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Extetauévn eAAnvikn epiAnym

O kapkivog Tov othBovg gival o kakondng 6ykog o omoiog oynuatileTot omd tov
Tayh Kot oveEEAEYKTO TOAOTAOGIOGUO KVTTAP®OV TOV 0OEVO TOV HOGTOL TO OToio
€xovv exTpamel amd T PLGIOAOYIKT AELTOVPYIO TOLG KOl OVOTTUCCOVTIOL GE BAPOG TOL

@Vo10L0Y1KOD 16TOV (DPOocag, 2006).

O kapkivog Tov paoctol Bewmpeitat £vag amd Tovg IO GLYVOLG TOTOVS KAPKIVOL
Kot pio amd Tig onuavtikotepeg aitieg Oavatov moykoouimg (Stewart et al, 2003). Ztig
HITA ta xpobvopata Eemepvovv ta 200,000 enoing evd otnv EALGSa dtaytyvdokovtot

nepimov 4,500 yuvaikeg pe kapkivo tov pactov kébe ypovo (Eucan, 2014).

Eivar a&oonpueioto 10 yeyovog 6tt oty Evponn to 60% tov kpovoudtwov
KapKivov S1oy1yvOOKETOL GE TPOLLO 6TAd0 eved otnv EAAGSa 10 mocootd petd Plog
ayyiCel to 5% (Karkinos, 2014). Ta ototygio avTd KOTadEKVOOLY TOGO EAMMING givar 1
OYETIKN evnuépwon peta&y tov EAANvidwv, yeyovog eEapetikd Avmnpd, av Adfovpe

VITOYT TIG SVVATOTNTEC TANPOVG 0o TTOL TTaPEXEL pia EyKatpn ddyveon).

To mevtaetég mocootd emPiwong o€ TEPIMTOGELS SAYVOONS GE TPOUYLO GTASIO
@B&vel og kot to 95%, yeEyovOg OV VITOINAMVEL TMG O KAPKIVOG TOL PacToV pmopel va
OVTILETOMOTEL EMTUYMG YO TNV TAELOVOTNTA TOV YOVOUKOV OV @povTtilovv va Tov

EVTOTICOLV £YKOPO, LEGH GUYVAOV TPOANTTIKAOV EAEYYWV KOl EEETACEWV.

IMa 10 oxond avtd Exovv avantuyBel TOAOTALG amelkovioTikol pEBodot peta&y
TOV OmOlV 1 HOCTOYPOOiD, O YEVETIKOG €AEYXOC, O VWEPNYOG KOl 1M HOYVNTIKY
topoypooio. H pactoypoeio elvor m wdpa pébBodog oamewdviong tov otnboug.
[Tpoxertan v axtivoroyiky] péBodo 6vo d1aoTAcEMY 1 OTTol0l EMTPETEL TV ATEIKOVION
™G HOPPOAOYING Kot TNG OOUNG TMV OVOTOMK®V GTOLEI®V TOL HOoToV. AVAUESH GTO
ELPNUOTA TOV LOCTOYPAPIOV Ol HKPOAcPecTOoELS elvar iaitepa onuavtikég. Ot
acPeocTM®oELg etvan pkpd omobépata acfecstiov otov paoTikd adéva. Atakpivovtol og
UIKPOOoPESTMOELS Kol HOKPOUSPECTOCES He Pdon to €dv 1 OdpeTpog ToVG E€ivor

uikpotepn 1 peyolvtepn and 1 mm (Karahaliou et al., 2012).

Ot pikpoaoPectmoelg ivor Waitepo oNUOVTIKEG S10TL EMTPEMOVY TV EYKaLPT
owyvoon. ‘Exyer xotaypagel o6t mepimov 30-40% tov kopkivov tov othnBoug

avyveboviol OmOKAEWOTIKE omd v moapovsioa tovg. Emiong, 1o 70-80% 1ng
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otomaforoyikng  e&étaong HooTIKOV  PBloyidv  anédele v mopovcio

pikpoacPectdcewv (Wilde 1999).

Qot1600, Ogv vmodewkvoovy Oheg ot piKpoaoPeoctmoels kakondewa: eival
TOPOVoEG Kol oTig VYlElc yuvaikeg. o tov yopaxtnpiopnd tovg ¢ kKaAonbegc M
KakonOeig vdpyovv woAol Tapdyovieg ot omoiol TPEMEL Vo Aapfavoviol vtoyn: 1o
oynua, to av oynuotiCoov cvumiéypata, n 0éon oto HAGTO, M GLYVOTNTO KOl 1)
Kkatavopny tovg (Andreadis et al., 2011; Karahaliou et al., 2012; Sickles, 1984;
Willekens et al., 2014).

To oynua etvar évag amd Tovg oNUOVTIKOTEPOVG Tapdyovteg 0 omoiog PonBdet
o1n dlaKkplon avaueca oe kaAondelg kot kakonbelg kpoasPeotmoelc (Sickles, 1984),
dNradn acPect®doElC o1 omoieg eival Tapovoeg 6€ KaAoNOelg Kot Kakon0elg aALOIDGELS
avtiotoryo. AENTO, YPOUUMKO, KOUTLAOYPOLULO OCYNUOTO KOODG Kot oynuote He
SKAAOMGES Umopohv vo. LITOdEKVLOLY KoKkonOeta. AvtiBeta, oTpoyyvdd, ofdA Ko

KoAQ KaBopiopéva oyaTe LTOopovV VoL LITOJEIKVVOVY KoAoT €L

Qo61660, TO GYNUO TOV UIKPOAGPESTOGE®V OeV UTOPEL VO AMEIKOVIOTEL CWOTA
oV pactoypagio koBmdG M avdAvon ewor mOAD younAn kot Ady® Tov OTL M|
pactoypagio amotelel TV dieddoTtatn TPOPoAN EVOC TPIGIACTATOV OVTIKEWEVOV. g
€K TOVTOL, M VEPHEST 16TOD 16TAOV cLYVA dNuoLvPYEl poTifa Ta omoia eaivovtal ®g

KkakonOn 1 aAlalovv v popoen tov tpayuatikov (Elter et al., 2009).

Ye mepintmon vroyiog kokonelag, deEdyetan Poyia. H Poyia mepilapfdvet
TNV TOPAKEVINGT TOL HAGTOV LE GKOTO TNV OMOUAKPLVOT] 16TOV Kol KUTTAP®V A0 o
vmontn mepoyn. Ev cuveyeia, ot 1otol mov eénybnoav eetdlovtat avatoporadoroykd,
OnAadn tomofeviovvionl KAT® amd TO HIKPOOKOTIO Y10, TEPULTEP® AVAAVON OO TOV
mafoAdyo. AvTdc givat 0 LOVadIKOG AGPAANG TPOTOC Y10 GOPT Kol aAdvOaoTn didyveoon
kapkivov. A&iler va toviotel 0tL T0 65-80% TtV Proyidv amodeikviovior 0Tl ivar
KalonBelg dykot kot GAAO ELPIHOTO ACYETA LE TOV KapKivo. O peyahog aplBuodg tov un
aropaittov Broyiov tpokoiel peydro aichnua dvspopiog T660 Yuyorloyikd 06O Kot
COMOTIKO Yo TIG aoBevelg KaBDG kol emmAéov un aroapaitnto £o0da yoo v o TNV
actevn] kat yio to cvotnua vysiog. Eniong, ol pikpoacPectdoelg avtég Ko’ eantés dev
avaAvovtol. Q¢ ek ToVToL, £xel 1ebel 10 epdTUHO €Gv ol un amopaitnteg Proyieg
umopobv va omo@evyfodv €dv TO OYNUO TOV UIKPOUGPECTOGEMY UTOPOVGE V.
peretnOel mo AemTopEP®G.
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I'o 10 okomd avtd £yovv mpaypatonondel Epgvveg (Temmermans et al., 2013;
Temmermans 2014; Willekens et al., 2014) yio tv avdAvon Tov GYNUATOS TOV
pikpoacsfectdoewv pe ypnon pkpotopoypaeiog (UCT), pog pn  emepfotikng
OmEIKOVIOTIKY HEBOSOL LYMANG avOAVONG e TNV Omoid TO TPIGOIICTATO CYNUL TMV
AVTIKEWEVOV avaKataokKevaletal. To 6OVOLO TV dE00UEVOV TTOV ¥pTCLoToiNONKE o€
avt ™V epyocia mpoépyetar amd avtég Tig mnyég (Temmermans et al., 2013;
Temmermans, 2014; Willekens et al., 2014). Xvykekpipéva, 6€ YOVOIKES TOV OTOI®V 1|
pooctoypagion €0eyve vroyio koakondelog mpayuatonoinnke Proyio Ko pETA amd
avatoponaforoyiky| eEétacn tposékvyay 50 kKahonOn kot 50 kaxonOn detypata. And ta
kakonOn detypata eEnydnoav 2034 pukpoocPeotdoelg kot and to kaionon 1651
(Temmermans, 2014). H to&vounon avt) Tov UIKPoOcREST®GE®Y 6 KOAON0EIC Kot
Kakon0e1g yivetan amokAeloTikd pe fdon o detypa oto omoio Bpédnkav. To yeyovdg Ot
KaAONOE WKPOAGPRESTMGELS UTOPOVV VO VITAPYOLY G KakonOrn odelypota Kot To
avtioTpo@o dev Aapupdvetar voym. Q¢ €k ToOTOL, dgv VIAPYEL Ui PAoT avoPOpdg
(ground truth) ywo T1g 1018 TIC HIKPOOGPESTMOGELCS, YEYOVOC OV TPOKAAEL TPOPAaTO

KATO TNV EIG0YOYN TOV MKPOUCSPESTAOCEWDY GE £vay TaSvoUnT.

Mo v keAvTePN Katavonon ToL GLYKEKPIUEVOL TPOPANLOTOS TapaTifeTal To
axolovfo mopddetypa. Avo KpoacREGTOGEIS divovTal O TAPAdETYLOTO EKTOIOEVLONG
oe ¢éva ta&wvount. H g omo avtég T1g pukpoacsPectdoels sivonr koAonOng aAld
Bpétnke péoa oe kaxoneg delypa Kot Apo EGQOALEVA YOPOKTNPICTNKE G KaKoNONng
Kot 1 GAAN givon Ovimg kokonOne. Kot ot 600 pkpoacPestmoelg yopaktnpilovror amd
OULYKEKPIUEVOL  YOPOKTNPLOTIKG  oynuatoc (Shape features) mov  vmodeikviovy
aviotolywg kadonBeww ko kokonfe. Kotd v elcoyoyn  Ttov  dvo
piKpoaosPectdoe®V otV dadikacio ekmaidevong tov taSvountn, avtog Ba «uabewy,
OTL dVO IKPOOCPESTAOCELS HE JOPOPETIKA YOPOUKTNPLOTIKA GYNUOTOS OVTIGTOLYOVV
oty O 1a&n, v «xokonBeioy. Q¢ ek TovToL, Bo VEApYEL achesw Otav O
ekmondevpévog ma tasvountg Bo ypelaotel va tagvouncer g véo dyveootn

pkpoacPéotwon (Papavasileiou et al., 2015) .
Ta mpofAnpota avtd Bo propovcay va edv ot LIKPOAGRESTMGELS TaStvoun ooy
TpoOTo. pe Paon to oynuo tovg. o 10 okomd avtd, TPV TNV €l60d0 TOV

WKPOaGPRECTOOEMY 6TOV TaEIVOUNTY, elo0ayetal éva Prua opadonoinong (clustering):

o katnyopio odyopifuwv un emPrendopevne unyavikng pédnong (Papavasileiou et al.,
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2015). Me avtd tov Tpomo 0 TaEVoUNTNG EKTadeDETAL VO TAEIVOUEL LIKPOOOPECTMOELG
070 6oto ovumheyua (cluster) yopic va ypetdletol va yvopilel v «eTkéTan oL giye

avatebel 6TIG LIKPOUGPECTMGEIS GOUP®VA LE TNV OVOTOHOTOO0AOYIKN e€€Tao.

Q¢ clustering opiletan 1 Swdikooics opadonoinong OUOIOV  AVTIKEIUEVOV
(Hartigan, 1975). Kd&be oudda, m omoio. ovopdleton cOUmTAEyUd, OTOTEAEiTAL OO
avtikeipeva Ta 0mowo gival Opote PETOEL TOvg pe Paon kdmolo péTpo, mov glvar 1
OLVAPTNON OMOGTOCNG KOl OVOLOL)L HE TO OVTIKEIUEVA GAA®V GUUTAEYHATOV.
Yndpyovv moArol Owabéoiuol aiyopiBuol opadomoinong. Xtnv mopovoo Epyacio
ypMnoonoibnke o akyopiBuog K-means yia 000 dlopopeTIKES amoGTAGELS (TETPOYMVIKN
evKAidelo kau cityblock) kabdg xar o aAyopiOpog Minkowski Weighted K-means
(MWK-means).

[Na v mzepypoeny TV pikpoaoPestdcewv  ypnotpomombnkay 20
YOPOKINPIOTIKA  oyNuatog.  Avipecoa o€ ovtd  vmdpyovv 8  ToPAdOGLOKE
YPNOLOTOIOVUEVO YOPOKTINPIOTIKA GYNUATOS TO 0Toia TepAapufdvouv: Tov dyko, TNV
EMPAVELD, TOV AOYO eMEAvELR ava OYKO, TNV HEYIGTN KOl TNV EAAYIOTN OAUETPO TOV
TEPIKAEOEVOD  EALELYOEDOVS hayioTov OyKOov, 000 O10POPETIKOVG OPIGUHOVS NG
ovumaydémtag  (compactness) kotr v empnkvvon  (elongation).  Emmiéov,
ypnooromdnkay 12 véa yopoaKInpioTKA T 0Toia TEPLYPAPOLV TIG WOATEPOTNTES TNG
GLVOPLOKNG {OVNG TOV HIKPOAGPRESTOGE®MY HE TO POVTO Kot OVORALovVTal GLUVOPLOKA

yapaktnprotikd (boundary zone features).

‘Eva. amd 1o onpoavtikdtepa mpofANHOTO GTOVG OAYOPlOUOVG Opadomoinong,
glval 0 &Kk TOV TPOTEP®Y OPIoUOG ToL 0plBuod TV cLUTAEYHATOV To omoic Oa
onuovpynBovv. Ztmv moapovca epyacio, 0 aplOuods TOV GCUUTAEYHATOV UETOPAAAETOL
amo 2 og 10 kot TehMkd g «10aviKog aplOnods» cupmAeypdtov emALyeTal AVTOG Y10 TOV
omoio M péomn «evtpomion maipvel TOAD younAég TéS. g «evipomion OpioTnKE i
cuvaptnomn n omoio deiyvel TNV Katavoun kKalondov kot Kakondmv piKkpoosPecTtdGE®V
péoa oto cOumAeypo. XapnA&G TIHEG EVIPOTIOG OVTIGTOLOVV GE GUUTAEYLOTO GTO
omoia 0 YopPaKTNPIGHOG EVOG GUUTAEYLOTOG MG KaAonBeg 1 KakonBeg eivar mo kabapdg.
Kdabe ocdumieypa yopakmmpiletor og koronbeg 1 wokondeg pe MO GUYKEKPULEVT
mBavotnta n omoia Pocileton oe avty v «evrpormion. H avtictoyn mbavotnrta

avatifetol o kabe pikpoasPEoTmon mov PpiokeTol HEGH GTO COUTAEY L.
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21N GLVEKELD Ol UKPOUGPRESTOGELS divovTtal g €icodol oe Evav Tagvountn. g
tavoung emAdyetar €vo TeYVNTO vevpwvikd odiktvo (ANN) kot po pmyovy
dtavvopdtov vroompiéng (SVM). O ta&vountig ekmoidevetar vo to&vopel kdbe
UIKPOOoPEGTMOT GTO GMOTO GUUTAEYLLO ONANOT GE KATO0 GLYKEKPIUEVO TYNL. APOV
kbOe ooumieyuo yopaktnpiletor ®¢ kohonbeg M kakonbeg HeE UL CLYKEKPLUEVN
mBavotta, kdbe pikpoasPéotmwon taSvounuévn oe avtd yopaktmpiletot avtiotoryo
¢ kAo Ong N KakonOng e avtiotoyyn mbavotnta. Avti n tavounon onoteAet Eva
evolueco Pruo ta&tvounong oto eminedo TV KPOOGPRESTOCE®Y TO omoio Ha
ypnowonomBei ev ovveyeio v v tavopumon tov dsrypotoc. Emumdéov, avtn n
pocéyyion ta&vounong arotedel €EEMEN TG HEXPL OTIYUNG SLASIKNG TASIVOUNONG TNG
pikpoasBéotwong g kaionOng N xokondneg. Téhog, 1o deiyua yopaxtnpiletor oc
kadonfeg 1M wokonbec opiloviag €éva Opo  otov  aplBud TV Kakondov
LUIKPOUGPESTMOGE®V Ol OTTOIEG OmALTOVVTAL Y10l TOV YOPAKINPIoUO TOL detypatoc. [ to
6KOmO aVTO, VIDOBETOVVTOL TOL OTOTEAEGUOTO TG TOEWVOUNONG TOV UIKPOAGPESTOGEMV
TOV TTPOTYOVHEVOL PHOTOC Kot akoAovBovvTal 6V0 TPOoEYYIGEIS Hiot GTAOGHEVT Kot
pee un otafuicpévn. v IpadTn TEPINTOOT 01 TOUVOTNTES TOV UIKPOAGPECTOCEMV
OV VROAOYICTNKAV GTO TPONYOVUEVO PriLa XPNGULOTOLOVVTIOL Yol TOV XUPOKTNPIGHO
oL detypatoc. To teMkd omotélecpo TaSVOUNGNG TOV JEIYUATOC GUYKPIVETAL [E TO
amotédecua G avatoporaboroyikng e&étaong kot £1ot vmoloyilovtar n axkpifela

(accuracy), n evarcOnoia(sensitivity) kot n eldwoTo (Specificity).

Ta mepdpato yopiomKov 6€ TPELG KATIYOPIES AVAAOYO LE TO YOPOKTNPIOTIKE
To. omoio.  YpMollomolovVTaL Yoo TNV opadomoinomn Kor v taSivouncn  Ttov
UIKPOACPESTMCEMV: LOVO T 8 TAPUOOGLOK(A YPNCULOTOLOVUEVE, YOPAKTPIOTIKA, LOVO

T 12 Guvoplakd YopaKTNPIOTIKA Kot T0 GUVOAO T®V 000 pall (20 yopaktnpioTikd).

Amo ta amoteAéGUOTA TOV TEWPAUATOV YLo. TNV TaEWVOUNGY GTO EMIMEDO TV
pikpoacPeotdoenv ot 6vo tagvountéc (ANNs & SVMS) mapovsiacay mold koivn
arodoon moaporo mov Tt ANNS eivor Katd moAd mo amotnTikd OGOV aPOopd TOLG
EMEEEPYAOTIKOVG TOPOLG Kot xpovovs. Emiong, ta mopadociakd ypnoyLlorotodpeva
YOPOKTNPIOTIKA GYNUOTOS TOPOLGLALoVY KOADTEPT amOS00N Omd TA YOPUKTNPICTIK
cuvoplokng Covng kot amd 10 cHVOAO TV OVO YOPaKTNPOTIKGOV poll. Avtd Tt

OTOTEAECUATO MOTOGO TPEMEL VO EPUNVEVOVTAL TPOCEKTIKA AOY® T®V TPOPANUAT®V
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EMewyng Baonc avaeopdc. Emiong, n ta&ivounomn 6to eninedo twv UIKPOoaoPEcT®oE®DY

amotelel éva evOldpeso Prpa yio TV TeEAMKN TaEvOUNnon Tov OeiyaTog.

10 gmmedo Ta&vounoNg Tov dElYHOTOg, 0 KOPLOG 6TOYO0G Elval 1 LEYIGTOTOINGOT
™G evoucOnoiag, KOG ivol oNUAVIIKOTEPO VO UTOPOVV VO, VLY VEDOVTOL CMGTA OAEG
0l KaKONOEIS TEPMMTAOCELS 0 GYEoN e TNV akpifela, pe Tavtdypova LVYNAG TOGOGTH
ewKomrag Ko oakpifelag. Téco oty otabucpévny 660 Ko ot pn otabuiopévn
TEPIMTOON TO OYTAO TOPASOGLOKE YOPUKTINPIGTIKA GYNUATOG ToPOLGLdlovy KaAvTepN
amodoon o€ oyéon He TIC Ovo oAlec Katnyopiec. To kaAvtepo amotédecua
emtvyydveral, oty otabuicpévn mepintoon pe ypnomn tov K-means aiyopifuov, ta 8
YOPOKTNPIOTIKA GYAUOTOC, TV amoctacn Cityblock kot 9 cvumiéypata. Me avt) v
TpocEyylon enttvyydvetor evarcsOncio 100%, ewducotnta 42.6% ko axpifeto 72.7% won
amotelovv Pertioon avtictoyya 2%, 2.6% xor 2.7% oe oyéon pe v Pproypoeic

(Temmermans et al., 2013; Temmermans, 2014; Willekens et al., 2014).

H enitevén 100% evaichnociog emtpémel vol OmMOPEVYOVIOL Ol TEPUTTMOGELS
Tapdreyng kamolwv kakonddv derypdtov. Avty 1 Pedtioon sivor omotéAespo TG
AmoPLYNG TV TPOPANUATOV oL TPpoKaAel N EAAelyn Bdong avapopds. O aryopBpog
OV TPOTEIVEL 1 MOPOVGO OMAMUATIKY €pyacia pmopel vo ypnowomombel v va
ATOQEVYOVTOL OPIOUEVEG U armapaitnteg avatopomaboroykés egetdoels. EmmAéov, n
TpoddTaTn anelkovion VYNNG avdivong umopel oto puéAAov va ypnotpomomn el
angvbeiag oty acbevi (in Vivo) owtd Oa orpove Ty amo@Lyn onuovtikod aptfpod un

amopoitnTev Bloyumy.

KAetvovtag, n mopovco epyoacio €cdyst 600 KOVOTOUIES: OTOPELYOVTOL TO
mpofAquata wov dnuovpyel N EAAeyn Pong avaeopds Kot VITAPYEL Lo LETATOMION
amd dvadikn taSipuounon o€ o otabuiopévn pe mboavotnteg tasvopnon. H peydin
mnBmpa dbéoiuwv alyopiBumv opadomoinong Kot Ta&vountodv kabdg Kot 1 xpnon
EVOAAOKTIKOV TPOCEYYICEDV Y10 TNV EVOOUATOCN TOV TOAvOTNTOV TNV dlodkocio
YOPAKTNPIGHOD TOL OEIYHOTOG OTOTEAOVV £VOL TPOGOO0POPO YDPO Y10 TNV TEPULTEP®

Beltioon T@V anoteAEGHATOV.

XVi



Summary

This Master Thesis presents a novel classification approach for
microcalcifications (MCs) extracted from core biopsy tissue samples digitized using
micro-CT, a high-resolution 3D imaging modality. MCs are tiny spots of calcium that
may occur in the female breast. Although they are common in healthy woman, they are
often an early sign of breast cancer. In case of suspiciousness, a biopsy is conducted and
the extracted tissue is pathologically analysed for the presence of cancer cells. However,
the MCs themselves are mostly not analysed. As a result, there is a ground truth for the

tissue samples but not for the individual MCs.

This ground truth problem can be bypassed if the MCs are first grouped
explicitly based on their shape. By clustering MCs according to their shape-features,
similar shapes are grouped together in clusters. This way, the classifier is trained to
classify MCs in the correct cluster, i.e. it learns to distinguish among different shapes of
MCs, independently of their original class labels. This thesis investigates whether the
use of a clustering method as a preprocessing step before training the classifier would

improve the obtained classification results.

In cluster analysis one of the biggest difficulties is the a priori definition of the
number of clusters. For this reason, the number of generated clusters is varied from 2 to
10 and as the ideal number of clusters is selected the one for which the mean entropy is
lowest, because the lower the entropy of a cluster, the clearer the designation of a
cluster as benign or malignant. Each of the clusters is characterized as benign or
malignant with a certain probability based on this entropy and thus each object of this
cluster is assigned a corresponding label with the same probability. Next, the objects are
introduced to a classifier that learns to classify them to the correct cluster, i.e. to the
correct shape. In the final step, the sample is classified as benign or malignant by setting
a threshold on the percentage of MCs classified as malignant and the result is compared
with the outcome of the anatomopathological examination. In addition, the MC's cluster

probability can now be used as a weight when determining the sample's class.

At the sample level, this approach delivers a sensitivity of 100%, a specificity of
42,6% and an accuracy of 72,7% which is respectively an improvement of 2%, 2,6%
and 2,7% percent compared to the state of the art.
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This approach introduces two novelties; the ground truth issues concerning each
MC's class are avoided and there is a shift from binary classification to a probability-
weighted classification. The vast amount of clustering algorithms and classifiers as well
as the use of various approaches for incorporating the cluster probabilities in the

classification of the sample hold the potential to further improve these results.

The results of this master thesis have been accepted to be presented as an oral
paper in the 6™ European Conference of the International Federation for Medical and
Biological Engineering (MBEC), in Dubrovnik, Croatia; ‘Papavasileiou, E.,
Temmermans, F., Jansen, B., Willekens, 1., Van de Casteele, E., De Mey, J., Deklerck
R. & Hostens, J. (2015, January). Shape-Based Clustering and Classification of Breast
Microcalcifications in Micro-CT Images. In6th European Conference of the
International Federation for Medical and Biological Engineering (pp. 160-163),

Dubrovnik, Croatia’
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Chapter 1 Introduction

1. Chapter: Introduction

1.1 Introduction
Breast cancer is considered to be one of the most frequent types of cancer and
one of the most significant causes of death worldwide (Stewart et al., 2003). In the
United States, more than 200,000 cases of breast cancer occur every year, while in

Greece 4,500 women are diagnosed with breast cancer annually (Eucan, 2014).

Breast cancer’s early detection has a key role in survival. Many breast imaging
modalities exist that assist in detecting suspicious lesions that otherwise would have
been noticeable in no less than five years, leading to reduction in mortality from breast
cancer. It is very remarkable that in Europe 60% of the breast cancer cases are
diagnosed in early stage, while in Greece this percentage barely reaches 5% (Eucan,
2014). These facts reveal how insufficient the briefing of Greek women about breast
cancer is, especially if we take into consideration the high chances of full recovery for

the early diagnosed cases.

1.2 Problem Statement

Breast imaging has a key role in the early detection of breast cancer.
Mammography is the standard of care in breast screening. An important early indicator
of potential presence of breast cancer is the appearance of microcalcifications (MCs).
MCs are tiny spots of calcium deposit that may occur in the breast. Although MCs are
associated with breast cancer, they are common in healthy woman as well. Among
others, the shape of the MCs is an important factor used to discriminate between benign
and malignant abnormalities. However, their characterization as benign or malignant
based on their appearance in mammograms is a difficult task even for expert
radiologists. Due to the fact that a mammogram is a 2D image of a 3D object,
superposition of breast tissue often produces patterns that appear like suspicious masses
to a radiologist or alters the appearance of real mammographic lesions, thus
underestimating the importance of the findings (Elter et al., 2009; Karahaliou et al.,
2012; Temmermans et al., 2013; Willekens et al., 2014).
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In case the radiologist considers a region suspicious, a biopsy is conducted. The
extracted tissue is then anotomopathologically investigated for the presence of cancer
cells. The MCs themselves however are mostly not analyzed. Many biopsies are
conducted that turn out to be negative. As such, the question has been raised whether
some biopsies might have been avoided if the shape of the MCs could be analyzed in

more detail (Papavasileiou et al., 2015).

Therefore, studies have been presented to analyze the shape of calcifications
using high-resolution 3D imaging (Temmermans et al., 2013; Willekens et al., 2014).
Based upon extracted shape features, automated classification techniques have been
presented (Temmermans et al., 2013). Typically, these classifiers learn to assign a
benign or malignant label to individual calcifications based upon the nature of the
sample they originate from. The fact that benign calcifications may occur in malignant
samples and vice versa is not taken into account. As a consequence, a bias in the
training process is introduced. This thesis presents a methodology that aims to avoid
this predicament.

1.3 Thesis Purpose
The dataset consists of 3685 microcalcifications (MCs) extracted from 50 benign
and 50 malignant samples. It is not possible to assign the label "benign™ or "malignant”
for each MC. Instead, the label is assigned to each MC depending on whether it was
found in a benign or a malignant sample, after anatomopathological examination. This
means that no ground truth exists for the actual MCs. As a consequence, benign MCs
may exist in malignant samples, and in this case they may be incorrectly classified as

malignant. Similarly, malignant MCs may exist in benign samples.

This problem can be overcome if the MCs are first grouped explicitly based on
their shape. By clustering MCs according to their shape-features, similar shapes are
grouped together in clusters. In this way, the classifier is trained to classify MCs in the
correct cluster, i.e. it learns to distinguish among different shapes of MCs,
independently of their original class labels. So, the classifier classifies objects
exclusively based on their shape features and without any knowledge of the class label
that was assigned during the histopathological examination. In general, the question that

28
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this thesis is trying to answer is the following; are the shape features an objective
characterisation of the shape of microcalcifications so that benign and malignant shapes
could be distinguished?

1.4 Thesis Structure

The presented thesis consists of 9 chapters, including the current introduction
chapter. In Chapter 2, the basic aspects of breast anatomy, breast cancer, breast imaging
techniques and biopsy are discussed. Chapter 3 provides information on CADe and
CADx systems and on the categories of features that are used in CAD systems. Chapter
4 is focused on the classification methods and Chapter 5 on cluster analysis. Chapter 6
provides the features that were adopted in this thesis. Chapter 7 presents the approach
that is implemented in the current thesis and Chapter 8 presents the obtained results.

This thesis closes with Chapter 9, where the main conclusions are discussed.

1.5 Publications

Papavasileiou, E., Temmermans, F., Jansen, B., Willekens, I., Van de Casteele,
E., De Mey, J., Deklerck R. & Hostens, J. (2015, January). Shape-Based Clustering and
Classification of Breast Microcalcifications in Micro-CT Images. In 6th European
Conference of the International Federation for Medical and Biological
Engineering (pp. 160-163). Springer International Publishing
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Chapter 2: Breast Cancer

2. Chapter: Breast Cancer

2.1 Breast Anatomy

Each breast lies over the pecoral muscle of the chest wall and extends from the
2" to the 7" rib and across the sternum to the anterior axillary line (Anuntpémoviog,
2000). (Figure 2.1). The mammary gland has a discoid shape except for a projection that
is formed in the upper outer quadrant, the so- called Spence’s tail. The mammary gland
is surrounded by fat and skin and consists of 15-20 lobes. Each of these lobes ends with
its main duct in the nipple. The main ducts branch and eventually end in lobules. The
lobules are again a tree like structure where the branches are called ductules and the
leaves aveoli or Terminal Ductal Lobulo- alveolar Units (TDLUs) (Figure 2.2). The
alveoli are responsible for breast milk production. They are surrounded by tiny muscles

that squeeze them to push milk out into the ductules (Anuntpémoviog, 2000).

The breasts of women in their 20s differ hormonally and biologically from the
breasts of women in their 50s who gradually enter into menopause. During the
reproductive age the high levels of oestrogens in conjunction with progesterone
maintain dense breasts, while the breasts of older women generally contain a larger
proportion of fat. Using radiographic imaging, abnormalities are more difficult to detect
in dense breast than in fat breasts.

The Breast and Surrounding Structures

collarbone
(clavicle)
pec
‘ (axilla)
breast | . N
(= \:# / (sternum)
[
| |

Figure 2.1: The breast and the surrounding tissues

Lobes

Figure 2.2: Breast anatomy
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2.2 Breast Cancer

Breast cancer is the leading type of cancer in women and the second most
important cause of death, after colon cancer. It is a malignant tumour caused by the
uncontrolled proliferation of abnormal cells of the mammary gland which have diverted
from their normal function and grow at the expense of normal tissue. It originates from
the breast tissue, most commonly from the inner lining of milk ducts or the lobules that
supply the ducts with milk and can be invasive or not (®vooag, 2006). Cancers
originating from ducts are known as ductal carcinomas, while those originating from
lobules are known as lobular carcinomas. If the cancer infilters adjoining parts of the

breast it is said to be invasive. The most common types of breast cancer are:

. Ductal Carcinoma in Situ (DCIS)
o Lobular Carcinoma in Situ (LCIS)
o Invasive Ductal Carcinoma (IDC)

o Invasive Lobular Carcinoma (ILC)

The frequency of the cases that are diagnosed with these types of breast cancer
are 2.5%, 2.5%, 85%, and 10% respectively (Breast Cancer, 2014).

Intraductal or ductal carcinoma in situ is the proliferation of malignant epithelial
cells confined to ducts, with no evidence of invasion through the basement membrane,

as illustrated in Figure 2.3.

DQIS Wall of duct

Figure 2.3: Ductal Carcinoma in Situ (DCIS)

2.3 Breast Cancer’s risk factors
The causes of breast cancer are unknown. However, there are some risk factors
that are considered to influence the possibility of developing a malignant mass in the

breast (dvocag, 2006).
32
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Inheritance: It is estimated that only 5-10 % of the breast cancer’s cases are
associated with heredity factors. The majority of the cases result from impairment to
breast cells’ genetic material that are caused by various factors during the life of a

person.

Age: The risk of developing a breast cancer is increasing with age. A woman in
her 60s is 100 times more likely to develop breast cancer than a woman in her early 20s.
More specifically, for women at the age of 15-39 years old the percentage of breast
cancer cases is 0.5%, for women at the age of 40-59 years old the percentage is

increased to 4% and for women over 60 years old, the percentage is calculated at 7%.

Disorders of menstruation and pregnancy: There are several facts that suggest

that women with early start of menstruation or late menopause have an increased risk of
breast cancer. Also, the lifetime exposure to oestrogen plays a fundamental role in the
development of breast cancer. A similar correlation has also emerged for women who

remained childless or did not have complete pregnancies.

Weight Gain: Studies indicate that weight gain after the age of 20 may increase
the risk of breast cancer. In particular, the risk triplicates if the body mass index is at

peak levels after the age of 50 years old.

Alcohol and smoking: Recent studies have shown that alcohol and smoking can

increase the risk of breast cancer up to 25% and 50-60%, respectively.

2.4 Breast Cancer’s Diagnosis Systems
Breast screening is the medical screening of asymptomatic women for breast
cancer in an attempt to achieve an early diagnosis. This is based on the assumption that
early detection of breast cancer can improve the cancer's outcomes and increase the
survival rates. A number of screening modalities have been developed over the years in
order to assist in finding a lesion at a very primitive form, including clinical and self
breast examinations, mammography, genetic screening, ultrasound and magnetic

resonance imaging.
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2.4.1 Clinical and Self Breast Examination

Clinical and self-breast examination are considered the easiest and most painless
screening methods of breast examination that involve feeling of the breasts for lumps,
distortions and swelling. Clinical breast examination is performed by physicians in
annual base while breast self-examination (Figure 2.4) is done by the woman herself
once in a month. However, after the age of 40 it is an accompanying method and cannot
replace mammography.

Figure 2.4: Self-Breast Examination

2.4.2 Mammography
Mammography is a low-energy 2-D X-ray breast imaging modality which
allows visualisation of the morphology and structure of the anatomical data of the
human breast and of pathological lesions. The value of mammography against breast
cancer is invaluable as it can detect growing tumours that otherwise would become
perceptible and palpable by the patient or the doctor, not earlier than two years later
(Cady et al., 2004).

Several types of mammography exist depending on the technology used
(analogue, digital, magnetic mammography) and the reason for which the

mammography is conducted (screening or confirmation of previous diagnosis).
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2.4.2.1 The process of mammography

The analogue and digital mammographies are performed with the use of a
special radiodiagnostic machine, known as the mammography unit, which may be
analogue or digital, respectively (Kavdapdkng, 2004). In order to obtain a mammogram,
each breast is placed between two plates that are known as compression paddle (Figure
2.5). The compression paddle pushes the breast so as to achieve the same thickness

throughout the whole breast as well as maximum resolution.

Figure 2.5: compression paddle

Then, the X ray tube emits ionizing radiation of low intensity, which penetrates
the breast and weakens unevenly as it passes from different types of tissue. This
heterogeneous attenuation is recorded by the image formation system lying underneath

the breast.

The image formation system may be analogue or digital. In the first case an
analogue film is placed underneath the compression paddle together with reinforcing
plates, while in the second case a Flat Panel Active Matrix is used, where the image is

formed digitally using pixels (Charge-Coupled Device- CCD) (Hyoung-Koo0).

The picture that is formed by these two methods consists of different scales of
grey as shown in Figure 2.6. Each shade of grey represents a certain amount of X ray
radiation that falls on the analogue film or on the digital image detector. This quantity
depends on the attenuation of the initial radiation during its passage through the human
breast. The black colour and the shades of gray indicate very little attenuation of the
initial radiation. On the other hand, white and open shades of gray correspond to total or

very high attenuation of the initial radiation (Kavdapdxng, 2004).
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Figure 2.6: Left: mammogram. Right: analogue mammogram

During the procedure of a mammography two images are taken from each breast
from two different angles. The one irradiation of the breast is performed with the
compression paddle being in a parallel position in relation to the floor (Craniocaudal-
CC). The other irradiation is performed at 4 degrees in relation to the floor
(Mediolateral oblique-MLO).

2.4.2.2 Findings on mammograms
Distinguishing breast cancer on a mammogram is not always easy. The
American College of Radiology (ACR, 2014) defines the main signs of breast cancer on

d mammogram as:

. Masses
o Clusters of microcalcifications (MCs)
. Deterioration of the structure of adjacent tissues (architectural

distortions)

24.2.2.1 Nodular shadows (Masses)
The nodular shadows can occur with distinct boundaries (circumscribed lesions),
sharp limits with spikes (spiculated masses) and with less distinct boundaries (ill-
defined masses). In general, radiation impermeable nodular shadows are basically

malignant, while radiation permeable masses are usually benign.
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In general, when examining mammograms contour, density, shape, orientation
and size of the shadings should be taken into consideration for discriminating between

benign and malignant.

2.4.2.2.2 Calcifications

In many cases it is possible that a lesion may be displayed in a mammogram in
the form of microcalcifications with or without shading. Calcifications are small
deposits of calcium in the mammary gland. They appear in a mammogram as bright
structures of high Signal to Noise Ratio (SNR) due to the large attenuation coefficient
of calcium (Figure 2.7). If the calcifications have a diameter less than 1mm they are
characterized as microcalcifications (MCs), whereas if their diameter is more than 1
mm, they are characterised as macrocalcifications (Karahaliou et al., 2012). A group of
calcifications is considered as a cluster if more than 5 calcifications appear in an area of

1 cm?.

Figure 2.7: Microcalcifications. (4) Malignant and (B) Benign.

Since Salomon’s radiographs of mastectomy specimens in 1913 (Salomon,
1913) it has been reported that MCs are associated with breast cancer (Gershon — Cohen
et al., 1962) were the first to report that the irregular, clustered appearance of
calcifications was associated with breast cancer in 1962.

MCs allow for early diagnosis. It has been reported that approximately 30-40%
of breast cancers are detected exclusively by the presence of MCs. E.g. 85% of DCIS
cases are discovered exclusively by the appearance of MCs. Also, 70-80% of breast
cancers’ histopathological examination revealed the presence of microcalcifications (De
Wilde, 1999).
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However, MCs do not always indicate malignancy; they are also common in
healthy women. There are several factors that have to be taken into consideration such
as shape, size, clustering, location, frequency and distribution (Andreadis et al., 2011;
Karahaliou et al., 2012; Sickles, 1984; Willekens et al., 2014).

Shape is an important factor that aids to distinguish between benign and
malignant MCs (Sickles, 1984), i.e. calcifications present in a benign or a malignant
lesion respectively. In (Lanyi, 1983) Lanyi classified 5641 MCs according to their
shape, categorising them as punctate, bean-shaped, linear or branching. In 95% of cases,
the MCs had more than two configurations within individual clusters (polymorphy).
Thin, linear, curvilinear, branching shapes may suggest malignancy while round, oval

and well delineated shapes may indicate benign lesions (Sickles, 1984).

Malignant calcifications have a wide variation in shape. In general, three basic
forms can be distinguished (Tabar, 2011); casting type, granular type and powderish
calcifications.

Casting type calcifications have linear, fragmented, occasionally branching

calcifications with irregular contours. These calcifications are typically formed within

ducts affected by ductal carcinoma.

Granular type calcifications are individually discernible particles that resemble

granulated sugar or crushed stone.

Powederish calcifications are very small particles of calcium. On a mammogram

they are only visible if they are grouped together.

In practice, the resolution of a mammogram is too low for clear shape
differentiation. Therefore, another important discriminator is the distribution of the
calcifications. According to the BI-RADS atlas (Tabéar, 2011) the distributions of

calcifications are defined as (Figure 2.8):

Diffuse or Scattered: diffuse calcifications may be scattered calcifications or

multiple similar appearing clusters of calcifications throughout the whole breast.

Regional: scattered in a larger volume (> 2 cc) of breast tissue and not in the

expected ductal distribution.

Clustered: at least 5 calcifications occupy a small volume of tissue
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Linear: calcifications arrayed in a line, which suggests deposits in a duct.

Segmental: calcium deposits in ducts and branches of a segment or lobe

Diffuse Regional

\, Clustered Segmental

Linear

Figure 2.8: Distribution of Microcalcifications

24.2.2.3 Architectural Distortions
Architectural distortion is defined as a rupture of the normal architecture with no
visible mass (Karahaliou, 2009). Parenchymal asymmetry between the two breasts may
indicate the presence of breast cancer.

2.5 Biopsy

A biopsy is the examination that rejects or confirms the diagnosis of breast
cancer on a mammogram or on other examination. The breast biopsy involves the
aspiration of the breast in order to remove tissue/cells from a suspicious region.
Subsequently, the tissues are anatomopathologically investigated, i.e. they are placed
under a microscope for observation and further analysis by a pathologist. Several types
of biopsy procedures exist. The most common types include Fine Needle Aspiration
Biopsy, Core Needle Biopsy, Stereotactic Core Needle Biopsy, Vacuum Assisted Core
Biopsy and Surgical Biopsy (ACS, 2014; NHS, 2009; Adnmoc, 2014. The type of
biopsy used for each case depends on many factors, such as lesion’s suspiciousness, size

and location, as well as patient’s other medical problems and personal preferences.
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2.5.1 Fine Needle Aspiration Biopsy
In fine needle aspiration biopsy (FNAB), a very thin needle (thinner than the
needles used for blood tests) is used in order to aspirate a small amount of tissue from
the suspicious area. The use of local anaesthetic is optional, as it has been noticed that

the administration of the numbing medicine may be more painful than the biopsy itself.

The area to be biopsied can be located by various means. If it can be felt, the
doctor locates the lump and guides the needle there. If the suspicious area cannot be felt
then two methods for guiding the needle can be used; ultrasound guided biopsy or
stereotactic needle biopsy. In the first technique the doctor uses ultrasound imaging to
watch the needle on the screen as he moves it towards the mass. In the second one, the
exact position of the mass is mapped with the aid of computers that use mammograms

taken from two angles.

Once the needle is in place, fluid or tissue is drawn out. If clear fluid is
withdrawn, the lump is more likely a benign cyst. Bloody or cloudy fluid can mean
either a benign cyst or, less often, cancer. If the lump is solid, small pieces of tissue are

drawn out.

Nevertheless, FNAB may miss cancer if the needle does not get a tissue sample

from the cancer cells (Lieske et al., 2006).

2.5.2 Core Needle biopsy

Core needle biopsy (CNB) can provide increased sensitivity and specificity
compared to FNAC (Perry et al., 2008). It is a similar procedure compared to FNAB
with the exceptions that it uses a slightly larger, hollow needle and that local anaesthesia

is usually required.

During CNB the doctor guides the needle to the suspicious area either by feeling
a palpable lump or with the aid of imaging (ultrasound or X- ray). Then the needle is
used to withdraw small cylinders (or cores) from the abnormal area. Core biopsy is
preferred for lesions of architectural distortion and MCs. If MCs are extracted during
the core biopsy, it is essential that specimen radiography is applied in order to verify the

presence of calcifications.
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2.5.2.1 Stereotactic Core Needle Biopsy
A stereotactic core needle biopsy uses x-ray equipment and a computer to map
the area where the needle will be located. It is a type of biopsy recommended for
suspicious cases where MCs are found and no mass can be felt or seen on ultrasound
(ACS, 2014; Adnrag, 2014).

2.5.2.2 Vacuum-assisted core biopsy

Vacuum-assisted biopsies can be conducted with systems like the
Mammotome®. For this type of biopsy the skin is numbed and a small cut (less than 0.6
cm) is made (ACS, 2014; Adanmag, 2014). A hollow probe is put in through the cut and
guided into the abnormal area of breast tissue using x-rays, ultrasound, or MRI. A
cylinder of tissue is then pulled into the probe through a hole in its side, and a rotating

knife inside the probe cuts the tissue sample from the rest of the breast.

The advantages of this method is that it allows multiple tissue samples to be
removed through one small opening, with very little scarring and without the need of

stitches.

2.5.3 Surgical Biopsy

When needle biopsy is insufficient to conclude about the malignancy of a
suspicious area, surgical biopsy may be recommended (ACS, 2014). A surgical biopsy,
also known as open biopsy, is done in an operating room. During a surgical biopsy a cut
is made in the breast to remove all or part of the lump for further examination. Apart
from local anaesthesia, sedation through a line in the patient’s arm may also be used to
help the patient relax during the procedure. In some cases, general anaesthesia may also
be used. Surgical biopsies usually last an hour and the recovery period is less than two

hours.

An open biopsy that removes only part of a lump of suspicious tissue is called an
incisional biopsy, while one that removes the entire lump is called excisional biopsy. An
incisional biopsy is usually done when the lump is quite large. However, if the tissue is
proven to be malignant the remaining portion of the lump will be removed surgically,

during a second surgery.
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When a breast mass or an area of calcifications is not palpable, but it looks
suspicious on the mammogram, the surgeon may use a procedure called “wire
localisation” to help identify the tissue for later surgical biopsy. For this procedure, the
breast is numbed with local anaesthetic and a thin, hollow needle is inserted into the
breast guided by ultrasound’s or mammography’s support. Next, a very thin wire with a
small hook at the end is placed to pinpoint the suspicious area. The needle is then
removed leaving the wire in order to help the surgeon find the part of the breast tissue

that will be removed.

Following a surgical breast biopsy, stitches are often needed and a short scar in
the shape of a line is left. In addition, bleeding, soreness and swelling are also expected
for a few days. Finally, depending on the size of the extracted tissue, this procedure can
affect the shape of the breast.

2.6 Anatomical pathological investigation

The tissue samples extracted during biopsy are placed in formol tubes, from
which they are taken out later and placed on a glass plate in order to be radiographically
scanned. During this procedure, it is validated if the target MCs were correctly extracted
from the suspicious region. Following this scan the tissues are divided into two blocks
and are conserved in paraffin. One block includes the samples with calcifications, and
the other block comprises the samples without calcifications. During the anatomo -
pathological investigation, the anatomical pathologist cuts slices from these blocks
which are investigated under a microscope. Typically, one third of the blocks is
analysed and the pathologist will then make a diagnosis based upon the identified cells.

2.7 Diagnostic classification
According to European guidelines for quality assurance in breast cancer
screening and diagnosis (Perry et al, 2008) a simple five-point classification system

should be used as described below;
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Radiology

R1 Normal/benign

R2 A lesion having benign characteristics

R3 An abnormality present of indeterminate significance
R4 Features suspicious of malignancy

R5 Malignant features

While this system is sufficient for most working purposes, if desired, the ACR

BIRADS system can be used which is more complex but more precise classification in
terms of percentage likelihood (ACR, 2003).

Fine Needle Aspiration Cytology

C1 Inadequate for diagnosis
C2 Benign epithelial cells
C3 Atypia probably benign
C4 Suspicious of malignancy

C5 Malignant

Core Biopsy/Histology

B1 Unsatisfactory/normal breast tissue
B2 Benign
B3 Benign but of uncertain malignant potential

B4 Suspicious of malignancy

B5 Malignant
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2.8 Targets of a Breast Assessment Unit

According to European guidelines for quality assurance in breast cancer

screening and diagnosis (Perry et al, 2008) the following percentages are standardized:

Table 2-1: Percentage targets for quality assurance in breast diagnosis

Percentage Minimum Expected
Standard
of image guided FNAC procedures with an <25% <15%
insufficient result (C1)
of image guided FNAC procedures from < 10% <5%

lesions subsequently proven to be malignant
having an insufficient result (C1)

of women with breast cancer having a non- > 70% > 90%
operative diagnosis of malignancy

(FNAC/CB reported as definitely malignant)

2.9 Cytology/histology quality assurance
According to European guidelines the following percentages are standardize for

quality assurance in breast cancer cytology/histology.
Absolute sensitivity considers only the definitely malignant results (C5 or B5)
Complete sensitivity considers all abnormal results (above and equal to B3, C3)

Table 2-2: Suggested Thresholds for FNAC performance

Minimum Preferred
Absolute Sensitivity >60% >70%
Complete Sensitivity >80% >90%
Specificity >55% >65%
Positive Predictive Value (C5) >98% >99%
False Negative Rate <6% <4%
False Positive Rate <1% <0.5%

Table 2-3: Suggested Thresholds for Core Biopsy performance

Minimum Preferred

Absolute Sensitivity >70% >80%
Complete Sensitivity >80% >90%
Specificity >75% >85%
Positive Predictive Value (C5) >99% >99.5%
False Negative Rate <0.5% <0.1%
False Positive Rate <15% <10%
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3. Chapter: Computer Aided Diagnosis Systems
(CAD)

3.1 Introduction
Early detection of breast cancer has a key role in addressing it. For this reason,
many breast imaging modalities have been developed to assist in finding a lesion at a
very primitive form. In conjunction with increased public awareness prompting for
monthly self-breast examination and annual examination by physician, it yields a

reduction in mortality from breast cancer (Karahaliou et al., 2012).

Even though mammography is the current standard for breast screening, the
characterization of lesions as benign or malignant based on their appearance in
mammograms is a difficult task even for expert radiologists. Due to the fact that a
mammogram is a 2D image of a 3D breast, superposition of breast tissue often produces
patterns that appear like suspicious masses to a radiologist or alters the appearance of

real mammographic lesions (Karahaliou et al., 2012; Elter et al., 2009).

In general there are two categories of typical errors when examining
mammograms; false positive and false negative results. False positive results occur
when the radiologist recognises a lesion as malignant when it is actually benign. False
negative errors occur when a malignant region is not recognised by the radiologist.

The aforementioned errors have resulted in a percentage of omitted cancers of
10-30%, necessitating the conduction of biopsies. However, it is reported that less than
30% of all breast biopsies actually show a malignant pathology. The high number of
unnecessary breast biopsies causes major mental and physical discomfort for the

patients as well as unnecessary expenses (Elter et al., 2009; Kopans, 1992).

Computer aided Detection (CADe) and Diagnosis Systems (CADXx) systems
have been proposed in the past years and they have a key role in detection and diagnosis

of breast lesions.
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3.2 Computer Aided Detection and Diagnosis
Systems

CADe and CADx systems aim to support radiologists in the discrimination of
benign and malignant mammographic lesions and to increase the positive predictive
value of mammographic interpretation. The term “CADe/x” refers to formulating the
clinical detection or diagnosis problem into the context of quantitative image feature
extraction and pattern classification with the goal of solving it automatically (Duncan et
al., 2000).

CADe systems have been developed to improve the ability of radiologists in
detecting lesions through identification of suspicious regions of masses and MC clusters
in an image. The input of the system is a mammographic image and the output is the

location and the boundaries of a suspicious lesion, known as Region of Interest (ROI).

CADx systems assist radiologists in the process of diagnosis and classification
of lesions as malignant or benign, thus affecting the subsequent patient management
(follow-up or biopsy). The input of a CADx system is the area containing the

abnormality (ROI) and the output is a probability that the lesion is malignant
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Figure 3.1: CADe and CADx systems
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Typical phases of a CAD system

Most CADe and CADx systems include similar processing steps, such as

segmentation, feature extraction, feature selection and classification.

Starting from a digital or digitized mammogram the first operations are the
processing ones. Here the breast is segmented and some filtering or normalisation is
accomplished in order to improve the quality of the image and reduce the noise. Then a
signal extraction step is performed. In this phase objects similar to the lesions are

isolated by means of different techniques (Suri et al., 2006).

After that a set of features is calculated on the extracted signal. A feature is an
individual measurable heuristic property of a phenomenon being observed. The
extracted features represent a mathematical description of characteristics that are helpful
for isolating the lesion or for distinguishing malignant and benign lesions. It is probably
the most important step for a characterisation of a Region of Interest (ROI) containing
MCs. The set of features of a given data instance is often grouped into a feature vector
in order to be treated mathematically. Basically, researchers have investigated two types
of features; those traditionally used by radiologists: intensity based and geometric
features and high order features that may be not as intuitive to radiologists: texture

features.

If the number of features is large compared to the number of training data, the
generalisation ability of the conventional classifiers used in the following step may not
be good. Therefore, to improve the generalisation ability, a small set of features is
retained in an extra step known as Feature Selection step. It is difficult to predict which
of the features’ combination will have more accurate results. The only way to ensure an
optimal feature vector is through exhaustive search of all possible subsets of features.

However, the search space to be explored is too big.

Finally, a classification step is performed where the extracted features are
provided as inputs to the classifier. This phase is known as false positive reductions. It
IS necessary to set up a classifier that hopefully maintains all the true detected signals

and at the same time rejects almost all the false positive signal.
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Figure 3.2: Flowchart of CADx system

3.3 CADx systems for clusters of microcalcifications
3.3.1 Morphology based CADx schemes

In the clinical practice the diagnosis of MC clusters is based on their
morphological properties (shape, size, intensity) and the distribution of individual
particles within a cluster. In this context, shape and intensity features are mainly
exploited for the characterisation of a suspicious lesion. More specifically, the features
that are used are; area, perimeter, elongation, circularity compactness, eccentricity,
moment ratio, axis ratio, concavity index, effective thickness, volume and mean

intensity, background intensity, contrast and edge strength (Karahaliou et al., 2012).

CADx schemes that classify MC clusters are based on two categories of cluster
features (Karahaliou et al., 2012):
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Category I: Cluster features based on descriptive statistics (e.g. average, standard
deviation, coefficient of variation, maximum, median, range) of morphological

properties of individual particles.

Category 1I: Cluster features describing cluster morphology considering the
cluster as an entire object (cluster area, diameter, perimeter, circularity, eccentricity,
elongation, solidity and cluster background intensity). In this category the spatial
distribution of individual particles within a cluster is also considered (number of MCs,
structural index, proximity to the nearest MC, cluster density, as well as distance to

pectoral and breast edge).

3.3.2 Texture-based CADx schemes

A malignancy usually changes the texture of the surrounding tissue. Based on
this hypothesis, CADx schemes can also exploit textural features. The systems based on
texture analysis seem to provide better results than those based on morphology
(Karahaliou et al., 2007). CAD systems based on morphology quantify properties that
are visible to the eye. In this way they imitate the radiologists’ assessments, but in an
objective manner. Schemes based on texture analysis not only imitate the radiologists
perception when visible lesions in the texture exist, but also enhance radiologists’
capabilities by extracting and quantifying properties that associate with the diagnosis

but are not visible to the naked eye.

3.4 Extracted Features

In literature a vast variety of features for the analysis of a cluster containing
MCs has been exploited. These features can be categorised into six main groups
(Andreadis et al., 2011).

1) Shape features of individual MCs

According to BIRADS system, the morphology of MCs is an important factor
for their discrimination. In general, round and oval particles with lucent centres are
considered benign, while thin, linear and small particles are considered an important
sign of malignancy. The shape features that are usually extracted are: area, perimeter,

compactness, circularity, elongation, eccentricity, spread, F3_F1 metric. In addition,
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statistics of each feature like mean value, median and standard deviation are calculated

for the whole cluster.

2) Cluster shape features

Except for the morphology of individual particles the morphology of the whole
cluster is also considered by radiologists. Features such as the number of MCs in the
cluster, the calcification coverage, area, circularity, eccentricity and the perimeter of the
cluster can be calculated

3) Distribution features

The characteristics of this category describe the distribution of particles of MCs
within the cluster. According to the BIRADS system, the MCs that appear in clusters
are considered less suspicious of malignancy as opposed to linear, partial and scattered
ones. The distances among individual MCs and the distances to the centre of the cluster

are examples of features belonging to this category.

4) Optical density of individual MCs

These features are related to the grey values of each individual particle. For each
MC its brightness is measured and its contrast to the surrounding tissue is estimated.
The features of this category are highly dependent on the segmentation phase of the
CAD pipeline.

5) Textural features

First order statistics (FOS) and Grey Level Co-occurrence Matrixes (GLCMs)

are the most popular features of this category.

GLCMs: these features, proposed by Haralick et al (Haralick et al., 1973), are
used for the characterisation of texture patterns and describe how often different pixel
values occur in an image. They provide information concerning image texture

heterogeneity and coarseness, which is not necessarily visually perceived.

FOS: depend only on single pixel values and represent properties of the intensity
histogram of the region of interest (i.e. energy, entropy and square root of the
coefficients norm) extracted from wavelet or multiwavelet analysis. Statistics about the
grey values of the ROI, kurtosis, skewness and statistics related to the distribution of the

histogram all belong to this category.
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6) BIRADS descriptors

Features of this category involve the subtlety of an image, the radiologist’s
assessment, the description of the shape of MCs within the cluster and the age of the
patient. These features are coded into numerical values following a rank ordering

system proposed by Lo et al (Lo et al., 2003).
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4. Chapter: Classification

4.1 Introduction

In general, the recognition or the classification of an object (pattern) can be
described as the process by which signals that correspond to an object are classified to
one of a finite set of categories, known as classes (Aepuatdg, 1997). These categories
concern groups of objects with similar characteristics or properties. Pattern recognition
can be defined as the classification of data based on knowledge already gained or on
statistical information extracted from patterns and/or their representations (Murty et al.,
2011). Each object is described by properties known as features. The features constitute
a description of all the known characteristics of the instance. In a classification problem
every instance should be represented by the same set of features that are given in the

form of a vector.

In general, pattern recognition is categorised according to the type of the
learning procedure that is used to generate the output value. In a supervised learning
problem the classifier is able to predict a value for a given valid input, after its training
with a set of training examples (Aeppoatdg, 1997). The training set consists of a set of
instances that have been properly labelled with the correct output. Then, a learning
procedure generates a model that attempts to perform as well as possible on the training
data and generalise as well as possible to new data (Zhang, 2000). On the other hand,
unsupervised learning assumes unlabeled training data and attempts to find inherent
patterns in the data that can be used to determine the correct output value for the new
data instances. Finally, in reinforcement learning the examples of desired outputs are
not given to the algorithm, as in supervised learning, but instead they have to be

discovered by a process of trial and error (Barto, 1998).

Classification comprises the fourth step of a Computer Aided Diagnosis (CAD)
procedure. In a CAD system designed for the classification of suspicious lesions, the
characterisation of a lesion as benign or malignant is a supervised learning problem that
has only two discrete output values; benignity and malignancy (Elter et al., 2009). For
this reason, it is regarded as a two-class classification problem. There is a large number
of techniques that have been developed for supervised classification based on Artificial

Intelligence (Logical/Symbolic techniques), Perceptron-based techniques and Statistics
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(Bayesian Networks, Instance-based techniques) (Kotsiantis, 2007). The most
frequently used classifiers in CAD systems are K-Nearest Neighbours (KNN), Artificial
Neural Networks (ANNS), Support Vector Machines (SVMs) and Linear Discriminant
Analysis (LDA). Examples of classifiers that are less frequently applied in CADX
systems include Bayes classification, generalized dynamic fuzzy neural networks, and

rule-based expert systems (Elter et al., 2009).

In general, KNN is one of the simplest and most popular classifiers and one of
the most common classifiers used to categorize lesions and microcalcifications
(Nakayama et al., 2007). The classifier can distinguish unknown patterns based on the
similarity with known examples. In order to do that, it calculates the distances of the
unknown pattern to every existing pattern and finds the K nearest patterns as a basis for
classification. The unknown pattern is then classified to the class to which the majority

of its k nearest neighbours belong.

Artificial Neural Networks (ANNSs) are inspired from the way the biological
neural systems operate. ANNs simulate the human brain in the way by which
knowledge is acquired and in the way by which the neurons are connected to each other

with the aid of synapses bearing specific weights (Haykin, 1994).

A Support Vector Machine (SVM) is a binary classifier which abstracts a
decision boundary in a multi-dimensional space using an appropriate subset of the
training set of vectors. These vectors are called support vectors and geometrically are

those training patterns that are closest to the decision boundary (Murty et al., 2011).

4.2 Artificial Neural Networks
An Artificial Neural Network (ANN) is a computational model inspired by the

way the biological neural systems operate. It is a mathematical model which consists of
a large number of independent computing elements, called neurons which are

interconnected and organised in layers (Haykin, 1994).

4.2.1 Characteristics of ANNs

Artificial neural networks have the ability to learn from their environments and

to improve their performance through learning. Learning is achieved through training;
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an iterative process of gradual adjustments of the network’s parameters, usually of the
weights and of the bias levels (Haykin, 1994). In order to give a more formal definition
of learning, the definition adapted from Mendel and McClaren is cited next; “Learning
is a process by which the free parameters of a neural network are adapted through a
process of stimulation by the environment in which the network is embedded. The type
of learning is determined by the manner in which the parameter changes take place”
(Mendel et al, 1970).

Training the neural network with pairs of known input patterns and their
corresponding outputs, i.e. their corresponding classes, makes it possible to become
specialised in this set of patterns. In this way, the outputs of unknown patterns of similar
nature can be predicted next. In addition, ANNs are nonlinear models, which makes
them flexible in modelling real world complex relationships. They have the ability to
extract information from complex data, and learn from their environments in order to
improve their performance. Also, they have the ability to organise themselves during
the procedure of learning and they are able to operate in real time because of their
parallel connection. Finally, ANNSs are able to adapt their synaptic weights to changes in
the surrounding environment which assures that a neural network that is trained to
operate in a specific environment can be easily retrained to deal with minor changes in

the operating environment conditions (Haykin, 1994).

4.2.2 The model of the artificial neuron

A neural network consists of interconnected computational units called neurons.
The neuron is the basic information processing unit that transforms the input vector into
a single output which is then connected to the inputs of the other neurons (Awapavtapag,
2007). In analogy with a biological neuron, an artificial neuron consists of a set of
connections called synapses. Each neuron consists of multiple inputs and one single
output. Each synapse is characterised by a weight that gives different levels of
importance to the inputs (figure 4.1). In this way, an input signal x; in the i** input of
the neuron is multiplied with the synaptic weight w;. The weight can be positive or
negative depending on whether the load that is released from the synapse stimulates the

neuron to produce pulses with greater frequency or it suppresses it.
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Figure 4.1: Non linear model of a neuron (Haykin, 1994)

The body of the neuron consists of an adder for summing the weighted inputs
and an activation function ((p()) for reducing the amplitude of the neuron’s output.
The model also includes an externally applied bias b, which aims to reduce the

influence of the input to the activation function.

Using mathematics a k-neuron can be described with the following equations:

m

U = z Wy jX; (4.1)
j=1

Vi = (Ui — by) (4.2)

The signal uk is also known as activation signal.

The aforementioned equations can be altered in order to include the external bias

as an additional synapse with input x, = —1 and synaptic weight wy, = by.

Vg = Z ijXj (43)
j=0
Ve = @(Vk) (4.4)

Then the model of the neuron k is reformulated as in figure 4.2. Although the

models in figures 4.1 and 4.2 differ in appearance, mathematically they are equivalent.
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_ ' W0 = by (bias)
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Figure 4.2: linear model of a neuron (another form) (Haykin, 1994)

Every neuron is in an internal state that is called ‘activation level’ and it
constitutes the exit of the neuron. The neuron’s activation depends on its inputs and on
its activation function. So, the output of the neuron is defined by the activation function
in terms of the induced input signal. The most frequently used activation functions are

the following:

Threshold function

0 ={y1 2 “5)
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ir w(v)
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Figure 4.3: Threshold function
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Piecewise-Linear Function

1
<P(U)=<v,—ESxS (4.6)
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Figure 4.4: Piecewise-Linear Function

Sigmoid function

The sigmoid function is by far the most common form of activation function that
is used in building artificial neural networks. An example of a sigmoid function is the
logisti function defined by:

1
o) =T 4.7)

Parameter “a” is the slope parameter of the sigmoid function. By varying the
parameter a, sigmoid functions of different slopes are acquired as illustrated in figure
4.5.

1.2

08}
0.6+

0.2

-0 -8 6 4 =2 0 2 4 6 8 10

Figure 4.5: Sigmoid function
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4.2.3 Neural Network Architectures
The way by which the neurons of the neural network are structured is closely
linked to the learning algorithm that is used to train the network. As far as the
architecture of the neural networks is concerned, two types of neural networks can be
distinguished (Haykin, 1994):

e Feedforward or acyclic neural networks, where there are not any repetitive
loops
e Recurrent neural networks, where there are repetitive loops through feedback

connections

4.2.3.1 Feedforward networks
Two types of feedforward networks can be distinguished; single layer and
multilayer networks. In a layered neural network the neurons are organised in layers. A
simple single layer neural network consists of one input layer of source nodes and one
output layer of neurons. The input layer does not count as a layer, because no

computation is performed in that one.

Input layer Output layer
of source of neurons
nodes

Figure 4.6: Single layer feedforward network (Haykin, 1994)

On the other hand, in a multilayer network there may be one or more
intermediate layers of neurons, between the input nodes and the output layer, called

hidden layers. By adding more hidden layers, the network is enabled to extract higher -
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order statistics, a property particularly useful when the size of the input layer is large
(Haykin, 1994). In feedforward networks, the information from the input signals flows
in one direction, from the input layer to the output layer. Typically, the inputs of one
hidden layer are the outputs of the preceding hidden layer.

In the following figure (figure 4.7), a multilayer feedforward network is
illustrated. This network is said to be fully connected, in the sense that every node in
each layer is connected to every other node in the adjacent forward network. However,
there are networks in which the nodes of a layer are not connected to all the neurons of
the following layer. This type of network is called partially connected, since some of the

synaptic connections are missing.

Laver of output
Input laver of NEeurons

Laver of hidden

neurons
source nodes

Figure 4.7: Fully connected feedforward multilayer network

4.2.3.2 Recurrent networks

Recurrent networks are different from feedforward networks in the sense that
they have at least one feedback loop. In this type of networks, the output signals of one
or more neurons from the output and/or the hidden layers, feed the inputs of other
neurons. Also, it is possible that the signal of a neuron feeds its own input. This type of
loops are called self-feedback loops. In the following figures (figure 4.8 and 4.9), two
examples of recurrent networks are depicted. The network of figure 4.8 is a single layer
network, with each neuron feeding its output signal back to the inputs of all the other
neurons. Figure 4.9 illustrates another type of a recurrent network with hidden neurons,

where the feedback connections originate both from hidden and output neurons.
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Figure 4.8: Recurrent network with no self-feedback loops and no hidden layers of
neurons (Haykin, 1994)

Unit-dalay-oparators]

Inputs{

( 7/ /
wV/

Figure 4.9: Recurrent network with feedbacks originating from hidden and output
neurons (Haykin, 1994)

4.2.4 Training Neural Networks
One of the most important properties of a neural network is its ability to learn
from its environment and improve its performance through learning. A neural network
learns about its environment through an interactive process of adjusting its synaptic
weights and bias levels that takes place ideally after each iteration of the learning
process (Haykin, 1994). Two types of neural networks' learning algorithms (also known

as training algorithms) can be distinguished,;

e Supervised learning
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e Unsupervised learning

e Reinforcement learning

4.2.4.1 Supervised Learning

In general neural networks are not aware of their surrounding environment.
However, in supervised learning, there is an external “teacher” who has knowledge of
the environment that is represented in form of a set of input-output examples. When a
training vector is given as input to the neural network, the teacher provides the network
with the desired output for that input which represents the network’s optimum response.
Then, the network’s parameters (weights and bias levels) are adjusted under the
influence of the training vector and the error signal. The error signal results from the
difference between the network’s actual and desired output. This adjustment is repeated
iteratively in a step by step manner with the purpose of eventually making the neural
network to emulate the teacher in the best possible way. In this way, the knowledge of
the environment, known to the teacher, is transfered to the neural network through the
training procedure as fully as possible. Next, the teacher is removed and the network is

able to deal with the environment by itself.

This type of supervised learning is the error correction learning described in the
next subsection (4.2.4.1.1). It is a closed loop feedback system, where the environment
is not included in the loop. The mean square error, or the sum of squared errors over the

training samples can be considered as the performance measures of the system.

Vector describing
state of the
environment

Environment EEECTeM  Teacher

Desired
response

Actual
response

Error signal

Figure 4.10: Block diagram of supervised learning (Haykin, 1994)
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Examples of this type of training algorithms are the least-mean-square (LMS)
algorithm of Widrow and Hoff (Widrow et al., 1960) and its generalisation known as
back propagation (BP) (Werbos P.J. 1974). The LMS algorithm consists of only one

neuron, while BP consists of a number of connected neurons in layers.

42411 Error-Correction Learning
To illustrate this type of learning, a multilayer feedforward network is
considered which consists of one input layer, one or more layers of hidden neurons and

one output layer consisting of only one neuron.
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Figure 4.11: Multilayer feedforward network with one or more layers of hidden neurons
and one neuron at the output layer (Haykin, 1994)

Neuron k is driven by a signal vector x(n) produced by the hidden neurons
which are driven by an input vector applied to the input layer of the neural network. The
output signal of the neuron k is denoted by y, (n). This output signal, which is the only
output of the neural network, is then compared to a desired response (target output)

dy(n) and thus an error signal e, (n) is produced.
ex(n) = di(m) — yr(n) (4.8)

This error signal motivates a control mechanism whose purpose is to apply a
series of corrective adjustments to the synaptic weights of neuron k in order to make the
output signal y,(n) come closer to the desired response d,(n) in a step-by-step
iterative procedure until the synaptic weights are essentially stabilized. This objective is
achieved by minimizing a cost function £€(n),that is the instantaneous value of the error

energy:
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1
Em =3 ) et (49)
keC
Where the set C includes all the neurons of the output layer. Let N be the total
number of patterns in the training set. Then the average squared error energy is defined

as follows:

N
_1 4.10
Eav = N;g(n) ( )

The instaneous error energy £(n) and the average error energy £,,, are functions
of the synaptic weights and the bias levels of the ANN. For a given training set, the
fucntion &,, represents the cost function, as the measure of the efficiency of the
learning process. The purpose of the learning process is the adjustment of the free
parameters of the ANN (synaptic weights and bias levels) in order to minimize the
average error energy £,,. The weights are updated on a pattern-by-pattern basis, i.e. the
adjustments of the weights are done according to the errors that are calculated for each

pattern presented to the network.

Assuming a neuron j, and a set of function signals y;(n) produced by a layer of
neurons to its input. Then the induced local field produced at the input of the activation

function is as follows:
m
yi(n) = ) wy (i) (4.11)
i=0

Then the function signal at the output of the j* neuron at iteration n is

y;(m) = p(; () (4.12)

The backpropagation algorithm applies a correction Aw;;(n) to the synaptic

0E(n)

weight w;;(n) which is proportional to the partial derivative 1 It can be shown

Wji n

that the applied correction is given by:

(4.13)
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Where 7 is called the learning rate parameter.

4.2.4.2 Learning without a teacher
Learning without a teacher does not include a “teacher” supervising the learning
process. This means that there are not any labeled examples to be learned by the

network. This type of learning includes two subtypes;

e Reinforcement learning

e Unsupervised learning

42421 Reinforcement learning

In reinforcement learning, the learning of an input-output mapping is performed
through continued interaction with the environment in order to minimize a scalar index
of performance (Haykin, 1994). In figure 4.12, the block diagram of one form of
reinforcement learning system is shown. The system is built around a critic that
converts a primary reinforcement signal received from the environment into a
reinforcement signal of higher quality called the heuristic reinforcement signal, both of
which are scalar inputs (Barto, 1998). The system is designed to learn under delayed
reinforcement, which means that the system observes a temporal sequence of stimuli
also received from the environment, which eventually results in the generation of the
heuristic reinforcement signal. The goal of learning is to minimize a cost-to-go function
defined as the expectation of the aggregated cost of actions taken over a sequence of
steps instead of simply the immedicate cost (Haykin, 1994). The function of the
learning machine, which constitutes the second component of the system is to discover

these actions and to feed them back to the environment.
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Primary
reinforcement

State (input) Y

Environment Critic

Heuristic
reinforcement

Figure 4.12: Block diagram of reinforcement learning (Haykin, 1994)

42422 Unsupervised learning
In unsupervised learning also known as self-organized learning there is no
external teacher or critic to oversee the learning process as shown in figure 4.13. Rather,
a task-independent measure of the quality of representation that the network is required
to learn is provided and the network’s parameters are optimized with respect to it. Once
the network becomes tuned to the statistical regularities of the input data, it develops the
ability to form internal representations for encoding features of the input and thereby to

automatically create new classes (Becker, 1991).

Vector describing
state of the
environment

Environment ———1 Learning System

Figure 4.13: Block diagram of unsupervised learning (Haykin, 1994)

4.3 Support Vector Machines
4.3.1 Introduction

Support vector machines (SVMs) are a supervised learning-based method,
primarily used for binary and multi-class classification (Vapnik, 2000). Given a set of

training examples, each marked as belonging to one of two classes, an SVM training
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algorithm builds a model in order to assign new examples into one of these classes. An
SVM builds a hyperplane (or a set of hyperplanes) in a high or infinite dimensional
space that can be used for classification and regression. SVMs revolve around the
notion of “margin”, which is the distance of a hyperplane to the nearest training data
point of any class (Nakayama et al., 2007). A good separation is achieved by the
hyperplane that has the largest margin, because the larger the margin, the better the
separation of the instances and thus the lower the generalization error of the classifier
(Nakayama et al., 2007).

Two types of Support Vector Machines can be distinguished; hard and soft
partitioning SVMs, depending on whether the training data in the input space are
linearly separable or not (Abe, 2010).

4.3.2 Hard-Margin Support Vector Machines

A set of patterns is said to be linearly separable if a hyperplane can be found so
that patterns of different classes fall on different sides of the hyperplane. In the
following figure (Figure 4.14), for simplicity reasons, two-dimensional data is
considered, where each pattern is represented by a point in the two-dimensional space.
Assuming five patterns that belong to class labelled as X and four patterns of class 0, a
line e.g. x; = x, can be found so that all the X patterns fall on the left side of the line
and all the O patterns on the right side (Murty et al., 2011).

Y

X

Figure 4.14: Linearly seperable 2D data (Murty et al., 2011)
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Another way of separating the patterns of the two classes is the following:

e all the patterns of class X satisfy the property that x; < x,0r x; —x, <0
and equivalently

o all the patterns of class O satisfy the property x; > x, or x; — x, > 0.
There are infinite ways of realising the decision boundary. All the lines can be
written in the following form:

f(x)=wix; +wyx, +b =0 (4.14)

In the multidimensional space, the linear decision boundary becomes a

hyperplane and it can be represented by the following equation:
fx)=wlx+b=0 (4.15)

where w and x are m-dimensional vectors (Murty et al., 2011).

Let M m-dimensional training inputs x; (i =1,... ,M) belong to Class 1 or
Class 2 with the associated labels be y; = 1 for Class 1 and y; = —1 for Class 2. For the
linearly separable data, the decision function for the classification of an unknown

pattern is defined as follows:
D(x) = Sng(WTX + b) (416)

where w is an m —dimensional vector, b is a bias term (the term-b is called
threshold)

Equivalently the decision function can be written as shown in equations 4.13 and

4.14:
D(x)=wTx+b (4.17)
and
r, L pf>1 foryi=1 . . _ 4.18
le+b{<—1f01”yi=—1 fori=1,..,M ( )
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Here, 1and —1 on the right-hand sides of the inequalities of equation 4.14 can
also be constants a > 0 and —a, respectively (Abe, 2010). Equation 4.14 is equivalent

to
y;(wlx; +b) > 1fori=1,..,M (4.19)
The hyperplane
D(x)=wlx+b=cfor-1<c<1 (4.20)

forms a separating hyperplane that separates x; (i = 1, ... , M). When ¢ = 0, the
separating hyperplane is in the middle of the two hyperplanes with ¢ =1 and ¢ = —1.
The distance between the separating hyperplane and the training data sample nearest to
the hyperplane is called the margin. Assuming that the hyperplanes D(x) = 1 and
D(x) = —1 include at least one training data sample, the hyperplane D(x) = 0 has the
maximal margin for —1 < ¢ < 1. The region {x| — 1 < D(x) < 1} is the generalization

region for the decision function (Abe, 2010).

The optimal separating hyperplane can be found by minimizing the squared
norm of the separating hyperplane. The minimization can be set up as a convex

quadratic programming problem (Kotsiantis, 2007):

1
Minimize,, ,®(w) = 5 [Iw?]| (4.21)

Subjectto y;(wTx; + b) = 1fori =1,...,1

In general, there is an infinite number of decision functions which are separating
hyperplanes and satisfy equation 4.15. Figure 4.15 shows two decision functions that
satisfy equation 4.15. The generalization ability depends on the location of the
separating hyperplane, and the hyperplane with the maximal margin is called the
optimal separating hyperplane.
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Optimal hyperplane

o

Maximum

X

Figure 4.15: Optimal separating hyperplane in a two-dimensional space (Abe, 2010)

Once the optimal separating hyperplane is found, data points that lie on its
margin are known as support vector points and the plane can be represented as a linear
combination of only these points. Other data points are ignored. Therefore, the model
complexity of an SVM is unaffected by the number of features encountered in the
training data (the number of support vectors selected by the SVM learning algorithm is
usually small). For this reason, SVMS are well suited to deal with learning tasks where
the number of features is large with respect to the number of training instances
(Kotsiantis, 2007).

4.3.3 Soft-Margin Support Vector Machines

When the training data is not linearly separable, the SVM may not be able to
find any separating hyperplane. The problem can be addressed by using a soft margin
that accepts some misclassification of the training instances (Veropoulos et al., 1999).
This can be done by introducing non negative slack variables &;, i = 1,... ,M into

equation.4.15 which then becomes:
wx;—b=>+1-¢ fory, =+1
wx;—b<-1+&fory; =—1 (4.22)

§>0
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In most real-world problems, the training data is non-separable, thus no
hyperplane fullfilling all conditions of equation 4.15 exists and thus the generalization
ability is degraded. One solution to the inseparability problem is to map the data onto a
higher dimensional space and define a separating hyperplane there. This higher-
dimensional space is called the feature space (Kotsiantis, 2007). With an appropriately
chosen transformed feature space of sufficient dimensionality, any consistent training
set can be made separable. A linear separation in transformed feature space corresponds

to a non-linear separation in the original input space (Abe, 2010).

Using the nonlinear vector function ¢(x) = (¢(x), ..., ¢;(x)) that maps the m-
dimensional input vector x into the [ -dimensional feature space, the linear decision

function in the feature space is given by
D(x)=wlp(x)+b (4.23)

where w is an [ -dimensional vector and b is a bias term (Abe, 2010).

In order to avoid mappings, a kernel function can be defined in order to allow
inner products to be calculated directly in feature space without performing mappings.
Once a hyperplane has been created, the kernel function is used to map new points into
the feature space for classification. The selection of an appropriate kernel function is
important, since the kernel function defines the transformed feature space in which the
training set instances will be classified (Kotsiantis, 2007). Some popular kernels are the

following:

K(xy)=(x-y+1)P (4.24)

—llx=yll*
K(x,y) = e ’2‘03’ (4.25)

K(x,y) = tanh(kx -y — §)P (4.26)
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5. Chapter: Cluster analysis

5.1 Introduction

Clustering or cluster analysis is the process of grouping similar objects
(Hartigan, 1975; Duda, et al., 1973). Each group, called cluster, consists of objects
(patterns) that are similar between themselves and dissimilar to objects of other groups.
This brings up the notion of similarity. Similarity is quantified using a distance measure
in a way so that the distance between objects of the same cluster (intra-cluster distance)
is low and the distance between objects of different clusters (inter-cluster distance) is
high (Murty et al, 2011). In the following figure (figure 5.1) an example of 3 clusters is
provided to assist in the illustration of this notion. For simplicity reasons two
dimensional data are considered, where each pattern is represented by a point in the two

dimensional space.

I .
/‘-\ — Infra-cluster
iRk X \(____-"
.'r" X
X

IIn'J.SJ.Rl_!-I & )
| AEK R \ X |
.\x }:--'- N‘\\\x:{vu
— S

Figure 5.1: Example of 3 clusters in the 2D space (Murty et al, 2011)

In contrast to the supervised learning problem, where the labels of the data are
known, clustering is an unsupervised learning problem. This means that it does not
require the objects to be labeled in order to assign a new object to a cluster. Clustering
has applications in many areas; biometrics, bioinformatics, document analysis and
recognition, information retrieval, remote data analysis, target recognition and data
mining (Murty et al, 2011).
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5.2 Basic Steps in Clustering

The basic steps of the clustering procedure are illustrated in the Figure 5.2:

Pattern Sl;eeitg(r; : Pattern Inter-pattern - Clusters
Extraction representation similarity descriptions

Figure 5.2: The basic stages in clustering

1. Feature Extraction/Feature Selection: As in supervised learning an object
is represented by a set of features. A pattern is the representation of an object by the
values taken by the features. Features must be properly selected in order to encode as

much information as possible depending on the classification problem.

2. Definition of an appropriate similarity measure: A distance measure is
the metric used to compute the similarity between pattern representations. Patterns that
are more similar are closer to each other and thus they have smaller distance. Some of

the most commonly used distance measures are presented in section 5.3.1.

3 Selection of the clustering algorithm and using it in order to generate a
partition of the clusters. The most common clustering algorithms are described in

section 5.3

5.3 Clustering algorithms

A clustering algorithm is a learning procedure that tries to identify the specific
characteristics of the clusters underlying the data set (Theodoridis et al, 2009). There is
a wide variety of clustering algorithms. A common distinction between clustering
algorithms is based on whether the partitions that are generated are overlapping or not.
In this context, there is the distinction between hard and soft clustering paradigms.
Examples of hard clustering algorithms are the “hierarchical clustering algorithms”,
where a nested sequence of partitions is generated, and the “partitional clustering
algorithms” where a partition of the given data is generated. Soft clustering algorithms

are based on fuzzy sets, rough sets, artificial neural networks, or evolutionary
74

Evgenia Papavasileiou



Chapter 5: Cluster Analysis

algorithms, specifically genetic algorithms (Murty et al, 2011). In soft clustering, each
object belongs to a cluster with some probability, whereas in hard clustering an object
either belongs to a cluster or not.

5.3.1 Distance measures

The results of the clustering algorithms may depend on the distance measure that
is used. A distance measure should have the following properties (Murty et al, 2011):

e Positive reflexivity d(x,x) = 0
e Symmetry d(x,y) = d(y, x)
e Triangular inequality d(x,y) < d(x,z) + d(z,y)

The most common distance measure that is used in clustering algorithms is the
squared Euclidean distance. Assuming two M-dimensional points x = (x;) and y =

(yx), the squared Euclidean distance can be defined as follows:

M

Ay = ) 1 = vel? (58)

k=1

Another common distance measure, the Euclidean distance is defined by the

equation 5.2:

M
2
@26 y) = | ) 1= il (59)
k=1

The Cityblock distance, also known as the Manhattan distance, is commonly

used as well and is defined by the equation 5.3:

M
d'(6y) = ) I = il (5.10)
k=1
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The Minkowski p-metric is a generalisation of the aforementioned distances and
it is defined as in the equation 5.4 (De Amorim and Mirkin., 2012):

1

M P
dP(x,y) = (Zuk — yk|p> (5.11)
k=1

From this equation (Eg. 5.4), it is obvious that the Minkowski p-metric is
equivalent to the Cityblock distance, if p=1 and to the Euclidean distance if p=2. For
p—>oo;the distance metric is called Chebyshev or Maximum metric and it takes the

following form (Eq. 5.5):

d*(x,y) = maxy=1,.m|%x = Vil (5.12)

5.3.2 Hierarchical Clustering

Hierarchical Clustering algorithms build a hierarchy of data partitions that is
represented using a tree structure, called dendrogram. These tree structures allow a root
cluster having branch clusters each of which may later become a root cluster and
generate more branches. Hierarchical algorithms are further subdivided into

agglomerative and divisive (Murty et al, 2011; Theodoridis et al, 2009).

Agglomerative algorithms: these algorithms produce a sequence of clusterings of

decreasing number of clusters at each step using a bottom-up approach. They start with
having n singleton clusters, each one containing one of the n patterns of the input data
set. At each step, the most similar pair of clusters is merged to reduce the size of the
partition by one. An important property of agglomerative algorithms is that once two
patterns are placed in the same cluster at a level, they remain in the same cluster at all

subsequent levels.

Divisive algorithms: they use a top-down strategy for generating the partitions of

the data. They start with a single cluster having all the n patterns and at each successive
step, a cluster is split. This process continues until there is only one pattern in a cluster
or a collection of singleton clusters. Similarly with the agglomerative algorithms, once
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two patterns are placed in two different clusters at a level, they remain in different

clusters at all subsequent levels.

Decisions concerning which clusters should be combined or whether a cluster
should be split require a measure of similarity between patterns. This is achieved by
using an appropriate distance measure and a linkage criterion. The former is used in
order to specify the similarity between two patterns and so creating the clusters. The
later specifies the similarity between pairs of patterns in order to merge or split clusters

in the second place, i.e. it constitutes a distance measure between clusters.

The most commonly used linkage criteria between two sets of observations A
and B are the following (De Amorim, 2011):

Single linkage clustering: it defines the distance between two clusters as the

minimum possible. This method finds the two patterns, one of each cluster, that are
closest to each other. The following equation gives the distance between clusters X and
Y that is given by the distance between the two closest entities x € X,y € Y in the two

clusters.

D(X,Y) = xgl(i;leyd(x, y) (5.13)

Maximum or full linkage clustering: This method finds two entities x € X,y €

Y that are the farthest from each other.

D(X,Y) = max d(x,y) (5.14)

x EX,yEY

5.3.3 Partitional Clustering

Partitional clustering algorithms are based on the optimisation of an objective
function J. This is usually done in an iterative way until a local optimum of ] is
determined. A major advantage of partitional clustering is the fact that iterative

optimisation may gradually improve clusters (Berkhin, 2006).
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This category includes probabilistic algorithms, like the Expectation—
maximization algorithm as well as centroid-based algorithms like the k-means

algorithm and all its variations, e.g. k-medoids, Fuzzy c-means and k-means++.

5.4 K-means Clustering

K-means originated independently in the works of MacQueen (MacQueen,.
1967) and Ball and Hall (Ball et al, 1967) and it is the most popular clustering algorithm
that produces non-overlapping clusters. It is said to be more efficient than the

hierarchical algorithms (Manning et al., 2008).

K-means partitions a dataset of N objects Y = {y;,v,, ..., yn}, €ach represented
by M features, into K non-empty and non-overlapping clusters S = {S;, S,, ..., Sk}. Each
cluster is represented by its gravity centre; an M-dimensional vector called centroid;

cx € C={cq,Cy, ..., Ck}

The algorithm iteratively minimizes the following criterion, which represents the
sum of the within-cluster distances to centroids.

K

WSO =) ) dose) (5.15)

k=1Ii€Sy

where d(y;, cx) is the dissimilarity metric between y; and its respective centroid

Ck-

This criterion can also be written as follows:
K N M
WSO =D sucdi ) (5.16)

where y;; is the value of the j" feature at entity i and s;, is a variable
representing the binary cluster membership such that s;, =1 if i € sj; and s;;, =0

otherwise.
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In most cases the dissimilarity measure is chosen to be the Euclidean distance.

Then the aforementioned criterion can be rewritten as follows:

w(s,c) = iiisik Vij = Ckj)? (5.17)

In other words, the goal is to find values for the {s;.} and the {ckj} S0 as to

minimise the cost function W. This can be done through an iterative procedure in which

each iteration involves two successive steps corresponding to successive optimisations

with respect to the {s;,} and the {ckj}. At first, some initial values for the centroids

{c1, ¢y, ..., c} are chosen. Then in the first step, the cost function W is minimised with

respect to the {s;;}, keeping the centroids {c;, ¢y, ..., cx} fixed. In the second step, W is

minimised with respect to the centroids {c;, c, ..., cx} keeping {s;}, fixed. This two-

stage optimisation is repeated until convergence (Bishop, 2006).

2005):

1.

The K-means algorithm can be defined more formally in four steps (Mirkin,

Initialization: Define the value of the number of clusters K and initialize

randomly the centroids {c,, c,, ..., cx} also referred as seeds.

Cluster update: Given the K centroids, assign the N entities to their respective

centroid using the minimum distance rule.

Stop condition: Check whether there is a change in the formation of the clusters.
If there are changes then go to step 4, else, the clustering task is assumed to be
finished and the generated partitions of clusters S = {S4,S,, ..., Sk} are final.
Other possible stop conditions are a limitation in the number of iterations or a

threshold for the objective function.

Centroids update: Update the centroids of each cluster to the centre of gravity of

the cluster. If the squared Euclidean distance is used as distance metric, the

centroids are set equal to the means of their clusters.
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5.5 Finding the initial centroids

Finding the initial centroids and the number of clusters K automatically are
among the most desirable properties of clustering algorithms (Callan, 2003). The
problem of finding the number of clusters K and the centroids has been widely
addressed in literature, with the “intelligent K-means” (iK-means) method (Mirkin,

2005; Callan, 2003) being one of the most popular.

Intelligent K-Means utilizes the so-called anomalous clusters that are found
before running the K-Means itself. Anomalous clusters are extracted one-by-one until
no unclustered patterns remain. At the end, the centroids of the largest anomalous
clusters are used to initialize K-Means. Each of the anomalous clusters is built by
taking, as its initial centroid, the entity that is farthest away from a pre-specified
“‘reference point’’. Then the anomalous cluster is filled in by the entities that are nearer
to it than to the reference point, which is iteratively updated by updating the centre of
the anomalous cluster in the manner of K-Means itself, until the cluster stops changing.
The resulting anomalous cluster is removed from the dataset, and the procedure is
repeated with the reference point unmoved. When all entities have been clustered in this
way, the centroids of the non-singleton anomalous clusters are used to both set K and
initialize K-Means. If there is no information regarding the reference point then it is set
to be the central point of the dataset that minimizes the summary distance to all the data

entities.

Referen int
00 O g 7o
o o® ogg
2do o
9/ 0 &b
O (o]

08¢
o]
o

(o]

o 0

O

Figure 5.3: Anomalous pattern clustering (Mirkin, 2005)
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Formally the anomalous pattern algorithm can be defined in the following stages

(Mirkin, 2005):

Pre-processing: Specify a reference point a. If there is no information regarding

the reference point, it is set to be the central point of the dataset that minimizes

the summary distance to all the data entities.

Initial Setting: Take as initial centroid c, the entity that is farthest away from the
pre-specified reference point.

Cluster update: Create a cluster S, of entities that are closer to ¢ than to a. An

entity y; should be assigned to S if d(y;,c) < d(y;, a) .

Centroid update: Calculate the central point of the cluster S, ¢’ and check

whether it differs from the previous centroid c. If ¢’ and ¢ differ update the

centroid by assigning ¢ « c'and return to step 3.

Output: Return the list S of entities and centroid s.

Like K-Means itself, the Anomalous pattern alternately minimizes a criterion,

W(S,C):Zd(Yi'C)‘l' Z d(yi,a) (5.18)

€S

The intelligent K-means algorithm uses an anomalous pattern iteratively to get

one cluster at a time and can be formally defined in the following steps (Mirkin, 2005):

1.

2.

Setting: Specify the cluster discarding threshold used to remove all anomalous

clusters whose size is less than the threshold, and standardize the dataset.

Anomalous pattern: Apply the anomalous pattern algorithm using the centre of

gravity of the whole dataset as a reference point. The position of this centre is

not changed during any part of the algorithm.

Control: Stop if all entities are clustered, otherwise remove the anomalous
cluster found in the previous step from the dataset, and return to step 2. Other

possible stopping conditions exist, like the reach of a pre-specified number of
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clusters.

4. Discard of small clusters: Remove these clusters that are smaller than the pre-

specified threshold, defined in the first step. If there are clusters with only one
element (singletons), there may be errors in the data, possibly data entry

mistakes.

5. K-Means: Run K-Means using the found centroids, and the full original dataset.

5.6 Feature Weighting in K-means

One of the basic drawbacks of the K-means algorithm is that it treats all features
equally and thus it may have difficulties in clustering data with irrelevant, or noise
features. This is not desirable in many applications, such as data mining, where data
often contains a large number of diverse variables. In this section some feature

weighting algorithms based on K-means are described.

5.6.1 Weighted K-means

Chan, Huang and their colleagues (Chan et al., 2004; Huang et al, 2005; Huang
et al, 2008) developed the Weighted K-means algorithm (WK-means) by modifying Eq.
5.9 in order to assign weights to features based on their importance in clustering.

The criterion of the K-means algorithm is altered as follows:

W(s,C,w) = ZK:ZN:iSik ijﬁ(yij — Ckj)? (5.19)

The weights w; are non-negative and they sum to unity, such as Zj‘il w; = 1.

The exponent £ is a parameter defined by the user and expresses the degree of the
weights' contribution to the distance. Thus, the real values of the weights depend on the
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parameter f which can take values such that § < 0 or § > 1 (Chan et al., 2004; Huang
et al, 2005; Huang et al, 2008).

WK-means adds an extra step to the standard K-means algorithm in order to
update the feature weights based on the current partition of the data. The weights are

updated according to the following equation:

1
1
N [&] /-1 (5.20)
u=1 Du

MG =

where

D; = zl(:zlv:sik(yij — Ckj)? (5.21)

k=11i=1

is the sum of the within-cluster distances of feature j and h is the number of

features for which D; # 0.

Lower weights are assigned to features that have larger D;, thus reducing the

impact of noisy or insignificant features in the clustering process.

The distance measure is altered in order to take into consideration the weights
introduced in this algorithm. The distance between the j¢* feature of an entity yij and

the centroid cy, is given by;

M

2

d(y ) = Z %ﬁlyi,- - ijl (5.22)
j=1

The equation 5.13 is not applicable in two cases:

) When D, = 0 for u € [1, M]. To solve the issue of dividing by zero it is

suggested adding a non-negative constant to each item in the definition of D,. Such a
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constant might be the average dispersion of all features in the dataset (Chan et al., 2004;
Huang et al, 2005; Huang et al, 2008).

i) When g = 1. In this case the WK-means criterion of equation 5.12 is
minimised by setting w;- = 1 where j* represents the feature with the smallest sum of

the within cluster variance. All other feature weights are set equal to 0.

Huang et al. (Chan et al., 2004; Huang et al, 2005; Huang et al, 2008) noticed
that a feature may have greater relevance within one cluster, than within another one.
For this reason they extended the criterion of Eqg. 5.12 so that the feature weights
become cluster-specific. For this purpose, some small modifications should take place

to w; and D; These are changed to wy ; and Dy, such as

1
Wgi =
" on D] (5.23)
u=1 Dku
and
N
Dyj = Z sik(Vij — cij)? (5.24)
i=1
where k=1,...K

WK-means algorithm inherits some of the insufficiencies of the K-means
algorithm. These include the random initialisation of the centroids that do not guarantee
an optimal solution as well as the random selection of the initial weights, that may not

represent well the true significance of the features.

5.6.2 Intelligent Weighted K-means

One of the first approaches in extending WK-means was the integration of the

anomalous cluster initialisation approach (Mirkin, 2005). De Amorim suggested that the
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initialization step can be further extended to find initial weights for the features (De
Amorim, 2011). The new algorithm is called intelligent Weighted K-means (iWK-
means). The differences in the initialisation part of the iWK-means, compared to the IK-

means algorithm, are:

¢ in the initialisation step the feature weights are set equal to 1/M, ensuring

that they sum up to unity.

e the distance measure that is used is the weighted distance metric (eq. 5.15)

e in the cluster update step there is an extra step of weight updating using eqg.
5.13

After the initial clusters, centroids and weights have been found, the WK-means

algorithm is ran.

5.6.3 Minkowski Weighted K-means

The WK-means algorithm was further extended by De Amorim and Mirkin in
(De Amorim and Mirkin., 2012) by changing the distance measure from the squared

Euclidean distance to the Minkowski -metric.

B
dg(yi, cx) = Z Wjﬁlyij — Ckj (5.25)

In this way, the criterion of Equation 5.12 is modified to the Minkowski
Weighted K-means (MWK-means) criterion:

M
Z Sik WjB|}’ij - ij|ﬁ

]:

M
B
Z it |Wjyij = wiewj|

J:

Wg(S,C,w) =

[

(5.26)

M I
NN

&
1]
=
~
1]
=
=
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The difference between the criterions (5.12) and (5.19) is the change of the
distance exponent from 2 to 3, thus referring to the g-power of the Minkowski -metric

between the rescaled points w;y;; and rescaled centroids wjcy;.

The differences of MWK-means algorithm compared to the WK-means

algorithm are:

e in the initialisation step the value of the Minkowski exponent S is also
selected, suchas g > 1

e the distance measure used is the S-power of the Minkowski S-metric (eq.
5.18)

e the centroid that is calculated as the average of the cluster, it is called "the
Minkowski centre”. The new centroid is found by finding a real value c that
minimizes the B-power of the Minkowski distance to the cluster's entities
according to the equation:

d(c) = Z %ﬁlyu - C|ﬁ (5.27)

iESK

This problem is solved with the use of a steepest descent algorithm and it
is described below.

e in the weight update step the feature weights are computed according to the

equation:
1
W= D1 (5.28)
h [;ﬁ] B-1 -
u=1|D,5
where
K N
B
D]ﬁ = Z Z Siklyij - ij| (529)
k=1i=1
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and h the number of features where D; # 0.

The algorithm proposed by De Amorim (De Amorim, 2011) in computing the

Minkowski centre is illustrated in the following paragraphs. First, it is noted that each

feature is a set of reals y;, i = 1,2, ..., Ny, where N is the number of entities in the

cluster k. Also, the Minkowski centre is a convex function of c in the space of f > 1

and thus it can be minimised using a steepest-descent procedure. For g =1, the

minimum of equation 5.20 is known to be the median of y;, and thus the minimisation

method only needs to be applied in cases where g > 1.

The steepest-descent algorithm used to find the Minkowski's centre of a set {y;}

of realsso that y; <y, ... < yy,.

1.

Initialisation: Initialise with ¢, = y;-, the minimiser of d(c) on the set {y;} and a
positive learning rate A that can be taken, as approximately 10% of the

difference yy,_— y;.

Update c;: Compute ¢, — Ad'(cy) and take it as c; if it falls within the interval
[y;y;"]. Otherwise, decrease A by approximately 10%, and repeat the step.

Stop condition: Test whether ¢; and ¢, coincide with a pre-specified threshold.

If they do, halt the process and output c; as the optimal value of c. If not, move

on to the next step.

Update c,: Test whether d(c;) < d(cy). Ifitis, set ¢, = ¢; and d(cy) = d(cy)
and go to step 2. If not, decrease A a by approximately 10%, and go to step 2

without changing c.

Finally, the MWK-means can be further extended so that features are cluster

specific as in (Chan et al., 2004; Huang et al, 2005; Huang et al, 2008). Similarly to the

WK-means, w; and D;z are changed to wy; (Eq. 5.16) and Dy g,

where
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N
B
Dyjp = Z 5ik|3’ij - ij| (5.30)

i=1

and k=1,...K

5.6.4 Intelligent Minkowski Weighted K-means

Intelligent Minkowski Weighted K-means (iMWK-means) is an algorithm
developed by De Amorim and Mirkin. (De Amorim and Mirkin., 2012) resulting by the
use of the iK-means in the Minkowski space. The iIMWK-means algorithm uses the
Intelligent K-means to find the anomalous clusters and the Minkowski distance to find
the initial centroids and weights (De Amorim and Komisarczuk, 2012). The difference,
compared to the iK-means, in the initialisation step is that the origin is now the
Minkowski centre of the dataset.

88

Evgenia Papavasileiou



Chapter 6: Dataset and Feature Extraction

6. Chapter: Dataset and Feature Extraction

6.1 Dataset
The dataset used in this thesis comes from the research of (Temmermans et al.,
2013; Temmermans, 2014; Willekens et al., 2013) and it consists of 50 benign and 50
malignant biopsy samples. 2034 calcifications were extracted from the malignant

samples and 1651 calcifications from the benign samples (Temmermans, 2014).

For the extraction of biopsy samples minimally invasive vacuum-assisted
stereotactic breast biopsies were performed in the Radiology department of Brussels'
university hospital (UZ Brussel) with the Mammotome Biopsy Stem (Ethicon Endo-
Surgery (EES), Inc., Johnson & Johnson, Langhorne PA, Pennsylvania, USA)
(Temmermans et al., 2013; Temmermans, 2014; Willekens et al., 2013; Papavasileiou
etal., 2015).

Figure 6.1: Example of extracted tissue samples from a mammotome core biopsy
(HCMA,2014)

After the biopsy, the samples were radiographically scanned in order to
confirm the extraction of some of the target microcalcifications (MCs) (Liberman et
al., 1994). Subsequently, the calcifications were stored in blocks of paraffin and they
were anatomopathologically investigated. During the anatomopathological
investigation, the pathologist cuts slices from these blocks and makes a diagnosis
based on the nature of the identified cells. Then the blocks were scanned using X-ray
micro-computed tomography (micro-CT) (Temmermans, 2014). Micro-CT is a non-

invasive high-resolution imaging method, which has been primarily used for bone
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imaging studies and material analysis.

The 3D images that were generated (Temmermans et al., 2013; Temmermans,
2014; Willekens et al., 2013) had a voxel-width of 8.66 um. Some examples of the
created 3D renderings are shown in the figures below (6.2-6.4):

Figure 6.2: Typical sphere-like benign calcifications (Temmermans, 2014)

Figure 6.3: Typical roughly shaped malignant calcifications (Temmermans, 2014)

Figure 6.4: Pyramidal crystal shape calcifications (Temmermans, 2014)
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6.2 Features

The features used in this thesis come from the work of (Temmermans et al.,
2013; Temmermans, 2014; Willekens et al., 2013). The first step of feature extraction
is the extraction of MCs from the background tissue. MCs can be extracted by using a
thresholding operation since they are very distinguishable because of their higher
attenuation compared to the background and the paraffin in which they are stored.
Thresholding is followed by a connected component extraction using a 3D voxel
connectivity of 6. Only the connected components with a size larger than 10 voxels
are retained. In addition, an upper threshold is set corresponding with the size of a
sphere with a diameter of 1mm which is the maximum size of a MC (Temmermans,
2014; Papavasileiou et al., 2015).

Assuming that the set of MCs is the following; {cc,, ccy, ...ccy}. Then, for
each MC cc; a volume of interest Qcc; is determined as the bounding cuboid with an
additional margin of 30 voxels in each direction. Subsequently, the binary mask M;
and the gray-value sub image C; are formulated as follows (Temmermans, 2014;

Papavasileiou et al., 2015):
Ci(x) = I(x) withx € 0, (6.1)

lif x € O,

Mi(x) :{ 0if x € 0y, /cc ©.2)

The next step is the calculation of shape features on the MCs. Many of these
features are based on the associated minimum volume-enclosing ellipsoid which is

calculated using the Kachiyan algorithm (Khachiyan, 1996) and it is uniquely defined

by its three principal axes{di(l), di(z), dl@}.

The feature set (Temmermans, 2014; Papavasileiou et al., 2015) incorporates
the traditionally used shape features including volume, minimum and maximum

diameter, compactness and elongation.
Volume

Volume of the calcification is defined as the total amount of voxels of the

calcification:
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V= % M (63)

xEQCCi

Surface

Surface is defined as the number of perimeter voxels:

F® = z Si(x) (6.4)

xEQCCi

where S; is the binary mask that contains the perimeter pixel of M; with a 3D

connectivity of six.

Surface over volume

@
@ _§f (6.5)
P; e

F,

Maximum Diameter

The maximum diameter of the minimum volume enclosing ellipsoid is

calculated using the Kachiyan algorithm (Khachiyan, 1996):

F® = max[d®,d®, d®] (6.6)

l

Minimum Diameter

The minimum diameter of the minimum volume enclosing ellipsoid calculated

using the Kachiyan algorithm (Khachiyan, 1996):

Fi(S) — min[d.(l), di(Z)' di(g)] (67)

L

Compactness
This feature calculates how compact a microcalcification is. The definition by
Murphy et al is adopted (Murphy et al., 2009).

€Y
F.
© _
F® =1 _ (6.8)

(R
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Compactness

The feature compactness as defined by Kyongtae Bae et al (Bae et al., 2005):

(€]

= 6.9)
3_ dY
Jj=1"

Elongation

The feature elongation as defined by Kyongtae Bae et al (Bae et al., 2005):

@
Fi(g) = ﬁ (6.10)
i

In addition to these 8 shape features, 12 novel features were introduced by
(Temmermans et al., 2013; Temmermans, 2014; Willekens et al., 2013) that capture
the specifics of the boundary zone of the calcification. Benign calcifications are
expected to be clearly delineated, while malignant calcifications are expected to have
more spiculated shapes. When a calcification is clearly delineated, there will be a
clear border between calcification and background. However, when the calcification
is not clearly delineated, there will be a more smooth transition from calcification to
background. Therefore, some new features were proposed by (Temmermans et al.,
2013; Temmermans, 2014; Willekens et al., 2013) that help to discriminate based
upon this aspect. The basic idea is the comparison of the gray levels in the kernel

region with the grey levels in the surrounding tissue.
For this purpose, for each MC cc; a distance image D; is created using the

volume of interest (2, as follows:

Dixy = ymin [d(x, )] (6.11)

€ ccy

where d(x,y) represents the Euclidean distance between the voxels x and y.

Hence, the following boundary zones are obtained:
B = {xmax[(j — 1) * T, 1] < Dy(x) <j * T} (6.12)

where T represents the width of the boundary zone, and j € {1,2, ..., N} is the
index of the boundary zone. Both T and N were determined heuristically and set to 5

and 3 respectively. For generalization purposes, the zone corresponding to the
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segmented kernel of MC cc; shall be denoted by Bi(o). For each zone, Bi(o)to Bi(3), the

mean and standard deviation of the grey values were included as a feature. Both the

mean and the standard deviation were expected to be higher in borders that contain

spikes.

© 25 Ci(%)
F. -t

L
ZxEBi(o) 1

0
o

2
2 B(O)(Ci (x) — Fi(g))
Fi(w) I s’ ()

i
z:x(EBi(O) 1

ZXEBi(l) Ci(x) _ o

(11)
F. = u
l z:xEB.(l) 1 l

2
PR
Lo % eso(C0) = F) o
i - 2 1 - Y
xeBi(l)
C.
(13)_ZXEBi(2) L(x)_ -
B s =
z:xEBi(Z)1

2
ZXEB_(Z)(CL' (x) — Fi(g))

F.(14) = = 0_1(2)
l ZxEB.(Z) 1 l
C:
o T 60 _
l erBi(3) 1 l

2
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=0;
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(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.18)

(6.19)

94



Chapter 6: Dataset and Teature Extraction

Zyep® ()

F(17) .ul(O) ZxEB(O) 1
'u(l) ZXEB.(l) C; (x)

ZxEB.(l) 1
ers(l) Ci(x)

F(18) .ul(l) ZxEBl.(l) 1
ﬂ(z) 2 5@ Ci(%)

ZxEB.(z) 1
ZxEB(Z) Ci(x)

F(19) .ul(Z) ZxEBi(Z) 1
u’ ) ZxEB(z) Ci(x)

er 5@ 1
erB.(O) Ci(x)

1

F(zo) ”1(0) ZxEBz(o) !
,u(3) ers(” Ci(x)

ZxEB(s) 1

(6.20)

(6.21)

(6.22)

(6.23)
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7. Chapter: Experimental Procedure

7.1 Ground Truth Issues

The label "benign” or "malignant” cannot be assigned to an individual
microcalcification (MC). Instead, the label is assigned to a MC depending on whether
it was found in a benign or a malignant sample, after anatomopathological
examination (Temmermans, 2014). This means that no ground truth exists for the
actual microcalcifications (MCs). As a consequence, benign MCs may exist in
malignant samples, and incorrectly labelled as malignant. Since the blocks are not
analysed completely, there is a low chance that malignant cells exist in the unanalysed

part and therefore there is a low chance of false-negatives (Grimes et al., 2001).

In order to understand the ground truth issues that motivated in the devising of
the algorithm described in this thesis, the following problem is illustrated. Two MCs
are given as training examples to a classifier. One of these MCs is benign and was
incorrectly classified as malignant and the other one is malignant. The MCs are
characterized by shape features indicating benignity and malignancy, respectively. By
introducing these training examples to a classifier, the latter learns that two different
sets of shape features, with benign and malignant characteristics, correspond to the
same class. As a result, there is degree of ambiguity when the classifier is asked to

label a new instance (Papavasileiou et al., 2015).

Figures 7.1 and 7.2 show examples of benign MCs with malignant

characteristics and malignant MCs with benign characteristics, respectively.

Figure 7.1: Benign MCs incorrectly classified as malignant (Temmermans, 2014)
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Figure 7.2: Malignant MCs incorrectly classified as benign (Temmermans, 2014)

7.2 Proposed Approach

The ground truth problem can be bypassed if the MCs are firstly grouped
explicitly based on their shape. By clustering MCs according to their shape-features,
similar shapes are grouped together in clusters. This way, the classifier is trained to
classify MCs in the correct cluster, i.e. it learns to distinguish among different shapes
of MCs, independently of their original class labels (Papavasileiou et al., 2015). So,
the classifier classifies objects exclusively based on their shape features and without
any knowledge of the class label that was assigned during the histopathological

examination.

In order to do this an intermediate step of Clustering is introduced in the
pipeline of the CAD system between the Feature Extraction and Classification steps.
The CAD system's first steps of pre-processing, signal extraction and feature

extraction remain the same as described in chapter 3.
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Figure 7.3: Proposed approach of the CAD system

7.3 Experiments
The dataset consists of 3685 MCs, each represented by the 20 features
described in the 6th chapter. The performance of the proposed approach is
investigated on three sets of features:
o the 8 shape features, F — F®
o the 12 boundary zone features, £, — F*”and

e the combination of both groups of features, Fi(l) - Fi(zo).

For each of the aforementioned cases, the first step is to apply 10-fold cross

99



Automatic Detection of Suspicious Microcalcifications in high Resolution 3-D Breast Imaging

validation to the data. In general, in k-fold cross-validation, the original sample is
randomly partitioned into k subsamples. One of these subsamples is used as the
validation data for testing the model, and the remaining k — 1 subsamples are used as
training data. The cross-validation process is then repeated k times, known as k folds,
where each of the k subsamples are used once as data for testing. So, in the case of 10
fold cross validation, 10 partitions of data are generated. Each partition consists of
one set on which training is going to be applied (training set) and one set on which the
model is going to be tested (testing set).

Next, the training set of each of the 10 partitions is grouped in clusters. The

following algorithms are used as clustering algorithms:

e K-means

e Weighted K-means

e Intelligent Weighted K-means

e Minkowski Weighted K-means

e Intelligent Minkowski Weighted K-means

In cluster analysis one of the biggest difficulties is the definition of the number
of clusters a priori. This cannot be done in an effective way since knowing the number
of clusters before performing the clustering itself would require knowing the structure
of the data, which is actually the goal of the cluster analysis. From the algorithms
described in the 5th Chapter only the IWK-means and IMWK-means algorithms
define a way to find the ideal number of clusters. For the other clustering algorithms,
the number of generated clusters is varied from 2 to 10, thus resulting in 9 different
cases of clustered data. Then, in order to decide which of these sets of clusters should

be kept, a new measure is introduced that was named “entropy”.

This “entropy” illustrates the distribution of the number of objects belonging
to class “Benignity” and class “Malignancy” in each cluster. Let “a” be the number of
objects belonging to class “Benignity” and “b” the number of objects belonging to

class “Malignancy” in a cluster. Then the entropy is defined as:

min(a, b) (7.1)

Entropy = max(a,b)

Entropy can take values between 0 and 1. The maximum value of entropy
(maxentropy=1) is achieved when a=b, i.e. when the numbers of objects belonging to
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these two classes are equal. The minimum value of entropy (Minentropy=0) is achieved
when a=0 or b=0, i.e. when all the objects in this cluster belong to class “M” or class
“B” respectively. The following figure illustrates an approximation of the way the
entropy is distributed.

1

09F

08}

07

06}

051

04}

03F

02}

01F

0

1 1 1 I 1 I
0 500 1000 1500 2000 2500 3000 3500 4000

a=0or a=3685 or
b=0 b=3685

Figure 7.4: Entropy's distribution

Subsequently, for each of the 9 different cases of clustered data the mean
entropy over its 10 folds is calculated. Finally, as ideal number of clusters is selected
the clustering partition whose mean entropy is the lowest, because the lower the

entropy of a cluster, the clearer the designation of a cluster as benign or malignant.

Each of the clusters is characterized as benign or malignant with a certain
probability based on this entropy and thus each object of a cluster is assigned a

corresponding label with the same probability.

Following in the classification step, the clustered objects are introduced to a
classifier, either to an Artificial Neural Network or a Support Vector Machine. The
classifier is trained based on the clustered training set to classify the objects to the
correct cluster, i.e. to the correct shape. Next, the classifier is asked to predict the

output cluster for each of the 10 testing sets.

After classification, an intermediate step of binary classification is performed.
Each of the 3685 MCs have been classified to a cluster for which the label benign or
malignant is known. Thus each MC is assigned a corresponding label. Then, this label
is compared to the original ground truth and the percentage of “correctly” classified

objects is calculated.
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The final aim is the characterization of a sample as benign or malignant. For
this purpose, the binary classification results for individual MCs are adopted and a
threshold on the amount of objects classified as malignant is defined. Therefore, a
sample is classified as malignant if the number of MCs that have been characterized
as malignant exceeds a threshold. Otherwise, the sample is considered benign. By
varying the threshold, a higher sensitivity can be achieved in return of a lower

specificity and vice versa (Temmermans, 2014).

Another approach for the characterization of the sample is by weighting each
MC with a weight linear to the probability of the cluster to which the MC belongs.
Since each MC is assigned a cluster label and each cluster has a probability of being
malignant, the MC's cluster probability can now be used as a weight when
determining the sample’s class (Papavasileiou et al., 2015). In this way, the MCs that
belong to a cluster with a high probability of being benign or malignant (low entropy)
will be assigned a higher weight compared to the MCs of clusters with lower
probability. Thus, the MCs that belong to clusters which are clearer characterized as
benign or malignant will contribute more in the characterization of the sample. Then,

the threshold technique is used as described previously.

Finally, the results of the sample's classification are compared to the outcome
of the anatomopathological examination. Thus, the accuracy, sensitivity and
specificity of the correctly classified samples are calculated.

Accuracy is defined as the percentage of correctly classified objects and it
indicates the ability of the system to make correct predictions on unknown data. The
Accuracy is defined as follows:

| ~ TN + TP
CCUracy = TN+ TP+ FN + FP

where TP: True Positives, FP: False Positives, TN: True Negatives, FN False

Negatives.

Sensitivity or true positive rate is defined as the percentage of correctly
classified malignant samples and it indicates the ability of the system to make correct
diagnosis. Sensitivity is defined as follows:

o rp
Sensitivity =TP T FN
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Specificity is defined as the percentage of correctly classified benign samples
and it indicates the ability of the system to correctly identify the benign cases. It is
defined as follows:

L TN
Specificity = TN 1 FP

The approach described in this section introduces two novelties. Firstly, the
issues that have emerged concerning each MC's ground truth are avoided. Secondly,

there is a shift from binary classification to a probability-based classification.
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8. Chapter: Results and Discussion

In this chapter the results of the experiments described in Chapter 7 are
presented. At first, the binary classification results are presented and then the results
of sample's classification. The results concern the experiments that were conducted
with the application of the following combinations as far as the clustering algorithms

and the classifiers are concerned:
Clustering Algorithm Classifier
K-means (Cityblock distance) Artificial Neural Network
K-means (Euclidean distance)  Artificial Neural Network
K-means (Cityblock distance) Support Vector Machines
K-means (Euclidean distance) Support Vector Machines
Minkowski Weighted K-means  Artificial Neural Networks
Minkowski Weighted K-means  Support Vector Machines

As discussed in Chapter 7, the performance of the new approach is
investigated on 3 groups of features; the 8 shape features, the 12 boundary zone

features and on the combination of both (20 features).

Section 8.1 presents the classification results at the microcalcification level,

while section 8.2 presents the final results of the sample’s classification.

8.1 Individual Classification Results
At the microcalcification level the label assigned to an individual MC is
compared to the original ground truth and thus the accuracy of the binary
classification is obtained. In the following tables (8.1-8.3), the mean and the standard
deviation of the accuracy for different cases of "ideal" number of clusters are
illustrated. It is reminded that the number of clusters is obtained according to the

criterion of minimum entropy as this described in Chapter 7.

In Tables 8.1 and 8.2 the results of accuracy for clustering with K-means with
two different distance measures; squared Euclidean distance and Cityblock distance,
respectively, are presented.
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Table 8-1: Results of accuracy for squared Euclidean distance using K-means as
clustering algorithm, for features 1-8 (shape features), 9-20 (boundary zone features)
and for the ensemble of all features.

I
- ANN SYM ANN SVM ANN SVM ANN SVM

1-8 64.04 63.80 6583 6537 6488 64.69 6581 65.86
3.10 2.85 3.47 3.22 3.16 3.43 2.42 2.93
9-20 59.73 5938 6032 6041 60.60 59.62

2.22 1.55 4.01 4.02 1.48 1.68

ALL 64.02 6282 6464 6247 6415 63.07 65.00 63.58
2.30 2.47 2.27 2.11 2.77 2.59 2.88 1.89

Table 8-2: Mean and standard deviation results of accuracy using K-means algorithm
and Cityblock distance, for features 1-8 (shape features), 9-20 (boundary zone
features) and for the ensemble of all features

I
- ANN SVYM ANN SVYM ANN SVM ANN SVM
1-8 66.21 6586 67.14 6725 67.38 67.41
2.03 2.05 3.11 2.62 2.34 2.39

9-20 58.62 5872 5935 59.78 59.73 60.24 60.65 60.19

3.30 SESi 2.40 3.14 2.78 3.06 2.56 3.09
ALL 64.10 6252 63.80 6252 6453 63.20

1.60 2.06 2.01 1.75 2.20 1.94

In Tables 8.3-8.5, the results of accuracy for clustering with MWK-means and
optimal values of B are presented. In order to find the optimal value of g in the
MWK-means, the values of 5 are varied such that 8 € [1.0,5] with steps of 0.1. Only

the cases which resulted in higher accuracy are shown.
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Table 8-3: Mean and standard deviation results of accuracy using MWK-means
algorithm on the first set of shape features (Features 1-8)

IR 'ANN

e 67,19
2,08

=
(o]

67,46
2,62
67,08
2,26
67,52
1,58
66,38
2,93

SVM

67,30
2,53

67,79
2,18
67,11
2,58
67,60
1,30
66,13
2,49

ANN
66,51
5,00
67,35
2,24
67,35
2,60
67,55
3,28
67,49
1,88
66,32
3,95

66 43
4,14
67,87
2,09
67,11
2,05
67,44
3,03
67,35
2,41
67,08
3,34

ANN
67,90
2,26
68,03
2,17
67,65
2,28
67,49
2,63
67,19
1,99
66,14
1,83

68 79
2,51
68,01
2,41
65,65
3,62
67,63
2,19
67,49
2,09
66,43
2,19

68,03
1,96

65,81
4,59
64,83
5,88
67,38
2,21

67,98
1,97

67,03
&l
66,78
1,86
66,83
2,23

Table 8-4: Mean and standard deviation results of accuracy using MWK-means
algorithm on the second set of boundary zone features (Features 9-20)

HI

ANN

=
O

57,70
3,71
59,59
1,91
58,57
3,06
A 60,32
2,92

SVM

59,97
4,20
59,97
2,03
57,85
2,95
60,08
3,03

ANN
58,7
2,99
58,86
2,72
60,93
3,89
60,19
2,98
59,62
2,10

58,64
2,92
57,88
3,40
59,38
3,58
60,24
3,15
59,65
1,47

ANN
58,56
2,61
58,86
2,58
61,06
2,69
61,14
2,50
60,35
2,46

57,99
3,27
58,84
2,74
60,98
2,24
61,41
1,90
60,70
2,42

ANN
58,91
1,79
58,37
2,79
59,92
2,84

61,19
2,59

59,32
2,47
59,03
3,07
59,81
2,69

61,30
3,73

Table 8-5: Mean and standard deviation results of accuracy using MWK-means
algorithm on both sets of features (Features 1-20)

R 'ANN

(e | 66,05
2,73

1,9

A 64,48
2,48

SVM
64,99
3,14

63,53
1,95

ANN
66,38
2,99
66,47
2,05
64,78
2,21

65 37
3,36
64,80
1,55
63,15
2,64

ANN
66,76
2,74
65,54
1,50
66,32
2,57

66 16
3,49
64,50
2,11
65,08
2,47

ANN
64,19
4,12
66,87
2,09
65,51
2,91

64 64
4,57
65,35
1,57
63,20
2,70
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8.2 Sample's Classification Results
In this section the best results of the sample’s classification are presented. As
discussed in chapter 7, two approaches were applied on the sample’s classification;
the one where the MC's cluster probability is used as a weight and the other where
this weight is not taken into account.

Table 8-6: Results of sample's classification accuracy without taking into account the
cluster's probability, for features 1-8 (shape features), 9-20 (boundary zone features)
and for the ensemble of all features

- Kmeans-sqEuclidean | Kmeans- Cityblock

Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec.
981 213 717 808 617 626 100 21.3
923 426 606 942 234 646 942 319
846 553 606 769 426 657 904 383
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Figure 8.1: Accuracy (blue line), sensitivity (green line) and specificity (red line) for
an increasing threshold (from 10 to 100 percent), for K-means with squared
Euclidean distance and (a) shape features, (b) boundary zone features, (c) the
ensemble of all features (non-weighted sample classification)
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Figure 8.2: Accuracy (blue line), sensitivity (green line) and specificity (red line) for
an increasing threshold (from 10 to 100 percent), for K-means with Cityblock
distance and (a) shape features, (b) boundary zone features, (c) the ensemble of all
features (non-weighted sample classification)

Table 8-7: Results of sample's classification accuracy taking into account the cluster's
probability, for features 1-8 (shape features), 9-20 (boundary zone features) and for
the ensemble of all features

- Kmeans-sqEuclidean | Kmeans- Cityblock

Sens.  Spec. Sens.  Spec. Sens.  Spec.
98.1  27.7 72.7 100 42.6 64.6 100 255
942 255 657 808 489 66.7 96.2 34.0
942 426 636 827 426 636 962 27.7

109



Automatic Detection of Suspicious Microcalcifications in high Resolution 3-D Breast Imaging

08+ g 08
LX
a7
06
05
04
03/
02

al-

(©)
Figure 8.3: Accuracy (blue line), sensitivity (green line) and specificity (red line) for
an increasing threshold (from 5 to 100 percent), for K-means with squared Euclidean
distance and (a) shape features, (b) boundary zone features, (c) the ensemble of all
features (weighted sample classification)
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Figure 8.4: Accuracy (blue line), sensitivity (green line) and specificity (red line) for
an increasing threshold (from 5 to 100 percent), for K-means with Cityblock distance

and (a) shape features, (b) boundary zone features, (c) the ensemble of all features
(weighted sample classification)

8.3 Examples of clustered microcalcifications

In this section, some examples of clustered MCs in the generated clusters are
illustrated.
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Figure 8.5: Examples of clustered MCs, characterized as malignant and benign
during histopathological examination

111



Automatic Detection of Suspicious Microcalcifications in high Resolution 3-D Breast Imaging

Figure 8.6: Examples of clustered microcalcifications, both characterized as
malignant during histopathological examination
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Figure 8.7: Examples of clustered microcalcifications, both characterized as benign
during histopathological examination
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Figure 8.8: Examples of clustered microcalcifications, characterized as benign and
malignant during histopathological examination
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Figure 8.9: Examples of clustered microcalcifications both characterized as
malignant during histopathological examination

8.4 Discussion

From Tables 8.1-8.5, it becomes obvious that ANNs and SVMs show very
similar performance (Papavasileiou et al., 2015), despite the fact that ANNs need
more processing time and more processing resources than SVMs. In addition, the
legacy features (shape features 1-8) outperform the boundary zone features with
accuracies ranging from 63.80% to 68.79% and from 57.70% to 61.41%, respectively.
The shape features show similar performance to the ensemble of all features with
accuracies ranging from 62.47% to 66.87%. These are opposed to (Temmermans et al,
2013; Temmermans, 2014) where the same problem of classifying MCs was explored
but without the pre-clustering step. In that approach the accuracy results for the shape
features, the boundary zone features and the ensemble of all features were: from
64.3% to 68.7%, from 60.5% to 73.2% and from 65.4% to 73.8% respectively. The
latter reveals that the previous approach (Temmermans et al, 2013; Temmermans,
2014) without the pre-clustering phase showed slightly higher overall accuracy at the
calcification level (Papavasileiou et al., 2015).

However, it should be mentioned that these results should be interpreted
carefully because of the ground truth issues. Moreover, the binary classification
consists an intermediate step of calculating the final sample classification results in

this thesis approach.

At the sample level (Tables 8.6-8.7), the ultimate goal is the optimization of
sensitivity, with respect to high levels of specificity and accuracy. This is because the

percentage of correctly classified malignant samples is more important than the
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accuracy itself. Both in the weighted and the non-weighted approach the shape
features outperform the boundary zone features and the ensemble of features. In more
detail, the resulted percentages for the non-weighted approach are; from 80.8% to
100%, from 92.3% to 94.2% and from 76.9% to 90.4%. For the weighted approach
the corresponding percentages are; from 98.1% to 100%, from 80.8% to 96.2% and
from 82.7% to 96.2%. From the latter it is apparent that the shape features outperform

the other feature categories.

The best result can be reached with the weighted approach, with K-means
using the 8 traditionally used shape features, the Cityblock distance and 9 clusters.
This approach delivers a sensitivity of 100%, a specificity of 42,6% and an accuracy
of 72,7% for a threshold of 15% malignant MCs per sample. This is respectively an
improvement of 2%, 2,6% and 2,7% compared to the state of the art (Temmermans et
al, 2013; Temmermans, 2014).

From the figures 8.5-8.9 it becomes obvious that by clustering MCs according
to their shape features, similar shapes are grouped together in clusters. Especially,
from the figures 8.1 and 8.8 the ground truth issues are illustrated because even
though these MCs share common shape features, they were not classified as the same

(as malignant or as benign) during the histopathological examination.
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9. Chapter: Conclusions

Breast cancer is one of the most common types of cancers and a leading cause
of death worldwide. Its diagnosis in an early stage may contribute to its effective
treatment. For this purpose, many imaging modalities have been developed in order to
find suspicious lesions and microcalcifications (MCs), i.e. tiny spots of calcium that
may indicate malignancy. Mammography is the current standard procedure for
imaging the breast tissue. However, the characterization of MCs as benign or
malignant based on their appearance is a difficult task because of the superposition of
breast tissue and thus the alteration of their real appearance. In case of suspiciousness,
a biopsy is conducted and the extracted tissue is pathologically analysed for the
presence of cancer cells. However, the MCs themselves are mostly not analysed and

therefore ground truth exists for the tissue samples but not for the individual MCs.

The current thesis presented a novel classification approach for MCs extracted
from core biopsy tissue samples digitized using micro-CT, a high-resolution 3D
imaging modality. The aim of this master thesis was the investigation of whether the
introduction of a clustering step before classification could improve the sample’s

classification results.

By clustering MCs according to their shape-features, similar shapes are
grouped together in clusters. This way, the classifier is trained to classify MCs in the
correct cluster, i.e. it learns to distinguish among different shapes of MCs,

independently of their original class labels.

K-means and Minkowski Weighted K-means (MWK-means) were selected as
clustering algorithms while Artificial Neural Networks (ANNSs) and Support Vector
Machines (SVMs) as classification algorithms. In this framework, MCs that share
common shape features are grouped together in clusters. Thus, clusters of MCs with
common shape characteristics are formed. In addition, each cluster is characterized as
benign or malignant with a certain probability. After clustering and classification, an
intermediate step of binary classification is performed which will then be used for the
classification of the sample, by varying a threshold of the number of malignant MCs

that are required in order to characterize the sample as malignant.

The results at the classification level revealed that the two clustering
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algorithms and the two classification algorithms statistically show similar
performance. As far as the processing time and resources are concerned though,
ANNs are far more demanding. In addition, the traditionally used shape features
outperform the boundary zone features and show similar performance to the ensemble
of all features. It should be mentioned that these results should be interpreted carefully

because of the ground truth issues at the calcification level.

However, the binary classification consists an intermediate step of calculating
the final sample classification results. At the sample level the ultimate goal is the
optimization of sensitivity. For the characterization of the sample two approaches
were proposed; a weighted and a non-weighted. Both in the weighted and the non-
weighted approach the shape features outperform the boundary zone features and the
ensemble of all features. The best result is reached with the weighted approach which
delivers a sensitivity of 100%, a specificity of 42,6% and an accuracy of 72,7% for a
threshold of 15% malignant MCs per sample. This is an improvement of 2%, 2,6%

and 2,7% compared to the state of the art.

The achievement of 100% of sensitivity allows to avoid the case of missing
any malignant samples. This improvement is the result of avoiding the bias introduced
by the fact that the ground truth is distorted, i.e. the fact that malignant samples may
contain unsuspicious calcifications which are considered malignant during the
learning process. With this approach some unnecessary anatomopathological
investigations might be avoided. Furthermore, if the future 3D high-resolution
imaging would be applicable in vivo, the number of unnecessary biopsies could be
decreased, thus reducing any unnecessary expenses and physical and mental
discomfort for the patient.

The approach of this thesis introduces two novelties; the ground truth issues
concerning each MC's class are bypassed and there is a shift from binary classification
to a probability-weighted classification. The vast amount of clustering algorithms and
classifiers as well as the use of various approaches for incorporating the cluster
probabilities in the classification of the sample hold the potential to further improve

these results.
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