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SUMMARY

A key challenge for three dimensional (3D) integrated circuits (ICs) is thermal

management. There are two main thermal challenges in typical 3D ICs. First, in

the homogeneous integration with multiple high-power tiers, a cooling solution that

scales with the number of dice in the stack is needed. Second, in the heterogeneous

integration, a thermal isolation solution is needed to ‘protect’ the low-power tier from

the high-power tier. This research focuses to address these two thermal challenges

through hybrid microfluidic cooling and thermal isolation technologies.

Within-tier microfluidic cooling is proposed and demonstrated to cool a stack with

multiple high-power tiers. Electrical thermal co-analysis is performed to understand

the trade-offs between through silicon via (TSV) parasitics and heat sink performance.

A TSV–compatible micropin–fin heat sink is designed, fabricated and thermally char-

acterized in a single tier and benchmarked with a conventional air-cooled heat sink.

The designed heat sink has a thermal resistance of 0.269 K·cm2/W at a flow rate

of 70 mL/min. High aspect ratios TSVs (18:1) are integrated in the micropin–fins.

Within-tier microfluidic cooling is then implemented in 3D stacks to emulate differ-

ent heating scenarios, such as memory-on-processor and processor-on-processor. Air

gap and mechanically flexible interconnects (MFIs) are proposed for the first time

to decrease the vertical thermal coupling between high-power (e.g. processor) and

low-power tiers (e.g. memory or nanophotonics). A two-tier testbed with the pro-

posed thermal isolation technology is designed, fabricated and tested. Compared with

conventional 3D integration approach, thermal isolation technology helps reduce the

temperature at a fixed location in the low-tier by 12.9 ◦C. The resistance of a single

MFI is measured to be 46.49 mΩ.

xviii



CHAPTER I

BACKGROUND AND INTRODUCTION OF THERMAL

CHALLENGES IN 3D ICS

1.1 Current 3D ICs Trend

With the continued aggressive scaling of transistors, interconnect performance and

power dissipation have become limiting factors for high-performance integrated cir-

cuits. This is true for both on-chip and off-chip interconnects. In the latter, the

inability to provide high density off-chip wires with low latency, low energy-per-bit,

and large bandwidth density has greatly exacerbated the memory wall problem for

multi-core processors. This is critical because off-chip bandwidth between multipro-

cessors and DRAM impacts system performance. To overcome this interconnect limit,

three-dimensional integrated circuits (3D ICs) technology has been pursued in recent

years, as it represents a promising solution to the interconnect problem by significant-

ly shortening the interconnect length as well as enabling heterogeneous integration of

logic, memory, microelectromechanical systems (MEMS), and optoelectronics.

A typical 3D IC with homogeneous and heterogeneous stacks is shown in Figure 1.

In the homogeneous 3D integration, two processor tiers are stacked as an example. In

the heterogeneous integration, several memory tiers are stacked on top of a processor

tier. Both stacks are bonded to a silicon interposer through microbumps and can

communicate with each other through fine-pitch interposer-level interconnects.

A key challenge for such high-power 3D applications is thermal management.

There are two main thermal challenges in a typical 3D IC system. First, in the homo-

geneous integration where more than one high-power tier is integrated, an effective

cooling method that can scale with the number of tiers is needed. This is needed

1
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Figure 1: Schematic of a typical 3D IC with two stacks. The homogeneous stack
contains two processor tiers. The heterogeneous stack contains several memory stacks
on top of a processor tier.

because the power density in 3D ICs and the thermal resistance of the dice within

the stack increases as the number of tiers increases. The latter is due to the fact that

the ‘inner’ dice do not have direct access to the top-attached heat sink. The second

thermal challenge in the system shown in Figure 1 is the thermal coupling effect. This

challenge is especially significant in heterogeneous integration where high-power tiers

are stacked with low-power tiers, such as a memory stack on a processor stack, a pro-

cessor on a silicon photonics stack, and MEMS on a processor stack. In 3D ICs, the

thermal coupling between the vertical tiers is critical because 3D ICs bring dice closer

than in conventional ICs. Without an effective thermal isolation between the tiers,

the thermal coupling will cause the low-power tier to follow the same temperature

trend as that of the high-power tier and degrade its performance.

The performance and power consumption of high performance unit systems de-

pends on the junction temperature. Currently, commercialized 3D IC products do

not contain high power dice due to lack of effective cooling and thermal isolation tech-

nology. Figures 2(a) and 2(b) show examples of Micron Technology’s hybrid memory

cube (HMC) with four DRAM tiers stacked on top of a logic tier [1] and a stack of

2



(a) Hybrid memory cube (b) Samsung memory stack

Figure 2: Examples of current commercialized 3D IC products.

Samsung’s dynamic random-access memories (DRAMs) [2], respectively. Note the

central processing unit (CPU) is not included in the stack in either case because of

thermal challenges. The objective of this research is to

• Demonstrate an effective cooling solution that scales with the number of dice.

• Demonstrate an effective thermal isolation solution that ‘protects’ the low-power

tiers from the high-power tiers to enable heterogeneous 3D stacking.

A schematic illustrating our proposed prototype that solves the two thermal chal-

lenges is shown in Figure 3. For the homogeneous stack, embedded microfluidic

cooling is adopted. Each high-power tier has its own microfluidic heat sink. Since

these heat sinks are microscale, they can be integrated into any high-power tier as

needed. The detailed integration method for this idea is discussed in Section 1.2.

In the heterogeneous stack, the proposed solution includes using an air cavity and

mechanically flexible interconnects between the heterogeneous elements. The details

of the proposed thermal isolation concept is discussed in Section 1.3.
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Figure 3: Proposed 3D IC prototype solving thermal challenges of lack of effective
cooling and lack of effective thermal isolation.

1.2 Thermal Challenges in Stacks Containing Multiple High-
Power Chips

Three dimensional integration is considered to be a promising solution to continue

Moore’s Law in the vertical direction, and offer possibilities of increased device density,

shorter interconnects, smaller foot print, and heterogeneous integration. Although the

concept has been under research for several years since it was first introduced in the

1980s, the products in the market do not yet include high-power units in the stack.

The thermal challenge is one of the biggest hurdles.

In applications where multiple high-power chips (e.g. processors) are stacked

together, the thermal challenge is mainly due to the increased power density and

thermal resistance of the ‘inner’ dice as the number of tiers increases. In these cases,

conventional air cooling is not sufficient for the high power stack. In [3], dividing a

traditional microprocessor design into two dice to form a logic+logic stack, the peak

temperature increases by 14 ◦C while the total power remains the same. The problem

is exacerbated when the power density and number of tiers increases. According to

ITRS projections, each high-power unit will dissipate 130 W by 2020 and each stack

may have six tiers (possibly a combination of high-power tiers and low-power tiers) [4].
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Figure 4: ITRS projections for the number of dice in a stack, number of TSVs, die
thickness, and power of a single high-performance chip.

Since air cooling has limited cooling capabilities [5], researchers have shown the

possibility of using embedded within-tier microfluidic cooling for 3D ICs [6]–[10]. The

advantages of interlayer microfluidic cooling compared to air cooling are as follows:

1. Microfluidic cooling has higher cooling capability since water has much higher

heat capacity than air.

2. The fabrication of the interlayer microfluidic heat sink is compatible with cur-

rent CMOS microfabrication technology.

3. Since the microfluidic heat sink is chip-scale, it has vertical stackability. The

air-cooled heat sink (ACHS), on the other hand, can not scale with the number

of tiers.
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Heat removal (790 W) by a silicon microfluidic heat sink was first demonstrat-

ed by Tuckerman and Pease in 1981 [6]. Because of its relative ease of fabrication,

single-phase cooling and two-phase cooling using the microchannel heat sink have

been widely investigated [9], [11], [12]. Our research mainly focuses on single-phase

microfluidic cooling. As microfabrication technology has advanced, more complex

microfluidic heat sink designs have become possible, bringing the possibility of out-

performing the microchannel heat sink [13]. One method to enhance single-phase

cooling utilizes the fabrication of obstructions in the flow direction [8], [13]. In [8],

multiple heat sink designs were analyzed and compared including microchannels, in-

line micropin-fins, and staggered micropin-fins. A staggered micropin-fin heat sink

(MPFHS) is demonstrated to have the lowest thermal resistance at a constant flow

rate [8].

Figure 6 depicts a typical chip configuration with embedded microfluidic heat sink

in the literature, in which the fluid is supplied through a single inlet from the top of

the stack [14], [15]. The authors of [14] and [15] have demonstrated the cooling of

a four-tier and a two-tier stack with total power dissipation of 390 W and 200 W,

respectively. With this approach, it is not possible to control or tailor the flow rate

in each tier. However, in a realistic 3D stack, especially in a heterogeneous stack,

the power dissipation in each tier may be different (workload dependent). Thus, one

needs the capability to control the coolant flow rate in each tier independently. To

address this need, wafer-level batch fabricated solder microfluidic chip I/Os and fine

pitch electrical microbump I/Os have been recently demonstrated, as shown in Figure

8 [16]. Based on this innovative chip I/O technology, we propose and experimentally

demonstrate tier-specific microfluidic cooling where the flow rate in each tier is chosen

based on the power dissipation of each tier (Figure 7).

The height of most reported interlayer microfluidic heat sinks ranges from 200

µm to 400 µm. Because of the insertion of these microfluidic heat sinks, a wafer
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Figure 5: Illustration of conventional air cooling technology.

Figure 6: Illustration of prior integrated microfluidic cooling technology.

Figure 7: Illustration of the tier-specific microfluidic cooling technology in the present
work.
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will have a typical thickness of a few hundred microns, which presents challenges to

through silicon via (TSV) fabrication and electrical performance. Therefore, design-

ing a microfluidic heat sink without considering TSV fabrication compatibility and

TSV parasitics greatly diminishes the advantages of 3D ICs. There are very few stud-

ies focusing on designing a microfluidic heat sink while accounting for the impact on

TSVs. In [7], microchannel dimensions were designed to maximize the TSV density

while meeting the thermal constrains. In [17], a microchannel infrastructure with

microchannel bends was designed to bypass the region that contains TSVs. However,

to date, there has been neither an attempt to optimize the heat sink design while

accounting TSV fabrication compatibility nor an attempt to analyze the correspond-

ing impact of the microfluidic heat sink on the electrical performance of TSVs. In

this work, electrical and thermal co-analysis of trade-offs between TSV parasitics and

heat sink performance was done and the results are shown in Chapter II.

For TSVs in CMOS, where wafer thickness is typically less than 100 µm, aspect

ratios as high as 15:1 have been demonstrated [18], [19]. For thick silicon wafers

(greater than 100 µm), TSVs with aspect ratios greater than 10:1 have been shown

for the application of silicon interposer [20]. TSVs with higher aspect ratio need to

be developed for thicker silicon (with embedded microfluidic heat sinks). Moreover,

experimental integration of fine-pitch and high aspect ratio TSVs within microfluidic

heat sinks is missing from the literature. In Chapter III, integration of high aspect-

ratio TSVs with microfluidic cooling will be shown.

1.3 Thermal Challenge in Heterogeneous 3D Stacks

Thermal coupling has always been an issue for ICs. Intra-socket thermal coupling

has been investigated between CPU and DIMMs that are in the same socket [21].

Temperature increment was observed in memory when the workload of the CPU

increases. Increased power dissipation in the CPU causes the heat sink temperature

8



Figure 8: Solder-based microfluidic chip I/Os and electric microbumps.

to increase and, thus, causes the downstream memory to become warmer. Within-

chip thermal coupling between CPU and GPU has been studied in [22]. An AMD

Trinity APU consisting of two CPU cores and one GPU core was used to study

the thermal coupling. The moment the two CPU cores were allocated with more

power, the GPU core power also increases because of the thermal coupling and the

impact of temperature on leakage power. In 3D ICs applications, not only the above

mentioned lateral thermal coupling need to be investigated, but the vertical die-

to-die level thermal coupling is also critical because 3D ICs bring dice closer than

conventional ICs [23], [24]. In applications where high-power chips (e.g. processors)

are stacked along with low-power and temperature-sensitive components (memory or

silicon nanophotonic chips, for example), thermal management will not only require

effective cooling, but may also require effective thermal isolation to ‘protect’ the

temperature-sensitive components from the high and time-varying power dissipation

of other chips in the stack. By placing such tiers next to each other, the thermal

coupling between them will be significant, leading to possibly undesirable junction-

temperature variation in the temperature-sensitive tier as a result of the high-power

9



(a) (b)

Figure 9: (a) Illustration of a 3D stacked memory module containing SDRAM, pho-
tonic transceivers, and associated driver circuitry. (b) Temperature impact on mi-
croring resonance frequency.

chips.

In the case of silicon nanophotonics, stacking such chips in a stack adjacent to

logic and memory has been explored [25], [26]. Figure 9(a) shows an example of a 3D

stacked memory module with optical interconnections [25]. However, the tempera-

ture sensitivity of the optical elements presents significant challenges for integration;

for example, a microring modulator with 5 µm diameter is reported to have a wave-

length drift of 0.11 nm/◦C in [27]. Figure 9(a) shows the transmission spectra with

varying ambient temperature over 4 ◦C. A temperature change of 13.5 ◦C will result

in a complete passband mismatch between transmitter–receiver pairs in 64-channel

wavelength-division multiplexing (WDM) [26].

In applications involving a memory die, it has been shown that stacking logic

on SRAM causes a 30 to 40 ◦C temperature increase in the SRAM die [23]. The

increased temperature not only causes the leakage power to increase by approximately

two times, but also causes the average cache access time to increase by 50 ps (28%

10



performance degradation) [23]. A stack of DRAM-on-logic is investigated (Figure

10(a)) in [24]. When logic tier dissipates a uniform power, the temperature difference

between the DRAM and logic is very small, as shown in Figure 10(b), which indicates

strong thermal coupling between the two tiers. As such, there is a need for wafer-level

batch-fabricated thermal isolation technologies in order to minimize thermal coupling

between the high-power logic chip and the low-power and temperature-sensitive chips

in the stack.

(a) (b)

Figure 10: (a) DRAM on logic stack in [24]. (b) Temperature contour of DRAM and
logic when logic has a uniform power dissipation [24].

There is very little effort to investigate thermal isolation in 3D ICs. Researchers

have proposed to use a set of TSV guard rings to thermally isolate to some level

two circuits side by side (Figure 11(a)) [28]. In their simulation, the bottom of the

Si substrate is set to a constant temperature of 25 ◦C. Because of the high thermal

conductivity of the TSVs, a large portion of the heat generated from circuit B tends

to flow downwards to the bottom through TSVs rather than flows to the circuit A

and, thus, creates thermal isolation between the two circuits. Circuit A has a ring

oscillator, whose resonant frequency will shift because of the influence of circuit B.

It is claimed that the TSV-based guard ring can alleviate the thermal coupling so

that the resonant frequency shift is reduced by 65%. Because of the temperature

sensitivity of silicon phonics devices, a local heater is often used to create a constant

11



(a) (b)

Figure 11: (a) TSV guard ring to reduce thermal coupling [28] and (b) SEM for a
two-channel (de)multiplexer with an air cavity beneath to reduce the thermal coupling
[29].

temperature environment in a local region. Extra tuning power is needed from the

heater if the generated heat spreads to the adjacent area because of thermal coupling.

Researchers from Oracle [29] have demonstrated decreased thermal decoupling with

an air trench right below the microring resonators and heaters (Figure 11(b)). The

tuning power is reduced from 27 mW to 21 mW. However, the thermal isolation

between tiers in 3D ICs is missing from the literature.

In the current technology, tiers in 3D ICs are bonded through microbumps. Two

tiers in a stack may expand differently due to different junction temperature, and

may cause stress on the microbumps which leads to cracking in thermal cycles. To

address this issue, underfill is applied between the two tiers to alleviate the stress

on the solder microbumps, as shown in Figure 1. However, the thermal conductivity

of underfill is usually around 0.4 W/mK– 1.3 W/mK. This will introduce a small

thermal resistance between the two tiers and cause thermal coupling between the

tiers. Thus, we propose to integrate an air gap and thermally degraded mechanically

flexible interconnects (MFIs) to replace both microbumps and underfill. The proposed

prototype is shown in Figure 12. When the two tiers expand differently because

of different junction temperatures, stress will occur on MFIs. Unlike rigid solder

12
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Figure 12: Prototype shows the proposed thermal isolation technology that replaces
microbumps and underfill with air gap and thermally degraded MFIs.

microbumps, MFIs will deform elastically under stress, which helps maintain the

electrical connectivity between tiers. Thanks to this phenomenon, MFIs can help get

rid of the underfill and thus reduce the thermal coupling between tiers. The thermally

degraded MFIs are a type of MFI that are specially designed to have large thermal

resistance and small electrical parasitics.

Once the low-power dice are thermally isolated from the high-power die, it is

also isolated from the interposer-level cooling path. Therefore, a new cooling path

is provided to the memory dice from the top. A thermal bridge is attached to the

top of the memory and thermally interconnects the memory dice to the auxiliary

microfluidic heat sink in the interposer. The thermal bridge can be made of metals

of high thermal conductivity such as copper. Thermal interface material is applied

between the thermal bridge and memories. Also to be noted, the interposer has multi-

optimized microfluidic heat sinks. The main heat sink is for cooling the processor,

and the auxiliary heat sink is dedicated to the memory stack. The dark blue color

represents the heat sink dedicated for the processor, and the light blue color represents

the auxiliary heat sink. The two heat sinks have separate flow paths and may have

different flow rates and designs depending on their power loads. For example, the

13



auxiliary heat sink for the memory stack may be less dense and may have a smaller

flow rate. The proposed concept is demonstrated with a two-tier thermal testbed.

The thermal isolation technology with MFIs is implemented. The results will be

shown in Chapter V.

1.4 Organization of the Thesis

In this thesis, a hybrid thermal management solution is proposed to overcome the

above mentioned challenges. The key contributions of this work include:

1. A silicon micropin-fin heat sink (MPFHS) is designed to be TSV–compatible.

Electrical-thermal trade-off analysis is performed to study the impact of heat

sink design on cooling capability and electrical parasitics of TSVs. The se-

lected design provides a thermal resistance of 0.2 K·cm2/W, a TSV dielectric

capacitance of 0.4 pF, and a TSV density of 4× 104 TSVs/cm2.

2. The designed TSV-compatible MPFHS is thermally characterized in a single tier

and benchmarked with a conventional air-cooled heat sink. High aspect ratio

TSVs with a diameter of 10 µm and a height of 178 µm (18:1) are integrated

in the micropin-fins.

3. Within-tier microfluidic cooling is then implemented in 3D stacks to emulate d-

ifferent heating scenarios, such as memory-on-processor, processor-on-processor

with the same power load, and processor-on-processor with different power load-

s. The microfluidic heat sink maintains the stack temperature below 50 ◦C for

a total power density of 200 W/cm2 in a two-tier processor-on-processor stack.

4. A tier-specific cooling mechanism is proposed and implemented in a two-tier

stack where the flow rate in each tier is chosen based on the power dissipation

and temperature target for each tier. With tier-specific cooling, two tiers with

different power levels can have the same junction temperature, mitigating the

14



thermal mechanical stress between the tiers. Pumping power reduction of 37.5%

can be achieved by preventing over-cooling.

5. Within-tier microfluidic cooling is also implemented in a multi-core stack. The

lateral and vertical thermal coupling are analyzed. The vertical thermal cou-

pling is minimal when each tier contains its own microfluidic heat sink. The

leakage power is analyzed with the presence of lateral thermal gradient.

6. A new heterogeneous architecture is proposed for the first time featuring ther-

mal isolation technology using an air gap, thermally degraded MFIs, and novel

cooling structures. The architecture is experimentally demonstrated with a

two-tier testbed, and benchmarked with conventional 3D stacking approach.

The thesis is organized as follows. Chapter II discusses the electrical–thermal co-

analysis of the microfluidic heat sink and TSV parasitics. Chapter III presents the

co-integration of the TSV–compatible microfluidic heat sink with 18:1 aspect ratio

TSVs. Thermal and electrical testing are also included in Chapter III. In Chapter

IV, the microfluidic cooling is evaluated in 3D stacks. Scenarios including processor-

on-processor, memory-on-processor, and processors with different power loads are

emulated. A tier-specific cooling mechanism is proposed and implemented to minimize

the vertical thermal coupling within the stack. Chapter V discusses the modeling and

experimental implementation of the thermal isolation technology based on air cavity

and MFIs.
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CHAPTER II

THERMAL-ELECTRICAL CO-ANALYSIS OF A

TSV–COMPATIBLE MICROFLUIDIC HEAT SINK

2.1 Introduction

Transistor scaling along with continued material innovation in ICs has propelled the

semiconductor industry during the past 50 years in terms of improvements in IC

performance, power dissipation, and cost [30]. However, with the continued aggres-

sive scaling, interconnect performance and power dissipation have become limiting

factors for higher-performance integrated circuits [31]. This is true for both on-chip

and off-chip interconnects [32]. In the latter, the inability to provide high densi-

ty off-chip wires with low latency, low energy-per-bit, and large bandwidth density

has greatly exacerbated the memory wall problem for multicore processors. This is

critical because off-chip bandwidth between multiprocessors and DRAM impacts sys-

tem performance [33]. To overcome this interconnect limit, 3D IC technology has

been pursued in recent years, as it represents a promising solution to the intercon-

nect problem by significantly shortening the interconnect length as well as enabling

heterogeneous integration of logic, memory, MEMS, and optoelectronics [34], [35].

TSVs are the key enabling technology for 3D ICs as they provide inter-layer com-

munication and power delivery between stacked chips. Shorter TSVs (in thinner dice)

have lower capacitance and, thus, lower latency and energy-per-bit. Therefore, thin-

ner dice are preferred in 3D ICs. According to the International Technology Roadmap

for Semiconductors (ITRS), die thickness is expected to decrease from 25 µm to 10

µm by 2024 [6] (Figure 4). A key challenge for high-power 3D applications is cooling.

The reason is that both the power density in 3D ICs and the thermal resistance of
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the dice within the stack increase as the number of tiers increases. The latter is due

to the fact that the inner dice do not have direct access to a heat sink. Prior studies

have shown the possibility of using interlayer microfluidic cooling instead of conven-

tional air-cooling for 3D ICs to overcome this challenge [6]–[10]. The height of most

reported interlayer microfluidic heat sinks ranges from 200 µm to 400 µm in [6]–[10].

Because of the insertion of these microfluidic heat sinks, a wafer will have a typical

thickness of a few hundred micrometers, which presents significant challenges to TSV

fabrication and electrical performance. Therefore, designing a microfluidic heat sink

without considering TSV fabrication compatibility and TSV parasitics greatly dimin-

ishes the advantages of 3D ICs. Microchannel dimensions were designed to maximize

the TSV density while meeting the upper limit of thermal constraints in [7]. A mi-

crochannel infrastructure with bent microchannels was designed to bypass the region

that contains TSVs in [17]. However, to date, there has been neither an attempt to

optimize the heat sink design while accounting TSV fabrication compatibility nor an

attempt to analyze the corresponding impact of the microfluidic heat sink (MFHS)

on the electrical performance of TSVs. This section of the thesis investigates the

thermal and electrical co-design of an interlayer MFHS. Design trade-offs between

heat removal capability and the associated TSV parasitics are analyzed.

2.2 Literature Review of Microfluidic Heat Sink

Figure 13 summarizes the evolution of microfluidic heat sink design. A few key efforts

are included for comparison. Microfluidic heat sinks for heat removal from IC were

first demonstrated by Tuckerman and Pease in 1981 [6]. In their work, a heat removal

of 790 W is demonstrated in a 1 cm2 area. The lowest thermal resistance that is

reported in their work is 0.09 K/W under a pressure drop of 213.9 kPa (corresponding

to 512 mL/min). The height of the heat sink is 302 µm. Owing to advancement

in microfabrication, more complicated structures can be designed to enhance the
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Figure 13: Selected single-phase microfluidic heat sink geometries in the literature.
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cooling performance. One important method is to fabricate an obstruction along

the flow path so that the fluid is continuously disturbed, and provides a higher heat

transfer coefficient. An enhanced microchannel structure using offset microchannels

is proposed by Colgan et al. [36]. The heat transfer coefficient in the staggered

fashion is significantly higher than in continuous microchannels [37]. Changing from

offset square channels to offset circular pins can further enhance the heat transfer.

Peles et al. have demonstrated a single-phase microfluidic heat sink using staggered

micropin-fins, as shown in the figure. Compared to the plain microchannel, the

thermal resistance decreases by 33% at a similar pressure drop. More geometrical

variations including microchannels, in-line and staggered micropin-fins, and drop-

shaped micropin-fins structures are investigated in a recent IBM work (shown in the

last two rows in the figure). Two representative structures are selected for comparison.

According to their evaluation, the staggered micropin-fin structure provides the lowest

thermal resistance at a constant flow rate.

In addition to the method of introducing obstructions in the flow direction, other

novel methods have been investigated. For example, [38] shows that microchannels

with a sinusoidal roughness profile can significantly increase the heat transfer coeffi-

cient with little pressure drop penalty. Two-phase microfluidic cooling [39]–[41] and

active thermoelectric coolers to address hotspots [42] are also investigated.

Owing to the ease of implementation of single-phase microfluidic cooling and rel-

atively lower pressure drop compared to two-phase cooling, the single-phase MPFHS

is chosen in this work for the applications in 3D ICs. Although different micropin-fin

layout has been studied in previous work, very little work has looked at the impact

of heat sink design on the interconnect performance. The following sections will fo-

cus on the trade-off between thermal performance (including thermal resistance and

pressure drop) and interconnect electrical performance.
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2.3 Heat Transfer Theory for Micropin-fin Heat Sink

Thermal resistance and pressure drop across the heat sink are key metrics for eval-

uating a heat sink. The total thermal resistance Rtotal consists of three parts: Rcond

is due to the conductance from the circuit through the substrate and the heat sink

interface; Rconv accounts for the convection from the substrate to the liquid; Rheat is

due to the temperature increase of the cooling fluid as it flows across the heat sink [6].

For most cases, Rcond has a small contribution since the heat sink is close to the heat

source and can be neglected. Rtotal is derived as follows:

Rtotal = Rconv +Rcond +Rheat ≈ Rconv +Rheat (1)

Rtotal ≈
1

haveAt

+
1

Wtcp
(2)

where Wt and cp are mass flow rate and specific heat capacity, respectively. The

average heat transfer coefficient, have, is calculated as

have = Nu · kf/Dh (3)

Nu = CRemPr0.36(Pr/Prs)
0.25 (4)

where kf and Dh are the thermal conductivity of the fluid and the micropin-fin hy-

draulic diameter, respectively. The Nusselt number, Nu, can be evaluated using (4),

where Re and Pr are the Reynolds number and Prandtl number evaluated using the

bulk fluid properties, respectively. Prs is the Prandtl number using the fluid property

at the surface temperature. For the Reynolds number studied in this work, C and m

take the value of 0.9 and 0.4 in (4), respectively [43]. At is the effective heat transfer

area described as follows:
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At = Ab + ηAfin (5)

η =
tanh(2Hfin

√
have/ksiD)

2Hfin

√
have/ksiD

(6)

where ksi, Hfin, D, and η are the thermal conductivity of silicon, micropin-fin height,

micropin-fin diameter, and fin efficiency, respectively. Ab is the base area exposed to

the fluid, and Afin is the aggregate surface area of the pin-fins exposed to the fluid,

and are calculated as follows:

Ab = Atot − 1/4nπD2 (7)

Afin = nπDHfin (8)

Nfin =
(W −Ws)(L− Ls)

PwPl

(9)

where W and L are the width and length of the entire chip, respectively; Ws, Ls, Pw,

and Pl are the horizontal and vertical spacing and the pitch between the pins. Nfin

is the total number of pins. This correlation-based model is valid under the following

conditions: 10 ≤ Re ≤ 1000, 2 ≤ Hfin/Dh ≤ 20, 20 ≤ L/Hfin ≤ 200, and with a

pitch to diameter ratio of 1.25 to 3 [43].

In this work, we use (10) to calculate the Darcy friction factor (f), which is an

empirical correlation model derived by Short et al. [44]. The pressure drop (∆P ) is

then calculated using (11) [43].

f = 104.4(
Pw

Dh

)−1.3(
Pl

Dh

)−0.78(
Hfin

Dh

)−0.55Re−0.65 (10)

∆P = Nρ
V 2
max

2
f (11)
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Figure 14: TSV array integrated in a silicon micropin-fin .

where Vmax is the mean fluid velocity at the minimal cross-section, and N is the num-

ber of rows in the horizontal direction. Please note the above models are developed

for laminar flow, which is dominant in microscale structures that are studied in the

present work.

2.4 Electrical Parasitics of TSVs Embedded in microfluidic
heat sink

As shown in the 3D IC prototype (Figure 7), TSVs need to be routed through the

silicon micropin-fins. Figure 14 is a schematic of an array of TSVs embedded within a

silicon micropin-fin. The total number of TSVs (NTSV ) that can be integrated within

the heat sink can be calculated based on geometrical considerations. The number of

TSVs per micropin-fin (nTSV ) is calculated by

nTSV =

⌊
D − 2× (S +Rvia)√

2PTSV

⌋2

(12)
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Figure 15: Impact of Hfin on TSV density and diameter.

where Rvia and PTSV are the radius and pitch of the TSVs, respectively. S denotes

the spacing between the TSVs and the micropin-fin edge. This spacing is used to

compensate for the misalignment during the fabrication. S is assumed to be 10 µm

in this work. PTSV is assumed to be 3×Rvia, while Rvia is determined from Hfin and

the TSV aspect ratio (AR) by (13).

Rvia =
1

2
(Hfin/AR) (13)

NTSV is given by (14).

NTSV = Nfin × nTSV (14)

The empirical expression for TSV dielectric capacitance is as follows:
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Cox =
2πεoxLTSV

ln
(

Rvia

Rmetal

) (15)

where ϵox is the oxide permittivity, LTSV is the TSV length, and Rmetal (Figure 14) is

the radius of the copper. The dielectric capacitance model is verified against measured

results from [45]. The modeled dielectric capacitance for a TSV with Rvia = 5.2 µm,

Rmetal = 5.07 µm, and LTSV = 26 µm is 115.5 fF while the measured value is 126 fF,

thus showing reasonable agreement.

2.5 Thermal Resistance and Pressure Drop Trade-off Anal-
ysis of Microfluidic Heat Sink

Before taking the electrical parasitics of TSVs into account, thermal analysis is first

done. There is a trade-off between thermal resistance and pressure drop. As flow rate

increases, thermal resistance will decrease. However, the increased flow rate will result

in a larger Darcy friction factor, as shown in Equation (11), and the pressure drop

across the microfluidic heat sink will increase. Figure 16 shows the trade-offs between

∆P (y axis) and the Rtotal (x axis) for different configurations as the volumetric flow

rate decreases from left to right for a 1 cm × 1 cm chip area. The parameters that

are varied in the heat sink design are channel height (Hfin), pin diameter (D) and

pitch to diameter ratio. Since the thermal resistance should be low to be sufficient to

cool the high power-density chip, the target that we set is Rtotal <0.2 K/W based on

ITRS projections. Meanwhile, we set the upper limit for pressure drop (∆P ) to be

40 kPa due to the pump power and size limitations. High flow rate provides better

cooling capability and is accompanied with higher friction factor which brings high

pressure drop. Thus, Rtotal decreases and ∆P increases as the flow rate goes higher

for all configurations. In general, high Hfin provides larger effective heat transfer area

and lower friction factor. It is consistent with the result in the plot: Rtotal and ∆P
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decrease as the heat sink height increases. However increasing Hfin is not ideal for a

3D IC system because it will increase TSV length and possibly TSV diameter if we

assume a fixed TSV aspect ratio. Consequently, TSV density decreases and electrical

performance degrades. In conclusion, our design rules are the following:

• Provide a low total thermal resistance.

• Provide a low pressure drop.

• Maintain the heat sink height as small as possible.

• Maximize available silicon area for TSV routing for potential applications that

require it.

2.6 Electrical-Thermal Trade-off Analysis of TSVs in Mi-
crofluidic Heat Sink

Larger Hfin means higher effective heat transfer area until the decrease of η causes

a degradation. Since larger Hfin provides a larger flow path, the friction factor is

reduced [46], [47]. Therefore, a larger Hfin is generally preferred to obtain smaller

thermal resistance and pressure drop. The optimized heat sink design for either

microchannels or inline/staggered MPFHS has been derived previously, and a few

key results are summarized in Table 1 [12], [46].

In 3D IC applications, the heat sink design not only needs to achieve the target

heat removal capability and pressure drop, but it should also be compatible with

TSV fabrication and their target electrical parasitics. The most important variable

in their co-design is the height of the micropin-fin (Hfin). Hfin greatly impacts TSV

diameter, TSV density, and TSV capacitance, which in turn influences interconnect

latency, bandwidth density, and power consumption. As seen in Table 1, prior heat

sink designs have a large height. Although a highHfin value may decrease the thermal

resistance of the heat sink, assuming a fixed TSV AR, it results in a large TSV
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D=150um H=200um Pitch to Diameter Ratio=1.5

Silicon Area:0.00855cm2
Increase by 57% 

Silicon Area:0.1924cm2
increase by 54%

Silicon Area 0.35cm2
Increase by 85% 

Silicon Area:0.35cm2
Increase by 45.89%

Silicon Area:0.0855cm2
Increase by 44.03%

Silicon Area 0.34cm2
Increase by 44%

Figure 16: Thermal resistance and pressure drop for different micropin-fin designs
with flow rate 150 ml/min to 60 ml/min.
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Table 1: Selected optimal heat sink dimensions from the literature

Heat Sink Type Dimensions (µm)

Channel width (wc) = 65
Microchannel [12] Wall width (wc) = 65

Channel height(Hch) = 399.75
wc = 65

Microchannel [46] wc = 63.7
Hch = 929.5
D = 196

Staggered micropin-fin [46] Pitch = 305.8
Hfin = 3155

diameter and a large TSV capacitance (assuming the TSV is still manufacturable).

TSV technology is normally limited by AR. Etching, sidewall passivation, and metal

filling of high AR TSVs are very challenging. Figure 15 illustrates how Hfin impacts

TSV diameter and density qualitatively. For example, in a 100 µm tall micropin-fin,

the TSV diameter is 10 µm with a limited AR of 10:1. This allows the integration

of 16 TSVs per micropin-fin. When the micropin-fin height increases to 200 µm, the

TSV diameter increases to 20 µm, allowing only four TSVs per micropin-fin.

In Figure 17, for a constant pressure drop of 80 kPa, the total thermal resistance

(Rtotal) decreases from 0.34 K·cm2/W to 0.23 K·cm2/W as Hfin increases from 130

µm to 220 µm. Meanwhile, the TSV dielectric capacitance (Cox with 500 nm liner)

with a 10:1 AR is observed to increase from 0.352 pF to 1.025 pF, leading to larger

latency and energy consumption. This is, of course, not a desirable consequence. In

addition, as Hfin increases, the flow rate needs to increase to maintain a constant

pressure drop, resulting in higher pumping power. Another trade-off shown in Figure

17 is between the pressure drop and the thermal resistance. For the same Hfin,

higher pressure (higher flow rate) corresponds to lower thermal resistance. At Hfin

= 200 µm, Rtotal decreases from 0.38 K·cm2/W to 0.2 K·cm2/W as the pressure drop

increases from 40 kPa to 120 kPa. The assumptions made in these models are: 1)
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Figure 17: Thermal resistance and TSV capacitance as a function of microfluidic
heat sink height at different pressure drop values.

Figure 18: The impact of microfluidic heat sink height on the number of TSVs and
TSV capacitance.

28



the heat sink spans 1 cm × 1cm, 2) the oxide liner of TSVs is 500 nm thick, 3) TSV

pitch is 1.5×TSV, 4) base silicon thickness is 50 µm, and 5) pressure drop across the

micropin-fin array is 80 kPa unless otherwise noted in the analysis.

Figure 18 captures the impact of TSV AR and Hfin on NTSV and Cox. One trend

observed is that Cox increases and the number of TSVs decreases for higher Hfin.

Another trend shown in Figure 18 is that as TSV AR increases, NTSV increases and

Cox decreases. For example, as the TSV AR increases from 10:1 to 20:1 in a 200 µm

tall MPFHS, NTSV increases from 7,396 to 4.62 × 104, and Cox decrease from 862

fF to 419 fF. Further increasing the TSV AR results in a larger TSV density and a

smaller Cox. Hence, Hfin should be designed as small as possible to achieve the best

TSV performance. Yet, Hfin needs to be greater than a certain value (100 µm) in

order to keep the pressure drop tolerable. To obtain a thermal resistance smaller than

0.2 K·cm2/W (Figure 4) and maintain the smallest die thickness (in order to get the

low TSV parasitics and high TSV density), Hfin is chosen to be 200 µm in this work.

The other selected MPFHS geometries are D = 150 µm, Pw = Ps = P = 225 µm.

2.7 Alternative Methods to Reduce TSV Capacitance

2.7.1 Novel Liner Material

Although Hfin can be designed small, the total thickness still increases drastically

because of the insertion of interlayer MFHS. As a result, for a fixed aspect ratio,

TSV diameter will increase, leading to larger TSV capacitance. Although increasing

the oxide liner thickness may reduce TSV capacitance, it is not cost effective nor

easily manufacturable. We propose replacing the silicon dioxide liner with polymer

or air. Polymer and air liner concepts have been shown in [45], [48]. TSV dielectric

capacitance is plotted as a function of Hfin for different liner materials in Figure 19.

The assumed dielectric constant of silicon dioxide, Parylene-C, and air is 3.90, 2.95

(at 1 MHz) [49], and 1.00, respectively . By replacing the 500 nm oxide liner with
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Figure 19: TSV dielectric capacitance as a function of liner: oxide, Parylene-C, and
air.

500 nm Parylene-C liner, the dielectric capacitance decreases from 419 fF to 317 fF

for Hfin = 200 µm. This is due to the reduction of the dielectric constant. By further

increasing the thickness of Parylene-C liner to 2 µm, the TSV dielectric capacitance

decreases to 65.7 fF for Hfin = 200 µm. For the same dimensions, Cox is reduced

to 22 fF by replacing the oxide liner with a 2 µm air liner. For reference, Cox of a

10:1 AR TSV with a 0.1 µm oxide liner in a 20 µm thick die (i.e., without embedded

MPFHS) is plotted in Figure 19. As can be seen, the reduced capacitance values

are comparable with the reference value. Another benefit of using a polymer liner

is that the polymer has a lower Young’s modulus and may serve as a stress buffer

between silicon and the metal-filled TSVs [48]. However, the resistance of the TSVs

will increase from 52 mΩ to 115 mΩ when the liner thickness increases from 0.5 µm

to 2 µm.
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Figure 20: Homogeneous and heterogeneous approaches for TSV integration into
microfluidic cooled chip.
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2.7.2 Heterogeneous TSV Integration

Two possible methods of integrating MFHS and TSVs into 3D ICs are described

in this section. As shown in Figure 20, one is denoted as the homogeneous TSV

approach. This approach starts with a thick CMOS chip without TSVs or a MFHS.

MFHS is then etched on the back side of the CMOS chip. After capping the MFHS,

TSVs are etched into the silicon containing CMOS and the microfluidic layer. The

second proposed approach is based on heterogeneous TSV integration [50]. In this

case, the CMOS layer and the microfluidic layer, each with their own TSVs, are

fabricated independently. The two layers are electrically and mechanically bonded

simultaneously at the end, for example, using a hybrid bonding technique discussed in

[51]. The advantages of heterogeneous TSV integration mainly involve three aspects.

Firstly, the TSVs in the CMOS layer become much smaller, leading to conservation

of precious silicon area in the CMOS chip. Table 2 illustrates how much area is

saved by the heterogeneous integration method. The chip area occupied by TSVs is

reduced by two orders of magnitude with heterogeneous TSV integration. Secondly,

since the microfluidic layer is fabricated independently, restrictions on temperature

and materials are eliminated. This creates more flexibility in the processing of the

microfluidic layer. For example, it enables one to pursue bottom-up electroplating for

the TSVs (different from the superfill process adopted in CMOS layer) in the MFHS

silicon wafer, which can provide much higher aspect ratio TSVs. Lastly, heterogeneous

integration brings about greater opportunity to explore novel dielectric liner materials

and processes, e.g. thick oxide liner or polymer liner; the benefit being that the total

TSV capacitance can be reduced despite the larger TSV dimensions in the microfluidic

layer.

Figure 21 illustrates the bonding of a two-tier 3D IC stack in which each tier has

TSVs integrated with microfluidic cooling. The top tier is electrically and mechani-

cally bonded to the bottom tier by flip-chip bonding. The electrical microbumps are
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Table 2: Comparison of the area occupied by TSVs for homogeneous and heteroge-
neous TSV integration

Assumptions Area occupied
by TSVs in
CMOS layer

Homogeneous
Integration

Chip area=1 cm × 1 cm Hcooling=200 µm
HCMOS=10 µm

4.3%

Heterogeneous
Integration

TSV aspect ratio=20 : 1 NTSV=0.5x105 0.0098%

for signaling and power delivery. Fluid is supplied through the interposer and deliv-

ered into each tier through solder- or polymer-based microfluidic chip I/Os [52]. A

reliable method to deliver fluid into each tier without leakage is a critical challenge for

implementing microfluidic cooling in 3D ICs. Recent advances in wafer-level batch-

fabricated solder microfluidic chip I/Os and fine-pitch electrical microbump I/Os have

been made [16]. The solder-based microfluidic chip I/Os have been experimentally

shown to withstand a pressure drop of 100 kPa without leakage.

2.8 Conclusion

In this chapter, the thermal–electrical modeling of a microfluidic heat sink and TSVs

is performed. Trade-offs between cooling capability and TSV parasitics are analyzed

for the first time. It should be noted that when the heat sink height increases, the

thermal resistance of the microfluidic heat sink will decrease. However, TSVs will

have larger diameter and larger parasitics. In this sense, the heat sink should be

designed as low as possible to ease TSV integration. To compensate for the thickness

increment, high aspect-ratio TSVs should be developed. The results in Section 2.6

shows that Cox decreases by 51.4 % when TSV AR increases from 10:1 to 20:1. In

this case, TSV density also increases from 7,396 to 4.62 × 104 /cm2. Even more, a

novel liner such as SU-8 can further reduce the oxide capacitance. A heterogeneous

TSV integration method is also proposed to save valuable silicon area in the CMOS
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Figure 21: Two-tier 3D IC stack with microfluidic heat sink and TSVs.

layer.
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CHAPTER III

TSV-COMPATIBLE MICROPIN-FIN HEAT SINK

EXPERIMENTS

3.1 Introduction

As stated in Chapter II, very little effort is made to analyze the thermal–electrical

trade-offs between TSVs and microfluidic heat sink designs. In addition, there are very

few research efforts that demonstrate TSVs and microfluidic heat sink co-integration.

The reason is that the die thickness increases drastically because of the insertion

of the microfluidic heat sink. While the aspect ratio (AR) of most TSVs today is

limited to 10:1, the TSVs will have large diameters and thus large parasitics. The

key to compensating for this increased TSV height is to increase TSV AR. As shown

in Figure 18, for example, as the TSV AR increases from 10:1 to 20:1 in a 200 µm

tall MPFHS, NTSV increases from 7,396 to 4.62 × 104, and Cox decreases from 862

fF to 419 fF. Further increasing the TSV AR results in a larger TSV density and a

smaller Cox. However, very little work focuses on high AR TSV development.

For TSVs in CMOS, where wafer thickness is typically less than 100 µm, aspec-

t ratios as high as 15:1 have been demonstrated [18], [19]. For thick silicon dice

(greater than 100 µm), TSVs with aspect ratio greater than 10:1 have been shown

for the application of silicon interposer [20]. TSVs with higher aspect ratio need to

be developed for thicker silicon die (with embedded MFHS). Moreover, experimental

integration of fine-pitch and high AR TSVs within MFHS is missing. A 3D IC system

featuring TSV-compatible interlayer microfluidic cooling and high AR TSVs is shown

in Figure 22. The proposed system features processor and memory stacks enabled

through interlayer microfluidic cooling and low-parasitic TSVs. Since the microfluidic
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Figure 22: Schematic of a three-microprocessor chip stack each with interlayer mi-
crofluidic cooling. A 3D stack of memory chips resides above the microprocessors.
High AR TSVs are integrated in the MPFHS.

cooling solution is chip scale, the 3D chip stacks can be placed virtually side-by-side

and, thus, shorten off-chip interconnects.

In this chapter, a TSV-compatible staggered MPFHS is developed and fabricated.

In order to demonstrate the TSV compatibility, 18:1 AR copper TSVs are integrated

in the MPFHS. Thermal experiments for the fabricated MPFHS and benchmarks a-

gainst a high-performance air-cooled heat sink (ACHS) are included. Thermal testing

results and four-point resistance measurements of TSVs are also reported.

3.2 Fabrication of the TSV–Compatible Micropin-Fin Heat
Sink

3.2.1 Bonding Process Selection

The most important and complicated step in the fabrication process is to select an

appropriate bonding method to encapsulate the fluid. A suitable bonding process in

the microfluidic heat sink application will have the following characteristics:

• Hermetic
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• Stable under high pressure

• Stable when interacting with fluidic

• Mechanically reliable during thermal cycles

Several wafer bonding methods have been performed and tested in the literature [53],

[54]. One well-studied method uses an intermediate layer (such as SU-8, polyimide,

parylene-C) to bond two layers. Such intermediate polymers typically require a low

bonding temperature. For example, ≤200 ◦C is required for wafer bonding using SU-8.

The bonding quality is fairly independent of the surface roughness and planarity [53].

However, in order to prevent the degradation of SU-8, the bonded sample cannot be

exposed to a temperature higher than∼380 ◦C [55]. Moreover, adding an intermediate

bonding layer adds a conductive thermal resistance to the ICs in the stack, which

will degrade the cooling capability of the heat sink. Furthermore, TSVs need to be

routed through the MPFHS layer for interlayer communication. Therefore, a bonding

method without additional material is preferred in 3D IC applications.

Another well-established bonding method is anodic bonding. Anodic bonding can

be used to bond a silicon wafer to a pyrex wafer without any intermediate polymer

layer. Figure 23 shows the bonding theory [56]. When a high electrical voltage is

applied between the silicon and the glass, charge separation occurs in sodium dioxide.

The sodium ions (Na+) drift toward the top of the glass wafer while the oxygen ions

(O2−) drift toward the bottom of the glass wafer. When the oxygen ions reach the

boundary, they react with silicon and form SiO2. This thin SiO2 layer provides good

bonding strength between the two substrates. The advantage of using anodic bonding

is to allow a transparent view of the fluid. This is especially important to evaluate

the flow in the channel. For example, in two-phase cooling, anodic bonding allows for

flow regime visualization [11]. However, this bonding is not suitable for 3D stacking of

chips because glass introduces large thermal resistance to the 3D stack. In addition,
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Figure 23: Theory of anodic bonding.

forming TSVs through glass is still challenging. Lastly, because of the coefficient of

thermal expansion (CTE) mismatch between glass and silicon, thermal cycles can

induce large stress at the interface and increase reliability concerns.

The last method is direct fusion bonding. Direct fusion bonding is used to join

two clean silicon wafers together. Figure 24 shows the bonding diagram. Two clean

silicon wafers bond at room temperature while pressure is applied. The Si–O–Si bond

ensures the bonding strength. Figure 25 illustrates the detailed bonding process flow.

Two silicon wafers first go through standard RCA clean to remove residual and make

the surface hydrophilic. Oxygen plasma is then used to activate the surface and

create hydroxyl radicals (HO). At room temperature, when the two cleaned wafers

are brought together, the hydroxyl radicals will form the initial weak Si–O–Si bond.

To strengthen the bond, an annealing at 400 ◦C is performed afterward. As can be

seen, there is no intermediate material involved in this process. Since the other layer

is also silicon, it is suitable for 3D stacking. In addition, fabricating TSVs is not a

problem in this case. Lastly, since there is no CTE mismatch issue, the reliability can

be improved.
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Figure 24: Theory of fusion bonding.

3.2.2 Fabrication Process of MPFHS

After selecting the bonding process, the fabrication process is initially developed, as

shown in Figure 26. The fabrication starts with a cleaned double-side polished wafer.

A standard Bosch process, which alternates between SF6 (plasma etching step) and

inert C4F8 (passivation step) is used first to etch silicon. A 200 µm (±2 µm) deep

micropin-fin array is etched. Next, the wafer is flipped over and a platinum (Pt) spiral

heater is sputter-coated and patterned onto the back side of the chip to emulate the

heating of a microprocessor. Owing to the linear resistance–temperature relationship,

the Pt heater also serves as the resistance thermal detector (RTD) during the thermal

measurements. The next step is to encapsulate the micropin-fins using Si–Si fusion

bonding. Fluidic vias are then etched to enable liquid circulation into and out of the

microfluidic heat sink. The final step is to attach the Nanoports (from Idex Health

and Science) to provide consistent fluid connections to the testbed.

During the Si–Si fusion bonding process, no cracking is observed after the initial

contact at room temperature. However, after the 400 ◦C annealing, cracking occurs.

The reason may be that photoresist residual is trapped between the bonded surfaces

and causes initial cracking. After the hermetic seal is formed, air is trapped in the

microchannels and expands when temperature increases, which induces large stress
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Figure 25: Si–Si fusion bonding process.
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Figure 26: Initial process flow of the MPFHS.
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on the two wafers. This cracking may propagate because of the increased stress. In

order to alleviate the stress during annealing, the key is to create a path for the air

to escape. To this end, the process is modified, as shown in Figure 27. In this new

process, the Si–Si bonding step is moved after the ‘fluidic via etching’ step. Therefore,

the trapped air can escape from the fluidic vias and alleviate the stress. No cracking

is observed after the annealing.

The etched micropin-fins are shown in Figure 28. In Figure 28(a), a top-view of

an array of staggered micropin-fins is shown. The diameter of a single pin is 150 µm.

The vertical pitch is 225 µm. The next column is displaced upwards by 112.5 µm.

These parameters are selected based on the thermal–electrical co-analysis in Chapter

II. A tilted view is also included in Figure 29(a). After the MPFHS is encapsulated

with another silicon wafer, the sample is diced and a cross-sectional image is taken

(Figure 28(b)). After inspecting with SEM, it is confirmed that the two surfaces

remain in intimate contact after dicing. The height of the etched micropin-fin array

is 200 µm. Figure 29(b) is an infrared image of the top-view of the bonded wafer

from which the high bonding yield can be observed. Air and metal appear brighter

than the silicon surface in the IR image. From the IR image, we conclude that air is

not trapped between the top of the micropin-fins and the capping wafer (the brighter

color is the underlying Pt heater). Figure 30 shows an overall view of the MPFHS

sink with the micropin-fin arrays in the middle. The micropin-fin array spans 1 cm

× 1 cm and is used to cool a chip that is 1 cm × 1 cm. On the two sides, there are

two large rectangles that serve as mechanical support. The fluid flows from left to

right across the micropin-fin array. Fluid absorbs heat from the heat sink and the

temperature increases gradually, as shown in Figure 30.
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Figure 27: Modified process flow of the MPFHS.
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Figure 28: SEMs of (a) the top and (b) cross-sectional view of the micropin-fin
arrays.

3.2.3 Integration of TSVs in MPFHS

The fabrication process flow of TSVs in MPFHS is shown in Figure 31. High-AR

(18:1) TSVs are etched using the Bosch process. A thermal oxide liner is then grown

to isolate the TSVs from the substrate. In Step 3, bottom-up pulsed electroplating

with Enthone DVF plating solution is used to fill the vias with copper. Following

electroplating, the sample is polished using iCue 5001 provided by Cabot Microelec-

tronics Corp. The MPFHS is patterned and etched from the top side. The fabricated

TSVs have a diameter of 10 µm and a length of 178 µm (18:1) [57]. A top-view of

the fabricated high AR TSVs within the micropin-fin is shown in Figure 32(a). A

3 × 3 TSV array per micropin-fin is shown. The fabricated die spans 1 cm × 1 cm

and has 1,936 micropin-fins. Each micropin-fin has nine electrical TSVs, providing a

total of 17,424 electrical I/Os. The TSVs consume only 1.36% of the die area. The

fabricated structure is then dipped in KOH to remove the silicon and to leave behind

free standing high AR copper electroplated pillars (TSVs) (SEM shown in Figure
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(a)

(b)

Figure 29: (a) The tilted view of micropin-fins and (b) an infrared image of the
bonded sample.

32(b) and optical image shown in Figure 33(a)). To further inspect the copper elec-

troplating, optical images are taken as shown in Figure 33. Figure 33(b) shows the

cross-sectional image of the electroplated copper. This verifies the absence of voids in

the electroplated TSVs. The copper contact at the bottom of the TSVs in Figure 32

and Figure 33(b) short-circuits the TSVs so that a four-point resistance measurement

can be performed to measure single TSV resistance.
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Figure 30: Overview of the MPFHS with a magnified angled view of the micropin-
fins. Fluid flows from left to right.
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Figure 31: Process flow of high aspect ratio TSV integration into the MPFHS
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(a) (b)

Figure 32: SEMs of (a) high-AR TSVs integrated in micropin-fins and (b) free
standing high-AR TSVs.

(a) (b)

Figure 33: Optical images of (a) the free standing TSVs after removing the Silicon
and (b) a cross section of high-AR TSVs integrated in micropin-fins.
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Figure 34: Characterization of a RTD’s resistance as a function of temperature.

3.3 Test Setup Description and Automated Data Collection
in LabVIEW

The thermal experiment begins with the characterization of the Pt RTD (shown in

Figure 34). This verifies the linear resistance–temperature relationship of Pt. The

relationship between the resistance and the temperature is expressed in (16),

R(T ) = R(T0) + αR(T0)(T − T0) (16)

where R(T ) and R(T0) are the resistance of the Pt RTD at T and T0, respectively. α is

the temperature coefficient. Based on the calibration, α of the heaters on the ACHS

and the MPFHS samples is 0.00267 and 0.002864 K−1, respectively. From various

fabricated Pt heaters, α varies from 0.0026 to 0.0029 K−1, showing good consistency.

An ACHS testbed is constructed similarly, as shown in Figure 27. The only
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Figure 35: The experimental test setup for single-layer microfluidic heat sink testing.

difference is that there is no embedded microfluidic heat sink. This will be used to

benchmark the thermal results to the MPFHS cooled chip. In the ACHS experiment,

a high-performance ACHS containing three copper heat pipes and 45 aluminum fins

designed for the Intel i5/i7 CPU is attached to the back side of the ACHS chip through

thermal interface material (TIM). The ACHS chip is tested while the fan rotates at

its maximum speed (2500 rpm ± 15%). The corresponding air flow is 54.8 CFM.

In the microfluidic heat sink experimental setup, a gear pump is connected to the

inlet of the testbed in the stack. De-ionized (DI) water is pumped from a nearby

reservoir. Polyester-based filters are connected to the outlet of the pump to eliminate

any particles (≥20 µm) that may potentially block the microfluidic heat sink. An

acrylic block flow meter that measures up to 100 mL/min is connected to each inlet

serially to measure the flow rate. An Agilent N6705B power analyzer with four

outputs is used to source current to the thin-film Pt heaters/RTDs in order to emulate

chip power dissipation. The heater resistance in each tier is measured and tracked

using an Agilent 34970A data logger at 1 Hz. The measured resistance is used to
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calculate the average junction temperature of the chip. Note that we use a single

heater/RTD and, thus, the junction temperature represents the average junction

temperature. A differential pressure gauge and J-type thermocouples are connected

in parallel with the MPFHS in order to measure the pressure drop across the heat

sink and the inlet/outlet temperature of DI water, respectively.

A photo of the experimental set up is included in Figure 36. The key instruments

in the experiments include:

• Cole-Parmer gear pump system with 0.092 mL/rev. The flow rate ranges from

5.5 to 331.2 mL/min. The pump’s physical dimensions are 7-3/4”L × 11-1/2”W

× 7-1/4”H. The pump allows a remote control by voltage regulation.

• Agilent N6705B power analyzer that features four outputs. Each output allows

a maximum power of 100 W. The maximum voltage and current are 60 V and

1.66 A, respectively. Thus, a resistance of ∼36.1 Ω should be designed to use

the maximum power.

• Agilent 34970 data acquisition system with three slots. Each slot features a

20-channel multiplexer. There is a built-in 6.5 digit DMM for current, volt-

age, and temperature measurements. The DC voltage measurement accuracy is

0.004% up to 300 V. For measuring temperature using J-type thermocouples,

the offset is 1 ◦C. For measuring resistance less than 1000 Ω, the accuracy is

0.01 % of reading +0.001% of reading range. The multiplexing rate is up to 60

channels/sec. The USB interface allows remote data logging.

• NI myDAQ data acquisition system with ±15 V output that can be used to

regulate the flow rate of the pump.

• Comark C9557 differential pressure gauge with measuring range of 690 kPa.

The accuracy is 0.2% of the full measurement scale (±1.38 kPa).
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Figure 36: A photo of the test setup for microfluidic heat sink testing. The key
instruments in the test setup include power analyzer, gear pumps, data logger, and a
LabVIEW interface for data collection.

• KOBOLD Model KFR-2110NS acrylic flow meter with flow measuring range of

10 to 100 mL/min. The accuracy is ±5% of the full measurement range (±5

mL/min).

A labVIEW program is developed to automate the data collection. During the

experiment, a fixed power density value is entered to the program. When the power

source is turned on, an initial current is pumped to the on-chip heater. The data

logger then measures the heater resistance and feeds it back to the program and

calculates the needed current for the target power density. When power is on, the

chip junction temperature will increase and causes the heater resistance to increase.

The heater resistance will be measured in real time and is used to adjust the supply

current.
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Figure 37: Photo of the microfluidic testbed.

The thermal measurements are made at two flow rates: 45 mL/min and 70 m-

L/min. The heating area for both testbeds is 0.6 cm × 0.6 cm. The DI water

temperature is 20 ± 1 ◦C and is used to compute the increase in junction tempera-

ture. To evaluate the TSVs’ electrical resistance, four-point resistance measurements

are performed on the high-AR TSVs. Platinum pads are deposited selectively using

focused ion beam (FIB) deposition, as shown in Figure 38.

3.4 Single Layer Thermal Measurements and Benchmarked
with Air-Cooled Heat Sink

The corresponding average junction temperatures as a function of power dissipation

for the ACHS and the MPFHS thermal testbeds are plotted in Figure 39. The average

junction temperature under the ACHS is 77.6 ◦C at 109 W/cm2 for an air flow rate of

54.8 CFM. In contrast, the average junction temperature with the embedded MPFHS

is 53.5 ◦C at 105 W/cm2 for a flow rate of 45 mL/min and 47.9 ◦C at 103.4 W/cm2 for

a flow rate of 70 mL/min. It is expected that the junction temperature decreases as

the flow rate increases. However, the decreasing rate will be smaller when Rconv and

Rcond start to dominate. At the same power density, the chip junction temperature

with MPFHS is lower than that with ACHS. The junction temperature reduction by

MPFHS is more pronounced at high power densities. At a lower operating temper-

ature, the leakage current in CMOS circuits is smaller, which results in lower power
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Figure 38: Illustration of the resistance measurement of TSVs using four-point tech-
nique. The platinum pads are deposited selectively using focused ion beam (FIB)
deposition.

consumption. Sekar et al. [58] have shown that by reducing the chip temperature

from 88 ◦C to 47 ◦C, the total power of a high-performance chip decreases from 102

W to 83 W for the same operating frequency.

The thermal resistance is normalized to 1 cm2 area. The normalized thermal re-

sistance of the ACHS (including the thermal resistance of the TIM layer) and the

MPFHS under different flow rates is tabulated in Table 3. The thermal resistance

obtained from the compact physical modeling discussed in Section 3.1.1 is also in-

cluded in the table. Since the experimental design is at the edge of the validation

range of the correlation-based model, there is an error of ∼20% between modeling

and experimental data. Error is also induced by the non-uniform flow distribution in

the testbed, as discussed in Section 4.5. The measured pressure drop is 38.5 kPa and

83 kPa for 45 mL/min and 70 mL/min, respectively. The measured pressure drop

includes the pressure drop across the micropin-fin array as well as the pressure drop

over the relatively long embedded leading microchannels.
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Figure 39: Average junction temperature under air cooling and microfluidic cooling
compared with ITRS projections.

Four-point resistance measurements are performed. The theoretical value of re-

sistance for the fabricated TSVs is 38 mΩ. The average measured TSV resistance is

36.5 ± 1.5 mΩ, which is close to the modeled value.

3.5 Data Extrapolations and Analysis

In this section, single-tier measurements are presented. These measurements are used

to extract the main metrics of the heat sinks including the heat transfer coefficient,

Nusselt number, and pressure drop.

DI water with different flow rates (37 to 110 mL/min) is pumped into the tier.

The power density (P) is kept at 40 W/cm2 for all flow rates. DI water inlet tem-

perature (Tin), outlet temperature (Tout), and chip junction temperatures (Tj) are
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Table 3: Comparison of the measured and modeled normalized thermal resistance at
a power density of 100 W/cm2

ACHS MPFHS@
45 mL/min

MPFHS@
70 mL/min

Thermal resistance (K·cm2/W) 0.518 0.326 0.269
Power density (W/cm2) 100.2 104.9 103.4
Modeled Rtotal (K·cm2/W) - 0.253 0.2
Modeling Error - 22.4% 25.6%

Table 4: Summary of the inlet water temperature (Tin), the outlet water temperature
(Tout), and the chip junction temperature (Tj) at 40 W/cm2 for different water flow
rates

Flowrate (mL/min) Tj (
◦C) Tin (◦C) Tout (

◦C) Rtot (K/W)

37 39.9 18.7 35.2 0.54
50 36.0 18.7 31.1 0.44
60 33.9 18.7 28.7 0.39
72 32.4 18.7 27.1 0.35
85 31.4 18.7 25.9 0.32
97 30.6 18.7 25.1 0.30
110 30.0 18.7 24.4 0.29
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monitored. The temperatures at different flow rates are documented in Table 4 and

used to calculate the convective thermal resistance (Rconv) of the MFHS using 17 [8].

Rconv =
(Tj − Tf )

P
−Rcond (17)

where Rcond represents the conductance from the circuit through the base to the heat

sink interface given by (18);

Rcond =
tbase

ksiAbase

+
tox

koxAbase

(18)

Tf is the average fluid temperature calculated by:

Tf =
1

2
(Tin + Tout) (19)

Rcond is dependent on the thickness of the base (tbase) and silicon dioxide (tox), the

area of the base (Abase), and the thermal conductivity of silicon (ksi) and silicon diox-

ide (kox). It is a constant throughout the experiments and the value is calculated to

be 0.05 K/W. Figure 40 plots Rconv as a function of the flow rates. The heat transfer

coefficient (h) is derived from using Rconv and the effective total heat transfer area

(At) by 20,

h =
1

RconvAt

(20)

At is calculated by equation (21)
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At = Ab + ηAfin (21)

where Ab is the base area exposed to the fluid, η is the fin efficiency and is a function

of the micropin-fin height (Hfin) and diameter (D) given by (22), and Afin is the

aggregate surface area of the micropin-fins exposed to the fluid [59].

η =
tanh(2Hfin

√
have/ksiD)

2Hfin

√
have/ksiD

(22)

Furthermore, the Nusselt number (Nu) as a function of Reynolds number (Re) is

plotted in Figure 41. The Nusselt number and Reynolds number are calculated using

(23) and (24), respectively.

Nu =
h

Dh · k
(23)

Re =
VmaxDh

ν
(24)

where Dh represents the hydraulic diameter and is calculated as follows:

Dh =
2Hfinwc

Hfin + wc

(25)

Vmax =
Q

Hfin(W − n ·D)
(26)

where k and ν are the thermal conductivity and the kinematic viscosity of the fluid,

respectively. The hydraulic diameter (Dh) is calculated using (25), where wc is the
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Figure 40: Convective thermal resistance and heat transfer coefficient as a function
of the flow rate.

diagonal pitch (shown in Figure 42) [8]. The maximum velocity (Vmax) crossing the

minimum cross-section is calculated using (26), where Q is the volumetric velocity, W

is the width of the micropin-fin heat sink, and n is the number of the micropin-fins in

the vertical direction (shown in Figure 42). Although increasing flow rate (Reynolds

number) decreases Rconv and increases h, the pressure drop (∆P ) will increase, which

is not desirable in electronic systems since it increases the pumping power and may

introduce reliability issues. The measured pressure-drop data for different Reynolds

numbers is also plotted in Figure 41 in order to show the trade-off between the heat

transfer characteristics and the pressure drop.

It is expected that the junction temperature decreases as the flow rate increases.

However, the decreasing rate will be smaller when Rconv and Rcond start to dominate.

Continuing to increase the flow rate will bring less benefit in reducing the total thermal

resistance. However, the pressure drop keeps increasing in an exponential fashion as
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Figure 41: Nusselt number and pressure drop as a function of Reynolds number.

Figure 42: Micropin-fin layout and dimensions (top and tilted view).
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the flow rate increases and will soon reach the system limit. Thus, it is critical to

choose the flow rate in order to provide sufficient cooling capability with an acceptable

pressure drop.

3.6 Conclusion

This chapter presents an experimental demonstration of a TSV–compatible microflu-

idic heat sink for high-power and high-performance chips. This is a solution that

addresses the cooling needs of 3D ICs while accounting for TSV fabrication compat-

ibility and electrical performance (minimizing TSV parasitics). In the test case, a

staggered MPFHS is shown to provide a thermal resistance as low as 0.269 K·cm2/W

at a flow rate of 70 mL/min for a heat sink height of 200 µm. In addition, this result

is benchmarked against a state-of-art air cooled heat sink. Based on the experimental

data, microfluidic cooling provides lower chip junction temperature with a much s-

maller heat sink volume compared to air cooling. Finally, in order to demonstrate the

compatibility with TSVs, high aspect-ratio (18:1) TSVs are integrated in MPFHS.

The four-point resistance of a single TSV is found to be 36.5 ± 1.5 mΩ.
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CHAPTER IV

TIER-SPECIFIC MICROFLUIDIC COOLING

EVALUATION IN 3D IC STACKS

4.1 Introduction

In the previous chapter, single-layer thermal measurement has been performed for

MPFHS. Microfluidic cooling is shown to maintain the chip at a lower junction tem-

perature compared to an air-cooled heat sink. This benefit can be even more signif-

icant when implementing microfluidic cooling in 3D ICs. The biggest advantage of

microfluidic cooling is its chip scale. In a multiple-tier chip stack, microfluidic cooling

allows each layer to have its own heat sink. However, all the tiers need to share

one air-cooled heat sink because of its large form factor. To quantify the benefits,

microfluidic cooling is evaluated in 3D ICs in this chapter.

Microfluidic cooling has been implemented is 3D chip stacks in [14] and [15].

In [14], a four-tier stack is built where a microfluidic heat sink in integrated into each

tier. Heat removal of 390W was shown with a junction temperature rise of 54.7 ◦C and

a pressure drop of 100 kPa, respectively. Figure 43 (a) illustrates the proposed stack

with microfluidic heat sink in literature. One set of inlet and outlet is adopted in this

work. With this approach, it is not possible to control or tailor the flow rate in each

tier. However, in a realistic 3D stack, especially in a heterogeneous stack, the power

dissipation in each tier may be different (workload dependent). Thus, one needs the

capability to control the coolant flow rate in each tier independently. Even more, there

is likely a need to control the flow rate locally within a single tier, as discussed later

in the chapter. To address this need, wafer-level batch fabricated solder microfluidic

chip I/Os and fine pitch electrical microbump I/Os have been demonstrated, as shown
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Figure 43: Prototype of (a) a general embedded microfluidic heat sink and (b) our
tier-specific microfluidic cooling within a 3D stack.

in Figure 44 [16]. Based on this innovative chip I/O technology, this chapter proposes

and experimentally implements tier-specific embedded microfluidic cooling in a two-

tier stack (Figure 43 (b)). The proposed 3D IC stack features a silicon interposer with

embedded fluidic delivery microchannels and an array of 3D stacked processor and

memory tiers. Each processor tier contains an embedded MFHS. TSVs are routed

through the integrated MFHS. Each tier has its dedicated microfluidic chip I/Os, that

are formed using solder for fluid delivery from the interposer. The coolant flow rate in

each tier can be tailored independently, according to the heat dissipation of each tier,

i.e. tier-specific cooling. This approach helps minimize the vertical thermal gradient

across the stack when power dissipation varies in the stack. Pumping power may be

reduced by adjusting the flow rate to the needed value for a given power dissipation

per tier. The proposed local coolant delivery mechanism, which is also based on the

solder chip I/O technology (discussed later in this chapter), may minimize the lateral

thermal gradient within a single tier, as well.
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Figure 44: SEM of solder microfluidic chip I/Os and electric microbumps.

4.2 Thermal Testbed Preparation and Experimental Setup

Section 3.1 describes the process flow to prepare a single-tier microfluidic testbed. In

this section, two of these testbeds are stacked orthogonally with a thermal interface

material (TIM) to form a 3D thermal testbed. The thermal resistance of the TIM

is 0.25–0.28 K/W (depending on the pressure applied during the experiments). The

total heating area of each tier is 1 cm × 1 cm. The 3D testbed is illustrated in

the experimental setup, as shown in Figure 45. Each tier has its own power supply,

pump, flow meter, microfilter, and thermal couples. For the sake of simplified port

access, the two tiers are stacked orthogonally such that the inlets and outlets are

easily accessible (Figure 45). To attain an initial insight into the benefits of the

embedded microfluidic cooling, a 3D ACHS testbed is constructed similarly without

the embedded microfluidic heat sink. The same ACHS is used as in the single tier

measurement reported previously.
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Figure 45: Experimental setup for microfluidic heat sink evaluation in 3D stacks.
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4.3 Tier-Specific Microfluidic Cooling for Different Stack-
ing Scenarios

4.3.1 Processor-on-Processor and Memory-on-Processor Stack

In Figure 46, the fluid is pumped only into the processor tier of the memory–processor

stack at a flow rate of 100 ± 5 mL/min. In this experiment, the power density of the

memory chip is held at 5 W/cm2. Since the memory tier is stacked on the processor

tier with integrated microfluidic cooled heat sink, the microfluidic heat sink serves as

a path for cooling of the memory tier as well. The junction temperature rise of the

memory and processor tiers are 15.3 ◦C and 28.7 ◦C, respectively, when the power

density of the processor tier is 99.2 W/cm2. As a comparison, a memory–processor

stack is tested under ACHS (Figure 46(b) and 46(c)). For the case where memory

is placed close to the ACHS (Figure 46(b)), the junction temperature rises of the

memory and processor tier are 30.6 ◦C and 59.3 ◦C, respectively, when the power

density of the processor is 49.3 W/cm2. For the case where the processor is placed

close to the ACHS (Figure 46(c)), the junction temperature rises of the memory and

processor tier are 39.0 ◦C and 41.1 ◦C when the power density of the processor tier

is 57.1 W/cm2. For the same power density, the absolute junction temperatures of

the chips under microfluidic heat sink are lower than those under ACHS by at least

12.0 ◦C and by 48.0 ◦C in the worst case. In the ACHS experiments, because of the

over-heating of the chips, the power densities of the two tiers are limited to below 60

W/cm2.

In Figure 47, the two-tier chip stack dissipates up to 100 W/cm2 per tier to

emulate the stacking of processors. A microfluidic heat sink is integrated into each

tier. The flow rate in each tier is 100 mL/min. The junction temperature increase

above the inlet coolant temperature in each tier is plotted in Figure 47. As seen from

the plots, when the power density in each tier is 100 W/cm2, the junction temperature

rise in either tier is 30 ◦C. In contrast, the testbed under ACHS has a temperature
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Figure 46: Junction temperature rise in a memory–processor stack under microfluidic
heat sink and ACHS.
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Figure 47: Junction temperature rise in a processor–processor stack under microflu-
idic heat sink and ACHS.

67



rise of more than 54 ◦C at 50 W/cm2. The maximum junction temperature rise

trend according to ITRS is also plotted in Figure 47 as a reference. The processor-

on-processor stack cooled using a microfluidic heat sink can dissipate more than

100 W/cm2 in each tier without reaching the ITRS projected maximum junction

temperature.

4.3.2 Tier-Specific Flow Rates in ICs with Different Power Dissipations

In previous studies, the coolant is injected into the stack through one common inlet

and is distributed into each tier. Thus, one cannot control the distribution (flow

rate) of the coolant in each tier. However, in a realistic 3D stack with heterogeneous

elements, one needs to control the coolant flow rate in each tier independently. For

example, coolant may be supplied into the processor tier in a memory-on-processor

stack, or coolants with different flow rates may be supplied to each tier in a two-

processor stack with different workloads (and thus different power dissipations). For

the first time, we propose and implement tier-specific interlayer microfluidic cooling

in different tiers for heterogeneous 3D IC applications. This approach helps mitigate

the vertical thermal gradient in a heterogeneous 3D stack, lowering thermomechanical

stress as well as minimizing thermally induced variations in the stack [60]. Addition-

ally, adjusting the flow rate according to the power dissipation saves pumping power

by preventing over cooling of the low-power die.

A test case is evaluated using the existing 3D thermal testbed. In this test case,

a 3D stack of two high-power tiers with different power densities is evaluated: 50

W/cm2 (P1) and 100 W/cm2 (P2). The tier-specific flow rate (and thus cooling)

mechanism is implemented (Figure 7). As shown in Figure 48, when each tier in the

stack is initially cooled under the same flow rate (Q1 = Q2 = 45 mL/min), the average

junction temperature of P1 and P2 is 49.5 ◦C and 60.6 ◦C, respectively. Next, the

flow rate of each tier is varied independently so that the junction temperature of the
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Figure 48: Junction temperature of the top layer (P1) and the bottom layer (P2) as
a function of the flow rates.
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two tiers is equalized at the higher and lower ends. For example, in the case where

flow rates Q1 and Q2 are 32 mL/min and 116 mL/min, respectively, the junction

temperature of the two tiers is equalized at approximately 49.5 ◦C. By mitigating

the thermal gradient of the two tiers, thermomechanical stress and thermally induced

variations are lowered. Additionally, when an operating temperature is specified,

adjusting the flow rate according to the power dissipation saves pumping power by

preventing over-cooling. Considering the conventional microfluidic delivery method

(i.e., Figure 6) in which the flow rate in each tier has to be identical, the total flow

rate is chosen based on the thermal needs of the tier with the highest power. The

conventional method is emulated as the second set of flow rates in Figure 48. For

example, for an operating temperature of 53 ◦C, Q1 and Q2 need to be 80 mL/min

in order to maintain both tiers at a temperature lower than 53 ◦C. In our tier-specific

cooling (the third set of flow rates in Figure 48), the needed Q1 and Q2 are 29 mL/min

and 87 mL/min, respectively. The pressure drops at 29 mL/min, 80 mL/min, and 87

mL/min are measured to be 12 kPa, 60 kPa, and 67.9 kPa, respectively.

Pumping power is expressed in (27).

Ppump = Q×∆P (27)

where Q is the volumetric flow rate and ∆P is the pressure drop. As a result, using

a tier-specific flow rate, the pumping power is reduced by 37.5 % relative to the

conventional fluidic delivery method.
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4.4 Microfluidic Cooling in Multi-core Processor Stacking

Multi-core processors have been adopted by main chip makers include Intel, IBM,

and AMD since 2005 in servers, desktops, and laptop because multi-core process-

ing improves performance while saving power [61]. As shown in Figure 49, multi-

core processors outperform single-core processors when running SPECint2000 and

SPECfp2000 benchmarks. According to Intel, “multicore chips’ relative advantage

will increase during the next few years” [61].

An image of an Intel Core i7 processor is shown in Figure 50. As can be seen,

the four cores are placed side by side. The thermal testbed emulating the quad core

processor is prepared and used for evaluating microfluidic cooling.

Figure 49: Performance of multi-core processor compared with single-core processor
[61].

4.4.1 Preparation of the Thermal Testbed and Experimental Test Setup

In this section, two of the single-tier testbeds (prepared as shown in Figure 27) are

stacked in parallel with TIM to perform 3D thermal testing. It is well known that

coolant temperature increases as it passes through the microfluidic heat sink, and thus
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Figure 50: Intel Core i7 Processor.

the chip temperature will increase. To capture the lateral chip temperature gradient

and to emulate the stacking of multi-core processors, four segmented Pt heaters are

deposited along the flow direction. An image of the bonded two-tier testbed is shown

in Figure 51 (a). The bottom chip is slightly larger than the top chip to facilitate

fluidic port access. The four heaters are controlled independently to emulate the on

and off of the quad cores. The dimensions of each heater are 0.22 cm × 1 cm with a

spacing of 0.03 cm (Figure 51 (b)). The total heating area of each tier is 1 cm × 1

cm. Figure 52 shows a schematic of the assembled two-tier testbed. The experimental

setup is similar to that shown in Figure 45 with the difference being the two tiers are

stacked in parallel.

4.4.2 Lateral Thermal Gradient

To capture the lateral temperature increase as coolant flows from the inlet to the

outlet, a single-tier measurement is performed. Figure 53 illustrates the temperature

of each heater on the chip as the total chip power density ramps from 25 W/cm2 to

100 W/cm2. The DI water flow rate is 80 mL/min in all of the measurements. In
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Figure 51: (a) Image of the bonded two-tier thermal testbed and (b) layout of the
four heaters.

Inlet OutletInlet Outlet

TIM

Figure 52: Schematic of the tier-specific fluidic delivery mechanism.

the high power density case (100 W/cm2), the junction temperature of heater 4 (i.e.,

the heater closest to the outlet) increases by 33 ◦C while that of heater 1 increases

by only 17 ◦C [62]. This result is expected since the coolant temperature increases

as it flows from the inlet to the outlet and, thus, the chip junction temperature also

increases. The chip design was simulated using ANSYS Fluent at a power density of

100 W/cm2. Since the microfluidic heat sink structure is symmetric, only half of the

micropin-fin array is modeled. Figure 54 and Figure 55 show the temperature maps

of the base and coolant, respectively. Average junction temperatures are extracted

from the simulation results and are also plotted in Figure 53. The difference between
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Figure 53: Junction temperature rise at different heater locations on the chip for
different power dissipations. ANSYS simulation for 100 W case is also plotted for
reference.
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Figure 54: Base temperature map in ANSYS simulation while the chip dissipates
100 W/cm2.
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Figure 55: Water temperature map in ANSYS simulation while the chip dissipates
100 W/cm2.
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the experimental results and the simulations is less than 1.6 ◦C. More details of the

ANSYS simulations will be included in Section 4.5. The lateral thermal gradient

across the chip becomes exacerbated for higher power densities. One way to mitigate

the thermal gradient is to increase the flow rate with the penalty of increased pressure

drop and pumping power.

4.4.3 Electrical Implications Due to Lateral Thermal Gradient

The power consumption and performance of CMOS circuits depend on the operating

temperature. In this section, a first order quantitative analysis of the leakage power

is conducted based on the lateral thermal gradient experimental results. The power

consumption of CMOS VLSI circuitry has three components as described in Eq. (28).

Ptot = Pdynamic + Pstatic + Psc (28)

where Pdynamic represents the dynamic power, Pstatic represents the static power, and

Psc represents the short circuit power. The short circuit power is small compared to

the other two terms and is neglected in this analysis.

The leakage power represents the power consumption due to leakage current (Ileak).

The main contributor to leakage current is the subthreshold current [63]. Subthresh-

old current is the current conduction between source and drain when the transistor

is in the subthreshold region. This current has historically been very small in the off

state. However, owing to the ongoing voltage scaling with transistor size scaling, the

threshold voltage has become small enough that the subthreshold current becomes

significant. The leakage power is strongly dependent on the chip temperature. Figure

56 shows the percentage of leakage power and dynamic power at different chip tem-

peratures for an Intel chip fabricated using 100 nm technology [64]. Eq. (29) depicts

the subthreshold current Isub as a function of temperature.
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Figure 56: Increase in leakage power as a function of chip temperature for a Intel 15
mm die with 100 nm technology [64].
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Isub =
Weff

Leff

µ(T )Cox(VT )
2e

(
VGS−VTH

nVT
)

(29)

where the three temperature dependent terms are:

µ(T ) = µ(T0)(T/T0)
α (30)

VT =
kT

q
(31)

VTH = VTH0 −m(T − T0) (32)

Weff and Leff are effective width and length of the transistor; Cox is the gate ca-

pacitance of a single transistor; µ(T ) is the carrier mobility, which also depends on

temperature; VT is the thermal voltage derived by k (Boltzmann constant), tempera-

ture (T ), and the charge of an electron (q); VGS and VTH are gate-source current and

threshold voltage; α is a constant, and has a typical value of 1.5; m is the tempera-

ture coefficient of VTH and has a typical value of 0.2 mV today. Using this compact

physical model, the leakage current (normalized to the leakage current in room tem-

perature) as a function of temperature is plotted in Figure 57. Without dynamic

control of the supply voltage, leakage power is proportional to leakage current.

Based on the leakage current model proposed in [63] and assuming a constant

supply voltage, the leakage power is calculated for a single tier with uniform power.

Junction temperature and the normalized leakage power of the four cores are listed

in Table 53 for a uniform power density of 100 W/cm2. The leakage power of heater

4 (nearest to outlet) increases by 42.8 %, compared to heater 1 (nearest to inlet).

This phenomenon becomes a greater issue for larger sized chips. Intel has unveiled
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Figure 57: Normalized leakage current as a function of temperature.

Figure 58: A diagraph of Intel’s Knights Landing CPU, consisting of up to 72 x86
cores for exascale supercomputing.
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Figure 59: A diagraph illustration of the assumed 100-core CPU.

Table 5: Electrical implications due to lateral thermal gradient

core 1 core 2 core 3 core 4 core 10

Junction tempera-
ture (◦C)

36.9 41.3 47.5 52.8 85

Normalized Pleak 1.4 1.5 1.8 2 3.9

its plan to build an up-to-72-core CPU for exascale supercomputers. The sever,

named Knights Landing, is slated to appear on the market in 2015 (Figure 58).

Leakage current is analyzed here based on an assumed 100-core processor (Figure 59)

comprised of a 10 × 10 core array covering a 2.5 cm × 2.5 cm chip. Since the testbed

only has four heaters, the data for core 10 is extrapolated based on the measurements.

The leakage power of core 10 is 2.8 times that of core 1.

81



Figure 60: (a) Prototype of 3D stack with microfluidic chip I/Os for localized coolant
delivery and (b) solder based microfluidic chip I/Os and electric microbumps.

4.4.4 Localized Coolant Delivery Method to Mitigate Lateral Thermal
Gradient

One way to mitigate the thermal gradient is to increase the flow rate. But in doing

so, the pressure drop and the pumping power will increase. In order to allow all the

cores to work symmetrically, a localized coolant delivery method is proposed (Figure

60(a)). As can be seen, each core is associated with its own inlet and outlet so that

each core can benefit from fresh coolant. The key technology is the microscale fluidic

chip I/Os that is based on SnPb solder Figure 60(b). SEMs of the microfluidic I/Os

with an outer diameter of 210 µm, an inner diameter of 150 µm, and a height of 12 µm

are shown. The microfluidic chip I/Os have been experimentally shown to withstand

a pressure drop of 100 kPa without leakage for 3 hours. Polymer-based microscale

I/Os have been explored in [52]. SEMs of polymer pipe and polymer socket are shown

in Figure 61 [52]. One big advantage of the solder-based microfluidic chip I/Os is that

it can be fabricated with the electrical I/Os at the same steps. In addition, during

the flip-chip bonding to form the electrical connectivities, the fluidic connectivity can

also be formed. Also shown in the figure are the electrical microbumps with a density

of 40,000 /cm2 (microbump pitch of 50 µm), which is critical for power delivery and

high-bandwidth off-chip signaling.
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Figure 61: (a) A polymer pipe and (b) a polymer socket for fluidic delivery.

Figure 62: Evaluation of microfluidic cooling in chips with nonuniform power dissi-
pation: (a) case 1 where heater 1 and 2 dissipate 100 W/cm2 and heater 3 and 4 are
off and (b) case 2 where heater 3 and 4 dissipate 100 W/cm2 and heater 1 and 2 are
off.

4.4.5 Microfluidic Cooling Under Nonuniform Power Dissipation

In a multicore CPU, there are cases where only some of the cores are active while

the rest are idle. In this subsection, two test cases are measured to emulate these

conditions. The two test cases are shown in Figure 62. The junction temperature

rise of the four heaters in the two cases is plotted in Figure 63. In case 1, the two

heaters (1 and 2) near the inlet are turned on while heaters 3 and 4 are off. The

power density of heater 1 and 2 is 100 W/cm2. The junction temperature rise of

heaters 1 to 4 is 16.8 ◦C, 21.1 ◦C, 12.4 ◦C, and 10.6 ◦C, respectively. Heater 2 will be

the hottest in this case. Heaters 1 and 2 follow a comparable trend, as shown in the
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Figure 63: Junction temperature rise of heater 1 to 4 under the two different test
cases shown in Figure 62

uniform power case (Figure 53). Even though heaters 3 and 4 are idle, the junction

temperature still increases under the influence of the already warmed fluid. In case

2, the two heaters (3 and 4) that are near the outlet are turned on while heaters

1 and 2 are off. The junction temperature rise of heaters 1 to 4 is 0.6◦C, 1.5 ◦C,

15 ◦C, 21.2 ◦C, respectively. Since the fluid is still cool when it flows across heater

1 and 2, the junction temperature of these two heaters barely increases. However,

heater 2’s temperature is higher than that of heater 1 because the heat generated in

heater 3 spreads through silicon. But this spreading effect is minimal compared to

the thermal coupling due to the fluid. From these two test cases, we understand that

the fluid can introduce a thermal coupling effect between the cores. The cores should

be placed in different locations on the chip depending on the applications. The other

method to minimize the thermal coupling between cores is to implement the localized

coolant-delivery mechanism.
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Figure 64: Vertical thermal coupling test cases. (Case A) Heaters 1 and 4 in upper
tier are powered. (Case B) Heaters 1 and 4 in upper tier and heaters 2 and 3 in lower
tier are powered. (Case C) Heaters 1 and 4 in upper tier and heaters 2 and 3 in lower
tier are powered with DI water pumped into both tiers.

4.4.6 Vertical Thermal Coupling

Vertical thermal coupling between two tiers with embedded microfluidic heat sinks

is investigated next [65]. In Case A and B (Figure 64), DI water is only pumped

into the top tier such that the two tiers share the same microfluidic heat sink. In

Case A, heaters 1 and 4 of the top tier are each powered up to 25 W. In Case B,

heaters 2 and 3 in the lower tier are each powered up to 25 W in addition to the

heaters in the upper tier. Once the heaters in the lower tier are turned on, as shown

in Figure 65, the junction temperature of heaters 1, 2, 3, and 4 in the upper tier is

elevated by 3.3 ◦C, 6.8 ◦C, 9.7 ◦C, and 10.1 ◦C, respectively. In Case C, the power

dissipation profile in the two tiers is the same as that in Case B. The difference is

that DI water is pumped into both tiers. Clearly, the temperature of the upper tier

in Case A and Case C overlap indicating the impact of the lower tier is minimal. In

Case C, embedding a microfluidic heat sink in the bottom tier provides a heat flow

path with a lower thermal resistance. This would greatly diminish the heat transfer

to the upper tier. In Figure 66, the temperature of the lower tier in the three cases
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Figure 65: The junction temperature increase of the upper tier at different heater
locations on the chip for the three cases.

is plotted. For Case A, the lower tier is idle. However, because of the temperature

increase of the coolant, the temperature of heaters 1, 2, 3 and 4 of the lower tier is

elevated by 4.9 ◦C, 5.7 ◦C, 7.8 ◦C, and 9.7 ◦C, respectively. Vertical thermal coupling

may cause idle tiers to get warmer, leading to unwanted leakage power [63]. To reduce

the vertical thermal coupling between tiers in microfluidic cooling, each tier can have

its own microfluidic heat sink (Case C) instead of sharing one heat sink (Case B).

4.5 Validation through ANSYS Simulations

To better understand the flow distribution and heat transfer at different regions of

the chip, ANSYS simulations were performed. The following simulations were done

using ANSYS Fluent. The simulations were done for a single layer microfluidic cooled

chip with uniform power dissipation. Since we are most interested in the flow char-

acteristics below the chip, only the center of the testbed is simulated. The guiding
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Figure 66: The junction temperature increase of the lower tier at different heater
locations on the chip for the three cases.

channels and the nanoports are ignored in the simulations.

4.5.1 Initial Simulation of Repeatable Cell Rows Assuming Even Flow
Distribution

At first, to reduce the computation time, a cell row is created, as shown in Figure

67. Fluid flows from inlet (left) to outlet (right). The boundary planes at top and

bottom are set to be symmetric to indicate that this row is a part of a larger array.

The entire micropin-fin array can be considered to consist of 43 cell rows. Assuming

the flow distributes evenly across the 43 cell rows, the flow rate for one cell row can

be calculated. The geometries and materials are selected to most closely represent

the testbed. The thickness of the base is 400 µm. The heat sink has the exact same

geometries as described in Chapter III. In the real sample, there is a 2 µm thick silicon

dioxide layer at the bottom the base. Adding a thin layer in a model is generally not

ideal and will create many more elements since the element in the thin layer is small.
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(a) Top-view (b) Tilted view

Figure 67: Created cell row in ANSYS to simulate MPFHS in a single-layer chip.

Table 6: Summary of the simulation results vs. experimental results

T rise1
◦C

T rise2
◦C

T rise3
◦C

T rise4
◦C

∆P (kPa)

Experiments 17.8 22.2 28.4 33.7 60
Initial Simulation 14.4 18 22.5 26.5 70.9
Modified simulation 16.1 21.1 27.4 32.8 41.7

Therefore, the silicon dioxide layer is considered as a shell that conducts heat at the

bottom of the base in the simulation through the shell conduction option in Fluent.

Figure 68 shows the temperature profile and pressure profile after the initial sim-

ulation. The average junction temperature rise for heaters 1 to 4 is 14.4 ◦C, 18.0

◦C, 22.5 ◦C, and 26.5 ◦C, respectively. Compared with the experiments, we notice

this is significantly lower than the measured increase in junction temperature. The

experimental data and initial simulation data are included in the first and second

rows of Table 6. The pressure drop in the initial simulation is 70.9 kPa which is also

higher than the experiments. By analyzing the data, we conclude that the simulated

fluid velocity is higher than the experiment. The assumption that the flow distributes

evenly across the array may not be valid. To understand the flow distribution in the

array, a half array is modeled in ANSYS. Since the array is symmetric, the other half

of the array is not modeled.
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(a) Temperature contour (b) Pressure contour

Figure 68: The temperature and pressure contour profiles after initial simulation

4.5.2 Adjusted Simulation of Repeatable Cell Rows

In the half-array simulation, the dimensions of the array are exactly the same as in

the testbed. To be noted, there is a 272.5 µm gap between the micropin-fin array and

the edge (shown in Figure 69(a)). The velocity contour is plotted in Figure 69(b).

As seen, the fluid velocity is much higher near the edge. The maximum velocity in

the micropin-fin array is 1.3 m/s while that near the edge it is 3.0 m/s. The key

conclusions from the half-array simulations are:

• The flow across the heat sink is not evenly distributed; fluid tends to flow near

the edge because the friction factor is lower.

• The cooling capability is diminished since fluid flows around the micropin-fin

array.

• In future heat sink designs, the gap between the micropin-fin array and the edge

should be as small as possible to force the fluid to flow across the micropin-fin

array.

Taking the flow wasted through the gap into consideration, the maximum velocity

in the micropin-fin region is calculated to be 1.3 m/s. This velocity is used to adjust
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(a) Micropin-fin half array (b) Fluid velocity contour

Figure 69: The created cell row in ANSYS to simulate MPFHS sink in a single-layer
chip.

the initial simulation using cell row and the results are included in Figure 70.

The junction temperature increase in this case is listed in the third row of Table 6.

By comparing the new simulation results with the experimental data, the temperature

difference is approximately 1 ◦C. As for the pressure drop, the simulated pressure

drop across the micropin-fin array is 41.7 kPa while the total pressure drop in the

experiment is 60.0 kPa. In the experiment, the differential pressure gauge is connected

to the inlet and outlet tubes. Therefore, the total pressure drop consists of the

pressure drop across the micropin-fin array, the pressure drop across the guiding

channels, and the pressure drop due to the transition from tubes to the guiding

channels. It is expected that the total pressure drop to be higher.

Although simulation of the entire array or half of the array can give us the closest

result to the experiment, the computational time is long (several hours). By adjusting

the velocity of the inlet, the one-row simulation provides results that are reasonably

close. Owing to the reduction of element number from 3x106 to 3x105, the compu-

tation time reduces to several minutes. But we should note that one-row simulation

is only good if the heat sink is designed to have a small gap between the array and
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(a) Temperature contour (b) Pressure contour

Figure 70: The temperature and pressure contour profiles from the adjusted simula-
tion.

edge.

4.6 Conclusion

In this chapter, a microfluidic heat sink that has the same geometries as described

in Chapter III is implemented in a two-tier thermal testbed. Memory-on-processor

and processor-on-processor are emulated using the testbed. In both cases, microflu-

idic cooling outperforms air cooling. In addition, a tier-specific cooling mechanism

that allows tailoring the flow rate according to the power dissipation of each tier is

implemented. This method is shown to be able to minimize the thermal gradient be-

tween tiers and thus minimize the thermal–mechanical stress. Pumping power is also

reduced by preventing overcooling of the low-power chip. At the end, microfluidic

cooling is evaluated in a multi-core chip. The lateral thermal coupling is observed

because of the warmed fluid. A lateral thermal gradient caused leakage power in-

crease is analyzed. Vertical thermal coupling is also emulated. To reduce the vertical

thermal coupling, each high-power tier should have its own microfluidic heat sink.
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CHAPTER V

THERMAL ISOLATION FOR HETEROGENEOUS 3D ICS

5.1 Introduction

The previous chapters addressed heat removal needs in a 3D stack. However, in

some applications where high-power dice (e.g. logic dice) are stacked along with low-

power and temperature-sensitive components (memory or silicon nanophotonic dice,

for example), thermal management will not only require effective cooling, but may also

require effective thermal isolation to ‘protect’ the temperature-sensitive components

from the time-varying power dissipation of other chips in the stack. By placing such

tiers next to each other, the thermal coupling between them will be significant, leading

to possibly undesirable junction temperature variation in the temperature-sensitive

tier as a result of the high-power chips.

Silicon photonic based interconnects are emerging as an alternative to electrical

interconnects for high-bandwidth and low-power consumption. Stacking a silicon

photonic die with logic and memory has been explored in the literature [25], [26].

The temperature sensitivity of the optical elements presents challenges for integra-

tion; for example, a microring modulator with 5 µm diameter is reported to have a

wavelength drift of 0.11 nm/◦C in [27]. A temperature change of 13.5 ◦C will result

in a complete passband mismatch between transmitter–receiver pairs in 64-channel

wavelength-division multiplexing (WDM). Local thermal tuning and control circuitry

are commonly used to maintain the microring resonators at a constant temperature.

The projected energy-per-bit for a photonic link is 300 fJ/bit at 15 Gbps in 2015 ac-

cording to [66]. However, currently, the demonstrated tuning power is approximately

164 fJ/bit at 10 Gbps [66]. Thus, the thermal tuning power is a significant portion
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of the total power budget and may become more significant as high temperature

variations occur in adjacent high-power chips.

In applications involving stacking memory on logic, SRAM and DRAM stacking on

a processor has been widely explored [23], [24]. It is shown in [23] that the temperature

of SRAM increases by 30-to-40 ◦C because of the heating from the processor tier.

The leakage power of the SRAM increases by approximately two times because of the

increased temperature. Even worse, the average cache access time also increases by

50 ps, leading to an approximately 28% performance degradation [23].

In today’s approach to 3D IC stacks, tiers are bonded using microbumps along

with underfill, which is applied between tiers to alleviate the thermomechanical stress

on the solder microbumps, as shown in Figure 1. However, the thermal conductivity

of underfill is around 0.4 W/mK–1.3 W/mK. This will introduce a small thermal re-

sistance between the two tiers and cause thermal coupling between the tiers. To ther-

mally decouple the tiers in 3D ICs, we propose to integrate an air gap and thermally

degraded mechanically flexible interconnects (MFIs) to replace both the microbumps

and the underfill. The proposed 3D IC approach is shown in Figure 71. Unlike rigid

solder microbumps, MFIs can deform elastically under stress, which helps maintain

the electrical connectivity between tiers. Thanks to this phenomenon, MFIs can help

eliminate the underfill and thus reduce the thermal coupling between tiers. The ther-

mally degraded MFIs are a type of MFIs that are specially designed to have a large

thermal resistance and small electrical parasitics.

Local microcavities beneath the temperature-sensitive components have been ex-

plored in [67], [68] seeking to reduce the thermal coupling from the surrounding de-

vices. A local undercut microcavity is created beneath the resonator and is shown to

reduce the tuning power by an order of magnitude in [68]. However, to our knowledge,

little effort has been made to investigate the thermal isolation between the low-power

chips from the high-power chips in a 3D stack. Adopting the chip-scale air/vacuum

93



����������

	�
����
����

���������

�
�

	�������������������

��������������	���

����
���������

� ��������
������ ������

���������

	�������������

Figure 71: Prototype shows the proposed thermal isolation technology that replaces
microbumps and underfill with air gap and thermally degraded MFIs.

cavity and MFIs in the low-power chip brings about smaller temperature variations.

Moreover, the local thermal isolation method based on an undercut microcavity can

be deployed in addition to our proposed concept in order to ensure a constant local

temperature. Thus, by combining our chip-scale thermal isolation technology with 3D

stack architectures, new opportunities for improved heterogeneous system integration

and miniaturization become possible.

5.2 Resistance Network Modeling

Stacking of high-power dice (e.g. processor) along with low-power and temperature-

sensitive dice presents a number of challenges. The time-dependent temperature

variation in the processor tier, which is workload dependent, will be directly coupled

to nearby stacked chips. In current 3D IC approaches, it is common to use an adhesive

with high thermal conductivity between stacked chips to ensure the thermal resistance

between each tier is as small as possible. This method helps remove the heat from

within the stack to the top most portion of the stack where an air-cooled heat sink is

attached. However, the thermally conductive adhesive will also enhance the thermal

cross-talk between the processor tier and other dice in the stack that are temperature-

sensitive (memory and silicon nanophotonics, for example) leading to temperature
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Figure 72: (a) A 3D stack of processor and silicon nanophotonic chips with hybrid
thermal management: within-tier microfluidic cooling in processor and air/vacuum
cavity to thermally isolate the silicon nanophotonic chip. (b) The corresponding
thermal resistance network.

variations. In our proposed vision, thermal isolation technology is used to enable the

stacking of a high-power die and low-power temperature-sensitive dice.

An example illustration of a logic-silicon nanophotonic stack using within-tier

cooling and air gap thermal isolation is shown in Figure 72(a). The figure illustrates

a high-power processor tier with an embedded microfluidic heat sink stacked above

a low-power silicon nanophotonic chip with air/vacuum cavities formed between the

two dice to provide thermal isolation. The power of the silicon nanophotonic chip is

dissipated through the silicon interposer.

To understand the thermal benefits of air gap isolation, we begin with a sim-

plified compact physical model that neglects the impact of interconnects within the

air/vacuum cavity. Using a 2D thermal resistance network model, as shown in Fig-

ure 72(b), the junction temperature of the bottom tier as a function of the power

dissipation in the logic chip is plotted in Figure 73. When the power density of the

processor tier increases from 50 W/cm2 to 100 W/cm2, the processor temperature

increases from 46 ◦C to 68 ◦C and thus, yields a slope of 0.44 ◦C/W [69]. This trend

is similar with and without thermal isolation. Without any thermal isolation, the

temperature of the bottom tier follows the same trend. With a 5 µm thick air cavity,
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Figure 73: The junction temperature increase of the upper tier at different heater
locations on the chip for the three cases. T1 and T2 denote the temperature of the
high-power and low-power tiers, respectively.

96



5 µm thick air 

50 µm thick Si 

Convective cooling 2X104 W/m2·K

Convective cooling 4X103 W/m 2·K

50 - 100 W/cm2

5 W/cm2

100 µm ���� 100 µm

1 µm thick 
remaining Si 

TSV with diameter of 2 µm 
and 1 µm thick SiO2 liner

50 µm thick Si 

Figure 74: Illustration of the cross-sectional (left) and top (right) view of the struc-
tures simulated in ANSYS to represent TSVs through air cavity.

the temperature of the bottom tier increases with a smaller slope from (41 ◦C to 54

◦C and thus yields a slope of 0.26 ◦C/W). If vacuum is created between the two tiers,

the temperature of the bottom tier only increases by 4 ◦C (yielding a slope of 0.08

◦C/W).

5.2.1 TSVs’ Impact on Thermal Isolation

ANSYS simulations were performed to analyze the impact of routing TSVs through

the air/vacuum cavity. The TSVs are partially embedded in the bottom chip and

partially exposed in the air/vacuum cavity (as shown in Figure 74). Because of the

heat conduction through the TSVs, the thermal coupling between the two tiers will

increase. The results are plotted in Figure 75. TSVs are assumed to have a diameter

of 2 µm and a silicon dioxide liner of 1 µm on a 100 µm × 100 µm pitch. The

temperature variation of the bottom tier is more obvious with TSVs. The bottom

tier temperature increases by 16.5 ◦C (yielding a slope of 0.33 ◦C/W) when the TSVs

are present and 13 ◦C without the TSVs. The results are expected since TSVs, which

are formed using copper, have good thermal conductivity, and thus cause undesired

thermal coupling between the two tiers. One solution to this is to decrease the TSV
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Figure 75: Temperature of both tiers in the simulated structure shown in Figure 74.
T1 and T2 denote the temperature of the high-power and low-power tiers, respectively.

diameter, which will also lower parasitics.

5.2.2 MFI Thermal Resistance

The MFI designs have been simulated in ANSYS in order to understand their equiva-

lent thermal resistance (Figure 76). The parameters varied in the simulation include

MFI thickness and contact area between the MFI tip and the landing pad. Power is

applied at the bottom of the MFI and heat is removed from the top. The highest

temperature (Tmax) appears at the bottom of the MFI while the lowest temperature

(Tmin) appears at the top of the MFI (Figure 76(b)). By measuring the temperature

gradient from top to bottom, we can calculate the thermal resistance. Table 7 sum-

marizes the thermal resistances of the MFIs by varying MFI thickness and contact

area (contact area is influenced by the force applied between the two chips). As shown

in Table 7, the thermal resistance of a single MFI ranges from 1 × 104 to 2 × 104

K/W, depending on the thickness and contact area.
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(a) (b)

Figure 76: (a) The MFI structure created in ANSYS and (b) the corresponding
thermal profile in a static thermal simulation.

Table 7: ANSYS simulated thermal resistance of a single MFI with various designs

MFI Thickness (µm) Dcont
1(µm) Rth (×104 ◦C/W)

3 4 0.8
3 2 1.12
2 4 1.25
2 2 1.7

1 Assuming a circular contact region between MFI tip and the landing pad with a diameter of
Dcont.
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The 2D resistance network model is used to evaluate a stack with high-power

and low-power tiers with different types and numbers of interconnects. The thermal

resistance of the MFI is chosen to be 1 × 104 K/W in the model. The high-power

tier dissipates 100 W/cm2 and the low-power tier dissipates 5 W/cm2. The assumed

cooling methods for the bottom and top are microfluidic cooling and thermal bridge,

respectively. An effective heat transfer coefficient is calculated based on the equiva-

lent thermal resistance of these two cooling methods. At the bottom, an equivalent

thermal resistance of 0.25 K/W is obtained from our measurement. At the top, the

equivalent thermal resistance of the thermal bridge is obtained from ANSYS simula-

tions, as discussed in Section 5.3.1. Using Eq. (33), the heat transfer coefficient of

the top and bottom can be calculated.

h =
1

R · A
(33)

where A is the chip area, and equals to 1 cm2. The obtained heat transfer coefficient

is 4 × 104 W/m2K and 8 × 103 W/m2K at the bottom and the top of the stack,

respectively. The gap between the tiers is 10 µm in both cases.

The different interconnect scenarios simulated include (a) air gap with uniformly

distributed MFIs and (b) conventional microbumps with underfill (Figure 77). In case

(b), the temperature of the high-power and low-power tiers remains constant regard-

less of the number of microbumps. The reason is that underfill is assumed to have a

thermal conductivity of 0.9 W/mK, which essentially dominates the heat conduction

between the two tiers. Moreover, because heat conduction occurs through the under-

fill, it is observed that the temperature of the two tiers is very close (44.3 ◦C for both

tiers). Meanwhile, in case (a), it is shown that the temperature difference between the

high-power and low-power tiers varies as a function of the number of interconnects.

This is mainly due to the low thermal conductivity of air. For example, for the MFI
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Figure 77: Temperature of the high-power and low-power die with different inter-
connects: (a) Uniform MFIs within air gap and (b) microbumps and underfill.

in air case, when there are 3,000 MFIs, the low-power tier has a temperature of 35.5

◦C, which is 10 ◦C lower than that of the high-power tier. This demonstrates that

the MFIs and air gap can effectively isolate the low-power tier from the high-power

tier.

5.3 Finite Difference Modeling of the Proposed Stack with
Thermal Isolation Technology

The resistance network model is used to demonstrates the thermal isolation concept

in Section 5.2. However, it is only suitable for structures with uniform power dissi-

pation and uniform interconnects. Therefore, a finite difference modeling scheme is

developed for the proposed architecture, as shown in Figure 71. Because of the com-

plicated geometries of the MFIs, TSVs are used as an alternative in order to simplify

the modeling. Equation (34) describes the general heat transfer at steady state.

∇(K (x, y, z)∇ (T (x, y, z)) = −P (x, y, z) (34)
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Figure 78: Finite difference scheme: (a) general points inside the stack and (b)
boundary points in the face of the stack [70].

where K(x, y, z) and T (x, y, z) are the thermal conductivity and temperature, respec-

tively, while P (x, y, z) represents the power consumption.

By meshing a stack into 3D grids, we can employ the six-node first-order approx-

imation to equation (34), as shown in Figure 78(a). Then a finite-difference scheme

for equation (34) is built:

Ti,j,k − Ti−1,j,k
x1

kxlylz

+
Ti,j,k − Ti+1,j,k

x2

kxlylz

+
Ti,j,k − Ti,j−1,k

y1
kylxlz

+

Ti,j,k − Ti,j+1,k
y2

kylxlz

+
Ti,j,k − Ti,j,k−1

z1
kzlxlz

+
Ti,j,k − Ti,j,k+1

z2
kzlxlz

= Ptotal

(35)

where lx = (x1+x2)/2, ly = (y1+y2)/2, lz = (z1+z2)/2; Ptotal is the power consump-

tion in the shaded rectangle. When solving equation (35), the boundary conditions

should be added. Usually we use a convective boundary for the stack. Here we derive

the finite difference scheme for the nodes at the boundaries, as shown in Figure 78(b).

A convective boundary equation is:
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K
∂T

∂n⃗
|boudary = −h(T − Tamb) (36)

where h is the heat transfer coefficient for the convection. Tamb is the ambient tem-

perature. According to Figure 78(b), the scheme at node (i, j, k) is:

Ti,j,k − Ti−1,j,k
x1

kxlylz

+
Ti,j,k − Tamb

1
hlylz

+
Ti,j,k − Ti,j−1,k

2y1
kylxlz

+

Ti,j,k − Ti,j+1,k

2y2
kylxlz

+
Ti,j,k − Ti,j,k−1

2z1
kzlxlz

+
Ti,j,k − Ti,j,k+1

2z2
kzlxlz

= Ptotal

(37)

In each mesh, there is only one type of material. This meshing strategy may increase

the number of mesh nodes, but improves the modeling accuracy. When the geometry

and material details are provided, we can build the equation in the following matrix

form:

Ax = P (38)

where A is the coefficient matrix, P is the power consumption vector, and x is the

unknown temperature vector. The model was implemented using Matlab and was

used to analyze the proposed architecture.

5.3.1 Thermal Bridge

An air/vacuum gap was introduced previously in order to decrease the thermal cou-

pling between the high-power tier and the low-power tier, thus providing a measure

of protection to the low-power tier. However, another cooling path needs to be pro-

vided to the thermally isolated tier. Taking a memory-on-processor stack (as shown
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in Figure 71) as an example, the heat generated in the memory tier encounters a

large thermal resistance because of the air gap when it travels downwards. Without

a cooling path from the top, the junction temperature of the memory tier may be

high. We have developed a novel concept to resolve this issue: the idea is to attach

a ‘thermal bridge’ on top of the memory tier and interconnects it to a microfluidic

cooled interposer. This thermal bridge can be made of copper and, thus, exhibit a

small thermal resistance. We envision integrating two independent microfluidic heat

sinks in the interposer in which the main microfluidic heat sink is used for cooling

the processor while the auxiliary microfluidic heat sink is dedicated to the cooling of

the memory tier.

The structure shown in Figure 79 is simulated using ANSYS. The dimensions of

the memory die are 1 cm × 1 cm × 50 µm and the dimensions of the interposer are

1.5 cm × 1.5 cm × 200 µm. The copper thermal bridge is attached to the top of the

memory tier using a 10 µm thick thermal interface material (TIM) with a thermal

conductivity of 6 W/mK. The top surface of the copper thermal bridge is the same

size as the interposer and has a thickness of 500 µm. The two support structures have

a width of 2 mm and a height of 115 µm. A 10 µm TIM is assumed at the bottom

to connect the thermal bridge to the interposer. In the simulation, the memory tier

dissipates 5 W. The objective is to understand the thermal resistance of the thermal

bridge (including TIM)). Figure 80 shows the temperature map of the memory tier.

The highest temperature of the memory tier is 28.2 ◦C and appears at the middle of

the memory tier. For reference, the ambient temperature is set to 22 ◦C. Thus, the

temperature gradient from the memory to ambient is 6.2 ◦C, yielding a total thermal

resistance of 1.24 ◦C/W. Thus, we assume a heat transfer coefficient of 8,000 W/m2K

(due to the thermal bridge) at the top.
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Figure 79: Thermal bridge on top of a memory tier simulated in ANSYS.

Figure 80: Memory tier temperature map for the calculation of the thermal resistance
of the thermal bridge.
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Figure 81: Power maps of the memory and processor tiers used in the finite difference
modeling.

5.3.2 Uniformly Distributed TSVs vs. Clustered TSVs

In current approaches to 3D DRAM stacks and Wide I/O technologies, the TSVs are

usually clustered instead of uniformly distributed. As a result of TSV clustering in

the center of the stack, the thermal coupling increases in this region. Fortunately,

the active memory cells are normally located away from the TSV cluster and, thus,

the thermal coupling from the high-power tier to the active devices in the low-power

tier is reduced. In this section, finite-difference modeling is used to understand the

thermal coupling effect using uniformly distributed and clustered TSVs. The power

maps of the memory tier and the processor tier are included in Figure 81.

The area containing the clustered TSVs has a high thermal conductivity and, thus,

strong vertical thermal coupling. Fortunately, since the TSV cluster is away from the

active memory cell (circuits within the yellow box, as shown in Figure 82(a)), the

temperature of the memory cell is lower than the middle region of the chip.

In the simulations, the TSVs are only located in the center. The cluster is assumed

to be 1 mm × 5 mm and contains 49 × 100 TSVs. The cluster is identified by the

red rectangle in Figure 82(a). On the other hand, a uniformly distributed TSV array
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Figure 82: Power maps of the memory and processor tiers in (a) the clustered TSV
case and (b) the uniform TSV case.

case is also simulated (4,900 TSVs). The results are shown in Figure 82(b).

In the clustered TSVs case, the maximum temperature of the whole DRAM die

drops only by 3.55 ◦C compared to the uniform TSV case. However the maximum

temperature of the cell array circuits is only 42.27 ◦C, which is a drop of 6.65 ◦C. By

clustering the TSVs far from the memory cells, the most thermally-sensitive portion

of the die is effectively isolated from the high-power die. Thus, we conclude that

clustering TSVs can limit the localized thermal coupling in 3D stacks.
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Figure 83: Schematic of the designed testbed for evaluation of the proposed thermal
isolation technologies.

Figure 84: Layout (left) and schematic (right) of the power map designs of the top
tier (low-power tier).
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Figure 85: Layout (left) and schematic (right) of the power map designs of the
bottom tier (high-power tier).

5.4 Design of the Testbed

Guided by the previous modeling and analysis, the thermal testbed is designed. A

schematic illustration is shown in Figure 83. The testbed consists of a low-power tier

and a high-power tier to emulate a heterogeneous 3D stack. The testbed is designed

to emulate the proposed architecture shown in Figure 71. The microfluidic heat sink

is integrated in the high-power tier (bottom tier). MFIs are used as interconnects

between the two tiers and are designed to be clustered only in the middle of the die.

Figure 84 shows the power map and temperature sensor designs for the low-power

tier. The low-power tier dissipates a uniform power ≤ 5 W. A spiral heater spreads

uniformly in a 1 cm × 1 cm area. Nine temperature sensors are inserted along the

middle of the chip in order to measure temperature along the length of the chip

(in other words, these temperature sensors are designed to capture the temperature

gradient across the die). Since the MFIs are clustered in the middle region, the

thermal coupling between the tiers is expected to be nonuniform across the chip; in

particular from the center to the edges.

Figure 85 shows the power map and the schematic illustration of the high-power

tier. The chip area is 1 cm × 1 cm. There are two hotspots on the chip and each
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Figure 86: Layout of (a) the MFI array and (b) the connections for daisy-chain
resistance and four-point resistance measurements.

measures 1 mm × 1 mm, as shown in Figure 85. The hotspots are located 1.5 mm

away from the edges.

The two chips are interconnected with an array of NiW MFIs. The MFI array

design is shown in Figure 86(a). In this design, there are 12 columns by 100 rows,

yielding a total number of 1,200 MFIs. This number is chosen based on the Wide

I/Os specifications [71]. The MFI design, as shown in Figure 86(a), has a lateral pitch

of 75 µm and a vertical pitch of 100 µm. The entire MFI array is 9,940 µm by 870

µm. Four-point resistance measurements and daisy-chain resistance measurements

of 38 MFIs will be performed to verify electrical connectivity. Figure 86(b) shows

the layout design of the four-point resistance measurement and daisy-chain resistance

measurement.

5.5 Testbed Fabrication and Test Setup

5.5.1 Testbed fabrication

The process flows for the two tiers (low-power and high-power) are discussed in this

section. For the low-power tier, the process begins with a double side-polished, 300

µm thick Si wafer (Figure 87). The bottom side of the wafer has 0.2 µm thick Si3N4

110



Deposit Pt heater and Au pads

Flip the wafer and pattern 
sacrificial domes

Electroplate NiW MFIs

Remove dome and release MFIs

Electroless gold plating

Si with 0.5 µm Si3N4 and 2 µm SiO2

Figure 87: Process flow for the low-power tier.
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for MFIs formation, and the top side has 2 µm thick SiO2 for heater and temperature

sensor formation. Next, the 0.2 µm thick Pt-based heaters/RTD are formed on the

top side using lift-off. Figure 88 shows the nine RTDs and the RTD pads on the

top die. Each RTD has dimensions of 500 µm x 88 µm and yields a resistance of

approximately 200 Ω. The next step is to deposit 0.5 µm thick gold pads above the

RTD pads. The gold pads facilitate wire-bonding, which is needed during testbed

assembly. The sample is next flipped over for MFI-related processes. SPR220 is spun

and patterned to form sacrificial squares. The squares then undergo a reflow process

to form a dome structure with a height of 20 µm [72]. The wafer is then placed

in a NiW electroplating solution to electroplate the MFIs to a thickness of 4.5 µm.

After removing the sacrificial polymer dome beneath the MFIs, the MFIs become

freestanding. Figure 89 shows images of the fabricated MFIs. Figure 89(a) shows

the NiW MFIs electroplated on top of the sacrificial dome while Figure 89(b) shows

an array of freestanding MFIs after dome removal. In Figure 89(b), the microscope

image is focused on the top of the MFI and thus the anchor of the MFI is out of

focus. The last fabrication step for the low-power tier is to passivate the MFI surface

with gold by electroless plating. The gold passivation prevents NiW from oxidizing

and also provides a lower electrical contact resistance. Figure 89(c) and 89(d) show

images of the gold-passivated MFIs. The final height of the MFIs is 25 µm.

The process steps involved in the fabrication of the high-power tier are shown in

Figure 90. The process starts with a double side-polished 500 µm thick Si wafer.

Since the micropin-fins will be etched in this wafer, the wafer is chosen to be thicker

to provide enough mechanical stability. The next step involves the deposition of a 2

µm thick SiO2 layer on the top side. Next, 0.2 µm thick Pt heaters/RTDs and 0.5

µm thick gold pads are patterned using two lift-off steps. Figure 91 illustrates one of

the hotspots on the high-power tier. The wafer is next flipped over and 200 µm-deep

micropin-fins are etched using a standard Bosch etching process. Fluidic vias are
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Figure 88: Images of (a) parts of the RTD array and (b) the pad of the RTD.

etched on a second wafer that is 300 µm thick and serves as a cover. The two wafers

are then bonded using Si–Si fusion bonding and undergo an annealing process at 400

◦C. The final step for preparing the high-power tier is to deposit polymer pillars on

the heater side. The pillars serve as spacers to ensure a gap of greater than 10 µm.

5.5.2 Assembly

The wafer is next diced into individual dice, as shown in Figure 92. Figure 92(a) shows

the diced bottom die (high-power die) before assembly. The background heater has

dimensions of 1 cm × 1 cm and can be powered up to 100 W/cm2. The two hotspots

are 1 mm × 1 mm each and can be powered up to 200 W/cm2. The temperature

is measured using the heater/RTD and will then be compared with the temperature

of the low-power tier. Daisy-chain resistance measurements and four-point resistance

measurements of MFIs will also be performed to confirm assembly yield. The low-

power and high-power tiers are then assembled using a Finetech sub-micron flip-chip

bonder. Figure 93(a) is an image taken during flip chip bonding. After aligning the

two tiers, the alignment head is placed in contact with the stack and applies a force

of 15 N to bond the stack; while force is applied, epoxy is applied to the four corners
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Figure 89: Images of (a) the MFIs electroplated on top of the polymer dome, (b)
the free standing MFIs after dome removal, (c) the MFI array with gold passivation,
and (d) a single MFI with gold passiavtion.
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Figure 90: Process flow for the high-power tier.

Figure 91: Optical image of one hotspot on the high-power tier.
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Figure 92: Images of (a) the bottom tier after dicing and (b) the assembled two-tier
testbed.

to hold the position of the tiers. The force is released once the epoxy is dry. Figure

93(b) shows the alignment between the two tiers. Figure 94(a) shows an X-ray image

of the bonded sample. The region within the black square is magnified and shown in

Figure 94(b). The micropin-fins, the four-point resistance measurement structures,

and the daisy-chain resistance measurement structures can be seen in Figure 94(b).

Figure 92(b) shows a stack where the top die is bonded on the bottom die through

flip-chip bonding.

5.5.3 Thermal and Electrical Test Setup

The microfluidic test setup is shown in Figure 95. Micropin-fins are only etched in

the high-power tier (bottom tier), which means that the fluid is only flowing beneath

the high-power tier. The top tier is bonded to the bottom tier through MFIs that

are located in the center region. The stack is then bonded to a pre-designed PCB for

testing (Figure 96(a)). Nanoports are attached to the bottom of the sample, as shown

in Figure 96(b). An Agilent data logger is used to source current into the on-chip

heater/RTDs on both tiers. The data logger is used to measure the resistance of the

RTD on the top and bottom tiers and to extrapolate the junction temperatures using
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Figure 93: (a) Flip chip bonding assembly and (b) the alignment between the two
tiers.

Figure 94: X-ray of (a) overall view of the boned chip and (b) a magnified view.
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Figure 95: Microfluidic test setup to evaluate the thermal isolation technologies.

Eq. (16) in Section 3.3.

Figure 97 illustrates the test setup for the four-point resistance measurement of

a single MFI. The measured resistance consists of the electrical resistance of a single

MFI and contact resistance between the MFI and the gold pad.

5.6 Thermal and Electrical Experimental Results

To demonstrate the thermal isolation concept, several test cases are emulated as

shown in Table 8 and Table 9. In all of the test cases, the inlet DI water temperature

is 19.5 ◦C ± 0.5 ◦C. The room temperature is 22.5 ◦C ± 0.5 ◦C.

In the following sections, the test cases are compared in pairs to better understand

the impact of thermal isolation. T1 to T9 represent the nine temperature sensors on

the top die, as shown in Figure 84. They correspond to location 1 to location 9 on

the chip, respectively. In the bottom tier, Tbg1 and Tht1 represent the average of the

left background region and the hotspot region, respectively; Tbg2 and Tht2 represent
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(a) (b)

Figure 96: (a) Top and (b) bottom view of the stack assembled to a PCB board
using wire bonding.

Figure 97: Four-point resistance measurement of MFI
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Table 8: Summary of the temperature of the top and bottom tiers under different
scenarios (Part I)

Case A Case B Case C Case D

Ptop
1(W) 0.5 0.5 0.5 0.5

Pbg1
2(W) 4.8 4.8 4.8 4.8

Pht1
3(W) 0.1 0.5 1.5 1.0

Pbg2
4(W) 4.8 4.8 4.8 4.8

Pht2
5(W) 0.1 0.5 1.5 1.0

T1 (◦C) 20.9 20.8 21.1 21.0
T2 (◦C) 21.4 21.4 21.7 21.5
T3 (◦C) 21.8 21.8 22.1 21.9
T4 (◦C) 22.1 22.1 22.4 22.2
T5 (◦C) 22.5 22.6 22.6 22.5
T6 (◦C) 22.6 22.6 22.9 22.7
T7 (◦C) 22.7 22.7 23.0 22.8
T8 (◦C) 22.7 22.7 23.1 22.9
T9 (◦C) 23.0 22.8 23.1 22.8
Tbg1

6(◦C) 21.5 21.5 22.0 21.7
Tht1

7(◦C) 22.1 24.5 31.4 27.8
Tbg2

8(◦C) 22.8 23.0 23.6 23.2
Tht2

9(◦C) 22.8 25.6 33.0 29.2

1 Power of the top tier.
2 Background power of the left side of the bottom tier (inlet side).
3 Hotspot power of the left side of the bottom tier (inlet side).
4 Background power of the right side of the bottom tier (outlet side).
5 Hotspot power of the right side of the bottom tier (outlet side).
6 Background temperature of the left side of the bottom tier (inlet side).
7 Background temperature of the left side of the bottom tier (inlet side).
8 Background temperature of the right side of the bottom tier (outlet side).
9 Background temperature of the right side of the bottom tier (outlet side).

the average of the right background region and the hotspot region, respectively. The

junction temperature at the center of the chip is computed as the average of Tbg1 and

Tbg2.

5.6.1 Thermal Testing I: Powering the high-power tier

In a heterogeneous 3D stack consisting of a low-power die bonded on top of a high-

power die using microbumps and underfill, thermal coupling is expected to result

in an increase of the temperature in the low-power die when the high-power tier is

powered. In this subsection, this scenario is emulated using the thermal isolation
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Table 9: Summary of the temperature of the top and bottom tiers under different
scenarios (Part II)

Case E Case F Case G Case H Case I

Ptop
1(W) 0.5 0.5 0.5 0.5 0.5

Pbg1
2(W) 14.2 14.2 14.2 0 0

Pht1
3(W) 1.0 1.5 1.5 1.5 2.0

Pbg2
4(W) 14.3 14.3 0 0 0

Pht2
5(W) 1.0 1.5 1.5 1.5 2.0

T1 (◦C) 24.0 24.2 23.3 19.6 19.7
T2 (◦C) 24.9 25.1 24.1 20.0 20.2
T3 (◦C) 25.6 25.8 24.4 20.2 20.4
T4 (◦C) 26.2 26.4 24.6 20.3 20.5
T5 (◦C) 30.0 29.8 24.7 20.4 20.6
T6 (◦C) 27.2 27.4 24.8 20.6 20.8
T7 (◦C) 27.6 27.8 24.8 20.6 20.8
T8 (◦C) 27.9 28.1 24.8 20.6 20.8
T9 (◦C) 28.3 29.2 24.5 20.4 20.6
Tbg1

6(◦C) 28.6 28.8 28.6 19.3 19.2
Tht1

7(◦C) 31.6 35.1 35.0 29.3 32.8
Tbg2

8(◦C) 32.4 32.8 23.4 19.8 19.8
Tht2

9(◦C) 36.4 40.1 33.9 29.3 33.0

1 Power of the top tier.
2 Background power of the left side of the bottom tier (inlet side).
3 Hotspot power of the left side of the bottom tier (inlet side).
4 Background power of the right side of the bottom tier (outlet side).
5 Hotspot power of the right side of the bottom tier (outlet side).
6 Background temperature of the left side of the bottom tier (inlet side).
7 Background temperature of the left side of the bottom tier (inlet side).
8 Background temperature of the right side of the bottom tier (outlet side).
9 Background temperature of the right side of the bottom tier (outlet side).
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Figure 98: (a) Initial case when the high-power tier dissipates 0 W and (b) Case E
in Table 9 where the background power density is 30 W/cm2 and the hotspot power
density is 100 W/cm2.

testbed.

The power maps of the high-power tier are shown in Figure 98. The low-power

tier dissipates 0.5 W in all the evaluated cases. In the initial case, the high-power

tier does not dissipate any power. In Case E (as listed in Table 9), the background

power density is 30 W/cm2 while the hotspots dissipate 100 W/cm2. The junction

temperature across the two tiers is plotted in Figure 99. In the initial case, the

temperature of both tiers is close to the inlet water temperature. When the bottom

tier is powered and dissipates a background power density of 30 W/cm2 and a hotspot

power density of 100 W/cm2 (power map shown in Figure 98(b)), the temperature

of the bottom tier increases at all locations. The temperature of the left and right

sides of the background heater increases to 28.6 ◦C and 32.4 ◦C, respectively. The

temperature of the left and right side hotspots increases to 31.6 ◦C and 36.4 ◦C,

respectively. However, the average temperature of the upper tier increases to 26.9

◦C. The temperature of the upper tier follows the same temperature trend of the

bottom tier. However, owing to the thermal isolation technology, the temperature

increase is not as high as the bottom tier. An interesting point to be noted is that
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Figure 99: Junction temperature fluctuation before and after the high-power tier is
powered.

the highest temperature of the upper tier is located at the center of the die. The

temperature of both tiers is very close at the center. This effect can be attributed

to the dense MFI array that is clustered in the middle and, thus, creates a good

thermal path. This phenomenon provides confidence in having good contact between

the tiers using MFIs. Another point to be noted is that the temperature of the upper

die gradually increases from inlet to outlet. One reason is that it follows the same

temperature trend of the bottom tier. The other reason is introduced from the actual

testbed. In the testbed, epoxy is used at the four corners to securely bond the upper

die to the bottom die, and thus heat can be conducted through the epoxy. When

the temperature of the coolant becomes elevated at the outlet, it also impacts the

temperature of the upper die at the outlet. Therefore, the temperature at location 9 is

higher than that at location 1. This effect induced by the epoxy is taken into account

when we compare the measurements to the finite difference modeling in Section 5.7.
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Figure 100: (a) Uniform power density of 10 W/cm2 in the bottom tier (Case A)
and (b) background power of 10 W/cm2 plus two hotspots each dissipates 150 W/cm2

(Case C).

5.6.2 Thermal Testing II: Minimize the Hotspot Coupling

Hotspot cooling is a critical issue for today’s high performance computers. By s-

tacking a low-power die with a high-power die, the hotspots can also occur in the

low-power die because of the thermal coupling. This presents a number of challenges

for temperature-sensitive low-power dice. Therefore, the cases where hotspots occur

in the high-power tier are emulated in this subsection.

The power maps of the simulated cases are illustrated in Figure 100. In Figure

100(a), the bottom tier dissipates 10 W/cm2 across the chip. The junction tempera-

ture for each location on both tiers is plotted in Figure 101 (Case A). Next (Case C),

the power density of the two hotspots increases to 150 W/cm2 while the background

power remains unchanged (Figure 100(b)). The corresponding temperature of each

chip is plotted in Figure 101 (Case C). In Case A, the temperature is relatively flat

indicating uniform temperature without hotspots. When the hotspot region dissi-

pates more power, one obvious observation is that there are two peak temperatures

that occur in the bottom die. This is expected because of the large power density
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Figure 101: Junction temperature fluctuation of top and bottom tiers in Case H and
Case I in Table 9.

of the hotspot region. The two peak temperatures are 31.4 ◦C and 33.0 ◦C, respec-

tively. However, also in Case C, there are no obvious hotspots in the upper tier.

The temperature of the upper tier gradually increases from 21.1 ◦C to 23.1 ◦C. This

demonstrates that the proposed thermal isolation concept effectively minimizes the

hotspot coupling between the vertical tiers.

To illustrate this point, two extreme cases are emulated where only the hotspot

regions are powered while the background dissipates no power. In addition, the power

density of the hotspot increases to 200 W/cm2. The two power maps are illustrated in

Figure 102(a) and Figure 102(b). The corresponding temperature in the two cases is

plotted in Figure 103. In these two cases, the temperature of the bottom tier is close

to room temperature except for the two hotspots where the temperatures are 29.3

◦C and 33 ◦C for Case H and Case I, respectively. Even though the power density of

the hotspot is high, the total power is low since each hotspot is only 1 mm × 1 mm.
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Figure 102: (a) Zero background power with two hotspots each dissipates 150 W/cm2

(Case H) and (b) zero background power with two hotspots each dissipates 200W/cm2

(Case I).

The fluid temperature barely increases after flowing through the hotspot. Thus, the

hotspots near the inlet and outlet have the same temperature. In Cases H and I, the

temperature at location 2 in the upper tier is 20 ◦C and 20.2 ◦C, respectively. However,

the temperature at location 2 in the bottom tier is 29.3 ◦C and 32.8 ◦C, respectively.

The maximum junction temperature difference is 12.6 ◦C. For reference, in Figure

99, when the bottom chip is not dissipating any power, the junction temperature at

location 2 in the upper tier is also 20 ◦C. The temperature barely changes in the

upper tier after the hotspot power increases. This demonstrates that the thermal

isolation technology with MFIs has greatly decreased the hotspot coupling between

tiers.

5.6.3 Thermal Testing III: Bottom Tier Power Increases

In the previous subsection, we demonstrated that the thermal isolation technology

can prevent vertical coupling and thus ‘protect’ the low-power tier from the hotspots

in the high-power tier. In this subsection, the bottom tier dissipates an elevated

power density of 30 W/cm2 in addition to the hotspots. In the two cases (Cases E
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Figure 103: Junction temperature fluctuation of the top and bottom tiers in Case H
and Case I in Table 9.

and H listed in Table 9), the two hotspots dissipate 100 W/cm2 and 150 W/cm2,

respectively. The corresponding temperature of the two tiers in the two cases is

plotted in Figure 104.

At location 2 and location 8, where the hotspots are located, the temperature

difference between the top and bottom tier is large. For example, the temperature

difference between the two tiers at location 8 in Case H is 12 ◦C. However, at the

other locations, the temperature difference is less than that of the hotspot. For

example, the temperature of location 9 in the upper and bottom tiers is 32.8 ◦C and

29.2 ◦C, respectively. The thermal isolation effect is weakened in this case since the

coolant temperature increases as it absorbs heat from the bottom tier. The higher

the power the bottom tier dissipates, the warmer the coolant is. The elevated coolant

temperature in turn causes the temperature to increase in the upper tier. This effect

is expected when the two tiers share the same microfluidic heat sink especially for
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Figure 104: (a) Background power of 30 W/cm2 plus two hotspots each dissipates
100 W/cm2 (Case E) and (b) background power of 30 W/cm2 plus two hotspots each
dissipates 150 W/cm2 (Case F).

the locations near the outlet. On the other hand, the measured temperature in the

bottom tier is an average of half of the die. The actual temperature of location 9

should be higher than the average temperature. One method to eliminate the impact

of warm coolant in the upper tier is to allocate an independent microfluidic heat sink

to it.

Another interesting observation is that the temperature is highest at the center of

the upper tier and similar to that of the bottom tier. The reason is that the MFIs are

densely clustered in the middle. This is a desirable result and complies with the Wide

I/O technology. In the Wide I/O technology, all TSVs are located in a rectangular

array in the middle of the chip. There are no active devices in the middle region.

Although the middle region is warmer because of the heat conduction through the

dense MFI array, the device region is actually cooler. Compared to evenly distributed

TSVs, our layout can reduce the temperature of the active regions by sacrificing the

less critical middle region (the region for I/Os).
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Figure 105: Junction temperature fluctuation of the top and bottom tiers in Case E
and Case F in Table 9

5.6.4 Electrical Testing of MFIs

In order to demonstrate the electrical connectivity between the two tiers after bond-

ing, two sets of electrical resistance measurements are performed. The four-point

resistance measurements are done at four locations on the sample. The measured

electrical resistance is 46.49 mΩ. The measured resistance consists of the resistance

of the MFI, part of the landing pad, and the contact resistance. The daisy chain

resistance of 38 MFIs is also measured during the thermal measurements. At room

temperature, the resistance of the daisy chain including the leading wires is 19.55

Ω. When temperature of the bottom chip increases, the daisy-chain resistance also

increases. The highest measured resistance during all thermal testing is 19.77 Ω.

The daisy-chain resistance provides confidence that all the electrical contacts remain

throughout thermal testing.
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Table 10: Parameters used in the finite difference model

Conductivity Thickness

(W/mK) (µm)
Memory die 149 300
Underfill layer 0.9 25
Air gap 2.4E-2 25
Processor die 149 300
Micro-bump 60 25
Copper 400 N/A
MFIs 10 25
SiO2 1.38 2.5

5.7 Validation by Finite Difference Modeling

The experimental results are used to validate our finite-difference modeling. The

assumptions of the boundary conditions used in the model are made based on mea-

surement results. For microfluidic cooling in the bottom tier, the convective heat

transfer coefficient is assumed to be 5.2 ×104 W/m2K. For the cooling of the top tier,

a heat transfer coefficient of 1.3 ×104 W/m2K is assumed. This convective boundary

condition is only applied on the edges of the top chip. The calculation is based on

the initial case (discussed in Section 5.6.1). In this case, the top tier dissipates 0.5 W

while the bottom tier dissipates 0 W. The equivalent thermal resistance is calculated

to be 3.4 K/W for the top chip. All the parameters and boundary conditions used in

the model are included in Table 10 and Table 11. Two examples of the measured and

modeled results are listed in Table 12. In all the simulated cases, the error is within

2 ◦C.

In Section 5.6, the measured temperatures of the bottom tier are average temper-

atures. Using finite-difference modeling, the localized temperatures can be obtained.

Using the validated model, we re-plot the top and bottom junction temperature in

Cases E and F, as shown in Figure 106. This allows us to directly compare the tem-

peratures at the exact same locations in the two tiers. This figure can be compared

with the measured results shown in Figure 104. The temperature difference between
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Table 11: Boundary conditions assumed in the finite difference model

Stack Boundary face Heat Transfer Coefficient
(W/Km2)

Conventional microbump
stack

MFHS (bottom) 52000

Others(near adiabatic) 5
Our proposed stack Top 13000

MFHS (bottom) 52000
Side (near adiabatic) 5

Table 12: Comparison between the measured and modeled junction temperatures

Measured
Case E

Modeled
Case E

Measured
Case F

Modeled
Case F

Ptop
1(W) 0.5 0.5 0.5 0.5

Pbg1
2(W) 14.2 14.2 14.2 14.2

Pht1
3(W) 1.0 1.0 1.5 1.5

Pbg2
4(W) 14.3 14.3 14.3 14.3

Pht2
5(W) 1.0 1.0 1.5 1.5

T1 (◦C) 24.0 23.3 24.2 23.4
T2 (◦C) 24.9 24.2 25.1 24.4
T3 (◦C) 25.6 25.6 25.8 25.8
T4 (◦C) 26.2 27.5 26.4 27.7
T5 (◦C) 30.0 28.2 29.8 28.5
T6 (◦C) 27.2 28.3 27.4 28.5
T7 (◦C) 27.6 27.8 27.8 28.0
T8 (◦C) 27.9 27.8 28.1 28.0
T9 (◦C) 28.3 28.0 29.2 28.2
Tbg1

6(◦C) 28.6 28.6 28.8 28.9
Tht1

7(◦C) 31.6 32.7 35.1 35.6
Tbg2

8(◦C) 32.4 32.5 32.8 32.9
Tht2

9(◦C) 36.4 37.1 40.1 40.2

1 Power of the top tier.
2 Background power of the left side of the bottom tier (inlet side).
3 Hotspot power of the left side of the bottom tier (inlet side).
4 Background power of the left side of the bottom tier (outlet side).
5 Hotspot power of the left side of the bottom tier (outlet side).
6 Background temperature of the left side of the bottom tier (inlet side).
7 Background temperature of the left side of the bottom tier (inlet side).
8 Background temperature of the right side of the bottom tier (outlet side).
9 Background temperature of the right side of the bottom tier (outlet side).
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Figure 106: Junction temperature in Case E and Case F (as listed in Table 9 using
the finite-difference model. This figure can be compared with the measured results
shown in Figure 105.

the two tiers at location 1 and 9 are much larger than that those at locations 4, 5,

and 6. The reason is that heat conduction occurs through the array of MFIs and,

thus, leads to enhanced thermal coupling in the center region of the dice.

To benchmark with conventional 3D integration scenarios, the same stack is mod-

eled with microbumps and underfill, as shown in Figure 107. For a fair comparison,

the same number of MFIs and microbumps is assumed. Table 10 and Table 11 list all

the parameters used in the model. The power map in Case F (as listed in Table 9)

is used in this simulation. In this case, the background power density is 30 W/cm2

while the hotspots dissipate 150 W/cm2. In the case without thermal isolation, we

can see that the temperature of the upper tier follows the trend of the lower tier.

In most locations, the temperature is similar in both tiers. At the hotspot near the

outlet, the temperature of the upper tier and the lower tier is 35.9 ◦C and 38.7 ◦C,
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Figure 107: The modeled heterogeneous stack with (a) MFI and air cavity and (b)
microbumps and underfill.

respectively. For the case with thermal isolation, the temperature of the upper tier

and the lower tier is 28 ◦C and 41 ◦C, respectively. The thermal isolation technology

is shown to reduce the upper-tier temperature by 8 ◦C at location 8 and, thus, yields

a temperature reduction of 19.5 %, while the bottom-tier temperature increases by 2

◦C. This is because the upper tier helps to spread the heat and thus lower the hotspot

temperature of the bottom tier. At locations without hotspots such as location 9,

thermal isolation is also observed. In the case without thermal isolation, the temper-

ature of the upper tier and the lower tier is 35.7 ◦C and 35.8 ◦C, respectively, while

with thermal isolation, the temperature of the upper tier drops to 28.2 ◦C without

causing the temperature of the lower tier to increase.

The implication from the analysis in Section 5.6.3 is that allocating an independent

microfluidic heat sink to the low-power die may further decouple it from the high-

power die. Therefore, the proposed concept with thermal bridge and independent

microfluidic heat sink is modeled (as shown in Figure 109) and benchmarked with

the conventional microbump and underfill approach. In the ideal thermal isolation

case, the temperature of the high-power and low-power tier at location 8 is 40.8 ◦C and

23.0 ◦C, respectively. While in the conventional bonding scenario, the temperature of

the high-power and low-power tier is 38.7 ◦C and 35.9 ◦C, respectively. A temperature

reduction of 35.9 % is achieved in the low-power tier by implementing the MFIs and

independent microfluidic heat sink.
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Figure 108: Junction temperature in both tiers with and without the thermal isola-
tion. In the case without thermal isolation, microbumps and underfill are integrated
between the tiers.

5.8 Conclusion

For heterogenous 3D integration including high-power dice and low-power dice (e.g.,

memory and nanophotonics), thermal coupling is a critical issue. The proposed ther-

mal isolation technology features an air/vacuum cavity between the tiers, MFIs as the

interconnects, and a thermal bridge for the isolated chips. To demonstrate the ther-

mal isolation technology, a two-tier testbed with heterogeneous elements is designed,

fabricated, and tested. Various thermal test cases are evaluated. The proposed tech-

nology effectively decouples the two tiers thermally. One case shows that the proposed

technology effectively prevents hotspots on the high-power chip from coupling to the

low-power tier. For example, the low-power tier remains at 20.8 ◦C while the hotspot

in the high-power tier reaches 32.8 ◦C. For elevated power density on the bottom tier,

the top tier also becomes warmer because of the temperature increase of the coolant
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Figure 109: A heterogeneous 3D stack with MFIs and independent microfluidic heat
sink for the low-power die.
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Figure 110: Benchmark the ideal thermal isolation technology with conventional 3D
stacking approach.
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at the outlet. Independent microfluidic heat sinks can solve this issue.

Four-point resistance measurements of the MFIs is performed along with a resis-

tance of an MFI daisy chain. The measured resistance demonstrates the electrical

connectivity between the two tiers at all time during the thermal measurements.

Finite-difference modeling is used to validate the experimental results. All errors

are within 2 ◦C. The thermal isolation technology is also benchmarked with a stack

that contains conventional microbumps and underfill. The temperature of the upper

tier (low-power tier) is reduced by 12.9 ◦C by implementing our proposed thermal

isolation technology.
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CHAPTER VI

SUMMARY AND FUTURE WORK

6.1 Summary of the Presented Work

The objective of this research is to propose and implement a hybrid thermal solution

combining effective cooling solutions that scale with the number of dice in the stack

and effective thermal isolation solutions to ‘protect’ the low-power tiers from the

high-power tiers in the stack.

6.1.1 Advanced Microfluidic Cooling Solution for 3D ICs Containing
High Power Chips

The thermal challenge is one of the primary issues for 3D ICs, especially for stacks

containing multiple high-power chips. Because of the increased power density, 3D IC

stacks go beyond the cooling capability of conventional air cooling. This motivates

our work on effective within-tier microfluidic cooling research. On the other hand,

TSVs are key enablers of 3D ICs and will need to be co-integrated with microfluidic

heat sinks. Therefore, designing a microfluidic heat sink without considering TSV

fabrication compatibility and TSV parasitics greatly diminishes the advantages of 3D

ICs.

In Chapter II, thermal electrical modeling are developed in order to capture the

trade-off between microfluidic heat sinks and TSVs. Based on the trade-off analysis,

the height of microfluidic heat sinks is most critical to the TSV electrical parasitics.

By setting a target thermal resistance and TSV parasitics, a MPFHS with a diameter

of 150 µm, a pitch of 225 µm, and a height of 200 µm is designed. Novel liner and

heterogeneous TSV integration are also proposed to further lower the TSV parasitics.

In addition, TSV aspect ratios need to be scaled up in order to minimize the parasitics
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and ensure high TSV density. The analysis motivates our work in Chapter III.

In Chapter III, a MPFHS that is compatible with TSV technology is designed,

fabricated, and thermally tested. This is a solution that addresses the cooling needs of

3D ICs while accounting for TSV fabrication compatibility and electrical performance

(minimizing TSV parasitics). In the test case, a staggered MPFHS is shown to provide

a thermal resistance as low as 0.269 K·cm2 /W at a flow rate of 70 mL/min for a heat

sink height of 200 µm. In addition, this result is benchmarked against a state-of-art

air-cooled heat sink. Based on the experimental data, microfluidic cooling provides

a lower chip junction temperature with a much smaller heat sink volume compared

to air cooling. Finally, in order to demonstrate the compatibility with TSVs, high

aspect ratio (18:1) TSVs are integrated in MPFHS. The four-point resistance of the

TSVs is found to be 36.5 ± 1.5 mΩ.

In Chapter IV, the microfluidic cooling is implemented in a 3D stack. The mi-

crofluidic heat sink has the same geometries as described in Chapter III. Memory-on-

processor and processor-on-processor are emulated using the testbed. In both cases,

microfluidic cooling outperforms air cooling. In addition, a tier-specific cooling mech-

anism that allows tailoring the flow rate according to the power dissipation of each

tier is implemented. This method is shown to be able to minimize the thermal gradi-

ent between tiers and thus minimize the thermal-mechanical stress. Pumping power

is also reduced by 37.5% by preventing overcooling of the low-power chip. In the end,

microfluidic cooling is evaluated in a multi-core chip. The lateral thermal coupling is

observed to be due to the warmed fluid. A lateral thermal gradient-caused leakage

power increase is analyzed. Vertical thermal coupling is also emulated. To reduce the

vertical thermal coupling, each high-power tier should have its own microfluidic heat

sink.
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6.1.2 Advanced Thermal Isolation Technology for Heterogeneous 3D ICs

For heterogeneous 3D integration including high-power dice and low-power dice (e.g.,

memory and nanophotonics), thermal coupling is a critical issue. Using an air cavity

between the tiers is proposed to mitigate the vertical thermal coupling. Mechanically

flexible interconnects are also integrated between the vertical tiers for power and

signaling.

In Chapter V, the thermal isolation technology with air gap is firstly modeled and

compared with conventional microbump technology. A two-dimensional resistance

network model is developed to analyze the stack with air cavity. When the power

density of the processor tier increases from 50 W/cm2 to 100 W/cm2, with a 5 µm

thick air cavity, the temperature of the bottom tier increases by 13 ◦C, while the

temperature increment will be 22 ◦C without air cavity [69]. However, when inter-

connects are taken into consideration, the thermal isolation effect is weakened. To

solve this problem, we propose to place all the interconnects in the middle region. By

locating the active devices away from the middle, the thermal impact can be further

reduced.

Guided by the analysis obtained from finite-difference modeling, we have designed

a two-tier heterogeneous testbed where MFIs are clustered in the middle region. The

testbed is fabricated and tested. It is shown that the proposed technology effectively

decouples the two tiers thermally. For example, the low-power tier remains at 20.8

◦C while the temperature of the hotspot in the high-power tier is 32.8 ◦C.

The results are also simulated using the finite-difference modeling and the error

is shown to be less than 2 ◦C. We also simulate the same heterogeneous stack with

conventional microbumps and underfill. Significant temperature reduction in the

low-power tier is shown in all cases.
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6.2 Future Work

The opportunities for advancing the technologies in this dissertation will be discussed

in the following sections. Firstly, opportunities to advance microfluidic cooling are

described. Secondly, opportunities to advance thermal isolations are describe. Lastly,

opportunities to advance the thermal-electrical analysis are discussed.

6.2.1 Explore a System with Interposer Cooling

As part of the future research, a microfluidic cooled interposer can be studied. For

the applications where only one high-power tier is included in a stack (Figure 111),

integrating the microfluidic heat sink in the interposer may be efficient enough. There

are three main benefits of integrating microfluidic cooling in the interposer:

1. This method does not use the precious on-chip resources. There is no need of

on-chip fluidic I/Os which consume the on-chip surface area. With a within-tier

microfluidic heat sink, TSVs can only be routed through the areas with no flow

path. Integrating microfluidic heat sinks in the interposer will eliminate these

constraints for TSV placement.

2. Integrating the microfluidic cooling in the chip will increase chip thickness and

thus result in longer TSVs with high parasitics (as discussed in Chapter II).

Integrating the microfluidic heat sink in the interposer allows the chip to be as

thin as possible and thus reduce TSV parasitics and increase TSV density.

3. The fabrication of the interposer can be done separately with the fabrication of

the CMOS chip; this allows more process flexibility and eases the fabrication

constraints of the microfluidic heat sink.

However, the chip is bonded on the interposer through microbumps (Figure 111).

Because of the increased conductive thermal resistance across the microbumps and

140



����������

	�
���

���
�����

Figure 111: Illustration of a 3D stack with a microfluidic cooled interposer.

the on-chip interlayer dielectric (ILD), the cooling capability is not as good as within-

tier microfluidic cooling. MPFHSs with the same design can be implemented in the

interposer. The cooling capability (thermal resistance as a function of the flow rate)

should be characterized and compared with within-tier microfluidic cooling.

6.2.2 Advancing the Thermal Isolation Technology

The proposed thermal isolation technology was described in Chapter V (Figure 71).

The novelties in the proposed architecture not only include the vertical thermal iso-

lation technology, but also include other novel concepts that are described as follows:

1. Interposer-level multi-optimized microfluidic heat sink

2. Thermal bridge that interconnects the memory tier to the interposer-level mi-

crofluidic heat sink

The future research opportunities in the proposed architecture are discussed in

the following sections.

6.2.2.1 Interposer-level Multi-optimized Microfluidic Heat Sink

Independent microfluidic heat sinks that are dedicated to cool different dice can be

integrated in one interposer. Figure 112 shows the top view of an example of the

interposer with independent microfluidic heat sinks. In the example shown, the aux-

iliary heat sinks (shown in light blue) are dedicated to the low-power tiers while the

main heat sink (shown in dark blue) in the center is dedicated to high-power tiers.
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Figure 112: Illustration of multi-optimized microfluidic heat sinks.

Because of the different power loads, the heat sinks can have different designs and

different flow rates. A denser micropin-fin design can be adopted in the main heat

sink, compared to the auxiliary heat sink.

6.2.2.2 Thermal Bridge Demonstration

The thermal bridge that we have modeled is made of copper and is attached to the

interposer through TIM. Copper has a much higher CTE than Si and may create

stress on the silicon die. Therefore, a thermal bridge made of Si can be a promising

alternative. Although the thermal conductivity of Si is one third of that of copper,

Si introduces no CTE mismatch issue and the fabrication is CMOS-compatible. The

fabricated testbed uses epoxy to hold the top chip in place. The proposed thermal

bridge needs to be manufactured and characterized in the testbed.

6.2.2.3 Electrical Thermal Co-optimization of MFIs

The MFIs in the present work are designed to have small pitch and low thermal

resistance. However, the electrical resistance is not taken into consideration. If the
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(a) (b)

Figure 113: (a) MFI with a thickness of 2 µm and (b) MFI with a thickness of 4.5
µm.

MFIs are designed thicker, the electrical resistance can be smaller. But thicker MFIs

are more thermally conductive and, thus, degrade the thermal isolation. MFIs with

a height of 20 µm are simulated to show the trade-offs between thermal resistance

and electrical resistance. MFIs with thickness of 2 µm and 4.5 µm are simulated,

as shown in Figure 113. The electrical resistance of the 2 µm thick MFI and 4 µm

thick MFI are 64.4 mΩ and 41.9 mΩ, respectively. The thermal resistance of the 2 µm

thick MFI and 4 µm thick MFI are 10.8 ×103 K/W and 7.05 ×103 K/W, respectively.

More analysis of MFIs with different thickness, shapes, and materials should be done

for different applications.

6.2.2.4 Thermal Isolation Using Vacuum

As discussed in Section 5.2, vacuum provides superior thermal isolation than air.

Methods to create reliable and sustainable vacuum in microelectronics needs to be

developed.

6.2.3 System Performance Implications

Power consumption and system throughput are temperature dependent. It is shown

that by reducing the chip temperature from 88 ◦C to 47 ◦C, the total power of a high-

performance chip decreases from 102 W to 83 W for the same operating frequency [58].

The present electrical analysis includes TSV capacitance. The electrical modeling can
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be extended to include bandwidth density, system throughput, energy-per-bit, etc.

With the extracted thermal data from the microfluidic cooling and thermal isolation

technologies, electrical system performance can be analyzed. Currently, the trade-

offs between TSV capacitance and thermal resistance are analyzed. In the future, the

lateral interconnects can also be included in the trade-off analysis.

In the applications involving silicon photonics, a model that captures the energy

dissipation of the photonic link should be developed. The model should analyze the

energy dissipation with and without the thermal isolation technology.

144



REFERENCES

[1] J. Jeddeloh and B. Keeth, “Hybrid memory cube new dram architecture increases
density and performance,” in Proc. Symposium on VLSI Technology (VLSIT),
2012, pp. 87–88.

[2] U. Kang, H.-J. Chung, S. Heo, D.-H. Park, H. Lee, J.-H. Kim, S.-H. Ahn, S.-H.
Cha, J. Ahn, D. Kwon, J.-W. Lee, H.-S. Joo, W.-S. Kim, D. H. Jang, N. S. Kim,
J.-H. Choi, T.-G. Chung, J.-H. Yoo, J.-S. Choi, C. Kim, and Y.-H. Jun, “8 Gb
3-D DDR3 DRAM using through-silicon-via technology,” IEEE J. of Solid-State
Circuits, vol. 45, no. 1, pp. 111–119, 2010.

[3] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. Loh, D. M-
cCauley, P. Morrow, D. Nelson, D. Pantuso, P. Reed, J. Rupley, S. Shankar,
J. Shen, and C. Webb, “Die stacking (3d) microarchitecture,” in Proc. 39th
Annual IEEE/ACM International Symposium on Microarchitecture, 2006, pp.
469–479.

[4] Semiconductor Industry Association. International technology roadmap of
semiconductors. Semiconductor Industry Association. [Online]. Available:
http://public.itrs.net

[5] S.-C. Lin and K. Banerjee, “Cool chips: Opportunities and implications for
power and thermal management,” IEEE Trans. Electron Devices, vol. 55, no. 1,
pp. 245–255, 2008.

[6] D. Tuckerman and R. F. W. Pease, “High-performance heat sinking for VLSI,”
IEEE Electron Device Lett., vol. 2, no. 5, pp. 126–129, May 1981.

[7] M. Bakir, C. King, D. Sekar, H. Thacker, B. Dang, G. Huang, A. Naeemi, and
J. Meindl, “3D heterogeneous integrated systems: Liquid cooling, power delivery,
and implementation,” in Proc. IEEE Custom Integrated Circuits Conference,
2008, pp. 663–670.

[8] T. Brunschwiler, B. Michel, H. Rothuizen, U. Kloter, B. Wunderle, H. Opper-
mann, and H. Reichl, “Interlayer cooling potential in vertically integrated pack-
ages,” Microsystem Technologies, vol. 15, no. 1, pp. 57–74, Jan. 2009.

[9] J.-M. Koo, S. Im, L. Jiang, and K. E. Goodson, “Integrated microchannel cooling
for three-dimensional electronic circuit architectures,” J. Heat Transfer, vol. 127,
no. 1, pp. 49–58, 2005.

[10] M. S. Bakir and J. D. Meindl, Integrated Interconnect Technologies for 3D Na-
noelectronic Systems. Boston: Artech House, 2008.

145



[11] L. Jiang, J. Mikkelsen, J.-M. Koo, D. Huber, S. Yao, L. Zhang, P. Zhou, J. G.
Maveety, R. Prasher, J. G. Santiago et al., “Closed-loop electroosmotic mi-
crochannel cooling system for VLSI circuits,” IEEE Trans. Compon., Packag.,
Manuf. Technol., vol. 25, no. 3, pp. 347–355, 2002.

[12] D. Liu and S. V. Garimella, “Analysis and optimization of the thermal perfor-
mance of microchannel heat sinks,” International J. of Numerical Methods for
Heat and Fluid Flow, vol. 15, no. 1, pp. 7–26, 2005.

[13] Y. Peles, A. Kosar, C. Mishra, C. Kuo, and B. Schneider, “Forced convective heat
transfer across a pin fin micro heat sink,” International J. Heat Mass Transfer,
vol. 48, pp. 3615–3627, Aug. 2005.

[14] T. Brunschwiler, S. Paredes, U. Drechsler, B. Michel, W. Cesar, G. Toral,
Y. Temiz, and Y. Leblebici, “Validation of the porous-medium approach to mod-
el interlayer-cooled 3D-chip stacks,” in Proc. IEEE International Conference on
3D System Integration, 2009, pp. 1–10.

[15] N. Khan, H. Yu, T. S. Pin, S. W. Ho, N. Su, W. Y. Hnin, V. Kripesh, Pinjala,
J. Lau, and T. K. Chuan, “3D packaging with through ilicon via (TSV) for
electrical and fluidic interconnections,” in Proc. IEEE Electronic Components
and Technology Conference, 2009, pp. 1153–1158.

[16] L. Zheng, Y. Zhang, and M. Bakir, “Design, fabrication and assembly of a novel
electrical and microfluidic I/Os for 3-D chip stack and silicon interposer,” in
Proc. IEEE Electronic Components and Technology Conference (ECTC), May
2013, pp. 2243–2248.

[17] B. Shi and A. Srivastava, “TSV-constrained micro-channel infrastructure design
for cooling stacked 3D-ICs,” in Proc. ACM international symposium on Interna-
tional Symposium on Physical Design, 2012, pp. 113–118.

[18] H. B. Chang, H. Y. Chen, P. C. Kuo, C. H. Chien, E. Liao, T. C. Lin, T. S. Wei,
Y. C. Lin, Y. H. Chen, K. F. Yang, H. A. Teng, W. C. Tsai, Y. C. Tseng, S. Y.
Chen, C. C. Hsieh, M. F. Chen, Y. H. Liu, T. J. Wu, S. Hou, W. C. Chiou, S. P.
Jeng, and C. H. Yu, “High-aspect ratio through silicon via (TSV) technology,”
in Proc. Symposium on VLSI Technology (VLSIT), 2012, pp. 173–174.

[19] Y. Civale, S. Armini, H. Philipsen, A. Redolfi, D. Velenis, K. Croes, N. Heylen,
Z. El-Mekki, K. Vandersmissen, G. Beyer, B. Swinnen, and E. Beyne, “Enhanced
barrier seed metallization for integration of high-density high aspect-ratio copper-
filled 3D through-silicon via interconnects,” in Proc. IEEE Electronic Compo-
nents and Technology Conference (ECTC), 2012, pp. 822–826.

[20] A. Yu, J. Lau, S. W. Ho, A. Kumar, W. Y. Hnin, W. S. Lee, M. C. Jong,
V. Sekhar, V. Kripesh, D. Pinjala, S. Chen, C.-F. Chan, C.-C. Chao, C.-H. Chiu,
C.-M. Huang, and C. Chen, “Fabrication of high aspect ratio TSV and assembly

146



with fine-pitch low-cost solder microbump for Si interposer technology with high-
density interconnects,” IEEE Trans. Compon., Packag., Manuf. Technol., vol. 1,
no. 9, pp. 1336–1344, Sept. 2011.

[21] R. Ayoub, R. Nath, and T. Rosing, “Joint energy thermal and cooling manage-
ment for memory and CPU subsystems in servers,” in Proc. IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2012, pp. 1–
12.

[22] I. Paul, S. Manne, M. Arora, W. L. Bircher, and S. Yalamanchili, “Coopera-
tive boosting: needy versus greedy power management,” in Proc. 40th Annual
International Symposium on Computer Architecture, 2013, pp. 285–296.

[23] S. Chatterjee, M. Cho, R. Rao, and S. Mukhopadhyay, “Impact of die-to-die
thermal coupling on the electrical characteristics of 3D stacked SRAM cache,” in
Proc. IEEE Semiconductor Thermal Measurement and Management Symposium
(SEMI-THERM), 2012, pp. 14–19.

[24] H. Oprins, V. O. Cherman, B. Vandevelde, G. Van der Plas, P. Marchal, and
E. Beyne, “Numerical and experimental characterization of the thermal behavior
of a packaged dram-on-logic stack,” in Proc. IEEE Electronic Components and
Technology Conference (ECTC), 2012, pp. 1081–1088.

[25] D. Brunina, D. Liu, and K. Bergman, “An energy-efficient optically connect-
ed memory module for hybrid packet- and circuit-switched optical networks,”
IEEE J. of Selected Topics in Quantum Electronics, vol. 19, no. 2, pp. 3 700 407–
3 700 407, 2013.

[26] Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A. Mickelson,
R. Joseph, M. Vachharajani, B. Schwartz, and Y. Sun, “Reliability modeling
and management of nanophotonic on-chip networks,” IEEE Trans. on Very Large
Scale Integration (VLSI) Systems, vol. 20, no. 1, pp. 98–111, 2012.

[27] S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood-Droz, C. B. Poitras,
A. B. Apsel, and M. Lipson, “Wide temperature range operation of micrometer-
scale silicon electro-optic modulators,” Optics letters, vol. 33, no. 19, pp. 2185–
2187, 2008.

[28] S. Hu, Y. Hoe, H. Li, D. Zhao, J. Shi, Y. Han, K. H. Teo, Y. Z. Xiong,
J. He, X. Zhang, M. Je, and M. Madihian, “A thermal isolation technique using
through-silicon vias for three-dimensional ics,” IEEE Trans. Electron Devices,
vol. 60, no. 3, pp. 1282–1287, 2013.

[29] P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V.
Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable mul-
tiplexing devices based on silicon microring resonators,” Opt. Express, vol. 18,
no. 10, pp. 9852–9858, May 2010.

147



[30] R. Havemann and J. Hutchby, “High-performance interconnects: an integration
overview,” Proc. IEEE, vol. 89, no. 5, pp. 586–601, May 2001.

[31] M. Bohr, “Interconnect scaling-the real limiter to high performance ULSI,” in
Proc. International Electron Devices Meeting, 1995, pp. 241–244.

[32] J. Meindl, J. Davis, P. Zarkesh-Ha, C. Patel, K. Martin, and P. Kohl, “Inter-
connect opportunities for gigascale integration,” IBM Journal of Research and
Development, vol. 46, no. 2.3, pp. 245–263, Mar. 2002.

[33] S. Borkar, N. Jouppi, and P. Stenstrom, “Microprocessors in the era of terascale
integration,” in Proc. Design, Automation Test in Europe Conference Exhibition,
2007, pp. 1–6.

[34] S. Souri, K. Banerjee, A. Mehrotra, and K. Saraswat, “Multiple Si layer IC-
s: motivation, performance analysis, and design implications,” in Proc. Design
Automation Conference, 2000, pp. 213–220.

[35] K. Banerjee, S. Souri, P. Kapur, and K. Saraswat, “3-D ICs: a novel chip de-
sign for improving deep-submicrometer interconnect performance and systems-
on-chip integration,” Proc. IEEE, vol. 89, no. 5, pp. 602–633, May 2001.

[36] E. Colgan, B. Furman, M. Gaynes, W. Graham, N. LaBianca, J. Magerlein,
R. Polastre, M.-B. Rothwell, R. Bezama, R. Choudhary, K. Marston, H. Toy,
J. Wakil, J. Zitz, and R. Schmidt, “A practical implementation of silicon mi-
crochannel coolers for high power chips,” IEEE Trans. on Components and Pack-
aging Technologies, vol. 30, no. 2, pp. 218–225, June 2007.

[37] S. G. Kandlikar, “High flux heat removal with microchannelsa roadmap of chal-
lenges and opportunities,” Heat Transfer Engineering, vol. 26, no. 8, pp. 5–14,
2005.

[38] T. Lin and S. G. Kandlikar, “An experimental investigation of structured rough-
ness effect on heat transfer during single-phase liquid flow at microscale,” J. Heat
Transfer, vol. 34, Oct 2012.

[39] S. Isaacs, Y. J. Kim, A. McNamara, Y. Joshi, Y. Zhang, and M. Bakir, “Two-
phase flow and heat transfer in pin-fin enhanced micro-gaps,” in Proc. IEEE
Intersociety Conference on Thermal and Thermomechanical Phenomena in Elec-
tronic Systems (ITherm), 2012, pp. 1084–1089.

[40] S. Isaacs, Y. Joshi, Y. J. Kim, Y. Zhang, and M. Bakir, “Two-phase flow and
heat transfer in pin-fin enhanced micro-gaps with non-uniform heating,” in Proc.
International Conference on Micro and Nanoscale Heat and Mass Transfer, 2013.

[41] B. Agostini, J. R. Thome, M. Fabbri, B. Michel, D. Calmi, and U. Kloter,
“High heat flux flow boiling in silicon multi-microchannels ?part i: Heat transfer
characteristics of refrigerant {R236fa},” International Journal of Heat and Mass
Transfer, vol. 51, no. 21-22, pp. 5400 – 5414, 2008.

148



[42] V. Sahu, Y. Joshi, and A. Fedorov, “Hybrid solid state/fluidic cooling for hotspot
removal,” in Proc. IEEE Intersociety Conference on Thermal and Thermome-
chanical Phenomena in Electronic Systems, May 2008, pp. 626–631.

[43] A. A. Zhukauskas, Heat Transfer from Tubes in Cross Flow, Advances in Heat
Transfer. New York: Academic Press, 1972.

[44] B. E. Short, P. E. Raad, and D. C. Price, “Performance of pin fin coldwalls con-
structed of cast aluminum: Part I: Friction factor correlations,” J. Thermophys.
Heat Transfer, vol. 16, pp. 389–396, Aug. 2002.

[45] Y. Civale, M. Gonzalez, D. Tezcan, Y. Travaly, P. Soussan, and E. Beyne, “A
novel concept for ultra-low capacitance via-last TSV,” in Proc. IEEE Interna-
tional 3D Systems Integration Conference (3DIC), Nov. 2010, pp. 1–4.

[46] S. Ndao, Y. Peles, and M. K. Jensen, “Multi-objective thermal design optimiza-
tion and comparative analysis of electronics cooling technologies,” International
J. of Heat and Mass Transfer, vol. 52, no. 19, pp. 4317 – 4326, Sept. 2009.

[47] A. Kosar, C. Mishra, and Y. Peles, “Laminar flow across a bank of low aspect
ratio micro pin fins,” Journal of Fluids Engineering, vol. 127, no. 3, pp. 419–430,
Jul. 2005.

[48] P. Thadesar and M. Bakir, “Novel photo-defined polymer-enhanced through-
silicon vias for silicon interposers,” IEEE Trans. Compon., Packag., and Manuf.
Technol., vol. 3, no. 7, pp. 1130–1137, July 2013.

[49] C. Karnfelt, C. Tegnander, J. Rudnicki, J. Starski, and A. Emrich, “Investiga-
tion of parylene-C on the performance of millimeter-wave circuits,” IEEE Trans.
Microw. Theory Tech., vol. 54, no. 8, pp. 3417–3425, Aug. 2006.

[50] Y. Zhang, C. King, J. Zaveri, Y. J. Kim, V. Sahu, Y. Joshi, and M. Bakir,
“Coupled electrical and thermal 3D IC centric microfluidic heat sink design and
technology,” in Proc. IEEE Electronic Components and Technology Conference
(ECTC), 2011, pp. 2037–2044.

[51] A. Jourdain, S. Stoukatch, P. De Moor, and W. Ruythooren, “Simultaneous
Cu-Cu and compliant dielectric bonding for 3D stacking of ICs,” in Proc. IEEE
International Interconnect Technology Conference, Jun. 2007, pp. 207–209.

[52] C. King, D. Sekar, M. Bakir, B. Dang, J. Pikarsky, and J. Meindl, “3D stack-
ing of chips with electrical and microfluidic I/O interconnects,” in Proc. IEEE
Electronic Components and Technology Conference, May 2008, pp. 1–7.

[53] L. Yu, F. E. Tay, G. Xu, B. Chen, M. Avram, and C. Iliescu, “Adhesive bonding
with SU-8 at wafer level for microfluidic devices,” in J. of Physics: Conference
Series, vol. 34, no. 1, 2006, p. 776.

149



[54] M. Shimbo, K. Furukawa, K. Fukuda, and K. Tanzawa, “Silicon-to-silicon direct
bonding method,” J. of Applied Physics, vol. 60, no. 8, pp. 2987–2989, 1986.

[55] A. Del Campo and C. Greiner, “SU-8: a photoresist for high-aspect-ratio and
3D submicron lithography,” J. of Micromechanics and Microengineering, vol. 17,
no. 6, p. R81, 2007.

[56] Z. Xue and H. Qiu, “Integrating micromachined fast response temperature sensor
array in a glass microchannel,” Sensors and Actuators A: Physical, vol. 122, no. 2,
pp. 189 – 195, 2005.

[57] A. Dembla, Y. Zhang, and M. S. Bakir, “Fine pitch TSV integration in silicon
micropin-fin heat sinks for 3D ICs,” in Proc. IEEE International Interconnect
Technology Conference (IITC), 2012, pp. 1–3.

[58] D. Sekar, C. King, B. Dang, T. Spencer, H. Thacker, P. Joseph, M. Bakir, and
J. Meindl, “A 3D-IC technology with integrated microchannel cooling,” in Proc.
IEEE International Interconnect Technology Conference, Jun. 2008, pp. 13–15.

[59] Y. Zhang, A. Dembla, and M. Bakir, “Silicon micropin-fin heat sink with in-
tegrated TSVs for 3-D ICs:tradeoff analysis and experimental testing,” IEEE
Trans. Compon., Packag., Manuf. Technol., vol. PP, no. 99, pp. 1–1, 2013.

[60] Y. Zhang and M. Bakir, “Independent interlayer microfluidic cooling for hetero-
geneous 3D IC applications,” Electronics Letters, vol. 49, no. 6, pp. 404–406,
2013.

[61] D. Geer, “Chip makers turn to multicore processors,” Computer, vol. 38, no. 5,
pp. 11–13, May 2005.

[62] Y. Zhang, L. Zheng, and M. S. Bakir, “Tier-independent microfluidic cooling
for heterogeneous 3D ICs with nonuniform power dissipation,” in Proc. IEEE
International Interconnect Technology Conference (IITC), 2013, pp. 1–3.

[63] K. Shakeri and J. Meindl, “Temperature variable supply voltage for power re-
duction,” in Proc. IEEE Computer Society Annual Symposium, 2002, pp. 64–67.

[64] M. Pedram and S. Nazarian, “Thermal modeling, analysis, and management in
vlsi circuits: Principles and methods,” Proceedings of the IEEE, vol. 94, no. 8,
pp. 1487–1501, Aug 2006.

[65] Y. Zhang, L. Zheng, and M. Bakir, “3-D stacked tier-specific microfluidic cooling
for heterogeneous 3-D ICs,” IEEE Trans. Compon., Packag., Manuf. Technol.,
vol. PP, no. 99, pp. 1–1, 2013.

[66] R. Ho, P. Amberg, E. Chang, P. Koka, J. Lexau, G. Li, F. Liu, H. Schwet-
man, I. Shubin, H. Thacker, X. Zheng, J. Cunningham, and A. Krishnamoorthy,
“Silicon photonic interconnects for large-scale computer systems,” IEEE Micro,
vol. 33, no. 1, pp. 68–78, Jan 2013.

150



[67] C. Holzwarth, J. Orcutt, H. Li, M. Popovic, V. Stojanovic, J. Hoyt, R. Ram, and
H. I. Smith, “Localized substrate removal technique enabling strong-confinement
microphotonics in bulk si cmos processes,” in Proc. Conference on Laser and
Electro-Optics, May 2008, pp. 1–2.

[68] P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham,
A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack
resonators with ultralow tuning power,” Opt. Express, vol. 18, no. 19, pp. 20 298–
20 304, Sep 2010.

[69] Y. Zhang, H. Oh, and M. Bakir, “Within-tier cooling and thermal isolation
technologies for heterogeneous 3D ICs,” in Proc. IEEE International Conference
on 3D System Integration (3DIC), 2013, pp. 1–6.

[70] J. Xie and M. Swaminathan, “Electrical-thermal co-simulation of 3d integrat-
ed systems with micro-fluidic cooling and joule heating effects,” IEEE Trans.
Compon., Packag., and Manuf. Technol., vol. 1, no. 2, pp. 234–246, Feb 2011.

[71] JEDEC. Jedec standard for wide i/o single data rate. JEDEC. [Online].
Available: http://www.jedec.org/standards-documents/docs/jesd229

[72] C. Zhang, H. S. Yang, and M. Bakir, “Highly elastic gold passivated mechanically
flexible interconnects,” IEEE Trans. Compon., Packag., and Manuf. Technol.,
vol. 3, no. 10, pp. 1632–1639, Oct 2013.

151


