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CHAPTER I

INTRODUCTION

Microprocessor-based computers have revolutionized the world. Problems that seemed

hopelessly daunting a century ago are now addressable with the aid of computer simula-

tion, from modeling safe antiseismic structures to sequencing an organism’s genome and

designing new materials and drugs. Yet, despite the continuous increase in computational

power and the proliferation of computer clusters, supercomputers, and other forms of mas-

sively parallel computing, there are important problems that remain hard. In most cases,

the algorithms to solve these problems exist, but the memory and time to compute them

scale exponentially with the problem size; the intractability wall is hit rather quickly.

Arguably, in the fields of physics and chemistry, the most significant of these intractable

problems is the simulation of quantum mechanics. The mathematical framework needed to

accurately model quantum phenomena like superposition and entanglement requires com-

putational resources that scale exponentially with the size of the quantum system [96]. In

the 1980s, it was proposed that this exponential roadblock could be overcome by using a

controllable quantum system to simulate the system of interest [38]. Moreover, the control-

lable quantum system could be also programmed to achieve a general-purpose computing

device, a quantum computer [15, 16, 31]. The conjecture that a quantum system could

efficiently simulate the dynamics of another quantum system was proved right in the next

decade [67]. However, it was the discovery that a quantum computer could factor inte-

ger numbers in polynomial time [89] what truly sparked widespread interest in quantum

information processing, given its potential to crack RSA cryptographic systems [86].

In the last two decades, other problems that do not have a known efficient solution on

a classical computer have proved to be efficiently solvable on a quantum computer. These
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include calculating the energy of atoms and molecules in the full configuration interation

(FCI) [12], boson sampling [1], computing scattering probabilities in quantum field theory

[58], and solving a linear system of equations [54]. Quantum computers would also allow

for a considerable speedup, though not an exponential one, in other problems, like search-

ing an unstructured database [50] and calculating integrals numerically with Monte Carlo

methods [3]. A large-scale quantum computer would definitely be a major technological

breakthrough, with amazing potential applications in several fields. Chemistry is one of

these fields: apart from the efficient calculation of FCI molecular energies, quantum algo-

rithms have been proposed to simulate chemical dynamics [60] and solve protein folding

optimization problems [61]. There are experimental demonstrations of the calculation of

energies for several small molecules [66, 103, 34] and other problems of interest for the

physical chemical community, such as the simulation of frustrated spin systems [107, 57].

However, all of these demonstrations have been proof-of-principle experiments: so far, no

quantum computer is large enough to solve a problem currently unfeasible in a classical

computer.

The main obstacle to the construction of a scalable quantum computer is the presence of

noise. Complete isolation from the environment is not only impossible, but also unwanted.

The question of how to do quantum information processing reliably in the presence of noise

is a very active area of research. So far, the most general solution to this problem has been

the use of quantum error-correcting codes (QECCs) and fault-tolerant (FT) procedures to

perform the quantum computation [88, 22, 33]. In this scheme, the whole computation is

performed with quantum information encoded in a QECC and with FT operations that limit

the degree to which the information is corrupted [77].

One of the most important results in the field of FT quantum computation is the quan-

tum threshold theorem [5, 63, 65, 85, 8], which states that if noise acts independently on

each qubit and its occurence is below a certain threshold value, then it is possible to per-

form an efficient quantum computation with an arbitrarily small failure probability. The
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threshold has been proved for several noise models [6, 76, 84, 39]. This threshold value

will depend not only on the particular QECC, but also on the methods used to detect and

correct the errors, and to prepare the encoded states. Therefore, there is plenty of work to

be done before a scalable quantum computer is built. We need accurate estimates of the

threshold values for different error correction protocols in order not only to compare them,

but also to give experimentalists an estimate of the gate fidelities needed to achieve overall

fault tolerance.

This information requires simulations of error-correcting quantum circuits, often in-

volving hundreds of qubits. The exponential cost of exact full-density-matrix simulations

has led researchers to focus almost exclusively on Clifford circuits, in which the allowed

states throughout the circuit correspond to a small subset of all possible quantum states that

can be efficiently stored in and manipulated by a classical computer. Fortunately, the error

detection and correction steps in most QECCs are described by Clifford circuits. However,

it is still not entirely clear how to model noise. In most cases, the noise affecting a quantum

computer is not accurately modeled by a stabilizer operator, so a large-scale simulation of

a quantum circuit will imply that we cannot model noise exactly.

Despite its importance, there has been very little focus on this topic. It is often claimed

in the introductions of papers in the field that the exact nature of the noise, although perhaps

important at the single-qubit level, becomes practically irrelevant in the limit of large circuit

size, and so we can just employ a stabilizer error model in our simulations. However, there

has not been any rigorious theoretical or numerical proof that this is in fact true, and so it is

still not completely clear whether or not this represents a major problem. This has been the

main question that has motivated my graduate work. We have focused on determining how

the performance of a quantum error-correcting protocol depends on the exact nature of the

error. We have also worked on improving the way we obtain stabilizer approximations to

realistic error models, in order to bridge the gap between a description that is exact and one

that is efficient.
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This thesis is organized as follows. In Chapter 2, we present an introduction to quantum

information. In Chapter 3, we describe classical and quantum error correction. In Chapter

4, we introduce the expanded Clifford error approximations to non-Clifford channels. In

Chapter 5, we use these approximations to determine the performance of the expanded

Clifford channels in estimating important parameters of a QECC when the noise affecting

the system is incoherent. In Chapter 6 we extend this analysis to coherent errors. In Chapter

7, we describe the implementation of a Python-based toolset to simulate quantum circuits.
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CHAPTER II

QUANTUM INFORMATION BACKGROUND

2.1 Qubits and quantum gates

A quantum bit or qubit can be implemented on very different physical systems, including

spin states of nuclei [102, 34], internal states of trapped ions [25, 73], photons [23], semi-

conductors [53, 13], and superconducting circuits [69, 32]. In all of these systems, two

well-defined states are chosen to serve as the computational basis for the qubit. Mathemat-

ically, regardless of the physical implementation, a qubit can be represented as the state of

a spin-1/2 particle. The state of the qubit is a normalized vector in C2. The computational

basis is given by:

|0〉 ≡

1

0

 , |1〉 ≡

0

1

 (1)

The state of the qubit can be any normalized linear superposition of the computational

basis:

|ψ〉 = α|0〉+ β|1〉 , |α|2 + |β|2 = 1 (2)

In the circuit model of quantum computing, the evolution of the quantum system is

represented by a sequence of unitary operations known as gates. For a single qubit, the

most common gates are the Identity:

I =

1 0

0 1

 , (3)

and the 3 Pauli matrices:

σX = X =

0 1

1 0

 , σY = Y =

0 −i

i 0

 , σZ = Z =

1 0

0 −1

 . (4)
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Other common gates are the phase (S), the T , and the Hadamard (H) gates:

S =

1 0

0 i

 , T =

1 0

0
√
i

 , H =
1√
2

1 1

1 −1

 . (5)

Any single qubit unitary can be efficiently approximated with arbitrary accuracy as a se-

quence of the T and the H gates [29]. To obtain the overall state of a collection of qubits,

we compute the tensor product of the individual qubits. The two most common multiqubit

gates are the controlled-Z and the controlled-X or CNOT, which apply a conditional Z or

X gate on the target qubit depending on the state of the control qubit. If the control qubit

is in state |0〉, the target qubit is not changed. On the other hand, if the control qubit is in

state |1〉, a Z or X gate is applied to the target qubit. These gates are entangling, because

if the initial state of the control qubit is a superposition of |0〉 and |1〉, then the final state of

the two qubits will be entangled. The control-Z is given by:

CZ = |0〉〈0| ⊗ I + |1〉〈1| ⊗ Z =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


. (6)

The control-X is given by:

CX = |0〉〈0| ⊗ I + |1〉〈1| ⊗X =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


. (7)

In both of these cases, the first qubit is the control and the second qubit is the target.

If we ignore the global phase, the state of a single qubit can be conveniently expressed

as:

|ψ〉 = cos(θ/2)|0〉+ eiφ sin(θ/2)|1〉. (8)
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x
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z

φ

θ

1

0

ψ

Figure 1: The Bloch sphere constitutes a convenient graphical representation of a qubit.
The computational states are located on the poles of the sphere. The angle θ parametrizes
the relative weight of each computational state in the superposition, while φ defines the
relative phase. Pure states are located on the surface of the sphere, while mixed states
are inside of it. The Pauli matrices define Cartesian coordinates. Image taken from
https://commons.wikimedia.org.

Moreover, if the state of the qubit is not necessarily pure, it can be compactly represented

as a sum of the Identity and the Pauli matrices:

ρ =
1

2
(I + ~r · ~σ) =

1

2
(I + rxX + ryY + rzZ) . (9)

The vector of real numbers ~r parametrizes the degree of mixture of the qubit. For pure

states, |~r| = 1. For mixed states, |~r| < 1. The maximally mixed state has ~r = 0. These

expressions allow for a concise graphical representation of a qubit: the Bloch sphere, pre-

sented in Figure 1. Up to an ignored global phase, every pure single qubit state is uniquely

represented by a point on the surface of the Bloch sphere, while mixed states are points

inside of it. A point on the surface of the Bloch sphere can be specified by the angles θ and

φ. A general state can be specified by the vector ~r.

7



2.2 Simulation of stabilizer circuits

Although the simulation of a general quantum circuit is inefficient in a classical computer,

a subgroup of quantum circuits known as stabilizer circuits can actually be simulated in

polynomial time. This is the Gottesman-Knill theorem and it is one of the most important

results in quantum error correction [77].

The idea behind the efficient simulation of this subgroup of quantum circuits is based on

the so-called stabilizer formalism [46]. In this theory, if an operator maps a given quantum

state vector to itself, then the operator is said to stabilize that state. In other words, a

state stabilized by an operator is an eigenvector of that operator with eigenvalue equal to

1. Consider the following examples. The state |0〉 is stabilized by Z, while |1〉 is stabilized

by −Z, where Z denotes the Pauli Z matrix. The two-qubit state |0〉 ⊗ |0〉 = (1, 0, 0, 0)T ,

usually abbreviated by |00〉, is stabilized by {Z⊗I, I⊗Z}, while |00〉+|11〉√
2

= 1√
2
(1, 0, 0, 1)T

is stabilized by {Z ⊗ Z,X ⊗ X}, where X denotes the Pauli X matrix. Notice that the

stabilizers of a particular state will always be commuting, precisely because they stabilize

the same state. Any n-qubit state can be completely described by a set of n independent

stabilizers. Conversely, any set of n independent commuting operators will simultaneously

stabilize a unique n-qubit state, up to a global phase.

In the stabilizer formalism, a quantum state is represented by its stabilizers, rather than

by its state vector. In the simulation of a quantum circuit, an initial quantum state is sequen-

tially transformed by the unitary gates that make up the circuit. This can either be done by

keeping track of the state vector at each point in the circuit or equivalently by keeping track

of the stabilizers. When a vector state |ψ〉 is transformed by a unitary gate U to the state

U |ψ〉, each stabilizer Si is transformed to USiU †.

Quantum states stabilized by elements of the Pauli group are known as stabilizer states.

In the 1-qubit case, there are 6 stabilizer states: the +1-eigenvalued vectors of the operators

±X , ±Y , and ±Z. For n qubits, it is the group generated by all the possible n-tensor

products of the Pauli matrices. The memory required to describe a stabilizer state scales
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polynomially with the number of qubits [2], in contrast to the exponential scaling of a

general quantum state. This implies that a quantum circuit in which the initial state is a

stabilizer state and each gate transforms the state to another stabilizer state can be simulated

in polynomial time. Therefore, we are restricted to quantum circuits composed exclusively

of operations that map stabilizer states to stabilizer states or, from the stabilizer formalism

point of view, operations that map a Pauli element to another Pauli element: UPiU † = Pj ,

where Pi and Pj are two elements of the Pauli group. In general, the group of all these

operations is known as the Clifford group. Additionally, the state preparations and the

measurements can only be done in the Pauli basis.

2.3 Errors in quantum information and simulation of noisy quantum
circuits

Errors during a quantum computation arise from unwanted interactions with the environ-

ment. In general, these interactions will produce a non-unitary evolution on the system’s

quantum state [77], so it is more useful to work with the density matrix, ρ, instead of the

state vector, |ψ〉. Because the quantum computer is an open quantum system, it is conve-

nient to consider the combined system that it forms with the environment. Without loss of

generality, together they form an isolated system, described by the joint initial state ρCE(0),

where C refers to the computer subsystem and E refers to the environment. The composite

computer-environment state after some time t is given by:

ρCE(t) = UCE(t)ρCE(0)U †CE(t), (10)

where UCE(t) refers to the unitary time propagator for the joint system. In general, after

such an evolution, the computer will become entangled with the environment and its final

state is found by applying a partial trace operation over the environmental degrees of free-

dom. Assuming that initially the computer and the environment are uncorrelated, we can

write ρCE(0) = ρC(0) ⊗ ρE(0). The initial state of the environment can be expressed as∑
k λk|φk〉〈φk|. Therefore, after tracing out the environment, the state of the computer is

9



given by:

ρC(t) =
∑
i,k

λk〈i|UCE(t)|φk〉ρC(0)〈φk|U †CE(t)|i〉, (11)

where {|i〉} is an orthonormal basis for the environment Hilbert space. More compactly,

we can express the above equation as:

ρC(t) =
∑
i

Ei(t)ρC(0)E†i (t), (12)

with Ei(t) =
∑

k

√
λk〈i|UCE(t)|φk〉. The operators {Ei} are known as the Kraus opera-

tors and equation 12 is known as the Kraus or operator-sum representation of a quantum

channel. From now on, we will eliminate the subscript C, as we will always refer to the

state of the quantum computer, and the time parameter, and represent the transformation

by ε:

ε(ρ) =
∑
i

EiρE
†
i (13)

The operators {Ei} will in general not be unitary. However, if
∑

iE
†
iEi = I , then

the transformation ε is completely positive, which implies that the final states of both the

system and the environment can still be described by positive semi-definite matrices of

trace 1, density matrices. Throughout this document, we will only deal with completely

positive transformations. Nevertheless, we should note that not all quantum maps need

to be completely positive and indeed important physical processes are described by non-

completely positive maps.

To further understand how an error channel described in the Kraus representation trans-

forms a quantum state, consider the following example. A map is defined by:

ε =


E0 =

√
1− pI

E1 =
√
pX

(14)

with 0 ≤ p ≤ 1. The effect of this operation on a state ρ is:

ε(ρ) = (1− p) ρ+ pXρX (15)
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which can be interpreted as a channel in which there is a probability p that the state

will undergo an X transformation, and a probability of 1 − p that the state will remain

unchanged. This “probabilistic” interpretation of an error channel is fundamental for the

simulation of noisy quantum circuits. For example, if the noise affecting the quantum

computer is the error channel mentioned above, then to perform the simulation, we would

insert after each gate in the quantum circuit an X gate with a probability of p and compare

the output of this circuit with the output of the error-free circuit. This would be done

multiple times to obtain representative averages.

The drawback of this approach is that not all error channels can be simulated efficiently.

In the first place, some error channels do not allow this “probabilistic” interpretation. The

quintessential example of this is the amplitude damping channel (ADC), which describes

the dissipation of energy from a 2-state quantum system to its environment:

ADC =


E0 = |0〉〈0| +

√
1− γ |1〉〈1|

E1 =
√
γ |0〉〈1|

(16)

In this expression γ is the damping strength and is defined by 1− e−Γt, where Γ is the

damping rate (Γ > 0). This error channel is present in every quantum computer imple-

mentation. Despite its simple form, it is impossible to rerrange it in a way that allows a

“probabilistic” interpretation.

In the second place, some error channels that do have a “probabilistic” interpretation

involve operators that are not part of the Clifford group, so their simulation is not possible

with the stabilizer approach explained above. An example of this class of errors is given by

a probabilistic rotation about a non-Clifford axis:

PolφC =


E0 =

√
1− p I

E1 =
√
p [cos(φ)X + sin(φ)Y ]

(17)

For φ 6= nπ
4

, with n an integer number, the second operator of this channel is outside

the Clifford group.
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2.4 From the operator-sum to the process matrix representation

Although elegant and concise, a channel expressed in the operator-sum form has the dis-

advantage of the freedom of representation. A particular quantum channel is not uniquely

determined by a set of Kraus operators; instead, (infinitely) many sets of Kraus operators

represent the same transformation. To see this, it is useful to go back to equation 11. No-

tice that we obtained the operators Ei(t) by tracing out the environment in terms of an

orthonormal basis {|i〉}. The selection of this basis is completely arbitrary and different

choices will generate different Kraus operators.

When characterizing a quantum channel, people in the community prefer to use the χ

or process matrix [70, 24, 87, 37]. This representation is very useful since, once a basis

for the matrix has been chosen, the freedom of the Kraus operators disappears. It is also

a very amenable representation to be used when determining a channel from experimental

data [24, 49, 18].

The idea behind the process matrix is simple. If we start with the Kraus representation

of a quantum channel ε:

ε(ρ) =
∑
i

EiρE
†
i , (18)

we first select a complete basis for the space of operators {Ei}. For n qubits, the space of

operators has dimension d = 4n. We require the basis set to the orthonormal, and define

orthonormality with respect to the Hilbert-Schmidt or trace inner product:

(A,B) = tr(A†B) (19)

for linear operators A and B. The most intuitive basis set that comes to mind is given by

{|j〉〈j′|}, where {|j〉} is a complete basis set for the n-qubit vector (ket) space, for example,

the computational basis set. However, it turns out that experimentally it is more useful to

work with the Pauli basis. In terms of the Hilbert-Schmidt inner product, the operators in

the 1-qubit Pauli basis are all mutually orthogonal. Since the cardinality of this set is the

same as the dimension of the 1-qubit operator space, it follows that the set is complete, i.e.,
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every 2 × 2 matrix can be expressed as a linear combination of them. The n-qubit Pauli

matrices are constructed as n-tensor products of the 1-qubit matrices and they also form a

complete, orthogonal basis set for their respective operator space. In order to satisfy the

normality condition, we multiply every matrix in the set by 1/
√

2n.

Once we have chosen our operator basis set, we can express the Kraus operators of a

given channel as linear combinations of the basis elements:

Ei =
∑
m

αimPm, (20)

whereEi is a Kraus operator and {Pm} is an operator basis set. We have chosen to represent

the basis elements with a P , since our basis of choice is Pauli, but this holds for any other

basis set. We can now substitute Ei on equation 18 to obtain:

ε(ρ) =
∑
i

(∑
m

αimPm

)
ρ
(∑

n

α∗inP
†
n

)
(21)

After rearranging, we obtain:

ε(ρ) =
∑
mn

(∑
i

αimα
∗
in

)
PmρP

†
n, (22)

which can be simplified to:

ε(ρ) =
∑
mn

χmnPmρP
†
n, (23)

where the sum
∑

i αimα
∗
in has been grouped in the scalar χmn. Since we have two indices

defining these numbers, a convenient way to store them is with a matrix, which is known as

the χ or process matrix. For an n-qubit quantum channel, we have 4n elements in our basis

set and, therefore, the χ matrix is 4n × 4n. Notice that once we have fixed the operator

basis set, then the process matrix uniquely defines a quantum channel. If we choose an

orthonormal basis, the process matrix has some extra properties:

• It is Hermitian: χmn = χ∗nm.

• It is positive semi-definite: all its eigenvalues are greater than or equal to zero.

• The diagonal elements are all real and add up to 2n.
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2.5 Distance measures

In quantum information, we are often interested in comparing two quantum states or two

quantum channels and quantify how different they are. To compare states, the two most

widely used measures are the trace distance and the fidelity. The trace distance between

two quantum states of equal dimension with density matrices ρ and σ is given by:

Dtr(ρ, σ) =
1

2
tr|ρ− σ| , with |A| =

√
A†A. (24)

The trace distance is 0 if ρ = σ and 1 if the states are orthogonal. Another measure to

quantify the difference between two quantum states is the fidelity:

F (ρ, σ) = tr

√√
σρ
√
σ. (25)

In the special case when one of the states is pure, ρ = |ψ〉〈ψ|, the fidelity is given by:

F (|ψ〉, σ) = tr
√
|ψ〉〈ψ|σ|ψ〉〈ψ| =

√
〈ψ|σ|ψ〉, (26)

which is simply the square root of the overlap between the two states. The fidelity ranges

from 0 for two orthogonal states to 1 for identical states.

There are also various distance measures to compare the difference between quantum

channels. Throughtout this thesis, we employ the normalized Hilbert-Schmidt distance

[48]. For a channel ε1 with an associated process matrix χ1 and another channel ε2 with an

associated process matrix χ2, the Hilbert-Schmidt distance is given by:

DHS(χ1, χ2) =
1

2N2
‖χ1 − χ2‖2

HS (27)

‖A‖HS =
√
Tr(A†A), (28)

where N is the dimension of the Hilbert space upon which the channels act. Throughtout

this thesis, we will deal mainly with 1-qubit channels, so N = 2. This distance ranges

from 0 for identical channels to 1 for orthogonal channels. Although not used in this thesis,

other distance measures exist [62].
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CHAPTER III

ERROR CORRECTING CODES

Error detection and correction encompass a wide variety of techniques used to suppress

errors that occur during the handling and communication of digital information [56]. One

of the most promising and widely studied of these techniques is the use of error correcting

codes. In these schemes, the digital information is encoded by employing some redun-

dancy, which protects the information from being corrupted. It is useful to begin our de-

scription with classical error correcting codes, since historically they were developed first

and they operate more intuitively than their quantum counterparts. Throughout this chap-

ter, as an illustrative example, we will focus on the triple modular redundancy code, also

known as the bit flip code (BFC).

3.1 Classical error correcting codes

Classical error correcting codes (CECC) are typically used in computer science and telecom-

munication when transmitting digital information through a noisy channel. Imagine the

following situation. We are trying to send 1 bit of information through a communication

channel that randomly flips the bit with a probability p (0 ≤ p ≤ 1). To reduce the prob-

ability of a flip, instead of sending that single bit, we prepare 2 copies of it, and send the

3 bits through the channel. We are assuming that noise acts independently on each bit and

there are no time or spatial correlations. The receiver can then measure each bit and via

majority voting determine what the original bit must have been. This scheme allows us to

correct a single flip, while 2 or 3 flips remain uncorrectable. Assuming that the probablity

of a flip is the same on every bit, this means that the probabability of error is equal to

pe = 3p2(1− p) + p3. Notice that pe < p when p < 1/2: if the probability of a flip is less

than a half, employing the BFC results in a lower error probability than sending the bare
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bit. In contrast, if p > 1/2 encoding the information is actually more harmful.

3.1.1 Formal definitions and linear codes

With the previous example in mind, we introduce CECCs in a more rigorous way. In

information theory, it is customary to refer to a k-bit string as a word of length k. A word

can be seen as a vector in the space Zk2. If our original message is a word of length k, to

protect the information, we can employ a coding function f : Zk2 −→ Zn2 , and instead send

a word of length n. For the scheme to be able to correct errors, then k < n. This coding

function defines a CECC that encodes k bits of information into n physical bits. Every

element in the image of f is referred to as a codeword. In the BFC, k = 1 and n = 3

and the two codewords are (0, 0, 0)T , the image of 0, and (1, 1, 1)T , the image of 1. Other

important concepts when dealing with error-correcting codes are the Hamming weight,

the Hamming distance, and the distance of a code. The Hamming weight refers to the

number of non-zero elements of a word. The Hamming distance between two words is the

Hamming weight of their difference (subtraction modulo 2). Finally, the distance of a code

is defined as the minimum Hamming distance between any two codewords. The distance of

the BFC is 3. Notice that a distance-3 code can perfectly correct a single error. It can also

detect, but not correct, 2 errors. In general, a distance-d code will be able to correct up to

b(d− 1)/2c errors. Therefore, codes with odd distance values are preferred since they are

more economical. Codes are often specified in terms of their important properties: [[n, k]]

or [[n, k, d]]. Using this nomenclature, the BFC would be a [[3, 1, 3]] code.

In linear codes, the coding function corresponds to a matrix multiplication. This has

the advantage that the encoding can be done efficiently. It also results in the property that

any linear combination of codewords is also a codeword. Throughout this thesis, we will

deal exclusively with linear codes. However, nonlinear codes exist [75, 106]. Notice that

the BFC is a linear code. There are various ways to define a linear code C:

1. By the set of all the 2k codewords x that are images of the coding function f .
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2. By the coding function itself, which in this case is known as the generator matrix G.

We define G to be a n × k matrix, in order for the codewords to be column vectors

of length n. In many sources, G is defined as a k × n matrix. We prefer the former

format, as we can just apply standard matrix multiplication to obtain the codewords.

The generator matrix for the BFC is given by:

G =


1

1

1

 (29)

3. By a (n− k)× n matrix known as the parity check matrix H . The code C is defined

as the null space of H , i.e., the set of all the words x ∈ Zn2 that satisfy the condition

Hx = 0, where 0 is a column vector. The parity check matrix and the generator also

satisfy the condition HG = 0. The parity check matrix for the BFC is given by:

H =

1 1 0

0 1 1

 (30)

The parity check matrix is used to detect and correct errors easily. We encode the

word x as y = Gx and an error e corrupts the codeword to y′ = y+ e. Since Hy = 0

for all codewords and the code is linear, Hy′ = He. The result Hy′ is known as

the error syndrome. For a distance-3 code, if at most 1 error occurred, then the

error syndrome will unequivocally specify which bit to fix. Returning to our already

familiar code BFC, we can check that:

Hy′ =

0

0

 , if e =


0

0

0



Hy′ =

1

0

 , if e =


1

0

0


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Hy′ =

1

1

 , if e =


0

1

0



Hy′ =

0

1

 , if e =


0

0

1


3.2 Quantum error-correcting codes

Correcting quantum information is in general much harder than classical information for

several reasons. In the first place, it is impossible to create copies of a general unknown

quantum state. This is known as the no-cloning theorem [105]. We can measure the state

and determine its complex amplitudes, but this would destroy it. Therefore, our scheme has

to be more sophisticated than just generating copies of the quantum state |ψ〉 and sending

them through the channel. What we need to do in order to encode is to map the complex

amplitudes to a state with more redundancy and more protection. We select codewords

for the computational basis of the qubits we wish to encode and use them to express the

quantum state to be encoded. For example, if we wish to encode a single qubit, we select

an appropriate codeword for |0〉, which we label as |0L〉 and call logical 0. Likewise, we

select a codeword for |1〉, which we label as |1L〉 and call logical 1. So, to encode a general

1-qubit quantum state |ψ〉 = α|0〉 + β|1〉, instead of copying it, we generate the state

|ψL〉 = α|0L〉+ β|1L〉.

QECCs are also specified by the nomenclature [[n, k, d]]. In this case, the code distance

is given by the minimum number of errors to map one codeword to another. The quantum

version of the BFC (QBFC) has codewords |0L〉 = |000〉 = (1, 0, 0, 0, 0, 0, 0, 0)T and

|1L〉 = |111〉 = (0, 0, 0, 0, 0, 0, 0, 1)T . The distance of the QBFC is still 3. Just like for

CECCs, we can define QECCs in several alternative but equivalent ways:

1. As a 2k-dimensional subspace of an 2n-dimensional Hilbert space spanned by the
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codewords
{
|xL〉

}
. For the QBFC, this would be the 2-dimensional subspace spanned

by
{
|000〉, |111〉

}
. Other QECCs are defined as a subsystem of a subspace of a larger

Hilbert space. These so-called operator or subsystem codes [19, 78, 14] offer inter-

esting advantages over subspace codes, but they will not be analyzed in this thesis.

2. As an encoding function f : (C2)⊗k −→ (C2)⊗n. This function is specified by a 2n×

2k generator matrix G =
∑

x |xL〉〈x|. For the QBFC, G = |000〉〈0|+ |111〉〈1|. It is

also common to turnG into a unitary operationUG by including (n−k) extra physical

qubits initialized in the state |0〉 before the encoding. In this way the encoding is

defined by a square matrix.

3. As a set A of (n − k) commuting independent operators that stabilize the vectors

in the codespace. This is the most common way to think about QECCs. In the

case of stabilizer codes, these are n-qubit Pauli operators. Notice that A only in-

cludes the generators of the stabilizers, which form a group S. For the QBFC,

A =
{
ZZI, IZZ

}
.

The stabilizer generators of the QBFC closely resemble the parity check matrix of its clas-

sical counterpart. Indeed, just like the parity check matrix in the classical setting, the

stabilizers determine the error syndrome. As long as the number of errors is within the cor-

rectable scope, the error syndrome will unequivocally determine which error occurred. The

procedure consists of measuring each stabilizer generator. Each measurement outcome will

indicate whether that particular operator commutes or anticommutes with the error. Notice

that since Pauli operators are unitary and Hermitian, their eigenvalues will be exclusively

+1 and −1. Furthermore, since these operators are traceless too, they will have the same

number of +1 and −1 eigenvalues. This results in a nice interpretation of stabilizer codes.

Since the (n−k) generators commute, they have the same set of (orthogonal) eigenvectors.

Each generator will have 2n eigenvectors: 2n−1 with eigenvalue +1 and 2n−1 with eigen-

value −1. We have 2n−k different combinations of ±1 eigenvalues. Exactly 2n−(n−k) = 2k
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Figure 2: The 4 subspaces of the bit flip code (BFC). L refers to the logical subspace, or
codespace, where the encoded qubit lives. The other 3 subspaces are labeled by the error
that maps them back to the logical subspace.

will share the same combination. So, the stabilizer generators split the 2n-dimensional

Hilbert space into 2n−k orthogonal subspaces of dimension 2k, each one uniquely labeled

by the eigenvalues. One of these subspaces is chosen as the logical subspace or codespace,

where the quantum information is encoded. For convenience, this is usually the one with

the all +1 eigenvalues. Each of the other subspaces will correspond to a unique correctable

error. Finally, notice that by measuring the stabilizer generators, we gain no knowledge

about the amplitudes α and β, so the coherence of the superposition is maintained. Figure

2 illustrates the 4 subspaces of dimension 2 that result from the QBFC.

At the single bit level, the only possible error is a flip. At the single qubit level, the

number of possible error is in principle infinite. However, the act of measuring the stabilizer

generator effectively discretizes these continuous errors. In the first place, as with CECCs,

any QECC will have a set of correctable and a set of uncorrectable errors. For a quantum

code with a projector P onto the logical subspace, the set of correctable errors is given by{
Ei
}

if and only if:

PE†iEjP = αijP, (31)

where α is a Hermitian matrix. The interested reader can study the proof on [77]. Notice

that for the QBFC, the set of correctable errors is
{
III,XII, IXI, IIX

}
. Of course, III

corresponds to no error, but we include it because it satisfies equation 31.
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The real power of QECCs comes from another fundamental result. Imagine we have

a quantum code whose set of correctable errors is given by
{
Ei
}

. We construct another

set
{
Fj
}

formed by linear combinations of the operators Ei: Fj =
∑

imjiEi for some

matrix mji of complex numbers. Quite amazingly, the operators in the set
{
Fj
}

are also

correctable errors. Once more, the interested reader can study the proof of this important

theorem in [77].

For the QBFC, this result has important implications. Imagine the operator F0 =

cos(θ/2)III − i sin(θ/2)XII , for some arbitrary θ. This corresponds to a coherent ro-

tation about the XII axis (the X axis on the first qubit) by an angle θ. The result on the

previous paragraph implies that this error is correctable for every real value of θ. The key

insight is that, although this error maps the state of the logical qubit to a superposition of

vectors on different subspaces, the measurement of the stabilizers collapses that superpo-

sition to the codespace with probability cos2(θ/2) and to the X1-subspace with probability

sin2(θ/2). In other words, measuring the stabilizers discretizes a continuous error to one

of the errors the code is meant to correct, as long as the error can be expressed as a linear

combination of the original correctable errors.

Despite its usefulness in illustrating the properties codes, the QBFC is not a good QECC

since it cannot correct any 1-qubit error. In particular it cannot correct a phase or Z error.

Numerous codes have been developed that can handle any error, not just bit flip. One of the

earliest and most widely studied is the [[7, 1, 3]] Steane code [91]. The stabilizer generators

of this code are:{
IIIXXXX, IXXIIXX,XIXIXIX, IIIZZZZ, IZZIIZZ,ZIZIZIZ

}
. (32)

It is straightforward but tedious to check that the Steane code can correct any Pauli error

on a single qubit. Since any 1-qubit operation can be expressed as a linear combination of

the Pauli matrices and the Identity, it follows that the Steane code can correct any 1-qubit

error. The Steane code is employed on Chapters 5 and 6 to study the properties of several

error approximations in the context of error correction.
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CHAPTER IV

IMPROVING THE APPROXIMATION OF NON-STABILIZER

ERRORS

This chapter is based on the following paper:

Mauricio Gutiérrez, Lukas Svec, Alexander Vargo, and Kenneth R. Brown, “Approx-

imation of realistic errors by Clifford channels and Pauli measurements”, Phys. Rev. A 87,

030302(R) (2013).

As explained in the previous chapter, a quantum computation is classically tractable as

long as the state of the system remains stabilized by Pauli operators at every time step. If

we start with a Pauli state, then the time evolution has to be given by Clifford operators and

measurements in a Pauli basis. This includes not just the desired operations in the circuit,

but the noise as well. Of course, in general, the noise will not be described as a unitary

operation, but at least it has to be representable as a Kraus channel formed by Clifford

operators and Pauli measurements.

A standard error model used in simulations of quantum circuits is the Pauli channel

(PC). In this model, a Pauli operator, chosen from a probability distribution, is applied at

every possible error position [93, 64, 30, 26]. The Kraus representation of the PC corre-

sponds to:

PC =



E0 =
√

1− p1 − p2 − p3 I

E1 =
√
p1X

E2 =
√
p2 Y

E3 =
√
p3 Z,

(33)

where p1, p2, and p3 correspond to the probabilities of applying a Pauli X , Y , or Z oper-

ation, respectively. The PC serves as a good approximation to some common laboratory
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processes such as dephasing. It also serves as a good approximation for most error process

that lead to a steady-state in which the system becomes maximally mixed. These are unital

channels that map completely mixed states to completely mixed states (ε(I) = I).

In nature it is also common to encounter interactions with the environment that lead

to non-unital error channels in which the maximally mixed states are not a fixed point

of the error process. One example is the amplitude damping introduced in the previous

chapter. If an error channel is far from unital, then simulating it with Pauli errors gives

large approximation errors, thus making it hard to extract useful results.

We have gone beyond simulating errors with the conventional PC. Rather than restrict-

ing to Pauli errors, we allow any subset of efficiently simulable gate errors to occur. In

particular, we look at subsets generated by including all Clifford group operators and/or

Pauli measurements to the PC. We have found that adding Clifford errors and/or measure-

ment errors always results in more accurate approximations and significant improvements

for most error channels.

We begin by considering all error channels that can be simulated efficiently within the

stabilizer formalism. Then, we discuss the method by which we create an error channel

that approximates a target channel.

4.1 Efficiently simulable error processes

The Clifford group for n-qubits can be generated from CNOTs and the 1-qubit Clifford

gates, which preserve the symmetry of the chiral octahedron [100]. As error channels, the

probabilistic application of 1-qubit Clifford operators can be represented by the following

Kraus operators:

• Identity

E0 =
√
p0I

• Pauli operators

Ei =
√
piσi
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• S-like operators

ES,±j =
√
pS,±j exp(−iπ

4
(±σj))

• Hadamard-like operators

Ej,±k =
√
pj,±k exp(−iπ

2
1√
2
(σj ± σk)) for k > j

• Rotations about the face centers

E~F =
√
p~F exp(−iπ

3
σ~F ) , where σ~F = ~F · ~σ and ~F is the unit vector from the origin

to one of the eight faces of the 1-qubit Clifford octahedron [100].

One can create an error process which is the weighted random application of these 24

unitary operators. We call this class of error models the Clifford Channel (CC) [68]. Most

simulations of error correction circuits have used Pauli depolarizing channel (PC), which

is a subset of CC consisting of only the random application of I or Pauli operators.

The stabilizer formalism also allows for efficient simulation of non-unital operations

involving Pauli measurements and, optionally, conditional application of Clifford gates

based on those measurements. We have focused on the set of operators that corresponds

to measuring a Pauli operator and then conditionally applying a Pauli matrix such that all

states map to the same state. We call these channels measurement induced translations. For

each eigenstate, |λ〉, of a Pauli operator, we define the channel Eλ by two Kraus operators:

Eλ0 = |λ〉〈λ| and Eλ1 = |λ〉
〈
λ⊥
∣∣. Notice that the effect of these two operators is to discard

the state and replace it by |λ〉. We add these channels to our model with probability pλ.

The effect on a state, when represented on the Bloch sphere, is to translate it toward |λ〉.

This allows us to generate non-unital error channels that can be efficiently simulated. The

extended models including measurement are labeled PMC and CMC. Table 1 describes the

content of each channel class in terms of the underlying channel set and the number of free

parameters.

• Measurement-induced translations

E|f〉〈f | =
√
p|f〉|f〉〈f |

24



E|f〉〈f⊥| =
√
p|f〉|f〉

〈
f⊥
∣∣

Notice that the effect of these two operators is to discard the state with a probability of

p|f〉 and replace it by |f〉. The effect on a state, when represented on the Bloch sphere, is

to translate it toward |f〉. To ensure trace preservation, we set p0 =
√

1−
∑

a pa where a

sums over all other operators.

Table 1: Four error models compatible with the stabilizer formalism.

Channel Class Channel Set Parameters
PC {I, σi} 3

PMC {I, σi, Eλ} 9
CC {I, σi, Sv, He, Rf} 23

CMC {I, σi, Sv, He, Rf , Eλ} 29

4.2 Evaluating the approximations

To study how closely our error models approximate target error channels, we compute

the distance between the process matrix of our error model and the process matrix of the

target error. For an error model with n operators (including the identity), this distance is

a function of the n − 1 linearly independent probabilities associated with the operators.

As a distance measure we employ the normalized Hilbert-Schmidt distance, introduced in

Chapter 2. After calculating the distance, we then minimize it over the n − 1 independent

variables.

As our goal is to understand for which cases this error model would be an appropriate

approximation, we want our model to be an upper bound to the error induced on the sys-

tem. Therefore, we perform the distance minimization with the constraint that the fidelity

between the identity channel and our error model is not greater than the fidelity between

the identity channel and the target error. This constraint ensures that our approximation

will not underestimate the real target error.

F (I,Target) > F (I,Model) (34)
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The fidelity can either be an average fidelity:

Fav(V,K) =
1

N2

∑
i

|Tr(V †Ki)|2 (35)

where {Ki} are the Kraus operators of the error channel K and V is a unitary transforma-

tion, or a worst-case fidelity:

Fw(V,K) = min
ρ εD

∑
i

|Tr(V †Kiρ)|2 (36)

where in this case the fidelity is minimized over all the density matrices ρ. The mini-

mization was performed with Python’s sequential least squares programming minimization

subroutine.

We use the Hilbert-Schmidt distance for most of the analysis here due to ease of compu-

tation, but the method works for any distance measure or constraint [44]. In most cases, the

worst case fidelity constraint would be appropriate for calculating lower bounds on error

correction thresholds. For certain cases, such as PolφC, the two constraints give the same

results.

4.3 Approximating the Amplitude Damping Channel (ADC)

Figure 3 shows the results of the approximation of the ADC by the error models introduced

in Section 4.1 with the average fidelity constraint. Each one of the 200 points corresponds

to a numerical minimization for a particular damping strength. After fitting these points and

then solving symbolically, for both the PC and the CC the distance between the ADC and

the best approximation was found to be DP = γ2/8, where γ is the damping strength. This

means that as the non-unital character of the ADC becomes more pronounced, the unital

error models give less an accurate approximation. The larger repertoire of operators in the

Clifford group does not improve the approximation obtained with only Pauli operators.

On the other hand, the addition of the measurement-induced translations considerably

improves the approximation. In this case, the distance between the approximation and the

ADC is given by Dm = (γ− 1)(γ+ 2
√

1− γ− 2)/8, and the PMC and CMC significantly
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Figure 3: The results for the CC and CMC are exactly the same as the results for PC and
PMC, respectively, since the additional Clifford operators do not improve the approxima-
tion. The inset figure, a zoomed version of the same plot, gives an idea of how fast an
error model without measurement-induced translations becomes an inaccurate approxima-
tion compared to an error model that includes them. For small values of γ both distances
scale quadratically.

outperform the models without measurement for γ > 0.05. The PMC and CMC can match

the ADC perfectly only for γ = 0, which corresponds to the trivial case, and γ = 1, which

corresponds to a measurement that is actually part of the operator repertoire of our error

model. Interestingly, despite the large amount of operators in the CMC error model, the

best approximation only employs the identity and the translation towards |0〉 and it is given

by:

PMCADC =


E0 =

√
1− pm I

E1 =
√
pm |0〉〈0|

E2 =
√
pm |0〉〈1|

(37)

with pm = (1 + γ −
√

1− γ)/2. It is also noteworthy that, for small γ values,

Dm =
γ2

32
− γ3

64
+O(γ4), while DP =

γ2

8
. (38)

Although the measurement operators improve the approximation even for small γ values,

both methods have a quadratic dependence on γ.
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When the constraint is changed from the average fidelity to the worst fidelity, then the

PC and CC approximations have a distance of

DP,w =
2γ2 − 3γ + 2 + 2γ

√
1− γ − 2

√
1− γ

4
, (39)

while the PMC and CMC have a distance of Dm,w = 2Dm. Both of these cases result in

larger distances than the ones with the average fidelity approximation and the difference

between models with and without measurements is even more pronounced.

The results obtained by the average fidelity and the worst fidelity contraints are best

illustrated in Figure 4. Here we examine, for γ = 0.25, the closest PC (a) and PMC (b)

approximation assuming either one of the two constraints. The figure shows a cross section

of the Bloch sphere and its transformation by the ADC and the closest approximate channel

with either the average fidelity constraint (red) or the worst fidelity constraint (blue). Notice

that for these error channels the deformed Bloch sphere is still symmetric with respect to

rotations around z, so a cross section is enough to visualize the whole process.

The approximation using the worst fidelity constraint guarantees that the largest dis-

tance between any input and the target channel output will be less than the largest distance

between any input and the approximate channel output. In this case, for both the ADC

and its approximations the largest discrepancy between input and output occurs when the

initial state is |1〉. Notice that for the PMC approximation this constraint also guarantees

that for all inputs the approximate channel outputs are further from the input than for the

target channel. This is pictorially represented in Figure 4(b), where the blue curve is al-

ways inside the green curve or further away from the initial states (black curve). For the

PC, however, this is not the case, as Figure 4(a) shows. Here the blue curve lies outside the

green curve for some points. Indeed, if we use a unital channel to approximate a non-unital

one, it is impossible to satisfy the condition that for every input the approximate channel

output will be further from the input than for the target channel. Simply consider the max-

imally mixed state, which is mapped to itself by a unital channel, but mapped to a different

state by a non-unital one.
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Figure 4: AFA stands for average constraint approximation, while WFA stands for worst
constraint approximation. a) Channels without measurement operators. b) Channels with
measurement operators. For both cases, γ = 0.25.

4.4 Approximating the Polarization along an axis in the X-Y plane Chan-
nel (PolφC)

Figure 5 shows the results of the approximation of the PolφC by the error models introduced

earlier. Once again, each one of the 200 points corresponds to a numerical minimization.

Because of the unital nature of this channel, it is the addition of the Clifford operators rather

than the measurement operators that improve the approximation. For both the PC and the

PMC, the distance between PolφC and the best approximation was found to be:

DP =
1

4
p2 sin2(2φ). (40)

When the Clifford operators are included in the approximate channel, the new distance is

reduced to:

DC =
3

28
p2(sin(2φ) + cos(2φ)− 1)2 (41)

for 0 ≤ φ ≤ π/4 and for p < 0.9. The minimum distance is given by this function only

when p ≤ 7/(6 +
√

2) ≈ 0.944. Because we are interested in small errors, we will not deal

with the p > 7/(6 +
√

2) case. Furthermore, the expression in equation 41 is only valid
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for 0 < φ < π/4. For other intervals, the distance is the same expression translated by the

corresponding amount. For example, for the π/4 < φ < π/2 interval, the distance is:

DC =
3

28
p2(sin[2(φ− π/4)] + cos[2(φ− π/4)]− 1)2. (42)

At the worst point of the CC (which in this interval occurs at φ = π/8, 3π/8), the PC is

6.8 times worse. Notice that not only the distance is decreased; the period of the distance

function is also reduced from π/2 to π/4, because between every two Pauli axes there is a

Clifford axis.

Figure 5: The results for PMC and CMC are the same as the results for PC and CC,
respectively, since the channel is unital and the approximation does not benefit from the
measurement-induced translation operators. The distances scale quadratically with p, so
the results are normalized by p2.

Once again, despite the large amount of operators in the CMC, the best approximation

uses a small number of them: the identity and the two axes closest to the polarization axis.

If we only employ Pauli axes, the best approximation is:

PCPolφC =


E0 =

√
1− p I

E1 =
√
p cos(φ)X

E2 =
√
p sin(φ)Y,

(43)
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where φ and p are the same as in Equation (2). If we employ the whole Clifford group, the

best approximation is given by:

CCPolφC =


E0 =

√
1− p1 − p2 I

E1 =
√
p1X

E2 =
√
p2HXY =

√
p2/2(X + Y )

(44)

where p1 = p(3 + 4 cos(2φ) − 3 sin(2φ))/7, and p2 = p(3 − 3 cos 2φ + 4 sin(2φ))/7.

Finally, as mentioned before, for this error channel there is no difference between the results

obtained with either fidelity constraint.

4.5 Approximating Random Error Channels

We have seen that the addition of the measurement-induced translations and the Clifford

operators improves the approximation of two specific error channels. To determine how

the method works for general errors, we generated 1000 random process matrices and com-

puted the distance of the best approximation that each one of the 4 approximate channels

could make. For the 1-qubit case, a process matrix is a 4 × 4 Hermitian positive matrix

M with 4 constraints in the normalized Pauli basis: tr(M) = 2, Re(M01) = -Im(M23) ,

Re(M02) = Im(M13) , and Re(M03) = -Im(M12). To generate this matrix we first create

a 4 × 4 diagonal matrix D with real, positive diagonal entries that add to 2. We then

create a 4 × 4 random unitary matrix U and apply this unitary transformation to D to ob-

tain M = UDU †, which is positive with trace 2. We then enforce the last 3 constraints

mentioned earlier and keep the random process if the matrix is still positive.

Figure 6 illustrates the distance between each random error channel and the best approx-

imation as a function of the distance between the error channel and the identity channel.

Notice that as the number of operators in the error models increases, both the mean and the

median distance between each model and the random error decreases and the distributions

become more compact, as summarized in Table 2. For this data, the improvement of adding

either Clifford gates, CC, or measurement-induced translation operators, PMC, over PC is
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Figure 6: The slope of a line joining the origin and a point represents the distance of the
best approximation to that error relative to the magnitude of the error.

comparable. The total set of operators leads to an order of magnitude improvement over

the PC. In the case of the CMC, for the 1000 random channels tested, the number of non-

zero parameters used in the approximations varied from 4 to 29 with a median of 12. This

is in contrast to the ADC and the PolφC where only 1 and 3 parameters, respectively, are

required due to the symmetry of the error channels.

Table 2: Summary of the approximations obtained with each of the 4 error models.

Channel Distance mean Distance median Distance variance
PC 1.7× 10−2 1.4× 10−2 1.4× 10−4

PMC 3.4× 10−3 2.4× 10−3 1.1× 10−5

CC 9.8× 10−3 7.5× 10−3 7.0× 10−5

CMC 1.1× 10−3 4.2× 10−4 2.2× 10−6
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CHAPTER V

COMPARISON OF THE STEANE CODE THRESHOLD FOR

EXACT AND APPROXIMATE ERRORS

This section is based on the following paper:

Mauricio Gutiérrez and Kenneth R. Brown, “Comparison of a quantum error-correction

threshold for exact and approximate errors”, Phys. Rev. A 91, 022335 (2015).

The threshold theorem of quantum error correction promises the accurate implementa-

tion of arbitrary size quantum algorithms if the underlying physical errors are below certain

values. The error thresholds depend strongly on the specific quantum error correcting code,

how errors are detected and fixed [82, 45, 94], and what errors are assumed [80, 41, 99, 59].

Most codes have been designed to fix random Pauli errors and error correction procedures

can be simulated efficiently using the stabilizer formalism [47, 2]. As explained in Chapter

4, a broader class of errors including Clifford operations [68] and Pauli measurements [52]

can also be included in this formalism.

Here we examine whether these improved approximations also lead to more accurate

threshold estimates. Specifically, we calculate the level-1 pseudo-threshold for the Steane

[[7,1,3]] code [91] for two non-stabilizer errors, amplitude damping and a depolarization

channel along a magic-state axis, and compare the exact solution to approximations based

on Pauli errors or Clifford and Pauli measurement errors. The Steane code has been well

studied theoretically [93, 95, 71, 98, 104, 4, 11] and a logically encoded state has been

recently demonstrated experimentally [79]. The code is small enough to allow for exact

simulation similar to recent work on distance-3 surface codes, which compared a realistic

error model corresponding to T1 (amplitude damping) and T2 (dephasing) processes and

an approximate Pauli error model based on twirling [99].
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In addition to the pseudo-threshold, we are interested in two other qualities of the ap-

proximation, the accuracy and the honesty. The accuracy is a measure of how close is the

state generated by the approximate evolution to the state generated by the exact evolution.

We describe an approximation as honest if the final state after the approximate evolution is

further from the initial state than the final state after the exact evolution. In other words, an

approximation is honest if it upper-bounds the error of the exact evolution. As pointed out

by Puzzuoli et al. the composition of honest approximations is not necessarily honest [83].

This implies that an approximation that is honest at the 1-qubit physical level might lead to

a dishonest representation of the overall error produced on the system. As our goal is to em-

ploy our approximate channels to infer the performance of error-correcting strategies under

realistic non-stabilizer noise, we need to be sure that they compose in an honest fashion.

We provide numerical evidence that, in the context of an error-correcting circuit, an honest

approximation at the physical level remains honest at the logical level. Furthermore, we

show that, for the error models studied, physically dishonest approximations based on the

Pauli channel might lead to approximations at the logical level that are both approximately

honest and very accurate, in agreement with similar results obtained by Geller and Zhou

[43]. This suggests that it might not be necessary for the approximations to be honest at

the physical level.

This chapter is organized as follows. First, we review the important concepts of honesty

and accuracy of an approximate channel. Next, we explain our procedure for calculating

the pseudo-thresold. Finally, we present our results.

5.1 Honesty and accuracy at the physical and logical levels

For each approximate channel, we study two properties: honesty and accuracy. An approx-

imate channel is honest if it does not underestimate the detrimental effect of the target error

channel. The accuracy of an approximate channel refers to how closely it can mimic the

effect of the target channel on an initial state. More explicitly, if a target error channel E
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Figure 7: We focus on the physical level and the logical level before and after error
correction. The logical initial state is encoded without errors and then errors are applied.
The preparation of the ancillary cat state in the faulty EC is error-free as well, as shown in
Fig. 8.

maps a pure state ρ to E(ρ) and an approximate channel A maps the same state to A(ρ),

then A is honest if

DTr(ρ, E(ρ)) ≤ DTr(ρ,A(ρ)) (45)

for every pure state in the initial physical or logical space. The accuracy is measured by the

average trace distance between the resulting states:

〈
DTr(E(ρ), A(ρ))

〉
. (46)

Notice that for both properties, our measure of choice is the trace distance. A good

approximate channel will be honest (or as least dishonest as possible) and as accurate as

possible, not only at the physical level, but also at the logical levels. We distinguish 4

different scenarios to compare honesty and accuracy: (a) the physical (1-qubit) level, (b)

the uncorrected logical level, (c) the logical level with perfect EC, and (d) the logical level

with faulty EC, as depicted in Fig. 7.

For each target non-Clifford error channel, we study two kinds of approximations: (a)

the Pauli channels (PC), which employ only 1-qubit Pauli operators, and (b) the expanded

channels or Clifford+measurements channels (CMC), which include all the 1-qubit Clifford
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operators and the measurement-induced translations [52]. In turn, each kind of approxima-

tion is performed with the average fidelity constraint (“a”) and the worst trace distance

constraint (“w”), resulting in four approximate channels. Notice that the unconstrained

PC is equivalent to the Pauli Twirled Approximation [68, 83, 43], the channel obtained by

removing the off-diagonal elements from the target channel’s process matrix in the Pauli

basis [24]. We also analyze the completely isotropic Pauli channel or depolarizing channel

(DC), the most common error model used when calculating thresholds. In this paper we

are comparing single qubit error channels and we only use the single qubit depolarizing

channel. This channel is a version of the PCa where the coefficients corresponding to each

Pauli matrix are forced to have the same value. This error model serves as a reference. The

approximations are summarized in Table 3.

Table 3: Summary of the various target and approximate channels.

Channel Complete name Honesty constrained
ADC amplitude damping –
PolφC polarization along non-Clifford axis –
PCa Pauli no
PCw Pauli yes

CMCa Clifford+measurements no
CMCw Clifford+measurements yes

DC Depolarizing channel no

5.2 Calculation of the pseudo-threshold

Our objective with respect to the pseudo-threshold is twofold. On the one hand, we want

to study how sensitive a QECC’s threshold is to the noise model. On the other hand, we

want to determine if the thresholds obtained with our expanded error models approximate

the realistic threshold more accurately than the PC.
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5.2.1 Procedure to compute the level-1 pseudo-threshold

Because our target error models are non-stabilizer, we perform exact (full density matrix)

simulations of quantum error correction (QEC) circuits up to the first level of encoding.

We calculate a particular QEC code’s level-1 pseudo-threshold under a given error channel

in the following way:

1. Run the physical circuit:

(a) Choose an initial 1-qubit pure state, |ψ〉.

(b) Apply the selected error channel.

(c) Compute the fidelity between the initial and final states.

2. Run the logical circuit:

(a) Encode the initial state using the selected QECC.

(b) Apply the error channel to each physical qubit.

(c) Perform EC.

(d) Compute the fidelity between the initial and final logical states.

We are interested in how much the final state is affected by errors which are uncor-

rectable by the selected QECC. Therefore, for the case with faulty corrections, we

perform one round of perfect EC before computing the fidelity. This has the effect

of eliminating correctable errors which happened during or after the faulty EC. The

process of performing a round of perfect EC and then computing the fidelity can also

be viewed as computing an error-corrected fidelity:

FEC(|ψL〉, ρL) =

√∑
i

〈ψL|E†iP
†
i ρLPiEi|ψL〉, (47)

where |ψL〉 is the initial logical state and ρL is the final logical state, which, in gen-

eral, will not be pure. The set {Ei} consists of all error operators which the QECC
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is designed to correct, while {Pi} is the set of projectors to the subspaces associ-

ated with each error. For the Steane [[7,1,3]] code, the set {Ei} is formed by the 64

Pauli operators formed by all possible combinations of X and Z errors acting inde-

pendently on at most one qubit and includes the Identity operator for the case of no

errors.

3. Repeat steps (1) and (2) for various noise strengths to obtain fidelities for the physical

and logical circuits. The threshold is given by the first intersection between the two

curves.

4. Repeat this procedure for several initial states to obtain an average threshold. For

the perfectly corrected case, we select 80 initial points uniformly distributed on the

Bloch sphere. For the faultily corrected case, we select 20.

Notice that our logical unit consists of a logical Identity gate, which is always faulty,

and an EC step, which may or may not be faulty. This logical unit is often referred to as

a simple rectangle, in contrast to an extended rectangle, where the logical gate is inserted

between two EC steps [10, 26]. The qualitative trends of the resulting pseudo-thresholds

should remain unchanged between a simple and an extended rectangle.

5.2.2 Methods of error correction

The EC step is performed by measuring the stabilizer generators and later correcting any

detected errors. We distinguish between the error-free EC, which results in a code-capacity

pseudo-threshold, and the faulty EC, which results in the more realistic circuit-based pseudo-

threshold. The faulty EC is built by inserting an error channel after each gate in the original

circuit. As the Steane code will be the focus of our analysis, consider, for example, the mea-

surement of the stabilizer IIIXXXX , as depicted in Fig. 8. The error-free EC step would

consist of circuits analogous to (a) for each stabilizer generator. On the other hand, in

the faulty EC regime, each stabilizer generator would be measured as shown in (b). Each
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Figure 8: In the former case, we only need to employ 1 ancillary qubit. Notice that the
ancillary qubit starts in the |+〉 state and the measurement is performed in the X basis. In
the faulty EC regime, in order to make the procedure fault tolerant, we employ 4 ancillary
qubits initialized in a cat state [33]. We then measure each ancillary qubit in the X basis
and compute their parity to extract the outcome.

stabilizer measurement is then repeated and the syndrome is compared to the one in the

previous round. If there is a disagreement between these two, a third round of stabilizer

measurements is performed and its syndrome is selected as the definitive one.

5.3 Honesty and accuracy of the approximations

By construction, the “w” approximations are honest at the physical (1-qubit) level, pro-

vided that the initial state is pure. In our previous work we also determined that, when

approximating a general non-Clifford channel at the physical level, the expanded channels

are more accurate than the Pauli channels. Before computing the level-1 pseudo-thresholds

for different approximations, we first examine if the honesty of the “w” approximations

and the greater accuracy of the expanded channels were maintained at the logical level.

5.3.1 Amplitude Damping Channel (ADC)

For the physical, logical uncorrected, and logical with perfect EC levels, we have selected

80 initial states uniformly distributed over the Bloch sphere surface. For the logical faultily

corrected level, we have selected 20 points, because the simulations involve 3 extra qubits
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and consequently take an exponentially longer time. We have computed the trace distance

between each initial state and the resulting final state after the ADC and its approximations.

The average distances are shown in the first row of Fig. 9 as a function of the damping

strength, γ. Likewise, we have computed the trace distance between each final state after

the ADC and each final state after every approximate channel. The average distances are

presented in the second row of Fig. 9. The behavior in the limit of small damping strength

(γ → 0) is summarized in Tables 4 and 5. In this limit, it is useful to Taylor-expand

the distances in terms of the noise strength and compare the coefficients of the leading

order terms. Expectedly, for the corrected logical cases the linear term is suppressed and

the leading order is quadratic. For the physical and uncorrected logical cases, the leading

order is linear. At the logical level with faulty EC, simulations were only carried out at

low damping strengths
(
γ ∈ [10−5, 10−3]

)
, which is the pertinent region for the pseudo-

threshold computation.

Figure 9: Distances used to assess the honesty (top row) and accuracy (bottom row) of
the approximate channels to the ADC at various levels.
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Table 4: Honesty of the approximate channels to the ADC in the limit of small damping
strength. Standard deviations below 10−9 are not reported.

Channel Physical Logical uncorrected Logical perfectly corrected Logical faultily corrected
DTr/γ DTr/γ DTr/γ2 DTr/(102γ2)

ADC 0.55(27) 3.62 3.76(96) 8.0(1.8)
PCa 0.347(79) 3.50 3.76(96) 7.8(1.8)
PCw 0.81(12) 8.35 18.5(3.5) 37.7(8.0)

CMCa 0.50(18) 4.00 3.48(45) 6.3(1.2)
CMCw 0.66(24) 5.33 6.19(80) 11.3(2.2)

DC 0.333 3.50 2.75(36) 4.95(96)

Table 5: Accuracy of the approximate channels to the ADC in the limit of small damping
strength. Standard deviations below 10−9 are not reported.

Channel Physical Logical uncorrected Logical perfectly corrected Logical faultily corrected
DTr/γ DTr/γ DTr/γ2 DTr/(102γ2)

PCa 0.500 2.41 7(12)× 10−6 0.123(28)
PCw 0.63(26) 4.94 14.8(2.6) 29.8(6.2)

CMCa 0.166(60) 1.35 1.61(44) 2.15(74)
CMCw 0.194(60) 1.75 3.05(94) 3.7(1.1)

DC 0.505(97) 2.92 1.68(69) 3.2(1.2)

Notice that at the physical level in the first row of Fig. 9, the “w” approximations result

in curves that are above the target ADC by construction, while the “a” approximations

produce curves below it. This behavior is also present in the small noise strength limit, as

can be seen by the magnitudes of the linear coefficients (Table 4): PCa < CMCa < ADC

< CMCw < PCw. Likewise, the accuracies of the CMC approximations are much better

than that of the PC approximations (Table 5). In the γ → 0 limit, the CMC approximations

are ≈ 3 times more accurate.

At the three logical levels, the “w” approximations are honest for every damping strength.

This is true not just on average, but for every initial state considered. This is an important

result, as it means that we can safely use the “w” approximations as a substitute of the ADC

when determining codes’ thresholds or other error-correcting properties. Remarkably, the
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dishonesty of the PCa is greatly reduced from the physical to the logical levels in the limit

of small γ. Its error is below the honesty cutoff by 36% at the physical level but by less

than 2% for both corrected logical levels and well within the deviation in the distance. In

contrast, the dishonesty of the CMCa is not improved at the logical levels and is below the

honesty cutoff by 8− 20% for all cases.

The variation of the accuracy from level to level shows an interesting behavior. For both

levels where the effect of the errors is linear (physical and uncorrected logical), in general

the CMC channels and the “a” approximations are more accurate than the PC channels

and the “w” approximations, respectively. This is seen by the magnitudes of the linear

coefficients (Table 5): CMCa < CMCw < PCa < PCw. At the logical level with perfect

EC, this intuitively expected behavior is seen only for high damping strengths (γ > 0.5)

(see Fig. 9). Surprisingly, for lower damping strengths, the most accurate approximation is

given by the unconstrained PC, as can be observed by the suppresion of the second order

terms in the accuracy ( Table 5). This behavior is particularly pronounced at the logical

level with perfect EC, where the second order terms for the PCa and ADC are practically

indistinguishable.

5.3.2 Polarization along a non-Clifford Axis Channel (PolφC)

We perform an analogous analysis for our second target error channel: the polarization

along a non-Clifford axis on the XY plane of the Bloch sphere. We select the axis forming

an angle φ = π/8 with respect to the X axis, as this is the angle for which the expanded

error models perform the worst [52]. Once again, we have selected 20 initial states for

the faultily corrected level and 80 points for all other levels. We have computed the trace

distance between each one of them and the resulting final state after the Polπ/8C and its

approximations. The average distances are shown in the first row of Fig. 10 as a function

of the noise strength, p. Likewise, we have computed the trace distance between each final

state after the Polπ/8C and each final state after every approximate channel. The average
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distances are presented in the second row of Fig. 10. The behavior in the limit of small

noise strength (p → 0) is summarized in Tables 6 and 7. As for the ADC, at the physical

and uncorrected logical levels, the leading order is linear. At the corrected logical levels,

the leading order is quadratic.

Figure 10: Distances used to assess the honesty (top row) and accuracy (botom row) of
the approximate channels to the Polπ/8C at various levels.

As observed on the ADC, the “w” approximations are honest at every level and for every

noise strength. This holds in the average case and also for each initial state considered.

Interestingly, the CMCa becomes honest on average and the PCa average distances are

indistinguishable from honest.

Notice that, just like for the ADC, at the physical and uncorrected logical levels, the

CMC channels and the “a” approximations are more accurate than their counterparts PC

and “w”, respectively. This can be seen by the magnitudes of the linear coefficients (Table

7): CMCa < CMCw < PCa < PCw. At the physical level, and in the p → 0 limit, the

CMC approximations are ≈ 3 times more accurate than the PC approximations. At the

43



Table 6: Honesty of the approximate channels to the Polπ/8C in the limit of small noise
strength. Standard deviations below 10−9 are not reported.

Channel Physical Logical uncorrected Logical perfectly corrected Logical faultily corrected
DTr/p DTr/p DTr/p2 DTr/(103p2)

Polπ/8C 0.78(24) 7.00 16.2(4.7) 2.22(72)
PCa 0.73(20) 7.00 16.2(4.7) 2.22(72)
PCw 0.93(18) 9.47 18.5(4.9) 2.71(77)

CMCa 0.77(22) 7.41 17.8(5.1) 2.67(83)
CMCw 0.84(23) 8.17 20.8(5.9) 3.12(96)

DC 0.667 7.00 11.0(1.4) 1.82(35)

Table 7: Accuracy of the approximate channels to the Polπ/8C in the limit of small noise
strength. Standard deviations below 10−9 are not reported.

Channel Physical Logical uncorrected Logical perfectly corrected Logical faultily corrected
DTr/p DTr/p DTr/p2 DTr/(102p2)

PCa 0.278(82) 2.47 6.1(7.7)× 10−6 5.8(1.6)× 10−5

PCw 0.36(21) 4.95 3.8(1.1) 6.2(1.6)
CMCa 0.108(25) 1.09 1.76(41) 4.7(1.0)
CMCw 0.132(43) 1.37 4.6(1.1) 9.2(2.4)

DC 0.46(11) 4.67 9.2(1.3) 9.7(1.5)
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corrected logical levels, the most accurate approximation is once again given by the PCa.

Surprisingly, this behavior holds even up to high noise strengths (p = 0.6). In the low noise

limit, and at the corrected logical levels, the second order terms are practically suppressed.

In this limit, the PCa is on average more accurate than the CMC channels by a factor of

105.

5.3.3 High accuracy of the unconstrained PC

For both the ADC and the Polπ/8C, the unconstrained PC results in approximations that

are honest (or almost honest) and extremely accurate at the logical corrected levels. In the

limit of small error, this is very evident by comparing the quadratic coefficients of the PCa

to the other approximations (See Tables 5 and 7.). The high accuracy of the unconstrained

PC in the context of EC has previously been observed. Geller and Zhou found very good

agreement between the PCa or Pauli twirled approximation and two different realistic noise

models when correcting a Bell state [43]. Likewise, Puzzuoli et al. observed great accuracy

of the PCa when correcting a Choi state encoded in the [[5,1,3]] code [83]. As clearly

explained in Ref. [83], after (perfect) EC, the process matrix elements corresponding to

Pauli error strings that result in different syndromes become zero. Intuitively, we can say

that the “non-Pauli” advantage of the expanded approximations at the physical level gets

“washed away” after EC.

5.4 Level-1 pseudo-thresholds

We perform the simulations of two different scenarios: (1) one with perfect EC, which

results in a relatively high code-capacity pseudo-threshold and (2) one with faulty EC,

which results in a more realistic circuit-based pseudo-threshold. Apart from the average

pseudo-threshold, we also calculate the root mean square difference (RMS) between the

pseudo-thresholds given by the target non-Clifford channel and the ones predicted by each

approximate channel:

RMS =
√
〈(pchannel

th − papprox
th )2〉. (48)
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Figure 11: Variation of the circuit-based level-1 pseudo-threshold as a function of the an-
gle θ for the ADC and its approximations. Each point corresponds to the pseudo-threshold
averaged over different values of the angle φ for the same angle θ. The initial state is given
by |ψ〉 = cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉. For the ADC and its expanded approximations,
the pseudo-threshold depends strongly on the initial state. The zoom-in figure on the left
shows how the pseudo-threshold is computed for a particular point on the Bloch sphere,
namely by finding the first intersection between the physical and logical error (1− F ).

The RMS quantifies the accuracy of each approximate channel to estimate the pseudo-

threshold of the target channel. We calculate the RMS because comparing only the average

values does not account for any cancellation of errors. A certain approximate channel can

do a very poor job at approximating the pseudo-threshold for every initial state, but result

in an average that is close to the target’s average.

The results for the ADC and the Polπ/8C are summarized in Tables 8 and 9, respectively.

For the ADC, the pseudo-thresholds are expressed in terms of the damping strength, γ,

while for the Polπ/8C, they are expressed in terms of the noise strength, p. In both cases, the

standard deviation of the pseudo-thresholds is included inside parentheses. Notice that the

code-capacity pseudo-thresholds are about 3 orders of magnitude higher than the circuit-

based ones. The latter ones are on the range expected for the Steane code [92]. Although

the code-capacity pseudo-thresholds are unrealistically high, they show similar trends with

respect to their circuit-based counterparts.
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Table 8: Thresholds for the Steane code under the ADC and its Pauli and expanded ap-
proximations. ADC/PCa uses ADC at the physical level and PCa at the logical level.

Channel Code capacity Circuit-based
〈γth〉 RMS 〈γth〉 × 104 RMS ×104

ADC 0.18(17) – 4.8(4.2) –
PCa 0.132(38) 0.171 4.8(1.4) 3.91
PCw 0.061(43) 0.204 2.36(60) 4.69

CMCa 0.19(17) 0.0498 6.4(4.2) 1.67
CMCw 0.15(14) 0.0644 4.8(3.1) 1.12

DC 0.162(22) 0.165 7.2(1.4) 4.60
ADC/PCa 0.30(37) 0.255 4.9(4.2) 0.101

Table 9: Thresholds for the Steane code under the Polπ/8C and its Pauli and expanded
approximations. Polπ/8C/PCa uses Polπ/8C at the physical level and PCa at the logical
level.

Channel Code capacity Circuit-based
〈pth〉 RMS 〈pth〉 × 104 RMS ×104

Polπ/8C 0.14(24) – 3.5(1.5) –
PCa 0.086(74) 0.238 3.10(26) 1.53
PCw 0.078(16) 0.237 3.46(35) 1.48

CMCa 0.11(21) 0.112 3.09(85) 0.816
CMCw 0.09(14) 0.169 2.91(76) 0.991

DC 0.083(12) 0.244 3.92(64) 1.60
Polπ/8C/PCa 0.14(25) 0.0255 3.5(1.5) 1.19× 10−3
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As can be seen from Tables 8 and 9, in general, the standard deviations of the pseudo-

thresholds about its average values are high, especially for the target non-Clifford channels

and its expanded approximations. Despite the fact that we consider relatively few initial

states (80 and 20 for the code-capacity and circuit-based cases, respectively), the high

variances are not a consequence of the small sample sizes. In fact, when reducing the

sample size to only 6 initial points (the 6 Pauli states), the variances increase only slightly,

and for some channels do not increase at all. Instead, the high variances are due to the

extreme sensitivity of the pseudo-threshold to the initial state. As an illustrative example,

consider Fig. 11. The plot to the right shows how the circuit-based pseudo-threshold of

the ADC and its approximations varies as the initial state changes from |0〉 to |1〉 as a

function of the angle θ. Notice, that the pseudo-threshold for the ADC and its expanded

approximations is particularly sensitive to the initial state, ranging from 0, when the initial

state is the fixed point of the ADC, to ∼ 10−3.

It is interesting that the Pauli channels always result in pseudo-thresholds that are lower

than the real ones. This trend has also been observed by Tomita and Svore on the surface

code [99] and suggests that anisotropic Pauli channel approximations to realistic noise

models are pessimistic. The CMCw approximations also result in lower pseudo-thresholds.

This is in contrast to the isotropic Pauli channel approximation (DC) that yields optimistic

pseudo-thresholds.

The CMCs give more accurate pseudo-threshold estimates than the PCs, as can be seen

by comparing their RMS values. Although we might expect the “a” channels to result in

better approximations than the “w” channels, in general this is not the case. The most

important variation is between the CMCs and the PCs. In general, however, the “w” chan-

nels result in lower pseudo-thresholds than the “a” channels, which implies that honest

approximations at the physical level do a good job at giving conservative estimates of the

threshold. Finally, we notice that the circuit-based pseudo-thresholds are quite comparable

yielding pseudo-thresholds within a factor of two for all of the error models. The DC model
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representing isotropic depolarizing noise yields the worst results.

In the previous section, we noticed that the PCa, one of the simplest approximations at

the physical level, and one that is not even honest, results in very accurate and practically

honest approximations at the corrected logical levels. In the context of our level-1 pseudo-

threshold estimation, this result suggests that we can take a different strategy. Instead of

using the approximate channel at both the physical and logical level to calculate the pseudo-

threshold, we can use the target channel at the physical level and the PCa approximation at

the logical level. More generally, we can simulate the realistic noise model in an exact way

whenever it is feasible, and in the encoded cases just use the PCa. If we take this approach,

we obtain more accurate state by state pseudo-thresholds for the circuit-based case as seen

in Tables 8 and 9.
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CHAPTER VI

APPROXIMATIONS TO COHERENT ERROR CHANNELS

As seen in Chapter 5, the PCa provides an extremely accurate (and almost honest) approx-

imation to the ADC and the PolφC at the logical corrected levels. However, it has been

suggested that this behavior only occurs when the target channel is non-unitary or inco-

herent [83]. The two realistic channels that we have focused on in the previous chapters

are of this kind. Therefore, we are interested in studying the honesty and accuracy of the

Pauli and expanded channels when approximating a coherent channel. Just like in Chapter

5, we are also interested in estimating the level-1 pseudo-threshold. Finally, we want to

understand why the PCa is so good at the logical corrected levels for incoherent channels

and how it performs for unitary errors.

As a model unitary error we select a rotation about the Bloch sphere’s Z axis by an

angle θ:

RZC = exp(−iθZ/2) = cos(θ/2)I − i sin(θ/2)Z (49)

This channel can arise as an over-rotation when applying a rotation during a quantum com-

putation, due to a miscalibration of the laser intensity or an extra long pulse duration. The

angle θ parametrizes the error strength.

6.1 Analysis in the limit of low error rates

Our analysis is based on the effective 1-qubit process matrix for the whole circuit, including

the encoding, occurrence of error, syndrome measurement, error correction, and decoding.

This strategy is motivated by the observation that in our simulation scheme the final state

of the quantum circuit is always completely localized on the logical codespace, so that the

overall circuit can be compactly represented by a 1-qubit process matrix.
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For the perfect EC, after the stabilizer measurement and correction, it is evident that the

final state will live in the logical codespace. In general, this will not be the case when the EC

is faulty, since errors during the measurement of the stabilizers will cause the logical state

to not be projected perfectly onto the code subspaces. However, in our previous analysis

[51], after faulty EC we always perform one round of perfect EC, to account exclusively

for uncorrectable errors. This has the effect of completely projecting the final state onto the

codespace.

We are particularly interested in the low error rate limit, where it is appropriate to

Taylor-expand each entry in the process matrix in terms of powers of the error rate. This

helps us visualize in a very clear way which terms are more important in determining the

relevant characteristics of a given error channel. As an example, consider a 1-qubit coherent

error channel consisting of a rotation about the X axis by an angle θ:

RX(θ) = exp(−iθX/2) (50)

In the normalized Pauli basis, the process matrix for this channel is:

2 cos2(θ/2) i sin(θ) 0 0

−i sin(θ) 2 sin2(θ/2) 0 0

0 0 0 0

0 0 0 0


In the small error limit (θ → 0), this becomes:

2− θ2/2 +O(θ4) iθ +O(θ3) 0 0

−iθ +O(θ3) θ2/2 +O(θ4) 0 0

0 0 0 0

0 0 0 0


The PCa approximation to this channel is given by the diagonal entries of its process
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matrix: 

2 cos2(θ/2) 0 0 0

0 2 sin2(θ/2) 0 0

0 0 0 0

0 0 0 0


which corresponds to a channel where the qubit is flipped with a probability px =

sin2(θ/2):

PCRXC =


√

1− px I

√
pxX

(51)

For illustrative purposes, imagine the situation where we use the QBFC introduced in

Chapter 3. We perfectly encode our qubit, then 3 independent error instances happen, 1

on each qubit, and finally we measure the stabilizer generators, correct, and decode. If the

individual errors correspond to flips with probability px, the effective channel for the whole

circuit is given by:

PCl =


√

(1− px)3 + 3(1− px)2px I√
3(1− px)p2

x + p3
xX

(52)

This channel is still a probabilistic application of an X operator. The first Kraus oper-

ator corresponds to the situation where either no flip or 1 flip occurred. The second Kraus

operator accounts for the case where 2 or 3 flips occurred, thus causing a logical X error.

If px = sin2(θ/2), this channel’s reduced process matrix is:2 cos4(θ/2)
(
1 + 2 sin2(θ/2)

)
0

0 2 sin4(θ/2) (1 + 2 cos2(θ/2))


Here we have only focused on the first 2 rows and columns of the 1-qubit process matrix.

(All the other entries are 0.) On the other hand, if the 3 independent errors are coherent

rotations about the X axis by an angle θ, the effective reduced process matrix for the whole
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circuit is: 2 cos4(θ/2)
(
1 + 2 sin2(θ/2)

)
−i
[
(1−

√
3)/8

]
sin3(θ)

i
[
(1−

√
3)/8

]
sin3(θ) 2 sin4(θ/2) (1 + 2 cos2(θ/2))


Interestingly, for a circuit where the errors are the best PCa approximation to the coher-

ent channels, the effective process matrix for the whole circuit still matches the diagonal

entries perfectly. However, it is completely unable to match the off-diagonal entries. In the

limit of small error, this becomes: 2− (3/8)θ4 +O(θ6) −i
[
(1−

√
3)/8

]
θ3 +O(θ5)

i
[
(1−

√
3)/8

]
θ3 +O(θ5) (3/8)θ4 +O(θ6)


At the physical level, the process matrix for the RX(θ) channel has diagonal entries

proportional to θ2 and off-diagonal entries proportional to θ. At the logical level with per-

fect EC, the leading orders get supressed and the effective process matrix now has diagonal

entries proportional to θ4 and off-diagonal ones proportional to θ3. In this case, the PCa

underestimates the magnitude of the error by 1 power of θ both at the physical and logical

levels.

6.2 Effective process matrices for the ADC and the RZC

We have followed the same procedure explained in Chapter 5 to compute the final states

after error correction with the Steane code. Because of the size of the density matrices and

the time it takes to cover all the possible syndrome branches, we are unable to obtain a

symbolic expression for the effective 1-qubit process matrices. Instead, we use quantum

process tomography to reconstruct the numerical process matrix for various error strengths

and subsequently fit each entry to a polynomial to determine the leading order and its

coefficient.

6.2.1 ADC

Table 10 summarizes the results for the ADC and its approximations at the physical level.

The values for error magnitude and inaccuracy are the same ones presented in Chapter 5 and

53



are included just for visualization purposes. At the physical level, the entries of the ADC

process matrix are all linear in γ except for the χzz term, which is quadratic. Consequently,

the error magnitude is linear. The PCa matches the diagonal entries perfectly. In order to

not underestimate the magnitude of the error, the PCw results in a pessimistic estimate with

all diagonal entries being linear. Both of these channels only have access to the diagonal

entries. In contrast, the CMC channels have access to off-diagonal entries in the process

matrix. This gives them the ability to result in more accurate approximations, as illustrated

by their lower inaccuracy values. However, in this case, they give a linear estimate to the

ZZ entry.

Tables 11 and 12 summarize the results for the ADC and its approximations at the log-

ical levels, perfectly and faultily corrected, respectively. Several interesting changes occur

after error correction. First of all, notice that all the linear terms have disappeared, which

confirms that the Steane code’s correcting procedure is indeed successful in suppressing

single errors. In the ADC, the diagonal entries that were linear at the physical level become

quadratic. The quadratic entry becomes cubic at the perfectly corrected level, but remains

quadratic at the faultily corrected level. However, the linear off-diagonal entries become

cubic. This illustrates why at low error rates the PCa is more accurate than the expanded

approximations. The PC is more constrained; it does not have access to the off-diagonal

entries, which results in inaccuracy at the physical level. However, at the logical level the

errors on the off-diagonal entries are suppressed by an extra order of magnitude. The real

error is given by the diagonal terms, which the PCa estimates much better than the CMCs,

so the advantage of the latter channels is lost. Moreover, for practical purposes, the PCa

is honest, since its dishonesty comes at third order for the perfect correction and at a low

second order for the faulty correction.
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Table 10: ADC and approximations at physical level. Only the leading orders are shown.
Empty entries are equal to 0.

Channel Process matrix Error magnitude Inaccuracy

ADC


2−O(γ) γ/2

γ/2 −iγ/2
iγ/2 γ/2

γ/2 γ2/8

 0.55(27)γ

PCa


2−O(γ)

γ/2
γ/2

γ2/8

 0.347(79)γ 0.500γ

PCw


2−O(γ)

1.047γ
1.047γ

0.2915γ

 0.81(12)γ 0.63(26)γ

CMCa


2−O(γ) 3γ/8

3γ/8 −i3γ/8
i3γ/8 3γ/8

3γ/8 3γ/8

 0.50(18)γ 0.166(60)γ

CMCw


2−O(γ) γ/2

γ/2 −iγ/2
iγ/2 γ/2

γ/2 γ/2

 0.66(24)γ 0.194(60)γ
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Table 11: ADC and approximations at logical level with perfect EC. Only the leading
orders are shown. Empty entries are equal to 0.

Channel Process matrix Error magnitude Inaccuracy

ADC


2−O(γ2) −1.780γ3

7.875γ2 i1.750γ3

−i1.750γ3 2.625γ2

−1.780γ3 3.937γ3

 3.76(96)γ2

PCa


2−O(γ2)

7.875γ2

2.625γ2

3.939γ3

 3.76(96)γ2 7(12)× 10−6γ2

PCw


2−O(γ2)

34.54γ2

11.51γ2

7.302γ2

 18.5(3.5)γ2 14.8(2.6)γ2

CMCa


2−O(γ2) −0.7383γ3

4.430γ2 i0.7383γ3

−i0.7383γ3 1.477γ2

−0.7383γ3 4.430γ2

 3.48(45)γ2 1.61(44)γ2

CMCw


2−O(γ2) −1.750γ3

7.875γ2 i1.750γ3

−i1.750γ3 2.625γ2

−1.750γ3 7.875γ2

 6.19(80)γ2 3.05(94)γ2

56



Table 12: ADC and approximations at logical level with faulty EC. Only the leading
orders are shown. Empty entries are equal to 0.

Channel Process matrix Error magnitude/102 Inaccuracy/102

ADC


2−O(γ2) −212.0γ3

1585γ2 i212.0γ3

−i212.0γ3 180.0γ2

−212.0γ3 495.0γ2

 8.0(1.8)γ2

PCa


2−O(γ2)

1567γ2

180.0γ2

491.0γ2

 7.8(1.8)γ2 0.123(28)γ2

PCw


2−O(γ2)

7081γ2

790.0γ2

3023γ2

 37.7(8.0)γ2 29.8(6.2)γ2

CMCa


2−O(γ2) −89.42γ3

988.3γ2 i89.42γ3

−i89.42γ3 101.3γ2

−89.42γ3 770.6γ2

 6.3(1.2)γ2 2.15(74)γ2

CMCw


2−O(γ2) −211.9γ3

1757γ2 i211.9γ3

−i211.9γ3 180.1γ2

−211.9γ3 1370γ2

 11.3(2.2)γ2 3.7(1.1)γ2

6.2.2 RZC

As for the ADC and the PolφC, we have selected 20 initial states for the faultily corrected

level and 80 points for all other levels. We have computed the trace distance between

each one of them and the resulting final state after the RZC and its approximations. The

average distances are shown in the first row of Fig. 12 as a function of the rotation angle,

θ. Likewise, we have computed the trace distance between each final state after the RZC

and each final state after every approximate channel. The average distances are presented

in the second row of Fig. 12. The behavior in the limit of small noise strength (θ → 0) is

summarized in Tables 13, 14, and 15.

The RZC has very different characteristics from the ADC. Table 13 summarizes the

results for the physical level. The RZC has a quadratic term along its diagonal and a linear

one on off-diagonal entries. The PCa matches the diagonal entries perfectly, but this means

that it predicts a quadratic error, when in reality is linear. It underestimates the real error by
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Figure 12: Distances used to assess the honesty (top row) and accuracy (bottom row) of
the approximate channels to the RZC at various levels.

one order of magnitude, making it very dishonest. The CMCa is dishonest too, but not by

one order. As observed on the incoherent channels, at the physical level both constrained

approximations are honest by construction. Interestingly, their error magnitude is exactly

the same as the RZC error magnitude: they saturate the honesty limit.

Just like for the other channels, at the physical level, the CMC channels and the “a”

approximations are more accurate than their counterparts PC and “w”, respectively. This

can be seen by the magnitudes of the linear coefficients (Table 13): CMCa < CMCw <
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PCa < PCw. At the corrected logical levels, the most accurate approximation is once again

given by the PCa. However, in contrast to the approximations to the incoherent channels,

the PCa is severely dishonest. At these levels, the diagonal quadratic entries becomes

quartic. The off-diagonal linear entries become cubic. The PCa is more accurate than the

other channels, but only because it severely underestimates the magnitude of the error. It is

not a good approximation.

Table 13: RZC and approximations at physical level. Only the leading orders are shown.
Empty entries are equal to 0.

Channel Process matrix Error magnitude Inaccuracy

RZC


2−O(θ2) iθ

−iθ θ2/2

 0.38(14)θ

PCa


2−O(θ2)

θ2/2

 0.188(72)θ2 0.38(14)θ

PCw


2−O(θ)

θ

 0.38(14)θ 0.53(20)θ

CMCa


2−O(θ) iθ/2

−iθ/2 θ/2

 0.27(10)θ 0.27(10)θ

CMCw


2−O(θ) iθ/

√
2

−iθ/
√

2 θ/
√

2

 0.38(14)θ 0.29(11)θ

6.3 Level-1 pseudo-thresholds for the RZC and its approximations

Table 16 summarizes the pseudo-threshold results for the RZC and its approximations. The

more realistic circuit-based thresholds show interesting trends. The PCa, which results in
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Table 14: RZC and approximations at logical level with perfect EC. Only the leading
orders are shown. Empty entries are equal to 0.

Channel Process matrix Error magnitude Inaccuracy

RZC


2−O(θ4) i3.500 θ3

−i3.500 θ3 7.881 θ4

 1.32(50)θ3

PCa


2−O(θ4)

2.622 θ4

 0.99(38)θ4 1.32(50)θ3

PCw


2−O(θ2)

10.50 θ2

 4.0(1.5)θ2 4.0(1.5)θ2

CMCa


2−O(θ2) i0.4375 θ3

−i0.4375 θ3 2.625 θ2

 0.99(38)θ2 0.99(38)θ2

CMCw


2−O(θ2) i1.237 θ3

−i1.237 θ3 5.250 θ2

 1.98(75)θ2 1.98(75)θ2
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Table 15: RZC and approximations at logical level with faulty EC. Only the leading orders
are shown. Empty entries are equal to 0.

Channel Process matrix Error magnitude/102 Inaccuracy/102

RZC


2−O(θ4) i557.7 θ3

−i557.7 θ3 7859 θ4

 2.07(79)θ3

PCa


2−O(θ4)

206.0 θ4

 0.78(30)θ4 2.07(79)θ3

PCw


2−O(θ2)

826.0 θ2

 3.2(1.2)θ2 3.2(1.2)θ2

CMCa


2−O(θ2) i69.90 θ3

−i69.90 θ3 206.1 θ2

 0.80(31)θ2 0.80(31)θ2

CMCw


2−O(θ2) i198.2 θ3

−i198.2 θ3 412.4 θ2

 1.61(61)θ2 1.61(61)θ2
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a severely dishonest approximation, especially at the faultily corrected level, generates a

very large threshold value. This is quite dangerous for fault tolerant purposes. On the

other hand, all the other approximations generate pessimistic threshold values, due to the

pessimistic error magnitude estimate. This is better for fault tolerant purposes.

The threshold is given by the intersection between 2 curves: the error magnitude at the

physical level and the error magnitude at the logical level. With this in mind, there are

different cases for the threshold estimation by approximate channels. A lower bound to the

exact threshold will be given by a channel that is exact or dishonest at the physical level

and honest at the logical level. This is the case for the CMCa approximation to the RZC.

As an unconstrained channel, it is dishonest at the physical level. However, since it predicts

the error magnitude of the RZC to be quadratic, it is honest at the logical levels. In the next

section, it will become clear that this will hold for a rotation about any axis, not just Z.

Indeed, when approximating a coherent channel, the CMCa will result in a lower bound to

the exact threshold.

On the other hand, an upper bound to the exact threshold will be given by a channel that

is exact or honest at the physical level and dishonest at the logical levels. This is the case

for the PCa approximation to the RZC: although it is dishonest at the physical level, the

dishonesty is more severe at the logical faultily corrected level. Therefore, in general the

PCa will give pessimistic threshold estimates for incoherent channels and optimistic ones

for coherent channels.

In contrast to the cases analyzed in Chapter 5, modeling the error like the RZC at

the physical level and like the PCa at the logical level does not result in a more accurate

estimate, since the fidelity of the RZC and the PCa at the physical level is exactly the same.

In general, what can be done is model the noise exactly at the physical level and then use

an honest channel at the logical level (any “w” approximation) to obtain a lower bound. To

obtain an upper bound, we can use the PCa, which is always dishonest at the logical levels.
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Table 16: Thresholds for the Steane code under the RZC and its Pauli and expanded
approximations. RZC/PCa uses RZC at the physical level and PCa at the logical level.

Channel Code capacity Circuit-based
〈θth〉 RMS 〈θth〉 × 103 RMS ×103

RZC 0.6552 – 7.773(4) –
PCa 0.5140 0.1412 49.582(2) 41.8
PCw 0.1293 0.5259 1.2166(1) 6.56

CMCa 0.3873 0.2679 2.400(1) 5.37
CMCw 0.3208 0.3344 4.5329(7) 3.24

RZC/PCa 0.5140 0.1412 49.582(1) 41.8

6.4 Dishonesty of the PCa for coherent errors

In this last section, we want to present a short argument as to why the PCa will always be

dishonest by one order of magnitude when approximating a coherent error. Up to a global

phase, any unitary 1-qubit transformation can be represented as:

exp(iθn̂ · ~σ/2) = cos(θ/2)I − i sin(θ/2) (nxX + nyY + nzZ) (53)

The process matrix associated to this transformation is:

2 cos2(θ/2) inx sin(θ) iny sin(θ) inz sin(θ)

−inx sin(θ) 2n2
x sin2(θ/2) 2nxny sin2(θ/2) 2nxnz sin2(θ/2)

−iny sin(θ) 2nxny sin2(θ/2) 2n2
y sin2(θ/2) 2nynz sin2(θ/2)

−inz sin(θ) 2nxnz sin2(θ/2) 2nynz sin2(θ/2) 2n2
z sin2(θ/2)


It becomes clear that the off-diagonal entries of the first row and column are linear in

θ, whereas all the other are quadratic in θ. The PCa will always be an extremely dishon-

est approximation to a channel of this form. Furthermore, after EC, the first term in the

polynomial expansion gets supressed. Because the sine function only has odd powers, the

linear entries become cubic. The quadratic entries become quartic. The same argument is

applicable for multi-qubit coherent channels.
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CHAPTER VII

PYTHON TOOLS FOR THE GENERATION AND SIMULATION

OF FAULT TOLERANT CIRCUITS

We have worked on multiple collaborative projects aimed at estimating the resources that

will be needed to perform large-scale fault-tolerant quantum algorithms on several quan-

tum architectures, our group has developed a set of Python tools to realistically simulate

quantum circuits. A diagram of the toolset developed for the MUSIQC program is pre-

sented in Figure 13. MUSIQC stands for Modular Universal Scalable Ion-Trap Quantum

Computer. The aim of the program is to investigate new hierarchical designs to build a scal-

able quantum computer based on trapped ions [74] . In this proposed quantum computer

architecture, the building blocks of the computer will be ion traps holding ultra-cold ions.

Two hyperfine states are chosen to store the quantum information. Within a trap, the states

of the qubits can be coupled through the collective motional modes of the ions [25, 90].

Qubits in different traps can be entangled via photonic interconnections [35, 55].

The Performance Simulator of Fault-Tolerant Quantum Circuits is composed of various

modules, represented as white rectangles in Figure 13. Each module can also be used as a

standalone tool. The whole toolset works in the following way:

1. In the algorithms module, a particular quantum algorithm is compiled in the circuit

model as a sequence of quantum gates. At this point, the circuit is unencoded, in the

sense that no QECC has been used to encode the physical gates into fault-tolerant

logical gates. So far, the only quantum algorithm hard-coded is the non-recursive

Bernstein-Vazirani algorithm [17]. Given the circuit building tools we have imple-

mented, it is straight-forward to include more quantum algorithms.

2. The fault tolerant module generates fault-tolerant logical gates specific to a given
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Figure 13: Diagrammatic flow within the Performance Simulator of Fault-Tolerant Quan-
tum Circuits.

QECC and correction scheme. It takes an unencoded quantum circuit, converts each

gate in the circuit to its logical version and adds an error correction step after it. So

far, only the Steane [[7,1,3]] [91] and the Bacon-Shor [[9,1,3]] [9, 14] codes have

been implemented, but the capabilities exist to add more QECCs. There are three

implemented options for the error correction step: Shor’s, Steane’s, and Knill’s. The

user can choose any of the three.

3. The hardware module takes in an architecture-agnostic quantum circuit and trans-

lates it into a set of operations to be performed in a realistic quantum architecture.

The hardware module also assigns error rates and time durations to each gate de-

pending on the way it is to be implemented in that particular quantum computer. For

the MUSIQC program, the quantum computer of choice is one based on ion traps.

However, the high modularity of the tool allows the analysis of a circuit mapped to

any quantum computer architecture. The hardware module was the only tool devel-

oped outside of our group [7, 101].
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4. The Monte Carlo module is where the error analysis of the quantum circuit happens.

Although its name suggests that the error analysis is based exclusively on Monte

Carlo methods, this is really only one of three alternatives: the exact simulator, the

fault-path tracer, and the Monte Carlo sampler. These methods are explained in the

next section. The error analysis tool can obtain circuits from the hardware module or

directly from the fault tolerant module depending on whether the user wants to study

scheduled or architecture-agnostic circuits, respectively. Finally, notice that during

the error analysis, the monte carlo module communicates with the fault tolerant one

to obtain information on how to correct the detected errors.

5. The visualizer module allows the user to obtain a graphical representation of a par-

ticular quantum circuit instance. The circuit is typically displayed as an html file that

the user can open in any web browser. Additionally, there is a hierarchical structure

that allows the user to click on a particular logical gate to visualize the underlying

circuit. This module is mostly used for debugging purposes.

7.1 The error analyzer

As mentioned previously, the error analysis can be performed with 3 different techniques:

exact simulation, fault-path tracing, and Monte Carlo sampling.

7.1.1 Exact simulation

The exact simulator is based on the exact full density matrix simulation of the whole quan-

tum circuit. The state of the system is evolved in time by explicitly applying every quantum

gate in the circuit. The state of the system can be pure or mixed and the tool can apply uni-

tary operations and non-unitary channels, which typically represent errors. In contrast to

the other error analysis methods, the exact simulator is not restricted to a particular set

of gates; it can apply any quantum channel. However, the exact nature of the simulation

implies that its memory and time scale exponentially with respect to the number of qubits.
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Circuits involving more than 14 qubits are unfeasible to analyze.

An extra feature of the exact simulator is that it can handle all the branching possibilities

that occur during the error detection steps. Traditionally, Monte Carlo methods have been

used to analyze quantum circuits because of the random nature, not only of the errors, but

also of the action of the error detection schemes, which probabilistically project the state of

the data qubits to one of the subspaces defined by the QECC of choice. Our exact simulator

keeps track of all the branching possibilities and their relative probabilities, and averages

them at the end of the simulation. This adds an extra source of exponential scaling, as

each branch bifurcates when a stabilizer is measured. (The maximal number of branches

is 2s, where s is the number of generators in the stabilizer group, but each generator might

have to be measured more than once in order to achieve fault tolerance.) This overhead

is handled by parallelizing the evolution of each branch on independent computer cores.

We have implemented a desktop version that uses Python’s multiprocessing module and a

cluster version based on MPI [27, 28]. The exact simulator was used to generate the results

presented in Chapter 5.

7.1.2 Fault-path tracing

The fault-path tracer is based on the work of Dennis and co-workers [30] and Aliferis and

co-workers [8, 10]. This technique uses combinatorics and error propagation rules to trace

error paths along the circuit. Our version is based on a modification proposed by Tomita

[97], in which the tracing of the errors is done in reverse order, from the final qubits to

the initial ones. This increases the efficiency of the algorithm because it only focuses on

uncorrectable errors at the end of the circuit and traces them back to determine all the

possible fault points or error sources that could have caused such an output. A somewhat

related method has been proposed to compute the exact failure probability of a surface code

in the asymptotic limit of small error rates [40].

The main advantage of this method is that it is much faster than the exact simulator
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and, in contrast to the Monte Carlo sampler, its cost does not depend on the error rate. For

an arbitrary circuit, its cost scales exponentially with the number of fault points, which

depends on the number of entangling gates in the circuit. The fault-path tracer was used

to analyze two different error-correcting strategies of the Steane [[7,1,3]] code on a model

ion-trap architecture [98].

7.1.3 Monte Carlo sampling

Monte Carlo simulation is currently the method of choice to analyze the effect of errors

on quantum circuits [26, 9, 64, 72, 42]. In most cases, the goal of the error analysis is

to estimate the probability of failure of a particular quantum algorithm, QECC, or error-

correcting strategy. An analytical expression for the failure probability in terms of the

physical error rates and other circuit and architecture parameters is possible in principle,

but intractable for all but a few trivial cases. For such a reason, Monte Carlo methods are

used to sample the set of error configurations, collect representative statistics, and obtain an

accurate estimate to the probability of failure. To avoid the exponential cost of simulating

general quantum circuits, the simulations involve stabilizer circuits [46, 2]. This reduces

the time scaling from exponential to quadratic in the number of qubits. A major drawback

of simulating only stabilizer circuits is that we are limited to algorithms and error models

based on Clifford gates and Pauli measurements. This was, of course, one of the main

motivations for the work presented on this thesis.

Our Monte Carlo simulator tool consists of a Python wrapper to a C-based stabilizer

circuit simulator called CHP [2]. CHP stands for CNOT-Hadamard-Phase, the most com-

monly used primitive gates to generate the whole Clifford group. It was not developed

by our group, but it is free software. CHP can efficiently simulate stabilizer circuits, but

cannot handle classical decoding of error syndromes and error correction. These tasks are

performed by the Python wrapper.

The current algorithm works in the following way. The user inputs the error-free circuit
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and the error information, which contains the probability that a particular error would occur

after each gate. To select an error configuration, we traverse the circuit gate by gate. For

every gate, we select a random number between 0 and 1 and, based on its value with respect

to the error probability for that particular gate, we decide whether or not to add an error.

If the random number is less than than error probability, we insert an error. In order to

decide which error to add, we follow a similar procedure. We then move to the next gate in

the circuit and perform the same process. Then, we run the whole circuit and compare its

output to the error-free output. A failure will be defined by the two outputs being different.

Finally, we do this enough times to collect representative statistics.

A significant disadvantage of this algorithm is that the number of necessary samples

depends on the error rate. The great majority of the circuits we analyze involve error

correction with a distance-3 code. By construction, these circuits are able to perfectly

correct any 1-qubit error, which means that, in order to observe a failure, at least 2 errors

need to occur. If the average error rate per gate is ε, this implies that the number of error

configurations we need to sample scales like O(1/ε2). For higher distance codes, which

can perfectly correct more than 1 error, the scaling is even worse. Therefore, with the

current Monte Carlo algorithm we cannot access the regime of low error rates or large code

distances. This is main reason for the development of alternative efficient approaches like

the fault-path tracer, discussed in Subsection 7.1.2. Recently, however, a new Monte Carlo

algorithm has been proposed and implemented to more efficiently simulate rare events in

surface codes [21].

We have recently modified our algorithm for concatenated codes to make it more ef-

ficient and accesible to the low error regime. The modification is based on dividing the

set of error configurations into subsets depending on the number of errors that occur. An-

alytical expressions for the probabilities of the various subsets can be obtained relatively

easily. These depend on the error model and the particular circuit. We then let the user

decide which subsets to sample. For example, if we have an error-correcting circuit based
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on a distance-3 code, the user can decide to sample only the subsets with 2 or more errors.

The average failure probability numerically calculated after Monte Carlo sampling these

subsets is then normalized by the analytical expression computed previously to obtain the

overall failure probability.

In the modified version of the algorithm, we do not traverse the circuit gate by gate

and probabilistically decide whether or not to add an error after each operation. Instead,

the first step is to determine how many errors will be added to the circuit. This is decided

based on the subsets that the user wants to focus on and the analytical expressions for the

probabilities of each subset. Then, we select which gates to add errors after and run the cir-

cuit. Finally, we repeat this to collect statistics. Notice that, in the case of error-correcting

circuits based on a distace-3 code, the scaling of the necessary number of samples on the

sqaure of the inverse error rate (1/ε2) vanishes if the user chooses to focus on the subsets

with 2 or more errors. However, for low error rates, it will still be unlikely to sample a

configuration with 3 or more errors, so the failure probability will be dominated by 2-error

events. To gain accuracy, the user can carry independent runs on the 2-error subset, the

3-error subset, and so on, and then calculate a weighted average. We are currently run-

ning simulations with the modified version of the algorithm to benchmark it to the original

version.

All the software described in this chapter can be found at:

http://ww2.chemistry.gatech.edu/brownlab/node/1082.
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CHAPTER VIII

CONCLUSIONS

The construction of a scalable quantum computer will require an enormous experimental

and theoretical effort. On the theory side, it is particularly important to study numerous

error-suppressing strategies, in order to select the most effective ones. The assessment of

these strategies requires classical simulations of large-scale quantum circuits. Due to the

prohibitive exponential scaling of general circuits, simulations are restrained to specific

subsets of quantum operations.

The current work has contributed to reduce the gap between accuracy and efficiency in

the modeling of noise in these simulations of quantum error-correcting circuits. We intro-

duced an extension to the traditional random Pauli error model, which leads to accurate, yet

computationally tractable, descriptions of realistic error models at the single-qubit level.

At the logical error-corrected level, the behavior of these approximate channels depends

strongly on whether the error is incoherent or coherent. For the former, the anisotropic Pauli

channel exhibits an extreme accuracy that makes it a suitable approximation to be used in

simulations. It also results in pessimistic values for a quantum error-correcting code’s

(QECC) pseudo-threshold. For coherent errors, the anisotropic Pauli channel results in

bad approximations due to its high dishonesty. In this case, it would be more advisable to

use one of the expanded channels to model the realistic noise. The study of honesty and

accuracy at the logical error-corrected levels is useful to determine which channels can be

employed to generate lower and upper bounds to a QECC’s threshold under the influence

of a specific error model.
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8.1 Future directions

There are plenty of interesting open problems that stem from the results described on this

work. We present a brief survery of several of these future directions.

8.1.1 Exact analysis of other error correcting protocols and QECCs

Extending the exact analysis, in particular at low error rates, to other correction protocols

and codes will provide more insight into the error-supression effectiveness of different

strategies. In the short term, it would be interesting to obtain the 1-qubit process matrix

for a Steane code error correction step using the Steane method of error correction [93].

It is known that this method results in a slightly higher threshold value than the stabilizer

measurement method employed in Chapter 5. This means that, despite being the same

code, the 1-qubit process matrices would be different. However, will they have the same

leading orders? How different will the coefficients of the leading orders be? It would

also be interesting to explore other codes, like the Bacon-Shor [[9, 1, 3]] code [14, 9], and

determine the 1-qubit process matrix for them. The Knill method of error correction [64] is

computationally too demanding to simulate for the Steane code, since it involves 21 qubits.

8.1.2 Real threshold simulations with the expanded error channels

In general, the point of intersection between the error curves at the physical level and the

first logical level will be an upper bound to the real threshold. The points of intersection

of error curves for higher levels of concatenation (or larger lattices in the case of topo-

logical codes) depend on the architecture characteristics and the decoding algorithm. The

Monte Carlo tools described in Chapter 7 can be applied to perform stabilizer simulations

of several concatenated QECCs, including the Steane [[7, 1, 3]] and Bacon-Shor [[9, 1, 3]]. It

would be interesting to study the honesty and accuracy of the Pauli and expanded approx-

imations at higher levels of concatenation to determine whether or not the same relative

pseudo-threhsold magnitudes between the channels hold. In particular, for coherent errors,
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will the unconstrained PC always result in an upper bound and the unconstrained CMC

in a lower bound? We are currently working on incorporating the measurement-induced

translations into CHP and finishing implementing the efficient sampler. We will also build

a module to perform decoding at various levels of concatenation, including soft decoding

[82, 45], in which the classical algorithm used to interpret the error syndromes includes

communication between the different levels.

8.1.3 Simulation at higher levels of concatenation using the effective 1-qubit process
matrices

The 1-qubit process matrices will allow us to simulate higher levels of concatenation “semi-

accurately” in the following way. We obtain the effective 1-qubit process matrix for a

circuit step consisting of errors on the physical qubits and subsequent error correction. At

the next level of encoding, we can treat the circuit as composed of perfect physical gates

followed by an error given by the 1-qubit process matrix obtained previously. As long

as the errors are independent, this strategy would provide an accurate means to simulate

circuits at high levels of concatenation. Of course, we cannot implement soft decoding

with this technique, since there will not be communication between the different levels of

concatenation.

8.1.4 Approximate channels’ optimizations at the logical level

As explained in Chapter 5, the determining factor in the effectiveness of the approximated

channels is not the accuracy at the physical level, but the accuracy at the logical error-

corrected levels. It is likely that by performing the distance minimization at the logical

level we can obtain approximations that are even more accurate than the ones obtained

so far. This would be demanding computationally. It will be intractable for faulty error

correction, in which we use ancillary qubits, but will still be manageable for perfect error

correction.
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8.1.5 Connections to other problems in quantum information

The future directions summarized previously are logical extensions to the work presented

on this thesis. We are also interested in exploring connections that the current results might

have to other problems in quantum information. One of them is the randomization of

coherent errors. Is it possible to transform coherent errors into incoherent by a clever

application of the stabilizer measurements or other form of error correction? If the errors

become random, then the Pauli twirling approximation will not be as dishonest as it is for

coherent errors.

Another interesting quesion is the potential application of our results to randomized

benchmarking, the technique of choice to characterize quantum gates experimentally. Ran-

domized benchmarking is performed by twirling the desired gate using operators in the

Clifford group [70, 37]. Since at the logical levels the important error properties are re-

tained by the Pauli channel, rather than the Clifford ones, it might be possible to perform

randomized benchmarking with Pauli gates only.

Finally, the analysis of how coherent operators get transformed after error correction

can provide us with alternative ways to implement non-transversal gates in QECCs. For a

given QECC, it is known to be impossible to implement transversally all the gates needed

to achieve universal quantum computation [36]. When performing quantum algorithms,

the fault tolerant implementation of non-transversal gates is the most resource demanding

part of the computation [42]. The study of alternatives to the current approaches to peform

non-transversal gates is a very important problem in the community [20, 81, 11].
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