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Abstract

Modelica is an object-oriented, equation-based modeling and simulation
language being developed through an international effort by the Modelica
Association. With Modelica it is possible to build computationally demanding
models; however, simulating such models might take a considerable amount
of time. Therefore techniques of utilizing parallel multi-core architectures
for faster simulations are desirable. In this thesis the topic of simulation
of Modelica on parallel architectures in general and on graphics processing
units (GPUs) in particular is explored. GPUs support code that can be
executed in a data-parallel fashion. It is also possible to connect and run
several GPUs together which opens opportunities for even more parallelism.
In this thesis several approaches regarding simulation of Modelica models on
GPUs and multi-core architectures are explored.

In this thesis the topic of expressing and solving partial differential equations
(PDEs) in the context of Modelica is also explored, since such models usually
give rise to equation systems with a regular structure, which can be suitable
for efficient solution on GPUs. Constructs for PDE-based modeling are
currently not part of the standard Modelica language specification. Several
approaches on modeling and simulation with PDEs in the context of Modelica
have been developed over the years. In this thesis we present selected earlier
work, ongoing work and planned work on PDEs in the context of Modelica.
Some approaches detailed in this thesis are: extending the language speci-
fication with PDE handling; using a software with support for PDEs and
automatic discretization of PDEs; and connecting an external C4++ PDE
library via the functional mockup interface (FMI).

Finally the topic of parallel skeletons in the context of Modelica is ex-
plored. A skeleton is a predefined, generic component that implements a
common specific pattern of computation and data dependence. Skeletons
provide a high degree of abstraction and portability and a skeleton can be
customized with user code. Using skeletons with Modelica opens up the pos-
sibility of executing heavy Modelica-based matrix and vector computations
on multi-core architectures. A working Modelica-SkePU library with some
minor necessary compiler extensions is presented.

This work has been supported by the European ITEA2 OPENPROD project
(Open Model-Driven Whole-Product Development and Simulation Environ-
ment), the European ITEA3 MODRIO project (Model Driven Physical Sys-

tems Operation) and by the National Graduate School of Computer Science
(CUGS)



Populirvetenskaplig sammanfattning

Modelica &r ett objektorienterat, ekvationsbaserat modellerings- och simuler-
ingssprak som utvecklas via den internationella organisationen the Modelica
Association. Med Modelica &r det mojligt att bygga berdkningskréivande mod-
eller vilket kan leda till langa simuleringstider. Darfor dr metoder for att ut-
nyttja parallella flerkérniga arkitekturer for snabbare simuleringar énskvérda.
I denna avhandling utforskas omradet simulering av Modelicamodeller pa
parallella arkitekturer i allménhet och pa grafikbearbetningsenheter (GPUs)
i synnerhet. GPU-kod kan koras data-parallellt. Det ar ocksa mojligt att
ansluta och kora flera GPUs tillsammans vilket 6ppnar upp mdojligheter for
dnnu mer parallellism. I denna avhandling utforskas flera metoder avseende
simulering av Modelicamodeller pa GPUs och multi-core arkitekturer.

I denna avhandling utforskas ocksa dmnet att uttrycka och lésa partiella
differentialekvationer (PDE:er) i Modelica. Modeller innehallande PDE:er
ger vanligtvis upphov till ekvationssystem med en regelbunden data-parallel
struktur, som lampar sig for effektiv 16sning pa grafikprocessorer. Konstruk-
tioner for PDE-baserad modellering ingar fér nidrvarande inte i sprakspecifika-
tionen fér Modelicastandarden. Flera metoder for modellering och simulering
av PDE:er med Modelica har utvecklats genom aren. I denna avhandling
presenterar vi utvalda tidigare arbeten, pagaende arbeten, och planerade
arbeten med PDE:er med Modelica. Nagra av metoderna som beskrivs i
denna avhandling &r: utvidga sprakspecifikationen med PDE-hantering; stod
for PDE:er och automatisk diskretisering av PDE:er med hjilp av speciell
programvara; och att ansluta ett externt C++ PDE bibliotek via det sa
kallade functional mockup interfacet (FMI).

Slutligen studerar vi &mnet parallella skelett tillsammans med Modelica. Ett
skelett dr en fordefinierad, generisk programkomponent som implementerar
ett gemensamt specifikt monster av berdkning och databeroende. Skelett ger
en hog grad av abstraktion och ett skelett kan skridddarsys med anvéndarkod.
Att anvinda skelett tillsammans med Modelica 6ppnar upp mojligheten att
utfora tunga Modelicabaserade matris- och vektorberdkningar pa flerkérniga
arkitekturer. Ett fungerande Modelica-SkePU bibliotek tillsammans med
nagra mindre kompilatorutvidgningar presenteras.
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Chapter 1

Introduction

This chapter begins with the motivation for investigating the research prob-
lems presented in this thesis work. The chapter continues with statement of
the research questions, a brief description of the research process, a summary
to the contributions of this thesis and the delimitations concerning the models
used for generating code. The chapter closes with a list of publications and
a section with the thesis outline.

1.1 Motivation

By using the equation-based object-oriented modeling language Modelica
[66, 37, 38] it is possible to model large (in the sense of giving rise to many
equations) and complex physical systems from various application domains
(such as mechatronics, power generation, wind power plants, multi-body
systems, hydraulics, automotive applications, power-train systems, etc.).
Large and complex models will typically result in large differential and alge-
braic equation systems. Numerical solution of large systems of differential
equations, which in this context equates to simulation, can be quite time
consuming. It is therefore relevant to investigate how parallel multi-core ar-
chitectures can be used to speedup simulation. This has also been a research
goal in our research group Programming Environments Laboratory (PELAB)
at Linkoping University for several years, see for instance [21, 55, 19, 59].
This work involves both the actual code generation process and (modifying)
the simulation runtime system. Several different parallel architectures have
been targeted, such as for Intel multi-cores, STI' Cell BE, and Graphics
Processing Unit (GPU). In this thesis the main focus is on GPUs. GPUs
can be used to perform general purpose scientific and engineering computing
in addition to their use for graphics processing. The theoretical processing
power of GPUs has surpassed that of CPUs due to the highly parallel struc-
ture of GPUs. GPUs are, however, only good at solving certain problem

LAn alliance between Sony, Toshiba, and IBM

12
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types that are primarily data-parallel.

In this thesis the topic of PDEs in the context of Modelica is also explored.
One reason is that PDE-systems often result in large systems of equations
of a regular structure that can be suitable for efficient execution on GPUs.
However, PDE language constructs for modeling with PDEs are currently not
a part of the Modelica standard language specification. Several approaches
for modeling with PDEs in the context of Modelica have been developed over
the years. See for instance [76, 34, 93, 78, 77, 58, 57]. In this thesis previous,
ongoing, and planned work on PDEs in the context of Modelica is presented.
Extending the Modelica language specification to support formulation of
PDEs; using software with support for PDEs and automatic discretization
of PDEs, and connecting an external C++ PDE library via the Functional
Mockup Interface (FMI) are some approaches detailed in this thesis.

Lastly, the thesis explores the topic of parallel skeletons in the context
of Modelica. A SkePU [45, 46, 86, 85, 8, 28, 29] skeleton is a predefined,
generic component that implements a common specific (parallel) pattern
of computation and data dependence. Skeletons provide a high degree of
abstraction and portability and a skeleton can be customized with user code.
Using skeletons with Modelica opens the way for efficiently executing certain
kinds of heavy Modelica-based matrix and vector computations on multi-core
architectures.

The topic of execution of Modelica models on multi-core architectures is
what binds this thesis together.

1.2 Research Questions
The main research questions of this work are set out below.

e Is it possible to simulate Modelica models with GPU architectures?
Will such simulations run at sufficient speed compared to simulation
on other architectures, for instance single- and multi-core CPUs? Are
GPUs beneficial for performance? What challenges are there in terms
of hardware limitations, memory limitations, etc.?

e What is the current state of modeling using PDEs in the context of
Modelica? What previous research has been done in this area and what
are the strengths and weaknesses of this previous research? What are
the strengths and weaknesses of the approach of connecting an external
(finite element) solver to the Modelica environment via functional
mockup interface?

e What is the current state of skeleton programming in the context of
Modelica? What previous research has been done in this area and
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what are the strengths and weaknesses of this previous research? What
are the strengths and weaknesses of the approach of implementing a
Modelica-SkePU skeleton compilation and library approach?

1.3 Research Process

The following general research steps have been carried out in preparing this
thesis.

e Literature study of background theory
e Literature study of earlier work
e Theoretical derivations and design

e Implementation in the open-source OpenModelica compiler and runtime
system combined with measurements of execution times for various
models

e Implementation of Modelica library code and accompanying external
C/C++ code

e Presentation of papers at workshops and conferences and publication
of proceedings for reviews, comments and valuable feedback

e Research visits at external research groups as well as attending various
summer schools and tutorials

The research methodology used in this work is the traditional system
oriented computer science research method, that is, in order to validate our
hypotheses prototype implementations are built. The prototypes are used to
simulate Modelica models on both serial and parallel architectures, and the
simulation times are then compared. In this way speedup can be calculated.

Regarding research methodology, the ACM Task Force on the core of com-
puter science has suggested three different paradigms for conducting research
within the discipline of computing: theory, abstraction (modeling), and de-
sign [22]. The first discipline is rooted in mathematics, the second discipline
is rooted in experimental scientific methods, and the third discipline is rooted
in engineering and consists of stating requirements, defining the specification,
designing the system, implementing the system and finally testing and evalu-
ating the system. All three paradigms are considered to be equally important.
Computer science and engineering consist of a mixture of all three paradigms.

All implementation tasks in this thesis have been conducted in the open-
source OpenModelica development environment [71]. OpenModelica is an
open-source implementation of a Modelica compiler, simulator and develop-
ment environment, and its development is supported by the Open Source
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Modelica Consortium (OSMC). See Section 2.2 for more information. Exter-
nal C/C++ code and Modelica model code has also been written as a part
of work with this thesis.

1.4 Contributions

The following represent the main contributions to this work:

e Methods for compilation and simulation of Modelica models on GPUs

e Methods of keeping Modelica array constructs unexpanded through
the compilation process, thereby increasing scalability and simplifying
mapping to GPUs

e Methods of connecting Modelica code with PDE solving code via FMI

e A Modelica-SkePU library together with some minor compiler exten-
sions to support parallel computational skeletons for use with Modelica

1.5 Delimitations

The main delimitations concern the models selected for which code is gen-
erated. Only (mainly) a subset of possible Modelica models have been
investigated:

e Models that are purely continuous with respect to time.

e Models that can be reduced to Ordinary Differential Equation (ODE)
systems.

e Models where the values of all constants and parameters are known at
compile time.

1.6 List of Publications

This thesis is mainly based on the following publications.

e Publication 1 Hakan Lundvall, Kristian Stavaker, Peter Fritzson,
Christoph Kessler. Automatic Parallelization of Simulation Code for
Equation-based Models with Software Pipelining and Measurements on
Three Platforms. MCC’08 Workshop, Ronneby, Sweden, November
27-28, 2008. [43)

e Publication 2 Martina Maggio, Kristian Stavaker, Filippo Donida,
Francesco Casella, Peter Fritzson. Parallel Simulation of Equation-
based Object-Oriented Models with Quantized State Systems on a GPU.
In Proceedings of the 7th International Modelica Conference (Model-
ica’2009), Como, Italy, September 20-22, 2009. [60]
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e Publication 3 Kristian Stavaker, Daniel Rolls, Jing Guo, Peter Fritzson,
Sven-Bodo Scholz. Compilation of Modelica Array Computations into
Single Assignment C for Efficient Execution on Compute Unified Device
Architecture (CUDA )-enabled GPUs. 3rd International Workshop on
Equation-Based Object-Oriented Modeling Languages and Tools, Oslo,
Norway, October 3, 2010. [52]

e Publication 4 Per Ostlund, Kristian Stavaker, Peter Fritzson. Par-
allel Simulation of Equation-Based Models on CUDA-Enabled GPUs.
POOSC Workshop, Reno, Nevada, October 18, 2010. [74]

e Publication 5 Kristian Stavaker, Peter Fritzson. Generation of Sim-
ulation Code from Equation-Based Models for Execution on CUDA-
Enabled GPUs. MCC’10 Workshop, Gothenburg, Sweden, November
18-19, 2010. [53]

e Publication 6 Afshin Hemmati Moghadam, Mahder Gebremedhin,
Kristian Stavaker, Peter Fritzson. Simulation and Benchmarking of
Modelica Models on Multi-Core Architectures with Explicit Parallel
Algorithmic Language FExtensions. MCC’11 Workshop, Link&ping,
Sweden, November 23-25, 2011. [15]

e Publication 7 Mahder Gebremedhin, Afshin Hemmati Moghadam, Pe-
ter Fritzson, Kristian Stavaker. A Data-Parallel Algorithmic Modelica
Ezxtension for Efficient Execution on Multi-Core Platforms. In Pro-
ceedings of the 9th International Modelica Conference (Modelica’2012),
Munich, September 3-5, 2012. [56]

e Publication 8 Kristian Stavaker, Staffan Ronnas, Martin Wlotzka,
Vincent Heuveline, Peter Fritzson. PDE Modeling with Modelica via
FMI Import of HiFlow3 C++ Components. SIMS’2013 Workshop,
54rd SIMS Conference on Simulation and Modeling, Bergen, Norway,
October 16-18, 2013. [50]

e Publication 9 Chen Song, Kristian Stavaker, Martin Wlotzka, Peter
Fritzson, Vincent Heueveline. PDE Modeling with Modelica via FMI
Import of HiFlow3 C++ Components with Parallel Multi-Core Simula-
tions. SIMS’2014 Workshop, 55th SIMS Conference on Simulation and
Modeling, Aalborg, Denmark, October 21-22, 2014. [49]

Other publications (pre-PhD studies) by the author not covered in this
thesis.

e Publication X Adrian Pop, Kristian Stavaker, Peter Fritzson. Fzcep-
tion Handling for Modelica. In Proceedings of the 6th International
Modelica Conference (Modelica’2008), Bielefeld, Germany, March.3-4,
2008. [14]
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e Publication Y Kristian Stavaker, Adrian Pop, Peter Fritzson. Com-
piling and Using Pattern Matching in Modelica. In Proceedings of
the 6th International Modelica Conference (Modelica’2008), Bielefeld,
Germany, March.3-4, 2008. [51]

1.7 Thesis Outline

Since the publications listed in the previous section includes contributions
by several persons it is important to state which parts have been done by
the author of this thesis and which parts have been done by others.

1.7.1 Part 1

Part T includes the thesis prologue: motivation, research questions, research
process, contributions, delimitations, list of publications, thesis outline,
background, and previous research. This part has been entirely written by
the author of this thesis.

1.7.2 Part II

Part II includes material from the author’s licentiate thesis [80]. This part is
based on publications 1,2,3,4,5,6 and 7.

e Chapter 5 This chapter is mainly based on Publication 1 which
contains (updated) material from Hakan Lundvall’s licentiate thesis
[55] as well as new material about targeting the Cell BE architecture
for simulation of equation-based models. The author did the actual
mapping to the Cell BE processor. The author was highly involved
and co-authored the paper.

e Chapter 6 This chapter is mainly based on Publication 2. In this paper
ways of using the Quantized State System (QSS) simulation method
with NVIDIA GPUs were investigated. The author implemented the
OpenModelica backend QSS code generator. The author was highly
involved and co-authored the actual paper.

e Chapter 7 This chapter is a summary of Publication 4. The chapter
describes the work of creating a task graph of the model equation system
and then scheduling this task graph for execution. The implementation
work was done by Per Ostlund and is described in his master’s thesis
[73]. The author co-authored the paper, held the paper presentation
and supervised master’s thesis work.
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e Chapter 8 This chapter is mainly based on Publication 3. The chapter
discusses compiling Modelica array constructs into an intermediate
language, Single Assignment C (SAC), from which highly efficient code
can be generated for instance for execution with CUDA-enabled GPUs.
The author has been highly involved with the design, experimental
setup and measurements, and co-authored the paper.

e Chapter 9 This chapter is mainly based on Publication 6. This
chapter addresses compilation and benchmarking of the algorithmic
subset of Modelica, primarily to OpenCL executed on GPUs and Intel
multi-cores. Implementation and measurements were performed by
two master’s students (Mahder Gebremedhin and Afshin Hemmati
Moghadam), supervised by the author. The publication was mainly
authored by the master’s students, but with contributions by the
author.

e Chapter 10 This chapter describes preliminary results of ways to keep
the Modelica array equations unexpanded through the compilation
process. The author was highly involved with this work and conducted
a prototype implementation supporting this for a subset of Modelica,
as well as authoring the complete chapter.

1.7.3 Part III

Part III includes chapters on PDE Modeling in the context of Modelica and is
based on Publications 8 and 9. The author of this thesis was highly involved
in this work: taking the initial initiative to travel to the Karlsruhe Institute
of Technology Germany to start collaboration, studying the finite element
method and was heavily involved both in the implementation work and in
writing the two workshop publications. The author of this thesis was the
Modelica expert (including compilation and runtime issues) while the EMCL
research group provided the mathematical expertise regarding PDE solving
and the HiFlow3 software.

1.7.4 Part IV

Part IV includes a chapter on parallel skeleton pattern programming in the
context of Modelica. The author of this thesis carried out all implementation
work for the Modelica-SkePU library and compiler extensions, with advice
from the co-authors, and wrote the test cases and conducted measurements
as well.

1.7.5 Part VI

Part VI presents an epilogue: conclusions and future work chapters. Com-
pletely written by the author of this thesis.



Chapter 2

Background

This chapter starts with an introduction of the Modelica modeling language
and the open-source OpenModelica compiler. The chapter then continues
with an introduction of some mathematical concepts and a description of
the general compilation process of Modelica code.

2.1 The Modelica Modeling and Simulation
Language

Modelica is a modeling language for equation-based, object-oriented math-
ematical modeling that is being developed through an international effort
via the Modelica Association [66, 38]. Since Modelica is an equation-based
language it supports modeling in an acausal form. This is in contrast to a
conventional programming language for which the user would first have to
manually transform the model equations into causal (assignment) statement
form, also called causalization. However, with Modelica it is possible to write
equations directly in the model code and letting the compiler in question
taking care of the causalization. When writing Modelica models, it is also
possible to utilize high-level concepts such as object-oriented modeling and
component composition. An example of a Modelica model is provided below
in Listing 2.1.

The model in Listing 2.1 describes a simple circuit consisting of various
components as well as a source and ground. Several components are in-
stantiated from various classes (Resistor class, Capacitor class, etc.) and
these are then connected together with connect clauses. The connect is an
equation construct since it expands into one or more equations. Subsequently
a Modelica compiler can be used to compile this model into code that can
be linked with a runtime system for simulation, where the main runtime
part consists of a numerical solver; see Section 2.3.2. All the object-oriented
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structure is typically removed at the beginning of the compilation process
and the connect equations are expanded into standard equality equations.

Listing 2.1: A Modelica model for a simple electrical circuit.

model Circuit
Resistor R1(R=10);
Capacitor C(C=0.01);
Resistor R2(R=100);
Inductor L(L=0.1);
VsourceAC AC;

Ground G;

equation
connect (AC.p, Rl.p);
connect (Rl n, C.p);
connect (C AC n) ;
connect(Rl p, 2.p);
connect (R2 n, p) ;
connect (L C. n)7
connect(ACn G.p);

end Circuit;

Modelica and Equation-Based Object-Oriented (EOO) languages in gen-
eral support the following concepts:

o Equations

Models/Classes

Objects

Inheritance

¢ Polymorphism

e Acausal Connections

Continuous-time differential and/or algebraic equations make it possible
to model continuous-time systems. There are also discrete equations available
for modeling hybrid systems, i.e., systems with both continuous-time and
discrete-time parts. The Modelica language has a uniform design meaning
that everything, e.g., models, packages, real numbers, etc., are classes. A
Modelica class can be of different specialized kinds of classes denoted by
different class keywords such as model, class, record, connector, package,
etc. From the Modelica class, objects can be instantiated. Just like in
the C++ and Java languages, classes in Modelica can inherit behavior and
data fields from each other. To conclude, Modelica supports imperative,
declarative and object-oriented modeling and programming resulting in a
complex compilation process that places a high burden on the compiler
constructor.
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2.2 The OpenModelica Development Environ-
ment

OpenModelica is an open source implementation of a Modelica compiler, sim-
ulator and development environment for industrial, research, and education
purposes. It is developed and supported by an international organization, the
Open Source Modelica Consortium (OSMC) [71]. OpenModelica consists of
several subsystems including the OpenModelica Compiler (OMC) and other
tools such as OMNotebook, OMShell, OMEdit, OMOptim, ModelicaML,
etc., that form an environment for creating and simulating Modelica models.
The OpenModelica Compiler is easily extensible; a different code generator
can for instance be plugged-in at a suitable place. The OpenModelica User
Guide [72] states:

e The short-term goal is to develop an efficient interactive computational
environment for the Modelica language, as well as a rather complete
implementation of the language. It turns out that with support of
appropriate tools and libraries, Modelica is very well suited as a compu-
tational language for development and execution of both low level and
high level numerical algorithms, e.q. for control system design, solving
nonlinear equation systems, or to develop optimization algorithms that
are applied to complex applications.

e The longer-term goal is to have a complete reference implementation of
the Modelica language, including simulation of equation based models
and additional facilities in the programming environment, as well as
convenient facilities for research and experimentation in language
design or other research activities.

2.3 Mathematical Concepts

Here an overview is provided of some of the mathematical theory that will
be used later in the thesis. For more details see for instance [24].

2.3.1 ODE and DAE Representation

Central concepts in the field of equation-based languages are ODE and
Differential Algebraic Equation (DAE) systems. A DAE representation can
be described as follows.

e i(t) vector of differentiated state variables
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e x(t) vector of state variables
e y(t) vector of algebraic variables
e u(t) vector of input variables

e p vector of parameters and Jor constants

In an ODE system of equations the vector of state derivatives £ is explicitly
computed by equation right-hand sides. In the compilation process, as a
middle step we will typically arrive at a DAE system from the transformed
Modelica model after all the object-oriented structure has been removed and
expansions have been made; see Section 2.6.

2.3.2 ODE and DAE Numerical Integration Methods

This section describes some of the numerical integration methods available
for numerically solving an ODE or DAE system.

Euler Integration Method

The simplest method for numerically solving an ODE system is the Euler
method described below, where z is the state vector, u is the input vector, p
is a vector of parameters and constants, and t represents time.

i (tn) ro Hltle) (1, 2(t,), u(tn), p)
The derivative is approximated as the difference of the state values be-
tween two time points divided by the difference in time (this can easily
be derived by studying a graph). The above equation gives the following
iteration scheme.

l(tn-&-l) ~ g(tn) + (tn+1 - tn) 'i(tnvl(tn)vg(tn)vﬂ)

Runge-Kutta Integration Method

The explicit Runge-Kutta numerical integration method is a multi-stage
scheme. The generic s-stage explicit Runge-Kutta method is given below,
where At represents a time step.

k=f
ky = f(t+co- At z(tn) + Atasi k)
ks = f(t +c3- At,z(tn) + At(aziki + azoks))

ks = f(t+cs - At, z(tn) + At(asiky + ... + as s 1ks))
g(tn+1) = blﬁ-f- e+ bsﬁ



2.3. Mathematical Concepts 23

The values of the constants are given by the Runge-Kutta table below
(given a value of s).

0
C2 | A21
C3 | asz1 as2

Cs Qs Q52 As,s—1

b1 by ... bs_1  bs

We also have the following necessary condition.

Cj :ijli—laij

DASSL Solver

DASSL stands for Differential Algebraic System Solver. It implements
the backward differentiation formulas of orders one through five. [27] The
nonlinear system (algebraic loop) at each time-step is solved by Newton’s
method. This is the main solver used in the OpenModelica compiler. Input
to DASSL are systems in DAE form F(t,y,y’)=0, where F is a function and
y and y’ are vectors, moreover, initial values for y and y’ are given.

2.3.3 Partial Differential Equations (PDEs)

A differential equation that contains unknown multivariable functions and
their partial derivatives is called a PDE. PDEs are used in many different
areas such as fluid flow, electrodynamics, heat distribution, elasticity, elec-
trostatics, sound distribution, and quantum mechanics. See [76, 61] and
Chapter 10 for more information.

A PDE for the function u(x1,- - ,x,) is an equation of the form:
F To U Ou_ ou 8%u 8%u =0
Lyeeos @y Wy 5oy v o0 5z Bandan "0 Dmdzn ) U
Some different notation can be used:
_ Ou
Uy = oz
and
_ Ou_ _ 9 (Ou
Uzy = Oydx ~— Oy (89:)

2.3.4 PDE Solving Software

Here an overview is provided of some software and libraries that are available
for modeling and solving PDEs.
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HiFlow3

HiFlow3 [10] is a multi-purpose finite element software providing powerful
tools for efficient and accurate solution of a wide range of problems modeled
by PDEs. Based on object-oriented concepts and the full capabilities of C++
the HiFlow3 project follows a modular and generic approach for building
efficient parallel numerical solvers. It provides highly capable modules dealing
with mesh setup, finite element spaces, degrees of freedom, linear algebra
routines, numerical solvers, and output data for visualization. Parallelism - as
the basis for high performance simulations on modern computing systems - is
introduced at two levels: coarse- grained parallelism by means of distributed
grids and distributed data structures, and fine-grained parallelism by means
of platform-optimized linear algebra back-ends.

COMSOL Multiphysics

One well-known software for PDE solving and simulation is the COMSOL
Multiphysics [2] system from the company COMSOL (previously known as
FEMLAB). Tt is a finite element analysis, solver and simulation software. It
can be used for various engineering problems, most notably for entering and
solving coupled systems of PDEs. Not only can the PDEs be entered directly
but it is enough to enter the so-called weak form; see Chapter 10 for more
information. It is possible to interface COMSOL Multiphysics with Matlab.

Maple and MapleSim by MapleSoft

Maple and MapleSim from MapleSoft can be used together in order to model
and solve PDEs. Maple is good at symbolic and numerical mathematics,
visualization and programming. MapleSim (which supports Modelica) is
good at systems engineering, multi-domain modeling and code generation. A
four step approach with custom components is as follows.

1. Launch Maple from within MapleSim using the custom component
template feature.

2. Enter and develop the PDEs using Maple.

3. Generate a MapleSim component with your PDEs (an automatic dis-
cretization is performed, thus no PDEs will remain).

4. Use the newly generated component in MapleSim.

Initial and boundary conditions must also be set. The discretization
phase -- going from PDE to ODE system -- can greatly be influenced. See
[5, 77, 78] for more information.



2.4. Causalization of Equations 25

2.4 Causalization of Equations

As mentioned earlier in this chapter, systems that consist of a mixture of
implicitly formulated algebraic and differential equations are called DAE
systems. Converting an implicit DAE system to an equivalent explicit-sorted
ODE system is an option (we know in which order and by which equation
a variable should be computed). This is an important task for a compiler
of an equation-based language. For more details see for instance [24]. Two
simple rules can determine which variable to solve from which equation:

e If an equation only has a single unknown variable then that equation
should be used to solve for that variable. It could be a variable for
which no solving equation has yet been found.

e If an unknown variable only appears in one equation, then use that
equation to solve for it.

2.4.1 Sorting Example

f1,....f5 is used to denote expressions containing variables. Initially all equa-
tions are assumed to be in acausal form. This means that the equal sign
should be viewed as an equality sign rather than an assignment sign. The
structure of an equation system can be captured in a so-called incidence
matrix. Such a matrix lists the equations as rows and the unknowns in
these equations as columns. In other words if equation number 4 contains
variable number j then entry (4,j) in the matrix contains an 1 otherwise 0.
The best one can hope for is to be able to transform the incidence matrix
into glsblt form, that is a triangular form but with “squares” on the diagonal
representing sets of equations that needs to be solved together (algebraic
loops).

f1(z3, 24)

f2(22) =

f3(22, 23, 25) 0
fa(z1,22) =
f5(21,23 25) 0

The above equations will result in the sorted equations with the solved
for variables underlined:

fQ(L)

fa(zl )

f3(z 2 23 25) 0
f5(21,23,25) =0
f1(23,24) =0
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Note that we have an algebraic loop since z3 and z5 have to be solved
together. The corresponding matrix transformation is given below. The
matching of the variables with an equation to compute that variable is shown
in Figure 2.1 and Figure 2.2.

fl \ z1
f2 22

f3 z3

f4 z4

f5 z5

Figure 2.1: FEquation system dependencies before matching.

2zl 22 23 z4 25
fr. 0 0 1 1 0
f2 0 1 0 0 O
f3 0 1 1 0 1
f4 1 1 0 0 O
f5 1 0 1 0 1
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This algorithm is usually divided into two steps: 1. solve matching
problem and 2. find strong components (and sort equations).

2.4.2 Sorting Example with Modelica Model

An example Modelica model is shown in Listing 2.2.

Listing 2.2: Modelica model used for sorting example.

model NonExpandedArrayl
Real x;
Real y;
Real z;
Real q;
Real r;
equation

2.3232%y + 2.3232xz + 2.3232xq + 2.3232x*r
der(y) = 2.3232x%x + 2.3232%z + 2.3232xq +
2.3232xx + 2.3232xy + 2.3232%q + 2.3232xr
der(r) = 2.3232%x + 2.3232xy + 2.3232%z +
2.3232xx + 2.3232xy + 2.3232x%z + 2.3232xr

end NonExpandedArrayl ;

2
2

der (x) ;
.3232x%r;
der (z);
.3232x%q;
der (q) ;

The above model will result in the following matrix.

eql
eq2
eq3
eq4
eqd

(=N eNeBal

coorr,rOoOR

OO~ O oW

_ O O O oK

O = OO O =
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In sorted form:

T Yy z q r
eql 1 0 0 0 O
eq2 01 0 0 O
eq3 0 0 1 0 O
eg5 0 0 0 1 O
egd 0 0 0 O 1

2.4.3 Conversion to Causal Form in Two Steps

Here the matching algorithm and Tarjan’s algorithm for transforming an
equation system into causal form are described in more details.

Step 1: Matching Algorithm

Assign each variable to exactly one equation (matching problem), find
a variable that is solved in each equation. Then perform the matching
algorithm, which is the first part of sorting the equations into Block Lower
Triangular (BLT) form. See Listing 2.3.

Listing 2.3: Matching algorithm pseudo code.

assign(j) := 0, j=1,2,.. ,n

for <all equations i=1,2,.. ,n>
vMark(j) := false, j=1,2,..,n
eMark(j) := false, j=1,2,..,n
if not pathFound(i), ”singular”

end for

function success = pathFound (i)
eMark(i) := true
if <assign(j)=0 for one variable j in equation i> then
success := true
assign(j) := i
else
success := false
for <all variable j of equation i
with vMark(j) = false>
vMark(j) := true
success := pathFound (assign(j))
if success then
assign(j) := 1
return
end if
end for
end if
end
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Step 2: Tarjan’s Algorithm

Find sets of equations that have to be solved simultaneously. This is the
second part of the BLT sorting. It takes the variable assignments and the
incidence matrix as input and identifies strong components, i.e. subsystems
of equations that are mutually dependent. See Listing 2.4.

Listing 2.4: Tarjan’s algorithm pseudo code.

i =0 % global variable

number = zeros(n,l) % global variable

lowlink = zeros(n,1) % root of strong component
<empty stack> % stack is global

for w = 1:n
if number(w) = 0 % call the recursive procedure
strongConnect (w) % for each non—visited vertex
end if
end for

procedure strongConnect (v)
i = i+l
number(v) = i
lowlink (v) = i
<put v on stack>
for <all w directly reachable from v>
if number(w) = 0 %(v,w) is a tree arc
strongConnect (w)
lowlink (v) = min(lowlink (v),lowlink (w))
else if number(w)<number(v)%(v,w) frond/cross link
if <w is on stack>

lowlink (v) = min(lowlink (v), number(w))
end if
end if
end for
if lowlink (v) = number(v) %v root of a strong component

while <w on top of stack satisfies number(w)>=number(v)>
<delete w from stack and put w in current component>
end while
end if
end

2.4.4 Algebraic Loops

An algebraic loop is a set of equations that cannot be causalized to explicit
form, they need to be solved together using a numerical algorithm. In each
iteration of the solver loop this set of equations has to be solved together, i.e.
a solver call is made in each iteration. Newton iteration could for instance
be used if the equations are nonlinear.
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2.5 Compiler Structure

In this section the basic principles behind compilers and compiler construction
are outlined. Basically a compiler is a program that reads a program written
in a source language and translates it into a program in a target language.
Before a program can be run it must! be transformed by a compiler into a
form that can be executed by a computer?. A compiler should also report
any errors in the source program that it detects during the translation
process. See Figure 2.3 for the various compilation steps. See [18] for more
information.

e Front-end. The front-end typically includes lexical analysis and
parsing. That is, from the initial program code an internal abstract
syntax tree is created by collecting groups of characters into tokens
(lexical analysis) and building the internal tree (syntax analysis).

e Middle-part. The middle-part typically includes semantic analysis
(checking for type conflicts, etc.), intermediate code generation and
optimization.

e Code Generation. Code generation is the process of generating code
from the internal representation. Parallel executable code generation
is the main focus of this thesis.

2.6 Compilation and Simulation of Modelica
Models

The main translation stages of the OpenModelica compiler can be seen in
Figure 2.4. The compilation process of Modelica code differs quite a bit
from that process for typical imperative programming languages such as
C, C++ and Java. This is because Modelica is a complex language that
mixes several programming styles and especially due to the fact that it is
a declarative equation-based language. Here a brief overview is provided
of the compilation process for generating sequential code, as well as the
simulation process. For a more detailed description the interested reader
is referred to for instance [24]. The Modelica model is first parsed by the
parser, making use of a lexer as well; this is a fairly standard procedure.
The Modelica model is then elaborated/instantiated by a front-end module
that involves among other things, removal of all object-oriented structure,
type checking of language constructs, etc. The output from the front-end
is a lower level intermediate form, a data structure with lists of equations,
variables, functions, algorithm sections, etc. This internal data structure will

1Except those programs that are written directly in binary code form.
2There are also interpreters that execute a program directly at runtime.
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then be used, after several optimization and transformation steps, as a basis
for generating the simulation code.

There is a major difference between the handling of time-dependent equations
and the handling of time-independent algorithms and functions. Modelica
assignments and functions are mapped into assignments and functions re-
spectively in the target language. Regarding the equation handling, several
steps are taken. This involves among other things symbolic index reduction
(that includes symbolic differentiation) and a topological sorting according
to the data flow dependencies between the equations and conversion into
single-assignment form. In some cases the result of the equation processing is
an ODE system in single-assignment form and in some cases a DAE system is
the result. Many Modelica compilers including OpenModelica always reduce
the system (through index reduction) to an ODE (in other words index 1).
The actual runtime simulation consists mainly of solving this ODE or DAE
system using a numerical integration method, such as the ones described
earlier (Euler, Runge-Kutta or DASSL). Several C-code files are produced
as output from the OpenModelica compiler. These files will be compiled
and linked together with a runtime system, which will result in a simulation
executable. One of the output files is a source file containing the bulk of the
model-specific code, for instance a function for calculating the right-hand side
f in the sorted equation system. Another source file contains the compiled
Modelica functions. There is also a makefile generated and a file with initial
values of the state variables and of constants/parameters along with other
settings that can be changed at runtime, such as time step, simulation time,
etc.

2.7 Multi-Core Computing

A computing component with two or more independent cores (that can read
and execute program instructions) is called a multi-core processor. Many
application domains make use of multi-core processors: general-purpose,
embedded, network, digital signal processing (DSP), and graphics. The term
multi-CPU is used to describe multiple physically separate (on different
chips) CPUs. When the number of cores is exceptionally high in a multi-core
architecture the terms massively multi-core and many-core are often used.

Multi-core computing has become a hot topic since Moore’s law has ended
in practice [64]. Increasing the operating frequency is no longer enough to
gain performance. There are three factors in play that causes this.

e The Power Wall: A factorial increase in operating frequency leads
to exponential growth in power consumption.

e The Memory Wall: The processor is usually much faster than the
memory. [32]
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e The Instruction Level Parallelism Wall: It is getting more and
more difficult to find enough parallelism in a single instruction to keep
a processor core busy or to make use of a processor core.

In order to obtain speedup use of multi-core computing is needed. Soft-
ware developers need to learn how to program these architectures. A lot
of research has been carried out on how to abstract away difficulties with
the programming of multi-cores. The programming APIs OpenMP and
PThreads are both well-known. For for even a higher level of abstraction:
see for instance the Liquid Metal Programming Language (LIME) and X10
[64]. One idea is to use some part of the chip for special purposed func-
tions, accelerators. Accelerators well-known today include: GPU, Field
Programmable Gate Arrays (FPGA), etc. The main idea is to decompose
the application into a CPU-executable part and an accelerator-executable
part. [64]

Flynn’s classical taxonomy [75] is often used to classify different parallel
architectures.

e Multiple Instruction Multiple Data (MIMD)
e Single Instruction Multiple Data (SIMD)
e Multiple Instruction Single Data (MISD)

e Single Instruction Single Data (SISD). A conventional CPU falls into
this category.

Several issues arise when designing and developing parallel applications.

e Partitioning: The problem at hand needs to be decomposed, in other
words, a large number of smaller tasks need to defined in order to
arrive at a fine-grained decomposition of the problem.

o (Communication: The communication needed between the smaller tasks
need to be defined.

e Agglomeration: It might be justifiable to merge some of the smaller
tasks together in order to decrease communication.

e Mapping: It needs to be specified where each task should be executed
on a specific parallel architecture.

2.8 Graphics Processing Units (GPUs)

This section is based on [35, 69, 70, 6]. In this thesis the main focus is
on NVIDIA GPUs since they have represented the most wide-spread GPU
architecture during this work and are also available at our research group
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used for our measurements. Two other makers of GPU worth mentioning are
AMD [1] and ARM [4]. The main goal of GPUs was initially to accelerate
the rendering of graphic images in memory frame buffers intended for output
to a display, graphic rendering in other words. A GPU is a specialized circuit
designed to be used in personal computers, game consoles, workstations,
smartphones, and embedded systems. The highly parallel structure of modern
GPUs make them more effective than general-purpose CPUs for data-parallel
algorithms. The same program is executed for each data element. In a
personal computer there are several places where a GPU can be present.
It can for instance be located on a video card, or on the motherboard, or
in certain CPUs, on the CPU die. Several series of GPU cards have been
developed by NVIDIA, the three most notable are mentioned below.

o The GeForce GPU computing series. The GeForce 256 was launched
in August 1999. In November 2006 the G80 GeForce 8800 was released,
which supported several novel innovations: support of C, the single-
instruction multiple-thread (SIMT) execution model, shared memory
and barrier synchronization for inter-thread communication, a single
unified processor that executed vertex, pixel, geometry, computing
programs, etc.

e The Quadro GPU computing series. The goal with this series of cards
was to accelerate digital content creation (DCC) and computed-aided
design (CAD).

o The Tesla GPU computing series. The Tesla GPU was the first
dedicated general purpose GPU.

The appearance of programming frameworks such as CUDA from NVIDIA
minimizes the programming effort required to develop high performance
applications on these platforms. A whole new field of General-Purpose
Computing on Graphics Processing Units (GPGPU) has emerged. Another
software platform for GPUs (as well as for other hardware architectures) is
OpenCL, which will be described in Section 2.8.3.

2.8.1 The Fermi Architecture

The Fermi architecture is the successor to the Tesla architecture. A scal-
able array of multi-threaded Streaming Multiprocessors (SMs) is the most
notable feature of the architecture. Each of these streaming multiprocessors
subsequently contains Scalar Processors (SPs), resulting in a large number
of computing cores that can compute a floating point or integer instruc-
tion per clock for a thread. Some synchronization between the streaming
multiprocessors is possible via the global GPU memory but no formal con-
sistency model exists between them. Thread blocks are distributed by the
GigaThread global scheduler to the different streaming multiprocessors. The
GPU is connected to the CPU via a host interface. Each scalar processor
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contains a fully pipelined integer arithmetic unit (ALU) and floating point
unit (FPU). Each streaming multiprocessor has 16 load/store units and four
special function units (SFU) that execute transcendental instructions (such
as sin, cosine, reciprocal, and square root). The Fermi architecture supports
double precision.

Memory Hierarchy

There are several levels of memory available as described below.

e Fach scalar processor has a set of registers and accessing these typically
requires no extra clock cycles per instruction (except for some special
cases).

e Each streaming multiprocessor has an on-chip memory. This on-chip
memory is shared and accessible by all the scalar processors on the
streaming multiprocessor in question, which greatly reduces off chip
traffic by enabling threads within one thread block to interact. The
on-chip memory of 64KB can be configured either as 48 KB of shared
memory with 16 KB of L1 cache or as 16 KB of shared memory with
48 KB of L1 cache.

e All of the streaming multiprocessors can access a L2 cache.

e The Fermi GPU has 6 GDDR5 DRAM memory of 1 GB each.

2.8.2 CUDA

Compute Unified Device Architecture or CUDA is a parallel programming
model and software and platform architecture from NVIDIA [69]. It was
developed in order to overcome the challenge with developing application
software that transparently scales the parallelism of NVIDIA GPUs but at
the same time maintains a low learning curve for programmers familiar with
standard programming languages such as C. CUDA comes as a minimal set
of extensions to C. CUDA provides several abstractions for data-parallelism
and thread parallelism: a hierarchy of thread groups, shared memories, and
barrier synchronization. With these abstractions it is possible to partition the
problem into coarse-grained subproblems that can be solved independently in
parallel. These subproblems can then be further divided into smaller pieces
that can be solved cooperatively in parallel as well. The idea is that the
runtime system only needs to keep track of the physical processor count.
CUDA, as well as the underlying hardware architecture has become more and
more powerful and increasingly powerful language support has been added.
Some of the CUDA release highlights from [69] are summarized below.
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CUDA Programming Model

The parallel capabilities of GPUs are well exposed by the CUDA programming
model. Host and device are two central concepts in this programming model.
The host is typically a CPU and the device is one or more NVIDIA GPUs.
The device operates as a coprocessor to the host and CUDA assumes that
the host and device operates separate memories, host memory and device
memory. Data transfer between the host and device memories takes place
during a program run. All the data that is required for computation by
the GPUs is transfered by the host to the device memory via the system
bus. Programs start running sequentially on the host and kernels are then
launched for execution on the device. CUDA functions, kernels, are similar
to C functions in syntax but the big difference is that a kernel, when called,
is executed N times in parallel by N different CUDA threads. It is possible
to launch a large number of threads to perform the same kernel operation on
all available cores at the same time. Each thread operates on different data.
The example in Listing 2.5 is taken from the CUDA Programming Guide [6].

Listing 2.5: CUDA kernel example, taken from [6].

// Kernel definition
__global__ void vecAdd(floatx A, floatx B, floatx C)

{

int i = threadldx.x;
C[i] = A[i] + B[i];

int main()

// Kernel invocation

vecAdd<<<1l, N>>>(A, B, C);

The main function is run on the host. The global keyword states that
the vecAdd function is a kernel function to be run on the device. The special
<<< ... >>> construct specifies the number threads and thread blocks to
be run for each call (or a execution configuration in the general case). Each
of the threads that execute vecAdd performs one pair-wise addition and the
thread ID for each thread is accessible via the threadldx variable. Threads
are organized into thread blocks (which can be organized into grids). The
number of threads in a thread block is restricted by the limited memory
resources. On the Fermi architecture a thread block may contain up to 512
threads. After each kernel invocation, blocks are dynamically created and
scheduled onto multiprocessors efficiently by the hardware. Within a block
threads can cooperate among themselves by synchronizing their execution
and sharing memory data. Via the syncthreads function call it is possible
to specify synchronization points. When using this barrier all threads in a
block must wait for the other threads to finish.
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Thread blocks are further organized into one-dimensional or two-dimensional
grids. One important thing to note is that all thread blocks should execute
independently, in other words they should be allowed to execute in any order.
On the Fermi architecture it is possible to run several kernels concurrently
in order to occupy idle streaming multiprocessors; with older architectures
only one kernel could run at a time thus resulting in some streaming multi-
processors being idle.

CUDA employs an execution mode called SIMT (single-instruction, multiple-
thread) which means that each scalar processor executes one thread with
the same instruction. Each scalar thread executes independently with its
own instruction address and register state on one scalar processor core on a
multiprocessor. On a given multiprocessor the threads are organized into so
called warps, which are groups of 32 threads. It is the task of the SIMT unit
on a multiprocessor to organize the threads in a thread block into warps, and
this organization is always done in the same way with each warp containing
threads of consecutive, increasing thread IDs starting at 0. Optimal execution
is achieved when all threads of a warp agree on their execution path. If the
threads diverge at some point, they are executed in serial and when all paths
are complete they converge back to the same execution path.

2.8.3 OpenCL

OpenCL (Open Computing Language) is a framework that has been de-
veloped in order to be able to write programs that can be executed across
heterogeneous platforms. Such platforms could consist of CPUs, GPUs, Digi-
tal Signal Processors (DSPs), and other processors. It has been adopted into
graphics card drivers by AMD, ATI and NVIDIA among others. OpenCL
consists of, among other things, APIs for defining and controlling the plat-
forms and a language for writing kernels (C-like language). Both task-based
and data-based parallelism is possible with OpenCL. OpenCL shares many
of its computational interfaces with CUDA and is similar in many ways. [70]

2.8.4 OpenACC

OpenACC (Open Accelerators) [7] is a programming standard that has been
developed in order to be able to write programs that can be executed across
heterogeneous CPU/GPU systems. The standard has been developed by the
companies Cray, CAPS, Nvidida and PGI. OpenACC is similar to OpenMP
in the sense that the user can annotate the code with compiler directives.
There are also several runtime API functions for device management, etc..
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Previous Research

This chapter describes earlier research that has been conducted mainly at
our research group PELAB regarding methods for compiling and simulating
equation-based models on multi-core architectures.

There are three main approaches to parallelism with equation-based models.

¢ Explicit Parallel Programming Constructs in the Language:
The language is extended with language constructs for expressing parts
that should be simulated /executed in parallel. It is up to the application
programmer to decide which parts will be executed in parallel. This
approach is touched upon in Chapter 8 and in [25].

e Coarse-Grained Explicit Parallelization Using Components:
The application programmer decides which components of the model
can be simulated in parallel. This is described in more details in Section
3.6 below.

e Automatic (Fine-grained) Parallelization of Equation-Based
Models: It is entirely up to the compiler to make sure that parallel
executable simulation code is generated. This is the main approach
that is investigated in this thesis.

The automatic parallelization approach can be further divided using the
following classification.

e Parallelism over the method: With this approach one adopts the
numerical solver to exploit parallelism over the method. But this can
lead to numerical instability.

e Parallelism over time: The goal of this approach is to parallelize
the simulation over the simulation time. This method is difficult to
implement, since with a continuous time system each new solution of

39
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the system depends on preceding steps, often the immediately preceding
step.

e Parallelism of the system: With this approach the model equations
are parallelized. This means the parallelization of the right-hand side
of an ODE system.

3.1 Early Work with Compilation of Mathe-
matical Models to Parallel Executable Code

In [19] certain methods of extracting parallelism from mathematical models
are described. In this work searches for parallelism were performed on three
levels.

¢ Equation System Level: Equations are gathered into strongly con-
nected components. The goal is to try to identify tightly coupled
equation systems within a given problem and separate and solve them
independently of each other. A dependency analysis is performed and
an equation dependence graph is created using the equations in the
ordinary differential equation system as vertices where arcs represent
dependencies between equations. From this graph the strongly con-
nected components are extracted. This graph is then transformed into
an equation system task graph. A solver is attached to each task in
the equation system task graph.

e Equation Level: Each equation forms a separate task.

e Clustered Task Level: Each sub-expression is viewed as a task.
This is the method that has been used extensively in other research
work. See Section 3.4 below on task scheduling and clustering.

3.2 Task Scheduling and Clustering Approach

In [21] the method of exploiting parallelism from an equation-based Modelica
model via the creation and then the scheduling of a task graph of the equation
system was extensively studied.

3.2.1 Task Graphs

A task graph is a directed acyclic graph (DAG) for representing the equation
system. There are costs associated with the nodes and edges. It can be
described by the following tuple.

G=(V,E,e,1)
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V is the set of vertices (nodes) representing the tasks in the task graph.

e E is the set of edges. An edge e = (v1,v9) indicates that node v; must
be executed before vy and send data to vs.

e c(e) gives the cost of sending the data along an edge e € F.

e 7(n) gives the execution cost for each node v € V.

An example of a task graph is shown in Figure 3.1.

Figure 3.1: An example of a task graph representation of an equation system.

The following steps are taken.

¢ Building a Task Graph: A fine-grained task graph is built, at the
expression level.

e Merging: An algorithm is applied that tries to merge tasks that can
be executed together in order to make the graph less fine grained.
Replication might also be applied to further reduce execution time.

e Scheduling: The fine-grained task graph is then scheduled using a
scheduler for a fixed number of computation cores.

e Code Generation: Finally code generation is performed. The code
generator takes the merged tasks from the last step and generates the
executable code.
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3.2.2 Modpar

Modpar is the name of the OpenModelica code generation back-end module
that was developed in [21] and performs automatic parallelization for a subset
of Modelica models. Its use is optional: via flags one can decide whether
to generate serial and parallel executable code. The internal structure of
Modpar consists of a task graph building module, a task merging module, a
scheduling module, and a code generation module.

3.3 Inlined and Distributed Solver Approach

In [55] the work with exploiting parallelism by creating an explicit task graph
was continued. A combination of the following three approaches was taken:

Process1

Process 2
Process3

auwli
walsAsuonenby

Figure 3.2: Centralized solver running on one computational core with the
equation system distributed over several computational cores.

e The stage vectors of a Runge-Kutta solver are evaluated in parallel
within a single time step. The stage vectors correspond to the various
intermediate calculations in Section 2.3.2.

e The evaluation of the right-hand side of the equation system is paral-
lelized.

e A computation pipeline is generated such that processors early in the
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Process 1
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Figure 3.3: Centralized solver running on several computational cores with an
equation system distributed over several computational cores as well.

pipeline can carry on with subsequent time steps while the end of the
pipeline still computes the current time step.

Figure 3.2 shows the traditional approach with a centralized solver and
the equation system computed in parallel over several computational cores.
Figure 3.3 instead shows the distributed solver approach. Figure 3.4 shows
an inlined Runge-Kutta solver, where the computation of the various stages
overlap in time.

3.4 Distributed Simulation using Transmission
Line Modeling

Technologies based on TLM have been developed for quite some time at
Link6ping University, for instance in the HOPSAN simulation package
developed for mechanical engineering and fluid power applications [44]. Tt
is also used in the SKF TLM-based co-simulation package [16]. Work has
also been carried out on introducing distributed simulation based on TLM
technology in Modelica [59]. The idea is to let each component in the model
solve its own equations, in other words we have a distributed solver approach
where each component is numerically isolated from the other components.
Each component and each solver can then have its own fixed time step,
which produces high robustness and also opens up potential for parallel
execution over multi-core platforms. Time delays are introduced between
different components to counter the real physical time propagation which
produces a physically accurate description of wave propagation in the system.
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Figure 3.4: Two-stage inlined Runge-Kutta solver distributed over three compu-
tational cores [55].
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Mathematically, a transmission line can be described in the frequency domain
by the four-pole equation. Transmission line modeling is illustrated in Figure
3.5.

SubSystem 3

Solver: Euler
Stepsize:0.00

SubSystem 1 SubSystem2
Solver: Dassl

SubSystem 4
Solver: LAPACK

Figure 3.5: Transmission Line Modeling (TLM) with different solvers and step
sizes for different parts of the model [59].

i Solver: Lsode2
Stepsize:0.1 Stepsize:0.01

3.5 PDE Modeling with Modelica

In [34] a Modelica library is described with basic building blocks for solving
one-dimensional PDE with spatial discretizations based on the method of lines
or finite volumes. Although this approach is attractive due to its simplicity, it
is not clear how it could be extended to higher dimensions, without increasing
the complexity significantly. Another approach is described in [93], which
extends the modeling language with primitives for geometry description
and boundary/initial conditions, and uses an external pre-processing tool to
convert the PDE model to a DAE based on the method of lines. In both of
these two works, the PDE system is expanded early on in the compilation
process. In this way, important information about the PDE structure is lost,
information that could have been used for mesh refinement and adjustment of
the runtime solver. Another similar option is to use the commercial MapleSim
environment [5]: It means writing the PDEs in a Maple component, to export
this component to DAFE form using a discretization scheme and using the
resulting component in MapleSim, which supports the Modelica language.
An overview of how to use Maple and MapleSim together for PDE modeling
can be found in [78]. This method again has the same drawback, arising
from the loss of information regarding the original model. See Chapter 10
for more.
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3.6 Related Research in other Research Groups

For work on parallel differential equation solver implementations in a broader
context than Modelica see for instance [84, 62, 40, 83].

In [90, 91, 36] a different and more complete implementation of the QSS
method for the OpenModelica compiler is described. This work interfaces the
OpenModelica compiler and enables the automatic simulation of large-scale
models using QSS and the PowerDEVS runtime system. The interface allows
the user to simulate a Modelica model even without any knowledge of DEVS
and/or QSS methods. In this work discontinuous systems are also handled,
something that is not dealt with in the work in Chapter 5.

SUNDIALS from the Center for Applied Scientific Computing at Lawrence
Livermore National Laboratory has been “implemented with the goal of
providing robust time integrators and nonlinear solvers that can easily be
incorporated into existing codes” [81]. PVODE is included in the SUNDIALS
package for equation solving on parallel architectures. Interfacing this solver
with OpenModelica could be a promising subject of future work.

In the HPC-OpenModelica project [3] implementation of parallel computing
capabilities is being performed in OpenModelica. The project has three part-
ners: Bosch Rexroth (BR), ITI GmbH Dresden (ITI) and TU Dresden. The
first part of the project is a precise analysis of OMC and simulation runtime
systems in order to reveal slow algorithms or inefficient memory manage-
ment. The second part of the project is the implementation of the automatic
parallelization in OMC. A goal of the project is to be able to efficiently
simulate heavy machinery. The approach with task graph parallelization as
well as parallel time integration are used in the project.



Part 11

Parallel Simulation of
Equation-Based Models on
Graphics Processing Units

47



Chapter 4

Simulation of
Equation-Based Models on

the CELL BE Processor
Architecture

This chapter is based on Publication 1 that mainly presented two areas: a
summary of our previous approaches (work in our group) of extracting par-
allelism from equation-based models (this was covered somewhat in Chapter
2 of this thesis) and an investigation of using the STI! Cell BE architecture
[23] for simulation of equation-based Modelica models. A prototype imple-
mentation of the parallelization approaches with task graph creation and
scheduling for the Cell BE processor architecture was presented for the pur-
pose of demonstration and feasibility. It was a hard-coded implementation
of an embarrassingly parallel flexible shaft model. The generated parallel
C/C++ code (from the OpenModelica compiler) was manually re-targeted
to the Cell BE processor architecture. Some speedup was gained but no
further work has been carried out since then. This work is included in this
thesis since it holds some relevance regarding the work on generating code
for NVIDIA GPUs.

This chapter is organized as follows. The chapter begins with a description
the Cell BE processor architecture. We then discuss the above-mentioned
hard-coded implementation. We provide the measurements that were given
in the paper. Finally, we conclude with a discussion section where we ad-
dress the measurement results, suitability of the Cell BE architecture for
simulation of equation-based Modelica models and our implementation.

L An alliance between Sony, Toshiba, and IBM
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4.1 The Cell BE Processor Architecture

The Cell BE Architecture is a single-chip multiprocessor consisting of one
Power Processor Element (PPE) and 8 so-called Synergistic Processor Ele-
ments (SPE). The PPE runs the top level thread and coordinates the SPEs,
which are optimized for running compute-intensive applications. Each SPE
has its own small local on-chip memory for both code and data but the
SPEs and PPE do not share on-chip memory. To transfer data between the
main memory and the SPEs and between the different SPEs, DMA transfers
(which can run asynchronously) are used. In conclusion, the main features
of the Cell BE processor architecture are the following.

e One main 64-bit PPE processor (PowerPC) Power Processor Element,
2 hardware threads good at control tasks, task switching and OS-level
code and SIMD unit VMX

e 8 SPE processors (RISC with 128bit SIMD operations). Good at
compute-intensive tasks, small local memory 256KB (code and data)

e No direct access to main memory, DMA transfers used (for SPEs only)

e Internal communication: Signals, mailboxes interface to main memory
(off chip, 512 MB and more)

4.2 Implementation

Here the hand-coded implementation for demonstration and feasibility studies
is described. The equations converted to statement form for computation are
divided into 6 different subsets and in the PPE 6, threads are created and
loaded with 6 different program handlers. The PPE then uses the mailbox
facility to send out a pointer to a control block in main memory to each
SPE which is then used to transfer a copy of the control block via DMA to
its local store. The SPEs will use the pointers in the control block to fetch
and store data from the main storage, and when sending and synchronizing
between different SPEs. Next the initial data is read by each SPE for the
different vectors z’ (state variable derivatives),  (state variables), u (input
variables) and p (constants and parameters) into local store. Then comes
the actual iteration of the solver (that runs on the PPE) in N time steps
where new values of the state variables z(t+h) are calculated at each step
(the values z(t+h) associated with each SPE). DMA transfers are used if
SPEs need to send and receive data between them. Data is sent back from
the SPEs to the main memory buffer at the end of each iteration step (or at
the end of some iteration steps, in a periodic manner). After all threads have
finished the PPE will write this data to a results file. In order to exploit the
full performance potential of the Cell BE processor, the SIMD instructions
of the SPEs need to be leveraged (but only inter-SPE parallelism and DMA
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parallelism was utilized). This requires vectorization of the (generated) code
(or for instance keeping the array equations unexpanded throughout the
compilation process). DMA transfers have the advantage that an SPE in
some cases can continue to execute while the transfer is underway. For code
from large examples, data distribution across a cluster of several Cell BE
processors is needed. Another alternative is a time consuming overlay of
multiple program modules in the SPE local store.

Listing 4.1: SimpleShaft Modelica model.

model ShaftElement
import Modelica.Mechanics.Rotational;
extends Rotational.Interfaces.TwoFlanges;
Rotational.Inertia inertial;
SpringDamperNL springDamperl (¢=5,d=0.11);
equation
connect (inertial.flange_b ,springDamperl.flange_a);
connect (inertial.flange_a , flange_a);
connect (springDamperl.flange_b , flange_b);
end ShaftElement ;

model FlexibleShaft
import Modelica.Mechanics.Rotational;
extends Rotational.Interfaces.TwoFlanges;

parameter Integer n(min=1) = 3;
ShaftElement shaft [n];
equation

for i in 2:n loop
connect (shaft [i—1] .flange_b ,shaft [i].flange_a);
end for;
connect (shaft [1].flange_a , flange_a);
connect (shaft [n].flange_b ,flange_b);
end FlexibleShaft ;

model ShaftTest
FlexibleShaft shaft (n=100);
Modelica.Mechanics.Rotational.Torque src;
Modelica.Blocks.Sources.Step c;

equation
connect (shaft.flange_a ,src.flange_b);
connect (c.y ,src.tau);

end ShaftTest;

4.3 Measurements

The Modelica model used for the measurements is shown in Listing 4.1.
Running the entire flexible shaft example, 100000 iteration steps on the
Cell BE processor (with 6 SPUs as mentioned earlier) took about 31.4
seconds (from start of the PPU main function to the end of the PPU main
function). The final writing of the results to results files is not included in
this measurement. The relative speedup is shown in Figure 4.1, compared
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Table 4.1: Measurements of running the flexible shaft model on siz threads (on
Cell BE).

Thread | Tiot(s) Tpma(s) % DMA
1 31.39 2.49 7.9%
31.39 12.28 39.1%
31.39 11.10 35.4%
31.39 12.25 39.0%
31.39 11.04 35.2%
31.38 4.39 13.9%

STk W N

to running with 6 SPUs to one SPU. However, it is not straightforward to
define relative speedup since the Cell BE architecture is a heterogeneous
architecture, and this measurement should be taken with some caution.

Relatlve speedup

Speedup

e

] 2 4 6 8 10
Num ber of processors

Figure 4.1: Relative speedup of running the flexible shaft model on the Cell BE
architecture with 6 threads.

4.4 Discussion

From Table 4.1 several things can be concluded. Threads 2 to 5 spent
more than a third of the execution time on DMA transfers, but threads 1
and 6 did not spend significant time performing DMA transfers. The total
execution time of about 31.4 seconds is not good. On a 4 core Intel Xeon with
hyper-threading the same example took 11.35 seconds (using one core) and
on SGI Altix 3700 Bx2 it took 22.59 seconds (using one processor). Another
issue is the fact that on our Cell BE version double precision calculations
take about 7 times more time than single precision (this was improved in the
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next version of the Cell BE processor). In conclusion, this implementation
was crude and it seems that the memory transfers prevent any performance
gains. A model with larger and heavier calculations at each time step might
have worked better. This will be discussed further in Chapter 12 of this
thesis.



Chapter 5

Simulation of
Equation-Based Models
with Quantized State
Systems on Graphics
Processing Units

This chapter discusses the use of the Quantized State Systems (QSS) [48]
simulation algorithm as a way of exploiting parallelism for simulating Model-
ica models on NVIDIA GPUs. This chapter is mainly based on Publication
2. In that paper a method was described that made it possible to translate a
restricted class of Modelica models to parallel QSS-based simulation code.
The OpenModelica compiler was extended with a back-end module that
automatically generates CUDA-based simulation code. Some performance
measurements of an example model on the Tesla architecture [82] was per-
formed. The QSS method replaces classical time slicing, i.e. quantization
of the time variable, by a quantization of the state variables in an ODE
system. This is an alternative way for numerically solving ODE systems of
equations. The QSS integration method is a Discrete Event System (DEVS)
method. However, no further work on this implementation was done after
the paper was published. The goal was two-fold: to investigate the possibility
of parallelization of the QSS algorithm per se together with the chosen archi-
tecture, and to investigate the parallel performance of the QSS integration
method via automatically generated CUDA code. It was first suggested in
[48] that QSS could be suitable for parallel execution. The set of models
have been restricted to only a subset of valid Modelica models: continuous
time, time-invariant systems (with no events); index-1 DAE; initial values of
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states and values of parameters known at compile time, and inserted into the
generated code as numbers; and no implicit systems of nonlinear equations
to be solved numerically.

This chapter is organized as follows. A description is provided of the re-
stricted set of Modelica models that code is generated from. The quantized
state systems numerical solution method is then introduced. The following
section contains an explanation of why the QSS method is suitable for parallel
execution. Then a summary of the implementation work that was described
in the paper follows. The chapter is then continued with a measurements
section and finally concluded with a discussion section. Neither the NVIDIA
GPU architecture nor the CUDA programming model will be covered here,
although this was covered in the paper, since we have already presented this
in Chapter 2 of this thesis.

Note that a more extensive and more recent work on simulating Model-
ica models with the QSS method can be found in [36]. That PhD thesis
contains several approaches. First an algorithm was developed for extracting
all the necessary information from a hybrid dynamical model and it could
then be simulated within the DEVS simulation framework. The implementa-
tion work was performed in OpenModelica and the PowerDEVS environment
was used as well. In the next approach an automated translation of a Model-
ica model to the p-Modelica specification was implemented in OpenModelica,
without using PowerDEVS. A stand-alone QSS-solver can then be used and
this was tested with two large, hybrid, representative smart-grid models and
compared with classical solvers. Finally a generic way to model and solve
the load-balancing problem of a parallel QSS simulation was presented and
analyzed.

5.1 Quantized State Systems (QSS)

The QSS numerical solution method was introduced in [24], where the au-
thors suggested that it could be suitable for parallel execution. Here the
main characteristics of this method are described. Note that in this work we
are using the Ziegler DEVS (library) approach, and it is possible to discretize
QSS without using the specific Ziegler DEVS library approach as described
in [36].

Time slicing is by far the most commonly used approach for numerically
solving a set of ODEs on a digital computer. But instead of discretization of
the time, the state variable values can be discretized. This is what is done in
the QSS method. QSS is actually a set of algorithms that have in common
that they are intended to discretize the state variables and solve the system
of equations. The classical approach is as follows.
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Given that the state value at time ty is equal to x, what is the state value at
time tpyr1 =ty + At?

With QSS one instead tries to answer the following question.

Given that the state has a value of xy at time t, what is the earliest time
instant, at which the state assumes a value of x4y = xp+Ax?

In other words, a QSS algorithm calculates the earliest time instant at
which this state variable shall reach either the next higher or the next lower
discrete level in a set of values. The currently available QSS algorithms are
not yet as sophisticated as the classical numerical ODE solvers since the
QSS method is relatively new.

A limited boundary error exists when transforming a continuous time system
into a discrete one, i.e.:

&= flz,u) — i = flg,u)

Here the state vector x becomes a quantized state vector q where state
values are in the corresponding set. The quantized state vector is a vector of
discretized states and each state varies according to an hysteretic quantization
function. When simulating a system with the QSS algorithm a variable-step
technique is applied. The algorithm is asynchronous: it adjusts the time
instant at which the state variable is re-evaluated to the speed of change of
that state variable. In other words, different state variables will update their
values independently of each other. This approach can be seen in Figure 5.1.
Each state variable has an associated DEVS subsystem. The dependency
between state variables and derivative equations decides the interconnection
between subsystems. When the hysteretic quantization threshold is reached
the events of the DEVS model are fired.

] " Ln o 1 dn

Figure 5.1: Updating state variable values with the QSS method [60].
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The simulation method consists of three main steps:

e Search the DEVS subsystem that is the next to perform an internal
transition, according to its internal time and to the derivative value.
Suppose that the event time is ¢,.,; and the associated state variable
is @y U tpens > tinputevent then set tpers = tinputevent and perform the
input change.

e Advance the simulation time from current time to t,.;: and execute
the internal transition function of the model associated to z; or the
input change associated to u;.

e Propagate the new output event produced by the transition to the
connected state variable DEVS models.

5.2 Restricted Set of Modelica Models

The set of models has been restricted to a subset. This is mainly because
the Modelica language is used to describe many different classes of systems
and it was deemed suitable to limit work in order to obtain results within
reasonable time. The restricted set of models is described below.

e Continuous time, time-invariant systems (with no events)

e Index-1 DAE (If the index is greater than 1 the index reduction algo-
rithm should be used before processing the model)

e Initial values of states and values of parameters known at compile time,
and inserted into the generated code as numbers

e No implicit systems of nonlinear equations to be solved numerically

A constant QSS numerical integration step was used, unchanged for all
the state variables but a different quantization step can be used for each
state variable, with minor modification to the code.

5.3 Implementation

It was noted in [48] that “due to the asynchronous behavior, the DEVS
models can be implemented in parallel in a very easy and efficient way”. The
QSS algorithm is naturally amenable to be parallelized due to the possibility
of separately computing the derivatives of the state variables and the time
events schedule. The method will first be described in general terms and
then the actual code that is generated is discussed. A Modelica model and
the generated CUDA code can be found in Appendix A.

e The derivatives of the state variables are computed using the model
equations (assuming that the initial values of the state variables are
known). MIMD execution model.
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e The time of the new event is calculated. Since all the computing
threads execute the same code on different data SIMD parallelism can
be completely exploited.

e A time advance is made. If the values of one of the inputs changes
or if one of the bounds of the quantized state function is reached,
a new event is registered. Each value of the state variables is then
re-computed and the quantized integrators are updated. Since the
same code executes on different data elements. SIMD parallelism can
be exploited here as well.

Good performance can be achieved via the definition of a state vector
array since the NVIDIA Tesla architecture requires all the computing cores
in the same group to compute the same instruction at the same time. Each
derivative state value is calculated within a separate thread but the SIMD
style code is not performing well here since the code to compute such val-
ues are different for each state variable. Instead a MIMD style code is needed.

When all threads finish, the derivative values have been calculated. The
next time event for each variable is then calculated by the threads, executing
the same portion of code. Since every thread executes the same code on
a different data portion, this part of the code should be able to execute
in SIMD fashion. Finally, the next time event of the QSS simulation is
determined and processed.

In conclusion, the system advancement part takes full advantage of the
hardware capabilities but the derivative calculation part of the code is not
completely parallel with this approach.

The OpenModelica compiler was extended with a back-end module that
generates QSS, CUDA-based simulation code. The module took the equation
system immediately after the matching and index reduction phases and
generated the CUDA code.

Figure 5.2 shows the internal call chain in the compiler for obtaining
CUDA code. The newly added module is the GPUpar module; the other
phases were described in the background chapter of this thesis. In the
GPUpar module different kernel and header files are generated. As input
GPUpar takes the DAELow form as well as the BLT matrix and strong
components information from the equation sorting phase. Some data has to
be computed from the DAELow form in order to generate the model-specific
files.

e For each state variable a derivative function is generated. This function
contains the algorithm for the time derivative computation. If there is
a dependency with other equations they are also added to the derivative
function (in statement form of course).
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Figure 5.2: Internal call chain in the OpenModelica compiler to obtain CUDA
code.

e For each output variable an output function for computing the output
values is generated. If there is a dependency with other equations they
are also added to this function (in statement form).

e From the list of variables in the DAELow form, initial variable (and
parameter) values must be gathered

When additional equations that depend on the single derivative/output
equation are present, we get a subtree with the main equation as the root node.
An existing function (DAELow.markStateEquations) was slightly modified
to handle this problem. The equations are sorted by using information
obtained in the sorting phase. All the equations are also brought into solved
form (explicit form) by calling Exp.solve. By traversing the list of variables,
the initial values are gathered in a rather straight-forward manner. To
solve the problem with the variables being stored in different arrays in the
generated code - zd (derivatives), x (state variables), y (output variables),
u (input variables) and p (parameters), an environment is created at the
beginning of the GPUpar module that contains a mapping between each
variable/parameter and the array name plus the index number in this array.
In order to find the correct array and index to print for a given variable,
this environment is then used when the CUDA C-code is generated.

5.4 Measurements

The test model used for the measurements is depicted in Figure 5.3. The
circuit consists of a generator voltage that comprises N ..1 different branches.
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Table 5.1: Ezecution times and speedup with the GeForce 8600.

parallel [s] sequential [s] speedup
8 state variables 6.26 7.07 1.129
16 state variables 8.04 10.27 1.277
32 state variables 27.02 45.55 1.685
64 state variables 103.18 507.38 4.917

Table 5.2: Ezecution times and speedup with the C1060 using one cluster for the
derivatives of the state variables calculation.

parallel [s] sequential [s] speedup
8 state variables 1.06 5.71 5.387
16 state variables 8.11 9.07 1.118
32 state variables 22.91 47.30 2.065
64 state variables 208.76 711.00 3.406

Each of them is composed of a resistor with resistance R=N and of a capaci-
tor with capacitance C=N. The last branch is made up of the resistor with
resistance R=N and a capacitor with capacitance C together with a resistor
with resistance R in parallel. The only input of the system, in the following
referred as u, is the voltage V, that is supposed to be a square wave with
rise time and fall time of 1s and voltage of 1 volt.

The initial time is obtained at the beginning of the program, before mem-
ory allocation. The end time is measured when the simulation stops with
the same function call, and the difference between them is divided by a
CLOCKSPERSEC constant to compare architectures with different clock
periods. The parallel algorithm is compared to the sequential one, where a
single thread is executed on the graphic card and takes care of the compu-
tation sequentially. The results with the NVIDIA Tesla GeForce 8600 can
be seen in Table 5.1. Table 5.2 shows the results with the NVIDIA Tesla
C1060 when just one cluster is used to compute the derivative values, while
Table 5.3 reports the data with the same graphic card when all the available
clusters are used. In Figure 5.4 a summary of the obtained speedup values is
presented.

e S A A A A R R 3
T T T T T T

Figure 5.3: Simple circuit used as test model.
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Speed-up measurments

T ; —A— Nyidia GeFarce 8600
: : —+—Nvidia Tesla C1060 (one cluster)
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Figure 5.4: Speedup measurements: comparison between a GeForce 8600 and
an NVIDIA Tesla C1060 with increasing number of state variables.

Table 5.3: Ezecution times and speedup with the C1060 using all the clusters for
the derivatives of the state variables calculation.

parallel [s] sequential [s] speedup

8 state variables 1.98 5.71 2.884
16 state variables 7.73 9.07 1.173
32 state variables 23.73 47.30 1.993

64 state variables 98.09 711.00 7.248
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5.5 Discussion

In this work methods of simulating equation-based models using the QSS
method with NVIDIA GPUs were investigated, which was a first attempt at
this, with some minor success. However, it is worth noting that the work
done in [90] and [91] is more promising for the future. The simulations
reported in this paper were very slow, compared to simulating the same
model using a normal CPU, for instance. This has to do with the memory
latency of copying data back and forth to the GPU device.

A problem with 256 state variables requires more than (5 % 64 + 1 % 32)
256/8|Bytes] = 11[M B], while a case with 1024 state variables would require
43[MB]. The side effects of the diverging branches have to be further reduced.



Chapter 6

Simulation of
Equation-Based Models on
Graphics Processing Units
Utilizing Task Graph
Creation

This chapter is mainly based on Publication 4, which is based on [73]. This
paper demonstrated that it is possible to automatically generate parallel
simulation code for pure continuous-time models that can be reduced to an
ordinary differential equation system without algebraic loops, and where
the initial values of all variables and parameters are known at compile time.
A back-end module was implemented for the OpenModelica compiler and
measurements were performed; a relative speedup of 4.6 was obtained for one
of the models. The method for finding parallelism in this work is by creating
a large task graph from the equation system, merging this coarse-grained
task graph into larger tasks and then scheduling this task graph for execution
with NVIDIA GPUs. Methods of efficiently using the available memory
space on the architecture are also presented, which is an important issue
that is further discussed in Chapter 12. Other ways of using the CUDA
architecture more efficiently are also discussed.

6.1 Case Study

The model is taken from [37](page 584). The model models the one-
dimensional wave equation that is given by a partial differential equation of
the following form:
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*p _ 2 3*p
otz Ozx2

Here p = p(x,t) is a function of both space and time and we consider
a duct of length 10 where we let —5 < x < 5. We discretize the problem
in the spatial dimension and approximate the spatial derivatives using the
difference approximation:

%p _ C2Pi—1+p1+1—2pi
ot2 dx2

where p; = p(z1 + (i — 1)dz) on an equidistant grid and dx is a small
change in distance. The Modelica model in Listing 6.1 is obtained.

Listing 6.1: Modelica model WaveEquationSample.

model WaveEquationSample
parameter Real L = 10 ”"Length of duct”;

parameter Integer n = 30 ”Number of sections”;
parameter Real dL = L/n ”Section length”;
parameter Real ¢ = 1;

Real [n] p(start = fill (O,n));
Real [n] dp(start = fill (O,n));
equation
p[1] = exp(—(-L/2)"2);
p[n] = exp(=(L/2)"2);
dp = der(p);
for i in 2:n—1 loop
der(dp[i])=c"2x(p[it+1]-2*p[i]+p[i-1])/dL"2;
end for;
end WaveEquationSample;

6.2 Implementation

The general compilation and simulation process of Modelica models is de-
scribed in Chapter 2. In this implementation, some changes to the normal
compilation process are made. This is depicted in Figure 6.1. A new module
was implemented as a small MetaModelica package that exports a task graph
to an external C++ module, which then manipulates the task graph and
finally generates the CUDA code. This module is invoked with a sorted
equation system as input. A task graph is then created from the equation
system. A task graph is described in chapter 3. Rough approximations of
costs for the tasks are used, with the cost of unary and binary operations
set to 1 and the cost of special functions set to 4 (which should reflect the
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fact that a streaming multiprocessor has eight scalar processors but only
two special function units). The cost of communication is set to 100, which
should reflect the latencies to the global memory. After the task graph has
been created a merging algorithm is applied to it. This merging algorithm is
further described in [73].

The merged task graph is then sent to the scheduling phase. We need
to determine the order in which the tasks should be executed and whether
they should be executed in parallel on different streaming multiprocessors.
This is a two-step process, in the first step the nodes in the merged task
graph are scheduled with the so-called critical path algorithm and then the
tasks in each node are scheduled. In one node the tasks are scheduled using
a first-in, first-out queue with the tasks to be scheduled. An example of this
approach can be seen in Figure 6.2. There is also a third approach used
by the scheduler. The scheduler tries to find nodes that are operationally
equivalent to other nodes. If they are operationally equivalent they are
scheduled to be executed in parallel on the same streaming multiprocessor
(SIMD style execution). A processor schedule is the result of the scheduling,
an example can be seen in Figure 6.3. From the figure we can see that the
processor schedule contains execution paths and execution path lists where
an execution path is a list of task executed in order. The goal is to execute
one execution path on one streaming multiprocessor and in one streaming
multiprocessor we should hopefully (if there are several execution paths)
execute in SIMD mode. We can run several blocks in parallel by using the
following technique (remember that we do not know the order in which the
different blocks are going to execute); we never execute more blocks than
there are streaming multiprocessors (to avoid dead-locks) and we synchronize
via the global memory. If it is the case that a task has a dependency with
a task that is scheduled on another processor, the scheduler inserts signals
and locks into the schedule and determines which data should be sent where.
In addition to this, special execution paths for communication are inserted
into the schedule. After that, code is generated from the schedule. This is
done by iterating through the processors’ schedule one processor at a time
one execution path at a time. Memory coalescing is used to reduce long
off-chip DRAM latencies. 16 variables are read at a time from the device
memory (the size of a coalesced read of 32-bit variables). These variables are
then moved to where they should be in the shared memory on a streaming
multiprocessor.

6.3 Runtime Code and Generated Code

The actual simulation function is shown in the code Listing 6.2. A fourth-
order Runge-Kutta method was used, both for the GPU-based implementa-
tion as well as the normal CPU implementation. In the code below there is
a main for-loop that corresponds to the main simulation loop. The function
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Modelica Model

| OMC Fiont—end |
l DAELow

| CudaCodegen |
l Equations
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CUDA Code

Figure 6.1: The process of compiling a Modelica model to CUDA code.
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Figure 6.2: An example of the task scheduling algorithm.

execute_tasks corresponds to the computation of one of the stages in the
Runge-Kutta solver scheme. This is done in parallel by launching kernels
for the GPU. The various step_and_increment functions handle advanc-
ing the step and adding vectors together. Note that we have four calls to
execute_tasks since we have a fourth-order Runge-Kutta solver scheme. In
each iteration, device-to-host copying is performed for the vectors with state
variables, which is time-consuming.
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Execution Path
Execution Path List l
Processor Schedule —

Figure 6.3: An example of a schedule for two processors.

Listing 6.2: Main CUDA simulation loop, based on a 4-stage Runge-Kutta solver.

//Determine the size of the shared memory needed.
int shmem_size = 100 % sizeof(real);

for (int step = 0; step < steps; ++step)
{
//Move the pointers of the result arrays forward.
r_dx += DERIVATIVES;
r_x 4= STATES;
r_y += ALGEBRAICS;

//Execute the tasks, call integration kernel.

execute_tasks <<<7, 20, shmem_size>>>(d_dx, d_-x,
dy, de, d1, t);

step_and_incrementl <<<2, 32>>>(d_x, d_old_x,
d_dx, d_k, half_h);

//Increment the time by half a time step.
t 4= half_h;

//Do two more steps of the RK4 method.

execute_tasks <<<7, 20, shmem_size>>>(d_dx, d_-x,
dy, de, d1, t);

step_and_increment2 <<<2, 32>>>(d_x, d_old_x,
d_dx, d_k, half_h);

execute_tasks <<<7, 20, shmem_size>>>(d_dx, d_x,
d.y, dc, d_l, t);

step_and_increment3 <<<2, 32>>>(d-x, d_old_x,
d_dx, d-k, h);

//Increment the time again with half a time step.

t += half _h;

//Do the final integration.

execute_tasks <<<7, 20, shmem_size>>>(d_dx, d_x,
dy, dc, dl, t);

step_and_integrate <<<2, 32>>>(d_x, d_old_x,
d_dx, d_k, h_div_6);
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//Save the new values.

cudaMemcpy (r_x , d_x, STATES x sizeof(real),
cudaMemcpyDeviceToHost ) ;

cudaMemcpy (r_dx , d_dx, DERIVATIVES % sizeof (real),
cudaMemcpyDeviceToHost ) ;

cudaMemcpy (r_y , d_y, ALGEBRAICS x sizeof(real),
cudaMemcpyDeviceToHost ) ;

}
T T T T T
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Figure 6.4: Ezxecution time for the WaveEquationSample Modelica model as a
function of the number of sections.

6.4 Measurements

The specifications for the two GPU cards used can be seen in Table 6.1. The
CPU used was an Intel Core 2 Duo E6600 with 2.4 GHz clock frequency.
Note though that only one core was used. Table 6.2 shows seconds spent in
different parts of the simulation of the test model WaveEquationSample and
the graph in Figure 6.4 shows the execution time for the sample model as a
function of the number of sections.
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Table 6.1: Specifications for the used GPUs.

GeForce 8800 GTS  Tesla C1060
Streaming Multiprocessors 12 30
Scalar Processors 96 240
Scalar Processor Clock (MHz) 1200 1300
Single Precision GFLOPS 346 933
Double Precision GFLOPS N/A 78
Memory Amount (MB) 320 4096
Memory Interface 320-bit 512-bit
Memory Clock (MHz) 800 800
Memory Bandwidth (GB/s) 64 102
PCle Version 1.0 2.0 (1.0 used)
PClIe Bandwidth (GB/s) 4 8 (4 used)
CUDA Compute Capability 1.0 1.3

Table 6.2: Seconds spent in the different parts of the simulation of the WaveE-
quationSample Modelica model.

8800 GTS (1060 single C1060 double

Task Execution 0.164 0.592 0.389
Shared Mem Allocation 1.440 1.426 2.287
Integration 0.417 0.400 0.445

Memory Transfers 1.104 1.332 2.278
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6.5 Discussion
Some general conclusions can be drawn from the measurements.

e A relative speedup of 4.6 with 3840 sections was obtained using single-
precision calculations and comparing the GeForce 8800 GTS to the
Intel E6600 CPU.

e Actual computations take a small amount of time while memory trans-
actions take most of the time.

e The simulation times on the CPU approximately double when the
model size is doubled. The simulation times for the GPUs instead
rise slower. However, the GPUs need many thread blocks with many
threads to fully utilize their power.

e The computation per variable is low for the model used. If the model
would have had more computations per variable we would most likely
have seen a larger performance increase when using a GPU.



Chapter 7

Compilation of Modelica
Array Computation into
Single Assignment C for
Execution on Graphics
Processing Units

This chapter is mainly based on Publication 3. In that paper the possibility
of compiling Modelica array equations into an intermediate language, SAC
[79], was investigated. SAC is a language with C-like syntax but allows
Matlab-style programming on n-dimensional arrays. The Single Assignment
C to C Compiler (SAC2C) compiler can generate highly efficient code and
several auto-parallelizing back-ends have been developed. These back-ends
include the generation of POSIX-thread based code for shared memory multi-
cores and CUDA-based code for GPUs. A future plan was to enhance the
OpenModelica compiler with capabilities to detect and compile data-parallel
Modelica array equations and/or algorithmic array operations into SAC
WITH-loops. A SAC WITH-loop is the most important construct in the
SAC language. In the paper however, only a feasibility study was conducted.
As a first step calls to SAC array operations in the code generated from
OpenModelica were inserted manually, and as a second step parts of the
OpenModelica runtime system were rewritten in SAC code. The paper
was about unifying three technologies OpenModelica, SAC2C and CUDA.
Measurements of this new integrated runtime system with and without
CUDA were performed as well as stand-alone measurements of CUDA code
generated with SAC2C.

70
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This chapter is organized as follows. The chapter begins with a description
of SAC and its main characteristics. This is followed by a description of the
actual implementation work performed. Some of the measurements from the
paper are provided after this and the chapter is concluded with a discussion.

7.1 Single Assignment C (SAC)

SAC combines a C-like syntax with Matlab-style programming on n-dimensional
arrays. The highly optimizing SAC2C compiler can generate high perfor-
mance code from SAC due to its functional underpinnings. Most constructs
in SAC, however, are inherited from C and the overall design policy is that a
C style construct should behave in the same way as it does in C. However, the
strong and explicit support of non-scalar data structures is a major difference
between SAC and C. In C the programmer has to allocate and deallocate
memory as needed and sharing of data structures is explicit via the use of
pointers. In SAC there is no notion of pointers. Allocation, reuse and deallo-
cation of memory is handled by the compiler and runtime system and arrays
can be passed to and returned from functions in the same way as scalar values.
Memory is reused as soon as possible and array updates are performed in
place whenever possible. This is ensured by the compiler and runtime system.

SAC comes with a very versatile data-parallel programming construct, the

WITH-loop. Here this construct will only be briefly discussed. A modarray
WITH-loop takes the general form set out in Listing 7.1.

Listing 7.1: General form of SAC modarray WITH-loop.

with {

( lowerl <= idx_vec < upperl) : exprl;
( lowern <= idx_vec < uppern) : exprn;
} : modarray(array)

Here idxvec is an identifier, and lower_i and upper_i denote expressions
for which for any i lower_i and upper_i should evaluate to vectors of identical
length. expri denote arbitrary expressions that should evaluate to arrays
of the same shape and the same element type. Such a WITH-loop defines
an array of the same shape as an array whose elements are either computed
by one of the expressions or copied from the corresponding position of the
array. As we shall see, the goal is to map Modelica array equations into
SAC WITH-loops.

7.2 Implementation

The performed implementation work is discussed here by using an example
model and showing the various compilation steps by the use of this model.
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The model used is the WaveEquationSample model introduced in Section
6.2 of this thesis. After letting the compiler flatten this model the system of
equations in Listing 7.2 is obtained.

Listing 7.2: Instantiated equation code from the WaveFEquationSample Modelica
model.

p[0] = exp(~(-L / 2.0) ~ 2.0);
p[n—1] = exp(—(L / 2.0) " 2.0)
der(p[0]) = p[0];

3

der (p[n-1]) = p[n-1];
der (dp[0])
der (dp[1])

07
¢"2.0  ((p[2]+(=2.0%p[1]4+p[0])) * dL°=2.0);

e (Ao [ )
der (dp[n—1])

8”2.0 * ((p[n—1]4+(-2.0%p[n—2]4+p[n-3])) * dL"—2.0);

In Listing 7.3 four expressions are defined (where 0 <Y < n —1 and
2 < X <n —3). The expressions correspond to the various right-hand side
expressions present in the equation system in Listing 7.2.

Listing 7.3: Definition of expressions from the flattened equation code from the
WaveEquationSample Modelica model.

Expression 1.
p[Y]

Expression 2.
c"2.0x((p[2] + (-2.0%xp[1] + p[0]))*dL"—2.0)

Expression 3.
¢"2.0%((p[X+1] + (=2.0#p[X] + p[X-1]))*dL"—2.0)

Expression 4.
¢"2.0%((p[n-1] + (-2.0%p[n—2] + p[n—3]))*dL"—2.0)

The generated C++ code from OpenModelica will then have the structure
as seen in the pseudo code in Listing 7.4.

Listing 7.4: Generated equation code from the WaveFEquationSample Modelica
model.

void functionODE(...) {
// Initial code
tmp0 = exp ((—pow((L / 2.0), 2.0)));
tmpl = exp ((—pow(((-L) / 2.0), 2.0)));
stateDers [0 ... (NX/2)—1] = Expression 1;
stateDers [NX/2] = Expression 2;

stateDers [(NX/2 + 1) ... (NX — 2)]| = Expression 3;



7.3. Measurements 73

stateDers [NX-1] = Expression 4;
}

The code in functionODE is rewritten into SAC code, which can be
seen in Listing 7.5.

Listing 7.5: SAC with-loop corresponding to the generated equation code from
the WaveFEquationSample model.
with {

([0] <= iv < [NX/2]) : Expression 1;

([NX/2] <= iv <= [NX/2]) : Expression 2;
(INX/2] < iv < [NX — 1] : Expression 3;

([NX-1] <= iv <= [NX-1]) : Expression 4;
} : modarray(stateVars);

A second approach that was tried in the paper was to rewrite the actual
simulation loop in SAC. In the first approach we make at least one call to a
SAC binary at each time step, which in the following measurements section
is shown to be very time consuming. A simple Euler loop was written in
SAC, which can be seen in Listing 7.6, where functionODE is the same as
earlier.

Listing 7.6: A main Euler simulation loop written in SAC.

while (time < stop)

{
states = states * timestep x derivatives;
derivatives = functionODE (states, c, 1, dL);
time = time + timestep;

}

7.3 Measurements

All the experiments were run under CentOS Linux with an Intel Xeon 2.27
GHz processor with 24 GB of RAM, 32 kB of L1 cache, 256 kB of L2 cache
per core and 8 MB of processor level 3 cache. SAC2C measurements were run
with version 16874, C compiler GCC 4.5 and revision 5625 of OpenModelica
were used. Figure 7.1 shows time measurements for the modified generated
code from the WaveEquationSample Modelica model with functionODE
implemented purely in C and in SAC respectively.

Figure 7.2 shows time measurements for the WaveEquationSample Mod-
elica model with the modified solver loop.
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Figure 7.1: The WaveEquationSample model run for different numbers of sections
(n) with functionODE implemented as pure OpenModelica-generated C++ code,
as OpenModelica-generated C++ code with functionODE implemented in SAC.
Start time 0.0, stop time 1.0, step size 0.002 and without CUDA.
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Figure 7.2: The WaveEquationSample model run for different numbers of sections
(n) with functionODE and Euler loop implemented as pure OpenModelica-generated
C++ code and as OpenModelica-generated C++ code with functionODE and Euler
loop implemented in SAC. Start time 0.0, stop time 10.0, step size 0.002 and
without CUDA.
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7.4 Discussion

In this work ways were investigated to make use of the efficient execution of
array computations that SAC and SAC2C offer, in the context of Modelica
and OpenModelica. It is common to have large arrays of state variables in
Modelica code, as in the model used in this chapter. It was demonstrated that
it is possible to generate C++ code from OpenModelica that can call compiled
SAC binaries for execution of heavy array computations. It was also shown
that it is possible to rewrite the main simulation loop of the runtime solver
in SAC. In conclusion, the potential was shown for the use of SAC as an
intermediate language and runtime language was successfully demonstrated.
It at least has potential for code fragments that the OpenModelica compiler
can identify as potentially data-parallel. With the new implementation of
handling of unexpanded Modelica arrays in the OpenModelica compiler, this
work has future promise.



Chapter 8

Extending the Algorithmic
Subset of Modelica with
Explicit Parallel
Programming Constructs
for Multi-Core Simulation

This chapter is based on Publication 6. More or less all the previous work
described in this thesis has focused on automatic parallelization of equation-
based models. That is, it is entirely up to the compiler for finding and
analyzing parallelism. In this chapter however, a different approach is
investigated and several extensions to the algorithmic part of the Modelica
language are introduced. In other words it is up to the end-user modeler
to express which parts of a model that should be simulated in parallel,
and corresponding OpenCL code is generated. The new constructs include
parallel variables, parallel functions, parallel for-loops, etc. It is important
to note that these new language constructs are not part of the official
language specification. They have instead been added to the OpenModelica
compiler for experimental reasons. A similar approach was taken with the
NestStepModelica implementation [25].

8.1 Implementation

In this section some of the new language constructs are briefly introduced.
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8.1.1 Parallel Variables

Recall that all data to be used on the GPU (the device) must be copied
explicitly by the programmer. A special keyword has therefore been added
that specifically tells the compiler that a variable should be allocated on the
device. An example of this is given in Listing 8.1.

Listing 8.1: Example of parallel variables in Modelica.

function parvar
Integer m = 1000;
Integer A[m,n];
Integer B[m,n];
parallel Integer pA[m,m];
parallel Integer pB[m,m];
end parvar;

The first three variables are located in the normal host memory while
the last two matrices will be allocated on the device. The copying of data
between the host memory and the device memory can then be performed in a
normal fashion. The assignments A := B, pA := A, B := pB and pA := pB
would all be valid within the function parvar.

8.1.2 Parallel Functions

With the help of the keyword parallel, parallel functions can be defined in
Modelica. They correspond to OpenCL functions defined in kernel files or
CUDA device functions. Such functions are for distributed independent
parallel execution. A parallel function must be called from another parallel
function, from a kernel function (see below) or from inside a parfor loop.
Parallel functions can neither include parfor-loops nor declarations of parallel
variables (since a parallel function is already executing on the GPU device).

8.1.3 Kernel Functions

Kernel functions correspond to CUDA global functions and to OpenCL
kernel functions. They can be called from serial host code and are entry
functions for parallel execution. They cannot, however, be called from the
body of a parfor loop or from other kernel functions. They cannot have
parfor loops in their bodies nor can they have any explicit parallel variables.
They are defined by using the kernel keyword; see Listing 8.2.
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Listing 8.2: Example of kernel function in Modelica.

kernel function arrayElemWiseMultiply
input Integer A[:];
input Integer B[:];
output Integer C[:];
Integer id;
algorithm
id := globalThreadId();
Clid] := multiply (A[id] ,B[id]);
end arrayElemWiseMultiply ;

In the function above a parallel function multiply is called. Note the
kernel keyword before the function.

8.1.4 Parallel For-Loops

A parallel for-loop is written using the parfor keyword and is a loop meant to
be executed in a parallel fashion using a device, e.g. a GPU. There are some
constraints necessary to make this work. First of all, all variables referenced
inside a loop must be parallel variables. Secondly, one iteration cannot have
a loop-carried dependency to another iteration. An example of a function
with a parallel loop is given in Listing 8.3.

Listing 8.3: Exzample of parallel for-loops in Modelica.

function parMatrixMult
input Integer m;
input Integer A[m,m];
input Integer B[m,m];
output Integer C[m,m];
//parallel counterparts of the variables
parallel Integer pm;
parallel Integer [m,m] pA;
parallel Integer m,m] pB;
parallel Integer [m,m] pC;
//Integer temp
parallel Integer ptemp;

algorithm
pm := m;
PA = A;
pB := B;

parfor i in 1:m loop
for j in 1:pm loop

ptemp := 0;
for h in 1:pm loop
ptemp := multiply (pA[i,h] ,pB[h,j])+ptemp;
end for;
pC[i,j] := ptemp;
end for;

end parfor;
// copy back C. No other copy back needed
C := pC;
end parMatrixMult;
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In the code above the function multiply is a parallel function. Note that
the variables referenced inside the loop are all parallel variables. It is enough
to specify the parfor keyword for the outermost loop, the inner loops will
all be considered as parallel loops. The iterations of the loop specified with
the parfor keyword are equally distributed among available processors. If
there are more iterations than threads, some threads might perform more
than one iteration.

8.1.5 OpenCL Functionalities

Some additional features have been added for management and execution of
parallel operations.

e oclbuild(String) Builds an OpenCL source file and returns an OpenCL
program object.

e oclkernel(oclprogram, string) The first argument is a previously built
OpenCL program and the second argument is a kernel. The function
creates an OpenCL kernel object.

e oclsetargs(oclkernel,...) This function takes a previously created kernel
object and a variable number of arguments. It sets each argument to
one in the kernel definition.

e oclexecute(oclkernel) Executes the specified kernel.

8.1.6 Synchronization and Thread Management

There are also features for managing threads and synchronizations. They
are briefly described below.

e globalThreadId() This function can only be called from a parallel or
kernel function and it returns the global ID of the current thread.

e localThreadId() This function can only be called from a parallel or
kernel function and it returns the local ID of the current thread (not
finalized).

e globalBarrier() A global barrier that makes sure that all threads reach
this point before any thread is allowed to continue.

e localBarrier() Used to synchronize all local threads (not finalized).

8.2 Measurements

Measurements from simulating two models from the implemented benchmark
suite are presented in this section. All simulations where run with time
step 0.2, with the DASSL solver, start time 0.0 and with a stop time of 0.2
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seconds (it makes sense with the same time step and duration since we are
working with purely algorithmic models). The time measurement is taken as
the difference from when the simulation loop starts and the simulation loop
finishes.

o Matrixz Multiplication. A MxK matrix C is produced from multiplying
an MxN matrix A by an NxK matrix B. A considerable speedup has
been achieved as a result of parallel simulation of this model on parallel
platforms since this model presents a very high level of data-parallelism.

e LU Decomposition. The Gaussian Elimination method is used to
decompose a matrix to lower and upper triangular forms, which can
be used for solving a system of linear equations Ax=B. The size of
the problem was successively increased by increasing the values of the
parameters M, N, and K of matrices A and B (both matrices had the
same size).

e Stationary Heat Conduction. This model models the transformation of
energy in stationary surfaces. Thermal energy transfers from surfaces
with higher temperatures to surfaces with lower temperatures. A
parameter N determines the size of the models, which refers to the size
of the surface and an equidistant grid.

Used for executing sequential code (generated by the old OpenModelica
compiler) was Intel Xeon E5520 CPU, with 16 cores, each with 2.27 GHz
clock frequency. For executing parallel code by our new code generator the
same CPU was used along with with the NVIDIA Fermi-Tesla M2050 GPU.
The simulation execution times are used as results to give us information
regarding the following considerations. The measurements were performed
to validate that the code generator generates efficient parallel code and
to ensure that the Modelica language extensions are successfully targeted
toward the OpenCL architecture. The simulation time plots can be seen in
Figure 8.1, Figure 8.2 and Figure 8.3 respectively.

8.3 Discussion

In this chapter some novel language constructs for the algorithmic part of the
Modelica language have been presented and discussed. Several measurements
were provided from a benchmark test suite, MPAR, containing models using
these new language constructs. The models contain heavy computations over
large matrices. Considerable speedups compared to normal CPU execution
were obtained. It is important to once more note that these language
constructs are not part of the official Modelica language specification, rather
they have been implemented in the OpenModelica compiler for experimental
purposes.
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Chapter 9

Compilation of
Unexpanded Modelica
Array Equations

Traditionally most Modelica compilers have expanded arrays into scalars,
and array equations into scalar equations, with one equation for each array
element. This has advantages in providing specific symbolic manipulation
for each array element equation. However, this approach also has serious
disadvantages when trying to exploit data parallelism from arrays. In this
chapter an approach is investigated to keep arrays unexpanded throughout
the Modelica compilation process in order to facilitate exploiting data par-
allelism, for instance for efficient execution on GPUs. The main approach
is to avoid expanding array operations and to combine many references of
array elements into references of whole arrays or array slices.

9.1 Introduction

The present OpenModelica Compiler (OMC) handles array-related constructs
such as arrays of state variables, array equations, and for-equations by ex-
panding them into scalar variables and scalar equations. Work has been
done resulting in a preliminary design and prototype to provide functionality
to keep arrays of state variables and array equations unexpanded throughout
the compilation process. This functionality is activated by a compilation
flag. Several changes in the OMC compilation process are needed to sup-
port unexpanded arrays. This involves changes in more or less all parts
of the compilation process (in the front-end, in the middle parts and in
the code generation part). The most difficult task involves changes in the
equation-sorting and equation-processing parts of the compilation process.
The focus in this chapter is on the equation sections of Modelica; array
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constructs in algorithmic sections of Modelica are discussed in Chapter 8.
Keeping array equations and arrays of state variables unexpanded opens
up the possibility of generating more efficient code for execution on parallel
architectures, such as on GPUs. The equation handling parts in the Open-
Modelica compilation process were briefly described in Chapter 2. By keeping
array equations and array variables unexpanded, equation sorting should
become faster since the number of equations will be lower. Keeping array
equations unexpanded results in smaller matrices and data structures thus
leading to less memory consumption and lower compilation time. Keeping
array equations unexpanded is also beneficial for normal serial code since
the number of statements that are generated in the final executable code
is reduced. The compiler could for instance, generate a for-loop instead
of many assignments statements. Finally, note that in the traditional ap-
proach when array equations are expanded, at the code-generation phase
the information about which equations belong together is lost, thus missing
opportunities for generation of data-parallel code. Modelica models con-
taining operations over large arrays of state variables often originate from
models derived from a discretization of a partial differential equation, one
such model was presented in Listing 6.1. See also Chapter 10 regarding PDEs.

This chapter begins with a description of the problem with the current
approach given in Section 9.2. The following Section 9.3 and Section 9.4
contain descriptions of some initial algorithms that should be applied to
array equations and array for-equations so that they can be handled easier
in the equation-sorting phase which is described in Section 9.5. Finally, the
chapter is concluded with a discussion in Section 9.6.

9.2 Problems with Expanding Array Equations

The above mentioned loss of array-related information makes it more difficult
for the compiler to generate data-parallel code. The following are three
problems with the current approach of expanding array equations.

e The current equation matching algorithm in the OMC back-end as-
sumes that array equations and array variables have all been expanded
into scalar equations and scalar variables, thus leading to large data
structures, substantial memory consumption and long compilation
times as a result.

e At the code-generation phase all the original explicit array operations
in the model are lost.

e The dimension sizes of arrays and the number of equations related to
specific array equations are lost.
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9.3 Splitting For-Equations with Multiple Equa-
tions in their Bodies

The following can be concluded from the Modelica Language Specification
[66] regarding for-equations: since the solution order of the equations in a
Modelica model is not specified it does not matter if we split a for-equation
into multiple for-equations with one equation each (with the current approach
for-equations are expanded into one equation for each array element and
merged into the large model equation system; moreover, the order could
change). For example, in Listing 9.2 and Listing 9.3 the for-equation in the
model is transformed into several for-equations.

9.3.1 Algorithm

An algorithm in pseudo code is shown in Listing 9.1.

Listing 9.1: Splitting array for-equations with multiple equations in the body.

for each equation in the for-equation body do
create a separate for-equation containing the equation,
use the same head

9.3.2 Examples

An example of using this splitting approach is given below in Listing 9.2 and
9.3.

Listing 9.2: Modelica model containing a for-equation with multiple equations in
the body.

model TestModel
parameter Integer n =
Real u[n](start = 1.0
Real x[n]|(start = 1.0
equation
for y in 1:n loop
der(ul[y] )=0.167;
der (x[y])=80;
end for;
end TestModel;

The model in Listing 9.2 can be transformed into the model in Listing
9.3.

Listing 9.3: Modelica model containing for-equations with one equation each in
their bodies.

model TestModel
parameter Integer n = 4;
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Real u[n] (start
Real x[n](start
equation
for y in 1:n loop
der (uf[y] )=-0.167;
end for;
for y in 1:n loop
der (x[y])=80;
end for;
end TestModel;

1.0);
1.0);

9.4 Transforming For-Equations and Array Equa-
tions into Slice Equations

In order to have all equations in a standard uniform format it is advantageous
to transform all for-equations' and array equations into slice equations. Such
equations have a simple form where all array references have the shape of
indexed array slices.

9.4.1 Algorithm

An algorithm in pseudo code for conversion of for-equations and array
equations to slice equations is shown in Listing 9.4. The reason for this
conversion into a uniform slice equation form is to simplify index reduction,
BLT sorting, etc. There are a few forms: equations containing whole arrays
(without indexing), array slices, array elements, or for-equations. Single
scalar array elements can be eliminated by combining them into slices. For-
equations can be transformed into array equations with slices. Whole arrays
can be trivially converted to a slices that are the same as the array (e.g. from
1 to end). Overlapping array slices are not handled in the current algorithm
but the algorithm can be extended with the following approach: partition
the slices into smaller slices so that the overlapping part becomes its own
slice.

Listing 9.4: Splitting array for-equations with multiple equations in the body.

for each equation do
case equation is for-equation
for each for-equation iterator do
case iterator used as an array index
replace by computing an array slice of
the array indexing using the dimension data
from the for-equation head

remove for-equation head, use only body equation

L Another approach could be to not transform for-equations. For instance algorithmic
for-loops in algorithm sections are currently handled as they are.
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otherwise
replace by expanding into an array constructor with
iterator(s) using the dimension data,
from the for-equation head

remove for-equation head, use only body equation
otherwise
for each variable reference (if not already slice reference)
create a slice reference using the dimension information
for that variable.

9.4.2 Examples

Several examples of using this approach are given below. The model in
Listing 9.5 can be transformed into the model in Listing 9.6.

Listing 9.5: Modelica TestModel model containing for-equations.

model TestModel
parameter Integer n = 4;
Real u[n](start = 1.0);
Real x[n](start = 1.0)
equation
for y in 1:n loop
der (ul[y] )=0.167;
end for;

)

for y in 1:n loop
der (x[y] )=80;
end for;
end TestModel;

Listing 9.6: Modelica TestModel model containing slice-equations.

model TestModel
parameter Integer n =
Real u[n](start = 1.0
Real x[n](start = 1.0

equation
der (u[l:n])=0.167;
der(x[1:n])=80;

end TestModel;

4;

)5
) g

The model in Listing 9.7 can be transformed into the model in Listing
9.8.

Listing 9.7: Modelica WaveEquationSample model containing one array equation
one for-equation.
model WaveEquationSample

import Modelica.SIunits;
parameter Slunits.Length L = 10 ”"Length of duct”;
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parameter Integer n = 30 ”Number of sections”;
parameter Slunits.Length dl = L/n ”Section length”;
parameter Slunits.Velocity ¢ = 1;

SIunits.Pressure [n] p(each start = 1.0);
Real[n] dp(start = fill(0,n));
equation
p[1] = exp(—(-L/2)"2);
p[n] = exp(=(L/2)"2);
dp = der(p); // Array equation
for i in 2:n—1 loop // for—equation header
der(dp[i]) = ¢"2«(p[i+l] — 2 = p[i] + p[i—1])/dL"2;
end for;
end WaveEquationSample;

Listing 9.8: Modelica WaveEquationSample model containing slice-equations.

model WaveEquationSample
import Modelica.SIunits;
parameter Slunits.Length L = 10 ”Length of duct”;

parameter Integer n = 30 ”"Number of sections”;
parameter Slunits.Length dl = L/n ”Section length”;
parameter Slunits.Velocity ¢ = 1;
SIunits.Pressure [n] p(each start = 1.0);
Real[n] dp(start = fill(0,n));

equation

p[1] = exp(=(-L/2)"2);

p[n] = exp(—(L/2)"2);

dp[l:n] = der(p[l:n]);

der(dp[2:n—1]) = ¢"2%(p[3:n] — 2 * p[2:n—1] + p[l:n—2])/dL"2;
end WaveEquationSample;

9.5 Matching and Sorting of Unexpanded Ar-
ray Equations

Here an outline of matching and sorting (see Chapter 2) of unexpanded
array equations is presented for at least a subset of possible models. The
algorithm assumes that the model is balanced (the same number of equations
and variables) and that there are no overlapping array reference slices (array
slices are non-overlapping if each array element belongs to at most one slice).
Handling overlapping array reference slices requires certain modifications to
the algorithm: partition the slices into smaller slices so that the overlapping
part becomes its own slice.

9.5.1 Algorithm

The algorithm is divided into several steps, shown in Listing 9.9, 9.10, 9.11,
9.12, 9.13 and 9.14.
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Listing 9.9: Step 1: Generate a list with one set for each equation, containing
all variable references in the equation.

for each equation do
for each variable reference do
case not array slice reference
insert the index of variable in the set for the equation.
add a minus (-) sign if state,
no minus sign if derivative of state.
otherwise array slice reference
insert the index of variable in the set for the equation
store the array slice reference.
add a minus (-) sign if state,
no minus sign if derivative of state.

Listing 9.10: Step 2: Detect overlapping array reference slices.

create an array of lists of booleans, one list of booleans

for each variable (empty lists to begin with)

for each set in the list from step 1 do
for each variable reference in the set do
if the variable reference index is negative then skip
else
if variable reference has a slice that overlaps
with another slice in the list from the array
(with the same variable name)
then return
else insert a variable reference with slice
information into the list for the correct array entry

if overlapping slices we can not continue with
the remaining steps

Listing 9.11: Step 3: Check to make sure that the model is balanced.

Check if the number of equations equals the number of variables
if not the algorithm can not continue with the remaining steps

Listing 9.12: Step 4: Building the incidence matriz (see Chapter 2).

for each set in the list from step 1 do
create a new row in the matrix
for each variable reference in the set do
if the variable reference is not negative insert into row

else do nothing

Listing 9.13: Step 5: Extended version of matching.

Do the matching as usual but now we also need to check
that the dimension on the left side equals the
dimension on the right side.
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Listing 9.14: Step 6: Equation sorting.

As before, no major changes needed.

9.5.2 Examples

Several examples of the algorithm in the previous section are given in this
section.

Example 1
The Modelica model for the first example is shown in Listing 9.15.

Listing 9.15: Ezample 1: Modelica Model NonExpandedArrayl.

model NonExpandedArrayl
parameter Integer p=500;
Real x[p];
Real y[p];
Real z[p];
Real q[p];
Real r[p];

equation

2.3232xy + 2.3232xz + 2.3232xq + 2.3232xr der (x);

der (y) = 2.3232x%x + 2.3232x%z + 2.3232%q + 2.3232x%r;
2.3232%x + 2.3232xy + 2.3232xq + 2.3232xr = der(z);
der(r) = 2.3232%x + 2.3232xy + 2.3232%z + 2.3232xq;
2.3232%x + 2.3232xy + 2.3232x%z + 2.3232xr = der(q);

end NonExpandedArrayl;

cq

1 | x[1:n], -y[1:n], -z[1:n], -q[1:n], -r[1:n]
2 | -x[1:n], y[1:n], -z[1:n], -q[1:n], -r[1:n]
3 | -x[1:n], -y[l:n], z[1:n], -q[1:n], -r[1:n]
4 | x[1:n], -y[lm], -z[1:n], -q[1:m], r[1:mn]
5 | -x[1:mn], -y[1:n], -z[1:n], q[1:n], -r[1:n]

The above model has no overlapping slices and the model is balanced. The
above model will result in the following matrix.

eq | der(z[l:n]) der(y[l:n]) der(z[l:n]) der(q[l:n]) der(r[l:n])
1 1 0 0 0 0
2 0 1 0 0 0
3 0 0 1 0 0
4 0 0 0 0 1
5 0 0 0 1 0

=> Sorting =>
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eq | der(z[l:n]) der(y[l:n]) der(z[l:n]) der(q[l:n]) der(r[l:mn])

1 1 0 0 0 0

2 0 1 0 0 0

3 0 0 1 0 0

5 0 0 0 1 0

4 0 0 0 0 1
Example 2

The Modelica model for the second example is given in Listing 9.16.

Listing 9.16: Ezxample 2: Modelica model WaveEquationSample.

model WaveEquationSample
import Modelica.SIunits;
parameter Slunits.Length L = 10 ”Length of duct”;

parameter Integer n = 30 ”"Number of sections”;
parameter Slunits.Length dl = L/n ”Section length”;
parameter Slunits.Velocity ¢ = 1;

SIunits.Pressure [n] p(each start = 1.0);
Real [n] dp(start = fill(0,n));
equation
p[1] = exp(=(-L/2)"2);
p[n] = exp(—(L/2)"2);

dp = der (p);
for i in 2:n—1 loop

der(dp[i]) = c 2x(p[i+1] — 2 * p[i] + pli-1])/dL"2;
end for;

end WaveEquationSample;

=> Transform for-equation =>

Listing 9.17: Ezample 2: Modelica model WaveEquationSample after transfor-
mation.
model WaveEquationSample

import Modelica.SIunits;
parameter Slunits.Length L = 10 ”Length of duct”;

parameter Integer n = 30 ”"Number of sections”;
parameter Slunits.Length dl = L/n ”Section length”;
parameter Slunits.Velocity ¢ = 1;

SIunits.Pressure [n] p(each start = 1.0);

Real [n] dp(start = fill(0,n));
equation

p[l] = exp(=(-L/2)"2);

pln] = exp(—(L/2)2);

dp = der(p);

der(dp[2:n—-1]) = ¢"2x(p[3:n] — 2 % p[2:n—1] + p[l:n—2])/dL"2;
end WaveEquationSample;
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eq |

1| -p[1]

2 | -p]

3 | p[ln], -dp[l:m]

4 | dp[2:n-1], -p[3:n], -p[2:n-1], -p[1:n-2]

In this model there are no overlapping slices and the model is balanced.
The above model will result in the following incidence matrix. The columns
dp[1] and dp[n] result from the check at step 2, which is an extended version.

eq | der(dp[2:n—1]) der(p[l:n]) dp[l] dp[n]
1 0 0 0 0
2 0 0 0 0
3 0 1 0 0
4 1 0 0 0

=> This causes Pantelides algorithm[48] to detect that equations 1 and 2
must be derived to obtain an equation for dp[1] and dp[n], where p[1] and
p[n] are dummy states =>

eq | der(dp[2:n —1]) der(p[l:n]) dp[l] dpln] p[l] p[n]
1 0 0 0 0 1 0
2 0 0 0 0 0 1
3 0 1 0 0 0 0
4 1 0 0 0 0 0
5 0 0 1 0 0 0
6 0 0 0 1 0 0
=> Sorting =>
eq | der(dp[2:n —1]) der(p[l:n]) dp[l] dpln] p[l] p[n]
4 1 0 0 0 0 0
3 0 1 0 0 0 0
5 0 0 1 0 0 0
6 0 0 0 1 0 0
1 0 0 0 0 1 0
2 0 0 0 0 0 1
Example 3

The Modelica model for the third example is given in Listing 9.18.

Listing 9.18: Ezample 3: Modelica model ArraySlicel.

class ArraySlicel
Real a[4];
equation
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al{1,3}] = a[{2,4}];

a[l]=time;

The model above has no overlapping slices and the model is balanced. The
above model will result in the following matrix.

eq | all] af2] af3] a[4]
1 1 1 0 0
210 0 1 1
311 0 0 0
41 0 0 0 1
=> Sorting =>
eq |a[l] af2] af3] al4]
311 0 0 0
1 1 1 0 0
41 0 0 0 1
210 0 1 1

9.6 Discussion

In this chapter we discussed how Modelica array equations can be kept
unexpanded throughout the compilation process. Previously such equations
were expanded into scalar equations and handled as normal scalar equations.
However, if array equations can be kept unexpanded there are several benefits.
We get a faster compilation process, the equation-sorting phase in particular
becomes faster since we have smaller and fewer data structures to process.
We can also more easily compile more efficient and faster code. Keeping
array equations unexpanded makes it much easier to detect data parallelism
when compiling code for parallel architectures such as GPUs.
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Chapter 10

Partial Differential
Equation Modeling with
Modelica via FMI Import
of C++4+ Components

10.1 Introduction

Numerical simulation of models that couple PDEs and DAEs in the context
of the Modelica modeling and simulation language [66, 37, 38] is discussed.
Modelica originated around the idea of solving complex, coupled dynamical
systems, which can be described by systems of ODE or DAE. Up to now,
there has been only limited support for working with PDEs, despite the
fact that the number of Modelica users in academia and in industry has
grown significantly lately. One of the first attempts to incorporate PDE
support into Modelica is described in [76, 54], and in Chapter 8 of [38],
which investigates two different approaches: (1) expressing the PDEs using
a combination of new language constructs and a supporting Modelica PDE
library using the method-of-lines; (2) exporting the PDE part to an external
PDE FEM C++ tool that solves the PDE part of the total problem. Based
on this work, an experimental implementation of PDE support was added
to the OpenModelica [71] compiler. However, this implementation has not
been maintained, even though there have recently been discussions in the
OpenModelica community about re-activating these features. Only one sim-
ple PDE operator is currently in the Modelica language specification: spatial
distribution for 1D PDEs.

In [34] a Modelica library with basic building blocks for solving one-dimensional
PDEs with spatial discretizations based on the method of lines or finite vol-
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umes is described. Although this approach is attractive due to its simplicity,
it is not clear how it could be extended to higher dimensions without sig-
nificantly increasing the complexity. Another approach is described in [93],
which extends the modeling language with primitives for geometry descrip-
tion and boundary /initial conditions, and uses an external pre-processing tool
to convert the PDE model to a DAE based on the method of lines. In both
of these two works, the PDE system is expanded early on in the compilation
process. In this way important information of the PDE structure is lost,
information that could have been used for mesh refinement and adjustment
of the runtime solver. Another similar option is to use the commercial
MapleSim environment [5]. This involves writing the PDEs in a Maple
component, exporting this component to DAE form using a discretization
scheme and using the resulting component in MapleSim, which supports
the Modelica language. An overview of how to use Maple and MapleSim
together for PDE modeling can be found in [78]. Apart from the cost for
licenses, this method again has the same drawback, arising from the loss of
information regarding the original model.

In this work, a way to allow for PDE modeling with Modelica by importing
C++ components, written with the HiFlow3 multi-purpose finite element
software HiFlow3[10], into Modelica using the FMI [9] import is proposed.
FMI is a standard for model exchange and co-simulation between different
tools. FMI supports only C but with correct linking it is possible to execute
with C++ code. The OpenModelica [71] development environment is used
but the same approach can be adapted to other Modelica environments. A
similar approach was used in [58, 57], which describes a simulation of the
energy supply system of a building using Dymola, ANSYS CFD and the
TISC co-simulation environment. Some of the products used in that work are
proprietary however, whereas our environment is based on open standards
and open source software. Furthermore, the ‘“‘model import” approach for
the coupling between components is used, instead of the ‘‘co-simulation”
approach applied in those works.

As a proof-of-concept to demonstrate Modelica/HiFlow3 integration, a cou-
pled model that consists of solving the heat equation in a 3D domain and
controlling its temperature via an external heat source have been imple-
mented and tested. This source consists of a Modelica Proportional-Integral
Derivative (PID) controller, which is taken directly from the Modelica stan-
dard library.

The work with Modelica-HiFlow3 coupling was continued with parallel com-
putations on multi-core architectures. A model of a steel beam with a force
acting upon it is used to demonstrate implementation. The elasticity defor-
mation of the beam is demonstrated. In this work the actual beam is modeled
and solved in parallel using a C++ HiFlow3 [12, 13] component whereas the
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physical force acting on the beam is modeled using Modelica. It should be
noted that this elasticity deformation model is just for demonstrating our
Modelica/HiFlow3 approach. There are better and more powerful methods
for elasticity modeling using Modelica in the general case, see for instance [20].

The method described in this work has several advantages:

1. HiFlow3 is well maintained and has strong support and capabilities for
PDE modeling and solving,

2. HiFlow3 and OpenModelica are free to download and use,

3. The PDE structure is not lost but is maintained throughout the actual
runtime simulation process. This allows for mesh refinement, solver
runtime adjustments, etc.,

4. Tt is possible to mix PDE and DAE systems in the same system setting.
This is also possible in [76].

10.2 Simulation Scenario 1: Heat Equation

We consider the evolution of the temperature distribution in a rectangular
piece of copper. Figure 10.1 shows the setup for the system. A heat sensor is
attached on the right side of the copper bar, and on the bottom there is an
adjustable heat source. The system is exposed to environmental influences
through time-varying boundary conditions at the top and left side. The goal
is to control the temperature in the material by adjusting the heat source,
so that a desired temperature is reached at the point of measurement. The
regulation of the heat source is performed by a PID controller. It uses the
sensor value and a reference temperature to compute the heat source strength.

In our simulation, the two entities in this system are realized by reusing ex-
isting software components. The temperature of the copper bar is computed
using a HiFlow3 solver, and the “LimPID” controller using a model from
the Modelica standard library. The components are coupled by importing
the HiFlow3 solver as a Modelica model using FMI and then creating a
third Modelica model, which connects these two components as well as some
additional components.

10.2.1 Computing the Temperature Distribution

The evolution of the temperature distribution is modeled by the unsteady
heat equation. In this subsection, the mathematical problem formulation
is given, the numerical treatment of the heat equation is discussed and the
discretization we used in the computations is described.
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copper bar (2 )}
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Figure 10.1: System consisting of a copper bar connected to a temperature
regulator based on a PID controller.
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Heat Equation

We consider the copper to occupy a domain
Q :=(0,0.045) x (0,0.03) x (0,0.03) C R?,

where the boundary of €2 is denoted by 0€2. The heat problem formulation
for our simulation scenario is as follows:

Find a function u : ©Q x (0,7) — R as the solution to

Ou — aAu =10 in Qx(0,7), (10.1a)
u(0) = g in Q, (10.1b)

u=g on I'ye x (0,7), (10.1c)

U = Utop on I'yop x (0,7, (10.1d)

U = Uloft on Tiegy x (0,7, (10.1e)

g—z =0 on I'iso x (0,T). (10.1f)

The unsteady heat equation (10.1a) is a parabolic PDE. Its solution, the
unknown function u, describes the evolution of the temperature in the copper
bar ) during the time interval (0,7"). Here, oo = 1.11 x 10*4[%2] denotes the
thermal diffusivity of the copper. ug in equation (10.1b) is the initial state
at time ¢t = 0. The sensor is placed at the point zy := (0.045,0.015,0.015),
where the temperature u(xg,t) is taken as the measurement value for time
t € (0,T). The heat source is modeled by the Dirichlet boundary condition
(10.1c). The controlled temperature g(¢) is prescribed for the source part of
the boundary

e := [0,0.045] x [0,0.03] x {0} C 992

The environmental influence is modeled by the Dirichlet boundary conditions
(10.1d) and (10.1e). At the top boundary part

Tiop := [0, 0.045] x [0, 0.03] x {0.03} C 9
and the left boundary part
Tetr == {0} x [0.01,0.02] x [0.01,0.02] C 99

the temperature is given by the functions uep (t) and uie () for t € (0,7),
respectively. The rest of the boundary

1—‘iso = aQ\ (Ftop U Fleft ) 1—‘src)

is isolated through the homogeneous Neumann boundary condition (10.1f).
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Variational Formulation

A well-established method for numerically solving PDEs like the heat equation
is the finite element method. Here the numerical treatment of the problem
(10.1) is briefly described. The methods of this section are taken from [31]
and [17].

The finite element discretization is based on a variational formulation,
which can be derived as follows. We denote by C*(X;Y) the set of all k
times continuously differentiable functions from X to Y, and by C§°(X;Y)
the set of all smooth functions with compact support. In the common case
X =Q,Y =R, we just write C*(2). Assuming that there is a classical
solution

u e CH0,T;C*Q) NC(Q))

of problem (10.1), equation (10.1a) is multiplied by a test function v € C§°(2)
and integrated over {2:

/Q(atu)v dx — a/ (Au)vdxr =0 (10.2)

Q

Green’s first identity [41] is applied to the second term of (10.2), giving

/(Au)vdx: @vds—/Vu-Vvdas
Q o0 On Q
=— [ Vu-Vudzr,

Q

where n is the outer unit normal on 92. The boundary integral vanishes
since v is zero on 9€). This leads to

/(&u)v dx + a/ Vu-Vvdr =0. (10.3)
Q Q

For equation (10.3) to be well-defined, weaker regularity properties of u and
v than in the classical context are sufficient. The problem can be formulated
in terms of the Lebesgue space L?(£2) of square-integrable functions and
the Sobolev space H!(€2) of functions in L?({2) with square-integrable weak
derivatives. We define the solution space

Vi={ve H (Q) : v=0o0n [eg UTop U}
and the bilinear form
a: HY(Q) x HY(Q) - R,
a(u,v) = a/ Vu-Vvde.
Q
Note that a is symmetric, continuous and V-elliptic. We denote by (u,v)r2 =

Jouvdz the standard inner product in L?(Q). Now we can state a varia-
tional formulation of problem (10.1):
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Find u € @+ C*(0,T;V) as the solution of

(Oru,v)p2 + a(u,v) =0 VveV, (10.4a)
u(0) = o, (10.4b)

where 4 € C1(0,T; H(£2)) is a given function fulfilling the Dirichlet boundary
conditions

u=g on Tegy x (0,77,
U = Utop on I'yop x (0,7,
U = Usgre on I'ye x (0,7).

This variational formulation admits a unique solution w, which is called a
weak solution of the heat equation.

Finite Element Discretization in Space

Let T}, := {K,..., Ky} be a triangulation of Q with N tetrahedral cells
K;(i = 1,..,N). We define the finite element space of piecewise linear

functions
Vii={veV: U|K

V4, has the finite dimension n := dim(V},). We give the problem formulation
for a conforming finite element approximation of (10.4):

is linear (K € Ty)}. (10.5)

Find uy, € @y, + C1(0,T;V},) as the solution of

(atuh,vh)Lz + a(uh,vh) =0 Vv, €V, (10.6&)
(uh(O),’Uh)Lz — (UO,U;L)LQ =0 Vov,eV,. (106b)

Let {¢1,...,on} be a basis of V},. We define the ansatz
n
un(z,t) =Y wi(t)pi(w)
i=1

and insert it into (10.6a), yielding

> (i @) + Y wialpi, ;) =0 (G =1,..,n).
=1 i=1

This can be written as
Mw+ Aw =0,

where
M = ((Soj;(pi)["z)i’j:l“”’n c Ran

is the mass matrix and

A= (a(cpj, W))i,j:l,“.,n S
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is the stiffness matrix of the problem, and
w: (0,T) - R"

is the vector of the time-dependent coefficients. From (10.6b), an initial
condition for w is derived as

(Mwo); = (uo, i)z (i=1,...,n)
< wo = M_lb,

where b; = (ug, ;)2 (i =1,...,n). Thus, the finite element discretization in
space leads to the initial value problem

Mw+ Aw =0, (10.7a)
w(0) = wy , (10.7b)

for the coefficient vector w.

Implicit Euler Discretization in Time

As will be discussed in Section 10.4.4, limitations in the used technology
restrict us to using a relatively simple ODE solver for the time discretization.
For the heat equation the implicit Euler scheme is suitable, due to its good
stability properties [33]. Let {0 = tg < t1 < ... < t,,, = T’} be a partition
of the time interval with step sizes 0ty = tgy1 — tx (k= 0,...,m — 1). The
implicit Euler time stepping method for problem (10.7) is defined as

[M + 5tkA]w(tk+1) = Mw(tk) (108)

for K =0,...,m — 1. This method is convergent and has first-order accuracy
in terms of the step size dty.

10.2.2 Proportional-Integral-Derivative (PID) Controller

A Proportional-Integral-Derivative controller (PID controller) is a form of
loop feedback controller that is widely used to control industrial processes.
The controller takes as input a reference value u,.f, which represents the
desired temperature, and the measured value u(zo,t). It uses the error
e(t) = uret — u(xp,t) to compute the output signal g(t). As the name
PID suggests, there is a proportional part that accounts for present errors,
an integral part that accounts for the accumulation of past errors, and a
derivative part that predicts future errors:

g(t) = wpe(t) + wI/O e(r)dr + wD%e(t)

Here, wp, w; and wp are weight parameters. By tuning these parameters
the performance of the controller can be adapted to a specific process. A
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PID controller is widely regarded as the best controller when information
of the underlying process is lacking, but the use of a PID controller does
not guarantee optimal control. The tuning of the parameters can be done
manually or by using a heuristic method such as Ziegler-Nichols or Cohen-
Coon. There are also software tools available. Sometimes one or several of
the parameters might have to be set to zero. For instance, because derivative
action is sensitive to measurement noise, this part of the controller might
have to be omitted in some situations, resulting in a PI controller. PID
controllers are linear and can therefore have problems controlling non-linear
systems, such as Heating, Ventilation and Air Conditioning (HVAC) systems.
47)

10.3 Simulation Scenario 2: Elasticity Equa-
tion

Figure 10.2: Geometry and computational mesh for the concrete element. The
fized front end is in blue, a force is acting on the red part.

We now consider the deformation of a rectangular building element under
a load. Figure 10.2 shows the setup of the configuration. The element is
fixed at both ends, and the load is modeled by an external force acting upon
a part of the upper boundary.

10.3.1 Linear Elasticity Model

The element occupies a domain  C R3 with boundary I := 9. The behavior
of the object subject to a force is described by means of the displacement &=
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and the stress tensor . Conservation of momentum leads to the equilibrium
equation

— V- (I +Vulo) =pU inQ, (10.9)
where p is the density of the material, U is a volumetric force, and I denotes
the identity matrix. In our scenario, gravity is the only volumetric force,
therefore U = —g,.
According to Hooke’s law for isotropic materials the stress tensor is related
to the deformation tensor € as

o = 2ue+ Mr(e)T,

with material parameters p and A, known as the Lamé elasticity constants.
Assuming small deformations, we neglect nonlinear terms in the deformation
tensor resulting in the linearized form [26]

1
€~ i(Vu +Vu'),
and the deformation gradient is simplified as

I+VuxlI.

This leads to the following problem formulation:

Find a function & :  — R? as the solution of

—uV - (Vu+Vu') = AV(V - u) = pU in Q, (10.10a)

u=0 on Ty, (10.10Db)
{,u(Vu +Vu') + AV - u)I} X =p on I, (10.10c)
[u(w FVuT) 4+ AV - u)f} X =0 on Iy (10.10d)

The homogeneous Dirichlet boundary condition (10.10b) fixes the beam at
its ends. The load on the beam acts as a pressure p through the Neumann
boundary condition (10.10c), and the homogeneous Neumann condition
(10.10d) is imposed on the free part of the boundary.

Variational Formulation

A well-established method for numerically solving PDEs is the finite element
method, which is based on a variational formulation of the system (10.10).

Assuming that there is a classical solution u € C?(,R3) of problem

(10.10), equation (10.10a) is multiplied by a test function v € C§°(§2) and
integrated over ):

_“/Q [V~(Vu+vqf)} vdz

—/\/Q{V(V-u)}-vdxz/ﬂpf-vdx
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The divergence theorem yields (note that Vv = Vo)

—M/Q {V~(Vu+VuT)} ~vdz

_ K

5 / (Vu+Vu'): (Vo+ Vo) de
Q

and

DY [V(v-u)] wdr =\ [ (V-u)(V-v)de,
Q Q

where the boundary integrals are omitted since they vanish as v = 0 on 9f2.
This leads to

/Qg(Vu+vuT);(w+wT)
+)\(V-u)(V~v)dx:/pf~vdx. (10.11)
Q

For equation (10.11) to be well-defined, weaker regularity properties
of u and v than in the classical context are sufficient. The problem can
be formulated in terms of the Lebesgue space [L?(2)]? of square-integrable
functions defined on  and with image in R3, and the Sobolev space [H! ()]
of functions in [L?(Q2)]* with square-integrable weak derivatives. We define
the weak solution space

Vi={uec[H Q) :u=00nTy},
the bilinear form
[HY Q)P =R,
Vu+Vu'): (Vo4 Vo)
+ AV -u)(V-v)de,
and the linear form

1: [H' Q)] =R,
I(v) ::/pr-vda:—&—/F p-vds.

Note that the bilinear form « is symmetric, continuous and V-elliptic. Now
we can state the variational formulation of problem (10.10):

Find v € V as the solution of
a(u,v) =1(v) VYveV. (10.12)

This variational formulation admits a unique solution, which is called the
weak solution of the elasticity problem.
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Finite Element Discretization

Let Ty, := {K3,..., Ky} be a triangulation of Q with N tetrahedron cells
K;(i = 1,...,N). We define the finite element space of piecewise linear
functions

Vh:Z{’UEV'

: |, is linear (K € Ty)}.

V1, has the finite dimension n := dim(V4). We give the problem formulation
for a conforming finite element approximation of (10.12):
Find uj € V}, as the solution of

a(up,vp) =l(vy) VYo, € V. (10.13)

Let {¢1,...,on} be a basis of V;,. We define the ansatz function as :
up(x) == sz%(x)
i=1

with coefficients x; € R and insert it into (10.13), yielding

ina(%‘a@j) :b(cpj) (j: 1;"')”)'
i=1
This can be written as the linear system

Az =b, (10.14)

where

is the stiffness matrix and

bi=(ie0). eR"
is the load vector. As the stiffness matrix is symmetric and positive definite
[26], we employ the Conjugate Gradient (CG) method [42] for solving (10.14).
10.4 Coupled Implementation
In this section, the technologies used in the present work are introduced.

The coupled simulation setup is then described, as well as its two main
constituent components in more detail.
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10.4.1 The HiFlow3 Finite Element Library

HiFlow3 [10] is a multi-purpose finite element software providing powerful
tools for efficient and accurate solution of a wide range of problems modeled by
PDEs. Based on object-oriented concepts and the full capabilities of C+4 the
HiFlow3 project follows a modular and generic approach for building efficient
parallel numerical solvers. It provides highly capable modules for dealing
with mesh setup, finite element spaces, degrees of freedom, linear algebra
routines, numerical solvers and output data for visualization. Parallelism - as
the basis for high performance simulations on modern computing systems - is
introduced at two levels: coarse- grained parallelism by means of distributed
grids and distributed data structures, and fine-grained parallelism by means
of platform-optimized linear algebra back-ends.

10.4.2 The Functional Mock-Up Interface

The Functional Mock-Up Interface (FMI) [9, 67] is a tool-independent stan-
dard to support both model exchange and co-simulation of dynamic models,
which can be developed with any language or tool. A model can be ex-
ported as a Functional Mockup Unit (FMU). Such an FMU consists mainly
of two parts: (1) an XML file describing the interface and (2) the model
functionality in compiled binary or C code form. Other tools or models that
also implement the FMI can import an FMU. Initial FMI development was
conducted in the European ITEA2 MODELISAR project [11].

10.4.3 Simulation Overview for Simulation Scenario 1

Figure 10.3 provides an overview of the simulation setup. To create the PDE
component, an existing HiFlow3 application was reused , which solves the
boundary value problem for the heat equation (10.1). In order to import this
code into Modelica, it was converted into a Dynamic Shared Object (DSO),
which implements the FMI functions and interface descriptions necessary
to build an FMU. This FMU was then loaded via FMI into our Modelica
model. The details of the PDE component are described in Section 10.4.4.

For the PID controller, we used the LimPID component from the Mod-
elica standard library. This was connected to the PDE component in a new
Modelica model, which is described in Section 10.5.

This model was then compiled with the OpenModelica compiler and
executed using the OpenModelica runtime system. By choosing the Euler
solver, the runtime system provides the time-stepping algorithm according
to the implicit Euler scheme, and additionally solves the equations for the
PID controller component at each time step. Figure 10.4 illustrates the calls
made to the compiled model code on a time axis, which in turn makes calls
to the PDE component.
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Figure 10.4: Interaction between the OpenModelica runtime system and the
coupled model with the implicit Euler solver.



10.4. Coupled Implementation 109

10.4.4 HiFlow3-based PDE Component - Simulation
Scenario 1

The main sub-part of the PDE component is the HeatSolver class, which
is a slightly modified version of an existing HiFlow3 application. This class
uses data structures and routines from the HiFlow3 library to solve the heat
problem (10.1) numerically. It uses a finite element discretization in space
and an implicit Euler scheme in time as described in Sections 10.2.1 and
10.2.1.

Furthermore, this class provides functions for specifying the current time, the
controlled temperature of the heat source, the top and bottom temperatures,
and for retrieving the temperature at the measuring point. The top level
routine of the HeatSolver class is its run() function, see Listing 13.2. This
function computes the solution of the heat equation.

The triangulation Tj, was then prepared in a preprocessing step and stored
it in a mesh file. When the run() function is called for the first time, it
reads the mesh file and possibly refines the mesh. It also creates the data
structures representing the finite element space V}, from (10.5), the linear
algebra objects representing the system matrix, the right-hand-side vector
and the solution vector. Then, the run() function assembles the system
matrix M + §tx A and the right-hand-side vector Mw(ty) according to (10.8).
It computes the solution vector w(tg41) for the new time step t = 511 using
the conjugate gradient method [92]. The solution is stored in the VTK
format [89] for visualization.
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Listing 10.1: Run function of the HeatSolver class.

HeatSolver_run () {

// if this is the first call
if (first_call) {

// read mesh file and eventually refine it
build_initial_mesh();

// initialize the finite element space and
// the linear algebra data structures
prepare_system();

first_call = false;

}

// compute the system matrix and
// the right-hand-side vector
assemble_system();

// solve the linear system
solve_system();

// visualize the solution
visualize ();

// keep solution and time in memory
CopyFrom(prev_solution,old_solution);

It is important to note that the solution vector and the current time are
kept in memory inside the PDE component, since this data is required for
computing the solution at the next time step. Although it has been planned
for a future version, at present the FMI standard (neither 1.0 nor 2.0) do
not directly support arrays, which prevents passing the solution vector back
and forth between the PDE component and the Modelica environment as
a parameter [67]. Although this use of mutable internal state in the PDE
component might be preferable from a performance point of view, it has the
drawback of making the function calls referentially opaque: two calls with
the same parameters can yield different results, depending on the current
internal state. This imposes a strong restriction on the solver used, which
must assure that the sequence of time values for which the function run()
is called is non-decreasing. For this reason, only the method with the simple
implicit Euler solver was tested, and verified that the calls were indeed
performed in this way. For more complicated solvers, such as DASSL, this
requirement is no longer satisfied.

The entry point of the PDE component is the PDE_component () function,
see Listing 10.2. This function is called within the Modelica simulation
loop. When it is called for the first time, it creates a HeatSolver object. It
sets the input values for the heat source, the temperatures at the top and
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bottom boundary, and the current time. Then the run() function of the
HeatSolver is called to compute the solution of the heat equation. Finally,
the run counter is incremented and the measurement value is returned.

10.5 Modelica Model 1

Our Modelica model is shown schematically in Figure 10.5. It contains the
PDE component, the PID controller and four source components. Two of the
sources represent the environmental influences, which are given by sinusoidal
functions.

Listing 10.2: Main simulation routine of the PDE component.

PDE_component (
double in_Controlled_Temp,
double in_Top_Bdy_Temp,
double in_Bottom_Bdy_Temp,
double in_Time)
{
// create HeatSolver object if this
// is the first call
if (run_counter == 0)
heat_solver = new HeatSolver ();

// set input values

heat_solver->set_time(in_Time);

heat_solver->set_g(in_Controlled_Temp);

heat_solver->set_top_temp(in_Top_Bdy_Temp) ;

heat_solver->set_bottom_temp (
in_Bottom_Bdy_Temp) ;

// run the HeatSolver
heat_solver ->run();

// increment the run counter
run_counter++;

// return the measurement value
return heat_solver->get_u();

}

They are connected to the PDE component to give the top and left boundary
temperatures uiop and wiesy in Equations (10.1d) and (10.1e), respectively.
One source is connected to the PID controller and gives the reference value
Uret Tor the desired temperature. The fourth source is connected to the
dummy state variable of the PDE component. The dummy state variable
and its derivative are in the model due to the fact that the OpenModelica
implementation of FMI 1.0 import does not allow for an empty state variable
vector. There is however, nothing in the FMI 1.0 model exchange specifica-
tion that disallows this. Additionally, the measurement value of the PDE
component is connected to the input of the PID controller, and the output
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signal of the PID controller is connected to the heat source input of the PDE

component.

SineA
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SineB T
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u(x0)
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Figure 10.5: Schematic view of the coupled Modelica model used in the simulation.

The internal constant parameters of the components are summarized in

Table 10.1.

Component Parameter

LimPID
proportional gain wp
integral gain wy

derivative gain wp

HeatEquationFMU
thermal diffusivity «

SineA

amplitude
vertical offset

start time

frequency

SineB

amplitude
vertical offset

start time

frequency

Value

0.05
0.2
0.0

1.11-10"*m?%s™!

0.5 °C

3.5°C

150.0 s
0.001 s~ 1

6.0 °C

3.0 °C

350.0 s
0.002 s~1

Table 10.1:

Internal parameters of the components in the simulation model.
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10.6 Modelica Model 2

Our (relatively simple) Modelica model is shown in Listing 10.3. It contains
the PDE component and the force variable. The variables h f Block.stateV ar
and hfBlock.der_stateVar don’t do anything useful but are in the model
because the OpenModelica runtime system needs at least one state variable
to operate.

Listing 10.3: Modelica model.

// ElasticitySolver
// FMI application with
// HiFlow~3 block for PDE solving.

// Authors:
// Chen Song, Martin Wlotzka,
// Kristian Stavaker

// Main class

model ElasticitySolver
// HiFlow~3 component
ElasticitySolver_me_FMU hfBlock;

// Source for signals that

// should be constantly O

Modelica.Blocks.Sources.Constant
zeroSource (k=0.0);

Real u_center(start=0.0);
Real force(start=10.0);
equation
connect (hfBlock.u_center, u_center);
connect (force ,hfBlock.force);
force = 10.0;
connect (hfBlock.der_stateVar,
zeroSource.y) ;
connect (hfBlock.stateVar,
zeroSource.y);
end ElasticitySolver;

10.7 Parallelization Concept

The parallelization concept of HiFlow3 is based on a decomposition of the
spatial domain into a number of subdomains. For distributed memory
systems, the Message Passing Interface (MPI) [63] is used for data transfer.
Each MPI process is dedicated to the computation for one of the subdomains.
Work is hereby distributed among the processes. After creating the mesh that
our finite element discretization is based on, the METIS graph partitioner
[39] is used to determine a balanced partitioning of the mesh according to
the number of MPI processes. Each process then only stores one part of the
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global mesh. Couplings between neighboring parts are taken into account by
means of a layer of ghost cells. Figure 10.6 shows an example of a domain
decomposition into 8 parts.

v et
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e
-

Figure 10.6: Partitioning of the mesh into 8 subdomains, indicated by different
color.

The matrix and vector data structures in HiFlow3 are distributed data
structures that fit the partitioning imposed by the domain decomposition.
Each process holds exactly those degrees of freedom of the finite element
space that belong to its part of the domain. Couplings between different
partitions are achieved by using ghost degrees of freedom. Only these have
to be exchanged during parallel matrix-vector-product execution.
Assembly of the system matrix and right-hand-side vector, i.e. the compu-
tation of the entries, is performed independently on each process for the
corresponding subdomain. The assembling process is hereby designed in
two levels: The global assembler iterates concurrently on each subdomain
over the cells, while the local assembler computes the contributions for
any single cell. Once the matrix and vector are assembled, the Conjugate
Gradient linear solver takes advantage of the parallel implementation of the
matrix-vector-operations when computing the solution.

10.7.1 Parallel Execution of the Model

The Modelica compiled model code is executed on a number of processes. The
Modelica compiled model code is hereby replicated on each process. Whenever
the HiFlow3 PDE component is called, it performs distributed parallel
computations for solving the elasticity problem, hereby taking advantage of
its parallelization concept based on the domain decomposition.
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Figure 10.7: Replicated parallel execution of the Modelica compiled model code
and distributed parallel computation in the HiFlow3 PDE component, illustrated
for 4 processes.

10.8 Measurements

A numerical experiment with the following setting was conducted. A sim-
ulation time of T' = 1500 seconds was chosen and a time step of 6t = 1.
The initial temperature uy = 0 was set everywhere in the computational
domain €2, and the desired temperature as u..f = 3 was specified. On the
upper part of the boundary I'to, and on the left part of the boundary I'ief
the environmental influences was modeled by the functions

wn(t) = 13 if t < 150,
P T35 4 0.5sin (U520 > 150,

and

3 if ¢ < 350
ety (t) = { t—350)7

3+ 6sin (U5297) if ¢ > 350,

which are shown in Figure 10.8.

For comparison, a simulation run with a constant, uncontrolled heat
source g = 3 on the lower boundary I'y,. was first performed. Figure 10.9
shows that the temperature at the point of measurement deviates from the
desired temperature u..f = 3 due to the environmental influences.

The results of our simulation run with a controlled heat source g = g(t)
are shown in Figure 10.10. At the beginning, the heat source was fixed at
g = 2.5 to let the temperature distribution in the copper bar evolve from the
initial state to an equilibrium, at which the measured temperature is slightly
higher than desired. The PID controller was switched on at ¢ = 50 to take
control of the heat source. The curves show that the controller first cools the
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Figure 10.8: Environmental temperature prescribed on the boundary parts I'iep
and Tyop. Dashed: wiep(t), solid: wiop(t).

bottom to bring the temperature at the point of measurement down to the
target value. During the rest of the simulation, the PID controller reacts to
the environmental influences and adjusts the heat source dynamically over
time, so that the temperature accurately follows the desired state. Figures
10.11-10.13 illustrate the temperature distribution in the copper bar.

A series of test runs were carried out with number of processes n €
{1,2,4,8,16}. The runtime T;, for the PDE component when running on n
processes was measured. To assess the parallel performance of the solver,
the speedup

T,
and the efficiency
En = &7
n

were computed, where T}, is the runtime of the solver when executed on n
MPI processes, each running on one processor. The results are shown in

n | runtime 7T,, [sec] | speedup S, | efficiency E,
1 8.830 1.0 1.0

2 4.736 1.864 0.932

4 2.948 2.995 0.749

8 1.968 4.487 0.561

16 1.741 5.072 0.317

Table 10.2: Runtimes for the PDE component with varying number of MPI
processes.

Table 10.2. Figure 10.15 shows a plot of speedup and efficiency.
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Figure 10.9: Simulation run with constant heat source g = 3. The temperature
u(xo,t) at the point of measurement deviates from the desired value. Dashed: g,

solid: u(zo,t).
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Figure 10.10: Simulation run with controlled heat source g = g(t). The tem-
perature u(xo,t) at the point of measurement accurately follows the desired value
Uref = 3. Dashed: g(t), solid: u(zo,t).
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Figure 10.11: Computational domain of the copper bar with triangulation. The
colors indicate the temperature distribution on the surface at time t = 440.

Figure 10.12: Sectional view with isothermal lines at time t = 440.
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Figure 10.13: Sectional view with isothermal lines at time t = 1250.
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Figure 10.14: Visualization of the displacement in vertical direction.
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Figure 10.15: Parallel speedup and efficiency plot for n = 1,2,4,8,16 MPI
processes.

The results show parallel performance of the HiFlow3 PDE component
within the Modelica context, which is much poorer than the performance
obtained for pure HiFlow3 applications. This is due to a technical reason: a
custom OpenMPI library had to be installed, where the plugin architecture
of the OpenMPI implementation was disabled on the machine while still
using shared libraries. This was necessary for compiling the HiFlow3 PDE
component into a dynamic shared object that can be loaded by the Modelica
compiled model code during runtime. The diminished parallel efficiency is
clearly due to the use of such non-optimized MPI installation, since HiFlow3
shows good scalability on other machines with a high-performance MPI
installation [88].

Nevertheless, it was possible to leverage the parallel computing capabil-
ities of HiFlow3 in the PDE component to introduce distributed memory
parallelization for Modelica simulations. The performance tests show that
even if parallel efficiency may not be optimal, our approach allows for solving
large scale 3D PDE problems in high resolution on distributed memory
machines. This is especially advantageous with respect to the amount of
memory available, as the problem data can be split and distributed to several
compute nodes, as opposed to shared memory parallelization.
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10.9 Discussion

The numerical results for the example presented in the previous section show
that our method of integrating the PDE solver from HiFlow3 into a Modelica
simulation functions correctly. The realization of this particular scenario
serves as an illustration of how one can integrate other, more complicated,
PDE models into the complex dynamical simulations for which Modelica is
especially suited.

The coding and maintenance effort for importing an existing PDE model
implemented in HiFlow3 with the method presented here is minimal; in
essence only a set of wrapper functions dealing with input and output of
parameters and state variables is all that is required. The fact that HiFlow3
is free and open source software simplifies the process greatly, since it makes
it possible to adapt and recompile the code. This is significant, since the
FMI model import requires the component to be available either as C source
code or as a dynamically shared object, which is loaded at runtime.

Compared to the efforts aiming at extending the Modelica language with
support for PDEs, we are working at a different level of abstraction, namely
that of software components. The advantage of this is the ability to make
use of the large wealth of existing implementations of solvers for various
models, in the present case the multi-purpose HiFlow3 library. Extending
the Modelica language would also make it considerably more complex, since
problems for PDEs generally require descriptions of the geometry and the
conditions applied to the different parts of the boundary. Furthermore, using
this information to automatically generate a discretization and a solution
algorithm would require a sophisticated classification of the problem, since
different types of PDEs often require different numerical methods. How-
every, a drawback of working at the software component level is that the
mathematical description of the problem is not directly visible, as it would
be if it could be expressed directly in the language.

In contrast to the use of ‘“‘co-simulation”, in this work it was decided to
import the PDE component into the OpenModelica environment, and to
make use of one of its solvers. The main benefit is again simplicity; very few
changes were required to the PDE component itself, and it was possible to
maximize the reuse of existing software. On the other hand, co-simulation,
where each sub-model has its own independent solver, which is executed in-
dependently of the others, also has its advantages. In particular, specialized,
highly efficient solution algorithms can be applied to each part of the model,
and it is possible to execute the various components in parallel. Extending
present work to make it usable in a co-simulation setting has been considered.
Furthermore, it would be of interest to investigate the parallelization of the
simulation both within and between components.
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In this work a method of incorporating PDEs in the context of a Mod-
elica model was investigated, by using FMI to import a PDE solver from the
finite element library HiFlow3. Numerical results obtained using a simple
coupled model controlling the heat equation using a PID controller demon-
strate that this method works in practice. The main advantages of this type
of coupling include its simplicity and the possibility of reusing existing effi-
cient and already validated software. This approach allows the use of more
complex PDE models including high-performance, parallel computations.
It has the potential of greatly simplifying the development of large-scale
coupled simulations. In that case, however, an extension of the method
presented here to support co-simulation might be necessary.

In the results section some runtime measurements of these parallel computa-
tions and comparisons to single-core computations were provided. Induced
by the needs for compiling the PDE component into a dynamically linked
shared object and loading it by the Modelica compiled model code, limitations
in the MPI library influenced parallel performance. However, the speedup
obtained is considerable in simulation practice, and the use of distributed
memory architectures is a clear advantage with respect to memory, especially
for large-scale problems. In combination with our previous work reported in
[50], this opens opportunities to address even more compute- and memory-
intensive applications, such as instationary fluid dynamics problems. The
parallelization approach with replication might seem somewhat clumsy. A
better method would perhaps be to let the OpenModelica runtime system
drive the parallel distribution. This is a subject of future work and it should
be noted that the FMI places limits on parallel communication.

In this work a method of incorporating PDEs in the context of a Mod-
elica model was investigated by using FMI to import a PDE solver from
the finite element library HiFlow3. Numerical results were obtained from
two scenarios: 1.) the distribution of heat in a piece of copper where the
heat source was controlled by a PID-controller; and 2.) a simple coupled
model that invoke a force and measures the elasticity deformation of a beam
demoefficient. The main advantages of this type of coupling include its
simplicity and the possibility reusing existing solver technology on multi-core
and distributed memory architectures.
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Chapter 11

Using Parallel Skeletons
from Modelica

11.1 Introduction

The goal with this work is to make it possible to use skeleton programming
in Modelica models. Modelica is mainly a declarative equation-based simula-
tion and modeling language that also includes imperative algorithmic parts
i.e. functions and algorithm sections delimited with the algorithm keyword.
Skeleton programming is a style of programming that makes use of high-level
structures called skeletons that are basically higher order functions that
models a complex computational scheme. SkePU [45, 46, 86, 85, 8, 28, 29]
is a well-maintained C++-based library supporting skeletons such as Map,
MapReduce, MapArray, MapOverlap, Scan, Reduce, and Generate. SkePU
allows for execution of the skeletons on various architectures, including
multi-core. Parallel skeletons are useful for developing parallel algorithms in
a quick and efficient manner and they allow structured composition.

In this work we designed and implemented a Modelica library that call ex-
ternal C++ objects containing SkePU library code. This work also includes
some minor compiler extensions here made in the open-source OpenModelica
[71] compiler. We provide some measurements of using the Modelica-SkePU
library with examples from the SkePU test suite ported into Modelica. We
have concluded that this a good way of extending Modelica with parallel
skeleton programming capabilities in an efficient and relatively easy way.
We also discuss the limitations of our approach and compare our work
with related work and provide an outlook for the future. Generation of
fast parallel executable code from Modelica, as well as an adaption of the
OpenModelica/Modelica runtime system for parallel execution, has been a
research topic for several years in our research group.

124
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This chapter begins with a motivation on why skeleton programming is useful
followed by a description of the SkePU C++ library (version 1.1). This is
followed by a use case section with examples on how the Modelica-SkePU
library is to be used in the Modelica environment. Next is a description of
the implementation of the Modelica-SkePU library as well as the compiler
extensions. After this comes a measurement section followed by discussions.

11.2 Motivation

The PhD thesis [29] addresses issues associated with efficiently programming
modern heterogeneous GPU-based systems. The described SkePU library
is a skeleton programming library that makes intelligent implementation
decisions - at compile time or runtime - while providing high-level abstractions.
Algorithmic skeletons were first in introduced in 1989 in [68]. The idea
of using skeletons comes from the area of software composition; smaller
components can be used to compose larger software applications. When
using a skeleton one needs to provide the actual computation logic as a
parameter for the skeleton. The skeleton provides the mechanisms for
composition into a larger program but the actual computation logic must be
provided. Using skeletons has several advantages: re-use, compositionality,
maintainability, readability and usability.

11.3 SkePU - Autotunable Multi-Back-end Skele-
ton Programming Framework for Multi-
Core CPU and Multi-GPU Systems

SkePU is an open-source skeleton programming framework for multi-GPU
systems and multi-core CPUs. It has been developed as part of a research
project at PELAB, Link6ping University. Eight different skeletons are
supported in version 1.1: Map, Reduce, MapReduce, MapArray, MapOverlap,
Overlap, Scan, and Farm. Each skeleton has back-ends (implementations)
for sequential C, OpenMP, OpenCL, CUDA, and multi-GPU OpenCL as
well as CUDA. For more information on SkePU and skeleton programming
see [45, 46, 86, 85, 8, 28, 29]. Some examples of C++ code making use of
the SkePU library are given in Section 11.4 and in Section C.3.1.

11.3.1 Containers

SkePU provides its own data structures, containers, that are used together
with the skeletons (for instance SkePU Matrix and SkePU Vector).
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11.3.2 User Functions

SkePU provides user functions, that are basically C structs containing data
and functions, that can be used with the skeletons. The user can define his or
her own functions in a macro language. These macros are then automatically
expanded into the structs that contains data and functions for different
target architectures. This solution with user functions that are expanded
to different target architectures at compile time (by the pre-processor) is a
good way of writing target-independent code.

11.3.3 Skeletons
The following skeletons are included in the SkePU distribution 1.1.

e Map: Takes a user function at instantiation; this function is mapped
to each element of a container, resulting in a new container.

¢ Reduce: Takes a binary user function at instantiation; this function
is applied repeatedly on all elements of a container until all values have
been reduced to a scalar value.

e MapReduce: Similar to Reduce but takes an additional user function
that is applied to every pair of elements in a container before the
reduction with the Reduce function.

e MapOverlap: Each element of the result container is a function of
several adjacent elements of one input container that reside within a
certain constant maximum distance from i in the input container.

e MapArray: For two input containers it produces an output container
where each element of the resulting container is a function of the
corresponding element of one of the input containers and any number
of elements from the other input container.

e Scan: Takes a binary user function at instantiation, and for a given
input container, computes a new container where each element is the
result of applying the function on an increasing number of elements
from the input container.

e Generate: Takes a generate user function that is used for generating
the elements of a container.

11.4 Use Cases

In this section a description is provided of how the Modelica-SkePU library
is to be used. In other words, from the perspective of the end-user modeler.
We provide two Modelica use cases. More Modelica use cases can be found
in Section C.3.
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11.4.1 Use Case 1: Mainl

In Listing 11.1 C++ code is shown that makes use of the SkePU 1.1 library.
The corresponding Modelica code, which make use of the Modelica-SkePU
library, is shown in Listing 11.2.

In the C++ code in Listing 11.1, needed SkePU libraries are first included.
A SkePU macro function is defined, square_f, with macro type, name, return
type, parameter and function body. In the main function a skeleton-object
square of Map type is declared that takes the square_f name as template
parameter and a memory allocation of a square_f object to the constructor.
After this two SkePU containers, SkePU:Matriz, are declared. The square
skeleton-object is then applied to the two matrices and the result matrix is
printed.

The corresponding Modelica code is shown in Listing 11.2. The accom-
panying C++ function is shown in Listing 11.3. A function, macrol, is
shown with an external SkePU deceleration. The type of the macro as well
as the return type are provided as an annotation. In the main class code a
Map object and two containers are instantiated. An instantiation call to the
macro function is given in the algorithmic section. In the equation section
calls are made to an apply function and a printing function.

Listing 11.1: mainl C++

#include <iostream>
#include
#include

UNARY_FUNC (square_f, int, a,
return axa;

)

int main ()

{
skepu::Map<square_f > square(new square_f);
skepu::Matrix<int> m(5, 5, 3);
skepu::Matrix<int> r(5, 5);
square (m,r) ;
std::cout << << r << 5
return O;

}

Listing 11.2: mainl Modelica

// Map Ezample
function macrol
external square_f ();
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annotation(MacroType= ,Typel= )
end macrol;

class mainl
import skepu_matrix.*;
import skepu_modelica.*;

Map square = Map (funcName= E
SkePU_Matrix m = SkePU_Matrix(typel= ,dim1=5,dim2=5,
initValue=3.0);
SkePU_Matrix r = SkePU_Matrix(typel= ,dim1=5,dim2=5,
initValue=0.0);
algorithm
macrol () ;

equation
Map_MM(square ,m,r) ;
displayDataMatrix (r, )3
end mainl;

Listing 11.3: skepu_macro_functions.h

#define FUNC_NAME_UNARY1 square_f

// UNARY AND BINARY FUNCTIONS
/*UNARY_FUNC (square_f, double, a,
return a*a;
)*/
int square_f (double a)
{
return ax*a;

}

11.4.2 Use Case 2: SPH Fluid Dynamics

For a larger example see Listing 11.4, Smooth Particle Hydrodynamics (SPH).
The corresponding C++ user functions can be found in Listing C.27. In this
example, 6 user functions of different macro types are used; the interfaces
are listed first in 11.4. In the class, the different skeletons are instantiated
that make use of the user functions, as well as two vectors that are used
with the skeletons.

Listing 11.4: Smooth Particle Hydrodynamics (SPH), Fluid Dynamics Shocktube
simulation

// SPH Flutid Dynamics
function macrol3
external sph_init ();
annotation(MacroType= sTypel= ,Type2=
)

end macrol3;

function macroil4
external sph_assign();
annotation(MacroType= ,Typel= )
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end macroléd;

function macroilb
external sph_updatecell();
annotation(MacroType=
end macrolb;

function macroilé
external
annotation(MacroType=
end macrol6;

function macrol?
external sph_updateforce () ;
annotation(MacroType=
end macrol7;

function macroil8
external
annotation(MacroType=
end macrol8;

class SPH_Fluid_Dynamics
import skepu_matrix.*;
import skepu_modelica.*;

XYLEN
NTrials
XLEN

parameter
parameter
parameter
parameter
parameter
parameter Integer
parameter Integer
Generate sph_init
Generate (funcName=
Map sph_assign
Map (funcName=
MapArray sph_update_cell
MapArray (funcName=
MapArray sph_compute_density
MapArray (funcName=
MapArray sph_update_force
MapArray (funcName=
Map sph_update_position
Map (funcName=
SkePU_Vector fluidil
SkePU_Vector (typel=
dim1=NPARTICLES ,initValue=0.
SkePU_Vector fluid2
SkePU_Vector (typel=
)5

Integer
Integer
Integer
Integer
Integer

100;
3;
XYLEN;
YLEN XYLEN;
ZLEN = 1;
NPARTICLES
timesteps

100;
)
E

algorithm
macrol13();
macrol14 () ;
macrol5();
macrol6 () ;
macrol7 () ;
macrol18 () ;
for i in 0:NTrials-1 loop
Generate_V(sph_init,

MapArray_VVV (sph_update_cell,
fluid2,fluidl, fluidl,

for i in O:timesteps-1 loop
MapArray_VVV (sph_compute_density,

,Typel=

,Typel=

NPARTICLES, fluidl,
Map_VV(sph_assign,
fluidl,fluid2, )

sph_computedensity();
,Typel=

sph_updateposition();
,Typel=

XLEN*YLEN*ZLEN ;

>

0);

,dim1=NPARTICLES , initValue=0.0
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fluidl,fluid2,fluid2, E
MapArray_VVV (sph_update_force,
fluid2, fluidl, fluidl, 25
Map_VV (sph_update_position,
fluidl, fluidl, )
end for;
end for;
displayDataVector (fluidl, E
displayDataVector (fluid2, ) §
equation
end SPH_Fluid_Dynamics;

11.5 Implementation

C++ code, containing the creation and managing of external C++ objects,
is first compiled into a library file. The SkePU-Modelica library (contained
in two modelica files) calls upon external C++ functions contained in the
compiled library file (there is a C++ interface header file with function
decelerations). The user can then include the two SkePU-Modelica library
files and use the constructs contained in these files. The simplest option is to
then use an OpenModelica script file to launch the simulation and link the
compiled library file with the Modelica code. See Figure 11.1 for an overview
of the usage process.

11.5.1 Modelica-SkePU Library

Most of the code is in Modelica files and in external C++ files. Minor
changes have been made in the OpenModelica compiler; see the next section.

e skepu_cpp.cpp: This file contains the actual implementations of the
used C++ objects and functions. See Listing C.2.

e skepu_header.h: This file contains declarations of all the functions
in skepu_cpp.cpp. This is an interface needed for the linking process.
See Listing C.1

¢ skepu_macro_functions.h: This file contains the SkePU user func-
tions. The user of the Modelica-SkePU library must put his or her
SkePU user functions here. See Listing C.27.

e skepu_modelica.mo: This file contains the classes and functions that
implement SkePU skeletons in Modelica. However, actual SkePU
implementations of skeletons and functions implementations are called
using external C/C++ and external C/C++ objects. See Listing C.5.

e skepu_matrix.mo: This file contains implementations of matrix and
vector. See Listing C.4.
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Figure 11.1: Modelica-SkePU Library and Test Files

11.5.2 OpenModelica Compiler Extensions

Some minor compiler extensions have been made to handle the external
SkePU-macros.

¢ SimCode.mo: In union type Function a new data structure SkePU_MACRO
has been added for handling an external SkePU macro function.

e SimCodeUtil.mo: In elaborateFunctions?2 a new case has been added
for handling the external SkePU macros.

e CodegenC.tpl: In template function translateModel a call is made to
a new template function simulationSkePUMacros. From this template
function the new template function generateSkePUMacro is called. It
is here that the SkePU macros are generated from the SkePU_MACRO
constructs.

11.5.3 Implementation Status

The current Modelica-SkePU implementation has been verified on six code
examples from Chapter 3 of [28]: Map, MapReduce, Scan, Reduce, MapOver-
lap and MapArray, as well as in eight example programs from the SkePU
Version 1.1 test suite: Mandelbrot, LU Factorization, Mean Square Error
(MSE), Pearson Product-Moment Correlation Coefficient (PPMCC), Peak
Signal to Noise Ratio (PSNR), Taylor Series Calculation, Smooth Particle
Hydrodynamics (SPH) and A Runge-Kutta ODE solver. All of the example
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code has been manually ported into Modelica. The code can be found in
Section C.3. This is the implementation status of the Modelica-SkePU library
at the time of printing.

e Support for double and integer type. Weaker support for arbitrary
types, such as in Use Case 2 (Listing 11.4).

e There is a limit on the number of skeletons that can be used at the
same time. This has to do with the way the external objects are created
in C++.

e Not all the API functions in SkePU 1.1 have yet been ported.

11.6 Measurements

In this section certain measurements are provided. The current Modelica-
SkePU implementation has been verified the six code examples from Chapter
3 of [28]: Map, MapReduce, Scan, Reduce, MapOverlap, and MapArray,
as well as on eight example programs from the SkePU Version 1.1 test
suite: Mandelbrot, LU Factorization, Mean Square Error (MSE), Pearson
Product-Moment Correlation Coefficient (PPMCC), Peak Signal to Noise
Ratio (PSNR), Taylor Series Calculation, Smooth Particle Hydrodynamics
(SPH) and A Runge-Kutta ODE solver. All of the example code has been
manually ported into Modelica.

11.6.1 System Settings

The following system settings were used for the measurements.

e Linux version 3.10.10-1-ARCH (gcc version 4.8.1 20130725)

e 16 X: Intel Xeon CPU E5520 @ 2.27GHz Cache size 8192 KB
e SkePU Version 1.1

e OpenModelica 1.9.2 Revision 23433

11.6.2 Modelica-SkePU Test Suite Models - Serial

Two series of measurements were performed: serial C++-SkePU and serial
Modelica-SkePU. The measurements can be found in Section C.1.1. The
built-in C clock was used for both series of measurements. For the Modelica-
SkePU code, time measurements were inserted in the generated code that
computes the main algorithmic part of the program. The main reason for not
using the Linux time command for the Modelica-SkePU simulations was that
the simulations were run several times. This cannot be changed by modifying
the simulation settings since it is hard-coded in the OpenModelica runtime
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system that the right-hand side or algorithmic part might be computed
several times. Another reason was to avoid the process startup overhead
when using the Linux time command.

11.6.3 Modelica-SkePU Test Suite Models - Parallel

Two series of measurements were performed (for various sizes of data): serial
Modelica-SkePU and parallel Modelica-SkePU with OpenMP. The built in
C clock was used. Time measurements were inserted in the generated code
that computes the main algorithmic part of the program. Figures 11.2, 11.3,
11.4, 11.5, 11.6, 11.7, 11.8, and 11.9 show the execution time for the main
algorithmic part of the various models running Modelica-SkePU serial and
parallel with OpenMP. Figures 11.10, 11.11, 11.12, 11.13, 11.14, 11.15, 11.16,
and 11.17 show the relative speedup for the main algorithmic part of the
various models running Modelica-SkePU serial and parallel with OpenMP.
All the time measurements can also be found in Section C.1.2. According to
the Frequently Asked Questions (FAQ) section of the official SkePU webpage
[8], SkePU will run as many OpenMP threads as possible by default. See
Section 11.6.1 for system settings.
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Figure 11.2: Computation time for various data sizes, serial Modelica-SkePU
and Modelica-SkePU with OpenMP, Mandelbrot Fractals



134 Chapter 11. Using Parallel Skeletons from Modelica

20 T T T T T T T -

o & - serial 7

+OpenMP

&0 - B

BO -

40|

Time (5]

30

20+

0 I 1 I I I I I
200 300 400 [1ele] 600 700 500 200 1000
I
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Figure 11.5: Computation time for various data sizes, serial Modelica-SkePU and
Modelica-SkePU with OpenMP, Pearson Product-Moment Correlation Coefficient
(PPMCC)
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Figure 11.6: Computation time for various data sizes, serial Modelica-SkePU
and Modelica-SkePU with OpenMP, Peak Signal to Noise Ratio (PSNR)
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Figure 11.9: Computation time for various data sizes, serial Modelica-SkePU
and Modelica-SkePU with OpenMP, Runge-Kutta ODE Solver

11.7 Discussion

From the measurements section and Section C.1.1 it can be concluded that
the execution times for SkePU with C++ are comparable with using the
SkePU-Modelica library. However, some overhead for the Modelica-SkePU
code can be noted in Section C.1.1. This could potentially be due to the
fact that the generated code from the OpenModelica compiler is different in
structure than the manually hand-coded C++-SkePU code. SkePU-Modelica
is useful as an addition to the Modelica environment, providing new and
strong capabilities for (parallel) algorithm development. In other words in
cases when modeling and simulation are needed, SkePU-Modelica offers new
and powerful constructs. However, in many cases of computation, when
implementation is performed in C or C++, SkePU-C++ is enough. Please
also note that only the execution time of computing the main algorithmic
part was measured for the SkePU-Modelica code since C++ and Modelica
follow very different modes of execution.

From Figures 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, 11.8, and 11.9 and Sec-
tion it can be concluded that speedup can be gained for at least some of
the example codes when comparing Modelica-SkePU serial execution with
Modelica-SkePU OpenMP execution. This result was expected since the
same skeletons and containers are used. For some of the examples, such
as Mandelbrot Fractals and Smooth Particle Hydrodynamics (SPH), there
was not any significant improvement in execution time however. All the
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example models can be seen in Section C.3. According to the Frequently
Asked Questions (FAQ) section of the official SkePU webpage [8], SkePU
will run as many OpenMP threads as possible by default. See Section 11.6.1
for system settings. Please also note that only the execution time of com-
puting the main algorithmic part was measured for the SkePU-Modelica code.

In this chapter we have investigated using SkePU skeleton programming
with the equation-based modeling and simulation language Modelica using a
method with external C++ objects. Skeleton programming is advantageous
as parallelism and synchronization come almost for free for the skeleton based
expression. Furthermore we can leverage the target architectural features.
We described implementation and provided measurements of examples from
the SkePU 1.1 test suite ported into Modelica. To the best of our knowledge
this is the first attempt at merging skeleton programming with Modelica.
We believe that this holds promise for the future. More work is needed with
the Modelica-SkePU library for full coverage of the SkePU 1.1 library and
to remedy the short-comings described in Section 11.5.3.
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Figure 11.10: Relative speedup, Mandelbrot Fractals



11.7. Discussion 139

1.68 T T T T T T T *

Felative
Speedup

1165 @ =@ & .

1.1
200 300 400 [1ele] =00 F00 00 200 1000
M

Figure 11.11: Relative speedup, LU Decomposition

2115 T T T - T T
= @
211 F -
2106 F -
(=9
23
o 0 21 F i
wE
I n
2088 - -
2.09. -
o08E 1 1 1 1 1 1
06 0.5 1 1.2 1.4 16 15 2
FRows*Columns x10°

Figure 11.12: Relative speedup, Mean Squared Error (MSE)
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Chapter 12

Discussion

In this chapter the work described in the previous parts (I, IT, IIT and IV) of
this thesis are summarized and discussed. Let us first consider the research
questions from Chapter 1:

e Is it possible to simulate Modelica models with GPU architectures?
Will such simulations run at sufficient speed compared to simulation
on other architectures, for instance single- and multi-core CPUs? Are
GPUs beneficial for performance? What challenges are there in terms
of hardware limitations, memory limitations, etc.?

e What is the current state of PDE modeling in the context of Modelica?
What previous research has been done in this area and what are the
strengths and weaknesses of this previous research? What are the
strengths and weaknesses of the approach of connecting an external
(finite element) solver to the Modelica environment via the functional
mockup interface?

e What is the current state of skeleton programming in the context of
Modelica? What previous research has been done in this area and
what are the strengths and weaknesses of this previous research? What
are the strengths and weaknesses of the approach of implementing a
Modelica-SkePU library that calls external C++ (with some additional
minor changes in the OpenModelica compilation)?

GPU architectures in general are discussed in Section 12.1. Section 12.2
provides an attempt to answer the research question from Part 2, Chapter 1
(whether GPU architectures are suitable for parallel simulation of equation-
based models). In Section 12.3 the current state of PDE modeling in Modelica
and the implementation described in Part 3 of this thesis are discussed. In
Section 12.4 the current state of Skeleton programming with Modelica and
the implementation described in Part 4 of this thesis are discussed.

144
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12.1 What Kind of Problems are Graphics
Processing Units Suitable for?

It is important to note that GPUs have traditionally been used for han-
dling computer graphics computations. They are suitable for algorithms
where processing of large blocks of data is performed in a data-parallel fash-
ion. Initially GPUs were used for texture-mapping and polygon rendering,
geometric calculations (such as the rotation and translation of vertices), over-
sampling and interpolation techniques for reducing aliasing. Other examples
of applications that can be accelerated in video decoding include: motion
compensation, inverse discrete cosine transform, intra-frame prediction, bit
stream processing, inverse quantization (IQ), etc.. Applications that are
ideally suitable for GPUs have large data sets, high parallelism, and minimal
dependency between data elements. [6]

The advent of GPGPU has expanded the usage of GPUs to not just include
computer graphics calculations. This move into other fields of computations
has come from the observation that most computer graphics calculations
include computations of matrices and vectors. GPGPUs have been made
possible by the addition of stream processing on non-graphics data features,
which in turn have been made possible by the addition of programmable
stages and higher precision arithmetic to the rendering pipelines. Although
GPGPU and architectures/software platforms such as CUDA and OpenCL
have expanded the set of problems that GPUs can solve it is important to
note that GPUs are still mainly suitable for algorithms where processing of
large blocks of data is performed in parallel, i.e. data-parallelism.

12.2 Are Graphics Processing Units Suitable
for Simulating Equation-Based Modelica
Models?

The problem of simulating equation-based Modelica models is essentially one
of solving a system of differential equations, either in ODE or DAE form,
given initial values of the state variables, values of constants and parameters,
start time, stop time, time step, etc. (there is also the algorithmic part of
Modelica, see below for further information). The front-end and middle part
of a Modelica compiler removes all high-level structure of the model and we
essentially end up with an equation system that is to be solved at runtime.
When solving such an equation system on a computer a numerical method
for solution of ODEs is applied (solving it analytically in the general case
with a computer is not possible in practice). There are two categories of such
numerical methods that have been described in this thesis: time-stepping
based methods (e.g., Euler, Runge-Kutta, DASSL, etc.) and quantization of
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state methods (QSS).

With the classical time-stepping approach there is essentially a central
loop that usually is run on one computational node'. When using a system
containing GPUs this central loop is most suitable to run on the host CPU.
At each time step data must be gathered and distributed from the host
memory to the device memory to perform the time step computations, which
is time consuming. Another problem is simply that we need to distribute the
equation system over the GPU device architecture for computation at each
time step. However this is not an easy task since some parts of the equation
system might potentially depend on other parts of the equation system,
in fact in general this must be assumed. We must therefore communicate
between different parts of the distributed equation system and it is often not
clear as to how this can be accomplished in a cost-efficient manner. In the
approach of Chapter 6 this was done (when data between different streaming
multiprocessors needed to be sent) by synchronizing with the global memory,
which was very slow. The problem of solving a system of differential equa-
tions is not data-parallel in nature in the general case. Models that exhibit a
large degree of data-parallelism are suitable though, which is discussed below.

Yet another problem is that the equation system may contain algebraic
loops (simultaneous equation systems), in other words an additional solver
step must be applied to each such simultaneous equation system in each time
iteration. This could potentially be done on one streaming multiprocessor
for each simultaneous equation system. Even with a distributed solver ap-
proach, such as the approach described in [55], we have the same problem of
communication of data between different computations; the same notion still
holds, we are trying to solve a problem that is linear in nature on a highly
data-parallel architecture. The QSS-based method is somewhat more suit-
able for parallel computations and its suitability for GPUs is discussed below.

It is also important to note that in our work some of the more complex
features of Modelica have not been involved. Work has been limited to
models that result in purely continuous time equation systems. Hybrid
models have not been dealt with, in other words models that can contain
both continuous-time and discrete-time variables and language constructs.
For dealing with such models one approach could be to run the solver on
the host CPU, calculate the events there, and at each time step, compute
the equation system on the GPU device(s). Another approach is to use a
parallel QSS solver, which is more suitable for the parallel solution of hybrid
models [36].

There are also purely algorithmic models that consist of imperative code and

L An approach of inlining the solver and replicating code has also been tried, which was
described briefly in Chapter 2 and is described in more detail in [55]
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data-parallel models. These kinds of models are different from the above
and the previous discussion does not concern these models. This is instead
this is discussed below.

12.2.1 Discussion on the Various Approaches of Simu-
lating Modelica Models on GPUs

In this section the various approaches from the different chapters of the thesis
are discussed. It is important to note that although the general problem
of solving an ODE or DAE equation system may not be very data-parallel
in nature, there are important subsets of models that contain data-parallel
features where the use of GPUs is suitable.

o Simulation of Equation-Based Models with Task Graph Creation on
Graphics Processing Units: This approach might work for equation
systems where there is little dependency between different parts of
the equation system, where little communication is needed between
different streaming multiprocessors. However in the general case a
task graph arising from an equation-based models is not necessarily
data-parallel in nature, thus it is not easy to map a task graph for
execution with a GPU since communication between different parts
of the equation system is needed. Moreover, the volume of memory
transfers taking place between the CPU and the GPU might be time
consuming.

o Simulation of Equation-Based Models with Quantized State Systems
on Graphics Processing Units: The approach presented in this thesis
was an attempt to compile Modelica to QSS-based code on a GPU,
with a small and simplified model. Simulation times were poor because
of the volume of memory transfers taking place. Although QSS-based
simulations might be suitable for parallel executions we still have the
same problem with GPUs as with time-stepping methods: in general
the computation of the equation system is not a data-parallel task,
which GPUs are good at. Even with the QSS-based method, when
updating the states, the same equation system must be solved, even
though when to solve this equation system is different from a time-
stepping method. But the QSS methods have the advantage that each
state variable is computed more independently.

o TLM Component-Based Partitioning: The approach with TLM component-
based partitioning has not yet been tried with GPUs by our research
group PELAB. TLM-based component partitioning was described
briefly in Chapter 3. One approach could be to put each partitioned
sub-model on a streaming multiprocessor. The computations on the
streaming multiprocessors could run fairly independently given that
the partition of the original model results in sub-models that are rather
independent.
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o Compilation of Unexpanded Modelica Array Equations for Efficient
Simulation on Graphics Processing Units: In the work described in
Chapter 9 and Chapter 7 a restricted subset of Modelica models was
investigated. The main focus was on models that are data-parallel in
nature, or have features that are data-parallel in nature. GPUs are
suitable for these kind of models.

o Extending the Algorithmic Subset of Modelica with Ezplicit Paral-
lel Programming Constructs for Multi-core Simulation: In Chapter
8 purely algorithmic models that were data-parallel in nature were
investigated. GPUs are suitable for these kind of models.

12.3 Discussion on Modeling of Partial Differ-
ential Equations Modeling with Model-
ica

Rather extensive research has been carried out on the topic of PDEs in
the context of Modelica. The most notable work is [76]. This work was
carried out in the PELAB research group and the goal was to extend the core
Modelica language with constructs for PDE modeling as well as connecting
external PDE solvers. In Part 3 of this thesis an external C++ PDE solver
was connected with a Modelica environment via FMI thus opening up for
ODE/DAE and PDE systems to be modeled and simulated in the same
context. The approach in [76], however was a more extensive. Our approach
in this thesis has certain advantages.

e HiFlow3 is well maintained and has strong support and capabilities for
PDE modeling and solving,

e HiFlow3 and OpenModelica are free to download and use,

e The PDE structure is not lost but is maintained throughout the actual
runtime simulation process. This allows for mesh refinement, solver
runtime adjustments, etc.,

e PDE and DAE systems can be mixed in the same simulation setup.
This is also possible in [76].

The approach in [76] has many of the same advantages but the FEM
package in that work was not as extensive and well-maintained as HiFlow3.
Moreover, the FMI interface puts several limitations on communication with
DAE solving code and PDE solving code, limitations that are difficult to
remedy.



12.4. Discussion on Skeletons and Parallel Patterns in the context of
Modelica 149

12.4 Discussion on Skeletons and Parallel Pat-
terns in the context of Modelica

Using skeletons and parallel patterns in the context of Modelica is novel re-
search. In this work an approach with building a Modelica-library and calling
on C++-skeleton code via external C++ was used. A few language extensions
have also been approached, in other words changes in the OpenModelica
compiler. In the measurements section it was shown that 1.) the execution
times of running C++ with SkePU are comparable with Modelica with the
Modelica-SkePU library; and 2.) speedup can be gained by running Modelica
code with Modelica-SkePU and with OpenMP compared to without OpenMP.

In this chapter we have investigated using SkePU skeleton programming
with the equation-based modeling and simulation language Modelica, using a
method with external C++ objects. Skeleton programming is advantageous
as parallelism and synchronization comes almost for free for the skeleton-
based expression. Furthermore, we leverage the target architectural features.
We have described the implementation and provided measurements of exam-
ples from the SkePU 1.1 ported into Modelica. To the best of our knowledge,
this is the first attempt at merging skeleton programming with Modelica.
We believe that this holds promise for the future.

More work is needed with the Modelica-SkePU library for full coverage
of the SkePU 1.1 library. SkePU-Modelica is useful as an addition to the
Modelica environment: new and strong capabilities for algorithm develop-
ment. In other words in cases when modeling and simulation are needed,
SkePU-Modelica offers new and powerful constructs. However in many cases
of computation, SkePU-C++ is enough.



Chapter 13

Future Work

In this chapter future work from the previous parts (I, II, III and IV) of
this thesis is discussed. In Section 13.1 future work with simulation of
Modelica models on GPUs is discussed. In Section 13.2 future work with
PDE modeling in Modelica is discussed. In Section 13.3 future work of
Skeleton programming with Modelica is discussed.

13.1 Simulation of Modelica Models on GPUs

As discussed earlier, the general problem of solving an ODE or DAE equation
system may not be very data-parallel in nature. There are however important
subsets of models that contain data-parallel features where the use of GPUs
are suitable. These are mainly models that contain operations over large
arrays of state variables (or other variables). For such models it is suitable
to compile the array operations directly into GPU-based code. A related
approach is to search for data-parallelism in the resulting compiled equation
system, i.e. to reconstruct array operations from sets of similar operations
on scalar variables (array elements). However, it is more efficient for the
compiler to directly compile array operations than to later reconstruct them
from scalars.

One kind of Modelica model that could be of interest for simulation on
GPUs are models containing Partial Differential Equations (PDEs). The
Modelica language standard does not currently include constructs for model-
ing PDEs. However, such constructs were proposed in [76] where PDEs in
the context of Modelica were extensively discussed. Currently PDEs can be
modeled in Modelica via a discretization approach using for-equations; the
WaveEquationSample model in Listing 6.1 is an example of such a model.
These kind of models are almost always highly data-parallel in nature.

A possible area of interest in future work could be trying to classify the

150



13.2. PDE Modeling with Modelica 151

Modelica models that are suitable for simulation with GPUs, and those
models where a different simulation architecture would be more suitable. A
question then is whether this classification should be done by the front-end
part of the compiler, before all the structure is removed, or later in the
compilation process when the whole equation system is available as one
system. Applying machine-learning techniques could be an area of interest
in future work. With machine learning techniques computers use empirical
data to learn various behaviors. The goal would be to run OpenModelica
with many different models and the compiler could then learn what kind of
architecture is most suitable for a particular kind of model. [65]

It is important to note that GPGPU is rapidly evolving. CUDA for in-
stance, now supports function pointers, recursion, C++ templates, virtual
methods, etc. as noted in Chapter 2. But as David Black-Schaffer one of the
developers of OpenCL notes [30], the underlying hardware architecture is still
one optimized for data-parallel problems. He proposes the following check
list for determining whether an application is suitable for implementation on
GPUs.

e Is the application data-parallel?

Is the application computationally intensive?

e Do you want to avoid global synchronization?

e Does the application require considerable bandwidth?

e Is the use of small caches acceptable for the application?
e Does the application utilize single precision?’

Regarding the ongoing discussion of whether to use CPUs or GPUs, in
[87] it is claimed that the gap in performance between CPUs and GPUs is
overestimated and it is suggested that the performance gap can be decreased,
which is demonstrated for a set of example applications, provided the right
optimization techniques are applied to the CPU implementation. Perhaps
future generations of CPUs and GPUs will converge towards each other.

13.2 PDE Modeling with Modelica

Regarding future work on PDE modeling with Modelica.

e Discussions are ongoing regarding activating the PDE language exten-
sions that were presented in [76],

1For GPGPUs with good double precision support, which is becoming more and more
common, this check is not needed.
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e PDE language extensions have not yet been included in the Modelica
language specification, which hampers implementation efforts,

e More future effort should be put into work with connecting an exter-
nal C++ PDE solver (e.g. HiFlow3) to a Modelica environment, in
particular when it comes to multi-core computing.

In Part 4 of this thesis a method was investigated of incorporating PDEs
in the context of a Modelica model was investigated, by using FMI to import
a PDE solver from the finite element library HiFlow3. Numerical results
were obtained from two scenarios:

1. The distribution of heat in a piece of copper where the heat source was
controlled by a PID-controller.

2. A simple coupled model that invokes a force and measures the elasticity
deformation of a beam demoefficient.

The main advantages of this type of coupling include its simplicity and the
possibility of using existing solver technology on multi-core and distributed
memory architectures.

The results section contains certain runtime measurements of these parallel
computations, and comparisons to single-core computations were provided.
Induced by the need for compiling the PDE component into a dynamically
loaded shared object and loading it using the Modelica compiled model code,
limitations in the MPI library influenced parallel performance. However,
the speedup obtained is considerable in practical simulation, and the use
of distributed memory architectures is a clear advantage with respect to
memory, especially for large scale problems.

13.3 Skeleton and Parallel Pattern Program-
ming in the Context of Modelica

Regarding future work with skeleton and parallel-pattern programming in
the context of Modelica:

e It will be difficult to convince the Modelica language design group
to add language extensions with skeleton and parallel patterns to
the Modelica language specification. This because it has low priority
compared to many other things, PDE language extensions.

e Skeletons and parallel patterns are very suitable for use in the context
of Modelica when the modeler wishes to perform computationally-heavy
matrix and vector computations. The SkePU library for instance has
strong support for the use of multi-core architectures.

e In Part 4 measurements were provided showing the method suitable.
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13.3.1 Overview of the FastFlow Parallel Pattern Frame-
work

Fastflow is a C++ class library. The main idea of FastFlow is to pro-
vide application designers with suitable high-level, parallel programming
abstractions. A powerful runtime system comes with the implementation.
FastFlow has several advantages for the programmer, e.g. shorter time-to-
market, portability, efficiency and performance portability. FastFlow targets
streaming and data parallelism. FastFlow can be used both by application
programmers and system programmers. The application programmer can
select appropriate patterns from those provided. The task of the application
programmer is then to connect them to obtain a suitable streaming network.
The system programmer on the other hand, can use the low-level building
blocks to create new patterns. The system programmer can also use and
optimize the composition of existing patterns. In this way, new skeletons
can be built for a specific target platform. Designing FastFlow in different
layers has two main purposes: 1) to achieve flexibility and efficiency when
programming multi- and many-core platforms; 2) to promote high-level
parallel programming.

FastFlow is made up of three different layers.

e Building Blocks: This is the lowest level layer. It contains the wrapper
nodes derived from ffnode. These nodes allow existing code to be
embedded into parallel applications. This level also contains the one-
to-many, many-to-one and feedback combinators for connecting nodes
and routing data in different ways.

e Core Parallel Patterns: This is the next level after the building block
level. This level contains the pipeline and several forms of the task-farm
skeleton. The code from the building block level have been used to
implement these skeletons. The pipeline and task-farm skeleton can
then be nested and composed in different ways.

o High-Level Parallel Patterns: This is the top level layer and highest
level of abstraction. Example of patterns from this level are ParallelFor
Map, ParallelReduce, Stencil, ParallelSearch, MacroDataflow, DC and
Pool Evolution. The application programmer uses the pipeline and
task-farm core patterns for composition of the patterns available at
this level.

Application Examples

A brief example of the use of FastFlow is shown in the following two listings.

Listing 13.1: Run function of the HeatSolver class.
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#include <ff/pipeline.hpp>
using namespace ff;

int main() {
ff_pipeline pipe;

for (int i=0;i<nStages;++i) {
pipe.add_stage (new Stage());

if (pipe.run() and wait_end () <0)
return -1;

}

return O;

}

class Stage: public ff_node {
int svec_init () {
printf ("Stage \%dnn",get_my_id ());
return O;

}

void* svc(voidx* task) {
if (ff_node::get_my_id ()==0)
for (long i=0;i<ntasks;++i)
ff_send_out (i);
else printf ("Task=\’%dnn",(long)task);

return task;

Listing 13.2: Run function of the HeatSolver class.

#include <ff/farm.hpp>
using namespace ff;

int main() {
farm<>* farm;
std::vector<ff_node*> workers;

for(int i=0;i<nWorkers;++i)
workers .push_back (new Worker);

farm.add_workers (workers);
farm.add_emitter (new Emitter (nTasks));
farm.add_collector (new Collector);

if (farm.run and wait_end()<0)
return -1;

return O;

}

struct Emitter : public *node {
Emitter (int ntask):ntask(ntask)fg
int svc_init () f



13.3. Skeleton and Parallel Pattern Programming in the Context of Modeliza

printf ("Work Start\n");
}

void* svc(void *) {
long task = new task_t(ntask*);
return (voidx*)task;

}

long ntask;
};

struct Worker : public ff_node {
void* svc(void * task) {
// do something useful with the task

return task;
}
};

struct Collector : public ff_node {
void* svc(void* task) {
printf ("Task=%d\n",(long) task);

delete task;
return GO_ON;

void svc_end() { printf ("Done!\n"); }
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Appendix A

QSS Generated CUDA
Code

The following code examples contain the model-dependent part of the code
from the experiment presented in Chapter 5 with 8 state variables, where
three output variables are defined. The original Modelica model is in Listing
Al.

Listing A.1: Test Model

model Test_Model
parameter Integer N = 8;
input Real inputVars[1](start = 0.0);
Real stateVars[N](start = 0.0);
output Real outputVars[3];
equation
der (stateVars[1]) = N*N *x (-2.0xstateVars[1] +
stateVars[2] + inputVars[1]);
for i in 2:(N-1) loop
der (stateVars[i]) = N*N * (-2.0xstateVars[i] +
stateVars[i-1] + stateVars[i+1]);
end for;
der (stateVars[N]) = N * (stateVars[N-1] -
1000 * ((N+1)/N) * stateVars[N]);
outputVars[1] = stateVars[1];
outputVars [2] stateVars [4];
outputVars [3] stateVars [N];
end Test_Model;

Two output files are produced: model.h and model.cu. The first one is
a C-CUDA header file and contains the function prototypes of the routine
contained in the second one.

Listing A.2: Generated CUDA QSS Code

157



158 Chapter A. QSS Generated CUDA Code

/*********************************

% MODEL .H

KA A KA AA KKK AA KK KAAA KKK K]

#ifdef _MODEL_H

#define _MODEL_H

#define NUMBER_STATES 8

#define NUMBER_INPUTS 1

#define NUMBER_OUTPUT 3

#define NUMBER_EVENTS 10

#define SIMULATION_TIME 10

#define SIMULATION_STEP 0.001

/* Initializations */

void initializeSystem(float* x, float* u);
void initializeEvents(float* t, unsigned* i, float* v);

/* Derivative calculation */

__global__ void derivative

(float* dx, float* x, float* u, float* t, unsigned* c);
__device__ void dx7

(float* dx, float* x, float* u, float* t, unsigned* c);
__device__ void dx6

(float* dx, float* x, float* u, float* t, unsigned* @) §
__device__ void dx5

(float* dx, float* x, float* u, float* t, unsigned* c);
__device__ void dx4

(float* dx, float* x, float* u, float* t, unsigned* c);
__device__ void dx3

(float* dx, float* x, float* u, float* t, unsigned* c);
__device__ void dx2

(float* dx, float* x, float* u, float* t, unsigned* c);
__device__ void dx1

(float* dx, float* x, float* u, float* t, unsigned* c);
__device__ void dxO0

(float* dx, float* x, float* u, float* t
/* Output calculation */

unsigned* c);

__global__ void output

(float* y, float* x, float* u, float* t, unsigned* c);
__device__ void y2

(float* y, float* x, float* u, float* t, unsigned* c);
__device__ void y1

(float* y, float* x, float* u, float* t, unsigned* c);
__device__ void yO

(float* y, float* x, float* u, float* t, unsigned* c);
#endif

/K kKA KK KK KK KK KK KKK KK A KK KKK K KKK

* MODEL .CU
********************************/

#include

#include

/* Initializations */

void initializeSystem(float *x, float* u) {

int i;

u[0]=0.0;

for (i=0; i<NUMBER_STATES;i++) x[i]=0.0;
}
void initializeEvents(float* t, unsigned* i, float* v) {

t[0] = 1; i[0] = O0; v[0] = 1;

t[1] = 2; i[1] = 0; v[1] 0;

t [2] 3; i[2] = 0; v[2] 1;

t[3] = 4; i[3] = 0; v[3] = 0;

t[4] = 5; i[4] = 0; v[4] = 1;

t[5] = 6; i[5] = 0; v[5] = 0;

tle] = 7; i[6] = 0; v[6] = 1;

t[7] = 8; i[7] = 0; v[7] = 0;

t[8] = 9; i[8] = 0; v[8] = 1;

t[9] = 10;i[9] = 0; v[9] = 0;
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/* Derivative calculation */

__global__ void derivative

(float* dx, float* x, float* u, float* t, unsigned* c) {
int i = threadIdx.x;
switch (i) {

case 7: dx7(dx, x, u, t, c); break;
case 6: dx6(dx, x, u, t, c); break;
case 5: dx5(dx, x, u, t, c); break;
case 4: dx4(dx, x, u, t, c); break;
case 3: dx3(dx, x, u, t, c); break;
case 2: dx2(dx, x, u, t, c); break;
case 1: dx1(dx, x, u, t, c); break;
case 0: dx0(dx, x, u, t, c); break;
}

}

_device__ void dx7

(float* dx, float* x, float* u, float* t, unsigned* c) {
dx[7] = 8.0 * (x[6] - 1000 * 1.0625 * x[7]);

}

__device__ void dx6

(float* dx, float* x, float* u, float* t, unsigned* c) {
dx[6] = 16384.0 * (-2.0 * x[6] + x[5] + x[71);

}

__device__ void dxb

(float* dx, float* x, float* u, float* t, unsigned* c) {
dx[5] = 16384.0 * (-2.0 * x[5] + x[4] + x[6]);

}

__device__ void dx4

(float* dx, float* x, float* u, float* t, unsigned* c) {
dx[4] = 16384.0 * (-2.0 * x[4] + x[3] + x[5]);

}

__device__ void dx3

(float* dx, float* x, float* u, float* t, unsigned* c) {
dx[3] = 16384.0 * (-2.0 * x[3] + x[2] + x[4]);

}

__device__ void dx2

(float* dx, float* x, float* u, float* t, unsigned* c) {
dx[2] = 16384.0 * (-2.0 * x[2] + x[1] + x[3]1);

}
__device__ void dx1
(float* dx, float* x, float* u, float* t, unsigned* c) {
dx[1] = 16384.0 * (-2.0 * x[1] + x[0] + x[2]);
}
__device__ void dxO0
(float* dx, float* x, float* u, float* t, unsigned* c) {
dx[0] = 16384.0 * (-2.0 * x[0] + x[1] + ul[0]);
}
/* Output calculation */
__global__ void output
(float* y, float* x, float* u, float* t, unsigned* c) {
int i = threadIdx.x;
switch (i) {
case 2: y2(y, x, u, t, c); break;
case 1: yi(y, x, u, t, c); break;
case 0: yO(y, x, u, t, c); break;
}
}
__device__ void y2
(float* y, float* x, float* u, float* t, unsignedx* c) {
y[2] = x[7]1;
}
__device__ void yl
(float* y, float* x, float* u, float* t, unsigned* c) {
y[1]1 = x[3]1;

__device__ void yO
(float* y, float* x, float* u, float* t, unsignedx* c) {
y[0] = x[0];
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Appendix B

Partial Differential
Equation Modeling with
Modelica via FMI Import
of HiFlow3 C++
Components

The following code examples contain the Modelica-dependent part of the
code from the experiment presented in Part 4. The C/C++ code of the
Elasticity Solver (the HiFlow3 code) is omitted. We only show the Elasticity
Solver code, since the Heat Solver code follows a very similar approach.

Listing B.1: Code Structure

krsta@mina7:src> pwd

/home/krsta/SIMS2014paper/hiflow_modelica/
SIMS_14_stat_lin_elast_par/src

krsta@mina7:src> 1s

elasticity_solver Make.inc.template run.sh

fmu modelica sim

krsta@mina7:src> cd modelica/

krsta@mina7 :modelica> 1s

ElasticitySolver.mo ElasticitySolver.mos

krsta@mina?7:modelica> cd

krsta@mina7:src> cd elasticity_solver/

krsta@mina7:elasticity_solver> 1s

BEAM. inp elasticity_test.cc
membrane_modelica.inp elasticity_solver.cc
elasticity.xml testl.inp
elasticity_solver.h Makefile

test2.inp
krsta@mina7:elasticity_solver> cd
krsta@mina7:src> cd fmu/
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krsta@mina7:fmu> 1s
ElasticitySolver.c Makefile
include modelDescription.xml

Listing B.2: run.sh

#!/bin/bash

cd fmu; ./run.sh

cd

mkdir -p sim; cd sim

rm -rf *

cp ../elasticity_solver/elasticity.zxml
cp ../fmu/ElasticitySolver.fmu

cp ../modelica/ElasticitySolverx

/home/krsta/openmodelica/build/bin/omc ElasticitySolver.mos +s

Listing B.3: Make.inc.template

# use the MPI compiler wrapper to link MPI libraries.
CXX=mpicxx

# base directory of includes, libs etc, adjust to your machine
BASE_DIR=/home/krsta/local2

# HiFlow3 includes
HIFLOW_INC=-I$(BASE_DIR)/include/hiflow3 -I$(BASE_DIR)/include/
hiflow3/boost/tril

# metis graph partitioner include dir
METIS_INC=-I$(BASE_DIR)/include

# compiler flags
CXXFLAGS=$ (HIFLOW_INC) $(METIS_INC) -03 -fPIC

# linker flags
LDFLAGS=-L$ (BASE_DIR)/1lib -lhiflow -lmetis -fopenmp

Listing B.4: modelica/FlasticitySolver.mo

S SESeSeSSSaas
// ElasticitySolver
// FMI application with HiFlow™3 block for PDE solving.
7/
// Authors: Chen Song, Martin Wlotzka, Kristian Stavaker
// Main class
model ElasticitySolver
// HiFlow~3 component
ElasticitySolver_me_FMU hfBlock;

// Source for signals that should be constantly 0
Modelica.Blocks.Sources.Constant zeroSource(k=0.0);
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Real u_center(start=0.0);
Real force(start=10.0);

equation

connect (hfBlock.u_center, u_center);
connect (force ,hfBlock.force);

force = 10.0;
connect(thlock.der_stateVar,zeroSource.y);
connect (hfBlock.stateVar ,zeroSource.y) ;

end ElasticitySolver;

Listing B.5: modelica/ElasticitySolver.mos

loadModel (Modelica); getErrorString();

importFMU ( ); getErrorString();
loadFile ( ); getErrorString();
loadFile ( ); getErrorString();

instantiateModel (ElasticitySolver); getErrorString();
checkModel (ElasticitySolver); getErrorString();

simulate (ElasticitySolver ,startTime=0.0,stopTime=1.0,
numberOfIntervals=10, outputFormat= ,method= D
getErrorString () ;

//plot ({hfBlock.u,hfBlock.g,PI.u_s}); getErrorString();

Listing B.6: elasticitysolver/Makefile

include ../Make.inc
all: elasticity_test elasticity_solver.o test.so

elasticity_test: elasticity_test.o
$(CXX) -o elasticity_test elasticity_test.o -1d1

test.so: elasticity_solver.o

$(CXX) -shared -o test.so elasticity_solver.o $(LDFLAGS)

%.0t %.cc
$(CXX) $(CXXFLAGS) -o $@ -c $<

clean:
rm -f *.0 *.so *vtu *log *~ elasticity_test

Listing B.7: elasticitysolver/elasticity.aml

<Param>

<OutputPathAndPrefix>elasticity_test </OutputPathAndPrefix>

<Mesh>
<Filename >BEAM.inp</Filename >
<InitialRefLevel >4</InitialReflLevel >
</Mesh>
<LinearAlgebra>
<Platform>CPU</Platform>
<Implementation>Naive</Implementation>
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<MatrixFormat >CSR</MatrixFormat >
<MatrixFreePrecond >NOPRECOND </MatrixFreePrecond>
<Omega>2.5</0mega>
<ILU_P>2.5</ILU_P>

</LinearAlgebra>

<ElasticityModel >
<Density >2400</Density>
<young>17e9</young>
<poisson>0.2</poisson>
<gravity>9.81</gravity>

</ElasticityModel >

<QuadratureOrder >2</QuadratureOrder >

<FiniteElements >
<DisplacementDegree >1</DisplacementDegree >

</FiniteElements>

<Instationary>
<Solvelnstationary >0</Solvelnstationary>
<Method >CrankNicolson</Method>
<Timestep>0.05</Timestep>
<Endtime >3.0</Endtime >

</Instationary>

<Boundary >
<DirichletMateriall >14</DirichletMateriall>
<DirichletMaterial2>0</DirichletMaterial2>
<NeumannMateriall >12</NeumannMateriall >

</Boundary >

<LinearSolver>
<MaximumIterations >1000</MaximumIterations>
<AbsoluteTolerance >1.e-12</AbsoluteTolerance>
<RelativeTolerance >1.e-8</RelativeTolerance >
<Divergencelimit >1.e6</Divergencelimit >
<BasisSize >1000</BasisSize>
<Preconditioning>1</Preconditioning>
<UseILUPP>0</UseILUPP >

</LinearSolver >

<ILUPP>
<PreprocessingType >0</PreprocessingType >
<PreconditionerNumber >11</PreconditionerNumber >
<MaxMultilevels >20</MaxMultilevels >
<MemFactor >0.8</MemFactor >
<PivotThreshold >2.75</PivotThreshold>
<MinPivot >0.05</MinPivot >

</ILUPP>

<Backup>
<Restore>0</Restore>
<LastTimeStep>160</LastTimeStep>
<Filename >backup.hb5</Filename >
</Backup >
</Param>

Listing B.8: fmu/Makefile

include ../Make.inc

INC=-I./include -I../elasticity_solver

all: ElasticitySolver.fmu

ElasticitySolver.fmu: ElasticitySolver.so
rm -rf fmu

mkdir -p fmu/binaries/linux64
mkdir fmu/sources
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cp ElasticitySolver.so fmu/binaries/linux64/

cp elasticity_solver.cc fmu/sources/

cp elasticity_solver.h fmu/sources/

cp ElasticitySolver.c fmu/sources/

cp modelDescription.xml fmu/

cp ../elasticity_solver/membrane_modelica.inp fmu/
cp ../elasticity_solver/elasticity.xml fmu/

(cd fmu; zip -r ../ElasticitySolver.fmu x)

ElasticitySolver.so: ElasticitySolver.o elasticity_solver.o
$(CXX) -shared -Wl,-soname,ElasticitySolver.so -o $@ $+
)

ElasticitySolver.o: ElasticitySolver.c
$(CXX) $(CXXFLAGS) $(INC) -o $@ -c $<

elasticity_solver.o: elasticity_solver.cc
$(CXX) $(CXXFLAGS) -o $@ -c $<

clean:
rm -f *7 *.fmu *.so *.o0

$ (LDFLAGS

Listing B.9: frmu/modelDescription.zml

<?xml version= encoding= 7>
<fmiModelDescription

fmiVersion=

modelName=

modelIdentifier=

guid=

numberOfContinuousStates=

number0fEventIndicators= >

<ModelVariables >

<ScalarVariable name= valueReference=
description= causality=
<Real/>

</ScalarVariable >

<ScalarVariable name= valueReference=
description= causality=
<Real/>

</ScalarVariable>

<ScalarVariable name= valueReference=
description= causality= >
<Real/>

</ScalarVariable>

<ScalarVariable name= valueReference=
description= causality= >
<Real/>

</ScalarVariable>

</ModelVariables >

</fmiModelDescription>

Listing B.10: fmu/ElasticitySolver.c

* Sample implementation of an FMU - a bouncing ball.

* This demonstrates the use of state events and reinit of states.

* Equations:
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*
*

/7
#d
#d

/7
#d
#d
#d
#d
#d
#d

/7
#i

ex
#i
}

//
/7
//
//
//
//
/7
//
#d
#d
#d
#d

/7
/7
#d

/7
/7
/7
/7
/7

Vo

}

/7
Va4
fm

V4
//
fm

(c) 2010 QTronic GmbH

define class mame and unique id
efine MODEL_IDENTIFIER ElasticitySolver
efine MODEL_GUID

define model size
efine NUMBER_OF_REALS 4
efine NUMBER_OF_INTEGERS O
efine NUMBER_OF_BOOLEANS O
efine NUMBER_OF_STRINGS O
efine NUMBER_OF_STATES 1
efine NUMBER_OF_EVENT_INDICATORS 0

include fmu header files, typedefs and macros
nclude
tern {
nclude
define all model wariables and their value references

conventions used here:

- 4f = is a wariable,

then macro z_ s w1ts wariable reference

- the wvr of a wariable s its index in array

r, %, b or s
- 4f k is the vr of a real state, then k+1 is
the vr of its derivative

efine u_center_ 0

efine force_ 1

efine stateVar_ 2

efine der_stateVar_ 3

define initial state wvector as wvector
of walue references
efine STATES { stateVar_ 1}

called by fmilInstantiateModel

Set walues for all wvariables that define

a start value

Settings used unless changed by

fmiSetX before fmilInitialize
id setStartValues(ModelInstance *comp) {
r(u_center_) = 0.0;
r(force_) = 0.0;
r(stateVar_) = 0
r(der_stateVar_)

H

.0
=0.0;

called by fmiGetReal, fmiGetContinuousStates

and fmiGetDerivatives
iReal getReal(ModelInstance* comp, fmiValueReference vr){
switch(vr) {
case u_center_:

return (fmiReal)HiFlow3_PDE_COMPONENT (0,NULL,r(force_));

case force_: return r(force_);
case stateVar_: return r(stateVar_);
case der_stateVar_: return r(der_stateVar_);
default: return 0.0;
}
}

called by fmiGetReal, fmiGetContinuousStates and
fmiGetDerivatives
iReal getInteger (ModelInstance* comp, fmiValueReference vr){
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return O;

}

// called by fmilInitialize() after setting eventInfo to defaults
// Used to set the first time event, if any.
void initialize(ModelInstance* comp, fmiEventInfo* eventInfo) {
/* eventInfo->upcomingTimeEvent = fmiTrue;
eventInfo->nextEventTime = 0.1 + comp->time;*/

}

// Used to set the nexzt time event, if any.

void eventUpdate (ModelInstance* comp, fmiEventInfo* eventInfo) {
/%4 (counter_) += 1;
r(u_)=(fmiReal)preRun (0, NULL,r(g_),r(t_));

if (i(counter_) == 1000)
eventInfo->terminateSimulation = fmiTrue;
else {
eventInfo->upcomingTimeEvent = fmiTrue;
eventInfo->nextEventTime = 0.1 + r(t_);
Fx/

}

// include code that implements the FMI based
// on the above definitions

extern {

#include

}




Appendix C

Modelica-SkePU Library
Code

C.1 Modelica-SkePU Library Code

C.1.1 Modelica-SkePU Test Suite Models - Serial
Mandelbrot Fractals

Parameters width 4000 and height 3000.
C++-SkePU 0.927197s | 0.93655s | 0.936864s
Modelica-SkePU | 1.738816s | 1.690458s | 1.744684s

LU Factorization

Parameter N 1000.
C++4-SkePU 1m 36.18017s | 1m 36.17789s | 1m 36.14924s

Modelica-SkePU | 1m 36.07740s | 1m 36.11069s | 1m 36.11236s

Mean Square Error (MSE)

Parameters rows 1600 and cols 1200.
C++4-SkePU 0.1193780s 0.1138280s 0.113955s

Modelica-SkePU | 0.08788500s | 0.08790700s | 0.08786200s

Pearson Product-Moment Correlation Coefficient (PPMCC)

Parameter N 50000.
C++4-SkePU 0.010036s 0.012182s 0.010055s

Modelica-SkePU | 0.00656400s | 0.00590200s | 0.0058400s

168
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Peak Signal to Noise Ratio (PSNR)

Parameters rows 1600 and cols 1200

C++-SkePU 0.1088490s 0.110301s 0.108632s
Modelica-SkePU | 0.08850200s | 0.08794100s | 0.08845300s
Taylor Series Calculation
Parameter N 100000.
C++-SkePU 0.0138850s 0.012422s 0.013897s
Modelica-SkePU | 0.00950500s | 0.00940400s | 0.00939900s

Smooth Particle Hydrodynamics (SPH), Fluid Dynamics Shock-
tube simulation

Parameter XYLEN 30, timesteps = 100, NTRIALS = 3.
C++-SkePU 2.423772s | 2.423721s | 2.423851s
Modelica-SkePU | 7.29832s 7.291270s | 7.296242s

A Runge-Kutta ODE solver

Parameters N 16, H 4, DOPRI5, BRUSS2D-MIX.
C++ 0.001951s | 0.001957s | 0.001944s
Modelica-SkePU | 0.504022s | 0.512004s | 0.517614s

C.1.2 Modelica-SkePU Test Suite Models - Parallel
Mandelbrot Fractals
Parameters width 1000 and height 1000.

OPENMP:
SERIAL:

1.379900e-01
1.471710e-01

1.353170e-01
1.471210e-01

1.372530e-01
1.466670e-01

Parameters width 2500 and height 2000.

OPENMP:
SERIAL:

6.810950e-01
7.368220e-01

6.806280e-01
7.346270e-01

6.855220e-01
7.375890e-01

Parameters width 4000 and height 3000.

OPENMP: | 1.647204e+00 | 1.602092e+-00
SERIAL: 1.754251e+-00 | 1.812344e+00
Parameters width 5500 and height 4000.

1.655988e+-00
1.798421e+-00

OPENMP:
SERIAL:

2.969644e+00
3.220907e4-00

2.950355e+-00
3.253921e4-00

2.983768e+00
3.261657e+00
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LU Factorization

Parameter N 250.

OPENMP:
SERIAL:

1.305080e+-00
1.501272e+4-00

1.305720e+4-00
1.501086e+-00

1.305917e4-00
1.500983e+-00

Parameter N 500.

OPENMP:
SERIAL:

1.044757e+4-01
1.198756e+-01

1.045716e+01
1.198806e+-01

1.045651e4-01
1.198762e+-01

Parameter N 750.

OPENMP:
SERIAL:

3.539186e+-01
4.058260e+01

3.541675e+01
4.058430e+01

3.542214e+01
4.056709e4-01

Parameter N 1000.

OPENMP:
SERIAL:

5.103503e+01
7.722086e+01

5.104907e+01
7.721975e+01

5.104988e+01
7.722822e+01

Mean Square Error (MSE)

Parameters rows 1000 and cols 600.

OPENMP:
SERIAL:

1.303000e-02
2.744800e-02

1.299300e-02
2.743200e-02

1.336500e-02
2.741200e-02

Parameters rows 1200 and cols 800.

OPENMP:
SERIAL:

2.097000e-02
4.407000e-02

2.084800e-02
4.407200e-02

2.082600e-02
4.408900e-02

Parameters rows 1400 and cols 1000.

OPENMP:
SERIAL:

3.049500e-02
6.426000e-02

3.037600e-02
6.420300e-02

3.027100e-02
6.421400e-02

Parameters rows 1600 and cols 1200.

OPENMP:
SERIAL:

4.183100e-02
8.791300e-02

4.155200e-02
8.796500e-02

4.158500e-02
8.803600e-02

Pearson Product-Moment Correlation Coefficient (PPMCC)

Parameter N 30000.

OPENMP:
SERIAL:

1.920000e-04
3.503000e-03

1.920000e-04
3.466000e-03

1.910000e-04
3.460000e-03

Parameter N 40000.

OPENMP:
SERIAL:

2.790000e-04
5.094000e-03

2.530000e-04
4.616000e-03

2.520000e-04
4.627000e-03
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Parameter N 50000.

OPENMP:
SERIAL:

4.950000e-04
5.728000e-03

4.930000e-04
5.889000e-03

4.930000e-04
5.769000e-03

Parameter N 60000.

OPENMP:
SERIAL:

6.230000e-04
6.971000e-03

5.850000e-04
6.954000e-03

5.920000e-04
6.834000e-03

Peak Signal to Noise Ratio (PSNR)

Parameters rows 1000 and cols 600.

OPENMP:
SERIAL:

1.306200e-02
2.745600e-02

1.302500e-02
2.751400e-02

1.301000e-02
2.752900e-02

Parameters rows 1200 and cols 800.

OPENMP:
SERIAL:

2.087800e-02
4.402400e-02

2.084400e-02
4.404000e-02

2.081600e-02
4.406600e-02

Parameters rows 1400 and cols 1000.

OPENMP:
SERIAL:

3.035200e-02
6.421400e-02

3.027400e-02
6.414200e-02

3.028400e-02
6.415400e-02

Parameters rows 1600 and cols 1200.

OPENMP:
SERIAL:

4.190200e-02
8.801100e-02

4.171100e-02
8.912000e-02

4.176000e-02
8.804000e-02

Taylor Series Calculation

Parameter N 50000.

OPENMP:
SERIAL:

1.219000e-03
6.297000e-03

1.228000e-03
5.282000e-03

1.218000e-03
4.927000e-03

Parameter N 75000.

OPENMP:
SERIAL:

1.601000e-03
8.578000e-03

1.638000e-03
6.982000e-03

1.683000e-03
7.054000e-03

Parameter N 100000.

OPENMP:
SERIAL:

2.570000e-03
9.687000e-03

2.478000e-03
9.744000e-03

2.421000e-03
9.849000e-03

Parameter N 125000.

OPENMP:
SERIAL:

3.190000e-03
1.130200e-02

3.090000e-03
1.189900e-02

3.007000e-03
1.116600e-02
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Smooth Particle Hydrodynamics (SPH), Fluid Dynamics Shock-

tube simulation

Parameter XYLEN 15, timesteps = 100, NTRIALS = 3.

OPENMP:
SERIAL:

4.638850e-01
4.778220e-01

4.611760e-01
4.765230e-01

4.611330e-01
4.741000e-01

Parameter XYLEN 20, timesteps = 100, NTRIALS = 3.

OPENMP:
SERIAL:

1.450278e+-00
1.441323e+4-00

1.445756e+4-00
1.485951e+4-00

1.446441e+4-00
1.482929e+-00

Parameter XYLEN 25, timesteps = 100, NTRIALS = 3.

OPENMP:
SERIAL:

3.574688e4-00
3.529829¢4-00

3.562569e4-00
3.522551e+-00

3.561548e+-00
3.523077e+00

Parameter XYLEN 30, timesteps = 100, NTRIALS = 3.

OPENMP:
SERIAL:

7.415329e+00
7.334901e+00

7.409102e+00
7.330488e+00

7.407670e+00
7.338122e+00

A Runge-Kutta ODE solver
Parameters N 8, H 4, DOPRI5, BRUSS2D-MIX.

OPENMP:
SERIAL:

3.132000e-02
1.085340e-01

2.804500e-02
1.092920e-01

2.957600e-02
1.096190e-01

Parameters N 12, H 4, DOPRI5, BRUSS

2D-MIX.

OPENMP:
SERIAL:

3.893900e-02
2.254880e-01

3.933800e-02
2.217240e-01

4.287900e-02
2.197470e-01

Parameters N 16, H 4, DOPRI5, BRUSS2

D-MIX.

OPENMP:
SERIAL:

5.408900e-02
4.788900e-01

5.603100e-02
4.818230e-01

5.290500e-02
4.716120e-01

Parameters N 20, H 4, DOPRI5, BRUSS2

D-MIX.

OPENMP:

SERIAL:

7.059900e-02
7.420770e-01

7.559600e-02
7.336770e-01

6.442000e-02
7.719100e-01

C.2 Modelica-SkePU Library Code

Listing C.1: skepupeader.h C++

[/ KA KA KKK KK KKK KKK KA KK KKK KKK K KKK KKK KKK KKK K KKK KR KKK KKK KKK KK KKK KKK K

// skepu_header.h

// Author:

Kristian Stavaker,

kristian. st

avaker@liu.se
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// Description: Header file that can be read by both C and C++.
/A A AR KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK
//#define SKEPU_OPENMP

#ifndef EXTERNAL_CODE_H
#define EXTERNAL_CODE_H

#ifdef __cplusplus
extern
#endif

#if defined(__STDC__) || defined(__cplusplus)

extern void* initMyMatrix (char* typel,int diml, int dim2, double
initValue) ;

extern void closeMyMatrix(void* object);

extern void* initMyVector (char* typel,int diml, double initValue);

extern void closeMyVector (void* object);

extern double getMatrixElement (void* object, int al, int a2);

extern double getVectorElement(void* object, int al);

extern void assignMatrixElement (void* object, int al, int a2, double
elem) ;

extern void assignVectorElement (void* object, int al, double elem);

extern void vectorUpdatehost(void *object);

extern void displayDataVector (void* object,char* typel);

extern void displayDataMatrix(void* object,char* typel);

extern void* initMyReduce (char* funcName);

extern void closeMyReduce(void* object);

extern void* initMyMapReduce (char* funcNamel, char* funcName2);

extern void closeMyMapReduce (void* object);

extern void* initMyScan(char* funcName) ;

extern void closeMyScan(void* object) ;

extern void* initMyMap(char* funcName);

extern void closeMyMap(void* object);

extern void* initMyMapArray(char* funcName);

extern void closeMyMapArray(void* object);

extern void* initMyMapOverlap(char* funcName) ;

extern void closeMyMapOverlap(void* object);

extern void* initMyGenerate (char* funcName) ;

extern void closeMyGenerate(void* object);

extern void SkePU_Map_builtin_externalMdouble(void* objectl, voidx
object2, void* object3);

extern void SkePU_Map_builtin_externalVldouble(void* objectl, voidx*
object2);

extern void SkePU_Map_builtin_externalVdouble(void* objectl, voidx
object2, void* object3, char* typel);

extern void SkePU_Map_builtin_externalV2double(void* objectl, voidx*
object2, void* object3, void* object4, char* typel);

extern void SkePU_Map_builtin_setConstant (voidx* objectl, double vall
)

extern void SkePU_MapArray_builtin_externalVdouble(void* objectl,
void* object2, void* object3, void* object4d, char* typel);

extern void SkePU_MapArray_builtin_externalVMMdouble (void* objectl,
void* object2, void* object3, void* object4);

extern void SkePU_MapDverlap_builtin_externalVdouble(void* objectl,
void* object2, double object3, void* object4);

extern void SkePU_Scan_builtin_externalVdouble (void* objectl, voidx*
object2, void* object3d);

extern double SkePU_MapReduce_builtin_externaIVdouble(void* objectl,
void* object2, void* object3);

extern double SkePU_MapReduce_builtin_externalVidouble(void* objectl
, double inVal, void* object3);

extern double SkePU_MapReduce_builtin_externalMdouble(void* objectl,
void* object2, void* object3);

extern double SkePU_Reduce_builtin_externalMdouble (void* objectl,
void* object2);

extern double SkePU_Reduce_builtin_externalVdouble (void* objectl,
void* object2);
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extern void SkePU_Generate_builtin_externalVdouble(int numElem, void
* objectl, void* object2, char* typel);

extern void SkePU_Generate_builtin_setConstant (void* objectl,int
elem) ;

extern double getRandNum();

#else

extern void* initMyMatrix (char* typel,int diml, int dim2, double
initValue) ;

extern void closeMyMatrix(void#* object);

extern void* initMyVector (char* typel,int diml, double initValue);

extern void closeMyVector (void* object);

extern double getMatrixElement(void* object, int al, int a2);

extern double getVectorElement (void* object, int al);

extern void assignMatrixElement (void* object, int al, int a2, double
elem) ;

extern void assignVectorElement(void* object, int al, double elem);

extern void vectorUpdatehost(void *object);

extern void displayDataVector (void* object,char* typel);

extern void displayDataMatrix(void* object,char* typel);

extern voidx* initMyReduce(char* funcName) ;

extern void closeMyReduce(void* object);

extern void* initMyMapReduce (char* funcNamel, char* funcName2);

extern void closeMyMapReduce(void* object);

extern void* initMyScan(char* funcName) ;

extern void closeMyScan(void* object);

extern void* initMyMap (char* funcName);

extern void closeMyMap(void* object);

extern void* initMyMapArray(char* funcName) ;

extern void closeMyMapArray(void#* object);

extern void* initMyMapOverlap(char* funcName) ;

extern void closeMyMapOverlap(void* object) ;

extern void* initMyGenerate (char* funcName);

extern void closeMyGenerate(void* object);

extern void SkePU_Map_builtin_externalMdouble (voidx* objectl, voidx
object2, void* object3);

extern void SkePU_Map_builtin_externalVidouble (void* objectl, voidx*
object2);

extern void SkePU_Map_builtin_externalVdouble(void* objectl, voidx
object2, void* object3, char* typel);

extern void SkePU_Map_builtin_externalV2double(void* objectl, voidx
object2, void* object3, void* object4, char* typel);

extern void SkePU_Map_builtin_setConstant(void* objectl, double vall
)

extern void SkePU_MapArray_builtin_externalVdouble(void* objectl,
void* object2, void* object3, void* object4, char* typel);

extern void SkePU_MapArray_builtin_externalVMMdouble (void* objectl,
void* object2, void* object3, void* object4);

extern void SkePU_MapOverlap_builtin_externalVdouble (void* objectl,
void* object2, double object3, void* object4);

extern void SkePU_Scan_builtin_externalVdouble (void* objectl, voidx
object2, void* object3);

extern double SkePU_MapReduce_builtin_externalVdouble(void* objectl,
void* object2, void* object3);

extern double SkePU_MapReduce_builtin_externalVldouble(void* objectl
, double inVal, void* object3);

extern double SkePU_MapReduce_builtin_externalMdouble(void* objectl,
void* object2, void* object3);

extern double SkePU_Reduce_builtin_externalMdouble (voidx objectl,
void* object2);

extern double SkePU_Reduce_builtin_externalVdouble(void* objectl,
void* object2);

extern void SkePU_Generate_builtin_externalVdouble(int numElem, void
* objectl, void* object2, char* typel);

extern void SkePU_Generate_builtin_setConstant (void* objectl,int
elem);

extern double getRandNum() ;

#endif
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#ifdef __cplusplus

}
#endif

#endif /*EXTERNAL_CODE_Hx*/

Listing C.2: skepucpp.cpp C++

/[ KA A KK KK KKK KKK KA KK KK KKK KK KKK KKK KKK KKK K KKK KKK KKK KKK K KKK KKK K
// skepu_cpp.cpp

// Author: Kristian Stavaker, kristian.stavaker@liu.se

// Description: C++ file that uses the C++ SkePU library

/[ KA KA o KKK KKK KKK KR KK KKK KKK K KKK oK KK K K K KK KKK o K K K K K K K KK kK K
#include <iostream>

//#define SKEPU_OPENMP

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#define QUOTE (abc) \
QUOTE2 (abc)

#define QUOTE2(abc) \
#abc

class myStruct {
public:
void x*skel;
int funcNuml;
int funcNum?2;

3

// MATRIX AND VECTOR FUNCTIONS
void* initMyMatrix (char* typel, int diml, int dim2, double initValue)
{

void *m;

175

if (!strcmp(typel, )) m = new skepu::Matrix<double>(diml,dim2

,initValue) ;

if (!strcmp(typel, )) m = new skepu::Matrix<int>(dimil,dim2,0);

if (!strcmp(typel,QUOTE(TYPE_NAME1))) m = new skepu::Matrix<
TYPE_NAME1 >(diml,dim2) ;

if (!strcmp(typel,QUOTE(TYPE_NAME2))) m
TYPE_NAME2>(diml,dim2) ;

new skepu::Matrix<

if ( m == NULL ) std::cout <<

<< std::endl;
// Tead table from file and store all data in *table
return (void*) m;

}

void closeMyMatrix(void* object) { /* Release table storage */
free(object);
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}

void* initMyVector (char* typel, int diml, double initValue) {
void *v;

if (!strcmp(typel, )) v = new skepu::Vector<double>(diml,
initValue);
if (!strcmp(typel, )) v = new skepu::Vector<int>(diml,0);

if (!strcmp(typel,QUOTE(TYPE_NAME1))) v = new skepu::Vector<
TYPE_NAME1>(diml) ;

if (!strcmp(typel,QUOTE(TYPE_NAME2))) v
TYPE_NAME2>(diml) ;

new skepu::Vector<

if ( v == NULL ) std::cout <<

<< std::endl;
// read table from file and store all data in *table
return (voidx*) v;

}

void closeMyVector (void* object) { /* Release table storage */
free(object);

}

double getMatrixElement (void* object, int al, int a2) {
skepu::Matrix<double>* mat = (skepu::Matrix<double>*) object;

return (*mat) [al,a2];

}

double getVectorElement (void* object, int al) {
skepu::Vector<double>* vec = (skepu::Vector<double>*) object;

return (*vec) [all;

}

void assignMatrixElement (void* object, int al, int a2, double elem) {
skepu::Matrix<double> *mat = (skepu::Matrix<double>*) object;
(*mat) [al,a2] = elem;

}

void assignVectorElement(void* object, int al, double elem) {
skepu::Vector<double> *vec = (skepu::Vector<double>*) object;
(*vec) [al] = elem;

}

void displayDataVector (void* object,char* typel) {

if (!strcmp(typel, ))
std::cout << << *((skepu::Vector<double>*)object) <<
if (!strcmp(typel, ))
std::cout << << *((skepu::Vector<int>*)object) << 8

if (!strcmp(typel,QUOTE (TYPE_NAME1)))
{

skepu::Vector <TYPE_NAME1>* m;
m = (skepu::Vector<TYPE_NAME1>*)object;

for (int j=0; j<m->size(); j++)

{
TYPE_NAME1 p=(*m) [j];
std::cout<<std::setw(15)<<p.id<<std::setw(15)<<p.x<<std::setw
(15) <<p.y<<std::setw(15)<<p.z<<std::setw(15)<<p.ax<<std::
setw (15) <<p.ay<<std::setw(15)<<p.az<<std::setw(15)<<p.vx<<
std::setw (15)<<p.vy<<std::setw(15)<<p.vz<< ;
}
}

if (!strcmp(typel,QUOTE (TYPE_NAME2)))
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{
skepu::Vector <TYPE_NAME2>* m;
m = (skepu::Vector <TYPE_NAME2>*)object;
for (int j=0; j<m->size(); j++)
{
TYPE_NAME2 p=(*m) [j];
std::cout<<std::fixed<<std::setprecision (6)<<p.x<<
<<std::fixed<<std::setprecision (6)<<p.y<<
<<std::fixed<<std::setprecision (6)<<p.z<< g
std::cout << g
}
std::cout << 8
}
}
void displayDataMatrix(void* object,char* typel) {
if (!strcmp(typel, ))
std::cout << << *((skepu::Matrix<double>*)object) <<
if (!strcmp(typel, ))
std::cout << << *((skepu::Matrix<int>*)object) <<
if (!strcmp(typel,QUOTE (TYPE_NAME1)));
//std::cout << "Result: " << *((skepu::Vector<TYPE_NAME1>*)object)
<< Il\nfl;
if (!strcmp(typel, QUOTE(TYPE_NAME2))) ;
//std::cout << "Result: " << *((skepu::Vector<TYPE_NAME2>*)object)
<< u\nrr;

{
}

{

}

{

double getRandNum ()

return rand();

void vectorUpdatehost(void *object)

skepu::Vector <TYPE_NAME2> *vec = (skepu::Vector <TYPE_NAME2>*) object

vec->updateHost () ;

int getFuncNum(char* funcName)

if (!strcmp(funcName , QUOTE (FUNC_NAME_GENERATE1))) return
if (!strcmp(funcName , QUOTE (FUNC_NAME_GENERATE2))) return
if (!strcmp(funcName , QUOTE (FUNC_NAME_GENERATE3))) return
if (!strcmp(funcName , QUOTE (FUNC_NAME_GENERATE4))) return
if (!strcmp(funcName , QUOTE (FUNC_NAME_GENERATE5))) return
if (!strcmp(funcName , QUOTE (FUNC_NAME_GENERATE6))) return
if (!strcmp(funcName , QUOTE (FUNC_NAME_GENERATE7))) return
if (!strcmp(funcName , QUOTE (FUNC_NAME_GENERATE8))) return
if (!strcmp(funcName , QUOTE (FUNC_NAME_GENERATE9))) return 9;

if (!strcmp(funcName , QUOTE (FUNC_NAME_GENERATE10))) return 10;

OO0 NS WN -

if (!strcmp(funcName , QUOTE (FUNC_NAME_OVERLAP1))) return 11;
if (!strcmp(funcName , QUOTE (FUNC_NAME_OVERLAP2))) return 12;
if (!strcmp(funcName , QUOTE (FUNC_NAME_OVERLAP3))) return 13;
if (!strcmp(funcName , QUOTE (FUNC_NAME_OVERLAP4))) return 14;
if (!strcmp(funcName , QUOTE (FUNC_NAME_OVERLAP5))) return 15;
if (!strcmp(funcName , QUOTE (FUNC_NAME_OVERLAP6))) return 16;
if (!strcmp(funcName , QUOTE (FUNC_NAME_OVERLAP7))) return 17;
if (!strcmp(funcName , QUOTE (FUNC_NAME_OVERLAP8))) return 18;
if (!strcmp(funcName , QUOTE (FUNC_NAME_OVERLAP9))) return 19;
if (!strcmp(funcName , QUOTE (FUNC_NAME_OVERLAP10))) return 20;
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if (!strcmp(funcName , QUOTE (FUNC_NAME_ARRAY1))) return 21;
if (!strcmp(funcName , QUOTE (FUNC_NAME_ARRAY2))) return 22;
if (!strcmp(funcName , QUOTE (FUNC_NAME_ARRAY3))) return 23;
if (!strcmp(funcName , QUOTE (FUNC_NAME_ARRAY4))) return 24;
if (!strcmp(funcName , QUOTE (FUNC_NAME_ARRAY5))) return 25;
if (!strcmp(funcName , QUOTE (FUNC_NAME_ARRAY6))) return 26;
if (!strcmp(funcName , QUOTE (FUNC_NAME_ARRAY7))) return 27;
if (!strcmp(funcName , QUOTE (FUNC_NAME_ARRAY8))) return 28;
if (!strcmp(funcName , QUOTE (FUNC_NAME_ARRAY9))) return 29;
if (!strcmp(funcName ,QUOTE (FUNC_NAME_ARRAY10))) return 30;

if (!strcmp(funcName , QUOTE (FUNC_NAME_BINARY1))) return 31;
if (!strcmp(funcName , QUOTE (FUNC_NAME_BINARY2))) return 32;
if (!strcmp(funcName , QUOTE (FUNC_NAME_BINARY3))) return 33;
if (!strcmp(funcName , QUOTE (FUNC_NAME_BINARY4))) return 34;
if (!strcmp(funcName ,QUOTE (FUNC_NAME_BINARY5))) return 35;
if (!strcmp(funcName , QUOTE (FUNC_NAME_BINARY6))) return 36;
if (!strcmp(funcName , QUOTE (FUNC_NAME_BINARY7))) return 37;
if (!strcmp(funcName ,QUOTE (FUNC_NAME_BINARY8))) return 38;
if (!strcmp(funcName , QUOTE (FUNC_NAME_BINARY9))) return 39;
if (!strcmp(funcName , QUOTE (FUNC_NAME_BINARY10))) return 40;

if (!strcmp(funcName , QUOTE (FUNC_NAME_UNARY1))) return 41;
if (!strcmp(funcName , QUOTE (FUNC_NAME_UNARY2))) return 42;
if (!strcmp(funcName , QUOTE (FUNC_NAME_UNARY3))) return 43;
if (!strcmp(funcName , QUOTE (FUNC_NAME_UNARY4))) return 44;
if (!strcmp(funcName , QUOTE (FUNC_NAME_UNARY5))) return 45;
if (!strcmp(funcName , QUOTE (FUNC_NAME_UNARY6))) return 46;
if (!strcmp(funcName , QUOTE (FUNC_NAME_UNARY7))) return 47;
if (!strcmp(funcName , QUOTE (FUNC_NAME_UNARY8))) return 48;
if (!strcmp(funcName , QUOTE (FUNC_NAME_UNARY9))) return 49;
if (!strcmp(funcName , QUOTE (FUNC_NAME_UNARY10))) return 50;

if (!strcmp(funcName , QUOTE (FUNC_NAME_BINARY_CONST1))) return 51;
if (!strcmp(funcName , QUOTE (FUNC_NAME_BINARY_CONST2))) return 52;
if (!strcmp(funcName , QUOTE (FUNC_NAME_BINARY_CONST3))) return 53;
if (!strcmp(funcName , QUOTE (FUNC_NAME_BINARY_CONST4))) return 54;
if (!strcmp(funcName , QUOTE (FUNC_NAME_BINARY_CONST5))) return 55;
if (!strcmp(funcName , QUOTE (FUNC_NAME_BINARY_CONST6))) return 56;
if (!strcmp(funcName , QUOTE (FUNC_NAME_BINARY_CONST7))) return 57;
if (!strcmp(funcName , QUOTE (FUNC_NAME_BINARY_CONST8))) return 58;
if (!strcmp(funcName , QUOTE (FUNC_NAME_BINARY_CONST9))) return 59;
if (!strcmp(funcName , QUOTE (FUNC_NAME_BINARY_CONST10))) return 60;

if (!strcmp(funcName , QUOTE (FUNC_NAME_UNARY_CONST1))) return 61;
if (!strcmp(funcName , QUOTE (FUNC_NAME_UNARY_CONST2))) return 62;
if (!strcmp(funcName , QUOTE (FUNC_NAME_UNARY_CONST3))) return 63;
if (!strcmp(funcName , QUOTE (FUNC_NAME_UNARY_CONST4))) return 64;
if (!strcmp(funcName , QUOTE (FUNC_NAME_UNARY_CONST5))) return 65;
if (!strcmp(funcName , QUOTE (FUNC_NAME_UNARY_CONST6))) return 66;
if (!strcmp(funcName , QUOTE (FUNC_NAME_UNARY_CONST7))) return 67;
if (!strcmp(funcName , QUOTE (FUNC_NAME_UNARY_CONST8))) return 68;
if (!strcmp(funcName ,QUOTE (FUNC_NAME_UNARY_CONST9))) return 69;
if (!strcmp(funcName , QUOTE (FUNC_NAME_UNARY_CONST10))) return 70;

return 1;

// SKELETON FUNTIONS
void* initMyReduce (char* funcName) {

myStruct *m = new myStruct();
int funcNum = getFuncNum(funcName) ;
m->funcNuml = funcNum;

switch (funcNum)
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case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

31: m->skel = new
FUNC_NAME_BINARY1) ;
32: m->skel = new
FUNC_NAME_BINARY2);
33: m->skel = new
FUNC_NAME_BINARY3);
34: m->skel = new
FUNC_NAME_BINARY4);
35: m->skel = new
FUNC_NAME_BINARY5) ;
36: m->skel = new
FUNC_NAME_BINARY6) ;
37: m->skel = new
FUNC_NAME_BINARY7);
38: m->skel = new
FUNC_NAME_BINARYS) ;
39: m->skel = new
FUNC_NAME_BINARY9);
40: m->skel = new
FUNC_NAME_BINARY10)

41: m->skel = new
FUNC_NAME_UNARY1);
42: m->skel = new
FUNC_NAME_UNARY2) ;
43: m->skel = new
FUNC_NAME_UNARY3) ;
44: m->skel = new
FUNC_NAME_UNARY4) ;
45: m->skel = new
FUNC_NAME_UNARY5) ;
46: m->skel = new
FUNC_NAME_UNARY6) ;
47: m->skel = new
FUNC_NAME_UNARY7);
48: m->skel = new
FUNC_NAME_UNARY8) ;
49: m->skel = new
FUNC_NAME_UNARY9) ;
50: m->skel = new
FUNC_NAME_UNARY10) ;

51: m->skel =

52: m->skel =

53: m->skel =

skepu::Reduce(FUNC_NAME_BINARYi>(new
break;

skepu::Reduce <FUNC_NAME_BINARY2>(new
break;

skepu::Reduce<FUNC_NAME_BINARY3>(new
break;

skepu::Reduce <FUNC_NAME_BINARY4 >(new
break;

skepu::Reduce <FUNC_NAME_BINARY5 >(new
break;

skepu::Reduce<FUNC_NAME_BINARY6 >(new
break;

skepu::Reduce <FUNC_NAME_BINARY7 >(new
break;

skepu::Reduce <FUNC_NAME_BINARY8 >(new
break;

skepu::Reduce <FUNC_NAME_BINARY9 >(new
break;

skepu::Reduce<FUNC_NAME_BINARY10>(new
; break;

skepu::Reduce <FUNC_NAME_UNARY1>(new
break;
skepu::Reduce<FUNC_NAME_UNARY2>(new
break;
skepu::Reduce <FUNC_NAME_UNARY3>(new
break;
skepu::Reduce<FUNC_NAME_UNARY4 >(new
break;
skepu::Reduce <FUNC_NAME_UNARY5 >(new
break;
skepu::Reduce <FUNC_NAME_UNARY6 >(new
break;
skepu::Reduce<FUNC_NAME_UNARY7>(new
break;
skepu::Reduce <FUNC_NAME_UNARY8 >(new
break;
skepu::Reduce<FUNC_NAME_UNARY9>(new
break;
skepu::Reduce <FUNC_NAME_UNARY10 >(new
break;

break;
break;

break;

new skepu::Reduce<FUNC_NAME_BINARY_CONST1>(new
FUNC_NAME_BINARY_CONST1) ;
new skepu::Reduce<FUNC_NAME_BINARY_CONST2>(new
FUNC_NAME_BINARY_CONST2) ;
new skepu::Reduce<FUNC_NAME_BINARY_CONST3>(new
FUNC_NAME_BINARY_CONST3);

54: m->skel = new skepu::Reduce<FUNC_NAME_BINARY_CONST4>(new

FUNC_NAME_BINARY_CONST4) ;
new skepu::Reduce<FUNC_NAME_BINARY_CONST5 >(new
FUNC_NAME_BINARY_CONST5) ;
new skepu::Reduce<FUNC_NAME_BINARY_CONST6>(new
FUNC_NAME_BINARY_CONST6) ;
new skepu::Reduce<FUNC_NAME_BINARY_CONST7 >(new
FUNC_NAME_BINARY_CONST7) ;
new skepu::Reduce<FUNC_NAME_BINARY_CONST8>(new
FUNC_NAME_BINARY_CONSTS8) ;
new skepu::Reduce<FUNC_NAME_BINARY_CONST9 >(new
FUNC_NAME_BINARY_CONST9) ;
new skepu::Reduce<FUNC_NAME_BINARY_CONST10 >(new
FUNC_NAME_BINARY_CONST10) ;

55: m->skel =

56: m->skel =
57: m->skel =
58: m->skel =
59: m->skel =

60: m->skel =

61: m->skel =

62: m->skel =

break;
break;
break;
break;
break;
break;

break;

break;

break;

new skepu::Reduce<FUNC_NAME_UNARY_CONST1>(new
FUNC_NAME_UNARY_CONST1) ;
new skepu::Reduce<FUNC_NAME_UNARY_CONST2>(new
FUNC_NAME_UNARY_CONST2) ;
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case 63: m->skel = new skepu::Reduce<FUNC_NAME_UNARY_CDNST3>(new
FUNC_NAME_UNARY_CONST3); break;

case 64: m->skel = new skepu::Reduce<FUNC_NAME_UNARY_CONST4 >(new
FUNC_NAME_UNARY_CONST4); break;

case 65: m->skel = new skepu::Reduce<FUNC_NAME_UNARY_CONST5 >(new
FUNC_NAME_UNARY_CONST5); break;

case 66: m->skel = new skepu::Reduce<FUNC_NAME_UNARY_CONST6 >(new
FUNC_NAME_UNARY_CONST6); break;

case 67: m->skel = new skepu::Reduce<FUNC_NAME_UNARY_CONST7 >(new
FUNC_NAME_UNARY_CONST7); break;

case 68: m->skel = new skepu::Reduce<FUNC_NAME_UNARY_CDNST8>(new
FUNC_NAME_UNARY_CONST8); break;

case 69: m->skel = new skepu::Reduce<FUNC_NAME_UNARY_CONST9 >(new
FUNC_NAME_UNARY_CONST9); break;

case 70: m->skel = new skepu::Reduce<FUNC_NAME_UNARY_CDNST10>(new
FUNC_NAME_UNARY_CONST10); break;

default: m->skel = NULL; break;
}

if ( m->skel == NULL ) std::cout <<

<< std::endl;
// Tead table from file and store all data in *table
return (void*)m;

}

void closeMyReduce (void* object) {
myStruct* t = (myStruct*)object;
free (t->skel);
delete t;

}

void* initMyMapReduce (char* funcNamel, char* funcName2) {
myStruct *m = new myStruct();
int funcNuml = getFuncNum(funcNamel);
int funcNum2 = getFuncNum(funcName2);

m->funcNuml = funcNumil;
m->funcNum2 = funcNum2;

switch (funcNuml)
{
case 31:
{

switch (funcNum?2) {

case 32: m->skel=new skepu::MapReduce<FUNC_NAME_BINARY1,
FUNC_NAME_BINARY2>(new FUNC_NAME_BINARY1, new
FUNC_NAME_BINARY2) ; break;

default: m->skel = NULL; break;

}
break;}
case 34:

{
switch (funcNum2) {
case 35: m->skel=new skepu::MapReduce<FUNC_NAME_BINARY4,
FUNC_NAME_BINARY5>(new FUNC_NAME_BINARY4, new
FUNC_NAME_BINARY5); break;
default: m->skel = NULL; break;

}
break;}
case 36:

{
switch (funcNum2) {
case 40:m->skel=new skepu::MapReduce<FUNC_NAME_BINARY6 ,
FUNC_NAME_BINARY10 >(new FUNC_NAME_BINARY6 ,new
FUNC_NAME_BINARY10) ;break;
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}

}

default: m->skel = NULL; break;

}
break;}
case 41:

{switch (funcNum2) {
case 32: m->skel = new skepu::MapReduce<FUNC_NAME_UNARY1,
FUNC_NAME_BINARY2>(new FUNC_NAME_UNARY1, new
FUNC_NAME_BINARY2); break;
default: m->skel = NULL; break;

}
break;}
case 61:

{switch (funcNum2) {
case 32: m->skel = new skepu::MapReduce<FUNC_NAME_UNARY_CONST1,
FUNC_NAME_BINARY2>(new FUNC_NAME_UNARY_CONST1, new
FUNC_NAME_BINARY2); break;
default: m->skel = NULL; break;

}
break;}
}
if ( m->skel == NULL ) std::cout <<

<< std::endl;
// read table from file and store all data in *table
return (void*) m;

void closeMyMapReduce (void* object) {

myStruct* t = (myStruct*)object;
free (t->skel);
delete t;

void* initMyScan(char* funcName) {

myStruct *m = new myStruct();
int funcNum = getFuncNum(funcName) ;
m->funcNuml = funcNum;

switch (funcNum)

{

case 31: m->skel = new skepu::Scan<FUNC_NAME_BINARY1>(new
FUNC_NAME_BINARY1); break;

case 32: m->skel = new skepu::Scan<FUNC_NAME_BINARY2>(new
FUNC_NAME_BINARY2); break;

case 33: m->skel = new skepu::Scan<FUNC_NAME_BINARY3>(new
FUNC_NAME_BINARY3); break;

case 34: m->skel = new skepu::Scan<FUNC_NAME_BINARY4>(new
FUNC_NAME_BINARY4); break;

case 35: m->skel = new skepu::Scan<FUNC_NAME_BINARY5>(new
FUNC_NAME_BINARY5); break;

case 36: m->skel = new skepu::Scan<FUNC_NAME_BINARY6 >(new
FUNC_NAME_BINARY6); break;

case 37: m->skel = new skepu::Scan<FUNC_NAME_BINARY7 >(new
FUNC_NAME_BINARY7); break;

case 38: m->skel = new skepu::Scan<FUNC_NAME_BINARY8>(new
FUNC_NAME_BINARY8); break;

case 39: m->skel = new skepu::Scan<FUNC_NAME_BINARY9 >(new
FUNC_NAME_BINARY9); break;

case 40: m->skel = new skepu::Scan<FUNC_NAME_BINARY10>(new
FUNC_NAME_BINARY10); break;

case 41: m->skel = new skepu::Scan<FUNC_NAME_UNARY1>(new
FUNC_NAME_UNARY1); break;

case 42: m->skel = new skepu::Scan<FUNC_NAME_UNARY2>(new
FUNC_NAME_UNARY2); break;

case 43: m->skel = new skepu::Scan<FUNC_NAME_UNARY3>(new
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FUNC_NAME_UNARY3); break;

case 44: m->skel = new skepu::Scan(FUNC_NAME_UNARY4>(new
FUNC_NAME_UNARY4); break;

case 45: m->skel = new skepu::Scan<FUNC_NAME_UNARY5>(new
FUNC_NAME_UNARY5); break;

case 46: m->skel = new skepu::Scan<FUNC_NAME_UNARY6>(new
FUNC_NAME_UNARY6); break;

case 47: m->skel = new skepu::Scan<FUNC_NAME_UNARY7 >(new
FUNC_NAME_UNARY7); break;

case 48: m->skel = new skepu::Scan<FUNC_NAME_UNARY8>(new
FUNC_NAME_UNARY8); break;

case 49: m->skel = new skepu::Scan<FUNC_NAME_UNARY9 >(new
FUNC_NAME_UNARY9); break;

case 50: m->skel = new skepu::Scan<FUNC_NAME_UNARY10 >(new
FUNC_NAME_UNARY10); break;

case 51: m->skel = new skepu::Scan<FUNC_NAME_BINARY_CONST1 >(new
FUNC_NAME_BINARY_CONST1); break;

case 52: m->skel = new skepu::Scan<FUNC_NAME_BINARY_CONST2>(new
FUNC_NAME_BINARY_CONST2); break;

case 53: m->skel = new skepu::Scan<FUNC_NAME_BINARY_CONST3>(new
FUNC_NAME_BINARY_CONST3); break;

case 54: m->skel = new skepu::Scan<FUNC_NAME_BINARY_CONST4 >(new
FUNC_NAME_BINARY_CONST4); break;

case 55: m->skel = new skepu::Scan<FUNC_NAME_BINARY_CONST5>(new
FUNC_NAME_BINARY_CONST5); break;

case 56: m->skel = new skepu::Scan<FUNC_NAME_BINARY_CONST6 >(new
FUNC_NAME_BINARY_CONST6); break;

case 57: m->skel = new skepu::Scan<FUNC_NAME_BINARY_CONST7 >(new
FUNC_NAME_BINARY_CONST7); break;

case 58: m->skel = new skepu::Scan<FUNC_NAME_BINARY_CONST8 >(new
FUNC_NAME_BINARY_CONST8); break;

case 59: m->skel = new skepu::Scan<FUNC_NAME_BINARY_CONST9 >(new
FUNC_NAME_BINARY_CONST9); break;

case 60: m->skel = new skepu::Scan<FUNC_NAME_BINARY_CUNST10>(new
FUNC_NAME_BINARY_CONST10); break;

case 61: m->skel = new skepu::Scan<FUNC_NAME_UNARY_CONST1>(new
FUNC_NAME_UNARY_CONST1); break;

case 62: m->skel = new skepu::Scan<FUNC_NAME_UNARY_CONST2>(new
FUNC_NAME_UNARY_CONST2); break;

case 63: m->skel = new skepu::Scan<FUNC_NAME_UNARY_CONST3>(new
FUNC_NAME_UNARY_CONST3); break;

case 64: m->skel = new skepu::Scan<FUNC_NAME_UNARY_CDNST4>(new
FUNC_NAME_UNARY_CONST4); break;

case 65: m->skel = new skepu::Scan<FUNC_NAME_UNARY_CONST5 >(new
FUNC_NAME_UNARY_CONST5); break;

case 66: m->skel = new skepu::Scan<FUNC_NAME_UNARY_CONST6 >(new
FUNC_NAME_UNARY_CONST6); break;

case 67: m->skel = new skepu::Scan<FUNC_NAME_UNARY_CONST7 >(new
FUNC_NAME_UNARY_CONST7); break;

case 68: m->skel = new skepu::Scan<FUNC_NAME_UNARY_CONST8>(new
FUNC_NAME_UNARY_CONST8); break;

case 69: m->skel = new skepu::Scan<FUNC_NAME_UNARY_CDNST9>(new
FUNC_NAME_UNARY_CONST9); break;

case 70: m->skel = new skepu::Scan<FUNC_NAME_UNARY_CONST10 >(new
FUNC_NAME_UNARY_CONST10); break;

default: m->skel = NULL; break;
}

if ( m->skel == NULL ) std::cout <<

<< std::endl;
// read table from file and store all data in *table
return (void*)m;

}

void closeMyScan(void* object) {
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myStruct* t = (myStruct*)object;
free(t->skel);
delete t;
}
void* initMyMap (char* funcName) {
myStruct *m = new myStruct();
int funcNum = getFuncNum(funcName);
m->funcNuml = funcNum;
switch (funcNum)
{
case 31: m->skel = new skepu::Map<FUNC_NAME_BINARY1>(new
FUNC_NAME_BINARY1); break;
case 32: m->skel = new skepu::Map<FUNC_NAME_BINARY2>(new
FUNC_NAME_BINARY2); break;
case 33: m->skel = new skepu::Map<FUNC_NAME_BINARY3>(new
FUNC_NAME_BINARY3); break;
case 34: m->skel = new skepu::Map<FUNC_NAME_BINARY4 >(new
FUNC_NAME_BINARY4); break;
case 35: m->skel = new skepu::Map<FUNC_NAME_BINARY5>(new
FUNC_NAME_BINARY5); break;
case 36: m->skel = new skepu::Map<FUNC_NAME_BINARY6 >(new
FUNC_NAME_BINARY6); break;
case 37: m->skel = new skepu::Map<FUNC_NAME_BINARY7>(new
FUNC_NAME_BINARY7); break;
case 38: m->skel = new skepu::Map<FUNC_NAME_BINARY8>(new
FUNC_NAME_BINARY8); break;
case 39: m->skel = new skepu::Map<FUNC_NAME_BINARY9 >(new
FUNC_NAME_BINARY9); break;
case 40: m->skel = new skepu::Map<FUNC_NAME_BINARY10>(new
FUNC_NAME_BINARY10); break;
case 41: m->skel = new skepu::Map<FUNC_NAME_UNARY1>(new
FUNC_NAME_UNARY1); break;
case 42: m->skel = new skepu::Map<FUNC_NAME_UNARY2>(new
FUNC_NAME_UNARY2); break;
case 43: m->skel = new skepu::Map<FUNC_NAME_UNARY3>(new
FUNC_NAME_UNARY3); break;
case 44: m->skel = new skepu::Map<FUNC_NAME_UNARY4>(new
FUNC_NAME_UNARY4); break;
case 45: m->skel = new skepu::Map<FUNC_NAME_UNARY5>(new
FUNC_NAME_UNARY5); break;
case 46: m->skel = new skepu::Map<FUNC_NAME_UNARY6>(new
FUNC_NAME_UNARY6); break;
case 47: m->skel = new skepu::Map<FUNC_NAME_UNARY7>(new
FUNC_NAME_UNARY7); break;
case 48: m->skel = new skepu::Map<FUNC_NAME_UNARY8>(new
FUNC_NAME_UNARY8); break;
case 49: m->skel = new skepu::Map(FUNC_NAME_UNARYQ>(new
FUNC_NAME_UNARY9); break;
case 50: m->skel = new skepu::Map<FUNC_NAME_UNARY10 >(new
FUNC_NAME_UNARY10); break;
case 51: m->skel = new skepu::Map<FUNC_NAME_BINARY_CONST1>(new
FUNC_NAME_BINARY_CONST1); break;
case 52: m->skel = new skepu::Map<FUNC_NAME_BINARY_CONST2>(new
FUNC_NAME_BINARY_CONST2); break;
case 53: m->skel = new skepu::Map<FUNC_NAME_BINARY_CONST3>(new
FUNC_NAME_BINARY_CONST3); break;
case 54: m->skel = new skepu::Map<FUNC_NAME_BINARY_CONST4 >(new
FUNC_NAME_BINARY_CONST4); break;
case 55: m->skel = new skepu::Map<FUNC_NAME_BINARY_CDNST5>(new
FUNC_NAME_BINARY_CONST5); break;
case 56: m->skel = new skepu::Map<FUNC_NAME_BINARY_CONST6 >(new
FUNC_NAME_BINARY_CONST6); break;
case 57: m->skel = new skepu::Map<FUNC_NAME_BINARY_CONST7 >(new
FUNC_NAME_BINARY_CONST7); break;
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case 58: m->skel = new skepu::Map<FUNC_NAME_BINARY_CDNST8>(new
FUNC_NAME_BINARY_CONST8); break;
case 59: m->skel = new skepu::Map<FUNC_NAME_BINARY_CONST9 >(new
FUNC_NAME_BINARY_CONST9); break;
case 60: m->skel = new skepu::Map<FUNC_NAME_BINARY_CONST10 >(new
FUNC_NAME_BINARY_CONST10); break;
case 61: m->skel = new skepu::Map<FUNC_NAME_UNARY_CONST1>(new
FUNC_NAME_UNARY_CONST1); break;
case 62: m->skel = new skepu::Map<FUNC_NAME_UNARY_CONST2>(new
FUNC_NAME_UNARY_CONST2); break;
case 63: m->skel = new skepu::Map<FUNC_NAME_UNARY_CONST3>(new
FUNC_NAME_UNARY_CONST3); break;
case 64: m->skel = new skepu::Map<FUNC_NAME_UNARY_CONST4 >(new
FUNC_NAME_UNARY_CONST4); break;
case 65: m->skel = new skepu::Map<FUNC_NAME_UNARY_CONST5>(new
FUNC_NAME_UNARY_CONST5); break;
case 66: m->skel = new skepu::Map<FUNC_NAME_UNARY_CONST6 >(new
FUNC_NAME_UNARY_CONST6); break;
case 67: m->skel = new skepu::Map<FUNC_NAME_UNARY_CONST7>(new
FUNC_NAME_UNARY_CONST7); break;
case 68: m->skel = new skepu::Map<FUNC_NAME_UNARY_CONST8>(new
FUNC_NAME_UNARY_CONST8); break;
case 69: m->skel = new skepu::Map<FUNC_NAME_UNARY_CONST9 >(new
FUNC_NAME_UNARY_CONST9); break;
case 70: m->skel = new skepu::Map<FUNC_NAME_UNARY_CUNST10>(new
FUNC_NAME_UNARY_CONST10); break;
default: m->skel = NULL; break;
}
if ( m->skel == NULL ) std::cout <<
<< std::endl;
// read table from file and store all data in *table
return (void*)m;
}

void closeMyMap (void* object) {

}

myStruct* t
free(t->skel);

delete t;

(myStruct*)object;

void* initMyMapArray (char* funcName) {

myStruct *m =
int funcNum

m->funcNuml

new myStruct();

funcNum;
switch (funcNum)

{

case

21: m->skel new
FUNC_NAME_ARRAY1);
22: m->skel new
FUNC_NAME_ARRAY2);
23: m->skel new
FUNC_NAME_ARRAY3);
24: m->skel new
FUNC_NAME_ARRAY4);
25: m->skel new
FUNC_NAME_ARRAY5) ;
26: m->skel new
FUNC_NAME_ARRAY6) ;
27: m->skel new
FUNC_NAME_ARRAYT7) ;
28: m->skel new
FUNC_NAME_ARRAYS8) ;
29: m->skel new

skepu::
break;
skepu:
break;
skepu::
break;
skepu::
break;
skepu::
break;
skepu::
break;
skepu:
break;
skepu::
break;
skepu::

case

case

case

case

case

case

case

case

getFuncNum (funcName) ;

MapArray <FUNC_NAME_ARRAY1 >(new

:MapArray<FUNC_NAME_ARRAY2>(new

MapArray <FUNC_NAME_ARRAY3>(new
MapArray<FUNC_NAME_ARRAY4>(new
MapArray <FUNC_NAME_ARRAY5 >(new

MapArray <FUNC_NAME_ARRAY6 >(new

:MapArray<FUNC_NAME_ARRAY7>(new

MapArray <FUNC_NAME_ARRAY8>(new

MapArray<FUNC_NAME_ARRAY9>(new
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FUNC_NAME_ARRAY9); break;

case 30: m->skel = new skepu::MapArray<FUNC_NAME_ARRAY10>(new
FUNC_NAME_ARRAY10); break;

default: m->skel = NULL; break;

}

if ( m->skel == NULL ) std::cout <<

<< std::endl;
// Tead table from file and store all data in *table
return (void*)m;

}
void closeMyMapArray(void#* object) {
myStruct* t = (myStruct*)object;
free(t->skel);

delete t;
}
void* initMyMapOverlap(char* funcName) {

myStruct *m = new myStruct();

int funcNum = getFuncNum(funcName) ;
m->funcNuml = funcNum;

switch (funcNum)

{

case 11: m->skel = new skepu::MapArray<FUNC_NAME_UVERLAP1>(new
FUNC_NAME_OVERLAP1); break;

case 12: m->skel = new skepu::MapArray<FUNC_NAME_OVERLAP2>(new
FUNC_NAME_OVERLAP2); break;

case 13: m->skel = new skepu::MapArray<FUNC_NAME_UVERLAP3>(new
FUNC_NAME_OVERLAP3); break;

case 14: m->skel = new skepu::MapArray<FUNC_NAME_OVERLAP4>(new
FUNC_NAME_OVERLAP4); break;

case 15: m->skel = new skepu::MapArray<FUNC_NAME_GVERLAP5>(new
FUNC_NAME_OVERLAP5); break;

case 16: m->skel = new skepu::MapArray<FUNC_NAME_OVERLAP6 >(new
FUNC_NAME_OVERLAP6); break;

case 17: m->skel = new skepu::MapArray<FUNC_NAME_OVERLAP7 >(new
FUNC_NAME_OVERLAP7); break;

case 18: m->skel = new skepu::MapArray<FUNC_NAME_OVERLAP8>(new
FUNC_NAME_OVERLAP8); break;

case 19: m->skel = new skepu::MapArray<FUNC_NAME_OVERLAP9>(new
FUNC_NAME_OVERLAP9); break;

case 20: m->skel = new skepu::MapArray<FUNC_NAME_OVERLAP10 >(new
FUNC_NAME_OVERLAP10); break;

default: m->skel = NULL; break;

}

if ( m->skel == NULL ) std::cout <<

<< std::endl;
// read table from file and store all data in *table
return (voidx*)m;

}

void closeMyMapOverlap(void* object) {
myStruct* t = (myStruct#*)object;
free(t->skel);

delete t;

}

void* initMyGenerate (char* funcName) {
myStruct *m = new myStruct();
int funcNum = getFuncNum(funcName) ;
m->funcNuml = funcNum;

switch (funcNum)
{
case 1: m->skel = new skepu::Generate<FUNC_NAME_GENERATE1>(new
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FUNC_NAME_GENERATE1); break;

case 2: m->skel = new skepu::Generate<FUNC_NAME_GENERATE2>(new
FUNC_NAME_GENERATE2); break;

case 3: m->skel = new skepu::Generate<FUNC_NAME_GENERATE3>(new
FUNC_NAME_GENERATE3); break;

case 4: m->skel = new skepu::Generate<FUNC_NAME_GENERATE4>(new
FUNC_NAME_GENERATE4); break;

case 5: m->skel = new skepu::Generate<FUNC_NAME_GENERATES5 >(new
FUNC_NAME_GENERATES5); break;

case 6: m->skel = new skepu::Generate<FUNC_NAME_GENERATE6 >(new
FUNC_NAME_GENERATE6); break;

case 7: m->skel = new skepu::Generate<FUNC_NAME_GENERATE7 >(new
FUNC_NAME_GENERATET7); break;

case 8: m->skel = new skepu::Generate<FUNC_NAME_GENERATE8>(new
FUNC_NAME_GENERATE8); break;

case 9: m->skel = new skepu::Generate<FUNC_NAME_GENERATE9 >(new
FUNC_NAME_GENERATE9); break;

case 10: m->skel = new skepu::Generate<FUNC_NAME_GENERATE10>(new
FUNC_NAME_GENERATE10); break;

default: m->skel = NULL; break;
}

if (m->skel == NULL ) std::cout <<

<< std::endl;
// read table from file and store all data in *table
return (void*)m;

}

void closeMyGenerate (void* object) {
myStruct* t = (myStruct*)object;
free (t->skel);
delete t;

¥

void generateTypel(int numElem,void* objectl,void* object2)
{
skepu::Vector <TYPE_NAME1>* vecl = (skepu::Vector<TYPE_NAME1 >x)

objectl;
myStruct *m = (myStruct*)object2;
int funcNum = m->funcNumli;
void * m2 = m->skel;

switch (funcNum)
{
case 3:
(*((skepu::Generate <FUNC_NAME_GENERATE3>*)m2)) .setConstant ((int)
0);
(*((skepu::Generate <FUNC_NAME_GENERATE3 >*)m2)) (numElem ,*vecl);
break;
default: break;
}
¥

void generateType2(int numElem,void* objectl,void* object2)
{
skepu::Vector <TYPE_NAME2>* vecl = (skepu::Vector<TYPE_NAME2>x)

objectl;
myStruct *m = (myStruct*)object2;
int funcNum = m->funcNumli;
void * m2 = m->skel;

switch (funcNum)
{
case 4:
(*((skepu::Generate <FUNC_NAME_GENERATE4 >*)m2) ) (numElem ,*vecl);
break;
default:
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break;

void SkePU_Generate_builtin_externalVdouble(int numElem, void* objectl
, void#* object2, char* typel)
{
if (!strcmp(typel,QUOTE(TYPE_NAME1)))
generateTypel (numElem,objectl,object2);
else if (!strcmp(typel,QUOTE(TYPE_NAME2)))
generateType2 (numElem,objectl,object2);
else { //doubdble

skepu::Vector<double>* vecl = (skepu::Vector<double>*) objectl;
myStruct *m = (myStruct*)object2;

int funcNum = m->funcNumi;

void * m2 = m->skel;

switch (funcNum)
{
case 1: (*((skepu::Generate<FUNC_NAME_GENERATE1>*)m2)) (numElem,*
vecl); break;
case 2: (*((skepu::Generate<FUNC_NAME_GENERATE2>*)m2)) (numElem ,*
vecl); break;

default: break;
}
}
}

void SkePU_Generate_builtin_setConstant(void* objectl,int elem)
{

myStruct *m = (myStruct*)objectl;

int funcNum = m->funcNumi;

void * m2 = m->skel;

(*((skepu::Generate <FUNC_NAME_GENERATE3>*)m2)) .setConstant (elem) ;
}

void SkePU_Map_builtin_externalMdouble(void* objectl, void* object2,
void* object3)

{
skepu::Matrix<double>* matl = (skepu::Matrix<double>*) objectl;
skepu::Matrix<double>* mat2 = (skepu::Matrix<double>*) object2;
myStruct *m = (myStruct*)object3;
int funcNum = m->funcNuml;
void * m2 = m->skel;

switch (funcNum)

{

case 31: (*((skepu::Map<FUNC_NAME_BINARY1>*)m2)) (*matl,*mat2);
break;

case 32: (*((skepu::Map<FUNC_NAME_BINARY2>*)m2)) (*matl,*mat2);
break;

case 33: (*((skepu::Map<FUNC_NAME_BINARY3>*)m2)) (*matl,*mat2);
break;

case 34: (*((skepu::Map<FUNC_NAME_BINARY4>*)m2)) (*xmatl,*mat2);
break;

case 35: (*((skepu::Map<FUNC_NAME_BINARY5>*)m2)) (*matl,*mat2);
break;

case 36: (*((skepu::Map<FUNC_NAME_BINARY6>*)m2)) (*matl,*mat2);
break;

case 37: (*((skepu::Map<FUNC_NAME_BINARY7 >*)m2)) (*matl,*mat2);
break;

case 38: (x((skepu::Map<FUNC_NAME_BINARY8>*)m2)) (*matl,*mat2);
break;

case 39: (*((skepu::Map<FUNC_NAME_BINARY9>*)m2)) (*matl,*mat2);
break;
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case

case

case

case

case

case

case

case

case

//case 49:

//case 50:

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

default:

}

40: (*((skepu:

break;

41: (*((skepu:

break;

42: (*((skepu:

break;

43: (*((skepu:

break;

44: (*((skepu:

break;

45: (*((skepu:

break;

46: (*((skepu:

break;

47: (*((skepu:

break;

48: (*((skepu:

break;
break;

break;

51: (x((skepu:

); break;

52: (x((skepu:

); break;

63: (x((skepu:

); break;

54: (*x((skepu:

); break;

65: (x((skepu:

); break;

66: (x((skepu:

); break;

57: (x((skepu:

); break;

68: (x((skepu:

); break;

659: (x((skepu:

)

break;

mat2); break;

61: (x((skepu:

; break;

62: (x((skepu:

; break;

63: (x((skepu:

; break;

64: (x((skepu:

; break;

65: (*((skepu:

; break;

66: (x((skepu:

; break;

67: (x((skepu:

; break;

68: (*((skepu:

; break;

69: (x((skepu:

; break;

70: (x((skepu:

); break;

m->skel =

60: (x((skepu:

NULL;

:Map<FUNC_NAME_BINARY10 >*)m2)) (*matl ,*mat2);

:Map<FUNC_NAME_UNARY1>*)m2)) (*matl ,*mat2) ;
:Map<FUNC_NAME_UNARY2>*)m2)) (*matl ,*mat2);
:Map <FUNC_NAME_UNARY3>#*)m2)) (*matl ,*mat2) ;
:Map<FUNC_NAME_UNARY4 >*)m2)) (*matl ,*mat2) ;
:Map<FUNC_NAME_UNARY5>*)m2)) (¥matl ,*mat2);
:Map<FUNC_NAME_UNARY6 >*)m2)) (*matl ,*mat2) ;
:Map<FUNC_NAME_UNARY7 >*)m2)) (*matl ,*mat2) ;
:Map <FUNC_NAME_UNARY8 >#)m2)) (*matl ,*mat2) ;
(*((skepu::Map <FUNC_NAME_UNARY9 >*)m2)) (¥matl,*mat2) ;

(*((skepu::Map <FUNC_NAME_UNARY10 >*)m2)) (¥matl,*mat2) ;

:Map<FUNC_NAME_BINARY_CONST1 >*)m2)) (*matl ,*mat2
:Map<FUNC_NAME_BINARY_CONST2>*)m2)) (*matl ,*mat2
:Map<FUNC_NAME_BINARY_CONST3>*)m2)) (*matl ,*mat2
:Map<FUNC_NAME_BINARY_CONST4 >*)m2)) (*matl ,*mat2
:Map<FUNC_NAME_BINARY_CONST5>*)m2)) (*matl ,*mat2
:Map<FUNC_NAME_BINARY_CONST6 >*)m2)) (*matl ,*mat2
:Map<FUNC_NAME_BINARY_CONST7 >*)m2)) (*matl ,*mat2
:Map<FUNC_NAME_BINARY_CONST8 >*)m2)) (*matl ,*mat2
:Map<FUNC_NAME_BINARY_CONST9 >*)m2)) (*matl ,*mat2

:Map<FUNC_NAME_BINARY_CONST10 >*)m2)) (*matl ,*

:Map <FUNC_NAME_UNARY_CONST1>*)m2)) (¥matl,*mat2)
:Map<FUNC_NAME_UNARY_CONST2 >*)m2)) (¥matl,*mat2)
:Map <FUNC_NAME_UNARY_CONST3>*)m2)) (¥matl,*mat2)
:Map<FUNC_NAME_UNARY_CONST4 >*)m2)) (¥matl,*mat2)
:Map<FUNC_NAME_UNARY_CONST5 >*)m2)) (¥matl ,*mat2)
:Map<FUNC_NAME_UNARY_CONST6 >*)m2)) (¥matl ,*mat2)
:Map<FUNC_NAME_UNARY_CONST7 >*)m2)) (¥matl,*mat2)
:Map<FUNC_NAME_UNARY_CONST8 >*)m2)) (*matl,*mat2)
:Map<FUNC_NAME_UNARY_CONST9 >*)m2)) (*matl,*mat2)

:Map<FUNC_NAME_UNARY_CONST10 >*)m2)) (*matl ,*mat2

break;
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}

{

}

{

skepu::Vector <TYPE_NAME2>* vecl

void mapType2(void* objectl,

objectl;

skepu::Vector <TYPE_NAME2>* vec2

object2;

myStruct *m
int funcNum

void * m2 = m->skel;
switch (funcNum)
{
case 49: (x((skepu
break;
case 50: (x((skepu
break;
default: break;
}

void SkePU_Map_builtin_externalVdouble(void* objectl,

void* object2, void* object3)

(myStruct*)object3;
m->funcNuml ;

(skepu::Vector <TYPE_NAME2 >*)

(skepu::Vector <TYPE_NAME2 >*)

::Map<FUNC_NAME_UNARY9 >*)m2)) (*xvecl ,*vec2);

::Map<FUNC_NAME_UNARY10 >*)m2) ) (*vecl

void* object3,char* typel)

if (!strcmp(typel, QUOTE(TYPE_NAME2)))
mapType2(objectl,object2,object3);

else

{

skepu::Vector<double>* vecl
skepu::Vector<double>* vec2
(myStruct*)object3;
m->funcNuml ;
m->skel;

myStruc
int fun
void *

switch
{

case 31:

t *xm =
cNum

m2

(funcNum)

(x((skepu:

break;

case 32:

(*((skepu:

break;

case 33:

(*((skepu:

break;

case 34:

(x((skepu:

break;

case 35:

(*((skepu::

break;

case 36:

(x((skepu:

break;

case 37:

(*((skepu:

break;

case 38:

(x((skepu:

break;

case 39:

(*((skepu:

break;

case 40:

(*((skepu:

break;

case 41:

(*((skepu:

break;

case 42:

(*((skepu:

break;

case 43:

(*((skepu:

break;

case 44:

(*((skepu:

break;

case 45:

(x((skepu:

break;

:Map <FUNC_NAME_BINARY1>*)m2)) (*vecl
:Map<FUNC_NAME_BINARY2>*)m2)) (*xvecl
:Map <FUNC_NAME_BINARY3 >*)m2)) (*vecl
:Map<FUNC_NAME_BINARY4>*)m2)) (*xvecl
Map<FUNC_NAME_BINARY5 >*)m2)) (*vecl
:Map<FUNC_NAME_BINARY6 >*)m2)) (*vecl
:Map<FUNC_NAME_BINARY7 >*)m2)) (*vecl
:Map <FUNC_NAME_BINARY8 >*)m2)) (*vecl

:Map<FUNC_NAME_BINARY9 >*)m2)) (*vecl

:Map<FUNC_NAME_UNARY1 >*)m2)) (*vecl
:Map <FUNC_NAME_UNARY2 >#*)m2)) (xvecl
:Map<FUNC_NAME_UNARY3 >*)m2)) (*vecl
:Map <FUNC_NAME_UNARY4 >*)m2)) (*xvecl

:Map<FUNC_NAME_UNARY5 >*)m2)) (*xvecl

(skepu::Vector<double >*)
(skepu::Vector<double>*)

,kvec?2) ;

void* object2,

objectl;
object2;

,*¥vec?2);
,*vec2);
,*xvec2);
,*¥vec?2);
,*vec2);
,*¥vec?2) ;
,*vec2);
,*¥vec?2);

,*vec2);

:Map <FUNC_NAME_BINARY10>*)m2)) (xvecl ,*xvec2);

,*vec2);
,*vec2) ;
,¥vec?2) ;
,*vec2) ;

,*¥vec?2) ;




190 Chapter C. Modelica-SkePU Library Code
case 46: (*((skepu::Map<FUNC_NAME_UNARY6>*)m2)) (*vecl,*vec2);
break;
case 47: (*((skepu::Map<FUNC_NAME_UNARY7>*)m2)) (xvecl , *xvec2);
break;
case 48: (*((skepu::Map<FUNC_NAME_UNARY8>*)m2)) (*vecl ,*vec2);
break;
//case 49: (*((skepu::Map<FUNC_NAME_UNARY9 >*)m2)) (¥vecl, *vec2);
break;
//case 50: (*#((skepu::Map<FUNC_NAME_UNARY10>%)m2)) (*vecl , *vec2);
break;
case 51: (*((skepu::Map<FUNC_NAME_BINARY_CONST1>*)m2)) (xvecl , *xvec2
); break;
case 52: (*((skepu::Map<FUNC_NAME_BINARY_CONST2>*)m2)) (xvecl ,*xvec?2
); break;
case 53: (*((skepu::Map<FUNC_NAME_BINARY_CONST3>*)m2)) (*xvecl , *xvec2
); break;
case 54: (*((skepu::Map<FUNC_NAME_BINARY_CONST4>*)m2)) (*¥vecl , *vec2
); break;
case 55: (*((skepu::Map<FUNC_NAME_BINARY_CONST5>*)m2)) (*xvecl , *xvec2
); break;
case 56: (*((skepu::Map<FUNC_NAME_BINARY_CONST6>*)m2)) (*¥vecl , *vec2
); break;
case 57: (*((skepu::Map<FUNC_NAME_BINARY_CONST7 >*)m2)) (xvecl ,*xvec?2
); break;
case 58: (*((skepu::Map<FUNC_NAME_BINARY_CONST8>*)m2)) (xvecl ,h *xvec2
); break;
case 59: (*((skepu::Map<FUNC_NAME_BINARY_CONST9 >*)m2)) (xvecl , *xvec?2
); break;
case 60: (*((skepu::Map<FUNC_NAME_BINARY_CONST10>*)m2)) (*vecl,x*
vec2); break;
case 61: (*((skepu::Map<FUNC_NAME_UNARY_CONST1>*)m2)) (*vecl,*vec2)
; break;
case 62: (*((skepu::Map<FUNC_NAME_UNARY_CONST2>*)m2)) (*vecl ,*vec2)
; break;
case 63: (*((skepu::Map<FUNC_NAME_UNARY_CONST3>*)m2)) (xvecl,*vec2)
; break;
case 64: (*((skepu::Map<FUNC_NAME_UNARY_CONST4>*)m2)) (xvecl, *xvec2)
; break;
case 65: (*x((skepu::Map<FUNC_NAME_UNARY_CONST5>*)m2)) (xvecl,b *xvec2)
; break;
case 66: (*((skepu::Map<FUNC_NAME_UNARY_CONST6>*)m2)) (*vecl,*vec2)
; break;
case 67: (*((skepu::Map<FUNC_NAME_UNARY_CONST7 >*)m2)) (*vecl ,*vec2)
; break;
case 68: (*((skepu::Map<FUNC_NAME_UNARY_CONST8>*)m2)) (*xvecl,*vec2)
; break;
case 69: (*((skepu::Map<FUNC_NAME_UNARY_CONST9 >*)m2)) (*vecl ,*vec2)
; break;
case 70: (*((skepu::Map<FUNC_NAME_UNARY_CONST10>#*)m2)) (*¥vecl , *vec2
); break;
default: m->skel = NULL; break;
}
}
¥
void SkePU_Map_builtin_externalVlidouble(void* objectl, void* object2)
{
//if (!strcemp (typel, QUOTE (TYPE_NAME1)))
// mapTypel (objectl,object2,object3);
//else if (!strcmp (typel, QUOTE (TYPE_NAMEZ2)))
// mapType2(objectl,object2,object3);
//else
V2l
skepu::Vector<double>* vecl = (skepu::Vector<double>*) objectl;
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myStruct *m = (myStruct*)object2;
int funcNum = m->funcNumli;
void * m2 = m->skel;
switch (funcNum)
{
case 31: (*((skepu::Map<FUNC_NAME_BINARY1>*)m2)) (*vecl); break;
case 32: (*((skepu::Map<FUNC_NAME_BINARY2>*)m2)) (*vecl); break;
case 33: (x((skepu::Map<FUNC_NAME_BINARY3>*)m2)) (xvecl); break;
case 34: (*((skepu::Map<FUNC_NAME_BINARY4>*)m2)) (*vecl); break;
case 35: (*((skepu::Map<FUNC_NAME_BINARY5>*)m2)) (*¥vecl); break;
case 36: (*((skepu::Map<FUNC_NAME_BINARY6>*)m2)) (*vecl); break;
case 37: (*((skepu::Map<FUNC_NAME_BINARY7>*)m2)) (*vecl); break;
case 38: (*((skepu::Map<FUNC_NAME_BINARY8>*)m2)) (*vecl); break;
case 39: (*((skepu::Map<FUNC_NAME_BINARY9>*)m2)) (*¥vecl); break;
case 40: (*((skepu::Map<FUNC_NAME_BINARY10>*)m2)) (¥vecl); break;
case 41 (*((skepu::Map<FUNC_NAME_UNARY1>*)m2)) (¥vecl); break;
case 42: (x((skepu::Map<FUNC_NAME_UNARY2>*)m2)) (xvecl); break;
case 43: (*((skepu::Map<FUNC_NAME_UNARY3>*)m2)) (xvecl); break;
case 44: (*((skepu::Map<FUNC_NAME_UNARY4>*)m2)) (xvecl); break;
case 45 (*((skepu::Map<FUNC_NAME_UNARY5>*)m2)) (¥vecl); break;
case 46: (x((skepu::Map<FUNC_NAME_UNARY6>*)m2)) (xvecl); break;
case 47: (*((skepu::Map<FUNC_NAME_UNARY7>*)m2)) (xvecl); break;
case 48: (*((skepu::Map<FUNC_NAME_UNARY8>*)m2)) (xvecl); break;
//case 49: (*((skepu::Map<FUNC_NAME_UNARY9 >*)m2)) (¥vecl); break;
//case 50: (*#((skepu::Map<FUNC_NAME_UNARY10>*)m2)) (*¥vecl); break
case 51: (*((skepu::Map<FUNC_NAME_BINARY_CONST1>*)m2)) (*¥vecl);
break;
case 52: (*((skepu::Map<FUNC_NAME_BINARY_CONST2>*)m2)) (xvecl);
break;
case 53: (*((skepu::Map<FUNC_NAME_BINARY_CONST3>*)m2)) (*¥vecl);
break;
case b54: (*((skepu::Map<FUNC_NAME_BINARY_CONST4>*)m2)) (xvecl);
break;
case 55: (x((skepu::Map<FUNC_NAME_BINARY_CONST5>*)m2)) (xvecl);
break;
case 56: (x((skepu::Map<FUNC_NAME_BINARY_CONST6>*)m2)) (xvecl);
break;
case 57: (x((skepu::Map<FUNC_NAME_BINARY_CONST7 >*)m2)) (*xvecl);
break;
case 58: (*((skepu::Map<FUNC_NAME_BINARY_CONST8>*)m2)) (*¥vecl);
break;
case 59: (*((skepu::Map<FUNC_NAME_BINARY_CONST9 >*)m2)) (xvecl);
break;
case 60: (*((skepu::Map<FUNC_NAME_BINARY_CONST10>*)m2)) (*vecl);
break;
case 61: (*((skepu::Map<FUNC_NAME_UNARY_CONST1>*)m2)) (*vecl) ;
break;
case 62: (*((skepu::Map<FUNC_NAME_UNARY_CONST2>*)m2)) (*xvecl);
break;
case 63: (*x((skepu::Map<FUNC_NAME_UNARY_CONST3>*)m2)) (xvecl);
break;
case 64: (x((skepu::Map<FUNC_NAME_UNARY_CONST4>*)m2)) (*xvecl);
break;
case 65: (*((skepu::Map<FUNC_NAME_UNARY_CONST5>*)m2)) (xvecl);
break;
case 66: (*((skepu::Map<FUNC_NAME_UNARY_CONST6>*)m2)) (*xvecl);
break;
case 67: (*((skepu::Map<FUNC_NAME_UNARY_CONST7 >*)m2)) (xvecl);
break;
case 68: (*((skepu::Map<FUNC_NAME_UNARY_CONST8>*)m2)) (*vecl) ;
break;
case 69: (*((skepu::Map<FUNC_NAME_UNARY_CONST9>*)m2)) (*xvecl);
break;
case 70: (*((skepu::Map<FUNC_NAME_UNARY_CONST10>*)m2)) (*xvecl);
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break;

default: m->skel = NULL; break;
}
}

void SkePU_Map_builtin_externalV2double(void* objectl, void* object2,
void* object3, void* object4, charx typel)

{
skepu::Vector<double>* vecl = (skepu::Vector<double>*) objectl;
skepu::Vector<double>* vec2 = (skepu::Vector<double>*) object2;
skepu::Vector<double>* vec3 = (skepu::Vector<double>*) object3;
myStruct *m = (myStruct*)object4;
int funcNum = m->funcNuml;
void * m2 = m->skel;

switch (funcNum)

{

case 31: (*((skepu::Map<FUNC_NAME_BINARY1>*)m2)) (*vecl,*xvec2,*xvec3
); break;

case 32: (*((skepu::Map<FUNC_NAME_BINARY2>*)m2)) (*xvecl ,b*xvec2,*xvec3
); break;

case 33: (*((skepu::Map<FUNC_NAME_BINARY3>*)m2)) (*¥vecl,*vec2,*vec3
); break;

case 34: (*((skepu::Map<FUNC_NAME_BINARY4>*)m2)) (*vecl , *xvec2 ,*xvec3
); break;

case 35: (*((skepu::Map<FUNC_NAME_BINARY5>*)m2)) (*vecl , *vec2,*vec3
); break;

case 36: (*((skepu::Map<FUNC_NAME_BINARY6>*)m2)) (*xvecl,*xvec2,*vec3
); break;

case 37: (*((skepu::Map<FUNC_NAME_BINARY7 >*)m2)) (*¥vecl , *vec2,*vec3
); break;

case 38: (*((skepu::Map<FUNC_NAME_BINARY8>*)m2)) (*vecl,*xvec2,*xvec3
); break;

case 39: (*((skepu::Map<FUNC_NAME_BINARY9>*)m2)) (*vecl ,6*xvec2,*xvec3
); break;

case 40: (*((skepu::Map<FUNC_NAME_BINARY10>#*)m2)) (*vecl, *vec2,*
vec3); break;

case 41: (*((skepu::Map<FUNC_NAME_UNARY1>*)m2)) (*vecl ,*vec2,*vec3)

; break;

case 42: (*((skepu::Map<FUNC_NAME_UNARY2>*)m2)) (*xvecl,*vec2,*vec3)
; break;

case 43: (*((skepu::Map<FUNC_NAME_UNARY3>*)m2)) (*vecl ,*vec2,*vec3)
; break;

case 44: (*((skepu::Map<FUNC_NAME_UNARY4>*)m2)) (xvecl ,*xvec2,*vec3)
; break;

case 45: (*((skepu::Map<FUNC_NAME_UNARY5>*)m2)) (*vecl ,*vec2,*vec3)
; break;

case 46: (*((skepu::Map<FUNC_NAME_UNARY6>*)m2)) (*vecl ,*vec2,*vec3)
; break;

case 47: (*((skepu::Map<FUNC_NAME_UNARY7 >*)m2)) (*vecl ,*vec2,*vec3)
; break;

case 48: (x((skepu::Map<FUNC_NAME_UNARY8>*)m2)) (xvecl,*vec2,*vec3)
; break;

//case 49: (*((skepu::Map<FUNC_NAME_UNARY9 >*)m2)) (*vecl, *vec2, *
vec3); break;

//case 50: (*((skepu::Map<FUNC_NAME_UNARY10>*)m2)) (*vecl,h *vec2, *
vec3); break;

case 51: (*((skepu::Map<FUNC_NAME_BINARY_CONST1>*)m2)) (*¥vecl, *vec?2
,¥vec3); break;

case 52: (*((skepu::Map<FUNC_NAME_BINARY_CONST2>#*)m2)) (*¥vecl , *vec2
,*kvec3); break;

case 53: (x((skepu::Map<FUNC_NAME_BINARY_CONST3>*)m2)) (xvecl ,b *xvec?2
,¥vec3); break;

case 54: (*((skepu::Map<FUNC_NAME_BINARY_CONST4>*)m2)) (xvecl , *vec2
,¥vec3); break;




C.2. Modelica-SkePU Library Code

193

}

{

void SkePU_Map_builtin_setConstant(void* objectl,

myStruct *m =
int funcNum =
void * m2 =

case b55: (*((skepu::Map<FUNC_NAME_BINARY_CONST5>*)m2)) (*xvecl ,b*xvec2
,*kvec3); break;

case 56: (*((skepu::Map<FUNC_NAME_BINARY_CONST6>*)m2)) (*vecl ,b *vec?2
,¥vec3); break;

case 57: (*((skepu::Map<FUNC_NAME_BINARY_CONST7 >*)m2)) (xvecl , *xvec2
,*vec3); break;

case 58: (*((skepu::Map<FUNC_NAME_BINARY_CONST8>*)m2)) (xvecl ,h *xvec2
,*¥vec3); break;

case 59: (*((skepu::Map<FUNC_NAME_BINARY_CONST9 >*)m2)) (xvecl ,b*xvec2
,¥vec3); break;

case 60: (*((skepu::Map<FUNC_NAME_BINARY_CONST10>*)m2)) (*vecl ,x*
vec2,*vec3); break;

case 61: (*((skepu::Map<FUNC_NAME_UNARY_CONST1>*)m2)) (*vecl, *vec?2
,¥vec3); break;

case 62: (*((skepu::Map<FUNC_NAME_UNARY_CONST2>*)m2)) (*vecl,b *vec2
,¥vec3); break;

case 63: (*((skepu::Map<FUNC_NAME_UNARY_CONST3>*)m2)) (xvecl, *xvec2
,¥vec3); break;

case 64: (*((skepu::Map<FUNC_NAME_UNARY_CONST4>*)m2)) (xvecl , xvec2
,*kvec3); break;

case 65: (*((skepu::Map<FUNC_NAME_UNARY_CONST5>*)m2)) (xvecl , *xvec2
,¥vec3); break;

case 66: (*((skepu::Map<FUNC_NAME_UNARY_CONST6 >*)m2)) (*vecl , *vec?2
,¥vec3); break;

case 67: (*((skepu::Map<FUNC_NAME_UNARY_CONST7 >*)m2)) (*vecl , *vec2
,*¥vec3); break;

case 68: (*((skepu::Map<FUNC_NAME_UNARY_CONST8>*)m2)) (*vecl , *vec?2
,¥vec3); break;

case 69: (x((skepu::Map<FUNC_NAME_UNARY_CONST9 >*)m2)) (xvecl , *vec?2
,¥vec3); break;

case 70: (*((skepu::Map<FUNC_NAME_UNARY_CONST10>*)m2)) (*vecl ,b *vec?2
,¥vec3); break;

default: m->skel = NULL; break;

}

double vall)

(myStruct*)objectl;
m->funcNuml ;
m->skel;

switch (funcNum)

{
case 51:
((skepu::Map<FUNC_NAME_BINARY_CONST1>*)m2)->setConstant (vall);
break;
case 52:
((skepu::Map<FUNC_NAME_BINARY_CONST2>*)m2)->setConstant (vall);
break;
case 53:
((skepu::Map<FUNC_NAME_BINARY_CONST3>*)m2)->setConstant (vall);
break;
case b54:
((skepu::Map<FUNC_NAME_BINARY_CONST4 >*)m2)->setConstant (vall);
break;
case 55:
((skepu::Map<FUNC_NAME_BINARY_CONST5>*)m2)->setConstant (vall);
break;
case 56:
((skepu::Map<FUNC_NAME_BINARY_CONST6 >*)m2)->setConstant (vall);
break;
case 57:
((skepu::Map<FUNC_NAME_BINARY_CONST7 >*)m2) ->setConstant (vall);
break;

case 58:




194 Chapter C. Modelica-SkePU Library Code

((skepu::Map<FUNC_NAME_BINARY_CONST8 >*)m2) ->setConstant (vall);

break;
case 59:
((skepu::Map<FUNC_NAME_BINARY_CONST9 >*)m2)->setConstant (vall);
break;
case 60:
((skepu::Map<FUNC_NAME_BINARY_CONST10>*)m2)->setConstant (vall);
break;
case 61:
((skepu::Map<FUNC_NAME_UNARY_CONST1 >*)m2)->setConstant (vall) ;
break;
case 62:
((skepu::Map<FUNC_NAME_UNARY_CONST2>*)m2)->setConstant (vall) ;
break;
case 63:
((skepu::Map<FUNC_NAME_UNARY_CONST3 >*)m2)->setConstant (vall) ;
break;
case 64:
((skepu::Map<FUNC_NAME_UNARY_CONST4 >*)m2)->setConstant (vall);
break;
case 65:
((skepu::Map<FUNC_NAME_UNARY_CONST5>*)m2)->setConstant (vall);
break;
case 66:
((skepu::Map<FUNC_NAME_UNARY_CONST6 >*)m2) ->setConstant (vall) ;
break;
case 67:
((skepu::Map<FUNC_NAME_UNARY_CONST7 >*)m2) ->setConstant (vall) ;
break;
case 68:
((skepu::Map<FUNC_NAME_UNARY_CONST8 >*)m2)->setConstant (vall);
break;
case 69:
((skepu::Map<FUNC_NAME_UNARY_CONST9 >*)m2) ->setConstant (vall) ;
break;
case 70:
((skepu::Map<FUNC_NAME_UNARY_CONST10 >*)m2)->setConstant (vall);
break;
}
}
void maparrayTypel(void* objectl, void* object2, void* object3, voidx
object4)
{
skepu::Vector <TYPE_NAME1>* vecl = (skepu::Vector<TYPE_NAME1 >x)
objectl;
skepu::Vector <TYPE_NAME1>* vec2 = (skepu::Vector<TYPE_NAME1 >x)
object2;
skepu::Vector <TYPE_NAME1>* vec3 = (skepu::Vector<TYPE_NAME1>*)
object3;
myStruct *m = (myStruct*)object4d;
int funcNum = m->funcNuml;
void * m2 = m->skel;
switch (funcNum)
{
case 30:
(*((skepu::MapArray <FUNC_NAME_ARRAY10 >*)m2)) (*vecl ,*vec2 ,*vec3) ;
break;
}
}

void maparrayType2(void* objectl, void* object2, void* object3, voidx
object4)
{
skepu::Vector <TYPE_NAME2>* vecl = (skepu::Vector<TYPE_NAME2>x)
objectl;
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skepu::Vector <TYPE_NAME2>* vec2 = (skepu::Vector <TYPE_NAME2>x*)

object2;

skepu::Vector<TYPE_NAME2>* vec3 = (skepu::Vector<TYPE_NAME2>x)
object3;

myStruct *m = (myStruct*)object4d;

int funcNum = m->funcNumi;

void * m2 = m->skel;

switch (funcNum)
{
case 27:
(*((skepu::MapArray <FUNC_NAME_ARRAY7 >*)m2)) (xvecl , *vec2 ,*vec3);
break;
case 28:
(*((skepu::MapArray <FUNC_NAME_ARRAY8>*)m2)) (xvecl ,*vec2,*vec3);
break;
case 29:
(*((skepu::MapArray <FUNC_NAME_ARRAY9 >*)m2)) (xvecl , *vec2 ,*vec3);
break;

}

void SkePU_MapArray_builtin_externalVdouble(void* objectl, voidx*
object2, void* object3, void* object4, char* typel)

{
if (!strcmp(typel, QUOTE(TYPE_NAME1)))
maparrayTypel (objectl ,object2,object3,object4);
else if (!strcmp(typel,QUOTE(TYPE_NAME2)))
maparrayType2 (objectl ,object2,object3,object4) ;
else {
skepu::Vector<double>* vecl = (skepu::Vector<double>*) objectl;
skepu::Vector<double>* vec2 = (skepu::Vector<double>*) object2;
skepu::Vector<double>* vec3 = (skepu::Vector<double>*) object3;
myStruct *m = (myStruct*)object4;
int funcNum = m->funcNumi;
void * m2 = m->skel;
switch (funcNum)
{
case 21:
(*((skepu::MapArray <FUNC_NAME_ARRAY1>*)m2)) (xvecl , *vec2 ,*vec3);
break;
case 22:
(*((skepu::MapArray <FUNC_NAME_ARRAY2>*)m2)) (xvecl ,*vec2,*vec3);
break;
case 23:
(*((skepu::MapArray <FUNC_NAME_ARRAY3>*)m2)) (*vecl ,*vec2,*vec3);
break;
case 24:
(*((skepu::MapArray <FUNC_NAME_ARRAY4>*)m2)) (xvecl , *vec2 ,*vec3);
break;
case 25:
(*((skepu::MapArray <FUNC_NAME_ARRAY5>*)m2)) (xvecl ,*vec2,*vec3);
break;
case 26:
(*((skepu::MapArray <FUNC_NAME_ARRAY6 >*)m2)) (*vecl ,*vec2,*vec3);
break;
}
}
}

void SkePU_MapOverlap_builtin_externalVdouble(void* objectl, voidx*
object2, double object3, void* object4)
{
skepu::Vector<double>* vecl = (skepu::Vector<double>*) objectl;
skepu::Vector<double>* vec2 = (skepu::Vector<double>*) object2;
myStruct* m= (myStruct*)object4;
int funcNum = m->funcNumi;
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void * m2 = m->skel;
switch (funcNum)
{
case 11:
(*x((skepu::MapOverlap <FUNC_NAME_OVERLAP1>*)m2)) (xvecl ,b *xvec2,
skepu:: CONSTANT ,object3); break;
case 12:
(*((skepu::MapOverlap <FUNC_NAME_OVERLAP2>*)m2)) (*vecl ,*vec2,
skepu::CONSTANT ,object3); break;
case 13:
(*((skepu::MapOverlap <FUNC_NAME_OVERLAP3>*)m2)) (*vecl ,*vec2,
skepu:: CONSTANT ,object3); break;
case 14:
(*((skepu::MapOverlap <FUNC_NAME_OVERLAP4>*)m2)) (xvecl , 6 xvec2,
skepu:: CONSTANT ,object3); break;
case 15:
(*((skepu::MapOverlap <FUNC_NAME_OVERLAP5 >*)m2)) (*vecl ,*vec2,
skepu::CONSTANT ,object3); break;
case 16:
(*((skepu::MapOverlap <FUNC_NAME_OVERLAP6 >*)m2)) (*vecl ,*vec2,
skepu:: CONSTANT ,object3); break;
case 17:
(*((skepu::MapOverlap <FUNC_NAME_OVERLAP7 >*)m2)) (*vecl ,*vec2,
skepu::CONSTANT ,object3); break;
case 18:
(*((skepu::MapOverlap <FUNC_NAME_OVERLAP8>*)m2)) (*xvecl , *xvec2,
skepu::CONSTANT ,object3); break;
case 19:
(*x((skepu::MapOverlap <FUNC_NAME_OVERLAP9 >*)m2)) (xvecl ,*vec2,
skepu:: CONSTANT ,object3); break;
case 20:
(*((skepu::MapOverlap <FUNC_NAME_OVERLAP10>*)m2)) (*vecl,*vec2,
skepu::CONSTANT ,object3); break;
default:
(*((skepu::MapOverlap <FUNC_NAME_OVERLAP1 >*)m2)) (*vecl ,*vec2,
skepu:: CONSTANT ,object3); break;
}
}

void SkePU_Scan_builtin_externalVdouble (void* objectl,

{

void* object2,

void* object3d)

skepu::Vector<double>* vecl =
skepu::Vector<double>* vec2 =
myStruct *m = (myStruct*)object3;
int funcNum =
void * m2 =

{

case 31: (*(

skepu::INCLUSIVE) ;

32: (x(

case

skepu:: INCLUSIVE) ;

33: (*(

case

skepu::INCLUSIVE) ;

34: (x(

case

skepu:: INCLUSIVE) ;

35: (*(

case

skepu:: INCLUSIVE) ;

case 36:

(*(

skepu::INCLUSIVE) ;

37: (*(

case

skepu:: INCLUSIVE) ;

38: (*(

case

skepu::INCLUSIVE) ;

39: (x(

case

m-

(skepu::Vector<double>*) objectl;
(skepu::Vector<double>*) object2;

m->funcNuml ;
>skel;

switch (funcNum)

(skepu::Scan<FUNC_NAME_BINARY1>*)m2)) (*vecl ,*xvec2,
break;
(skepu::Scan<FUNC_NAME_BINARY2>*)m2)) (*vecl ,*vec2,
break;
(skepu::Scan<FUNC_NAME_BINARY3>*)m2)) (*vecl ,*vec2,
break;
(skepu::Scan<FUNC_NAME_BINARY4>*)m2)) (xvecl , xvec2,
break;
(skepu::Scan<FUNC_NAME_BINARY5 >*)m2)) (*vecl , *vec2,
break;
(skepu::Scan<FUNC_NAME_BINARY6 >*)m2)) (*xvecl ,*xvec2,
break;
(skepu::Scan<FUNC_NAME_BINARY7 >*)m2)) (*vecl ,*vec2,
break;
(skepu::Scan<FUNC_NAME_BINARY8>*)m2)) (*vecl ,*vec2,
break;
(skepu::Scan<FUNC_NAME_BINARY9 >*)m2)) (*vecl ,*vec2,
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skepu::INCLUSIVE); break;
case 40: (*((skepu::Scan<FUNC_NAME_BINARY10>*)m2)) (*vecl ,h *vec2,
skepu::INCLUSIVE); break;

case 41: (*((skepu::Scan<FUNC_NAME_UNARY1>*)m2)) (*vecl,*vec2,
skepu::INCLUSIVE); break;

case 42: (*((skepu::Scan<FUNC_NAME_UNARY2>*)m2)) (*vecl,*vec2,
skepu::INCLUSIVE); break;

case 43: (*((skepu::Scan<FUNC_NAME_UNARY3>*)m2)) (*vecl,*vec2,
skepu::INCLUSIVE); break;

case 44: (*((skepu::Scan<FUNC_NAME_UNARY4>*)m2)) (*vecl,*vec2,
skepu:: INCLUSIVE); break;

case 45: (*((skepu::Scan<FUNC_NAME_UNARY5>*)m2)) (*vecl , *vec2,
skepu:: INCLUSIVE); break;

case 46: (*((skepu::Scan<FUNC_NAME_UNARY6>*)m2)) (xvecl, *vec2,
skepu:: INCLUSIVE); break;

case 47: (*((skepu::Scan<FUNC_NAME_UNARY7 >*)m2)) (*vecl,*vec2,
skepu:: INCLUSIVE); break;

case 48: (*((skepu::Scan<FUNC_NAME_UNARY8>*)m2)) (*vecl,*vec2,
skepu::INCLUSIVE); break;

//case 49: (*¥((skepu::Scan<FUNC_NAME_UNARY9>*)m2)) (¥vecl, *vec2,
skepu:: INCLUSIVE); break;
//case 50: (*((skepu::Scan<FUNC_NAME_UNARY10>*)m2)) (*vecl, *vec2,
skepu:: INCLUSIVE); break;

case b51: (*((skepu::Scan<FUNC_NAME_BINARY_CONST1>*)m2)) (xvecl ,*
vec2, skepu::INCLUSIVE); break;

case 52: (*((skepu::Scan<FUNC_NAME_BINARY_CONST2>*)m2)) (*vecl ,*
vec2, skepu::INCLUSIVE); break;

case 53: (*((skepu::Scan<FUNC_NAME_BINARY_CONST3>*)m2)) (xvecl ,x*
vec2, skepu::INCLUSIVE); break;

case 54: (x((skepu::Scan<FUNC_NAME_BINARY_CONST4>*)m2)) (*xvecl ,x*
vec2, skepu::INCLUSIVE); break;

case 55: (*((skepu::Scan<FUNC_NAME_BINARY_CONST5>*)m2)) (*vecl ,*
vec2, skepu::INCLUSIVE); break;

case 56: (*((skepu::Scan<FUNC_NAME_BINARY_CONST6>*)m2)) (*vecl,*
vec2, skepu::INCLUSIVE); break;

case 57: (*((skepu::Scan<FUNC_NAME_BINARY_CONST7 >*)m2)) (*vecl,*
vec2, skepu::INCLUSIVE); break;

case 58: (*((skepu::Scan<FUNC_NAME_BINARY_CONST8>*)m2)) (*xvecl ,*
vec2, skepu::INCLUSIVE); break;

case 59: (*((skepu::Scan<FUNC_NAME_BINARY_CONST9 >*)m2)) (*vecl,*
vec2, skepu::INCLUSIVE); break;

case 60: (*((skepu::Scan<FUNC_NAME_BINARY_CONST10>*)m2)) (*vecl ,x*
vec2, skepu::INCLUSIVE); break;

case 61: (*((skepu::Scan<FUNC_NAME_UNARY_CONST1>*)m2)) (*¥vecl, *vec?2
, skepu::INCLUSIVE); break;

case 62: (*((skepu::Scan<FUNC_NAME_UNARY_CONST2>*)m2)) (*xvecl ,h*xvec2
, skepu::INCLUSIVE); break;

case 63: (*((skepu::Scan<FUNC_NAME_UNARY_CONST3>*)m2)) (*vecl ,b *vec?2
, skepu::INCLUSIVE); break;

case 64: (*((skepu::Scan<FUNC_NAME_UNARY_CONST4>*)m2)) (xvecl,b*vec2
, skepu::INCLUSIVE); break;

case 65: (*((skepu::Scan<FUNC_NAME_UNARY_CONST5>*)m2)) (xvecl ,h*xvec2
, skepu::INCLUSIVE); break;

case 66: (*((skepu::Scan<FUNC_NAME_UNARY_CONST6>*)m2)) (xvecl ,b*vec2
, skepu::INCLUSIVE); break;

case 67: (*((skepu::Scan<FUNC_NAME_UNARY_CONST7 >*)m2)) (*xvecl ,h *xvec2
, skepu::INCLUSIVE); break;

case 68: (*((skepu::Scan<FUNC_NAME_UNARY_CONST8>*)m2)) (*vecl ,b *vec?2
, skepu::INCLUSIVE); break;

case 69: (*((skepu::Scan<FUNC_NAME_UNARY_CONST9 >*)m2)) (*¥vecl , *vec2
, skepu::INCLUSIVE); break;

case 70: (*((skepu::Scan<FUNC_NAME_UNARY_CONST10>#*)m2)) (*vecl ,*
vec2, skepu::INCLUSIVE); break;

default: m->skel = NULL; break;
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}

double SkePU_MapReduce_builtin_externalVdouble (void* objectl, voidx*
object2, void* object3)

{
skepu::Vector<double>* vecl = (skepu::Vector<double>*) objectl;
skepu::Vector<double>* vec2 = (skepu::Vector<double>*) object2;
double res = 0;
myStruct* m = (myStruct*)object3;
int funcNuml = m->funcNuml;
int funcNum2 = m->funcNum2;
void * m2 = m->skel;

switch (funcNuml)
{
case 31:
{
switch (funcNum2) {
case 32: res = (*((skepu::MapReduce<FUNC_NAME_BINARY1,
FUNC_NAME_BINARY2>*)m2)) (*vecl ,*vec2) ;break;

}
break;}
case 34:

{
switch (funcNum2) {
case 35: res = (*((skepu::MapReduce<FUNC_NAME_BINARY4,
FUNC_NAME_BINARY5>*)m2)) (*xvecl ,*vec2) ;break;

}
break;}
case 36:

{
switch (funcNum2) {
case 40:res = (*((skepu::MapReduce<FUNC_NAME_BINARY6,
FUNC_NAME_BINARY10>*)m2)) (*vecl ,*xvec2) ;break;

¥
break;}
case 41:

{switch (funcNum2) {
case 32: res = (*((skepu::MapReduce<FUNC_NAME_UNARY1,
FUNC_NAME_BINARY2>*)m2)) (*vecl ,*vec2) ;break;

}
break;}
case 61:

{switch (funcNum2) {
case 32: res = (x((skepu::MapReduce<FUNC_NAME_UNARY_CONST1,
FUNC_NAME_BINARY2>*)m2)) (*vecl ,*vec2) ;break;
}
break;}
}

return res;

double SkePU_MapReduce_builtin_externalVldouble(void* objectl, double
inVal, void* object3)

{
skepu::Vector<double>* vecl = (skepu::Vector<double>*) objectl;
double res = 0;
myStruct* m = (myStruct*)object3;
int funcNuml = m->funcNuml;

int funcNum2 = m->funcNum2;
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void * m2 = m->skel;

switch (funcNumil)
{
case 31:
{
switch (funcNum2) {
case 32: res = (*((skepu::MapReduce<FUNC_NAME_BINARY1,
FUNC_NAME_BINARY2>*)m2)) (*xvecl) ;
}
break;

}

case 34:
{
switch (funcNum2) {
case 35: res = (*((skepu::MapReduce<FUNC_NAME_BINARY4,
FUNC_NAME_BINARY5>*)m2)) (*xvecl);
}
break;

}

case 36:
{
switch (funcNum?2) {
case 40:res = (x((skepu::MapReduce<FUNC_NAME_BINARY6,
FUNC_NAME_BINARY10>#*)m2)) (*vecl);
}
break;

}

case 41:
{
switch (funcNum?2) {
case 32: res = (*((skepu::MapReduce<FUNC_NAME_UNARY1,
FUNC_NAME_BINARY2>*)m2)) (*vecl);

¥
break;
}
case 61:
{
switch (funcNum2) {
case 32:
{
(*((skepu::MapReduce <FUNC_NAME_UNARY_CONST1 ,FUNC_NAME_BINARY2
>%)m2)) .setConstant (inVal) ;
res = (*((skepu::MapReduce<FUNC_NAME_UNARY_CONST1,
FUNC_NAME_BINARY2>*)m2)) (*vecl);
}
}
break;
}
}

return res;

}

double SkePU_MapReduce_builtin_externalMdouble(void* objectl, void*
object2, void* object3)

skepu::Matrix<double>* matl = (skepu::Matrix<double>*) objectl;
skepu::Matrix<double>* mat2 (skepu::Matrix<double>*) object2;
double res = 0;

myStruct* m = (myStruct*)object3;
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int funcNuml = m->funcNuml;
int funcNum2 = m->funcNum2;
void * m2 = m->skel;

switch (funcNum1l)
{
case 31:
{
switch (funcNum2) {
case 32: res = (*((skepu::MapReduce<FUNC_NAME_BINARY1,
FUNC_NAME_BINARY2>*)m2)) (*matl ,*mat2); break;

}
break;}
case 34:

{
switch (funcNum2) {
case 35: res = (*((skepu::MapReduce<FUNC_NAME_BINARY4,
FUNC_NAME_BINARY5>*)m2)) (*matl ,*mat2); break;

}
break;}
case 36:

{
switch (funcNum?2) {
case 40: res = (*((skepu::MapReduce<FUNC_NAME_BINARY6,
FUNC_NAME_BINARY10>*)m2)) (*matl ,*mat2); break;
}
break;}

case 41:
{switch (funcNum2) {
case 32:

res = (x((skepu::MapReduce <FUNC_NAME_UNARY1 ,FUNC_NAME_BINARY2>x)

m2)) (*matl,*mat2); break;
}
break;}

case 61:
{switch (funcNum2) {
case 32: res = (x((skepu::MapReduce<FUNC_NAME_UNARY_CONST1,
FUNC_NAME_BINARY2>*)m2)) (*matl,*mat2); break;
}
break;}
}

return res;

}

double SkePU_Reduce_builtin_externalMdouble(void* objectl, void*

object2)
{
skepu::Matrix<double>* matl = (skepu::Matrix<double>*) objectl;
double res = 0;
myStruct* m= (myStruct*)object2;
int funcNum = m->funcNumi;
void * m2 = m->skel;

switch (funcNum)

{

case 31: res=(*((skepu::Reduce<FUNC_NAME_BINARY1>*)m2)) (*matl);
break;

case 32: res=(*((skepu::Reduce<FUNC_NAME_BINARY2>*)m2)) (*mati);
break;

case 33: res=(*((skepu::Reduce<FUNC_NAME_BINARY3>*)m2)) (*matil);
break;

case 34: res=(*((skepu::Reduce<FUNC_NAME_BINARY4>*)m2)) (¥matl);
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case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

//case 49:

//case 50:

break;
SI0E
break;
36:
break;
37:
break;
38:
break;
39:
break;
40:
break;

41:
break;
42:
break;
43:
break;
44 :
break;
45:
break;
46:
break;
47 :
break;
48:
break;

break;
; break;

51:
matl);
52:
matl);
53:
matl);
54:
matl);
65:
matl);
56:
matl);
57:
matl) ;
58:
matl);
59:
matl);
60:
matl);

break;

break;
break;
break;
break;
break;
break;
break;
break;

61:
); break;
62:
); break;
63:
); break;
64:
); break;
65:
); break;
66:
); break;
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res=(*((skepu:

res=(*((skepu:

res=(*((skepu:
res=(*((skepu:
res=(*((skepu:
res=(*((skepu:
res=(*((skepu:

res=(*((skepu:

:Reduce <FUNC_NAME_BINARY5>*)m2)) (*matl) ;
:Reduce<FUNC_NAME_BINARY6 >*)m2)) (*matl) ;
:Reduce <FUNC_NAME_BINARY7 >*)m2)) (*matl) ;
:Reduce <FUNC_NAME_BINARY8 >*)m2)) (*matl) ;
:Reduce <FUNC_NAME_BINARY9 >*)m2)) (*matl) ;

:Reduce<FUNC_NAME_BINARY10 >*)m2)) (*matl);

:Reduce <FUNC_NAME_UNARY1>*)m2)) (*matl) ;
:Reduce<FUNC_NAME_UNARY2 >*)m2)) (*¥matl);
:Reduce <FUNC_NAME_UNARY3>*)m2)) (*matl) ;
:Reduce <FUNC_NAME_UNARY4 >*)m2)) (*matl) ;
:Reduce <FUNC_NAME_UNARY5>*)m2)) (*matl);
:Reduce <FUNC_NAME_UNARY6 >*)m2)) (*matl) ;
:Reduce <FUNC_NAME_UNARY7 >*)m2)) (¥matil);
:Reduce <FUNC_NAME_UNARY8>*)m2)) (*matl) ;
res=(*((skepu::Reduce <FUNC_NAME_UNARY9 >*)m2)) (*mat1) ;

res=(*((skepu::Reduce <FUNC_NAME_UNARY10>*)m2)) (¥mat1)

:Reduce <FUNC_NAME_BINARY_CONST1>%)m2)) (*
:Reduce <FUNC_NAME_BINARY_CONST2>*)m2)) (*
:Reduce <FUNC_NAME_BINARY_CONST3>*)m2)) (*
:Reduce <FUNC_NAME_BINARY_CONST4 >*)m2)) (*
:Reduce <FUNC_NAME_BINARY_CONST5 >*)m2)) (*
:Reduce <FUNC_NAME_BINARY_CONST6 >*)m2)) (*
:Reduce <FUNC_NAME_BINARY_CONST7 >*)m2)) (*
:Reduce <FUNC_NAME_BINARY_CONST8 >*)m2)) (*
:Reduce <FUNC_NAME_BINARY_CONST9 >*)m2)) (*

:Reduce <FUNC_NAME_BINARY_CONST10 >*)m2)) (*

:Reduce <FUNC_NAME_UNARY_CONST1>*)m2)) (*matl
:Reduce <FUNC_NAME_UNARY_CONST2>*)m2)) (*¥matl
:Reduce <FUNC_NAME_UNARY_CONST3>*)m2)) (*matl
:Reduce <FUNC_NAME_UNARY_CONST4 >*)m2)) (xmat1
:Reduce <FUNC_NAME_UNARY_CONST5>*)m2)) (*matl

:Reduce <FUNC_NAME_UNARY_CONST6 >*)m2)) (*mati
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case 67: res=(*((skepu::Reduce<FUNC_NAME_UNARY_CONST7 >*)m2)) (*mat1l
); break;
case 68: res=(x((skepu::Reduce<FUNC_NAME_UNARY_CONST8>*)m2)) (xmatl
); break;
case 69: res=(*((skepu::Reduce<FUNC_NAME_UNARY_CONST9 >*)m2)) (¥matl
); break;
case 70: res=(*((skepu::Reduce<FUNC_NAME_UNARY_CONST10>*)m2)) (*
matl); break;
default: m->skel = NULL; break;
}
return res;
¥
double SkePU_Reduce_builtin_externalVdouble (voidx* objectl, voidx
object2)

{

skepu::Vector<double>* vecl
double res

0;

(skepu::Vector<double>*) objectl;

myStruct* m=(myStruct#*)object2;

int funcNum

void * m2

m->skel;

switch (funcNum)

{

case 31:
bre
32:
bre
338
bre
34:
bre
BI0E
bre
36:
bre
37:
bre
38:
bre
39:
bre
40:
bre

case

case

case

case

case

case

case

case

case

41:
bre
42:
bre
43:
bre
44:
bre
45:
bre
46:
bre
47:
bre
48:
bre

case

case

case

case

case

case

case

case

//case 49:

//case 50:

s

res=(*((skepu:

ak;

res=(x((skepu:

ak;

res=(*((skepu:

ak;

res=(x((skepu:

ak;

res=(*((skepu:

ak;

res=(*((skepu:

ak;

res=(x((skepu:

ak;

res=(x((skepu:

ak;

res=(x((skepu:

ak;

res=(*((skepu:

ak;

res=(*((skepu:

ak;

res=(*((skepu:

ak;

res=(x((skepu:

ak;

res=(*((skepu:

ak;

res=(*((skepu:

ak;

res=(x((skepu:

ak;

res=(*((skepu:

ak;
res=(x((skepu
ak;

break;

break;

m->funcNumli ;

:Reduce <FUNC_NAME_BINARY1>*)m2)) (*vecl);
:Reduce <FUNC_NAME_BINARY2>*)m2)) (xvecl);
:Reduce <FUNC_NAME_BINARY3>*)m2)) (*vecl);
:Reduce <FUNC_NAME_BINARY4 >*)m2)) (xvecl);
:Reduce <FUNC_NAME_BINARY5>*)m2)) (xvecl);
:Reduce <FUNC_NAME_BINARY6 >*)m2)) (*vecl);
:Reduce <FUNC_NAME_BINARY7 >*)m2)) (*xvecl) ;
:Reduce <FUNC_NAME_BINARY8>*)m2)) (*vecl);
:Reduce <FUNC_NAME_BINARY9>*)m2)) (xvecl);

:Reduce <FUNC_NAME_BINARY10>*)m2)) (*vecl);

:Reduce <FUNC_NAME_UNARY1>*)m2)) (*vecl) ;
:Reduce<FUNC_NAME_UNARY2>*)m2)) (*¥vecl);
:Reduce <FUNC_NAME_UNARY3>*)m2)) (*vecl) ;
:Reduce <FUNC_NAME_UNARY4 >*)m2)) (*vecl) ;
:Reduce <FUNC_NAME_UNARY5 >*)m2)) (¥vecl);
:Reduce <FUNC_NAME_UNARY6 >*)m2)) (*vecl) ;
:Reduce<FUNC_NAME_UNARY7 >*)m2)) (*¥vecl);

::Reduce <FUNC_NAME_UNARY8>*)m2)) (xvecl);

res=(*((skepu::Reduce <FUNC_NAME_UNARY9 >*)m2)) (*vecl);

res=(*((skepu::Reduce <FUNC_NAME_UNARY10>*)m2)) (¥vecl)
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case
case
case
case
case
case
case
case
case

case

case
case
case
case
case
case
case
case
case

case

}

}

default:

b1:
vecl);
52:
vecl) ;
53:
vecl);
54:
vecl) ;
55:
vecl) ;
56:
vecl) ;
57:
vecl) ;
58:
vecl);
59k
vecl);
60:
vecl) ;

break;

break;

break;

break;

break;

break;

break;

break;

break;

61: res=(x((skepu:

); break;
); break;
); break;
); break;
); break;
); break;
); break;
); break;
); break;

70:

vecl); break;

m->skel =

return res;

// END SKELETON FUNTIONS

res=(*((skepu:
res=(*((skepu:
res=(*((skepu:
res=(*((skepu:
res=(*((skepu:
res=(*((skepu:
res=(*((skepu:
res=(*((skepu:
res=(*((skepu:

res=(x((skepu:

res=(*((skepu:
res=(*((skepu:
res=(*((skepu:
res=(*((skepu:
res=(*((skepu:
res=(*((skepu:
res=(*((skepu:
res=(*((skepu:

res=(*((skepu:

NULL;

:Reduce <FUNC_NAME_BINARY_CONST1>*)m2)) (*
:Reduce <FUNC_NAME_BINARY_CONST2>*)m2)) (*
:Reduce <FUNC_NAME_BINARY_CONST3>*)m2)) (*
:Reduce <FUNC_NAME_BINARY_CONST4 >*)m2)) (*
:Reduce <FUNC_NAME_BINARY_CONST5 >*)m2)) (*
:Reduce <FUNC_NAME_BINARY_CONST6 >*)m2)) (*
:Reduce <FUNC_NAME_BINARY_CONST7 >*)m2)) (*
:Reduce <FUNC_NAME_BINARY_CONST8 >*)m2)) (*
:Reduce <FUNC_NAME_BINARY_CONST9 >*)m2)) (*

:Reduce <FUNC_NAME_BINARY_CONST10 >*)m2)) (*

:Reduce <FUNC_NAME_UNARY_CONST1>*)m2)) (*vecl
:Reduce <FUNC_NAME_UNARY_CONST2>*)m2)) (*vecl
:Reduce <FUNC_NAME_UNARY_CONST3>*)m2)) (*veci
:Reduce <FUNC_NAME_UNARY_CONST4 >*)m2)) (*vecl
:Reduce <FUNC_NAME_UNARY_CONST5 >*)m2)) (xvecl
:Reduce <FUNC_NAME_UNARY_CONST6 >*)m2)) (*vecl
:Reduce <FUNC_NAME_UNARY_CONST7 >*)m2)) (xvecl
:Reduce <FUNC_NAME_UNARY_CONST8 >*)m2) ) (*vecl
:Reduce <FUNC_NAME_UNARY_CONST9>*)m2)) (*vecl

:Reduce <FUNC_NAME_UNARY_CONST10 >*)m2)) (*

break;

Listing C.3: run.sh

rm *.0;

#!/bin/bash

cp ../skepu_header.h .;
cp ../Ext0bj.lib .;
../../openmodelica/build/bin/omc +s test_modelica_skepu.mos +d=
failtrace;
rm *.mat;

rm *.xml;

rm *.libs; rm *.json; rm *.log;

Listing C.4: skepumatriz.mo Modelica
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/% K K K K K KK KK oK oK K ok oK K oK oK K oK oK K KK 3 KK o oK K ok ok K ok ok K ok ok K oK oK K oK oK K oK K 3 oK K o ok K o ok K ok oK K K ok K
// skepu_matriz.mo

// Author: Kristian Stavaker, kristian.stavaker@liu.se

// Description:A Modelica file with Modelica object for the

// SkePU library, that calls external C/C++.

/% K K K K K KK KK oK oK K ok oK K oK oK K oK oK K oK K 3 oK K o ok K o ok K ok ok K ok ok K ok oK K ok oK K ok K o ok K ok ok K o ok K ok oK K K ok K

package skepu_matrix

// SkePU Matriz and Vector
class SkePU_Matrix
extends ExternalObject;
function constructor
input String typel;
input Integer diml;
input Integer dim2;
input Real initValue;
output SkePU_Matrix mat;
external mat = initMyMatrix(typel,diml,dim2,initValue);
annotation(Include= ,Library=

)3

end constructor;

function destructor
input SkePU_Matrix m;

external closeMyMatrix (m) ;
annotation(Include= ,Library=
)

end destructor;
end SkePU_Matrix;

class SkePU_Vector
extends ExternalObject;
function comnstructor
input String typel;
input Integer dimil;
input Real initValue;
output SkePU_Vector vec;

external vec = initMyVector (typel, diml ,initValue);
annotation (Include= ,Library=
);

end constructor;

function destructor
input SkePU_Vector v;

external closeMyVector (v);
annotation(Include= ,Library=
)

end destructor;
end SkePU_Vector;

function getMatrixElement
input SkePU_Matrix m;
input Integer ail;
input Integer a2;
output Real elem;

external elem = getMatrixElement (m,al,a2);
annotation(Include= ,Library=
) §

end getMatrixElement;

function getVectorElement
input SkePU_Vector v;
input Integer al;
output Real elem;
external elem=getVectorElement (v,al);
annotation(Include= ,Library=
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)
end getVectorElement;

function assignMatrixElement
input SkePU_Matrix m;
input Integer ailj;
input Integer a2;
input Real elem;

external assignMatrixElement (m,al,a2,elem);
annotation(Include= ,Library=
)

end assignMatrixElement;

function assignVectorElement
input SkePU_Vector v;
input Integer ailj;
input Real elem;

external assignVectorElement (v,al,elem);
annotation(Include= ,Library=
)8

end assignVectorElement;

function displayDataVector
input SkePU_Vector v;
input String typel;

external displayDataVector (v,typel);
annotation(Include= ,Library=
) .

end displayDataVector;

function displayDataMatrix
input SkePU_Matrix m;
input String typel;

external displayDataMatrix (m,typel);
annotation (Include= ,Library=
)3

end displayDataMatrix;

function getRandNum
output Real outNum;

external outNum=getRandNum () ;
annotation(Include= ,Library=
) .

end getRandNum;

function Vector_updateHost
input SkePU_Vector v;

external vectorUpdatehost (v);
annotation(Include= ,Library=
)

end Vector_updateHost;

end skepu_matrix;

Listing C.5: skepu,odelica.mo Modelica

/%K KKk kK ok K ok ok K ok ok K ok ok K ok K K ok K o ok K ok ok K ok ok K ok ok K ok ok K ok K K ok K o ok K ok ok K ok ok K ok ok K ok K K ok K ok K K
// skepu_modelica.mo

// Author: Kristian Stavaker, kristian.stavaker@liu.se

// Description: A Modelica file with Modelica object for the

// SkePU library, that calls exzternal C/C++.

/% K KK ok K ok K o ok K ok ok K ok ok K ok K K ok K o ok K ok ok K ok ok K ok ok K ok ok K ok K K ok K ok ok K ok ok K ok ok K ok ok K ok K K ok K ok K K ok
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package skepu_modelica
import skepu_matrix.mo;

// MAP SKELETON
class Map
extends ExternalObject;
function constructor
input String funcName;
output Map m;
external m = initMyMap (funcName) ;
annotation(Include= ,Library=

) g

end constructor;

function destructor
input Map m;

external closeMyMap (m) ;
annotation(Include= ,Library=
)

end destructor;
end Map;

function Map_MM
import SkePU_Matrix = skepu_matrix.SkePU_Matrix;
import Map = skepu_modelica.Map;
input Map mapl;
input SkePU_Matrix matl;
input SkePU_Matrix mat2;

external SkePU_Map_builtin_externalMdouble(matl,mat2,map1);
annotation(Include= ,Library=
)3
end Map_MM;

function Map_V
import SkePU_Vector = skepu_matrix.SkePU_Vector;
import Map = skepu_modelica.Map;
input Map mapl;
input SkePU_Vector vecl;

external SkePU_Map_builtin_externalVidouble (vecl ,mapl);
annotation (Include= ,Library=
) g
end Map_V;

function Map_VV
import SkePU_Vector = skepu_matrix.SkePU_Vector;
import Map = skepu_modelica.Map;
input Map mapl;
input SkePU_Vector vecl;
input SkePU_Vector vec2;
input String typel;

external SkePU_Map_builtin_externalVdouble (vecl,vec2,mapl,typel)
annotation(Include= ,Library=
)
end Map_VV;

function Map_VVV
import SkePU_Vector = skepu_matrix.SkePU_Vector;
import Map = skepu_modelica.Map;
input Map mapl;
input SkePU_Vector vecl;
input SkePU_Vector vec2;
input SkePU_Vector vec3;
input String typel;
external SkePU_Map_builtin_externalV2double (vecl,vec2,vec3,mapl,
typel);
annotation(Include= ,Library=
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)8
end Map_VVV;

function Map_setConstant
import SkePU_Vector = skepu_matrix.SkePU_Vector;
import Map = skepu_modelica.Map;
input Map mapil;
input Real vall;

external SkePU_Map_builtin_setConstant (mapl,vall);
annotation(Include= ,Library=
)

end Map_setConstant;
// END MAP SKELETON

// REDUCE SKELETON
class Reduce
extends ExternalObject;
function constructor
input String funcName;
output Reduce m;
external m = initMyReduce (funcName) ;
annotation (Include= ,Library=

) g

end constructor;

function destructor
input Reduce m;

external closeMyReduce (m) ;
annotation(Include= ,Library=
)

end destructor;
end Reduce;

function Reduce_M
import SkePU_Matrix = skepu_matrix.SkePU_Matrix;
import Reduce = skepu_modelica.Reduce;
input Reduce reducel;
input SkePU_Matrix matl;
output Real res;

external res = SkePU_Reduce_builtin_externalMdouble (matl,reducel
)

annotation(Include= ,Library=
).

end Reduce_M;

function Reduce_V
import SkePU_Vector = skepu_matrix.SkePU_Vector;
import Reduce = skepu_modelica.Reduce;
input Reduce reducel;
input SkePU_Vector vecl;
output Real res;

external res = SkePU_Reduce_builtin_externalVdouble (vecl,reducel
)
annotation(Include= ,Library=
)

end Reduce_V;
// END REDUCE SKELETON

// MAPREDUCE SKELETON
class MapReduce
extends ExternalObject;
function comnstructor
input String funcNamel;
input String funcName2;
output MapReduce m;
external m = initMyMapReduce (funcNamel, funcName2);
annotation(Include= ,Library=
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E

end constructor;

function destructor
input MapReduce m;

external closeMyMapReduce (m) ;
annotation(Include= ,Library=
Y5

end destructor;
end MapReduce;

function MapReduce_VV
import SkePU_Vector = skepu_matrix.SkePU_Vector;
import MapReduce = skepu_modelica.MapReduce;
input MapReduce mapreducel;
input SkePU_Vector vecl;
input SkePU_Vector vec2;
output Real res;

external res = SkePU_MapReduce_builtin_externalVdouble (vecl,hvec2,
mapreducel);

annotation (Include= ,Library=
) .

end MapReduce_VV;

function MapReduce_VR
import SkePU_Vector = skepu_matrix.SkePU_Vector;
import MapReduce = skepu_modelica.MapReduce;
input MapReduce mapreducel;
input SkePU_Vector vecl;
input Real inValj;
output Real res;

external res = SkePU_MapReduce_builtin_externalVldouble(vecl,
inVal ,mapreducel) ;
annotation(Include= ,Library=
)3

end MapReduce_VR;

function MapReduce_MM
import SkePU_Matrix = skepu_matrix.SkePU_Matrix;
import MapReduce = skepu_modelica.MapReduce;
input MapReduce mapreducel;
input SkePU_Matrix matl;
input SkePU_Matrix mat2;
output Real res;

external res = SkePU_MapReduce_builtin_externalMdouble(matl,mat2
,mapreducel);

annotation(Include= ,Library=
)

end MapReduce_MM;
// END MAPREDUCE SKELETON

// MAPOVERLAP SKELETON
class MapOverlap
extends ExternalObject;
function comnstructor
input String funcName;
output MapOverlap m;
external m = initMyMapOverlap (funcName) ;
annotation(Include= ,Library=

) g

end constructor;

function destructor
input MapOverlap m;
external closeMyMapOverlap (m) ;
annotation(Include= ,Library=

E
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end destructor;
end MapOverlap;

function MapOverlap_VV
import SkePU_Vector = skepu_matrix.SkePU_Vector;
import MapOverlap = skepu_modelica.MapOverlap;
input MapOverlap mapOverlapl;
input SkePU_Vector vecl;
input SkePU_Vector vec2;
input Real ril;

external SkePU_Mavaerlap_bui1tin_externalVdouble(vecl,vec2,r1,
mapOverlapl) ;
annotation(Include= ,Library=
)

end MapOverlap_VV;
// END MAPOVERLAP SKELETON

// MAPARRAY SKELETON
class MapArray
extends ExternalObject;
function comnstructor
input String funcName;
output MapArray m;
external m = initMyMapArray (funcName) ;
annotation(Include= ,Library=

) g

end constructor;

function destructor
input MapArray m;

external closeMyMapArray (m) ;
annotation(Include= ,Library=
)

end destructor;
end MapArray;

function MapArray_VVV
import SkePU_Vector = skepu_matrix.SkePU_Vector;
import MapArray = skepu_modelica.MapArray;
input MapArray mapArrayil;
input SkePU_Vector vecl;
input SkePU_Vector vec2;
input SkePU_Vector rij;
input String typel;

external SkePU_MapArray_builtin_externalVdouble (vecl,vec2,ri,
mapArrayl,typel);
annotation(Include= ,Library=
)

end MapArray_ VVV;

function MapArray_VMM
import SkePU_Vector = skepu_matrix.SkePU_Vector;
import SkePU_Matrix = skepu_matrix.SkePU_Matrix;
import MapArray = skepu_modelica.MapArray;
input MapArray mapArrayil;
input SkePU_Vector vec;
input SkePU_Matrix matil;
input SkePU_Matrix mat2;

external SkePU_MapArray_builtin_externalVMMdouble (vec,matl ,mat2,
mapArrayl);
annotation(Include= ,Library=
)8

end MapArray_ VMM;
// END MAPARRAY SKELETON

// SCAN SKELETON
class Scan
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extends ExternalObject;
function constructor
input String funcName;
output Scan m;
external m = initMyScan(funcName);
annotation(Include= ,Library=
)

end constructor;

function destructor
input Scan m;

external closeMyScan(m);
annotation(Include= ,Library=
)

end destructor;
end Scan;

function Scan_VV
import SkePU_Vector = skepu_matrix.SkePU_Vector;
import Scan = skepu_modelica.Scan;
input Scan scanl;
input SkePU_Vector vecl;
input SkePU_Vector vec2;

external SkePU_Scan_builtin_externalVdouble (vecl ,vec2,scanl);
annotation(Include= ,Library=
)3

end Scan_VV;
// END SCAN SKELETON

// GENERATE SKELETON
class Generate
extends ExternalObject;
function constructor
input String funcName;
output Generate m;
external m = initMyGenerate (funcName) ;
annotation(Include= ,Library=

) §

end constructor;

function destructor
input Generate m;

external closeMyGenerate (m) ;
annotation(Include= ,Library=
)

end destructor;
end Generate;

function Generate_V
import SkePU_Vector = skepu_matrix.SkePU_Vector;
import Generate = skepu_modelica.Generate;
input Generate generatel;
input Integer numElem;
input SkePU_Vector vecl;
input String typel;

external SkePU_Generate_builtin_externalVdouble (numElem,vecl,
generatel ,typel) ;
annotation(Include= ,Library=
)3

end Generate_V;

function Generate_setConstant
import Generate = skepu_modelica.Generate;
input Generate generatel;
input Integer elem;
external SkePU_Generate_builtin_setConstant(generatel,elem);
annotation(Include= ,Library=

E
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end Generate_setConstant;
// END GENERATE SKELETON

end skepu_modelica;

Listing C.6: testmnodelicaskepu.mos Modelica

/ /% % oK ok ok ok ok oK K oK K oK oK ok oK oK oK oK K oK K oK K oK o oK o oK oK oK oK oK oK K oK K oK o oK o oK oK oK oK oK oK K oK K oK K oK o oK K oK K oK ok K oK K K K K

ok K ok ok k ok K

// test_modelica_skepu.mos

// Author: Kristian Stavaker,

// Description:
library.

//See SkePU/skepu/tests/Makefile:

kristian.stavaker@liu.se
A Modelica script file for testing the Modelica-SkePU

-DSKEPU_OPENCL

//********************************************************************

% % %k %k % %k %k %
setCommandLineOptions ({"+d=
loadModel (Modelica) ;
getErrorString () ;
loadFile(
getErrorString ();
loadFile(
getErrorString () ;
loadFile(
loadFile(
getErrorString () ;

//checkModel (test_modelica_skepu.
//checkModel (test_modelica_skepu.
//checkModel (test_modelica_skepu.
//checkModel (test_modelica_skepu.
//checkModel (test_modelica_skepu.
//checkModel (test_modelica_skepu.
//checkModel (test_modelica_skepu.
//checkModel (test_modelica_skepu.
//checkModel (test_modelica_skepu.
//checkModel (test_modelica_skepu.
//checkModel (test_modelica_skepu.
//checkModel (test_modelica_skepu.
//checkModel (test_modelica_skepu.
//checkModel (test_modelica_skepu.

i = 1)

5

) §

mainl) ;

main2) ;

main3) ;

maing) ;

mainb) ;

main6) ;
mandelbrot);
lufactor);
mse) ;
taylor_series);
psnr);

ppmece) ;

nbody) ;
SPH_Fluid_Dynamics);

//checkModel (seq_emb_rk_SkePU.seq_emb_rk_implSkePU) ;

//instantiateModel (test_modelica_skepu.
//instantiateModel (test_modelica_skepu.
//instantiateModel (test_modelica_skepu.
//instantiateModel (test_modelica_skepu.
//instantiateModel (test_modelica_skepu.
//instantiateModel (test_modelica_skepu.
//instantiateModel (test_modelica_skepu.
//instantiateModel (test_modelica_skepu.
//instantiateModel (test_modelica_skepu.
//instantiateModel (test_modelica_skepu.
//instantiateModel (test_modelica_skepu.
//instantiateModel (test_modelica_skepu.
//instantiateModel (test_modelica_skepu.
//instantiateModel (test_modelica_skepu.

mainl) ;

main2) ;

main3) ;

maing) ;

main5) ;

mainé6) ;
mandelbrot);
lufactor);
mse) ;
taylor_series);
psnr);

ppmee) ;

nbody) ;
SPH_Flutid_Dynamics) ;

//instantiateModel (seq_emb_rk_SkePU.seq_emb_rk_implSkePU) ;

//simulate(test_modelica_skepu.mainl,
numberOfIntervals=1,
//simulate(test_modelica_skepu.main2,
numberOfIntervals=1,
//simulate(test_modelica_skepu.main3,
numberOfIntervals=1,
//simulate(test_modelica_skepu.maing,

tolerance=1e-5,
method="euler") ;
tolerance=1e-5,
method="euler");
tolerance=1e-5,
method="euler") ;
tolerance=1e-5,
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numberOfIntervals=1,

//simulate(test_modelica_

numberOfIntervals=1,

//simulate(test_modelica_

numberOfIntervals=1,

//simulate(test_modelica_

numberOfIntervals=1,

//simulate(test_modelica_

numberOfIntervals=1,

//simulate(test_modelica_

1, method="euler");

//simulate(test_modelica_

numberOfIntervals=1,

//simulate(test_modelica_

=1, method="euler");

//simulate(test_modelica_

numberOfIntervals=1,

//simulate(test_modelica_

numberOfIntervals=1,

simulate(seq_emb_rk_SkePU.seq_emb_rk_implSkePU,

numberOfIntervals=1,
//getErrorString () ;

//g++ -I/home/krsta/SkePU/skepu/include
-Wno-write-strings;

skepu_cpp.cpp

method="euler") ;
skepu.main5, tolerance=le-5,
method="euler") ;
skepu.main6, tolerance=le-5,
method="euler") ;
skepu.mandelbrot,
method="euler") ;
skepu.lufactor,
method="euler") ;
skepu.mse, tolerance=1le-5,

tolerance=1e-5,
tolerance=1e-5,
numberOfIntervals=
skepu.taylor_series, tolerance=le-5,
method="euler") ;
skepu.psnr, tolerance=1e-5, numberOfIntervals
skepu.ppmcc, tolerance=le-5,

method="euler") ;

skepu.SPH_Fluid_Dynamics ,
method="euler") ;

tolerance=1e-5,

tolerance=1e-5,

method= E

-c -o ExztObj.libd
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C.3 Modelica-SkePU Test Suite Models
C.3.1 Basic SkePU Models

Listing C.7: mainl C++

#include <iostream>
#include
#include

UNARY_FUNC (square_f, int, a,
return ax*a;

)

int main ()

{
skepu::Map<square_f > square(new square_f);
skepu::Matrix<int> m(5, 5, 3);
skepu::Matrix<int> r(5, 5);
square (m,r) ;
std::cout << << r << 5
return O0;

}

Listing C.8: mainl Modelica

// Map Ezample
function macrol
external square_£ () ;
annotation(MacroType= ,Typel= )
end macrol;

class mainl
import skepu_matrix.*;
import skepu_modelica.*;

Map square = Map (funcName= E
SkePU_Matrix m = SkePU_Matrix(type1= ,dim1=5,dim2=5,
initValue=3.0);
SkePU_Matrix r = SkePU_Matrix(typel= ,dim1=5,dim2=5,
initValue=0.0);
algorithm
macrol () ;

equation
Map_MM(square ,m,r) ;
displayDataMatrix(r, ) §
end maini;

Listing C.9: main2 C++

I #include <iostream>
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#include
#include

BINARY_FUNC(plus_f, float, a, b,
return a+b;

)

int main ()

{
skepu::Reduce<plus_f> globalSum(new plus_f);
skepu::Matrix<float> m(25, 40, (float)3.5);
float r = globalSum(m);
std::cout << << r << 8
return O0;

}

Listing C.10: main2 Modelica

// Reduce Exzample
function macro2
external plus_£f();
annotation(MacroType= ,Typel= )
end macro2;

class main2
import skepu_matrix.*;
import skepu_modelica.*;

Reduce globalSum = Reduce (funcName= )
SkePU_Matrix m = SkePU_Matrix(typels= ,dim1=25,dim2=40,
initValue=3.5);

Real r(start=0.0);
algorithm

macro2 () ;
equation

r = Reduce_M(globalSum,m);

Modelica.Utilities.Streams.print( = + String(r));
end main?2;

Listing C.11: main3 C++

#include <iostream>

#include
#include

BINARY_FUNC(plus_f, double, a, b,
return a+b;

)

BINARY_FUNC (mult_f, double, a, b,
return axb;

)

int main ()

{
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skepu::MapReduce<mult_f, plus_f> dotProduct(new mult_f ,new plus_f)

skepu::Vector<double> v1(500,4);
skepu::Vector<double> v2(500,2);
double r = dotProduct(vl,v2);
std::cout << << r <<
return O;

Listing C.12: main3 Modelica

// MapReduce Ezample
function macro2
external plus_f();
annotation(MacroType= ,Typel= )
end macro2;

function macro3

external mult_£f();

annotation(MacroType= ,Typel= ) 8
end macro3;

class main3
import skepu_matrix.*;
import skepu_modelica.*;

MapReduce dotProduct = MapReduce (funcNamel= ,funcName2=
) .

.0);

.0);

Real r(start=0.0);
algorithm

macro2 () ;

macro3 () ;
equation

r = MapReduce_VV (dotProduct ,vl,v2);

Modelica.Utilities.Streams.print ( = + String(r));
end main3;

SkePU_Vector vl = SkePU_Vector (typel= ,dim1=500, initValue=4

SkePU_Vector v2 = SkePU_Vector (typel= ,dim1=500, initValue=2

Listing C.13: maing C++

#include <iostream>

#include
#include

OVERLAP_FUNC (over_f, float, 2, b,
return al[-2]%0.4f + a[-1]1%0.2f + a[0]*0.1f +
al[1]1*0.2f + a[2]*0.4f;
)

int main ()

{
skepu::MapOverlap<over_f> conv(new over_f);
skepu::Vector<double> v(15,10);
skepu::Vector<double> r;
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conv(v, r, skepu::CONSTANT, (float)l);
std::cout << << r << )
return O0;

Listing C.14: mainj Modelica

// MapOverlap Ezample
function macro4
external over_f ();
annotation(MacroType= ,Typel= ,0ver= )5
end macroé4;

class main4
import skepu_matrix.*;
import skepu_modelica.*;

MapOverlap conv = MapOverlap (funcName= )
SkePU_Vector v = SkePU_Vector(typel= ,dim1=15, initValue=10
o@) 8
SkePU_Vector r = SkePU_Vector (typel= ,dim1=15, initValue=0.0
)
algorithm
macro4 () ;

equation
MapOverlap_VV(conv,v,r,1.0);
displayDataVector (r, ) §
end mainé;

Listing C.15: main5 C++

#include <iostream>

#include
#include

ARRAY_FUNC (arr_f, double, a, b,

int index = (int)b;
return alindex];
)

int main ()

{
skepu::MapArray<arr_f> reverse(new arr_f);
skepu::Vector<double> v1(10);
skepu::Vector<double> v2(10);
skepu::Vector<double> r;
for (int i = 0; i < 10; ++i)

{
vi[i] = i+1;
v2[i] = 10 - i - 1;
}
reverse(vl, v2, 1);
std::cout << << r << 8

return O;
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Listing C.16: main5 Modelica

// MapArray Ezample
function macrob
external arr_f () ;
annotation (MacroType= ,Typel= D
end macrob5;

class mainb
import skepu_matrix.*;
import skepu_modelica.*;

MapArray reverse = MapArray(funcName= )

SkePU_Vector vl = SkePU_Vector(typel= ,dim1=10, initValue=0
HODE:!

SkePU_Vector v2 = SkePU_Vector (typels= ,dim1=10, initValue=0
.0);

SkePU_Vector r = SkePU_Vector (typel= ,dim1=10, initValue=0.0
E

algorithm
macrob () ;

for i in 0:9 1loop
assignVectorElement (vl,i,i+1);
assignVectorElement (v2,i,10-i-1);
end for;
equation
MapArray_VVV(reverse ,vl,v2,r);
displayDataVector (r, ) §
end mainb;

Listing C.17: main6 C++

#include <iostream>
#include
#include

BINARY_FUNC (plus_f, int, a, b,
return a+b;

)

int main ()

{
skepu::Scan<plus_f> prefixSum(new plus_f);
skepu::Vector<int> v(10,1);
skepu::Vector<int> r;
prefixSum(v, r, skepu::INCLUSIVE) ;
std::cout << << r << 5
return O;

}

Listing C.18: main6 Modelica

// Scan Ezample
function macro2

external plus_f ();

annotation(MacroType= ,Typel= g
end macro2;
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class main6
import skepu_matrix.*;
import skepu_modelica.*;

Scan prefixSum = Scan(funcName= ) §

SkePU_Vector v = SkePU_Vector (typels= ,dim1=10, initValue=1.0)

SkePU_Vector r = SkePU_Vector (typel= ,dim1=10, initValue=0.0)
algorithm

macro2() ;

equation
Scan_VV(prefixSum,v,r);
displayDataVector (r, )8
end main6;

C.3.2 Mandelbrot Fractals

Listing C.19: main6

// Mandelbrot Ezample
function macro6
external mandelbrote_f () ;
annotation(MacroType= ,Typel= ) 8
end macro6;

class mandelbrot
import skepu_matrix.*;
import skepu_modelica.*;

parameter Integer WIDTH= 40; //96;
parameter Integer HEIGHT= 30; //72;
parameter Integer ITER =1;
parameter Real CENTER_X=-0.73;
parameter Real CENTER_Y=-0.16;
parameter Integer Z00M=27615;
SkePU_Vector in_def_img =

SkePU_Vector (typel= ,dim1=WIDTH*HEIGHT ,initValue=0.0);
SkePU_Vector inout_img =

SkePU_Vector (typel= ,dim1=WIDTH*HEIGHT ,initValue=0.0) ;
Map map_squ = Map(funcName= )8

Real startx(start = 0.0);
Real starty(start = 0.0);
Real dx(start = 0.0);
algorithm
//macro6();
startx:=CENTER_X - (WIDTH/(Z0OOM*2.0));
starty:=CENTER_Y - (HEIGHT/(Z0OM*2.0));
dx:= 1.0/Z00M;
for x in 0:(WIDTH-1) loop
for y in 0:(HEIGHT-1) loop
assignVectorElement (in_def_img,
x+y*WIDTH, startx + x*dx);
end for;
end for;

for k in 0:(HEIGHT*WIDTH-1) loop
assignVectorElement (inout_img ,k,0.0);

end for;

for i in 1:ITER loop
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Map_VVV(map_squ,inout_img,in_def_img,inout_img);
end for;
equation
displayDataVector (inout_img, ) §
end mandelbrot;

C.3.3 LU Factorization

Listing C.20: LU Factorization

// LU Decomposition Ezample
function macro7
external factorize_£f();
annotation (MacroType= ,Typel= D
end macro7;

function macro20

external indexer_f ();

annotation (MacroType= ,Typel= )3
end macro20;

function equalZero

input Real inArg;

output Boolean outArg;
algorithm

outArg := (inArg == 0);
end equalZero;

class lufactor
import skepu_matrix.*;
import skepu_modelica.*;

parameter Integer NTrials=1;
parameter Integer N=10;
parameter Integer RAND_MAX=2147483647;

MapArray lu_factorize = MapArray(funcName= ) §

Generate set_indices = Generate (funcName= D

SkePU_Vector indices = SkePU_Vector(type1= ,dim1=N*N+1,
initValue=0.0);

SkePU_Vector A = SkePU_Vector (typel= ,diml1=N*N+1,initValue=0
.0);

SkePU_Vector LU = SkePU_Vector(type1= ,diml1=N*xN+1,initValue=
0.0);

Real n(start=0.0);

algorithm
macro7 () ;

macro20 () ;
for p in 0:(NTrials-1) loop

// INIT MATRIX
for i in 0:(N-1) loop
for j in 0:(N-1) loop
n := ceil (10%*
(/*getRandNum()/RAND_MAX*/
1.0 -0.5));
if equalZero(n) then
n = 1.0;
end tf;
assignVectorElement (4, i*N+j7,n);
end for;
end for;
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// END INIT MATRIX

// FACTORIZATION
Generate_V(set_indices ,NxN+1, indices, "double") ;

for i in 0:(N-1) loop
MapArray_VVV(lu_factorize,Ad, indices,LU);
MapArray_VVV(lu_factorize,LU, indices,4);
end for;
// END FACTORIZATION
end for;
displayDataVector(indices, "double") ;
displayDataVector (4, "double") ;
displayDataVector (LU, "double");

//Reset to zero
for i in 0:(N-1) loop
for j in 0:(N-1) loop
assignVectorElement (LU, i*N+35,0.0);
assignVectorElement (4, ixN+35,0.0) ;
assignVectorElement (indices, t*N+5,0.0);
end for;
end for;
assignVectorElement (LU,N*N,0.0) ;
assignVectorElement (A,NxN,0.0);
assignVectorElement (indices ,NxN,0.0);
equation
end lufactor;

C.3.4 Mean Square Error (MSE)

Listing C.21: Mean Square Error (MSE)

// Mean Squared Error (MSE) Ezample
function macro8
external diff_£();
annotation (MacroType= ,Typel= )8
end macro8;

function macro9

external sum_f () ;

annotation(MacroType= ,Typel= )8
end macro9;

class mse
import skepu_matrix.*;
import skepu_modelica.*;

parameter Integer ROWS=16; //00;
parameter Integer COLS=12; //00;
Map map_diff =

Map (funcName= ) g

Reduce red_sum =
Reduce (funcName= E

SkePU_Vector in_act_img = SkePU_Vector (typel= ,dim1=(ROWS *
COLS) ,initValue=7.0);

SkePU_Vector in_comp_img = SkePU_Vector (typel= ,dim1l=(ROWS*
COLS) ,initValue=1.5);

SkePU_Vector out_img = SkePU_Vector (typels= ,dim1=(ROWS*COLS)

,initValue=0.0);
Real mse(start=0.0);
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algorithm

macro8 () ;

macro9 () ;

Map_VVV(map_diff,in_act_img,

in_comp_img, out_img);

mse := (Reduce_V(red_sum,out_img)/ROWS*COLS) ;
equation

displayDataVector (out_img, E

Modelica.Utilities.Streams.print ( = + String(mse));
end mse;

C.3.5 Pearson Product-Moment Correlation Coefficient
(PPMCC)

Listing C.22: Pearson Product-Moment Correlation Coefficient (PPMCC)

// Pearson Product-Moment Correlation Coefficient (PPMCC)
class ppmcc
import skepu_matrix.*;
import skepu_modelica.*;
import Modelica.Math.*;

parameter Integer N=50;

SkePU_Vector X = SkePU_Vector (typel= ,dim1=N, initValue=3.5);
SkePU_Vector Y = SkePU_Vector (typel= ,dim1=N,initValue=2.0);
Reduce sumReduce = Reduce (funcName= ) 3
MapReduce dotProduct = MapReduce (funcNamel= ,funcName2=
)
I MapReduce sumSquare = MapReduce (funcNamel= ,funcName2= I
)

Real res(start=0.0);
Real sumX(start=0.0);
Real sumY(start=0.0);
Real sumPr(start=0.0);
Real sumSqX(start=0.0);
Real sumSqY(start=0.0);
algorithm
macrol () ;
macro2 () ;
macro3();
sumX := Reduce_V (sumReduce ,X);
sumY := Reduce_V (sumReduce,Y);
Modelica.Utilities.Streams.print ( = + String (sumX)) ;
Modelica.Utilities.Streams.print( = + String(sumY));
sumPr := MapReduce_VV(dotProduct ,X,Y);
Modelica.Utilities.Streams.print(
sumSgX := MapReduce_VR(sumSquare,X,0.0);
Modelica.Utilities.Streams.print (
sumSqY := MapReduce_VR(sumSquare,Y,0.0);
Modelica.Utilities.Streams.print(
res := ((N * sumPr - sumX * sumY) /
sqrt ((N * sumSqX - sumX*sumX) *
(N * sumSqY - sumY#*sumY)) );
Modelica.Utilities.
Streams.print ( = + String(res));
equation
end ppmcc;

]
+

String (sumPr)) ;

n
o

String (sumSqX)) ;

]
o

String (sumSqY));
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C.3.6 Peak Signal to Noise Ratio (PSNR)

Listing C.23: Peak Signal to Noise Ratio (PSNR)
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// PSNR Ezample
class psnr
import skepu_matrix.*;
import skepu_modelica.*;

parameter Integer ROWS=16;
parameter Integer COLS=12;
parameter Integer R=255;
Map map_diff = Map(funcName= E
Reduce red_sum = Reduce (funcName= )8
SkePU_Vector in_act_img = SkePU_Vector (typel=
diml=(ROWS*COLS) ,initValue=4.0);
SkePU_Vector in_comp_img =SkePU_Vector(type1=
diml=(ROWS*COLS) ,initValue=2.0);
SkePU_Vector out_img = SkePU_Vector (typel=
diml=(ROWS*COLS) ,initValue=0.0);
Real mse(start=0.0);
Real psnr(start=0.0);
algorithm
macro7 () ;
macro6 () ;
Map_VVV(map_diff,in_act_img, in_comp_img, out_img);
mse := (Reduce_V(red_sum,out_img)/
ROWS*COLS) ;
psnr := 10 * log((R*R)/mse);
equation
Modelica.Utilities.Streams.print( = + String(psnr));
end psnr;

C.3.7 Taylor Series Calculation

Listing C.24: Taylor Series Calculation

// Taylor Series
function macrol9
external nth_term() ;
annotation(MacroType= ,Typel= »Type=

end macrol9;

function macro20
external lcg_init ();
annotation (MacroType= ,Typel= ,Type2=

end macro20;

class taylor_series
import skepu_matrix2.*;
import skepu_modelica2.x*;

parameter Integer N = 100;
MapReduce taylor = MapReduce (funcNamel = ,funcName2 =

) 8
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Generate (funcName =
SkePU_Vector (typel=

Generate vec_init =
SkePU_Vector vO0 =

Real result(start=0.0);
algorithm
macro2 () ;
macrol19 () ;
macro20 () ;
Generate_V(vec_init ,N,vO, )8
result := MapReduce_VR(taylor,v0,1.0);
Modelica.Utilities.
Streams.print ( =
equation
end taylor_series;

) §
,dim1=N,initValue=0.0)

+ String(result));

C.3.8 Smooth Particle Hydrodynamics (SPH), Fluid
Dynamics Shocktube simulation

Listing C.25: Smooth Particle Hydrodynamics (SPH), Fluid Dynamics Shocktube

stmulation

// SPH Flutid Dynamics
function macrol3

external init ) ;
annotation(MacroType= ,Typel=
)
end macrol3;
function macrol4
external assign();
annotation(MacroType= ,Typel=
end macrold;
function macroilb
external updatecell ();
annotation(MacroType= ,Typel=
end macrolb;
function macroil6
external computedensity ();
annotation(MacroType= ,Typel=
end macrol6;
function macrol?
external updateforce () ;
annotation (MacroType= ,Typel=
end macrol7;
function macroil8
external updateposition () ;
annotation (MacroType= ,Typel=
end macrol8;
class SPH_Fluid_Dynamics
import skepu_matrix.*;
import skepu_modelica.*;
parameter Integer XYLEN = 100;
parameter Integer NTrials = 3;
parameter Integer XLEN = XYLEN;

,Type2=
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parameter Integer YLEN = XYLEN;
parameter Integer ZLEN = 1;
parameter Integer NPARTICLES =
XLEN*YLEN*ZLEN ;
parameter Integer timesteps =
100;
Generate sph_init =
Generate (funcName= )
Map sph_assign =
Map (funcName= ) §
MapArray sph_update_cell =
MapArray (funcName= Y5
MapArray sph_compute_density =
MapArray (funcName= )8
MapArray sph_update_force =
MapArray (funcName= E
Map sph_update_position =
Map (funcName= )8
SkePU_Vector fluidl =
SkePU_Vector (typel= s
dim1=NPARTICLES ,initValue=0.0) ;
SkePU_Vector fluid2 =

) g
algorithm
macrol13();
macrol4 () ;
macrol5();
macrol6();
macrol7();
macrol18 () ;
for i in 0:NTrials-1 loop
Generate_V(sph_init,
NPARTICLES, fluidil, DE
Map_VV (sph_assign,
fluidl, fluid2, )
MapArray_VVV (sph_update_cell,
fluid2,fluidl, fluidl, DE

for i in O:timesteps-1 loop
MapArray_VVV (sph_compute_density,

fluidl ,fluid2,fluid2, ) 8
MapArray_VVV (sph_update_force,
fluid2,fluidl,fluidl, )
Map_VV (sph_update_position,
fluidl, fluidl, )
end for;
end for;
displayDataVector (fluidil, ) §
displayDataVector (fluid2, E

equation
end SPH_Fluid_Dynamics;

SkePU_Vector (typel= ,dim1=NPARTICLES ,initValue=0.0

C.3.9 A Runge-Kutta ODE solver

Listing C.26: A Runge-Kutta ODE solver

package seq_emb_rk_SkePU
import skepu_modelica.*;
import skepu_matrix.*;
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function macrol
external

end macrol;

function macro2
external

end macro2;

function macro3
external

end macro3;

function macro4
external

end macro4;

function macrob
external

end macrob;

function macro6
external

end macro6;

function macro7
external

end macro7;

function macro8
external

end macro8;

function macro9
external

end macro9;

external

end macrolO;

Map zero

MapReduce subAbsmax

bruss_eval_f ();

annotation(MacroType=

absmax_£f ();

annotation(MacroType=

axpy_£f () ;

annotation(MacroType=

sub_£ ();

annotation(MacroType=

zero_f();

annotation(MacroType=

copy_£();

annotation(MacroType=

absaxpy_£f () ;

annotation(MacroType=

scale_f ();

annotation(MacroType=

absquot_£f () ;

annotation(MacroType=

function macrol0

maximum_£ ();

annotation(MacroType=

class seq_emb_rk_implSkePU
import skepu_matrix.*;
import skepu_modelica.*;

constant Integer ode_size = 32;
constant Integer s = 7;

constant Integer ord = 5;
constant Integer bruss_grid_size
constant Real t0 = 0.0;

constant Real bf = 1.000000E-03;
constant Real H = 4.0;

MapArray bruss_eval = MapArray(f
Reduce absmax = Reduce (funcName=
Map axpy = Map(funcName=

MapReduce (
) .

Map (funcName=

,Typel=

> Typel=

> Typel=

»Typel=

,Typel=

»Typel=

»Typel=

uncName=

) §

funcNamel=

)

)s
5
»Typel= ) 5
)
)3
)8
»Typel= VE
»Typel= )8
E
E

)8
)y

, funcName2=
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Map copy = Map(funcName= E

Map absaxpy = Map(funcName= DE:

Map scale = Map(funcName= ) g

MapReduce absquotmax = MapReduce (funcNamel= ,funcName2=
)

// INPUT VARIABLES

Real _yO[ode_sizel;

Real b[s];

Real bs[s];

Real al[s,s];

// INPUT VARIABLES END

Real error_max,h,old_h,t,t_e,d0,dl1,d2,h0,hl;

Real bbs[s];

Real stagevecl[s,ode_size];

SkePU_Vector g_eval_index = SkePU_Vector (typel= ,diml=

ode_size, initValue=0.0);

SkePU_Vector y SkePU_Vector (typels=
initValue=0.0);

SkePU_Vector f_tO
initValue=0.0);

SkePU_Vector yi SkePU_Vector (typel=
initValue=0.0);

SkePU_Vector f_tOhO
initValue=0.0);

SkePU_Vector tempStage
initValue=0.0);

SkePU_Vector old_y
initValue=0.0);

SkePU_Vector help
initValue=0.0);

SkePU_Vector helpl
initValue=0.0);

SkePU_Vector err_vector = SkePU_Vector (typel=

initValue=0.0);

SkePU_Vector yscal
initValue=0.0);

SkePU_Vector yoO SkePU_Vector (typel=
initValue=0.0);

algorithm
// INITIALIZATION, bruss_miz_start
for i in O:bruss_grid_size-1 loop
for j in O:bruss_grid_size-1 loop
_y0[2 * bruss_grid_size * i + 2 *
bruss_grid_size 1);
end for;
end for;

SkePU_Vector (typel=

SkePU_Vector (typel=

SkePU_Vector (typel=

SkePU_Vector (typel=

SkePU_Vector (typel=

SkePU_Vector (typel=

SkePU_Vector (typel=

j o+ 1]

for i in O:bruss_grid_size-1 loop
for j in O:bruss_grid_size-1 loop
_y0[2 * bruss_grid_size * i + 2 * j + 2]
1.0 + (6.0 * i) / (bruss_grid_size - 1);
end for;
end for;
// END INITIALIZATION,

bruss_miz_start

// Quelle: Hairer, Bd. I, Butcher 2003 (S. 194)
b[1] := 35.0 / 384.0;

b[2] 0.0;

b[3] = 500.0 / 1113.0;

b[4] = 125.0 / 192.0;

b[5] := -2187.0 / 6784.0;

b[6] := 11.0 / 84.0;

b[7] := 0.0;

bs[1] = 5179.0 / 57600;

bs [2] = 0.0;

,diml=ode_size,

,diml=ode_size,

,diml=ode_size,

,diml=ode_size,
,diml=ode_size,
,diml=ode_size,
,diml=ode_size,
,diml=ode_size,
,diml=ode_size,

,diml=ode_size,

,diml=ode_size,

0.5 + j / (
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bs[3] := 7571.0 / 16695;
bs[4] := 393.0 / 640.0;
bs[5] := -92097.0 / 339200;
bs[6] := 187.0 / 2100.0;
bs[7] := 1.0 / 40.0;
al1,1] := 0.0;
al[1,2] := 0.0;
al[1,3] := 0.0;
al1,4] := 0.0;
al[1,5] := 0.0;
al[1,6] := 0.0;
al[1,7] := 0.0;
a[2,1] := 1.0 / 5.0;
al2,2] := 0.0;
al[2,3] := 0.0;
al[2,4] := 0.0;
a[2,5] := 0.0;
al[2,6] := 0.0;
al[2,7] := 0.0;
a[3,1] := 3.0 / 40.0;
al3,2] := 9.0 / 40.0;
a[3,3] := 0.0;
al[3,4] := 0.0;
al[3,5] := 0.0;
a[3,6] := 0.0;
al[3,7] := 0.0;
al4,1] := 44.0 / 45.0;
al4,2] := -56.0 / 15.0;
al4,3] := 32.0 / 9.0;
al4,4] := 0.0;
al[4,5] := 0.0;
al[4,6] := 0.0;
al4,7] := 0.0;
a[5,1] := 19372.0 / 6561.0;
a[5,2] := -25360.0 / 2187.0;
al[5,3] := 64448.0 / 6561.0;
al[5,4] := -212.0 / 729.0;
a[5,5] := 0.0;
al[5,6] := 0.0;
al[5,7] := 0.0;
al[6,1] := 9017.0 / 3168.0;
al[6,2] := -355.0 / 33.0;
a[6,3] := 46732.0 / 5247.0;
al6,4] := 49.0 / 176.0;
a[6,5] := -5103.0 / 18656.0;
al6,6] := 0.0;
al6,7] := 0.0;
al7,1] := 35.0 / 384.0;
al7,2] := 0.0;
al[7,3] := 500.0 / 1113.0;
al7,4] := 125.0 / 192.0;
al7,5] := -2187.0 / 6784.0;
al7,6] := 11.0 / 84.0;
al7,7] := 0.0;
// INITIALIZATION STOP
// FUNCTION: INIT SKEPU
for i in 0:(ode_size-1) loop
assignVectorElement (g_eval_index ,i,i);
end for;
// END FUNCTION: INIT SKEPU
t := t0;
t_e := t0 + H;
for i in 1:s loop
bbs[i] := b[i] - bs[il;
//Modelica.Utilities.Streams.print (String(bbs[3i]1));
end for;
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for i in 0:(ode_size-1) loop
assignVectorElement (y,i, _yO[i+1]1);
assignVectorElement (y0,i,_yO0[i+1]);
end for;

// FUNCTION: INITIAL STEP SKEPU

//Modelica.Utilities.Streams.print("H = " + String(H) + "\n");
d0 := Reduce_V (absmax,y);

//displayDataVector(y, "double");
//Modelica.Utilities.Streams.print("d0 = " + String(d0) + "\n");
MapArray_VVV(bruss_eval,y,g_eval_index ,f_tO, ) 8

d1 := Reduce_V (absmax,f_t0);
//Modelica.Utilities.Streams.print("dl1 = " + String(d1) + "\n");

if ((d0 < 1E-5) or (d1 < 1E-5)) then

hO := 1E-6;
else
hO := 0.01 * (40 / di1);
end if;
//Modelica.Utilities.Streams.print("h0 = " + String(h0) + "\n");

Map_setConstant (axpy,h0);

Map_VVV (axpy,f_t0,y,yl, )

MapArray_VVV (bruss_eval,yl,g_eval_index ,f_tOhO, )

d2 := MapReduce_VV (subAbsmax ,f_tO0hO,f_t0);

d2 := d2 / hO;

//Modelica.Utilities.Streams.print("d2 = " + String(d2) + "\n");

if (max(d1,d2) < 1E-15) then

hi := max(1E-6, hO * 1E-3);
else

hi1 := (0.01 / max(dl, d2))"(1.0 / (ord + 1.0));
end if;
hO := min(100.0 * hO, hil);

//Modelica.Utilities.Streams.print("hi " + String(h1) + "\n");

//Modelica.Utilities.Streams.print("h0 = " + String(h0) + "\n");
h := min(hO, H);

// END INITIAL STEP SKEPU

//Modelica.Utilities.Streams.print("h = " + String(h) + "\n");

//Modelica.Utilities.Streams.print("y0 = \n");
//displayDataVector(y0, "double");

Modelica.Utilities.Streams.print ('=== SS= )

while (t < t_e) loop

Modelica.Utilities.Streams.print ( S + String(t) + = +
String(h) + )
displayDataVector (y, )

for i in 0:(s-1) loop
Map_V (zero,helpl);

for j in 0:(i-1) loop
Map_setConstant (axpy,ali+1,j+1]1);

// Temp storage//

for k in 0:(ode_size-1) loop
assignVectorElement (tempStage ,k,stagevec[j+1,k+1]);
end for;

Map_VVV (axpy ,tempStage /*stageveclj+1]1*/, helpl, helpl, "double
H) g
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end for;

Map_setConstant Cazpy,h);
Map_VVV(azpy, helpl, y, helpl,"doudble");

// Temp storage//

for k in 0:(ode_size-1) loop
assignVectorElement (tempStage ,k, stagevecl[i+1,k+11);
end for;

MapArray_VVV(bruss_eval ,helpl,g_eval_index, tempStage /*stagevecl
i+11%/,"double") ;
// Temp storage//
for k in 0:(ode_size-1) loop
stagevec[i+1,k+1] := getVectorElement(tempStage,k);
end for;

end for;

Map_V(zero, help);
Map_V(zero,helpl);

for i in 0:(s-1) loop
Map_setConstant (Cazpy, bbs[i+1]);

// Temp storage //
for k in 0:(ode_size-1) loop
assignVectorElement (tempStage ,k, stagevec[i+1,k+1]);
end for;

Map_VVV(azpy, tempStage /*stagevecli+1]l*/, help, help,"double");

Map_setConstant Cazpy,bli+1]);

// Temp storage //

for k in 0:(ode_size-1) loop
assignVectorElement (tempStage ,k, stagevec[i+1,k+1]);

end for;

Map_VVV(azxpy, tempStage /*stagevec[i+1]1*/, helpl, helpl,"double")

end for;

for i in 0:(ode_size-1) loop
assignVectorElement(old_y,%, getVectorElement(y,i));
end for;

Map_setConstant (absazpy,h);
// Temp storage //
for k in 0:(ode_size-1) loop
assignVectorElement (tempStage ,k, stagevec[1,k+1]1);
end for;

Map_VVV(absazpy,y, tempStage /*stagevec[1l*/, yscal,"double");

Map_setConstant Cazpy,h);

Map_VVV(azpy, helpl, y, y,"double”);
Map_setConstant (scale,h);
Map_VV(scale,help, err_vector,"double") ;

old_h := h;
error_maz := MapReduce_VV(absquotmaz,err_vector, yscal);
error_max := error_mazx / bf;

Modelica.Utilities.Streams.print("Error maz: \n" + String(
error_maxz)) ;

if (error_maz <= 1.0) then // accept
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h := h *x maz((1.0 / 3.0), 0.9 * (1.0 / error_maz) (1.0 / (ord +
1.0)));
t := t + old_h;
else // reject
h := maz(0.1 * h, 0.9 * h *x (1.0 / error_maz) (1.0 / ord));

for i 4n 0:(ode_size-1) loop
assignVectorElement(y,i,getVectorElement (old_y,3));
end for;
end tf;

h := min(h, t_e - t);
end while;

Modelica.Utilities.Streams.print("=== WHILE LOOP END ===\n");
displayDataVector(y, "double") ;

// SET TO ZERO
Map_V(zero,help);
Map_V(zero,helpl);
Map_V(zero,y0) ;
Map_V(zero,y);
Map_V(zero, g_eval_indezx) ;
Map_V(zero, f_t0);
Map_V(zero,yl);
Map_V(zero, f_tOhO) ;
Map_V(zero, tempStage) ;
Map_V(zero,old_y);
Map_V(zero, err_vector) ;
Map_V(zero,yscal);
Map_V(zero, f_tOh0);

do := 0.0;

dl := 0.0;

d2 := 0.0;

hO := 0.0;

h1l : 0.0;
error_maz := 0.0;
h := 0.0;

old_h := 0.0;

t := 0.0;

t_e := 0.0;

for j in 1:o0de_size loop
stagevecl[i,j] := 0.0;
end for;
end for;
VZZEE SRR
equation
end seq_emb_rk_implSkePU;

end seq_emb_rk_SkePU;

Listing C.27: skepumacrojunctions.h

/) 4======t//
// MACROS //
/) +======t//

#include <math.h>

#define FUNC_NAME_GENERATE1 lcg_init
#define FUNC_NAME_GENERATE2 indexer_f
#define FUNC_NAME_GENERATE3 initNB

#define FUNC_NAME_GENERATE4 sph_init
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#define FUNC_NAME_GENERATE5 lcg_init
#define FUNC_NAME_GENERATE6 lcg_init
#define FUNC_NAME_GENERATE7 lcg_init
#define FUNC_NAME_GENERATE8 lcg_init
#define FUNC_NAME_GENERATE9 lcg_init
#define FUNC_NAME_GENERATE10 lcg_init

#define FUNC_NAME_OVERLAP1 over_f
#define FUNC_NAME_OVERLAP2 over_f
#define FUNC_NAME_OVERLAP3 over_f
#define FUNC_NAME_OVERLAP4 over_f
#define FUNC_NAME_OVERLAP5 over_f
#define FUNC_NAME_OVERLAP6 over_f
#define FUNC_NAME_OVERLAP7 over_f
#define FUNC_NAME_OVERLAP8 over_f
#define FUNC_NAME_OVERLAP9 over_f
#define FUNC_NAME_OVERLAP10 over_f

#define
#define
#define
#define
#define
#define
#define
#define

FUNC_NAME_ARRAY2
FUNC_NAME_ARRAY3
FUNC_NAME_ARRAY4
FUNC_NAME_ARRAY5
FUNC_NAME_ARRAY6
FUNC_NAME_ARRAY7
FUNC_NAME_ARRAYS8
FUNC_NAME_ARRAY9

#define FUNC_NAME_ARRAY1 arr_f

factorize_f

arr_f

arr_f

arr_f

bruss_eval_f
sph_updatecell
sph_computedensity
sph_updateforce

#define FUNC_NAME_ARRAY10 move

#define FUNC_NAME_BINARY1 mult_f
#define FUNC_NAME_BINARY2 plus_f
#define FUNC_NAME_BINARY3 diff_f
#define FUNC_NAME_BINARY4 sub_f

#define FUNC_NAME_BINARY5 absmax_f
#define FUNC_NAME_BINARY6 absquot_f
#define FUNC_NAME_BINARY7 sum_f

#define FUNC_NAME_BINARY8 mandelBrote_f
#define FUNC_NAME_BINARY9 mult_f
#define FUNC_NAME_BINARY10 maximum_f

#define FUNC_NAME_UNARY1 square_f
#define FUNC_NAME_UNARY2 copy_f
#define FUNC_NAME_UNARY3 zero_f
#define FUNC_NAME_UNARY4 zero_f
#define FUNC_NAME_UNARY5 zero_f
#define FUNC_NAME_UNARY6 zero_f
#define FUNC_NAME_UNARY7 zero_f
#define FUNC_NAME_UNARY8 zero_f

#define FUNC_NAME_UNARY10 sph_assign

#define FUNC_NAME_BINARY_CONST1 axpy_f
#define FUNC_NAME_BINARY_CONST2 absaxpy_f
#define FUNC_NAME_BINARY_CONST3 absaxpy_f
#define FUNC_NAME_BINARY_CONST4 absaxpy_f
#define FUNC_NAME_BINARY_CONST5 absaxpy_f
#define FUNC_NAME_BINARY_CONST6 absaxpy_f
#define FUNC_NAME_BINARY_CONST7 absaxpy_f
#define FUNC_NAME_BINARY_CONST8 absaxpy_f
#define FUNC_NAME_BINARY_CONST9 absaxpy_f
#define FUNC_NAME_BINARY_CONST10 absaxpy_f

#define FUNC_NAME_UNARY_CONST1 nth_term
#define FUNC_NAME_UNARY_CONST2 scale_f
#define FUNC_NAME_UNARY_CONST3 scale_f
#define FUNC_NAME_UNARY_CONST4 scale_f
#define FUNC_NAME_UNARY_CONST5 scale_f
#define FUNC_NAME_UNARY_CONST6 scale_f

#define FUNC_NAME_UNARY9 sph_updateposition
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#define FUNC_NAME_UNARY_CONST7 scale_f
#define FUNC_NAME_UNARY_CONST8 scale_f
#define FUNC_NAME_UNARY_CONST9 scale_f
#define FUNC_NAME_UNARY_CONST10 scale_f

#define TYPE_NAME1 ParticlelNB
#define TYPE_NAME2 ParticleSPH
#define float double

UNARY_FUNC_CONSTANT (nth_term, float, float, t, x,
float temp_x = pow(x, t);
return (((int)t)%2==07-1:1)*temp_x/t;
)

// UNARY AND BINARY FUNCTIONS
UNARY_FUNC (square_f , double, a,
return a*a;
)
/*int square_f (double a)
{
return a*a;

Fx/

BINARY_FUNC(plus_f, double, a, b,
return a+b;
)
/*double plus_f(double a, double b)
{
return a+b;

Fx/

BINARY_FUNC(diff_f, double, a, b,
return ((a-b)*(a-b));
)
/*double diff_f(double a, double b)
{
return ((a-b)*(a-b));
Fx/

BINARY_FUNC(sum_f, double, a, b,
return a+b;
)
/*double sum_f (double a, double b)
{
return a+b;

Fx/

BINARY_FUNC(mult_f, double, a, b,
return axb;
)
/*double mult_f(double a, double b)
{
return ax*b;

Fx/

// OVERLAP FUNCTIONS
OVERLAP_FUNC (over_f, double, 2, a,
return al[-2]*%0.4f + al[-1]1%0.2f + a[0]*0.1f +
al[1]1*0.2f + a[2]*0.4f;
)
/*double over_f(double *a)
{
return a[-2]*0.4f + al[-1]%0.2f + a[0]*0.1f +
al1]*0.2f + al2]*0.4f;
F*/

// ARRAY FUNCTIONS
ARRAY_FUNC (arr_f, double, a, b,
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int index (int)b;
return alindex];
)
/*double arr_f(doublel[] a,
{

double b)

int index (int)b;
return alindex];

Fx/

GENERATE_FUNC(lcg_init, double,
return index+1;

double,

)

/*double lcg_init(double seed, index)

{

int
return (double) (indez+1);

Fx/

BINARY_FUNC (mandelBrote_f ,
return axa+b;

)

double, a, b,

GENERATE_FUNC (indexer_f, int,
return index+1;

)

int, index,

#define PROBLEM_SIZE 1000
#define NLU PROBLEM_SIZE
#define D(i,j) (i*NLU + j)

ARRAY_FUNC (factorize_f, float, A, ind,
int index (int) (ind-1);
if (index > NLU*NLU)
return A[index];

int col = index%NLU;
int row = ((index-col)/NLU)Y%NLU;
int iteration = (int)A[NLUx*NLU];
int LorU = (int)10*(A[NLU*NLU] -
if (index == NLU=*NLU)
{
if (LorU == 0)
return (A[index] + 0.1f);
return (iteration + 1.0f);
}
if (LorU == 0)
{
if ((col == iteration) && (row > col))
{
return A[index]/A[D(col,col)];
}
¥
else if(LorU == 1)
{
if ( (col > iteration) && (row > iteration) )
{
return (A[index]
}
}

return A[index];

)

struct ParticlelNB
{
double id;

index,

seed,

seed,

(float)iteration);

- A[D(row,iteration)]*A[D(iteration,col)]);
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double x, y
double vx,
double ax,

5 7
vy,
ay,

5
vZ;
az;

double m;

¥

// some parameter constants. can change here....
#define NP 2 // Number of particles in 1 direction
#define G 1

#define time_steps 2

#define delta_t 1

/*

Array user-function that is used for applying nbody computation,

All elements from parr and a single element (named
accessible
to produce one output element of the same type.
*/
ARRAY_FUNC (move, ParticleNB, parr, p_1,
int i = p_1.id;

p_l.ax = 0.0;
p_l1.ay = 0.0;
p_1l.az 0.0;

double rij = 0;
double dum = O;

for(int j=0; j<NP*NP*NP; ++j)

{
if (i1=3)
{
ParticleNB pj = parr[jl;
rij = sqrt((p_1.x-pj.x)*(p_1.x-pj.x) + (p_1l.y-pj.y)*(p_1l.y-pj.y
) + (p_1.z-pj.z)*(p_1.z-pj.z));
dum = G * (pj.m) / pow(rij,3);
p_l.ax = p_l.ax + dum * (p_1.x-pj.x);
p_l.ay = p_l.ay + dum * (p_1.y-pj.y);
p_l.az = p_l.az + dum * (p_1.z-pj.z);
}
}

p_-1.x = parr[i].x + delta_t * parr[i].vx + ((delta_tx*delta_t)/2)*(

parr[i].ax);
T /2)x(parr[il.ay);

/2) *(parr[i].az);

p_1
p_1.vy
p_1
return p_1;

/%

'p_1') are

1.y = parr[il.y + delta_t * parr[i].vy + ((delta_t*delta_t)
1.z = parr[i].z + delta_t * parr[i]l.vz + ((delta_t*delta_t)
.vx = parr[i]l.vx + (delta_t/2)*(parr[il.ax + p_1l.ax);

parr[i].vy + (delta_t/2)*(parr[il.ay + p_1.ay);
.vz = parr[i].vz + (delta_t/2)*(parr[i]l.az + p_1l.az);

Generate user-function that 4is used for initializing particles

array.

*/
GENERATE_FUNC(initNB, ParticleNB, int, index, seed,

int s = index;

int = NP/2+1;

int = s%NP;

int ((s-1)/NP)%NP;

int (((s-i)/NP)-j)/NP;

e B
]
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#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define

#define
#define

{

#define
#define

int id;

double x,y,z;
double vx,vy,vz;
double vhx,vhy,vhz;
double ax,ay,az;
double m;

double p;

double d;

int pool [GRID_CACHE];
int neighbours [GRID_CACHE]; // meighbours list

ParticleNB

]
~< M
no
.,
ol
a a
+ +

. VX 0
.vy = 0
.vz = 0
.ax = 0.
.ay = 0
.az = 0

helbioBlo B o B o e}

p.m = 1;

return p;

)

XYLEN 30

XLEN

YLEN

ZLEN

NPARTICLES
SMOOTHING_LENGTH
SEARCH_RADIUS
MAX_FLOAT
GRID_CACHE

MASS

1P 3.

STIFF
VISCOSITY
TIME_STEP
EPSILON

GLASS_R
GLASS_BOTTOM
GLASS_TOP
GLASS_THICKNESS

poly6_coef
grad_poly6_coef

,9)))

lap_poly6_coef

grad_spiky_coef
lap_vis_coef

struct ParticleSPH

s 0.006
cx 0.0

P

XYLEN
XYLEN
1
(XLEN*YLEN*ZLEN)
(1.00/NPARTICLES)
(1% SMOOTHING_LENGTH)
3.40282347e+36
10
0.00020543
1415926
1.5
0.2
0.003
0.00001

0.05
-0.08
0.06
0.01

(315.0/(64.0%PI*pow (SMOOTHING_LENGTH ,9)))
(945.0/(32.0*%PI*xpow (SMOOTHING_LENGTH

(945.0/(32.0*%PI*pow (SMOOTHING_LENGTH ,9)

(-45.0/(PI*pow (SMOOTHING_LENGTH ,6)))
(45.0/(PI*pow (SMOOTHING_LENGTH ,6)))

// id of the particle

// coordinate of the particle
// wvelocity of the particle
// wvelocity half
// acceleration of particle
// mass of the particle
// pressure of the particle
// density of particle
// pool

235
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#define cy 0.0
#define cz 0.035
#define s2 0.001
#define s3 0.0001

GENERATE_FUNC (sph_init, ParticleSPH, int, index, seed,

ARRAY _

if (4

int z = index%ZLEN;
int y = ((index-z)/ZLEN)}YLEN;
int x = (((index-z)/ZLEN)-y)/XLEN;

double randl = (((int) (10*s*x*s2+4*cz*s3+5xy*z + 10*s*y
))%RAND_MAX) - 0.5;
double rand2 = (((int) (9*s*y*s2+3*z*s3+3*y*z*s + B*xxxy)

) %RAND_MAX) - 0.5;
ParticleSPH p;

.id = index;

.X = s * (x -XLEN/2)- cx + s2 * randl;
.y = s *x (y - YLEN/2) - cy + s2 * rand2;
z = 0.8 * s x z - cz;

LVX =

.Vy =

.VZ =

.ax =
.ay =
.az =
. vhx =
.vhy =
.vhz =
.d

.P =
.m

H

[elelNeNeNe Ne}

|
(ol lNeNeNe Ne}

o oo

el lioBo e B Bl Mo B o o e Mo Bk o Bl o Bl o Bl o]

.pool [0] =0
.pool[1] = 0;
.pool[2] =0
.pool[3] =0

hollo B ol o]

return p;

)

FUNC (sph_updatecell, ParticleSPH, parr, p,

int i = p.id;

p = parr[il;

double dist = 0.0;

for(int j = 0; j < NPARTICLES; j++)
1= §)
ParticleSPH pj = parr([jl;

dist = ((p.x-pj.x)*(p.x-pj.x) + (p.y-pj.y)*(p.y-pj.y) + (p.z-pj
.z)*(p.z-pj.z));

if (dist < (SMOOTHING_LENGTH*SMOOTHING_LENGTH))

{
if (p.pool [0] < GRID_CACHE-1)
{
p.pool [0]++;
p.poollp.pool [0]] = j;
}
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return p;

)

int i

pi.d =
pi.p =

ARRAY_FUNC (sph_computedensity, ParticleSPH, parr, pi,

pi.id;

pi = parrl[il;
pi.neighbours[0] = 0;

0;
0;

H

double h2_r2 0.0
double dist 0.0;

H

for (int j=0; j<NPARTICLES; j++)

if (pi.neighbours[0] < GRID_CACHE-1)

for (int k=pi.neighbours[0]+1; k<GRID_CACHE; k++)

{
pi.neighbours[k]=0;
}
}
pi.d *= poly6_coef;
pi.d = (pi.d < 0.00001)70.0:(1.0 / pi.d);
pi.p = STIFF x (pi.d - 1000.0);

return pij;

)
ARRAY_FUNC (sph_updateforce, ParticleSPH, parr, pi,

pi = parr[pi.id];
pi.ax = 0
pi.ay = 0
pi.az 0

o O oo

1
H
H
H

double dist;
double h_r;

double grad_spiky;
double lap_vis;
double dist_x;
double dist_y;
double dist_z;
double force_x;
double force_y;
double force_z;

{
TE N =1))
{
ParticleSPH pj = parr([jl;
dist = ((pi.x-pj.x)*(pi.x-pj.x) + (pi.y-pj.y)*(pi.y-pj.y) + (pi
.z=-pj.z)*(pi.z-pj.z));
if ((dist < (SMOOTHING_LENGTH*SMOOTHING_LENGTH)) && (pi.
neighbours [0] < GRID_CACHE-1))
{
h2_r2 = (SMOOTHING_LENGTH*SMOOTHING_LENGTH) -
pi.d += 2 % MASS * h2_r2 * h2_r2 x h2_r2;
pi.neighbours [0]++;
pi.neighbours[pi.neighbours[0]] = j;
}
}
}
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double vdiff_x;
double vdiff_y;
double vdiff_z;
double prod;
for (int j=1; j<pi.neighbours[0]; j++)
{
ParticleSPH pj = parr[pi.neighbours[jl];
dist_x = pi.x - pj.x;
dist_y = pi.y - pj.¥;
dist_z = pi.z - pj.z;
dist = sqrt(dist_x * dist_x + dist_y * dist_y + dist_z * dist_z);
if (dist<SMOOTHING_LENGTH*SMOOTHING_LENGTH)
dist=SMOOTHING_LENGTH*SMOOTHING_LENGTH;
h_r = SMOOTHING_LENGTH - dist;
grad_spiky = grad_spiky_coef * pi.d * pj.d * 2 * MASS * h_r;
lap_vis = lap_vis_coef * pi.d * pj.d * 2 * MASS * h_r;
prod = (-0.5 * (pi.p + pj.p) * grad_spiky * h_r / dist
)
force_x prod*dist_x;
force_y = prod*dist_y;
force_z = prod*dist_z;
vdiff_x (VISCOSITY*lap_vis) * (pj.vx - pi.vx);
vdiff_y (VISCOSITY*lap_vis) * (pj.vy - pi.vy);
vdiff_z (VISCOSITY*lap_vis) * (pj.vz - pi.vz);
force_x += vdiff_x;
force_y += vdiff_y;
force_z += vdiff_z;
pi.ax += force_x;
pi.ay += force_y;
pi.az += force_z;
¥

return pi;

)

UNARY_FUNC (sph_updateposition, ParticleSPH, pi,

double
double
double
double

double
double
double
double
double
double
double
double
double

pre_px
pPre_py
pre_pz

vhx
vhy

e
sphere
stiff
damp

col_x
col_y
col_z
pre_px
pre_py
pre_pz
vhx
vhy
vhz

= 1.0;
_radius= 0.004;
= 30000.0;

= 128.0;

n
o O o
o O o

0.0;
= 0.0;
0.0;
0.0;
0.0;
0.0;

H

= pi.x + TIME_STEP * pi.vhx;
= pi.y + TIME_STEP * pi.vhy;
= pi.z + TIME_STEP * pi.vhz;

pi.vhx + TIME_STEP * pi.ax;
= pi.vhy + TIME_STEP * pi.ay;
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vhz = pi.vhz + TIME_STEP * pi.az;
pi.x = pi.x + TIME_STEP * vhx;

pi.y = pi.y + TIME_STEP * vhy;

pi.z = pi.z + TIME_STEP * vhz;

pi.vx = 0.5 * (pi.vhx + vhx);

pi.vy = 0.5 * (pi.vhy + vhy);

pi.vz = 0.5 * (pi.vhz + vhz);

pi.vhx = vhx;

pi.vhy = vhy;

pi.vhz = vhz;

return pij;

)

UNARY_FUNC (sph_assign, ParticleSPH, pi,
return pij;

)
V2R

BINARY_FUNC_CONSTANT (axpy_f, double, double, a, b, alpha,
return a*alpha+b;

)

UNARY_FUNC (copy_f , double, a,
return a;

)

BINARY_FUNC_CONSTANT (absaxpy_f, double, double, a, b, h,
return ( (fabs(a) + fabs(h * b)) + 1.0e-30 );
)

UNARY_FUNC (zero_f, double, a,
return 0.0f;

)

UNARY_FUNC_CONSTANT (scale_f, double, double, a, h,
return hx*a;

)

BINARY_FUNC (absquot_f , double, a, b,
return ( fabs(a / b) );
)

BINARY_FUNC (maximum_f , double, a, b,
return ( fmax(a,b) );

)

BINARY_FUNC(sub_f, double, a, b,
return ( a - b );

)

BINARY_FUNC (absmax_f , double, a, b,
return ( fmax( fabs(a), fabs(b) ) );
)

ARRAY_FUNC (bruss_eval_f, double, y, d_i,
uint i = (uint)d_i;
double alpha = 0.000200f;
uint N = 16;
double N1 = (double) N - 1.0f;
uint N2 = N + N;
uint k = 2
uint j
uint v =

/ H
= * N2;
&

]
[T
=N =




240

Chapter C. Modelica-SkePU Library Code

j >>= 1;
if ('v)
{
if (k == 0)
{
if (§ == 0)
return 1.0 + y[il * y[il * y[i + 11 - 4.4 * y[i]l +
alpha * N1 * N1 * (2.0 * y[i + N2] + 2.0 * y[i +
2] - 4.0 * y[il]);
if (j == N - 1)

return 1.0 + y[il]l * y[i]l * y[i + 1] - 4.4 * y[i] +
alpha * N1 * N1 * (2.0 % y[i + N2] + 2.0 * y[i -
2] - 4.0 x y[il);

return 1.0 + y[i] * y[i] * y[i + 1] - 4.4 * y[i] + alpha
* N1 x N1 % (2.0 x y[i + N2]1 + y[i - 2] + y[i + 2] -
4.0 x y[i]);

}
else if (k == N - 1)
{
if (j == 0)
return 1.0 + y[i]l * y[i]l * y[i + 1] - 4.4 % y[i] +
alpha * Ni * Ni * (2.0 * y[i - N2] + 2.0 * y[i +
2] - 4.0 * y[il);
if (j == N - 1)
return 1.0 + y[i]l * y[i]l * y[i + 1] - 4.4 % y[i] +
alpha * Ni * Ni * (2.0 * y[i - N2] + 2.0 * y[i -
2] - 4.0 * y[il);
return 1.0 + y[i]l * y[i]l * y[i + 1] - 4.4 % y[i] + alpha
* N1 * N1 % (2.0 * y[i - N2] + y[i - 2] + y[i + 2] -
4.0 * y[il);
¥
else
{
if (j == 0)
return 1.0 + y[i]l * y[il * y[i + 1] - 4.4 * y[i] +
alpha * N1 * N1 * (y[i - N2] + y[i + N2] + 2.0 *
yli + 2] - 4.0 * y[il);
if (j == N - 1)
return 1.0 + y[i]l * y[il * y[i + 1] - 4.4 * y[i] +
alpha * N1 * N1 * (y[i - N2] + y[i + N2] + 2.0 *
yli - 2] - 4.0 * y[il);
return 1.0 + y[i] * y[i] * y[i + 1] - 4.4 * y[i] + alpha
* N1 *x N1 *x (y[i - N2] + y[i + N2] + y[i - 2] + yl[i
+ 2] - 4.0 * y[il);
}
}
else
{
if (k == 0)
{

if (j == 0)
return 3.4 x y[i - 1] - y[i - 1] * y[i - 1] * y[i] +
alpha * N1 * N1 * (2.0 * y[i + N2] + 2.0 * y[i +
2] - 4.0 x y[il);

if (j == N - 1)
return 3.4 x y[i - 1] - y[i - 1] * y[i - 1] * y[i] +
alpha * N1 * N1 * (2.0 * y[i + N2] + 2.0 * y[i -
2] - 4.0 x y[il);

return 3.4 x y[i - 1] - y[i - 1] * y[i - 1] * y[i] +
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alpha * N1 *x N1 *x (2.0 * y[i + N2] + y[i - 2] + yl[i
+ 2] - 4.0 * y[il);

¥
else if (k == N - 1)
{
if (j == 0)
return 3.4 x y[i - 1] - y[i - 1] * y[i - 1] * y[i] +
alpha * N1 * N1 * (2.0 * y[i - N2] + 2.0 * y[i +
2] - 4.0 * y[il]);
if (j == N - 1)
return 3.4 x y[i - 1] - y[i - 1] * y[i - 1] * y[i] +
alpha * N1 * N1 * (2.0 * y[i - N2] + 2.0 * y[i -
2] - 4.0 * y[i]);
return 3.4 x y[i - 1] - y[i - 1] * y[i - 1] * y[i] +
alpha * N1 * N1 * (2.0 * y[i - N2] + y[i - 2] + yl[i
+ 2] - 4.0 * y[il);
}
else
{
if (j == 0)
return 3.4 * y[i - 1] - y[i - 1] * y[i - 1] * y[i] +
alpha * N1 * N1 * (y[i - N2] + y[i + N2] + 2.0 =*
yli + 2] - 4.0 * y[il);
if (j == N - 1)
return 3.4 x y[i - 1] - y[i - 1] * y[i - 1] * y[i] +
alpha * N1 * N1 * (y[i - N2] + y[i + N2] + 2.0 =*
yli - 2] - 4.0 x y[il);
return 3.4 * y[i - 1] - y[i - 1] * y[i - 1] * y[i]l +
alpha * N1 x N1 * (y[i - N2] + y[i + N2] + y[i - 2]
+ yli + 2] - 4.0 * y[il);
}
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