrease the
temperature A(t) and the stopping criterion of the algorithm. In the following we outline such
decisions.

4.1 Neighborhood of movement schemes

The proposed SA hybrid makes use of three neighborhood structures, N1, N2, and N3, as follows.
N1 consists in transferring one elementary step from a forward step to another forward step. N2
consists in inserting a new forward step by transferring one elementary step from an existing
forward step to a new one. Finally, N3 considers the neighbors obtained by varying the value of

the initial position x in the interval  1
1 min0 min ,x R a A     , where

1

1
min min j

j J
a a


 . Note that

in the two first neighborhood types, a forward step with only one elementary step may achieve
length zero if its only elementary step is transferred (and thus such forward step disappears from
the movement scheme). Therefore, the number of forward steps may vary. More specifically, it
can remain equal or decrease in N1, and it can remain equal or increase in N2. Feasibility loss
following transference or insertion of elementary steps can occur if the resulting movement
scheme contains some tasks whose position is not accessible at any stationary stage. In any case,
we consider only those neighbors which are feasible. At each iteration of the SA algorithm, it is

Figure 3. General scheme of simulated annealing

95

selected at random from which of the three neighborhoods a neighbor of the current movement
scheme will be obtained. The values of the probabilities associated to the neighborhood
selection are to be fine-tuned (see Section 8).

4.1 Initial solution

An initial solution is obtained by using the Initial solution matheuristic proposed in Calleja et
al. (2014). It consists of i) an algorithm to generate, for a given value of x, a feasible movement
scheme and ii) a mathematical model (the Task model), to compute the optimal assignment of
tasks to stationary stages (for the generated movement scheme). The initial solutions obtained
with this procedure appear to be of good quality and the necessary computational time is in
average as small as a few milliseconds. Among the obtained solutions, computed for all values
of x multiples of , a solution with the minimum cycle time is identified. In case of having
several solutions with the minimum cycle time, a solution with the minimum number of
stationary stages is selected. The information given by the obtained initial solution is used to
compute a lower bound on the value of the cycle time, LB1CT, which is used to certificate
whether a current solution is optimal (see Section 4.4). The bound LB1CT is computed as
follows. Since the Initial solution matheuristic has been proven to provide solutions with the
minimum number of stationary stages (see proof in Calleja et al. 2014), the solution with the
minimum number of stationary stages among all those obtained with the mentioned
matheuristic, SolS, gives a lower bound on the number of stationary stages, LB1S. Then, we
derive a lower bound on the cycle time, LB1CT, by summing lower bounds on the two terms that
compose the objective function (see Eq. (1)): (i) 1ST LB plus (ii) a lower bound on the
completion time of the stationary stages, which we name Wmax, corresponding to the processing
time of the most loaded workstation on the line. This is,

1,...,
max

i

max j
i m

j J

W p
 

  .

4.2 Cooling schedule

The cooling schedule specifies how the temperature of the SA algorithm is decreased as the
search progresses. We use geometric cooling, one of the most popular schedules used in the
literature, that is, A(t) = α· t, where 0 < α < 1 (Downsland and Adenso-Díaz, 2003, Henderson et
al., 2003). The value of the α parameter, as well as the initial temperature t0 and the number of
iterations during the temperature remains constant, itt, are to be fine-tuned, as explained in
Section 8.

4.3 Stopping criterion

The algorithm stops when one of the following conditions is reached: i) a specified
maximum time has elapsed, or ii) the objective function value of a solution coincides
with LB1CT and thus the solution is proven optimal.

5. Hybrid tabu search metaheuristic

Tabu search (TS) is a metaheuristic originally proposed by Glover (1986) that has been
successfully applied in many difficult combinatorial optimization problems (Glover, 1997,
Pedersen et al., 2009). Like SA, TS can be seen as a local search that allows non-improving
moves. The innovative idea of TS is the explicit use of memory structures, that record not only
information about the current solution, but also information about the recent search trajectory
followed to reach the current solution. Essentially, a TS algorithm moves at each iteration from

96

a solution y to a solution in its neighborhood N(y), and may accept worse neighbors than the
current solution. To prevent endless cycling and guide the search into unexplored areas, some
formerly visited solutions, or attributes of them, are temporarily declared tabu or prohibited.
The number of iterations that an attribute remains tabu is called its tabu tenure. The tabu status
of a solution, though, can be overridden if a specified aspiration criterion is met; for example, if
a tabu solution is better than the best solution found so far. The general TS algorithm is
presented in Fig. 4. For a thorough presentation of the method, we refer the interested readers to
Glover (1989, 1990) and Gendreau (2003).

 TS

1. Define the neighborhood N(y)
2. Let y be an initial solution and y*:=y
3. while the stopping criterion is not satisfied do
4. Let y’ be the best solution from N(y) which is allowed by aspiration or is not tabu
5. if y’ is better than y*, then y* := y’ end
6. Add the current move in the tabu list (removing its last move if it is full)
7. y := y’
8. end
9. return y*

__

The proposed hybrid TS relies on the general TS guidelines presented by Glover (1989, 1990),
as shown in Fig. 4. As in the proposed SA-hybrid, we build the neighborhood around the
movement schemes. Subsequently, the Task model is used to find an optimal assignment of
tasks to stationary stages of the current movement scheme, which provides a complete current
solution. A similar approach embedding a LP model in a probabilistic tabu search to solve a
facility layout problem with unequal area departments has been proposed in Kulturel-Konak
(2012). As in our paper, a mathematical programming model is used to evaluate the non-tabu
solutions of the neighborhood of the current solution with the difference that instead of
evaluating each and every element of the neighborhood, it considers only evaluating a random
sample to reduce computational effort.

In our approach we consider the same initial solution generation, neighborhood structures and
stopping criterion as in the proposed SA. The remainder elements of the proposed TS-based
hybrid, i.e., the tabu lists, tabu attributes and aspiration criterion, are defined in the following
subsections.

1.1 Tabu lists and tabu attributes

The tabu list is directly related to the neighborhood structure used to solve the problem. We
consider the three neighborhoods N1, N2, and N3 proposed in Section 4.1. In each iteration, the
best neighbor movement scheme is searched within the three neighborhoods. Neighborhoods N1
and N2 are similar structures since they are both generated by transferring one elementary step
to an existing or a new forward step. Neighborhood N3, though, is a different structure based on
the value of the initial position x. Therefore, we consider two different tabu lists, a first tabu list
for the neighbors selected from N1 or N2, and a second tabu list for those selected from N3, as
follows. We call transmitter forward step the forward step which transfers one elementary step.
Similarly, a receiver forward step is the one which receives an elementary step. Then, the first
tabu list, T1, contains attributes consisting of four elements: i) initial position value, ii) the
number S of forward steps iii) the transmitter forward step s and its length δs, and iv) the

Figure 4. General scheme of tabu search

97

receiver forward step s’ and its length δs’. The second tabu list (T2), though, contains only the
two first aforementioned elements.

A numerical example is shown in Table 1. Let 5 : 2,3,6, 2  be a current movement scheme
(column 1), with an initial position 5x  and four forward steps with 2, 3, 6 and 2 elementary
steps, respectively. Column 2 states the neighborhood type from which a neighbor will be
generated. In the case of neighborhood N2, two subtypes are distinguished: N2(a), where an
elementary step is inserted between the forward steps of the current movement scheme, and
N2(b), where the elementary step is inserted after the last forward step of the current movement
scheme. Column 3 gives an example of a neighbor movement scheme obtained from each
neighborhood type. Column 4 indicates in which tabu list, T1 or T2, the attribute will be
recorded. Finally, Column 5 details the attribute to be stored in the tabu list when the neighbor
movement scheme is set tabu. For example, if the best neighbor is < 5: 1, 4, 6, 2 >, which has
been obtained from N1, then the tabu attribute is 1 25, 4, 2, 3x S        and it is added to
the T1 tabu list. In the case that the best neighbor belongs to N2, the same tabu attribute and tabu
list are considered. Note that, in N2(b), the receiver forward step does not exist in the current

movement scheme and thus the last element of the tabu attribute is considered as zero  5 0  .

Finally, if the best neighbor is the one obtained from N3 then the tabu attribute is
5, 4x S    and it is added to the T2 tabu list.

Current
movement scheme

Neighborhood
Neighbor

movement scheme
Tabu list

type
Tabu attribute

< 5: 2, 3, 6, 2 >

 N1 < 5: 1, 4, 6, 2 > T1 < x = 5, S= 4, δ1 = 2, δ2 = 3 >

 N2(a) < 5: 2, 2, 1, 6, 2 > T1 < x = 5, S = 4, δ2 = 3, δ3 = 6 >
 N2(b) < 5: 2, 2, 6, 2, 1 > T1 < x = 5, S = 4, δ2 = 3, δ5 = 0 >

 N3 < 7: 2, 3, 6, 2 > T2 < x = 5, S = 4 >

The lengths of tabu lists are to be fine-tuned, as explained in Section 8.

1.2 Aspiration criterion

We use the most commonly used aspiration criterion in the TS literature (Gendreau and
Potvin, 2005) which allows a tabu move when it results in a solution better than the
current best-known solution.

2. Hybrid tabu search - corridor method metaheuristic

A hybrid approach combining TS and a Corridor Method (CM) is presented next. The CM is a
matheuristic introduced by Sniedovich and Voβ (2006), which intertwines mathematical
programming techniques with metaheuristic features. The central idea of the CM relies on the
iterative use of an exact method to solve optimally restricted portions of the solution space of a
given problem. Such portions of the original space are defined by building a corridor around a
current solution via the imposition of exogenous constraints.

Table 1. An example of the different neighbor movement schemes and their tabu attributes

98

The proposed hybrid TS-CM follows the scheme of the TS metaheuristic proposed by Glover
(1989, 1990) (recall Fig. 4), as described in Section 5. However, the proposed hybrid TS-CM
differs from the aforementioned one in the sense that now the neighborhoods are not defined via
local changes or moves, but constructed by adding exogenous constraints onto an embedded
MILP model. Such MILP model is subsequently used to solve the resulting portion of the
problem space. Furthermore, additional constraints are also imposed in order to model the tabu
lists and the aspiration criterion. An approach making use of TS as a master strategy and a
branch and bound solver as an embedded mechanism for solving relaxed instances of the
generalized assignment problem has been proposed by Woodcock and Wilson (2010). As in our
paper, the authors use mathematical programming techniques to move from a current solution to
a new one. However, to the best of our knowledge, we are not aware of any work in the
literature hybridizing TS with CM in the way presented here.

The proposed procedure starts from an initial solution obtained with the Initial solution
matheuristic of Calleja et al. (2014) and explores the neighboring solution space in search of an
improving solution.

At each iteration, the MILP model receives a current solution as input. Based on this solution,
bounds on the cycle time and the number of forward steps are computed and incorporated to the
model. Next, the constrained version of the problem defined by the corridor is solved by using
the MILP model within a limited computational time.

The overall algorithm terminates when one of the following criteria is reached: i) a maximum
running time, or ii) the problem is solved to proven optimality since a solution is obtained
whose objective function value coincides with the lower bound of the cycle time, LB1CT.

6.1 Tabu list and aspiration criterion

A short-term memory structure is used as a tabu list, which stores the attributes of the
movement schemes recently visited. More specifically, we propose a composite attribute for the

tabu list, ,S xTabu Tabu  , where STabu and xTabu express, respectively, the number Ŝ of
stationary stages and the initial position x̂ of the movement scheme of the current solution.
Then, the set of tabu attributes in a tabu list is defined by  , : 1,...,S x

h hTabu Tabu h TT   ,

where TT is the number of attributes contained in the tabu list.

The proposed TS-CM uses the aspiration criterion described in Section 5.2, which overrides the
tabu status of a solution if its objective function is better than that of the best-known solution so
far.

2.2 The embedded corridor method

The basic elements of the CM are: a problem P generally belonging to the class of NP-hard
problems, a very large feasible solution space Y and an exact method M capable of solving P to
optimality if the size of the solution space is not too large. The CM imposes exogenous
constraints on the original formulation of the problem in such a way that smaller manageable
portions of the solution space are identified. These exogenous constraints define a corridor, i.e.,
a set of solutions, around a given current solution ŷ Y . The nature of the imposed constraints
should be such that they are compatible with both the structure of the problem P and the method
M used to solve them.

99

Let us assume that method M is a MILP model. One way to identify smaller manageable
portions of the solution space to be explored with the model is to constrain the domains of the
variables that are present in a current solution. In the following we outline how a CM can be
applied to a MILP model. Let us suppose that we are given a current solution ŷ with a number

Ψ of decision variables  1 2ˆ ˆ ˆ, , ...,y y y . In order to impose constraints on the variable domains,

we need to limit the distance between the value of a variable yn and its current value ˆny .

Therefore, a neighborhood around a current solution can be generated by drawing corridors as
follows:

         1 2ˆ ˆ ˆ: , , ..., : , 1,...,n n n n nN y y y y Y y R y y R n        (2)

where nR  1,...,n   is a parameter used to define the corridor width.

Equation (2) limits the solution space only to those solutions whose distance from the current
solution, for each variable yn, is not greater than a given maximum value nR .

Finally, in order to incorporate the neighborhood definition to the original MILP formulation of
the problem, the following constraints are imposed:

 ˆ (1,...,)n n ny y R n    (3)

ˆ (1,...,)n n ny y R n    (4)

At each iteration, constraints (3)-(4) are therefore imposed onto the original model, which is
introduced in Section 6.4, and the new constrained version is solved by applying a suitable
algorithm.

In the following we introduce the notation required to formulate a fitting model for the CM. Let

us consider the movement scheme of the current solution with an initial position x̂ and Ŝ
forward steps of lengths ˆ1 2

ˆ ˆ ˆ, ,...,
S

    . Let us suppose that we generate a corridor of width

R around each variable δs, such that ˆ ˆ,s s sR R        . As a result of the transference of

elementary steps in the generation of neighbor movement schemes, there either may be some
forward steps which become empty (i.e., their length is zero and thus disappear) or some whose
length is necessarily greater than zero (i.e., it is known a priori that they will exist in any
neighbor movement scheme). Therefore, the actual number of variables δs that a neighbor
solution will have is not known in advance. In order to model the number of variables needed,
we define the following additional data.

Let US be the upper bound on the number of forward steps, empty or not, that may be generated
for the feasible solutions contained in the corridor, while respecting the corridor width:

  
ˆ

s
1

ˆ ˆmin / , min ,
S

s

US A S R 


 
   

 
 (5)

In the proposed model, US is used to upper bound the number of variables δs, such that

1,...,s US .

By ES we denote the set of forward steps whose existence can be assured a priori in all the
feasible solutions of the space delimited by the corridor:

100

 ˆ ˆ1,...,S : 1sES s R    (6)

Let NES then be the set of forward steps whose existence cannot be assured a priori in all the
feasible solutions of the space delimited by the corridor:

 1,..., \NES US ES (7)

Finally, we derive an upper bound on the number of non-zero forward steps, SUB , that a
neighbor movement scheme may have, by the sum of (i) the current number of forward steps,
(ii) the total number of elementary steps that can be transferred by the forward steps of the
current movement scheme whose values are greater than R , and (iii) the total number of
elementary steps that can be transferred by the forward steps of the current movement scheme
whose values are greater than one but equal to or smaller than R :

 
ˆ ˆ1,...,

ˆ ˆ 1
s

S
s

s S R

UB S ES R







 

     (8)

Fig. 5 depicts a numerical example for the computation of UBS. Let us assume that
0 : 6,7,2,1  is the movement scheme of the current solution

 1 2 3 4
ˆ ˆ ˆ ˆ ˆˆ 0, 4, 6, 7, 2, 1x S          and that a corridor of width 3R   is built around the

values of the forward steps. The idea is to construct a neighbor movement scheme in such a way
that the maximum number of non-zero forward steps is obtained. This can be done by
transferring as many elementary steps as possible from each forward step in such a way that the
latter keeps at least one elementary step. In the example of Fig. 5, such transfers generate a
neighbor movement scheme with 11 forward steps, which gives the value for UBS.

6 7 2 1

3 4 1 1 1 1 1 1 1 1 1

Figure 5. Example of the computation of parameter UBS

-3 -3 -1 -0 +3 +3 +1

Corridor width: Rδ = 3
Number of forward steps of
the current movement scheme

S = 4

Upper bound on the number of
non-zero forward steps of a
neighbour movement scheme

UBS = 4 +2·3 +1 = 11

101

In order to further illustrate the required notation let us consider a numerical example of a line

with 1  and
ˆ

1

ˆ 5
S

s
s

A 


    (Table 2). Let us suppose that 0 : 4,1  is the movement

scheme of the current solution  1 2
ˆ ˆ ˆˆ 0, 2, 4, 1x S      . Let us assume that we build a

corridor of width R  =1 around the forward step values of the movement scheme. The neighbor
movement schemes admissible in this corridor are given in the second column of Table 2. Then,
the neighbor movement schemes that can be generated inside a corridor of width R  =1 around
the current forward steps may contain at most four forward steps (empty or not) and thus

4US  . As can be seen from the generated neighbors, there may be some forward steps whose
length is necessarily greater than zero if the current length of the forward step is greater than the
corridor width. In this example, the set of non-zero forward steps is  1ES  . Conversely, the

rest of forward steps of a neighbor movement scheme may be of length zero and thus

 2,3, 4NES  . Finally, the upper bound on non-zero forward steps is 3SUB  .

Current movement scheme Neighbors within a corridor of width Rδ = 1 Data values

<0: 4, 1 >

 < 0: 5, 0, 0, 0 >

 
 

4

1

2,3,4

3S

US

ES

NES

UB









 < 0: 3, 2, 0, 0 >
 < 0: 3, 1, 1, 0 >
 < 0: 4, 0, 1, 0 >
 < 0: 4, 0, 0, 1 >
 < 0: 3, 0, 1, 1 >
 < 0: 3, 1, 0, 1 >

6.3 Definition of corridors

In order to apply a corridor around a current solution we need to select which variables of the
current solution will be restricted. The width of such corridor will allow only for the exploration
of those solutions that are at a maximum distance from a current one. More specifically, we
apply corridors to some of the variables that define the movement scheme of a current solution.
Several possibilities for the construction of corridors arise, depending on which variables are
selected. Specifically, we consider three alternate corridors, denoted C1, C2 and C3, which are
explained next.

6.3.1. Corridor C1

Given a current movement scheme, corridor C1 constructs a neighborhood around the variable
 1,...,S s US  by including all movement schemes whose forward steps have a length within

a distance R from the current lengths.

In the corridor, the number of forward steps is lower bounded by LBS and thus the maximum
number of elementary steps that a forward step may achieve is given by the expression

 / 1SA LB   .

Table 2. A numerical example illustrating the values of parameters ES, NES, US and UBS

102

6.3.2 Corridor C2

The second type of corridor, C2, builds a neighborhood around  1,...,S s US  and around the

number of forward steps S .

An additional parameter, SR , is added to express the corridor around the current number of

forward steps Ŝ . Consequently, the following data are modified:

  ˆmax , , 1S S SLB S R ES LB  (9)

  
ˆ ˆ1,...,

ˆ ˆ ˆmin , 1
s

S S
s

s S R

UB S R S ES R







 

 
      
 
 

 (10)

where (9)-(10) define the corridor and then the expression for US is modified as follows:

    
ˆ

1

ˆ ˆ ˆmin , min , min , 1
S

S
s

s

US A S S ES R R 


  
          

 (11)

6.3.3 Corridor C3

The third corridor structure considers the construction of a neighborhood around the lengths of
the forward steps s , the number of forward steps S and the initial shift x. Again, we consider an

additional parameter, xR , to express the width corridor around the variable x. The following
parameters arise:

     1
1 minˆ mod min , 1xX x R R a A       (12)

     1
1 minˆ mod min , 1xX x R R a A       (13)

Once the values X  and X  have been defined, two cases may arise:

a) X X  . The corridor around x is defined as: X x X  

b) X X  . In this case, the corridor is a wrap-around interval where the values admitted for

the variable x are:

  1
1 min, 1, 2,...,min , ,1,2,...,x X X X R a A X         .

To define the corridor, we introduce the variable  0,1r and the following constraints:

1
xx X MR r   (14)

 2 1xx X MR r    (15)

 where:

 1
xMR X 

  1
2 1 minmin ,xMR R a A X     

103

6.4 A MILP model for the corridor method

In this section we present a MILP model, denoted Solve-corridor, to be used at each iteration of
the proposed hybrid TS-CM. Such MILP model is used to define a neighborhood (incorporating
corridors), and to obtain the best neighbor that is not tabu or fulfills the aspiration criterion. The
model is inspired on the Solve model of Calleja et al. (2014). The new contributions to the
formulation correspond to the imposition of exogenous constraints to define the corridor, and
the addition of the tabu lists and the aspiration criterion.

In the following, we present the Solve-corridor MILP model, which includes a corridor of type
C1 around the variables δs (1,...,)s US . The proposed model can be easily adapted to include
corridors of types C2 and C3, by incorporating the modifications stated in sections 6.3.2 and
6.3.3, respectively.

Data

N number of tasks (1,...,)j N

m number of workstations (1,...,)i m

mj workstation where task j has to be executed (1,...,)j N

[Li, Ri] accessibility window of workstation i (1,...,)i m , where 1 0L  and 1i i iR L R   ,
(2,...,)i m

A0 workpiece’s length

A distance between the right borders of two successive workpieces of the assembly line (A
> A0)

T time to take into account acceleration and deceleration between two consecutive
stationary stages

 length of an elementary step

pj processing time of task j (1,...,)j N

aj (0 ≤ aj ≤ A0), distance to the right border of the workpiece corresponding to the task

j (1,...,)j N

J0 set of tasks  0(1,2,...,)J N

Ji set of tasks to be performed on workstation i,  0 :i jJ j J m i   , (1,...,)i m where

0
1,...,

i
i m

J J


 ,
' , , ’ 1, , | ’i iJ J i i m i i     

R corridor width

Ŝ number of stationary stages of the TS current solution

x̂ initial position of the workpiece with respect to the left limit of workstation 1 of the TS
current solution

104

ŝ number of elementary steps of the forward step s  ˆ1,...,s S of the TS current solution

 
ˆ

1

ˆ ˆmin , min ,
S

s
s

US A S R 


 
   

 


 ˆ ˆ1,..., : 1sES s S R   

 1,..., \NES US ES

SLB lower bound on the number of stationary stages   max , 1S SLB ES LB , where

is a lower bound obtained as described in Section 4.2

SUB upper bound on the number of forward steps,  
ˆ ˆ1.. |

ˆ ˆ 1
s

S
s

s S R

UB S ES R







 

    

CTLB lower bound on the cycle time  CT S
maxLB T LB W   , where

1,...,
max

i

max j
i m

j J

W p
 

 

CTUB upper bound on the cycle time,
1

N
CT S

j
j

UB T UB p


   

*CT cycle time of the best solution found so far within the TS

 tenure or size of the tabu list

 , 1,...,S x
h hTabu Tabu h TT define the list of tabu attributes (see Section 6.1):

 , : 1,...,S x
h hTabu Tabu h TT  

jkmin minimum number of times that a workpiece should be moved forward by A elementary

steps such that task j is accessible in its workstation (1,...,)j N , where
1

1 minmin(,)
jm j

j

L a R a A A
kmin

A

        
  
  

, being
1
mina the closest distance of a

task position j  1j J to the right border of the workpiece (
1

1
min min j

j J
a a


)

jkmax maximum number of times that a workpiece should be moved forward by A elementary

steps such that task j is accessible in its workstation (1,...,)j N , where

, i j
i j

R a
i j J kmax

A

 
   

 

Variables

x  initial position of the workpiece with respect to the left limit of workstation 1,

where  1
1 min0 min ,x R a A    

s
 number of elementary steps of the forward step s  1,...,s US

1SLB

TT

105

 0, s 1  1s  iff the forward step s exists, s NES

 0,1 jskb  1jskb  iff task j is performed during stationary stage s after the workpiece has

been moved forward k times by A elementary steps,
(1,..., ; 1,..., ; ,...,)j jj N s US k kmin kmax  

Cs completion time, for the whole line, corresponding to the stationary stage s

(1,...,)s US , where
1

min
N

j s maxj
p C W


   s ES and 0 ,s maxC W s NES  

 0,1 hgy  auxiliary variables  1,..., ; 1,...,4h TT g  . If the solution has the h-th tabu

attribute in the tabu list, then the four variables 1hy , ..., 4 hy take value 1.

 0,1 w 1 iff the new solution fulfills the aspiration criterion

 1 2 1 2, , , 0,1 s su u v v  auxiliary variables that are used to remove the current TS solution from

the solution space  ˆ1,...,s S

Model

 
1

·
US

s s
s NES s

MIN z T ES C
 

    
 

  (16)

1

·
US

CT
s s

s NES s

LB T ES C
 

    
 

  (17)

S
s

s NES

LB ES 


   (18)

 S
s

s NES

ES UB


  (19)

(a) movement scheme constraints

ŝ sR   ˆ1,...,s S (20)

 ˆmin , / 1S
s s R A LB      s ES (21)

 ˆmin , / 1S
s s sR A LB        ˆ1,..., :s S s NES  (22)

 min , / 1S
s sR A LB      ˆ 1,...,s S US  (23)

1

US

s
s

A


   (24)

s s  s NES (25)

106

(b) accessibility constraints
1

1

(1)
s

j l i js jsk
l

A k a x L M b




         

1,..., ; 1,..., ; ,...,j js US j N k kmin kmax   (26)

1
'

1

(1)
s

j l i js jsk
l

A k a x R M b




         

 1,..., ; 1,..., ; ,...,j js US j N k kmin kmax   (27)

 ' 1
1 min

where :

(1)

1 min(,)

j

j

js m j j

js j m j

M L A kmin a s

M A kmax R a A R a

       

        

(c) task assignment constraints

1

1
j

j

kmaxUS

jsk
s k kmin

b
 

  1,...,j N (28)

j

i j

kmax

j jsk s
j J k kmin

p b C
 

   1,..., ; 1,...,i m s US  (29)

j

i j

kmax

jsk i s
j J k kmin

b J 
 

   1,..., ;i m s NES  (30)

1

j

j

kmaxN

jsk s
j k kmin

b 
 

  s NES (31)

1

1
j

j

kmaxN

jsk
j k kmin

b
 

  s ES (32)

(d) TS constraints

1 11S
s h h h

s NES

ES Tabu M y


     1,...,h TT (33)

2 21S
s h h h

s NES

ES Tabu M y


     1,...,h TT (34)

3 31x
h h hx Tabu M y    1,...,h TT (35)

4 41x
h h hx Tabu M y    1,...,h TT (36)

4

1

3hg
g

y w


  1,...,h TT (37)

 *
1

1

· 1 1
US

A
s s

s NES s

T ES C CT M w
 

 
       

 
  (38)

107

*
2

1

·
US

A
s s

s NES s

T ES C CT M w
 

 
     

 
  (39)

 

1

2

min
3 1 1

4

1

*
2

where (1,...,) :

1

1

min , 1

1

1

S S
h h

S S
h h

x
h h

x
h h

A CT CT

A CT

h TT

M UB Tabu

M Tabu LB

M R a A Tabu

M Tabu

M UB LB

M CT LB



  

  

     

 

  

 

1 1
ˆ 1s s s sM v     ˆ1,...,s S (40)

2 2
ˆ 1s s s sM v     ˆ1,...,s S (41)

1 1ˆ 1 xx x M u    (42)

2 2ˆ 1 xx x M u    (43)

 
ˆ

1 2 1 2
1

ˆ2 1
S

s s
s

u u v v S


      (44)

  
 

 

1

2

1
1 1 min

2

ˆwhere (1,...,) :

ˆ ˆmin , / 1 1

ˆ ˆ1 max ,0

ˆmin , 1

ˆ 1

S
s s s

s s s

x

x

s S

M R A LB

M R

M R a A x

M x

 

 

 

 



      

   

     

 

The model captures the following features: The objective (16) is the minimization of the cycle
time. Constraint (17) introduces a lower bound on the value of the objective function; (18) and
(19) lower and upper bound, respectively, the number of the existing forward steps; (20-23)
define the corridor, (24) states that the distance covered in the forward steps of a cycle
corresponds to the distance between the right borders of two consecutive workpieces on the
line; (25) forbid null forward steps by imposing that, if the number of elementary steps is zero,
then the associated forward step s does not exist; constraints (26)-(27) guarantee that each task
is accessible from the only station that is able to perform it, during the stationary stage in which
the task will be executed; (28) impose that each task is assigned to one, and only one, stationary
stage; (29), that the time corresponding to the stationary stages is not less than the processing
time at any station; (30) avoid assigning a task to a non-existing stationary stage; (31)-(32) force
that at least one task has to be assigned for each stationary stage; Constraints (33)-(37) represent
the tabu constraints, in such a way that if the current movement scheme has the h-th tabu
attribute, all the associated binary variables yhg will have value 1. Such constraints prevent

108

moving to a solution that is marked tabu and is not allowed by the aspiration level; (38)-(39)
express the aspiration criterion, so that the binary variable w has value 1 if and only if the
solution fulfills the aspiration criterion; finally, constraints (40)-(44) remove the current
movement scheme from the solution space of the mathematical model.

3. Combinations of hybrid metaheuristics and MILP

To further improve the quality of the solution of the AWALBP-L2, we propose combining the
use of the MILP Solve model of Calleja et al. (2014) with the afore-presented hybrid
metaheuristics. This model requires an initial solution in order to compute bounds. We generate
an initial solution by using the Initial solution matheuristic, and next we search for an
improving solution by combining the use of the Solve model and the hybrid metaheuristic in two
alternative ways: i) using the Solve model with the initial solution obtained with the Initial
solution matheuristic and then trying to improve the solution obtained by the model using one
of the proposed hybrids. Or ii) executing one hybrid and then using the obtained solution as the
initial solution for the Solve model.

Initial solution
matheuristic

+

 900 s
Solve model 1800 s
 2700 s

+

SA-, TS-, or TS-CM- hybrid

SA-, TS-, or TS-CM- hybrid

+

 900 s
Solve model 1800 s
 2700 s

Table 3 illustrates the considered combinations of hybrids and MILP. The two rows show,
respectively, the two combinations types considered. In the first row MILP is applied before the
hybrid, whereas in the second row MILP is applied after. In each combination type, we consider
limiting the running time of the model to 900, 1800 or 2700 s, whereas the Initial solution
matheuristic and the hybrid are executed in the remaining run time until a 3600 s total limit is
reached. In any case, the proposed combined approach stops before the limit time if a solution
with an objective function value equal to the lower bound on the cycle time, LB1CT, is found.

Table 3. Combinations of the proposed hybrids and MILP

109

4. Computational results

We present comparative results for the proposed hybrid metaheuristics and the existing results
in the literature, namely the approach using the Initial solution matheuristic and the Solve model
of Calleja et al. (2014). We aim to examine, in particular, the effectiveness of the proposed
hybrids in finding high-quality solutions for large instances of the problem.

The hybrid procedures were implemented in Java and the mathematical models were solved
using IBM ILOG CPLEX 12.2. The absolute optimality gap was set to 1-10-6 since, without loss
of generality, all data are integers and thus the objective function value is also an integer.
Experiments were performed in Intel Core 3.33 GHz workstations with 4 GB of RAM operating
under Windows-7 (64 bits).

The performance of the proposed hybrids was tested on the same set of 1200 problem instances
as in Calleja et al. (2013, 2014). These benchmarking instances can be downloaded from
https://www.ioc.upc.edu/EOLI/research/. With respect to the difficulty in solving the problem,
the most influential parameters are A0, m and N, where A0 is the workpiece length, m is the
number of workstations in the assembly line and N is the number of tasks. For this reason, in the
considered instances the mentioned parameters are distributed along the following ranges:
A0={11-15, 16-20, 21-25, 26-30, 31-35, 36-40}, m = {5-10, 11-20, 21-30, 31-40} and N={50-
200, 201-400, 401-600, 601-800, 801-1000}. Additionally, the instances have the following
characteristics. The width of the accessibility windows is 10 length units (lu) and the length of
the elementary step  is 1 lu. The time T is 200 time units (tu). The processing time of tasks was
randomly generated between 100 and 150 tu. The positions of tasks were also randomly
generated along the workpiece length A0. The distance between two consecutive workpieces in
the line is 1 lu and thus A = A0 + 1.

In order to test the quality of the proposed approaches, we carried out the following
experiments. Firstly, each hybrid metaheuristic was tested alone. In the remaining of this
section, we denote by SA, TS and TS-CM the hybrid metaheuristics based on simulated
annealing, tabu search and tabu search with corridor method, respectively. Secondly, the
combinations of hybrids and the MILP Solve model were also tested. By MILPtime+Hybrid we
denote the combination type where the Solve model is executed before the hybrid, with MILPtime
 {900, 1800, 2700} seconds and Hybrid  {SA, TS, TS-CM}. Accordingly, Hybrid+MILPtime
denotes the combination where the model is executed after the hybrid. All experiments are
compared with respect to be best existing approach in the literature obtained in Calleja et al.
(2014).

The values of the algorithmic parameters used in the implementation of the hybrids SA and TS
were set based on computational experiments applying CALIBRA (Adenso-Díaz and Laguna,
2006), a systematic procedure used in the literature to find the best parameter values associated
with heuristic or metaheuristic algorithms. Since the small to medium-size instances of
AWALBP-L2 are not much sensitive to values of algorithmic parameters, we generated a
training set of 48 large to very large-scale instances. The set was created by generating 2
instances for each of the 24 combinations of the following ranges: A0 = {31-35, 36-40}, m = {5-
10, 11-20, 21-30, 31-40}, and N= {401-600, 601-800, 801-1000}. The obtained parameters
values are the following. As for SA, the values of the α, itt and t0 parameters are 0.9875, 1400
and 115, respectively, and the probabilities associated to selection from neighborhoods N1, N2
and N3 are 0.75, 0.1 and 0.15, respectively. As for TS, the tabu tenures are 24 for the tabu list
associated to neighborhoods N1 or N2, and 8 for the tabu list associated to neighborhood N3.

A preliminary test was carried out to examine the influence of the parameters of TS-CM on
different instances sizes of the data set, being the very large instances the most sensitive.

110

Therefore, a set containing the 20 largest instances of the problem was used to test the
performance of the three corridor structures C1, C2 and C3 proposed in Section 6.4, for
different values of the tabu tenure (5, 10, 20) and corridor widths

 1,3,5; 1, 2; 1, 2S xR R R    . Thus 9 combinations of values were tested for C1, 18 for C2

and 36 for C3, and C3 provided the best performance in terms of the improvement of the
objective function with respect to the initial solution. We therefore select the combination of C3
that yielded the best results to be used in the TS-CM hybrid. Such combination has the following
parameters values: the tabu tenure is 5 and the corridor widths around the forward steps, the
number of stationary stages and the initial shift are, respectively, 3R  , 1SR  and 1xR  .
Finally, we set the run time limit of a TS-CM iteration to 300 s.

Among the 1200 initial solutions obtained with the method proposed in Calleja et al. (2014),
457 initial solutions (38.08%) yielded an objective function value coincident with the computed
lower bound on the cycle time, (LB1CT), and thus were certified as optimal solutions. We
therefore focus on the comparative results for the remaining 743 instances.

Table 4 displays comparative results for the proposed hybrids with respect to Calleja et al.
(2014) on the 743 instances considered. Among these 743 instances, we know 519 optimal
solutions obtained with all the methods tested so far (including the ones presented in this paper),
which are used for optimality verification in the proposed methods. In the table, the results are
grouped in four main rows. The first row shows the results corresponding to the best existing
method of the literature (the Solve model of Calleja et al. (2014)) and the remaining rows, the
results for SA, TS, TS-CM and their combinations with the Solve model. For each experiment, in
the first column (% optima/Method) we provide the percentage of instances that were certified
optimal by the method. The second column (% optima/Known optimal solutions) provides the
percentage of instances that were certified optimal by comparing the obtained solution with the
known optimal solutions. Finally, the third column (% ave. GAP) gives the average relative gap
of the 743 instances considered, with respect to the best lower bound available. The relative gap

is defined to be   / 100BF BB BF  , where the best found value BF is the objective

function value of the solution found by the procedure and the best bound value BB is the best
bound known on the instance’s solution. The value of BB is the maximum value among the
following: i) the best bound computed by CPLEX among the models of (Calleja et al. 2013,
2014), ii) the theoretical lower bound on the cycle time, LB1CT, proposed in (Calleja et al. 2014)
and iii) the best bound computed by CPLEX among the Hybrid+MILPtime experiments.

What can easily be inferred from these results is that, in terms of percentage of optimal
solutions, a better performance is obtained when the proposed hybrids are combined with MILP
than when executed alone (in all cases for SA and TS, and in 10 out of 12 cases for TS-CM).
Specifically, the overall best optimality percentage was found using the combination
TS+MILP2700 (67.03 for optima certified by the method itself) and MILP2700+SA (69.45 for
optima certified by comparison with the known optima). On the other hand, a better relative gap
percentage is obtained for six different procedures (1.83; among these three procedures
MILP900+TS-CM provided the best result -69.31- in terms of % of optimal solutions).

111

 % optima
% ave. GAP

 Method
 Known optimal

solutions

Calleja et al. (2014) 63.66 65.68 2.56

SA 31.22 56.53 2.99

SA + MILP900 62.72 66.89 2.31
SA + MILP1800 64.47 67.70 2.25
SA + MILP2700 66.22 67.83 2.20

MILP900 + SA 61.78 68.37 2.12
MILP1800 + SA 63.80 68.64 2.05
MILP2700 + SA 65.41 69.45 1.99

TS 30.82 67.29 1.88

TS + MILP900 64.74 68.78 1.83
TS + MILP1800 65.81 68.78 1.83
TS + MILP2700 67.03 68.91 1.83

MILP900 + TS 61.78 68.78 1.87
MILP1800 + TS 63.93 69.04 1.88
MILP2700 + TS 65.01 68.78 1.92

TS-CM 30.96 68.78 1.83

TS-CM + MILP900 64.60 69.18 1.83
TS-CM + MILP1800 65.55 69.18 1.86
TS-CM + MILP2700 65.95 68.64 1.98

MILP900 + TS-CM 62.05 69.31 1.83
MILP1800 + TS-CM 63.93 68.91 1.88
MILP2700 + TS-CM 64.47 68.24 2.01

We focus on the best results obtained in terms of percentage of optimal solutions certified with
known optima (MILP2700+SA) and average relative gap (MILP900+TS-CM). Table 5 summarizes
the most relevant results for MILP2700+SA (column 1) and for MILP900+TS-CM (column 2)
compared to the best existing results of Calleja et al. (2014) (column 3). The first row (% equal
CT) shows the percentage of solutions which provided the same objective function value as in
Calleja et al. (2014). Row 2 (% improvement) shows the percentage of instances that
outperform the solution of Calleja et al. (2014). Rows 3 (ave.) and 4 (max.) show, respectively,
the average and the maximum improvement among such instances. Conversely, the percentage
of solutions that worsen the objective is given in row 5 (% decrease), and its average and
maximum worsening values are shown in rows 6 (ave.) and 7 (max.), respectively. In both
experiments, results show a high percentage of instances that equal (around 75%) or improve
(by 25%) the objective function value of Calleja et al. (2014), whereas the percentage of
instances that worsen the objective function value is kept low (between 0.67% and 1.08% for
MILP2700+SA and for MILP900+TS-CM, respectively). In row 8 we examine the average gap (%
ave. GAP) of the 743 instances considered with respect to the best lower bound available, which
decreased from 2.56% to 1.99% in MILP2700+SA and to 1.83% in MILP900+TS-CM.
Additionally, in row 9 we examine the maximum gap (% max. GAP), which remained equal in
MILP2700+SA but decreased to 22.05% in MILP900+TS-CM. Finally, the percentage of optimal
solutions, obtained by comparison with known optima (within the 743 instances considered) is
shown in row 10 (% total optima), which increased from 65.68% to 69.31% in MILP900+TS-CM
and rose to 69.45% in MILP2700+SA.

Table 4. Average results for the proposed experiments

112

 MILP2700 + SA MILP900+TS-CM Calleja et
al. (2014)

-

% equal CT 76.18 73.76 -
% improvement 23.15 25.17 -

 ave. 2.69 3.15 -

max. 10.41 11.81 -

% decrease 0.67 1.08 -
ave. 1.87 1.39 -

max. 3.51 4.03 -

% ave. GAP 1.99 1.83 2.56
% max. GAP 23.12 22.05 23.12

% total optima 69.45 69.31 65.68

In order to assess the overall solution of the AWALBP-L2, we compare the results of the complete
set of 1200 instances with respect to those obtained in Calleja et al. (2014). Specifically, the
percentage of optimal solutions rose from 78.75% to 81.08% in MILP2700+SA, and to 81.00% in
MILP900+TS-CM.

Finally, if we consider the optima obtained among all the proposed methods to date, we obtain that,
the problem has been solved optimally for 81.33% of the instances.

5. Conclusions and perspectives

In this paper, we have presented three hybrid metaheuristics, based on simulated annealing, tabu
search and tabu search with corridor method, to solve the Accessibility Windows Assembly
Line Balancing Problem Level 2 (AWALBP-L2) for the case where each task can only be
performed in one workstation.

The proposed hybrids use a mathematical model in a metaheuristic frame. More precisely, the
proposed hybrids follow a metaheuristic mechanism to guide the search and iteratively use an
embedded mathematical model. While the hybrid SA and TS metaheuristics deploy move-based
neighborhoods, the hybrid TS-CM features neighborhoods that are constructed within the
mathematical model used to explore them. We have presented a hybrid metaheuristic where a
tabu search is used to guide a MILP model over reduced portions of the original solution space.
Borrowing the basic idea of the Corridor Method, such portions are defined by building
corridors around a current solution, via the imposition of exogenous constraints. The resulting
constrained version of the problem is then solved with the MILP model. To the best of our
knowledge, this is the first time in the literature that such TS-CM hybridization is presented.

The performance of the proposed hybrids has been tested in an extensive computational
experiment. They have been tested alone and in combination with a bounded mathematical
programming model. The best result, in terms of percentage solutions certified with known
optima, was obtained for a combination where the model is executed first and then the obtained
solution is tried to be improved by a SA. Such alternative currently stands as the best method
proposed for the AWALBP-L2.

The fundamental ideas on which the proposed hybrids are inspired are open in nature and
extend interesting perspectives in combining mathematical programming with a metaheuristic

Table 5. Computational results for MILP2700 +SA and MILP900+TS-CM with respect to Calleja et al.
(2014)

113

framework, either for improving the solutions of the problem presented here or for tackling
other combinatorial problems.

References

Adenso-Díaz, B, & Laguna, M. (2006). Fine-tuning of algorithms using fractional experimental
designs and local search. Operations Research, 54, 99-114.

Battaïa, O., & Dolgui, A. (2012). Reduction approaches for a generalized assembly line
balancing problem. Computers and Operations Research, 39, 2337-2345.

Blum, C., Puchinger, J., Raidl, G., & Roli, A. (2011). Hybrid metaheuristics in combinatorial
optimization: A survey. Applied Soft Computing, 11, 4135-4151.

Becker, C., & Scholl, A. (2006). A survey on problems and methods in generalized assembly
line balancing. European Journal of Operation Research, 168, 694-715.

Boschetti, M., Maniezzo, V., Roffilli, M. & Bolufé, A. (2009). Matheuristics: Optimization,
Simulation and Control. In: Lecture Notes in Computer Science, 5818, 171-177. Hybrid
Metaheuristics - 6th International Workshop, HM 2009, Proceedings.

Calleja, G., Corominas, A., García-Villoria, A., & Pastor, R. (2013). A MILP model for the
Accessibility Windows Assembly Line Balancing Problem (AWALBP). International Journal
of Production Research, 51, 3549-3560.

Calleja, G., Corominas, A., García-Villoria, A., & Pastor, R. (2014). Combining matheuristics
and MILP for the Accessibility Windows Assembly Line Balancing Problem Level 2
(AWALBP-L2). Computers and Operations Research, 48, 113-123.

Capacho, L., Pastor, R., Dogui, A., & Guschinskaya, O. (2009). An evaluation of constructive
heuristic methods for solving the alternative subgraphs assembly line balancing problem.
Journal of Heuristics, 15, 109-132.

Corominas, A. & Pastor, R. (2009). A MILP model for the Visibility Windows Assembly Line
Balancing Problem (VWALBP): the case of the Müller-Hannemann & Weihe problem.
Technical report. Universitat Politècnica de Catalunya. Available from:
http://upcommons.upc.edu/e-prints/bitstream/2117/7047/1/IOC-DT-P-2009-09.pdf.

Corominas, A., Ferrer, L., & Pastor, R. (2011). Assembly line balancing: general resource-
constrained case. International Journal of Production Research, 49 (12), 3527-3542.

Downsland, K.A., & Adenso-Díaz, B. (2003). Heuristic design and fundamentals of the
Simulated Annealing. Inteligencia Artificial, 19, 93-102.

Gaudlitz, R. (2004). Optimization algorithms for complex mounting machines in PC board
manufacturing. Technical University of Darmstadt, Germany. Diploma thesis.

Gendreau, M. (2003). An introduction to Tabu Search. Chapter 2 in Handbook of
metaheuristics, Eds. Glover & Kochenberger, Kluwer Academic Publishers, 37-54.

Gendreau, M., & Potvin, J. Y. (2005). Tabu Search. Chapter 6 in Search Methodologies.
Introductory Tutorials in Optimization and Decision Support Techniques. Eds. Burke and
Kendall, Kluwer Academic Publishers, 165-186.

Glover, F. (1986). Future paths for Integer Programming and Links to Artificial Intelligence.
Computers and Operations Research, 5, 533-549.

Glover, F. (1989). Tabu Search – part I. ORSA Journal on Computing, 1, 190-206.

114

Glover, F. (1990). Tabu search – part II. ORSA Journal on Computing, 20, 4-32.

Glover, F. (1997). Tabu Search and Adaptive Memory Programming – Advances, Applications
and Challenges”. Chapter 1 in Interfaces in Computer Science and Operations Research. Eds.
R.S.Barr, R.V.Helgason, and J.L. Kennington (eds), Kluwer, 1-75.

Henderson, D., Jacobson, S.H., & Johnson, A.W. (2003). The Theory and Practice od Simulated
Annealing”. Chapter 10 in Handbook of Metaheuristics, Eds. Glover and Kochenberger, Kluwer
Academic Publishers, 287-319.

Kirkpatrick, S., Gelatt, C.D., & Vecchi, M.P. (1983). Optimization by Simulated Annealing.
Science, 220, 671-680.

Kulturel-Konak, S. (2012). A linear programming embedded probabilistic tabu search for the
unequal-area facility layout problem with flexible bays. European Journal of Operational
Research, 223(3), 614-625.

Maniezzo, V., Stützle, T. & Voβ, S. (2009). Matheuristics: Hybridizing metaheuristics and
mathematical programming. Annals of Information Systems, 10, Springer.

Martino, L. & Pastor, R. (2010). Heuristic procedures for solving the general assembly line
balancing problem with setups. International Journal of Production Research, 48 (6), 1787-
1804.

Müller-Hannemann, M. & Weihe, K. (2006). Moving policies in cyclic assembly line
scheduling. Theoretical Computer Science, 351, 425-436.

Pedersen, M.B., Crainic, T.G., & Madsen, O.B.G. (2009). Models and Tabu Search
Metaheuristics for Service Network Design with Asset-Balance Requirements. Transportation
Science, 43, 158-177.

Puchinger, J. & Raidl, G. (2005). Combining metaheuristics and exact algorithms in
combinatorial optimization: a survey and classification. Artificial Intelligence and Knowledge
Engineering Applications: A Bionspired Approach in Lecture Notes in Computer Science, 3562,
41-53.

Sniedovich, M. & Voβ, S. (2006). The corridor method: a dynamic programming inspired
metaheuristic. Control and Cybernetics, 35, 551-578.

Sternatz, J. (2014). Enhanced multi-Hoffmann heuristic for efficiently solving real-world
assembly line balancing problems in automotive industry. European Journal of Operational
Research, 235, 740-754.

Suman, B., & Kumar, P. (2006). A survey of simulated annealing as a tool for single and
multiobjective optimization. Journal of the Operational Research Society, 57, 1143-1160.

Tuncel, G., & Topaloglu, S. (2013). Assembly line balancing with positional constraints, task
assignment restrictions and station paralleling: A case in an electronics company. Computers &
Industrial Engineering, 64, 602-609.

Woodcock, A.J., & Wilson, J.M. (2010). A hybrid tabu search/branch & bound approach to
solving the generalized assignment problem. European Journal of Operational Research, 207,
566-578.

115

Annex

The Task model

Once a feasible movement scheme has been obtained (in which each task is accessible from its
workstation in at least one of the stationary stages), this movement scheme can be used as an
input for an ILP model (the Task model) which optimally assigns each task to one of stationary
stage (Calleja et al., 2014). The complete Task model is given next.

Data

m number of workstations (1,...,)i m
N number of tasks (1,...,)j N

J0 set of tasks  0(1, 2,...,)J N
Ji set of tasks to be performed in workstation i, where

0 '
1,..,

and i i i
i m

J J J J


  
 1, , ; ' 1,..., ; 'i m i m i i   

pj processing time of task j (1,...,)j N
S number of forward steps in a cycle
Пj set of stationary stages where task j is accessible from the workstation where it can be

performed (1,...,)j N .

Variables

 0,1jsy  yjs = 1 iff task j is performed in the stationary stage s (, .., ;)jj 1 N s П 

Cs completion time corresponding to the stationary stage s (1,...,)s S

Model

 (45)

 (46)

 (47)

The objective (45) is the minimization of the completion time of the stationary stages.
Constraints (46) impose that each task is assigned to one, and only one, stationary stage, and
(47) ensure that the time corresponding to the stationary stages is not less than the processing
time at any workstation.

Note: This manuscript is a corrected version of an in-review article. A mistake was
detected and corrected during the revision process of the manuscript. Consequently, in this
document Tables 4 and 5 have been accordingly modified, resulting in slightly different
percentages (the corrected values differ at most by four tenth of a per cent with respect to the
in-review version of the article).

1

[]

1 1,...,

1,..., ; 1,...,

j

i j

S

s
s

js
s

j js s
j J s

MIN z C

y j N

p y C i m s S





 



 

   







117

A2.2. Communications to international conferences

Exact and heuristic approaches for the Visibility Windows Assembly
Line Balancing Problem (VWALBP)

In proceedings of the 12th Annual Congress of the French National Society of Operations
Research and Decision Science, 12è Congrès annuel de la Société Française de Recherche
Opérationnelle et d’Aide à la Décision (ROADEF 2011), 583-584, Saint-Étienne, France, 2-4
March, 2011.

Exact and Heuristic Approaches for the Visibility
Windows Assembly Line Balancing Problem

(VWALBP)

Gema Calleja1, Albert Corominas1, Alberto García-Villoria1, Rafael Pastor1

1 IOC Research Institute
Universitat Politècnica de Catalunya (UPC)

Av. Diagonal 647, 11th floor , 08028, Barcelona, Spain
{gema.calleja,albert.corominas,alberto.garcia-villoria,rafael.pastor}@upc.edu

Keywords: Assembly line balancing, mixed-integer linear programming, matheuristics.

1. Introduction

As part of production systems, throughput optimization of assembly lines has attracted great
research attention to accomplish the real-world problems related to them.

In this paper, we consider the problem that we name Visibility Windows Assembly Line

Balancing Problem (VWALBP) [1], which arises in some actual automated production lines. In
contrast to traditional assembly lines, the length of the workpieces may be larger than the
visibility windows of the workstations, and because of this, only a limited portion of the unit
can be reached from any station at any time.

The aim of this work is to solve the VWALBP, which was originally stated in Müller-

Hannemann&Weihe [2]. For a set of sample instances, we first try to solve the problem
optimally using a Mixed Integer Linear Programming (MILP) model. Since this problem is
known to be NP-Hard, we expect that increasingly large-scale instances may lead to prohibitive
computational times. An extensive effort is being made to explore the input size that the model
is able to solve. Second, we propose heuristic and matheuristics approaches based on the MILP
model to explore the instances that are out of its reach.

118

2. The VWALBP

In the VWALBP stated in Müller-Hannemann&Weihe [2], the dimensions of the workpieces
are larger than the size of the visibility windows of the stations. In this kind of assembly line,
the cycle decomposes into a number of stationary stages, in which the workpieces stand
motionless. The tasks can only be performed during a stationary stage. Once the tasks have been
all processed, the line, with the workpieces on it, moves forward. The assignment of tasks to
each station is part of the input.

The output of this problem consists of computing the number of stationary stages, the offset

between stages in a cycle and the assignment of the tasks to the stages. Finally, the optimization
criterion is to minimize the cycle time of the line.

3. Approaches for the VWALBP

We are currently testing the MILP model using ILOG IBM CPLEX 12.2. In order to identify
the limits where the model may be applied, we generate a set of medium-sized instances
considering an increasing number of tasks (100 to 500), stations (5 to 20) and workpiece lengths
(15 to 25 length units (lu)). We set the visibility windows of the stations to 10lu.

First computational results show that model performance is mainly limited by the workpiece

length, followed by the number of tasks. More specifically, instances for pieces 15lu long with
300 tasks and 20 stations could be solved optimally, whereas no solution could be found within
an hour for pieces 25lu long with more than 100 tasks.

Based on the experience obtained so far, we are exploring several research lines. We are first

trying to enhance the CPLEX’s performance on the MILP model, by customizing the
parameters values, and also by considering specific reformulations of the model, such as the
addition of redundant constraints. Secondly, we are also considering developing heuristics to
build feasible solutions to start with before the MILP model is solved.

In order to address larger instances that fall out of the reach of the model, we propose a

matheuristic approach inspired on the corridor method (CM) [3], which starts from a feasible
solution and uses the model to generate improved solutions, within a neighborhood defined by
additional constraints.

Furthermore, we have successfully implemented an efficient task assignment submodel

which allows us to approach the optimization by means of exploring the space of motion
patterns since we can, given the motion pattern, to find in a short time, the corresponding
optimal assignment of tasks.

The results of the current computational experience will determine the research direction to

be undertaken.

4. Conclusions and perspectives

The inherent complexity of assembly line optimization problems usually implies that exact
approaches lead to unreasonable computational times when dealing with large real-world
instances.

119

In this work we address the VWALBP, in which the dimensions of the workpieces are larger

than the size of the visibility windows of the stations. We first use a MILP model to try to solve
it optimally. Then, for large instances that cannot be solved in a reasonable timel, we consider
heuristic and matheuristic-based approaches to generate improving solutions.

References

[1] A. Corominas and R. Pastor. A MILP model for the Visibility Windows Assembly Line
Balancing Problem (VWALBP) : the case of the Müller_Hannemann & Weihe problem.
2010. Technical report.

[2] M. Müller-Hannemann and K. Weihe. Moving policies in cyclic assembly line
scheduling. Theoretical Computer Science, 351 : 425-436, 2006.

[3] V. Maniezzo, T. Stützle and S. Voβ. Matheuristics : Hybridizing Metaheuristics and
Mathematical Programming. Springer, 10 : 11, 2009.

121

Heurísticas para el Visibility Windows Assembly Line Balancing Problem
(VWALBP)

In proceedings of the 5th International Conference on Industrial Engineering and Industrial
Management, XV Congreso de Ingeniería de Organización, 201-205, Cartagena, Spain, 7-9
September, 2011.

Heurísticas para el Visibility Windows Assembly
Line Balancing Problem (VWALBP)

Gema Calleja1, Albert Corominas1, Alberto García-Villoria1, Rafael Pastor1

1 Instituto de Organización y Control (IOC). Universitat Politècnica de Catalunya (UPC).
Av. Diagonal 647, Planta 11, 08028 Barcelona

{gema.calleja,albert.corominas,alberto.garcia-villoria,rafael.pastor}@upc.edu

Palabras clave: ventanas de visibilidad, equilibrado de líneas

1. Introducción

En este trabajo se trata el problema conocido como problema de equilibrado de líneas de
montaje con ventanas de visibilidad o Visibility Windows Assembly Line Balancing Problem
(VWALBP), que ocurre en varios entornos de producción automatizados. En particular este
problema surge, por ejemplo, en la producción de placas de circuito impreso (PCIs) en líneas
pick&place. Este tipo de líneas consta de varias estaciones en paralelo que montan los
componentes en posiciones predefinidas sobre la superficie de la placa. El montaje se realiza de
modo cíclico (en cada ciclo se completa una pieza) y consiste en escoger (pick) un componente
de un alimentador, trasladarlo hacia la placa, y colocarlo (place) en su posición correspondiente.

A diferencia de los problemas tradicionales de equilibrado de líneas, en los que se suele asumir
que cada estación tiene acceso a toda una pieza entera, el VWALBP presenta la siguiente
particularidad: la longitud de la pieza puede ser mayor que el ancho de la estación que la
procesa y, en consecuencia, cada estación solamente puede acceder a la porción limitada de las
piezas que está dentro de su ventana de visibilidad.

El VWALBP fue descrito por Müller-Hannemann y Weihe (2006) y formalizado con un modelo
de programación lineal entera mixta (PLEM) por Corominas y Pastor (2010). Este modelo fue
utilizado por Calleja et al. (2011) y se resolvieron ejemplares de un tamaño hasta cierto límite.

En la actualidad se están desarrollando nuevas líneas de investigación basadas en
procedimientos heurísticos para resolver los ejemplares de mayor tamaño que quedan fuera del
alcance del modelo de PLEM. En esta comunicación se presenta la estrategia heurística
considerada en la investigación en curso, estructurada como sigue. En la sección 2 se describe el
problema. En las secciones 3 y 4 se presentan la estrategia de resolución y los resultados

122

computacionales, respectivamente. Por último la sección 5 contiene las conclusiones y las
futuras líneas de investigación.

2. Descripción del problema

En esta sección se describen las características del VWALBP. El output esperado del problema
y el objetivo a optimizar se especifican en los apartados 2.1 y 2.2, respectivamente.

La característica más importante del VWALBP es la existencia de ventanas de visibilidad en la
línea, de manera que una tarea únicamente puede ser procesada si está dentro de la ventana de
visibilidad de la estación en la que debe ser realizada. La longitud de las piezas es mayor que el
ancho de las estaciones, lo que significa que una misma estación puede procesar partes de dos
piezas consecutivas y una misma pieza puede ser procesada por varias estaciones. La Figura 1
muestra un ejemplo de una línea de montaje con tres estaciones. Nótese que las estaciones 1 y 3
solamente pueden procesar una parte de una pieza, mientras que la estación 2 puede procesar
simultáneamente partes de dos piezas consecutivas.

Figura 1. Ejemplo de una línea con tres estaciones. El área gris corresponde a las ventanas de
visibilidad.

A continuación se describe el proceso de montaje. La línea debe procesar un número de piezas
iguales. Las piezas se colocan sobre la línea con una separación fija entre ellas y son
transportadas a través de las estaciones mediante una cinta transportadora. El número de
estaciones es conocido. Como particularidad de este problema respecto de otros problemas de
equilibrado se asume que cada estación debe procesar un conjunto preasignado de tareas.

El proceso cíclico de montaje consta de una serie de etapas estacionarias, separadas entre sí por
un desplazamiento de avance. En una etapa estacionaria la línea, con las piezas sobre ella, está
inmóvil. Cada estación realiza sucesivas tareas de pick&place. Una vez se han completado todas
las tareas de una etapa estacionaria específica, la línea comienza el desplazamiento de avance.
La cinta hace avanzar la línea (y al mismo tiempo las piezas) en un desplazamiento a
determinar. El mínimo desplazamiento en que se podría mover la línea es un valor Δ llamado
paso elemental que depende de la tecnología de la línea. Los desplazamientos de avance entre
etapas (el número de pasos elementales que se desplaza la línea) no son necesariamente iguales.
Mientras la línea está en movimiento no se permite realizar ninguna tarea sobre las piezas.
Después, comienza la siguiente etapa estacionaria. Las etapas estacionarias y los
desplazamientos de avance se repiten cíclicamente.

Entre dos etapas estacionarias consecutivas, existe un tiempo T necesario para
acelerar/desacelerar la cinta.

Debido al comportamiento cíclico de la línea, la posición de las piezas en la línea en cada una
de las etapas estacionarias queda determinada según un patrón denominado esquema de avance,
constituido por:

 Estación 1 Estación 2 Estación 3

PCI

Brazo
robotizado

Componente

123

 La posición de referencia x: es la distancia del borde derecho de la pieza respecto al límite
izquierdo de la primera ventana de visibilidad en la primera fase estacionaria.

 El número S de etapas estacionarias (que es igual al número de desplazamientos del
esquema de avance).

 Los desplazamientos de avance δs (s = 1,…, S).

La Figura 2 muestra un esquema de avance con tres etapas estacionarias (S = 3). Después del
último desplazamiento de avance, las piezas han sido desplazadas exactamente en la distancia A,
que corresponde a la distancia entre los bordes derechos de dos piezas consecutivas y coincide
con la suma de los desplazamientos de avance:

 (1)

Figura 2. Esquema de avance cíclico de una línea con tres etapas estacionarias.

2.1. Output

El output deseado consiste en:

i) un esquema de avance y

ii) la asignación de cada tarea a una de las etapas estacionarias.

Recuérdese que las tareas están a priori asignadas a las estaciones (la asignación de tareas a
estaciones es parte del input).

2.2. Objetivo

El objetivo del problema consiste en minimizar el tiempo de ciclo expresado en la ecuación (2),
el cual consiste en la suma de:

i) el número S de etapas estacionarias multiplicado por el tiempo T

ii) las duraciones de cada etapa estacionaria s, Cs, que constituyen un ciclo.

 (2)

3. Estrategia de resolución

La estrategia de resolución se basa en descomponer el VWALBP en dos subproblemas: cálculo
de un esquema de avance factible y asignación de tareas a etapas estacionarias, los cuales se

δ1

δ2

δ3

A = Δ· (δ 1 + δ2 + δ3)

 Ciclo

s = 1

s = 2

s = 3
x

 Estación 1 Estación 2 Estación 3

1

S

s
s

A Δ 


 

1

[]
S

s
s

MIN z S T C


  

124

describen en los apartados 3.1 y 3.2, respectivamente. La solución del problema global se
obtiene a partir de la unión de las soluciones obtenidas en los dos subproblemas.

3.1. Cálculo de un esquema de avance factible

El esquema de avance se calcula mediante un algoritmo diseñado a medida. Se ha desarrollado
un heurístico que, dada una posición de referencia x inicial, genera un esquema de avance
factible con el menor número posible de etapas estacionarias S. La motivación de obtener un
esquema con el número mínimo de etapas de avance es reducir al máximo los tiempos de
aceleración/desaceleración. De esta manera consideramos que se obtendrán soluciones buenas.

A continuación se describe el algoritmo desarrollado. El procedimiento debe determinar el valor
de los desplazamientos del esquema de avance de la línea de forma que cada tarea sea visible en
su estación correspondiente al menos en una de las etapas estacionarias. Para cada estación, y
para cada tarea asignada a dicha estación, se calcula la máxima distancia que se podría desplazar
la tarea para poder ser realizada, que corresponde a la distancia entre la posición de la tarea en la
línea hasta la posición del límite derecho de su estación. De esta manera se evita que la tarea
pueda desplazarse más allá de la ventana de visibilidad de su estación correspondiente. El
mínimo valor de entre los máximos desplazamientos posibles en para todas las estaciones de la
línea determina el valor del primer desplazamiento del esquema de avance (δ1). Los
desplazamientos siguientes (δ2, ..., δS) se calculan siguiendo el mismo razonamiento, y el cálculo
finaliza cuando el desplazamiento acumulado de los desplazamientos es igual a A/Δ.

En la Figura 3 se muestra el pseudocódigo utilizado para la generación del esquema de avance.
El funcionamiento básico del algoritmo es el siguiente. En cada iteración se calcula el valor del
desplazamiento δs (correspondiente al número de pasos elementales que se desplaza la línea)
hasta que el desplazamiento acumulado sea igual a A/Δ. Para calcular δs se determina el mínimo
de los máximos desplazamientos posibles para cada estación mediante el método
NumMaxPasosElem, que devuelve el número máximo de pasos elementales que puede recorrer
la tarea j para que sea visible en la máquina i. Para ello se parte de una posición de referencia
inicial para la primera pieza en la línea (x). Se elige como valor de x la máxima distancia posible
del borde derecho de la pieza respecto al límite izquierdo de la primera estación, x = R1 + a1

min,
donde R1 es la posición del límite derecho de la primera estación y a1

min es la posición de la
tarea más cercana al borde derecho de la pieza. Dado el número total de pasos elementales
desplazados en el ciclo actual ST, la estación i, el conjunto Ji de tareas asignadas a dicha
estación, las coordenadas de su límite izquierdo Li y derecho Ri, una tarea j asignada a la
estación i y su posición aj respecto al borde derecho de la pieza, se calcula el valor aux
correspondiente a la distancia desde la posición de la tarea en la línea hasta el lado izquierdo de
su estación correspondiente. El menor valor de aux corresponde a la tarea más cercana a la
izquierda de su estación y por tanto determina el máximo desplazamiento que puede moverse la
línea de forma que dicha tarea quede dentro de la ventana de visibilidad.

Una vez calculado el valor de δs para todas las tareas y para todas las estaciones, se actualiza el
valor del desplazamiento acumulado ST, y se repite iterativamente el cálculo para obtener el
valor de los siguientes desplazamientos del esquema de avance. Finalmente, el procedimiento
finaliza cuando se cumple la condición ST =A/Δ y como resultado se obtiene un esquema de
avance factible con S desplazamientos (δ1, δ2, ..., δS).

125

 mientras (!fin) hacer

 si (!fin) entonces : 1s s  fsi
 fmientras

 NumMaxPasosElem(ST, i, j) {

 si 0aux  entonces :aux A fsi

 devolver

 }

Figura 3. Pseudocódigo del cálculo del esquema de avance factible

3.2. Asignación de tareas a etapas estacionarias

Una vez generado un esquema de avance factible, el siguiente paso consiste en asignar las tareas
a una de las etapas estacionarias en que es visible. Para ello se ha propuesto un modelo de
PLEM que calcula, utilizando como input el esquema de avance generado en el punto anterior,
una asignación óptima de cada tarea a una de las etapas estacionarias. A continuación se
muestra el modelo utilizado:

Datos:

 m número de estaciones

 N número de tareas

 Ji conjunto de tareas de la estación i (i=1,.., m, k=1,…,m, i ≠k)

 pj tiempo de proceso de la tarea j (j = 1, ..., N)

 S número de desplazamientos en un ciclo

 Пj conjunto de etapas estacionarias en las que la tarea j es visible dentro de la ventana de
visibilidad de la estación en la que debe realizarse (j = 1, ..., N)

Variables:

 yjs ∈{0,1}, yjs = 1 sii la tarea j se realiza en la etapa estacionaria siguiente al
desplazamiento s − 1 (j = 1,.., N; s ∈ Пj)

 Cs duración, para toda la línea, correspondiente a la etapa estacionaria siguiente al
desplazamiento s − 1 (s = 1,..., S)

: 1; : 0Ts S 

 : T Afin S  

  : min ,min min , ,
i

T T
s i j J

A
S NumMaxPasosElem S i j

  

    
:T T

sS S  

 : T Afin S  

:s
d    

 : %T
i jaux L x S a A       

 : i id aux R L  

,i kJ J i k  

126

 Modelo:

 (3)

 (4)

 (5)

A partir del esquema de avance, se conoce el conjunto de etapas estacionarias en las que cada
tarea es visible dentro de su estación correspondiente, Пj. El objetivo (3) es minimizar la
duración de las etapas estacionarias. Las restricciones (4) imponen que cada tarea es asignada a
una, y solamente una, de las etapas estacionarias del ciclo, y (5) aseguran que la duración
correspondiente a las etapas estacionarias no es menor que el tiempo de proceso de cualquiera
de las estaciones.

4. Experiencia computacional

Se generó un juego de datos a partir de diferentes rangos de valores para la separación entre
piezas (A={11-16, 17-21, 22-26, 27-31, 32-36, 37-41}), el número máquinas (m={5-10, 11-20,
21-30, 31-40}), y el número de tareas (N={50-200, 201-400, 401-600, 601-800, 801-1000}). La
longitud de la pieza se puede deducir del parámetro A, ya que se corresponde con el valor de A
menos el valor del espacio entre dos piezas consecutivas en la línea (en nuestro caso dicho
espacio es de 1 unidad de longitud –ul-, luego la longitud de la pieza es A -1). Para cada
combinación de estos rangos se generaron 10 ejemplares, obteniendo así un juego total de
6x4x5x10=1.200 ejemplares. El ancho de las estaciones se fijó en 10 ul, y el tiempo T de
aceleración/desaceleración se fijó en 200 unidades de tiempo. La posición de las tareas sobre la
pieza se obtuvo de forma aleatoria a lo largo de la longitud de la misma. Por último, las tareas se
asignaron a las estaciones de forma equiprobable, teniendo en cuenta que cada estación debe
tener al menos una tarea asignada.

Se intentó resolver este juego de datos con el modelo de PLEM mediante el solver IBM ILOG
CPLEX12.2, limitando el tiempo computacional a una hora. Se observa que la longitud de la
pieza y el número de tareas son los parámetros que más influyen en la complejidad de
resolución del problema: cuanto mayor es la longitud de la pieza respecto al ancho de las
estaciones y mayor es el número de tareas, más difícil resulta hallar una solución óptima. El
número de estaciones no parece tener una influencia significativa. Así, para piezas de hasta 15
ul el modelo es capaz de resolver ejemplares de hasta 1.000 tareas, mientras que para piezas de
hasta 20 y 25 el límite es de hasta 800 y 600 tareas, respectivamente. Finalmente, para piezas de
dimensiones mayores, el modelo alcanzó a resolver hasta 200 tareas.

Para obtener una estimación de la calidad de las soluciones producidas por este heurístico,
comparamos las soluciones obtenidas con aquellos ejemplares de los que conocemos la solución
óptima. Para el 69,9% de estos ejemplares, el heurístico devolvió una solución óptima. Para el
resto, la diferencia respecto al valor óptimo de la función objetivo es en promedio de 7,4%.
Además, este heurístico es extremadamente rápido: el tiempo de ejecución para la generación
del esquema de avance es despreciable, y para la asignación de tareas a etapas estacionarias es
en promedio del orden de centésimas de segundo. Se observó también que el número de etapas
de avance de las soluciones devueltas por el heurístico coincide con el número de etapas de las
soluciones óptimas excepto en un caso. En dicho caso la solución óptima tiene una etapa menos
que en el heurístico, ya que la posición de referencia x en el modelo es parte del output a
determinar. Así, parece razonable presuponer que los esquemas de avance con un número
pequeño de etapas de avance forman parte de las buenas soluciones.

1

[]
S

s
s

MIN z C


 

1

1 1,...,
j

S

js
s s

y j N
 

 
1,..., ; 1,...,

i j

j js s
j J s

p y C i m s S
 

   

127

5. Conclusiones y futuras líneas de investigación

En este trabajo se presenta el problema de equilibrado de líneas de montaje de visibilidad
(Visibility Windows Assembly Line Balancing Problem, VWALBP), en el que, a diferencia de
los problemas tradicionales de equilibrado de líneas, cada estación solamente tiene acceso a una
porción limitada de las piezas dentro del área correspondiente a su ventana de visibilidad. El
objetivo consiste en obtener el esquema de avance de la línea y la asignación de tareas a etapas
estacionarias de forma que el tiempo de ciclo sea mínimo.

La resolución del VWALBP se aborda mediante la utilización de un método heurístico para
ejemplares de grandes dimensiones que quedan fuera del alcance del modelo de PLEM. El
heurístico descompone el problema en dos partes. En primer lugar se genera un esquema de
avance factible mediante un algoritmo. Después, en la segunda parte se utiliza dicho esquema de
avance como input de un modelo exacto que calcula una asignación óptima de las tareas a una
de las etapas estacionarias del ciclo.

La eficiencia con que se resuelve el modelo de asignación permite pensar en desarrollar otras
heurísticas basadas en reducir el espacio de búsqueda al esquema de avance. Por ejemplo,
generar un vecindario a partir de un esquema de avance inicial y a continuación utilizar el
modelo de asignación para obtener la asignación óptima de tareas correspondiente a uno de los
esquemas de avance generados. De este modo se obtiene un vecindario de soluciones al que se
puede aplicar búsqueda local para tratar de mejorar la solución inicial.

Otra propuesta es considerar como punto de partida un esquema de avance inicial con el mayor
número de etapas estacionarias (es decir, el caso en el que la línea se desplaza entre etapas el
valor del paso elemental Δ). La heurística consistiría en generar iterativamente nuevos esquemas
de avance agrupando, si es posible, las dos etapas estacionarias consecutivas que mayor ahorro
proporcionen en el tiempo de ciclo al ser agrupadas. A partir de este heurístico se podría
desarrollar un algoritmo tipo GRASP (Greedy Randomized Adaptative Search Procedure)
donde la selección de la pareja de etapas a agruparse se aletoriza.

Otra posible línea de investigación es el desarrollo de mateheurísticas que, a partir de una
solución heurística inicial, utilicen el modelo matemático para generar mejores soluciones,
dentro de un vecindario definido por restricciones adicionales en el modelo. Un ejemplo de
posible aplicación es el Corridor Method (CM), que permitiría reducir el espacio de búsqueda a
porciones restringidas del espacio de soluciones del problema.

Referencias

Calleja, G.; Corominas, A.; García-Villoria, A.; Pastor, R.; (2011). Exact and Heuristic
Approaches for the Visibility Windows Assembly Line Balancing Problem (VWALBP). Actas
del 12º Congrès Annuel de la Société Française de Recherche Opérationnelle at d’Aide à la
Décision (ROADEF), Volumen II, página 583.

Corominas, A.; Pastor, R. (2010). A MILP model for the Visibility Windows Assembly Line
Balancing Problem (VWALBP): the case of the Müller-Hannemann & Weihe problem.
Technical report.

Müller-Hannemann, M.; Weihe, K.; (2006). Moving policies in cyclic assembly line scheduling.
Theoretical Computer Science, No. 351, 425-436.

129

Enhanced MILP model for the Accessibility Windows Assembly Line
Balancing Problem (AWALBP)

In proceedings of the 13rd Annual Congress of the French National Society of Operations
Research and Decision Science, 13è Congrès annuel de la Société Française de Recherche
Opérationnelle et d’Aide à la Décision (ROADEF 2012), 117-118, Angers, France, 11-13 April,
2012.

Enhanced MILP model for the Accessibility
Windows Assembly Line Balancing Problem

(AWALBP)

Gema Calleja1, Albert Corominas1, Alberto García-Villoria1, Rafael Pastor1

1 IOC Research Institute
Universitat Politècnica de Catalunya (UPC)

Av. Diagonal 647, 11th floor , 08028, Barcelona, Spain
{gema.calleja,albert.corominas,alberto.garcia-villoria,rafael.pastor}@upc.edu

Keywords: Assembly line balancing, mixed-integer linear programming, matheuristics.

1. Introduction

The Accessibility Windows Assembly Line Balancing Problem (AWALBP) arises in those
assembly lines where, as opposed to traditional assembly lines, the dimensions of the
workpieces are larger than the width of the workstations. This means that, at any cycle, a
workstation cannot access to one whole workpiece, but only to a restricted portion of one or two
consecutive workpieces [1]. In our problem the cycle decomposes into stationary stages
separated between them by forward steps, according to a cyclic movement scheme.

In a previous study [2], we proposed and applied a mixed-integer linear programming
(MILP) model to solve AWALBP. In this paper, we present an enhanced MILP model to
increase the number of instances solved by the earlier model. The main enhancements comprise
i) use of reformulation techniques, and ii) incorporation of bound constraints, which resulted in
significant performance improvement.

2. Enhanced MILP model for the AWALBP

Based on our previous model [2], we present an enhanced MILP model to solve AWALBP. The
differences between the two models are described next. In the new formulation, new variables
and new constraints were incorporated, whereas some other variables and constraints were
discarded. More specifically, the integer variable kj, representing the number of workpieces in
the line that precede a workpiece when task j is performed in the latter, was discarded. A new
binary variable, bjsk, was incorporated instead, which equals 1 iff task j is performed in

130

stationary stage s and there are k workpieces in the line that precede the workpiece when task j
is being performed in the latter. As a result, some specific sets of constrainsts were transformed
and a new set of constraints arose.

On the other hand, we incorporated to the model upper and lower bounds on the cycle time and
the number of stationary stages. The upper bounds were obtained from an initial solution using
the heuristic introduced in [3], whereas the lower bounds were derived using pre-computed
information from the data instances.

The enhanced MILP model clearly outperforms the earlier model in terms of number of optimal
solutions, which increased by 30%. In order to solve larger instances that are still out of reach of
the enhanced model, we use our heuristic approach [3], which turned out to perform very fast
(less than 25 milliseconds on average) and produces good feasible solutions.

3. Computational experience

Since there are no existing benchmark sets in the literature, we used a randomly generated
set of 1.200 instances with an increasing number of tasks (50 to 1000), workstations (5 to 40)
and workpiece lengths (10 to 40 length units (lu)). We set the accessibility windows of the
workstations to 10 lu. To test the proposed MILP model, we used CPLEX 12.2 solver with a
time limit of 1 hour.

Computational results show a significant improvement in the percentage of instances solved.

More specifically, the number of optimal solutions increased from 40% in the earlier model to
70% in the enhanced MILP model.

For the remaining 30% of instances that could not be solved exactly we applied the

aforementioned heuristic approach. The evaluation of the heuristic quality showed that 60% of
the heuristic solutions coincided with the optimal solutions obtained by our MILP models, being
the average gap for not coincident solutions less than 4%.

By using the presented MILP model, all instances with workpiece lengths up to 15 lu are

solved. Instances with workpiece lengths up to 25 lu could also be solved almost entirely (98%).
Finally, 73%, 40% and 22% of the instances corresponding to 30, 35 and 40 workpiece lengths,
respectively, were exactly solved.

4. Conclusions and perspectives

In this paper, we propose an enhanced MILP model to solve the AWALBP that leads to a
significant increase in the number of instances exactly solved. In order to improve the solution
of larger instances that are still out of reach for the model, we will shift our focus of research to
metaheuristics and matheuristics.

We first intend to develop metaheuristics to generate neighbor solutions in the space of the

movement schemes, since we have developed a MILP model that enables an efficient task
assignment. Classical metaheuristics such as Simulated Annealing, Tabu Search or Variable
Neighborhood Search may perform well in our problem.

We also consider developing a matheuristic approach made by the interoperation of a

metaheuristic and the presented MILP model.

131

References

[1] M. Muller-Hannemann and K. Weihe. Moving policies in cyclic assembly line scheduling.
Theoretical Computer Science, 351; 425-436, 2006.

[2] G. Calleja, A. Corominas, A. García-Villoria and R. Pastor. Exact and Heuristic Approaches
for the Visibility Windows Assembly Line Balancing Problem (VWALBP). 12th Annual
Congress on the French National Society of Operations Research and Decision Science,
(ROADEF, Saint-Étienne, France, from 2nd to 4th March 2011); Nº 386 p. II-583.

[3] G. Calleja, A. Corominas, A. García-Villoria and R. Pastor. Heurísticas para el Visibility
Windows Assembly Line Balancing Problem (VWALBP). V International Conference on
Industrial Engineering and Industrial Management / XV Congreso de Ingeniería de
Organización (CIO, Cartagena, Spain, from 7th to 9th September 2011); p. 201 – 205.

133

Modelo de PLEM mejorado Accessibility Windows Assembly Line
Balancing Problem (AWALBP)

In Proceedings of the 6th International Conference on Industrial Engineering and Industrial
Management: XVI Congreso de Ingeniería de Organización (CIO 2012), 879-886, Vigo, Spain,
18-20 July, 2012.

Modelo de PLEM mejorado para el Accessibility
Windows Assembly Line Balancing Problem

(AWALBP)

Calleja Sanz G2, Corominas Subias A, García Villoria A, Pastor Moreno R

Abstract (English) The Accessibility Windows Assembly Line Balancing Problem (AWALBP) occurs
in those assembly lines where the length of the workpieces is large relative to the width of the
workstations. As a result, each workstation can only access to the limited portion of workpiece(s) that is
inside its accessibility window. In previous works we proposed a mixed-integer linear programming
(MILP) model and a heuristic decomposition approach to solve AWALBP. Computational results
revealed the size limits of the instances that could be solved. In this work, we provide an enhanced MILP
model using reformulations and additional bound contraints, which significantly improves the percentage
of the instances optimally solved.

Resumen (Castellano) El problema denominado Accessibility Windows Assembly Line Balancing
Problem (AWALBP) ocurre en aquellas líneas de montaje donde la longitud de las piezas es mayor que el
ancho de las estaciones que las procesan. Como resultado, cada estación solamente tiene acceso a la
porción limitada de las piezas que están dentro de su ventana de accesibilidad. En trabajos anteriores se
presentó un modelo de programación lineal entera mixta (PLEM) y una heurística basada en la
descomposición del problema para resolver el AWALBP. En este trabajo se presenta un modelo de
PLEM mejorado mediante reformulaciones y adición de cotas, el cual permite aumentar
significativamente el porcentaje de los ejemplares resueltos óptimamente.

Keywords: accessibility windows, line balancing, mixed-integer linear programming

Palabras clave: ventanas de accesibilidad, equilibrado de líneas, programación lineal entera mixta

2 Gema Calleja Sanz ()
Instituto de Organización y Control (IOC). Universitat Politècnica de Catalunya (UPC) . Avda Diagonal,
647, 11th floor, 08028 Barcelona, Spain. e-mail: gema.calleja@upc.edu

134

1. Introducción

En los problemas más extendidos de equilibrado de líneas se suele asumir que cada estación
tiene acceso a toda una pieza entera al mismo tiempo, y que cada pieza solamente puede ser
procesada por una única estación al mismo tiempo. Sin embargo, el problema denominado
Accessibility Windows Assembly Line Balancing Problem (AWALBP) presenta la
particularidad de que la longitud de las piezas es mayor que el ancho de las estaciones que las
procesan (Fig. 1). Como consecuencia, una misma pieza puede ser procesada por varias
estaciones a la vez, y una misma estación puede procesar partes de dos piezas consecutivas a la
vez.

Fig. 1 Ejemplo de una línea de montaje con ventanas de accesibilidad

El AWALBP es una variante del problema generalizado de equilibrado de líneas (GALBP) que
ocurre en varios entornos de producción automatizados, por ejemplo, en el montaje
automatizado de placas de circuitos impresos (Tazari et al, 2006). Este problema fue descrito
por Müller-Hannemann y Weihe (2006) y formalizado con un modelo de programación lineal
entera mixta (PLEM) por Corominas y Pastor (2009). Dicho modelo fue implementado por
Calleja et al (2011a) y se resolvieron de forma óptima ejemplares hasta cierto límite.
Posteriormente, se desarrolló una heurística basada en la descomposición del problema (Calleja
et al 2011b).

En este trabajo se presenta un modelo de PLEM mejorado, cuyas modificaciones respecto al
modelo inicial consisten en i) reformulación de variables y restricciones y ii) adición de cotas.
La estrategia de resolución propuesta consiste en la combinación de una heurística y el modelo
propuesto. Los resultados de la experiencia computacional realizada revelan un incremento
significativo del número de ejemplares resueltos. El resto de este trabajo se estructura como
sigue. En la sección 2 se describe el problema. En la sección 3 se presenta la estrategia de
resolución y el modelo de PLEM mejorado. En la sección 4 se presentan los resultados
computacionales. Por último, la sección 5 contiene las conclusiones y las futuras líneas de
investigación.

2. Descripción del problema

Un número (potencialmente infinito) de piezas idénticas deben ser procesadas en la línea de
montaje. Las piezas se colocan sobre la línea con una separación constante entre sí y avanzan
mediante una cinta transportadora a través de varias estaciones en serie. El proceso de montaje
es cíclico y consta de un número S de etapas estacionarias separadas entre sí por un paso de
avance. En la etapa estacionaria s (s=1,…,S), la línea está inmóvil, y las estaciones realizan
tareas de montaje sobre las piezas. Una tarea consiste en tomar un componente de un
alimentador y colocarlo en una posición predefinida de la pieza. Una vez las estaciones han
realizado todas las tareas correspondientes a dicha etapa estacionaria, se produce un paso de
avance δs, mediante el cual las piezas son transportadas hacia delante una distancia determinada
(Δ· δs, donde ∆ es una longitud denominada paso elemental, que depende de la tecnología de la
línea).

 Estación 1 Estación 2 Estación 3

Brazo robotizado

Componente

Área accesible Área accesible Área accesible

Pieza

135

Fig. 2 Esquema de avance en un ciclo de montaje con tres etapas estacionarias

El movimiento de las piezas en la línea se repite cíclicamente según un esquema de avance, que
determina la posición exacta de las piezas en cada una de las etapas estacionarias del ciclo.
Debido a la accesibilidad limitada de cada estación, habitualmente ocurre que una tarea
solamente puede ser realizada en un subconjunto de etapas estacionarias, específicamente en
aquellas etapas en las que la tarea es accesible desde su estación correspondiente. La Fig.2
muestra cuatro instantáneas de la posición de las piezas en un ciclo de montaje con tres etapas
estacionarias (S=3). Inicialmente las piezas se sitúan en la línea tomando como referencia la
posición del borde derecho de la primera pieza, situada con un desplazamiento x respecto al
límite izquierdo de la primera estación. Las flechas al inicio de cada etapa estacionaria indican
los movimientos de la línea desde la etapa actual hacia la etapa siguiente. En la siguiente etapa
después de haberse completado un ciclo, una nueva pieza entra en la línea. Al mismo tiempo,
una pieza totalmente terminada abandona la línea. Una vez completado el ciclo, las piezas
vuelven a ocupar la misma posición que en la primera etapa del ciclo anterior, y se han
desplazado una distancia A, que corresponde a la suma de las distancias recorridas en los pasos
de avance. De este modo, el esquema de avance queda definido por:

– El desplazamiento inicial x de las piezas en la primera etapa del ciclo.
– El número S de etapas estacionarias (igual al número de pasos de avance).
– La secuencia de las distancias recorridas en cada uno de los pasos de avance, ∆· δs (s =

1,…, S).

El problema de optimización consiste en determinar:

i) un esquema de avance y
ii) para cada tarea, la asignación a una etapa estacionaria en la que su posición sea accesible

desde la estación que la debe procesar.

El conjunto de estaciones que pueden realizar una tarea es parte del input. Debido a la
tecnología de la línea, puede ocurrir que dicho conjunto esté formado por una única estación. En
nuestro problema, inspirado en el caso real descrito por Muller-Hannemann y Weihe (2006),
dicho conjunto está formado por una sola estación.

El objetivo del problema es la minimización del tiempo de ciclo, que consiste en minimizar la
suma de i) el tiempo de desplazamiento en las etapas de avance (correspondiente al tiempo para
transportar las piezas a velocidad máxima en la línea más un tiempo adicional T para
acelerar/desacelerar la línea entre dos etapas estacionarias consecutivas) y ii) el tiempo de
proceso en las S etapas estacionarias. Dado que el tiempo para transportar las piezas en la línea a
velocidad máxima es constante, no se tiene en cuenta en la función objetivo:

1

[]
S

s
s

MIN z T S C


   (1)

donde Cs corresponde a las duraciones de cada una de las etapas estacionarias que constituyen
un ciclo.

Ciclo

A = Δ· (δ 1 + δ2 + δ3)

∆·δ1

∆·δ2

 ∆·δ3

s = 4 (1)

s = 3

 Estación 1 Estación 2 Estación 3

x

136

3. Estrategia de resolución

La estrategia de resolución propuesta consiste en la combinación de dos elementos: i) la adición
de cotas de la función objetivo y del número de etapas estacionarias, obtenidas mediante la
heurística descrita en Calleja et al (2009) y ii) un modelo de PLEM mejorado con relación al
propuesto por Corominas y Pastor (2009), como se explica a continuación.

La heurística mencionada anteriormente proporciona una solución factible con el menor número
de etapas estacionarias para un desplazamiento inicial x dado. Dicha heurística se aplica
iterativamente para cada uno de los valores posibles de desplazamiento inicial x y, entre las
soluciones generadas, se selecciona la solución con el menor valor de la función objetivo, lo que
proporciona una cota superior del valor óptimo de la función objetivo, UBCT. De las soluciones
generadas, la de menor número de etapas estacionarias proporciona una cota inferior del número
de etapas estacionarias, LBS.

La cota inferior de la función objetivo, LBCT, se obtiene mediante la suma de las cotas inferiores
de los dos términos que la componen: i) T·LBS más ii) una cota inferior del tiempo de proceso

1

S

s
s

C

 , denominada Wmax, correspondiente al tiempo de proceso de la estación más cargada.

Finalmente, se tiene que el número de etapas estacionarias de la solución óptima no puede ser
mayor que la diferencia entre UBCT y Wmax dividida por el tiempo T, lo cual proporciona el valor
de la cota superior del número de etapas estacionarias, UBS.

El modelo de PLEM mejorado es el que se propone a continuación.

Datos

N número de tareas

m número de estaciones

[Li, Ri] ventana de accesibilidad de la estación i (1, ...,i m), donde L1 = 0,

Li < Ri (1, ...,i m), Ri < Li+1 (1, .., 1i m )

A0 longitud de la pieza

A distancia entre los bordes derechos de dos piezas consecutivas en la línea

T tiempo para acelerar / desacelerar la línea entre dos etapas estacionarias consecutivas

Δ longitud de un paso elemental. Sin pérdida de generalidad, todas las magnitudes de
longitud son múltiplos de Δ. En nuestro trabajo, Δ es un valor entero (Δ=1), y en
consecuencia, todas las magnitudes de longitud son también enteras

pj tiempo de proceso de la tarea j (j = 1,…, N)

aj (0 ≤ aj ≤ A0), distancia respecto al borde derecho de la pieza correspondiente a la tarea j
(j = 1,…, N)

J0 conjunto de tareas (0J N)

Ji conjunto de tareas a realizar en la estación i (i = 1,…, m), donde 0
1,..,

i
i m

J J


 y

,i kJ J i k  

Ŝ cota superior del número de etapas estacionarias en un ciclo (መܵ ≤ A/ Δ)

Variables

s Z  número de pasos elementales del paso de avance s (s=1,…, Ŝ)

137

 0,1s  1s  sii el paso de avance s existe

Cs tiempo de proceso, para toda la línea, correspondiente a la etapa estacionaria siguiente
al paso de avance 1s  ˆ(1,..., ; 1,...,)j N s S 

 0,1j sy  1jsy  sii la tarea j se realiza durante la etapa estacionaria siguiente al paso de

avance 1s  ˆ(1,..., ; 1,...,)j N s S 

0x  desplazamiento inicial del borde derecho de la primera pieza en la línea con respecto al
límite izquierdo de la estación 1 (donde L1=0): min

1 10 min(,)x R a A     y
min
1 min

i
jj J

a a



jk Z número de piezas en la línea que preceden una pieza cuando la

tarea j está siendo realizada en la misma (j=1,…,N; kminj ≤ kj ≤ kmaxj), donde,
(ii j J):

Restricciones

 
ˆ ˆ

1 1

ˆ

1

1

1

1

(1)

(2)

ˆ1,..., (3)

ˆ1,..., (4)

ˆ1,..., 1 (5)

(1)

S S

s s
s s

S

s
s

s s

s s

s s

s

j j l i js js
l

MIN z T C

A

A
s S

s S

 s S

A k a x L M y s





 

 

 



 









  




  


 

  

          

 




1

1

ˆ

1

ˆ1,..., ; 1,..., ; (6)

ˆ' (1) 1,..., ; 1,..., ; (7)

1 1,..., (8)

ˆ1,..., ; 1,..., ; (9)

1,..., ;

i

i

i

s

j j l i js js i
l

S

js
s

j js s
j J

js i s
j J

S j N i j J

A k a x R M y s S j N i j J

y j N

p y C i m s S

y J i m s















 

            

 

   

  









  min
1 1

ˆ1,..., ; (10)

donde () :

(1)

' 1 min(,)

i

js i j j

js j i j

S

i j J

M L A kmin a s

M A kmax R a A R a





       

        

El objetivo (1) es la minimización del tiempo de ciclo. La restricción (2) impone que el número
de pasos elementales en un ciclo corresponde a la distancia entre los bordes derechos de dos
piezas consecutivas; (3) aseguran que el paso s existe si tiene un número positivo de pasos
elementales; (4) evitan la existencia de pasos de avance de distancia nula de forma que, si el
paso de avance s existe, entonces tiene un número positivo de pasos elementales; (5) eliminan
simetrías, asegurando que el paso de avance s existe sólo si 1s  existe; (6) y (7) garantizan,
para cada tarea, que es accesible, desde su estación correspondiente, durante la etapa
estacionaria en la que la tarea debe realizarse; (8) imponen que cada tarea sea asignada a una
única etapa estacionaria; (9), que el tiempo de proceso correspondiente a las etapas estacionarias
no es menor que el tiempo de proceso en cualquiera de las estaciones; finalmente, (10) imponen
la existencia de una etapa estacionaria cuando al menos una tarea ha sido asignada a la misma.

min
1 1min(,)

yi j i j
j j

L a R a A A R a
kmin kmax

A A

          
    
    

138

Las modificaciones incorporadas al modelo son las siguientes. En la nueva formulación, se
incorporaron al modelo las cotas superiores e inferiores del tiempo de ciclo y del número de
etapas estacionarias descritas anteriormente. Por otro lado, se eliminó la variable entera kj, que
representa el número de piezas en la línea que preceden una pieza cuando la tarea j está siendo
realizada en la misma. En su lugar, se introdujo la variable binaria bjsk, que es igual a 1 sii la
tarea j se realiza en la etapa estacionaria s y hay k piezas en la línea que preceden la pieza
cuando la tarea j está siendo realiza en la misma (j=1,...,N, s=1,…, Ŝ ; k=kminj,…,kmaxj). A
consecuencia de la introducción de esta variable, las restricciones (6) y (7) se transforman en las
restricciones (6’) y (7’):

La estrategia de resolución propuesta combina la heurística y el modelo de PLEM mejorado
como se explica a continuación. Dada una solución factible inicial que proporciona una cota
superior del tiempo de ciclo, UBCT, se evalúa su optimalidad por comparación con la cota
inferior del tiempo de ciclo, LBCT. Si ambos valores coinciden, se concluye que la solución
inicial es óptima. En caso contrario, se lanza el modelo de PLEM mejorado, el cual proporciona
uno de los siguientes cuatro resultados: i) no hay soluciones factibles, lo cual certifica que la
solución inicial es óptima, ii) una solución óptima, iii) una solución factible, con un tiempo de
ciclo menor que el de la solución inicial, y iv) no consigue hallar una solución factible en el
límite de una hora de tiempo computacional. En los dos primeros casos, el modelo proporciona
una solución óptima, mientras que en los dos casos restantes se obtiene una solución factible (en
el caso iv) corresponde a la solución proporcionada por la heurística).

4. Experiencia computacional

 Con el fin de identificar el porcentaje de ejemplares que es posible resolver mediante la
estrategia propuesta, se realizó un estudio computacional que se describe a continuación. Se
generó un juego de 1.200 ejemplares con un número creciente de tareas (de 50 a 1000),
estaciones (de 5 a 40) y longitudes de piezas (11 a 40 unidades de longitud (ul)). El ancho de las
estaciones se fijó a 10 ul y el tiempo T de aceleración/desaceleración a 200 unidades de tiempo.

Se utilizó el solver IBM ILOG CPLEX 12.2, con un límite de tiempo computacional de una
hora y un gap absoluto de 0,999999. Los resultados muestran un aumento significativo en el
porcentaje de las instancias resueltas de forma óptima, del 39,50% en nuestro anterior modelo
hasta el 73,08% en el modelo de PLEM propuesto en este trabajo. Análogamente, se consiguió
aumentar el porcentaje de instancias resueltas de forma óptima para todas las longitudes de
placa. Específicamente, se logró resolver el 99.5, 97.5, 74.5, 42 y 25% de los ejemplares
correspondientes a piezas de hasta 20, 25, 30, 35 y 40 ul, respectivamente.

5. Conclusiones y futuras líneas de investigación

En este trabajo se considera el problema denominado Accessibility Windows Assembly Line
Balancing Problem (AWALBP), en el que las estaciones solamente tienen acceso a la porción
limitada de las piezas que son visibles dentro de su ventana de accesibilidad.

Para resolver el problema se propone una estrategia que combina una heurística con un modelo
de PLEM mejorado. La experiencia computacional realizada reveló un aumento significativo
del porcentaje de ejemplares resueltos respecto al modelo anterior.

 Las futuras líneas de investigación incluyen la utilización de metaheurísticas y mateheurísticas
para tratar de aumentar el número de ejemplares resueltos.

1

1

1

1

ˆ(1) 1,..., ; 1,..., ; ,..., (6 ')

ˆ' (1) 1,..., ; 1,..., ; ,..., (7 ')

s

j l i js jsk j j
l

s

j l i js jsk j j
l

A k a x L M b s S j N k kmin kmax

A k a x R M b s S j N k kmin kmax













            

            





139

Referencias

Calleja G, Corominas A, García-Villoria A, Pastor R (2011a) Exact and heuristic approaches for
the Visibility Windows Assembly Line Balancing Problem (VWALBP). Proceedings of the
12th Congrès Annuel de la Societé Française de Recherche Opérationelle et d’Aide à la
Décision (ROADEF), Saint-Étienne: II, 583.

Calleja G, Corominas A, García-Villoria A, Pastor R (2011b) Heurísticas para el Visibility
Windows Assembly Line Balancing Problem (VWALBP). XV Congreso de Ingeniería de
Organización CIO, Cartagena (321-328).

Corominas A, Pastor R (2009) A MILP model for the Visibility Windows Assembly Line
Balancing Problem (VWALBP): the case of Müller-Hannemann & Weihe problem. Working
paper. Retrieved February 22, 2012, from the website: http://upcommons.upc.edu/e-
prints/bitstream/2117/7047/1/IOC-DT-P-2009-09.pdf.

Müller-Hannemann M, Weihe K (2006) Moving policies in cyclic assembly line scheduling.
Theoretical Computer Science, 351, (425-436).

Tazari S, Müller-Hannemann M, Weihe K (2006) Workload balancing in multi-stage production
processes. In Lecture Notes in Computer Science. Proceedings of the 5th International
Workshop on Experimental Algorithms, WEA 2006: 4007 (49-60).

141

Using tabu search and MILP for the Accessibility Windows Assembly
Line Balancing Problem (AWALBP)

In Proceedings of the XXXIV Congreso Nacional de Estadística e Investigación Operativa
(SEIO 2013), 117, Castellón, Spain, 11-13 September, 2013.

Using tabu search and MILP for the Accessibility Windows Assembly
Line Balancing Problem (AWALBP)

Gema Calleja (IOC Research Institute, UPC, Barcelona, Spain),

Albert Corominas (IOC Research Institute, UPC, Barcelona, Spain),

Alberto García-Villoria (IOC Research Institute, UPC, Barcelona, Spain),

Rafael Pastor Moreno (IOC Research Institute, UPC, Barcelona, Spain)

The AWALBP arises in those assembly lines where, in contrast

to standard ones, the length of the workpieces is larger than the

accessibility windows of the workstations. Because of this, only a

limited portion of one or two consecutive workpieces can be

reached from each station at any moment. In our problem, the

cycle decomposes into stationary stages separated between them

by forward steps, according to a cyclic movement scheme.

Several procedures were previously proposed to solve the

problem to optimality and instances up to a certain size limit were

solved. In this study, we propose a tabu search (TS) and a

combination procedure using TS and a mixed integer linear

programming (MILP) model in order to solve larger instances.

The neighborhood search is performed in the space of the

movement schemes. Results show that a better solution is

obtained in most of the cases that could not be previously solved

optimally.

143

Using simulated annealing and MILP for the Accessibility Windows
Assembly Line Balancing Problem (AWALBP)

In Proceedings of the XXVI EURO-INFORMS Joint International Conference, 26th European
Conference on Operational Research (EURO 2013), 38, Rome, Italy, 1-4 July, 2013.

Using simulated annealing and MILP for the Accessibility Windows
Assembly Line Balancing Problem (AWALBP)

Gema Calleja, IOC-DOE, UPC, Av. Diagonal, 647, 11th floor,
08028 Barcelona, Spain, gema.calleja@upc.edu, Albert
Corominas, Alberto García-Villoria, Rafael Pastor

The AWALBP is an assembly line balancing problem where the

length of the workpieces is larger than the width of the

workstations. A procedure using a matheuristic and a mixed

integer linear programming (MILP) model was previously tested

to solve the AWALBP and it succeeded in finding optimal

solutions to instances up to a certain size. We propose simulated

annealing (SA) and a hybrid procedure using SA and MILP in

order to find good quality solutions for larger instances. Results

show that a better solution is obtained in most of the cases that

could not be previously solved optimally.

145

The Accessibility Windows Assembly Line Balancing Problem
(AWALBP): A review of advances and trends

In Proceedings of the 20th Conference of the International Federation of Operational Research
Societies (IFORS 2014), 191. Barcelona, 13-18 July, 2014.

The Accessibility Windows Assembly Line Balancing Problem
(AWALBP): A review of advances and trends

Gema Calleja, Albert Corominas, Alberto García-Villoria, Rafael
Pastor

We investigate the Accessibility Windows Assembly Line Balancing

Problem (AWALBP), where, in sharp contrast to traditional assembly

line problems, only a portion of the workpieces can be reached from

each workstation. The literature distinguishes different variants of the

problem, and several formulations and solution approaches have been

proposed. This talk gives an overview on recent advances in the

methods used to solve AWALBP, including exact, heuristic and

hybrid methods. An extensive set of computational experiments, along

with some guidelines for further lines of research are reported.

147

MILP-based Tabu Search using Corridor Method for an assembly line
balancing problem with accessibility windows

In Proceedings of the 20th Conference of the International Federation of Operational Research
Societies (IFORS 2014), 191-192, Barcelona, 13-18 July, 2014.

MILP-based Tabu Search using Corridor Method for an assembly line
balancing problem with accessibility windows

Albert Corominas, Gema Calleja, Alberto García-Villoria, Rafael
Pastor

In this work, we present an MILP-TS matheuristic for an assembly

line balancing problem with accessibility windows. The proposed

matheuristic uses an MILP model embedded in a tabu search (TS)

algorithm to iteratively solve reduced portions of the original solution

space. We use the paradigm of the corridor method to impose

exogenous constraints of the original mathematical formulation and,

subsequently, we apply an MILP solver to optimally solve the

constrained problem. Computational results show the effectiveness of

the proposed matheuristic.

