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G. Sällberg & P. Söderbäck

Abstract
The master thesis is focused on how a local volatility surfaces can be extracted by optimization with respect
to smoothness and price error. The pricing is based on utility based pricing, and developed to be set in a
risk neutral pricing setting. The pricing is done in a discrete multinomial recombining tree, where the time
and price increments optionally can be equidistant. An interpolation algorithm is used if the option that shall
be priced is not matched in the tree discretization. Power utility functions are utilized, where the log-utility
preference is especially studied, which coincides with the (Kelly) portfolio that systematically outperforms any
other portfolio. A fine resolution of the discretization is generally a property that is sought after, thus a series
of derivations for the implementation are done to restrict the computational encumbrance and thus allow finer
discretization.

The thesis is mainly focused on the derivation of the method rather than finding optimal parameters that
generate the local volatility surfaces. The method has shown that smooth surfaces can be extracted, which
consider market prices. However, due to lacking available interest and dividend data, the pricing error increases
symmetrically for longer option maturities. However, the method shows exponential convergence and robustness
to different initial (flat) volatilities for the optimization initiation.

Given an optimal smooth local volatility surface, an arbitrary payoff function can then be used to price the
corresponding option, which could be path-dependent, such as barrier options. However, only vanilla options
will be considered in this thesis. Finally, we find that the developed method is valid for extracting local volatility
surfaces, given adequate data access and some refinements.

Keywords: local volatility surface, LVS, optimization, roughness, smooth, risk neutral pricing, optimal growth,
pricing error, automatic differentiation, algorithmic differentiation
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Nomenclature

Conventions
a Scalar, lowercase not bold
a Column vector, lowercase bold.
A Matrix, uppercase not bold
R Real line
Rn Euclidean space in n dimensions
N Natural number, include the zero
N+ Natural number, not include the zero

Symbols
σimp Implied volatility
σ Local volatility
σ2 Local variance
µ Expected return
S Stock price
K Strike price
T Time
δ Continuous dividend yield
rf Continuous risk-free rate
r Growth rate
ψ Price of derivative
ξ Payoff function for vanilla options
G Grid
G̃ Extended grid
Π Local volatility surface
π Vectorized local volatility surface
C Covariance matrix
IG Set of integers, representing the strike levels in grid G
JG Set of integers, representing the discrete time in grid G
Ii,t Set of integers corresponding to the outgoing branches of node (Si, Tt)
mc The c-th central moment
nc Number of central moments matched
Ω Sample space
p Physical probabilities
q Risk-neutral probabilities

Functions
φ(·) Gaussian probability density function
Φ(·) Gaussian cumulative distribution function
Φ−1(·) Gaussian inverse cumulative distribution function
!! Double factorial
E[ · ] Expected value of ·
Var[ · ] Variance of ·
A ⊂ B A is a subset (or possibly equal) to B
◦ Hadamard product
vec(·) Vectorization of a matrix
| · | Cardinality of a matrix ·
| · | Absolute value of the scalar ·
|| · || ≡ || · ||2 Euclidean norm
AT Transpose of the matrix A
× Cartesian product
bxc = max{m ∈ Z|m ≤ x} Floor
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G. Sällberg & P. Söderbäck 1 INTRODUCTION

1 Introduction
The turbulent financial markets require increasingly accurate and consistent risk measures. Thus, more sophis-
ticated models are required to accurately model the financial markets, especially during economical downturns.
For some time, a way to measure an instruments risk is by implied volatility, but it is as most measures flawed.
The implied volatility is in some sense an average of the expected volatility (Derman et al., 1995) of the instru-
ment until expiration and does thus not properly reflect the time component in the volatility. However, local
volatility can be compared with forward rate contributions to the spot rate and should thus contain more local
information. Unfortunately, realistic local volatility surfaces are not a trivial matter to extract.

General approaches to extract local volatility surfaces can be based on finite difference methods, which mostly
yield a quite rough surface. Additionally, adapting these methods to cope with exotic options is often quite
tricky. Another quite common approach is to use a given implied volatility surface and then model the local
volatility surface with a parametric model, e.g. SABR, (Derman et al., 1995). Furthermore, by going through
previous work and literature, it is found uncommon to use optimization to extract local volatility surfaces, with
respect to smoothness.

Given a local volatility surface it is possible to price many types of option payoffs and particularly path dependent
options. To our knowledge there are not any published multinomial utility based pricing models and furthermore
we have found it uncommon to use optimization to extract the surface.

1.1 Purpose
The purpose is to develop and evaluate a utility based pricing methodology of extracting a local volatility
surface, which minimizes a combination of roughness and pricing error.

1.1.1 Problem Formulation
Determine a smooth and market consistent local volatility surface of an underlying asset.

1.2 Delimitations
The methodology is intended to be quite general and should thus in the future be able to be generalized to cope
with most asset classes. However, since the focus is to investigate the methodology and not the use of many
types of derivatives, vanilla options will be used. Furthermore, preferably, an existing model with corresponding
data series and results will be used to compare our results, since time will most likely be scarce. Additionally,
the model will assume that the markets are efficient and that there is generally no arbitrage.

1.3 Document Structure
The mathematical scope will be defined in the local volatility environment. In this local volatility setting, the
master optimization problem will be defined followed by the description of the problems subordinate problems
and its derivations. These consist of deriving an optimal utility preference of optimal wealth growth, in the
discretized multinomial recombining tree representation. This optimization problem is quite computationally
strenuous and thus automatic differentiation is implemented when the function and its first order derivative
simultaneously are required. When the smooth local volatility surface is extracted it will be evaluated and the
results will be documented. Lastly, our findings will be discussed and summarized.

1
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2 Volatility
In financial markets it is essential to measure and manage risk. Variance is an intuitive way of measuring
risk, which is directly related to the volatility or in other words standard deviation of for instance a stock
return. However, there are several other less trivial variations of volatility, which have pleasant properties and
applications. The most well known and applied versions of these volatilities is the implied volatility, which is
derived as the volatility that makes the theoretical Black-Scholes-Merton (BSM) price conformed to the quoted
market price. Furthermore, the local volatility is essential and describes the instantaneous risk.

2.1 Implied Volatility
The Black-Scholes-Merton, BSM, formula was published in 1973 and was quickly utilized. The formula was
unmodified until the 1987 crash, where the normal distribution assumptions inadequately considered black
swan events or in other words big economical downturns. Thus, the distribution of probabilities needed to be
adjusted to cope with the long tail risk associated with the market movements. The formula’s use was refined,
(Latané and Rendleman, 1976, pp. 369-371), to extract the implied standard deviation from the BSM formula,
which later was relabeled as the implied volatility. This implied volatility is determined as the solution where
the BSM-formula coincides with the market quoted price.

2.1.1 Extraction of Implied Volatility
The implied volatility must be extracted numerically since there does not exist an analytical inverse. There are
several ways of estimating the implied volatility, σimp at time t. The implied volatility for a call option with
the Black-Scholes price, C, can be found by the Newton-Rahpson method,

f(σimp) = Se−δ
t,T (T−t)Φ0,1(d1)−Ke−r

t,T
f (T−t)Φ0,1(d2)− C, (1)

with

d1 =
ln( SK ) + (rt,Tf − δt,T + 1

2σ
2
imp)(T − t)

σimp
√
T − t

,

d2 = d1 − σimp
√
T − t,

(2)

where the option has the strike price K and maturity at time, T . The underlying price is S and the continuous
dividend yield δt,T and the continuous risk free rate rt,Tf . The standard normal cumulative distribution function
is represented by Φ0,1.

The procedure is then to determine a starting solution, σ0
imp and then the function

σi+1
imp = σiimp −

f(σiimp)

∂f(σiimp)

∂σ

(3)

iterates until the stop criterion
|σi+1
imp − σ

i
imp| < ε, (4)

is satisfied, where ε is a small number. The derivative, also known as vega, is given by

∂f

∂σimp
= Se−δ

t,T (T−t)Φ(d1)
√
T − t. (5)

2.1.2 Smile and Skew
Several problems remain in the assumptions of the BSM framework. The model assumes a constant volatility,
(Black and Scholes, 1973), which was pointed out as unrealistic (Latané and Rendleman, 1976, pp. 370-371)
since different implied volatilities need to be assigned depending on the options strike and maturity. This
concept is still essential in the present market. Furthermore, the volatility skew and volatility smile, could not
be observed in the market prior to 1987, (Hull, 2011, pp.415-416), and thus the implied volatility was in general
constant for all strikes.

2
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2.2 Local Volatility
The local volatility is not derived from the BSM formula and does thus not share the same draw downs.
Furthermore, the local volatility is instantaneous and is therefore only valid in a infinitesimally local area in
contrast to the implied volatility, which is determined as an average throughout the time to maturity (Derman
et al., 1995). There are parallels that can be drawn to interest rate curves, where the spot rate curve can be
interpreted as an average of an corresponding forward rate curve.

The local volatility is a deterministic function, σ(K, t), dependent on a strike price and a reference time, usually
t = t0. Derman and Kani (1997, p. 10) call this an effective theory, where the assets process can be written
as

dS

S
= µ(t)dt+ σ(S, t)dZ, (6)

where S is the asset price, µ is the drift of the process and Z is the Wiener process.

Derman and Kani were among the first to work with local volatility. They used a time discrete binomial tree
approach to derive local volatilities that matched the volatility smile, (Derman and Kani, 1994b), and later
trinomial trees were used, (Derman and Kani, 1997).

Dupire (1994) was also among the pioneers, but with a continuous time approach. From Dupire’s method the
expression

∂C(K,T )

∂T
=

1

2
σ(K,T )2K2 ∂

2C(K,T )

∂K2
− δt,TC(K,T )− (rt,Tf − δt,T )K

∂C(T,K)

∂K
⇔

σ(K,T )2 = 2

∂C(K,T )
∂T + (rt,Tf − δt,T )K ∂C(K,T )

∂K + δt,TC(K,T )

K2 ∂
2C(K,T )
∂K2

,

(7)

was derived by Derman and Kani (1994a). This formula is quite often central in other methods for extracting
local volatilities from implied volatility or price surfaces.

2.2.1 Change of Variable
The deterministic local volatility function, σ(K, t), was presented as a function of strike price and time. It can
be shown, (Derman and Kani, 1997), that it is possible to derive a deterministic volatility function as a function
of the underlying price, S and time t.

σ(S, t) = σ(K, t)|S=K (8)

For a given current time, t0 the deterministic local volatility expression remains fixed for times t > t0 for
future time and asset prices. As the price of an underlying is unique at any point in time the instantaneous
volatility,

σ(t) = σ(St, t), (9)

can be defined with the corresponding price process

dSt
St

= µtdt+ σ(t)dZt, (10)

where dZt is the standard Wiener process, (Derman and Kani, 1997).

2.2.2 Average of Stochastic Volatility
The procedure above can be seen as an average of the sources of stochastic volatility, where all contributions are
offset, except the index price. Thus, St, is the only remaining contribution at the deterministic time t, (Derman
and Kani, 1997). Therefore, the price from stochastic and local volatility models should coincide.

2.2.3 Local Volatility as a Surface
In theory, a function σ(t,K) is impractical to utilize. Therefore we choose to define a local volatility sur-
face.
Definition 1. A deterministic local volatility function in its domain,

(S, T ) ∈ G = {(k, t)|k = K1, . . . ,KnK , T = T0, . . . , TnT , } (11)

3



G. Sällberg & P. Söderbäck 2 VOLATILITY

can be written as a local volatility surface,

U[0,nK ],[0,nT ] =

 σ(S0, T0) . . . σ(S0, TnT )
...

. . .
...

σ(SnK , T0) . . . σ(SnK , TnT )

 =

 σ0,0 . . . σ0,nT
...

. . .
...

σnK ,0 . . . σnK ,nT

 . (12)

For a specific point and thus evaluation of the deterministic volatility function can be denoted as

Uk,t ≡ σ(Kk, Tt). (13)

4
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3 Optimization Problem
The master optimization problem, for the local volatility surface g, needs individual subordinate parts such
as roughness and pricing error, which are derived in this chapter. The surface roughness is measured by the
function h and the pricing will be computed by g, while be contains the market quoted prices. The optimization
problem can be formulated as

min
U,z

L(U) = h(U) +
1

2
zTEz

s.t. g(U) + Fz = be

U ≥ Ul,

(14)

where E and F are a diagonal matrices. The purpose of E and F is to relate the penalties for the pricing error
and smoothness. The second constraint sets a lower limit, Ul, for the volatilities, which should for instance
be at least greater or equal to zero. The prices of the, n individual options are determined by the function
g : Rnt×nK → Rn, where nt and nK is the number of points in time and strike prices respectively. The vector
be ∈ Rn is the market quoted prices and furthermore the pricing error is

z = F−1(be − g(U)), (15)

which inserted in (14) gives

min
U

L(U) = h(U) +
1

2
(F−1(be − g(U)))TE(F−1(be − g(U)))

s.t. U ≥ Ul.
(16)

3.1 Roughness Measure
The function h measures the roughness of the surface with respect to the first and second order of derivative,
where higher roughness corresponds to a greater value. The complete expression of the roughness measure, as
a function of u ≡ vec(U)1, can be written as

h(U) =
1

2
uTHhu, (17)

where Hh contains the penalties for the roughness. This form is compact but it is hard to interpret how different
penalties are represented. This chapter and its sections will be dedicated to derive this form.

Firstly, the first order derivative can be approximation as

∂f

∂x
(a, b) = lim

∆x→0

f(a+ ∆x, b)− f(a, b)

∆x
≈ f(a+ ∆x, b)− f(a, b)

∆x
. (18)

The second order has both ordinary and mixed partial derivatives.

∂2f

∂x
(a, b) = lim

∆x→0

f(a+ ∆x, b)− 2f(a, b) + f(a−∆x, b)

∆2
x

≈ f(a+ ∆x, b)− 2f(a, b) + f(a−∆x, b)

∆2
x

, (19a)

∂2f

∂x∂y
(a, b) ≈ f (a+ ∆x, b+ ∆y)− f(a+ ∆x, b−∆y)− f (a−∆x, b+ ∆y) + f (a−∆x, b−∆y)

4∆x∆y
. (19b)

The surface U is discretized in order to use the derivative expression. The domain of the surface consists of
(nT +1) points in time and (nK+1) points in strike level, and will referred to as grid. The difference between the
points Tt and Tt+1 in time is denoted ∆Tt and analogously ∆Kk is the difference between Kk and Kk+1.

1The matrix U is transformed to a vector by columnwise vectorization, see appendix B.
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From these general expressions it is possible to formulate the function h as the combinations of the two first
orders of derivatives with respect to the time and strike spectrum,

h(U) =
1

2

nT−1∑
t=0

nK∑
k=0

aTk,t

(
Uk,t+1 − Uk,t

∆Tt

)2

∆Tt +
1

2

nT∑
t=0

nK−1∑
k=0

aKk,t

(
Uk+1,t − Uk,t

∆Kk

)2

∆Kk

+
1

2

nT−1∑
t=1

nK∑
k=0

aTTk,t

 Uk,t+1−Uk,t
∆Tt

− Uk,t−Uk,t−1

∆Tt−1

∆Tt+∆Tt−1

2

2

∆Tt + ∆Tt−1

2

+
1

2

nT∑
t=0

nK−1∑
k=1

aKKk,t

 Uk+1,t−Uk,t
∆Kk

− Uk,t−Uk−1,t

∆Kk−1

∆Kk
+∆Kk−1

2

2

∆Kk + ∆Kk−1

2

+
1

2

nT−1∑
t=1

nK−1∑
k=1

aKTk,t

(
Uk+1,t+1 − Uk−1,t+1 − Uk+1,t−1 + Uk−1,t−1

(∆Tt + ∆Tt−1
)(∆Kk + ∆Kk−1

)

)2 (∆Tt + ∆Tt−1
)

2
·

(∆Kk + ∆Kk−1
)

2
.

(20)

Note that an integration factor is introduced in (20) to cope with non-equidistant discretization and where aT ,
aK , aTT , aKK and aKT are the penalties for the different derivatives. The first two double summation is the
first derivative with respect to time and strike level respectively. The third and fourth is the “simple” second
derivative with respect to time and strike level respectively and the fifth double summation is the mixed second
derivative. A more compact notation is,

h(U) =
1

2

nT−1∑
t=0

nK∑
k=0

âTk,t (Uk,t+1 − Uk,t)2
+

1

2

nT∑
t=0

nK−1∑
k=0

âKk,t (Uk+1,t − Uk,t)2

+
1

2

nT−1∑
t=1

nK∑
k=0

âTTk,t

(
∆t−1(Uk,t+1 − Uk,t)−∆t(Uk,t − Uk,t−1)

)2

+
1

2

nT∑
t=0

nK−1∑
k=1

âKKk,t

(
∆k−1(Uk+1,t − Uk,t)−∆k(Uk,t − Uk−1,t)

)2

+
1

2

nT−1∑
t=1

nK−1∑
k=1

âKTk,t

(
Uk+1,t+1 − Uk−1,t+1 − Uk+1,t−1 + Uk−1,t−1

)2

,

(21)

where

âTk,t =
aTk,t
∆Tt

, ∀k = 0, . . . , nK ,∀t = 0, . . . , nT − 1

âKk,t =
aKk,t
∆Kk

∀k = 0, . . . , nK − 1, ∀t = 0, . . . , nT

âTTk,t =
2aTTk,t

∆2
Tt

∆2
Tt−1

(∆Tt + ∆Tt−1
)
∀k = 0, . . . , nK , ∀t = 1, . . . , nT − 1

âKKk,t =
2aKKk,t

∆2
Kk

∆2
Kk−1

(∆Kk + ∆Kk−1
)
∀k = 1, . . . , nK − 1, ∀t = 0, . . . , nT

âKTk,t =
aKTk,t

4(∆Tt + ∆Tt−1
)(∆Kk + ∆Kk−1

)
∀k = 1, . . . , nK − 1, ∀t = 1, . . . , nT − 1.

(22)

The derivation of the first term will be presented, while the other four are derived in appendix A. For convenience,
the matrix U is vectorized, vec(U) = u and analogously its transpose, vec(UT ) = uT . Furthermore, there exists
a linear transformation P such that uT = Pu. The elements in this linear mapping can be determined as

6
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Pi,j =

{
1 if i, j = 1 +

⌊
i−1
nT+1

⌋
+ (i− 1)(nK + 1)− (nK + 1)(nT + 1)

⌊
i−1
nT+1

⌋
0 otherwise

, ∀i = 1, . . . , (nK +1) · (nT +1).

(23)
These five double summations can be expressed on matrix form,

h1 =
1

2
uTPTATT diag(âT )ATPu =

1

2

nT−1∑
t=0

nK∑
k=0

âTk,t (Uk,t+1 − Uk,t)2 (24)

h2 =
1

2
uTATK diag(âK)AKu =

1

2

nT∑
t=0

nK−1∑
k=0

âKk,t (Uk+1,t − Uk,t)2 (25)

h3 =
1

2
uTPTATTT diag(âTT )ATTPu =

1

2

nT−1∑
t=1

nK∑
k=0

âTTk,t

(
∆t−1(Uk,t+1 − Uk,t)−∆t(Uk,t − Uk,t−1)

)2

(26)

h4 =
1

2
uTATKK diag(âKK)AKKu =

1

2

nT∑
t=0

nK−1∑
k=1

âKKk,t

(
∆k−1(Uk+1,t − Uk,t)−∆k(Uk,t − Uk−1,t)

)2

(27)

h5 =
1

2
uTATKT diag(âKT )AKTu. =

1

2

nT−1∑
t=1

nK−1∑
k=1

âKTk,t

(
Uk+1,t+1 − Uk−1,t+1 − Uk+1,t−1 + Uk−1,t−1

)2

,

(28)

where h1 is derived below and the other four are derived in appendix A. First the block,

BT =


−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . . . . . 0
0 . . . 0 −1 1

 , (29)

where the dimension of the matrix is (nT )× (nT + 1) is constructed. A block corresponding to all k = 0, . . . , nK
are then used to build the matrix,

AT =

BT . . .
BT

 , (30)

which has the dimension, [(nK + 1)nT × (nK + 1)(nT + 1)]. The weights are linearized to the vector

âT =
(
âT0,0, . . . âT0,nT−1, âT1,0, . . . âTnK ,nT−1

)T
. (31)

3.1.1 Complete Expression
The complete expression for h can now be written as

h = h1 + h2 + h3 + h4 + h5

=
1

2
uT
(
PTATT diag(âT )ATP +ATK diag(âK)AK + PTATTT diag(âTT )ATTP

+ATKK diag(âKK)AKK +ATKT diag(âKT )AKT

)
u

(32)

with

Hh ≡ PTATT diag(âT )ATP +ATK diag(âK)AK + PTATTT diag(âTT )ATTP

+ATKK diag(âKK)AKK +ATKT diag(âKT )AKT .
(33)

The complete expression can be written as

h(u) =
1

2
uTHhu,

which was stated in equation (17).

7
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3.2 Optimization Preparation
All surfaces can be expressed as the current surface, ū and a surface change, ∆u, as

u = ū+ ∆u. (34)

With this notation, equation (17) can be rewritten to,

1

2
(ū+ ∆u)THh(ū+ ∆u) =

1

2

(
ūTHhū+ ūTHh∆u+ ∆uTHhū+ ∆uTHh∆u

)
, (35)

where we can observe that ∆uTΓū is a scalar and therefore

∆uTHhū =
(
∆uTHhū

)T
= ūTHT

h ∆u = ūTHh∆ū, (36)

where the third equality holds because Hh is symmetric. Hence, it is possible to write equation (17) as

h(u) = ah + bTh∆u+
1

2
∆uTHh∆u, (37)

where

ah ≡
1

2
ūTHhū,

bTh ≡ ūTHh,

Hh ≡ Hh.

3.3 Pricing Error Measure Linearization
The function g is generally a non-linear function that we address by linearization. The Hessian of the linear
approximation of the objective function is much easier (possible) to extract. Linearization of g from the
vectorized surface u is given by

g(u) ≈ ḡ(u) ≡ g(ū) +∇ug(ū)(u− ū)
(34)
= g(ū) +∇ug(ū)∆u, (38)

which makes it possible to rewrite (15) to

z = F−1
(
be − g(ū)−∇ug(ū)∆u

)
. (39)

We assume that the expression for g and ∇g are known, which are described in chapter 7 and 8 respectively.
The second term in the objective function in (14) can be rewritten as

1

2
zTEz =

1

2
(be − g(ū)−∇ug(ū)∆u)

T
F−TEF−1 (be − g(ū)−∇ug(ū)∆u) . (40)

Since F is diagonal, F−T = F−1, and we can define

ag ≡
1

2
(be − g(ū))

T
F−1EF−1 (be − g(ū)) ,

bTg ≡ − (be − g(ū))
T
F−1EF−1∇ug(ū),

Hg ≡ ∇u(g(ū))TF−1EF−1∇u(g(ū)),

and rewrite equation (40) to
1

2
zTEz = ag + bTg ∆u+

1

2
∆uTHg∆u. (41)

8
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3.4 Complete Objective Function
It is possible to rewrite the objective function and the first constraint in (14), with equation (37) and (41),
to

min
∆u

L̃(∆u) = a+ bT∆u+
1

2
∆uTH∆u, (42)

where

a ≡ ah + ag, (43)
b ≡ bh + bg, (44)
H ≡ Hh +Hg. (45)

The gradient and Hessian of L,

∇uL̃ = b +H∆u,

∇2
uL̃ = H,

(46)

have important roles for how the solution of the problem is constructed, see section 3.6.

3.5 Unique Optimum - Positive Definite Hessian
If H is positive definite then the function is convex, thus the optimization problem is much easier to solve. For
a general diagonal matrix, M , whose elements are greater or equal to zero, it holds that

vTMv =

n∑
i=1

mi,iv
2
i ≥ 0, (47)

First, let H = Hg +Hh and hence vTHv = vTHgv + vTHhv. The first term, Hg, can be written as

vTHgv = vT
(
∇u(g(ū)

T
F−TEF−1∇u(g(ū))

)
v = xTEx ≥ {(47)} ≥ 0, (48)

where x ≡ F−1∇u(g(ū))v. Since the last inequality holds for all x ∈ Rn and since F−1∇u(g(ū))v ⊂ Rn,
the property follows. A similar methodology is used for all the terms in the second term Hh. In practice, the
inequality is always strict and thus H is positive definite. To clarify this results means that the linearization,
in a specific point, of the objective function is convex. This do not imply anything about the convexity of the
unlinearized objective function. This means that in every specific point there exist a unique solution, but not
that the problem in itself has a unique solution.

3.6 Optimization Solver
We will now turn our attention back to equation (14) where we concluded that the objective function and
first constraint could be written as (42). Furthermore, if the last constraint in (14) is relaxed the optimization
problem is reduced to

min
∆u

L̃(∆u) = min
∆u

a+ bT∆u+
1

2
∆uTH∆u, (49)

which is an unconstrained optimization problem. The justification for the relaxation is that the constraint
does not impact the optimal solution in practice. The most reasonable choice for the lower limit is Ul is that
all elements should be greater than zero, which is far from feasible solutions and can therefore be relaxed.
The optimization problem has good properties both with respect to the gradient and Hessian, which can be
analytically derived, which was done in section 3.5. An algorithm for solving this problem can be constructed
with a Newton method, a short description of this follows in the next section.

9
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3.6.1 Solution Algorithm
An overview of the solving methodology is described is listed below.

0. Find a start solution, U0 and set the counter k to zero.

1. Calculate bT and H.

2. Check the stop criterion, ||∇uL|| < ε⇔ ||b|| < ε and stop if true

3. Update solution

(a) Solve the equation system, b +∇2
uL∆u = 0⇔ b +H∆u = 0.

(b) Determine the step length, sk.

(c) Take a step, uk+1 = uk + sk∆u.

4. Update the counter, k=k+1 and go to step 1.

3.6.2 Practicalities and Starting Solution
In the derivation above, the lower limit Ul is assumed to be unbreached and is thus unused. Furthermore, the
pricing function g is also approximated by linearization. These approximations might impact the functionality
of the method, and will in that case be addressed after the error is detected in the implementation.

The starting solution, U0 can be derived with several approaches. One simple approach is to set the surface to
a constant value, since the optimization procedure should be able to handle any starting solution. Furthermore,
the linearized objective function has a quadratic form and therefore the optimal step is always one. Since the
linearization, equation (38), is an approximation the optimization procedure needs to be iterative. Furthermore,
this step might be to long and the relaxed constraint, might by breached, which can be addressed with a shorter
step length.

10
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4 Utility Based Pricing
In 1944 von Neumann Morgenstern presented the expected utility maximization of consumption in the work
Theory of Games and Economic Behavior, (von Neumann and Morgenstern, 2007). In essence, an investor
chooses an optimal investment allocation with respect to its marginal utility of deferred consumption. Thus,
the allocation is such that the marginal utility loss of consumption today is equal to marginal utility gain of
accumulating wealth. In this framework, it is possible to derive a methodology to determine the price from the
expected utility, (Cochrane, 2001). Thus, in this framework it is possible to determine the maximum expected
utility of wealth.

4.1 Choice of Utility Function
The utility based pricing framework is consistent for an arbitrary choice of utility function. However, an inade-
quate selection will yield an incorrect price. Thus, depending on the investors preferences an appropriate utility
function should be used. Due to pleasant properties, many applications use the power utility function,U(Wt) =

1

γ
W γ
t , γ 6= 0

U(Wt) = ln(Wt) γ = 0,
(50)

where γ is the investors risk aversion. The case when γ = 0 the utility function is called log-utility function.

4.2 Optimal Growth
Kelly (1956), was first to present that the optimal long run portfolio is achieved by maximizing the log-utility
function. This portfolio is sometimes known as the Kelly portfolio and it was later shown by Platen (2009)
that this portfolio is identical to the numeraire portfolio. The numeraire portfolio, which is a benchmarked
approach, was discovered by Long (1990). Furthermore, Platen showed that this portfolio cannot be systemat-
ically outperformed by any other portfolio and that it is myopic. Thus, the optimal investment is determined
iteratively for every subsequent time increment in contrast to extracting the whole time span directly. The
log-utility function also mentioned in (Luenberger, 1998, p. 425) as the utility function that maximizes growth,
given a long investment horizon. Thus, an investor with the optimal policy with respect to the logarithmic
utility function will be wealthier than other investors as time goes to infinity.

4.3 Pricing Formula and Relative Risk Aversion
An asset pricing formula can be derived from the first order conditions, for a given utility and optimal portfolio
allocation of the expected wealth. The expression is given by

gt =
Et[U

′(WT )gT ]

Et[U ′(WT )]er
t,T
f (T−t)

, (51)

with the stochastic wealth,Wt, marginal utility U ′(·), payout pT at maturity T and the continuously compounded
risk free spot interest rate rt,Tf . The choice of the utility function is arbitrary, but the method is not preference-
free and will therefore naturally affect risk aversion and thus influence the price. The log utility function is
preferable since it outperforms all other portfolios with a long time horizon. Furthermore, it belongs to the
power-utility class, which all have a constant relative risk aversion,

RRA(W ) = −W U ′′(W )

U ′(W )
= W

γW−γ−1

W−γ
= γ

W γ+1

W γ+1
= γ, (52)

and is generally reasonable for modeling rational investors behavior.
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4.3.1 Pricing Formula Derivation
In order to properly describe the pricing theory a definition of a optimal policy will be presented.
Definition 2. Define an investment strategy for a portfolio of risky assets and the risk free asset for the time
period [0, T ] such that the random wealth at time T is given by the stochastic variable WT . This investment
strategy is defined as an optimal policy with respect to the utility function U(·) if it maximizes the expected future
utility, E[U(WT )].

With this definition in place is it possible to provide the theorem that is the foundation for the utility based
pricing methodology. The theorem and proof following was presented to us by Blomvall (2007).
Theorem 1. Let WT be the random wealth at time T given an optimal policy for the time period [0, T ] with
respect to the utility function U(·). Let rt,Tf be the continuous compounded return for an risk-free investment at
time t ∈ [0, T ] that matures at time T. Let gT be the random future price of an asset, then the price at which
an investor will neither buy nor sell the asset at time t ∈ [0, T ] is given by

gt =
Et[U

′(WT )gT ]

Et[U ′(WT )]er
t,T
f (T−t)

(53)

Proof. With an initial wealth Wt at time t ∈ [0, T ] then an investor can invest in the optimal policy, the asset
and the risk-free asset. Given a portfolio allocation of α, β and γ the future portfolio value is given by

VT = Wt

(
α
WT

Wt
+ β

gT
gt

+ γR

)
(54)

where gt is the asset’s price at time t, and R is the risk-free growth er
t,T
f (T−t) and α+ β + γ = 1. The rational

investor would maximize the expected future utility which can be formulated as

max
α,β,γ

Et[U(VT )] = max
α,β

Et

[
U

(
Wt

(
α

(
WT

Wt
−R

)
+ β

(
gT
gt
−R

)
+R

))]
= max

α,β
f (55)

The optimality conditions are

∂f

∂α
= Et

[
U ′
(
Wt

(
α

(
WT

Wt
−R

)
+ β

(
gT
gt
−R

)
+R

))
Wt

(
WT

Wt
−R

)]
= 0 (56)

∂f

∂β
= Et

[
U ′
(
Wt

(
α

(
WT

Wt
−R

)
+ β

(
gT
gt
−R

)
+R

))
Wt(

gT
gt
−R)

]
= 0. (57)

Observe that β = 0 as long as the asset is correctly priced. Put this into (56) which results in

∂f

∂α

∣∣∣∣
β=0

= Et

[
U ′
(
Wt

(
α

(
WT

Wt
−R

)
+R

))
Wt

(
WT

Wt
−R

)]
= 0 (58)

this is the optimality condition for

max
α+γ=1

Et

[
U

(
Wt

(
α
WT

Wt
+ γR

))]
. (59)

Since WT is an optimal policy with respect to U(·) we have that α = 1. Finally with α = 1 together with β = 0
put into (57)

∂f

∂β

∣∣∣∣
α=1,β=0

= Et

[
U ′
(
Wt

WT

Wt

)
Wt

(
gT
gt
−R

)]
= 0⇔

gt =
Et[U

′(WT )gT ]

Et[U ′(WT )]R
=

Et[U
′(WT )gT ]

Et[U ′(WT )]er
t,T
f (T−t)

,

(60)

which finishes the proof.
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5 Multinomial Tree
The implementation of the utility based pricing will be done in a discretization of continuous time. Given this
approximation, a grid needs to be formed with proper characteristics. The multinomial tree will be constructed
to align with the grid. In order to derive the characteristics some definitions are required.

5.1 Grid Definition
In section 2.2.3 a deterministic local volatility surface was defined. The domain of the surface will be referred
to as a grid.
Definition 3. The strike spectrum of the grid G is the set of possible strikes, KG = {K0, . . . ,Knk}, where
0 ≤ K0 < K1 < . . . < Knk . The strike increments are defined as

∆Ki = Ki+1 −Ki > 0, ∀i = 0, 1, . . . , nk − 1. (61)

Note that it is generally practical that this spectrum is constructed to align with the options’ strikes, whilst
having adequate resolution.
Definition 4. The time spectrum of the grid G is the set of possible times, TG = {T0, . . . , Tnt}, where
TnT > TnT−1 > . . . > T0 ≥ 0, where T0 is known as the reference time. The time increments of continuous
points in time are defined as

∆Ti = Ti+1 − Ti > 0, ∀i = 0, 1, . . . , nt − 1. (62)

Definition 5. The grid, G, is a (discrete) two dimensional space that contains the two-dimensional spectrum
of time and strike combinations

GKG,TG = {g = (K,T ) : K ∈ KG, T ∈ TG} , (63)

where the points g are called nodes, figure 1 presents a schematic picture of a grid.

Figure 1: A schematic representation of a non uniform discrete grid, where the nodes are represented as black
dots.

Definition 6. An equidistant grid that satisfies the properties, equidistant with respect to strike price,

∆Ki = ∆Kj ,∀i = 0, . . . , nk − 1, ∀j = 0, . . . , nk−1. (64)

and equidistant with respect to time,

∆Ti = ∆Tj ,∀i = 0, . . . , nT − 1, ∀j = 0, . . . , nT−1. (65)
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5.2 From Grid to Tree
The nodes in the grid can be connected with branches of the corresponding tree. Furthermore, the root node is
the node that corresponds to the price at the reference time. The child nodes are assumed to be linked with a
branch to the subsequent time. Additionally, the branches are cohesive, when all intermediate strikes between
Kmin and Kmax are accessed by branches from the given node.

5.2.1 Transition Probabilities
The branches can be assigned with a transition probability from a given node to the appropriate child nodes.
Definition 7. The transition probability, pj,τi,t , links a given node (Si, Tt) to the child node (Sj , Tτ ). The
branches must fulfill the conditions

0 ≤ pj,τi,t ≤ 1, ∀i, j = 0, . . . , nk, ∀t = 0, . . . , nT − 1, ∀τ = 1, . . . , nT
nK∑
j=0

pj,τi,t = 1, ∀i = 0, . . . , nk, ∀t = 0, . . . , nT − 1, ∀τ = 1, . . . , nT .
(66)

The notation is in most cases simplified to pji,t ≡ p
j,t+1
i,t .

The tree will model how the underlying moves in time and therefore it is essential that the tree accurately models
the distribution of the underlying, this is accomplished by determining adequate transition probabilities.

5.2.2 Logarithmic Changes
The logarithmic changes can be used to link the strikes of the underlying and their corresponding differ-
ence.
Definition 8. The logarithmic change

rj,τi,t ≡ ln

(
Sj
Si

)
⇔ Sie

rj,τi,t = Sj , ∀i, j = 0, . . . , nk, ∀t = 0, . . . , nT − 1, ∀τ = 1, . . . , nT (67)

is the return from node (Si, t) to (Sj , τ). If the index τ is absent, the time increment is implied to be subsequent,
rji,t ≡ r

j,t+1
i,t .

5.3 Resolution
It is essential that the tree spans the central moments for the distribution. A practical, but not necessary,
property is that the tree nodes match the strike levels of the options and the reference price of the underlying
at the initial time. There is a trade off between speed and adding branches and hence accuracy. The transition
probabilities assigned to branches should be meaningful and thus there is a limit where branches mainly add to
computational complexity.

5.4 Bounded Tree
The grid can not be of infinite size and therefore the tree is also limited. This limitation can be addressed
in several ways. A trivial approach is to limit the maximal growth to the border of the grid, where the
probabilities are absorbed. However, this will induce difficulties while matching the proper distribution and it
will be impossible to assign positive probabilities that fulfill the Kolmogorov axioms, see appendix B.4 or (Gut,
2009, p.4).

Another solution is to add a moat, above and below the initial grid, which have special properties, while the
behavior in the initial grid is unchanged. In this moat the transition probabilities can be set such that the
process remains constant at that price. With this approach it is also impossible to match a distribution, but the
probabilities are not reflected back into the tree. The advantage of the second approach is that the probabilities
remain in the moat and to not reenter the grid in a later time causing an inadequate distribution.

14



G. Sällberg & P. Söderbäck 5 MULTINOMIAL TREE

Figure 2: The upper part of a multinomial tree with seven branches and extended with a three strike wide moat

In order to apply the moat to the grid either an existing grid can be modified or two additional grids can be
added to extend the original grid. The latter is found to be more convenient, since it can be added to an initial
grid where there is no need for modification or redefinition.
Definition 9. A grid Ḡ is a strike extension of the grid G if TG = TḠ and KG ∩ KḠ = ∅ (the grid G is
mutual a strike extension of the grid Ḡ).

Figure 2 presents a schematic grid with an upper grid extension with respect to strike. It is essential that
the probability to reach the moat is small to retain a proper distribution proxy. The moat will be presented
mathematically in section 9.1.4. A grid G that is extended is denoted by G̃.

Remark 1. Moat is a property of the grid’s tree and a grid extension is just a part of the grid that may have
the moat property. In practice, the parts of the tree that is in the extension are assigned with the moat property.
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6 Assign Probabilities
The characteristics of the probabilities in the mathematical framework are essential in the derivation of the
optimization problem. Furthermore, an initial probability solution, p̄, will be adjusted as a minimal adjustment
under required conditions. After the chapters derivation, the solution of the minimal adjustment ε is presented
in a matrix form.

6.1 Minimal Adjustment
The probabilities defined in the previous chapter must be properly determined and carry properties such as
an adequate distribution. A minimal adjustment is designed to ensure that these conditions are satisfied.
Furthermore, the probabilities will be written on the form p = (1 + ε)p̄, where p̄ is an initial guess and ε is an
adjustment. The minimization problem is formed as

min
1

2
εT ε

s.t. Xε = y.
(68)

The problem (68) is analytically solvable, with a Lagrange multiplier, λ,

L =
1

2
εT ε+ λT (y −Xε). (69)

The gradients are calculated and set equal to zero,

∇εL = ε−XTλ = 0 (70)
∇λL = y −Xε = 0, (71)

and from (70) we get

ε = XTλ
(71)⇔ −XXTλ+ y = 0⇔ λ = (XXT )−1y, (72)

which inserted in (70) gives
ε = XT (XXT )−1y. (73)

Remark 2. The matrix X is generally non-square and therefore the inverse of X does not exist. If X is a
square matrix, where the inverse exists, it is possible to solve the problem directly from (71), ε = X−1y.

6.2 Expected Return with Respect to Volatility
The expression for the expected return will be derived for the power utility class since it is crucial for both the
drift condition and the initial probability guess.

6.2.1 Optimal Portfolio Allocation
The equation (51) requires the optimal policy, which is optimally managed with respect to the given utility
function. Bodie, Marcus, and Kane (2014, p. 294) state that given this policy all investors allocate all their
investments in the market portfolio since the net lending must be zero. Hence, the choice of allocation in the
market portfolio and the risk-free asset is already predetermined as a full market portfolio allocation in every
investment period.

6.2.2 Expected Return
The second central moment for the normal distribution is given by the local volatility surface. However, the
expected return must be derived in some other way. One approach is to formulate an optimization problem,
which is similar to a capital asset pricing model (CAPM) derivation. The derivation adapts a maximized utility
of a single investment period with respect to expected return and variance. In this setting the markets are
frictionless efficient markets with full information, no tax, zero transaction costs and unlimited borrowing and
lending. The rest of this section, 6.2.2, was explained by Blomvall (2007).

Let the initial wealth be W0 allocated in the asset weights, including in the risk free asset, w̄ with the returns
r. The optimization problem can now be formed as

max
w̄

E
[
U(W0 · rT w̄)

]
≈ µr

T w̄ +
γ − 1

2
w̄T C̄w̄

s.t. 1T w̄ = 1,
(74)
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where the approximation is a Taylor expansion, assuming a power utility function, see (Merton and Samuelson,
p. 81), and where µr = E[r] and C̄ = Var[r]. We have also used the property that the power utility function
has constant relative risk aversion independent of the size of wealth, see section 4.3.1. The risk-free assets have
zero variance and also no covariance with any other asset. Furthermore, the weights w̄ can be divided into the
risky asset weights w and risk free y, with the corresponding expected return µ and rf . The covariance of the
risky assets is denoted by C and γ is the risk aversion parameter. From these we can formulate an optimization
problem,

min
w∈Rn,y∈R

L = wTµ+ y · rf +
1− γ

2
wTCw

s.t. 1Tw + y = 1,

(75)

where w is the weights in risky assets and y is the weight in risk-free assets. The weight y in the objective
function can be replaced by the constraint and reformulated to a unconstrained optimization problem

min
w∈Rn

L = wTµ+ (1− 1Tw) · rf +
1− γ

2
wTCw. (76)

This unconstrained optimization can be solved by

∇wL = 0⇔ µ− 1 · rf − (1− γ)Cw = 0⇔ w =
1

1− γ
C−1 (µ− 1 · rf ) ≡ w∗ (77)

with the Hessian
Hw = ∇2

wL = −(1− γ) · C. (78)
The covariance matrix C is positive definite and thus ∇2

wL is also positive definite for all γ < 1, which is the
region of interest. Since the ∇2

wL is a positive definite we know that the extreme point w∗ is a unique minimum.
The point w∗ can be rewritten, by multiplying with a scalar (a fraction of identical numerator and denominator
of dimension 1),

w∗ =
1TC−1(µ− 1 · rf )

1TC−1(µ− 1 · rf )
· 1

1− γ
C−1 (µ− 1 · rf ) =

1TC−1(µ− 1 · rf )

1− γ
C−1 (µ− 1 · rf )

1TC−1(µ− 1 · rf )
(79)

where we can identify

η =
1TC−1(µ− 1 · rf )

1− γ
(80)

and

wM =
C−1 (µ− 1 · rf )

1TC−1(µ− 1 · rf )
, (81)

where wM is the asset weights of the market portfolio and η is a scalar stating the leverage in the market
portfolio. Furthermore, we have already stated in the previous section 6.2.1, that there is no investment in the
risk free asset and thus η = 1, which inserted in (80) gives,

1 =
1TC−1(µ− 1 · rf )

1− γ
. (82)

Furthermore, CAPM gives that µ = 1 · rf + CwM

σ2
M

(µM − rf ) and therefore (82) can be written as

1 =
1TC−1

(
1 · rf + CwM

σ2
M

(µM − rf )− 1 · rf )
)

1− γ
⇔

1− γ =
1TwM (µM − rf )

σ2
M

⇔
{
1TwM = 1

}
⇔ µM = rf + (1− γ)σ2

M ,

(83)

where the market return µM = µg + δ, dividend δ and capital gain µg. Equation (83) can then be formulated
as

µg = rf − δ + (1− γ)σ2
M . (84)

The assets that will be studied are indices with no reinvestment, but where the underlying asset parts can have
dividends. Thus, the underlying index indirectly has dividends, which will be approximated by a dividend yield
reducing the drift component. Hence, in essence the expected value for the distribution is µg.
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6.3 Initial Probability
The initial probabilities can be seen as an almost correct guess for the specific distribution. These probabilities
are then adjusted by minimization of change. For convenience, some sets of index integers are defined. The
first set IG = {0, 1, . . . , nK} contains all the index integers of the strike spectrum for the grid G, which can be
extended. The set Ii,tG contains the index of child nodes for the given node (Si, Tt),∀t ∈ JG = {0, . . . , nT −
1},∀i ∈ IG. The notation G will be dropped, when unnecessary.

We here assume that it is the normal distribution that is matched. A way of approximating the normal
distribution is to evaluate the probability density function and then normalize it with the sum of elements,p̄ji,t =

φµ̂,σ̂(rji,t)∑
k∈Ii,t φµ̂,σ̂(rji,t)

∀j ∈ Ii,t

0 ∀j /∈ Ii,t
,∀(i, t) ∈ IG × JG, (85)

where φµ̂,σ̂(·) denotes the probability density function of a distribution with expected return µ̂ and standard
deviation σ̂ adjusted to the time increment. The normal probability density function can be expanded to

φµ̂i,t,σ̂i,t(r
j
i,t) =

1√
2uσ̂2

i,t

exp

(
−

(ν̂i,t − rji,t)2

2σ̂2
i,t

) (84) and
(Ekblom, 2014)

=

{
ν̂i,t = rtf − δt + (1− γ)σ̂2

i,t −
1

2
σ̂2
i,t

}

=
1√

2uσ̂2
i,t

exp

(
−

(( 1
2 − γ)σ̂2

i,t + rtf − δt − r
j
i,t)

2

2σ̂2
i,t

)
=
{
at = rtf − δt

}

=
1√

2uσ̂2
i,t

exp

(
−

( 1
2 − γ)2σ̂2

i,t

2
− (

1

2
− γ)at − (at)2

2σ̂2
i,t

+
arji,t
σ̂2
i,t

+ (
1

2
− γ)rji,t −

(rti,j)
2

2σ̂2
i,t

)

=

{
bi,t(σ̂i,t) = −

( 1
2 − γ)2σ̂2

i,t

2
− (

1

2
− γ)at − (at)2

2σ̂2
i,t

, cti,j(σ̂i,t) =
atrji,t
σ̂2
i,t

−
(rji,t)

2

2σ̂2
i,t

}

=
1√

2uσ̂2
i,t

ebi,t(σ̂i,t)ec
t
i,j(σ̂i,t)e( 1

2−γ)rji,t , ∀(i, t, j) ∈ IG × JG × Ii,t,

(86)

where rtf is the risk-free rate at time t. Then, (86) can be inserted in (85) to give the probability,
p̄ji,t =

1√
2uσ̂2

i,t

ebi,t(σ̂i,t)e
cti,j(σ̂i,t)e

( 1
2
−γ)r

j
i,t∑

k∈Ii,t

1√
2uσ̂2

i,t

ebi,t(σ̂i,t)ec
t
i,k(σ̂i,t)e( 1

2−γ)rki,t

= e
cti,j(σ̂i,t)e

( 1
2
−γ)r

j
i,t∑

k∈Ii,t
ec
t
i,k(σ̂i,t)e( 1

2−γ)rki,t
, ∀j ∈ Ii,t

0 ∀j /∈ Ii,t

,∀(i, t) ∈ IG × JG.

(87)

6.3.1 Probability Preservation
The Kolmogorov axiom must be fulfilled for the assigned probabilities. The two axioms of concern are non-
negativity and normalization, where the third, finite additivity, is true. The probabilities can be written as
scalars,

pji,t ≡ p̄
j
i,t(1 + εji,t) ∀(i, t, j) ∈ IG × JG × Ii,t. (88)

Kolmogorov’s first axiom postulates that all probabilities must be greater than zero,

pji,t = p̄ji,t(1 + εji,t) ≥ 0⇔

{
εji,t ≥ −1 p̄ji,t > 0

ε ∈ R p̄ji,t = 0
∀(i, t, j) ∈ IG × JG × Ii,t (89)

and Kolmogorovs second axiom postulates that the probability of the whole sample space is one,∑
j∈Ii,t

pji,t = 1⇔ 1 +
∑
j∈Ii,t

p̄ji,tε
j
i,t = 1⇔

∑
j∈Ii,t

p̄ji,tε
t
i,j = 0,∀(i, t) ∈ IG × JG. (90)
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6.4 Adapting Probabilities by Moment Matching
The distribution needs to match the central moments to be appropriately similar to a specific distribution.
Note however, that it is not always possible to match to moments given any sample space, see section 9.1.3.3
for conditions that must be satisfied. Furthermore, finding the probabilities pji,t between time steps for each
nodes is done by moment matching for the first nm central moments {mc : c = 2, . . . nm} such that the discrete
outcomes

mc
i,t = E[(X − E[X])c] =

∑
j∈Ii,t

pji,t · (r
j
i,t − E[X])c ∀(i, t) ∈ IG × JG, (91)

where X is the stochastic variable for the returns. The transition probabilities in the moat are by construc-
tion {

pji,t = 1 j = i i ∈ IG̃ \ IG
pji,t = 0 j 6= i i ∈ IG̃ \ IG.

(92)

6.4.1 Special Case - Normal Distribution
Note that for a normally distributed variable the central moments mc can be calculated as

mc
i,t =

{
σ̂ci,t ·

√
∆T i · c!! c is even

0 c is odd
, ∀(i, t) ∈ IG × JG. (93)

where

c!! =

{
(c− 1) · (c− 2)!! c ≥ 3

1 c ≤ 2.
(94)

The condition can then be written as∑
j∈Ii,t

p̄ji,t(1 + εji,t) · (r
j
i,t − µ̂t)

c = mc
i,t, ∀c ∈ {1...nc},∀(i, t) ∈ IG × JG. (95)

6.5 Probability Adjustment
The central moments are not matched if the initial probabilities in (85) are chosen. Therefore, the probabilities
are adjusted by minimization of change. For a cleaner look, the time notation is dropped, but this optimization
problem is done for all nodes. Let

pji,t ≡ p̄
j
i,t(1 + εji,t) ∀(i, t, j) ∈ I × J × Ii,t, (96)

which is used in the next section for defining a minimization problem for one special case, i ∈ IG and
j ∈ JG.

6.5.1 Full Allocation Condition
The full allocation condition in the market portfolio does not necessarily hold by the definitions made. Therefore,
additional constrains are required to ensure that the allocation, α = 1. Thus, we need to find the conditions on
the probabilities that maximizes the expected utility of wealth and α = 1. We start from equation (55), with
β = 0, Vt|β=0 = Wt

(
αWT

Wt
+ β gTgt + γR

)∣∣∣
β=0

= Wt

(
αWT

Wt
+ γR

)
≡ V ∗t .

max
γ,α∈R

Et[U(V ∗t )]

s.t. α+ γ = 1.
(97)

With γ = 1− α, we can rewrite (97) as

max
α∈R

Et

[
U

(
Wt

(
α
WT

Wt
+ (1− α)R

))]
= max

α∈R
Et [U (αWT +Wt(1− α)R)] . (98)
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For a discrete sample space Ω =
{
W 1
T ,W

2
T , . . . ,W

n
T

}
, where n is a finite number it is possible to write the

expectation as

max
α∈R

Et [U (αWT +Wt(1− α)R)] = max
α∈R

n∑
i=1

U(W i
Tα+Wt(1− α)R)pi ≡ max

α∈R
f(α). (99)

Furthermore, the problem is one-dimensional and unconstrained. We will show that there exists an unique
global optima with f ′′ < 0 and f ′ = 0. The first and second derivative can be written as

f ′(α) =

n∑
i=1

U ′(W i
Tα+Wt(1− α)R)(W i

T −RWt)pi (100)

and

f ′′(α) =

n∑
i=1

U ′′(W i
Tα+Wt(1− α)R)(W i

T −RWt)
2pi. (101)

A special case of the second derivative is when U is the log-utility function. The expression (101) has three
factors, the third, pi is by assumption in the interval [0, 1]2. The second factor is greater or equal than zero
since it is quadratic. The first factor is the second derivative of the log-utility function,

U ′′(x) = − 1

x2
< 0, ∀x ∈ {R \ {0}} , (102)

where αWT +Wt(1−α)R > 0, since the logarithmic function U is no defined for non-positive values. Therefore
the singularity is no problem. Furthermore, we conclude that f ′′ ≤ 0, and if the sum includes more than one
term the inequality is strict, which are the case in practice. Hence, any extreme point, α∗, is an unique optima,
f(α∗) > f(ᾱ), ∀ᾱ ∈ R \ {α∗}.

Since an extreme point for α = 1, where f ′(α) = 0, is optimal, we set

f ′(α)|α=1 = 0⇔
n∑
i=1

U ′(W i
Tα+Wt(1− α)R)pi

(
W i
T −RWt

)∣∣∣∣∣
α=1

= 0⇔

n∑
i=1

U ′
(
W i
T

) (
W i
T −RWt

)
pi =

{
d̃ := U ′

(
W i
T

) (
W i
T −RWt

)}
=

n∑
i=1

d̃ipi = 0.

(103)

In equation (96) we have pi = (1+ εi)p̄i and with the definition d̃ := 1
W i
T

(
W i
T −RWt

)
(given log-utility) rewrite

equation (103) to
n∑
i=1

d̃i(1 + εi)p̄i =

n∑
i=1

d̃ip̄i + d̃ip̄iεi = 0⇔
{
di = d̃ip̄i

}
⇔

n∑
i=1

di = −
n∑
i=1

diεi ⇔ dT1 = −dT ε.

(104)

2This property is assured by another constraint in the optimization problem.
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6.5.2 Matrix Representation
If the inequality constraint (89) is relaxed then only the equality constraints (104), (90) and (95) remain. This
equation system can be written in matrix form as

X =



xT1
xT2
...

xTnc
pT

dT


, and y =



m1 − xT1 1
m2 − xT2 1

...
mnc − xTnc1

0
−dT1.


, (105)

where

xc =



p̄
min(Ii,t)
i,t · (rmin(Ii,t)

i,t − µ̂i,t)c

p̄
min(Ii,t)+1
i,t · (rmin(Ii,t)+1

i,t − µ̂i,t)c
...

p̄
max(Ii,t)−1
i,t · (rmax(Ii,t)−1

i,t − µ̂i,t)c

p̄
max(Ii,t)
i,t · (rmax(Ii,t)

i,t − µ̂i,t)c


,∀c = 1, . . . , nc. (106)

These expressions can now be inserted in equation (73), ε = XT (XXT )−1y.
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7 Pricing Formula Computation
With the utility based framework with optimal growth, in a discrete grid with adequate transition probabilities
and distribution in place, the pricing formula can be defined. The function g is used to price the spectrum of
put and call options. The pricing formula computation is defined and subsequently the components are derived.
The function g is used to price the spectrum of put and call options and is defined as

g = ΞR−1
f q, (107)

where R−1
f is a discount factor, Ξ is the sample space of the option payoff and q is the risk-neutral distribution.

The payoff and the discount factor is presented in this section, and the derivation of the risk-neutral probability
is derived in the next section.

The payoff function for a call and put option are per definition

ξc(ST ,K) = max (ST −K, 0) (108)
ξp(ST ,K) = max (K − ST , 0) , (109)

where ST is the price of the underlying at the maturity time T and K is the option’s strike price. If the sample
space of the asset price, in time τ , is Sτ = {S1,τ , . . . , Snτ ,τ}, the sample space of the payoff becomes

ξc (Sτ ,K) =
(
max (S1,τ −K, 0) , . . . ,max (Snτ ,τ −K, 0)

)T (110)

ξp (Sτ ,K) =
(
max (K − S1,τ , 0) , . . . ,max (K − Snτ ,τ , 0)

)T
, (111)

for a specific call and put option respectively. For a set of options with different strike prices and maturity times
a matrix can be constructed,

Ξ =



ξ(Sτ1 , K
τ1
1 )

.

.

.
ξ(Sτ1 , K

τ1
m )

ξ(Sτ2 , K
τ2
1 )

.

.

.
ξ(Sτ2 , K

τ2
m )

·
·
·

ξ(Sτnτ ,K
τnτ
1 )

.

.

.
ξ(Sτnτ ,K

τnτ
m )


, (112)

where l denotes the number of maturity times and Kτi
j is the jth strike level for the maturity time τi that has

an option. The vector q contains the distributions for the time spectrum,

q =


qτ1
qτ2
...

qτnτ

 . (113)

Lastly the discount factors for a specific time can be written as e−r
Tτi

,Tτj
f (Tτi−Tτj ) and the discount factor matrix,

R−1
f , can be written as

R−1
f =



e
−Tτ1τ0 ·r

Tτ0 ,Tτ1
f

. . .

e
−Tτ1τ0 ·r

Tτ0 ,Tτ1
f

e
−Tτ2τ0 ·r

Tτ0 ,Tτ2
f

. . .

e
−Tτ2τ0 ·r

Tτ0 ,Tτ2
f

. . .

e
−Tτnτ0 ·r

Tτ0
,Tτn

f


, (114)
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where T τ1τ0 ≡ Tτ1 − Tτ0 , and expression (107) can be formulated.
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7.1 Discrete Pricing Formula
Given an optimal allocation (α = 1), the probabilities pti,j , the risky returns rti,j and the risk-free rate rTt,Tt+1

f

the price of the derivative can be calculated for the time Tt. The pricing formula holds for all initial wealths
Wt, and can be showed to be independent of it. The price of a derivative, g in time t, with the underlying’s
price Sk is gkt . If the probabilities and α given by the current node (Sk, Tt) is known and the log-utility function
is used, then the price is given by

git =
Et[U

′(Wt+1)gt+1]

Et[U ′(Wt+1)]er
Tt,Tt+1
f ∆Tt

=

∑
j∈Ii,t p

j
i,t

gjt+1(
αe
r
j
i,t+(1−α)e

r
Tt,Tt+1
f

∆Tt

)
Wt

er
Tt,Tt+1
f ∆Tt

∑
j∈Ii,t p

j
i,t

1(
αe
r
j
i,t+(1−α)e

r
Tt,Tt+1
f

∆Tt

)
Wt

=

∑
j∈Ii,t p

j
i,t

gjt+1(
αe
r
j
i,t+(1−α)e

r
Tt,Tt+1
f

∆Tt

)

er
Tt,Tt+1
f ∆Tt

∑
j∈Ii,t p

j
i,t

1(
αe
r
j
i,t+(1−α)e

r
Tt,Tt+1
f

∆Tt

) , ∀(i, t) ∈ I × J

(115)

which is completely independent of Wt, since we know that α is independent of Wt. By recursive calculations
one finally get the current price of the derivative, gk0 where {k : Sk = Sini}.

7.2 Risk-neutral Probabilities Computation
The classic approach of pricing derivatives is the risk-neutral valuation principle which states that

gt =
EQt [gt+1]

e
∫ Tt+1
Tt

r(u)du
(116)

or the discrete case
git = e−r

Tt,Tt+1
f ∆Tt

∑
j∈Ii,t

qti,jg
j
t+1 ∀(i, t) ∈ I × J (117)

where qi = Q(gt+1 = git+1|Ft). Equating the corresponding utility based pricing formula (115) with (117)
gives

∑
j∈Ii,t

qji,tg
j
t+1 =

∑
j∈Ii,t

pji,t

αe
r
j
i,t+(1−α)e

r
Tt,Tt+1
f

∆Tt

gjt+1∑
j∈Ii,t p

j
i,t

1

αe
r
j
i,t+(1−α)e

r
Tt,Tt+1
f

∆Tt

, ∀(i, t) ∈ I × J . (118)

This must hold for all instruments. If the instrument is an Arrow-Debreu security it has a payoff of one if the
underlying coincides exactly with the strike at the given maturity, otherwise it expires worthless. The expression
for qti,j is then found by identification in equation (118),

qji,t =

pji,t

αe
r
j
i,t+(1−α)e

rt
f

∆tt∑
j∈Ii,t p

j
i,t

1

αe
r
j
i,t+(1−α)e

rt
f

∆tt

, i ∈ IG̃, ∀j ∈ Ii,t, ∀t = 0, . . . , nT − 1 (119)
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The expression (119) can be rewritten into a simplified and more direct form. We start with the cases j ∈ Ii,t
and after that the trivial case of j /∈ Ii,t.

qji,t =

pji,t

αe
r
j
i,t+(1−α)e

r
Tt,Tt+1
f

∆Tt∑
j∈Ii,t p

j
i,t

1

αe
r
j
i,t+(1−α)e

r
Tt,Tt+1
f

∆Tt

=
{
α = 1, pji,t = p̄ji,t(1 + εji,t)

}

=
p̄ji,t(1 + εji,t)e

−rji,t∑
j∈Ii,t

(
p̄ji,t(1 + εji,t)e

−rji,t
) = {(87)} =

 e
cti,j(σ̂i,t)e

( 1
2
−λ)r

j
i,t∑

k∈Ii,t
ec
t
i,k(σ̂i,t)e( 1

2−λ)rki,t

 (1 + εji,t)e
−rji,t

∑
l∈Ii,t

 e
ct
i,j

(σ̂i,t)e
( 1
2
−λ)rl

i,t∑
k∈Ii,t

ec
t
i,k(σ̂i,t)e( 1

2−λ)rki,t

 (1 + εli,t)e
−rli,t

=
ec
j
i,t(σ̂i,t)(1 + εji,t)e

−( 1
2 +λ)rji,t∑

l∈Ii,t e
cji,t(σ̂i,t)(1 + εji,t)e

−( 1
2 +λ)rji,t

= {λ = 0} =
(1 + εji,t)e

cji,t(σ̂i,t)∑
l∈Ii,t (1 + εji,t)e

cji,t(σ̂i,t)
,∀(i, t) ∈ I × J .

(120)

The second equality is given by the optimal portfolio, which is the market portfolio with α = 1, see section
6.2.1. When j /∈ Ii,t then qti,j = 0 and therefore the complete case can be written as

qji,t =


(1+εji,t)e

c
j
i,t

(σ̂i,t)∑
j∈Ii,t (1+εji,t)e

c
j
i,t

(σ̂i,t)
j ∈ Ii,t

0 j /∈ Ii,t
,∀(i, t) ∈ I × J (121)

which in vector form is
qi,t =

(
q0
i,t, q

1
i,t, . . . , q

n
i,t

)T (122)

where n = |IG̃|.
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7.3 Transition Matrices
The risk-neutral probabilities described in the previous section were transition probabilities. A special case of
these are the distribution probabilities,

q
(t)
d =


q0,t
ini,0

q1,t
ini,0
...

qn,tini,0

 , (123)

which are the transition probabilities from time 0 to a future time t. Furthermore, distribution probabilities at
different times, t and t+ 1 can be connected with a transition matrices, Qt, as

q
(tn+1)
d = Qtq

(tn)
d , (124)

where

Qt =
(
qt0, . . . ,q

t
n

)
=


q0
0,t q0

1,t . . . q0
n,t

q1
0,t q1

1,t . . . q1
n,t

...
...

. . .
...

qn0,t qn1,t . . . qnn,t

 (125)

If applied iteratively we get

QtnQtn−1 · · ·Qt1Qt0q(t0)
d = QtnQtn−1 · · ·Qt1q(t1)

d = . . . = Qtnq
(tn)
d = q

(tn+1)
d . (126)

The distribution in the reference time, t0, is known, since the underlying has a certain observed price with
probability 1. The distribution at the initial time can be expressed as,{

q
(t0)
i = 1 , i : Si,0 = Sini

q
(t0)
i = 0 otherwise

. (127)

We now have all the information required to use the pricing expression (107).

7.4 Interpolation Option Pricing
In order to price option in intermediate points in the grid, interpolation pricing can be used, described in Barkha-
gen (2015, pp. 206-209). The interpolation is needed since the risk-neutral distribution is discrete3.

The call and put price for options whose strike price are presented in the grid is priced as described as above
for all strikes in the grid. These are theoretical options and do not, in general, have a market price. The
intermediate call options, with strike price Kk and maturity time Tl in the grid can now be priced, at time t,
as

gk(q) = λk

(
C(K̄k) +

∂C(K̄k)

∂K

(
Kk − K̄k

)
+

1

2

∂2C(K̄k)

∂K2

(
Kk − K̄k

)2)
+

(1− λk)

(
C(K̄k+1) +

∂C(K̄k+1)

∂K

(
Kk − K̄k+1

)
+

1

2

∂2C(K̄k+1)

∂K2

(
Kk − K̄k+1

)2)
,

(128)

where λk is defined as

λk =
K̄k+1 −Ki

K̄k+1 − K̄k
. (129)

Furthermore K̄k (K̄k+1) are the largest (smallest) of all smaller (larger) strike prices in the grid. The call
options with these strikes have the price C(K̄k) (C(K̄k)) respectively. Furthermore first and second derivative
are given by

∂C(K̄j)

∂K
= −D(t, Tl)

∫ ∞
K̄k

qc(Stl , tl)dStl ≈ −D(t, Tl)

N∑
j=k

q(Kj , Tl) (130a)

3Interpolation of the distribution might also be a solution
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∂2C(K̄j)

∂K2
= D(t, Tl)q(K̄j) ≈ D(t, Tl)

2qKj ,Tl
S̄j+1 − S̄j−1

, (130b)

where D(τ, t) is the discount factor from time t to τ and where N is the total number of strike prices in the
grid.

The put options are priced analogously as

gk(q) = λk

(
P (K̄k) +

∂P (K̄k)

∂K

(
Kk − K̄k

)
+

1

2

∂2P (K̄k)

∂K2

(
Kk − K̄k

)2)
+

(1− λk)

(
P (K̄k+1) +

∂P (K̄k+1)

∂K

(
Kk − K̄k+1

)
+

1

2

∂2P (K̄k+1)

∂K2

(
Kk − K̄k+1

)2)
,

(131)

where P (x) denotes the price of an put option with the strike price x. The first and second derivative are given
by

∂P (K̄j)

∂K
= D(t, Tl)

(
1−

∫ ∞
K̄j

qc(Stl , tl)dStl

)
≈ D(t, Tl)

1−
N∑
j=k

qKj ,Tl

 (132a)

∂2P (K̄j)

∂K2
= D(t, Tl)qc(K̄j , tl) =

∂2C(K̄j)

∂K2
. (132b)
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8 Automatic Differentiation
To evaluate a differentiation it is preferred to have an analytical expression to evaluate all points of interest. It
is sometimes infeasible or impossible to find such a expression and thus other approaches must be used. One
common approach is to use the a numerical approach, for instance the finite difference

∂f

∂xi
(x) ≈ f(x+ ε)− f(x)

ε
, (133)

which is an approximation. An alternative, exact4, approach will be presented in this chapter, automatic
differentiation5, which is neither numerical or symbolic differentiation; it is just another way of calculating
derivatives.

We use automatic differentiation to compute gradients, or more specifically the gradient ∇u(ψ(π̄)), which is
used for the linearizion of ψ. This is done since it is complex to compute this gradient analytically. Computing
gradients with automatic differentiation is more efficient and more precise compared to a finite difference method,
(Rall and Corliss, 1996, p. 2). Additionally, it computes the gradient and function value simultaneously which
is more efficient than calculating the function and its derivate separately.

Rall and Corliss (1996, pp. 2-4 and pp. 9-11) and Neidinger (2010, pp. 547-551 and pp. 558-561)6 describe
two modes of automatic differentiation, forward and reverse mode. Both modes are constructed with the chain
rule. Depending on the problem size the modes have different computational efficiency, but in general they are
equally accurate.

The difference in computational efficiency depends on the characteristics of the evaluated function. Rall and
Corliss state that it is only optimal to use one or another in extreme cases and in general it is optimal to combine
the methods. However, finding the optimal mix results in an optimization problem, which seldom results in a
computational efficiency improvement. Furthermore, Rall and Corliss, (1996, p. 11), present a guideline,

“The reverse mode is generally favored if m >> q”,

where m is the number of independent variables (input values) and q is the number of dependent variables
(output values). Given these guidelines we will use the reverse mode, since we may have a relative difference
of ∼ 100 between independent variables and dependent variables. Since the reverse mode is of greatest interest
for the thesis it is presented before the forward mode.

The chapter is an introduction and overview of automatic differentiation, for a comprehensive presentation see
(Griewank and Walther, 2008) and for some details used in this thesis see (Forth et al., 2004, pp. 266-277) and
(Neidinger, 2010, pp.558-561).

8.1 Reverse Mode
The reverse mode consists of two sweeps, a forward and a reverse sweep. The forward sweep calculates the
function value and also creates a tape, which is often represented by a matrix, L, (Neidinger, 2010, p. 560) and
(Forth et al., 2004, p. 270). The reverse sweep calculates the derivatives, from which the gradient is defined,
by rewinding (using) the tape. The rest of this section will consist of first an example to introduce automatic
differentiation followed by a more general presentation. This section presents a mathematical description, while
the implementation is briefly presented in section 9.2.2.

8.1.1 Example
Calculate the value and gradient of the function,

h(x, y) = 4x+ 6 sin(y). (134)

The first step is to separate the different operators into intermediate variables, showed in table 2. The next step
is to calculate the derivatives of the intermediate variable in table 2, where the results are presented in table 3.
From table 3, it is possible to see that the chain rule can be used, where all the necessary partial derivative are

4The machine precession will of course restrict the exactness.
5Automatic differentiation is also known as algorithmic differentiation or computational differentiation.
6Neidinger does not explicitly state that it is the forward mode approach.
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Intermediate variables Expressions in intermediate variables Expression in independent variables
u1 x x
u2 y y
u3 4u1 4x
u4 sin(u2) sin(y)
u5 6u4 6 sin(y)
u6 u3 + u5 4x+ 6 sin(y)

Table 2: The values of the intermediate variables and the respective expression in independent variables for the
example.

Derivative intermediate variables
∂u1

∂x = 1
∂u2

∂y = 1
∂u3

∂u1
= 4

∂u4

∂u2
= cos(u2)
∂u5

∂u4
= 6

∂u6

∂u3
= 1

∂u6

∂u5
= 1

Table 3: The partial derivative for the intermediate variables in the example.

calculated,
∂h

∂x
=
∂u6

∂x
=
∂u6

∂u3

∂u3

∂u1

∂u1

∂x
= 1 · 4 · 1 = 4, (135)

which oblivious are accurate and analogously

∂h

∂y
=
∂u6

∂y
=
∂u6

∂u5

∂u5

∂u4

∂u4

∂u2

∂u2

∂y
= 1 · 6 · cos(u2) · 1 = {u2 = y} = 6 cos(y), (136)

which are also is correct. A more systematic approach, instead of the tables, is to use a matrix L. The matrix
for this example is present in table 4, the interpretation of the matrix is that each row has a variable and the

u1 u2 u3 u4 u5 u6

u1 -1
u2 0 -1
u3 4 0 -1
u4 0 cos(u2) 0 -1
u5 0 0 0 6 -1
u6 0 0 1 0 1 -1

Table 4: The matrix L, i.e. the tape for the example. Blank spaces are to be seen as zeros.

columns correspond to the partial derivatives of the other variables, except the diagonal elements. For example
the 4 in row three and column one is the partial derivative, ∂u3

∂u1
= 4. (Forth et al., 2004, p. 270) derive the

negative diagonal. It is possible to “loop” through the matrix and find all the derivatives such that solvable
equation systems can be constructed.

The equation system can be constructed so that different derivatives are calculated. Neidinger’s approach (2010,
pp. 558-561) is preferable if all partial derivatives of the type,

ūi =
∂u6

∂ui
, ∀i = 1, . . . , 6, (137)

are of interest. These derivatives are received if a equation system are solved for ū, and the equation system
is

ūTL = bT (138)
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where ūT = [ū1, ū2, . . . , ū6] and bT = [0, 0, . . . , 0,−1], where

ūi =
∂u6

∂ui
∀i = 1, . . . , 6. (139)

The size of b corresponds to the number of rows (columns) of L, where the last element is −1 and the rest are
zero. It is also possible to calculate the derivative, e.g. ∂uj

∂ui
,∀i = 1, . . . , j as well. The tape is then cut, so that

all rows and columns after row j and column j are removed and then the same algorithm is applied.

It can be of interest to find all partial derivatives for all the intermediate variables with respect to the independent
variables. The approach used in (Forth et al., 2004, pp. 268-271) fits this purpose and will be referred to as
Forth’s approach. The equation system to solve, for D, is

LD = −P, (140)

where L is the same tape as before. The right hand side,

P =



−1 0 0
0 −1 0
0 0 −1
0 0 0
...

...
...

0 0 0


, (141)

where the number of columns is the number of independent variables and the number of rows match L. The
diagonal of the matrix should be −1, described in (Forth et al., 2004, p.268-271) and D has the form

D =


∇uT1
∇uT2
...
∇uT6

 . (142)

8.1.2 Forward Sweep - General
We have now seen an easy example of the automatic differentiation. In this section a more general presentation
of the forward sweep is presented. Let the function be of the type f : Rn 7→ R, i.e. that we have n independent
variables and one dependent variable and a unknown number of intermediate variables. The first n intermediate
variables are independent variables, ui = xi, ∀i = 1, . . . , n. Then the intermediate variables are defined as
ui = Φi({u}j≺i), i > n7, i.e. that an intermediate variable can depend on previous calculated intermediate
variables but can not depend on future intermediate variables.

Then let a um = φ(uk, ul) where k < m and l < m, and with a current tape Lm−1 it is then possible to calculate
the new tape matrix as,

Lm =


Lm−1 0m−1

0Tk−1
∂φ(uk,ul)
∂uk

0Tl−k−1
∂φ(uk,ul)

∂ul
0Tm−1−k−l −1

 , (143)

the function φ can depend on a arbitrary number of intermediate variables, from one to m − 1 the choice of
two is just chosen for visibility. This process is then repeated for all the operations until the function f is
calculated. The value of the function of the is also calculated as usual. To handle a more general function,
f : Rn 7→ Rk, k > 1, the forward sweep is unchanged but the reverse sweep must be changed.

7The notation is chosen to match the notation in (Forth et al., 2004)
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8.1.3 Reverse Sweep - General

Depending if k > 1 or k = 1 in f : Rn 7→ Rk the tape must be re-winded with different methods. We start with
the first case, k = 1. Neidinger’s approach needs a right hand side bT , which has the size 1 × nc where nc is
the number of columns in the matrix L, all elements is zero except the last which is −1, and it is possible to
solve the equation system, (138).

For Forth’s approach, the matrix P must be constructed. The number of columns equals the number of
independent variables and the number of rows equals the number of rows in L. The value −1 is then assigned
to the diagonal and the equation system, (140), is solvable.

For functions with k > 1 the tape can be solved by cutting the tape and repeating the rewinding. One important
observation is that the different dependent variables are different rows in the matrix L. This means that we
need to keep track of the rows where different dependent variables are stored. With Forth’s approach nothing
is changed for the equation system except that more than one element in D is of interest.

Neidinger’s approach requires more modification. In the example above, a method to find other derivatives
for intermediate variables, was described. Let the tape matrix, L, have the dimension, n × n and that the
intermediate variable uk is a dependent variable, which corresponds to row k in the tape L. To find the
derivative of this variable, the tape must be cut. The cut matrix, Lk, is the first k rows and columns of L.
The regular algorithm is then applied to the cut tape, Lk. This procedure is then repeated for all interesting
intermediate variables.

8.2 Forward Mode
The forward mode consists of only one sweep, a forward sweep, which is different from the reverse mode’s forward
sweep. The forward mode is constructed around a pair, value and derivative, of values and not a tape. Function
operate parallel on the pair, which give that the value and the derivative are computed in parallel.

Let x be an independent variable and noted as a pair x = {xv, xd} = {x0, 1}. Also, let g : R 7→ R and we can
now evaluate the function in x and get g(x) = {g(xv), g

′(xv)xd}. Additionally, let y = {yv, yd} and z = {zv, zd}
and that both are dependent on the same independent variable. Evaluate a two argument function, h(w1, w2),
in the point (y, z), h(y, z) = {h(yv, zv),

∂h
∂w1

∣∣∣
w1=yv

· zd + ∂h
∂w2

∣∣∣
w2=zv

· yd}.
Example 1. Let x = {3, 1} and evaluate the function f ≡ f(x) = sin(x) · ex. First are some intermediate vari-
ables computed, y = sin(x) = {sin(3), cos(3)·1} and z = ex = {e3, e3 ·1}. Finally h = y ·z = {sin(3)e3, cos(3)e3 +
sin(3)e3}. Alternative we use derivate the function f ′(x) = cos(x)ex + sin(x)ex|x=3 = cos(3)e3 + sin(3)e3.

An advantage of the forward method is that all the intermediate variables do not need to be saved after they
have been used, and therefore the memory requirement is lower than the reverse mode.

8.3 Combination of Forward and Reverse Mode
The reverse mode is memory expensive, by combining the forward mode and reverse mode, the memory re-
quirement can be lowered. Furthermore the cost of rewinding the tape can also be substantially lowered by
combining the two modes. The reverse mode is the general mode in the thesis and this will be complemented
by the forward mode. The forward mode will be used when the functions have the form f : R 7→ Rk. The
forward dependent variables are made intermediate variables in the reverse mode and then written to the tape.
The tape is extended with one row (and one column), which only contains the intermediate variable and its
derivative. All operations regarding the new intermediate variable are summarized in just one row. Thus, the
combined method is competitive both with respect to speed and memory requirement
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9 Implementation
The mathematical concepts and derivations are not trivial to realize as a computer algorithm. Therefore, this
chapter is dedicated to explain how some of these theoretical concepts can be implemented in practice. The
following section will describe the construction of the grid, the implementation of the automatic differentiation
and the selection of options. When code commands are referred, teletypefont will be used.

9.1 Grid Construction
There exists a time and strike spectrum for a set of options, O. The options strike price creates the set KO and
the maturity times create TO. There are also variance spanning sets, Kc and TT for the central spanning strike
levels and maturity spanning times respectively. It is sought after that both Kc ∩ KO = ∅ and TT ∩ TO = ∅.
If the intersect is non-empty the mutual elements are removed from KO, TO. KO and TO. Furthermore, these
must have certain properties, which are presented below.

For convenience, the strikes are fixed to an equidistant logarithmic grid, for all t ∈ J . The difference between
the levels are ∆c and the index price at the reference time is Sc. From these we can define the central spanning
strike levels

Kc =
{
Sce
−l∆c , . . . , Sce

−2∆c , Sce
−∆c , Sc, Sce

∆c , Sce
2∆c , . . . , Sce

u∆c
}
, (144)

where Su ≡ Sceu∆c and Sl ≡ Sce−l∆c is the highest and lowest strike level respectively in the unextended grid.
The grid construction can be divided into several parts, given the size of the unextended grid, ∆c, the number
of branches, moat construction and definition of Ii,t, ∀i ∈ I, t ∈ J . Furthermore, there are several limits that
need to be decided without mathematical motivation. These limits will be tested in the implementation in order
to find parameters that are both proper and still computable.

In order to avoid changing the grid in every optimization step, the expected return and volatility used to create
the grid are chosen to be constant. These could for instance be chosen as an average of the historical volatility
or as the average of the implied volatility of the quoted options. This volatility is also a reasonable (flat) starting
guess for the local volatility surface.

9.1.1 Unextended Grid Size
The grid must span a strike spectrum greater than the option implied, Su > max (KO) and Sl < min (KO)
and sufficiently large such that the effect on accuracy is negligible. This can be achieved by ensuring that the
probability of reaching the strike boundaries are small,

P(STnT ≥ Su|ST0 = Sc) < εu (145)

P(STnT ≤ Sl|ST0 = Sc) < εl, (146)

where S is the underlying price process in discrete time. Hence,

P
(
STnT > Su|ST0 = Sc

)
< εu ⇔ P

R− µ
σ

>
ln
(
Su
Sc

)
− µ

σ

 < εu ⇔

1− Φ

 ln
(
Su
Sc

)
− µ

σ

 < εu ⇔
{
Su = Sce

ū∆c
}
⇔ Φ−1(1− εu)σ + µ < ū∆c ⇒

u =

⌈
Φ−1 (1− εu)σ + µ

∆c

⌉
(147)

and analogously

l =

⌈
−Φ−1 (εl)σ + µ

∆c

⌉
. (148)

If equation (145) (equation (146)) is unsatisfied, Su (Sl) must be adjusted to a greater (lower) value.
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9.1.2 Resolution
The strike resolution is given by ∆c, where a smaller ∆c adds accuracy at the cost of increased computational
complexity. A criterion is formed to restrict the amount of (transition) probability assigned to a single branch.
From a given node there always exists an outcome of the price process where the price is unchanged and
concurrently there exists bi,tu + bi,tl branches to adjacent nodes, where bi,tu and bi,tl are the number of upward and
downward branches, respectively. The set of events, A, are constructed as

Ai,tk =



[
bi,tl ∆c, b

i,t
l ∆c − ∆c

2

]
k = −bi,tl[

∆c

2 −∆c · k, ∆c

2 −∆c · (k − 1)
]

k = −(bi,tl − 1), . . . ,−1[
−∆c

2 ,
∆c

2

]
k = 0[

∆c

2 + ∆c · (k − 1), ∆c

2 + ∆c · k
]

k = 1, . . . , bi,tu[
bi,tu ∆c − ∆c

2 , b
i,t
u ∆c

]
k = bi,tu ,

(149)

where STti e
bi,tu ∆c ≤ Su, Sl ≤ STti e−b

i,t
l ∆c and [c, d] denotes the interval between c and d. Additionally, to achieve

a sufficient fragmentation of the probability the events must also fulfill

max
k∈{−bi,tl ,...,0,...,bi,tu }

P
(
rti,i+k ∈ A

i,t
k

)
< ε, ∀i ∈ I, ∀t ∈ J . (150)

If any event Ai,tk violates (150), the difference ∆c is to large. Furthermore, if ∆c is set very small the condition
(150) will hold, but if bu and bl are assigned with too low integers most of the sample space is not covered by the
events, which affects the adequacy of the pricing. This is addressed as conditions in posterior paragraphs.

9.1.3 Choice of Branches
This section focuses on computational efficiency, central moment spanning and coverage of the sample space.
We start with a definition, which is a special case of definition 8.
Definition 10. The lowest and greatest growth factor attainable for node (Si, Tt) is denoted as rmini,t and
rmaxi,t respectively.

Necessary, but not sufficient, intervals for rmini,t and rmaxi,t ∀i ∈ I, ∀t ∈ J are derived below. The conditions are
based on computational efficiency, central moments matching and coverage of probabilities.
9.1.3.1 Computational Efficiency
To include extreme returns with very low probabilities cost much computation power in relation to the increased
accuracy. Let 0 ≤ εmin ≤ 1 denote this limit. The normal distribution is utilized here, but the approach for
other distributions is similar. The limits are given by

εmin < P
(
X ≤ rmini,t

)
= P

(
X − µi,t∆Ti

σi,t
√

∆Ti

≤
rmini,t − µi,t∆Ti

σi,t
√

∆Ti

)
={

X − µi,t∆Ti

σi,t
√

∆Ti

is standard normal

}
= Φ

(
rmini,t − µi,t∆Ti

σi,t
√

∆Ti

)
⇔

rmini,t − µi,t∆Ti

σi,t
√

∆Ti

> Φ−1(εmin)⇔ rmini,t > σ
√

∆TiΦ
−1(εmin) + µi,t∆Ti

(151)

and

εmax < P (X > rmaxi,t ) = P

(
X − µi,t∆Ti

σi,t
√

∆Ti

>
rmaxi,t − µi,t∆Ti

σi,t
√

∆Ti

)
={

X − µi,t∆Ti

σi,t
√

∆Ti

is standard normal

}
= 1− φ

(
rmaxi,t − µi,t∆Ti

σi,t
√

∆Ti

)
⇔

εmax < 1− Φ

(
rmaxi,t − µi,t∆Ti

σi,t
√

∆Ti

)
⇔ rmaxi,t < µi,t∆Ti + σi,t

√
∆TiΦ

−1 (1− εmax) ,

(152)
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which are summarized to

rmini,t > µi,t∆Ti + σi,t
√

∆TiΦ
−1(εmin)

rmaxi,t < µi,t∆Ti + σi,t
√

∆TiΦ
−1 (1− εmax) .

(153)

Hence, branches that represent greater (lower) returns than rmax (rmin) will not add to the accuracy in relation
to the computational cost.
9.1.3.2 Probability Coverage
The equations (151) and (152) can be used to derive conditions for the coverage of the sample space. By
replacing ε with a corresponding ε′, the inequalities can be reversed with an analogues derivation. Thus we can
ensure that only a tiny fraction of the variance is not adequately addressed.

rmini,t < µi,t∆Ti + σi,t
√

∆TiΦ
−1(ε′min)

rmaxi,t > µi,t∆Ti + σi,t
√

∆TiΦ
−1 (1− ε′max) .

(154)

9.1.3.3 Central Moment Spanning
The algorithm that assigns branches with probability uses central moment matching, see equation (95). The
conditions below are necessary but not sufficient to guarantee that the matching can be done. We assume, that
there exists a branch with zero growth, which is generally true. Furthermore, the only interesting range, where
µ ≥ 0 is studied.

The approach is different for even and odd orders of central moments, c and is therefore divided. For an even c
we study if the two most extreme outcomes are sufficient to reach the central spanning moments,

max
p∈[0,1]

E[(X − E[X])c] = max
p

(1− p)(rti,min − µ∆Ti)
c + p(rti,max − µ∆Ti)

c ≥ mc ⇒

{µ∆Ti > 0⇒ p = 0} ⇒ (rti,min − µ∆Ti)
c > mc ⇔ {mc ≥ 0} ⇔ |(rti,min − µ∆Ti)| > (mc)

(1/c) ⇔{
rti,min < 0

}
⇔ rti,min < µ∆Ti − (mc)

(1/c),

(155)

where X is the stochastic returns for the time increment ∆Ti . The first implication follows since c is even
and rti,min < 0, which also implies that (rti,min − µ∆Ti)

c > (rti,min − µ∆Ti)
c and that all probability should be

allocated to (1− p) in the extreme case.

The odd central moments can in them self be divided into two cases, mc negative and mc positive,{
maxp∈[0,1] E[(X − E[X])c] = (rti,max − µi,t∆Ti)

c > mc ⇔ rmax > µi,t∆Ti + (mc)
1/c if mc > 0

minp∈[0,1] E[(X − E[X])c] = (rti,min − µi,t∆Ti)
c < mc ⇔ rmin < µi,t∆Ti − (−mc)

1/c if mc < 0.
(156)

For the normal distribution all odd central moments are zero and therefore we can summarize to,{
rti,max > µi,t∆Ti

rti,min < µi,t∆Ti .
(157)

In the implementation it is reasonable to assume that ε′min < 0.5 and ε′max < 0.5, since the adjustment is
generally very close to zero. This gives that the constraints in (154) implies the constraints (157).
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9.1.3.4 Number of branches
Two conditions for rti,max and rti,min have been derived and can be rewrite from equation (153), (154) and (155)
to

µi,t∆Ti + σi,t
√

∆TiΦ
−1(εmax) < rmini,t < min

(
µi,t∆Ti − (mc)

1/c, µi,t∆Ti + σi,t
√

∆TiΦ
−1(ε′min)

)
(158)

µi,t∆Ti + σi,t
√

∆TiΦ
−1 (1− ε′max) < rti,max < µi,t∆Ti + σi,t

√
∆TiΦ

−1(1− εmax). (159)

The left (right) inequality for rti,max (rti,min) can be broken since it just is a efficiency condition, if the other
inequality is broken it becomes impossible to find probabilities that matches the central moments. From these
it is possible to determine the number of branches that must be used for spanning a sufficient sample space. It
is not assured by definition that rti,min and rti,max are prefect divisible with ∆c so we get the formula


bti,u = min

(⌈
rmaxi,t

∆c

⌉
,
⌈

1
∆c

ln
(
Su
Sti

)⌉)
bti,l = min

(⌈
−rmini,t

∆c

⌉
,
⌈

1
∆c

ln
(
Sti
Sl

)⌉) ∀i ∈ I, ∀j ∈ J . (160)

9.1.4 Grid Moat Construction
The moat is constructed such that all probability outside the initial grid is addressed. This moat can be
constructed in many ways. One solution is to use several strike levels in the extended grid and another is
to only use one level sufficiently far away from the initial grid to be able to match the moments. Since the
probability is accumulated in the grid, it is essential that the probability of entering the grid is very small.

Independent of the approach, the boarders of the initial grid needs to be within the extended grids, with no
overlap. Thus, the necessary conditions,

minM̄K > max
i∈IG,t∈TG

Sti · er
max
i,t , (161)

maxM̄K < min
i∈IG,t∈TG

Sti · er
min
i,t , (162)

where M̄K and M̄K is the upper and lower moat respectively. We can construct

KG̃ = Kc ∪ KO ∪ M̄K ∪ M̄K . (163)

9.1.5 Time Discretization
The set TG̃ contains the time spectrum, TO, which is a nice property, since all maturities can then be matched
exactly and the payoffs do not need to be mapped to other points in time. Furthermore, the size of ∆T

does impact the price of put and call options since the risk-free rate, dividend yield and local volatility are
time dependent. Since an accurate local volatility surfaced is desirable, a smaller ∆T is better but more
computationally complex. In the implementation, it is convenient with an equidistant time discretization which
coincides with all quoted option maturities and thus ∆T can be chosen to a fraction of a business day or
approximately 1

252 year. However, since the methodology does not require the time increments to be equidistant,
it might be feasible to increase the increments, whilst making sure that the quoted option maturities are
matched.
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9.1.6 Child Nodes
This section describes how this index set is constructed. Firstly the set IG̃ = {0, . . . , |KG̃| − 1} and IG =
{1, . . . , |KG̃|−2} and the index that corresponds to the set Kc∪M̄K ∪M̄K and KO defines the central moment
and option spanning set,

Ic ⊂ IG̃ (164)
Io ⊂ IG̃, (165)

respectively, where Ic ∩Io = ∅ and Ic ∪Io = IG̃. Furthermore, nodes should cover the strike spectrum between
rti,min and rti,max ∀i ∈ I, t ∈ J . We can now define

Ii,tc =
{
j ∈ Ic : rmini,t ≤ rti,j ≤ rmaxi,t

}
∪
{
j ∈ Ic : j = argmin

i

(
rji,t − r

max
i,t

)
s.t. rji,t − r

max
i,t ≥ 0

}
∪
{
i ∈ Ic : i = argmax

i

(
rji,t − r

min
i,t

)
s.t. rji,t − r

min
i,t ≤ 0

}
∀t ∈ J , ∀i ∈ IG,

(166)

From Ii,tc we can derive Ii,to ⊂ Io, as

Ii,to =
{
j ∈ Io : min(Ij,tc ) < j < max(Ij,tc )

}
, (167)

and these can be combined to

Ii,t =

{
Ii,to ∪ Ii,tc ∀i ∈ IG
i ∀i /∈ IG,

(168)

where {i /∈ IG} = M̄K ∪M̄K . From these sets Ii,t the outgoing branches for each node (Si, Tt) are determined
and the probabilities are assigned.

9.2 Implementation of Automatic Differentiation
The implementation is presented briefly and should be seen as a concept. The idea for both reverse and
forward mode are very similar. Both implementations are based on operator overloading and classes. The
operator overloading gives functionality to an operator for a new class that already has functionality for existing
classes.

9.2.1 Forward Mode
The class revAD has two properties, val and der. The property val and der is the value and the derivative of
the object respectively. The der is a row vector whose length equals the number of independent variables. The
i-th element corresponds to the i-th independent variable and thus, the value of the i-th element is the object’s
derivative with respect to the i-th independent variable.

Example 2. Let the number of independent variables be 3 and x = forAD(x0, [1, 0, 0]) and y = forAD(y0, [0, 1, 0])
and we can want to calculate z = x · y|x=x0,y=y0

= x0y0. The operator overloading for the multiplication,
mtimes, is made as

w = u ∗ v = forAD(u.val ∗ v.val, u.der ∗ v.val + v.val ∗ u.der)

and we receive z = forAD(x0 ∗ y0, [y0, x0, 0]), i.e. the value is x0 · y0 and the derivatives are ∂z
∂x

∣∣
x=x0,y=y0

= y0

and ∂z
∂x

∣∣
x=x0,y=y0

= x0.

9.2.2 Reverse Mode
The class revAD has three properties, val, id and tape. The property val is the value of the object, id is the
index for its intermediate variable, the corresponding row in the tape. The last property, tape, is not determined
if it is a property to a specific instance of a global variable, which all instances have accesses to. The operator
overloading handles the value in the same manner as for forAD. The handle of the derivative is different, we will
use the same example as above but with reverse automatic differentiation.
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Example 3. Let the number of independent variables be 3 and x = revAD(x0, 1) and y = revAD(y0, 2) and we
can want to calculate z = x · y|x=x0,y=y0

= x0y0. The initial tape is a diagonal 3× 3 matrix whose elements are
(−1). The operator overloading for the multiplication, mtimes, is made in two steps. Firstly a new variable is
created as

w = u ∗ v = revAD(u.val ∗ v.val, size(tape, 1) + 1)

and the tape is extended with one new last row and column. The last row in the extended tape is than assigned
with v.val in position u.id and u.val in position v.id and a (−1) in the last position. The value is directly
attainable from z.val and the derivatives can be found by solving a equation system (138) or (140).

9.3 Option Selection
A dense time and strike spectrum is also essential for extracting an adequate surface. An example of a proper
underlying is the S&P500. Since there should not exist any arbitrage the put call parity must hold and thus
it is equivalent to use put and call options. The correct price will be in the bid-ask interval, which will
be approximated with the average (mid) price. It is inadequate to use last prices, since these are generally
asynchronous.
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10 Evaluation
This chapter contains a short description of how the evaluation will be performed. The evaluation consists of
two parts. Firstly, the evaluation of the optimization algorithm itself, with respect to speed and numerical
stability. Secondly, the evaluation of the surfaces that are extracted from the algorithm.

Comparison of the values of the objective function between iterations is one possible method that can be used
for evaluation. Since the problem is a minimization problem the objective functions magnitude should be
monotonically decreasing, which should be verified. Another evaluation of the algorithm is the speed, where for
instance the average iteration time or the total extraction time is measured. A further evaluation could be to
examine how the surface evolves for each iteration.

The extraction was made with respect to pricing error and smoothness, thus these are two essential properties to
evaluate. One first, naive, evaluation is to construct a surface plot and visually inspect for abnormalities, such as
roughness. The pricing error can be found by comparison between the market quoted prices and prices implied
by the local volatility surface. These pricing errors can be presented in a matrix or in a surface. Furthermore,
the pricing errors will be investigated in specific areas, and if the penalties can be adjusted to address this
occurrence.

A further step is to price options, which are not used in the optimization, which are denoted as out of sample
options. A common problem is over-fitting, where the local volatility surface is adapted to to match the options
in sample too much and therefore an unrealistic surface might be extracted.

This can be investigated by pricing options out of sample and determine if the errors are distinguished from the
in pricing errors in sample. This is a very important evaluation, since a future application of the surfaces is to
price new options, which might not exist in the market.

The evaluation and implementation is somewhat an iterative process. After an evaluation it is important to
check if the optimization problem can be refined for better performance. After these alterations it is essential
to verify that these changes actually improved the model.
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11 Results
The implementation has resulted in numerous different volatility surfaces and results, where the most relevant
will be presented, and then discussed in the next chapter.

When applicable, the parameters used for the extraction are presented along with the results. The selection of
results is done such that for instance the dynamics of the optimization problem is shown as well as the pricing
accuracy and surface roughness.

11.1 Data series for Evaluation
In the remainder of the thesis the following four data series will be central for the evaluation and discussion in
the next chapter.

The “long” data series used in the results was from 2015-04-24, and is the 6th series from that day. The number
of options in the series are 444, with strikes between 1600 and 2500 at maturities up to 236 working days.

The “reference” series is from 2015-05-07, and is the third series from that day. The number of options in that
series are 248, with strikes between 2000 and 2300 at maturities up to 77 working days.

The “reference for convergence” series is from 2015-04-24, with series number 3. The number of options in that
series are 221, with strikes between 2000 and 2300 at maturities up to 86 working days.

The “subsequent” series is from 2015-05-06 to 2014-05-08, with series numbers 2,3 and 1 respectively. The set
of options is constant over these days and the intermediate day coincides with the reference case. However, the
time to maturity naturally varies by a day compared to the reference.

11.2 General Appearance
The local volatility surface for a circa 1 year long time series is presented in figure 3, where the parameters for
the extraction are shown in table 5. The time series for this result are from 2015-04-24, where series 6 was used
to extract the surface and series 7, 8 and 9 were used for out of sample pricing. The absolute pricing errors
(in USD) are presented in figure 4 and the absolute pricing errors (in implied volatility) are presented in figure
5.

Figure 3: The general appearance of an extracted LVS.

Parameter aT aK aTT aKK aKT E F
Value 1 · 10−7 1 · 10−7 5 · 100 3 · 10+7 1 · 10−12 1 · 10−2 1 · 100

Table 5: The extraction parameters.
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Figure 4: The values for the pricing errors in [USD]

Figure 5: The values for the pricing errors in implied volatility
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11.3 Reference Case
In order to draw conclusions from the results in different aspects, a reference case is extracted with corresponding
parameters. The surface will be central in many of the following properties tests. The surface of the reference
case and its parameters are presented in figure 6.

Parameter aT aK aTT aKK aKT E F
Value 1 · 10−3 1 · 10−3 5 · 100 5 · 10+5 1 · 100 1 · 10−2 1 · 100

Figure 6: The solution surface for the reference starting volatility (25%).

11.4 Convergence
Different initial flat volatilities, showed in table 6, were used to extract the local volatility surface. The solutions
for these volatilities are presented in figure 6 and 7. Figure 6 shows the reference surface with the solution for
the starting volatility 25 % and figure 7 shows the absolute and relative difference for the solutions for the
starting volatilities 10% and 65% against the reference solution.

Starting Value (%)
10
25
65

Table 6: Starting volatilities for the convergence test.

The for the three cases constant parameters are presented in table 6. Figure 8 shows the norm of the gradient
for the function L, in the optimization problem (16).
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Figure 7: Absolute and relative errors for 10 % and 65% start volatility compared to the reference at 25%.

The left (right) column had 10% (65 %) as starting volatility. The first (second) row is the absolute (relative)
errors with respect to the reference surface present in figure 6.

Figure 8: The rate of convergence for the norm of ∇L.

The value of the norm of ∇L is presented in the figure for each iteration, where the first value is after one
iteration.
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11.5 Different Parameters
In this section the reference set’s parameters are higher penalized one by one. The resulting local volatility
extraction is presented along with the parameters.

Parameter aT aK aTT aKK aKT E F
Value 1 · 10−3 1 · 10−3 5 · 100 3 · 10+7 1 · 100 1 · 10−2 1 · 100

Figure 9: Parameters, with higher penalized second order of derivate w.r.t. strike.

Parameter aT aK aTT aKK aKT E F
Value 1 · 10−3 1 · 10−3 5 · 102 3 · 10+5 1 · 100 1 · 10−2 1 · 100

Figure 10: Parameters, with higher penalized second order of derivative w.r.t. time. The algorithm did not
converge and the step direction is showed to the left.

The second derivative for strikes is the most important for the general shape of the volatility surface. The other
penalties do no effect 150424 series 3.

The roughness penalties aT , aK , aTT , aKK and aTK and pricing error E, have been varied. To increase
comparability, the reference case, 7, will be used. Furthermore, the extraction results are presented in figure 6,
7, 9, 10, 11, 12 and 13.
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Parameter aT aK aTT aKK aKT E F
Value 1 · 100 1 · 10−3 5 · 100 3 · 10+5 1 · 100 1 · 10−2 1 · 100

Figure 11: Parameters, with higher penalized first order of derivate w.r.t. strike.

Parameter aT aK aTT aKK aKT E F
Value 1 · 10−3 1 · 100 5 · 100 3 · 10+5 1 · 100 1 · 10−2 1 · 100

Figure 12: Parameters, with higher penalized first order of derivate w.r.t. time.
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Parameter aT aK aTT aKK aKT E F
Value 1 · 10−3 1 · 10−3 5 · 100 3 · 10+5 1 · 10+2 1 · 10−2 1 · 100

Figure 13: Parameters, with higher penalized second order of derivate w.r.t. the mixed second derivative.

Parameter aT aK aTT aKK aKT E F
Value 1 · 10−3 1 · 10−3 5 · 100 3 · 10+5 1 · 100 1 · 1 1 · 100

Figure 14: Parameters, with higher penalized pricing error
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11.5.1 Interest Rate and Dividend Yield Effects
The appearance of the surface does change if the risk free rate and dividend yields are changed. However,
the general curvature remains almost the same. Since data was not available, the interest rate and dividend
yield were constant in the extractions. The surface from these are presented in the figures 15, 16 and 17. The
absolute errors for these three cases are presented in figure 18, 19 and 20. The parameters where the same as the
reference case above but here the risk free rate and the dividend yield was non zero, table 7 gives the information.
Two options are removed from the absolute error plot because they had a extreme errors (compared) to the
others.

Case risk-free interest (%) dividend yield (%)
1 1 0
2 0 2.5
3 1 2.5

Table 7: Interest rate and dividend test cases

Figure 15: Surface with a risk free interest rate.

Figure 16: Surface with dividend yield.
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Figure 17: Surface with both the risk free rate and dividend yield.

Figure 18: Absolute errors for the risk free interest rate modeled.
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Figure 19: Absolute errors for the dividend yield modeled.

Figure 20: Absolute errors for the risk free interest rate and dividend yield modeled.

48



G. Sällberg & P. Söderbäck 11 RESULTS

11.6 Out of Sample Option Pricing
In order to test the consistency of the pricing with the market quoted prices, out-of-sample options not used in
the extraction of the surface were priced, for the reference case. Parameters that yielded adequate surfaces was
used to extract a surface. The test is done to ensure that the model does not overfit the surface to the options
in-sample. It also investigates how adequate the method can price options in between quoted maturities, which
can have an exotic payoff. If the method’s surface is overadapted then the in-sample pricing errors should be
significantly lower than the errors for the out of sample options. The in-sample options are represented by
circles in the figures and the out-of-sample options are represented by other symbols.

Figure 21: Absolute in-sample pricing error for the reference case.

Figure 22: Absolute pricing errors for in and out-of-sample reference case options at their corresponding ma-
turities. The in and out-of-sample options have the same maturities but different strikes. The strikes for the
out-of-sample are partly intermediate strikes to the in-sample options and partly outside of the strike price
range for the in-sample.

Absolute and relative errors are displayed for the options at their maturities. The errors are given in both units
of money (USD) and in implied volatility. Furthermore, most surfaces have increasing absolute pricing errors
for higher time to maturities.
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Figure 23: Absolute in and out-of-sample pricing errors w.r.t. time and strike for the reference case

Figure 24: Absolute in and out-of-sample pricing errors. The out-of-sample options have different time to
maturities than the in-sample-options.
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11.7 Risk-neutral Distribution
A typical risk neutral distribution can be seen in figure 26 and figure 25. Figure 26 is a surface plot for the
risk neutral distributions for the whole grid. Figure 25 is the seven specific option maturities, for the long data
series, with 236 work days. Additionally, there is also a small "hump" in the distribution’s left tail, since the
grid was too small on the lower end.

Figure 25: Typical risk-neutral distribution

Figure 26: Typical surface of risk-neutral distributions.

Figure 27: QQ-plot for the risk neutral distribution with the longest maturity (236 days)
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11.8 Stability
The following section covers the results regarding the parameter stability.

11.8.1 Same options over time
A range of options were chosen at 2015-05-06 and data for the same option set was collected the two following
two days, the data was retrieved at 16:00 CET. A surface was extracted for the three days with the same
parameters. The results are presented in figure 28.

Parameter aT aK aTT aKK aKT E F
Value 1 · 10−3 1 · 10−3 5 · 100 5 · 10+5 5 · 100 1 · 10−2 1 · 100

Figure 28: The extracted surfaces from the subsequent case (with the same options and parameters).

52



G. Sällberg & P. Söderbäck 11 RESULTS

11.8.2 Different Number of Options
The reference case was used for this test. The upper and lower range of option strikes were unchanged, but the
number of intermediate options were changed.

Figure 29: The strikes are closer together than the reference case in the previous sections
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12 Discussion
The discussion is based on the results presented in the previous section, presented in the order seen fit.

12.1 Convergence
This section is divided into two parts, convergence of the problem and the rate of convergence. The definition we
used for convergence is that independent on the starting volatility, which is assumed to be flat, the same surface
should be extracted. The problem if the optimization do not converge is that is hard to find an optima. The
reference case was an extraction with 25 % as starting volatility, which is presented in 12.2.1reffig:Convergence -
three surfaces. The extraction was repeated with different starting volatilities and in figure 7, where the absolute
and relative errors to the reference surface are presented. Both the relative and absolute errors are small and
therefore they are considered to have converged.

The convergence of the method is measured by ∇L, where a low value is better than a high. The ∇L for a
method with a high rate of converge has a value that decrease fast, which is wanted. The value of ∇L is in
figure 8 plotted against the iteration. It is possible to observe that the decrease is exponential (linear for a
logarithmic scale). Here, an interesting phenomena was present, with the starting volatility of 65 % the norm
became greater before it started to decrease. This was present for more than one starting volatility, but a higher
starting volatility gave a slower rate of convergence. However, the method does not converge for all parameters
setups. For instance, the case when aTT was scaled 100 times higher than the reference case the method failed
to converge. The optimizer reached a value of the norm and after that point it did not improve the solution, but
rather change it without any effect in the objective function. Many times when aTT was too large, the method
failed to converge, i.e. it failed to stop on a stop condition. We have not been able to find the underlying
issue.

Furthermore, if the price error penalty, E is too large, then the surface will have big peaks, and these peaks
cannot be negative in the implementation. Hence, the norm of the gradient will not be sufficiently small for
convergence, and instead the optimization will halt, since the step length is too small. We believe that this
problem arises when the search direction is too “extreme”, an example can be seen in figure 14, where there are
some peaks that are problematic. These peaks can sometimes come close to zero, and the current design of the
optimizer is to shorten the step length such that negative volatilities never exist. A possible, ad hoc, solution
is to let the new surface be negative temporarily and then change all negative points to the lowest allowed
volatility. This surface is not a good solution since the next iteration will probably want an almost identical
search direction, which results in the same problem again. The solution is also mathematically troublesome,
since the search direction is in fact changed. A better solution is to change the roughness penalties as well, to
still ensure a smooth surface.

An even better solution, which is much harder, is to use the second constraint in the optimization problem (14),
U ≥ Ul. This constraint was relaxed in (49), to be able to solve the problem easier. A possible solution is to
rewrite (14) with a barrier function. The constraint,

U ≥ Ul ⇔ U − Ul ≥ 0⇔ C ≥ 0, (169)

where C ≡ U − Ul is rewritten. Then the constraint can be replaced by a adding a term8,

−
nk∑
i=0

nt∑
j=0

µi,jCi,j . (170)

This term will prevent the problem from violating the constraint, but the trade-off is that numerical problems
can arise that need to be considered while solving the problem, for instance numerical issues with the logarithm
close to zero and not letting the barrier to remove much of the solution space.

12.2 Parameters
The roughness parameters aT , aK , aTT , aKK and aTK and the pricing parameter E were varied, but not F .
F was constant since all penalty combinations can be achieved by varying only E and thus have the sought-after

8There exists other possible barrier functions, this is merely an example.
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effect on the solution. A high value for E can be represented by a low value for F and thus it was set constant
to 1.

It is rather obvious that the most important parameters to assign the adequate magnitude to is aKK and
E, to require the correct shape and low price errors. An inadequately large value, extracts a flatter surface
as can be seen in figure 9. Furthermore, the second derivative with respect to time is a sensitive parameter.
Extracting a surface, with an inadequately large aTT , is difficult since the optimizer will then have convergence
issues. Furthermore, it is not of great importance to see the absolute values of the parameters, the greatest
concern is the relative values to each other. So to change all parameters with a same scale factor do not effect
the problem9. Hence, it is essential to understand the dynamics of the parameters, and how they effect the
optimization problem. Additionally, how these parameters should be changed together in order to get the sought
for behavior. In the current implementation, these parameters are restrained to be constant.

12.2.1 Variable Parameters
The parameters were constant for the entire grid and all options, e.g. high curvature for short times are equally
penalized as curvature for long times or a pricing of x units of money are equally penalized, independent of the
market price of the options. The advantage of constant parameters is that the human interference is reduced.
An alternative that we believe can be of great interest is to use different penalties for different options and for
different parts of the grid. A clear example of this is when more options are used, figure 29. This surface was
extracted with the same options as the reference case but had intermediate strikes as well, i.e. more information
is present for the optimization. A comparison between figure 29 and 6 is that the solution is not close to having
the same shape, and for the case with more options the surface does not have a realistic shape.

The aim of the thesis was not to find the optimal parameters. The parameters that are presented in the
results and discussion should therefore not be seen as the optimal parameters, but merely as one possible set of
parameters that work for the specific setup. These might however act as a guidance for refining the model. The
current approach of constant parameters do we not believe to be the final solution. Furthermore, we think that
the model must be much more dynamic and self-adjusting to different setups. The solution that we think would
be a good is to use this method as a function in another optimization problem. An optimization problem that
itself optimizes the parameters for this method. The new optimization problem should change the parameters
and settings of this method, and its solution is the best possible parameters for this method. The problem with
such a solution is that it is really theoretical and computationally strenuous.

12.2.2 Number of Options
Increasing the number of options also increases the importance of the pricing error in the objective function, and
therefore the optimization. In this case the number of options have been approximate doubled and since they
are intermediate the value of their pricing errors are almost the same as the existing, which means that the value
of the pricing errors have been doubled. This effect is not proper, since adding (adequate) information should
make the solution better. Therefore, the pricing penalties will be needed to be adjusted as more options are
added. How to scale E according to the number of total options is not trivial. Linear scaling was implemented
where, n1 number of options in the reference had E1 as roughness penalty and the number of options in the
new case was n2 with the pricing error parameter scaled to E2 = E1 · n1

n2
. Furthermore, the parameters were

also squared, E2 = E1 ·
(
n1

n2

)2

, neither of these approaches were enough to solve the problem.

Furthermore, just to consider the number of options is not enough. A extreme scenario, to emphasis the point,
is that the out-of-money (in-the-money) side has very few option in relation to at-the-money and in-the-money
(out-of-money) side. Then the side with few options must have higher penalties to correct the unbalance,
otherwise one side will have to much weight. The problem with this approach is that the degrees of freedom
will growth very fast. Firstly, how many different areas the options will be divided into and also how much
the penalties should be changed. It is also very plausible that the human interference will be greater since the
problem can ultimately be reformed to yield any result. The problem is not only the human interference, but
it will also be impossible to use it as a function in a greater optimization problem, since the new optimization
problem is very restricted to these choices made.

9If the factor is “unfeasibly” small or large computational problems can arise, which affects the solution.
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12.2.3 Curvature
As already mentioned, penalizing curvature with respect to strike price with a constant penalty is not the best
approach. The sought after behavior is that the curvature should be higher for shorter maturities compared to
longer. The approach that can be used is have different curvature penalties for different time. The problems
are the same as for E, how to divided the time and what should the relation between the different penalties
be.

12.2.4 Parameter Stability
The method was designed to have stable parameters for small changes, i.e. they should at least work for the
subsequent days. And if a large history of options for a given underlying is available, very good parameters
could be possible to extract. If the parameters change drastically over time the practical use of the model is
much more limited, since much computational power will be used for extracting new surfaces.

The results in figure 28 show that the same parameters did not give the same surface appearance for the three
subsequent days. This does not prove that the parameters are changed much between different days, since we
not have found equivalent parameters, but if the parameters would have worked it is more likely that they had
been stable. The different was so great that the extraction of the first day, 2015-05-06, did not converge and
the other two did converge but with very different appearance. The only change between these three days is the
time to maturities and the options’ market prices. Therefore, it was probably a problem with the parameter
aTT or E. However, given better (optimal) parameters the stability over time will probably be better, and if this
is solved as an optimization problem, the human interference is lower. Hence, if very good (non-constant and
problem adapted) parameters are available, it is more likely that these should be less sensitive. The parameters
we used could for instance work on average for the surface, but the proper parameters would most likely not be
constant, and consider for example the amount of options in that area and at what maturity time this area is
situated.

12.3 Risk free Interest Rate and Dividend Yield
The “reference”, “long” and the subsequent” case and the were all extracted with zero risk free interest rate and
dividend yield. The “reference case” was also extracted with risk-free interest rate and dividend yield.

We tried to use different types of constant dividend yields and risk-free rates for the entire period but with small
improvements of the surface. The general shape of the surfaces were almost unchanged. Some option prices
were improved by a adding the dividend yield and risk-free rate but other were less correctly priced. We thought
that the estimate was to bad and to find better estimate was beyond the scope of our work and therefore no
more testing was conducted.

The bad estimate of the dividend yield and interest rate (constant and usually zero), is probably the cause of
the strange behavior of increasing pricing errors as time passes, and where the put call parity does not hold.
This behavior can be seen in figure 23 and figure 24, where the absolute pricing errors increase for longer
maturities.

If there exists an error in the estimate, it is likely that this will increase over time. since the maturities of longer
times have been exposed to the same problem during longer time and should therefore be more effected. The
only real solution to this problem is to use better estimates for the expected dividend and interest rate.

12.4 Non-equidistant Time and Strike Increments
One property that was sought after, but where the implementation gave bad properties, was to use non-
equidistant time steps. Our (internal) supervisor Blomvall thought that is would be beneficial to use very short
time steps for the first time steps, perhaps as low as 15 [minutes], which then would then gradually be increased,
to larger time increments, until days was achieved. The best would be to have very short time steps for the
entire time. The problem with this is that the computational cost is very high. This trade-off needs to be taken
into consideration. The advantage of having very short time steps in the beginning is that tree will branch very
fast which makes it possible to have more points close to the edges to control. The behavior that is sought after
is that the points close to the edges would be very high. If the extraction is for long times it is possible to lower
the computational cost by having longer time steps for times far in to the future, because the surface should be
more stable by then.
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The problem we believe is that penalties are constant, and cannot handle the different non-equidistant time
increments. One problem is that aTT does not have the same behavior as before, since the integrating factor
does not work accordingly. Another problem is with aKK because the roughness with respect to the second order
derivative with respect to strike is increased for the same surface. A surface with a given second order derivative,
with respect to strike price can be changed by the discretization. So merely by changing the discretization, the
dynamic of the problem will be affected, and this needs to be mitigated by changing the parameters as well.
Unfortunately, there was no time to derive a theory to refine the parameters when the discretization was
changed.

The length between the strike prices have the same arguments as the for the time increments. If the distance
between the strike prices are changed, then the dynamic of the problem is also changed.

Furthermore, we found that parameters that performed well for equidistant discretization, had bad character-
istics for unequidistant time increments.

It seemed that the curvature along the price-direction was affected by the change. The time increments are
much smaller and therefore the resulting penalty for the curvature in price is much higher. Previous a surface
with a one day increment were effected in two ways10. If this increment is than divided into smaller steps,
e.g. four 15 minutes segments, four 30 minutes segments, three 1 hour segment and three 6 hours segments,
a graphical representation can be see in figure 30. The resulting behavior is that the same time period have
fifteen parts that contribute to penalize the curvature. The same surface but with another discretization have
different roughness measure, which is an unwanted behavior.

Figure 30: A graphical representation how different time increments for a one day time period.

Some attempts were made to address this problem. One, implemented, idea was to scale the parameter aKK .
For example if the old time period [Tto , Tto+1], was split into m increments. In the new discretization, the old
time period is represent by [Ttn , . . . , Ttn+(m−1)]

11, where Tto = Ttn and Tto+1 = Ttn+(m−1). The parameter in
the old discretization, oaKKto,k , is then scaled to calculate the new parameters, naKKτ,k as

na
KK
τ,k =

oa
KK
to,k

m
, ∀k = 0, . . . , nk, ∀τ = tn, . . . , tn + (m− 1). (171)

We also tried to use m2, instead of m, as denominator in equation (171). This adjustments were not successful
and the extracted surfaces were not improved much. The conclusion was that we have not been able to
understand the dynamic enough to address this problem.

10It is also possible to argue that it is only affected by one side and that the next side belongs to the next increment. The
difference will however not change the argument.

11The letter “o” denotes “old” and the letter “n” denotes “new”.
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12.5 Risk-Neutral Distribution
The risk neutral distribution can be see in figure 25 and 26. The general shape of them seems legit, but there
is a hump around 1000. This is an unwanted hump this exists because the grid has a two small down-side and
hence the moat has accumulated too much distribution. If there is a hump in one of the sides the moat has
absorbed some probability and therefore changed the distribution. The QQ-plot in figure 27 makes it clear that
the risk-neutral distribution is not normally distributed.

12.6 Computational Issues
The computational problems are divided in three areas. The first is that the memory (8GB) is too small, and
can not handle too large problems, which arises if the grid is to big(either too fine discretization or too large
price spectrum). Furthermore, the next and biggest problem is the solving of equation system (138), that needs
to be solved several times. This is the part of the extraction that take the most time. We do not have any
solution to this problem we can only conclude that this is the most costly operation.

Additionally, we have learned that reversing the automatic differentiation can be very costly to compute if
implemented in a bad way. The first approach was to overload all functions needed for the problem, the
problem is that it creates a huge overhead. It is of great importance to minimize the overhead and try to get
just the derivative from a function and not nestled in several variables.

In the moment matching, the first moment and the full allocation criterion was found to be almost linearly
dependent, with the result that the matrix is singular. Since the information is more or less the same in these
equations, the first moment was removed from the equation system. However, the expression will approximately
be true from the full allocation criterion. For the other parts of methodology it is more important that the full
allocation criterion is true and hence it remained in the equation system.

12.7 Pricing Errors
A general behavior of the pricing is that the errors increase as time to maturity increases. Furthermore, the
in-sample errors tend to be smaller than the out-of-sample errors, which is reasonable since the in-sample options
ere used for the extraction and should thus fit the surface better. However, the out-of-sample options seem to
follow the in sample options. If maturities are excluded the pricing error mainly depends on what maturity these
have, since the general behavior of pricing errors of in sample options, which increase for longer maturities. This
might be due to that options with longer time to maturity affect shorter maturities and therefore the pricing of
these options is better. Since there is more information on the local volatility (more options depend on these
points in the grid) these might be more adequately priced. Another idea is that since we used constant interest
rate and dividends, the error in these compared to the market are larger as the time to maturity increases.

Furthermore, a general behavior, both for out of sample and in sample options is that the call options are
over-priced and the puts are under-priced with the method. We believe that this problem is partly a problem
that we do not take risk free rate and dividend yield to account, and that these have been set fix to an average
of the expected interest rate and dividends, respectively.

It is essential that the surface performs well for out of sample options both with respect to time and price.
Mainly since this allows any option with a given (exotic) payoff to be priced from the surface at any given point,
such as OTC contracts. The out of sample options are not part of the optimization problem, but they have
an important role for the practical use of the model in for it to be a real method. One way to continue the
development of this method is to incorporate “out of sample” options in the optimization problem.

An idea for future analysis is to use other more exotic options in the extraction of the surface and also for the
out of sample testing. Examples of these more exotic options could be barrier options (such as knock-out and
knock-in). The problems is that the market price data not is available, because that they are over-the-counter
contracts. They are also not as easy to price as the vanilla call and put options since barrier options are path-
dependent, the risk-neutral distribution at the time to maturity is not enough. For example a Up-and-out call
option has the same payoff at maturity as an vanilla call option if and only if the underlying has been below
the barrier the whole maturity time, otherwise it is worth zero.
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12.8 Conclusion
The surfaces that were extracted were smooth and priced the options according to the market quoted prices. It
is also reasonable to believe, in our opinion, that the method itself have possibilities to extract surface that are
good enough for the market, especially if refined parameters are used. However, these are not a trivial matter to
determine, and they should also be adapted to the choice of discretization both with respect to time and price.
The method has exponential rate of convergence, so if the bottle neck regarding the automatic differentiation
is solved the method will be much more competitive with respect to time. The next crucial step is to make the
method more dynamic and making it self adapting to the conditions.
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A Details for Roughness
In section 3.1 the roughness measure was defined but only the first term, the rest of them are present in this
Appendix.

A.1 Second Term
The block,

BK =


−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . . . . . . . . 0
0 . . . 0 −1 1

 , (172)

which has the dimension, [nK × (nK + 1)] and the matrix,

AK =

BK . . .
BK

 , (173)

which has the dimension, [(nT + 1)nK × (nT + 1)(nK + 1)] and it is possible to write

1

2
uTATK diag(âK)AKu, (174)

where
âK =

(
âK0,0 . . . âKnK−1,0 âK0,1 . . . âKnK−1,nT

)T
. (175)

A.2 Third Term
The block,

BTT =


∆T1

−∆T̃0
∆T0

∆T2
−∆T̃1

∆T1

. . . . . . . . .
∆TnT−1

−∆T̃nT−2
∆TnT−2

 , (176)

where ∆T̃i
≡ (∆Ti + ∆Ti+1), ∀i = 0, . . . , nT − 2. BTT has the dimension [(nT − 1)× (nT + 1)] and it is possible

to write,

ATT =

BTT . . .
BTT

 , (177)

which has the dimension [(nK + 1)(nT − 1)× (nK + 1)(nT + 1)] and it is possible to write

1

2
uTPTATTT diag(âTT )ATTPu, (178)

where
âTT =

(
âTT0,1 . . . âTT0,nT−1 âTT1,1 . . . âTTnK ,nT−1

)T
. (179)

A.3 Fourth Term
The block,

BKK =


∆K1

−∆K̃0
∆K0

∆K2
−∆K̃1

∆K1

. . . . . . . . .
∆KnK−1

−∆K̃nK−2
∆KnK−2

 , (180)
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where ∆K̃i
≡ (∆Ki + ∆Ki+1

), ∀i = o, . . . , nT − 2. BKK has the dimension, [(nK − 1)× (nK + 1)], and several
blocks,

AKK =

BKK . . .
BKK

 , (181)

which has the dimension, [(nT + 1)(nK − 1)× (nT + 1)(nK + 1)], and it is possible to write

1

2
uTAKK diag(âKK)AKKu, (182)

where
âKK =

(
âKK1,0 . . . âKKnK−1,0 âKK1,1 . . . âKKnK−1,nT

)T
. (183)

A.4 Fifth Term
The fifth term is different than the previous. The summand in the last term is

Uk+1,t+1 − Uk−1,t+1 − Uk+1,t−1 + Uk−1,t−1 = (Uk+1,t+1 − Uk−1,t+1)− (Uk+1,t−1 − Uk−1,t−1) (184)

the matrix will be build in a special way first the term,

Uk+1,t+1 − Uk−1,t+1 (185)

is constructed and than
Uk+1,t−1 − Uk−1,t−1 (186)

the to resulting matrices will be subtracted. The first term can be written as

BKT =


−1 0 1 0 . . . 0

0 −1 0 1
. . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 −1 0 1

 , (187)

which has the dimension, (nK − 1)× (nK + 1) then

AKT1 =

O,
BKT . . .

BKT


 , (188)

where O is a zero matrix with the dimension, [(nK−1)(nT −1)×2(nK +1)]. The second term can be construed
with the same method,

AKT2 =


BKT . . .

BKT

 , O
 . (189)

The subtraction,
AKT = AKT1

−AKT2
(190)

makes it possible to write
1

2
uTATKT diag(âKT )AKTu, (191)

where
âKT =

(
âKT1,1 . . . âKTnK−1,1 âKT1,2 . . . âKTnK−1,nT−1

)T
. (192)
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B Mathematical Conventions and Definitions
The appendix contains some mathematical definitions that can be find in common mathematical literature but
reproduced here for convenience.

B.1 Hadamard Product
The hadamard product is a matrix operator. It is a “element-wise” multiplication. Two matrixis A and B with
the same size, n×m, so

A ◦B = C,

where C has the same size n×m and where the elements is

ci,j = ai,jbi,j ∀i = 1, . . . , n , j = 1, . . . ,m. (193)

B.2 Vectorization
Definition 11. Vectorization of a matrix is a linear transformation which converts the matrix into a column
vector. Specifically, the vectorization of a m× n matrix

A =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

...
...

. . .
...

am,1 am,2 . . . am,n

 (194)

denoted by vec(A) is a mn× 1 column vector,

vec(A) = [a1,1, . . . , am,1, a1,2, . . . , am,2, . . . , a1,n, . . . , am,n] (195)

B.3 Submatrix
A submatrix of a matrix is often used.
Definition 12. Let M be a n×m matrix,

M =

m1,1 . . . m1,m

...
. . .

mn,1 . . . mn,m

 . (196)

A submatrix can be defined as

M[i,j],[k,l] =


m(i,k) m(i,k+1) . . . m(i,l)

m(i+1,k) m(i+1,k+1) . . . m(i+1,l)

...
...

. . .
...

m(j,k) m(j,k+1) . . . m(j,l)

 , (197)

where i ≥ 1, j ≤ n and k ≥ 1, l ≤ m.
Remark 3. Note that in this document the indexation sometimes starts at zero and thus a matrix, M , with the
dimension, n×m includes the rows from 0 to n− 1 and the columns 0 to m− 1.
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B.4 Kolmogorov Axioms
Definition 13. Let (Ω,F , P ) be a measure space, with sample space Ω, event space F and probability measure
P . Given this measure space the Kolmogorov axioms can be formulated, (Gut, 2009, p.4).

Non-negativity
All events, A ∈ F have a non-negative probability, P (A) ≥ 0.

Unity
The probability of the sample space is one, P (Ω) = 1.

Countable Additivity
Let {An, n ≥ 1} be pairwise disjoint events, joint by the union A, then

P (A) =

∞∑
n=1

P (An). (198)
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