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SUMMARY

Computational modeling is a popular tool to understand a diverse set of com-

plex systems. The output from a computational model depends on a set of parameters

which are unknown to the designer, but a modeler can estimate them by collecting

physical data. In the second chapter of this thesis, we study the action potential of

ventricular myocytes and our parameter of interest is a function as opposed to a scalar

or a set of scalars. We develop a new modeling strategy to nonparametrically study

the functional parameter using Bayesian inference with Gaussian process priors. We

also devise a new Markov chain Monte Carlo sampling scheme to address this unique

problem.

In the more general case, computational simulation is expensive. Emulators avoid

the repeated use of a stochastic simulation by performing a designed experiment

on the computer simulation and developing a predictive distribution. Random field

models are considered the standard in analysis of computer experiments, but the

current framework fails in high dimensional scenarios because of the cost of inference.

The third chapter of this thesis shows by using a class of experimental designs, the

computational cost of inference from random fields scales significantly better in high

dimensions. Exact prediction and likelihood evaluation with close to half a million

design points is possible in seconds using only a laptop computer. Compared to the

more common space-filling designs, the proposed designs are shown to be competitive

in terms of prediction accuracy through simulation and analytic results.

The fourth chapter of this thesis proposes a method to construct an emulator

for a stochastic simulation. Existing emulators have focused on estimation of the

xiii



mean of the simulation output, but this work presents an emulator for the distribu-

tion of the output in a nonparametric setting. This construction provides both an

explicit distribution and a fast sampling scheme. Beyond describing the emulator,

this work demonstrates that the emulator’s convergence rate is asymptotically rate

optimal among all possible emulators using the same sample size. Lastly, the fifth

chapter of this work investigates the use of a modified version of the above method

to study patterns of defects on products. We achieve efficient inference on the defect

patterns by developing a novel estimate of an inhomogeneous point process that is

both computationally tractable and asymptotically appealing.
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Chapter I

INTRODUCTION AND BACKGROUND

Computer, or mathematical, models of physical systems have become indispensable

tools in the analysis of complex systems. These models use a collection of simple

principles, such as how an agent acts, how a fluid moves, or how a material’s structure

changes, to infer on system level behavior. Models based on physics/mechanics of the

process are often realized via finite element simulation. Discrete event and agent based

simulation are other examples that have had tremendous impact on many academic

disciplines, and moreover society.

This thesis covers methods to identify and understand these computer models

using physical data. Two major obstacles exist: (i) the computational cost of the

simulation is high and (ii) the interface between the data and the underlying model is

complicated by noise and model-inexactness. In this thesis, the first problem will be

mitigated using an emulator, a tool used to reduce amount of times simulation of a

model is needed. The major gains in this work are the design of emulators for use in

cases of high dimensional inputs and noisy outputs. The second challenge is domain

dependent. This thesis includes two case studies that involve the explicit methods to

interface noisy observations with the underlying model of interest.

1.1 A motivating example, calibration of parameters of a ion
channel model

The practice of positing and verifying a computational model is commonly used to

investigate hypotheses about complex objects. Often, these models are defined up

to a set of unknown parameters. Then these parameters are estimated so that the

model’s response aligns with observations [16, 67, 99, 56, 4, 96, 63]. The knowledge of

1



the parameters’ exact value provides not only a better predictive model but furthers

the modelers’ understanding of the system. Parameters discussed in the works of

[9] and [56] include important physical constants such as melting temperatures and

reaction rates.

For our case study on the ion channels in cardiac cells, the methods cited above

proved insufficient. Typically, one first isolates some set of parameters in the conjec-

tured model. As described in the second chapter of this thesis, the parameters for

recently proposed models for our system originated from empirically defined func-

tions. Instead of acquiescing in this formulation, this work considers the parameter

of interest to be a function. We have data from a physical experiment that holds the

input to the functional parameter constant and captures the behavior of the response.

We infer about the functional parameter via a posterior distribution which melds the

observations with a functional prior distribution.

In this case we have a huge dimensional, in this case functional, parameter. For-

tunately, in this case study, our computer model can be evaluated quickly as it is

a first order ordinary differential equation. In the general case, we are often not as

lucky. The following section detail methods to resolve this issue

1.2 Gaussian processes and computer experiment design

Consider a case where a deterministic output can be observed corresponding to a

controllable input and the cost of an observation is expensive or at least non-negligible.

Analysis that requires a huge number of evaluations of the expensive function for

different inputs can prove impractical. This work examines a method to avoid the

impracticality problem with the creation of a function that behaves similarly to the

function of interest with a relatively cheap evaluation cost. We term this cheap

function a predictor as it can closely match the output for an untried input. The

predictor can be used in place of the expensive function for subsequent analysis.

2



Beginning in the 1980s, research has emphasized the use of Gaussian process mod-

els to construct predictors of the expensive function [105]. This method, often referred

to as kriging, sprouted in geostatistics [77] and is considered the standard approach

to study expensive, deterministic functions. A great deal of attention has been paid

to this method and important variations over the last two decades because of the

increased emphasis on computer simulation [67, 106, 56, 47]. The major objectives

for analysis outlined in [105] have remained basically constant: predict the output

given inputs, optimize the function, and adjust inputs of the function to match ob-

served data. Recently, researchers have studied a fourth objective of computing the

uncertainty of the output when inputs are uncertain, a topic in the broad field of

uncertainty quantification. All of these objectives can be achieved through the use of

a predictor, though sometimes under different names, e.g. emulator or interpolator.

As summarized in [105], a predictor is constructed by assuming that the output,

termed y(·), is a realization of an unknown, random function of a d dimensional input

x in a space X ⊂ Rd. One notational comment: each element in an input x is

denoted x(j), i.e. x = [x(1), x(2), . . . , x(d)], while sequences of inputs are denoted with

subscripts, e.g. x1,x2, . . .. To construct a predictor, an experiment is performed

by evaluating the function for a given experimental design (a sequence of inputs),

X = {x1, . . . ,xN}, creating a vector of observations y = [y(x1), . . . , y(xN)]T. The

value of N is known as the sample size of the experimental design. A smaller sample

size represents a less expensive design.

After observing these input/output pairs, a predictor is then built by finding a

representative function based on the observations. The often adopted approach treats

the unknown function as the realization of a stochastic process. Specifically, y(·) is

a realization of a random function Y (·) which has the density of a Gaussian process.

The capitalization of the output Y (x) indicates a random output while the lower case

y(x) indicates the observed realization. We denote the Gaussian process assumption

3



on a random function Y (·) as

Y (·) ∼ GP (µ(·), C(·, ·)),

where µ(·) is the mean function and C(·, ·) is a function such that C(x1,x2) =

cov(Y (x1), Y (x2)) for all possible x1,x2 ∈ X.

Our goal is to predict an unobserved output at an untried input x0 given Y :=

[Y (x1), . . . , Y (xN)]T = y. The commonly used predictor of y(x0) is

ŷ (x0) = µ(x0) + σT(x0)w, (1)

where w ∈ RN is a vector of weights and σT(x0) = [C(x0,x1), . . . , C(x0,xN)]. In

general, w is given by the following relation

w = Σ−1 (y − µ) ,

where µ = [µ(x1), . . . , µ(xN)]T and Σ is the N × N covariance matrix where the

element in the ith row and jth column is C(xi,xj). This predictor, ŷ (x0), is com-

monly used because it is both the mean and median of the predictive distribution of

Y (x0) given Y = y. This property implies ŷ (x0) is optimal among the class of both

linear and nonlinear predictors of y(x0) with respect to the quadratic and absolute

loss functions.

1.3 Space-filling and lattice experimental designs

A typical assumption on the covariance structure is a separable covariance, defined

as C(x1,x2) =
∏d

i=1Ci(x
(i)
1 , x

(i)
2 ) for all x1,x2 ∈ X. The functions Ci are covariance

functions defined when the input is one dimensional. The value of Ci(x, x′) is pro-

portional to the covariance between two outputs corresponding to inputs where only

the ith input differs from x to x′. The results in this section require this covariance

structure to hold, but no other assumptions are needed for µ(·) and C(·, ·).
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Figure 1: Examples of 2-dimensional designs: (a) A 41 point Latin-hypercube design.
(b) The first 41 points in the Sobol sequence. (c) A 41 point sparse grid design. (d)
An 81 point lattice design. Details of the construction of the sparse grid design in (c)
are given in appendix Chapter 3.

The above approach, when applied in a direct manner, can become intractable

because the inversion of the covariance matrix Σ is an expensive operation in terms of

both memory and processing. Direct inversion can also induce numerical errors due to

limitations of floating point mathematical computations [127, 52]. Previous research

has focused on changing the matrix Σ to a matrix that is easier to invert, therefore

making the computation of w faster [42, 24, 6]. We term this an approximation

because this can degrade predictive performance, though sometimes only slightly.

This section will briefly discuss existing research on space-filling and lattice de-

signs. The space-filling category includes the popular Latin hypercube designs. Lat-

tice designs are a specific class of designs where each design is a Cartesian product

of one dimensional designs. Visual examples are given in Figure 1 and they are con-

trasted with an example of a sparse grid design which will be explained in Chapter

3.

1.3.1 Space-filling designs: Efficient predictors but difficult computation

Current research has emphasized the design of points that are space-filling (see

Figure 1 (a) and (b)). Designs of this type are often scattered, meaning they are

not necessarily located on a lattice. The major focus has been on Latin hypercube
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designs [79], seen in Figure 1 (a), and research has produced a swell of variations, e.g.

[119, 92, 84, 135, 62]. These designs have been shown to perform well in many predic-

tion scenarios and are often considered the standard method of designing computer

experiments for deterministic functions.

However, space-filling designs experience significant difficulties when the input is

high dimensional, i.e. d > 3. In these cases, one requires a large sample size N to

develop an accurate predictor. This in turn makes the matrix Σ very large, meaning

w is difficult to compute through inversion of Σ. This has motivated the research

into approximate predictors discussed in Chapter 2 that can be used with space-filling

designs.

1.3.2 Lattice designs: Easy computation but inefficient predictors

One of the simplest forms of an experimental design is a lattice design, also known

as a grid. This is defined as X = X1 × X2 × . . . × Xd where each Xi is a set of one

dimensional points we term a component design. For a set A and B, the Cartesian

product, denoted A× B, is defined as the set of all ordered pairs (a, b) where a ∈ A

and b ∈ B. If the number of elements in Xi is ni, then the sample size of a lattice

design is
∏d

i=1 ni.

Let the covariance be as stated above, C(x1,x2) =
∏d

i=1 Ci(x
(i)
1 , x

(i)
2 ). When a

lattice design is used, the covariance matrix takes the form of a Kronecker product

of matrices: ⊗di=1Si, where Si is a matrix composed of elements Ci(x, x′) for all

x, x′ ∈ Xi. A useful property of Kronecker products can be derived using only the

definition of matrix multiplication and the commutativity of scalar multiplication:

if A = C ⊗ E and B = D ⊗ F then AB = CD ⊗ EF (when matrices are

appropriately sized). This immediately implies that if C and E are both invertible

matrices, A−1 = C−1 ⊗E−1. Thus, if a lattice design is used,

w =
(
⊗di=1S

−1
i

)
(y − µ) ,
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which is an extremely fast algorithm because Si are ni sized matrices. Many authors

have noted the power of using lattice designs for fast inference for these types of

models [90, 12]. Say that we have a symmetric design where Xi = Xj for all i and

j. Computing w requires inversion of N1/d × N1/d sized matrices which are much

smaller than the N ×N sized matrix Σ. Because inversion of an N ×N size matrix

requires O(N3) arithmetic operations, inverting multiple small matrices versus one

large one yields significant computational savings.

While lattice designs are extremely simple and result in fast-to-compute predic-

tors, these are wholly impractical for use in high dimensions. First, lattices are grossly

inefficient as experimental designs when the dimension is somewhat large (d > 3),

which will be demonstrated in Chapter 3. Also, the sample size of a lattices designs,∏d
i=1 ni, is extremely inflexible regardless of the choice of ni. At minimum ni = 2, and

then even for a reasonable number of dimensions the size of the design can become

quite large. When d = 15 the smallest possible design size is over 30, 000.

1.4 Noise in computer experiments

Computer simulation is widely used to measure the performance of systems in the

presence of stochastic behavior. Typically, the simulation has a collection of inputs

which represent a variety of unknown or controllable aspects of the system. However,

these simulations can be computationally expensive to run in fine-mesh or large-scale

simulation environments. The investment in development of computer models can

be lost if, for example, a large number of alternative inputs need to be investigated

or the desired analysis requires repeated evaluations over long periods of time where

computer clusters may be unavailable. For example, take the propagation of cracks in

metals, where the stochastic nature of grain formation creates uncertainty in fracture

growth rates [115]. The proliferation of increasingly complex numerical algorithms

for fatigue analysis necessitates a limited sample size (see Chapter 4 for examples).
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However, implementation scenarios involving online condition monitoring, e.g., [100],

require a large number of evaluations with a limitless sample size.

This work proposes a method to emulate the stochastic simulation with a sim-

ple stochastic model. The emulator of a stochastic simulation provides two impor-

tant constructions: (1) an explicit functional form of the distribution and (2) a fast

sampling scheme. The emulator can then be integrated into analysis software (e.g.

spreadsheet environments), which allows for timely results from investigations such as

what-if scenarios and uncertainty quantification. An emulator is created by establish-

ing a predictive distribution of the simulation output based on observations from an

experiment. The predictive distribution is based on a stochastic model representing

the simulation output, termed the metamodel. As has been shown in multiple dis-

ciplines, including geostatistics [77, 28] and analysis of deterministic computer code

[105, 106], random field metamodels often offer superior representation of underly-

ing continuous functions compared to polynomial metamodels [8]. The use of these

random field metamodels is commonly referred to as kriging.

While previous attempts using random field metamodels have focused on the

mean of the simulation output, an emulator for the simulation’s stochastic behavior

is often needed. [2] describes the case when the variance of the output significantly

changes with changes in the inputs, an important concern in stochastic simulations.

However, the use of the traditional random field metamodel as in [69, 2] and [93]

is inadequate to provide predictive distributions due to a normality assumption on

the stochastic behavior of the simulation output. The popular technique of model-

based geostatistics [28] and similar methods [102, 55] addresses normality concerns

when the output is in a parametric class (e.g. exponential). However, parametric

assumptions often do not have the power to address the complex distributions that

can result from simulations, e.g. [118] discusses bimodal cases. In our experience,

the previously developed methods prove powerful when the respective assumptions
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Figure 2: Empirical distributions of crack lengths after 2000 cycles with a stress
ratio of 0 (solid line), .25 (long dashes) and .5 (short dashes).

hold, but there exist cases when a single parametric model for all inputs is not a

reasonable assumption. For example, take the stochastic modification of the Forman

equation, which is a general model for the growth rate of fractures based on a stress

ratio (details are discussed in Chapter 4). The goal considered here is the prediction

of the distribution of the crack size after 2000 cycles with an initial size of 2.54 mm.

Figure 2 shows the distribution of the simulation output. When the stress ratio is

nearly zero, an approximately Gaussian behavior results. As the stress ratio increases,

this structure breaks down, indicating that previously developed techniques cannot

be used.

1.4.1 Implications in steel manufacturing

There are theoretical connections between the the methods to construct inference on

noisy computer models and estimation of general functions. One particular example

of this connection is in the estimation of the intensity function of point processes.

These are encountered, for example, when one observes defects on products. This

will be discussed in Chapter 5.
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Automated detection of defects on products has become a reality thanks to de-

velopments in video recording, computer processing and digital storage technology.

When defects are automatically detected, the spatial locations of the defects are

recorded for each product. One of the most important features of any production

process is not necessarily the presence of faults (which are unavoidable due to the

stochastic nature of a production line) but instead the cause of these defects. In this

case, this is determined by a defect pattern, which is defined as the relative occur-

rence rate of defects in any section of the product. If a region has an abnormally large

amount of defects, we consider the pattern important as it allows a user to isolate the

cause to certain subsystems. If the chance of defects throughout the entire product

is the same, we say there is no defect pattern. More generally, we can say that if a

pattern meets our expectations it follows a null pattern. For example, a product that

is designed with both finished and unfinished surfaces would have significantly more

defects in the unfinished regions.

While there has been statistical study of cases when a production system relays

information in the form of a scalar or a vector, e.g. [97], the study of spatial patterns

of defects remains mostly unexplored. This work considers two goals:

• to provide a certificate of whether the pattern differs from a null pattern and

• to give a visual indication of where defects are more likely to occur.

We will do this by estimating the underlying functional form of the pattern of defects.

Explicitly, we will model each individual product as an independent realization of an

inhomogeneous Poisson process with an unknown intensity function. This intensity

function represents the probability of defects in any subregion of the product. Given

the application, it is critical that the estimated pattern coverages quickly to the

generating the observed data. The major paradigm, see [98] and [29], results in

estimates that do poorly in this scenario for reasons that will be discussed. In short,
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since that framework places an emphasis on shrinking the lengthscale of the basis

functions as more observations are collected, the ability of the method to detect a

variety of pattern shapes is limited. In this thesis, an alternative estimate is proposed

to solve this problem.
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Chapter II

CALIBRATING FUNCTIONAL PARAMETERS IN THE

ION CHANNEL MODELS OF CARDIAC CELLS

This work presents an alternative to the empirical methods that have been employed

to study ion channels in cardiac cells. The data we used for our study were collected

and first analyzed by [36]. In that original empirical analysis, [36] first used least

squares to fit exponential models to recordings of membrane current over time. Then

the fitted exponential constant was used to make inferences on the system. This

method is similar to techniques to calibrate and justify computational models [21, 116,

83]. We can broadly call this a projection method, which is not necessarily an incorrect

approach provided the projection preserves the features present in the data [56]. But

an examination of our longitudinal responses shows they are extremely dissimilar from

exponential shapes. This projection method may thus have a tempered capability to

draw meaningful conclusions. In this work, we consign inferential tools that are

designed to meet the exigent demand for more rigorous methods.

This chapter will discuss background in Section 2.1 followed by statistically moti-

vated modifications and observations in Section 5.2. Section 2.3 and Section 2.4 will

precisely define our model with functional parameters and the Markov chain Monte

Carlo algorithm used to conduct inference. Lastly, Section 2.5 will detail discoveries

made during our case study. Some of these results contradict portions of knowledge

observed in the existing literature on cardiac cell ion channels.
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2.1 Background

This work studies the electrical activity of myocytes (muscle fiber cells) located on a

heart’s ventricle walls. When activated, ion channels located on the boundary of the

cell allow for the influx and efflux of ions through the channels generating electrical

currents. The time course of this activity is referred to as action potential of the

ventricular myocytes. A steady recurrence of the de- and repolarization of these

myocytes aggregates to the rhythmic, steady behavior of the heart. Slight changes

in channel kinetics can alter the action potential waveform, and potentially cardiac

excitation and conduction. For additional background on the general conceptual basis

for cardiac cell ion channels see [57] (or [48] for a more condensed summary).

[58] formulated the first cell action potential model using a set of nonlinear and

ordinary differential equations. This original model was not designed for cardiac cells.

Subsequent models of cardiac cells were developed to simulate the action potential

through the ion channels, see the review of [89]. These models of trans-membrane

ionic currents consider ion channel kinetics as well as ionic concentrations. Different

species and regions of the heart yield vastly different electrophysiological behaviors.

We chose to borrow a model of ion channels from research with similar conditions to

our case study on mouse cardiac cells. The impactful chapter by [21] was used by [15]

to mimic the action potential of ventricular myocytes in adult mice, thus we adopt

the model of [21].

The membrane potential, denoted by the function of time v(·), is the potential

difference between the intracellular and extracellular sides of the cell. The current i(·)

is composed of several trans-membrane currents grouped by the ion being transported,

either sodium, potassium, or calcium. The model of [21] is based on the principle of

the opening and closing of ion channels, known as gating. Research has shown that

closed states can be further broken down into inactive and simply closed states. While

in both states no current occurs, the inactive states are much less likely to move into
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an open state. It is possible for a channel to undergo movement from either an open

or a closed state to an inactivated state.

Our data consists of recorded current through only the sodium channels in a cell

membrane. The current flowing through sodium channels can be represented by

i(t) = G o(t)(v(t)− e(t)) +Gb(v(t)− e(t)),

where G is a conductance parameter which determines the dynamic ion permeation

of the cell, Gb is another the conductance parameter which determines background

ion permeation of the cell, o(t) is the proportion of open channels at time t, and e(t)

is channel the reversal potential at time t. A key point here, which will be directly

addressed soon, is that the dynamics of o depend on the membrane potential, v.

The form of e(t) is given by e(t) = RT/F · log(Na0/Nai) where R, T , and F are

physical constants and Na0 and Nai are the extracellular and intracellular sodium

concentrations. The intracellular sodium concentrations will change with the flow of

ions.

Our data are observations from a voltage clamp experiment. The voltage-clamp

method is a laboratory technique used to study currents passing through the cell

membrane. [10, 60]. In the voltage-clamp experiment, we first place electrodes in the

intracellular and extracellular space. Starting at time zero the transmembrane voltage

is held at a predefined level and ionic currents flow through the membrane. Both

electrodes are connected to an amplifier which measures the membrane voltage. At

the same time, a signal generator can input an external voltage (a holding potential)

to the cell. In the patch clamp experiment [87], the operator uses a glass micropipette

with an open tip diameter of about one micrometer as an electrode. The micropipette

is filled with a solution that is paired with the ionic composition of the bath solution.

A chloride silver wire is placed in the bath solution that conducts electric currents to

amplifier. Whole-cell recording marks the currents through all ion channels over the

membrane of the whole cell. Our data comes from whole-cell experiments that give
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better electrical access to the interior of the cell because of a large opening at the

tip of the pipette. By carefully selecting the intracellular and extracellular solutions

in the patch clamp experiment we are able to isolate the sodium ion channels. More

details on the collection of the data can be seen in [36].

2.2 Modified computational model

Our model for o(t) is described in detail in section 2.7.1 and contains six unknown

parameters {θi}6
i=1. This model was closely borrowed from [21], and first we emphasize

a subtlety in this model:

The parameters of the channel gating dynamics, {θi}6
i=1, depend on the

membrane potential v. We thus write θ(v) to mean {θi}6
i=1 given a fixed

voltage v.

Our model of o(t) can be described as follows. Consider a single ion channel that

behaves according to the continuous time Markov model in figure 3. We assume N

channels independently behave according to this stochastic model, then as N → ∞

the proportion of cells in each state converges to the proposed model (also known as

the fluid limit [72]). The model we employ for the proportion of cells in each state

differs slightly from [21]. We have removed an inactivation state that occurs only

on extremely long lengthscales and is unlikely to be present in our observations. We

have also grouped parameters with similar values to the same value. For example,

the connection from C1 to C2 is slightly different from C2 to C3 in their model but

not in ours. These alterations produced little change in simulated outputs.

For our analysis we respecify our model by leveraging the specific conditions of

the voltage clamp experiment. From time zero onwards, the value of v(t) is held at a

constant. The experiment design thus gives us a useful formulation:

The parameters of the channel gating dynamics, {θi}6
i=1, are constant

during voltage clamp experiments.
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Figure 3: Diagram of the Markov model for the sodium channel. The states
C1, C2, C3 represent closed states, O represents the open state, and I represents the
inactive state. The variables θ represent dynamic transition rates which depend on
membrane potential v.

The above fact simplifies our analysis greatly. Plugging this relation into our model,

we get the response from voltage clamp experiments with held membrane potential v

can be modeled by

i(t) = G o(t;θ(v))(v − e(t)) +Gb(v − e(t)),

where o now depends on a static parameter value θ(v).

The slow dynamics of intracellular sodium accumulation imply that intracellu-

lar sodium occurs during the voltage clamp protocol, possibly due to the natural

regularization [19]. Therefore we can restate an approximate model as

i∗(t, v;θ(v), G,Gb, E) = G o(t;θ(v))(v − E) +Gb(v − E) (2)

where E is a constant value across all clamp experiments. We denote our new function

with i∗ to emphasize the modifications we have introduced. The motivation for this

change is also practical as well as physical. The inference from the data on the

parameters of interest {θ(·), G,Gb, E} is conducted using a Gibbs sampler. The

function i∗ as a function of t depends only on o. The function o is the solution to a set

of ordinary linear differential equations and therefore has an explicit form available

in a matter of hundredths of a second (Section 2.7.1). We must also acknowledge

the exitance of inexactness when using this model. The bias function described in

Section 2.3.2 allows us to account for these discrepancies in our inference.
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2.3 Statistical modeling

The voltage clamp experiments yields observations denoted y(tk, vj) for time points

t1, . . . , tN and clamped membrane potentials v1, . . . , vM . We will conjecture about

the cell properties by taking on the Bayesian viewpoint. From this perspective we

can leverage the rich literature history and can account for limited data from physical

cells. The major statistical novelty of this work is the ability to infer on a functional

parameter θ(·). Section 2.3.1 establishes a nonparametric statistical model for the

functional parameter θ(·). Given that the data y(tk, vj) will deviate from the function

i∗(tk, vj), we build a full stochastic model in section 2.3.2.

2.3.1 Functional parameters

Parameters calibrated in previous studies in the literature are scalars (see references

in the introduction). So our modeling of parameters must depart here from previous

statistical literature on calibration. The relationship between θ and the membrane

potential is a functional dependence as we can observe a response for any clamped

membrane potential. [21] assumed that θ follows convoluted empirical formulae, but

we found this too restrictive.

We instead invoke the Bayesian paradigm and place a prior on this function,

specifically a Gaussian process prior. The Gaussian process prior is a distribution

on a continuous function such that any collection of function evaluations follow a

multivariate normal distribution. This prior is used because we anticipate that similar

membrane potentials will result in similar ion channel behavior. In other words, the

parameters should be continuous about membrane potential v. The use of a Gaussian

process model is inspired by the computer experiments literature such as [105] and

[26]. We denote this Gaussian process prior as

log θi(·)
indep.∼ GP(µi(·), σ2

iRi(·, ·)),

where indep. implies that the prior distribution of θi is independent of θk if k 6= i.
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The log transform is used because the parameters ought to be positive. In our case

study, we use a Matérn correlation function for Ri with smoothness parameter 2.5

and a lengthscale parameter of 10 mV (see [53]), i.e.

Ri(v, v
′) = (1 +

√
5∆v + 5∆2

v/3) exp(−
√

5∆v),

where ∆v = |v − v′|/10. The lengthscale parameter is determined based on the

anticipated change in parameter as voltage is changed. This implies that we anticipate

at least two orders of differentiability and θ(·) should not change drastically over

small alterations in voltage. In our example, we take µi(·) to be a linear model with

parameters βi, a column vector. Specifically, we choose µi(v) = [1, v − 35]βi.

2.3.2 Observations

Owing to the ubiquitous [67] Bayesian formulation of the calibration problem, we

model the difference between our observations y and i∗ with two elements. First

we have a stochastic random error ε and secondly we have a discrepancy function b

that represents possible differences between i∗ and reality. Some potential sources of

discrepancy are discussed in section 5.2 but it is by no means an exhaustive list. For

example, while conducting the experiment there was a small deviation in the clamped

voltage due to controller dynamics [36]. The discrepancy is not known exactly, but

if the model is accurate the discrepancy will be small and the converse is true. We

thus formulate our observed current for a given time point and clamped membrane

potential as

y(tk, vj) = i∗(tk, vj;θ(vj), G,Gb, E) + b(tk, vj) + εj(tk).

Our prior on the function b is represented by a Gaussian process with zero mean

and a covariance structure defined over both time and voltage. This implies that our

prior is that b is a continuous function over both time and voltage. So a small change

in either the time or the clamped membrane potential should elicit a similarly small
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change in both the model i∗ and observation y and therefore b. The perturbations

represented by εj are generated by small environmental influences which will differ

upon each subsequent measurement and are continuous in time but not over the

repeated subject measurements. We thus consider εj(·) to follow a Gaussian process

over time and each εj is independent of εk if k 6= j.

2.3.3 Prior on parameters

Some parameters can be fixed because their value is well studied, determined by

physical constants or their effect on the likelihood is minor (implying unidentifiable).

For some parameters, we have no a-priori knowledge of their value, but their value

can be gleaned from the data. In these cases, we can place a prior distribution on

the parameters themselves to conjecture about their value through their posterior

distribution. In our model, we can place priors on the parameters βi, σ2
i , G, Gb, E,

σ2
ε and σ2

b . Our chosen priors with motivation are given in section 2.7.2.

2.4 Analysis

Having established a modeling framework, we now need computational methods for

conducting inference. Unfortunately, our parameter space is infinite due to θ(·) being

a functional parameter and we require some developments for analysis. This section

will provide those developments in the form of a Gibbs sampler that takes advantage

of the structure of our model and data.

Let φ be the agglomeration of all parameters besides θ(·). In the interest of

compact notation we denote {y(tk, vj)}k=1,...,N ;j=1,...,M as simply the term “data”. Let

π(θi(v)|data, φ) be the posterior density of θi(v) given the data and the other pa-

rameters φ and v is any membrane potential. First, we have the following simple

result because we chose independent Gaussian process priors, θi(v) given {θi(vj)}Mj=1

is independent of {θk(vj)}Mj=1 if k 6= i. Since the data only depends on {θ(vj)}Mj=1 and
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φ, we can condition as follows

π(θi(v)|data, φ) =

∫
π(θi(v)|{θ(vj)}Mj=1, data, φ)π({θ(vk)}Mk=1|data, φ)d{θ(vk)}Mk=1,

=

∫
π(θi(v)|{θi(vj)}Mj=1)π({θ(vk)}Mk=1|data, φ)d{θ(vk)}Mk=1, (3)

where π generally represents a density and the vertical lines represent conditioning.

The two density terms on the right hand side are the density of θi(v) given {θi(vj)}Mj=1

and the posterior distribution of {θ(vk)}Mk=1. Now we employ standard Gaussian

process relations. Let θ̃i = [log θi(v1), . . . , log θi(vM)]T, µ̃i = [µi(v1), . . . , µi(vM)]T,

ri(v) = [Ri(v, v1), . . . , Ri(v, vM)]T and Ri be the correlation matrix where the jth,

kth element is Ri(vj, vk). We know that π(log θi(v)|{θi(vj)}Mj=1) is the same as the

density of

N
(
µi(v) + rTi (v)R−1

i

(
θ̃i − µ̃i

)
, σ2

i

(
1− rTi (v)R−1

i ri(v)
))
,

where N (µ, σ2) stands for a standard normal distribution with mean µ and variance

σ2. Since a normal distribution is simple to sample from, to sample from any value

of θi(v) we only need to sample from the posterior distribution of the parameters

{θ(vj)}Mj=1.

To infer on the parameters {θ(vj)}Mj=1 given data we leverage the form of our

posterior and propose the following Gibbs sampler if we are given φ and the data:

Cyclic sampler Suppose we are given initial values of {θ(vk)
(n−1)}Mk=1. For j =

1, . . . , N we draw θ(vj)
(n) given the data, φ, {θ(vk)

(n)}k<j, and{θ(n−1)(vk)}k>j

via a Metropolis Hastings step or several Metropolis Hastings steps. The ac-

ceptance probability of a step is given in equation (5).

This algorithm cycles though the sampling of the parameter θ at vj for all j. The

benefit of using the above sampler is instead of attempting to estimate a single 6M

sized parameter {θ(vj)}Mj=1 we must only tackle several dimension 6 parameters θ(vj).
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The efficiency gain comes from the fact that the posterior distribution of θ(vj) de-

pends heavily on the likelihood of the observations {y(tk, vj)}k=1,...,N which has strong

dependence on θ(vj) through i∗ and only weak dependence on {θ(vk)}k 6=j through the

deviation term b and the prior on the functional parameters.

We use this cyclic sampler in concert with a typical sampler to arrive at our

conclusions. The exact algorithm that we use in the next section is outlined below.

For our analysis, we have fixed G, E and θ4, θ5, θ6, therefore there is no need to sample

those values. Thus, at any stage in our sampler, the next parameter values in our

Markov chain are drawn as follows:

1. Starting at the last sample of {θ(vk)}Mk=1, use the cyclic sampler to get samples

of {θ(vk)}Mk=1 given the data and the latest sample of all other parameters.

2. For each i = 1, . . . , 3, use the distribution defined at the end of Section 2.7.3

to draw σ2
i directly from the conditional posterior of σ2

i given the data and the

latest sample of all other parameters.

3. For each i = 1, . . . , 3, use the distribution defined at the end of Section 2.7.3

to draw βi directly from the conditional posterior of βi given the data and the

latest sample of all other parameters.

4. Draw σ2
ε and σ2

b using Metropolis Hastings steps on conditional posterior of σ2
ε

and σ2
b given the data and the latest sample of all other parameters.

5. Draw Gb using Metropolis Hastings steps on conditional posterior of Gb given

the data and the latest sample of all other parameters.

After enough iterations of this sampler, we can establish what should be a nearly inde-

pendent samples using standard Metropolis Hastings arguments [45]. In the following

section, our analysis drew every 10th sample to collect 400 samples and established

an average effective sample size of 128 for all parameters θi(vj) [66].
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Lastly, we relegate the discussion of the prediction of a new response, y(t, v), to

the section, see equation (6).

2.5 Case study: The effect of aberrant sialylation

2.5.1 Experimental data

This section leverages our statistical developments to investigate two groups of physi-

cal cells denoted “wild-type” and “ST3Gal4-deficient”. The ST3Gal4-deficient subjects

are lacking the enzyme β-galactoside α-2,3-sialyltransferase 4 (ST3Gal4) which is 1

of 20 sialyltransferase that increase sialic acids in galactose residues [83, 37, 34]. The

ST3Gal4-deficient strain has been used to investigate the general problem of aberrant

glycosylation in cardiovascular function. The wild-type subjects were generated with

proper production of the ST3Gal4 enzyme.

In this work we use a total of seven wild-type and nine ST3Gal4-deficient cells

selected from [36] that were deemed successful experiments based on visual inspec-

tion. Each cell was studied via clamped voltage excitation with clamped membrane

potentials ranging from -70 mV to 0 mV in 5 mV increments. We leave out the re-

sponse with a clamped membrane potential of -40 mV for a posterior check seen in

Figure 2.5.2. The data collection was documented and first analyzed in [36]. The

response current was saved at 150 non-uniformly spaced samples in time to account

for the greater deal of variability in the run-up. Following the analysis of [36], the

response y was normalized to account for cell size differences by dividing by a sepa-

rately measured capacitance value. This allows us to set fix our G value as outlined

in Section 2.7.2. It also implies that our y values and i∗ values will be reported in

units of µA/µC.

Efforts were made to insure that the data is properly aligned but we acknowledge

this is inexact. Therefore, we add an additional offset parameter that indicates the

start time of the stepped membrane potential for each voltage step in the experiment.
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Figure 4: Collected responses for wild-type (solid) and ST3Gal4-deficient (dashed)
during three separate clamped voltage experiments.

The response i∗ given this new offset parameter is a time shifted version of the original

i∗. This value has a prior distribution of normal with a mean of 0ms (since we

attempted calibration) and a variance of .1ms. The sampling of this value takes place

in an added fourth step in our Gibbs sampler described in Section 2.4.

Figure 4 shows the responses for three different membrane potentials. There is

significant subject to subject difference. To account for this observation we will use

our Bayesian method to sample from the posteriors generated from individual cell

data (or equivalently, our prior assumes each subject is independent of others).

The ST3Gal4-deficient cells appear to behave separately from the wild-type cells

especially in low membrane potentials. Our goal here is to reach some conclusions

about the possible mechanism behind this effect. The prevailing paradigm for this

type of study involves two steps. First, one conjectures a model for differences between

the cells. Second, through a series of empirical comparisons one shows that the

conjectured model is a superior representation of the modified cells. For example, [21]

study the effect of a wholly different mutation on action potential and give biophysical

justifications for a new model for the ∆KPQ mutated cells. Parameters of their
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Markov model are fixed in both wild-type and mutated cells. This allows claims

such as “[m]utant channels activate more quickly”. The justifications are based on

the parameters of a fitted exponential models that may not represent the data. Here

we make four observations that distinguish our analysis from the previous literature:

(i) the longitudinal responses do not follow any single exponential model but instead

follow a computational model, (ii) the parameters of the computational model are

uncertain, (iii) there is possibly a gap between our model and reality and (iv) the

specific behavior of a cell can radically differ between subjects and is propagated

through parameters of the computational model. The Bayesian framework we propose

incorporates all of these observations.

2.5.2 Results and conclusions

The success of our analysis hinges on the adequacy of our model described in sections

5.2 and 2.3. As an initial model check, Figure 2.5.2 shows a predictive extrapola-

tion using our proposed approach and the standard least squares calibration using

the parameterized form of θ(·). We predict the response to a clamped membrane

potential of −5mV using the observations from clamped membrane potentials rang-

ing from −70mV to 0mV. Our predictive accuracy and uncertainty quantification is

significantly improved over the more traditional statistical approach.

Now we check whether the anticipated response, i∗, is sufficient to describe the

observed behavior. If i∗ is extremely different from y, the resultant posterior distribu-

tions of parameters such as θ(·) will be of little significance (and likely indistinguish-

able from the prior distribution). We will investigate the deviation function defined

by y − i∗ to detect if there is a problem with i∗. For a given tk and vj, the deviation

function has a posterior density of equivalent to y − i∗ when parameters are drawn

from the posterior. The upper half of the plot in Figure 5 shows a comparison of pos-

terior distributions of deviation functions using data from two different cells. In the
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Figure 5: Pointwise medians and 90 % credible intervals of the deviation function’s
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lower half of Figure 5, we display the aggregate posterior which is constructed by ran-

domly choosing a cell from each group and drawing from the posterior corresponding

to that individual cell’s data. The magnitude of the posterior deviation function is

reasonable considering our prior variance on b and ε. The deviation function appears

continuous, but not necessarily smooth, which is also consistent with our prior model.

Figure 5 also supports the idea that the described model from [21] may be sufficient

for describing both wild-type and ST3Gal4-deficient cells.

We have established that our stochastic model can be used for both groups of

cells. We can now move to addressing the question of which element in i∗ is the root
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of the observed differences present in Figure 4. In Figure 6, we have displayed our

posterior distribution of θ1, θ2 and θ3 to show representative single cell and aggregated

posteriors. The values of θ1(v), θ2(v) and θ3(v) represent the rates at which channels

move between states in our model at a membrane potential v, also called transition

rates. The values of θ1 and θ2 represent the rates at which states open and close

from closed and open states, respectively. The value of θ3 represents the rate at

which states inactivates from open states. Because we have defined our parameters

as functions, we can easily visualize their posteriors.

We can now conjecture about the differences between the two groups of cells in

terms of our posited model. To do so, we define δi(v) as the ratio of θi(v) for all

ST3Gal4-deficient cells to the average of θi(v) for all wild-type cells. The posterior

distribution of this value is seen in Figure 7. A concentration of the posterior around

a value of δi much bigger than 1 implies that ST3-deficient cells have a higher value

of θi and a value less than 1 implies the opposite.

The first note of interest is that θ1, the transition rate from closed to open, is de-

creased in ST3Gal4-deficient cells. Additionally, ST3Gal4-deficient cells may have an

increased transition rate from open to closed as θ2 is increased at mid-level membrane

potentials, but this effect is slightly reversed at high membrane potentials. Based on

the 90% intervals being very wide, the effect we see is not strong. Inactivation from

open channels appears to be faster in ST3Gal4-deficient cells. This observation con-

tradicts [36] who used the same data to note that ST3Gal4-deficient cells “inactivated

more slowly”. The difference in conclusions may be due to the differences in our re-

spective analyses. In [36], “the decaying portion of each current trace was fit with

a single exponential function”. Their method might induce problems because the

responses do not follow exponential shapes (see Figure 4). Another reason for the

different conclusions might be because our data is a subset of their data. We do not

include four wild-type cells and four ST3Gal4-deficient cells because their responses
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indicated an experiment failure or were not recorded properly at one or more of the

membrane potentials.

2.6 Concluding remarks

This chapter has developed a method to infer on a functional parameter using Gaus-

sian process prior distributions. We were able to a investigate model of the sodium ion

channels in cardiac cells. Going forward, it will be interesting to investigate several

other electrophysiological challenges. Action potential simulation requires the full

functional form of θ(·). It is not clear how to leverage our functional parameter’s pos-

terior distribution into a computational model where the voltage can change. A simple

implementation would use our mean as a plug-in estimate. However, the uncertainty

quantification will likely require some type of Monte Carlo method. Another com-

plexity of single-cell experiments is that similar single-cell parameters might produce

very different aggregate responses (e.g. [49]). Thus methods to translate individual

cell results to larger systems would likely be very impactful.

Using a Bayesian approach for electrophysiological systems we can also investigate
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the uncertainty in our estimated parameters. This could be critical for electrophysio-

logical systems as there has been observations that multiple parameter combinations

can produce similar outputs (see [1] for an example involving neurons). A wide pos-

terior indicates that creating a good parameter estimate would prove difficult based

on the existing data. A narrower posterior could assure a researcher that we have

enough data to conjecture about a parameter. Thus, this framework has the potential

to make distinctions of significant differences in parameters easier for a researcher.

As a comparison, [17] uses thousands of parameter combinations as a search mecha-

nism to find appropriate model parameters. The Bayesian approach that we outline

here could serve as a substitute for that method. This analogy becomes more appar-

ent if our sampling scheme was replaced with Approximate Bayesian Computation

[25]. In this work, we have addressed the inter-subject variability by isolating specific

parameters for each cell in our study and sampling from their individual posterior.

The review of [107] indicates that variability expressed in the observations could be

explained through parameters for electrophysiological cell models.

In addition to the future study of the electrical activity of cardiac cells, work is

needed to infer on functional parameters in general cases. The conditional distri-

butions used for equation (3) rely on leveraging the voltage clamp experiments, but

often experiments where the environmental condition is held constant are impossible.

In these cases, more flexible tools are required. One idea for conducting inference is

to use only function values corresponding to inputs on a fine mesh, thus making the

problem finite dimensional. Research is needed to investigate sampling mechanisms

that coordinate well with this framework [22]. Moreover, even in the case stated in

the chapter, there is doubt as to whether the cyclic sampling approach to functional

parameters is optimal. Since our prior induces a correlation between function evalua-

tions of our parameter, e.g. θi(v1) and θi(v2), they will also have posterior correlation.

Therefore, approaches such as Hamiltonian Monte Carlo [86] could outperform our
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method. This becomes especially important if the function of interest is a very smooth

Gaussian process as the correlations will be very high. Hamiltonian Monte Carlo does

come with the computational cost of gradient evaluation.

2.7 Details

2.7.1 Differential equation model for o(t)

Our differential equation system defined by

dx

dt
= A(θ)x,

where x is the vector of the proportion of ion channels in the first closed, open,

inactive, second closed and third closed states and

A(θ) =



−θ5 − θ1 − θ2 θ2 θ6 θ1 0

θ1 −θ3 − θ2 θ4 0 0

θ5 θ3 −θ6 − θ4 0 0

θ2 0 0 −θ1 − θ2 θ1

0 0 0 θ2 −θ1


.

Now we consider the voltage clamped experiments. Let x0 be the solution at time 0.

For section Section 2.5 we set x0 = [0, 0, 0, 0, 1]T since the cells were held at a very

low voltage (-100 mV) prior to being held at the clamped voltage, thereby insuring

most ion channels are in the “most” closed position. Then we have that

o(t;θ) = [0, 1, 0, 0, 0] exp(tA)x0.

2.7.2 Prior parameters

For our model parameters θi, we must specify a prior on σi and µi for each i = 1, . . . , 6.

To set these, we broke the parameters θi into two categories based on the parameter

values given in [21]. The first three values are expected to be much larger than the

other three for all voltages. The smaller the value in the outlined Markov model, the
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less of a chance that any ion channels will change between those two states. Thus,

these small values can be fixed without affecting our output i∗. Therefore θ4, θ5 and θ6

are fixed to 0, 0.0084 and 0, close to the values found in [21]. In terms of our model,

can induce this in our model by setting σ2
i = 0 for i = 4, 5, 6. For i = 1, 2, 3, we

choose a prior on σ2
i of an inverse gamma with shape parameter 1 and rate parameter

4. This distribution is a broad with mean 1/4. For the prior on each β we choose

multivariate normal with mean [−1, 0]T and covariance matrix diag(4, (2/35)2) which

gives us a broad prior.

We have priors of

b ∼ GP
(
0, σ2

bRb

)
and

εj
indep.∼ GP

(
0, σ2

εRε

)
.

The hyperparameters consist parameters for the priors on parameters σε and σb and

correlation functions labeled Rε and Rb. We explicitly list the priors for these values

below:

• σ2
ε has an inverse gamma prior with shape parameter 50 and rate parameter

0.0000125. This distribution is a broad with mean 0.0000125/50 = (.05/100)2

(µA/µC)2.

• Rε is the i.i.d. model, or Rε(t, t
′) = 1t=t′ .

• σ2
b has inverse gamma prior with shape parameter 50 and rate parameter 0.0003125.

This distribution is a broad with mean 0.0003125/50 = (.25/100)2 (µA/µC)2.

• Rb is the outer product of two Matérn covariance functions with smoothness

parameter 2.5,

Rb((t, v), (t′, v′)) = (1+
√

5∆t+5∆2
t/3)(1+

√
5∆v+5∆2

v/3) exp(−
√

5(∆v+∆t)),
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where ∆t = .1−1| log(t + .4) − log(t′ + .4)| and ∆v = 5−1|v − v′|. The first

difference function, ∆t, was chosen to allow for more time varying behavior in

the run-up present in observations seen in Figure 4, possibly generated by the

dynamics of the controller.

Lastly, we have the parameters G, Gb and E. We set them as outlined below

• G is set to a fixed value of 0.01 µA/µC to prevent any identifiability issues

with the parameters channel dynamic parameters. This is consistent with the

numbers used in [15].

• Gb has a prior of log-normal with µ = log(G/104) and σ = 2 where µ and σ are

the parameters of the associated normal distribution. This implies we expect

some value close to the median of this distribution exp(log(G/104)) = G/104.

The value of σ is very large, which gives us a broad prior distribution. This

number was chosen to insure that our prior implies the we expect the background

current to be significantly smaller than the dynamic current.

• E is set to a fixed value of +20mV based on the the ionic concentrations in our

experiment.

2.7.3 MCMC and prediction details

For simplicity, denote yj as the vectorization of {y(tk, vj)}k=1,...,N . We have that from

Bayes rule

π(log θ(vj)|data, φ, {log θ(vk)}k 6=j) ∝ π(yj|{yk}k 6=j, φ, {log θ(vk)}Mk=1)

π(log θ(vj)|{log θ(vk)}k 6=j, φ, {yk}k 6=j)

and from our prior model

π(log θ(vj)|{log θ(vk)}k 6=j, φ, {yk}k 6=j) = π(log θ(vj)|{log θ(vk)}k 6=j). (4)
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Using equation (4), we have that

π(log θ(vj)|{log θ(vk)}k 6=j) ∝ p1(log θ(vj)|{log θ(vk)}k 6=j)

:= exp

(
−1

2

6∑
i=1

σ−2
i

(
1− rTi;−jR−1

i;−jri;−j
)−1 (

log θi(vj)− µi;j|−j
)2

)
,

where

µi,j|−j = µi(vj) + rTi;−jR
−1
i;−j

(
θ̃i;−j − µ̃i;−j

)
,

µ̃i;−j, θ̃i;−j and ri;−j are the same as their not subscripted counterparts in Section 2.4

with the jth element removed and Ri;−j is the prior correlation matrix of θ̃i;−j.

We have left to find the conditional distribution of yj. Let bj be the vectorization

of {b(tk, vj)}k=1,...,N , εj be the vectorization of {ε(tk, vj)}k=1,...,N and let i(θ) be the

vectorization of {i∗(tk, vj)}k=1,...,N given θ and parameter φ. Then we have that

yj = i(θ(vj)) + bj + εj.

The value of i(θ(vj)) given θ(vj) and φ is deterministic. The distribution of εj is

independent of {yk}k 6=j and {θ(vk)}Mk=1. Therefore εj given {yk}k 6=j and {θ(vk)}Mk=1

follows its prior distribution given by

N
(
0, σ2

εRε

)
,

where Rε is the correlation matrix corresponding to εj, 0 is a column vector of

zeroes and for this section N represents both univariate and multivariate normal

distributions. Lastly we have to find the distribution bj given {yk}k 6=j and {θ(vk)}Mk=1.

By our prior, we have that this distribution is given by

N
(
b̂bj |y−j , σ

2
bRbj |y−j

)
,
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where

b̂bj |y−j = σ2
bRbj ,b−j

(
σ2
bRb−j + σ2

εI ⊗Rε

)−1 (
y−j − i−j

)
,y−j =



y1

...

yj−1

yj+1

...

yM


, i−j =



i(θ(v1))

...

i(θ(vj−1))

i(θ(vj+1))

...

i(θ(vM))


and

Rbj |y−j = Rbj − σ2
bRbj ,b−j

(
σ2
bRb−j + σ2

εI ⊗Rε

)−1
RT
bj ,b−j

,

where ⊗ represents the Kronecker product. The matrix I is an identity matrix, Rbj is

the correlation matrix corresponding to bj, the matrix Rb−j is the correlation matrix

corresponding to

b−j =



b1

...

bj−1

bj+1

...

bM


,

and the matrixRbj ,b−j is the cross correlation matrix between the vectors. Combining

the above, since the three terms i(θ(vj)),bj and εj are independent and multivariate

normal, we have that

π(yj|{yk}k 6=j, φ, {θ(vk)}Mk=1) ∝ p2(θ(vj)|data, φ, {θ(vk)}k 6=j)

:= exp

(
−1

2

(
yj − i(θ(vj))− b̂bj |y−j

)T (
σ2
bRbj |y−j + σ2

εRε

)−1
(
yj − i(θ(vj))− b̂bj |y−j

))
.

Finally we can establish the rejection rate used in our wave sampler described in
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Section 2.4 as

π
(
log θ(vj)

(n)|data, φ(n−1), {log θ(vk)
(n)}k<j, {log θ(vk)

(n−1)}k>j
)

π (log θ(vj)(n−1)|data, φ(n−1), {log θ(vk)(n)}k<j, {log θ(vk)(n−1)}k>j)

=
p1

(
log θ(vj)

(n)|{log θ(vk)
(n)}k<j, {log θ(vk)

(n−1)}k>j
)

p1 (log θ(vj)(n−1)|{log θ(vk)(n)}k<j, {log θ(vk)(n−1)}k>j)

×
p2

(
θ(vj)

(n)|data, φ(n−1), {θ(vk)
(n)}k<j, {θ(vk)

(n−1)}k>j
)

p2 (θ(vj)(n−1)|data, φ(n−1), {θ(vk)(n)}k<j, {θ(vk)(n−1)}k>j)
. (5)

Let yT = [yT
1 , . . . ,y

T
M ] and let Rb be correlation matrix corresponding to bT =

[bT1 , . . . , b
T
M ]. We have that the covariance matrix of y is

Σy = σ2
bRb + σ2

εI ⊗Rε.

Let o(θ(vj)) be the vectorization of {o(tk;θ(vj))}Nk=1.

Now say we are trying to predict y(t, v) where v was not included in our experi-

ment. Then we can use the relation

π(y(t, v)|data) =

∫
π(y(t, v)|θ(v), φ, data)π(θ(v), φ|data)d{θ(v), φ},

where we can sample from θ(v) using equation (3) and φ using our proposed sampler.

Similar to above, we have the predictive distribution π(y(t, v)|θ(v), φ, data) is the

same as

N
(

i∗(t, v;θ(v), φ) + b̂b|y(t, v), σ2
b|y + σ2

ε

)
, (6)

where

b̂y(t, v) = σ2
brb(t, v)

(
σ2
bRb + σ2

εI ⊗Rε

)−1
(y − i)

and

σ2
b|y = σ2

b − σ4
brb(t, v)

(
σ2
bRb + σ2

εI ⊗Rε

)−1
rTb (t, v).

The matrix I is an identity matrix, Rb is the correlation matrix corresponding to b,

and the vector rb(t, v) is cross correlation between b(t, v) and b.

Let the prior on σ2
i be inverse gamma with shape parameter αi and rate parameter

γi. Say we are given all other parameters. We can use standard analysis tools to find
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the posterior distribution is inverse gamma with shape parameter

αi +
NM

2

and rate parameter

γi +
1

2

(
θ̃i − µ̃i

)T
R−1
i

(
θ̃i − µ̃i

)
.

Let the prior on βi be multivariate normal with mean µβi and standard deviation

Σβi . Say we are given all other parameters. Let X = (1, (vi + 35))Mi=1. Then we have

that the posterior distribution is multivariate normal with mean

(
σ−2
i X

TR−1
i X + Σ−1

βi

)−1
(
Σ−1
βi
µβi + σ−2

i X
TR−1

i θ̃i

)
and covariance matrix (

σ−2
i X

TR−1
i X + Σ−1

βi

)−1
.
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Chapter III

FAST PREDICTION OF DETERMINISTIC FUNCTIONS

USING SPARSE GRID EXPERIMENTAL DESIGNS

In this chapter, we investigate a new approach to resolve this problem: by restricting

ourselves a general class of designs, accurate non-approximative predictors can be with

found with significantly less computational expense. The results require a separable

covariance function, see the first chapter of this thesis. This work was published and

is typeset differently in [94].

This class of experimental designs is termed sparse grid designs and is based on

the structure of eponymic interpolation and quadrature rules. Sparse grid designs

[112] have been used with in conjunction with polynomial rules [126, 7, 132, 88, 131],

but these designs have not gained popularity among users of random field models.

Here, we encourage the use of sparse grid designs by demonstrating computational

procedures to be used with these designs where the predictor can be computed very

quickly.

Section 1.3 will briefly describe two broad types of existing designs and identify

deficiencies of those existing types. Section 3.1 will explain the definition of sparse

grid designs and then the following sections will discuss three important topics:

• Section 3.2 explains how we can exploit the structures used in building sparse

grid designs to achieve extreme computational gains when building the predic-

tor. Our algorithm computes w by inverting several small matrices versus one

large matrix. This algorithm is derived from the result that ŷ (x0) can be written

as the tensor product of linear operators, see Theorem 3.6.1 in Sppendix 3.6.2.
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• Section 3.3 goes on to demonstrate that we can estimate unknown parame-

ters of the random field with similar computational quickness. Of note is

Theorem 3.3.1, which gives an expression for the determinant of the matrix

Σ that can be evaluated quickly.

• Section 3.4 illustrates that sparse grid designs perform well even when the input

is high dimensional. We conduct empirical comparisons that demonstrate good

performance of these designs which supports the positive asymptotic arguments

proven previously [120].

Section 3.5 will offer some discussions on the role of these designs and the creation of

optimal sparse grid designs.

3.1 Sparse grid designs

This section will discuss the construction of sparse grid experimental designs which

are closely associated with sparse grid interpolation and quadrature rules. To build

these designs first specify a nested sequence of one dimensional experimental designs

for each i = 1, . . . , d denoted Xi,j, where Xi,j ⊆ Xi,j+1, j = 0, 1, 2, . . ., and Xi,0 = ∅.

Designs defined for a single dimension, e.g. Xi,j, are termed component designs in

this work. The nested feature of these sequences is important for our case. The

general literature related to sparse grid rules does not require this property. Here, it

is necessary for the stated results to hold.

Sparse grid designs are therefore defined as

XSG(η) =
⋃

~j∈G(η)

X1,j1 ×X2,j2 × · · · × Xd,jd , (7)

where η ≥ d is an integer that represents the level of the construction and G(η) ={
~j ∈ Nd|

∑d
i=1 ji = η

}
. Here we use the overhead arrow to distinguish the vector of

indices, ~j = [j1, . . . , jd] from a scalar index. Increasing the value of η results in denser
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Table 1: Sample size of sparse grid designs with level of construction η, dimension d
and #Xi,j = h(j) for all i. The values of c and c0 are some constant integers bigger
than zero. The last line is from [126].

h(j), j > 0 NSG(η) Bound on NSG(η)
cj cd

(
η
d

)
(cη)d/d!

c(j − 1) + 1
∑min(d,η−d)

k=0 ck
(
d
k

)(
η−d
k

)
cη−d

(
η
d

)
if η ≤ 2d

c0(cj − 1) cd0(c− 1)d
∑η−d

j=0 c
j
(
j+d−1
d−1

)
cd0 (c− 1)d−1 cη−d+1

(
η−1
d−1

)
designs. Figure 8 illustrates the construction of the two dimensional designs seen in

Figure 9. The details of the component designs can be seen in section 3.6.1.

Unlike many other design alternatives, sparse grid designs are not defined via a

given sample size. The sample size of the resulting sparse grid design is a complicated

endeavor to compute a-priori. After the dimension d and level of construction η, a

major contributing factor to the sample size, NSG(η) := #XSG(η), is the sizes of the

component designs. The sample size of a sparse grid design is given by

NSG(η) =
∑
~j∈J(η)

d∏
i=1

#Xi,j −#Xi,j−1,

where J(η) =
{
~j ∈ Nd|

∑d
i=1 ji ≤ η

}
. Table 2 presents some shortcut calculations of

the sample size along with some bounds when #Xi,j = #Xk,j = h(j) for all i and k.

The proper selection of the points in the component designs is essential to achiev-

ing good performance of the overall sparse grid design. Establishing good component

designs can lead to a good sparse grid design, but interaction between dimensions is

an important consideration.

3.2 Fast prediction with sparse grid designs

This section will propose an algorithm that shows the major advantage of sparse

grid designs: the availability of fast predictors. Section 3.6.2 justifies the proposed

algorithm by describing a predictor in the form of a tensor product of linear maps and

then Theorem 3.6.1 demonstrates that conjectured predictor is the same as ŷ(x0).
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Figure 8: Diagram of the construction of the two dimensional designs seen in
Figure 9. Each box represents X1,j1 × X2,j2 . The dark lines pass through lattice
designs creating the union of the sets featured in Figure 9.

0 0.5 1
(a)

0 0.5 1
(b)

0 0.5 1
(c)

0 0.5 1
(d)

Figure 9: Sparse grid designs associated with Figure 8 where d = 2 and η = 3 (a),
4 (b), 5 (c), and 7 (d). The details of the component designs used for this figure can
be seen in section 3.6.1.
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Here we show how to build the weight vector, w, by inverting covariance matrices

associated with the component designs which are relativity small compared to Σ.

Therefore, our proposed method results in a faster computation of w than a method

that computes w from direct inversion of Σ when N is large. This is the same

mechanism that is used to construct fast predictors with lattice designs. But unlike

lattice designs, we show sparse grid designs perform well in cases where the input is

high dimensional in Section 3.4.

Algorithm 1 lists the proposed algorithm for computing w. In the algorithm,

the matrices Si,j are composed of elements Ci(x, x′), for all x, x′ ∈ Xi,j. Also, the

vectors y~j, µ~j and w~j denote subvectors of y, µ and w at indices corresponding to

X1,j1 ×X2,j2 × . . .×Xd,jd for all ~j ∈ J(η).

Algorithm 1 Proposed algorithm for the fast computation of w when
the design is XSG(η). Here, a(~j) = (−1)η−|

~j| ( d−1
η−|~j|

)
and P(η) ={

~j ∈ Nd|max(d, η − d+ 1) ≤
∑d

i=1 ji ≤ η
}
.

Initialize w = 0

For all ~j ∈ P(η)

w~j = w~j + a(~j)
(⊗d

i=1 S
−1
i,ji

)(
y~j − µ~j

)
Another important feature of predictors in general is the presence of a predictive

variance,

EY =y (ŷ(x0)− Y (x0))2 = C(x0,x0)− σT(x0)Σ−1σ(x0),

where the subscript Y = y on the expectation implies we condition on that case. As

noted before, computation of Σ−1 is an undesirable operation. Luckily, this operation

can be avoided by using sparse grid designs. As demonstrated in Section 3.6.3, when

employing a sparse grid design the predictive variance is given by

EY =y (ŷ(x0)− Y (x0))2 = C(x0,x0)−
∑
~j∈J(η)

d∏
i=1

∆i,ji(x0), (8)

where ∆i,j(x0) = εi,j−1(x0)− εi,j(x0) and εi,j is defined as the expected squared pre-

diction error in one dimension with covariance Ci and design Xi,j. After substituting
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known relations, we have that

εi,j(x0) = Ci(x
(i)
0 , x

(i)
0 )− sTi,j(x

(i)
0 )S−1

i,j si,j(x
(i)
0 ),

where the elements of the vector si,j(x
(i)
0 ) are Ci(x

(i)
0 , x) for all x ∈ Xi,j.

3.3 Fast prediction with unknown parameters

The previous section assumed that both mean, µ(·), and covariance, C(·, ·), are exactly

known. This is often not assumed in practical situations. Instead, these functions are

given general structures with unknown parameters which we denote θ. Two major

paradigms exist for prediction when θ is unknown: (i) simply use an estimate for θ

based on the observations and predict using (1) or (ii) Bayesian approaches [106]. For

either method, the typical formulae require computation of both the determinant and

inverse of Σ, which are costly when N is large. This section develops the methods

to avoid these computations. For expositional simplicity, this section will outline the

first method and leave the full Bayesian method for future work.

The estimate of θ we consider will be the maximum likelihood estimate (MLE),

which is denoted θ̂. We therefore term the predictor that uses this estimate as the

MLE-predictor, which will be used for comparisons in Section 3.4.2. We first explain

the typical general structures of µ(·) and C(·, ·) in Section 3.3.1 and then we describe

the traditional forms of the estimate θ̂ and problems with them in Section 3.3.2.

Section 3.3.3 then explains fast methods to find θ̂ in this setting.

3.3.1 General setting

The structures of µ, C and θ in this section are borrowed from [106] and are widely

employed. We assume that the mean is a linear combination of p ≥ 1 basis functions,

f1(·), . . . , fp(·), and the covariance function is scaled such that C(·, ·) = σ2R(·, ·;φ),

where R(x1,x2;φ) =
∏d

i=1Ri(x
(i)
1 , x

(i)
2 ;φ) is a correlation function and σ2 represents

the variance of y(x) − µ(x). The parameter φ is a general parameter or group of
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parameters that can represent unknown aspects of R(·, ·;φ) that affect the lengthscale

and differentiability of the realized response y(·). We now have the following case

Y (·) ∼ GP

(
p∑

k=1

βkfk(·), σ2R(·, ·;φ)

)
,

where θ = {β1, . . . , βp, σ
2, φ} is the set of unknown parameters.

3.3.2 Traditional computation of the MLE

The logarithm of the probability density of the observations y with θ = {β1, . . . , βp, σ
2, φ},

called the log-likelihood, is given by (up to a constant)

L(β, σ2, φ) = −1

2

(
N log(σ2) + log |Rφ|+ (y − Fβ)TR−1

φ (y − Fβ) /σ2
)
,

where |A| represents the determinant of a matrix A, Rφ is the N × N correlation

matrix of y when parameter φ is used, β = [β1, . . . , βp]
T, and

F =



f1(x1) . . . fp(x1)

f1(x2) . . . fp(x2)

...
...

...

f1(xN) . . . fp(xN)


.

Our goal is to solve the optimization problem

θ̂ = argmaxβ,σ2,φ L(β, σ2, φ).

There are closed form maximum likelihood estimates for both β and σ2 given φ

which we denote β̂φ and σ̂2
φ. They are

β̂φ =
(
F TR−1

φ F
)−1

F TR−1
φ y

and

σ̂2
φ = N−1

(
y − F β̂φ

)T
R−1
φ

(
y − F β̂φ

)
.

Then, φ is found by generic numerical maximization, i.e.

φ̂ = argmaxφ L(β̂φ, σ̂
2
φ, φ).
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The problem with using these methods directly is that β̂φ and σ̂2
φ require inversion

of the N ×N matrix Rφ. Additionally, L(β̂φ, σ̂
2
φ, φ) still contains the term log |Rφ|,

which is often as cumbersome as finding R−1
φ . The remainder section proposes alter-

natives to these methods that are faster. Specifically, we will be able to compute β̂φ,

σ̂2
φ and log |Rφ| without ever storing or operating directly on Rφ.

3.3.3 Proposed fast computation of the MLE

To introduce our fast-to-compute maximum likelihood estimate, we first describe a

generalization of Slgorithm 1 seen in Slgorithm 2. Algorithm 2 computes

Q
(
A;⊗di=1Ci

)
:= Σ−1A,

whereA is anyN×mmatrix andm is any positive integer. The notation “⊗di=1Ci” im-

plies we have a separable covariance with each covariance function being represented

by Ci(·, ·). The computations in Slgorithm 2 do not require the direct inversion of

Σ and therefore avoid the major computational problems of the traditional method.

The validity of Slgorithm 2 is implied by the validity of Slgorithm 1.

Algorithm 2 Fast computation of Q(A;⊗di=1Ci) = Σ−1A when the design is XSG(η)
and A is any N ×m matrix where m is any positive integer. The notation “⊗di=1Ci”
implies we have a separable covariance with each covariance function being repre-
sented by Ci(·, ·). The notation A~j,· means the matrix with rows that correspond to
X1,j1 × X2,j2 × . . . × Xd,jd and all columns of A. Section 3.2 defines P(η), a(~j), and
Si,j.

Initialize Ã as an N ×m matrix with all 0 entries.
For all ~j ∈ P(η)

Ã~j,· = Ã~j,· + a(~j)
(⊗d

i=1 S
−1
i,ji

)
A~j,·

Output Ã.

Now we can establish our maximum likelihood estimates for β and σ2 that do not

require inversion of the N ×N matrix Rφ. For a given φ,

β̂φ =
([
Q(F ;⊗di=1Ri(φ))

]T
F
)−1 [

Q(F ;⊗di=1Ri(φ))
]T
y
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and

σ̂2
φ = N−1

[
Q(y − F β̂φ;⊗di=1Ri(φ))

]T (
y − F β̂φ

)
.

The last step to find the MLE requires maximization of L(β̂φ, σ̂
2
φ, φ) with re-

spect to φ. This expression contains the term log |Rφ| which, as mentioned before,

is expensive to compute. Therefore, we demonstrate the following theorem related

to the expression of the determinant that only involves determinants of component

covariance matrices, Si,j. The proof lies in the section.

Theorem 3.3.1. If X = XSG(η), then

log |Σ| =
∑

~j∈J(η)

∑d

i=1
(log |Si,ji | − log |Si,ji−1|) ·

∏
k 6=i

#Xk,jk −#Xk,jk−1

where |Si,0| := 1 for all i.

By using R(x1,x2;φ) =
∏d

i=1 Ri(x
(i)
1 , x

(i)
2 ;φ) as the covariance function in the

formula in the above theorem, we gain an expression for log |Rφ| without directly

computing the determinant of an N × N matrix. Once φ̂ is found, this gives us

θ̂ = {β̂φ̂, σ̂2
φ̂
, φ̂}.

3.4 Prediction performance comparisons

Thus far, this chapter has established that we can build predictors quickly when

sparse grid designs are used. However, an issue of critical importance is how well

the resulting predictors perform. This section seeks to compare the predictive per-

formance resulting from sparse grid designs to the more common designs discussed in

Section 1.3. Our core findings can be summarized as follows: (i) both sparse grid and

space-filling designs outperform lattice designs, (ii) sparse grid designs appear com-

petitive with space-filling designs for smooth functions and inferior to space-filling

designs for very rough functions, and (iii) the time taken to find the MLE-predictor

using sparse grid designs can be orders of magnitude less than the time taken using

the traditional methods.
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Before we begin numerical comparisons, it might be helpful to take a historical

look at sparse grid designs. The prevalence of sparse grid designs in the numerical ap-

proximation literature can be owed to the demonstrated efficiency of the designs even

when the input is of high dimension. It has been shown if X = [0, 1]d, using sparse

grid designs with component designs of the form Xi,j = {1/2j, . . . , (2j − 1)/2j} is

an asymptotically efficient design strategy under the symmetric separable covariance

structure [120, 130, 103]. These designs are also known as hyperbolic cross points.

The key point discovered in the previous analysis is that sparse grid designs are

asymptotically efficient regardless of dimension and lattice designs become increas-

ingly inefficient as the dimension grows large. Therefore, we anticipate that sparse

grid designs outperform lattices in high dimensions.

The sparse grid designs used in this section were constructed from component

designs that are symmetric across dimensions and details of the component designs

are in section 3.6.1. These appeared to be at least competitive if not superior to

hyperbolic cross points in a simulation study comparable to Section 3.4.1. The space-

filling designs were constructed by using the scrambled Sobol sequence described in

[78]. Maximin Latin hypercube designs that were generated via the R package lhs

produced inferior distance metrics for large sample sizes but the same conclusions as

the ones presented in this section. The lattice design designs used for comparison in

Section 3.4.1 were {1/4, 3/4}10, {0, 1/2, 1}10, and {0, 1/3, 2/3, 1}10.

3.4.1 Comparison via average prediction error

This subsection will investigate the mean square prediction error resulting from vari-

ous experimental designs when the mean and covariance structures are known. This

can be thought of as the average mean squared prediction error over all possible sam-

ple paths, y(·), drawn from a Gaussian process with a specified covariance function.
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Figure 10: Root mean square prediction errors (RMSPE) associated with sparse
grid designs (solid), space-filling designs (small dashes), and lattice designs (dashed-
dotted) for the simulation discussed in Section 3.4.1. The random fields are located
in [0, 1]10 and defined with a Matérn covariance function where φ = .75 and ν varies.

Furthermore, we seek to examine the impact of the smoothness of y(·) on the effec-

tiveness of the design strategies. To allow for the introduction of varying levels of

smoothness, this section will use the Matérn class of covariance functions,

Ci(x, x
′) =

1

2ν−1Γ (ν)

(√
2νh

)ν
Kν
(√

2νh
)
, (9)

where Kν is the modified Bessel function of order ν > 0 and h = |x − x′|/φ. The

use of this covariance class allows us to independently adjust a smoothness parameter

ν, where the sample paths are dν − 1e times differentiable [53]. For simplicity, this

subsection uses homogenous covariance in every dimension. For the case when d = 10

and φ = .75, Figure 10 compares the average root mean squared prediction error

(RMSPE) resulting from the design strategies computed through 1000 Monte Carlo

samples on [0, 1]10. Note if N > 3000, the RMSPEs for the space-filling designs were

not recorded due to numerical instability when inverting the large covariance matrix.

Figure 10 indicates sparse grid designs yield superior performance to lattice de-

signs. The results also demonstrate the similarity of the sparse grid designs and

space-filling designs in cases of the existence of at least one derivative. However,

sparse grid designs appear inferior to the space-filling designs if the sample path has

almost surely no differentiability.
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3.4.2 Comparison via deterministic functions

This section will compare the performance of sparse grid designs and space-filling

designs on a set of deterministic test functions. For both methods, we assume the

mean and covariance structures of the deterministic functions are unknown and use

the MLE-predictor. For µ, we use a constant mean structure, µ(x) = β, and for

the covariance function we use a scaled Matérn with ν = 5/2 and single lengthscale

parameter φ for all dimensions i. This analysis will report the median absolute

prediction error, which is more robust to extreme observations compared to the mean

square prediction error. The median absolute prediction error will be estimated by the

sample median of the absolute prediction error at 1000 randomly selected points in the

input space. We consider the following functions: Franke’s function [41], the Borehole

function [85], the product peak function given by y(x) =
∏d

i=1(1 + 10(x(i)− 1/4)2)−1,

the corner peak function given by

y(x) =
(

1 + d−1
∑d

i=1
x(i)
)−d−1

,

and the Rosenbrock function given by

y(x) = 4
∑d−1

i=1
(x(i) − 1)2 + 400

∑d−1

i=1
((x(i+1) − .5)− 2(x(i) − .5)2)2.

With the exception of the Borehole function, all domains areX = [0, 1]d (the Borehole

function was scaled to the unit cube). For the space-filling designs, designs sizes were

restricted to cases where memory constraints in MATLAB were not violated on the

author’s computer.

Figure 11 presents the results of the study. Most functions were similarly esti-

mated using either design strategy. While Franke’s function has significantly more

bumps and ridges compared to the other functions, making it more difficult to es-

timate, good prediction of Franke’s function based on few observations is possible

because the input to the function is located in a 2 dimensional space. At the other

48



10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

M
A

P
E

  Franke, d=2

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Borehole, d=8

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Product Peak, d = 5

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−5

10
−4

10
−3

10
−2

Product Peak, d=10

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−6

10
−5

10
−4

10
−3

10
−2

Design Size

M
A

P
E

Corner Peak, d=10

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−7

10
−6

10
−5

Design Size  

Corner Peak, d = 30

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

Design Size    

Rosenbrock, d=20

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
1

10
2

10
3

10
4

Design Size  

Rosenbrock, d=60

Figure 11: Median absolute prediction errors (MAPE) of the MLE-predictor from
Section 3.3 with sparse grid designs (circles, solid line) and space-filling designs
(squares, dashed line).

extreme, while the corner peak function is smooth, estimating the function when

d = 30 is a very challenging task. Using a space-filling design of size 4000 does not do

an adequate job of estimating the function as it produces median absolute prediction

error of about 10 times more than the best that can be achieved using a sparse grid

design with a much larger design size. Similar effects are seen when attempting to

estimate the Rosenbrock function in 60 dimensions.

Figure 12 compares the computational time needed to find both θ̂ and the weights

w using both the traditional method and the proposed method for the MLE-predictors

used to produce Figure 11. The method to find the MLE-predictor was described in

Section 3.3. There was three cases where the cost of the traditional algorithm with a

design size of less than 5000 was more than the proposed algorithm with a design size

of nearly a million. While the design sizes attempted for the traditional algorithm were

limited for memory and numerical stability reasons, some extrapolation emphasizes

the problem with using the traditional algorithm on experiments with huge sample

sizes. A sample size of a million points would require roughly 107 seconds, or 115.7

days, to find the MLE-predictor. By using a sparse grid design, we are able to compute

the MLE-predictor based on a million observations in a fraction of that time, about
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Figure 12: Computation time (in seconds) needed to find the MLE-predictor from
Section 3.3 using the proposed method for sparse grid experimental designs (circles)
and the traditional method with space-filling designs (squares). The solid line (sparse
grid designs) and the dashed line (space-filling designs) represent least squares fits of
the model log computational time = β0 + β1 logN to the respective data.

15 minutes (770 seconds).

3.5 Discussion

The proposed sparse grid designs deviate from the traditional space-filling framework

and utilize lattice structures to construct efficient designs. Sparse grid designs appear

to be competitive with common space-filling designs in terms of prediction, but space-

filling designs appear to outperform sparse grid designs in simulations where the

underlying function has no differentiability. Based on the discussions at the end of

Section 3.4.1, these early results may extend to cases that can be classified as rough

functions.

Sparse grid designs are an enormously flexible framework and this work has not yet

realized their full potential. A topic not discussed at length in this work are optimal

sparse grid designs, which might be able to close any small performance gaps between

sparse grid and space-filling designs. Optimality is dictated by the choice of design

criteria, which has previously focused on distance measures such as the minimum

distance between any two design points. When the sample size grows large, this can
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become an expensive metric to compute as it requires O(N2) arithmetic operations.

Therefore, using the shortcut calculations for integrated prediction error, see equation

(8), or maximum entropy, see Theorem 3.3.1, might be faster criteria to compute (see

[105] for more information on these criteria).

A problem not yet solved using the proposed designs occurs when the covariance

function is not separable. The study of these situations merits more work. As an

example, if the sample path contains distinct areas with differing behavior, the as-

sumption of local separability might be a more apt modeling strategy. Using only

local separability assumptions, methods similar to [47] could be employed with local

sparse grid designs that study heterogeneous sections of the function.

3.6 Details

One notational difference between the body of the chapter and these appendices: Since

the proofs for theorems 1 and 2 are demonstrated through induction by treating the

level of construction η and the dimension d as variables, we use the indexing (η, d)

for the design XSG(η, d), the design size NSG(η, d), the index sets J(η, d) and P(η, d),

and the covariance matrix Σ(η, d). Also, the symbol \ means ‘set-minus’, i.e. A \ B

is the elements in A that are not in B.

3.6.1 Component designs used for the sparse grid designs in this work

The sparse grid design in Figure 1, subplot c, was created where d = 2, η = 6 and

Xi,1,Xi,2\Xi,1,Xi,3\Xi,2, Xi,4\Xi,3 and Xi,5\Xi,4 are {.5}, {0, 1}, {.25, .75}, {.375, .625}

and {.125, .875} respectively for i = 1 and 2.

The sparse grid design in Figure 9 was created with component designs such that

Xi,1, Xi,2 \ Xi,1, Xi,3 \ Xi,2, Xi,4 \ Xi,3, Xi,5 \ Xi,4, Xi,6 \ Xi,5, and Xi,7 \ Xi,6 are {.5},

{.125, .875}, {.25, .75}, {0, 1}, {.375, .625}, {0.1875, 0.8125}, and {0.0625, 0.9375} re-

spectively for all i. These component designs were chosen through an ad-hoc method,

but are essentially based on maintaining good spread of points as η increases.
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The component designs used in Figure 9 are used to construct higher dimensional

designs used in Section 3.4.

3.6.2 Proof that Slgorithm 1 produces correct w

The correctness of w produced by Slgorithm 1 is difficult to understand without the

use of linear operators, therefore we will rephrase ŷ(x0) discussed in Chapter 1 in

terms of a linear operator. Let F be a function space of functions that map X to

R. Let P : F → R be a predictor operator with respect to X = {x1, . . . ,xN} if

Pf =
∑N

k=1 qkf(xk) where qk ∈ R. The following definition explains an optimal

predictor operator.

Definition 3.6.1. A predictor operator P is termed optimal with respect to x0 and

X = {x1, . . . ,xN} if Pf =
∑N

k=1 qkf(xk) and

{q1, . . . , qN} = argmin{α1,...,αN}∈RN E

(
µ(x0) +

N∑
k=1

αk[Y (xk)− µ(xk)]− Y (x0)

)2

.

A predictor operator P is termed optimal because

ŷ(x0) = µ(x0) + P [y − µ],

is the best linear unbiased predictor of y(x0) given the observations Y = y when P

is optimal with respect to x0 and X [106].

In general, the optimal predictor operator is when qk is the kth element in σT(x0)Σ−1.

There are cases where the predictor operator is unique. Therefore, we only need to

show a clever form of the optimal predictor operator that agrees with the w produced

by Slgorithm 1 to complete our argument.

Now we define a sequence, j = 0, 1, 2, . . ., of predictor operators, Pi,j, for each

dimension i. These are the optimal predictor operators with respect to x(i)
0 and Xi,j

when the dimension of the input is 1 and the covariance function is Ci.

To find the desired form of the optimal predictor operator with respect to sparse

grid designs, one could guess that the quadrature rule of [112] will be of great use. In
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our terms, the [112] quadrature rule can be interpreted as the predictor operator

P(η, d) =
∑

~j∈J(η,d)

d⊗
i=1

Pi,ji − Pi,ji−1, (10)

where the ⊗ symbol for linear operators is the tensor product. .

While this form of P(η, d) is known, the optimality of P(η, d) in the situation

discussed has not yet to been proved to the author’s knowledge. [126] study the case

where Xi,j = Xk,j for all i and k. They show an optimality property with respect to

an L∞ norm, which they term worst case. [126] go on to state in passing that one

could verify that (10) is mean of the predictive distribution and therefore optimal in

our setting, but they do not demonstrate it in that work. Here, we formally state and

demonstrate this result.

Theorem 3.6.1. The predictor operator P(η, d) is optimal with respect to x0 and

XSG(η, d). Furthermore, P(η, d) can be written in the form

P(η, d) =
∑

~j∈P(η,d)

a(~j)
d⊗
i=1

Pi,ji , (11)

where a(~j) = (−1)η−|
~j| ( d−1

η−|~j|

)
and P(η, d) =

{
~j ∈ Nd|max(d, η − d+ 1) ≤

∑d
i=1 ji ≤ η

}
.

The different statements of (10) and (11) are important to note. The predictor

operator in (10) is theoretically intuitive as it geometrically explains how we maintain

orthogonality as η grows and allows for the subsequent proof. However, if we were

to attempt to use (10) directly, each term in the sum would require us to sum 2d

terms after expansion, which may temper any computational advantages the lattice

structure yields. [126] show that (10) can be written of the form (11). This result

is simply an algebraic manipulation and requires no conditions regarding optimality,

but the result allows us to easily use (10).

The fact that (11) is the optimal predictor operator verifies that Slgorithm 1

produces correct w.
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3.6.2.1 Proof of Theorem 3.6.1

Proof. Let

P(η, d)f =
N∑
k=1

qkf(xk)

where qk ∈ R and {x1, . . . ,xN} = XSG(η, d). We need to show that

{q1, . . . , qN} = argmin{α1,...,αN}∈RN E

(
µ(x0) +

N∑
k=1

αk[Y (xk)− µ(xk)]− Y (x0)

)2

.

Since E(Y (x) − µ(x)) = 0, the objective function is minimized when the covariance

between
∑N

k=1 αkY (xk)−Y (x0) and values of Y at all points in XSG(η, d) is 0. Thus,

we need to show that

cov(P(η, d)Y − Y (x0), Y (xk)) = 0,

for all xk ∈ XSG(η, d).

If d = 1, the theorem is clearly true for all η ≥ d. Assume that the theorem is true

for d−1 and all η ≥ d−1; we will show that it is true for d and η. This demonstrates

the result by an induction argument.

We have that

cov(P(η, d)Y − Y (x0), Y (xk)) = −C(x0,xk) + P(η, d)E [{Y (xk)− µ(xk)}(Y − µ)] .

(12)

Observe that

P(η, d)E [{Y (xk)− µ(xk)}(Y − µ)] = P(η, d)C (·,xk)

=
∑

~j∈J(η,d)

d⊗
i=1

Pi,jiCi
(
·, x(i)

k

)
− Pi,ji−1Ci

(
·, x(i)

k

)

=
∑

~j∈J(η−1,d−1)

d−1∏
i=1

Pi,jiCi
(
·, x(i)

k

)
− Pi,ji−1Ci

(
·, x(i)

k

)

·
η−|~j|∑
jd=1

Pd,jdCd
(
·, x(d)

k

)
− Pd,jd−1Cd

(
·, x(d)

k

)
.

(13)
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Since Pi,j is the optimal predictor operator with respect to x(i)
0 and Xi,j, Pi,jCi (·, x)−

Ci(x
(i)
0 , x) = 0 if x ∈ Xi,j. Let

K = {~j|xk ∈ Xi,j1 ×X2,j2 × · · · × Xd,jd ,~j ∈ J(η, d)},

and let ~a = argmin~j∈K |~j|. Since sparse grid designs have nested component designs,

if ji ≥ ai, then Pi,jiCi
(
·, x(i)

k

)
= Pi,j1+1Ci

(
·, x(i)

k

)
= Ci(x

(i)
0 , x

(i)
k ), since x(i)

k ∈ Xi,ji ⊂

Xi,ji+1. This implies if ~j 6≤ ~a, then
∏d

i=1

(
Pi,jiCi

(
·, x(i)

k

)
− Pi,ji−1Ci

(
·, x(i)

k

))
= 0.

Then (13) can be rewritten as

P(η, d)E [{Y (xk)− µ(xk)}(Y − µ)] =∑
~j∈J(η−1,d−1)

d−1∏
i=1

(
Pi,jiCi

(
·, x(i)

k

)
− Pi,ji−1Ci

(
·, x(i)

k

))

·
max(η−a1−···−ad−1,η−|~j|)∑

jd=1

Pd,jdCd
(
·, x(d)

k

)
− Pd,jd−1Cd

(
·, x(d)

k

)
(14)

Also, if jd > ad then Pd,jdCd
(
·, x(d)

k

)
− Pd,jd−1Cd

(
·, x(d)

k

)
= 0 and

d∑
i=1

ai ≤ η ⇒ ad ≤ max(η − a1 − · · · − ad−1, η − j1 − · · · − jd−1),

which implies

max(η−a1−···−ad−1,η−|~j|)∑
jd=1

Pd,jdCd
(
·, x(d)

k

)
−Pd,jd−1Cd

(
·, x(d)

k

)
=

ad∑
jd=1

Pd,jdCd
(
·, x(d)

k

)
− Pd,jd−1Cd

(
·, x(d)

k

)
= Cd

(
x

(d)
0 , x

(d)
k

)
. (15)

Plugging (15) into (14) yields

P(η, d)E [{Y (xk)− µ(xk)}(Y − µ)] =

Cd

(
x

(d)
0 , x

(d)
k

)
·

∑
~j∈J(η−1,d−1)

d−1∏
i=1

Pi,jiCi
(
·, x(i)

k

)
− Pi,ji−1Ci

(
·, x(i)

k

)
.
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By the induction assumption, the theorem is true for d − 1, which means that for

η − 1 and d− 1, (12) is equal to zero. Therefore,

∑
~j∈J(η−1,d−1)

d−1∏
i=1

Pi,jiCi
(
·, x(i)

k

)
− Pi,ji−1Ci

(
·, x(i)

k

)
=

d−1∏
i=1

Ci

(
x

(i)
0 , x

(i)
k

)
.

This gives us the desired result for d,

P(η, d)E [{Y (xk)− µ(xk)}(Y − µ)] =
d∏
i=1

Ci

(
x

(i)
0 , x

(i)
k

)
= C(x0,xk).

Inserting this into (12) yields the major result that (10) is the optimal predictor

operator.

In [126], they demonstrate through combinatorial relations and algebraic manip-

ulations that (10) can be simplified to (11).

3.6.3 Proof that (8) is the MSPE

Due to Theorem 3.6.1,

E
(
Ŷ (x0)− Y (x0)

)2

= var(Y (x0))− P(η, d)E [{Y (x0)− µ(x0)}(Y − µ)]

= C(x0,x0)−
∑

~j∈J(η,d)

d∏
i=1

Pi,jCi(·, x(i)
0 )− Pi,j−1Ci(·, x(i)

0 ).

Because Pi,j is the optimal predictor operator in one dimension with respect to x(i)
0

and X (η, d), we have

E
(
Ŷ (x0)− Y (x0)

)2

= var(Y (x0))−
∑

~j∈J(η,d)

d∏
i=1

∆i,ji ,

where ∆i,j is defined in Section 3.2.

Lastly, we have that since Ŷ (·) is an affine map from Y and Y (·) follows a Gaussian

process, Ŷ (x0) − Y (x0) and Y are jointly multivariate normal. By Theorem 3.6.1,

there is 0 covariance between them. Therefore Ŷ (x0)−Y (x0) is independent of Y and

we can condition the expectation on the left-hand-side on Y = y without affecting

the right-hand-side.

56



3.6.4 Proof of Theorem 3.3.1

Proof. If d = 1, the theorem is clearly true for all η ≥ d. We now prove this result

by induction. Assume the theorem is true for d− 1 and all η ≥ d− 1.

To demonstrate this result, we require the use of the Schur complement. Let

M =
[
A,B;BT,C

]
. The Schur complement of M with respect to A, expressed

M /A , is defined by C −BTA−1B (if A is invertible). The determinant quotient

property of the Schur complement is |M/A| = |M ||A|−1. The theorem can be

rewritten as

|Σ(η, d)| =
∏

~j∈J(η,d)

d∏
i=1

|Si,ji /Si,ji−1|
∏
k 6=i #Xk,jk−#Xk,jk−1 .

We also require following result:

|A⊗B| = |A|m|B|n, (16)

where A and B are n× n and m×m sized matrices, respectively.

We will use the notation Σ(η, d;X0) to denote the submatrix of Σ(η, d) with

respect to the elements which correspond to X0 ⊂ X . Expanding the term |Σ(η, d)|

with respect the quotient property

|Σ(η, d)| = |Σ(η, d) /Σ(η, d;XSG(η − 1, d− 1)×Xd,1 \ Xd,0) |

|Σ(η, d;XSG(η − 1, d− 1)×Xd,1 \ Xd,0)| . (17)

Let

Q = Σ(η, d) /Σ(η, d;XSG(η − 1, d− 1)×Xd,1 \ Xd,0) .

Now, observe the elements of Q that correspond to XSG(η − 2, d− 1)×Xd,2 \ Xd,1,

Q(XSG(η − 2, d− 1)×Xd,2 \ Xd,1) = A−BTC−1B,

where A is a covariance matrix corresponding to XSG(η − 2, d − 1) × Xd,2 \ Xd,1, C

is a covariance matrix corresponding to XSG(η − 1, d− 1)×Xd,1 \ Xd,0, and B is the
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cross covariance. Since XSG(η − 2, d− 1) ⊂ XSG(η − 1, d− 1) and Xd,1 ⊂ Xd,2,

Q(XSG(η − 2, d− 1)×Xd,2 \ Xd,1) = Σ (η − 2, d− 1)
⊗

(Sd,2 /Sd,1 ) .

So,

|Q(XSG(η − 2, d− 1)×Xd,2 \ Xd,1)| = |Σ(η, d;XSG(η − 2, d− 1)×Xd,2 \ Xd,1)| ,

which can be used with (17) to show

Σ(η, d) = |Σ(η, d) /Σ(η, d;XSG(η − 1, d− 1)×Xd,1 \ Xd,0)

/Σ(η, d;XSG(η − 2, d− 1)×Xd,2 \ Xd,1) |

|Σ(η, d;XSG(η − 1, d− 1)×Xd,1 \ Xd,0)| |Σ(η, d;XSG(η − 2, d− 1)×Xd,2 \ Xd,1)| .

Iterating the expansion to η − d+ 1 yields,

|Σ(η, d)| = |Σ(η, d) /Σ(η, d;XSG(η − 1, d− 1)×Xd,1 \ Xd,0)

/Σ(η, d;XSG(η − 2, d− 1)×Xd,2 \ Xd,1) /· · ·

/Σ(η, d;XSG(d− 1, d− 1)×Xd,η−d+1 \ Xd,η−d) |
η−d+1∏
jd=1

|Σ(η, d;XSG(η − jd, d− 1)×Xd,jd \ Xd,jd−1)| .

The term outside of the product is the Schur complement of a positive definite matrix

with itself, which is an empty matrix. By the Leibniz formula, the determinant is 1.

Therefore,

|Σ(η, d)| =
η−d+1∏
jd=1

|Σ(η, d;XSG(η − jd, d− 1)×Xd,jd \ Xd,jd−1)| .

With (16), we have

|Σ(η, d)| =
η−d+1∏
jd=1

|Sd,jd /Sd,jd−1 |NSG(η−jd,d−1) |Σ(η − jd, d− 1)|#Xd,jd−#Xd,jd−1 .
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And by (7) and the induction assumption

|Σ(η, d)| =
η−d+1∏
jd=1

∏
~j∈J(η−jd,d−1)

|Sd,jd /Sd,jd−1 |
∏
k 6=d #Xk,jk−#Xk,jk−1

d−1∏
i=1

|Si,ji /Si,ji−1 |
∏
k 6=i #Xk,jk−#Xk,jk−1 ,

=
∏

~j∈J(η,d)

d∏
i=1

|Si,ji /Si,ji−1 |
∏
k 6=i #Xk,jk−#Xk,jk−1 ,

which demonstrates the result.
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Chapter IV

BUILDING ACCURATE EMULATORS FOR STOCHASTIC

SIMULATIONS VIA QUANTILE KRIGING

4.1 Background

This chapter describes the development of emulators through a framework termed

quantile kriging, which allows for non-parametric representations of the stochastic

behavior of the output. The first step in the framework is running a designed experi-

ment with replications at different sets of inputs. Using this information, we establish

an empirical predictive distribution by using the Gaussian process prediction condi-

tioned on the estimated quantiles at each set of inputs in the experiment.

While this two step procedure can be considered informal from the traditional

Bayesian viewpoint, this framework results in emulators with an explicit predictive

distribution and an associated fast sampling scheme. Furthermore, this work studies

asymptotic properties of this methodology that yields practical insights. For example,

experiments consisting of replications at sets of different inputs is nearly universally

accepted among users of simulations [2], but the rational is not always justified. We

demonstrate, under certain regulatory conditions, a result that can be summarized

as follows (see Section 4.4):

By using an experiment that has the appropriate ratio of replications to

sets of different inputs, we can achieve an optimal rate of convergence.

To the authors’ knowledge, this is the first result of this type for stochastic emulators.

The basic idea of the proposed framework is to estimate the underlying quan-

tiles of the distribution while accounting for epistemic uncertainty. After discussing
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the modeling strategy in Section 5.2, we propose a method to develop predictive dis-

tributions in Section 4.3. Sections 4.4 and 4.5 demonstrate the advantages of this

framework by investigating the asymptotic efficiency and two illustrations, respec-

tively. Section 4.6 briefly discusses some conclusions, comparisons to other work and

possible extensions of this work.

4.2 Simulation Metamodeling

As mentioned in Section 5.1, emulators are traditionally developed using random field

metamodels [105, 106] which provide the ability to model simulation output without

the restrictive linear or low-order polynomial assumptions. Additionally, random field

metamodels provide the ability to account for both the aleatoric uncertainty, which

differs on each realization of the simulation, and epistemic uncertainty, representing

the uncertainty caused by unknown aspects of the system.

The basic idea of the traditional metamodel [69, 2, 93] is to assume the output

is the sum of a deterministic, but unknown, mean M(x) and a random variable ε(x)

representing the stochastic behavior of the simulation, i.e.

Y (x) = M(x) + ε(x).

ε(x) ∼ N (0, σ2(x)),

where σ2(x) represents the variance of the output, which is a function of the inputs.

The value of Y (x) represents a single draw from the simulation with inputs x. In

the interest of generality, we assume only independent samples are drawn from the

simulation model. Since M(x) is unknown but deterministic, the framework from

deterministic simulations is adopted, e.g. [105], and a distributional assumption is

placed on M(x) that represents our uncertainty. The deterministic value of M has

a prior distribution of GP(µ(·), C(·, ·)), where GP denotes a Gaussian process with a

trend function µ(x) and a covariance structure cov (M(x),M(x′)) = C(x, x′). Here,
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the distribution of ε(x) represents the aleatoric uncertainty, caused by the stochastic-

ity present in the simulation, and the distribution of M(x) represents the epistemic

uncertainty, a result of our lack of knowledge about the true mean function.

However, this approach is limited by the normality assumption on ε(x), which, as

mentioned in the introduction, is often invalid. Let Qα(x) represents the α quantile

of the distribution of Y (x) = M(x) + ε(x), i.e. Qα(x) = inf{t : P (Y (x) ≤ t) ≥

α}. Here, we establish the key idea of the proposed framework: since Qα(x) is an

unknown function, we ought to attempt to estimate it as a function of x. Therefore,

we model the quantiles as unknown functions of x, and we further assume they are

continuous. Emulators typically work by exploiting the continuity, or higher orders

of differentiability, of the output (discussed in, for example, [106]). Without any

assumptions of this variety, creating predictive distributions would prove futile.

This means that if we observed two replications from the same input x, we assume

their respective simulation outputs may differ, but the distribution is the same. Two

replications from x and x′ 6= x would have differing distributions of the simulation

output, but similar inputs (measured in distance) implies similar distributions. There-

fore, in this metamodel, the aleatoric variation need not be Gaussian, but we assume

that the distribution of the simulation output is continuous, meaning as x→ x0, the

distribution of the output at x approaches the distribution at x0.

As an example, let the output, Y (x), be the failure time for a product, which is

often modeled as exponentially distributed. Define the mean of Y (x) as ν(x) > 0 and

assume the function ν(x) is smooth. The quantiles of the exponential distribution

are given by

Qα(x) = − ln(1− α)/ν(x),

and output quantiles, clearly, are continuous as a function of x.

Under general assumptions on the distribution of the output, we can establish

62



the continuity of the quantiles for a wide variety of problems. The following propo-

sition demonstrates this under a broad class of assumptions (proof is located in the

supplementary materials).

Proposition 4.2.1. Let Fx be defined as the cumulative probability distribution such

that Y (x) ∼ Fx. Suppose Fx(y) is continuous with respect to x and y and Fx(y) is

a strictly monotonic function with respect to y, then Qα(x) is a continuous function

with respect to x.

However, this is not an exclusive characterization; the output Y (x) does not need

to be a continuous random variable. Consider the following simplified case: you flip

a coin, you win x if it lands heads side up and lose x if it lands tails side up. This

example is characterized by the following simple distribution

Fx(y) = .51{−x ≤ y}+ .51{x ≤ y},

which corresponds to a discrete distribution. Here, Fx(y) is not a continuous or

strictly increasing function of y, and therefore does not fit the criteria listed in

Proposition 4.2.1, but the quantiles, Qα(x) = −x + 2x1{α ≥ .5}, are continuous

with respect to x.

4.3 Predictive Distribution

This section outlines the creation of predictive distributions from a designed ex-

periment. We assume there is an experiment that comprises n sets of inputs, de-

noted X = {x1, . . . , xn}, with m replications, which results in a set of observations

y1(x), y2(x), . . . , ym(x) for each x ∈ X . The choice of X for use with random field

models has been studied in several contexts, and the authors point to [106] and the

references therein for more information. In general, the selection of space-filling Latin

hypercube designs has yielded positive results.
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Using this experiment, this work seeks to develop a predictive distribution for a

new input x0 /∈ X , i.e. F̂x0 , which is close to the true distribution of the simulation

output, Y (x0) ∼ Fx0 . After some preliminaries, the explicit predictive distribution is

described (Section 4.3.2). Discussions of the practical matter of estimation of param-

eters associated with the Gaussian process model can be seen in Section 4.3.3. The

asymptotic analysis of the framework is outlined in Section 4.4.

4.3.1 Expository Development

For simplicity, first consider the case where only a single level α exists and we observe

Qα(x) is known for each x ∈ X . Since Qα is assumed continuous, a reasonable prior

distribution is that Qα follows a Gaussian process with mean µ(·) and covariance

C(·, ·). From this, an estimate of the α quantile at x0 s

µ(x0) + σT(x0)Σ−1 (Qα − µ) , (18)

where Σ is a matrix composed of elements C (x, x′) for all x, x′ ∈ X , σ(x0) is a vector

composed of elements C (x0, x) for all x ∈ X , µ is a vector composed of elements µ(x)

for all x ∈ X and Qα is a vector consisting of Qα(x) for all x ∈ X . This estimate

follows directly from the extensive work in Gaussian process models, e.g. [106].

Now we can develop our approximative procedure. The case being considered

assumes Qα(x) is unknown, but we can drawm replicates from the distribution. Thus,

one could replace Qα with Q̃α = [Q̃α(x1), . . . , Q̃α(xn)]T, where Q̃α(x) is the estimated

α quantile at a point x ∈ X . Since Qα is approximated by Q̃α, we need to introduce a

nugget term to the metamodel to incorporate the random difference between Qα and

Q̃α, which involves using a covariance function of the form C(x, x′) + ρ2
1{x = x′}.

The value of ρ2 is a value that represents the variation of Qα(x) − Q̃α(x). Now, an

estimate of Qα(x0) is given by

µ(x0) + σT(x0)
(
Σ + ρ2I

)−1
(
Q̃α − µ

)
(19)
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The value of ρ is a choice given to the user that should be the standard deviation

of Qα(x) − Q̃α(x). Because this value is not known exactly, the choice of this value

discussed in Sections 4.3.3 and 4.4.

Since the distribution of the output of a complex simulation often cannot be placed

in a parametric class, we propose using the empirical quantile estimates for Q̃α(x),

i.e.

Q̃α(x) = inf

{
t;

m∑
i=1

1(yi(x) ≤ t) ≥ mα

}
. (20)

Let y(k)(x) represent the kth order statistic from the m replications at x. First,

we recognize α ∈ [(k − 1)/m, k/m) implies that Q̃α = y(k) where y(k) is a vector

of the kth order statistic from each set of inputs in the experiment, i.e. y(k) =

[y(k)(x1), . . . , y(k)(xn)]T.

4.3.2 Explicit Predictive Distribution

We now establish the proposed predictive distribution. Given a value of α, consider

the case where Qα(x) is known for all α and x1, . . . , xn. The predictive distribu-

tion of Qα(x0) conditioned on the known values yields a normal prediction based on

the traditional Gaussian process predictive distribution seen in (18). Suppose also

that we have a Markov-like property in the form of [Qα(x0)|{Qα′(x)|α′ ∈ (0, 1), x ∈

X}] = [Qα(x0)|Qα] where the brackets indicate a density. We could then establish the

predictive distribution as the distribution of Qα(x0) given by [Qα(x0)|Qα][α], where

α ∼ U(0, 1). In our work, we do not know Qα but have estimated Q̃α. Our two

stage approach suggests plugging in Q̃α for Qα and using the predictive distribution

in Chapter 1. This yields the following predictive distribution

F̂x0(y) =
1

m

m∑
i=1

FN (y; ai(x0), v(x0)), (21)

where FN (y; a, v) is a normal distribution with mean a and variance v,

ai(x0) = µ(x0) + σT(x0)
[
Σ + ρ2I

]−1 (
y(i) − µ

)
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and

v(x0) = C (x0, x0)− σT(x0)
[
Σ + ρ2I

]−1
σ(x0) + ρ2.

Because the predictive distribution is a mixture of normal distributions, samples

can be quickly drawn. While the predictive distribution is a linear combination of

normal distributions, the number of normal distributions increases with the sample

size, creating a large number of basis functions for the predictive distribution. Also,

the size of the basis functions, measured by the variance of the normal distributions,

will naturally shrink as the quantiles are better estimated (n and m are increased).

These two features give this predictive distribution the ability to be extremely close to

a variety of nonnormal distributions, including heavy tailed and bimodal distributions.

We discuss the asymptotic consistency and efficiency abαmc(x0) as an approximation

of Qα(x0) under general conditions in Section 4.4.

4.3.3 Choice of C

The assumed properties of the quantiles with respect to x depend on the choice of

covariance function C. While C is required to be positive definite, there is a broad

array of choices for the covariance function, and the most widely used are the Matérn

and Gaussian classes of stationary correlation functions. Covariance functions are

typically endowed with a set of parameters, θ, which represent properties of the

response surface including lengthscale, differentiability and the Hausdorff dimension.

The parameter ρ2 is often included in θ because it is unknown, even though it is not

explicitly a covariance parameter but an estimation parameter that should change

based on the number of observations (see Section 4.4).

We propose estimating these parameters from the data via cross-validation cri-

teria, which has been shown to be an effective implementation strategy for emula-

tors, e.g. [26]. The cross-validation criteria measures the squared prediction error if

an observation or set of observations is ignored. Therefore, selection of parameters
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by cross-validation intuitively results in parameters with good predictive properties.

Here, the predictive performance is measured by the prediction of an estimated quan-

tile from the previous section, i.e. if α ∈ [(k − 1)/m, k/m) then Q̃α = y(k). Let Σ

be defined as in Section 4.3.2, the leave-one-out cross validation for each observation

can be quickly calculated using

eij(θ) =

(
Σ−1(θ)

)
j(

Σ−1(θ)
)
jj

(
y(i) − µ

)
,

where ()j is the jth row and ()jj is the jth diagonal element. Therefore, we select

covariance parameters as θ̂ = argmin
∑n

i=1

∑m
i=1 e

2
ij(θ).

4.4 Asymptotic Efficiency

While the next section will outline an example of the practical benefits of the proposed

methodology, this section will show the proposed method is asymptotically consistent

and efficient, i.e., under some regulatory conditions, no other framework can do better

as n,m → ∞. While sample size restrictions prevent the asymptotic results from

being directly utilized, the consistency of the prediction is critical to gauging the

performance of the proposed two stage framework.

In this section we assume the Gaussian process model is stationary, which implies

that the covariance function is only a function of the distance between two sets of

inputs, i.e. C(x, x′) = C(x − x′). Without loss of generality, we further assume the

observations are normalized, i.e. zero mean and C(0) = 1. The process is then defined

by a correlation function, and we emphasize these assumptions on C by denoting a

correlation function Φ(h), h ∈ Rd. Suppose the design region x ∈ Ω is a convex

and compact subset of Rd. Since prior distributions for surfaces such as Gaussian

processes are difficult to confirm, we demonstrate our results in a general function

space. We assume that the underlying true function Qα(x) lies in the reproducing

kernel Hilbert space generated by Φ, denoted asNΦ(Ω) (for more background on these

function spaces, refer to [127]). We will prove that as the sample size increases, the
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predictive mean of the Gaussian process model in Chapter 1 converges in probability

to the true quantile at the optimal rate.

For 0 < α < 1, we assume that Qα(xi) is estimated by the empirical distribution,

as seen in (20), denoted Q̃α(xi). Invoking the representer theorem [124, 108], the

predictive mean of the kriging model with a nugget effect, seen in Chapter 1, equals

to the solution to the following minimization problem for some λ2
m,n > 0

Q̂α(·) = argmin
f∈NΦ(Ω)

1

n

n∑
i=1

(Q̃α(xi)− f(xi))
2 + λ2

m,n‖f‖2
NΦ(Ω). (22)

Next, we demonstrate the efficiency of Q̂α(·) for given α under certain regularity

conditions:

(A1) xi
i.i.d.∼ U(Ω), the uniform distribution over Ω.

(A2) Let Fx be defined as Y (x) ∼ Fx. For each x ∈ Ω, there exists ε > 0, such

that Fx is twice differentiable on interval Bε(α, x) = (Qα(x)− ε, Qα(x) + ε)

for every x ∈ Ω with first and second derivatives denoted as fx(·) and f ′x(·)

respectively. Furthermore, we assume c1 := infx∈Ω,t∈Bε(α,x) f(x, t) > 0, and

c2 := supx∈Ω,t∈Bε(α,x) |f ′(x, t)| <∞.

(A3) There exist constants τ with bτc > d/2 and c3 > 0 such that Φ̄(w) ≤ c3(1 +

‖w‖2)−τ for w ∈ Rd, where Φ̄ is the Fourier transformation of Φ.

(A4) c4m
2τ/d ≤ n ≤ c5m

γ for constants c4, c5 > 0 and γ ∈ (2τ/d,∞).

The next theorem formally states the asymptotic efficiency (proof is located in the

supplementarily materials):

Theorem 4.4.1. Suppose (A1)-(A4) are met. If λ2
m,n ∼ (mn)−2τ/(2τ+d) asm,n→∞,

then ‖Q̂α(·)−Qα(·)‖L2(Ω) = Op((mn)−τ/(2τ+d)).

Here, (A1) insures the points in the design X will eventually fill the space as n

grows, (A2) insures the consistency and asymptotic normality of the sample quantile,
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(A3) is required to embed the reproducing kernel Hilbert space into a Sobolev space,

and (A4) insures a proper ratio of m and n to achieve efficiency.

The bound we establish agrees with the known optimal bounds [117] for non-

parametric regression, which implies that as n,m→∞, abαmc(x0) approaches Qα(x0),

and it does so at the fastest rate possible in terms of observed data. While previously

developed techniques require the simulation output to be normally distributed, the

efficiency shown in this section is not limited to the case when the simulation output

is Gaussian.

Furthermore, this result addresses the question of replications in experiments for

emulators. If the number of replications are properly related to the number of different

inputs in the experiment, i.e. n � mγ where γ > 2τ/d, we lose no efficiency in the

emulator. Since τ is a measure of smoothness of the quantiles with respect to x, where

large τ represents smooth quantiles, this result can be interpreted as: if quantiles have

little smoothness with respect to x, the experiment should consist of more replications.

This result is somewhat surprising because the information gained by increasing n

when studying a rough function is less than the information gained from replications.

The estimate in (22) differs slightly from the one discussed in the section 4.3

because the covariance function is assumed specified. We present the following corol-

lary, a direct result of Theorem 1, which explains the results in a more general context

(similar ideas were presented in [123]):

Corollary 4.4.1. Suppose (A1)-(A4) hold and Qα ∈ NΦ(Ω). Suppose that Q̂∗α is

estimated by

Q̂∗α(x) = argmin
f∈NΦ∗(Ω)

1

n

n∑
i=1

(Q̃α(xi)− f(xi))
2 + λ2

m,n‖f‖2
NΦ∗(Ω),

where Φ∗ ≤ c6Φ for some c6 > 0 and satisfies (A3) with a τ ∗. If λ2
m,n ∼ (mn)−2τ∗/(2τ∗+d)

as m,n→∞, the following results hold:

• If τ ∗ = τ , then ‖Q̂∗α(·)−Qα(·)‖L2(Ω) = Op((mn)−τ/(2τ+d)).
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• If τ ∗ < τ and c4m
2τ∗/d ≤ n ≤ c5m

γ, then ‖Q̂∗α(·)−Qα(·)‖L2(Ω) = Op((mn)−τ
∗/(2τ∗+d)).

This demonstrates that even if the covariance function is misspecified, we can

achieve the optimal convergence if we have correctly estimated the general behavior of

the covariance function, measured by τ . If we err on the conservative side and choose

a covariance function with a small τ ∗, e.g. the exponential covariance function, we

sacrifice efficiency for robustness. Importantly, the result for τ ∗ > τ is not included

above. Although it is not shown in Theorem 1, this condition is likely to result in an

inconsistent estimate.

4.5 Illustrations

Here, two examples are presented to illustrate the power of the proposed approach.

The first deals with the crack propagation model discussed in Section 5.1. The second

example provides a comparison between the proposed approach and the approach

of [2] using the basic queueing system discussed in their work. Further details for

implementation of the proposed method can be seen in the supplementary materials.

4.5.1 Material Fatigue

Fatigue of materials remains an important and challenging problem for engineers de-

signing many structures from highways to turbine engines. Variability in loadings and

material fatigue strength creates the need for a model that incorporates stochastic-

ity. The study of fracture mechanics has recently focused on computational methods

to understand propagation of faults in heterogenous materials. Examples include

piezoelectric materials [75] and complex composites [50]; extensions to 3-dimensional

fractures have further increased the complexity of computational models [61]. The in-

clusion of stochasticity in these models makes computational techniques burdensome

for fine mesh models. Here, we study the simplified case of one-dimensional crack

propagation under transverse cyclic loading.
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A classic deterministic model for the crack growth in this setting is the Forman

equation [40],
d`

dt
= G(`) = f

C0(∆K(`))n

(1−R)Kc + ∆K(`)

where C0 and n are constants, R is the ratio of the minimum (Smin) and maximum

(Smax) pressures exerted on the material, f is the frequency of the cyclic loading, Kc

is the fracture toughness, and ∆K(`) = (Smax−Smin)
√
`α(`). Here, α(`) is a function

of the geometry and if the width of the structure is much larger than the crack size,

α(`) can be approximated as 1. Though nonlinear, the Forman equation has the

capability to represent both stable and accelerated growth rates [115]. An extension

of the deterministic model to account for variation is achieved multiplying the above

growth rate by a stochastic process with unit mean [76, 134, 113]. Specifically, the

model considered is

d` = G(`)dt+G(`)dW (t),

where W (t) is a realization of a Wiener process with variance σ2. The material prop-

erties and conditions used in this simulation are borrowed from [59], which studied

a plate of 7075 aluminum alloy with an initial crack length of 2.54 mm. This ex-

periment will emulate the crack length after 2000 cycles under various stress ratios

(further details can be seen in the supplementary materials).

Figure 13 shows emulators created with varying n and m. Subplot (a) shows an

emulator with a small value of both n and m, which is not a good estimator of the

true simulation seen in (d). Subplots (b) and (c) represent the improvements that

occur as we increase n and m respectively. From (a) to (b), n is increased and the

shape of the quantiles as a function x is closer to the true shape of the quantiles shown

in (d). From (b) to (c), m is increased allowing for better estimation of the individual

quantiles (d) (compare the estimated quantiles at R = 0). For most inference, an

emulator such as the one given in (c) will be sufficient for emulating the simulation.
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Figure 13: Example of emulation for Section 4.5.1; the light gray dots represent
observations. Subplots (a), (b), and (c) contains the quantiles of the predictive dis-
tribution (solid line) with n = 3, m = 15 (a); n = 5, m = 15 (b); and n = 5,
m = 50 (c). Subplot (d) represents empirical quantiles are generated by simulating
400 observations at 20 points, requiring 8, 000 samples.
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Figure 14: Example of emulation for Section 4.5.2; the light gray dots represent
observations. The left hand plot contains the quantiles of the predictive distribution
(solid line) with n = 9 and m = 20. The right hand empirical quantiles are generated
by simulating 400 observations at 27 points, requiring 10, 600 samples.

4.5.2 Queueing System Example

We will now compare to [2] under their example, indicating the advantages of the

proposed technique compared to the traditional metamodeling framework which as-

sumes the simulation output follows a normal distribution. Here, we study a first-in

first-out M/M/1 queue, i.e. a queue with one server and exponentially distributed

interarrival (with mean x) and service times (with unit mean). The simulation output

is the average system population in the system from time 0 to 1000. [2] defines the

simulation output as a long term average, but this work considers this a finite horizon

problem, which are commonly encountered (e.g. [33]). The experiment consists of n

evenly spaced design points on [.3, .9] with m replications.

Figure 14 compares the predictive density of the proposed method compared to

estimates established through dense sampling. A closer inspection of the predictive

density at three arrival rates can be seen in Figure 15, where the non-Gaussian be-

havior of the simulation is modeled significantly better by the proposed approach

compared to the traditional metamodeling framework. This indicates the superiority
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of the proposed method for creation of an accurate emulator for stochastic experi-

ments.

We quantitatively compare predictive distributions using integrated quadratic dis-

tance (IQD), which is a proper divergence score given by∫ ∞
−∞

(F (y)−G(y))2 dy,

where F is the predictive distribution and G is the actual distribution. Under some

regulatory conditions (see [121]), IQD scores are equivalent to the metric

E|R− S| − 1

2
E|R−R′| − 1

2
E|S − S ′|,

where R and R′ are independent copies from F and S and S ′ are independent copies

from G. A score of 0 indicates perfect emulation, and smaller values are preferred.

Here, our goal is to develop a predictive distribution for a sample at a value x.

Therefore, we create an average IQD (AIQD) by sampling a value of x from [.3, .9].

We create 400 replicates of the output at [.25, .275, . . . , .925, .95] to create estimates

of E|R− S| and E|S − S ′|.

Table 2 presents a comparison of AIQD using the proposed framework. The com-

parison is made using differing levels of m and n, and a smaller value represents

superior prediction. Since the simulation is stochastic, it is difficult to compare val-

ues directly across m and n, though in general, increasing m and n results in better

prediction. Clearly, the proposed method outperforms the traditional metamodeling

framework, which is at least partially caused by instability in estimating σ2(x) as

mentioned in [2].

4.6 Concluding remarks

Here, a framework is established for building emulators of stochastic simulations via

quantile kriging, which enables a computationally attractive alternative to running
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Table 2: Performance of the proposed technique for the example in Section 4.5. ()’s
designate the score using [2].

n m AIQD

5
10 .0300 (.0850)
20 .0284 (.3600)
40 .0077 (.2397)

9
10 .0221 (.0543)
20 .0258 (.1408)
40 .0081 (.1032)

17
10 .0135 (.0504)
20 .0076 (.0467)
40 .0065 (.0470)
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Figure 15: Predictive distributions of the average population in a queueing system
over 1000 time units with an arrival rate of .55 (left), .70 (middle) and .85 (right) and
n = 9 and m = 40. The proposed approach is marked by long dashes, and the solid
line represents the distribution from 400 independent samples, and for comparison
the method described in [2] is marked by shorter dashes.
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the simulation model for every possible set of inputs. While emulators have been dis-

cussed to approximate specific models (e.g. [133]), this work discusses constructions

that do not rely on knowledge of the structure of the simulation. Other methods have

been proposed to predict distributions, see [27] and [35], but the focus in those works

is on linear modeling, which can exclude large classes of responses. One key element of

the proposed methodology is the characterization of both aleatoric and epistemic un-

certainty, which differs from a large class of approaches known as quantile regression,

which has been studied at great depth (for more information see the text [70]). The

focus of these techniques is adjustment of the loss function from a squared error loss to

a piecewise linear loss to find estimates of individual quantiles. Of the works in quan-

tile regression, [74] is the closest to our work; the concept of their work is to add an

additional penalty term representing the norm of a reproducing kernel Hilbert space,

which is closely tied to Gaussian processes. Besides ignoring epistemic uncertainty,

this method incurs significant computational cost as the method requires quadratic

programming to find each quantile, which can be burdensome for large amounts of

data. This difficulty is exacerbated when finding unknown parameters, which requires

hundreds or thousands of quadratic programs. Another relevant technique by [38],

often termed the “double kernel” approach, uses a similar two stage mechanism as

quantile kriging, but uses procedures involving locally defined polynomials. We yield

to the comments of [125] on the chapter [18] who explain the difference in the mod-

eling strategies; our work uses models that are defined over the entire region in lieu

of locally defined models.

However, the quantile kriging approach is not without drawbacks. The asymp-

totic efficiency is demonstrated, but small sample results could not be reached. Fully

Bayesian approaches might provide comfort to a user concerned with small sample

results, but the technique mentioned in this work purposely avoids the use of Dirich-

let processes to insure simplicity of implementation through avoidance of complex
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Markov Chain Monte Carlo algorithms. Also, while Sections 5.2 and 4.5 demonstrate

some examples of implementation, lingering questions about the metamodel assump-

tions are inescapable. However, the continuity of the first moment, typically assumed

by most metamodels, is similarly restrictive. Extensive simulation-based studies of

the applicability of this model in a broader set of contexts are left for future work.

This work shows an asymptotic convergence rate of Op((nm)−τ/(2τ+d)), where τ

is a measure of smoothness and d is the dimension of the input. This indicates that

developing emulators will require a large sample size in high dimensional scenarios,

which means inversion of a large n×n matrix. Since inversion is the major obstacle in

practice, we focus on its computational cost. For the proposed method, the number

of arithmetic operations grows according to O(n3), which is an improvement over

the methods such as [74] which require O(m3n3) operations when using scattered

data. However, problems still arise if n enlarges. Works studying similar problems

for deterministic computer codes, e.g. [52] and [94], might provide some insight into

solutions.

The choice of sets inputs and number of replications for the designed experiment

is outside of the scope of this chapter, but challenges remain. In Section 4.4, we

demonstrate an optimal rate of convergence by selecting the inputs via a uniform

distribution and a symmetric number of replications. However, one would expect to

achieve better small sample results using space-filling designs, such as those in [106], to

select sets of inputs for the experiment. Additionally, [2] emphasize the allocation of

more replications to sets of inputs that produce high variation in the output. A similar

approach might provide benefits here as well, but while this approach is justified when

predicting the simulation output mean with normally distributed variations, the more

general approach taken in this work adds complications.
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4.7 Details

4.7.1 Proof of Proposition 1

Proof. Denoting the norm of the difference in quantiles to be ‖Qα(x)−Qα(x0)‖, our

goal is to show for all ε > 0 there exists a ball B(x), centered at x, for which x ∈ B(x)

implies ‖Qα(x) − Qα(x0)‖ ≤ ε. Let the quantile function be written in terms of the

inverse cumulative distribution F−1
x (α) = infY ∈R{Fx(Y ) ≥ α}. Since Fx is continuous

and strictly monotonic, F−1
x (Fx(Y )) = Y . Therefore the norm becomes

‖F−1
x (α)− F−1

x0
(α)‖ = ‖F−1

x (α)− F−1
x (Fx(F

−1
x0

(α)))‖, (23)

and since Fx is continuous and strictly monotonic with respect to Y , F−1
x is continuous

with respect to α. Therefore, there exists an ε′ > 0 such that

‖α− Fx(F−1
x0

(α))‖ < ε′

implies (23). From this, we can rewrite the result as for all ε′ > 0 there exists a ball

B(x) such that for all x ∈ B(x),

‖α− Fx(Y0)‖ = ‖Fx0(Y0)− Fx(Y0)‖ < ε′,

where Y0 = F−1
x0

(α). Since Fx is continuous with respect to x, we have established

the existence of a ball B(x).

4.7.2 Proof of Theorem 1

The proof of this result is available in the supplementary materials of [95].

4.7.3 Quantile Kriging Implementation Details for Section 5

The framework discussed in this chapter allows for a wide variety of choices to improve

the performance in implementation. First, the simulation output for the queueing

model is considered to be the logarithm of the average number of customers in the

system; this resulted in significant gains in prediction and stability of metamodel

78



fit. The trend function µ, following [2], was estimated as a constant; the estimate

used in this study was µ̂ =
∑m

i=1

∑n
j=1 yi(xj)/mn. We assume a Gaussian covariance

structure C(x, x′) = σ2 exp(−θ(x−x′)2), with θ found via the cross validation estimate

discussed in section 3 and σ2 set to the cross-validation estimate

σ̂2 =
1

mn

m∑
i=1

n∑
j=1

(
Σ−1(θ)

)
ii
e2
ij,

which represents the ratio of e2
ij over the prediction normalized prediction variance (eij

is defined in section 3). All computations are done using the numerical programming

environment MATLAB.
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Chapter V

DEFECT PATTERNS: ESTIMATION AND TESTING

USING NONPARAMETRIC POISSON PROCESS MODELS

5.1 Introduction

This work is motivated by data collected during the production of steel rolled bars.

A rolling mill is a production process used to control dimensions of a long workpiece

through compressive forces applied by a set of rolls. The production of steel bars

using a rolling mill represents one of the oldest manufacturing processes, but inspec-

tion of this system remains a challenging problem. Long tracks of rolled steel can

develop defects throughout the manufacturing process. The extreme temperatures

and hostile manufacturing environment make inspection of the mill in person difficult

and dangerous. Recently, developments have been made that offer detection of sur-

face level defects during production [73]. This technology employs specially designed

cameras combined with novel algorithms to detect different types of defects including

bleeds (when the molten interior core leaks through the hardened surface) and seams

(fractures that are hardened further down the mill). While limited defects are accept-

able, the reduction of defects in a rolled bar results in better tensile, compressive, and

flexural strength. Ultimately, these features determine the application and usability

of the item. Therefore, corrective action that results in reduction or prevention of

defects yields significantly reduced material and energy waste.

Knowledge of the defect pattern for this system is critical for diagnosis of the

underlying cause. For example, seam formation concentrated near the ends of a

rolled bar can represent problems in the locking mechanisms used to steady the bar

during downstream finishing. The knowledge of this eliminates the need to check
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Figure 16: An example of defect locations (a) and the estimated intensity function
using the proposed technique (b). For (a), a black box in an area indicates at least
one defect.
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Figure 17: A subtle pattern of defects, a black box in an area indicates at least one
defect.

individual rollers along the production line, thus saving hours of inspection and lost

production time. Figure 16 illustrates an example of defects that are localized at the

ends of the product. The estimated intensity function indicates the concentration

of defects with sharp peaks at both ends. Figure 17 presents a more challenging

example. A single rolled bar of approximately 60 meters has typically between 2-7

defects located throughout the bar, which makes determining a pattern of defects

from a single bar extremely difficult. While a single bar does not exhibit an obvious

pattern, the accumulation of several bars clearly indicates a pattern. In this example,

there is an increase in defects near 10% and 40% of total bar length.

With this motivation in mind, section 2 describes the modeling philosophy with
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an emphasis on the meaning of the stochastic point process modeling for defects.

Sections 3 and 4 describe the functional estimation procedure based on penalized

maximum likelihood estimation and the resulting hypothesis testing. Section 5 will

derive the asymptotic rate of convergence with some discussion of the asymptotic

efficiency. Illustrations in section 6 demonstrate the performance of the proposed

estimate and hypothesis test and compare our approach to another common non-

parametric estimate. Some conclusions and discussions of these types of problems are

offered in section 7.

5.2 Stochastic Modeling

The measurements from the ith product is a series of mi defects, labeled xi1, . . . , ximi ,

and n products are observed. Here, we model the set of defects from each product as

an independent realization of a point process, which is a class of stochastic processes

where samples consist of a set of isolated points. Statistical estimation of point

process models have been extensively studied; applications include physics modeling

[31], disaster occurrences [30], epidemiology [43], tomography [20] and crime events

[81]. There are important distinctions between point–processes for temporal systems

and our problem. In temporal problems, the common goal is to predict what will occur

for a set number of epochs immediately succeeding the current one, i.e. outside of the

observed space. However, due to the nature of our problem, this has no relevance; this

would be akin to predicting the probability of defects not on the product. Instead,

our primary interest is estimation of the current pattern of defects on a product, i.e.

inside the observed space. A distinction must also be made between this problem and

what are known as hazard models [80], where the data is often right–censored because

of the ultimate outcome of these studies. Additionally, in hazard models, only a single

point is typically observed per subject. In our problem, the right–censoring of the

data does not occur and multiple defects can occur on a single product. The fact that
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the scenarios and goals described in this work differ from the traditional examples

illuminates why new methodology for estimation is needed.

For simplicity of exposition, this work will consider the null pattern to be a no

pattern, i.e. an expectation of even defects throughout the product. We do this be-

cause (1) this objective is tasked to us in the described application and (2) extensions

to other null patterns follow from this case. This work will probabilistically describe

the existence of defect patterns by leveraging differences between what are known as

homogenous processes and inhomogenous processes. A homogenous stochastic pro-

cess assumption implies the probability of defects is similar no matter which section

of the product is examined. In the context of our problem, this would be considered

no pattern. Conversely, an inhomogeneous process would imply certain regions of the

product have increased chances of defects, or there exists a pattern of defects.

In keeping with the proposed application, each product is assumed one dimen-

sional and unit length, making the domain of the point process [0, 1]. To state our

assumptions more exactly, let the point process be defined by a random function g

that maps subsets of [0, 1] to the number of defects in that section. Here, we employ

Poisson processes (see [65] for more details), which are defined by the following two

properties based on regions of the product, X ∈ [0, 1]:

• N(X1), . . . , N(Xm) are independent when X1, . . . , Xm are disjoint.

• N(X) has a Poisson distribution with parameter
∫
X
f(x)dx, where f(x) is a

non-negative function.

The function f is termed an intensity function, which indicates the rate at which

faults occur in a given region. In the absence of a pattern of defects, each product

can be assumed to follow a homogenous random process, which is defined as for any

subset of the product, X, the distribution is identical to the distribution of the shifted

process. This implies f(x) = α, α > 0.
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Figure 18: Observed empirical quantiles of the number of defects over the regions
[0, .5] (a), [.375, .625] (b), and [.25, 1] (c) versus the quantiles from the Poisson distri-
bution.

The standard model outlined above has tremendous flexibility, but might not

always be applicable. There are extensions of this model, termed Cox models (see

[65]), where the underlying intensity function, f(x), is itself random. However, in our

example, there are not enough observations on a single product to either confirm or

deny that assumption, and we error on the side of simplicity by using the above model.

Furthermore, the distributional assumptions imposed by the Poisson process model

needs to be investigated. Figure 18 demonstrates the Poisson quantile-quantile plot

of the number of defects over regions of various sizes for the products in Figure 17.

The linear nature of the observations on the plot indicates the distribution of the

number of defects in each region is at least approximately Poisson distributed.

5.3 Penalized Maximum Likelihood Estimation of f

This section will describe the general strategy for estimation of the intensity function

f . Our estimation scheme is designed to produce an interpretable and stable estimate

that is computationally tractable.
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Section 5.3.1 will motivate the discussion of our ideas by describing previous at-

tempts at similar problems and explain some deficiencies of the most common ap-

proaches for estimating these functions. Section 5.3.2 will describe the proposed ap-

proach. Our estimate can be found via a Newton-Raphson solver, detailed in appendix

5.8, which allows for fast estimation. Section 5.3.3 provides insight into practical mat-

ters, such as parameter estimation and choice of kernel functions.

5.3.1 Review of Estimation Procedures

Based on figures 16 and 17, the use of a parametric model for f(x) would result in

inadequate estimators. As the number of observed products grows large, a paramet-

ric framework would miss several potential patterns present in the data. Currently,

the most prevalent strategy for nonparametric estimation of the intensity function

is termed a local kernel smoothed estimate [98, 29], which is analogous to the local

smoothed kernel density estimates [104], and the use of these methods persist today

[23, 82, 122, 51, 81]. However, as will be shown in comparisons later, this approach

leads to undesirable properties in the estimate. This is because convergence of the

estimate relies on shrinkage of the lengthscale of the basis functions, which will nat-

urally cause sharp spikes and dips in the estimated function.

Here, we base our estimation procedures on maximizing the likelihood. This is

not a new concept, but few works have reported usable estimation procedures in the

general nonparametric setting for these types of point processes. Several works that

have studied methods to estimate the underlying intensity function by thresholding

wavelet coefficients from a single realization of the process [71, 128, 101], whereas this

work studies the case of multiple realizations. [13] studied this thresholding approach

when several shifted Poisson processes are observed, a case that differs from the one

considered here. Also of note are the works on hazard models, e.g. [3], [139] and [91].

The differences between hazard models and the models studied here were discussed
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in Section 5.2. The works of [64] and [109] contain similar ideas to the one presented

here, though they differ in key parts such as function space assumptions and pe-

nalization choices. More importantly, the lack of tractable computational methods

with previous estimates seems to have limited the impact of previous penalized ap-

proaches, whereas the estimate to be proposed can be found with a broad array of

convex optimization methods.

5.3.2 Proposed Estimation Technique

Consider nonparametric setting where f(x) is in a general function space, F . A simple

approach would produce an estimate of f , termed f̂(x), by directly maximizing the

log–likelihood,

L(f) =
n∑
i=1

mi∑
j=1

log{f(xij)} − n
∫ 1

0

f(x)dx.

However, if one maximizes L in a general function space, the resultant estimate will

be a function that has extreme spikes at xij and is as close to 0 everywhere else. For

example, f̂(x) =
∑n

i=1

∑mi
j=1 δ(x− xij) would maximize the log–likelihood in a space

that included translations of δ. This is a function composed only of infinite spikes

at the observed defects. From a practical point of view, this does not represent any

additional information gained through estimation. From a stochastic point of view,

this estimate is extremely unstable, with infinitely large variances.

There are a bevy of choices available for F and here we consider the functions to

come from a general nonparametric family termed reproducing kernel Hilbert spaces

(RKHS) [124, 127],

G =

{
g(·) =

∞∑
i=1

βiκ(·, zi)

∣∣∣∣∣ βi ∈ R, zi ∈ [0, 1], ‖g‖ <∞

}
,

where κ(x, y) is a positive (semi-)definite function termed a kernel and

‖g‖ =
∞∑
i=1

∞∑
j=1

βiβjκ(zi, zj)
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represents the complexity of the function. This function space contains large classes of

functions where the complexity (or specifically ‖g‖) is restricted. For example, the L2

is not a RKHS because the associated reproducing kernel would be the δ function, but

this does not have a bounded L2 norm. However, without modification of L(f), the

maximizer of L(f) can be made arbitrarily close to the function
∑n

i=1

∑mi
j=1 δ(x−xij).

The estimate proposed by this work will be a penalized version of the likelihood and

is given by

argmax
f∈F

L(f)− λnJ(f),

where J(f) is a complexity penalty and λn is a parameter depending on the number

of observed products.

Since the function f must be positive, we define the space of possible functions as

F =
{
g2 |g ∈ G

}
.

The practice of squaring the function emulates similar methods used for penalized

estimates for density estimation [129], and the theoretical ramifications from this will

be discussed in detail in Section 5.5.

Our goal is now to find the maximizer of L in terms of the function g,

f̂ 1/2 = argmax
g∈G

L(g2)− λn‖g‖,

Maximizing the above under the proposed function assumptions proves difficult since

there are an infinite number of basis functions. Typically, a representation theorem is

employed [124] to avoid this very dilemma. The generalized representation theorem

shown in [108] implies the following result:

Theorem 5.3.1. For any function c that maps from [0, 1]n to R ∪ {−∞},

ĝ = argmax
g∈G

c(g(z1), . . . , g(zn))− λn‖g‖,

admits representation of the form g(·) =
∑n

i=1 βiκ(·, zi).

87



However, in our formulation the objective function L(g2) is not of the form used in

the representation theorem;
∫ 1

0
g2(x)dx depends on the entire function. We propose

approximating this value by
∫ 1

0
f(x)dx ≈ n−1

q

∑nq
i=1 f(x̃i), where the points x̃1, . . . , x̃nq

are determined by the user. Section 5.5 discusses sampling these points from U [0, 1],

but any approach that represents a quadrature rule, such as equispaced points, will

likely suffice in the majority of cases. Denote L̃(g) as

L̃(g) = 2
n∑
i=1

mi∑
j=1

log{g(xij)} − nn−1
q

nq∑
i=1

g2(x̃i)− λn‖g‖.

Now, the representation theorem can be invoked, which results in the estimate

f̂ 1/2 = argmax
g∈H

L̃(g)− λn‖g‖, (24)

where H is a function space with finite parameters

H =

{
h

∣∣∣∣∣h =
n∑
i=1

mi∑
j=1

βijκ(·, xij) +

nq∑
i=1

γiκ(·, x̃i)

}
.

We demonstrate in appendix 5.8 that this is a convex problem and therefore its

optimization is possible through a variety of methods. Appendix 5.8 goes on to

describe Newton-Raphson methods. The described methods worked very quickly in

our examples, typically requiring fewer than 10 iterations to reach convergence with

an error less than 10−2.

While the above is computationally feasible, appropriate questions arise about the

impact of maximizing the above approximate log–likelihood versus the true likelihood,

L(f). Similar ideas to this approximation were presented in [11]. In Section 5.5, we

study the asymptotic properties to demonstrate that if the difference between the∫ 1

0
f(x)dx and n−1

q

∑nq
i=1 f(x̃i) is sufficiently small, no loss to rate of convergence is

incurred.

So far, this section has explained the general framework, but a practical matter

persists. We ultimately would like to test for the presence of a pattern, where no

pattern is described as f(x) = α, α > 0. Therefore, in the presence of very little
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or no data, a good estimator would regress to a constant but not necessarily 0. We

achieve this effect through a small modification of the function space to allow for

a non-zero nullspace [124]. In the context of the above estimation procedures, the

nullspace is the value of f̂(x) when λn =∞. The modified function space is then

F =
{

(g + α)2 |g ∈ G, α ∈ R
}
,

and the norm, or penalty, ‖g‖ is unchanged. The methods described above are not

affected by the chosen nullspace, the value of H in (24) is changed to

H =

{
h

∣∣∣∣∣h = α +
n∑
i=1

mi∑
j=1

βijκ(·, xij) +

nq∑
i=1

γiκ(·, x̃i), α ∈ R

}
.

5.3.3 Choice of Kernel Function and Smoothing Parameters

These types of estimation procedures typically work by exploiting the continuity, or

higher orders of differentiability, of the underlying intensity function. This property

can be described colloquially as if two points on a product are sufficiently close, the

chance of a defect is similar. However, the use of this model requires no higher orders

of differentiability beyond continuity, i.e. it does not require prefect smoothness.

In an idealized case, the underlying basis functions κ would perfectly represent

the underlying function, but this is unachievable in reality. This section discusses

the choice and influence of κ. For simplicity, we discuss here only symmetric and

stationary kernel functions as these are the most commonly used. These are functions

of the form κ(|x−x′|/θ), where the value of θ > 0 represents a lengthscale parameter.

If the kernel function decreases from the origin, increasing θ results in an estimated

function with fewer ridges and bumps, see Figure 19.

The order of differentiability assumed on the underlying function f is dictated

by the kernel function κ(x, x′). For example, the stationary exponential kernel,

κ(x, x′) = exp(−|x − x′|/θ), assumes the patterns are differentiable nowhere. As

another example, the Gaussian kernel, κ(x, x′) = exp(−|x − x′|2/θ2), assumes that

89



(a)
In

te
ns

ity
 F

un
ct

io
n

(b)

0 0.2 0.4 0.6 0.8 1
Position (% of length)

(c)

0 0.2 0.4 0.6 0.8 1
Position (% of length)

(d)

Figure 19: Examples of intensity functions generated by the Matérn kernel with
[θ, ν] = [.01, .5] (a), [.01, 2] (b), [.1, .5] (c), [.1, 2] (d).

the function has all orders of differentiability everywhere. Here, we borrow from

geostatistics (see, e.g. [44]) and advocate for the use of the Matérn kernel function,

κ(x, x′) =
1

2ν−1Γ (ν)

(
2
√
νh/θ

)ν Kν (2√νh/θ) ,
where Kν is the modified Bessel function of order ν and h = |x − x′|. The use of

this function allows a user to independently adjust a smoothness parameter ν, where

intensity function is subsequently assumed bνc times differentiable [53]. This function

can also be considered a balance between two extremes, the exponential kernel occurs

when ν = .5 and the Gaussian kernel results as ν → ∞. Figure 19 shows examples

of functions generated using different lengthscales and smoothness parameters.

By using a broad kernel class such as the Matérn, typically there is a combination

of parameters that are reflective of the underlying function. We propose estimating

these parameters from the data via a cross-validation criterion. We employ the log–

likelihood function L and judge the parameters based on a leave–one–out log–score,

given by
n∑
i=1

mi∑
j=1

log(f̂−i(xij))− n
∫ 1

0

f̂(x)dx,
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where f̂−i(x) represents the estimated function from (24) after removing the ith prod-

uct observation. A larger value of the log-score indicates better prediction, see [46]

for more information on the log-score and other criteria to measure prediction accu-

racy. This criterion takes advantage of the multiple, independent observations of the

process. Other criteria for estimating parameters of intensity functions were designed

in the absence of this information [30]. A parameter not discussed in this section is

λn, which can be estimated in the manner above, but better results were found by

using a set value that decreases at a rate according to the results in section 5.5.

5.4 Hypothesis Testing

As mentioned in the introduction, one of the major goals of this work is to provide a

user with a certificate of the existence of a pattern. The likelihood ratio test, one of

the most celebrated methods in statistics, has proved highly effective in a broad array

of problems. But the question is how to use it in this circumstance. A straightforward

implementation would yield a test statistic of the form

T = sup
f∈F

L̃(f)− sup
f≡α,α∈R

L̃(α),

where we are testing whether there is a statistically significant deviation from the

null pattern, where the null pattern corresponds to equally likely defects across the

product, or f(x) = α. If T is significantly large, i.e. above some threshold T0, we can

reject the null hypothesis that f(x) = α.

However, as with estimation, the nonparametric setting makes the straightforward

approach an unstable procedure. The first term, supf∈F L(f), will get arbitrarily

large as f approaches
∑n

i=1

∑mi
j=1 δ(x − xij) while the second term supf≡α,α∈R L(α)

is be bounded by L(f(x) = m/n), where m =
∑n

i=1mi. Therefore, no matter what

threshold T0 we set, the value T listed above will always exceed it, resulting in type

I errors (false positives) of 100%. As a result, any statistical process control based

on the above test statistic would always raise an alarm during production. This is
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of course undesirable, so once again we employ a penalized approach. [39] discuss a

similar method in a generalized setting with nonconcave likelihoods.

To achieve tractable computation, we utilize the approximate likelihood described

in the previous section, L̃(f) =
∑n

i=1

∑mi
j=1 log{f(xij)} − nn−1

q

∑nq
i=1 f(x̃i). The pro-

posed test statistic is

T = sup
f∈F

[
L̃(f)− λnJ(f)

]
− sup

f≡α,α∈R

[
L̃(f)− λnJ(f)

]
.

The first term can be evaluated using the estimate from (24). The value

sup
f≡α,α∈R

[
L̃(f)− λJ(f)

]
can be explicitly found as using f(x) = m/n from the definition of L̃ and J .

The use of this test statistic for hypothesis testing requires the distribution under

the null to be known. While [39] discuss the asymptotic distribution of such an

estimator, this approach proved ineffective for our case where sample sizes are limited.

To achieve better small sample results (the test we discuss in Section 5.6 has only 5

samples), we opt for a simulation based method approximation to the null where we

simulate values of T from homogenous Poisson process with f(x) = m/n.

One might question the efficacy of this brand of hypothesis testing. Does the

penalization method hurt the traditional likelihood ratio test? The answer lies in the

distribution of T , where the use of penalization stabilizes the distribution under the

null. Compare this to the case where λn = 0, where we demonstrated earlier in this

section that the test statistic is unbounded. This is a direct analog of the traditional

bias versus variance tradeoff of most high dimensional statistical problems. Our test

statistic is biased toward zero, but the variance is controlled.

5.5 Asymptotic Analysis

While the next section will outline an example of the practical benefits of the proposed

methodology, this section will show the proposed method is asymptotically consistent
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and discuss the efficiency of the proposed approach. In our industrial problem ,

sample size restrictions prevent the asymptotic results from being utilized directly,

but the consistency of the prediction is critical towards gauging the performance of the

proposed framework. An inconsistent procedure would demonstrate that no matter

how many products we observe, the resultant conclusions would not improve.

Here, we assume the underlying kernel function is stationary, symmetric and

monotonically decreasing. We demonstrate that the estimated function, f̂ from

(24), approaches the true underlying function, denoted f0, in terms of the distance

ρ(f, f0) = ‖f 1/2 − f
1/2
0 ‖2, where ‖‖2 is the L2 norm. If both f and f0 were den-

sities, this would be analogous to the Hellinger distance. The similarities between

this distance measure and one used for densities is not coincidental; our approach

to demonstrating consistency is analogous to similar proofs for density estimation.

Specifically, we rely heavily on the large deviation inequalities of [129].

We demonstrate the result under the following regularity conditions:

(A) The function f0 is bounded by some known constant c1 > 0.

(B) There exist a constants τ with bτc ≥ 1 and c2 > 0 such that the Fourier transform

of κ(|h|) is less than c2(1 + |w|2)−τ for w ∈ R.

Condition (A) is verified in terms of our problem by insuring the product does not

have any point which always has a defect. Figure 17 demonstrates that this is not

the case in our example. The constant must be known to allow for the Monte Carlo

sampling scheme described later in this section to achieve convergence, but c1 can be

chosen arbitrary large. Condition (B) is more difficult to verify in general, but when

using the Matérn kernel function from Section 5.3.3, this condition can be verified

with τ = ν + 1/2 [114]. Therefore, so long as ν ≥ 1/2, where ν = 1/2 corresponds to

the exponential kernel, our theorem holds. Condition (B) can therefore be interpreted

as follows: the underlying function, f0(x), exhibits reasonable smoothness.
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The next theorem formally states the core asymptotic result (proof is located in

appendix 5.9):

Theorem 5.5.1. Suppose (A) and (B) are met. Suppose also that max(λnJ(f0), λn) ≤

c3ε for a constant 0 < c3 < 1/2c1. There exist strictly positive constants c4 and c5

such that if λn ∼ n−2τ/(2τ+1) as n→∞, then

P ∗

(
sup

ρ(f,f0)<ε,f∈F
[L(f)− λnJ(f)]− [L(f0) + λnJ(f0)] ≥ −c4nε

2

)
≤ 7 exp(−c5nε

2),

where P ∗ is the outer probability measure.

This result demonstrates conditions for which the probability of an errant estimate

becomes exponentially small when using L(f) directly. This differs slightly from the

proposed estimate in (24) which is based on the approximate likelihood L̃(f).

The difference between L̃(f) and L(f) is dictated by the closeness of n−1
q

∑nq
i=1 g

2(x̃i)

to
∫ 1

0
g2(x)dx, where n−1

q

∑nq
i=1 g

2(x̃i) is often termed a quadrature rule. The choice a

quadrature rule is open, but here we offer a specific suggestion where x̃1, . . . , x̃nq are

drawn from U([0, 1]), i.e. a Monte Carlo sample. Using Monte Carlo sampling does

not require a continuous derivative to converge, therefore with an appropriately large

nq we can reach an approximation even when the function is nondifferentiable. Be-

cause of assumption (A), the functions in F are bounded above and below. Therefore,

by Hoeffding’s inequality, there exists a constant c6 such that for all f ∈ F ,

P

(∣∣∣∣∣n−1
q

nq∑
i=1

f(x̃i)−
∫
f(z)dz

∣∣∣∣∣ ≥ ε

)
≤ 2 exp(−c6n

2
qε

2).

With this, we can demonstrate the convergence of the estimate f̂(x).

Corollary 5.5.1. Suppose (A) and (B). Suppose also we draw x̃1, . . . , x̃nq from U([0, 1])

and we choose λn ∼ n−2τ/(2τ+1) and nq ∼ n. Then

‖f̂ 1/2 − f 1/2
0 ‖2 = Op

(
n−τ/(2τ+1)

)
,

where f̂ is defined in (24).
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With this, we demonstrate that f̂ will get close to f0 as measured by the dis-

tance metric ρ. When discussing a similar problem for densities, [110] demonstrated

that this represents the best possible convergence, in terms of rate, for any estimate

satisfying the assumptions similar to (A) and (B).

The optimality of the predictor listed above depends on the knowledge of the

kernel function. However, in practice the kernel function is not explicitly known and

is estimated as in Section 5.3.3. We present the following corollary which explains

the result in a more general context:

Corollary 5.5.2. Suppose (A) and (B). Suppose also we draw x̃1, . . . , x̃nq from U([0, 1])

and nq ∼ n. Further suppose that f̂ , defined in (24), is estimated using a kernel func-

tion, κ∗(h), that satisfies κ∗(h) ≤ c7κ(h) and (B) with τ ∗ ≤ τ . If λn ∼ n−2τ∗/(2τ∗+1)

then ‖f̂ 1/2 − f 1/2
0 ‖2 = Op

(
n−τ

∗/(2τ∗+1)
)
.

To show this, we only need to use the embedding theorem of [5], which says

that under the above conditions f0 is in the RKHS generated by κ∗, therefore we

employ corollary 1 with τ = τ ∗. This demonstrates that even if the kernel function

is unknown, the correct behavior of the Fourier transform of the kernel is all that is

needed to achieve an optimal rate of convergence. Importantly, the result for τ ∗ > τ

is not included above. While not yet shown, the authors suspect this condition could

result in an inconsistent estimate. Therefore, if τ ∗ is chosen to be small, e.g. the

exponential kernel function, we sacrifice efficiency for robustness.

5.6 Illustrations

This section will demonstrate the power of the proposed approach with data from

the steel rolling mill described earlier. Simulation studies are avoided to allow for

comparison of techniques in the context of the current problem.
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5.6.1 Function Estimation

We discuss here the estimation of the intensity function with a comparison of the pro-

posed method to a widespread nonparametric technique. As discussed earlier in this

work, the popular technique for estimating intensity functions is local kernel smooth-

ing [29], which we will refer to as local smoothing in this section to prevent confusion.

Like the proposed estimator, local smoothing is a nonparametric approach to find-

ing the intensity function. However, unlike the proposed approach, it contains no

penalty for complicated functions, which means the estimate can be extremely com-

plex as the number of observations increases. Another major difference is the basis

functions. While the proposed estimate seeks to achieve basis functions with a length-

scale that represents the underlying intensity function, as discussed in Section 5.3.3,

the local smoothing philosophy requires shrinking lengthscales to approximate the

function. This leads to peculiarities in the estimated function. Furthermore, these

problems compound and propagate as we observe more products.

In this section, we compare the two techniques using the data from Figure 17.

For the proposed method, we use the Matérn kernel with ν = 1/2. Keeping with

the asymptotic results, we choose λn = 2n−2/3 and for both methods the lengthscale

parameter, θ, is selected via the cross-validation approach discussed in Section 5.3.3.

We compare to the local smoothing technique with Gaussian basis functions. Mod-

ification to all described values were attempted, but no different conclusions were

reached.

Different estimators for f(x) from the data in Figure 17 can be seen in Figure 20.

While both methods have clear peaks where expected, the local smoothing technique

results in a more complex estimate. However, there does not appear to be enough

data in Figure 17 to possibly estimate such a complex function with accuracy. This

conclusion will be further validated by comparing the proposed hypothesis test with

a test generated by local smoothed approaches.
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Figure 20: Diagram of predicted intensity function from the data in Figure 17 using
the proposed penalized approach (a) and the local smoothing approach (b). Param-
eters for both estimation procedures were decided by leave–one–out log–score.

5.6.2 Hypothesis Testing

Here we study the hypothesis testing mentioned in Section 5.4. Unlike the estimation

problem, there has been limited number of studies on hypothesis testing of the type

proposed here (though [32] investigates a two sample problem). Therefore, we will

compare to a representative technique that is easily derived from local smoothing,

which compares likelihoods, but does not utilize the appropriate supremum. This is

philosophically similar to the approach taken in [138]. Denote the local smoothed

estimate as f̂LS, the local smoothed test statistic is given by

TLS = L(f̂LS)− L(f(x) = m/n).

For similarity to the proposed approach, the null distribution of TLS is estimated by

simulation from a process with f(x) = m/n.

We will compare the power of the proposed hypothesis tests by looking at all

groups of five consecutive products from Figure 17. By visual inspection and con-

versations with the provider of the data, this group of products contains a pattern.

Therefore, a good statistical test should reject the null. And by using only five bars,

we can investigate how the proposed approach would perform in setups like those

seen in statistical process control. Here, the statistical power is measured by the
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Figure 21: Empirical statistical power of the proposed penalized approach (solid)
and the local smoothing approach (dashed) for testing if a pattern exists for blocks
of five consecutive of bars from Figure 17.

probability of rejecting the null under a type I error rate α (false alarm). The type

I error rate is estimated by simulating from f(x) = m/n. Figure 21 shows that by

using only five bars, the proposed approach can detect faults with over 30% more

power than a similar approach using local smoothing.

This significant improvement over the local smoothing technique can be attributed

to variance stabilizing properties of penalized estimation. Extrapolating slightly be-

yond this individual case study, these results imply that for sparsely observed defects,

the penalization framework has significant advantages over local smoothing. However,

there is a computational cost to consider; the proposed estimate takes longer to com-

pute. This did not become an impediment in our application. In our largest data

set, Figure 17, the estimate with parameter tuning is received in under 30 seconds

(250 parameters, ≈ 200 defects and 50 quadrature points). With fixed parameters,

the estimate is received in .27 seconds.

5.7 Conclusion and Discussion

This work studies the modeling of the spatial pattern of defects across several prod-

ucts. For production systems, the majority of statistical research has focused on cases
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in which we observe a set number of statistics per output (i.e. a scalar, vector or ma-

trix of outputs). Monitoring schemes have been designed to tackle multidimensional

outputs when the number of the outputs is large, e.g. [68], [137], and [97]. Here, we

observe a set of defect locations, where the total number of defects varies from prod-

uct to product. Currently, it is not clear what relationship, if any, exists between the

two cases. One idea to link these frameworks could be done by partitioning the bar as

in figures 16 and 17. This creates the mapping from the current data to a vector of 0’s

and 1’s, similar to the approach discussed in [54]. However, transformation destroys

some information and curbs the ability to create spatial inference on the continuous

product.

The methodology for hypothesis testing appears promising. While not explicitly

outlined in this work, the creation of a monitoring scheme to detect a pattern during

production could be done by sequentially testing for a pattern in the last k products.

This is equivalent to an X̄ test, which is known to be less effective at detecting slight

patterns. Modified monitoring schemes using techniques such as CUSUM and EWMA

would likely provide tremendous benefits, but how to incorporate these ideas into the

framework outlined here is unclear. Ideas proposed by [136] in a differing problem

might provide insights.

5.8 Optimization Problem for Estimation

There are two major points demonstrated in this section. We show the convexity of

the optimization problem, which allows us to use a variety of optimization methods.

Then, a standard Newton-Raphson method is described that works well for the cases

illustrated in this work.

To begin, we find the first and second derivatives with respect to the parameters

β and γ. For simplicity of exposition, we merge all parameters into a single vector

δ. By the definition of δ, each element corresponds to either an observed defect, xij,
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or a point x̃i. The elements of δ are ordered such that elements 1, . . . ,m correspond

to observed points and elements m + 1, . . . , nq correspond to the points x̃i. Let K

be an (m + nq) × (m + nq) kernel matrix that corresponds to all points associated

with δ. We denote submatrices that correspond to indices i1, . . . , i2 and j1, . . . , j2 of

this matrix by Ki1:i2,j1:j2 . We denote the current root-intensity function, g(x), at all

points associated with δ as g(δ) = [g(x1,1), . . . , g(xn,mn), g(x̃1), . . . , g(x̃nq)]
T and the

elementwise inverse as g−1(δ), and it depends on current value of δ.

The vector of partial derivatives of −L(δ) is

gδ0 = −∂L
∂δ

∣∣∣∣
δ0

= −2KT
1:m,·g

−1
1:m(δ0) + 2

n

nq
KT

m+1:m+nq ,•gm+1:m+nq(δ0) + 2λng(δ0),

and the Hessian matrix is

Hδ0 = − ∂2L

∂δδT

∣∣∣∣
δ0

=

2KT
1:m,• diag[g−2

1:m(δ0)]K1:m,• + 2
n

nq
KT

m+1:m+nq ,•Km+1:m+nq ,• + 2λnK.

The form of the Hessian demonstrates the convexity of the problem. Consider a

matrix of the form ATA, then xTATAx =
∑

(xTaj)
2 ≥ 0, where aj are the columns

of A. Therefore, the first two matrices in the definition ofH are nonnegative definite.

The last matrix in the definition ofH is positive definite since κ is a positive definite

function. The negative of the Hessian is the therefore positive definite, therefore the

maximization problem concave over a convex set.

To show the Newton-Raphson converges, we must also show the function is coer-

cive. By the norm equivalence theorem, there exists two positive constants c1 and c2

such that

c1δ
TKδ ≤ δTKT

k,•Kk,•δ ≤ c2δ
TKδ

for all δ and k. Therefore,

−L(δ) ≥ −
n∑
i=1

mi∑
j=1

log{c1δ
TKδ}+ c2nδ

TKδ + λnδ
TKδ.
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From this, as ‖δ‖K := δTKδ → ∞ we have −L(δ) → ∞ which demonstrates coer-

civity. Therefore the Newton-Raphson algorithm converges to a unique maximizer.

The Newton-Raphson technique follows directly, and its incremented values are

given by

δk = δk−1 −H−1
δk−1

gδk−1
.

5.9 Proofs of Results

5.9.1 Theorem 1

For the proof, we slightly adjust our notation to make exposition easier. Let Yi denote

the points from a sample, i.e. vector of defects from the ith product. We define the

log likelihood according to each observation, l(f, Yi) =
∑

x∈Yi log f(x)−
∫
f .

This proof consists of two parts. In the first part, we will verify analogous results

to lemmas 3-7 from [129] which establishes important inequalities. The second part

will follow the method of [111] to demonstrate the result.

5.9.1.1 Important Inequalities

The variance of a log likelihood ratio, log p(W )/p0(W ) where W ∼ p0, is unbounded

in general, so following [129], we look at the truncated version of the likelihoods. Let

lφ be defined as

lφ(f, Yi) =
∑
W∈Yi

log fφ(W )−
∫
f,

where φ > 0 and

fφ(W ) =

 exp(−φ)f0(W ), if f(W ) < exp(−φ)f0(W ),

f(W ), otherwise.
.

We will use the following additional notation. Let

a0 =

∫ 1

0

f0(z)dz

and

Zf
d
= log(fφ(W )/f0(W )),
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where W is drawn from the density f0(·)/a0. Furthermore, let Xf
d
=a−1

0

∑Mi

j=1 Zj,

where Zj are replicates of Zf .

Lemma 3. From from [129]’s lemma 3, we have that

var(Xf ) ≤ var(Zf ) ≤ 4 exp(φ)‖f 1/2
1 − f 1/2

2 ‖2
2. (25)

Lemma 4 Using the fact that for x ≥ 0, log(x+ 1) ≤ x,

EZf =

∫
log {fφ(z)/f0(z)} f0(z)/a0dz

=2

∫
log
(
1 + (|fφ(z)/f0(z)|1/2 − 1)

)
f0(z)/a0dz

≤2

[
−1 +

1

a0

〈f 1/2
φ , f

1/2
0 〉

]
≤− 1

a0

‖f 1/2 − f 1/2
0 ‖2

2 +
1

a0

∫
f(z)d(z)− 1

+ 2 exp(−φ/2)P{f(x) < exp(−φ)f0(x)}.

≤− 1− δφ
a0

‖f 1/2 − f 1/2
0 ‖2

2 +
1

a0

∫
f(z)d(z)− 1, (26)

where the last line is the result of [129]’s lemma 2 and δφ > 0 is a constant that

depends on φ to be decided. Lastly, we have EXf = EZf .

Lemmas 5, 6 and 7. Lemma 5 from [129] implies that,

E|Zf |k ≤
c0

a0

2kk!‖f 1/2 − f 1/2
0 ‖2

2.

Here, applying Minkowski’s inequality,

[E|Xf |k]1/k ≤ a−1
0 E[Mi][E|Zf |k]1/k = [E|Zf |k]1/k.

This allows us to use Bernstein’s inequality to derive lemma 6. Lemma 7 follows

as a direct result.
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5.9.1.2 Demonstration of Result

We first bound the probability in the statement of the theorem with

P ∗

(
sup

ρ(f,f0)≥ε,f∈F
n−1

n∑
i=1

l(f, Yi)− l(f0, Yi)− lambdan(J(f)− J(f0)) ≥ −c4ε
2

)

≤P ∗
(

sup
ρ(f,f0)≥ε,f∈F

n−1

n∑
i=1

a−1
0 [lφ(f, Yi)− lφ(f0, Yi)]− λna−1

0 (J(f)− J(f0)) ≥ −c4a
−1
0 ε2

)
,

which follows from the definition of lφ. In the interest of brevity, we will leave the

last section of this proof as a citation to Theorem 1 from [111]. To do this, we must

first verify his condition A.

Condition A from [111] depends on the function spaces L(k) = {l1/2(f, ·) : f ∈

F , J(f) ≤ k}. First we study the spaces F(k) = {f 1/2 : f ∈ F , J(f) ≤ k}. We need

to show that there exist constants a1 and a2 such that

sup
k≥1

ψ(ε, k) = a2n
1/2,

where ψ(ε, k) =
∫ K1/2

K
H1/2(u,L(k))/K withK = (a1ε

2+λn(k−1)). Here, H(u,F(k))

is the bracketing metric entropy of F under distance measure ρ. Using condition (A)

in our work, [127] show that G can be embedded in the Solbolv space with equivalent

norms. Using norm equivalence Theorem (see e.g. Theorem 5.2 of [14] or example 1,

case 1 of [111]), the metric entropy is bounded by H(u,F(k)) ≤ c(k/u)1/τ . Because

of the analogous lemma 3 demonstrated in the previous section of our proof, we have

the relation H(ε,L) ≤ H(4 exp(φ)ε,F). Therefore assumption A of [111] is satisfied

with ψ(ε, k) = ε−(2τ+1)/2τ (a1 + c3(k − 1))−(2τ+1)/4τ since

a−1
0 λn max(J(f0), 1) ≤ c3ε

2.

Therefore, [111]’s condition A holds.

The following results are from the relationship a−1
0 [lφ(f, Yi) − lφ(f0, Yi)]

d
=Xf +

a−1
0

∫
f0 − fdz and the inequalities presented earlier in this subsection. We will now

partition the function space and derive bounds on the mean and variance of these
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sets. To bound the probability, it is convenient to define a two dimensional sequence

of function spaces for i, j ≥ 1,

Aij =
{
f ∈ F : ρ(f, f0) ∈ [2i−1ε, 2iε), J(f) ∈ [2j−1J(f0), 2jJ(f0))

}
,

and for i ≥ 1,

Ai0 =
{
f ∈ F : ρ(f, f0) ∈ [2i−1ε, 2iε), J(f) ≤ J(f0)

}
.

Choose φ such that a−1
0 (1 − δφ − c4) = a1 > 0. From the relation shown in (26), for

any i, j ≥ 1,

inf
Aij

E
(
a−1

0 [lφ(f, Yi)− lφ(f0, Yi)− λn(J(f)− J(f0))]
)
≥

a1(2i−1ε)2 + a−1
0 λn(2j−1 − 1)J(f0) ≡Mi,j. (27)

By assumption a−1
0 λn max(J(f0), 1) ≤ c3ε

2, and therefore for i ≥ 1,

inf
Ai0

E
(
a−1

0 [lφ(f, Yi)− lφ(f0, Yi)− λn(J(f)− J(f0))]
)
≥

a1

[
(2i−1ε)2 + c3ε

2
]
≡Mi,0. (28)

Furthermore, using the relation shown in (25), we have

sup
Ai0

var
(
a−1

0 [lφ(f, Yi)− lφ(f0, Yi)]
)
≤ 4 exp(φ)

[
(2iε)2 +

2

a1

λn(2j−1 − 1)J(f0)

]
.

From the above, we bound the outer probability by

P ∗

(
sup

ρ(f,f0)≥ε,f∈F
n−1

n∑
i=1

a−1
0 [lφ(f, Yi)− lφ(f0, Yi)]− a−1

0 λn(J(f)− J(f0)) ≥ −a−1
0 c4ε

2

)

≤
∞∑

i,j=1

P ∗

(
sup

ρ(f,f0)≥ε,f∈Aij
n−1

n∑
i=1

a−1
0 [lφ(f, Yi)− lφ(f0, Yi)] ≥Mij

)

+
∞∑
i=1

P ∗

(
sup

ρ(f,f0)≥ε,f∈Ai0
n−1

n∑
i=1

a−1
0 [lφ(f, Yi)− lφ(f0, Yi)] ≥Mi0

)
.

We now cite [111], paragraph 4 onward, because the inequalities are exactly the same.

The only difference is replacing his invocation of [129]’s lemma 7 with the statement

shown in the first part of this proof.
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5.9.2 Corollary 1

Let An = supρ(f,f0)≥εn L(f)− L̃(f), we have that

P
(
ρ(f, f̂n) ≥ εn

)
≤ P ∗

(
sup

ρ(f,f0)≥εn,f∈F
L(f)− L(f0)− λn(J(f)− J(f0)) ≥ 2An

)

≤ P ∗

(
sup

ρ(f,f0)<εn,f∈F
L(f)− L(f0)− λn(J(f)− J(f0)) ≥ −c4ε

2
n

)
P (−An ≥ −c4ε

2
n)

+ P (−An < −c4ε
2
n)

As demonstrated in section 5, P (An > t) ≤ exp(−c6nt
2). Under the assumptions of

Theorem 1, let c7 ≤ min(c4, c6), then

P
(
ρ(f̂n, f0) ≥ εn

)
≤ c8 exp(−2c7nε

2
n),

for some constant c8 > 0, implying that ρ(f̂n, f0) = Op(εn). Let εn be the smallest ε

satisfying assumption A from [111] discussed in the previous proof. Hence ρ(f̂n, f0) =

Op(λ1/2
n ), and the result follows.
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