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SUMMARY 

 

 With the end of Dennard scaling, the scaling of device feature size by itself no 

longer guarantees sustaining the performance improvement predicted by Moore’s Law. As 

industry moves to increasingly small feature sizes, performance scaling will become 

dominated by the physics of the computing environment and in particular by the transient 

behavior of interactions between power delivery, power management and thermal fields. 

Consequently, performance scaling must be improved by managing interactions between 

physical properties, which we refer to as processor physics, and system level performance 

metrics, thereby improving the overall efficiency of the system. 

 The industry shift towards heterogeneous computing is in large part motivated by 

energy efficiency. While such tightly coupled systems benefit from reduced latency and 

improved performance, they also give rise to new management challenges due to 

phenomena such as physical asymmetry in thermal and power signatures between the 

diverse elements and functional asymmetry in performance. Power-performance tradeoffs 

in heterogeneous processors are determined by coupled behaviors between major 

components due to the i) on-die integration, ii) programming model and the iii) processor 

physics. Towards this end, this thesis demonstrates the needs for coordinated management 

of functional and physical resources of a heterogeneous system across all major compute 

and memory elements. It shows that the interactions among performance, power delivery 

and different types of coupling phenomena are not an artifact of an architecture instance, 

but is fundamental to the operation of many core and heterogeneous architectures. 

Managing such coupling effects is a central focus of this dissertation. This awareness has 

the potential to exert significant influence over the design of future power and performance 

management algorithms. 



 xvii 

 The high-level contributions of this thesis are i) in-depth examination of 

characteristics and performance demands of emerging applications using hardware 

measurements and analysis from state-of-the-art heterogeneous processors and high-

performance GPUs, ii) analysis of the effects of processor physics such as power and 

thermals on system level performance, iii) identification of a key set of run-time metrics 

that can be used to manage these effects, iv) development of online coordinated power 

management techniques for heterogeneous CPU-GPU-memory systems, and v) a detailed 

evaluation of the impact of these coordinated power management techniques on system 

level metrics.  
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CHAPTER 1  

INTRODUCTION 

 

 Microprocessors have historically enjoyed exponential performance growth due to 

device-geometry scaling guided by Moore’s Law, and supply voltage scaling governed by 

Dennard scaling rules to maintain affordable chip power envelopes. However, with the end 

of Dennard scaling, reducing device feature size by itself no longer guarantees sustaining 

the performance improvement predicted by Moore’s Law. The diminishing voltage scaling 

margins coupled with the steady rise in leakage power at ultra-low voltages have drastically 

elevated power consumption, and risked operating in temperature regimes beyond the 

capability of existing cooling solutions. As industry moves to increasingly small feature 

sizes, performance scaling has become dominated by the physics of the computing 

environment and in particular by the transient behavior of interactions between power 

delivery, power management, and thermal fields. In particular, scaling trends point out that 

achievable performance capacity is limited by the thermal design power (TDP) rather than 

the computational capacity and frequency scaling. This so called Power Wall has presented 

serious challenges to the semiconductor industry, where the costs of developing new 

technology nodes are justified by their performance returns.  

 As W. Dally noted [29], performance scaling in the post-Dennard dark-silicon era 

will involve improving efficiency of power and energy usage instead of clock speed 

scaling. The modern industry shift towards heterogeneous computing is largely in part 

motivated by energy and power efficiencies. The trend towards heterogeneous processors 

continues with Accelerated Processing Units or APUs, which consist of multiple CPU and 

GPU processing elements integrated onto the same die. In the future we also expect to see 

heterogeneous systems with integrated CPU, GPU, and memory. While such tightly 
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coupled systems benefit from reduced latency and improved performance, they also give 

rise to new management challenges due to phenomena such as physical asymmetry in 

thermal and power signatures between the diverse elements and functional asymmetry in 

performance. These asymmetric relationships are sharing increasingly demanding power 

envelopes as we employ denser packaging technologies, e.g., 3D and silicon interposers. 

This leads to complex interactions between processor physics such as power delivery, 

thermal coupling (heat transfer from one element to others) and performance coupling 

(functional dependency among integrated multiple elements). The fundamental problem is 

the manner in which these physical constraints are managed has a major influence on the eventual 

performance of the system. Power management solutions which do not consider and account for 

these interactions can have detrimental effects on system level metrics such as performance and 

energy efficiency. 

 The preceding problem statement indicates that there are a variety of complex 

thermal and performance interactions between the diverse compute and memory elements 

in modern tightly coupled heterogeneous computing platforms that affect the power 

consumption and energy efficiency of the processor. For example, a common state-of-the-

practice mechanism is to boost the frequencies of CPU or GPU cores to utilize all of the 

available thermal headroom for improving performance. Examples include Turbo Core 

from AMD and Turbo Boost from Intel [83][99]. However, due to the tight on-die physical 

integration of heterogeneous compute and memory elements, the power and thermal 

behaviors produce interactions resulting in thermal coupling, where heat generated from 

one core raises the temperature (and leakage power) of adjacent cores and components. In 

addition, overall performance is a function of dependencies between the various elements 

and their fine-grain interactions. For example, the CPU may be feeding data streams to 

sustain computations on the GPU. If these multiple types of physical and functional 

dependencies are not carefully managed, the net effect is inefficient use of all of the 

available power and thermal headroom resulting in lower power efficiency and 
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performance. Past work has addressed dynamic thermal management in multi-core 

processors [14][26][95] and efficient power management in heterogeneous processors 

using emergent applications [68][75][115]. However, they do not directly address some of 

the new management challenges that arise in heterogeneous processors. Relatively few 

efforts to date have targeted understanding, characterizing, and managing the multi-physics 

and multi-scale (nanoseconds to milliseconds) interactions among power, thermals, and 

performance.  

1.1 Thesis Statement 

 The new management challenges point towards the need for chip-scale coordinated 

power management to achieve performance scaling and energy efficiencies under a chip-

wide TDP envelope and power budget. The efficiency with which we can manage these 

interactions will depend on our understanding of the relationships between the physical 

phenomena (power and temperature), functional behaviors (direct and indirect 

performance coupling) and their impact on system performance. Given the trends in 

heterogeneous processors and emerging applications, it is natural to ask: How do processor 

physics and performance interact with respect to modern power management algorithms, 

and how should future power-management solutions account for these interactions? This 

leads to the following thesis statement: Power-performance tradeoffs in heterogeneous 

processors are determined by coupled behaviors between major components due to the i) 

on-die integration, ii) programming model, and the iii) processor physics. Thus, effective 

power management requires coordinated management across all major compute and 

memory components.  

 This thesis demonstrates the needs for coordinated management of functional and 

physical resources of a heterogeneous system. It proposes abstractions with which to 

articulate and reason about how physical behaviors and various coupling effects impact 

system-level performance. It shows that this interaction is not an artifact of an architecture 
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instance, but is fundamental to the operation of many core and heterogeneous architectures. 

Managing such coupling effects is a central focus of this dissertation. This awareness has 

the potential to exert significant influence over the design of future power and performance 

management algorithms. To this end, this thesis i) examines characteristics and 

performance demands of emerging applications using hardware measurements and 

analysis from state-of-the-art heterogeneous processors and high-performance GPUs, ii) 

analyzes the effects of processor physics such as power and thermals on system level 

performance, iii) identifies a key set of run-time metrics that can be used to manage these 

effects, and iv) develops online coordinated power management techniques to optimize 

system level global metrics in heterogeneous CPU-GPU-memory processors.  

1.2 Thesis Contributions 

Specially, the high-level contributions of this dissertation research are as follows:  

Characterization of New Management Challenges: Our studies in this research point 

out that various forms of coupling effects between major subsystems in a processor (CPU, 

GPU, memory) are beginning to dominate energy and performance efficiencies. This 

phenomenon will become more pronounced at future technology nodes. We develop an in-

depth characterization and understanding of the impact of thermal coupling, power 

delivery, and performance coupling on heterogeneous processor performance. We 

demonstrate the practical constraints that physics places on effective architectures at future 

technology nodes and its effects on system-level performance. We also illustrate the 

distinct power and thermal signatures of the various integrated elements that exist in 

modern processors and which require tight coordination of their power states. This 

understanding forms the basis of the remaining work in this dissertation towards 

developing guiding principles for coordinated power management in tightly coupled 

heterogeneous processors, and the encapsulation of these principles in power management 

algorithms and their implementations.  
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Characterization of Emerging Classes of Applications: To acquire a thorough 

understanding of management challenges in modern processors, we perform an in-depth 

characterization of the emerging class of compute applications on integrated CPU-GPU 

processors as well as high performance discrete GPUs. The companion emergence of 

programming models such as CUDA, OpenACC, and OpenCL enable cooperative 

execution of both CPU and GPU towards an application’s overall performance. We show 

that for applications that require cooperative execution of both CPU and GPU cores, state-

of-the-art boost algorithms to utilize available thermal headroom can break down and 

degrade – rather than improve - performance. This is in contrast to other traditional 

applications such as graphics applications where the GPU is the obvious choice, or single-

threaded, general-purpose applications which are suitable for the CPU. We also perform 

extensive scaling studies of these compute class of applications to assess their sensitivities 

to a variety of architectural attributes such as CPU, GPU, number of cores, frequency and 

memory bandwidth to understand their interactions with power, performance, and 

thermals. 

Utilizing knowledge of workloads, the new management challenges and their 

interactions, the next part of the dissertation focuses on building guiding principles, online 

predictors and chip-scale coordinated power management algorithms to optimize system 

level metrics such as performance and energy efficiency under global constraints such as 

thermal limits and power budgets. 

Maximizing Performance under Power and Thermal Constraints: This work examines 

the consequences of thermal coupling and its interaction with power management 

techniques in state-of-the-art heterogeneous processors consisting of a set of CPU and GPU 

cores. We experimentally demonstrate that for classes of applications that utilize both the 

CPU and the GPU, modern boost algorithms that greedily seek to convert thermal 

headroom into performance can interact with thermal coupling effects between the CPU 

and the GPU to degrade performance. We propose a dynamic power-management 
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approach called cooperative boosting (CB) to allocate power dynamically between CPU 

and GPU in a manner that balances thermal coupling against the needs of performance 

coupling to optimize performance under a given power and thermal constraint. Through 

real hardware-based measurements, we evaluate CB against a state-of-the-practice 

commercial boost algorithm and show that overall application performance and power 

savings increase by an average of 10% and 8% (up to 52% and 34%), respectively, resulting 

in average energy efficiency improvement of 25% (up to 76%) over a wide range of 

benchmarks [90]. 

Maximizing Energy Efficiency Under Performance Constraints: This part of the thesis 

examines energy management in a heterogeneous processor consisting of an integrated 

CPU-GPU for high-performance computing (HPC) applications. Energy management for 

HPC applications is challenged by their uncompromising performance requirements and 

complicated by the need for coordinating energy management across distinct core types – 

a new and less understood problem. We examine the intra-node CPU-GPU frequency 

sensitivity of HPC applications on tightly coupled CPU-GPU architectures as the first step 

in understanding power and performance optimization for a heterogeneous multi-node 

HPC system. The insights from this analysis form the basis of a coordinated energy 

management scheme, called DynaCo, for integrated CPU-GPU architectures. We 

implement DynaCo on a modern heterogeneous processor and compare its performance to 

a state-of-the-art power- and commercial performance-management algorithm. DynaCo 

improves measured average energy-delay squared (ED^2) product by up to 30% with less 

than 2% average performance loss across several Exascale and other HPC workloads 

[91][92] . 

Interactions Between Compute and Memory System: In this work, we address the 

problem of efficiently managing the relative power demands of a high performance GPU 

and its memory system. We develop a management approach that tunes the hardware 

platform to maintain balance between the power dissipated in compute and memory access 



 7 

across application phases under tight power and thermal budgets. We propose the use of 

online predictors that can capture performance sensitivities to hardware tunables. Using 

these sensitivity predictors we construct a two-level coordinated power management 

scheme, Harmonia, which configures the hardware to operate at its balance point by 

coordinating the hardware power states of the GPU (i.e. number of compute units and 

compute frequency) and memory system (i.e. memory bandwidth). Through hardware 

based measurements on a commodity GPU, we evaluate Harmonia against a state of the 

practice GPU commercial power management algorithm and show that Harmonia 

improves measured average energy-delay squared (ED2) product by up to 36% with 

negligible performance loss across several representative HPC workloads [89]. 

1.3 Thesis Organization 

The rest of the thesis is organized as follows: 

 CHAPTER 2 discusses the origin of the problem and the current landscape of 

research. It presents a literature survey describing technology trends and limitations that 

are guiding the transition to the heterogeneous computing era. It discusses research 

challenges and current research efforts in heterogeneous processors. It also presents current 

state of the art research on power and thermal management and modeling in both multi-

core and heterogeneous processors. This section will conclude with highlighting important 

challenges and research directions for the future and how addressing such challenges can 

exert significant influence on future performance and power management designs. 

 CHAPTER 3 discusses the necessary background on heterogeneous and massively 

parallel high bandwidth GPU architectures along with their programming models and 

modern power management techniques to establish the generalization of the concepts 

discussed in this dissertation. 

While there has been a large body of work addressing dynamic thermal and power 

management in homogeneous multi-core and heterogeneous processors (as reviewed in 
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CHAPTER 2), these efforts mostly focus on understanding individual physical 

phenomenon and steady state behaviors. They do not directly address some of the new 

management challenges that arise in heterogeneous processors. CHAPTER 4 presents an 

in-depth characterization of the new management challenges in modern processors along 

with extensive studies of emerging classes of applications. This chapter concludes with the 

highlights of the various forms of coupling effects between major subsystems in a 

processor (CPU, GPU, memory) that are beginning to dominate energy and performance 

efficiencies. Managing such coupling effects is the focus of the next few chapters.  

CHAPTER 5 discusses a dynamic power management approach called Cooperative 

Boosting (CB) to coordinate power allocation between CPU and GPU in order to maximize 

performance under the thermal and power constraints of the processor package. This 

chapter presents a characterization of diverse compute elements in terms of their thermal 

signatures and the resulting thermal gradients between diverse compute elements. 

Particular attention is paid to how these physical phenomena affect thermal coupling and 

consequently impact system level performance by affecting power management 

algorithms. This understanding forms the basis for runtime power management using CB. 

In CHAPTER 6 we examine the CPU-GPU frequency sensitivity of HPC 

applications on tightly coupled CPU-GPU architectures. We propose key run-time metrics 

that can be monitored to assess degree of direct and indirect dependencies between CPU 

and GPU for performance coupled operations and use those towards coordinating power 

states to maximize return on performance with additional power allocation. The insights 

from this analysis form the basis of a coordinated energy management scheme, called 

DynaCo, for integrated CPU-GPU architectures where we optimize for energy efficiency 

under performance constraints. 

CHAPTER 7 extends the coordinated power management concepts to the memory 

system including global memory. In the future with the advent of High Bandwidth Memory 

(HBM), Hybrid Memory Cube  (HMC) and other die stacking memory technologies, 
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heterogeneous architectures with integrated GPU and memory will emerge sharing the 

package or chip-level thermal design power envelope (TDP). Thus, we are concerned with 

effectively sharing the power envelope between the memory system and the GPU. In this 

work we discuss the notion of hardware balance and develop a two-level management 

approach that tunes the hardware platform to maintain balance between the power 

dissipated in compute and memory system across application phases. We demonstrate that 

such coordinated power sharing and shifting technique is imperative for future power 

constrained processors and can lead to significant improvement in energy efficiency under 

various effects of power, thermal and performance coupling.  

Finally, CHAPTER 8 concludes with a summary of key research contributions of 

this dissertation and some potential directions for future research. 

Collectively, the power management techniques proposed, demonstrated, and 

evaluated in the course of this thesis substantiates the importance of coordinated power 

management for the efficient operation of current and future heterogeneous processors. 

The techniques also expose general principles that govern the management of power and 

thermal limits. These general principles help place the management of power and thermal 

capacities on par with execution time and memory space as integral to the scaling of 

performance across future technology generations.  
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CHAPTER 2  

ORIGIN OF THE PROBLEM AND RELATED WORK 

 

 This chapter starts by describing the origin of the compute problem and the shift in 

trends towards heterogeneous architectures. It provides an overview of the related research 

in the areas of heterogeneous computing and power management. The chapter concludes 

with identifying some gaps and needs in managing heterogeneous processors.  

2.1 Shift in Compute Paradigm 

 In this section we give an overview of how the industry saw a shift in computing 

paradigm from single core to multi-core to heterogeneous architectures due to power, 

thermal and performance scaling challenges.  

2.1.1 End of Dennard Scaling 

 Innovations in computing industry have been largely driven by improving 

performance of microprocessors through various advancements in semiconductor 

fabrication technology and enhancements in micro-architecture. In April 1965, Gordon 

Moore wrote an article for Electronics magazine titled “Cramming more components onto 

integrated circuits” [78]. He predicted that the number of transistors on a chip would double 

every 12 months to 18 months into the near future. This became known as what is popularly 

called “Moore’s law”. In 1974, Robert Dennard wrote a seminal paper describing 

MOSFET scaling rules for achieving simultaneous improvements in transistor density, 

switching speed and power dissipation [36].  Dennard’s scaling rules observe that voltage 

and current should be proportional to the linear dimensions of a transistor, implying that 
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power consumption will be proportional to the area of a transistor. This property implies 

that shrunk MOSFETs will consume less power, and forms the basis of Moore's Law.  

  Moore’s law combined with Dennard scaling became the guiding principle in 

semiconductor industry by providing designers a roadmap target for effective usage of 

transistors. This enabled faster and increasing clock speeds leading to higher dynamic 

power consumption. Increasing number of transistors also increased leakage power, power 

density and thermal dissipation. Voltage scaling limitations started to arise as lower 

threshold voltages increased sub-threshold leakage. Last but not the least, design 

complexity also increased with the emergence of superscalar pipelined architectures, 

sophisticated cache and branch predictors – all designed to improve single core 

performance. Clock speeds, power and thermal envelopes started to flatten out. However 

the demand for increased performance continued and this prompted a shift from the single 

core paradigm to a multi-core paradigm 

2.1.2 Multi-core and Many-core Architectures 

 Multi-core architectures (CMP) from various companies such as Intel and AMD 

dominate the computing market today [16][99]. However multi-core has brought out 

several other challenges, such as high latency and increased power due to complex cache 

sharing logic, coherency protocols, longer interconnect and evolution of System on Chip 

(SoC). This puts a ceiling on power and performance efficiencies of general-purpose multi-

core processors leading to dark silicon effects. It has limited the number of general purpose 

cores in a package without dissipating a significant amount of power that exceeds the 

capability of traditional cooling systems [40]. The International Technology Roadmap for 

Semiconductors indicates transistor density will continue to increase [55]. Smaller devices 

yield greater levels of integration, yet this poses an organizational question of how to 

achieve throughput and efficiency gains with more transistors while respecting constraints 

http://nick-black.com/dankwiki/index.php/Moore%27s_Law
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in power, clock frequency, and interconnect delay. Hameed et al. [44] observe ASICs can 

be over 500x more energy efficient than CMPs for throughput-oriented tasks. A microcosm 

of the industry shift toward heterogeneity, their work describes a series of transformations 

applied to a soft-core processor transitioning it from a general-purpose programmable CMP 

toward an application-specific processor or accelerator. 

 Accelerators such as GPU, FPGA were initially targeted towards specific 

applications. For example: GPU was traditionally designed for graphics applications that 

exhibit high thread-level parallelism. These architectures have provided high degree of 

parallelism by integrating many simple cores to improve power efficiencies. However, 

general purpose applications with limited parallelism run poorly on such architectures 

because of the high overheads over PCI-e interconnects.   

 This brought the advent of heterogeneous architectures where a number of 

dissimilar cores are integrated onto the same die [65]. The heterogeneity can be at the 

functional level where multiple types of cores supporting different ISAs are integrated, 

such as the integrated CPU-GPU architecture, or it could be at the physical level where 

cores of same ISA with different physical properties are integrated onto the same die, such 

as cores supporting high and low power budgets etc.  

In this dissertation and research, we focus on multi-ISA heterogeneous processor 

architectures with integrated CPU & GPU cores, so it is worth understanding such 

architectures in detail and the general landscape of research. The next few sections describe 

the advantages and research trends in such processors. 

2.1.3 Path to Heterogeneous Computing 

 We are in the era of heterogeneous computing where the trend towards 

heterogeneous processors continues with Accelerated Processing Units or APUs, 

consisting of multiple CPU and GPU cores integrated onto the same die, sharing the same 

memory subsystem. Both AMD and Intel have examples of such heterogeneous processors. 
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This trend is enabled by the abundant availability of parallelism in GPUs and their high 

power efficiencies. 

 

 

 

Figure 1: Research efforts in heterogeneous CPU-GPU architecture. 
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research problems and the current state-of-the-art in addressing some of those research 

questions. 

2.2 Research Efforts in Heterogeneous Architecture 

 Based on a literature survey, we have grouped the major research problems and 

efforts in heterogeneous architecture into three broad categories as shown in Figure 1. We 

believe these are some of the key driving factors enabling new research directions in 

heterogeneous architectures. In the next few sub-sections we will describe some of the 

current state of the art in each of these categories. 

2.2.1 Workload Driven Optimizations 

 One of the challenges with GPUs is their poor performance for general purpose 

non-graphics applications. As CPU and GPU cores are integrated, a significant amount of 

research has been focused on making GPUs more amenable to mainstream computing. This 

spans everything from application development and tuning to compiler optimizations and 

programming models to GPGPU micro-architectural optimizations.  

The tight integration between CPU and GPU has led to the emergence of a new 

class of workloads that were previously not possible to run on a GPU, such as irregular 

applications, and ones that make effective use of all compute resources available in the 

processor. Recent studies [6] have identified throughput-computing applications as an 

emergent class of future applications. In [20][54] the authors focus on the challenge of 

scaling irregular applications such as generalized reductions, irregular reductions and 

MapReduce using the CPU and GPU together in an integrated architecture. Che. et-al 

[18][19] present and characterize Rodinia, a benchmark suite for heterogeneous 

computing. Che et-al also presents Pannotia – a graph library suited for GPU architectures 

[17]. 

Integrated CPU-GPU pairings require two different programming models and 

distinct compilation tool chains to utilize the entire die, thus incurring a significant increase 
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in software complexity. A considerable body of ongoing work examines the feasibility of 

compiling applications for multicore CPUs, GPUs, and other accelerators. Consequently 

new programming models and APIs such as CUDA, OpenCL, and OpenACC have 

emerged. In [37][97] the authors propose a dynamic compilation framework and run-time 

support for heterogeneous systems.  

Current GPUs suffer from two key shortcomings – loss of performance under 

control flow divergence and poor scheduling policies, both of which are important for 

mainstream computing applications. Hence apart from software level optimizations, there 

has been a lot of research in micro architectural optimizations to facilitate running general 

purpose workloads on the GPUs in integrated CPU-GPU systems.  In [43][82], the authors 

explore mechanisms for efficient control flow execution on GPUs via dynamic warp or 

wavefront formation and large warp microarchitectures. GPUs typically use a round-robin 

warp scheduling policy giving equal priority to all concurrently executing wavefronts or 

collection of threads. This is beneficial due to high data locality across threads. However 

as we try to run more and more irregular general purpose applications on the GPU,  round 

robin scheduling may not work due to memory divergence and branch divergence. So the 

authors of [82] propose two-level scheduling where a set of threads are scheduled based on 

some grouping that minimizes divergence. 

2.2.2 Integration Driven Optimizations 

 One of the key steps in the development of next generation systems is a range of 

optimizations targeted towards the efficient use of integrated CPU-GPU and shared 

resources. In this arena, the CPU+GPU system is examined as a whole to better optimize 

its components. Rather than being designed for all workloads, Arora et-al in [4] redefine 

the role of the CPU in the heterogeneous era. They propose that the CPU core design be 

optimized for workloads that the GPGPU executes poorly such as serial code. 

Similarly, there have been research studies to redesign shared resources such as the 

memory hierarchy and interconnects to account for the different demands of CPU-GPU 
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architectures and workloads. In [68], the authors propose a thread level parallelism aware 

last level cache management policy for CPU-GPU systems. Sharing the LLC between 

CPUs and GPUs brings new challenges due to the different characteristics of CPU and 

GPGPU applications. The authors demonstrate that effective caching and cache hit rates 

translate to GPU performance only when there is limited thread level parallelism. Jeong et-

al [57] propose memory controller bandwidth allocation policies for CPU-GPU systems by 

dynamically partitioning off-chip memory based on expected deadlines and Quality of 

Service (QoS) provided to each of the components.  

Another research optimization in CPU-GPU systems has targeted utilizing idle 

CPU or GPU resources. For example, COMPASS [120] proposes using idle GPU resources 

as programmable data prefetchers for CPU code execution. Correspondingly, in [123], the 

authors propose using a faster CPU to prefetch data for slower throughput oriented GPU 

cores.  Similarly, workload partitioning schemes are being proposed such that both CPU 

and GPU compute resources are utilized by matching sections of the code to the better 

entity [75][98]. 

2.2.3 Physical Constraint Driven Optimizations 

 CPUs and GPUs in APUs share many classic hardware resources such as the 

memory hierarchy and interconnect.  In addition, they also share physical resources such 

as power and thermal budget for the die.  A significant body of work has dealt with the 

individual phenomenon of managing power or thermals in the context of homogeneous and 

heterogeneous processors. For example, power and thermal limits typically are addressed 

using a variety of individual techniques including thread scheduling and migration, 

dynamic voltage-frequency scaling (DVFS), power gating (PG), etc.  The following 

subsections give an overview of research in both homogeneous processors as well as 

emerging heterogeneous architectures. 
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2.2.3.1 Power and Thermal Modeling 

 Several research works have proposed analytical and performance-counter based 

models for DVFS and power-performance models and predictions [10][27][50][60][121] 

in multi-core processors. A large body of work exists in power modeling for GPUs. In [48], 

Hong et al. develop an analytical power and performance model for a discrete GPU 

processor. In [72], J. Leng et al develop power models for GPUs that are configurable and 

capable of cycle-accurate predictions.  A number of research efforts have also focused on 

developing computationally efficient, accurate thermal models for processor architectures 

[48][51][52]. There has also been a renewed interest in using machine learning and 

statistical frameworks to construct behavioral models for use in run-times, compilers, and 

even hardware to make scheduling decisions. Techniques to automate the construction of 

models of execution time for GPUs using basic machine learning are described in [58] and 

[63]. In [22][116], authors introduce the notion of machine balance and propose a 

performance and energy roof-line model that provide insights into performance bottlenecks 

and the operational intensity of an application in a particular platform. Such techniques 

focus on model construction and are distinct from model application (e.g., in making 

power-management decisions). 

2.2.3.2 Power Management 

There have been many research efforts that have employed DVFS to improve 

efficiency under a certain constraint such as power or performance. For example: C. Hsu 

et al. apply DVFS techniques to improve power efficiency through CPU-boundedness 

detection [49]. J. Li et al. [73] propose a run-time voltage/frequency and core-scaling 

scheduling algorithm that minimizes the power consumption of general-purpose chip 

multi-processors within a performance constraint. A. Mclaughlin et-al explored optimizing 

performance of graph algorithms under power constraints in a GPU [77]. J. Lee et al. [69] 

analyze throughput improvement of power-constrained multi-core processors by using 

power-gating and DVFS techniques. Recently, there has been a significant interest in the 
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power management of GPUs. Lee et al. [70] propose DVFS techniques to maximize 

performance within a power budget for discrete GPUs. Wang et al. [115] propose a 

workload-partitioning mechanism between the CPU and GPU to utilize the overall chip 

power budget to improve throughput. An overview of different power efficiency 

techniques is presented in [60][96]. Arora et-al investigate power gating mechanisms for 

CPUs in the context of emerging CPU-GPU applications in a heterogeneous architecture 

[5]. Several research works have also proposed compiler-driven [122] and control-theoretic 

[113] approaches for managing power.  

There are also many existing studies investigating main memory power 

management in CPU-memory systems [31][32][33]. For example,[31] applies DVFS to 

memory controllers and DFS to memory channels and DRAM devices, using a simulation 

framework. Authors in [32] propose DVFS for main memory and presents evaluations on 

real hardware. In [33], Deng et-al allocates a power cap to main memory with the aid of a 

runtime DRAM power model. A few prior works also look at coordinated power 

management between CPU and main memory. In [34], authors propose runtime techniques 

to minimize total system energy within a performance constraint for a multi-CPU system, 

using a simulation framework. Another work [35] tries to reduce system energy by 

applying coordinated DFVS across multiple memory controllers (MCs), based on the 

observation of skewed traffic across MCs in multicore server processors. Authors in [41] 

look at policies for power shifting between CPU and memory, without explicitly 

investigating performance dependency between CPU and memory. Regarding GPU-

memory systems, [47] develops an analytic performance model for GPUs around memory 

and thread-level parallelism, without power/energy considerations. 

In the HPC area as well, there has been considerable power management focused 

research work on DVFS for multi-core processors [87][100]. Pakin et al. [87] characterized 

power usage on production supercomputers using production workloads. Laros et al. [67] 

performed extensive large-scale analysis of power and performance requirements for 
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scientific applications in supercomputers based on static tuning of applications through 

DVFS, core, and bandwidth scaling. In [100] Rountree et al. explored energy-performance 

trade-offs for HPC applications bottlenecked by memory and communication. In [101] and 

[102], Rountree et al. investigated speeding up the critical path of an application in a multi-

processor cluster using slack-prediction and leading-load techniques, respectively. In [9] 

Balaprakash et al. described exascale workload characteristics and created a statistical 

model to extrapolate application characteristics as a function of problem size. 

2.2.3.3 Thermal Management 

 Similarly, a large amount of research exists on thermal management in homogenous 

multi-core processor that evolved originally to prevent harmful thermal capacity violations 

of peak temperature. Consequently, architectural efforts have focused first on preventing 

unwanted thermal excursions and have since quickly evolved to balancing the system-level 

performance impact of such management techniques [14][79]. The range of techniques 

include i) activity migration [21], ii) power reduction by various forms of throttling 

[45][118], iii) feedback control [105][106][107][124], or iv) a combination of techniques 

to balance performance loss against thermal management. These techniques are concerned 

primarily with managing peak temperatures. That philosophy continues with the advent of 

multi-core architectures [38] through run-time techniques such as heat-and-run [94] or a 

combination of design- and run-time techniques [79], while more recent work considers 

the impact of reliability [24] and relationships to process variation [66]. The management 

issues naturally evolve to 3D architectures, which exacerbate the thermal management 

problem [25][110]. Architectural techniques are complemented by efforts in the system 

software community primarily through managing power dissipation using various 

scheduling techniques [23][53]. Authors in [104] study thermal management for GPUs. 

Some recent works also include efforts to couple thermal management, cooling 

management, and power management [7][8][95]. The preceding are just a few examples of 
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the extensive knowledge base developed in the past decade or so, and [26][60] provide a 

thorough overview of the techniques. 

 However, none of this research focuses on interactions between power, thermal, 

power management and system performance in a heterogeneous architecture. These 

interactions will become more pronounced at future technology nodes and are amplified 

by heterogeneous architectures with diverse elements running general purpose compute 

applications. Prior works do not address the consequences of tightly coupled heterogeneous 

systems and how to manage them efficiently. As W. Dally noted, performance scaling in 

the post-Dennard era will involve improving efficiency of power and energy usage instead 

of scaling clock speeds [29] 

2.3 Summary  

 The preceding challenges provide motivation for further research to understand and 

analyze the relationship among performance, power management, thermal capacity, and 

thermal interactions between the multiple elements in a heterogeneous architecture for the 

emerging class of general purpose compute applications. It inspires new research directions 

to manage “on-die integration driven” physical constraints and system performance among 

all the components in a heterogeneous processor. We believe that this awareness has the 

potential to exert significant influence over the design of future power-performance 

management algorithms.  The next chapters will provide background information followed 

by describing the power and thermal behaviors in heterogeneous processors in more detail 

leading to the proposed research and thesis statement. 
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CHAPTER 3  

BACKGROUND 

 

 We are in the era of heterogeneous computing where the trend towards 

heterogeneous processors continues with accelerated processing units or APUs, which 

consist of multiple CPU and GPU processing elements, sometimes sharing a unified 

memory address space, integrated onto the same die.  The tight integration of hardware on 

APUs, coupled with the companion emergence of programming models such as CUDA 

and OpenCL, facilitates effective and efficient computation on heterogeneous systems.   In 

the future we expect to see heterogeneous systems with massive parallelism and high 

bandwidth integrated memory e.g., in 2.5D or 3D packages [39][56][74][93][119]. This 

chapter provides the necessary background on heterogeneous and massively parallel high 

bandwidth GPU architectures along with their programming models to establish a 

foundation for the research in this dissertation. 

3.1 GPU/APU Programming Model 

 Post-Dennard performance scaling is achieved by improving efficiency along the 

entire stack from hardware through programming models and applications. To fully exploit 

heterogeneity and the available hardware resources, applications must be redesigned, 

requiring the need for new programming models. In this context, the bulk-synchronous 

parallel (BSP) programming model has been uniformly adopted for massively parallel GPU 

architectures that get rid of global cache coherence and memory level consistencies in lieu 

of coarse and fine-grained thread level parallelism. 

 Since the original formulation of the BSP model by Valiant [112], several industry 

initiatives have adopted variants for general purpose programming on GPUs. CUDA [85] 

and OpenCL [86] are first such examples. This thesis utilizes the OpenCL terminology 
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although the concepts are applicable to analogous elements of the CUDA programming 

model. Both CUDA and OpenCL express programs in terms of a series of compute kernels. 

A host program launches a compute kernel consisting of a 2D/3D grid of work groups 

(thread blocks) where each workgroup is comprised of a block of work-items (threads). 

Work-groups share a block of local data storage (LDS) and vector and scalar general 

purpose registers (VGPR and SGPR). Work-items within a workgroup are also grouped 

into sets of threads called wavefronts (warps) operating in lock step relative to each other. 

For example, 64 threads execute the same instruction on different data using the 64 ALUs 

on an AMD architecture.  

 The BSP model requires global synchronization among all threads leading to some 

threads waiting for others to finish. Programming models like OpenCL and CUDA coupled 

with emerging applications allow for balancing computation among the different compute 

elements in the heterogeneous CPU-GPU architecture to take advantage of the different 

performance-power efficiency points of the CPU and the GPU.  

 Recently AMD (APUs) [83], Intel (Sandy Bridge) [99], and ARM (MALI) [108] 

have released solutions that integrate general purpose programmable GPUs together with 

CPUs on the same die. In this computing model, the CPU and GPU share memory and a 

common address space.  Even though they are different microarchitectures they all 

fundamentally utilize the BSP style of communication and   are comparable e to each other. 

Next sub-section details such architectures.  

3.2 GPU Hardware Design        


 GPUs gain much of their performance from running many parallel compute units 

(CUs) at a moderate frequency. Figure 2 shows a canonical GPU architecture. They 

typically hide memory latency be executing many parallel threads with access to high 

bandwidth memory systems. The GPU itself has many graphics-specific circuits that we 

do not illustrate, because general purpose compute codes primarily use the programmable 
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CUs. There are many of these parallel CUs or streaming processing clusters in modern 

GPUs, and each contains some number of arithmetic logic units (ALUs), which run in a 

SIMD fashion. CUs on GPUs from AMD, for instance, have 64 parallel ALUs [76].  

Similarly, NVIDIA's “Fermi”-class flagship GPU contains four Graphics Processor 

Clusters (analogous to CUs), each partitioned into four SMs (Streaming Multiprocessors) 

[84]. If two threads within a wavefront need to execute different instructions, such as taking 

different branch directions, they use predicated execution and serialize the wavefront 

through both paths. 

 

 

 

Figure 2: Canonical GPU architecture. 

 

 

 

 

 Rather than using out-of-order execution logic like CPUs to avoid delays due to 

long-latency operations, GPUs use more threads. A wavefront is the basic unit of hardware 

scheduling. However, there are resources that are shared among work-groups. These 

resource demands in part govern the number of in-flight wavefronts and hence concurrent 

execution. Many wavefronts are assigned to a single CU, which uses fine-grained 

multithreading to mask delays. GPUs have a hardware-managed cache hierarchy between 
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the CUs and memory system, which is used to hold commonly used read-write data. Each 

CU has some “private” cache, which is actually shared between all of the threads running 

on that CU. The L2 cache sits near the memory controllers and is shared across all of the 

CUs. 

 The common design described above can be configured in a variety of ways to meet 

market demands. CU count, L2 size, and number of memory channels can be varied in 

order to reduce area and costs. The frequency of the chip and the DRAM can be varied in 

order to control power usage, maintain thermal limits, and hit performance targets. It is 

worth noting that in a discrete graphics card (dGPU), the GPU is connected to the host 

CPU through a low bandwidth PCI-e bus, which is why high performance massively 

parallel discrete GPUs have access to their own high bandwidth memory system co-located 

with the GPU chip on the same dGPU card. However, heterogeneous processors, such as 

APUs, put both a CPU and a GPU in the same chip. They replace the PCIe connection with 

custom high-bandwidth interconnects and let the GPU use the system’s DRAM. In future 

we expect the system DRAM to be integrated inside the same package along with CPU and 

GPU in an APU. The exact number of CUs and parallel processors that make up the GPU 

differ between an APU and a dGPU and it typically depends on a variety factors such as 

the peak compute to memory ratio target for that architecture, the target application space, 

power and thermal budgets, design and packaging constraints etc.  

In this thesis we use measurements from state-of-the-art modern heterogeneous 

processors and discrete GPUs to analyze interactions between processor physics and 

performance and evaluate impact of the propose power management techniques. Although 

there are many simulators and analytic frameworks that simulate power, performance and 

thermals for different microarchitectures, simulators cannot really model and capture the 

complex relationships between time-varying real-world workloads, power delivery, 

thermal transients and steady state fields, and performance with high fidelity. Next, we 

provide an overview of the specific architectures - AMD Trinity APU and AMD HD7970 
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dGPU - used in this dissertation. Although we used specific hardware architectures as 

experimental basis, the core concepts, observations and the insights from this dissertation 

are equally applicable to other types of architectures following the bulk-synchronous 

parallel programming model described in Section xxx. 

3.3 Heterogeneous Architecture Overview 

 Systems containing GPUs are, by definition, heterogeneous. The GPU has to 

communicate with the CPU via low latency on-chip interconnect, such as in APU, or over 

PCIe, such as in discrete GPU. Access to the memory interface (shared memory or 

dedicated) brings another dimension to this heterogeneity. 

 

 

   

Figure 3: Die shot of AMD Trinity APU [83]. 

 

 

 

 

 Heterogeneous CPU-GPU processors such as Intel’s SandyBridge [99] and AMD’s 

Trinity APU [83] consist of one or more CPU cores in combination with a GPU core.  Die 
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shots of the AMD  Trinity and the Intel SandyBridge processors are shown in Figure 3 and 

Figure 4, respectively.  They both contain a number of CPU x86 cores paired with caches 

and a GPU in addition to miscellaneous other logic such as a memory controller, power 

controller, and fixed function units such as video encode and decode.  The key point to 

note about both systems is that there are many compute units (CU) in the same package 

and they are in close proximity to each other sharing the same power and thermal budgets 

as well as the heat sink solution.  

 

 

 

 
 

Figure 4: Die Shot of Intel SandyBridge Processor. 

 

 

 

3.3.1     Trinity Accelerated Processing Unit 

 The Trinity APU in Figure 3 contains two PileDriver modules or CPU compute 

units (CUs), AMD Radeon™ GPU cores, and other logic components such as a 

NorthBridge and a Unified Video Decoder (UVD). Each CPU module is composed of two 

out-of-order cores that share the front-end and floating-point units. In addition, each 

module is paired with a 2MB L2 cache that is shared between the cores. The GPU consists 

of 384 AMD Radeon cores, each capable of one single-precision fused multiply-add 
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computation (FMAC) operation per cycle. The GPU is organized as six SIMD compute 

units (CUs), each containing 16 processing units that are four-way VLIW. The memory 

controller is shared between the CPU and the GPU. 

 On the CPU side, there are multiple DVFS states, some of which are software-

visible and can be managed either by the OS through the Advanced Configuration and 

Power Interface (ACPI) specification [1] or the hardware. A few of the DVFS states are 

only visible to and managed by the hardware – in other words, entrance to and exit from 

those states are managed only by hardware. On Trinity, DVFS states can be assigned per 

CPU compute module; however, because the CUs share a voltage plane, the voltage across 

all CUs is set by the maximum-frequency CU.  

The GPU has an independent power plane whose voltage and frequency are 

controlled independently. However, unlike the CPU, the GPU does not have DVFS states 

visible to software. Entrance to and exit from these states are managed entirely in hardware 

with some involvement from the GPU driver.  

3.3.2 Tahiti Discrete GPU 

 The AMD Radeon HD 7970 system is one of the “Southern Island” families of 

AMD graphics processors, and is illustrated in Figure 5.  It features the AMD Graphics 

Core Next (GCN) architecture and is paired with 3GB of GDDR5 memory organized using 

a set of six 64-bit dual channel memory controllers (MC) with maximum bandwidth of 264 

GB/sec.  The processor contains up to 32 compute units or CUs with four SIMD vector 

units in each CU. There are 16 processing elements (PE) per vector unit, called ALUs, 

resulting in a single precision FMAC compute throughput of about 4096GFLOPS. Each 

CU contains a single instruction cache, a scalar data cache, a 16-KB L1 data cache and a 

64-KB local data share (LDS) or software managed scratchpad. All CUs share a single 

768-KB L2 cache. All CUs in the GPU share a common frequency and voltage plane. 
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Figure 5: Tahiti GPU architecture [84]. 

 

 

 

 

3.4 Power Management in Heterogeneous Processors 
 

 This section provides an overview of modern power management techniques on 

current state of the art heterogeneous processors. In an APU, although the CPUs and the 

GPU are on independent power planes, they share the same die and system power supply, 

and hence share the same power and thermal headroom. These heterogeneous processors 

use a sophisticated power-monitoring and management technology, referred to as Turbo 

Boost on Sandy Bridge and AMD Turbo CORE on Trinity, to determine the dynamic 

voltage and frequency scaling (DVFS) states for the CPU and GPU to optimize 

performance given power and thermal constraints. These technologies use some 

combination of measured and approximated power and/or temperature values to monitor 

and guide the power-management algorithm. In addition, unused resources can be 
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dynamically power gated by the hardware to shift power credits to the active regions of the 

die. 

 Typically processor’s power consumption is limited by a system’s ability to both 

deliver power to the device and cool it by removing the heat it generates.  Processor 

manufacturers provide system builders with a Thermal Design Power (TDP) figure for their 

products to allow them to design their systems appropriately. This represents the maximum 

power draw for reliable operation. There are many factors which can affect TDP, including 

workloads, voltage and frequency, leakage and ambient temperature. The maximum 

software-visible voltage and frequency for the processor is defined using a combination of 

heavy activity and worst-case operating conditions. This corresponds to the thermal design 

point (TDP) power for the chip. However, across time-varying workloads it is common for 

the processor to operate well below the TDP power and, therefore, well below the peak 

temperature allowed. The difference between the current and peak temperatures is the 

thermal headroom. Thermal headroom can be utilized by permitting the CPU and/or the 

GPU components to exceed the maximum frequency and TDP power for short periods.  

 Likewise, in a heterogeneous platform with a dGPU, similar thermal-headroom 

based power management techniques can be employed to maximize performance under the 

physical constraints of the chip. Thermal headroom can be used towards boosting the GPU 

compute units to improve performance. In addition, the off-chip DRAM and compute 

processor share the same overall board level power and thermal budget. In future with the 

advent of High Bandwidth Memory (HBM), Hybrid Memory Cube  (HMC) and other die 

stacking memory technologies [93][39][56], heterogeneous architectures with integrated 

GPU and memory will emerge [131] sharing the package or chip-level thermal design 

power envelope (TDP). Thermal headroom driven management techniques can be utilized 

for any of these architectures to improve performance and power efficiency. 
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Figure 6: Thermal entities in an AMD Trinity APU. 

 

  

Power-management algorithms differ in how the timing, extent, and duration of the 

boosted and non-boosted operation are determined. However, regardless of the specific 

implementation, it is safe to say that modern processors dynamically manage power across 

multiple components of the die under fixed power and thermal constraints. For instance, 

both Sandy Bridge and Trinity processors dynamically manage power allocation across the 

CPUs and the GPU under a pre-set thermal and power limit. Next we describe the power 

management algorithms in AMD Trinity APU and AMD Tahiti dGPU used in this 

dissertation. The concepts and methodologies are applicable to other heterogeneous 

processors using power and thermal based management. 

3.4.1 Trinity Power Management 

 AMD's Turbo CORE technology uses the Bidirectional Application Power 

Management, or BAPM, algorithm [83] to manage to thermal limits. BAPM controls the 

power allocated to each thermal entity (TE) in the processor, as shown in Figure 6. TEs are 

defined to be any sub-component of the processor that interfaces with BAPM to report its 
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power consumption and receive its power limits. Once BAPM has assigned power limits, 

each TE manages its own frequency and voltage to fit within that limit. For the Trinity 

system evaluated in this paper, BAPM interfaces with the two CPU compute units (CU0 

and CU1) and the GPU. At regular time intervals, the BAPM algorithm does the following: 

1) Calculates a digital estimate of power consumption for each TE; 

2) Converts the power estimates into temperature estimates for each TE; and, 

3) Assigns new power limits to each TE based on the temperature estimates. 

 

 

Figure 7: RC network modeling thermal coupling in an APU. 

 

 

 To estimate the temperature across the die, the chip is divided into regions in which 

local power and thermal properties are calculated and transfer coefficients (represented as 
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an RC network) are utilized to compute heat transfer among the thermal regions, substrate, 

and package. Temperatures within each region are computed using numerical methods. 

Figure 7 shows the RC network model for thermal coupling used in the BAPM algorithm. 

 The BAPM algorithm is optimized for a fair and balanced sharing of power between 

the TEs. When thermal headroom is available, BAPM proportionally allocates power to 

each TE using a pre-set static distribution weight derived using empirical analysis 

reflecting the individual thermal properties of each TE (i.e., its thermal behavior for a given 

power). Such static allocation is an effective choice in the absence of dynamic feedback 

from application execution. When the core reaches its thermal limit, BAPM reduces the 

allocation of power to all TEs in the system. As a general-purpose state-of-the-practice 

controller, BAPM is designed to provide reasonable performance improvements without 

any significant outliers for today's applications. 

3.4.2 Tahiti Power Management 

 The AMD Radeon HD7970, code-named Tahiti, uses AMD PowerTune technology 

[3] to optimize performance for TDP-constrained scenarios. This enables the GPU to 

automatically adjust power between its DVFS states, based on power and thermal 

headroom availability. It also allows for boosting to a higher frequency state when there is 

headroom. The AMD PowerTune algorithm embedded in the GPU hardware calculates the 

compute frequency based on an internal assessment of the runtime power draw. When the 

GPU is in the highest activity or power state and not exceeding the power and thermal 

limit, it will remain in the highest power state for maximum performance. In the case where 

AMD PowerTune calculates that the GPU is exceeding power and thermal constraints of 

the die, the power is dynamically reduced in a gradual manner by reducing the frequency. 

This works well for managing compute power. However, very little power management 

exists for off-chip memory which shares the same board level power budget on current 

GPUs, and same on-die power and thermal envelope in future 3D die-stacking GPUs 

[74][131]. 



 33 

3.4.3 Memory Power Management 

 DRAM memory is a significant power consumer in a platform – whether it’s the 

global system memory accessible by both CPU and GPU in an APU or the on-board high-

bandwidth memory present in the dGPU card that is accessible by the GPU. One way to 

change memory power is by dynamically adjusting the memory bus frequency, which 

controls the memory controller, DDR PHY and the DRAM devices. DRAM power can be 

further broken down into background, activation/pre-charge, read-write and termination 

power. Changing memory bus frequency has a different impact on each of these 

components. Lowering bus frequency lowers background and PLL power, as well as 

memory controller and PHY power. On the other hand, it can increase read/write and 

termination energy due to longer interval between array accesses. Further, if frequency is 

slowed down to a point where memory latency can no longer be hidden through thread 

level parallelism in the GPU, it can hurt performance significantly and increase the overall 

energy consumption of the platform. In this dissertation, managing memory power refers 

to managing the frequency of the memory channel i.e., the bus interface. 

3.5 Summary 

 This chapter presented the necessary background information to support the rest of 

the thesis. We described modern bulk-synchronous type parallel programming models 

(BSP) and explained the generalization and applicability of the core concepts and insights 

from this dissertation across multiple architectures implementing this BSP model. We also 

provided an overview of the current state-of-the-practice boost algorithms which serve as 

a reference point of comparison for the novel power management techniques proposed and 

evaluated in this dissertation. 
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CHAPTER 4  

NEW MANAGEMENT CHALLENGES IN HETEROGENEOUS 

PROCESSORS 

 

Following the end of Dennard scaling, the major system challenge facing the 

industry is to sustain performance scaling with Moore’s Law while preparing for the 

transition to post-CMOS technologies. From [29], system performance can be represented 

by 𝑃𝑒𝑟𝑓 (
𝑜𝑝𝑠

𝑠
) = 𝑃𝑜𝑤𝑒𝑟(𝑊) ∗ 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (

𝑜𝑝𝑠

𝑗𝑜𝑢𝑙𝑒
). Since power densities remain roughly 

flat, performance scaling must derive from commensurate improvements in efficiency [29]. 

This has two important consequences. First, customization in the form of heterogeneity, 

technology diversity, and architecture asymmetry is the norm. Second, scaling 

performance is achieved by scaling energy efficiency. Thus heterogeneity and energy 

efficiency must be concurrent goals.  

 In heterogeneous processors, multiple components are tightly integrated onto the 

same die. While this results in the sharing of many classical functional resources such as 

the memory hierarchy and interconnect, it also results in the sharing of physical resources 

such as power and thermals by the different components in the package. The different 

components consume power and thermal capacities in different ways at different times and 

their consumption is a time-varying function of workload characteristics, architectural and 

micro-architectural constitution of the various components, as well as the die floor plan.  

This leads to new and complex multi-function, multi-physics and multi-scale management 

interactions and challenges which must be understood in order to improve performance 

and power efficiency of future processors. 

 This chapter presents an in-depth characterization of the new management 

challenges arising from the tight integration of different compute elements and memory in 
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heterogeneous processors. First, it elaborates and explains physical phenomena such as 

thermal coupling that lead to loss of performance and loss of efficiency in heterogeneous 

processors in Section 4.1. Second, in Section 4.2.1, it characterizes the functional 

dependency, i.e. performance coupling of the different compute cores, e.g., CPU and GPU, 

in a heterogeneous processor and demonstrates that tight coordination is indeed needed at 

run-time to manage their power states. Lastly, Section 4.2.2 describes one of the key 

management challenges that arises with the advent of on-package DRAM integration e.g., 

die stacks and EDRAM, where compute and memory share the same power and thermal 

envelope. We explain performance coupling between compute and memory and the notion 

of a hardware balance point and show that imbalances in hardware configuration (i.e. 

compute and memory bandwidth) can lead to significant imbalances in cost (power 

consumption) vs. benefits (performance and power efficiency) in future systems.  

4.1 Thermal Coupling and Thermal Signatures 

 This subsection presents an analysis of thermal coupling effects and attempts to 

articulate concepts for describing the thermal behavior of individual micro-architectural 

components.  

4.1.1 Thermal Coupling 

 Due to the tight on-die physical integration of the CPU and the GPU, heat exchange 

occurs between the heterogeneous cores. In this research, this physical phenomenon is 

referred to as thermal coupling, where heat generated by one core raises the temperature 

(and leakage power) of adjacent cores and components.  

 Figure 8 illustrates the effects of thermal coupling on overall performance using an 

AMD A8-4555M Trinity APU comprised of two dual-core CPU compute units (CU0 and 

CU1) and one six-SIMD unit GPU (Figure 3). More details of the APU are provided in 

Chapter 3.3.1. The left-side y-axis shows measured power relative to time zero, provided 
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by on-chip real-time measurement capability. The right-side y-axis shows the peak die 

temperature normalized to the maximum junction temperature. 

Initially, the GPU operates at its highest frequency and the CUs are fixed at a low-

frequency, low-power state. After the GPU temperature stabilizes, at around 230 seconds, 

additional power is allocated to CU0 and CU1 due to availability of significant thermal 

headroom and they enter a higher-power DVFS state (this is automatically performed by 

the existing chip power management unit). Not only do the CUs increase their power 

dissipation, but due to thermal coupling and the impact of heat on leakage power, the GPU 

power also rises. The increase in system power causes an increase in peak temperature and 

eventually triggers temperature-based throttling of both the CUs and the GPU at around 

267 seconds to maintain a steady-state peak junction temperature. This results in a net 

performance loss for the overall application as the GPU is now running at a lower effective 

frequency than before and the application’s performance is dependent on the GPU 

 

 

Figure 8: Example of the impact of thermal coupling. 
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 This behavior can be attributed to thermal coupling effects between the CPU and 

GPU thermal entities (TEs) defined in Chapter 3.4.1. As the GPU warms up (see Figure 8, 

CU1 has a stronger thermal coupling to the GPU due to its proximity to the GPU (Figure 

3), and so its power is initially higher than that of CU0 although they are both relatively 

low. When they switch to a higher-performing DVFS state, at around 230 seconds, the 

power in both CUs increases, but thermal effects cause CU0 power to exceed CU1 power. 

CU0 is on the edge of the die, and its heat is trapped between the edge of the silicon and 

CU1. The GPU acts as a thermal sink for CU1 due to its larger die area and more distributed 

heat and, as a result, lower temperature. However, once steady state is reached (more than 

267 seconds), CU0 and CU1 temperatures stabilize to roughly equal values. 

 We conducted two additional experiments to support the preceding discussion on 

thermal coupling between the CUs and the GPU. In the first experiment, we boosted the 

CUs to run at a higher power while the GPU executed the same workload at a constant 

voltage and frequency. We observed the GPU temperature was 6oC higher once the CUs 

were boosted, indicating thermal coupling between CU1 and the GPU. 

In the second experiment, we performed temperature measurements with a high-

power, two-thread CPU application. We first pinned the threads to CU0, then pinned them 

to CU1. The GPU is idle and power is managed by BAPM. When the application ran on 

CU0, we observed the peak die temperature was higher than when the application ran on 

CU1, indicating worse heat flow from the CU next to the edge of the die. Further, the GPU 

and idle CU temperatures rose by 13oC when one of the CUs was active with all others 

idle, again indicating heat transfer effects. 

Better coordination of the CPU and GPU power states could have reduced the 

effects of thermal coupling, postponed (premature) throttling, and thereby increased overall 

performance as well as energy efficiency, e.g., joules/instruction. For example, coordinated 

power management ensures a greater percentage of the heat generated is due to useful 

work, e.g., instruction execution, and not wasted. 
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Figure 9: Thermal densities under CPU-centric (left) and GPU-centric (right) 

workloads. 
 

 

 

4.1.2 Thermal Signatures 

Section 4.1.1 discussed the heat transfer properties of the TEs on the die. This 

section details the differences in the thermal characteristics of CPUs and GPUs and how 

they affect performance-coupled applications. 

 The thermal signature of a TE reflects its ability to translate power to temperature. 

It is measured by the distribution of power density across the occupied area. In this sense, 

the thermal signature of a GPU is quite different from that of a CPU – the latter is more 

"thermally dense". In Figure 9, we show on the left side a simulated heat map of the Trinity 

system when running a CPU-centric, L1 cache-resident, high-power workload with an idle 

GPU. The simulated heat map was constructed by feeding measured power levels and 

power density while running the workload into a thermal grid model. The right side shows 

a heat map for HotSpot [19], a GPU-centric workload with the serial portion being executed 

on the CPU. The thermal maps show the steady-state thermal fields produced with the 

BAPM algorithm across the two CPU CUs, the GPU, and the NorthBridge as labeled in 

the figure. Tjmax refers to the maximum junction temperature allowed by the die. The 
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temperature distributions in Figure 9 are steady-state distributions and therefore correspond 

to the region of Figure 8 after 267 seconds (i.e., after the BAPM algorithm throttled the 

CPUs and GPU once they reached peak junction temperature). 

 The thermal characteristics of the workloads vary significantly. The CPU-centric 

workload shows high heat density in the CPU CUs while the GPU-centric workload shows 

a wider and flatter temperature distribution across the GPU. The computational area of the 

CPU, which is where most of the power is consumed, is much smaller than the 

computational area of the GPU. The complex, out-of-order CPU structures combined with 

their relatively small areas lead to higher thermal density for the same power and, thus, 

higher temperatures [52]. The GPU, on the other hand, performs computation across many 

simple in-order SIMD units that encompass a large area, leading to a lower thermal density 

for the same amount of power. 

 There are two consequences to the higher thermal density in the CPU. The first is 

that the CPU consumes its available thermal headroom more rapidly than the GPU when it 

is actively doing computation. . Figure 10 shows the thermal time constant of CPU and 

GPU for a CPU centric workload, where Figure 11 shows the thermal time constant of 

CPU and GPU for a GPU centric workload.  
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Figure 10: Thermal time constant with a CPU-centric workload. 

 

 

Figure 11: Thermal time constant with a GPU-centric workload. 

 

 

  

In our analysis, we observed that the CPU heats up approximately 4X faster that 

the GPU leading to a much smaller thermal time constant on the CPU. As a result, the GPU 
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can sustain a higher power boost than the CPU for a longer period before locally reaching 

the thermal limit. In some cases, this results in sustained power dissipation that is higher 

than the TDP power. For example, in the simulations shown in Figure 9, the TDP of the 

APU complex is 19W; the total power for the CPU-centric workload is 18.8W, while the 

total power for the GPU-centric workload is 19.7W for the same thermal limit. 

The second consequence of the higher thermal density in the CPU is the destructive 

effect of thermal pollution on other components on the die. The rate and extent of thermal 

pollution depends on the thermal signatures of the entities. The distinct thermal signatures 

lead to a larger thermal gradient between the CPU and GPU when the CPU is active than 

when the GPU is active. Heat from the CPU spreads, heating neighboring components, 

increasing leakage, and accelerating temperature rise. The thermal coupling effects can be 

seen in Figure 8 and Figure 9. 

 In a thermally coupled system, the TEs do not influence each other’s performance 

as long as they are all running well below the thermal limit. Power management employs 

boost algorithms to improve performance by pushing the processor to operate near the 

thermal limit, reallocating power across the CPU and the GPU. As shown in Figure 8, 

boosting based on available thermal headroom can sometimes be detrimental to the 

application performance. The complexity of the power-management task is exacerbated in 

heterogeneous systems because application performance relies on components with widely 

varying thermal signatures and coupling. The distinct thermal signatures lead to larger 

thermal coupling across the die when power management across the die is not coordinated.  

4.1.3 Summary 

 The preceding analysis shows that heterogeneous cores have distinct power and 

thermal signatures that give rise to new management challenges. Phenomena such as 

thermal coupling and thermal pollution between compute elements can produce complex 

interactions with performance and can degrade overall system efficiency if power states of 

the cores are largely un-coordinated. In future heterogeneous processors, architects must 
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deal with thermal coupling actively besides power in order to reason about and improve 

overall performance and efficiency of the system. In the next section we will see how lack 

of coordinated management can lead to overall poor efficiencies in heterogeneous systems 

with distinct performance signatures.  

4.2 Performance Coupling 

 As the trend towards heterogeneous processors continues with tightly coupled 

accelerated processing unit (APU) designs, the companion emergence of modern 

programming languages based on the bulk synchronous parallel (BSP) model such as 

CUDA, OpenACC, and OpenCL, is making such processors viable for general purpose and 

scientific computing. However, the tighter integration of CPUs and GPUs and 

consequently emerging workloads and programming models result in greater performance 

dependencies between the CPU, the GPU and the memory subsystem. For example, CPU 

and GPU memory accesses interact in the memory hierarchy causing interference between 

reference streams and consequently impacting performance. Further, in the offload model 

of computation the CPU is responsible for “feeding” the GPU both from the perspective of 

launching computations as well as providing input data and consuming output data. The 

rate at which the CPU can perform these functions determines the utilization of the GPU. 

Too slow and the GPU is underutilized. Too fast and the CPU is stalled. These observations 

are similar to the relationship between the CPU and the memory system leading to the 

notions of compute-bound vs. memory bound workloads.  Thus the overall performance of 

the processor is dependent on the interactions between the CPU, GPU and memory. We 

refer to such performance critical functional dependencies among multiple compute and 

memory elements as Performance Coupling. In the following sub-sections we will describe 

performance coupling between heterogeneous compute elements and between compute 

and memory elements. 
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4.2.1 Performance Coupling between Heterogeneous Compute 
Elements 

 The CPU and GPU have fundamentally distinct performance signatures.  Modern 

GPUs contain hundreds of simple in-order ALUs, hardware thread schedulers, and access 

to fast on-chip and high-bandwidth memories. This translates to excellent peak 

performance and power efficiency for a wide range of applications. However many 

applications that do not have enough thread-level parallelism or have significant serial 

fractions do not map well to the GPU. The bulk synchronous parallel nature of the GPUs 

leads to poor performance on codes that are control flow intensive or which have irregular 

memory access patterns. Codes with irregular control flow, irregular memory accesses, and 

phases with low parallelism are better suited for executing on the complex out-of-order 

CPU as compared to the GPU. The fact is that in emerging applications both the CPU and 

the GPU are candidates for hosting different portions of the computation or data 

processing, i.e., these applications make concurrent use of both the compute engines.  

 Figure 12 shows an example programming model where the host application on the 

CPU launches a kernel consisting of a 2D/3D grid of work groups on the GPU where each 

workgroup is comprised of a block of work-items or threads.  The work-items all execute 

in parallel as long as hardware resources such as registers and data-storage spaces are 

available on the GPU. The host CPU and the GPU have control and data dependencies 

between computations executing on the two types of cores. 
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Figure 12: Bulk-synchronous parallel programming model. 

 

 

 

 

 Figure 13 provides a canonical illustration of performance coupling in a 

heterogeneous processor with two CPU cores and a GPU. The CPU is processing 

computations and placing work in GPU’s command queue for processing. CPU0 and CPU1 

first execute portions of the computation and prepare the data needed for the GPU to start. 

Once completed, CPU0 enqueues a compute kernel (work) into the GPU’s command queue 

at which point the GPU can begin the execution. In this example a slow CPU can starve 

the GPU of data, leading to underutilization of the GPU.   If the rate of consumption of the 

work by the GPU is faster than the CPU can process, the command queue will be mostly 

empty leading to GPU’s starvation. On the other hand, a slow GPU which is not consuming 

the data generated by the CPU fast enough will lead to over-run of the command queue. 

Neither conditions are desirable and must be actively managed to maintain an optimal 

balance in the producer (CPU) – consumer (GPU) relationship. Here for peak GPU 

utilization, the CPU must provide data to the GPU at a rate appropriate to sustain GPU 
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performance and vice-versa.   

 

 

Figure 13: CPU-GPU execution dependency in a heterogeneous processor. 
 

 

Figure 14 illustrates an HPC application running on an AMD Trinity APU. The 

figure shows fine-grain communication between the CPU and the GPU on an OpenCL 

variant of Lulesh with 100 node elements per dimension [59]. The x-axis shows time (in 

milliseconds) and the y-axis shows the CPU utilization as measured by IPC for the multi-

threaded CPU, and the GPU utilization as measured by active clock cycles for the data-

parallel GPU.  

The application is in the start-up phase up to 3200 ms, and the CPU is the primary 

active component. Subsequently, the CPU primarily plays an assist role delivering data to 

the GPU for computation leading to low CPU activity (IPC) and high GPU activity. 

However, there is constant communication between the CPU and the GPU and the 

performance required of each core is a function of the kernel being run. For instance, the 

CalcFBHourGlass kernel has a higher GPU utilization than the 20+ miscellaneous kernels 

in the application. The computational demands of the CPU and the GPU vary across 

program phases, as does the intensity of their interactions. 
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Figure 14:  Example phase behavior in an exascale proxy application (Lulesh). 

 

 

The above analysis attests to the fact that unlike multi-core homogenous 

architectures in which all cores are identical and the majority of threads are identical, the 

CPU and GPU differ in both the architecture and execution models. While the former 

supports asynchronous execution of (relatively) coarse-grain threads, the latter implements 

a model orchestrating the synchronous execution of thousands of thread blocks or 

wavefronts, comprising tens to hundreds of fine-grain threads. Consequently, their energy 

and power behaviors are quite distinct. Further, while the CPU-GPU behaviors are directly 

coupled through the programming model (e.g., through off-load model of kernel execution 

on the GPU), their executions are indirectly coupled via interference within, and 

competition for, shared on-chip resources such as memory controller and on-chip 

interconnect.  

Managing power states of the CPU & GPU without regard to the scope and intensity 

of their (coupled) interactions lead to disproportionate reductions in performance when 

reducing power or energy consumption by moving to lower power states. This again 

demonstrates that lack of coordination can lead to inefficient power management. 
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4.2.2 Performance Coupling between Compute and Memory 
Elements 

While the preceding observations reflect the interaction between cores, the DRAM 

memory system is one of the biggest contributors of overall system power besides compute 

devices and its power and energy signatures are quite distinct from that of the 

heterogeneous cores. For example, Figure 15 illustrates the power distribution in an AMD 

Radeon HD7970 discrete GPU card (dGPU) executing a memory intensive workload 

XSBench [46]. Performance is also coupled between the compute and memory operations 

and their relative demands must be met to sustain application performance. This 

distribution of performance and power consumption between compute and memory must 

operate under a fixed board level power and thermal envelope, while with the advent of 

on-package DRAM e.g., die stacks and EDRAM [39][56][93][131], they must share an 

even tighter package power and thermal envelope.  

 

 

Figure 15: Power breakdown in a typical modern discrete GPU. 

 

 

 In addition to on-die memory integration, future heterogeneous processors are 

expected to have a significantly larger number of parallel processing cores or compute units 

GPUPwr

MemPwr

RestOfCardPwr
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(CU) in order to meet increased compute demands. For example, the national roadmap for 

HPC now has the goal of establishing systems capable of sustained Exaflop (1018 

flops/sec.) performance. However, the road to exascale is burdened by significant 

challenges in the power and energy costs incurred by such machines. Due to dark silicon 

effects it may not be possible to power all of the transistors in a chip [40]. This accentuates 

the problem of effectively sharing the power envelope between the memory system and the 

compute.  

Emerging applications are becoming increasingly unstructured and irregular in 

their memory access patterns. For example, Figure 16 demonstrates the evolution of fine 

grained parallelism over time for a breadth-first search (BFS) algorithm across two 

different input graphs [77]. The X-axis indicates the iteration count and the Y-axis indicates 

the amount of parallelism for that iteration as represented by the number of graph nodes 

per iteration. Due to the synchronization barrier at the end of each iteration, load 

imbalances and critical paths can cause significant reduction in power efficiency by 

reducing hardware utilization. Similarly, memory divergence and memory bandwidth 

access rates also have a large effect on power efficiency.  

 

 
Figure 16: Parallelism over time for two input graphs. 
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4.2.2.1 Application Characterization 

Recognizing the time-varying redistribution of compute and memory demands for 

emerging applications, the first task is to understand the behaviors of such applications to 

identify the performance coupling effects between compute and memory, and the trade-

offs in shifting power from memory to compute or vice-versa. We specifically focus on 

analyzing the relationship between the compute-memory behaviors of the hardware 

platform with that of the applications.  For example, the ops/byte behavior of an application 

(compute operations per byte of memory data transfer) represents the relative demands 

placed on the GPU cores and memory system. Hardware tunables such as the number of 

cores, their operating frequency, and the memory bandwidth collectively capture the 

relative time and power cost of performing operations vs. memory accesses in the hardware 

platform. The ops/byte behavior of the application is time varying and the ops/byte costs 

of the platform depend on the specific values of the hardware tunables such as compute 

frequency or memory bus frequency.  For example, we studied the ops/byte behavior of 

Graph500 [81] running on an AMD Radeon HD7970 GPU with GDDR5 memory [76]. 

More details on HD7970 can be found in Chapter 3.3.2. The ops/byte behavior varied from 

lows of 0.64 ops/byte to bursts of 264 ops/byte.  

High ops/byte ratios imply the memory system can be run at lower speeds relative 

to compute with little to no performance degradation but with lower overall platform 

power. The time varying behavior of the application implies that a lack of continuous 

coordination of the power states of the GPU and memory system can lead to imbalances 

between the power and time costs of compute and memory resulting in significant 

degradation of performance and power/energy efficiencies. Towards this end, the rest of 

this subsection presents a detailed characterization of the relationship between application 

behaviors and settings of hardware tunables for compute throughput and memory 

bandwidth.  
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4.2.2.1.1 Experimental Methodology and Terminology  

The performance scaling and ops/byte characterization of the GPU hardware is 

carried out as follows. The total number of active CUs and CU operating frequency 

produces a peak operation rate (ops/sec) or compute throughput. The memory channel 

frequency determines the peak memory bandwidth (bytes/sec). The ratio provides the 

ops/byte value of the platform hardware for a particular combination of the number of 

active CUs, CU frequency (all operating at the same frequency), and memory bandwidth. 

The number of active CUs can be varied from 4 to 32, and the CU frequency can be varied 

from 300MHz to 1GHz, in steps of 100MHz. A specific setting of CU and CU frequency 

is called the compute configuration. Memory bandwidth can be varied from 90GB/s (at 

475MHz) to 264GB/s (at 1375MHz) in hardware, in steps of 30GB/s (150MHz). A specific 

setting is called the memory configuration. The total number of combinations of compute 

and memory configurations is approximately 450. Each combination reflects a specific 

value of ops/byte delivered by the platform hardware and a specific balance between 

compute and memory bandwidth.  It also reflects a specific balance between power devoted 

to computation vs. memory access. If there is significant imbalance between demanded 

ops/byte of the application and what the platform delivers, execution time and energy 

inefficiencies result.  

4.2.2.1.2 Performance Scaling Trends and Hardware Balance 

We observe that GPGPU kernels show a number of common scaling patterns across 

the hardware configuration state space we have explored. Some patterns are limited by the 

available computational resources, others by the memory bandwidth, and still others can 

be affected by both limitations. We also demonstrate a few non-intuitive scaling patterns, 

such as performance losses from shared cache thrashing and performance plateaus from a 

lack of parallelism.  

Compute-Bound: Figure 17 shows an example performance scaling surface for a 

compute-bound kernel.  Here Y (vertical) axis shows performance normalized to the 
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slowest hardware configuration that we studied. The X (horizontal) axis shows the various 

CU frequencies that we studied (keeping the number of active CUs fixed at maximum 

possible value), and the Z (depth) axis shows the memory bandwidth settings we used.  We 

define compute-bound kernels as those whose performance can be improved by giving 

them more compute resources. Such resources can be of two types – the number of active 

CUs and the core frequency. Typically, the performance of compute-bound kernels is not 

limited by the available memory bandwidth because the memory footprint of such kernels 

is relatively small and/or exhibited good caching behaviors. 

 

 

Figure 17: 3D plot for the performance scaling of a compute bound kernel with 

compute frequency and memory bandwidth. 

 

 

 

We observed that a kernel can be compute-bound for two primary reasons. First, 

there are kernels that do not have enough parallel work, but are (compute) latency sensitive. 
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The performance of such kernels improves as core frequency is scaled but is insensitive to 

the number of CUs. Second, there are kernels that exhibit significant parallelism allowing 

them to achieve higher performance with either higher frequency or CU count. These 

kernels also have low memory footprint and/or good locality that make them less sensitive 

to memory bandwidth. MaxFlops and FFT are both examples of such kernels. The former 

is a computational throughput microbenchmark from the SHOC suite [30] that is 

commonly used in the GPGPU community to stress the hardware against its compute 

limits. The latter is a more traditional high-compute GPGPU application which calculates 

the Fast Fourier Transform [2]. 

 

 

 

Figure 18: Performance scaling of MaxFlops with available ops/byte in hardware. 

 

 Figure 18 describes the corresponding ops/byte behavior of the MaxFlops 

application against platform ops/byte. The X-axis shows the ops/byte provided by the 

hardware. Each curve in the figures corresponds to a fixed memory bandwidth 
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configuration. Each point on the curve is a different compute configuration with increasing 

CU frequency and number of CUs as we move to the right, i.e., increasing ops/byte of the 

platform. The Y-axis shows performance (i.e., 1/execution time). Both the X and Y axes 

are normalized to those of a minimum hardware configuration with 4 active CUs, 300MHz 

compute frequency and 90GB/s memory bandwidth. 

As we can see from Figure 18, increasing compute throughput results in linear 

increase in performance for a fixed memory bandwidth. Also, for the same compute-to-

memory bandwidth ratio in the platform (i.e. same ops/byte value on the x-axis), higher 

available memory bandwidth means higher available compute throughput and hence higher 

performance for this benchmark. However, it is clear that maximum performance (at 27 

normalized performance) is achieved at multiple memory configurations. All these points 

are at the same compute configuration—maximum 32 CUs and maximum 1GHz compute 

frequency. However, the most energy-efficient point is the rightmost point at 27 

normalized ops/byte of x-axis, which corresponds to the lowest memory bandwidth. This 

is because MaxFlops is not memory sensitive—running at the lowest memory bandwidth 

does not hurt performance, but significantly improves energy efficiency.  

Memory-Bound: Memory-bound kernels can generally be described as those that 

are primarily or solely affected by the available memory bandwidth between the GPU and 

its DRAM. In our tests, this is controlled by DRAM bus frequency, which can also affect 

memory latency. Nonetheless, most GPU kernels are latency tolerant due to 

multithreading: they only begin to lose performance when a lack of DRAM bandwidth 

causes the latency of an access to scale with the number of accesses.  
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Figure 19: 3D plot for the performance scaling of a memory bound kernel 

(DeviceMemory) with active compute units (CUs) and memory bandwidth. 

 

 

Figure 20: Performance scaling of DeviceMemory with available ops/byte in 

hardware. 
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 Figure 19 shows how the kernel readGlobalMemoryCoalesced from the 

DeviceMemory microbenchmark scales as CU count and memory frequency are varied. In 

most operating regions (i.e. above 12 CUs), the added compute capabilities do not help. 

DeviceMemory is a benchmark from the SHOC suite [30] that is commonly used in the 

GPGPU community to stress the GPU hardware against its memory limits. DRAM 

bandwidth controls the performance of this kernel. Now consider the corresponding 

ops/byte characteristics of this application in Figure 20. We observe that for each value of 

memory bandwidth, increase in compute throughput does not lead to improved 

performance beyond a hardware ops/byte of around 5. Hardware configurations with 

normalized ops/byte of 5 are balanced configurations where compute throughput just 

saturates the available memory bandwidth. Each memory configuration has a different 

balance point (the knee of the curve) corresponding to a specific compute configuration. 

The optimization problem is the selection of the specific balance point that maximizes 

power and energy efficiencies with minimal impact on performance. Any other 

combination of compute and memory configurations either wastes power and/or leaves 

additional performance gains unexploited. 

Balanced: Balanced kernels are those whose performance depends on both type of 

hardware resources – compute (core frequency and/or CU count) and memory bandwidth. 

As we vary the available compute-to-bandwidth ratio in the GPU hardware, these kernels 

have some optimal ratio that maximizes performance. Making less bandwidth available 

causes a kernel to stall waiting for values to return from memory. Using fewer 

computational resources causes it to become a bottleneck for instruction throughput. 
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Figure 21: 3D plot for the performance scaling of a balanced kernel 

(MatrixMultiplication) with compute frequency and memory bandwidth. 

 

 

 

Figure 21 illustrates how a balanced kernel scales. This shows that for balanced 

kernels, there is a “hill” in the performance curve at some compute-to- bandwidth ratio. 

Moving away from that curve in either direction causes the performance gains to quickly 

drop off. For such kernels, without increasing both core frequency and memory bandwidth, 

the performance gains quickly drop to zero. If, however, the kernel has enough bandwidth, 

the performance scales linearly with added computational power. Figure 21 presents data 

from the mmmKernel kernel in MatrixMultiplication [2], but is generally representative of 

a number of other balanced kernels. It is important to note that not all balanced kernels 

have the same preferred ratio between compute and memory, meaning that the “hill” in the 
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curve may occur at different locations. This type of scaling is often seen in kernels that are 

well designed for modern GPU configurations.  

 

 

Figure 22: Performance scaling of LUD with available ops/byte in hardware. 

 

 

 

Finally, in Figure 22 we show the ops/byte behavior of a balanced application LUD 

and its relation to platform ops/byte balance. LUD is a representative scientific application 

from the Rodinia benchmark suite [18][19] that performs matrix decomposition. The 

application may be compute-bound or memory-bound depending on the choice of compute 

and memory configurations. For higher values of memory bandwidth the application 

remains compute bound across all configurations. For such applications, the best hardware 

balance point corresponds to the configuration that is the highest and rightmost. For LUD 

this is achieved when normalized hardware ops/byte is at around 15, where compute 

throughput most effectively matches memory bandwidth demands. 

0

5

10

15

20

25

30

0 5 10 15 20 25 30

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

Normalized Available ops/byte in Hardware

475MHz MemClk

625MHz MemClk

775MHz MemClk

925MHz MemClk

1075MHz MemClk

1225MHz MemClk

1375MHz MemClk



 58 

 

Figure 23: 3D plot for performance of a kernel that plateaus eventually and does not 

scale. 

 

 

 Other representative scaling patterns: In addition to the above scaling trends, we 

found a few kernels whose performance changes very little with any of the hardware 

resources or stops scaling beyond a certain point. Such behavior often happens because of 

programming errors, interconnect bandwidth limitations or algorithmic limitations such as 

being completely serialized or a single thread doing all the work, or not having enough 

work. An example scaling surface is demonstrated in Figure 23 for Blackscholes [2]. 
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Figure 24: 3D plot for performance of a kernel that peaks and then falls off as more 

resources are added. 

 

 

 

Another interesting scaling trend is seen as described in Figure 24, where the kernel 

shows initial improvement in performance as more resources (number of CUs in this 

example) are added. But the performance peaks and then starts falling as further resources 

are added. The kernel btreefind from the BPT application is an example of such 

performance scaling [28]. Kayiran et al. and Lee et al. have seen similar peaks in 

simulation, which our experiments corroborate [61][71]. 

We found that this problem commonly occurs due to destructive interference 

among threads for the shared L2 cache. In the GPU hardware used in our experiments, the 

L2 cache is shared across all the active CUs. As more CUs are added, more threads are 

activated. This means that each thread gets a smaller share of the L2 capacity if it does not 
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share data with other threads. At some point, the shared L2 size becomes insufficient to 

hold the working set of active threads running in the CUs. At this point, memory requests 

from various CUs interfere with each other, causing cache thrashing. Total bandwidth 

demanded by the application remains the same, but more accesses are now pushed to the 

DRAM system. This leads to reduced GPU performance. Since increasing memory 

bandwidth helps to reduce the L2 miss penalty, these programs benefit from running with 

higher memory bandwidths. 

In general, the above studies point out that the optimal hardware balance point, at 

which the compute and memory demands match the platform costs, varies across 

applications and application phases. It also varies across different hardware platforms. 

4.2.2.2 Power Reduction Opportunities 

 In this section we characterize the power reduction opportunities in choosing the 

optimal hardware balance point. We measure total power at the GPU board level using a 

power instrumentation setup at the PCIe connector interface from mother board to the GPU 

board. Further details of this setup are described in Chapter 7.5. This includes the power 

of the GPU, off-chip DRAM memory, and the remaining board components. In Figure 25, 

the X-axis indicates the available ops/byte in hardware under a constant memory 

bandwidth of 264GB/s (i.e., fixed memory configuration). The Y-axis shows the cost of a 

compute configuration, i.e. effect of changing the compute configuration on overall board 

power for memory intensive DeviceMemory. Each line represents a CU count (4-32) and 

each point on a line shows increasing CU frequency. Relative to the compute configuration 

of the lowest possible setting of 4CUs and 300MHz, the overall board power scales by 

about 70%.  Similarly, Figure 26 indicates the power savings possible through reduction 

of memory bandwidth by adjusting the memory bus frequency for a compute intensive 

application - Maxflops. Note that the memory bandwidth variation was performed at a fixed 

voltage as the memory system voltage could not be controlled in our experimental setup. 
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Therefore, in general the differences would be even greater. Here, the number of active 

CUs and compute frequency were kept fixed at the default configuration of 32 CUs and 

1GHz respectively. We see up to a 10% power reduction between operating at the lowest 

memory frequency of 475MHz (90GB/s) compared to the memory frequency of 1375MHz 

(264 GB/s). This data underscores the power saving opportunities associated with balance 

points. 

 

 

Figure 25: DeviceMemory’s GPU card power across compute configurations at 

constant 264GB/s memory bandwidth. 

 

Figure 26: MaxFlops’s GPU card power across memory bandwidth configurations at 

32CUs and 1GHz compute frequency. 
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4.2.2.3 Summary 

From the above study we find that in general, hardware balance can be achieved 

with many different combinations of compute and memory configurations. The 

optimization question is the selection of the optimal hardware balance – the balance point 

that maximizes performance and improves energy efficiency and is a function of the time-

varying workload and platform configurations. Lack of coordination between the power 

states of compute and the memory system leads to unwarranted energy and performance 

inefficiencies. Thus, it is necessary to monitor the power and energy consequences of the 

compute and memory interactions so that the power states of the compute and memory 

elements can be cooperatively managed and coordinated.  

4.3 Summary of Key Management Challenges 

 The preceding analysis shows that there are a variety of complex power, thermal 

and functional interactions between the CPUs, GPUs, and the memory subsystems that 

affect the performance, power consumption and energy efficiency of a heterogeneous 

processor. This section summarizes the new management challenges in heterogeneous 

systems and forms the foundation for the rest of the work in this thesis. 

 Thermal Coupling and thermal signatures: Power and thermal capacity are shared 

resources in heterogeneous processors. The distinct thermal signatures of the CPU 

and GPU necessitate careful management and allocation of thermal capacity. For 

example, we see that higher thermal density in CPU leads to faster consumption of 

thermal headroom. We also find that significant thermal coupling and thermal 

pollution occurs from the active to the idle components of the die. To be effective, 

power management algorithms must understand the consequences of thermal 
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coupling and coordinate the power states between the diverse compute elements to 

maximize performance under power and thermal constraints.  

 Performance Coupling between Heterogeneous Compute Elements: Strong 

performance coupling exists between the CPU and GPU in heterogeneous 

processors due to performance dependencies arising from their tight physical 

integration, emerging programming models and emerging workloads with time-

varying redistribution of compute intensities between the CPU and GPU. However, 

unlike multi-core homogenous architectures in which all cores are identical, the 

CPU and GPU differ in both architecture and execution models. Hence their power 

and energy behaviors are quite distinct.  To be effective, power management 

algorithms that determine the DVFS states of the CPU and the GPU must be 

cognizant of these effects, their interrelationships, and their combined effect on 

performance. 

 Performance Coupling between Compute and Memory Elements: Compute and 

memory behavior are fundamentally performance coupled. If we ignore this 

coupling in managing platform power, significant energy/power is wasted. The 

time-varying relative demands of the applications must be matched with the relative 

compute and memory costs of the hardware platform to achieve hardware balance. 

Hence to retain the most power efficient operation we need a runtime power 

management infrastructure that should coordinate power states of the processor 

(GPU) and the off-chip memory system so that they are in balance 

Overall, these new challenges clearly point towards the need for chip-scale 

coordinated power management, as illustrated conceptually in Figure 27, to achieve 

performance scaling and energy efficiencies under a chip-wide TDP envelope and power 

budget. The efficiency with which we can manage these problems will depend on 1) 

identifying a key set of run-time metrics and sensitivity predictors that can be used to 

manage these effects, and 2) developing online coordinated power management techniques 
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to optimize system level global metrics in heterogeneous CPU-GPU-memory processors 

such as performance and energy efficiency under global constraints such as thermal limits 

and power budgets. The rest of this thesis focuses on development, implementation and 

evaluation of the run-time monitoring and management metrics, predictors and algorithms 

to cooperatively manage the processor physics and functional consequences of tight 

integration in heterogeneous processors. 

 

 

 

Figure 27: Chip-scale coordinated power management. 

 

 

  



 65 

CHAPTER 5  

THERMAL COUPLING MANAGEMENT 

 

In CHAPTER 4 we described how thermal coupling effects could lead to 

interactions with the power management algorithms that can increase power and 

performance inefficiencies. Effective use of thermal capacity can be realized with power 

management algorithms that consider such thermal coupling effects. This chapter presents 

a dynamic power management approach called Cooperative Boosting (CB) to coordinate 

power allocation between the CPU and GPU in order to maximize performance under the 

thermal and power constraints of the processor package. 

5.1 Overview 

 Modern, high-performance client processors are composed of heterogeneous cores 

that are managed to create a compelling user experience. Power management is a critical 

piece of the user experience, with the goal of allocating power adaptively across cores to 

produce the best performance outcome within a fixed processor power and thermal 

envelope. 

 The maximum power for a processor (i.e., the thermal design point (TDP)) is set 

based on running a heavy workload under worst-case conditions [99]. It is an upper bound 

for the sustainable power draw of the core and is used to determine the cooling system 

required. Under normal operating conditions, however, not all components are active at the 

same time or to the same extent, leaving thermal headroom in the system. Power-

management technology such as Intel's Turbo Boost [99] and AMD's Turbo CORE [83] 

take advantage of the thermal headroom to increase the active cores' frequencies until either 

the maximum performance state or the thermal limit is reached. 
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As discussed in Chapter 4.1, modern boost algorithms greedily boost the 

frequencies of the CPU or GPU cores to utilize all of the available thermal headroom and 

thereby improve performance. These boost algorithms seek fairness through allocation of 

power across cores in proportion to expected performance benefits. This works well for 

many applications in which the type of computation dictates the component that requires 

boosting. For graphics applications, the GPU is the obvious choice, as is the CPU for many 

control-divergent, general-purpose applications. However, for applications that require 

cooperative execution of both CPU and GPU cores, these boost algorithms can break down 

and degrade, rather than improve, performance. This occurs due to the tight interactions 

between performance coupling and thermal coupling. 

To this end, this chapter makes the following contributions: 

 Demonstrates the interactions between thermal coupling and performance coupling 

and their effect on system performance using hardware measurements and analysis 

from a state-of-the-art heterogeneous client system. 

 Identifies run-time metrics to capture these interactions between processor physics 

and performance dependencies. 

 Proposes a cooperative boosting (CB) algorithm for the coordinated management of 

power states of the CPU and GPU to optimize performance, and, 

 Provides a detailed, measurement-based analysis of the performance of CB in 

comparison to a state-of-the-practice boost algorithm for exploiting thermal 

headroom across a range of benchmark applications. 

The rest of the chapter is organized as follows: Section 5.2 examines the 

interactions between performance coupling and thermal coupling. Section 5.3 presents run-

time metrics to capture these interactions. Section 5.4 describes the power management 

algorithm, Cooperative boosting (CB), to balance the needs of performance coupling with 

the thermal coupling effects.  Finally, Section 5.5 provides the experimental setup and 

Section 5.6 presents a detailed evaluation of CB on a modern heterogeneous processor. 
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5.2 Greedy vs. Needy Power Management: Interactions between 
Thermal Coupling and Performance Coupling 

 As discussed in CHAPTER 4, for emerging compute applications both the CPU 

and the GPU are candidates for hosting many components of the application. For such 

applications, the CPU and the GPU are performance-coupled. While thermal coupling 

places an upper bound on performance potential, performance coupling establishes the 

minimum performance interaction needs that must be met. This section explores the 

performance-coupled nature of compute applications and the limits placed by thermal 

coupling by demonstrating the sensitivity of performance to the CPU performance states. 

In the following experiments, we statically fix the highest-performing (i.e. frequency) CPU 

P-state permitted by the power-management algorithm, which we denote as the P-state 

limit. The local CPU power controller may change the P-state to a lower-performing P-

state based on the thermal state, but it cannot exceed the P-state limit. Figure 28 presents 

the impact of CPU P-state limits for Binary Search, HotSpot, and Needle [2][18][19]. 

In Figure 28, the x-axis is labeled with the CPU P-state limit for that experiment. 

In addition, we show results for the baseline, which refers to the default Trinity power-

management system (Section 3.4.1). Limiting to Pb0 (highest boost state as indicated in 

Table 1) means all P-states are available to the power-management controller, which is the 

same as the baseline case and hence is not shown separately. The left-side y-axis refers to 

the stacked bar charts, and it shows the percent of time the GPU spends in low-, medium-, 

and high-DVFS states. The right-side y-axis shows speed-up and GPU utilization 

normalized to the baseline results. We define GPU utilization as the ratio of time during 

which at least one of the SIMD units in the GPU is active, to the total execution time. These 

data were collected on the Trinity system hardware described in Section 3.3.1 and Section 

3.4.1, with corresponding DVFS table being shown in Table 1. 
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Figure 28: Impact of CPU P-state limit on performance, GPU residency, and GPU 

utilization. 
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 For Binary Search and HotSpot, as the CPU maximum frequency decreases 

(moving to the right), the application transitions from being limited by thermal coupling to 

being limited by performance coupling. As the frequency decreases from Pb1 to P2, the 

GPU spends a larger portion of time in its higher-frequency performance states, indicated 

by GPU-high. In addition, speed-up increases, indicating that the GPU is utilizing the extra 

thermal headroom to improve performance. However, as the CPU frequency decreases 

beyond P2, we see a marked reduction in overall performance because performance 

coupling begins to dominate. GPU utilization decreases beyond P2, indicating that the GPU 

is being starved by the slower CPU. In the case of HotSpot, the thermal headroom permits 

the GPU to continue operating at its highest-performance state when active. However, for 

Binary Search, the local GPU power controller reduces the GPU frequency because of a 

significant drop in GPU utilization. For Needle, the GPU is thermally limited by the CPU 

across all P-state limits. Performance improves by 27% when the CPU operates at its 

lowest-performance P-state. However, performance coupling becomes dominant at a CPU 

P-state limit of P4 because GPU utilization starts to decrease. 

Greedy vs. Needy Power Management: In Figure 29, we demonstrate further how CPU 

power impacts GPU performance for the application Needle.  The figure shows the 

percentage of time spent in different GPU DVFS states and peak die temperature under 

various levels of CPU power during the entire program’s execution. We see that for 

applications utilizing both CPU and GPU cores, as is the case with Needle, greedy boost 

algorithms that consume all available thermal headroom can degrade rather than improve 

performance due to interactions between performance and thermal coupling. Boosting 

without accounting for these functional and physical dependencies can result in premature 

throttling of the GPU cores as seen in Figure 29a, which can negatively impact 

performance.   In the case of Needle, lowering CPU power by limiting CPU P- states 

eliminated premature throttling and improved performance (Figure 29b and Figure 29c), 
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but as seen from Figure 28, that may not always be the case. The apparent solution of 

throttling the CPU cores to mitigate thermal coupling effects becomes counterproductive 

if the CPU units become too slow to fully utilize the GPU, i.e., they are limited by 

performance coupling. Further, emerging applications are more likely to concurrently use 

the CPU and the GPU as first-class computational engines, increasing the importance of 

power-management solutions that balance performance and thermal coupling effects. 

 As is evident from the preceding analysis, during any time interval there is an 

optimal CPU operating frequency (and, equivalently, P-state) for each application 

depending on its thermal and performance coupling characteristics. We refer to this P-state 

as the critical P-state and the corresponding frequency as the critical frequency. We 

observe that the critical P-state is a time-varying function of the workload and our goal is 

to have the CPU always operating in the critical P-state. Our approach is to first define a 

measurable performance metric that is sensitive to the CPU and GPU frequencies. By 

tracking the behavior of this metric, we can periodically determine and set the CPU to its 

critical P-state. 

 Microsoft® Windows® OS Power Management [117] using ACPI provides a 

capability for managing the CPU P-state based on application requirements. However, in 

experiments with ACPI, the lower-performing P-states were never utilized. There are a 

number of shortcomings here. First, the OS uses the highest utilization among all cores as 

the metric to determine the P-state of all cores, while most of the applications analyzed 

have varying degrees of core utilization. Second, ACPI does not consider the performance 

requirements of an application, while our analysis shows that applications experience 

phases that require higher CPU performance. Finally, ACPI does not include any concept 

of performance coupling or thermal coupling; therefore, it cannot be used readily to 

regulate to either requirement. 
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Figure 29: Thermal throttling in Needle with greedy boost algorithm and CPU P-

state limiting.  GPU-high, GPU-med, and GPU-low refer to high medium and 

low GPU operating frequencies, respectively. 
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(a) Binary Search 

 
(b) Hotspot 

 
(c) Needle 

Figure 30: P-state limit effects on GPU memory bandwidth. 
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5.3 Run-time Metrics 

In this work, we propose to use the gradient of the GPU memory access rate as a 

proxy for CPU-GPU performance coupling [68]. The GPU is a data parallel execution 

engine with massive thread-level parallelism and significant number of memory accesses. 

When the CPU transitions to a lower-performing P-state, the GPU frequency and hence the 

memory access rate increases due to decreasing thermal coupling effects. However, if the 

CPU operation drops below the critical frequency, the GPU is starved by the slower CPU 

and correspondingly the GPU memory access rate drops. This observation can be used as 

a starvation hint to transition the CPU to the critical P-state. In Figure 30, we illustrate the 

impact of P-state-limiting on GPU memory bandwidth for Binary Search, HotSpot, and 

Needle. Memory bandwidth tracks performance for these three benchmarks, indicating the 

applicability of this metric. In addition, to deal with phase changes in the applications that 

require high CPU frequency, we also use retired instructions per clock (IPC) of the CPU 

as a measure of the application's sensitivity to CPU frequency [49]. 

 

5.4 Cooperative Boosting (CB) 

 Based on the preceding analysis, we see that the power-management problem is 

one of determining the critical P-state – the state that mitigates the negative effects of 

thermal coupling while providing sufficient power for performance-coupled operation. 

This section describes our CB algorithm for the dynamic determination of the critical P-

state. Figure 31 shows the architectural block diagram of the implementation of our 

scheme. 

5.4.1 Structure 

The CB algorithm operates as a decision layer on top of the baseline Trinity power-

management system (from now on referred to as the baseline). The baseline was designed 

to optimize the average case behavior across a wide range of applications with a fair 

allocation of power to both the CPU and the GPU by utilizing all of the available thermal 
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headroom. The CB algorithm enhances such thermal headroom-based management 

techniques by tailoring its behavior to i) the asymmetry of the thermal behavior of the CPU 

and GPU and ii) the phase behavior of applications – specifically, thermal and performance 

coupling over short intervals. Such optimization becomes increasingly important as 

emergent workloads are making more balanced use of the CPU and the GPU. The goal of 

CB is to determine when thermal coupling effects are detrimental and to set the critical P-

state limit under such cases. This is the highest-performing P-state the baseline system is 

permitted to use for the CPU. The voltage and frequency for the GPU is managed by the 

baseline and is not directly managed by CB; thus, CB essentially controls the CPU limits 

under which the baseline power-management system operates. Figure 32 illustrates the CB 

algorithm flow. 

 

 CB monitors temperature and performance metrics at intervals of 10 ms and 

modifies the CPU P-state limit at intervals of either 10 or 500 ms to account for frequent 

workload phase changes and relatively slow thermal response times, respectively. Periodic 

 
Figure 31: Block diagram of the Cooperative Boosting (CB) framework. 
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enforcement of P-state limits at short intervals can cause dampening of natural workload 

behavior, whereas long intervals can cause inaccuracy in measurements. Therefore, we 

decouple the monitoring and the control intervals in CB. These intervals are chosen 

Figure 32: Cooperative boosting algorithm. 

Cooperative Boosting Algorithm 

At beginning 

If (Peak_Temp > Temp_Threshold) { 

    EnableCB(); 

    Prev_PStateLimit=P0; 

} 

Every 10 ms 

for i=0, i<Core_Count; i++ { 

    IPC[i] = ReadIPC(i); 

    Active_Clks[i] = ReadActiveCoreClock(i); 

} 

Weighted_IPC = ComputeWeightedIPC(IPC,Active_Clks) 

IPC_Gradient = Weighted_IPC – Prev_Weighted_IPC 

Prev_Weighted_IPC = Weighted_IPC;  

Peak_Temp = ReadPeakTemp(); 

GPU_Mem_BW = ReadGPUMemBW(); 

Short_Term_BW = ComputeShortTermBW(); 

Long_Term_BW = ComputeLongTermBW(); 

 

If (CB_Enabled && (IPC_Gradient > =IPC_Threshold)) { 

    Prev_PstateLimit = CPU_PStateLimit;  

    UnsetPStateLimit(); 

} 

 

Every 500 ms 

If (CB_Enabled && (IPC_Gradient < IPC_Threshold)) { 

    CPU_PStateLimit = Prev_PStateLimit; 

    BW_Gradient = Short_Term_BW – Long_Term_BW; 

    If (BW_Gradient >= BW_Threshold) { 

        Last_Good_PState = CPU_PStateLimit; 

        CPU_PStateLimit++; /* Until P4 is reached */ 

    } 

    Else { 

        CPU_PStateLimit = Last_Good_PState;  

    } 

} 
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carefully to account for the long thermal rise times, shorter performance intervals and 

workload activities, and overheads of P-state change. In practice, the intervals can be 

adjusted based on RC time constants of the die, floor plan, and process technology. The 

critical P-state limit can be computed at any granularity (per core, per CU, or for the entire 

CPU). In this paper we apply the same critical P-state limit to all CPU cores due to a shared 

voltage plane in the Trinity system we used for our measurements 

5.4.2 Algorithm 

 The CB algorithm operates in three major steps: i) being invoked, ii) determining 

and setting the critical P-state limit, and iii) damping control to prevent oscillations. In the 

beginning, the processor starts with the highest-performance-boost P-states for the CPU 

and the GPU, and power and temperature are managed by the baseline. At intervals of 10 

ms, we determine if the processor is thermally limited and if CB should be applied. If so, 

power management moves into CB mode. 

 The second step is determining which CPU P-state limit to apply in CB mode. This 

involves both instrumentation and decision-making. CB samples peak die temperature, per-

core retired IPC, and memory bandwidth usage at every 10-ms monitoring interval. Note 

that although the algorithm in Figure 32 and the discussion in Section 5.3 refer to the GPU 

memory bandwidth, the implementation of CB uses a combined CPU and GPU bandwidth 

measurement since hardware restrictions prevent GPU-only bandwidth measurements 

while CB is enabled. Through evaluation, we found that this did not hinder the performance 

of the algorithm due to the overwhelming dominance of the GPU in memory bandwidth 

usage. 

 Each core's IPC is weighted by the number of active clock cycles seen by the core 

during the sampling period, and the aggregate IPC for the CPU is the sum of the weighted 

IPCs for all four cores. For memory bandwidth, in addition to monitoring memory 

bandwidth at each 10-ms interval, CB also keeps a short-term and a long-term moving 

average of memory bandwidth to track how the bandwidth changes over time. Because P-
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state limiting to reduce thermal coupling effects is made at intervals of 500 ms, the short-

term average is computed over the last 500-ms interval while the long-term moving average 

is computed over the last five such intervals. Bandwidth gradients are computed by 

comparing the short-term moving average with the long-term moving average. 

 The CPU P-state limit may be established by observing changes in the CPU IPC or 

GPU memory bandwidth (these metrics were advocated as proxies to detect performance-

coupled operation in Section 5.2). CB utilizes the gradient of memory bandwidth to 

determine the critical P-state for the CPU. If the gradients are positive, then the workload 

benefits from shifting power to the GPU. In this case, the algorithm moves the CPU P-state 

limit to a lower performance state. The converse occurs when the gradient is negative. Over 

time, the controller is trying to move the CPU to the critical P-state. 

 If the workload enters a CPU compute-intensive phase, as indicated by a high-CPU 

IPC phase, the current P-state limit is saved and the control part of CB is suspended by 

disabling P-state limiting. The check for CPU IPC changes occurs at 10-ms intervals to 

capture frequent phase changes and data dependencies. When the CPU workload exits the 

compute-intensive phase, CB operation is resumed at the saved P-state limit. This dampens 

multiple transitions through performance states arising from a short burst of high-power 

CPU phases that would otherwise re-initialize the CPU performance state to the highest 

performance state. Finally, to prevent oscillation between a pair of P-state limits, we 

employ a damping mechanism such that a new P-state limit is weighted towards the 

previous P-state limit after more than a threshold number of transitions. 

 To encompass non-performance-coupled applications that may have a constant 

CPU IPC (such as SPEC CPU2006 applications), we use an absolute average IPC in 

conjunction with IPC phase changes for CPU-centric workloads with no activity on the 

GPU. Although CPU-centric workloads are not the focus of this paper, we show that our 

CB algorithm can sometimes improve the performance of these applications by limiting 

the performance state when the application is memory-bound. 
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5.5 Experimental Set-up 

 We perform all measurements and analysis on an AMD A8-4555M Trinity APU 

with 19W TDP. Base CPU frequency is 1.6 GHz, with AMD Turbo CORE frequency up 

to 2.4 GHz. The CPU DVFS state table is shown in Table 1. The GPU frequency is 320 

MHz with AMD Turbo CORE frequency of 423 MHz [130]. We use four, 2-GB DDR3-

1600 DIMMs. Hardware performance counters for IPC, memory bandwidth, etc., are 

monitored using performance libraries running in Windows OS. A maximum cap on the 

CPU P-state limit is implemented using model-specific registers as described in [12]. 

 

Table 1: HW- and SW-managed DVFS states for the CPU compute units on the 

Trinity A8-455M APU. 

 

 P-state Voltage (V) Freq 

(MHz) 

HW 

Only 

Pb0 1 2400 

Pb1 0.875 1800 

SW-

visible 

 

P0 0.825 1600 

P1 0.812 1400 

P2 0.787 1300 

P3 0.762 1100 

P4 0.75 900 

 

 

 We evaluate three different boost algorithms. The baseline is the BAPM algorithm, 

which is the state-of-the-practice algorithm in the Trinity power-management system 

described in Section 3.4.1. The second is the CB algorithm described in Section 5.4.2. 

Third, we evaluate the behavior of a static P-state-limit algorithm in which a fixed P-state 

limit is applied throughout the entire run of the application. This means that the CPU can 

enter a lower-performing (but not higher) P-state than the P-state limit. We refer to this as 
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the static PX limit scheme, where PX is one of the performance states (e.g., P1, P3, etc.). 

For CB, P-state limits are applied according to the algorithm described in Section 5.4.2. 

Although CB can be implemented in any layer such as hardware, power-management 

firmware, or system software, we implement CB at the system software level by layering 

it on top of the baseline. 

  

 

 Table 2: Summary of benchmarks used for CB evaluation. 

BM (Description) Problem Size Type 

NDL (Needleman-Wusch 

[18]) 

4096x4096 data points, 1K 

iterations 

GPU 

LUD (LU decomposition 

[19]) 

512x512, data points, 500 iterations GPU 

HS (HotSpot [18]) 1024x1024 data points, 100K 

iterations 

GPU 

SRAD (Image Proc [18])  502x458,500K iteration GPU 

BF (BoxFilter SAT [2]) 1Kx1K input image, 6x6 filter,10K 

iterations 

GPU 

MM (Matrix Mult [2]) 2Kx2K, 10K iterations GPU 

FAH (Folding at Home 

[42]) 

Synthesis of large protein: spectrin$ GPU 

CFD (Computational fluid 

dynamics [18]) 

200K elements, 20K iterations GPU 

BFS (Breadth first search 

[15]) 

1M nodes, 1K iterations GPU 

BS (Binary Search [2])  4096 inputs, 256 segments, 1M 

iterations 

GPU 

KM (Kmeans [18]) 819200 points, 34 features, 1K 

iterations 

Mixed 

BP (BackProp [18]) 252,144 input nodes, 10K iterations Mixed 

Viewdle (Haar facial 

recognition [114]) 

Image 1920x1080, 2K iterations Mixed 

Mcf (CPU2006 [109]) 4 threads, Ref input CPU 

Lbm (CPU2006 [108]) 4 threads, Ref input CPU 

Perl (CPU2006 [109]) 4 threads, Ref input CPU 

Pvr (CPU2006 [109]) 4 threads, Ref input CPU 

Gcc (CPU2006 [109]) 4 threads, Ref input CPU 
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 For CPU and GPU power and temperature, we use the digital estimates provided 

by the power-management firmware running in the Trinity system, accuracies for which 

are described in [83]. For all schemes, we run the benchmarks for at least a few minutes to 

reach a thermally stable steady state. A fixed-time cool-down period is applied before each 

run to eliminate any variations in starting temperature. We also run many iterations of the 

application and take an average across those to eliminate run-to-run variance in our 

hardware measurements. 

We use 18 applications, summarized in Table 2. These are a mix of both state-of-

the-art and emergent applications. Eight of them are from Rodinia (NDL, LUD, HS, SRAD, 

CFD, BFS, KM, and BP [18][19]), three are from the AMD APP SDK (BF, MM, and BS 

[2]), two are stand-alone (FAH [42] and Viewdle [114]), and five are from SPEC CPU2006 

(Mcf, Lbm, Perl, Pvr, and Gcc [109]). We selected the applications to represent i) GPU-

centric operation (where GPU is used as a compute accelerator with CPU feeding the data 

to the GPU), ii) CPU-GPU mixed workloads (where computation is more balanced 

between CPU and GPU although the fraction of work division may not be the same), and 

iii) CPU-centric workloads (where computation is done only on the CPU and the GPU is 

unused). All GPU applications execute one or more parallel kernels for multiple iterations 

to reach steady-state thermals. The SPEC CPU applications are run with four threads, one 

on each core. 

We report performance, power, and energy efficiency as defined by the energy-

delay2 product (ED2) [67]. We show all values normalized to the baseline scheme, which 

is the default Trinity power-management system. Average total power (CPU and GPU) and 

average energy efficiency are also measured over the entire run-time of an application. 

 

5.6 Results 

 In this section, we present performance, power, and ED2 results for CB and the 

static P-state limit algorithm. All results are shown relative to the baseline BAPM 
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algorithm described in Section 3.4.1, and all performance and power numbers are measured 

results from running the applications in Table 2 on real hardware. 

5.6.1 Performance 

 Figure 33 illustrates the speed-up of CB and static schemes. Across the 18 

applications, we see a 10% speed-up with CB, a 3% speed-up with P0 (the highest-

performance software-visible P-state), a 1% speed-up with P2, and a 10% performance loss 

with P4. For the performance-coupled workloads (i.e., GPU-centric and CPU-GPU mixed 

workloads), the average speed-up with CB is 15%. The static schemes clearly demonstrate 

good performance gains compared to the baseline for certain types of workloads but impose 

a high performance penalty for others, motivating the need for dynamic schemes. 

 GPU-centric applications such as NDL, LUD, MM, and SRAD improve in 

performance compared to the baseline with both CB and static. In general, these 

applications have low CPU IPC and are not very sensitive to CPU performance in the 

frequency ranges explored. Both CB and static P4 limiting show comparable gains, with 

performance improvement as high as 52% in SRAD. Thermal coupling dominates these 

 
Figure 33: Performance results with static limits and CB. 
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applications at all CPU frequencies because they have high activity in the GPU and, hence, 

high power requirements. The critical P-state for the CPU is at a lower frequency than the 

lowest P-state P4 available in our part. These workloads reach the peak temperature 

quickly, and high-performance CPU P-states result in excessive thermal throttling without 

a commensurate application performance improvement. 

Similar thermal coupling effects occur in applications such as HS, BS, and FAH. 

However, here we reach the critical CPU P-state before the lowest P-state limit of P4. At 

P2, thermal and performance coupling effects are balanced and we see the maximum 

performance gains. Decreasing CPU frequency beyond P2 causes performance coupling to 

dominate over thermal coupling and degrades performance by 3%, 34%, and 1%, 

respectively, for HS, BS, and FAH at P4. CB achieves comparable results to the critical P-

state of P2. 

 Applications such as KM, BFS, BP, and CFD see minimal to no benefits compared 

to the baseline with static or CB schemes. KM, BFS, and BP never reach the peak junction 

temperature, and so CB never invokes P-state limiting. Although KM has high-IPC phases, 

it is primarily memory-bound and its performance stays relatively flat with CPU 

frequencies. BP has serial phases between parallel kernels requiring significant CPU-GPU 

communication. BFS has a high control flow divergence with low GPU activity. In both 

BFS and BP, CB results in the same performance as the baseline, whereas static P4 limit 

shows performance degradation up to 3% due to performance coupling. Although CFD is 

heavily memory-bound, it reaches the peak temperature due to high activity and a relatively 

high compute-to-memory ratio in the GPU; as a result, it shows a slight improvement of 3-

5% compared to the baseline scheme using static limiting and CB. Performance gains from 

reducing thermal coupling effects flatten out beyond P2 as the memory-related stall time 

of the kernel starts to dominate. 

 In balanced workloads such as Viewdle, a face-recognition application, both the 

CPU and the GPU are utilized heavily for computation. Thermal coupling is dominant at 
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the higher CPU frequencies, and so static P-state limiting to both P2 and P4 improves 

performance compared to the baseline. CB, however, outperforms all static P-state-limiting 

schemes by dynamically adjusting to the critical P-state based on application needs. 

Viewdle's IPC varies periodically from low to high, and it is sensitive to CPU frequency 

during high-IPC phases. CB dynamically shifts power to the CPU during high-IPC phases 

and to the GPU during low-IPC phases, thereby limiting the impact of thermal coupling 

while providing the required power for performance coupling. Section 5.6.2 provides 

further insights in Viewdle's performance. We see similar behavior with BF, which is an 

image-filtering application with frequent CPU communication phases between the 

horizontal and vertical passes in the image blur filter. CB performs 13% better than the 

baseline and 9%-12% better than any of the static schemes in the case of BF. 

 Finally, we analyze the performance of CPU-centric, non-performance-coupled 

applications such as Perl and Pvr. As we see in Figure 33 the baseline does very well for 

these workloads and static limiting significantly degrades performance. CB largely 

performs as well as the baseline, indicating that CB is a well-rounded approach for multiple 

usage scenarios. Although analyzing multiple non-performance-coupled applications (e.g., 

a CPU-centric app and a GPU-centric app) running together was not the focus of our 

research, we believe CB will perform as well as or better than the baseline because CB tries 

to limit CPU power only when it is not needed. 

5.6.2 Thermal and Performance Coupling Analysis 

 In Figure 34 we illustrate how CB mitigates the effects of thermal coupling in the 

case of BS. The y-axis indicates the measured peak temperature normalized to Tjmax. With 

a static limit of P4, the application heats the chip to a value less than the peak. CB, on the 

other hand, does not initially restrict the baseline algorithm; instead, it tries to find the 

critical P-state for the CPU once we approach the peak temperature threshold. As power is 

shifted from the CPU to the GPU, peak die temperature decreases because the GPU is able 

to sustain a higher power boost for a longer period due to its lower thermal density, as 
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described in CHAPTER 4. Further, the effects of thermal coupling become less dominant 

because the CPU is running at a lower P-state. As a result, the GPU residency in the high-

performance state increases significantly compared to the baseline, thereby improving 

application performance. Moreover, the short variations in temperature result from the fact 

that CB constantly adjusts the critical P-state based on workload phases. This helps balance 

performance and thermal coupling effects. 

 

Figure 34: Thermal behavior of Binary Search with CB. 
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Figure 35: Viewdle performance analysis with CB. 

 

 

 

 Figure 35 provides further insights into the performance of Viewdle in terms of 

instructions per second (IPS), memory bandwidth, and speed-up. As we apply CPU P-state 

limiting with lower-performing P-states, CPU IPS understandably drops. However, the 

GPU IPS continues to increase, and so does utilized memory bandwidth due to the GPU's 

ability to sustain higher frequencies because of the reduction in thermal coupling. For P-

state limiting beyond P3, both GPU throughput and memory bandwidth drop due to 

performance coupling effects. However, with CB, the CPU P-state limit is managed 

dynamically to balance performance and thermal coupling effects: GPU throughput and 

speed-up increase by 42% and 36%, respectively, compared to the baseline. 

 In Figure 36, we illustrate how CB mitigates the effects of thermal coupling when 

running Needle. The left-side y-axis shows GPU residencies in the different performance 

states. The right-side y-axis shows the measured peak temperature normalized to Tjmax. 

In the baseline case (Figure 36 (a)), we see a considerable residencies in the medium and 
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low GPU frequencies once temperature reaches the steady state to maintain performance 

within the maximum thermal limits. GPU frequency throttling occurs because of thermal 

coupling and heat transfer effects from the CPU to the GPU as both CPU and GPU are run 

at their maximum frequencies during the initial ramp-up stage due to availability of thermal 

headroom. However, as shown in Figure 36 (b), CB tries to find the critical P-state for the 

CPU once we approach the peak temperature threshold. Once invoked, CB starts shifting 

power to the GPU. Because Needle is a high-power workload, we see a slight temperature-

based throttling initially, after which the temperature decreases and power shifts from CPU 

to GPU. This allows boosting of the GPU to higher frequencies for a much longer period, 

thereby improving application performance. 

 Because CB is designed to mitigate detrimental effects of thermal coupling in 

thermally limited situations, it effectively lowers the peak operating temperature of the 

processor opportunistically compared to the baseline (2% lower on average across all 

applications). Although temperature is not a direct optimization goal for CB, lower peak 

temperatures have many additional benefits: i) increased TDP power budget to achieve 

more performance within a fixed thermal envelope; ii) lower cooling costs within a fixed 

power budget; iii) lower leakage power and, hence, lower overall energy; and/or, iv) 

improved reliability through increased mean-time-to-failure rates. 
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5.6.3 Power and Energy 

 The power saving achieved with CB over the baseline is illustrated in Figure 37, 

which shows an average power savings of 8% across all applications and an average of 

10% across performance-coupled GPU-centric and mixed workloads. These power savings 

come from two factors: 1) CPU power consumption is reduced due to its operating at the 

critical frequency, 2) as a result of the distinct thermal signatures between CPU and GPU 

and a higher power efficiency of the GPU, only a fraction of the CPU power savings is 

utilized towards boosting the GPU to its highest operating frequency. Highest power 

reduction is seen in BS, where we see a 5% reduction in average peak temperature and, 

 
 

 
Figure 36: Thermal throttling in Needle with CB. 
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hence, leakage power during run-time. BFS, BP, and KM never reach their peak 

temperatures, so power savings are minimal because CB does not limit P-states under such 

cases and allows both CPU and GPU to take full advantage of boosting. We also achieve a 

small amount of power savings in the SPEC CPU2006 workloads, up to 11% with Mcf 

because CB continuously tracks high-IPC compute-bound phases. When the workload 

encounters memory-bound phases, a P-state limit is applied to lower the frequency; this 

limit has little to no performance impact but it saves power [49]. 

 

 

 
Figure 37: Reduction in power for CB relative to baseline. 

 

 

 

Figure 38 shows the ED2 product (lower numbers signify improvement over the 
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significant performance outliers for CPU-centric workloads; hence, it is not a viable 

solution. CB, however, can achieve similar or better results for performance and energy 

efficiency than any static scheme without requiring any offline profiling or user 

intervention. 

 

   

5.6.4 Summary 

 In this section, we summarize our results and insights. First we show that workloads 

with high GPU activity are more sensitive to thermal coupling with the CPU. The baseline 

can degrade performance while both CB as well as static P-state limiting shift a greater 

portion of the power to the GPU, reduce thermal coupling, and improve performance. For 

applications with tight performance coupling with the CPU, CB finds the critical P-state 

and thus performs better.  

 For applications with very low GPU utilization such as those with high control flow 

divergence, thermal coupling may not be a factor since these workloads tend to run much 

 
Figure 38: Energy-delay2 product normalized to baseline. 
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cooler. While the baseline does not hurt performance, static schemes can degrade 

performance significantly by amplifying the low GPU utilizations when the CPU P-state 

is fixed below the critical P-state. However, CB dynamically detects when an application 

is not thermally limited and stops limiting CPU’s P-state under such cases. This allows 

CB’s performance to track baseline for such workloads. 

 Balanced workloads that actively utilize both the CPU and GPU are particularly 

susceptible to thermal coupling effects. CB outperforms the baseline and static schemes by 

continuously tracking the time-varying critical P-state during execution. CB uses only the 

power it needs, and thus reducing thermal coupling without impacting performance 

coupled operation.  This is one of the fastest growing classes of future workloads [75][114]. 

 For non-performance coupled CPU-centric workloads, greedy boosting approaches 

work well while static schemes understandably perform poorly since performance scales 

with frequency. CB performs largely as well as the baseline since the critical P-state tends 

to be the highest performance state. However, CB delivers slightly better performance for 

memory bound workloads by detecting memory bound phases and adjusting the critical P- 

state, which builds up thermal credits for compute phases that need higher performance 

state. 

In summary, CB is a well-rounded technique that can be used to dynamically 

manage power, performance and thermals across a wide range of applications. Although 

for a given application one can profile the critical P-state limit statically offline, such an 

approach is impractical and often detrimental if the goal is to support a variety of 

applications including emergent and as yet unanticipated ones. CB improves over current 

headroom based greedy boost algorithms by balancing the needs and dependencies of CPU 

and GPU performance with the effects of thermal coupling. 
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5.7 Conclusions 

 This chapter addressed the complex relationships between power, thermals, and 

performance in a heterogeneous system running diverse applications. We described and 

explored thermal entities with varying thermal signatures and demonstrated the 

relationship between thermal coupling and performance coupling through detailed 

empirical analysis. Based on our analysis, we proposed a cooperative boosting solution that 

balances the effects of thermal coupling with the requirements of performance coupling to 

determine the critical frequency of operation. We compared the CB algorithm with a state-

of-the-practice boost algorithm and static power-limiting methods for a varied set of 

homogeneous and heterogeneous benchmarks. We showed on hardware that CB achieves 

an average 10% speed-up (up to 52%) and an average 8% power reduction (up to 34%) 

compared to the other algorithms, resulting in a 25% (up to 76%) improvement in the ED2 

product. This research work was published at International Symposium of Computer 

Architecture (ISCA) 2013 [89]. 
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CHAPTER 6  

CPU-GPU PERFORMANCE COUPLING MANAGEMENT  

 

In CHAPTER 4 we characterized the interactions between the CPU and GPU 

emphasizing the coupled nature of their interactions – both direct coupling via 

programming model and algorithmic interactions and indirect via interference at shared 

hardware resources. Our concern now is making this coupled operation as energy efficient 

as possible with minimal performance impact. This chapter examines the challenge of 

improving energy efficiency of a heterogeneous processor consisting of an integrated CPU-

GPU for high-performance computing (HPC) applications. This component of the research 

work is targeted towards the mainstream high performance computing space, which has 

uncompromising performance requirements while remaining subject to the goal of 

minimizing energy consumption. Consequently the goal here is to maximize energy 

efficiency with minimal to no compromises in performance on tightly coupled 

heterogeneous architectures. 

6.1 Overview 

 Efficient energy management is central to the effective operation of modern 

processors in platforms from mobile to data centers and high-performance computing 

(HPC) machines. However, HPC systems are unique in their uncompromising emphasis 

on performance. For example, the national roadmap for HPC now has the goal of 

establishing systems capable of sustained exaflop (1018 flops/sec.) performance. However, 

the road to exascale is burdened by significant challenges in the power and energy costs 

incurred by such machines. 

 Many current HPC systems use general-purpose, multi-core processors such as 

Xeon from Intel and AMD Opteron™ that are equipped with several power-saving 
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features, including dynamic voltage and frequency scaling (DVFS). More recently, driven 

in part by demand for energy efficiency, we have seen the emergence of such processors 

with attached graphics processing units (GPUs) acting as accelerators. As of November 

2012, four of the top ten and 62 of the top 500 supercomputers on the Top500 list were 

powered by accelerators [128][129]. 

As shown in CHAPTER 4 the tighter integration of CPUs and GPUs in 

heterogeneous processors along with the emergence of companion programming models is 

leading to greater performance dependencies between the CPU and the GPU. For example, 

CPU and GPU memory accesses interact and interfere in the memory hierarchy, while they 

share a chip-level power budget and thermal capacity. In CHAPTER 5 we addressed the 

problem of maximizing performance while operating under the constraints of thermal 

coupling (under a fixed thermal capacity) and still meeting the requirements of 

performance coupling (performance dependency).  In this chapter we focus on maximizing 

energy efficiency with minimal performance loss while still meeting the performance 

coupling requirements between the CPU and GPU integrated in the same package. An 

effective power management solution that determines the DVFS states of the CPU and the 

GPU must be cognizant of these performance coupling effects, their interrelationships, and 

their combined effect on performance, i.e., return (performance) on investment (frequency 

and power allocation). 

 To this end, this chapter makes the following contributions: 

 We empirically characterize the CPU and GPU frequency sensitivity of compute 

applications in a performance-coupled architecture. The analysis exposes several 

opportunities for improving energy efficiency without degrading the performance of 

the application. 

 We identify a key set of CPU and GPU run-time parameters that reflects the 

frequency sensitivity of the application and use regression techniques to construct an 

analytic model of frequency sensitivity. 
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 We propose DynaCo – a coordinated, dynamic energy-management algorithm using 

online frequency-sensitivity analysis to coordinate the DVFS states of the CPU and 

the GPU. DynaCo is implemented on a state-of-the-art heterogeneous processor. 

 Using measurements on real hardware, we compare DynaCo to a commercial, state-

of-the-practice power- and performance-management algorithm for several OpenCL 

Exascale proxy applications and other HPC applications, demonstrating that 

significant improvements in energy efficiency are feasible without sacrificing 

performance when CPU-GPU power management is coordinated. 

The rest of the chapter is organized as follows: Section 6.2 analyzes and identifies 

behaviors that have a substantive impact on frequency sensitivity of the CPU and GPU in 

an integrated APU. Section 6.3.1 presents run-time metrics to capture these interactions, 

followed by a description of the power management algorithm, DynaCo, to balance the 

power allocation between performance-coupled CPU and GPU in Section 6.3.2.  Finally, 

Section 6.4 provides the experimental setup and Section 6.5 presents a detailed 

implementation and evaluation of DynaCo on a modern heterogeneous processor 

6.2 Sensitivity Analysis and Opportunities 

 Figure 39 shows the peak temperature normalized to the maximum junction 

temperature allowed for each CU and the GPU for miniMD as the application runs on a 

100W TDP processor. Processors with such a thermal design power package are commonly 

found in HPC clusters [126]. Although temperature tracks power and inversely tracks 

performance, it never reaches the peak thermal limits. This means that the performance of 

the CUs and the GPU are not constrained by temperature, and therefore they generally run 

at their maximum frequency. However, just because they can run at their maximum 

frequency does not mean that they should; there has to be a reasonable return in 

performance for the increase in frequency and higher power. 

 We characterize this return on performance with the notion of frequency sensitivity 
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– a measure of the improvement in performance for a unit increase in frequency. Frequency 

sensitivity is a time-varying function of the workload on a target processor. In general, the 

frequency-performance function is unknown. Thus, the idea is to measure the frequency 

sensitivity of an application periodically and determine whether it is productive (efficient) 

to change the frequency. While Rountree et al. [102] developed a frequency-sensitivity 

predictor for homogeneous CPUs, the problem in APUs is more complex due to shared 

resources and subtle CPU-GPU interactions. 

 

 

 

Figure 39: Thermal profile of miniMD running on GPU. 
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6.2.1 Shared Resource Interference 

 The memory hierarchy is a key determinant of performance, and the CPU and the 

GPU share the Northbridge and memory controllers. The extent of interference at these 

points (which is time-varying) has a significant impact on the effectiveness of DVFS for 

the CPU or the GPU. 

 Figure 40 (left bar) breaks down the CPU and GPU memory access rates, 

normalized to peak-DDR bandwidth with 75% bus efficiency, of one of the main 

computation kernels (neighbor) in miniMD [15]. The kernel is run iteratively in the 

application for steady-state duration. Figure 40 (right bar) breaks down the average CPU 

DVFS state residency for the active CPU time under BAPM, which shows that the kernel 

DVFS residency is entirely in the hardware managed CPU boost states (Pb0 and Pb1). We 

observe that this kernel saturates the overall shared-memory bandwidth primarily due to 

the high rate of memory references from the GPU. The CPU portion of memory demand, 

which is captured by looking at last-level cache L2 miss rates, is relatively small. Further 

(not shown), the CPU IPC of this kernel is higher than a typical memory-bound application. 

 Power- and performance-management schemes that determine the CPU DVFS state 

independent of interference at shared resources might conclude that the CPU voltage-

frequency can be boosted within thermal limits to improve performance. This is, in fact, 

what the BAPM algorithm does. However, the application performance is memory 

bandwidth-limited due to the GPU memory demands, so scaling up the CPU voltage-

frequency has little performance benefit and will degrade energy efficiency (discussed in 

Section 6.2.3). The lesson here is that we need online measurements of chip-scale global 

interactions to make good decisions regarding the CPU or the GPU DVFS state. 
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Figure 40: Break-down of memory interference between CPU and GPU and 

corresponding CPU DVFS residency. 
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Figure 41: GPU frequency sensitivity to control divergence. 

 

 

 

 Conventional cores that extract instruction-level parallelism from a single thread 

correctly associate low IPC with low frequency sensitivity. The converse is true here due 

to the bulk-synchronous parallel-processing nature of GPU kernels. Control flow serializes 

the execution of threads in a thread block. The correct analogy with traditional core 

execution is the observation that higher-frequency operation will speed the serial sections 

of code and, therefore, the application as a whole. In this case, the greater the serial fraction 

or divergence, the greater the speed-up. The lesson here is that control flow-divergence 

measures should be captured in the compute behavior when determining frequency 

sensitivity. 

6.2.3 Performance Coupling and Kernel Sensitivity  

 Each application has phases that vary in their frequency sensitivity due to the type 

of their activity rates and the degree of performance-coupling between CPU and GPU. This 

is also true of HPC applications. While computations are offloaded to the GPU, there are 

control and data dependencies between computations executing on the CPU and the GPU 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

GPU_freq_sensitivity(meas) GPU_ALUBusy%

P
er

ce
n

ta
g
e 

m
et

ri
c 

->



 99 

cores. For example, for peak GPU utilization, the CPU must deliver data to the GPU at a 

certain rate; otherwise, the GPU will starve, resulting in a reduction in overall performance. 

Such performance-coupling between the CPU and the GPU cores is accentuated by the 

tighter physical coupling due to on-die integration and the emergence of applications that 

attempt a more balanced use of the CPU and the GPU. Hence, any cooperative energy-

management technique must balance such interactions against energy/power savings. 

 

 

 

Figure 42: Percent increase in kernel run-time due GPU DVFS changes relative to 

the baseline (BAPM). 

 

Figure 43: Percent increase in kernel run-time due CPU DVFS changes relative to 

the baseline (BAPM). 
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Here we evaluate the opportunities to save energy of an Exascale proxy application 

from the Mantevo suite called miniMD [15]. In particular, we characterize the frequency 

and resource sensitivity at the kernel granularity for both the CPU and the GPU power 

states. We have observed this behavior in other HPC applications as well; however we 

present only miniMD results here. Figure 42 illustrates the GPU frequency sensitivity for 

the main miniMD kernels by measuring the impact of frequency on the speed-up of each 

kernel. The x-axis records the GPU DVFS states for each kernel. The y-axis shows the 

increase in run-time from the baseline BAPM case as GPU frequency is reduced. Because 

we are not thermally limited, the baseline algorithm runs the GPU at the highest frequency. 

 We can observe many interesting behaviors in Figure 42, with the key insight being 

that different kernels in miniMD have different resource requirements and their relative 

sensitivities to GPU frequency reflect those needs. One of the main computation kernels, 

Force, scales very well with GPU frequency and performs the best at the highest-frequency 

GPU DVFS state. This is because of the heavy compute-bound nature of the kernel. The 

Neighbor kernel shows high sensitivity to GPU frequency when going from low to medium 

frequency; however, Neighbor sees little to no performance benefit at the highest GPU 

frequency because the Neighbor kernel becomes memory bandwidth-limited at the highest 

GPU frequency. Communication-limited and other fine-grained, relatively short kernels 

labeled “Other” seem to be less sensitive to GPU frequency. There is a 6% increase in total 

run-time at the medium GPU DVFS state, with the Force kernel being the main contributor 

to the slow-down. 

Consider the frequency sensitivity of the CPU for each of the miniMD kernels 

executing on the GPU (recall the performance-coupling between the CPU and the GPU) 

illustrated in Figure 43. The Force and Neighbor kernels do not scale well with CPU 

frequency. The memory-bounded behavior of Neighbor makes it insensitive to CPU 

frequency with minimal performance loss at the lower CPU DVFS state of P4. The GPU 
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compute-intensive nature of Force makes it less dependent on CPU frequency; however, 

decreasing CPU frequency beyond P2 starts starving the GPU. On the other hand, fine-

grained, shorter kernels such as Communication and others have higher data dependencies 

on the CPU and are tightly performance-coupled. Launch overhead, combined with the 

relatively small kernel timings compared to the actual execution time, make these kernels 

more tightly performance-coupled to CPU frequency and less GPU frequency-sensitive. 

The lesson here is that the frequency-sensitivity metric in an APU needs to account for 

performance-coupling effects. 
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6.3 Run-time System for Energy Management: Metrics, Models 
and Management Algorithm 

 The first step is to develop a predictor for the frequency sensitivity of an 

application. Specifically, at any point in time we need to be able to predict the performance 

sensitivities of the execution of a kernel on the GPU to the frequency of the CPU and the 

frequency of the GPU – the sensitivities may be different. As we observed in Section 6.2, 

Table 3: APU frequency sensitivity analysis of various performance metrics. 

Metric Description 

Correlation 

Coefficient to 

GPU FS 

(meas) 

Correlation 

Coefficient  

to CPU FS 

(meas) 

WeightedALUBusy ALUBusy weighted by GPUClockBusy. 0.85 -0.62 

ALUInsts PTI 
Compute instructions per thousand 

instructions. 0.78 -0.54 

ALUBusy 
The percentage of GPUTime ALU 

instructions are processed.  0.76 -0.54 

ALUFetchRatio 

The ratio of ALU to fetch instructions. If the 

number of fetch instructions is 0, then 1 will 

be used instead.  0.57 -0.31 

L2 cache miss/cycle 
Level 2 cache miss rate to main memory for 

CPU. 0.13 -0.41 

ALUPacking 
The ALU vector packing efficiency (in 

percentage). 0.11 -0.22 

GPUClockBusy 

GPU utilization: Ratio of time when at least 

one of the SIMD units in the GPU is active 

compared to total execution time.  0.06 -0.13 

FetchUnitBusy 
The percentage of GPUTime the fetch unit is 

active.  -0.28 -0.01 

FetchUnitStalled 
The % of GPUTime main memory fetch/load 

unit is stalled.  -0.49 -0.15 

WriteUnitStalled 
The % of GPUTime main memory write/store 

unit is stalled.  -0.51 0.12 

Writes to memory 

PTI 

Main memory writes per thousand 

instructions. -0.60 -0.28 

Fetch from memory 

PTI Main memory reads per thousand instructions. -0.62 -0.23 

Global_MemUtil 
Aggregated CPU-GPU memory bandwidth 

consumed during theoretical peak bandwidth. -0.63 -0.56 

ClockWeightedUPC 

Retired micro-operations (includes all 

processor activity) per cycle weighted by each 

core's active clocks. -0.83 0.70 
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this sensitivity analysis must account for indirect interactions between the CPU cores and 

the GPU, e.g., in the shared memory system. 

The second step is to encapsulate this into an energy-management algorithm that 

periodically computes the frequency sensitivity and, in response, adjusts the DVFS states 

of the CPU cores and the GPU. In this section, we derive a frequency-sensitivity predictor 

and use it to construct a run-time energy-management scheme. Our goal is to develop a 

simple and practical predictor that can be implemented efficiently in a dynamic run-time 

algorithm with minimal hardware overhead and complexity. 

6.3.1 Frequency Sensitivity Correlation and Run-time Metrics 

 We develop frequency-sensitivity predictors to capture the dominant behaviors 

described in Section 6.2 for the GPU and the CPU. First, we selected performance counters 

that are indicators of frequency sensitivity. Modern processors provide hundreds of 

exposed performance counters, which makes the selection quite challenging [11]. We used 

three Exascale proxy applications (miniMD, miniFE, and Lulesh), each consisting of many 

different kernels [15][46][59]. We also utilized six scientific applications from the Rodinia 

benchmark suite: Needleman-Wunsch, HotSpot, LU Decomposition (LUD), Speckle-

reducing Anisotropic Diffusion (SRAD), Computational Fluid Dynamics (CFD), and BFS 

[18][19]. The chosen applications have a wide range of characteristics ranging across  

coarse- and fine-grained kernels, compute- and memory-boundedness, different degrees of 

CPU-GPU performance-coupling, and degrees of divergent control flow. 

 Using application analysis and a profiling tool called CodeXL, we measured the 

execution times and the corresponding values of a set of performance counters/metrics at 

kernel boundaries over a range of CPU and GPU frequencies [127]. We initially attempted 

to find correlation across multiple sample points in a single application trace but found that 

minor discrepancies in phase alignment with performance metric traces can cause large 

variations in correlation. Hence, we looked for alignment only at the kernel granularity in 

an application. We performed a correlation analysis between each performance 
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counter/metric and the CPU or GPU frequency sensitivity, measured as the ratio of the 

difference in execution times to the corresponding differences in frequency. We computed 

the correlation coefficients using linear regression (shown in Table 3). These performance 

counters/metrics were derived from a set of more than 40 hardware performance counters 

in the CPU, GPU, and Northbridge selected based on the insights gained from Section 6.2. 

Coefficient values greater than 0.5 or less than -0.5 are considered a strong positive or 

negative correlation, respectively [11]. These values are highlighted in Table 3. 

 Second, we calculated overall GPU or CPU frequency sensitivity based on the 

following analysis. As expected, ClockWeightedUPC (retired micro-ops per active core 

clock cycle) shows high correlation for CPU frequency sensitivity, as does GPU ALU 

activity and ALUBusy for the GPU. This captures the compute behavior of an application 

in either type of core. However, to capture the compute behavior for normal operations as 

well as control-divergent applications, we weighted the ALUBusy metric with 

GPUClockBusy (as defined in Table 3, note the improvement in correlation between line 

3 and line 1 in Table 3). 

 As Figure 41 shows, graph algorithms have a high degree of control-flow 

divergence; thus, some SIMD engines are idle and waiting for a thread to finish executing 

before all threads can re-converge and proceed. This produces poor ALU throughput, 

making it appear that the GPU is lightly utilized. However, when ALUBusy is weighted 

with the actual GPU clock activity, we get a higher rate of ALU activity for the active 

period and better correlation. Similar accounting has been done for CPUs [11]; however, 

unlike the CPU, which is latency sensitive, the GPU's massively parallel bulk-synchronous 

computation creates a complex inter-relationship between control behavior and power. 

 GPU frequency sensitivity shows a strong negative correlation to CPU UPC (retired 

micro-ops per cycle). This includes all processor activity (instructions, exceptions, 

interrupts, microcode assists, etc.) Similarly, CPU frequency sensitivity shows a strong 

negative correlation to GPU ALUBusy. This is because of the data and execution 
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dependencies between the GPU and CPU. As the computation becomes more balanced and 

distributed between the CPU and GPU, we expect the correlation coefficients to change. 

However, CPU and GPU performance still will be closely coupled in their interactions and 

dependencies. Therefore, a GPU frequency-sensitivity predictor needs to account for CPU 

UPC as a way to measure GPU’s performance-coupling to CPU. Similarly, CPU frequency 

sensitivity in a heterogeneous architecture needs to account for GPU ALU activity. 

 We found a better correlation between frequency sensitivity and aggregated 

memory bandwidth (Global_MemUtil) compared to the localized memory access metrics 

such as L2 cache misses in the CPU or memory fetch/write stalls in the GPU. This is largely 

because of the disparity in memory-bandwidth demand between the CPU and the GPU 

while accessing a shared resource, as shown in Figure 40. 

 Based on the preceding analysis, we summarized a key set of performance metrics 

below to use in our run-time energy-management scheme to determine frequency 

sensitivities in a performance-coupled heterogeneous architecture. We determined CPU 

and GPU frequency sensitivities as weighted linear regression functions of these combined 

metrics to capture performance-coupling, core compute behavior, and global memory 

interference. The correlation coefficient using this combination of metrics improved to 

0.97. 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐴𝐿𝑈𝐵𝑢𝑠𝑦 =
𝐴𝐿𝑈𝐵𝑢𝑠𝑦

𝐺𝑃𝑈𝐶𝑙𝑜𝑐𝑘𝐵𝑢𝑠𝑦
 

 

𝐺𝑙𝑜𝑏𝑎𝑙_𝑀𝑒𝑚𝑈𝑡𝑖𝑙 =
𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑𝑀𝑒𝑚𝐵𝑊

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙𝑃𝑒𝑎𝑘𝑀𝑒𝑚𝐵𝑊
 

where 

 

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙𝑃𝑒𝑎𝑘𝑀𝑒𝑚𝐵𝑊

= (𝐷𝐷𝑅𝐶𝑙𝑜𝑐𝑘𝑆𝑝𝑒𝑒𝑑) ∗ (8 𝑏𝑦𝑡𝑒𝑠 𝑝𝑒𝑟 𝑐𝑙𝑜𝑐𝑘) ∗ (𝑇𝑜𝑡𝑎𝑙 𝐷𝐷𝑅 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) 
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𝐶𝑙𝑜𝑐𝑘𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑈𝑃𝐶 =
∑(𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑟𝑒𝑡𝑖𝑟𝑒𝑑 𝑢𝑜𝑝𝑠[𝑖] ∗ 𝑈𝑛ℎ𝑎𝑙𝑡𝑒𝑑𝐶𝑜𝑟𝑒𝐶𝑙𝑜𝑐𝑘𝑠[𝑖])

∑𝑈𝑛ℎ𝑎𝑙𝑡𝑒𝑑𝐶𝑜𝑟𝑒𝐶𝑙𝑜𝑐𝑘𝑠[𝑖]
 

 Although the set of applications analyzed here uses an offload model for 

computation, in which kernels run on the GPU with periodic synchronization points 

between CPU and GPU, similar performance metrics (WeightedALUBusy, 

Global_MemUtil, and ClockWeightedUPC) may be utilized in the case of more concurrent 

computation across CPU-GPU with higher degree of performance coupling; however, the 

weights associated with the metrics in the linear regression equation may change to reflect 

the  tighter performance-coupling between the CPU and GPU. 

6.3.2 DynaCo: Coordinated Dynamic Energy Management Scheme 

 We propose a run-time energy-management scheme called DynaCo based on the 

online measurement of the frequency sensitivity described in Section 6.3.1. DynaCo is 

implemented as a system software policy layered on top of the baseline AMD A-Series 

power-management system (BAPM). 

 The energy-management algorithm is partitioned into a monitoring block that 

samples the performance counters every 10 ms to coincide with the operating system timer 

tick for minimizing overheads, and a decision block that computes frequency sensitivities 

using measurements described at the end of Section 6.3.1. The CPU and GPU DVFS states 

are then configured. In general, DynaCo periodically determines whether the CPU and the 

GPU frequencies are high or low. In each case, the energy management algorithm 

embodies the following logic: 

1) High GPU sensitivity, Low CPU sensitivity: Shift power to the GPU (i.e., boost the 

GPU to maximize performance). 

2) High GPU sensitivity, High CPU sensitivity: Distribute power proportionally based 

on their relative sensitivities. 

3) Low GPU sensitivity, High CPU sensitivity: Shift power to the CPU (i.e., boost the 

CPU to maximize performance). 
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4) Low GPU sensitivity, low CPU sensitivity: Reduce power of both the CPU and the 

GPU by using lower-power states. 

 

 

 

 

Algorithm 1:  Dynamic scheme (DynaCo1-levelTh) 

1.   1: while TRUE do 

  2:   if (Global_MemUtil >= DDR_bus_efficiency) then 

  3:  /* Case: Memory is bottleneck */ 

  4:    SetGPUFreqState(GPU-med); 

  5:  SetCPUFreqState(CPU-low-power_P2); 

  6:   end if 

  7:   else           /* Case: Memory is not bottleneck */ 

  8:       if(ClockWeightedUPC >= UPC_Threshold) then   

  9: /* CPU frequency sensitive, consider GPU sensitivity */ 

10:         if (WeightedALUBusy>= HIGH) then 

11:                    SetGPUFreqState(GPU-high); 

12:          SetCPUFreqState(CPU-base); 

13:         else 

14:         if (MEDIUM<= WeightedALUBusy<HIGH) then 

15:                    SetGPUFreqState(GPU-med); 

16:          SetCPUFreqState(CPU-boost); 

17:         else 

18:                    SetGPUFreqState(GPU-low); 

19:          SetCPUFreqState(CPU-boost); 

20:         end if 

21:       else 

22:       if(ClockWeightedUPC < IPC_Threshold) then 

23:/* CPU frequency insensitive, consider GPU sensitivity */ 

24:              SetCPUFreqState(CPU-low-power_P2); 

25:         if (WeightedALUBusy>= HIGH) then 

26:           SetGPUFreqState(GPU-high); 

27:         else 

28:         if (MEDIUM<= WeightedALUBusy<HIGH) then 

20:                     SetGPUFreqState(GPU-med); 

30:         else 

31:                    SetGPUFreqState(GPU-low); 

32:         end if 

33:       end if 

34:   end if 

35:      Sleep.time(SAMPLING_INTERVAL); 

36: end while     

Figure 44: DynaCo-1levelTh pseudo-code. 
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 Because HPC applications are mostly uncompromising with respect to performance 

loss, we propose two energy-management algorithms – one more aggressive than the other 

in attempting to reduce power but with potentially higher performance degradation. In the 

less aggressive variant, DynaCo-1levelTh (Figure 44), we limit the lowest-frequency P-

state to P2; the CPU is not permitted to go to a lower-frequency state. Thus, in this case, 

there is potential to lose some power-saving opportunity. In the more aggressive version, 

Algorithm 2:  Dynamic scheme (DynaCo-multilevelTh) 

2.   1: while TRUE do 

----lines 2 through 21 in Algorithm 1--------------- 

22:     if(ClockWeightedUPC <  UPC_Threshold) then 

23: /* CPU frequency insensitive, consider GPU sensitivity */ 

24:        if (WeightedALUBusy>= HIGH) then 

25:                    SetGPUFreqState(GPU-high); 

26:        else 

27:         if (MEDIUM<= WeightedALUBusy<HIGH) then 

28:                    SetGPUFreqState(GPU-med); 

29:        else 

30:                    SetGPUFreqState(GPU-low); 

31:        end if 

32:        SetCPUFreqState(CPU-low-power_Pstate); 

33:        Compute_ MemAccessRate_gradient(); 

34:        if (gradient>=Mem_threshold) then 

35:          if(CPU-low-power_Pstate<=Pmin) then 

36:                  CPU-low-power _Pstate++; 

37:          end if 

38:          else 

39:          if (CPU-low-power >CPU-base+1) then 

40:                  CPU-low-power _Pstate--; 

41:          end if 

42:        end if 

43:     end if 

44:   end if 

45:   Sleep.time(SAMPLING_INTERVAL); 

46: end while     

Figure 45: DynaCo-multilevelTh pseudo-code. 
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DynaCo-multilevelTh (Figure 45), the CPU is allowed to use all of the low-power P-states 

during low-sensitivity phases by analyzing gradients in memory access rates. In both 

versions, the GPU is handled similarly and allowed to use all DVFS states. In Figure 45, 

we show DynaCo-multilevelTh for only the portions in which it is different from DynaCo-

11evelTh. For our analysis, the GPU-high and -med thresholds for GPU 

WeightedALUBusy were set to 80% and 30%, respectively, based on GPU utilization and 

variations in workload intensity of graphics and HPC benchmarks. UPC_threshold was set 

to 0.4 based on empirical observations across a wide range of workload characteristics in 

this architecture. The CPU and GPU DVFS settings are described in Section 6.4. Pmin is 

the lowest available CPU P-state. 

 The key observation is that when there is significant coupling/interaction between 

the CPU and the GPU, having the lowest CPU P-states can lead to significant power 

savings but significant performance degradation. At lower levels of coupling, significant 

power savings can occur with little performance degradation. The choice of algorithm 

depends on the degree of coupling, which can be time-varying, and the degree to which 

performance degradation is acceptable. For example, if a HPC application has little 

communication overhead between the CPU and GPU, such as a compute-offload 

application in which the serial fraction of the code is insignificant compared to the total 

execution time, both DynaCo schemes may provide similar performance but DynaCo-

multilevelTh will provide better power and energy savings. 

6.3.3 Summary 

 The preceding analysis shows that HPC applications exhibit varying degrees of 

CPU and GPU frequency sensitivity for a variety of subtle and non-obvious reasons. 

Overall, the results in this section clearly point towards the need for a set of metrics for 

energy management that can predict CPU-GPU frequency sensitivity in a tightly coupled 

heterogeneous architecture. Using these metrics, we envision extending BAPM with 
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frequency-sensitivity information to augment its functionality. We describe the model, its 

application, and results with measurements on real hardware in the following sections. 

 

6.4 Experimental Set-up 

 We used the AMD A10-5800 desktop APU with 100W TDP as the baseline for all 

our experiments and analysis. Base CPU frequency is 3.8GHz, with boost frequency up to 

4.2GHz. The GPU frequency is 800MHz for the highest DVFS boost state [125]. Table 4 

and Table 5 show the DVFS state table for the CPU and the GPU. We used four 2-GB 

DDR3-1600 DIMMs with two DIMMs per channel. Hardware performance counters for 

the CPU and GPU were monitored using CPU and GPU performance counter libraries 

running in Red Hat Linux OS. We set specific CPU DVFS states using model-specific 

registers as described in [12]; to set a specific GPU DVFS state, we send memory-mapped 

messages through the GPU driver layer to the power-management firmware. 

 

 

Table 4: CPU DVFS states for AMD A10-5800 APU. 

 P-state Volt. 

(V) 

Freq (MHz) 

HW-

only 

Pb0 1.475 4200 

Pb1 1.45 4000 

SW-

visible 

 

P0 1.363 3800 

P1 1.288 3400 

P2 1.2 2900 

P3 1.075 2400 

P4 0.963 1900 

P5 0.925 1400 

 

Table 5: GPU DVFS states for AMD A10-5800 APU. 

P-state Volt. (V) Freq (MHz) 

DVFS-high 1.275 800 

DVFS-med 1.2 633 

DVFS-low 0.9375 304 
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Although our DynaCo scheme can be implemented in any layer such as hardware, 

power-management firmware, or system software, we implemented it as a run-time system 

software policy by layering it on top of the baseline AMD A-Series power-management 

system. For CPU and GPU power and temperature, we used the digital estimates provided 

by the power-management firmware running in the AMD A-Series processor described in 

Section 3.4.1, the accuracies of which are detailed in [83]. For all schemes, we ran the 

applications for several iterations to reach a thermally stable steady state. We took an 

average across those multiple iterations to eliminate run-to-run variance in our hardware 

measurements. 

 

 

Table 6: Application datasets used for DynaCo evaluation. 

Application Problem Size  

miniMD 32 x 32 x 32 elements 

miniFE 100 x 100 x 100 elements 

Lulesh 100 x 100 x 100 elements 

Sort 2,097,152 elements 

Stencil2D 4,096 x 4,096 elements 

S3D SHOC default for integrated GPU 

BFS 1,000,000 nodes 

 

 

 

 We selected the applications used in our experiments based on their relevance to 

future high-performance scientific computing. We evaluated seven OpenCL applications 

in this paper: miniMD, miniFE, Lulesh, S3D, Sort, Stencil2D, and BFS. MiniMD, miniFE, 
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and Lulesh are proxy applications representative of HPC scientific application 

characteristics in the Exascale time-frame. A sub-set of benchmarks (S3D, Sort, Stencil2D, 

BFS) are from the Scalable Heterogeneous Computing (SHOC) benchmark suite [30] that 

represents a large portion of scientific code found in HPC applications. We analyzed all 

applications on a single node to explore energy-saving opportunities using our run-time 

schemes. These applications and the associated datasets are described in Table 6. 

 MiniMD is a molecular dynamics code derived from its parent code, LAMMPS 

[15]. It has two main computational kernels. The first is the L – J potential function, or 

force kernel, and the second is the neighbor-binning algorithm, or neighbor kernel. Other 

kernels include communication kernel atom_comm and miscellaneous small kernels to 

integrate the atom forces and build the neighbor's list for each atom based on proximity 

and other variables. 

 MiniFE provides an implementation of a finite-element method [46]. It provides a 

conjugate gradient (CG) linear system solver with Jacobi preconditioning. The three main 

kernels in the CG solver are matvec, which performs matrix vector operations; dot, which 

performs the dot product of two matrices; and waxpy, which computes the weighted sum 

of two vectors. 

 Lulesh [59] approaches the hydrodynamics problem using Lagrangian numerical 

methods. The two main computation kernels in Lulesh are CalcHourGlassForces and 

CalcFBHourGlassForces. 

 SHOC consists of a collection of complex scientific applications and common 

kernels encapsulated into benchmarks that represent a majority of the numerical operations 

found in HPC. We use Sort; which sorts an array of key-value pairs using a radix sort 

algorithm; Stencil2D, which uses a nine-point stencil operation applied to a 2D dataset; 

S3D, which is a turbulent combustion simulation; and BFS, which is a graph traversal 

algorithm. 
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We report performance, power, and energy efficiency (energy-delay2 product) for 

the two variants of DynaCo algorithm. We picked ED2 because it has been widely used in 

HPC analysis [67] [111] and it captures the importance of both power and performance, 

the latter being critical for HPC. The power and energy results include CPU, GPU, memory 

controller power, and a fixed IO-phy power budget. All results were obtained from real 

hardware and are normalized to the baseline BAPM discussed in Section 3.4.1. All 

averages represent geometric means across the applications. 

6.5 Results 

 This section describes the results from the two DynaCo schemes for the AMD A-

Series APU and compares them with the state-of-the-practice power-management 

algorithm BAPM. We also compare our DynaCo schemes with an ideal static scheme that 

picks the best DVFS state for each kernel as determined through offline profiling and 

analysis by performing an exhaustive state-space search. Offline techniques provide a good 

basis for comparison to evaluate the effectiveness of run-time techniques but are 

impractical as power-management strategies. 

6.5.1 Performance, Power, and Energy 

 Figure 46 shows the performance impact of DynaCo-1levelTh, DynaCo-

multilevelTh, and ideal static schemes compared to the baseline for all seven HPC 

applications. The y-axis represents the increase in run-time compared to a baseline value 

of 1.0, (lower is better). We see an average run-time increase of 0.78% across all the 

applications using DynaCo-1levelTh, with up to 2.58% maximum slow-down in the case 

of miniMD. 

 DynaCo-multilevelTh sees an average run-time increase of 1.61% across the same 

set of applications, with a worst-case slow-down of 4.19%. The ideal static scheme 

measures an average slow-down of 1.65%, with the worst case being 5.2% in miniMD. 

This illustrates the efficacy of the run-time schemes in optimizing energy efficiency under 
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strict performance constraints. Ideal-static picks the best CPU and GPU DVFS states at a 

kernel-level granularity, and it is unable to detect fine-grained phase changes in a kernel. 

Hence, it penalizes short, high-frequency sensitive phases in a kernel that overall have low 

sensitivity. 

 
Figure 46: Performance impact of DynaCo. 

 

 
Figure 47: Phase variation within MATVEC. 
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 As expected, we see much tighter performance control with DynaCo-1levelTh 

compared to DynaCo-multilevelTh and ideal-static because it does not utilize the lowest-

frequency states of the CPU. Since it always fixes the low-power P-state for the CPU to P2 

during phases of low CPU frequency sensitivity, it also removes the slight variability in 

performance over time when the algorithm is adapting dynamically to find the best low-

power P-state. On the other hand, DynaCo-multilevelTh provides better energy efficiency 

gains, as we will see next, with slightly more performance degradation but still within 

reasonable bounds for most HPC applications. We attribute the relatively higher 

performance loss in miniMD to the impact of variability in kernel phases shorter than our 

10-ms sampling interval limitation. 

 The more aggressive DynaCo-multilevelTh outperforms ideal-static in miniFE and 

miniMD because a run-time adaptive scheme is able to take advantage of the phase 

behavior in a kernel, whereas the static scheme based on profiling makes power-state 

decisions only at kernel-level granularity. Figure 47 shows an example phase behavior of 

the matvec kernel in miniFE for a single iteration. The y-axis shows GPU utilization and 

normalized memory-bandwidth utilization compared to the practical peak-DDR 

bandwidth. Matvec performs a sparse matrix-vector product and, in general, is heavily 

memory bandwidth-limited due to the large number of indirect memory references and 

register spills to global memory in the code. However, about 19% of the time it is compute-

intensive without saturating memory bandwidth. This behavior is observed in every 

invocation of matvec in miniFE, a significant fraction of the application's total run-time. 

During this 19% compute-intensive phase, DynaCo boosts the GPU to its highest DVFS 

state while the profiling-based ideal static scheme fixes the GPU frequency to GPU-med 

due to this kernel's overall low GPU frequency sensitivity. 

 In Figure 48 we evaluate the ED2 gains using DynaCo during the entire run-time of 

the application. All data are normalized to a baseline of 1.0 (lower is better). Average 

energy efficiency improves by 24% using DynaCo-1levelTh compared to the baseline, with 
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up to 32% savings in Sort and S3D. DynaCo-multilevelTh sees an average improvement 

of 30%, with up to 47% savings in S3D. Ideal-static achieves an energy-efficiency gain of 

35%. We observe that 70-80% of the savings came from CPU scaling and the remainder 

came from GPU scaling. 

 

 

 
Figure 48: Energy efficiency with DynaCo. 

 

Figure 49: Power savings with DynaCo. 
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 The amount of energy-efficiency gain in S3D is slightly higher than the rest of the 

benchmarks. S3D is a compute-intensive application. However, when we run multiple 

iterations of this benchmark from the SHOC suite, the compute-intensive active phases 

appear to last for a small fraction of the total time it takes to compile and launch the 

application kernels. This causes only small periods of activity on the GPU followed by 

long idle periods. During this idle period, the GPU is power-gated for all three schemes as 

well as the baseline. However, the CPU is busy compiling and preparing the work to launch 

the kernels. Portions of this phase do not contribute to the overall performance of the 

application. Boost algorithms, such as the BAPM algorithm used for the baseline, allocate 

the highest CPU frequencies during this phase when power and thermal headroom is 

available. However, in our run-time and ideal-static schemes we are able to utilize the low 

frequency P-states during the frequency-insensitive phase. We also notice that DynaCo-

multilevelTh provides better energy efficiency than ideal-static for miniMD due to the 

higher slowdowns observed with the profile-based scheme. 

 The power savings achieved with DynaCo are illustrated in Figure 49. The average 

power savings are 24% with DynaCo-1levelTh, 31% with DynaCo-multilevelTh, and 36% 

with ideal-static. We see that DynaCo-multilevelTh provides greater power savings 

compared to DynaCo-1levelTh due to utilization of the very-low-frequency CPU P-states. 

While ideal static provides greater power savings by picking the best DVFS state for each 

kernel, it does not provide the same tight performance bounds as the other two schemes, as 

shown in Figure 46. In addition, it requires user intervention and prior offline profiling of 

all the kernels in an application across multiple CPU and GPU frequencies to determine 

the best state. 

6.5.2 Performance Analysis and Power Shifting 

 We now analyze the case of power-shifting and power-reduction scenarios with the 

two DynaCo schemes for every application. We present a sub-set of those results here. 

Figure 50 shows the percentage GPU DVFS residency for each of the three main kernels 
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of Lulesh as well as the overall application. Since the GPU DVFS decision between the 

two DynaCo schemes is handled similarly from an algorithmic perspective, we show GPU 

DVFS residency results for only DynaCo-1levelTh. 

The CalcHourGlass kernel spends 21% less time in GPU-high, 14% more time in 

GPU-med, and 8% more time in GPU-low than the baseline. On further examination, this 

kernel is memory-bounded 30% of its run-time; during those times, power is shifted away 

from the GPU. Similarly, the entire Lulesh application spends 9% less time in GPU-high 

with DynaCo. For the CalcFBHourGlass kernel, DynaCo performs similarly to the 

baseline. This kernel is heavily compute-bound on GPU with high WeightedALUBusy; 

hence, DynaCo boosts performance by selecting the highest-frequency state. 

 

 

 

Figure 50: GPU DVFS residency for DynaCo and baseline. 
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Figure 51: CPU DVFS residency with DynaCo-1levelTh. 
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Similarly, for miniMD, DynaCo correctly estimates the frequency sensitivity of the 

different kernels. The heavily compute-intensive nature of the force kernel causes it to 

boost to the highest GPU frequency 100% of its run-time, similar to the baseline. On the 

other hand, the neighbor kernel has aggregated CPU-GPU memory bandwidth that is close 

to the peak bandwidth that the DDR bus can sustain after accounting for bus efficiency. 

Hence, we are able to run the GPU at the medium DVFS frequency without noticeable 

performance degradation. Moreover, small kernels in miniMD such as atom_comm, which 

rely on the CPU for data transfer and launch frequently, spend almost 70% of their time in 

the medium- and low-frequency GPU DVFS states using DynaCo. During much of this 

time, CPU is closely coupled to the GPU and runs at high-frequency P-states. Contrary to 

this, the baseline algorithm runs at maximum CPU and GPU frequencies for all miniMD 

kernels due to temperature headroom. 

 

 

 

Figure 52: CPU DVFS residency with DynaCo-multilevelTh. 
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 In the graph algorithm BFS, we see that due to control divergence the GPU has 

short bursts of computation followed by phases of low utilization on the GPU. About 25% 

of the time, threads are waiting for re-convergence. DynaCo correctly assigns high GPU 

frequency to avoid slowing the critical path, but it saves power from the CPU due to low 

UPC. The baseline always runs BFS at the maximum CPU and GPU frequencies due to the 

available thermal headroom, causing energy inefficiency. 

 Due to the lower power consumption, we also see a reduction in the peak die 

temperatures using DynaCo. This is due to a combination of leakage power savings from 

reduced voltage operations and dynamic power savings from reduced frequency. With 

DynaCo, peak die temperature is, on average, up to 2°C lower across all the applications. 

Lower temperatures result in lower cooling costs, better energy efficiency, and better heat 

management. 

In summary, we have shown that DynaCo successfully leverages the metrics 

discussed in Section 6.3 to improve the energy efficiency of HPC application on a 

heterogeneous processor. DynaCo is able to produce significant power savings with a small 

reduction in performance, resulting in energy efficiencies comparable to an ideal static 

management scheme without the additional overhead of profiling required for the static 

scheme. 

6.6 Conclusions 

 This component of the thesis proposed and implemented a set of techniques to 

improve the energy efficiency of integrated CPU-GPU processors. To the best of our 

knowledge, this is the first such implementation. We described the unique characteristics 

of HPC applications and the opportunities they present to save energy. We proposed a 

model to capture the application's frequency sensitivity in such architectures and used this 

model as the basis for a dynamic, coordinated energy-management scheme to improve 

energy efficiency at negligible performance loss. The proposed scheme achieves an 
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average ED2 benefit of up to 30% compared to the baseline with less than 2% average 

performance loss across a variety of Exascale and other HPC applications. This research 

work was published at Supercomputing (SC) 2013 [91] and Journal of Scientific 

Programming 2014 [92]. 
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CHAPTER 7  

GPU-MEMORY PERFORMANCE COUPLING MANAGEMENT  

 

In CHAPTER 4 we described how compute and memory behavior are 

fundamentally performance coupled. If we ignore this coupling in managing the shared 

platform power envelope in future massively parallel systems with a large amount of 

available memory bandwidth, significant energy/power is wasted. Effective use of the 

power budget is of utmost importance to meet performance critical demands and improve 

energy efficiency. We show how the philosophy of coordinated power management 

continues to be a key ingredient in satisfying these demands between other pairs of coupled 

resources. This chapter addresses the problem of efficiently managing the relative power 

demands of a high performance GPU and its memory system by developing a run-time 

power management infrastructure called Harmonia that coordinates platform hardware 

configurations between compute and memory with time-varying application demands so 

that they are in balance, or in “harmony”. 

7.1 Overview 

 GPUs or graphics processing units are now commonly used for data parallel 

applications that do not fit into the traditional graphics space. They have been shown to 

provide significant improvements in power efficiency and performance efficiency for 

many classes of applications [6][62][128][129]. However, while compute has been a major 

consumer of power in such systems, moving forward we see that the power spent in the 

memory system and in data movement will begin to become a major, and sometimes a 

dominant component of platform power [64][103], as discussed in Chapter 4.2.2.  This 

distribution of power consumption between compute and memory must operate under a 

fixed board level power and thermal envelope, while with the advent of on-package DRAM 
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e.g., die stacks and EDRAM [39][56][74][93], they must share an even tighter package 

power and thermal envelope. Therefore we argue that effective dynamic power 

redistribution between compute and memory will be key to energy and power efficiency 

for future high performance GPUs. 

 As discussed in Chapter 4.2.2, hardware tunables such as the number of parallel 

cores, core operating frequency, and the memory bandwidth collectively capture the 

relative time and power cost of performing operations vs. memory accesses in the hardware 

platform. Ideally, the relative ops/byte demand of the applications matches the relative time 

and power costs of compute and memory hardware of the platform and we have a perfectly 

balanced system [22][116], without wasted power and/or unexploited performance 

opportunities. In reality, application behavior is time-varying, and the ops/byte costs of the 

platform depend on the values of the hardware tunables. Hence to retain the most power 

efficient operation we need a runtime power management infrastructure that must identify 

the time-varying performance sensitivity of an application to the ops/byte cost of a platform 

and coordinate power states of the processor (GPU) and the off-chip memory system so 

that they are in balance, or in “harmony”. 

 To this end, we propose Harmonia, a runtime scheme that adjusts the hardware 

tunables on a state-of-the-art, high performance discrete GPU so as to balance the power 

in the memory system and GPU cores to match the demanded ops/byte characteristics of 

an HPC application. We show how such a balance can reduce overall platform power with 

little compromise in performance. Our focus is on the high performance computing (HPC) 

domain where applications are characterized by relatively uncompromising demands for 

execution time performance thereby placing stringent demands on improvements in power 

and energy efficiency. 

Specifically, this chapter makes the following contributions: 

 Through measurements on a modern GPU, we provide an analysis of algorithmic, 

architectural and micro-architectural behaviors that have a significant impact on the 
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performance sensitivity of high performance and scientific computing applications 

with  respect to three hardware tunables—the number of GPU compute units (CU), 

CU frequency, and memory bandwidth. In-depth characterization of the 

performance sensitivity was discussed in Chapter 4.2.2. 

 Based on the analysis, we derive online models that predict performance sensitivity 

of application kernels to each of the three hardware tunables. 

 We propose a coordinated two-level power management scheme, Harmonia, to 

tune platform balance between compute throughput and memory bandwidth by i) a 

coarse-grain adjustment of the GPU and the memory power states based on online 

sensitivity prediction, ii) followed by fine-grain tuning through closed-loop 

performance feedback. 

 Using measurements from an implementation on commodity hardware, we 

compare Harmonia to a commercial, state-of-the-practice power management 

algorithm, demonstrating that up to 36% (average of 12%) improvements in 

energy-delay2 product are feasible with minimal sacrifices in performance. In 

addition, we also show that Harmonia achieves to within 3% of an oracle scheme. 

 

 The rest of the chapter is organized as follows: Section 7.2 presents a detailed 

analysis of the behaviors that have a substantive impact on performance coupling between 

compute and memory. Section 7.3 presents run-time metrics and the sensitivity model to 

capture these behaviors. Section 7.4 details the power management algorithm, Harmonia, 

to balance the power allocation between performance-coupled GPU compute and memory. 

Section 7.5 describes the experimental setup. Finally, Section 7.6 presents a detailed 

implementation and evaluation of Harmonia on a modern high performance GPU. 
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7.2 Compute and Memory Bandwidth Sensitivity Analysis 

 Chapter 4.2.2.2 describes the scope of impact of hardware tunables on power and 

performance on a modern high performance GPU AMD HD7970. The characterization 

underscores the power saving opportunities associated with hardware balance points. The 

key now is identifying measurable quantities that reflect performance sensitivities to 

balance points and using these measurements to tune the hardware to the optimal balance 

point. For the rest of this chapter we use the experimental setup described in Chapter 7.5.  

To develop an online technique to effectively set the value of these three tunables we 

must understand the sensitivity of performance metrics to changes in values of these 

tunables. The sensitivity of performance to a hardware tunable is computed as the ratio of 

the relative change in the performance metric to the relative change in the corresponding 

values of the hardware tunable. Here we present some of the application and architectural 

considerations that determine sensitivity of various performance metrics. We illustrate 

these considerations through a few representative applications and their kernels depicting 

a wide range of phase behavior. 

 

7.2.1 Kernel Occupancy and Latency Hiding 

 In massively parallel GPU architectures, latency to access memory is largely hidden 

through overlapped concurrent execution of many wavefronts. Kernel occupancy is a 

measure of concurrent execution and the utilization of the hardware resources, e.g., LDS, 

SGPRs and VGPRs. The number of wavefronts that can be in flight depends on how these 

resources are allocated across wavefronts – any one resource can be the bottleneck. For 

example, the higher the scratchpad and register resource requirements per work-item, the 

less number of waves that can be simultaneously in flight. This results in lower memory 

parallelism and often less sensitivity to memory bandwidth.  

 Figure 53 shows memory bandwidth sensitivity of kernel occupancy measured on 

the HD7970 for Sort.bottom_scan from the SHOC benchmark suite, and 
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CoMD.AdvanceVelocity from the ExaScale proxy applications [15][30]. In this case 

Sort.bottom_scan has a kernel occupancy of only 30%. The limiting factor is the number 

of VGPRs used. The VGPRs needed per wavefront is more than 25% (66) of the total 

number of available VGPRs (256), hence only 3 simultaneous wavefronts per SIMD unit 

(instead of a maximum 10) or 12 per CU can be in-flight concurrently, leading to less 

sensitivity to memory bus frequency due to less degree of parallelism. On the other hand, 

CoMD.AdvanceVelocity kernel has 100% kernel occupancy because the VGPR is not a 

limiting resource, leading to increased memory level parallelism and sensitivity to memory 

bandwidth. 

 The lesson here is we need online measurements of an application’s algorithmic 

properties (such as workgroup size and GPR usage) and kernel occupancy to make 

effective decisions regarding the impact and setting of compute and memory 

configurations. 

 

 
 

Figure 53: Effects of VGPR-caused kernel occupancy limitation. 
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7.2.2 Load Imbalance Due to Branch Divergence and Kernel 
Complexity 

Control divergence causes thread serialization which can severely degrade 

performance. Prior works [77] have shown that performance is sensitive to compute 

frequency for such workloads since it speeds up serialized execution of parallel threads and 

thereby shortens the overall execution time. However, frequency sensitivity cannot be 

inferred by branch divergence measures alone. Low divergence in large kernels can have 

significant impact while large divergence in small kernels (i.e., executing a smaller number 

of dynamic instructions) may have little impact.  

 

 

 

Figure 54: Impact on compute frequency sensitivity from load imbalance (branch 

divergence) and no. of instructions. 

 

 

 

 

Figure 54 shows compute frequency sensitivity for SRAD.Prepare and 

Sort.BottomScan, from Rodinia and SHOC benchmark suites respectively. The first set of 

bars indicate branch divergence and the second set indicate measured compute frequency 
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sensitivity. While the SRAD.Prepare kernel has about 75% branch divergence it has only 

8 ALU instructions, making this kernel’s impact on application performance less sensitive 

to compute frequency and more dominated by other overheads. However, Sort.BottomScan 

has only 6% branch divergence across over 2 million instructions, leading to significant 

thread serialization effects and load imbalances, and thus high sensitivity to compute 

frequency. 

The lesson here is branch divergence affects compute frequency sensitivity and its 

effects must be evaluated in the context of the amount of work a kernel performs, to 

determine its net influence on load imbalance, critical path and overall performance. 

7.2.3 Architectural Clock Domains  

 Finally, we note that chip-scale global interactions between multiple clock domains 

can create non-obvious sensitivities. In our case, the GPU L2 cache (using the compute 

clock) and the on-chip memory controller (using the memory clock) are in different clock 

domains. Reducing compute frequency reduces the rate at which requests are delivered 

from the L2 cache to the memory controller clock domain. For extremely memory bound 

benchmarks with very poor L2 hit rates, slowing down compute frequency can hurt overall 

performance. The left column in Figure 55 shows off-chip interconnect activity (icActivity) 

for DeviceMemory. This application has an ops/byte demand of 2 with poor cache hit rate 

in the L2, which would otherwise make this kernel memory bound. However, the right 

column in Figure 55 indicates its high sensitivity to compute frequency, especially when 

compute frequency is low since the effective bandwidth to the DRAM is reduced. 

 The lesson here is that multiple clock domains introduce performance sensitivities 

that are non-obvious and must be amenable to measurement. In addition, off-chip data 

movement activities and operational intensity must be monitored. 
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Figure 55: Impact of clock domains on compute frequency sensitivity for memory-

intensive workloads. 

 

 

 

In summary, hardware balance is sensitive to several expected as well as non-

obvious behaviors in the hardware platform. Our analysis indicates that achieving hardware 

balance requires periodically assessing the sensitivity of performance to the hardware 

tunables accompanied by proportional changes to the values of the hardware tunables. The 

next section describes the development of sensitivity predictors for this purpose. 

7.3 Compute and Memory Bandwidth Sensitivity Predictors 

 Our goal is the coordinated determination of the power consumption of the GPU 

cores and power consumption of the memory system. Power consumption of the GPU cores 

is controlled through the control of the number of CUs and the frequency (and hence 

voltage) of the CUs. The power consumption of the memory system is controlled through 

the memory bus frequency. We develop models to predict the sensitivity of the application 

to compute throughput (set by active CU count and CU frequency) and memory bandwidth 

(set by memory frequency) configurations. The predictors are developed based on 

measurement data from a wide range of simple and complex applications with one or many 

kernels for a total of 25 application kernels representing a variety of behaviors common in 

the domain of HPC and scientific computing. 
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7.3.1 Performance Sensitivity Measurements 

 We executed the kernels and applications multiple times for multiple iterations 

across an entire design space of 450 distinct compute and memory configuration states over 

8X range of CUs, 3.33X range of CU frequency and 2.89X range of memory bandwidth. 

More details of the experimental methodology are explained in Chapter 4.2.2.1.1.  For each 

hardware configuration, we measured average execution time for each kernel across all the 

iterations. Sensitivity is computed for each hardware configuration. CU sensitivity is 

computed as the ratio of i) relative change in execution times, to ii) relative change in 

number of active CUs. CU frequency and memory bandwidth are set to their maximum 

possible values in the hardware so that they are not the limiting factors. Sensitivities to CU 

frequency and memory bandwidth are similarly computed. Finally, the sensitivity to the 

number of CUs and CU frequency are aggregated into a single compute throughput 

sensitivity metric. The sensitivity models are then derived from these measurements as 

follows. 

 

 

Table 7: Performance counters and metrics for Harmonia. 
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7.3.2 Performance Counter Correlation 

 Together with performance, we recorded an average of 50+ performance counters 

over all iterations of each kernel and application, resulting in one data point for every 

counter for each kernel at every hardware configuration. We normalized all counter values 

to a percentage of its maximum possible value in order to ensure proper weighted 

representation of all events in the training data. For a total of 25 kernels, this resulted in a 

total of 11250 vectors of performance counter values (25x450). We found that among 

multiple application kernels the performance counters vary quite a bit as expected. 

However, for the same kernel across multiple hardware configurations there are generally 

only small variations around the nominal values. Therefore, each performance counter 

value for a kernel is replaced by its average value across all hardware configurations. This 

enabled us to reduce the total training data set to 2000 points across all kernels. Each such 

vector is associated with its corresponding compute throughput sensitivity and memory 

bandwidth sensitivity. 

7.3.3 Sensitivity Predictor Creation 

Across the 2000 points we performed a correlation analysis between measured 

sensitivities and performance counters across all kernels using linear regression. 

Coefficient values greater than 0.5 or less than -0.5 are considered a strong positive or 

negative correlation, respectively [11]. From correlation analysis we selected a few 

counters that capture behaviors identified in Section 7.2 as shown in Table 7. These are 

used to construct a linear regression model for compute throughput and memory bandwidth 

sensitivity. The correlation coefficient using this combination of metrics was 0.91 for 

compute throughput sensitivity and 0.96 for bandwidth sensitivity respectively. Accuracies 

of these predictors are discussed in Section 7.6. Table 8 represents the coefficients of the 

linear regression models. Two metrics are not directly available in hardware performance 

counters, and are calculated as follows. 
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𝑖𝑐𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑦 =
𝑅𝑒𝑎𝑑𝑊𝑟𝑖𝑡𝑒𝑀𝑒𝑚𝐵𝑊

𝑃𝑒𝑎𝑘𝑀𝑒𝑚𝐵𝑊
 

Where,  

𝑃𝑒𝑎𝑘𝑀𝑒𝑚𝐵𝑊

= 𝑀𝑒𝑚𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ∗ 𝐵𝑢𝑠𝑊𝑖𝑑𝑡ℎ ∗ 𝑛𝑢𝑚𝑀𝑒𝑚𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

∗ 𝐺𝐷𝐷𝑅5𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑅𝑎𝑡𝑒 

 

To determine compute to memory intensity of an application online, we use the following 

metric:  

𝐶𝑜𝑚𝑝𝑡𝑜𝑀𝑒𝑚𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =  
%𝑡𝑖𝑚𝑒 𝐺𝑃𝑈 𝑖𝑠 𝑏𝑢𝑠𝑦 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑣𝑒 𝐴𝐿𝑈 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

%𝑡𝑖𝑚𝑒 𝐺𝑃𝑈 𝑖𝑠 𝑏𝑢𝑠𝑦 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑚𝑒𝑚𝑜𝑟𝑦 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
 

=  
(𝑉𝐴𝐿𝑈𝐵𝑢𝑠𝑦 ∗ 𝑉𝐴𝐿𝑈𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛)/100

𝑀𝑒𝑚𝑈𝑛𝑖𝑡𝐵𝑢𝑠𝑦
 

 

Table 8: Harmonia sensitivity model and parameters. 

 

 

 

 

7.4 Harmonia: Coordinated Two-Level Power Management 

 Based on the preceding analysis, we find that an effective approach to achieving 

hardware balance involves two steps: i) employing sensitivities to the hardware tunables 

Bandwidth Sensitivity Compute Sensitivity 

Counter or Metric Coefficient Counter or Metric Coefficient 

Intercept -0.42 Intercept 0.06 

VALUUtilization 0.003 ComptoMemIntensity 0.007 

WriteUnitStalled 0.011 NormVGPR 0.452 

MemUnitBusy 0.01 NormSGPR 0.024 

MemUnitStalled -0.004   

icActivity 1.003   

NormVGPR 1.158   

NormSGPR -0.731   
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to make larger adjustments to the hardware configurations, and ii) fine tuning the 

configurations based on performance feedback to further improve hardware balance. We 

refer to the former as coarse-grain (CG) tuning and the latter as fine-grain (FG) tuning. As 

the number of hardware power configurations grows in future processors we expect such 

Harmonia Algorithm 

1. 1: while TRUE do 

2:   /*Monitoring Loop*/ 

3:   /* Online Sensitivity Computation Loop */ 

4:    ComputeThroughputSensitivity = model1 

5:  BandwidthSensitivity = model2 

6:         Bin sensitivities to HIGH, MED, LOW 

7:   /*Coarse-Grain tuning (CG Block)*/ 

8:   if(sensitivity) changed 

9:          if(CU or comp_freq or mem_freq) changed in 

previous iteration 

10:               Revert_prev_decision() /*sensitivities artificially 

changed due to configuration change*/ 

11:           else /*Application phase change 

12:               SetCU_Freq _MemBW(sensitivity_bin); 

13:   else /*case of same sensitivities*/ 

14:    /*Fine-Grain tuning (FG Block)*/ 

15:         if(VALUBusy gradient)>=0 

16:              Decrement state; //CU, CU_freq,or BW 

17:  elseif(VALUBusy gradient)<0 

18:              Increment state 

19:              CountDithering() 

20:      if(dithering>max) converge to last state with zero 

gradient 

21:         end if 

22:    endif 

23:  Run at config identified 

23:      Sleep.time(SAMPLING_INTERVAL); 

24: end while 

2.  

Figure 56: Harmonia algorithm overview. 
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coarse-fine schemes will be increasingly effective. Figure 56 specifies the Harmonia 

algorithm. 

7.4.1 Harmonia: Structure 

 Harmonia operates as a system software policy overlaid on top of the baseline 

HD7970 power management system. As described in Chapter 3.4.2, the baseline policy 

manages power to just the power states mentioned in Section 7.5. Our implementation is 

organized into i) a monitoring block that samples the performance counters at application 

kernel boundaries, ii) a coarse-grain decision block CG that calculates memory bandwidth 

and compute throughput sensitivities based on Table 8 and brings the hardware 

configuration to the “vicinty” of the balance point, and iii) a fine-grain tuning block FG 

that fine-tunes configurations to further improve balance, based on real time performance 

feedback. Although the monitoring and decision blocks of Harmonia can operate at 

periodic smaller intervals, due to performance counter limitations in the current device, we 

monitor and calculate sensitivities at kernel boundaries and use each kernel’s historical 

data from previous iterations to predict hardware configurations for the same kernel in the 

next iteration. For applications that use iterative convergence algorithms and invoke 

multiple kernels multiple times, Harmonia records the last best hardware configuration for 

all kernels within that application. This state is the initial state for the subsequent iteration. 

Such iterative behaviors are quite common in HPC and scientific applications. 

7.4.2 Harmonia: Algorithm 

 In this section, we describe the details of the Harmonia algorithm and its different 

components. 

7.4.2.1 Sensitivity based Coarse-Grain (CG) Adjustments 

 Within the CG block, Harmonia implements a sensitivity binning policy to bin 

measured compute and bandwidth sensitivities into three bins of high, medium and low. In 

our case the thresholds for the three bins are set to 70% and 30% of the maximum, driven 
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by empirical measurements of ops/byte across all benchmarks. The change in actual values 

of the hardware tunables is proportional to the sensitivity value. Periodic enforcement of 

hardware configurations can artificially change sensitivities and dampen natural workload 

behavior. To prevent this and isolate sensitivity changes due to workload from those due 

to changes in the hardware tunables, we only execute CG when there has been no changes 

in the hardware tunables prior to the sensitivity change.  

7.4.2.2 Performance Feedback Driven Fine-Grain (FG) Tuning 

 Predictive techniques using sensitivity models provide guidance for making “near-

optimal” adjustments to the power states of the GPU. However, during run-time power 

management, closed-loop performance feedback is essential for making fine grained 

adjustments for each application to achieve the most effective hardware balance. This is 

especially important when there are mispredictions in the sensitivities or there are longer 

term changes in learned behaviors that are used to train the sensitivity predictors. 

Harmonia’s FG block fine-tunes each of the hardware tunables based on performance 

feedback using the gradient of core utilization. The idea is to reduce power when the 

gradient is positive or zero and increase power when the gradient is negative so as to 

eventually settle at the balance point (minimum configuration with 0 gradient). To prevent 

oscillation, the configuration is set to the last best state after a certain number of oscillations 

to enable convergence prior to the next workload phase. In our implementation, utilization 

is measured with the Vector ALU Busy (VALUBusy) performance counter—this counter 

represents the percentage time the GPU is processing ALU instructions and is strongly 

correlated to execution time performance as shown in Figure 57. Here X-axis indicates 

%VALUBusy and Y-axis indicates performance normalized to the minimum hardware 

configuration. 
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Figure 57: Performance sensitivity of Vector ALU Busy (VALUBusy) to number of 

active CUs (left) and memory bandwidth (right). 

 

 

 

7.5 Experimental Setup 

 We use an AMD Radeon HD7970 discrete graphics card with 32 compute units as 

the baseline for all our experiments and analysis. The possible hardware configurations in 

the default HD7970 are provided in Table 9. In our analysis there are 450 possible 

combinations of the number of active CUs, compute frequency, and memory bus frequency 

as described in Chapter 4.2.2.1.1. When varying compute frequency, voltage is also scaled 

as noted in Table 9. When scaling memory bus frequency, voltage was fixed at the 

hardware default value due to platform constraints. All inactive CUs are power gated. 

Hardware performance counters were monitored using the GPU performance counter 

library CodeXL running in Red Hat Linux OS [9]. We implemented Harmonia as a run-

time system software policy by layering it on top of the baseline AMD HD7970 power 

management system. 

 We selected 14 applications with many kernels, covering a wide range of 

typical applications to reflect the needs of the HPC and scientific computing community. 

They include Exascale HPC proxy apps (CoMD, XSBench, miniFE) [15][46], Graph500 

[81], B+Tree (BPT) [28], CFD, LUD, SRAD and Streamcluster from Rodinia [18][19], and 

Stencil, Sort, SPMV, MaxFlops and DeviceMemory from SHOC [30]. We ran each 
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application multiple times and recorded the average to eliminate run-to-run variance in our 

hardware measurements. 

 

 

Table 9: GPU DVFS states for AMD HD7970 dGPU. 

GPU DVFS-

state 

Freq 

(MHz) 

Voltage 

(V) 

DPM0 300 0.85 

DPM1 500 0.95 

DPM2 925 1.17 

 

 

 

We measured performance as the total execution time of the application running on 

the GPU. Power was profiled using a National Instruments data acquisition (DAQ) card 

(NI PCIe-6353), with a sampling frequency of 1KHz. Total GPU card power 

(GPUCardPwr) was measured at the PCI-e connector interface between the motherboard 

and the GPU card and it includes power of the GPU chip, its on-chip memory controller, 

DDR bus transceivers (PHYs), off-chip GDDR5 memory, fan, voltage regulators, and other 

miscellaneous components on the card. We also separately measured the GPU chip power 

(GPUPwr) which includes power of the GPU compute, integrated memory controller, but 

not the PHYs. Through detailed measurements and evaluation under idle conditions, we 

characterized the “rest of the card power” (OtherPwr) as power due to the fan, voltage 

regulators, board trace losses and other minor discrete components. To ensure a constant 

OtherPwr we fixed the fan speed to the highest RPM at all times, independent of the 

workload. Based on these measurements, we derived memory power (MemPwr) as the 

power consumed by off-chip memory and DDR PHYs that are integrated within the GPU 

chip. Due to platform measurement constraints, memory controller power is not included 
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in measured memory power, instead it is part of GPUPwr, but it accounts for only about 

3% of the overall memory power in our case. 

MemPwr = GPUCardPwr –  GPUPwr –  RestOfCardPwr 
 

7.5.1 Metrics 

We note that HPC applications demand minimal degradations in execution time. 

Consequently, our goal is to minimize energy expenditure while keeping execution time 

constant (at best). This can be achieved by improving energy efficiency (ops/joule). Under 

a fixed execution time constraint it is equivalent to improving power efficiency. To capture 

this relative importance of both time and energy we can utilize metrics of energy-delay 

 
Figure 58: Performance, energy, energy-delay2 and energy-delay comparisons 

for LUD and DeviceMemory. Energy efficiency leads to significant performance. 
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(ED) and energy-delay square (ED2). The latter in particular is commonly used in HPC 

application analysis [67][111]. 

 

 Figure 58 shows the following analysis of the behavior of these metrics. We 

performed an exhaustive design space exploration across all 450 hardware configurations 

for LUD and DeviceMemory searching for the configurations that i) minimize energy, ii) 

minimize ED2, or iii) maximize performance, as indicated by the three bars in each group 

of columns. For each of these three configurations we noted the corresponding measured 

performance, energy, ED2 and ED. All results are normalized relative to the best 

performing configuration. We found that the configuration optimizing for energy (1st bar) 

would result in 69% and 66% performance loss for LUD and DeviceMemory, respectively, 

compared to the best performing configuration (3rd bar). On the other hand, the 

configuration optimizing for ED2 (2nd bar) has only 1% performance penalty but still 

realizes 60% and 38% reduction in energy compared to the energy optimized case. Thus, 

we use ED2 as the main metric for evaluation motivated by its wide usage in HPC 

application analysis [67][111] and note that using ED here yielded similar conclusions.  

7.6 Results 

 All results were obtained from commodity hardware and are normalized to the 

baseline HD7970 power management system discussed in Section 3.4.2. All averages 

represent the geometric mean across the applications. Finally, we also compare Harmonia 

with an oracle scheme optimized for ED2 based on exhaustive online profiling of every 

iteration of each kernel across all of the 450 possible hardware configurations (See Chapter 

4.2.2.1.1). While the oracle technique provides a useful basis for evaluation, it is 

impractical as a power management strategy. 



 141 

 

Figure 59: Overall combined performance and energy gain from Harmonia, using 

the ED2 metric. 

 

 

 

7.6.1 Performance, Power, and Energy Efficiency 

 Figure 59 and Figure 60 illustrate improvements in ED2 and energy respectively 

relative to the baseline and the oracle. In addition, we also demonstrate the performance of 

just CG tuning. Harmonia is represented by the "FG+CG" bars. Due to the consistent 

availability of thermal headroom, the baseline power management always ran at the boost 

frequency of 1GHz for all applications. We show two geometric means to ensure results 

are not skewed by the stress benchmarks MaxFlops and DeviceMemory, which represent 

extreme cases of compute and memory limiting behavior respectively. Geomean_2 which 

is the last set of bars excludes those two stress benchmarks. Harmonia realizes an average 

ED2 improvement of 12% compared to the baseline, with up to 36% savings for BPT. Of 

this 12% ED2 savings, about 6% is due to CG tuning, with the remaining from the fine-

grain tuning. In addition, Harmonia is typically within 3% of the oracle. Interestingly, we 

observe that the energy savings is almost identical between the CG and FG+CG schemes, 
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with a contribution of only 2% coming from the FG loop. However, FG tuning is important 

for preserving performance as described next. 

 

  

Figure 60: Overall energy gain from Harmonia. 

 

 

In Figure 61 we see an average loss in performance of 0.36% across all the 

applications using Harmonia (FG+CG) excluding MaxFlops and DeviceMemory, with up 

to 3.6% maximum slow-down in Streamcluster. This illustrates the efficacy of Harmonia 

in optimizing energy efficiency under performance constraints by pushing the hardware to 
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Figure 61: Overall performance from Harmonia. 
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GPUCardPwr. Notice that more memory power saving would be possible if HD7970’s 

memory interface supports multiple voltages. On the other hand, AdvanceVelocity in 

CoMD is memory intensive with moderate compute demands and Harmonia finds the 

balance points by reducing compute power without performance loss. Similarly, due to 

poor thread level parallelism (kernel occupancy of 30%) in Bottomscan, the main kernel 

in Sort, the memory bus frequency could be reduced down to 475MHz without hurting 

performance with a 12% overall GPU card power savings. 

 

 

 

Figure 62: Overall power savings from Harmonia. 
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writes (VWriteInsts) executed in eight successive iterations, each iteration lasting 

anywhere from 0.9 to 5.6 seconds. This kernel is performing a Breadth First Search. Note 

that the raw total number of instructions across iterations can vary significantly. The 

memory fetch unit was active anywhere from 40% to 80% of the total kernel execution 

time. The compute sensitivity was high 95% of the time and branch divergence was 

significant. As a result Harmonia mostly utilized all 32 CUs and 1GHz compute frequency 

to speed up execution of threads serialized by branch divergence. However, bandwidth 

sensitivity changed frequently between medium and low as the predictor adapted to input 

argument changes and consequent changes in demand for memory bandwidth. Thus, 

through CG and FG tuning, memory frequency dithered between 925MHz and 775MHz. 

Figure 64 shows the distribution of time spent at the different memory bus frequencies in 

Harmonia over the kernel’s entire execution. 

 

 

Figure 63: Behavior of Graph500.BottomStepUp over time.  
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Figure 64: Memory bus frequency residency change as time progresses in 

Graph500.BottomStepUp. 

 

 

Figure 65: Residency of the hardware tunables in Graph500. 
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 Inter-kernel Phase Changes: We observe that the ops/byte value of Graph500 

varies from 0.54 to 264. Figure 65 shows the fraction of time each hardware tunable spent 

in each power state as Harmonia moved the hardware towards the right balance point. For 

this application due to high branch divergence, Harmonia tunes to the maximum compute 

frequency (single state in CUFreq column). This was accompanied by tuning of the CU 

count and memory bandwidth that reduced power. The #CUs column shows that about 

90% of the time 32 CUs were used; the remaining time was spent in dithering between 4, 

8, 12 and 16 CUs based on time-varying ops/byte. The memory bus frequency varied 

between 1375MHz (25% of the time), 925MHz (23%), 775MHz (42%) and 475MHz (8%) 

as the operational intensity of the three kernels in Graph500 varied from lows of 0.64 

ops/byte to bursts of 264 ops/byte. 

 

 

 

Figure 66: Relative GPU and memory power consumption. 
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normalized with respect to the baseline. Power due to remaining elements on the board are 

not shown since they are roughly constant. We observe that out of the average 12% power 

savings, 64% of the savings come from varying the GPU compute configuration. The 

remaining 36% comes from changing the memory bus frequencies. We believe that it is 

feasible to achieve far more power savings from memory configuration changes if voltage 

scaling is applied while lowering bus speeds. In our current setup we were not able to scale 

voltage of the memory bus interface. 

Another interesting observation is that most often, Harmonia adjusted CU counts 

and memory bus frequencies rather than the full range of compute frequencies. This 

behavior was consistent across all applications. In fact compute frequency and voltage 

scaling alone achieved only an average ED2 gain of 3% with a 1% performance loss 

compared to the baseline. The reason is two-fold: i) parallel execution and data movement 

demands are inherent to the application and govern demanded ops/byte values which vary 

widely across applications, thus making available hardware resources in excess of these 

demands is not helpful, and ii) as explained in Section 7.2.3, architectural clock domain 

crossings reduce opportunities for compute frequency to improve energy efficiency for 

memory intensive applications. 

Algorithm Convergence and Relative Impact of CG vs. FG Tuning: Figure 67 

shows the relative contributions from CG and FG tuning for energy efficiency 

improvement across a subset of applications. In most applications CG tuning requires only 

one iteration. Even in applications with a small number of iterations (insufficient for 

feedback driven FG tuning) CG is very effective in rapidly reaching a lower power 

operation point often in a single iteration. An example is XS-Bench which executes only 2 

iterations for each of its kernels. Even here, Harmonia is able to save 4% overall GPU card 

power while improving overall application performance by 2%, resulting in 9% energy 

efficiency gain. However, in certain cases such as LUD, SPMV, due to prediction outliers 

or lack of performance feedback, CG can omit additional power savings opportunity or 
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degrade performance. In such cases FG tuning plays a crucial role. The FG step typically 

takes an additional 3 to 4 iterations to converge. In HPC applications, many kernels 

represent iterative computations that typically execute several times to converge with 

minimal algorithmic error. For such kernels, the overhead of FG tuning is amortized over 

successive kernel invocations. Therefore, both steps are necessary in order to have 

Harmonia cover a broad range of workloads. 

 

 

 

Figure 67: Relative contributions of CG vs. FG in Harmonia. 

 

 

 
 

 Sensitivity Predictors: The prediction error between measured and estimated 

bandwidth and compute sensitivities is 3.03% and 5.71% respectively across all the 

applications used in this study. Since our goal is to develop simple, effective and practical 

sensitivity predictors that can be easily implemented in hardware, we found that simple 

linear regression based sensitivity models such as the ones proposed in this thesis combined 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
el

at
iv

e 
C

o
n

tr
ib

u
ti

o
n

 o
f 

C
G

 a
n

d
 F

G
 in

 
H

ar
m

o
n

ia

FG CG



 150 

with an effective binning methodology can significantly help improve the accuracy of the 

predictors. 

7.6.3 Summary of Key Insights 

In this section we summarize our main results and insights: 

1. Compute and memory behavior are fundamentally performance coupled. 

Optimizing only compute or memory behavior has limited benefits. It is necessary 

to balance the time and energy costs of compute and memory to improve energy 

efficiency with minimal performance loss. 

2. Scaling parallelism (number of active CUs) and memory bandwidth is more 

effective than scaling CU frequency since it has a greater impact on ops/byte 

behaviors. Note that modern systems rely primarily on scaling compute frequency 

for energy efficiency gains. 

3. Clock domain crossings and interconnect sizing have non-trivial impact on energy 

efficiency. 

4. Feedback driven fine-grained adjustments are effective in correcting coarse grain 

tuning mispredictions or longer-term changes in learned behaviors. 

5. Improving energy efficiency can lead to improvements in execution time due to 

reduction of interference in shared resources, e.g., cache or interconnect. 

6. With advanced packaging technologies, compute and memory will share tighter 

package power envelopes, e.g., compute with stacked memory [74]. Coordinated 

power management and the concept of hardware balance will become more 

important in such systems. 

7.7 Conclusions 

 This component of the thesis applies the notion of hardware balance to the 

development of a practical scheme for the coordinated management of compute and 

memory power in a high performance discrete GPU platform. By tracking the time-varying 
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relative compute and memory demands of applications, the corresponding hardware power 

configurations of the core and memory system can be set to reduce overall platform power 

and thereby improve energy efficiency with minimal compromises in performance. This 

research work was published at International Symposium of Computer Architecture (ISCA) 

2015 [89]. 
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CHAPTER 8  

CONCLUSIONS AND FUTURE WORK 

 

 Following the end of Dennard scaling, the major system challenge facing the 

industry is to sustain performance scaling with Moore’s Law while preparing for the 

transition to post-CMOS technologies. As W. Dally noted [29], performance scaling in the 

post-Dennard dark-silicon era will involve improving efficiency of power and energy usage 

instead of clock speed scaling. The modern industry shift towards heterogeneous 

computing is largely motivated by energy and power efficiencies. While such tightly 

coupled systems benefit from reduced latency and improved performance, they also give 

rise to new management challenges due to phenomena such as physical asymmetry in 

thermal and power signatures between the diverse elements and functional asymmetry in 

performance.  

 The objective of this dissertation is to understand the relationships between the 

physical phenomena (power and thermal coupling), functional behaviors (direct and 

indirect performance coupling) and their impact on system performance, and utilize that 

understanding towards proposing abstractions and guiding principles towards managing 

such coupling effects. Towards this end, the final chapter of this dissertation summarizes 

the aspects of various coupling effects in modern heterogeneous processors, along with key 

insights on coordinated management to tackle such effects while improving system level 

performance, power efficiency and energy. This chapter also identifies related open 

problems that merit additional work in future. 

8.1 Summary of Key Contributions 

 This thesis demonstrates the concepts of thermal coupling and performance 

coupling and the needs for coordinated management of functional and physical resources 

of a heterogeneous system. It shows that this interaction between processor physics and 
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performance is not an artifact of an architecture instance, but is fundamental to the 

operation of many core and heterogeneous architectures.  

Specially, following subsections describe the key contributions of this dissertation 

research. 

8.1.1 Analysis and Abstractions of New Management Challenges 

One of the main contributions of this thesis is analyzing the interactions between physics, 

such as heat transfer and power delivery, and system level performance in a heterogeneous 

processor. Our studies in this research point out that various forms of coupling effects 

between major subsystems in a heterogeneous processor (CPU, GPU, memory) are 

beginning to dominate energy, power and performance efficiencies. This phenomenon will 

become more pronounced at future technology nodes as die sizes shrink and the trend 

towards Systems-on-Chip style processors grows with more components getting 

integrated. We illustrate the distinct and asymmetric power and thermal signatures of the 

various integrated elements that exist in modern processors, which is turn causes unequal 

thermal coupling effects among multiple elements of the processor. We also demonstrate 

the functional dependencies and performance coupling between diverse compute and 

memory subsystems of the chip. This conceptual understanding forms the foundation of 

the thesis as well as opens the door to many open problems as described in the future work 

Section 8.2.  

8.1.2 Characterization of Emerging Classes of Applications 

This dissertation performs an in-depth characterization of the emerging class of compute 

applications on integrated CPU-GPU processors as well as high performance GPUs. We 

show that, unlike traditional applications that are suitable for a particular device, emerging 

compute applications require cooperative execution of both CPU and GPU cores with time-

varying redistribution of the compute intensities. In addition, we also illustrate that at any 

given time, compute throughput and bandwidth demands of an application must match the 
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hardware compute and memory costs in order to operate most efficiently. Any excess 

available bandwidth than the bytes transferred is a waste of power or hardware cost without 

any benefit in performance. This highlights the need for coordinated management of the 

power states and hardware configurations of modern heterogeneous processors. The 

remaining contributions focus on building guiding principles, metrics and power 

management algorithms to manage the interactions between various types of coupling, 

workload execution profiles and optimize overall system level performance, power and 

energy under various constraints.  

8.1.3 Models and Run-time Metrics for Coordinated Management 

 One of the key contributions of this thesis is the demonstration of simple, practical 

and effective ways of dealing with the different types of coupling effects in modern 

heterogeneous processors through actual hardware measurements and implementation. To 

this end, the first step is to identify run-time parameters and metrics that can accurately 

model the effects of thermal coupling and performance coupling between multiple compute 

or compute and memory elements of the heterogeneous architecture. This dissertation 

establishes criteria for when thermal coupling effects are detrimental in an APU and must 

be balanced with the needs of performance coupling. It identifies performance metrics and 

their statistical behavior that captures the point of performance dependency of the GPU on 

the CPU, termed as critical CPU P-state, in order to facilitate computation both using an 

offload as well a concurrent computation programming model. 

 The dissertation also identifies and categorizes behaviors that have a substantive 

impact on frequency sensitivity of the CPU and GPU in an APU and uses regression 

techniques to construct an analytic model of frequency sensitivity. Finally, it illustrates that 

hardware balance is sensitive to several expected as well as non-obvious behaviors in the 

hardware platform. It derives online predictors for assessing the performance sensitivity of 

application kernels to each of the hardware tunables (#CUs, compute frequency, memory 

bandwidth) in a tightly coupled high performance GPU and memory system. 
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8.1.4 Coordinated Management under Global Constraints 

Power management solutions which do not understand and account for the 

interactions between power delivery, thermal coupling and performance coupling can have 

undesired consequences on system level metrics such as performance and energy 

efficiency.  Through real-hardware measurements, this thesis demonstrates that effective 

power management in heterogeneous processors requires coordinated management across 

physically and functionally diverse compute and memory components. We demonstrate 

this through the development, implementation, and evaluation of chip-scale coordinated 

power management algorithms to optimize system level metrics such as performance and 

energy efficiency under global constraints such as thermal limits and power budgets.  

First, we propose a dynamic power-management approach called cooperative 

boosting (CB) to allocate power dynamically between the CPU and GPU in a manner that 

balances thermal coupling against the needs of performance coupling by modifying the 

CPU P-state at run-time. Here goal is to optimize performance under the given power and 

thermal constraints of the die. Next, we propose coordinated management of the power 

states in both the CPU and GPU that encapsulates CPU-GPU frequency sensitivity models 

along with power management algorithms, DynaCo, to make the coupled operation as 

energy efficient as possible with minimal performance impact. Finally, we propose a 

coordinated two-level power management scheme, Harmonia, to tune platform balance 

between compute throughput and memory bandwidth by i) a coarse-grain adjustment of 

the GPU and the memory power states based on online sensitivity prediction, ii) followed 

by fine-grain tuning through close-loop performance feedback. 

8.2 Future Work 

 This thesis establishes the concepts of thermal coupling and performance coupling 

and apply these concepts to develop novel power management algorithms for tackling the 
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various coupling effects in heterogeneous CPU-GPU and GPU-Memory systems. Here we 

explore processor physics on-die and its interactions with performance and power 

management. However, the concepts developed in this thesis can be applied to many other 

potential areas in different forms, factors and packages, likely leading to new and valuable 

discoveries. A few important future research directions are discussed in the following 

subsections. 

 

8.2.1 Thermal and Performance Coupling Management in CPU-GPU-
Memory Systems 

 

 One of the natural extensions of the work done in this thesis is applicability of the 

thermal and performance coupling analysis to a heterogeneous system with integrated 

CPU, GPU and memory (DRAM) subsystems. In future, with the advent of High 

Bandwidth Memory (HBM), Hybrid Memory Cube  (HMC) and other die stacking memory 

technologies [93][39][56], heterogeneous architectures with integrated CPU, GPU and 

memory will emerge [131] sharing the package or chip-level thermal design power 

envelope (TDP).  The integration of processors or other computing logic within the 3D die-

stacked memories enables processing-in-memory (PIM) capabilities within each memory 

module. The advantage of this organization is the resultant high bandwidth, low latency 

memory accesses from the in-stack processing layer. However, 3D stacking of the 

processor layer and the memory layers incurs high power density with less efficient heat 

dissipation. This can potentially lead to adverse thermal coupling affects impacting system 

level power efficiency and performance. Power states in such heterogeneous die-stacked 

systems must be coordinated to mitigate the detrimental effects of thermal coupling. On 

the other hand, data placement and compute dispatch management can lead to various 

degrees of performance coupling in such systems. Thus, effective sharing of the power and 

thermal envelope between the memory system, the CPU and the GPU needs to be 

investigated and is an important research direction for future. 
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8.2.2 Thermal and Performance Coupling Management in 
Datacenters  

 Optimizing the performance of a machine within a power budget is an important 

problem. The “machine” could be a single GPU consisting of multiple CUs or a single 

node consisting of multiple sockets each consisting of a multi-core CPU system / or 

multiple CPU cores, GPU cores and main memory. A machine could also consist of many 

such nodes together in form of a data center/HPC cluster or a combination of many such 

clusters. This thesis demonstrates the effects of performance coupling and functional 

dependencies within the compute and memory elements of a single node system consisting 

of a processor (CPU and/or GPU) along with its memory. The work in this thesis can be 

expanded further to include multiple nodes in future systems. In HPC and Cloud 

Datacenters, often a job is split among multiple nodes and there are data dependencies 

between the tasks in each node. A node consuming high power due to the nature of tasks 

its executing may heat up adjacent nodes leading to thermal coupling. If the effects of 

thermal coupling are not managed carefully, it can lead to poor performance, higher cooling 

needs, increased costs, or even fatal errors and reliability issues. Performance metrics and 

models may be required to capture the effects of heat transfer among multiple nodes as 

well as the data dependencies among them. One can optimize energy efficiency and 

performance in this heterogeneous multi-node cluster by managing the complex 

interactions among heat dissipation, heat transfer, power delivery, data dependencies and 

power management. 

8.2.3 Workload Scheduling and Computation Balancing in 
Heterogeneous Systems 

 Thermal capacity is a shared physical resource in the processor die where thermal 

coupling from one component to another, both spatially and temporally, can have an 

adverse performance impact on applications running on adjacent components. It becomes 

quite difficult to provide resource fairness to the applications that are co-located.  Modern 
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power management algorithms do not account for resource sharing, co-location of 

threads/applications, QoS demands and distinct time-varying thread/application level 

priorities. Lack of this knowledge often results in reaching peak temperatures very quickly 

resulting in undesired thermal throttling of the co-located workloads, thereby penalizing 

applications leading to unfairness. This has a severe performance impact. In the future one 

can explore the effects of workload placement and concurrent usage of CPU and GPU to 

mitigate the effects of thermal coupling and manage chip-scale thermal capacity. For 

example, if the thermal signature of a particular phase of a workload executing on the CPU 

indicates much faster and higher heat dissipation as compared to it executing on the GPU, 

run-time system software may decide to run that portion of the workload on the GPU 

instead. Coordinated power management combined with system software driven workload 

balancing and data placement is the key to performance and power efficiencies in future 

heterogeneous processors. 

8.3 Conclusions 

 This thesis demonstrates via detailed measurement and analysis the relationship 

among and time-varying workload execution profiles, aggressive DVFS-based multicore 

power management, thermal capacity, thermal interactions, and functional dependencies 

between heterogeneous compute and memory systems. It proposes abstractions with which 

to articulate and reason about how physical behaviors affect system-level performance 

(thermal signatures, and thermal pollution). This leads to the notions of performance and 

thermal coupling and the understanding that power management must be aware of physical 

behaviors to avoid detrimental impact on performance. This interaction between thermal 

coupling and performance coupling is not an artifact of an architecture instance, but is 

fundamental to the operation of many core architectures. We argue that this awareness has 

the potential to exert significant influence over the design of future power and performance 

management algorithms. 
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