
ON CONTENTION MANAGEMENT FOR DATA
ACCESSES IN PARALLEL AND DISTRIBUTED

SYSTEMS

A Thesis
Presented to

The Academic Faculty

by

Xiao Yu

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engeering

Georgia Institute of Technology
May 2015

Copyright c© 2015 by Xiao Yu

ON CONTENTION MANAGEMENT FOR DATA
ACCESSES IN PARALLEL AND DISTRIBUTED

SYSTEMS

Approved by:

Professor Sudhakar Yalamanchili,
Committee Chair
School of Electrical and Computer
Engeering
Georgia Institute of Technology

Professor George Riley
School of Electrical and Computer
Engeering
Georgia Institute of Technology

Professor Sudhakar Yalamanchili,
Advisor
School of Electrical and Computer
Engeering
Georgia Institute of Technology

Professor Linda Wills
School of Electrical and Computer
Engeering
Georgia Institute of Technology

Professor Bo Hong
School of Electrical and Computer
Engeering
Georgia Institute of Technology

Professor Karsten Schwan
Department of Computer Science
Georgia Institute of Technology

Date Approved: 11 December 2014

Dedicated to

My parents, who support me without doubt,

My teachers, who inspire me by their personal examples, and

My friends, who contribute to my countless enjoyable moments.

iii

ACKNOWLEDGEMENTS

I would like to use this opportunity to express my gratitude to the many people

whom, without their support, this thesis would not have been possible.

I would like to thank Dr. Bo Hong. Dr. Hong granted me the opportunity to

a joyful journey of doctoral study. He introduced me to the richness and depth of

parallel computing. I am very grateful to Dr. Hong for his unwavering trust and

belief in me, for sharing with me his knowledge and experience, for untiringly guiding

me on the right trail and for his patience in allowing me to explore. I would also like

to thank Dr. Sudhakar Yalamanchili who is extremely kind to provide me sparkling

ideas and broaden my view on the thesis topics, and spent days and nights to critique

on my thesis.

I would like to thank my dissertation committee members: Dr. George Riley, Dr.

Karsten Schwan, and Dr. Linda Wills for taking time to serve on my thesis committee

and give insightful suggestions and comments on my research.

I want to give my thanks to my fellow lab members. I would like to thank Zhengyu

He who collaborated with me on my first several years of research and provided me

numerous advices. I would like to thank Weiming Shi, Jiadong Wu for their kind

assistance and suggestions on my research works. I also want to thank all of my

friends who make my doctoral study a most pleasant experience.

Last but not least, I owe my Ph.D. degree to my dearest family: my father Peng-

nian Yu and my mother Huili Zhang. They sacrifice many things to give me a won-

derful life; they provide me courage and strength when I face challenges; they believe

in me and support me with no doubt. I give my deepest gratitude to them.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

SUMMARY . xii

I INTRODUCTION . 1

1.1 Problem Statement . 5

1.2 Solution Summary . 6

1.3 Structure of the Dissertation . 7

II DATA CONTENTION ON TRANSACTIONAL MEMORY . . . 8

2.1 Background and Related Work . 9

2.1.1 Summary of TM Systems . 10

2.1.2 Related Work on Performance Modeling of TM 11

2.1.3 Related Work on Contention Management Policies 12

2.2 Performance Modeling of Transactional Memory 13

2.2.1 Abstraction of the Target Computing Platform 14

2.2.2 Abstraction of TM-based Programs 15

2.2.3 Analytical Model of TM-based Programs 21

2.2.4 Experimental Result . 28

2.3 Adaptive Contention Management for STM Systems 36

2.3.1 Contention Management Strategies 39

2.3.2 The Necessity of Adaptive Contention Management 41

2.3.3 Profiling-based Adaptive Contention Management 43

2.3.4 Implementation . 50

2.3.5 Experimental Results . 52

2.4 Summary . 59

v

III DATA CONTENTION ON GEO-REPLICATED TRANSACTIONAL
DATA STORE . 61

3.1 Related Work . 64

3.2 Systems Design Options Overview 65

3.2.1 The EBR and RBE Systems 65

3.2.2 Replication Protocol Schemes 66

3.3 System Models . 69

3.3.1 Models of EBR and RBE Execution 70

3.3.2 Models of Replication Protocol Schemes 74

3.3.3 Combined System Models . 79

3.4 Experimental Results . 80

3.4.1 Model Validation . 80

3.4.2 Study of System Design Options 83

3.5 Summary . 86

IV NETWORK RESOURCE CONTENTION ON MAPREDUCE SYS-
TEMS . 87

4.1 Background and Prior Work . 90

4.1.1 MapReduce Overview . 90

4.1.2 Locality in MapReduce Systems 92

4.1.3 Related Works . 95

4.2 Improving Map-locality for Dual-input Applications 100

4.2.1 Motivation for Dual-Hadoop 101

4.2.2 Dual-Hadoop Design Challenges and Overview 103

4.2.3 Dual-Hadoop Design Details 105

4.2.4 Experimental Results . 113

4.3 Improving Map/Reduce Co-locality with Grouping-Blocks Strategy . 119

4.3.1 Problem Overview for Accommodating Grouping-Blocks Strat-
egy . 122

4.3.2 Detailed Techniques for Data Placement 125

4.3.3 Detailed Techniques for Task Scheduling 130

vi

4.3.4 Experimental Results . 133

4.4 Summary . 143

V CONCLUSION . 145

REFERENCES . 148

vii

LIST OF TABLES

1 State transition rate when the system is at state (Ntr, Nco) 26

2 State transition rate when the system is at state (Ntr, Nco, Nrs) 29

3 Execution Characteristics of STAMP Benchmark 30

4 Overhead Factors for the Micro benchmark, o, a and b are defined in
Eq. 9 . 31

5 Summary of the tested CMs . 54

6 Trade-offs Among Design Options. 69

7 Variables Used in the Execution Models 71

8 Useful Statistics and Hints. 126

9 Detailed Time(sec) for the Impact of Grouping-blocks Strategy. . . . 138

viii

LIST OF FIGURES

1 Illustration of temporal and spatial conflicts during the execution of
TM-based Program . 15

2 State Transition Diagram of the TM System Model 21

3 State Transition Diagram of the TM System Model with Back-off Strat-
egy . 28

4 Comparison of Experiment Execution and Model Prediction of STAMP
Benchmark . 32

5 Comparison of Experiment Execution and Model Prediction on TinySTM
System . 33

6 Comparison of Experiment Execution and Model Prediction on Swis-
sTM System . 34

7 Impact of the Number of CDR points 35

8 Impact of Thread-Related Overhead 35

9 Impact of the Conflict Rate and Back-off Time 37

10 Comparison of different contention managers on different benchmarks
and different platforms. (TinySTM, 16 threads) 41

11 Periodic profiling process of CMs for the proposed adaptive ACM scheme 44

12 Adjustment of Profiling Interval and Profiling Length after the Profil-
ing Ends . 47

13 A snapshot of the added code of ACM for TinySTM 51

14 Performance comparison of ACM and static CMs on x86 platform for
TinySTM. 55

15 Performance comparison of ACM and static CMs on powerpc platform
for TinySTM. 56

16 Performance comparison of ACM and static CMs on x86 platform for
RSTM. 57

17 Performance comparison of TPM, CPM and APM on the synthetic
benchmark (RSTM, x86). 59

18 Models of EBR and RBE Systems . 70

19 Validation of Execution Models. The y-axis shows the error rate; The
x-axis shows the blocking probability (β). 82

ix

20 Validation of Replication Protocols. Bars show the average, min and
max error rate. 82

21 Impact of Arrival Rate λ and Average Network Latency on Execution
Time for Two System Types. 84

22 Impact of Average Network Latency on Maximum Throughput for Two
System Types. 84

23 Impact of Average Network Latency on Execution time Under Max
Throughput for Two System Types. 84

24 Comparison Between SP and FP. 84

25 Comparison Between SP and EP. 84

26 Impact of Time Drift on EP. 84

27 Phases of A MapReduce Program, including: (1) read input from splits;
(2) apply map function; (3) shuffle intermediate data; (4) apply reduce
function; (5) write output. 91

28 Data Access in MapReduce Systems. 96

29 Dual-Hadoop Extension System Overview 104

30 Incidence Matrix Example . 108

31 Algorithm for the Static Grouping Phase 109

32 Algorithm for the Dynamic Dispatching Phase 110

33 Dual-Hadoop Scheduling Performance Comparison with Default Hadoop.
sloc-* and rand-* are workaround methods of Hadoop with replica-
tion factor set to 3 and 16 . 114

34 Performance Impact of Cache Capacity And Number of Tasks 115

35 Performance Impact of Various Configurations For Pattern Matching.
sloc is a workaround method of Hadoop. 118

36 Performance Comparison for PageRank 119

37 Demonstration of the Benefit of the Grouping-blocks Strategy. When
blocks are scattered, it is difficult to satisfy both map and reduce lo-
cality. Minimum off-switch data access can be achieved by grouping
blocks in a few racks. 120

38 Demonstration of the Impact of the Grouping-blocks Strategy. When
the data blocks of the Sort application were grouped, the job execution
time of both Sort and TextGen was improved. 121

x

39 Demonstration of loss of parallelism. Because we force the tasks to
execute on the G-racks to reduce off-switch data access, the job can-
not execute more tasks even if the cluster is under load. Moreover,
other jobs may compete for the G-rack which further degrades the
parallelism. 124

40 Candidate Selection for Data Placement 128

41 Location Decision for Data Placement 131

42 Discovering the G-rack Locations . 132

43 Applying the Grouping-blocks Strategy to Task Scheduling 133

44 Deciding to Use the Grouping-blocks Strategy 134

45 Impact of Grouping-blocks Strategy with Different Amount of G-files
on a Workload with Three Applications: Sort, TextGen and Word-
Count. Sort has improvement up to 48% on job execution time; TextGen
56%. 137

46 Impact of Grouping-blocks Strategy with Different G-file and G-racks
size on a Workload of Sort. Speedup increases with G-file size and
decreases with G-racks size. 139

47 Effectiveness of Candidate Selection. We compare three cases: no
grouping-blocks strategy (“off”), random selection (“rand”) and our
mechanism (“muRs”) in Figure 40. Our mechanism has an average of
19% speed up over random selection. 139

48 Avoiding the “Sticky” Effect in Task Scheduling. Figure shows the
number of running maps and reduces for each job. With the checking
mechanism, when the capacity of the pool was changed (time around
200-300), the grouping-blocks strategy was turned off and the execution
was not limited to G-racks. 140

49 Avoiding the “Conflict” Effect in Data Placement and Task Schedul-
ing. We compare between two data placement approaches: random
distribution (“rand dist”) and probability distribution (“prob dist”) in
Figure 42; and two task scheduling approaches: with/without checking
conflict. 141

50 Impact of Grouped Blocks on Map Locality. The figure shows the im-
pact of the number of replication and size of G-racks (Ri) on percentage
of off-switch map tasks. 142

51 Impact on Percentage of Occupied G-racks. The figure shows the im-
pact of the amount of G-files, the size of G-racks (Ri) and the job
arrival interval (T). 143

xi

SUMMARY

Data access is an essential part of any program, and is especially critical to the

performance of parallel computing systems. The objective of this work is to inves-

tigate factors that affect data access parallelism in parallel computing systems, and

design/evaluate methods to improve such parallelism - and thereby improving the

performance of corresponding parallel systems. We focus on data access contention

and network resource contention in representative parallel and distributed systems,

including transactional memory system, Geo-replicated transactional systems and

MapReduce systems. These systems represent two widely-adopted abstractions for

parallel data accesses: transaction-based and distributed-system-based. In this thesis,

we present methods to analyze and mitigate the two contention issues.

We first study the data contention problem in transactional memory systems.

In particular, we present a queueing-based model to evaluate the impact of data

contention with respect to various system configurations and workload parameters.

We further propose a profiling-based adaptive contention management approach to

choose an optimal policy across different benchmarks and system platforms. We

further develop several analytical models to study the design of transactional systems

when they are Geo-replicated.

For the network resource contention issue, we focus on data accesses in distributed

systems and study opportunities to improve upon the current state-of-art MapReduce

systems. We extend the system to better support map task locality for dual-map-

input applications. We also study a strategy that groups input blocks within a few

racks to balance the locality of map and reduce tasks. Experiments show that both

xii

mechanisms significantly reduce off-rack data communication and thus alleviate the

resource contention on top-rack switch and reduce job execution time.

In this thesis, we show that both the data contention and the network resource

contention issues are key to the performance of transactional and distributed data

access abstraction and our mechanisms to estimate and mitigate such problems are

effective. We expect our approaches to provide useful insight on future development

and research for similar data access abstractions and distributed systems.

xiii

CHAPTER I

INTRODUCTION

Parallel and distributed computing systems have become indispensable for our mod-

ern information infrastructure. This trend is driven by the ever-growing availability

of computing resources thanks to the decreasing prices of hardware and the cloud

technology which provides computing resources as a service. Given the potential

abundance in available computation power, it is essential to fully exploit the par-

allelism in applications to effectively harness such power. Data access is a critical

part in many applications. After all, programs rely on data accesses (read and write)

to feed computation. Accordingly, parallelism in data access is one of the most sig-

nificant aspect in parallel and distributed computer systems. In this dissertation,

we study some of the parallelism problems of data access in representative modern

parallel and distributed systems.

Data access is the collection of read or write operations in programs. Various

layers of abstraction for data access exist in hardware and software stacks to provide

an easy-to-use interface and hide the details and intricacies for the upper-layer users.

For example, in many languages such as C and Java, built-in read/write functions are

provided for various storage devices such as disk and network; the clients call these

functions without having to know the internal details such as operating system pages,

disk head movement or network protocol. In the context of parallel and distributed

systems, two types of abstractions are widely-used and extensively studied:

1

• Transaction-based Abstraction, which ensures operations (especially data ac-

cess) inside a transaction comply to a (sub)set of properties: Atomicity, Con-

sistency, Isolation and Durability(ACID). Read, write, and computation are al-

lowed within a transaction. Transactions interact with the system state through

reading and writing on the abstraction of shared data. The set of properties

provide intuitive requirements on how a transaction interacts with the rest of

the system so that upper-level users can logically reason about the program.

For example, the intermediate modification of shared data inside a transaction

should not be visible to other transactions; concurrent transactions modifying

the same set of shared data should appears in some sequential order for the user.

With such abstraction, the programmability of many parallel applications can

be significantly improved: the programmer only need to locally consider the

share-data access and mark the corresponding code inside a transaction; the

system underneath the abstraction level ensures the correctness of concurrent

access.

• Distributed-system-based Abstraction, which grants users illusion of data access

no different than local storage while hides the actuality of a cluster of storage

devices. With the growing size of applications, it is often not possible to hold

the application data inside a single device. On the other hand, granting data

access to multiple distributed storages brings out many complex and tedious

works that upper-level users are not willing to care about. These includes

maintaining meta data, providing fault tolerance and availability, and last but

not least guaranteeing throughput for concurrent data access. Examples of

such abstraction include distributed file systems (DFS) [50], distributed shared

memory cache [76] and shuffling services in MapReduce paradigm [21]. Using

all of these abstractions, upper-level users just utilize some read/write functions

(such as in DFS) or iterator objects (such as in shuffling service in MapReduce)

2

and do not need to care about the details such as how data is streamed from

different remote locations.

Note that the two abstraction types are orthogonal, i.e., a distributed-system-

based abstraction can also maintain some ACID properties. To this extend, we can

categorize several popular data access abstractions into three classes: transactional,

distributed and transactional-distributed.

The data access abstraction maintains the functionality required by the upper user

levels, e.g., the transactional properties and the distributed access through network.

Furthermore, in the context of parallel systems, it takes the responsibility of exploiting

the parallelism of concurrent data access as well. A poorly-designed implementation

of such abstraction can greatly hinder the performance of user applications as the

performance of a parallel program is limited by its sequential part, according to

Amdahl’s law. We identify two causes that degrades the parallelism in concurrent

data access corresponding to the two abstractions mentioned above:

• Data Contention. Such degradation to parallelism is inherited in the transaction-

based abstraction because the isolation property (the ‘I’ in ACID) often requires

serializability for transaction execution: the outcome of concurrent transactions

is equivalent to some sequential execution. When two transactions access the

same set of shared data, there may not exist a concurrent execution that satisfies

the serializability and therefore parallelism is limited. This can be illustrated

by a simple example: both T1 and T2 first read A and then writing A. Any

interleave of the four operations other than the cases that the write of T1 hap-

pens before the read of T2 or the write of T2 happens before the read of T1

violates serializablity. Because such degradation is caused by multiple transac-

tions having conflicted data access, we name it data contention.

• Network Resource Contention. The parallelism in the distributed data access

3

abstraction is best exploited by having the nodes accessing their local data.

However, this is not always the case and cross-node transfers are often required

by applications. Parallelism in such systems is therefore limited by the net-

work resource available, i.e., performance degradation is expected when multiple

streams of data access compete for a scarce network resource. Such contention is

especially severe when the network architecture is a tree hierarchical topology:

a cluster consists of many racks connecting to a top switch while each rack is

filled with leaf compute nodes. Under such circumstances, the top-rack switch

bandwidth could be a major factor limiting the overall system capability.

To study impact of data contention and network resource contention on mod-

ern parallel and distributed systems, we selected three representative systems that

attracted a lot of interests in the research community in recent years, namely, transac-

tional memory (TM), Geo-replicated transactional data store and MapReduce/Hadoop

systems.

The target architecture for TM is multi-core processors with shared memory. TM

is a promising replacement for locks to ease the programmability of multi-threaded

applications. By adopting the transaction-based abstraction, users wrap their code in

transactions and calls the TM data access functions (tm read and tm write) and the

underlying system takes care of the parallelism issue. This liberates the programmer

from using the traditional synchronization primitives (locks, barriers, etc.), which are

notorious difficult to program and debug, and vulnerable to failures and faults.

Geo-replicated transactional data store, as the name suggests, places multiple

replicas across several data centers in different regions to ensure a fault tolerance

level that can survive data center break down. Such system adopts both transac-

tional and distributed data access abstraction. A major difference between such

system and traditional transactional systems (including TM) is the impact of the

distributed-system-based abstraction, that is, the large latency of remote replica data

4

access because of the long distance among data centers. Such a distinct characteristic

suggests different (than traditional transactional systems) contention management

designs are needed.

Both transactional memory and Geo-replicated transactional data store adopts the

transactional data access abstraction, in which case the major cause of parallelism

degradation is data contention. Understanding the impact of data contention and

finding suitable contention management strategies are thus essential to improve the

performance of such systems.

The MapReduce programming model, in contrast to the above two transactional

systems, eliminates the transactional data access abstraction. Applications in MapRe-

duce runs two functions in order: map and reduce. Data access in such systems in-

cludes map input, shuffle between map and reduce and reduce output. Users define

the map and reduce function; and the system provides distributed-system-based ab-

stractions for the three phases of data access and handles the implementation detail

in the background. Both data access in map input and reduce output is wrapped

in a distributed file system abstraction while the system provide an iterator inter-

face abstracting away the process of collecting data from all maps for the shuffle

stage. Because of the prevalent demand of distributed data access, the scarcity of

network resource and the data-intensive nature of the MapReduce applications, net-

work resource contention becomes the major focus in improving the parallelism of

MapReduce systems.

1.1 Problem Statement

Given the above observation of two widely-used data access abstractions (i.e., transaction-

based abstraction and distributed-system-based abstraction) and two common cause

of parallelism degradation (i.e., data contention and network resource contention),

this dissertation seeks to study the data access patterns and related issues in three

5

representative systems, i.e., transactional memory, Geo-replicated transactional data

store and MapReduce systems.

Our contributions established in the dissertation aim to provide insights into the

following two problems:

• What is the impact of data and network resource contention on modern parallel

and distributed systems.

• What are the effective contention management methods to alleviate the men-

tioned two types of contentions.

1.2 Solution Summary

The dissertation makes the following contributions:

• An analytical study on the impact of data contention on TM. An queueing-

theory-based analytical model is adopted to evaluate the performance of TM [122].

• An adaptive approach to choose the optimal contention management policy

for TM. The approach selects the best policy during runtime based on the

performance history of the workload such that the system always maintains a

high throughput [53].

• An analytical study on the impact of data contention and various design options

to manage both transactional and distributed-system-based abstraction in Geo-

replicated transactional data store [125].

• A framework to extend the MapReduce implementation to support dual-map-

input applications and reduce the network resource contention for such appli-

cations [123].

6

• An extensive study on the impact of a grouping-block strategy to reduce the

network resource contention on both map and reduce input in MapReduce sys-

tems [124].

1.3 Structure of the Dissertation

The remainder of the dissertation is organized as follows: In Chapter 2, we study the

data contention problem in transactional memory systems. We provide a queueing-

based approach to model the impact of data contention and behavior of the system in

Section 2.2. Furthermore, we introduce an adaptive contention management strategy

in Section 2.3. In Chapter 3, we present a set of analytical approaches to study the

impact of data contention under various design options for the Geo-replicated trans-

actional data store. Chapter 4 discusses the network resource contention problem in

MapReduce system. The framework to reduce the network contention for dual-map-

input application is illustrated in Section 4.2. Section 4.3 discusses the grouping-block

strategy for both map and reduce data access. Finally, in Chapter 5, we conclude the

dissertation.

7

CHAPTER II

DATA CONTENTION ON TRANSACTIONAL MEMORY

Transactional memory (TM) [47] has emerged as a promising paradigm for parallel

programming. It is expected to improve programmability over the traditional lock-

based concurrency control mechanisms, which are known to have various issues such

as vulnerability to failures and faults, and the likelihood of deadlocks. With the rapid

trend shifting towards multi-core and multi-processor computing systems, intensive

research efforts are being dedicated to the investigation of TM.

TM-based programs wrap the codes of critical sections inside a transaction and

calls the read/write interface of the transaction-based abstraction provided by the

TM implementation to access data. The implementation ensures the atomicity and

isolation of transactions. Read/write operations and intermediate results may be

buffered and checked to detect conflicting data access. When two transactions have

conflicted data access, at least one of them is aborted and restart again by the un-

derlying system. When a transaction aborts because of a conflict, all computations

performed so far is wasted. Restart transactions can be aborted again, resulting in

further waster. In a word, the performance of the program is limited by the proba-

bility of data contention and how data contention is handled under the abstraction

(i.e., contention detection and resolution).

The objective of this chapter is two-folded. Firstly, We provide a theoretical model

that can reveal the impact of key parameters on data contention and system perfor-

mance. These key parameters include the length of transactions, transaction arrival

rate, number of check points (the time points a transaction validate its read/write

set), and the computing cost of transactions. Furthermore, we present an adaptive

8

strategy for contention management such that dynamically selecting the best policy

becomes possible under various system configurations and workload specifications.

The rest of the chapter is organized as follows: Section 2.1 summarizes the back-

ground and related works. Section 2.2 introduces our analytical model for TM sys-

tems. Section 2.3 presents our adaptive contention management strategy. Section 2.4

concludes the chapter.

2.1 Background and Related Work

The idea of providing hardware support for transactions originated in [65] and has

since been explored in [1, 129, 121, 9]. Software-only transactional memory has re-

cently been the focus of intensive research, and support for practical implementations

is growing [88, 91, 79, 99, 48, 49, 74, 80, 57]. Schemes that mix hardware and software

have also been explored in [101, 93, 16].

The three key aspects for TM designs are (1) conflict detection, (2) version man-

agement, and (3) conflict resolution [12]. Conflict detection decides when to ex-

amine the read/write-sets to detect conflicts, and the two popular design choices are

eager or lazy. The eager option (e.g., in TinySTM [32]) attempts to detect conflict

for every memory access. The lazy option (e.g., in TL2 [23]) may delay the detec-

tion to the commit phase, which has been demonstrated to be able to avoid certain

conflicts [12]. Version management handles the storage policy for permanent and

transient data copies. Similarly, the policy can be either eager or lazy. In TM sys-

tems with eager version management (e.g., TinySTM in write-through mode), new

data will replace the old data in the memory and the old data will be logged. In TM

systems with lazy version management (e.g., TinySTM in write-back mode and TL2),

on the contrary, the old data is kept in place while the new data is logged. Conflict

resolution means the actions to be taken when a transaction encounters a conflict.

Available options are abort-self, abort-other, and back-off.

9

2.1.1 Summary of TM Systems

The first TM and HTM system was proposed by Herlihy and Moss [58]. The system

utilized the existing cache and cache coherence protocol in hardware to support the

transactional data access for critical sections in program. Hammond et al. [44] pro-

posed to fundamentally change the definition of memory consistency and accordingly

a entirely new hardware architecture to support transactional data access. VTM

proposed by Rajwar et al. [92] broke the limitation of on-chip resources and stored

transactional state information in the virtual address space which enabled the trans-

actions to survive context switches. Log-TM [81], proposed by Moore et al., wrote

new value in-place and logged old values in the main memory, unlike LTM and TCC

which buffered all the intermediate results until the commit time. Yen et al. [121]

further improved Log-TM by decoupling caches from HTM systems which saved hard-

ware resources and provided convenience for virtualization. Tomic et al. [115] pro-

posed EazyHTM combining eager conflict detection and lazy conflict resolution which

gained higher throughput for the system.

The first software transactional memory system was proposed by Shavit et al. [98]

with a limitation that all the input and output of a transaction to be known in ad-

vance. A dynamic STM (DSTM) was proposed by Herlihy et al. [56] which accessed

memory at an object granularity. Ennals et al. [29] argued that non-blocking transac-

tions are unnecessary and therefore proposed a design called encounter-time-locking

(ETL) which attempted to gain ownership at data access; such design is closely related

to eager conflict detection. On the contrary, TL2 proposed by Dice et al. [23] used a

commit-time-locking (CTL) strategy that acquired locks at commit time. RSTM pro-

posed by Marathe et al. [75] was another object-based STM system which equipped

multiple types of contention managers. SwissTM proposed by Dragojevic et al. [25]

contained both object- and word-based implementations; SwissTM also differentiated

write-after-write (WAW) conflicts from read-after-write (RAW) conflicts.

10

HyTM seeks to utilize the hardware architecture to support basic contention man-

agement, such as conflict detection, to maintain performance while using software

support the rest of operations, such as restart/abort transaction, to reduce hardware

cost. Kuman et al. [68] started from the STM side and proposed to add additional

hardware to accelerate the logging operation of STM. On the contrary, Damron et

al. [20] built their system from the HTM side and fell back to STM when the trans-

action size exceeded the limits of hardware. Saha et al. [95] proposed to extend the

instruction-set architecture to provide architectural support for STM systems. RTM

proposed by Shriraman et al. [102] introduced an alert-on-update [106] architecture

for shared memory programming. Baugh et al. [10] designed a system where software

and hardware transactions can be executed concurrently.

2.1.2 Related Work on Performance Modeling of TM

Most of the previous studies evaluated the performance of TM systems through exper-

iment based on either simulation and actual executions. Such an empirical evaluation

method provided very useful insight to TM studies. Quantifying the execution of TM-

based programs through an analytical model, on the other hand, is another approach

to study such systems. Heindl [55] described the transactional memory system as a

series of conflict detection and resolution (CDR) points where each transaction needs

to access certain shared data elements that may conflict with others. The study in [55]

used a simplified conflict model where two transactions accessing the same data would

conflict regardless of whether they overlap in time or not. Moreover, this model stud-

ied the expected number of retries a transaction needs to perform before it commits,

which was not a direct measure of execution speed. He [51] built another model

to predict the mean transaction completion time of the transactions. The model

in [51], however, assumed that all concurrent transactions always conflict regardless

of whether the data sets overlap or not. Porter et. al. [89] developed a tool called

11

Syncchar which modeled the workload performance of TM. This model statically

estimated Dn, the expected number of pair-wise conflicts assuming all n transactions

execute simultaneously, and assumed that transactional execution of n threads would

be slowed down by Dn times. This model, however, did not take into consideration

that conflicts are dynamic and transactions with conflicting read/write-sets may not

execute simultaneously.

2.1.3 Related Work on Contention Management Policies

Contention management (CM), i.e., the detection and resolution of conflicts, is the

major focus for TM systems. Many static resolution policies have been proposed in

various systems [23, 32, 75]. Guerraoui et al. [42] proposed a framework called poly-

morphic contention management that allowed CM to be changed on-the-fly. There

were also attempts to automatically choose a CM policy from two CM policies, such

as SwissTM [26]. In SwissTM, they analyzed the suitable cases for two CM (Suicide

and Timestamp), and based on the experiments, a fixed threshold of transaction size

is set to decide which CM to use. Heber [54] implemented an adaptive algorithm

that could automatically switch to serialize transactions when the contention level

is high. They demonstrated through experiments that this adaptive method could

effectively reduce the abort rate of the STM system. For adaptive contention manage-

ment, Frank et al. [34] proposed a “reinforced-learning”” scheme on DSTM that uses

a separate thread to profile the CMs (i.e., throughput) and poll to choose the best

CM during the last execution period. The interval between selection was tuned and

fixed to one second in [34]. This scheme achieved adaptation among CMs by profiling

target workload at run-time. However, this strategy did not solve the problem on

how to properly choose the length of adaptation interval.

12

2.2 Performance Modeling of Transactional Memory

In this section we present our analytical approach to describe the impact of various

key parameters on data contention and performance of a TM system.

One of the fundamental aspects of TM design is conflict detection and resolu-

tion [12]. When we say two transactions conflict, it implies that (1) the two transac-

tions share some data; and (2) the two transactions accessed the shared data during

an overlapped time period. (For simplicity, we do not distinguish read and write

accesses in our model.) These are the spatial and temporal conditions of a conflict.

In our model, we quantify both aspects statistically and analyze the mean transac-

tion completion time. Our model also takes other factors into account, which include

the processing capability of the system, the rate at which transactions are issued,

the processing capability demanded by the individual transactions, the overhead of

implementation, etc.

Our model is based on queuing theory and the Markov Chain [40]. The system is

described by the states that represent the number of active threads and transactions.

Transaction arrival, commit, and abort are the events that trigger state transition. By

quantifying the transition rates, we calculate the mean number of active transactions

in the system, and subsequently obtain the mean transaction completion time.

Our model is validated through extensive experiments using both the widely used

STAMP benchmark suite [15] and a specially designed set of micro benchmarks. To

demonstrate the effectiveness of the model, we further explore the impact of two

design issues using the model: (1) the frequency of conflict detection and resolution,

and (2) the categorization and impact of implementation overhead. Our results show

that there exists an optimal frequency to perform conflict detection and resolution,

and it is directly linked to the contention level of the system. As for the impact

of overhead, we observe that the most significant type of overhead is related to the

number of threads, and reducing this part will significantly accelerate the execution

13

speeds.

Our study is expected to improve the existing models of TM [55, 51, 89] by

considering both the spatial and temporal aspects of conflicts. Our model can be used

to analytically evaluate the performance of TM systems without using simulation

or actual executions. We expect our model to provide useful information for TM

researchers and programmers to improve their TM systems.

The rest of the section is organized as follows: Section 2.2.1 provides an abstract

of the computer platforms. Section 2.2.2 abstracts transactional memory systems for

the model. Section 2.2.3 presents our model analysis. Section 2.2.4 presents validation

experiments and our exploration on the impact of input parameters.

2.2.1 Abstraction of the Target Computing Platform

We assume that the target multi-processor platform consists of multiple processors

that access a shared memory. Both Symmetric Multiple Processor (SMP) and the

multi-core processors are example of such platforms.

We characterize the platform using its processing capability. We assume each

thread receives a share of this capability in proportion to the thread’s demand. For-

mally, if we let c denote the processing capability of the platform, ri denote the

demand of thread i’, and n denote the total number of threads, the actual share of

computing capability ci allocated to thread i is given by

ci =


ri if

∑
j rj ≤ c

ri∑
j rj

c otherwise
(1)

This represents the typical resource allocation scheme in a multi-processor system.

For example, CPU time slices are often evenly allocated to threads using a round-robin

policy (threads in real systems may have different priorities, but for the transactional

memory workload, it is reasonable to assume that all the threads have the same

priority); the memory is shared by the processors where the interconnect between the

14

T1

T2

T3

T4

Aborted Transaction

Committed Transaction

Time

Access to variable A

Access to variable B

Figure 1: Illustration of temporal and spatial conflicts during the execution of TM-
based Program

memory and processors often features fair arbitration; and for simultaneous multi-

threading (SMT) architectures, the functional units in a processor are often allocated

according to the needs of the threads. For such systems, it is reasonable to assume

that each thread will get what it demands for when the accumulated demand is less

than the system capability; and when the accumulated demand exceeds the system

capability, the threads will share the processing capability in proportion to their

demands.

The above abstraction also applies when the target architecture is augmented

with hardware TM (HTM) support (conflict detection, rollback mechanisms, etc.).

This is because HTM is typically supported on a per core/processor basis, which can

be assumed to shared by the threads through time-slicing. When an HTM thread

needs to access the shared memory, the memory request will be sent through the

interconnect that typically features fair arbitration.

2.2.2 Abstraction of TM-based Programs

Figure 1 illustrates a sample execution time line of TM. Note that two transactions

will conflict only if they overlap in time and access the same shared data. Without

loss of generality, we assume that threads T1, T2, T3, and T4 start their transactions

in the illustrated order. Thus threads T2, T3 and T4 have temporal conflict with T1.

15

As T1 successfully commits its transaction, T2, T3, and T4 all abort (because they

accessed the same shared variables as T1) at certain point. The exact time of the

abort depends on the specific conflict detection scheme of that thread. T2 detects

the conflict earlier and also restarts earlier. T2 and T3 do not access the same shared

variables so both will commit even though their executions overlap in time. T4 aborts

twice, first due to its conflict with T1, and then due to its conflict with T3.

In our model, we study the following scenario abstracted from the above example:

• Threads and Execution Modes : We consider the scenario where the number of

threads is fixed throughout the execution of the program. A thread may start a

new transaction if it is not executing a transaction. We do not consider nested

transaction. Therefore, if a thread is already executing a transaction, it does

not start a new transaction until the current one is completed. We postpone

nested transactions for our future studies.

• Arrival of Transactions : We assume that during any short period of time ∆t,

the probability that a thread starts a new transaction is λ0∆t, if the thread is not

executing a transaction already. The longer the time period is, the higher the

probability that a transaction may start, with a simple linear relation between

the length of the time period and the probability. This abstracts the typical

behavior of programs: more progress will be made in longer period of time. For

a particular program that is already coded, the locations of the transactions

are most likely fixed. However, from a system’s point of view, it is reasonable

to assume such randomness, especially when multiple threads execute different

transactions. In addition, the actual execution of a program is also affected by

random external events such as interrupts, which further adds to the randomness

of the execution.

• Service of Transactions : Similar to the arrival of transactions, we assume a

16

simple linear relation between the length of the time period and the probability

of commit. If a transaction has already started, the probability that it commits

during a ∆t time period is µ∆t if it does not conflict with other threads. In

case of conflict, the transaction may abort. This scenario is discussed below.

• Conflicts Between Transactions : The conflicts between the transactions are

modeled through the collision of their data sets and the overlap in execution

time, namely, spatial conflict and temporal conflict. To balance complexity and

accuracy, we do not differentiate read and write data sets and assume that the

collection of all the transactions access D units of data, where each transaction

needs to access d out of the D units of data. The per thread d data elements are

uniformly distributed within the union of the D data elements. The probability

that two transactions conflict is therefore 1−
(
D−d
d

)(
D
d

) if the execution of the two

transaction overlaps in time (note that
(D−d

d)
(D
d)

is the probability of no conflict).

In Figure 1, T2 and T3 both have spatial conflict with T1, but do not conflict

with each other. T4 has spatial conflict with T1 and T3.

• Conflict Detection: We assume that threads may use either eager or lazy con-

flict detection. With eager detection, a transaction is able to detect conflict

before it reaches the commit point. On the other hand, a transaction featur-

ing lazy conflict detection would not be aware of any conflict until it reaches

the commit point. Using either an eager or a lazy strategy, a conflict detec-

tion mechanism needs to check whether the read/write set of one transaction

has been modified by another transaction. A variety of design options exist.

A typical design choice is to piggyback the conflict check with regular read-

/write operations within the transaction. Certain amount of overhead may be

associated with the piggybacking, especially for software transactional memory.

When the detection mechanisms tries to detect a conflict (and subsequently to

17

resolve it), we call it a conflict detection/resolution (CDR) point in the pro-

gram. The lazy and eager strategies are distinguished by the number of CDR

points in our model. Lazy strategy has only one CDR point (the commit point).

Eager strategy has multiple CDR points (thus conflicts may be detected before

a transaction committs). We assume that k CDR points are evenly distributed

in a transaction. The probability that a transaction hits a CDR point during

∆t time is therefore k times larger than it hits the commit point. Similar to the

arrival and service of transactions, we assume that the probability of a trans-

action reaching a CDR point in ∆t time is kµ∆t. If transactions on average

passes Ek out of k CDR points before detecting a conflict, the probability of a

transaction reaching a conflicting CDR point in ∆t time is k
Ek
µ∆t.

• Conflict Resolution: We assume that a thread aborts and restarts upon detec-

tion of a conflict. This is one of the widely adopted resolution schemes. Other

conflict resolution strategies have also been proposed in the literature, such as

back-off [100], de-schedule the conflicting thread [11], or keep executing the con-

flicting thread speculatively to delay the resolution. De-scheduling is effectively

equivalent to a very long back-off time. Speculation requires the hardware or

the software to buffer the immediate results that would otherwise conflict with

existing transactions. The benefit of speculation is still being investigated by the

research community. In our model, we focus on the abort-and-restart scheme.

Note that with this scheme, when two transactions conflict, the transaction that

first reaches its commit point is given a higher priority to win the conflict. We

plan to extend our study to the other schemes in the future.

• Implementation overhead of TM systems : TM systems will instrument the orig-

inal multi-threaded program at either the software or the hardware level. The

instrumentation requires more resources for execution and will slow down the

18

program, where the extent of the slow down is directly affected by the quality of

the implementation. We approximates those overhead and includes them into

our model using an experimental and profiling method instead of analytically

(see section 2.2.4). We model the overhead as the three additive categorizes: (1)

initialization overhead when starting a transaction such as lock initialization;

(2) thread overhead, which increases when adding more threads; and (3) CDR

overhead, which is proportional to the CDR points. In actual TM systems, the

CRD overhead may be caused by multiple factors:

– Ownership Search: When accessing an object, a transaction needs to

identify the ownership of the object. For example, under lazy detection

strategy, read object need to check if it is written by the same transac-

tion previously ; write object need to obtain the identity of the owner

when being locked. The overhead of those search operations depend on

the data structure of read/write log. Various data structures have been

proposed in different TM systems to speed up some of those operations,

e.g. TinySTM [32] proposed to store the pointer of the write entry with

the lock of an address so that write lock ownership can be obtained in O(1)

time.

– Version Clock: Many TM systems maintained a global version clock to

reason about the happen-before relationship among events. This clock is

read when accessing an object and updated when committing a transac-

tion. This overhead cannot be easily analyzed because updating the global

clock sometimes create a hot-spot during execution. Techniques [6, 31]

have been proposed to relax the update condition.

– Version Management: Version management techniques focus on how to

save the status of the accessed yet not committed objects. The choice of

19

version management usually affect the speed of commit/abort a transac-

tion. When committing a transaction, the modified objects need to be

committed under write-back strategy; when aborting a transaction, the

modified objects need to fall back into the original state under write-

through strategy. These operation usually takes O(W) or O(1) time in

various TM systems depending on the choice of strategies, for example,

committing takes O(1) time and aborting takes O(W) time under write-

through strategy.

– Conflict Resolution: Various conflict resolution strategies have been

proposed [75]. Some of the strategies made very simple decision such as

aborting the offending transaction. Others make advanced decision based

on the history of execution. This overhead varies largely among different

strategies.

– Other overhead includes various low level overhead such as reallocating

memory for read/write log and rewinding the stack when abort.

Note that researchers have also explored other aspects of TM such as nested

transactions and vitalization for HTM. A counter to memorize the nesting level

is a commonly used technique to deal with nesting problem [32, 25]. The outer

transaction aborts when the inner transaction fails to commit. For simplicity, we do

not include nested transactions in our study. As for virtualization, simple approaches

such as aborting running transactions have been proposed, which works for most

situations [107]. In [107], additional data structure called summary signature is added

to continue isolating the memory addresses accessed in a transaction after the OS

suspends a thread. Our study currently does not consider the impact of OS scheduling

and context switches, and we leave the modeling of this design option to our future

work.

20

2,2 3,2 4,2

3,3 4,3

…

4,4 …Arrive

Commit

Abort
(N-2)λ0 (1-pc)

2

(N-1)λ0 (1-pc)

3μ

…0,0 1,0 2,0 3,0 4,0

1,1 2,1 3,1 4,1

2,2 3,2 4,2

…
Nλ0

μ

(N-1)λ0 (1-pc)

2μ

Nα

Figure 2: State Transition Diagram of the TM System Model

2.2.3 Analytical Model of TM-based Programs

In this section, we analyze the steady state probability distribution of the queuing

based model, and derive the mean transaction completion time. The linear relation

between the time period and the probability that a transaction arrives/finishes leads

to a continuous time Markov Chain queuing model for the execution of transactions.

In the queuing model, transactions issued by the threads are the clients entering the

system that need to be processed by the target computing platform, which serves as

the server. We first model TM programs without back-off strategy, i.e. a transaction

will restart immediately after it is aborted. We will then extend the model to study

back-off strategy.

2.2.3.1 Model Without Back-off Strategy

The model is illustrated in Figure 2. Each state of the system is described through

a pair of parameters (Ntr, Nco) where Ntr denotes the total number of transactions

in the system and Nco denotes the number of transactions that will commit. For

example, at state (3, 2), there are 3 active transactions in the system, 2 of which will

commit (which also implies that the remaining transaction will abort). For notational

purpose, we call the Nco transactions (that will commit) the will-commit transactions,

and the Ntr −Nco transactions (that will abort) the will-abort transactions.

21

Before analyzing the transition rate between the states, we first re-list the param-

eters introduced in Section 2.2.2: (1) λ0, the transaction arrival rate; (2) µ0, the basic

transaction completion rate without any overhead (when the program runs with a

single threads and without the TM system). The actual completion rate should be

calculated according to the overhead and resource availability as in Eq. 10; (3) k,

the average number of CDR points a transaction will encounter before it commits;

(4) d, the size of the data set that is accessed by a transaction; (5) D, the size of

the union of the data sets that are accessed by all the transactions; (6) c, the pro-

cessing capability of the target computing platform; (7) r, the maximum processing

capability each transaction demands for; (8) N , the total number of threads. (9) o,

the initialization overhead factor of the TM system; (10) a, the CDR point overhead

factor. (11) b, the thread overhead factor. Note that in Section 2.2.4 we explain how

to estimate the value of overhead.

With the above notational preparation, we have the following calculations. The

probability of a new transaction conflicting with an existing one is:

pc = 1−
(
D−d
d

)(
D
d

) (2)

The average number of shared data elements accessed by l transaction is:

nl = D(1− (
D − d
D

)l) (3)

The probability of a new transaction conflicting with l existing ones is:

pcl = 1−
(
D−nl

d

)(
D
d

) (4)

The expected size of overlapped data set between a new transaction and l existing

ones is:

nc =
d∑
i=1

(

(
nl

i

)(
D−nl

d−i

)(
D
d

) i/pcl) (5)

Suppose currently the system is at state (Ntr, Nco), three events may occur and

trigger state transitions as shown in Figure 2:

22

1. Arrival of a new transaction. For each thread that is not currently executing

a transaction, a new transactions arrives at the rate of λ0. The system-wide

total arrival rate is therefore (N−Ntr)λ0. The arrival may cause three different

state transitions:

(a) If the new transaction does not conflict with any of the existing will-commit

transactions, it will become another will-commit transaction. The proba-

bility of this transition happening within ∆t time is:

p(Ntr+1,Nco+1) = (N −Ntr)(λ0∆t)(1− pc)Nco (6)

The system will transit from state (Ntr, Nco) to state (Ntr + 1, Nco + 1).

(b) If the new transaction conflicts with i (2 ≤ i ≤ Nco) of the existing

will-commit transactions and causes them to abort (at forthcoming CDR

points), the system will transit to state (Ntr + 1, Nco + 1 − i). Based on

the assumption in Section 2.2.2, when two transactions conflict, the res-

olution mechanism gives priority to the transaction that completes first.

Consequently, the probability that the new transaction causes i existing

transactions to abort (or equivalently, the probability that this transition

occurs) is

p(Ntr+1,Nco+1−i) = ((N −Ntr)λ0∆t)(

(
Nco

i

)
(1− pc)Nco−ipic)

(

∫ ∞
0

(1− F (x))if(x)dx)

=
((N −Ntr)λ0∆t)(

(
Nco

i

)
(1− pc)Nco−ipic)

i+ 1
(7)

In the equation, F (x) is the cumulative distribution function (CDF) of an

exponential distribution. f(x) is the probability density function (PDF)

of an exponential distribution. The equation computes the probability

23

that the new transaction completes earlier than i existing transactions

and conflict with them.

(c) Otherwise, the new transaction will become a will-abort transaction. The

system state will transit to (Ntr + 1, Nco), and the probability that this

transition occurs is:

p(Ntr+1,Nco) = (N −Ntr)λ0∆t− p(Ntr+1,Nco+1) −
Nco∑
i=2

p(Ntr+1,Nco+1−i) (8)

2. Commit of a transaction. A will-commit transaction commits. This type of

event arrives at the rate of µ. µ should be computed from the basic transaction

completion rate µ0 according to processing capability and overhead. With the

extra overhead introduced by the implementation of the TM system, µ should

be computed from µ0 using

µ =
µ0

1 + o+ bNtr + ak
(9)

where o, bNtr, and ak are the initialization, thread number related, and CDR

point related overhead respectively.

Depending on the values of r and c, if the total demand of resources exceeds c,

then transactions cannot proceed at the basic rate of µ0. We plug in Eq. 1 and

thus convert µ to

µ =


µ0c

Ntrr(1 + o+ bNtr + ak)
if Ntrr(1 + o+ bNtr + ak) > c

µ0

1 + o+ bNtr + ak
otherwise

(10)

With the commit of the transaction, the system state transits to (Ntr − 1,

Nco − 1). The probability of this transition to occur within ∆t time is

p(Ntr−1,Nco−1) = (Ncoµ∆t) (11)

24

3. Abort of a transaction. A will-abort transaction checks for potential conflicts

with the existing Ntr transactions at its CDR points. We assume that the

CDR points and accessed data are evenly distributed among the transactions.

The average number of overlapped shared data items nc between the will-abort

transaction and the others can be calculated as Eq. 5. The average number of

CDR points passed before detecting one conflict data among the total number

of nc is

Ek =
k∑
i=1

[1− (
k − i− 1

k
)nc]i (12)

The arrival rate of detecting a conflict will be

α =
k

Ek
µ. (13)

If conflict is detected at the CDR point, the transaction will abort and restart.

Similar to the discussion of the arrival of new transactions, the restart transac-

tion may or may not conflict with existing transactions, and we have

(a) If the restarted transaction does not conflict with existing will-commit

transactions, the system state will transit to (Ntr, Nco+1). The probability

that this scenario occurs is

p(Ntr,Nco+1) = [(Ntr −Nco)α∆t](1− pc)Nco (14)

(b) If the restarted transaction conflicts with i existing will-commit transac-

tions and wins the contention resolution, the system state will transit to

(Ntr, Nco + 1− i). The probability that this scenario occurs is

p(Ntr,Nco+1−i) =
[(Ntr −Nco)α∆t](

(
Nco

i

)
(1− pc)Nco−ipic)

i+ 1
(15)

25

Table 1: State transition rate when the system is at state (Ntr, Nco)
Destination State Transition Rate
(Ntr + 1, Nco + 1) (N −Ntr)λ0(1− pc)Nco

(Ntr + 1, Nco + 1− i)
(N −Ntr)λ0(

(
Nco

i

)
(1− pc)Nco−ipic)

i+ 1

(Ntr + 1, Nco) (N −Ntr)λ0(1− (1− pc)Nco −
∑Nco

i=1

λ0(Nco
i)(1−pc)Nco−ipic)

i+1
)

(Ntr − 1, Nco − 1) Ncoµ
(Ntr, Nco + 1) [(Ntr −Nco)α](1− pc)Nco

(Ntr, Nco + 1− i)
[(Ntr −Nco)α](

(
Nco

i

)
(1− pc)Nco−ipic)

i+ 1

(c) Otherwise, the system remains in state (Ntr, Nco), and the probability is

p(Ntr,Nco) = 1− λ0∆t−Ncoµ∆t− p(Ntr,Nco+1) −
Nco∑
i=1

p(Ntr,Nco+1−i) (16)

The transition relation is summed up as Table 1: Based on the above calculation of

state diagram transition probability, we can get the steady state transaction comple-

tion time. Let π denote the steady state probability vector [P(0,0), P(1,0), P(1,1), P(2,0), · · ·].

The intensity matrix Q can be obtained as Eq. 17. In Eq. 17, R(n1,n2)to(n3,n4) is the

probability rate that system state transits from (n1, n2) to (n3, n4). This probability

rate can be obtained according to Table 1.

Q =



1−R(0,0)to(0,0) −R(0,0)to(1,0) −R(0,0)to(1,1) · · ·

−R(1,0)to(0,0) 1−R(1,0)to(1,0) −R(1,0)to(1,1) · · ·

−R(1,1)to(0,0) −R(1,1)to(1,0) 1−R(1,1)to(1,1) · · ·
...

...
...

. . .


(17)

For the steady state probability, we have πQ = 0∑
p∈π p = 1

(18)

By solving Eq. 18, we can derive π, the steady-state probabilities for all states.

Subsequently, the expected number of transactions in the system can be calculated as:

26

E(L) =
∑

p∈πNtrptr. The expected arrival rate of transactions is therefore E(λ) =∑
p∈π(N −Ntr)ptrλ0. By Little’s Law, we can get the expected transaction execution

time: E(W) =
E(L)

E(λ)
, which can be calculated numerically.

2.2.3.2 Model With Back-off Strategy

Although immediate restart is widely used by many TM designs including TinySTM

and SwissTM, back-off based restart strategies have also been applied in a lot of

research attentions (e.g., [11, 100]). Our model can be easily extended to describe

these strategies.

By introducing a new intermediate state between transaction abort and restart,

our model can describe back-off related activities. The new model is illustrated in

Figure 3. To accommodate the newly introduced state, we denote the states with

triplets in the form of (Ntr, Nco, Nrs). Ntr represents the total number of transactions

in the system, Nco denotes the number of transactions that will commit. These two

notations bear the same meaning as in Section 2.2.3.1. The newly introduced Nrs de-

notes the number of transactions currently in back-off status (waiting to restart). As

shown in Figure 3, when no transaction is in the back-off status (i.e. the (Ntr, Nco, 0)

states), the meaning of the states are the same as (Ntr, Nco) in Section 2.2.3.1. The

system can enter a state with Nrs 6= 0 only when a transaction aborts.

The transition probabilities between the states can be calculated based on the

transition between four events: Arrival, Commit, and Abort as previously discussed

in Section 2.2.3.1, and a new event Restart of an aborted transaction. Assuming

back-off period finishes at rate β, we have the following possible transitions:

1. Arrival of a new transaction. The transition probability when there is an

arrival of a new transaction is similar to the model in Section 2.2.3.1 except

that there are Ntr +Nrs transactions in the system instead of Ntr.

27

0,0,0 1,0,0 2,0,0

2,1,0

2,2,0

1,0,1

1,1,0

1,1,1

0,0,1

Arrive

Commit

Abort

Restart

…

…

…

Figure 3: State Transition Diagram of the TM System Model with Back-off Strategy

2. Commit of a transaction. The probability of transition does not change

when a commit event arrives.

3. Abort of a transaction. Aborting transactions will check for potential con-

flicts, abort and become a waiting-for-restart transaction instead of restart

again immediately. The system therefore will transit from (Ntr, Nco, Nrs) to

(Ntr − 1, Nco, Nrs + 1). The transition rate is the same as discussed in Sec-

tion 2.2.3.1.

4. Restart of a transaction. The transition from a back-off status to restart is

at rate β.

The transition probability is summarized in Table 2. Following the same procedure

in Section 2.2.3.1, we can derive the state transition matrix Q, and subsequently

obtain the expected transaction time.

2.2.4 Experimental Result

We first conducted experiments to validate our model. To demonstrate the effec-

tiveness of the model, we then studied the impact of multiple design factors on the

performance of TM.

28

Table 2: State transition rate when the system is at state (Ntr, Nco, Nrs)
Destination State Transition Rate

(Ntr + 1, Nco + 1, Nrs) (N −Ntr −Nrs)λ0(1− pc)Nco

(Ntr + 1, Nco + 1− i, Nrs)
(N −Ntr −Nrs)λ0(

(
Nco

i

)
(1− pc)Nco−ipic)

i+ 1

(Ntr + 1, Nco, Nrs) (N −Ntr −Nrs)λ0(1− (1− pc)Nco −
∑Nco

i=1

λ0(Nco
i)(1−pc)Nco−ipic)

i+1
)

(Ntr − 1, Nco − 1, Nrs) Ncoµ
(Ntr − 1, Nco + 1, Nrs + 1) (Ntr −Nco)α
(Ntr + 1, Nco + 1, Nrs − 1) Nrsβ(1− pc)Nco

(Ntr + 1, Nco + 1− i), Nrs − 1
Nrsβ(

(
Nco

i

)
(1− pc)Nco−ipic)

i+ 1

We validated our model by comparing model prediction and actual execution

results of STAMP benchmarks. TinySTM [32] was used as the TM system. STAMP

is a widely accepted benchmark suite because it contains various real programs that

reflect the typical workload for a TM system. According to its experiment results [15],

the transactional execution behaviors are mainly dependent on the design options

(e.g., lazy or eager) and do not depend on the implementation level (e.g., hardware

or software). TinySTM is a recently published STM with very decent performance.

Thus, we chose TinySTM as our sample TM system and STAMP as the sample

workload.

The experiments were conducted on a system with four 6-Core Intel Xeon 2.4GHz

processors. Each processor core had 32k L1 and 3MB L2 private cache, and each chip

(6 cores) had a 12MB shared L3 cache. Linux kernel version 2.6.18 and GCC version

4.1.1 were used.

To obtain our model parameters, we profiled the STAMP benchmarks and the

execution statistics are listed in Table 3.

• λ0/µ0. The ratio represents the percentage of time that a thread spends inside

and outside transactions in a real program. Let T denote the percentage of time

that a thread is in the transaction mode, we can calculate the ratio as

29

Table 3: Execution Characteristics of STAMP Benchmark
genome intruder kmeans-

high
kmeans-
low

labyrinth ssca2 vacation-
high

vacation-
low

yada

Time in
Tx(T)

97% 43% 33% 30% 96% 25% 86 % 86% 97%

λ0/µ0 32.3 0.75 0.5 0.4 24 0.33 6.1 6.1 32.3

Contention Low High High High Low High Low Low High

d 15 20 5 5 458 4 24 22 142

D 10000 800 80 100 900000 100 10000 10000 130000

Consumption Low High Normal Normal High High High High High

r 1 4 2 2 3 4 4 4 3

Overhead(o) 0.9 1.02 1.33 1.19 0.98 0.89 1.01 1.01 0.74

Overhead(a) 0 0.08 0.19 0.15 0.01 0.12 0.04 0.04 0.26

* bayes benchmark was excluded because of its non-deterministic finishing conditions as noted in [15], which made
the comparison against the deterministic result generated by theoretical model less meaningful.

λ0

µ0

=
T

1− T
(19)

We measured the time spent in transactions for the STAMP benchmark suite

(listed in Table 3), which is in the range of λ0/µ0 from 0.4 to 32.3.

• d and D. D is the size of the shared array and d is the number of data elements

accessed by each transaction. The value of d is provided by [15]. The value of

D listed in Table 3 was estimated through a regression on the number of retries

per transaction according to d.

• k. Since each access to a store data structure will issue a series of conflict

checking process in TinySTM, we set the value of k to to the number of protected

data for each transaction.

• N , the total number of threads was varied between 2 and 16.

• o, a, and b. The three overhead factors describes the impact of TM initialization,

number of CDR points, and number of threads. Because it is difficult to obtain

these values theoretically, we estimated these parameters through regression

analysis on experiment data. We executed STAMP by varying the number of

threads and used the following simplified fitting model.

30

Table 4: Overhead Factors for the Micro benchmark, o, a and b are defined in Eq. 9

o a b

TinySTM 2.05 0.15% 80%

SwissTM 1.91 0.30% 59%

y = o+ bN (20)

We omitted factor a for this set of experiments because our later results (see

Table 4) show that the impact of a is insignificant compared to o and b.

• c and r. The ratio between c and r represents the processing capability of

the target platform. It is affected by multiple factors such as the CPU fre-

quency, cache size and latency etc., which makes it very difficult to measure in

real programs. Because we can map all the other parameters for our model,

we estimate the ratio according to a test run of a specifically designed micro

benchmark (details in the next set of experiments).

We analyzed the STAMP benchmarks using our model (with the estimated pa-

rameters in Table 3). As shown in Figure 4, the analytical prediction is close to

actual executions where the relative error is less than 35% with an average of 13%.

This verifies our model’s capability of describing the behaviors of various TM-based

programs.

We further validated our model by a specially designed micro benchmark. We

chose the micro benchmark method because it allows more flexible control of the

design parameters than STAMP. We adjusted parameters such as the conflict rate

and the number of CDR points etc. to thoroughly examine the model.

The transactions in the micro benchmark operated on a shared array where each

transaction wrote to 10 randomly selected blocks in the array. The block size was

fixed so that each block in the software TM system was mapped to just one lock.

31

 1

 10

1 2 4 8 16

N
o
rm

a
liz

e
d
 M

e
a

n
 T

x
 E

x
e
c
u
ti
o

n
 T

im
e

Number of Threads

genome
intruder

kmeans-high
kmeans-low

ssca2

vacation-low
vacation-high

yada
labyrinth

(a) Actual Execution

 1

 10

1 2 4 8 16

N
o
rm

a
liz

e
d
 M

e
a

n
 T

x
 E

x
e
c
u
ti
o

n
 T

im
e

Number of Threads

genome
intruder

kmeans-high
kmeans-low

ssca2

vacation-low
vacation-high

yada
labyrinth

(b) Analytical Prediction

Figure 4: Comparison of Experiment Execution and Model Prediction of STAMP
Benchmark

Each thread executes a fixed number (10240) of transactions. The size of the array

was adjusted to test the impact of transaction conflict. In addition to TinySTM,

we also tested SwissTM [25], which was another state-of-the art TM systems with

decent execution speeds.

Parameters in the micro benchmark of the model were set to closely reflect the

scenarios of the STAMP benchmarks as listed in Table 3: (1) λ0/µ0. For our micro

benchmark, we set λ0/µ0 = 10. Note that we can insert or remove extra instructions

between transactions (that do not access the shared array) to adjust λ0/µ0. (2) d

and D. We fixed d = 10 and varied D. The value d = 10 is typical for the STAMP

benchmarks as shown in Table 3. For our micro benchmark, we varied D in the

range from 100 to 300. (3) k was set to 10 as the number of CDR points is assumed

to be equal to the number of protected data for each transaction. (4) N , the total

number of threads was varied between 2 and 16. (5) o, a, and b. The parameters

for TinySTM and SwissTM are listed in Table 4. The adjusted R-square of both

experiments are larger than 0.9, which indicates that the fitting model has a high

accuracy in describing the relationship. (6) c and r. Those two parameters are also

measured through a test run. To summarize, we set λ0/µ0 = 10, k = 10, d = 10; the

32

 5

 10

 15

 20

 25

1 2 4 8 16

N
o
rm

a
li
z
e
d
 M

e
a
n
 T

x
 E

x
e
c
u
ti
o
n
 T

im
e

Number of Threads

D=100

D=150

D=200

D=250

D=300

(a) Actual Execution

 5

 10

 15

 20

 25

1 2 4 8 16

N
o
rm

a
li
z
e
d
 M

e
a
n
 T

x
 E

x
e
c
u
ti
o
n
 T

im
e

Number of Threads

D=100

D=150

D=200

D=250

D=300

(b) Analytical Prediction

Figure 5: Comparison of Experiment Execution and Model Prediction on TinySTM
System

overhead related parameters o, a, b are set according to Table 4; c/r is tested and set

to be 200. We changed D from 100 to 300.

Figure 5 to 6 illustrate the comparison between our model prediction and the

actual execution of the micro benchmark. It can be seen that our model fits actual

execution very well. The relative error between our prediction and execution result

is under 30% with an average of 18%. Apart from validation of our model, this

experiment also reveals a sharp rise in mean transaction completion time as the

number of threads increases. Furthermore, conflict rate affects mean transaction

completion time as well. With higher conflict rate, reducing conflict rate (e.g., from

D = 100 to D = 150 when thread number is 16) will greatly reduce the mean

transaction completion time. On the other hand, with a lower conflict rate, such as

when D = 300, varying the conflict rate within a small range (e.g., D from 300 to

250) will not significantly affect the mean transaction completion time.

To demonstrate the effectiveness of our model in the analysis of TM systems, we

studied the impact of CDR points and overhead in the next two sets of experiments.

The debate between eager (early) and lazy (late) conflict detection has attracted a

lot of research interests, and the number of CDR points directly affects the frequency

33

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

2 4 8 16

N
o
rm

a
liz

e
d
 M

e
a
n
 T

x
 E

x
e
c
u
ti
o
n
 T

im
e

Number of Checkpoints

D=100
D=150
D=200
D=250
D=300

(a) Actual Execution

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

2 4 8 16

N
o
rm

a
liz

e
d
 M

e
a
n
 T

x
 E

x
e
c
u
ti
o
n
 T

im
e

Number of Checkpoints

D=100
D=150
D=200
D=250
D=300

(b) Analytical Prediction

Figure 6: Comparison of Experiment Execution and Model Prediction on SwissTM
System

of performing early conflict detection. For this set of experiments, We set D to 100,

and other parameters to the same values in the validation experiments. We tested

CDR points in the range between 1 and 50. Our model based analysis is presented in

Figure 7(a). It shows that there exists an optimal number of CDR points. Depending

on the number of threads, the optimal value of k ranges from 5 to 20. The mean

transaction completion time will increase when the number of CDR points deviates

from the optimal value. We believe this is due to the double-sided effect of early

abort: on one hand, eager conflict detection can help a transaction to abort earlier

and thus make more forward progress; on the other hand, too much early abort will

cause the restarted transactions to compete for resources as well. In Figure 7(b), we

increase the contention level by increasing d. The result also shows that with lower

contention level, increasing k has a noticeable improvement on performance (more

than 10%), while with higher contention levels, the impact of CDR point is much less

significant than with low contention levels.

Table 4 shows that parameter b, which is related to the number of threads, dom-

inates the overhead. We vary b from 0.2 to 1.2 (TinySTM is 0.8 and SwissTM is

0.58), and number of threads from 2 to 16. The result is illustrated in Figure 8. It

34

 0.75

 0.8

 0.85

 0.9

 0.95

 1

1 5 10 15 20 25 30

N
o
rm

a
liz

e
d
 M

e
a

n
 T

x
 E

x
e
c
u
ti
o

n
 T

im
e

Number of Checkpoints

N=2
N=4

N=8
N=16

(a) With Various Thread Number

 0.75

 0.8

 0.85

 0.9

 0.95

 1

1 5 10 20 30 40 50

N
o
rm

a
liz

e
d
 M

e
a

n
 T

x
 E

x
e
c
u
ti
o

n
 T

im
e

Number of Checkpoints

d=5
d=10

d=15
d=20

(b) With Various Conflict Rate

Figure 7: Impact of the Number of CDR points

 1

 2

 3

 4

 5

 6

 7

0.2 0.4 0.6 0.8 1 1.2

N
o

rm
a

liz
e

d
 M

e
a

n
 T

x
 E

x
e

c
u

ti
o

n
 T

im
e

Number of Checkpoints

N=1
N=2
N=4
N=8

Figure 8: Impact of Thread-Related Overhead

shows that transactions can be completed significantly faster if the overhead can be

reduced. For example, if the overhead factor b for TinySTM can be reduced by 25%

(from 0.8 to 0.6), the mean transaction completion time for our micro benchmark

reduces by up to 35%. This result suggests that while it is crucial to explore the vast

design space of TM systems (data logging, conflict detection, resolution, etc.), the

quality of actual implementations is also an important factor that deserves further

research. Figure 8 also reveals that the impact of b is more significant when there are

more threads N . This further exemplifies that reducing implementation overhead is

35

important for the scalability of TM systems.

With our extended model of back-off strategy we can study the impact of transac-

tion back-off. Figure 9 shows the experimental results. The x axis is the ratio between

transaction arrival rate and transaction back-off rate λ/β. A larger ratio indicates

a larger back-off interval. The number of threads was set to 16 in the experiments.

The size of data set D was set to the range from 50 to 200 to study the impact of

conflict levels. The parameters d and k were fixed to 10. Other parameters were set

the same as in the modelling of TinySTM system. Figure 9(a) shows that when the

conflict level is high, the back-off strategy can reduce the mean transaction comple-

tion time significantly. However, the back-off strategy becomes less effective when

the back-off interval is too long or there exists less conflicts. To evaluate the validity

of our extended model, real executions were conducted and the results are shown in

Figure 9(b). We used the same micro benchmark as in the previous validation ex-

periments, i.e., each transaction in the micro benchmark operated on a shared array

and wrote to 10 randomly selected blocks in the array with each thread executing a

fixed number (10240) of transactions.

The back-off strategy we used in the real execution is random back-off with linear

bound, which is widely used in various STM systems. Figure 9 shows that, although

the actual quantitative results are different, our model based study revealed trends

that is close to actual execution. The results show that our model can predict the

impact of back-off intervals and conflict level.

2.3 Adaptive Contention Management for STM Systems

In Section 2.2, we presented a queueing-based model to describe the impact of data

contention and basic system behavior of TM systems. Yet, the analytical approach

becomes less effective when used to decide an optimal implementation for contention

management policy. In fact, such task is extremely complicated that even detailed

36

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

0 10 50 100 150

N
o
rm

a
li
z
e
d
 M

e
a
n
 T

x
 E

x
e
c
u
ti
o
n
 T

im
e

Backoff Interval

D=50

D=100

D=150

D=200

(a) Analytical Prediction

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

0 10 50 100 150

N
o
rm

a
li
z
e
d
 M

e
a
n
 T

x
 E

x
e
c
u
ti
o
n
 T

im
e

Backoff Interval

D=50

D=100

D=150

D=200

(b) Actual Execution

Figure 9: Impact of the Conflict Rate and Back-off Time

simulation or experiment approaches become less satisfactory because of the difference

in system configurations and a wide range of policy choices. In this chapter, we

resort to a runtime adaptive approach to address the problem of choosing contention

management policy.

Contention manager (CM) is a crucial component of STM systems. CM decides

how to resolve a conflict after it is detected (e.g., abort one of the conflicting transac-

tion) and how to avoid it from happening again (e.g., add a random back-off before

restarting a new transaction). Because of its importance to the performance of STM

systems, CM has received intensive research attentions and a large variety of schemes

have been designed to explore the trade-offs between performance and run-time over-

head [105, 96, 42, 54]. For example, a simple CM may always choose to self-abort

a transaction to resolve all the conflicts. Such simple designs have low run-time

overhead because the decision is pre-set. For another example, a complicated CM

may favor an older transaction, which aims to preserve existing computing efforts

but requires more bookkeeping and higher decision making cost. Unfortunately, as

shown in Section 2.3.2, there does not exist a single CM that performs well for all the

transactional workload, and the performance variation of the CMs can be significant.

More importantly, there is no general method to identify a suitable CM scheme

37

even when the workload is known. Given the large variety of proposed CM schemes, a

natural solution would be profiling the workload with multiple CMs and then selecting

the best one. However, existing STM systems do not support such automatic adapta-

tion and require the programmers to manually perform the profiling and “hard-code”

the best choice in the programs. This is against the design objective of TM — TM

expects programmers to focus on determining where atomicity is necessary, rather

than on the mechanisms that enforce it. The necessity for the manual profiling and

selection would make TM less attractive.

We argue that adaptation is necessary and feasible for the contention management

for STM systems. We demonstrate that the performance of CMs is sensitive not only

to the type of workload but also to the underlying system platforms. We present

an effective profiling method for the adaptation, and use it to develop an adaptive

contention manager (ACM) on both TinySTM [32] and RSTM [75]. In our proposed

method, we dynamically adjust two key parameters, i.e., the profiling interval and the

profiling length of each CM, to reduce the profiling overhead for any type of workload

and platforms. We also propose to use logic-time to measure the profiling length. The

effectiveness of the proposed ACM schemes is validated through extensive experiments

on two platforms (x86 and powerpc). The main contributions are as follows:

1. We propose a dynamic profiling framework that searches for and applies an

optimal CM during the execution of STM workloads.

2. We propose two logic-time based methods to characterize the profiling length

of each CM. Particularly, the abort-based method achieves better performance

than traditional physical-time-based methods (up to 25%).

The rest of this section is organized as follows: Section 2.3.1 lists various of CM

policies proposed by the research community. Section 2.3.2 justifies the necessity and

feasibility of adaptation. We propose our profiling-based adaptive contention manager

38

in Section 2.3.3. Section 2.3.4 presents our implementation details, and Section 2.3.5

reports the experimental results that validate our new approach.

2.3.1 Contention Management Strategies

In an STM system, conflict resolution is handled by the CM. Three possible decisions

may be made by a CM:

1. Abort-other: when a transaction detects that it conflicts with another trans-

action, it will kill the other transaction to ensure the validity of its own copy of

the shared data.

2. Abort-self: when a transaction detects that it conflicts with another transac-

tion, it will abort itself to ensure the data validity of the conflicting transaction.

3. Back-off: two types of back-off schemes exist: (1) when a transaction detects

a conflict with another transaction, it stalls itself for a certain period of time,

and then re-checks for data validity upon returning from the stall. (2) when

a transaction aborts due to a conflict, it backs off for a period of time before

it restarts. Note that other terminologies may be used to name these schemes.

For example, scheme (1) is called “wait” in RSTM.

An ideal CM is expected to (1) minimize the wasted work, (2) avoid future con-

flicts, and (3) reduce the overhead of executing the CM itself. Because it is often

difficult to achieve the three objectives simultaneously, a wide variety of CM schemes

have been studied to explore the design trade-offs. We categorize CMs below based

on their primary optimization objectives:

1. CMs that emphasize on minimizing the wasted work. These CMs evaluate

the conflicting transactions and choose to abort the one that has performed

less computation. Some CMs in this category may attempt to backoff before

aborting a transaction. Example CMs include:

39

• Timestamp: always aborts the newer transaction. The start time can be

read from the system clock (Timestamp in RSTM) or a globally maintained

counter (Greedy in RSTM and Timestamp in TinySTM).

• Karma: always aborts the less-productive transaction. The productivity of

a transaction can be evaluated by the size of its data set (reads and writes).

Variations of Karma may assign more weight to writes (e.g., Whpolka in

RSTM) or to transactions that already aborted others (e.g., Eruption in

RSTM).

2. CMs that emphasize on reducing CM overhead. Such CMs often focus on

implementation simplicity and does not perform bookkeeping. Example CMs

include:

• Aggressive: always aborts the other transaction.

• Suicide: always aborts self (also called Timid in RSTM).

• Polite: always exponentially backs off for a number of times, and eventu-

ally aborts the other transaction. (This CM is unavailable in TinySTM).

3. CMs that attempt to reduce future conflicts. These CMs are often derived

from the above CMs and apply back-off to the transactions that were recently

aborted. For example:

• AggressiveD: always aborts the other transaction and asks it to back off

for a certain period of time (AggressiveD in TinySTM asks a transaction

to back off until the lock that caused the abort is released; A variation

AggressiveR in RSTM backs off a fixed amount of time).

• SuicideD: aborts self and backs off before a restart.

• KarmaD: Karma with back-off.

• TimestampD: Timestamp with back-off.

40

 180000

 200000

 220000

 240000

 260000

 280000

 300000

 320000

 340000

 360000

 380000

T
h
ro

u
g
h
p
u
t
(T

x
 /
 S

e
c
)

(a) Linked-List (x86)

 600000

 700000

 800000

 900000

 1e+06

 1.1e+06

 1.2e+06

 1.3e+06

 1.4e+06

 1.5e+06

T
h
ro

u
g
h
p
u
t
(T

x
 /
 S

e
c
)

(b) RB-Tree (x86)

 950000

 1e+06

 1.05e+06

 1.1e+06

 1.15e+06

 1.2e+06

 1.25e+06

 1.3e+06

 1.35e+06

 1.4e+06

 1.45e+06

T
h
ro

u
g
h
p
u
t
(T

x
 /
 S

e
c
)

(c) Skip-List (x86)

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

T
h
ro

u
g
h
p
u
t
(T

x
 /
 S

e
c
)

(d) Hash-Table (x86)

 80000
 90000

 100000
 110000
 120000
 130000
 140000
 150000
 160000
 170000
 180000
 190000

T
h
ro

u
g
h
p
u
t
(T

x
 /
 S

e
c
)

(e) Linked-List (pow-
erpc)

 900000

 1e+06

 1.1e+06

 1.2e+06

 1.3e+06

 1.4e+06

 1.5e+06

 1.6e+06

 1.7e+06

T
h
ro

u
g
h
p
u
t
(T

x
 /
 S

e
c
)

(f) RB-Tree (powerpc)

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

T
h
ro

u
g
h
p
u
t
(T

x
 /
 S

e
c
)

(g) Skip-List (powerpc)

 8e+06

 8.2e+06

 8.4e+06

 8.6e+06

 8.8e+06

 9e+06

 9.2e+06

T
h
ro

u
g
h
p
u
t
(T

x
 /
 S

e
c
)

(h) Hash-Table (pow-
erpc)

 500000
 1e+06

 1.5e+06
 2e+06

 2.5e+06
 3e+06

 3.5e+06
 4e+06

 4.5e+06
 5e+06

 5.5e+06
 6e+06

1 2 4 8 16

T
h

ro
u

g
h

p
u

t
(T

x
 /

 S
e

c
)

Number of Threads

Aggressive
Suicide

Karma
Timestamp

AggressiveD
SuicideD

KarmaD
TimestampD

TPM-ACM
CPM-ACM

APM-ACM

Figure 10: Comparison of different contention managers on different benchmarks
and different platforms. (TinySTM, 16 threads)

2.3.2 The Necessity of Adaptive Contention Management

CM has attracted a lot of research attention because of its importance. A large set of

CMs have been proposed in the literature and many STM systems are released with

multiple choices of CMs. For example, the latest TinySTM 1.0.0 integrates five basic

CMs and researchers can easily plug in other more complicated CMs; RSTM release

5 [75] includes a pool of over 20 CMs for programmers to choose from.

Based on different design heuristics, the CMs can be simple (e.g. Suicide that

always causes a transaction to abort itself in case of conflict) or sophisticated (e.g.,

Timestamp that favors older transactions), where the more sophisticated ones are

often designed to minimize the amount of wasted calculations. Given the variety of

CMs, it is challenging, and still remains an open problem, to select the optimal CM

for a given workload. This is primarily because the performance of CMs is sensitive

to the workload as well as the underlying system platform.

We demonstrate the non-optimality of existing CM designs through experiments.

We tested various CMs on both TinySTM [32] and RSTM [105, 96] distribution

41

packages on two hardware platforms. The first platform was equipped with four

2.93GHz quad-core Intel X7350 CPUs, and the other with one 3.0GHz quad-core

IBM POWER7 CPUs where each core supported 4 hardware threads. We observed

similar trends on both RSTM and TinySTM.

Figure 10 illustrates that the performance of CMs varies with the benchmarks as

well as the system platforms.

• benchmark dependence. This is observed on both platforms. For example, on

the x86 platform, CMs with backoff (AggressiveD, SuicideD, KarmaD, and

TimestampD) outperform the CMs without back-off on Linked-List and Skip-

List. Aggressive performs the best on RB-Tree, but under-performs on Linked-

List. Similar trends can also be observed on the POWER7 platform.

• platform dependence. For the same benchmark program, a CM may exhibit dif-

ferent performance characteristics across the platforms. For example, SuicideD

performs best for Hash-table on POWER7, but is one of the worse CMs for the

same benchmark on x86.

In summary, there does not exist a static choice of CM that can guarantee optimal

performance. The results show that (a) the choice of CM has a significant impact

on the performance of STM system (e.g., more than 4× performance difference was

observed on RB-Tree as in Figure 10(f)); (b) the optimality of CMs depends on

the workload (benchmark) and platforms; and (c) choosing a fixed CM will lead to

significant performance variations when the workload or platform changes. Methods

to choose optimal CM include prediction through modeling or run-time profiling.

Research works [55, 52] model transactional memory program behaviors and predict

performance of some system configurations using abstract program specifications.

Because the complication of the system and time-varying of the workload, those

models are far less than enough to accurately predict the performance under different

42

CM strategies. Adaptive selection of an appropriate CM during run time is therefore

essential to the performance of STM systems.

2.3.3 Profiling-based Adaptive Contention Management

To achieve adaptive contention management (ACM), we propose to periodically pro-

file the CMs and dynamically select the one with the highest throughput. The whole

process is illustrated in Figure 11. At every profiling point, each CM in the pool (the

selection of the CM pool will be discussed in Section 2.3.3.3) will be switched in and

run for a period of time. The throughput of a CM is calculated upon the completion

of its profiling. After the throughput values of all CMs are collected, the CM with the

highest throughput will be selected for subsequent execution until the next profiling

point.

As shown in Figure 11, an STM program may encounter multiple profiling points

during its execution. The profiling interval (T) controls the frequency of profiling, and

the profiling length (li for CMi) affects the length of the profiling process. Profiling

will inevitably cause overhead to the original program. Intuitively, the more profiling

a program conducts (a smaller T or larger li), the more overhead will be incurred

since sub-optimal CMs will be applied more often. However, if the profiling process

is not frequent enough (T is too large), the ACM may not be responsive when the

workload changes; furthermore, if the profiling process is not long enough (li is too

small), then the profiling results may be inaccurate and may cause the system to

choose a sub-optimal CM.

Because the optimal values of T and li are workload and platforms dependent,

a major challenge in designing our profiling-based ACM is the optimization of the

profiling interval T and profiling length li.

It is desirable to have T � li since the objective of adaptation is to quickly

select an optimal CM and then use it for the program execution. The consequence of

43

1st Profiling

Program
 Start

2nd Profiling

Profiling Length of CMi (li)

Profiling Interval (T)

CM1
CM2

...

Figure 11: Periodic profiling process of CMs for the proposed adaptive ACM scheme

selecting a sub-optimal CM is therefore expensive. The profiling accuracy should be

prioritized over the profiling overhead. Therefore, in our method, we will start from a

small profiling interval T that helps us quickly find for the minimum profiling length

that satisfies the accuracy requirement, and then increase the profiling interval T to

reduce the overhead incurred by unnecessary profiling.

The profiling overhead also depends on the selection of the candidate CMs. The

overhead consists of two parts: (1) the fixed overhead such as setting the system timer,

switching between CMs, etc., and (2) during the profiling process, each CM will be

tested for a certain period of time, sub-optimal CMs will lower the performance of

the STM program. Part (1) of the cost is an implementation detail and is also related

to STM designs. Experimental results suggest that this cost is marginal. Thus, we

focus on part (2) of the overhead. For notational convenience, we assume that we

have k CMs in the pool. We use Thi to denote the profiled throughput of a CMi, and

Thmax to denote the throughput of the optimal CM. We quantify the overhead by

O =

∑k
n=1(Thmax − Thi)li

T
(21)

which is the performance lost when profiling sub-optimal CMs.

Equation 21 indicates that the profiling overhead can be reduced by using a larger

profiling interval T , minimizing the profiling length li for each CM, and carefully

choosing the candidates to have a small number of candidates that tend to perform

well (smaller k and (Thmax − Thi)).

44

Next we discuss the three aspects of our design: Section 2.3.3.1 shows how we

dynamically adjust profiling interval T and profiling lengths li to reduce unnecessary

profiling; Section 2.3.3.2 depicts how we decide the profiling lengths to accommodate

all types of workload; And Section 2.3.3.3 discusses how to choose the candidate CMs.

2.3.3.1 Dynamic Adjustment of Profiling Interval and Profiling Length

The optimal values of the profiling interval and profiling length depend on various

factors, and a major one is the characteristics of the workload. For example, a high-

throughput STM program would require a shorter period of time for an accurate

profiling. Workload with time-varying characteristics would require more frequent

adaptation. Thus, fixed profiling interval and length as in [34] is undesirable.

In our proposed method, we dynamically adjust the profiling interval and length

according to the workload. The profiling interval should be adjusted to the degree

of time-variance of the workload. If the workload varies fast, the profiling interval

needs to be shorter to be responsive. If the behavior of the workload is stable, we

should extend the profiling interval. Similarly, the profiling length also needs to be

dynamically adjusted so that it is long enough to ensure the profiling accuracy, but

not so long to cause unnecessary profiling overhead.

It is expensive to verify whether a profiling result is accurate or not. For example,

it is possible to track the standard deviation across all the profiling results. But this

will require extra storage and computation. Note that the objective of profiling is

not to track the precise throughput for each CM, but to identify which CM is better

than others for the current workload and platform. We can therefore tolerate some

profiling errors as long as they do not affect the comparison of the CMs. To balance

the accuracy and overhead, in our adaptation scheme (shown in Figure 12), we track

the throughputs at two consecutive profiling points, and we consider the profiling

results to be accurate if the difference is smaller than a threshold.

45

Figure 12 shows our algorithm for the dynamic adjustment of the profiling fre-

quency and length. At the end of the kth profiling point, we compute the throughput

for CMi (Thki) and compare it with the previous results Thk−1
i . We use vi to de-

note the throughput variance between two consecutive profiling for CMi (line 5). vi

is compared against threshold VAR THRES to decide if the current profiling result

is accurate or not. If not, the profiling length for this CM will be doubled at next

profiling point (line 6).

We also record the accumulated variance var to detect changes in the workload.

In line 10, we compare var with VAR THRES × NB CMS (where NB CMS denotes

the number of CMs in the pool). If var > VAR THRES, it is indicative that the

workload behavior has changed, so we will reset the profiling interval. In this case,

T will be reset to an initial value (INITIAL INT = 250 ms in our experiments).

We are conservative in increasing the profiling interval and shrinking the profiling

length, because the profiling accuracy should not be sacrificed for the overhead. Only

when var < VAR THRES (which means none of vi is larger than VAR THRES), we

believe the profiling result has stabilized, so we double the value of T and cut li by

half to reduce unnecessary profiling. In our design, T will be capped by INT BOUND

(set to 4 seconds in our experiments) to maintain the responsiveness of the profiling

procedure.

2.3.3.2 Profiling Length

The profiling length li for each CM is another key design parameter. Two metrics

can be used to time the profiling length: physical-time or logic-time. Frank in [34]

chose to use the physical-time, which we call time-based profiling method (TPM).

Instead, we can also use logic-time to measure the profiling length. In STM systems,

commit and abort are two frequent and meaningful events, and are good candidates

for tracking logic events. It is possible and convenient to profile each CM for a fixed

46

1: procedure adjust(Thki)
2: . Thki : the throughput of CMi in the kth profiling.
3: . li: profiling length for CMi; T : profiling interval.
4: var ← 0.0
5: for all cm do
6: vcm ← (|Thkcm − Thk−1

cm |)÷ Thkcm
7: if vcm > VAR THRES then
8: lcm ← lcm × 2
9: end if

10: var ← var + vcm
11: end for
12: if var > VAR THRES × NB CMS then
13: T ← INITIAL INT
14: else
15: if var < VAR THRES and T < INT BOUND then
16: T ← T × 2
17: for all cm do
18: lcm ← lcm ÷ 2
19: end for
20: end if
21: end if
22: return li, T
23: end procedure

Figure 12: Adjustment of Profiling Interval and Profiling Length after the Profiling
Ends

amount of commits/aborts instead of time (li will be different for different CMs). We

call these commit-based profiling method (CPM) and abort-based profiling method

(APM) respectively. We next compare these three methods and show that APM is

better than the other two.

We first quantify the performance overhead of the TPM, CPM and APM. As we

showed in Equation. 21, the overhead is related to T , li and Thi. Let us assume TPM

will profile CMi for ti seconds, thus we can replace li to ti directly which represents

the time spent by CMi. The overhead of TPM can be calculated as

OTPM = (
k∑

n=1

(Thmax − Thi)ti)/T (22)

For CPM, we assume each CM is profiled for Ci commits, therefore li should be

47

expanded to Ci

Thi
, and the overhead of CPM is

OCPM =
k∑
i=1

(
Ci · Thmax

Thi
− Ci)/T (23)

Similarly, if we assume each CM is profiled for Ai aborts, and the abort rate of

CMi is Abi, we can calculate the overhead of APM as

OAPM = (
k∑

n=1

(Thmax − Thi)
Ai
Abi

)/T (24)

It can be seen from the equations that OTPM is bounded if we set ti to a small value

(compared with T). For OCPM and OAPM , because a CM may theoretically (and very

rarely) take an arbitrary long period of time to commit or abort transactions, their

values may be unbounded.

Although OTPM can be bounded, it is very difficult to set the profiling length for

TPM. This is because workload may vary significantly. For example, we observed over

100× variances in transaction throughput for benchmarks in the STAMP suites [15].

Given any profiling length, say 1 second, it may be appropriate for workload A, but

insufficient for workload B. Note that our adaptation scheme adjusts the profiling

length automatically, but setting the initial profiling length is still a challenge for

TPM. Besides, for a workload with time-varying characteristics, transaction length

may vary significantly as the program executes, parameter ti has to be continuously

adjusted, which will cause extra overhead (see experimental results in Section 2.3.5.3).

On the contrary, CPM and APM are both decoupled from physical-time, and do

not have this drawback. Regardless of the transaction throughput of a workload, it

will commit/abort transactions. We will be able to estimate the performance of the

CM during the time period that certain number of commits/aborts occurred. For

example, if we profile a CM for 1000 aborts, but see no commits, we can almost be

sure that this CM is problematic. However, if we profile this CM for 1 second of time,

and do not see any commits, we will not be able to tell whether this is a problem of

48

the workload (transactions are too long) or a problem of the CM. CPM and APM

are therefore more flexible choices than TPM.

In practice, OAPM rarely is unbounded. OAPM has a Thmax − Thi term on the

numerator. In practice, this term is small when the abort rate Abi is small: a CM with

low abort rate tends to result in high transaction commit rate. More importantly, if

a CM on the contrary generates a low transaction throughput Thi and a low abort

rate Abi at the same time, then it is likely that this CM is causing the program not

to commit and not to abort, which is a sign of deadlocks. However, deadlocks are

guaranteed not to occur in any properly designed STM systems [47] which is actually

a major advantage of STM. The overhead of APM is thus also bounded in practice.

Although properly designed STM systems can prevent deadlocks, under certain

conditions, some CMs may still cause livelocks that results in a close to zero through-

put Thi. For example, in our experiments, Aggressive of RSTM with 16 threads

on RB-Tree on x86 had a throughput of 44 transactions per second, while other

CMs achieved more than 106 transactions per second. For such cases, OCPM can be

arbitrarily large (see experimental results in Section 2.3.5).

In terms of implementation cost, TPM is the highest. Because we only have one

timer for both ti and T in Linux, for each profiling process, TPM must adjust the

interval of the timer at least twice for ti and T respectively. Timer needs to be

implemented through operating system support, which tends to be expensive. For

CPM and APM, we can track the number of commits or aborts with a simple counter

embedded in STM’s commit or abort functions.

In summary, TPM has the advantage of bounded overhead, but it is inflexible in

guaranteeing profiling accuracy and will cause higher implementation cost than CPM

and APM. CPM and APM are more robust to variance in the workload with lower

implementation overhead and better profiling accuracy, but CPM will be severely

impacted if one of the candidate CM causes livelocks on the target workload and

49

platform. APM is therefore better than the other two for measuring the profiling

length. Experimental comparison of the three methods are presented in Section 2.3.5.

2.3.3.3 Selection of Candidate CMs

Selecting a proper pool of candidate CMs is also important for our design. An im-

portant design parameter for the pool selection problem is the size of the pool. A

larger pool increases the probability of finding a better CM, at the cost of longer

profiling period as well as higher implementation cost (e.g. memory storage). Our

experimental results showed that 4 to 8 are reasonable sizes.

Another important factor is in the selection of individual CMs. Our experimental

results show that there are two types of CMs: (1) those that perform well on some

benchmarks (e.g., Aggressive on HashTable), but poorly on others (e.g., Aggressive

on RB-Tree); (2) those that perform reasonably well across all workload and plat-

forms, but may not be the best. Type 1 CM is preferred for our ACM because we

can dynamically identify suitable CMs for a given workload.

2.3.4 Implementation

To thoroughly test the performance of the proposed method, we built our ACM

scheme on both TinySTM and RSTM. These two STM systems follow two very

different design logics while both exhibiting good transactional performance.

TinySTM is a word-based STM system developed by Felber et al. [32]. It was

implemented in C, and the design target was to keep the code as simple and efficient

as possible. Thus, it provides less configurations than RSTM to the programmers.

In its write-back-ETL mode, it supports run-time switching of CMs (but requires

programmers to specify which CMs to switch). Five basic CMs including Aggressive,

Suicide, SuicideD (they call it Delay), Karma and Timestamp are shipped with

distribution package, but other CMs can be easily plugged in because of its modular

design. Note that for the back-off decision returned by a CM, TinySTM only accept

50

1 stm commit () {
2 . . .
3 i f (p r o f i l i n g) {
4 commits = ATOMIC INC (&nb commits [

cur CM]) ;
5#ifdef CPM
6 i f (commits > max commits [cur CM]

&& thr ead id == 0)
7 i f (cur CM == LAST CM) {
8 p r o f i l i n g = False ;
9 se l ec t bes t CM () ;

10 a d j u s t p r o f i n t a n d l e n g t h () ;
11 /∗ see Figure ˜\ r e f { f i g :

tmcm profalgo } ∗/
12 s e t n e x t p r o f i l i n g t i m e (&

t imer hand l e r) ;
13 } else
14 switch cm () ;
15#endif
16 }
17 . . .
18 }

20 stm abort () {
21 . . .
22#ifdef APM
23 i f (p r o f i l i n g) {
24 abort s = ATOMIC INC (&nb aborts [

cur CM]) ;
25 i f (abort s > max aborts [cur CM] &&

thr ead id == 0)
26 i f (cur CM == LAST CM) {
27 p r o f i l i n g = False ;
28 se l ec t bes t CM () ;
29 a d j u s t p r o f i n t a n d l e n g t h () ;
30 /∗ see Figure ˜\ r e f { f i g :

tmcm profalgo } ∗/
31 s e t n e x t p r o f i l i n g t i m e (&

t imer hand l e r) ;
32 } else
33 switch cm () ;
34 }
35#endif
36 . . .
37 }

39 s t m i n i t () {
40 . . .
41 cur CM = 0 ;
42 r e s e t p r o f i l i n g c o u n t e r s () ;
43 p r o f i l i n g = True ;
44#ifdef TPM
45 s e t n e x t s w i t c h t i m e (& t imer hand l e r

) ;
46#endif
47 . . .
48 }

49 t imer hand l e r () {
50#ifdef TPM
51 i f (p r o f i l i n g) {
52 i f (cur CM == LAST CM) {
53 p r o f i l i n g = False ;
54 se l ec t bes t CM () ;
55 a d j u s t p r o f i n t a n d l e n g t h () ;
56 /∗ see Figure ˜\ r e f { f i g :

tmcm profalgo } ∗/
57 s e t n e x t p r o f i l i n g t i m e (&

t imer hand l e r) ;
58 } else
59 switch cm () ;
60 } else {
61 r e s e t p r o f i l i n g c o u n t e r s () ;
62 p r o f i l i n g = True ;
63 }
64#e l i f de f ined (APM) | | de f ined (CPM)
65 i f (! p r o f i l i n g) {
66 r e s e t p r o f i l i n g c o u n t e r s () ;
67 p r o f i l i n g = True ;
68 s e t n e x t s w i t c h t i m e (& t imer hand l e r

) ;
69 }
70#endif
71 }

Figure 13: A snapshot of the added code of ACM for TinySTM

the scheme that backs off after a restart. The latest TinySTM version 1.0.0 is used

in the experiments.

Differently, RSTM [75] is an object-based STM system implemented in C++. We

used its release version 5. This version provides multiple choices for the configuration

such as invisible-read or visible-read, lazy version management or eager version man-

agement, etc. Over 20 CMs are available in the package, though most of them are

very similar. RSTM supports all three types of CM decisions including both backoff

51

schemes, and every CM was implemented in a separate C++ class so that RSTM is

almost compatible with any CM.

Our ACM can be considered as an add-on to the original STM system. By mon-

itoring the run-time behavior of the workload, our ACM can adaptively adjust the

current CM to maximize the overall performance. Figure 13 shows a snapshot of

our modifications for TinySTM. The majority of our modification is in three STM

interface functions, stm init, stm commit, and stm abort, which exist for all STM

systems. We implement our ACM with all three profiling methods, TPM, CPM and

APM. Our design is easy to implement with less than 200 lines of code in total.

As shown in Figure 13, we use a flag profiling to denote if the program is

currently being profiled, cur CM to denote the current CM being used, and a counter

nb commits for each CM to record the number of commits. For APM, we also need one

additional counter nb aborts for each CM to record the number of aborts. Initially,

when stm init is called, we reset all the counters , set the current CM to the first one

in the pool (cur CM=0), and then set the profiling flag to True. If TPM is used, we

also need to install a timer during stm init. We use setitimer(ITIMER REAL, ...)

to set the timer. Upon the expiration of the timer, a SIGALRM will be delivered

and our installed timer handler function will be called. TPM will switch the CM in

timer handler function. For CPM and APM, CM switching is triggered in functions

stm commit and stm abort respectively. When profiling completes for all the CMs, the

best CM will be selected and the next profiling interval and length will be adjusted

(line 8-11 and line 26-29).

2.3.5 Experimental Results

In this section, we present the experimental results and analysis. Two architectural

platforms were used in the experiments:

52

• x86 64: The system was equipped with four 2.93GHz quad-core Intel X7350

CPUs and 128GB memory. Linux kernel version was 2.6.32, and gcc version

4.4.4 was used.

• powerpc: The system was equipped with one 3.0GHz quad-core IBM POWER7

CPU where each core supports four simultaneous hardware threads. 4GB mem-

ory was installed in the system. Linux kernel version was 2.6.32, and gcc version

4.4.4 was used.

We implemented our ACM scheme for both TinySTM and RSTM. TinySTM

supports both x86 and powerpc platforms and works in 64-bit mode. We tested it

on both platforms in the 64-bit mode. RSTM release 5 is 32-bit only and does not

support Linux on powerpc systems. We tested it on the x86 platform using 32-bit

mode.

We selected four similar benchmarks from the TinySTM and RSTM. Linked-List,

RB-Tree, Skip-List, and Hash-Table were chosen for TinySTM. Linked-List, RB-

Tree, DList (Doubly Linked-List), and Hash-Table were chosen for RSTM. These

benchmarks covered a broad range of typical transactional workload. They differed

in transaction size, transaction issue rate as well as the conflict rate. For example,

the transaction sizes were random in Linked-List, but remained almost constant in

Hash-Table. We used the default configuration for both TinySTM and RSTM, and

each benchmark program was executed 10 seconds for each run. All the throughput

values were averaged over five runs (we observed less than 10% variance).

Eight candidate CMs were chosen for both TinySTM and RSTM. This was a rel-

atively large pool as we assume we have no a priori knowledge of the target workload

and the STM system itself. In practice, if the STM designer knows which CMs are

likely to be better in his/her system, CM candidate pool size can be reduced, which

will reduce the overheads of our ACM scheme, and improve its performance as well.

53

Table 5: Summary of the tested CMs

CM Description

Aggressive always aborts the other trans-
action.

Suicide always aborts self (called Timid

in RSTM)

Polite always backs off before abort-
ing the other transaction (not
available in TinySTM)

Karma always aborts the newer trans-
action (In RSTM, it will back
off before aborting self).

Timestamp always aborts the less-
productive transaction (In
RSTM, it is called Greedy, and
it will back off before aborting
self).

AggressiveD Aggressive with back-
off before a restart (called
AggressiveR in RSTM).

SuicideD Suicide with back-off before
a restart (called TimidR in
RSTM).

PoliteR Polite with back-off before
a restart (not available in
TinySTM)

KarmaD Karma with back-off before a
restart

TimestampD Timestamp with back-off before
a restart

Table 5 lists the pool of candidate CMs.

For all the experiments, we used the same initial values to set up our ACM scheme.

INITIAL INT was set to 250 ms, INT BOUND to 4 seconds, and VAR THRES to

0.2. For the initial profiling length, we used 1 ms for TPM, 128 commits for CPM

and 128 aborts for APM. The experimental results are presented in Figures 14, 15

and 16. It can be seen that on all benchmarks and platforms, the performance of

54

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

1 2 4 8 16

T
h
ro

u
g
h
p
u
t
(T

x
 /
 S

e
c
)

Number of Threads

(a) Linked-List

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 5.5e+06

 6e+06

1 2 4 8 16

T
h
ro

u
g
h
p
u
t
(T

x
 /
 S

e
c
)

Number of Threads

(b) RB-Tree

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

1 2 4 8 16

T
h
ro

u
g
h
p
u
t
(T

x
 /
 S

e
c
)

Number of Threads

(c) Skip-List

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1.1e+07

 1.2e+07

 1.3e+07

1 2 4 8 16

T
h
ro

u
g
h
p
u
t
(T

x
 /
 S

e
c
)

Number of Threads

(d) Hash-Table

 500000
 1e+06

 1.5e+06
 2e+06

 2.5e+06
 3e+06

 3.5e+06
 4e+06

 4.5e+06
 5e+06

 5.5e+06
 6e+06

1 2 4 8 16

T
h

ro
u

g
h

p
u

t
(T

x
 /

 S
e

c
)

Number of Threads

Aggressive
Suicide

Timestamp
Karma

AggressiveD
SuicideD

TimestampD
KarmaD

ACM(TPM)
ACM(CPM)

ACM(APM)

Figure 14: Performance comparison of ACM and static CMs on x86 platform for
TinySTM.

CMs varied significantly. On x86 platform, the performance variance of CMs reached

40.5% for TinySTM (Hash-Table with 16 threads) and 86% for RSTM (RB-Tree with

16 threads). Similarly, on powerpc platform, this variance could be as high as 32%

(Skip-List with 16 threads).

The proposed ACM schemes were able to adaptively choose an optimal CM during

run time and consistently achieved performance that was close to the best static CM

for all benchmarks and platforms. On some benchmarks, the performance of our ACM

was even higher than that of the best CM in the candidate pool. For example, on x86

platform with TinySTM, our ACM(APM) outperformed the best static CM SuicideD

by 18% for 8 and 16 threads on Linked-List(Figure 14(a)); on powerpc platform with

55

 50000

 100000

 150000

 200000

 250000

 300000

 350000

1 2 4 8 16

T
h
ro

u
g
h
p
u
t
(T

x
 /
 S

e
c
)

Number of Threads

(a) Linked-List

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

1 2 4 8 16

T
h
ro

u
g
h
p
u
t
(T

x
 /
 S

e
c
)

Number of Threads

(b) RB-Tree

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

1 2 4 8 16

T
h
ro

u
g
h
p
u
t
(T

x
 /
 S

e
c
)

Number of Threads

(c) Skip-List

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1.1e+07

1 2 4 8 16

T
h
ro

u
g
h
p
u
t
(T

x
 /
 S

e
c
)

Number of Threads

(d) Hash-Table

 500000
 1e+06

 1.5e+06
 2e+06

 2.5e+06
 3e+06

 3.5e+06
 4e+06

 4.5e+06
 5e+06

 5.5e+06
 6e+06

1 2 4 8 16

T
h

ro
u

g
h

p
u

t
(T

x
 /

 S
e

c
)

Number of Threads

Aggressive
Suicide

Timestamp
Karma

AggressiveD
SuicideD

TimestampD
KarmaD

ACM(TPM)
ACM(CPM)

ACM(APM)

Figure 15: Performance comparison of ACM and static CMs on powerpc platform
for TinySTM.

TinySTM of 16 threads, ACM(APM) generated a 13% higher throughput than the

best static CM Timestamp (Figure 15(c)). This is because these benchmarks had

time-varying behavior during the execution. Any CMs in the pool, because they are

static, would not be optimal throughout the execution of the benchmarks. On the

contrary, our ACM scheme was capable of adapting the optimal choice of CMs during

run time, and thus outperformed all the static CMs in the candidate pool.

Next we analyze and compare the three schemes of choosing profiling length, TPM,

CPM and APM.

56

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 130000

 140000

1 2 4 8 16

T
h
ro

u
g
h
p
u
t
(T

x
 /
 S

e
c
)

Number of Threads

(a) Linked-List

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

1 2 4 8 16

T
h
ro

u
g
h
p
u
t
(T

x
 /
 S

e
c
)

Number of Threads

(b) RB-Tree

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 130000

1 2 4 8 16

T
h
ro

u
g
h
p
u
t
(T

x
 /
 S

e
c
)

Number of Threads

(c) DList

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

1 2 4 8 16

T
h
ro

u
g
h
p
u
t
(T

x
 /
 S

e
c
)

Number of Threads

(d) Hash-Table

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

1 2 4 8 16

T
h

ro
u

g
h

p
u

t
(T

x
 /

 S
e

c
)

Number of Threads

Aggressive
Timid

Polite
Karma

Timpstamp
AggressiveR

TimidR
PoliteR

ACM(TPM)
ACM(CPM)

ACM(APM)

Figure 16: Performance comparison of ACM and static CMs on x86 platform for
RSTM.

2.3.5.1 Implementation Overhead

As we discussed in Section 2.3.3.2, TPM has the implementation overhead that is

mainly caused by frequently setting the timer. On the Hash-Table benchmark of

RSTM (Figure 16(d)), all the candidate CMs had similar performance so that the

adaptation frequently switched CMs. Moreover, because these CMs performed very

stably, the profiling length li and profiling interval T were adjusted frequently (line

13-16 in Figure 12. With TPM, each adjustment would require one extra timer re-

installation. On high-throughput benchmarks such as Hash-Table, this overhead was

magnified so that TPM performed worse than both CPM and APM (up to 55%).

On the other hand, APM has one additional overhead than CPM which is the

57

extra atomic operation in stm abort (line 23 in Figure 13). This overhead was not

obvious for most benchmarks, but on Hash-Table of TinySTM (Figure 14(d)), this

overhead (extra 106 atomic operations per second) caused APM to perform slightly

worse than CPM by 4%. We could possibly used thread-local counters to avoid some

atomic operations and thus reduce this overhead, but this is the implementation detail

and not the focus of this study.

2.3.5.2 Livelock CMs

The RB-Tree on RSTM was an interesting case. Multiple CMs in the candidate

pool caused livelocks. We observed numerous aborts but almost zero commit. The

experimental results are demonstrated in Figure 16(b)).

For example, with 16 threads, Aggressive had only 44 commits per second and

Karma had only 4853 commits per second, both of which were significantly lower than

other benchmarks (more than 106 commits per second). When profiling these CMs,

CPM stalled and waited for commits that were almost not occurring. CPM thus had

a very low performance in this case (only 69 commits per second while TPM and

APM were higher than 106). It is worth noting that TPM performed worse than

APM by up to 36.6% when 16 threads were used. This was because TPM wasted

certain amount of time profiling these livelock CMs. APM performed best for this

scenario because the livelock CMs generated excessive aborts so that APM quickly

collected enough aborts and switched to other well-performing CMs.

2.3.5.3 Time-varying Workloads

To demonstrate that the performance of TPM is workload sensitive, we synthesized

a new benchmark for RSTM. This new benchmark integrated four types of workload

Linked-List, RB-Tree, DList and Hash-Table from the benchmark suite of RSTM. The

synthesized workload alternated through the above four types of workload, running

each of them for a pre-set number of seconds. Figure 17 shows the results of two

58

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

1 2 4 8 16

T
h
ro

u
g
h
p
u
t
(T

x
 /
 S

e
c
)

Number of Threads

ACM(TPM)
ACM(CPM)
ACM(APM)

(a) Workload Switch Time: 10 seconds

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

1 2 4 8 16

T
h
ro

u
g
h
p
u
t
(T

x
 /
 S

e
c
)

Number of Threads

ACM(TPM)
ACM(CPM)
ACM(APM)

(b) Workload Switch Time: 2 seconds

Figure 17: Performance comparison of TPM, CPM and APM on the synthetic bench-
mark (RSTM, x86).

experiments. In both experiments, the new benchmark was run for 40 seconds in

total. We set the switch time to 10 seconds in the first experiment and 2 in the second.

TPM and APM exhibited similar performance, and CPM performed poorly on 8 and

16 threads. This is because some CMs stalled when RB-Tree is switched in for CPM.

In the second experiment, when we decreased the switch time to 2 seconds, which

simulated a more volatile workload that changes its behavior frequently. As shown

in Figure 17(b), APM outperformed TPM, and achieved a performance increase by

25% on 16 threads.

2.4 Summary

In this chapter, we focused on the data contention of transactional memory systems.

We used an analytical approach to quantify the impact of data contention on per-

formance with respect to various system configurations [122]. We also proposed an

adaptive contention management mechanism to automatically select the best pol-

icy [53].

The analytical model we presented was based on continuous-time Markov chain.

It considered the impact of resource capacity, transaction issue rate, implementation

59

overhead, and more importantly, the spatial and temporal aspects of transaction con-

flict patterns. The model was validated through extensive experiments. We further

explored the impact of two factors on the execution efficiency. Our results demon-

strated that it is possible to describe the impact of various key parameters on data

contention, basic behavior and system performance in transactional memory systems.

We observed that the performance is greatly degraded with higher probability of con-

flicts which in turn is affected by the implementation overhead.

The model made several simplifications such as omitting the differences in various

conflict resolution which are important aspects in TM system design. These issues

were addressed by investigating a profiling-based adaptive contention management

method for software transactional memory. We examined the performance of existing

CM policies with a wide variety of benchmarks and platforms, from which we con-

cluded that adaptation of CMs would be crucial to the performance of TM systems.

We then presented our profiling based adaptive CM, and proposed to use logic-time

(abort and commit events), instead of the physical-time, to determine the profiling

length. We analyzed the profiling overhead for the proposed methods. We showed

that the physical-time based method is sensitive to workload and incapable of han-

dling volatile workload. The experimental results validated our proposed method and

showed that APM outperforms both TPM and CPM.

60

CHAPTER III

DATA CONTENTION ON GEO-REPLICATED

TRANSACTIONAL DATA STORE

With the rapid advancement in Cloud Computing and networking techniques, many

online service providers have deployed their systems via geographically-distributed

centers that replicate each other. For example, Megastore [8] and Spanner [19] were

designed with these supports in mind which were reported to be the back-end storage

systems for Google’s email service. Such systems provide two benefits: tolerance to

the data center outage and low latency for local read requests.

The Geo-replicated systems provide transactional data access abstraction while

also hides the fact of distributed replica across multiple data centers from clients.

That is, data access in such systems support both transaction-based and distributed-

system-based data access abstraction. Specifically, this abstraction maintains a ”replica

consistency” for the client. Similar to transactional memory systems, to maintain such

consistency while effectively exploiting parallelism, data contention management is

crucial to system implementation. On the other hand, because of the distributed na-

ture of such system, the contention management strategies have distinguished feature

against transactional memory systems discussed in Chapter 2. This chapter aims to

discuss the impact of data contention and various design options on the performance

of such system.

We begin by elaborating on the ”replica consistency” requirement for such sys-

tems. Replica consistency regards the question on how the systems allow the replica

states to differ from each other. The replica state transitions can be expressed by a

sequential log of transactions. Replicas with the same sequential log history have the

61

same states given the same initial data state. The replica states (i.e., the history log)

can differ in two ways: (1) a replica is in a stale state (i.e., the log history is a prefix

of others) which could result from a crash or message delays when new transactions

are not yet committed to the replica; (2) a replica is in a conflicted state of another

which is caused by lack of synchronization when updating replicated data.

At the two ends of the design spectrum, a system can allow both or neither types

of differences. In practice, both design extremes have drawbacks: conflicted replica

state must resort to manual resolution which is often infeasible; and disallowing stale

replicas make the system vulnerable to faults. In this study, we focus on the middle

ground of the spectrum where a subset (e.g. a minority) of the replicas are allowed

to have stale states but conflicted states are not allowed. Such a replica consistency

requirement is common among geographically-replicated systems (e.g., [19, 8, 113,

66]).

The replica consistency requirement necessitates a replication protocol that en-

sures a shared sequential transaction order (the history log) among replicas. This adds

two important aspects to the system design besides the usual focus on concurrency

control: (1) interaction between the replication protocol and execution (i.e., concur-

rency control); and (2) selection of the replication protocol. We study two system

types (Execute-Before-Replicate and Replicate-Before-Execute) and three replication

protocol schemes (Single Leader Paxos, Fast Paxos and Epoch-based Paxos), which

are representative design options for the above mentioned two aspects.

The design options explore various trade-offs. The Execute-Before-Replicate (EBR)

and Replicate-Before-Execute (RBE) systems vary in whether execution happens be-

fore or after the replication protocol, which result in different drawbacks that EBR

incurs higher probability of conflict and RBE has less degree of concurrency. The

Single Leader Paxos (SP), Fast Paxos (FP) and Epoch-based Paxos (EP) protocol

schemes also outperform each other under different circumstances: SP may have an

62

extra delay, FP has to deal with collisions and EP is sensitive to network latency

variation and time drift.

Although the two aspects (replication protocol and its interaction with execution)

are fundamental system design decisions, the impact of the options on performance

is affected by various other factors (e.g. network latency, workload arrival rate, and

dataset size, etc.). As such, systematic understanding of the performance character-

istics of these design options becomes necessary. Analytical models are critical for

system deployment. Hence, we aim to develop a quantitative analysis to guide the

selection of the design choices for geographically-replicated datastores. Specifically,

we make the following contributions in this chapter:

• Categorize fundamental design options and identify their trade-offs including:

(1) EBR and RBE systems and (2) SP, FP and EP replication protocol schemes.

• Develop a complete framework to model systems with combinations of the de-

sign options.

• Validate models through extensive detailed simulations.

• Study the impact of workload/system parameters on the performance of the

system variations.

Our models establish relationships between workload/system configurations and

transaction response time for each design option and hence enable quantitative com-

parison on the trade-offs. It can be shown that network latency has super linear

impact on EBR while transaction arrival rate has super linear impact on RBE. EBR

can achieve higher maximum throughput under low network latency. Our models also

reveal that FP outperforms SP when load occupancy is under around 25%; the per-

formance of EP is degraded by large network latency variance and time drift among

replicas.

63

The rest of the chapter is organized as follows: We first list the related works in

Section 3.1. Section 3.2 overviews design options. Section 3.3 presents our methods

to model these options. Section 3.4 validates our model with simulation and presents

insights on comparison among the options. Section 3.5 summarizes this chapter.

3.1 Related Work

Spanner [19] used long lived leaders with Paxos to replicate the execution results

which is similar to EBR. Megastore [8] assigned dedicated leader for each log posi-

tion which was a variation of RBE. Calvin [113] pre-assigned timestamps and then

executed the transactions in timestamp order which was a variation of RBE. Several

optimizations of such systems existed in Paxos-CP [87], Spanner and MDCC [66], etc.

Other research efforts, such as Dynamo [22] and Walter [104], etc., targeted different

consistency requirements.

Two surveys [84, 111] summarized research works on modeling the performance

of distributed or centralized database. A common method used was mean value

analysis [110, 111, 38, 39]. We followed this line of work. Our models focus on

the important aspects of replication consistency, and thus are capable of describing

the drawbacks of EBR and RBE such as long lock holding time and less degree of

concurrency and the trade-offs of three Paxos protocol variants.

Other methods were used to quantify various aspects of concurrency control and

distributed protocol. In [77] two phase commit protocol was modeled using queuing

theory. Methods were described in [62] to compute the impact of network delay on

conservative timestamp algorithm in DDBS. In [5], the authors discussed multiple

aspects of three protocols that guarantee serializability and transaction atomicity.

In [14] the authors employed a simulation study for performance of multi version and

distributed two-phase locking.

Classic and Fast Paxos were described in [69] and [70]. There were few efforts in

64

modeling the performance of Paxos and the systems using Paxos. In [63] the authors

discovered cases when Fast Paxos performed worse than classic Paxos.

3.2 Systems Design Options Overview

The consistency requirement brings out two important aspects to the system design,

i.e., the replication protocol and its interaction with execution. This section overviews

the representative design options regarding these two aspects.

3.2.1 The EBR and RBE Systems

EBR and RBE are two representative types that differ on when to invoke the repli-

cation protocol. The two types explore trade-offs between high probability of conflict

(EBR) and less degree of concurrency (RBE).

3.2.1.1 The EBR System

In EBR, a master replica executes transactions while other replicas update the re-

sults. Client requests are directed to the master replica; the master replica executes

transactions in parallel employing the traditional dynamic locking scheme: locks are

requested on demand each time when a transaction accesses data.

The SP scheme is invoked after locks are acquired and before transaction commit.

The protocol updates the transaction order and execution result to other replicas.

The replication protocol must be invoked before, instead of after, transaction commit

for fault tolerance. Otherwise, it could happen that the master fails at the point

between the commit of a transaction T and the invocation of the protocol for T .

In this case, the system continues with a new master not knowing the existence of

T . The failed master replica, however, recovers with T committed which leads to a

conflicted state. The necessity to commit after the protocol exposes transactions to

longer lock holding time and hence higher probability of conflict.

65

3.2.1.2 The RBE System

In RBE, upon new transactions arrive, the order is determined and agreed upon

among replicas through a replication protocol. Each replica follows this same order

and executes transactions individually. At each replica, when a transaction is ”ready”

to execute, it proceeds to the locking stage. A transaction is ”ready” only when all

its predecessors have finished their locking stage. Transactions acquire all locks at the

locking stage. If the required locks cannot be granted, the transaction is appended

in the FIFO queues of the locks and its execution is suspended. Transactions holding

all the locks continue to data accesses, commit and lock release.

The constraint that execution must follow the pre-determined order causes the

problem of less degree of concurrency. The problem exhibits at two levels. At the

replication protocol level, a transaction cannot proceed to execution if its preceding

transactions have not finished their replication protocol. For example, due to network

latency variance, it is possible that the messages of transaction 1 arrives earlier than

messages of transactions 0. In such case, the replica cannot execute transaction 1

until after it learns about transaction 0. This causes extra delay for transaction 1.

We term this impact reorder overhead. At the execution level, The pre-determined

order may also have an adverse impact on concurrency because of the conflict among

transactions. For example, there are three transaction T1 (Write A, Write B), T2

(Write B, Write C) and T3 (Write C); Under dynamic locking in EBR, because T1

and T3 do not have overlapped data, they could be executed in parallel with T2 blocked

after T1; However, for RBE, when the order is determined to be T1, T2 and T3, only

one transaction can be executed at a time.

3.2.2 Replication Protocol Schemes

The replication protocol ensures the consistency requirement that replicas view the

same transaction order regardless of faults and arbitrary network delay. This is done

66

using the Paxos protocol. Paxos [69, 70] is a distributed protocol to reach consensus

among a set of agents. In our cases, the consensus is made on each slot in the shared

order (e.g., executing Ta as the 10th transaction). The protocol is conducted among

agents termed proposers, acceptors and learners. Proposers issue proposals, acceptors

help make decisions and learners learn the decisions. The procedure of one slot finishes

when a quorum of learners learn the decision. Each replica has one acceptor and one

learner. There could be one leader proposer or multiple proposers depending on the

scheme.

We abstract away complex algorithmic details in the Paxos protocol but only

present behaviors that are related to our performance analysis. For example, though

quite some efforts are made in the Paxos protocol to handle faults, we choose not

to include the impact of fault recovery because replica faults are rare during normal

execution.

3.2.2.1 The SP Scheme

SP employs one leading proposer for every slot in the transaction order. When The

proposer receives a new transaction, it sends an accept request to acceptors for the

transaction to be placed in the next slot in the order; acceptors accept the trans-

action for that slot and forward ”accepted” responses to the learners; learners learn

the responses when received messages from a quorum of acceptors and replicas can

proceed to the execution.

SP costs two times the cross-replica latency (a message chain from proposer to

acceptors then to learners). However, if the leader is on a replica different from the

client location, an extra cross-replica message delay is needed, which makes the delay

three times the cross-replica latency.

67

3.2.2.2 The FP Scheme

FP [70] attempts to optimize SP by eliminating the extra cross-replica message delay

resulted from the location difference between client and the leader. FP allows multiple

proposers, each on one replica, to send proposals when they receive new transactions.

The agents proceed similarly as in SP except (1) a larger quorum of acceptors is

needed for learners to learn the decision for a slot [70]; (2) multiple proposals of one

slot can cause a collision which needs to be recovered by starting a new round of

messages and having a coordinator decide for that slot.

FP typically costs approximately two times the cross-replica latency as SP does.

When collision occurs, however, one of the proposals will succeed and be learned

for that slot; Other proposals will fail and the failed proposers propose for the next

slot. This results in two kinds of extra delay in the response time: one is that

a proposal have to restart multiple times before it succeeds; another is that the

successful proposal will also incur a delay for collision recovery.

3.2.2.3 The EP Scheme

The drawbacks in previous schemes result from (1) the distance between client and

leader in SP; (2) collisions by multiple proposers in FP. EP attempts to alleviate these

overhead by letting each replica host a proposer for different slots, e.g., the proposer

on replica 0 proposes for the 0th, 5th, 10th, . . . slots, assuming 5 replicas. Thus every

replica can issue proposal and replicas do not compete for the same slot. However,

for RBE, the assigned proposers need to send proposals in a bounded time (even if no

transaction is received) because otherwise the transaction execution of later slots will

be stalled. To alleviate this problem, an epoch batch approach is adopted. Replica

local time is divided into epochs (small fixed length of time pieces). Proposers on

each replica propose batches of transactions for the assigned slot. A batch contains

all transactions arrived in the last epoch. An empty batch is proposed if no client

68

Table 6: Trade-offs Among Design Options.
System Related Work Performance Characteristics

EBR, SP Spanner [19]
3x cross-replica latency; long lock
holding time.

RBE, SP Megastore [8]
3x cross-replica latency; reorder
overhead; lower degree of concur-
rency.

RBE, FP MDCC [66]
2x cross-replica latency; proposer
collision; reorder overhead; lower
degree of concurrency.

RBE, EP Calvin [113]

2x cross-replica latency; waiting
time for epoch end; reorder over-
head; lower degree of concur-
rency.

request is received in the last epoch. Using this method, an underloaded proposer

will not block the execution of other transactions indefinitely.

EP costs approximately two times the cross-replica latency. However, it incurs

extra delay resulted from the waiting time for each epoch end and a reorder overhead

from both network latency variance and time drift among replicas.

Table 6 summarizes the performance trade-offs among the design options. We also

listed related systems in the table. Note that these systems incorporate a wide range

of techniques and many details that we cannot capture in the scope of this study,

e.g., these systems need techniques to handle consistency among partitions which we

do not consider. However, the characteristics of our abstraction still apply on these

implementations.

3.3 System Models

The model is desired to help compare the design options in Table 6. Such analysis

should study the execution, replication protocol and their interaction. It should reveal

the performance traits and trade-offs including the high probability of conflict in EBR,

loss of concurrency in RBE, and various features among the three replication scheme.

To simplify the modeling analysis, we first decouple the transaction execution and the

69

SP Model
(§3.3.2.1)

EBR Execution
(§3.3.1.1)

RBE Execution
(§3.3.1.2)

SP/FP/EP Model
(§3.3.2)

RBEEBR

Model Combination
(§3.3.3)

Figure 18: Models of EBR and RBE Systems

replication protocol and combine them later. The execution models abstract away the

replication protocol and only analyze the trade-off between EBR and RBE execution.

The protocol models studies the trade-offs among replication schemes including the

loss of concurrency issue at protocol level (the reorder overhead) for RBE. Figure 18

summarizes the analytical models of the two system types and the three schemes.

3.3.1 Models of EBR and RBE Execution

For both system types we model a closed system with a fixed number of transactions,

denoted by m. The justification for considering a closed system is given in [110].

Transactions in the system are assumed to be of the same size, denoted by k, which

is the number of locks a transaction requests. Transactions request locks uniformly

from a pool of d locks. Locks are acquired in exclusive mode. Models with more

general assumptions can be extended from such a basic model: for example, systems

with different transaction sizes can be extended using methods in [111]; the effect of

non-uniform access and shared locks is equivalent to the case of exclusive uniform

access with a larger lock pool [110]. To simplify the computation, we also assume

that lock conflict is rare (i.e., km � d). Each of the k steps in a transaction takes

some processing time with mean value s. After acquiring all the locks the transaction

commits which takes a mean time of c. The above assumptions are adopted by many

related works (see survey [111]). Table 7 lists the common variables used.

70

Table 7: Variables Used in the Execution Models
d Total number of locks
m Number of concurrent transactions in the system
k Number of locks acquired by each transaction
s Mean time takes for each lock step
c Mean time takes for commit step

3.3.1.1 The EBR System Execution Model

Following the assumption stated above, a transaction in EBR goes through a fixed

number of steps. In each step, it acquires a lock. The transaction waits if the

requested lock is not available. After acquiring all the locks, the transaction takes

the commit step (while holding the locks) which invokes the replication protocol. The

analysis extends the model in [112] by considering the impact of a long commit time.

The mean response time resEBR,exec can be calculated as

resEBR,exec = ks+ c+ pskWs +Wd ≈ ks+ c+ pskWs, (25)

where ks+ c is the response time without any lock conflict; ps is the probability the

transaction is blocked for each step; Ws is the mean waiting time for each step if a

transaction is blocked; pskWs is the average blocking time for a transaction; Wd is

the overhead of restart because of deadlocks which is ignored when lock conflict is

rare.

The probability of lock conflict can be approximated by

ps ≈
(m− 1)L

d
. (26)

where L is the mean number of locks held by a transaction. The probability that

an active transaction is in its jth stage is assumed to be proportional to the process-

ing time of that stage (e.g., when commit time is long, the system tends to find a

transaction in its commit stage). Therefore, the average number of locks an active

transaction holds is La =
k∑
j=1

j 1
k+ c

s
+ k

k+ c
s
. Under the assumption that lock conflicts

71

are rare, we can use the mean number of locks of active transactions to approximate

number of locks of the system, that is, L ≈ La.

Ws is the waiting time when a transaction is blocked. Blocked transactions form a

waits-for graph where nodes represent transactions and edges represent the waits-for

relationship. Because only exclusive locks are considered, the graph is a forest of trees.

Active transactions are at the roots of the trees and designated to be at level zero.

Transactions blocked by active transactions are at level one and so on. To compute

Ws, we first compute W1, the waiting time of level one transactions that are blocked

by an active transaction. Assume that the probability, pb,j, that an active transaction

is at its jth step when a level one transaction is blocked by it, is proportional to the

number of locks that the active transaction holds and the mean time it remains in

that state. Then the probability is computed as pb,j = js+(j−1)u
norm

, where u = psWs is

the average total waiting time of a transaction, and norm is a normalization factor;

The probability that the active transaction is in its commit stage is pb,c = kc
norm

. The

normalization factor is norm =
k∑
j=1

[js + (j − 1)u] + c. The variable u is unknown

and can be ignored [112] under the rare lock conflict assumption since u � s. The

waiting time W1 is then the time for the active transaction to finish, which can be

computed as W1 =
k∑
j=1

[s′+ (k− j)s+ c]pb,j + c′pb,c, where s′ is the mean residual time

of each lock step and c′ the commit step. From renewal theory, the mean residual

time per lock step s′ = σ2
s+s2

2s
and that of the commit step c′ = σ2

c+c2

2c
[64]. For fixed

distribution, s′ = s
2
, c′ = c

2
; for exponential distribution, s′ = s, c′ = c.

To compute Ws from W1, we introduce the probability that a transaction is

blocked, denoted β.

β =
m−ma

m
≈ kpsWs

resEBR,exec
, (27)

where ma denotes the mean number of active transactions in the system. The sec-

ond equality follows the Little’s Law, i.e., β can be also expressed as a ratio of the

72

mean transaction delay in the blocked state and the mean transaction response time.

From [111, 112], the probability that a transaction is at level i is approximated by

Pb(i) = βi−1, i > 1, and Pb(1) = 1 − β − β2 − The mean waiting time at level

i > 1 is approximated by Wi = (i − 0.5)W1. Therefore, the waiting time Ws is a

weighted sum of delays of all levels.

Ws ≈ W1[1−
∑
i≥1

βi +
∑
i>1

(i− 0.5)βi−1] (28)

The probability that a level one transaction is blocked is α = kpsW1

resEBR,exec
≈ kpsW1

(k+γ)s+kpsW1
.

Because β is unknown, α is good approximation of β (i.e., β ≈ α) since most blocked

transactions are at level one when conflict rate is low.

3.3.1.2 The RBE System Execution Model

For RBE, before access data, transactions start lock acquisition in the order of their

arrival. A transaction is blocked when a requested lock is held by an earlier trans-

action. Blocked transactions are appended in the FIFO queues associated with the

requested locks. Locks released by committed transactions are granted to the next

transaction in its queue. Transactions successfully acquired all the locks become

active and start execution.

The mean response time of a transaction is the time the transaction originally

takes plus the waiting time in the lock FIFO queue. That is,

resRBE,exec = ks+ c+ ptWt = ks+ ptWt. (29)

where ks + c is the response time without conflict; the commit time c = 0 since the

replication protocol is invoked before execution; pt is the probability that a transaction

is blocked during lock acquisition; Wt is the average waiting time on the queue.

The probability that a new transaction will be blocked by the previous m − 1

transactions can be approximated as

pt ≈ 1− (
d− (m− 1)k

d
)k, (30)

73

under the rare conflict assumption. The equation simply uses the fact that for each

lock, the probability that the transaction does not conflict with the other m − 1

transactions can be approximated by d−(m−1)k
d

. The probability that a transaction has

lock conflicts with another transaction can be approximated using the same reasoning:

pw ≈ 1−(d−k
d

)k. The probability that the ith arrived transaction in the system is active

equals to the probability that the ith transaction does not conflict with the previous

ones, which is (1 − pw)i−1. Therefore, the average number of active transactions

observed by the mth transaction is a = 1 + (1− pw) + (1− pw)2 + · · ·+ (1− pw)m−2 =

1−(1−pw)m−1

pw
. The mean number of transactions an active transaction blocks is then

h ≈ m−1
a
, which is also the mean number of transactions the mth transaction has

to wait given it encounters conflicts. Therefore, the waiting time of a blocked new

transaction is

Wt = r + (h− 1)ks, (31)

where r ≈ 0.5ks is the mean residual time of the active transaction and (h− 1)ks is

the mean time to wait for the blocked transactions of higher levels to finish.

The probability that a transaction is blocked is

β =
m−ma

m
=

ptWt

resRBE,exec
. (32)

3.3.2 Models of Replication Protocol Schemes

In this section, we study the response time of the replication protocol. We assume the

cross-replica network delays are random variables that are independent and identically

following the same distribution; the local network latency is small enough to be

ignored. The arrivals of client requests on all replicas follow Poisson process with

the same arrival rate λ. We analyze the performance of the protocols under normal

cases. We do not consider replica failure and recovery since faults are rare and the

performance of many recovery schemes mainly depends on the implementation detail.

74

Throughout the derivation, we use L to denote the random variable of cross-replica

latency, FL(t) = Pr(L ≤ t) be the probability distribution of L, and fL(t) be the

density function. We use n to denote the number of replicas of the system.

3.3.2.1 The SP Scheme

The SP scheme involves two kinds of delay: (1) a client sends a transaction to the

leader replica; (2)quorum delay including: the leader proposer proposes the transac-

tion for the next slot and sends messages to acceptors on all the replicas; the acceptors

send messages to the learners on each replica; the learner learns the transaction when

it receives messages from a majority quorum of acceptors.

The delay (1), denoted C, equals to the node-to-node latency L if client and the

leader replica is in different region or zero if they are in the same one. Assuming the

load is balanced across regions, the distribution of the delay C is

FC(t) = Pr(C ≤ t) =
1

n
+
n− 1

n
FL(t), (33)

and E[C] = n−1
n
E(L).

To compute quorum delay in (2), denoted Q, we introduce a round trip delay

random variable R = Li + Lj to denote the delay of the message chain from the

proposer to an acceptor then to a learner, which is the summation of two iid node-to-

node delays. The probability density function of R is fR(t) =
∞∫
0

fL(t)fL(t−u)du. The

learner learns a transaction when it receives messages from q messages acceptors. In

SP, q = dn+1
2
e. Given that one of the message chains is local and can be ignored (the

proposer, acceptor and learner are all in the same replica), the quorum delay equals

to the value of the (q − 1)th smallest of n− 1 iid round trip delay random variables.

FQ(t) =
n−1∑
j=q−1

(
n− 1

j

)
F j
R(t)(1− FR(t))n−j−1. (34)

For EBR, quorum delay equals the transaction commit time and thus the prob-

ability distribution FQ(t) (specifically, the first two moments of the distribution) is

75

used in the execution model (§ 3.3.1.1) for the mean commit and residual time.

For RBE, we should further compute the reorder overhead. The delay including

the reorder overhead, denoted by D, is the time between that the proposer propose

a transaction Ti and that the learner learns the transaction as well as all the pre-

vious ones before it. To compute the distribution of D from FQ(t), we follow the

same method used in [62]: the probability FD(t) = Pr(D ≤ t) can be computed

by first obtaining the conditioned probability, Pr(D ≤ t|s), given that the time the

transaction Ti is proposed is s and then letting s→∞. The conditioned probability

can be computed as Pr(D ≤ t|s) = Pr(X)Pr(Y |s), where X is the event that Ti

is learned in time less than t ; and Y is the event that all other previous transac-

tions are learned before s + t. The probability Pr(X) = Pr(Q ≤ t) = FQ(t) by

definition. To derive Pr(Y |s), consider the i transactions that are proposed before

transaction Ti. Each of those transactions has to be learned before s + t and thus

a transaction proposed at time u can only have a quorum delay less than s + t − u,

i.e., Q ≤ s + t − u. Given that the transaction arrivals follow a Poisson distri-

bution, the time these i transactions are proposed is independent and uniformly

distributed in [0, s] [64]. By unconditioning on u and summing over i, we can get

Pr(Y |s) =
∞∑
i=0

(λs)i

i!
e−λs[

∫ s
0

FQ(s+t−u)

s
du]i = e−λ

∫ t+s
t (1−FQ(u))du. Therefore, the distribu-

tion of delay D follows

FD(t) = Pr(D ≤ t) = FQ(t)e
−λ
∞∫
t

(1−FQ(u))du
. (35)

The mean response time of the replication protocol for RBE can be calculated as:

ressp = E(C) + E(D). (36)

3.3.2.2 The FP Scheme

The model for FP differs from SP in that multiple proposals of the same slot causes

extra delay in addition to the quorum delay and the reorder overhead. The extra

76

delay has two parts: (1) a proposal for a slot fails and new slots are proposed until

success; (2) for a successful proposal, a collision adds the delay of an extra message.

Therefore, the response time of FP can be expressed as resfp = tfail + tsucc + treorder.

Here tfail is the mean time from that a proposer proposes for a slot until that the last

failed proposal finishes; tsucc is the mean time for the successful and the last proposal

of a slot. A successful proposal takes the time of a quorum delay computed by

Eq. 34 (with a larger quorum, see [70]) when there is no collision. It takes an extra

quorum delay for a coordinator to resolve the collision if there is one. Therefore,

tsucc = E(Q)(1 +Pr(collison)). From simulation, we find that the impact of collision

is insignificant compared to the impact of failed attempts. Hence, we can approximate

tsucc by tsucc ≈ E(Q). Furthermore, the reorder overhead is also negligible compared

to the delay of failed attempts.

To compute the proposal delay, we further make the simplification that the net-

work latency is constant. Under this assumption, if there is only one proposal, it is

learned after a quorum delay (previously calculated in Eq. 34) which assumes to be a

fixed interval. If there are multiple proposals competing for a slot, there will be failed

proposals which will restart and reach the acceptors at the same time when competing

for the next slot; one of the restarted proposals will be learned, leave the competition

and move onto execution. Such a mechanism can be modeled as an M/D/1 queue

where proposals arrive following a Poisson process and one proposal can leave the

system after a fixed amount of time. The constant network latency approximation

greatly simplifies competition process, but the model is more accurate when the load

is low.

By simplifying the system into a M/D/1 queue, we can apply the Pollaczek-

Khinchine formula [64], i.e., the number of proposals in the system in steady state is

N = λE(Q) + (λE(Q))2

2(1−λE(Q))
. By Little’s Law, the average delay is:

resfp =
N

λ
. (37)

77

3.3.2.3 The EP Scheme

EP involves three kinds of delays: (1) the client sends a request to the local proposer

which is batched for the next epoch; (2) the quorum delay for the replication of an

epoch batch ; (3) the reorder overhead.

We first compute the average waiting time E(W) in (1). Following the property

of Poisson arrivals, given that there are i transactions sent by the clients to a local

replica on a period [0, e], the arrivals of i transactions are independent and uniformly

distributed over the period [64]. For each transaction r, given i, the waiting time is

then E(Wr|i) = e
2
. Because the arrivals of these i transactions are independent, the

waiting time is then E(W |i) = e
2
. By summing over all i, we get E(W) =

∞∑
i=1

Pr(i) e
2

=

e
2
. Next we compute the delay in (2) and (3) including both quorum delay Q (the same

as Eq. 34) and reorder overhead. We denote this delay D which is the time between a

transaction batch is proposed and the batch can be executed. Each transaction batch

is identified by a tuple (i, j) from replica i and the jth epoch. Consider the delay DI,J

of a transaction batch starting at time Je. The event DI,J ≤ t is equivalent to that

the learner learns all the transaction batches (i, j) where, i = 1, 2, . . . n and j ≤ J

before Je+ t. The probability that the learner learns all the transaction batches for

j = J is Pr(BJ ≤ t) = F n
Q(t); and Pr(BJ−1 ≤ t) = F n

Q(Je+ t− (J−1)e) = F n
Q(t+e);

and so on. Therefore, the distribution of the delay for epoch J , DJ can be computed

as Pr(DJ ≤ t) =
J∏
j=0

F n
Q(t + je). By letting J → ∞, we can get the distribution of

the delay of step (2) and (3), FD(t) = Pr(D ≤ t) =
∞∏
j=0

F n
Q(t + je). Furthermore,

we take the time drift among the replicas into account. To simplify computation, we

assume the time differences between the epoch start on any two replicas are random

variables, denoted S, that are independent and identically following the distribution

FS(t). Let Q′ = Q+ S denote the delay between the time of batch proposal and the

time of its arrival at a learner taking the time drift between the replica of the proposer

78

and that of the learner into account. The probability of the delay D becomes

FD(t) = Pr(D ≤ t) =
∞∏
j=0

FQ(t+ je)F
(n−1)
Q′ (t+ je). (38)

The average response time of Epoch-based Paxos is

resep = E(W) + E(D). (39)

3.3.3 Combined System Models

For EBR, when transactions commit during execution, the replication protocol is

invoked, therefore the total response time is the response time of the execution model

with the protocol response time as an input variable.

resEBR = E(C) + resEBR,exec(Q). (40)

where C is the delay for a request to be sent from client to the leader in SP and

is computed using Eq. 33; and Q is the quorum delay random variable following

the distribution computed in Eq. 34, the distribution is treated as an input for the

execution model but only the first two moments are needed; resEBR,exec is computed

using Eq. 25.

For RBE, the replication protocol is decoupled from transaction execution, there-

fore the response time is the summation of the execution and protocol response times:

resRBE = resp + resRBE,exec. (41)

where resp is the latency of the replication protocol latency which is computed using

Eq. 36, Eq. 37 or Eq. 39 depending on the scheme; resRBE,exec is computed using

Eq. 29.

If the system is a closed system with the concurrent number of transactions m, the

execution time resEBR,exec and resRBE,exec can be readily computed. If the system is

an open system with arrival rate λ, an iterative method is required to compute the

79

response time. Using Little’s law, the initial value of the number of transactions in

the system m can be approximated as m0 = λ(ks+c). For each iteration the response

time can be computed using Eq. 40 and Eq. 41 and the number of transactions for

the next iteration is

mi = bλresi−1c. (42)

3.4 Experimental Results

We first validated our model against simulation and then studied the impact of work-

load and system parameters and compare the design options.

3.4.1 Model Validation

3.4.1.1 Simulation Settings

We resorted to simulation to validate our analytical models, which gave us the free-

dom of testing with various parameters in a controlled manner and profiling the

internal details without instrumentation overhead. The simulation was built on top

of SimPy [103] which is a discrete event-based simulation framework. Our simulation

tried to capture implementation details with respect to the locking mechanism and

the Paxos protocol.

The execution of transactions was simulated by launching threads executing trans-

action operations. Each data access waited a randomly generated amount of time

according to a pre-specified distribution. Locking was simulated in details such as

thread suspend and wakeup. Potential deadlocks were resolved by using the Tarjan’s

algorithm [109] and restarting offending thread instead of using timeout technique

due to the difficulty to determine the timeout interval. The network delay was sim-

ulated by randomly generating a wait time following a specified distribution when a

message is sent. The complete algorithms of the Paxos protocols were implemented.

Event statistics, such as blocking time, were probed and profiled in the system

to verify our model in a fine granularity. For each simulation experiment, we ran at

80

least 5000 transactions and ensured the system is in a steady state by monitoring the

transaction finishing rate.

3.4.1.2 Validation Experiments

We validated our model against simulation with a wide range of workload and sys-

tem parameters. The metrics of error (the y axes in the figures) was computed as

(resmodel − ressim)/resmodel.

Both the execution model of EBR(Eq. 25) and RBE (Eq. 29) was validated under

various workload parameters: the number of items d = 4096, 8192 and 16384; the

number of concurrent transactions m = 12, 16 and 20; the number of items per

transaction k = 8, 12 and 16; the interval s = 10, 20 and 30; for EBR systems, the

commit time c = 0, 20, 40, 60 and 80; for RBE systems, c = 0; the execution and

commit step followed both fixed and exponential distribution.

Figure 19(a) shows the comparison between simulation and model of EBR. The

x axis is the probability that a transaction is blocked. The figure shows that the

model follows the simulation result up until a high conflict rate (around 40% of the

transactions are blocked). The error rate is at most 10%. Detailed profiling results

reveals that the inaccuracy mainly results from an underestimation of the lock waiting

time Ws.

Figure 19(b) shows the comparison between simulation and model of RBE. The

x axis is the probability that a transaction is blocked. The error rate of our model

is at most 25% under high conflict rate (around 50% of the transactions are blocked)

and is less than 10% when the probability of transaction blocked is less than 30%.

Detailed results shows the error is due mostly to the underestimation of the waiting

time Wt for high lock contention cases.

To validate protocol schemes, we set the number of replicas n = 5, 7 and 9;

and the cross-replica network latency distribution as a log-normal distribution with

81

0.0 0.1 0.2 0.3 0.4

-10%

-5%

0%

5%

(a) EBR Execution

0.0 0.1 0.2 0.3 0.4 0.5
-30%

-20%

-10%

0%

10%

(b) RBE Execution

Figure 19: Validation of Execution Models. The y-axis shows the error rate; The
x-axis shows the blocking probability (β).

10 20 30 40 50
Network Latency Standard Deviation

0%

2%

4%

6%

(a) SP

0.2 0.4 0.6 0.8
Arrival Rate * Average Quorum Latency

-25%

0%

25%

50%

(b) FP

10 20 30 40 50
Network Latency Standard Deviation

-5%

0%

5%

10%

15%

(c) EP

Figure 20: Validation of Replication Protocols. Bars show the average, min and max
error rate.

σ = 0.1, 0.2, 0.3, 0.4, 0.5 and µ was set such that the mean is fixed as 100.

Figure 20(a) shows the comparison between simulation and our model for SP

(Eq. 36). The x axis is the standard deviation of the network latency. From the

figure, it is shown the error rate is less than 6%. The error rate increases with the

standard deviation of the network latency. A possible source of the error results from

the numerical approximation of the solution.

To validate the model for FP (Eq. 37), we varied the arrival latency as well. Since

the system is unstable when the arrival rate is larger than service rate, we selected the

approximated load occupancy λT (λ is the arrival rate and T is two times the mean

cross-replica latency which is approximately the quorum delay) ranging from 0.2 to

0.8. Figure 20(b) shows the comparison between model and simulation. The x axis is

82

the load occupancy. Despite our simplifications, the result is relatively accurate when

the arrival interval is small. The error rate is less than 25% when λT ≤ 0.6. The

error rate becomes larger when arrival rate is comparable to the service rate, which

results from the simplification of the process of proposer competing slots and retrying

and a constant latency.

To validate the model for EP (Eq. 39), we also varied the epoch length e =

30, 50, 70 and time drift upper bound h = 0, 10, 20. Figure 20(c) shows the result of

validation of EP. The x axis is the standard deviation of the network latency. The

error rate is less than 15% for our model.

3.4.2 Study of System Design Options

Figure 21 studies the performance drawbacks of EBR and RBE under open system

with arrival rate λ and assuming network latency is constant. When the network

latency is low, EBR has a lower response time; the difference between the two systems

increases with arrival rate λ. When increasing the network latency, the response time

of EBR execution has a super linear growth. In fact, if we further approximate the

model with m = λ(ks + c), k � 1, s � u, and W1 ≈ Ws, our EBR model(Eq. 40)

can be simplified into resEBR ≈ λk2

d
cc′ + (λk

2

2d
+ 1)c + λk4s2

6d
+ ks where c is average

commit time and c′ is the residual time of the commit step (i.e., the quorum delay).

For fixed distribution c′ = 0.5c, and for exponential distribution c′ = c. When both

c and c′ is large, EBR incurs long response time. For the RBE model, if we further

approximate our model using m = λks, k � 1, and d � k2, the model(Eq. 41) can

be simplified into resRBE ≈ 2λk4s2

2d−λk3s + ks. When λk3s� 2d, the response time grows

linearly with λ, but once λ is large enough, it has a much larger impact on response

time.

The models can also find peak system throughput by maximizing the active num-

ber of transactions (1−β)m (β is the probability a transaction is blocked, see Eq. 27

83

0 6 12 18 24 30
Average Network Latency

80

160

240

320

400

A
v
e
ra

g
e
 R

e
sp

o
n
se

 T
im

e EBR, λ=0.04

EBR, λ=0.08

RBE, λ=0.04

RBE, λ=0.08

Figure 21: Impact of Ar-
rival Rate λ and Average
Network Latency on Exe-
cution Time for Two Sys-
tem Types.

0 6 12 18 24 30
Average Network Latency

0

20

40

60

80

M
a
x
 N

u
m

b
e
r

o
f

T
ra

n
sa

ct
io

n
s

EBR, Num Txns in System

EBR, Peak Throughput

RBE, Num Txns in System

RBE, Peak Throughput

Figure 22: Impact
of Average Network
Latency on Maximum
Throughput for Two
System Types.

0 6 12 18 24 30
Average Network Latency

240

270

300

330

360

R
e
sp

o
n
se

 T
im

e

EBR

RBE

Figure 23: Impact of Av-
erage Network Latency
on Execution time Under
Max Throughput for Two
System Types.

0.2 0.3 0.4 0.5 0.6
Arrival Rate × Average Round Trip Latency

240

270

300

330

360

R
e
sp

o
n
se

 T
im

e

sp

fp

Figure 24: Comparison
Between SP and FP.

0.30 0.45 0.60 0.75 0.90
Network Latency Std / Network Latency Mean

200

250

300

350

400

450

R
e
sp

o
n
se

 T
im

e

sp, λ=0.01

sp, λ=0.04

ep, λ=0.01

ep, λ=0.04

Figure 25: Comparison
Between SP and EP.

20 40 60 80
Time Drift Upper Bound

220

240

260

280

R
e
sp

o
n
se

 T
im

e

Figure 26: Impact of
Time Drift on EP.

and Eq. 32) when increasing the number of transactions m. Figure 22 demonstrates

the impact of network latency on peak system throughput and the number of concur-

rent transactions. When network latency is low, EBR can obtain a higher throughput

than RBE (e.g., around two times when network latency is negligible). However, the

peak throughput decreases drastically when network latency increases for EBR. The

increase of network latency has no observable impact on the peak throughput of RBE

as expected. Figure 23 also shows the response time when the system is at peak

throughput. EBR always has a longer response time when network latency is large.

Next we compare the three schemes for the replication protocol. The number of

replicas is set to 5. The network latency distribution is set to a log-normal distribution

with average latency 100. Figure 24 demonstrates the impact of load occupancy

(arrival rate × average service time) on FP when compared with SP. The figure

84

shows that when the occupancy is low (less than 45%), it is more beneficial to use

the FP protocol to save the extra cross-replica delay for client to contact the leader.

Since our model is an overestimation of the response time for FP, the threshold 45%

is an underestimation. If we further simplify by letting E(L) = T and E(Q) = 2T

and ignoring the reorder overhead of SP, the threshold is further underestimated and

becomes the solution to N
λ

= 2λT + (2λT)2

2(1−2λT)
≤ (2 + n−1

n
)T, where N

λ
is the response

time of FP from Eq. 37 and (2+n−1
n

)T is an approximation of response time of SP from

Eq. 36 without considering the reorder overhead. The result is λT = n−1
2(2n−1)

≈ 25%.

Therefore, a system with occupancy less than 25% should use FP as the replication

protocol.

Figure 25 compares SP and EP with varying arrival rate λ and network latency

variance. As is shown in the figure, both protocols have an increased response time

when network latency variance increases. This is resulted from the reorder overhead

in RBE. Furthermore, the network variance has a larger impact on EP than SP.

Therefore, when the network latency has a large variance, EP is less attractive. On

the other hand, it is also shown in the figure that arrival rate has an impact on SP as

well. This is again because of the impact of reorder overhead. When the arrival rate is

large, there is a higher probability that a transaction with an earlier slot delays later

ones. The arrival rate does not affect the EP since slots are proposed periodically

which is independent of the arrival rate. Moreover, we can study the impact of time

drift among replicas on the response time of EP. Assuming the distribution of time

drift across replicas for each epoch is uniformly distributed from 0 to an upper bound,

Figure 26 shows that the response time increases linearly with the time drift upper

bound. This suggests for EP to work properly, the time drift across replicas should

be kept within a reasonable limit.

85

3.5 Summary

This chapter studied performance characteristics of geographically-replicated trans-

action datastores [125]. We focused on replica consistency where the system allows

stale states on a subset of the replicas but disallows conflicting states. For such con-

sistency requirements, we analyzed two types of systems (EBR and RBE) and three

replication protocol schemes (SP, FP and EP) that are fundamental design options.

We developed analytical models to capture the performance characteristics of each

design option. Models were validated through simulation with adequate details. We

believe the assumptions made are reasonable and our models have sufficient accuracy

under these assumptions. For our future work, we plan to generalize some of the

assumptions. Specifically, we will consider cases when the transactions can have

multiple classes; transactions acquire both shared and exclusive locks; the system can

have both replicas and partitions; and data can support multiple version snapshot

reads.

86

CHAPTER IV

NETWORK RESOURCE CONTENTION ON

MAPREDUCE SYSTEMS

In Chapter 2 and Chapter 3, we show that data contention is a major limiting factor

for the transactional data access abstraction. Many distributed systems, on the other

hand, adopted an opposite philosophy that aims to share as little data as possible

between processes/tasks. This is critical for distributed systems due to the high cost

of communications. Various designs (e.g., [33, 82, 97]) have been proposed along

this line of work. Among them, the MapReduce system is quickly gaining popularity

because of its cost-effective design as well as growing community support.

The MapReduce programming model builds applications with two operators: map

and reduce. Map tasks process the input data and subsequently emit key/value pairs.

Each reduce task collects a list of values with the same key from all map tasks and

generates new key/value pairs. In typical implementations of the program model, the

input data is hosted on a distributed file system. The file system breaks large files into

a series of blocks, which are replicated and randomly distributed across the cluster.

Users define the functionality of map and reduce tasks as well as where the input files

are. The execution system automatically orchestrates the execution of jobs, which

includes scheduling, data transfer among the tasks, load balancing, as well as fault

tolerance and user interactions.

Two methods are adopted by MapReduce systems to reduce data contention,

and thus reducing potential serialization of the tasks, which is costly in distributed

systems: (1) concurrent writing of a shared file is not allowed; (2) all applications

need to be expressed by the programming model (i.e, there cannot be other operators

87

other than map and reduce). While these two methods do prevent certain applications

from adopting the MapReduce model (mostly those applications that require intensive

inter-process communications), it turns out that this model fits many distributed

applications very well, especially those Big Data applications that can be formulated

via the MapReduce programming model. With such a design, tasks do not need to

compete for concurrent access to the same piece of data, either in memory or on

disk, which, as discussed in previous chapters, is a major obstacle for transaction-

based abstractions to achieve optimal parallelism. System scalability can therefore

be significantly improved for applications that fit this program model.

While contention for shared data access becomes less of a concern, network re-

source contention emerges as a critical to system performance:

• Applications are often data-intensive. Typical applications of the MapReduce

system have relatively high IO/Computation ratio, and often need to process

data beyond memory capacity, which requires the usage of disks, and more

importantly, requires the usage of multiple nodes. Data access occupies a large

portion of execution time in MapReduce jobs which occurs during three phases:

reading map inputs, shuffling the intermediate results emitted by mappers, and

writing reducer outputs. Remote data accesses are involved in these phases:

input data may be read from a remote data host when computation node is

different from the storage node; shuffle stage has to pass data from all map

tasks to all reduce tasks which inevitably involve communications among nodes

across the cluster; and output data is written to multiple locations for fault

tolerance.

• Scarcity of network resource becomes severe. The typical network architecture

targeted by MapReduce has a tree topology where a cluster consists of multi-

ple racks that connect to a top level switch while each rack is filled with leaf

88

compute nodes that connect to rack-level switch(es). For cost considerations,

commodity hardware is often used, which has less over-all bisection bandwidth

than those more expensive technologies. Under such circumstances, the top-

rack switch bandwidth becomes a very scarce resource, especially as clusters

scale to hundreds or thousands of servers.

In fact, MapReduce implementations are striving to reduce the impact of such

contentions. Locality [21] becomes a critical concern and attracted extensive research

interests (e.g. [2, 126, 43, 60, 28]). In our work, we attempt to attack the network

resource contention problem from the following two aspects:

• To improve map input locality, the current approach assume a simple data

access pattern for map tasks (i.e., each map task takes only one file partition as

input). The approach, though covers a wide range of applications, becomes less

effective when the assumption does not stand (i.e., each map task takes two file

partitions as input such as in those pattern matching applications). Extending

the current mechanisms to satisfy the map locality will allow a much wider

range of applications to benefit from MapReduce.

• Reduce input locality (data transfer during the shuffle stage to feed data to the

reduce tasks) is ignored by current implementation. However, this phase of data

transfer is important for many applications whose mappers produce relatively

large volume of data. Because the inherited all-to-all data access pattern of the

shuffle stage, improving reduce locality would require clustering the map tasks

close together, and this requires consideration in the trade-off between reducer

and mapper localities.

In this chapter, we describe our approaches to improve data locality and reduce

network resource contention in MapReduce systems. The rest of the chapter is or-

ganized as follows: We begin with a brief introduction of MapReduce system and

89

a review of relevant prior studies in Section 4.1. In Section 4.2, we introduce our

solution to better support dual-input map tasks. Section 4.3 presents our grouping-

blocks strategy and discusses the mechanisms to mitigating the undesirable effects of

such strategy. Finally, in Section 4.4, we conclude this chapter with discussions and

directions for future research.

4.1 Background and Prior Work

In this section, we give an overview of the MapReduce/Hadoop systems. We then list

the related works including locality in MapReduce and the MapReduce ecosystem in

general.

4.1.1 MapReduce Overview

The MapReduce system adopts a programming model which is originally from func-

tional languages. The programming model consists of only two user-defined functions:

map and reduce. The map function takes in key/value pairs as input and generates

new(intermediate) ones. The reduce function takes one(intermediate) key and a set

of values associated with that key and generates new key/value pairs.

The jobs in the MapReduce system have strictly defined control flow, as is shown

in Figure 27. Each job has one map phase followed by zero or one reduce phase. Input

data is segmented into several splits; each map task iteratively apply map function on

key/value pairs of the splits; the generated intermediate key/value pairs are shuffled

to reduce tasks; reduce task, upon receiving a range of keys and the associated value

lists, apply reduce function iteratively; and finally write output to file system. Users

only need to write code for map and reduce function and the runtime system takes

care of the rest of the control flow.

There are many MapReduce implementations targeting various hardware plat-

forms such as graphic processing unit or multi-core architecture. In our context, we

90

Split
1

Split
2

Split
3

Split
4

Map
1

Map
2

Map
3

Map
4

Reduce
1

Reduce
2

Reduce
3

Partition
1

Partition
2

Partition
3

Input

Shuffle

Output

Figure 27: Phases of A MapReduce Program, including: (1) read input from splits;
(2) apply map function; (3) shuffle intermediate data; (4) apply reduce function; (5)
write output.

refer the MapReduce system specifically to the implementation designed in [21] tar-

geting large scale distributed systems. Hadoop [117] is a widely used open source

implementation of that design.

In Hadoop, the MapReduce system is composed of a storage system, Hadoop File

System(HDFS), and an execution system which are responsible for storing data and

executing tasks respectively. The two systems are assumed to be co-located on the

same set of physical machines.

Documents in HDFS are partitioned into blocks, replicated and distributed to the

storage nodes (called DataNodes) in the system. A centralized server node called

the NameNode maintains the file system data structure and tracks the location of

each replica block. Aside from the traditional APIs such as file open and read/write

stream, the user interface of NameNode also provide a function call to obtain the

locations of file blocks, which is used by the MapReduce execution system for map

locality.

In the MapReduce execution system, a centralized job submission and scheduling

server called the JobTracker is responsible for receiving client job submission and

91

scheduling tasks onto TaskTrackers. TaskTrackers are responsible for executing the

tasks. TaskTrackers are co-located on the same physical compute nodes as DataN-

odes. In general, jobs are created by specifying the input documents, the output

directory, the method to create splits from input documents, the map function, the

reduce function and the number of reduce tasks. The JobTracker initializes one map

task for each splits and several reduce tasks according to job specification. Map/re-

duce tasks are launched on TaskTrackers; the task runners call HDFS APIs and the

key/value iterator of shuffling stage for data access; and map/reduce functions are

applied iteratively on input/intermediate data.

TaskTrackers contact JobTracker periodically using remote procedure call (RPC).

Both load balancing and fault tolerance are achieved through such heartbeat-like

communication. Load balancing is achieved by including resource usage status in the

heartbeat message from TaskTracker; new tasks are assigned when a TaskTracker has

free resources. The heartbeat message also includes progress report of each running

tasks such that when a task fails, it can be automatically launched elsewhere; fur-

thermore, if the JobTracker does not receive heartbeat message from a TaskTracker

for a long period, the TaskTracker is marked as unhealthy.

4.1.2 Locality in MapReduce Systems

The locality problem for MapReduce system is distinctive comparing with traditional

computing systems in that:

• In the MapReduce system, the computation and the storage systems are co-

located on the same physical machines. Traditional systems usually have sepa-

rate physical entities dedicated to either storage or computation. For example,

in desktop computers, computation is done inside the CPU pipeline; data re-

quests are sent to memory and disk controllers which manage the memory or

92

disk where data is stored. As another example, in grid systems, there are com-

pute nodes and storage nodes linked by high speed network; parallel file systems

are developed to support data accessing from compute nodes to storage nodes.

In such architecture, the system usually consists of a hierarchical storage sys-

tem. The most used data is stored on nodes closest to the compute node in

the hierarchy such that data can be brought into compute nodes fast. The

distinctive architecture of MapReduce system is due to the consideration that

such design is more cost-effective for data-center-scale setup.

• The MapReduce programming model has a well-defined control flow, i.e., every

MapReduce jobs have at most three phases: map, shuffle and reduce. Map/Re-

duce task are specified before the job execution. There is no programming prim-

itives that ”fork” some new tasks during execution which is not only possible

but very likely in multi-core and grid models. Such limitation on programming

model is deliberately designed to ease the burden for the runtime system. In the

context of locality, this gives the advantage that the scheduler can easily obtain

and track locality information as well as ensure locality-aware task assignment.

• The MapReduce jobs have relatively regular data access pattern: (1) input data

of map stage is usually in large chunks, often one or several HDFS blocks; the

data access is mostly sequential instead of random access; (2) shuffling stage is

an all to all broadcast from the map tasks of the same job executed; thus reduce

tasks should be placed close to its corresponding map tasks.

Given the above observation that the MapReduce systems provide new context to

data locality, next we discuss the problem in detail.

Figure 28 illustrates the cases in MapReduce systems where data access occurs

including:

• Input Data Access. For each job, the user provide methods to create splits on

93

input documents and the MapReduce system creates one map task for each

splits. A common unit of the document splits is HDFS block, i.e., each map

task works on one HDFS block. As such, remote access incurs if the host of a

map task is different from the host of input block. Figure 28(a) shows a data

placement and task scheduling situation where node-local (M1,M4), rack-local

(M2) and off-rack (M3) data access occurs. To obtain optimal locality, current

MapReduce/Hadoop system adopts a simple mechanism for task scheduling.

The HDFS is inquired for split location; a data structure is built for preferred

map tasks (shown in Figure 28(a)); when a TaskTracker has free resources, the

data structure is queried for a local map task to schedule. Such simple strategy

only works when it is suitable to use one HDFS block as a split unit.

• Shuffle Data Access. The data access for shuffling exhibits an all-to-all commu-

nication pattern. Figure 28(b) shows a task scheduling case where node-local

(M3), rack-local (M1,M2) and off-rack (M4) data access occurs. Note that it

is difficult to avoid off-rack communication without sacrificing map locality. For

example, we can schedule M4 on N4 to avoid off-rack access for reduce task;

however, the input data access for M4 from I4 on N7 becomes off-rack. Be-

cause of such challenge, the current MapReduce/Hadoop implementation does

not consider reduce task locality during task scheduling.

• Output Data Access. To ensure fault tolerance of output data, HDFS streams

output data to multiple nodes on multiple racks. A commonly used replication

factor is three. Figure 28(c) demonstrate the case where the output block is

replicated on three nodes. The default mechanism of HDFS put one replica

on the writing node and the other two on nodes within another rack. This

strategy is the result of considering the trade-off between fault tolerance and off-

rack data access, i.e., putting replicas on different racks can enhance resilience

94

to rack failure while increasing the off-rack communication as well. To avoid

off-rack data access, the third replica is put on the same rack with the second.

In summary, the locality problem in MapReduce system is distinctive from tra-

ditional computing system because of the special architecture targeted and the pro-

gramming model. The data access usually occurs in map input, shuffle and output

stage. As for the current system, there are still opportunities for improvement for

locality in both map input and shuffle stage.

4.1.3 Related Works

As locality is key to the performance of MapReduce systems, it has attracted a lot of

research attention recently.

Some research efforts reduced this problem into some equivalent scheduling or

graph problem. In[43], the authors discussed the non-optimality of the default Hadoop

scheduling algorithm and found a well studied optimizer to improve it. The non-

optimality was resulted from the simple decision that only assigned the tasks on

available nodes one by one. It fails to consider cases where some nodes had sets of

data which were local to many other tasks. In their work, the authors proposed to

schedule available nodes and tasks together and optimize for map task locality. The

optimization is reduced to a linear sum assignment problem. Quincy [60] transformed

the scheduling problem into a minimum cost flow problem which took fair constraint

into account as well. The graph vertices represented tasks, nodes and racks. Each

edge was a possible task assignment on a node or a rack. Edge cost and capacities

represented the locality cost and the fairness constraints. Bar [61] proposed a dynamic

scheduling algorithm that calculated the best assignment of tasks iteratively during

execution. The algorithm had two phases where a balance phase calculated the initial

optimal assignment for all tasks and a reduce phase that tuned the initial decision

dynamically according to the network and server load status.

95

M1 M2

I2 I4I1

M4

R1

N1 N2 N5N3 N4 N8N7N6

M3

O1 O1

Preferred Map Tasks

N1 M3

N2 M1

N3

N4 M2

N5

N6

N7 M4

N8

Rack1 M1, M2, M3

Rack2 M4

Rack1 Rack2

I3 O1

(a) Input Data Access

M1 M2

I2 I4I1

M4

R1

N1 N2 N5N3 N4 N8N7N6

M3

O1 O1

Rack1 Rack2

I3 O1

(b) Shuffle Data Access

M1 M2

I2 I4I1

M4

R1

N1 N2 N5N3 N4 N8N7N6

M3

O1 O1

Rack1 Rack2

I3 O1

(c) Output Data Access

Figure 28: Data Access in MapReduce Systems.

96

Delay Scheduling [126] identified several pathological cases of the existing Hadoop

scheduling algorithms under a fairness constraint. It then proposed a ”wait” technique

to improve the locality: when no task from a job can be assigned to a local node, the

scheduler waits for several turns such that more nodes will be available to schedule

the job.

Several research efforts modified the architecture of the MapReduce system to

better support the locality of a type of application. Haloop [13] extended Hadoop

to improve the execution of iterative applications and Twister [27] proposed a light-

weight MapReduce runtime for these applications. The two methods shared some

similarities - they separated user data into a static set and a dynamic set so that the

static user data was cached and reused across iterations.

Data placement strategies such as co-locating data or increasing replication factor

have also been studied. In CoHadoop [28], an extension of HDFS was proposed to ex-

ploit co-locality among data blocks to reduce network data transfer. The co-locality

information was manually discovered and configured. In Scarlett [2], the replica-

tion factors were adjusted for hot HDFS files to alleviate competition for such files.

Demands for such adjustments of hot files were detected and analyzed periodically.

Several strategies were discussed to prioritize the demands under disk capacity limits.

In [67], the data placement, replica selection and co-location problems were consid-

ered all together. The problem was transformed into a hyper-graph representation.

Data sets were represented by vertices and tasks were represented by hyper-edges.

Heuristics were proposed to decide which data to replicate and which nodes to place

the data.

Purlieus [86] discussed the data placement in terms of locality for both map and

reduce stages. The authors proposed to couple the scheduling decision on both data

placement and task placement to reduce the amount of data transfer in a cloud envi-

ronment. Applications were categorised into map-input heavy, map-and-reduce-input

97

heavy and reduce-input heavy jobs. Placement techniques were proposed for each of

the job type. LARTS [46] and CoGRS [45] discussed optimal reduce task placement.

The placement of reduce tasks was obtained by choosing the node closest to all the

map tasks in a rack that hosts the maximum number of map tasks. Furthermore, in

CoGRS [45] data size skewness in map tasks was also considered to alleviate the re-

duce straggler problem. Orchestra [18] proposed techniques to schedule the shuffling

stage in a finer granularity.

Memory locality was considered in PACMan [3]. A major discovery in their work

was that hit-ratios do not necessarily improve job completion times and therefore

special coordinated cache replacement policies were developed. Piccolo [90] and

Spark [127] were in-memory runtime systems that share many similarity with the

MapReduce system. They were optimized for iterative machine learning workloads.

MapReduce is currently under intensive study. We further list here several im-

portant lines of the ongoing researches aside from locality.

Many applications are discovered suitable for the MapReduce model and some cor-

responding libraries or systems are accordingly built. In [83], the authors illustrated

that many machine learning applications can be applied to use the MapReduce model.

Pegasus [72] showed the applicability of MapReduce model to graph algorithms. Al-

gorithmic modifications were also discussed to improve performance. Mahout [73] was

developed as a scalable data mining library developed on top of MapReduce system.

Latin [85] and Map-Reduce-Merge [119] were developed on top of Hadoop to better

support rational operations. Hive [114], developed by Facebook, was a warehouse

system for Hadoop to support SQL-like languages. HBase [35] was a data storage

system that implements the google BigTable architecture. Giraph [37] was a graph

processing platform on top of Hadoop.

Other research efforts have been made to build similar or enhanced systems for

different design focus. Sector [41] was a system originally developed for efficient

98

data access over wide area networks. It claimed Sector performs 2-20 times faster

than Hadoop. Several works [127, 27, 90] developed in-memory systems by exploit-

ing the fact that some applications reuse dataset, especially for iterative workloads.

Mesos [59] and YARN [120] were redesigns of the MapReduce system that separated

the responsibility of scheduling and progress monitoring into two components such

that (1) the system becomes more scalable and (2) systems other than MapReduce,

such as MPI, can also run under this framework.

Resource allocation and fairness is also a topic under extensive research. Hadoop

Fair Schedulers [30] and Hadoop Capacity Scheduler [17] were schedulers developed

in Facebook and Yahoo to solve the small job starvation problem in the default

FIFO scheduler in Hadoop. Flex [118] developed a framework to optimize any of

a variety of standard scheduling theory metrics. In [36], the problem of fairness

among different resource types, such as CPU bound or memory bound workloads,

were considered. The authors proposed a fairness model called dominant resource

fairness, which satisfied several highly desirable properties.

Because progress monitoring and speculative execution are also major focuses of

MapReduce system, researchers have also explored some techniques in this area. Za-

haria et al. [128] improved the scheduling algorithm for a heterogeneous environment.

A scheduling algorithm called LATE was proposed to accurately estimate the progress

of tasks and was therefore highly robust under heterogeneous environment. In [4],

the authors presented a system that monitors tasks and identifies the outliers of a

job. The proposed system then restarted outliers in a network-aware manner and pro-

tected outputs of tasks to improve performance. ARIA [116] proposed a framework

to let a scheduler meet service level objectives. The framework first built job profiles

according to executed task history; then a model was used to estimate the amount

of resource required to meet the deadline; finally a soft deadline based scheduler was

used to determines the job ordering and the amount of resources required for each

99

job.

4.2 Improving Map-locality for Dual-input Applications

In the current MapReduce/Hadoop systems, the locality-awareness of Hadoop is

based on a relatively strong assumption that a task is expected to work on a sin-

gle data split. In practice, a split typically consists of one data block, or a part of it.

After all, this is what allows Hadoop to label a compute node as local or remote for

scheduling purposes. This is in accordance with the MapReduce programming model,

which defines one map task over each logical data split and thus requires users to de-

scribe the mapper function as a unary operator, applicable to only one single logical

data split.

The unary-input requirement works well for many applications such as document

processing. However, many other applications require more flexible operators. For

example, a task in a pattern matching application would naturally take two inputs:

one record of the template data, and another record of the stored data. For such

applications, the unary input oriented Hadoop system has multiple limitations: (1)

Developers need to work around the unary input requirement, which makes it less

natural to program the applications. (2) When a workaround method is used, the

built-in locality awareness of Hadoop becomes less effective or non-effective. (3)

As dual-input tasks often share their data blocks, there are many unique locality

optimization opportunities in these applications that cannot be exploited by existing

Hadoop.

Motivated by the above observation, we study Dual-Hadoop, an extension of the

Hadoop system to improve the execution of dual-input applications. We make the

following contributions in this section:

1. We designed an easy-to-use interface for users to describe the association be-

tween a task and its inputs.

100

2. We developed a task scheduling algorithm that is able to exploit data locality

for dual-input applications.

3. We designed and implemented a caching mechanism to accelerate data reads.

The caching mechanism is an integral part of our extension that materializes

the improved data locality exposed by our scheduling algorithm.

Extensive experiments were conducted to verify the effectiveness of Dual-Hadoop.

The performance of the scheduling algorithm was tested against a wide range of dual-

input task patterns, which shows that our algorithm reduces remote data reads by

up to 48% when compared with existing Hadoop scheduling algorithm. Experiments

on two actual applications (a pattern matching application and PageRank) were con-

ducted on a 64-node Amazon EC2 cluster. The results show that our method improve

the execution speed of these applications by up to 3.3x over the native Hadoop system.

The rest of the section is organized as follows: Our motivation is presented in detail

in Section 4.2.1. In section 4.2.2 we give an overview of our extension. Section 4.2.3

presents the detailed design of our extension. Section 4.2.4 illustrates the experimental

results.

4.2.1 Motivation for Dual-Hadoop

An extension for the map locality of the dual-input applications is necessary because

(1) Hadoop currently does not naturally support such applications; (2) such data

access patterns exhibit special locality.

4.2.1.1 Lack of Support for Dual-Input Applications in Hadoop

While Hadoop has good support for unary input applications, it does not handle

dual-input applications very well. Take tiled matrix vector multiplication algorithms

for example, a task would naturally consist of one matrix block and one vector block.

Since existing Hadoop only supports unary input tasks, users need to use one of the

101

following workaround methods to program such applications:

• use an extra level of indirection in the input format to give the system an

illusion of single input split that is actually one matrix block plus one vector

block. This workaround method involves user defining a new InputFormat class

which would significantly increase programming difficulty.

• use the Hadoop distributed cache utility to duplicate one input set at all the

nodes so they can locally access this set of data, and Hadoop only needs to

handle the other (one) input set. This method will not work when input data set

exceeds the storage capacity of the distributed cache. Furthermore, duplication

of an entire data set is often wasteful since each node will most likely access

only part of the set.

• use an extra round of MapReduce job to concatenate the two input blocks for

each task, and save the new merged data blocks onto HDFS for the actual

MapReduce job. This workaround method needs to move a significant amount

of data and cause expensive overheads. Additionally, if a block is to be shared

by multiple tasks, the block will be duplicated multiple times in this data-

preprocessing stage, which further increases the overheads.

• use two file system calls directly in the user-supplied mapper functions to read

the two splits. This workaround method is easy to program. But the data

reads are invisible to the Hadoop system. Without knowing which data blocks

may be accessed by a task, the Hadoop scheduler cannot perform locality-aware

scheduling, which will result in excessive data transfer overheads.

4.2.1.2 Data Locality in Dual-Input Applications

Tasks in dual-input applications often share their input data blocks. For example, in

tiled matrix multiplication algorithms, the same block from matrix A will multiply

102

with multiple blocks from matrix B. For another example, in a genome comparison

application, an individual genome may need to be compared against multiple other

genomes in a database. Apparently, the tasks (multiplying two matrix blocks, or

comparing a pair of genomes) share their inputs.

This introduces a unique type of data locality: if tasks can be grouped together

such that their overall data footprint can be minimized, then the group of tasks can

benefit from reduced data transfer if they are co-assigned to the same compute node.

The amount of data transfer can be further reduced if the assignment can utilize data

blocks that are local to the compute node. Note that existing Hadoop is unable to

exploit such data locality as it is designed with unary-input applications in mind.

Clearly it is necessary to improve Hadoop to better support dual-input applica-

tions. In the following discussion, we will present our proposed Hadoop extension

that can significantly improve the data locality for such applications.

4.2.2 Dual-Hadoop Design Challenges and Overview

Our extension aims to address the following design challenges:

• Programmability. We need to extend the programming interface so that users

can specify the inputs to the tasks. We want the interface to be easy to program

so that users can focus on the main functionality of their applications, rather

than dealing with the interface itself.

• Transparency. The next goal is to make it easier for users to achieve high

performance. For this reason, we do not want the users to be even aware of

the data locality issues. Dual-Hadoop is simply an improved version of Hadoop

that can execute dual-input applications faster. For this reason, we reject all

design alternatives that require users to track/handle the locations of the data

blocks.

103

User

Interface

Input Data

Indexed Data

Indexing

Task Table

Filtering

Scheduler

MapReduce

System

Task

Dispatch

Mapper

Cache Info

Report

Caching

Mechanism

Cache

Service

Daemon

Local Disk

FileSystem

F
il
eS
y
st
em

 I
n
te
rf
ac
e HDFS

S3

…

TaskTracker

...

...

Figure 29: Dual-Hadoop Extension System Overview

• Non-intrusiveness. Dual-Hadoop takes certain amount of memory resources at

the compute nodes to speed up dual-input applications. We want Dual-Hadoop

to be fully bypassable when the system is executing unary-input applications,

with close-to-zero overheads. Furthermore, if a user application tries to use

up the available memory, we want Dual-Hadoop to gracefully disappear in the

background and yield the resources to the user application.

Figure 29 illustrates an overview of Dual-Hadoop, which contains the following

components: (1) the input interface, (2) the caching subsystem, and (3) the dual-

input locality-aware scheduler.

• Input interface. This component assigns IDs to splits. Dual-Hadoop inherits the

default Hadoop output format and adds a hook so that an ID can be designated

to each split. In Dual-Hadoop, tasks are generated by calling a user-defined

filter function that specifies which two splits would form a valid task. Tasks

are internally represented as a 2-D matrix using either dense or sparse format

104

depending on the application. The IDs assigned by the user will be used to

identify the splits in the user filtering functions as well as by the scheduler.

• Scheduler. The scheduler first obtains the task representation by applying the

filter function from the user interface, then gathers information about the loca-

tions of the input data blocks (which DataNode has which blocks), and subse-

quently calculates a locality-optimized execution schedule. During the course

of the execution, the scheduler monitors the content of the caches on the fly,

and fine-tunes the schedule according to dynamic locality information supplied

by the caching subsystem.

• Caching subsystem. This component runs on each compute node and is designed

to cache the input splits accessed by existing tasks (with the expectation that

they will also be needed by subsequent tasks). The caching subsystem sits

between MapReduce system and HDFS system, therefore it is user transparent.

It supplies a split to the requesting map task if the split is in the cache, and will

seamlessly resolve to the native HDFS data read mechanism when the requested

split is missing in the cache.

In the following, we will discuss the details of Dual-Hadoop design, and analyze

why it is capable of exploring data locality for dual-input applications.

4.2.3 Dual-Hadoop Design Details

In the following, we discuss our design in detail including the user interface, the

scheduling algorithm and the cache mechanism.

4.2.3.1 User Interface

The Dual-Hadoop user interface is designed to assign IDs to splits by letting the user

name splits with strings.

105

1 // The Dual -Hadoop filter interface

2 public interface BiHFilter {

3 public boolean accept(String split0Id , String split1Id);

4 }

5

6 // A usage example: matrix -vector multiply

7 public class MatVecMulFilter implements BiHFilter {

8 public boolean accept(String split0Id , String split1Id) {

9 if (! isAMatrix(split0Id)) return false;

10 if (! isAVector(split1Id)) return false;

11 colId = getMatrixColId(split0Id);

12 rowId = getVectorRowId(split1Id);

13 if (colId == rowId) return true;

14 return false;

15 }

16 }

Listing 4.1: Dual-Hadoop User Interface for Defining Tasks

An application can have one of the following input data formats: (1) Each user

input file has a granularity small enough to define a split. In such case, file names

can be naturally used as the split ID. Users can set a flag in Dual-Hadoop to specify

such configuration. (2) Each input file is structured and contains multiple file splits.

In this case, users just need to provide an ID file according to a predefined format,

listing split IDs and the file segments that each split maps to. (3) The input files are

unstructured. In this case, users need to do a preprocessing step to structure their

input files. Similar methods was also used in other works [72, 28, 24] to pre-process

unstructured data. The resulting structured files can then be handled as in case (2).

We extend the default Hadoop OutputFormat class to provide simple utilities so that

the name files can be easily generated along with the preprocessing step.

106

Users specify the map tasks by customizing a filter class, which returns true if a

pair of split IDs form a task, and false otherwise. Listing 4.1 illustrate the simple

interface and a usage example of matrix vector multiplication. Users can manipulate

the ID strings in a customized fashion (such as getMatrixColId() in Listing 4.1) to

identify the file split and form the tasks.

4.2.3.2 The Locality-aware scheduler

The scheduler weaves all the components together in Dual-Hadoop. Once a MapRe-

duce job is submitted, the scheduler first creates an internal presentation of the tasks.

The scheduler will then monitor the locality of the data splits (disk replicas and copies

in the cache subsystem), exploit data sharing pattern among the tasks, and assign

tasks to optimize data localities for the tasks. Scheduling in Dual-Hadoop is per-

formed in three phases:

Phase 1: Task Generation

Dual-input applications have two sets of input splits, A and B, and a task will

take a split from A and another one from B. Note that A and B may overlap, either

partially or completely.

In this phase, we run the user-supplied filter function (discussed in the user inter-

face) and generate an internal presentation of the tasks in the form of an incidence

matrix I. The matrix uses one row (and column) to represent a split in A (and B). If

there exists a task whose input splits are a ∈ A and b ∈ B, then we have I(a, b) = 1

indicating the presence of this task. Note that the matrix may be dense or sparse

depending on the characteristics of the job. Subsequently, the storage of matrix I

will take the dense or sparse forms accordingly.

Figure 30 illustrates an example of the incidence matrix for matrix-vector multi-

plication. The matrix is of size 2 by 4 blocks and the vector is 4 blocks. Each value

1 in the matrix indicates a task that multiplies a matrix block with a vector block.

107

1, V0 2, V1 3, V2 4, V3

1, M00 1
2, M10 1
3, M01 1
4, M11 1
5, M02 1
6, M12 1
7, M03 1
8, M13 1

Figure 30: Incidence Matrix Example

Phase 2: Static Task Grouping

Taking the incidence matrix as input, we partition the rows and columns into

groups such that tasks within the same group share their input file splits. The algo-

rithm is listed in Figure 31.

In the algorithm, groups are formed such that a row should be included in a group

if 80% of the columns from this row has the same value(0 or 1) as the columns from

the representative row in the group. The representative row is chosen as the row in

the group with the most 1’s. Similarly, the algorithm is also used to form column

grouping. Both row and column grouping results will be used in the next phase.

The static grouping phase provides an insight into the relation between tasks:

tasks from the same group are likely to share (some) input splits, and if we assign

them to a common compute node, we will see reduced data transfers.

Phase 3: Dynamic Task Dispatching

The dynamic task dispatching phase is executed during run time, it decides which

node should execute which tasks, and the goal is to reduce data transfers while main-

taining load balancing across the compute nodes. To achieve the goal, this phase uses

the static grouping result as a guide to reduce data transfers, and further considers

the following input information: (1) what replicas does each node have? (2) what

splits is a node currently caching?

Before describing our dynamic dispatching algorithm, let us define a new term: a

108

1: procedure static grouping(taskMatrix)
2: for all row ∈ taskMatrix do
3: foundGroup← False
4: for all group ∈ groupList do
5: repr ← group.repr
6: smaller ← getSmaller(row, repr)
7: if size(row ∩ repr) > threshold ∗ size(smaller) then
8: group.add(row)
9: foundGroup← True

10: end if
11: end for
12: if foundGroup == False then
13: groupList.addNewGroup(row)
14: end if
15: end for
16: return groupList
17: end procedure

Figure 31: Algorithm for the Static Grouping Phase

task pack, which is the set of tasks that will be executed together by a compute node.

Task pack is the unit of actual task dispatching. Our scheduler takes two steps to

form a task pack: first we choose a group from Phase 2 that most splits local, then

we pick a pack from the group so that it can fit into the cache of the local compute

node.

We use the following criteria when forming task packs: (1) the number of tasks in

a pack should not exceed the total number of tasks dividing the number of nodes; (2)

the difference between the number of row splits and the number of column splits is

small; (3) at most half of the cache will be used for row splits or column splits. The

first criterion is a heuristic to ensure load balance; the second criterion is to ensure

data reuse and thus reduce data transfers; and the third criterion is a heuristic to

the following optimization problem: maximize n1 ∗ n2 subject to the constraint that

s1n1 + s2n2 ≤ C, where n1, n2 denote the number of row and column splits, n1 ∗ n2

denote the number of tasks to be executed and s1, s2 denote the size of row and

column splits and C denote the cache capacity.

109

1: procedure dynamic dispatching(groupList, cache, replica)

2: . Find best group
3: local← cache+ replica
4: max← 0
5: for all group ∈ groupList do
6: count← #blocks in both local and group
7: if count > max then
8: best← group
9: max← count

10: end if
11: end for

12: . Packing
13: calculate maxRowSize,maxColSize,maxSize
14: numRows← 0
15: numCols← 0
16: size← 0

17: for all rowsplit ∈ best.rows() do
18: if numRows ≥ maxRowSize then
19: break
20: end if
21: if size ≥ maxSize then
22: break
23: end if
24: if not replica.contains(rowsplit) then
25: size← size+ rowsplit.size()
26: end if
27: rowSplits.add(rowsplit)
28: numRows← numRows+ 1
29: end for
30: . do the same for columns
31: ...
32: for all rowsplit ∈ rowSplits do
33: for all colsplit ∈ colSplits do
34: if hasTask(rowSplit, colSplit) then
35: pack.add(getTask(rowsplit, colsplit))
36: end if
37: end for
38: end for
39: return pack
40: end procedure

Figure 32: Algorithm for the Dynamic Dispatching Phase

110

Figure 32 outlines this dynamic dispatching phase. Task packs will be created

such that (1) tasks in a pack share their input splits; and (2) the input file splits are

likely to be already has a local replica or in cache. Tasks in a pack are then scheduled

onto the corresponding compute nodes (represented by its TaskTracker) one by one.

To take load balance into account, when no more packs can be formed for an

idle TaskTracker, i.e., when all tasks have been already assigned to some pack, our

scheduler falls back to the default Hadoop scheduling algorithm so that this idle Task-

Tracker can steal tasks from some pack that is assigned to some other TaskTracker.

While this gives the TaskTracker some work to do, it may cause less than optimal

data transfers (as this is an out-of-pack task). Nonetheless, this is no worse than

what the native Hadopp would do.

4.2.3.3 Caching Subsystem

The caching subsystem has two components: a file handler object and a service

daemon. The handler object is constructed when opening files. The service daemon

sits on top of the file system abstraction of each compute node (between MapReduce

and HDFS systems). We design it in this way because we want the service daemon

to remember the caching history among jobs. Furthermore, the service daemon can

function for any Hadoop supported file system.

When users want to open a cache-enabled file, they use an openCachedReadOnly

function. The function returns our specialized file handler and users read data as

usual using this handler. The openCachedReadOnly function accepts an optional

versionID parameter besides the usual path parameter. We expect users to change

this versionID if the data is modified. If the cached version is not equal to the user

provided version, the block will be re-fetched. The handler checks if the current

reading position is within the cached block or local replica boundary. If yes, the

handler continues to read, otherwise, the handler sends a cache block request to

111

the service daemon using a remote procedure call(RPC). Upon receiving the RPC

response, the handler updates its status and proceeds to read.

The service daemon serves handlers’ requests, manages the cached blocks and

reports caching status to the TaskTracker for scheduling. When it receives a caching

request, it checks if the required data is in the cache. If not, the daemon uses the

usual file system API(such as HDFS API) to read the data and saves blocks into

local file system. The maximum block size is fixed(default 64M) for our design. If the

underlying file system has a block size larger than our cache block size configuration,

that block is segmented into smaller blocks. The cached blocks are evicted using a

least recently used policy if the capacity is reached. Each time when a TaskTracker

needs to send a heartbeat, it also reports the status of the cache with the heartbeat.

4.2.3.4 Developer Transparency

With Dual-Hadoop, users will only need to perform one extra piece of work than

with existing Hadoop: specifying which two splits form a task. Other than this,

they just write Hadoop programs as they currently do: focusing on the mapper

and reducer functions. The three phases of our scheduler as well as the caching

subsystem are transparent to the users. The users do not need to know how tasks

are grouped together to reduce their data footprint, or how task packs are formed to

take advantage of local data replicas and cached splits, or how splits enters and leaves

the caches. Dual-Hadoop executes in the background to accelerate the execution of

dual-input applications.

4.2.3.5 Non-intrusiveness

The non-intrusiveness of Dual-Hadoop has two aspects:

1. If the application is unary-input as with existing Hadoop applications, our

scheduler will detect the non-existence of the user-supplied input filter, and

112

immediately hand everything over to the existing Hadoop scheduling subsys-

tem. The overhead in this case will be minimal. The caching service will still

run on the compute nodes. But they will not be activated and thus will only

consume a minimum amount of resources.

2. Dual-Hadoop also consumes certain amount of memory when the caching sub-

system attempts to cache file blocks at the nodes. To this end, Dual-Hadoop

takes advantage of the existing Linux file caches, which by itself is elastic, mean-

ing that it yields memory to user programs as they demand more memory. In

such cases, Dual-Hadoop will seamlessly yield memory to user programs (by

caching less). Note that the application will not benefit from the faster speed

provided by caches, but they will still benefit from our task grouping process

(with reduced data footprint).

4.2.4 Experimental Results

Extensive experiments were conducted to evaluate Dual-Hadoop. We performed (1)

simulation-based studies to verify the effectiveness of our scheduling algorithm, and

(2) execution of real applications to demonstrate the performance improvement over

the existing Hadoop system.

4.2.4.1 Effectiveness of the Scheduling Algorithm

For this set of experiments, we studied a wide range of task sharing patterns to eval-

uate how well our scheduling algorithm can reduce remote data reads. We simulated

a 64-node Hadoop system running HDFS with the following parameters:

• HDFS data blocks were 64MB (the default Hadoop setting), and were randomly

distributed across the cluster with a uniform distribution.

• Compute nodes became available (and subsequently request new tasks) in a

random order. This emulated random task execution time.

113

ap
hap db csb rsb idb

rp0.2
rp0.4

rp0.8
irp

0.2
irp

0.4
irp

0.8
0.0

0.2

0.4

0.6

0.8

1.0

R
a
ti

o
 o

f
Lo

ca
l
R

e
a
d
s

o
v
e
r

A
ll

R
e
a
d
s

Dual-Hadoop

sloc-3

rand-3

sloc-16

rand-16

Figure 33: Dual-Hadoop Scheduling Performance Comparison with Default Hadoop.
sloc-* and rand-* are workaround methods of Hadoop with replication factor set
to 3 and 16

The following task input patterns were evaluated: (1) All Pair Pattern(ap),

which has a full incident matrix;(2) Half All Pair Pattern(hap), which has a

triangular incident matrix; (3) Diagonal Block Pattern(db), which has a diago-

nal block incident matrix; (4) Circular Shuffled Diagonal Block Pattern(csb),

which circularly shuffles the rows and columns of diagonal block matrix; (5) Random

Shuffled Diagonal Block Pattern(rsb), which randomly shuffles the rows and

columns of diagonal block matrix; (6) Iterative Diagonal Block Pattern(idb),

which is a series of jobs with Diagonal Block Pattern; (7) Random Pair Pattern(rp0.x),

which whether an entry is 1 or 0 is randomly generated according to the density level

x; (8) Iterative Random Pair Pattern(irp0.x), which is a series of jobs with Ran-

dom Pair Pattern. Among the patterns, All Pair Pattern, Half All Pair Pattern and

Iterative Diagonal Block Pattern are extracted from real applications, the others are

synthetic patterns.

Figure 33 compares the scheduling algorithm between Dual-Hadoop and the de-

fault Hadoop. As discussed previously, the default Hadoop needs to use a workaround

114

ap db rsb idb
rp0.2

rp0.8
irp

0.2
irp

0.8
0.0

0.2

0.4

0.6

0.8

1.0

R
a
ti

o
 o

f
Lo

ca
l
R

e
a
d
s

o
v
e
r

A
ll

R
e
a
d
s 64M Cache

128M Cache

256M Cache

512M Cache

1G Cache

2G Cache

4G Cache

(a) Cache Capacity

ap
hap db csb rsb idb

rp0.2
rp0.4

rp0.8
irp

0.2
irp

0.4
irp

0.8
0.0

0.2

0.4

0.6

0.8

1.0

R
a
ti

o
 o

f
Lo

ca
l
R

e
a
d
s

o
v
e
r

A
ll

R
e
a
d
s 64 Tasks

256 Tasks

1024 Tasks

(b) Total Number of Tasks

Figure 34: Performance Impact of Cache Capacity And Number of Tasks

method for dual-input applications. We tested the following two workaround meth-

ods: (1)sloc, which updates Hadoop’s InputFormat such that Hadoop can schedule

according to the locality of one data split (still cannot do anything about the second

split), (2) rand, in this workaround method, the two splits are directly accessed using

file system API calls inside the map functions, and Hadoop can only randomly assign

the tasks because it does not know what data a task may request.

In this set of experiment, there were 1024 tasks, each having two 128MB input

splits. The cache capacity was set to 1024M bytes. As is shown in Figure 33, the

Dual-Hadoop scheduling algorithm consistently outperforms the Hadoop scheduling

methods (both sloc and rand), by up to 75%. In an attempt to help Hadoop increase

the ratio of local reads, we increased the Hadoop replication factors from 3 to 16

(sloc-16 and rand-16 in Figure 33). But Hadoop only benefited from a moderate

increase of local reads, which are still up to 60% lower than Dual-Hadoop scheduling.

This is because our scheduling and caching mechanism tend to group data blocks that

are co-accessed or re-used by the tasks. Blindly increase the replication factor does

not help much, for example, the probability that two data blocks are co-located on

one node is only 25% even for a replication factor high as 16 in a 64-node system.

115

We then studied the impact of cache capacity and the results are shown in Fig-

ure 34(a). The experiments were configured with 1024 tasks, each having two 128MB

input splits. The per node cache capacity varied between 64MB and 4096MB. The

results show that the ratio of local reads stayed relatively low at 20% when the cache

is smaller than 256MB, which is reasonable because 256MB is the minimum size to

accommodate the input data for at least one task. Once cache capacity passes this

threshold, the hit rate increases with larger caches, and can ensure that ∼50-70%

data reads are locally satisfied when we have 1024MB or larger caches.

The number of tasks also has an impact on our Dual-Hadoop scheduling algorithm.

This is illustrated in Figure 34(b). We varied the number of tasks from 64 to 1024, and

the results show that a larger number of tasks leads to more local data reads. This

is because more tasks per node provides more opportunity to exploit data sharing

among the tasks.

In summary, this set of experiments show that, compared with the existing Hadoop

task scheduling strategy, our Dual-Hadoop scheduling algorithm can significantly re-

duce the amount of remote data reads for dual-input applications. And this is achieved

with a relatively low requirement on the cache capacity. Furthermore, our scheduling

algorithm works better when the application scales up: the more tasks there are, the

better our algorithm can exploit the data sharing characteristics among the tasks.

4.2.4.2 Experiments with Actual Applications

For this set of experiments, we ran real applications using a cluster of Amazon EC2

medium instances. Each instance was configured with 3.75GB memory, 2 EC2 com-

pute units, 410 GB instance storage and runs 64-bit Amazon Linux AMI. We applied

our extension on Hadoop stable release 1.0.4. HDFS replication factor was set to 3

(default setting) if not mentioned otherwise.

Two applications were tested: (1) a pattern matching application that features

116

the all pairs sharing pattern, and (2) PageRank where tasks share inputs with an

iterative block diagonal matrix pattern.

The pattern-matching application is abstracted from the earthquake analysis prob-

lem studied in [78] where each template earthquake waveform is compared against

each recorded waveforms (to automatically identify aftershocks). The programming

implementation had two sets of floating-point arrays, A - the templates, and B - the

recorded waveforms. Each array in A will perform a correlation analysis against each

array in B. For the baseline Hadoop implementation, we implemented a workaround

solution that combines two arrays from set A and B as a split. This has the similar

effect as the sloc scheduling strategy we simulated.

Figure 35(a) compares the performance between Dual-Hadoop and the baseline.

In this set of experiments, all arrays were 256M bytes. Set A always contained 4

arrays. The number of arrays in set B was set to 4 times the number of nodes. Cache

size was set to 2GB per node. Figure 35(a) shows that Dual-Hadoop out-performs

the baseline in all cluster sizes by up to 26.3%. The speedup increases with cluster

size (from 17.4% at 4 nodes to 26.3% at 64 nodes), which shows Dual-Hadoop scales

better than the Hadoop baseline.

Figure 35(b) shows the impact of cache size. Obviously the execution time de-

creases when the cache size increases. Furthermore, changing cache size from 256MB

to 1GB already accounts for more than 70% of the speedup, which verifies the sim-

ulation results in Section 4.2.4.1 that our algorithm has a relatively low requirement

on cache capacity to exploit the data sharing patterns. Figure 35(c) compares our

extension with a naive strategy that simply increases the replication factor of HDFS.

It can be seen that simply increasing the number of replication helps very little unless

the replication factor reaches 12 replicas per block, which will unfortunately need an

excessive amount of storage for the replicas and still cannot outperform Dual-Hadoop

that only uses 1GB cache per node.

117

4 8 16 32 64
Cluster Size

0

5

10

15

20

25

A
v
e
ra

g
e
 E

x
e
cu

ti
o
n
 T

im
e
 P

e
r

T
a
sk

(s
e
c)

Dual-Hadoop sloc

(a) Cluster Size

256 512 1024 2048 4096
Cache Size(GBytes)

14

16

18

20

A
v
e
ra

g
e
 E

x
e
cu

ti
o
n
 T

im
e
 P

e
r

T
a
sk

(s
e
c)

(b) Cache Capacity For Dual-
Hadoop

2 4 8 12
Number of Replica

15

16

17

18

19

A
v
e
ra

g
e
 E

x
e
cu

ti
o
n
 T

im
e
 P

e
r

T
a
sk

 (
se

c)

Dual-Hadoop(1G cache)

sloc

(c) Replication Factor For
Hadoop Naive Approach

Figure 35: Performance Impact of Various Configurations For Pattern Matching.
sloc is a workaround method of Hadoop.

Next we study the effectiveness of our approaches on PageRank application.

PageRank is a well-known algorithm to rank web pages according to their significance.

It is heavily used by search engines and is often implemented using MapReduce. The

core of the algorithm is an iterative matrix vector multiplication, where the matrix

represents the link connectivity among the web pages, and the vector represents the

ranking of the pages.

The baseline Hadoop implementation is an optimized variation of a common im-

plementation [72, 13, 71] that uses two MapReduce jobs in each iteration. As Dual-

Hadoop extension naturally supports dual-input applications, we were able to design

a matrix-vector multiplication based algorithm. The same Amazon EC2 Cloud in-

stances were used for this set of experiments. We used a semi-synthetic dataset called

Livejournal [7] as the input data. The size of the original data is expanded from 2GB

to 32GB in accordance with the increase in cluster size.

Figure 36 shows that our method achieves speed up of up to 3.3x over the base-

line. Two factors contribute to the speedup: (1) our method eliminated the extra

MapReduce job in the baseline, which was used to copy data just to work around

Hadoop’s unary input limitation; (2) our locality-aware scheduling algorithm and

caching subsystem further reduces the execution time. A breakdown of the execution

time shows that factor (1) contribute to around 3x speed up and our extension can

118

4 8 16 32 64
Cluster Size

0

80

160

240

320

400

A
v
e
ra

g
e
 E

x
e
cu

ti
o
n
 T

im
e
 P

e
r

It
e
ra

ti
o
n

Dual-Hadoop

Hadoop baseline

Figure 36: Performance Comparison for PageRank

further improves around 10% performance on top of that. Figure 36 also shows that

as the cluster size increases, native Hadoop experienced larger increases in the aver-

age execution time per iteration (34.1% from 4 nodes to 64 nodes), this validates the

better scalability of Dual-Hadoop.

4.3 Improving Map/Reduce Co-locality with Grouping-Blocks
Strategy

In the previous section, we extend the MapReduce runtime to better support map

locality for dual-input applications. We further discuss the problem of reduce locality

in this section. Little effort has been made for the reduce-task locality in the current

MapReduce/Hadoop implementation. On the other hand, many applications have a

large amount of shuffle data comparable to map input, for example, more than 90%

applications shuffle more than half the size of map input data in three production

clusters reported in [94], which makes the locality problem in reduce phase more

significant.

Reduce tasks acquire data from every map task of the same job. It is inherently

difficult to avoid off-switch network communication due to the all-to-all nature of the

shuffle operation. To achieve minimum off-switch data access, both map and reduce

tasks must be scheduled within a few racks. Such scheduling decision, however, may

often hurt map locality because input blocks are highly likely scattered across the

119

M1 M2

B2 B3 B4B1

M3 M4

R1 R2

(a) Scattered Blocks with Map
Locality

M1 M2

B2 B3 B4B1

R1 R2

M3 M4

(b) Scattered Blocks with Re-
duce Locality

M1 M2

B2B1

R1 R2

M3 M4

B3 B4

(c) Grouped Blocks with Both
Map and Reduce Locality

Figure 37: Demonstration of the Benefit of the Grouping-blocks Strategy. When
blocks are scattered, it is difficult to satisfy both map and reduce locality. Minimum
off-switch data access can be achieved by grouping blocks in a few racks.

whole cluster. To satisfy both map and reduce locality, we propose to group the input

blocks in a few racks. Figure 37 illustrates and compares the three data placement

and scheduling options; by grouping data blocks and scheduling tasks accordingly,

minimal off-switch data access can be achieved. Figure 38 illustrates the impact of

the grouping-blocks strategy on job execution time for a multi-job workload with two

Sort jobs and two Data Generation jobs. We ran four jobs at the same time each with

a 4 GB dataset in a 4-rack 24-node cluster. It showed that when we grouped the input

data of Sort jobs, the performance of both applications were improved. By limiting

the amount of off-switch data access, the Sort jobs spent less time on shuffling which

result in a less execution time; in addition, more bandwidth were used by the file

system for replicating data blocks, hence the improvement on Data Generation jobs.

Given the above observation, a natural question is how the MapReduce runtime

accommodate such grouping-blocks strategy. The presence of grouped blocks brings

out new concerns for data placement and task scheduling. For data placement, we

need to answer the questions such as: Which files to group? How many racks to host

the grouping blocks? For task scheduling, the questions include: How to schedule

tasks according to the locations of the grouped blocks? And when such assignment is

effective? In general, the solutions revolve around the trade-off between the amount

of off-switch data access and parallelism. Specifically, the down side of the grouping-

blocks strategy is loss of parallelism which manifests into two effects termed “sticky

120

(a) Sort with Blocks Scattered (b) Sort with Blocks Grouped

(c) TextGen with Sort Blocks Scattered (d) TextGen with Sort Blocks Grouped

Figure 38: Demonstration of the Impact of the Grouping-blocks Strategy. When the
data blocks of the Sort application were grouped, the job execution time of both Sort
and TextGen was improved.

effect” and “conflict effect” in this paper. Consider a case where we group all the

blocks of a job inside one single rack and schedule all the map and reduce tasks on

that rack. In such case, we perfectly avoid all the off-switch data access. However,

such decisions may have an adverse impact on parallelism: (1) the “sticky”” effect

occurs because we enforce all tasks to be executed on the assigned rack such that the

job cannot run more tasks even when nodes in other racks have available computation

slots; (2) the “conflict”” effect occurs if other jobs also group the blocks in the same

rack such that all these jobs compete for the limited number of slots on this rack.

In a word, accommodating the grouping-blocks strategy in MapReduce requires new

mechanisms to mitigate the “sticky”” and “conflict”” effects in both data placement

121

and task scheduling.

In this section, we studied the impacts of taking advantage of grouped blocks

in a MapReduce system and designed new mechanisms to control data placement

and task scheduling to mitigate the disadvantage. Specifically we make the following

contributions:

• We proposed a grouping-blocks strategy that can greatly reduce the off-switch

data access and hence the job execution time.

• We identified the trade-off of such grouping-blocks strategy between the im-

provement on off-switch data access and loss of parallelism.

• We proposed data placement and task scheduling mechanisms to mitigate the

adverse impact of grouping-blocks strategy on parallelism.

• We conducted extensive experiments to study the impact of the grouping-blocks

strategy on off-switch data access and job execution time and to validate the

effectiveness of our proposed mechanisms.

The rest of the section is organized as follows: We present an overview of the issues

when accommodating the grouping-blocks strategy in the system in Section 4.3.1.

Section 4.3.2 and 4.3.3 presents the detailed design of our data placement and task

scheduling mechanisms. Section 4.3.4 illustrates the experimental results.

4.3.1 Problem Overview for Accommodating Grouping-Blocks Strategy

In this section, we present the desired characteristics of the data placement and

task scheduling mechanisms to accommodate the grouping-blocks strategy in MapRe-

duce/Hadoop.

Each file block in the MapReduce file system has multiple replicas. Our strategy

gathers one set of the replicas within a few racks and leaves the other replicas un-

touched. For simplicity, we call those special files with a subset of replicas grouped

122

“G-files”; the special racks that host these grouped blocks “G-racks”; and the special

jobs that execute on the G-files “G-jobs”. For now, we assume concurrently only one

G-job executes on a G-file, otherwise, we can extend our mechanism to adopt the

approaches in Scarlett [2], increase the replication factor and treat the file as multiple

G-files.

4.3.1.1 Trade-off of the Grouping-blocks Strategy

As is stated above, the problem of both data placement and task scheduling with

respect to the grouping-blocks strategy concerns the trade-off between the amount

of off-switch data access and parallelism. While grouping blocks can avoid much of

the off-switch access, it can have an adverse impact on parallelism, which exhibits in

two ways. Figure 39 illustrates the two situations where the parallelism of a G-job is

degraded.

• Sticky effect. The parallelism of a G-job is limited by the capacity of its G-racks.

A larger set of G-racks promises more parallelism. A smaller set of G-racks,

however, produces less off-switch data access. Therefore, both data placement

and task scheduling methods should minimize for the amount of off-switch data

access while keeping the capacity of the G-racks acceptable.

• Conflict effect. G-jobs competing for the same set of G-racks degrades the paral-

lelism of both. The grouping-blocks strategy is more effective with more G-jobs.

On the other hand, this increases the chance of competition. Therefore, both

data placement and task scheduling methods should minimize the probability

of conflict.

4.3.1.2 Data Placement for the Grouping-blocks Strategy

We adopted an off-line data placement mechanism, i.e., the mechanism is launched

by a separate file system process without interfering with the job execution. Using

123

M2 M4

B4B2

M1 M3

B1 B3
B5 B8B7B6

B6B5 B7 B8

M6M5 M7 M8

M6M5 M7 M8

(a) “Sticky” Effect

B4B2B1 B3
C1 C4C3C2

MB1 MB2 MC3 MC4

(b) “Conflict” Effect

Figure 39: Demonstration of loss of parallelism. Because we force the tasks to execute
on the G-racks to reduce off-switch data access, the job cannot execute more tasks
even if the cluster is under load. Moreover, other jobs may compete for the G-rack
which further degrades the parallelism.

collected job execution statistics, our mechanism places a replica for each block of the

G-files in a designated location. The mechanism is also assumed to operate within a

storage budget to control the interference with regular cluster operation.

The concerns of the data placement manifest into two problems:

• Selecting the candidate jobs for grouping. Some jobs are more suitable to apply

the grouping-blocks strategy, for example, jobs with only map tasks do not need

the strategy for reduce locality. The data placement mechanism needs to select

the set of G-jobs that maximize the improvement on off-switch access under

the budget limit. Furthermore, the selected candidates is required to be less

susceptible to the “sticky” effect.

• Deciding the locations for the grouped blocks. After candidate selection, the

mechanism computes the locations of the G-racks while avoiding the “conflict”

effect.

4.3.1.3 Task Scheduling for the Grouping-blocks Strategy

Given the existence of G-racks, the task scheduler is required to perform the following

functionalities:

124

• Discovering the locations of G-racks. It is possible to identify the G-racks by

passing the additional information through the interface between file system

and the scheduler. However, a preferable design is to keep the current interface

intact which requires the scheduler computes the locations of G-racks on its

own.

• Applying the grouping-blocks strategy. The scheduler should assign tasks of G-

jobs according to the locations of G-racks. On the other hand, even though the

data placement mechanism has taken into account the “sticky” and “conflict”

effect during G-rack placement, the scheduler should still judge the impact of

such effects and turn off the grouping-blocks strategy in case the decision made

by the data placement mechanism is less effective.

• Mitigating the “sticky” effect. When a G-job requires more computation ca-

pacity than that the G-racks can afford, the scheduler needs to detect such case

and turn off the strategy.

• Mitigating the “conflict” effect. When two G-jobs compete for a G-rack, the

scheduler should turn off the strategy for one of the jobs.

4.3.2 Detailed Techniques for Data Placement

The data placement mechanism selects candidate G-jobs and decides the locations of

G-racks for those jobs. The candidate selection attempts to maximize the improve-

ment on off-switch data access under a budget limit while avoiding the “sticky” effect.

The location of the G-racks is decided such that the “conflict” effect is mitigated.

4.3.2.1 Collecting Statistics and Hints

We list the statistics and hints used by our mechanism in Table 8. For each file fi

and its corresponding job, we collect the file size si, map input/output ratio µi, max-

imum number of map slots mi, maximum number of reduce slots ri, file occurrence

125

Table 8: Useful Statistics and Hints.

si file size
required for candidate
selection and location

decision.

µi

map
input/output

ratio

required for candidate
selection.

mi
max number
of map slots

required for candidate
selection.

ri

max number
of reduce

slots

required by candidate
selection.

qi
occurrence
frequency

optional for location
decision, default to 1.

ni

non-
concurrent
group name

optional for location
decision, default to file

name.

frequency qi and the non-concurrent set name ni. The file size si is used for both

candidate selection and location decision which is maintained in the file system and

readily obtainable; µi is used to maximize the improvement on off-switch data access

which can be obtained from counters in job execution history; mi and ri are used

for mitigating the “sticky” effect which can be obtained in scheduler history statis-

tics; both qi and ni are hints for avoiding the “conflict” effect; qi can be computed

through execution history; ni is a hint provided by the user; a non-concurrent set is

a set in which the files cannot occur simultaneously, which is explained in detail in

Section 4.3.2.4.

4.3.2.2 Deciding the Number of Racks

The “sticky” effect occurs when the capacity of the G-racks cannot keep up with

the demand of the G-job. Hence a sufficient condition to avoid such effect would be

setting the capacity of the G-racks larger than the maximum demand, namely,

Ri = max(dmi

Cm
e, d ri

Cr
e), (43)

126

where Ri is the number of G-racks for file fi; Cm and Cr are the capacity of map and

reduce slots for a rack.

While such sufficient condition seems to yield a large Ri which undermines the

improvement on off-switch data access, we list cases when Ri can be small:

• Small jobs, that is, the total number of map and reduce tasks are small. For

example, with a configuration of 3G file size, 128M block size, 4 map slots per

node and 6 nodes per rack, the blocks of the file can be fit into one rack. Small

jobs can be prevalent in some cluster workload (e.g., M45 in [94]).

• Limited job pool capacity, that is, some job pools are of lower priority such

that the administrators set small values for the maximum number of map and

reduce slots to limit the total demand of jobs in that pool.

• Busy cluster, that is, when there are a large amount of jobs running in the

cluster, each job can only have a small share of map and reduce slots in a fair

share setting.

4.3.2.3 Selecting the Candidates

Given that the “sticky” effect is mitigated by setting a proper number of G-racks,

Ri, we further select G-jobs to maximize the improvement on off-switch data access

under the budget limit. The problem can be formalized as

maximize
∑

I(fi)

subject to
∑

si ≤ B

Where B is the budget limit and I(fi) is the improvement on off-switch data access.

The improvement has three parts: map input, shuffle and reduce output, that is,

I(fi) = Im(fi)+Is(fi)+Ir(fi). The current scheduling can achieve nearly perfect map

locality [126] and so is the case when using the grouping-blocks strategy, therefore,

Im(fi) ≈ 0. Since we did not modify the file system replica location algorithm,

127

procedure select candidate(B, file list)
Used budget, used← 0
F ← List of files sorted in descending order by key function skey muRs
Candidate set, C ← empty set
for all file fi ∈ F do

if used+ si > B then
break

end if
add fi to C
used← used+ si

end for
return C

end procedure
function skey muRs(fi, si)

. For each file, generate the weighted improvement for sorting
return I(fi)/si

end function

Figure 40: Candidate Selection for Data Placement

Ir(fi) ≈ 0. Therefore, I(fi) ≈ Is(fi). To compute Is(fi), for simplicity, we ignore

the skewness among job tasks. The improvement is the difference between with or

without using grouping-blocks strategy, i.e., Is(fi) = Do(fi) − Dw(fi). The total

amount of shuffle data is Hi = µisi. Without our strategy, most of the shuffle data

goes through top-rack switch, i.e., Do(fi) ≈ Hi; with the strategy, each reduce task

receives 1
Ri

of the data from the same rack, i.e., Dw(fi) = (1− 1
Ri

)Hi. Therefore,

I(fi) =
µi
Ri

si. (44)

The optimization is an integer linear programming problem which is NP-hard. We

resorted to a heuristic shown in Figure 40. The files are sorted by a weighted im-

provement I(fi)/si such that smaller jobs with larger improvement are preferable

candidates and selected first. The procedure stops until we reach the budget limit.

4.3.2.4 Deciding the Locations of the G-racks

The major focus when choosing the locations of G-racks is to avoid the “conflict”

effect, that is, we want to minimize the maximum probability that two G-jobs conflict

128

for any G-racks. We adopted a greedy approach shown in Figure 41. For each file fi

to be placed, we find a set of Ri racks that have the least probabilities that another

file fj will conflict with fi. Therefore, for fi, we sort all racks according to the value

q(r) = Pr(A | B) in descending order, where A is the event that none of the G-files

(other than fi) on rack r has its G-job being executed; B is the event that the G-job

of fi being executed on r. Let Aj be the event that the G-job of fj not being executed

on r. If events in Aj are mutually independent, then Pr(A | B) =
∏
Pr(Aj | B).

The conditional probability depends on the joint probability of Aj and B, which

is difficult to obtain. To simplify the computation, we focused on only two common

types of dependency relationships: (1) two G-job executions are totally independent;

(2) two G-job executions cannot occur simultaneously. Relationship (1) can be com-

mon among jobs of different users, i.e., the execution of jobs of one user does not

depend the others; relationship (2) can be common among jobs for the same user,

i.e., a user executing jobs one after another. Therefore,

Pr(Aj | B) =


0, Aj and B only one can happen

Pr(Aj), otherwise, Aj and B independent

We let users provide the hints of relationship (2) by defining a non-concurrent set

name ni for each file fi. Files with the same ni will not run simultaneously.

Accurately computing the probability that the G-job of file fj being executed

(i.e., 1 − Pr(Aj)) is difficult. We estimate such by assuming that the probability

increases linearly with the occurrence frequency fi, the file size si and the reciprocal

of number of G-racks 1
Ri

, that is, when a file occurs more frequently and has larger

size, the corresponding job occupies a rack for a longer time; if the file blocks spread

on multiple G-racks, the job occupies all racks for a shorter time. Therefore, we can

obtain

pi =
1

norm

qisi
Ri

, (45)

129

where, norm =
∑ qisi

Ri
is a normalization factor. And qj = Pr(Aj) = 1− pj.

Interestingly, if we assume all jobs are independent and have occurrence frequency

equal to 1, the sort key becomes

q(r) =
∏

(1−
sj
Rj

norm
) ≈ 1−

∑ sj
Rj

norm
,

that is, our algorithm reduces to selecting the racks with least amount of G-files for

the next G-file, which is a simple yet intuitive algorithm to balance the workload

which is also adopted by the MapReduce file system for replica placement.

4.3.3 Detailed Techniques for Task Scheduling

The task scheduling mechanism discovers the locations of G-racks from the input

location information from file system. It then decides whether to apply the grouping-

blocks strategy when executing the job. Such decision is based on whether the job is

susceptible to both the “sticky” and “conflict” effect.

4.3.3.1 Discovering the G-rack Locations

To keep the interface between scheduler and file system intact, we adopted a design

that the scheduler figures out the locations of G-racks by itself. The location infor-

mation passed from the file system under the original interface contains the replica

locations of all blocks. Based on such information, we attempted to find a set of racks

of minimum size that contains all the input blocks. Such problem can be reduced to

a minimum vertex cover problem where racks are represented by (hyper-)edges and

blocks vertices, which is an NP-complete problem. Therefore we resorted to a greedy

approach. We first count the number of block replicas for each rack and sort the racks

in descending order according to the count. Then the racks are selected until all the

blocks are covered. Figure 42 lists the pseudo code for discovering the G-racks.

130

procedure decide location(G-file list)
Table of files on each rack, T ← empty table
for all fi ∈ G-file list do

Ri ← Number of G-racks for fi
ni ← Name of the non-concurrent group for fi
Set of G-racks, S ← pick(ni, Ri, T)
Place blocks of fi on S
update(S, fi, T)

end for
end procedure
function pick(ni, Ri, T)

S ← empty set of racks
A← List of racks sorted in descending order by key function skey prob
add first Ri racks to S
return S

end function
function skey prob(r, ni, T)

. for each rack r, given ni and T , generates a probability for sorting
Table of files on r, F ← T [r]
Prob. of no conflict, q ← 1
. F is indexed by non-concurrent set names
for all n ∈ F.keys() do

if n 6= ni then
Prob. of occurrence, p = 0
for all fi ∈ F [n] do

pi ← Prob. of fi using G-rack r in Eq. 45
p← p + pi

end for
q ← (1− p)q

end if
end for
return q

end function
function update(S, fi, T)

for all rack r ∈ S do
ni ← Name of the non-concurrent set for fi
add fi to T [r][ni]

end for
end function

Figure 41: Location Decision for Data Placement

4.3.3.2 Applying the Grouping-blocks Strategy

During task scheduling, we require the mechanism to enforce the task assignment of

G-jobs onto their designated G-racks. Furthermore, flexibility to disable the strategy

under various circumstances is also required. Figure 43 shows our modification to the

131

procedure discover gracks(blockLocations)
G-rack set, G← empty set
Count number of block replicas for each rack
L← List of racks sorted in descending order by replica count
Included block set, S ← empty set
while S.size() < total number of blocks do

r ← pop first from L
add r to G
add all blocks on r to S

end while
return G

end procedure

Figure 42: Discovering the G-rack Locations

default scheduling algorithm. Each job has a Decider to judge whether the grouping-

blocks strategy should be turned on or off. When a node has free slot and the decider

choose to apply the strategy, we check if the node is within the G-rack; if yes we

assign a task from this job, otherwise we skip the assignment for the node.

We maintain a timer to track the time skipped for the task assignment of the job.

Because when the strategy is turned on, the job can only assign tasks to the G-racks.

Such design is vulnerable to faulty conditions, i.e., if the G-racks are not responding,

the jobs are delayed indefinitely. Adding a timer can avoid such situation.

4.3.3.3 Deciding to Use the Grouping-blocks Strategy

The decision of whether to apply the grouping-blocks strategy depends on whether

the job is susceptible to the “sticky” or “conflict” effects. We check several criteria

illustrated in Figure 44. We first judge whether the job is suitable for the strategy by

checking the map input output ratio and the size of G-racks against some threshold

(in our experiments Thrµ = 0.5 and ThrR = 3). Such check is necessary since the

scheduler computes the G-rack locations on its own not knowing the decisions in the

candidate selection. Next we check if the job can be affected by “sticky” effect by

checking both the fair share of the job and the history average of the pool it belongs

132

procedure assign tasks(node)
maxWait← the maximum time we wait for fault tolerance
. Maintain two variables for each job j, initialized as
j.wait← 0, j.skipped← false
whenA heartbeat is received from node n
for all job j do

if j.skipped = true then
j.wait← j.wait+ time since last heartbeat
j.skipped← false

end if
end for
if n has a free slot then

Sort jobs as is the way in the default scheduling
for all j ∈ jobs do

apply ← j.decider.judge()
G← Set of G-racks for j
if j.wait > maxWait or not apply then

Use default scheduling algorithm
else if n ∈ G then

Assign a task in j to n
else

j.skipped← true
end if

end for
end if

end procedure

Figure 43: Applying the Grouping-blocks Strategy to Task Scheduling

to. Last we check if the G-racks is already occupied by some other G-jobs to avoid the

“conflict” effect. If all criteria are met, we update the occupied G-racks and decide

to apply the strategy.

4.3.4 Experimental Results

In this section, we present the experimental results and analysis. Extensive experi-

ments were conducted to evaluate the impact of grouped blocks and the effectiveness

of our mechanisms.

133

procedure judge(job, scheduler)
. Check if suitable for grouping
if job.µ ≤ Thrµ then

return false
end if
G← Set of G-racks of job
if G.size() ≥ ThrR then

return false
end if
. Check “sticky” effect
if job.fairShare > G.capacity then

return false
end if
pool← scheduling pool of the job
ave← Average fair share of the pool in history
if ave > G.capacity then

return false
end if
. Check “conflict” effect
O ← Occupied G-racks maintained by scheduler
if G ∩O 6= ∅ then

return false
end if
. Update and return
O ← O ∪G
return true

end procedure

Figure 44: Deciding to Use the Grouping-blocks Strategy

4.3.4.1 Methodology and Settings

We resorted to both real execution and simulation in our experiments. Real execu-

tion experiments were conducted to study (1) the impact on job execution time of

grouping-blocks strategy; (2) the effectiveness of the candidate selection in data place-

ment; (3) the effectiveness of the method to avoid “sticky” effect in task scheduling;

(4) the effectiveness of the methods to avoid “conflict” effect in both data placement

and task scheduling. Simulations are conducted to study the impact of grouped blocks

in large scale including the impact on map task locality and the number of occupied

G-racks.

134

The real execution experiments were run on a private cluster of 24 servers. Each

server was equipped with two 2.33GHz quad-core Intel Q8200 CPUs, 8GB memory,

a disk with 50GB capacity and 3.0Gbit/s SATA interface, and was running CentOS

with kernel version 2.6.32. We used and implemented our mechanisms on Hadoop

version 1.2.2. The network topology was configured with 4 racks each had 6 servers

and the 4 racks were connected by a top-rack switch. Each switch had a 2000M bps

data transmission rate. The Hadoop cluster was configured with 3 map slots and 1

reduce slots for each server because of the number of CPUs and the fact that most

applications we ran had more map tasks than reduce tasks. HDFS replication factor

was set to 3 and block size 128MB.

We used two types of applications: (1) real application including WordCount, Sort

and TextGen, and (2) synthetic applications. The real applications were selected from

example applications in the Hadoop repository and were widely used in other research

works [108, 45, 86]. The applications were chosen to represent jobs with different map-

input-output ratio: WordCount has large amount of map input with very few output;

Sort has equal large amount of map input and output; TextGen has no map input but

a large amount of output. Synthetic applications were implemented to set arbitrary

map-input-output ratio. The input size of the applications ranged from 2 GB to 6

GB in all experiments.

We used a tuple of parameters (u, j, wu, wj) to construct the arrival of applications

for experiment workloads where u is the number of users, j is the number of jobs each

user attempts to run in sequence, wu is the waiting time between the users starting

their first job (user 2 starts wu seconds later than user 1) and wj is the waiting

time between subsequent jobs for each user. Such construction is general enough

to represent a range of workload. For example, when u,wu is small, the workload

simulates a closed system with multiple users iterating the cycle of submitting a job

and waiting for the result; when wj is large, it simulates an open system with multiple

135

batches of a wj interval and u jobs each batch.

We implemented our simulator using a Python simulation framework, Simpy [103].

The simulator implemented the MapReduce system in detail including the exact pro-

cedure of map-locality-aware scheduling, the Fair scheduler and the control flow of

map/shuffle/reduce tasks execution. Fault tolerance and speculative execution was

omitted as they are less relevant; Job launching and scheduling overhead was also

omitted. For simplicity, we ignored the interference of resource sharing, e.g., disk I/O

and network bandwidth; and set tasks as of fixed execution time. We simulated a

cluster of 256 servers and 64 racks; 512 jobs were submitted; jobs arrived following

Poisson process; all jobs had a fixed amount of map and reduce tasks (36 maps and

12 reduces) with a fixed amount of execution time (10 sec map, 1 sec shuffle and 10

sec reduce).

4.3.4.2 Impact of Grouping-blocks Strategy

We first studied the impact of the grouping-blocks strategy with respect to various

applications, amount of G-files, G-file sizes and G-rack sizes.

We constructed a workload with the parameter tuple (5 − 8, 3, 5, 5). That is, we

had 5 to 8 users; each user ran 3 jobs; users started with five-second intervals and

intervals between jobs were also 5 seconds. We separated the users by 2 groups: 4

of them ran applications including WordCount, Sort and TextGen; the rest always

ran Sort. We increased the budget of the candidate selection algorithm in accordance

with the number of users such that the amount of G-files ranged from 20% to 50% of

the total data (the algorithm automatically selected the Sort files first). Each data

file is of the size 2 GB. For each workload, we ran two experiments with and without

our grouping-blocks mechanisms.

Figure 45 shows the experiment result with/without grouping-blocks strategy.

For most of our experiment settings, the workload with the grouping-blocks strategy

136

(a) Sort (b) TextGen

(c) WordCount (d) Sort (G-job)

Figure 45: Impact of Grouping-blocks Strategy with Different Amount of G-files
on a Workload with Three Applications: Sort, TextGen and WordCount. Sort has
improvement up to 48% on job execution time; TextGen 56%.

outperforms that when the strategy is turned off. When the amount of G-files is

larger, such improvement is more obvious. The job execution time is reduced by up

to 48% for Sort and 56% for TextGen. There is less improvement in the WordCount

application since the job has small amount of shuffle and output data and hence

less requirement for the off-switch bandwidth. Table 9 shows detailed statistics: the

speed up for Sort application is resulted from a 4.5x speed up in the shuffle stage

and accordingly a 48% speed up in reduce time; the speed up for TextGen is resulted

from a 2x speed up in the map stage.

We further studied the impact of the size of G-files and G-racks. We set the

number of users to 8 and again divide the users by two groups: 4 of the users ran

137

Table 9: Detailed Time(sec) for the Impact of Grouping-blocks Strategy.

App
Amount of

G-files
Task on off

Sort
20%

shuffle 0.41 1.45
reduce 16.73 29.90

50%
shuffle 0.36 1.59
reduce 23.03 34.19

TextGen
20% map 15.40 19.97
50% map 15.87 32.14

jobs of 6 GB data; the rest of the users ran jobs of size ranging from 2 GB to 6

GB. We limited the number of G-racks Ri of the jobs from the second group to 1

or 2 by creating a pool for each job and limiting the map and reduce task capacity

(mi and ri) for each pool. The candidate selection algorithm automatically selected

the files from the second group due to a smaller Ri. Figure 46 shows the result of

our experiment. The speed up increases with the G-file size. This is because larger

G-files have a increased requirement on the off-switch bandwidth and therefore have

a larger impact when the amount of off-switch data is reduced. The speed up also

decreases with the G-rack size. This can be predicted from Equation 44 that the

improvement decreases drastically with large Ri. One exception is for the 2 GB case

which is because the file is small enough to fit in one rack and increasing the pool

capacity has no effect on Ri in such case.

4.3.4.3 Effectiveness of Candidate Selection

We verified the effectiveness of our candidate selection mechanism in this experiment.

We constructed a workload with the parameter tuple (32, 1, 5, 0), that is, the workload

had a batch with 32 jobs arriving in five-second intervals. Each job ran a synthetic

application with a randomly selected configuration of µi ranging from 0.1 to 1.0, si

ranging from 2 GB to 6 GB and Ri ranging from 1 to 2. Figure 47 compares the

experiment results of no grouping-blocks strategy (labeled “off”), random selection

(labeled “rand”) and our candidate selection algorithm (labeled “muRs”) with the

138

Figure 46: Impact of Grouping-blocks Strategy with Different G-file and G-racks size
on a Workload of Sort. Speedup increases with G-file size and decreases with G-racks
size.

Figure 47: Effectiveness of Candidate Selection. We compare three cases: no
grouping-blocks strategy (“off”), random selection (“rand”) and our mechanism
(“muRs”) in Figure 40. Our mechanism has an average of 19% speed up over random
selection.

same workload. It is shown that our mechanism achieves better performance for

each job over random selection. This is because our mechanism can choose the files

and jobs that benefit the most from the strategy while random selection sometimes

chooses jobs that are less affected. The random selection obtains an average of 25%

speed up over no grouping-blocks strategy; our mechanism obtains an average of 44%

speed up which is around 19% speed up over random selection.

139

(a) Without Checking (b) With Checking

Figure 48: Avoiding the “Sticky” Effect in Task Scheduling. Figure shows the num-
ber of running maps and reduces for each job. With the checking mechanism, when
the capacity of the pool was changed (time around 200-300), the grouping-blocks
strategy was turned off and the execution was not limited to G-racks.

4.3.4.4 Avoiding the “Sticky” Effect in Task Scheduling

The “sticky” effect is prevented by setting a suitable Ri in data placement. However,

once the data placement is done, it is the responsibility of the task scheduling to mit-

igate the “sticky” effect when the workload changed. Figure 48 shows the capability

of our task scheduling mechanism under such case. We constructed a workload with

four pools in the cluster. During time 0 to 200, all four pools had jobs running and

limited the capacity to 25% of the cluster; during time 200 to 300, only one pool had

job running and the capacity was changed to 100% of the cluster. After time 300, the

other three pools ran jobs again. It is shown that with our checking mechanism, the

scheduler can dynamically turn off the strategy to prevent the “sticky” effect during

time 200 to 300.

4.3.4.5 Avoiding the “Conflict” Effect

Next we validated our mechanisms in data placement and task scheduling to avoid the

“conflict” effect. We constructed a workload with the parameter tuple (4, 5, 360, 10).

The workload had 5 batches with 360-second intervals; each batch had 4 users each

submitting a work flow. Each users had two work flows to choose with a probability

140

Figure 49: Avoiding the “Conflict” Effect in Data Placement and Task Scheduling.
We compare between two data placement approaches: random distribution (“rand
dist”) and probability distribution (“prob dist”) in Figure 42; and two task scheduling
approaches: with/without checking conflict.

of 0.8 and 0.2 respectively; each work flow was consist of 4 jobs running consecutively.

All the files are G-files. Such construction of the work flow created G-files with varied

frequency of 0.8 and 0.2; moreover, G-files within one work flow belongs to one non-

concurrent set. We feed such hints to our location decision mechanism.

Figure 49 shows the result of our experiment. When the checking in task schedul-

ing is disabled (lines without the “check” label), the CDF of job execution time has a

distinctive step around 40 sec and 80 sec. This indicates the conflicts occur and some

jobs have to wait until the conflicting jobs to finish. Our data placement mechanism

avoids around 20% of conflicts: the step begins from 60% in the “prob dist” line

as opposed to 40% in the “rand dist” line. When the checking in task scheduling

is enabled, there is no distinctive step, i.e., conflicts are avoided. The average job

execution time of the four configurations (i.e., probability dist with checking, prob-

ability dist, random dist with checking and random dist) is 61.71, 63.28, 67.94 and

79.43 respectively, that is, our mechanisms obtain a 28% improvement over random

distribution with no checking.

141

Figure 50: Impact of Grouped Blocks on Map Locality. The figure shows the impact
of the number of replication and size of G-racks (Ri) on percentage of off-switch map
tasks.

4.3.4.6 Impact of Grouped Blocks on Map Locality

We used our simulator to study how grouped blocks affect map locality for non-G-

jobs and hence provided insights on whether grouping blocks of one replica can hurt

the map locality. We varied the replication factor from 1 to 4 and the number of

G-racks Ri from 1 to 4 as well as no grouped blocks. Figure 50 shows the result of

the simulation: the default data placement always have a better map locality but the

difference diminishes quickly with larger replication factor. With three replica, all

settings can achieve a percentage of off-switch map task less than 10% (with 6.7%

for Ri = 1 and 2.8% for no grouped blocks). Therefore, with the grouping-blocks

strategy, the replication factor should be at least 2; and with 4 replica, under a

uniform access pattern simulated in our environment, the impact of grouped blocks

is negligible.

4.3.4.7 Impact on Number of Occupied G-racks

The grouping-blocks strategy is more effective when more racks are being used as

G-racks. For example, the best case is all racks run G-jobs all the time, which saves

the most of off-switch data access. Therefore, in this experiment, we studied the

average percentage of G-racks occupied during execution with respect to the amount

142

Figure 51: Impact on Percentage of Occupied G-racks. The figure shows the impact
of the amount of G-files, the size of G-racks (Ri) and the job arrival interval (T).

of G-files, the size of G-racks and job arrival rate. Figure 51 shows our simulation

result. From the figure, we can observe that increasing the amount of G-files does

not necessarily adding more opportunity for the strategy. When arrival rate is low

(T = 1.0), the number of occupied G-racks is limited by the number of concurrent

jobs; when the arrival rate is high, conflicts limit the number of G-racks occupied.

Such observation suggests when cluster is under load, the grouping-blocks strategy is

less useful and the budget should be set to a low value; when the cluster load is high,

there is also a threshold when increasing the budget does not help anymore. We can

also observe that increasing the number of G-files of a smaller Ri is more effective

when arrival rate is high. Hence the candidate selection should give more weight to

these files.

4.4 Summary

In this chapter, we focused on the network resource contention problem of the MapRe-

duce system. Our improvement over the current state-of-art design consists of two as-

pect: (1) an extension to better support map locality for dual-input applications [123]

and (2) a grouping-blocks strategy for map and reduce co-locality [124].

We first studied the inefficiency of Hadoop when executing dual-input applica-

tions. We presented Dual-Hadoop, our extension to Hadoop to better support such

143

applications. Dual-Hadoop integrated an easy-to-use user interface, a dual-input

aware scheduler, and a user-transparent caching mechanism. Our extension is able to

exploit the unique data locality characteristics of dual-input applications. This was

verified through extensive experiments, which shows 48% reduction in remote data

reads and up to 3.3x improvement in application execution time than the default

Hadoop. Dual-Hadoop is expected to be extensible to support multiple input appli-

cations. Works following our contribution can further investigate on this opportunity

and develop scheduling algorithms that improve Hadoop on even more general task

sharing patterns.

Next, we studied a grouping-blocks strategy for Hadoop/MapReduce system. Such

strategy can greatly improve both map and reduce locality; on the other hand, it

suffers from loss of parallelism problem, i.e., the “sticky” effect and the “conflict”

effect. Therefore, we proposed several mechanisms from both data placement and

task scheduling aspect to mitigate the loss of parallelism problem. Extensive experi-

ments were conducted to validate the effectiveness of grouping-blocks strategy and our

mechanisms. The grouping-blocks strategy is shown to improve job execution time

by up to 56%; furthermore, our proposed mechanisms is successful on mitigating the

loss of parallelism issue in various situations. Future work can investigate more on

the relationship between job execution time and number of G-racks to provide more

accurate conclusion on choice of number of G-racks. We also plan to validate our

mechanisms on a real production workload in the future.

144

CHAPTER V

CONCLUSION

Parallel and distributed computing systems become more and more important as the

volume of data that needs processing grows extremely large. Data access is an essen-

tial part in any program and hence optimizing data access parallelism is important to

the performance of such systems. To ease the use of parallel and distributed systems,

data access operations are often abstracted in the form of programming models. In

this dissertation, we study two important and widely used abstractions: Transaction-

based Abstraction and Distributed-system-based Abstraction. To improve the par-

allelism for the transaction-based abstraction, the implementation needs to focus on

the data contention which occurs when multiple transactions try to access conflicted

data simultaneously and therefore must be serialized. For the distributed-system-

based abstraction, the major concern is the network resource contention which limits

the performance when a large amount of data needs to be transferred through a

top-level switch.

In Chapters 2 and 3, we illustrated the impact of data contention on performance

with respect to various system and workload parameters. In Chapter 2, we presented

an analytical model based on continuous-time Markov chain and modeled each trans-

action as client requesting services from the computing system. In Chapter 3, we

adopted the mean value analysis approach to study the impact of data contention

with various system schemes. Both analytical methods can be used to estimate the

system performance which were validated through extensive experiments. On the

other hand, the two methods (queueing model and mean value analysis) have differ-

ent strength in express different systems. Queueing methods are more intuitive to

145

describe open systems with the inherited assumption of Poisson arrival; it can easily

describe the variance of system capability with respect of number of transactions in

the system. Therefore, it is more suitable to adopt such methods to describe the

competition on shared computer resources in transactional memory system. Mean

value analysis is more intuitive in describing closed systems and can be very powerful

to describe the system in a modularized fashion. Therefore, it is easier to describe

various system designs and compose the modules to model the whole system.

From our models in both chapters, we can observe that the data contention prob-

lem is sensible to workload parameters. Many parameters, such as data set size

and transaction size, have a super linear relationship with the system performance.

In Chapter 3, it is shown that a batched deterministic system scheme can be more

beneficial under high contention situations especially when the time to commit a

transaction is large (e.g., large network delay in Geo-replicated systems).

Many other detailed factors such as implementation overhead and contention res-

olution decisions can affect the data contention problem and the performance for the

transaction-based abstraction. In Chapter 2, we adopted an adaptive method for con-

tention management to select the best policy for the workloads and platforms. We

showed that adaptive contention management is necessary and feasible. Our scheme

is a profiling-based method that would choose a suitable CM for a given workload

and system platform during run-time.

Because of the sensitive nature of transaction-based abstraction to data con-

tention which makes it difficult to be deployed in distributed environment, many

distributed systems (e.g., MapReduce) are designed to avoid the potential serializa-

tion of transaction-based systems, by splitting data access among independent tasks

and reducing communication among the tasks. While serialization due to data con-

tention is reduced in these systems, network resource contention becomes a limiting

factor for such systems. In Chapter 4, we studied network resource contention in

146

MapReduce systems and identified two opportunities to improve the state of art:

(1) the support of dual-input map tasks, and (2) the issues with map/reduce co-

locality. For dual-input applications, we extended the MapReduce implementation

with a caching system and developed cache-aware scheduling strategies. To improve

locality for both map and reduce tasks, we proposed a strategy that groups the map

input data in a few racks and enhanced the current implementation to mitigate the

side effect of parallelism degradation. A common feature in both of the enhancement

is that we collected hints and statistics from user and history execution and fully

utilized such information. We developed special data placement and task scheduling

mechanisms according to such information to minimize unnecessary data communi-

cation. While existing methods can handle general situations well, our study shows

that, for a focused (and representative) group of applications (e.g. dual-input appli-

cations or many small map-reduce-input-heavy jobs), it is possible to greatly reduce

the network resource contention and thereby reducing job execution time.

147

REFERENCES

[1] Ananian, C. S., Asanovic, K., Kuszmaul, B. C., Leiserson, C. E.,
and Lie, S., “Unbounded transactional memory,” IEEE Micro, vol. 26, no. 1,
pp. 59–69, 2006.

[2] Ananthanarayanan, G., Agarwal, S., Kandula, S., Greenberg, A.,
Stoica, I., Harlan, D., and Harris, E., “Scarlett: coping with skewed
content popularity in mapreduce clusters,” in Proceedings of the sixth conference
on Computer systems, EuroSys ’11, (New York, NY, USA), pp. 287–300, ACM,
2011.

[3] Ananthanarayanan, G., Ghodsi, A., Wang, A., Borthakur, D., Kan-
dula, S., Shenker, S., and Stoica, I., “Pacman: coordinated memory
caching for parallel jobs,” in Proceedings of the 9th USENIX conference on Net-
worked Systems Design and Implementation, NSDI’12, (Berkeley, CA, USA),
pp. 20–20, USENIX Association, 2012.

[4] Ananthanarayanan, G., Kandula, S., Greenberg, A., Stoica, I., Lu,
Y., Saha, B., and Harris, E., “Reining in the outliers in map-reduce clus-
ters using mantri,” in Proceedings of the 9th USENIX conference on Operating
systems design and implementation, OSDI’10, (Berkeley, CA, USA), pp. 1–16,
USENIX Association, 2010.

[5] Anderson, T. A. and others, “Replication, consistency, and practicality:
Are these mutually exclusive?,” in SIGMOD Conference (Haas, L. M. and
Tiwary, A., eds.), pp. 484–495, ACM Press, 1998.

[6] Avni, H. and Shavit, N., “Maintaining consistent transactional states with-
out a global clock,” in SIROCCO ’08: Proceedings of the 15th international
colloquium on Structural Information and Communication Complexity, (Berlin,
Heidelberg), pp. 131–140, Springer-Verlag, 2008.

[7] Backstrom, L., Huttenlocher, D., Kleinberg, J., and Lan, X.,
“Group formation in large social networks: membership, growth, and evolu-
tion,” in Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’06, (New York, NY, USA), pp. 44–
54, ACM, 2006.

[8] Baker, J., Bond, C., Corbett, J. C., Furman, J., Khorlin, A., Lar-
son, J., Leon, J.-M., Li, Y., Lloyd, A., and Yushprakh, V., “Megas-
tore: Providing scalable, highly available storage for interactive services,” in
Proceedings of the Conference on Innovative Data system Research (CIDR),
pp. 223–234, 2011.

148

[9] Baugh, L., Neelakantam, N., and Zilles, C., “Using hardware memory
protection to build a high-performance, strongly atomic hybrid transactional
memory,” in Proceedings of the 35th Annual International Symposium on Com-
puter Architecture, ACM Press, June 2008.

[10] Baugh, L., Neelakantam, N., and Zilles, C., “Using hardware mem-
ory protection to build a high-performance, strongly-atomic hybrid transac-
tional memory,” in Proceedings of the 35th Annual International Symposium on
Computer Architecture, ISCA ’08, (Washington, DC, USA), pp. 115–126, IEEE
Computer Society, 2008.

[11] Blake, G., Dreslinski, R. G., and Mudge, T. N., “Proactive transac-
tion scheduling for contention management.,” in MICRO (Albonesi, D. H.,
Martonosi, M., August, D. I., and Martnez, J. F., eds.), pp. 156–167,
ACM, 2009.

[12] Bobba, J., Moore, K. E., Yen, L., Volos, H., Hill, M. D., Swift,
M. M., and Wood, D. A., “Performance pathologies in hardware transac-
tional memory,” in Proceedings of the 34th Annual International Symposium on
Computer Architecture, ACM Press, Jun 2007.

[13] Bu, Y., Howe, B., Balazinska, M., and Ernst, M. D., “Haloop: effi-
cient iterative data processing on large clusters,” Proc. VLDB Endow., vol. 3,
pp. 285–296, Sept. 2010.

[14] Burger, A. and others, “Performance of multiversion and distributed two-
phase locking concurrency control mechanisms in distributed databases.,” Inf.
Sci., vol. 96, no. 1-2, pp. 129–152, 1997.

[15] Cao Minh, C., Chung, J., Kozyrakis, C., and Olukotun, K., “STAMP:
Stanford transactional applications for multi-processing,” in IISWC ’08: Pro-
ceedings of The IEEE International Symposium on Workload Characterization,
September 2008.

[16] Cao Minh, C., Trautmann, M., Chung, J., McDonald, A., Bronson,
N., Casper, J., Kozyrakis, C., and Olukotun, K., “An effective hybrid
transactional memory system with strong isolation guarantees,” in Proceedings
of the 34th Annual International Symposium on Computer Architecture, ACM
Press, Jun 2007.

[17] “Hadoop capacity scheduler.” http://hadoop.apache.org/docs/stable/

capacity_scheduler.html.

[18] Chowdhury, M., Zaharia, M., Ma, J., Jordan, M. I., and Stoica, I.,
“Managing data transfers in computer clusters with orchestra,” in Proceedings
of the ACM SIGCOMM 2011 conference, SIGCOMM ’11, (New York, NY,
USA), pp. 98–109, ACM, 2011.

149

[19] Corbett, J. C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman,
J. J., Ghemawat, S., Gubarev, A., Heiser, C., Hochschild, P., Hsieh,
W., Kanthak, S., Kogan, E., Li, H., Lloyd, A., Melnik, S., Mwaura,
D., Nagle, D., Quinlan, S., Rao, R., Rolig, L., Saito, Y., Szyma-
niak, M., Taylor, C., Wang, R., and Woodford, D., “Spanner: Google’s
globally-distributed database,” in Proceedings of the 10th USENIX Conference
on Operating Systems Design and Implementation, OSDI’12, (Berkeley, CA,
USA), pp. 251–264, USENIX Association, 2012.

[20] Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir, M., and
Nussbaum, D., “Hybrid transactional memory,” in ASPLOS-XII: Proceedings
of the 12th international conference on Architectural support for programming
languages and operating systems, (New York, NY, USA), pp. 336–346, ACM,
2006.

[21] Dean, J. and Ghemawat, S., “Mapreduce: simplified data processing on
large clusters,” in Proceedings of the 6th conference on Symposium on Opearting
Systems Design & Implementation - Volume 6, OSDI’04, (Berkeley, CA, USA),
pp. 10–10, USENIX Association, 2004.

[22] DeCandia, G. and others, “Dynamo: Amazon’s highly available key-value
store,” in Proceedings of Twenty-first ACM SIGOPS Symposium on Operating
Systems Principles, SOSP ’07’, (New York, NY, USA), pp. 205–220, ACM,
2007.

[23] Dice, D., Shalev, O., and Shavit, N., “Transactional locking ii,” in In Proc.
of the 20th Intl. Symp. on Distributed Computing, 2006.

[24] Dittrich, J., Quiané-Ruiz, J.-A., Jindal, A., Kargin, Y., Setty, V.,
and Schad, J., “Hadoop++: making a yellow elephant run like a cheetah
(without it even noticing),” Proc. VLDB Endow., vol. 3, pp. 515–529, Sept.
2010.

[25] Dragojević, A., Guerraoui, R., and Kapalka, M., “Stretching trans-
actional memory,” in Proceedings of the 2009 ACM SIGPLAN conference on
Programming language design and implementation (Hind, M. and Diwan, A.,
eds.), PLDI ’09, (New York, NY, USA), pp. 155–165, ACM, 2009.

[26] Dragojević, A., Guerraoui, R., and Kapalka, M., “Stretching transac-
tional memory,” in PLDI ’09: Proceedings of the 2009 ACM SIGPLAN con-
ference on Programming language design and implementation, (New York, NY,
USA), pp. 155–165, ACM, 2009.

[27] Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.-H., Qiu,
J., and Fox, G., “Twister: a runtime for iterative mapreduce,” in Proceedings
of the 19th ACM International Symposium on High Performance Distributed
Computing, HPDC ’10, (New York, NY, USA), pp. 810–818, ACM, 2010.

150

[28] Eltabakh, M. Y., Tian, Y., Özcan, F., Gemulla, R., Krettek, A.,
and McPherson, J., “Cohadoop: flexible data placement and its exploitation
in hadoop,” Proc. VLDB Endow., vol. 4, pp. 575–585, June 2011.

[29] Ennals, R., “Efficient software transactional memory,” Tech. Rep. IRC-TR-
05-051, Intel Research Cambridge Tech Report, Jan 2005.

[30] “Hadoop fair scheduler.” http://hadoop.apache.org/docs/r1.1.2/fair_

scheduler.html.

[31] Felber, P., Fetzer, C., Marlier, P., and Riegel, T., “Time-based soft-
ware transactional memory,” IEEE Transactions on Parallel and Distributed
Systems, vol. 21, pp. 1793–1807, 2010.

[32] Felber, P., Fetzer, C., and Riegel, T., “Dynamic performance tuning
of word-based software transactional memory,” in PPoPP ’08: Proceedings of
the 13th ACM SIGPLAN Symposium on Principles and practice of parallel pro-
gramming, (New York, NY, USA), pp. 237–246, ACM, 2008.

[33] Forum, T. M., “Mpi: A message passing interface,” 1993.

[34] Frank, J. and Chun, R., “Adaptive software transactional memory: A dy-
namic approach to contention management,” in PDPTA (Arabnia, H. R. and
Mun, Y., eds.), pp. 40–46, CSREA Press, 2008.

[35] George, L., HBase: The Definitive Guide. O’Reilly Media, 1 ed., 2011.

[36] Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S.,
and Stoica, I., “Dominant resource fairness: fair allocation of multiple re-
source types,” in Proceedings of the 8th USENIX conference on Networked sys-
tems design and implementation, NSDI’11, (Berkeley, CA, USA), pp. 24–24,
USENIX Association, 2011.

[37] “Apache giraph.” http://incubator.apache.org/giraph/.

[38] Gray, J. and others, “A straw man analysis of the probability of waiting
and deadlock in a database system.,” in Berkeley Workshop, p. 125, 1981.

[39] Gray, J. and others, “The dangers of replication and a solution,” in Pro-
ceedings of the 1996 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’96’, (New York, NY, USA), pp. 173–182, ACM, 1996.

[40] Gross, D. and Harris, C. M., Fundamentals of Queueing Theory (Wiley
Series in Probability and Statistics). Wiley-Interscience, February 1998.

[41] Grossman, R. and Gu, Y., “Data mining using high performance data clouds:
experimental studies using sector and sphere,” in Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data mining,
KDD ’08, (New York, NY, USA), pp. 920–927, ACM, 2008.

151

[42] Guerraoui, R., Herlihy, M., and Pochon, B., “Polymorphic contention
management,” in Proceedings of the 19th International Symposium on Dis-
tributed Computing (DISC 2005), pp. 26–29, LNCS, Springer, 2005.

[43] Guo, Z., Fox, G., and Zhou, M., “Investigation of data locality and fairness
in mapreduce,” in Proceedings of third international workshop on MapReduce
and its Applications Date, MapReduce ’12, (New York, NY, USA), pp. 25–32,
ACM, 2012.

[44] Hammond, L., Wong, V., Chen, M., Carlstrom, B. D., Davis, J. D.,
Hertzberg, B., Prabhu, M. K., Wijaya, H., Kozyrakis, C., and
Olukotun, K., “Transactional memory coherence and consistency,” in Pro-
ceedings of the 31st Annual International Symposium on Computer Architecture,
p. 102, IEEE Computer Society, Jun 2004.

[45] Hammoud, M., Rehman, M. S., and Sakr, M. F., “Center-of-gravity re-
duce task scheduling to lower mapreduce network traffic,” in Proceedings of the
2012 IEEE Fifth International Conference on Cloud Computing, CLOUD ’12,
(Washington, DC, USA), pp. 49–58, IEEE Computer Society, 2012.

[46] Hammoud, M. and Sakr, M. F., “Locality-aware reduce task scheduling for
mapreduce,” in Proceedings of the 2011 IEEE Third International Conference
on Cloud Computing Technology and Science, CLOUDCOM ’11, (Washington,
DC, USA), pp. 570–576, IEEE Computer Society, 2011.

[47] Harris, T., Cristal, A., Unsal, O. S., Ayguade, E., Gagliardi, F.,
Smith, B., and Valero, M., “Transactional memory: An overview,” IEEE
Micro, vol. 27, no. 3, pp. 8–29, 2007.

[48] Harris, T. and Fraser, K., “Language support for lightweight transac-
tions,” in Object-Oriented Programming, Systems, Languages, and Applications,
pp. 388–402, ACM Press, Oct 2003.

[49] Harris, T., Marlow, S., Peyton-Jones, S., and Herlihy, M., “Com-
posable memory transactions,” in PPoPP ’05: Proceedings of the tenth ACM
SIGPLAN symposium on Principles and practice of parallel programming, (New
York, NY, USA), pp. 48–60, ACM, 2005.

[50] “Hdfs architecture guide.” http://hadoop.apache.org/docs/r1.2.1/hdfs_

design.html.

[51] He, Z. and Hong, B., “On the performance of commit-time-locking based
software transactional memory,” The 11th IEEE International Conference on
High Performance Computing and Communications (HPCC-09), 2009.

[52] He, Z. and Hong, B., “Modeling the run-time behavior of transactional mem-
ory,” in MASCOTS, pp. 307–315, 2010.

152

[53] He, Z., Yu, X., and Hong, B., “Profiling-based adaptive contention man-
agement for software transactional memory,” in Parallel Distributed Processing
Symposium (IPDPS), 2012 IEEE 26th International, pp. 1204–1215, May 2012.

[54] Heber, T., Hendler, D., and Suissa, A., “On the impact of serializing
contention management on stm performance,” in OPODIS ’09: Proceedings of
the 13th International Conference on Principles of Distributed Systems, (Berlin,
Heidelberg), pp. 225–239, Springer-Verlag, 2009.

[55] Heindl, A. and Pokam, G., “An analytic framework for performance model-
ing of software transactional memory,” Comput. Netw., vol. 53, no. 8, pp. 1202–
1214, 2009.

[56] Herlihy, M., Luchangco, V., Moir, M., and Scherer, III, W. N., “Soft-
ware transactional memory for dynamic-sized data structures,” in PODC ’03:
Proceedings of the twenty-second annual symposium on Principles of distributed
computing, (New York, NY, USA), pp. 92–101, ACM, 2003.

[57] Herlihy, M., Moir, M., and Luchangco, V., “A flexible framework for
implementing software transactional memory,” in Proceedings of the 21th ACM
SIGPLAN Conference on Object-Oriented Programing, Systems, Languages,
and Applications, pp. 253–262, oct 2006.

[58] Herlihy, M. and Moss, J. E. B., “Transactional memory: architectural
support for lock-free data structures,” in ISCA ’93: Proceedings of the 20th
annual international symposium on Computer architecture, pp. 289–300, ACM
Press, 1993.

[59] Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D.,
Katz, R., Shenker, S., and Stoica, I., “Mesos: a platform for fine-grained
resource sharing in the data center,” in Proceedings of the 8th USENIX con-
ference on Networked systems design and implementation, NSDI’11, (Berkeley,
CA, USA), pp. 22–22, USENIX Association, 2011.

[60] Isard, M., Prabhakaran, V., Currey, J., Wieder, U., Talwar, K., and
Goldberg, A., “Quincy: fair scheduling for distributed computing clusters,”
in Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles, SOSP ’09, (New York, NY, USA), pp. 261–276, ACM, 2009.

[61] Jin, J., Luo, J., Song, A., Dong, F., and Xiong, R., “Bar: An efficient
data locality driven task scheduling algorithm for cloud computing,” in Proceed-
ings of the 2011 11th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, CCGRID ’11, (Washington, DC, USA), pp. 295–304,
IEEE Computer Society, 2011.

[62] Jing, F. R., Takahashi, Y., and Hasegawa, T., “Analysis of impact of
network delay on multiversion conservative timestamp algorithms in ddbs.,”
Perform. Eval., vol. 26, no. 1, pp. 21–50, 1996.

153

[63] Junqueira, F. and others, “Classic paxos vs. fast paxos: Caveat emptor,”
in Proceedings of the 3rd Workshop on on Hot Topics in System Dependability,
HotDep’07, (Berkeley, CA, USA), USENIX Association, 2007.

[64] Kleinrock, L., Queueing Systems, vol. I: Theory. Wiley Interscience, 1975.
(Published in Russian, 1979. Published in Japanese, 1979. Published in Hun-
garian, 1979. Published in Italian 1992.).

[65] Knight, T., “An architecture for mostly functional languages,” in LFP ’86:
Proceedings of the 1986 ACM conference on LISP and functional programming,
pp. 105–112, ACM Press, 1986.

[66] Kraska, T. and others, “Mdcc: Multi-data center consistency,” in Proceed-
ings of the 8th ACM European Conference on Computer Systems, EuroSys ’13’,
(New York, NY, USA), pp. 113–126, ACM, 2013.

[67] Kumar, K. A., Deshpande, A., and Khuller, S., “Data placement and
replica selection for improving co-location in distributed environments,” CoRR,
vol. abs/1302.4168, 2013.

[68] Kumar, S., Chu, M., J. Hughes, C., Kundu, P., and Nguyen, A., “Hy-
brid transactional memory,” in Proceedings of Symposium on Principles and
Practice of Parallel Programming, Mar 2006.

[69] Lamport, L., “Paxos Made Simple,” SIGACT News, vol. 32, pp. 51–58, Dec.
2001.

[70] Lamport, L., “Fast paxos,” 2005.

[71] Lin, J. and Dyer, C., Data-Intensive Text Processing with MapReduce. Syn-
thesis Lectures on Human Language Technologies, Morgan & Claypool Pub-
lishers, 2010.

[72] Lin, J. and Schatz, M., “Design patterns for efficient graph algorithms in
mapreduce,” in Proceedings of the Eighth Workshop on Mining and Learning
with Graphs, MLG ’10, (New York, NY, USA), pp. 78–85, ACM, 2010.

[73] “Apache mahout.” http://mahout.apache.org/.

[74] Marathe, V. J., Scherer III, W. N., and Scott, M. L., “Design trade-
offs in modern software transactional memory systems,” in Proceedings of the
7th Workshop on Languages, Compilers, and Run-time Systems for Scalable
Computers, (Houston, TX), Oct 2004.

[75] Marathe, V. J., Spear, M. F., Heriot, C., Acharya, A., Eisenstat,
D., Scherer III, W. N., and Scott, M. L., “Lowering the overhead of
software transactional memory,” Tech. Rep. TR 893, Computer Science De-
partment, University of Rochester, Mar 2006.

154

[76] “Memcachd.” http://memcached.org/.

[77] Menasce, D. A. and Nakanishi, T., “Performance evaluation of a two-phase
commit based protocol for ddbs.,” in PODS (Ullman, J. D. and Aho, A. V.,
eds.), pp. 247–255, ACM, 1982.

[78] Meng, X., Yu, X., Peng, Z., and Hong, B., “Detecting earthquakes around
salton sea following the 2010 mw7.2 el mayor-cucapah earthquake using gpu
parallel computing,” Procedia CS, vol. 9, pp. 937–946, 2012.

[79] M.Herlihy, “Apologizing versus asking permission: optimistic concurrency
control for abstract data types,” ACM Transactions on Database Systems,
vol. 15, no. 1, pp. 96–124, 1990.

[80] Moir, M., “Practical implementations of non-blocking synchronization prim-
itives,” in Symposium on Principles of Distributed Computing, pp. 219–228,
1997.

[81] Moore, K. E., Bobba, J., Moravan, M. J., Hill, M. D., and Wood,
D. A., “Logtm: Log-based transactional memory,” in Proceedings of the
12th International Symposium on High-Performance Computer Architecture,
pp. 254–265, ACM Press, Feb 2006.

[82] Moretti, C., Bui, H., Hollingsworth, K., Rich, B., Flynn, P., and
Thain, D., “All-pairs: An abstraction for data-intensive computing on campus
grids,” IEEE Trans. Parallel Distrib. Syst., vol. 21, pp. 33–46, Jan. 2010.

[83] Ng, A. Y., Bradski, G., Chu, C.-T., Olukotun, K., Kim, S. K., Lin,
Y.-A., and Yu, Y., “Map-reduce for machine learning on multicore,” in NIPS,
12/2006 2006. ¡p¿Selected for Oral Presentation¡/p¿.

[84] Nicola, M. and Jarke, M., “Performance modeling of distributed and repli-
cated databases,” IEEE Trans. on Knowl. and Data Eng., vol. 12, pp. 645–672,
July 2000.

[85] Olston, C., Reed, B., Srivastava, U., Kumar, R., and Tomkins, A.,
“Pig latin: a not-so-foreign language for data processing,” in Proceedings of the
2008 ACM SIGMOD international conference on Management of data, SIG-
MOD ’08, (New York, NY, USA), pp. 1099–1110, ACM, 2008.

[86] Palanisamy, B., Singh, A., Liu, L., and Jain, B., “Purlieus: locality-aware
resource allocation for mapreduce in a cloud,” in Proceedings of 2011 Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’11, (New York, NY, USA), pp. 58:1–58:11, ACM, 2011.

[87] Patterson, S. and others, “Serializability, not serial: Concurrency con-
trol and availability in multi-datacenter datastores,” CoRR, vol. abs/1208.0270,
2012.

155

[88] Porter, D. E., Hofmann, O. S., and Witchel, E., “Is the optimism in op-
timistic concurrency warranted?,” in Proceedings of the 11th USENIX workshop
on Hot topics in operating systems (Hunt, G. C., ed.), HOTOS’07, (Berkeley,
CA, USA), pp. 1:1–1:6, USENIX Association, 2007.

[89] Porter, D. E. and Witchel, E., “Modeling transactional memory workload
performance,” in PPoPP ’10: Proceedings of the 15th ACM SIGPLAN sympo-
sium on Principles and practice of parallel programming, (New York, NY, USA),
pp. 349–350, ACM, 2010.

[90] Power, R. and Li, J., “Piccolo: building fast, distributed programs with
partitioned tables,” in Proceedings of the 9th USENIX conference on Operating
systems design and implementation, OSDI’10, (Berkeley, CA, USA), pp. 1–14,
USENIX Association, 2010.

[91] Rajwar, R. and Goodman, J. R., “Speculative lock elision: enabling
highly concurrent multithreaded execution,” in Proceedings of the 34th annual
ACM/IEEE international symposium on Microarchitecture, MICRO 34, (Wash-
ington, DC, USA), pp. 294–305, IEEE Computer Society, 2001.

[92] Rajwar, R., Herlihy, M., and Lai, K., “Virtualizing transactional mem-
ory,” in Proceedings of the 32nd Annual International Symposium on Computer
Architecture, pp. 494–505, IEEE Computer Society, Jun 2005.

[93] Ramadan, H. E., Rossbach, C. J., Porter, D. E., Hofmann, O. S.,
Bhandari, A., and Witchel, E., “Metatm/txlinux: transactional memory
for an operating system,” in ISCA ’07: Proceedings of the 34th annual interna-
tional symposium on Computer architecture, (New York, NY, USA), pp. 92–103,
ACM, 2007.

[94] Ren, K., Gibson, G., Kwon, Y., Balazinska, M., and Howe, B., “Ab-
stract: Hadoop’s adolescence; a comparative workloads analysis from three
research clusters,” in Proceedings of the 2012 SC Companion: High Perfor-
mance Computing, Networking Storage and Analysis, SCC ’12, (Washington,
DC, USA), pp. 1452–, IEEE Computer Society, 2012.

[95] Saha, B., Adl-Tabatabai, A., and Jacobson, Q., “Architectural support
for software transactional memory,” in 39th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-39 2006), 9-13 December 2006, Or-
lando, Florida, USA, pp. 185–196, 2006.

[96] Scherer, III, W. N. and Scott, M. L., “Advanced contention management
for dynamic software transactional memory,” in PODC ’05: Proceedings of the
twenty-fourth annual ACM symposium on Principles of distributed computing,
(New York, NY, USA), pp. 240–248, ACM, 2005.

[97] “Sector/sphere.” http://sector.sourceforge.net/index.html.

156

[98] Shavit, N. and Touitou, D., “Software transactional memory,” in Pro-
ceedings of the 14th ACM Symposium on Principles of Distributed Computing,
pp. 204–213, ACM Press, Aug 1995.

[99] Shavit, N. and Touitou, D., “Software transactional memory,” Journal of
Distributed Computing, vol. 10, no. 2, pp. 99–116, 1997.

[100] Shriraman, A. and Dwarkadas, S., “Refereeing conflicts in hardware trans-
actional memory,” in Proceedings of the 23rd international conference on Su-
percomputing (Gschwind, M., Nicolau, A., Salapura, V., and Moreira,
J. E., eds.), ICS ’09, (New York, NY, USA), pp. 136–146, ACM, 2009.

[101] Shriraman, A., Spear, M. F., Hossain, H., Marathe, V., Dwarkadas,
S., and Scott, M. L., “An integrated hardware-software approach to flex-
ible transactional memory,” in Proceedings of the 34rd Annual International
Symposium on Computer Architecture, ACM Press, Jun 2007.

[102] Shriraman, A., Spear, M. F., Hossain, H., Marathe, V. J.,
Dwarkadas, S., and Scott, M. L., “An integrated hardware-software ap-
proach to flexible transactional memory,” in Proceedings of the 34th Annual In-
ternational Symposium on Computer Architecture, ISCA ’07, (New York, NY,
USA), pp. 104–115, ACM, 2007.

[103] “Simpy.” http://simpy.readthedocs.org/en/latest/.

[104] Sovran, Y. and others, “Transactional storage for geo-replicated systems,”
in Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP ’11’, (New York, NY, USA), pp. 385–400, ACM, 2011.

[105] Spear, M. F., Dalessandro, L., Marathe, V. J., and Scott, M. L., “A
comprehensive strategy for contention management in software transactional
memory,” SIGPLAN Not., vol. 44, no. 4, pp. 141–150, 2009.

[106] Spear, M. F., Shriraman, A., Hossain, H., Dwarkadas, S., and Scott,
M. L., “Alert-on-update: a communication aid for shared memory multiproces-
sors,” in Proceedings of the 12th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPOPP 2007, San Jose, California, USA,
March 14-17, 2007, pp. 132–133, 2007.

[107] Swift, M., Volos, H., Goyal, N., Yen, L., Hill, M., and Wood, D., “OS
support for virtualizing hardware transactional memory,” in TRANSACT ’08:
3rd Workshop on Transactional Computing, (Salt Lake City, Utah, USA), feb
2008.

[108] Tan, J., Meng, X., and Zhang, L., “Coupling task progress for mapreduce
resource-aware scheduling,” in Proceedings of the IEEE INFOCOM 2013, Turin,
Italy, April 14-19, 2013, pp. 1618–1626, 2013.

157

[109] “Tarjan’s strongly connected components algorithm.” http://en.wikipedia.

org/wiki/Tarjan’s_strongly_connected_components_algorithm.

[110] Tay, Y. C., Goodman, N., and Suri, R., “Locking performance in cen-
tralized databases.,” ACM Trans. Database Syst., vol. 10, no. 4, pp. 415–462,
1985.

[111] Thomasian, A., “Concurrency control: Methods, performance, and analysis,”
ACM Comput. Surv., vol. 30, pp. 70–119, Mar. 1998.

[112] Thomasian, A. and Ryu, I. K., “Performance analysis of two-phase locking.,”
IEEE Trans. Software Eng., vol. 17, no. 5, pp. 386–402, 1991.

[113] Thomson, A., Diamond, T., Weng, S.-C., Ren, K., Shao, P., and
Abadi, D. J., “Calvin: Fast distributed transactions for partitioned database
systems,” in Proceedings of the 2012 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’12’, (New York, NY, USA), pp. 1–12, ACM,
2012.

[114] Thusoo, A., Shao, Z., Anthony, S., Borthakur, D., Jain, N.,
Sen Sarma, J., Murthy, R., and Liu, H., “Data warehousing and ana-
lytics infrastructure at facebook,” in Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, SIGMOD ’10, (New York,
NY, USA), pp. 1013–1020, ACM, 2010.

[115] Tomić, S., Perfumo, C., Kulkarni, C., Armejach, A., Cristal, A.,
Unsal, O., Harris, T., and Valero, M., “Eazyhtm: eager-lazy hard-
ware transactional memory,” in Micro-42: Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture, (New York, NY,
USA), pp. 145–155, ACM, 2009.

[116] Verma, A., Cherkasova, L., and Campbell, R. H., “Aria: automatic
resource inference and allocation for mapreduce environments,” in Proceedings
of the 8th ACM international conference on Autonomic computing, ICAC ’11,
(New York, NY, USA), pp. 235–244, ACM, 2011.

[117] White, T., Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st ed., 2009.

[118] Wolf, J., Rajan, D., Hildrum, K., Khandekar, R., Kumar, V.,
Parekh, S., Wu, K.-L., and balmin, A., “Flex: a slot allocation scheduling
optimizer for mapreduce workloads,” in Proceedings of the ACM/IFIP/USENIX
11th International Conference on Middleware, Middleware ’10, (Berlin, Heidel-
berg), pp. 1–20, Springer-Verlag, 2010.

[119] Yang, H.-c., Dasdan, A., Hsiao, R.-L., and Parker, D. S., “Map-reduce-
merge: simplified relational data processing on large clusters,” in Proceedings
of the 2007 ACM SIGMOD international conference on Management of data,
SIGMOD ’07, (New York, NY, USA), pp. 1029–1040, ACM, 2007.

158

[120] “Hadoop yarn.” http://hadoop.apache.org/docs/current/hadoop-yarn/

hadoop-yarn-site/YARN.html.

[121] Yen, L., Bobba, J., Marty, M. M., Moore, K. E., Volos, H., Hill,
M. D., Swift, M. M., and Wood, D. A., “Logtm-se: Decoupling hardware
transactional memory from caches,” in Proceedings of the 13th International
Symposium on High-Performance Computer Architecture(HPCA), ACM Press,
Feb 2007.

[122] Yu, X., He, Z., and Hong, B., “A queueing model-based approach for the
analysis of transactional memory systems,” Concurrency and Computation:
Practice and Experience, 2013.

[123] Yu, X. and Hong, B., “Bi-hadoop: Extending hadoop to improve support for
binary-input applications,” in The 13th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, CCGrid ’03, 2013.

[124] Yu, X. and Hong, B., “Grouping blocks for mapreduce co-locality,” in Paral-
lel Distributed Processing Symposium (IPDPS), 2015 IEEE 29th International,
May 2015.

[125] Yu, X., Meng, S., Tan, J., Meng, X., Zhang, L., and Hong, B., “Ana-
lyzing designs of geographically replicated transactional datastores,” submitted
to InfoComm 2015 under review.

[126] Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K.,
Shenker, S., and Stoica, I., “Delay scheduling: a simple technique for
achieving locality and fairness in cluster scheduling,” in Proceedings of the 5th
European conference on Computer systems, EuroSys ’10, (New York, NY, USA),
pp. 265–278, ACM, 2010.

[127] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Sto-
ica, I., “Spark: cluster computing with working sets,” in Proceedings of the 2nd
USENIX conference on Hot topics in cloud computing, HotCloud’10, (Berkeley,
CA, USA), pp. 10–10, USENIX Association, 2010.

[128] Zaharia, M., Konwinski, A., Joseph, A. D., Katz, R., and Stoica, I.,
“Improving mapreduce performance in heterogeneous environments,” in Pro-
ceedings of the 8th USENIX conference on Operating systems design and im-
plementation, OSDI’08, (Berkeley, CA, USA), pp. 29–42, USENIX Association,
2008.

[129] Zilles, C. and Baugh, L., “Extending hardware transactional memory to
support nonbusy waiting and nontransactional actions,” in Proceedings of the
First ACM SIGPLAN Workshop on Languages, Compilers, and Hardware Sup-
port for Transactional Computing, ACM Press, Jun 2006.

159

On Contention Management for Data Accesses in Parallel and Distributed Systems

Xiao Yu

160 Pages

Directed by Professor Sudhakar Yalamanchili

Data access is an essential part of any program, and is especially critical to the

performance of parallel computing systems. The objective of this work is to inves-

tigate factors that affect data access parallelism in parallel computing systems, and

design/evaluate methods to improve such parallelism - and thereby improving the

performance of corresponding parallel systems. We focus on data access contention

and network resource contention in representative parallel and distributed systems,

including transactional memory system, Geo-replicated transactional systems and

MapReduce systems. These systems represent two widely-adopted abstractions for

parallel data accesses: transaction-based and distributed-system-based. In this thesis,

we present methods to analyze and mitigate the two contention issues.

We first study the data contention problem in transactional memory systems.

In particular, we present a queueing-based model to evaluate the impact of data

contention with respect to various system configurations and workload parameters.

We further propose a profiling-based adaptive contention management approach to

choose an optimal policy across different benchmarks and system platforms. We

further develop several analytical models to study the design of transactional systems

when they are Geo-replicated.

For the network resource contention issue, we focus on data accesses in distributed

systems and study opportunities to improve upon the current state-of-art MapReduce

systems. We extend the system to better support map task locality for dual-map-

input applications. We also study a strategy that groups input blocks within a few

racks to balance the locality of map and reduce tasks. Experiments show that both

mechanisms significantly reduce off-rack data communication and thus alleviate the

resource contention on top-rack switch and reduce job execution time.

In this thesis, we show that both the data contention and the network resource

contention issues are key to the performance of transactional and distributed data

access abstraction and our mechanisms to estimate and mitigate such problems are

effective. We expect our approaches to provide useful insight on future development

and research for similar data access abstractions and distributed systems.

160

