
COORDINATED POWER MANAGEMENT IN HETEROGENEOUS

PROCESSORS

A Thesis

Presented to

The Academic Faculty

by

Indrani Paul

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy in the

School of Electrical and Computer Engineering

Georgia Institute of Technology

May 2015

COPYRIGHT © 2015 BY INDRANI PAUL

COORDINATED POWER MANAGEMENT IN HETEROGENEOUS

PROCESSORS

Approved by:

Dr. Sudhakar Yalamanchili, Advisor

School of Electrical and Computer

Engineering

Georgia Institute of Technology

 Dr. Karsten Schawn

School of Computer Science

Georgia Institute of Technology

Dr. Saibal Mukhopadhyay

School of Electrical and Computer

Engineering

Georgia Institute of Technology

 Dr. Lizy K. John

Electrical and Computer Engineering

University of Texas, Austin

Dr. Hyesoon Kim

School of Computer Science

Georgia Institute of Technology

 Date Approved: [Mar 23, 2015]

To my parents, husband, and children

iv

ACKNOWLEDGEMENTS

 This thesis would not have been possible without the assistance, guidance and

constant inspiration of many individuals. First of all, I would like to express my deepest

appreciation and thanks to my advisor Dr. Sudhakar Yalamanchili for his valuable

guidance, insights, immense knowledge, patience and flexibility which made this a

thoughtful and rewarding journey. His technical, editorial and general advice and

mentoring was essential to the completion of this dissertation and has taught me

innumerable lessons and insights on the workings of academic research in general.

Although my doctoral studies have come to an end, I look forward to continue our

relationship through many collaborations in future.

 I would also like to thank my dissertation committee members Dr. Saibal

Mukhopadhyay, Dr. Hyesoon Kim, Dr. Karsten Schawn and Dr. Lizy K. John for their

support and guidance as this dissertation moved from a proposal to a complete study. Their

suggestions and feedback helped me in shaping up my final thesis and develop the big

picture behind all the individual pieces of work in this thesis.

 I would like to thank my lab members at the Computer Architecture and Systems

Laboratory at Georgia Tech, Minhaz Hassan, Nawaf Almoosa, and Jeffrey Young for our

discussions and talks over the last few years. Although being a remote part-time student

did not allow me to spend a lot of time in the lab, I am grateful for the support they have

provided both technically and logistically.

 Words cannot express my gratefulness to Advanced Micro Devices (AMD) for the

immense support and flexibility it has provided to pursue and complete my PhD. Thanks

 v

to Srilatha (Bobbie) Manne and Mike Schulte for convincing me to join AMD Research to

work on the Exascale supercomputing project while pursuing my PhD. Special thanks to

John Keaty for his strong support and encouragement and for being very flexible so that I

could balance my work, PhD and family. Working at AMD Research has allowed me to

amortize the considerable efforts required for doctoral research with fulfilling employment.

Thanks to all my colleagues, Mike Schulte, Bobbie Manne, Manish Arora, Wei Huang,

Wayne Burleson and Joseph Greathouse to name a few, for the endless interesting

discussions and insights on a variety of topics ranging from power, architecture,

microarchitecture, thermals, datacenters, software to general philosophies of life.

 Most importantly, none of this would have been possible without the love, support,

encouragement and patience from my family as I undertook this long journey. I am

indebted to my parents who provided me the strong education foundation to begin with,

motivated me to pursue PhD and taught me to believe in myself even through failures and

setbacks. Thanks to my two beautiful daughters, one of which came along the way in the

final leg of my PhD journey, who allowed me to put things in perspective through their

bright little smiles, and made this journey meaningful. Finally, thanks to my best friend

and my husband Sarat, who actually underwent this journey all along with me by my side,

and sometimes was part of this even more than me. He not only encouraged me to get into

the PhD program to fulfill my dreams as I was nervous about undertaking this big

commitment while having a full-time family and a full-time job, he stayed committed to

this process with me till the end by putting up with my countless work-hours and keeping

me focused on my priorities when I had too many things to deal with.

 vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS……………………………………………………………....iv

LIST OF TABLES ……………………………………………………………………...xi

LIST OF FIGURES ……………………………………………………………………xii

SUMMARY ……………………………………………………………………………xvi

INTRODUCTION... 1

1.1 THESIS STATEMENT ... 3

1.2 THESIS CONTRIBUTIONS .. 4

1.3 THESIS ORGANIZATION .. 7

ORIGIN OF THE PROBLEM AND RELATED WORK .. 10

2.1 SHIFT IN COMPUTE PARADIGM... 10

2.1.1 End of Dennard Scaling .. 10

2.1.2 Multi-core and Many-core Architectures .. 11

2.1.3 Path to Heterogeneous Computing ... 12

2.2 RESEARCH EFFORTS IN HETEROGENEOUS ARCHITECTURE 14

2.2.1 Workload Driven Optimizations ... 14

2.2.2 Integration Driven Optimizations ... 15

2.2.3 Physical Constraint Driven Optimizations.. 16

2.3 SUMMARY .. 20

BACKGROUND ... 21

3.1 GPU/APU PROGRAMMING MODEL ... 21

3.2 GPU HARDWARE DESIGN .. 22

3.3 HETEROGENEOUS ARCHITECTURE OVERVIEW ... 25

3.3.1 Trinity Accelerated Processing Unit ... 26

 vii

3.3.2 Tahiti Discrete GPU .. 27

3.4 POWER MANAGEMENT IN HETEROGENEOUS PROCESSORS 28

3.4.1 Trinity Power Management .. 30

3.4.2 Tahiti Power Management .. 32

3.4.3 Memory Power Management .. 33

3.5 SUMMARY .. 33

NEW MANAGEMENT CHALLENGES IN HETEROGENEOUS PROCESSORS

... 34

4.1 THERMAL COUPLING AND THERMAL SIGNATURES .. 35

4.1.1 Thermal Coupling ... 35

4.1.2 Thermal Signatures ... 38

4.1.3 Summary ... 41

4.2 PERFORMANCE COUPLING ... 42

4.2.1 Performance Coupling between Heterogeneous Compute Elements 43

4.2.2 Performance Coupling between Compute and Memory Elements 47

4.3 SUMMARY OF KEY MANAGEMENT CHALLENGES .. 62

THERMAL COUPLING MANAGEMENT .. 65

5.1 OVERVIEW ... 65

5.2 GREEDY VS. NEEDY POWER MANAGEMENT: INTERACTIONS BETWEEN THERMAL

COUPLING AND PERFORMANCE COUPLING .. 67

5.3 RUN-TIME METRICS ... 73

5.4 COOPERATIVE BOOSTING (CB) .. 73

5.4.1 Structure .. 73

5.4.2 Algorithm .. 76

5.5 EXPERIMENTAL SET-UP ... 78

5.6 RESULTS .. 80

 viii

5.6.1 Performance .. 81

5.6.2 Thermal and Performance Coupling Analysis .. 83

5.6.3 Power and Energy ... 87

5.6.4 Summary ... 89

5.7 CONCLUSIONS .. 91

CPU-GPU PERFORMANCE COUPLING MANAGEMENT 92

6.1 OVERVIEW ... 92

6.2 SENSITIVITY ANALYSIS AND OPPORTUNITIES .. 94

6.2.1 Shared Resource Interference ... 96

6.2.2 Computation and Control Divergence .. 97

6.2.3 Performance Coupling and Kernel Sensitivity ... 98

6.3 RUN-TIME SYSTEM FOR ENERGY MANAGEMENT: METRICS, MODELS AND

MANAGEMENT ALGORITHM .. 102

6.3.1 Frequency Sensitivity Correlation and Run-time Metrics 103

6.3.2 DynaCo: Coordinated Dynamic Energy Management Scheme.................. 106

6.3.3 Summary ... 109

6.4 EXPERIMENTAL SET-UP ... 110

6.5 RESULTS .. 113

6.5.1 Performance, Power, and Energy.. 113

6.5.2 Performance Analysis and Power Shifting ... 117

6.6 CONCLUSIONS .. 121

GPU-MEMORY PERFORMANCE COUPLING MANAGEMENT 123

7.1 OVERVIEW ... 123

7.2 COMPUTE AND MEMORY BANDWIDTH SENSITIVITY ANALYSIS 126

7.2.1 Kernel Occupancy and Latency Hiding .. 126

7.2.2 Load Imbalance Due to Branch Divergence and Kernel Complexity 128

 ix

7.2.3 Architectural Clock Domains ... 129

7.3 COMPUTE AND MEMORY BANDWIDTH SENSITIVITY PREDICTORS 130

7.3.1 Performance Sensitivity Measurements .. 131

7.3.2 Performance Counter Correlation ... 132

7.3.3 Sensitivity Predictor Creation ... 132

7.4 HARMONIA: COORDINATED TWO-LEVEL POWER MANAGEMENT 133

7.4.1 Harmonia: Structure .. 135

7.4.2 Harmonia: Algorithm .. 135

7.5 EXPERIMENTAL SETUP ... 137

7.5.1 Metrics .. 139

7.6 RESULTS .. 140

7.6.1 Performance, Power, and Energy Efficiency .. 141

7.6.2 Adaptation Behavior ... 144

7.6.3 Summary of Key Insights ... 150

7.7 CONCLUSIONS .. 150

CONCLUSIONS AND FUTURE WORK .. 152

8.1 SUMMARY OF KEY CONTRIBUTIONS .. 152

8.1.1 Analysis and Abstractions of New Management Challenges 153

8.1.2 Characterization of Emerging Classes of Applications 153

8.1.3 Models and Run-time Metrics for Coordinated Management 154

8.1.4 Coordinated Management under Global Constraints 155

8.2 FUTURE WORK .. 155

8.2.1 Thermal and Performance Coupling Management in CPU-GPU-Memory

Systems ... 156

8.2.2 Thermal and Performance Coupling Management in Datacenters 157

 x

8.2.3 Workload Scheduling and Computation Balancing in Heterogeneous

Systems ... 157

8.3 CONCLUSIONS .. 158

REFERENCES .. 159

VITA…………………………………………………………………………………...168

 xi

LIST OF TABLES

Table 1: HW- and SW-managed DVFS states for the CPU compute units on the Trinity

A8-455M APU. ... 78

Table 2: Summary of benchmarks used for CB evaluation. ... 79

Table 3: APU frequency sensitivity analysis of various performance metrics. 102

Table 4: CPU DVFS states for AMD A10-5800 APU. .. 110

Table 5: GPU DVFS states for AMD A10-5800 APU. .. 110

Table 6: Application datasets used for DynaCo evaluation. ... 111

Table 7: Performance counters and metrics for Harmonia ... 131

Table 8: Harmonia sensitivity model and parameters. .. 133

Table 9: GPU DVFS states for AMD HD7970 dGPU. .. 138

file:///C:/Users/ipaul/ipaul/research/gatech/thesis/chapters/IPaul_PhD_dissertation_combined_v4.docx%23_Toc411412460

 xii

LIST OF FIGURES

Figure 1: Research efforts in heterogeneous CPU-GPU architecture. 13

Figure 2: Canonical GPU architecture. ... 23

Figure 3: Die shot of AMD Trinity APU [79] .. 25

Figure 4: Die Shot of Intel SandyBridge Processor. ... 26

Figure 5: Tahiti GPU architecture [80]. .. 28

Figure 6: Thermal entities in an AMD Trinity APU... 30

Figure 7: RC network modeling thermal coupling in an APU. .. 31

Figure 8: Example of the impact of thermal coupling. ... 36

Figure 9: Thermal densities under CPU-centric (left) and GPU-centric (right) workloads.

... 38

Figure 10: Thermal time constant with a CPU centric workload. 40

Figure 11: Thermal time constant with a GPU centric workload. 40

Figure 12: Bulk-synchronous parallel programming model. .. 44

Figure 13: CPU-GPU execution dependency in a heterogeneous processor. 45

Figure 14: Example phase behavior in an exascale proxy application (Lulesh).............. 46

Figure 15: Power breakdown in a typical modern discrete GPU...................................... 47

Figure 16: Parallelism over time for two input graphs. .. 48

Figure 17: 3D plot for the performance scaling of a compute bound kernel with compute

frequency and memory bandwidth. ... 51

Figure 18: Performance scaling of MaxFlops with available ops/byte in hardware. 52

Figure 19: 3D plot for the performance scaling of a memory bound kernel

(Devicememory) with active compute units (CUs) and memory bandwidth. 54

Figure 20: Performance scaling of DeviceMemory with available ops/byte in hardware.54

Figure 21: 3D plot for the performance scaling of a balanced kernel

(Matrixmultiplciation) with compute frequency and memory bandwidth. 56

 xiii

Figure 22: Performance scaling of LUD with available ops/byte in hardware. 57

Figure 23: 3D plot for performance of a kernel that plateaus eventually and does not

scale... 58

Figure 24: 3D plot for performance of a kernel that peaks and then falls off as more

resources are added. .. 59

Figure 25: DeviceMemory’s GPU card power across compute configurations at constant

264GB/s memory bandwidth. ... 61

Figure 26: MaxFlops’s GPU card power across memory bandwidth configurations at

32CUs and 1GHz compute frequency. ... 61

Figure 27: Chip-scale coordinated power management.. 64

Figure 28: Impact of CPU P-state limit on performance, GPU residency, and GPU

utilization. ... 68

Figure 29: Thermal throttling in Needle with greedy boost algorithm and CPU P-state

limiting. GPU-high, GPU-med, and GPU-low refer to high medium and low GPU

operating frequencies, respectively. .. 71

Figure 30: P-state limit effects on GPU memory bandwidth. ... 72

Figure 31: Block diagram of Cooperative Boosting (CB) framework. 74

Figure 32: Cooperative boosting algorithm. ... 75

Figure 33: Performance results with static limits and CB. ... 81

Figure 34: Thermal behavior of Binary Search with CB. ... 84

Figure 35: Viewdle performance analysis with CB. ... 85

Figure 36: Thermal throttling in Needle with CB. .. 87

Figure 37: Reduction in power for CB relative to baseline. ... 88

Figure 38: Energy-delay2 product normalized to baseline. ... 89

Figure 39: Thermal profile of miniMD running on GPU. .. 95

Figure 40: Break-down of memory interference between CPU and GPU and

corresponding CPU DVFS residency. .. 97

Figure 41: GPU frequency sensitivity to control divergence.. 98

file:///C:/Users/ipaul/ipaul/research/gatech/thesis/chapters/IPaul_PhD_dissertation_combined_v4.docx%23_Toc411412372
file:///C:/Users/ipaul/ipaul/research/gatech/thesis/chapters/IPaul_PhD_dissertation_combined_v4.docx%23_Toc411412372
file:///C:/Users/ipaul/ipaul/research/gatech/thesis/chapters/IPaul_PhD_dissertation_combined_v4.docx%23_Toc411412372
file:///C:/Users/ipaul/ipaul/research/gatech/thesis/chapters/IPaul_PhD_dissertation_combined_v4.docx%23_Toc411412374
file:///C:/Users/ipaul/ipaul/research/gatech/thesis/chapters/IPaul_PhD_dissertation_combined_v4.docx%23_Toc411412375
file:///C:/Users/ipaul/ipaul/research/gatech/thesis/chapters/IPaul_PhD_dissertation_combined_v4.docx%23_Toc411412376
file:///C:/Users/ipaul/ipaul/research/gatech/thesis/chapters/IPaul_PhD_dissertation_combined_v4.docx%23_Toc411412379
file:///C:/Users/ipaul/ipaul/research/gatech/thesis/chapters/IPaul_PhD_dissertation_combined_v4.docx%23_Toc411412381

 xiv

Figure 42: Percent increase in kernel run-time due GPU DVFS changes relative to the

baseline (BAPM). ... 99

Figure 43: Percent increase in kernel run-time due CPU DVFS changes relative to the

baseline (BAPM). ... 99

Figure 44: DynaCo-1levelTh pseudo-code. .. 107

Figure 45: DynaCo-multilevelTh pseudo-code. ... 108

Figure 46: Performance impact of DynaCo .. 114

Figure 47: Phase variation within MATVEC ... 114

Figure 48: Energy efficiency with DynaCo .. 116

Figure 49: Power savings with DynaCo ... 116

Figure 50: GPU DVFS residency for DynaCo and baseline... 118

Figure 51: CPU DVFS residency with DynaCo-1levelTh. ... 119

Figure 52: CPU DVFS residency with DynaCo-multilevelTh. 120

Figure 53: Effects of VGPR-caused kernel occupancy limitation. 127

Figure 54: Impact on compute frequency sensitivity from load imbalance (branch

divergence) and no. of instructions. .. 128

Figure 55: Impact of clock domains on compute frequency sensitivity for memory-

intensive workloads. ... 130

Figure 56: Harmonia algorithm overview... 134

Figure 56: Performance sensitivity of Vector ALU Busy (VALUBusy) to number of

active CUs (left) and memory bandwidth (right) .. 137

Figure 57: Performance, energy, energy-delay2 and energy-delay comparisons for LUD

and DeviceMemory. Energy optimality leads to significant performance. 139

Figure 58: Overall combined performance and energy gain from Harmonia, using the

ED2 metric. ... 141

Figure 59: Overall energy gain from Harmonia. .. 142

Figure 60: Overall performance from Harmonia. ... 143

Figure 61: Overall power savings from Harmonia. .. 144

file:///C:/Users/ipaul/ipaul/research/gatech/thesis/chapters/IPaul_PhD_dissertation_combined_v4.docx%23_Toc411412387
file:///C:/Users/ipaul/ipaul/research/gatech/thesis/chapters/IPaul_PhD_dissertation_combined_v4.docx%23_Toc411412388
file:///C:/Users/ipaul/ipaul/research/gatech/thesis/chapters/IPaul_PhD_dissertation_combined_v4.docx%23_Toc411412389
file:///C:/Users/ipaul/ipaul/research/gatech/thesis/chapters/IPaul_PhD_dissertation_combined_v4.docx%23_Toc411412390
file:///C:/Users/ipaul/ipaul/research/gatech/thesis/chapters/IPaul_PhD_dissertation_combined_v4.docx%23_Toc411412399
file:///C:/Users/ipaul/ipaul/research/gatech/thesis/chapters/IPaul_PhD_dissertation_combined_v4.docx%23_Toc411412401
file:///C:/Users/ipaul/ipaul/research/gatech/thesis/chapters/IPaul_PhD_dissertation_combined_v4.docx%23_Toc411412401

 xv

Figure 62: Behavior of Graph500.BottomStepUp over time. ... 145

Figure 63: Memory bus frequency residency change as time progresses in

Graph500.BottomStepUp.. 146

Figure 64: Residency of the hardware tunables in Graph500. .. 146

Figure 65: Relative GPU and memory power consumption. .. 147

Figure 65: Relative contributions of CG vs. FG in Harmonia. 149

 xvi

SUMMARY

 With the end of Dennard scaling, the scaling of device feature size by itself no

longer guarantees sustaining the performance improvement predicted by Moore’s Law. As

industry moves to increasingly small feature sizes, performance scaling will become

dominated by the physics of the computing environment and in particular by the transient

behavior of interactions between power delivery, power management and thermal fields.

Consequently, performance scaling must be improved by managing interactions between

physical properties, which we refer to as processor physics, and system level performance

metrics, thereby improving the overall efficiency of the system.

 The industry shift towards heterogeneous computing is in large part motivated by

energy efficiency. While such tightly coupled systems benefit from reduced latency and

improved performance, they also give rise to new management challenges due to

phenomena such as physical asymmetry in thermal and power signatures between the

diverse elements and functional asymmetry in performance. Power-performance tradeoffs

in heterogeneous processors are determined by coupled behaviors between major

components due to the i) on-die integration, ii) programming model and the iii) processor

physics. Towards this end, this thesis demonstrates the needs for coordinated management

of functional and physical resources of a heterogeneous system across all major compute

and memory elements. It shows that the interactions among performance, power delivery

and different types of coupling phenomena are not an artifact of an architecture instance,

but is fundamental to the operation of many core and heterogeneous architectures.

Managing such coupling effects is a central focus of this dissertation. This awareness has

the potential to exert significant influence over the design of future power and performance

management algorithms.

 xvii

 The high-level contributions of this thesis are i) in-depth examination of

characteristics and performance demands of emerging applications using hardware

measurements and analysis from state-of-the-art heterogeneous processors and high-

performance GPUs, ii) analysis of the effects of processor physics such as power and

thermals on system level performance, iii) identification of a key set of run-time metrics

that can be used to manage these effects, iv) development of online coordinated power

management techniques for heterogeneous CPU-GPU-memory systems, and v) a detailed

evaluation of the impact of these coordinated power management techniques on system

level metrics.

1

CHAPTER 1

INTRODUCTION

 Microprocessors have historically enjoyed exponential performance growth due to

device-geometry scaling guided by Moore’s Law, and supply voltage scaling governed by

Dennard scaling rules to maintain affordable chip power envelopes. However, with the end

of Dennard scaling, reducing device feature size by itself no longer guarantees sustaining

the performance improvement predicted by Moore’s Law. The diminishing voltage scaling

margins coupled with the steady rise in leakage power at ultra-low voltages have drastically

elevated power consumption, and risked operating in temperature regimes beyond the

capability of existing cooling solutions. As industry moves to increasingly small feature

sizes, performance scaling has become dominated by the physics of the computing

environment and in particular by the transient behavior of interactions between power

delivery, power management, and thermal fields. In particular, scaling trends point out that

achievable performance capacity is limited by the thermal design power (TDP) rather than

the computational capacity and frequency scaling. This so called Power Wall has presented

serious challenges to the semiconductor industry, where the costs of developing new

technology nodes are justified by their performance returns.

 As W. Dally noted [29], performance scaling in the post-Dennard dark-silicon era

will involve improving efficiency of power and energy usage instead of clock speed

scaling. The modern industry shift towards heterogeneous computing is largely in part

motivated by energy and power efficiencies. The trend towards heterogeneous processors

continues with Accelerated Processing Units or APUs, which consist of multiple CPU and

GPU processing elements integrated onto the same die. In the future we also expect to see

heterogeneous systems with integrated CPU, GPU, and memory. While such tightly

 2

coupled systems benefit from reduced latency and improved performance, they also give

rise to new management challenges due to phenomena such as physical asymmetry in

thermal and power signatures between the diverse elements and functional asymmetry in

performance. These asymmetric relationships are sharing increasingly demanding power

envelopes as we employ denser packaging technologies, e.g., 3D and silicon interposers.

This leads to complex interactions between processor physics such as power delivery,

thermal coupling (heat transfer from one element to others) and performance coupling

(functional dependency among integrated multiple elements). The fundamental problem is

the manner in which these physical constraints are managed has a major influence on the eventual

performance of the system. Power management solutions which do not consider and account for

these interactions can have detrimental effects on system level metrics such as performance and

energy efficiency.

 The preceding problem statement indicates that there are a variety of complex

thermal and performance interactions between the diverse compute and memory elements

in modern tightly coupled heterogeneous computing platforms that affect the power

consumption and energy efficiency of the processor. For example, a common state-of-the-

practice mechanism is to boost the frequencies of CPU or GPU cores to utilize all of the

available thermal headroom for improving performance. Examples include Turbo Core

from AMD and Turbo Boost from Intel [83][99]. However, due to the tight on-die physical

integration of heterogeneous compute and memory elements, the power and thermal

behaviors produce interactions resulting in thermal coupling, where heat generated from

one core raises the temperature (and leakage power) of adjacent cores and components. In

addition, overall performance is a function of dependencies between the various elements

and their fine-grain interactions. For example, the CPU may be feeding data streams to

sustain computations on the GPU. If these multiple types of physical and functional

dependencies are not carefully managed, the net effect is inefficient use of all of the

available power and thermal headroom resulting in lower power efficiency and

 3

performance. Past work has addressed dynamic thermal management in multi-core

processors [14][26][95] and efficient power management in heterogeneous processors

using emergent applications [68][75][115]. However, they do not directly address some of

the new management challenges that arise in heterogeneous processors. Relatively few

efforts to date have targeted understanding, characterizing, and managing the multi-physics

and multi-scale (nanoseconds to milliseconds) interactions among power, thermals, and

performance.

1.1 Thesis Statement

 The new management challenges point towards the need for chip-scale coordinated

power management to achieve performance scaling and energy efficiencies under a chip-

wide TDP envelope and power budget. The efficiency with which we can manage these

interactions will depend on our understanding of the relationships between the physical

phenomena (power and temperature), functional behaviors (direct and indirect

performance coupling) and their impact on system performance. Given the trends in

heterogeneous processors and emerging applications, it is natural to ask: How do processor

physics and performance interact with respect to modern power management algorithms,

and how should future power-management solutions account for these interactions? This

leads to the following thesis statement: Power-performance tradeoffs in heterogeneous

processors are determined by coupled behaviors between major components due to the i)

on-die integration, ii) programming model, and the iii) processor physics. Thus, effective

power management requires coordinated management across all major compute and

memory components.

 This thesis demonstrates the needs for coordinated management of functional and

physical resources of a heterogeneous system. It proposes abstractions with which to

articulate and reason about how physical behaviors and various coupling effects impact

system-level performance. It shows that this interaction is not an artifact of an architecture

 4

instance, but is fundamental to the operation of many core and heterogeneous architectures.

Managing such coupling effects is a central focus of this dissertation. This awareness has

the potential to exert significant influence over the design of future power and performance

management algorithms. To this end, this thesis i) examines characteristics and

performance demands of emerging applications using hardware measurements and

analysis from state-of-the-art heterogeneous processors and high-performance GPUs, ii)

analyzes the effects of processor physics such as power and thermals on system level

performance, iii) identifies a key set of run-time metrics that can be used to manage these

effects, and iv) develops online coordinated power management techniques to optimize

system level global metrics in heterogeneous CPU-GPU-memory processors.

1.2 Thesis Contributions

Specially, the high-level contributions of this dissertation research are as follows:

Characterization of New Management Challenges: Our studies in this research point

out that various forms of coupling effects between major subsystems in a processor (CPU,

GPU, memory) are beginning to dominate energy and performance efficiencies. This

phenomenon will become more pronounced at future technology nodes. We develop an in-

depth characterization and understanding of the impact of thermal coupling, power

delivery, and performance coupling on heterogeneous processor performance. We

demonstrate the practical constraints that physics places on effective architectures at future

technology nodes and its effects on system-level performance. We also illustrate the

distinct power and thermal signatures of the various integrated elements that exist in

modern processors and which require tight coordination of their power states. This

understanding forms the basis of the remaining work in this dissertation towards

developing guiding principles for coordinated power management in tightly coupled

heterogeneous processors, and the encapsulation of these principles in power management

algorithms and their implementations.

 5

Characterization of Emerging Classes of Applications: To acquire a thorough

understanding of management challenges in modern processors, we perform an in-depth

characterization of the emerging class of compute applications on integrated CPU-GPU

processors as well as high performance discrete GPUs. The companion emergence of

programming models such as CUDA, OpenACC, and OpenCL enable cooperative

execution of both CPU and GPU towards an application’s overall performance. We show

that for applications that require cooperative execution of both CPU and GPU cores, state-

of-the-art boost algorithms to utilize available thermal headroom can break down and

degrade – rather than improve - performance. This is in contrast to other traditional

applications such as graphics applications where the GPU is the obvious choice, or single-

threaded, general-purpose applications which are suitable for the CPU. We also perform

extensive scaling studies of these compute class of applications to assess their sensitivities

to a variety of architectural attributes such as CPU, GPU, number of cores, frequency and

memory bandwidth to understand their interactions with power, performance, and

thermals.

Utilizing knowledge of workloads, the new management challenges and their

interactions, the next part of the dissertation focuses on building guiding principles, online

predictors and chip-scale coordinated power management algorithms to optimize system

level metrics such as performance and energy efficiency under global constraints such as

thermal limits and power budgets.

Maximizing Performance under Power and Thermal Constraints: This work examines

the consequences of thermal coupling and its interaction with power management

techniques in state-of-the-art heterogeneous processors consisting of a set of CPU and GPU

cores. We experimentally demonstrate that for classes of applications that utilize both the

CPU and the GPU, modern boost algorithms that greedily seek to convert thermal

headroom into performance can interact with thermal coupling effects between the CPU

and the GPU to degrade performance. We propose a dynamic power-management

 6

approach called cooperative boosting (CB) to allocate power dynamically between CPU

and GPU in a manner that balances thermal coupling against the needs of performance

coupling to optimize performance under a given power and thermal constraint. Through

real hardware-based measurements, we evaluate CB against a state-of-the-practice

commercial boost algorithm and show that overall application performance and power

savings increase by an average of 10% and 8% (up to 52% and 34%), respectively, resulting

in average energy efficiency improvement of 25% (up to 76%) over a wide range of

benchmarks [90].

Maximizing Energy Efficiency Under Performance Constraints: This part of the thesis

examines energy management in a heterogeneous processor consisting of an integrated

CPU-GPU for high-performance computing (HPC) applications. Energy management for

HPC applications is challenged by their uncompromising performance requirements and

complicated by the need for coordinating energy management across distinct core types –

a new and less understood problem. We examine the intra-node CPU-GPU frequency

sensitivity of HPC applications on tightly coupled CPU-GPU architectures as the first step

in understanding power and performance optimization for a heterogeneous multi-node

HPC system. The insights from this analysis form the basis of a coordinated energy

management scheme, called DynaCo, for integrated CPU-GPU architectures. We

implement DynaCo on a modern heterogeneous processor and compare its performance to

a state-of-the-art power- and commercial performance-management algorithm. DynaCo

improves measured average energy-delay squared (ED^2) product by up to 30% with less

than 2% average performance loss across several Exascale and other HPC workloads

[91][92] .

Interactions Between Compute and Memory System: In this work, we address the

problem of efficiently managing the relative power demands of a high performance GPU

and its memory system. We develop a management approach that tunes the hardware

platform to maintain balance between the power dissipated in compute and memory access

 7

across application phases under tight power and thermal budgets. We propose the use of

online predictors that can capture performance sensitivities to hardware tunables. Using

these sensitivity predictors we construct a two-level coordinated power management

scheme, Harmonia, which configures the hardware to operate at its balance point by

coordinating the hardware power states of the GPU (i.e. number of compute units and

compute frequency) and memory system (i.e. memory bandwidth). Through hardware

based measurements on a commodity GPU, we evaluate Harmonia against a state of the

practice GPU commercial power management algorithm and show that Harmonia

improves measured average energy-delay squared (ED2) product by up to 36% with

negligible performance loss across several representative HPC workloads [89].

1.3 Thesis Organization

The rest of the thesis is organized as follows:

 CHAPTER 2 discusses the origin of the problem and the current landscape of

research. It presents a literature survey describing technology trends and limitations that

are guiding the transition to the heterogeneous computing era. It discusses research

challenges and current research efforts in heterogeneous processors. It also presents current

state of the art research on power and thermal management and modeling in both multi-

core and heterogeneous processors. This section will conclude with highlighting important

challenges and research directions for the future and how addressing such challenges can

exert significant influence on future performance and power management designs.

 CHAPTER 3 discusses the necessary background on heterogeneous and massively

parallel high bandwidth GPU architectures along with their programming models and

modern power management techniques to establish the generalization of the concepts

discussed in this dissertation.

While there has been a large body of work addressing dynamic thermal and power

management in homogeneous multi-core and heterogeneous processors (as reviewed in

 8

CHAPTER 2), these efforts mostly focus on understanding individual physical

phenomenon and steady state behaviors. They do not directly address some of the new

management challenges that arise in heterogeneous processors. CHAPTER 4 presents an

in-depth characterization of the new management challenges in modern processors along

with extensive studies of emerging classes of applications. This chapter concludes with the

highlights of the various forms of coupling effects between major subsystems in a

processor (CPU, GPU, memory) that are beginning to dominate energy and performance

efficiencies. Managing such coupling effects is the focus of the next few chapters.

CHAPTER 5 discusses a dynamic power management approach called Cooperative

Boosting (CB) to coordinate power allocation between CPU and GPU in order to maximize

performance under the thermal and power constraints of the processor package. This

chapter presents a characterization of diverse compute elements in terms of their thermal

signatures and the resulting thermal gradients between diverse compute elements.

Particular attention is paid to how these physical phenomena affect thermal coupling and

consequently impact system level performance by affecting power management

algorithms. This understanding forms the basis for runtime power management using CB.

In CHAPTER 6 we examine the CPU-GPU frequency sensitivity of HPC

applications on tightly coupled CPU-GPU architectures. We propose key run-time metrics

that can be monitored to assess degree of direct and indirect dependencies between CPU

and GPU for performance coupled operations and use those towards coordinating power

states to maximize return on performance with additional power allocation. The insights

from this analysis form the basis of a coordinated energy management scheme, called

DynaCo, for integrated CPU-GPU architectures where we optimize for energy efficiency

under performance constraints.

CHAPTER 7 extends the coordinated power management concepts to the memory

system including global memory. In the future with the advent of High Bandwidth Memory

(HBM), Hybrid Memory Cube (HMC) and other die stacking memory technologies,

 9

heterogeneous architectures with integrated GPU and memory will emerge sharing the

package or chip-level thermal design power envelope (TDP). Thus, we are concerned with

effectively sharing the power envelope between the memory system and the GPU. In this

work we discuss the notion of hardware balance and develop a two-level management

approach that tunes the hardware platform to maintain balance between the power

dissipated in compute and memory system across application phases. We demonstrate that

such coordinated power sharing and shifting technique is imperative for future power

constrained processors and can lead to significant improvement in energy efficiency under

various effects of power, thermal and performance coupling.

Finally, CHAPTER 8 concludes with a summary of key research contributions of

this dissertation and some potential directions for future research.

Collectively, the power management techniques proposed, demonstrated, and

evaluated in the course of this thesis substantiates the importance of coordinated power

management for the efficient operation of current and future heterogeneous processors.

The techniques also expose general principles that govern the management of power and

thermal limits. These general principles help place the management of power and thermal

capacities on par with execution time and memory space as integral to the scaling of

performance across future technology generations.

 10

CHAPTER 2

ORIGIN OF THE PROBLEM AND RELATED WORK

 This chapter starts by describing the origin of the compute problem and the shift in

trends towards heterogeneous architectures. It provides an overview of the related research

in the areas of heterogeneous computing and power management. The chapter concludes

with identifying some gaps and needs in managing heterogeneous processors.

2.1 Shift in Compute Paradigm

 In this section we give an overview of how the industry saw a shift in computing

paradigm from single core to multi-core to heterogeneous architectures due to power,

thermal and performance scaling challenges.

2.1.1 End of Dennard Scaling

 Innovations in computing industry have been largely driven by improving

performance of microprocessors through various advancements in semiconductor

fabrication technology and enhancements in micro-architecture. In April 1965, Gordon

Moore wrote an article for Electronics magazine titled “Cramming more components onto

integrated circuits” [78]. He predicted that the number of transistors on a chip would double

every 12 months to 18 months into the near future. This became known as what is popularly

called “Moore’s law”. In 1974, Robert Dennard wrote a seminal paper describing

MOSFET scaling rules for achieving simultaneous improvements in transistor density,

switching speed and power dissipation [36]. Dennard’s scaling rules observe that voltage

and current should be proportional to the linear dimensions of a transistor, implying that

 11

power consumption will be proportional to the area of a transistor. This property implies

that shrunk MOSFETs will consume less power, and forms the basis of Moore's Law.

 Moore’s law combined with Dennard scaling became the guiding principle in

semiconductor industry by providing designers a roadmap target for effective usage of

transistors. This enabled faster and increasing clock speeds leading to higher dynamic

power consumption. Increasing number of transistors also increased leakage power, power

density and thermal dissipation. Voltage scaling limitations started to arise as lower

threshold voltages increased sub-threshold leakage. Last but not the least, design

complexity also increased with the emergence of superscalar pipelined architectures,

sophisticated cache and branch predictors – all designed to improve single core

performance. Clock speeds, power and thermal envelopes started to flatten out. However

the demand for increased performance continued and this prompted a shift from the single

core paradigm to a multi-core paradigm

2.1.2 Multi-core and Many-core Architectures

 Multi-core architectures (CMP) from various companies such as Intel and AMD

dominate the computing market today [16][99]. However multi-core has brought out

several other challenges, such as high latency and increased power due to complex cache

sharing logic, coherency protocols, longer interconnect and evolution of System on Chip

(SoC). This puts a ceiling on power and performance efficiencies of general-purpose multi-

core processors leading to dark silicon effects. It has limited the number of general purpose

cores in a package without dissipating a significant amount of power that exceeds the

capability of traditional cooling systems [40]. The International Technology Roadmap for

Semiconductors indicates transistor density will continue to increase [55]. Smaller devices

yield greater levels of integration, yet this poses an organizational question of how to

achieve throughput and efficiency gains with more transistors while respecting constraints

http://nick-black.com/dankwiki/index.php/Moore%27s_Law

 12

in power, clock frequency, and interconnect delay. Hameed et al. [44] observe ASICs can

be over 500x more energy efficient than CMPs for throughput-oriented tasks. A microcosm

of the industry shift toward heterogeneity, their work describes a series of transformations

applied to a soft-core processor transitioning it from a general-purpose programmable CMP

toward an application-specific processor or accelerator.

 Accelerators such as GPU, FPGA were initially targeted towards specific

applications. For example: GPU was traditionally designed for graphics applications that

exhibit high thread-level parallelism. These architectures have provided high degree of

parallelism by integrating many simple cores to improve power efficiencies. However,

general purpose applications with limited parallelism run poorly on such architectures

because of the high overheads over PCI-e interconnects.

 This brought the advent of heterogeneous architectures where a number of

dissimilar cores are integrated onto the same die [65]. The heterogeneity can be at the

functional level where multiple types of cores supporting different ISAs are integrated,

such as the integrated CPU-GPU architecture, or it could be at the physical level where

cores of same ISA with different physical properties are integrated onto the same die, such

as cores supporting high and low power budgets etc.

In this dissertation and research, we focus on multi-ISA heterogeneous processor

architectures with integrated CPU & GPU cores, so it is worth understanding such

architectures in detail and the general landscape of research. The next few sections describe

the advantages and research trends in such processors.

2.1.3 Path to Heterogeneous Computing

 We are in the era of heterogeneous computing where the trend towards

heterogeneous processors continues with Accelerated Processing Units or APUs,

consisting of multiple CPU and GPU cores integrated onto the same die, sharing the same

memory subsystem. Both AMD and Intel have examples of such heterogeneous processors.

 13

This trend is enabled by the abundant availability of parallelism in GPUs and their high

power efficiencies.

Figure 1: Research efforts in heterogeneous CPU-GPU architecture.

 The tight integration of hardware in APUs and reduced latency, coupled with the

companion emergence of programming models such as CUDA and OpenCL, facilitates

effective and efficient computation on heterogeneous systems. This has also resulted in

the emergence of a new class of applications that utilize both the CPU and the GPU

computational capabilities to improve application performance [6]. Future processors may

also have a unified memory address space between CPU and GPU, reducing latencies

associated with data movement, and further improvements in programming models [13].

In the future we expect to see heterogeneous systems with integrated memory e.g., in 2.5D

or 3D packages [74][88][119]. However such integrated architectures expose a new set of

problems and new research questions. The next section will describe examples of such

• Application development and tuning

• Compiler techniques, and Programmability

• GPGPU optimizations – scheduling, control flow

Workload driven
optimizations

• Shared resource optimization such as LLC, MC

• CPU design for CPU-GPU systems

• Idle resource utilization

Integration
driven

optimizations

• Power modeling and management

• Thermal management

• Reliability

Physical
constraint driven

optimizations

 14

research problems and the current state-of-the-art in addressing some of those research

questions.

2.2 Research Efforts in Heterogeneous Architecture

 Based on a literature survey, we have grouped the major research problems and

efforts in heterogeneous architecture into three broad categories as shown in Figure 1. We

believe these are some of the key driving factors enabling new research directions in

heterogeneous architectures. In the next few sub-sections we will describe some of the

current state of the art in each of these categories.

2.2.1 Workload Driven Optimizations

 One of the challenges with GPUs is their poor performance for general purpose

non-graphics applications. As CPU and GPU cores are integrated, a significant amount of

research has been focused on making GPUs more amenable to mainstream computing. This

spans everything from application development and tuning to compiler optimizations and

programming models to GPGPU micro-architectural optimizations.

The tight integration between CPU and GPU has led to the emergence of a new

class of workloads that were previously not possible to run on a GPU, such as irregular

applications, and ones that make effective use of all compute resources available in the

processor. Recent studies [6] have identified throughput-computing applications as an

emergent class of future applications. In [20][54] the authors focus on the challenge of

scaling irregular applications such as generalized reductions, irregular reductions and

MapReduce using the CPU and GPU together in an integrated architecture. Che. et-al

[18][19] present and characterize Rodinia, a benchmark suite for heterogeneous

computing. Che et-al also presents Pannotia – a graph library suited for GPU architectures

[17].

Integrated CPU-GPU pairings require two different programming models and

distinct compilation tool chains to utilize the entire die, thus incurring a significant increase

 15

in software complexity. A considerable body of ongoing work examines the feasibility of

compiling applications for multicore CPUs, GPUs, and other accelerators. Consequently

new programming models and APIs such as CUDA, OpenCL, and OpenACC have

emerged. In [37][97] the authors propose a dynamic compilation framework and run-time

support for heterogeneous systems.

Current GPUs suffer from two key shortcomings – loss of performance under

control flow divergence and poor scheduling policies, both of which are important for

mainstream computing applications. Hence apart from software level optimizations, there

has been a lot of research in micro architectural optimizations to facilitate running general

purpose workloads on the GPUs in integrated CPU-GPU systems. In [43][82], the authors

explore mechanisms for efficient control flow execution on GPUs via dynamic warp or

wavefront formation and large warp microarchitectures. GPUs typically use a round-robin

warp scheduling policy giving equal priority to all concurrently executing wavefronts or

collection of threads. This is beneficial due to high data locality across threads. However

as we try to run more and more irregular general purpose applications on the GPU, round

robin scheduling may not work due to memory divergence and branch divergence. So the

authors of [82] propose two-level scheduling where a set of threads are scheduled based on

some grouping that minimizes divergence.

2.2.2 Integration Driven Optimizations

 One of the key steps in the development of next generation systems is a range of

optimizations targeted towards the efficient use of integrated CPU-GPU and shared

resources. In this arena, the CPU+GPU system is examined as a whole to better optimize

its components. Rather than being designed for all workloads, Arora et-al in [4] redefine

the role of the CPU in the heterogeneous era. They propose that the CPU core design be

optimized for workloads that the GPGPU executes poorly such as serial code.

Similarly, there have been research studies to redesign shared resources such as the

memory hierarchy and interconnects to account for the different demands of CPU-GPU

 16

architectures and workloads. In [68], the authors propose a thread level parallelism aware

last level cache management policy for CPU-GPU systems. Sharing the LLC between

CPUs and GPUs brings new challenges due to the different characteristics of CPU and

GPGPU applications. The authors demonstrate that effective caching and cache hit rates

translate to GPU performance only when there is limited thread level parallelism. Jeong et-

al [57] propose memory controller bandwidth allocation policies for CPU-GPU systems by

dynamically partitioning off-chip memory based on expected deadlines and Quality of

Service (QoS) provided to each of the components.

Another research optimization in CPU-GPU systems has targeted utilizing idle

CPU or GPU resources. For example, COMPASS [120] proposes using idle GPU resources

as programmable data prefetchers for CPU code execution. Correspondingly, in [123], the

authors propose using a faster CPU to prefetch data for slower throughput oriented GPU

cores. Similarly, workload partitioning schemes are being proposed such that both CPU

and GPU compute resources are utilized by matching sections of the code to the better

entity [75][98].

2.2.3 Physical Constraint Driven Optimizations

 CPUs and GPUs in APUs share many classic hardware resources such as the

memory hierarchy and interconnect. In addition, they also share physical resources such

as power and thermal budget for the die. A significant body of work has dealt with the

individual phenomenon of managing power or thermals in the context of homogeneous and

heterogeneous processors. For example, power and thermal limits typically are addressed

using a variety of individual techniques including thread scheduling and migration,

dynamic voltage-frequency scaling (DVFS), power gating (PG), etc. The following

subsections give an overview of research in both homogeneous processors as well as

emerging heterogeneous architectures.

 17

2.2.3.1 Power and Thermal Modeling

 Several research works have proposed analytical and performance-counter based

models for DVFS and power-performance models and predictions [10][27][50][60][121]

in multi-core processors. A large body of work exists in power modeling for GPUs. In [48],

Hong et al. develop an analytical power and performance model for a discrete GPU

processor. In [72], J. Leng et al develop power models for GPUs that are configurable and

capable of cycle-accurate predictions. A number of research efforts have also focused on

developing computationally efficient, accurate thermal models for processor architectures

[48][51][52]. There has also been a renewed interest in using machine learning and

statistical frameworks to construct behavioral models for use in run-times, compilers, and

even hardware to make scheduling decisions. Techniques to automate the construction of

models of execution time for GPUs using basic machine learning are described in [58] and

[63]. In [22][116], authors introduce the notion of machine balance and propose a

performance and energy roof-line model that provide insights into performance bottlenecks

and the operational intensity of an application in a particular platform. Such techniques

focus on model construction and are distinct from model application (e.g., in making

power-management decisions).

2.2.3.2 Power Management

There have been many research efforts that have employed DVFS to improve

efficiency under a certain constraint such as power or performance. For example: C. Hsu

et al. apply DVFS techniques to improve power efficiency through CPU-boundedness

detection [49]. J. Li et al. [73] propose a run-time voltage/frequency and core-scaling

scheduling algorithm that minimizes the power consumption of general-purpose chip

multi-processors within a performance constraint. A. Mclaughlin et-al explored optimizing

performance of graph algorithms under power constraints in a GPU [77]. J. Lee et al. [69]

analyze throughput improvement of power-constrained multi-core processors by using

power-gating and DVFS techniques. Recently, there has been a significant interest in the

 18

power management of GPUs. Lee et al. [70] propose DVFS techniques to maximize

performance within a power budget for discrete GPUs. Wang et al. [115] propose a

workload-partitioning mechanism between the CPU and GPU to utilize the overall chip

power budget to improve throughput. An overview of different power efficiency

techniques is presented in [60][96]. Arora et-al investigate power gating mechanisms for

CPUs in the context of emerging CPU-GPU applications in a heterogeneous architecture

[5]. Several research works have also proposed compiler-driven [122] and control-theoretic

[113] approaches for managing power.

There are also many existing studies investigating main memory power

management in CPU-memory systems [31][32][33]. For example,[31] applies DVFS to

memory controllers and DFS to memory channels and DRAM devices, using a simulation

framework. Authors in [32] propose DVFS for main memory and presents evaluations on

real hardware. In [33], Deng et-al allocates a power cap to main memory with the aid of a

runtime DRAM power model. A few prior works also look at coordinated power

management between CPU and main memory. In [34], authors propose runtime techniques

to minimize total system energy within a performance constraint for a multi-CPU system,

using a simulation framework. Another work [35] tries to reduce system energy by

applying coordinated DFVS across multiple memory controllers (MCs), based on the

observation of skewed traffic across MCs in multicore server processors. Authors in [41]

look at policies for power shifting between CPU and memory, without explicitly

investigating performance dependency between CPU and memory. Regarding GPU-

memory systems, [47] develops an analytic performance model for GPUs around memory

and thread-level parallelism, without power/energy considerations.

In the HPC area as well, there has been considerable power management focused

research work on DVFS for multi-core processors [87][100]. Pakin et al. [87] characterized

power usage on production supercomputers using production workloads. Laros et al. [67]

performed extensive large-scale analysis of power and performance requirements for

 19

scientific applications in supercomputers based on static tuning of applications through

DVFS, core, and bandwidth scaling. In [100] Rountree et al. explored energy-performance

trade-offs for HPC applications bottlenecked by memory and communication. In [101] and

[102], Rountree et al. investigated speeding up the critical path of an application in a multi-

processor cluster using slack-prediction and leading-load techniques, respectively. In [9]

Balaprakash et al. described exascale workload characteristics and created a statistical

model to extrapolate application characteristics as a function of problem size.

2.2.3.3 Thermal Management

 Similarly, a large amount of research exists on thermal management in homogenous

multi-core processor that evolved originally to prevent harmful thermal capacity violations

of peak temperature. Consequently, architectural efforts have focused first on preventing

unwanted thermal excursions and have since quickly evolved to balancing the system-level

performance impact of such management techniques [14][79]. The range of techniques

include i) activity migration [21], ii) power reduction by various forms of throttling

[45][118], iii) feedback control [105][106][107][124], or iv) a combination of techniques

to balance performance loss against thermal management. These techniques are concerned

primarily with managing peak temperatures. That philosophy continues with the advent of

multi-core architectures [38] through run-time techniques such as heat-and-run [94] or a

combination of design- and run-time techniques [79], while more recent work considers

the impact of reliability [24] and relationships to process variation [66]. The management

issues naturally evolve to 3D architectures, which exacerbate the thermal management

problem [25][110]. Architectural techniques are complemented by efforts in the system

software community primarily through managing power dissipation using various

scheduling techniques [23][53]. Authors in [104] study thermal management for GPUs.

Some recent works also include efforts to couple thermal management, cooling

management, and power management [7][8][95]. The preceding are just a few examples of

 20

the extensive knowledge base developed in the past decade or so, and [26][60] provide a

thorough overview of the techniques.

 However, none of this research focuses on interactions between power, thermal,

power management and system performance in a heterogeneous architecture. These

interactions will become more pronounced at future technology nodes and are amplified

by heterogeneous architectures with diverse elements running general purpose compute

applications. Prior works do not address the consequences of tightly coupled heterogeneous

systems and how to manage them efficiently. As W. Dally noted, performance scaling in

the post-Dennard era will involve improving efficiency of power and energy usage instead

of scaling clock speeds [29]

2.3 Summary

 The preceding challenges provide motivation for further research to understand and

analyze the relationship among performance, power management, thermal capacity, and

thermal interactions between the multiple elements in a heterogeneous architecture for the

emerging class of general purpose compute applications. It inspires new research directions

to manage “on-die integration driven” physical constraints and system performance among

all the components in a heterogeneous processor. We believe that this awareness has the

potential to exert significant influence over the design of future power-performance

management algorithms. The next chapters will provide background information followed

by describing the power and thermal behaviors in heterogeneous processors in more detail

leading to the proposed research and thesis statement.

 21

CHAPTER 3

BACKGROUND

 We are in the era of heterogeneous computing where the trend towards

heterogeneous processors continues with accelerated processing units or APUs, which

consist of multiple CPU and GPU processing elements, sometimes sharing a unified

memory address space, integrated onto the same die. The tight integration of hardware on

APUs, coupled with the companion emergence of programming models such as CUDA

and OpenCL, facilitates effective and efficient computation on heterogeneous systems. In

the future we expect to see heterogeneous systems with massive parallelism and high

bandwidth integrated memory e.g., in 2.5D or 3D packages [39][56][74][93][119]. This

chapter provides the necessary background on heterogeneous and massively parallel high

bandwidth GPU architectures along with their programming models to establish a

foundation for the research in this dissertation.

3.1 GPU/APU Programming Model

 Post-Dennard performance scaling is achieved by improving efficiency along the

entire stack from hardware through programming models and applications. To fully exploit

heterogeneity and the available hardware resources, applications must be redesigned,

requiring the need for new programming models. In this context, the bulk-synchronous

parallel (BSP) programming model has been uniformly adopted for massively parallel GPU

architectures that get rid of global cache coherence and memory level consistencies in lieu

of coarse and fine-grained thread level parallelism.

 Since the original formulation of the BSP model by Valiant [112], several industry

initiatives have adopted variants for general purpose programming on GPUs. CUDA [85]

and OpenCL [86] are first such examples. This thesis utilizes the OpenCL terminology

 22

although the concepts are applicable to analogous elements of the CUDA programming

model. Both CUDA and OpenCL express programs in terms of a series of compute kernels.

A host program launches a compute kernel consisting of a 2D/3D grid of work groups

(thread blocks) where each workgroup is comprised of a block of work-items (threads).

Work-groups share a block of local data storage (LDS) and vector and scalar general

purpose registers (VGPR and SGPR). Work-items within a workgroup are also grouped

into sets of threads called wavefronts (warps) operating in lock step relative to each other.

For example, 64 threads execute the same instruction on different data using the 64 ALUs

on an AMD architecture.

 The BSP model requires global synchronization among all threads leading to some

threads waiting for others to finish. Programming models like OpenCL and CUDA coupled

with emerging applications allow for balancing computation among the different compute

elements in the heterogeneous CPU-GPU architecture to take advantage of the different

performance-power efficiency points of the CPU and the GPU.

 Recently AMD (APUs) [83], Intel (Sandy Bridge) [99], and ARM (MALI) [108]

have released solutions that integrate general purpose programmable GPUs together with

CPUs on the same die. In this computing model, the CPU and GPU share memory and a

common address space. Even though they are different microarchitectures they all

fundamentally utilize the BSP style of communication and are comparable e to each other.

Next sub-section details such architectures.

3.2 GPU Hardware Design

 GPUs gain much of their performance from running many parallel compute units

(CUs) at a moderate frequency. Figure 2 shows a canonical GPU architecture. They

typically hide memory latency be executing many parallel threads with access to high

bandwidth memory systems. The GPU itself has many graphics-specific circuits that we

do not illustrate, because general purpose compute codes primarily use the programmable

 23

CUs. There are many of these parallel CUs or streaming processing clusters in modern

GPUs, and each contains some number of arithmetic logic units (ALUs), which run in a

SIMD fashion. CUs on GPUs from AMD, for instance, have 64 parallel ALUs [76].

Similarly, NVIDIA's “Fermi”-class flagship GPU contains four Graphics Processor

Clusters (analogous to CUs), each partitioned into four SMs (Streaming Multiprocessors)

[84]. If two threads within a wavefront need to execute different instructions, such as taking

different branch directions, they use predicated execution and serialize the wavefront

through both paths.

Figure 2: Canonical GPU architecture.

 Rather than using out-of-order execution logic like CPUs to avoid delays due to

long-latency operations, GPUs use more threads. A wavefront is the basic unit of hardware

scheduling. However, there are resources that are shared among work-groups. These

resource demands in part govern the number of in-flight wavefronts and hence concurrent

execution. Many wavefronts are assigned to a single CU, which uses fine-grained

multithreading to mask delays. GPUs have a hardware-managed cache hierarchy between

 24

the CUs and memory system, which is used to hold commonly used read-write data. Each

CU has some “private” cache, which is actually shared between all of the threads running

on that CU. The L2 cache sits near the memory controllers and is shared across all of the

CUs.

 The common design described above can be configured in a variety of ways to meet

market demands. CU count, L2 size, and number of memory channels can be varied in

order to reduce area and costs. The frequency of the chip and the DRAM can be varied in

order to control power usage, maintain thermal limits, and hit performance targets. It is

worth noting that in a discrete graphics card (dGPU), the GPU is connected to the host

CPU through a low bandwidth PCI-e bus, which is why high performance massively

parallel discrete GPUs have access to their own high bandwidth memory system co-located

with the GPU chip on the same dGPU card. However, heterogeneous processors, such as

APUs, put both a CPU and a GPU in the same chip. They replace the PCIe connection with

custom high-bandwidth interconnects and let the GPU use the system’s DRAM. In future

we expect the system DRAM to be integrated inside the same package along with CPU and

GPU in an APU. The exact number of CUs and parallel processors that make up the GPU

differ between an APU and a dGPU and it typically depends on a variety factors such as

the peak compute to memory ratio target for that architecture, the target application space,

power and thermal budgets, design and packaging constraints etc.

In this thesis we use measurements from state-of-the-art modern heterogeneous

processors and discrete GPUs to analyze interactions between processor physics and

performance and evaluate impact of the propose power management techniques. Although

there are many simulators and analytic frameworks that simulate power, performance and

thermals for different microarchitectures, simulators cannot really model and capture the

complex relationships between time-varying real-world workloads, power delivery,

thermal transients and steady state fields, and performance with high fidelity. Next, we

provide an overview of the specific architectures - AMD Trinity APU and AMD HD7970

 25

dGPU - used in this dissertation. Although we used specific hardware architectures as

experimental basis, the core concepts, observations and the insights from this dissertation

are equally applicable to other types of architectures following the bulk-synchronous

parallel programming model described in Section xxx.

3.3 Heterogeneous Architecture Overview

 Systems containing GPUs are, by definition, heterogeneous. The GPU has to

communicate with the CPU via low latency on-chip interconnect, such as in APU, or over

PCIe, such as in discrete GPU. Access to the memory interface (shared memory or

dedicated) brings another dimension to this heterogeneity.

Figure 3: Die shot of AMD Trinity APU [83].

 Heterogeneous CPU-GPU processors such as Intel’s SandyBridge [99] and AMD’s

Trinity APU [83] consist of one or more CPU cores in combination with a GPU core. Die

 26

shots of the AMD Trinity and the Intel SandyBridge processors are shown in Figure 3 and

Figure 4, respectively. They both contain a number of CPU x86 cores paired with caches

and a GPU in addition to miscellaneous other logic such as a memory controller, power

controller, and fixed function units such as video encode and decode. The key point to

note about both systems is that there are many compute units (CU) in the same package

and they are in close proximity to each other sharing the same power and thermal budgets

as well as the heat sink solution.

Figure 4: Die Shot of Intel SandyBridge Processor.

3.3.1 Trinity Accelerated Processing Unit

 The Trinity APU in Figure 3 contains two PileDriver modules or CPU compute

units (CUs), AMD Radeon™ GPU cores, and other logic components such as a

NorthBridge and a Unified Video Decoder (UVD). Each CPU module is composed of two

out-of-order cores that share the front-end and floating-point units. In addition, each

module is paired with a 2MB L2 cache that is shared between the cores. The GPU consists

of 384 AMD Radeon cores, each capable of one single-precision fused multiply-add

 27

computation (FMAC) operation per cycle. The GPU is organized as six SIMD compute

units (CUs), each containing 16 processing units that are four-way VLIW. The memory

controller is shared between the CPU and the GPU.

 On the CPU side, there are multiple DVFS states, some of which are software-

visible and can be managed either by the OS through the Advanced Configuration and

Power Interface (ACPI) specification [1] or the hardware. A few of the DVFS states are

only visible to and managed by the hardware – in other words, entrance to and exit from

those states are managed only by hardware. On Trinity, DVFS states can be assigned per

CPU compute module; however, because the CUs share a voltage plane, the voltage across

all CUs is set by the maximum-frequency CU.

The GPU has an independent power plane whose voltage and frequency are

controlled independently. However, unlike the CPU, the GPU does not have DVFS states

visible to software. Entrance to and exit from these states are managed entirely in hardware

with some involvement from the GPU driver.

3.3.2 Tahiti Discrete GPU

 The AMD Radeon HD 7970 system is one of the “Southern Island” families of

AMD graphics processors, and is illustrated in Figure 5. It features the AMD Graphics

Core Next (GCN) architecture and is paired with 3GB of GDDR5 memory organized using

a set of six 64-bit dual channel memory controllers (MC) with maximum bandwidth of 264

GB/sec. The processor contains up to 32 compute units or CUs with four SIMD vector

units in each CU. There are 16 processing elements (PE) per vector unit, called ALUs,

resulting in a single precision FMAC compute throughput of about 4096GFLOPS. Each

CU contains a single instruction cache, a scalar data cache, a 16-KB L1 data cache and a

64-KB local data share (LDS) or software managed scratchpad. All CUs share a single

768-KB L2 cache. All CUs in the GPU share a common frequency and voltage plane.

 28

Figure 5: Tahiti GPU architecture [84].

3.4 Power Management in Heterogeneous Processors

 This section provides an overview of modern power management techniques on

current state of the art heterogeneous processors. In an APU, although the CPUs and the

GPU are on independent power planes, they share the same die and system power supply,

and hence share the same power and thermal headroom. These heterogeneous processors

use a sophisticated power-monitoring and management technology, referred to as Turbo

Boost on Sandy Bridge and AMD Turbo CORE on Trinity, to determine the dynamic

voltage and frequency scaling (DVFS) states for the CPU and GPU to optimize

performance given power and thermal constraints. These technologies use some

combination of measured and approximated power and/or temperature values to monitor

and guide the power-management algorithm. In addition, unused resources can be

 29

dynamically power gated by the hardware to shift power credits to the active regions of the

die.

 Typically processor’s power consumption is limited by a system’s ability to both

deliver power to the device and cool it by removing the heat it generates. Processor

manufacturers provide system builders with a Thermal Design Power (TDP) figure for their

products to allow them to design their systems appropriately. This represents the maximum

power draw for reliable operation. There are many factors which can affect TDP, including

workloads, voltage and frequency, leakage and ambient temperature. The maximum

software-visible voltage and frequency for the processor is defined using a combination of

heavy activity and worst-case operating conditions. This corresponds to the thermal design

point (TDP) power for the chip. However, across time-varying workloads it is common for

the processor to operate well below the TDP power and, therefore, well below the peak

temperature allowed. The difference between the current and peak temperatures is the

thermal headroom. Thermal headroom can be utilized by permitting the CPU and/or the

GPU components to exceed the maximum frequency and TDP power for short periods.

 Likewise, in a heterogeneous platform with a dGPU, similar thermal-headroom

based power management techniques can be employed to maximize performance under the

physical constraints of the chip. Thermal headroom can be used towards boosting the GPU

compute units to improve performance. In addition, the off-chip DRAM and compute

processor share the same overall board level power and thermal budget. In future with the

advent of High Bandwidth Memory (HBM), Hybrid Memory Cube (HMC) and other die

stacking memory technologies [93][39][56], heterogeneous architectures with integrated

GPU and memory will emerge [131] sharing the package or chip-level thermal design

power envelope (TDP). Thermal headroom driven management techniques can be utilized

for any of these architectures to improve performance and power efficiency.

 30

Figure 6: Thermal entities in an AMD Trinity APU.

Power-management algorithms differ in how the timing, extent, and duration of the

boosted and non-boosted operation are determined. However, regardless of the specific

implementation, it is safe to say that modern processors dynamically manage power across

multiple components of the die under fixed power and thermal constraints. For instance,

both Sandy Bridge and Trinity processors dynamically manage power allocation across the

CPUs and the GPU under a pre-set thermal and power limit. Next we describe the power

management algorithms in AMD Trinity APU and AMD Tahiti dGPU used in this

dissertation. The concepts and methodologies are applicable to other heterogeneous

processors using power and thermal based management.

3.4.1 Trinity Power Management

 AMD's Turbo CORE technology uses the Bidirectional Application Power

Management, or BAPM, algorithm [83] to manage to thermal limits. BAPM controls the

power allocated to each thermal entity (TE) in the processor, as shown in Figure 6. TEs are

defined to be any sub-component of the processor that interfaces with BAPM to report its

 31

power consumption and receive its power limits. Once BAPM has assigned power limits,

each TE manages its own frequency and voltage to fit within that limit. For the Trinity

system evaluated in this paper, BAPM interfaces with the two CPU compute units (CU0

and CU1) and the GPU. At regular time intervals, the BAPM algorithm does the following:

1) Calculates a digital estimate of power consumption for each TE;

2) Converts the power estimates into temperature estimates for each TE; and,

3) Assigns new power limits to each TE based on the temperature estimates.

Figure 7: RC network modeling thermal coupling in an APU.

 To estimate the temperature across the die, the chip is divided into regions in which

local power and thermal properties are calculated and transfer coefficients (represented as

 32

an RC network) are utilized to compute heat transfer among the thermal regions, substrate,

and package. Temperatures within each region are computed using numerical methods.

Figure 7 shows the RC network model for thermal coupling used in the BAPM algorithm.

 The BAPM algorithm is optimized for a fair and balanced sharing of power between

the TEs. When thermal headroom is available, BAPM proportionally allocates power to

each TE using a pre-set static distribution weight derived using empirical analysis

reflecting the individual thermal properties of each TE (i.e., its thermal behavior for a given

power). Such static allocation is an effective choice in the absence of dynamic feedback

from application execution. When the core reaches its thermal limit, BAPM reduces the

allocation of power to all TEs in the system. As a general-purpose state-of-the-practice

controller, BAPM is designed to provide reasonable performance improvements without

any significant outliers for today's applications.

3.4.2 Tahiti Power Management

 The AMD Radeon HD7970, code-named Tahiti, uses AMD PowerTune technology

[3] to optimize performance for TDP-constrained scenarios. This enables the GPU to

automatically adjust power between its DVFS states, based on power and thermal

headroom availability. It also allows for boosting to a higher frequency state when there is

headroom. The AMD PowerTune algorithm embedded in the GPU hardware calculates the

compute frequency based on an internal assessment of the runtime power draw. When the

GPU is in the highest activity or power state and not exceeding the power and thermal

limit, it will remain in the highest power state for maximum performance. In the case where

AMD PowerTune calculates that the GPU is exceeding power and thermal constraints of

the die, the power is dynamically reduced in a gradual manner by reducing the frequency.

This works well for managing compute power. However, very little power management

exists for off-chip memory which shares the same board level power budget on current

GPUs, and same on-die power and thermal envelope in future 3D die-stacking GPUs

[74][131].

 33

3.4.3 Memory Power Management

 DRAM memory is a significant power consumer in a platform – whether it’s the

global system memory accessible by both CPU and GPU in an APU or the on-board high-

bandwidth memory present in the dGPU card that is accessible by the GPU. One way to

change memory power is by dynamically adjusting the memory bus frequency, which

controls the memory controller, DDR PHY and the DRAM devices. DRAM power can be

further broken down into background, activation/pre-charge, read-write and termination

power. Changing memory bus frequency has a different impact on each of these

components. Lowering bus frequency lowers background and PLL power, as well as

memory controller and PHY power. On the other hand, it can increase read/write and

termination energy due to longer interval between array accesses. Further, if frequency is

slowed down to a point where memory latency can no longer be hidden through thread

level parallelism in the GPU, it can hurt performance significantly and increase the overall

energy consumption of the platform. In this dissertation, managing memory power refers

to managing the frequency of the memory channel i.e., the bus interface.

3.5 Summary

 This chapter presented the necessary background information to support the rest of

the thesis. We described modern bulk-synchronous type parallel programming models

(BSP) and explained the generalization and applicability of the core concepts and insights

from this dissertation across multiple architectures implementing this BSP model. We also

provided an overview of the current state-of-the-practice boost algorithms which serve as

a reference point of comparison for the novel power management techniques proposed and

evaluated in this dissertation.

 34

CHAPTER 4

NEW MANAGEMENT CHALLENGES IN HETEROGENEOUS

PROCESSORS

Following the end of Dennard scaling, the major system challenge facing the

industry is to sustain performance scaling with Moore’s Law while preparing for the

transition to post-CMOS technologies. From [29], system performance can be represented

by 𝑃𝑒𝑟𝑓 (
𝑜𝑝𝑠

𝑠
) = 𝑃𝑜𝑤𝑒𝑟(𝑊) ∗ 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (

𝑜𝑝𝑠

𝑗𝑜𝑢𝑙𝑒
). Since power densities remain roughly

flat, performance scaling must derive from commensurate improvements in efficiency [29].

This has two important consequences. First, customization in the form of heterogeneity,

technology diversity, and architecture asymmetry is the norm. Second, scaling

performance is achieved by scaling energy efficiency. Thus heterogeneity and energy

efficiency must be concurrent goals.

 In heterogeneous processors, multiple components are tightly integrated onto the

same die. While this results in the sharing of many classical functional resources such as

the memory hierarchy and interconnect, it also results in the sharing of physical resources

such as power and thermals by the different components in the package. The different

components consume power and thermal capacities in different ways at different times and

their consumption is a time-varying function of workload characteristics, architectural and

micro-architectural constitution of the various components, as well as the die floor plan.

This leads to new and complex multi-function, multi-physics and multi-scale management

interactions and challenges which must be understood in order to improve performance

and power efficiency of future processors.

 This chapter presents an in-depth characterization of the new management

challenges arising from the tight integration of different compute elements and memory in

 35

heterogeneous processors. First, it elaborates and explains physical phenomena such as

thermal coupling that lead to loss of performance and loss of efficiency in heterogeneous

processors in Section 4.1. Second, in Section 4.2.1, it characterizes the functional

dependency, i.e. performance coupling of the different compute cores, e.g., CPU and GPU,

in a heterogeneous processor and demonstrates that tight coordination is indeed needed at

run-time to manage their power states. Lastly, Section 4.2.2 describes one of the key

management challenges that arises with the advent of on-package DRAM integration e.g.,

die stacks and EDRAM, where compute and memory share the same power and thermal

envelope. We explain performance coupling between compute and memory and the notion

of a hardware balance point and show that imbalances in hardware configuration (i.e.

compute and memory bandwidth) can lead to significant imbalances in cost (power

consumption) vs. benefits (performance and power efficiency) in future systems.

4.1 Thermal Coupling and Thermal Signatures

 This subsection presents an analysis of thermal coupling effects and attempts to

articulate concepts for describing the thermal behavior of individual micro-architectural

components.

4.1.1 Thermal Coupling

 Due to the tight on-die physical integration of the CPU and the GPU, heat exchange

occurs between the heterogeneous cores. In this research, this physical phenomenon is

referred to as thermal coupling, where heat generated by one core raises the temperature

(and leakage power) of adjacent cores and components.

 Figure 8 illustrates the effects of thermal coupling on overall performance using an

AMD A8-4555M Trinity APU comprised of two dual-core CPU compute units (CU0 and

CU1) and one six-SIMD unit GPU (Figure 3). More details of the APU are provided in

Chapter 3.3.1. The left-side y-axis shows measured power relative to time zero, provided

 36

by on-chip real-time measurement capability. The right-side y-axis shows the peak die

temperature normalized to the maximum junction temperature.

Initially, the GPU operates at its highest frequency and the CUs are fixed at a low-

frequency, low-power state. After the GPU temperature stabilizes, at around 230 seconds,

additional power is allocated to CU0 and CU1 due to availability of significant thermal

headroom and they enter a higher-power DVFS state (this is automatically performed by

the existing chip power management unit). Not only do the CUs increase their power

dissipation, but due to thermal coupling and the impact of heat on leakage power, the GPU

power also rises. The increase in system power causes an increase in peak temperature and

eventually triggers temperature-based throttling of both the CUs and the GPU at around

267 seconds to maintain a steady-state peak junction temperature. This results in a net

performance loss for the overall application as the GPU is now running at a lower effective

frequency than before and the application’s performance is dependent on the GPU

Figure 8: Example of the impact of thermal coupling.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5

1

1.5

2

2.5

3

3.5

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

2
3

2

2
4

3

2
5

4

2
6

5

2
7

6

2
8

7

2
9

8

3
0

9

3
2

0

3
3

1

3
4

2

3
5

3

P
e

ak
 D

ie
 T

e
m

p
e

ra
tu

re

C
P

U
 &

 G
P

U
 R

e
la

ti
ve

 P
o

w
e

r

Time (seconds) ->

GPU Pow CPU CU0 Pow

CPU CU1 Pow PeakDieTemp
CPU power is limited, GPU running at max
DVFS state

Thermal
coupling

Temp throttling

 37

 This behavior can be attributed to thermal coupling effects between the CPU and

GPU thermal entities (TEs) defined in Chapter 3.4.1. As the GPU warms up (see Figure 8,

CU1 has a stronger thermal coupling to the GPU due to its proximity to the GPU (Figure

3), and so its power is initially higher than that of CU0 although they are both relatively

low. When they switch to a higher-performing DVFS state, at around 230 seconds, the

power in both CUs increases, but thermal effects cause CU0 power to exceed CU1 power.

CU0 is on the edge of the die, and its heat is trapped between the edge of the silicon and

CU1. The GPU acts as a thermal sink for CU1 due to its larger die area and more distributed

heat and, as a result, lower temperature. However, once steady state is reached (more than

267 seconds), CU0 and CU1 temperatures stabilize to roughly equal values.

 We conducted two additional experiments to support the preceding discussion on

thermal coupling between the CUs and the GPU. In the first experiment, we boosted the

CUs to run at a higher power while the GPU executed the same workload at a constant

voltage and frequency. We observed the GPU temperature was 6oC higher once the CUs

were boosted, indicating thermal coupling between CU1 and the GPU.

In the second experiment, we performed temperature measurements with a high-

power, two-thread CPU application. We first pinned the threads to CU0, then pinned them

to CU1. The GPU is idle and power is managed by BAPM. When the application ran on

CU0, we observed the peak die temperature was higher than when the application ran on

CU1, indicating worse heat flow from the CU next to the edge of the die. Further, the GPU

and idle CU temperatures rose by 13oC when one of the CUs was active with all others

idle, again indicating heat transfer effects.

Better coordination of the CPU and GPU power states could have reduced the

effects of thermal coupling, postponed (premature) throttling, and thereby increased overall

performance as well as energy efficiency, e.g., joules/instruction. For example, coordinated

power management ensures a greater percentage of the heat generated is due to useful

work, e.g., instruction execution, and not wasted.

 38

Figure 9: Thermal densities under CPU-centric (left) and GPU-centric (right)

workloads.

4.1.2 Thermal Signatures

Section 4.1.1 discussed the heat transfer properties of the TEs on the die. This

section details the differences in the thermal characteristics of CPUs and GPUs and how

they affect performance-coupled applications.

 The thermal signature of a TE reflects its ability to translate power to temperature.

It is measured by the distribution of power density across the occupied area. In this sense,

the thermal signature of a GPU is quite different from that of a CPU – the latter is more

"thermally dense". In Figure 9, we show on the left side a simulated heat map of the Trinity

system when running a CPU-centric, L1 cache-resident, high-power workload with an idle

GPU. The simulated heat map was constructed by feeding measured power levels and

power density while running the workload into a thermal grid model. The right side shows

a heat map for HotSpot [19], a GPU-centric workload with the serial portion being executed

on the CPU. The thermal maps show the steady-state thermal fields produced with the

BAPM algorithm across the two CPU CUs, the GPU, and the NorthBridge as labeled in

the figure. Tjmax refers to the maximum junction temperature allowed by the die. The

 39

temperature distributions in Figure 9 are steady-state distributions and therefore correspond

to the region of Figure 8 after 267 seconds (i.e., after the BAPM algorithm throttled the

CPUs and GPU once they reached peak junction temperature).

 The thermal characteristics of the workloads vary significantly. The CPU-centric

workload shows high heat density in the CPU CUs while the GPU-centric workload shows

a wider and flatter temperature distribution across the GPU. The computational area of the

CPU, which is where most of the power is consumed, is much smaller than the

computational area of the GPU. The complex, out-of-order CPU structures combined with

their relatively small areas lead to higher thermal density for the same power and, thus,

higher temperatures [52]. The GPU, on the other hand, performs computation across many

simple in-order SIMD units that encompass a large area, leading to a lower thermal density

for the same amount of power.

 There are two consequences to the higher thermal density in the CPU. The first is

that the CPU consumes its available thermal headroom more rapidly than the GPU when it

is actively doing computation. . Figure 10 shows the thermal time constant of CPU and

GPU for a CPU centric workload, where Figure 11 shows the thermal time constant of

CPU and GPU for a GPU centric workload.

 40

Figure 10: Thermal time constant with a CPU-centric workload.

Figure 11: Thermal time constant with a GPU-centric workload.

In our analysis, we observed that the CPU heats up approximately 4X faster that

the GPU leading to a much smaller thermal time constant on the CPU. As a result, the GPU

0.6

0.7

0.8

0.9

1

1.1

1 51 101 151 201 251 301

P
e

ak
 T

e
m

p
e

ra
tu

re
 (

C
)

->

Time (sec) ->

Running a 100% CPU workload, GPU idle

GPU temp CPU temp

0.6

0.7

0.8

0.9

1

1.1

1 51 101 151 201 251 301

P
e

ak
 T

e
m

p
e

ra
tu

re
 (

C
)

->

Time (sec) ->

Running a 100% GPU workload (CPU cycles
only to feed the GPU)

CPU temp GPU temp

 41

can sustain a higher power boost than the CPU for a longer period before locally reaching

the thermal limit. In some cases, this results in sustained power dissipation that is higher

than the TDP power. For example, in the simulations shown in Figure 9, the TDP of the

APU complex is 19W; the total power for the CPU-centric workload is 18.8W, while the

total power for the GPU-centric workload is 19.7W for the same thermal limit.

The second consequence of the higher thermal density in the CPU is the destructive

effect of thermal pollution on other components on the die. The rate and extent of thermal

pollution depends on the thermal signatures of the entities. The distinct thermal signatures

lead to a larger thermal gradient between the CPU and GPU when the CPU is active than

when the GPU is active. Heat from the CPU spreads, heating neighboring components,

increasing leakage, and accelerating temperature rise. The thermal coupling effects can be

seen in Figure 8 and Figure 9.

 In a thermally coupled system, the TEs do not influence each other’s performance

as long as they are all running well below the thermal limit. Power management employs

boost algorithms to improve performance by pushing the processor to operate near the

thermal limit, reallocating power across the CPU and the GPU. As shown in Figure 8,

boosting based on available thermal headroom can sometimes be detrimental to the

application performance. The complexity of the power-management task is exacerbated in

heterogeneous systems because application performance relies on components with widely

varying thermal signatures and coupling. The distinct thermal signatures lead to larger

thermal coupling across the die when power management across the die is not coordinated.

4.1.3 Summary

 The preceding analysis shows that heterogeneous cores have distinct power and

thermal signatures that give rise to new management challenges. Phenomena such as

thermal coupling and thermal pollution between compute elements can produce complex

interactions with performance and can degrade overall system efficiency if power states of

the cores are largely un-coordinated. In future heterogeneous processors, architects must

 42

deal with thermal coupling actively besides power in order to reason about and improve

overall performance and efficiency of the system. In the next section we will see how lack

of coordinated management can lead to overall poor efficiencies in heterogeneous systems

with distinct performance signatures.

4.2 Performance Coupling

 As the trend towards heterogeneous processors continues with tightly coupled

accelerated processing unit (APU) designs, the companion emergence of modern

programming languages based on the bulk synchronous parallel (BSP) model such as

CUDA, OpenACC, and OpenCL, is making such processors viable for general purpose and

scientific computing. However, the tighter integration of CPUs and GPUs and

consequently emerging workloads and programming models result in greater performance

dependencies between the CPU, the GPU and the memory subsystem. For example, CPU

and GPU memory accesses interact in the memory hierarchy causing interference between

reference streams and consequently impacting performance. Further, in the offload model

of computation the CPU is responsible for “feeding” the GPU both from the perspective of

launching computations as well as providing input data and consuming output data. The

rate at which the CPU can perform these functions determines the utilization of the GPU.

Too slow and the GPU is underutilized. Too fast and the CPU is stalled. These observations

are similar to the relationship between the CPU and the memory system leading to the

notions of compute-bound vs. memory bound workloads. Thus the overall performance of

the processor is dependent on the interactions between the CPU, GPU and memory. We

refer to such performance critical functional dependencies among multiple compute and

memory elements as Performance Coupling. In the following sub-sections we will describe

performance coupling between heterogeneous compute elements and between compute

and memory elements.

 43

4.2.1 Performance Coupling between Heterogeneous Compute
Elements

 The CPU and GPU have fundamentally distinct performance signatures. Modern

GPUs contain hundreds of simple in-order ALUs, hardware thread schedulers, and access

to fast on-chip and high-bandwidth memories. This translates to excellent peak

performance and power efficiency for a wide range of applications. However many

applications that do not have enough thread-level parallelism or have significant serial

fractions do not map well to the GPU. The bulk synchronous parallel nature of the GPUs

leads to poor performance on codes that are control flow intensive or which have irregular

memory access patterns. Codes with irregular control flow, irregular memory accesses, and

phases with low parallelism are better suited for executing on the complex out-of-order

CPU as compared to the GPU. The fact is that in emerging applications both the CPU and

the GPU are candidates for hosting different portions of the computation or data

processing, i.e., these applications make concurrent use of both the compute engines.

 Figure 12 shows an example programming model where the host application on the

CPU launches a kernel consisting of a 2D/3D grid of work groups on the GPU where each

workgroup is comprised of a block of work-items or threads. The work-items all execute

in parallel as long as hardware resources such as registers and data-storage spaces are

available on the GPU. The host CPU and the GPU have control and data dependencies

between computations executing on the two types of cores.

 44

Figure 12: Bulk-synchronous parallel programming model.

 Figure 13 provides a canonical illustration of performance coupling in a

heterogeneous processor with two CPU cores and a GPU. The CPU is processing

computations and placing work in GPU’s command queue for processing. CPU0 and CPU1

first execute portions of the computation and prepare the data needed for the GPU to start.

Once completed, CPU0 enqueues a compute kernel (work) into the GPU’s command queue

at which point the GPU can begin the execution. In this example a slow CPU can starve

the GPU of data, leading to underutilization of the GPU. If the rate of consumption of the

work by the GPU is faster than the CPU can process, the command queue will be mostly

empty leading to GPU’s starvation. On the other hand, a slow GPU which is not consuming

the data generated by the CPU fast enough will lead to over-run of the command queue.

Neither conditions are desirable and must be actively managed to maintain an optimal

balance in the producer (CPU) – consumer (GPU) relationship. Here for peak GPU

utilization, the CPU must provide data to the GPU at a rate appropriate to sustain GPU

 45

performance and vice-versa.

Figure 13: CPU-GPU execution dependency in a heterogeneous processor.

Figure 14 illustrates an HPC application running on an AMD Trinity APU. The

figure shows fine-grain communication between the CPU and the GPU on an OpenCL

variant of Lulesh with 100 node elements per dimension [59]. The x-axis shows time (in

milliseconds) and the y-axis shows the CPU utilization as measured by IPC for the multi-

threaded CPU, and the GPU utilization as measured by active clock cycles for the data-

parallel GPU.

The application is in the start-up phase up to 3200 ms, and the CPU is the primary

active component. Subsequently, the CPU primarily plays an assist role delivering data to

the GPU for computation leading to low CPU activity (IPC) and high GPU activity.

However, there is constant communication between the CPU and the GPU and the

performance required of each core is a function of the kernel being run. For instance, the

CalcFBHourGlass kernel has a higher GPU utilization than the 20+ miscellaneous kernels

in the application. The computational demands of the CPU and the GPU vary across

program phases, as does the intensity of their interactions.

 46

Figure 14: Example phase behavior in an exascale proxy application (Lulesh).

The above analysis attests to the fact that unlike multi-core homogenous

architectures in which all cores are identical and the majority of threads are identical, the

CPU and GPU differ in both the architecture and execution models. While the former

supports asynchronous execution of (relatively) coarse-grain threads, the latter implements

a model orchestrating the synchronous execution of thousands of thread blocks or

wavefronts, comprising tens to hundreds of fine-grain threads. Consequently, their energy

and power behaviors are quite distinct. Further, while the CPU-GPU behaviors are directly

coupled through the programming model (e.g., through off-load model of kernel execution

on the GPU), their executions are indirectly coupled via interference within, and

competition for, shared on-chip resources such as memory controller and on-chip

interconnect.

Managing power states of the CPU & GPU without regard to the scope and intensity

of their (coupled) interactions lead to disproportionate reductions in performance when

reducing power or energy consumption by moving to lower power states. This again

demonstrates that lack of coordination can lead to inefficient power management.

 47

4.2.2 Performance Coupling between Compute and Memory
Elements

While the preceding observations reflect the interaction between cores, the DRAM

memory system is one of the biggest contributors of overall system power besides compute

devices and its power and energy signatures are quite distinct from that of the

heterogeneous cores. For example, Figure 15 illustrates the power distribution in an AMD

Radeon HD7970 discrete GPU card (dGPU) executing a memory intensive workload

XSBench [46]. Performance is also coupled between the compute and memory operations

and their relative demands must be met to sustain application performance. This

distribution of performance and power consumption between compute and memory must

operate under a fixed board level power and thermal envelope, while with the advent of

on-package DRAM e.g., die stacks and EDRAM [39][56][93][131], they must share an

even tighter package power and thermal envelope.

Figure 15: Power breakdown in a typical modern discrete GPU.

 In addition to on-die memory integration, future heterogeneous processors are

expected to have a significantly larger number of parallel processing cores or compute units

GPUPwr

MemPwr

RestOfCardPwr

 48

(CU) in order to meet increased compute demands. For example, the national roadmap for

HPC now has the goal of establishing systems capable of sustained Exaflop (1018

flops/sec.) performance. However, the road to exascale is burdened by significant

challenges in the power and energy costs incurred by such machines. Due to dark silicon

effects it may not be possible to power all of the transistors in a chip [40]. This accentuates

the problem of effectively sharing the power envelope between the memory system and the

compute.

Emerging applications are becoming increasingly unstructured and irregular in

their memory access patterns. For example, Figure 16 demonstrates the evolution of fine

grained parallelism over time for a breadth-first search (BFS) algorithm across two

different input graphs [77]. The X-axis indicates the iteration count and the Y-axis indicates

the amount of parallelism for that iteration as represented by the number of graph nodes

per iteration. Due to the synchronization barrier at the end of each iteration, load

imbalances and critical paths can cause significant reduction in power efficiency by

reducing hardware utilization. Similarly, memory divergence and memory bandwidth

access rates also have a large effect on power efficiency.

Figure 16: Parallelism over time for two input graphs.

 49

4.2.2.1 Application Characterization

Recognizing the time-varying redistribution of compute and memory demands for

emerging applications, the first task is to understand the behaviors of such applications to

identify the performance coupling effects between compute and memory, and the trade-

offs in shifting power from memory to compute or vice-versa. We specifically focus on

analyzing the relationship between the compute-memory behaviors of the hardware

platform with that of the applications. For example, the ops/byte behavior of an application

(compute operations per byte of memory data transfer) represents the relative demands

placed on the GPU cores and memory system. Hardware tunables such as the number of

cores, their operating frequency, and the memory bandwidth collectively capture the

relative time and power cost of performing operations vs. memory accesses in the hardware

platform. The ops/byte behavior of the application is time varying and the ops/byte costs

of the platform depend on the specific values of the hardware tunables such as compute

frequency or memory bus frequency. For example, we studied the ops/byte behavior of

Graph500 [81] running on an AMD Radeon HD7970 GPU with GDDR5 memory [76].

More details on HD7970 can be found in Chapter 3.3.2. The ops/byte behavior varied from

lows of 0.64 ops/byte to bursts of 264 ops/byte.

High ops/byte ratios imply the memory system can be run at lower speeds relative

to compute with little to no performance degradation but with lower overall platform

power. The time varying behavior of the application implies that a lack of continuous

coordination of the power states of the GPU and memory system can lead to imbalances

between the power and time costs of compute and memory resulting in significant

degradation of performance and power/energy efficiencies. Towards this end, the rest of

this subsection presents a detailed characterization of the relationship between application

behaviors and settings of hardware tunables for compute throughput and memory

bandwidth.

 50

4.2.2.1.1 Experimental Methodology and Terminology

The performance scaling and ops/byte characterization of the GPU hardware is

carried out as follows. The total number of active CUs and CU operating frequency

produces a peak operation rate (ops/sec) or compute throughput. The memory channel

frequency determines the peak memory bandwidth (bytes/sec). The ratio provides the

ops/byte value of the platform hardware for a particular combination of the number of

active CUs, CU frequency (all operating at the same frequency), and memory bandwidth.

The number of active CUs can be varied from 4 to 32, and the CU frequency can be varied

from 300MHz to 1GHz, in steps of 100MHz. A specific setting of CU and CU frequency

is called the compute configuration. Memory bandwidth can be varied from 90GB/s (at

475MHz) to 264GB/s (at 1375MHz) in hardware, in steps of 30GB/s (150MHz). A specific

setting is called the memory configuration. The total number of combinations of compute

and memory configurations is approximately 450. Each combination reflects a specific

value of ops/byte delivered by the platform hardware and a specific balance between

compute and memory bandwidth. It also reflects a specific balance between power devoted

to computation vs. memory access. If there is significant imbalance between demanded

ops/byte of the application and what the platform delivers, execution time and energy

inefficiencies result.

4.2.2.1.2 Performance Scaling Trends and Hardware Balance

We observe that GPGPU kernels show a number of common scaling patterns across

the hardware configuration state space we have explored. Some patterns are limited by the

available computational resources, others by the memory bandwidth, and still others can

be affected by both limitations. We also demonstrate a few non-intuitive scaling patterns,

such as performance losses from shared cache thrashing and performance plateaus from a

lack of parallelism.

Compute-Bound: Figure 17 shows an example performance scaling surface for a

compute-bound kernel. Here Y (vertical) axis shows performance normalized to the

 51

slowest hardware configuration that we studied. The X (horizontal) axis shows the various

CU frequencies that we studied (keeping the number of active CUs fixed at maximum

possible value), and the Z (depth) axis shows the memory bandwidth settings we used. We

define compute-bound kernels as those whose performance can be improved by giving

them more compute resources. Such resources can be of two types – the number of active

CUs and the core frequency. Typically, the performance of compute-bound kernels is not

limited by the available memory bandwidth because the memory footprint of such kernels

is relatively small and/or exhibited good caching behaviors.

Figure 17: 3D plot for the performance scaling of a compute bound kernel with

compute frequency and memory bandwidth.

We observed that a kernel can be compute-bound for two primary reasons. First,

there are kernels that do not have enough parallel work, but are (compute) latency sensitive.

 38

 123

 207

 292

0

1

2

3

4

5

6

200 400 600 800 1000

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

 52

The performance of such kernels improves as core frequency is scaled but is insensitive to

the number of CUs. Second, there are kernels that exhibit significant parallelism allowing

them to achieve higher performance with either higher frequency or CU count. These

kernels also have low memory footprint and/or good locality that make them less sensitive

to memory bandwidth. MaxFlops and FFT are both examples of such kernels. The former

is a computational throughput microbenchmark from the SHOC suite [30] that is

commonly used in the GPGPU community to stress the hardware against its compute

limits. The latter is a more traditional high-compute GPGPU application which calculates

the Fast Fourier Transform [2].

Figure 18: Performance scaling of MaxFlops with available ops/byte in hardware.

 Figure 18 describes the corresponding ops/byte behavior of the MaxFlops

application against platform ops/byte. The X-axis shows the ops/byte provided by the

hardware. Each curve in the figures corresponds to a fixed memory bandwidth

0

5

10

15

20

25

30

0 5 10 15 20 25 30

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

Normalized Available ops/byte in Hardware

475MHz MemClk
625MHz MemClk
775MHz MemClk
925MHz MemClk
1075MHz MemClk
1225MHz MemClk
1375MHz MemClk

 53

configuration. Each point on the curve is a different compute configuration with increasing

CU frequency and number of CUs as we move to the right, i.e., increasing ops/byte of the

platform. The Y-axis shows performance (i.e., 1/execution time). Both the X and Y axes

are normalized to those of a minimum hardware configuration with 4 active CUs, 300MHz

compute frequency and 90GB/s memory bandwidth.

As we can see from Figure 18, increasing compute throughput results in linear

increase in performance for a fixed memory bandwidth. Also, for the same compute-to-

memory bandwidth ratio in the platform (i.e. same ops/byte value on the x-axis), higher

available memory bandwidth means higher available compute throughput and hence higher

performance for this benchmark. However, it is clear that maximum performance (at 27

normalized performance) is achieved at multiple memory configurations. All these points

are at the same compute configuration—maximum 32 CUs and maximum 1GHz compute

frequency. However, the most energy-efficient point is the rightmost point at 27

normalized ops/byte of x-axis, which corresponds to the lowest memory bandwidth. This

is because MaxFlops is not memory sensitive—running at the lowest memory bandwidth

does not hurt performance, but significantly improves energy efficiency.

Memory-Bound: Memory-bound kernels can generally be described as those that

are primarily or solely affected by the available memory bandwidth between the GPU and

its DRAM. In our tests, this is controlled by DRAM bus frequency, which can also affect

memory latency. Nonetheless, most GPU kernels are latency tolerant due to

multithreading: they only begin to lose performance when a lack of DRAM bandwidth

causes the latency of an access to scale with the number of accesses.

 54

Figure 19: 3D plot for the performance scaling of a memory bound kernel

(DeviceMemory) with active compute units (CUs) and memory bandwidth.

Figure 20: Performance scaling of DeviceMemory with available ops/byte in

hardware.

 38

 123

 207

 292

0

2

4

6

8

10

12

4 8 12 16 20 24 28 32 36 40 44

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

0

1

2

3

4

5

6

0 5 10 15 20 25 30

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

Normalized Available ops/byte in Hardware

475MHz MemClk

625MHz MemClk

775MHz MemClk

925MHz MemClk

1075MHz MemClk

1225MHz MemClk

1375MHz MemClk

 55

 Figure 19 shows how the kernel readGlobalMemoryCoalesced from the

DeviceMemory microbenchmark scales as CU count and memory frequency are varied. In

most operating regions (i.e. above 12 CUs), the added compute capabilities do not help.

DeviceMemory is a benchmark from the SHOC suite [30] that is commonly used in the

GPGPU community to stress the GPU hardware against its memory limits. DRAM

bandwidth controls the performance of this kernel. Now consider the corresponding

ops/byte characteristics of this application in Figure 20. We observe that for each value of

memory bandwidth, increase in compute throughput does not lead to improved

performance beyond a hardware ops/byte of around 5. Hardware configurations with

normalized ops/byte of 5 are balanced configurations where compute throughput just

saturates the available memory bandwidth. Each memory configuration has a different

balance point (the knee of the curve) corresponding to a specific compute configuration.

The optimization problem is the selection of the specific balance point that maximizes

power and energy efficiencies with minimal impact on performance. Any other

combination of compute and memory configurations either wastes power and/or leaves

additional performance gains unexploited.

Balanced: Balanced kernels are those whose performance depends on both type of

hardware resources – compute (core frequency and/or CU count) and memory bandwidth.

As we vary the available compute-to-bandwidth ratio in the GPU hardware, these kernels

have some optimal ratio that maximizes performance. Making less bandwidth available

causes a kernel to stall waiting for values to return from memory. Using fewer

computational resources causes it to become a bottleneck for instruction throughput.

 56

Figure 21: 3D plot for the performance scaling of a balanced kernel

(MatrixMultiplication) with compute frequency and memory bandwidth.

Figure 21 illustrates how a balanced kernel scales. This shows that for balanced

kernels, there is a “hill” in the performance curve at some compute-to- bandwidth ratio.

Moving away from that curve in either direction causes the performance gains to quickly

drop off. For such kernels, without increasing both core frequency and memory bandwidth,

the performance gains quickly drop to zero. If, however, the kernel has enough bandwidth,

the performance scales linearly with added computational power. Figure 21 presents data

from the mmmKernel kernel in MatrixMultiplication [2], but is generally representative of

a number of other balanced kernels. It is important to note that not all balanced kernels

have the same preferred ratio between compute and memory, meaning that the “hill” in the

 38

 95

 151

 207
 264
 320

0

1

2

3

4

5

6

7

8

200 400 600 800 1000

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

 57

curve may occur at different locations. This type of scaling is often seen in kernels that are

well designed for modern GPU configurations.

Figure 22: Performance scaling of LUD with available ops/byte in hardware.

Finally, in Figure 22 we show the ops/byte behavior of a balanced application LUD

and its relation to platform ops/byte balance. LUD is a representative scientific application

from the Rodinia benchmark suite [18][19] that performs matrix decomposition. The

application may be compute-bound or memory-bound depending on the choice of compute

and memory configurations. For higher values of memory bandwidth the application

remains compute bound across all configurations. For such applications, the best hardware

balance point corresponds to the configuration that is the highest and rightmost. For LUD

this is achieved when normalized hardware ops/byte is at around 15, where compute

throughput most effectively matches memory bandwidth demands.

0

5

10

15

20

25

30

0 5 10 15 20 25 30

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

Normalized Available ops/byte in Hardware

475MHz MemClk

625MHz MemClk

775MHz MemClk

925MHz MemClk

1075MHz MemClk

1225MHz MemClk

1375MHz MemClk

 58

Figure 23: 3D plot for performance of a kernel that plateaus eventually and does not

scale.

 Other representative scaling patterns: In addition to the above scaling trends, we

found a few kernels whose performance changes very little with any of the hardware

resources or stops scaling beyond a certain point. Such behavior often happens because of

programming errors, interconnect bandwidth limitations or algorithmic limitations such as

being completely serialized or a single thread doing all the work, or not having enough

work. An example scaling surface is demonstrated in Figure 23 for Blackscholes [2].

 38

 95

 151

 207
 264
 320

0

0.5

1

1.5

2

2.5

200 400 600 800 1000

B
an

d
w

id
th

 (
G

B
/s

)

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

Core Frequency (MHz)

 59

Figure 24: 3D plot for performance of a kernel that peaks and then falls off as more

resources are added.

Another interesting scaling trend is seen as described in Figure 24, where the kernel

shows initial improvement in performance as more resources (number of CUs in this

example) are added. But the performance peaks and then starts falling as further resources

are added. The kernel btreefind from the BPT application is an example of such

performance scaling [28]. Kayiran et al. and Lee et al. have seen similar peaks in

simulation, which our experiments corroborate [61][71].

We found that this problem commonly occurs due to destructive interference

among threads for the shared L2 cache. In the GPU hardware used in our experiments, the

L2 cache is shared across all the active CUs. As more CUs are added, more threads are

activated. This means that each thread gets a smaller share of the L2 capacity if it does not

 38

 123

 207

 292

0

2

4

6

8

10

12

4 8 12 16 20 24 28 32 36 40 44

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

 60

share data with other threads. At some point, the shared L2 size becomes insufficient to

hold the working set of active threads running in the CUs. At this point, memory requests

from various CUs interfere with each other, causing cache thrashing. Total bandwidth

demanded by the application remains the same, but more accesses are now pushed to the

DRAM system. This leads to reduced GPU performance. Since increasing memory

bandwidth helps to reduce the L2 miss penalty, these programs benefit from running with

higher memory bandwidths.

In general, the above studies point out that the optimal hardware balance point, at

which the compute and memory demands match the platform costs, varies across

applications and application phases. It also varies across different hardware platforms.

4.2.2.2 Power Reduction Opportunities

 In this section we characterize the power reduction opportunities in choosing the

optimal hardware balance point. We measure total power at the GPU board level using a

power instrumentation setup at the PCIe connector interface from mother board to the GPU

board. Further details of this setup are described in Chapter 7.5. This includes the power

of the GPU, off-chip DRAM memory, and the remaining board components. In Figure 25,

the X-axis indicates the available ops/byte in hardware under a constant memory

bandwidth of 264GB/s (i.e., fixed memory configuration). The Y-axis shows the cost of a

compute configuration, i.e. effect of changing the compute configuration on overall board

power for memory intensive DeviceMemory. Each line represents a CU count (4-32) and

each point on a line shows increasing CU frequency. Relative to the compute configuration

of the lowest possible setting of 4CUs and 300MHz, the overall board power scales by

about 70%. Similarly, Figure 26 indicates the power savings possible through reduction

of memory bandwidth by adjusting the memory bus frequency for a compute intensive

application - Maxflops. Note that the memory bandwidth variation was performed at a fixed

voltage as the memory system voltage could not be controlled in our experimental setup.

 61

Therefore, in general the differences would be even greater. Here, the number of active

CUs and compute frequency were kept fixed at the default configuration of 32 CUs and

1GHz respectively. We see up to a 10% power reduction between operating at the lowest

memory frequency of 475MHz (90GB/s) compared to the memory frequency of 1375MHz

(264 GB/s). This data underscores the power saving opportunities associated with balance

points.

Figure 25: DeviceMemory’s GPU card power across compute configurations at

constant 264GB/s memory bandwidth.

Figure 26: MaxFlops’s GPU card power across memory bandwidth configurations at

32CUs and 1GHz compute frequency.

90%

92%

94%

96%

98%

100%

102%

0.00 10.00 20.00 30.00

To
ta

l b
o

ar
d

 p
o

w
e

r

Normalized available ops/byte in hardware
(CU=32, comp frequency = 1GHz)

 62

4.2.2.3 Summary

From the above study we find that in general, hardware balance can be achieved

with many different combinations of compute and memory configurations. The

optimization question is the selection of the optimal hardware balance – the balance point

that maximizes performance and improves energy efficiency and is a function of the time-

varying workload and platform configurations. Lack of coordination between the power

states of compute and the memory system leads to unwarranted energy and performance

inefficiencies. Thus, it is necessary to monitor the power and energy consequences of the

compute and memory interactions so that the power states of the compute and memory

elements can be cooperatively managed and coordinated.

4.3 Summary of Key Management Challenges

 The preceding analysis shows that there are a variety of complex power, thermal

and functional interactions between the CPUs, GPUs, and the memory subsystems that

affect the performance, power consumption and energy efficiency of a heterogeneous

processor. This section summarizes the new management challenges in heterogeneous

systems and forms the foundation for the rest of the work in this thesis.

 Thermal Coupling and thermal signatures: Power and thermal capacity are shared

resources in heterogeneous processors. The distinct thermal signatures of the CPU

and GPU necessitate careful management and allocation of thermal capacity. For

example, we see that higher thermal density in CPU leads to faster consumption of

thermal headroom. We also find that significant thermal coupling and thermal

pollution occurs from the active to the idle components of the die. To be effective,

power management algorithms must understand the consequences of thermal

 63

coupling and coordinate the power states between the diverse compute elements to

maximize performance under power and thermal constraints.

 Performance Coupling between Heterogeneous Compute Elements: Strong

performance coupling exists between the CPU and GPU in heterogeneous

processors due to performance dependencies arising from their tight physical

integration, emerging programming models and emerging workloads with time-

varying redistribution of compute intensities between the CPU and GPU. However,

unlike multi-core homogenous architectures in which all cores are identical, the

CPU and GPU differ in both architecture and execution models. Hence their power

and energy behaviors are quite distinct. To be effective, power management

algorithms that determine the DVFS states of the CPU and the GPU must be

cognizant of these effects, their interrelationships, and their combined effect on

performance.

 Performance Coupling between Compute and Memory Elements: Compute and

memory behavior are fundamentally performance coupled. If we ignore this

coupling in managing platform power, significant energy/power is wasted. The

time-varying relative demands of the applications must be matched with the relative

compute and memory costs of the hardware platform to achieve hardware balance.

Hence to retain the most power efficient operation we need a runtime power

management infrastructure that should coordinate power states of the processor

(GPU) and the off-chip memory system so that they are in balance

Overall, these new challenges clearly point towards the need for chip-scale

coordinated power management, as illustrated conceptually in Figure 27, to achieve

performance scaling and energy efficiencies under a chip-wide TDP envelope and power

budget. The efficiency with which we can manage these problems will depend on 1)

identifying a key set of run-time metrics and sensitivity predictors that can be used to

manage these effects, and 2) developing online coordinated power management techniques

 64

to optimize system level global metrics in heterogeneous CPU-GPU-memory processors

such as performance and energy efficiency under global constraints such as thermal limits

and power budgets. The rest of this thesis focuses on development, implementation and

evaluation of the run-time monitoring and management metrics, predictors and algorithms

to cooperatively manage the processor physics and functional consequences of tight

integration in heterogeneous processors.

Figure 27: Chip-scale coordinated power management.

 65

CHAPTER 5

THERMAL COUPLING MANAGEMENT

In CHAPTER 4 we described how thermal coupling effects could lead to

interactions with the power management algorithms that can increase power and

performance inefficiencies. Effective use of thermal capacity can be realized with power

management algorithms that consider such thermal coupling effects. This chapter presents

a dynamic power management approach called Cooperative Boosting (CB) to coordinate

power allocation between the CPU and GPU in order to maximize performance under the

thermal and power constraints of the processor package.

5.1 Overview

 Modern, high-performance client processors are composed of heterogeneous cores

that are managed to create a compelling user experience. Power management is a critical

piece of the user experience, with the goal of allocating power adaptively across cores to

produce the best performance outcome within a fixed processor power and thermal

envelope.

 The maximum power for a processor (i.e., the thermal design point (TDP)) is set

based on running a heavy workload under worst-case conditions [99]. It is an upper bound

for the sustainable power draw of the core and is used to determine the cooling system

required. Under normal operating conditions, however, not all components are active at the

same time or to the same extent, leaving thermal headroom in the system. Power-

management technology such as Intel's Turbo Boost [99] and AMD's Turbo CORE [83]

take advantage of the thermal headroom to increase the active cores' frequencies until either

the maximum performance state or the thermal limit is reached.

 66

As discussed in Chapter 4.1, modern boost algorithms greedily boost the

frequencies of the CPU or GPU cores to utilize all of the available thermal headroom and

thereby improve performance. These boost algorithms seek fairness through allocation of

power across cores in proportion to expected performance benefits. This works well for

many applications in which the type of computation dictates the component that requires

boosting. For graphics applications, the GPU is the obvious choice, as is the CPU for many

control-divergent, general-purpose applications. However, for applications that require

cooperative execution of both CPU and GPU cores, these boost algorithms can break down

and degrade, rather than improve, performance. This occurs due to the tight interactions

between performance coupling and thermal coupling.

To this end, this chapter makes the following contributions:

 Demonstrates the interactions between thermal coupling and performance coupling

and their effect on system performance using hardware measurements and analysis

from a state-of-the-art heterogeneous client system.

 Identifies run-time metrics to capture these interactions between processor physics

and performance dependencies.

 Proposes a cooperative boosting (CB) algorithm for the coordinated management of

power states of the CPU and GPU to optimize performance, and,

 Provides a detailed, measurement-based analysis of the performance of CB in

comparison to a state-of-the-practice boost algorithm for exploiting thermal

headroom across a range of benchmark applications.

The rest of the chapter is organized as follows: Section 5.2 examines the

interactions between performance coupling and thermal coupling. Section 5.3 presents run-

time metrics to capture these interactions. Section 5.4 describes the power management

algorithm, Cooperative boosting (CB), to balance the needs of performance coupling with

the thermal coupling effects. Finally, Section 5.5 provides the experimental setup and

Section 5.6 presents a detailed evaluation of CB on a modern heterogeneous processor.

 67

5.2 Greedy vs. Needy Power Management: Interactions between
Thermal Coupling and Performance Coupling

 As discussed in CHAPTER 4, for emerging compute applications both the CPU

and the GPU are candidates for hosting many components of the application. For such

applications, the CPU and the GPU are performance-coupled. While thermal coupling

places an upper bound on performance potential, performance coupling establishes the

minimum performance interaction needs that must be met. This section explores the

performance-coupled nature of compute applications and the limits placed by thermal

coupling by demonstrating the sensitivity of performance to the CPU performance states.

In the following experiments, we statically fix the highest-performing (i.e. frequency) CPU

P-state permitted by the power-management algorithm, which we denote as the P-state

limit. The local CPU power controller may change the P-state to a lower-performing P-

state based on the thermal state, but it cannot exceed the P-state limit. Figure 28 presents

the impact of CPU P-state limits for Binary Search, HotSpot, and Needle [2][18][19].

In Figure 28, the x-axis is labeled with the CPU P-state limit for that experiment.

In addition, we show results for the baseline, which refers to the default Trinity power-

management system (Section 3.4.1). Limiting to Pb0 (highest boost state as indicated in

Table 1) means all P-states are available to the power-management controller, which is the

same as the baseline case and hence is not shown separately. The left-side y-axis refers to

the stacked bar charts, and it shows the percent of time the GPU spends in low-, medium-,

and high-DVFS states. The right-side y-axis shows speed-up and GPU utilization

normalized to the baseline results. We define GPU utilization as the ratio of time during

which at least one of the SIMD units in the GPU is active, to the total execution time. These

data were collected on the Trinity system hardware described in Section 3.3.1 and Section

3.4.1, with corresponding DVFS table being shown in Table 1.

 68

Figure 28: Impact of CPU P-state limit on performance, GPU residency, and GPU

utilization.

0.3

0.5

0.7

0.9

1.1

1.3

0%

20%

40%

60%

80%

100%

N
o

rm
al

iz
ed

 m
et

ri
c

%
 D

V
FS

 r
es

id
en

cy

(a) Binary Search

GPU-low GPU-med GPU-high Speedup GPU Util

0.8

0.9

1

1.1

1.2

1.3

0%

20%

40%

60%

80%

100%

N
o

rm
al

iz
ed

 m
et

ri
c

%
 D

V
FS

 r
es

id
en

cy

(b) HotSpot

0.8

0.9

1.0

1.1

1.2

1.3

0%

20%

40%

60%

80%

100%
N

o
rm

al
iz

ed
 m

et
ri

c

%
 D

V
FS

 r
es

id
en

cy

(c) Needle

 69

 For Binary Search and HotSpot, as the CPU maximum frequency decreases

(moving to the right), the application transitions from being limited by thermal coupling to

being limited by performance coupling. As the frequency decreases from Pb1 to P2, the

GPU spends a larger portion of time in its higher-frequency performance states, indicated

by GPU-high. In addition, speed-up increases, indicating that the GPU is utilizing the extra

thermal headroom to improve performance. However, as the CPU frequency decreases

beyond P2, we see a marked reduction in overall performance because performance

coupling begins to dominate. GPU utilization decreases beyond P2, indicating that the GPU

is being starved by the slower CPU. In the case of HotSpot, the thermal headroom permits

the GPU to continue operating at its highest-performance state when active. However, for

Binary Search, the local GPU power controller reduces the GPU frequency because of a

significant drop in GPU utilization. For Needle, the GPU is thermally limited by the CPU

across all P-state limits. Performance improves by 27% when the CPU operates at its

lowest-performance P-state. However, performance coupling becomes dominant at a CPU

P-state limit of P4 because GPU utilization starts to decrease.

Greedy vs. Needy Power Management: In Figure 29, we demonstrate further how CPU

power impacts GPU performance for the application Needle. The figure shows the

percentage of time spent in different GPU DVFS states and peak die temperature under

various levels of CPU power during the entire program’s execution. We see that for

applications utilizing both CPU and GPU cores, as is the case with Needle, greedy boost

algorithms that consume all available thermal headroom can degrade rather than improve

performance due to interactions between performance and thermal coupling. Boosting

without accounting for these functional and physical dependencies can result in premature

throttling of the GPU cores as seen in Figure 29a, which can negatively impact

performance. In the case of Needle, lowering CPU power by limiting CPU P- states

eliminated premature throttling and improved performance (Figure 29b and Figure 29c),

 70

but as seen from Figure 28, that may not always be the case. The apparent solution of

throttling the CPU cores to mitigate thermal coupling effects becomes counterproductive

if the CPU units become too slow to fully utilize the GPU, i.e., they are limited by

performance coupling. Further, emerging applications are more likely to concurrently use

the CPU and the GPU as first-class computational engines, increasing the importance of

power-management solutions that balance performance and thermal coupling effects.

 As is evident from the preceding analysis, during any time interval there is an

optimal CPU operating frequency (and, equivalently, P-state) for each application

depending on its thermal and performance coupling characteristics. We refer to this P-state

as the critical P-state and the corresponding frequency as the critical frequency. We

observe that the critical P-state is a time-varying function of the workload and our goal is

to have the CPU always operating in the critical P-state. Our approach is to first define a

measurable performance metric that is sensitive to the CPU and GPU frequencies. By

tracking the behavior of this metric, we can periodically determine and set the CPU to its

critical P-state.

 Microsoft® Windows® OS Power Management [117] using ACPI provides a

capability for managing the CPU P-state based on application requirements. However, in

experiments with ACPI, the lower-performing P-states were never utilized. There are a

number of shortcomings here. First, the OS uses the highest utilization among all cores as

the metric to determine the P-state of all cores, while most of the applications analyzed

have varying degrees of core utilization. Second, ACPI does not consider the performance

requirements of an application, while our analysis shows that applications experience

phases that require higher CPU performance. Finally, ACPI does not include any concept

of performance coupling or thermal coupling; therefore, it cannot be used readily to

regulate to either requirement.

 71

Figure 29: Thermal throttling in Needle with greedy boost algorithm and CPU P-

state limiting. GPU-high, GPU-med, and GPU-low refer to high medium and

low GPU operating frequencies, respectively.

0.8

0.85

0.9

0.95

1

0%

25%

50%

75%

100%

1 51 101 151 201 251

N
o

rm
al

iz
ed

 t
em

p
er

at
u

re

%
 D

V
FS

 r
es

id
en

cy

Time ->
(a) Boost to utilize full thermal headroom

GPU-low GPU-med GPU-high Peak Temp

0.8

0.85

0.9

0.95

1

0%

25%

50%

75%

100%

1 51 101 151 201 251

N
o

rm
al

iz
ed

 t
em

p
er

at
u

re

%
 D

V
FS

 r
es

id
en

cy

Time ->
(b) CPU P-state P2

0.8

0.85

0.9

0.95

1

0%

25%

50%

75%

100%

1 51 101 151 201 251

N
o

rm
al

iz
ed

 t
em

p
er

at
u

re

%
 D

V
FS

 r
es

id
en

cy

Time ->
(c) CPU P-state P4

 72

(a) Binary Search

(b) Hotspot

(c) Needle

Figure 30: P-state limit effects on GPU memory bandwidth.

-40%

-30%

-20%

-10%

0%

10%

20%

Pb1 P0 P1 P2 P3 P4
%

 in
cr

ea
se

 o
ve

r
b

as
e

lin
e

CPU Pstate Limit ->

Mem BW Performance

0%

2%

4%

6%

8%

10%

12%

Pb1 P0 P1 P2 P3 P4

In
cr

ea
se

 O
ve

r
B

as
e

lin
e

CPU P-state Limit ->

Mem BW Performance

0%

5%

10%

15%

20%

25%

30%

Pb1 P0 P1 P2 P3 P4

In
cr

ea
se

 O
ve

r
B

as
e

lin
e

CPU P-state Limit ->

Mem BW Performance

 73

5.3 Run-time Metrics

In this work, we propose to use the gradient of the GPU memory access rate as a

proxy for CPU-GPU performance coupling [68]. The GPU is a data parallel execution

engine with massive thread-level parallelism and significant number of memory accesses.

When the CPU transitions to a lower-performing P-state, the GPU frequency and hence the

memory access rate increases due to decreasing thermal coupling effects. However, if the

CPU operation drops below the critical frequency, the GPU is starved by the slower CPU

and correspondingly the GPU memory access rate drops. This observation can be used as

a starvation hint to transition the CPU to the critical P-state. In Figure 30, we illustrate the

impact of P-state-limiting on GPU memory bandwidth for Binary Search, HotSpot, and

Needle. Memory bandwidth tracks performance for these three benchmarks, indicating the

applicability of this metric. In addition, to deal with phase changes in the applications that

require high CPU frequency, we also use retired instructions per clock (IPC) of the CPU

as a measure of the application's sensitivity to CPU frequency [49].

5.4 Cooperative Boosting (CB)

 Based on the preceding analysis, we see that the power-management problem is

one of determining the critical P-state – the state that mitigates the negative effects of

thermal coupling while providing sufficient power for performance-coupled operation.

This section describes our CB algorithm for the dynamic determination of the critical P-

state. Figure 31 shows the architectural block diagram of the implementation of our

scheme.

5.4.1 Structure

The CB algorithm operates as a decision layer on top of the baseline Trinity power-

management system (from now on referred to as the baseline). The baseline was designed

to optimize the average case behavior across a wide range of applications with a fair

allocation of power to both the CPU and the GPU by utilizing all of the available thermal

 74

headroom. The CB algorithm enhances such thermal headroom-based management

techniques by tailoring its behavior to i) the asymmetry of the thermal behavior of the CPU

and GPU and ii) the phase behavior of applications – specifically, thermal and performance

coupling over short intervals. Such optimization becomes increasingly important as

emergent workloads are making more balanced use of the CPU and the GPU. The goal of

CB is to determine when thermal coupling effects are detrimental and to set the critical P-

state limit under such cases. This is the highest-performing P-state the baseline system is

permitted to use for the CPU. The voltage and frequency for the GPU is managed by the

baseline and is not directly managed by CB; thus, CB essentially controls the CPU limits

under which the baseline power-management system operates. Figure 32 illustrates the CB

algorithm flow.

 CB monitors temperature and performance metrics at intervals of 10 ms and

modifies the CPU P-state limit at intervals of either 10 or 500 ms to account for frequent

workload phase changes and relatively slow thermal response times, respectively. Periodic

Figure 31: Block diagram of the Cooperative Boosting (CB) framework.

 75

enforcement of P-state limits at short intervals can cause dampening of natural workload

behavior, whereas long intervals can cause inaccuracy in measurements. Therefore, we

decouple the monitoring and the control intervals in CB. These intervals are chosen

Figure 32: Cooperative boosting algorithm.

Cooperative Boosting Algorithm

At beginning

If (Peak_Temp > Temp_Threshold) {

 EnableCB();

 Prev_PStateLimit=P0;

}

Every 10 ms

for i=0, i<Core_Count; i++ {

 IPC[i] = ReadIPC(i);

 Active_Clks[i] = ReadActiveCoreClock(i);

}

Weighted_IPC = ComputeWeightedIPC(IPC,Active_Clks)

IPC_Gradient = Weighted_IPC – Prev_Weighted_IPC

Prev_Weighted_IPC = Weighted_IPC;

Peak_Temp = ReadPeakTemp();

GPU_Mem_BW = ReadGPUMemBW();

Short_Term_BW = ComputeShortTermBW();

Long_Term_BW = ComputeLongTermBW();

If (CB_Enabled && (IPC_Gradient > =IPC_Threshold)) {

 Prev_PstateLimit = CPU_PStateLimit;

 UnsetPStateLimit();

}

Every 500 ms

If (CB_Enabled && (IPC_Gradient < IPC_Threshold)) {

 CPU_PStateLimit = Prev_PStateLimit;

 BW_Gradient = Short_Term_BW – Long_Term_BW;

 If (BW_Gradient >= BW_Threshold) {

 Last_Good_PState = CPU_PStateLimit;

 CPU_PStateLimit++; /* Until P4 is reached */

 }

 Else {

 CPU_PStateLimit = Last_Good_PState;

 }

}

 76

carefully to account for the long thermal rise times, shorter performance intervals and

workload activities, and overheads of P-state change. In practice, the intervals can be

adjusted based on RC time constants of the die, floor plan, and process technology. The

critical P-state limit can be computed at any granularity (per core, per CU, or for the entire

CPU). In this paper we apply the same critical P-state limit to all CPU cores due to a shared

voltage plane in the Trinity system we used for our measurements

5.4.2 Algorithm

 The CB algorithm operates in three major steps: i) being invoked, ii) determining

and setting the critical P-state limit, and iii) damping control to prevent oscillations. In the

beginning, the processor starts with the highest-performance-boost P-states for the CPU

and the GPU, and power and temperature are managed by the baseline. At intervals of 10

ms, we determine if the processor is thermally limited and if CB should be applied. If so,

power management moves into CB mode.

 The second step is determining which CPU P-state limit to apply in CB mode. This

involves both instrumentation and decision-making. CB samples peak die temperature, per-

core retired IPC, and memory bandwidth usage at every 10-ms monitoring interval. Note

that although the algorithm in Figure 32 and the discussion in Section 5.3 refer to the GPU

memory bandwidth, the implementation of CB uses a combined CPU and GPU bandwidth

measurement since hardware restrictions prevent GPU-only bandwidth measurements

while CB is enabled. Through evaluation, we found that this did not hinder the performance

of the algorithm due to the overwhelming dominance of the GPU in memory bandwidth

usage.

 Each core's IPC is weighted by the number of active clock cycles seen by the core

during the sampling period, and the aggregate IPC for the CPU is the sum of the weighted

IPCs for all four cores. For memory bandwidth, in addition to monitoring memory

bandwidth at each 10-ms interval, CB also keeps a short-term and a long-term moving

average of memory bandwidth to track how the bandwidth changes over time. Because P-

 77

state limiting to reduce thermal coupling effects is made at intervals of 500 ms, the short-

term average is computed over the last 500-ms interval while the long-term moving average

is computed over the last five such intervals. Bandwidth gradients are computed by

comparing the short-term moving average with the long-term moving average.

 The CPU P-state limit may be established by observing changes in the CPU IPC or

GPU memory bandwidth (these metrics were advocated as proxies to detect performance-

coupled operation in Section 5.2). CB utilizes the gradient of memory bandwidth to

determine the critical P-state for the CPU. If the gradients are positive, then the workload

benefits from shifting power to the GPU. In this case, the algorithm moves the CPU P-state

limit to a lower performance state. The converse occurs when the gradient is negative. Over

time, the controller is trying to move the CPU to the critical P-state.

 If the workload enters a CPU compute-intensive phase, as indicated by a high-CPU

IPC phase, the current P-state limit is saved and the control part of CB is suspended by

disabling P-state limiting. The check for CPU IPC changes occurs at 10-ms intervals to

capture frequent phase changes and data dependencies. When the CPU workload exits the

compute-intensive phase, CB operation is resumed at the saved P-state limit. This dampens

multiple transitions through performance states arising from a short burst of high-power

CPU phases that would otherwise re-initialize the CPU performance state to the highest

performance state. Finally, to prevent oscillation between a pair of P-state limits, we

employ a damping mechanism such that a new P-state limit is weighted towards the

previous P-state limit after more than a threshold number of transitions.

 To encompass non-performance-coupled applications that may have a constant

CPU IPC (such as SPEC CPU2006 applications), we use an absolute average IPC in

conjunction with IPC phase changes for CPU-centric workloads with no activity on the

GPU. Although CPU-centric workloads are not the focus of this paper, we show that our

CB algorithm can sometimes improve the performance of these applications by limiting

the performance state when the application is memory-bound.

 78

5.5 Experimental Set-up

 We perform all measurements and analysis on an AMD A8-4555M Trinity APU

with 19W TDP. Base CPU frequency is 1.6 GHz, with AMD Turbo CORE frequency up

to 2.4 GHz. The CPU DVFS state table is shown in Table 1. The GPU frequency is 320

MHz with AMD Turbo CORE frequency of 423 MHz [130]. We use four, 2-GB DDR3-

1600 DIMMs. Hardware performance counters for IPC, memory bandwidth, etc., are

monitored using performance libraries running in Windows OS. A maximum cap on the

CPU P-state limit is implemented using model-specific registers as described in [12].

Table 1: HW- and SW-managed DVFS states for the CPU compute units on the

Trinity A8-455M APU.

 P-state Voltage (V) Freq

(MHz)

HW

Only

Pb0 1 2400

Pb1 0.875 1800

SW-

visible

P0 0.825 1600

P1 0.812 1400

P2 0.787 1300

P3 0.762 1100

P4 0.75 900

 We evaluate three different boost algorithms. The baseline is the BAPM algorithm,

which is the state-of-the-practice algorithm in the Trinity power-management system

described in Section 3.4.1. The second is the CB algorithm described in Section 5.4.2.

Third, we evaluate the behavior of a static P-state-limit algorithm in which a fixed P-state

limit is applied throughout the entire run of the application. This means that the CPU can

enter a lower-performing (but not higher) P-state than the P-state limit. We refer to this as

 79

the static PX limit scheme, where PX is one of the performance states (e.g., P1, P3, etc.).

For CB, P-state limits are applied according to the algorithm described in Section 5.4.2.

Although CB can be implemented in any layer such as hardware, power-management

firmware, or system software, we implement CB at the system software level by layering

it on top of the baseline.

 Table 2: Summary of benchmarks used for CB evaluation.

BM (Description) Problem Size Type

NDL (Needleman-Wusch

[18])

4096x4096 data points, 1K

iterations

GPU

LUD (LU decomposition

[19])

512x512, data points, 500 iterations GPU

HS (HotSpot [18]) 1024x1024 data points, 100K

iterations

GPU

SRAD (Image Proc [18]) 502x458,500K iteration GPU

BF (BoxFilter SAT [2]) 1Kx1K input image, 6x6 filter,10K

iterations

GPU

MM (Matrix Mult [2]) 2Kx2K, 10K iterations GPU

FAH (Folding at Home

[42])

Synthesis of large protein: spectrin$ GPU

CFD (Computational fluid

dynamics [18])

200K elements, 20K iterations GPU

BFS (Breadth first search

[15])

1M nodes, 1K iterations GPU

BS (Binary Search [2]) 4096 inputs, 256 segments, 1M

iterations

GPU

KM (Kmeans [18]) 819200 points, 34 features, 1K

iterations

Mixed

BP (BackProp [18]) 252,144 input nodes, 10K iterations Mixed

Viewdle (Haar facial

recognition [114])

Image 1920x1080, 2K iterations Mixed

Mcf (CPU2006 [109]) 4 threads, Ref input CPU

Lbm (CPU2006 [108]) 4 threads, Ref input CPU

Perl (CPU2006 [109]) 4 threads, Ref input CPU

Pvr (CPU2006 [109]) 4 threads, Ref input CPU

Gcc (CPU2006 [109]) 4 threads, Ref input CPU

 80

 For CPU and GPU power and temperature, we use the digital estimates provided

by the power-management firmware running in the Trinity system, accuracies for which

are described in [83]. For all schemes, we run the benchmarks for at least a few minutes to

reach a thermally stable steady state. A fixed-time cool-down period is applied before each

run to eliminate any variations in starting temperature. We also run many iterations of the

application and take an average across those to eliminate run-to-run variance in our

hardware measurements.

We use 18 applications, summarized in Table 2. These are a mix of both state-of-

the-art and emergent applications. Eight of them are from Rodinia (NDL, LUD, HS, SRAD,

CFD, BFS, KM, and BP [18][19]), three are from the AMD APP SDK (BF, MM, and BS

[2]), two are stand-alone (FAH [42] and Viewdle [114]), and five are from SPEC CPU2006

(Mcf, Lbm, Perl, Pvr, and Gcc [109]). We selected the applications to represent i) GPU-

centric operation (where GPU is used as a compute accelerator with CPU feeding the data

to the GPU), ii) CPU-GPU mixed workloads (where computation is more balanced

between CPU and GPU although the fraction of work division may not be the same), and

iii) CPU-centric workloads (where computation is done only on the CPU and the GPU is

unused). All GPU applications execute one or more parallel kernels for multiple iterations

to reach steady-state thermals. The SPEC CPU applications are run with four threads, one

on each core.

We report performance, power, and energy efficiency as defined by the energy-

delay2 product (ED2) [67]. We show all values normalized to the baseline scheme, which

is the default Trinity power-management system. Average total power (CPU and GPU) and

average energy efficiency are also measured over the entire run-time of an application.

5.6 Results

 In this section, we present performance, power, and ED2 results for CB and the

static P-state limit algorithm. All results are shown relative to the baseline BAPM

 81

algorithm described in Section 3.4.1, and all performance and power numbers are measured

results from running the applications in Table 2 on real hardware.

5.6.1 Performance

 Figure 33 illustrates the speed-up of CB and static schemes. Across the 18

applications, we see a 10% speed-up with CB, a 3% speed-up with P0 (the highest-

performance software-visible P-state), a 1% speed-up with P2, and a 10% performance loss

with P4. For the performance-coupled workloads (i.e., GPU-centric and CPU-GPU mixed

workloads), the average speed-up with CB is 15%. The static schemes clearly demonstrate

good performance gains compared to the baseline for certain types of workloads but impose

a high performance penalty for others, motivating the need for dynamic schemes.

 GPU-centric applications such as NDL, LUD, MM, and SRAD improve in

performance compared to the baseline with both CB and static. In general, these

applications have low CPU IPC and are not very sensitive to CPU performance in the

frequency ranges explored. Both CB and static P4 limiting show comparable gains, with

performance improvement as high as 52% in SRAD. Thermal coupling dominates these

Figure 33: Performance results with static limits and CB.

1.28 1.30

1.10

1.52

1.13
1.08 1.10

1.03 1.00 1.04 1.00 1.00

1.36

0.98 1.00 0.99 1.00
1.04

1.10

0.40

0.60

0.80

1.00

1.20

1.40

1.60
Sp

ee
d

-u
p

P0 P2 P4 CB Baseline

 82

applications at all CPU frequencies because they have high activity in the GPU and, hence,

high power requirements. The critical P-state for the CPU is at a lower frequency than the

lowest P-state P4 available in our part. These workloads reach the peak temperature

quickly, and high-performance CPU P-states result in excessive thermal throttling without

a commensurate application performance improvement.

Similar thermal coupling effects occur in applications such as HS, BS, and FAH.

However, here we reach the critical CPU P-state before the lowest P-state limit of P4. At

P2, thermal and performance coupling effects are balanced and we see the maximum

performance gains. Decreasing CPU frequency beyond P2 causes performance coupling to

dominate over thermal coupling and degrades performance by 3%, 34%, and 1%,

respectively, for HS, BS, and FAH at P4. CB achieves comparable results to the critical P-

state of P2.

 Applications such as KM, BFS, BP, and CFD see minimal to no benefits compared

to the baseline with static or CB schemes. KM, BFS, and BP never reach the peak junction

temperature, and so CB never invokes P-state limiting. Although KM has high-IPC phases,

it is primarily memory-bound and its performance stays relatively flat with CPU

frequencies. BP has serial phases between parallel kernels requiring significant CPU-GPU

communication. BFS has a high control flow divergence with low GPU activity. In both

BFS and BP, CB results in the same performance as the baseline, whereas static P4 limit

shows performance degradation up to 3% due to performance coupling. Although CFD is

heavily memory-bound, it reaches the peak temperature due to high activity and a relatively

high compute-to-memory ratio in the GPU; as a result, it shows a slight improvement of 3-

5% compared to the baseline scheme using static limiting and CB. Performance gains from

reducing thermal coupling effects flatten out beyond P2 as the memory-related stall time

of the kernel starts to dominate.

 In balanced workloads such as Viewdle, a face-recognition application, both the

CPU and the GPU are utilized heavily for computation. Thermal coupling is dominant at

 83

the higher CPU frequencies, and so static P-state limiting to both P2 and P4 improves

performance compared to the baseline. CB, however, outperforms all static P-state-limiting

schemes by dynamically adjusting to the critical P-state based on application needs.

Viewdle's IPC varies periodically from low to high, and it is sensitive to CPU frequency

during high-IPC phases. CB dynamically shifts power to the CPU during high-IPC phases

and to the GPU during low-IPC phases, thereby limiting the impact of thermal coupling

while providing the required power for performance coupling. Section 5.6.2 provides

further insights in Viewdle's performance. We see similar behavior with BF, which is an

image-filtering application with frequent CPU communication phases between the

horizontal and vertical passes in the image blur filter. CB performs 13% better than the

baseline and 9%-12% better than any of the static schemes in the case of BF.

 Finally, we analyze the performance of CPU-centric, non-performance-coupled

applications such as Perl and Pvr. As we see in Figure 33 the baseline does very well for

these workloads and static limiting significantly degrades performance. CB largely

performs as well as the baseline, indicating that CB is a well-rounded approach for multiple

usage scenarios. Although analyzing multiple non-performance-coupled applications (e.g.,

a CPU-centric app and a GPU-centric app) running together was not the focus of our

research, we believe CB will perform as well as or better than the baseline because CB tries

to limit CPU power only when it is not needed.

5.6.2 Thermal and Performance Coupling Analysis

 In Figure 34 we illustrate how CB mitigates the effects of thermal coupling in the

case of BS. The y-axis indicates the measured peak temperature normalized to Tjmax. With

a static limit of P4, the application heats the chip to a value less than the peak. CB, on the

other hand, does not initially restrict the baseline algorithm; instead, it tries to find the

critical P-state for the CPU once we approach the peak temperature threshold. As power is

shifted from the CPU to the GPU, peak die temperature decreases because the GPU is able

to sustain a higher power boost for a longer period due to its lower thermal density, as

 84

described in CHAPTER 4. Further, the effects of thermal coupling become less dominant

because the CPU is running at a lower P-state. As a result, the GPU residency in the high-

performance state increases significantly compared to the baseline, thereby improving

application performance. Moreover, the short variations in temperature result from the fact

that CB constantly adjusts the critical P-state based on workload phases. This helps balance

performance and thermal coupling effects.

Figure 34: Thermal behavior of Binary Search with CB.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05
1

1
0

1

2
0

1

3
0

1

4
0

1

5
0

1

6
0

1

7
0

1

8
0

1

9
0

1

Te
m

p
er

at
u

re

Time (seconds) ->

Baseline CB P4

 85

Figure 35: Viewdle performance analysis with CB.

 Figure 35 provides further insights into the performance of Viewdle in terms of

instructions per second (IPS), memory bandwidth, and speed-up. As we apply CPU P-state

limiting with lower-performing P-states, CPU IPS understandably drops. However, the

GPU IPS continues to increase, and so does utilized memory bandwidth due to the GPU's

ability to sustain higher frequencies because of the reduction in thermal coupling. For P-

state limiting beyond P3, both GPU throughput and memory bandwidth drop due to

performance coupling effects. However, with CB, the CPU P-state limit is managed

dynamically to balance performance and thermal coupling effects: GPU throughput and

speed-up increase by 42% and 36%, respectively, compared to the baseline.

 In Figure 36, we illustrate how CB mitigates the effects of thermal coupling when

running Needle. The left-side y-axis shows GPU residencies in the different performance

states. The right-side y-axis shows the measured peak temperature normalized to Tjmax.

In the baseline case (Figure 36 (a)), we see a considerable residencies in the medium and

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

Baseline P0 P1 P2 P3 P4 CB

N
o

rm
al

iz
ed

 m
et

ri
c

CPU IPS (Throughput) GPU IPS (Throughput)

Mem BW App Speedup

 86

low GPU frequencies once temperature reaches the steady state to maintain performance

within the maximum thermal limits. GPU frequency throttling occurs because of thermal

coupling and heat transfer effects from the CPU to the GPU as both CPU and GPU are run

at their maximum frequencies during the initial ramp-up stage due to availability of thermal

headroom. However, as shown in Figure 36 (b), CB tries to find the critical P-state for the

CPU once we approach the peak temperature threshold. Once invoked, CB starts shifting

power to the GPU. Because Needle is a high-power workload, we see a slight temperature-

based throttling initially, after which the temperature decreases and power shifts from CPU

to GPU. This allows boosting of the GPU to higher frequencies for a much longer period,

thereby improving application performance.

 Because CB is designed to mitigate detrimental effects of thermal coupling in

thermally limited situations, it effectively lowers the peak operating temperature of the

processor opportunistically compared to the baseline (2% lower on average across all

applications). Although temperature is not a direct optimization goal for CB, lower peak

temperatures have many additional benefits: i) increased TDP power budget to achieve

more performance within a fixed thermal envelope; ii) lower cooling costs within a fixed

power budget; iii) lower leakage power and, hence, lower overall energy; and/or, iv)

improved reliability through increased mean-time-to-failure rates.

 87

5.6.3 Power and Energy

 The power saving achieved with CB over the baseline is illustrated in Figure 37,

which shows an average power savings of 8% across all applications and an average of

10% across performance-coupled GPU-centric and mixed workloads. These power savings

come from two factors: 1) CPU power consumption is reduced due to its operating at the

critical frequency, 2) as a result of the distinct thermal signatures between CPU and GPU

and a higher power efficiency of the GPU, only a fraction of the CPU power savings is

utilized towards boosting the GPU to its highest operating frequency. Highest power

reduction is seen in BS, where we see a 5% reduction in average peak temperature and,

Figure 36: Thermal throttling in Needle with CB.

0.8

0.85

0.9

0.95

1

0%

20%

40%

60%

80%

100%

1 51 101 151 201 251

N
o

rm
al

iz
ed

 t
em

p
er

at
u

re

%
 D

V
FS

 r
es

id
en

cy

Time (seconds) ->
(a) Baseline

GPU-low res % GPU-med res % GPU-high res % Peak Die Temp

0.8

0.85

0.9

0.95

1

0%

20%

40%

60%

80%

100%

1 51 101 151 201 251 N
o

rm
al

iz
ed

 t
em

p
er

at
u

re

%
 D

V
FS

 r
es

id
en

cy

Time (seconds) ->
(b) CB

 88

hence, leakage power during run-time. BFS, BP, and KM never reach their peak

temperatures, so power savings are minimal because CB does not limit P-states under such

cases and allows both CPU and GPU to take full advantage of boosting. We also achieve a

small amount of power savings in the SPEC CPU2006 workloads, up to 11% with Mcf

because CB continuously tracks high-IPC compute-bound phases. When the workload

encounters memory-bound phases, a P-state limit is applied to lower the frequency; this

limit has little to no performance impact but it saves power [49].

Figure 37: Reduction in power for CB relative to baseline.

Figure 38 shows the ED2 product (lower numbers signify improvement over the

baseline). With CB, we see an average energy-efficiency improvement of 25% (up to 76%)

across all applications, and 33% across performance-coupled GPU-centric and mixed

CPU-GPU workloads. Interestingly, a static limit of P4 (the lowest-performing P-state)

performs 30% worse than the baseline, but we see an improvement of about 10% with static

limits of P0 and P2 due to reduction in thermal coupling and a large reduction in power at

those states. However, as shown in Figure 33, a fixed static P-state of P0 and P2 results in

0%

5%

10%

15%

20%

25%

30%

35%

40%

N
D

L

LU
D H
S

SR
A

D B
F

M
M

FA
H

C
FD B
FS B

S

K
M B
P

V
ie

w
d

le

M
cf

Lb
m

P
er

l

P
vr

G
cc

M
EA

N

CB

 89

significant performance outliers for CPU-centric workloads; hence, it is not a viable

solution. CB, however, can achieve similar or better results for performance and energy

efficiency than any static scheme without requiring any offline profiling or user

intervention.

5.6.4 Summary

 In this section, we summarize our results and insights. First we show that workloads

with high GPU activity are more sensitive to thermal coupling with the CPU. The baseline

can degrade performance while both CB as well as static P-state limiting shift a greater

portion of the power to the GPU, reduce thermal coupling, and improve performance. For

applications with tight performance coupling with the CPU, CB finds the critical P-state

and thus performs better.

 For applications with very low GPU utilization such as those with high control flow

divergence, thermal coupling may not be a factor since these workloads tend to run much

Figure 38: Energy-delay2 product normalized to baseline.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

N
o

rm
al

iz
ed

 m
et

ri
c

P0 P2 P4 CB Baseline

 90

cooler. While the baseline does not hurt performance, static schemes can degrade

performance significantly by amplifying the low GPU utilizations when the CPU P-state

is fixed below the critical P-state. However, CB dynamically detects when an application

is not thermally limited and stops limiting CPU’s P-state under such cases. This allows

CB’s performance to track baseline for such workloads.

 Balanced workloads that actively utilize both the CPU and GPU are particularly

susceptible to thermal coupling effects. CB outperforms the baseline and static schemes by

continuously tracking the time-varying critical P-state during execution. CB uses only the

power it needs, and thus reducing thermal coupling without impacting performance

coupled operation. This is one of the fastest growing classes of future workloads [75][114].

 For non-performance coupled CPU-centric workloads, greedy boosting approaches

work well while static schemes understandably perform poorly since performance scales

with frequency. CB performs largely as well as the baseline since the critical P-state tends

to be the highest performance state. However, CB delivers slightly better performance for

memory bound workloads by detecting memory bound phases and adjusting the critical P-

state, which builds up thermal credits for compute phases that need higher performance

state.

In summary, CB is a well-rounded technique that can be used to dynamically

manage power, performance and thermals across a wide range of applications. Although

for a given application one can profile the critical P-state limit statically offline, such an

approach is impractical and often detrimental if the goal is to support a variety of

applications including emergent and as yet unanticipated ones. CB improves over current

headroom based greedy boost algorithms by balancing the needs and dependencies of CPU

and GPU performance with the effects of thermal coupling.

 91

5.7 Conclusions

 This chapter addressed the complex relationships between power, thermals, and

performance in a heterogeneous system running diverse applications. We described and

explored thermal entities with varying thermal signatures and demonstrated the

relationship between thermal coupling and performance coupling through detailed

empirical analysis. Based on our analysis, we proposed a cooperative boosting solution that

balances the effects of thermal coupling with the requirements of performance coupling to

determine the critical frequency of operation. We compared the CB algorithm with a state-

of-the-practice boost algorithm and static power-limiting methods for a varied set of

homogeneous and heterogeneous benchmarks. We showed on hardware that CB achieves

an average 10% speed-up (up to 52%) and an average 8% power reduction (up to 34%)

compared to the other algorithms, resulting in a 25% (up to 76%) improvement in the ED2

product. This research work was published at International Symposium of Computer

Architecture (ISCA) 2013 [89].

 92

CHAPTER 6

CPU-GPU PERFORMANCE COUPLING MANAGEMENT

In CHAPTER 4 we characterized the interactions between the CPU and GPU

emphasizing the coupled nature of their interactions – both direct coupling via

programming model and algorithmic interactions and indirect via interference at shared

hardware resources. Our concern now is making this coupled operation as energy efficient

as possible with minimal performance impact. This chapter examines the challenge of

improving energy efficiency of a heterogeneous processor consisting of an integrated CPU-

GPU for high-performance computing (HPC) applications. This component of the research

work is targeted towards the mainstream high performance computing space, which has

uncompromising performance requirements while remaining subject to the goal of

minimizing energy consumption. Consequently the goal here is to maximize energy

efficiency with minimal to no compromises in performance on tightly coupled

heterogeneous architectures.

6.1 Overview

 Efficient energy management is central to the effective operation of modern

processors in platforms from mobile to data centers and high-performance computing

(HPC) machines. However, HPC systems are unique in their uncompromising emphasis

on performance. For example, the national roadmap for HPC now has the goal of

establishing systems capable of sustained exaflop (1018 flops/sec.) performance. However,

the road to exascale is burdened by significant challenges in the power and energy costs

incurred by such machines.

 Many current HPC systems use general-purpose, multi-core processors such as

Xeon from Intel and AMD Opteron™ that are equipped with several power-saving

 93

features, including dynamic voltage and frequency scaling (DVFS). More recently, driven

in part by demand for energy efficiency, we have seen the emergence of such processors

with attached graphics processing units (GPUs) acting as accelerators. As of November

2012, four of the top ten and 62 of the top 500 supercomputers on the Top500 list were

powered by accelerators [128][129].

As shown in CHAPTER 4 the tighter integration of CPUs and GPUs in

heterogeneous processors along with the emergence of companion programming models is

leading to greater performance dependencies between the CPU and the GPU. For example,

CPU and GPU memory accesses interact and interfere in the memory hierarchy, while they

share a chip-level power budget and thermal capacity. In CHAPTER 5 we addressed the

problem of maximizing performance while operating under the constraints of thermal

coupling (under a fixed thermal capacity) and still meeting the requirements of

performance coupling (performance dependency). In this chapter we focus on maximizing

energy efficiency with minimal performance loss while still meeting the performance

coupling requirements between the CPU and GPU integrated in the same package. An

effective power management solution that determines the DVFS states of the CPU and the

GPU must be cognizant of these performance coupling effects, their interrelationships, and

their combined effect on performance, i.e., return (performance) on investment (frequency

and power allocation).

 To this end, this chapter makes the following contributions:

 We empirically characterize the CPU and GPU frequency sensitivity of compute

applications in a performance-coupled architecture. The analysis exposes several

opportunities for improving energy efficiency without degrading the performance of

the application.

 We identify a key set of CPU and GPU run-time parameters that reflects the

frequency sensitivity of the application and use regression techniques to construct an

analytic model of frequency sensitivity.

 94

 We propose DynaCo – a coordinated, dynamic energy-management algorithm using

online frequency-sensitivity analysis to coordinate the DVFS states of the CPU and

the GPU. DynaCo is implemented on a state-of-the-art heterogeneous processor.

 Using measurements on real hardware, we compare DynaCo to a commercial, state-

of-the-practice power- and performance-management algorithm for several OpenCL

Exascale proxy applications and other HPC applications, demonstrating that

significant improvements in energy efficiency are feasible without sacrificing

performance when CPU-GPU power management is coordinated.

The rest of the chapter is organized as follows: Section 6.2 analyzes and identifies

behaviors that have a substantive impact on frequency sensitivity of the CPU and GPU in

an integrated APU. Section 6.3.1 presents run-time metrics to capture these interactions,

followed by a description of the power management algorithm, DynaCo, to balance the

power allocation between performance-coupled CPU and GPU in Section 6.3.2. Finally,

Section 6.4 provides the experimental setup and Section 6.5 presents a detailed

implementation and evaluation of DynaCo on a modern heterogeneous processor

6.2 Sensitivity Analysis and Opportunities

 Figure 39 shows the peak temperature normalized to the maximum junction

temperature allowed for each CU and the GPU for miniMD as the application runs on a

100W TDP processor. Processors with such a thermal design power package are commonly

found in HPC clusters [126]. Although temperature tracks power and inversely tracks

performance, it never reaches the peak thermal limits. This means that the performance of

the CUs and the GPU are not constrained by temperature, and therefore they generally run

at their maximum frequency. However, just because they can run at their maximum

frequency does not mean that they should; there has to be a reasonable return in

performance for the increase in frequency and higher power.

 We characterize this return on performance with the notion of frequency sensitivity

 95

– a measure of the improvement in performance for a unit increase in frequency. Frequency

sensitivity is a time-varying function of the workload on a target processor. In general, the

frequency-performance function is unknown. Thus, the idea is to measure the frequency

sensitivity of an application periodically and determine whether it is productive (efficient)

to change the frequency. While Rountree et al. [102] developed a frequency-sensitivity

predictor for homogeneous CPUs, the problem in APUs is more complex due to shared

resources and subtle CPU-GPU interactions.

Figure 39: Thermal profile of miniMD running on GPU.

The rest of this section identifies and categorizes behaviors that have a substantive

impact on frequency sensitivity of the components. All results are based on hardware

measurements on an AMD A-Series APU, described in Chapter 3.3. This understanding is

used in Section 6.3 to develop a model of frequency sensitivity for tightly coupled

heterogeneous processors and to use the model to guide DVFS decisions.

0.4

0.5

0.6

0.7

0.8

0.9

1

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0
5

1
1
3

1
2
1

1
2
9

1
3
7

1
4
5

1
5
3

1
6
1

1
6
9

1
7
7R

el
a
ti

v
e

p
ea

k
 t

em
p

er
a
tu

re
 (

C
)

->

Time (seconds) ->

CPU CU0 CPU CU1 GPU

 96

6.2.1 Shared Resource Interference

 The memory hierarchy is a key determinant of performance, and the CPU and the

GPU share the Northbridge and memory controllers. The extent of interference at these

points (which is time-varying) has a significant impact on the effectiveness of DVFS for

the CPU or the GPU.

 Figure 40 (left bar) breaks down the CPU and GPU memory access rates,

normalized to peak-DDR bandwidth with 75% bus efficiency, of one of the main

computation kernels (neighbor) in miniMD [15]. The kernel is run iteratively in the

application for steady-state duration. Figure 40 (right bar) breaks down the average CPU

DVFS state residency for the active CPU time under BAPM, which shows that the kernel

DVFS residency is entirely in the hardware managed CPU boost states (Pb0 and Pb1). We

observe that this kernel saturates the overall shared-memory bandwidth primarily due to

the high rate of memory references from the GPU. The CPU portion of memory demand,

which is captured by looking at last-level cache L2 miss rates, is relatively small. Further

(not shown), the CPU IPC of this kernel is higher than a typical memory-bound application.

 Power- and performance-management schemes that determine the CPU DVFS state

independent of interference at shared resources might conclude that the CPU voltage-

frequency can be boosted within thermal limits to improve performance. This is, in fact,

what the BAPM algorithm does. However, the application performance is memory

bandwidth-limited due to the GPU memory demands, so scaling up the CPU voltage-

frequency has little performance benefit and will degrade energy efficiency (discussed in

Section 6.2.3). The lesson here is that we need online measurements of chip-scale global

interactions to make good decisions regarding the CPU or the GPU DVFS state.

 97

Figure 40: Break-down of memory interference between CPU and GPU and

corresponding CPU DVFS residency.

6.2.2 Computation and Control Divergence

 GPUs are exceptional execution engines for data-parallel workloads with little

control divergence. However, performance efficiency degrades significantly with

increasing control divergence. That does not imply that lower-frequency states should be

used for control divergent applications. Consider the Breadth-first Search (BFS) graph

application from the Rodinia benchmark suite [18]. Figure 41 illustrates GPU frequency

sensitivity for BFS (left bar). Execution times are measured at the lowest and highest

frequencies. We compute frequency sensitivity as the ratio of the difference in execution

times to the difference in frequencies. The figure also shows the GPU ALU compute

utilization (right bar). While GPU ALU utilization and computation are fairly low, GPU

frequency sensitivity is quite high. This is due to the high control flow-divergent behavior

of the kernels in BFS, which leads to low utilization. However, higher-frequency operation

leads to faster re-convergence, and thus shorter execution time.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Mem_BW_breakdown CPU_DVFS_residency

N
o
rm

a
li

ze
d

 M
et

ri
c

->

GPU_Mem_BW/Pb1 CPU_Mem_BW/Pb0

 98

Figure 41: GPU frequency sensitivity to control divergence.

 Conventional cores that extract instruction-level parallelism from a single thread

correctly associate low IPC with low frequency sensitivity. The converse is true here due

to the bulk-synchronous parallel-processing nature of GPU kernels. Control flow serializes

the execution of threads in a thread block. The correct analogy with traditional core

execution is the observation that higher-frequency operation will speed the serial sections

of code and, therefore, the application as a whole. In this case, the greater the serial fraction

or divergence, the greater the speed-up. The lesson here is that control flow-divergence

measures should be captured in the compute behavior when determining frequency

sensitivity.

6.2.3 Performance Coupling and Kernel Sensitivity

 Each application has phases that vary in their frequency sensitivity due to the type

of their activity rates and the degree of performance-coupling between CPU and GPU. This

is also true of HPC applications. While computations are offloaded to the GPU, there are

control and data dependencies between computations executing on the CPU and the GPU

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

GPU_freq_sensitivity(meas) GPU_ALUBusy%

P
er

ce
n

ta
g
e

m
et

ri
c

->

 99

cores. For example, for peak GPU utilization, the CPU must deliver data to the GPU at a

certain rate; otherwise, the GPU will starve, resulting in a reduction in overall performance.

Such performance-coupling between the CPU and the GPU cores is accentuated by the

tighter physical coupling due to on-die integration and the emergence of applications that

attempt a more balanced use of the CPU and the GPU. Hence, any cooperative energy-

management technique must balance such interactions against energy/power savings.

Figure 42: Percent increase in kernel run-time due GPU DVFS changes relative to

the baseline (BAPM).

Figure 43: Percent increase in kernel run-time due CPU DVFS changes relative to

the baseline (BAPM).

0%
20%
40%
60%
80%

100%
120%
140%
160%

Total Force Neighbour Comm Other%
 i

n
cr

ea
se

 i
n

 r
u

n
-t

im
e

GPU DVFS per kernel ->

DVFS-high DVFS-med DVFS-low

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Total Force Neighbor Comm Other

%
 i

n
cr

ea
se

 i
n

 r
u

n
-t

im
e

CPU DVFS per kernel->

P0 P1 P2 P3 P4

 100

Here we evaluate the opportunities to save energy of an Exascale proxy application

from the Mantevo suite called miniMD [15]. In particular, we characterize the frequency

and resource sensitivity at the kernel granularity for both the CPU and the GPU power

states. We have observed this behavior in other HPC applications as well; however we

present only miniMD results here. Figure 42 illustrates the GPU frequency sensitivity for

the main miniMD kernels by measuring the impact of frequency on the speed-up of each

kernel. The x-axis records the GPU DVFS states for each kernel. The y-axis shows the

increase in run-time from the baseline BAPM case as GPU frequency is reduced. Because

we are not thermally limited, the baseline algorithm runs the GPU at the highest frequency.

 We can observe many interesting behaviors in Figure 42, with the key insight being

that different kernels in miniMD have different resource requirements and their relative

sensitivities to GPU frequency reflect those needs. One of the main computation kernels,

Force, scales very well with GPU frequency and performs the best at the highest-frequency

GPU DVFS state. This is because of the heavy compute-bound nature of the kernel. The

Neighbor kernel shows high sensitivity to GPU frequency when going from low to medium

frequency; however, Neighbor sees little to no performance benefit at the highest GPU

frequency because the Neighbor kernel becomes memory bandwidth-limited at the highest

GPU frequency. Communication-limited and other fine-grained, relatively short kernels

labeled “Other” seem to be less sensitive to GPU frequency. There is a 6% increase in total

run-time at the medium GPU DVFS state, with the Force kernel being the main contributor

to the slow-down.

Consider the frequency sensitivity of the CPU for each of the miniMD kernels

executing on the GPU (recall the performance-coupling between the CPU and the GPU)

illustrated in Figure 43. The Force and Neighbor kernels do not scale well with CPU

frequency. The memory-bounded behavior of Neighbor makes it insensitive to CPU

frequency with minimal performance loss at the lower CPU DVFS state of P4. The GPU

 101

compute-intensive nature of Force makes it less dependent on CPU frequency; however,

decreasing CPU frequency beyond P2 starts starving the GPU. On the other hand, fine-

grained, shorter kernels such as Communication and others have higher data dependencies

on the CPU and are tightly performance-coupled. Launch overhead, combined with the

relatively small kernel timings compared to the actual execution time, make these kernels

more tightly performance-coupled to CPU frequency and less GPU frequency-sensitive.

The lesson here is that the frequency-sensitivity metric in an APU needs to account for

performance-coupling effects.

 102

6.3 Run-time System for Energy Management: Metrics, Models
and Management Algorithm

 The first step is to develop a predictor for the frequency sensitivity of an

application. Specifically, at any point in time we need to be able to predict the performance

sensitivities of the execution of a kernel on the GPU to the frequency of the CPU and the

frequency of the GPU – the sensitivities may be different. As we observed in Section 6.2,

Table 3: APU frequency sensitivity analysis of various performance metrics.

Metric Description

Correlation

Coefficient to

GPU FS

(meas)

Correlation

Coefficient

to CPU FS

(meas)

WeightedALUBusy ALUBusy weighted by GPUClockBusy. 0.85 -0.62

ALUInsts PTI
Compute instructions per thousand

instructions. 0.78 -0.54

ALUBusy
The percentage of GPUTime ALU

instructions are processed. 0.76 -0.54

ALUFetchRatio

The ratio of ALU to fetch instructions. If the

number of fetch instructions is 0, then 1 will

be used instead. 0.57 -0.31

L2 cache miss/cycle
Level 2 cache miss rate to main memory for

CPU. 0.13 -0.41

ALUPacking
The ALU vector packing efficiency (in

percentage). 0.11 -0.22

GPUClockBusy

GPU utilization: Ratio of time when at least

one of the SIMD units in the GPU is active

compared to total execution time. 0.06 -0.13

FetchUnitBusy
The percentage of GPUTime the fetch unit is

active. -0.28 -0.01

FetchUnitStalled
The % of GPUTime main memory fetch/load

unit is stalled. -0.49 -0.15

WriteUnitStalled
The % of GPUTime main memory write/store

unit is stalled. -0.51 0.12

Writes to memory

PTI

Main memory writes per thousand

instructions. -0.60 -0.28

Fetch from memory

PTI Main memory reads per thousand instructions. -0.62 -0.23

Global_MemUtil
Aggregated CPU-GPU memory bandwidth

consumed during theoretical peak bandwidth. -0.63 -0.56

ClockWeightedUPC

Retired micro-operations (includes all

processor activity) per cycle weighted by each

core's active clocks. -0.83 0.70

 103

this sensitivity analysis must account for indirect interactions between the CPU cores and

the GPU, e.g., in the shared memory system.

The second step is to encapsulate this into an energy-management algorithm that

periodically computes the frequency sensitivity and, in response, adjusts the DVFS states

of the CPU cores and the GPU. In this section, we derive a frequency-sensitivity predictor

and use it to construct a run-time energy-management scheme. Our goal is to develop a

simple and practical predictor that can be implemented efficiently in a dynamic run-time

algorithm with minimal hardware overhead and complexity.

6.3.1 Frequency Sensitivity Correlation and Run-time Metrics

 We develop frequency-sensitivity predictors to capture the dominant behaviors

described in Section 6.2 for the GPU and the CPU. First, we selected performance counters

that are indicators of frequency sensitivity. Modern processors provide hundreds of

exposed performance counters, which makes the selection quite challenging [11]. We used

three Exascale proxy applications (miniMD, miniFE, and Lulesh), each consisting of many

different kernels [15][46][59]. We also utilized six scientific applications from the Rodinia

benchmark suite: Needleman-Wunsch, HotSpot, LU Decomposition (LUD), Speckle-

reducing Anisotropic Diffusion (SRAD), Computational Fluid Dynamics (CFD), and BFS

[18][19]. The chosen applications have a wide range of characteristics ranging across

coarse- and fine-grained kernels, compute- and memory-boundedness, different degrees of

CPU-GPU performance-coupling, and degrees of divergent control flow.

 Using application analysis and a profiling tool called CodeXL, we measured the

execution times and the corresponding values of a set of performance counters/metrics at

kernel boundaries over a range of CPU and GPU frequencies [127]. We initially attempted

to find correlation across multiple sample points in a single application trace but found that

minor discrepancies in phase alignment with performance metric traces can cause large

variations in correlation. Hence, we looked for alignment only at the kernel granularity in

an application. We performed a correlation analysis between each performance

 104

counter/metric and the CPU or GPU frequency sensitivity, measured as the ratio of the

difference in execution times to the corresponding differences in frequency. We computed

the correlation coefficients using linear regression (shown in Table 3). These performance

counters/metrics were derived from a set of more than 40 hardware performance counters

in the CPU, GPU, and Northbridge selected based on the insights gained from Section 6.2.

Coefficient values greater than 0.5 or less than -0.5 are considered a strong positive or

negative correlation, respectively [11]. These values are highlighted in Table 3.

 Second, we calculated overall GPU or CPU frequency sensitivity based on the

following analysis. As expected, ClockWeightedUPC (retired micro-ops per active core

clock cycle) shows high correlation for CPU frequency sensitivity, as does GPU ALU

activity and ALUBusy for the GPU. This captures the compute behavior of an application

in either type of core. However, to capture the compute behavior for normal operations as

well as control-divergent applications, we weighted the ALUBusy metric with

GPUClockBusy (as defined in Table 3, note the improvement in correlation between line

3 and line 1 in Table 3).

 As Figure 41 shows, graph algorithms have a high degree of control-flow

divergence; thus, some SIMD engines are idle and waiting for a thread to finish executing

before all threads can re-converge and proceed. This produces poor ALU throughput,

making it appear that the GPU is lightly utilized. However, when ALUBusy is weighted

with the actual GPU clock activity, we get a higher rate of ALU activity for the active

period and better correlation. Similar accounting has been done for CPUs [11]; however,

unlike the CPU, which is latency sensitive, the GPU's massively parallel bulk-synchronous

computation creates a complex inter-relationship between control behavior and power.

 GPU frequency sensitivity shows a strong negative correlation to CPU UPC (retired

micro-ops per cycle). This includes all processor activity (instructions, exceptions,

interrupts, microcode assists, etc.) Similarly, CPU frequency sensitivity shows a strong

negative correlation to GPU ALUBusy. This is because of the data and execution

 105

dependencies between the GPU and CPU. As the computation becomes more balanced and

distributed between the CPU and GPU, we expect the correlation coefficients to change.

However, CPU and GPU performance still will be closely coupled in their interactions and

dependencies. Therefore, a GPU frequency-sensitivity predictor needs to account for CPU

UPC as a way to measure GPU’s performance-coupling to CPU. Similarly, CPU frequency

sensitivity in a heterogeneous architecture needs to account for GPU ALU activity.

 We found a better correlation between frequency sensitivity and aggregated

memory bandwidth (Global_MemUtil) compared to the localized memory access metrics

such as L2 cache misses in the CPU or memory fetch/write stalls in the GPU. This is largely

because of the disparity in memory-bandwidth demand between the CPU and the GPU

while accessing a shared resource, as shown in Figure 40.

 Based on the preceding analysis, we summarized a key set of performance metrics

below to use in our run-time energy-management scheme to determine frequency

sensitivities in a performance-coupled heterogeneous architecture. We determined CPU

and GPU frequency sensitivities as weighted linear regression functions of these combined

metrics to capture performance-coupling, core compute behavior, and global memory

interference. The correlation coefficient using this combination of metrics improved to

0.97.

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐴𝐿𝑈𝐵𝑢𝑠𝑦 =
𝐴𝐿𝑈𝐵𝑢𝑠𝑦

𝐺𝑃𝑈𝐶𝑙𝑜𝑐𝑘𝐵𝑢𝑠𝑦

𝐺𝑙𝑜𝑏𝑎𝑙_𝑀𝑒𝑚𝑈𝑡𝑖𝑙 =
𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑𝑀𝑒𝑚𝐵𝑊

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙𝑃𝑒𝑎𝑘𝑀𝑒𝑚𝐵𝑊

where

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙𝑃𝑒𝑎𝑘𝑀𝑒𝑚𝐵𝑊

= (𝐷𝐷𝑅𝐶𝑙𝑜𝑐𝑘𝑆𝑝𝑒𝑒𝑑) ∗ (8 𝑏𝑦𝑡𝑒𝑠 𝑝𝑒𝑟 𝑐𝑙𝑜𝑐𝑘) ∗ (𝑇𝑜𝑡𝑎𝑙 𝐷𝐷𝑅 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠)

 106

𝐶𝑙𝑜𝑐𝑘𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑈𝑃𝐶 =
∑(𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑟𝑒𝑡𝑖𝑟𝑒𝑑 𝑢𝑜𝑝𝑠[𝑖] ∗ 𝑈𝑛ℎ𝑎𝑙𝑡𝑒𝑑𝐶𝑜𝑟𝑒𝐶𝑙𝑜𝑐𝑘𝑠[𝑖])

∑𝑈𝑛ℎ𝑎𝑙𝑡𝑒𝑑𝐶𝑜𝑟𝑒𝐶𝑙𝑜𝑐𝑘𝑠[𝑖]

 Although the set of applications analyzed here uses an offload model for

computation, in which kernels run on the GPU with periodic synchronization points

between CPU and GPU, similar performance metrics (WeightedALUBusy,

Global_MemUtil, and ClockWeightedUPC) may be utilized in the case of more concurrent

computation across CPU-GPU with higher degree of performance coupling; however, the

weights associated with the metrics in the linear regression equation may change to reflect

the tighter performance-coupling between the CPU and GPU.

6.3.2 DynaCo: Coordinated Dynamic Energy Management Scheme

 We propose a run-time energy-management scheme called DynaCo based on the

online measurement of the frequency sensitivity described in Section 6.3.1. DynaCo is

implemented as a system software policy layered on top of the baseline AMD A-Series

power-management system (BAPM).

 The energy-management algorithm is partitioned into a monitoring block that

samples the performance counters every 10 ms to coincide with the operating system timer

tick for minimizing overheads, and a decision block that computes frequency sensitivities

using measurements described at the end of Section 6.3.1. The CPU and GPU DVFS states

are then configured. In general, DynaCo periodically determines whether the CPU and the

GPU frequencies are high or low. In each case, the energy management algorithm

embodies the following logic:

1) High GPU sensitivity, Low CPU sensitivity: Shift power to the GPU (i.e., boost the

GPU to maximize performance).

2) High GPU sensitivity, High CPU sensitivity: Distribute power proportionally based

on their relative sensitivities.

3) Low GPU sensitivity, High CPU sensitivity: Shift power to the CPU (i.e., boost the

CPU to maximize performance).

 107

4) Low GPU sensitivity, low CPU sensitivity: Reduce power of both the CPU and the

GPU by using lower-power states.

Algorithm 1: Dynamic scheme (DynaCo1-levelTh)

1. 1: while TRUE do

 2: if (Global_MemUtil >= DDR_bus_efficiency) then

 3: /* Case: Memory is bottleneck */

 4: SetGPUFreqState(GPU-med);

 5: SetCPUFreqState(CPU-low-power_P2);

 6: end if

 7: else /* Case: Memory is not bottleneck */

 8: if(ClockWeightedUPC >= UPC_Threshold) then

 9: /* CPU frequency sensitive, consider GPU sensitivity */

10: if (WeightedALUBusy>= HIGH) then

11: SetGPUFreqState(GPU-high);

12: SetCPUFreqState(CPU-base);

13: else

14: if (MEDIUM<= WeightedALUBusy<HIGH) then

15: SetGPUFreqState(GPU-med);

16: SetCPUFreqState(CPU-boost);

17: else

18: SetGPUFreqState(GPU-low);

19: SetCPUFreqState(CPU-boost);

20: end if

21: else

22: if(ClockWeightedUPC < IPC_Threshold) then

23:/* CPU frequency insensitive, consider GPU sensitivity */

24: SetCPUFreqState(CPU-low-power_P2);

25: if (WeightedALUBusy>= HIGH) then

26: SetGPUFreqState(GPU-high);

27: else

28: if (MEDIUM<= WeightedALUBusy<HIGH) then

20: SetGPUFreqState(GPU-med);

30: else

31: SetGPUFreqState(GPU-low);

32: end if

33: end if

34: end if

35: Sleep.time(SAMPLING_INTERVAL);

36: end while

Figure 44: DynaCo-1levelTh pseudo-code.

 108

 Because HPC applications are mostly uncompromising with respect to performance

loss, we propose two energy-management algorithms – one more aggressive than the other

in attempting to reduce power but with potentially higher performance degradation. In the

less aggressive variant, DynaCo-1levelTh (Figure 44), we limit the lowest-frequency P-

state to P2; the CPU is not permitted to go to a lower-frequency state. Thus, in this case,

there is potential to lose some power-saving opportunity. In the more aggressive version,

Algorithm 2: Dynamic scheme (DynaCo-multilevelTh)

2. 1: while TRUE do

----lines 2 through 21 in Algorithm 1---------------

22: if(ClockWeightedUPC < UPC_Threshold) then

23: /* CPU frequency insensitive, consider GPU sensitivity */

24: if (WeightedALUBusy>= HIGH) then

25: SetGPUFreqState(GPU-high);

26: else

27: if (MEDIUM<= WeightedALUBusy<HIGH) then

28: SetGPUFreqState(GPU-med);

29: else

30: SetGPUFreqState(GPU-low);

31: end if

32: SetCPUFreqState(CPU-low-power_Pstate);

33: Compute_ MemAccessRate_gradient();

34: if (gradient>=Mem_threshold) then

35: if(CPU-low-power_Pstate<=Pmin) then

36: CPU-low-power _Pstate++;

37: end if

38: else

39: if (CPU-low-power >CPU-base+1) then

40: CPU-low-power _Pstate--;

41: end if

42: end if

43: end if

44: end if

45: Sleep.time(SAMPLING_INTERVAL);

46: end while

Figure 45: DynaCo-multilevelTh pseudo-code.

 109

DynaCo-multilevelTh (Figure 45), the CPU is allowed to use all of the low-power P-states

during low-sensitivity phases by analyzing gradients in memory access rates. In both

versions, the GPU is handled similarly and allowed to use all DVFS states. In Figure 45,

we show DynaCo-multilevelTh for only the portions in which it is different from DynaCo-

11evelTh. For our analysis, the GPU-high and -med thresholds for GPU

WeightedALUBusy were set to 80% and 30%, respectively, based on GPU utilization and

variations in workload intensity of graphics and HPC benchmarks. UPC_threshold was set

to 0.4 based on empirical observations across a wide range of workload characteristics in

this architecture. The CPU and GPU DVFS settings are described in Section 6.4. Pmin is

the lowest available CPU P-state.

 The key observation is that when there is significant coupling/interaction between

the CPU and the GPU, having the lowest CPU P-states can lead to significant power

savings but significant performance degradation. At lower levels of coupling, significant

power savings can occur with little performance degradation. The choice of algorithm

depends on the degree of coupling, which can be time-varying, and the degree to which

performance degradation is acceptable. For example, if a HPC application has little

communication overhead between the CPU and GPU, such as a compute-offload

application in which the serial fraction of the code is insignificant compared to the total

execution time, both DynaCo schemes may provide similar performance but DynaCo-

multilevelTh will provide better power and energy savings.

6.3.3 Summary

 The preceding analysis shows that HPC applications exhibit varying degrees of

CPU and GPU frequency sensitivity for a variety of subtle and non-obvious reasons.

Overall, the results in this section clearly point towards the need for a set of metrics for

energy management that can predict CPU-GPU frequency sensitivity in a tightly coupled

heterogeneous architecture. Using these metrics, we envision extending BAPM with

 110

frequency-sensitivity information to augment its functionality. We describe the model, its

application, and results with measurements on real hardware in the following sections.

6.4 Experimental Set-up

 We used the AMD A10-5800 desktop APU with 100W TDP as the baseline for all

our experiments and analysis. Base CPU frequency is 3.8GHz, with boost frequency up to

4.2GHz. The GPU frequency is 800MHz for the highest DVFS boost state [125]. Table 4

and Table 5 show the DVFS state table for the CPU and the GPU. We used four 2-GB

DDR3-1600 DIMMs with two DIMMs per channel. Hardware performance counters for

the CPU and GPU were monitored using CPU and GPU performance counter libraries

running in Red Hat Linux OS. We set specific CPU DVFS states using model-specific

registers as described in [12]; to set a specific GPU DVFS state, we send memory-mapped

messages through the GPU driver layer to the power-management firmware.

Table 4: CPU DVFS states for AMD A10-5800 APU.

 P-state Volt.

(V)

Freq (MHz)

HW-

only

Pb0 1.475 4200

Pb1 1.45 4000

SW-

visible

P0 1.363 3800

P1 1.288 3400

P2 1.2 2900

P3 1.075 2400

P4 0.963 1900

P5 0.925 1400

Table 5: GPU DVFS states for AMD A10-5800 APU.

P-state Volt. (V) Freq (MHz)

DVFS-high 1.275 800

DVFS-med 1.2 633

DVFS-low 0.9375 304

 111

Although our DynaCo scheme can be implemented in any layer such as hardware,

power-management firmware, or system software, we implemented it as a run-time system

software policy by layering it on top of the baseline AMD A-Series power-management

system. For CPU and GPU power and temperature, we used the digital estimates provided

by the power-management firmware running in the AMD A-Series processor described in

Section 3.4.1, the accuracies of which are detailed in [83]. For all schemes, we ran the

applications for several iterations to reach a thermally stable steady state. We took an

average across those multiple iterations to eliminate run-to-run variance in our hardware

measurements.

Table 6: Application datasets used for DynaCo evaluation.

Application Problem Size

miniMD 32 x 32 x 32 elements

miniFE 100 x 100 x 100 elements

Lulesh 100 x 100 x 100 elements

Sort 2,097,152 elements

Stencil2D 4,096 x 4,096 elements

S3D SHOC default for integrated GPU

BFS 1,000,000 nodes

 We selected the applications used in our experiments based on their relevance to

future high-performance scientific computing. We evaluated seven OpenCL applications

in this paper: miniMD, miniFE, Lulesh, S3D, Sort, Stencil2D, and BFS. MiniMD, miniFE,

 112

and Lulesh are proxy applications representative of HPC scientific application

characteristics in the Exascale time-frame. A sub-set of benchmarks (S3D, Sort, Stencil2D,

BFS) are from the Scalable Heterogeneous Computing (SHOC) benchmark suite [30] that

represents a large portion of scientific code found in HPC applications. We analyzed all

applications on a single node to explore energy-saving opportunities using our run-time

schemes. These applications and the associated datasets are described in Table 6.

 MiniMD is a molecular dynamics code derived from its parent code, LAMMPS

[15]. It has two main computational kernels. The first is the L – J potential function, or

force kernel, and the second is the neighbor-binning algorithm, or neighbor kernel. Other

kernels include communication kernel atom_comm and miscellaneous small kernels to

integrate the atom forces and build the neighbor's list for each atom based on proximity

and other variables.

 MiniFE provides an implementation of a finite-element method [46]. It provides a

conjugate gradient (CG) linear system solver with Jacobi preconditioning. The three main

kernels in the CG solver are matvec, which performs matrix vector operations; dot, which

performs the dot product of two matrices; and waxpy, which computes the weighted sum

of two vectors.

 Lulesh [59] approaches the hydrodynamics problem using Lagrangian numerical

methods. The two main computation kernels in Lulesh are CalcHourGlassForces and

CalcFBHourGlassForces.

 SHOC consists of a collection of complex scientific applications and common

kernels encapsulated into benchmarks that represent a majority of the numerical operations

found in HPC. We use Sort; which sorts an array of key-value pairs using a radix sort

algorithm; Stencil2D, which uses a nine-point stencil operation applied to a 2D dataset;

S3D, which is a turbulent combustion simulation; and BFS, which is a graph traversal

algorithm.

 113

We report performance, power, and energy efficiency (energy-delay2 product) for

the two variants of DynaCo algorithm. We picked ED2 because it has been widely used in

HPC analysis [67] [111] and it captures the importance of both power and performance,

the latter being critical for HPC. The power and energy results include CPU, GPU, memory

controller power, and a fixed IO-phy power budget. All results were obtained from real

hardware and are normalized to the baseline BAPM discussed in Section 3.4.1. All

averages represent geometric means across the applications.

6.5 Results

 This section describes the results from the two DynaCo schemes for the AMD A-

Series APU and compares them with the state-of-the-practice power-management

algorithm BAPM. We also compare our DynaCo schemes with an ideal static scheme that

picks the best DVFS state for each kernel as determined through offline profiling and

analysis by performing an exhaustive state-space search. Offline techniques provide a good

basis for comparison to evaluate the effectiveness of run-time techniques but are

impractical as power-management strategies.

6.5.1 Performance, Power, and Energy

 Figure 46 shows the performance impact of DynaCo-1levelTh, DynaCo-

multilevelTh, and ideal static schemes compared to the baseline for all seven HPC

applications. The y-axis represents the increase in run-time compared to a baseline value

of 1.0, (lower is better). We see an average run-time increase of 0.78% across all the

applications using DynaCo-1levelTh, with up to 2.58% maximum slow-down in the case

of miniMD.

 DynaCo-multilevelTh sees an average run-time increase of 1.61% across the same

set of applications, with a worst-case slow-down of 4.19%. The ideal static scheme

measures an average slow-down of 1.65%, with the worst case being 5.2% in miniMD.

This illustrates the efficacy of the run-time schemes in optimizing energy efficiency under

 114

strict performance constraints. Ideal-static picks the best CPU and GPU DVFS states at a

kernel-level granularity, and it is unable to detect fine-grained phase changes in a kernel.

Hence, it penalizes short, high-frequency sensitive phases in a kernel that overall have low

sensitivity.

Figure 46: Performance impact of DynaCo.

Figure 47: Phase variation within MATVEC.

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

miniFE Lulesh miniMD BFS Sort S3D Stencil2D

In
cr

ea
se

 i
n

 r
u

n
-t

im
e

DynaCo-1levelTh DynaCo-multilevelTh Ideal-static Baseline

0

0.2

0.4

0.6

0.8

1

1.2

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

N
o
rm

a
li

ze
d

 M
et

ri
c

Time (ms)->

GPU Utilization

Global_MemUtil

 115

 As expected, we see much tighter performance control with DynaCo-1levelTh

compared to DynaCo-multilevelTh and ideal-static because it does not utilize the lowest-

frequency states of the CPU. Since it always fixes the low-power P-state for the CPU to P2

during phases of low CPU frequency sensitivity, it also removes the slight variability in

performance over time when the algorithm is adapting dynamically to find the best low-

power P-state. On the other hand, DynaCo-multilevelTh provides better energy efficiency

gains, as we will see next, with slightly more performance degradation but still within

reasonable bounds for most HPC applications. We attribute the relatively higher

performance loss in miniMD to the impact of variability in kernel phases shorter than our

10-ms sampling interval limitation.

 The more aggressive DynaCo-multilevelTh outperforms ideal-static in miniFE and

miniMD because a run-time adaptive scheme is able to take advantage of the phase

behavior in a kernel, whereas the static scheme based on profiling makes power-state

decisions only at kernel-level granularity. Figure 47 shows an example phase behavior of

the matvec kernel in miniFE for a single iteration. The y-axis shows GPU utilization and

normalized memory-bandwidth utilization compared to the practical peak-DDR

bandwidth. Matvec performs a sparse matrix-vector product and, in general, is heavily

memory bandwidth-limited due to the large number of indirect memory references and

register spills to global memory in the code. However, about 19% of the time it is compute-

intensive without saturating memory bandwidth. This behavior is observed in every

invocation of matvec in miniFE, a significant fraction of the application's total run-time.

During this 19% compute-intensive phase, DynaCo boosts the GPU to its highest DVFS

state while the profiling-based ideal static scheme fixes the GPU frequency to GPU-med

due to this kernel's overall low GPU frequency sensitivity.

 In Figure 48 we evaluate the ED2 gains using DynaCo during the entire run-time of

the application. All data are normalized to a baseline of 1.0 (lower is better). Average

energy efficiency improves by 24% using DynaCo-1levelTh compared to the baseline, with

 116

up to 32% savings in Sort and S3D. DynaCo-multilevelTh sees an average improvement

of 30%, with up to 47% savings in S3D. Ideal-static achieves an energy-efficiency gain of

35%. We observe that 70-80% of the savings came from CPU scaling and the remainder

came from GPU scaling.

Figure 48: Energy efficiency with DynaCo.

Figure 49: Power savings with DynaCo.

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

miniFE Lulesh miniMD BFS Sort S3D Stencil2D

N
o
rm

a
li

ze
d

 E
D

^
2
 p

ro
d

u
ct

DynaCo-1levelTh DynaCo-multilevelTh Ideal-static

0%

10%

20%

30%

40%

50%

60%

miniFE Lulesh miniMD BFS Sort S3D Stencil2D

P
o
w

er

DynaCo-1levelTh DynaCo-multilevelTh Ideal-static

 117

 The amount of energy-efficiency gain in S3D is slightly higher than the rest of the

benchmarks. S3D is a compute-intensive application. However, when we run multiple

iterations of this benchmark from the SHOC suite, the compute-intensive active phases

appear to last for a small fraction of the total time it takes to compile and launch the

application kernels. This causes only small periods of activity on the GPU followed by

long idle periods. During this idle period, the GPU is power-gated for all three schemes as

well as the baseline. However, the CPU is busy compiling and preparing the work to launch

the kernels. Portions of this phase do not contribute to the overall performance of the

application. Boost algorithms, such as the BAPM algorithm used for the baseline, allocate

the highest CPU frequencies during this phase when power and thermal headroom is

available. However, in our run-time and ideal-static schemes we are able to utilize the low

frequency P-states during the frequency-insensitive phase. We also notice that DynaCo-

multilevelTh provides better energy efficiency than ideal-static for miniMD due to the

higher slowdowns observed with the profile-based scheme.

 The power savings achieved with DynaCo are illustrated in Figure 49. The average

power savings are 24% with DynaCo-1levelTh, 31% with DynaCo-multilevelTh, and 36%

with ideal-static. We see that DynaCo-multilevelTh provides greater power savings

compared to DynaCo-1levelTh due to utilization of the very-low-frequency CPU P-states.

While ideal static provides greater power savings by picking the best DVFS state for each

kernel, it does not provide the same tight performance bounds as the other two schemes, as

shown in Figure 46. In addition, it requires user intervention and prior offline profiling of

all the kernels in an application across multiple CPU and GPU frequencies to determine

the best state.

6.5.2 Performance Analysis and Power Shifting

 We now analyze the case of power-shifting and power-reduction scenarios with the

two DynaCo schemes for every application. We present a sub-set of those results here.

Figure 50 shows the percentage GPU DVFS residency for each of the three main kernels

 118

of Lulesh as well as the overall application. Since the GPU DVFS decision between the

two DynaCo schemes is handled similarly from an algorithmic perspective, we show GPU

DVFS residency results for only DynaCo-1levelTh.

The CalcHourGlass kernel spends 21% less time in GPU-high, 14% more time in

GPU-med, and 8% more time in GPU-low than the baseline. On further examination, this

kernel is memory-bounded 30% of its run-time; during those times, power is shifted away

from the GPU. Similarly, the entire Lulesh application spends 9% less time in GPU-high

with DynaCo. For the CalcFBHourGlass kernel, DynaCo performs similarly to the

baseline. This kernel is heavily compute-bound on GPU with high WeightedALUBusy;

hence, DynaCo boosts performance by selecting the highest-frequency state.

Figure 50: GPU DVFS residency for DynaCo and baseline.

0%

20%

40%

60%

80%

100%

G
P

U
 D

V
F

S
 r

es
id

en
cy

GPU-high GPU-med GPU-low

CalcFBHourGlass CalcHourGlass IntegrateStress Lulesh

 119

Figure 51: CPU DVFS residency with DynaCo-1levelTh.

 Further, in Figure 51 and Figure 52, we see that for all three kernels we are able to

shift power away from CPU significantly due to poor CPU frequency sensitivity, while the

baseline runs the CPU at the high-frequency boost states due to availability of power and

thermal headroom. Specifically, during the more than 20 other kernel phases, DynaCo

correctly boosts CPU to the high-frequency P-states as needed due to the high CPU

dependency observed for these miscellaneous fine-grained kernels, as depicted in the phase

behavior shown in Figure 14. Further, DynaCo-multilevelTh is able to utilize the lower-

frequency CPU P-states P3 and P4 59% of the time.

 We also observe that the fine-grain, relatively small kernels such as IntegrateStress

become performance-coupled to the CPU more quickly than the main Hourglass

computation kernels. Hence, IntegrateStress does not utilize the low-frequency P-states of

P3 and P4 that can cause significant performance loss. Lulesh provides an example of a

case when power can be saved from both CPU and GPU and boosting to higher frequencies

is utilized when the application phase needs it.

0%

20%

40%

60%

80%

100%

C
P

U
 D

V
F

S
 r

es
id

en
cy

P2 Base Boost

 120

Similarly, for miniMD, DynaCo correctly estimates the frequency sensitivity of the

different kernels. The heavily compute-intensive nature of the force kernel causes it to

boost to the highest GPU frequency 100% of its run-time, similar to the baseline. On the

other hand, the neighbor kernel has aggregated CPU-GPU memory bandwidth that is close

to the peak bandwidth that the DDR bus can sustain after accounting for bus efficiency.

Hence, we are able to run the GPU at the medium DVFS frequency without noticeable

performance degradation. Moreover, small kernels in miniMD such as atom_comm, which

rely on the CPU for data transfer and launch frequently, spend almost 70% of their time in

the medium- and low-frequency GPU DVFS states using DynaCo. During much of this

time, CPU is closely coupled to the GPU and runs at high-frequency P-states. Contrary to

this, the baseline algorithm runs at maximum CPU and GPU frequencies for all miniMD

kernels due to temperature headroom.

Figure 52: CPU DVFS residency with DynaCo-multilevelTh.

0%

20%

40%

60%

80%

100%

C
P

U
 D

V
F

S
 r

es
id

en
cy

P4 P3 P2 P1 Base Boost

 121

 In the graph algorithm BFS, we see that due to control divergence the GPU has

short bursts of computation followed by phases of low utilization on the GPU. About 25%

of the time, threads are waiting for re-convergence. DynaCo correctly assigns high GPU

frequency to avoid slowing the critical path, but it saves power from the CPU due to low

UPC. The baseline always runs BFS at the maximum CPU and GPU frequencies due to the

available thermal headroom, causing energy inefficiency.

 Due to the lower power consumption, we also see a reduction in the peak die

temperatures using DynaCo. This is due to a combination of leakage power savings from

reduced voltage operations and dynamic power savings from reduced frequency. With

DynaCo, peak die temperature is, on average, up to 2°C lower across all the applications.

Lower temperatures result in lower cooling costs, better energy efficiency, and better heat

management.

In summary, we have shown that DynaCo successfully leverages the metrics

discussed in Section 6.3 to improve the energy efficiency of HPC application on a

heterogeneous processor. DynaCo is able to produce significant power savings with a small

reduction in performance, resulting in energy efficiencies comparable to an ideal static

management scheme without the additional overhead of profiling required for the static

scheme.

6.6 Conclusions

 This component of the thesis proposed and implemented a set of techniques to

improve the energy efficiency of integrated CPU-GPU processors. To the best of our

knowledge, this is the first such implementation. We described the unique characteristics

of HPC applications and the opportunities they present to save energy. We proposed a

model to capture the application's frequency sensitivity in such architectures and used this

model as the basis for a dynamic, coordinated energy-management scheme to improve

energy efficiency at negligible performance loss. The proposed scheme achieves an

 122

average ED2 benefit of up to 30% compared to the baseline with less than 2% average

performance loss across a variety of Exascale and other HPC applications. This research

work was published at Supercomputing (SC) 2013 [91] and Journal of Scientific

Programming 2014 [92].

 123

CHAPTER 7

GPU-MEMORY PERFORMANCE COUPLING MANAGEMENT

In CHAPTER 4 we described how compute and memory behavior are

fundamentally performance coupled. If we ignore this coupling in managing the shared

platform power envelope in future massively parallel systems with a large amount of

available memory bandwidth, significant energy/power is wasted. Effective use of the

power budget is of utmost importance to meet performance critical demands and improve

energy efficiency. We show how the philosophy of coordinated power management

continues to be a key ingredient in satisfying these demands between other pairs of coupled

resources. This chapter addresses the problem of efficiently managing the relative power

demands of a high performance GPU and its memory system by developing a run-time

power management infrastructure called Harmonia that coordinates platform hardware

configurations between compute and memory with time-varying application demands so

that they are in balance, or in “harmony”.

7.1 Overview

 GPUs or graphics processing units are now commonly used for data parallel

applications that do not fit into the traditional graphics space. They have been shown to

provide significant improvements in power efficiency and performance efficiency for

many classes of applications [6][62][128][129]. However, while compute has been a major

consumer of power in such systems, moving forward we see that the power spent in the

memory system and in data movement will begin to become a major, and sometimes a

dominant component of platform power [64][103], as discussed in Chapter 4.2.2. This

distribution of power consumption between compute and memory must operate under a

fixed board level power and thermal envelope, while with the advent of on-package DRAM

 124

e.g., die stacks and EDRAM [39][56][74][93], they must share an even tighter package

power and thermal envelope. Therefore we argue that effective dynamic power

redistribution between compute and memory will be key to energy and power efficiency

for future high performance GPUs.

 As discussed in Chapter 4.2.2, hardware tunables such as the number of parallel

cores, core operating frequency, and the memory bandwidth collectively capture the

relative time and power cost of performing operations vs. memory accesses in the hardware

platform. Ideally, the relative ops/byte demand of the applications matches the relative time

and power costs of compute and memory hardware of the platform and we have a perfectly

balanced system [22][116], without wasted power and/or unexploited performance

opportunities. In reality, application behavior is time-varying, and the ops/byte costs of the

platform depend on the values of the hardware tunables. Hence to retain the most power

efficient operation we need a runtime power management infrastructure that must identify

the time-varying performance sensitivity of an application to the ops/byte cost of a platform

and coordinate power states of the processor (GPU) and the off-chip memory system so

that they are in balance, or in “harmony”.

 To this end, we propose Harmonia, a runtime scheme that adjusts the hardware

tunables on a state-of-the-art, high performance discrete GPU so as to balance the power

in the memory system and GPU cores to match the demanded ops/byte characteristics of

an HPC application. We show how such a balance can reduce overall platform power with

little compromise in performance. Our focus is on the high performance computing (HPC)

domain where applications are characterized by relatively uncompromising demands for

execution time performance thereby placing stringent demands on improvements in power

and energy efficiency.

Specifically, this chapter makes the following contributions:

 Through measurements on a modern GPU, we provide an analysis of algorithmic,

architectural and micro-architectural behaviors that have a significant impact on the

 125

performance sensitivity of high performance and scientific computing applications

with respect to three hardware tunables—the number of GPU compute units (CU),

CU frequency, and memory bandwidth. In-depth characterization of the

performance sensitivity was discussed in Chapter 4.2.2.

 Based on the analysis, we derive online models that predict performance sensitivity

of application kernels to each of the three hardware tunables.

 We propose a coordinated two-level power management scheme, Harmonia, to

tune platform balance between compute throughput and memory bandwidth by i) a

coarse-grain adjustment of the GPU and the memory power states based on online

sensitivity prediction, ii) followed by fine-grain tuning through closed-loop

performance feedback.

 Using measurements from an implementation on commodity hardware, we

compare Harmonia to a commercial, state-of-the-practice power management

algorithm, demonstrating that up to 36% (average of 12%) improvements in

energy-delay2 product are feasible with minimal sacrifices in performance. In

addition, we also show that Harmonia achieves to within 3% of an oracle scheme.

 The rest of the chapter is organized as follows: Section 7.2 presents a detailed

analysis of the behaviors that have a substantive impact on performance coupling between

compute and memory. Section 7.3 presents run-time metrics and the sensitivity model to

capture these behaviors. Section 7.4 details the power management algorithm, Harmonia,

to balance the power allocation between performance-coupled GPU compute and memory.

Section 7.5 describes the experimental setup. Finally, Section 7.6 presents a detailed

implementation and evaluation of Harmonia on a modern high performance GPU.

 126

7.2 Compute and Memory Bandwidth Sensitivity Analysis

 Chapter 4.2.2.2 describes the scope of impact of hardware tunables on power and

performance on a modern high performance GPU AMD HD7970. The characterization

underscores the power saving opportunities associated with hardware balance points. The

key now is identifying measurable quantities that reflect performance sensitivities to

balance points and using these measurements to tune the hardware to the optimal balance

point. For the rest of this chapter we use the experimental setup described in Chapter 7.5.

To develop an online technique to effectively set the value of these three tunables we

must understand the sensitivity of performance metrics to changes in values of these

tunables. The sensitivity of performance to a hardware tunable is computed as the ratio of

the relative change in the performance metric to the relative change in the corresponding

values of the hardware tunable. Here we present some of the application and architectural

considerations that determine sensitivity of various performance metrics. We illustrate

these considerations through a few representative applications and their kernels depicting

a wide range of phase behavior.

7.2.1 Kernel Occupancy and Latency Hiding

 In massively parallel GPU architectures, latency to access memory is largely hidden

through overlapped concurrent execution of many wavefronts. Kernel occupancy is a

measure of concurrent execution and the utilization of the hardware resources, e.g., LDS,

SGPRs and VGPRs. The number of wavefronts that can be in flight depends on how these

resources are allocated across wavefronts – any one resource can be the bottleneck. For

example, the higher the scratchpad and register resource requirements per work-item, the

less number of waves that can be simultaneously in flight. This results in lower memory

parallelism and often less sensitivity to memory bandwidth.

 Figure 53 shows memory bandwidth sensitivity of kernel occupancy measured on

the HD7970 for Sort.bottom_scan from the SHOC benchmark suite, and

 127

CoMD.AdvanceVelocity from the ExaScale proxy applications [15][30]. In this case

Sort.bottom_scan has a kernel occupancy of only 30%. The limiting factor is the number

of VGPRs used. The VGPRs needed per wavefront is more than 25% (66) of the total

number of available VGPRs (256), hence only 3 simultaneous wavefronts per SIMD unit

(instead of a maximum 10) or 12 per CU can be in-flight concurrently, leading to less

sensitivity to memory bus frequency due to less degree of parallelism. On the other hand,

CoMD.AdvanceVelocity kernel has 100% kernel occupancy because the VGPR is not a

limiting resource, leading to increased memory level parallelism and sensitivity to memory

bandwidth.

 The lesson here is we need online measurements of an application’s algorithmic

properties (such as workgroup size and GPR usage) and kernel occupancy to make

effective decisions regarding the impact and setting of compute and memory

configurations.

Figure 53: Effects of VGPR-caused kernel occupancy limitation.

0%

20%

40%

60%

80%

100%

120%

%VGPRs per wave KernelOccupancy MemBWSensitivity

CoMD.AdvanceVelocity Sort.bottom_scan

 128

7.2.2 Load Imbalance Due to Branch Divergence and Kernel
Complexity

Control divergence causes thread serialization which can severely degrade

performance. Prior works [77] have shown that performance is sensitive to compute

frequency for such workloads since it speeds up serialized execution of parallel threads and

thereby shortens the overall execution time. However, frequency sensitivity cannot be

inferred by branch divergence measures alone. Low divergence in large kernels can have

significant impact while large divergence in small kernels (i.e., executing a smaller number

of dynamic instructions) may have little impact.

Figure 54: Impact on compute frequency sensitivity from load imbalance (branch

divergence) and no. of instructions.

Figure 54 shows compute frequency sensitivity for SRAD.Prepare and

Sort.BottomScan, from Rodinia and SHOC benchmark suites respectively. The first set of

bars indicate branch divergence and the second set indicate measured compute frequency

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

BranchDivergence ComputeFreqSensitivity

SRAD.Prepare Sort.bottomScan

2M instructions

8 instructions

 129

sensitivity. While the SRAD.Prepare kernel has about 75% branch divergence it has only

8 ALU instructions, making this kernel’s impact on application performance less sensitive

to compute frequency and more dominated by other overheads. However, Sort.BottomScan

has only 6% branch divergence across over 2 million instructions, leading to significant

thread serialization effects and load imbalances, and thus high sensitivity to compute

frequency.

The lesson here is branch divergence affects compute frequency sensitivity and its

effects must be evaluated in the context of the amount of work a kernel performs, to

determine its net influence on load imbalance, critical path and overall performance.

7.2.3 Architectural Clock Domains

 Finally, we note that chip-scale global interactions between multiple clock domains

can create non-obvious sensitivities. In our case, the GPU L2 cache (using the compute

clock) and the on-chip memory controller (using the memory clock) are in different clock

domains. Reducing compute frequency reduces the rate at which requests are delivered

from the L2 cache to the memory controller clock domain. For extremely memory bound

benchmarks with very poor L2 hit rates, slowing down compute frequency can hurt overall

performance. The left column in Figure 55 shows off-chip interconnect activity (icActivity)

for DeviceMemory. This application has an ops/byte demand of 2 with poor cache hit rate

in the L2, which would otherwise make this kernel memory bound. However, the right

column in Figure 55 indicates its high sensitivity to compute frequency, especially when

compute frequency is low since the effective bandwidth to the DRAM is reduced.

 The lesson here is that multiple clock domains introduce performance sensitivities

that are non-obvious and must be amenable to measurement. In addition, off-chip data

movement activities and operational intensity must be monitored.

 130

Figure 55: Impact of clock domains on compute frequency sensitivity for memory-

intensive workloads.

In summary, hardware balance is sensitive to several expected as well as non-

obvious behaviors in the hardware platform. Our analysis indicates that achieving hardware

balance requires periodically assessing the sensitivity of performance to the hardware

tunables accompanied by proportional changes to the values of the hardware tunables. The

next section describes the development of sensitivity predictors for this purpose.

7.3 Compute and Memory Bandwidth Sensitivity Predictors

 Our goal is the coordinated determination of the power consumption of the GPU

cores and power consumption of the memory system. Power consumption of the GPU cores

is controlled through the control of the number of CUs and the frequency (and hence

voltage) of the CUs. The power consumption of the memory system is controlled through

the memory bus frequency. We develop models to predict the sensitivity of the application

to compute throughput (set by active CU count and CU frequency) and memory bandwidth

(set by memory frequency) configurations. The predictors are developed based on

measurement data from a wide range of simple and complex applications with one or many

kernels for a total of 25 application kernels representing a variety of behaviors common in

the domain of HPC and scientific computing.

0%

20%

40%

60%

80%

100%

icActivity ComputeFreqSensitivity

P
er

ce
n

ta
g
e

 131

7.3.1 Performance Sensitivity Measurements

 We executed the kernels and applications multiple times for multiple iterations

across an entire design space of 450 distinct compute and memory configuration states over

8X range of CUs, 3.33X range of CU frequency and 2.89X range of memory bandwidth.

More details of the experimental methodology are explained in Chapter 4.2.2.1.1. For each

hardware configuration, we measured average execution time for each kernel across all the

iterations. Sensitivity is computed for each hardware configuration. CU sensitivity is

computed as the ratio of i) relative change in execution times, to ii) relative change in

number of active CUs. CU frequency and memory bandwidth are set to their maximum

possible values in the hardware so that they are not the limiting factors. Sensitivities to CU

frequency and memory bandwidth are similarly computed. Finally, the sensitivity to the

number of CUs and CU frequency are aggregated into a single compute throughput

sensitivity metric. The sensitivity models are then derived from these measurements as

follows.

Table 7: Performance counters and metrics for Harmonia.

 132

7.3.2 Performance Counter Correlation

 Together with performance, we recorded an average of 50+ performance counters

over all iterations of each kernel and application, resulting in one data point for every

counter for each kernel at every hardware configuration. We normalized all counter values

to a percentage of its maximum possible value in order to ensure proper weighted

representation of all events in the training data. For a total of 25 kernels, this resulted in a

total of 11250 vectors of performance counter values (25x450). We found that among

multiple application kernels the performance counters vary quite a bit as expected.

However, for the same kernel across multiple hardware configurations there are generally

only small variations around the nominal values. Therefore, each performance counter

value for a kernel is replaced by its average value across all hardware configurations. This

enabled us to reduce the total training data set to 2000 points across all kernels. Each such

vector is associated with its corresponding compute throughput sensitivity and memory

bandwidth sensitivity.

7.3.3 Sensitivity Predictor Creation

Across the 2000 points we performed a correlation analysis between measured

sensitivities and performance counters across all kernels using linear regression.

Coefficient values greater than 0.5 or less than -0.5 are considered a strong positive or

negative correlation, respectively [11]. From correlation analysis we selected a few

counters that capture behaviors identified in Section 7.2 as shown in Table 7. These are

used to construct a linear regression model for compute throughput and memory bandwidth

sensitivity. The correlation coefficient using this combination of metrics was 0.91 for

compute throughput sensitivity and 0.96 for bandwidth sensitivity respectively. Accuracies

of these predictors are discussed in Section 7.6. Table 8 represents the coefficients of the

linear regression models. Two metrics are not directly available in hardware performance

counters, and are calculated as follows.

 133

𝑖𝑐𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑦 =
𝑅𝑒𝑎𝑑𝑊𝑟𝑖𝑡𝑒𝑀𝑒𝑚𝐵𝑊

𝑃𝑒𝑎𝑘𝑀𝑒𝑚𝐵𝑊

Where,

𝑃𝑒𝑎𝑘𝑀𝑒𝑚𝐵𝑊

= 𝑀𝑒𝑚𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ∗ 𝐵𝑢𝑠𝑊𝑖𝑑𝑡ℎ ∗ 𝑛𝑢𝑚𝑀𝑒𝑚𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

∗ 𝐺𝐷𝐷𝑅5𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑅𝑎𝑡𝑒

To determine compute to memory intensity of an application online, we use the following

metric:

𝐶𝑜𝑚𝑝𝑡𝑜𝑀𝑒𝑚𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
%𝑡𝑖𝑚𝑒 𝐺𝑃𝑈 𝑖𝑠 𝑏𝑢𝑠𝑦 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑣𝑒 𝐴𝐿𝑈 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

%𝑡𝑖𝑚𝑒 𝐺𝑃𝑈 𝑖𝑠 𝑏𝑢𝑠𝑦 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑚𝑒𝑚𝑜𝑟𝑦 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

=
(𝑉𝐴𝐿𝑈𝐵𝑢𝑠𝑦 ∗ 𝑉𝐴𝐿𝑈𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛)/100

𝑀𝑒𝑚𝑈𝑛𝑖𝑡𝐵𝑢𝑠𝑦

Table 8: Harmonia sensitivity model and parameters.

7.4 Harmonia: Coordinated Two-Level Power Management

 Based on the preceding analysis, we find that an effective approach to achieving

hardware balance involves two steps: i) employing sensitivities to the hardware tunables

Bandwidth Sensitivity Compute Sensitivity

Counter or Metric Coefficient Counter or Metric Coefficient

Intercept -0.42 Intercept 0.06

VALUUtilization 0.003 ComptoMemIntensity 0.007

WriteUnitStalled 0.011 NormVGPR 0.452

MemUnitBusy 0.01 NormSGPR 0.024

MemUnitStalled -0.004

icActivity 1.003

NormVGPR 1.158

NormSGPR -0.731

 134

to make larger adjustments to the hardware configurations, and ii) fine tuning the

configurations based on performance feedback to further improve hardware balance. We

refer to the former as coarse-grain (CG) tuning and the latter as fine-grain (FG) tuning. As

the number of hardware power configurations grows in future processors we expect such

Harmonia Algorithm

1. 1: while TRUE do

2: /*Monitoring Loop*/

3: /* Online Sensitivity Computation Loop */

4: ComputeThroughputSensitivity = model1

5: BandwidthSensitivity = model2

6: Bin sensitivities to HIGH, MED, LOW

7: /*Coarse-Grain tuning (CG Block)*/

8: if(sensitivity) changed

9: if(CU or comp_freq or mem_freq) changed in

previous iteration

10: Revert_prev_decision() /*sensitivities artificially

changed due to configuration change*/

11: else /*Application phase change

12: SetCU_Freq _MemBW(sensitivity_bin);

13: else /*case of same sensitivities*/

14: /*Fine-Grain tuning (FG Block)*/

15: if(VALUBusy gradient)>=0

16: Decrement state; //CU, CU_freq,or BW

17: elseif(VALUBusy gradient)<0

18: Increment state

19: CountDithering()

20: if(dithering>max) converge to last state with zero

gradient

21: end if

22: endif

23: Run at config identified

23: Sleep.time(SAMPLING_INTERVAL);

24: end while

2.

Figure 56: Harmonia algorithm overview.

 135

coarse-fine schemes will be increasingly effective. Figure 56 specifies the Harmonia

algorithm.

7.4.1 Harmonia: Structure

 Harmonia operates as a system software policy overlaid on top of the baseline

HD7970 power management system. As described in Chapter 3.4.2, the baseline policy

manages power to just the power states mentioned in Section 7.5. Our implementation is

organized into i) a monitoring block that samples the performance counters at application

kernel boundaries, ii) a coarse-grain decision block CG that calculates memory bandwidth

and compute throughput sensitivities based on Table 8 and brings the hardware

configuration to the “vicinty” of the balance point, and iii) a fine-grain tuning block FG

that fine-tunes configurations to further improve balance, based on real time performance

feedback. Although the monitoring and decision blocks of Harmonia can operate at

periodic smaller intervals, due to performance counter limitations in the current device, we

monitor and calculate sensitivities at kernel boundaries and use each kernel’s historical

data from previous iterations to predict hardware configurations for the same kernel in the

next iteration. For applications that use iterative convergence algorithms and invoke

multiple kernels multiple times, Harmonia records the last best hardware configuration for

all kernels within that application. This state is the initial state for the subsequent iteration.

Such iterative behaviors are quite common in HPC and scientific applications.

7.4.2 Harmonia: Algorithm

 In this section, we describe the details of the Harmonia algorithm and its different

components.

7.4.2.1 Sensitivity based Coarse-Grain (CG) Adjustments

 Within the CG block, Harmonia implements a sensitivity binning policy to bin

measured compute and bandwidth sensitivities into three bins of high, medium and low. In

our case the thresholds for the three bins are set to 70% and 30% of the maximum, driven

 136

by empirical measurements of ops/byte across all benchmarks. The change in actual values

of the hardware tunables is proportional to the sensitivity value. Periodic enforcement of

hardware configurations can artificially change sensitivities and dampen natural workload

behavior. To prevent this and isolate sensitivity changes due to workload from those due

to changes in the hardware tunables, we only execute CG when there has been no changes

in the hardware tunables prior to the sensitivity change.

7.4.2.2 Performance Feedback Driven Fine-Grain (FG) Tuning

 Predictive techniques using sensitivity models provide guidance for making “near-

optimal” adjustments to the power states of the GPU. However, during run-time power

management, closed-loop performance feedback is essential for making fine grained

adjustments for each application to achieve the most effective hardware balance. This is

especially important when there are mispredictions in the sensitivities or there are longer

term changes in learned behaviors that are used to train the sensitivity predictors.

Harmonia’s FG block fine-tunes each of the hardware tunables based on performance

feedback using the gradient of core utilization. The idea is to reduce power when the

gradient is positive or zero and increase power when the gradient is negative so as to

eventually settle at the balance point (minimum configuration with 0 gradient). To prevent

oscillation, the configuration is set to the last best state after a certain number of oscillations

to enable convergence prior to the next workload phase. In our implementation, utilization

is measured with the Vector ALU Busy (VALUBusy) performance counter—this counter

represents the percentage time the GPU is processing ALU instructions and is strongly

correlated to execution time performance as shown in Figure 57. Here X-axis indicates

%VALUBusy and Y-axis indicates performance normalized to the minimum hardware

configuration.

 137

Figure 57: Performance sensitivity of Vector ALU Busy (VALUBusy) to number of

active CUs (left) and memory bandwidth (right).

7.5 Experimental Setup

 We use an AMD Radeon HD7970 discrete graphics card with 32 compute units as

the baseline for all our experiments and analysis. The possible hardware configurations in

the default HD7970 are provided in Table 9. In our analysis there are 450 possible

combinations of the number of active CUs, compute frequency, and memory bus frequency

as described in Chapter 4.2.2.1.1. When varying compute frequency, voltage is also scaled

as noted in Table 9. When scaling memory bus frequency, voltage was fixed at the

hardware default value due to platform constraints. All inactive CUs are power gated.

Hardware performance counters were monitored using the GPU performance counter

library CodeXL running in Red Hat Linux OS [9]. We implemented Harmonia as a run-

time system software policy by layering it on top of the baseline AMD HD7970 power

management system.

 We selected 14 applications with many kernels, covering a wide range of

typical applications to reflect the needs of the HPC and scientific computing community.

They include Exascale HPC proxy apps (CoMD, XSBench, miniFE) [15][46], Graph500

[81], B+Tree (BPT) [28], CFD, LUD, SRAD and Streamcluster from Rodinia [18][19], and

Stencil, Sort, SPMV, MaxFlops and DeviceMemory from SHOC [30]. We ran each

 138

application multiple times and recorded the average to eliminate run-to-run variance in our

hardware measurements.

Table 9: GPU DVFS states for AMD HD7970 dGPU.

GPU DVFS-

state

Freq

(MHz)

Voltage

(V)

DPM0 300 0.85

DPM1 500 0.95

DPM2 925 1.17

We measured performance as the total execution time of the application running on

the GPU. Power was profiled using a National Instruments data acquisition (DAQ) card

(NI PCIe-6353), with a sampling frequency of 1KHz. Total GPU card power

(GPUCardPwr) was measured at the PCI-e connector interface between the motherboard

and the GPU card and it includes power of the GPU chip, its on-chip memory controller,

DDR bus transceivers (PHYs), off-chip GDDR5 memory, fan, voltage regulators, and other

miscellaneous components on the card. We also separately measured the GPU chip power

(GPUPwr) which includes power of the GPU compute, integrated memory controller, but

not the PHYs. Through detailed measurements and evaluation under idle conditions, we

characterized the “rest of the card power” (OtherPwr) as power due to the fan, voltage

regulators, board trace losses and other minor discrete components. To ensure a constant

OtherPwr we fixed the fan speed to the highest RPM at all times, independent of the

workload. Based on these measurements, we derived memory power (MemPwr) as the

power consumed by off-chip memory and DDR PHYs that are integrated within the GPU

chip. Due to platform measurement constraints, memory controller power is not included

 139

in measured memory power, instead it is part of GPUPwr, but it accounts for only about

3% of the overall memory power in our case.

MemPwr = GPUCardPwr – GPUPwr – RestOfCardPwr

7.5.1 Metrics

We note that HPC applications demand minimal degradations in execution time.

Consequently, our goal is to minimize energy expenditure while keeping execution time

constant (at best). This can be achieved by improving energy efficiency (ops/joule). Under

a fixed execution time constraint it is equivalent to improving power efficiency. To capture

this relative importance of both time and energy we can utilize metrics of energy-delay

Figure 58: Performance, energy, energy-delay2 and energy-delay comparisons

for LUD and DeviceMemory. Energy efficiency leads to significant performance.

0.00

0.50

1.00

1.50

2.00

Performance Energy Energy-Delay^2 Energy-Delay

higher is lower is
better

lower is
better

lower is
better

4.21

DeviceMemory

0.00

0.50

1.00

1.50

2.00

Performance Energy Energy-Delay^2 Energy-Delay

best energy best ED^2 best performance

higher is lower is
better

lower is
better

lower is
better

5.75

LUD

 140

(ED) and energy-delay square (ED2). The latter in particular is commonly used in HPC

application analysis [67][111].

 Figure 58 shows the following analysis of the behavior of these metrics. We

performed an exhaustive design space exploration across all 450 hardware configurations

for LUD and DeviceMemory searching for the configurations that i) minimize energy, ii)

minimize ED2, or iii) maximize performance, as indicated by the three bars in each group

of columns. For each of these three configurations we noted the corresponding measured

performance, energy, ED2 and ED. All results are normalized relative to the best

performing configuration. We found that the configuration optimizing for energy (1st bar)

would result in 69% and 66% performance loss for LUD and DeviceMemory, respectively,

compared to the best performing configuration (3rd bar). On the other hand, the

configuration optimizing for ED2 (2nd bar) has only 1% performance penalty but still

realizes 60% and 38% reduction in energy compared to the energy optimized case. Thus,

we use ED2 as the main metric for evaluation motivated by its wide usage in HPC

application analysis [67][111] and note that using ED here yielded similar conclusions.

7.6 Results

 All results were obtained from commodity hardware and are normalized to the

baseline HD7970 power management system discussed in Section 3.4.2. All averages

represent the geometric mean across the applications. Finally, we also compare Harmonia

with an oracle scheme optimized for ED2 based on exhaustive online profiling of every

iteration of each kernel across all of the 450 possible hardware configurations (See Chapter

4.2.2.1.1). While the oracle technique provides a useful basis for evaluation, it is

impractical as a power management strategy.

 141

Figure 59: Overall combined performance and energy gain from Harmonia, using

the ED2 metric.

7.6.1 Performance, Power, and Energy Efficiency

 Figure 59 and Figure 60 illustrate improvements in ED2 and energy respectively

relative to the baseline and the oracle. In addition, we also demonstrate the performance of

just CG tuning. Harmonia is represented by the "FG+CG" bars. Due to the consistent

availability of thermal headroom, the baseline power management always ran at the boost

frequency of 1GHz for all applications. We show two geometric means to ensure results

are not skewed by the stress benchmarks MaxFlops and DeviceMemory, which represent

extreme cases of compute and memory limiting behavior respectively. Geomean_2 which

is the last set of bars excludes those two stress benchmarks. Harmonia realizes an average

ED2 improvement of 12% compared to the baseline, with up to 36% savings for BPT. Of

this 12% ED2 savings, about 6% is due to CG tuning, with the remaining from the fine-

grain tuning. In addition, Harmonia is typically within 3% of the oracle. Interestingly, we

observe that the energy savings is almost identical between the CG and FG+CG schemes,

1.69

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

N
o

rm
al

iz
ed

 E
D

^2

Baseline ED^2_Oracle ED^2_CG ED^2_FG+CG

 142

with a contribution of only 2% coming from the FG loop. However, FG tuning is important

for preserving performance as described next.

Figure 60: Overall energy gain from Harmonia.

In Figure 61 we see an average loss in performance of 0.36% across all the

applications using Harmonia (FG+CG) excluding MaxFlops and DeviceMemory, with up

to 3.6% maximum slow-down in Streamcluster. This illustrates the efficacy of Harmonia

in optimizing energy efficiency under performance constraints by pushing the hardware to

operate at its balance point for each application’s kernel. We also note that employing CG

tuning alone results in an average performance loss of 2.2% compared to the baseline, with

up to 27% maximum slow-down for Streamcluster. This is due to the lack of any

performance feedback in CG tuning. Thus, while the use of CG tuning alone achieves

energy savings comparable to Harmonia, the performance-driven FG tuning loop ensures

much better performance across all applications and avoids outliers resulting in better

overall ED2 gains.

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

N
o

rm
al

iz
ed

 E
n

er
gy

Baseline Energy_CG Energy_CG Energy_FG+CG

 143

Figure 61: Overall performance from Harmonia.

There are three applications that are worth noting here. They are BPT, CFD and

XSBench. These applications see an improvement in performance with Harmonia. BPT sees

an 11% performance gain, while CFD and XSBench each realize 3% performance

improvement. In the baseline hardware configuration, we observed heavy cache thrashing

and pollution accompanied by significant memory divergence. Thus lowering the number

of active CUs via power gating also improves performance by reducing interference in the

L2 cache. Harmonia captures the optimal compute to memory balance point via the

sensitivity to CU count for these applications.

We also observe an average power savings of 12% across the entire GPU card, with

the maximum savings of 19% for Stencil. Figure 62 shows the average total power savings

for each application. During application phases less sensitive to memory bandwidth such

as EAM_Force_1 in CoMD, reducing memory bus frequency just enough without

increasing memory related stalling and exposing memory access latency results in

reduction of memory bus power and thereby savings of the overall board power -

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Baseline Performance_Oracle
Performance_CG Performance_FG+CG

 144

GPUCardPwr. Notice that more memory power saving would be possible if HD7970’s

memory interface supports multiple voltages. On the other hand, AdvanceVelocity in

CoMD is memory intensive with moderate compute demands and Harmonia finds the

balance points by reducing compute power without performance loss. Similarly, due to

poor thread level parallelism (kernel occupancy of 30%) in Bottomscan, the main kernel

in Sort, the memory bus frequency could be reduced down to 475MHz without hurting

performance with a 12% overall GPU card power savings.

Figure 62: Overall power savings from Harmonia.

7.6.2 Adaptation Behavior

In this section, we explain the adaptation behavior of Harmonia in response to

workload changes.

 Intra-kernel Phase Changes: Figure 63 illustrates the time-varying workload

behavior of the main kernel BottomStepup in Graph500. The Y-axis indicates the total

number of compute instructions (VALUInsts), memory reads (VFetchInsts) and memory

0.75

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

N
o

rm
al

iz
ed

 P
o

w
er

Baseline Power_Oracle Power_CG Power_FG+CG

 145

writes (VWriteInsts) executed in eight successive iterations, each iteration lasting

anywhere from 0.9 to 5.6 seconds. This kernel is performing a Breadth First Search. Note

that the raw total number of instructions across iterations can vary significantly. The

memory fetch unit was active anywhere from 40% to 80% of the total kernel execution

time. The compute sensitivity was high 95% of the time and branch divergence was

significant. As a result Harmonia mostly utilized all 32 CUs and 1GHz compute frequency

to speed up execution of threads serialized by branch divergence. However, bandwidth

sensitivity changed frequently between medium and low as the predictor adapted to input

argument changes and consequent changes in demand for memory bandwidth. Thus,

through CG and FG tuning, memory frequency dithered between 925MHz and 775MHz.

Figure 64 shows the distribution of time spent at the different memory bus frequencies in

Harmonia over the kernel’s entire execution.

Figure 63: Behavior of Graph500.BottomStepUp over time.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8

o

 f
in

st
ru

ct
io

n
s

Iteration no.

VWriteInsts VFetchInsts VALUInsts

 146

Figure 64: Memory bus frequency residency change as time progresses in

Graph500.BottomStepUp.

Figure 65: Residency of the hardware tunables in Graph500.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 6 11 16 21 26 31

P
e

rc
e

n
ta

ge
 r

e
si

d
e

n
cy

 in

d
if

fe
re

n
t

m
e

m
o

ry
 b

u
s

fr
e

q
u

e
n

ci
e

s

Time (seconds)

mem775MHz mem925MHz mem1375MHz

0%

20%

40%

60%

80%

100%

#CUs CU Freq Mem Freq

P
er

ce
n

ta
ge

 h
ar

d
w

ar
e

co
n

fi
gu

ra
ti

o
n

re

si
d

en
cy

(32CU,1GHz,1375MHz) (28CU,900MHz,1225MHz)

(24CU,800MHz,1075MHz) (20CU,700MHz,925MHz)

(16CU,600MHz,775MHz) (12CU,500MHz,625MHz)

(8CU,400MHz,475MHz) (4CU,300MHz,475MHz)

 147

 Inter-kernel Phase Changes: We observe that the ops/byte value of Graph500

varies from 0.54 to 264. Figure 65 shows the fraction of time each hardware tunable spent

in each power state as Harmonia moved the hardware towards the right balance point. For

this application due to high branch divergence, Harmonia tunes to the maximum compute

frequency (single state in CUFreq column). This was accompanied by tuning of the CU

count and memory bandwidth that reduced power. The #CUs column shows that about

90% of the time 32 CUs were used; the remaining time was spent in dithering between 4,

8, 12 and 16 CUs based on time-varying ops/byte. The memory bus frequency varied

between 1375MHz (25% of the time), 925MHz (23%), 775MHz (42%) and 475MHz (8%)

as the operational intensity of the three kernels in Graph500 varied from lows of 0.64

ops/byte to bursts of 264 ops/byte.

Figure 66: Relative GPU and memory power consumption.

Coordinated Power Sharing: Figure 67 shows the GPU and memory power

consumption across a subset of the applications with both baseline and Harmonia (HM),

relative to the measured total power for GPU and memory. Here the total power is

0.00

0.20

0.40

0.60

0.80

1.00

1.20

P
er

ce
n

ta
ge

RelMem RelGPU

 148

normalized with respect to the baseline. Power due to remaining elements on the board are

not shown since they are roughly constant. We observe that out of the average 12% power

savings, 64% of the savings come from varying the GPU compute configuration. The

remaining 36% comes from changing the memory bus frequencies. We believe that it is

feasible to achieve far more power savings from memory configuration changes if voltage

scaling is applied while lowering bus speeds. In our current setup we were not able to scale

voltage of the memory bus interface.

Another interesting observation is that most often, Harmonia adjusted CU counts

and memory bus frequencies rather than the full range of compute frequencies. This

behavior was consistent across all applications. In fact compute frequency and voltage

scaling alone achieved only an average ED2 gain of 3% with a 1% performance loss

compared to the baseline. The reason is two-fold: i) parallel execution and data movement

demands are inherent to the application and govern demanded ops/byte values which vary

widely across applications, thus making available hardware resources in excess of these

demands is not helpful, and ii) as explained in Section 7.2.3, architectural clock domain

crossings reduce opportunities for compute frequency to improve energy efficiency for

memory intensive applications.

Algorithm Convergence and Relative Impact of CG vs. FG Tuning: Figure 67

shows the relative contributions from CG and FG tuning for energy efficiency

improvement across a subset of applications. In most applications CG tuning requires only

one iteration. Even in applications with a small number of iterations (insufficient for

feedback driven FG tuning) CG is very effective in rapidly reaching a lower power

operation point often in a single iteration. An example is XS-Bench which executes only 2

iterations for each of its kernels. Even here, Harmonia is able to save 4% overall GPU card

power while improving overall application performance by 2%, resulting in 9% energy

efficiency gain. However, in certain cases such as LUD, SPMV, due to prediction outliers

or lack of performance feedback, CG can omit additional power savings opportunity or

 149

degrade performance. In such cases FG tuning plays a crucial role. The FG step typically

takes an additional 3 to 4 iterations to converge. In HPC applications, many kernels

represent iterative computations that typically execute several times to converge with

minimal algorithmic error. For such kernels, the overhead of FG tuning is amortized over

successive kernel invocations. Therefore, both steps are necessary in order to have

Harmonia cover a broad range of workloads.

Figure 67: Relative contributions of CG vs. FG in Harmonia.

 Sensitivity Predictors: The prediction error between measured and estimated

bandwidth and compute sensitivities is 3.03% and 5.71% respectively across all the

applications used in this study. Since our goal is to develop simple, effective and practical

sensitivity predictors that can be easily implemented in hardware, we found that simple

linear regression based sensitivity models such as the ones proposed in this thesis combined

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
el

at
iv

e
C

o
n

tr
ib

u
ti

o
n

 o
f

C
G

 a
n

d
 F

G
 in

H

ar
m

o
n

ia

FG CG

 150

with an effective binning methodology can significantly help improve the accuracy of the

predictors.

7.6.3 Summary of Key Insights

In this section we summarize our main results and insights:

1. Compute and memory behavior are fundamentally performance coupled.

Optimizing only compute or memory behavior has limited benefits. It is necessary

to balance the time and energy costs of compute and memory to improve energy

efficiency with minimal performance loss.

2. Scaling parallelism (number of active CUs) and memory bandwidth is more

effective than scaling CU frequency since it has a greater impact on ops/byte

behaviors. Note that modern systems rely primarily on scaling compute frequency

for energy efficiency gains.

3. Clock domain crossings and interconnect sizing have non-trivial impact on energy

efficiency.

4. Feedback driven fine-grained adjustments are effective in correcting coarse grain

tuning mispredictions or longer-term changes in learned behaviors.

5. Improving energy efficiency can lead to improvements in execution time due to

reduction of interference in shared resources, e.g., cache or interconnect.

6. With advanced packaging technologies, compute and memory will share tighter

package power envelopes, e.g., compute with stacked memory [74]. Coordinated

power management and the concept of hardware balance will become more

important in such systems.

7.7 Conclusions

 This component of the thesis applies the notion of hardware balance to the

development of a practical scheme for the coordinated management of compute and

memory power in a high performance discrete GPU platform. By tracking the time-varying

 151

relative compute and memory demands of applications, the corresponding hardware power

configurations of the core and memory system can be set to reduce overall platform power

and thereby improve energy efficiency with minimal compromises in performance. This

research work was published at International Symposium of Computer Architecture (ISCA)

2015 [89].

 152

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

 Following the end of Dennard scaling, the major system challenge facing the

industry is to sustain performance scaling with Moore’s Law while preparing for the

transition to post-CMOS technologies. As W. Dally noted [29], performance scaling in the

post-Dennard dark-silicon era will involve improving efficiency of power and energy usage

instead of clock speed scaling. The modern industry shift towards heterogeneous

computing is largely motivated by energy and power efficiencies. While such tightly

coupled systems benefit from reduced latency and improved performance, they also give

rise to new management challenges due to phenomena such as physical asymmetry in

thermal and power signatures between the diverse elements and functional asymmetry in

performance.

 The objective of this dissertation is to understand the relationships between the

physical phenomena (power and thermal coupling), functional behaviors (direct and

indirect performance coupling) and their impact on system performance, and utilize that

understanding towards proposing abstractions and guiding principles towards managing

such coupling effects. Towards this end, the final chapter of this dissertation summarizes

the aspects of various coupling effects in modern heterogeneous processors, along with key

insights on coordinated management to tackle such effects while improving system level

performance, power efficiency and energy. This chapter also identifies related open

problems that merit additional work in future.

8.1 Summary of Key Contributions

 This thesis demonstrates the concepts of thermal coupling and performance

coupling and the needs for coordinated management of functional and physical resources

of a heterogeneous system. It shows that this interaction between processor physics and

 153

performance is not an artifact of an architecture instance, but is fundamental to the

operation of many core and heterogeneous architectures.

Specially, following subsections describe the key contributions of this dissertation

research.

8.1.1 Analysis and Abstractions of New Management Challenges

One of the main contributions of this thesis is analyzing the interactions between physics,

such as heat transfer and power delivery, and system level performance in a heterogeneous

processor. Our studies in this research point out that various forms of coupling effects

between major subsystems in a heterogeneous processor (CPU, GPU, memory) are

beginning to dominate energy, power and performance efficiencies. This phenomenon will

become more pronounced at future technology nodes as die sizes shrink and the trend

towards Systems-on-Chip style processors grows with more components getting

integrated. We illustrate the distinct and asymmetric power and thermal signatures of the

various integrated elements that exist in modern processors, which is turn causes unequal

thermal coupling effects among multiple elements of the processor. We also demonstrate

the functional dependencies and performance coupling between diverse compute and

memory subsystems of the chip. This conceptual understanding forms the foundation of

the thesis as well as opens the door to many open problems as described in the future work

Section 8.2.

8.1.2 Characterization of Emerging Classes of Applications

This dissertation performs an in-depth characterization of the emerging class of compute

applications on integrated CPU-GPU processors as well as high performance GPUs. We

show that, unlike traditional applications that are suitable for a particular device, emerging

compute applications require cooperative execution of both CPU and GPU cores with time-

varying redistribution of the compute intensities. In addition, we also illustrate that at any

given time, compute throughput and bandwidth demands of an application must match the

 154

hardware compute and memory costs in order to operate most efficiently. Any excess

available bandwidth than the bytes transferred is a waste of power or hardware cost without

any benefit in performance. This highlights the need for coordinated management of the

power states and hardware configurations of modern heterogeneous processors. The

remaining contributions focus on building guiding principles, metrics and power

management algorithms to manage the interactions between various types of coupling,

workload execution profiles and optimize overall system level performance, power and

energy under various constraints.

8.1.3 Models and Run-time Metrics for Coordinated Management

 One of the key contributions of this thesis is the demonstration of simple, practical

and effective ways of dealing with the different types of coupling effects in modern

heterogeneous processors through actual hardware measurements and implementation. To

this end, the first step is to identify run-time parameters and metrics that can accurately

model the effects of thermal coupling and performance coupling between multiple compute

or compute and memory elements of the heterogeneous architecture. This dissertation

establishes criteria for when thermal coupling effects are detrimental in an APU and must

be balanced with the needs of performance coupling. It identifies performance metrics and

their statistical behavior that captures the point of performance dependency of the GPU on

the CPU, termed as critical CPU P-state, in order to facilitate computation both using an

offload as well a concurrent computation programming model.

 The dissertation also identifies and categorizes behaviors that have a substantive

impact on frequency sensitivity of the CPU and GPU in an APU and uses regression

techniques to construct an analytic model of frequency sensitivity. Finally, it illustrates that

hardware balance is sensitive to several expected as well as non-obvious behaviors in the

hardware platform. It derives online predictors for assessing the performance sensitivity of

application kernels to each of the hardware tunables (#CUs, compute frequency, memory

bandwidth) in a tightly coupled high performance GPU and memory system.

 155

8.1.4 Coordinated Management under Global Constraints

Power management solutions which do not understand and account for the

interactions between power delivery, thermal coupling and performance coupling can have

undesired consequences on system level metrics such as performance and energy

efficiency. Through real-hardware measurements, this thesis demonstrates that effective

power management in heterogeneous processors requires coordinated management across

physically and functionally diverse compute and memory components. We demonstrate

this through the development, implementation, and evaluation of chip-scale coordinated

power management algorithms to optimize system level metrics such as performance and

energy efficiency under global constraints such as thermal limits and power budgets.

First, we propose a dynamic power-management approach called cooperative

boosting (CB) to allocate power dynamically between the CPU and GPU in a manner that

balances thermal coupling against the needs of performance coupling by modifying the

CPU P-state at run-time. Here goal is to optimize performance under the given power and

thermal constraints of the die. Next, we propose coordinated management of the power

states in both the CPU and GPU that encapsulates CPU-GPU frequency sensitivity models

along with power management algorithms, DynaCo, to make the coupled operation as

energy efficient as possible with minimal performance impact. Finally, we propose a

coordinated two-level power management scheme, Harmonia, to tune platform balance

between compute throughput and memory bandwidth by i) a coarse-grain adjustment of

the GPU and the memory power states based on online sensitivity prediction, ii) followed

by fine-grain tuning through close-loop performance feedback.

8.2 Future Work

 This thesis establishes the concepts of thermal coupling and performance coupling

and apply these concepts to develop novel power management algorithms for tackling the

 156

various coupling effects in heterogeneous CPU-GPU and GPU-Memory systems. Here we

explore processor physics on-die and its interactions with performance and power

management. However, the concepts developed in this thesis can be applied to many other

potential areas in different forms, factors and packages, likely leading to new and valuable

discoveries. A few important future research directions are discussed in the following

subsections.

8.2.1 Thermal and Performance Coupling Management in CPU-GPU-
Memory Systems

 One of the natural extensions of the work done in this thesis is applicability of the

thermal and performance coupling analysis to a heterogeneous system with integrated

CPU, GPU and memory (DRAM) subsystems. In future, with the advent of High

Bandwidth Memory (HBM), Hybrid Memory Cube (HMC) and other die stacking memory

technologies [93][39][56], heterogeneous architectures with integrated CPU, GPU and

memory will emerge [131] sharing the package or chip-level thermal design power

envelope (TDP). The integration of processors or other computing logic within the 3D die-

stacked memories enables processing-in-memory (PIM) capabilities within each memory

module. The advantage of this organization is the resultant high bandwidth, low latency

memory accesses from the in-stack processing layer. However, 3D stacking of the

processor layer and the memory layers incurs high power density with less efficient heat

dissipation. This can potentially lead to adverse thermal coupling affects impacting system

level power efficiency and performance. Power states in such heterogeneous die-stacked

systems must be coordinated to mitigate the detrimental effects of thermal coupling. On

the other hand, data placement and compute dispatch management can lead to various

degrees of performance coupling in such systems. Thus, effective sharing of the power and

thermal envelope between the memory system, the CPU and the GPU needs to be

investigated and is an important research direction for future.

 157

8.2.2 Thermal and Performance Coupling Management in
Datacenters

 Optimizing the performance of a machine within a power budget is an important

problem. The “machine” could be a single GPU consisting of multiple CUs or a single

node consisting of multiple sockets each consisting of a multi-core CPU system / or

multiple CPU cores, GPU cores and main memory. A machine could also consist of many

such nodes together in form of a data center/HPC cluster or a combination of many such

clusters. This thesis demonstrates the effects of performance coupling and functional

dependencies within the compute and memory elements of a single node system consisting

of a processor (CPU and/or GPU) along with its memory. The work in this thesis can be

expanded further to include multiple nodes in future systems. In HPC and Cloud

Datacenters, often a job is split among multiple nodes and there are data dependencies

between the tasks in each node. A node consuming high power due to the nature of tasks

its executing may heat up adjacent nodes leading to thermal coupling. If the effects of

thermal coupling are not managed carefully, it can lead to poor performance, higher cooling

needs, increased costs, or even fatal errors and reliability issues. Performance metrics and

models may be required to capture the effects of heat transfer among multiple nodes as

well as the data dependencies among them. One can optimize energy efficiency and

performance in this heterogeneous multi-node cluster by managing the complex

interactions among heat dissipation, heat transfer, power delivery, data dependencies and

power management.

8.2.3 Workload Scheduling and Computation Balancing in
Heterogeneous Systems

 Thermal capacity is a shared physical resource in the processor die where thermal

coupling from one component to another, both spatially and temporally, can have an

adverse performance impact on applications running on adjacent components. It becomes

quite difficult to provide resource fairness to the applications that are co-located. Modern

 158

power management algorithms do not account for resource sharing, co-location of

threads/applications, QoS demands and distinct time-varying thread/application level

priorities. Lack of this knowledge often results in reaching peak temperatures very quickly

resulting in undesired thermal throttling of the co-located workloads, thereby penalizing

applications leading to unfairness. This has a severe performance impact. In the future one

can explore the effects of workload placement and concurrent usage of CPU and GPU to

mitigate the effects of thermal coupling and manage chip-scale thermal capacity. For

example, if the thermal signature of a particular phase of a workload executing on the CPU

indicates much faster and higher heat dissipation as compared to it executing on the GPU,

run-time system software may decide to run that portion of the workload on the GPU

instead. Coordinated power management combined with system software driven workload

balancing and data placement is the key to performance and power efficiencies in future

heterogeneous processors.

8.3 Conclusions

 This thesis demonstrates via detailed measurement and analysis the relationship

among and time-varying workload execution profiles, aggressive DVFS-based multicore

power management, thermal capacity, thermal interactions, and functional dependencies

between heterogeneous compute and memory systems. It proposes abstractions with which

to articulate and reason about how physical behaviors affect system-level performance

(thermal signatures, and thermal pollution). This leads to the notions of performance and

thermal coupling and the understanding that power management must be aware of physical

behaviors to avoid detrimental impact on performance. This interaction between thermal

coupling and performance coupling is not an artifact of an architecture instance, but is

fundamental to the operation of many core architectures. We argue that this awareness has

the potential to exert significant influence over the design of future power and performance

management algorithms.

 159

REFERENCES

[1] Advanced Configuration and Power Interface (ACPI), Specification,

http://www.acpi.info/spec.htm

[2] AMD APP SDK, http://developer.amd.com/tools/heterogeneous-computing/amd-

accelerated-parallel-processing-app-sdk/.

[3] AMD PowerTune Technology whitepaper, 2010

[4] M. Arora, S. Nath, S. Mazumdar, S. Baden, D. Tullsen, "Redefining the Role of the

CPU in the Era of CPU-GPU Integration," IEEE Micro2012.

[5] M. Arora, S. Manne, I. Paul, N. Jayasena, D. Tullsen, “Understanding idle behavior

and power gating mechanisms in the context of modern benchmarks on CPU-GPU

integrated systems”, HPCA 2015.

[6] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A.

Patterson, W. L. Plishker, J. Shalf, S. W. Williams, K. A. Yelick, "The landscape of

parallel computing research: A view from Berkeley," Technical Report UCB/EECS-

183, 2006.

[7] R. Ayoub, R. Nath, T. Rosing, "JETC: Joint Energy Thermal and Cooling Management

for Memory and CPU Subsystems in Servers," HPCA 2012.

[8] Peter Bailis, V. J. Reddi, S. Gandhi, D. Brooks, M. Seltzer, "Dimetrodon: Processor-

level Preventive Thermal Management via Idle Cycle Injection," DAC 2011.

[9] P. Balaprakash, D. Buntinas, A. Chan, A. Guha, R. Gupta, S. Narayanan, A. Chieny,

P. Hovland, B. Norris, "An exascale workload study," SCC 2012.

[10] W.L. Bircher, L.K. John, "Complete System Power Estimation: A Trickle-Down

Approach Based on Performance Events," ISPASS 2007.

[11] W.L. Bircher, M. Valluri, J. Law, L.K. John, "Runtime Identification of

Microprocessor Energy Saving Opportunities," ISLPED 2005.

[12] BIOS and Kernel Developer’s Guide:

http://support.amd.com/us/Processor_TechDocs/42300_15h_Mod_10h-

1Fh_BKDG.pdf

[13] P. Blinzer, “The HSA System Architecture Requirements: An overview”, APU

2013.

[14] D. Brooks, M. Martonosi, "Dynamic thermal management for high-performance

microprocessors," HPCA 2001.

http://www.acpi.info/spec.htm
http://support.amd.com/us/Processor_TechDocs/42300_15h_Mod_10h-1Fh_BKDG.pdf
http://support.amd.com/us/Processor_TechDocs/42300_15h_Mod_10h-1Fh_BKDG.pdf

 160

[15] W.M. Brown, P. Wang, S.J. Plimpton, A.N. Tharrington, "Implementing molecular

dynamics on hybrid high performance computers- short range forces," Compute

Physics Communications 2011.

[16] M. Butler, L. Barnes, D.D. Sarma, B. Gelinas, Bulldozer, “An approach to

multithreaded compute performance”, IEEE Micro 2011.

[17] S. Che, B. Beckmann, S. Reinhardt, K. Skadron, “Pannotia: Understanding

Irregular GPGPU Graph Applications”, IISWC 2013.

[18] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, Lee S-H, K. Skadron,

"Rodinia: A benchmark suite for heterogeneous computing," IISWC 2009.

[19] S. Che, J. W. Sheaffer, M. Boyer, L. Szafaryn, K. Skadron, "A characterization of

the Rodinia benchmark suite with comparison to contemporary CMP workloads,"

IISWC 2010.

[20] L. Chen, X. Huo, G. Agrawal, "Accelerating map-reduce on a coupled CPU-GPU

architecture," SC 2012.

[21] M. Cho, C. Kersey, M. P. Gupta, N. Sathe, S. Kumar, S. Yalamanchili, S.

Mukhopadhyay, “Power Multiplexing for Thermal Field Management in Many Core

Processors,” IEEE Transactions on Components, Packaging, and Manufacturing

Technologies (TCPMT), 2013.

[22] J.W.Choi, D. Bedard, R. Fowler, R. Vuduc, “A Roofline Model of Energy”, IPDPS

2013.

[23] J. Choi, C. Cher, H. Franke, H. Haman, A. Weger, P. Bose, "Thermal-aware task

scheduling at the system software level," ISLPED 2007.

[24] A. K. Coskun, T. S. Rosing, K. C. Gross, "Temperature management in

multiprocessor SoCs using online learning," DAC 2008.

[25] A. K. Coskun, T. S. Rosing, D. A. Alonso, J. Leblebici, J. Ayala, "Dynamic thermal

management in 3D multicore architectures," DATE 2009.

[26] J. Cong, S. W. Chung, K. Skadron, "Recent Thermal Management Techniques for

Microprocessors," ACM Computing Surveys 2012.

[27] M. Curtis-Maury, A. Shah, F. Blagojevic, D. Nikolopoulos, B.R. de Supinski, M.

Schulz, "Prediction Models for Multi-dimensional Power-Performance Optimization

on Many Cores,” PACT 2008.

[28] M. Daga, M. Nutter, “Exploiting Coarse-grained Parallelism in B+ Tree Searches

on APUs”, 2nd Workshop on Irregular Applications: Architectures & Algorithms

(IA3), November 2012.

 161

[29] W. J. Dally, “It’s About the Power: An Architect’s View of Interconnect,” Keynote

IEEE IITC, 2012.

[30] A. Danalis, G. Marin, C. McCurdy, J. Meredith, P. Roth, K. Spafford, V. Tipparaju,

J. S. Vetter, “The scalable heterogeneous computing (SHOC) benchmarking suite”,

GPGPU 2010

[31] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, O. Mutlu, “Memory Power

Management via Dynamic Voltage/Frequency Scaling”, ICAC 2011.

[32] H. David, E. Gorbatov, U.R. Hanebutte, R. Khanna, C. Le, “RAPL: Memory Power

Estimation and Capping”, ISLPED 2010.

[33] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, R. Bianchini, “MemScale: Active

Low-Power Modes for Main Memory”, ASPLOS, 2011.

[34] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Weinisch, R. Bianchini, “CoScale:

Coordinating CPU and Memory System DVFS in Server Systems”, MICRO, 2012.

[35] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, R. Bianchini, “MultiScale:

Memory System DVFS with Multiple Memory Controllers”, ISLPED 2012.

[36] R. Dennard, et al., “Design of ion-implanted MOSFETs with very small physical

dimensions,” IEEE Journal of Solid State Circuits, vol. SC-9, no. 5, Oct. 1974.

[37] G. Diamos, A. Kerr, S. Yalamanchili, N. Clark, “Ocelot: A Dynamic Compiler for

Bulk-Synchronous Applications in Heterogeneous Systems”, PACT 2010.

[38] J. Donald, M. Martonosi, "Techniques for multicore thermal management:

classification and new exploration," ISCA 2006.

[39] “Elpida begins sample shipments of ddr3 sdram (x32) based on tsv stacking

technology,” http://www.elpida.com/en/news/2011/06-27.html, June 2011,

elpida2011.

[40] H. Esmaeilzadeh, E. Blem, R. Amant, K. Sankaralingam, D. Burger, “Dark Silicon

and the End of Multicore Scaling”, ISCA 2011.

[41] W. Felter, K. Rajamani, T. Keller, C. Rusu, “A Performance-Conserving Approach

for Reducing Peak Power Consumption in Server Systems”, ICS 2005.

[42] Folding At Home, http://folding.stanford.edu/English/Download

[43] W. Fung et al., “Dynamic warp formation and scheduling for efficient gpu control

flow”, MICRO 2007.

http://gpuocelot.gatech.edu/publications/ocelot-a-dynamic-compiler-for-bulk-synchronous-applications-in-heterogeneous-systems
http://gpuocelot.gatech.edu/publications/ocelot-a-dynamic-compiler-for-bulk-synchronous-applications-in-heterogeneous-systems

 162

[44] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B.C. Lee, S.

Richardson, C. Kozyrakis, M. Horowitz, “Understanding sources of inefficiency in

general-purpose chips”, ISCA 2010.

[45] V. Hanumaiah, S. Vrudhula, "Temperature- Aware DVFS for Hard Real-Time

Applications on Multicore Processors," IEEE Transactions on Computers 2012.

[46] M. Heroux, D. Doerfler, P. Crozier, J. Willenbring, H.C. Edwards, A. Williams, M.

Rajan, E. Keiter, H. Thornquist, R. Numrich, “Improving performance via mini-

applications”, SAND2009-5574

[47] S. Hong, H. Kim, “An Analytical Model for a GPU Architecture with Memory-

Level and Thread-Level Parallelism Awareness”, ISCA 2009.

[48] S. Hong, H. Kim, "An integrated GPU power and performance model," ISCA 2010.

[49] C. Hsu, W. Feng, "Effective dynamic voltage scaling through CPU-boundedness

detection," Lecture Notes in Computer Science 2004.

[50] Z. Hu, D. Brooks, V. Zyuban, and P. Bose, "Microarchitecture-level power-

performance simulators: modeling, validation and impact on design," MICRO 2003.

[51] W. Huang, E. Humenay, K. Skadron, M. R. Stan, “The need for a full-chip and

package thermal model for thermally optimized IC designs”, ISLPED 2005.

[52] W. Huang, M. Stan, K. Sankaranarayanan, R. Ribando, and K. Skadron, "Many-

core design from a thermal perspective," DAC 2008.

[53] W-L. Hung, Y. Xie, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, "Thermal-

Aware Allocation and Scheduling for Systems-on-a-Chip Design," DATE 2005.

[54] X. Huo, V.T. Ravi, G. Agrawal, "Porting irregular reductions on heterogeneous

CPU-GPU configurations," HiPC 2011.

[55] “ITRS. International technology roadmap for semiconductors”, 2012 update, 2013,

http://www.itrs.net.

[56] “JEDEC publishes breakthrough standard for wide I/O mobile DRAM,”

http://www.jedec.org/news/pressreleases/jedecpublishes- breakthrough-standard-

wide-io-mobile-dram, Jan2012.

[57] M. K. Jeong et al, “A QoS-Aware Memory Controller for Dynamically Balancing

GPU and CPU Bandwidth Use in an MPSoC”, DAC 2012.

[58] W. Jia, K. Shaw, and M. Martonosi, "Stargazer: Automated Regression-Based GPU

Design Space Exploration," IEEE ISPASS 2012

http://www.itrs.net/

 163

[59] I. Karlin, “LULESH programming model and performance ports overview”,

LLNL-TR-608824

[60] S. Kaxiras, M. Martonosi, "Computer Architecture Techniques for Power

Efficiency," Synthesis Lectures on Computer Architecture.

[61] O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither More Nor Less:

Optimizing Thread-level Parallelism for GPGPUs,” PACT 2013.

[62] S. Keckler,W. Dally, B. Khailany, M. Garland, and D. Glasco, “GPUs and the

Future of Parallel Computing,” IEEE Micro, 2011.

[63] A. Kerr, E. Anger, G. Hendry, and S. Yalamanchili. “Eiger: A framework for the

automated synthesis of statistical performance models.” 1st Workshop on Performance

Engineering and Applications (WPEA), held with HiPC 2012.

[64] G. Kestor, R. Gioiosa, D. Kerbyson, and A. Hoisie, “Quantifying the Energy Cost

of Data Movement in Scientific Applications,” in International Symposium on

Workload Characterization (IISWC), 2013.

[65] R. Kumar, D. Tullsen, N. Joupppi, P. Ranganathan, "Heterogeneous Chip

Multiprocessors," IEEE Computer 2005.

[66] E. Kursun, C. Y. Cher, "Temperature Variation Characterization and Thermal

Management in Multicore Architectures," IEEE Micro 2009.

[67] J. H. Laros III, K. T. Pedretti, S. M. Kelly, W. Shu, and C. T. Vaughan, “Energy

based performance tuning for large scale high performance computing systems,” HPC

2012

[68] J. Lee, H. Kim, "TAP: A TLP-aware cache management policy for a CPU-GPU

heterogeneous architecture," HPCA 2012.

[69] J. Lee, N. Kim, “Optimizing throughput of power- and thermal-constrained

multicore processors using DVFS and per-core power-gating”, DAC 2009.

[70] J. Lee, V. Sathish, M. Schulte, K. Compton, and N. Kim, "Improving throughput

of power-constrained GPUs using dynamic voltage/frequency and core scaling," PACT

2011.

[71] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu, “Improving GPGPU

Resource Utilization Through Alternative Thread Block Scheduling,” HPCA 2014.

[72] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M. Aamodt, V. J.

Reddi, “GPUWattch: Enabling energy optimization in GPGPUs”, ISCA 2013.

[73] J. Li and J. Martinez, "Dynamic power-performance adaptation of parallel

computation on chip multiprocessors," HPCA 2006.

 164

[74] G. Loh, “3D-stacked memory architectures for multi-core processors,” ISCA 2008.

[75] C. Luk, S. Hong, and H. Kim, "Qilin: Exploiting parallelism on heterogeneous

multiprocessors with adaptive mapping," MICRO 2009.

[76] M. Mantor, M. Houston “AMD Graphic Core Next”, AMD Fusion Developer

Summit 2011.

[77] A. Mclaughlin, I. Paul, J. Greathouse, S. Manne, S. Yalamanchili, “A Power

Characterization and Management of GPU Graph Traversal”. Architectures and

Systems for Big Data, 2014.

[78] G. Moore, “Cramming More Components onto Integrate Circuits”, Electronics,

magazine, 1965.

[79] R. Mukherjee and S. O. Memik, "Physical aware frequency selection for dynamic

thermal management in multi-core systems," ICCAD 2006.

[80] S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. P. Boyd, L. Benini, and D.

Micheli, "Temperature control of high-performance multi-core platforms using convex

optimization," DATE 2008.

[81] R.C.Murphy, K.B.Wheeler, B.W.Barett, J.A.Ang, “Introducing the Graph500”,

Cray User’s Group (CUG), May 2010.

[82] V. Narasiman et al. Improving GPU performance via large warps and two-level

warp scheduling, MICRO 2011

[83] S. Nussabaum, "AMD Trinity APU," HotChips 2012.

[84] “NVidia’s next generation compute architecture: Fermi”, Whitepaper.

[85] NVIDIA. Cuda reference manual.

http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/CUDA_Refere

nce_Manual_2.3.pdf, 2009.

[86] “The OpenCL Specification version 2.0”, Khronos OpenCL Workng Group.

[87] S. Pakin, C. Storlie, M. Lang, R. Fields III, E. Romero, C. Idler, S. Michalak, H.

Greenberg, J. Loncaric, R. Rheinheimer, G. Grider, J. Wendelberger, “ Power usage of

production supercomputers and production workloads”, SC 2012.

[88] Y. Y. Pan, T. Zhang, “Improving VLIW processor performance using three-

dimensional (3d) DRAM stacking,” ASAP 2009.

[89] I. Paul, W. Huang, M. Arora, S. Yalamanchili, “Harmonia: Balancing compute and

memory power in high performance GPUs”, ISCA 2015.

 165

[90] I. Paul, S. Manne, M. Arora, W.L. Bircher, S. Yalamanchili, “Cooperative

boosting: needy versus greedy power management”, ISCA 2013.

[91] I. Paul, V. Ravi, S. Manne, M. Arora, S. Yalamanchili, “Coordinated Energy

Management in Heterogeneous Processors”, SC 2013 [best paper award finalist].

[92] I. Paul, V. Ravi, S. Manne, M. Arora, S. Yalamanchili, “Coordinated Energy

Management in Heterogeneous Processors”, Journal of Scientific Programming, 2014.

[93] J. T. Pawlowski, “Hybrid memory cube (HMC),” in Proceedings of Hot Chips 23,

2011.

[94] M. D. Powell. M. Gomaa, and T. N. Vijaykumar, "Heat-and-run: leveraging SMT

and CMP to manage power density through the operating system," ASPLOS 2004.

[95] A. Raghavan, Y. Luo, A. Chandawalla, M. Papaefthymiou, K. P. Pipe, T. F.

Wenisch, and M. M. K. Martin, "Computational Sprinting," HPCA 2012.

[96] P. Ranganathan, “Recipe for Efficiency: Principles of Power-Aware Computing”,

ACM Communications 2010.

[97] V.T. Ravi, W. Ma, D. Chiu, G, Agrawal, “Compiler and runtime support for

enabling generalized reduction computations on heterogeneous parallel

configurations”, ICS 2010.

[98] V.T. Ravi, G. Agrawal, "A dynamic scheduling framework for emerging

heterogeneous systems," HiPC 2011.

[99] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, E. Weisman, "Power

Management Architectures of the Intel Microarchitecture Code-Named Sandy Bridge,"

IEEE Micro 2012.

[100] B. Rountree, D.K. Lowenthal, S. Funk, V. Freeh, B.R. de Supinski, M. Schulz,

“Bounding energy consumption in large-scale MPI programs”, SC 2007

[101] B. Rountree, D.K. Lowenthal, B.R. de Supinski, M. Schulz, V. Freeh, T. Bletsch,

“Adagio: Making DVS Practical for Complex HPC Applications”, ICS 2009.

[102] B. Rountree, D.K. Lowenthal, M. Schulz, B.R. de Supinski, “Practical performance

prediction under dynamic voltage frequency scaling”, IGCC 2011

[103] J. Shalf, S. Dosanjh, and J. Morrison, “Exascale computing technology challenges,”

in International Conference on High Performance Computing for Computational

Science, 2010.

[104] J. Sheaffer, K. Skadron, D. Luebke, “Studying Thermal Management for Graphics-

Processor Architectures”, ISPASS 2005.

 166

[105] K. Skadron, T. Abdelzaher, M. R. Stan, "Control-theoretic techniques and thermal-

RC modeling for accurate and localized dynamic thermal management," HPCA 2002.

[106] K. Skadron, M. R. Stan, W. Huang, S. Veluswamy, K. Sankaranrayan, and D.

Tarjan, "Temperature-aware microarchitecture," ISCA 2003.

[107] K. Skadron, "Hybrid architectural dynamic thermal management," DATE 2004.

[108] E. Sorgard, I. Rickards, “Integrating CPU and GPU, the ARM methodology”, ARM

developer whitepaper.

[109] The Standard Performance Evaluation Corporation (SPEC). Web resource,

http://www.spec.org.

[110] C. Sun, L. Shang, R. P. Dick, "Three-dimensional multiprocessor system-on-chip

thermal optimization," Proceedings of International Conference on Hardware/Software

Codesign and System Synthesis (CODES+ISSS) 2007.

[111] A. Tiwari, M. Laurenzano, L. Carrington, and A. Snavely, “Auto-tuning for Energy

Usage in Scientific Applications,” in International Conference on Parallel Processing

(Euro-Par), 2011.

[112] Leslie G. Valiant. A bridging model for parallel computation. Communications.

ACM, 1990.

[113] A. Varma, B. Ganesh, M. Sen, S. R. Choudhury, L. Srinivasan, B. L. Jacob. A

Control-Theoretic Approach to Dynamic Voltage”, International Conference on

Compilers, Architectures and Synthesis for Embedded Systems 2003.

[114] Viewdle, http://viewdle.com/products/desktop/index.html

[115] H. Wang, V. Sathish, R. Singh, M. Schulte, N. Kim, "Workload and power budget

partitioning for single chip heterogeneous processors," PACT 2012.

[116] S. Williams, A. Waterman, D. Patterson, “Roofline: An Insightful Visual

Performance Model for Multicore Architectures”, Communications of the ACM, April

2009.

[117] Windows Power Management Overview, http://www.microsoft.com/en-

us/download/details.aspx?id=23878.

[118] J. A. Winter, D. Albonesi, "Addressing thermal non-uniformity in SMT

workloads," ACM TACO 2008.

[119] D. H. Woo, N. H. Seong, D. Lewis, H.-H. Lee, “An optimized 3D-stacked memory

architecture by exploiting excessive, high-density TSV bandwidth,” HPCA 2012.

http://viewdle.com/products/desktop/index.html

 167

[120] D. H. Woo et al., “COMPASS: a programmable data prefetcher using idle GPU

shaders”, ASPLOS 2010.

[121] Q. Wu, P. Juang, M. Martonosi, D. W. Clark, “Formal Online Methods for

Voltage/Frequency Control in Multiple Clock Domain Microprocessors”, ASPLOS

2004.

[122] Q. Wu, M. Martonosi, D. Clark, V. Reddi, D. Connors, Y. Wu, J. Lee, D. Brooks,

“Dynamic Compiler-Driven Control for Microprocessor Energy and Performance”,

IEEE Micro 2006.

[123] Y. Yang et al, “CPU-assisted GPGPU on fused CPU-GPU architectures”, HPCA

2012.

[124] F. Zanini, D. Atienza, G. D. Micheli, "A control theory approach for thermal

balancing of MPSoC," ASP-DAC 2009.

[125] http://www.amd.com/us/products/desktop/processors/a-series/Pages/a-series-

model-number-comparison.aspx

[126] http://www.xbitlabs.com/news/other/display/20111102214137_AMD_and_Pengu

in_Build_World_s_First_HPC_Cluster_Based_on_Fusion_APUs.html

[127] http://developer.amd.com/tools-and-sdks/heterogeneous-computing/codexl/

[128] http://www.green500.org

[129] http://www.top500.org

[130] http://www.amd.com/us/products/notebook/apu/ultrathin/pages/ultrathin.aspx#3,

AMD A8 4555M.

[131] http://www.techspot.com/news/52003-future-nvidia-volta-gpu-has-stacked-dram-

offers-1tb-s-bandwidth.html, March 2013

http://www.xbitlabs.com/news/other/display/20111102214137_AMD_and_Penguin_Build_World_s_First_HPC_Cluster_Based_on_Fusion_APUs.html
http://www.xbitlabs.com/news/other/display/20111102214137_AMD_and_Penguin_Build_World_s_First_HPC_Cluster_Based_on_Fusion_APUs.html

 168

VITA

Indrani Paul

Indrani Paul was born in Calcultta, India on December 7, 1977 to Mr. Hridesh

Ranjan Paul and Mrs. Ratna Paul. In 1996 she began her undergraduate studies in the

department of Electronics and Electrical Communication Engineering at Indian Institute of

Technology, Kharagpur and she received her Bachelor of Technology (BTech. with

Honors.) degree in 2000. After graduation she came to the United States to pursue graduate

studies at Georgia Institute of Technology. She earned her Master of Science (MS) degree

in Electrical and Computer Engineering in 2002. During MS, she was advised by Prof.

Sudhakar Yalamanchili with her thesis topic being “Switch scheduling algorithms for

multimedia router”. After MS, Indrani joined Dell Inc. in 2002 and moved to Round Rock,

Texas. She was a server design engineer at the Enterprise division in Dell architecting

power management, power capping and power budgeting solutions for PowerEdge rack

and blade servers and general server manageability. While being at Dell, in 2010 Fall,

Indrani re-enrolled at Georgia Institute of Technology to start her PhD in ECE under the

advice of Prof. Sudhakar Yalamanchili. Almost at the same time, Indrani joined Advanced

Micro Devices Inc. in 2011. She has been at AMD since 2011, and has conducted research

on heterogeneous processor and system architectures with focus on application analysis,

power, performance & thermal monitoring, modeling and management. She is currently a

Senior Member of Technical Staff leading the energy utilization efforts at AMD Research

for the Department of Energy’s Exascale high performance computing project. She has

also played various key leadership roles in post-silicon power- performance analysis and

optimization of AMD’s Opteron line of server and high end client processors. Indrani’s

PhD education was partly supported by AMD. Indrani has 12 publications, 10 US patents

granted and numerous US patents pending in the areas of system architecture, power,

performance & thermal management.

