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Abstract

We study problems related to graph expansions, which measure how well a graph is
connected. Various practical problems can be modelled as finding a small non-expanding
subset of vertices, and this is also closely related to the unique games conjecture in
the theory of approximation algorithms. Hence our study of graph expansions is both
practically and theoretically motivated.

We present our new results about graph expansions. The results include the design
and analysis of algorithms for finding non-expanding subsets, hardness of approximation
results and algorithmic applications of expanders:

e We prove a generalization of Cheeger’s inequality using higher eigenvalues, pro-

viding a better analysis of the spectral graph partitioning algorithm.

e We design a local graph partitioning algorithm using random walks on graph,

matching the performance guaranteed by Cheeger’s inequality.

e We give a tight lower bound for the expansion of graph powers and use it to prove

hardness results for small set expansions.

e We use expanders to design fast and simple algorithms for computing matrix ranks,

significantly improving over previous works.
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Chapter 1

Introduction

The expansion of a graph is a robust measure on how well the graph is connected.
Roughly speaking, the expansion of a subset of vertices is the ratio between the size of
the boundary and the size of the subset, and the expansion of a graph is the minimum
expansion over all small subsets. Hence, if the expansion of the graph is large, then every
small subset of vertices expands well. Various definitions of graph expansions arise with
different measures on the sizes, and most of them are related to each other. In this
thesis, the notion of expansion we study is mainly the graph conductance. It is a well
studied notion. For simplicity, in this chapter, we consider only d-regular unweighted
simple graphs, of which the conductance is defined by
: 10(5)]
N = sev Bl dls]
where §(S) is the set of edges crossing S and V — S. The graph conductance is an

important measure on graphs in many aspects.

Clustering: If we define a graph by putting an edge between each pair of similar objects,
then the sets of small conductance are intuitively corresponding to clusters. Find-
ing clusters is a fundamental problem with applications in various areas, including
image segmentation [65, 71], data clustering [10, 54, 75], community detection [17]
and VLSI design [30].

Mixing time: The mixing time of a graph is the number of steps needed for a random
walk starting from an arbitrary vertex to generate a distribution close to the
uniform distribution. This is useful in analyzing random sampling algorithms for

combinatorial objects, like computing the permanent and the volume of a convex



object [66, 26]. Tt is proven that the mixing time is nearly inverse polynomial to
the conductance [38]. Therefore, one way to upper bound the mixing time is by

lower bounding the conductance.

Expanders: Expanders are graphs where every subset of vertices has large expansion.
They are useful objects with applications in derandomization, error correcting
codes, extractors and pseudorandom generators [34]. Sparse expanders with linear
number of edges can be efficiently constructed, and some of the fastest combinato-
rial algorithms use sparse expanders as gadgets. For example, those expanders can
be used to replace high degree vertices in a graph so as to reduce the maximum

degree while maintaining the graph connectivities [18].

Small set expansion: Raghavendra and Steurer [53] proposed the small set expansion
(SSE) conjecture, which roughly states that it is NP-hard to determine whether
all small subsets of a graph are expanding well or there is a small subset that is
barely connected to the rest of the graph. They showed that the SSE conjecture
implies the unique games conjecture (UGC) and is implied by the UGC with
mild assumptions. Since the UGC is an important conjecture in the theory of
approximation algorithms, this connection raises theoretical interest in studying

the complexity of approximating graph expansions.

1.1 Main results

In this thesis, we present our new results about graph expansions. We prove a general-
ization of Cheeger’s inequality using higher eigenvalues, providing a better analysis of
the spectral graph partitioning algorithm. We study random walks using the approach
by Lovasz and Simonovits to design and analyze a local graph partitioning algorithm.
We also use their approach to answer a basic graph theoretical question, which can be
applied to obtain a hardness result for approximating graph expansions. As an appli-
cation, we use expanders to design fast and simple algorithms for computing matrix

ranks.

Chapter 3 [43]: Finding a subset of vertices attaining the conductance of the graph is
in general computationally intractable, so we aim at finding a good approximation
S such that |S| < |V|/2 and ¢(S) = [0(5)|/(d]S]) = ¢(G) in polynomial time.
The spectral graph partitioning algorithm, Algorithm 1, is the first and most

commonly used heuristic in finding such a set. Its performance is guaranteed by



Cheeger’s inequality [11, 1] (see Section 2.2), which states that

A2

? S ¢(G) S V 2)\27

where A9 is the second smallest eigenvalue of the Laplacian matrix of G, and in the
proof it shows that the spectral partitioning algorithm output a set of conductance
at most v/2\y. This gives an O(1/+/¢) approximation algorithm for finding the set
of smallest conductance. Since 1/Ay and the mixing time of the graph only differ
by at most a multiplicative logarithmic factor, Cheeger’s inequality also relates

the conductance and the mixing time (see Subsection 2.3.1).

In this work, we prove that for any graph G and any k > 2,

Yo -o(2).

The original Cheeger’s inequality only guarantees constant approximation when
the conductance of the graph is constant, and is unable to explain the empirical
performance of the spectral partitioning algorithm. We show that the spectral
partitioning algorithm works well when A is large for a small k. This gives a
theoretical justification for the good performance in practice. For example, in the
problem of image segmentation, if an image contains only k interesting objects,
then Agi1 would be large and our result proves that the spectral partitioning

algorithm performs well.

Chapter 4 [41, 42]: Lovéasz and Simonovits [51] introduced a combinatorial approach
to study the relation between the conductance and the mixing time. For a prob-
ability distribution p : V' — R>( over the vertices, let C'(p,z) be the cumulative
sum of decreasingly sorted probabilities. More precisely, suppose we label the

vertices such that p(ui) > p(uz) > -+ > p(uy,). Then we define

Clp,x) = plus),
i=1

for integral z. Note that when the distribution p is uniform, then the function
C(p,z) = x/n. Lovéasz and Simonovits give an upper bound on C after the ¢-
steps lazy random walks. They prove that for any initial disbution p, the function

satisfies

¢<G>2>t7

SC(th,w)Ser\/E(l— S

S8
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where W is the lazy random walk matrix. This shows that the distribution con-
verges to uniform after lazy random walks, and the rate of convergence depends

on the conductance.

Local graph partitioning: We present a random walk based local graph parti-
tioning algorithm. Given a graph G and a parameter k, suppose there is a subset
S C V of size at most k with ¢(S) < ¢, then we can find a set S” with conductance
O(y/#/€) and of size O(k'*€). The algorithm can be implemented locally in the
sense that given a good starting point, we are able to find S’ in O(k'*€/¢(G)?)
time. This runtime does not depend on the size of the original graph and this
property is desirable when the graph is massive. The performance guarantee of
our algorithm matches Cheeger’s inequality and we restrict the size of the output
set in addition. We note that if we can output a set of size O(k) with the same

guarantee, then we disprove the small set expansion conjecture.

We analyze the random walks using the function introduced by Lovéasz and Si-
monovits. Compared to the spectral algorithms, this combinatorial approach is
better suited here, since local information of the graph is enough for this approach

to give bounds.

Hardness amplification: Assume G is lazy and regular, and let G* be the graph
represented by the transition matrix of the t-steps random walk on G. It is a
natural graph theoretical question to ask for the relation between the conductance
of G' and that of G. By Cheeger’s inequality, it is easy to see that ¢(G!) =
Q(tgp(G)?). We prove that ¢(G?) = Q(Vté(G)), and show that similar relation
holds for the small set expansions. This work is motivated by the gap amplification
result for small set expansion by Raghavendra and Schramm [57]. They show that
if it is hard to distinguish whether a graph has a small set of conductance ¢ or all
small sets are of conductance at least w(+/€), then it is also hard to distinguish
whether a graph has a small set of conductance € or all small sets are of conductance
1/2.

We use the combinatorial approach introduced by Lovasz and Simonovits as our

main tool.

Chapter 5 [17] The rank of a matrix is the maximum number of independent columns
of the matrix and it is a basic measure of the complexity of a matrix. Finding the
rank is a fundamental problem in the field of computational linear algebra. It also

has applications in graph algorithms and combinatorial optimizations: some of the



fastest algorithms for graph matchings [53, 32], graph connectivities [16, 61, 18]

and matroid optimization problems [32, 19] are based on computing the matrix

rank and finding the corresponding linear independent columns.

For a matrix M € F"*™ we give a randomized algorithm to compute the rank r» =
rank(M) of M as well as a set, of r linear independent columns in O(nnz(M) + %)
field operations, where nnz(M ) is the number of non-zeros in M and w < 2.373 is
the matrix multiplication exponent. This improves the previous best known bound
of O(n?r*“=2) [70]. Surprisingly, our main tool for this linear algebraic result is a
sparse probabilistic vertex expander which can be constructed in linear time. We
use the expander to efficiently compress the n x n matrix into O(r) x O(r) matrix,
showing that the rank preserves with high probability because of the expanding
property.



Chapter 2
Background

In this chapter, we present background materials for the thesis. We first give notation
and definitions for graphs, review some basic linear algebra, and present basic spec-
tral graph theory which relates combinatorial graph properties to the eigenvalues, in
Section 2.1. Then we present Cheeger’s inequality, which provides a fundamental con-
nection between graph expansion and the eigenvalues, in Section 2.2. After that, we
analyze random walks on the graph, and bound the mixing time by the eigenvalues and
the conductance in Section 2.3. Finally, we talk about some previous works on spectral
graph theory with higher eigenvalues and algorithms for graph partitioning problems,

in Section 2.4.

2.1 Spectral graph theory

In this section, we first introduce notation and definitions for graphs in Subsection 2.1.1
and review some basic linear algebra in Subsection 2.1.2. Then we present basic spectral
graph theory in Subsection 2.1.3. Finally, we set up some notation conventions for the

whole thesis in Subsection 2.1.4.

2.1.1 Graphs

A weighted graph G = (V,w) consists of an n-element set of vertices V = V(G), and a
weight function w : V' x V' — R>¢, which assigns a non-negative real value to each pair
of vertices. If the weight function w satisfies w(u,v) = w(v,u) for any v € V,v € V,
then we call this graph undirected. In this thesis, we only consider undirected graphs.
An edge e = {u,v} is an unordered pair of vertices such that w(u,v) > 0. We say

that e = {u, v} is incident to the vertices u and v, and call u and v the end-vertices of



e. We also say that e connects the vertices u and v, and that u is adjacent to v. We
use £ = E(G) := {{u,v} | u € V,v € Vw(u,v) > 0} to denote the set of all edges

LA path is a finite sequence of vertices

and m = |E| to denote the number of edges
(ug,uq,...,ux) such that {u;—1,u;} is an edge for any ¢ = 1,2,..., k, and the length of
this path is k. We say that this path connects ug and ug. A graph is called connected if
for any two vertices u and v, there exists a path connecting v and v. A graph is called
disconnected if the graph is not connected. A self loop is an edge that is incident to
only one vertex. If a graph does not contain any self loops and w(u,v) = 1 for all edges
e = {u,v}, then we call it a simple unweighted graph. The degree deg(u) of a vertex
u, defined as deg(u) := > o, w(u,v), is the sum of the weights of the edges incident
to u. A graph is called regular if the degrees of all the vertices are the same, and is
called d-regular if the degrees all equal to d. The volume vol(S) of a subset of vertices

S, defined as vol(S) := ) g deg(u), is the total degree of the vertices inside S.

The set of cut edges §(S) of a subset S, defined as §(S) := {{u,v} : u € S,v & S},
is the set of edges crossing S and V —S. The cut value of a subset S is denoted as
w(0(S)) := Y ces(s) wle), which is the total weight of the cut edges. Note that a graph
is disconnected if and only if there exists a non-empty proper subset S C V such that
w(d(S)) = 0. The neighbor set N(u) of a vertex u is the set of vertices adjacent to w,
and the neighbor set N(S) of a subset of vertices S C V is the set of vertices adjacent

to at least one vertex in S.

Graph expansions

Graph expansions are robust measures of how well a graph is connected. There are

different notions of graph expansions.

The edge expansion of a subset of vertices S C V, defined as heqqe(S) := |0(5)[/|S5],
is the ratio of number of cut edges to the size of the set. The edge expansion of the
graph is defined as

hedge(G) - min hedge(.S)-

STV, 1<IS|<n/2

The sparsity of a subset of vertices S C V', defined as sp(S) := |5(S)|/(|S||V — S|),

is the ratio of the number of cut edges to the maximum number of possible cut edges of

Tt is more common to define the edge set F first and assign weights only on the edge set. However,
in our study, we mostly only consider the weights and the edge set is less important, so we prefer to
define in this way.



S. The sparsity of the graph is defined as

sp(5),

sp(G) = min sp(S) = min
SCV,1<|S|<n—1 SCV,1<|S|<n/2
where the last equality holds because if S attains the minimum with [S| > n/2, then
V — S also attains the minimum since §(S) = §(V — S). Note that n times the sparsity
of a graph and the edge expansion of the graph are within a multiplicative factor of 2.
This is due to any for |S| < n/2,

5SS _ IS
SIS "ISIv=s] =7 ]

For general weighted graphs, it is more natural to include the weights in the definition
of the expansion. The conductance of a subset of vertices S C V, defined as ¢(S5) :=
w(6(S))/ vol(S), is the ratio of the total weight of cut edges to the volume of the set.
The conductance of the graph is defined as

G) = min S).
¢( ) SQV,O<V01(S)§V01(V)/2¢( )
Note that for unweighted d-regular graphs, the notions of the edge expansion and the
conductance are essentially the same, differing by exactly a factor of d.
In this thesis, we will mainly study the conductance and its generalizations. One
generalization is about the volume of the sets we consider. For ¢ € (0,1/2], the small

set conductance is defined as

Q) = i S).
¢6( ) SCV, 0<V(I)ﬁl§%§6vol(‘/) ¢( )
Note that ¢(G) = ¢;/2(G) by the definition.
Another generalization is about the number of parts we partition into. For 1 <k <n

and the k-way conductance is defined as

G)= min maxo(S;),

o4 (G) S1,82,.,k i P(5i)

where the minimum is over all non-empty disjoint subsets of vertices 51, Ss, ..., Sk. Note
that ¢(G) = ¢2(G) by the definition. We can also define the expansion by considering
only the partitions, which means that we also require UleSi = V. The expansion under
this definition differs from the k-way conductance by at most a factor of k [15].

There are also definitions for the expansion based on vertices. The vertex expansion



of a subset of vertices S C V, defined as hAyertex(S) := |V (S) —S|/|S], is the ratio of new

adjacent vertices to the size of the set. The vertex expansion of the graph is defined as

hvertex (G) = min hvertex (S) .
SCV,1<[S|<n/2

2.1.2 Eigenvectors and eigenvalues

In this subsection, we give definitions regarding spectrum of matrices and present some
of its basic properties. Unless otherwise specified, all vectors we consider are column
vectors.

For a real matrix M € R™ "  the eigenvalues and their corresponding eigenvectors
are the pairs \; € C and v; € C™ that satisfy v; # 0 and Mv; = A\jv;. In this thesis, we
will focus on real symmetric matrices. For those matrices, we can choose n eigenvectors
v; such that they are real, orthogonal to each other, and with unit norm [35]. Their
corresponding eigenvalues \; are also real. The multiset of these eigenvalues is called the
spectrum of M. Throughout this thesis, when we say that v; and \; are the eigenvectors
and eigenvalues of a real symmetric matrix, we are referring to a set of n unit real
orthogonal eigenvectors. We also call this set of eigenvectors the eigenbasis, and we can
write any vector z € R” into eigenbasis representation = Y | ¢;v;. The matrix M

can be written as

M = VTAV = Z )\iUiUT

79

i=1
where
M0 0
. | | 0 A 0
V=1 v v ... v, |, and A =diag(Ai,Aa,..., \p) =
0
. |
0 O A

n

The decomposition M = VTAV is called the eigendecomposition. Note that V is or-
thogonal, which means VVT = VTV = I, and thus M* = VTA*V for any positive
integer k. The equation M* = VTA*V is naturally generalized to any real k where A*
is defined to be diag(A\¥, A5, ..., A\F). This is well defined for any real k& when \; > 0 for
all 4.
The Rayleigh quotient of a non-zero vector z € R" is defined as
B T Max

Ry (x) = p




This concept is important in the study of the spectrum of the matrix. Suppose the

eigenvalues are sorted in ascending order: A\; < Ao < ... \,. Then
A= min Ruy(x
! z€R™, z#0 M( )’

and

= R .
n=  max, Ru(w)

The optimums are attained when z is the corresponding eigenvector. The reason is
simple. We write x = > " | ¢;v; into eigenbasis representation. Then 27 Mz = Y7 | ¢?\;

(2
and 2Tz = Y"1 | ¢2. Now

A = Z?:l 012)\1 < Z?:l 612)\1 < Z?:l 012)‘11 -
= < < — A,
SIS S S

Therefore \| < mingegrn, 20 Rar(x) and A, > max,ern, 220 Ras(x). Since optimums are
attainable by the corresponding eigenvectors, the equalities hold. The equalities can be

generalized to the k-th smallest or largest eigenvalues by Courant-Fischer formula:

e = i R
F dimI?VlVr;:k xenwlffif;éo (@),
and

A—ki1 = Mmax min Ry (x
LT Gim(W) =k 2eW, 20 (z),

where the optimums are over all k& dimensional subspaces of R®. The optimums are
attained by W = span{vy, ve,...,vx} and W = span{v,, vp_1, ..., Un_g+1} respectively.

Another commonly used generalization is the following:

A = min R (x), (2.1)

xrespan{vi,va,...,vp_1}+, 2#£0

and

A = max Ry (x). 2.2
ok zespan{vn,Un—1,...,Un—kt2 -, 20 M( ) ( )

Here W+ denote the subspace {z | (z,v) = 0 for any v € W}. These equalities can be
verified by considering the eigenbasis, using a similar approach as in the case k = 1.

The optimums are attained by the k-th smallest or largest eigenvectors.

A matrix M is called positive definite if \; > 0, or equivalently z” M > 0 for all
x # 0. It is called positive semidefinite if A\; > 0, or equivalently 27 Mz > 0 for all .

10



Note that a positive definite matrix is invertible and its inverse is M~1 = VTATIV =
S (1/A)vwl. A positive definite matrix naturally induces a Hilbert space over R™

with the inner product (z,y)ys = 27 My, and hence an induced norm ||z||y; = VaT Mz.

The generalized Rayleigh quotient Rz n(x) of a vector « with respect to a pair of
matrices M and N is defined to be #7 Mz /(2T Nz). When N is positive definite, we can
get similar equalities for generalized Rayleigh quotient as those for Rayleigh quotient.
Let M = N~Y2MN-1/2 and let A; and ©; be the eigenvalues and eigenvectors of M.

We have the Courant-Fischer formula for generalized Rayleigh quotient:

A = min max Rm(Z)
dim(W)=k Z€W, #£0
g’ N-Y2MN-12

~T.i'

= min max
dim(W)=k €W, #+£0 z

By substituting © = N~Y2% and W = N~'/21/, we have

\ ) T Max
r = mmin max
dim(W)=k zeW,z#0 (N1/22)T N1/2g
. T Max
= min max

dim(W)=k zeW,z£0 2T Nx
= min max Ry n(zx
dim(W)=k zeW,z£0 (z),

and similarly,

M—k+1 = Inax max Ruyn(x).
PR (W) =k zeW, a0 0 (z)

Let v; = N~Y/2¢;. We call these \; and v; the generalized eigenvalues and eigenvectors
of M with respect to N2. Note that v; are also the (right) eigenvectors of N~ M with

?Do not confuse with the usual definition of generalized eigenvalues and eigenvectors of a single
matrix M, which satisfy the equation (M — X; - [an)kvi = 0 for some integer k > 0.

11



eigenvalue \;. Equation 2.1 and Equation 2.2 can also be generalized as follows:

A = min Rm(Z)
Zespan{d1,02,...,05_1 }+, A0

FIN-12MN—1/25

= min

FER™, (F,01)=(F,02)="=(F,k_1)=0, F£0 Tz

. T Mx

= min Ti

e=N=1/25€R", (z,01) N=(z02) N="=(z,05_1)n=0,2£0 T N
= min Rm,n(x), 2.3
z€R", (z,v1) y=(x,v2) N="=(z,vk—1) N=0, z#0 ( ) ( )

and similarly,

A —k+1 — max RMNJJ. 2.4
i TER™, (x,0n) N=(T,Vn—1) N="=(T,0n _g42) N=0, z#0 N (@) (24)

The optimum can be attained by v and v,_g11 respectively.

2.1.3 Graph expansions and eigenvalues

Spectral graph theory connects combinatorial graph properties and the spectrum of
matrices naturally associated with the graph. In this subsection, we give definitions and

present basic spectral graph theory.

Definitions

Eigenvectors and eigenvalues of graphs: We label the vertices from 1 to n, or
V = [n]. The adjacency matrix A = A(G) € R"*" of a graph G is defined such that
A(i,j) = w(i,j) for all i € V| j € V. The degree matrix D = D(G) € R™ " of a graph
G is a diagonal matrix with A(7,7) = deg(7). The Laplacian matrix L = L(G) is defined
as L = D — A. The normalized adjacency matrix and normalized Laplacian matrix are
defined as A = D"Y2AD" Y2 and £ = DY2LD V2 = [, ., — A respectively. Note that
both A and L are real symmetric, and so they have real eigenvalues and eigenvectors.
Let «; and 9; be the eigenvalues and eigenvectors of A. We assume «; are sorted in
decreasing order, or a7 > ag > --- > ay. Note that 9; are also eigenvectors of £ with
corresponding eigenvalues 1 — ;. We let \; = 1 — «; be these corresponding eigenvalues
and hence they are sorted in increasing order. The spectrum of a graph is defined as the
multiset {A;}7 ;. We let v; = DY 27; be the generalized eigenvectors of L with respect
to D and call them the eigenvectors of the graph G. Note that (v;,v;)p = (05, 7;) and
hence |lv;||p = 1. These eigenvectors of the graph will be used frequently throughout
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the thesis. We remark that v; are (right) eigenvectors of D~1L, satisfying
D7 'Lv; = D'LD™ V%5, = D7V N0, = N

Similarly, (Dv;)T are left eigenvectors of D~'L, satisfying (Dv;)T D™'L = X\;(Dv;)T.
Also since D~'Lxy = 0, we can always assume v; = xy/1/vol(V).

Sweep: The support supp(x) of a vector x € R", defined as supp(z) = {i | z(i) # 0}, is
the set of positions of non-zeros in . The level sets of a vector x € R™ are the subsets of
vertices in the form of Ss; = {i | (i) > t} or Sy = {i | (i) < t} for some t € R. Note
that for any vector z, there are at most 2n level sets. The sweep conductance @gweep ()

of a vector z is define as

swee = mi i S s i S .

Cb p(l') i {tGR, vol(SIiltl)ngvol(V)/Z Qb( >t) tER,vol(S’rftl)Iévol(V)/Q Cf)( <t) }

It is the minimum conductance over all level sets with volume not more than half the
total volume. We use ¢gsweep(G) = Psweep(v2(G)) to denote the minimum conductance

over all level sets of the second eigenvector of G.

Energy: The energy of a vector z € R", defined as £(z) = >,y jey i; w(i, 5)(2(4) —
x(7))?, is the weighted squared sum of the difference of their pointwise values. For
1 <i<j<n,let L;; € R"*" be the Laplacian matrix of a single edge {4, j}, which
means that L; j(i,4) = L; j(4,7) = 1, L; j(¢,7) = L; j(j,4) = —1, and all the other entries
are zeros. Note that L =3,y .oy, w(i, j)L;; and 2T L; o = (2(i) — 2(j))?. Hence

the energy can be written as

Ex)= > w6 -2()?= >, wija’Lijz=a"Le. (25)

1€V, jeVv, i<y 1€V, jeV, i<y

Also, this shows that L is positive semidefinite as w(i,j) > 0.

Rayleigh quotient of graphs: For a weighted graph G = (V,w) with deg(i) > 0 for
all i € V, the Rayleigh quotient R (z) of a vector z € RV with respect to the graph G
is defined as

ol'Lr  E(x)

Rg(x) = RL,D(«T) = = .
v"Dxlz]|3,

The characteristic vector xs € {0,1}V of the subset S C V is defined by xg(i) = 1 if
and only if ¢ € S. The Rayleigh quotient of the characteristic vector is equal to the

13



conductance of S:

Cfs) | w(s)  w(e(s)
RalXs) = 158 = Shesdeg®) — vol(s) — )

Here E(xs) = w(4(9)) since the edges contributes to the energy are exactly those across
Sand V - S.
Basic results

We end this subsection with several basic properties on the graph spectrum. We assume
the graphs have positive degrees so that the Rayleigh quotients are well defined. First

we bound the range of the spectrum.
Fact 2.1 ([22]). The spectrum of the graph satisfies 0 = A\; < Ag <--- < A, < 2.

Proof. By Equation 2.3, we have

A1 = min R p(z) = min £lz)

>0
z€RY zerV |22 T 7

since both £(z) and ||z||% are non-negative. Moreover £(z) = 0 can be attained by
the non-zero constant vector xy. Therefore Ay = 0. For the upperbound A, < 2, we
consider the matrix N' = I,,x, + A instead. Let 81 > 82 > --- > 3, be the eigenvalues of
N. Note that 8; = 2— \; for all i since N = 21,5, — £. Since N' = D~/2(D+ A)D~1/2,
by Equation 2.4, we have

= min R T
Bn, Inin D+A,D(T)

21(D + A)zx
= mimn ——-—
zerV T Dz
_ Yievjevie; (i, 1)(x(0) + 2(5))?
— min
z€RY 2T Dx

>0,

where the last equality holds by similar argument as Equation 2.5. Hence we have
An=2—0, <2 O

We can check the connectivity of a graph by examining its spectrum.

Fact 2.2 ([22]). A graph G is disconnected if and only if Ay = 0.
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Proof. We first show that G is disconnected implies Ao = 0. If G is disconnected, then
there exists a non-empty proper subset S C V such that w(6(S)) = 0. Consider the
vector space W* = span{xg, xv—s}. Since S is a non-empty proper subset, dim(W) = 2.

For any vector z € W*,

E@)= Y wi,je@)—x(j)’

i€V, jEV,i<y

= Y wi, )@@ —x()? + > w(i, j)(x (i) — x(j))?
i€8,j€S,i<j i€V -8, jEV—S,i<j

=0,

where the second equality holds since w(i,7) = 0 if ¢ and j are on different sides, and
the last equality holds since z(i) = z(j) if 7 and j are on the same side. By the Courant-

Fischer formula,

A2 = min max Rpp(z) < max £lz) =
dim(W)=2 zeW,z#0 zeW*z20 ||z|)%

Since Ao > A1 = 0, we have Ao = 0.

Next we show that Ao = 0 implies G is disconnected. Suppose to the contrary that
G is connected. Then we will see that £(z) = 0 implies z(i) = z(j) foranyi € V, j € V.
Otherwise, we consider any path (ug = 4,u1,...,ux = j) and find the first ¢ such that
x(ug—1) # x(uz). The edge {ur—1,us} contributes strictly positive energy to £(z) and
violates our assumption that £(x) = 0. Hence £(x) = 0 if and only if = = ¢yy for some
constant ¢. Let W* be the subspace attaining the minimum in the Courant-Fischer
formula Ay = mingimw)—2 Maxzew,e0 Rr,p(z). Since dim(W*) = 2 and hence W*

contains a vector x # cyy, we conclude that

E(x)

max 2
zeW*, x#0 ||J)HD

O]

We remark that the same argument can be extended to show that G has at least k
connected components if and only if Ay = 0.
Next we present a lower bound on the conductance by the second smallest eigenvalue

of G. This is the easy side of Cheeger’s inequality.

Fact 2.3 ([1]). We have A\2/2 < ¢(G).

15



Proof. Let v; be the eigenvectors of G. Note that v; can be chosen as xy /4/vol(V) with
A1 = 0, since E(xy) = 0. Here the y/vol(V) is a normalizing term so that ||vi]p = 1.
By Equation 2.3, we have

! Lz . ol L

Ay = min —_— = min —_—
z€R™ (x,v1) p,x#0 xT Dz z€R™, Y., deg(i)z(1)=0,x#0 T Dx

Now let S be the set such that vol(S) < vol(V)/2 and ¢(S) = ¢(G), and let

{(Xs;xv)D o vol(5)
vol(V) XV = XS vol(V)XV'

= x5 — (XS, V1)pV1 = X§ —

Then (z,v1)p = 0 and hence

2T L

2T Dz’

Note that x only has two values: z(i) = 1 — vol(S)/vol(V) when ¢ € S and z(i) =
—vol(S)/vol(V) otherwise. Since (i) — x(j) = 0 if {i,5} & §(S) and z(i) — z(j) = £1

otherwise, we have

A2 <

eTLe= ) w(i,j)(z@) —z()* = Y wle) =w(5(S)),

1eV,jeV,i<j e€d(S)

On the other hand,

2Dz = Z deg(i)z(i)>

eV
, vol(S)\? [ vol(S)\?
=) deg(i)|1— + deg(i)
2 ) 2 (i)
_ vol(S)(vol(V) — vol(S))? + vol(V — S) vol(5)?
B vol(V)?2
_ vol(S) vol(V — 9)
vol(V)
>V01(S)

where the last inequality holds since vol(V — S) = vol(V') — vol(S) > vol(V)/2. Com-

bining the inequalities, we have
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This completes the proof. ]

Finally, we show that Ax have to be small if we have k disjointly supported vectors,

each with small Rayleigh quotient.
Lemma 2.1 ([43]). Suppose x1,x,...,1 are vectors in RY such that supp(z;) N
supp(z;) =0 for any i # j, then

A < 2max Ra(z;).
i€[k]

Proof. By the Courant-Fischer formula,

A = min max Rg(z) < max Ra(z).
k dim(W)=k zeW,z#£0 G( ) " zEspan{z1,x2,...,x} },x#0 G( )
We will show that for any « = Zle cizi € span{z1, T2, ..., 7k}, Ra(r) < 2max;ey Ra (i)

This would complete the proof by the formula.

First we show that for any pair of vertices u and v,

k
(2(u) = 2(v)* <2 (eili(u) — z4(v)))?
1=1

Note that z;(u) # 0 for at most one i since x; are disjointly supported. Suppose

u € supp(x;) and v € supp(z;) for some i # j, then

(z(u) — 2(v))? = (czi(u) — ¢;2(v))?
< 2(cimi(u)® + 2(cja5(v))?
= 2(ci(i(u) — 24(v)))? 4 2(c;(x;(u) — z;(v)))?
k

2 (eilwi(u) — 2:(v)))*.

i=1

The remaining case is when there is an i such that z;(u) = z;(v) = 0 for any j # i.

Therefore,
k
(2(u) = 2(v))* = (ci(wi(u) — ;(v)))* < 2 Z(cz‘(xi(U) — ().
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Now we have

E@)= Y wuv)(z() - z(v)

ueVveViuv
k
<2 Z Z ci(zi(u) — xz(v)))2
ueVoweVuv i=1
k
=2 Z 2E(x;).
=1
Also
k k
|25 = deg(u)a(u)® => " > deg(u)zi(u)® =Y ¢ |lal|p,
ueV i=1 ueV i=1

where the second last equality holds since x; are disjointly supported. Therefore,

£(z) <2ZZ 1 GPE(1) < 2max Elwi) = 2max R(x;).

Rg(x): <
1% = S Rlall?, T el lwillh, el

The last inequality holds by an averaging argument: for any a; € R, b; € Ry and

pi € R>o,
S e B
S pibi bi

(;pibi) (max ) sz iy =D it

This is because

We remark that Lemma 2.1 actually deduces Fact 2.3 easily. For any S with vol(S) <
vol(V') /2, since xs and xy_g are disjointly supported, we have

A2 < 2max{R(xs), R(xv-s)} = 2max{¢(5), p(V — 5)} = 26(5).

Fact 2.3 is then obtained by minimizing over all sets S with vol(S) < vol(V')/2. By the
same argument we can prove the easy side of higher order Cheeger’s inequality, which
states that \
k
— <
5 = or(G).
Suppose ¢y, is attained by the disjoint subsets Sy, Sa,..., Sk, since xg, are disjointly
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supported, we have

A < 2max(R(xs,)} < 2mibx o(Si) = 264(G).

2.1.4 Notation conventions

In this subsection, we introduce our notation conventions in this thesis.

Graphs: The graphs we consider are weighted undirected graphs and the degree of
every vertex is strictly positive. Positive degrees are required so that the generalized
Rayleigh quotient is well defined. We use G to denote a graph, V and E to denote
a vertex set and an edge set respectively, and w to denote a weight function. We use
n = |V|] and m = |E| to denote the numbers of vertices and edges respectively.

Matrices: Weuse D, A, L, A and L to denote a degree matrix, an adjacency matrix,
a Laplacian matrix, a normalized adjacency matrix and a normalized Laplacian matrix
respectively. When dealing with multiple graphs, we use Ag or A(G) to specify which
graph we are referring to. The same convention apply to all notations that depends on
a graph. If the graph we are referring to is clear from context, we will omit the symbol
G.

Eigenvectors and eigenvalues: We use «; and \; to denote the eigenvalues of
A and L respectively. «; is always sorted in decreasing order and JA; is always sorted
in increasing order. We use ¥; to denote the common eigenvectors of A and £, and
v; = D™Y23; to denote the common eigenvectors of D™'A and D 'L.

Vectors: We use , ¥, z to denote column vectors in RV, and f, g to denote functions
with continuous domain. We use (i) to denote the i-th element in the vector z. Note
that x; would be the i-th vector in a collection of vectors instead.

Norms: When dealing with generalized Rayleigh quotient, it is common that the
vectors are naturally adapted with either the inner product (-,-)2 or the inner product
(-,yp. We use T to denote a vector which is naturally adapted with (-,-)2 and = to

denote a vector which is adapted with (-,-)p.

2.2 Cheeger’s inequality

Fact 2.2 states that a graph is disconnected if and only if Ay = 0. Cheeger’s inequality
gives a robust version of this statement, stating that the conductance of a graph is small

if and only if Ay is small.
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Theorem 2.1 ([!]). For any graphs G, we have

2 <4(6) < VP

The left inequality is usually called the easy direction of Cheeger’s inequality, and
we have already proven it in Fact 2.3. The right inequality is usually called the hard
direction. It can be proved by explicitly constructing a set S with vol(S) < vol(V')/2
and ¢(S) < v/2X2. One simple way to construct such a set is by the spectral partitioning
algorithm.

In this section, we first describe the spectral partitioning algorithm in Subsec-
tion 2.2.1. Then we prove Cheeger’s inequality in Subsection 2.2.2. Finally we show
some examples to demonstrate when Cheeger’s inequality gives a tight bound in Sub-

section 2.2.3.

2.2.1 Spectral partitioning algorithm

In this subsection, we discuss the spectral partitioning algorithm. The algorithm is
stated in Algorithm 1.

Algorithm 1: Spectral partitioning algorithm

Input: A graph G = (V,w) and the second eigenvector vy of G

Output: A subset of vertices S C V with vol(S) < vol(V)/2 and ¢(S) < /2X\s.
1 Sort the vertices so that va(u1) < va(ug) < -+ < va(uy);
2 For k =1,2,...,n, set S = {u1,ug,...ux} and Ty = {ug, uks1,...,un};
3 Return argming_s, or 5=7; vol(5)<vol(v)/2 ?(5);

The algorithm clearly returns a set S with vol(S) < vol(V)/2, and we shall prove
in Subsection 2.2.2 that ¢(S) < v/2)\2. Now we analyze the runtime of the algorithm.
Suppose we are given the second eigenvector ve. Sorting the vertices costs O(nlogn)
operations. Note that w(d(S;)) can be computed incrementally. Computing w(d(S;))
from w(4(S;—1)) only needs the information on the edges incident at u;, and thus costs
O(|{u; | w(ui, u;) > 0}]) if the graph is input by the adjacency list. So the total number
of operations to compute w(d(.S;)) for all ¢ is O(m). Similar argument holds for com-
puting w(6(73)), vol(S;) and vol(T;). Therefore the total runtime after the computation
of the second eigenvector is O(m + nlogn) = O(m).

In general we are not able to compute the exact second eigenvector v, as the entries
may contain irrational numbers. Instead we compute an approximation x in the sense

that (xz,v1)p = 0 and Rg(z) ~ A2. The performance guarantee of the algorithm also
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becomes ¢(S5) < /2Rg(x) instead of #(S) < 4/2XAy. Note that even if we cannot
compute the exact eigenvector vs, the inequality ¢(G) < 1/2)s still holds, as we know
the existence of vy.

In the following, we demonstrate the power method which gives a 1—e¢ approximation
in finding the maximum eigenvalue of a positive semidefinite matrix. Then we will use

it to find an approximate second eigenvector of L.

Proposition 2.1. Let M € R™" be a positive semidefinite matriz. Let nnz(M) be
the number of non-zeros in a matrix M and let ay > ag > -+ > a, > 0 be the
eigenvalues of M. There exists an O(nunz(M)logn/e) randomized algorithm that takes
M and an error parameter € as input and with probability Q(1) outputs a vector x such
that Ryr(x) > (1 —€)ay.

Proof. The algorithm starts with a uniform random vector y € S"~!, which means that
y € R™ and ||y|| = 1. This can be done by choosing each coordinate of y independently
with the Gaussian distribution and then rescaling y to unit length. Then we simply
output x = M'y, where t = [logn/(2¢)]. Note that Mx can be computed in O(nnz(M))
operations, and hence the runtime of the above process is O(nnz(M)logn/e).

Suppose y = > ; ¢;u; where u; are the eigenvectors of M. It is known that with
probability at least (1), we have ¢ > 1/n. We shall show that whenever this happens,
the output vector z satisfies Rps(z) > (1 — €)ay. Note that

l'TMCU yTM2t+1y Zn 62a2t+1

R = = = 2 1 2 .
m(2) T yT M2ty ST szo%zt
Since Y"1 | ¢? = ||ly||* = 1, by the power mean inequality®, we have

o) (540’

1

n C2042t+1
%”1 2, 2? =z Z 2ot > eV

Therefore

i=1 G &

Since ¢ > 1/n and t > logn/(2¢), we have

ey |Vt > G > exp(—logni) =exp(—€) > 1—e
logn

3The power mean inequality states that for any non-negative random variable X, E[X? ]1/ P> E[XY) /4
for any p > q.
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This completes the proof. ]

We remark that when the largest k£ eigenvectors are known, the power method can
be applied to find a vector = which is orthogonal to vy, --- , v, and Ry (z) > (1 —€) g4
in O(kn + nnz(M)logn/e) time. The proof is the same as Proposition 2.1 except that
we first remove the components of the first k largest eigenvectors in the starting vector
y in O(kn) time.

There is an easy way to use power method to additively approximate the second
eigenvector of a graph G. Since the smallest eigenvector of £(G) is known to be
U = Dl/QXV/\/W, we can apply Proposition 2.1 to compute the second largest
eigenvector of the matrix 27,x, — £(G) and get an approximate vector £ 1 ©; with
Rotyin—rc(@)(T) = (1=€)(2—A2(G)) = 2—A2(G) —2¢. Therefore, Ry q)(T) < A2(G)+2e.
Let 2 = D~'/2%, we have (z,v,)p = 0 and Rg(z) = Rer@) (%) < A2(G) + 2¢e. The total
runtime of this process is O(mlogn/e). This approach gives an additive approximation
and is good when Mg is large.

To get a multiplicative (1 + €)-approximation, we need to set the additive error
to be e\a. Hence the runtime would become O(mlogn/(e\2)), having an undesirable
dependence on A9. It is possible to get rid of the dependence of Xy, and get a 1 +
€ approximation in nearly linear time, using the Laplacian solvers. We consider the
pseudo-inverse LT := Zi:)\#o(l/)\i)ﬁﬂ?? instead of 2I,,«,, — £. The eigenbasis of LT is
the same as that of £ and the corresponding eigenvalue of vy becomes 1/A9, which is
the largest among the spectrum of L. Now the power method requires us to compute
L£+b, which is equivalent to solving the linear system LT = b. Spielman and Teng solved

this problem approximately in [65] and obtained the following result.

Theorem 2.2 ([68]). For any Laplacian matriz L € R"*"™, there is a matriz Z € R™"*"
such that
1-eZt<L=<(1+eZ".

Moreover for any vector b we can compute Zb in expected time O(m(logn)®log(1/e)) for

some absolute constant c.

We should view the matrix Z as an approximation of the pseudo-inverse L*. Com-
bining this theorem and the power method, Spielman and Teng are able to find a good
approximation of the second eigenvector of G quickly. In the following, we give an

alternate simpler proof of the following theorem.
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Theorem 2.3 ([63]). Given a graph G and an error parameter € < 1/4, we can output
with probability (1) an approximate second vector x such that (z,v1)p = 0 and Rg(z) <
(14 4€) A2 in time O(m(logn)©log(1/e€)/e€) for some absolute constant c.

Proof. The result is trivial when G is disconnected. So in the following we assume G is
connected and thus Ay > 0.

Let Z be the matrix obtained in Theorem 2.2 and Z = D'/2ZDV2. Since £ =

D 12LDY2 and 2+ = D~Y2Z+D~1/2, we have

1-eZt L= (1+e)ZT.
Clearly Zb can also be computed in O(m(logn)®log(1/¢)) expected time for some abso-
lute constant c.

Let «; and u; be the eigenvalues and eigenvectors of Z with ay > a9 > -+ > a,, = 0.
Note that we have (1 —e€)a; < A since (1 —€)ZF < L. Similar to the argument in the
proof of Proposition 2.1, we choose a uniformly random unit vector y with y L u, =
y L 91 = 0 and let # = Z'y, where t = [logn/(2¢)]. Suppose y = Z:'];l c;u;. With
probability (1) we have ¢ > 1/n and we assume this happens in the following analysis.
Note that

R .%TZJri‘ yTZtZ+Zty yT22t71y Z? 11 C2a2t 1
RZ+($): 7T 5 = yTZ2ty = yTZQty = Zn—l 2. .2t °

By the power mean inequality, we have

_1 1

2t—1 n—1 2t

5:22151 < E:C%a?t ]
=1

1
n—1 2 2t—1 2t
COZ
Zznll ; Qt <§ :02 2t> S |Cl|_%a1_1.

Since ¢? > 1/n and t > logn/(2¢), we have

Therefore

1 1
~1/t < 1/(2t) < ] €y < .
leal =" < exp/ Ognlogn) exp(—e€) ~ 1—e¢

Also a7 < Xo/(1—¢). So we have Rz+ (%) < Aa/(1 —¢€)?. Finally, since £ < (1+¢)Z27,
we have

Re(®) < (14 )Rz+(2) < (1 +e)da/(1 —€)? < (14 4e)Xa.
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Let = D~'/2% and we have (z,v1)p = 0 and Rg(z) = Re(Z) < (1 + 4€)\y. This
completes the proof. ]

2.2.2 Proof of Cheeger’s inequality

In this subsection, we prove the performance of Algorithm 1. The proof consists of two
parts. We first show that given an approximation of the second eigenvector, we can
construct a vector x such that vol(supp(x)) < vol(V')/2 without increasing the Rayleigh
quotient, and every level set of x is also a level set of the approximate second eigenvector.

Then we show that one of the level sets of  has small conductance.

Constructing vectors with small support size

We can construct a vector with small support by simply truncating the vector.

Lemma 2.2 ([31]). For a graph G and its second eigenvector va, let vy = max{v,0}
and vy; = max{—vq,0}. We have Rg(vy) < A2 and Rg(vy) < Xo. Therefore either
x=vy orx=v, satisfies vol(supp(z)) < vol(V)/2 and Ra(x) < Aa.

Proof. We would like to show that

2T La <
oI Dg = 7%

Note that for any vertex ¢,

(Lof) (i) = D w(i, )1 —vf (7)) < D> w(i, j)(1 = v2(4)) = (Lva)(0).

JjeV JjeV

Since vy is a (right) eigenvector of DL with eigenvalue Ao, we have Lvy = Ao Dvy, and
thus

(Lvg) (i) = deg(i)Aava(i).
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Therefore

v Loy =3 o (i) (Lvg) (3)
%

< Y w@@e))

i€V,v2(i)>0

= ) deg(i)hawa(i)?

i€V,w2(i)>0

T
= )\21);_ Dv;.

This shows that R(;(v;r ) < A2. Applying the same argument to —vy, we have Rg(vy ) <
Ao. O

The above argument only works when we are considering the exact second eigenvec-
tor. In the following, we present a more general approach to truncate a vector to obtain

a vector with small Rayleigh quotient and small support.

Lemma 2.3. For a graph G and a non-zero vector x such that (z,v1)p = 0, let
e = x — tyy, ¥) = max(z,0) and z; = max(—z4,0) for any t € R. Then we
have either Rg(z;) < Ra(x) or Ra(x;) < Ra(x). Therefore, by choosing t such that
supp(z;") < vol(V)/2 and supp(z; ) < vol(V)/2, we have either y = x ory = z;
satisfying vol(supp(y)) < vol(V)/2 and Ra(y) < Ra(z).

Proof. First note that
xl Ly = (x — txy) Lz — tyy) = 27 La,
and

a{ Dxy = (z — txv)" D(z — txv)
= 2" Dx — 2t{z, xv)p + |xvID
=z Dz + | xv|p

> :ETD.T,

where (z, xv)p = 0 since v; = cxy for some non-zero constant ¢ and we assume that
(x,xv)p = 0. Hence we have Rg(z:) < Rg(z).
For any edge {i,j}, if 24(i) and z,(j) are of the same sign, then

(we(i) = 22(5))* = (&f (1) = 2 (7)) + (27 (0) — 2 (5))*.
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Otherwise if z4(7) and x¢(j) are of different sign, then
(we(i) = 22(5))* = @) + 22(5)* = (2 (1) — 2 (7)) + (27 (1) — 27 (5))*.

In any case we have a:?th > xzr TLac;F + z; Tth_ . On the other hand a:?Dact =
ey deg(i)zy (i) = :EjTDa:t+ + x;TDas;. Hence we have

T T, _
xl Ly S zf" Lot + 2y Lay

Ra(z) > Ra(at) = >
ftTDxt :Uz“TDaszr + :Ut_TDact_

> min{Rqg(z;"), Ra(z; )}

We almost complete the proof, except for a subtle issue. One of the z;” or z; may be
a zero vector, where the Rayleigh quotient is not defined. If x; = 0, then xzr = x4 and
thus Rg(z) > Re(x)). Similarly if ;7 = 0, then Rg(x) > Rg(x; ). This completes the
proof. O

We remark that every level set of z;” or x; is also a level set of z. Therefore in order
to show that Algorithm 1 outputs a set of small conductance, it suffices to show that

one of the level sets of ;" or z; has small conductance.

Random thresholding argument

There are multiple ways to prove Cheeger’s inequality. Here we present a proof based

on a random thresholding argument by Trevisan.

Theorem 2.4 ([71]). Suppose x is a non-negative non-zero vector, then for some positive
t € Ry, the level set Sy = {i | x(i) >t} of = satisfies ¢(St) < /2Rg(x). Since t > 0,
we also have Sy C supp(x).

Proof. We choose the level set S; by randomly choosing a value ¢ with probability
proportional to its distance to 0. Let M = max;cy z(i) and C = fOM tdt = M?/2.
Let p : [0, M] — R satisfying p(t) = t/C be a probability distribution over [0, M].
We analyze the conductance of the set S; when t is randomly chosen following this

distribution.
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The expected cut value of S is

Ermulw(@(S))] = > wli,j)Puuuli € Si,j & S

eV, jev
el
- Y wld) [
i€V, jEV (i) >z (j) =)
1 . ) )
=5 2 w0 - ()%
i€V, jeVia(i)<z(j)
1 . ) .
=55 2wl —2()’
1€V, jeVi<y
<56 S wli ) @() —2()? Y wli ) (@) + 2(j))?
eV, jeVi<y eV jeVi<y
1 . . )
<55, @ > w2 +2(5)?)
1€V, jeVi<y
)Y deg(i)z(i)>?
eV

_ V2 Hl‘HD JE@),
where the first inequality is due to Cauchy-Schwarz inequality.

On the other hand, the expected volume of S; is

Epp[vol(S)] = > deg(i)Pppli € 5]
eV

Now suppose to the contrary that every level set S; satisfies ¢(S) = d(S)/ vol(S) >
V2Rag(x). Then Eivp[w((S)) — /2Ra(x) vol(S)] > 0. However we have shown that

< *[”x”Dw \/2720(:5)”‘;”?’ 0.

Eip[w(9(S)) — vV 2Ra(x) vol(9)]
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This concludes that there exists a level set S; satisfying ¢(5) < \/2Ra(z). O
Finally we are ready to prove Cheeger’s inequality.

Proof of Theorem 2.1. The easy direction is proven in Fact 2.3. By Lemma 2.3 and
Theorem 2.4, when given the second eigenvector, Algorithm 1 outputs a set S such that
#(S) < +/2Xa. Therefore ¢p(G) < ¢(S) < /2X2. This completes the proof. O

2.2.3 Examples

In this subsection, we give several types of graphs which demonstrate when the spectral

partitioning algorithm performs well or badly.

Cycles

We use the cycles to demonstrate that the hard side of Cheeger’s inequality is tight.
An n-cycle C,, = (V, E) is an unweighted graph with n vertices such that V' = [n] and
{i,j} € E if and only if i — j = +1 (mod n). For any non-empty proper subset S C V,
w(0(S)) > 2. Therefore

w(d(9)) 4 2

G) = i > =—.
4(G) SQV,vol(rg)lgvol(V)ﬂ vol(S) ~wvol(V) n

On the other hand, the eigenvalues of L(G) are 1 — cos(2km/n) with corresponding
(non-unit) eigenvectors (1, cos(2km/n), cos(4km/n),...,cos(2(n — 1)kmw/n)). Note that
1 — cos(2km/n) = O(k?/n?) as n — oo and thus Ay = ©(1/n?). So we have

4(G) 2 = =0(y/%)

This shows that the hard side of Cheeger’s inequality is tight up to a constant factor.
Note that although this analysis shows that Ay is a bad approximation of ¢, the
spectral partitioning algorithm actually works well in this example. The cut given by

the algorithm has conductance O(1/n), which matches the conductance of the graph.

Hypercubes

We use the hypercubes to demonstrate that the easy side of Cheeger’s inequality is
tight. For k € N, the k-dimensional hypercube Hj = (V, FE) is an unweighted graph
with n = 2F vertices such that V = {0,1}* and {u,v} € E if and only if u and v

differ in exactly one coordinate. The dimension cuts S; = {u € V | u(i) = 0} satisfies
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w(0(S;)) = 2871 and vol(S;) = k271, and hence ¢(S;) = 1/k. We will see later that
#(Hy) = ¢(S;). Now we construct an eigenbasis of Hy,. For any k-bit string a € {0, 1}*,
the (non-unit) vector v, € RY is defined by v,(u) = (—1)Ef=1a(i)“(i). These vectors
are orthogonal to each other and satisfies Lv, = A\yv, where \, = (2/k) Zle a(i).
Therefore Ay = 2/k with corresponding (non-unit) eigenvectors v, where a(i) = 1 for
exactly one index i. By the easy side of Cheeger’s inequality we have \y/2 < ¢(Hy).
Therefore ¢p(Hy) > 1/k = ¢(S;) > ¢(Hj) and all the inequalities must be equalities. So
¢(Hy) = ¢(S;) and the easy side of Cheeger’s inequality is tight.

Note that in this example while Ao gives a good approximation of ¢, the spec-
tral partitioning algorithm can give a bad cut. The vector v = Zle Ve, 1S an sec-
ond eigenvector satisfying Lv = Zle Lve, = (2/k) Zle ve; = (2/k)v. Suppose in
the spectral partitioning algorithm we are given v and we consider the level sets of
v. Since v(u) = Zle Ve, (u) = Zle(—l)“(i), the level sets are of the form {u €
V| Zle u(?) < t}. Among these sets, the set S of smallest conductance is when
t = [k/2), with w(5(S)) = (¥)(k —t) = ©(VE2¥) and vol(S) = k3 0_, (¥) = ©(k2").

Hence ¢(S) = O(1/vVk) = O(vA2).

Ladder graphs

We use the ladder graphs to demonstrate that the spectral partitioning algorithm can
give a set of conductance §2(n) larger than the optimal set. For k£ € N and € € (0,1),
the (k,¢€) ladder graph G = (V,w) is an weighted graph with n = 2k vertices. First we
construct two unweighted k-cycles Cj, and C), with vertex sets V(Cy) = {1,2,...,k} and
V(C,) = {1,2,...,K'} respectively. Then we connect the two sets of vertices with a
matching of weight ¢, by letting w(i,i') = e for alls = 1,2, ..., k. This is the construction
of the (k,¢) ladder graph. In the following, we set ¢ = 100/k? and k to be sufficiently
large.

For any non-empty proper subset S C V', §(S) > min(1, ek) = 100/k. This is because
if we do not cut through any edges in the cycle, which have unit weight, then we have

to cut through all the k edges in the € matching. Therefore

100/k

»(G) > wl(V)/2 O(1/k%),

and this can be attained by S = V(Cj).
On the other hand, we want to show that @sweep = 2(1/k) and conclude that the

spectral partitioning algorithm can give a set of conductance Q(n) larger. We will see
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that there is a second eigenvector such that vy(i) = we(i’) for any ¢ = 1,...,k, and
hence the spectral partitioning algorithm does not separate i and i’. Suppose z is an
eigenvector of L(C}) with eigenvalue A, then we can use it to construct two eigenvectors
of G. The vector y € RV defined by y(i) = y(i’) = x(i) satisfies

(L)) = 5 (LG )
— o (deg(@)y() — yli — 1) = y(i-+ 1) - ey())
= (2 + (i) — 2li = 1) —ali + 1) — ex(i)
= 5 (LCO)0)
= 5 (L))
. 21@(@)
=3 i (D),

where we denote z(0) = z(n) and y(0) = y(n). By the same argument the equation also
holds for ¢’. Therefore y is an eigenvector of £(G) with eigenvalue 2A/(2 + ¢€). Similarly
the vector z € RV defined by z(i) = —z(i') = z(i) satisfies

2 n 2¢
2+¢ 2+¢

(£(G)z)(i) (2+e)a(i) —a(i—1) —2(i+1) +exi)) = ( )2(i),

:2+6

and z is an eigenvector of £(G) with eigenvalue 2(A+¢€)/(2+¢€). Each v; in the eigenbasis
of L(C},) produces two eigenvectors y; and z; of £(G) and they are all orthogonal to each
other. These vectors y; and z; form an eigenbasis of £L(G). Now the second eigenvector of
G is produced by either vy (Cy) or v2(Cy). Therefore A\o(G) = 2X2(Cx)/(2+¢€) or 2¢/(2+
€), whichever is smaller. Since A\o(Cy) = 1 — cos(27/k) < 2w2/k? and € = 100/k?, we
conclude that A\2(G) = 2X2(C%)/(2+¢€) with corresponding eigenvector y € RV satisfying
y(i) = y(i') = v2(Ck) (7). This shows that in the spectral partitioning algorithm, ¢ and
i’ cannot be separated. Thus none of the ¢ edges are cut and the set S output satisfies
w(6(S)) > 1. So we conclude Psyweep = Q2(1/k).
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Geometric weighted paths?

We use the geometric weighted paths to demonstrate that the constant in the hard side
of Cheeger’s inequality is tight. For k¥ € N and r € (0,1), the (k,r) weighted path is a
weighted graph with n = 2k 4+ 1 vertices. We label the vertices by —k, -k + 1,...,k.
Fori=0,1,...,k— 1, we add edges with weight r? to the pairs of vertices {i,7 + 1} and
{—i,—(i +1)}. We also add self loops with weight 2r¥/(1 —r) = 2(rF 4 7kT1 4.} to
the vertices k and —k. For ¢ > 0, let S; = {i + 1,...,k}. The self loops are added such

that whenever we cut an edge, the conductance is always the same:

rl 1 1—r
P4 2pitl o 2kl ok S(T— ) 1420 /(1—7) 147

P(S;) =

These cuts are the ones attaining minimum conductance. First we note that an optimal
cut S of the graph can be assumed to be connected, since otherwise the best connected
component has conductance not larger than S. Therefore by considering V — S if

necessary, we conclude that the optimal conductance is attained by S;.

Now we shall upper bound Ao in order to show that the hard side of Cheeger’s
inequality is tight. To do so we only need to construct a vector € RY such that
(x,v1)p = 0 and R¢(x) is small. Let  be defined by

0 if i =0,
z(i) =4 r+=D/2  ifi >0,
—p(k /241 5 < 0.

By symmetry we have (x,v1)p = 0. The energy is
E@) =23 wliyi+1)(a(i) — ali +1))?

k—1
(,rk:—l n Z ri (P02 _ T(k—i—l)/2)2>
i=1
k=1 ‘
(’l“k_l + Zrzrkz—z(l o 7”_1/2)2>
i=1
2

/N

Pl (k= Dt -T2

4These graphs are provided by Yin Tat Lee, who views them as the discrete versions of the tight
examples in the manifold settings.

31



and the squared D-norm is

k
Izl = D deg(i)a(i)’

i=——k
il 2rk
—9 i1 i, ki k—1
<;(r +7r)r —|—<r +71—r

2) k
=2 ((k —rFerTt ) 4R T i T) :

Hence the Rayleigh quotient is

Elx
Rol) = ||af|r%))

B 2(7“’“‘1 + (k — l)rk(l — 7‘_1/2)2)
2k = Drk(r=1 4 1) 4 k=1 420k /(1 — 7))
B rkil/(k—l)—&—rk(l—rfl/z)z
k(e ) 4 (PRl 20k /(1 — 1)) /(K — 1)
(1 _ 7,—1/2)2
(1 _ 7,1/2)2
R

as k — oo

Therefore for any fixed r € (0,1) and € > 0, we can find large enough k such that
when G is the (k,r) geometric weighted path,

4(0) . 4(@)
VA2 T /R(2)
1—7r 147
21—1—7“ (1—7’1/2)2(
14712
- \/1+7’(1_6)
—V2(1—¢€) asr—1".

1—¢)

Since € is arbitrary and r can be arbitrarily close to 1, we conclude that for any C' < v/2,
we can construct a graph G such that ¢(G) > C/A2(G).
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2.3 Random walks

A random walk on a graph G starting with an initial probability distribution p is a
sequence of random vertices ug = u, u1, ug, . .., such that Plug = u] = p(u) and Pluyy; =
v|uy = u] = w(u,v)/ deg(u). This means that the next vertex would be a neighbor of the
current vertex with probability proportional to the edge weights. Instead of a particular
instance of the random walks, we often study the probability distributions p; € R"”,
where p;(v) = Plu; = v]. We view the probability distributions as row vectors. By the
definition, it is easy to see that pg = p and p;41 = psD~'A. We define the random walk
matrix to be W = D71 A, and hence p; 11 = p,W. If the initial distribution p = x only
has probability on a single vertex u, we also call p; as the probability distribution after

t steps of random walks starting at the vertex wu.

A distribution 7 is called stationary if the distribution does not change after one step
of the random walk, that means m = 7W. The random walk process is a Markov chain
as the next vertex only depends on the current vertex but not the past. A Markov chain
has a unique stationary distribution 7 if and only if it is irreducible and aperiodic [31],
which, in this case, is equivalent to G being connected and non-bipartite. Also, when
the Markov chain has a unique stationary distribution 7, we have p; — 7™ no matter
what the initial distribution is. It is possible to remove the non-bipartite requirement
by considering the lazy random walk instead. In this setting, we have probability 1/2
staying at the current vertex and probability 1/2 moving to a neighbor with probability
proportional to the edge weights. Since the lazy random walk is equivalent to the random
walk on the graph G with an additional self loop of weight deg(u) on each vertex u,
and the new graph is non-bipartite by construction, the lazy random walk has a unique
stationary distribution if and only if G is connected. The probability distribution after
t steps lazy random walk starting from the initial distribution p is then pW", where
W' = (Inxn + W)/2 is the lazy random walk matrix. In the remainder of this thesis,
we use W to denote the lazy random walk matrix (I,,x, + D71 A)/2. We can check that
the stationary distribution is 7 = (Dxy )T/ vol(V).

The mixing time of a graph G measures how fast the random walks starting from an
arbitrary vertex converges to the stationery distribution m where 7(u) = deg(u)/ vol(V).

The most common definition for the mixing time is
() = minft | max [xIW' — 7 < e},
ueV

and 7 = 7(1/4). The parameter 7 is useful in analyzing random sampling algorithms
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for combinatorial objects, like computing the permanent and the volume of a convex
object [66, 26]. In this section we discuss two ways to analyze the mixing time of a
graph, one through spectral arguments and the other through combinatorial arguments
by Lovasz and Simonovits. From the spectral approach, we get an upper bound on the
mixing time by the second eigenvalue Ao. From the combinatorial approach, we get an
upper bound on the mixing time by the conductance ¢(G) of the graph. We remark that
by comparing the two bounds, we can obtain Cheeger’s inequality with slightly worse

constant.

2.3.1 Spectral approach

We first construct the left eigenvectors of the lazy random walk matrix W so that we
have a good eigenbasis to work with. Suppose v1, ..., v, are the eigenvectors of G, which

means that Lv; = A\;Dv;. Then we have v, = (Dvi)T are the left eigenvectors of W,

since
"W 1 / /D—lA
U; = 5 (Ui + v; )
1
=3 (20; —v;D'L)
1 / T
=3 (20; — v L)
1
=3 (21); )\ivz-TD)
s
= (1 — 2Z> v}
This set of eigenvectors also satisfies <v£,v§-)D71 = v DD"'Dv; = (v;,v;)p. Hence

[villp-+ = 1 and (vj,v})p-1 =0 for i # j.
In the following, we present a theorem that upper bounds the mixing time by the

second eigenvalue of the graph G.

Theorem 2.5 ([18]). Let u* be a vertex with minimum degree. Then the mizing time

satisfies
log(W(U*)_l))
A2 ’
Proof. To bound the mixing time by ¢, we only need to argue that for any starting point
u, [IxIW?t —r|ly <1/4. We write xI = > | ¢;v] into the left eigenbasis of W, where

T=0(

G = <X,11;7UZ/'>D_1 = deg(u) = Ul(u)
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Then ¢; = v1(u) = 1/4/vol(V), and hence for any vertex v,

civy(v) = 1 deg(v) _ deg(v)
1 V/vol(V) y/vol(V)  vol(V)

= 7(v).

This concludes ¢jv] = . Note that A\; = 0. So we have
n
It W* =y = 1Y e ==y
n t
s
— HZCi (1 — 2’) vi — 7|1
i=1
n t
s
=13 e (1-5) i
< Z (1- ) Jeivdlh.

Here we used the fact that Ay = 0 and ¢;v] = 7, and the last inequality holds by the

triangle inequality. Now we need to upper bound ||¢;v}||;. Since

’C ‘ _ "U ’ < Zvevvl ) deg( ) 1
' ! deg(u) deg(u)’

we have

= [ ——— deg \/VO]

W

where the second inequality follows from Cauchy-Schwartz inequality. Therefore when
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t > 2log(4n/+/m(u))/A2, we have
n A t
W =l < 3 (15 ) el

n
A2
< ZeXp(—?t)llcwélh

=2
n
(u)

= Z ™ [rezealst

=2

n

1

< il
- Z 4n

=2
< -.
!

Let u* be the vertex that have minimum degree, that means 7(u*) < 7(u) for any vertex
u. Then 7(u*) < 1/n and for t > 2log(4m(u*)~3/2) /A, we have ||[xIW* — ||, < 1/4 for
any u. This concludes 7 = O(log(m(u*)~1)/A2). O

2.3.2 Combinatorial approach

Given an undirected weighted graph G = (V,w), for each probability distribution p :

V — R>q over the vertices, we define the following function for x € [0, vol(V')]:

n

C = 0;p(7).
(p, ) Zleéideg(lu%(:m,ogdiglz p(i)

1=

The function can be interpreted as the total probability mass by picking the largest =
fractional vertices. Suppose p(u1)/deg(u1) > p(ug)/deg(uz) > -+ > p(uy,)/ deg(uy,),

then we can simply write

k

k
C (p,Zdeg(uﬁ) = Zp(u,)

i=1

We call Zle deg(u;) the extreme points. Note that C is piecewise linear between
the extreme points. When p = 7 is the stationary distribution, then p(u;)/deg(u;) is
constant, and the function C satisfies C'(p,z) = z/ vol(V') and becomes linear.

Another interpretation is viewing the graph as directed by replacing each undi-
rected edge by two directed edges, and the function as the total probability mass by

picking the largest x fractional directed edges (instead of vertices). It turns out that
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this interpretation is more useful in our later analysis. We assign the probability mass

p(i,7) = p(i)w(i, 7)/ deg(i) to each of i’s outgoing directed edges (i,7). Then we have

C(p,z) = max x0<5”§1225,jpw

ZiEV Zjev‘si,jw( J) eV jev

and suppose p(e1)/w(er) > pez)/w(ez) > -+ > plem)/w(en), we have

k K
C (p,zw(ez‘)) => ple).
=1 =1

Clearly for any probabilistic distribution p, the function is concave and thus C(p,z) >
x/vol(V'). Hence the function is always larger than the one corresponding to the sta-
tionary distribution. The following lemma shows that the function drops after one step

of the lazy random walk, and the speed depends on the conductance of the graph.

Lemma 2.4 ([51]). For a graph G = (V,w) and a probability distribution p : V — R,
let p' = pW be the probability distribution after one step of the lazy random walk in G.

Then for any extreme point x of p', we have

[u—

C(p',x) < 5(Cp, 2+ ¢7) + Clp,z — ¢)),

where
T = min(z, vol(V) — x)

is the distance of x to the boundaries.

Proof. Let x be an extreme point of p’. Suppose C(p/,z) is attained by picking the
subset of vertices S C V, which means that x = vol(S) and C(p',z) = >,.¢p'(i). For

each vertex ¢ € V, we have
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Therefore

Ol x) = (i)

€S
S W LHEED B WLH)
€S jEV €S jeV

IO M GO 1D D) SRR 99 B ()

1€S jES eV -5 jes 1€S jeV

< 5C(p, vol(S) —w(4(5))) + %C(p, vol(S) +w(4(5))),

DO |

where the last inequality is due to

i€S jes ieS jev i€S jev-=5§
D> Twig) + >0 wli,g) = w(d(S)) + vol(S),
ieV -8 jes ieS jev

and the directed edges from V — S to S and those from S to V are disjoint. Finally,
since w(0(5)) < ¢ min(vol(S), vol(V') — vol(S)) = ¢z, by concavity of C' we have

Clp',2) < 5C,vol(S) = w(3(8)) + 5C(p,vol(S) + w(d(S)))

< %C(p, xr — ¢T) + %C(p, T + ¢T).

O]

We view the probability distribution p over the vertices V' as a row vector indexed by
the vertices. We use C¥) () to denote C(pW*, ) when p is clear from the context. The
following theorem provides an upper bound on CY)(z) and shows that for any starting
distribution p, the function approaches to the linear function after a number of steps of

the lazy random walk and the convergence rate depends of ¢(G).

Theorem 2.6 ([51]). For any graph G, any probability distribution p € R‘Z/O over the
vertices, any t > 0 and any x € [0,vol(V)], we have

— 2\ 1
O (p) < —F i 1 s
¢P) = vol(V) + min;ey deg() ( 8 )

Proof. We shall only prove the statement for x < vol(V')/2 where T = x, and the rest
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follows by symmetry. Note that the function on the right hand side is concave and
C® is linear between the extreme points, it remains to show that the inequality holds
for the extreme points. We shall prove the statement by induction. When ¢ = 0,
C®(z) = C(p, ). Since the first non-zero extreme point is at least min;ey deg(i), the
inequality holds when t = 0. When ¢ > 0 and z is an extreme point, by Lemma 2.4 and

the induction hypothesis, we have

0 (z) < %(00*1)(@« _ 6w) + C ) (2 + 6a)

T T > = T — ¢x T+ ¢x
= vol(V) * min;cy deg(7) (1 a 8) 2(\/ x + x )

Since z — ¢z = (1 — ¢) and x + ¢z < z(1 + ¢), we have

OW(@) < 7+ . =T (Lvizes viTe
T = vol(V) min;cy deg() 8 2
2\t
vol(V) min;cy deg(i) 8
where the last inequality follows from the Taylor expansion of /1 £ ¢ at ¢ = 0. O

Note that for any probability vector p, ||[pW* — x||; = 2max,(C® (z) — z/ vol(V)).
Hence suppose u* is the vertex with minimum degree and ¢ > 8log(8m(u*)~'/2)/¢?), we
have ||pW! — 7||; < 1/4 for any p. This concludes 7 = O(log(w(u*)~1)/$?).

Finally, we remark that Theorem 2.6 can give another proof of Cheeger’s inequality
with worse constant. Let v} be the left eigenbasis of W, as defined in Subsection 2.3.1.
Let u € V be any vertex such that vh(u) # 0, and let p = xT = Y,y ¢;v}, where
ci = (Xu,V})p-1 = vi(u)/ deg(u) = vi(u). Then ¢; = 1/1/vol(V)) and by our assumption
c2 # 0. Also \

i
pWh = iezvci(l — E)tvg.
Thus we have

Ai
pWDTIp" = (W p)pa =) (1 5) >

eV

1
vol(V)

A2
+ C%(l — ?)t

On the other hand, note that pW?*D~1p” can be viewed as starting from the distribution
P = Xu, after ¢ steps of the random walk, we pick 1/deg(u) fraction of the probability
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mass remaining in the vertex u. Hence, by Theorem 2.6, we have

¢
pWtD T < c®(1) < L ! 1— il .
- ~ vol(V) min;ey deg(7) 8

This shows that

min;ey deg(7) 8 2
Since t is arbitrary and cy # 0, we must have 1 — ¢?/8 > 1 — \2/2, and this implies that
¢ <2V
In this argument, we only use the information of the conductances of the level sets
of p;. Hence by examining all the level sets of all the random walk vectors p;, one of

them would have conductance not greater than 2/ Aa.

2.4 Previous works

In this section, we will discuss some previous results about generalizations of Cheeger’s
inequality using higher eigenvalues, and about approximating the conductance and the

small set expansion.

2.4.1 Higher eigenvalues

We will discuss several recent results showing connections between the conductance
profile of a graph and the higher eigenvalues of its normalized Laplacian matrix. The
first result in this direction is about the small set expansion problem. Arora, Barak and
Steurer show that we can obtain small sparse cuts efficiently if there are many small

eigenvalues.

Theorem 2.7 ([7]). Let G be a regular graph on n vertices such that A\, < n, where
k = n'09/7 Then there is an efficient algorithm to find a vertex set S of size at most
n'=/7 that satisfies $(S) < V-

In particular, if £ = n¢, by setting n = A\; and v = 100\ /¢, the graph has a sparse
cut S with ¢(S) < O(y/Ar/€) and |S| = O(n/kY/190). This concludes that

¢o(k—1/100) = O(y/ A logy n).

This can be seen as a generalization of Cheeger’s inequality to the small set expansion

problem. This result is then improved in several papers with various approaches [69, 55,
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|. All of them are able to improve the size approximate from 1/100 to 1 —e. They

A log. n
Po(k-1+¢) = O(4/ %)7

and there is also an efficient algorithm computing a small set S achieving |S| = O(n/k'~¢)

and ¢(S) = O(y/ A log, n/e).

Cheeger’s inequality for graph partitioning can also be extended to higher-order

prove that

Cheeger’s inequality for k-way graph partitioning [19, 45]: If there are k small eigenval-
ues, then there are k disjoint sparse cuts. This is a robust generalization of the fact that

Ar = 0 if and only if G has at least k connected components.

Theorem 2.8 ([15]). There is an efficient algorithm to find k non-empty disjoint subsets
S1,..., Sk, Si CV, such that $(S;) < O(k?*)\/Ax. Hence

S < 66(6) < OR)V/ .

If only ck sets are needed for some constant ¢, the inequality can be further improved.

Theorem 2.9 ([19, 15]). There exists a constant ¢ > 0 such that we can efficiently
find ck non-empty disjoint subsets S1,...,Sck, Si €V, such that ¢(S;) = O(V/ A, logk).

This also implies that
Por-1)(G) = O(V/ Ak log k).

Lee et.al. [15] show that ¢ can be chosen to be 1 — € for any € > 0, while Louis

et.al [19] can only show that the statement is true for some ¢ > 0.

2.4.2 Sparsest cut

We will discuss about algorithms for the sparsest cut problem in this subsection. Given

a graph G, the sparsest cut problem is to determine the conductance

G) = i
YD = sevval®)

¢(5),

n
<vol(V)/2

and find a subset of vertices S C V with vol(S) < vol(V)/2 that minimizes the conduc-

tance®. It is known that the sparsest cut problem is NP-hard [10], and approximating

5The more common definition of the sparsest cut problem is to find a subset of vertices S C V that
minimizes the sparsity sp(S) instead. Since the sparsity sp(S) and the conductance ¢(S) are equivalent
up to a constant factor (see Subsection 2.1.1), which we do not care about in this subsection, we will
study the conductance instead here.
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the conductance within constant factor is NP-hard assuming the unique games conjec-

ture [13].

The spectral partitioning algorithm is the most commonly used heuristic for finding
sparse cuts in practice because of its ease of implementation and efficiency (see Subsec-
tion 2.2.1). Its performance is guaranteed by Cheeger’s inequality, which states that the

output set S satisfies
Q(A2) < ¢(5) < O(V Az).

This inequality is tight up to constant. In the worst case, the spectral relaxation A
only gives an O(1/1/A2) approximation for the conductance, and this can be as bad
as O(n) in a cycle graph (see Subsection 2.2.3). On the other hand, Ay is a constant
factor approximation when G is an expander. Although this spectral relaxation only
guarantees good approximation when the graph has large conductance, the spectral
partitioning algorithm often performs well in practice, and this cannot be explained by

merely Cheeger’s inequality. We will have more discussion about this in Section 2.2.

While Cheeger’s inequality gives an approximation with performance depending on
the optimal value, there are other approaches that guarantees approximation ratio only
depend on n, the size of the graph. The linear programming rounding algorithm by
Leighton and Rao [10] finds a set of conductance O(¢(G)logn). The authors uses the all
pairs multicommodity flow to give a lower bound on the conductance, and this method
is now commonly used to certify lower bounds of expansion and hence proves upper
bounds on mixing time. The linear programming relaxation gives a good approximate
when the graph can be well embedded into L' metric, for example, when the graph is a
path or a cycle. On the other hand, there are examples where the relaxation only gives
an Q(logn) approximation when the graph is a sparse expander. It is interesting to
note that the bad examples for the spectral relaxation is good for linear programming

relaxation and vice versa.

Arora, Rao and Vazirani [8] uses a semidefinite programming relaxation as a com-
monly generalization of the spectral approach and the linear programming approach,
and finds a set of conductance O(¢(G)+/logn).

Guruswami and Sinop [29] shows that we have better approximation using semidef-
inite programming if A, is large. They present an O(2"/(¢9)) poly(n) algorithm to find a
cut with conductance at most (1 + €)¢(G)/d when A, > ¢(G)/(1 —9).
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2.4.3 Small sparse cuts

We will discuss about the small sparse cuts problem in this subsection. Given a graph
G and a size parameter § € (0,1/2], the small sparsest cut problem is to determine the

small set conductance

G) = i S
¢5(G) vol(sggol(\/)d)( )

and find a subset of vertices S C V' with vol(S) < dvol(V') that minimizes the conduc-
tance. This is also known as the expansion profile of the graph [50, 59]. Raghavendra
and Steurer [58] propose the following small set expansion conjecture about the hardness

of approximating small sparsest cuts.

Conjecture 2.1 ([58]). For every constant ¢ > 0, there exists a constant ¢ > 0, such
that it is NP-hard to distinguish the two cases: (1) ¢s(G) <¢; (2) ¢s(G) > 1 —e.

They show that the small set expansion conjecture implies the unique games conjec-
ture and is implied by the unique games conjecture with some mild assumptions, and
so it is of interest to understand what algorithmic techniques can be used to estimate
¢5(G). Raghavendra and Schramm [57] prove the following gap amplification result

about the hardness of approximating small sparsest cuts.

Theorem 2.10 ([57]). Let f be a function such that f(x) = w(y/x) as v — 0. If
for all € > 0, there exists § > 0 such that it is NP-hard to distinguish ¢5(G) < € or
¢s(G) > f(€), then for all € > 0, there exists 6 > 0 such that it is NP-hard to distinguish

¢s < € or sz > 1/2.

A Dicriteria approximation algorithm for the small sparsest cut problem is to find
a subset of vertices S with volume vol(S) < dvol(V) and conductance ¢(S) < ¢5(G).
There are bicriteria approximation algorithms for this problem using semidefinite pro-
gramming relaxations: Raghavendra, Steurer and Tetali [79] obtain an algorithm that
finds a set S with vol(S) < O(dvol(V)) and ¢(S) < O(\/¢5(G)log(6~1)), and Bansal
et.al. [9] obtain an algorithm that finds a set S with vol(S) < (1 + €)dvol(V) and
#(S) < O(f(e)ps(G)y/lognlog(d—1)) for any € > 0 where f(e) is a function depends

only on e.

2.4.4 Local graph partitioning

We will discuss about local graph partitioning algorithms in this subsection. In some

situations, we have a massive graph G = (V, E) and a vertex v € V, and we would like
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to identify a small set S with small conductance that contains v. The graph may be too
big that it is not feasible to read the whole graph and run some nontrivial approximation
algorithms. So it would be desirable to have a local algorithm that only explores a small
part of the graph, and outputs a set S with small conductance that contains v, and the
running time of the algorithm depends only on vol(S) and polylog(n).

All existing local graph partitioning algorithms are based on some random walk type
processes. The efficiency of the algorithm is measured by the work/volume ratio, which
is defined as the ratio of the running time and the volume of the output set. Suppose
S* is our target sparse cut. Spielman and Teng [07] proposed the first local graph
partitioning algorithm using truncated random walk, that returns a set S with ¢(S) =
O(¢(S*)'/?(logn)?/?) if the initial vertex is a random vertex in S*, and the work/volume
ratio of the algorithm is O(¢(S*)~2 polylog(n)). Andersen, Chung, Lang [5] used local
pagerank vectors to find a set S with ¢(S) = O(y/¢(S*)log k) and work/volume ratio
O(#(S*)~ L polylog(n)), if the initial vertex is a random vertex in a set S* with vol(S*) =
k. Andersen and Peres [0] used the volume-biased evolving set process to obtain a local
graph partitioning algorithm with work/volume ratio O(¢(S*)~Y2 polylog(n)) and a
similar conductance guarantee as in [5]. Note that the running time of these algorithms
would be sublinear if the volume of the output set is small, which is the case of interest

in massive graphs.
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Chapter 3
Improved Cheeger’s inequality

In this chapter, we present a generalization of Cheeger’s inequality using higher eigen-
values. The results presented in this chapter are mainly based on joint work with Yin
Tat Lee, Lap Chi Lau, Shayan Oveis Gharan and Luca Trevisan [13].

Finding a set of small conductance is a fundamental problem which comes up in
different areas of computer science. The spectral graph partitioning algorithm is a
common heuristic to this problem used in practice because of its ease of implementation
and efficiency. The classical Cheeger’s inequality provides a performance guarantee for
this algorithm:

52 < 0(G) < dueen < V2,

where @sweep is the conductance of the set returned by the spectral graph partitioning
algorithm. However, the inequality can be as bad as a ©(n) approximation in the worst
case (see Subsection 2.4.2), and gives a constant approximation only when the graph is
an expander. On the contrary, the spectral graph partitioning algorithm often performs

well in practice. Therefore Cheeger’s inequality cannot give a satisfactory explanation.

3.1 Main result

Our main result is a generalization of Cheeger’s inequality using higher eigenvalues.

Theorem 3.1. For any undirected graph G and integer k > 2, we have

A2
\/Ak’

where Gspeep 15 the conductance of the set returned by the spectral partitioning algorithm.

(G) < Dsweep < O(K)
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This shows that the spectral partitioning algorithm is an O(k/+/A)-approximation
algorithm for the sparsest cut problem. In particular, the spectral partitioning algorithm
performs well when A is large for a small k, which happens when the graph has a clear
k-partition.

The rest of this chapter is organized as follows. We first give a proof overview in
Section 3.2, and prove our main result in Section 3.3. Then we improve the hidden
constant in the big-Oh notation in Section 3.4, and show that ¢(G) < 2v2kAa/\/At1-
Finally we see some related problems where our techniques can be used to get better
bounds in Section 3.5. For the maximum cut problem, suppose the optimal cut fraction

is 1 — €, our techniques gives a cut with fraction 1 — O(ke/(2 — Au_p)).

3.2 Proof overview

We first describe an informal intuition to the inequality when & = 3 and see how it can

be generalized afterwards. Recall that the Rayleigh quotient of a vector z € R is

ZquE w(u7 ’U)(ZE(U) _ x(v))Z
2wy deg(u)z(u)®

Let us assume that Ao is small and A3 is large for a graph G. Since Ao is small, G

Ra(z) = (3.1)

contains a set of small conductance. On the other hand, when A3 is large, by the
higher order Cheeger’s inequality (Theorem 2.8), ¢3(G) is large, and hence G cannot be
partitioned into 3 sparse cuts. Intuitively, these together mean that the vertices of G
can be partitioned into 2 sets, each with large internal conductance. Now the Rayleigh
quotient of the second eigenvector vg is small implies the values ve(u) inside each subset
have to be similar, otherwise the numerator in Equation 3.1 would be large. Hence
v is close to a 2-valued vector. However, if vy is 2-valued, then it is a normalized
characteristic vector and therefore is at most factor 2 away from the conductance of a
set. Therefore ¢(G) = O(\2).

For general k, our proof consists of two main steps. First, we show that when A is
large, vq is close to a O(k)-valued vector in the sense that ||ve — y||p is small for some
O(k)-valued vector y. In general cases it is not easy to argue that G can be partitioned
into O(k) expanders, and conclude that vy is close to k-valued. Instead, we will show
the contrapositive. We will prove that if ve is not close to any O(k)-valued vectors,
then we can construct k disjointly supported vectors z; with small Rayleigh quotients,
and this contradicts to A\ is large by Lemma 2.1. The remaining step is to show that

when vs is close to a O(k)-valued vector, then ¢gyeep is small. More precisely, we prove
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that gsweep = O(kA2 + k|lva — y||pv/A2). This can be done by a random thresholding
argument similar to Theorem 2.4, by defining a probability distribution such that we
are more likely to choose thresholds far away from the O(k) values of y.

We have a second proof of the improved Cheeger’s inequality [13], which uses the
technique of smoothing the functions with well sperated disjoint support. This method
comes from [15] for proving the higher order Cheeger’s inequality. We will not discuss

this second proof in this thesis.

3.3 Proof of improved Cheeger’s inequality

We first state a slightly stronger statement that we shall prove later. This statement
shows that we can find a good cut whenever we have a vector x perpendicular to v; with

small Rayleigh quotient, instead of having to consider the second eigenvector vs.

Theorem 3.2. For any undirected graph G, integer k > 2 and non-zero vector x € RV

with (x,v1)p = 0, we have

Psweep() = O(F)

Recall that ¢syeep(x) is the minimum conductance over the level sets of x with volume

not greater than half of the total volume.

From Theorem 3.2 it is easy to deduce Theorem 3.1.

Proof of Theorem 3.1. Let x = v9, the second eigenvector of G. Then we have ¢gweep(z) =
Gsweep ald R(x) = A2. Therefore we get

¢sweep - O(k)\/T—k

O

The proof consists of two steps. Before proving the theorem, let us first state and

prove the two main lemmas first.

3.3.1 O(k)-valued approximation

Given a vector z € RV, we say that y € RV is a k-valued approximation of z if y only
contains k distinct elements, and ||z — y||p is small. The following lemma argues that

when )y, is large, there exists a O(k)-valued approximation.
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Lemma 3.1. For any undirected graph G, integer k > 2 and non-constant vector x € RV

with ||x||p = 1, when X\, > 0, there exists a (2k — 1)-valued approximation y such that

AR (x)
Ak

lz —yllh <

Proof of Lemma 3.1. We first show how we determine an approximate vector y by its
values, and then choose the right values to achieve the bound. Given 2k — 1 values
t <ty < -+ < tgp_1, for any vertex u € V, let y(u) = t; be such that |z(u) — tx| =
min; |z(u) —t;|. In other words, y(u) is the closest value of () in the set {¢1,...,tox_1}.
If there are multiple values satisfying the equality, then we can just choose an arbitrary
value. Note that this assignment minimizes ||z — y||p subject to the values of y are in
the set {t1,...,top—1}-

Now we use the values ¢; to define disjointly supported vectors. Let tg = —oo and
tor, = 0o. Then these values divide the vertex set into 2k parts V; = {u € V | t;_1 <
x(u) < t;}. We shall define 2k vectors, one for each of these 2k parts, and then apply
Lemma 2.1 to relate their norms to ;. Given two values a < b, define the vector
Tap € RY by

Tap(u) = { min(z(u) — a,b — z(u)) if z(u) € [a,b],
7 0 otherwise.

Let z; = x, 4, for 1 < ¢ < 2k be the 2k disjointly supported vectors. Note that
lz —yl% = X ||@i||% by our definition, since both |z(u) — y(u)| and |z;(u)| are the
distance of z(u) to the closest value in the set {t1,...,tox—1}, when u € [t;_1,t;]. Also
by our definition all the 2k vectors are 1-Lipschitz with respect to x, which means that

|zi(u) — z;(v)| < |z(u) — x(v)| for any pairs of vertices u, v.

Finally we choose the values t; such that [|z;]|?, are all the same, and equal to
C = 2R(z)/(kA;). This value C is chosen such that it leads to a contradiction when
we can successfully define the 2k disjointly supported vectors. We start with tg = —oo.

After to,t1,...,t;—1 are determined, we choose t; such that ||z;||% = C. Note that

lzill% = ||@t; .+ ]|% is continuous and increases with ¢;, therefore we can find such a t;
whenever |21, | «||% > C. Now we have two cases. Either there exists an i < 2k such
that ||z1, ,.00l|% < C, or all t; are determined successfully for all i = 0,1,...,2k. In the

second case, we shall redefine tor, = 0o, and still have ||z |% = ||zt .00/l > C.
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In the first case, we set t; = t;41 = --- = to, = 00. Then

2%k

AR (x)

lz = ylp = Y llzillh < 2kC = N
i=1

and we are done.

In the second case, we obtain 2k disjointly supported vectors, each with the squared
D-norm at least C. We would like to prove by contradiction using Lemma 2.1, which
gives an upper bound of Ay by the Rayleigh quotients of disjointly supported vectors.
Hence we need to upper bound the Rayleigh quotients of the vectors. Since the norm
known to be at least C, it remains to bound the energies of the vectors. For any pairs

of vertices u, v, we will show that

2k

D (ilu) = 2i(0))? < (w(u) = 2(v))*. (3-2)

i=1
Suppose u € V), and v € V; and assume without loss that 1 <p < ¢ < 2k. If p = ¢, then

2k

Y (i) = 24(0)? = (2p(u) — 2(0))? < (2(u) — 2(v))?,

i=1

where the inequality holds since x, is 1-Lipschitz with respect to x. Otherwise p < g,

and

2k

D (ilw) = 2i(v))* = (2p(u) — 2p(v))? + (2(u) — 24(v))?

=1

where the last inequality holds since z(u) < t, < t,—1 < z(v). Therefore Equation 3.2
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holds in any case. Summing up these equations for all edges {u, v}, we have

2k 12k
D R =5 > wluv)(wi(u) - i(v))?
i=1

=1 wwek

1 2k
=5 ZEw(u, v) z;(xz(u) — xi(v))Q
< éwzejEww, V)(e(w) =~ 2(v))?

kA
- 2R (x) (z)
2y
==

On the other hand, let z} be a permutation of z; such that R(z]) < R(z) <--- <
R(z), ). Then Lemma 2.1 states that R(z},) > Ap/2. Therefore

2k 2k 2%
S R) = Y RE) = SR> EEDA
=1 i=1 i=k

Since Ar > 0, this leads to a contradiction. Thus the second case cannot happen and

we are done. ]

3.3.2 Upper bound ¢sweep With distance to approximation

The next lemma states that when a non-negative vector x is close to having only a few

values, then the spectral partitioning algorithm actually works better.

Lemma 3.2. For any non-negative vector x € RV with ||z||p = 1 and any (2k—1)-valued

vector y, we have

Psweep(T) < 2kR(z) + 4V 2k||z — | p/R(z).

Proof. We use the randomized thresholding argument to analyze the performance of the
sweeping algorithm. The proof is a generalization of the original randomized threshold-
ing proof for Cheeger’s inequality. Let M = maxycy (u) and 0 <tq <ty < -+ < top_q
be the values of the vector y. Without loss we assume the vector y satisfies

() =t

o(u) —y(w)| = _min
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Otherwise we can redefine y such that the above equality holds. Then the new y still
has the same values while || — y||p does not increase. Let d : [0, M] — R be the
distance function to the closest value, defined as
d(t) = i t— t;|.
®) 1;212%_1\ il
We abuse the notation and also use d(u) to denote d(z(u)). Let C = fo t)dt. We use
p = d/C as the probability density function to choose our random threshold. We choose

a value t € [0, M] following the distribution p and analyze the level set Sy = {u | z(u) >
t}. The expected volume of the set is

Epu[Se] = Z deg(u)Pplu € Sy

ueV
w(u)
= Z deg(u / w(t)dt
ueV
(u)
— Z deg(u / d(t)dt.
uEV

Let tg = —oco and top, = co. Note that if z(u) € [t;—1,t;) for some 1 < i < 2k, then

d(t)dt = / dt + / / d(t)dt
/0 (a = [ Z N [ aw

i—1
| )t

Vv

tl
]_—2

1 ((n (T —40) + ) — )
4

Y

i

> )
- 8k

where the second last inequality follows from Cauchy-Schwarz inequality. Therefore the

expected volume of the set is

(17
EtNu[Vol St Skjc Z d 2 8TCD
ueV
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On the other hand, the expected total weight of edges cut by the set is

Eru[w(8(S))] = Y w(u,v)Propluv € 5(5))-

uwwel
For any edge uv with z(u) < x(v), we have

z(v

]P)tNM[U/U € (5(St)] = PtNM[IE(U) <t< JE(’U)] = /

)/L dt = —1 o d(t)d
t)dt = t)dt.

Note that for any t € [z(u),z(v)], d(t) < d(u) + (t — x(u)) and d(t) < d(v) + (x(v) —t).

So for any ¢ € [z(u), z(v)], we have

‘ ‘ c—x(u 2
/ d(t)dt s/ d(w) + (¢ 2wt = (c — (u))d(w) + E— L

and

z(v) z(v) 2(v) — ¢ 2
/ d(t)dt < / d(v) + (z(v) — t)dt = (z(v) — ¢)d(v) + (2 )2 ) :

We choose ¢ = (z(u) + z(v) — d(u) + d(v))/2 to optimize the bound and get

z(v) c z(v)
/ d(t)dt = / d(t)dt + / d(t)dt

< (= a(w)dn) + C=2 L (o) - eya) + L=

) - 2w)? | (o)  2()(d() + d)) _ (dw)  d(w))
4 2 4

o (o) ) | ote) o) 00+ )

where the last equality is obtained by expanding and simplifying the terms. Combining
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the inequalities, we have

Etwu[w(é(st))] = Z w(“?”)PtNM[uU € 6(S)]

wekl
z(v)
= U;Ew(u, v% /x , o
1 (x(v) — l‘(u))Q (z(v) — z(u))(d(u) + d(v))
: c uvzezEw(U7 K ( 4 " 2 )
1
=10 <E(x) + QUUXG:Ew(u, v)(z(v) — z(w))(d(u) + d(@))

IN
|

wel

o &+ 8(3:)(2w(u,v)(d(u)—l—d(v))2>)

IN
|
O
&
+
Do

” () (Z wu,0)2(dw)? + d<v>2>>)

wek

_ % () +2, | 26(x) (Z deg(u)d(u)2>>

ueV
= 16 (6@ +2V3VEG) e~ ylp)

where the second inequality is due to Cauchy-Schwarz inequality and the third inequality
is due to the fact that (a 4 b)? < 2(a? + b?) for any a,b € R.
Finally, there exists ¢ such that
w(0(5:)) _ Ernpw(5(51))]

6(5) = T8 = B felg = 2@ +VAVEG e~ vlp.

This completes the proof. O

3.3.3 Combining the lemmas

Now we are ready to prove the main theorem in this chapter.

Proof of Theorem 3.2. First we can assume x is non-negative with support size no more
than half of the total volume. By Lemma 2.3, we can get 2’ > 0 with supp(a’) <

vol(V) /2, R(2") < R(x), and the level sets of 2/ is a subset of level sets of x.
Consider the level sets S; = {u € V | 2/(u) > t}. By combining Lemma 3.1 and
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Lemma 3.2, we can find a probability density function p such that

Eipu[w(5(St))] / 4R ()
m < 2k <R(m)+2\/§ n )
R(z")

Nk

< 2kR(x') 4 8V2k

Therefore there exists a t such that

_ B yw(5(5)
= Eoplvol(Sy)]
R(z")
Novik

where the first inequality follows from an averaging argument similar to the argument

< 2kR(z') + 8V/2k

in the proof of Theorem 2.4. This completes the proof. O

3.3.4 Tight example

We show that for any k we can find a graph G such that ¢(G) = O(kAa/v/Ag). Our
tight example is simply an n-cycle. Note that the eigenvalues of the Laplacian of an
n-cycle is 1 — cos(2mj/n) where j = 0,1,...,n —1 (see Subsection 2.2.3). Therefore the
k-th eigenvalue of the Laplacian of an n-cycle is ©(k?/n?) as n — co. The upper bound
of the conductance given by our result is O(kA2/v/Ax) = O(1/n), which matches the

conductance of an n-cycle.

3.4 Improving the constant

In this section, we aim at improving the constant in the improved Cheeger’s inequality.

We shall prove that
kAo
(;steep < 2\/§ .

Ak+1

This bound has tightened the previous bound in two ways. We improve the constant
from 10v/2 to 2v/2 and also change A\; to A\i41. The improvement is mainly based on
two observations. First, we find a way to construct k-valued (instead of (2k — 1)-valued)
function which is close to the second eigenvector. Second, originally we only consider

the distances from the values, and now we also use the signs to get a tighter bound.
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We call a function p : R — R k-flipping if p is continuous with k£ — 1 turning points,
and between the turning points, p is linear with slope +1, which means p(t) is in the
form of t + ¢ or —t + ¢ for some c. For example, p(t) = |t| is 2-flipping. Given a vector
r € RV, we will denote by pox the vector that satisfies (pox)(u) = p(z(u)) for allu € V.

Note that p o x is 1-Lipschitz with respect to x. The following is our main lemma.

Lemma 3.3. Given a connected graph G and any vector x € RV, there exists a k-flipping
function p such that (pox,v;)p =0 fori=1,2,... k.

The intuition is that we have k degrees of freedom in choosing the k-flipping function.
They include the positions of the k — 1 turning points and one constant shift. So the

freedom should allow us to satisfy k linear equations.

This intuition can be easily verified when k£ = 2. When k = 2, consider moving the
turning point from negative infinity to positive infinity and set the constant shift so that
(pox,v1) = 0. Then a = pox changes from z to —z and thus (a, v2)p changes sign. So

at some point the inner product is zero.

We will assume the lemma for now and prove it at the end of this subsection.

Theorem 3.3. For any graph G, we have

kA2

Nit1

gbsweep <2 \/>

Proof. Let = be a non-negative vector with R(z) < A9, supp(z) < vol(V)/2 and
lz||p = 1. Let p be the k-flipping function obtained from Lemma 3.3, and a = p o x.
So we have R(a) > Ay since (a,v;)p = 0 for i« = 1,..., k. We will use |p| as the
probability distribution for the random threshold and show that one of the level sets
has small conductance. Let h(i fo (t)|dt and C' = [, maxy &(u) (t)|dt. Consider
the randomized cut S; = {u | :1;( ) >t} where t € [0, max, x(u)] is chosen following the

distribution p = |p|/C. Then

]Etwu |St Z deg thu u e St]

ueVvV
) |p(t)]
=St [ 20,
uEV ¢
= & deg(u)h(w)
ueVv
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and similarly,

Etwu[w(6(st))] = Z w(u7v>Pt~M[uv € 5(575)]

wek

Therefore

bovenn < E[w(3(S))] _ 2wer w(u,v)|h(u) = h(v)]
TP E[S] > uev deg(u)h(u)

Now we will give an upper bound to |h(u) — h(v)|. You may refer to Figure 3.1.

If a(u) and a(v) are of the same sign, then

z(v)
[ o
@(u)

Otherwise a(u) and a(v) are of different sign. Suppose |a(u)| > |a(v)], then |z(u) —

z(v)| = la(u) — a(v)| = |a(v)|, and

1 1 1
< @) = 2()* + Sla(u) = 2v)lla(u) + a(v)] = ;(a(w) = a(v))*

z(v)
[, 1Pl < G o)+ gla) —a(@)a(w) — a(w)| ~ Gla) —a()’

+a(w)? ~la(o)l2(u) — ()
() — 2(0))? + Slo(u) — 2(0)la(u) — a(v)] ~ §(a(u) — a(v))*.

<

»M»—‘

So in either case we have

1 1 1
h(w) — A(0)] < §w) ~ 2(0))? + 5lew) — 20} (Jalw)] + la(@)]) ~ 3 (alw) — a(v))*
Now
> wlu,v)lh(w)  ho)| < TR@) + 5VRE@), (23 deg(u)a(u)? ~ R(@)alh
weE ueV

1
Z)\Q + 7\/ ollallp — *)\k+1||a||Da

where the first inequality is by Cauchy-Schwarz inequality and the second inequality is
by R(x) < Az and R(a) > Ag11. Note that ||a||% = E(a)/R(a) < E(x)/R(a) < Aa/Agt1-
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(a) When a(u) and a(v) are of the same sign, the maximum attainable area is the area of the
large triangle minus the areas of the smaller triangles:

(b) When a(u) and a(u) are of the different signs, the maximum attainable area when |a(u)| >
|a(v)| is the area of the large triangle minus the area of the left triangle plus the area of the right

triangle:
(b+d—c)? vV 2 1

1
- - = 2 —
1 2+2 d +2d(b+c)

1 (b+c)*+c? —cd.

B 1
4
Figure 3.1: Maximum attainable areas
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The quadratic equation
1 2 1
Z)\Q + \é»\/ Aot — 1/\k+1t2

is increasing when t < y/2X2/A;41. Hence in the range ¢ € [0, \/A2/Ak+1], the quadratic
equation attains its maximum (v/2/2)Xa/\/Aes1 at t = \/A2/Apy1. This concludes that

2oy )~ RN S R

On the other hand, suppose the £k — 1 turning points are 0 < t; < to < -+ < g1
and t; < z(u) < tiy1, then

h(u) /0 Ip(t)ldt
t1 to x(u)
:/O |p(t)dt+/ |p(t)|dt+---+/ Ip(t)|dt

t1 t;
tt, (t2—t1)? (x(u) — t:)?
=yttt
w(u)?
G101
2(u)?
4k

>

>

where the first inequality is due to p(t) is linear with slope +1 in each of the integrals,
and the second inequality is by Cauchy-Schwarz inequality and the fact that there are

7+ 1 terms. Therefore we have

S deg(u)h(u) > 4

ueV

Combining the bounds, we conclude

Zuve w(u’ U)|h(u) - h(v)| 2\/5
Dsweep < §u6V dog(u)h(1) < Vi1

This completes the proof. ]
Finally we will prove Lemma 3.3.

Proof of Lemma 3.3. First recall that v; is parallel to xy and (v,vj)p =0 for 2 < j <
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k. So for any function p that satisfies (pox,v;)p = 0 for 2 < j < k, we can choose

;o (poz,vi)p
p =D )
(xv,v1)p
so that
/ (pox,v1)p
pox=poxr— ——""Zyy,
(xXv,v1)D

and hence (p' o z,vj)p = 0 for all j. Hence without loss we only need to satisfy to the
later £ — 1 equations.

For any ¢ € R, we define the function p.(t) = max(t — ¢,0). Then any k-flipping
function p can be written as p(t) = t — 2p, (t) +2pe, (t) — - - -+ (—=1)*~12p,, _, (¢) for some
real numbers ¢; < --- < ¢;_1, where ¢; are the turning points.

We define a function ¢ : R — R{Z-*} such that g(c)j = (pcox,vj)p for 2 < j < k.
This function is continuous. For any ¢ < ¢pin = minjey (i), g(c¢) = g(cmin) since
(xv,vj)p = 0 for any j > 2. For any ¢ > cmax = max;ey x(2), g(c) = 0. Therefore
(poa,vi)p = (2,0;)D = 2peys vj)D + 2Py vj)p — -+ + (1) 2(pe,_,,v5)p = 0 for
2 < j <k if and only if

9(min) — 29(c1) + 2g(c2) — -+ + (=1)F12g(cx—1) = 0.

This can be rewritten as
1
> (9(t) = g(5)) = 50 = glemn)),
i

where (s;,t;) are disjoint intervals, and g(t1) = 0 if k is even.

Now we make use of the following lemmal.

Lemma 3.4 ([12]). Letr : [a,b] — R™ be a continuous curve. Then there exists a family

of no more than |(n+ 1)/2] disjoint intervals [s;,t;] such that

Sr(t:) — r(s0)) = 5(r(5) — r(a).

)

Moreover when n is odd, we can choose t1 = b.

Applying this lemma to g with n = k — 1 and interval [¢nin, Cmaz], We get no more

We thank Sergei Ivanov for pointing us to this reference at mathoverflow.
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than |k/2] disjoint intervals [s;,¢;] such that

1
S ((t) — g(s:)) = 50— glemin).
i
We set ¢; such that [co;—1,co;] are the intervals [s;,¢;]. When k is odd, we are done.
Otherwise ¢x = ¢mar and g(cg) = 0. So we can omit that term. This completes the
proof.
]

For the sake of completeness, we include the proof of Lemma 3.4 in the following.

Proof of Lemma 3.4. Let (x1,x2,...,Zn+1) be a point on the n-sphere. For 0 < ¢ < n+1,
let

Y = (Zm?)(b —a)+a.
j=1

Now define f : S™ — R" by

n+1

f@r,@z,. . mngn) = Y sen(@i)(r(y:) — r(yi1))-
=1

Note that f is continuous and f(—z) = —f(z). By the Borsuk-Ulam theorem?, there
exists a point € S™ such that f(z) = 0. Suppose S1 = {i | z; >0} and Sy = {i | x; <
0}. Let
A= "(r(y) —r(yim1)) and  B=> (r(y) —r(yi-1)).
€51 1€S52
Then A = B. Since A+ B = r(b) — r(a), we have A = B = 1(r(b) — r(a)). Now we
take the smaller index set S or Sa, and when tie, take the one including n + 1. After

combining the adjacent intervals if necessary, we obtain the result. O

3.5 Related problems and extensions

Our techniques can be extended to prove some results in related problems including
k-way partitioning, balanced separator and maximum cut. In this section we will state

some of these results [13] without proofs.

2The Borsuk-Ulam Theorem states that if f : S™ — R™ satisfies f(—x) = — f(x), then there exists
z € S™ such that f(z) =0.
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Our results can be combined with several results in [15] to obtain the following
multiway graph partitioning results. The proof idea is to apply the improved Cheeger’s
inequality on the disjointly supported function obtained by [45].

Corollary 3.1. For any undirected graph G and integers | > k > 2, we have

1.
6(G) < O(lkﬁ)\//\%.

2. For any 6 € (0,1),
I(logk)®\ Mg
Qﬁ(lf&)k(G) <O <58]€ ﬁ

3. If G excludes Ky, as a minor, then for any ¢ € (0,1),

RALN i
¢(1—6)k(G) <0 ((55k> ﬁ

We can use Theorem 3.1 repeatedly to prove a better bound for the balanced sepa-

rator problem.

Theorem 3.4. Let € = ming|_|y|/2 ¢(S). There exists a polynomial time algorithm that
finds a set S such that |V |/5 < |S| < 4|V|/5 and ¢(S) < O(k/Ak)e.

Similar techniques can be applied to improve the results in [73] for the maximum

cut problem. The idea is to repeatedly find a near bipartite subgraph.

Theorem 3.5. There exists a polynomial time algorithm that finds a cut (S,S) such
that if the optimal solution cuts 1 — € fraction of edges, then (S,S) cuts

2 — A\p— €
1—O(k)log< - ’“) T

fraction of edges.

It shows that we can obtain a better approximation for the maximum cut problem
when there is a gap in the higher end of the spectrum, that is when 2 — A\, _;. is large.

In the following we would like to remark that there is a relation between the spectral
gap in the lower end and that in the higher end. We show that expander graphs implies
such a gap in the higher end. This shows that if we can prove some properties of a graph
assuming the spectral gap in the higher end, those properties also holds for expander

graphs. Fact 3.1 and Theorem 3.5 implies the max cut problem is easy in expanders.
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Fact 3.1. For any graph GG, we have
A2 =0(2— \p_1).

Proof. Let v; be the eigenbasis of G. For each 6 € [0, 2], let vg = (cos0)v,—1 + (sin@)v,
be a vector in the space spanned by v,_1 and vy,. Note that ||vg||%, = cos?® 0]|vn_1]% +

sin? 0]|v, |2, = 1. After that we define vectors zg such that

29(u) = [vp(u)] = (Jvgl, v1) pvr(u).

We use the absolute value in the first term to guarantee the energy of zy is small, and
we use the second term to normalize the vector so that (zg,v1)p = 0.

We will show that there exists 6 such that the following two properties holds:
1. 2} Lzg <2— X1
2. 2l Dzg = Q(1).

These properties together with (zg,v1)p = 0 by construction, we have

XLz
Ao < R(zg) = zf’TDZ‘; = 02— A1)
0

The first property holds for all §. Note that the Rayleigh quotient of vy satisfies
R(vg) = (cos” O) A1 + (sin? )\ > Ap1.
Therefore

szze = Z w(u,v)(ze(u) — ,29(1)))2

weE
— 3wl o)) ~ un(o))?
weFE
< Z w(u, v)(ve(u) + ve(v))?
weE
=2 deg(urg(u)’ = Y wu,v)(v(u) — vp(v))”
uev weE
S 2 - )\n—l

Next we will show the second property holds for some 6. We will show that for a
uniform random 6 € [0, 27], in expectation Egy [, /1 —||z0]|%| < V8/m < 1, and therefore
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there exists 6 such that ||z|2, > 1 — 8/72. Since 29 = |vg| — (|Jvg|,v1)p - v1, and
(zg,v1)p = 0, we have

126115 + (Jvol,v1)D = lllvellI = 1.

V1= llzellB = [(lvel, v2)p| =

Without loss we assume v; is non-negative. Then we have

Ey [\/1 - HZoII%] By | 3 deg(u)vr (u)op(u )]

So we have

S deg(u)or (wva ()]

ueV

ucV
= deg(u)vi (w)Eg[|vg(u)]]
ueV
1 2m
= Z deg(u)vq (u)2— / |(cos @)vy—1(u) + (sin O) v, (u)|do
ucV T Jo
1 2
= Z deg(u)vy (u)2— Vn_1(w)2 4+ v, (1)2 - | cos(8 — o (u))|db,
ueV TJo
where an(u) is a number in [0, 27r) such that cos ay,(u) = vn—1(u)/v/Un—1(u)? + v, (u)?
and sin oy, (u) = vy, (w) //vn—1(u)? + vy, (u)2. By the fact that fo | cos 0|df = 4f7r/2 cos 0df =
4, we have
4
Ea |y/1- lially| = ;Vdeg W)/ (07 0 (0
Z deg(u)vy (u Z deg(u) (vp—1(u)? 4+ vy (u)?)
ueV ueV
2
- ;¢ lorli3 len-1l + lval3)
_ V8
o
This completes the proof. O

Remark 3.1. The hidden constant in the big-Oh notation is 1/(1—8/72) < 5.279. This
is the best we can do by this method (looking at the top 2-dimensional eigenspace and
consider the absolute values). In the case of large odd cycles, Ao/ (2—A,—1) = 4+0(1/n)
and for any 0, R(z9)/(2 — An_1) = 1/(1 — 8/7?) + O(1/n). We believe 4 is the tight

constant for this bound, however we do not have enough techniques to prove this now.

63



3.5.1 Local improved Cheeger’s inequality

In this subsection, we give an extension of the improved Cheeger’s inequality in the
setting that we only have local information of the graph. Suppose there is a massive
underlying graph GG, and we only know the information over a small subset of vertices S.
Then we can still try to relate the best conductance over this subset and the spectrum of
some local matrix associated with S. More precisely, let Ag, Dg and Lg be the restric-
tions of A(G), D(G) and L(G) over the subset S respectively, and let ¢g = mingcg ¢(T).
Let L5 = Dg'"/?

the eigenvectors of Lg with corresponding eigenvalues 0 < Ag1 < Ag2 < ...Ag s, and
/

12 —1/2 172 S B ¥
LsDg""? = Iisixjs) — D5 AsD5'"*. Suppose bs,1, sz, - U s are

as usual, vg; = D;l 217571- are the (right) eigenvectors of D§1L5. Then Chung [20]

proved the following theorem.

Theorem 3.6 ([20]). For any graph G and any subset of vertices S C V', we have

As1 < ¢g < \/2X5,1.
Proof. We denote
Rs(@) = Rig,ps(x) = 77—

Suppose the minimum conductance ¢g is attained by 7' C S, then

T w
Re(xr) = SO = = e,

Therefore by the Courant-Fischer formula, ¢(T") > Ag 1.

For the other side, we note that by applying Theorem 2.4 on the first local eigenvector
vg,1, we can get a subset T C S such that ¢(T) < /2Ag;. Therefore ¢g < ¢(T) <
\/% . This completes the proof. O

We extend our main result in this setting that shows better bounds when the local

higher eigenvalues are large.

Theorem 3.7. For any graph G, any subset of vertices S CV and any k > 1, we have

Proof. We first construct an auxiliary graph Gy = (V’,wys) by collapsing all the vertices
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other than those in S. More precisely, we let V' = S U {u*} and wj, satisfies

w(u,v) ifueSves.
> wgs W(u,v) = deg(u) — 3, cgw(u,v) if ue S,v=u".

> ugs W(u,v) = deg(v) — 37, cgw(u,v) ifu=u*ves.
M ifu=v=u".

wpr(u,v) =

We analyze the spectrum of G as M — oco. Note that

where b — 0 and ¢ — 0 as M — oo, since b(u) = w(u,u*)/vVM and ¢ = w(d(S))/M.

Since eigenvalues are continuous to the matrix, we have A\;(Gpr) = 0 with the corre-

sponding eigenvector (0,...,0,1) and Ay11(Gar) = A(Ls) = Agx with the correspond-

ing eigenvectors (0g, 0).

Now by applying Theorem 3.2 on the first local eigenvector vg i, we have for any

k>1,
RGM (US,l)

VNa1(Gur)

d)sweep (Us,l) < O(k)

Note that R¢,, (vs,1) = g1 regardless of M, and A\y41(Gr) — Agg. Hence by letting

M — oo, we have for any k > 2,

As,1

VAsk

As supp(vs1) €S, ¢s < Psweep(vs,1). This completes the proof.

¢Sweep (US,l) < O(k)
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Chapter 4

Random walks

In this chapter we obtain two results using random walks. In Section 4.1, we show that
by computing an approximate random walk vector, we can find a small sparse cut locally.
This algorithm has almost the same performance guarantee as the spectral partitioning
algorithm, while giving a non-trivial bound on the size of the output set.

In Section 4.2, we prove a tight lower bound on the expansions of graph powers.
This result can be used to amplify the hardness result for small set expansion problems,
and shows that some Cheeger-type inequalities can be reduced to the case where the
parameters are constant. The results presented in this chapter are mainly based on joint
work with Lap Chi Lau [11, 12].

4.1 Finding small sparse cuts

Throughout this section, we consider unweighted simple graphs, and hence vol(V') =
2m. Recall that the small sparsest cut problem with size parameter § is to determine
¢6(G) = minyey(sy<svol(v) ¢(S) and find a subset S with vol(S) < ¢ vol(V) achieving the

minimum; see Subsection 2.4.3.

4.1.1 Our results

We show that the techniques developed in local graph partitioning algorithms [67, 21]
can be used to obtain bicriteria approximation algorithms for the small sparsest cut
problem. We note that the algorithm in Theorem 4.1 is the same as the algorithm
of Arora, Barak and Steurer [7], but we adapt the analysis in local graph partitioning
algorithms to prove a tradeoff between the conductance guarantee and the volume of

the output set.
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Theorem 4.1. Given an undirected graph G = (V,w) and a volume parameter k, let
Y = Qrwou(v) be the minimum conductance over sets with volume not larger than k.

There is a polynomial time algorithm with the following guarantees:
1. Find a set S with ¢(S) = O(y/p/€) and vol(S) < k'T¢ for any e > 1/k.

2. Find a set S with ¢(S) = O(y/¢logk/e) and vol(S) < (1 + €)k for any € >
2logk/k.

For the small sparsest cut problem, when £ is sublinear (k = O(m¢) for some ¢ < 1),
the performance guarantee of the bicriteria approximation algorithm in Theorem 4.1(2)
is similar to that of Raghavendra, Steurer and Tetali [59]. Also, when k is sublinear,
the conductance guarantee of Theorem 4.1(1) is independent of n, which matches the
performance of spectral partitioning while having a bound on the volume of the output
set. These show that random walk algorithms can also be used to give nontrivial bi-
criteria approximations for the small sparsest cut problem. We note that the result of
Andersen and Peres [0] implies a similar statement to Theorem 4.1(2), with the same
conductance guarantee and vol(S) = O(k). The algorithms in Theorem 4.1 can also be

implemented locally by using the truncated random walk algorithm.

Theorem 4.2. For an undirected graph G = (V,w) and a set S* CV, given ¢ > ¢(S*)
and k > vol(S*), there exists an initial verter v € S* such that the truncated random
walk algorithm can find a set S with ¢(S) < O(\/p/e) and vol(S) < O(k**€) for any
€ > 2/k. The runtime of the algorithm is O(k'T2¢p=2).

When £ is sublinear, the conductance guarantee of Theorem 4.2 matches that of
spectral partitioning, improving on the conductance guarantees in previous local graph
partitioning algorithms. However, we note that our notion of a local graph partitioning
algorithm is weaker than previous work [67, 5, (], as they proved that a random initial
vertex v will work with a constant probability, while we could only prove that there exists
an initial vertex that will work and unable to prove the high probability statement.

In Subsection 4.1.4, we discuss a connection to the small set expansion conjecture.

Independent work

Oveis Gharan and Trevisan [55] prove Theorem 4.1 independently. They also prove a
stronger version of Theorem 4.2, with a faster running time (O(k'*2¢¢=1/2)) and also
the algorithm works for a random initial vertex in S with constant probability. They

use the evolving set process instead of the random walk process we considered here.
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We note that their result implies that our truncated random walk algorithm will also

succeed with constant probability if we start from a random initial vertex in S.

4.1.2 Finding small sparse cuts

The organization of this subsection is as follows. First we present our algorithm in
Theorem 4.1 and the proof outline. Then we present the analysis and complete the

proof of Theorem 4.1.

Algorithm

Our algorithm is simple and is the same as in Arora, Barak and Steurer [7]. For each
vertex v, we use it as the initial vertex of the random walk, and compute the probability
(row) vectors p; == XL W? = xT(Lyxn + D71A)/2 for 1 <t < O(n?logn). Then we
output the set of smallest conductance among all level sets Sy; == {u | pr(u) > pe(i)}
(of all initial vertices) of volume at most ck, where in Theorem 4.1(1) we set ¢ = k¢ and

in Theorem 4.1(2) we set ¢ = 1 + €. Clearly this is a polynomial time algorithm.

Analysis

The techniques are from the work of Spielman and Teng [(67] and Chung [21]. Our goal
in Theorem 4.1(1) is equivalent to distinguishing the following two cases: (a) there is a
set S* with vol(S*) < k and ¢(S5*) < ¢, or (b) the conductance of every set of volume
at most ck is at least Q(,/¢) for some small ¢ > 1 which may depend on k. As in [67],
we use the method of Lovédsz and Simonovits [51] that considers the total probability of
the k edges with largest probability after ¢ steps of random walks, denoted by C(t)(k);
see Subsection 2.3.2 for the definition. In case (a), we use the idea of Chung [21] that
uses the local eigenvector of S* of the Laplacian matrix to show that there exists an
initial vertex such that C® (k) > (1 — ¢/2)%. In case (b), we use Lemma 2.4 to prove
that C®W (k) < 1/c+ Vk(1 — M) for a small enough positive constant M, no matter

what is the initial vertex of the random walk. Hence, say when ¢ > k001

, by setting
t = ©(logk/¢), we expect that CV)(k) is significantly greater than 1/c in case (a) but
at most 1/c plus a negligible term in case (b), and so we can distinguish the two cases.
Theorem 4.1(2) is a corollary of Theorem 4.1(1). To prove Theorem 4.2, we use the

truncated random walk algorithm as in [(67] to give a bound on the runtime.
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Upper bound

We prove the upper bound using Lemma 2.4. We note that the following statement is
true for any initial probability distribution, in particular when p = x, for any v. The
proof is very similar to that of Theorem 2.6. The difference is that we only consider the

conductances of small sets here.

Theorem 4.3. Suppose for all t' < t and i € [n], we have ¢(Sy;) > ¢1 whenever
vol(Sy ;) <1< m. Then the curve satisfies for all x < vol(V),

() < ¥+ v - Ly,

Proof. Let the extreme points x; satisfy 0 = 2o < 21 <29 < -+ < a; < < x441. Note
that the function on the right hand side is concave and C') is linear between extreme
points and between z; and [. So we only need to show the inequality for extreme points

and for x > [. When x > [, the inequality always hold as for any ¢,

¢2
f+f( ) =12V

Now we would prove by induction. When ¢ = 0 the inequality is trivial for any = > 1,
¢2
7+¢* )zlzc@@y

When ¢t > 0 and z is an extreme point, by Lemma 2.4 and the induction hypothesis we

have
CO) < 3 (Cos(e -~ 012) + Cra(o + 612)
= a0 Sy T+ VI )
< T+ Va(l- ¢%
where the last inequality follows from Taylor expansions of v/1 £ ¢1. O

Lower bound

For a probability vector p over V' and any subset S C V, we denote p(S) := " g p(u)
as the probability mass in S. Our idea is to use the local eigenvector of S of the

normalized Laplacian matrix to show that there is an initial distribution such that
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pi(S) > (1= 6(9)/2)".

Theorem 4.4. Assume S C V where vol(S) < m and ¢(S) < ¢2. Then there exists a
vertex v such that if p = x7, then

Proof. We will show that if the probability distribution p is proportional to the smallest
local eigenvector, then p;(S) = poWhys > (1—¢2/2)!. The existence of the good starting
vertex follows from the linearity of the operator Wyg and the fact that p is a convex
combination of x, where v € S.

Let Ag ans ©g be the smallest eigenvector and the corresponding eigenvector of
Lg, which is the restriction of £ over the vertex set S. By Theorem 3.6, we have
As < () < ¢a. Also, by the Perron-Frobenius theorem on Ap for every connected
component T in S, the eigenvector Ug can be assumed to be non-negative. Let pg denote
the restriction of p on S, and p; g denote the restriction of p; on S. We set the initial
distribution p such that pg = (D;l/gfjs)T and py_g = 0, and we can rescale vg such
that pg is a probability distribution. Note that pg is a left eigenvector of D§1A5 with
eigenvalue 1 — A\g. We would show that p; s > (1 — Ag/2)'ps by induction. Clearly, the
statement is true when ¢t = 0. For ¢ > 0, we have p; g = (pi—1W)g > pi—1,sWs since p

and W are non-negative. Therefore

pt,s = pi—1,5Ws

1 _
=pi-1,9" 5(15 + Dg'Ag)
A 1

> (1- 5 ) ps 5(15 + Dg'Ag)
AS ¢
e 1 —_
( 5 )'ps,

where the second inequality follows from the induction hypothesis and the last equality

holds since pg is a left eigenvector of Wg. Finally,

As
nl8) = pis(8) 2 (1= 35 )'ps(8) 2 (1 - 2"
This completes the proof. O
Remark 4.1. In the independent work [55], Oveis Gharan and Trevisan proves a

stronger statement of Theorem 4.4. They show that there exists a subset S’ C S with
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vol(S") > vol(S)/2, such that if the starting vertex is from S’, then

pt(S):Q<<1_?”§2> )

Combining the bounds

We combine the upper bound and the lower bound to prove Theorem 4.1.

Proof of Theorem 4.1. Note that Theorem 4.1(1) is trivial if ¢ = ¢/ vo1(v) = €, and so
we assume @ < €. We also assume € < 0.01, as otherwise we reset ¢ = 0.01 and lose only
a constant factor.

The algorithm is simple. Set T = ek?logk/4. For each vertex v, set p = x, and
compute Sy; for all t < T and i € [n]. Denote these sets by St ;. to specify the starting
vertex u. Output aset S = S ; , that achieves the minimum in MiNo|(s, ;. ,)<kl+e d(Stiw)-
Clearly, the algorithm runs in polynomial time.

We claim that ¢(S) < 4\/? Suppose to the contrary that the algorithm does not
return such a set. Con51der t = elogk/(2¢). Note that t < T as ¢ > 1/k? for a simple
unweighted graph. Applying Theorem 4.3 with [ = k'*¢, for any starting vertex v, we

have

C®(k )<—+\f(1——)

Ll+e
2 log k
<k 4+ \/%exp(——spe o8 )
€ 2p
= k¢ + VEkexp(—log k)
=k k2

On the other hand, suppose S* is a set with vol(S*) < k and ¢(S*) = ¢. Then

Theorem 4.4 says that there exists a starting vertex v* € S* such that

P57 > (19

> exp(—¢t)
1
= exp(—ielog k)
— k—e/Q
S k€ + k?_l/2,
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where the second inequality holds when ¢ < 0.01 and the last inequality holds for
k > 1/e and € < 0.01. This is contradicting since C!)(k) > p;(S*) for that starting
vertex, completing the proof of Theorem 4.1(1).

Now we obtain Theorem 4.1(2) as a corollary of Theorem 4.1(1). Set € = TTogk-

Then k' < (1 + €)k. By using Theorem 4.1(1) with €, we have Theorem 4.1(2). [

4.1.3 Local graph partitioning

To implement the algorithm locally, we use truncated random walk as in [67]. Let
go = p = Xw. For each t > 0, we define p, by setting p)(u) = 0 if ¢(u) < edeg(u) and
setting pj(u) = qi(u) if ¢:(u) > edeg(v), and we define ¢;11 = p;WW. Then, we just use p,
to replace p; in the algorithm in Subsection 4.1.2. To prove that the truncated random
walk algorithm works, we first show that p) is a good approximation of p; and can be
computed locally. Then we show that the curve defined by p; satisfies the upper bound
in Theorem 4.3, and it almost satisfies the lower bound in Theorem 4.4. Finally we

combine the upper bound and the lower bound to prove Theorem 4.2.

Computing truncated distributions

Lemma 4.1. There is an algorithm that computes p} such that p, < p; < p} + etd for
every 0 <t <T, with time complezity O(T/€), where d is the degree (row) vector.

Proof. First we prove the approximation guarantee. By induction, we have the upper
bound

P <@ =pi W < piW =py.

Also, by induction, we have the lower bound
pe=paW < (pj_q + €t — 1)d)W = g + €(t — 1)d < pj, + etd.

Next we bound the computation time. Let S; be the support of pj. In order to compute
gi+1 from p}, we need to update each vertex u € S; and its neighbors. Using a perfect
hash function, the neighbors of a vertex u can be updated in O(deg(u)) steps, and thus
qe+1 and p;; can be computed in O(vol(S;)) steps. Since each vertex u € Sy satisfies
py > edeg(u), we have vol(S;) = >° g, d(u) < pi(Si)/e < 1/e, and this completes the
proof. ]
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Approximate upper bound

We use the truncated probability distributions to define the curve C’ ®), and will prove
an upper bound for C’). Since truncation only decreases the probabilities, intuitively
the same upper bound applying to C® also applies to C'®). Note that p} may not be a
probability distribution and C")(vol(V)) may be less than one. And we define the level

sets S;i = {u1,u9,...,u;} when we order the vertices such that

) | Aw) i)
deg(uq) = deg(us) Z 2 deg(up)’

We show that C] would satisfy the same upper bound as in Theorem 4.3.

Lemma 4.2. Suppose for all t < T and i € [n], we have ¢(S;;) > ¢1 whenever
vol(SAi) <1< m. Then for all x < vol(V), we have

T 2
C'O(a) < fule) = 5+ V(- G

Proof. Let z; = Euesgﬂ. deg(u) be the extreme points defined by pj;. By the same proof
as in Theorem 4.3. It suffices to prove that Lemma 2.4 still holds after replacing p; by
pi- It means that we need to show if z = x; < is an extreme point (at time t), S = S; ;

is the corresponding set of vertices and vol(S) > ¢, then
'O (z) < %(c’@*”(a; — éw) + "D (2 + ).

Since p} < q¢, we have
C'(z) = Cp},z) < Clar, ).

By Lemma 2.4,
Clai ) = CG W) < (e = 62) + O+ 6).

This completes the proof by Theorem 4.3. O

Approximate lower bound

By Lemma 4.1 we can easily get a lower bound on p/(S) with a good initial vertex.
Lemma 4.3. Assume S C V where vol(S) < m and ¢(S) < ¢o. Then there exists a

73



verter v such that if p = x., then

Proof. By Theorem 4.4, we can get a vertex v such that if p = x,, then p(S) >
(1—¢2/2)t. By Lemma 4.1, for any vertex u we have p}(u) > p;(u) —et deg(u). Therefore

we have

pH(S) = > pi(u) — et Y deg(u) = pi(S) — et vol(S) > (1 — %)t — et vol(S).

u€esS uesS

Combining the bounds

We combine the approximate bounds to prove Theorem 4.2.

Proof of Theorem 4.2. We would prove a slighter stronger statement. We show that
whenever v € S* satisfies p(S*) > (1 — ¢/2)'/4 when p = Y,, then the truncated
random walk algorithm will output a set S with vol(S) < O(k'*€) and ¢(S) < 4+/¢p/e.
The running time of the algorithm is O(e?k'*2¢(log k)3/¢?). Note that Theorem 4.4
states the existence of such vertex. We relax the requirement p¢(S*) > (1 — /2)! a bit
so as to allow for more good initial vertices. The constant 4 in p;(S*) > (1 — ¢/2)"/4 is

not important and can be replaced by any constant ¢ > 1.

Set T = elogk/(2¢) and ¢ = k='7¢/(20T). Applying Lemma 4.1 with 7 and ¢,
we can compute all p; and thus S;; for all t < T and i € [5kF€] in O(T'logk/€') =
O(e2 k1 *¢(log k)3 /¢?) steps (with an additional log k factor for sorting). By Lemma 4.3,

a good starting vertex v will give

Pr(S*) > pr(S*) — €T vol(S*) > ~(1 — /2)T — €T vol(S*).

=

We claim that one of the set S = S ; must satisfy vol(S) < 5k'*¢ and ¢(S) < 4y/¢/e.
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Otherwise, setting ¢1 > 44/¢/¢€, we have

1
Pr(87) = (1= £)T = T vol(s")
1 ke
> = _ —
2 7 exp(=¢T) = -5
k76/2 L€
T4 20
k™~ ~1/2
> 5 + k
by O
— [Elte + k(l - F)
> "M (k)

Here the second inequality holds since ¢ < 0.01, and the third inequality holds using
the fact that for £ > 1/e and € < 0.01,

/2 > k4 4k 3.

This contradicts to C"(T) (k) > pl.(S*), completing the proof of Theorem 4.2. O

4.1.4 Concluding remarks
Small set expansion conjecture

We presented a bicriteria approximation algorithm for the small sparsest cut problem
with conductance guarantee independent of n, but the volume of the output set is k' 7.
We note that if one can also guarantee that the volume of the output set is at most Mk
for an absolute constant M, then one can disprove the small set expansion conjecture,
which states that for any constant e there exists a constant § such that distinguishing
¢s(G) < € and ¢5(G) > 1 — € is NP-hard. This can be viewed as an evidence that
our analysis is almost tight, or an evidence that the small set expansion problem is not
NP-hard. We note that this is also observed by Raghavendra, Steurer and Tulsiani [60].

More formally, suppose there is a polynomial time algorithm with the following
guarantee: given a graph G, always output a set S with ¢(S) = f (¢ voi(v)) and vol(S) =
Mk where f(z) is a function that tends to zero when z tends to zero (e.g. f(z) = x/100)
and M is an absolute constant. Then we claim that there is a (small) constant e such
that whenever ¢y yo1(1) < € there is a polynomial time algorithm to return a set S with
#(5) < 1—¢€and vol(S) < k.
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We assume that G is a d-regular graph, as in [58] where the small set expansion
conjecture was formulated. Suppose there is a subset S* with |S*| = k and ¢(S*) < e.
First we use the algorithm to obtain a set S with ¢(S) < f(e) and assume |S| = Mk
(instead of |S| < Mk). Next we show that a random subset S’ C S of size exactly k will
have ¢(S") < 1— € with a constant probability for a small enough e. Let E(S) be the set
of edges with both endpoints in S. Each edge in E(S) has probability 2(1/M)(1—1/M)
to be in §(S’). So, the expected value of

1

) 1
w(b(8) £ wb(S)) + 251 - IS

By construction vol(S’) = kd, and so the expected value of

wd(S) 21

a(s) < PO L 2y IE(S)]

Note that |E(S)| < Mkd/2 and w(d(S))/(kd) = M¢(S) < M f(e€), so the expected value
of )

P(S") < Mf(e) +1~ e
For a small enough € depending only on M, the expected value of ¢(S’) < 1 — 10e.
Therefore, with a constant probability, we have ¢(S') <1 —e.

We show that random walks can be used to obtain nontrivial bicriteria approxima-
tion algorithms for the small sparsest cut problem. We do not know of an example
showing that our analysis is tight. It would be interesting to find examples showing the
limitations of random walk algorithms (e.g. showing that they fail to disprove the small

set expansion conjecture).

Simpler proof of a result by Arora, Barak and Steurer

Arora et al. [7] proves a structural showing that we can obtain small sparse cuts efficiently
if there are many small eigenvalues (Theorem 2.7). The result is equivalent as the

statement
¢o(k—1/100) = O(v/ g logy n).

As observed by Oveis Gharan and Trevisan, our results can actually give a simpler yet

stronger proof of Theorem 2.7.

Theorem 4.5 ([55]). For any undirected graph G and € > 0, we can efficiently find a

set S with size O(n/k'=¢) and $(S) = O(y/ A logy, n/e).
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Proof. We will use Theorem 4.3 to upper bound xZW?y, and use the eigenvalues to

lower bound the trace of W, which is equal to Do Xf

Wtx.. Hence we obtain the bound
relating the small set conductance and the eigenvalues.

Applying Theorem 4.3 with [ = 2vol(V)/k!=¢ and t = 16logn/¢?, we have

deg(u)
l

degl(u) 4+ LB,

2
KW' < OO des(u)) < “E 1 degfu(1 - 2yt <
Hence tr(W?) =Y xIWty, <vol(V)/l+1/y/n < k1<
On the other hand, tr(W?') = 3",(1 — \;/2)" > k(1 — Ay /2)". Therefore

k

B > (1 — )\?)t > kexp(—lGlOgn}\k

1
Hence —elogk > —16logn\;/¢3, and hence ¢ = O(y/ A logy, n/e). This completes the
proof. O

4.2 Expansions of graph powers

4.2.1 Introduction

A well-known operation to improve the graph expansion for regular graphs is by taking
the ¢-th power of G, which has a natural correspondence to simulating the random walk
on G for t steps. In this section, we assume that G is l-regular, that is, deg(u) =
> wey wW(u,v) =1 for every u € V. We also assume that G is lazy, that is, w(u,u) > 1/2
for every u € V. Since G is l-regular and lazy, we use column vectors for probability
distributions in this section and hence A'p (instead of pW!) denotes the probability
distribution after ¢ steps of lazy random walks. The t-th power of G, denoted by G, is
defined as the undirected graph with adjacency matrix A(G)!, which corresponds to the
transition matrix of the ¢-step random walk of G. Note that G* is also 1-regular if G is.

The question we study is to prove lower bounds on ¢(G?) in terms of ¢(G). Besides
being a basic graph theoretical question, proving lower bounds on ¢(G?) has applications
in hardness of approximation [25, 57]. Our main result is a tight lower bound on the

expansion of the graph powers of a lazy 1-regular graph.

Previous work

There is a spectral argument to show that ¢(G?) is larger than ¢(G) for large enough
t. Let 1 = a1 > as > -+ > a, > 0 be the eigenvalues of the adjacency matrix Ag of
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G, where a; = 1 because G is 1-regular and «,, > 0 because G is lazy. Note that the
eigenvalues of Al is 1 = oﬂi > aé > .. > ozfI > 0, and thus the i-th eigenvalue of the
Laplacian matrix of G' is 1 —a! =1 — (1 — \;). Therefore, by the Cheeger’s inequality,

we have

1

BG) > J(1— (1= X)) 2 51— (1= 16)) = 1ho > £t 6(G)? = At - 4(G)?),

N | —
DO =

where the second inequality follows from Fact 4.1 when tAy < 1/2.
Recently, the spectral method was extended to prove lower bounds on the small set
expansion of a graph. Raghavendra and Schramm [57] proved an analog of the above

bound for small set expansion:

b (G = Qt - ¢5(G)?),

when G is a lazy l-regular graph and ¢t = O(1/¢5(G)?). The proof is based on the
techniques developed in [7] relating higher eigenvalues to small set expansion. They
used this lower bound to amplify the hardness of the small set expansion problem; see

Section 4.2.3 for more discussions.

Our results

Our main result is a tight lower bound on the expansion of the graph powers of a lazy

1-regular graphs.
Theorem 4.6. Let G be an undirected 1-reqular lazy graph. For any non-negative
integer t, we have

6(G") > o= (1= (1= ¢(())V) = Qmin(VE- $(G), 1)).

1
20

This is a quadratic improvement of the previous bound. This bound is tight up to a
constant factor for all ¢ as we will show examples (e.g. cycles) in Section 4.2.2.

Observe that the spectral argument only shows that ¢(G!) > ¢(G) when t =
Q(1/¢(G)) but does not show that ¢(G') > ¢(G) for small t. Theorem 4.6 implies
that ¢(G?) > ¢(G) for some small constant ¢. Actually, we can show that ¢(G3) > ¢(G)
when ¢(G) < 1/2 by a more explicit calculation.

Theorem 4.7. Let G be an undirected 1-reqular lazy graph with even n. We have
$(G%) > S6(G) = 26(G)*.
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One advantage of our approach is that Theorem 4.6 can be extended easily to small

set expansion.

Theorem 4.8. Let G be an undirected 1-reqular lazy graph. For any non-negative
integer t, we have
1

55 (1= (1-205(G)¥") = Q(min(V7 - $5(G). 1)).

$s/2(G") >

We show some applications of our results in Subsection 4.2.3, including the gap
amplification result in [57] for small set expansion and some reductions for proving

Cheeger-type inequalities [1, 13].

Techniques

We use the Lovész-Simonovits curve (see Subsection 2.3.2) for analyzing random walks.
As it turns out, this more combinatorial approach has the advantage of directly reason
about graph expansions without having the quadratic loss in the spectral method.

For an initial probability distribution p on the vertex set, C'(*) () is the sum of the
probability of the x largest vertices after t steps of random walk on G. First, we observe

in Lemma 4.6 that when the initial distribution is xs/|S],

b (S) >1—CB(|S)).

Hence, to lower bound é¢:(S), we can instead upper bound C®)(|S|). Imprecisely, by
Lemma 2.4, we can essentially argue that for all S with |S| < n/2,

t

>3 (t) 0O (1 - $(G)) (1 + 6(G))15])

RUEDRS

w‘,_\

t

M‘H

3 (§) mint - @'+ @),

=0

where the equality holds because C(0)(z) = min{x/|S|, 1} as the initial distribution is
xs/|S|. Since there is at least a 1/10 fraction of terms in the summation with i >
t/2 + /t, we have

9

1 ;9
DIs) £ 151 = d(@)Y + 15 < o

- (1 - 5VE-6(G)) +

1
10
where the last inequality is by Fact 4.1 when v/# - ¢(G) < 1/2. Therefore, for all S with
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|S| < n/2, we have
bt (S) > %\/i - #(G), and therefore ¢(G?) = Q(Vt - $(G)).

We need to be careful to make the arguments in < precise and this is some technicality

of the proof, but the main ideas are pretty accurately summarized in this section.

4.2.2 Expansion of graph power
The following fact is used frequently in the proof.

Fact 4.1. For any z € [0, 1], we have
(1—2)!'>1—2t, or 1—(1-2)"<zt
For any zt € [0,1/2], we have

1
(1—2) <exp(—zt) <1-— izt, or 1—(1-2)"> =zt

Lovasz-Simonovits curve

We do our analysis with the function introduced by Lovasz and Simonovits as presented
in Subsection 2.3.2, except for a subtle difference. In this result, we assume the graph to
be lazy and 1-regular. Hence it is more natural to define C'Y)(z) to be C'(Atp, z) instead
of C(pW?, z), since the graph is already lazy.

We use T to denote min(z,n — x) for € [0,n]. This notation is frequently used
and should be interpreted as the distance to the boundary. With the new definition of

c® (x), we change Lemma 2.4 accordingly and obtain the following:

Lemma 4.4. If G is a lazy 1-reqular graph, then for any integer t > 0 and any integer

x € [0,n], we have

Ct (z) < % (c<t> (x —267) + CO (2 + 2@)) :

Comparing to the original lemma Lemma 2.4, the difference is here we have 2¢ in-
stead of ¢. This is due to the conductance of a lazy graph is exactly half the conductance
of the original graph. We remark that both lemmas only give bounds on integral val-

ues®. In our proof, however, we require bounds for all z € [0,n]. The following lemma

Tt was claimed in [51] that the lemma holds for any 2 € [0,7n], but later it was pointed out in [(7]
that the lemma only holds for extreme points z, which is integral when the graph is lazy 1-regular.
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provides a slightly weaker bound that also holds for fractional z when the graph is lazy

1-regular.

Lemma 4.5. If G is a lazy 1-regular graph, then for any integer t > 0 and x € [0,n],
we have

C(t+1)(x) < % (C(t) (z — ¢T) + o® (x+ gﬁ)) .

Proof. Since C® is concave, for § >~ we have
CW(z - pz) + CW(z + pz) < CW(z — 7T) + CY (2 + ~T), (4.1)
We will prove that

C (@) < 5 (CV(@ - 207) + CV (@ + 20') (4.2)

DN | =

where
n—1

¢ = o

and this would imply the lemma by Equation 4.1 since ¢’ > ¢/2.

Note that for any integral « € [0,n — 1] and any « € [0, 1],

CHV(z 4+ a) = (1 —a)CHV () + aC V(2 + 1)
<(1-a) (c@) (z — 20T) + CD(x + 2@))
+a (CO@+1-26(w+ 1) + CO(@+1+20(z + 1))
- ((1 —a)CD(z — 2¢7) + aCO(z +1 - 2¢m))
+ ((1 —a)CD(z + 20F) + aCB(z + 1 + 2¢m))
<CW(z+a—-20((1—-a)T+alz+1)))
+C (x4 a +2¢((1 — )T + a(z + 1)),
where the first inequality follows from Lemma 4.4, and last inequality holds because

C® is concave. If (1 — )T+ a(x + 1) = (z + «), then Lemma 4.4 holds and the lemma
follows by Equation 4.1.

Note that the only case where (1 — )T + a(r + 1) # (z + «) is when n is odd and

x = (n—1)/2. At that time, T = (z+1) = z and thus (1 — )T + a(z+1) = =z.
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Therefore, when n is odd and z = (n — 1)/2, we have

CH (x4 )
< % (C(t)(az +a—2¢z)+CO(z+a+ 2(1555))
< % (C(t) (:U+a—2(n;1)-¢-(x+a)> +CcW <x+a+2(n;1)-¢-(m+a))>

— %(C(t) <x+a—2¢/'M) +c® <x+a+2¢/'m>>a

where the later inequality holds because C®) is concave and z + a < z+1/2 =n/2. O

Proof of the main theorem

As mentioned in the proof outline in Section 4.2.1, we first show that we can prove a
lower bound on ¢(G*) by proving an upper bound on C'Y)(|S|]) for the initial distribution
xs/15].

Lemma 4.6. Suppose that for any set S C V with |S| < n/2, we have CW(|S]) <1 -«
for the initial distribution p = xs/|S|, then we can conclude that $(G') > a.

Proof. Let S be the set attaining minimum expansion in G¢, that is, |S| < n/2 and
bt (S) = ¢(GY). For the initial distribution p = xs/|9/,

TAt T In n_At
C1S1) = CAp.15]) = Aty = XSS =1 = X5l NS g (s,

Therefore, we have ¢(G?) = pgt(S) > 1 — CH(|S]) > a. O

With Lemma 4.6, it remains to upper bound C®)(|S|) for the initial distribution
xs/|S| for any S with |S| < n/2. It turns out that there is a good upper bound
independent of |S|.

Lemma 4.7. For any S with |S| < n/2, for the initial distribution p = xs/|S|, for any

non-negative integer t, we have

t 1 Vit
CO(Is)) £ 1= 551 - (1= ).

Proof. For technical reasons, we consider D®)(z) = C®(z) — x/n instead to make

the argument more symmetric. See Figure 4.1 for the definition of D). Note that
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Lemma 4.5 still holds for D) since x/n is linear. So, we have

pt+D) (z) < % (D(t) (x — ¢T) + p® (x + gzﬁf)) .

By applying this equation repeatedly, we have

| —

DO@) < = S DO(fr(x)), (4.3)

Te{-1,1}t

\)

where T is a sequence of t +1-bits and fr is defined recursively as follows. In the base
case, when the sequence is empty, we define f(y(x) = z for any = € [0,n]. For any partial

sequence 1", we define

fri(x) — ¢ fr(z) if fr(x) <n/2
o

fr(z) +

Ferr (@) = { fro(e) it fro(x) > n/2,

and

fer 1($):{ fri(@) + - fr(x) if fro(z) < n/2
e fr(x) —¢- fr(x) if fr(x) >n/2,

We can view +1 as moving in the direction towards boundary and —1 as moving in the
direction towards center. Recall that T = min{x,n — x} can be viewed as the distance
to the boundary. In the following, we focus on the distance to the boundary of a point
rather than its actual location. It follows from the definition that for any = € [0, n|, we

have

and

Therefore, fr.(z) < (1 — ¢)%i - T where T; is the i-th bit in the sequence T', and hence

fr@)=frofr,0-ofn@ <(1-¢)fr_, 0o fr(x) <--- < (1-¢)Xin Tz,

We call a sequence T' good if 2221 T; > \/t, otherwise we call it bad. For a good T, we
have fr(z) < (1 — ¢)V?-Z, and thus

Fr(S) < (1 —@)VE-|S| for |S| < n/2 and T good. (4.4)
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Figure 4.1: The solid line is the curve D°(z) and the dotted line is the upper bound on D) (z)
that is stated in Equation 4.5.

As the initial distribution is xg/|S|, for t = 0, we have

DO () < min { <|;| — i) 7,1 — |i'} (4.5)

See Figure 4.1 for an illustration of the inequality. The advantage of using D*) instead

of C® is that we could bound D) (z) using T as shown in the above inequality.

Finally, we know that at least a 1/10 fraction of T" are good. So, for S with |S| < n/2,

1

D(t)(|SD < ot Z D(O)(fT(|S|)) (by Equation 4.3)
Te{-1,1}
— 5 2 DOG(S) + 5 Y DO(SI)
T:good T:bad
! L1\ e ] S |
< ot Z <|S| - n> fr(|S)) + o Z <1 - n> (by Equation 4.5)
T:good T:bad
! 1 1 Vgl 4 L El .
<= — =) (1- — - = :
= o Z <|S\ n) (1—o)V|S|+ 5 Z < - (by Equation 4.4)
T:good T:bad

<10 (g 5) 0= 1) +55 (=)

= (- - S (- B (G- D a-eis)
(-8 BBy e
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Therefore,
1
cW(|8)) = DY(S]) +1S|/n <1 - - 9.

Combining Lemma 4.6 and Lemma 4.7, we have

A-(1-e)Vh> vig

P(G') > 25

1
20
where the last inequality is by Fact 4.1 for v/t - ¢ < 1/2. This completes the proof of
Theorem 4.6.

Proof of graph cube

Theorem 4.6 showed that ¢(G*) > ¢(G) for a small constant ¢. To prove that this is

true even for ¢ = 3, we need to do a more explicit calculation. We use the bound

OO (@) < 2 (O —207) + OOz + 267))

for ¢/ = "T_lqb as was shown in Equation 4.2 in the proof of Lemma 4.5. When t = 3,

we have

CO(Is]) < 5C0((1 - 26)8]) + 00 ((1 - 26
= éu —2¢")3 + 2(1 —2¢)2(1 +2¢) +

3
=1- §¢>’ + 29/,

21+ 29)I81) +

~—

ool i

Thus we conclude ¢(G3) > %gb’ — 2¢/3. Therefore, for a large graph with small con-
ductance, taking cube increases the conductance by a factor of almost % When n is
even, we can replace ¢’ by ¢ as was shown in the proof of Lemma 4.5, and this proves
Theorem 4.7.

Proof of small set conductance

Our result can be easily extended to the case of small set expansion with a little loss in
size. More precisely, suppose G is an undirected 1-regular lazy graph such that all sets
of size at most on have conductance ¢s, where § < 1/2. In this setting, the following

lemma holds in place of Lemma 4.4.
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Lemma 4.8. If G is a lazy 1-reqular graph, then for any integer t > 0 and any x €
[0, 6n],
1
C (@) < 5 (c<t> (z— 205 7) + CO(z + 205 f)) :

where T = min(x, dn — ) here.

We remark that we do not need to fix the non-integral problem as in Lemma 4.5
because we only consider z < én < n/2 (see the proof of Lemma 4.5).

Lemma 4.6 can be restated as follows with the same proof.

Lemma 4.9. Suppose that for any set S CV with |S| < dn/2 with the initial distribution
p = xs/|S|, we have CO(|S|) <1 — a, then we can conclude that ¢52(G") > av.

Finally, in Lemma 4.7, we consider D) (z) = C)(z) — £ instead, and we use the
new 7 in the analysis. Observe that fr(x) can never leave the range [0, 0n| when x starts

in the range. Therefore the same analysis applies and we have the following lemma.

Lemma 4.10. For any S with |S| < dn/2, for the initial distribution p = xs/|S|, for

any non-negative integer t, we have
1
CO(S]) < 1= 55 (1~ (1 —205)"").
Theorem 4.8 follows by combining Lemma 4.9 and Lemma 4.10.

Tight examples

We show that the dependence on t in Theorem 4.6 is tight up to a constant factor.
The tight example we use is a lazy cycle. Intuitively, after ¢ steps of random walk on a
lazy cycle, the final position with high probability only differs from the initial position
by O(v/t), and therefore the expansion should be bounded by O(+/t) times the original
expansion. It turns out that we can easily justify this intuition through Cheeger’s

inequality.
Proposition 4.1. Let C,, be the lazy cycle. Then we have ¢(CL) = OVt - ¢(Cy)).

Proof. As in Section 4.2.1, we have
Xa(Cr) =1 = (1= X2(Cp))" < tha(Cn) = O(t - ¢(Cp)?),

where the inequality is by Fact 4.1 and the last equality is by the spectrum of the
cycle. By Cheeger’s inequality (Theorem 2.1), ¢(CL) = O(1/A2(CL)), and thus ¢(Ct) =
O(Vt- ¢(Cn)). O
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We remark that tight examples of Theorem 4.6 must have many small eigenvalues.
By the improved Cheeger’s inequality (Theorem 3.1), we have ¢(G) = O(kAa/\/ i) for
any k. Therefore, by the same calculation as in Section 4.2.1, we have that for any k,

o6 > i = oL AE VN

and therefore a graph G with A\ (G) large for a small & could not be a tight example for
Theorem 4.6.

Irregular graphs

Theorem 4.6 showed that ¢(G?) = Q(v/t- #(G)) for a regular graph. There are different
ways to generalize the statement to irregular graphs. In the following, we show that
the generalization is not true if we replace expansion by conductance, and we show that
the generalization is true if we replace expansion by the escape probability of a t-step
random walk.

Consider the graph G consisting of a regular complete graph with self loops (21, x, +
%Kn) and an extra vertex u. The extra vertex only connects to a single vertex v
in the complete graph with edge weight 1 and it has a self loop of weight m. We
assume the complete graph is so large that n > 2m*. Then ¢(G) = ¢({u}) = 1/m +
o(1/m). Consider G3. Since degqs(u) = m3 + o(m3) < n/2, the set achieving minimum
conductance is still {u}. In G2, the total weight of edges between u and the complete
graph is m? + o(m?). Therefore ¢(G®) = 1/m + o(1/m). Note that the same argument
applies for any G' if we set n to be large enough. Therefore, no matter how small ¢(Q)
is or how large ¢ is, we cannot argue that ¢(G') > (1 + €)¢(G) for a positive constant e
when we replace expansion by conductance in irregular graphs.

On the other hand, our results can be extend to another natural generalization of

expansion. Consider the definition

T DilAG)tXS
GY)= mi $)= min (1-Xsl
(&) sgv{l\léflgn/z par(5) sgvr,l|1§|n§n/2( |S| )

where ¢t (.9) is the probability that a t-step random walk starting from a random vertex
in S escapes S. With this definition and assuming that the graph does not contain a
vertex of degree more than half of the total degrees, we can show that Lemma 4.5 still
holds, with a extended definition for C). Therefore, ¢(G*) = Q(min{v/? - ©(G),1})

follows.
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4.2.3 Applications

In this section, we discuss some consequences of our main theorem. We show that
proving the general cases of Cheeger’s inequalities can be reduced to proving the special
cases where the eigenvalues are constants. Similar arguments can be used to deduce the

recent result on gap amplification for small set expansion in [57].

Cheeger’s inequalities

Let G be an undirected 1-regular lazy graph. The following result shows that if one
could prove Cheeger’s inequality when \s is a constant, then one could prove Cheeger’s
inequality for all A\y. Ome consequence is that if one could prove that say ¢(G) =

O((A2)'/199) (so that Cheeger’s inequality is true when Ay is a constant), then it actually
implies that ¢(G) = O(+/A2).

Corollary 4.1. Suppose one could prove that \o(H) > C for some constant C' < 1/2
whenever ¢(H) > 1/40, then it implies that ¢(G) < \/A2(G)/C for any G and any
A2 (G).

Proof. Given G, we assume that \2(G) < ¢(G)?/2, as otherwise the statement is trivial.
Consider H = GV/9(G)*, By Theorem 4.6, we have

(1 - (= @)V >

1
¢(H)22*0 1

)

Therefore, if we could prove that Ao(H) > C, then we could conclude that

2 MG
cg&@%ﬂ—@—hwwwws¢éﬁ

where the last inequality is by Fact 4.1. Hence the corollary follows. O

Improved Cheeger’s inequality

The improved Cheeger’s inequality (Theorem 3.1) states that ¢(G) = O(kA2/+/Ax) for
any k. Using similar arguments as above, the following result shows that if one could
prove this improved Cheeger’s inequality when As is a constant, then one could prove it

for all A3. For instance, if one could prove that say ¢(G) = O(A2/Ai%), then it actually
implies that ¢(G) = O(A2/vA3)-

Corollary 4.2. Suppose one could prove that ¢(H) < CIa(H) for some C > 1/10
whenever \3(H) > 1/2, then it implies that ¢(G) < 40C A 2(G)/\/A3(G) for any G and
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any A3(G).

Proof. We assume that ¢ < \/\3/2, as otherwise, by Cheeger’s inequality, 2X2(G) >
¢(G)? > L6(G)v/A3 and the statement is true. Consider H = G'/23(G) | Then

M(H)=1—(1—=X(G)M >1—¢e1>1/2.
Therefore, if one could prove that ¢(H) < CA2(H), then

L a—eeVim@y s G
C’)\Q(H)qu(H)ZQO(l (1—¢(@)) )240 oL

where the second inequality is by Theorem 4.6 and the last inequality is by Fact 4.1.
On the other hand,

X2(G)

Xa(H) =1 — (1= Xg(@Q))V/ (D <

2(H) = 1= (1= 2(@) 4@ < S

and the corollary follows by combining the two inequalities. O

Gap amplification for small set expansion

Consider the small set expansion problem SSE;s (c,s): Given a graph G, distinguish
whether ¢5(G) < ¢ or ¢5(G) > s. The small set expansion conjecture [58] states that
for any € > 0, there exists § > 0 such that SSE;s(e, 1 — €) is NP-hard.

Let f be a function such that f(z) = w(y/x). Raghavendra and Schramm [57] showed
that if for all € > 0 there exists 6 > 0 such that SSE;s(e, f(e)) is NP-hard, then for all
€ > 0 there exists § > 0 such that SSE;5/3(¢,1/2) is NP-hard.

We would show that our techniques can be easily applied to get a similar result.

Theorem 4.9. If for all € > 0 there exists 0 > 0 such that SSEs (e, f(€)) is NP-hard,
then for all € > 0 there exists 0 > 0 such that SSE; 5/5(¢, (1)) is NP-hard.

Proof. Given an instance G that we would like to distinguish whether ¢s5(G) < € or
¢5(G) > f(€), we consider the graph H = GOU1/f(9°) In the case when ¢5(G) > f(e),
by Theorem 4.8, we have

Gs2(H) = Q(V/1/f(€)*- f(€)) = Q(1).
In the case when ¢5(G) < €, we have
¢5(H) < (1/f(€)?) - e = 0c(1) < ¢,
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where the equality holds because f(€) = w(y/€) and the first inequality holds because

T At
b6r(8) = 1= B2 < 1-66(5),

where the inequality is proven (see Proposition 2.5 in [67]) by a simple induction. There-
fore, if SSEs (e, f(¢)) is NP-hard, then SSE;s5/5(¢', (1)) is NP-hard. O

Finally, we remark that it is easier to bound ¢s(G!) for large t using Lovéasz-
Simonovits curve. Using the techniques in Section 4.1, we have the following bound

for C® when the initial probability vector is xs/|S|:

® z [T
e TR A

0 ISl P
b6i(8) 2 1= CO(s) 21— 2 - Ty

where the first inequality follows from Lemma 4.6. Set ¢ = 100/¢?, then for |S| <
6n/4, we have ¢pci(S) > 3 — exp(—50). Therefore, if SSEs4(e, f(€)) is NP-hard, then
SSEjs 5/4(€,1/2) is NP-hard. This recovers the result of Raghavendra and Schramm with

better constant.

Therefore,

90



Chapter 5

Matrix rank

In the chapter, we present a fast algorithm to compute the matrix rank using probabilis-
tic vertex expanders. The results presented in this chapter are mainly based on joint
work with Ho Yee Cheung and Lap Chi Lau [17].

5.1 Introduction

Given an m x n matrix A over a field F', the rank of A, denoted by rank(A), is the max-
imum number of linearly independent columns of A. We consider the problem of com-
puting rank(A) and finding a set of rank(A) linearly independent columns efficiently. It
is a basic computational problem in numerical linear algebra that is used as a subroutine
for other problems [72, 76]. It also has a number of applications in graph algorithms and
combinatorial optimization: Some of the fastest algorithms for graph matching [53, 32],
graph connectivity [16, 61, 18], matroid optimization problems [32, 19] are based on fast

algorithms for computing matrix rank and finding linearly independent columns.

5.1.1 Previous works

The traditional approach to compute rank(A) is by Gaussian elimination. For an m x n
matrix with m < n, it is known that this approach can be implemented in O(nm“~1!)
field operations [11, 37], where w < 2.373 is the matrix multiplication exponent [23,

, 44]. More generally, given an m x n matrix and a parameter k < m < n, one can
compute min(rank(A4), k) in O(nmk*~2) field operations [70]. The time complexity can
be improved somewhat for sparse matrices [79]. The Gaussian elimination approach has
the advantage that it can also find a set of min(rank(A), k) linearly independent columns

in the same time. These algorithms are deterministic.
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There are also randomized algorithms to compute the value of rank(A) more effi-

ciently. There are at least three approaches.

1. The first approach is to do an efficient preconditioning [39, 15]. Let B = T} AT,
where T and T5 are Toeplitz matrices with entries chosen uniformly and randomly
from a large enough subset of the field. Then B can be computed in O(mn) time
because of the structure of 77 and T5. Let r = rank(A). It is proven that [39] the
leading r x r minor of B is of full rank with high probability. Thus rank(A) can be
computed in O(mn—ww) field operations. There is another efficient preconditioner
based on butterfly network [15] with similar property and running time. This

approach works for any field.

2. There is a black-box approach that computes rank(A) in O(m - nnz(A)) field op-
erations [77, 76, 63] where nnz(A) is the number of non-zero entries of A. The
method is based on computing the minimal polynomial of A for Krylov subspaces.
It does not require to store A explicitly, as long as there is an oracle to compute
Ab for any vector b. This approach is fast when the matrix is sparse, and it works

for any field.

3. Another approach is based on random projection for matrices over real numbers.
Given an m x n matrix A over R, one can reduce A into an m x (mlogm) ma-
trix A’ so that rank(A) = rank(A’) with high probability [62] by the Johnson-
Lindenstrauss lemma. The matrix A’ can be computed efficiently using fast
Johnson-Lindenstrauss transform [2, 3], and this implies an O(nm + m®) ran-
domized algorithm to compute rank(A). This approach is only known to work for

matrices over real numbers.

We note that only the Gaussian elimination approach can also find a set of rank(A)
linearly independent columns, while other approaches can only compute the value of
rank(A).

5.1.2 Our results

Our main result is a faster randomized algorithm to compute matrix rank. We assume
that there is at least one non-zero entry in each row and each column, and thus nnz(A4) >

max{m, n}.

Theorem 5.1. Given an m X n matriz A over a field F and a parameter k where k <

min(m,n), there is a randomized algorithm to compute min(rank(A), k) in O(nnz(A) +
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min(k“, knnz(A))) field operations where nnz(A) denotes the number of non-zeros in A.
Furthermore, there is a randomized algorithm to find a set of min(rank(A), k) linearly

independent columns in O(nnz(A) + k%) field operations.

For computing min(rank(A), k), previous algorithms require O(mn + k*) field oper-
ations, while we replace the mn term by nnz(A) and remove the (small) polylog factor.
Moreover, we can also find a set of min(rank(A), k) linearly independent columns in
about the same time, which is considerably faster than the O(mnk“~2) algorithm by
Gaussian elimination when k is small. For instances, we can find a set of k = n/ ~ n0-42
linearly independent columns in O(nnz(A)) field operations, and a set of k = n!/(@~—1 ~
n%7 linearly independent columns in O(mn) field operations, while previously it was
possible only for k& = O(polylog(n)). The algorithm for finding linearly independent
columns is needed in applications on various problems in exact linear algebra and com-

binatorial optimization [17].

5.2 Fast matrix rank algorithms

In this section, we will prove Theorem 5.1. First, we state the setting in Subsection 5.2.1
and present an outline of our approach in Subsection 5.2.2. Then, we define magical
graphs in Subsection 5.2.3, and use them to obtain the compression algorithm in Sub-
section 5.2.4. Finally, we present the algorithms to computing the matrix rank and
finding a maximum set of independent columns in Subsection 5.2.5 and Subsection 5.2.6

respectively.

5.2.1 Setting

Let A be an m X n matrix over a field F. We will assume that A is given by a list of the
value and the position of its non-zero entries, and each row and column of A contains
at least one non-zero entry, so nnz(A) > max(n,m).

When F is a finite field, we will assume that |F| = Q(n?*) by the following lemma

using an extension field.

Lemma 5.1. Let A be an mxn matrixz over a field F' with p¢ elements. We can construct
a finite field F' with p°* = Q(n?) elements and an injective mapping f : F — F' so that
the image of F is a subfield of F'. Then the m x n matriz A" where A'(i,j) = f(A(,J))
satisfies the property that rank(A’) = rank(A). This preprocessing step can be done in
O(nnz(A)) field operations. Each field operation in F' can be done in O(log |F| 4 logn)

steps.
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The proof is omitted here since it is not exacted related to this thesis. When F' is
an infinite field, we will assume the exact arithmetic model where each field operation
can be done at unit cost. In the algorithms, we will need to choose a random element
from F. When F is an infinite field, we just choose an arbitrary subset S C F with
|S| = Q(n?), and pick a uniformly random element from S. This will be enough for our

applications of the Schwartz-Zippel lemma.

Lemma 5.2 (Schwartz-Zippel lemma [64]). Let P € F[x1,...,x,] be a non-zero poly-
nomaal of total degree d over a field F'. Let S be a finite subset of F' and let ri,...,r, be
selected randomly from S. Then the probability that P(r1,...,rn) =0 is at most d/|S|.

5.2.2 Outline

Suppose a parameter k is given and the task is to compute min(rank(A), k). Our ap-
proach is to compress the matrix into a O(k) x O(k) matrix whose rank is at least
min(rank(A), k) with high probability. Our method is inspired by the random linear
coding algorithm [33, 18] in network coding [I]. We can construct an m X k matrix
B where each column of B is a random linear combination of the columns of A, i.e.
B;, = 2?21 rj:Aj where A; and B; denote the j-th column of A and the i-th column of
B respectively, and r;; is a random element in F. In other words, B = AR where R is an
n X k matrix where each entry is an independent random element in F'. It can be shown
that rank(B) = min(rank(A), k) with high probability using the Schwartz-Zippel lemma
(see Lemma 5.4), but the problem is that it requires a rectangular matrix multiplication
algorithm [30] to compute B and it is not efficient enough.

We observe that this way of constructing B is the same as doing the random linear
coding algorithm in a single vertex with n incoming edges and k outgoing edges. And so
the idea of using a superconcentrator to do the random linear coding efficiently [18] can
be applied to construct an m x k matrix B in O(mn) field operations, while rank(B) =
min(rank(A), k) with high probability. We can apply the same procedure to reduce the
matrix B into a k x k matrix C' in O(mk) field operations while rank(C') = rank(B) with
high probability, and then rank(C) can be computed directly. The technical point here
is that a superconcentrator is a sparse graph that has a strong connectivity property.
The sparsity allows for fast computation. And the strong connectivity property ensures
that any set of k linearly independent columns in A can be mapped to the k columns
in B bijectively by some linear combinations, and random linear combinations ensure
that rank(B) = min(rank(A), k) with high probability by the Schwartz-Zippel lemma.
This implies that min(rank(A),k) can be computed in O(mn + k“) field operations
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with high probability, improving the existing algorithms by removing the polylog factor.
There are, however, two disadvantages of this method. One is that the compression
algorithm requires ©(mn) field operations even when A is a sparse matrix. Another is
that we do not know how to find a set of min(rank(A), k) linearly independent columns
of A using this method. See appendix of [17] for the full proof of computing rank by
superconcentrators.

To improve the compression algorithm, we choose R to be a sparse n x [ matrix
(indeed | = O(k) would be enough), with at most two non-zeros per row and about 2n/l
non-zeros per column. Their locations are chosen at random, so that with high probabil-
ity they form a “magical graph” (a sparse vertex expander used in the construction of a
superconcentrator) when the matrix R is viewed as a bipartite graph with n vertices on
one side and [ vertices on the other side. The property of the magical graph ensures that
with high probability any set of k linearly independent columns in A can be mapped to
some set of k columns in B bijectively by some linear combinations. Again, the non-zero
values are chosen randomly from the field, so that min(rank(B), k) = min(rank(A), k)
with high probability by the Schwartz-Zippel lemma. Since there are only two non-zeros
per row of R, we can compute B = AR easily in O(nnz(A)) time.

Furthermore, since there are about 2n/l non-zeros per column of R, from any set of
at most k linearly independent columns in B, we can identify a subset of at most 2nk/!
columns in A with the same number of linearly independent columns. By choosing | ~
11k, we can (1) guarantee with high probability that R is a magical graph, (2) compute
the rank of the compressed matrix in O(k“) field operations, and (3) remove a constant
fraction of the columns of A while keeping min(rank(A), k) unchanged. Therefore, we
can repeat this procedure for O(logn) times to reduce the number of columns in A to
be O(k), and the total running time is O((nnz(A) + k) logn) field operations.

5.2.3 Magical graphs
Our construction requires a probability distribution of bipartite graphs with the follow-

ing properties.

Definition 5.1 (Magical Graphs). A probability distribution of bipartite graphs with
vertex set X UY is (k,e)-magical if for any given subset S C X with |S| = k, the
probability that there is a matching in which every vertex in S is matched is at least
1—e

We note that this definition only requires any particular subset S of size k£ can be

matched to the other side with high probability, while the definition in [34] requires that
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all subsets up to certain size can be matched to the other side. This is enough for us
to show that for any particular set of k£ linearly independently columns in the original
matrix, with high probability there exist some linear combinations that will map it to

some set of k columns bijectively in the compressed matrix.

We show that a graph from a magical distribution with good parameters can be

generated efficiently.

Lemma 5.3. For any values of | X| > |Y| > ck where ¢ > 11, there is a (k,O(1/k))-
magical distribution with the additional properties that each vertex of X is of degree 2
and each vertex of Y is of degree at most 2[|X|/|Y|]. Moreover, there is a randomized

O(|X]) time algorithm to generate a graph from this distribution.

We note that the magical graphs in [34] cannot be used directly because of the
following reasons: (1) the failure probability in [34] is a constant while we need a much
smaller failure probability in order to find a set of linearly independent columns, (2) we
need the additional property that the graph is almost regular to find a set of linearly
independent columns. The proof is by a standard probabilistic argument, which can be

skipped in the first reading.

Proof. The generation algorithm is simple. We assume that |X| is a multiple of |Y;
otherwise we construct a slightly larger graph and delete the extra vertices. We first
construct a 2-regular graph G’ with |X| vertices on both sides, by taking the union of
two random perfect matchings independently from |X| vertices to |X| vertices. Then
we divide the |X| vertices on one side into |Y| groups where each group has |X|/|Y|
vertices. We obtain G by merging each group into a single vertex, and so each vertex in
Y is of degree 2| X|/|Y|.

For any S C X with |S| = k, we analyze the probability that there is a matching in
G in which every vertex in S is matched. By Hall’s theorem, we need to show that for
any S’ C S, the neighbor set of S in G is of size at least |S’|. To analyze the probability
that the neighbor set of S’ is at least |S’| for a fixed S” C S, we consider the equivalent
random process where the 2|S’| edges incident on S" are added one by one. Consider
the i-th edge added. We say that it is a bad edge if the other endpoint falls in the same
group with some previously added edges. If the neighbor set size of S’ is less than |S'|,
then there must be at least |S’| 4+ 1 bad edges out of the 2|S’| edges, and the probability
that an edge is bad is less than |S’|/|Y|. So the probability that the neighbor set size of
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S’ is less than |S’| is less than

2|S/‘ |S/| |S!|+1
X —_—
(11) < (7)
by a union bound on the possible |S’| + 1 bad edges. Summing over the choices of the

size of S’ and the choices of S” with that size, we have that the probability that there is
a subset S’ C S with less than |S’| neighbors is at most

() ()" O = () (5)

z=0

using |Y| > ck and the identity Y 00 7% -z = r/(1 —r)? for r < 1, and setting r = 4e/c
as ¢ > 11 > 4e by our assumption. Therefore, by Hall’s theorem, the probability that

there is a matching in which every vertex in S is matched is at least 1 — O(1/k). O

5.2.4 Compression algorithm by magical graph

In the following we use a graph from a magical distribution to do an efficient rank-
preserving compression. The algorithm is shown in Algorithm 2 and illustrated in Fig-

ure 5.1.

Algorithm 2: Compression algorithm by magical graphs
Input: An m x n matrix A over a field F', and a bipartite graph G = (X UY, E)
with |X| =n and |Y| = [ sampled from a (k, €)-magical distribution.
Output: An m x [ matrix B over the field F' with
min(rank(B), k) = min(rank(A), k).

1 Let X ={z1,...,zpand Y ={y1,...,u1};

2 Each column of A corresponds to a vertex in X and each column of B
corresponds to a vertex in Y. Let A; be the j-th column of A for 1 < j < n and
B; be the i-th column of B for 1 < i </;

3 Construct B by writing B; as a random linear combination of those columns of A
whose corresponding vertices have an edge to y;. More precisely, we write
B, =>" e—ay€E ceAj for 1 <4 <[ where ¢, is an independent random element in

F for each edge e € G
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Figure 5.1: The notations used are the same as in Algorithm 2. The bipartite graph
G = (X UY, F) is used to compress the matrix A into matrix B. Each column of B is a
random linear combination of the columns of its neighbors, e.g. Bs is a random linear
combination of As, A3 and Asg.

The following lemma uses the Schwartz-Zippel lemma to prove that the compression

algorithm is rank-preserving with high probability.

Lemma 5.4. The probability that the algorithm in Algorithm 2 returns a matrix B such
that min(rank(B), k) = min(rank(A), k) is at least 1 — e — k/|F|.

Proof. Clearly rank(B) < rank(A) since the column space of B is a subspace of the
column space of A. So min(rank(B), k) < min(rank(A), k), and it remains to show that
rank(B) > min(rank(A), k) with high probability.

Let ¥ = min(rank(A), k). Let S be a set of linearly independent columns of A with
|S| = K/, and let Ay g be a k' x k' submatrix of A with rank(Ays) = k’. We overload
notation to also use S to denote the subset of vertices in G corresponding to those
columns. Since G is sampled from a (k,e)-magical distribution, the probability that
there is a matching M in which every vertex in S is matched is at least 1 — €. Suppose
such a matching M exists and let T be the neighbors of S in M with |T'| = |S| = k. (In
the example in Figure 5.1, suppose S = {A1, Ag, A3}, then M could be {x1y2, z2y3, x3y1}
and T' = { B, Bo, Bs}.) If we view each ¢, as a variable, then det(By,r) is a multivariate
polynomial with total degree k’. By setting c. = 1 for each ¢ € M and c. = 0 for each
e € E— M, we get that By = Apys and thus det(Byr) is a non-zero multivariate
polynomial as Ay g is of full rank. By the Schwartz-Zippel lemma, if we substitute each
variable ¢, by a random element in a field F', then the probability that det(Byr) =0 is
at most k'/|F| < k/|F|. So, if G has a matching that matches every vertex in S, then
rank(B) > rank(Byr) = k' with probability at least 1 — k/|F|. Therefore the algorithm
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succeeds with probability at least 1 — e — k/|F|. O

We can combine Lemma 5.3 and Lemma 5.4 to obtain an efficient compression algo-

rithm.

Theorem 5.2. Suppose an m xn matriz A over a field F' is given. Given k, there is an

algorithm that constructs an m x O(k) matriz B over F with the following properties.
1. min(rank(A), k) = min(rank(B), k) with probability at least 1 —O(1/k)—O(k/|F]).
2. nmnz(B) = O(unz(A)) and B can be constructed in O(nnz(A)) field operations.

Proof. We can assume n > 11k; otherwise we can just let B = A. We sample a
bipartite graph G = (X UY, E) with | X| =n and |Y| = 11k from a (k, O(1/k))-magical
distribution in O(n) time by Lemma 5.3, with the additional property that each vertex
in X is of degree two. We use G in the algorithm in Algorithm 2 to obtain an m x 11k
matrix B over F'. Since each vertex of X is of degree two, each entry of A is related to
two entries in B. We can represent B by listing the value and position of its non-zero
entries without handling duplicate positions, i.e. each non-zero entry in A introduces
exactly two entries in B. Therefore, nnz(B) = 2nnz(A) and B can be constructed in
O(nnz(A)) field operations. The probability that min(rank(A), k) = min(rank(B), k) is
at least 1 — O(1/k) — O(k/|F|) by Lemma 5.4. O

5.2.5 Computing matrix rank

With the compression algorithm, the first part of Theorem 5.1 follows easily.

Theorem 5.3. Suppose an m X n matriz A over a field F is given with m < n.
There is an algorithm to compute min(rank(A), k) for a given k < m in O(nnz(A) +
min(k*, knnz(A))) field operations with success probability at least 1 — O(1/n'/3).

Proof. We can assume that |F| = Q(n?) by Lemma 5.1. We also assume that k& > n'/3;

/3 We apply Theorem 5.2 to compress the

otherwise if k& < n'/3 we just reset k to be n
m X n matrix A into an m x O(k) matrix B. Then min(rank(B), k) = min(rank(A), k)
with probability at least 1 — O(1/k) — O(k/|F|) = 1 — O(1/n'/3) since n'/3 < k <
n and |F| = Q(n%). And B can be constructed in O(nnz(A)) field operations with
nnz(B) = O(nnz(A)). We then apply Theorem 5.2 again on B to compress the mxO (k)
matrix B into an O(k) x O(k) matrix C. Then min(rank(C), k) = min(rank(B), k) with
probability at least 1—O(1/n'/3) and C can be constructed in O(nnz(A)) field operations
with nnz(C') = O(nnz(A)). Now we can compute rank(C) in O(k*) field operations
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by using fast matrix multiplication [l1]. Alternatively, we can compute rank(C) in

O(knnz(C)) = O(knnz(A)) field operations using the black box approach [63, 76]. Thus
min(rank(A), k) can be computed in O(nnz(A)+min(k*, knnz(A))) field operations with
success probability 1 — O(1/n'/3). O

We do not know the rank of the matrix A directly from Theorem 5.3. However we

can do so efficiently by searching for a good value of k.

Corollary 5.1. Given the same setting as in Theorem 5.3, there is an algorithm to
compute r = rank(A) in O(nnz(A) log r+min(r¥, rnnz(A))) field operations with success
probability 1 — O(1/n/3).

Proof. To compute rank(A), we can simply apply Theorem 5.3 with k = n!/3,2n!/3,
Ant/3, ... 2ls n®2p1/3 until the algorithm returns an answer smaller than k or A is of
full rank. Let r = rank(A). The failure probability is bounded by O(1/n'/3) since sum
of 1/k is less than 2/n'/3. The number of field operations needed is O(nnz(A)logr +
min (7, rnnz(A))), since the sum of k¥ is O(r*) and the sum of knnz(A) is O(rnnz(A)).

O

We can improve Corollary 5.1 slightly and reduce the field operations needed to
be O(min(nnz(A)logr,nm) + min(r*, rnnz(A))). This is done by computing the com-

pressed matrices aggregately and we omit the details here.

5.2.6 Finding independent set

In this subsection, we will find a set of min(rank(A), k) linearly independent columns of
A, by applying the compression algorithm iteratively to reduce the number of columns
of A progressively. In the following, we let ¢ = 11, and assume without loss of generality
that k > nl/3 (as in Theorem 5.3). First, we compress the rows while preserving the

position of a set of at most k£ independent columns.

Lemma 5.5. Suppose an m x n matriz A over a field F is given. There is an algorithm
to return a ck x n matriz A" in O(nnz(A)) field operations with nnz(A’) = O(nnz(A)),
such that if S is a set of at most k linearly independent columns in A, then S is also a

set of linearly independent columns in A’ with probability at least 1 — O(1/n'/3).

Proof. If m > ck, we apply the algorithm in Theorem 5.2 to A” to compress A into a
ck x n matrix A’ in O(nnz(A)) field operations, such that nnz(A’) = O(nnz(A)). Let S
be a set of at most k linearly independent columns in A, i.e. |S| < k. By Theorem 5.2,
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we have rank(Afck] g) = rank(Ap,) 5) = || with probability at least 1 — O(1/n'/3), and

thus S is a set of linearly independent columns in A’. O

Next, given a ck X m matrix A, we show how to find a submatrix A’ of A with
at most n/5 columns in O(nnz(A) + k“) field operations, such that min(rank(A), k) =
min(rank(A’), k) with high probability. The bounded degree condition of magical graphs

is important in the following lemma.

Lemma 5.6. Given a ck xn matrix A over a field F' where ck < n, there is an algorithm
to find a (ck) x (n/5) submatriz A" of A in O(nnz(A) + k%) field operations, such that
min(rank(A), k) = min(rank(A’), k) with probability at least 1 — O(1/n"/?).

Proof. We use the algorithm in Theorem 5.2 to compress A into a ck X ck matrix B in
O(nnz(A)) field operations, while min(rank(A), k) = min(rank(B), k) with probability
at least 1 — O(1/n'/3). Since B is a ck x ck matrix, we can directly find a set S of
min(rank(B), k) linearly independent columns in B in O(k“) field operations using fast
matrix multiplication [11]. Let G = (X UY,E) be the bipartite graph used in the
compression algorithm with |X| = n and |Y| = ck. Let T be the set of columns in
A that correspond to the neighbors of the vertices corresponding to S in G. By the
bounded degree condition of G, each vertex corresponding to a column in S is of degree
at most 2| X|/|Y| = 2n/(ck) and hence |T| < 2n|S|/(ck) < 2n/c < n/5. We have that
the ck x |T'| submatrix A" := Az 7 is of rank at least min(rank(A), k), since the column

space of S in B is spanned by the column space of A 7. O

Applying Lemma 5.6 repeatedly gives us the second part of Theorem 5.1.

Theorem 5.4. Suppose an mxn matriz A over a field F is given. There is an algorithm
to find a set of min(rank(A), k) linearly independent columns of A for a given k in
O((nnz(A)+k“)logn) field operations with success probability at least 1 —O(logn/n/3).
When F is a finite field, each field operation can be done in O(logn + log|F|) steps.

Proof. First, we apply Lemma 5.5 to reduce the number of rows to ck. Then, we apply
Lemma 5.6 repeatedly until the number of columns is reduced to O(k). Since each
time we can reduce the number of columns by a constant factor, we need to repeat the
algorithm in Lemma 5.6 at most O(log n) times. Finally, we find a set of min(rank(A), k)
linearly independent columns by Gaussian elimination in the ck x O(k) submatrix in
O(k%) time. So, the whole algorithm can be done in at most O((nnz(A) 4 k“)logn)
field operations, and the failure probability is at most O(logn/n'/3). O
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We remark that ¢ can be arbitrarily chosen as long as ¢ > 11 > 4e. Hence when
nnz(A) > k, we can choose ¢ to be larger so that the number of columns reduces to
O(k) faster. For example, if we choose ¢ = 2n¢, then Lemma 5.6 find a (ck) x (n/n)
submatrix in O(nnz(A)+(ck)%) field operations, and so we only need to apply Lemma 5.6
1/e times. Therefore if k = O(nnz(A)'/“~¢), then we can find a set of min(rank(A), k)
linearly independent columns in O(nnz(A)/¢) field operations, saving the additional log

factor.

5.3 Applications

The matrix rank algorithms can be readily applied to various problems in numerical
linear algebra, combinatorial optimization, and dynamic data structure. In this subsec-
tion, we will state some applications of our results without proofs. Interested readers
may find more details in our paper [17].

First we show that the algorithms can be applied to computing a rank-one decom-
position, finding a basis of the null space, and performing matrix multiplication for a

low rank matrix.

Theorem 5.5. Let A be an m X n matrix over a field F. Let r = rank(A). Let
m' = min{m,n}. Let w(a,b,c) be the exponent for multiplying an n® x n® matriz with

an n® x n¢ matriz.

1. There is a randomized algorithm to compute an m X r matriz X and an r X n
matriz Y such that A = XY in O(nnz(A) + r*Gblogm)) — O(nnz(A) + m/r*~1)
steps.

2. There is a randomized algorithm to find a basis of the null space of A in O(nnz(A)+
pw(1,1,log, ”)) = O(nnZ(A) +nr@ 1) steps.

3. Let A and B be n X n matrices. There is a randomized algorithm to compute AB

in O(n“(logn 7"’1’1)) = O(nQT“’_Q) steps.
The success probability for all three tasks is at least 1 — O(log(nm)/ nnz(A)'/3).

Previously the best known algorithms require © (mnr~2) for the first two tasks, and
(:)(ngrw_z) for the third task. Our algorithms are faster than the existing algorithms,
especially when 7 is small. The statement about matrix multiplication essentially says
that the problem of multiplying two n X n matrices while one matrix is of rank r can be

reduced to the problem of multiplying an r X n matrix and an n X n matrix.
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graph matching linear matroid intersection linear matroid union
combinatorial | O(y/opt|E|) [52, 28] O(nropt!/(4=2)) [27] O(nrbopt + nb2opt?) [21]
algebraic o(|V1]¥) [53] O(nrv—1) [32] -
this paper O(|E| + opt®) O(nr + nopt*~1) O(nropt + b3opt?)

Table 5.1: Time complexity of algorithms for some problems in combinatorial optimiza-
tion

In combinatorial optimization, there are algebraic formulations of the problems that
relate the optimal value to the rank of an associated matrix. Using this connection, we
can apply the algorithm in Theorem 5.1 to obtain fast algorithms for graph matching

and matroid optimization problems.
Theorem 5.6. Let opt be the optimal value of an optimization problem.

1. Given an undirected graph G = (V| E), there is a randomized algorithm to find a
matching of size min{opt, k} in O(|E| + k) time.

2. Given a linear matroid intersection problem or a linear matroid parity problem
with an r X 2n matriz A, there is a randomized algorithm to find a solution of size
min{opt, k} in O(nnz(A) + nk“~) time.

3. Given a linear matroid union problem with an r X n matriz |A|, there is a random-
ized algorithm to find min{opt, k} disjoint bases in O(k nnz(A)+min{k“ 1%, k3b3})

time, where b denotes the size of a basis.

Table 5.1 lists the time complexity of the best known combinatorial algorithms and
algebraic algorithms for these problems. Notice that previous algebraic algorithms have
the same time complexity even when the optimal value is small. On the other hand,
combinatorial algorithms for these problems are based on finding augmenting structures
iteratively, and thus the number of iterations and the overall complexity depend on the
optimal value. While the previous algebraic algorithms are faster than combinatorial
algorithms only when the optimal value is large, the results in Theorem 5.6 show that the
algebraic approach can be faster for any optimal value. For the matroid optimization
problems, the algorithms in Theorem 5.6 are faster than previous algorithms in any

setting.
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