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Abstract

This thesis is aimed to cover how boolean satisfiability
solvers can be used on integer factorization problems and
to compare them with already established integer factoriza-
tion solvers. The integer factorization problem is believed
to be hard and is used in modern day cryptoalgorithms such
as RSA. This thesis is also aimed to explore how well dif-
ferent solvers can solve different types of semiprimes and if
there is any notable difference between them. This report
covers three different boolean satisfiability solvers as well
as three of the integer factorization solvers. The results
from the thesis show that boolean satisfiability solvers can
not be used as a replacement of already established integer
factorization solvers. The thesis also shows that the type
of semiprime does affect how fast the solvers are able to
factorize the semiprime. The boolean satisfiability solvers
had favorable results toward asymmetrical semiprimes and
disfavorable results toward prime powers.



Referat

Denna avhandlings méal ar att undersoka hur lésare fér boo-
leska satisfierbarhetsproblemet kan anviandas for att losa
primtalsfaktoriseringsproblem och jimféra dem med redan
etablerade l16sare for primtalsfaktorisering. Primtalsfakto-
risering tros vara svart och anvinds i flera moderna kryp-
teringsalgoritmer som RSA. Denna avhandling underséker
dven hur vél olika l6sare kan 16sa olika typer av semiprim-
tal och om det finns nagon noterbar skillnad mellan dem.
Rapporten técker tre olika losare for booleska satisfierbar-
hetsproblem och tre olika primtalsfaktoriseringslésare. Re-
sultaten fran denna avhandling visar att 16sare fér booleska
satisfierbarhetsproblem inte kan anvands som ersattning for
redan etablerade primtalsfaktoriseringslosare. Avhandling-
en visar dven att typen av semiprimtal paverkar hur snabbt
I6sarna faktoriserar semiprimtalet. Losarna fér boolesk sa-
tisfierbarhet visade fordelaktiga resultat mot asymmetriska
semiprimtal och oférdelaktiga resultat mot primtalspoten-
ser.
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Chapter 1

Introduction

The Integer Factorization problem (FACT), is a well known problem in the field
of number theory. The problem is solved by for any given integer, finding a set of
prime integers, whose product is the given integer. The exact computational class
of the FACT-problem remains unknown and a method has not been found that
is able to solve the problem in polynomial time. The problem is assumed to be
hard to solve and this assumption is at the heart of widely used algorithms in the
field of cryptography, such as RSA. The type of the FACT-problem that RSA uses
and also the type which this project will investigate works in such a way that the
given integer is a product of exactly two prime integers, a semiprime. There is an
interest in finding a method that can solve FACT in polynomial time due to its
relevance in cryptography. If someone would find an efficient method, then it would
jeopardize all systems based on that type of cryptography, meaning that a need for
new cryptographic methods would arise.

The boolean satisfiability problem (SAT), is a well documented problem known
to be NP-complete. Methods of solving the SAT-problem has been researched exten-
sively with competitions between different SAT-solvers in order to stimulate further
research. Even though there is a possibility that SAT is harder to solve than FACT,
more work has been put into researching SAT. There is a possibility that advances
in the area of SAT may be used to find a way to quickly factorize big integers if
there is a suitable reduction from FACT to SAT. A common method of reducing a
FACT into SAT is to construct a boolean circuit for calculating the product of two
prime integers.

1.1 Thesis goal and motivation
This thesis aims to explore and find an answer to the following questions.
1. How effectively do SAT-solvers solve the FACT-problem for big inte-

gers compared to specialized FACT-solvers and classical algorithms
such as Trial division and Fermat’s factorization method?
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If there is to be any future in solving FACT with SAT-solvers the compu-
tational time should at least be comparable to the other already existing
methods, the aim of this thesis is to seek if there is such potential.

2. How do the SAT-solvers perform depending on how the semiprimes
are built?

The classical algorithms has well documented characteristics depending on
how the semiprime is built. If SAT-solvers turn out to be faster for a specific
type of semiprime then SAT-solvers could be used more effectively by knowing
in which cases they will perform better.

1.2 Limitation of scope

Due to time constraints the following limitations have been chosen.

1. No in-depth analysis of solvers.

Instead of delving into the advantages and difference of different SAT-solvers
in respect to the FACT-problem we have based our choices of SAT-solver as
explained in 3.1.1.

2. No in-depth analysis of reductions.

The purpose of this thesis is to find noticeable differences between the different
semiprimes solving times of SAT-solvers, and thus, in-depth analysis of the
reductions are out of scope.

1.3 Hypothesis

How effectively does SAT-solvers solve the FACT-problem for big inte-
gers compared to specialized FACT-solvers and classical algorithms such
as trial division and Fermat’s factorization method?

We believe that the SAT-solvers are strictly computationally slower than the spe-
cialized FACT-solvers, they will however, be able perform similar results as the
more simple and classical algorithms especially for bigger integers.

How do the SAT-solvers perform depending on how the semiprimes are
built?

Our hypothesis is that for semiprimes built by close primes are equally hard to solve
as semiprimes built by primes not as close to each other for SAT-solvers, given that
the semiprimes are of close bitsize.
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Background

2.1 Integer factorization

This section provides the necessary information of the FACT-problem. For addi-
tional information refer to [1].

2.1.1 Fundamentals of the factorization problem

The fundamental theorem of arithmetic is a classic theorem that states that every
integer greater than 1 is either a prime or the product of prime numbers that can be
written in one and only one way. Even though the order of the primes is arbitrary
the primes themselves are not.

k
01,02 ak __ k
n=pi'py’...p" =1l p;
=1
Where p; < po < --+ < pr. and are prime numbers, and a; € N.

Proof for this theorem is not included but can be found in [1]. The FACT problem
is based around this theorem and the goal is to find these primes for any integer.
The specific type of the FACT problem that we are investigating is finding
the factors for semiprimes. A semiprime is a natural number that is the product
of exactly 2 distinct prime numbers. These semiprimes are considered to be the
hardest to factorize and this property is the foundation of the RSA cryptosystem.
If a method for solving FACT for semiprimes is found it would lead to an exploitable
weakness. Therefore it is vital for RSA to choose a semiprime that is hard enough
to factorize so that it would take infeasible time for any potential attacker to try.[2]

2.1.2 How to solve integer factorization

There are several special-purpose algorithms for solving FACT and the running time
of the algorithms depends on the properties of the number to be factored or one of

3
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the hidden properties such as size or special form.[3] This thesis will cover two of
these special-purpose algorithms which has different characteristics as well as the
most popular general-purpose algorithm with a running time that only depends on
the size of the integer being factored.[3]

1. Trial division
2. Fermat’s factorization method

3. General number field sieve

The purpose behind these choices is to show that not all integers are equally hard to
solve and also to compare the results of the SAT-solvers with these well-documented
algorithms to see if the SAT-solvers have any similar characteristics.

Trial division

Trial division is the most computationally intense but also the simplest of the fac-
torization methods. The essential idea of the method is to see if the integer to be
factored n, can be divided by numbers in turn that is less than n. The pseudocode
looks as in Function 2.1.

function TRIALDIVISION(N)
for i from 2 to VN do
if N/i then
return i, N/i
end if
end for
end function

Function 2.1 Trial division pseudocode

It is preferable to start from the smallest primes since a random n is more likely
to be divisible by two rather than three etc.. The method also only tests primes
that are not bigger than /n since if n is divisible by some number p where n = pq
and ¢ is smaller than p then the method would have found ¢ earlier than p and the
method only needs to find one to calculate the other prime factor in this case.

This method has the specific characteristic that it is able to find the factors
quicker for smaller integers. This means that small n are very weak to trial divi-
sion. The method is also much more likely to find a solution for bigger semiprimes
n when one of p or ¢ is much smaller than the other.[4]

Fermat’s factorization method
The essence of this method in order to find the factors lies in representing the odd
integer n as the difference of two squares.
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n=a?—0b

That difference is algebraically factorizable as (a — b)(b+ a) and if neither of these
factors equals 1 this is a legitimate factorization of n. The pseudocode for this
method is in Function 2.2.

function FERMATFACTOR(N)
for 2 from cieling(v/N) to N do
ySquared = x * x - N
if isSquared(ySquare) then
y = VySquared
S=Xx-y
t=x+y
if s #1 A s # N then
return s, t
end if
end if
end for
end function

Function 2.2 Fermat’s factorization method pseudocode

This method has the characteristic to be able to find the factors of n very effectively
if their values are close to each other.[5] Therefore it is important for cryptosystems
such as RSA to not have their semiprimes have factors that are too close to each
other or Fermat’s would be able to break it easily.

General number field sieve

Explaining the General number field sieve (GNFS) method is beyond the scope of
this thesis. The interested reader can find more about the algorithm in [6]. It is
however the most popular method to solving the FACT problem for big integers
without special properties which can be exploited by special-purpose algorithms.
An implementation of this method currently holds the record for the factorization
of the largest integer, after the successful factorization of the RSA-768.[7]

2.2 Boolean satisfiability problem

The boolean satisfiability problem (SAT) uses the values true (T) and false (F) along
with logic operators such as OR (V), AND (A) and the negation of expressions with
NOT (—) creating literals that need to be satisfied in order to find a solution to
the problem. The SAT problem is a known NP-Complete problem, meaning it is at
least as hard to solve a SAT problem as any other NP-Complete problem. A very
simple SAT-instance that which can be solved by SAT-solvers looks like:
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(z1 V x2) A (—x3) with a possible solution 1 =T,z = F,x3 = F

More about SAT can be found in [8].

2.2.1 Conjunctive normal form

In boolean logic Conjunctive normal form (CNF) is a special way to write logic
expressions in and consists of three main parts.

o A literal [ that is either an atom [ or the negation of that atom —I[

o A clause ¢ that contains literals separated by V operators (disjunction). For
example: ¢ = (I3 Via Vi3).

o A formula f that contains clauses separated by A operators (conjunction). For
example: f=c1 Aca Acs

The Center for Discrete Mathematics and Theoretical Computer Science (DIMACS)
has proposed a standard format for CNF which is widely used today including the
SAT-solvers which will be examined in this thesis. [9]

2.2.2 How to solve SAT

This section will cover some of the more common methods that established SAT-
solvers use in order to solve a SAT-problem. Additional information about the
methods can be found in [10].

Backtracking

SAT-solvers use backtracking in order to jump back and try a new solution if a
conflict has arisen. A conflict happens when decisions taken by the SAT-solver re-
sults in a clause to be false. Normal backtracking algorithms back up only one step,
however the cause to the conflict may be higher up in the decision tree. Therefore
modern SAT-solvers use more evolved backtracking algorithms that first examines
the cause of the conflict, and then jump to the found cause and change it. This is
called non-chronological jumping.

Conflict driven clause learning

If the SAT-solver would know if a decision would lead to a conflict it would never
had taken it. Therefore when the solver finds the cause of the conflict with the help
of the non-chronological jumping it will create another clause that will represent
the conflict. As such it will not make the same mistake additional times.

Restart
The solver may be able to try to restart in order to be able to make better deci-
sions. The clauses that are added from the Conflict driven clause learning are not
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discarded on a restart but instead used so the SAT-solver will make better decisions.

Simplifier
Most solvers has the option of using preprocessing in order to simplify the problem
before it starts try to solve it. The method for doing this is different depending on
the solver.

2.3 Reduction from FACT to SAT

One popular way of reducing the FACT-problem into a SAT-problem is by creating
a digital circuit that has the form of a CNF input. Digital circuits have the values of
0 and 1 corresponding to the false and true values in propositional logic. They also
have gates comparable to the propositional logic operators. First step is creating a
circuit Cy, = (ay...aby ...by) where a and b are potential factors of n. [ and m
are the bit-length of a and b respectively. The circuit is built in such a way that
Cp=(ay...aq;by...by)=1if and only if a x b = n. The remaining task is to find
a and b, whose product is n. After creating the digital circuit it must be reduced
into CNF with the help of Tseitin transformation so that SAT-solvers can use it
and solve the problem. More information about the Tseitin transformation can be
found in [11].
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Method

The goal of this thesis is to find out how well SAT-solvers find the factors of different
semiprimes. The questions that need to be answered is how well they find the factors
for different sizes of the semiprimes, also how well they find the factors for different
types of semiprimes. Because of the fact that it is hard to predict how the SAT-
solver will behave an empirical approach was decided. The limiting factor for the
data collection was decided to be CPU time.

3.1 Solvers
3.1.1 SAT

The SAT Competition provides a ranking from modern SAT-solvers and as a result
we chose some of the sequential solvers that had achieved steady high ranks in the
competition. The number of SAT-solvers was decided to be tested in such a way
it would take a reasonable time for the scope of this thesis to run all the tests.
Therefore the following SAT-solvers were chosen.

e MiniSat 2.2.0 with simplifier
e LingeLing - ayv - 86bf266-140429

e Glucose 3.0 with simplifier

All solvers can be found in [12].

3.1.2 FACT

Implementing our own version of the General number field sieve is out of scope for
this thesis. An already existing implementation that is well regarded and suitable
in size for our needs was thus chosen. Therefore the "MSieve FACT-solver" was
chosen which can be found in [13].
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3.2 Reduction

The reduction used in this thesis was implemented by [14]. The type of reduction
that was chosen for this thesis was the n-bit adder and the carry-save multiplier.
The choice stems from the results of [15].

3.3 Instances

As well as different bit-sizes of the semiprimes we also have to take into consideration
how the different semi primes are built. We have therefore chosen the following type
of semiprimes.

o Safe same size semiprimes, semiprimes with its factors in similar size but not
too close for efficient Fermat.

e Prime power, semiprimes who are a power of a single prime number, e.g.

72 = 49.

o Unsafe same size semiprimes, semiprimes with its factors in similar size and
also close enough for efficient Fermat.

o Asymmetrical size semiprimes, semiprimes which has one factor that is con-
siderably smaller than the other.

For each bit-size and type a total of 100 semiprimes were randomly generated. In
total 2000 semiprimes were generated and tested. The same semiprimes were used
for all the different solvers. The code for the generator written in java can be found
in appendix D. All generated instances together with code handling them can be
found in appendix C.

3.4 Measurables

3.4.1 CPU-time

To measure the usage of the time it takes the Central Processing Unit (CPU) to
solve any of the given will give a good measurement for comparing the different
solvers. As long as the tests are not interrupted when running it will give a result
that is accurate enough for the purpose of this thesis.

For the SAT-solvers as well as the General Number Field Sieve implementa-
tion their built in time measurement tool was used in order to measure the CPU-
time. For Trial Division and Fermat’s factorization method the java library’s sys-
tem.nanotime was used.

10
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3.5 Environment

The tests were run on an ubuntu system of version 12.04 LTS with a 64-bit OS type.
More information about the hardware specifications can be found in appendix B.

11






Chapter 4

Results

This chapter consists of the results from the tests performed as stated in chapter 3.

4.1 Overview

This section contains an overview of the results gathered from the tests. Some key
points.

o Trial Division is the fastest method concerning CPU-Time.
o Lingeling is the overall fastest SAT-solver while the slowest was Glucose.

e Tested semiprimes with bit-sizes larger than 40 would lead to processes longer
than 3600 seconds for the SAT-solvers which led to testers aborting the pro-

cess.
Bit-Size | Glucose | MiniSat | Lingeling | Trial Division | Fermat
25| 0,25202 | 0,17401 0,56600 0,00038 | 0,00629
30 | 1,38809 | 1,13207 1,54200 0,00169 | 0,16064
35 | 11,71270 | 9,80661 9,10500 0,01024 | *0,00047
40 | 68,43430 | 53,98540 | 50,26300 0,05700 | *0,00041
Total | 81,78711 | 65,09809 | 61,47600 0,06930 | *0,16782

Table 4.1. Solvers total median time in seconds and split in bit-size of semiprimes.
* method was not able to solve all semiprimes of this size within reasonable time.

4.2 SAT-solvers

The following section contains the results from the experiment for all of the SAT-
solvers.

13



4.2.1 Glucose with simplifier

CHAPTER 4. RESULTS

Glucose
Semiprime | Safe Same | Unsafe Same Prime Asymmetrical Total (s)
Size Size (s) Size (s) Power (s) Size (s)
25 0,2860 0,2160 0,2300 0,2600 0,2520
30 2,1481 1,5341 1,9501 0,6040 1,3881
35 16,6371 10,4847 17,1711 6,9064 | 11,7127
40 95,6460 78,9990 | 118,9650 13,3549 | 68,4343

Table 4.2. Glucose’s median time in seconds split by size and by type, an exponential
growth in solving time can be appreciated in most semiprimes.

120 0000
90,0000
=
g
i= 60,0000
>
[v
&)
30,0000
00000

Glucose with Simplifier

—— Safe Same
Size (
Median)

—— Unsafe Same
Size (
Median)
Prime Power
(Median)

= Asymmetri...

=~ Total {
Median)

304

Semi-prime bit-size (n)

368

40

Figure 4.1. Values from Table 4.2 presented in a line chart comparing differ-
ent types of semiprimes. Results showing an exponential growth in CPU-time
in all types of semiprimes except for asymmetrical size semiprimes, which shows
an almost linear growth.
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Glucose Spread

Bit-Size 25 30 35 40
Type S S S S
Total 0,1890 | 1,2617 | 10,3873 | 72,3933

Safe Same Size 0,1895 | 1,2454 | 11,0341 | 72,5399
Unsafe Same Size | 0,1687 | 1,2138 | 9,3184 | 63,7401
Prime Power 0,1961 | 1,3526 | 11,2437 | 77,5616
Asymmetrical Size | 0,1925 | 0,7818 | 6,3207 | 31,1230

Table 4.3. Standard deviation split by semiprime type and bit-size, with ’total’
showing the standard deviation for all semiprimes of given size.

Glucose - Spread

300 +  Safe Same
Size

+  Unsafe Same
Size
Prime Power

«  Asymmetri...

150

CPU-Times (s)

g e T

0 268 III
35

20 25 30

40 45
Semiprime bit-size (n)
Figure 4.2. Showing the spread of the solver by type and bit-size, showing

every single instance’s required CPU-Time, lowest growth and solving time for
asymmetrical size semiprimes.
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4.2.2 MiniSat with simplifier

MiniSat
Semiprime | Safe Same | Unsafe Same Prime Asymmetrical Total (s)
Size Size (s) Size (s) Power (s) Size (s)
25 0,2060 0,1600 0,2240 0,1260 0,1740
30 1,1781 1,1761 1,2881 0,7480 1,1321
35 15,1490 10,1866 13,7049 3,7262 9,8066
40 72,6625 48,8511 76,6108 14,2349 | 53,9854

Table 4.4. MiniSat’s median time in seconds split by size and by type. Exponential
growth can be appreciated, with the lowest for asymmetrical size semiprimes.

MIniSat with simplifier

100 —— Safe Same
Size (
B Median)
= e Unsafe
Same Size
(Median)
Power
Frime (
Median)
— Assymet...

—— Total |
Median)

CPU-Time (s)
o
-

0
2 304 336 B8 40

Semipnime bit-size (n)
Figure 4.3. Values from Table 4.4 presented in a line chart comparing differ-

ent types of semiprimes. While all types are of exponential size the Assymet-
rical is the one with the least growth.
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4.2. SAT-SOLVERS

MiniSat Spread

Bit-Size 25 30 35 40

Type S S S s
Total 0,1341 | 0,8807 | 9,4556 | 62,1590
Safe Same Size 0,1458 | 0,7601 | 10,0801 | 68,0404
Unsafe Same Size | 0,1151 | 0,9417 | 8,4717 | 51,9426
Prime Power 0,1407 | 0,9654 | 9,5821 | 61,6294
Asymmetrical Size | 0,1230 | 0,7893 | 7,2080 | 52,2828

Table 4.5. Standard deviation split by semiprime type and bit-size

MiniSat - Spread

300

e
££2

150

CPU-time (s)

i

« Safe Same
Size
*  Unsafe Same
Size
Pawer Prime
" *  Asymmetrical
Size

e momsns mem  w = w

30

35

Semipnme bit-size (n)

Figure 4.4. Showing the spread of the solver by type and bit-size, showing
every single instance’s required CPU-Time. All four similar intervals in its
spread with prime power with the largest amount over 200 seconds and safe
same size with the biggest outliers.
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4.2.3 Lingeling

CHAPTER 4. RESULTS

Lingeling
Semiprime | Safe Same | Unsafe Same Prime Asymmetrical Total (s)
Size Size (s) Size (s) Power (s) Size (s)
25 0,6120 0,3560 0,6100 0,5060 0,5660
30 1,7620 1,3360 1,7340 1,5000 1,5420
35 10,1270 6,6800 10,4170 8,4030 9,1050
40 57,0095 43,9950 60,3620 40,4590 50,2630
Table 4.6. Lingeling’s median time in seconds split by size and by type.
Lingeling
50,0000 —— Safe Same
Size (Median)
—— Unsafe Same
60,0000 Size (Median)
' Prime Power
@ (Median)
g - —— Asymmetrical
E 40,0000 Size (Median)
T —— Total (
© Median)
20,0000
0,0000

T

]

304

336

Semiprime bit-size (n)

Figure 4.5. Values from Table 4.6 presented in a line chart comparing differ-
ent types of semiprimes. All types are of exponential and similar growth.
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4.3. FACT-SOLVERS

Lingeling Spread

Bit-Size 25 30 35 40
Type S S S S
Total 0,2485 | 0,6957 | 5,2953 | 36,0882

Safe Same Size 0,2336 | 0,6897 | 5,6592 | 34,7984
Unsafe Same Size | 0,2179 | 0,5983 | 4,7056 | 28,1889
Prime Power 0,2814 | 0,7037 | 5,3190 | 40,3248
Asymmetrical Size | 0,2450 | 0,7346 | 4,8517 | 37,0476

Table 4.7. Standard deviation split by semiprime type and bit-size.

Lingeling - Spread
200 +  Safe Same
Size
= Unsafe Same
Size
Prime Power
«  Asymmetri...

100

CPU-Time (s)

0 T AT III
35

a0

o]
(53]

20

Semiprime bit-size (n)

Figure 4.6. Showing the spread of the solver by type and bit-size, show-
ing every single instance’s required CPU-Time. All four have similar spread
throughout the different bit-sizes but power primes with the most instances
with over 100 seconds in CPU-Time.

4.3 FACT-solvers

The following sections contains the results of both the special-purpose and general-
purpose factorization methods.
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4.3.1 Trial division

CHAPTER 4. RESULTS

Trial Division

Semiprime | Safe Same | Unsafe Same Prime Asymmetrical Total (s)
Size Size (s) Size (s) Power (s) Size (s)
25 0,00037 0,00068 0,00045 0,00012 | 0,00038
30 0,00044 0,00209 0,00209 0,00006 | 0,00169
35 0,00238 0,01297 0,01286 0,00024 | 0,01024
40 0,00468 0,07093 0,07043 0,00007 | 0,05700
Table 4.8. Trial division’s median time in seconds split by size and by type.

Prime powers were clearly harder to solve for Trial division while asymmetrical size
semiprimes were quickly decomposed.
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Figure 4.7. Values from Table 4.8 presented in a line chart comparing differ-
ent types of semiprimes.
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4.3. FACT-SOLVERS

Trial Division Spread

Bit-Size 25 30 35 40
Type S S S S
Total 0,0025 | 0,0053 | 0,0110 | 0,0363

Safe Same Size 0,0018 | 0,0027 | 0,0077 | 0,0092
Unsafe Same Size | 0,0029 | 0,0066 | 0,0113 | 0,0145
Prime Power 0,0034 | 0,0073 | 0,0108 | 0,0157
Asymmetrical Size | 0,0003 | 0,0004 | 0,0003 | 0,0003

Table 4.9. Standard deviation split by semiprime type and bit-size.
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Figure 4.8. Showing the spread of the solver by type and bit-size, showing
every single instance’s required CPU-Time. The spread is dependent of how
big the smallest prime-number is.
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4.3.2 Fermat’s factorization method

CHAPTER 4. RESULTS

Fermat
Semiprime | Safe Same | Unsafe Same Prime Asymmetrical Total (s)
Size Size (s) Size (s) Power (s) Size (s)
25 0,01655 0,00087 0,00020 3,07059 | 0,00629
30 0,58481 0,00054 0,00022 539,01524 | 0,16064
35 2,47466 0,00047 0,00024 N/A | 0,00047
40 63,05384 0,00041 0,00027 N/A | 0,00041

CPU-Time (s)

Table 4.10. Fermat’s mean time in seconds split by size and by type. N/A stands
for processes that took longer than 3600 seconds and were killed.
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Figure 4.9. Values from Table 4.10 presented in a line chart comparing differ-
ent types of semiprimes. The unsafe and prime power are of almost constant

CPU-Time, while for the asymmetrical, its worst case type it is not able to
solve semiprimes over the bit-size of 30 in a reasonable amount of time.
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4.3. FACT-SOLVERS

Fermat Spread

Bit-Size 25 30 35 40
Type S S S S
Total 1,36414 | 231,21183 | 1,14628 | 29,59586

Safe Same Size 0,01260 0,13732 | 0,46928 | 9,08551
Unsafe Same Size | 0,00126 | 0,00059 | 0,00032 | 0,00028
Prime Power | 0,00039 | 0,00039 | 0,00027 | 0,00027
Asymmetrical Size | 0,54629 | 83,83570 N/A N/A

Table 4.11. Standard deviation split by semiprime type and bit-size. N/A stands
for processes that took longer than 3600 seconds and were killed.
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Figure 4.10. Showing the spread of the solver by type and bit-size, showing
every single instance’s required CPU-Time. The spread is negligible for Unsafe
same size and Prime Power while apparent for the other two types, and a big
increase for asymmetrical size semiprimes.

4.3.3 General number field sieve

After performing several test for semiprimes of bit-sizes up to 100 with CPU-times
that were too low to give an accurate enough reading it was deemed that the method
was not comparable to the rest as it had too low process times.
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Chapter 5

Discussion

5.1 Environment

Efforts were put in order to make the environment for the tests as stable and
reliable as possible. No additional programs that could have been controlled were
running during the tests and the computer was not used for any other purposes.
However due to the fact that the tests was performed on KTH’s computers for
students, the test could not be performed without an internet connection and some
background processes that needed sudo access to kill and therefore were running
during measurements. This may have impacted the results, however as all the
different SAT-solvers and FACT-solvers had the same conditions it should only
have a minor impact.

5.2 The experiment

In order to avoid problems relating to having a non-uniform environment for the
tests, the semiprimes to be factorized should be of both random type and size. This
however was not the case as the semiprimes running in each session was in both the
same type and size. The results of this may be hidden within the results acquired.

Other factors that may impact the validity of the results are the choices of
SAT-solvers. Since they were chosen by having a high ranking in the different SAT-
competitions, and it may be that they are specifically designed to be able to solve
a specific type of SAT. Therefore they may be ill suited for solving reduced FACT-
problems. Another factor that may be of relevance is the different settings when
running SAT-solvers that could be beneficial for solving problems of that specific
kind faster. Due to our stated limitations of not being able to make an in-depth
analysis of the solvers these settings were not taken into account and the solvers
were used in their default settings.
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CHAPTER 5. DISCUSSION

5.3 Results

Results were consistent between FACT-solvers and SAT-solvers, showing that FACT-
solvers are still more suitable to solve, when it comes to computational time, a
factorization problem. The results of Trial division were convincingly the best com-
putationally and also had the least spread of its results. One of the main problems
that SAT-solvers face is their inconsistency for solving different semiprimes of the
same size and type, as can be seen by the high standard deviation. The computa-
tionally fastest of the SAT-solvers, Lingeling, was the one with the smallest standard
deviation leading it to not have as many or as big outliers as the other two solvers.

When comparing the results for different types of semiprimes some interesting
points can be made. Our results for both Trial Division and Fermat’s factorization
algorithm conform with the previous established characteristics discussed in section
2.1.2. There were however some results concerning Trial Division that did not
conform with the characteristics. One that stands out is shown in figure 4.8 were
higher bit-sizes did not lead to more CPU-Time required for the asymmetrical size
type. One of the reasons for such results is because the processes were so short it
could not be guaranteed that they would be accurate enough.

When it comes to the SAT-solvers all three showed an inclination for being better
suited at solving certain types of semiprimes. All three had the asymmetrical size
as its fastest type which can be seen in Figure 4.1, 4.3 and 4.5 respectively. The
difference was much more apparent for Minisat and Glucose than for Lingeling as
Lingeling was more consistent overall than the other solvers for different types of
semiprimes. The three solvers also had the prime power as its computationally
hardest semiprime to factorize. The results show that the SAT-solvers generally
require more CPU-Time to factorize semiprimes when the factors are close to each
other. There are many possible reasons for this that requires an in-depth look of
both solver and reduction to find, however, it is not dependant on the amount of
clauses or literals as that amount is only dependant on the bitsize of the semiprime
reduced.

5.4 Possible further studies

This thesis only explores one of the fundamentally different reductions from FACT
to SAT and therefore it would be beneficial for future studies to expand to different
kind of reductions. For example, does another reduction give more beneficial results
for a different kind of semiprime compared to what this thesis found. Another
possible angle is to test more SAT-Solvers in order to see if all of them abide to the
results our tests have shown. In this thesis only the most polarizing of semiprimes
were tested and it would be interesting to try and widen the spectrum and test
different types of semiprimes. This includes testing more semiprimes of the types
we have tested as this thesis only covered 2000 different semiprimes.
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Chapter 6

Conclusion

6.1 Comparing FACT-solvers and SAT-solvers

As mentioned in the hypothesis in section 1.3 the GNFS algorithm was the com-
putationally fastest. Trial division however, was computationally the second best
and was the algorithm that would be able to factorize the biggest semiprimes of all
types within reasonable time with the exception of GNFS. Lingeling was the best
overall performing SAT-solver with also the smallest standard deviation. All of the
SAT-solvers had problems with semiprimes with bit-size larger than 40.

6.2 Comparing different types of semiprimes

GNFS did not have any noticeable computational difference between the differ-
ent types while the results for the two special-purpose algorithms conformed to
already established characteristics. All of the SAT-solvers had favourable results
for the asymmetrical-size semiprimes and disfavourable results for the prime power
semiprimes.
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Appendix A

Software

A.1 Libraries and compilers

A.1.1 Java and javac

java 1.6.0_34
OpenJDK Runtime Environment (IcedTea6 1.13.6) (6b34-1.13.6-1ubuntu0.12.04.1)
OpenJDK 64-Bit Server VM (build 23.25-bol, mixed mode)

javac 1.6.0_34

A.1.2 GHC
GHCi version 7.4.1

A.1.3 GCC

gce version 4.6.3
(Ubuntu/Linaro 4.6.3-1lubuntub)
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Appendix B

Hardware

CPU | Intel Core 2 Quad CPU Q9550 @ 2.83GHZ x 4

RAM | 4 GB
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Appendix C

Instances

The instances used as well as the code for handling the reductions written in java
can be found in https://github.com/ludwan/SemiPrimelnstances. It also holds a
modification of the code for reduction originally created by [14] written in haskell.
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Appendix D

Source code

The applications for Trial Division, Fermat’s Factorization method and the semiprime
generator written in java can be found at: https://github.com/Elderkousom/FermatTrial-
Generator.
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