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Abstract

This thesis analyses the relation between rook covers over Ferrers boards and the Asy-
metric Exclusion Process (ASEP). A polynomial f(q) de�ned over the set of all possible
rook covers has been suggested to be identical to the polynomial that gives the proba-
bilities of the stationary distribution of the ASEP.

In this thesis a draft is presented of a possible proof by induction of this claim, and
parts of this induction are proved. Further results regarding f(q) that would follow from
the main claim are also independently proved and a complete proof of the claim, invented
by another author, is presented for the sake of completeness.

I den här uppsatsen undersöks förhållandet mellan tornplaceringar på Ferrersbräden och
den asymetriska exklusionsprocessen (ASEP). Ett polynom f(q) över alla möjliga torn-
placeringar har föreslagits vara ekvivalent med polynomet som ger sannolikheterna i den
stationära fördelningen för ASEP.

Ett utkast till ett induktionsbevis av detta påstående presenteras i den här upsatsen.
Vidare resultat kring f(q) som skulle följa från detta huvudpåstående bevisas separat
och ett mer utförligt bevis av huvudpåståendet skapat av en annan författare presenteras
också.
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Chapter 1

Introduction

1.1 Rooks, Boards and Inversions

This project considers a particular type of combinatorial objects, namely boards and
rooks. A board B here consists of rows of possible positions, with the length of each row
decreasing or staying the same counting from the top down, see Fig:1.1. Given a board,
rooks can be placed on it in a way so that no two rooks occupy the same row or column,
but so that all rows contain exactly one rook. On a board with n rows a set of n rooks
positioned like described above will constitute a rook cover. The set of all possible rook
covers over a board B will in this article be written as ΩB.

Figure 1.1: A board with an arbitrarily chosen rook cover.

Given a board with n rows, a rook cover can be written as a tuple of n integers, each el-
ement in the tuple showing in which column the rook in the corresponding row is placed.
So given a board with n = 3 rows, the rook cover shown in Fig.1.1 can be expressed as
(1, 4, 2). The set of all possible positions on a board with n rows and k columns can be
seen as a subset of the group of permutations Sk.

Given a board and a rook cover it is of interest to consider two measurements. The
�rst one is the number k of inversions, i.e number of pairs of rooks were the one with
the higher row index has the lower column index, for a rook cover. The other one is the
tuple X̄ = (X1, X2, X3, ..., Xn) where Xi is the number of rooks in the ith column with
odd index.

These two quantities can be used to map a subset of all possible rook covers, ΘB ⊆ ΩB,
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to a polynomial, with the following sum over ΘB.

f(q,X1, X2, X3, · · · , Xn) =
∑
ΘB

qkXp1

1 X
p2

2 X
p3

3 , · · · , Xpn
n (1.1)

A quick example

Fig:1.2 illustrates the possible rook covers for a speci�c board. The resulting polynomial
for ΘB = ΩB will, according to (1.1), be: f(q,X1, X2, X3, ..., Xn) = 1 + 2X1 + X2 +
X1X2 +X1q.

Figure 1.2: The six di�erent possible rook covers for a board of size n = 2.

1.2 Relation to ASEP

In this article a certain kind of movement of particles on a line observed in statistical
physics, the so called Asymetric Simple Exclusion Process, ASEP, will be studied from
a combinatorial perspective.

Consider a line of possible positions for particles, where each position either is or isn't
occupied. Over a number of discrete time steps the particles move left or right with
probabilities q and 1− q, while new particles appear at the left end of the line and leave
at the right end.

At any given time some of the positions are �lled and some are not, each such state of the
line of particles can be represented by a sequence of ones and zeroes x̄ = (x1, x2, ..., xn),
referred to as a word. The main object of study in this article will be the relation between
such a sequence or word and the set of �lled and un�lled odd indexed columns of a rook
cover mentioned above.

The sequence of states that the line of particles jumps between constitutes a Markov
chain. The stationary distribution of this Markov chain is a function of x̄, P (x̄). It is
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shown in [1] that P (x̄) multiplied by some constant obeys the recursive relation (1.2).

F (x1, x2, ..., xj−1, 1, 0, xj+1, ..., xn) =
F (x1, x2, ..., xj−1, 1, xj+1, ..., xn)+
F (x1, x2, ..., xj−1, 0, xj+1, ..., Xn)+
qF (x1, x2, ..., xj−1, 0, 1, Xj+1, ..., Xn)

F (0, x2, x3, x4, ..., xn) = F (x1, x2, x3, ..., xn, 1) = F (x1, x2, x3, ..., xn)
F (0) = f(1) = 1

(1.2)

It has been suggested that f(X̄) given by (1.1) also obeys the recursive relation (1.2), a
suggestion formalized in Conjecture 1.1.

Conjecture 1.1:

• Given some board of size n, the polynomial f given by (1.1) will obey the recursive
relation given by (1.2).

In this article attempts will be made to as far as possible prove this conjecture directly
with rook theoretic arguments. There also exist indirect proofs of Conjecture 1.1, involv-
ing an intermediary, that will be presented in the interest of completeness.

The recursion will often conveniently be written as f(u10v) = qf(u01v)+f(u1v)+f(u0v).
u and v will often be used to indicate sub-words of some word, and ones and zeroes will
sometimes be appended or prepend to words when a reference is to be made to the �rst
or last element in the sequence. For example (1u) is some word that starts with a one
and (v0) is some word that ends with a zero.

Introduce for future reference the notation [k] to mean the polynomial 1+q+q2+· · ·+qk−1

and with that notation in mind consider the polynomial Êk,n(q) de�ned by (1.3). It is
shown in [1] that, given a (P)ASEP model with n sites that has converged towards
its steady state, the probability of it containing exactly k particles is proportional to
Êk+1,n+1(q).

Êk,n(q) = qk−k
2
k−1∑
i=0

(−1)i[k − i]nqki−k(

(
n

i

)
qk−i +

(
n

i− 1

)
) (1.3)

Now for a board B, let fk(q) be the polynomial (1.1) over all covers for which exactly k
odd-indexed columns contain a rook.

It has been proposed that Êk+1,n+1(q) = fk(q) for a board of size n. This claim, al-
though it would follow from Conjecture 1.1 where that claim proved, will henceforth for
now as a matter of convenience be formalized as Conjecture 1.2.

Conjecture 1.2:

• Given the polynomial fk(q) over a board of size n for some value k,
fk(q) = Ek+1,n+1(q).
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This article presents an attempt to show that this claim is plausible with simple direct
rook-theoretic arguments by showing that fk(q) shares several important properties with
Êk+1,n+1(q), such as degree, some coe�cients etc.

1.3 Developments parallel to the writing of this article

Parallel to the writing of this article it came to the authors attention that an alternative,
indirect method of proving Conjecture 1.1 was being developed by [2]. This solution was
not, at the time of writing, published in its entirety, but it did lead to the creation of an
indirect proof of Conjecture 1.1 by [3], using results from [4].

This indirect proof of Conjecture 1.1 does not rely only on observations of rook covers
over boards but also on using another class of combinatorial objects, so called Motzkin

paths, as an intermediary. While it is the primary objective of this article to justify both
Conjecture 1.1 and Conjecture 1.2 as far as possible using only direct rook-theoretic
arguments, this indirect proof will nevertheless be presented in this article.

The proof using Motzkin paths as an intermediary is interesting both as background
information for the sake of completeness and because some analogies to the results con-
cerning Motzkin paths can be helpful when developing purely rook-theoretic results.
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Chapter 2

Background

2.1 Reduction into simpler problems

In this chapter several methods of computing the polynomial (1.1) for di�erent subsets
of all possible rook covers are discussed.

Recall that (1.1) is a sum over a set ΘB ⊆ ΩB. This sum can be expressed as a sum of

sums over several di�erent subsets of ΩB, i.e as f(q) =
∑
ΘB

qk =
∑
Θ1

qk +
∑
Θ2

qk. These

subsets Θ1, Θ2 etc must obviously form an exact partition of ΩB.

Several results presented in this article revolve around mappings from a set of covers
ΘB to another set of covers Θ′B, where f(q) is preserved. These mappings are often
created using the above mentioned linearity by mapping subsets of ΘB to subsets of Θ′B,
and showing how f(q) is preserved for each such subset mapping.

Regarding edge cases

The recursive relation (1.2) contains expressions for two special cases, namely f(0v) =
f(v) and f(u1) = f(u). In ASEP these two cases relate to the probability of a certain set
of positions containing particles while the rightmost position is also �lled or the leftmost
position is not �lled, and as part of Conjecture 1.1 it is of interest to prove that these
two relations also apply for the polynomial (1.1) over all covers forming the words u1
and 0v.

Proof 2.1:

First observe the set of all covers Ωu over the smaller board of size n − 1. There is a
bijection φ : Ωu → Ωu1 that also preserves the number of inversions. For each cover
C ∈ Ωu, φ adds an extra row with a rook in the second position from the right. This is
obviously the only place in which the rook corresponding to the 1 in u1 can be placed,
and since it is located in the top row and has no rooks to its right it will not contribute
to any inversions. See Fig.2.1 for a visualization.

Thus for every cover in Ωu there is exactly one cover in Ωu1 with the same number
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Figure 2.1: Visualization of the concepts behind the proof that the recursive relations
f(u1) = f(u) and f(0v) = f(v) apply to rook covers over boards.

of inversions, and since |Ωu1| = |Ωu| it can be concluded that f(u1) = f(u).

A similar approach can be applied to the case of the word 0v, i.e a bijection can be
found between Ωv and Ω0v that conserves the number of inversions for each cover. This
time the bijection is made by considering a larger board created by adding two columns
of length n to the left edge of the smaller board of size n − 1. A rook is then placed in
the only position it can be, namely the right end of the new bottom row. This rook is
part of no inversions as it is the leftmost rook of the cover and located in the bottom
row, and so f(0v) = f(v).

Ignoring inversions, q = 1

Consider the special case when q = 1. Since 1 raised to any power will always be 1,
this case is equivalent to computing f(X1, X2, X3, ..., Xn) while ignoring the number of
inversions, and thus f(X1, X2, X3, ..., Xn) will simply be the number of possible covers
over the board for that word. The following proof has been suggested by [3] to show that
in this special case f(X1, X2, X3, ..., Xn) obeys the recursive relation (1.2).

Proof 2.2:

• Step 1: This proof centres around the position of the rook corresponding to the 1 in
u10v, from now on referred to as the critical rook. In accordance with the linearity
of the problem discussed in this chapter, f(X1, X2, X3, ..., Xn) is here expressed as

f = f1 + f2, where f1 is the sum
∑

qk over all rook covers where the critical

rook is at the bottom of its column and f2 is the corresponding sum over all covers
where the critical rook is not at the bottom. It will now be shown that f1 =
f(u1v) + f(u0v) and that f2 = qf(u01v), thereby ful�lling (1.2).

• Step 2: Consider all rook covers where the critical rook is not at the bottom of its
column and can thus be moved two steps to the right. The 0 in u10v means that
the column two steps to the right of the critical rook is empty. For every cover
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considered here, there is a corresponding cover where the critical rook is moved two
steps to the right. Each such corresponding cover gives an equal contribution to∑

qk since q = 1. Thus it follows that f2 = f(u01v).

• Step 3: Now consider the rook covers for which the critical rook is at the bottom of
its column, and the board obtained by simply removing the row where the critical
rook is as well as both the columns containing the critical rook and the one two
steps to the right.

Obviously this gives a smaller board in which the words u and v are preserved
but in which there is only one odd-indexed column between them. Each such rook

cover over a smaller board will give the same contribution to
∑

qk as the origi-

nal cover it was made from. Since u and v are preserved over this smaller board,
f2 = f(u0v)+f(u1v). The �rst term corresponds to the the cases where the column
directly to the right of the critical rook is empty and the second term to the cases
where it isn't.

2.2 Practically computing f (q)

The following recursive algorithm has been suggested by [3] for the computation of f(q)
over ΩB for any Ferrers board, not necessarily just ASEP-boards. It is used in the com-
puter aided mass computations discussed in Chapter 3.

Consider the subset of all possible rook covers that contain one rook placed in the right-
most column. This rook will only contribute to the number of inversions in that cover
by being the lower part of an inversion, because it is in the rightmost column. Thus a
rook in the rightmost column will contribute with exactly as many inversions as there
are rows above it. If the rightmost column has odd index i, this rook will also contribute
with a factor Xi.

f(q,X1, X2, X3, ..., Xn) can according to the previously discussed linearity be expressed
as the sum of the polynomials for two subsets of all possible rook covers. Let one of these
subsets be the set of all rook covers containing a rook in the rightmost column and the
other subset be the set of all rook covers that don't contain a rook in that column.

The contributions to f(q,X1, X2, X3...Xn) of the covers with no rook in the rightmost
column will be equal to the rook polynomial of the board gained by removing that partic-
ular column. The contribution from the covers with a rook in the rightmost column will
be equal to f(q,X1, X2, X3...Xn) for the board gained by removing the rightmost column
and the top row, multiplied with Xi if the index i of the rightmost column is odd and
[q]k where k is the length of the rightmost column. Note that [q]k = 1+q+q2 + · · ·+qk−1.

9



Thus the following recursive relation is obtained:

Fn1,1,n1,2,...,n1,k1
,n2,1,n2,2,...,n2,k2

,...,n3,1... =

Xi[q]k1Fn1,1−1,n1,2−1,...,n1,k1−1−1,n2,1,n2,2,...,n2,k2
,...,n3,1...+

Fn1,1−1,n1,2−1,...,n1,k1
−1,n2,1,n2,2,...,n2,k2

,...,n3,1...

Figure 2.2: An illustration of the recursive algorithm used for practically computing f(q).

2.3 Properties of Êk,n

Êk,n is in [5] shown to have the following properties:

1. The term in Êk,n with the highest degree has coe�cient 1.

2. deg(Êk,n) = (k − 1)(n− 1).

3. Êk,n(0) = Nk,n = 1
n

(
n
k

)(
n

k−1

)
.

As an attempt to justify Conjecture 1.2 by only using rook-theoretic arguments it will
be shown that several of these properties of Êk+1,n+1(q) are shared by fk(q).

2.4 Using Motzkin paths as an intermediary

The following di�erent, indirect, method of proving Conjecture 1.1 has been suggested by
[3]. This method uses so called Motzkin paths as intermediaries and �rst shows that there
is an equivalence between sets of Motzkin paths and sets of rook covers. Furthermore,
it is already shown in [4] that certain sets of Motzkin paths satisfy the criteria for be-
ing basic weight functions, and that basic weight functions obey the recursive relation 1.2.

A Motzkin path of length n is a sequence p = (v0, v1, ..., vn) of 2-tuples (x, y) of four
di�erent kinds: u = (1, 1), d = (1,−1), h = (1, 0) and ĥ = (1, 0). The 2-tuples are con-
sidered to be coordinates of movements in the xy-plane, either diagonally up, diagonally
down or to the right. There are two di�erent kinds of steps to the right here, drawing the
path as a graph one can consider the edges corresponding to h and h̄ to be coloured in
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di�erent colours. Furthermore, the numbers of u and of d in p = (v0, v1, ..., vn) have to be
equal and for any sub-sequence p′ ⊂ p such that p′ = (v0, v1, ..., vk), k < n, the number
of d can't be larger than the number of u, thus restricting the path to one quadrant of
the coordinate system.

A word (w1, w2, ..., wn), where wi ∈ (0, 1), can be constructed for a subsets of all Motzkin
paths of length n, in a way similar to how (X1, X2, ..., Xn) can be formulated for a set of
rook covers of size n. In the case of a Motzkin paths, each u and h̄ is mapped to a 1 and
each h and d to a 0. The set of all Motzkin paths corresponding to a certain word X̄ is
written as P (X̄).

Consider, as a quick example, the Motzkin path presented in Fig:2.3. This path, p =
(u, h, u, h̄, d, d), would be mapped onto the word (1, 0, 1, 1, 0, 0). Just like with rook cov-
ers, there is a one-to-many relationship between a word and a set of paths. The path
p1 = (u, u, d, d) and p2 = (u, h̄, h, d) both map to the word (1, 1, 0, 0).

Figure 2.3: An example of a Motzkin path of length n. p = (u, h, u, h̄, d, d).

A polynomial Fn(x, q) can then be formulated as:

Fn(X, q) =
∑
P∈Pn

W (P )

W (P ) = W (w1)...W (wn)

W (wi) = [r + 1]qx
wi
i

r is here the height of wi, the y-coordinate of the left node of wi, i.e the height from
which that step starts.

[3] has suggested a mapping Φ : ΩX → PX of the set of rook covers corresponding
to a word (X1, X2, ..., Xn) to the set of Motzkin paths corresponding to the equivalent
word (w1, w2, ..., wn).

Let αi be the sum of the number of rooks in the columns 2i−1 and 2i. Φ then assigns one
Motzkin path to each rook cover depending on the cover's sequence (α1, α2, α3, ..., αn) as
follows:

1. vi → u if αi = 2.

2. vi → d if αi = 0.
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3. vi → h if αi = 1 and the rook is in the even-indexed column.

4. vi → h̄ if αi = 1 and the rook is in the odd-indexed column.

[4] shows that the stationary distribution of THE PASEP is given by:

P (X) =
W (X)

Zn

(2.1)

W (X) in (2.1) is a basic weight function while 1
Zn

is a normalization constant. [4] de�nes
a basic weight function as a real-valued function W (X) that satis�es:

1. W (X) = 1, X ∈ B0

2. W (X) = αW (0X)

3. W (X) = βW (X1)

4. W (u0v) +W (u1v) = ηW (u10v)− qW (u01v)

α, β, η are here transition intensities between certain states of the Markov chain cor-
responding to the asymmetric exclusion process. [4] goes on to introduce f(X) =∑

gY,XP (Y ), where gY,X is the transition intensity from the particle con�guration X to

the particle con�guration Y , and shows that P (X) = W (X)
Zn

de�nes a stationary distri-
bution by showing that f(X) = 0, using some combinatorial arguments and the fourth
property of basic weight functions.

[4] also shows that other functions of X̄ are basic weight functions, thereby showing
that these functions also give the stationary distribution for the PASEP. In particular, it

is shown that
∑
P∈PX̄

W (P ) over PX̄ is a basic weight function and thus gives the stationary

distribution of the PASEP.

Finally, the circle is completed by using results from [3] to show that Φ is such that

Fn for the set P (X̄) equals (1.1) for ΩX̄ . This is done by considering YP =
∑

C:P (C)=P

qinvC

for a given Motzkin path P and the corresponding rook cover C.

[3] suggests considering the Ferrers board resulting from deleting all unocupied columns
in the board of C, these being exactly de�ned by the steps in the Motzkin path P. This
gives a board with row lengths α1, α1 + α2 etc. Results from[4] are referred to showing
that for such a board:

YP =
n∏

i=1

[α1 + ...+ αi − i+ 1]q

α1 + ... + αi − i is recognized as the height r of the corresponding step in the Motzkin
path. This can be realized by considering that for the mapping from rook covers to paths,
αj = 0 for each step j down and αk = 2 for each step k up. The term −i adjusts for this,
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making each step up add 1 to the sum and each step down subtract 1.

Having recognized α1+...+αi−i as the height r, the expression becomes YP =
∏n

i=1[r+1]q,
or the weight of the Motzkin path. Thus the rook cover and the path are equivalent,
proving that (1.1) also obeys that recursive relation.
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Chapter 3

Analysis

3.1 Conjecture 1.1

A draft of a proof by induction

Conjecture 1.1 can be proven through induction by both proving the conjecture for some
special case and then proving that if it holds for some case in particular it holds for all in
general. The �rst part of that is done here, for the special case when v = ∅. Given this
restriction, proving (1.1) is equivalent to proving that f(u10) = qf(u01)+f(u0)+f(u1),
which can be proven directly and without intermediaries by observing the possible rook
covers in Ωu10.

This relation will be proved by utilizing the linearity of this problem mentioned in Chap-

ter 2, i.e the set Ωu10 of covers over the board of size n for the word (u10) will be
partitioned into the four subsets Ω′u10, Ω′′u10, Ω′′′u10 and Ω′′′′u10, and it will be shown that
fΩ′u10∪Ω′′u10

(u10) = qf(u01) and fΩ′′′u10∪Ω′′′′u10
(u10) = f(u0) + f(u1).

The sets Ω′u10, Ω′′u10, Ω′′′u10 and Ω′′′′u10 are de�ned as follows:

• Ω′u10 is the set of all covers where the rook corresponding to the 1 in (u10) is in
the top position in its column and there is a rook in the rightmost position of the
second row, counted from the top.

• Ω′′u10 is the set of all covers where the rook corresponding to the 1 in (u10) is in the
bottom position in its column and the rook in the top row is not in any of the four
rightmost positions.

• Ω′′′u10 is the set of all covers where the rook corresponding to the 1 in (u10) is in
the top position in its column and there is no rook in the rightmost position of the
second row, counted from the top.

• Ω′′′′u10 is the set of all covers where the rook corresponding to the 1 in (u10) is in the
bottom position in its column and the rook in the top row is in the last or third
last position in that row.
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Figure 3.1: Visualizations of the rightmost ends of the covers in Ω1, Ω2, Ω3 and Ω4, and
the bijections Φ1 and Φ2.

There is a bijection Φ1 : Ω′u10 ∪ Ω′′u10 → Ωu0, where Ωu0 is the set of all covers over the
board of size n− 1 for the word (u0).

Φ1 maps the covers in Ω′u10 to the corresponding covers gained by simply removing the
top row of each cover. This means that each cover in Ω′u10 is mapped to a unique cover
in Ωu0 with exactly one less inversion.

Φ1 maps the covers in Ω′′u10 to the covers gained by removing the second row, counted
from the top, and the columns corresponding to the 0 and 1 in (u10). This removes the
rook causing the 1, and since this rook is in the second row from the top and by de�nition
of Ω′′u10 there is a rook higher up to its left, all covers will be mapped to unique covers
with one less inversion.

In both these cases the mapping is clearly and easily invertible, one can create a mapping
back to the original set that is based on adding the removed rows and columns. Observe
also that Φ1(Ω′u10)∪Φ1(Ω′′u10) = Ωu0. This is because Φ1(Ω′u10) is the set of all covers over
the board of size n − 1 for the word (u0) that contain a rook in the rightmost position
of the top row and Φ1(Ω′′u10) is the set of all covers over the board of size n− 1 that does
not contain a rook in this position. Thus Φ1(Ω′u10) and Φ1(Ω′′u10) complement each other
in Ωu01 and form a perfect partition of Ωu01.

From this it follows that fΩ′u10∪Ω′′u10
(u10) = qf(u0). The existence of the bijection Φ1

means that |Ω′u10 ∪Ω′′u10| = |Ωu0|, since for each cover in Ω′u10 ∪Ω′′u10 there is exactly one
unique cover in Ωu0 and vice versa. The q in qf(u0) is compensation for the fact that for
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every cover in Ω′u10 ∪ Ω′′u10 there is a cover in Ωu0 with exactly one less inversion. Since
it is know from Chapter 2 that f(u1) = f(u), it follows that fΩ′u10∪Ω′′u10

(u10) = qf(u01).

The remaining step is now to show that fΩ′′′u10∪Ω′′′′u10
(u10) = f(u0) + f(u1). This is done

with a further bijection Φ2 : Ω′′′u10 ∪ Ω′′′′u10 → Ωu0 ∪ Ωu1. This bijection maps all covers
in Ω′′′ to covers in Ωu0 by removing the top row and all covers in Ω′′′′ by removing the
second row from the top and the columns corresponding to the 1 and the 0 in the (u10).
All mappings are invertible by returning the removed rows, columns and rooks, in both
cases a cover in one set is mapped onto a unique cover in the otehr set.

Φ2 maps every cover in Ω′′′u10 ∪ Ω′′′′u10 to a cover in Ωu0 ∪ Ωu1 with the same number
of inversions. For Ω′′′u10, the rook in the top row has no rook that is both below it and to
the right of it, hence its removal doesn't change the number of inversions. The removal
of the row and the columns of covers in Ω′′′′u10 removes the rook in the second row from
the top. The rook in the top row is by de�nition of Ω′′′′u10 to the left of the rook above it
and to the right of all other rooks, hence removing no inversions.

Φ2(Ω′′′u10) is the set of all covers in Ωu0 with no rook in the rightmost position of the
top row, and Φ2(Ω′′′′u10) is the union of the set of all covers in Ωu1 and the set of all
covers in Ωu0 where there is a rook in the rightmost position of the top row. Thus
Φ2(Ω′′′u10)∪Φ2(Ω′′′′u10) = Ωu1∪Ωu0. Because every cover in Ω′′′u10∪Ω′′′′u10 can be mapped onto
a unique cover in Ωu1∪Ωu0 and the other way around, |Φ2(Ω′′′u10)∪Φ2(Ω′′′′u10)| = |Ωu1∪Ωu0|,
which together with the preservation of the number of inversions in Φ2 for each cover
means that fΩ′′′u10∪Ω′′′′u10

(u10) = f(u1) + f(u0).

Combining these two results con�rms that f(u10) = qf(u01) + f(u0) + f(u1). �

Given that the relation f(u10v) = qf(u01v)+f(u1v)+f(u0v) holds for the word v = ∅, it
holds in general if it can be further shown that f(u10v0) = qf(u01v0)+f(u1v0)+f(u0v0)
and f(u10v1) = qf(u01v1) + f(u1v1) + f(u0v1). This is because every possible word v
then can be constructed from v = ∅ by subsequently adding ones and zeros.

Proving that f(u10v1) = qf(u01v1)+f(u1v1)+f(u0v1) holds if f(u10v1) = qf(u01v1)+
f(u1v1) + f(u0v1) holds is trivial, since it follows from the fact that, as already shown
in Chapter 2, f(u1) = f(u). The remaining du�culty here is proving that f(u10v0) =
qf(u01v0) + f(u1v0) + f(u0v0) follows from f(u10v) = qf(u01v) + f(u1v) + f(u0v),
which would complete the induction.

3.2 Conjecture 1.2

Mass computation

A �rst step in evaluating Conjecture 1.2 is through trial by exhaustion, i.e by computing
(1.3) for larger and larger values of k and n and comparing the resulting polynomials
with the corresponding polynomial computed for the corresponding board.
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Consider �rst the case of having an (P)ASEP model with two positions, one of which
contains a particle and one which doesn't. The corresponding value of Ek+1,n+1 will be:

E2,3(q) = q−2

2∑
i=0

(−1)i[2− i]3q2i−2(

(
3

i

)
q2−i +

(
2

i− 1

)
) =

= q−2((1 + q)3q−2(

(
3

0

)
q2 +

(
3

−1

)
)− (

(
3

1

)
q +

(
3

0

)
)) = 3 + q

There exists six possible covers over the corresponding board of size n = 2. Four of these
covers contain exactly one rook in an odd-index column.

Figure 3.2: The rook covers for which the polynomial corresponds to E2,3(q).

f(q) =
∑

qk over these four covers equals 3 + q, showing that for a board of this

size with this many �lled odd columns, Claim 2 holds true.

As part of the creation of this article, Python code has been written to automatize
comparisons such as the one above and conduct them in large numbers. The value of
Ek+1,n+1(q) has in each case been explicitly computed using a library for symbolic op-
erations and for each such case the polynomial for a board of size n with k �lled odd
columns has been computed using the recursive algorithm presented in Chapter 2.

Currently successful computations have be made showing equality in 65 cases, for boards
up to size n = 10 and 0 ≤ k ≤ n.

Shared properties with Êk+1,n+1(q)

Considering Conjecture 1.2, it is of interest to show that for a given board of size n, the
polynomial fk(q) shares the properties of Ek+1,n+1(q) listed in Chapter 2. The following
lemma will turn out to be useful when trying to show this.

Lemma 3.1:
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• Let B be a board of arbitrary size n, and C be a rook cover over B such that no
other rook cover over B has more inversions. Then C contains one rook in the
upper left corner of B.

Proof of Lemma 3.1: Consider an arbitrary board B and an arbitrary rook cover C.
C contains a rook in the top row since a rook cover by de�nition contains exactly one
rook in each row. Either this rook is at the left end of that row or it is not. If it is the
lemma holds true.

Otherwise consider the situation when that rook is moved all the way to the upper
left corner. This position is open since we only have one rook per row. This may lead to
two rooks occupying the leftmost column. If so, since there are two extra positions per
row counting from the bottom up, the rest of the rooks in the cover can be shifted to
the right to undo collisions along columns in such a way that the number of inversions is
preserved among these rooks.

Once this has been done, the total number of inversions has increased by at least one,
because there must now be one rook in the right position of the bottom row. Thus C
either contains a rook in the top left corner of B or there is a rook cover with more
inversions than C. �

A rook cover over a board will be called maximal if there is no rook cover over the
board with more inversions. Consequently a maximal k-cover is a rook cover over a
board such that no other k-cover over the same board has more inversions.

Constructing a maximal k-cover

Lemma 3.1 can be used in the design of an algorithm that, given a board B and some
value k, constructs a maximal k-cover. This algorithm goes as follows, given a board B
of size n and a value k:

If k ≤ n
2
:

1. For the �rst k rows, place one rook in the 1st column of the �rst row, one in the
3rd column of the 2nd row and so on until odd indexed column k.

2. For the n− k bottom rows, place one rook at the rightmost end of each row.

else if k > n
2
:

1. For the �rst n− k rows from the top, place one rook in the 1st column of the �rst
row, one in the 3rd column of the 2nd row and so on until row n− k.

2. For the �rst k rows counting from the bottom, add one rook to the rightmost
odd-indexed column if it is empty, otherwise to the rightmost even column.

The correctness of this algorithm in producing the maximal k-cover follows from lemma

3.1. The �rst k or n− k rows will have rooks placed in the top left corner of the corre-
sponding sub-board de�ned by removing all columns to the left of this rook and all rows
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above it. In accordance with lemma 3.1 this maximizes the number of inversions in the
cover over this sub-board. Not having rooks in these positions would lead to there being
a cover with more inversions, and the remaining rooks are placed in the only positions
they can be in.

Showing that the degree of fk(q) is equal to the degree of Ek+1,n+1

The �rst property of Ek+1,n+1 that will be shown to be shared by fk(q) is the degree. The
number of inversions in the cover created with this algorithm will obviously be equal to
the degree of fk(q) for that board and that value of k. This therefore has to be shown to
be equal to the degree of Ek+1,n+1. To this end �rst recall from chapter 2 that the degree
d1 of Ek+1,n+1 is given in [5] to be:

d1 = (k + 1− 1)(n+ 1− k − 1) = k(n− k) = nk − k2

The number d2 of inversions in the cover produced by the algorithm in Lemma 3.2, and
thus the degree of fk(q), will be shown to be:

d2 =
k∑

i=1

n+ 1− 2i

The expression d2 =
k∑

i=1

n + 1 − 2i is motivated as follows. Consider the k sub-boards

gained by considering �rst the whole board, then the board gained by removing the two
leftmost columns and the top row, then the sub-boards gained by consequently repeating
this operation. In each of these k cases there will be a rook in the top left corner that
forms an inversion with each other remaining rook.

The �rst such rook forms an inversion with every other rook, thus n − 1 inversions.
Removing two columns removes the top left corner rook and the rook to the right in
the bottom row. Thus the top left corner rook in the next sub-board forms an inversion
with two less rooks and therefore forms n − 3 inversions. The process can obviously be
repeated k times, each time there will be two less inversions.

The rooks in the last n − k rows are never the top left part of any inversion because
they are according to the algorithm always placed at the right end of their respective
rows.

The above recieved expression for d2 can further be simpli�ed as follows:

d2 =
k∑

i=1

n+ 1− 2i = nk + k − 2
k∑

i=1

i =

= nk + k − 2
k(k + 1)

2
= nk − k2

19



For k > n
2
:

d3 =
n−k∑
i=1

n+ 1− 2i

The expression d2 =
n−k∑
i=1

n+ 1− 2i is motivated in an almost identical way to the corre-

sponding expression for the case k ≤ n
2
. The only rooks that form the upper left element

of inversions are the n − k ones that are placed �rst. This follows from the simple fact
that the algorithm places the k last rooks in the last or second last position of their
respective rows, thus not having any rook to their right and below them. Hence the sum
is only over the �rst n − k rooks. For these rook, like in the case when k < n

2
, the �rst

forms an inversion with all rooks, the next with all rooks but two and so on.

d3 can be simpli�ed in a way similar to d2:

d3 =
n−k∑
i=1

n+ 1− 2i = n(n− k) + (n− k)− 2
n−k∑
i=1

i =

= n2 − nk + n− k − 2
(n− k)(n− k + 1)

2
=

= n2 − nk + n− k − n2 + nk − n+ nk − k2 + k = nk − k2

This means that d1 = d2 = d3 = nk − k2 and that the degree of Ek+1,n+1 equals the
degree of fk(q).

Showing that the terms of fk(q) and of Ek+1,n+1 with highest degree both

have coe�cient 1

The coe�cient of the highest degree term of fk(q) will now be shown to be 1 by showing
that the rook cover produced by the algorithm for some board B and some value of k is
the only maximal k-cover over that board and for the value k.

Consider the case when k ≤ n
2
. It has been showed that the maximal cover has one

rook in the top left corner. Then by extension it has to have one in the rightmost po-
sition of the lowest row, because there has to be one rook in every row and that is the
only position left.

This applies for the �rst k sub-boards gained by removing the two leftmost columns,
according to Lemma 3.1 there has to be a rook in the top left corner and then there
is only one place the rook in the bottom corner can be in. Because there is no other
position any other rook can be in without breaking the conditions of Lemma 3.1, there
can be no other cover with the maximal number of inversions.

In the case of k ≤ n
2
Lemma 3.1 is also utilized. The n − k �rst rooks have to be

in the top left corners of their corresponding sub-boards and there is nowhere else the
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remaining rooks can be. If there is only one cover with this maximal number of inversions
then the coe�cient of the highest degree term of fq(k) has to be 1.

To conclude, it has now been shown that fk(q) shares the �rst two properties of Ek+1,n+1

presented in Chapter 2. The degree of fk(q) equals the degree of Ek+1,n+1 and the coe�-
cient of the highest degree term of fk(q) equals the coe�cient of the highest degree term
of Ek+1,n+1, both being 1.
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Chapter 4

Conclusions

This article has proved a number of results that are necessary for Conjecture 1.1 and
Conjecture 1.2 to be true. It has also presented results by another author that prove
Conjecture 1.1 in its entirety, and thus by extension Conjecture 1.2.

In the case of Conjecture 1.1 this article has presented results from other authors prov-
ing the conjecture for the special case when q = 0. Partially inspired by this result, the
article has gone on to develop a draft for a proof by induction.

A base case has been proved for this induction, i.e this article has proved that f(u10) =
qf(u01) + f(u1) + f(u0).

With regards to Conjecture 1.2 this article has �rst presented the result of mass compu-
tations that con�rm Conjecture 1.2 for low values of n and k. Then this article proceeds
with showing that fk(q) shares a couple of properties with En+1,k+1(q), properties which
fk(q) and En+1,k+1 have to share if Conjecture 1.2 holds. This article in particular proves
that the degree of fk(q) is equal to the degree of En,k(q) and that the coe�cient of the
highest-degree term of fk(q) is equal to 1.

This article also leaves open the possibility of constructing a de�nitive proof for Conjec-
ture 1.1 by completing the induction for which this article has provided a base case. As
suggested further work it could perhaps be proven that f(u10v0) = f(u01v0)+f(u1v0)+
f(u0v0) to holds for each u and v where f(u10v) = f(u01v) + f(u1v) + f(u0v).

22



Bibliography

[1] P.Corteel, L.K.Williams, "Tableaux combinatorics for the asymmetric exclusion
process", Advances in Applied Mathematics, 24 October 2006.

[2] M.Jousat-Verges, "Stammering Tableaux"

[3] P.Bränden, personal communication, KTH, 2014.

[4] R.Brak, S.Corteel, J.Essam, R.Parviainen & A.Rechnitzer, "A Combinatorial
Derivation of the PASEP Stationary State", 13 Nov 2006.

[5] L.K.Williams, "Enumeration of totally positive Grassman cells", Advances in Math-

ematics, 2005.

23







TRITA -MAT-E 2015:31

ISRN -KTH/MAT/E--15/31--SE

www.kth.se


	Omslag Peda
	Inlägg-Matte SF279X Peda
	School of Engineering Sciences

	main
	Introduction
	Rooks, Boards and Inversions
	Relation to ASEP
	Developments parallel to the writing of this article

	Background
	Reduction into simpler problems
	Practically computing f(q)
	Properties of k,n
	Using Motzkin paths as an intermediary

	Analysis
	Conjecture 1.1
	Conjecture 1.2

	Conclusions
	Bibliography

	Omslag Peda
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

