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Abstract
Parallel reversal schedules describe how to calculate the states of an evolutionary system,
such as atmospheric and oceanographic simulations, in reverse order without having to
keep all states in memory. This is possible without any increase in computation time,
by recalculating intermediate results using multiple processors on a parallel computer
system. These schedules are not only applied physical simulations that need to run in
reverse, but also in algorithmic differentiation, which in turn is used, among others, in
nonlinear optimization and to solve partial differential equations. Earlier research led to
optimal schedules under the central assumption that if k states can be kept in memory,
there are enough processors to run computations on roughly half of them in parallel,
while the other half can only be used for holding checkpoints.

This diploma thesis is an attempt to continue the research by relaxing the central
assumption, such that memory for a large number of plain checkpoints can be used with
a comparatively small number of processors. To cope with this challenge, a symbolic
approach to reversal schedules is proposed, and a comprehensive algebra is developed
to analyze schedules via their profiles. This algebra is very generic and could have
applications outside parallel reversal schedules. Using that instrument, new optimal
schedules are developed, to be applied in situations where the earlier schedules are not
applicable. Moreover, suboptimal schedules are provided where optimal schedules could
not be found in a systematic way.
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1. Introduction

1.1. Reversal of Evolutionary Systems
Evolutionary systems are mathematical models that can be described as a sequence of
states

s0, s1, s2, . . . , sℓ

where each state can be calculated directly from the previous state. That is, there are
functions F1, F2, . . . such that:

s1 = F1(s0)

s2 = F2(s1)

. . .

sℓ = Fℓ(sℓ−1)

A typical example are physical simulations, such as atmospheric and oceanographic
simulations [GW08, p. 278]. Here, each state represents the model at a certain point
in time, and each function Fi calculates the simulation of one time step. To prevent
confusion of the simulated time with the computation time, we introduce the term
physical step to always refer to the simulated time, not the computation time. More
precisely, we say that Fi calculates (or simulates) the physical step i by mapping the
previous state si−1 to the state si.

s0
F1−→ s1

F2−→ · · · Fℓ−→ sℓ

Their composition F then describes the whole model:

F = Fℓ ◦ · · · ◦ F1

s0
F−→ sℓ

Written like that, evolutionary systems are a special case of mathematical models, but
also describe the general case.

1. They are a special case in the sense that each state si depends only on si−1, while
we would normally expect it to depend on all preceding states s0, s1, . . . , si−1.

2. On the other hand, we could always define every state si to contain all intermediate
states calculated so far, in which case every calculation could be represented as an
evolutionary system.
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To emphasize that we mean the first kind of models and not the second one, we demand
that all states si have roughly the same size. More precisely, we demand that all si can
be represented within the same amount of computer memory mem(si), and that we have
working implementations of all Fi which operate on those representions.

mem(s0) = mem(s1) = · · · = mem(sℓ)

In this thesis, we are concerned with the following question: If we are given an evolu-
tionary system with ℓ physical steps and the initial state s0, how do we compute the
states in reverse order? (

s0
?−→
)
sℓ

?−→ sℓ−1
?−→ . . .

?−→ s1
?−→ s0

This question arises in several situations. For example, the evolutionary system may
be a physical simulation displayed to the user, and once the user has seen all states
s0, . . . , sℓ, they want to see the simulation in reverse.

Another application is algorithmic differentiation, which is a technique to calculate
derivatives, with applications in nonlinear optimization, solving partial differential equa-
tions and others. In particular, we are interested in the reverse mode of algorithmic
differentiation, which calculates adjoint derivatives such as gradients. The reverse mode
is not restricted to evolutionary systems, but those allow for a more memory-efficient
treatment.1 It requires, however, that the reverse mode has access to all states si in
reverse order.

So how exactly do we perform a reverse computation of an evolutionary system? One
simple approach is:(

s0
Fℓ◦···◦F1−−−−−→

)
sℓ

Fℓ
−1

−−−→ sℓ−1
Fℓ−1

−1

−−−−→ . . .
F2

−1

−−−→ s1
F1

−1

−−−→ s0

That is, we first calculate sℓ from s0 by applying F1, . . . , Fℓ. Then, one by one, we
apply Fℓ

−1, . . . , F1
−1, which yield the states in reverse order. However, this is only

possible if all functions Fi are invertible and we have working implementations of all
Fi

−1. Therefore, this approach is not feasible for most models. The exact reasons vary
from case to case, but are often a combination of:

1. The Fi are not injective and it is hard or impossible to choose the right preimage
si−1 ∈ Fi

−1(si) when a state si is given.2
2. Computing all Fi

−1 is orders of magnitude more expensive than computing all Fi.
3. Inversion of the Fi is mathematically possible, but numerically ill-conditioned.

This happens for heat equations and other diffuse processes.
For those cases, where we do not have working implementations of the Fi

−1, reversal
schedules come into play.

1This approach has been used successfully, for example, in seismic research. [Sym07]
2In some cases we can deal with this by storing additional hints in the result state, but in general this

results in accumulating hints from previous states, making the states s0, s1, s2, . . . growing from step
to step, which is not what we want.
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1.2. Parallel Reversal Schedules
Suppose we want to reverse an evolutionary system of ℓ physical steps

s0
F1−→ · · · Fℓ−→ sℓ

where we do not have working implementations of the Fi
−1. How do we achieve this?

One possibility is to simply save all states si as they are computed. This total recall
strategy is depicted in Figure 1. The x-axis indicates the computation time, while the
y-axis indicates the states si. Note that throughout this thesis, we assume that all Fi

require roughly the same computation time, and define one time unit to be exactly that
time.3

time(F1) = time(F2) = · · · = time(Fℓ) = 1

The dots denote which states are available in computer memory at what point in time.
The lines which connect the dots denote various actions.

The simplest action is Checkpoint holding (C), denoted by a solid horizontal line ( ),
which means that the same state si is still available after one time unit has passed. This
is often implemented by checkpointing, that is, copying the current computing state to
a separate memory location. That checkpoint is then held in memory until it is restored
at a later point in time.

Another action is forward (F ), denoted by a solid diagonal line ( ), which means that
Fi+1 is being applied to state si, so after one time unit state si+1 is available.

This would be all we need. But for algorithmic differentiation, two more actions
are needed and scheduled explicitly. These are depicted as dashed lines in Figure 1.
To understand those actions, it is necessary to know that the reverse mode does not
only need the states si in reverse order. It needs all intermediate results that appear
during evaluation of all physical steps Fi, in reverse order. We meet this requirement
by replacing the last F action with a prepare action (P ), depicted as a dashed forward

3Note that [Wal99] also considered varying time(Fi), but only for sequential schedules, not for parallel
schedules.

Figure 1.: Total recall schedules for the reversal of ℓ = 4 physical steps. The middle
schedule incorporate the prepare and reverse actions explicitly, as needed for
algorithmic differentiation. The right schedule shows the plain reverse mode
that contains only prepare and reverse actions without any checkpointing.
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diagonal line ( ). This also evaluates Fi+1, but stores all intermediate values into a
separate stack in memory. This is also denoted as F̂i+1.

Every P action is followed by a reverse action (R), depicted as a dashed backward
diagonal line ( ). This starts or continues the actual reversal, retrieving all intermediate
values in reverse order from the prepared stack. This is also denoted as F̄i+1. Through-
out this thesis we assume that P and R actions have roughly the same computation
complexity as F actions, that is:4

time(F̂i) = time(F̄i) = time(Fi) = 1

Figure 1 also demonstrates that during every R action, there is also the P action running
for the previous physical step, except for the last R action. So for ℓ > 1 this schedule
requires at least two processes running in parallel. That is, it requires at least either
a two-core processor or a cluster of two computers. Moreover, up to three checkpoints
must be held in memory simultaneously. The total number of C actions is ℓ(ℓ− 1), the
total number of F actions is ℓ− 1.

Note that this schedule runs in optimal computation time. Under the given precondi-
tions, we can’t do any better than an uninterrupted forward calculation followed by an
uninterrupted reverse calculation. In this thesis we consider only that kind of schedules,
also called feasible parallel reversal schedules [Wal99, p. 58], which means that we have
always tM = 2ℓ, where tM is the total computation time according to the schedule.5

While the total recall strategy is wasteful with memory, it is still a major improvement
over the plain reverse mode with regard to memory usage. As shown in Figure 1, the plain
reverse mode would create a huge stack of all intermediate values during the evaluation
of all physical steps F1, . . . , Fℓ. This is a lot more than the memory required to store
just all states s0, . . . , sℓ.

But why should care about memory at all? The obvious reason is of course economics.
There is a cost limit in attaching more RAM and hard drives to a computer system. The
less obvious reason is speed, because the reverse mode is memory bound. Going from
L3 cache to RAM already incurs a considerable penalty, even more so when going from
RAM to solid-state drives and from there to hard drives. Since the memory is accessed
sequentially, the access pattern is already optimal. The various caching systems won’t
provide much speedup here, as their main task is to transform random access patterns
into sequential access patterns. In the end, the slowest memory in the chain will be
the bottleneck. If “wasting” lots of CPU cycles through recalculation leads to avoiding
the slow memory, this is a good tradeoff, as we are using processing resources that
would otherwise waste their time waiting for memory components to respond. It was
shown that this speedup is measurable not just on parallel systems, but also on a single
computer with a single-core CPU. [GW08, pp. 293–294]

The oppsite of the total recall strategy is the total recalculation strategy, which is

4Note that [Wal99] also considered scenarios where the time of the P and R actions are whole-number
multiples of the time of F actions.

5The exact formula in [Wal99, p. 58] is tM = (ℓ − 1) + t̂ + ℓt̄, but our previous assumptions translate
to t = t̂ = t̄ = 1, so this formula simplifies to tM = 2ℓ.
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depicted in Figure 2. Here, every state si is recalculated from the base s0. Apart from
the obligatory P and R actions, there are only F actions in this schedule. C actions are
only used to keep s0 available.6 In this schedule, up to tree processes run in parallel,
while at most one checkpoint needs to be held in memory. The total number of C actions
is 2ℓ− 2, the total number of F actions is ℓ(ℓ−1)

2 .
Of course, there is a large degree of freedom between total recall and total recalculation

schedules.

1.3. Relaxing Processor-Checkpoint Convertibility
In this thesis we are concerned with the following questions: Depending on the number
of processes that can truly run in parallel on our hardware, what are the best feasible
parallel reversal schedules? How many physical steps can be reversed in optimal time
within what amount of memory?

So we have a discrete optimization problem with three parameters:

ℓ – number of physical steps to be reversed
p – number of processes that can run in parallel
k – number of states that fit into memory, to be used by processes and checkpoints

So at any point in time within a schedule, the number of actions (C,F, P,R) must be ≤ k.
Moreover, the number of F , P and R actions must be ≤ p.

Since it doesn’t make sense to start processes for whose execution we have no memory,
we demand that:

p ≤ k

Note that k has the same meaning as what it called resources in [Wal99], while p is an
additional degree of freedom not present in [Wal99]. Due to the introduction of p, we
relax the assumption of processor-checkpoint convertibility [Wal99, p. 62] which says that
processors and checkpoints are interchangeable resources.

6It may be debatable whether keeping the initial state s0 is checkpointing in the classic sense. However,
in our systematics we consider it to be a C action, as it holds one state in memory for one time unit.

Figure 2.: Total recalculation schedules for the reversal of ℓ = 4 physical steps. The right
schedule incorporates the prepare and reverse actions explicitly, as needed for
algorithmic differentiation.
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This was a reasonable assumption in 1999, but today’s latops have 8 GiB RAM shared
by 4 cores. Assuming we have an evolutionary system with large states si, where each
state consists of 10 million double precision floating point values (≈80 MiB), we would
have k > 100 but only p = 4. That ratio becomes worse when looking today’s expensive
computers, which have 1 TiB RAM shared by 120 cores, leading to k > 13000 versus
p = 120. For evolutionary systems with smaller states, the ratio is even worse.

So we relax the processor-checkpoint convertibility and assume that processors (F, P,R
actions) can be converted to checkpoints (C actions) by “doing nothing”, but not vice
versa. From that point of view, our additional parameter p describes how many of the
k resources can be used as processors, while the remaining k − p resources can only be
used as checkpoints.

At a first glance, this seems to imply that the schedules developed in [Wal99] are
only applicable if we choose p to be p = k. However, according to [Wal99, p. 79] the
optimal schedules for k resources require just p =

⌈
k+1
2

⌉
processes. So these schedules

are applicable and optimal for all:

p ≥
⌈
k + 1

2

⌉
Nevertheless, for p <

⌈
k+1
2

⌉
we need to develop new schedules, as the schedules of [Wal99]

are not applicable. This will result in new schedules that require fewer processors by
using more checkpoints and thus more memory.

1.4. Scope and Structure of this Thesis
While there has been interest in reversal schedules since at least 1973 [Ben73], the first
systematic analysis of optimal schedules was published 1999 in the dissertation [Wal99].
Research continued for about 5 years, leading to another dissertation [Leh03] and various
papers [GW00] [LW02] [Wal04], all within the same research group. Alas, this topic has
never been picked up by other research groups. Today, books which cover reversal
schedules all refer to the same results from a decade ago. [GW08, pp. 278–297] [NS12,
pp. 142–147]

This diploma thesis is an attempt to continue the research on reversal schedules by
relaxing the processor-checkpoint convertibility, which is a central assumption of [Wal99].
This introduces two challenges:

1. The central binary decomposition theorem [Wal99, p. 66] does not hold anymore.
2. The discrete optimization problem has three instead of two parameters: p, s, ℓ

instead of s, ℓ.

To cope with those challenges, this thesis proposes and follows a more symbolic approach
to reversal schedules. Also, to keep things manageable, this thesis focuses on parallel
reversal schedules in the case t = t̂ = t̄ = 1.

It is structured as follows. In Chapter 2, a small formalism is developed for describing
schedules, showing which properties still hold and which properties don’t hold anymore

12



due to the relaxation. In Chapter 3, a comprehensive algebra for describing and ana-
lyzing the profiles of schedules is developed. Finally, this is used in Chapter 4 to build
new optimal and suboptimal schedules, which are then compared to the already known
schedules, but also to the result of an exhaustive search over small schedules.

1.5. Notations and Conventions
Throughout this thesis, we use the following notations and apply the following conven-
tions:

B Set of Booleans, B = {true, false}

2A Power set of the set A

f−1(A) Preimage of the set A under the function f

χA Indicator function χA : R → {0, 1} of the subset A ⊆ R

ei The ith unit vector in Rn

Fn The nth Fibonacci number with F1 = 1, F2 = 1 and Fn = Fn−1+Fn−2

Fn The finite field with n elements, where n is the power of a prime

A∗ The free monoid over the set A

λ The empty word λ ∈ A∗

Z⟨A⟩ The free, associative, unitary Z-algebra over the set A

Axis order We follow the usual convention in mathematics that the time axis is
the x-axis and points right, while the y-axis points upwards. So we
deviate from [Wal99, p. 5], where the y-axis points downwards. We
also deviate from [Leh03, p. 24], where the time axis is the y-axis and
points downwards.

13



2. Algebra on Schedules
In this chapter we explain parallel reversal schedules and their operations in a formal
way, assuming the relaxed processor-checkpoint convertibility. We will then check which
central statements of [Wal99] still hold and which don’t.

There are many ways to represent parallel reversal schedules formally, each with its own
strengths and weaknesses in different areas. The algebraic representation presented here
has been developed with the following goals: The definition of feasible parallel reversal
schedules, as well as their composition, should be straight forward. Moreover, checkpoint
persistence and processor persistence should be explainable within the formalism as
clearly as within the visual representation.

The weakness of the algebra is that it is harder to see which exact actions are happening
at a certain point in time. For reference, Appendix B shows how this can be done within
the schedule algebra, but there is a more elegant way: We will simply introduce a
separate algebra on schedule profiles, which will be the topic of Chapter 3, combining
the best of both worlds.

2.1. Generic Parallel Schedules
In this section we will develop a generic algebraic representation of parallel schedules
that works with an arbitrary set A of actions. However, to keep the examples closer to
the problem at hand, we will stay within our set of actions as introduced in Section 1.2.
We will explain how this algebra represents our schedules, and visualize the various
operations. Finally, we will point out the corner cases in which the algebra differs from
the visual language.

However, to keep the examples closer to the problem at hand, we will stay within our
set of actions as introduced in Section 1.2.

Definition 1 (Actions). The set of actions A is:

A = {C,F, P,R} (1)

where C, F , P and R are to be interpreted as the actions introduced in Section 1.2.

Before getting to schedues, we define an intermediate structure, a task, by which we
mean a sequential chain of actions that are to be executed one after another.1

1We could also call this a sequential schedule as opposed to a parallel schedule, but we choose the term
task to prevent confusion. Throughout this thesis, schedule always means parallel schedule.

14



Definition 2 (Task). A task w is a finite sequence, or word, of actions. That is, the set
of tasks is the free monoid over A:

w ∈ A∗

The empty task is denoted as the empty word λ ∈ A∗.

Definition 3 (Task duration). The duration |w| of a task w ∈ A∗ is the number of its
actions:

|w| =

{
0 for w = λ

n for w = a1 · · · an, ai ∈ A
(2)

This is also known as the length of a word, the length of a monomial [Coh85, p. 60] or
the degree of a monomial.

Remark. Here we assume that every action needs exactly one time unit to run. We can
so without loss of generality, because if the actions had different rational durations, we
could redefine our time unit according to the lowest common denominator and split each
action into repeated smaller actions. For example, if the P action took twice as long as
the F action, we could introduce a new action P ′ and redefine P to be the task P ′P ′.

Definition 4 (Number of action occurrences). For every action a ∈ A and task w ∈ A∗

we define ca(w) to be the number of occurrences of a in w:

ca(w) =

{
0 for w = λ

|{i ∈ {1, . . . , n} | bi = a}| for w = b1 · · · bn, bi ∈ A
(3)

Lemma 5 (Task duration inequality). For all a ∈ A,w ∈ A∗ we have:

|w| ≥ ca(w) (4)

Proof. |w| counts all actions of w while ca(w) counts only some of them.

Example 6. The task w = FFPR, where cF (w) = 2, means two forward actions
followed by a prepare and a reverse action. It describes the direct way to reverse the
third physical step:

Example 7. The task w = FCCPR, where cF (w) = 1, describes the reversal of the
second physical step, with a delay in between:

15



Example 8. The task CCCCPR, where cF (w) = 0, describes the reversal of the first
physical step, with a long delay at the beginning:

Motivation. Now we want to define a “+” operation to overlay multiple tasks to a
schedule. Here it must be possible to unify the front overlaps, which are the common
prefixes of the tasks. To achieve this, we choose a simple noncommutative algebra over
A∗ that provides distributivity.

Definition 9 (Schedule). A schedule f over A is an element of the free, associative,
unitary Z-algebra [Coh85, p. 59] over A:

f ∈ Z⟨A⟩

Definition 10 (Schedule duration). The duration |f | of a schedule f ∈ Z⟨A⟩ is the
duration of its longest task:

|f | =

{
0 for f = 0

max {|w1| , . . . , |wn|} for f = d1w1 + · · ·+ dnwn, wi ∈ A∗, di ∈ Z \ {0}

In the context of algebra, this is also known as the degree. [Coh85, p. 60] In the context
of reversal schedules, this is also known as tM . [Wal99, p. 58]

Definition 11 (Number of tasks). For every schedule f ∈ Z⟨A⟩ we define ℓ(f) to be
the number of tasks:

ℓ(f) =

{
0 for f = 0

d1 + · · ·+ dn for f = d1w1 + · · ·+ dnwn, wi ∈ A∗, di ∈ Z \ {0}
(5)

Remark. Z⟨A⟩ is the noncommutative analogue to the ring Z[A] of polynomials. Al-
though the only coefficients of interest are 1 and 0, we choose the base ring to be Z,
because Z does not impose an additional structure on the algebra.2 A term like 2·FFF is
then to be interpreted as executing the task FFF twice in parallel, wasting an additional
processor for no use. A negative term like −1 ·FFFPR may occur when considering the
difference of two schedules f − g, meaning that f is identical to g except that g contains
an additional task FFFPR.
Remark. We use the distributivity in Z⟨A⟩ to extract common prefixes of tasks within a
schedule. The reason, of course, is that starting from the same state, equal tasks (or task
prefixes) will produce equal results at the same points in time, so we will calculate them
only once. After factoring out prefixes to the left as much as possible, the term describes
our schedule. More precisely, the abstract syntax tree of a maximally left-factored term

2For example, if we had chosen F2 to be our base ring, we would have exactly the coefficients 1 and 0,
but adding a task to a schedule which already contains that task would make it disappear: For
S = FPR+ CCPR we would have S + CCPR = FPR, which is not what we want.
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has the same tree structure as the schedules, when ignoring the connections between
successive reversals and collapsing all intermediate expressions a · □ and a · (□ + □)
with a ∈ A into single nodes.
Example 12. Adding the tasks of Examples 6 to 8 results in the following schedule:

f = FFPR+ FCCPR+ CCCCPR

It describes the reversal of three physical steps via the total recall strategy:

When ignoring the connections between successive reversals, this graph forms a tree, the
schedule tree. Now we factor out all prefixes to the left, which in this case is just the F
prefix of the first two tasks:

f = F (FPR+ CCPR) + CCCCPR

+

·
F

+

· F
· P

R

· C
· C

· P

R
·

C

·
C

· C
· C

· P

R

+

F ·+
F · P · R

C· C· P · R

C· C· C· C· P · R

Figure 3.: AST, collapsed AST and schedule tree of F (FPR+ CCPR) + CCCCPR.

17



The collapsed abstract syntax tree has the same structure as the schedule tree, which
is demonstrated in Figure 3.

Remark. Factoring out to the right will not result in the subtasks to be unified. It is
significant to which side we are factoring out.

Example 13. In the same schedule as before we factor out all PR suffixes to the right:

f = FFPR+ FCCPR+ CCCCPR

= (FF + FCC + CCCC) · PR

These PR subtasks all start on different states, and even more so, at different times. So
it makes no sense to unify them, we must repeat them:

· =

Remark. More generally, in our algebra we deliberately unify only common prefixes and
nothing else. This is an important difference between our algebra and the visual schedule
language. We don’t even unify tasks that produce the same state at the same point in
time, if they have different prefixes.

Although this way the algebra introduces a “punishment” on some schedules, this
happens only to schedules that are inefficient anyway, so it makes no sense to introduce
that additional complexity into our algebra as this will not provide any benefit in return.

More precisely, let u, v ∈ A∗ be two tasks without a common prefix that produce
the same state after the same amount of time. Let w ∈ A∗ be an arbitrary common
continuation of both, and g, h ∈ Z⟨A⟩ be their diverging ends. Then the schedule
f = uwg + vwh consists of two entirely separate calculations. The modified schedule
f ′ = uwg + uwh = uw(g + h) is always more efficient, even if we would unify the two
common sub tasks w in f .

Example 14. The overlap in the following schedule:

f = FCCFC + CFCFF

is not unified:

+ ̸=

In other words, the schedule f is not equivalent to f ′:

f ̸= f ′ = FC + CFCF (F + C)

where f ′ is the schedule at the right-hand side of the visual equation above.
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2.2. Parallel Reversal Schedules
So far, our algebra is very generic and could have been defined for any set of actions A.
Now we introduce the specifics of reversal schedules.

Definition 15 (Parallel reversal schedule). A schedule f ∈ Z⟨A⟩ is a parallel reversal
schedule (PRS) if there exist ℓ, d ∈ Z≥1 and w1, . . . , wℓ ∈ {C,F}∗ such that:

f = w1PR+ · · ·+ wℓPR (6)

where:

cF (wi) = i− 1 i = 1, . . . , ℓ (7)
|wi| = d− 1− i i = 1, . . . , ℓ (8)

Remark. This definition implies ℓ(f) = ℓ and |f | = |w1PR| = |w1|+ 2 = d.
Remark. The equations (6) to (8) are to be interpreted as follows:

(6) All tasks consist of a sequence of C and F actions, followed by a PR. This rules
out nonsense tasks such as CPCRCF :

(7) The tasks w1PR, . . . , wℓPR each reverse the first, second, . . . , ℓth physical step.
This rules out schedules whose reversals are not vertically connected, such as
CCCPR+ FFPR:

(8) All reversals line up diagonally towards the end. This rules out schedules whose
reversals are not horizontally connected, such as CCCPR+ FPR:

Definition 16 (Reach). The reach of a PRS f is the number of reversed physical steps,
which by (7) is also the the number of tasks ℓ(f).

Example 17. The smallest PRS is:

f = PR

ℓ(f) = 1

|f | = 2
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Example 18. The second smallest parallel reversal schedule is:

f = CCPR+ FPR

ℓ(f) = 2

|f | = 4

Example 19. A more complex parallel reversal schedule is:

f = CCCCCCCCCCPR

+CCCCFCCCCPR

+CCCCFCCFPR

+FCFCCFCPR

+FFFFCCPR

+FFFFFPR

ℓ(f) = 6

|f | = 12

Motivation. Definition 15 does not demand a minimal computation time. It includes
schedules such as f = CCCPR+ FCPR with ℓ(f) = 2 and |f | = 5 > 4:

These will be ruled out by the feasible parallel reversal schedules.

Lemma 20 (Minimal reversal duration). The minimal duration of a parallel reversal
schedule f is twice its reach. That is,

|f | ≥ 2ℓ(f)

and this inequality is sharp.
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Proof. Let d,w1, . . . , wℓ be as in Definition 15:

f =
ℓ∑

i=1

w1PR+ · · ·+ wℓPR

The inequality follows from Lemma 5 for wℓ and applying (7) and (8):

|f | = d = |wℓ|+ 1 + ℓ ≥ cF (wℓ) + 1 + ℓ = 2ℓ = 2ℓ(f)

Equality holds whenever |wℓ| = cF (wℓ), that is, whenever wℓ = F ℓ. Among others, this
is the case for all schedules that implement the total recall strategy:

f =
ℓ∑

i=1

F i−1C2ℓ−2iPR

So this inequality is sharp.

Definition 21 (Feasible parallel reversal schedule). A PRS f is feasible (FPRS) if it
has minimal duration, that is:

|f | = 2ℓ(f)

In other words, there exist ℓ ∈ Z≥1 and w1, . . . , wℓ ∈ {C,F}∗ such that:

f =
ℓ∑

i=1

w1PR+ · · ·+ wℓPR

cF (wi) = i− 1

|wi| = 2ℓ− 1− i

Remark. Definition 21 corresponds to the feasible parallel reversal schedules as intro-
duced in [Wal99, p.58] in the case t̂ = t̄ = 1.

Definition 22 (Resources profile). The resources profile of a schedule f is a step function
(piecewise constant function) with support [0, |f |):

resp f : R → R

where (resp f)(t) is the number of actions at any point in time t ∈ R.

Definition 23 (Processes profile). The processes profile of a schedule f is a step function
(piecewise constant function) with support [0, |f |):

procp f : R → R

where (procp f)(t) is the number of F , P and R actions at any point in time t ∈ R.
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Definition 24 (Usage). The processes and resources usage of a schedule f is the re-
spective resource peak over time:

res f = max(resp f)

proc f = max(procp f)

Remark. Since we don’t have negative times and our actions cover discrete time dura-
tions, processes and resources, we could have defined resp f and procp f to be nonnega-
tive integer functions Z≥0 → Z≥0. However, prefer them to be functions R → R as this
fits better into the algebra on profiles we will establish in Chapter 3.

Definition 25 (Optimization problem, reach maximal). Given r, p ∈ Z≥0, find a FPRS f
with

res f ≤ r

proc f ≤ p

for which

ℓ(f) is maximal

Definition 26 (Optimization problem, resource minimal). Given ℓ, p ∈ Z≥0, find a
FPRS f with

ℓ(f) ≤ ℓ

proc f ≤ p

for which

res f is minimal

2.3. Decomposition and Composition
Under the assumption of processor-checkpoint convertibility, two important properties
were proved by previous research, checkpoint persistence [Wal99, p. 64] and processor
persistence [Wal99, p. 65]. Those led to the theorem of binary decomposition [Wal99,
p. 66], which was the base of all further analysis.

With relaxed processor-checkpoint convertibility, this line of reasoning is no longer
applicable. Although we can show that checkpoint persistence still holds, there is no
evidence that processor persistence holds. Finally, we will describe its counterpart, the
composition [Wal99, p. 74], which is still applicable.
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Definition 27 (Checkpoint-persistent schedule). A schedule f is checkpoint-persistent
if its maximally left-factored representation contains only the following subtasks, where
n ∈ Z≥1, w ∈ A∗:

Cn

CnPR

Fw

PR

In other words: Once a subtask starts with a C action, it will continue with C actions
until the next fork.

Example 28. The following schedule f is not checkpoint-persistent. The violating
subtask is underlined and marked in the visual schedule.

f = F (F 3(FPR+ C2PR) + C3FC(FPR+ C2PR)) + C8(FPR+ C2PR)

Definition 29 (Processor-persistent schedule). A schedule f is processor-persistent
if its maximally left-factored representation contains only the following tasks, where
n ∈ Z≥1, w ∈ A∗:

Fn

FnPR

Cw

PR

In other words: Once a subtask starts with an F action, it will continue with F actions
until the next fork.
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Example 30. The following schedule f is not checkpoint-persistent. The violating
subtask is underlined and marked in the visual schedule.

f = F 4(FPR+ C2PR) + C3(F 2CFPR+ C3(F (FPR+ C2PR) + C4PR))

Theorem 31 (Checkpoint persistence). Let f be a FPRS of reach ℓ that uses p processes
and k resources. Then there exists a checkpoint-persistent FPRS f ′ of the same reach ℓ.
f ′ uses no more than p processes and k resources.

Corollary 32. In the search for optimal FPRS it is sufficient to restrict the search to
checkpoint-persistent schedules.

Proof. This proof implements the same idea as in [Wal99, p. 64], but is expressed through
the notions of our schedule algebra.

If f is checkpoint-persistent, we set f ′ = f . Otherwise, f ist not checkpoint-persistent.
That is, within its maximally left-factored representation f contains a violating subtask:

CnF with n ∈ Z≥1

Let w ∈ A∗ be the preceding task, let h1 ∈ Z⟨A⟩ be the following subschedule, let
Fh2 ∈ Z⟨A⟩ be the possibly existing other fork after w, and g ∈ Z⟨A⟩ the remaining
schedule, that is, the sum of all tasks in f that to not have w as prefix. (Note that it is
possible that w = λ, h2 = 0 and g = 0.) Then:

f = w(CnFh1 + Fh2) + g

Now we apply the following transformation of f , which fixes this particular violation:

w(CnFh1 + Fh2) + g 7→ wF (Cnh1 + h2) + g

At time |w|, the new schedule starts one fewer C action. At time |w|+ n, it starts one
fewer F action and possibly one more C action. (It won’t if h2 starts with Cn.) At all
other points in time, both schedules have identical usage. So the new schedule uses no
more than p processes and k resources.

This transformation can be iterated until all violations of checkpoint-persistence are
rectified. Within each iteration a C action moved to the right, but there is never any C
action moved to the left. So this cannot continue infinitely.
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Let f ′ be the final result after which no further iteration is possible. f ′ must be
checkpoint-persistent, otherwise one more iteration would be possible. Moreover, f ′

uses no more than p processes and k resources.
It remains to show that f ′ is a FPRS. Representing f as of Definition 21, the transfor-

mation preserves |wi| and cF (wi) for all tasks wi, hence it also preserves the duration |f |.
Since it doesn’t add or remove any task, it preserves the reach ℓ. So the transformation
preserves FPRS. Since f ′ results from iterated transformation, it is also a FPRS.

Example 33. Figure 4 shows a schedule f that is not checkpoint-persistent and the
corresponding checkpoint-persistent schedule f ′ after one iteration of the transformation
described in the proof.

f = F (F 3(FPR+ C2PR) + C4F (FPR+ C2PR)) + C8(FPR+ C2PR)

f ′ = FF (F 2(FPR+ C2PR) + C4(FPR+ C2PR)) + C8(FPR+ C2PR)

Figure 4.: Establishing checkpoint persistence.

Remark. The analogue transformation for processor persistence is:

w(FnCh1 + Ch2) + g 7→ wC(Fnh1 + h2) + g

At time |w|, the new schedule starts one fewer F action. At time |w| + n, it starts one
fewer C action and possibly one more F action. (It won’t if h2 starts with Fn.) If the
original schedule already used p processes at time |w|+n, and h2 does not start with Fn,
the new schedule will use p+ 1 processes.
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This means that we cannot apply this transformation in general, which is why the
proof of [Wal99, p. 65] is not applicable here.
Example 34. Figure 5 demonstrates the worst case. It shows a schedule f that is not
processor-persistent and the corresponding processor-persistent schedule f ′ after four
iterations of the transformation. f ′ uses more processes than f .

f = F 4PR+ C(F 2C(FPR+ C2PR) + C2(FC3PR+ C5PR))

f ′ = F 4PR+ CC(F 2(FPR+ C2PR) + CC3(FPR+ C2PR))

Figure 5.: Establishing processor persistence after four iterations. Schedule f uses p = 2
processes, while f ′ uses p = 3 processes.

Definition 35 (Binary-decomposable schedule). A schedule f is a binary-decomposable
schedule if it is checkpoint-persistent and processor-persistent.

That is, the maximally left-factored representation of f contains only the following
tasks, where n ∈ Z≥1:

Fn

FnPR

Cn

CnPR

PR

Example 36. The schedules f ′ in Figures 4 and 5 are both binary-decomposable.
Remark. A binary-decomposable schedule is fully determined by its forks, which is a
convenient property. However, due to the lack of processor-persistence, we cannot assume
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that optimal FPRS are binary decomposable in general. Nevertheless, we can apply the
inverse operation binary composition and will use that extensively to generate optimal
and suboptimal schedules in Chapter 4.

Definition 37 (Primitive schedule). The elementary schedule ε is:

ε = PR

Definition 38 (Schedule composition). The composition (f, g) of two FPRS f and g is:

(f, g) = F
|g|
2 f + C |f |g (9)

Remark. The composition (f, g) is a FPRS with reach ℓ((f, g)) = ℓ(f) + ℓ(g) and dura-
tion |(f, g)| = |f |+ |g|.

Example 39. The composition of the following schedules:

f = FPR+ C2PR ℓ(f) = 2

g = F 2PR+ CFCPR+ C4PR ℓ(g) = 3

yields:

(f, g) = F 3(FPR+ C2PR) + C4(F 2PR+ CFCPR+ C4PR)

= F 4PR+ F 3C2PR+ C4F 2PR+ C5FCPR+ C8PR

ℓ((f, g)) = 10

( , ) =

Proposition 40. If f and g are binary-decomposable, their composition (f, g) is binary-
decomposable, too.

Proof. Let f and g be maximally factored to the left, then their subtasks are only the
ones listed in Definition 35. The composition (f, g) add two more subtasks to this, which
are both allowed by Definition 35.

Example 41. All binary-decomposable schedules up to reach ℓ = 4 are depicted in
Figure 6.
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= ε = PR

= (ε, ε) = FPR+ C2PR

= ((ε, ε), ε) = F 2PR+ FC2PR+ C4PR

= (ε, (ε, ε)) = F 2PR+ C2FPR+ C4PR

= (((ε, ε), ε), ε) = F 3ε+ F 2C2ε+ FC4ε+ C6ε

= ((ε, (ε, ε)), ε) = F 3ε+ FC2Fε+ FC4ε+ C6ε

= ((ε, ε), (ε, ε)) = F 3ε+ F 2C2ε+ C4Fε+ C6ε

= (ε, ((ε, ε), ε)) = F 3ε+C2F 2ε+C2FC2ε+C6ε

= (ε, (ε, (ε, ε))) = F 3ε+ C2F 2ε+ C4Fε+ C6ε

Figure 6.: Small schedule compositions up up to reach ℓ = 4.
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3. Algebra on Profiles
In this chapter we concentrate on the profile of a schedule, that is, the function that
describes how many resources or processes are used at each point in time. Profiles
are essentially step functions (piecewise constant functions), but we describe them in a
slightly different way that will fit our purpose better.

Our main interest is to find a convenient description of how the profiles combine when
two schedules are combined. Also, we will be able to describe exactly the difference
between the two possibilities to combine three schedules. The main goal is, of course,
to decribe upper limits of profiles. That is, we want to verify that our schedules do not
exceed the number of processes and resources available.

While no formal language is ever perfect, the formalism developed here is at least
powerful enough such that most lemmas can be proven solely by mechanically applying
transformation rules (equations) of previous lemmas. Although much effort went into the
proofs to make them concise, most could have been developed by simply expanding all
terms as much as possible, then comparing the results. To provide a complete formalism,
all possible operator relationships are studied, even if they do not contribute directly to
a larger theorem. Some interesting connections between the algebra developed here and
polynomials are described in Appendix C.

3.1. Profile Space
Definition 42 (Primitive functions). For every t ∈ R≥0, the primitive function φt is:

φt : R → R
φt = χ[t,∞)

where χA denotes the indicator function as listed in Section 1.5. Further, we define B
to be the set of primitive functions:

B = {φt | t ∈ R≥0}

Definition 43 (Profile space). Let (RR,+, ·,≤) be the partially ordered R-linear space1
of all functions R → R, where +, · and ≤ operate pointwise, as usual.

1A partially ordered linear space is a preordered linear space whose preorder ≤ is also a partial order.
A preordered linear space is an F -linear space V with a compatible preorder ≤. That is, for all
x, y, z ∈ V, λ ∈ F : x ≤ y =⇒ x + z ≤ y + z and x ≥ 0, λ ≥ 0 =⇒ λ · x ≥ 0. For every set A, the
R-linear space RA of functions A → R, equipped with the pointwise defined partial order ≤, forms a
partially ordered linear space. [Bou87, p. II.12]
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Within that space, we define the R-linear subspace of profiles P ⊂ RR to be the linear
span of all primitive functions:

P = spanR(B)

That is, for each profile f ∈ P there exist t1, . . . , tn ∈ R≥0 and a1, . . . , an ∈ R such that:

f : R → R

f =

n∑
i=1

aiφti

Remark. For the problem at hand, it would have been sufficient to restrict profiles to
integer arguments and values.2 However, for the algebra introduced here that wouldn’t
simplify much. It would also complicate the usage of the arrangement operation as
of Definition 59, where we divide by 2. So we will build this slightly more general
framework, which is also capable of handling schedules with non-integer times as well as
non-integer resource usage.
Remark. Note that although we don’t consider negative time values, the profile functions
are formally defined for those, too. Since we don’t include any primitive functions
φt with t < 0, all profile functions are zero for negative times. This may seem strange, but
prevents many edge cases in the following definitions and proofs, especially Definition 49
and Lemma 50.

Lemma 44 (Profile values). For every f ∈ P, f =
∑n

i=1 aiφti with t1 < · · · < tn, the
function values are:3

t ∈ [tk, tk+1) =⇒ f(t) =

k∑
i=1

ai

for all t ∈ R and k ∈ {0, . . . , n} with t0 = −∞ and tn+1 = ∞. That is:4

f(t) =



0 t ∈ (−∞, t1)

a1 t ∈ [t1, t2)

a1 + a2 t ∈ [t2, t3)

· · ·
a1 + a2 + · · ·+ an−1 t ∈ [tn−1, tn)

a1 + a2 + · · ·+ an−1 + an t ∈ [tn,∞)

2We would then have φt : Z → Z with t ∈ Z≥0. Also, we would be dealing with free Z-modules instead
of linear spaces over R.

3We follow the convention that the empty sum evaluates to zero:
∑0

i=1 ai = 0.
4Note that the first condition t ∈ (−∞, t1) is equivalent to t ∈ [−∞, t1), because t ∈ R.
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Proof. First of all, note that t0 and tn+1 are conveniently defined such that:

t0 < t1 < · · · < tn < tn+1

Now, let k ∈ {0, . . . , n} and t ∈ [tk, tk+1). It follows that:

f(t) =

n∑
i=1

ai · φti(t)

=

n∑
i=1

ai · χ[ti,∞)(t)

=
k∑

i=1

ai · χ[ti,∞)(t)︸ ︷︷ ︸
t≥ti

+
n∑

i=k+1

ai · χ[ti,∞)(t)︸ ︷︷ ︸
t<ti

=

k∑
i=1

ai · 1 +
n∑

i=k+1

ai · 0

=

k∑
i=1

ai

Remark. Lemma 44 shows that profiles are step functions whose step intervals are closed
on the left and open on the right.

However, our representation deviates from the classic representation in that our base
intervals are not disjoint, but all overlapping towards +∞. This causes an implicit
summation of the coefficients, which is intentional and will simplify a lot.

For example, compare the following representations of the resources profile of sched-
ule ((ε, ε), ε) as shown in Figure 7. The coefficients in the classic disjoint representation
are the partial sums of the coefficients in our representation:

resp ((ε, ε), ε) = 2φ0 + φ2 − φ4 − φ5 − φ6 (ours)
= 2χ[0,2) + 3χ[2,4) + 2χ[4,5) + χ[5,6) (classic)

Our representation enables us to think of the term “aφt” as an event that happens at
time t and from then on will change resource usage by a. So φ2 could describe the
start of some computation at time 2 that consumes one resource unit. Then, −φ5 could
describe the end of that computation at time 5, freeing the one resource unit. Their
sum, φ2 −φ5 would then describe a schedule in which exactly these two events happen,
and nothing else. This is visualized in Figure 7.

Corollary 45 (Profile image). For every f ∈ P, the image of f is:

{f(t) | t ∈ R} =

{
k∑

i=1

ai

∣∣∣∣∣ k = 0, . . . , n

}
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φ2 =

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

−φ5 =

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

φ2 − φ5 =

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

2φ0 + φ2 − φ4 − φ5 − φ6 =

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

Figure 7.: Simple profile functions. The last diagram decribes the resources profile of
schedule (ε, (ε, ε)) as depicted in Figure 6.

Lemma 46. The primitive functions as of Definition 42

B = {φt | t ∈ R≥0}

form a basis of the R-linear space P.

Proof. According to Definition 43, B spans P. It remains to show that B is linearly
independent.

Assume there is a nontrivial linear dependence between elements of B. That is, there
exist t1 < · · · < tn and a1, . . . , an ̸= 0 such that:

0 =

n∑
i=1

aiφti

Let f ∈ P be the right-hand side. Evaluating f at t1 and applying Lemma 44 leads to:

0 = f(t1) =
1∑

i=1

ai = a1

which contradicts the assumtion. Hence, B is linearly independent and thus a basis.
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Motivation. In Definition 43 we equipped P with a partial order ≤. This serves two
important practical needs:

1. To verify that a schedule doesn’t release more resources than it uses, we check that
its profile f ∈ P satisfies f ≥ 0.

2. To verify that a schedule’s resource usage doesn’t exceed r ∈ R≥0, we check that
its profile f ∈ P satisfies f ≤ r · φ0.

Since it is so useful, we will have a closer look at how to actually check the ≤ relation
within our algebra. Note that it is sufficient to know how to check f ≥ 0, because every
other relation f ≥ g can be checked by calculating f − g and checking if (f − g) ≥ 0.

Lemma 47. For every f ∈ P, f =
∑n

i=1 aiφti with t1 < · · · < tn, nonnegativity can be
verified as follows:

f ≥ 0 ⇐⇒
k∑

i=1

ai ≥ 0 ∀k = 1, . . . , n

Proof. This is a direct consequence of Corollary 45:

{f(t) | t ∈ R} =

{
k∑

i=1

ai

∣∣∣∣∣ k = 0, . . . , n

}

= {0} ∪

{
k∑

i=1

ai

∣∣∣∣∣ k = 1, . . . , n

}

That is, the sums
∑k

i=1 ai describe exactly all function values f(t), so it is necessary
and sufficient to check that those are nonnegative. We omit the check of the zero
value (for k = 0), as we already know it is nonnegative.

Lemma 48. The ≤ relation satisfies the following properties for all t, u ∈ R≥0:

φt ≥ 0 (10)
φt ≥ φu for t ≤ u (11)

Proof. These properties are quite obvious from Definition 42 by looking at the underlying
indicator functions for φt and φu. However, this lemma can also be proved purely within
the algebraic framework, by applying Lemma 47.

Consider the following profiles f, g ∈ P:

f = 1 · φt

g = 1 · φt + (−1) · φu

Applying Lemma 47 to f , we know that f ≥ 0 because 1 ≥ 0. This proves (10).
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We then observe that for t = u, (11) is obviously true. So we assume t < u. This
enables us to apply Lemma 47 to g. We conclude that g ≥ 0 because 1 ≥ 0 and
1 + (−1) ≥ 0. So φt − φu ≥ 0, which proves (11).

3.2. Shift, Duration and Final Value
Definition 49 (Shift operation). For every f ∈ RR and a ∈ R≥0 we define f ≫ a
(“f shifted by a”) to be the following function:

f ≫ a : R → R
f ≫ a : t 7→ f(t− a)

The shift operator has a stronger binding than addition, such that f ≫ a+g ≫ b means
(f ≫ a) + (g ≫ b).

Lemma 50. For all f, g ∈ RR, a, b ∈ R≥0 and v ∈ R, the following identities hold:

0 ≫ a = 0 (12)
f ≫ 0 = f (13)

(f ≫ a) ≫ b = f ≫ (a+ b) (14)
φa ≫ b = φa+b (15)

(f + g) ≫ a = f ≫ a+ g ≫ a (16)
(v · f) ≫ a = v · (f ≫ a) (17)

f ≫ a ≤ g ≫ a for f ≤ g (18)

Proof. For all t ∈ R, we have:

[0 ≫ a](t) = [0](t− a) = 0

[f ≫ 0](t) = f(t− 0) = f(t)

[(f ≫ a) ≫ b](t) = [f ≫ a](t− b) = f((t− b)− a) = f(t− (a+ b)) = [f ≫ (a+ b)](t)

[φa ≫ b](t) = φa(t− b) = χ[a,∞)(t− b) = χ[a+b,∞)(t) = φa+b(t)

[(f + g) ≫ a](t) = [f + g](t− a) = f(t− a) + g(t− a) = [f ≫ a](t) + [g ≫ a](t)

[(v · f) ≫ a](t) = [v · f ](t− a) = v · f(t− a) = v · [f ≫ a](t) = [v · (f ≫ a)](t)

Also, we have:

f ≤ g

=⇒ f(t) ≤ g(t) ∀t ∈ R
=⇒ f(t− a) ≤ g(t− a) ∀t ∈ R
=⇒ [f ≫ a](t) ≤ [g ≫ a](t) ∀t ∈ R
=⇒ (f ≫ a) ≤ (g ≫ a)
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Lemma 51 (Shift closure). P is closed under ≫. That is, for each f ∈ P and a ∈ R≥0,

(f ≫ a) ∈ P

Proof. For each a ∈ R≥0, consider the following map:

ma : RR → RR

ma : f 7→ f ≫ a

First, ma maps the base B of P into itself by (15). Also, ma is R-linear according to (16)
and (17). Hence, P is closed under ma.

Definition 52 (Duration and final value). For every f ∈ P we define the duration of f ,
denoted as |f |, to be:

|f | =

{
0 f = 0

tn f = a1φt1 + · · ·+ anφtn with t1 < · · · < tn and an ̸= 0

Also, we say that f(|f |) is the final value of f .
Remark. In other words, |f | is the time of the last event that affects the profile. If f is
the profile of a schedule where all used resources are released at the end, the final value
is f(|f |) = 0.
Lemma 53. For all f, g ∈ P, v ∈ R, a ∈ R≥0, the following statements hold:

|φa| = a (19)
|f + g| ≤ max(|f | , |g|) (20)
|v · f | = |f | for v ̸= 0 (21)

|f ≫ a| ≤ |f |+ a (22)
|f ≫ a| = |f |+ a for f ̸= 0 (23)

Proof. First we get the trivial cases out of the way:
• Representing φa = 1 · φa, we see that (19) follows directly from Definition 52.
• If f = 0 or g = 0, then (20) is obviously true.
• If f = 0, then (21) and (22) are obviously true.

It remains to show that (20) to (23) hold for f ̸= 0 and g ̸= 0, which allows us to
represent f and g as follows (largest terms underlined):

f = a1 · φt1 + · · ·+ an · φtn with t1 < · · · < tn and an ̸= 0

g = b1 · φu1 + · · ·+ bm · φum with u1 < · · · < um and bm ̸= 0

So |f | = tn and |g| = um. Since v ̸= 0 and an ̸= 0, we have:

van ̸= 0
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This enables us to prove (21):

|v · f | =
∣∣∣va1 · φt1 + · · ·+ van · φtn

∣∣∣ = tn = |f |

Since t1 < · · · < tn, we have:

t1 + a < · · · < tn + a

This enables us to prove (22) and (23):

|f ≫ a| =
∣∣∣a1 · φt1+a + · · ·+ an · φtn+a

∣∣∣ = tn + a = |f |+ a

For (20), we distinguish the following cases:5

tn > um =⇒ |f + g| =
∣∣∣ · · ·+ an · φtn

∣∣∣ = tn

tn < um =⇒ |f + g| =
∣∣∣ · · ·+ bm · φum

∣∣∣ = um

tn = um and an + bm ̸= 0 =⇒ |f + g| =
∣∣∣ · · ·+ (an + bm) · φtn

∣∣∣ = tn

tn = um and an + bm = 0 =⇒ |f + g| =
∣∣∣ · · ·+ 0 · φtn

∣∣∣ ≤ tn

In all cases it follows that:

|f + g| ≤ max(tn, um) = max(|f | , |g|)

3.3. Complete Profiles
Motivation. When working with our algebra, (20) of Lemma 53 is somewhat unsatisfac-
tory:

|f + g| ≤ max(|f | , |g|)

First, this is merely an inequality and doesn’t provide a way to calculate the exact
duration of two added profiles. Second, when two schedules run in parallel, we expect
that their total duration doesn’t shrink. So it runs against our intuition that there exist
profiles f and g such that

|f + g| < max(|f | , |g|)

5Note that in the last case, ≤ cannot be replaced with <. When the last terms cancel out, we may run
into the special case of the zero profile. This effect leads to equality whenever tn = 0. For example,
consider f = 2φ0 and g = −2φ0. Here, tn = 0, um = 0, an = 2, bm = −2 and f + g = 0. So we are
in the case tn = um and an + am = 0, yet we don’t have |f + g| < tn, but |f + g| = tn.
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For these reasons we introduce P*, the set of complete profiles, which is a convenient
subset of P where the desired equality always holds:

|f + g| = max(|f | , |g|)

However, this comes at a price, as P* is not closed under all operations. So when
calculating with complete profiles, we must be aware that some intermediate results
may slip into P \P*. To get the best of both worlds, we try to stay within P* for as long
as possible, but leave it when necessary.

Definition 54 (Complete profiles). We say that a profile f ∈ P is complete if it is
nonnegative and its final value is zero:

f ≥ 0 and f(|f |) = 0

We define P* to be the set of complete profiles, that is:

P* = {f ∈ P | f ≥ 0 and f(|f |) = 0}

Remark. These two conditions are very natural and satisfied by any profile that corre-
sponds to a real schedule.

1. f ≥ 0 means that there are never more resources released than used.
2. f(|f |) = 0 means that all used resources are released at the end.

Profiles that fail to meet these conditions are considered incomplete in the sense that
they seem to describe only a part of a schedule.

1. If f ̸≥ 0, there is a time range of negative resource usage. That is, there are more
resources released than actually in use. We say that f is incomplete, because it
seems the first part of the schedule is missing, containing events that start using
those resources.

2. If f ≥ 0, but f(|f |) ̸= 0, the profile ends with a positive resource usage, using
those forever. We say that f is incomplete, because it seems the second part of the
schedule is missing, containing events that finish using those resources.

Lemma 55. For all f, g ∈ P* the duration of their sum can be calculated via:

|f + g| = max(|f | , |g|) (24)

Proof. If f = 0 or g = 0, then (24) is obviously true. If f ̸= 0 and g ̸= 0, we can
represent f and g as follows (largest terms underlined):

f = a1 · φt1 + · · ·+ an · φtn with t1 < · · · < tn and an ̸= 0

g = b1 · φu1 + · · ·+ bm · φum with u1 < · · · < um and bm ̸= 0

So |f | = tn and |g| = um. It follows that f(tn) = f(|f |) = 0.
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We know that n ̸= 1, because for n = 1 we would have 0 = f(tn) = f(t1) = a1 = an,
which would contradict an ̸= 0.

So n ≥ 2, hence we can apply Lemma 44 to tn as well as tn−1:

f(tn) =
n∑

i=1

ai f(tn−1) =
n−1∑
i=1

ai

Using f ≥ 0, it follows that:

an =
n∑

i=1

ai −
n−1∑
i=1

ai = f(tn)− f(tn−1) = −f(tn−1) ≤ 0

Since an ̸= 0, we conclude an < 0. With similar reasoning, we conclude bm < 0. Hence,

an + bm ̸= 0

Finally, we distinguish the following cases:

tn > um =⇒ |f + g| =
∣∣∣ · · ·+ an · φtn

∣∣∣ = tn = max(tn, um)

tn < um =⇒ |f + g| =
∣∣∣ · · ·+ bm · φum

∣∣∣ = um = max(tn, um)

tn = um =⇒ |f + g| =
∣∣∣ · · ·+ (an + bm) · φtn

∣∣∣ = tn = max(tn, um)

In all cases it follows that:

|f + g| = max(tn, um) = max(|f | , |g|)

Lemma 56. P* is closed under conical combination6 and shift operation. That is,

f + g ∈ P* (25)
v · f ∈ P* for v ≥ 0 (26)

f ≫ a ∈ P* (27)

for all f, g ∈ P*, v ∈ R and a ∈ R≥0.

6A conical combination is a linear combination where all coefficients are nonnegative. [Jet86, p. 51]
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Proof. According to Definition 54, we must prove the following statements:

f + g ≥ 0

v · f ≥ 0

f ≫ a ≥ 0

[f + g](|f + g|) = 0

[v · f ](|v · f |) = 0

[f ≫ a](|f ≫ a|) = 0

Since f ≥ 0 and g ≥ 0, it follows that:

f + g ≥ 0

Since v ≥ 0 and f ≥ 0, it follows that:

v · f ≥ 0

According to (12) and (18), f ≥ 0 implies:

(f ≫ a) ≥ (0 ≫ a) = 0

Without loss of generality, we assume |f | ≥ |g|. It follows that:

g(|f |) = g(|g|) = 0

|f + g| = max(|f | , |g|) = |f |

Hence,

[f + g](|f + g|) = [f + g](|f |) = f(|f |) + g(|f |) = 0 + 0 = 0

For v = 0 we have:

[v · f ](|v · f |) = [0 · f ](|v · f |) = [0](|v · f |) = 0

For v > 0 we apply (21):

[v · f ](|v · f |) = [v · f ](|f |) = v · f(|f |) = v · 0 = 0

For f = 0 we apply (12):

[f ≫ a](|f ≫ a|) = [0 ≫ a](|f ≫ a|) = [0](|f ≫ a|) = 0

For f ̸= 0 we apply (23):

[f ≫ a](|f ≫ a|) = [f ≫ a](|f |+ a) = f(|f |+ a− a) = f(|f |) = 0
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Lemma 57. All finite interval functions in the nonnegative range that are closed to the
left and open to the right are complete profiles. That is, for all a, b ∈ R≥0 with a ≤ b:

χ[a,b) = φa − φb ∈ P* (28)

Proof. For a = b, we have:
χ[a,b) = χ∅ = 0 ∈ P*

For a < b, we first note that χ[a,b) is a profile, because it is a linear combination of
primitive functions:

χ[a,b) = 1 · φa + (−1) · φb ∈ P

Since the image of χ[a,b) is {0, 1}, it follows that:

χ[a,b) ≥ 0

From a < b and Definition 52 it follows that
∣∣χ[a,b)

∣∣ = |φa − φb| = b, hence:

χ[a,b)(
∣∣χ[a,b)

∣∣) = χ[a,b)(b) = 0

So by Definition 54, χ[a,b) ∈ P*.

Lemma 58. The complete profiles are the conical hull7 of all finite interval functions
in the nonnegative range that are closed to the left and open to the right. That is,

P* = coni(I)

where

I =
{
χ[a,b)

∣∣ a, b ∈ R≥0 with a < b
}

Proof. From Lemma 57 it follows that:

I ⊆ P*

According to Lemma 56, P* is closed under conical combination, so we conclude:

coni(I) ⊆ P*

It remains to show that P* ⊆ coni(I). Let f ∈ P* and represent it as follows:

f =

n∑
i=1

aiφti with t1 < · · · < tn

7The conical hull coni(S) is the set of all conical combinations of elements of S. [Jet86, p. 51]
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Further, let 0, b1, . . . , bn be the function values according to Lemma 44. That is,

bk =
k∑

i=1

ai for k = 1, . . . , n

Now, f can be written as:

f(t) =



0 t ∈ (−∞, t1)

b1 t ∈ [t1, t2)

· · ·
bn−1 t ∈ [tn−1, tn)

bn t ∈ [tn,∞)

This translates directly to a linear combination of interval functions:

f = 0 · χ(−∞,t1) + b1 · χ[t1,t2) + · · ·+ bn−1 · χ[tn−1,tn) + bn · χ[tn,∞)

Since bn = f(tn) = f(|t|) = 0, this simplifies to:

f = b1 · χ[t1,t2) + · · ·+ bn−1 · χ[tn−1,tn)

Since f ≥ 0, we know that all bk ≥ 0. So this is not just a linear combination, but a
conical combination. Hence,

f ∈ coni(I)

This proves P* ⊆ coni(I), so in total we have P* = coni(I).

3.4. Arrangement
Motivation. After having defined all basic operations on profiles, we want to calculate
the profile for combined schedules as of Definition 38. However, that operation lacks
useful properties such as associativity. So we introduce an intermediate operation that
arranges two profiles exactly as needed, but does not prepend the additional operations
(checkpoint holding and forward calculation), as illustrated in Figure 8. This arrange-
ment operation has some nice properties and will serve as building block for the real
combination of schedule profiles.

Definition 59 (Arrangement). For two profiles f, g ∈ P we define f arranged with g,
denoted as f ∗ g, to be:

f ∗ g = f ≫ |g|
2

+ g ≫ |f |
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f
g

Figure 8.: Arrangement.

Lemma 60. P* is closed under arrangement. That is, for all f, g ∈ P* we have:

f ∗ g ∈ P*

Proof. Arrangement is just a composition of two shifts and one addition, and P* is closed
under shift and addition (Lemma 56). So P* is also closed under arrangement.

Lemma 61. Arrangement has the following properties for all f, g ∈ P, v ∈ R, a ∈ R≥0:

0 ∗ f = f (29)
f ∗ 0 = f (30)

v · (f ∗ g) = (v · f) ∗ (v · g) (31)
(f ∗ g) ≫ a = (f ≫ a) ∗ g for f ̸= 0 (32)

Moreover, for all f, g, h ∈ P*:

(f + g) ∗ h = f ∗ h+ g ≫ |h|
2

for |f | ≥ |g| (33)

h ∗ (f + g) = h ∗ f + g ≫ |h| for |f | ≥ |g| (34)
|f ∗ g| = |f |+ |g| (35)

(f ∗ g) ∗ h = f ∗ (g ∗ h) (36)

Proof. Let f, g ∈ P, v ∈ R, a ∈ R≥0. We apply (12) and (13) to prove (29) and (30):

0 ∗ f = 0 ≫ |f |
2

+ f ≫ |0| = 0 + (f ≫ 0) = f

f ∗ 0 = f ≫ |0|
2

+ 0 ≫ |f | = (f ≫ 0) + 0 = f

We apply (29) to prove (31) in the case v = 0:

0 · (f ∗ g) = 0 = 0 ∗ 0 = (0 · f) ∗ (0 · g)
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We apply (17) and (21) to prove (31) in the case v ̸= 0:

v · (f ∗ g) = v ·
(
f ≫ |g|

2
+ g ≫ |f |

)
= v ·

(
f ≫ |g|

2

)
+ v · (g ≫ |f |)

= (v · f) ≫ |g|
2

+ (v · g) ≫ |f |

= (v · f) ≫ |v · g|
2

+ (v · g) ≫ |v · f |

= (v · f) ∗ (v · g)

Assuming f ̸= 0, we apply (16), (14) and (23) to prove (32):

(f ∗ g) ≫ a =

(
f ≫ |g|

2
+ g ≫ |f |

)
≫ a

=

(
f ≫ |g|

2

)
≫ a+ (g ≫ |f |) ≫ a

= f ≫
(
|g|
2

+ a

)
+ g ≫ (|f |+ a)

= (f ≫ a) ≫ |g|
2

+ g ≫ |f ≫ a|

= (f ≫ a) ∗ g

From now on, let f, g, h ∈ P*.
For |f | ≥ |g|, we apply (16) and (24) to prove (33) and (34):

(f + g) ∗ h = (f + g) ≫ |h|
2

+ h ≫ |f + g|

= f ≫ |h|
2

+ g ≫ |h|
2

+ h ≫ max(|f | , |g|)

= f ≫ |h|
2

+ g ≫ |h|
2

+ h ≫ |f |

= f ∗ h+ g ≫ |h|
2

h ∗ (f + g) = h ≫ |f + g|
2

+ (f + g) ≫ |h|

= h ≫ max(|f | , |g|)
2

+ f ≫ |h|+ g ≫ |h|

= h ≫ |f |
2

+ f ≫ |h|+ g ≫ |h|

= h ∗ f + g ≫ |h|
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We apply (30) and (29) to prove (35) and (36) for the case g = 0:

|f ∗ 0| = |f | = |f |+ |0|
(f ∗ 0) ∗ h = f ∗ h = f ∗ (0 ∗ h)

For g ̸= 0, we apply (22) and (23) to prove a helper inequality:∣∣∣∣f ≫ |g|
2

∣∣∣∣ ≤ |f |+ |g|
2

≤ |g|+ |f | = |g ≫ |f ||

Using that, we apply (24) and (23) to prove (35) for g ̸= 0:

|f ∗ g| =
∣∣∣∣f ≫ |g|

2
+ g ≫ |f |

∣∣∣∣
= max

(∣∣∣∣f ≫ |g|
2

∣∣∣∣ , |g ≫ |f ||
)

= |g ≫ |f ||
= |g|+ |f |

Finally, we apply (33), (32), (14) and (35) to prove (36) for g ̸= 0:

(f ∗ g) ∗ h =

(
f ≫ |g|

2
+ g ≫ |f |

)
∗ h

= (g ≫ |f |) ∗ h+

(
f ≫ |g|

2

)
≫ |h|

2

= (g ∗ h) ≫ |f |+ f ≫ |g|+ |h|
2

= (g ∗ h) ≫ |f |+ f ≫ |g ∗ h|
2

= f ∗ (g ∗ h)

Remark. The associativity allows us to omit the parentheses as long as we stay in P*:

f ∗ g ∗ · · · ∗ h ∈ P*

Remark. We cannot generalize (33) to (36) from P* to P. For example, consider:

f = φ0 + φ1

g = −φ0

h = φ0
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This would be a counterexample to (35), because:

|f ∗ g| = 0

|f |+ |g| = 1

It would also be a counterexample to (36), because:

(f ∗ g) ∗ h = 2φ0

f ∗ (g ∗ h) = φ0 + φ1

3.5. Algebra Summary
Remark. Up to now, we built a fairly comprehensive algebra. We introduced new no-
tations and rooted them in the theory of linear algebra and partially ordered sets. We
proved that almost everything fits together neatly, and drew clear boundaries around
the issues that didn’t work out as nicely as we may have hoped. After all that, it is time
to take one step back and look at what we’ve got so far.

Throughout this summary we will use the following variables:

a, b ∈ R≥0

v, w ∈ R
f, g, h ∈ P

We introduce the following primitives, operations and relations:

0 ∈ P Definition 43
φa ∈ P Definition 42

f + g ∈ P Definition 43
v · f ∈ P Definition 43

f ≤ g ∈ B Definition 43
f ≫ a ∈ P Definition 49 and Lemma 51

|f | ∈ R≥0 Definition 52
P* ∈ 2P Definition 54

f ∗ g ∈ P Definition 59

These satisfy the following rules within P:

0 + f = f Definition 43
f + g = g + f Definition 43

(f + g) + h = f + (g + h) Definition 43
0 · f = 0 Definition 43
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1 · f = f Definition 43
v · (w · f) = (vw) · f Definition 43
(v + w) · f = (v · f) + (w · f) Definition 43

φa ≥ 0 Lemma 48
φa ≥ φb for a ≤ b Lemma 48

f + h ≤ g + h for f ≤ g Definition 43
a · f ≥ 0 for f ≥ 0 Definition 43

0 ≫ a = 0 Lemma 50
f ≫ 0 = f Lemma 50

(f ≫ a) ≫ b = f ≫ (a+ b) Lemma 50
φa ≫ b = φa+b Lemma 50

(f + g) ≫ a = f ≫ a+ g ≫ a Lemma 50
(v · f) ≫ a = v · (f ≫ a) Lemma 50

f ≫ a ≤ g ≫ a for f ≤ g Lemma 50
|φa| = a Lemma 53

|f + g| ≤ max(|f | , |g|) Lemma 53
|v · f | = |f | for v ̸= 0 Lemma 53

|f ≫ a| ≤ |f |+ a Lemma 53
|f ≫ a| = |f |+ a for f ̸= 0 Lemma 53

f ∗ g = f ≫ |g|
2

+ g ≫ |f | Definition 59

0 ∗ f = f Lemma 61
f ∗ 0 = f Lemma 61

v · (f ∗ g) = (v · f) ∗ (v · g) Lemma 61
(f ∗ g) ≫ a = (f ≫ a) ∗ g for f ̸= 0 Lemma 61
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And they satisfy the following additional rules for f, g, h ∈ P*:

0 ∈ P* Definition 54
φa − φb ∈ P* for a ≤ b Lemma 57

f + g ∈ P* Lemma 56
a · f ∈ P* Lemma 56

f ≫ a ∈ P* Lemma 56
f ∗ g ∈ P* Lemma 60

f ≥ 0 Definition 54
f(|f |) = 0 Definition 54
|f + g| = max(|f | , |g|) Lemma 55

(f + g) ∗ h = f ∗ h+ g ≫ |h|
2

for |f | ≥ |g| Lemma 61

h ∗ (f + g) = h ∗ f + g ≫ |h| for |f | ≥ |g| Lemma 61
|f ∗ g| = |f |+ |g| Lemma 61

(f ∗ g) ∗ h = f ∗ (g ∗ h) Lemma 61

3.6. Schedule Profiles
Motivation. Now that we built our algebra, it is time to apply it to reversal schedules.
We start with the elementary schedule ε and continue with the composition of schedules.
We will simultaneously consider processes profiles as well as resources profiles.

Definition 62 (Elementary profile). We define the elementary profile e to be:

e ∈ P*

e = φ0 − φ2

Lemma 63. The profile e describes the processes profile as well as the resources profile
of the elementary schedule ε. That is:

procp ε = e

resp ε = e

Proof. Schedule ε starts with a preparation step from time 0 to time 1, that is, φ0−φ1.
This is followed by a reversal step from time 1 to time 2, that is, φ1 − φ2. Their sum is
(φ0 − φ1) + (φ1 − φ2) = φ0 − φ2 = e.
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Lemma 64 (Profile composition). The composition of two profiles f, g ∈ P is one of the
following operations, depending on whether we deal with processes or resources profiles:

[f, g] = f ∗ g + φ0 − φ |g|
2

(processes)

(f, g) = f ∗ g + 2φ0 − φ |g|
2

− φ|f | (resources)

That is, for all schedules S and T we have:

procp (S, T ) = [procpS, procpT ]

resp (S, T ) = (respS, respT )

Proof. To understand how this describes the composition of schedules, we must expand
the arrangement operation f ∗ g and reorder the summands:

[f, g] =

(
φ0 − φ |g|

2

+ f ≫ |g|
2

)
+ g ≫ |f |

(f, g) =

(
φ0 − φ |g|

2

+ f ≫ |g|
2

)
+

(
φ0 − φ|f | + g ≫ |f |

)
These expressions correspond directly to the following natural language description of
Definition 38:

• For the processes profile [f, g], we count the forward steps from time 0 to time |g|
2 ,

followed by f starting at time |g|
2 . Concurrently, g starts at time |f |.

• The resources profile (f, g) is almost identical, except that we also count the check-
point holding from time 0 to time |f | before starting g at time |f |.

Motivation. Since we are dealing with profiles of real schedules, we expect the composi-
tion operations to preserve complete profiles. Also, we expect the total duration to be
the sum of the individual durations. Just to be sure, we show both properties formally.

Lemma 65. P* is closed under composition. That is, for all f, g ∈ P*:

[f, g] ∈ P*

(f, g) ∈ P*

Proof. First, we apply Lemma 57 to 0 ≤ |g|
2 and 0 ≤ |f |:

φ0 − φ |g|
2

∈ P*

φ0 − φ|f | ∈ P*
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According to Lemmas 56 and 60, we know that P* is closed under addition and arrange-
ment. Hence,

[f, g] = f ∗ g +
(
φ0 − φ |g|

2

)
∈ P*

(f, g) = f ∗ g +
(
φ0 − φ |g|

2

)
+
(
φ0 − φ|f |

)
∈ P*

Lemma 66. For all f, g ∈ P*:

|[f, g]| = |(f, g)| = |f |+ |g| (37)

Proof. This is a direct application of (24) and (35):

|[f, g]| = max
(
|f ∗ g| , 0, |g|

2

)
= max

(
|f |+ |g| , 0, |g|

2

)
= |f |+ |g|

|(f, g)| = max
(
|f ∗ g| , 0, |g|

2
, |f |

)
= max

(
|f |+ |g| , 0, |g|

2
, |f |

)
= |f |+ |g|

Lemma 67 (Profiles of small schedules). The profile of ε is:

e = φ0 − φ2

|e| = 2

The profile of (ε, ε) is:

[e, e] = φ0 + φ2 − φ3 − φ4

(e, e) = 2φ0 − φ3 − φ4

|· · ·| = 4

The profile of ((ε, ε), ε) is:

[[e, e], e] = φ0 + φ3 − φ5 − φ6

((e, e), e) = 2φ0 + φ1 − φ4 − φ5 − φ6

|· · ·| = 6

The profile of (ε, (ε, ε)) is:

[e, [e, e]] = φ0 + φ2 − φ5 − φ6

(e, (e, e)) = 2φ0 + φ2 − φ4 − φ5 − φ6

|· · ·| = 6

Remark. These schedules are depicted in Figure 6. Moreover, Figure 7 shows the re-
sources profile of (ε, (ε, ε)).
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Proof. This is just an exercise in expanding the terms by applying the definitions:

|e| = |φ0 − φ2|
= 2

[e, e] = e ∗ e+ φ0 − φ1

= (e ≫ 1) + (e ≫ 2) + φ0 − φ1

= (φ1 − φ3) + (φ2 − φ4) + φ0 − φ1

= φ0 + φ2 − φ3 − φ4

(e, e) = e ∗ e+ 2φ0 − φ1 − φ2

= (e ≫ 1) + (e ≫ 2) + 2φ0 − φ1 − φ2

= (φ1 − φ3) + (φ2 − φ4) + 2φ0 − φ1 − φ2

= 2φ0 − φ3 − φ4

[[e, e], e] = [e, e] ∗ e+ φ0 − φ1

= ([e, e] ≫ 1) + (e ≫ 4) + φ0 − φ1

= (φ1 + φ3 − φ4 − φ5) + (φ4 − φ6) + φ0 − φ1

= φ0 + φ3 − φ5 − φ6

((e, e), e) = (e, e) ∗ e+ 2φ0 − φ1 − φ4

= ((e, e) ≫ 1) + (e ≫ 4) + 2φ0 − φ1 − φ4

= (2φ1 − φ4 − φ5) + (φ4 − φ6) + 2φ0 − φ1 − φ4

= 2φ0 + φ1 − φ4 − φ5 − φ6

[e, [e, e]] = e ∗ [e, e] + φ0 − φ2

= (e ≫ 2) + ([e, e] ≫ 2) + φ0 − φ2

= (φ2 − φ4) + (φ2 + φ4 − φ5 − φ6) + φ0 − φ2

= φ0 + φ2 − φ5 − φ6

(e, (e, e)) = e ∗ (e, e) + 2φ0 − φ2 − φ2

= (e ≫ 2) + ((e, e) ≫ 2) + 2φ0 − φ2 − φ2

= (φ2 − φ4) + (2φ2 − φ5 − φ6) + 2φ0 − φ2 − φ2

= 2φ0 + φ2 − φ4 − φ5 − φ6

Motivation. We clearly see that our new multiplications as of Lemma 64 are not asso-
ciative, as associativity fails to hold for simples examples:

[e, [e, e]] ̸= [[e, e], e]

(e, (e, e)) ̸= ((e, e), e)

This is no surprise, as these decribe the profiles of (ε, (ε, ε)) respectively ((ε, ε), ε), which
are different schedules with different resource usage.

So we follow the usual approach when associativity fails: We calculate the associator
for each type of multiplication. Note that although we borrow that term from the theory
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of nonassociative algebras [Sch66, p. 13], there are important differences to keep in mind:

1. Our multiplications as of Lemma 64 are not bilinear, so their associators are not
linear in each argument, either. Hence, the classic results about nonassociative
algebras are not applicable here. [Sch66, p. 1]

2. We calculate [f, [g, h]]− [[f, g], h] instead of [[f, g], h]− [f, [g, h]] to make the right-
hand sides easier to understand. That is, our associators have the reverse sign.

Lemma 68 (Associators). For all complete profiles f, g, h ∈ P*:

[f, [g, h]]− [[f, g], h] = φ|f | − φ|f |+ |h|
2

(38)

(f, (g, h))− ((f, g), h) = φ|f | − φ |h|
2

(39)

Proof. We expand the first term using Lemma 64, (37), (34), (36), (15) and (16). The
remaining terms expand in almost the same way.

[f, [g, h]] = f ∗ [g, h] + φ0 − φ |[g,h]|
2

= f ∗
(
g ∗ h+ φ0 − φ |h|

2

)
+ φ0 − φ |g|+|h|

2

= f ∗ g ∗ h+
(
φ0 − φ |h|

2

)
≫ |f |+ φ0 − φ |g|+|h|

2

= f ∗ g ∗ h+ φ|f | − φ|f |+ |h|
2

+ φ0 − φ |g|+|h|
2

= f ∗ g ∗ h+ φ0 − φ |g|+|h|
2

+ φ|f | − φ|f |+ |h|
2

[[f, g], h] = f ∗ g ∗ h+ φ0 − φ |g|+|h|
2

Subtracting both equations proves (38). Further,

(f, (g, h)) = f ∗ g ∗ h+ 2φ0 − φ |g|+|h|
2

− φ|f |+ |h|
2

− φ|f |+|g| + φ|f |

((f, g), h) = f ∗ g ∗ h+ 2φ0 − φ |g|+|h|
2

− φ|f |+ |h|
2

− φ|f |+|g| + φ |h|
2

Subtracting both equations proves (39).

Remark. In this proof, we see clearly how the introduction of the associative arrangement
operator “∗” payed off, as promised in Section 3.4.
Motivation. Our associators have a surprisingly simple form. Both are independent of g.
Moreover, only the durations of f and h matter, not their exact shape. This gives rise
to the main theorem in this section:
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Theorem 69 (Associator inequalities). For all complete profiles f, g, h ∈ P* with |h| > 0:

[f, [g, h]] > [[f, g], h] (40)

(f, (g, h)) ≥ ((f, g), h) for |f | ≤ |h|
2

(41)

(f, (g, h)) < ((f, g), h) for |f | > |h|
2

(42)

Remark. This theorem helps us to decide how to combine three schedules. Should we
combine them as (f, (g, h)) or as ((f, g), h)?

• If |f | ≤ |h|
2 , we should always use ((f, g), h), because that one uses fewer processes

and not more resources. This is demonstrated in Figure 9.
• If |f | > |h|

2 , we should consider both variants, because ((f, g), h) uses fewer pro-
cesses, but (f, (g, h)) uses fewer resources.

−→

Figure 9.: Associator inequality.

Proof. Applying (11) to |f | ≤ |f |+ |h|
2 leads to:

φ|f | ≥ φ|f |+ |h|
2

Moreover, since |h| > 0 we know that φ|f | ̸= φ|f |+ |h|
2

. Hence,

φ|f | > φ|f |+ |h|
2

In the same way, we conclude:

φ|f | ≥ φ |h|
2

for |f | ≤ |h|
2

φ|f | < φ |h|
2

for |f | > |h|
2

53



Finally, we apply Lemma 68 to prove (40) to (42):

[f, [g, h]]− [[f, g], h] = φ|f | − φ|f |+ |h|
2

> 0

(f, (g, h))− ((f, g), h) = φ|f | − φ |h|
2

≥ 0 for |f | ≤ |h|
2

(f, (g, h))− ((f, g), h) = φ|f | − φ |h|
2

< 0 for |f | > |h|
2
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4. Optimal and Suboptimal Schedules
In this chapter we will develop a double sequence Sp

k of schedules, each of which will use
no more than p processes and k resources. Ideally, every Sp

k would be optimal in the
sense that it achieves the maximum reach ℓ, given p and k with p ≥ 1 and k ≥ p. That
is, we would like to have:

ℓ(Sp
k) = ℓmax(p, k)

At present, however, only certain classes of optima are known. For the remaining classes
suboptimal schedules are provided. Those schedules will provide a lower bound on the
maximum reach:

ℓ(Sp
k) ≤ ℓmax(p, k)

All schedules Sp
k are implemented in the tool (Appendix A).

4.1. Fibonacci Schedules
Definition 70 (Fibonacci schedules). We define Sk

k to be the optimal schedules for
p = k developed in [Wal99]:

S1
1 := ε

S2
2 := (ε, ε)

Sk
k :=

(
Sk−2
k−2 , S

k−1
k−1

)
for k ≥ 3

Example 71. Some of these schedules are shown in Figure 10.

Remark. We refer to these schedules as Fibonacci schedules, because they exhibit the
same recursive structure as the Fibonacci numbers, and because their reaches ℓ are
exactly the Fibonacci numbers (shifted by one position):

ℓ(Sk
k ) = ℓmax(k, k) = Fk+1

As explained in Section 1.3, these schedules are also optimal for p ≥
⌈
k+1
2

⌉
, but we will

not necessarily define S
⌈ k+1

2 ⌉
k , S

⌈ k+1
2 ⌉+1

k , . . . , Sk−1
k to be Sk

k . Instead, we will define those
Sp
k separately in the following sections, which may lead to different schedules that fit

better into the systematics of the sequence for that respective p.
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S4
4 = ((ε, ε), (ε, (ε, ε)))

procpS4
4 = φ0 + φ4 + φ5 − φ7 − φ9 − φ10

respS4
4 = 2φ0 + φ3 + φ4 − φ7 − φ8 − φ9 − φ10

ℓ(S4
4) = 5

S5
5 = ((ε, (ε, ε)), ((ε, ε), (ε, (ε, ε))))

procpS5
5 = φ0 + φ6 + φ7 − φ13 − φ15 − φ16

respS5
5 = 2φ0 + φ5 + φ6 + φ7 − φ11 − φ13 − φ14 − φ15 − φ16

ℓ(S5
5) = 8

S6
6 = (((ε, ε), (ε, (ε, ε))), ((ε, (ε, ε)), ((ε, ε), (ε, (ε, ε)))))

procpS6
6 = φ0 + φ10 + φ12 + φ13 − φ15 + φ16 − φ18 − φ23 − φ25 − φ26

respS6
6 = 2φ0 + φ8 + φ10 + φ11 + φ12 − φ18 − φ21 − φ23 − φ24 − φ25 − φ26

ℓ(S6
6) = 13

Figure 10.: Optimal schedules for p = k. These Fibonacci schedules are also optimal for⌈
k+1
2

⌉
≤ p ≤ k.
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4.2. Exhaustive Search
An exhaustive search has been implemented to find optimal schedules for small val-
ues p and k. This search has been implemented in OCaml, more to that in Ap-
pendix A. One particularly interesting schedule discovered by the search is presented
in Appendix D.

The search result is summarized in Figure 11, which lists the maximum reach ℓmax(p, k)
of the found schedules. Unknown values that could not be computed within an accept-
able amount of time are marked as “?”. Rows and columns with known continuation
are marked as “· · · ” and will be explained in the following sections. Columns whose
continuation is conjectured are marked as “(· · ·)”. Values which are inapplicable because
of p > k are marked as “—”. Values which correspond to the already known Fibonacci
schedules (p ≥

⌈
k+1
2

⌉
) are written in parentheses.

To increase the range of the exhaustive search, it has been reformulated via integer
linear programming and also via Petri nets. [Che14, p. 9] Interval Petri nets [PZ13]
have been considered, too, but were discarded because they are even more computa-
tionally expensive to analyze, and because classic Petri nets are already sufficient to
describe parallel reversal schedules. Unfortunately, none of these approaches provided
any improvement over the directly implemented search.

Moreover, the need for an exhaustive search diminished, given the schedules presented
in the following sections.

ℓmax(p, k) p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p ≥ 7

k = 1 (1) — — — — — —
k = 2 1 (2) — — — — —
k = 3 1 (3) (3) — — — —
k = 4 1 4 (5) (5) — — —
k = 5 1 5 (8) (8) (8) — —
k = 6 1 6 12 (13) (13) (13) —
k = 7 1 7 17 (21) (21) (21) · · ·
k = 8 1 8 23 32 (34) (34) · · ·
k = 9 1 9 30 47 (55) (55) · · ·
k = 10 1 10 38 67 84 (89) · · ·
k = 11 1 11 47 ? ? (144) · · ·
k = 12 1 12 57 ? ? ?
k ≥ 13 · · · · · · (· · ·)

Figure 11.: Maximum reach ℓmax of small schedules. Notation: “?” = unknown,
“· · · ” = continuation is known, “(· · ·)” = continuation is conjectured,
“—” = inapplicable, “(Fn)” = corresponds to a Fibonacci schedule.
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4.3. One Process
Definition 72. For p = 1, we define:

S1
k := ε for all k ≥ 2

Note that S1
1 = ε is already defined in Section 4.1.

Example 73. For completeness, this simple schedule is depicted in Figure 12.

Theorem 74. The schedules S1
k are optimal, that is:

ℓmax(1, k) = ℓ(S1
k) = 1

The profiles are:

procpS1
k = φ0 − φ2 procS1

k = 1

respS1
k = φ0 − φ2 resS1

k = 1

Proof. S1
1 = ε is the only schedule that needs just one process, because all schedules for

reversal of more than one physical step need to run a P and an R action in parallel.
Since this is the only schedule for p = 1, it is the optimum. The profiles are given by
Lemma 63. The maximum resources and processes follow directly from the profiles.

S1
1 = S1

2 = · · · = S1
k = ε

Figure 12.: Optimal schedules (all identical) for p = 1.
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4.4. Two Processes
Definition 75. For p = 2, we define:

S2
k :=

(
S2
k−1, ε

)
for k ≥ 3

Note that S2
2 = (ε, ε) is already defined in Section 4.1.

Example 76. Some of these schedules are shown in Figure 13.

Theorem 77. The schedules S2
k for k ≥ 3 are optimal, that is:

ℓmax(2, k) = ℓ(S2
k) = k

The profiles are:

procpS2
k = φ0 + φk − φ2k−1 − φ2k procS2

k = 2

respS2
k = 2φ0 +

k−2∑
i=1

φi −
2k∑

i=k+1

φi resS2
k = k

Proof. The profiles are calculated via Lemma 64. The reach ℓ(S2
k) = k follows directly

from the profile durations
∣∣procpS2

k

∣∣ = ∣∣respS2
k

∣∣ = 2k. The maximum resources and
processes also follow directly from the profiles, as the maximal partial sum of the coef-
ficients.

We will show optimality by contradiction. Assume for some k that we found a schedule
S′ which needs at most k resources, but reverses ℓ = k + 1 physical steps. During
reversal, the two processes are needed for the parallel P and R actions, so there can’t be
any F action during the second half of the schedule. This means that all physical steps
k− 1, . . . , 1 must be given by C actions. In particular, during the first reversal we have:

• one R action for the physical step k + 1,
• one P action for the physical step k, and
• one C action for each of the physical steps 1, . . . , k − 1.

In total, we have k + 1 actions in parallel, which contradicts our assumption that S′

needs at most k resources. Hence, the S2
k are optimal.
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S2
4 = (((ε, ε), ε), ε)

procpS2
4 = φ0 + φ4 − φ7 − φ8

respS2
4 = 2φ0 + φ1 + φ2 − φ5 − φ6 − φ7 − φ8

ℓ(S2
4) = 4

S2
5 = ((((ε, ε), ε), ε), ε)

procpS2
5 = φ0 + φ5 − φ9 − φ10

respS2
5 = 2φ0 + φ1 + φ2 + φ3 − φ6 − φ7 − φ8 − φ9 − φ10

ℓ(S2
5) = 5

S2
6 = (((((ε, ε), ε), ε), ε), ε)

procpS2
6 = φ0 + φ6 − φ11 − φ12

respS2
6 = 2φ0 + φ1 + φ2 + φ3 + φ4 − φ7 − φ8 − φ9 − φ10 − φ11 − φ12

ℓ(S2
6) = 6

Figure 13.: Optimal schedules for p = 2.
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4.5. Three Processes
Definition 78. For p = 3, we define:

S3
4 :=

(
S2
3 , S

2
2

)
S3
k :=

(
S3
k−1, S

2
k−2

)
for k ≥ 5

Example 79. Some of these schedules are shown in Figure 14.

Theorem 80. The profiles of S3
k for k ≥ 4 are:

procpS3
k = φ0 + φℓ + φℓ+1 − φ2ℓ−k+1 − φ2ℓ−1 − φ2ℓ procS3

k = 3

respS3
k = 2φ0 +

k−2∑
i=1

φmi −
2ℓ∑

i=2ℓ−k+1

φi resS3
k = k

where:

ℓ = 2 +
(k − 2)(k − 1)

2

mi = ki− i(i− 3)

2

Their reach is:

ℓ(S3
k) = 2 +

(k − 2)(k − 1)

2

Proof. The profiles are calculated via Lemma 64. The reach, maximum resources and
maximum processes follow directly from the profiles.

Remark. Note that ℓ and mi can also be written as:

ℓ = 2 +
k−2∑
j=1

j

mi =

k−2∑
j=k−i−1

j

which are close to the schedule structures as depicted in Figure 14.
Motivation. The exhausive search in Figure 11 shows that all schedules S3

k have exactly
the optimal reach for 4 ≤ k ≤ 12. It is likely that these are optimal for all k.

Conjecture 81. The schedules S3
k are optimal, that is:

ℓmax(3, k) = ℓ(S3
k) = 2 +

(k − 2)(k − 1)

2
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S3
4 = (((ε, ε), ε), (ε, ε))

procpS3
4 = φ0 + φ5 + φ6 − φ7 − φ9 − φ10

respS3
4 = 2φ0 + φ2 + φ3 − φ7 − φ8 − φ9 − φ10

ℓ(S3
4) = 5

S3
5 = ((((ε, ε), ε), (ε, ε)), ((ε, ε), ε))

procpS3
5 = φ0 + φ8 + φ9 − φ12 − φ15 − φ16

respS3
5 = 2φ0 + φ3 + φ5 + φ6 − φ12 − φ13 − φ14 − φ15 − φ16

ℓ(S3
5) = 8

S3
6 = (((((ε, ε), ε), (ε, ε)), ((ε, ε), ε)), (((ε, ε), ε), ε))

procpS3
6 = φ0 + φ12 + φ13 − φ19 − φ23 − φ24

respS3
6 = 2φ0 + φ4 + φ7 + φ9 + φ10 − φ19 − φ20 − φ21 − φ22 − φ23 − φ24

ℓ(S3
6) = 12

Figure 14.: Optimal schedules for p = 3.
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4.6. Four or more Processes
For p = 1, 2, 3 we observed a constant, linear and quadratic pattern in the schedule
reaches ℓ(Sp

k) as well as in the schedules themselves. Unfortunately, this does not extend
to p ≥ 4. Here we do not observe schedules of cubic growth, they are smaller. More
precisely, from the exhaustive search as of Figure 11 we know that the values of ℓmax(4, k)
for k = 4, 5, 6, 7, 8 are ℓ = 5, 8, 13, 21, 32. Since a cubic function is uniquely determined
by 4 values, we know that the sequence 5, 8, 13, 21, . . . would have to continue with 33,
but it continues with 32. In other words, for p ≥ 4 the schedules do not reach as far as
we might expect.

Since the optimal schedules for p ≥ 4 could not yet be found in a systematic way,
we provide suboptimal schedules. These grow quadratic with k and cubic with p. To
construct them, we start with defining the subschedules to be used.

Definition 82 (Total recalculation schedules). For ℓ ≥ 1, we define Tℓ to be the total
recalculation schedules of reach ℓ:

T1 := ε

Tℓ := (ε, Tℓ−1) for ℓ ≥ 2

Definition 83 (Piled total recalculation schedules). For p ≥ 2 and k ≥ p, we define P p
k

to be the composition of uniform total recalculation schedules to form a pile, with a
smaller schedule T2 on the top:

P p
p := T2

P p
k :=

(
P p
k−1, T2p−3

)
for k ≥ p+ 1

Lemma 84. For all schedules P p
k with p ≥ 3 and k ≥ p+ 1:

ℓ(P p
k ) = 2 + (k − p)(2p− 3) procP p

k = p resP p
k = k

procpP p
k = φ0 +

p−2∑
i=1

φm+2+2i + φℓ −
p−1∑
i=1

φℓ+m+2i − φ2ℓ

respP p
k = 2φ0 +

k−p−1∑
i=1

φi(2p−3) +

p−3∑
i=1

φm+2+2i + φℓ−2 + φℓ−1

−
k−p−1∑
i=1

φℓ+i(2p−3) −
p−2∑
i=1

φℓ+m+2i − φ2ℓ−2 − φ2ℓ−1 − φ2ℓ

where:

ℓ = ℓ(P p
k )

m = ℓ− 2p+ 1
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Definition 85 (Suboptimal schedules). For p ≥ 4, we define:

Sp
p+1 :=

(
P p−1
p , T2p−5

)
Sp
k :=

(
Sp
k−1, P

p−1
k−2

)
for k ≥ p+ 2

Example 86. Figure 15 demonstrates the construction of S4
8 and shows some of the

used subschedules.

Theorem 87. The schedules Sp
k for p ≥ 4 and k ≥ p+ 1 have the following reaches:

ℓ(Sp
k) =

(
(k − p)(k − p− 1)

2
+ 2

)
(2p− 5) + 2(k − p)

For k ≥ p+ 2 they have the following processes profile:

procpSp
k = φ0 +

p−3∑
i=1

φm+4+2i + φℓ + φℓ+2p−5 − φn −
p−2∑
i=1

φℓ+m+2+2i − φ2ℓ

procSp
k = p

where:

ℓ = ℓ(P p
k )

m = ℓ− 2p+ 1

n = 2ℓ− (2p− 5)(k − p)− 2

Proof. The profile is calculated via Lemma 64 using Lemma 84. The reach and maximum
processes follow directly from the profile.

Conjecture 88. For k ≥ p+2 the suboptimal schedules all satisfy the resources require-
ment:

resSp
k = k
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T3 = (ε, (ε, ε))

procpT3 = φ0 + φ2 − φ5 − φ6

respT3 = 2φ0 + φ2 − φ4 − φ5 − φ6

P 3
6 = (((T2, T3), T3), T3)

procpP 3
6 = φ0 + φ10 + φ11 − φ19 − φ21 − φ22

respP 3
6 = 2φ0 + φ3 + φ6 + φ9 + φ10 − φ14 − φ17 − φ19 − φ20 − φ21 − φ22

S4
8 =

((((
P 3
4 , T3

)
, P 3

4

)
, P 3

5

)
, P 3

6

)
procpS4

8 = φ0 + φ31 + φ32 + φ35 − φ50 − φ61 − φ63 − φ64

respS4
8 = 2φ0 + φ11 + φ19 + φ24 + φ27 + φ30 + φ31

− φ50 − φ53 − φ56 − φ59 − φ61 − φ62 − φ63 − φ64

ℓ(S4
8) = 32

Figure 15.: Construction of schedule S4
8 .

66



4.7. Summary
Figure 16 shows the reach of the optimal and suboptimal schedules defined so far. For
comparison, for each new schedule the reach of the largest applicable Fibonacci schedule
is shown in parentheses. For small k the Fibonacci schedules are usually better. For
larger k the advantages of the new schedules become apparent.

Comparing the reach of the suboptimal schedules (p ≥ 4) with the optima calculated
by exhaustive search (Figure 11), we see that S4

8 is indeed optimal. Moreover, S4
9 with

reach 46 < 47 and S4
10 with reach 63 < 67 are close to optimal. However, S5

10 with reach
70 < 84 indicates that with larger p and k the gap will probably become larger.

ℓ
(
Sp
k

)
p = 2 p = 3 p = 4 p = 5 p = 6

k = 1 — — — — —
k = 2 2 (3) — — — —
k = 3 3 (3) 3 (3) — — —
k = 4 4 (3) 5 (5) 5 (5) — —
k = 5 5 (3) 8 (8) 8 (8) 8 (8) —
k = 6 6 (3) 12 (8) 13 (13) 12 (13) 13 (13)
k = 7 7 (3) 17 (8) 21 (21) 19 (21) 16 (21)
k = 8 8 (3) 23 (8) 32 (21) 31 (34) 25 (34)
k = 9 9 (3) 30 (8) 46 (21) 48 (55) 41 (55)
k = 10 10 (3) 38 (8) 63 (21) 70 (55) 64 (89)
k = 11 11 (3) 47 (8) 83 (21) 97 (55) 94 (144)
k = 12 12 (3) 57 (8) 106 (21) 129 (55) 131 (144)
k = 20 20 (3) 173 (8) 398 (21) 565 (55) 679 (144)
k = 30 30 (3) 408 (8) 1033 (21) 1560 (55) 1994 (144)
k = 50 50 (3) 1178 (8) 3203 (21) 5050 (55) 6724 (144)
k = 100 100 (3) 4853 (8) 13878 (21) 22525 (55) 30799 (144)
k = 200 200 (3) 19703 (8) 57728 (21) 94975 (55) 131449 (144)

Figure 16.: Reach ℓ
(
Sp
k

)
of all schedules defined so far. The numbers in parentheses

show the reach of the largest applicable Fibonacci schedule.
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5. Conclusion
As expected, relaxing the central assumption of processor-checkpoint convertibility was
very challenging, and while the research presented within this thesis cannot be a com-
prehensive discussion on that topic, it does provide new insights into what the new
schedules look like, as well as new approaches and tools to analyze them.

Using a new and more compact representation of schedules, it was shown that check-
point persistence still holds, while processor persistence and hence binary decomposition
do not hold anymore. A comprehensive algebra on profile functions was developed,
which provided a compact description of how the schedule profiles behave under various
operations. This algebra enabled the analysis of associators of profiles, which in turn led
to inequalities that ruled out a whole class of schedule compositions that are guaranteed
to provide non-optimal schedules. The profile algebra turned out to be an appropriate
instrument to analyze parallel reversal schedule via their profiles. New optimal schedules
for a small numbers of processes were developed, to be applied in situations where the
known Fibonacci schedules are not applicable. Additionally, suboptimal schedules were
created where optimal schedules could not be found in a systematic way.

Future research may try to find the remaining optimal schedules, or may try to improve
the suboptimal schedules presented here. Also, more assumptions should be relaxed to
make the schedules more realistic. Relaxing the processor-checkpoint convertibility is
only one of many possibilities. For example, the assumption t = t̂ = t̄ = 1 could be
relaxed, to take into account that P and R actions usually take more time than F actions,
which has been done for the Fibonacci schedules but was outside the scope of the new
schedules. In addition, all schedules so far ignore communication costs of transferring
data within a parallel computer system, which is also an open issue for the Fibonacci
schedules.

The profile algebra may be useful in other research fields, as it is very generic at its
core. It should be possible to apply this algebra to any sequence of events, where an
event is considered to by anything that affects resource usage at a certain point in time.
Moreover, the algebra could be generalized to handle multiple resources at once. For
example, instead of having separate profiles for processes and resources, there could
be combined profiles that describe processes and resources at once. This generalized
algebra would be defined on functions f : R → Rn rather than f : R → R, where a
typical profile might look like this:

(
1
0
0

)
φ0 +

(
0
1
0

)
φ2 +

(−1
−1
0

)
φ3. The partial order ≤

would generalize in the usual way and almost all rules of Section 3.5 should still apply.
Only the rules involving φt would have to be rewritten using the new primitive functions
B = {eiφt | i ∈ {1, . . . , n}, t ∈ R≥0}.
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A. Tool for Generating Schedules
Along with this thesis a program has been developed to support the research. Most of
what is formally described here, such as the profile algebra, is also implemented within
that tool. Almost all schedule pictures and profiles have been automatically generated
by this tool. Also, the exhaustive search as of Section 4.2 is implemented within that
tool.

It is implemented in OCaml [INR15], a programming language that provides very good
support for high-level programming, while compiling down to efficient native code whose
speed to comparable to C and C++. The correctness of the program is secured by the
strict ML typesystem combined with a comprehensive set of unit tests. This allows for
fast refactoring, which enabled the program to be developed simultaneously with the
theory, influencing each other.

The tool and related resources will be published at:

https://njh.eu/prs

If the tool “prs” is called without any arguments, the list of commands is shown:

Usage:
prs s PROCESSES RESOURCES
prs sp PROCESSES RESOURCES
prs gen PROCESSES RESOURCES
prs tree TREE
prs tree_letters TREE
prs tree_search MAX_PROCESSES MAX_RESOURCES MAX_REACH
prs old_tree_search PROCESSES MAX_RESOURCES
prs ascii < PRIME_SCHEDULE
prs ascii_small < PRIME_SCHEDULE
prs fibers FIBERS
prs lp PROCESSES REACH
prs search MAX_PROCESSES MAX_RESOURCES
prs latex_tree TREE
prs latex_gen PROCESSES RESOURCES
prs latex_ps < PRIME_SCHEDULE
prs test

The command “prs test” runs all unit tests. “prs search” runs the exhaustive search.
“prs gen” generates the optimal respectively suboptimal schedules as defined in Chap-
ter 4. The commands “prs s” and “prs sp” also generate those schedules, but have
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a less verbose output. Arbitrary binary-decomposable schedules can be analyzed with
“prs tree”.

For example, “prs gen 3 6” generates the optimal schedule for p = 3, k = 6, draws
it in ASCII art, shows the tree structure (where e means ε) and shows the profiles
(where -1@23 means −φ23). Note that the ASCII art schedules are rotated by −90◦.

1 2 |\
1 2 |.\
1 2 |..\
1 2 |...\
1 3 |...|\
1 3 |...|.\
1 3 |...|..\
1 4 |...|..|\
1 4 |...|..|.\
1 5 |...|..|.|\
1 6 |...|..|.||\
1 6 |...|..|.||.\
2 6 |...|..|.|.\/
3 6 |...|..|\.\/
3 6 |...|\.|.\/
3 6 |...||\.\/
3 6 |\..||.\/
3 6 ||\.|.\/
3 6 |||\.\/
2 5 |||.\/
2 4 ||.\/
2 3 |.\/
2 2 .\/
1 1 ./

3 6 12

S = (((((e,e),e),(e,e)),((e,e),e)),(((e,e),e),e))
procp = +1@0,+1@12,+1@13,-1@19,-1@23,-1@24
resp = +2@0,+1@4,+1@7,+1@9,+1@10,-1@19,-1@20,-1@21,-1@22,-1@23,-1@24
reach = 12
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B. Time Split in Schedule Algebra
This appendix demonstrates how to determine what exactly happens within a schedule f
at a certain point in time t, when f is decribed by the schedule algebra as of Chapter 2, To
answer that question, we introduce a time split operation that splits f into a subschedule
before t and a list of subschedules starting at t.

Note that this approach is mentioned just for reference. The recommended way to
deal with time is through schedule profiles as explained in Chapter 3.

Definition 89 (Shortest task duration). The shortest task duration o(f) of a schedule
f ∈ Z⟨A⟩ is the duration of its shortest task:1

o(f) =

{
0 for f = 0

min {|w1| , . . . , |wn|} for f = a1w1 + · · ·+ anwn, wi ∈ A∗, ai ∈ Z \ {0}

Lemma 90 (Time split). For every schedule f ∈ Z⟨A⟩ and time t ∈ {1, . . . , o(f)} there
exist tasks w1, . . . , wn ∈ A∗ and schedules g1, . . . , gn ∈ Z⟨A⟩ such that

f = w1g1 + · · ·+ wngn =
(
w1 · · · wn

)g1
· · ·
gn

 (43)

where |wi| = t and the wi are pairwise distinct and uniquely determined except for their
order.

Proof. From the preconditions it follows that f ̸= 0, because for f = 0 there is no
t ∈ {1, . . . , o(0)} = ∅. So we can represent f as:

f = a1u1 + · · ·+ akuk with uj ∈ A∗, aj ∈ Z \ {0}

For every uj (j = 1, . . . , k) we have t ≤ o(f) ≤ |uj |, hence we can split uj into a prefix pj
of duration t and a suffix sj that may be empty:

uj = pjsj with pj , sj ∈ A∗, |pj | = t

Let T = {p1, . . . , pk} be the set of prefixes and n = |T |. Let {w1, . . . , wn} = T be a
representation of T with pairwise distinct wi for i = 1, . . . , n. Then every pj is equal
to exactly one of the wi. For each i = 1, . . . , n we define gi to contain all suffixes (with

1This is also known as the order [Coh85, p. 60], but that term would be confusing as soon as when we
use it in its other meaning to describe the order within a sequence.
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their coefficients) of tasks whose prefix is pi:

gi =
∑
j

pj=wi

ajsj

This satisfies (43):

n∑
i=1

wigi =
n∑

i=1

∑
j

pj=wi

ajwisj =
n∑

i=1

∑
j

pj=wi

ajpjsj =
n∑

i=1

∑
j

pj=wi

ajuj =
k∑

j=1

ajuj = f

The uniqueness follows from the fact that all wi have the same duration, so these must
be exactly the prefixes of the tasks of f , and those prefixes are uniquely determined
except for their order.

Example 91. We consider again the schedule of Example 12:

f = F 3PR+ FC2FPR+ FC4PR+ C6PR

Splitting f at t = 3 yields:

f =
(
F 3 FC2 C3

) PR
FPR+ C2PR

C3PR



Remark. This lemma can be generalized to work for all t ∈ {1, . . . , |f |} rather than
t ∈ {1, . . . , o(f)}, by introducing an additional summand that contains all tasks whose
duration is small than t.

72



C. Polynomials as Profiles
Motivation. The profile operations defined in Chapter 3 generalize various well-known
operations on polynomials:

1. The addition and scalar multiplication translate directly to polynomials.
2. The shift operation ≫ generalizes the multiplication with monomials Xa · P .
3. The duration operation |f | generalizes the degree of polynomials: degP .
4. The final value f(|f |) generalizes the evaluation at X = 1, which is also known as

the sum of coefficients.

While the connection between polynomials and profile functions became obvious early
in the work on this thesis, it is of no apparent use throughout. The main problems are:

1. Polynomial multiplication doesn’t make sense on profiles. While it does make
sense in the special cases of multiplication with scalars v · P and multiplication
with monomials Xa · P , the multiplication of any two profiles has no apparent
meaning.

2. The partial order ≤, an essential part of the algebra, doesn’t translate well to
polynomials. For example, we might hope that nonnegativity could be handled
by treating polynomials as functions. However, consider the following polynomial
and its corresponding profile:

P = X0 − 2X1 +X2 = (1−X)2

f = φ0 − 2φ1 + φ2

While P is a square and thus P ≥ 0 by any natural definition, we have f(t) = −1
for all t ∈ [1, 2) and hence f ̸≥ 0. Of course, we can apply Lemma 47 directly
to the coefficients of P , but then there disappears yet another advantage of using
polynomials.

Nevertheless, it seems worth mentioning this connection, so we will describe it in exact
terms.

Definition 92 (Polynomials as profiles). We define Ψ to be the uniquely determined
R-linear map between the polynomials R[X] and the profiles P that maps their base
elements as follows:

Ψ: R[X] → P
Ψ: Xa 7→ φa (a ∈ Z≥0)
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Remark. Here we treat R[X] as an ordinary R-linear space with basis (X0, X1, X2, . . . ).
That is, we ignore the possibility of polynomial multiplication and care only about scalar
multiplication.

Lemma 93 (Polynomial operations on profiles). Let F,G ∈ R[X], v ∈ R, a ∈ Z≥0.
Further, let

f = Ψ(F )

g = Ψ(G)

Then:

f + g = Ψ(F +G) (44)
v · f = Ψ(v · F ) (45)

f ≫ a = Ψ(Xa · F ) (46)
|f | = degF (47)

f(|f |) = F (1) (48)

Proof. (44) and (45) follow directly from the definition of Ψ as an R-linear map. The
other equalities are obvious for F = 0. It remains to prove (46) to (48) for F ̸= 0, which
allows us to represent F as:

F =

n∑
i=0

aiX
i with an ̸= 0

Then, we apply Ψ to both sides:

f =

n∑
i=0

aiφi with an ̸= 0

Finally, we apply Lemma 44 at t = n with (t1, . . . , tn+1) = (0, . . . , n):

f(n) =
n∑

i=0

ai

With all that in mind, we can prove (46) to (48):

f ≫ a =

n∑
i=0

aiφi+a =

n∑
i=0

aiΨ
(
Xi+a

)
= Ψ

(
n∑

i=0

aiX
i+a

)
= Ψ(Xa · F )

|f | = n = degF

f(|f |) = f(n) =

n∑
i=0

ai = F (1)
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D. Notable Search Result for p=4, k=8
The exhaustive search produced an interesting optimal schedule for p = 4 and k = 8,
which is shown in Figure 17. Here, processor persistence is violated and cannot be fixed
locally. It is impossible to replace the violating C action with an F action, because
at that time the full number of processes is running. It is only possible to fix this by
replacing another F action at that time with a C action. But that introduces a violation
at that new place, as demonstrated in Figure 18. Moving it further down even leads to
two violations, as seen in Figure 19. Moreover, this second new schedule now uses k = 9
resources, hence it is no longer an optimal schedule. This example demonstrates that in
general it is not possible to deal with violations of processor persistence through local
modifications.

Note, however, that we know that this particular schedule can be fixed globally.
In Section 4.6 we constructed the binary-composable (and therefore processor-persistent)
schedule S4

8 , which has the same optimal reach ℓ = 32.
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