
Joint Multiple Parameter

Estimation and Channel Decoding

for Physical-layer Network Coding

and Multiuser Detection

WANG, Taotao

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Doctor of Philosophy

in

Information Engineering

The Chinese University of Hong Kong

April 2015



Abstract of thesis entitled:

Joint Multiple Parameter Estimation and Channel Decoding for

Physical-layer Network Coding and Multiuser Detection

Submitted by WANG, Taotao

for the degree of Doctor of Philosophy

at The Chinese University of Hong Kong in April 2015

This thesis investigates the joint multiple parameter estimation and

channel decoding problem for physical-layer network coding (PNC)

and multiuser detection (MUD) systems. Both of PNC and MUD

can take advantages from the simultaneous transmissions by multiple

users. However, the superimposition of multiple transmissions brings

with it new challenges for signal processing. The first major challenge

is the estimation of the multiple parameters at the receiver. The

second major challenge is how to compensate for system impairments

caused by these parameters. This thesis consists of two parts that

tackle these challenges: The first part is related to PNC systems and

the second part is related to MUD systems.

Part I:

The first part of this thesis addresses the problem of joint channel

estimation and channel decoding in PNC systems. In PNC, multiple
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users transmit to a relay simultaneously. PNC channel decoding is

different from conventional multiuser channel decoding: Specifically,

the PNC relay aims to decode a network-coded message rather than

the individual messages of the users. Although prior work has shown

that PNC can significantly improve the throughput of a relay network,

the improvement is predicated on the availability of accurate channel

estimates. Channel estimation in PNC, however, can be particularly

challenging because of 1) the overlapped signals of multiple users; 2)

the correlations among data symbols induced by channel coding; and

3) time-varying channels. We combine the expectation-maximization

(EM) algorithm and belief propagation (BP) algorithm on a unified

factor-graph framework. In this framework, channel estimation is

performed by an EM subgraph, and channel decoding is performed by

a BP subgraph that models a virtual encoder matched to the target

of PNC channel decoding. Iterative message passing between these

two subgraphs allows the optimal solutions for both to be approached

progressively. We present extensive simulation results demonstrating

the superiority of our PNC receivers over other PNC receivers.

Part II:

The second part of this thesis investigates a channel-coded MUD

system operated with orthogonal frequency division multiplexing

(OFDM) and interleaved division multiple-access (IDMA). In gen-

eral, there are many variations to MUD systems. Our choice of

the combination of OFDM and IDMA is motivated by its ability

to achieve multiuser diversity gain in frequency-selective multiple-
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access channels. However, to realize this potential advantage of

OFDM-IDMA, we must first solve the frequency asynchrony problem

induced by the multiple carrier frequency offsets (CFOs) of the signals

of multiple users. This part of the thesis tackles the following two

major challenges. The first, as in PNC systems, is the estimation

of multiple channel parameters (e.g., CFOs and channel gains). A

particular challenge is how to contain the estimation errors of the

channel parameters of the multiple users, considering that the overall

estimation errors may increase with the number of users because the

estimations of their channel parameters are intertwined with each

other. The second is how to compensate for the multiple CFOs. A

particular difficulty is that, different from a single-user receiver for

which there is only one CFO, it is not possible for our multiuser

receiver to compensate for all the multiple CFOs simultaneously.

To tackle the two challenges, we put forth a framework that solves

the joint problem of multiuser channel-parameter estimation, CFO

compensation, and channel decoding iteratively by employing the

space alternating generalized expectation-maximization (SAGE) and

expectation-conditional maximization (ECM) algorithms. Our study

reveals that treating the data rather than the channel parameters

as the hidden data in ECM will lead to better performance. We

further show that Gaussian message passing is an effective complex-

ity reducing technique. Simulations and real experiments based on

software-defined radio (SDR) indicate that, compared with other

approaches, our approach can achieve significant performance gains.
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Overall, this thesis puts forth two frameworks (EM-BP for PNC,

SAGE-ECM for MUD) to address the problem of multiple parameter

estimation and channel decoding. We believe our frameworks are

promising solutions for the signal processing challenges arising from

the superimposition of multiple transmissions in multiuser systems.
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摘摘摘要要要

本文研究在物理層網絡編碼（PNC）系統和多用戶檢測（MUD）

系統中的聯合多參數估計與信道譯碼問題。PNC 與 MUD 都是從

多個用戶的同時信號傳輸中獲利的技術。然而，多個同時傳輸信

號的迭加也對信號處理帶來了若干挑戰。首先一個挑戰是在接收

機處的多參數估計問題。另外一個挑戰是，如何同時補償多個參

數。本文包括兩部分，每一部分的貢獻分別是在 PNC或 MUD系

統中，針對上述問題的解決方案。

第一部分:

在本文的第一部分中，我們解決在 PNC 系統中的聯合信道

估計與信道譯碼問題。在 PNC 系統中，多個用戶同時給中繼傳

輸信號。PNC 系統的信道譯碼不同於傳統的多用戶系統的信道

譯碼。具體地，中繼的目標是譯碼出網絡編碼後的信息而非單

獨的每個源信息。雖然之前的研究工作顯示 PNC 可以很大程

度上提高中繼網絡的吞吐量，但是這個提高的前提假設是能夠

獲得精確的信道估計。然而，因為以下原因，PNC系統中的信

道估計尤其具有挑戰性：1）多個用戶的信號迭加在一起；2）

信道編碼使得數據符號之間非獨立；3）信道是時變的。為解決

這些難題，我們將 expectation-maximization（EM）算法和 belief
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propagation（BP）算法結合在一個統一的 factor graph 框架之

下。在這個 factor graph 框架下，信道估計由 EM subgraph 完

成，信道譯碼由建模了和 PNC信道譯碼目標相匹配的虛擬編碼器

的 BP subgraph完成。在兩個 subgraph的迭代消息傳輸使得我們

可以逐漸逼近信道估計和信道譯碼的最優解。我們提供了大量的

模擬結果來說明我們所提出方案的優越性。

第二部分

在本文的第二部分中，我們研究了一個信道編碼的多用戶檢

測（MUD）系統。該系統是基於正交頻分複用（OFDM）調製

和交織分多址接入（IDMA）技術的。將OFDM與IDMA結合的

動機是其可以在頻率選擇多址接入信道環境下獲得多用戶分集

增益的能力。然而，為了實現這個能力，我們必須首先解決由

多個載波頻率偏移（CFO）所引起的頻率異步問題。論文本部

分解決如下挑戰。首先的挑戰是多信道參數（CFO，信道增益

等）的估計。考慮到各個用戶的參數估計問題互相影響而導致總

的參數估計誤差會隨用戶數目而增長，一個具體地難題是如何

克制多個用戶多個參數的估計誤差。第二個挑戰是如何補償多

個 CFO。一個具體的難題是，不同於只存在一個 CFO 的單用戶

接收機，我們的多用戶接收機不可能同時補償多個不同的 CFO。

為解決以上兩個挑戰，我們提出了在一個多用戶系統中聯合、

迭代解決多信道參數估計、CFO 補償和信道譯碼的框架。該框

架利用了 space alternating generalized expectation-maximization

（SAGE）算法和 expectation-conditional maximization （ECM）

算法。我們的研究揭示，在 ECM 算法中，將數據符號而非信道

參數設置為 hidden data將導致更好的系統性能。進一步地，我們
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用 Gaussian message passing 技術將算法複雜度有效降低。計算機

仿真和軟件無線電平臺上的真實實驗表明，和傳統多用戶方法相

比，我們方法能獲得非常高的性能增益。

總體來說，本文提出了兩個算法框架（EM-BP，SAGE-ECM）

來解決聯合多參數估計和信道解碼問題。我們相信，針對多用戶

系統中多個信號疊加而帶來的信號處理挑戰，我們所提算法框架

是非常具有前景的解決方案。
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Chapter 1

Introduction

1.1 Background

S
ignals from multiple users in a wireless network are not

bounded within a guided medium and isolated from each

other. They permeate the wireless medium and they may

cause mutual interference to each other. The traditional wireless

technology paradigm treats such mutual interference as a destructive

phenomenon [1]. Typically, different time or frequency channel

resources are allocated to different users in an exclusive manner;

so that one user transmits a radio signal on its allocated time or

frequency channel only. This allows a receiver to isolate the signal

from a particular user and avoids mutual interference among the

signals of multiple users. If, however, multiple users transmit radio

waves to their receivers on the same time or frequency channel, due

to the broadcast nature of the wireless medium, a receiver receives

signals from its transmitter as well as from other transmitters.

The radio waves from the other transmitters are often treated as

1
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interferences that corrupt the intended signal. For example, in 802.11

wireless local area networks (WLAN), when multiple nodes transmit

together, packet collisions occur and the receiver simply discards the

signals and does not attempt to decode the overlapping packets [2,3].

This conservative design principle tries to prevent interference as far as

possible. As a consequence, as long as interfering transmissions occur

in wireless networks, the spectral efficiency is wasted. Unfortunately,

interfering transmissions occur quite frequently today due to the

densely deployed wireless terminals.

To increase spectral efficiency (thus also the data throughput), re-

cent emerging wireless technologies advocate that multiple transmit-

ters can transmit signals together on the same time-frequency channel.

From the overall viewpoint of the system, overlapping signals are not

considered as interfering signals; and all transmitted signals are use-

ful. The issue is how to exploit advanced signal processing and com-

munication techniques to harness the useful information contained in

the overlapping signals. This thesis focuses on two such technologies:

physical-layer network coding (PNC) and multiuser detection (MUD).
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1.1.1 Physical-layer Network Coding (PNC)

The concept of PNC was first proposed at Mobicom 2006 [4].1 As

a subfiled of network coding [6, 7], PNC means performing network

coding at the physical-layer of wireless networks. This is achieved

based on a simple fact in physics that when multiple radio waves

(transmitted by multiple transmitters) come together within the same

physical space, they add. The mixing of radio waves is a form

of network coding. Therefore, by allowing multiple transmitters

transmit together and exploiting the network coding operation

performed by the wireless nature, PNC puts the “interference” into

good use.

The core idea of PNC could be most easily demonstrated using a

simple example network called the two way relay channel (TWRC).

We illustrate the TWRC in Fig. 1.1. TWRC is a three-node linear

network where two end nodes, nodes A and B, want to communicate

via a relay node R. There is no direct signal path between nodes A and

B. An example is a satellite network in which nodes A and B are the

ground stations, and the relay R is the satellite. We ask the question

how many time slots are required for nodes A and B to exchange one

packet with each other.

The most straightforward solution for the question above can be

1The same idea was also independently proposed in [5] almost at the same time.
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Time slot 1 
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Time slot 3 

(a) Traditional scheduling scheme
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Time slot 1 
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RS RS

(b) Physical-layer network coding scheme

Figure 1.1: Two way relay channel operated with (a) traditional scheduling
scheme, and (b) physical-layer network coding scheme.

derived using the traditional design principle that tries to prevent

interference in the network. With the traditional design principle,

there is no concurrent transmission in TWRC; in each time slot, there

is one node that is valid for transmitting. Then, a total of four time

slots are required to exchange two packets, one in each direction. In

time slot 1, node A transmits a packet SA to relay R; in time slot 2,

relay R forwards SA to node B; in time slot 3, node B transmits a
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packet SB to relay R; and in time slot 4, relay R forwards SB to node

A. This is also illustrated in Fig. 1.1a, and we refer to this scheme as

the traditional scheduling scheme.

Compared with TS scheme, PNC can improve the throughput of

TWRC by 100%, i.e., the required time slots for exchanging two

packets are reduced from four to two. With PNC, in time slot 1,

the two end nodes simultaneously transmit signals to the relay; the

relay maps the superimposed signals of the simultaneous packets to a

network-coded packet SR = SA ⊕ SB, where ⊕ denotes the XOR

operation, a form of network coding.2 In time slot 2, the relay

broadcasts the network-coded packet SR back to the end nodes; one

end node can extract the packet of the other end node from the

received SR by using itself information. For example, node A can

obtain SB by doing SB = SR ⊕ SA. Fig. 1.1b illustrates the idea of

PNC. By making use of concurrent transmissions, PNC “embraces”

interference, thus increases the network throughput.

1.1.2 Multiuser Detection (MUD)

The other scheme that benefits from multiple concurrent transmis-

sions is MUD [9,10]. For MUD, we usually consider a multiple-access

2A key issue in PNC is how relay R deduces SR = SA ⊕ SB from the superimposed signals.
We refer to this process as “PNC mapping”. The details about PNC mapping can be found
in [8]. PNC mapping is not the main subject investigated of this thesis.
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Figure 1.2: Multiple Access Channel with multiuser detection (MUD).

channel, where N terminal users want to communicate with a com-

mon base station (BS).

To achieve the goal of multiple-access communications, the

traditional design principle divides the wireless channel into N

orthogonal subchannels, along with the time or frequency axis.

One time or frequency subchannel is allocated to one user for

communicating with BS. The corresponding channel allocation

scheme is time division multiple-access (TDMA) or frequency division

multiple-access (FDMA) [11]. Since the subchannels are orthogonal to

each other, the receiver of BS can extract the message of one particular

user employing a single-user decoding scheme on its corresponding

subchannel.

Different from the traditional scheme above, we now allow the N

users transmit simultaneously on the whole wireless channel. Then,

the receiver of BS employs MUD to extract the messages from the

N user jointly. The concept of MUD is illustrated in Fig. 1.2,
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where the packet contained the message of user n is denoted by Sn,

n = 1, 2, · · · , N . We remark that although the signal transmission

process of MUD systems is similar to that of PNC systems, the

decoding objectives of PNC and MUD are different. The decoding

objective of PNC is to obtain the network-coded message at the relay;

that of MUD is to recover the N source messages at BS.

To assist MUD, some user separation schemes are often adopted

at the transmitter or receiver side. For example, the receiver of

BS and/or the transmitters of users can deploy multiple antennas

to separate the N users by creating parallel spatial pipes, and this

separation scheme is called spatial division multiple-access (SDMA)

[12]; the transmitters of users can exploit different spreading codes or

interleaving patterns to separate themselves, the separation scheme

is called code division multiple-access (CDMA) [13] or interleaving

division multiple-access (IDMA) [14]. Since the transmitted signals

of SDMA, CDMA and IDMA are overlapping on the same time-

frequency channel and usually non-orthogonal to each other, these

new user separation schemes together with MUD can improve the

spectral efficiency of multiple-access channels.

1.2 Motivation and Problem

While benefiting PNC and MUD, the superimposition of multiple

signals also brings out many challenges for signal processing. One

challenge is the estimation of the multiple parameters at the receiver.

Moreover, how to compensate for these multiple parameters is also
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challenging.

Many prior studies on PNC and MUD simplify assumptions that

were made to ease analysis. For example, it was assumed that channel

gains are known perfectly and that carrier-frequency offsets (CFO) are

negligible. Our experimental prototyping efforts of PNC systems [15]

indicate that these parameters can have significant effects on system

performance, and that they are not negligible and are often difficult

to estimate. Furthermore, the negative effects of some parameters

(e.g., CFO) cannot be perfectly compensated in PNC and MUD

systems using the traditional approach in which parameter estimation,

compensation, and channel decoding are performed successively one

after another. To fill this gap, this thesis proposes to investigate

“iterative algorithms” that perform parameter estimation and channel

decoding in an integrated and iterative manner.

To illustrate our point, in the following we focus on the challenge

of CFO estimation and compensation for superimposed signals.

Modern multicarrier system such as orthogonal frequency-division

multiplexing (OFDM) is very sensitive to CFO: it causes inter-carrier

interference that destroys the orthogonality among subcarriers.

Consider a network in which two transmitters simultaneously

transmit signals to a common receiver. This transmission process

occurs in both PNC and MUD systems. The receiver receives the

following baseband signal (in time domain)

R (i) = S1 (i) ej(ε1i+φ1) + S2 (i) ej(ε2i+φ2) + Z (i) (1.1)

where Sn (i) is the ith symbol from transmitter n ∈ {1, 2}; εn is the
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CFO of user n; φn is the initial phase offset of user n; and Z (i) is the

noise.

In a single-user point-to-point system, there is only one transmitter

and one receiver. Thus, in (1.1) suppose that transmitter 1 is the only

transmitter. Then the expression becomes

R1 (i) = S1 (i) ej(ε1i+φ1) + Z (i) (1.2)

If the receiver could estimate ε1 and φ1 perfectly, then it

could perform compensation by multiplying the above equation by

exp [−j (ε1i+ φ1)], yielding

R̃1 (i) = R1 (i) e−j(ε1i+φ1) = S1 (i) + Z̃ (i) (1.3)

where Z̃ (i) = Z (i) exp [−j (ε1i+ φ1)]. If Z (i) is circularly-

symmetric Gaussian, so is Z̃ (i). Thus, we see that the crux of the

problem in the point-to-point case is a good estimation of ε1 and φ1,

so that they can be completely removed by compensation.

Unfortunately, such is not the case with PNC and MUD. Returning

to (1.1), even if we could estimate ε1, φ1, ε2 and φ2 perfectly, we could

not remove all of them simultaneously. If we removed the CFO and

phase offset of transmitter 1, those of transmitter 2 would remain,

and vice versa.

Instead of performing CFO estimation and compensation before

channel decoding, we could use iterative algorithms in which CFO

estimation and channel decoding are performed jointly and iteratively

to take into account the imperfect compensation optimally.

In general, besides CFO, other system parameters (e.g. channel

gains) also need to be estimated and dealt with. The design of
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such iterative algorithms for PNC, as far as we know, has not been

investigated by prior research, and that they offer a promising path

to solve many practical problems that arise in PNC.

For MUD, although there are some research works that

investigated the problem of joint channel gain estimation and channel

decoding, the research that considers the problem of joint parameter

(channel gains, CFOs) estimation, CFO compensation and channel

decoding is still lacking. Moreover, the decoding objectives of PNC

and MUD are different. Thus, the techniques used for PNC and

MUD channel decoding are also different. Dfferent channel decoding

objectives may have different impacts on the overall framework of the

joint problem. Therefore, we need to consider the problem for PNC

and MUD, respectively and carefully.

1.3 Organization of the Thesis

The remainder of the thesis is organized as follows.

Chapter 2 propose a combined use of the expectation-maximization

(EM) algorithm and belief propagation (BP) algorithms for tackling

the problem of joint channel estimation and channel decoding in PNC

systems.

Chapter 3 investigates a channel-coded MUD system operated

with OFDM and IDMA, where we focus on the problems induced

by multiple CFOs. We propose to solve the multiuser joint

problem of parameter estimation, CFO compensation and channel

decoding using an iterative algorithm that employs space alternating
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generalized expectation-maximization (SAGE) and expectation-

conditional maximization (ECM) algorithms.

Chapter 4 concludes the thesis with discussions on future topics.

2 End of chapter.



Chapter 2

Joint Channel Estimation and

Channel Decoding in Physical-Layer

Network Coding Systems: An

EM-BP Factor Graph Framework

2.1 Introduction

R
ecently, the research community has shown growing interest

in a simple relay network in which two terminal nodes

communicate via a relay. This network is referred to as the two-

way relay channel (TWRC). Much of the interest in TWRC is on the

exploitation of physical-layer network coding (PNC) [4,8] to boost its

throughput.

Ref. [4] showed that PNC could increase TWRC throughput by

100% compared with traditional relaying [8]. In TWRC operated

with PNC, the two terminal nodes first transmit their messages

simultaneously to the relay. The relay then maps the overlapped

12
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signals to a network-coded message (e.g., bit-wise XOR of the

messages of the terminal nodes) and broadcasts the network-coded

message to the two terminal nodes. Each terminal node then extracts

the message of the other terminal node by subtracting its own message

from the network-coded message. Thus, the two terminal nodes

exchange one message with each other in two time slots. With

traditional relaying, four time slots are needed [4].

This throughput advantage of PNC, however, is predicated on the

accurate estimate of the channels between the terminal nodes and

the relay. For optimality, it is desirable to obtain the maximum a

posteriori probability (MAP) channel estimates. This is, however, a

particularly challenging task for PNC. The involved issues addressed

by this chapter are as follows:

• For reliable communication, we consider channel-coded PNC

[8, 16]. Specifically, the source messages of the two terminal

nodes are channel-coded into channel-coded messages before

transmission. The signals received by the relay contain

the overlapped channel-coded messages as well as overlapped

preambles (training symbols) and pilots.

• PNC channel decoding is different from the multiuser joint

channel decoding. The goal of the PNC channel decoding at the

relay is to obtain a network-coded message rather than the two

individual source messages [8,16]. In other words the relay aims

not to decode the two source messages, but to decode a network-

coding function of the two source messages (in this chapter, we
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assume the network-coding function is the bit-wise XOR of the

two source messages).

• For successful decoding, accurate channel estimates are needed.

For optimality, it is desirable to estimate the channels using not

just the preambles and pilots, but also the data in the signals.

This is because the data portion also contains useful information

related to the channels.

• We are interested in time-varying channels in which the channel

gains vary from symbol to symbol within a packet.

Overall, performing channel estimation and PNC channel decoding

when (i) the signals are overlapping; (ii) the data symbols are

correlated due to channel coding; and (iii) the channels are time-

varying, is a particularly challenging task.

To tackle this challenge, this chapter proposes and investigates a

joint channel estimation and channel decoding framework. We argue

that directly trying to solve the MAP channel estimation problem

and the channel decoding problem in a separate manner is not viable;

a solution is found in a combined use of expectation-maximization

(EM) algorithm and belief propagation (BP) algorithm that solves

the two problems jointly in an iterative manner.

We implement the EM-BP computation as a message passing

algorithm on a factor graph [17, 18], in which the component for

channel estimation (implemented by EM) and the component for PNC

channel decoding (implemented by BP) are interconnected. Through
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iterative message passing between the EM and BP components and

iterative message passing between elements within the BP channel

decoding component, the results of EM channel estimation and BP

channel decoding improve progressively toward optimality.

Overall, there are three major contributions to this chapter:

1. This is the first work that applies the EM algorithm for joint

channel estimation and channel decoding in PNC systems.

Notably, our algorithmic framework includes a schema to

deal with time-varying channels. To reduce computation

complexity, we further extend our framework by replacing EM

with its variant named space alternating generalized expectation-

maximization (SAGE).

2. We outline a factor graph framework for iterative message

passing algorithm based on the foundations of EM/SAGE and

BP. This is the first time EM/SAGE-BP computation for a

channel-coded communication system is fully implemented as

a message passing algorithm on a factor graph (prior work

either did not consider channel coding or did not use the

factor graph schema). In particular, we explicitly establish

this EM/SAGE-BP factor graph framework from a rigorous

theoretical foundation. We remark that although our focus here

is on PNC systems, this framework is also applicable to the

conventional single-user system and multi-user system.

3. Through extensive computer simulations, we investigate the

performance of our EM/SAGE-BP PNC receivers and compare



CHAPTER 2. JOINT CHANNEL ESTIMATION AND CHANNEL DECODING IN PHYSICAL-LAYER
NETWORK CODING SYSTEMS: AN EM-BP FACTOR GRAPH FRAMEWORK 16

them with other existing receivers in the literatures. The

simulation results demonstrate the superiority of our receivers

over other receivers, confirming the theoretical optimality of

EM/SAGE-BP PNC.

2.1.1 Related Works

Theory of BP and Its Application in PNC:

BP, also known as the sum-product message passing algorithm, is a

general algorithmic inference method for graph models [17,19]. It has

found great success in the decoding of powerful channel codes (e.g.,

Turbo codes and LDPC codes [20]) in point-to-point communications.

BP was first applied to PNC channel decoding in [16], which puts

forth the concept of "virtual encoding". The concept was further

generalized in [21, 22]. Refs. [16, 21, 22] were followed by many other

papers on channel-coded PNC [8]. The prior studies of PNC channel

decoding mostly assume that the channels are perfectly known. In

practice, these channels have to be estimated. PNC systems are multi-

user systems in which there are multiple channel parameters, whose

estimation is particularly challenging.

It is desired that we could jointly solve channel estimation and

channel decoding by BP. Recently, [23] proposed a BP method for

joint channel estimation and channel decoding in PNC systems. The

direct application of BP to channel estimation, however, requires

summations (integrations) over continuous channel variables, which

are computationally intensive. To reduce computation complexity,
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a moment matching (MM) technique is used in [23]. Specifically,

the original Gaussian-mixture messages in the BP algorithm are

approximated by Gaussian messages that have the same first and

second moments. However, as a consequence of the approximation

by MM, the optimality cannot be guaranteed. By contrast, in

this chapter, instead of using a pure BP method for both channel

estimation and channel decoding, we use an EM-BP method that

obviates the need for computation-intensive integration without

sacrificing optimality.

Theory of EM and Its Application in Single-user Systems:

Ref. [24] first proposed EM as a general iterative algorithm for

finding the maximum likelihood (ML) estimates of parameters in

statistical model with hidden variables that cannot be observed

directly. A small extension allows the finding of the MAP estimates

also [25]. A variant of EM named SAGE was proposed in [26] to

increase the convergence rate. Recently, [27,28] proposed a framework

to implement EM computation as a message passing algorithm on

a factor graph. Application for communications systems (and in

particular, channel-coded communications systems) was not its main

target. It is not clear that the factor graph representation in [27, 28]

is applicable to the communication problem of interest to us here.

With respect to our contribution 2) listed above, in this chapter we

fill in the missing details and show specifically how a factor graph

representation can be used in our problem. In addition, we extend

the framework of EM message passing over factor graphs to SAGE

message passing.
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Papers [24–28] concern EM/SAGE in general. There have

also been many investigations on the application of EM/SAGE

in communication systems specifically. Refs. [29–35] for example,

applied EM to the problem of joint channel estimation and

detection/decoding in single-user systems. Refs. [36, 37] applied

SAGE to the same problem. The work [35] directly applied the

results in [27,28] to implement EM message passing for joint channel

estimation and detection in a single-user system. However, the

incorporation of channel codes by [35] is heuristic and is not in

accordance with the rigorous theoretical derivation in this chapter.

EM Application in Multi-user Systems:

Refs. [38–41] applied EM to joint channel estimation and multi-

user detection in CDMA systems. Channel coding was not considered.

Ref. [42] incorporated channel coding. However, the proposed scheme

performs serial interference cancelation (SIC) and tries to decode the

individual messages of different users using separate channel decoders.

Decoding individual messages is an overkill for PNC systems and may

lead to suboptimal performance (we will provide results showing this

in Section 2.5). The application of SAGE in multi-user systems for

joint channel estimation and detection can be found in [39, 43, 44],

where [39, 43] assume CDMA systems and [44] assumes OFDMA

systems.

Overall, there has been little multi-user EM work that incorporates

channel coding. Furthermore, with respect to our contribution 1)

listed above, it is worth re-emphasizing that PNC channel decoding

[16, 21, 22] is different from conventional multiuser channel decoding
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[42], because PNC aims to channel-decode the overlapped received

signals into a network-coded message [16, 21, 22] rather than the

individual messages of different users.

The rest of this chapter is organized as follows. Section 2.2

describes our system model. In Section 2.3, we apply EM-BP to PNC

and derive the update equations for EM-BP message passing. Section

2.4 applies SAGE-BP to PNC. Section 2.5 presents the simulation

results.

Notations: We denote matrices by bold capital letters, vectors

by bold small letters, and scalars by regular letters throughout this

chapter. All vectors are column vectors. Ir denotes the r× r identity

matrix and 0r denotes the r × r matrix with all zero elements.

AT, AH, A−1 and det (A) denote the transpose, the conjugate

transpose, the inverse and the determinant of A, respectively.

CN (x : m,K)
∆
= 1

πr det(K) exp
[
− (x−m)H K−1(x−m)

]
denotes

the probability density function (PDF) of an r-dimension complex

Gaussian random variable x with mean vector m and covariance

matrix K . ‖x‖ is the Euclidean norm of a vector x . (·)∗ denotes the
conjugate of a complex number. |C| is the cardinality of a set C. xi:j
is a set containing the elements in a sequence x indexed from i to j,

inclusively. Finally, ⊗ denotes the Kronecker product, and ⊕ denotes

the exclusive-or operation.
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2.2 System Model

We consider a PNC transmission scheme for TWRC consisting of two

time slots. In time slot 1, two terminal nodes A and B transmit

packets to a relay node R simultaneously. From the overlapped

signals received from A and B, R constructs a network-coded packet

and broadcasts it to A and B in time slot 2. From the network-

coded packet, A(B) then recovers the packet of B(A) using its self

information [8].

This chapter focuses on time slot 1 of PNC; the problem of reliably

transmitting the network-coded packet in time slot 2 is similar to that

in a conventional point-to-point link. We assume A and B have one

transmit antenna, and R has one receive antenna. In time slot 1, the

received signal at R in the ith symbol duration can be expressed as

yi = hA,ixA,i + hB,ixB,i + nR,i = hT
i xi + nR,i (2.1)

where xA,i (xB,i) is the ith transmitted symbol of node A(B); hA
i

(
hB
i

)
is the ith fading coefficient of the channel between A(B) and R; nR,i is

the complex white Gaussian noise sample with zero mean and variance

N0; hi
∆
= [hA

i , h
B
i ]T; and xi

∆
= [xA,i, xB,i]

T. A block diagram of the

system model is shown in Fig. 2.1, where {sA,j} and {sB,j} are the

source information bits from nodes A and B. The transmitted symbols

{xA,i} and {xB,i} are generated after channel encoding, interleaving,

constellation mapping and pilot insertions at the transmitters. In this
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chapter, we assume that A and B use the same channel encoder1 (the

valid set of codewords is denoted by C) and the same interleaver when

mapping their source bits {sA,j} and {sB,j} to transmitted symbols.

Pilot symbols are inserted periodically among coded data symbols.

The assumed frame structure is shown in Fig. 2.2 where P and D

represent the pilot symbols and coded data symbols, respectively.

Each frame consists of l data symbols, divided into l/∆ blocks. Each

block has ∆ data symbols and two pilot symbols. We refer to ∆ as

the pilot interval.2 The total frame length is L = l+2 (l/∆) symbols.

We assume time-varying Rayleigh fading channels. The time-

varying channel gains {hA,i} and {hB,i} are modeled as two

independent first-order Gauss-Markov processes [45]:

hA,i = αhA,i−1 +
√

1− α2zA,i

hB,i = αhB,i−1 +
√

1− α2zB,i
(2.2)

where {zA,i} and {zB,i} are independent white complex Gaussian

processes with zero mean and variances σ2
A and σ2

B for all i. The

parameter α is a correlation coefficient used for modeling how fast the

channel varies with time (i.e., it is related to the channel coherence

time) [45]. 3 The distributions of hA,i and hB,i are zero mean complex

1Discussion on how to deal with two nodes with different channel encoders can be found in
Section 2.4 of this chapter.

2Simulation results on the impact of the pilot interval on system performance can be found
in Section 2.5.

3Different α for the channels of the two nodes will not change the effectiveness of our
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Figure 2.1: The system model of time slot 1 of PNC in TWRC.
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Figure 2.2: The frame structure employed by the two user nodes.

Gaussian with variances σ2
A and σ2

B, respectively. Therefore, the

amplitude of every element of them is Rayleigh distributed, and the

phase is uniformly distributed.

algorithm. Here, we assume the same α of the two nodes for simplifying the descriptions.
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2.3 Application of EM-BP to PNC

2.3.1 Objectives of EM PNC Receiver

Let h
∆
= {hi} be the set containing channel gains of all time. Similarly,

let x be the set of all transmitted symbols {xi}, and y is the set of

all received signals {yi}. To the relay, both h and x are unknowns to

be estimated and decoded.

In a conventional receiver, h is first estimated, followed by the

decoding of codewords x. Pilots, corresponding to known xi at specific

positions i, are used for the estimation of h. After that, hi for

the positions occupied by data are estimated by interpolation. This

estimate of h is then substituted into (2.1) for the decoding of the

data xi. This estimate of h makes use of only the pilot parts, and

does not exploit useful information contained in the data part of x.

In our PNC receiver design, we wish to make use of the pilots

as well as the data parts of x in the channel estimation process. In

particular, observations y at all positions i and the knowledge of

the used channel code will be employed to estimate h. A possible

strategy for our channel estimation and channel decoding problem in

PNC receiver is as follows:

Step 1 (channel estimation): Find MAP estimate

ĥMAP = arg max
h

{
log p

(
h
∣∣y, C2

)}
= arg max

h

{
log
∑

x

p
(
x,h

∣∣y, C2
)}

Step 2 (channel decoding): Given ĥMAP, find p
(
x
∣∣∣ĥMAP,y, C

2
)

Step 3 (network coding): Compute the network-coded source
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message
{

̂sA,j ⊕ sB,j
}

based on the channel decoding output from

Step 2 [8].

This is the PNC receiver with optimal channel estimation. Some

remarks on the receiver are as follows:

1. A subtlety here in Step 2 for the PNC system is that C2 is the

code constraint by the "virtual channel encoder" which takes

the original information source symbols from nodes A and B

{sA,j, sB,j} as inputs, and outputs {xi} as coded symbols (see [8]

for details).

2. If the channel coefficients were perfectly known (as assumed

in previous works [16, 21, 22]), then Step 1 would not be

needed. Step 2 and Step 3 then form the so-called Channel-

decoding-Network-Coding (CNC) process, an essence of channel-

coded PNC systems [8, 16]. Compared to conventional channel

decoding, the goal of CNC is not to decode the individual source

messages of A and B, but to decode a network-coded message

that mixes the two source messages (we refer the interested

readers to [8] and references therein for details on CNC). If

the MAP estimation in Step 1 could be achieved, then Step

2 and Step 3 could be implemented using the conventional

CNC methods, substituting ĥMAP as the channel coefficients

[8, 16]. Unfortunately, this is not viable because the exact MAP

estimate of h is difficult to obtain due to the complexity of

the computation of
∑

x p (h,x |y). A difficulty, for example,

is that the symbols in x are correlated due to channel coding; in
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addition, signals of the two terminal nodes are overlapped in y.

To facilitate the design of PNC receiver, this chapter makes use

of the EM algorithm for channel estimation. Specifically, EM tries

to find ĥMAP iteratively rather than attacking the problem directly.

The objective of EM is still to obtain the MAP estimate of h as in

Step 1. However, EM combines Step 1 and Step 2 in an iterative

manner to refine the estimate of h and the decoding of the network-

coded message. In the following, we first describe the procedure of the

EM computation and then present its implementation as a message

passing algorithm on a factor graph.

In the terminology of EM, y is the observed data, x is the

hidden data, the pair (x,y) is the complete data, and h is the

unknown parameter. The kth iteration of EM consists of an E-step

(expectation) and an M-step (maximization) as follows [25]:

E-step: Given the previous estimate ĥ(k−1), compute the conditional

expectation

Q
(
h
∣∣∣ĥ(k−1)

)
=
∑

x

p
(
x
∣∣∣y, ĥ(k−1), C2

)
log p

(
y,x|h, C2

)
(2.3)

M-step: Then, compute ĥ(k) by

ĥ(k) = arg max
h

[
Q
(
h
∣∣∣ĥ(k−1)

)
+ log p(h)

]
(2.4)

The E-step in (2.3) can be broken down as follows. First, compute

p
(
x
∣∣∣y, ĥ(k−1), C2

)
from y and ĥ(k−1). This computation of

p
(
x
∣∣∣y, ĥ(k−1), C2

)
is similar to Step 2 above, with ĥ(k−1) replacing

ĥMAP. If the algorithm were to stop at iteration k − 1 , we could
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simply go to Step 3 to obtain the network-coded message based

on p
(
x
∣∣∣y, ĥ(k−1), C2

)
. Otherwise, the E-step continues and uses

p
(
x
∣∣∣y, ĥ(k−1), C2

)
to compute the Q

(
h
∣∣∣ĥ(k−1)

)
in (2.3). After

that, the M-step finds a new estimate of h as in (2.4). In this way, the

computation procedure jointly estimates the channels h and decodes

the data x, refining the solutions from one iteration to the next. This

process is shown in the lower half of Fig. 2.1, which depicts our PNC

receiver.

Let us now re-examine (2.3) and (2.4) to explain why they work.

Combining the E-step and M-step by substituting (2.3) into (2.4) and

after some manipulations, we find that the EM algorithm is actually

a fixed-point iteration algorithm as follows:

ĥ(k) = arg max
h

[∑
x
p
(
x
∣∣∣y, ĥ(k−1), C2

)
log p

(
y,x|h, C2

)
+ log p(h)]

= arg max
h

[
−DKL

(
p
(
x
∣∣∣y, ĥ(k−1), C2

)
||p
(
x
∣∣y,h, C2

))
+ log p

(
h
∣∣y, C2

)]
(2.5)

where DKL is the Kullback-Leibler (K-L) divergence. It is known

that miminizing K-L divergence DKL corresponds to minimizing the

difference between two distributions [46]. The last line of (2.5),

however, is not exactly minimizing DKL; besides DKL , there is

an additional term log p
(
h
∣∣y, C2

)
in the function be optimized.

Another way to look at (2.5) is as follows. Recall that finding

arg maxh log p
(
h |y , C2

)
is the original objective of Step 1. In (2.5),

this objective is modified by the additional term DKL. Appendix A
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shows that the fixed-point EM iteration in the above equation is still

an attempt to find arg maxh log p
(
h |y , C2

)
despite the additional

DKL term. Indeed, finding arg maxh log p
(
h |y , C2

)
is facilitated by

adding DKL, which goes to zero when the algorithm converges. The

solution of EM is at least a local optimal log p(ĥMAP

∣∣y, C2 ) although

it may not be the global optimum. A good initial point will often lead

to a global optimum [47].

2.3.2 Implementation of EM-BP PNC on Factor Graph

Although EM can iteratively find the MAP estimate, the computa-

tions of the E-step (2.3) and M-step (2.4) are still non-trivial. We

next establish a framework that implement the EM computation as

a message passing algorithm on a factor graph, where we can rigor-

ously combine EM message passing for channel estimation with BP

message passing for channel decoding. This framework allows us to

more clearly see the intricacies of the EM computation, pointing to a

systematic and practical way to implement it.

Refs [27, 28] showed how to transform a generic EM computation

to a factor graph implementation. It is not clear, however, that the

assumptions in [27, 28] on the functional forms of the parameter and

variable probabilities are valid for our specific problem. Here, we

give a theoretical derivation tailored to channel-coded communication

systems.

A key to factor graph implementation is to factorize p
(
y,x|h, C2

)
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in (2.3) and p(h) in (2.4). For p
(
y,x|h, C2

)
, we write

p
(
y,x|h, C2

)
= p (y |x,h) p

(
x
∣∣C2
)

=
IC2(x)

∏
i p(yi|xi,hi )
|C2| (2.6)

where IC2 (x) is a indicator function defined as: IC2 (x) = 1 if x ∈ C2;

IC2 (x) = 0 if x /∈ C2, where we have assumed all codewords are

equally likely. Note that we have used (2.1) to justify the factorization

of p (y |x,h) into
∏

i p (yi |xi,hi ) in (2.6), where yi is independent of

yj for all i 6= j given x and h thanks to their independent noise

components. Substituting (2.6) into the Q function in (2.3) and

dropping the term − log
∣∣C2
∣∣, which is independent of h and therefore

does not matter as far as the M-step is concerned, we have

Q
(
h
∣∣∣ĥ(k−1)

)
=
∑
i

∑
xi

log p (yi |xi,hi )
∑

x1:i−1,xi+1:L

p
(
x
∣∣∣y, ĥ(k−1), C2

)
︸ ︷︷ ︸

∆
=p(xi|y,ĥ(k−1),C2 )

(2.7)

where p
(
xi

∣∣∣y, ĥ(k−1), C2
)
is the a posteriori probability (APP)4 that

can be computed using BP (sum-product) message passing algorithm

for channel decoding on the factor graph [17] of the given channel

code C2, with a fixed channel ĥ(k−1). We define the symbol-wise Q

4If xi is a vector of coded symbols, its APP is given by the soft channel decoder. If it is
a vector of pilot symbols, this probability is either 0 or 1, given by the a priori information
available at the receiver about the pilots.
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function as

Qi

(
hi

∣∣∣ĥ(k−1)
)

∆
=
∑
xi

log p (yi |xi,hi ) p
(
xi

∣∣∣y, ĥ(k−1), C2
)

(2.8)

With complex Gaussian white noise, the above log p (yi |xi,hi ) as a

function of the variables xi and hi can be obtained in closed form

as −
∥∥yi − hT

i xi
∥∥2
/
N0. We see that once p

(
xi

∣∣∣y, ĥ(k−1), C2
)

is

computed by BP channel decoding, Qi

(
hi

∣∣∣ĥ(k−1)
)

as a function of

hi can be obtained by the weighted sum of p
(
xi

∣∣∣y, ĥ(k−1), C2
)
with

weight −
∥∥yi − hT

i xi
∥∥2
/
N0 over different possible values of xi. The

overall Q function is the sum of symbol-wise Q functions:

Q
(
h
∣∣∣ĥ(k−1)

)
=
∑L

i=1
Qi

(
hi

∣∣∣ĥ(k−1)
)

(2.9)

Using (2.9), the M-step in (2.4) is equivalent to

ĥ(k) = arg max
h

(
p (h) ·

∏L

i=1
eQi(hi|ĥ(k−1) )

)
(2.10)

To see what will happen in the M-step, let us employ the Gauss-

Markov channel model (2.2) and factorize p (h) as

p (h) =
∏L

i=1
p (hi |hi−1 ) (2.11)

where p (h1 |h0 ) = p (h1) = CN (h1 : 0,Q) with Q
∆
=

diag
([
σ2
A, σ

2
B

])
is the priori information of h1, and

p (hi |hi−1 ) = CN
(
hi : mhi|hi−1

, Khi|hi−1

)
for i ≥ 2 is the Markovian transition probability defined by (2.2).

Specifically, mhi|hi−1
= αhi−1, Khi|hi−1

=
(
1− α2

)
Q for i ≥ 2.
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Substituting (2.11) into (2.10) and after some manipulations, we

observe that finding ĥ(k) amounts to finding

ĥ
(k)
i = arg max

hi

f
(
ĥ

(k)
1:i−1,hi, ĥ

(k)
i+1:L

)
,∀i (2.12)

where

f
(
ĥ

(k)
1:i−1,hi, ĥ

(k)
i+1:L

)
= max

h1:i−1,hi+1:L

{
L∏
j=1

p (hj |hj−1 )
L∏
j=1

eQj(hj|ĥ(k−1) )

}

= max
h1:i−1

{
p (h1 |h0 )

i−1∏
j=1

(
eQj(hj|ĥ(k−1) )p (hj |hj−1 )

)}
︸ ︷︷ ︸

(1)

×

eQi(hi|ĥ(k−1) )︸ ︷︷ ︸
(2)

×max
hi+1:L

{
L∏

j=i+1

(
eQj(hj|ĥ(k−1) )p (hj |hj−1 )

)}
︸ ︷︷ ︸

(3)

(2.13)

We can now solve the M-step by a message passing algorithm

that implements the max-product rule [17, 18] on a factor graph.

We construct the factor graph corresponding to (2.11), and treat

eQi(hi|ĥ(k−1) ) (used in (2.13)) as the input message to the variable node

of hi. The message passing algorithm is a bidirectional algorithm

consisting of forward and backward message passing. For each

direction, the message passing mechanism is very similar to Viterbi

algorithm (VA) for convolutional codes except that the variables {hi}
are continuous. As indicated in (2.13), there are three messages

needed for the computation of ĥ
(k)
i : message (1) is the result of

message passing in the forward direction; message (2) is the input

message to hi; and message (3) is the result of message passing in
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Figure 2.3: The illustration for the implementation of EM-BP PNC on factor
graph: (a) The factor graph for the whole system; (b) The two sub-graphs.

the backward direction. At first sight, it may seem that to obtain the

messages in (2.13) (in particular, in the computation associated with

the max operation), we need to search over the continuous space of

the variables. This would be highly complex. It turns out that that

is not the case, as explained below.

Borrowing the jargon from [28], the term eQi(hi|ĥ(k−1) ) is the ith

EM message and we abbreviate it as

emi = eQi(hi|ĥ(k−1) ).

For our application, this EM message has a Gaussian functional form,

greatly facilitating message passing on the factor graph. To see the
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Gaussian form, we write

exp
(
Qi

(
hi

∣∣∣ĥ(k−1)
))

= exp

(
−
∑
xi

p
(
xi

∣∣∣y, ĥ(k−1), C2
)∥∥yi − hT

i xi
∥∥2
/
N0

)
∝ CN (hi : memi

,Kemi
)

with mean vector and covariance matrix

memi
=
(
Kxi + mxim

H
xi

)−1
mxiyi (2.14a)

Kemi
=
(
Kxi + mxim

H
xi

)−1
N0 (2.14b)

where

mxi =
∑
xi

p
(
xi

∣∣∣y, ĥ(k−1), C2
)
xi

Kxi =
∑
xi

p
(
xi

∣∣∣y, ĥ(k−1), C2
)

(xi −mxi) (xi −mxi)
H

are the mean and variance of xi computed based on its APP.

Therefore, the model underlying the maximization problem (2.10)

is a pure linear Gaussian model: all the messages on the factor

graph turn out to be Gaussian functions of variables of interest.

The maximization problem associated with a linear Gaussian model

such as (2.10) can be solved by Gaussian message passing [18] that

implements the max-product rule. For Gaussian message passing,

we only need to track the mean vectors and covariance matrices

of messages, since together they fully characterize the Gaussian

distributions. This avoids searching over the whole continuous feasible

region, allowing practical implementation of the message passing

algorithm for the M-step.
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We have now presented the big picture on how to implement EM

channel estimation as a message passing algorithm on a factor graph

and to combine it with BP message passing for channel decoding.

Before going into the detailed derivation of the update equations for

the EM-BP message passing, we make two important remarks:

1. We have shown above that, in channel-coded communication

systems, the EM messages of the channels are Gaussian. As

specified by (2.14), the mean and the variance of the ith EM

message are linked to the APP of the ith transmitted symbol.

This link connects the BP message passing for channel decoding

with EM iterations.

2. The APP of xi is a product of three parts:

p
(
xi

∣∣∣y, ĥ(k−1), C2
)

= Ap
(
xi

∣∣∣y1:i−1,yi+1:L, ĥ
(k−1), C2

)
p
(
yi

∣∣∣xi, ĥ(k−1)
)
,

(2.15)

where A is a constant independent of xi, p
(
yi

∣∣∣xi, ĥ(k−1)
)
is the

information provided by the observation yi, and

p
(
xi

∣∣∣y1:i−1,yi+1:L, ĥ
(k−1), C2

)
is the extrinsic information sent from the BP message

passing for channel decoding. When the channel code used

has cycles in its factor graph (e.g., LDPC, Turbo codes),

the BP message passing algorithm for channel decoding

requires multiple iterations to compute the extrinsic information

p
(
xi

∣∣∣y1:i−1,yi+1:L, ĥ
(k−1), C2

)
for all i [17]. Then, the APPs
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are updated according to (2.14). Meanwhile, each EM

iteration requires one set of such newly computed APPs for

the transmitted symbols. Therefore, the theoretical construct

of EM requires us to carry out the multiple iterations of BP

channel decoding to update the extrinsic information as soon as

the channel has been updated to a new estimate.

Fig. 2.3a presents the factor graph of the joint probability of our

system, i.e., p
(
y,x,h

∣∣C2
)
. On the factor graph, variable nodes

{yi,xi,hi} are denoted by circles; and check nodes
{
fi

∆
= p (yi |xi,hi ) ,

gi
∆
= p (hi |hi−1 )

}
are denoted by solid squares. Further, according to

the factorization p
(
y,x,h

∣∣C2
)

= p
(
y,x|h, C2

)
p (h), we split this

overall factor graph into two parts:

E-step subgraph: The subgraph on the lower part of Fig. 2.3b cor-

responds to the representation of p
(
y,x|h, C2

)
through factorization

(2.6). The E-step of EM is implemented by message passing on this

subgraph, thus it is labeled as the E-step subgraph. Note that the

subgraph that represents the constraint imposed by virtual channel

encoding IC2 (x) is embedded inside the E-step subgraph. BP message

passing for channel decoding is operating on the subgraph of IC2 (x).

Thus, we can regard BP as being a sub-step within the E-step also.

M-step sub-graph: The subgraph on the upper part of Fig. 2.3b

corresponds to the representation of p (h) through factorization

(2.11). The M-step of EM is implemented by message passing on

this subgraph, thus it is labeled as the M-step subgraph.

In the following, we derive the message update equations for EM-
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BP PNC. We denote the message sent by a node x to a node y by

µx→y (·). We perform the BP message passing algorithm for virtual

channel decoding on the E-step subgraph to obtain the soft APP

outputs
{
p
(
xi

∣∣∣y, ĥ(k−1), C2
)}

. The BP message passing algorithm

for virtual channel decoding can be derived directly by applying

the sum-product rule on the factor graph that incorporates the

constraints imposed by virtual channel encoding [8, 22] that models

the simultaneous transmissions by terminal nodes. For virtual channel

decoding within the kth EM iteration, the channel h from the M-step

subgraph is fixed to the previous estimate ĥ(k−1). Thus, the message

µfi→xi, which initializes the virtual decoding, is given by

µfi→xi (xi) = p
(
yi |xi , ĥ(k−1)

i

)
= CN

(
yi :
(
ĥ

(k−1)
i

)T

xi, N0

)
(2.16)

for all i. The E-step of EM is completed by sending the EM

messages emi to the M-step subgraph after BP channel decoding,

as indicated by the red dotted arrows in Fig. 2.3b. This is fulfilled

by computing the mean vectors and covariance matrices of Gaussian

EM messages as in (2.14) based on the channel decoding outputs{
p
(
xi

∣∣∣y, ĥ(k−1), C2
)}

.

Since the structure of the M-step subgraph is a tree, the M-

step (2.10) is exactly implemented by a forward message passing

(yellow arrows in upper sub-graph in Fig. 2.3b) and a backward

message passing (blue arrows in upper sub-graph in Fig. 2.3b).

This observation also coincides with the mathematical expression for

message passing by equation (2.13). Due to the assumed Gauss-
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Markov channel model and the Gaussian feature of the incoming

EM messages, all the messages on the M-step subgraph preserve

Gaussianity. For forward message passing, it is required to compute

the message

µgi→hi (hi) = max
h1:i−1

{
p (h1)

∏i

j=2
emj−1p (hj |hj−1 )

}
from µgi−1→hi−1

(hi−1) recursively. Given that

µgi−1→hi−1
(hi−1) ∝ CN

(
hi−1 : mf

hi−1
,Kf

hi−1

)
and the Markovian property, we have the following update equations

for forward message passing:

µgi→hi (hi) = max
hi−1

{
µgi−1→hi−1

(hi−1) emi−1p (hi |hi−1 )
}

∝ CN
(
hi : mf

hi
,Kf

hi

)
with

mf
hi

= αmf
hi−1

+ αKf
hi−1

(
Kemi−1

+ Kf
hi−1

)−1 (
memi−1

−mf
hi−1

)
(2.17a)

Kf
hi

= α2Kf
hi−1

+
(
1− α2

)
Q−

(
αKf

hi−1

)(
Kemi−1

+ Kf
hi−1

)−1

×
(
αKf

hi−1

)
(2.17b)

The update equations (2.17) are essentially the famous Kalman one-

step prediction equations. The backward update equations that

compute message µgi+1→hi (hi) from

µgi+2→hi+1
(hi+1) ∝ CN

(
hi+1 : mb

hi+1
,Kb

hi+1

)



CHAPTER 2. JOINT CHANNEL ESTIMATION AND CHANNEL DECODING IN PHYSICAL-LAYER
NETWORK CODING SYSTEMS: AN EM-BP FACTOR GRAPH FRAMEWORK 37

are easily obtained similarly by symmetry; we therefore omit them

here. Finally, the message flowing out of variable node hi (the red

solid arrow in the upper sub-graph in Fig. 2.3b) is the product of all

the incoming messages

µhi→out (hi) = f
(
ĥ

(k)
1:i−1,hi, ĥ

(k)
i+1:L

)
= µgi→hi (hi)× emi × µgi+1→hi (hi)

∝ CN (hi : mhi,Khi)

where the mean vector mhi is used to update the new estimate of hi:

ĥ
(k)
i = arg max

hi

µhi→out (hi)

= mhi = mh−i
+ Ghi

(
memi

−mh−i

) (2.18)

with

Kh−i
=

((
Kf

hi

)−1

+
(
Kb

hi

)−1
)−1

mh−i
= Kh−i

((
Kf

hi

)−1

mf
hi

+
(
Kb

hi

)−1
mb

hi

)
Ghi = Kh−i

(
Kh−i

+ Kemi

)−1

This completes the M-step of EM. We then iterate back to the E-step

with the new estimate.

2.3.3 Initialization and Termination of EM Iteration

EM iteration needs to be bootstrapped with a good initial point;

otherwise there is no guarantee that the algorithm will converge to

the global maximum [47]. For each block, we obtain the initial ĥ(0) by

minimum mean square error (MMSE) estimation [48] using only the
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pilot symbols. Then, the channel coefficients within each data block

are simply set to the estimated channel coefficient of the closest pilot.

We repeat the E-step and M-step iteratively. When the number

of iterations k reaches a preset maximum limit K, we terminate

the EM algorithm after obtaining the final channel estimate ĥ(K).

Substituting ĥ(K) into the signal model (2.1) as the real channel

h, we could carry out a final round of channel decoding to obtain

p
(
x
∣∣∣y, ĥ(K), C2

)
, where x is the overall codeword pair. The

objective of this final channel decoding is consistent with Step 2

in Section 2.3.1. However, instead of finding p
(
x
∣∣∣y, ĥ(K), C2

)
for

channel decoding, we choose to modify Step 2 by still employing

BP for virtual channel decoding to find p(xi|y, ĥ(K), C2) for each

and every symbol pair xi. There are three reasons for this. First,

we already have the virtual channel decoder at hand in the factor

graph implementation of EM-BP PNC receiver. Second, for many

advanced channel codes (e.g., LDPC, Turbo code), the decoding

process finds p(xi|y, ĥ(K)C2) rather than p
(
x
∣∣∣y, ĥ(K), C2

)
, because

finding p
(
x
∣∣∣y, ĥ(K), C2

)
for all possible codewords is generally a

difficult computation-intensive problem. Finding p(xi|y, ĥ(K)C2) for

all i also may be treated as a sort of approximation of the original

objective 2. Third, even if we could find p
(
x
∣∣∣y, ĥ(K), C2

)
, it would

not be easy to obtain the ML network-coded message because the ML

network-coded codeword is given by

x̂R = ̂xA ⊕ xB = arg max
xR

∑
x:

xA⊕xB=xR

p
(
x
∣∣∣y, ĥ(K), C2

)
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where xA
∆
= {xA,i} and xB

∆
= {xB,i} are the codeword transmitted by

nodes A and B. The complexity for the decoding of x̂R is exponential

in the length of codewords. By contrast, the ML network-coded

symbol is much easier to find from p(xi|y, ĥ(K)C2). It is given by

̂xA,i ⊕ xB,i = arg max
x

∑
xi:

xA,i⊕xB,i=x

p
(
xi

∣∣∣y, ĥ(K), C2
)
.

To summarize, with the final channel estimate ĥ(K), we can use the

BP message passing for virtual channel decoding in the factor graph to

compute the final decoding results p(xi|y, ĥ(K)C2) and p (sA,j, sB,j |y
ĥ(K), C2

)
at the same time. Then, the network-coded source message

is obtained by

̂sA,j ⊕ sB,j = arg max
s

∑
sA,j ,sB,j :
sA,j⊕sB,j=s

p
(
sA,j, sB,j

∣∣∣y, ĥ(K), C2
)

(2.19)

for all j. After that, the relay channel-encodes the network-coded

source message and broadcasts the channel-coded message to nodes

A and B in time slot 2. Obtaining the estimate of the network-

coded message from p
(
sA,j, sB,j

∣∣y, C2
)
, which is in turn decoded

by imagining a virtual encoder as the source of the information,

is referred to as the joint CNC process in [8, 16]. Whereas [8, 16]

assumes the channel coefficients are perfectly known, here we assume

the channel coefficients are unknown and need to be estimated as

part of the joint CNC process. Our EM-BP factor graph framework

seamlessly bridges the channel estimation process and the joint CNC

process. We summarize the EM-BP message passing implementation
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Algorithm 1 The EM-BP Message Passing Implementation of Joint Channel
Estimation and Channel Decoding in PNC Systems
1: Initialization:

2: compute ĥ(0) by MMSE estimation from pilot symbols;
3: for i = 1 to K do

4: The E-step of EM

5: compute the inputs message to virtual decoding as (2.16), with the
tentative channel estimate ĥ(k−1);

6: compute the soft output APPs, p
(

xi|y, ĥ(k−1), C2
)
, from BP message

passing for virtual channel decoding; the number of iterations in the virtual
channel decoding is denoted by Ncd1;

7: compute the mean vectors and covariance matrices of the EM messages
as (14);

8: The M-step of EM

9: perform the forward message passing for EM channel estimation as (17);
10: perform the backward message passing for EM channel estimation

similarly to (17);
11: compute the new channel estimate ĥ(k) as (18);
12: end for

13: Termination:

14: perform BP message passing for the final virtual channel decoding, with the
final channel estimate ĥ(K); the number of iterations in the virtual channel
decoding is denoted by Ncd2;

15: compute the network-coded information symbols as (19).
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of joint channel estimation and channel decoding in PNC systems

in Algorithm 1, where Ncd1 denotes the number of iterations for

the BP channel decoding within the EM iteration; and Ncd2 denotes

the number of iterations for the final BP channel decoding after the

termination of EM.

2.4 The Application of SAGE-BP to PNC

SAGE sequentially updates a subset of parameters. Doing so

essentially decomposes a higher dimension problem into several lower

dimension sub-problems, since only a subset of the parameters are

estimated and updated according to the EM mechanism each time.

It can be shown that the sequential updates of subsets of parameters

always still guarantee convergence [26]. In this section, we apply

the theory of SAGE to the problem of joint channel estimation and

channel decoding in PNC systems. We also extend the framework

of EM-BP message passing over factor graph to SAGE-BP message

passing. The motivation for introducing SAGE is to reduce the

complexity of the channel estimation part of our framework. To

our best knowledge, this is the first attempt to apply SAGE for

channel estimation in PNC systems. In fact, in the context of general

estimation problems, this is probably the first attempt that integrates

the use of SAGE and BP on a unified factor graph.

In our setting, it is natural to break up the problem of estimating h

into two sub-problems, estimation of hA and estimation of hB. That

is, we update the channel of node A, hA
∆
= {hA,i} and the channel
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of node B, hB
∆
= {hB,i} separately and alternatively. When updating

one channel, we keep the other channel fixed. We formulate the kth

SAGE iteration as a two-stage process.

The 1st stage of the kth iteration: hB is fixed to ĥ
(k−1)
B ; and hA

is updated by

ĥ
(k)
A = arg max

hA

(
p (hA) ·

∏L

i=1
eQA,i(hA,i|ĥ(k−1)

A ,ĥ
(k−1)
B )

)
(2.20)

where

QA,i

(
hA,i

∣∣∣ĥ(k−1)
A , ĥ

(k−1)
B

)
=
∑
xi

log p
(
yi

∣∣∣xi,hA,i, ĥ(k−1)
B,i

)
p
(
xi

∣∣∣y, ĥ(k−1)
A , ĥ

(k−1)
B , C2

) (2.21)

is the Q function of hA,i.

The 2nd stage of the kth iteration: hA is fixed to ĥ
(k)
A ; and hB is

updated by

ĥ
(k)
B = arg max

hB

(
p (hB) ·

∏L

i=1
eQB,i(hB,i|ĥ(k)

A ,ĥ
(k−1)
B )

)
(2.22)

where

QB,i

(
hB,i

∣∣∣ĥ(k)
A , ĥ

(k−1)
B

)
=
∑
xi

log p
(
yi

∣∣∣xi, ĥ(k)
A,i,hB,i

)
p
(
xi

∣∣∣y, ĥ(k)
A , ĥ

(k−1)
B , C2

) (2.23)

is the Q function of hB,i.

The computations of Q functions (2.21) and (2.23) for all i

correspond to the E-step; the maximization problems (2.20) and

(2.22) correspond to the M-step. We still employ BP channel

decoding to compute the APPs used in the Q functions of SAGE. The

framework of message passing on a factor graph is still applicable to
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SAGE-BP. We describe the key steps on how to transform the SAGE-

BP computation onto a factor graph in the following.

SAGE breaks up the EM channel estimation into two sub-

problems. Each sub-problem is solved by message passing on a

factor subgraph. For the M-step of SAGE, the factor subgraph

that solves (2.20) ((2.22)) only consists of the channel variables of

terminal node A (B): {hA,i} ({hB,i}). The message passing algorithms

for computing ĥ
(k)
A and ĥ

(k)
B are initialized with the incoming EM

messages
{
emA,i

∆
= eQA,i(·)

}
and

{
emB,i

∆
= eQB,i(·)

}
, respectively. It

can be proven that Gaussianity is preserved. Namely, substituting

(2.21) into emA,i = eQA,i(·) leads to the following Gaussian expression:

emA,i = exp
(
QA,i

(
hA,i

∣∣∣ĥ(k−1)
A , ĥ

(k−1)
B

))
∝ CN

(
hA,i : mx∗A,i

yi −mx∗A,i·xB,iĥ
(k−1)
B,i , N0

) (2.24)

where x∗A,i is the conjugate of xA,i, and mx∗A,i
, mx∗A,i·xB,i are given by

mx∗A,i
=
∑

xA,i

(∑
xB,i
p
(
xi

∣∣∣y, ĥ(k−1)
A , ĥ

(k−1)
B , C2

))
x∗A,i

=
∑

xA,i
p
(
xA,i

∣∣∣y, ĥ(k−1)
A , ĥ

(k−1)
B , C2

)
x∗A,i

mx∗A,i·xB,i =
∑

x∗A,i·xB,i

(∑
xi:x∗A,i·xB,i=x

p
(
xi

∣∣∣y, ĥ(k−1)
A , ĥ

(k−1)
B , C2

))
×x∗A,i · xB,i

=
∑

x∗A,i·xB,i
p
(
x∗A,i · xB,i

∣∣∣y, ĥ(k−1)
A , ĥ

(k−1)
B , C2

)
x∗A,i · xB,i

(2.25)

Based on this Gaussian expression for {emA,i} and the Gauss-Markov

channel model of {hA,i} in (2.2), we can solve the M-step of the first

stage (2.20) by a Gaussian message passing algorithm that is almost

similar to the one derived in Section 2.3 for EM, with the difference

that the state space here only includes the channel of one terminal
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node. Thus, all the length-2 channel vectors, in the algorithm, are

reduced to scalars. Similarly, we can derive the Gaussian expression

for {emB,i} and solve the M-step of the second stage (2.22) by

the same Gaussian message passing algorithm. We round off the

discussion of SAGE-BP PNC with the following remarks:

1. In (2.25), p
(
xA,i

∣∣∣y, ĥ(k−1)
A , ĥ

(k−1)
B , C2

)
is the decoding result for

the transmitted symbol of node A, xA,i;

p
(
x∗A,i · xB,i

∣∣∣y, ĥ(k−1)
A , ĥ

(k−1)
B , C2

)
can be regarded as the decoding result for the variable x∗A,i ·xB,i.
Based on these decoding results, the posterior means of x∗A,i and

x∗A,i · xB,i are computed according to (2.25) and used in (2.24).

The intuitive interpretation of the expression for the mean of

the Gaussian expression in (2.24) is that it corresponds to an

interference cancelation process for the target channel.

2. Comparing the EM messages in (2.14) and (2.24), the message

passing implementation of EM-BP needs to compute the mean

vector and the covariance matrix of the transmitted symbol pair;

that of SAGE-BP needs to compute the mean of the symbol

transmitted from the target channel and the cross-correlation

between the two symbols xA,i, xB,i.

3. We compare the complexities of PNC in the following. Let us

just focus on the algorithms within the EM/SAGE-BP iteration

loop, since the complexities of initialization and termination are

the same for EM-BP and SAGE-BP. The results are summarized
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Table 2.1: Complexity of EM-BP PNC per iteration

EM-BP PNC

channel estimation O (2 (5N3
u + 4N2

u + 3Nu)L)

computing EM messages O
((
N3

u +
(
NNu

m + 3
)
N2

u +
(
2NNu

m + 1
)
Nu + 2NNu

m − 2
)
L
)

channel decoding O
(
Ncd1N

Nu
m

(
2NNu

m − 1
)
l
)

Table 2.2: Complexity of SAGE-BP PNC per iteration

SAGE-BP PNC

channel estimation O (24NuL)

computing EM messages O
(
Nu

(
2NNu

m + 2Nm + 1
)
L
)

channel decoding O
(
NuNcd1N

Nu
m

(
2NNu

m − 1
)
l
)

in Table 2.1 and Table 2.2. We denote the number of elements

in the channel vector hi by Nu. For our TWRC system,

Nu = 2. We denote the size of the modulation by Nm (e.g.,

Nm = 2 for BPSK and Nm = 4 for QPSK). For EM-BP, the

computation of (2.17) needs O
(
5N 3

u + 4N 2
u + 3Nu

)
operations.5

Therefore, the complexity of channel estimation in EM-BP is

O
(
2
(
5N 3

u + 4N 2
u + 3Nu

)
L
)
, where the factor 2 is due to one

forward and one backward message passing, L is the frame

5Strictly speaking, the complexities of matrix computations are different for different
computing algorithm. Here, we assume that the inversion of an n × n matrix requires O

(
n3
)

computations. The product of an n×mmatrix and anm×pmatrix needsO (nmp) computations
for our analysis. Some fast algorithms of matrix computations can reduce these complexities
to some extent.
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length. By counting the operations involved in (2.14), we can

figure out that the complexity of computing the EM messages

for EM-BP is

O
((
N 3
u +

(
NNu
m + 3

)
N 2
u +

(
2NNu

m + 1
)
Nu + 2NNu

m − 2)L) .

For SAGE-BP, there is no matrix operation, and the computation

of (16) becomes O (12). Since we perform once bidirectional

message passing for each node, the complexity of channel

estimation in SAGE-BP is O (24NuL). The complexity

of computing EM messages for SAGE-BP as in (2.24) is

O
(
Nu

(
2NNu

m + 2Nm + 1
)
L
)
. From the above results, we

can see that SAGE-BP simplifies the complexity of channel

estimation by removing the need for matrix inversions and

multiplications. Now, let us look at the channel decoding

part. EM-BP updates ĥ
(k)
A and ĥ

(k)
B simultaneously; and requires

one virtual channel decoding in each iteration. By contrast,

SAGE-BP requires two virtual channel decodings, one before

the update of ĥ
(k)
A and one before the update of ĥ

(k)
B . That

is, each time one of the channels is updated, the APPs of

xi will need to be re-computed before the other channel is

updated. To analyze the complexity of virtual channel decoding,

let us consider the regular repeat accumulate (RA) code [49]

(used in our simulations). The codeword length is l, and

there is no operation of channel decoding on the L − l pilots

symbols in each frame. The BP message passing requires

O
(
NNu
m

(
2NNu

m − 1
))

computations per check node. There are
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l check nodes on the factor graph of the RA code. We

perform Ncd1 iterations for each round of channel decoding. It

follows that the complexity of channel decoding in EM-BP is

O
(
Ncd1N

Nu
m

(
2NNu

m − 1
)
l
)
; the complexity of channel decoding

in SAGE-BP is O
(
NuNcd1N

Nu
m

(
2NNu

m − 1
)
l
)
, where the factor

Nu = 2 is due to the two virtual channel decodings in each SAGE

iteration. Therefore, SAGE-BP simplifies channel estimation but

adds complexity to channel decoding. One simple method to

maintain the same complexity in the channel decodings of SAGE-

BP and EM-BP is to make the Ncd1 in SAGE-BP equal to half

of the Ncd1 in EM-BP. This will cause SAGE-BP to suffer some

performance loss. We will study this by simulations in the next

section.

4. The decoding results p
(
xA,i

∣∣∣y, ĥ(k−1)
A , ĥ

(k−1)
B , C2

)
,

p
(
x∗A,i · xB,i

∣∣ y, ĥ
(k−1)
A , ĥ

(k−1)
B , C2

)
are both obtained based

on the outputs of BP message passing for virtual channel

decoding (see (2.25)). Another way to do this is to employ

parallel interference cancelation (PIC) [50, 51] to compute

p
(
xA,i

∣∣∣y, ĥ(k−1)
A , ĥ

(k−1)
B , C2

)
(p
(
xB,i

∣∣∣y, ĥ(k−1)
A , ĥ

(k−1)
B , C2

)
)

and then the joint probability p( xi

∣∣∣y, ĥ(k−1)
A , ĥ

(k−1)
B , C2

)
.

Thus, we can still compute the decoding result for x∗A,i · xB,i
from p

(
xi

∣∣∣y, ĥ(k−1)
A , ĥ

(k−1)
B , C2

)
. To compute these decoding

results, PIC employs two single-user channel decoders for the

two terminal nodes. And it requires iterative message pass-

ing between the two single-user channel decoders, besides the
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iterative message passing within each of the channel decoder.

Since PIC is well implemented by BP message passing [51],

we can also incorporate it into our factor graph framework for

SAGE-BP. This method is referred to as SAGE-BP PIC. After

the termination of SAGE iteration, SAGE-BP PIC obtains{
p
(
sA,j

∣∣∣y, ĥ(K)
A , ĥ

(K)
B , C2

)}
,

{
p
(
sB,j

∣∣∣y, ĥ(K)
A , ĥ

(K)
B , C2

)}
from the final channel decoding. Then, we have, from the rule

of sum-product algorithms,

p(sA,j, sB,j|y, ĥ(K)
A , ĥ

(K)
B , C2) ≈ p(sA,j|y, ĥ(K)

A , ĥ
(K)
B , C2)

×p(sB,j|y, ĥ(K)
A , ĥ

(K)
B , C2)

for all j, from which we can perform network coding as in (18).

Since PIC employs single-user decoding whose complexity does

not increase exponentially with the number of nodes Nu (as

virtual channel decoding does), SAGE-BP PIC can make our

framework scalable with the number of nodes (if we want to

extend our treatment to beyond TWRC). However, we will see

in Section 2.5 that the performance of SAGE-BP PIC is not as

good as SAGE-BP PNC. The reason is that there is a small cycle

between node xA,i and node xB,i for each i in the factor graph

of PIC, and these small cycles degrade the performance of the

BP algorithm. On the factor graph of virtual channel decoding,

we cluster xA,i and xB,i together as one node xi. Since xA,i and

xB,i now become a single variable node, the edges connecting

them disappear. By this clustering technique [17], the small

cycles between xA,i and xB,i are removed from the factor graph
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of virtual channel decoding.

5. We comment here that if nodes A and B employ different channel

encoders, a corresponding virtual channel decoding does not

exist. Then, we can only apply a channel decoding method for

MUD systems (such as PIC) to compute the APP of xA,i and

the APP of xB,i, respectively. By replacing the virtual channel

decoding with PIC channel decoding, we can deal with the set-

up of different terminal nodes using different channel encoders

under the EM/SAGE-BP framework.

6. Since the complexities of both SAGE for channel estimation and

BP for PIC channel decoding are scalable with the number of

nodes, we can apply SAGE-BP PIC to systems where collisions

of more than two signals are possible [52, 53]. The study of this

application awaits future work.

2.5 Simulation Results

In this section, we perform computer simulations to evaluate the

performances of the proposed schemes. We assume the channels of

both terminal nodes have the same average power σ2
A = σ2

B. Unless

stated otherwise, the channel correlation coefficient α is set to 0.99.

The regular RA code with coding rate 1/3 is employed. In the case of

BPSK modulation, each frame has 1024 information bits (thus, 3072

coded modulated data symbols); and in the case of QPSK modulation,

each frame has 2048 bits (also 3072 coded modulated data symbols).
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Figure 2.4: The BER results of the EM-
BP PNC receiver with BPSK modula-
tion.
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Figure 2.5: The MSE results for the
estimated channels of the EM-BP PNC
receiver with BPSK modulation.

We insert two pilots every ∆ data symbols. Unless stated otherwise,

the pilot interval ∆ is set to 16 (this corresponds to a 11.1% pilot

load). The two terminal nodes adopt orthogonal pilots, wherein

P1 = 1, P2 = 1 for node A and P1 = 1, P2 = −1 for node B. All

simulation results presented here are obtained by averaging over 105

pairs of frames. The signal to noise ratio (SNR) is defined as Es/N0

where Es is the energy per coded bit. Specifically, for coding rate 1/3,

Es = Eb/3 where Eb is energy per source bit.

2.5.1 Performance of EM-BP PNC

First, we investigate the performance of the EM-BP PNC receiver.

We evaluate the BER of the network-coded messages and the mean

square error (MSE) of the estimated channels. The results of the

PNC receiver using just a one-shot MMSE channel estimation (this

is equivalent to our EM-BP PNC receiver with K = 0) and the ideal
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Figure 2.6: The BER results of the EM-
BP PNC receiver with QPSK modula-
tion.
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Figure 2.7: The MSE results for the
estimated channels of the EM-BP PNC
receiver with QPSK modulation.

PNC receiver with the full channel state information (CSI) will be

given as benchmarks.

Fig. 2.4 presents the BER results of the three receivers: the EM-BP

PNC, the MMSE PNC, and the Full-CSI PNC; and Fig. 2.5 presents

their MSE results for the estimated channel. The BPSK modulation

is used for all receivers. The number of channel decoding iterations in

the MMSE PNC receiver and the Full-CSI PNC receiver is denoted

by Ncd. Recall that for the EM-BP PNC, K is the number of EM

iterations, Ncd1 is the number of iterations for the virtual channel

decoding in the E-step of each EM iteration; and Ncd2 is the number

of iterations in the final virtual channel decoding at the conclusion

of all EM iterations. Since we use the MMSE channel estimation

to initialize the EM-BP algorithm, we expect the EM-BP algorithm

to give more accurate channel estimation than the one-shot MMSE

channel estimation. This is confirmed by our simulation results in
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Fig. 2.5. In particular, the channel estimation accuracy in EM-

BP improves progressively with the number of iterations. We can

also observe that the first EM iteration can already extract most of

the gain in MSE. Our simulations also indicates that the EM-BP

PNC algorithm has almost converged after K = 5 iterations. These

MSE improvements by EM-BP PNC are reflected into BER results.

Comparing the BER results of EM-BP PNC receiver and MMSE PNC

with Ncd = 6 in Fig. 2.4, we can see that there is a 4 dB gain by EM-

BP PNC just after the first EM iteration (K = 1). There is a 6 dB

gain after EM has converged (K = 5). Furthermore, the BER result

of EM-BP PNC at K = 5 can approach the BER of the Full-CSI

PNC very well.

For a fairer comparison, let us examine the performance of EM-

BP PNC with Ncd1 = Ncd2 = 6, K = 5, and the performance of

MMSE PNC receiver withNcd = 36: i.e., the total numbers of channel

decoding iterations are the same in the two cases. We observe that for

BER, EM-BP PNC receiver has around 4 dB gain over MMSE PNC.

The observed error floor in both BER and MSE as SNR increases

are due to the time-varying property of the channel, which is also

analyzed and reported in [54]. Essentially, even if the receiver noise

is zero, the channel randomness in between pilots induces uncertainty

that cannot be removed entirely regardless of the SNR. Effectively,

the channel randomness in between pilots is a source of noise besides

the thermal circuit noise in the receiver.

Fig. 2.6 and Fig. 2.7 present the BER and MSE results of EM-

BP PNC when QPSK modulation is used. The results of EM-
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Figure 2.8: The impact of the channel
correlation coefficient α on the BER per-
formance of the EM-BP PNC receiver.
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Figure 2.9: The MSE results for the
estimated channels of the EM-BP PNC
receiver under the Clarke’s channel (with
normalized maximum Doppler spread
0.005).

BP PNC with BPSK are also shown as benchmarks. For the data

here, Ncd1 = Ncd2 = 6. We can observe that the BER and MSE

results for QPSK are slightly worse than that for BPSK. The denser

constellation map in QPSK makes the channel estimation tougher.

Thus, the MSEs for QPSK are larger than for BPSK. Moreover, the

denser constellation makes the channel decoding more sensitive to the

channel estimation error. The performance gap in the BER results

of the BPSK and QPSK is about 0.5-1 dB in the low SNR regime

(Es/N0 < 6 bB), and about 2 dB in the high SNR regime (Es/N0 >

6 bB). Since the performance trends of BPSK and QPSK are the same,

we just focus on the performance of BPSK hereinafter for simplicity.

We now investigate the impact of channel correlation coefficient

α on the BER performance of EM-BP PNC. For virtual channel
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decoding, we also set Ncd1 = Ncd2 = 6. The BER results of EM-

BP PNC versus pilot interval ∆ for various α are shown in Fig. 2.8.

The operating SNR Es/N0 is 6 dB. As α decreases from 0.99 to 0.97,

the channel varies faster and the BER gets worse. The BER is more

sensitive to the pilot load as α gets smaller. When the pilot interval

∆ goes from 2 to 32, the BER in a channel with α = 0.99 ranges from

10−6 to 10−5; however, the BER in a channel with α = 0.97 ranges

from 10−6 to 10−1. To maintain the performance in an environment of

rapidly varying channel, we can insert more pilot symbols or increase

the number of EM iterations (K). For example, the BER of α = 0.97

and K = 5 can approach the BER of α = 0.99 and K = 1 when

∆ ≤ 16.

In Section 2.3, we derived the proposed message passing algorithm

for channel estimation using the first-order Gauss-Markov channel

model. Indeed, the Gauss-Markov channel model is an approximation

of the real physical channel. Here, we conduct a simulation using

a more realistic mobile channel. Our aim is to demonstrate the

robustness of the channel-estimation message passing when there is a

mismatch between the channel model and the actual realized physical

channel. All the set-ups of the simulation are the same as the previous

cases except that the actual channel gains are generated according to

the Clarke’s channel model [11]. The normalized maximum Doppler

spread in the Clarke’s channel model is set to 0.005. Following the

relation between the Doppler spread and the correlation coefficient

α established in [55], we set the correlation coefficient to α = 0.989

and use it for channel-estimation message passing. We evaluate the
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MSEs of the channel estimation outputs, and present the results in

Fig. 2.9. We can see that despite the channel mismatch, our channel

estimation message passing still works well. We can still observe its

MSE gains over the one-shot MMSE channel estimation. Comparing

the MSE results of the Charke’s channel in Fig. 2.9 with the MSE

results of the Gauss-Markov channel in Fig. 2.5, we can see that there

is no obvious performance difference between them.

2.5.2 Performance of SAGE-BP PNC

We now investigate the performance of the SAGE-BP PNC receiver.

We first focus on SAGE-BP PNC with Ncd1 = Ncd2 = 6. The BER

results are shown in Fig. 2.10, where the BER results of EM-BP PNC

with Ncd1 = Ncd2 = 6 are also presented as benchmarks. It can

be observed that SAGE-BP PNC has the same performance as EM-

BP PNC. Both SAGE-BP PNC and EM-BP PNC converge to the

same performance after K = 5 iterations. This is consistent with

the fundamental theory of SAGE [26]. Substituting the simulation

parameters (Ncd1 = 6, Nu = 2, Nm = 2, l = 8L/9) into Table I, we

can find that per EM-BP iteration needs O (333L) computations; per

SAGE-BP iteration needs O (369L) computations. The complexity

of SAGE-BP now is slightly higher than that of EM-BP due to the

more complex channel decoding in SAGE-BP.

For SAGE-BP PNC, since the two-dimension estimation problem

of h = {hA,hB} in the M-step of EM has been decomposed into two

one-dimension estimation sub-problems of hA and hB, the complexity
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of its channel estimation is smaller than that of EM-BP PNC. To

‘equalize’ the complexities of the channel decoding of SAGE-BP PNC

and EM-BP PNC, we set Ncd1 = 3, Ncd2 = 6 for SAGE-BP PNC, i.e.,

the total number of iterations for BP channel decoding in the E-step

after both hA and hB are updated is 2 × Ncd1 = 6; and Ncd1 = 6,

Ncd2 = 6 for EM-BP PNC. Recall that the complexity of channel

estimation in SAGE-BP PNC is smaller than that in EM-BP PNC (see

the complexities in Table I). Since we equalize the complexities of the

channel decoding processes of EM-BP and SAGE-BP (by halving the

number of channel decoding iterations in each SAGE-BP iteration),

the overall complexity of SAGE-BP PNC (per SAGE-BP iteration

needs O (219L) computations) is now smaller than that of EM-BP

PNC because of its less complex channel estimation. From the results

in Fig. 2.10, we can see that the performance of SAGE-BP PNC with

Ncd1 = 3, Ncd2 = 6 is not as good as that of EM-BP PNC with

Ncd1 = 6, Ncd2 = 6.

We next compare the performances of SAGE-BP PIC and SAGE-

BP PNC. We report the BER and MSE results in Fig. 2.11 and

Fig. 2.12, respectively. We denote the number of iterations for the

message passing between the two single-user channel decoders in PIC

by P . For SAGE-BP PIC, we can increase P and Ncd1 (Ncd2) to

allow convergence of the PIC channel decoding. From our simulation

results, PIC converges with Ncd1 = Ncd2 = 18, P = 2. When

we continue to increase these numbers of iterations, no observable

improvement on performance can be obtained. For SAGE-BP PNC,

we can increase Ncd1 (Ncd2) to make the virtual channel decoding
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Figure 2.10: The BER results of the
SAGE-BP PNC receiver.
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Figure 2.11: The BER results of the
SAGE-BP PIC/PNC receiver.
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Figure 2.12: The MSE results of the SAGE-BP PIC/PNC receiver.

converge. Virtual channel decoding converges with Ncd1 = Ncd2 = 18.

From the BER results in Fig. 2.11, we can see that the BER of SAGE-

BP PIC is not as good as that of SAGE-BP PNC. Specifically, the

error floor of SAGE-BP PIC in the high SNR regime is higher than

that of SAGE-BP PNC. As explained earlier, this is because there

are small cycles in the factor graph of PIC. The APPs of transmitted

symbols computed by PIC is not as accurate as the ones computed
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by virtual channel decoding for PNC. Therefore, we expect the SAGE

channel estimation based on the worse APPs will result in worse

estimate results. From the MSE results in Fig. 2.12, we observe

that with one SAGE iteration (K = 1), SAGE-BP PIC indeed has

worse MSE than SAGE-BP PNC. When we increase the number of

iterations to allow SAGE-BP PNC and SAGE-BP PIC to converge

(Ncd1 = Ncd2 = 18, P = 2, K = 5), SAGE-BP PIC can obtain the

same MSE as SAGE-BP PNC. However, even with the same MSE, the

final channel decoding results of SAGE-BP PIC now is still worse than

that of SAGE-BP PNC (see the BERs in Fig. 2.11). This is because

the APPs computed by the PIC process are still not as accurate as

those computed by the virtual channel decoding process. In other

words, as far as the channel estimation is concerned, the performances

of both schemes are comparable, but the virtual channel decoding in

SAGE-BP PNC gives better estimates of the network-coded symbols.

2.5.3 Comparison with Other Receiver Architectures

In this subsection, we compare our EM-BP PNC receiver with other

receiver architectures [23,34,35,42].

We first investigate the performances of two different strategies

on how to combine EM with BP channel decoding: our EM-BP

strategy and the strategy suggested in [34, 35]. Although [34, 35]

do not investigate PNC systems, we can extrapolate their strategy

for PNC application. Before we compare the performance results of

the two strategies, let us explain a subtle point in the rigorous EM-
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BP framework because this is where the strategy in [34, 35] deviates

from this framework. We note that the extrinsic information used

in (14) is a function of the channel estimate ĥ(k). According to the

theoretical framework of EM, upon a new channel estimate, we should

immediately run BP channel decoding to compute new extrinsic

information to update the APPs. The new APPs are then used to

compute the next channel estimate. Our EM-BP strategy conforms

to the above operational sequence. In the following discussion, when

we refer to the strategy in [34, 35], we mean the strategy as applied

to PNC. In the strategy of [34, 35], each iteration of BP channel

decoding is followed by several EM iterations for channel estimation

using the same extrinsic information from that single iteration of BP

channel decoding. For example, at EM iteration k = k1, ĥ(k1−1) was

obtained. After one iteration of BP channel decoding, we obtain the

new extrinsic information p
(
xi

∣∣∣y1:i−1,yi+1:L, ĥ
(k1−1), C2

)
for all i.

For several subsequent EM iterations for channel estimation, indexed

by k = k1 + 1, · · · , k2−1, BP channel decoding will not be performed

at all. EM updates a new channel estimate ĥ(k) in each iteration using

an approximate APP of xi rather than (14). Specifically,

p
(
xi

∣∣∣y, ĥ(k−1), C2
)
≈

A · p
(
xi

∣∣∣y1:i−1,yi+1:L, ĥ
(k1−1), C2

)
p
(
yi

∣∣∣xi, ĥ(k−1)
)
.

In particular, an approximation is made on the extrinsic information:

p
(
xi

∣∣∣y1:i−1,yi+1:L, ĥ
(k−1), C2

)
≈ p

(
xi

∣∣∣y1:i−1,yi+1:L, ĥ
(k1−1), C2

)
.

Obviously, this operation does not correctly compute the APP of xi
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Figure 2.13: Comparing the different
strategies on how to combine EM with
BP channel decoding: the BER results.
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Figure 2.14: Comparing the different
strategies on how to combine EM with
BP channel decoding: the MSE results

needed by EM for iterations k = k1 + 1, · · · , k2 − 1. Moreover, if

there are cycles in the factor graph of the channel code (e.g., the

RA code used in our simulation experiments), the computation of

p
(
xi

∣∣∣y1:i−1,yi+1:L, ĥ
(k1−1), C2

)
with just one BP channel decoding

iteration will not accurate either. This strategy is referred to as SP-

EM in [34], where SP stands for sum-product. To avoid confusion,

we rename it as multiple-EM-single-BP scheme here to represent the

fact that there are multiple iterations of EM for each iteration of BP.

Our EM-BP is single-EM-multiple-BP in that sense.

The BER results of EM-BP PNC and multiple-EM-single-BP PNC

are shown in Fig. 2.13; their MSE results are shown in Fig. 2.14.

For EM-BP PNC, there are Ncd1 iterations for BP channel decoding

after each EM iteration; and totally K EM iterations are performed

(therefore, altogether there are K EM iterations and Ncd1K BP

channel decoding iterations). For multiple-EM-single-BP PNC, there
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are K EM iterations after each for BP channel decoding iteration;

and totally N iterations for BP channel decoding are performed prior

to termination (therefore, altogether there are NK EM iterations

and N BP channel decoding iterations). After termination, we

perform additional Ncd2 = 18 iterations for BP channel decoding

in both strategies. The approximate APPs in multiple-EM-single-

BP as explained above causes it to deviate from the principle of

EM algorithm. The results in Fig. 2.13 and Fig. 2.14 show that

compared with EM-BP PNC, multiple-EM-single-BP PNC exhibits

worse performances and converges to an inferior operating point.

From our simulation results in Fig. 2.13 and Fig. 2.14, we see that

no further improvement on the performance of multiple-EM-single-

BP PNC can be obtained when N is increased from 5 to 7. In other

words, even if we make N very large to equalize the channel decoding

complexity of multiple-EM-single-BP PNC with that of EM-BP PNC,

the performance of multiple-EM-single-BP PNC will still be worse

than that of EM-BP PNC.

Next, we compare our EM-BP PNC receiver and the BP-MM

receiver proposed in [23] (see Section 2.1 for the overview of [23]).

In EM-BP PNC, EM is employed to accomplish the task of channel

estimation; and BP is employed to accomplish the task of channel

decoding. EM can find ĥMAP when it converges to the global optimal,

and in this case the result of the final channel decoding in EM-BP

PNC is p
(
xi

∣∣∣ĥMAP ,y, C
2
)

for all i. This is the target of EM-

BP. For EM, the convergence to the global optimal can always be

guaranteed by a good initial point [47]. We can also finish the
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tasks of both channel estimation and channel decoding using BP

alone, as in [23]. In this case, the final target of channel decoding

is p
(
xi
∣∣y, C2

)
=
∫
p
(
xi,h

∣∣y, C2
)
dh, which is different from the

target of EM-BP. However, the integration over continuous variables

required by BP channel estimation is computationally infeasible. BP-

MM uses MM as an approximation to circumvent the need for explicit

integration (i.e., integration of the approximate Gaussian distribution

can be obtained in closed form) [23]. However, as a consequence of the

approximation by MM, the optimality of BP cannot be guaranteed

(i.e., even if the algorithm converges to the global optimal, it will

not be the global optimal associated with the original non-Gaussian

distribution). The BER results of BP-MM are shown in Fig. 2.15,

whereM denotes the number of iterations between channel estimation

and channel decoding in BP-MM; and Ncd denotes the number of

channel decoding iterations in BP-MM. Comparing the BERs of EM-

BP PNC and BP-MM, EM-BP PNC is worse in the low SNR regime

and it is better in the high SNR regime. Specifically, when both

receivers have converged (M = K = 5, Ncd = Ncd1 = Ncd2 = 18),

EM-BP PNC outperforms BP-MM by 1dB at the BER of 10−6. We

believe this gap could be due to the approximation by MM.

As summarized in Section 2.1, there is an EM approach for

joint channel estimation and channel decoding in multi-user CDMA

systems, proposed in [42]. In [42], channel decoding is implemented by

MMSE SIC with separate single-user channel decoders for data from

different users; and channel estimation is implemented by EM using

APPs obtained from the single-user channel decoders. We compare
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Figure 2.15: Comparing the proposed EM-BP PNC receiver with other receiver
architectures.

EM-BP PNC with an EM SIC receiver modified from that in [42]. In

the modified EM SIC receiver, there is no despreading operation, since

we focus on PNC systems rather than CDMA systems. Specifically,

given the channel estimate ĥ(k−1) from the last EM iteration,

we directly employ MMSE SIC to compute the APP of the ith

symbol transmitted by a individual node: p
(
xA,i

∣∣∣y, ĥ(k−1) , C
)
,

p
(
xB,i

∣∣∣y, ĥ(k−1) , C
)
, for all i. MMSE SIC [51] is a technique in

which the MMSE estimation on the signal of one node is subtracted

from the received signal; then channel decoding is performed on

the remaining signal using the standard sum-product algorithm to

obtain the APP of the other node. Based on these APPs, the
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channel estimation is implemented by the EM message passing as

proposed in our work here. After the final round of channel decoding,

we obtain {ŝA,j}, {ŝB,j} from the two single-user channel decoders.

We then perform network coding as {ŝA,j ⊕ ŝB,j}. Compared with

EM-BP PNC, there are two drawbacks to this EM SIC receiver:

1) the APPs p
(
xA,i

∣∣∣y, ĥ(k−1) , C
)
, p
(
xB,i

∣∣∣y, ĥ(k−1) , C
)
, are only

approximately computed by MMSE SIC (even without considering

the cycles in the factor graph of channel coding) because of the

use of the aforementioned MMSE signal cancelation rather than the

use of the strict sum-product formalism to link the computations

of p
(
xA,i

∣∣∣y, ĥ(k−1) , C
)

and p
(
xB,i

∣∣∣y, ĥ(k−1) , C
)

together; and 2)

its single-user channel decoding is not optimal for PNC. The BER

results of EM SIC are shown in Fig. 2.15. When both receivers have

converged (K = 5, Ncd = Ncd1 = Ncd2 = 18), we see that EM-BP

PNC outperforms EM SIC by around 2dB at BER 10−5.

2 End of chapter.



Chapter 3

Frequency-Asynchronous Joint

Channel-Parameter Estimation,

CFO compensation and Channel

Decoding in MUD Systems

3.1 Introduction

T
his chapter investigates a channel-coded MUD system operated

with orthogonal frequency-division multiplexing and interleaved

division multiple access. While having many advantages, a major

problem of OFDM-IDMA is the frequency asynchrony caused by

the multiple carrier frequency offsets of the signals simultaneously

transmitted by the multiple users. We put forth a framework that

jointly performs multiuser channel-parameter estimation, CFO com-

pensation and channel decoding that addresses the multiple-CFO

problem in a comprehensive and systematic manner.

65
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Why IDMA?

For a multiuser system in which multiple users transmit simulta-

neously to a common receiver, IDMA is a technique for facilitating

the separation of user signals at the receiver [14]. In IDMA, different

transmitters interleave their channel-coded symbols in different ways

before transmission to create orthogonality among user signals. In

that light, it is similar to code-division multiple access (CDMA) ex-

cept that CDMA creates semi-orthogonality with different spreading

codes rather than different interleavers. Thus, it is not surprising

that, as with CDMA, IDMA can provide multiuser diversity gains

and mitigate inter-cell interference [14, 56]. It has been shown that,

all things being equal, IDMA outperforms CDMA in terms of error

rate and receiver complexity [57].

Why IDMA with OFDM?

This chapter focuses on wideband communications. The channels

in wideband communications are often frequency-selective because of

multiple channel paths. The direct application of IDMA to wideband

communications using time-domain signals leads to highly complex

multiuser detectors [14]. This is because the multiuser detectors

must deal with multiple-access interference (induced by multiple user

signals) and inter-symbol interference (induced by multiple channel

paths) at the same time.

OFDM is a multicarrier modulation technique that can combat

frequency selectivity in wideband channels. Specifically, OFDM

divides a user data stream into many parallel sub-streams and
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transmits them over compactly spaced subcarriers, thereby converting

a frequency-selective channel into a group of frequency-flat sub-

channels [58]. It is desirable to combine IDMA with OFDM, so that

the multiuser detectors operating in the frequency domain only have

to attend to multiple-access interference rather than both multiple-

access interference and inter-symbol interference [59].

A no less important advantage of OFDM for multiuser systems

is that it can tolerate unaligned symbol arrival times among the

multiple user signals at the receiver. Specifically, as long as the

symbol arrival times of different user signals are within the cyclic

prefix (CP) of each other, the signal samples in the frequency domain

are automatically aligned after the DFT [15].

Major Challenges in OFDM-IDMA

Despite its advantages, the OFDM-IDMA system is susceptible to

multiple CFOs among the signals of multiple users. The multiple

CFOs are caused by the different RF oscillators used at the different

transmitters. CFO causes inter-carrier interference (ICI) among

different subcarriers and induces cumulative phase drifts over the data

frame [60].

Before the negative effects of CFOs can be alleviated, an issue is

the estimation of channel parameters, which include the CFOs as well

as the channel gains of different users. For multiuser OFDM-IDMA,

the overall estimation errors may increase with the number of users.

How to contain the estimation errors in OFDM-IDMA is a major

challenge.
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With accurate estimates of CFOs, the next issue is to alleviate the

negative effects of CFOs. A possibility is to attempt to compensate

for them at the receiver. For single-user OFDM systems, the receiver

can compensate for the single CFO by multiplying the time-domain

signal (before DFT) with the complex exponent of the inverse CFO.

This inverse operation cancels out the CFO. After that, the receiver

performs standard channel decoding in the frequency domain to

extract the source message.

This method of separating CFO compensation and frequency-

domain channel decoding, however, does not work for multiuser

OFDM systems because of the multiple CFOs. Fundamentally,

compensating for these CFOs simultaneously is impossible even if

the CFOs were perfectly estimated without errors. This is because

removing one of the CFOs in the received signal will necessarily leave

behind some residual CFOs for the other CFOs, unless the CFOs of

different users were exactly the same to begin with. As a consequence,

the CFO-induced ICI inevitably remains in the frequency domain.

Since the effects of all CFOs cannot be eliminated in one shot, we

need an iterative method for multiuser joint CFO compensation and

channel decoding for OFDM-IDMA systems.

Our Approaches and Solutions

We put forth a framework that jointly performs multiuser channel-

parameter estimation, CFO compensation and channel decoding in an

integrated manner. Our framework combines the space alternating

generalized expectation-maximization (SAGE) [26] and expectation-
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conditional maximization (ECM) [61] algorithms. The framework first

employs the SAGE algorithm to decompose the multisuser problem

into multiple single-user problems, and then employs the ECM

algorithm to tackle each of the single-user subproblems. Iterative

executions of SAGE and ECM in the framework allow the two

aforementioned challenges to be tackled in an optimal manner. As

far as we know, this is the first attempt to construct such a unified

framework for OFDM-IDMA systems. Although SAGE and ECM

algorithms are well known, many gaps, however, still need to be filled

in order to build a complete and consistent framework with superior

performance for multiuser joint channel-parameter estimation, CFO

compensation and channel decoding. This chapter fills such gaps, as

elaborated below.

After decomposing our multiuser problem into multiple single-

user problems, we employ ECM to solve the joint channel-paramter

estimation, CFO compensation and channel decoding problem for

each user. Here, a key element of our framework is to exploit the

sum-product message passing algorithm [17,62] for channel decoding

to refine the channel-parameter estimation as well as the CFO

compensation in an iterative manner. The sum-product channel

decoding corresponds to treating the coded symbols as the hidden

data in the ECM algorithm. We can also adopt anthoer message

passing algorithm — the min-sum message passing algorithm [17,62]

— to perform channel decoding. We will explain in Section 3.3.4

that the min-sum channel decoding corresponds to a pure SAGE

framework (rather than the SAGE-ECM framework). We will further
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show in Section 3.4 of this chapter that the proposed SAGE-ECM

framework with the sum-product algorithm has better performance

than the SAGE framework with the min-sum algorithm.

To apply the sum-product algorithm in our framework, a subtle

issue must be addressed. Specifically, the sum-product algorithm,

when applied for channel decoding, yields soft information on the

data symbols in the frequency domain. In our iterative framework,

this data soft information will in turn be used to refine channel-

parameter estimation. But the CFO estimation is only feasible in

the time domain (this will be elaborated in Section 3.3.3). Therefore,

to use the data for CFO estimation, we need to first transform the

data soft information from the frequency domain to the time domain.

This problem can be treated as a soft IDFT problem: i.e., performing

IDFT on probability functions. As will be elaborated, exact soft IDFT

computation can be highly complex (of exponential order). To reduce

complexity in soft IDFT, we adopt Gaussian message passing [18] to

obtain approximate solutions. We show in Section 3.3.3 that Gaussian

message passing reduces the complexity from exponential order to

linear order.

In our simulations, we show that our joint framework has around

5—8 dB SNR gain over conventional multiuser approaches for

systems with 2—3 users. We further performed real experiments

using software-defined radio (SDR) to verify our approach. The

experimental and simulated results are consistent with each other.
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3.1.1 Related Works

Multiuser decoding in IDMA is a method that jointly performs

multiple-access interference cancellation and channel decoding [14,

56]. Ref. [59] proposed the use of OFDM-IDMA for the multiuser

communication. However, [59] assumed the absence of CFOs, and it

directly applied the multiuser decoding technique originally developed

for IDMA [14, 56] to OFDM-IDMA to deal with multiple-access

interference in the frequency domain. Without CFOs, the application

of IDMA in the frequency domain is essentially the same as that

in the time domain without multipath. As mentioned earlier,

unavoidable multiple CFOs can cause both inter-carrier interference

among subcarriers of the same user and among subcarriers of different

users. Our work here investigates this fundamental yet practical issue.

Subsequent to [59], [63] and [64] considered CFOs in OFDM-

IDMA. The methods of [63, 64] cancel both inter-carrier interference

(induced by CFOs) and multiple-access interference, and iterates

between interference cancellation and channel decoding. However,

perfect knowledge of CFOs and channel gains were assumed with

no consideration given to their estimation. The methods of [63, 64]

cancel both inter-carrier interference (induced by CFOs) and multiple-

access interference, and iterates between interference cancellation and

channel decoding. Our simulation results in Section 3.4 indicate that

imperfect channel-parameter estimation using preambles and pilots

may cause significant performance penalties (more than 10 dB) to

the system. This motivates us to improve the accuracy of channel-
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parameter estimation for OFDM-IDMA using not just the preambles

and pilots, but also the data symbols in the signals. Doing so

requires iterations between the channel-parameter estimation in the

time domain and channel decoding in the frequency domain.

An alternative multiuser scheme to OFDM-IDMA is orthogonal

frequency-division multiple access (OFDMA) uplink.1 As in OFDM-

IDMA, the multiple CFOs in the OFDMA uplink cannot be

compensated for in one shot at the receiver. Thus, in the presence

of multiple CFOs, the user signals of OFDMA uplink will overlap

in the frequency domain (i.e., these subcarriers are not strictly

orthogonal due to the CFOs). The authors of [65, 66] derived

multiuser decoding methods for OFDMA to cancel the multiple-user

interferences (induced by CFOs) and decode the data symbols in

an iterative manner. As with the investigations of OFDM-IDMA

in [63, 64], the investigations of OFDMA in [65, 66] did not consider

the impact of imperfect CFO and channel estimations.

Recently, [44] proposed a method for multiuser joint channel-

parameter estimation, CFO compensation and symbol detection for

OFDMA. As with our current work, the method of [44] also aims to

1We remark that in the OFDM-IDMA system of interest to us, all the subcarriers are used by
all users. This is different from OFDMA, where different users use non-overlapping subcarriers.
Multiple-access in OFDM-IDMA is achieved by means of user-specific interleaving in IDMA.
OFDM-IDMA has better spectrum efficiency than OFDMA.
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combine SAGE and ECM for solving the problem. However, [44] did

not consider the impact of channel coding, which necessitates a total

recast of the algorithmic framework. In this chapter, we explore the

proper way to combine SAGE and ECM for channel-coded OFDM-

IDMA. The method of [44] can also be modified for application to

channel-coded OFDM-IDMA in a straightforward manner. We will

show that a simple extension of the method of [44] to the channel-

coded OFDM-IDMA leads to a worse performance than our method.

The rest of this chapter is organized as follows. Section 3.2

describes our system model. Section 3.3 presents our framework and

shows how to apply SAGE and ECM to OFDM-IDMA for multiuser

joint channel-parameter estimation and channel decoding. Section 3.4

details our the simulation and experimental results.

Notations: We denote matrices by bold capital letters, vectors

by bold small letters, and scalars by regular letters throughout this

chapter. All vectors are column vectors. The (i, j)th entry of

matrix A is denoted by [A]i,j. In addition, AT, AH, A−1 and

det (A) denote the transpose, the conjugate transpose, the inverse

and the determinant of A, respectively. Re (·) means the real part

of a complex number, and ∠ (·) is the angle of a complex number.

CN (x : m,K)
∆
= 1

πr det(K) exp
[
− (x−m)H K−1(x−m)

]
denotes

the probability density function (PDF) of an r-dimension complex

Gaussian random variable x with mean vector m and covariance

matrix K. The Euclidean norm of a vector x is denoted by ‖x‖.
Finally, ⊕ denotes the exclusive-or operation.
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3.2 System Model

3.2.1 Transmit Signal

Let us first look at the transmit side of our system model. In the

uplink, U users transmit simultaneously to a base station. The

transmitted messages employ OFDM signaling with IDMA.

Fig. 3.1 shows the block diagram of the system. User u, u ∈
{1, 2, · · · , U}, generates a sequence of J information bits bu =

[bu,1bu,2 · · · bu,J ]T . The information bits are then channel-coded into

J/R code bits cu =
[
cu,1cu,2 · · · cu,J/R

]T , where R is the code rate.

We assume all users adopt channel codes that is amenable to decoding

by the message passing algorithm [17, 62]. After channel coding, a

user-specific interleaver permutes the sequence of code bits cu into

an interleaved sequence of code bits c̃u =
[
c̃u,1c̃u,2 · · · c̃u,J/R

]T . The

user-specific interleavers together with the channel encoder serve as

the signatures of the users. Then, c̃u is modulated to a sequence

of complex data symbols zu =
[
zu,1zu,2 · · · zu,J/RB

]T , where B is the

number of code bits per complex data symbol. For simplicity, we focus

on BPSK modulation in this chapter. The extension to higher order

modulation under the framework of bit-interleaved coded modulation

(BICM) [67] is straightforward.

The complex data symbols are transmitted by means of OFDM

signaling. OFDM transmits signal on a block-by-block basis. Each

OFDM block contains N subcarriers. User u maps each element of

zu to a subcarrier. We denote the mth OFDM block of user u by

a length-N vector Xu,m = [Xu,m,1Xu,m,2 · · ·Xu,m,N ]T , where the ith
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Figure 3.1: Block diagram of OFDM-IDMA.

element Xu,m,i, i ∈ {1, 2, · · · , N}, is the symbol transmitted over the

ith subcarrier in the mth OFDM block of user u.

For channel-parameter estimation, preambles are added to the

beginning of the frame, and pilots are carried on selected subcarriers

of every OFDM block. In our system, the first 2U OFDM blocks at

the beginning of the frame are preamble blocks. User u transmits

two identical training blocks over preamble block 2u− 1 and 2u, and

nulls its transmission over the other 2U − 2 preamble blocks. Thus,

the preambles of different users are mutually orthogonal in the time

domain. We stack the OFDM blocks of the overall frame of user u

into a length-MN vector Xu =
[
XT
u,1X

T
u,2 · · ·XT

u,M

]T , where M is

the number of OFDM blocks contained in one frame — the first 2U
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blocks are preambles and the next M − 2U blocks are data payload.

We employ the following arrangement for the data and pilot

subcarriers. The data subcarriers allocated to different users overlap

completely. The index set of the subcarriers allocated to user data

is denoted by ID. The pilot subcarriers allocated to different users

do not overlap. The index set of the subcarriers allocated to user u’s

pilots is denoted by IP,u with ID∩IP,u = ∅ for ∀u and IP,u∩IP,v = ∅ for
u 6= v. User u maps its complex data symbols zu to data subcarriers

according to: Xu,m,i = zu,l(m,i) for i ∈ ID, 2U + 1 ≤ m ≤ M

and 2U + 1 ≤ m ≤ M , where l (m, i) is the index of the complex

data symbol assigned to the ith subcarrier of the mth OFDM block.

User u fixes the “known” BPSK symbols on its pilot subcarriers to 1:

Xu,m,i = 1 for i ∈ IP,u, 2U + 1 ≤ m ≤ M and 2U + 1 ≤ m ≤ M .

On the other users’ subcarriers and the guard-band subcarriers, user

u transmits dummy null symbols:Xu,m,i = 0 for i /∈ ID ∪ IP,u,
2U + 1 ≤ m ≤M and 2U + 1 ≤ m ≤M .

We denote the overall function that includes channel encoding,

interleaving, modulation, subcarrier mapping, pilot insertion and

preamble addition for user u by Cu, and we write Xu = Cu (bu)

to express that the OFDM symbols in Xu are mapped from the

information bits bu.

The OFDM modulation is implemented by an N point IDFT

xu,m = FHXu,m, where xu,m = [xu,m,1xu,m,2 · · · xu,m,N ]T is the vector

of time-domain samples, and F is the N × N DFT matrix whose

(p, q)th entry is given by e−j2π(p−1)(q−(1+N/2))/N
/√

N , 1 ≤ p, q ≤ N ,

1 ≤ p, q ≤ N . We stack all the time-domain sample vectors of the
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whole frame into a length-MN vector xu =
[
xTu,1x

T
u,2 · · ·xTu,M

]T .
To overcome the delay spread of multipath channels, which causes

inter-block interferences, the time-domain samples of each OFDM

symbol is preceded by a cyclic prefix (CP). We denote the length of

the CP by Ncp. Therefore, each OFDM block includes Ns = Ncp +N

time-domain samples {xu,m,i}Ni=−Ncp+1, where xu,m,i = xu,m,i+N for

i ∈ {−Ncp + 1, · · · , 0}. The time-domain samples are converted to

signal waveform via a digital-to-analog converter (DAC). The U users

simultaneously transmit their signal waveforms on their respective

multipath channels. The base station receives their overlapped signal

waveforms.

3.2.2 Channel Model

We denote the overall discrete time-domain channel impulse response

of user u that captures the effects of both the physical channel and the

transmit/receive filters by h̃u = [hu,1hu,2 · · ·hu,Lu]
T , where hu,l is the

lth discrete tap of the multipath channel of user u, l ∈ {1, · · · , Lu},
and Lu is the maximum channel delay spread. We assume that the

channels remain static over the transmission time of one frame. This

assumption is valid in scenarios where users exhibit low mobility

[68]. We model the channel taps as mutually independent complex

Gaussian variables with zero mean and an exponentially decaying

power delay profile: E
{
|hu,l|2

}
= β exp (−(l − 1)/Lu), where β is a

normalization factor to ensure that the average channel energy is one.
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3.2.3 Receive Signal

The duration of a time-domain sample is denoted by Ts. The the

timing mismatch between user u and the base station is denoted by

τu. For convenience, we define the zero reference time as the first-

channel-path arrival time of user 1 (τ1 = 0), and assume without

loss of generality that the first-channel-path arrival times of all other

users are later than that of user 1 (τu > 0, u ∈ {2, · · · , U}). Following
[44, 69], we decompose τu into an integer part plus a fractional part

with respect to the sample duration Ts: τu = (µu + δu)Ts, where

µu = bτu/Tsc is the integer part and δu = τu/Ts−µu is the fractional

part. The fractional part can be incorporated into the channel impulse

response, thus we will not consider it going forward. We can avoid

IBI in the system by assuming that the system satisfies a loose time

synchronization requirement, specified as maxu {µu + Lu} ≤ Ncp.

As long as this requirement is satisfied, symbol misalignment in

the time domain does not affect the subcarrier-by-subcarrier channel

decoding in the frequency domain other than introducing relative

phase offsets between the signals of the users — in particular, there

is no symbol misalignment in the frequency domain and signals on

different subcarriers are isolated from one another. Note that there

is no need to explicitly estimate the timing parameters {τu}Uu=2. To

meet the loose time synchronization requirement, the base station

can broadcast a downlink beacon to prompt the users to transmit

together [15,44,69,70].

The presence of CFOs destroys the perfect orthogonalities among
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subcarriers. A main focus of this chapter is the study of the effect

of CFOs (i.e., the frequency asynchrony problem). After analog-to-

digital conversion and removal of the first Ncp CP samples (counting

from the first sample of the first channel path of user 1) of every

OFDM block, the received discrete time-domain samples at the base

station can be expressed as

rm =
U∑
u=1

ejθu,mΓ (εu) FHD (Xu,m) Fhu + nm (3.1)

for m = 1, 2, · · · ,M , where

• rm = [rm,1rm,2 · · · rm,N ]T is the vector of the N discrete samples

of the mth received OFDM block; nm = [nm,1nm,2 · · ·nm,N ]T is

the vector of the complex white Gaussian noises with zero-mean

and variance of σ2
n;

• εu is the CFO (normalized to subcarrier space) be-

tween the base station and user u; Γ (εu) =

diag
{[

1, ej2πεu/N , · · · , ej2πεu(N−1)/N
]}

is the diagonal matrix

that captures the time-domain effect of CFO on the mth block

of user u;

• θu,m = 2πεu(Ncp +mNs)/N is the accumulated phase drift

caused by CFO εu on the mth block of user u;

• D (Xu,m) = diag (Xu,m) is the diagonal matrix with transmitted

frequency-domain symbols Xu,m as its diagonal elements;

• hu
∆
=
[
0Tµu, h̃

T
u ,0

T
N−Lu−µu

]T
is the length-N vector that captures

both the discrete CIR and the time asynchrony of node u.
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For OFDM systems, channel decoding is performed in the

frequency domain. The frequency-domain sample vector of the mth

OFDM symbol, Rm = [Rm,1Rm,2 · · ·Rm,N ]T = Frm, is given by

Rm =
U∑
u=1

ejθu,m FΓ (εu) FH︸ ︷︷ ︸
∆
=Ξ(εu)

D (Xu,m) Fhu︸︷︷︸
∆
=Hu

+ Fnm︸︷︷︸
∆
=Nm

=
U∑
u=1

ejθu,mΞ (εu) D (Xu,m) Hu + Nm

(3.2)

where Hu
∆
= Fhu is the vector of the frequency channel responses

for user u, Nm
∆
= Fnm is the vector of frequency-domain noises,

Ξ (εu)
∆
= FΓ (εu) FH is the matrix that transforms the effect of CFO

εu in the time domain to ICI in the frequency domain. It can be

shown that Ξ (εu = 0) = I; Ξ (εu 6= 0) = λI + Π (εu 6= 0), where λ is

a common attenuation factor across all subcarriers, and Π (εu 6= 0) is

the ICI component [71].

We stack theM length-N time-domain (frequency-domain) sample

vectors into an overall length-MN sample vector r
∆
=
[
rT1 rT2 · · · rTM

]T
(R ∆

=
[
RT

1 RT
2 · · ·RT

M

]T ). The receiver then undertakes two tasks:

(i) estimation of channel parameters {εu,hu}Uu=1; (ii) decoding of

multiuser information bit sequences {bu}Uu=1 .

With reference to the signal model in (3.2), we can observe that

CFO causes two negative effects on the frequency-domain signal:

(i) the drifting of the signal phase over time; (ii) the inter-carrier

interferences (ICI) among different subcarriers.

For conventional point-to-point OFDM systems, the receiver can

first estimate the CFO and the channel gain from the preamble and
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then compensate for the CFO for the whole frame in the time domain.

That is, it attempts to remove the CFO in the signal using the

estimated CFO. After that, it performs standard channel decoding

in the frequency domain. Estimation error may leave behind an

uncompensated residual CFO. If the estimation is accurate enough,

the residual CFO will be small, and the remaining CFO-induced

ICI will also be small. We can treat the residual ICI as additional

noise that lowers the effective signal-to-noise ratio (SNR) slightly [60],

but standard channel encoding/decoding can still be employed to

ensure communication reliability [72]. This CFO compensation alone,

however, cannot overcome the drifting phase. Even a small residual

CFO can lead to large phase drifts accumulated over time. Standard

channel decoding will fail if we ignore the phase drifts. Therefore,

point-to-point OFDM systems typically employ pilot subcarriers in

the OFDM block to track signal phase so that it can be corrected. [68].

The above design principle, however, does not work for the

multiuser OFDM-IDMA system. In particular, there are multiple

CFOs in OFDM-IDMA, one for the signal of each user. First of all,

accurately estimating these CFOs and the channel gains is demanding.

More fundamentally, compensating for these CFOs simultaneously

in one shot is impossible even if the CFOs could be estimated

without errors (by contrast, for conventional point-to-point systems,

total CFO removal is possible given perfect CFO estimation). This

is because removing one of the CFOs in the received signal will

necessarily leave behind some remaining CFOs for the other CFOs,

unless the CFOs of different users were exactly the same to begin
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with. As a consequence, the CFO-induced ICI inevitably remains

in the frequency domain. Instead of channel-parameter estimation,

followed by CFO compensation, followed by channel decoding, that

are typical in many single-user systems, an iterative method is called

for in a multiuser system such as OFDM-IDMA. In what follows, we

propose a SAGE-and-ECM framework to address the joint problem

of multiuser channel-parameter estimation, CFO compensation and

channel decoding.

3.3 Multiuser Joint Channel-Parameter Estima-

tion, CFO Compensation and Channel Decod-

ing

To improve the overall performance of the OFDM-IDMA system, we

make use of the preambles, the pilots as well as the data payload of

the received signal to jointly estimate channel parameters and decode

information bits.

For OFDMA receivers, [44] developed an iterative solution that

uses SAGE and ECM. However, [44] did not consider the impact of

channel coding, the good performance of which necessitates a total

recast of the algorithmic framework. In this chapter, we explore

the proper algorithmic framework of SAGE and ECM for channel-

coded OFDM-IDMA systems. We argue that incorporating channel

decoding by simply extending the framework of [44] leads to subpar

performance.
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We formulate our target problem as a multidimensional estimation

problem in Section 3.3.1. Section 3.3.2 gives an overview of a

SAGE-based signal decomposition method. As in [44], we apply

SAGE and break down the overall problem into U sub-problems,

one for each user, by decomposing the received signal into U signal

components. Readers who are familiar with SAGE decomposition can

quickly go through Section 3.3.2 to familiarize themselves with our

notations. Section 3.3.3 zooms in to the ECM-based joint channel-

parameter estimation, CFO compensation and channel decoding

problem within the U sub-problems. The main contribution of our

work is contained in Section 3.3.3. In particular, a key issue is how to

incorporate message passing algorithm for channel decoding into the

joint framework. In that regard, two message passing strategies are

possible for channel decoding: sum-product and min-sum message

passing [17, 62]. In our framework, the ECM algorithm gives the

sum-product channel decoding. We show that the integration of

sum-product channel decoding with channel-parameter estimation

leads to better system performance than min-sum channel decoding.

However, for compatibility with the channel-parameter estimation

part, the sum-product channel decoding cannot be applied directly:

a transformation of the soft information from the time domain to the

frequency domain is needed. We develop a new technique called “soft

IDFT” to realize an overall compatible algorithmic framework. Exact

computation of soft IDFT, however, is complex. Here, we obtain an

effective approximate solution by Gaussian message passing.
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3.3.1 Problem Statement

As expressed by the signal model in (3.1), the only unknown channel

parameters are the CFOs {εu}Uu=1 and the channel gains {hu}Uu=1. In

(3.1), the phase drift θu,m = 2πεu(Ncp +mNs)/N is not independent

and is a function of CFO εu. However, if we only estimate εu and

derive the estimated phase drift θu,m based on the estimated εu,

even a tiny estimation error in εu will accumulate to large estimation

errors in θu,m for later blocks m. Furthermore, the expression θu,m =

2πεu(Ncp +mNs)/N assumes that the signals of different users do

not incur different phase noises and the phase θu,m is strictly due to

that of the CFO. In practice, the phase drift is not due to CFO alone

but also due to phase noise that behaves like a random walk [73].

Thus, in this chapter, for a robust system, we do not make use of the

expression θu,m = 2πεu(Ncp +mNs)/N when estimating θu,m: we

assume that {θu,m} are independent for different OFDM blocks and

different users, and estimate θu,m of each block independently. The

advantage of this scheme is that phase errors due to estimated CFO

errors are not cumulative over blocks and random phase noise can be

taken into account.

With the above, the overall unknown variables in the system are{
εu, {θu,m}Mm=1 ,hu,Xu

}U
u=1

.

According to the maximum likelihood (ML) principle, we can

express the objective of the joint channel-parameter estimation and
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channel decoding problem as({
ε̂u,
{
θ̂u,m

}M
m=1

, ĥu, X̂u

}U
u=1

)

= arg max
{εu,{θu,m}Mm=1,hu,X∈Cu}

U

u=1

{
log p

(
r

∣∣∣∣{εu, {θu,m}Mm=1 ,hu,Xu

}U
u=1

)}
= arg min

{εu,{θu,m}Mm=1,hu,X∈Cu}
U

u=1

{
M∑
m=1

∥∥∥∥rm − U∑
u=1

ejθu,mΓ (εu) FHD (Xu,m) Fhu

∥∥∥∥2
}

(3.3)

With regard to (3.3), we emphasize that since the sequence of transmit

symbols is generated from the sequence of the original information

bits via a one-to-one mapping, i.e., {Xu = Cu (bu)}Uu=1, decoding the

transmit symbols {Xu}Uu=1 is equivalent to decoding the information

bits {bu}Uu=1. Directly solving the ML problem (3.3) is intractable

because the exhaustive search over the multi-dimensional space of{
εu, {θu,m}Mm=1 ,hu,Xu

}U
u=1

is prohibitively complex.

3.3.2 Preliminary for the Signal Decomposition Using

SAGE

In [74], the authors solved the problem of multiple parameter

estimation (but not channel decoding) using a iterative method. Later

on, the method of [74] evolved into the SAGE algorithm [26]. The key

idea of [74] is to decompose the received overlapping signal into several

signal components. Subsequently, [44] applied the method of [74] to
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OFDMA systems. Since the signal decomposition is performed in

the time domain, where the user signals overlap completely (for both

OFDM-IDMA and OFDMA), we can directly apply this SAGE-based

signal decomposition to our OFDM-IDMA system. This subsection

extends the SAGE signal decomposition in [74] to incorporate channel

decoding.

First, the overall estimation problem (3.3) is decomposed into U

sub-problems [44,74]. For themth OFDM block, the signal component

of user u is defined to be

ru,m
∆
= ejθu,mΓ (εu) FHD (Xu,m) Fhu + nu,m (3.4)

where {nu,m}Uu=1 are obtained by arbitrarily decomposing the total

noise vector nm into U circularly symmetric and statistically

independent noise component vectors that satisfy nm =
∑U

u=1 nu,m

[74]. The received signal can then be written as

rm =
∑U

u=1
ru,m (3.5)

where rm is decomposed into U components {ru,m}Uu=1, with each

being exclusively related to one user. As with the stacking of the

overall received signals r =
[
rT1 rT2 · · · rTM

]T in the whole frame, we can

also stack the M signal component vectors of user u into an overall

vector ru
∆
=
[
rTu,1r

T
u,2 · · · rTu,M

]T , u ∈ {1, 2, · · · , U}. In the terminology

of SAGE, r is the observed data and {ru}Uu=1 is the complete data.

SAGE tries to find the ML estimates for {εu,
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{θu,m}Mm=1 ,hu,Xu

}U
u=1

iteratively.2 Let
{
ε̂

(k)
u ,
{
θ̂

(k)
u,m

}M
m=1

, ĥ
(k)
u , X̂

(k)
u

}U
u=1

be the updated estimates after the kth SAGE iteration, where

k = 1, 2, · · ·K and
{
ε̂

(0)
u ,
{
θ̂

(0)
u,m

}M
m=1

, ĥ
(0)
u , X̂

(0)
u

}U
u=1

are the initial

estimates. The initial estimates for the CFOs and the channel gains

are obtained from the orthogonal preambles; the initial estimates for

the phase drifts are set to zeros; the initial estimates for the transmit

symbols are set to ±1 randomly. Each SAGE iteration consists of U

cycles; the variables of user u are updated in the uth cycle given that

the variables of all other users are fixed to their last estimates.

With the initial estimates
{
ε̂

(0)
u ,
{
θ̂

(0)
u,m

}M
m=1

, ĥ
(0)
u , X̂

(0)
u

}U
u=1

, the

SAGE algorithm first computes the initial estimates for the individual

user signal components:

r̂(0)
u,m = ejθ̂

(0)
u,mΓ

(
ε̂(0)
u

)
FHD

(
X̂(0)
u

)
Fĥ(0)

u (3.6)

where m = 1, 2, · · · ,M and u ∈ {1, 2, · · · , U}. The uth cycle of the

kth SAGE iteration includes an E-step and an M-step [74] as follows:

E-step of SAGE:

2This means that the setup of SAGE here treats all variables {εu, {θu,m}Mm=1 ,hu,Xu

}U
u=1

,

including {Xu}Uu=1 as the parameters; there is no hidden data in the setup [26,74].
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Compute the tentative estimate for the signal component of user u:

r̂(k)
u,m = rm −

u−1∑
v=1

r̂(k)
v,m −

U∑
v=u+1

r̂(k−1)
v,m (3.7)

where m = 1, 2, · · · ,M , and
∑u

v = 0 if u < v. Note that this

computation is based on the signal decomposition in (3.5). We

stack the estimates for all the OFDM blocks into an overall vector

r̂
(k)
u

∆
=
[
r̂

(k)T
u,1 r̂

(k)T
u,2 · · · r̂

(k)T
u,M

]T
.

M-step of SAGE:

Update the estimates for the variables of user u:(
ε̂

(k)
u ,
{
θ̂

(k)
u,m

}M
m=1

, ĥ
(k)
u , X̂

(k)
u

)
= arg max

(εu,{θu,m}Mm=1,hu,Xu∈Cu)

{
log p

(
r̂

(k)
u

∣∣∣εu, {θu,m}Mm=1 ,hu,Xu

)}
= arg min

(εu,{θu,m}Mm=1,hu,Xu∈Cu)

{
M∑
m=1

∥∥∥r̂(k)
m,u − ejθu,mΓ (εu) FHD (Xu,m) Fhu

∥∥∥2
}

(3.8)

After the M-step, we then reconstruct the estimate for the signal

component of user u using the updated variable estimates

r̂(0)
u,m = ejθ̂

(k)
u,mΓ

(
ε̂(k)
u

)
FHD

(
X̂(k)
u

)
Fĥ(k)

u (3.9)

for m = 1, 2, · · · ,M . This completes the uth cycle of the kth SAGE

iteration; we then proceed to the cycle of the next user.



CHAPTER 3. FREQUENCY-ASYNCHRONOUS JOINT CHANNEL-PARAMETER ESTIMATION, CFO
COMPENSATION AND CHANNEL DECODING IN MUD SYSTEMS 89

After the variables of all users are updated to{
ε̂

(k)
u ,
{
θ̂

(k)
u,m

}M
m=1

, ĥ
(k)
u , X̂

(k)
u

}U
u=1

, we then proceed to the next

SAGE iteration. When the number of iteration k reaches a preset

maximum limit K, we terminate the SAGE algorithm after obtain-

ing the final variable estimates
{
ε̂

(K)
u ,

{
θ̂

(K)
u,m

}M
m=1

, ĥ
(K)
u , X̂

(K)
u

}U
u=1

.

According to the theory of SAGE [26], it is expected that the final

variable estimates will converge to the global optimal as required by

the ML estimation in (3.3).

As seen above, SAGE decomposes the multiuser problem of joint

channel-parameter estimation and channel decoding in (3.3) into

U single-user problems in (3.8). The complexity of the multiuser

problem is reduced substantially. However, the computation involved

in the single-user sub-problems as expressed in (3.8) is still non-

trivial. For each user, we need to solve a multi-dimensional problem

associated with simultaneously estimating
{
εu, {θu,m}Mm=1 ,hu,Xu

}
.

This is of high complexity, particularly if the data symbols {Xu}Uu=1

are channel-coded symbols and we want to exploit the correlations

among the symbols induced by channel coding to optimize our

estimation.

A simplified approach to solve (3.8) is to estimate the variables in{
εu, {θu,m}Mm=1 ,hu,Xu

}
one at a time sequentially and iteratively.

When one variable is under estimation, all other variables are

fixed to their estimates from the last iteration. This approach

is straightforward with an important caveat: it does not use the

information obtained from channel decoding in an optimal way. We
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will further elaborate on this simplified approach in Section 3.3.4

and will treat it as a benchmark for evaluating our approach to be

presented in Section 3.3.3. To make better use of the information from

channel decoding, Section 3.3.3 will construct a more comprehensive

approach to our problem using the ECM algorithm.

3.3.3 Joint Channel-Parameter Estimation and Channel

Decoding Using ECM

ECM is a variant of the expectation maximization (EM) algorithm, a

general iterative algorithm for finding the ML estimates of parameters

in a statistical model with hidden data [24]. EM updates all

parameters in the model simultaneously at each iteration. This

requires EM to operate in a multi-dimensional space. To reduce

complexity, ECM updates the parameters sequentially. At each stage

of the update sequence, ECM updates just one parameter, fixing the

other parameters to their last estimates [61].

Within the framework of ECM, we could assign the role

of hidden data and the role of parameters to the variables{
εu, {θu,m}Mm=1 ,hu,Xu

}
in different ways, each yielding a different

implementation. In that sense, it is more general than (3.8), in which

all variables are treated as parameters.

In this chapter and the rest of this section, we focus on the assign-

ment that treats Xu as the hidden data, and
{
εu, {θu,m}Mm=1 ,hu

}
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as the parameters.3 With this assignment, we can incorporate sum-

product channel decoding into the joint framework. Now, ECM seeks

to solve the following maximization problem:(
ε̂

(k)
u ,
{
θ̂

(k)
u,m

}M
m=1

, ĥ
(k)
u

)
= arg max

(εu,{θu,m}Mm=1,hu)
log p

(
r̂

(k)
u

∣∣∣εu, {θu,m}Mm=1 ,hu

)
= arg max

(εu,{θu,m}Mm=1,hu){
log
∑
Xu

p
(
r̂

(k)
u ,Xu

∣∣∣εu, {θu,m}Mm=1 ,hu, Cu

)}
(3.10)

Note that problem (3.10) is different from problem (3.8) , where

all variables
{
εu, {θu,m}Mm=1 ,hu,Xu

}
(including Xu) are treated as

parameters to be estimated.

After ECM finds
{
ε̂

(k)
u ,
{
θ̂

(k)
u,m

}M
m=1

, ĥ
(k)
u

}
in (3.10), we then

set
{
εu, {θu,m}Mm=1 ,hu

}
=

{
ε̂

(k)
u ,
{
θ̂

(k)
u,m

}M
m=1

, ĥ
(k)
u

}
in the signal

model (3.2) and then perform sum-product channel decoding to

find the a posteriori probabilities (APPs) of the coded symbol

p

(
Xu,m,i

∣∣∣∣r̂(k)
u , ε̂

(k)
u ,
{
θ̂

(k)
u,m

}M
m=1

, ĥ
(k)
u , Cu

)
for all m and i. For

example, if the convolution code is used, the corresponding channel

decoding algorithm is the BCJR algorithm [75]. The estimates for the

3The assignment that treats hu as the hidden data and
{
εu, {θu,m}Mm=1 ,Xu

}
as the

parameters is discussed in Section 3.3.5.
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symbols in Xu are obtained by making hard decisions based on the

symbol-wise APPs:

X̂
(k)
u,m,i

= arg max
Xu,m,i

p

(
Xu,m,i

∣∣∣∣r̂(k)
u , ε̂

(k)
u ,
{
θ̂

(k)
u,m

}M
m=1

, ĥ
(k)
u , Cu

)
We stack all the symbol estimates X̂(k)

u,m,i for all m and i into a vector

X̂
(k)
u , and X̂

(k)
u is treated as the estimate for Xu.

Finally, the parameter estimates
{
ε̂

(k)
u ,
{
θ̂

(k)
u,m

}M
m=1

, ĥ
(k)
u

}
by ECM

together with the hidden data estimate X̂
(k)
u by channel decoding are

treated as the overall solution for
{
ε̂

(k)
u ,
{
θ̂

(k)
u,m

}M
m=1

, ĥ
(k)
u , X̂

(k)
u

}
. We

will see that the ECM and channel decoding can be integrated into one

framework to assist each other for finding
{
ε̂

(k)
u ,
{
θ̂

(k)
u,m

}M
m=1

, ĥ
(k)
u

}
and X̂

(k)
u . Here, we emphasize that X̂

(k)
u are the decoded soft

information (APPs). We will show in the following how to use the

APPs to refine the estimates of the parameters through the ECM

iterations.

Within the kth iteration of SAGE, the ECM algorithm for solving

each sub-problem in (3.8) consists of Z iterations. We collect the

parameters into a set Ωu
∆
=
{
εu, {θu,m}Mm=1 ,hu

}
, and denote the

updated parameter estimates after the zth ECM iteration within

the kth SAGE iteration by Ω̂
(k,z)
u =

{
ε̂

(k,z)
u ,

{
θ̂

(k,z)
u,m

}M
m=1

, ĥ
(k,z)
u

}
,

z = 1, 2, · · · , Z. The zth iteration of ECM within the kth SAGE

iteration consists of an E-step and an M-step, as follows:

E-step of ECM:
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Given the parameter estimates from the previous ECM iteration

Ω̂
(k,z−1)
u , the E-step of ECM aims to compute the conditional

expectation defined by [61].

Q
(

Ωu

∣∣∣Ω̂(k,z−1)
u

)
=
∑
Xu

p
(
Xu

∣∣∣r̂(k)
u , Ω̂

(k,z−1)
u , Cu

)
log p

(
r̂

(k)
u |Ωu,Xu

) (3.11)

This conditional expectation is called the Q function in the EM

literature. We remark that the decoded soft information of the trans-

mitted symbols, if obtainable, is used to assist the estimate of the

parameters. With this setup, the data symbols serve as the hidden

data in the ECM framework. Since the expectation (the summation)

in (3.11) is taken over the data symbols in the frequency domain, we

might be tempted compute the above Q function in the frequency

domain. However, we will see that this does not work. With a new

approach, we can compute the Q function in the time domain.

How to decompose Q function in time domain

A brute-force attack that attempts to compute the Q function in

(3.11) directly will meet the following obstacles: (i) the ensemble

of codewords Xu to be summed over in (3.11) is very large (in

fact, exponentially large in terms of the number of symbols in Xu);

(ii) barring exhaustive enumeration, there is no known decoding

algorithm that can give p
(
Xu

∣∣∣r̂(k)
u , Ω̂

(k,z−1)
u , Cu

)
for all these

codewords; (iii) there is no concise expression for p
(
r̂

(k)
u |Ωu,Xu

)
due

to the coupled terms brought about by the ICI effect. Ref. [44] did

not take these obstacles into account, since it investigated uncoded
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systems. In order to obtain a practical solution for (3.11), in this

chapter, we transform the computation process to the time domain,

where the Q function can be decomposed into many sample-wise

factors.

We define the frequency-domain compound symbol of the

subcarrier symbol and the channel gain as

Yu,m,i
∆
= Xu,m,iHu,i

Given the channel gainHu,i, Yu,m,i ∈ {±Hu,i} when BPSK is adopted.

The vector of frequency-domain compound symbols for the mth

OFDM block is

Yu,m
∆
= [Yu,m,1Yu,m,2 · · ·Yu,m,N ]T = diag {Xu,m}Hu;

the corresponding vector of time-domain compound samples is

yu,m
∆
= [yu,m,1yu,m,2 · · · yu,m,N ]T = FHYu,m; and the vector

of frequency-domain compound symbols (time-domain compound

samples) for the whole frame is Yu
∆
=
[
YT
u,1Y

T
u,2 · · ·YT

u,M

]T (yu
∆
=[

yTu,1y
T
u,2 · · ·yTu,M

]T ). Bear in mind that given the channel gains Hu,

the knowledge of the compound symbols Yu is equivalent to the

knowledge of the transmit symbols Xu. We can therefore rewrite

the Q function in (3.11) as

Q
(

Ωu

∣∣∣Ω̂(k,z−1)
u

)
=
∑
Yu

{
p
(
Yu

∣∣∣r̂(k)
u , Ω̂

(k,z−1)
u , Cu

)
log p

(
r̂

(k)
u |Ωu,Yu

)}
=
∑
yu

{
p
(
yu

∣∣∣r̂(k)
u , Ω̂

(k,z−1)
u , Cu

)
log p

(
r̂

(k)
u |Ωu,yu

)} (3.12)

where the second equality is due to that the mapping between Yu

and yu is a one-to-one correspondence.
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Next, we decompose the probability functions in (3.12) to compute

the time-domain Q function. We denote the ith element of r̂
(k)
u,m (the

estimate for the ith sample of themth OFDM block of user u) by r̂(k)
u,m,i.

Since CFO only introduces a linear phase drift in the time-domain

signals (and not ICI), we can immediately decouple the components

r̂
(k)
u,m,i in r̂

(k)
u and decompose p

(
r̂

(k)
u |Ωu,yu

)
as

p
(
r̂(k)
u |Ωu,yu

)
=

M∏
m=1

N∏
i=1

p
(
r̂

(k)
u,m,i |Ωu, yu,m,i

)
(3.13)

where the sample-wise factor is given by

p
(
r̂

(k)
u,m,i |Ωu, yu,m,i

)
= CN

(
r̂

(k)
u,m,i : ejθu,mej2πεu(i−1)/Nyu,m,i, σ

2
n

) (3.14)

for all m and i. Substituting (3.13) into (3.12), we obtain

Q
(

Ωu

∣∣∣Ω̂(k,z−1)
u

)
=

M∑
m=1

N∑
i=1

∑
yu,m,i

log p
(
r̂

(k)
u,m,i |Ωu, yu,m,i

)
×

∑
{yu:∼yu,m,i}

p
(
yu

∣∣∣r̂(k)
u , Ω̂(k,z−1)

u , Cu

)
︸ ︷︷ ︸

∆
=p(yu,m,i|r̂(k)

u ,Ω̂
(k,z−1)
u ,Cu )

(3.15)

where {yu :∼ yu,m,i} is the set that contains the all elements in vector

yu except yu,m,i, and p
(
yu,m,i

∣∣∣r̂(k)
u , Ω̂

(k,z−1)
u , Cu

)
is the sample-wise

APP. We define the sample-wise Q function as

Qm,i

(
Ωu

∣∣∣Ω̂(k,z−1)
u

)
∆
=∑

yu,m,i

log p
(
r̂

(k)
u,m,i |Ωu, yu,m,i

)
p
(
yu,m,i

∣∣∣r̂(k)
u , Ω̂

(k,z−1)
u , Cu

) (3.16)

Finally, the overall Q function is the sum of sample-wise Q functions:

Q
(

Ωu

∣∣∣Ω̂(k,z−1)
u

)
=

M∑
m=1

N∑
i=1

Qm,i

(
Ωu

∣∣∣Ω̂(k,z−1)
u

)
(3.17)
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As can be seen from the above, unlike the frequency-domain Q

function, the time-domain Q function can be computed on a sample-

by-sample basis. This greatly reduces the computational complexity.

How to transform APPs from frequency domain to time domain

The next question is how to obtain the APPs of the

time-domain samples
{
p
(
yu,m,i

∣∣∣r̂(k)
u , Ω̂

(k,z−1)
u , Cu

)}
in (3.16).

Now, the symbols are channel-coded and transmitted in the

frequency domain; after DFT the receiver performs chan-

nel decoding to find the APPs of the transmit symbols{
p
(
Xu,m,i

∣∣∣r̂(k)
u , Ω̂

(k,z−1)
u , Cu

)}
. Given the estimated channel gains

Ĥ
(k,z−1)
u

∆
=
[
Ĥ

(k,z−1)
u,1 Ĥ

(k,z−1)
u,2 · · · Ĥ(k,z−1)

u,N

]T
=Fĥ

(k,z−1)
u , this is equiva-

lent to finding the APPs of the frequency-domain compound symbols,

i.e., p
(
Xu,m,i

∣∣∣r̂(k)
u , Ω̂

(k,z−1)
u , Cu

)
= p

(
Yu,m,i

∣∣∣r̂(k)
u , Ω̂

(k,z−1)
u , Cu

)
where

Yu,m,i = Xu,m,iĤ
(k,z−1)
u,i for all m and i. The algorithm to achieve this

decoding objective is the general sum-product algorithm [17,62].

There is no known technique, however, for decoding the time-

domain samples {yu,m,i}. In this chapter, we introduce a new

concept called “soft IDFT” to transform the APPs obtained by

the sum-product decoding algorithm from the frequency domain

to the time domain. At first sight, we might be tempted to

obtain p
(
Yu,m

∣∣∣r̂(k)
u , Ω̂

(k,z−1)
u , Cu

)
from p

(
Yu,m

∣∣∣r̂(k)
u , Ω̂

(k,z−1)
u , Cu

)
by considering the linear transformation between yu,m and Yu,m, i.e.,

, yu,m = FHYu,m and then deriving the APP of sample yu,m,i by

marginalizing out all other samples over p
(
yu,m

∣∣∣r̂(k)
u , Ω̂

(k,z−1)
u , Cu

)
.
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There are two obstacles to this approach. First, it is hard to obtain the

APP of the vector of symbols p
(
Yu,m

∣∣∣r̂(k)
u , Ω̂

(k,z−1)
u , Cu

)
(the sum-

product algorithm, for example, does not give this APP). Second, the

aforementioned marginalization will introduce intractable complexity

that is in the exponential order of the DFT size N . Here, we employ

a Gaussian message passing [18] approach to solve the soft IDFT

problem approximately.

We approximate the APPs of the frequency-domain symbols

as independent Gaussian distributions. The independence can be

achieved by the operation of interleaving in the transmitter. The

Gaussianity is an assumption made to simplify computation.4 The

approximate APP of Yu,m,i is given by

p̃
(
Yu,m,i

∣∣∣r̂(k)
u , Ω̂

(k,z−1)
u , Cu

)
= CN

(
Yu,m,i : mYu,m,i, σ

2
Yu,m,i

) (3.18)

with mean and variance

mYu,m,i =
∑

Yu,m,i
Yu,m,ip

(
Yu,m,i

∣∣∣r̂(k)
u , Ω̂(k,z−1)

u , Cu

)

4Without the Gaussian assumption, we can solve the soft IDFT problem on a factor graph
using the general message passing algorithm. We first construct the factor graph by considering

the butterfly graph of FFT. With
{
p
(
Yu,m,i

∣∣∣r̂(k)
u , Ω̂

(k,z−1)
u , Cu

)}N
i=1

as the input messages, we

use sum-product rule to compute the output messages
{
p
(
yu,m,i

∣∣∣r̂(k)
u , Ω̂

(k,z−1)
u , C

)}N
i=1

exactly.
However, the number of messages on the graph increases in an exponential order as we progress
from the input to the output of the IDFT factor graph (i.e., unlike the binary Yu,m,i, yu,m,i has
2N possible values.). We will treat this problem in our future study.
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σ2
Yu,m,i

=∑
Yu,m,i

∥∥Yu,m,i −mYu,m,i

∥∥2
p
(
Yu,m,i

∣∣∣r̂(k)
u , Ω̂

(k,z−1)
u , Cu

)
which are computed using the APPs delivered from the sum-product

channel decoding. Then, with the independence assumption, we can

write the APP of Yu,m as

p
(
Yu,m

∣∣∣r̂(k)
u , Ω̂

(k,z−1)
u , Cu

)
=

N∏
i=1

p̃
(
Yu,m,i

∣∣∣r̂(k)
u , Ω̂

(k,z−1)
u , Cu

)
= CN

(
Yu,m : mYu,m

,CYu,m

) (3.19)

with mean vector and covariance matrix

mYu,m

∆
=
[
mYu,m,1mYu,m,2 · · ·mYu,m,N

]T
CYu,m

= diag
([
σ2
Yu,m,1

σ2
Yu,m,2

· · ·σ2
Yu,m,N

])
Finally, since yu,m = FHYu,m and FH is unitary and Yu,m is assumed

to be Gaussian distributed, the APP of yu,m is given by

p
(
yu,m

∣∣∣r̂(k)
u , Ω̂(k,z−1)

u , Cu

)
= CN

(
yu,m : myu,m,Cyu,m

)
(3.20)

with mean vector and covariance matrix

myu,m = FHmYu,m

Cyu,m = FHCYu,m
F.

A nice feature of Gaussian distributions is that every marginal

distribution of a joint Gaussian distribution is itself a Gaussian

distribution [76], and the APP of yu,m,i is immediately given by

p
(
yu,m,i

∣∣∣r̂(k)
u , Ω̂(k,z−1)

u , C
)

= CN
(
yu,m,i : myu,m,i, σ

2
yu,m,i

)
(3.21)
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with mean and variance

myu,m,i =
[
myu,m

]
i

= 1√
N

N∑
j=1

ej2π(i−1)(j−1)/NmYu,m,j

σ2
yu,m,i

=
[
Cyu,m

]
i,i
.

We will see later that when we use the Gaussian form of the APP

shown in (3.21) for computing the Q function, only the mean myu,m,i

has impact on the actual form of the Q function and the variance

σ2
yu,m,i

can be dropped. Since the mean of yu,m,i is easy to compute

because it is a linear combination of the means of {Yu,m,i}Ni=1, the

complexity of soft IDFT is reduced to the linear order of N by

Gaussian message passing.

How to obtain frequency-domain APPs

We have considered how to obtain the time-domain sample-wise

APPs from the frequency-domain symbol-wise APPs, given that the

symbol-wise APPs
{
p
(
Xu,m,i (Yu,m,i)

∣∣∣r̂(k)
u , Ω̂

(k,z−1)
u , Cu

)}
are already

computed by the sum-product channel decoding algorithm in the

frequency domain.

To compute the symbol-wise APPs in the frequency domain, we

need the estimates for the frequency-domain signals of user u. We

have already computed the estimates for the time-domain signals{
r̂

(k)
u,m

}
as in (3.7). Before transforming

{
r̂

(k)
u,m

}
into the frequency

domain, we compensate for the CFO using the CFO estimate ε̂(k,z−1)
u

from the last iteration. Then, we perform DFT on the compensated

estimates for the time-domain signals

R̂(k)
u,m = F

(
Γ
(
−ε̂(k,z−1)

u

)
r̂(k)
u,m

)
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for m = 1, 2, · · · ,M . After that, we can obtain the evidence

information from
{

R̂
(k)
u,m

}
p
(
R̂

(k)
u,m,i

∣∣∣Xu,m,i, Ω̂
(k,z−1)
u

)
= CN

(
R̂

(k)
u,m,i : ejθ̂

(k,z−1)
u,m Ĥ

(k,z−1)
u,i Xu,m,i, σ

2
IN

) (3.22)

where i = 1, 2, · · · , N , m = 1, 2, · · · ,M , R̂(k)
u,m,i is the ith element

of R̂
(k)
u,m, and σ2

IN is the variance of the residual interference plus

noise. The residual interference remaining in
{

R̂
(k)
u,m

}
includes the

residual inter-carrier interference and multiple user interference. The

variance σ2
IN is an unknown variable whose value is changing over the

iterations. Before channel decoding, we employ a simple method for

estimating σ2
IN in each iteration

σ̂2
IN =

1

NM

M∑
m=1

N∑
i=1

(∥∥∥R̂(k)
u,m,i

∥∥∥2

−
∥∥∥Ĥ(k,z−1)

u,i

∥∥∥2
)

(3.23)

The estimate σ̂2
IN is used to replace σ2

IN in (3.22) when we compute

the evidence information.

The evidence information computed above is used to initialize the

standard sum-product algorithm for channel decoding. We can derive

the sum-product channel decoding algorithm as a message passing

algorithm on the factor graph that models the encoding constraint

Cu. Readers familiar with the sum-product algorithm and factor

graphs [17] can readily complete this task; we omit the details here.

Ultimate Form for Q Function

Finally, using the Gaussian expression of the sample-wise APP
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shown in (3.21), we can simplify the sample-wise Q function (3.16)

into a compact form (the derivation is given in Appendix B):

Qm,i

(
Ωu

∣∣∣Ω̂(k,z−1)
u

)
∝ −

∥∥∥r̂(k)
u,m,i − ejθu,mej2πεu(i−1)/Nmyu,m,i

∥∥∥2 (3.24)

From (3.24), we note that, due to the Gaussian expression for the

APP of yu,m,i in (3.21), only the mean of the time-domain sample

yu,m,i appears in the sample-wise Q function. This greatly reduces

the complexities involved in the computation of the Q function. With

(3.24), the overall Q function can now be written as

Q
(

Ωu

∣∣∣Ω̂(k,z−1)
u

)
∝ −

M∑
m=1

N∑
i=1

∥∥∥r̂(k)
u,m,i − ejθu,mej2πεu(i−1)/Nmyu,m,i

∥∥∥2

∝ −
M∑
m=1

∥∥∥r̂(k)
u,m − ejθu,mΓ (εu) myu,m

∥∥∥2

.

(3.25)

We denote the mean vector of the symbol vector Xu,m by mXu,m
=[

mXu,m,1
mXu,m,2

· · ·mXu,m,N

]T , whose ith element is computed using the

symbol-wise APP

mXu,m,i
=
∑
Xu,m,i

Xu,m,ip
(
Xu,m,i

∣∣∣r̂(k)
u , Ω̂(k,z−1)

u , Cu

)
(3.26)

With the above notations, we have the following relationship:

myu,m = FHmYu,m
= FHD

(
mXu,m

)
Fhu (3.27)

Substituting (3.27) into (3.25) gives the ultimate form of the Q

function:

Q
(

Ωu

∣∣∣Ω̂(k,z−1)
u

)
∝ −

M∑
m=1

∥∥∥r̂(k)
u,m − ejθu,mΓ (εu) FHD

(
mXu,m

)
Fhu

∥∥∥2 (3.28)
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So far, we have finished the E-step of ECM. We next turn to the

M-step of ECM.

M-step of ECM:

The M-step of ECM updates the new parameter estimates

Ω̂
(k,z)
u =

{
ε̂

(k,z)
u ,

{
θ̂

(k,z)
u,m

}M
m=1

, ĥ
(k,z)
u

}
by maximizing the Q func-

tion in (3.28). ECM breaks the maximization procedure of the zth

iteration into three stages, where the tth stage updates the parameters

from Ω̂
(k,z−1+ t−1

3 )
u to Ω̂

(k,z−1+ t
3)

u , t = 1, 2, 3, as follows:

The First Stage — CFO Estimation

The first stage updates the CFO with the phase drifts and

the channel gains fixed to their last estimates. The new set

of parameter estimates after the first stage is Ω̂
(k,z−1+ 1

3)
u ={

ε̂
(k,z)
u ,

{
θ̂

(k,z−1)
u,m

}M
m=1

, ĥ
(k,z−1)
u

}
. The new CFO estimate ε̂

(k,z)
u is

obtained by

ε̂
(k,z)
u = arg max

εu

{
−

M∑
m=1

∥∥∥r̂(k)
u,m − ejθ̂

(k,z−1)
u,m Γ (εu) FHD

(
mXu,m

)
Fĥ

(k,z−1)
u

∥∥∥2
} (3.29)

where the objective function is the result of replacing the variables

{θu,m}Mm=1 and hu in the Q function (3.28) with the fixed values{
θ̂

(k,z−1)
u,m

}M
m=1

and ĥ
(k,z−1)
u .

The exhaustive search method for solving (3.29) is computationally

complex, since εu is a continuous variable. To obtain a practical

solution for (3.29), we could approximate Γ (εu) in (3.29) using its
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Taylor expansion around ε̂(k,z−1)
u with terms above the second order

truncated. We then differentiate the resulting objective function of

(3.29) with respect to εu and set the derivative to zero. Solving the

equation yields a closed-form solution for (3.29):

ε̂
(k,z)
u = ε̂

(k,z−1)
u

+
Re

{
M∑
m=1

ejθ̂
(k,z−1)
u,m r̂

(k)H
u,m Γ′(ε̂(k,z−1)

u )FHD(mXu,m)Fĥ
(k,z−1)
u

}
Re

{
−

M∑
m=1

ejθ̂
(k,z−1)
u,m r̂

(k)H
u,m Γ′′(ε̂(k,z−1)

u )FHD(mXu,m)Fĥ
(k,z−1)
u

} (3.30)

where
Γ′
(
ε̂

(k,z−1)
u

)
= (j2π/N) ΨΓ

(
ε̂

(k,z−1)
u

)
Γ′′
(
ε̂

(k,z−1)
u

)
= −(2π/N)2Ψ2Γ

(
ε̂

(k,z−1)
u

)
with Ψ = diag {[0, 1, 2, · · · , N − 1]}, are the first and second

derivates of Γ (εu) at the point ε̂(k,z−1)
u . The detailed derivation of

(3.30) can be found in Appendix C. With the updated CFO estimate,

we go to the second stage of the M-step.

The Second Stage — Phase Tracking

The second stage updates the phase drifts with the CFO and

the channel gains fixed to their last estimates. The new set

of parameter estimates after the second stage is Ω̂
(k,z−1+ 2

3)
u ={

ε̂
(k,z)
u ,

{
θ̂

(k,z)
u,m

}M
m=1

, ĥ
(k,z−1)
u

}
, where the new phase estimates are

given by{
θ̂

(k,z)
u,m

}M
m=1

= arg max
{θu,m}Mm=1

−
M∑
m=1

{
∥∥∥r̂(k)

u,m − ejθu,mΓ
(
ε̂

(k,z)
u

)
FHD

(
mXu,m

)
Fĥ

(k,z−1)
u

∥∥∥2
} (3.31)
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The objective function in (3.31) is obtained from the Q function in

(3.28) εu = ε̂
(k,z)
u with hu = ĥ

(k,z−1)
u .

Since we assume that the phase drifts {θu,m}Mm=1 are independent

for different blocks, we can decouple the problem (3.31) into M sub-

problems

θ̂
(k,z)
u,m = arg max

θu,m

{
−
∥∥∥r̂(k)

u,m − ejθu,mΓ
(
ε̂

(k,z)
u

)
FHD

(
mXu,m

)
Fĥ

(k,z−1)
u

∥∥∥2
} (3.32)

for m = 1, 2, · · · ,M , one for each block. Directly solving (3.32) gives

the phase estimate for the mth block:

θ̂(k,z)
u,m = ∠

[
Γ
(
ε̂(k,z)
u

)
FHD

(
mXu,m

)
Fĥ(k,z−1)

u

]H
r̂(k)
u,m (3.33)

With the new phase estimates
{
θ̂

(k,z)
u,m

}
, we go to the third stage.

The Third Stage — Channel Estimation

The third state updates the channel gains with the CFO and the

phase drifts fixed to their last estimates. The new set of parameter

estimates after the third stage is Ω̂
(k,z)
u =

{
ε̂

(k,z)
u ,

{
θ̂

(k,z)
u,m

}M
m=1

, ĥ
(k,z)
u

}
,

where the new channel estimates are given by

ĥ
(k,z)
u = arg max

hu

{
−

M∑
m=1

∥∥∥r̂(k)
u,m − ejθ̂

(k,z)
u,m Γ

(
ε̂

(k,z)
u

)
FHD

(
mXu,m

)
Fhu

∥∥∥2
} (3.34)

The objective function in (3.34) is obtained from the Q function in

(3.28) with εu = ε̂
(k,z)
u ,

{
θu,m = θ̂

(k,z)
u,m

}M
m=1

.
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Figure 3.2: The operating flow chart for the proposed SAGE-ECM algorithm.

The solution for (3.34) is given by the least square (LS) estimate

[77]:

ĥ
(k,z)
u

= 1
M

M∑
m=1

e−jθ̂u,mFHD−1
(
mXu,m

)
FΓm

(
−ε̂(k,z)

u

)
r̂

(k)
u,m

(3.35)

This finishes the final stage of the M-step. We then iterate

back to the E-step with the set of new parameter estimates

Ω̂
(k,z)
u =

{
ε̂

(k,z)
u ,

{
θ̂

(k,z)
u,m

}M
m=1

, ĥ
(k,z)
u

}
.
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Initialization and Termination of ECM Iteration:

We bootstrap the ECM iteration with initial estimates Ω̂
(k,0)
u ={

ε̂
(k,0)
u ,

{
θ̂

(k,0)
u,m

}M
m=1

, ĥ
(k,0)
u

}
, where the initial CFO estimate and

channel estimates ε̂(k,0)
u , ĥ

(k,0)
u are obtained from the preamble of

user u; the initial phase estimate θ̂(k,0)
u,m is obtained from the pilot

subcarriers of the mth block for every m.

We repeat the E-step and M-step of ECM iteratively. When

the number of iterations z reaches the preset maximum limit Z, we

terminate the ECM algorithm for user u and take the final estimates

as the approximate solution for the joint estimation problem (8):{
ε̂

(k)
u ,
{
θ̂

(k)
u,m

}M
m=1

, ĥ
(k)
u , X̂

(k)
u

}
=

{
ε̂

(k,Z)
u ,

{
θ̂

(k,Z)
u,m

}M
m=1

, ĥ
(k,Z)
u , X̂

(k,Z)
u

}

where
{
ε̂

(k,Z)
u ,

{
θ̂

(k,Z)
u,m

}M
m=1

, ĥ
(k,Z)
u

}
are the final parameter estimates

obtained from the M-step of the Zth ECM iteration, X̂
(k,Z)
u are

obtained by making hard decisions based on the symbol-wise APPs{
p
(
Xu,m,i

∣∣∣r̂(k)
u , Ω̂

(k,Z)
u , Cu

)}
. A operating flow chart for the proposed

SAGE-ECM algorithm is shown in Fig. 3.2.

3.3.4 Alternative Iterative Receiver

We have described our proposed SAGE-ECM receiver in Section 3.3.3.

We can obtain an alternative receiver by adopting another message

passing algorithm — the min-sum algorithm — for channel decoding.

Let us revisit (3.8) and consider how to solve it iteratively. We can
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apply SAGE again in this single-user subproblem. Specifically, we can

break up one iteration into several stages where one stage updates just

one parameter while fixing all other parameters to their last estimates.

This iterative receiver corresponds to a pure SAGE framework, where

all variables are treated as parameters and updated in a sequential

manner.

Using the above idea, the zth iteration for solving (3.8) consists

of four stages. In the first, second and third stages, the CFOs, the

phases and the channel gains are updated to ε̂(k,z)
u ,

{
θ

(k,z)
u,m

}M
m=1

and

ĥ
(k,z)
u employing the methods of (3.30), (3.33) and (3.35), respectively.

The fourth stage updates the transmit symbols by

X̂
(k,z)
u = arg max

Xu

{
−

M∑
m=1

∥∥∥R̂(k)
u,m − ejθ̂

(k,z−1)
u,m D (Xu,m) Fĥ

(k,z)
u

(
Ω̂
′(k,z−1)
u

)∥∥∥2
} (3.36)

where R̂
(k)
u,m = F

(
Γ
(
−ε̂(k,z−1)

u

)
r̂

(k)
u,m

)
is the vector of the

frequency-domain signals after CFO compensation. With{
ε̂

(k,z)
u ,

{
θ̂

(k,z)
u,m

}M
m=1

, ĥ
(k,z)
u , X̂

(k,z)
u ,

}
, we complete the zth iteration.

The fourth stage in (3.36) corresponds to the channel decoding

operation. In contrast to the channel decoding in the SAGE-ECM

framework in Section 3.3.3, where the sum-product algorithm was

used to obtain the APPs of the transmit symbols, the channel

decoding method corresponding to (3.36) is the min-sum algorithm

[17, 62]. For example, if convolution codes are employed, the SAGE-

ECM framework (in Section 3.3.3) would use the BCJR algorithm,
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but the pure SAGE framework here would use the Viterbi algorithm

(a special case of the min-sum algorithm [17,62]).

Henceforth, we will refer to the iterative receiver in Section 3.3.3

as the SAGE-ECM Sum-Product Rx, and the iterative receiver here

as the SAGE Min-Sum Rx. We compare their performances through

simulation study in the next section.

The key difference between the SAGE Min-Sum Rx in this section

and the SAGE-ECM Sum-Product Rx in Section 3.3.3 is how channel

decoding assists the channel-parameter estimation. For the SAGE

Min-Sum Rx, the symbol estimates X̂
(k,z)
u given by min-sum channel

decoding are hard decisions — we lose soft information on Xu that

specifies the levels of confidence on our estimates. As will be seen in

the next section, these hard decisions cause significant performance

degradation when accepted as parameter estimates. The SAGE-ECM

Sum-Product Rx assists the channel-parameter estimation using the

soft information on the transmit symbols in a more sophisticated

manner. Finally, we remark that the SAGE Min-Sum Rx here is

equivalent to the receiver proposed in [44] (see a detail discussion

about [44] in the nest subsection).

3.3.5 Discussion of Receiver in [44]

Ref. [44] proposed an iterative receiver for solving the problem of

joint channel-parameter estimation, CFO compensation and data

detection in uncoded OFDMA systems. The authors of [44] attempted

to construct the receiver based on a SAGE-ECM framework. As
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explained later in this appendix, this attempt ended up with a pure

SAGE framework due to an approximation.

A major difference between the framework in [44] and ours is the

assignment of hidden data in the single-user subproblem within the

SAGE-ECM framework. For us, the data symbols Xu are the hidden

data and the channel gains hu are one of the parameters. For in [44],

the channel gains hu are the hidden data, and the data symbols Xu

are one of the parameters.

Another difference is that, unlike our work here, [44] did not

incorporate channel coding/decoding — [44] only focused on detection

of individual uncoded OFDM blocks Xu,m, and the correlations

among different data blocks of the overall frame Xu induced by

channel coding are not exploited to further improve performance. In

particular, each OFDM symbols are decoded independently. Here,

for consistency with our problem, we extend the treatment of [44]

to coded OFDM-IDMA systems (i.e., we incorporate channel coding

into the framework of [44]). With this extension, we have Ω′u ={
εu, {θu,m}Mm=1 ,Xu

}
as the parameters and hu as the hidden data.

The corresponding ECM aims to solve the following problem

iteratively:(
ε̂

(k)
u ,
{
θ̂

(k)
u,m

}M
m=1

, X̂
(k)
u

)
= arg max

(εu,{θu,m}Mm=1,Xu∈Cu)
log p

(
r̂

(k)
u

∣∣∣εu, {θu,m}Mm=1 ,Xu

)
= arg max

(εu,{θu,m}Mm=1,Xu∈Cu){
log
∫
p
(
r̂

(k)
u ,hu

∣∣∣εu, {θu,m}Mm=1 ,Xu

)
dhu

}
(3.37)
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Now, ECM solves (3.37) iteratively. In the zth iteration of ECM,

the E-step of ECM computes the Q function of

Q
(

Ω′u

∣∣∣Ω̂′(k,z−1)

u

)
= Ehu

{
ln p

(
r̂

(k)
u,m |hu,Ω′u

)
p
(
r̂

(k)
u,m

∣∣∣hu, Ω̂′(k,z−1)

u

)} (3.38)

and the M-step of ECM updates the tentative estimates Ω̂′
(k,z−1)

u for

Ω′u by finding the Ω′u that maximize (3.37).

The exact computation of the Q function in (3.38) is complex and

not feasible from the implementation viewpoint (cf .eq (13) in [44] for

the Q function of the uncoded case). To reduce complexity, [44] made

an approximation on the computed Q function. Extending the result

in [44] to channel-coded case (cf. eq (16) in [44]), the E-step of ECM

approximates the Q function as

Q
(

Ω′u

∣∣∣Ω̂′(k,z−1)

u

)
= −

M∑
m=1

∥∥∥r̂(k)
u,m − ejθu,mΓ (εu) FHD (Xu,m)

×Fĥ
(LS)
u

(
Ω̂
′(k,z−1)
u

)∥∥∥2

(3.39)

where ĥ
(LS)
u

(
Ω̂
′(k,z−1)
u

)
is the LS estimate of hu obtained with Ωu

′ =

Ω̂
′(k,z−1)
u in the signal model (3.2). With this Q function, the CFO and

the phases can be updated to ε̂(k,z)
u and

{
θ

(k,z)
u,m

}M
m=1

using the same

methods of (3.30) and (3.33) in Section 3.3.3, respectively. However,

the transmit symbols Xu here is updated in a different way than in

Section 3.3.3. Specifically, the stage in the M-step for updating the

transmit symbols now becomes (3.36), which can be solved using the

min-sum channel decoding, as explained in Section 3.3.4.
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A subtle but important consequence of approximating the Q

function as in (3.39) is that, although the development of the receiver

in [44] begins with the ECM algorithm, it ends up with a pure SAGE

solution to (3.8). In other words, it is not a SAGE-ECM algorithm

anymore, but a pure SAGE algorithm. The algorithm essentially

treats all the variables in
{
εu, {θu,m}Mm=1 ,hu,Xu

}
as parameters,

and none of them as hidden data. As in the SAGE algorithm,

the parameters are estimated sequentially one at a time; when one

parameter is under estimation, all other parameters are fixed to their

estimates from the last iteration. This pure SAGE algorithm is

exactly the same as the SAGE Min-Sum Rx we discussed in Section

3.3.4 and adopted as one of the benchmarks in our simulation studies

in Section 3.4.

3.4 Numerical Results

This section presents computer simulation results and experimental

results on software defined radio.

In all simulations, we consider an OFDM-IDMA system with

U = 3 users. The frame format is a slightly modified version of the

802.11a frame format [78]. The DFT size is N = 64. The CP is of

length Ncp = 16. Among the N = 64 subcarriers, there are Nd = 48

data subcarriers, Np = 6 pilot subcarriers and 10 unused guard band

subcarriers. Each user transmits known symbols on 2 of the 6 pilot

subcarriers, and nulls the signal on the other 4 pilot subcarriers. The

modulation is BPSK. A way to realize a low-rate channel code scheme
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for IDMA is to serially concatenate a forward error correction (FEC)

code with a repetition code [56]. In our simulation, the FEC is a

regular Repeat Accumulate (RA) code [49] with code rate R1 = 1/3,

and the code rate of the repetition code is R2 = 1/U = 1/3.

Therefore, the overall code rate is R = R1R2 = 1/9. The interleavers

of all three users are generated randomly. The payload of each frame

has 450 data OFDM blocks. The two preamble blocks for all three

users are two successive copies of the long training sequence (LTS)

defined in the 802.11a standard. However, as described in Section

3.2.1, the two preambles of different users occupy different block times.

We set the length of the discrete channel vectors for all three users

to L1 = L2 = L3 = 4. The channel taps are generated according

to the channel mode given in Section 3.2.2. We assume that the

receiver of the base station can capture the first channel path of user

1, so that the timing mismatch between user 1 and the base station

is set to µ1 = 0. Furthermore, µ2 and µ3 are randomly chosen from

the interval [0, 9]. Thus, the loose time synchronization requirement

is satisfied in simulations. The CFOs of the three users are set to

[ε1, ε2, ε3]
T = ρ[1,−1,−1]T , where ρ is the so-called CFO attenuation

factor [65], and it is a deterministic parameter ranging in [0, 0.5]. In

our simulations, we vary the value of ρ to investigate its impact on

system performance. SNR is defined as Eb/N0, where Eb is the energy

per information bit andN0 is the noise variance. All simulation results

presented here are obtained by averaging over 3× 103 frames.

For performance comparison, we investigate the following four

approaches for OFDM-IDMA systems: (i) the iterative interference
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Figure 3.3: BER versus SNRs with ρ =

2, U = 3.
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Figure 3.4: BER versus ρ with SNR=16
dB, U = 3.

cancellation approach in [64] with perfect knowledge of channel

parameters (Full CSI Rx); (ii) the iterative interference cancellation

approach in [64] with the one-shot channel parameter estimations

obtained from the preambles and pilots (One-shot Est. Rx); (iii)

the SAGE Min-Sum RX approach described in Section 3.3.4 as a

benchmark; and (iv) the SAGE-ECM Sum-Product Rx approach

proposed in Section 3.3.3. For all receivers, we performed iterations

until the algorithm converged (with SAGE iteration number K =

6, and ECM iteration number Z = 10). We remark that the

performance of One-shot Est. Rx is the initial point of SAGE-ECM

Sum-Product Rx.

3.4.1 Simulation Results

Fig. 3.3 presents the results of bit error rate (BER) versus SNR. The

CFO attenuation factor is fixed to ρ = 0.2. From the results, we
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first note that the BER gap between Full CSI Rx and One-shot Est.

Rx is large. Specifically, the estimation errors of one-shot estimation

induce around 13 dB SNR loss at BER = 10−5. Intuitively, since

each imperfect parameter estimate induces an SNR penalty and we

have many channel parameters in the system, the SNR penalties

accumulate to an overall large penalty.

The SAGE-ECM approach reduces the performance loss, as

shown in Fig. 3.3. SAGE-ECM Sum-Produc Rx yields 8dB SNR

improvement and SAGE Min-Sum Rx yields 5dB SNR improvement

at BER = 10−5. The 3 dB performance gap between SAGE-ECM

Sum-Product Rx and SAGE Min-Sum Rx justifies that assigning the

data symbols (as opposed to channel parameters) as the hidden data

in the ECM framework.

Fig. 3.4 shows the impact of CFO attenuation factor ρ on BER,

with SNR fixed to 16 dB. The results again confirm the better

performance of SAGE-ECM Rx over One-shot Est. Rx. It also shows

that the BERs of all approaches are insensitive to ρ: note that

the different approaches have different performances; just that the

performance of each approach is not sensitive to ρ. This result implies

that it is not the magnitude of that affects performance; it is the

estimation errors of ρ, which vary among the different approaches.

We also evaluate the mean square error (MSE) of the estimated

channel parameters. Fig. 3.5, Fig. 3.6 and Fig. 3.7 present the MSEs

of the estimated CFOs, channels and phases versus SNR. The CFO

attenuation factor is fixed to ρ = 0.2. The units of the CFOs

and the phases are Hz and radian. From the MSE results Fig. 3.5-
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Figure 3.5: CFO MSEs versus SNRs
with ρ = 2, U = 3.
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Figure 3.6: Channel gain MSEs versus
SNRs with ρ = 2, U = 3.
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Figure 3.7: Phase MSEs versus SNRs
with ρ = 2, U = 3.
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Figure 3.8: CFO MSEs versus ρ with
SNR=16 dB, U = 3.
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Figure 3.9: Channel gain MSEs versus ρ
with SNR=16 dB, U = 3.
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Figure 3.10: CFO MSEs versus ρ with
SNR=16 dB, U = 3.

3.7, we clearly see that the SAGE-ECM approaches do have more

accurate estimates than the traditional preamble/pilot-based one-shot

estimations. Moreover, the estimations of SAGE-ECM Sum-Product

RX are better than that of SAGE Min-Sum RX; the difference in

MSEs between them decreases as the SNR increases. The reason

is that the results of min-sum decoding are hard decisions. In the

low SNR regime, the hard decisions are not reliable enough and

will propagate the decoding errors to channel parameter estimations.

In the high SNR regime, the decoding results of min-sum decoding

approaches that of sum-product decoding, thus the error gaps in

MSEs become narrow. We also note that the CFO MSE difference

between SAGE-ECM Sum-Product Rx and SAGE Min-Sum Rx is

the most obvious one. Therefore, the BER gap between SAGE-ECM

Sum-Product Rx and SAGE Min-Sum Rx in Fig. 3.3 can be largely

explained by the CFO MSE rather than the phase MSE and the

channel gain MSE.
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Fig. 3.8, Fig. 3.9 and Fig. 3.10 show the MSEs of the estimated

CFOs, channels and phases versus ρ. The SNR is fixed to 16 dB.

The performance trends are the same with the BER in terms of ρ,

as shown in Fig. 3.4. SAGE-ECM Sum-Product Rx has better MSE

performances than SAGE Min-Sum Rx and One-shot Est. Rx do.

For all approaches, their estimation errors depends only weakly on ρ

for a wide range of ρ; performances only degrade as ρ is near 0.5 (the

worst case). We thus conclude that it is the error in the estimation

of CFO that has more effects than the actual CFO value itself.

3.4.2 Experimental Results

Going beyond simulations, we also verify our proposed approach

experimentally. We implemented an OFDM-IDMA system using a

software defined radio (SDR) platform. We collected the data for

the received signal from the experimental system and evaluate the

performance of the proposed approach using the collected data.

The experimental system is built on the USRP N210 hardware

[79] and the GNU Radio software with the UHD hardware driver

[80]. We emulated an OFDM-IDMA system that includes one base

station and two users (U = 2), by deploying three sets of USRP

N210 with XCVR2450 boards [79] in our lab.5 The base station

5We performed the experiment for OFDM-IDMA using the SDR prototype of the physical-
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Figure 3.11: Experimental BER results with U = 2.

2 3 4 5 6 7 8 9 10 11 12
10−2

10−1

100

Rx SNR (dB) Eb/No

F
E

R

 

 

Exp: One−shot Est. Rx
Exp: SAGE−ECM Sum−Product Rx
Simu: One−shot Est. Rx
Simu: SAGE−ECM Sum−Product Rx

Figure 3.12: Experimental FER results with U = 2.



CHAPTER 3. FREQUENCY-ASYNCHRONOUS JOINT CHANNEL-PARAMETER ESTIMATION, CFO
COMPENSATION AND CHANNEL DECODING IN MUD SYSTEMS 119

used 802.11 channel 1 (2.412GHz) to poll the two users to transmit

together at channel 11 (2.462GHz), thereby achieving the loose-time

synchronization mentioned in Section 3.2.3. The wireless channel

bandwidth of our network is 4MHz. The use of 4 MHz bandwidth

rather than a wider bandwidth is due to the limitation of the USRP

hardware. After the terminal users received a beacon from the base

station, they then transmit their signals simultaneously. The base

station received the simultaneous transmissions and converted them

to digital data for processing. We performed controlled experiments

for different received SNRs. The receive powers of frames from

two users at the base station were adjusted to be balanced (power

imbalance within 1dB). The base station transmits 100 beacons to

trigger 100 simultaneous uplink transmissions for each fixed SNR.

The frame format used is similar to the one used in simulations

except for the following two differences. First, in the experimental

setup, there are four pilot subcarriers within each OFDM block

(as opposed to six in simulations) and each user transmits pilot

symbols over two of them. Second, to save computation time in our

experimental setup, the channel coding scheme used is only the 1/3

coding rate RA code without the repetition code. Each frame includes

layer network coding (PNC) systems reported in detail in [15, 70]. In the uplink of PNC, two
users transmit signals to the relay simultaneously. This is similar to multiple-access systems.
Therefore, we can borrow it for our use here.
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256 OFDM blocks.

The experimental BER results are shown in Fig. 3.11. The frame

error rate (FER) results are shown in Fig. 3.12. We compare the

performances of SAGE-ECM Sum-Product Rx with One-shot Est.

Rx Generally, the performance trends are similar to those in our

simulation results. Specifically, we observe that SAGE-ECM Sum-

Product Rx achieves around 5 dB SNR gain over One-shot Est. Rx

at the BER of 10−5 in the experiment. We note that the shapes of the

experimental BER curves are different from those of the simulations

in Fig. 3.3. The reason is that the channel in our experimental

environment is rather flat over the 4MHz bandwidth. To verify our

experimental results, we perform an additional simulation where the

system includes U = 2 users, the frame format is the same as that in

our experiment, the channel has one Rayleigh path (thus it is flat),

and the CFOs are set to [ε1, ε2,]
T = [0.06, 0.11]T that are the means of

the measured CFO values in our experiment. The simulated BER and

FER results under this setup are presented in Fig. 3.11 and Fig. 3.12,

respectively. As can be seen, the simulated results are consistent with

the experimental results in that there is also around 5 dB SNR gain

by SAGE-ECM Sum-Product Rx over One-shot Est. Rx.

2 End of chapter.



Chapter 4

Conclusion and Future Work

4.1 Conclusion

Two major signal processing challenges for multiuser systems are (i)

how to estimate the multiple parameters in a satisfying manner and

(ii) how to compensate for these parameters when they cause system

degradations. In this thesis, we aim to solve these challenges for two

types of multiuser systems: PNC and MUD systems. In particular, we

put forth frameworks that enable joint multiple parameter estimation

and channel decoding in PNC and MUD systems that tackle the two

signal processing challenges in a comprehensive manner. The general

contributions of this thesis are as follows:

• In Chapter 2, we proposed an EM-BP factor-graph framework

for solving the problem of joint channel estimation and channel

decoding in PNC systems. This framework consists of EM

message passing for channel estimation and BP message passing

for channel decoding. The output of one forms the input

121
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of the other, and vice versa, so that the results of channel

estimation and channel decoding can be refined in an iterative

and progressive manner. A salient feature of our framework is the

use of ‘virtual channel decoding’ to ensure optimal performance

for PNC systems. Furthermore, we show that the EM messages

in our factor-graph framework are Gaussian messages that can be

characterized by their means and variances only, and this greatly

reduces computation complexity. We refer to the receiver based

on this framework as EM-BP PNC.

• Our simulation results in Chapter 2 indicate that the BER

of EM-BP PNC can approach that of an ideal PNC receiver

with perfect CSI. In addition, EM-BP PNC outperforms other

receivers in terms of BER and MSE. Beyond PNC, we believe

the EM-BP factor graph framework proposed in this work can

also be used to construct receivers with superior performance in

conventional single-user and multi-user systems.

• In Appendix D, We also applied the EM-BP algorithm to solve

the problems of phase tracking and channel decoding in OFDM

PNC systems jointly. Based on the framework of EM-BP

proposed in Chapter 2, we designed the algorithm for OFDM

PNC. To investigate the performance of the proposed method,

we performed computer based simulations and SDR based real

experiments. Our simulation and real experiment results show

that, compared to a traditional method that performs phase

tracking and channel decoding separately, the proposed method
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can obtain 2 dB gain after the first iteration, and around 3 dB

gain after convergence of the iterations.

• In Chapter 3, we exploited the SAGE and ECM algorithms to

solve the problem of joint channel-parameter estimation, CFO

compensation and channel decoding iteratively for multiuser

OFDM-IDMA systems. Our framework is motivated by the

fact that for multiuser OFDM systems, (i) one-shot non-iterative

parameter estimation does not yield satisfactory accuracy; and

(ii) one-shot non-iterative CFO compensation is impossible.

For these reasons, we propose to solve the overall problem of

channel-parameter estimation, CFO compensation, and channel

decoding jointly and iteratively. Within our framework, we

compared different schemes of assigning the role of hidden data

in ECM, and concluded that treating the data symbol (as

opposed to channel parameters) as the hidden data in ECM

leads to better performance. A salient feature of our approach is

that we bridged the time-domain channel-parameter estimation

procedure and the frequency-domain channel decoding procedure

using the technique of Gaussian message passing to approximate

the computation of “soft IDFT”.

• Our simulation results and real SDR experimental results in

Chapter 3 indicate that compared with the traditional multiuser

approach, the proposed SAGE-ECM approach can obtain 5 dB

SNR gain for the two-user case, and 8 dB SNR gain for the

three-user case.
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Use MUD channel 
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BP channel decoding 
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Use MUD channel 
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Figure 4.1: The summary for differences and the positioning of EM-BP and
SAGE-ECM.

We summarize the differences and the positioning of EM-BP and

SAGE-ECM in Fig. 4.1, where we relate them to four systems, time-

domain PNC, time-domain MUD, OFDM PNC and OFDM MUD. A

solid arrow points from a framework to a system if that framework can

be applied to the system. In particular, there is no approximation on

the channel decoding part in this case. On the other hand, a dashed

arrow means approximations need to be made on the channel decoding

part. No arrows, solid or dashed, between a framework and a system

means the framework cannot be applied to the system. The next two

paragraphs elaborates Fig. 4.1 further.

Since the EM-BP framework can incorporate virtual channel

decoding, the channel decoding part of EM-BP for time-domain PNC
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is optimal. A slight modification from virtual channel decoding to

PIC channel decoding (as discussed in Chapter 2) allows EM-BP to

be applied to time-domain MUD systems also. This modification

introduces approximations on the decoded APPs used in EM-BP.

A shortcoming of the EM-BP framework is that it cannot be

applied to OFDM PNC/MUD systems, because of the new problems

caused by CFOs in the frequency-domain systems. The SAGE-ECM

framework can deal with the CFOs in multiuser OFDM systems, thus

it can be applied to OFDM MUD systems. Since the CFO estimation

procedure in SAGE-ECM actually operates in the time-domain,

it also can be directly applied to time-domain MUD systems for

estimating CFOs. However, since SAGE-ECM is not compatible with

virtual channel decoding, its application to time-domain/OFDM PNC

systems will compromise the optimality of PNC channel decoding (as

explained in the next section).

4.2 Future Work

4.2.1 Joint Channel-Parameter Estimation, CFO Compen-

sation and Channel Decoding for OFDM PNC

One question for our future study is how to solve the problem of

joint channel-parameter estimation, CFO compensation and channel

decoding for OFDM PNC systems. A quick solution can be

immediately obtained from the SAGE-ECM framework for OFDM-

IDMA proposed in Chapter 3. We can directly apply the SAGE-
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Figure 4.2: The illustration for MUD-XOR.

ECM framework of Chapter 3 to OFDM PNC; after SAGE-ECM

has conveged, we can get the final decoding results for two source

messages b̂A, b̂B; then, we perform bitwise XOR for network coding

as b̂R = b̂A ⊕ b̂B. The above scheme for PNC mapping is termed

MUD-XOR [8] and illustrated in Fig. 4.2. Obviously, the application

of SAGE-ECM to solve the problem of joint channel-parameter

estimation, CFO compensation and channel decoding for OFDM PNC

systems is feasible; however, the disadvantage of the application is

that MUD-XOR exhibits subpar performance compared to virtual

channel decoding [8].

For performance improvement, we are eager to replace the MUD-

XOR with virtual channel decoding in the framework for OFDM PNC.

However, there are two major obstacles for doing this: (i) In the E-step

of ECM, it is hard to transform the APPs of symbol pairs (provided

by virtual channel decoding) from the frequency domain to the time

domain, even with Gaussian message passing; (ii) In the M-step of

ECM, the closed-form solutions for the channel-parameter updates

cannot be obtained (In Appendix D, we have to update the phase

drifts for OFDM PNC by a exhaustive search method. The situations
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will be the same for updating channel gians and CFOs). These two

obstacles impose a high complexity on the framework operated with

virtual channel decoding. How to enable virtual channel decoding in

OFDM PNC systems for joint channel-parameter estimation, CFO

compensation and channel decoding is an important future research

topic.

4.2.2 Soft IDFT without Gaussian Approximation

In Chapter 3, we solved the “soft IDFT” problem using the

Gaussian message passing. Chapter 3 showed that with Gaussian

approximation, we just need to pass the means of the decoded

symbols from the frequency domain to the time domain. This indeed

greatly reduces the complexity involved in the problem. However, we

do not know how large the penalty is by such an approximation.

Can we do better than that? We believe that there are many

applications that require the function of soft IDFT when we need to

perform IDFT/DFT on a series of probability functions rather than

deterministic complex numbers.

In general, without the Gaussian assumption, we can solve the

soft IDFT problem on a factor graph using the sum-product message

passing algorithm. We first construct the factor graph by considering

the butterfly graph of IFFT. We show a butterfly graph with the DFT

size N = 4 in Fig. 4.3 as an example. The IDFT is performed to

transform the frequency domain samples {Yi}N−1
i=0 to the time-domain

samples {yi}N−1
i=0 . We do not know the exact values of {Yi}N−1

i=0 ;
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Figure 4.3: The factor graph for IDFT with N = 4.

we just can obtain the probability functions of {Yi}N−1
i=0 . With the

probability functions of the frequency-domain samples {p (Yi)}N−1
i=0 as

the input messages, we then use sum-product rule on the factor graph

to compute the output messages {p (yi)}N−1
i=0 that are the probability

functions of the time domain samples. However, the alphabet size of

messages on the graph increases in an exponential order as we progress

from the input to the output of the IDFT factor graph. For example,

even if {Yi}N−1
i=0 are binary numbers, each yi will have 2N values. We

will treat this general soft IDFT problem in our future study.

2 End of chapter.



Appendix A

An Interpretation of EM Algorithm

In this appendix, we use the argument of Kullback-Leibler (KL)

divergence to interpret the physical meaning of EM algorithm.

Specifically, we shall see that the iteration expressed by (2.5) will

eventually at least converge to a local optimum and possibly to a

global optimum with respect to the target arg maxh log p
(
h |y , C2

)
.

The objective function being optimized in the EM algorithm can

be interpreted as one in which an additional KL divergence term,

−DKL, has been added to the original objective log p
(
h |y , C2

)
. This

additional −DKL term is guaranteed to converge to zero in the EM

algorithm, hence the two objectives are consistent.

Proposition 1: Define a function of two variables h and h′

as follows: f (h,h′)
∆
= −DKL

(
p
(
x
∣∣y,h′, C2

)∥∥ p (x ∣∣y,h, C2
))

+

log p
(
h
∣∣y, C2

)
. Furthermore, let

h∗
∆
= arg max

h
log p

(
h
∣∣y, C2

)
and (

h∗f ,h
′∗
f

) ∆
= arg max

h,h′
f (h,h′) .
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Then,

max
h,h′

f (h,h′) = max
h

log p
(
h
∣∣y, C2

)
and

h∗f = h′∗f = h∗.

Proof : It is known that DKL

(
p
(
x
∣∣y,h′, C2

)∥∥ p (x ∣∣y,h, C2
))
≥ 0

for any tuple (h,h′) [46]. Thus, we have

f (h,h′) ≤ log p
(
h
∣∣y, C2

)
≤ max

h
log p

(
h
∣∣y, C2

)
= log p

(
h∗
∣∣y, C2

)
for any duple (h,h′). In particular,

f
(
h∗f ,h

′∗
f

)
≤ log p

(
h∗
∣∣y, C2

)
We also have that DKL

(
p
(
x
∣∣y,h∗, C2

)∥∥ p (x ∣∣y,h∗, C2
))

= 0 [46].

Thus, setting h∗f = h′∗f = h∗ gives us

f
(
h∗f ,h

′∗
f

)
= log p

(
h∗
∣∣y, C2

)
Q.E.D.

With Proposition 1, algorithm (2.5) can be interpreted as trying

to find h∗f = h′∗f = h∗ that maximize f (h,h′). We can think

about the algorithm in the following way. Since we know that the

two arguments h and h′ must be equal at the optimal, we could

start out with a guess of h = h′ = h(0). This gives us an initial

f (h,h′) = f
(
h(0),h(0)

)
= log p

(
h(0)

∣∣y, C2
)
. However, this may

not be the optimal log p
(
h∗
∣∣y, C2

)
even though the associated KL

divergence is 0.

In the next iteration, we want to know whether we can change h

to a different value, say h = h(1), and obtain a better f
(
h(1),h(0)

)
>
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f
(
h(0),h(0)

)
. This is exactly what (2.5) attempts to do. Notice that

if such f
(
h(1),h(0)

)
can be found, then it is guaranteed that

log p
(
h(1)

∣∣y, C2
)
≥ f

(
h(1),h(0)

)
> f

(
h(0),h(0)

)
= log p

(
h(0)

∣∣y, C2
)
.

Therefore,

f
(
h(1),h(1)

)
= log p

(
h(1)

∣∣y, C2
)
≥ f

(
h(1),h(0)

)
> f

(
h(0),h(0)

)
.

Thus, we see that (2.5) is an algorithm to successively find a better

h = h′ = h(k) for substitution into f (h,h′) until things converge.

Note in particular that f
(
h(k+1),h(k+1)

)
≥ f

(
h(k),h(k)

)
for all k by

similar argument as above. Since f
(
h(k),h(k)

)
is upper bounded by

log p
(
h∗
∣∣y, C2

)
, it cannot increase indefinitely and convergence is

guaranteed.

However, like all other ‘peak seeking’ algorithms, the ultimate

point to which EM converges may or may not be the global peak

log p
(
h∗
∣∣y, C2

)
if there are local optimal points. Therefore, for global

optimum, EM usually requires a good initial point, which can be

achieved using pilot symbols in our problem.

2 End of chapter.



Appendix B

Derivation of (3.24)

We first expand the sample-wise Q function in (3.16) as

Qm,i

(
Ωu

∣∣∣Ω̂(k,z−1)
u

)
=
∑
yu,m,i

log p
(
r̂

(k)
u,m,i |Ωu, yu,m,i

)
p
(
yu,m,i

∣∣∣r̂(k)
u , Ω̂

(k,z−1)
u , Cu

)
= −

∑
yu,m,i

∥∥∥r̂(k)
u,m,i − ejθu,mej2πεu(i−1)/Nyu,m,i

∥∥∥2

p
(
yu,m,i

∣∣∣r̂(k)
u , Ω̂

(k,z−1)
u , Cu

)
= −

∑
yu,m,i

(∥∥∥r̂(k)
u,m,i

∥∥∥2

− 2R

{(
r̂

(k)
u,m,i

)H
ejθu,mej2πεu(i−1)/Nyu,m,i

}
+

‖yu,m,i‖2
)
p
(
yu,m,i

∣∣∣r̂(k)
u , Ω̂

(k,z−1)
u , Cu

)
(B.1)
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where we have already dropped the constant term. Then, we can

easily compute the following expectations∑
yu,m,i

∥∥∥r̂(k)
u,m,i

∥∥∥2

p
(
yu,m,i

∣∣∣r̂(k)
u , Ω̂

(k,z−1)
u , Cu

)
=
∥∥∥r̂(k)

u,m,i

∥∥∥2

Re

{(
r̂

(k)
u,m,i

)H
ejθu,mej2πεu(i−1)/Nmyu,m,i

}
∑
yu,m,i

Re

{(
r̂

(k)
u,m,i

)H
ejθu,mej2πεu(i−1)/Nyu,m,i

}
p
(
yu,m,i

∣∣∣r̂(k)
u , Ω̂

(k,z−1)
u , Cu

)
= Re

{(
r̂

(k)
u,m,i

)H
ejθu,mej2πεu(i−1)/Nmyu,m,i

}
∑
yu,m,i

‖yu,m,i‖2p
(
yu,m,i

∣∣∣r̂(k)
u , Ω̂

(k,z−1)
u , Cu

)
=
∥∥myu,m,i

∥∥2
+ σ2

yu,m,i

(B.2)

where the mean and variance of yu,m,i are given in the Gaussian

expression for p
(
yu,m,i

∣∣∣r̂(k)
u , Ω̂

(k,z−1)
u , Cu

)
in (3.21). Substituting

(B.2) in to (B.1), we have

Qm,i

(
Ωu

∣∣∣Ω̂(k,z−1)
u

)
=∥∥∥r̂(k)

u,m,i

∥∥∥2

+ 2R

{(
r̂

(k)
u,m,i

)H
ejθu,mej2πεui/Nmyu,m,i

}
−
∥∥myu,m,i

∥∥2︸ ︷︷ ︸
−‖r̂(k)

u,m,i−ejθu,mej2πεui/Nmyu,m,i‖
2

−σ2
yu,m,i

= −
∥∥∥r̂(k)

u,m,i − ejθu,mej2πεui/Nmyu,m,i

∥∥∥2

− σ2
yu,m,i

(B.3)

Since σ2
yu,m,i

is not relevant to Ωu. We just drop it. This gives the

ultimate form of Q function in (3.24).

2 End of chapter.
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Derivation of (3.30)

We denote the objective function in (3.29) by

f (εu)
∆
= −

M∑
m=1

∥∥∥r̂(k)
u,m − ejθ̂

(k,z−1)
u,m Γ (εu) FHD

(
mXu,m

)
Fĥ(k,z−1)

u

∥∥∥2

(C.1)

Expanding and dropping the terms irrelevant to εu, we obtain

f (εu) =
M∑
m=1

Re

{(
r̂(k)
u,m

)H
ejθ̂

(k,z−1)
u,m Γ (εu) FHD

(
mXu,m

)
Fĥ(k,z−1)

u

}
(C.2)

We choose to approximate Γ (εu) in the objective function using its

Taylor series expansion

Γ (εu) ≈ Γ
(
ε̂

(k,z−1)
u

)
+
(
εu − ε̂(k,z−1)

u

)
Γ′
(
ε̂

(k,z−1)
u

)
+ 1

2

(
εu − ε̂(k,z−1)

u

)2

Γ′′
(
ε̂

(k,z−1)
u

)
(C.3)

where we truncate the third-order terms and above and ε̂(k,z−1)
u is the

starting point. Substituting (C.3) into (C.2) and differentiating the
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resulting ε̂(k,z−1)
u with respect to εu yield

∂f(εu)
∂εu

=
M∑
m=1

Re

{(
r̂

(k)
u,m

)H
ejθ̂

(k,z−1)
u,m

[
Γ′
(
ε̂

(k,z−1)
u

)
+
(
εu − ε̂(k,z−1)

u

)
Γ′′
(
ε̂

(k,z−1)
u

)]
FHD

(
mXu,m

)
Fĥ

(k,z−1)
u

}
Finally, setting ∂f (εu)/∂εu = 0 and solving the equation, we obtain

the new CFO update shown in (3.30).

2 End of chapter.



Appendix D

Joint Phase Tracking and Channel

Decoding for OFDM PNC:

Algorithm and Experimental

Evaluation

Applying the EM-BP algorithm proposed in Chapter 2, this appendix

investigates the problem of joint phase tracking and channel decoding

in OFDM based Physical-layer Network Coding (PNC) systems.

OFDM signaling can obviate the need for tight time synchroniza-

tion among multiple simultaneous transmissions in the uplink of PNC

systems. However, OFDM PNC systems are susceptible to phase

drifts caused by residual carrier frequency offsets (CFOs). In the

traditional OFDM system in which a receiver receives from only one

transmitter, pilot tones are employed to aid phase tracking. In OFDM

PNC systems, multiple transmitters transmit to a receiver, and these

pilot tones are shared among the multiple transmitters. This reduces
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the number of pilots that can be used by each transmitting node.

Phase tracking in OFDM PNC is more challenging as a result. To

overcome the degradation due to the reduced number of per-node

pilots, this appendix supplements the pilots with the channel infor-

mation contained in the data. In particular, we propose to solve

the problems of phase tracking and channel decoding jointly. Our

solution consists of the use of the expectation-maximization (EM)

algorithm for phase tracking and the use of the belief propagation

(BP) algorithm for channel decoding. The two problems are solved

jointly through iterative processing between the EM and BP algo-

rithms. Simulations and real experiments based on software-defined

radio (SDR) show that the proposed method can improve phase track-

ing as well as channel decoding performance.

D.1 Introduction

Relays can be employed to extend coverage, enhance reliability and

increase throughput in wireless networks. Recently, the research

community has shown growing interest in a simple relay network in

which two terminal nodes communicate through a relay. This network

is referred to as the two-way relay channel (TWRC).

Physical-layer Network Coding (PNC), originally proposed in [4],

can potentially boost the throughput in TWRC by 100% compared

with the traditional multi-hop relaying method [8]. In TWRC

operated with PNC, the two terminal nodes first transmit their

messages simultaneously to the relay. The relay then maps the
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overlapped signals into a network-coded message (e.g., bit-wise XOR

of the messages of the terminal nodes) and broadcasts the network-

coded message to the two terminal nodes. Each terminal then extracts

the message of the other terminal by subtracting its own message from

the network-coded message. Thus, the two terminal nodes exchange

one message with each other in two time slots. With traditional

relaying, four time slots are needed [8].

Although PNC has the potential to boost throughput in TWRC,

there are new challenges for PNC. An important issue is how to

perform PNC mapping at the relay when the two signals arrive

with symbol and phase asynchronies. In [22], the authors devised

a belief propagation (BP) [17, 19] method to decode network-coded

messages in asynchronous PNC systems. Single-carrier time-domain

signals are assumed. Another solution for asynchronous PNC is to use

OFDM signals [81]. OFDM carries multiple data streams on multiple

subcarriers in a parallel manner, and the symbol duration within each

subcarrier is lengthened compared to that in the single-carrier system.

To deal with the effect of multipath, cyclic-prefix (CP) is prepended at

the beginning of each OFDM symbol. We designed and implemented

an OFDM PNC system using software-defined radio (SDR) in [15,70].

If the “symbol delay spread” between the two terminals is within the

CP, the time-domain misaligned samples will become aligned in the

frequency-domain after DFT demodulation. This obviates the need

for strict synchronization in PNC systems. Benefiting from the CP

and the larger symbol duration, we can perform PNC mapping one-

by-one on each subcarrier in a manner similar to that in synchronous
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PNC.

One drawback of OFDM systems is their sensitivity to carrier

frequency offset (CFO) between the crystal oscillators of the

transmitter and receiver. CFO causes two negative effects: (i) drifting

of the phase of the channel coefficient of each subcarrier; (ii) inter-

carrier interferences (ICI) among different subcarriers. In systems

such as 802.11 WLAN, we can estimate the CFO using preambles,

and then compensate for the CFO for the whole packet. However,

estimation error may leave behind an uncompensated residual CFO.

Since the residual CFO in 802.11 systems are typically small, the

CFO-induced ICI is usually negligible. We can treat the ICI as an

additional noise which degrades the effective received signal-to-noise

ratio (SNR) slightly [60]. However, even a small residual CFO can

lead to large phase drifts which accumulate over time. Data decoding

will fail if we ignore the phase drifts. It is therefore important to track

phase drifts and compensate for them before data decoding.

For WLAN, it is common to track phase using pilot tones in

the OFDM symbols. This appendix considers the more challenging

phase tracking problem in OFDM PNC systems. The pilot tones are

now shared by the two terminal nodes. This reduces the number of

pilots that can be used by each node. Moreover, the superimposed

constellation at the relay receiver is denser than that of a single user

receiver.

In this appendix, we propose to tackle the problem of phase

tracking jointly with channel coding in an iterative manner. In

particular, we use the framework of expectation-maximization and
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belief propagation (EM-BP) [82] to perform joint phase tracking and

channel decoding. The BP algorithm performs channel decoding using

the phase-adjusted CSI estimated by the EM algorithm, while the EM

algorithm performs phase tracking using the pilot symbols as well as

the soft information of data symbols provided by the BP algorithm.

Since the proposed EM-BP algorithm makes use of both the data

symbols and pilot symbols for phase tracking, we can potentially

improve the accuracy of phase tracking compared with the traditional

pilot-based algorithm. We conducted simulations and experiments to

evaluate the proposed EM-BP algorithm. Our experiments were based

on the data collected from an OFDM PNC prototype [15, 70]. The

experimental results show that the EM-BP algorithm can yield 2-3

dB gain in BER performance compared with the traditional method

that performs pilot-based phase tracking and channel decoding in a

disjoint manner.

The remainder of this appendix is organized as follows: Section

D.2 describes the OFDM PNC system. Section D.3 puts forth our

proposed EM-BP algorithm for OFDM PNC. Section D.4 presents

our simulation and experimental results.

D.2 System Model

D.2.1 Transmit Signal

Fig. D.1 shows our OFDM PNC system model. In time slot 1,

terminal nodes A and B simultaneously transmit signals to the relay
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Figure D.1: The system model of OFDM PNC system.

R. We assume that the transmitters of nodes A and B employ the

frame format proposed in [15], in which the preambles of A and B do

not overlap, but the payloads overlap, in time. One frame containsM

OFDM symbols for the payload. Let N be the number of subcarriers.

The length-N vector Xu,m = [Xu,m,0Xu,m,1 · · ·Xu,m,N−1]
T is the mth

frequency-domain symbol transmitted by node u ∈ {A,B}. Within

the N subcarriers, each OFDM symbol has Nd data tones, Np pilot

tones and Nz zero tones (N = Nd + Np + Nz). The symbols on

data tones are obtained after channel encoding, interleaving and

constellation mapping. In this appendix, we assume that nodes A and

B use the same channel encoder (the valid set of codewords is denoted

by C), interleaver and constellation when mapping their source

information bits {bA,j}, {bB,j} to the transmitted data symbols. The

pilots assist the task of phase tracking. We adopt a pilot pattern

similar to that employed in [15], where separate pilot tones in the

frequency domain are used by the two end nodes. The zero tones
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serve as the guard bands. The OFDM modulation is implemented

with an N point IDFT: xu,m = IDFT (Xu,m), where xu,m =

[xu,m,0xu,m,1 · · · xu,m,N−1]
T is the vector of time-domain samples. The

N time-domain samples of one OFDM symbol is preceded by a

CP. The length of the CP is Ncp. Therefore, each OFDM symbol

corresponds to Ns = Ncp + N time-domain samples, where xu,m,i =

xu,m,i+N for i ∈ [−Ncp,−1]. After pulse shaping and digital-to-

analogy conversion (DAC), the Ns time-domain samples of the mth

OFDM symbol are converted into analog waveforms:

su,m (t) =
N−1∑

i=−Ncp

xu,m,iϕ (t− iTs) (D.1)

where ϕ (t) is the shaping pulse for ensuring the transmitted signal

satisfy the spectrum requirement, and Ts is the sampling interval (The

OFDM symbol duration is thereforeT = NsTs).

The relay broadcasts a beacon to coordinate the uplink

transmissions [70]. The beacon accomplishes two functions: (i) First,

it triggers simultaneous transmissions by the two terminal nodes to

meet a loose time synchronization requirement (we will elaborate on

this later). (ii) Second, it allows the two terminal nodes to estimate

CFO and compensate for it by precoding on the transmitter side in

the uplink. Specifically, each node estimates the CFO between itself

and the relay based on the received beacon signal; and then multiplies

its signal with a compensating phase term before transmission [70].

In this way, we reduce the CFO to a small residual CFO.
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D.2.2 Receive Signal

The received signal waveform at the relay can be expressed as

r (t) =
∑

u∈{A,B}

M−1∑
m=0

su,m (t−mT )⊗ hu (t) ejθu(t) + nR (t) (D.2)

where ⊗ is the convolution operator, hu (t) is the frequency-selective

channel between node u and the relay, θu (t) is the phase drift between

the relay and node u caused by the residual CFO, nR (t) is the thermal

noise from the receiver frontend modeled as a zero-mean Gaussian

random process with variance σ2
n.

We define the delay spread of a multipath channel as the delay

difference between its longest path and shortest path, and denote

the delay spread of the channel of node u by τu. Without loss of

generality, we assume the signal of the first path of node A arrives

earlier than that of node B. Let τ > 0 denote the delay difference

between the first paths of the two nodes. It can be shown [15]

that as long as the delay-spread-within-CP requirement, specified

as max {τA, τ + τB} ≤ NcpTs, is satisfied, the time-domain symbol

misalignment does not cause any negative effect on the carrier-by-

carrier PNC mapping in the frequency-domain. Note that while τA is

the delay spread of channel A and τB is the delay spread of channel

B, max {τA, τ + τB} ≤ NcpTs can be viewed as the aggregate delay

spread of the two channels. This delay-spread-within-CP requirement

can be regarded as a loose time synchronization requirement and

can be achieved using beacon triggering [15, 70] of simultaneous

transmissions by nodes A and B. Therefore, with OFDM signaling,
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the time asynchrony in PNC systems is not a critical issue. However,

the above conclusion is made under the assumption that there is no

phase drift in the system. The presence of phase drift will degrade

the system performance.

After ADC and removal of CP, the N discrete samples of the mth

received OFDM symbol are collected into a vector rm = [rm,0rm,1 · · ·
rm,N−1]

T . The frequency-domain sample vector of the mth OFDM

symbol, Rm = [Rm,0Rm,1 · · ·Rm,N−1]
T , is obtained by performing

DFT on rm. We can express Rm as

Rm =
∑

u∈{A,B}
ejΘu,mD (Xu,m) Hu +

∑
u∈{A,B}

Λu,m + NR,m︸ ︷︷ ︸
∆
=WR,m

=
∑

u∈{A,B}
ejΘu,mD (Xu,m) Hu + WR,m

(D.3)

where Θu,m is the phase drift in the mth frequency-domain OFDM

symbol of node u; D (Xu,m) = diag (Xu,m) is the diagonal matrix

with transmitted symbols Xu,m as its diagonal elements; Hu =

[Hu,0Hu,1 · · · Hu,N−1]
T is the frequency response of the channel

between node u and the relay, Λu,m is the ICI component from

node u, and NR,m is the frequency-domain noise. In (D.3), WR,m

is the ICI plus noise. In this appendix, we approximate WR,m as

a circularly symmetric white Gaussian noise with zero mean and

covariance matrix σ2
W IN . Based on (D.3), we can apply the EM-BP

algorithm to do joint phase tracking and channel decoding.
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D.3 EM-BP for OFDM PNC

In this section, we derive the EM-BP algorithm for joint phase

tracking and channel decoding in OFDM PNC systems. Define the

pair of phase drifts on the mth OFDM symbol as Θm
∆
= [ΘA,mΘB,m]T ;

the vector containing the phase drifts over all OFDM symbols as

E =
[
ΘT

0 ΘT
1 · · ·ΘT

M−1

]T ; the pair of data symbols on the ith subcarrier

of the mth OFDM symbol as Xm,i
∆
= [XA,m,iXB,m,i]

T ; and the

vector containing all the received frequency-domain OFDM samples as

R
∆
=
[
RT

0 RT
1 · · ·RT

M−1

]T . We assume that the channels {Hu}u={A,B}

are already known at the relay, which can be achieved via estimation

using the preamble symbols.

EM-BP is an iterative framework where the kth iteration consists

of a BP algorithm for channel decoding and an EM algorithm for

phase tracking.

D.3.1 BP for virtual channel decoding

With the estimate of phase drift Ê(k−1) =
[
Θ̂

(k−1)T
0 Θ̂

(k−1)T
1

· · · Θ̂(k−1)T
M−1

]T
from the k − 1th iteration, we perform BP for channel

decoding to find p
(
Xm,i

∣∣∣R, Ê(k−1), C2
)

for all m and all i, where

C2 is the code constraint imposed by a ‘virtual channel encoder’

that takes the original information source symbols from nodes

A and B {bA,j, bB,j} as inputs, and outputs {Xm,i} as coded

symbols. The BP algorithm for virtual channel decoding applies

the sum-product [17] rule on the factor graph that incorporates
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the constraints imposed by virtual channel encoding, which models

the simultaneous transmissions by the two terminal nodes [16,

21, 22]. The BP virtual channel decoding is initialized with the

probabilities p
(
Rm,i

∣∣∣Xm,i, Θ̂
(k−1)
m

)
for allm and all i as inputs. Here,

p
(
Rm,i

∣∣∣Xm,i, Θ̂
(k−1)
m

)
has a Gaussian form:

p
(
Rm,i

∣∣∣Xm,i, Θ̂
(k−1)
m

)
∝ exp

−∥∥∥∥∥Rm,i −
∑

u∈{A,B}
ejΘ̂

(k−1)
m Xu,m,iHu,i

∥∥∥∥∥
2/

σ2
W

 (D.4)

The decoding results of the BP algorithm is then fed to the EM

algorithm for phase tracking.

D.3.2 EM for Phase Tracking

We update the kth estimate for the phase drifts Ê(k) according to the

EM algorithm consisting of an E-step and an M-step [24].

E-Step:

We compute the Q function of the phase drifts E given the last

estimate Ê(k−1):

Q
(
E
∣∣∣Ê(k−1)

)
=

∑
XA,XB

log p (R |XA,XB,E)p
(
XA,XB

∣∣∣R, Ê(k−1), C2
)

=
∑
m

∑
i

∑
Xm,i

log p (Rm,i |Xm,i,E)p
(
Xm,i

∣∣∣R, Ê(k−1), C2
) (D.5)

where Xu
∆
=
[
XT
u,0X

T
u,1 · · ·XT

u,M−1

]T is the vector containing all the

symbols transmitted by node u.
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Note that in (D.5) the outputs from the BP channel decoding

{p {Xm,i

∣∣∣R, Ê(k−1), C2
)}

are used to assist EM phase tracking. To

allow "decoupled" computation of (D.5), we make a simplification

to ignore the relationship of the phase drift over symbols: that is,

we assume Θm and Θm′ are independent for m 6= m′. With this

assumption, we can rewrite (D.5) as

Q
(
E
∣∣∣Ê(k−1)

)
=
∑
m

Qm

(
Θm

∣∣∣Θ̂(k−1)
m

)
(D.6)

where Qm (·) is the symbol-wise Q function of the OFDM symbol:

Qm

(
Θm

∣∣∣Θ̂(k−1)
m

)
=
∑
i

∑
Xm,i

log p (Rm,i |Xm,i,Θm )p
(
Xm,i

∣∣∣R, Ê(k−1), C2
)

∝ −
∑
i

∑
Xm,i

∥∥∥∥∥Rm,i −
∑

u∈{A,B}
ejΘu,mXu,m,iHu,i

∥∥∥∥∥
2

×

p
(
Xm,i

∣∣∣R, Ê(k−1), C2
)

(D.7)

This decoupled expression for Q function can simplify the computa-

tion in the M-step of EM.

M-Step:

The objective of M-step is to find the variable that maximizes the

Q function defined as in (D.5). Thanks to the simplification by (D.6),

it is equivalent to finding

Θ̂(k)
m = arg max

Θm

Qm

(
Θm

∣∣∣Θ̂(k−1)
m

)
(D.8)

for each m. This is a symbol-by-symbol phase tracking process. To

solve (D.8), we use a particle-filtering [83] type method to locate the

argument that maximizes the Q function calculated in (D.7). We
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use a list of samples (called particles) and the associated weights

(the function values of these particles) to represent the Q function.

According to the weights, we re-compute a new set of particles that are

adaptively closer to the peak location, and then iterate. This method

is proposed in [84] to enable a practical message passing algorithm for

the phase estimation in a single-user single-carrier system. Here we

modify it only slightly for our purpose. The pseudo-code for particle-

filtering type method that solves (D.8) can be found in Algorithm 2,

where P is the iteration number of particle-filtering, L2 is the number

of particles and ε is the forgetting factor. In our simulations and

experiments in section D.4, we set P = 4, L = 10 and ε = 0.1.

Algorithm 2 Particle-filtering method for solving the M-step of EM

1: Input: Rm, {Hu},
{
p
(
Xm,i |R , Ê(k−1), C2

)}
;

2: Output: Θ̂
(k)
m

3: initialize the list of L2 samples as a L×L matrix Θ(0) whose (p, q)th element

is given by Θ
(0)
p,q =

[
p2π/L q2π/L

]T
for 0 ≤ p, q ≤ L− 1;

4: For l = 1 to P do

5: compute the weights ω̃p,q = Qm

(
Θ

(l−1)
p,q

∣∣∣Θ̂(k−1)
m

)
, ωp,q = γω̃p,q for 0 ≤ p, q ≤

L− 1 where γ−1 =
∑

p

∑
q ω̃p,q;

6: update the list of samples according to Θ
(l)
p,q = (1− ε) Θ

(l−1)
p,q + εΘ

(l−1) for
0 ≤ p, q ≤ L−1, where ε is a forgetting factor and Θ

(l−1)
=
∑

p

∑
q ωp,qΘ

(l−1)
p,q ;

7: End

8: Θ̂
(k)
m = arg max

Θ
(P )
p,q

Qm

(
Θ

(P )
p,q

∣∣∣Θ̂(k−1)
m

)
;

9: Return Θ̂
(k)
m .

We carry out the above EM phase tracking symbol by symbol.

After updating the phase drifts of all the OFDM symbols, we obtain

Ê(k) =
[
Θ̂

(k)T
0 Θ̂

(k)T
1 · · · Θ̂(k)T

M−1

]T
and then iterate to perform the next
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BP channel decoding iteration.

D.3.3 Initialization and Termination of BP-EM iteration

The EM mechanism can usually find the maximum likelihood (ML)

estimate of the phase upon convergence of the iterations. However,

convergence is predicated on a good initial point for the EM iterations

[47]. In this appendix, we use the least square (LS) estimation [77] of

the phases from pilot tones in the mth OFDM symbol as the initial

point Θ̂
(0)
m for all m. We denote the set that contains the indexes of

pilot tones assigned to node u by Pu. Node u just transmits known

symbols on the pilot tones indexed by Pu and null its signals on

the other pilot tones. The initial phase estimates by LS pilot-based

estimation are

Θ̂(0)
u,m = ∠

(∑
i∈Pu

X∗u,m,iRm,i

)
(D.9)

for u ∈ {A,B} and m = 0, 1, · · · ,M − 1, where ∠ (·) is the angle of

a complex signal, (·)∗ is the conjugate operator.

We repeat BP channel decoding and EM phase tracking iteratively.

When the number of iterations reaches a preset maximum limit K,

we terminate the BP-EM algorithm after obtaining the final phase

estimate Ê(K) =
[
Θ̂

(K)T
0 Θ̂

(K)T
1 · · · Θ̂(K)T

M−1

]T
. Substituting Θ̂

(K)
m into

(D.4) to replace Θ̂
(k−1)
m for all m and all i, we carry out a final round

of BP channel decoding to obtain p
(
bA,j, bB,j

∣∣∣R, Ê(K), C2
)
for all j.
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Then, the network-coded source message is obtained by

̂bA,j ⊕ bB,j
= arg max

b

∑
bA,j, bB,j :

bA,j ⊕ bB,j = b

p
(
bA,j, bB,j

∣∣∣R, Ê(K), C2
)

(D.10)

After that, the relay channel-encodes the network-coded source

message and broadcasts the channel-coded message to nodes A and

B in the downlink phase, as illustrated in Fig. D.1

D.4 Simulations and Experimental Results

This section presents computer simulations and experimental results

to evaluate the proposed algorithm. The frame format used is the one

proposed in [15], a slightly modified version of 802.11 frame format.

The DFT size is N = 64. The CP length is Ncp = 16. One OFDM

symbol includes Nd = 48 data tones and Np = 4 pilot tones. Each

terminal node transmits known symbols on two of the four pilot tones,

and nulls the signal on the other two pilot tones.

We adopt BPSK and QPSK modulations and the regular Repeat

Accumulate (RA) channel code [49] with code rate 1/3. We adapt

the virtual channel decoder for PNC developed in [22] for our purpose

here (see section D.3). For each round of virtual channel decoding,

we perform 20 BP iterations within the channel decoder. The signal-

to-noise ratio (SNR) is defined as Eb/N0, where Eb is the energy per

source bit.

We evaluate the mean square error (MSE) of ejΘ̂u,m : E
∥∥∥ejΘ̂u,m−



APPENDIX D. JOINT PHASE TRACKING AND CHANNEL DECODING FOR OFDM PNC:
ALGORITHM AND EXPERIMENTAL EVALUATION 151

ejΘu,m
∥∥2, and the BER of the network-coded messages. We investigate

the performance of the proposed EM-BP method for joint phase

tracking and channel decoding, benchmarked against traditional

disjoint pilot-based phase tracking and channel decoding. The phase

tracking of the traditional method employs the LS estimation given

by (9).

D.4.1 Simulation Results

We investigate two channel models. The first is the flat Rayleigh

fading channel. The second is a frequency-selective Rayleigh fading

channel. We model the frequency-selective channel as a tapped delay

line channel hu (t) =
∑Lu−1

l=0 αu,l× δ (t− lTs), where Lu is the number

of multipaths, αu,l is the multipath gain. We assume that all the

multipath gains are induced by independent Rayleigh fading, and that

the power delay profile of the paths satisfies E
(
|αu,l|2

)
∝ exp (−cl)

and
∑Lu−1

l=0 E
(
|αu,l|2

)
= 1, where c is the power decay factor. The

power decay factor determines the envelope of the frequency-domain

channel responses. The larger the power decay factor, the flatter

the frequency-domain channel responses (as c → ∞, the channel is

reduced to flat fading). In our simulations, we change the value of

c to investigate its impact on performance. We set the numbers of

multi-paths for nodes A and B to LA = LB = 4. The channel gains

are perfectly known in the simulations. For every pair of frames, the

normalized CFOs that cause phase drifts on our signals are generated

from a uniform distribution over the range [−0.5δ, 0.5δ], where δ is
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Figure D.2: The simulated MSE results
of EM-BP in frequency-flat channel.
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Figure D.3: The simulated BER results
of EM-BP in frequency-flat channel.

the CFO attenuation factor. Since we focus on the residual CFO after

precoding, we set a small value of δ = 0.1.

Fig. D.2 presents the MSE results and Fig. D.3 presents the BER

results under the flat fading channel. From the MSE results for the flat

fading channel in Fig. D.2, we clearly see that the EM-BP algorithm

gives more accurate channel estimation than the traditional pilot-

based phase tracking. The estimation accuracy in EM-BP improves

progressively with the number of iterations. As for the BER results

of flat fading channel in Fig. D.3, we see that there is a 2 dB gain by

EM-BP PNC just after the first EM iteration (K = 1). There is a

3dB gain after EM has converged (K = 7).

Fig. D.4 and Fig. D.5 respectively present the MSE results and the

BER results of the frequency-selective channel with the power decay

factor c = 1. We see that the performance trends for the frequency-

selective channel are similar to that for the flat fading channel.

We also investigate the impact of the power decay factor. The
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Figure D.4: The simulated MSE results
of EM-BP in frequency-flat channel.
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Figure D.5: The simulated BER results
of EM-BP in frequency-selective chan-
nel.
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Figure D.6: The simulated BER results
of EM-BP in frequency-selective chan-
nel.
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Figure D.7: The simulated MSE results
of EM-BP in frequency-selective chan-
nel.
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BER and MSE results in the frequency selective channel with different

power decay factor (c = 1/4 and c = 1) are presented in Fig. D.6 and

Fig. D.7, respectively. From Fig. D.6, we see that the BERs of the

traditional method and the EM-BP method in the channel with larger

c are better, since the channel now is flatter. Regardless of c, the gain

in BER by EM-BP still holds. One interesting observation for the

MSE results in Fig. D.7 is that the MSE of EM-BP is more robust

against smaller c. With smaller c, the channel is more frequency-

selective. If the frequency-domain channels on the pilot tones are

in deep fades, the traditional pilot-based phase-tracking will not be

accurate. Since the EM-BP method employs both data and pilots

tones for phase-tacking, it is less affected by deep fades of pilot tones.

D.4.2 Experiment Results

Going beyond simulations, we also evaluate the performance of the

proposed method experimentally. We use the data collected from a

prototype of the OFDM PNC system [70]. The prototype is built on

the USRP N210 hardware [79] and the GNU Radio software with the

UHD hardware driver [80]. To emulate a TWRN system, we deployed

three sets of USRP N210 with XCVR2450 boards [80] in our lab. The

relay node R uses 802.11 channel 1 (2.412GHz) to poll the two end

nodes to transmit together at channel 11 (2.462GHz). The system

bandwidth is 4MHz. The use of 4 MHz bandwidth rather than the

20MHz full 802.11 bandwidth is due to the limitation of the USRP

hardware.
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Figure D.8: The experimental BER results.

We performed controlled experiments for different SNRs. The

receive powers of packets from nodes A and B at the relay

were adjusted to be balanced (power imbalance within 1dB). The

relay transmits 100 beacons to trigger 100 simultaneous uplink

transmissions for each fixed SNR. After the terminal nodes received

the beacon from the relay, they estimated the CFO from the beacon

(beacons consist of 2 long training symbols as defined in 802.11

format). Then, they performed CFO precoding on the signals before

the uplink transmissions. Finally, the relay received the simultaneous

transmissions from the two nodes and converted it to digital data

to be processed by the proposed method. In the experiments, the



APPENDIX D. JOINT PHASE TRACKING AND CHANNEL DECODING FOR OFDM PNC:
ALGORITHM AND EXPERIMENTAL EVALUATION 156

channels between the relay and the two nodes were estimated using

the orthogonal preambles of the packets [15,70].

The experimental BER results are shown in Fig. D.8. In general,

we observe similar performance trends as our simulation results: 2-3

dB gain by the EM-BP method. In particular, the BER performances

of our experiments are closer to the flat-fading channel simulations

results. The reason is that the bandwidth used in our experiments (4

MHz) is not large enough for frequency selectivity to come into play.

D.5 Conclusion

We have investigated the use of an EM-BP algorithm to solve the

problems of phase tracking and channel decoding in OFDM PNC

systems jointly. The main principle of our method is to use the soft

information on the data produced by channel decoding to improve the

performance of phase tracking, and to use the better phase tracking

results to improve channel decoding, in an iterative manner. Our

simulation and real experiment results show that the proposed method

can obtain 2 dB gain after the first iteration, and around 3 dB gain

after convergence of the iterations.

2 End of chapter.
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