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2.1.1 Lévy-Khintchine Representation and Lévy-Itô Decomposition 12
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SUMMARY

We derive call-price and implied volatility asymptotic expansions, in time to

maturity, for a selection of exponential Lévy models. We consider asset-price models

whose log returns structure is a Lévy process, i.e. processes of the form (Lt + σWt)t≥0,

where L = (Lt)t≥0 is a pure-jump Lévy process in the domain of attraction of a stable

random variable, where W = (Wt)t≥0 is a standard Brownian motion independent of

L, and where σ ≥ 0.

Call-price asymptotics for in-the-money (ITM) and out-of-the-money (OTM) op-

tions are extensively covered in the literature; however, at-the-money (ATM) call-

price asymptotics under exponential Lévy models are relatively new.

In this thesis, we consider two main problems. First, under some relatively minor

assumptions, we prove the first-order call-price and implied volatility asymptotics

when L is a very general Lévy model. More precisely, when L is in the domain of

attraction of a stable random variable. Second, we reconsider the case where L is a

CGMY process. In this case, we use the Lipton-Lewis formula to derive second-order

call-price asymptotics. We also correct and reprove a first-order asymptotic result

that appears in the literature.

For the first problem, when σ = 0, new orders of convergence are discovered which

show a much richer structure than was previously considered. Concretely, we show

that in this case the rate of convergence can be of the form t1/α`(t) where ` is a slowly

varying function. We also give an example of a Lévy model exhibiting this new type

of behavior where ` is not asymptotically constant.

When σ 6= 0, we show that the Brownian component is the dominant term in the

asymptotic expansion of the call-price. Under more general conditions on L (even

x



removing the requirement of L to be in the domain of attraction of a stable random

variable), the first-order call-price asymptotics is shown to be of the order
√
t.

For the second problem where we consider the CGMY process, call-price asymp-

totics are already known to third order. Up until now, the only tools available for

proving the second and third-order asymptotics were measure transformation tech-

niques that involved very technical estimations. In the last chapter, we give a new

method that relies on the Lipton-Lewis (LL) formula. Using this formula guarantees

that we can estimate the call-price asymptotics using only the characteristic function

of the Lévy process. While this method does not provide a less technical approach, it

is novel and is promising for obtaining second-order call-price asymptotics and beyond

for ATM options in a more general class of Lévy processes.
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CHAPTER I

INTRODUCTION

The popularity of the Black-Scholes model belies its ability to describe true market

dynamics. The weaknesses of the Black-Scholes model are well-known and well doc-

umented. Empirically, implied volatility is not constant across strikes, as is assumed

in the Black-Scholes model, and log-returns are not normally distributed.

Consider the foreign exchange (FX) market. Empirically, there is a premium

attached to both out-of-the-money (OTM) puts and calls. Recall that FX options

(calls and puts) are contracts that confer on the holder the right but not the obligation

to exchange one currency for another at a predefined exchange rate (called the strike)

at a certain date in the future (called the expiration date). Additional information

about the mechanics and conventions for FX options can be found in [11]. The

premium attached to OTM calls and puts implies higher implied volatilities for OTM

puts and calls than for at-the-money (ATM) puts and calls. The higher implied

volatilities gives a convex shape to the volatility surface, and this is referred to as the

volatility smile (see [18] and [11]).

The Black-Scholes model naturally underestimates the risk that exists in the mar-

ket and tends to produce option prices that are too low. The so-called tail events are

not given adequate weight in the Black-Scholes market; fundamentally, this is due to

the exponentially small tails of the normal distribution.

There are a few natural alternatives to the traditional Black-Scholes model, and

let us consider some of them. In the Black-Scholes model, one assumes that the asset

model S = (St)t≥0 satisfies the stochastic differential equation

dSt
St

= µdt+ σdWt, (1.1)
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where µ and σ > 0 are constants and (Wt)t≥0 is a standard Brownian motion. Solving

(1.1) gives for each t > 0

St = S0e

(
µ−σ

2

2

)
t+σWt . (1.2)

We know the assumption that σ is constant is empirically incorrect, so we might look

at changing it.

First, we could make the volatility structure richer (albeit still deterministic). This

idea was introduced by Dupire in his work on local volatility models in [18]. In local

volatility models, we assume that σ := σ (S, t) and µ := µ(t). That is, we assume

that the current volatility levels are a deterministic function of both the current asset

price level S and the current time t,

dSt
St

= µ(t)dt+ σ (S, t) dWt.

While local volatility models lend themselves to simple computations and recover

market volatilities exactly, they predict volatility dynamics that can be completely

contrary to observed phenomenon (see e.g. [19], [18], [32]).

Incorporating randomness into the volatility component is a more realistic way

to inject more realistic smile dynamics into our model. These are the stochastic

volatility models. Stochastic volatility models are most easily described as a system

of stochastic differential equations, e.g.

dSt = µtStdt+ σtStdW
(1)
t

dσ = θ (σ, t) dt+ υ (σ, t) dW
(2)
t ,

where
(
W

(1)
t

)
t≥0

and
(
W

(2)
t

)
t≥0

are standard Brownian motions with correlation

structure given via

E
[
W

(1)
t W

(2)
t

]
= ρt.

A classic and widely-used stochastic volatility model is the Stochastic Alpha, Beta,

2



Rho (SABR) model which has stochastic differential equation

dFt = σtF
β
t dW

(1)
t

dσt = ασtdW
(2)
t ,

where 0 ≤ β ≤ 1, α ≥ 0, and W (1) and W (2) are as above. While stochastic volatility

models are capable of very closely reproducing dynamics similar to those observed in

the market, they don’t reproduce the observed smile values exactly. In practice, they

can also require difficult computation and analysis.

Local volatility and stochastic volatility models are outside of the scope of this

thesis, so we leave further discussion of their advantages and disadvantages to the

interested reader.

Yet another way to change the Black-Scholes model, and the one that we are

chiefly concerned with in this thesis, is to add a jump component to the Black-Scholes

stochastic differential equation (1.1). We will do so by considering a Lévy process

X = (Xt)t≥0, which as is well-known can be represented as an independent sum

Xt = bt+ σWt + Lt,

where b ∈ R, σ ≥ 0, W = (Wt)t≥0 is a standard Brownian motion, and L = (Lt)t≥0 is

a pure-jump Lévy process. The corresponding asset price process S = (St)t≥0 is then

given via

St = S0e
Xt = S0e

bt+σWt+Lt .

There are several advantages and disadvantages of using this model. These are dis-

cussed nicely in [12], and we recount some of their discussion here.

Most of the advantages of using Lévy-based models revolve around return struc-

ture and volatility dynamics. First, Lévy models can provide the heavy tails that

are observed in the markets while retaining stationarity. This alleviates the light-tail

disadvantage in the traditional Black-Scholes model. Next, Lévy models do generate
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implied volatility skews. These volatility surfaces also steepen as time to maturity

decreases, another empirical phenomenon observed from the market. Finally, under

Lévy models the market is incomplete. So, for example, options cannot be perfectly

replicated using only the underlying asset.

There are some significant drawbacks to using Lévy based models. Perhaps the

most severe disadvantage is the nonexistence of closed-form option-pricing formulas

except in the simplest of cases. We must rely on asymptotics for price and volatility

behavior. This limits us to either near-expiry or long-term options or even extreme

strike regimes. Also, there is no clear hedging or replication strategy. Often, we

must solve very difficult portfolio optimization problems or deal with very rough,

no-arbitrage bounds on prices.

Different techniques are required depending on whether the options considered

are at-the-money (ATM) or not ATM (or non-ATM). By at-the-money, we roughly

mean that the strike price equals the current asset price. In FX markets, there are

two different conventions for ATM, at-the-money forward and delta-neutral straddle.

At-the-money forward means that the ATM strike is the current forward price (as

opposed to the spot price). Delta-neutral straddle is defined as the strike that gives

a straddle with net zero delta (a straddle is transaction where one purchases a call

and a put at the same strike price). We choose to ignore these conventions here for

clarity, though the interested reader can consult [11] for additional information.

Previously, option prices under Lévy models close to expiration have received a

great deal of attention. The first significant work was done with options that are

not ATM in 2002 by Boyarchenko and Levendorksii (see [6]). While important, these

cases are not the focus of this thesis. For a good background on the non-ATM case,

see the works of Figueroa-López and Forde in [22] and Tankov in [52].

After the developments in non-ATM, some attention was given to the ATM case.

Some of the earliest work was done concurrently in 2010 by Tankov, Figueroa-López
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and Forde, and Muhle-Karbe and Nutz in [52], [22], and [44], respectively. We discuss

next some of their results. In what follows, we use d with a subscript (e.g. d1) to

denotes a generic (but known) constant that might change from formula to formula.

Tankov obtained the asymptotic behavior in a few cases. In the finite varia-

tion case (i.e.
∫
|x|≤1
|x| ν(dx) <∞, where ν is the Lévy measure of the Lévy process

(Xt)t≥0), he shows that the ATM call-option price function, denoted by C, has asymp-

totic behavior

C(t) = S0d1t+ o(t),

as t ↓ 0, where d1 = max
(∫

(ex − 1)+ ν(dx),
∫

(1− ex)+ ν(dx)
)
. He also obtained

ATM call-price asymptotics for a stable-like case where he assumes that the process

has the characteristic exponent

iγu− |u|α f(u),

with 1 < α < 2, γ ∈ R, and where f is a continuous bounded function such that

lim
u→±∞

f (u) = c±,

with 0 < c± < ∞. Under these assumptions, the first-order call-price asymptotics

are shown to be of the form

C(t) = S0d1t
1/α + o

(
t1/α
)
,

as t ↓ 0, where d1 is an explicit constant depending only on α. Finally, for Lévy

processes with finite second moment, the ATM call-price asymptotics are given by

C(t) = S0d1

√
t+ o

(√
t
)
,

as t → 0. Muhle-Karbe and Nutz studied the asymptotics for a wide class of Lévy

processes, for example, for Lévy processes having Lévy measure with stable-like small

jumps, i.e. the Lévy measure is of the form(
f(x)

|x|1+α−
1(−∞,0)(x) +

f(x)

x1+α+
1(0,∞)(x)

)
dx,
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where f ≥ 0 is a Borel function such that

lim
x↓0

f(x) = f+ and lim
x↑0

f(x) = f−,

with also f(x) − f+ = O(x) as x ↓ 0 and f(x) − f− = O(x) as x ↑ 0. Under these

assumptions, they proved that if α := α+ ∨ α− ∈ (1, 2), then the call price has

asymptotics

C(t) = d1t
1/α + o

(
t1/α
)
,

as t ↓ 0, where d1 := d1 (α±, f±). Moreover, if α+ = α− = 1 and f+ = f−, then the

call-price asymptotics are

C(t) =
1

2
(f+ + f−) t |log t|+ o (t |log t|) ,

as t ↓ 0.

Figueroa-López and Forde found the first-order ATM asymptotics for CGMY pro-

cesses in [22]. CGMY processes are Lévy processes with characteristic triplet (b, 0, ν)

where ν is the Lévy measure

ν (dx) =

(
CeGx

|x|1+Y
1(−∞,0)(x) +

Ce−Mx

x1+Y
1(0,∞)(x)

)
dx,

where Y ∈ (0, 2), M > 1, and G,C > 0. For this process, without Brownian

component, the call-price asymptotics are

C(t) = d1t
1/Y + o(t1/Y ),

where d1 := d1 (C, Y ). In the case where an independent Brownian component is

added to the CGMY process, the asymptotics take the familiar form

C(t) =
σ√
2π

√
t+ o

(√
t
)
.

Figueroa-López, Houdré, and Gong in [23] expanded the first-order asymptotics up

to third-order asymptotics for the CGMY process, both with and without Brownian

6



component. In the absence of a Brownian component, they showed that

C(t) = d1t
1/Y + d2t+


d31t

2− 1
Y + o

(
t2−

1
Y

)
, if 1 < Y ≤ 3

2

d32t
2/Y + o

(
t2/Y

)
, if 3

2
≤ Y < 2.

In the case with nonzero Brownian component, the third-order asymptotics become

C(t) = d1

√
t+ d2t

3−Y
2 +


d31t+ o (t) , if 1 < Y ≤ 3

2

d32t
5
2
−Y + o

(
t

5
2
−Y
)
, if 3

2
≤ Y < 2.

Finally, Figueroa-López, Gong, and Houdré in [24] obtained second-order asymp-

totics for a class of “tempered” Lévy processes, i.e. Lévy processes with Lévy measure

s(x) = |x|−Y−1 q(x),

where 1 < Y < 2 and where q satisfied certain decay conditions at the origin (along

with several other technical conditions). In this case, the second-order call-price

asymptotics satisfy

C(t) = d1t
1/Y + d2t+ o(t),

without Brownian component and

C(t) = d1

√
t+ d2t

3−Y
2 + o

(
t

3−Y
2

)
,

with Brownian component.

In this thesis, we obtain two main results concerning call-price asymptotics. Pre-

viously, for Lévy processes (Xt)t≥0 such that

EesXt <∞,

for some s > 1, the only known first-order rate of covergence was t1/α, for some

1 < α < 2. We show that in a more general class of Lévy processes, it is possible

to have different rates of convergence. Namely, if ` is a slowly varying function at
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infinity, then the rate of convergence in the first-order can be of the form t1/α` (1/t).

This order of convergence was not previously exhibited.

Next, since a Lévy process is completely and uniquely described by its character-

istic function, it seeems that some justification for second-order results in the CGMY

case should follow from Fourier arguments; however, obtaining second-order asymp-

totics, even if only formally, using only the characteristic function has so far resisted

discovery. We show that the second-order terms appear naturally from the charac-

teristic function.

This thesis is divided into six chapters. The current chapter contains the intro-

duction. Chapter II gives a brief overview of Lévy processes and exponential Lévy

models. Chapter III covers stable domains of attraction and regular variation in

order to consider classes of Lévy processes more general than those currently consid-

ered in the literature. Chapter IV gives the first-order behavior of this general class

of Lévy processes and considers a specific example of this new behavior. Chapter V

discusses the second-order CGMY result mentioned earlier including a discussion of

the Lipton-Lewis option pricing formula. Finally, in Chapter VI we make conclusions

and summarize our work.
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CHAPTER II

EXPONENTIAL LÉVY MODELS

In order to properly study the market dynamics of exponential Lévy processes, we

first need a strong understanding of Lévy processes themselves. In this section, we

define Lévy processes and introduce some of their basic properties. We discuss the two

main approaches to Lévy processes, namely via the Lévy-Khintchine representation

and via the Lévy-Itô decomposition. We then discuss measure transformations for

Lévy processes. Finally, we present the notion of exponential Lévy models and cover

Carr and Madan’s pricing formula.

2.1 Lévy Processes

We start with some background on Lévy processes following the expositions in [50],

[12], and [2]. Throughout, let (Ω,F ,P) be a complete probability space.

Definition 2.1. A stochastic process (Xt)t≥0 on (Ω,F ,P) is a Lévy process if the

following conditions are satisfied.

(i) X0 = 0 a.s.

(ii) For any n ∈ N and any increasing sequence 0 ≤ t0 < t1 < · · · < tn, the

random variables Xt0 , Xt1−Xt0 , · · · , Xtn−Xtn−1 are independent (independent

increments).

(iii) For any s, t ≥ 0, the distribution of Xs+t−Xs does not depend on s (stationary

increments).

(iv) For every ε > 0 and t ≥ 0, we have lims→0 P (|Xt+s −Xt| > ε) = 0 (stochastic

continuity).
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(v) There exists Ω0 ∈ F with P (Ω0) = 1 such that for every ω ∈ Ω0, Xt(ω) is

right-continuous for t ≥ 0 and has left limits for t > 0.

We also recall a few basic definitions.

Definition 2.2. A filtration on the probability space (Ω,F ,P) is a collection of σ-

fields, usually denoted (Ft)t≥0, such that

Fs ⊂ Ft ⊂ F ,

for every 0 ≤ s ≤ t. A σ-field is right continuous if for every t ≥ 0,

Ft =
⋂
s>t

Fs.

Definition 2.3. Let B denote the Borel σ-field on Rd and let X be a random variable

on our probability space (Ω,F ,P).

(i) The σ-field generated by X, denoted σ (X), is defined as

σ (X) =
{
X−1 (D) : D ∈ B

}
,

where X−1 (D) = {ω ∈ S : X (ω) ∈ D}.

(ii) If (Xt)t≥0 is a stochastic process on the same probability space, then for t ≥ 0

σ (Xs, s ≥ t)

is the smallest σ-field such that each Xs is measurable for s ≥ t, and we call it

the σ-field generated by (Xs)s≥t.

In certain circumstances, we may consider the same stochastic process under dif-

ferent probability measures, and we find it useful to use notation to distinguish these

two processes. In particular, if we consider a stochastic process (Xt)t≥0 on two differ-

ent probability spaces (Ω1,F1,P1) and (Ω2,F2,P2), then we denote the first process

as
(
(Xt)t≥0 ,P1

)
and the second as

(
(Xt)t≥0 ,P2

)
.
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We can view Lévy processes in a different way by identifying processes with their

sample paths that are right-continuous with left limits, i.e. cádlág functions. More

concretely, let D
(
[0,∞),Rd

)
be the space of right-continuous functions with left limits

from [0,∞) into Rd. We let (Xt)t≥0 be the canonical process Xt(ω) = ω(t) defined

on Ω = D
(
[0,∞),Rd

)
with the σ-field FD = σ (Xs, s ≥ 0) and the right-continuous

filtration Ft = ∩s>tσ (Xu, u ≤ s). The Lévy process
(
(Xt)t≥0 ,P

)
induces a probability

measure PD on (D,FD) such that
(
(Xt)t≥0 ,P

)
is identical in law to

(
(Xt)t≥0 ,P

D
)

.

For what follows, we use
(
(Xt)t≥0 ,P

)
to refer to the Lévy process where P is a

probability measure on
(
D,FD

)
. The interested reader can find Chapter 4, Section

19 of [50] for more information on the natural topology and metric associated with(
D,FD

)
.

To further understand Lévy processes, we also need to introduce the notion of

infinite divisibility. For a probability distribution µ, let µ∗n denote the n-fold convo-

lution of µ with itself, where the convolution of two Borel measures µ1 and µ2 on Rd

is defined for each Borel set D ⊂ Rd as

(µ1 ∗ µ2) (D) :=

∫ ∫
Rd
×Rd

1D (x+ y)µ1(dx)µ2(dy).

We now define infinite divisibility.

Definition 2.4. A probability measure µ on Rd is infinitely divisible if for every

n ∈ N, there exists a probability measure µn on Rd such that µ = µ∗nn .

We give a probabilistic definition of infinite divisibility. Namely, let X be a random

variable on our probability space (Ω,F ,P).

Definition 2.5. A random variable X is infinitely divisible if for each n ∈ N, there ex-

ist independent and identically distributed (i.i.d.) random variablesX
(n)
1 , X

(n)
2 , . . . , X

(n)
n

such that

X
L
= X

(n)
1 + · · ·+X(n)

n

where
L
= denotes equality in law.

11



It is easy to see that if (Xt)t≥0 is a Lévy process, then Xt is infinitely divisible for

each t ≥ 0 since

Xt
L
=

n−1∑
i=0

(
X t(i+1)

n

−X ti
n

)
.

The converse is also true. Specifically, we have the following relationship.

Proposition 2.6. Let µ be an infinitely divisible distribution. Then, there exists a

Lévy process (Xt)t≥0 such that the distribution of X1 is µ. Conversely, if (Xt)t≥0 is a

Lévy process, then Xt is infinitely divisible for each t ≥ 0.

There are a few examples of well-known and foundational Lévy processes that will

serve as building blocks for the Lévy-Itô decomposition and our intuitive understand-

ing of Lévy processes:

(i) A Poisson process (Nt)t≥0 with intensity λ > 0, i.e for each t ≥ 0, Nt
L
=

Poisson(λt).

(ii) A compound Poisson process (Lt)t≥0 where for each t ≥ 0, Lt =
∑Nt

k=1 Yk where

(Yk)k≥1 is a sequence of i.i.d. random variables (representing the distribution

of the jump sizes) and N = (N)t≥0 is a Poisson process with intensity λ > 0

independent of (Yk)k≥1.

(iii) A Brownian motion (Bt)t≥0 on R with drift µ ∈ R and variance σ2, i.e. for each

t ≥ 0, Bt
L
= N (µt, σ2t).

2.1.1 Lévy-Khintchine Representation and Lévy-Itô Decomposition

There are two main tools at our disposal for characterizing and understanding Lévy

processes: the Lévy-Khintchine representation and the Lévy-Itô decomposition. In

this thesis, we mainly use the Lévy-Khintchine representation, but we will briefly use

the Lévy-Itô decomposition to view the Lévy-Khintchine representation in a prob-

abilistic way. We denote the inner product on Rd by 〈·, ·〉, and µ̂ is the Fourier

12



transform of a probability measure µ on Rd. For the results in this thesis, we often

only need results for Lévy processes on R; however, for the sake of completeness and

whenever sufficiently straightforward, we will state results on Rd.

Theorem 2.7. (i) If µ is an infinitely divisible probability measure on Rd, then for

any s ∈ Rd

µ̂(s) =

∫
Rd

ei〈s,x〉µ(dx)

= exp

(
i 〈b, s〉 − 1

2
〈s,Σs〉+

∫
Rd

(
ei〈s,x〉 − 1− i 〈s, x〉1{|x|≤1}

)
ν(dx)

)
,

(2.1)

where b ∈ Rd, Σ is a symmetric nonnegative-definite d × d matrix, and ν is a

Borel measure on Rd satisfying

ν ({0}) = 0 and

∫
Rd

(
|x|2 ∧ 1

)
ν(dx) <∞. (2.2)

(ii) The representation of µ̂ above by b, Σ, and ν is unique.

(iii) Conversely, if b ∈ Rd, Σ is a symmetric nonnegative-definite d×d matrix, and ν

is a measure satisfying (2.2), then there exists an infinitely divisible distribution

whose characteristic function is given by (2.1).

Definition 2.8. The triplet (b,Σ, ν) is called the generating triplet of µ, b is called

the drift, Σ is the Gaussian covariance matrix, and ν is the Lévy measure.

A small corollary to Theorem 2.7 (e.g. Corollary 8.3 in [50]) gives that if (Xt)t≥0

is a Lévy process, then it has generating triplet (tb, tΣ, tν) where b ∈ Rd, Σ is a

Gaussian covariance matrix (i.e. Σ is symmetric and positive-semidefinite), and ν is

a Lévy measure. That is, for each t ≥ 0, Xt has characteristic function

µ̂t(s) = E
[
eisXt

]
= exp

(
it 〈b, s〉 − 1

2
t 〈s,Σs〉+ t

∫
Rd

(
ei〈s,x〉 − 1− i 〈s, x〉1{|x|≤1}

)
ν(dx)

)
.

(2.3)
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Equation (2.1) can be interpreted probabilistically via the Lévy-Itô decomposition.

We can view a Lévy process (Xt)t≥0 as the following sum of independent components

X
L
= W + Y + L,

where W = (Wt)t≥0 is a Brownian motion with drift, Y = (Yt)t≥0 is a compound Pois-

son process, and L = (Lt)t≥0 is a square integrable, pure jump martingale. Roughly,

the process Y includes all large jumps and the process L includes all of the small

jumps. We can relate each piece of the Lévy-Itô decomposition to a corresponding

piece of the Lévy-Khintchine representation. Recalling (2.3), for each t > 0, the

random variable Wt has Fourier transform

exp

(
it 〈b, s〉 − 1

2
t 〈s,Σs〉

)
,

the random variable Yt has Fourier transform

exp

(
t

∫
|x|>1

(
ei〈s,x〉 − 1

)
ν (dx)

)
,

and the random variable Lt has Fourier transform

exp

(
t

∫
|x|≤1

(
ei〈s,x〉 − 1− i 〈s, x〉

)
ν (dx)

)
.

More detail can be found in Chapter 4 of [50].

2.1.2 Densities of Lévy Processes

Lévy processes are simultaneously convenient and elusive. While they possess densi-

ties under very mild conditions, these distributions lack simple representations ( e.g.

see [50] or [3] ). We start with a result from [50] and [12].

Proposition 2.9. Let (Xt)t≥0 be a Lévy process on (Ω,F ,P) with Lévy triplet (b, σ2, ν).

(i) If σ2 > 0 or ν(R) =∞, then for each t > 0, Xt has a continuous density p(t, ·)

on R.
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(ii) Suppose that the Lévy measure is such that, for some α ∈ (0, 2),

lim inf
r↓0

∫ r
−r x

2ν(dx)

r2−α > 0.

Then for each t > 0, Xt has a density p(t, ·) ∈ C∞0 (R).

2.1.3 Moments of Lévy Processes

Lévy processes can have many different distributional properties. Some of these

properties are time-dependent and some are not. For example, the absolute continuity

of the distribution of a Lévy process on R is a time-dependent property; however,

whether or not the distribution of a Lévy process has point masses is not a time-

dependent property. The existence of certain moments of a Lévy process turns out

not to be time-dependent (see Section 23 in [50]).

This section follows Chapter 24 in [50]. A few definitions are in order.

Definition 2.10. Let g be a nonnegative measurable function on Rd. The g-moment

of a measure µ on Rd is
∫
g(x)µ(dx). Similarly, if X is an Rd-valued random variable

on (Ω,F ,P), we call E [ g (X) ] the g-moment of X.

Our main interest is when a g-moment is finite or not. The results in [50] on

g-moments of Lévy processes depend on a couple of function properties.

Definition 2.11. (i) A function on Rd is locally bounded if it is bounded on every

compact subset of Rd.

(ii) A nonnegative function g on Rd is submultiplicative if there exists a positive

constant a such that

g(x+ y) ≤ ag(x)g(y),

for every x, y ∈ Rd.

A large list of submultiplicative functions is available in [50], but we list a few of

the most used ones here for convenience.
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Proposition 2.12. Let α > 0 and γ ≥ 0. Then the following functions are submul-

tiplicative:

(i) g(x) = |x|α,

(ii) g(x) = (0 ∨ log (|x|))α,

(iii) and g(x) = |x|γ eα|x|.

For functions that are both locally bounded and submultiplicative, the finiteness

of the g-moment is not a time-dependent property.

Theorem 2.13. Let g be a locally bounded, submultiplicative function and let (Xt)t≥0

be a Lévy process on Rd with Lévy measure ν. Then, for any t > 0

E [ g (Xt) ] <∞ if and only if

∫
|x|>1

g(x)ν(dx) <∞.

We can now use our examples of submultiplicative functions to state a corollary.

Corollary 2.14. Let X = (Xt)t≥0 be a Lévy process. For the functions listed in

Proposition 2.12, the g-moments of X are either finite or infinite for all t > 0, i.e.

the g-moment property is not time dependent for the functions in Proposition 2.12.

There are g-moments whose finiteness does depend on time (e.g. for g(x) =(
1 ∧ |x|−α

)
e|x|, α > 0, see remark 25.9 in [50]); however, the finiteness of the g-

moments studied in this work are not time dependent. Indeed, we explicitly mention

a special case of Proposition 2.12.

Corollary 2.15. Let (Xt)t≥0 be a Lévy process with Lévy measure ν and let α > 0.

Then,

EeαXt <∞ for every t ≥ 0 if and only if

∫
|x|>1

eαxν(dx) <∞.
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2.2 Stable Lévy Processes

In this section, we develop the necessary machinery for working with stable random

variables and stable Lévy processes. Stable Lévy processes are natural to consider for

two important reasons. First, certain stable Lévy processes possess self-similarity in

a way similar to Brownian motion. For a Brownian motion (Wt)t≥0 on Rd and any

constant c > 0, we have

(Wct)t≥0

L
=
(
c

1
2Wt

)
t≥0

.

Similarly, for a wide subclass of stable Lévy processes (Lt)t≥0, there exists α ∈ (0, 2]

such that

(Lct)t≥0

L
=
(
c

1
αLt

)
t≥0

,

for every c > 0. Second, stable distributions are natural attractors, i.e. if X1, X2, . . .

are i.i.d. random variables in Rd and if there exist nonrandom sequences An ∈ Rd

and Bn > 0 such that

X1 +X2 + · · ·+Xn − An
Bn

,

converges in law to some random variable Z, then Z is necessarily stable (see I.6

of [53]). In particular, if X1 has finite variance, then the limiting distribution is

Gaussian.

There are many different ways to introduce stable random variables and stable

Lévy processes. We proceed using characteristic functions and following the devel-

opment in [49], [50], and [36]. We start with some definitions and then move on to

representations and properties, concentrating on stable random variables and stable

Lévy processes on R with finite mean but infinite variance.

Definition 2.16. An infinitely divisible probability measure µ on Rd is called stable

if for any a > 0, there exist b > 0 and c ∈ Rd such that

µ̂(z)a = µ̂ (bz) ei〈c,z〉.
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It is called strictly stable if for any a > 0, there exists b > 0 such that

µ̂(z)a = µ̂ (bz) .

With this definition in hand, we can give an alternate definition in terms of the

characteristic function. We will restrict our attention to stable random variables and

stable Lévy processes on R though most results are valid in Rd as well. Stable random

variables are characterized by four parameters: α, σ, β, and η.

Definition 2.17. (i) The random variable X is said to have a stable distribution

if there exist parameters α ∈ (0, 2], σ ≥ 0, −1 ≤ β ≤ 1, and η ∈ R such that X

has characteristic function

µ̂X(s) = E
[
eisX

]
=


exp

(
−σα |s|α

(
1− iβ(sgn s) tan

(
πα
2

))
+ iηs

)
, if α 6= 1

exp
(
−σ |s|

(
1 + iβ 2

π
(sgn s) ln s

)
+ iηs

)
, if α = 1,

(2.4)

and in this case, we write X ∼ Sα(σ, β, η).

(ii) A Lévy process (Xt)t≥0 on R with X1 ∼ Sα(σ, β, η) is called a stable Lévy

process.

We will always assume that the stable variable is nondegenerate, that is we will

assume that X is not distributed as Sα(0, 0, η). The parameter α is the index of

stability, and it determines the rate of decay of the tail probabilities of the stable

random variable. The parameter η is the shift parameter, and it determines the

location of the distribution on the real line; indeed, if X ∼ Sα(σ, β, η) and a ∈ R,

then the random variable X + a ∼ Sα(σ, β, η + a). The parameter β is the skewness

parameter, and it determines the level of asymmetry in the Lévy measure of X.

Specifically, any stable random variable on R has Lévy measure

ν(dx) =
1

|x|1+α

(
C+1{x>0} + C−1{x<0}

)
dx, (2.5)
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where α is the index of stability, C+, C− ≥ 0, and the parameter β is

β =
C+ − C−
C+ + C−

,

whenever C+ + C− > 0. Finally, the parameter σ is called the scale parameter.

There are many examples of stable random variables, and we give some of the

more fundamental examples here.

Example 2.18. The following are stable distributions:

(i) Gaussian distribution S2(σ, 0, η) = N (µ, 2σ2)

(ii) Lévy distribution S 1
2
(σ, 1, η) with density

( σ
2π

)1/2 1

(x− η)3/2
exp

(
− σ

2(x− η)

)
1{x>η}.

(iii) Cauchy distribution S1 (σ, 0, η) with density

1

πσ
(

1 +
(
x−η
σ

)2
) .

(iv) Symmetric α-stable Sα(σ, 0, 0) has characteristic function

exp (−σα |z|α).

In the general case of stable distributions on Rd, we can generalize (2.5) following

Proposition 3.15 in [12].

Proposition 2.19. An Rd-valued random variable Z is α-stable with 0 < α < 2 if

and only if it is infinitely divisible with characteristic triplet (b, 0, ν) and there is a

finite measure λ on Sd−1 (unit sphere of Rd), called the spectral measure of Z, such

that for every Borel set D ⊂ Rd,

ν(D) =

∫
Sd−1

∫ ∞
0

1D(rξ)
dr

r1+α
λ(dξ).
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We now give several results concerning stable random variables.

Proposition 2.20. Let X ∼ Sα(σ, β, η) with 0 < α < 2. Then

E |X|p <∞,

for any 0 < p < α, and

E |X|α =∞.

Throughout this work, we are most interested in processes which satisfy certain

moment conditions. In particular, we will require the processes and random variables

to have finite mean. In the stable case, Proposition 2.20 shows that we need to restrict

our attention to α > 1. Also, α = 2 corresponds to the Gaussian case, and overall we

need α ≤ 2. So, our focus is on stable random variables with 1 < α < 2.

Given this restriction, it is helpful to have some characterization of how the tails

of stable random variables behave (see Property 1.2.15 in [49]).

Proposition 2.21. Let X ∼ Sα(σ, β, η) with 1 < α < 2. Then

lim
x→∞

xαP (X > x) = Cα

(
1 + β

2

)
σα,

lim
x→∞

xαP (X < −x) = Cα

(
1− β

2

)
σα,

where

Cα =
1− α

Γ (2− α) cos (πα/2)
,

and Γ is Euler’s Gamma function.

2.3 Measure Transformations

For the next section, we now assume we have a filtration (F t)t≥0 along with our proba-

bility space (Ω,F ,P), so called a filtered probaility space and denoted
(
Ω,F ,P, (F t)t≥0

)
.

Quite reasonably, we might wonder when two probability measures are equivalent
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(note that the terminology mutually absolutely continuous is sometimes used in place

of equivalent). We answer this question, following closely the results in [50] and [12].

Recall that two probability measures µ1 and µ2 on a common measurable space

(Ω,F) are equivalent if the collections {D ∈ F : µ1(D) = 0} and {D ∈ F : µ2(D) = 0}

coincide. In this case we write µ1 ≈ µ2 and we denote the Radon-Nikodým derivative

of µ2 with respect to µ1 by dµ2/dµ1 and vice versa. We are now in a position to state

the main theorem of interest for us on measure transformations (see section 33 [50]).

For each t > 0,

Theorem 2.22. Let
(
(Xt)t≥0 ,P

)
and

(
(Xt)t≥0 ,P

∗) be two Lévy processes on the

filtered probability space
(
Ω,F , (F t)t≥0

)
with characteristic triplets (b, σ2, ν) and

(b∗, (σ∗)2, ν∗), respectively. Then the following statements are equivalent.

(i) P|Ft ≈ P∗|Ft for all t > 0, where we use P|Ft to denote the probability measure

P restricted to the σ-field F t.

(ii) The generating triplets satisfy

σ2 = (σ∗)2

ν ≈ ν∗

with the function ϕ defined by dν∗/dν = eϕ(x) satisfying∫ ∞
−∞

(
eϕ(x)/2 − 1

)2
ν(dx) <∞. (2.6)

If σ = 0, then we must also have

b∗ − b−
∫ 1

−1

x(ν∗ − ν)(dx) = 0.

Furthermore, when the above hold, then

d P∗|Ft
d P|Ft

= eUt
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where

Ut = ηXc
t −

η2σ2t

2
− ηbt

+ lim
ε↓0

 ∑
s≤t,|∆Xs|>ε

ϕ (∆Xs)− t
∫
|x|>ε

(
eϕ(x) − 1

)
ν(dx)

 ;

∆Xt := Xt − Xt− for t > 0; Xc
t = b + σWt, where (Wt)t≥0 is a standard Brownian

motion, is the continuous part of Xt; and η is such that

b∗ − b−
∫ 1

−1

x (ν∗ − ν) (dx) = σ2η.

Finally, the process U = (Ut)t≥0 is again a Lévy process with characteristic triplet

(bU , σU , νU) where σU = σ2η2, νU = ν◦ϕ−1, and bU = −1
2
ση2−

∫∞
−∞

(
ey − 1− y1{|y|≤1}

)
(ν◦

ϕ−1)(dy).

A very important special case of this theorem centers around the measure trans-

form where ϕ(x) = ax with a 6= 0. Following Example 33.14 in [50], if∫
ax>1

eaxν(dx) <∞,

(from Theorem 2.13 we know this is equivalent to EeaXt <∞, where the expectation

is taken with respect to P), then the measure P∗, defined as

P∗ (D) = EeXt1D, (2.7)

for any Borel set D, is well-defined.

2.4 Exponential Lévy Models

Our goal in this section is to develop the theory required to consider an asset whose

dynamics behave like
(
eXt
)
t≥0

where X = (Xt)t≥0 is a Lévy process. To this end, we

will need a couple of conditions to hold. First, in order for
(
eXt
)
t≥0

to be well-defined,

we must have an exponential moment condition for the Lévy measure. Second, in

order to avoid arbitrage, we need the existence of an equivalent martingale measure.
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To simplify, we will enforce conditions on the characteristic triplet of (Xt)t≥0 so that(
eXt
)
t≥0

is a martingale under P. More generally, we have Proposition 8.20 in [12].

Proposition 2.23. Let (Xt)t≥0 be a Lévy process with Lévy triplet (b, σ2, ν) satisfying∫
|y|≥1

eyν(dy) <∞. (2.8)

Then the process (Yt)t≥0 =
(
eXt
)
t≥0

is well-defined. Moreover, it is a martingale with

respect to its own filtration if and only if

b+
σ2

2
+

∫ ∞
−∞

(
ey − 1− y1{|y|≤1}

)
ν(dy) = 0. (2.9)

Note that the Proposition 2.23 implies that EeXt = 1 for all t ≥ 0. We are now

in a position to make the asset-price dynamics precise. For simplicity, we will always

assume that interest rates and the dividend yield are both 0. We let X = (Xt)t≥0

be a Lévy process with characteristic triplet (b, σ2, ν) satisfying (2.8) and (2.9), let

S0 > 0, and define the stock-price process (St)t≥0 =
(
S0e

Xt
)
t≥0

.

Under this model, the process S = (St)t≥0 is a martingale with respect to the

filtration of X, i.e. the filtration (F t)t≥0 defined, for each t > 0, by F t = σ (Xs, s ≤ t).

Thus, the market is arbitrage-free (since the given measure is an equivalent martingale

measure), and we can use this probability measure to estimate option prices. Recall

that if an asset has dynamics (St)t≥0 under P, an equivalent martingale measure, then

the call-option price can be found using

C(t,K) = EP
[
(ST −K)+

∣∣Ft] ,
where T is the expiration time, t is the current time, and K is the strike price.

Letting τ = T − t be the time to expiration and k = log (K/S0) be the moneyness

(note, the moneyness is 0 for at-the-money options), the Markov property for (St)t≥0

and some simple substitutions lead to the call option price

C(τ, k) = S0E
(
eXτ − ek

)
+
.

23



Notationally, it will be convenient to consider the normalized call-price function and

to use t to represent the time to maturity:

c(t, k) =
C(t, k)

S0

.

We are interested in the behavior of the function c as t ↓ 0 while k remains fixed.

2.4.1 Carr and Madan’s Option-Pricing Formula

The asymptotics of at-the-money option prices and implied volatility are the main

objects of study in this manuscript. We are looking to develop asymptotics for the

function

c(t, 0) = E
(
eXt − 1

)
+
.

To this end, we use a slightly more convenient representation of the function c due to

Carr and Madan (see [10] and [22]). We use the transformed probability measure P∗

defined in (2.7), which is given, for all Borel sets D ⊂ R, by

P∗ (D) = EeXt1D.

Carr and Madan showed the following.

Theorem 2.24. Under P∗, let E be a mean 1 exponential random variable that is

independent of (Xt)t≥0. Then,

1

S0

E (St −K)+ = P∗
(
Xt − E > log

(
K

S0

))
. (2.10)

Corollary 2.25. The normalized, at-the-money European call option price has rep-

resentation

c(t, 0) =
1

S0

E (St −K)+

=

∫ ∞
0

e−xP∗ (Xt ≥ x) dx. (2.11)

These last two results will help us in finding the first-order asymptotic behavior

of c(t, 0) as t ↓ 0.

24



CHAPTER III

STABLE DOMAINS OF ATTRACTION AND REGULAR

VARIATION

Stable random variables and their respective domains of attraction are central to

results previously discussed in the literature on short-time asymptotics for at-the-

money call-option prices, although lying beneath the surface (see e.g. [22], [23], [24],

[52], and [44]). The Lévy processes considered by those authors satisfy the relationship

Xt

t1/α
⇒ Z (3.1)

as t ↓ 0 where α ∈ (0, 2), where Z is an α-stable random variable, and where “⇒”

denotes convergence in distribution. This property is indispensable for our results on

small time-asymptotics of more general Lévy processes.

In this chapter we review some results of Mason and Maller [42] and Grabchak

[30] that characterize when (3.1) holds for general Lévy processes. We also look

at the relationship of expression (3.1) to regularly varying functions. Finally, we

present some results on the connection between regular variation and concentration

inequalities for Lévy processes.

3.1 Regular Variation

The study of domains of attraction of stable random variables in continuous time

processes requires knowledge of regular variation and slow variation. We follow closely

the work in [4] for the results on regular variation and the work in [42] and [30] for

the relationship of regular variation to stable domains of attraction.
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3.1.1 Slow Variation

First, we recall the definition of a slowly varying function and give some preliminary

results.

Definition 3.1. A nonnegative function ` defined on some neighborhood [M,∞) of

infinity (M > 0) is slowly varying at ∞ (in Karamata’s sense) if for every λ > 0, we

have

lim
x→∞

` (λx)

`(x)
= 1. (3.2)

Theorem 3.2. (Uniform Convergence Theorem) If ` is slowly varying, then (3.2)

holds uniformly on each λ-compact set in (0,∞).

Theorem 3.3. (Representation Theorem) A function ` is slowly varying if and only

if it can be written in the form

`(x) = h(x) exp

(∫ x

a

ε(u)
du

u

)
,

for x ≥ a where a > 0, h ≥ 0 is measurable and limx→∞ h(x) = h ∈ (0,∞), and ε is

such that limx→∞ ε(x) = 0.

There are many example of slowly varying functions that possess very different

behavior. For example, logarithms and constants are both slowly varying functions.

So, slowly varying functions need not be bounded (although they are always locally

bounded). Perhaps even more surprising, there exist slowly varying functions such

that

lim inf
x→∞

`(x) = 0 and lim sup
x→∞

`(x) =∞,

(the function

exp
(

(log x)1/3 cos
(

(log x)1/3
))
,

is an example). We end our discussion of slow variation with some basic facts (again

from [4]).
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Proposition 3.4. Let `, `1, and `2 be slowly varying functions. Then:

(i) The function `α is slowly varying for every α ∈ R.

(ii) The functions `1`2, `1 + `2, and (if `2(x)→∞ as x→∞) `1 ◦ `2 are all slowly

varying.

(iii) For any α > 0,

xα`(x)→∞ and x−α`(x)→ 0, (3.3)

as x→∞.

It is important to note that slowly varying functions are not closed under linear

combinations, as we can see with the function f(x) = ln (x+ 1)− ln (x).

3.1.2 Regular Variation

We now turn to the notion of regular variation and give a couple of equivalent defi-

nitions.

Definition 3.5. Let f be a positive, measurable function. We say that f is regularly

varying at ∞ if any one of the following conditions holds.

(i) The limit

lim
x→∞

f(λx)

f(x)
= g(λ) ∈ (0,∞), (3.4)

exists for every λ ∈ (0,∞).

(ii) The limit (3.4) exists for every λ ∈ S where S is either a subset of (0,∞) having

positive measure or a dense subset of (0,∞).

(iii) The limit (3.4) exists and equals g(λ) = λρ for some ρ ∈ R.
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(iv) The function f has representation

f(x) = xρ`(x), (3.5)

where ρ ∈ R and ` is slowly varying at ∞.

If any of the above hold, we write f ∈ RV ∞ρ where ρ is the real found in (3.5). We

use the notation ` ∈ RV ∞0 if the function ` is slowly varying at ∞.

The regular variation property of a function defines how f behaves near∞. That

is, f can be arbitrarily defined on a finite interval [0,M ] where M > 0. Nevertheless,

we will assume that f is locally bounded on any subset of [0,∞). For our purposes,

we will also be concerned with functions that are regularly varying at the origin.

Definition 3.6. A function f is regularly varying at 0 (from the right) with index ρ

if f
(

1
·

)
∈ RV ∞−ρ. We denote this by writing f ∈ RV 0

ρ .

Combining (3.5) with the representation theorem for slowly varying functions gives

the general form for a regularly varying function. That is, f is regularly varying at

∞ if and only if it has representation

f(x) = xρh(x) exp

(∫ x

a

ε(u)
du

u

)
, (3.6)

for x ≥ a where ρ ∈ R, h is a function with a positive, finite limit at ∞, and ε is a

function such that limx→∞ ε(x) = 0.

The following corollary is clear.

Corollary 3.7. Let f be regularly varying with index ρ ∈ R at ∞. Then,

lim
x→∞

f(x) =


∞, if ρ > 0

0, if ρ < 0.

There are many important results concerning regularly varying functions that we

will need to exploit. These results can be found in [4], and we list them here without

proof.
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Theorem 3.8. (Potter’s Theorem)

(i) If ` is slowly varying, then for any given constants A > 1 and δ > 0 there exists

x0 = x0(A, δ) such that

`(y)

`(x)
≤ Amax

{(y
x

)δ
,
(y
x

)−δ}
,

for all x, y ≥ x0.

(ii) If f ∈ RV ∞ρ , then for any given A > 1 and δ > 0 there exists x0 = x0(A, δ)

such that

`(y)

`(x)
≤ Amax

{(y
x

)ρ+δ

,
(y
x

)ρ−δ}
,

for all x, y ≥ x0.

Theorem 3.9. (Karamata’s Theorem)

(i) (Direct Half) If ` is slowly varying, x0 is such that ` is locally bounded on

[x0,∞), and α > −1, then

lim
x→∞

∫ x
x0
uα`(u)du

xα+1`(x)
=

1

(α + 1)
.

(ii) (Converse Half) Let f be positive and locally integrable on [x0,∞).

• If for some ζ > −(ρ+ 1),

lim
x→∞

xζ+1f(x)∫ x
x0
uζf(u)du

= ζ + ρ+ 1,

then f varies regularly with index ρ.

• If for some ζ < − (ρ+ 1) we have

lim
x→∞

xζ+1f(x)∫∞
x
uζf(u)du

= − (ζ + ρ+ 1) ,

then f varies regularly with index ρ.
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Theorem 3.10. If f ∈ RV ∞α with α > 0, then there exists g ∈ RV ∞1/α such that

lim
x→∞

f (g (x))

x
= lim

x→∞

g (f (x))

x
= 1,

i.e. f and g are asymptotically invertible.

Finally, we ponder whether or not absolutely continuous functions that are regu-

larly varying have a derivative that is also regularly varying. For this, we only need to

assume monotonicity of the derivative in some neighborhood of ∞. Again, we state

the result as in [4].

Theorem 3.11. (Monotone Density Theorem) Let H(x) =
∫ x

0
h(u)du where h :

[0,∞)→ R. If H(x) ∼ cxρ`(x) as x→∞ where c, ρ ∈ R and ` ∈ RV ∞0 and if there

exists x0 > 0 such that h(x) is monotone on (x0,∞), then

lim
x→∞

h(x)

cρxρ−1`(x)
= 1.

Here, we used the notation that for functions f and g defined on some neighbor-

hood of a ∈ R, f(x) ∼ g(x) as x→ a if and only if

lim
x→a

f(x)

g(x)
= 1.

It is important to note that Theorem 3.11 does not imply that H or h is regularly

varying, as the quantities c and cρ are potentially negative; however, if c > 0, then

H ∈ RV ∞ρ , but we still do not necessarily have h ∈ RV ∞ρ−1.

Most of the concepts in this section are easily adapted for regular variation at 0.

These results are straightforward and will be omitted.

3.2 Stable Domains of Attraction and Normal Attraction

In this section, we develop the notions of domains of attraction in terms of discrete

random processes and then extend our consideration to continuous random processes.

First, we introduce some notation and recall concepts. Following [36], we observe the

following results.
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Theorem 3.12. Let (Xn)n≥1 be a sequence of i.i.d random variables such that, as

n→∞, ∑n
k=1Xk − An

Bn

⇒ Z, (3.7)

where (An)n≥1 and (Bn)n≥1 are two sequences of reals with limn→∞Bn =∞. Then Z

is α-stable for some α ∈ (0, 2]. Moreover,

Bn = n1/α`(n),

where ` is a slowly varying function at infinity.

After Theorem 3.12, we can define stable domains of attraction. It turns out that

there are some more nuanced ways to look at the convergence that depend on the

behavior of the sequence (Bn)n≥1. So, we will require two definitions.

Definition 3.13. Let X,X1, X2, . . . be a sequence of i.i.d random variables satisfying∑n
k=1Xk − An

Bn

⇒ Z, (3.8)

as n→∞, where Z is a normal random variable and where (An)n≥1 and (Bn)n≥1 are

two sequences of reals with limn→∞Bn =∞. Then X is said to be in the domain of

attraction of a normal distribution.

Definition 3.14. Let X,X1, X2, . . . be a sequence of i.i.d random variables satisfying∑n
k=1Xk − An

Bn

⇒ Zα, (3.9)

as n→∞, where Zα is an α-stable random variable and where (An)n≥1 and (Bn)n≥1

are two sequences of reals with limn→∞Bn =∞. Then X is said to be in the domain

of attraction of Zα. Furthermore, if Bn = κn1/α where κ > 0 is a constant, then we

say that X is in the domain of normal attraction of Zα.
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Intuitively, the form of Bn for n ≥ 1 is the sole difference between a domain of

normal attraction and a domain of attraction, i.e. in the former case Bn = κn1/α for

some positive constant κ and in the latter Bn = n1/α`(n) where ` is slowly varying at

∞. For more information about the subtleties of these definitions, we refer the reader

to Chapter 3 of [45].

We can also look at domains of attraction from the perspective of distribution

functions. In this case, we have a few notable results. Note, if a random variable

X has distribution function F , then F is said to be in the domain of attraction of

an α-stable distribution whenever X is in the domain of attraction of an α-stable

distribution.

Theorem 3.15. A distribution function F belongs to the domain of attraction of an

α-stable distribution with α ∈ (0, 2) if and only if

F (x) = (C− + o(1)) |x|−α h (|x|) as x→ −∞, (3.10)

and

1− F (x) = (C+ + o(1))x−αh(x) as x→∞, (3.11)

for some constants C± ≥ 0 and some function h slowly varying at ∞.

Theorem 3.15 also applies to distribution function in the domain of normal at-

traction of and α-stable distribution; however, the constants C± are different.

For completeness, we also consider the situation where a distribution function

belongs to the domain of attraction of a normal distribution.

Theorem 3.16. A distribution function F belongs to the domain of attraction of a

normal distribution if and only if∫
|x|≥y

dF (x) = o

(
1

y2

∫
|x|<y

x2dF (x)

)
, (3.12)

as y →∞.

32



We consider some examples from the previous two theorems.

Example 3.17. (i) If X is a stable random variable, then X is in its own domain

of attraction. While clear, we can use Proposition 2.21 to see that both (3.10)

and (3.11) hold.

(ii) Let X be a mean 1 exponential random variable. Then, X is in the domain of

attraction of a normal distribution. Indeed

y2
∫∞
y
dF (x)∫ y

0
x2dF (x)

=
y2e−y

e−y (−2 + 2ey − y (2 + y))

=
y2

−2 + 2ey − y (2 + y)
→ 0,

as y →∞.

(iii) Let X be a Pareto distribution with scale parameter x0 > 0 and shape 0 < α <

2, i.e. X has cumulative distribution function

F (x) =


1−

(
x0

x

)α
, if x ≥ x0

0, if x < x0.

Then X is in the domain of attraction of an α-stable random variable.

We might ponder when an expression such as (3.7) has an analog for continuous-

time processes. Moreover, since we are concerned with short-time asymptotics, we

are interested in this property as t→ 0. Concretely, if (Xt)t≥0 is a stochastic process

and if there exist functions Bt > 0 and At with Bt → 0 as t→ 0 such that

Xt − At
Bt

⇒ Z,

is Z then necessarily stable?

Clearly this cannot be true for all processes as can easily be seen by considering

(Xt)t≥0 = (tY )t≥0 where Y is not stable; however, when (Xt)t≥0 is a real-valued Lévy

process, the random variable Z must be stable. So, we find the conditions under

which such functions At and Bt exist. Some preliminary results are required first.
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3.3 Lévy Processes in Stable DOA and DNA

As we alluded to earlier, the domain-of-attraction notions can be carried over to the

continuous setting. Indeed we have the following definitions.

Definition 3.18. A stochastic process (Xt)t≥0 on a probability space (Ω,F ,P) is in

the domain of attraction (DOA) of a stable random variable Z at a ∈ {0,∞} if there

exist functions Bt > 0 and At ∈ R such that

Xt − At
Bt

⇒ Z, (3.13)

as t→ a.

So far, we have not placed any restrictions on the form of the scaling function B.

As seen later, as for discrete processes, B must be regularly varying. This leads to

an extension of the definition from the discrete process case.

Definition 3.19. A stochastic process (Xt)t≥0 on a probability space (Ω,F ,P) is in

the domain of normal attraction (DNA) of a stable random variable Z at a ∈ {0,∞}

if (Xt)t≥0 is in the DOA of Z at a ∈ {0,∞} with scaling function B satisfying

limt→aBt/κt
ρ = 1 for some ρ, κ > 0.

The collection of processes that are in the domain of normal attraction of a stable

random variable Z form a proper subset of the collection of processes that are in the

domain of attraction of Z (as we will see with an example later). Indeed, for processes

in the DOA of a stable random variable, the scaling function Bt = t1/α` (t) where `

is slowly varying at a, whereas for processes in the DNA of a stable random variable,

the scaling function Bt = κt1/α.

We are now in a position to develop the relationship between Lévy processes and

stable domains of attraction.

34



3.4 Regular Variation and Lévy Processes

Again, we will be in the setting where (Xt)t≥0 is a real-valued Lévy process on the

probability space (Ω,F ,P) with characteristic triplet (b, σ2, ν) where b ∈ R, σ2 ≥ 0,

and ν is a Lévy measure. The results of this section come from [42] and [30]. While

approaching the problems from two different perspectives, [42] and [30] arrive at very

similar results.

First, let us introduce some notation. For x > 0, let

γ (x) = γ+(x) + γ−(x) := ν ({y > x}) + ν ({y < −x}) , (3.14)

and

V (x) :=

∫
|y|≤x

y2ν(dy). (3.15)

We are mainly interested in conditions under which

Xt − At
Bt

(3.16)

converges in distribution to an α-stable distribution as t → 0 for some α ∈ (0, 2)

where A : [0,∞) → R and B : (0,∞) → (0,∞) are functions with limt→0Bt = 0. If

the Lévy process has finite second moment, then the Central Limit Theorem (or the

Lévy-Khintchine formula) gives

Xt − tEX1√
t

⇒ N (0, σ2),

as t→ 0.

We first present the result from [42] as it requires less machinery.

Theorem 3.20. The following are equivalent:

(i) there exist deterministic functions A and B with Bt > 0 and limt→0Bt = 0 such

that

Xt − At
Bt

⇒ Z
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as t → 0, where Z is an a.s. finite, nondegenerate random variable (in fact, Z

is necessarily an α-stable random variable with α ∈ (0, 2]);

(ii) (a) the function γ ∈ RV 0
−α with α ∈ (0, 2) and the limits

lim
x↓0

γ±(x)

γ(x)
, (3.17)

exist or (b) V is slowly varying at 0.

Note that in (ii) above, exactly one of cases (a) and (b) holds. The case where V

is slowly varying at 0 corresponds exactly to the case where the central limit theorem

applies with Bt =
√
t and Z ∼ N (0, σ2). Also, although the statement of the theorem

does not require it, we can choose the function B to be monotone decreasing. Finally,

the result shows that the weak convergence of expressions like (3.16) is necessarily to

a stable or normal distribution if (Xt)t≥0 is a Lévy process. In fact, we can say more

about the functions A and B.

We will need two more functions that are defined for x > 0 as

µx = b−
∫
x≤|y|≤1

yν(dy), (3.18)

and

U(x) = 2

∫ x

0

yγ(y)dy. (3.19)

In [42] Maller and Mason show that one can take

Bt = inf

{
0 < x ≤ 1 : x−2U(x) ≤ 1

t

}
and At = tµbt .

In [30], Grabchak uses the asymptotic inversion formula for regularly varying func-

tions to show that Bt is regularly varying, giving a more exact formula for Bt (this

formula is given in Theorem 3.23). In fact, the result in [30] is equivalent to the one

in [42] in one dimension. We next state the result from [30] in full generality. This

requires some preliminary definitions.
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Definition 3.21. Let ρ ≤ 0, a ∈ {0,∞}, and let ν be a Lévy measure on Rd\ {0}

with ν 6= 0. If a = ∞ assume further that ν has unbounded support. The measure

ν is said to be regularly varying at a with index ρ if there is a finite, nonzero Borel

measure σ on Sd−1 such that for any t > 0 and any D ∈ B
(
Sd−1

)
with σ (∂D) = 0

lim
r→a

ν
(
|x| > rt, x|x| ∈ D

)
ν (|x| > r)

= tρ
σ (D)

σ
(
Sd−1

) . (3.20)

When this holds, we write ν ∈ RV a
ρ (σ) and when ν is a measure on R\ {0} we write

ν ∈ RV a
ρ .

If restricted to Lévy measures on R and regular variation at 0, Definition 3.21

is equivalent to the condition (ii)(a) of Theorem 3.20. First, assume that (ii)(a) of

Theorem 3.20 holds. For D = S0 = {−1, 1}, then (3.20) holds true from the regular

variation property of γ. For D = {1} we have

lim
r→0

ν (x > rt)

ν (|x| > r)
= lim

r→0

ν (x > rt)

ν (|x| > rt)
· ν (|x| > rt)

ν (|x| > r)
(3.21)

= ptρ,

and letting σ ({1}) /σ
(
S0
)

= p gives (3.20). A similar argument can be made for

D = {−1}.

Conversely, assume that (3.20) holds. Choosing D = S0 gives γ ∈ RV 0
ρ , while

choosing D = {1} gives

lim
x↓0

γ+(x)

γ(x)
= lim

r↓0

γ+(rt)

γ(rt)

= lim
r↓0

ν (z > rt)

ν (|z| > rt)

= lim
r↓0

ν (z > rt)

ν (|z| > r)
· ν (|z| > r)

ν (|z| > rt)

=
σ ({1})
σ
(
S0
) tρt−ρ

=
σ ({1})
σ
(
S0
) .
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A similar argument can be made for the limit involving the negative tail. So, indeed,

the two notions are equivalent.

We are now in a position to state the main result from [30].

Theorem 3.22. Fix α ∈ (0, 2) and let σ be a finite nonzero Borel measure on Sd−1.

Let (Xt)t≥0 be a Lévy process with triplet (b, 0, ν). There exist functions B > 0 and

A, as well as an α-stable random variable Z with spectral measure σ such that

Xt − At
Bt

⇒ Z

as t ↓ 0 if and only if the Lévy measure ν ∈ RV 0
−α.

Grabchak’s argument relies on finding a Lévy process X0 = (X0
t )t≥0 such that the

behavior of X0 as t→∞ is equivalent in some sense to the behavior of X = (Xt)t≥0

as t ↓ 0. Specifically, let ν0 be defined, for any Borel set D, by

ν0 (D) =

∫
Rd

1D

(
x

|x|2

)
|x|2 ν(dx)

and let b0 = b where (b, 0, ν) is the Lévy triplet of X. Then, ν0 is a well-defined Lévy

measure, and defining X0 = (X0
t )t≥0 as the Lévy process with triple (b0, 0, ν0) gives

us the Lévy process we are looking for. We can be more precise with a theorem from

[30].

Theorem 3.23. Fix α ∈ (0, 2) and let X = (Xt)t≥0 and X0 = (X0
t )t≥0 be Lévy pro-

cesses with Lévy triplets (b, 0, ν) and (b0, 0, ν0), respectively. Then there exist func-

tions A and B, as well as an α-stable random variable Z with spectral measure σ such

that

Xt − At
Bt

⇒ Z,

as t ↓ 0, if and only if there exist functions ξ and C such that

X0
t − ξt
Ct

⇒ Z0,
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as t → ∞, where Z0 is a (2 − α)-stable random variable with spectral measure σ.

Moreover, when this holds we have

Bt ∼
(

1

t
h−1

(
1

t

))−1/2

,

as t ↓ 0, for any invertible function h satisfying

h(t) ∼ 1

t
C2
t ,

as t→∞.

For our results, we will tend to use the conditions from part (ii)(a) of Theorem

3.20 since they are easier to state.

For the one-dimensional case, we see that the quantities

lim
x↓0

γ± (x)

γ(x)
,

directly define the measure σ. This allows us to get an exact representation for the

α-stable random variable involved in the convergence. Mainly, we have the following

result.

Lemma 3.24. Suppose (Xt)t≥0 is a Lévy process satisfying (3.13) so that the limits

in (3.17) exist and are equal to p± ≥ 0 respectively, where p+ + p− = 1. Then, the

characteristic function of Z is given, for any u ∈ R, by

ϕZ(s) = exp
(
− cα |s|α (1− i (p+ − p−) sgn (s) tan (πα/2))

)
, (3.22)

where cα > 0 is a constant.

3.5 Connection to Concentration Inequalities

One important quantity in the estimation of call option prices in exponential Lévy

models is the expression P (Xt ≥ y) where y ≥ 0 and (Xt)t≥0 is a Lévy process on

R with triplet (b, 0, ν). For estimating these tail quantities, we need concentration
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inequalities similar to those found in [7] and [33]. The next lemma provides the

estimation we need. For now, we will allow γ to be any nonnegative function, but

our future application of this lemma will use the definition of γ in (3.14); however,

for the statement of the next theorem we do require the function V defined in (3.15)

and µy defined in (3.18).

Lemma 3.25. Let γ : R+ → R+ be such that for all R > 0,

(i)
∫
|x|>R ν (dx) ≤ γ (R),

(ii) and there exists C > 0 independent of R such that V (R) ≤ CR2γ (R).

Then, for every y > 0 and for every 0 < t < y/4
(
µy/4

)
+

(with y/0 =∞),

P (Xt ≥ y) ≤
(
1 + Ce2

)
tγ
(y

4

)
.

Proof. In the traditional manner (e.g. see [7] or [34]), we break X = (Xt)t≥0 up into

two parts, Xε = (Xε
t )t≥0 which consists of all jumps smaller than ε and X̃ε =

(
X̃ε
t

)
t≥0

consisting of all jumps larger than ε. For each t > 0, we can represent Xt as

Xt = bt+

∫ t

0

∫
|x|≤1

x (µ− µ̄) (dx, ds) +

∫ t

0

∫
|x|≥1

xµ(dx, ds) (3.23)

where µ is a Poisson random measure on R\ {0} with mean measure µ̄(dx, dt) =

ν(dx)dt. Let fε(x) = 1[−ε,ε] and f̄ε = 1 − fε. We can define the processes for each

t > 0 by

X̃ε
t =

∫ t

0

∫
R
xf̄ε(x)µ(dx, ds) and Xε

t = Xt − X̃ε
t . (3.24)

The process X̃ε is a compound Poisson process with intensity λε =
∫
f̄ε(x)ν(dx) and

jump distribution

f̄ε(x)ν(dx)

λε
,

and Xε is a Lévy process with characteristic triplet (bε, 0, fεν) where

bε = b−
∫
|x|≤1

xf̄ε(x)ν(dx).
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We will need the fact that EXε
t = tµε where µε is defined by (3.18). For a fixed y > 0,

we have

P (Xt ≥ y) ≤ P (Xε
t ≥ y/2) + P

(
X̃ε
t ≥ y/2

)
≤ P (Xε

t − EXε
t ≥ y/2− EXε

t ) + P
(
X̃ε
t 6= 0

)
≤ P (Xε

t − EXε
t ≥ y/2− EXε

t ) + tγ(ε)

= P (Xε
t − EXε

t ≥ y/2− tµε) + tγ(ε). (3.25)

Using a general concentration inequality (e.g. Corollary 1 in [33]), we obtain for z > 0

P (Xε
t − EXε

t ≥ z) ≤ exp

[
z

ε
−
(
z

ε
+
tVε
ε2

)
log

(
1 +

εz

tVε

)]
≤ exp

[
z

ε
− z

ε
log

(
1 +

εz

Ctε2γ (ε)

)]
= exp

[
z

ε
− z

ε
log

(
1 +

z

Ctεγ (ε)

)]
=

exp
(
z
ε

)(
1 + z

Ctεγ(ε)

)z/ε . (3.26)

We now need to choose ε in such a way that both terms in (3.25) are of the same

order. We choose ε = y/4 and we consider two cases. First, consider the case where

µy/4 ≥ 0 and further assume that 0 < t < y/4µy/4 (equivalently y/2 − tµy/4 > y/4).

Then,

P
(
X
y/4
t − EXy/4

t ≥ y/2− tµy/4
)
≤ P

(
X
y/4
t − EXy/4

t ≥ y/4
)

=
exp

(
y/4
y/4

)
(

1 + y/4
Ct(y/4)γ(y/4)

) y/4
y/4

=
e(

1 + 1
Ctγ(y/4)

)
≤ Ce2tγ

(y
4

)
. (3.27)
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Next, consider the case where µy/4 < 0. Then, for all t > 0,

P
(
X
y/4
t − EXy/4

t ≥ y/2− tµy/4
)
≤ P

(
X
y/4
t − EXy/4

t ≥ y/2
)

≤
exp

(
y/2
y/4

)
(

1 + y/2
Ct(y/4)γ(y/4)

) y/2
y/4

=
e2(

1 + 2
Ctγ(y/4)

)2

=
e2(

1 + 2
Ctγ(y/4)

)
≤ Ce2tγ

(y
4

)
. (3.28)

Notice that the terms in (3.27) and (3.28) are the same. Combining this result with

(3.25) gives

P (Xt ≥ y) ≤ Ce2tγ
(y

4

)
+ tγ

(y
4

)
= (1 + Ce2)tγ

(y
4

)
,

for all y > 0 and 0 < t < y/4(µy/4)+.

We will usually apply Lemma 3.25 when γ is defined by (3.14) (and so condition

(i) is trivially satisfied). It is shown in [4] (Chapter 8.1), [21] (VII.9), and [42] that

condition (ii) in Lemma 3.25 is satisfied automatically for small values of R whenever

(Xt)t≥0 is in the DOA of an α-stable random variable. We can simplify things further

by showing that the condition (ii) is also naturally satisfied for compact intervals of

R+.

Proposition 3.26. Let (Xt)t≥0 be a Lévy process in the domain of attraction of an

α-stable random variable with α ∈ (1, 2). Then for any 0 < x < y <∞,

sup
x≤R≤y

V (R)

R2γ(R)
<∞.

42



Proof. By Theorem 3.20, γ(R) = R−αψ(R) where ψ is slowly varying and α ∈ (1, 2).

Integration by parts gives

0 < V (z) = −z2γ(z) + 2

∫ z

0

ξγ(ξ)dξ

= −z2γ(z) + 2

∫ z

0

ξ1−αψ (ξ) dξ (3.29)

which is well-defined since 1− α ∈ (−1, 0). So,

V (z)

z2γ (z)
=
−z2γ(z) + 2

∫ z
0
ξ1−αψ (ξ) dξ

z2γ(z)

= −1 +
2
∫ z

0
ξ1−αψ (ξ) dξ

z1−αψ (z)
.

The numerator is continuous and the denominator is piecewise continuous and bounded

away from 0 in any compact interval of R+ not including 0 (the function γ is nonin-

creasing on (0,∞) so it can only have jump discontinuities). Thus, the supremum is

bounded and the result follows.

So, the condition (ii) only needs to be verified for R sufficiently large when (Xt)t≥0

is in the domain of attraction of a stable random variable. We state the full result in

a proposition.

Proposition 3.27. Let (Xt)t≥0 be a Lévy process in the domain of attraction of an

α-stable random variable, 0 < α < 2. Further, let there exist R0 > 0 and C > 0

possibly depending on R0 such that for all R > R0, V (R) ≤ CR2γ (R) where V and

γ are defined in (3.15) and (3.14), respectively. Then, for every y > 0 and for every

0 < t < y/4
(
µy/4

)
+

(with y/0 =∞),

P (Xt ≥ y) ≤
(
1 + Ce2

)
tγ
(y

4

)
.

We now give some examples of the application of Theorem 3.27 given in [7].

Example 3.28. (i) Consider the Lévy process (Xt)t≥0 whereX1 has triplet (0, 0, ν)

with

ν (dx) =
|log |x||
x2

1{x 6=0}dx. (3.30)
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Then, for R > 1,

γ (R) =

∫
|x|>R

ν (dx)

= 2

(
1 + logR

R

)
,

and

V (R) =

∫
|x|≤R

x2ν (dx)

= 2 (2−R +R logR)

≤ 2 (R +R logR)

= R2γ (R) .

Similarly, we can compute, for 0 < R < 1,

γ (R) = 4− 2

R
− 2 logR

R
,

and

V (R) = 2R (1− logR)

≤ 3R2γ (R) .

Additionally, the Lévy measure is symmetric and so µε = 0, for every ε > 0.

Therefore, from the concentration inequalities, we obtain for all t > 0 and y > 0,

P (Xt ≥ y) ≤
(
1 + 3e2

)
tγ
(y

4

)
,

where

γ (R) =


4R−2−2 logR

R
, if 0 < R < 1

2+2 logR
R

, if R ≥ 1.

(ii) Consider the Lévy process (Xt)t≥0 where X1 has triplet (0, 0, ν) with

ν (dx) =
e−1/x2

x2
1{x 6=0}dx.
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For R > 0, we have

γ (R) =

∫
|x|>R

ν (dx)

= 2

∫ 1/R

0

e−u
2

du

≤ 2

R
,

and

V (R) =

∫
|x|≤R

x2ν (dx)

= 2

∫ ∞
1/R

e−u
2

u2
du

= 2Re−1/R2 −
∫ ∞

1/R

4e−u
2

du

≤ R2γ (R) .

As in the previous example, µε = 0 from the symmetry of the Lévy measure,

and therefore for all t > 0 and y > 0

P (Xt ≥ y) ≤ 8t

y
.
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CHAPTER IV

FIRST-ORDER RESULTS

As mentioned in the introduction, there are many processes for which the first-order

dynamics are well-understood. For the processes considered (e.g. CGMY, tempered

stable, etc.) without Brownian component, the asymptotic behavior takes the form

C (t, 0) = κt1/α + o
(
t1/α
)

whenever 1 < α < 2 and κ > 0 is a constant which depends on the distribution of

some α-stable random variable Z. These results rely on the convergence of Xt/t
1/α

to an α-stable random variable. In this chapter, we extend these first order results

to a more general class of Lévy processes. In fact, for this more general class of Lévy

processes with no Brownian component, we can have quite different behavior. In

particular, for the normalized call-price formula c and in the case 1 < α < 2,

c (t, 0) = κt1/αψ (t) + o
(
t1/αψ (t)

)
, (4.1)

where ψ is a slowly varying function at 0 and κ > 0 again is a positive constant

depending on some α-stable random variable. The previous cases covered where ψ

is a positive constant. Furthermore, we show that when a Brownian component

is included, the expected behavior still occurs, i.e. the normalized ATM call price

satisfies

c (t, 0) = κ
√
t+ o

(√
t
)
.

After the introductory material and proofs, we give an example of a Lévy process

that satisfies (4.1) where ψ is nonconstant.
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4.1 Share Measure and DOA

In what follows, (Xt)t≥0 is a Lévy process on a probability space (Ω,F ,P) with

characteristic triplet (b, 0, ν). We will also assume that E
[
|Xt| eXt

]
< ∞. This last

assumption is equivalent to E
[
|X1| eX1

]
<∞ or∫

|x|>1

|x| exν(dx) <∞, (4.2)

by Theorem 2.13. Note that we clearly have a finite exponential moment. Finally, we

suppose that ν has a density with respect to Lebesgue measure. That is there exists

a function ξ ≥ 0, called the Lévy density, such that for any Borel set D ⊂ R,

ν (D) =

∫
D

ξ(x)dx.

We will also need the probability measure P∗ defined in (2.7) via

P∗ (D) = E
[
eXt1D

]
,

for each Borel set D ⊂ R. Note that P∗ is well-defined by (4.2) and the work done

in Example 33.14 in [50]. Under P∗, the process (Xt)t≥0 is again a Lévy process with

triplet (b∗, 0, ν∗) where

ν∗ (dx) = exν(dx) = exξ(x)dx, (4.3)

and

b∗ = b+

∫
|x|≤1

(ν∗ − ν) (dx) = b+

∫
|x|≤1

(ex − 1) ξ(x)dx. (4.4)

Throughout this chapter, we will define quantities under both P and P∗, and we

use the star notation to mean the associated quantity under P∗. For example, we will

define the mean µε of the Lévy random variable Xε
1 (jumps truncated at ε) as

µε = b−
∫
|x|≤1

x1{|x|>ε}ν(dx) +

∫
|x|≥1

x1{|x|≤ε}ν(dx),
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and will define µ∗ε as

µ∗ε = b∗ −
∫
|x|≤1

x1{|x|>ε}ν
∗(dx) +

∫
|x|≥1

x1{|x|≤ε}ν
∗(dx).

Similarly, whereas the function γ(x) =
∫
|y|>x ν(dy), the associated ∗ function is defined

as γ∗(x) =
∫
|y|>x ν

∗(dy).

We now define a few more functions and constants that we will need in this

chapter. For x > 0, set

ξS(x) := ξ(x) + ξ(−x), (4.5)

while the associated quantity under P∗ is

ξ∗S(x) := exξ(x) + e−xξ(−x). (4.6)

We are interested in the quantities

sup
0<η<∞

|µη| and sup
0<η<∞

∣∣µ∗η∣∣ ,
which we will need to be finite. Note that

sup
1≤η<∞

|µη| = sup
1≤η<∞

∣∣∣∣b+

∫
1≤|x|≤η

xν (dx)

∣∣∣∣ ≤ |b|+ ∫
1≤|x|<∞

|x| ν (dx) <∞,

and

sup
1≤η<∞

∣∣µ∗η∣∣ = sup
1≤η<∞

∣∣∣∣b∗ +

∫
1≤|x|≤η

xν∗ (dx)

∣∣∣∣ ≤ |b∗|+ ∫
1≤|x|<∞

|x| ν∗ (dx) <∞,

since the Lévy process (Xt)t≥0 has finite first moment under both P and P∗. So, we

need only consider when the quantities

µ̄ = sup
0<η≤1

|µη| and µ̄∗ = sup
0<η≤1

∣∣µ∗η∣∣ ,
are finite (e.g. when ν is symmetric, see [22]).
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4.2 Regular Variation Under the Share Measure

The share measure, defined in (2.7), is an integral part of the analysis of ATM call-

price asymptotics. Note that the Carr-Madan formula (2.11) is expressed with respect

to the share measure P∗. It is therefore natural to ask what properties are preserved

when we consider our Lévy process (Xt)t≥0 under the share measure P∗.

In this section, we show that regular variation of the Lévy measure ν is preserved

under P∗. Intuitively, this preservation of regular variation stems from that fact that

the regular variation property of ν depends on the behavior of ν near the origin. The

transformed measure has very similar behavior very close to the origin (ex ≈ 1 for x

close to 0).

Lemma 4.1. If ν is regularly varying of index α at 0, then ν∗ is also regularly varying

of index α at 0.

Proof. Suppose that ν is regularly varying of index α at 0, i.e.

lim
r→0

ν (|x| > rt)

ν (|x| > r)
= t−α,

for all t > 0. Note that this is equivalent to saying

lim
r→0

∫∞
rt
ξS(x)dx∫∞

r
ξS(x)dx

= t−α.

First, we show that for any fixed δ > 0 and t > 0 we also have

lim
r→0

∫ δ
rt
ξS(x)dx∫ δ

r
ξS(x)dx

= t−α.

Recall that γ (x) =
∫∞
x
ξS(z)dz → ∞ as x → 0 by the representation theorem for

regularly varying functions (see (3.6)). So for fixed δ > 0,

lim
r→0

∫ δ
rt
ξS(x)dx∫ δ

r
ξS(x)dx

= lim
r→0

∫∞
rt
ξS(x)dx−

∫∞
δ
ξS(x)dx∫∞

r
ξS(x)dx−

∫∞
δ
ξS(x)dx

= lim
r→0

∫∞
rt
ξS(x)dx

(
1−

∫∞
δ ξS(x)dx∫∞
rt ξS(x)dx

)
∫∞
r
ξS(x)dx

(
1−

∫∞
δ ξS(x)dx∫∞
r ξS(x)dx

)
= t−α. (4.7)
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Continuing, we let 0 < ε < 1 and choose δ > 0 such that

1− ε ≤ ex ≤ 1 + ε,

for all x ∈ (−δ, δ). Now, recalling (4.6), we have

ν∗ (|x| > rt)

ν∗ (|x| > r)
=

∫
|x|>rt e

xξ(x)dx∫
|x|>r e

xξ(x)dx

=

∫∞
rt

(exξ(x) + e−xξ(−x)) dx∫∞
r

(exξ(x) + e−xξ(−x)) dx

=

∫ δ
rt
ξ∗S(x)dx+ C∗δ∫ δ

r
ξ∗S(x)dx+ C∗δ

, (4.8)

where C∗δ =
∫∞
δ
ξ∗S(x)dx < ∞. For 0 < x < δ, define γ∗δ (x) =

∫ δ
x
ξ∗S(x)dx and

γδ (x) =
∫ δ
x
ξS(x)dx as the truncated tail functions. Note that γδ (x) → ∞ as x → 0

by the representation theorem for regularly varying functions. We estimate (4.8) as∫ δ
rt
ξ∗S(x)dx+ C∗δ∫ δ

r
ξ∗S(x)dx+ C∗δ

≤
∫ δ
rt
exξS(x)dx+ C∗δ∫ δ

r
e−xξS(x)dx+ C∗δ

≤
(1 + ε)

∫ δ
rt
ξS(x)dx+ C∗δ

(1− ε)
∫ δ
r
ξS(x)dx+ C∗δ

=
γδ (rt)

γδ (r)

(
1 + ε+

C∗δ
γδ(rt)

1− ε+
C∗δ
γδ(r)

)
, (4.9)

and from (4.9) obtain

lim sup
r→0

ν∗ (|x| > rt)

ν∗ (|x| > r)
≤ t−α

1 + ε

1− ε
.

We estimate (4.8) from below∫ δ
rt
ξ∗S(x)dx+ C∗δ∫ δ

r
ξ∗S(x)dx+ C∗δ

≥
∫ δ
rt
e−xξS(x)dx+ C∗δ∫ δ

r
exξS(x)dx+ C∗δ

≥ γδ (rt)

γδ (r)

(
1− ε+

C∗δ
γδ(rt)

1 + ε+
C∗δ
γδ(r)

)
, (4.10)

and from (4.10) obtain

lim inf
r→0

ν∗ (|x| > rt)

ν∗ (|x| > r)
≥ t−α

1− ε
1 + ε

.
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Thus,

t−α
1− ε
1 + ε

≤ lim inf
r→0

ν∗ (|x| > rt)

ν∗ (|x| > r)
≤ lim sup

r→0

ν∗ (|x| > rt)

ν∗ (|x| > r)
≤ t−α

1 + ε

1− ε
,

and letting ε→ 0 gives the result.

Next, we need to show existence of the limits

lim
x→0

γ∗±(x)

γ∗(x)
,

given the existence of the limits

lim
x→0

γ±(x)

γ(x)
.

Assume that limx→0 γ+(x)/γ(x) = p and limx→0 γ−(x)/γ(x) = q. By an argument

similar to the one developed in the beginning of this proof, the limits can also be

computed via

lim
x→0

ν (x < y < δ)

ν (x < |y| < δ)
= p,

and

lim
x→0

ν (−δ < y < −x)

ν (x < |y| < δ)
= q,

where δ > 0. We now show that the same limits hold for γ∗.

First, we treat the case where 0 < p < 1 (note that p + q = 1). In this case,

0 < q < 1, and so

lim
x→0

γ∗+(x) = lim
x→0

γ∗−(x) =∞,

since limx→0 γ
∗(x) =∞. Again, let ε > 0 and choose δ > 0 such that 1−ε ≤ ex ≤ 1+ε

for all x ∈ (−δ, δ). Continuing

ν∗ (y > x)

ν∗ (|y| > x)
=

∫∞
x
ξ∗(y)dy∫∞

x
ξ∗S(y)dy

=

∫∞
x
eyξ(y)dy∫∞

x
ξ∗S(y)dy

=

∫ δ
x
eyξ(y)dy +

∫∞
δ
eyξ(y)dy∫ δ

x
ξ∗S(y)dy +

∫∞
δ
ξ∗S(y)dy

=

∫ δ
x
eyξ(y)dy +D∗δ∫ δ

x
ξ∗S(y)dy + C∗δ

, (4.11)
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where D∗δ =
∫∞
δ
eyξ(y)dy and, again, C∗δ =

∫∞
δ
ξ∗S(y)dy are constants depending only

on δ. Estimating (4.11) above by∫ δ
x
eyξ(y)dy +D∗δ∫ δ

x
ξ∗S(y)dy + C∗δ

≤
∫ δ
x
eyξ(y)dy +D∗δ∫ δ

x
e−yξS(y)dy + C∗δ

≤
(1 + ε)

∫ δ
x
ξ(y)dy +D∗δ

(1− ε)
∫ δ
x
ξS(y)dy + C∗δ

=

∫ δ
x
ξ(y)dy∫ δ

x
ξS(y)dy

 1 + ε+
D∗δ∫ δ

x ξ(y)dy

1− ε+
C∗δ∫ δ

x ξS(y)dy

 , (4.12)

which, taking the limsup, gives

lim sup
x→0

ν∗(y > x)

ν∗(|y| > x)
≤ p

(
1 + ε

1− ε

)
,

(note that limx→0

∫ δ
x
ξ(y)dy = limx→0

∫ δ
x
ξS(y)dy = ∞ also for every δ > x). We

estimate (4.11) from below as∫ δ
x
eyξ(y)dy +D∗δ∫ δ

x
ξ∗S(y)dy + C∗δ

≥
∫ δ
x
eyξ(y)dy +D∗δ∫ δ

x
eyξS(y)dy + C∗δ

≥
∫ δ
x
ξ(y)dy +D∗δ

(1 + ε)
∫ δ
x
ξS(y)dy + C∗δ

=

∫ δ
x
ξ(y)dy∫ δ

x
ξS(y)dy

 1 +
D∗δ∫ δ

x ξ(y)dy

1 + ε+
C∗δ∫ δ

x ξS(y)dy

 , (4.13)

and taking the liminf gives

lim inf
x→0

ν∗(y > x)

ν∗(|y| > x)
≥ p

(
1

1 + ε

)
.

Combining these estimates, we obtain

p

(
1

1 + ε

)
≤ lim inf

x→0

ν∗(y > x)

ν∗(|y| > x)
≤ lim sup

x→0

ν∗(y > x)

ν∗(|y| > x)
≤ p

(
1 + ε

1− ε

)
,

and letting ε→ 0 gives the first limit. An identical argument shows that

lim
x→0

ν∗(y < −x)

ν∗(|y| > x)
= q.
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We now deal with the remaining cases, i.e. p = 0 and p = 1, and assume without

loss of generality that p = 0. This implies that

lim
x→0

γ+(x)

γ(x)
= 0,

and

lim
x→0

γ−(x)

γ(x)
= 1,

which in turn implies that limx→0 γ−(x) =∞. There are two distinct possibilites for

γ+, either

lim
x→0

γ+(x) <∞, (4.14)

or

lim
x→0

γ+(x) =∞. (4.15)

If (4.15) holds true, then both tails have infinite mass and a proof similar to the one

for 0 < p < 1 gives the result. In the case (4.14),

lim
x→0

γ∗+(x)

γ∗(x)
= 0,

since γ∗(x)→∞ as x→ 0. Indeed, we estimate

γ∗(x) =

∫ ∞
x

ξ∗S(y)dy

=

∫ δ

x

ξ∗S(y)dy + C∗δ

≥
∫ δ

x

e−yξS(y)dy + C∗δ

≥ (1− ε)
∫ δ

x

ξS(y)dy + C∗δ →∞,

as x→ 0. Thus,

lim
x→0

γ∗−(x)

γ∗(x)
= lim

x→0

γ∗(x)− γ∗+(x)

γ∗(x)
= 1.
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As a major consequence of the previous result, the constants p and q in the limit

remain unchanged under the measure transform. This fact, combined with Lemma

3.24, give the following result.

Lemma 4.2. Let (3.13) hold with respect to P and hence with respect to P∗, where

Z is an α-stable random variable. Then Z has the same representation under both P

and P∗. That is, the parameters of the stable distribution Z are the same under both

probability measures P and P∗.

Next, we show that the finiteness of the constant µ̄ is also a property that survives

the share measure transformation. This quantity will be important for Theorem 4.5,

which is one of the main new results of this thesis.

Lemma 4.3. The quantity µ̄ <∞ if and only if µ̄∗ <∞.

Proof. First, we assume µ̄ <∞. Observe that sup0<η≤1 |µη| <∞ implies that

supµη <∞ and inf µη > −∞.

Thus,

−∞ < inf
0<η≤1

(
b−

∫
η<|y|≤1

yν(dy)

)
= b+ inf

0<η≤1

(
−
∫
η<|y|≤1

yν(dy)

)
= b− sup

0<η≤1

∫
η<|y|≤1

yν(dy),

which implies sup0<η≤1

∫
η<|y|≤1

yν(dy) <∞. A similar argument implies that

inf
0<η≤1

∫
η<|y|≤1

yν(dy) > −∞,

and so we know

sup
0<η≤1

∣∣∣∣∫
η<|y|≤1

yν(dy)

∣∣∣∣ <∞.
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For fixed 0 < η ≤ 1,

∣∣µ∗η∣∣ ≤ |b|+ ∣∣∣∣∫
η<|y|≤1

yν∗(dy)

∣∣∣∣
= |b|+

∣∣∣∣∫
η<|y|≤1

yeyν(dy)

∣∣∣∣
≤ |b|+ e

∣∣∣∣∫
η<|y|≤1

yν(dy)

∣∣∣∣
≤ |b|+ e sup

0<η≤1

∣∣∣∣∫
η<|y|≤1

yν(dy)

∣∣∣∣ <∞.
Taking the supremum gives the implication.

The converse can be proven by noting the inequality∣∣∣∣∫
η<|y|≤1

yeyν (dy)

∣∣∣∣ ≥ 1

e

∣∣∣∣∫
η<|y|≤1

yν (dy)

∣∣∣∣ ,
and taking the supremum since the left-hand side is bounded when η → 0 by our

assumption.

4.3 Properties of the Rate of Convergence

Previous results on ATM call prices (e.g. [22], [52], and [44]) considered only the case

Bt = κt1/α whenever 1 < α < 2, where κ > 0 is a constant. The results of this section

show more general asymptotics for ATM call option prices.

In [21], [30], and [43], the authors show that the rate function B ∈ RV 0
−1/α when-

ever the convergence is towards an α-stable random variable. In this section, we

aim to further restrict what kind of behavior B can exhibit when (3.13) is satisfied.

Throughout the section, we use the notation βt := 1/Bt for convenience.

Assume that (3.13) holds for the Lévy process (Xt)t≥0 under the measure P (and

hence also under P∗). Thus, the Lévy measures ν and ν∗ are regularly varying with

index α > 0 at 0, and we further assume that α ∈ (1, 2). Since γ∗ is regularly varying

at 0 of order −α, it has representation

γ∗ (x) = x−α`

(
1

x

)
, (4.16)
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for all x > 0, where ` is slowly varying at ∞ (equivalently, we can take γ∗(x) =

x−αψ(x) where ψ is slowly varying at 0). We deal with γ∗ rather than γ as most of

our calculations will be done with the quantities under the measure P∗.

The representation for γ∗ is derived in the following way. First, note that γ∗ (·) ∈

RV 0
−α if and only if γ

(
1
·

)
∈ RV ∞α , and then the representation theorem for regularly

varying functions gives (4.16).

Some observations about (4.16) are in order. First, ` has asymptotically controlled

behavior near∞ due to its slow variation; however, we cannot specify any properties

of ` near 0. There are really only two properties governing the behavior of ` near

0. First, γ∗ is nonincreasing (this follows naturally from its definition). Second,

there is some control exerted on γ∗ from its relation to ν∗ and the requirement that∫ 1

−1
x2ν∗(dx) <∞.

We can simplify how we look at (3.13) because we do not need the additive

correction term. In [42], the authors show that At can be taken to be O(t) (recall

that α ∈ (1, 2)). So, under P∗

βt (Xt − At)⇒ Z,

as t→ 0. Recall that βt ∈ RV 0
1/α so that, again by the representation theorem,

βt = t−1/αζ (1/t) ,

as t→ 0, where ζ is slowly varying at ∞. Also, for some absolute constant C > 0 we

have

|Atβt| ≤ Ctβt

= Ct1−1/αζ (1/t) .

The function s1/α−1ζ (s) is regularly varying at ∞ with index 1/α− 1 < 0. Standard

results (e.g. Proposition 1.3.6(v) in [4]) imply that s1/α−1ζ (s)→ 0 as s→∞, which
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shows that Atβt → 0 as t→ 0. So, we need only look at the convergence βtXt ⇒ Z,

as t→ 0 under P∗.

The next theorem states the asymptotic behavior of βt as t → 0 under a small

technical condition.

Theorem 4.4. Let there exist x0 > 0 such that x2ξ∗S(x) is monotone (increasing or

decreasing) for 0 < x < x0. Then the function β satisfies

lim
t→0

tβαt ` (βt) = Λ,

where Λ is a positive numerical constant.

Proof. By the previous argument, we can ignore the βtAt term and know

βtXt ⇒ Z, (4.17)

as t→ 0, under P∗ where Z is an α-stable random variable. Recall that [30] and [4]

both give the representation

ϕZ(u) = exp
(
−cα |u|α (1− i(p+ − p−) sgn (u) tan (πα/2))

)
, (4.18)

where p± are defined in Lemma 3.24. We need further information concerning the

slowly varying part of γ∗. So, we examine the characteristic functions of both βtXt

and Z, which we know must be equal when t→ 0 by (4.17).

First, we will need to determine the behavior of ξ∗S(x). To this end, we will use

the Monotone Density Theorem (Theorem 3.11). We know γ∗(x) =
∫∞
x
ξ∗S(x)dx =

x−α`(1/x), for x > 0. Hence,

x−α`(x) = γ∗ (1/x)

=

∫ ∞
1/x

ξ∗S(y)dy

= −
∫ 0

x

ξ∗S (1/u)
du

u2

=

∫ x

0

ξ∗S (1/u)
du

u2

=

∫ x

0

s(u)du, (4.19)
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where s(u) := ξ∗S (1/u)u−2. Note that x2ξ∗S(x) = s(1/x) and x2ξ∗S is monotone for

x close enough to 0 (i.e. s(u) is monotone for u large enough). Now, we use the

Monotone Density Theorem to get that s(x) ∼ αxα−1`(x), as x → ∞. That is,

for y close to 0, we have s(1/y) = y2ξ∗S(y) ∼ αy−α+1`(1/y) which implies ξ∗S(y) ∼

αy−α−1`(1/y) for y positive and near 0. Now, the exponent of the characteristic

function of βtXt is given by

log
(
E∗eiuβtXt

)
= t

∫ ∞
−∞

(exp (iuβty)− 1− iuβty) ξ∗(y)dy. (4.20)

Fix any 0 < ε < 1 and let w0(ε) > 0 be such that

(1− ε)αx−α−1`(1/x) ≤ ξ∗S(x) ≤ (1 + ε)αx−α−1`(1/x), (4.21)

for all 0 < x < w0. The real part of (4.20) converges to −cα |u|α where cα > 0 as

t→ 0 (again see [30], [4], and [42]). First, we need to rewrite (4.20) in a nicer form.

Let g(u, y) = exp (iuβty)− 1− iuβty and rewrite

log
(
E∗eiuβtXt

)
= t

∫ ∞
−∞

g(u, y)ξ∗(y)dy

= t

∫ ∞
0

(
g(u, y)ξ∗(y) + g(u, y)ξ∗(−y)

)
dy. (4.22)

Note that the real part of g is <(g(u, y)) = cos (uβty)− 1, and the real part of (4.22)

is

<
(
log
(
E∗eiuβtXt

))
= t

∫ ∞
0

<g(u, y) (ξ∗(y) + ξ∗(−y)) dy

= t

∫ ∞
0

(cos (uβty)− 1) ξ∗S(y)dy

=
t

|u| βt

∫ ∞
0

(cos (sgn (u)w)− 1) ξ∗S

(
w

|u| βt

)
dw

=
t

|u| βt

∫ ∞
0

(cos (w)− 1) ξ∗S

(
w

|u| βt

)
dw. (4.23)
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Continuing, we break (4.23) into two parts by writing for L > 0

<
(
log
(
E∗eiuβtXt

))
=

t

|u| βt

∫ ∞
0

(cos (w)− 1) ξ∗S

(
w

|u| βt

)
dw

=
t

|u| βt

∫ ∞
0

(cos (w)− 1) ξ∗S

(
w

|u| βt

)
1{ w
|u|βt

≤L}dw (4.24)

+
t

|u| βt

∫ ∞
0

(cos (w)− 1) ξ∗S

(
w

|u| βt

)
1{ w
|u|βt

>L}dw. (4.25)

It is easy to see that (4.25) goes to 0, as t→ 0, since

t

|u| βt

∣∣∣∣∫ ∞
0

(cos (w)− 1) ξ∗S

(
w

|u| βt

)
1{ w
|u|βt

>L}dw

∣∣∣∣
= t

∣∣∣∣∫ ∞
0

(cos (uβtz)− 1) ξ∗S(z)1{z≥L}dz

∣∣∣∣
≤ 2t

∫ ∞
L

ξ∗S(z)dz.

Now, we estimate (4.24) to get the desired result. First, we show a preliminary result

of use later. Namely, we show that there exists M > 0 with 1/M ≤ w0 such that

∫ ∞
0

(cos (w)− 1)

w1+α

`
(
|u|βt
w

)
` (βt)

1{ w
|u|βt

≤ 1
M
}dw →

∫ ∞
0

(cos (w)− 1)

w1+α
dw <∞, (4.26)

as t→ 0. Recall that ` slowly varying implies that `(λx)/`(x)→ 1, for any λ > 0, as

x→∞. Letting x = βt and λ = |u| /w implies that

`
(
|u|βt
w

)
`(βt)

→ 1,

as t→ 0. We recall the Potter bounds from Theorem 3.8 for `, that is for any A > 1

and δ > 0 there exists M > 0 such that for x, y ≥M ,

`(y)

`(x)
≤ A

((y
x

)δ
∨
(y
x

)−δ)
.

Choose A = 2 and δ > 0 such that α+ 1± δ ∈ (2, 3) and let M0 > 0 be the M in the
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above statement for the given A and δ. Note if w ≤ |u| βtw0 and 1 ≥ w0M0 then

(cosw − 1)w−α−1
`
(
|u| βt
w

)
`(βt)

1{ w
|u|βt

≤w0}

≤ (cosw − 1)w−α−1Amax

{(
|u|
w

)δ
,

(
|u|
w

)−δ}
.

≤ A(cosw − 1)
(
|u|δ w−α−1−δ + |u|−δ w−α−1+δ

)
. (4.27)

In (4.27) the first term is integrable on [0,∞) since α+1+δ < 3, and so is the second

term since α+1−δ > 2. Applying Lebesgue’s Dominated Convergence Theorem gives

(4.26). If w0M0 > 1, then we apply similar arguments on the set {|u| βt ≥ wM0}. In

either case, there exists M > 0 such that 1/M ≤ w0 and (4.26) holds. Equation

(4.25) converging to 0 as t → 0 implies (as stated before) that (4.24) converges to

−c |u|α as t → 0. If we let L = min
(

1
M0
, w0

)
, then we are in a position to analyze

the conditions under which (4.24) converges to −cα |u|α. Using (4.21) we obtain

t

|u| βt

∫ ∞
0

(cosw − 1) ξ∗S

(
w

|u| βt

)
1{ w
|u|βt

≤L}dw

≤ t(1 + ε)

|u| βt

∫ ∞
0

(cosw − 1)

(
w

|u| βt

)−α−1

`

(
|u| βt
w

)
1{ w
|u|βt

≤L}dw

= (1 + ε) |u|α tβαt
∫ ∞

0

(cosw − 1)

wα+1
`

(
|u| βt
w

)
1{ w
|u|βt

≤L}dw

= (1 + ε) |u|α tβαt `(βt)
∫ ∞

0

(cosw − 1)

wα+1

`
(
|u|βt
w

)
`(βt)

1{ w
|u|βt

≤L}dw. (4.28)

Similarly, we obtain the lower bound

t

|u| βt

∫ ∞
0

(cosw − 1) ξ∗
(

w

|u| βt

)
1{ w
|u|βt

≤L}dw

≥ (1− ε) |u|α tβαt `(βt)
∫ ∞

0

(cosw − 1)

wα+1

`
(
|u|βt
w

)
`(βt)

1{ w
|u|βt

≤L}dw. (4.29)

Dividing each side of both (4.28) and (4.29) by tβαt `(βt), letting −ς =
∫∞

0
(cos (w)−

1)w−α−1dw, and letting t→ 0 gives

−(1 + ε)ς |u|α ≤ −cα |u|α

limt→0 tβαt `(βt)
≤ −(1− ε)ς |u|α .
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Letting ε→ 0 implies that

lim
t→0

tβαt `(βt) = Λ ∈ (0,∞), (4.30)

where Λ = cα/ς (note that ς > 0, for 1 < α < 2). In fact, e.g. see [50],

ς =
π

2Γ (1 + α) sin
(
πα
2

) ,
where Γ here is Euler’s Gamma function.

4.4 First Order European Call Price and Implied Volatility
Asymptotics

We now move on to show our main first order results. We keep all of the assumptions

made to date in this chapter, keeping also the constants from the previous argument

(e.g. M0 and w0).

More specifically, we make the following assumptions:

(A1) ν is regularly varying of order −α at 0 with α ∈ (1, 2).

(A2) There exist C > 0 and x1 > 0 such that
∫
|y|≤x y

2eyξ (y) dy ≤ Cx2
∫
|y|>x e

yξ (y) dy

for all x ≥ x1.

(A3) There exists x0 such that x2ξS (x) is monotone (either increasing or decreasing)

for 0 < x < x0.

Note that all of these assumptions are requirements on the Lévy measure ν and not

on the transformed Lévy measure ν∗ (although we can state them in terms of ν∗ as

well).

Although the assumptions seem strict and technical, we discuss their purpose

and meaning to show that they are not overly cumbersome. The most important

and indispensable assumption by far is (A1). Under this assumption, the Lévy pro-

cess, when properly scaled by some Bt, converges to a stable random variable. This

assumption is essential; however, assumptions (A2) and (A3) are less so.
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Assumption (A2) guarantees that we can apply the concentration inequality from

Chapter 3. We already saw that (A2) holds for Lévy processes in the DOA of a stable

random variable, when x is small. Therefore, we need only show that the inequality

also holds as x → ∞. It might be that assumption (A2) is always satisfied for Lévy

processes that satisfy assumption (A1).

Assumption (A3) seems to be the least important. It is used to obtain the asymp-

totic form of the Lévy measure close to 0 given the expression for γ∗ (e.g., see (4.19)).

We believe that this restriction is unnecessary since processes in the DOA of stable

random variables are, in some sense, very close to stable random variables near t = 0.

4.4.1 Without Brownian Component

Our first result shows that the function βt = 1/Bt determines the first order asymp-

totics of call option prices in the absence of a Brownian component (i.e. (Xt)t≥0 has

characteristic triplet (b, 0, ν)). Recall, that the asset-price dynamics are defined by

the process S = (St)t≥0 where

St = S0e
Xt ,

for each t ≥ 0. We have the following.

Theorem 4.5. Along with the conditions (A1)–(A3), assume that

(i) µ̄ <∞,

(ii) and there exists R0 > 0 such that∫
|y|>R0

γ∗ (y) dy <∞.

Then an ATM European call option has asymptotic expansion

E (St − S0)+ = (S0E∗Z+)Bt + o (Bt) , (4.31)

as t→ 0, where Z is the α-stable random variable from (4.17).
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One quick remark is in order. Note that if ` is also slowly varying at 0, then

conditions (A2) and (ii) are automatically satisfied. In this case, the function γ∗ is also

regularly varying at∞ and so the representation results (3.6) and Karamata’s theorem

(Theorem 3.9) show (ii) (alternatively, we could use a Potter’s bound argument to

obtain that the integral is finite for all x > 0).

Proof. Recalling (2.11) and βt = 1/Bt and using M0 from the Potter bound argument

in Theorem 4.4, we obtain

c(t, 0)

Bt

=
1

Bt

∫ ∞
0

e−xP∗ (Xt ≥ x) dx

=

∫ ∞
0

e−BtuP∗ (Xt ≥ Btu) du

=

∫ ∞
0

e−BtuP∗ (Xt ≥ Btu)

(
1{ 1

M0
≥Btu

4
≥tµ̄∗} + 1{Btu

4
> 1
M0
} + 1{Btu

4
<tµ̄∗}

)
du

(4.32)

:=

∫ ∞
0

(A1(t, u) + A2(t, u) + A3(t, u)) du, (4.33)

where t is so small that tµ̄∗ < 1/M0. In what follows, we will write Ai(t) := Ai(t, u)

for i = 1, 2, 3.

First, we note that the integral of A3(t) can be estimated as∫ ∞
0

e−BtuP∗ (Xt ≥ Btu)1{Btu
4
<tµ̄∗}du ≤

∫ ∞
0

1{u<4µ̄∗tβt}du

= 4µ̄∗tβt → 0, (4.34)

as t → 0 since tβαt ` (βt) ∼ Λ. Therefore, we only need to deal with the integral of

A1(t) and A2(t). Using {Btu > 4tµ̄∗} ⊆ {Btu > 4tµBtu/4} and the estimate from

Lemma 3.27, for some constant C > 0 and for any

u ∈ I ⊂ {Btu > 4tµ̄∗} (4.35)
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with I measurable and t > 0 fixed,

P∗ (Xt ≥ Btu) ≤
[(

1 + Ce2
)
tγ∗
(
Btu

4

)
∨ 1

]
=

[(
1 + Ce2

)
tγ∗
(
u

4βt

)
∨ 1

]
≤

[(
(1 + Ce2)t

(
u

4βt

)−α
`

(
4βt
u

))
∨ 1

]

=

[
κtβαt u

−α`

(
4βt
u

)
∨ 1

]
, (4.36)

where κ > 0 is a collection of all the constants. In what follows, we use κ to represent

a positive constant whose value might change from line to line.

Recall from our Potter bound argument in Theorem 4.4 that α ± δ ∈ (1, 2). We

also choose t0 > 0 such that for all 0 < t < t0,

Λ

2`(βt)
< tβαt <

3Λ

2`(βt)
.

Continuing (4.36) for 0 < t < t0 and u ∈ I,

P∗ (Xt ≥ Btu) ≤ κu−α
`
(

4βt
u

)
`(βt)

∨ 1.

First, we show that the integral of A2(t) goes to 0 as t → 0. Indeed, choosing

I = {4βt < M0u} in (4.35) and changing variables gives∫ ∞
0

A2(t)du ≤
∫ ∞

0

[
κu−α

`
(

4βt
u

)
`(βt)

∨ 1

]
1{ 4βt

u
<M0}du

≤ 1

4βt

∫ ∞
0

κu2−α `
(

4βt
u

)
`(βt)

1{ 4βt
u
<M0}4βt

du

u2

=
1

4βt

∫ M0

0

κ

(
4βt
w

)2−α
`(w)

`(βt)
dw

=
κ

βα−1
t `(βt)

∫ M0

0

`(w)

w2−αdw

=
κ

βα−1
t `(βt)

∫ ∞
1/M0

`
(

1
z

)
zα

dz

=
κ

βα−1
t `(βt)

∫ ∞
1/M0

γ∗(z)dz → 0, (4.37)
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as t → 0, since the integral is finite and tβαt `(βt) ∼ Λ as t → 0. In order to

estimate A1 (t), we use (4.36) and Potter bounds from Theorem 4.4. Choosing I ={
M0 ≤ 4βt

u
< 1

tµ̄∗

}
and for u ∈ I and any t > 0,

A1(t, u) ≤

[
κu−α

`
(

4βt
u

)
`(βt)

∨ 1

]
1{M0≤ 4βt

u
< 1
tµ̄∗ }

≤ max
{
κ4δu−α−δ ∨ 1, κ4−δu−α+δ ∨ 1

}
∈ L1([0,∞)), (4.38)

so that we are able to apply Lebesgue’s Dominated Convergence theorem to∫ ∞
0

A2 (t, u) du =

∫ ∞
0

e−BtuP∗ (Xt ≥ Btu)1{ 1
M0
≥Btu

4
>tµ̄∗}du.

Combining this fact with (4.37) and (4.38) gives

lim
t→0

c (t, 0)

Bt

= lim
t→0

∫ ∞
0

A2 (t, u) du

=

∫ ∞
0

P∗ (Z ≥ u) du

= E∗Z+,

which can be rewritten as

lim
t→0

E (St − S0)+ = S0BtE∗Z+ + o (Bt) ,

proving the theorem.

We next obtain ATM implied-volatility asymptotics close to expiration. In fact,

we show that the implied volatility for ATM options, as approaching expiration,

collapses at the rate Bt/
√
t.

Corollary 4.6. Under the assumptions of Theorem 4.5, σ̂, the implied volatility of

an ATM call option is such that

σ̂ (t) =
√

2π
Bt√
t
E∗Z+ + o

(
Bt√
t

)
, (4.39)

as t→ 0.
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Proof. We proceed as in the proof of Proposition 3.7 in [23]. We know that the

Black-Scholes call price asymptotics are S0cBS, where

cBS (t, σ) =
σ√
2π

√
t+ o

(√
t
)
, (4.40)

as t→ 0, since cBS = N
(
σ
√
t
)

where

N (θ) :=

∫ θ

0

Φ
′
(u

2

)
du =

1√
2π

∫ θ

0

exp

(
−u

2

8

)
du,

where Φ is the standard normal cumulative distribution function, and where N has

asymptotic behavior

N (θ) =
1√
2π
θ + o (θ) ,

as θ → 0. We need an expression similar to (4.40) where the constant σ is replaced

by the implied volatility function σ̂(t). Now, σ̂(t)→ 0 as t→ 0, so a substitution in

cBS gives

cBS (t, σ̂(t)) =
σ̂(t)√

2π

√
t+ o

(
σ̂ (t)

√
t
)

=
σ̂(t)√

2π

√
t+ o

(√
t
)
, (4.41)

as t→ 0, since σ̂ (t) = o (1) as t→ 0. Equating (4.41) with (4.31), leads to

σ̂(t)√
2π

√
t ∼ BtE∗Z+,

as t→ 0, i.e.

σ̂ (t) ∼
√

2π
Bt√
t
E∗Z+,

as t→ 0, giving the result.

4.4.2 With Brownian Component

We now add an independent Brownian component to the Lévy process. In this case,

a new proof technique significantly reduces the complexity of deriving the first order

dynamics of more general Lévy processes with Brownian component. We find, as in

previous results (e.g. [22], [44], [23], [24]), that the order of convergence is
√
t.
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Define a Lévy process X = (Xt)t≥0 for every t ≥ 0 via Xt = σWt + Lt, where

W = (Wt)t≥0 is a standard Brownian motion, σ > 0, and L = (Lt)t≥0 is the pure-

jump process with Lévy triplet (b, 0, ν), independent of W , where ν is the same as in

the non-Brownian case; however, now our drift term b must satisfy

b+
σ2

2
+

∫
R

(
ex − 1− x1{|x|≤1}

)
ν (dx) = 0,

so that
(
eXt
)
t≥0

still satisfies the martingale condition. We also need a different

definition for µε to account for the Brownian component, namely

µε = b+
σ2

2
−
∫
|x|≤1

z1{|x|>ε}ν (dx) +

∫
|x|≥1

z1{|x|≤ε}ν (dx) .

As in [50] and using the martingale condition EeXt = 1, we define a probability

measure P∗ such that P∗ (B) = EeXt1B for every Borel set B. Under this probability

measure, the process X = (Xt)t≥0 is again a Lévy process with triplet (b∗, σ∗, ν∗)

where

b∗ = b+

∫
|x|≤1

x (ex − 1) ν(dx) + σ2,

σ∗ = σ, and ν∗(dx) = exν (dx). The processes L and W are still independent under

P∗.

In order to prove our result, we prove a basic convergence theorem.

Lemma 4.7. Let (S,Σ, µ) be a measure space. Let f, g : S × [0,∞) → [0,∞) and

h : S → [0,∞) be measurable and such that f (·, t) , g (·, t) , h ∈ L1 (S) for almost

every t ≥ 0. Also, suppose

(C1) f(s, t)→ f̄(s) ∈ L1(S) as t→ 0,

(C2) f(s, t) ≤ h(s) + g(s, t) for µ-a.e. s ∈ S and almost every t ≥ 0,

(C3) g(s, t)→ 0 as t→ 0 µ-a.e s ∈ S,

(C4)
∫
S
g(s, t)µ(ds)→ 0 as t→ 0.
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Then

lim
t→0

∫
S

f(s, t)µ(ds) =

∫
S

f̄(s)µ(ds).

Proof. First, we choose a sequence (tn)n≥1 such that tn → 0, as n→∞, and

lim
n→∞

∫
S

f (s, tn)µ (ds) = lim inf
t→0

∫
S

f (s, t)µ (ds) . (4.42)

We apply Fatou’s lemma, since f ≥ 0, to obtain∫
S

f̄(s)µ(ds) =

∫
S

lim inf
t→0

f(s, t)µ(ds)

≤
∫
S

lim inf
n→∞

f(s, tn)µ(ds)

≤ lim inf
n→∞

∫
S

f(s, tn)µ(ds)

= lim inf
t→0

∫
S

f(s, t)µ(ds). (4.43)

Next, we choose another sequence
(
t
′
n

)
n≥1

such that t
′
n → 0, as n→∞, and

lim
n→∞

∫
S

f
(
s, t

′

n

)
µ (ds) = lim sup

t→0

∫
S

f (s, t)µ (ds) . (4.44)

So, (C2) implies h(s) + g(s, t)− f(s, t) ≥ 0, and applying Fatou’s lemma again,∫
S

(
h(s)− f̄(s)

)
µ(ds) =

∫
S

lim inf
t→0

(h(s) + g (s, t)− f (s, t))µ (ds)

≤
∫
S

lim inf
n→∞

(
h(s) + g

(
s, t

′

n

)
− f

(
s, t

′

n

))
µ (ds)

≤ lim inf
n→∞

∫
S

(
h(s) + g

(
s, t

′

n

)
− f

(
s, t

′

n

))
µ (ds)

=

∫
S

h(s)µ (ds) + lim inf
n→∞

(
−
∫
S

f
(
s, t

′

n

)
µ (ds)

)
=

∫
S

h(s)µ(ds)− lim sup
n→∞

∫
S

f(s, t
′

n)µ(ds)

=

∫
S

h(s)µ(ds)− lim sup
t→0

∫
S

f(s, t)µ(ds).

Note that the limsup in the last line is finite due to (C2). Canceling the h term, we

obtain

lim sup
t→0

∫
S

f(s, t)µ(ds) ≤
∫
S

f̄(s)µ(ds). (4.45)
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Combining (4.43) and (4.45), we have∫
S

f̄(s)µ(ds) ≤ lim inf
t→0

∫
S

f(s, t)µ(ds) ≤ lim sup
t→0

∫
S

f(s, t)µ(ds) ≤
∫
S

f̄(s)µ(ds),

which proves the result.

In order to show the new result, we make the same assumptions as in Theorem

4.5. These assumptions are only assumptions on the jump part L. We present the

basic proof of the first-order call-price asymptotics with Brownian part, and later,

we present a more general result and simplify the proof significantly. We include the

basic proof to demonstrate the techniques used and for completeness.

Theorem 4.8. Let (Lt)t≥0 satisfy the hypotheses of Theorem 4.5. Then, in case

Xt
L
= σWt + Lt for every t ≥ 0 with σ > 0,

E(St − S0)+ = S0σ
√
tE∗(W ∗

1 )+ + o
(√

t
)
,

as t→ 0.

Proof. We make use of the fact that

lim
t→0

E∗
[

exp

(
iu
Xt√
t

)]
= exp

(
−1

2
(σ∗)2u2

)
, (4.46)

and

lim
t→0

P∗
(
Xt√
t
≥ x

)
= P∗ (σW1 ≥ x) . (4.47)

Continuing,

1√
t
E(St − S0)+ =

1√
t

∫ ∞
0

exP∗ (Xt ≥ x) dx

=

∫ ∞
0

e−
√
tuP∗

(
Xt ≥ u

√
t
)
du. (4.48)

Note that

e−
√
tuP∗

(
Xt ≥ u

√
t
)
≤ P∗

(
σWt ≥

√
tu

2

)
+ P∗

(
Lt ≥

√
tu

2

)
= P∗

(
σW1 ≥

u

2

)
+ P∗

(
Lt ≥

√
tu

2

)
. (4.49)
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We next use Lemma 4.7 with

f(u, t) = e−
√
tuP∗

(
Xt ≥ u

√
t
)
,

f̄(u) = P∗ (σW1 ≥ u) ,

h(u) = P∗ (σW1 ≥ u/2) ,

and g(u, t) = P∗
(
Lt ≥

√
tu/2

)
. It is easy to see that conditions (C1) – (C2) of the

lemma are satisfied. We need to show that (C3) and (C4) also hold. It is not too

difficult to see that (C3) holds from (4.46) and the independence of W and L under

P∗. We now show that (C4) is satisfied as well. Once done, we immediately have the

result by applying Lemma 4.7 to (4.48). First note∫ ∞
0

P∗
(
Lt ≥

√
tu

2

)
du =

∫ ∞
0

P∗
(
Lt ≥

√
tu

2

)(
1{
√
tu
8
≥tµ̄∗} + 1{

√
tu
8
<tµ̄∗}

)
du

:= D1(t) +D2(t).

It is easy to see that D2(t)→ 0 as t→ 0 since

D2(t) ≤
∫ ∞

0

1{
√
tu
8
<tµ̄∗}du = 8

√
tµ̄∗.

We now show limt→0D1(t) = 0 by making use of Lemma 3.27 and Potter’s bounds.

To do so, we need to break up D1(t) into several pieces. Choose A > 1 and δ > 0

such that α± δ ∈ (1, 2) and let M0 > 0 be such that the Potter bounds hold for ` on

[M0,∞) . We have

D1(t) =

∫ ∞
0

P∗
(
Lt ≥

√
tu

2

)(
1{M0≤ 8√

tu
≤ 1
tµ̄∗ }

+ 1{ 8√
tu
<M0}

)
du

:= D11(t) +D12(t),

and we will apply the Potter bounds to D11(t) in order to use a Dominated Con-

vergence Theorem argument. We are concerned with the limit as t → 0, so there is

no loss of generality in assuming that t is so small that 8 > M0

√
t. We proceed by
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estimating (and using κ as a general positive coefficient that can change from line to

line)

D11(t) ≤
∫ ∞

0

(
(1 + Ce2)tγ∗

(√
tu

8

)
∨ 1

)
1{M0≤ 8√

tu
≤ 1
tµ̄∗ }

du

=

∫ ∞
0

(
κt

(√
tu

8

)−α
`

(
8√
tu

)
∨ 1

)
1{M0≤ 8√

tu
≤ 1
tµ̄∗ }

du

=

∫ ∞
0

(
κt1−α/2u−α`

(
8√
tu

)
∨ 1

)
1{M0≤ 8√

tu
≤ 1
tµ̄∗ }

du.

We have(
κt1−α/2u−α`

(
8√
tu

)
∨ 1

)
1{M0≤ 8√

tu
≤ 1
tµ̄∗ }

=

κt1−α/2u−α `
(

8√
tu

)
`
(

8√
t

) `( 8√
t

)
∨ 1

1{M0≤ 8√
tu
≤ 1
tµ̄∗ }

≤ κt1−α/2`

(
8√
t

)
Amax

(
u−α−δ, u−α+δ

)
∨ 1. (4.50)

Now, letting βt = 8/
√
t,

t(1−α
2 )`

(
8√
t

)
= 82−α

(
8√
t

)2(α2−1)
`(βt)

= 82−αβα−2
t `(βt)→ 0,

since α−2 < 0 and βt →∞ as t→ 0. Thus, there exists t0 such that t(1−α/2)`(8/
√
t) ≤

1 for all 0 ≤ t < t0. So, (4.50) is bounded by

κmax
(
u−α−δ, u−α+δ

)
∨ 1 ∈ L1([0,∞)).

Thus, we can apply Lebesgue’s Dominated Convergence Theorem to D11(t) which

gives D11(t) → 0, as t → 0, since P∗
(
Lt ≥

√
tu
2

)
→ 0, as t → 0, for u > 0. We now
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consider D12(t) and estimate

D12(t) =

∫ ∞
0

P∗
(
Lt ≥

√
tu

2

)
1{ 8√

tu
<M0}du

≤ κt1−α/2
∫ ∞

0

u−α`

(
8√
tu

)
1{ 8√

tu
<M0}du

= κt1−α/2
∫ ∞

0

(
8w√
t

)−α
`

(
1

w

)
1{ 1

w
<M0}

8dw

t1/2

= κt1/2
∫ ∞

1/M0

w−α`(1/w)dw

= κt1/2
∫ ∞

1/M0

γ∗(z)dz → 0,

since the last integral is finite. Therefore,
∫∞

0
P∗
(
L∗t ≥

√
tu
2

)
du → 0 as t → 0.

Applying Lemma 4.7 gives the result.

We now simplify Theorem 4.8 to give a result that is more generally useful. The

intuitive idea for the result is that when a Lévy process has a nonzero Brownian

component, the Brownian dynamics will always govern the first-order asymptotics.

Theorem 4.9. Let L = (Lt)t≥0 be a Lévy process with triplet (b, 0, ν) such that

E
[
|L1| eL1

]
< ∞ and let St = S0e

Lt. Let there exist Bt > 0 with Bt → 0 as t → 0,

α ∈ (1, 2), and a probability measure P∗ such that

1

Bt

E (St − S0)+ → E∗Z+,

and

P∗ (Lt ≥ Btu)→ P∗ (Z ≥ u) ,

for every u ≥ 0, where Z is an α-stable random variable under P∗. For t ≥ 0,

let (Xt)t≥0 be given by Xt = σWt + Lt where W = (Wt)t≥0 is a Brownian motion

independent of L under P∗. If

Bt√
t
→ 0,
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as t→ 0, and if (St)t≥0 =
(
S0e

Xt
)
t≥0

is a martingale with respect to its own filtration,

then

c(t, 0) = σE∗(W1)+

√
t+ o

(√
t
)
, (4.51)

as t→ 0.

Proof. Note we still have (4.46) and (4.47). Continuing as in the proof of Theorem 4.8,

1√
t
c(t, 0) =

1√
t

∫ ∞
0

exP∗ (Xt ≥ x) dx

=

∫ ∞
0

e−
√
tuP∗

(
Xt ≥ u

√
t
)
du. (4.52)

and

e−
√
tuP∗

(
Xt ≥ u

√
t
)
≤ P∗

(
σWt ≥

√
tu

2

)
+ P∗

(
Lt ≥

√
tu

2

)
= P∗

(
σW1 ≥

u

2

)
+ P∗

(
Lt ≥

√
tu

2

)
.

We aim to use Lemma 4.7 with

f(u, t) = e−
√
tuP∗

(
Xt ≥ u

√
t
)
,

f̄(u) = P∗ (σW1 ≥ u) ,

h(u) = P∗ (σW1 ≥ u/2) ,

and g(u, t) = P∗
(
Lt ≥

√
tu/2

)
. It is easy to see that conditions (C1)-(C2) of the

lemma are satisfied. We need to show (C3) and (C4) hold. It is not too difficult to

see that (C3) holds from (4.46) and the independence of W and L under P∗. We now

show that (C4) is satisfied as well. Namely, we prove that∫ ∞
0

P∗
(
Lt ≥

√
tu

2

)
du→ 0,

as t→ 0. Once we show this, we immediately have the result by applying Lemma 4.7

to (4.52). Note that there exists t0 > 0 such that Bt ≤
√
t for all 0 ≤ t ≤ t0. For

0 ≤ t ≤ t0, we have

P∗
(
Lt ≥

√
tu
)
≤ P∗ (Lt ≥ Btu) .
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for every u ≥ 0.

To simplify notation, let F (t, u) = P∗
(
Lt ≥

√
tu/2

)
, G(t, u) = P∗ (Lt ≥ Btu/2),

and Ḡ(u) = P∗ (Z ≥ u). Note that
∫∞

0
G(t, u)du →

∫∞
0
Ḡ(u)du as t → 0. It is clear

that 0 ≤ lim inft→0

∫∞
0
F (t, u)du. Now, G(t, u)−F (t, u) ≥ 0, so we can apply Fatou’s

lemma to get ∫ ∞
0

Ḡ(u)du ≤ lim inf
t→0

∫ ∞
0

(G(t, u)− F (t, u)) du

= lim inf
t→0

(∫ ∞
0

G(t, u)du−
∫ ∞

0

F (t, u)du

)
=

∫ ∞
0

Ḡ(u)du− lim sup
t→0

∫ ∞
0

F (t, u)du.

Canceling terms gives lim supt→0

∫∞
0
F (t, u)du ≤ 0. Thus,

0 ≤ lim inf
t→0

∫ ∞
0

P∗
(
Lt ≥

√
tu

2

)
du ≤ lim sup

t→0

∫ ∞
0

P∗
(
Lt ≥

√
tu

2

)
du ≤ 0,

and therefore (C4) is satisfied, proving the result.

In this general setting, we can again find the asymptotics of the implied volatility

function close to expiration.

Corollary 4.10. Under the hypotheses of Theorem 4.9, σ̂, the implied volatility is

such that

σ̂ (t) = σ
√

2πE∗ (W1)+ + o (1) ,

as t→ 0.

Proof. We proceed exactly as in the proof of Corollary 4.6. We are now comparing

(4.40) with (4.51) multiplied by S0. So,

S0σ̂(t)√
2π

√
t ∼ S0σ

√
tE∗ (W1)+ ,

as t→ 0. This implies that

σ̂ (t) ∼ σ
√

2πE∗ (W1)+ ,

as t→ 0.
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4.5 Example of New Rate of Convergence

So far we have shown that new first-order dynamics are possible; however, that would

be relatively useless without some concrete example. In this section we present a

simple example that shows some of this new behavior. That is, this example satisfies

all the assumptions required, and we find the rate of convergence for the call option

price and implied volatility.

Consider the Lévy measure

ν (dx) =


0, x < −1 or x = 0

x−α−1e−x |ln |x|| dx, x ≥ −1 and x 6= 0,

(4.53)

with α ∈ (1, 2). We next consider the Lévy process (Xt)t≥0 with triplet (b, 0, ν) where

we choose b such that the martingale condition is satisfied.

Note that under the measure transform, the new Lévy measure becomes

ν∗ (dx) =


0, x < −1 or x = 0,

x−α−1 |ln |x|| dx, x ≥ −1 and x 6= 0,

(4.54)

and b∗ is defined by (4.4). In order to show that Theorem 4.5 holds, we show directly

the properties needed on ν∗. While this is not materially different from showing the

assumptions on ν, it will save us a considerable amount of calculation (dealing with

the exponential part) and is enough to give the call price asymptotics. That is, we

need to show the following statements

(D1) The function γ∗ is regularly varying of order −α at 0 where α ∈ (1, 2).

(D2) There exist C > 0 and x1 > 0 such that
∫
|y|≤x y

2ν∗(dy) ≤ Cx2
∫
|y|>x ν

∗(dy) for

all x > x1.

(D3) µ̄∗ <∞.

75



(D4) There exists x0 > 0 such that x2 (exν(dx) + e−xν (−dx)) is monotone (either

increasing or decreasing) for 0 < x < x0.

(D5) There exists R0 > 0 such that
∫∞
R0
γ∗ (z) dz <∞.

We compute some quantities directly.

Proposition 4.11. The function γ∗ has the representation

γ∗ (x) =



2
α
x−α

(
ln
(

1
x

)
− 1

α

)
+ 3

α2 , 0 < x < 1

1
α2 , x = 1

1
α
x−α

(
lnx+ 1

α

)
, x > 1,

(4.55)

and is regularly varying of order −α at both 0 and ∞.

Proof. The calculation of γ∗ is a simple calculus exercise. It is also clear that γ∗ is

regularly varying at ∞ by the representation theorem and the fact that ln (x) + a is

slowly varying at ∞ for all a ≥ 0. To see that γ∗ is regularly varying at 0, we show

that

g(x) := ln

(
1

x

)
− 1

α
+

3

α
xα,

is slowly varying at 0. Note that for λ > 0

g (λx)

g(x)
=
− lnλ− lnx− 1

α
+ 3

α
λαxα

− lnx− 1
α

+ 3
α
xα

,

and factoring out − ln (x) and letting x → 0 gives limit of 1. Thus, γ∗ is regularly

varying at 0.

Note that we have already shown (D1), (D2), and (D5). The requirement (D2)

is satisfied since γ∗ is regularly varying at both 0 and ∞, and the requirement (D5)

is satisfied simply by the form of γ∗ for large x and by the fact that α ∈ (1, 2). The

requirement (D4) also holds simply because the Lévy measure is symmetric about 0

for |x| < 1. So, the expression in (D4) becomes, for 0 < x < 1,

2x1−α ln

(
1

x

)
,

76



which is easily seen to be monotone.

It is worth noting that it is not really necessary to show (D4). The purpose of

assumption (D4) in the original theorem was to get the form of the Lévy measure

around the origin. Since here we directly have the form of the Lévy measure about

the origin, this requirement is superfluous.

It only remains to show that µ̄∗ < ∞. From the symmetry of the Lévy measure,

we know that

µ∗ε = b,

for every 0 < ε < 1. Thus, (D3) also holds.

All the hypotheses of the original theorem are now satisfied, and we proceed to

determine the dynamics of βt as t→ 0. Again, Bt = 1/βt can be expressed as

t1/αψ

(
1

t

)
,

for t > 0, where ψ is a slowly varying function at∞. Further, there exists Λ > 0 such

that

tβαt ` (βt)→ Λ,

as t→ 0, where ` is the slowly varying part of γ∗ near 0.

The functions ` and β are defined up to asymptotic equivalence, so we use asymp-

totic versions that are simpler to manipulate. For example, instead of considering

`

(
1

x

)
= − lnx− 1

α
+

3

α2
xα,

for x close to 0, we can consider the asymptotically equivalent

`# (x) = − lnx.

So, we find βt which satisfies the relationship

tβαt ln βt → Λ,
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which is equivalent to

tβαt ln βαt → αΛ. (4.56)

Writing f(x) = x log x, we rewrite (4.56) as tf (βαt )→ αΛ as t→ 0. Furthermore, we

have that βαt ∼ f−1
(
αΛ
t

)
, as t→ 0 (f has an inverse for x large enough and βαt grows

large as t → 0). We need asymptotics for f−1(x) as x → ∞. An inverse for f will

be a function g such that g(x) log g(x) = x. Due to the increasing and unbounded

nature of f for large x, we know that g must be positive for x large enough and we

therefore make the substitution w(x) = log g(x) to get the equation w(x)ew(x) = x.

This is the well know Lambert W function (here, we use lower-case w instead of W

as to not confuse the function with our Brownian motion process); that is, we have

f−1(x) = g(x) = ew(x) = x
w(x)

(the last equality follows by the very definition of the

function w). It is known that w(x) ∼ log x as x→∞ (see e.g. [14]). So, we obtain

f−1(x) =
x

w(x)
∼ x

log x
,

as x→∞. Continuing, we now know

βαt ∼
αΛ
t

log
(
αΛ
t

) ,
hence

t−1ψ(1/t)α ∼
αΛ
t

log
(
αΛ
t

) ,
and

ψ(1/t)α ∼ αΛ

log
(
αΛ
t

) .
Finally, we arrive at

Bt =

(
αΛt

log
(
αΛ
t

)) 1
α

.

Ignoring the constants, the rate of convergence in the first order is(
t

log (1/t)

) 1
α

.
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Note that we could get even more interesting behavior by introducing further slowly

varying function behavior near the origin (e.g. cosx). We compare the traditional

rate t1/α to this example’s rate in the following figures.

Figure 1: Option premium decay rate comparison for α = 1.5
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Figure 2: Option premium decay rate comparison for α = 1.75
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Figure 3: Option premium decay rate comparison for α = 1.15
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CHAPTER V

SECOND ORDER RESULTS

Results containing second-order ATM call-price and implied volatility asymptotics

were discovered relatively recently for exponential Lévy models. Most of the dif-

ficulties in these asymptotics arise from the unexpected order of the second-order

correction term. In the subclass tempered stable processes, Figueroa-López, Gong,

and Houdré proved in [24] that the second order term was t under certain technical

conditions.

Indeed, these results are very technical and rely on the existence of measure trans-

formation techniques. In more general settings, such measure transformations may

not be available or may not even exist. Heuristic expansions up to the second order

exist, but are only available when a measure transformation of a tempered stable

process to a stable process exists.

The Lévy-Khintchine representation guarantees that Lévy processes are com-

pletely characterized by their Fourier transforms. Quite naturally, we might ask if it

is possible to describe the second-order ATM call-price asymptotics using only the

characteristic exponent of the Lévy process, even if only heuristically. In this chapter,

we give an affirmative answer to that question by looking at the CGMY model whose

asymptotics are known up to third order.

Let us take a quick detour and consider intuitively why higher-order asymptotic

expansions are so difficult to develop, even formally. Consider the third-order asymp-

totic results for the CGMY model (shown in [23])

c(t) = d1t
1/Y + d2t+


d31t

2− 1
Y + o

(
t2−

1
Y

)
, if 1 < Y ≤ 3

2

d32t
2/Y + o

(
t2/Y

)
, if 3

2
≤ Y < 2,

(5.1)
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as t→ 0.

Here, we can already see that any heuristic expansion will have to account for this

third-order behavior. Even if we restrict to second-order, we still need to account for

the fact that there is no apparent pattern between the first and second order, further

diminishing the hope that we could find a formal expansion for the second order.

Finally, if we look at the basic expression for the call-option price

E
[

(exp (Xt)− 1)+

]
,

then (5.1) appears at odds with what we expect from expansions of exponential

functions. Clearly the distribution of Xt and the lack of smoothness of the function

x+ at x = 0 play major roles in these asymptotic expansions.

Now that we have explored why these expansions are so counterintuitive, we turn

our attention to justifying, and showing precisely when possible, the second-order

expansions for the CGMY process. First, we introduce the exponential CGMY model

and briefly discuss its properties. Next, we exhibit the Lipton-Lewis option pricing

formula and derive the first-order asymptotics, correcting the proof found in [1].

Finally, we use the Lipton-Lewis formula to obtain heuristic, second-order asymptotics

for ATM call options.

5.1 Revisiting the CGMY Process

In [8] Carr, Geman, Madan, and Yor introduced the appropriately named CGMY

process. The CGMY process is a real-valued Lévy process with triplet (b, 0, ν), where

b ∈ R arbitrary, and where ν is given by

ν(dx) =

(
Ce−G|x|

|x|1+Y
1x<0 +

Ce−Mx

x1+Y
1x>0

)
dx, (5.2)

with C > 0, M,G ≥ 0, and Y < 2. Intuitively, the CGMY process can be thought of

as a stable-like process where larger jumps are much less likely. This intuition comes

from the Lévy measure (5.2), which looks like the Lévy measure of a stable random

83



variable, save for the inclusion of the exponential damping terms. These exponential

damping terms serve to decrease the intensity of the jumps when |x| is large. We

restrict our attention to CGMY processes where 1 < Y < 2.

From Proposition 2.23, equation (5.2), and∫ ∞
1

exC
e−Mx

x1+Y
dx <∞,

when M ≥ 1, we find condition (2.8) is satisfied and
(
eXt
)
t≥0

is a well-defined expo-

nential Lévy model when (Xt)t≥0 is a CGMY process with M ≥ 1 and 1 < Y < 2.

Additionally, we assume M > 1 which implies that eXt has finite moments of all

orders for t ≥ 0.

In addition to having finite moments of all orders (under the condition M > 1),

CGMY processes have simple closed-form characteristic functions. It is given below

as presented in Proposition 4.2 in [12]. In what follows, we say X = (Xt)t≥0 is a

CGMY process whenever X is a Lévy process where X1 has Lévy triplet (b, 0, ν),

b ∈ R, ν is given by (5.2), and 1 < Y < 2.

Proposition 5.1. If (Xt)t≥0 is a CGMY process, then its characteristic exponent is

given by, for u ∈ R,

Ψ (u) = t−1 log
(
E
[
eiuXt

])
= iub̃+ CΓ (−Y )

(
(M − iu)Y + (G+ iu)Y −MY −GY

)
,

(5.3)

where b̃ = b+
∫
|x|>1

xν(dx). If

b̃ = −CΓ (−Y )
(

(M − 1)Y + (G+ 1)Y −MY −GY
)
, (5.4)

then (St)t≥0 =
(
S0e

Xt
)
t≥0

is a martingale with respect to its own filtration.

Proof. First, Y > 1 implies that
∫
|x|>1
|x| ν(dx) <∞ by 2.13, so that b̃ is well-defined.
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From the Lévy-Khintchine representation,

Ψ (u) = iub+

∫
R

(
eiux − 1− iux1{|x|≤1}

)
ν(dx)

= iub+

∫ ∞
−∞

(
eiux − 1− iux

)
ν(dx) + iu

∫
|x|>1

xν(dx)

= iub̃+

∫ ∞
−∞

(
eiux − 1− iux

)
ν(dx). (5.5)

Evaluating the integral in (5.5) is a standard exercise and can be found, for example,

in Proposition 4.2 of [12]. Finally, b̃ as in (5.4) guarantees that Ψ (−i) = 1, implying

that (2.9) is satisfied.

From here and on, we will suppose that b̃ is given by (5.4) so that the exponential

CGMY process (St)t≥0 =
(
S0e

Xt
)
t≥0

is an exponential Lévy asset model in the sense

of Section 2.4.

From Proposition 5.1, simple calculations lead to convergence results for CGMY

processes, shown in [22].

Proposition 5.2. If (Xt)t≥0 is a CGMY process, then

Xt

t1/Y
⇒ Z,

as t → 0, where Z is a Y -stable, symmetric random variable with characteristic

function, given for any u ∈ R, by

φZ (u) = E
[
eiuZ

]
= exp

(
−2CΓ (−Y )

∣∣∣∣cos

(
Y π

2

)∣∣∣∣ |u|Y), (5.6)

where Γ is Euler’s gamma function.

Remark 5.3. Note that Γ (x) > 0, for −2 < x < −1, and so in (5.6), the exponent is

negative for all u 6= 0.
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Proof. First,

log
(
E
[
e
iu

Xt

t1/Y

])
= tΨ

(
ut−1/Y

)
= iut−1/Y b̃t+ tCΓ (−Y )

[(
M − iut−1/Y

)Y
+
(
G+ iut−1/Y

)Y
−MY −GY

]
= iub̃t1−1/Y + CΓ (−Y )

[(
Mt1/Y − iu

)Y
+
(
Gt1/Y + iu

)Y
−MY t−GY t

]
.

(5.7)

Therefore, taking the limit in (5.7) gives

lim
t→0

log
(
E
[
e
iu

Xt

t1/Y

])
= CΓ (−Y )

(
(−i)Y + iY

)
|u|Y

= −2CΓ (−Y )

∣∣∣∣cos

(
Y π

2

)∣∣∣∣ |u|Y .

One important consequence of Proposition 5.2 is that the stable random variable

Z has very different moment properties from the original CGMY process. The Y -

stable random variable Z has finite moments up to, but not including, order Y . In

particular, the random variable Z has infinite variance since Y < 2. This is very

different from the underlying CGMY process which has finite moments of all orders.

5.2 Lipton-Lewis Formula and First Order Results

In order to use the characteristic function to analyze the first and second-order asymp-

totics, we need a reliable formula that represents the call price as a function of the

characteristic function. For this, we turn to the Lipton-Lewis (LL) formula. For a

good discussion of the LL formula and its many applications, we refer the reader to

Andersen and Lipton [1], which we follow here.

Below, we introduce the LL formula and demonstrate how it can be used to obtain

first-order asymptotics for the CGMY process, agreeing with the expansion found in
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[22]. First, we impose conditions on the characteristic function necessary to validate

the LL result. Specifically, the characteristic function has to be well defined as a

function of a complex variable in a certain domain in C. (As usual, for z ∈ C, <z is

its real part, =z its imaginary part, and z̄ its complex conjugate.)

Proposition 5.4. Let (Xt)t≥0 be a Lévy process where X1 has Lévy triplet (b, 0, ν),

b ∈ R. Let the Lévy measure satisfy∫
|x|>1

exν(dx) <∞,

and let φt(z) = E
[
eizXt

]
exist in the complex strip

S = {z ∈ C : −1 ≤ =z ≤ 0} ,

with φt (−i) = 1, then the process S = (St)t≥0 =
(
S0e

Xt
)
t≥0

is an arbitrage-free,

well-defined exponential Lévy model.

Proof. In order for S to be an arbitrage-free, well-defined exponential Lévy model,

we need (2.9) to hold and we need Xt to have finite exponential moment for t ≥ 0.

Since φ is well defined at −i, we know that Xt has finite exponential moment as

EeXt = φt (−i) = 1. (5.8)

Finally, equation (5.8) implies

b+

∫
R

(
ex − 1− x1{|x|≤1}

)
ν (dx) = 0,

which is (2.9).

Recall that we use k = log (S/K) to refer to moneyness where K is the strike

price of the option and S is the asset price. We present the following result discovered

independently by Lipton and Lewis (see Proposition 5.1 [1], Theorem 3.5 and formula

(3.11) in [39], or formula (3) in [41]).
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Theorem 5.5. Let Ψ be the characteristic exponent of the Lévy process (Xt)t≥0 driv-

ing the exponential Lévy asset model (St)t≥0 =
(
S0e

Xt
)
t≥0

. Let Ψ exist in a domain

of C containing S, then the normalized call price is given by

c(t, k) = 1− 1

2π

∫ ∞
−∞

etΨ(u− i
2)

u2 + 1
4

ek(iu−
1
2)du. (5.9)

Setting k = 0 and using
∫∞
−∞ (u2 + 1/4)

−1
du = 2π gives the following ATM call-

option pricing formula.

Corollary 5.6. Under the hypotheses of Theorem 5.5, an ATM call option has nor-

malized price

c(t, 0) =
1

2π
<

(∫ ∞
−∞

1− etΨ(u− i
2)

u2 + 1
4

du

)

=
1

π
<

(∫ ∞
0

1− etΨ(u− i
2)

u2 + 1
4

du

)
. (5.10)

We now use Theorem 5.5 and its corollary to demonstrate how we might go about

obtaining call-price asymptotics. The proof below is a corrected version of the proof

given in [1]. We pursue the same line of argument as Andersen and Lipton; however,

in showing the authors’ results precisely, we were not able to verify their estimation

of the integral when the interval of integration is restricted to [0, ε), some ε > 0.

Theorem 5.7. If (Xt)t≥0 is a CGMY process with M > 1 and (St)t≥0 =
(
S0e

Xt
)
t≥0

is a martingale, then the first-order normalized call-price can be represented as

c (t, 0) = d1t
1/Y + o

(
t1/Y

)
, (5.11)

as t→ 0, with d1 given by

d1 =
1

π
<
(∫ ∞

0

1− exp (θ0(u))

u2
du

)
=

1

π
Γ

(
1− 1

Y

)(
2CΓ (−Y )

∣∣∣∣cos

(
πY

2

)∣∣∣∣)1/Y

,

(5.12)

where

θ0 (u) := CΓ (−Y )
(

(−i)Y + iY
)
|u|Y . (5.13)
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Before proving Theorem 5.7, we state a result that will help us in our proof.

Proposition 5.8. Let (Xt)t≥0 be a CGMY process with M > 1 and (St)t≥0 =(
S0e

Xt
)
t≥0

be a martingale. Then the normalized call-price function has represen-

tation

c(t, 0) = t1/YL (t) , (5.14)

where

L (t) =
1

π
<
(∫ ∞

0

1− exp (θ(t, v))

v2 + 1
4
t2/Y

dv

)
, (5.15)

where

θ(t, v) = ivb̃t1−1/Y + CΓ (−Y )

[((
M − 1

2

)
t1/Y − iv

)Y
+

((
G+

1

2

)
t1/Y + iv

)Y
−MY t−GY t

]

= ivb̃t1−1/Y + κt+ CΓ (−Y )

((
M̃t1/Y − iv

)Y
+
(
G̃t1/Y + iv

)Y)
, (5.16)

where b̃ is given by (5.4), and where κ = −MY − GY . Moreover, the real part of

(5.16) has representation

r(t, v) := <(θ(t, v))

= κt+ CΓ(−Y )

[(
M̃2t2/Y + v2

)Y/2
cos

(
Y arctan

(
− v

M̃t1/Y

))
+
(
G̃2t2/Y + v2

)Y/2
cos

(
Y arctan

(
v

G̃t1/Y

))]
. (5.17)

Proof. The identities (5.14) and (5.15) follow immediately by making the substitution

u = vt1/Y in equation (5.10). For (5.17), use the polar coordinate representation of

complex numbers to rewrite (
M̃t1/Y − iu

)Y
and (

G̃t1/Y + iu
)Y

.
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Remark 5.9. (i) Note that θ (t, v) → θ0 (v) as t → 0 for every v ≥ 0, and θ0 is a

real-valued function as

(−i)Y + (i)Y = −2

∣∣∣∣cos

(
Y π

2

)∣∣∣∣ .
(ii) We will use certain substitutions frequently. To that end, note that

θ
(
t, t1/Y v

)
= tψ (v) , (5.18)

where

ψ (v) = ivb̃+ κ+ CΓ (−Y )

((
M̃ − iv

)Y
+
(
G̃+ iv

)Y)
, (5.19)

and

θ0

(
t1/Y v

)
= tθ0 (v) . (5.20)

(iii) Using (5.17) and (5.18) leads to

<(ψ (v)) =
r
(
t, t1/Y v

)
t

= κ+ CΓ(−Y )

[(
M̃2 + v2

)Y/2
cos

(
Y arctan

(
− v

M̃

))
+
(
G̃2 + v2

)Y/2
cos

(
Y arctan

(
v

G̃

))]
. (5.21)

Observe, <(ψ (v)) ∼ −2CΓ (−Y ) |cos (Y π/2)| vY as v → ∞ where the coeffi-

cient is negative so that exp (<(ψ (v))) is bounded by 1 for v ≥ 0.

Proof of Theorem 5.7. We proceed as in [1] by considering the first order of L. In

order to prove the result, we break L into two parts: one where the integration is

restricted to the interval [0, ε] and the other where the integration is restricted to

(ε,∞), with ε > 0 small. We denote these two parts as Lε0 and L∞ε , respectively.

In what follows, we will expand the integrand of Lε0 around the origin, and we will

apply Lebesgue’s Dominated Convergence Theorem to L∞ε . We use η to represent a

positive constant whose value can change from line to line in the remaining work.
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To first order, we have

Lε0 (t) =
1

π
<
(∫ ε

0

1− exp (θ(t, v))

v2 + 1
4
t2/Y

dv

)
=

1

π
<
(∫ ε

0

−θ(t, v) +D (t, v)

v2 + 1
4
t2/Y

dv

)
= − 1

π

∫ ε

0

<(θ(t, v))

v2 + 1
4
t2/Y

dv +
1

π

∫ ε

0

<(D(t, v))

v2 + 1
4
t2/Y

dv, (5.22)

where D (t, v) = O
(
θ (t, v)2) as t, v → 0.

Here is where our proof differs from the one presented in [1]: the authors claim

that (5.22) is O(ε) after letting t → 0 and the authors ignore the remainder term

involving D. We were not able to verify this claim that (5.22) is O (ε) as t→ 0, and

further we obtain O
(
εY−1

)
after letting t→ 0.

First, we show that the remainder term is O
(
ε2Y−1

)
as t → 0. We estimate,

for some constant η > 0 whose value might change from line to line, and make the

substitution v = t1/Yw, to obtain∫ ε

0

∣∣∣∣<(D (t, v))

v2 + 1
4
t2/y

∣∣∣∣ dv ≤ ∫ ε

0

η |θ (t, v)|2

v2 + 1
4
t2/y

dv

= ηt−1/Y

∫ εt−1/Y

0

∣∣θ (t, t1/Yw)∣∣2
w2 + 1

4

dw

= ηt−1/Y

∫ εt−1/Y

0

t2 |ψ (w)|2

w2 + 1
4

dw

≤ ηt2−1/Y

∫ εt−1/Y

0

(
1 ∨ w2Y

)
w2 + 1

4

dw

≤ ηt2−1/Y

∫ 1

0

1

w2 + 1
4

dw + ηt2−1/Y

∫ εt−1/Y

1

w2Y

w2
dw

≤ ηt2−1/Y + ηt2−1/Y

∫ εt−1/Y

1

w2Y−2dw

= ηt2−1/Y +
η

2Y − 1
ε2Y−1, (5.23)

which is O
(
ε2Y−1

)
(and hence o

(
εY−1

)
) as t→ 0.
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Continuing the estimation of (5.22) and again using the substitution v = t1/Yw,∣∣∣∣∫ ε

0

<(θ(t, v))

v2 + 1
4
t2/Y

dv

∣∣∣∣ =

∣∣∣∣∣
∫ εt−1/Y

0

<
(
θ(t, t1/Yw)

)
t2/Yw2 + 1

4
t2/Y

t1/Y dw

∣∣∣∣∣
= t−1/Y

∣∣∣∣∣
∫ εt−1/Y

0

<(tψ(w))

w2 + 1
4

dw

∣∣∣∣∣
≤ t1−1/Y

∫ εt−1/Y

0

|<(ψ(w))|
w2 + 1

4

dw, (5.24)

where ψ is defined in (5.19). Here, we can use (5.21) to estimate the real part of ψ as

t1−1/Y

∫ εt−1/Y

0

|<(ψ(w))|
w2 + 1

4

dw ≤ t1−1/Y

∫ εt−1/Y

0

κ+ η
(
wY ∨ 1

)
w2 + 1

4

dw. (5.25)

Splitting the integral, it is clear that the first part can be bounded by

t1−1/Y

∫ ∞
0

κ

w2 + 1
4

dw = t1−1/Y κπ → 0, (5.26)

as t → 0. For the second part, split up the integral into two further parts: one

integrating on the interval [0, 1] and one integrating on the interval
(
1, εt−1/Y

)
. We

assume that t is small enough such that εt−1/Y > 1. On the interval [0, 1], the integral

can be estimated similarly to (5.26), so we only consider the interval
(
1, εt−1/Y

)
.

Then,

t1−1/Y

∫ εt−1/Y

1

ηwY

w2 + 1
4

≤ t1−1/Y

∫ εt−1/Y

1

ηwY

w2

=
η

Y − 1
t1−1/Y

((
εt−1/Y

)Y−1 − 1
)

=
η

Y − 1
εY−1 − η

Y − 1
t1−1/Y . (5.27)

Combining (5.26), (5.23), and (5.27) proves that (5.22) is O
(
εY−1

)
as t→ 0.

For the integral L∞ε , our proof is much simpler. Here, |exp θ (t, v)| is bounded

above by a constant, say by η. We estimate the integrand of L∞ε as∣∣∣∣1−<(exp (θ(t, v))

v2 + 1
4
t2/Y

∣∣∣∣ ≤ 1 + η

v2
∈ L1 (ε,∞) ,
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where η possibly depends on ε. Thus, we apply Lebesgue’s Dominated Convergence

Theorem to obtain that

lim
t→0
L∞ε (t) =

∫ ∞
ε

1− exp (θ0 (v))

v2
dv. (5.28)

Finally, we have

lim sup
t→0

∣∣∣∣L (t)−
∫ ∞

0

1− exp (θ0 (v))

v2
dv

∣∣∣∣
= lim sup

t→0

∣∣∣∣Lε0 (t) + L∞ε (t)−
∫ ∞

0

1− exp (θ0 (v))

v2
dv

∣∣∣∣
≤ lim sup

t→0
|Lε0 (t)|+

∣∣∣∣∫ ε

0

1− exp (θ0 (v))

v2
dv

∣∣∣∣
≤ ηεY−1 +

∣∣∣∣∫ ε

0

1− exp (θ0 (v))

v2
dv

∣∣∣∣ , (5.29)

and (5.29) converges to 0 as ε→ 0.

Now that we have established the first order results for CGMY processes using

this method, we move on to the second order.

5.3 CGMY Second Order Results

In this section, we obtain heuristically second order call-price asymptotics for expo-

nential CGMY processes using only asymptotic expansions involving the characteris-

tic function, and we show how such expansions can help obtain asymptotics for more

general exponential Lévy models.

We now turn to the main result of this chapter.

Theorem 5.10. Let (Xt)t≥0 be a CGMY process with M > 1 and let (St)t≥0 =(
S0e

Xt
)
t≥0

be a martingale, then the second-order normalized call-price can be repre-

sented as

c (t, 0) = d1t
1/Y + d2 (ε) t+ o(t), (5.30)
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as t→ 0, where d1 is as in Theorem 5.7 and d2 (ε) is defined for ε > 0 as

d2 (ε) =
1

π

∫ ∞
ε−1/Y

w2 (θ0 (w)−<(ψ (w)))− 1
4
<(ψ (w))

w4
dw

+
1

π

∫ ε−1/Y

0

(
w2 + 1

4

)
θ0 (w)− w2<(ψ (w))

w2
(
w2 + 1

4

) dw. (5.31)

Proof. We obtain (5.30) by showing that the function

R (t) :=
c (t, 0)

t1/Y
− L (0) , (5.32)

is of order t1−1/Y . In terms of L, write

R (t) =
1

π
<
(∫ ∞

0

1− exp (θ (t, v))

v2 + 1
4
t2/Y

dv

)
− 1

π

∫ ∞
0

1− exp (θ0 (v))

v2
dv

=
1

π
<
(∫ ∞

0

1− exp (θ (t, v))

v2 + 1
4
t2/Y

dv −
∫ ∞

0

1− exp (θ0 (v))

v2
dv

)
. (5.33)

In (5.33), temporarily ignore the 1/π and real part and just consider the two integrals.

Fix ε > 0 and consider the two regions
{

0 < t/vY < ε
}

and
{
t/vY ≥ ε

}
. Splitting

(5.33), we obtain

R (t) =

(∫ ∞
(t/ε)1/Y

+

∫ (t/ε)1/Y

0

)(
1− exp (θ (t, v))

v2 + 1
4
t2/Y

− 1− exp (θ0 (v))

v2

)
dv

= A1 (t, ε) + A2 (t, ε) . (5.34)

First, we evaluate A2 by combining fractions and making the substitution v =

t1/Yw,

A2 (t, ε) =

∫ (t/ε)1/Y

0

(
v2 (1− exp (θ (t, v)))−

(
v2 + 1

4
t2/Y

)
(1− exp (θ0 (v)))

v2
(
v2 + 1

4
t2/Y

) )
dv

= t−1/Y

∫ ε−1/Y

0

w2
(
1− exp

(
θ
(
t, t1/Yw

)))
−
(
w2 + 1

4

) (
1− exp

(
θ0

(
t1/Yw

)))
w2
(
w2 + 1

4

) dw

= t−1/Y

∫ ε−1/Y

0

(
w2 (1− exp (tψ (w)))−

(
w2 + 1

4

)
(1− exp (tθ0 (w)))

w2
(
w2 + 1

4

) )
dw.

(5.35)
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Notice that for w close to 0 and t close to 0, we can formally expand the numerator

to first order and arrive at

t1−1/Y

∫ ε−1/Y

0

((
w2 + 1

4

)
θ0 (w)− w2ψ (w)

w2
(
w2 + 1

4

) )
dw. (5.36)

The integral in (5.36), considered on its own, is in fact well-defined after taking

real parts, as <ψ (w) ∼ wY for w small. Using Lebesgue’s Dominated Convergence

Theorem, we can show (5.36) holds precisely, i.e.

lim
t→0

<(A2 (t, ε))

t1−1/Y
=

∫ ε−1/Y

0

((
w2 + 1

4

)
θ0 (w)− w2<(ψ (w))

w2
(
w2 + 1

4

) )
dw. (5.37)

We start with the representation (5.35) and compute

A2 (t, ε)

t1−1/Y
= t−1

∫ ε−1/Y

0

(
w2 (1− exp (tψ (w)))−

(
w2 + 1

4

)
(1− exp (tθ0 (w)))

w2
(
w2 + 1

4

) )
dw

= t−1

∫ ε−1/Y

0

(
1− exp (tψ (w))(

w2 + 1
4

) )
dw − t−1

∫ ε−1/Y

0

(
1− exp (tθ0 (w))

w2

)
dw

= A21 (t, ε)− A22 (t, ε) . (5.38)

First, we estimate the integrand of A22 as∣∣∣∣1t<
(

1− exp (tθ0 (w))

w2

)∣∣∣∣ ≤ 1

t

|1− exp (tθ0 (w))|
w2

≤ 2 |θ0 (w)|
w2

=
2ηwY

w2
, (5.39)

where η > 0 and (5.39) is in L1
[
0, ε−1/Y

]
. Noting that, for every v ≥ 0,

lim
t→0

1− exp (tθ0 (w))

t
= −θ0 (w) ,

Lebesgue’s Dominated Convergence Theorem gives

lim
t→0

A22 (t, ε)

t1−1/Y
= −

∫ ε−1/Y

0

θ0 (w)

w2
dw.

We can apply a similar argument to A21 with the one exception being that our

bounding function is now

2 |ψ (w)|
w2 + 1

4

,
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where |ψ| and 1/ (w2 + 1/4) are bounded on
[
0, ε−1/Y

]
. Again, using Lebesgue’s

Dominated Convergence Theorem and recombining the results gives

lim
t→0

A2 (t, ε)

t1−1/Y
=

∫ ε−1/Y

0

((
w2 + 1

4

)
θ0 (w)− w2ψ (w)

w2
(
w2 + 1

4

) )
dw.

In the case of A1, we are only able to show the expansion holds heuristically. After

showing this, we discuss why making the expansion of A1 precise is so difficult and

suggest possible remedies for this difficulty.

We compute

A1 (t, ε) =

∫ ∞
(t/ε)1/Y

1− exp (θ (t, v))

v2 + 1
4
t2/Y

dv −
∫ ∞

(t/ε)1/Y

1− exp (θ0 (v))

v2
dv

=

∫ ∞
(t/ε)1/Y

1− exp (θ (t, v))

v2

(
1

1 + 1
4

(
t
vY

)2/Y

)
dv −

∫ ∞
(t/ε)1/Y

1− exp (θ0 (v))

v2
dv

=

∫ ∞
(t/ε)1/Y

1− exp (θ (t, v))

v2

(
1− 1

4

(
t

vY

)2/Y

+D (t, v)

)
dv

−
∫ ∞

(t/ε)1/Y

1− exp (θ0 (v))

v2
dv,

where D is the error of the estimation and so D(t, v) = O
((
t/vY

)4/Y
)

, as t/vY → 0.

Simplifying, we write

A1 (t, ε) =

∫ ∞
(t/ε)1/Y

(
exp (θ0 (v))− exp (θ (t, v))

v2

)
dv

− 1

4
t2/Y

∫ ∞
(t/ε)1/Y

1− exp (θ (t, v))

v4
dv +

∫ ∞
(t/ε)1/Y

1− exp (θ (t, v))

v2
D (t, v) dv

= A11 (t, ε) + A12 (t, ε) + A13 (t, ε) . (5.40)

We begin by proving precisely that the error term A13 can be safely ignored. To

this end, we verify

lim sup
t→0

∣∣∣∣<(A13 (t, ε))

t1−1/Y

∣∣∣∣ = 0. (5.41)
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Again, the substitution v = t1/Yw leads to∣∣∣∣<(A13 (t, ε))

t1−1/Y

∣∣∣∣ ≤ 1

t1−1/Y

∫ ∞
(t/ε)1/Y

∣∣∣∣1−<(exp (θ (t, v)))

v2
D (t, v)

∣∣∣∣ dv
≤ t4/Y

t1−1/Y

∫ ∞
(t/ε)1/Y

∣∣∣∣1−<(exp (θ (t, v)))

v2v4

∣∣∣∣ dv
= t5/Y−1

∫ ∞
(t/ε)1/Y

∣∣∣∣1−<(exp (θ (t, v)))

v6

∣∣∣∣ dv
≤ t5/Y−1

∫ ∞
(t/ε)1/Y

∣∣∣∣1−<(exp (θ (t, v)))

v2

∣∣∣∣ dv
= t5/Y−1

∫ ∞
ε−1/Y

∣∣∣∣∣1−<
(
exp

(
θ
(
t, t1/Yw

)))
t2/Yw2

∣∣∣∣∣ t1/Y dw
= t4/Y−1

∫ ∞
ε−1/Y

∣∣∣∣1−<(exp (tψ (w)))

w2

∣∣∣∣ dw
≤ t4/Y−1

∫ ∞
ε−1/Y

1 + |<(exp (tψ (w)))|
w2

dw

≤ t4/Y−1

∫ ∞
ε−1/Y

1 + exp (t<(ψ (w)))

w2
dw

≤ t4/Y−1

∫ ∞
ε−1/Y

η (ε)

w2
dw, (5.42)

where η (ε) > 0 possibly depends on ε and the integral in (5.42) is finite. Noting that

4/Y − 1 ∈ (1, 3), we find

lim sup
t→0

∣∣∣∣<(A13 (t, ε))

t1−1/Y

∣∣∣∣ ≤ lim sup
t→0

t4/Y−1

∫ ∞
ε−1/Y

η (ε)

w2
dw

= 0. (5.43)

Next, we consider A11 and A12, albeit only formally. For A12,

A12 (t, ε)

t1−1/Y
= −1

4
t3/Y−1

∫ ∞
ε−1/Y

1− exp
(
θ
(
t, t1/Yw

))
t4/Yw4

t1/Y dw

= −1

4
t−1

∫ ∞
ε−1/Y

1− exp (tψ (w))

w4
dw. (5.44)

Now, when taking the limit in (5.44), if we can exchange the limit and integral, then

(5.44) becomes

lim
t→0

<(A12 (t, ε))

t1−1/Y
= −1

4

∫ ∞
ε−1/Y

<(ψ (w))

w4
dw. (5.45)
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Observe that (5.45) is well-defined as |<(ψ (w))| ≤ 2CΓ (−Y ) |cos (Y π/2)|wY , for all

w large enough.

The jump from (5.44) to (5.45) is difficult to make precise due to the lack of

uniform bounds in w and t when w is large and t is small for

|1− exp (tψ (w))|
t

, (5.46)

or

|1−<(exp (tψ (w)))|
t

. (5.47)

Another complication is that

<(exp (tψ (w))), (5.48)

is more difficult to work with than the real part of ψ. Indeed, (5.48) depends on the

imaginary part of ψ and has closed form expression

<(exp (tψ (w))) = exp (t<(ψ (w))) cos (t=(ψ (w))), (5.49)

where the real part in the exponent is given by (5.21) and

=(ψ (w)) = b̃w + CΓ(−Y )

[(
M̃2 + w2

)Y
2

sin

(
Y arctan

(
− w
M̃

))
+
(
G̃2 + w2

)Y
2

sin

(
Y arctan

(
w

G̃

))]
. (5.50)

Finally, we turn our attention to the most difficult term A11. Using the same

substitution as in A2,

A11 (t, ε)

t1−1/Y
=

1

t1−1/Y

∫ ∞
(t/ε)1/Y

(
exp (θ0 (v))− exp (θ (t, v))

v2

)
dv

=
1

t1−1/Y

∫ ∞
ε−1/Y

(
exp

(
θ0

(
t1/Yw

))
− exp

(
θ
(
t, t1/Yw

))
t2/Yw2

)
t1/Y dw

= t−1

∫ ∞
ε−1/Y

(
exp (tθ0 (w))− exp (tψ (w))

w2

)
dw. (5.51)
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As before, when taking the limit in (5.51), if we were able to interchange the limit

and the integral, then (5.51) would have the formal representation

lim
t→0

<(A11 (t, ε))

t1−1/Y
=

∫ ∞
ε−1/Y

<(θ0 (w)− ψ (w))

w2
dw. (5.52)

It is not immediately clear that (5.52) is well-defined. In fact, a cursory glance at

the integral indicates that the numerator acts like wY for large w and so the integral

is potentially not well-defined. Luckily, this is not the case, and there is enough

cancellation of the leading orders as w gets large to give that the numerator is of

order wY−1. Thus, the integral is well-defined since Y − 3 ∈ (−2,−1), as our next

proposition indicates.

Proposition 5.11. There exists w0 > 0 and η (w0) > 0 such that for all w > w0

|<(θ0 (w)− ψ (w))| ≤ ηwY−1. (5.53)

Proof. Instead of considering the whole expression <(θ0 (v)− ψ (w)), we consider

<
(

(B − iu)Y − (−iu)Y
)
. (5.54)

By showing that the absolute value of (5.54) is bounded above by a constant times

wY−1, we will have proved the result since both terms in the original expression are

of the form (5.54). In particular, we show∣∣∣∣∣∣
<
(

(B − iu)Y − (−iu)Y
)

uY−1

∣∣∣∣∣∣ ≤ η, (5.55)

where η > 0.

First,

<
(

(−iu)Y
)

= <
(
e−i

Y π
2 uY

)
= uY cos

(
Y π

2

)
, (5.56)
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and

<
(

(B − iu)Y
)

=
(
B2 + u2

)Y/2
cos

(
Y arctan

(
−u
B

))
= uY

(
B2

u2
+ 1

)Y/2
cos

(
Y

(
π

2
− arctan

−B
u

))
. (5.57)

Evaluating the left-hand side of (5.55) using (5.56) and (5.57) gives

g (u) :=
<
(

(B − iu)Y − (−iu)Y
)

uY−1

= u

((
B2

u2
+ 1

)Y/2
cos

(
Y

(
π

2
− arctan

−B
u

))
− cos

(
Y π

2

))
. (5.58)

To estimate the behavior of the function g as u→∞, make the substitution u = 1/v

and evaluate how g behaves as v → 0. Continuing,

g (v) =

(
(B2v2 + 1)

Y/2
cos
(
Y
(
π
2
− arctan (−Bv)

))
− cos

(
Y π
2

))
v

, (5.59)

and expanding (5.59) around v = 0 gives

g (v) = −BY sin

(
Y π

2

)
+ o (1) . (5.60)

Thus, g behaves like a constant plus a term that goes to 0 as v → 0, or rather u→∞.

Taking absolute values gives (5.55).

Remark 5.12. At first glance, it might seem odd that the coefficient has some de-

pendence on ε. While atypical, the dependence of coefficients on a parameter was

observed in a similar setting in [26]. In particular, consider Remark 3.3 and the work

in the appendix there. We would like to take the limit as ε→ 0. Indeed, in the limit,

the coefficient d2 (ε) is well-defined. The first integral in (5.31) satisfies

1

π

∫ ∞
ε−1/Y

w2 (θ0 (w)−<(ψ (w)))− 1
4
<(ψ (w))

w4
dw → 0,

as ε → 0. The second integral in (5.31) was already shown to be well-defined, the

only question remaining is if the integrand is integrable on e.g. [1,∞). A similar
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argument shows that this is true as

1

π

∫ ε−1/Y

0

(
w2 + 1

4

)
θ0 (w)− w2<(ψ (w))

w2
(
w2 + 1

4

) dw

→ 1

π

∫ ∞
0

(
w2 + 1

4

)
θ0 (w)− w2<(ψ (w))

w2
(
w2 + 1

4

) dw <∞, (5.61)

when ε→ 0, since∣∣∣∣∣
(
w2 + 1

4

)
θ0 (w)− w2<(ψ (w))

w2
(
w2 + 1

4

) ∣∣∣∣∣ =

∣∣∣∣∣w2 (θ0 (w)−<(ψ (w))) + 1
4
θ0 (w)

w2
(
w2 + 1

4

) ∣∣∣∣∣
≤
w2 |θ0 (w)−<(ψ (w))|+ 1

4
|θ0 (w)|

w4

≤
ηw2wY−1 + 1

4
wY

w4

= ηwY−3 +
1

4
wY−4, (5.62)

for some η > 0, and (5.62) is integrable on [1,∞) as Y − 3 ∈ (−2,−1).

We now discuss why A1, and in particular A11, appears to be so difficult to estimate

precisely. First, notice that sharp estimation of the integrand of A11 is very similar

to sharp estimation for A12. In fact, we can split the difference of exponentials in A2

by considering

1− exp (tθ0 (w))

t
,

and

1−<(exp (ψ (w)))

t
,

separately. In this way, we see that the estimate for A11 not too dissimilar from

the one we need for A12; however, the denominator is very important. For A12 the

denominator is w4 while for A11 the denominator is w2. Thus, we must have much

sharper estimates for the exponential terms in A11 as w →∞ since the decay of 1/w2

is much slower than the decay of 1/w4.

Second, from the sharpness of the inequalities needed to prove that the right-

hand side of (5.52) is well-defined, we can see that any kind of argument involving
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Lebesgue’s Dominated Convergence Theorem will also need sharp inequalities. It is

very likely that the inequalities required will be needed on expressions more akin to

(5.47) than to (5.46). The added complexity of the real part of an exponential expres-

sion rather than just the real part of the exponent adds difficulty to our estimations.

Finally, we examine how the method of this section might be more widely applica-

ble to general exponential Lévy processes. At first glance, it might appear that, from

the very technical nature of our arguments, these methods might not be extensible to

more general exponential Lévy processes. However, we do not believe this is the case

for a variety of reasons: almost all of the technical arguments that we made were in

order to show that integrals were well-defined or to make precise the argument that

an integral converged, e.g. in the right-hand side of (5.52) or (5.37). Nevertheless,

showing the convergence of A1 and A2 formally only required some simple proper-

ties of the characteristic function, specifically (5.18) and (5.20). These properties

hold more generally for certain exponential Lévy processes. For example, any Lévy

process that is in the domain of attraction of a stable random variable will satisfy

(5.20).
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CHAPTER VI

CONCLUSION

In this manuscript, we studied the small-time asymptotics of at-the-money call-option

prices and implied volatility surfaces under exponential Lévy models of two varieties:

a subclass of pure-jump Lévy processes that are in the domain of attraction of a

stable random variable, both with and without adding an independent Brownian

component, and the CGMY process. For the former without Brownian component, we

assumed only that the tails of the Lévy measure were regularly varying and satisfied

a moment condition, among some other small technical assumptions. For the CGMY

process, we applied new techniques to derive the second-order small-time ATM call-

price asymptotics.

In Chapters II and III, we reviewed Lévy processes and stable domains of attrac-

tion, developing the preliminary results needed for our theorems (e.g. concentration

inequalities).

In Chapter IV, we obtained first-order ATM call-price and implied volatility

asymptotics for those Lévy processes in the domain of attraction of stable random

variables with minor technical restrictions. For those processes without a Brownian

component, new first order rates of convergence were uncovered. To this end, we

demonstrated that regular variation of the tails of Lévy measures is preserved under

certain measure transformations; we proved that, for (Xt)t≥0 in the subclass of Lévy

processes considered, both (Xt)t≥0 and
(
eXt
)
t≥0

are in the domain of attraction of the

same stable random variable; and we exhibited the possible orders of convergence of

Lévy processes.
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When combining the pure-jump Lévy process with an independent Brownian com-

ponent, we were able to show that the first order ATM call-price asymptotics are still

of order
√
t. That is, the Brownian component is still the dominating term in re-

gards to the first-order asymptotic expansion. Moreover, we exhibited this property

for a wider class of pure-jump Lévy processes than was previously considered in the

literature.

Finally, we considered a model that gives first-order ATM call-price dynamics

that have not been shown before, studying an asset model whose first-order call-price

asymptotics are of order (
t

log (1/t)

)1/α

where α ∈ (1, 2).

In Chapter V, we revisited the exponential CGMY model as an asset model. Un-

der this model, we derived the (already known) first and second-order ATM call-price

asymptotics in a novel way. Specifically, we corroborated the second-order asymp-

totics only using the characteristic function of the CGMY process via the Lipton-Lewis

formula.

All in all, while general, the extension of first order asymptotics to a wider class of

Lévy processes might only be an academic exercise. While interesting, more compli-

cated models would almost certainly not be used in practice for a variety of reasons.

First, very short-term options are a small, very illiquid, part of developed capital

markets, often considered exotic products (e.g. crash cliquet options which are strips

of forward-starting ATM call options with very short expiration, sometimes a single

day). Next, given the difficulty of pricing under these exponential Lévy models farther

away from expiration, these models could only be used for very short-term pricing

(e.g. less than one week to expiration). Finally, even if we specified more explicit

models (like the example given in Section 4.5), calibration under these models would

likely be difficult and would require the development of new statistical techniques.
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The heuristic expansion given in Chapter IV give some hope that formal expan-

sions might exist for further higher orders. Moreover, extending the techniques used

for the second-order expansion to a more general process than the CGMY process is

very likely to succeed. For example, we could consider the class of tempered stable

models discussed in [24].

Finally, there are several directions that future work could follow. We could ex-

amine the second-order ATM call-price asymptotics of asset models whose log return

structure is as in Chapter IV. Some work is already done along these lines, e.g. [24],

where the authors considered generalized tempered stable models; however, there

are no second-order ATM call-price asymptotics for processes where the first order

rate of convergence is t1/α` (t) where 1 < α < 2 and where ` is slowly varying at 0

and nonconstant. The second-order call-price asymptotics for the toy model given in

Chapter IV (and other models where the slowly varying part of the Lévy tail is not

asymptotically constant) would be a good starting point.

Reiterating what we mentioned previously, the tools and methods used in Chapter

V could potentially provide an alternate method for second-order call-price asymp-

totics of models where measure transformation methods are perhaps infeasible or

impossible. We might even be able to extend the results in Chapters IV and V to ob-

tain asymptotics of “close-to-the-money” options (as is considered in [24] and [25]).

In this case, instead of letting time to maturity go to 0 linearly, we choose some

function kt that goes to 0 at a different rate. Indeed, doing so would require finding

an expansion for the full Lipton-Lewis formula given in (5.9) and not the simplified

version for ATM options found in (5.10).
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transition distributions of Lévy processes,” Stochastic Process. Appl., vol. 119,
no. 11, pp. 3862–3889, 2009.

[27] Folland, G. B., Real analysis. John Wiley & Sons, Inc., New York, second ed.,
1999.

107



[28] Gnedenko, B. V. and Kolmogorov, A. N., Limit distributions for sums of
independent random variables. Inc., Cambridge, Mass.: Addison-Wesley Pub-
lishing Company, 1954.

[29] Grabchak, M., “On a new class of tempered stable distributions: moments
and regular variation,” J. Appl. Probab., vol. 49, no. 4, pp. 1015–1035, 2012.
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