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Numerical optimization is one of the most active research areas
and is widely used in science, engineering, economics and indus-
try. In numerical black box optimization, the underlying ob-
jective functions, which can be non-di↵erentiable, non-convex,
multi-modal and noisy, are unknown to optimization algorithms.
At any points in the continuous search space, the first and second
order information is not available. Only the objective function
values are available by means of function evaluations. The op-
timization algorithms, which consider these optimization prob-
lems as a black box, are designed to find the best solutions in
the continuous search space.

This thesis focuses on continuous black box optimization and
presents a collection of the novel sampling methods improving
the state-of-the-art optimization algorithms. The algorithms are
Covariance Matrix Adaptation Evolution Strategies (CMA-ES)
and Cooperative Coevolutionary Algorithms (CCEAs). We will
also study these algorithms in the dynamic environments where
the objective functions change during the course of optimiza-
tion. It is necessary to understand algorithms’ performances
because many real world problems are basically dynamic in na-
ture. Examples of real world problems include but not limited
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to random arrival of new tasks, machine faults and degradation,
climate change, market fluctuation and economic factors.

In the first part of this thesis, two novel sampling methods
that improves Evolution Strategies (ES) for continuous black-
box optimization will be introduced: halfspace sampling and
eigenspace sampling. In Halfspace Sampling, the hyperplane
which goes through the current solution separates the search
space into two halfspaces: a positive halfspace and a negative
halfspace. When a candidate solution is sampled, the sample
always lies in the positive halfspace that is estimated by suc-
cessful steps in the recent iterations. We theoretically derive
the log-linear convergence rates of a scale-invariant step size ES
when ES are used to optimize spherical functions in finite and
infinite dimensions. Halfspace sampling is implemented in a
(1+1) CMA-ES, and the resulting algorithm is benchmarked on
the Black-Box Optimization Benchmarking (BBOB) testbed. In
Eigenspace sampling, the optimization algorithms consider the
eigenspace of the underlying objective functions. A candidate
solution is always sampled in an eigenspace spanned by eigen-
vectors with repeated or clustered eigenvalues. This demon-
strates experimentally how eigenspace sampling can improve the
CMA-ES for the current benchmark problems, In particular, the
CMA-ES that uses eigenspace sampling often performs very well
in ill-conditioned problems.

In the second part of this thesis, we will study the CMA-
ES, ES and CCEA in dynamic environments. Two new types of
individuals that address the dynamic environments will be intro-
duced: 1) random immigrants (RIs) that increase the diversity
for the changing environments, and 2) elitist individuals that
improve the local convergence to the optima. The resulting algo-
rithms are evaluated on a standard suite of benchmark problems.
Superior results are observed when the two types of individuals
are used. We also investigate the behavior of three CMA-ES
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variants, which include an elitist (1+1)-CMA-ES, a non-elitist
(µ,� )-CMA-ES and a sep-CMA-ES. Our experimental results
show the simple elitist strategies that include the (1+1)-ES and
the (1+1)-CMA-ES generally outperform non-elitist CMA-ES
variants. The elitist strategies are robust to dynamic changes
with di↵erent severites, but performance is worsened when the
problem dimensions are increased. In higher dimensions, the
performance of elitist and non-elitist variants of CMA-ES are
marginally identical.
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Chapter 1

Introduction

Knowing others is intelligence; knowing yourself is
true wisdom. Mastering others is strength; mastering
yourself is true power.

Lao Tzu

1.1 Motivations

The complexity of real-world problems have been increasing
rapidly. This demands the need for more powerful simulations,
modelling frameworks, as well as algorithms. Although compu-
tational power has been exponentially growing in recent years,
there is still a permanent demand for robust algorithms to solve
these real-world problems. The resolutions of sophisticated real-
world problems are always expensive in terms of time and money.
Many common real-world problems require expensive function
evaluations even for a single candidate solution. As a result,
there is a strong demand for designing robust algorithms which
can e�ciently take advantage of increasing computational power.

Among these real-world problems, optimization problems have
been one of the most important topics in various disciplines, in-
cluding computer science, engineering and economics. Theoret-
ical computer science has brought forward a rich set of compli-
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CHAPTER 1. INTRODUCTION 2

cated algorithms to solve optimization problems, especially with
regard to continuous optimization. In continuous optimization,
the variables of the underlying problems are in a domain that is
typically a set of real numbers. Searching for the optimal candi-
date solutions is always di�cult, because 1) objective functions
always have the nonlinear properties and multiple local optima;
2) the derivatives of the objective functions are not easily com-
puted. More importantly, most of these optimization problems
is black box problems in the sense that there are no available
explicit mathematical formulation. As a result, designing well-
performing optimization algorithms is a highly active research
area.

Algorithms for solving continuous optimization problems in-
clude the use of analytical methods and the design of approx-
imation algorithms. In analytical methods, an exact global or
local optimal solution is guaranteed and is theoretically proven
for the optimality of the solution when su�cient time is given
[164, 91]. However, these methods always require either ex-
haustive searches or symbolic mathematical computations which
make them become impractical for complex real-world optimiza-
tion problems. On the other hand, the approximation algo-
rithms are algorithms which approximate the solutions for opti-
mization problems. Common methods include derivative based
approximation method [206], heuristic algorithms [113] and di-
rect search methods [60]. Derivative based approximation meth-
ods include steepest descent [35], conjugate gradient method
[206] and Newton method [167]. They must evaluate the objec-
tive functions and its respective derivative information, which
are often unavailable in real-world optimization problems. Di-
rect search methods, including simplex method [149], Powell’s
method [177] and pattern search [213], do not require derivative
information. Yet they are developed in the domains of mathe-
matically programming.
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In this context, evolutionary algorithms (EA) are thoroughly
investigated because they can solve complex optimization prob-
lems by using simple problem-specific variation operators and
selection operators. The very early evolutionary algorithm is ge-
netic algorithms (GA) and was established in the United States
by Holland [110]. The genetic algorithms at that time generated
a binary encoding for the problem. Mutation, recombination,
and selection were applied to a multi-set “population” of solu-
tions in an iterative process. Selection is done according to the
“fitness” of a solution, i.e. the objective value of a maximization
problem. Given su�cient time, the process is able to evolve good
solutions with high fitness, which is similar to natural evolution.
In about the same time, evolution strategies (ESs) were founded
in Germany [184, 198, 199]. Unlike genetic algorithms which
heavily relied on recombinations, evolution strategies used mu-
tations only and were formulated for optimization in continuous
space. Nowadays, both genetic algorithms and evolution strate-
gies are known by the name of evolutionary algorithms and are
a highly active and vivid research area known as Evolutionary
Computation.

Evolutionary algorithms have been applied to a wide variety
of practical real-world or artificial problems. The popularity of
evolutionary algorithms can be explained by their implemen-
tation. In addition, we can apply complex settings to these
algorithms for optimization problems which are not well under-
stood. In extreme cases, optimization problems are a black box
to the optimization algorithms. Information and knowledge of
the problems can only be obtained by simulations or evaluations
of candidate solutions. In this context, evolutionary algorithms
can easily be applied to these problems where time and compu-
tational resources are constrained, and when knowledge of the
problem is limited. Specifically, evolutionary algorithms can
address a wide range of optimization problems with a variety
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of properties: unimodal or multi-modal objective functions; ill-
conditioned optimization problems; noisy or noiseless objective
functions; large scale optimization problems; constrained opti-
mization problems; stationary or dynamic optimization prob-
lems and multiple objective optimization problems.

The Evolutionary Computation community has been devel-
oping a variety of approaches and methods to address all types
of optimization problems. Theoretically, according to the No
Free Lunch Theorem [227], we cannot always expect evolution-
ary algorithms to be a general-problem algorithm which can
outperform any problem-specific algorithms. These results un-
derline the capabilities as well as the limitations of evolutionary
algorithms. From a theoretical perspective, the fundamental
research on simple algorithms for simple problems can demon-
strate the usefulness of evolutionary algorithms on more solid
theoretical foundations. From the practical perspective, some
evolutionary algorithms are known to be the most e�cient ones
with respect to the current benchmark or real-world problems.
However, some other evolutionary algorithms are considered to
be more general, more flexible or more elegant.

The main goal of this thesis is to design new techniques and
configure them in high performing algorithms for continuous
optimization. In recent years, practitioners have developed a
wide variety of di↵erent extensions to evolutionary algorithms.
Instead of inventing completely new algorithms for continuous
optimization, this thesis focuses on the enhancements of the cur-
rent existing promising methods. By systematically engineering
new variants of these optimization algorithms, we show that we
can improve significantly their performances and apply them
to new domains, particularly on sets of problem classes with
problem-specific properties. One such enhancement is the use
of new sampling methods where evolutionary algorithms sample
their new candidate solutions. Samples in evolutionary algo-
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rithms are always random and independent of each other. We
believe that evolutionary algorithms on optimization problems
with problem-specific properties, which employs a degree of ran-
domness as parts of its logics, can be further improved by deran-
domizing their randomness. One of the popular derandomiza-
tion methods is to replace the independent samples with depen-
dent ones: sampling methods for new candidate solutions can
be dependent on the previous candidate solutions which are in
a good quality. In addition, this shows that the derandomiza-
tion of evolutionary algorithms work particularly well on some
problem-specific properties.

Another goal of this thesis is to study the state-of-the-art evo-
lutionary algorithms (EA) for dynamic optimization problems.
Dynamic optimization problems are an active research topic and
have increasingly attracted interest from the Evolutionary Com-
putation community. This research area is relatively young as
most of the studies have only been made in the last few years.
Therefore, there still has many open areas with open research
questions, on which one of the most important questions is about
how well we understand the state-of-the-art evolutionary algo-
rithms perform for dynamic optimization problems. The main
purpose of this thesis is to investigate this important question
and to experimentally understand the limits and capabilities of
the state-of-art evolutionary algorithms for di↵erent classes of
dynamic optimization problems.

1.2 Main Contributions

In general, the contributions presented in this thesis can be di-
vided into two parts:

1. In the first part (Chapters 4 to 6), we propose two new
sampling methods: halfspace sampling and eigenspace sam-
pling. We will study the behavior of the simple evolu-
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tion strategies that use these two sampling methods and
apply these methods to the e�cient and prominent Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES)
[103, 105] for single objective static optimization problems:

• Halfspace sampling in evolution strategies (Chapters
4);

• Halfspace sampling in evolution gradient search (Chap-
ters 5);

• Eigenspace sampling in evolution strategies (Chapters
6).

2. In the second part (Chapters 7 to 8), we present two state-
of-art evolutionary algorithms: Covariance Matrix Adap-
tation Evolution Strategy (CMA-ES) [103, 105] and Co-
operative Coevolutionary Algorithms (CCEA) [172]. Both
algorithms and their variants are studied for dynamic envi-
ronments and evaluated on a standard suite of the bench-
mark problems.

• CMA-ES in dynamic environments (Chapters 7);

• CCEA in dynamic environments (Chapters 8);

In details, we highlight the contributions of each chapter as
follows:

Halfspace Sampling in Evolution Strategies

A novel halfspace sampling method is proposed in a single par-
ent elitist ES for unimodal functions. In halfspace sampling, the
supporting hyperplane that goes through a parent separates the
search space into a positive halfspace and a negative halfspace.
If an o↵spring lies in the negative halfspace, it will be reflected
with respect to the parent so that the o↵spring lies in the pos-
itive halfspace. The convergence rates of a scale-invariant step
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size (1+1)-ES with halfspace sampling are derived on spherical
functions that are in finite and infinite dimensions. It is also
proven that the lower bounds of convergence rates are improved
by a factor of 2 when strategies sample their o↵spring in the op-
timal positive halfspace. Halfspace sampling is implemented in
a (1+1) CMA-ES by introducing the concept of evolution halfs-
paces. Evolution halfspaces accumulate the significant informa-
tion of the previous successful and unsuccessful steps in order
to estimate the optimal positive halfspace. The (1+1)-CMA-
ES with halfspace sampling is benchmarked on the Black-Box
Optimization Benchmarking (BBOB) noise-free testbed and ex-
perimentally compared with the standard (1+1)-CMA-ES.

Halfspace Sampling in Evolution Gradient Search (EGS)

The log-linear convergence of the Evolution Gradient Search
(EGS) with halfspace sampling is proven theoretically. When
halfspace sampling is used in the EGS, the search space is di-
vided into two halfspaces with respect to a parent. A random
sample is used only when it lies in the positive halfspace. Oth-
erwise, its reflection with respect to the parent is used. All re-
sulting random vectors in an iteration are used to estimate the
optimal halfspaces in order to improve the local performance.
The log-linear convergences of the scale-invariant step size EGS
with and without halfspace sampling are proven. The conver-
gence rates are expressed in terms of expectations of random
variables. By means of Monte-Carlo simulations, we numeri-
cally computed the convergence rates and compared the lower
bounds in finite and infinite dimensions, for di↵erent numbers of
o↵spring. The EGS with halfspace sampling always converges
faster than the EGS without halfspace sampling. An improve-
ment of 42% to 68% is observed asymptotically.
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Eigenspace Sampling in Evolution Strategies

A modification to the standard CMA-ES is proposed. The re-
sulting algorithm is called ✏-CMA-ES. The objective of the mod-
ification is to improve the CMA-ES by reducing the number of
function evaluations needed for covariance matrix adaptation.
To improve the time required for covariance matrix adaptation,
the ✏-CMA-ES identifies the minor eigenspace in the Hessian
matrix of the underlying objective functions, which has repeated
or clustered eigenvalues. The ✏-CMA-ES always evaluates all
the directions of the dominant eigenspace and the dominated
eigenspaces. It also randomly evaluates each direction in the mi-
nor eigenspace. The ✏-CMA-ES is investigated on a set of com-
mon unimodal benchmark problems, including ill-conditioned
functions and functions that have a few repeated eigenvalues in
their Hessian matrices. The advantages are most pronounced
in objective functions with minor dominated eigenspace, such
as the Cigar function, Tablet function and Twoaxes function.
In these functions, the variances of the mutation distribution in
the directions of the minor eigenspace are reduced much faster
where the ✏-CMA-ES randomly evaluates the minor eigenspace.
However, limited benefits are observed for other objective func-
tions when the eigenspectra are evenly distributed, such as the
Ellipsoid function and the Rosenbrock function. When the prob-
lem dimension is 80, the improvement in the ✏-CMA-ES ranges
from none (on the Ellipsoid and Rosenbrock functions) to more
than 40% (on Twoaxes function).

CMA-ES in Dynamic Environments

The state-of-the-art CMA-ES variants for dynamic optimization
are empirically studied. The variants include the elitist (1+1)-
CMA-ES, the standard (µ,� )-CMA-ES and the sep-(µ,� )-CMA-
ES. We first briefly review the CMA-ES variants in the context
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of static optimization, and discuss the latest dynamic optimiza-
tion benchmark problems that are used in our simulations. In
one out of the six dynamic functions, the elitist (1+1)-ES with
the one-fifth rule and the (1+1)-CMA-ES have the best per-
formance. These two elitist strategies are statistically equiv-
alent in our simulations. The non-elitist strategies, including
the standard (µ,� )-CMA-ES and the sep-CMA-ES, are outper-
formed by the elitist variants. The results are consistent with
dynamic changes with di↵erent severities. However the elitist
strategies, which are point-based search algorithms, underper-
form for higher dimensional problems. The population-based
strategies, including the standard (µ,� )-CMA-ES and the sep-
CMA-ES, perform the same as the elitist (1+1) variants do.

CCEA in Dynamic Environments

The behaviour of CCEAs on the state-of-art dynamic optimiza-
tion benchmarks is also investigated. We first review the back-
ground of the CCEAs for static optimization, and then discuss
the four major approaches used in EAs for the dynamic opti-
mization. One major di↵erence between CCEA individuals and
EA individuals is that the CCEA individual has to collaborate
with another n� 1 CCEA individuals for its fitness evaluation.
We formally discuss the two major collaboration methods used
in the CCEAs: 1) the best collaboration method, in which the
CCEA individual always chooses the best individuals in terms
of fitness, and 2) the random collaboration method, in which the
CCEA individual always randomly select other individuals with-
out considering their fitness. The previous study shows that us-
ing the best collaborations for static optimization always yields
the best performance. We extend this study to the context of
dynamic optimization, and investigate whether the choices for
collaboration methods is the same. Our simulation results show
that the CCEAs using the best collaboration method outper-
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form the CCEAs using the random collaboration method. The
results are consistent with the types of dynamic changes and the
problem dimensions.

1.3 Thesis Outline

Chapter 2 introduces continuous black box optimization prob-
lems. We summarize the common properties that can make
the black box optimization di�cult. The methods that evalu-
ate optimization algorithms are also discussed. We review the
benchmark testbeds in the literature enabling us to compare
various optimization algorithms. Lastly, we discuss continuous
black box optimization in dynamic environments, their common
properties, the methods of evaluations as well as the benchmark
testbeds in the literature.

Chapter 3 reviews the evolutionary algorithms studied in this
thesis. Firstly, the history of evolutionary computations is re-
viewed, followed by a comprehensive overview on variants of
evolutionary algorithms. Secondly, we review the details in the
family of evolution strategies, including the single parent eli-
tist (1+1)-ES and populated non-elitist (µ,� )-ES and CMA-ES.
Lastly, we review CCEAs which are commonly used for large
scale optimization.

Chapter 4 presents the details of halfspace sampling and is
divided into two parts. The first part focuses on the use of half-
space sampling in a simple scale-invariant step size (1+1)-ES.
The second part focuses on its practical implementation in a
(1+1)-CMA-ES. The log-linear convergence of a scale-invariant
step size (1+1)-ES with halfspace sampling is derived and sim-
ulated by means of Monte-Carlo methods.

Chapter 5 investigates in theory the gain brought by half-
space sampling to EGS. The linear convergence of EGS with
scale-invariant step sizes is proven on spherical functions. Con-
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vergence rates of EGS with and without halfspace sampling in
finite and infinite dimensions are derived. By means of Monte-
Carlo simulations, it is shown that the lower bounds of con-
vergence rates of EGS with halfspace sampling are better than
those without halfspace sampling, regardless of dimensionality
and the number of o↵spring.

Chapter 6 presents the details of eigenspace sampling. It first
defines the eigenspace in the search space and discusses the mo-
tivations of eigenspace sampling. Then the modifications to the
(µ,� )-CMA-ES (1,�)-CMA-ES are presented. The experimen-
tal results on convex quadratic functions are also presented and
discussed. Some suggestions on the use of eigenspace sampling
are also given.

Chapter 7 empirically investigates the state-of-the-art CMA-
ES variants in the literature and studies their performance for
dynamic optimization. The variants of the CMA-ES are re-
viewed. Then, the dynamic optimization benchmark problems
in our simulations are discussed, and the empirical comparisons
are presented. Additionally, possible future works on CMA-ES
variants for dynamic optimization are reviewed.

Chapter 8 studies CCEAs for dynamic optimization. The
background of CCEAs is reviewed, and the uses of two new
types of individuals in CCEAs are described. The benchmark
problems, the experimental setup and the parameter settings in
our simulations are described. The experimental results and the
scores in the benchmark problems are reported.

Chapter 9 concludes this thesis, summarizes our contribu-
tions and outlines future research directions.

1.4 Related Publications

This thesis is based on the following publications.
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Chapter 2

Continuous Black Box
Optimization

Pure mathematics is, in its way, the poetry of log-
ical ideas.

Albert Einstein

2.1 Continuous Black Box Optimization

2.1.1 Continuous Optimization

In optimization, we need to find the best solutions to optimiza-
tion problems. Formally, optimization is defined as finding the
best solution x⇤ in a search space S, which satisfies:

x⇤ = argmax
x2S

f(x) (2.1)

where f : S7! R is called the objective function (also known
as fitness function). The search space S and the objective func-
tion f together define the optimization problem. The equivalent
formulation describes the maximization case where we need to
search x that maximizes f . In that case, the objective function is
often called the cost function. The elements of the search space
S composed of multiple variables are called decision variables .

15
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Continuous optimization is the class of optimization prob-
lems, where S is a subset of Rn and n is the dimension of the
search space. The term “continuous” refers to the continuous
decision variables, i.e. the components of x, and does not imply
that the objective function f is continuous. The fundamental
problem of continuous optimization is that the search space is in-
finite. Therefore, finding the best solution x⇤ is not guaranteed.
In fact, many objective functions in the real-world applications
are relatively smooth. This allows one to take advantage of it by
exploiting the necessary information. For instance, the classical
example is the gradient descent methods.

In the literature, there are other subfields of optimization,
where their solution space are di↵erent from that of the con-
tinuous optimization problems. For instance, in integer opti-
mization[76, 40, 195], the solution space is a subset of integers
Z. In combinatorial optimization[150, 163], the solution space
is a finite set of objects. The classic combinatorial optimiza-
tion problems are the Travelling Salesman Problem[127] and
the Minimum spanning tree[88]. There are optimization prob-
lems where the solution space is constrained. In constrained
optimization[38, 178], the solution space is bounded by a collec-
tion of equalities or inequalities which define the set of feasible
solutions. The existence of constraints gives rise to challenges
for optimization algorithms, especially when the best solution
lies on the search space boundary.

2.1.2 Black Box Optimization

Originally, optimization was studied for objective functions that
are known. In most cases, the optimum cannot be calculated an-
alytically. In some cases, the objective functions themselves are
unknown. This creates another subfield of optimization called
black box optimization. The objective of black box optimiza-
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tion is to find the best solutions, those with values closest to
the optimum function value fopt, with as few function evalua-
tions as possible. In black box optimization, the optimization
algorithms interpret the objective functions as a black box. No
specific assumptions on objective functions are made. All in-
formation about the black box objective functions, except the
dimension n, comes from evaluations of candidate solution x on
f . The number of function evaluations is usually denoted as the
cost of black box optimization.

Black box optimization is sometimes known as direct search
[111, 123] or derivative free optimization [60], since the deriva-
tives are not explicitly used. It is also closely related to the
field of metaheuristics [83, 158, 211, 3] in which the goal is to
find su�ciently good solutions on the assumptions of incom-
plete information or limited computation capacity. Many meta-
heuristics have implemented some form of randomized search
methods , so the solution found depends on the set of random
variables generated. Examples of randomized search methods
include Simulated Annealing [215], Particle swarm optimization
[120], Ant colony optimization [69] and evolutionary computa-
tion [30, 78, 31, 65].

2.1.3 Basic Properties

Several basic properties of objective functions characterize black
box optimization and make it di�cult for the designers of opti-
mization algorithms. The following lists a few common proper-
ties that can be found in the literature. For details, readers can
refer to the works [108, 109].
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Multi-modality

A local optimum of an objective function f is an n-dimensional
vector xl 2 Rn with a neighbourhood S(xl) of xl such that

8x 2 S(xl) ^ Rn, f(xl)  f(x) (2.2)

A global optimum is a vector xg 2 Rn, such that there is no
other xl that is better than xl. Formally, we can write

8x 2 Rn, f(xg)  f(x) (2.3)

An objective function is multi-modal if it has more than one
optimum. Multi-modal functions are di�cult to be optimized
because there is no guarantee of finding the global optima. An-
alytical methods are frequently not applicable, and the use of
numerical solution strategies often results in major challenges.
In order to increase the chance of finding the global optima, the
designers of optimization algorithms always have to run several
optimization runs or restarts within a single run. In terms of
di�culty for optimization algorithms, multi-modal functions are
usually more complicated than the unimodal one because there
are usually a large number of basins of attractions, which are
located around the local optima.

High Dimensionality

The volume of the search space increases exponentially with
problem dimension n or with the number of decision variables.
The term curse of dimensionality coined by Richard Bellman
[36, 37] refers to the problems caused by the exponential increase
in volume that is associated with adding extra dimensions to
the solution space. The following example can illustrate the
challenges of high dimensionality. Consider a one-dimensional
real-value space, and we place 100 points into the space. If we
were to achieve a similar coverage in a ten-dimensional real-
value space, it would require 10010 = 1020 points. Consequently,
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optimization algorithms that work in small dimensions may not
be useful in the large dimensional problems.

It is also important to mention the dimension ranges of prob-
lems when we compare optimization algorithms. Many opti-
mization algorithms do not scale up well for large dimensions,
because the computational complexity and the memory require-
ment grow quickly with problem dimensions.

Non-separability

An objective function f is said to be separable if the optimum
of the function f can be found by performing independent one-
dimensional searches along each independent coordinate. An
objective function f is said to be non-separable if the optimum
of the function cannot be found by independent one-dimensional
searches. It is said to be partially separable if f has a groups of
coordinates that can be optimized separately. Many real-world
problems are partially separable. One usually decomposes a
problem into sub-problems so we can separately solve the sub-
problems of the large partially separable problem. Decomposi-
tion is a very common approach for such complex optimization
problems.

Ill-conditioning

A convex-quadratic function f(x) = 1
2x

THx is ill-conditioned if
the condition number of H is much larger than 1, where H is the
symmetric positive definite. The condition number of H is the
ratio between its largest and smallest eigenvalue and is also equal
to the squared rate between the longest and shortest principal
axes of the ellipsoid

�

x|xTHx
 

. The optimization algorithms
have to perform di↵erent lengths of search steps in the respective
searching directions of the decision space, in order to produce the
same improvements for the objective function. In most cases,
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the order of di↵erences in the search steps can be very large.
Ill-conditioned problems are di�cult for optimization because

we often make too short or too long search steps in all directions.
Variable metric methods such as quasi-Newton methods BFGS
[54, 55, 75, 87, 202] learn the inverse of the Hessian of f and
are able to renormalize the search steps. However, these algo-
rithms often estimate the gradient using finite-di↵erence meth-
ods. There are numerical instabilities to round-o↵ the errors
when the condition number is large. Evolutionary variable-
metric algorithms such as CMA-ES [105, 103] are usually more
stable because they do not need to estimate the gradient to learn
an appropriate metric.

Dynamic

An objective function f(x, t) is dynamic if the objective values
of candidate solutions depend on the time-step t. Basically,
it means that the objective function changes over time. The
change can be as simple as a shift or a rotation of the search
space. In dynamic environments where the objective function f
is changing, the objective is to find the global optima of f for a
time-step t and to predict the global optima at the time steps
when T > t. In practice, this is always di�cult to do. Therefore
a less ambitious objective is to track the moving optimum in the
space as closely as possible [118, 10, 8]. The dynamic objective
functions are usually di�cult for black box optimization. This is
especially true, when the optimization algorithms have explored
parts of the search space and excluded those for later stages
of optimization, which is naturally normal for static objective
functions. Therefore, it is necessary to develop robust methods
which handle the dynamic of these dynamic objective functions
in order to find the best solutions in time.
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Noisy

In many real-world problems, it is unrealistic to assume that
we can measure the objective function f precisely as it can be
corrupted by measurements or noises. An objective function f̃
is noisy if di↵erent function values f̃(x), which are perturbed by
random component ⇠, are observed. Optimizating the noisy f̃ is
called noisy optimization [7, 9]. Generally, there are two cases
for noisy optimization. In multiplicative noises , the variances
of the noises decrease to zero when approaching the optimum.
Mathematically, it can be formally defined as f̃(x) = f(x)(1 +
⇠). The other case is to have additive noise in the objective
functions where the variances of the noises are lower-bounded.
Formally, it is defined as f̃(x) = f(x) + ⇠. Both cases make
optimization di�cult because the information obtained from one
function evaluation is less precise than the one from noise-free
objective functions.

Multi-objective

An optimization problem is multi-objective if there are m objec-
tives fi(x) for i = 1, . . . ,m, which have to be optimized. The de-
sirable output of multi-objective optimization is usually a Pareto
set of optimal solutions1, instead of a single solution. Multi-
objective optimization [67] is also called multiple criteria deci-
sion making [240] in some context and is generally di�cult. This
is because the multi-objective problem inherits similar proper-
ties from the single-objective optimization. The optimization it-
self needs to take into account the criteria of all multi-objective,
which is less obvious than in the single-objective case.

1A Pareto set is the set of parameterizations or allocations that are all Pareto e�cient.
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2.1.4 Evaluating Optimization Algorithms

Performance Measure in Practice

There are two performance measures that we can practically
evaluate and compare di↵erent optimization algorithms in the
same continuous black-box optimization problems:

1. The expected total number of function evaluations to find
the optimum.

2. The expected total computational time to find the optimum.

In all of the above cases, the optimum does not need to be
the global optimum xg. It can be a local optimum xl or an
✏-approximation of the optimum, i.e., f(x⇤)  f(x✏) + ✏. For
some applications, one performance measure will be more use-
ful than others. In most cases, one assumes that the function
evaluations are mostly expensive and are used as the perfor-
mance measure of optimization algorithms. In addition, using
the first performance measure is simple. It is independent of
the implementation and hardware used by optimization algo-
rithms. The second performance measure is useful when one
wants to analyze the computational complexity for a single it-
eration of optimization algorithms, especially when algorithms
are applied to optimize problems which are high-dimensional or
large scale[135, 205, 82].

Convergence Analysis

In the theoretical aspect, we can compare and evaluate algo-
rithms by studying the convergence order of optimization algo-
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rithms by:

lim
k!1

|f(xk+1)� f(x⇤)|
|f(xk)� f(x⇤)|q = CRf (2.4)

lim
k!1

||xk+1 � x⇤||
||xk � x⇤||q = CRx (2.5)

where the rates of convergence CRf and CRx are 0  CRf ,CRx <
1, and xk denotes the candidate solution in iteration k. Notice
the di↵erence of two equations: the first one focuses on the
convergence rates in terms of function values; the second one
focuses on the norm distance of x to the optimum. On di↵erent
values of q, we can define di↵erent orders of convergence. For
instance, if q > 1, then it is a superlinear convergence. If q = 1
and CRf ,CRx 2 (0, 1), it is a linear convergence. If q = 1 and
CRf ,CRx = 1, it is a sublinear convergence

2.1.5 Benchmarking Function Testbeds

Evaluating and comparing optimization algorithms in a single
problem is not su�cient for us to understand its strengths and
weaknesses, and to determine its quality. One should never use
the result out of a single problem to generalize for a large class
of problems. This is why it is important to test and evaluate a
single optimization on the common benchmarks and testbeds so
the practitioners are able to determine which algorithms are the
best suited to their optimization needs. In the literature, there
are several benchmark function testbeds to achieve this goal.

CEC Real Parameter Optimization Testbed

In Congress on Evolutionary Computation (CEC) 2005, there
was a session “Session on Real-Parameter Optimization (CEC-
2005)”. It focused on a more rigorous investigations of 11 Evolu-
tionary Algorithms on 25 unimodal and multi-modal benchmark
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problems [210]. Subsequent sessions were then hosted in CEC
2013 [133] and CEC 2014 [133]. The testbed has now evolved
to have a total of 30 benchmark problems, 3 unimodal and 27
multimodal functions with problem dimensions up to 100. Each
of the benchmark problem have di↵erent properties and make
the optimization algorithms di�cult and challenging for opti-
mization.

Another similar testbed introduced in CEC, is for large scale
optimization [212]. Its focus is on providing a systematic evalu-
ation platform to compare the scalability of optimization prob-
lems. The benchmark problems in this testbed have dimensions
up to 1000 which are di�cult. In addition, the benchmark prob-
lems consist of problems which are separable, partially separa-
ble and non-separable. In fact, many real-world optimization
problems are most likely be partially separable and consist of
di↵erent groups of parameters, which have with strong depen-
dencies within but little interactions between the groups. This
is reflected in benchmark problems in order to ensure that the
optimization algorithms are used in the same scenario.

The last two testbeds that are closely related to the con-
tinuous black box optimization and held in the Congress on
Evolutionary Computation (CEC) is related to constrained op-
timization [134, 137] and real-world optimization [63]. The first
one in [134, 137] aims towards benchmarking optimization algo-
rithms when the optimization problems have di↵erent types of
constraints in the solution space. The testbed initially had 24
benchmark functions in 2006 and in 2010, developed into bench-
mark functions that have separable or non-separable constraints.
The second one includes in [63] consists of real-world problems
that come from the problem domains like electromagnetic, power
systems engineering, bioinformatics and computational biology.
The aim is to get a better understanding of optimization algo-
rithms in real-world problems because outstanding performances
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on a set of artificial benchmarks may not guarantee a similar
performance in every practical optimization problem.

GECCO Black-Box Optimization Benchmarking (BBOB)

COmparing Continuous Optimizers [98] (COCO) is a recent
and successful benchmark testbed used to quantify and com-
pare the performance of optimization algorithms in a scientifi-
cally decent and rigorous way. COCO provides a common plat-
form to run optimization algorithms on a single-objective bench-
mark function testbed, generates data output, post-processes
and then presents the results in graphs and tables. The practi-
tioners can run their black box real-parameter optimzation al-
gorithms in a few dimensions a few hundreds times and execute
the provided post-processing scripts. COCO has been used for
the Black-Box-Optimization- Benchmarking (BBOB) [98] work-
shops during the Genetic and Evolutionary Computation Con-
ference (GECCO) in 2009, 2010, 2012 and 2013.

BBOB provides two testbeds which have 24 noiseless [100]
functions and 30 noisy [101] functions. Each benchmark func-
tion has di↵erent properties: separable, non-separable, unimodal,
multi-modal, ill-conditioned and deceptive. There are also func-
tions with and without a weak global structure.

COCO uses the expected running time(ERT) as the perfor-
mance measure. If an optimization algorithm succeeds in reach-
ing the target precision value ftarget � fopt in a single run, its
runtime (RT) is the number of function evaluations used, where
ftarget and fopt denote the target function value and the opti-
mal function value respectively.If the algorithm fails, it can be
restarted and run again. The ERT is the expected number of
function evaluations to reach a target function value for the first
time. The ERT [98] is defined as:

ERT(ftarget) =
#FEs(fbest � ftarget)

#succ
(2.6)
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Figure 2.1: Illustration of fixed-cost (vertical cuts) and fixed-target (hori-
zontal cut) view in [98]. Black lines depict the best function values plotted
against the number of function evaluations.

where #FEs(fbest � ftarget) denotes the number of function eval-
uations conducted in all trials when the best function value fbest
is not smaller than ftarget during the trial. The #succ is the
number of successful trials.

There are two approaches in COCO to collect data and make
measurements from the output of experiments:

1. Fixed-cost scenario (vertical cuts). In this scenario, the
number of function evaluations is fixed. This corresponds
to fixing a cost for optimization and measuring the func-
tion values when the optimization algorithm has reached
a given number of function evaluations. We can picture
the scenario by drawing a vertical line on the convergence
graph in Figure 2.1.

2. Fixed-target scenario (horizontal cuts): In this scenario, the
target function value is fixed. The number of function eval-
uations required to reach this target function value is also
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Figure 2.2: Illustration of empirical (cumulative) distribution functions
(ECDF) [98] of running length (left) and precision (right) arising respectively
from the fixed-target and the fixed-cost scenarios.

measured. This is shown by drawing an horizontal line in
the convergence graph in Figure 2.1.

Empirical Cumulative Distribution Functions (ECDFs) are
used in the COCO to summarize the results from a set of bench-
mark problems. The ECDF function F : R 7! [0, 1] is defined
for a given set of real-valued data S, such that F (x) equals the
fraction of elements in S which are smaller than x. The func-
tion F is monotonous and a lossless representation of the (un-
ordered) set S [98]. For example, the thick red graph in Figure
2.2 shows on the left the distribution of the running length in
terms of the number of function evaluations for Las-Vegas algo-
rithms [112] for reaching precision �f = 10�8 (horizontal cut).
The graph on the right shows the vertical cut for the maximum
number of function evaluations, showing the distribution of the
best achieved� f values, divided by 10�8. The run length dis-
tributions on the left show di↵erent target precisions� f . The
precision distributions on the right show di↵erent fixed numbers
of function evaluations. The y-value at the transition between
the left and right subplots corresponds to the success probabil-
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ity. In the example, there is about a 50% for precision 10�8

(thick red) and over 70% for precision 10�1 (cyan).

2.2 Dynamic Environments

2.2.1 Definition

In dynamic environments, the objective function changes during
the course of optimization. At any given time t 2 T, one needs
to find the best solutions x⇤ such that

8x 2 Rn, f(x⇤, t)  f(x, t). (2.7)

where f : Rn ⇥ T ! R is the objective function of a mini-
mization problem and n is the problem dimension. In dynamic
optimization problems (DOPs), the fitness functions, the design
variables and the environmental conditions change from time to
time. Examples of real-world problems include random arrivals
of new tasks, machine faults and degradation, climate change,
market fluctuation and economic factors. Alternatively, DOPs
can be defined as sequences of static problems linked together
by some dynamic rules [5, 187, 188, 216, 221], or as problems
that have time-dependent parameters in their mathematical ex-
pressions [28, 43, 226] without explicitly mentioning whether
the problems are solved online by an optimization algorithm or
not. It is important to distinguish the DOPs from general time-
dependent problems because from the perspective of an opti-
mization algorithm, a time-dependent problem is only di↵erent
from a static problem if it is solved in a dynamic way. This
results in optimization algorithms for DOPs having to take into
account of changes during the optimization process [46, 145].

The simplest way to solve these dynamic optimization prob-
lems is to consider every change as an arrival of a new static
optimization problem. However the time and the resources for
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optimization are always limited, and using an explicit restart ap-
proach becomes unfeasible. Therefore, more complicated strate-
gies to reduce the computational e↵ort and to maintain the best
qualities of the output solutions are required. One methods to
address dynamic environments is to collect useful information
on the dynamic environments. When the environment changes
from time to time, optimization algorithms can collect the in-
formation in the previous environments, in a hope that the in-
formation is useful in the current environments. This assumes
that the new environments are correlated to the previous envi-
ronments. If the environments are correlated, it is reasonable to
explore the search space “near” the previous optima. However,
there is also a disadvantage for this approach. The success of
the approach depends on the nature of dynamic problems. If
the change is radical and the correlations between changes are
low, the restart approach may be the only viable alternative and
reusing the information in the previous changes may deteriorate
the performance of the search algorithm. For most of the real-
world problems, we usually assume that the changes are smooth.
The two open questions are what kind of useful information the
algorithms should collect and in what way the algorithms should
use the collected information.

Using EAs for dynamic optimization problems has always
been an active research area [46, 145, 233, 237, 218]. Many re-
searchers always consider EAs as having a great potential to be
the e�cient optimizers for dynamic problems. In fact, there are
many fundamental challenges for EAs. If an EA is being used in
dynamic optimization problems, it has to adapt to the changing
objective functions. The solutions found by an EA in the earlier
time do not imply they are the same solutions at a later time.
Therefore one major goal for the EAs is to continuously and
e�ciently adapt to the changing environment. This requires the
EAs not only to find the global optima under a specific envi-
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ronments, but also to continuously track the changing optima
under di↵erent dynamic environments.

In the literature, there are works to develop the new ap-
proaches for dynamic optimization problems. The works [118,
153] summarize the major approaches:

• Increasing diversity after dynamic changes : When a change
is detected, the EA will increase the diversity of its popu-
lations. Hypermutation [58, 144] is one of the approaches.
The basic idea is to increase the mutation probability of the
individuals so the candidate solutions can converge to the
new global optima in a short time. One disadvantage for
this approach is that increasing the diversity will replace
the information of the previously successful individuals. It
is also di�cult to determine the optimal level of diversity.
Having a large diversity will resemble a restart while too
little diversity does not solve the problem in a desirable
time.

• Maintaining diversity throughout the runs : Maintaining di-
versity during the course of optimization is important. Us-
ing random immigrants [89] is one of the methods to ran-
domly generate individuals in every generation. Though
the approach of maintaining diversity is interesting and
simple to be implemented, having too high diversity can
slow down the convergence rate to the optima.

• Using memory approaches : There are two main categories
for the memory approaches. In the explicit memory ap-
proach [45, 236], the algorithms store the useful informa-
tion in the previous generations. A pre-defined rules are de-
signed so the algorithms know what information they have
to store and what information they have to retrieved from
the memory. The other category is the implicit memory
[64]. It uses the redundant representations to store the
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useful information in the previous generations. The diploid
representations [86] are an example that attempts to mimic
the diploid genes in the nature.

• Using multi-populations approaches : When an EA uses the
multi-populations [225, 47, 235], it simultaneously tracks
the multiple optima in the search space. When there is a
change in the dynamic problem, the multi-populations are
able to store the information for di↵erent regions of the
search space. This can therefore increase the probabilities
of finding the optimal candidate solutions in the new dy-
namic environments.

2.2.2 Properties

In the literature, there are many dynamic optimization prob-
lems that are used to compare di↵erent optimization algorithms.
These dynamic test problems have di↵erent characteristics and
can be classified into di↵erent groups. According to survey works
by [153, 237], we can classify the DOPs into the groups below:

1. Time-linkage: The future behavior of the dynamic opti-
mization problem depends on the current and/or the pre-
vious solutions found by the optimization algorithms. In
the literature, there are a few of general purpose time link-
age DOPs [43, 155] and problem-specific time linkage DOPs
[155, 44].

2. Predictability : The changes in the dynamic optimization
problems follow a regular pattern. For instance, the optima
moves in fixed step sizes, periodically or in predictable time
intervals.

3. Visibility : The changes in the dynamic optimization prob-
lems are visible to optimization algorithms. For instance,
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optimization algorithms can re-evaluate the objective func-
tions or the constraint functions in search space to detect
whether a change has occurred. Most DOPs in the liter-
ature have the properties of visibility, except the work in
[59, 214, 154, 186].

4. Constrained problem: The dynamic optimization problem
can be constrained, and the constraints can change over
time [154, 186].

5. Multiple objectives : The dynamic optimization problems
can have multi-objective functions.

6. Cyclic, Periodical or recurrent changes : Changes in the
dynamic optimization problems can be cyclic, periodical or
recurrent.

7. Changing Factors : There are other factors that are change-
able from time to time. They include objective functions,
domain of variables, number of variables, constraints, or
other parameters.

2.2.3 Performance Measures

Measuring the performance of optimization algorithms for DOPs
is vital. According to the work [153, 237], we can classify the
performance measures into optimality-based performance mea-
sures and behaviour-based performance measures.

Optimality-based performance measures measures the ability
of optimization algorithms in finding the solution with the best
objective/fitness values (fitness-based measures) or finding the
solutions that are closest to the global optimum (distance-based
measures). Common measures in this category includes:

1. Best-of-Generation [28, 58, 81, 89, 90];

2. Best-Error-Before-Change [214];
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3. Modified O✏ine Error and O✏ine Performance [46, 48];

4. Relative error [73, 217]

5. Normalised Scores [152];

6. Distance-Based Measures [219, 194]

Behaviour-based performance measures are to evaluate opti-
mization algorithms if they exhibit certain behaviours that are
useful in dynamic environments. Examples of such behaviours
are maintaining high diversity throughout the runs; quickly re-
covering from a drop in performance when a change happens,
and limiting the fitness drops when changes happen. These mea-
sures are usually used complementarily with optimality-based
measures when we analyze optimization algorithms in dynamic
environments. Common measures in this category includes:

1. Diversity-based Measure [142, 157, 181, 232, 146, 46, 84];

2. Performance Drop after Changes [217, 181];

3. Convergence Speed after Changes [217, 154, 152];

4. Fitness Degradation over Time [4, 154]

In the following, we will review the two common performance
measures that will be used in this thesis and analyze the scenario
where one performance measure is preferable to others.

Best-of-Generation

This measure is calculated as the averages for the best objective
values in each generation of the optimization problems. This
measure has been used in many early research [28, 58, 81, 89, 90]
and is still the most commonly used measure. Formally, the
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work [234] describes this performance measure as

f̄BOG =
1

knrun

k
X

i=1

 

nrun
X

j=1

fBOG
ij

!

(2.8)

where f̄BOG is the mean best-of-generation fitness, k is the num-
ber of generations, nrun is the total number of runs, and fBOG

ij

is the best-of-generation fitness of the ith generation in the jth
run on a particular problem.

The best-of-generation performance measures can enable the
designers of optimization algorithms to quantitatively compare
the performance of di↵erent algorithms. However, one drawback
of using this measure is that they are not normalized and there-
fore they can be biased by the di↵erence of the fitness landscapes
at di↵erent periods of change. For example, if at a certain period
of change the overall fitness values of the landscape is particu-
larly higher than those at other periods of changes, the final
f̄BOG might be biased toward the high fitness values in the par-
ticular period and hence might not correctly reflect the overall
performance of the algorithm.

Best-Error-Before-Change

This measure [214] calculates the average of the best errors, i.e
the di↵erence between the optimum value and the value of the
best individual at the end of each change period. It is also used
for one of the performance measures in the CEC 2009 competi-
tion on dynamic optimization [128]. Formally, when there is T
number of changes in a DOP, it can be described as

Ebest =
1

T

T
X

i=1

|f(xbest(ti), ti)� f(x⇤(ti), ti)| (2.9)

where the vector xbest(ti) is the best solutions found by the op-
timization algorithms at time ti, and the vector x⇤(ti) is the
location of the global optimum at time ti.
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This measure is useful in situations where we are interested to
compare the final outcome of di↵erent algorithms found before
the changes. However, there are drawbacks in this performance
measure. First, the measure is not suitable if someone are in-
terested in the overall performance of optimization algorithms
whether there are changes or not. Second, this measure is also
not normalised and is biased toward periods where the errors
are relatively very large. Third, the measure requires that the
global optimum is known.

2.2.4 Generalized Dynamic Benchmark Generator (GDBG)

Over the years, there have been a number of dynamic test prob-
lems to compare the EAs in dynamic environments. These in-
clude the moving peak benchmark (MPB) proposed by Branke
[45], the DF1 generator proposed by Morrison and De Jong [143],
the single and multi-objective dynamic test problem generator
by Jin and Sendho↵[ 119] and exclusive-or (XOR) operator by
Yang and Yao [229, 235, 236]. MPB and DF1 consist of multi-
dimensional landscapes where the heights, the widths and the
positions of the peaks can be changed during the course of op-
timization. Although a number of DOP generators exist in the
literature, there is no unified approach of constructing dynamic
problems across the binary space, real space and combinatorial
space . The generalized dynamic benchmark generator (GDBG)
[129, 128] constructs dynamic environments for all the three so-
lution spaces to evaluate the performance of optimization algo-
rithms. The benchmark problem was used in CEC 2009 and
CEC 2014 competitions to evaluate the state-of-the-art algo-
rithms for dynamic optimization. It di↵ers from the MPB and
the DF1 benchmarks, and uses the rotation method instead of
shifting the positions of peaks. Using the rotation method can
prevent the unequal challenge in every change when the posi-
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tions of peaks bounce back from the boundary of the search
space.

There are two categories for the dynamic changes in the
GDBG: dimensional changes and non-dimensional changes. In
the dimensional changes, GDBG increases or decreases the num-
ber of dimensions for the dynamic problems. In the non-dimensional
changes, the variables are changed such that the fitness land-
scape is changed. An example is to increase the number of the
peaks during the course of optimization. There are six types
of the non-dimensional changes, including small step changes,
large step changes, s random changes, chaotic changes, recur-
rent changes and recurrent changes with noise. We name them
C1 to C6. The dimensional changes are generally regarded as dif-
ficult challenges for algorithms since there are no relationships
between the dimensions when these dimensional changes occur.

Formally, we can describe the dynamic changes as follows:

�(t+ 1) = g(�(t),��) (2.10)

where �(t) is the system control parameters, �� is the deriva-
tion from the current system control parameters, and g(·) is the
function to change the system control parameters. At time t,
the new environment at time t+ 1 can be expressed as:

f(x,� , t+ 1) = f(x, g(�(t),��), t) (2.11)

The optima of dynamic problems are determined by the sys-
tem control parameters and they can be di↵erent from one in-
stance at time t to another instance at time t + 1. The six
non-dimensional changes are:

• C1 Small step change:

�� = ↵ · ||�|| · r · �severity (2.12)

• C2 Large step change:

�� = ||�|| · (↵ · sgn(r) + (↵max � ↵) · r) · �severity (2.13)
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• C3 Random step change:

�� = N (0, 1) · �severity (2.14)

• C4 Chaotic change:

�(t+ 1) = A · �(t) · (1� �(t)

||�||) (2.15)

• C5 Recurrent change:

�(t+ 1) = �min + ||�|| ·
�

sin(2⇡tP + ') + 1
�

2
(2.16)

• C6 Recurrent change step with noise:

�(t+ 1) = �min + ||�|| ·
�

sin(2⇡tP + ') + 1
�

2
+N (0, 1) · �noisyseverity (2.17)

where ||�|| is the range of �, �severity 2 (0, 1) is the change sever-
ity of �, �min is the minimum value of �, �noisyseverity 2 (0, 1)
is the noisy severity in the recurrent changes with noise. The
parameters ↵ 2 (0, 1) and ↵max 2 (0, 1) are the constant values
in C1 small step change and C2 large step change respectively.
A logistics function is used in C4 chaotic change, where A is a
positive constant between (1.0, 4.0). If � is a vector, the initial
values in � will be di↵erent within ||�|| in C4 chaotic change. P
is the period in the C5 recurrent step change and the C6 recur-
rent step change with noise, ' is the initial phase, r is a random
number between �1 and 1. The function sgn(x) returns 1 when
x is greater than 0, returns �1 when x is less than 0, otherwise
returns 0. Finally, N (0, 1) returns a normal distributed random
number.

There are two instances in the GBDB benchmark: rotation
DBG and composition DBG. In the rotation DBG, the fitness
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Table 2.1: Parameter settings of the GBDB benchmark problem

For all test functions
Dimension: n 2 [5, 15] or x 2 [�5, 5]n

Change Frequency: ⌧ = 2 · 103 · n · FES
Number of Change: T = 60

Step of severity: ↵ = 0.040
Maximum value of step of severity: ↵

max

= 0.1
Period: p = 12

Severity of recurrent with noise: �
noisyseverity

= 0.8
Chaotic constant: A = 3.67

Height range: h 2 [10, 100]
Height severity: �

h

severity

= 5.0
For Composition DBG functions

Number of basic functions: m = 10
Coverage range factor: �

i

= 1.0, 8i = 1, 2, . . . , n
Constant factor: C = 2000

For Rotation DBG functions
Number of basic function: m = 10

Width Range: w 2 {1, 10}
Width Severity: �

w

severity

= 0.5
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landscape consists of the multiple peaks that are controlled by
tuning the system control parameters. The heights, the widths
and the positions of each peak are changed in the six change
types. If the dynamic problem is f(x,� , t), the set of system
control parameters is � = (H,W,X), where H,W and X are
the peak heights, the peak widths and the peak positions re-
spectively. Formally, the function f(x,� , t) is

f(x,� , t) =min

(

Hi(t)+

Wi(t)

✓

exp

✓

v

u

u

t

n
X

j=1

(xj �Xi
j(t))

2

n

◆

� 1

◆

)m

i=1

(2.18)

wherem is the number of the peaks, n is the problem dimension.
The height and the width of the peaks are changed by:

H(t+ 1) = DynamicChanges (H(t)) (2.19)

W(t+ 1) = DynamicChanges (W(t)) (2.20)

where �h
severity

and �w
severity

are the change severities of the height
and the width respectively. The ranges of the height and the
width are denoted by ||�h|| and ||�w| respectively.

Finally, instead of shifting the peak locations, a rotation ma-
trix is used to change the peak locations in GDBG. This rotation
matrix Rij(✓) is obtained by rotating the projection of x in the
plane i� j by an angle ✓ from the i-th axis to the j-th axis. The
peak position X is changed by the following steps:

1. Randomly select l dimensions from the n-dimensions and
compose a vector r = [r1, r2, . . . , rl], where l is an even
number.

2. For each pair of dimensions r[i] and the dimension r[i+1],
construct a rotation matrix Rr[i],r[i+1] (✓(t)), where ✓(t) =
DynamicChanges(✓(t� 1)),
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3. A transformation matrix A(t) is obtained by

A(t) =Rr[1],r[2](✓(t)) ·Rr[3],r[4](✓(t))·
· · ·Rr[l�1],r[l](✓(t)), ✓(t) 2 (0, 2⇡) (2.21)

4. X(t+ 1) = X(t) · A(t)
where the change severity of ✓ and the range of ✓ are denoted
by �✓

severity

and �✓ respectively. The range of ✓ is between 0 and
2⇡.

Another instance of GDBG benchmark is the composition
DBG. It constructs more challenging benchmark functions with
the randomly located optima. By shifting, rotating and com-
posing the optima of the standard functions, the functions that
possess many desirable properties can be obtained. Formally,
the composition DBG can be described as:

F (x,� , t) =
m
X

i=1

(

w
0

i ·
✓

f
0

i

✓

(x�Oi(t) +Oiold) ·Mi

�i

◆

+Hi(t)

◆

)

(2.22)

where � = (O,M,H) is the system control parameter, F (x)
is the composition function, fi(x) is the i-th basic function2

used to construct the composition function, m is the number
of the basic functions, Mi is the orthogonal rotation matrix for
each fi(x), Oi and Oiold are the shifted optimum and the old
optimum respectively for each fi(x). The weight wi for each
fi(x) is defined as follows:

wi = exp (�
r

Pn
k=1 (xk � oki + okiold)

2

2n�2
) (2.23)

2For details of basic function used in the real composition DBG, please refer to [129,
128].
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wi =

(

wi if wi = max (wi)

wi · (1�max (wi)) if wi 6= max (wi)
(2.24)

w
0

i =
wi

Pm
i=1wi

(2.25)

where �i is the coverage range factor of fi(x), �i is the stretch
factor for each fi(x) which is defined as;

�i = �i · Xmax �Xmin

ximax � ximin

(2.26)

where [Xmin, Xmax]n is the search range of F (x) and [ximin, x
i
max]

n

is the search range of fi(x). In addition, the variable f
0

i(x) is
defined as

f
0

i(x) =
C · fi(x)
|f i

max|
(2.27)

where C is a predefined constant. f i
max is the estimated maxi-

mum value of fi(x) and can be calculated as:

f i
max = fi(xmax ·Mi) (2.28)

In the composition DBG, M is randomly initialized and re-
mains unchanged during the course of optimization. The dy-
namics of the system control parameters H and O can be de-
scribed by:

H(t+ 1) = DynamicChanges (H(t)) (2.29)

O(t+ 1) = DynamicChanges (O(t)) (2.30)

Five basic functions that are used in the real composition DBG
are outlined in Table 6.1, and the test function generated by
GDBG is listed in Table 2.3.
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2.3 Discussion

Although the descriptions for the continuous black box optimiza-
tion in Section 2.1 and 2.2 are short, we intend to give a general
high-level comprehensive overview rather than details by details
analysis on the topics. The basic properties of optimization
problems in Section 2.1.3 and 2.2.2 contain the most commonly
used ones in the literature. Interested readers can refer to the
much more comprehensive works in [141, 191, 153, 237].

In black-box optimization testbeds, we have discussed a few
popular testbeds in the literature. In the next chapters when
we evaluate optimization algorithms, our experimental results
are all tested under the framework of COCO [98] and GDBG
[129, 128]. Specifically, when we evaluate the sampling meth-
ods we proposed to improve the state-of-the-art algorithms, it
is important to leverage a platform where classes of problems
can be more accessible to the community. It is also necessary to
study the characteristics of problems when these proposed meth-
ods are suitable for these state-of-the-art algorithms. These two
benchmark testbeds can definitely achieve this objective.

The review in this chapter showed that not many of the as-
sumptions above are backed up by evidence from real-world ap-
plications. Therefore, this leads to the open questions of whether
these academic assumptions still hold in real-world optimization,
whether it is a static environment described in Section 2.1 or in
dynamic environments in Section 2.2. Even the assumptions
are true, we are still unable to tell whether these assumptions
are representative in real-world applications and in what type
of applications they will hold. There is very little research aim-
ing at connecting the gap between these artificial benchmark
problems and the real world optimization problems. There are
certain gaps between current numerical optimization and real-
world applications. In future research, we need to further inves-
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tigate so as to close these gaps and to bring the practical use of
the proposed methods to the realistic scenarios.

2 End of chapter.



Chapter 3

Evolutionary Algorithms

If I were again beginning my studies, I would follow
the advice of Plato and start with mathematics.

Galileo Galilei

3.1 Overview of Evolutionary Computation

3.1.1 History

Evolutionary Computation [30, 78, 77, 31, 65, 85, 125] is a re-
search field where the nature inspired or evolution inspired com-
putational methods are used for solving the real-world prob-
lems. It has been growing rapidly since the first introduction
of evolutionary algorithms [2]. The very first optimization al-
gorithms that were closely related to evolution in the literature
were proposed in the works [34, 33, 80, 49, 50, 182, 183] during
1950s and the early 1960s. Later, Hans-Paul Schwefel simulated
di↵erent versions of two membered (1+1)-evolution strategies
(ESs) in which one parent generates one o↵spring. The sim-
ulation was conducted in the first digital computer Zuse Z23
of Technical University of Berlin [198]. Ingo Rechenberg later
theoretically analyzed these strategies and proposed the first µ
multi-membered strategies (µ+ 1) in his doctoral thesis [71].

45
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Another sub-field of Evolutionary Computation, Evolution-
ary Programming was proposed by Lawrence J. Fogel in his work
[79] during the 1960s. Fogel proposed to evolve the population
of finite state machines (FSMs) to solve problems of prediction
and control, defined as a set of sequences from a finite alphabet.
The process was named Evolutionary Programming in contrast
to Linear Programming [62], Dynamic Programming [39] and
Quadratic Programming [151].

Schumer and Steiglitz [196] proposed the Adaptive Step-Size
Random Search (ASSRS), an adaptive version of Fixed Step-
Size Random Search [182, 183, 148]. They proved that Optimal
Step-Size Random Search (OSSRS) on unimodal functions and
found out that:

1. the optimal step size is proportional to the distance to the
optimum, similar results were published later for (1+1)-ES
[24];

2. there is an optimal probability of improvements for ASSRS,
similar methods one-fifth success rule was proposed in [71];

3. the average number of function evaluations to reach a target
accuracy is linear in the problem dimension.

Since the distance to the optimum is usually unknown, only an
approximation of the optimal step size can be estimated.

In 1975, John H. Holland proposed Genetics Algorithms (GA)
in his book [110]. His work provides a simplified but rich theory
of how adaptation and evolution work and provides a working
algorithmic framework to simulate the evolution for solving real-
world problems. Holland also proposed the so-called Schema
Theorem to provide the theoretical evidence of GA convergence.
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3.1.2 Modern Approaches

In the Evolutionary Computation community, there are many
modern approaches that are inspired by the evolution and the
nature for solving optimization problems. The following subsec-
tion summarizes the most widely used approaches and give their
brief comparison analysis.

Evolution Strategies

Evolution strategies were used to solve the continuous optimiza-
tion [200, 71] since its introduction. There were works that ES
was used to optimize mixed integer optimization [32, 130, 96,
131] but most theoretical and empirical experimental works are
on continuous optimization. In this thesis, we focus on di↵erent
variants in the family of evolution strategies. We give a detailed
description in Section 3.2 and Section 3.3.1.

Genetic Algorithms

Genetic Algorithms (GAs) are the most common approach used
for the initial studies of evolution-inspired optimization. The
first GA was proposed by Holland in his work [110] and was
called “Simple Genetic Algorithm” (SGA). The candidate solu-
tions are binary coded parent solutions competing with o↵spring
solutions, generated after multi-point crossovers and bit-flip mu-
tations of parents. Another representative genetic algorithms
in the literature used the real-value representation of decision
variables and enriched the set of variation operators [228, 66].
The key to designing a successful GA is that the algorithm de-
signers pick the right choice of the representation of candidate
solutions for a given problem, such that the variation opera-
tors favour successful exploration and exploitation of the search
space. The Cooperative Coevolutionary Algorithms (CCEAs)
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[173], described in Section 3.4 later, can be categorized into ge-
netic algorithms as they were first proposed in [172]. We will
give more details of CCEAs in Section 3.4.

Estimation of Distribution Algorithms

In Estimation of Distribution Algorithms (EDA) [126], unlike
other approaches where the distribution of candidate solutions
is defined implicitly by variation operators, the sampling of new
solutions in EDA is explicitly defined by a chosen probabilis-
tic model, e.g. multivariate normal distributions. Examples of
EDA in the literature include Univariate Marginal Distribution
Algorithm (UMDA) [147], Estimation of Multivariate Normal
Algorithm (EMNA) [126] and Cross-Entropy Method (CEM)
[192].

Ant Colony Optimization

Ant Colony Optimization (ACO) [69, 70] was proposed by Marco
Dorigo in his doctoral thesis [68]. At the beginning, ACO was
an optimization algorithm which imitated the behaviour of ants
to solve usual combinatorial optimization problems. The arti-
ficial ants seek the path between their colonies and a source of
the food and lay down pheromone trails such that other ants
will more likely to follow these trails. This may reinforce attrac-
tiveness of the shortest path to the food. Trail evaporation can
occur in reducing pheromone values of all trails over time and
preserving some diversity in the optimal path seeking. Later,
there is progress to generalize ACO and use it for continuous
optimization [204].

Genetic Programming

Genetic Programming (GP) was first proposed by the work [61]
and later popularized by John R. Koza [125, 124]. GP is an
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evolution-inspired technique which imitates artificial evolution
of computer programs that perform a user-predefined task. GP
can be considered as a GA when we used tree structure to rep-
resent individuals. Unlike other approaches, the number of vari-
ables or components representing a candidate solution is usually
dynamic during the search. This often favours extensive search
in the space of possible topologies. As a result, the final candi-
date solutions are too complicated even for a relatively simple
problem. This leads to the development of multi-objective ver-
sion of GP [125] to control the “bloat issue”.

Di↵erential Evolution

Di↵erential Evolution (DE) [209] was proposed by Rainer Storn
and Kenneth Price [208]. It has become popular in the recent
few years because of its simplicity and e�ciency. DE optimizes
a problem by maintaining a population of candidate solutions
and creating new candidate solutions by combining existing ones
according to its simple parameters, and then keeping whichever
candidate solution has the best fitness. If the new candidate
solution has an improvement, it is accepted and becomes part
of the population, otherwise the candidate solution is discarded.

The DE typically has only a few parameters and several mu-
tation strategies. Selecting the DE parameters that yield a good
performance has therefore been the subject of much research
[207, 179]. In the literature, there are also mathematical con-
vergence analyses regarding parameter selections [166, 165] as
well as di↵erent variants [179, 136, 180, 51].

Particle Swarm Optimization

Particle Swarm Optimization (PSO) [120] optimizes a problem
by having a population of candidate solutions, here dubbed par-
ticles, and moving these particles around in the search space
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according to simple mathematical formulas over the particle’s
position and velocity. Each particle’s movement is influenced
by its local best known positions but, is also guided toward the
best known positions in the search-space, which are updated
when the better positions are found by other particles. This is
expected to move the swarm towards the best solutions.

3.2 Evolution Stratgies

In this section, we describe the key variants of evolution strate-
gies in the literature. We first outline the (1+1)-ES that is the
historically first version of an evolution strategy. We then de-
scribe a multi-membered (µ,� )-ES in which µ number of parent
generates � number of o↵springs. We also review the step size
adaptation methods that are commonly used in the literature.

3.2.1 Single Parent Elitist (1+1)-ES

The (1+1)-ES was developed in the work [198, 71] and was in-
spired by biological evolution. In the first version, a very simple
evolution loop without any algorithm parameters was used. This
algorithm generates a single o↵spring x0 by

x0 = x+ � ·N (0, I) (3.1)

If the o↵spring performs better than its parent (in terms of fit-
ness), it becomes the new parent. Otherwise, the parent re-
mains. The standard deviation � of the normal distribution was
a fixed scalar value. The work [71] has shown that the step size
� can be chosen such that the (1+1)-ES can be made successful
when a candidate solution is sampled. This leads to the devel-
opment of step size adaptation such that the step size � can be
“adapted” so as to improve the local performance on two ob-
jective functions, namely the corridor function and the sphere
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function. A theoretical study was conducted to show that the
best convergence rate is achieved when one-fifth of all mutations
are successful. This leads to the classical step size adaptation
the so-called “one-fifth success rule”. If about one-fifth of all
mutations are successful, the step size is optimal and no adap-
tation is required. If the success rate falls below one-fifth, the
step size needs to be reduced. If it grows above one-fifth, the
step size needs to be increased. To obtain the new step size, the
current step size � is either multiplied or divided by a constant
c. The recommendation on the value of c is 0.817 [199]. The step
size adaptation is applied in each k iterations of the algorithm,
and the success rate psucc is measured over a sliding window of
the last 10 · k mutations.

Algorithm 1: Pseudo Code of the (1+1)-ES with one-fifth success rule.

1 Given: f : Rn ! R, X1,N 2 Rn, �1 > 0
2 Initialise X1, �1, k = 1
3 repeat
4 X

0
k

 X
k

+ �
k

N (0, I) /* sample an offspring */

5 if f(X
0
k

)  f(X
k

) then
6 X

k+1  X
0
k

/* replace the parent */

7 �
k+1  1.5�

k

/* increase step size */

8 else
9 X

k+1  X
k

/* keep the parent */

10 �
k+1  1.5�1/4�

k

/* decrease step size */

11 k  k + 1 /* iteration counter */

12 until termination condition is met

Algorithm 1 shows the pseudo-code of a (1+1)-ES with the
one-fifth rule, where at iteration k the parent Xk generates an
o↵spring X

0

k (line 4) by Gaussian mutation, defined by the step-
size �k and an identity covariance matrix C = I. By setting
the covariance matrix to the identity, the variations of all vari-
ables are independent of each other, and it implies that they are
uncorrelated.
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The o↵spring replaces its parent (lines 6) if it has fitness
at least as good as its parent’s. The update of the mutation
step-size (line 7) is increased by a factor of 1.5. If otherwise,
the o↵spring is worse than the parent, the current parent will
become the parent in the next iteration k + 1 (line 9). The
mutation step size is decreased by a factor of 1.5�1/4. According
to [18], the choices between increasing and decreasing the factors
are basically implementing the idea of the one-fifth success rule.

3.2.2 Population-based Non-elitist (µ,� )-ES

The (µ,� )-ES is the evolution strategy that uses the mutative �-
self adaptation for step size adaptation scheme. It is basically a
non-elitist, multi-membered strategy that uses comma selection.
That means that the parents never survive to the next iteration
and µ best out of � o↵spring are chosen to become parents in
the next generation. The self-adaptation for the mutative step
sizes is common in the family of ES. There have been a lot of
theoretical works to study the performance of ES with the use of
mutative �-self adaptation [41, 42, 92, 139, 140]. The underlying
idea of mutative step size adaptation is based on the assumption
that individuals with good settings of strategy parameters will
generate good o↵spring, such that the good strategy parameters
survive the selection. Recombination of candidate solutions and
strategy parameters is performed through global intermediate
recombination, i.e. by averaging all of the µ parents.

Algorithm 2 shows the pseudo code of a (µ,� )-ES with mu-
tative �-self adaptation. The algorithm starts by initializing µ
individuals in the parental population Pk (line 2), where Pk de-
notes the parental population at iteration k, and (Xi

k, f(X
i
k),�

i
k)

is the ith o↵spring at iteration k. Note that each individual
maintains its own mutative step size �i

k 2 Rn in the (µ,� )-ES.
First, the candidate solutions and the mutative step size are
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recombined separately (lines 4 and 5) to form an intermediate
parent. Each mutative step size is updated by �-mutative self
adaptation (line 8). The local and global learning rates ⌧ and
⌧ 0 are set to 1p

2
p
n
and 1

2
p
n
respectively [200, 27], where n is

the problem dimension. O↵spring are generated by using the
newly updated mutative step size (line 9). After generating �
o↵spring, a comma selection takes place to select the best µ out
of the � o↵springs and they become the parental population in
the next iteration Pk+1 (line 11).

Algorithm 2: Pseudo Code of the (µ,� )-ES with mutative �-self adap-
tation.
1 Given: f : Rn ! R, X1,N 2 Rn, �1 > 0
2 Initialise P1 := {(X1

k

, f(X1
k

),�1
k

), . . . , (Xµ

k

, f(Xµ

k

),�µ

k

)}, k = 1
3 repeat
4 Xp

k

 1
µ

P

µ

i=1X
i

k

/* recombination to form a parent */

5 �p

k

 1
µ

P

µ

i=1 �
i

k

/* recombination to form a global step

size */

6 i 1 /* offspring counter */

7 while i  � do
8 �i

k

= �p

k

exp {⌧N
i

(0, 1) + ⌧ 0N
i

(0, I)} /* adapt step size */

9 Xi

k

 Xp

k

+ �i

k

N (0, I) /* sample an offspring */

10 i i+ 1

11 Select the best µ out of {(Xi

k

, f(Xi

k

),�i

k

)} for 1  i  � into P
k+1

12 k  k + 1 /* iteration counter */

13 until termination condition is met

3.3 Covariance Matrix Adaptation Evolution
Strategies (CMA-ES)

In recent years, there has been research work that have con-
tributed to the state-of-the-art covariance matrix adaptation
evolution strategies (CMA-ES) [103, 105, 106, 104, 102] used to
solve many black-box optimization problems. CMA-ES usually
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optimizes the real value objective function f : Rn ! R in the
continuous domain. The CMA-ES iteratively evolves the popu-
lations of individuals by variations and selections. The quality
of the individuals is determined by their fitness, assigned by
evaluating the underlying objective functions. Selection chooses
the best individuals to become the parents in the next gener-
ations. Variations are done by mutations and recombinations.
Many works have demonstrated the success of CMA-ES in sev-
eral domains including optimization, machine learning and the
real world applications.

On ill-conditioned problems, covariance matrix adaptation
can accelerate the rate of convergence of evolution strategies
by orders of magnitude. For example, a successful covariance
matrix adaptation can enable strategies to generate candidate
solutions predominantly in the directions of narrow valleys. The
CMA-ES is able to learn the appropriate covariance matrix from
successful steps that the algorithm has taken. It exhibits invari-
ance properties that make it suitable for solving non-separable
optimization problems. The CMA-ES obtains the information
about the successful search steps and uses the information to
update the covariance matrix of the mutation distribution in
a derandomised mechanism. The covariance matrix is updated
such that variances in directions of the search space that have
previously been successful are increased, and those in other di-
rections are decreased. Even in a small population, the accu-
mulation of information over a number of successful steps can
reliably adapt the covariance matrix.

The CMA-ES is basically a stochastic search algorithm that
samples its new candidate solutions from a multivariate normal
distribution and adapts its mean and covariance matrix after
each iteration. Many studies [121, 93] have shown it to have
a superior performance over other optimization algorithms in
continuous optimization problems. The CMA-ES had the best
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performance in the benchmark problems in the CEC 2005 com-
petition and the COCO benchmarks workshop. There has been
a lot of work to further improve the performance of the stan-
dard CMA-ES. These include the restart CMA-ES [23], the lo-
cal CMA-ES [22], the CMA-ES using active covariance matrix
[116], the (1+1) CMA-ES using “incremental Cholesky update”
[114], the functionally specialized CMA-ES [1], the L-CMA-ES
[122], the sep-CMA-ES [189], and the BI-population CMA-ES
[94]. In the following subsections, we outline the three variants
of CMA-ES studied in this thesis.

3.3.1 The standard (µ,� ) CMA-ES

In each iteration k of the standard (µ,� )-CMA-ES [106, 104],
� number of candidate solutions are generated by sampling a
multi-variate normal distribution N (0,C) with mean 0 and a
n⇥n covariance matrix C. The µ best solutions are selected to
update the distribution parameters for the next iteration step
k+1. The standard CMA-ES employs the concept of cumulative
step adaptation (CSA). There are two evolution paths p� and
pc, both of them are two n-dimensional vectors used to accu-
mulate information about the recent steps of the strategy. The
learning of the accumulating information is controlled by three
independent learning rates c�, c1 and cc that change the global
step size � and the covariance matrix C.

Algorithm 3 shows the pseudo code of the standard (µ,� )
CMA-ES. The algorithms starts by initializing a few parameters
including the distribution mean m1, the step size �k, two evolu-
tion paths p�

1 and pc
1, and the covariance matrix C1. From line

4 to line 7, the CMA-ES samples its o↵spring by the equation
mk + �kN (0,Ck). The notation �kN (0,Ck) denotes the ran-
dom vector in n-dimensional drawn from a multivariate normal
distribution and is equivalent to N (0, (�k)2Ck). The equation
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in line 5 can basically be rewritten into xi
k  N (mk, (�k)2Ck).

The new mean distribution mk+1 is updated in line 8; it is es-
sentially the weighted sum of the best µ out of the � candidate
solutions. The symbol xi:� represents the i-th best of the candi-
date solutions x1, . . . ,x� and therefore we have f(x1:�)  · · · 
f(x�:�).

The step-size �k is updated using cumulative step-size adap-
tation (CSA), sometimes also referred to path length control.
The evolution path p�

k , which is also called the search path, is
updated first in line 9. The first term (1�c�)p�

k on the right hand
side of the equation represents the discounted evolution path p�

k .
The constant c� controls how much information is accumulated
in the backward time horizon. The second term in the equa-
tion represents the current update based on the displacement
of the new mean distribution mk+1. The term

p

c�(2� c�)µw

is the complement for discounted variance. The constant µw

is the variance e↵ective selection mass for 1  µw  µ. The
Ck
� 1

2 denotes the unique symmetric square root of the inverse
of Ck, such that the equation Ck

� 1
2 =
p
Ck
�1

=
p

Ck
�1 holds.

Alternatively, if BDBT = C is an eigen-decomposition into
an orthogonal matrix B with a diagonal matrix D, we have
Ck
� 1

2 = BD�
1
2BT .

The new evolution path for covariance matrix pc
k+1 (line 11) is

as the weight sum of the current pc
k and the displacement of the

new mean distribution mk+1. Similarly, the constant cc controls
how much information from the previous steps is needed. The
indicator function in line 10 evaluates whether the length of
evolution path exceeds a threshold value or not. If it does, the
evolution path for the covariance matrix will be updated as the
new mean distribution mk+1. The purpose is to stall the update
of pc when � increases rapidly.

The covariance matrix C’s update consists of two parts (line
13): a rank one update and a rank-µ update. The term cµ +
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Table 3.1: Default parameter values of the (µ,� )-CMA-ES

� = 4 + b3 ln (n)c
µ = b�/2c
wi=1,...,µ =

ln(µ+ 1
2 )�ln(i)

P

µ

j=1 (ln(µ+ 1
2 )�ln(j))

µw = 1
P

µ

i=1 w
2
i

c� = µ
w

+2
n+µ

w

+3

d� = 1 + 2 ·max
⇣

0,
q

µ
w

�1
n+1 � 1

⌘

+ c�

cc =
4

n+4

c1 =
min(2,�/3)

(n+1.3)2+µ
w

cµ =
2(µ

w

�2+ 1
µ

w

)

(n+2)2+µ
w

c1pc
k+1p

c
k+1

T + in line 13 is basically the rank-one update that
includes the use of the evolution path pc. The constant c1 is
the learning rate for the rank-one update of the covariance ma-
trix. The term cµCµ refers to the rank-µ-update that computes
a covariance matrix Cµ as a weighted sum of the covariances of
successful steps of the µ best individuals. The constant cµ is the
learning rate for the rank-µ update and must not exceed 1� c1.
The update of C itself is a replacement of the previously accu-
mulated information by a new one with corresponding weights
of importance.

The step size � in line 14 is increased if and only if ||p�
k+1||

is larger than the expectation of E||N (0, I)||, and is decreased
if it is smaller. The constant d� is the damping parameter and
is usually close to one. Table 3.1 shows the default parameters
used in the standard (µ,� )-CMA-ES.

3.3.2 sep-CMA-ES

In the standard CMA-ES, the full learning task scales roughly
with n2 and can dominate most of the search cost. This is one
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Algorithm 3: Pseudo Code of the standard (µ,� ) CMA-ES

1 Given: f : Rn ! R, N 2 Rn, �1 > 0,m
k

2 Rn,p�

k

,pc

k

2 Rn,C
k

2 Rn⇥n

2 Initialise m1,�1, p�

1 = 0, pc

1 = 0, C1 = I,k = 1
3 repeat
4 while i  � do
5 xi

k

 m
k

+ �
k

N (0,C
k

)
6 f

i

= f(xi

k

)
7 i i+ 1

8 m
k+1 =

P

µ

i=1wi

x
i:�

9 p�

k+1 = (1� c
�
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k

+
p

c
�

(2� c
�

)µ
w
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� 1
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k+1�m

k

�

k

10 h
�

= 1n||p�

k+1||<
p

1�(1�c

�

)2(g+1)(1.4+ 2
n+1 )E||N (0,I)||

o

11 pc

k+1 = (1� c
c

)pc

k

+ h
�

p

c
c

(2� c
c

)µ
w

m

k+1�m

k

�

k

12 Cµ =
P

µ

i=1wi

x

i:��m

k

�

k

⇥ (x
i:��m

k

)T

�

k

13 C
k+1 = (1� c1 � c

µ

)C
k

+ c1pc

k+1p
c

k+1
T + c

µ

Cµ

14 �
k+1 = �

k

exp
⇣

c

�

d

�

⇣

||p�

k+1||
E||N (0,I)|| � 1

⌘⌘

15 k  k + 1
16 until termination condition is met

of the major limitations of the standard CMA-ES because of
the high degree of freedom n2+n

2 in the covariance matrix. One

of the solutions is to reduce the degree of freedom from n2+n
2 to

n where only the diagonal of the covariance matrix is adapted.
The resulting algorithm is called “sep-CMA-ES” [189]. There
are two simple changes undertaken in sep-CMA-ES. First, the
covariance matrix C is constrained to be diagonal. Second, the
learning rate cµ is increased. This means that the mutation dis-
tribution is sampled independently in the given coordinate sys-
tem using n individual variances. For sep-CMA-ES, the changes
to the updated equations in Algorithm 3 and Table 3.1 are:

1. The original update of the covariance matrix in line 13 is
changed to

cjjk+1 = (1� cµ)c
jj
k +

cµ
µw

(pc
k+1)

2
j + cµ(1� 1

µw
)(Cµ)jj (3.2)
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for j = 1, . . . n where cjj and (Cµ)jj denotes the jth diago-
nal elements of the covariance matrix C and the matrix Cµ

respectively. The terms
�

pc
k+1

�

j
represents the jth element

of the evolution path pc.

2. The learning rate for rank-µ update is updated by:

csep�CMA�ES
µ =

n+ 2

3
· cµ (3.3)

3.3.3 (1+1) CMA-ES

The (1+1)-CMA-ES is a new variant that has been recently
proposed [115] as an extension of the (1+1)-ES with the one-fifth
success rule [184]. It di↵ers from the standard CMA-ES variant
in that: (1) it is an elitist algorithm, and (2) the step size and
the covariance matrix associated to the search distribution are
adapted. The experimental results in [115] show that the (1+1)-
CMA-ES is about 1.5 times faster than the standard CMA-ES
on unimodal functions.

We follow the principles introduced in [115] and the (1+1)-
CMA-ES is summarized in Algorithm 4. A candidate solution
x0k (line 6) is sampled by perturbing the current solution xk by
adding a normal distributed vector with mean vector 0 and co-
variance matrix Ck , scaled by the mutation step-size �k. This
candidate solution is accepted only if f(x0k) < f(xk). The mu-
tation step-size (line 8) is adapted using the average success rate
psucc such that it is increased if the success rate is strictly larger
than the target probability psucctarget, and decreased if it is strictly
smaller. If f(x0k) < f(xk), the covariance matrix (line 11) is
adapted by adding the matrix pk+1pk+1

T a multiple of Ck the
rank-one update where pk+1

T is the transpose of pk+1. We will
use the same default settings as in [115] for all strategy param-
eters. For completeness, the default values of parameters are
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Table 3.2: Default parameter values of the (1+1)-CMA-ES

psucctarget =
2
11 ,cp =

1
12

cc =
2

N+2 ,cµ = 2
N2+6

pthresh = 0.44

shown in the Table 3.2.

Algorithm 4: Pseudo Code of the (1+1)-CMA-ES

1 Given: f : Rn ! R, x1,N 2 Rn, �1 > 0,psucc 2 R, p1 2 R,C1 2 Rn⇥n

2 Initialise x1, �1, psucc
k

= psucctarget,k = 1
3 repeat
4 A

k

= chol(C
k

) where chol(·) is the Cholesky decompositions
such that C = AAT

5 z
k

 N (0, I)
6 x

0
k

 x
k

+ �
k
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k

z
k
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1{f(x0
k

)f(x
k

)}
8 �
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k+1�p
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n·(1�p

succ
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⌘

9 if f(x
0
k

)  f(x
k

) then
10 p

k+1  (1� c
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)p
k

+ 1{psucc
k+1<p

thresh}
p
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c
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z
k
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1� c
µ

+ c
µ

1{psucc
k+1>p

thresh}cc(2� c
c

)
⌘
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µ

p
k+1 p

k+1
T

12 x
k+1  x

0
k

13 else
14 p

k+1  p
k

15 C
k+1  C

k

16 x
k+1  x

k

17 k  k + 1
18 until termination condition is met

3.3.4 CMA-ES with restarts

The multi-modality of a black-box optimization problem can
lead to the premature convergence of optimization algorithms.
In order to increase the probability of finding the best optima,
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two variants of CMA-ES with restart strategies are proposed.
In the IPOP-CMA-ES [23], the CMA-ES is restarted by dou-
bling the population size every time when the stopping criterion
is met. In BIPOP-CMA-ES [95], there are two regimes. One
regime is a CMA-ES with a large population and its population
size is doubled in every restart. Another regimes is a CMA-
ES with small population and the population size is randomly
assigned at each restart. BIPOP-CMA-ES restarts the regimes
sequentially, such that two regimes have almost the same budget
of function evaluations.

3.4 Cooperative Coevolutionary Algorithm (CCEA)

3.4.1 Background

Coevolutionary algorithms are one of the popular evolutionary
algorithms (EAs) and are fundamentally di↵erent from the tra-
ditional EAs. Fitness evaluations in the coevolutionary algo-
rithms always depend on the outcomes of interactions between
individuals. Traditionally, the coevolutionary algorithms can be
classified into the competitive coevolution [190] and the coop-
erative coevolution [173]. In a competitive coevolutionary algo-
rithm, the individuals compete against others. The increase in
the fitness of an individual will decrease the fitness of another
individual. In a cooperative coevolutionary algorithm (CCEA),
the fitness demonstrates how well the individuals perform when
they collaborate. Higher fitness is given to the individuals when
they perform well. Lower fitness is given when they perform
poorly. Intuitively, one may consider the CCEAs more superior
to the traditional EAs because the CCEAs decompose the search
space when they search the optima for optimization problems.
Each population of a CCEA only requires a search of the pro-
jection of a n-dimensional problem and it is therefore natural
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to assume that the CCEAs perform better. However, the work
[222] reported that every CCEA population easily searches for
components of candidate solutions that are robust to the other
components. Most importantly, the combinations of these com-
ponents are not always globally optimal. Therefore there are
many works in the literature that aim towards understanding
the behaviour of the CCEAs [171] and improving the perfor-
mance of the CCEAs for static optimization [161].

The CCEA [173] di↵ers from the traditional EAs in their ways
of solving problems. In a CCEA, an individual only represents
a single component of a candidate solution. The individuals
that represent the same component form a CCEA population.
An individual is evaluated by collaborating with the individu-
als from other populations. To reduce the noise for the fitness
evaluations, multiple evaluations are required. An CCEA indi-
vidual does not have one individual for its fitness evaluations,
but multiple sets of individuals for multiple fitness evaluations.
The final fitness of the individual can be the results of the maxi-
mum fitness, the minimum fitness or the average fitness over all
these multiple evaluations. The e↵ects of using di↵erent collab-
oration methods in a CCEA for static optimization are studied
in [224, 223]. In the literature, there are many real-world ap-
plications that used the cooperative coevolutionary approaches.
These applications include the optimization for the inventory
control systems [72], learning the constructive neural networks
[173], the multi-agent systems [57, 176], and the rule learning
[174, 175].

If a CCEA is used in static optimization, the CCEA opti-
mizes the functions di↵erently. For instance we now optimize a
two argument function f(x, y). A common EA usually consists
of one population. An EA individual is made up of the genes
that represent two dimensions. For problems like these, a CCEA
would usually have two populations. The genes of the CCEA
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individuals represent one dimension. The individuals in the first
and the second populations represent x and y arguments respec-
tively. Both populations evolve separately. The only di↵erence
is in their fitness evaluations. A CCEA individual from a popu-
lation chooses an individual from the other population and then
they are evaluated by the objective function f(x, y).

There are a few collaboration methods in the literature. One
simple way for an individual to choose collaborators is to select
the best-fit individuals from the previous rounds of evaluations.
This method is called “best collaboration”. Another method
is called “random collaborations’. In the random collaboration,
an individual randomly chooses the collaborators. The fitness of
the selected individuals is never considered. Another common
method is “complete collaboration”. In the complete collabora-
tion, an individual collaborates with all individuals from other
populations. Moreover, an individual can use di↵erent collab-
oration methods to select its collaborators. For instance, an
individual can use the best collaboration method to choose the
best-fit collaborator and use the random collaboration to select
four random collaborators [223].

In the literature, the work [222] reports that the CCEAs lose
a lot of information by projecting the search space into the sep-
arated components. The fitness of the components is sensitive
to the components with which they are chosen. As a result, the
CCEAs are easily trapped and driven toward the sub-optimal
solutions. One way to tackle it is to provide the CCEA in-
dividuals with more information about the best collaborators.
Another method is to allow an individual to collaborate with a
large number of individuals and to take the maximum fitness
from these collaborations. The early works [56, 223] have shown
that the performance is better when taking the maximum fit-
ness of these evaluations, rather than taking the average fitness
or the minimum fitness. The advantages of using multiple col-
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laborators are graphically illustrated in the work [162]. The
experimental study [159] has also demonstrated that the perfor-
mance of a CCEA can be further improved if the collaboration
methods are changing during the course of optimization. Other
recent works [203, 160] focus on an archive methods to store the
useful collaborators in every generation. The method produces
an archive of individuals that provides a good assessment with
the whole CCEA population. The size of the archive can be very
small and result in a significant reduction in numbers of fitness
evaluations. However, there are two di�culties in this archive-
based collaboration method. Firstly, it is di�cult to decide what
and when the collaborators are chosen into the archive Secondly,
it is di�cult to determine the optimal sizes of the archive. A
large-sized archive will certainly improve the accuracy of finding
the best collaborators, but having too large an archive will cost
too much in terms of numbers of function evaluations.

There are many empirical studies that focus on various as-
pects to better understand the dynamic of a CCEA for the static
optimization. It includes the collaboration methods [223], the
interaction frequency for the CCEA populations [170] and the
updating timings in the sequential and parallel variants of a
CCEA [169]. The most prominent study is the one by [171, 168].
In the study, the authors analyze the dynamic of a CCEA by
investigating the trajectories of the best-of-generation individu-
als and by studying the best-response curves. It is found that
the performance of a CCEA is greatly correlated to the best-
response curves1 that are fundamentally the basic properties of
the underlying optimization problems. The settings of a CCEA,
including the collaboration methods, the use of the elitist indi-
viduals and the interaction frequency for the CCEA populations,

1The term “best response curves” was originally used in a two-populations CCEA [171,
168]. The authors also mentioned that when more than two populations are used, the best-
response curves become the best-response surfaces or even the best-response subspaces in
the higher dimensions.
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are dependent on the intersections of the best-response curves.
For instance, the experimental results show that a CCEA us-
ing the best collaborations can outperform a CCEA using the
random collaborations as the best-response curves are perpen-
dicular to each other.

3.4.2 The (µ +, �)-CCEA

We used the well-known (µ +, �)-selection scheme from evolution
strategies (ES), applied them in a CCEA and investigate its per-
formance in our simulations. Fundamentally, an ES individual
di↵ers from a CCEA individual. In a (µ +, �)-ES, an individual,
a, is a 3-tuple a = [xa,�a, fa(xa)], comprising of its candidate
solution vector xa 2 Rn, the mutation step size �a 2 Rn

+ and
the fitness computed by the objective function being optimized
f : Rn ! R,x 7! f(x). In a (µ +, �)-CCEA, a CCEA in-
dividual, b, is a 4-tuple b = [xb, �b, cb, fb(cb)], comprising of a
component of the candidate solution2 xb 2 R, the mutation step
size �b 2 R+, the collaboration vector cb 2 Rn and the fitness
computed by the objective function that takes the collaboration
vector cb as the input argument. The major di↵erence is that an
ES individual directly uses the candidate solution xa to evalu-
ate its fitness while a CCEA individual has to first combine the
component of its candidate solution xb with the components of
candidate solutions in other individuals to form a collaboration
vector cb then use the vector cb to evaluate the fitness of the
CCEA individual b.

Algorithm 5 describes the details of the (µ +, �)-CCEA. The
CCEA first initializes n number of CCEA populations Qi

k, 8i 2
1, . . . , n. Each CCEA population Qi

k consists of µ number of
parents that are first evaluated by the random collaboration
method (line 5). The best collaboration method cannot be used

2We can define a CCEA individual such that the number of dimensions for a component
of candidate solution is greater than 1, i.e. x

b

2 Rd for d > 1.
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in the beginning, because we need the “best individuals” but
none of the individuals are evaluated when the algorithm starts.
Algorithm 6 shows how a CCEA individual selects its collabora-
tors randomly. In line 7 of the Algorithm 6, the CCEA individ-
ual b selects the collaborators from other populations by using
a uniform distribution U(1, |Qi|) where |Qi| represents the pop-
ulation size of Qi and U(1, |Qi|) uniformly returns the random
integer between 1 and |Qi|. Every individual of the same pop-
ulation has the same probability of becoming the component
of the collaboration vector c for the CCEA individual b. Note
that in RandomCollaborate(), the fitness of individuals is not
considered. Another collaboration method is the best collabora-
tion method and it is shown in Algorithm 7. The major di↵er-
ence between RandomCollaborate() and BestCollaborate()

is step 7, where the individuals with the maximum fitness are
selected. Both of the procedures return the collaboration vector
c 2 Rn that is used to evaluate the fitness of the CCEA indi-
vidual b. Finally the collaboration methods used in this thesis
are sequential, meaning that the CCEA always uses the updated
individuals in the populations Q1, . . .Qn.

After selecting the collaborators in line 5, the CCEA enters
the main loop. It then assigns the parents into the population
for the next generation Qi

k+1 if the plus selection is used (line
9), otherwise an empty set is assigned (line 11). The next step
is to generate � number of o↵springs sequentially. An o↵spring
is first cloned from its parent (line 14). If the mutative �-self
adaptation is used, its mutation step size is updated (line 16).
After the mutation step size is updated, the o↵spring is gener-
ated (line 17) by adding a normal distribution random scalar
N (0, 1) (scaled by �q0) to xq

ij

. The collaboration vector cb0 is
formed by calling either one of the collaboration procedures: ei-
ther RandomCollaborate() and BestCollaborate(). The o↵ -
spring is then evaluated (line 19) and is added to the population
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Qi
k+1 (line 20).
After all the individuals are generated, the selection takes

place in step 22. When the plus selection and the comma se-
lection are used, µ+ � number and � number of individuals are
ordered accordingly for their fitness. The best µ individuals in
each population Qi are selected for the next generation. The
algorithm iterates until the termination condition is met.

Algorithm 5: Pseudo Code of the (µ +, �)-CCEA

1 Given: f : Rn ! R, x1,N 2 Rn, � > 0
2 Initialise Qi

1, 8i 2 {1, . . . , n},k = 1
3 for i = 1 to n do
4 for j = 1 to µ do
5 c

q

ij

 Collobrate(q
ij

,Q1
k

, . . . ,Qn

k

)

6 f
q

ij

 f
�

c
q

ij

, k
�

/* initialize parent’s fitness */

7 repeat
8 if Plus-selection then
9 Q

k+1  Q
k

10 else
11 Q

k+1  ;
12 for i = 1 to n do
13 for j = 1 to � do
14 q0  q

ij

2 Qi

k

15 if Self-adaptive then
16 �

q

0  �
q

ij

exp
�

⌧N
i

(0, 1) + ⌧
0N

j

(0, 1)
�

17 x
q

0  x
q

ij

+ �
q

0 · N (0, 1)
18 c

q

0  Collobrate(. . .)
19 f

q

0  f (c
q

0 , k)
20 Qi

k+1  Qi

k+1 [ {q0}
21 for i = 1 to n do

22 Qi

k+1  
n

b
j:|Qi

k+1||1  j  µ
o

23 k  k + 1
24 until termination condition is met
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Algorithm 6: Random Collaboration

1 RandomCollaborate(b,Q1,Q2, . . . ,Qn�1,Qn)

2 Given: c 2 Rn

3 for i = to n do
4 if b 2 Qi then
5 c

i

 x
b

6 else
7 k  U(1, |Qi|)
8 c

i

 x
b

k

for b
k

2 Qi

9 Return c

Algorithm 7: Best Collaboration

1 BestCollaborate(b,Q1,Q2, . . . ,Qn�1,Qn)

2 Given: c 2 Rn

3 for i = to n do
4 if b 2 Qi then
5 c

i

 x
b

6 else
7 b

k

 argmax
b2Qi f

b

8 c
i

 x
b

k

for b
k

2 Qi

9 Return c

3.5 Discussion

3.5.1 Why CMA-ES?

In this thesis, we use CMA-ES as a baseline optimization algo-
rithm when comparing the proposed sampling method in Chap-
ters 4, 5 and 6. We also study its behaviour for dynamic envi-
ronment in Chapter 7. It is a starting point to further improve
optimization techniques in black-box optimization. CMA-ES is
chosen in this thesis because of its invariance properties. The im-
portance of invariances in science has long been acknowledged.
The invariance of an algorithm with respect to a given transfor-
mation of the problem domain is a source of robustness, as any
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theoretical or empirical result for a given problem instance can
be extended to the whole class of problems obtained by applying
the transformation. From a theoretical perspective, this invari-
ance property is a source of robustness. From an algorithmic
perspective, it removes the need to tune the algorithm hyper-
parameters according to some (generally unknown) scale of the
fitness function. CMA-ES exhibits the invariances against the
rank-preserving transformation of the objective function f , the
variance against angle preserving transformation of the search
space (rotation, reflection, translation) and the scale invariance.
The key invariance property which contributes the most into
the good performance of the CMA-ES is invariance with respect
to the rotation of the search space. Most of Evolutionary Al-
gorithms lack this property and are therefore outperformed by
CMA-ES on problems, where the algorithm may benefit from
the learning of correlations between the variables.

3.5.2 Why CCEA?

CCEAs have also been used in the large scale optimization
problems [238, 132]. In these works, the CCEA populations
are “grouped” in such a way that the interacting variables are
jointly optimized while the non-interacting variables are opti-
mized as separable sub-problems in a lower dimension. The
works consider each variable as one dimensional sub-problem.
The algorithms using di↵erent grouping strategies [156, 138] are
proposed. All these algorithms attempt to divide the variables
such that the non-separable sub-problems are grouped together
while the other separable sub-problems are optimized separately.
In this way, the CCEA can optimize the high-dimensional prob-
lems using a divide-and-conquer method to tackle the curse of
dimensionality. However, these works focus on large scale static
optimization and whether these methods are applicable in the
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large scale dynamic optimization has yet to be investigated.

2 End of chapter.
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Chapter 4

Halfspace Sampling in
Evolution Strategies

Natural selection is anything but random.

Richard Dawkins

4.1 Motivations

Evolution Strategies (ESs) are robust random search algorithms.
They are designed to minimise objective functions that map a
continuous search space Rn into R. In a (1+1)-ES, an o↵spring
is created from a single parent Xk 2 R at iteration k by adding
an independent random vector N k to Xk. If the o↵spring is
better than its parent, it is then selected to be the next par-
ent Xk+1. Otherwise, o↵spring are iteratively generated until a
better solution is found.

The elitist (1 + 1)-ES is the fastest and the most local vari-
ant in the ES family, and has been studied in various literature
[185, 41]. In the local search scenario, the (1+1)-ES outperforms
its non-elitist counterparts. Conventionally, the (1 + 1)-ES im-
plements a step size adaptation - the so-called one-fifth success
rule. The basic idea is to increase a step size after a success-
ful step and decrease it after a failure. A history of success
probabilities is maintained as a threshold during the course of

72



CHAPTER 4. HALFSPACE SAMPLING IN ES 73

optimization so that the strategy increases its step size when the
success probability is larger than 1/5, and decreases it otherwise.
Intuitively, if ”too many” steps are successful, this indicates that
the search is too local. If ”too few” steps are successful, this in-
dicates that the step size used for sampling is too large. A recent
development on (1 + 1)-ES is the implementation of the covari-
ance matrix adaptation (CMA) with rank-one update [115]. In
the (1+1)-CMA-ES, it adapts not only the step size �k but also
the covariance matrix Ck 2 Rn⇥n associated with the search
distribution of mutation vectors based successful steps.

This chapter introduces a novel sampling method that aims
at improving the convergence rates of ES on unimodal func-
tions. We propose to divide the search space into two halfspaces
in Rn such that the hyperplane bounding the halfspaces passes
through the parent Xk. A proposed ES has a tendency to sam-
ple candidate solutions in the positive halfspace in which the
previous successful steps are located. All the unsuccessful steps
in the recent iterations are also used to estimate the positive
halfspace. In order to estimate the optimal positive halfspace
that contains as many better solutions as possible, we propose
to maintain a new vector nk 2 Rn. This vector is a normal vec-
tor to the hyperplane bounding the halfspaces and is updated
as the exponential weighted sum of the previous successful and
unsuccessful steps. The idea is similar to that of evolution paths
in [107], but here it mainly focuses on the evolution of halfspaces
via accumulation of significant information from steps in recent
iterations.

We also investigate theoretically the gain we can expect from
halfspace sampling on the spherical functions. Linear conver-
gence of the scale-invariant step size (1 + 1)-ES with halfspace
sampling is derived and its lower bounds are compared with
those of the standard (1 + 1)-ES. We express the convergence
rates in terms of expectations of random variables in finite di-
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mensions of the search space. Lastly, we derive the expressions
for the asymptotic normalised convergence rates when the di-
mension goes to infinity.

The objective of this chapter is to present the concept of
halfspace sampling in a (1 + 1)-ES. In detail, the contributions
of this chapter are

• to introduce halfspace sampling in the elitist (1 + 1)-ES,

• to theoretically investigate algorithms’ convergence rates
on the spherical functions in finite and infinite dimensions,

• to experimentally compare convergence rates to evaluate
the impact of halfspace sampling,

• to implement halfspace sampling in the (1 + 1)-CMA-ES
and present the empirical performance results.

4.2 Halfspaces

We start with formally defining halfspaces.

Definition 1. Let n and x0 be two vectors in Rn. The set
H(n,x0) =

�

x 2 Rn : nT (x� x0) = 0
 

is a hyperplane in Rn

passing through x0 and it has a normal vector n. Corresponding
to H, there is a pair of halfspaces: a positive closed halfspace
H+(n,x0) and a negative closed halfspace H�(n,x0):

H+(n,x0) =
�

x 2 Rn : nT (x� x0) � 0
 

(4.1)

H�(n,x0) =
�

x 2 Rn : nT (x� x0)  0
 

(4.2)

A halfspace is a convex set and its boundary is the hyper-
plane H that separates the space into two halfspaces. It defines
a reflection that fixes the hyperplane and interchanges two half-
spaces. By the definition, we can see that a hyperplane H is
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orthogonal to its normal vector n. Any vector x with respect
to the point x0 forms an acute angle with n when x lies in the
positive closed halfspace, i.e. x 2 H+(n,x0). Similarly, it forms
an obtuse angle if x lies in the negative closed halfspace, i.e.
x 2 H�(n,x0). A positive closed halfspace can be derived from
its respective negative closed halfspace by reversing the sign of
the vector n:

H+(n,x0) = H�(�n,x0) = �H�(n,x0) (4.3)

We can also derive for the negative halfspace similarly. Lastly,
we define a lemma that is useful when describing the optimal
halfspaces in the next section:

Lemma 1. Let x,x0 2 Rn be two vectors. Assume that x0 +
x lies in the positive closed halfspace H+(n,x0) with a normal
vector n 2 Rn. Then, the reflection x0 � x with respect to x0

lies in the negative closed halfspace H�(n,x0).

Proof. If x0 + x lies in the closed positive halfspace H+(n,x0),
nTx must be greater than or equal to zero. Putting a reverse of
x inverts the sign and hence �nTx must be less than or equal
to zero. Therefore, by definition, x0�x must lie in the negative
closed halfspace.

In halfspace sampling, the basic idea is to generate new candi-
date solutions in a halfspace where the previous successful sam-
ples are located. At iteration k, the positive halfspaceH+(n,Xk)
with respect to the parent Xk is formed by accumulating the in-
formation of successful steps in recent iterations while the neg-
ative halfspace H�(n,Xk) is formed from the information of
unsuccessful steps. The two halfspaces have the same support-
ing hyperplanes that passes through the parent Xk. Instead of
sampling o↵spring that can lie in the whole search space Rn,
the (1 + 1)-ES with halfspace sampling generates o↵spring that
lies in the positive halfspace H+(n,Xk): If an o↵spring Xk +N
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lies in the positive halfspace, no action is required, where N
denotes a vector drawn from a standard multivariate normal
distribution. Only if an o↵spring lies in the negative halfspace
Xk + N 2 H�(n,Xk) , by Lemma 1, we reverse the direction
of the random vector and the o↵spring will then lie in the pos-
itive halfspace i.e. Xk �N 2 H+(n,Xk). Figure 4.1 illustrates
a summary of the geometric interpretation for a parent, two
halfspaces and the supporting hyperplane.

Algorithm 8 shows the pseudo code of the (1 + 1)-ES with
halfspace sampling. We name the resulting strategy as (1+1hs)-
ES. Consider a scalar objective function f : Rn 7! R,x 7! f(x);
Xk denotes the current parent at iteration k, and �k 2 R+ is
the step size. The vector nk denotes the normal vector of the
hyperplaneH that passes through the parentXk. The algorithm
starts by initialising nk as a null vector 0. An instantiation of a
multivariate normal distribution Zk ⇠N (0, I) with mean vector
0 and identity covariance matrix is generated. The vector Zk

is used if it lies in the positive halfspaces H+(nk,0), otherwise
�Zk is used.

4.3 Optimal Halfspaces in Convex Sublevel
Sets

In a black box optimization scenario, the location of the op-
timum is unknown. It is necessary to understand the optimal
halfspaces, which contains as many better solutions as possible.
Understanding the optimal halfspaces is also important for con-
vergence analysis in the next section as it a↵ects the optimal
bounds for convergence rates of the (1+1hs)-ES. We now derive
the optimal halfspaces at any point x 2 Rn when we optimise
objective functions with convex sublevel sets. To achieve this,
we first define the relationship between the supporting hyper-
plane and the tangent hyperplane at any point x.
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Definition 2. Let f : Rn 7! R,x 7! f(x) be an objective func-
tion with convex sublevel sets and x0 2 Rn be a point in n-
dimensional space. At the point x0 with an objective function
value f(x0), the supporting hyperplane contains all the points in
the convex sublevel set C�(x0) = {x 2 Rn : f(x)  f(x0)} with
objective function values smaller than or equal to f(x0). If f is
di↵erentiable at x0, then the tangent hyperplane T (x0) at x0 is
the supporting hyperplane.

With this definition, we can derive the below lemma that the
optimal halfspaces at a point x0 are delimited by the supporting
hyperplane H at the point x0.

Lemma 2. Let f be an objective function with convex sublevel
sets and assume f is di↵erentiable. At the point x0 2 Rn

with an objective function value f(x0), the optimal halfspaces
H⇤+(n

⇤,x0) and H⇤�(n
⇤,x0) with a normal vector n⇤ are delimited

by the tangent hyperplane T (x0). The optimal positive halfspace
H⇤+(n

⇤,x0) contains all the points in C�(x0).

Proof. We prove on a geometrically based argumentation. As-
sume a minimisation for the objective function f . Given a point
x0 2 Rn, by definition, the tangent hyperplane T (x0) at x0 sepa-
rates the whole space into two halfspaces. The positive halfspace
H+(n,x0) contains all the points in C�(x0) with objective func-
tion values smaller than or equal to f(x0) while the negative
halfspace contains the points with larger or equal objective val-
ues. Hence the optimal halfspaces for the better solutions are
delimited by the tangent hyperplane T (x0) at x0.

By this lemma, the optimal positive halfspace delimited by
the tangent hyperplane contains all the better solutions if we are
optimising an objective function that has convex sublevel sets.
We can additionally establish another lemma that the gradient
descent direction at a point x0 is the normal of the supporting
hyperplane for the optimal halfspaces at x0.
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Lemma 3. Let H⇤+(n
⇤,x0) and H⇤�(n

⇤,x0) be the optimal half-
spaces at the point x0 as in Lemma 2. If f is di↵erentiable and
has the convex sublevel sets, the normal vector n⇤ is in the form

of
⇣

�@f(x0)
@x1

, . . . ,�@f(x0)
@x

n

⌘

with a gradient descent direction at x0.

Proof. By Lemma 2, the tangent hyperplane T (x0) separates
the space into the optimal halfspaces. By definition of a tan-
gent hyperplane, the normal of a tangent hyperplane at x0 is
⇣

@f(x0)
@x1

, . . . , @f(x0)
@x

n

⌘

. Reversing the direction of this normal gives

the normal of the supporting hyperplane that contains all the
points in C�(x0).

Algorithm 8: Pseudo Code of a Simple (1+1)-ES with Halfspace Sam-
pling

1 Initialise X1, �1, n1 = 0, k = 1
2 repeat
3 Z

k

⇠N (0, I)
4 if Z

k

/2 H+(nk

,0) then
5 Z

k

= �Z
k

6 X
0
k

= X
k

+ �
k

Z
k

7 if f(X
0
k

)  f(X
k

) then
8 X

k+1  X
0
k

9 else
10 X

k+1  X
k

11 k = k + 1
12 updateHalfSpaces(n

k

,Z
k

, f(X
0
k

), f(X
k

))
13 until termination condition is met ;

4.4 Linear Convergence on Spherical Func-
tions

In this section, we investigate in theory the gain brought by
halfspace sampling. We are particularly interested in the linear
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Figure 4.1: Halfspace sampling on an objective function f with convex sub-
level sets. The flag in the diagram represents the optimum of the function.
The curve represents the points having function value f(x). The supporting
hyperplane H (black solid line) with a normal vector n separates the space
into the positive halfspace H+(n,x) (the area above the line) and the nega-
tive halfspace H�(n,x) (the area below the line). If a candidate solution (the
red vector) lies in the negative halfspace, it will be discarded. Its reflection
(the blue vector) with respect to x, which lies in the positive halfspace, will
be used.
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convergence rates when the optimal halfspaces are used, i.e., n⇤

is known. In practice, the optimal halfspaces are not known
and can be estimated only during the course of optimization.
However, it is still of interest as we can understand the maxi-
mum gain brought by halfspace sampling as well as the optimal
bounds of convergence rates of the (1 + 1hs)-ES. We refer the
resulting ES as the (1 + 1hs)-ES⇤ where the optimal halfspaces
are known.

Here we use the same definition of the linear convergence rate
as [117, 25] and investigate convergence rates on spherical func-
tions with the optimum in zero g(||x||), g 2M whereM denotes
the set of functions g : R 7! R that are strictly increasing. We
study the case of the scale-invariant step size where �k = �||Xk||.
We refer to the resulting ES as scale-invariant step size ES. For
di↵erent variants of algorithms with scale-invariant step size,
the linear convergence is proved by the following reasons. First,
there exists a CR 2 R such that for all k, k0 2 R with k > k0

1

⇤

1

k � k0
E



� ln
||Xk||
||Xk0||

�

= CR (4.4)

where ⇤ is the number of function evaluations in each iteration.
The convergence rate CR of the algorithm is compatible with
the almost sure convergence rate [25]. Therefore, we can prove
that with scale-invariant step size, almost surely

� 1

⇤

1

k � k0
ln

||Xk||
||Xk0||

���!
k!1

CR

For details of proof, please refer to [117, 25].

4.4.1 Preliminaries

Before establishing the main results, we derive some technical
results and introduce some useful definitions. In each iteration of
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a scale-invariant step size (1+1)-ES, a random independent vec-
tor following a standard multivariate normal distribution N is
sampled to create an o↵spring X

0

k = Xk+�||Xk||N . The distri-
bution of �||Xk||N depends in prior on Xk. However, since the
distribution of N is spherical, the distribution of Xk+�||Xk||N
will be the same if we start from any vector with unit norm, so
WLOG in the scale-invariant step size, the distribution is inde-
pendent of Xk and is determined by ||e1 + �N ||.
Lemma 4. Let H⇤+(n

⇤, e1) and H⇤�(n
⇤, e1) be the optimal half-

spaces at the point e1. On spherical functions, the normalised
normal vector n⇤ is �e1 and has the gradient descent direction
to the optimum.

Proof. By Lemma 3, the normal vector n⇤ has the gradient de-

scent direction and is a form of
⇣

�@f(x0)
@x1

, . . . ,�@f(x0)
@x

n

⌘

. At the

point e1, the gradient descent direction is �2e1. After normali-
sation, it gives �e1.

The lemma establishes that the tangent hyperspace with a
normal vector �e1 separates the space into two halfspaces, and
the convex sublevel sets C�(e1) lies in the positive halfspaces
only. We now establish another lemma that simplifies the event
of a candidate solution lying in the optimal halfspaces.

Lemma 5. Let H⇤+(n
⇤, e1) and H⇤�(n

⇤, e1) be the optimal half-
spaces at the point e1 = (1, 0, . . . , 0) where n⇤ is the vector
�e1. Also let x+

e1
be a candidate solution x+

e1
= e1 + �N sam-

pled from the parent e1. On spherical functions, the two events
�

x+
e1
2 H⇤+(n

⇤, e1)
 

and
�

x+
e1
2 H⇤�(n

⇤, e1)
 

can be written as
{� [N ]1  0} and {� [N ]1 � 0} respectively.

Proof. By definition of a positive halfspace, if x+
e1
2 H⇤+(n

⇤, e1),
then (n⇤)T

�

x+
e1
� e1

� � 0. By Lemma 4, substituting �e1 for
n⇤ and e1 + �N for x+

e1
gives �eT1 �N � 0. Projecting the N

onto the coordinate e1 and rearranging the terms, the result
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� [N ]1  0 holds. The event
�

x+
e1
2 H⇤�(n

⇤, e1)
 

can be derived
similarly.

We can establish a similar lemma for the candidate solution
x�e1 = e1 � �N .

Lemma 6. Let x�e1 be a candidate solution x�e1 = e1��N sam-
pled from the parent e1. On spherical functions, the two events
�

x�e1 2 H⇤+(n
⇤, e1)

 

and
�

x�e1 2 H⇤�(n
⇤, e1)

 

can be written as
{� [N ]1 � 0} and {� [N ]1  0} respectively.

Proof. The proof follows similarly the proof of Lemma 5.

With lemma 5 and 6, we can establish that on spherical func-
tions, an o↵spring x+

e1
(or x�e1) sampled from the parent e1 lies in

the positive halfspace only if the scalar projection of � [N ]1 onto
the first coordinate e1 has a negative sign. That implies that a
better solution is found only if � [N ]1 is negative. Otherwise,
a worse solution is sampled in the negative halfspace that does
not contain the convex sublevel sets C�(e1).

We now need to use the indicator function for the event of
an o↵spring lying in the optimal positive halfspace H⇤+(n

⇤, e1).
We also need the indicator function for the event of an o↵spring
being better than its parent e1. Therefore, we define the random
variables U ,V W+ and W�:

Definition 3. Let U = � [N ]1,V = �2| [N ]1 |+�||N ||2 , W+ =
2 [N ]1 + �||N ||2 and W� = �2 [N ]1 + �||N ||2

We express the indicators for the events of x+
e1

or x�e1 lying in
the optimal positive halfspace with respect to e1 as

1{x+
e12H⇤

+(n
⇤,e1)} = 1{U0} (4.5)

1{x�
e12H⇤

+(n
⇤,e1)} = 1{U�0} (4.6)
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and the indicator for the events of x+
e1

or x�e1 being better than
e1 as

1{x+
e1 is better than e1} = 1{W+0} (4.7)

1{x�
e1 is better than e1} = 1{W�0} (4.8)

We now establish one more technical lemma that is useful
when we derive the linear convergence rate of (1 + 1hs)-ES⇤.

Lemma 7. The following two equations hold

E
⇥

ln(1 + �W+1{U0,W+0} + �W�1{U>0,W�0})
⇤

=E
⇥

ln(1 + �W+1{W+0} + �W�1{W�0})
⇤

(4.9)

E
⇥

ln(1 + �W+ 1{U0,W+0} + �W�1{U>0,W�0})
⇤

= E
⇥

ln(1 + �V 1{V0})
⇤

(4.10)

where U = � [N ]1,V = �2| [N ]1 | + �||N ||2 , W+ = 2 [N ]1 +
�||N ||2 and W� = �2 [N ]1+�||N ||2 and N is a random vector
following a standard multivariate distribution.

Proof. Consider the event {U  0,W+  0} to prove equation
(4.9). Given � 2 R+, the event {W+  0} happens only if
U  0. Hence the event {U  0,W+  0} can be written as
{W+  0}. Similarly, we can write the event {U > 0,W�  0}
as {W�  0}. Replace the terms in equation (4.9) and the result
holds.

To prove equation (4.10), consider the event {U  0,W+  0}.
If U is negative, W+ is the same as V . Similarly in the event
{U > 0,W�  0}, if U is positive, then W� is the same as V .
Putting these together, the equation (4.10) is simplified to

E
⇥

ln(1 + �V 1{U0,V0} + �V 1{U>0,V0}).
⇤

Adding up the second and third terms in the logarithm gives
�V 1{V0} and hence the result holds.
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4.4.2 The (1+1)-ES with Optimal Halfspaces

We now prove the linear convergence of the (1 + 1hs)-ES⇤ with
scale-invariant step size, focus on investigation on the lower
bounds of convergence rates for (1 + 1hs)-ES⇤. By comparing
its lower bounds with those of a standard (1 + 1)-ES, we de-
rive that the maximum gain brought by halfspace sampling is a
factor of 2 in finite dimensions.

In a (1 + 1hs)-ES⇤ with scale-invariant step size, a single o↵-
spring X+

k = Xk + �||Xk||N is sampled from the parent Xk,
where N is a standard multivariate normal distribution inde-
pendent of Xk. If the o↵spring Xk + �||Xk||N lies in the op-
timal negative halfspace H⇤�(n

⇤,Xk), the direction of N is re-
versed and the o↵spring becomes X�k = Xk � �||Xk||N . By
Lemma 1, the new o↵spring lies in the optimal positive halfspace
H⇤+(n

⇤,Xk). Now, the update equation for ||Xk|| on spherical
functions reads:

||Xk+1|| = ||X+
k ||⇥ 1{X+

k

2H⇤
+(n

⇤,X
k

),||X+
k

||||X
k

||}
+ ||X�k ||⇥ 1{X+

k

/2H⇤
+(n

⇤,X
k

),||X�
k

||||X
k

||}
+ ||Xk||⇥ 1{X+

k

2H⇤
+(n

⇤,X
k

),||X+
k

||>||X
k

||}
+ ||Xk||⇥ 1{X+

k

/2H⇤
+(n

⇤,X
k

),||X�
k

||>||X
k

||} (4.11)

where X+
k = Xk + �||Xk||N and X�k = Xk � �||Xk||N . We

now establish the following lemma before we prove the linear
convergence of the (1 + 1hs)-ES⇤ with scale-invariant step size:

Lemma 8. Let Zk be the sequence of random variables

Zk =
1

2
ln
h

||Y+
k ||2 ⇥ 1{Y+

k

2H⇤
+(n

⇤,Y
k

),||Y+
k

||||Y
k

||}
+ ||Y�k ||2 ⇥ 1{Y+

k

/2H⇤
+(n

⇤,Y
k

),||Y�
k

||||Y
k

||}
+ ||Yk||2 ⇥ 1{Y+

k

2H⇤
+(n

⇤,Y
k

),||Y+
k

||>||Y
k

||}
+||Yk||2 ⇥ 1{Y+

k

/2H⇤
+(n

⇤,Y
k

),||Y�
k

||>||Y
k

||}
i

(4.12)
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where Yk = Xk/||Xk||, Y+
k = Xk/||Xk|| + �N and Y�k =

Xk/||Xk||��N . Then Zk are independent identically distributed
as

Z(1+1hs) =
1

2
ln
⇥

1 + �V 1{V0}
⇤

Proof. Because of the isotropy of the distribution of N and of
sphere function, we can first replace Y+

k , Y
�
k and Yk by e+1 , e

�
1

and e1 respectively, where e+1 = e1 + �N and e�1 = e1 � �N .
The distribution Zk equals to

Zk =
1

2
ln
h

||e+1 ||2 ⇥ 1{e+1 2H⇤
+(n

⇤,e1),||e+1 ||1}
+ ||e�1 ||2 ⇥ 1{e+1 /2H⇤

+(n
⇤,e1),||e�1 ||1}

+ 1{e+1 2H⇤
+(n

⇤,e1),||e+1 ||>1}
+1{e+1 /2H⇤

+(n
⇤,e1),||e�1 ||>1}

i

(4.13)

We then substitute the notations U , W+ and W� and expand
||e+1 ||2 as 1 + 2� [N ]1 + �2||N ||2 and ||e�1 ||2 as 1 + 2� [N ]1 �
�2||N ||2. By Lemma 5 and 6, the term in the logarithm of
equation (4.13) is simplified into

1{U0,W+0} + �W+1{U0,W+0} + 1{U>0,W�0}
+�W�1{U>0,W�0} + 1{U0,W+>0} + 1{U>0,W�>0} (4.14)

We substitute 1{U0,W+0}+1{U>0,W�0}+1{U0,W+>0}+1{U>0,W�>0} =
1 and the equation (4.14) is simplified as

1 + �W+1{U0,W+0} + �W�1{U>0,W�0} (4.15)

By Lemma 7, we can simplify equation (4.15) into 1+�V 1{V0}.
Injecting it into equation (4.13), we then obtain the result.

We are now ready to prove the linear convergence of the (1+
1hs)-ES⇤ and express its convergence rate in terms of Z(1+1hs).
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Theorem 1. The (1 + 1hs)-ES⇤ with scale-invariant step size
(�k = �||Xk||) converge linearly on the class of spherical func-
tions g(||x||), g 2M, and

lim
k!1

1

k
ln

||Xk||
||X0|| = CR(1+1hs)(�) =

1

2
E
⇥

ln(1 + �V 1{V0}
⇤

(4.16)

where V = �2| [N ]1 |+ �||N ||2 and N follows a standard mul-
tivariate normal distribution.

Proof. We start with the equation (4.11), square it and nor-
malise the equation by ||Xk|| and take the logarithm. We get

1

2
ln

||Xk+1||2
||Xk||2 =

1

2
ln
h

||Y+
k ||2 ⇥ 1{Y+

k

2H⇤
+(n

⇤,Y
k

),||Y+
k

||||Y
k

||}
+ ||Y�k ||2 ⇥ 1{Y+

k

/2H⇤
+(n

⇤,Y
k

),||Y�
k

||||Y
k

||}
+ ||Yk||2 ⇥ 1{Y+

k

2H⇤
+(n

⇤,Y
k

),||Y+
k

||>||Y
k

||}
+||Yk||2 ⇥ 1{Y+

k

/2H⇤
+(n

⇤,Y
k

),||Y�
k

||>||Y
k

||}
i

(4.17)

where Yk = Xk/||Xk||, Y+
k = Xk/||Xk|| + �N and Y�k =

Xk/||Xk||� �N . According to Lemma 8, by isotropy of the
standard multivariate normal distribution, the random variables
in the RHS of equation (4.17) are independent and identically
distributed as

Z(1+1hs) =
1

2
ln
⇥

1 + �V 1{V0}
⇤

.

By applying law of large number (LLN) for independent random
variable,

1

k
ln

||Xk||
||X0|| =

1

2k

k�1
X

i=0

ln
||Xi+1||2
||Xi||2

and it converges to E
⇥

Z(1+1hs)
⇤

, hence the result.
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We have derived the linear convergence rate of a (1 + 1hs)-
ES⇤. We now derive the gain brought from halfspace sampling
by considering the ratio of CR(1+1hs)(�) to CR(1+1)(�).

Theorem 2. The (1 + 1hs)-ES⇤ with scale-invariant step size
(�k = �||Xk||) converge linearly on the class of spherical func-
tions g(||x||), g 2M, and the convergence rate is 2 times faster
than that of the (1+1)-ES with scale-invariant step size, i.e.

CR(1+1hs)(�)

CR(1+1)(�)
= 2 (4.18)

Proof. First we refer to the equation (7) in [19] for the definition
of CR(1+1)(�). Consider the LHS of the equation (4.18) and by
Lemma 7, we can substitute equations (4.9) into (4.18),

CR(1+1hs)(�)

CR(1+1)(�)

=
E
⇥

ln(1 + �V 1{V0}
⇤

E
⇥

ln(1 + �W+1{W+0}
⇤

=
E
⇥

ln(1 + �W+1{W+0} + �W�1{W�0})
⇤

E
⇥

ln(1 + �W+1{W+0})
⇤ (4.19)

By Lemma 8 in [19],

E
⇥

ln(1 + �W+1{W+0} + �W�1{W�0})
⇤

=E
⇥

2 ln(1 + �W+1{W+0})
⇤

we can further write the equation (4.19) as

E
⇥

2 ln(1 + �W+1{W+0})
⇤

E
⇥

ln(1 + �W+1{W+0})
⇤

Hence the result holds.
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4.5 Asymptotic Convergence Rates

In this section, we study how the finite dimension convergence
rates derived previously for (1 + 1hs)-ES⇤ behave when the di-
mension goes infinity. We first derive the limit of the probability
of success ps(1+1hs)

(�/d) and a technical lemma.

Lemma 9. For all � > 0,

lim
n!1 ps(1+1hs)

(
�

n
) = Pr (| [N ]1 | � �/2) = �̄HN(

�

2
) (4.20)

where �̄HN is the complementary cumulative distribution of a

standard half-normal distribution, �̄HN(x) =
q

2
⇡

R1
x e�

x

2

2 dx or,

with the error function erf, �̄HN(x) = 1� erf
⇣

xp
2

⌘

.

Proof. We first start from the expression of ps(1+1hs)
(�/d):

ps(1+1hs)
(�/d) = Pr

⇣

�2| [N ]1 |+
�

n
||N ||2  0

⌘

(4.21)

= E
h

1{�2|[N ]1|+�

n

||N ||20}
i

(4.22)

By LLN, we can derive that

�2| [N ]1 |+
�

n
||N ||2 ���!

n!1 �2| [N ]1 |+ � (4.23)

Since 1{�2|[N ]1|+�

n

||N ||20}  1, we can apply Lebesgue dominated

theorem and therefore

E
h

1{�2|[N ]1|+�

n

||N ||20}
i

���!
n!1 E

⇥

1{�2|[N ]1|+�0}
⇤

(4.24)

RHS of equation (4.24) can be rewrite as

E
⇥

1{�2|[N ]1|+�0}
⇤

= Pr (�2| [N ]1 |+ �  0)

= Pr (| [N ]1 | � �/2)

Lastly Pr (| [N ]1 | � �/2) = 1� erf
⇣

�
2
p
2

⌘

= �̄HN(
�
2 )
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Lemma 10. The following equation holds for all � > 0

E
⇥| [N ]1 |1{|[N ]1|��/2}

⇤

=

r

2

⇡
exp(��

2

8
) (4.25)

Proof. First the LHS of equation (4.25) can be written as the
density of a standard half-normal distribution as

E
⇥| [N ]1 |1{|[N ]1|��/2}

⇤

=

r

2

⇡

Z 1

�/2
x exp(�x

2

2
) dx (4.26)

Integrating the RHS of equation (4.26) gives the result.

We now derive the asymptotic convergence rate of the (1 +
1hs)-ES⇤ with scale-invariant step size.

Theorem 3. Assuming the uniform integrability, for � > 0, the
convergence rate of the (1 + 1hs)-ES⇤ with scale-invariant step
size on spherical functions satisfies at the limit

lim
n!1n⇥CR(1+1hs)

⇣�

n

⌘

= �
r

2�2

⇡
exp(��

2

8
)+

�2

2
�̄HN(

�

2
) (4.27)

Proof. We start by investigating the limit of the random variable
of

CR(1+1hs)

⇣�

n

⌘

=
1

2
E
h

ln
⇣

1 +
�

n
min (�2| [N ]1 |+

�

n
||N ||2, 0)

⌘i

(4.28)

The following equation holds

lim
n!1n⇥ 1

2
ln(1+

�

n
min (�2| [N ]1 |+

�

n
||N ||2, 0))

���!
n!1

1

2
�min (�2| [N ]1 |+ �, 0) (4.29)
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Figure 4.2: Theoretical limits results of the convergence rates for the (1+1)-
ES in solid line (See Theorem 5 in [19]) and (1 + 1hs)-ES⇤ (Equation (4.27))
in dashed line if the dimension n goes to infinity.

We can further derive that

lim
k!1

n⇥ CR(1+1hs)

⇣�

n

⌘

=
�

2
E [min (�2| [N ]1 |+ �, 0)]

=
�

2
E
⇥

(�2| [N ]1 |+ �) 1{�2|[N ]1|+�0}
⇤

=� �E
⇥

(| [N ]1 |) 1{�2|[N ]1|+�0}
⇤

+
�2

2
Pr (�2| [N ]1 |+ �  0)

=� �E
⇥

(| [N ]1 |) 1{|[N ]1|��/2}
⇤

+
�2

2
Pr (| [N ]1 | � �/2) (4.30)

By Lemma 9 and 10, we substitute equations (4.20) and (4.25)
into (4.30), then the result follows.

By Putting together the expressions of asymptotic conver-
gence rates and limits of probabilities of success, we can obtain
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the gain brought by halfspace sampling in the (1+1hs)-ES⇤ when
the dimension n goes to infinity. With Lemma 9, we first derive
the limit of the probability of success in the (1 + 1hs)-ES⇤ is 2
times that of the (1 + 1)-ES.

Theorem 4. For all � > 0,

lim
n!1

ps(1+1hs)
(�n)

ps(1+1)(
�
n)

= 2 (4.31)

where ps(1+1)(
�
n) is the limit of the probability of success of the

(1 + 1)-ES.

Proof. By Lemma 13 in [19], the limit of the probability of suc-
cess of the (1 + 1)-ES can be written as

ps(1+1)(
�

n
) = � (��

2
) =

1

2

✓

1 + erf(� �

2
p
2
)

◆

(4.32)

Moreover, by Lemma 9, the LHS of equation (4.31) can be sim-
plified into

lim
n!1

ps(1+1hs)
(�n)

ps(1+1)(
�
n)

=
1� erf( �

2
p
2
)

1
2

⇣

1 + erf(� �
2
p
2
)
⌘ (4.33)

Since the error function has the property of

erf(� �

2
p
2
) = �erf( �

2
p
2
) (4.34)

we substitute equation (4.34) into (4.33), we obtain the results.

Theorem 5. Assuming the uniform integrability, for � > 0, the
convergence rate of the (1 + 1hs)-ES⇤ with scale-invariant step
size on spherical functions converges at a rate that is two times
faster than that of the (1 + 1)-ES with scale-invariant step size,
i.e.

lim
n!1

CR(1+1hs)

�

�
n

�

CR(1+1)

�

�
n

� = 2
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Proof. We start by substituting the CR into the expression as:

lim
n!1

n⇥ CR(1+1hs)

�

�
n

�

n⇥ CR(1+1)

�

�
n

�

= lim
n!1

n ln(1 + �
n min (�2| [N ]1 |+ �

n ||N ||2, 0))
n ln(1 + �

n min (2 [N ]1 +
�
n ||N ||2, 0))

=
min (�2| [N ]1 |+ �, 0)

min (2 [N ]1 + �, 0)
(4.35)

Because of uniform integrability, we can write the equation as

lim
n!1

CR(1+1hs)

�

�
n

�

CR(1+1)

�

�
n

� =
E [min (�2| [N ]1 |+ �, 0)]

E [min (2 [N ]1 + �, 0)]

=
E
⇥

(�2| [N ]1 |+ �) 1{�2|[N ]1|+�0}
⇤

E
⇥

(2 [N ]1 + �) 1{2[N ]1+�0}
⇤

=
E
⇥

(�2| [N ]1 |+ �) 1{|[N ]1|��/2}
⇤

E
⇥

(2 [N ]1 + �) 1{[N ]1��/2}
⇤ (4.36)

Since

(�2| [N ]1 |+ �) 1{|[N ]1|��/2}
=(2 [N ]1 + �) 1{[N ]1��/2} + (�2 [N ]1 + �) 1{[N ]1��/2}
=2
⇥

(2 [N ]1 + �) 1{[N ]1��/2}
⇤

(4.37)

Substitute equation (4.37) into (4.36), and the result is obtained.

Geometrically, we can interpret Theorems 2, 5 and 4 as fol-
lows: Consider a point x 2 Rn in the search space. A new
sample is drawn from a standard multivariate normal distribu-
tion N with its center located at x. Since N is isotropic, the
probability of sampling a new point in any pairs of halfspaces
with respect to x are the same. By Lemma 2, the optimal neg-
ative halfspace does not contain any points that are better than
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x if the underlying objective function has convex sublevel sets.
With respect to the point x, all the points in the negative half-
space are reflected into the positive halfspace. This is actually
equivalent to folding over the probability mass in the negative
halfspace and doubling the probability density in the positive
halfspace.

We end this section by presenting a graph to compare the
asymptotic convergence rate of a (1 + 1)-ES [19] and that of a
(1 + 1hs)-ES⇤ (Equation (4.27)). Figure 4.2 shows the normal
convergence rates of both algorithms. The minimal convergence
rates of the (1 + 1)-ES and (1 + 1hs)-ES⇤ are approximately
�0.202 and �0.404 respectively. By Theorem 5, halfspace sam-
pling speeds up single parent elitist evolution strategies by a
factor of 2, regardless of step size � chosen when the dimensions
goes to infinity.

4.6 Numerical Simulations on Convergence
rates

We now compare the linear convergence rates of the (1 + 1)-
ES with and without halfspace sampling. As the convergence
rates are expressed in terms of the expectations of some ran-
dom variables, we can simulate the convergence rates in finite
dimensions by means of the Monte-Carlo method. For every
convergence rate expression, we simulate each expectation of a
random variable 106 times and then average to obtain an es-
timate of the expectation and hence the convergence rates for
di↵erent �. The step size � is chosen such that it is in the range
of 0.01  � · n  10 and has steps of 0.01 in � · n.

Figure 4.3 shows the resulting convergence rates in our simu-
lations versus � in the dimensions from 2 to 160. Overall in the
simulations, the step sizes for the best measured convergence
rates for (1 + 1hs)-ES⇤ are approximately the same as those in
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(1 + 1)-ES in the corresponding dimensions. Figure 4.3 also
shows the best observed convergence rates for the (1 + 1hs)-ES⇤

and the (1 + 1)-ES against the dimensions. By Theorem 2,
(1 + 1hs)-ES⇤ converges at a rate which is twice that of a (1+)-
ES. In all cases of our simulations in finite dimensions, the best
observed convergence rates of the (1 + 1hs)-ES⇤ was approxi-
mately 2 times of those of the (1 + 1)-ES. The observed ratios
of CR(1+1hs)

�

�
n

�

/CR(1+1)

�

�
n

�

are constantly 2.

4.7 Implementation in (1+1)-CMA-ES

In this section, we present the implementation of halfspace sam-
pling in the (1 + 1)-CMA-ES [115]. The (1 + 1)-CMA-ES is
basically an extension of the (1 + 1)-ES with a one-fifth suc-
cess rule where a covariance matrix of the search distribution is
adapted during the course of optimization.

A (1 + 1)-CMA-ES consists of a parental candidate solution
Xk 2 R, the search path pk 2 Rn, a global step size �k 2 R+,
the success probability estimate P succ 2 R and the covariance
matrix Ck 2 Rn⇥n. Consider an objective function f : Rn 7!
R,X 7! f(X). At iteration k, the (1 + 1)-CMA-ES repeats the
following steps until the termination condition is met:

1. Determine the Cholesky factor Ak 2 Rn⇥n such that Ck =
AkAT

k .

2. Generate the o↵spring candidate solutionX
0

k = Xk+�AkZk

where the vector Zk is an n-dimensional random vector
draw from a standard multivariate normal distribution.

3. If the o↵spring candidate solution is better than its parent
f(X

0

k)  f(Xk),

(a) Assign X
0

k to Xk.
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Figure 4.3: Convergence rates CR(�) of the (1+1hs)-ES⇤ (top) and the (1+1)-
ES (middle) for di↵erent dimensions n, all with scale-invariant step size. The
bottom graph shows the best observed values of the convergence rates plotted
against the dimensions and the dashed lines represent the theoretical limits
when n!1.
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(b) Update the success probability estimate P succ
k+1 by (1 �

cp)P succ
k + cp, where cp is a learning rate (0 < cp  1).

(c) Update the search path pk+1 by

(1� cc)pk + 1{P succ
k+1<Pthresh}

p

cc(2� cc)AkZk

where cc is the learning rate for the search path and
Pthresh is a threshold set to 0.44.

(d) Update the covariance matrix Ck+1 by

(1� ccov + ccov1{P succ
k+1<Pthresh}cc(2� cc))Ck

+ ccovpkp
T
k

where ccov is the learning rate for covariance matrix.

4. Otherwise,

(a) Update the success probability estimate P succ
k+1 by (1 �

cp)P succ
k .

5. Update the global step size �k+1 by

�k exp

✓

1

d

P succ
k+1 � Ptarget

1� Ptarget

◆

where d > 0 is a damping constant and Ptarget is the target
success probability.

The basic assumption of theorems in previous sections is that
the optimal halfspaces are known. In order to estimate the opti-
mal halfspaces, we introduce the concept of evolution halfspaces.
A new vector nk 2 Rn is added to the (1+1)-CMA-ES with half-
space sampling . The update of the evolution halfspaces is done
by updating nk of the hyperplane H+(nk,Xk). We do not keep
track of the evolution of the negative halfspace since the positive
and negative halfspaces are symmetric with respect to the parent
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Xk. The update for the positive halfspace H+(nk,Xk) depends
on whether a better solution is found or not. The constants c+n
and c�n are the learning rates for the evolution halfspaces when
a successful step and a unsuccessful step is found respectively.
Both the factors

p

c+n (2� c+n ) and
p

c�n (2 + c�n ) normalise the
variance of the nk. The new normal vector nk+1 is a weighted
mean of the old normal vector nk and either the successful step
AkZk or the reverse of an unsuccessful step �AkZk.

Altogether, the (1+1)-CMA-ES with halfspace sampling dif-
fers from the algorithm given in the previous subsection only in
that the following steps are updated or added:

2) Generate the vector Zk that is a n-dimensional random
vector draw from a standard multivariate normal distribu-
tion. If AkZk 2 H+(nk,0), generate a candidate solution
X

0

k = Xk + �kAkZk. Otherwise X
0

k = Xk � �kAkZk.

3e) Update the normal vector by

nk+1 = (1� c+n )nk +
p

c+n (2� c+n )AkZk

where c+n 2 R+ (0 < c+n  1) is the learning rate for the
positive halfspace when a successful step is found.

4b) Update the normal vector by

nk+1 = (1 + c�n )nk �
p

c�n (2 + c�n )AkZk

where c�n 2 R+ (0 < c�n  1) is the learning rate for the
positive halfspace when an unsuccessful step is found.

The values of the constants in the algorithms are summarised
in the Table 4.1. All settings for the constants originally in the
(1 + 1)-CMA-ES are the same as the default values in [115].
The two new learning rates c+n and c�n are obtained by running
experiments on sphere function of search space dimensionalities
from n = 2 to n = 40, in each instance choosing the best median
performance, and fitting the nonlinear regression curve through
the resulting data points against the dimensions.
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Table 4.1: Parameter Settings of (1+1)-CMA-ES with halfspace sampling.

d = 1 + n

2
c = 2

n+2
Ptarget =

2
11

cp = 1
12

ccov =
2

n

2+6
c+
n

= 4.06
n

1.85+5.5
c�
n

= 0.87
n

1.47�0.61

4.7.1 Results on Noiseless BBOB TestBed

In order to evaluate the benefits of halfspace sampling in (1+1)-
CMA-ES, we compared it with a corresponding strategy that
does not use halfspace sampling. The (1+1)-CMA-ES is tested
on a set of noiseless black-box optimization problems from the
BBOB-2013 framework [99]. Preliminary results from experi-
ments follow those in [97] on the benchmark functions given in
[74, 99]. On unimodal functions, halfspace sampling shows a
consistent advantage over the (1 + 1)-CMA-ES, except in the
f7 (Step-ellipsoid) and f12 (Bent Cigar). In 20D, we found sta-
tistically significant di↵erences on f2 (Ellipsoid Seperable), f10
(Ellipsoid) and f11 (Discus). In 5D, similar significant di↵er-
ences were found with an addition of f14 (Sum of Di↵. Power).
On multimodal function, halfspace sampling is neither harmful
nor beneficial to (1 + 1)-CMA-ES, except in f21 (Gallagher 101
peaks) and f22 (Gallagher 21 peaks) where slight di↵erences in
success rate were observed in 20D. Generally, from these prelim-
inary results, halfspace sampling is never observed to be signif-
icantly slower on any functions.

4.8 Conclusion and Future Perspective

In this chapter, we have analysed the (1 + 1)-ES with halfs-
pace sampling. In halfspace sampling, the whole search space
is divided into two halfspaces with respect to the parent. On
the objective functions with convex sublevel sets, we prove that
the positive halfspace contains the better candidate solutions
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Figure 4.4: Expected running time (ERT in number of f -evaluations) di-
vided by dimension for target function value 10�8 as log10 values versus di-
mension. Di↵erent symbols correspond to di↵erent algorithms given in the
legend of f1 and f24. Light symbols give the maximum number of function
evaluations from the longest trial divided by dimension. Horizontal lines give
linear scaling, slanted dotted lines give quadratic scaling. Black stars indicate
statistically better result compared to all other algorithms with p < 0.01 and
Bonferroni correction number of dimensions (six). Legend: �:(1+1)-CMA-ES
with Halfspace Sampling, O:(1+1)-CMA-ES.



CHAPTER 4. HALFSPACE SAMPLING IN ES 100

1
S
p
h
e
r
e

2
E
l
l
i
p
s
o
i
d
-
S
e
p

3
R
a
s
t
r
i
g
i
n
-
S
e
p

4
R
a
s
t
r
i
g
i
n
-
B
u
e

5
L
i
n
e
a
r
s
l
o
p
e

6
A
t
t
r
a
c
t
i
v
e
S
e
c

7
S
t
e
p
-
e
l
l
i
p
s
o
i
d

8
R
o
s
e
n
b
r
o
c
k

9

R
o
s
e
n
b
r
o
c
k
R
o
t

1
0
E
l
l
i
p
s
o
i
d

1
1
D
i
s
c
u
s

1
2
B
e
n
t
c
i
g
a
r

1
3
S
h
a
r
p
r
i
d
g
e

1
4
S
u
m

o
f
d
i
↵
.

p
o
w
e
r
s

1
5
R
a
s
t
r
i
g
i
n

1
6
W
e
i
e
r
s
t
r
a
s
s

1
7
S
c
h
a
↵
e
r
,

c
o
n
d
.
1
0

1
8
S
c
h
a
↵
e
r
,

c
o
n
d
.
1
0
0
0

1
9
G
r
i
e
w
a
n
k
-

R
o
s
e
n
b
r
o
c
k

2
0
S
c
h
w
e
f
e
l

x
*
s
i
n
(
x
)

2
1
G
a
l
l
a
g
h
e
r

1
0
1
p
e
a
k
s

2
2
G
a
l
l
a
g
h
e
r
2
1

p
e
a
k
s

2
3
K
a
t
s
u
u
r
a
s

2
4
L
u
n
a
c
e
k

b
i
-
R
a
s
t
r
i
g
i
n

Figure 4.5: Expected running time (ERT in log10 of number of function eval-
uations) of (1+1)-CMA-ES with Halfspace Sampling (x-axis) versus (1+1)-
CMA-ES (y-axis) for 46 target values� f 2 [10�8, 10] in each dimension on
functions f1–f24. Markers on the upper or right edge indicate that the target
value was never reached. Markers represent dimension: 2:+, 3:O, 5:?, 10:�,
20:2, 40:3.
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Figure 4.6: Empirical cumulative distributions (ECDF) of run lengths and
speed-up ratios in 5-D (left) and 20-D (right). Left sub-columns: ECDF of
the number of function evaluations divided by dimension D (FEvals/D) to
reach a target value fopt + �f with� f = 10k, where k 2 {1,�1,�4,�8}
is given by the first value in the legend, for (1+1)-CMA-ES with Halfspace
Sampling (�) and (1+1)-CMA-ES (O). Light beige lines show the ECDF
of FEvals for target value� f = 10�8 of all algorithms benchmarked during
BBOB-2009. Right sub-columns: ECDF of FEval ratios of (1+1)-CMA-ES
with Halfspace Sampling divided by (1+1)-CMA-ES, all trial pairs for each
function. Pairs where both trials failed are disregarded, pairs where one trial
failed are visible in the limits being > 0 or < 1. The legends indicate the
number of functions that were solved in at least one trial ((1+1)-CMA-ES
with Halfspace Sampling first).
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5-D 20-D
�f 1e+1 1e-1 1e-3 1e-5 1e-7 #succ
f1 11 12 12 12 12 15/15

1: hs 1.5(1) 10(3) 17(3) 24(3) 32(5) 15/15
2: 1p1 2.3(2) 10(3) 17(3) 25(3) 32(3) 15/15
f2 83 88 90 92 94 15/15

1: hs 8.0(3) 11(1) 12(1)? 13(2)? 13(1)? 15/15
2: 1p1 9.4(4) 12(3) 14(1) 14(2) 15(2) 15/15
f3 716 1637 1646 1650 1654 15/15

1: hs 8.4(7) 1 1 1 15.0e4 0/15
2: 1p1 9.1(9) 1 1 1 15.0e4 0/15
f4 809 1688 1817 1886 1903 15/15

1: hs 8.2(8) 1 1 1 15.0e4 0/15
2: 1p115(22) 1 1 1 15.0e4 0/15
f5 10 10 10 10 10 15/15

1: hs 1.7(1) 2.3(0.9) 2.3(0.9) 2.3(0.9) 2.3(0.9) 15/15
2: 1p1 2.3(1) 3.2(1) 3.2(1) 3.2(1) 3.2(1) 15/15
f6 114 281 580 1038 1332 15/15

1: hs 1.3(0.6) 1.3(0.5) 1.0(0.3) 0.84(0.2) 0.89(0.3) 15/15
2: 1p1 1.4(0.9) 1.6(1) 1.6(1) 1.6(1) 1.8(1) 15/15
f7 24 1171 1572 1572 1597 15/15

1: hs 4.6(2) 2.3(1) 6.2(7) 6.2(7) 6.1(7) 14/15
2: 1p1 3.5(3) 2.0(2) 3.1(4) 3.1(4) 3.1(4) 15/15
f8 73 336 391 410 422 15/15

1: hs 2.3(1) 2.9(2) 3.0(2) 3.2(2) 3.3(2) 15/15
2: 1p1 2.1(2) 5.0(5) 4.9(4) 4.9(4) 5.0(4) 15/15
f9 35 214 300 335 369 15/15

1: hs 4.2(1) 5.8(4) 4.8(3) 4.6(2) 4.5(2) 15/15
2: 1p1 4.2(1) 5.9(3) 5.0(2) 4.9(2) 4.7(2) 15/15
f10 349 574 626 829 880 15/15
1: hs 2.2(0.6) 1.7(0.1)? 1.7(0.1)?2 1.4(0.1)?2 1.4(0.1)?2 15/15
2: 1p1 2.5(0.9) 2.0(0.3) 2.1(0.3) 1.7(0.2) 1.7(0.2) 15/15
f11 143 763 1177 1467 1673 15/15
1: hs 5.8(3) 1.7(0.3)?2 1.3(0.1)?3 1.1(0.1)?3 0.99(0.1)?315/15
2: 1p1 6.5(2) 2.1(0.3) 1.5(0.2) 1.3(0.1) 1.2(0.1) 15/15
f12 108 371 461 1303 1494 15/15
1: hs 8.4(10) 7.0(6) 7.0(6) 2.9(2) 2.9(2) 15/15
2: 1p1 4.0(4) 3.5(2) 4.1(3) 1.9(1) 1.9(1) 15/15
f13 132 250 1310 1752 2255 15/15
1: hs 3.2(3) 5.0(2) 1.5(1) 1.8(0.9) 2.0(1) 15/15
2: 1p1 4.4(4) 6.1(3) 1.9(1) 3.2(4) 3.1(3) 15/15
f14 10 58 139 251 476 15/15
1: hs 1.2(2) 2.2(0.3) 2.8(0.5) 3.6(0.8) 2.8(0.2)?2 15/15
2: 1p1 1.8(3) 2.3(0.5) 2.6(0.8) 4.0(1.0) 3.2(0.3) 15/15
f15 511 19369 20073 20769 21359 14/15
1: hs 12(12) 1 1 1 15.0e4 0/15
2: 1p110(13) 1 1 1 15.0e4 0/15
f16 120 2662 10449 11644 12095 15/15
1: hs 2.7(4) 22(25) 1 1 15.0e4 0/15
2: 1p1 2.5(5) 17(18) 31(38) 60(67) 15.0e4 0/15
f17 5.2 899 3669 6351 7934 15/15
1: hs 3.0(4) 24(25) 1 1 15.0e4 0/15
2: 1p1 4.5(5) 108(114) 1 1 15.0e4 0/15
f18 103 3968 9280 10905 12469 15/15
1: hs 5.1(13) 43(44) 1 1 15.0e4 0/15
2: 1p1 4.9(5) 84(101) 1 1 15.0e4 0/15
f19 1 242 1.2e5 1.2e5 1.2e5 15/15
1: hs 22(20) 497(558) 1 1 15.0e4 0/15
2: 1p120(17) 971(1085) 1 1 15.0e4 0/15
f20 16 38111 54470 54861 55313 14/15
1: hs 3.3(2) 18(21) 13(14) 13(14) 13(15) 1/15
2: 1p1 2.4(2) 5.9(6) 4.1(5) 4.1(5) 4.1(5) 3/15
f21 41 1674 1705 1729 1757 14/15
1: hs 1.3(0.9) 5.8(8) 5.7(8) 5.7(8) 5.6(8) 15/15
2: 1p1 4.2(10) 6.6(9) 6.5(9) 6.5(9) 6.4(9) 15/15
f22 71 938 1008 1040 1068 14/15
1: hs 1.6(0.7) 6.5(8) 6.2(7) 6.1(7) 6.0(7) 15/15
2: 1p1 2.8(7) 4.7(6) 4.5(6) 4.4(5) 4.4(5) 15/15
f23 3.0 14249 31654 33030 34256 15/15
1: hs 5.3(7) 2.5(2) 1 1 15.0e4 0/15
2: 1p1 4.2(5) 7.5(7) 1 1 15.0e4 0/15
f24 1622 6.4e6 9.6e6 1.3e7 1.3e7 3/15
1: hs 4.1(5) 1 1 1 15.0e4 0/15
2: 1p1 6.7(8) 1 1 1 15.0e4 0/15

�f 1e+1 1e-1 1e-3 1e-5 1e-7 #succ
f1 43 43 43 43 43 15/15

1: hs 5.6(0.7) 13(1) 20(1) 28(2) 36(3) 15/15
2: 1p1 5.4(0.8) 13(1) 21(2) 29(2) 37(2) 15/15
f2 385 387 390 391 393 15/15

1: hs 28(6) 33(3)?3 35(1)?3 36(1)?3 37(2)?3 15/15
2: 1p1 30(5) 39(3) 41(3) 43(2) 44(2) 15/15
f3 5066 7635 7643 7646 7651 15/15

1: hs 1 1 1 1 12.0e5 0/15
2: 1p1 1 1 1 1 12.0e5 0/15
f4 4722 7666 7700 7758 1.4e5 9/15

1: hs 1 1 1 1 12.0e5 0/15
2: 1p1 1 1 1 1 12.0e5 0/15
f5 41 41 41 41 41 15/15

1: hs 2.5(0.6) 3.1(0.8) 3.1(0.8) 3.1(0.8) 3.1(0.8) 15/15
2: 1p1 3.1(0.7) 3.7(0.7) 3.7(0.7) 3.7(0.7) 3.7(0.7) 15/15
f6 1296 3413 5220 6728 8409 15/15

1: hs 3.5(2) 179(193) 1 1 12.0e5 0/15
2: 1p1 13(15) 835(982) 1 1 12.0e5 0/15
f7 1351 9503 16524 16524 16969 15/15

1: hs 24(13) 96(104) 1 1 12.0e5 0/15
2: 1p1 30(17) 304(316) 1 1 12.0e5 0/15
f8 2039 4040 4219 4371 4484 15/15

1: hs 2.6(1) 4.8(4) 4.9(4) 4.9(3) 4.9(3) 15/15
2: 1p1 3.7(1) 6.6(5) 6.6(4) 6.6(4) 6.6(4) 15/15
f9 1716 3277 3455 3594 3727 15/15

1: hs 3.2(1) 5.4(3) 5.5(3) 5.5(3) 5.5(3) 15/15
2: 1p1 4.5(2) 7.0(4) 7.0(4) 7.0(4) 6.9(4) 15/15
f10 7413 10735 14920 17073 17476 15/15

1: hs 1.4(0.2)? 1.2(0.1)?2 0.93(0.1)?3 0.84(0.1)?3#4 0.84(0.1)?3#415/15
2: 1p1 1.7(0.3) 1.4(0.2) 1.1(0.1) 1(0.1) 1(0.1) 15/15
f11 1002 6278 9762 12285 14831 15/15
1: hs 6.9(2) 2.3(0.4) 2.1(0.3) 1.9(0.2)?2 1.7(0.1)?3 15/15
2: 1p1 7.0(1) 2.4(0.3) 2.4(0.4) 2.3(0.2) 2.0(0.1) 15/15
f12 1042 2740 4140 12407 13827 15/15
1: hs 3.1(4) 5.1(5) 4.7(4) 2.1(1) 2.3(1) 15/15
2: 1p1 7.7(12) 10(9) 8.3(6) 3.4(2) 3.6(2) 15/15
f13 652 2751 18749 24455 30201 15/15
1: hs 3.5(3) 8.2(6) 2.5(2) 3.9(4) 10(12) 4/15
2: 1p1 4.9(6) 10(14) 4.2(4) 6.3(6) 14(15) 4/15
f14 75 304 932 1648 15661 15/15
1: hs 3.1(1) 2.2(0.3) 2.0(0.4) 4.6(0.8) 1.0(0.2) 15/15
2: 1p1 3.1(1) 2.3(0.5) 2.3(0.5) 5.6(0.9) 1.2(0.2) 15/15
f15 30378 3.1e5 3.2e5 4.5e5 4.6e5 15/15
1: hs 1 1 1 1 12.0e5 0/15
2: 1p1 1 1 1 1 12.0e5 0/15
f16 1384 77015 1.9e5 2.0e5 2.2e5 15/15
1: hs 36(44) 1 1 1 12.0e5 0/15
2: 1p1 34(37) 1 1 1 12.0e5 0/15
f17 63 4005 30677 56288 80472 15/15
1: hs 19(33) 1 1 1 12.0e5 0/15
2: 1p1 29(10) 1 1 1 12.0e5 0/15
f18 621 19561 67569 1.3e5 1.5e5 15/15
1: hs 969(1177) 1 1 1 12.0e5 0/15
2: 1p14824(4995) 1 1 1 12.0e5 0/15
f19 1 3.4e5 6.2e6 6.7e6 6.7e6 15/15
1: hs 558(522) 1 1 1 12.0e5 0/15
2: 1p11365(1312) 1 1 1 12.0e5 0/15
f20 82 3.1e6 5.5e6 5.6e6 5.6e6 14/15
1: hs 3.2(0.6) 1 1 1 12.0e5 0/15
2: 1p1 3.4(0.9) 1 1 1 12.0e5 0/15
f21 561 14103 14643 15567 17589 15/15
1: hs 3.6(6) 2.9(2) 2.8(2) 2.7(2) 2.4(2) 15/15
2: 1p1 3.6(7) 5.8(5) 5.6(5) 5.3(5) 4.7(4) 14/15
f22 467 23491 24948 26847 1.3e5 12/15
1: hs 12(16) 5.5(6) 5.2(6) 4.8(6) 0.97(1) 11/15
2: 1p1 3.5(4) 5.6(6) 5.3(6) 5.0(5) 1(1) 12/15
f23 3.2 67457 4.9e5 8.1e5 8.4e5 15/15
1: hs 9.2(15) 1 1 1 12.0e5 0/15
2: 1p1 5.8(9) 1 1 1 12.0e5 0/15
f24 1.3e6 5.2e7 5.2e7 5.2e7 5.2e7 3/15
1: hs 1 1 1 1 12.0e5 0/15
2: 1p1 1 1 1 1 12.0e5 0/15

Table 4.2: ERT in number of function evaluations divided by the best
ERT measured during BBOB-2009 given in the respective first row with the
central 80% range divided by two in brackets for di↵erent� f values. #succ
is the number of trials that reached the final target fopt+10�8. 1:hs is (1+1)-
CMA-ES with Halfspace Sampling and 2:1p1 is (1+1)-CMA-ES. Bold entries
are statistically significantly better compared to the other algorithm, with
p = 0.05 or p = 10�k where k 2 {2, 3, 4, . . . } is the number following the
? symbol, with Bonferroni correction of 48. A # indicates the same tested
against the best BBOB-2009.
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while the negative halfspace contains worse candidate solutions.
Therefore, in a (1+1)-ES with halfspace sampling, when an o↵-
spring lies in the negative halfspace, it will be discarded and its
reflection with respect to the parent is used. We prove the linear
convergence of a scale-invariant step size (1+1)-ES with optimal
halfspaces and derive the convergence rates in finite and infinite
dimensions. We prove that a (1+1)-ES with optimal halfspaces
can converge two times faster than a (1 + 1)-ES. Lastly, we im-
plemented halfspace sampling in the (1+ 1)-CMA-ES. Our pre-
liminary results in BBOB 2013 show that (1+1)-CMA-ES with
halfspace sampling does not appear to be statistically slower
than a standard (1 + 1)-CMA-ES.

With halfspace sampling, there are a few areas which we are
interested in producing future works. Firstly, we are interested
in developing more robust methods of estimating the optimal
halfspaces. Although the theorems have proven that a gain can
be up to a factor 2, the basic assumption is on the use of optimal
halfspaces at a given search point. It becomes a real challenge
for ES to reach the theoretical gain closely when halfspace sam-
pling is used. Secondly, we are particularly interested in devel-
oping strategies with the use of folded distributions. We have
shown that given an objective function with convex sublevel sets,
the positive halfspace with respect to a point x 2 Rn contains
the better solution. With regards to folded distributions, we
can take advantage of them by sampling in the positive halfs-
pace only. We also plan to incorporate halfspace sampling into
population-based evolution strategies with the use of recombi-
nations and to investigate the behavior of halfspace sampling in
ES for noisy functions.

2 End of chapter.



Chapter 5

Halfspace Sampling in
Evolutionary Gradient Search

It doesn’t matter how beautiful your theory is, it
doesn’t matter how smart you are. If it doesn’t agree
with experiment, it’s wrong.

Richard Feynman

5.1 Motivations

Sampling plays an important part in random search algorithms
like evolution strategies (ES) [197]. In a family of (1 +, �)-ES,
an o↵spring is created from a single parent Xk 2 R at iteration
k. The o↵spring is generated by adding an independent and
identical distributed (i.i.d) random vector N k to Xk. The best
solution out of these � sample points (in case of plus selection
the best out of � o↵spring and the parent Xk) is chosen to be-
come the next parental candidate solution Xk+1. The iteration
continues until the termination condition is met.

To improve the performance of ES, it is natural to ask whether
the replacement of independent random samples by dependent
samples works or not. The studies [20, 52] demonstrates how
the mirrored sampling can improve the performance of the (1 +,
�)-ES. A new sampling method named “Halfspace sampling”

104
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is introduced in previous chapter. In halfspace sampling, the
search space is divided into two halfspaces in Rn such that there
is always a hyperplane bounding the halfspaces, which passes
through the parent Xk. An ES with halfspace sampling has a
tendency to sample candidate solutions in the positive halfspace
in which the previous successful steps are located. In order to
estimate the optimal positive halfspace that contains as many
better solutions as possible, the normal vector nk 2 Rn of the
hyperplane is maintained during course of optimization and is
updated by the exponential weighted sum of the previous suc-
cessful and unsuccessful steps.

The work [17] also investigates how halfspace sampling can
improve the performance of the (1+1)-ES. Specifically, it the-
oretically proved that on simple spherical functions, a scale-
variant step size (1+1)-ES with halfspace sampling converges
twice faster than the one without halfspace sampling. However,
it is assumed that one knows of the optimal halfspaces with re-
spect to a parent Xk. In practice, the optimal halfspaces are
unknown in the black-box optimization. To address this, we im-
plement halfspace sampling in the context of evolutionary gradi-
ent search (EGS) [6, 193]. While the EGS uses random samples
to estimate the true gradient vector with respect to a parent Xk,
we show that random samples can also be used to estimate the
optimal halfspaces. We prove the linear convergence of scale-
invariant step size EGS with and without halfspace sampling
and theoretically investigate algorithms’ convergence rates on
the spherical functions. We also experimentally compare con-
vergence rates to evaluate the impact of halfspace sampling to
an EGS.
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5.2 Halfspace Sampling in EGS

5.2.1 Basic EGS

In the basic iteration of an EGS [6, 193], the strategy creates �
o↵spring from the parent Xk where k denotes the iteration in-
dex. The ith o↵spring Xk +�kN i

k is created by adding a vector
N 2 Rn drawn from a standard multivariate normal distribu-
tion to the parent Xk, where �k 2 R+ is the step size. The
mirrored version of the o↵spring is then generated by reversing
the direction of the random vector and adding it to the parent,
i.e. Xk � �kN i

k, so-called “inverse mutation” [6]. To compute
the progress vector Z(prog), all o↵spring in an iteration are col-
lectively used to estimate the gradient by the weighted sum of
random vectors

�

N i
k

�

1i�/2 with weights proportional to the
fitness of o↵spring. The progress vector is then used to com-
pute the next parent Xk + �kZ(prog). Algorithm 9 shows the
pseudo-code of a basic EGS.

5.2.2 EGS with Halfspace Sampling (EGS-HS)

First, we formally define halfspaces. Let n and x0 be two vectors
in Rn. The hyperplane H in Rn passing through x0 is defined
as

H(n,x0) =
�

x 2 Rn : nT (x� x0) = 0
 

(5.1)

and it has a normal vector n. Corresponding to H, there is a
positive closed halfspace H+(n,x0) and a negative closed halfs-
pace H�(n,x0). Formally, they can be defined as:

H+(n,x0) =
�

x 2 Rn : nT (x� x0) � 0
 

(5.2)

H�(n,x0) =
�

x 2 Rn : nT (x� x0)  0
 

(5.3)

In halfspace sampling [17], the basic idea is to generate new
candidate solutions in a halfspace where the previous success-
ful samples are located. At iteration k, the positive halfspace
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Algorithm 9: Pseudo Code of the EGS with/without Halfspace Sam-
pling.

1 Given: f : Rn ! R, X1,N ,n 2 Rn, �1 > 0
2 Initialise X1, �1, k = 1
3 repeat
4 f  f(X

k

) /* fitness of parent */

5 i 1 /* offspring counter */

6 n0  0 /* reset normal of positive halfspace */

7 while i  � do
8 Zi

k

⇠N (0, I) /* a normal distribution vector */

9 if Halfspace Sampling and Zi

k

/2 H+(ni�1,0) then
10 Zi

k

 �Zi

k

/* reverse the direction */

11 else if Not Halfspace Sampling and mod (i, 2) = 0 then
12 Zi

k

 �Zi�1
k

/* use the mirrored sample */

13 Yi  X
k

+ �
k

Zi

k

/* generate an offspring */

14 f
i

 f(Yi) /* fitness of offspring */

15 if Halfspace Sampling then
16 ni  ni�1 + (f � f

i

)Zi

k

/* update the normal */

17 i i+ 1

18 Z(avg)  P

�

i=1 (f � f
i

)Zi

k

/* weight sum of all random

vectors */

19 Z(prog)  
p
nZ

(avg)

||Z(avg)|| /* progress vector */

20 X
k+1  X

k

+ �
k

Z(prog) /* replace the parent */

21 k  k + 1 /* iteration counter */

22 until termination condition is not met
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Figure 5.1: Graphical illustration of the ith o↵spring in the EGS-HS with
halfspace sampling. Left: The flag and the curve represent the optimum of
the function and the points having a function value f(x) respectively. The
straight line represents the hyperplane with normal ni�1 and it separates
the space into the positive halfspace H+(ni�1,x) (the area above the line)
and the negative halfspace H�(ni�1,x) (the area below the line). Middle:
If the ith o↵spring (the red vector) lies in the negative halfspace, it will be
discarded. Its reflection (the blue vector) with respect to x, which lies in
the positive halfspace, will be used. Right: The new normal vector ni is
replaced by a weighted sum of ni�1 and the resulting random vector used for
the ith o↵spring.

H+(ni�1,Xk) with respect to the parent Xk is formed by ac-
cumulating the information of the previous i � 1 steps in the
current iterations. Instead of sampling the ith o↵spring that
lies in the whole search space Rn, the EGS-HS with halfspace
sampling generates the ith o↵spring that always lies in the posi-
tive halfspace H+(ni�1,Xk): If the ith o↵spring Xk + �kN i

k lies
in the positive halfspace, no action is required. Only when the
ith o↵spring does not lie in the positive halfspace Xk + �kN i

k /2
H+(ni�1,Xk) , the direction of the random vector is reversed so
the ith o↵spring lies in the positive halfspace, i.e. Xk��kN i

k 2
H+(ni�1,Xk). The vector ni is computed by the weighted sum
of ni�1 and the resulting random vector (either N i

k or �N i
k).

Algorithm 9 shows the pseudo-code of the EGS-HS with half-
space sampling. Figure 5.1 graphically illustrates how the ith
o↵spring is generated in the EGS-HS.
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5.3 Linear Convergence on Spherical Func-
tions

In this section, we theoretically investigate the log linear con-
vergence of the EGS with and without halfspace sampling. The
same definition of the linear convergence rate from [117] is used.
We study the case of the scale-invariant step size where the equa-
tion �k = �||Xk|| holds. We investigate the convergence rates on
a spherical function having the optimum in zero g(||x||), g 2M
whereM denotes the set of functions g : R 7! R that are strictly
increasing. For algorithms with scale-invariant step size, the lin-
ear convergence is proven by: there exists a CR 2 R such that

for all k, k0 2 R with k > k0,
1
⇤

1
k�k0E

h

� ln ||X
k

||
||X

k0 ||
i

= CR, where

⇤ is the number of function evaluations in each iteration. For
details of proof, please refer to [117, 25].

5.3.1 Progress vector Z(prog) and Z(prog)
hs

Progress vectors Z(prog)

In the EGS with scale-invariant step size, at iteration k, �/2
number of mirrored o↵spring Xk+�||Xk||(N i

k)1i�/2 and Xk�
�||Xk||(N i

k)1i�/2 are sampled from the parent Xk. These �/2
o↵spring are used to compute the vectors Z(avg) and the progress
vector Z(prog). According to Algorithm 9, the update equation
for ||Xk|| can be written as

||Xk+1|| = ||Xk + �||Xk||Z(prog)|| (5.4)
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where Z(prog) =
p
nZ(avg)/||Z(avg)|| is the progress vector of the

EGS. We can write Z(avg) at iteration k as1:

Z(avg)

=
�
X

i=1

⇥

f(Xk)� f(Xk + �||Xk||N i)
⇤

N i

=

�/2
X

i=1

⇥

f(Xk � �||Xk||N i)� f(Xk + �||Xk||N i)
⇤

N i (5.5)

Expand the two terms inside summation by considering f(Xk±
�||Xk||N i) =

Pn
j=1 (X

j
k ± �||Xk||N i,j)2, where Xj

k and N i,j de-

note the j-th component of the vectors Xk and N i respectively.
Because of the isotropy of the distribution of N and of the
sphere function, we can write Xk = (||Xk||, 0, . . . , 0). Therefore
we get

Z(avg) = �4�||Xk||2
�/2
X

i=1

[N i]1N i. (5.6)

where [N i]1 denotes the projection of N i onto e1. Substitute
equation 5.6 into the progress vector Z(prog), we get:

Z(prog) = �
p
n
P�/2

i=1[N i]1N i

q

Pn
j=1 (

P�/2
i=1[N i]1N i,j)2

(5.7)

Progress vector Z(prog)
hs

In the EGS-HS with scale-invariant step size, � number of o↵-
spring are sampled from the parent Xk

Xk + �||Xk||N i1{N i2H+(ni�1,0)}
� �||Xk||N i1{N i /2H+(ni�1,0)} (5.8)

1We omit the dependence in k for the sampled vectors for the sake of readability.
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for 1  i  � where the vector ni is the normal of the pos-
itive halfspace after the generation of the ith o↵spring. The
events 1{N i2H+(ni�1,0)} and 1{N i /2H+(ni�1,0)} represent the event

of a standard multivariate normal distributed vector lying in
the positive closed halfspace and negative open halfspace re-
spectively. The update equation for Xk is written as

||Xk+1|| = ||Xk + �||Xk||Z(prog)
hs || (5.9)

where Z(prog)
hs =

p
nZ(avg)

hs /||Z(avg)
hs || is the progress vector of the

EGS-HS. Given n0 = 0, we can write the vector np after the
generation of the pth o↵spring as:

np =
⇥

f (Xk)� f(Xk + �||Xk||N 1
⇤

N 1

+
p
X

i=2

h

f (Xk)� f(Xk + �||Xk||N i)1{N i2H+(ni�1,0)}

�f(Xk � �||Xk||N i)1{N i /2H+(ni�1,0)}
i

N i (5.10)

The first term denotes the normal after the first o↵spring is gen-
erated. Now define Vi = N i ·ni�1, W+

i = 2[N i]1 + �||N i||2 and
W�

i = �2[N i]1+�||N i||2. Then the events 1{N i2H+(ni�1,0)} and

1{N i /2H+(ni�1,0)} can be replaced by 1{V
i

�0} and 1{V
i

<0} respec-

tively. We can further simplify equation 5.10 into:

np = �||Xk||2⇥
 

p
X

i=2

⇥

W�
i 1{V

i

<0} �W+
i 1{V

i

�0}
⇤

N i �W+
1 N 1

!

(5.11)

Because the vector Z(avg)
hs is the normal vector n� after � o↵spring

are generated, the progress vector Z(prog)
hs can be written as:

Z(prog)
hs =

p
nn�

||n�|| =

p
n
⇣

P�
i=2WiN i �W+

1 N 1
⌘

r

Pn
j=1

⇣

P�
i=2WiN i,j �W+

1 N 1,j
⌘2

(5.12)

where Wi = W�
i 1{V

i

<0} �W+
i 1{V

i

�0}.
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5.3.2 Convergence Rates in Finite Dimensions

Before deriving the main results, we establish a technical lemma.

Lemma 11. The followings equation holds:

||Xk + �||Xk||Z(prog)||2
||Xk||2 = 1 + �(2[Z(prog)]1 + �||Z(prog)||2)

(5.13)

||Xk + �||Xk||Z(prog)
hs ||2

||Xk||2 = 1 + �(2[Z(prog)
hs ]1 + �||Z(prog)

hs ||2)
(5.14)

Proof. Define Yk = Xk/||Xk||. We can write LHS of equation
5.13 as ||Yk+�Z(prog)||2. Because of the isotropy of the distribu-
tion of Z(prog) and of the sphere function, we can further write it
further as ||e + �Z(prog)||2. Expand the terms and the equation
holds. Equation 5.14 can be derived similarly.

We are now ready to prove the linear convergence of the EGS
and the EGS-HS and express their convergence rates in terms
of expectations of the progress vectors Z(prog) and Z(prog)

hs .

Theorem 6. The EGS having � o↵spring in each iteration and
the scale-invariant step size (�k = �||Xk||) converge linearly on
the class of spherical functions g(||x||), g 2M, and

CREGS(�) =
1

2�
E
h

ln(1 + �(2[Z(prog)]1 + �||Z(prog)||2)
i

(5.15)

where Z(prog) is defined as in equation 5.7.

Proof. We start with the equation 5.4, square it, normalize with
respect to Xk, take the logarithm and divide it by 1

2 . The term
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1
2
||X

k+1||2
||X

k

||2 is obtained. By Lemma 11, we can write

1

2

||Xk+1||2
||Xk||2

=
1

2
ln

✓||Xk + �||Xk||Z(prog)||2
||Xk||2

◆

=
1

2
ln
⇣

1 + �(2[Z(prog)]1 + �||Z(prog)||2)
⌘

(5.16)

Since the RHS of equation 5.16 is always less than 1, we can
apply the Law of Large Numbers (LLN) for this random variable.

We then get 1
k� ln

||X
k

||
||X1|| = 1

2k�

Pk
i=1 ln

||X
i+1||2

||X
i

||2 and thus obtain
equation 5.15.

We can also prove similarly the linear convergence of EGS-HS
and derive its convergence rate

Theorem 7. The EGS-HS having � o↵spring in each iteration
and the scale-invariant step size (�k = �||Xk||) converge linearly
on the class of spherical functions g(||x||), g 2M, and

CREGS�HS(�)

=
1

2(�+ 1)
E
h

ln(1 + �(2[Z(prog)
hs ]1 + �||Z(prog)

hs ||2)
i

(5.17)

where Z(prog)
hs is defined as in equation 5.12.

Proof. The proof follows similarly the same steps in Theorem
6 by considering equations 5.9 and 5.14. Notice that unlike
EGS, the fitness of parents in EGS-HS are required to compute
Z(prog)
hs and hence �+ 1 function evaluations are needed in each

iteration.

5.3.3 Asymptotic Convergence Rates

We have proved the linear convergence rates of the EGS and
the EGS-HS in finite dimensions. We now investigate the con-
vergence rates when the dimension goes to infinity. We first
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establish a technical lemma to derive the expectation for the
projections of progress vectors Z(prog) and Z(prog)

hs on e1.

Lemma 12. The following two equations hold:

E
h

[Z(prog)]1
i

n!1
= �E

h

q

�2
�

2

i

(5.18)

E
h

[Z(prog)
hs ]1

i

n!1
= �E

"

2�2
� + �N

p

4�2
� + 2�N + �2

#

(5.19)

where �2
k denotes a chi-square distribution with k degree of free-

dom.

Proof. For Equation 5.18, we start with the definition of Z(prog).
Its projection onto e1 equals

[Z(prog)]1 =
p
n
[Z(avg)]1
||Z(avg)|| . (5.20)

After normalizing the vector [Z(avg)]1 by �||Xk||2, we can write:

[Z(avg)]1
�||Xk||2 =

2

4�4
�/2
X

i=1

[N i]1N i

3

5

1

= �4
�/2
X

i=1

(N i)2 (5.21)

Now consider the squared length of the vector Z(avg) normalized
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by �||Xk||2 and divide it by n. We get

|| Z(avg)

�||X
k

||2 ||2
n

=
16

n

n
X

j=1

0

@

�/2
X

i=1

[N i]1N i,j

1

A

2

= 16

0

@

1

n

n
X

j=1

�/2
X

i=1

([N i]1N i,j)2

+
1

n

n
X

j=1

X

i6=k

[N i]1[N k]1N i,jN k,j

| {z }

! 0

1

C

C

C

C

A

= 16

0

B

B

B

B

@

�/2
X

i=1

([N i]1)
2 1

n

n
X

j=1

(N i,j)2

| {z }

! 1

1

C

C

C

C

A

= 16

0

@

�/2
X

i=1

(N i)2

1

A (5.22)

Substitute equation 5.21 and the square root of equation 5.22
into equation 5.20, the RHS of equation 5.18 is obtained. The
random variable is �2-distributed with �/2 degree of freedom
and the result holds.

For Equation 5.19, we start with the definition of Z(prog)
hs . Its

projection onto e1 equals

[Z(prog)
hs ]1 =

p
n
[Z(avg)

hs ]1

||Z(avg)
hs ||

. (5.23)

The vector [Z(avg)
hs ]1 is basically [n�]1 therefore by equation 5.11,
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it can be written as

[Z(avg)
hs ]1

=

"

�||Xk||2
 

�
X

i=2

⇥

W�
i 1{V

i

<0} �W+
i 1{V

i

�0}
⇤

N i �W+
1 N 1

!#

1

= �||Xk||2
 

�
X

i=2

⇥

W�
i 1{V

i

<0} �W+
i 1{V

i

�0}
⇤

[N i]1 �W+
1 [N 1]1

!

(5.24)

Since limn!1 1
n ||N ||2 = 1, we can derive two limits limn!1

W+
i

n =

2[N i]1+� and limn!1
W�

i

n = �2[N i]1+�. Normalize the RHS of
equation 5.24 by n�||Xk||2 and then substitute these two limits
into it to get

lim
n!1

 

[Z(avg)
hs ]1

n�||Xk||2
!

=
�
X

i=2

�

(�2[N i]1 + �)1{V
i

<0} � (2[N i]1 + �)1{V
i

�0}
�

[N i]1

� (2[N i]1 + �)[N 1]1 (5.25)

Moreover, given that N is independent, the probability of N
lying either in the positive halfspace or the negative halfspaces
delimited by ni, 8i 2 {1, . . . ,�} is the same. The sum of prob-
abilities must be equal to 1. We can write the event 1{V

i

�0} as
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1{V
i

<0} and vice versa. Therefore we can further simplify

lim
n!1

 

[Z(avg)
hs ]1

n�||Xk||2
!

= �2
�
X

i=2

[N i]1[N i]1 � (2[N i]1 + �)[N 1]1

= �2
�
X

i=1

(N i)2 � �N 1 (5.26)

Now consider the squared length of the vector Z(avg)
hs normalized

by �||Xk||2 and divide it by n, we get:

lim
n!1

0

@

|| Z
(avg)
hs

�||X
k

||2 ||2
n

1

A

=
1

n

n
X

j=1

 

�
X

i=2

⇥

W�
i 1{V

i

<0} �W+
i 1{V

i

�0}
⇤N i,j �W+

1 N 1,j

!2

=
1

n

n
X

j=1

 

�
X

i=2

WiN i,j �W+
1 N 1,j

!2

(5.27)

(5.28)
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Further,

1
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X
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X

i=2

WiN i,j �W+
1 N 1,j
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=
1

n

n
X

j=1

�
X
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(WiN i,j)2 � 1
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n
X
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X

i 6=k

WiWkN i,jN k,j
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! 0
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n
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X

j=1

�
X

i=2

WiW
+
1 N i,jN 1,j

| {z }

! 0

+
1

n

n
X

j=1

(W+
i N i,j)2

=
�
X

i=2

(Wi)
2 1

n

n
X

j=1

(N i,j)2

| {z }

! 1

+
�
X

i=2

(W+
i )

2 1

n

n
X

j=1

(N i,j)2

| {z }

! 1

= 4
�
X

i=2

(N i)2 + (2N 1 + �)2

= 4
�
X

i=1

(N i)2 + 2�N 1 + �2 (5.29)

Substitute equation 5.26 and the square root of equation
5.29 into equation 5.19, the RHS of equation 5.19 is obtained.
The random variable is �2-distributed with � degree of freedom,
hence the result holds.

Theorem 8. Let �2
k be a chi-square distribution with k degree

of freedom. For � > 0, the convergence rate of the EGS with
� o↵spring and scale-invariant step size on spherical functions
satisfies at the limit

lim
n!1n⇥ CREGS

⇣�

n

⌘

=
1

�

✓

�2

2
� �E

h

q

�2
�

2

i

◆

. (5.30)
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Proof. We start by investigating the limit of the random variable
of

CREGS

⇣�

n

⌘

=
1

2�
E
h

ln(1 +
�

n
(2[Z(prog)]1 +

�

n
||Z(prog)||2)

i

(5.31)
By considering limn!1 1

n ||Z(prog)||2 = 1 and the fact that

ln (1 + h) = h+O(h2)

the following equation holds almost surely

lim
n!1n⇥ 1

2�
ln(1 +

�

n
(2[Z(prog)]1 +

�

n
||Z(prog)||2))

���!
n!1

�

2�
(2[Z(prog)]1 + �) (5.32)

Assuming the uniform integrability for LHS of equation 5.32, we
can further deduce that

lim
n!1n⇥ CREGS

⇣�

n

⌘

= E
h �

2�
(2[Z(prog)]1 + �)

i

. (5.33)

By equation 5.18, substitute the expectation for the projection
of Z(prog) on e and the result holds.

Similarly we can derive the asymptotic convergence rates of
the EGS-HS.

Theorem 9. Let �2
k be a chi-square distribution with k degree

of freedom. For � > 0, the convergence rate of the EGS-HS with
� o↵spring and scale-invariant step size on spherical functions
satisfies at the limit

lim
n!1n⇥ CREGS�HS

⇣�

n

⌘

=
1

�+ 1

 

�2

2
� �E

"

2�2
� + �N

p

4�2
� + 2�N + �2

#!

(5.34)
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5.4 Numerical Simulations

To compare the linear convergence rates of the EGS with and
without halfspace sampling, we simulate the convergence rates
by means of the Monte-Carlo method. For every convergence
rate expression, we simulated each expectation of a random vari-
able 106 times and averaged the results to obtain an estimate of
the expectation. The step size � is chosen such that it is in the
range of 0.01  � · d  10 and has steps of 0.01 in � · d.

In Figure 5.2, the two graphs in the top row show the con-
vergence rates versus � in the dimensions from 3 to 160. Over-
all, the step sizes for the best measured convergence rates for
the EGS-HS are larger than those of the EGS in the respective
dimensions. For instance, when n is 80 and � is 2, the min-
imum CREGS(�) and CREGS�HS(�) are �0.1623 and �0.2295.
The observed step sizes for EGS and EGS-HS are 0.81 and 1.03
respectively.

Figure 5.2 also shows the asymptotic convergence rates when
� are 2, 5 and 50. Increasing � improves the convergence rates
for both strategies. It also increases the step sizes for the best
measured convergence rates. For instance, the observed best
convergence rates in EGS for � = {2, 10, 50} are�0.159, �0.2265
and �0.2451 respectively. The observed step sizes are 0.8, 2.13
and 4.95 respectively. When halfspace sampling is used, the con-
vergence rates are improved to �0.2263, �0.3668 and �0.4107
respectively. The observed step sizes increase to 1.03, 2.47 and
5.63. Computing the ratio of convergences rates, EGS is im-
proved by 42%, 62% and 68%.

Lastly in Figure 5.3, we plot two graphs to show the best
observed convergence rates against the dimensions n and the
number of o↵spring �. In all cases, the convergence rates of
EGS-HS is faster than those of EGS regardless of dimensions n
and the number of o↵spring �.
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Figure 5.2: Top: Convergence rates CREGS(�) (left) and CREGS�HS(�)
(right) for di↵erent dimensions n when the number of o↵spring � is 2.
Bottom: Theoretical limits of convergence rates CREGS(�) (left) and
CREGS�HS(�) (right) for di↵erent � when dimension n goes to infinity.
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Figure 5.3: Left: The best observed convergence rates plotted against the
dimensions when � is 2. The dashed lines represent the theoretical limits
when n ! 1. Right: The best observed values of theoretical limits of
convergence rates plotted against � when n!1.

5.5 Conclusion and Future Perspective

In this chapter, we have investigated in theory the log-linear con-
vergence of the EGS with halfspace sampling. When halfspace
sampling is used in the EGS, the whole search space is divided
into two halfspaces with respect to a parent. A random sam-
ple is only used when it lies in the positive halfspace, otherwise
its reflection with respect to the parent is used. All resulting
random vectors in an iteration are used to estimate the optimal
halfspaces in order to improve its performance in finding bet-
ter solutions. We have proven the log-linear convergence of the
scale-invariant step size EGS with and without halfspace sam-
pling and we have expressed the convergence rates in terms of
expectations of random variables. By means of the Monte-Carlo
simulation, we have numerically computed the convergence rates
and compared the lower bounds in finite and infinite dimensions,
regardless of the number of o↵spring. The EGS with halfspace
sampling always converges faster than the EGS without half-
space sampling. An improvement of 42% to 68% is observed
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asymptotically. This gives rise to a promising future for halfs-
pace sampling in the EGS in practice.

2 End of chapter.



Chapter 6

Eigenspace Sampling in
Evolution Strategies

Research is creating new knowledge.

Neil Armstrong

6.1 Motivations

Evolution strategy (ES) is one of the popular evolutionary algo-
rithms (EAs) used to solve many black-box optimization prob-
lems. More specifically, ES usually optimizes the real-valued
objective functions f : Rn ! R in the continuous domain. Can-
didate solutions, so-called individuals, are n-dimensional vec-
tors of real numbers. The ES iteratively evolves the populations
of individuals through variations and selection. The qualities
of the individuals is determined by the fitness of the individu-
als, computed by the underlying objective functions. Selection
chooses the best individuals in terms of their fitness and the
selected individuals become the parents in the future genera-
tions. Variations occur through mutations and recombinations
where mutations entail multivariate normal distributed random
vectors to a recombinant generated by recombining the parents
in the population. Multiple works have demonstrated the suc-
cess of ESs in many domains including optimization, machine

124
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learning and the real world applications.
The dimension of the search space n plays an important role

in optimization. In particular, the volume of the continuous
search space increases exponentially with n making it very dif-
ficult for search algorithms to optimize problems which are in
high dimensions. In addition, many real parameter optimiza-
tion problems have dependencies between the parameters, and
learning these dependencies is demanded. Covariance matrix
adaptation evolution strategy (CMA-ES) is one of the ES vari-
ants which is designed to learn the inter-dependencies between
all the parameters by updating the covariance matrix for the
sample distribution. The basic idea is to obtain the information
about the successful search steps, and to use the information
to update the covariance matrix of the mutation distribution
in a derandomised mechanism. The covariance matrix is up-
dated such that variances in the directions of the search space
that have previously been successful are increased while those
in other directions are decreased. Even for a small population,
the accumulation of information over a number of successful
steps can reliably adapt the covariance matrix. An experimental
study [106] shows that the derandomised approach can outper-
form other variants of ES.

Originally designed for small population sizes, the CMA-ES
e�ciently minimizes unimodal functions and it is superior on ill-
conditioned and non-separable problems to other evolutionary
and estimation of distribution algorithms [121]. In [104], the
CMA-ES is further extended by the so-called rank-µ-update.
The rank-µ-update exploits the information contained in large
populations more e↵ectively without a↵ecting the performance
for small populations. Recent studies [102] showed a good per-
formance of the CMA-ES combining large populations and rank-
µ-update on the unimodal and multimodal functions without
any additional tuning on parameter tuning.
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The CMA-ES needs a large number of function evaluations
to adapt the covariance matrix. The work [26] proposes to
use the least squares approach to approximate the Hessian ma-
trix1 of the objective function using information obtained from a
quadratic number of function evaluations. Inverting the Hessian
can produce a matrix that can be used as the mutation covari-
ance matrix. In some functions, inverting an approximation to
the Hessian matrix produces good mutation covariance matri-
ces very quickly. However, while it is beneficial in terms of the
number of objective function evaluations required, the method
requires an additional computational costs of order n6 to solve
the least squares problem.

This chapter proposes a modification to improve the adap-
tation of the covariance matrix in the standard CMA-ES. The
update rule in the original algorithm is that the information
stored in the covariance matrix decays at a constant rate, and
the information from the successful steps of the algorithm is
used to increase variances in directions of the search space that
have proven beneficial in the past. Future o↵spring candidate
solutions are therefore generated preferably in directions that
have proven to be worth exploring. We propose to make a mod-
ification to the original CMA-ES such that the CMA-ES always
biases to evaluate the directions with high variances while it
randomly evaluates the directions with low variances. This is
achieved by grouping the eigenvalues of the covariance matrix
where the dominant eigenspaces are always evaluated and the
minor eigenspaces are randomly evaluated. We experimentally
study our proposed modification and investigate when our mod-
ification can show substantial benefits to the CMA-ES.

This chapter also introduces a new sampling method. Instead
of sampling all the mirrored directions along the principal axes,

1A Hessian matrix is a square matrix of second-order partial derivatives of the objective
function.
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determined by the covariance matrix, we propose to cluster the
eigenvalues of the covariance matrix of a CMA-ES and sample
search points on a mirrored eigenspace spanned by eigenvec-
tors that have the same repeated or clustered eigenvalues in the
Hessian matrices of the objective functions. We apply this sam-
pling method to a (1,�)-CMA-ES and compare its performance
with that of a (1,�s

m)-CMA-ES that uses the mirrored sampling
and sequential selection method. Our simulations demonstrate
promising results: the mirrored eigenspace sampling method
is particularly pronounced on convex quadratic functions with
eigenvalue spectra that are dominated by a large number of rel-
atively large values.

6.2 Eigenspace of Search Space

Consider a convex quadratic objective function fH : x 7! 1
2x

THx,
whereH 2 Rn⇥n is a positive definite matrix. If we useN (m,C)
to sample the mutation distribution, there is a close relationship
between the Hessian matrixH and the covariance matrixC: set-
ting C = H�1 on fH is equivalent to optimizating the isotropic
function fSphere(x) = 1

2x
Tx. That implies that on the convex

quadratic functions, setting the covariance matrix of the sam-
ple distribution to the inverse Hessian matrix is equivalent to
rescaling an ellipsoid function to a sphere function. Therefore
we assume the optimal covariance matrix is equal to the inverse
Hessian matrix. Consequently, the objective of covariance ma-
trix adaptation is to approximate the inverse Hessian matrix.
An accurate and e�cient covariance matrix adaptation is cru-
cial to the performance of the CMA-ES, particularly when the
underlying objective functions are ill-conditioned functions. By
“ill-conditioned”, we mean a large value of the condition num-
ber in the Hessian matrix of the objective function. Formally,
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we can define the condition number as

cond(A) =
⇠n
⇠1

where ⇠i is the i-th eigenvalue of the positive definite matrix
A, such that ⇠1  ⇠2  · · ·  ⇠n�1  ⇠n. Given the convex-
quadratic function fH, the condition number of the optimal co-
variance matrix is the same as the inverse Hessian matrix H�1.

Now consider if we have another convex-quadratic objective
function fH whose the number of distinct eigenvalues in the n⇥n
Hessian matrix H is smaller than n. In other words, there exists
a k number of repeated eigenvalues in the Hessian matrix. The
optimal covariance matrix for this fH also has repeated eigen-
values. The search space spanned by the same eigenvalues and
the corresponding eigenvectors forms an eigenspace which is a
scaled hypersphere. The convex-quadratic objective function fH
having k repeated eigenvalues in its Hessian matrix consists of
k hyperspheres with di↵erent scales. When a covariance ma-
trix adaptation attempts to estimate the covariance matrix dur-
ing optimization, learning the intra-dependencies of parameters
in each of these eigenspaces becomes less prominent because
the same eigenvalues indicate that the dependencies between
each dimension of an eigenspace become constant. Learning the
inter-dependencies of the k eigenspaces with k distinct repeated
eigenvalues becomes more demanding. Particularly, the largest
repeated eigenvalue in the estimated covariance matrix which
represents the eigenspace having the largest variances in the
directions of the search space is more promising than the other
k�1 eigenspaces. When the CMA-ES adapts the covariance ma-
trix, it is intuitive to evaluate the dominant eigenspace with the
largest repeated eigenvalue than the first-dominated eigenspace
with the second largest repeated eigenvalue. Evaluating the
first dominated eigenspace is more encouraging than evaluating
the second-dominated eigenspace with the third largest repeated
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eigenvalue. This makes the minor eigenspace (with the smallest
repeated eigenvalue) become the most discouraging subspace.
When the covariance matrix adaptation attempts to estimate
the optimal covariance matrix during optimization, a dominance
relationship is built among the eigenspaces

The concept of a dominance relationship among the eigenspaces
can be extended to another kind of convex-quadratic function
fH where there exists an l number of clustered eigenvalues in
the n⇥ n Hessian matrix H. Formally, there exists l number of
clusters Ci in the eigenvalues of the Hessian matrix such that in
each cluster Ci ⌘ �⇠j : 8j = 1, . . . , |Ci| , the eigenspectrum of
eigenvalues within each cluster has the condition of

for ✏ 2 R � 0,
max (Ci)

min (Ci)
 (1 + ✏)

while the spectrum between the clusters has the condition of

for ✏ 2 R � 0, 8i = 1, . . . , l � 1,
min (Ci)

max (Ci+1)
� (1 + ✏)

where |Ci| is the number of eigenvalues in the cluster Ci, max (Ci)
and min (Ci) represent the maximum and the minimum eigen-
values in the i-th cluster Ci respectively. Hence the dominant
cluster C1 consists of the set of eigenvalues having the first |C1|
largest eigenvalues of the Hessian matrix while the minor cluster
Cl is the set of eigenvalues having the |Cl| smallest eigenvalues of
the matrix. Notice that if we consider the eigenvalues in the Hes-
sian matrix as one cluster, the condition number of the matrix is
equivalent to its eigenspectrum for any given ✏ 2 R � 0. By clus-
tering the eigenvalues of the estimated covariance matrix during
covariance matrix adaptation, one can have the preference on
the dominant eigenspace spanned by the dominant eigenvalue
cluster C1. The minor eigenspace consists of the set of eigen-
values which has the smallest variances in search directions and
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should be less promising. Unlike the repeated eigenvalues, the
space spanned by the clustered eigenvalues in a single cluster
forms a hyper-ellipsoid in the search space when ✏ is greater
than 0.

6.3 Implemention in (µ,� )-CMA-ES

6.3.1 Algorithms

We outline our modification to the standard CMA-ES and name
the resulting algorithm “✏-CMA-ES”. The following steps re-
place the step 3 of the CMA-ES described in previous section.

a) Sort n number of square roots of eigenvalues di in the matrix
Dk such that d1k  d2k  · · · < dn�1k  dnk

b) Group the square roots of eigenvalues into ne eigenvalue clus-

ters such that each cluster Ci
k ⌘

n

djk : 8j = 1, . . . , |Ci
k|
o

has

the condition of

for ✏ 2 R � 0,
max (Ci

k)

min (Ci
k)
 (1 + ✏)

while the spectrum between the clusters has the condition
of

for ✏ 2 R � 0, 8i = 1, . . . , l � 1,
min (Ci

k)

max (Ci+1
k )
� (1 + ✏)

The notation Si is used to represent the eigenspace spanned
by the eigenvalues in the clusters Ci

k. Notice that at any
time during the optimization, the number of eigenvalue
clusters is always bound by 1  ne  n.

c) If the number of the eigenvalue clusters is between 1 and
n, generate the mutation vectors zik+1 for the o↵spring i
such that there is a probability of pm for it to mutate



CHAPTER 6. EIGENSPACE SAMPLING IN ES 131

in each direction belonging to the minor eigenspace Sn
e

while it always mutates in the directions belonging to other
eigenspaces S1, . . .Sn

e

�1. Given the mutation vectors zi =
⇥

zi,1, . . . , zi,n
⇤

, if the j-th direction does not belong to the
eigenspace Sn

e

, then zi,j is N (0, 1). If the j-th direction
belongs to the eigenspace Sn

e

, then mutate it in the j-th
direction with a probability pm.

c) If the number of the eigenvalue clusters is either 1 or n, gener-
ate the mutation vectors zik+1 for the o↵spring i in the same
way as in the standard CMA-ES, i.e. zi = [N (0, 1), . . . ,N (0, 1)].

Applying the above modification will change the way of gen-
erating the mutation vectors only. If the number of eigenvalue
clusters is between the 1 and n, the ✏-CMA-ES will randomly
evaluate the minor eigenspace with a probability of pm in each
direction of the minor eigenspace. Setting pm = 1 will restore
the algorithm back to the standard CMA-ES since all directions
in the eigenspaces have been evaluated.

6.3.2 Experimental Study

6.3.3 Setup

In our experiments, we studied the performance of the ✏-CMA-
ES and compared its performance with that of the standard
CMA-ES. Table 6.1 lists the test functions in the comparisons.
The test functions are commonly used in the related work [106,
104]. All the functions are scalable in the problem dimensions
and have a minimum function value of 0. The global minimum
is located at x = 0, except for the Rosenbrock function, which
has an optimum at xi = 1 for all i. The number of function
evaluations required to reach an objective function value of fstop
is used as a performance measure, and the respective values of
fstop are also given in the table. To avoid an easy exploitation
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of the symmetry, we use non-symmetrical initialization intervals
which are also shown in Table 6.1.



CHAPTER 6. EIGENSPACE SAMPLING IN ES 133

T
ab

le
6.
1:

T
es
t
F
u
n
ct
io
n
s
to

b
e
m
in
im

iz
ed
,
th
e
st
op

p
in
g
cr
it
er
ia

an
d
th
e
in
it
ia
li
za
ti
on

re
gi
on

N
am

e
F
u
n
ct
io
n

f s
t
o
p

In
it
ia
li
za
ti
on

R
eg
io
n

S
p
h
er
e

f s
p
h
er
e(
y
)
=
P

n i
=
1
y
2
i

10
�
1
0

[1
,5
]n

E
ll
ip
so
id

f e
ll
ip
so
id
(y
)
=
P

n i
=
1
↵

i
�
1

n
�
1
y
2
i

10
�
1
0

[1
,5
]n

C
ig
ar

f c
ig
ar
(y
)
=

y
2 1
+
P

n i
=
2
↵
·y

2
i

10
�
1
0

[1
,5
]n

T
ab

le
t

f t
ab

le
t(
y
)
=

↵
·y

2 1
+
P

n i
=
2
y
2
i

10
�
1
0

[1
,5
]n

C
ig
ta
b

f c
ig
ta
b
(y
)
=

↵
·y

2 1
+
P

n
�
1

i
=
2
↵

1 2
·y

2
i

+
y
2
n

10
�
1
0

[1
,5
]n

T
w
oa
xe
s

f t
w
oa
xe
s(
y
)
=
P

bn 2
c

i
=
1
↵
·y

2
i

+
P

n i
=
bn 2

+
1
c
y
2
i

10
�
1
0

[1
,5
]n

R
os
en
b
ro
ck

f r
os
en
b
ro
ck

=
P

n
�
1

i
=
1
(1
00

·(
x
2 i

�
x
i
+
1
)2
+
(x

i

�
1)

2
)

10
�
1
0

[1
,5
]n



CHAPTER 6. EIGENSPACE SAMPLING IN ES 134

The performance of the CMA-ESs are tested for problem di-
mensions n 2 {2, 3, 5, 10, 20, 40, 80}. The parameter ✏ is set to
0.2 and 4. The probability pm is set to 1

2 . All runs are performed
with the default parameters in the CMA-ES. Except for the de-
fault population size �, we performed additional experiments for
� = 4n. 50 runs are conducted for each setting. The starting
point x0 is sampled uniformly with the initialization intervals
given in Table 6.1. The initial step size of �0 is set to half of the
initialization intervals. Additionally, the run is stopped after 107

function evaluations. The scaling coe�cient ↵ in the definitions
of fellipsoid, fcigar, ftablet, fcigtab and ftwoaxes is 106 unless when
noted otherwise. Lastly, except the Rosenbrock function, all ex-
periments are performed on the objective variables y obtained
by multiplying x with a random orthonormal base, making all
functions except fsphere non-separable.

6.3.4 Results

The average numbers of function evaluations to reach the fstop
versus the problem dimensions in each test function are reported
in the Figure 6.4 and Figure 6.1. Typical single runs of the
standard CMA-ES and the ✏-CMA-ES on the tested functions
with problem dimension n = 10 are shown in Figure 6.5 and
Figure 6.2. Each graph shows the objective function values f(x),
and the squared global step size �2 and the sorted principal axis
length of the mutation distribution (i.e. the di of the matrix
Dk) plotted against the number of function evaluations. Notice
that each di is scaled for a better readability.

We now analyze the test functions one by one. Firstly, on
fsphere function, we can observe that the standard CMA-ES is
almost identical to the ✏-CMA-ES for ✏ 2 {0.2, 4}. When the
standard CMA-ES adapts the covariance matrix, the eigenspec-
trum of square roots of eigenvalues di in the matrix D varies
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CMA-ES (λ=4n)
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Figure 6.1: The average numbers of function evaluations to reach f
stop

in all
the successful runs over the 50 trials, versus the problem dimensions n for
the standard CMA-ES (the black lines), our ✏-CMA-ES (the red lines and
the blue lines represent the performance when ✏ are 0.2 and 4 respectively),
on Rosenbrock function. Dotted lines and solid lines represent the CMA-ES
using default � = 4 + b3 · ln(n)c and � = 4n respectively. Notice that each
di is scaled up for a better readability.

very slightly because the underlying Hessian matrix of the ob-
jective function is H = I. The condition number of this matrix
is always 1 making the ideal number of eigenvalue cluster also
1. Setting ✏ 2 {0.2, 4} makes the estimated number of eigen-
value cluster ne always 1, except for the higher dimension when
n is 80 and ✏ is 0.2. The fluctuation of the estimated square
roots of eigenvalues di becomes greater making a larger value of
estimated number of eigenvalue cluster.

The eigenvalues of the fellipsoid function are evenly distributed
over the eigenspectrum of the Hessian matrix. Therefore, it is
considered that there is no apparent eigenvalue clusters in the
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Figure 6.2: A single run of the ✏-CMA-ES (the thick red solid lines) and
the standard CMA-ES (the thin black dotted lines) on Rosenbrock functions
when ✏ is 4. The lines shown are the function values f(x), the global step size
� and the square roots of eigenvalues of the covariance matrix of mutation
distribution d

i

when the problem dimension n is 10.

fellipsoid function and the optimal number of eigenvalue cluster
ne is 1. If we set a small ✏, e.g. 0.2, the minor eigenspace is
usually spanned by the smallest square roots of eigenvalues d1.
This can cause a slight improvement when the minor eigenspace
is in 1-dimension or in 2-dimension. There is around 10% of
decrease in the number function evaluations when n is 10 and
20. However, when ✏ is 5, the minor eigenspace may be a sub-
space in a higher dimension. Since the ✏-CMA-ES will randomly
evaluate the directions in the minor eigenspace, it will degrade
the progress of the covariance matrix adaptation. More func-
tion evaluations are required in such cases. An example of these
cases can be seen when the standard CMA-ES outperforms the
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Figure 6.3: A single run of the ✏-CMA-ES (the thick red solid lines) and
the standard CMA-ES (the thin black dotted lines) on various functions
when ✏ is 4 and the problem dimension n is 10. From top to bottom, left to
right, the functions are Sphere, Ellipsoid, Cigar, Tablet, Cigtab, and Twoaxes
functions. Notice that each di is scaled up for a better readability.



CHAPTER 6. EIGENSPACE SAMPLING IN ES 138

0.0E0

3.0E4

6.0E4

9.0E4

1.2E5

1.5E5

 0  10  20  30  40  50  60  70  80  90

N
u

m
b

e
r 

o
f 

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

Dimension

CMA-ES (default λ)
ε-CMA-ES (default λ, ε=0.2)

ε-CMA-ES (default λ, ε=4)
CMA-ES (λ=4n)

ε-CMA-ES (λ=4n,ε=0.2)
ε-CMA-ES (λ=4n,ε=4)

0.0E0

2.0E5

4.0E5

6.0E5

8.0E5

 0  10  20  30  40  50  60  70  80  90

N
u

m
b

e
r 

o
f 

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

Dimension

CMA-ES (default λ)
ε-CMA-ES (default λ, ε=0.2)

ε-CMA-ES (default λ, ε=4)
CMA-ES (λ=4n)

ε-CMA-ES (λ=4n,ε=0.2)
ε-CMA-ES (λ=4n,ε=4)

0.0E0

1.0E5

2.0E5

3.0E5

4.0E5

 0  10  20  30  40  50  60  70  80  90

N
u

m
b

e
r 

o
f 

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

Dimension

CMA-ES (default λ)
ε-CMA-ES (default λ, ε=0.2)

ε-CMA-ES (default λ, ε=4)
CMA-ES (λ=4n)

ε-CMA-ES (λ=4n,ε=0.2)
ε-CMA-ES (λ=4n,ε=4)

0.0E0

4.0E4

8.0E4

1.2E5

1.6E5

2.0E5

2.4E5

 0  10  20  30  40  50  60  70  80  90

N
u

m
b

e
r 

o
f 

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

Dimension

CMA-ES (default λ)
ε-CMA-ES (default λ, ε=0.2)

ε-CMA-ES (default λ, ε=4)
CMA-ES (λ=4n)

ε-CMA-ES (λ=4n,ε=0.2)
ε-CMA-ES (λ=4n,ε=4)

0.0E0

4.0E4

8.0E4

1.2E5

1.6E5

2.0E5

2.4E5

 0  10  20  30  40  50  60  70  80  90

N
u

m
b

e
r 

o
f 

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

Dimension

CMA-ES (default λ)
ε-CMA-ES (default λ, ε=0.2)

ε-CMA-ES (default λ, ε=4)
CMA-ES (λ=4n)

ε-CMA-ES (λ=4n,ε=0.2)
ε-CMA-ES (λ=4n,ε=4)

0.0E0

4.0E5

8.0E5

1.2E6

1.6E6

 0  10  20  30  40  50  60  70  80  90

N
u

m
b

e
r 

o
f 

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

Dimension

CMA-ES (default λ)
ε-CMA-ES (default λ, ε=0.2)

ε-CMA-ES (default λ, ε=4)
CMA-ES (λ=4n)

ε-CMA-ES (λ=4n,ε=0.2)
ε-CMA-ES (λ=4n,ε=4)

Figure 6.4: The average numbers of function evaluations to reach f
stop

in all
the successful runs over the 50 trials, versus the problem dimensions n for
the standard CMA-ES (the black lines), our ✏-CMA-ES (the red lines and
the blue lines represent the performance when ✏ are 0.2 and 4 respectively).
From top to bottom, left to right, the functions are Sphere, Ellipsoid, Cigar,
Tablet, Cigtab, and Twoaxes functions. Dotted lines and sold lines represent
the CMA-ES using default � = 4 + b3 · ln(n)c and � = 4n respectively.



CHAPTER 6. EIGENSPACE SAMPLING IN ES 139

✏-CMA-ES for n 2 {40, 80}.
The fcigar, ftablet and ftwoaxes functions are similar in that there

are two apparent eigenvalue clusters and their minor eigenspaces
are spanned by the subspace in n � 1 dimension, 1 dimension
and n

2 dimension respectively. It can seen that all the ✏-CMA-
ESs outperform the standard CMA-ES except for ftwoaxes when
n is 80 and � is 4n. The best ✏-CMA-ES requires about 23%,
38% and 40% fewer function evaluations to reach fstop. Over-
all, the performance advantage of the ✏-CMA-ES can be ob-
served across the range of search space dimensionality when it
is used to optimize the test functions which have two eigen-
value clusters in their Hessian matrix of the objective functions.
The Hessian matrix of the fcigtab has three eigenvalue clusters.
The ✏-CMA-ES also outperforms the standard CMA-ES in fcigtab
function. A reduction of around 8% in the number of function
evaluations is observed. Finally, it can seen from the figures
that the performance of the ✏-CMA-ES does not outperform
the standard CMA-ES on the frosenbrock function which is not
a convex-quadratic objective function. This is the only test
function in this chapter where ✏-CMA-ES requires more func-
tion evaluations across the whole range of search space dimen-
sionality. We believe that the poor performance is due to the
evenly distributed eigenspectrum of eigenvalues in the Rosen-
brock function which is similar to that in the Ellipsoid function
fellipsoid.

6.4 Implemention in mirrored variant of (1,�)-
CMA-ES

6.4.1 Mirroring sampling and Sequential selection

Recently, mirroring sampling [53, 21] has been proposed to re-
place the independent sampling in evolution strategies by de-
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pendent ones in order to increase the probability of successful
sampling possibly resulting in an increase in the convergence
speed of the algorithms. Instead of sampling all � o↵spring i.i.d.,
the mirrored variant of evolution strategies samples only d�/2e
i.i.d. o↵spring as xi

k = mk + �k ⇥N i(0,Ck) for 1  i  d�/2e,
where N i(0,Ck) is the realization of the mutation step for i-th
o↵spring. Up to b�/2c and further, the o↵spring depend on the
already drawn samples as xi

k = mk � �k ⇥N i�d�/2e(0,Ck) for
d�/2e + 1  i  �. They are thus mirrored or symmetric with
respect to the parent mk. Consequently, a mirrored sample is
used if and only if the iteration index g is even. We introduce
a new notation. The number of the the independent o↵spring
per iteration is denoted by �iid and the number of the mirrored
o↵spring per iteration is denoted by �m, where � = �iid + �m

solutions are evaluated in each iteration. As a result, if we set
�m = 0, it results in the standard (1,�)-CMA-ES. We denote
the new algorithm as the (1,�iid + �m)-CMA-ES.

Evaluating a sampled solution and its mirrored counterpart
can result in unnecessary function evaluations. On unimodal
objective functions with convex sub-level sets, the mirrored so-
lution mk � �k ⇥N i�d�/2e(0,Ck) for d�/2e + 1  i  � must
be worse than the parent mk, if mk + �k ⇥N i(0,Ck) for 1 
i  d�/2e was better than mk. Sequential selection [21], orig-
inally introduced to save these unnecessary function evalua-
tions, can be independent of mirrored sampling: the o↵spring
are evaluated one by one, compared with their parent, and
the iteration is concluded immediately if one o↵spring is bet-
ter than its parent. If all the � o↵spring are worse than the
parent, the original selection scheme is applied. When sequen-
tial selection is implemented in the (1,�)-CMA-ES, the o↵spring
are generated with mirrored sampling. Evaluations are carried
out in a sequential manner. After evaluating x1

k, it is com-
pared to mk and if f(x1

k)  f(mk), the sequence of evaluations



CHAPTER 6. EIGENSPACE SAMPLING IN ES 141

is stopped and the o↵spring will replace the parent immedi-
ately for the next iteration, i.e. mk+1 = x1

k. Sequential se-
lection will proceed until all �iid + �m o↵spring are generated
and evaluated. In case all o↵spring are worse than mk, the
best individual will become the parent in the next iteration,
i.e. mk+1 = argmin

�

f(x1
k), . . . , f(x

�
k)
 

according to the comma
selection. The number of o↵spring evaluated is a random vari-
able ranging from 1 to �iid + �m that can reduce the number of
o↵spring adaptively as long as an improvement is achieved.

6.4.2 Algorithms

As the concepts of mirrored sampling and eigenvalue cluster-
ing are independent, they can be applied simultaneously. We
consider a new variant of the (1,�)-CMA-ES that di↵ers in the
choice of mirrored o↵spring in the (1,�iid + �m)-CMA-ES. For-
mally, in each iteration step, we first cluster the eigenvalue in
the covariance matrix as follow:

a) Sort n number of eigenvalues in the matrix Dk such that
d1k  d2k  · · ·  dn�1k  dnk

b) Cluster the eigenvalues into ne eigenvalue clusters such that

each cluster Ci
k ⌘

n

djk : 8j = 1, . . . , |Ci
k|
o

has the condition

of:

for ✏ 2 R � 0,
max (Ci

k)

min (Ci
k)
 (1 + ✏)

while the spectrum between two neighbouring clusters has
the condition of
for ✏ 2 R � 0,

8i = 1, . . . , l,
min (Ci

k)

max (Ci�1
k )

> (1 + ✏)
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We use the notation Si to represent the eigenspace spanned
by eigenvectors associated with the eigenvalues in the clus-
ters Ci

k. Notice that at any time during the optimiza-
tion, the number of eigenvalue clusters is always bound by
1  ne  n.

Instead of sampling all the eigenspace (which is what a tra-
ditional mirroring o↵spring does), we sample the search points
on an eigenspace Su where u ⇠ U(1, ne) is an integer uniformly
generated from 1 to ne. Formally, the original equations of o↵-
spring generation in Algorithm 3 are changed to:
for d�/2e+ 1  i  �,

xi ⇠mk � �k ⇥N i�d�/2e(0,C
S
u

k )

where CS
u

= BDS
u

BT and

DS
u

=

2

6

6

6

6

6

4

0 0 . . . . 0
0 d1k . . . . 0
... 0 . . . 0
...

... d
|Ci

k

|
k 0

0 0 . . . . 0

3

7

7

7

7

7

5

where the set of eigenvalues d1k ,. . . , d
|Ci

k

|
k 2 Ci

k are the eigenvalues
in the kth-eigencluster Ci

k. We now introduce another notation.
The number of o↵spring sampled by the above eigencluster per
iteration is denoted by �g, where in each iteration � = �iid + �g

solutions are evaluated. Similar to the mirrored variant in the
previous subsection, when 0  �g  �iid it results in the stan-
dard (1,�)-CMA-ES in case �m = 0. We denote this new algo-
rithm as the (1,�iid + �g)-CMA-ES. In short, the (1,�iid + �g)-
CMA-ES executes the same update equations in Algorithm 3
except only when it generates the �g number of o↵spring. It first
samples a candidate solution mk + �k ⇥N i(0,Ck). If this solu-
tion is better than the parent mk, it will replace the parent and
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CMA-ES will go to the next iteration. If this solution is worse
than the parent mk, the (1,�iid + �g)-CMA-ES will cluster the
eigenvalues in the covariance matrix. It then generates a random
integer u ⇠ U(1, ne) to select an eigenspace uniformly and sam-
ples a new candidate solution xi ⇠mk � �k ⇥N i�d�/2e(0,C

S
u

k ).
Notice that this candidate solution is similar to the mirrored
o↵spring except that the realization of N i�d�/2e(0,C

S
u

k ) has the
same dimensionality of the eigenspace Su. If this solution is bet-
ter than the parent mk, replace the parent. Otherwise, it will
generate a new o↵spring with a new realization of N i+1(0,Ck).
Sequential selection will proceed until all �iid o↵spring are gen-
erated.

Lastly we consider one variant of the (1,�)-CMA-ES that
does not use any eigenvalue clustering to sample an eigenspace.
This variant always samples a direction along a principal axis of
the covariance matrix that is selected uniformly. Formally, the
update equations of o↵spring generation becomes:
for d�/2e+ 1  i  �,

xi ⇠mk � �k ⇥N i�d�/2e(0,Ci
k)

where Ck = BDkBT and

Dk =

2

6

6

6

4

0 0 · · · 0
0 duk · · · 0
...

... . . . 0
0 0 · · · 0

3

7

7

7

5

where u ⇠ U(1, n) is an integer uniformly generated from 1 to
n and duk is the k-th eigenvalue associated with the k-principal
axis of the covariance matrix Ck. We refer to this variant as the
(1,�iid + �u)-CMA-ES.
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6.4.3 Parameters

The update of evolution path of p� and pc in a (1,�)-CMA-ES
is an exponential smoothing. The information stored in the co-
variance matrix decays at a constant rate. The information from
the successful steps of the algorithm is used to increase variances
in the directions of the search space that have proven beneficial
in the past. The updates of evolution paths assume that the
search points are fully sampling in all the directions along the
principal axes. Since the two strategies (1,�iid + �g)-CMA-ES
and (1,�iid+�u)-CMA-ES sample on a mirrored eigenspace and
a 1-dimensional space along a principal axis, this will result in a
bias towards small step sizes. Most importantly, the eigenspaces
that are not sampled by these two variants will shrink more
rapidly. The eigenvalues of these eigenspace will decrease much
faster than those in the sampled eigenspace. Hence we consider
to changing the learning parameters c�, cc of the two evolution
paths p� and pc, and those learning parameters c1, cµ for co-
variance matrix update from scalars to n-dimensional vectors.
When a CMA-ES samples search points on an eigenspace Su,
only those dimensions in the sampled eigenspace are updated
by the learning parameters. Other eigenspace that are not sam-
pled will not be updated. Formally, the update equations in
Algorithm 3 are changed to :

p�
k+1 = (1� ~c�) · p�

k +
p

~c�(2� ~c�)µw

✓

Ck
� 1

2
mk+1 �mk

�k

◆

pc
k+1 = (1� ~cc) · pc

k + h�

p

~cc(2� ~cc)µw
mk+1 �mk

�k

Ck+1 =(1� ~c1 � ~cµ)Ck(1� ~c1 � ~cµ)
T

+ (~c1 · pc
k+1)(p

c
k+1 · ~c1)T + ~cµC

µ ~cµ
T
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where ~c� = c�~a, ~c1 = c1~a, ~cc = cc~a, ~cµ = cµ~a for ~a = (eSk

1 +
. . . + eSk

|S
k

|) and eSk

i is the i-orthonormal basis spanned in the
kth-eigenspace.

6.4.4 Experimental Study

In order to evaluate the eigenspace sampling in CMA-ES, we
compared it with corresponding algorithms that do not use eigenspace
sampling. The following subsection describes the results ob-
served on a set of well-understood and convex-quadratic func-
tions that are frequently used to evaluate the performance of
real-valued evolutionary algorithms.

6.4.5 Performance on the Convex-Quadratic Functions

The six functions in the Table 6.1 are all convex-quadratic and
have been employed extensively in the literature [106, 104]. All
the functions are scalable in the problem dimensions and have
a minimum function value of 0. The global minimum is located
at x = 0. In all cases, the scaling factor ↵ is set to 108, resulting
in mostly ill-conditioned problems. This scaling factor basically
determines the eigenvalue spectra of the Hessian matrices of the
functions. The larger the scaling factor, the larger the eigenvalue
spectra of the Hessian matrices. Intuitively, CMA-ES requires
more function evaluations to learn the appropriate covariance
matrix for highly conditioned problems. We believe that the
eigenvalue distributions of the Hessian matrices will a↵ect the
performance of a CMA-ES, particularly what the optimal up-
dates on the covariance matrices should be when the eigenvalue
distribution has an arbitrary number of eigenclusters which have
di↵erent eigengaps between eigenclusters and in each eigenclus-
ter. Notice that while all functions are separable, this is not a
limitation as CMA-ES is invariant with regard to the transfor-
mations of the coordinate system. Applying random rotations
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would result in non-separable functions without a↵ecting the
performance.

All runs are initialized with the parental candidate solution
m0 drawn from a n-dimensional uniform distribution over the
search space. The initial global step size � is set to 0.5, the co-
variance matrix is set to the identity matrix, and the search path
is set to the zero vector. The eigenvalue clustering parameter ✏
is set to 1. All runs are terminated when (1) a candidate solu-
tion with an objective function value of fstop = 10�10 or better
has been generated, or (2) the number of function evaluations
exceeds 103 · n2.

The behavior of CMA-ES on convex-quadratic functions is
well studied. The optimal covariance matrix is equal to the in-
verse Hessian matrix and it should be constant throughout the
search space. A CMA-ES basically learns a covariance matrix
close to the optimal one and then proceeds as fast as they can to
optimize the sphere function. Given the small fstop in the sim-
ulations, it is largely the amount of time required to learn an
approximation to the inverse Hessian that determines the num-
ber of function evaluations required to satisfy the termination
condition for any dimensional problems.

For each function, we simulate 4 variants of the (1,�)-CMA-
ES:

1. The mirrored variant of the (1,�iid + �g)-CMA-ES using
the mirrored eigenspace sampling method. Both �iid and
�g are set to 1.

2. The mirrored variant of the (1,�iid+�u)-CMA-ES using the
mirrored sampling along a principal axis. Both �iid and �g

are set to 1.

3. The mirrored variant of the (1,�iid + �m)-CMA-ES in [21,
53]. Both �iid and �m are set to 1.
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4. The original (1,�iid)-CMA-ES in [106, 104]. �iid is set to 2.

Figure 6.5 illustrates the behavior of the (1, 2)-CMA-ES in
the typical runs on the cigar function with n = 10. Shown are
the objective function values of the search points, the global step
size �, and the eigenvalues of the covariance matrix C that is
multiplied with 104 for clarity. The cigar function is character-
ized by one eigenvalue of its Hessian matrix being significantly
smaller than the remaining eigenvalues. In this case, the opti-
mal covariance matrix therefore has one eigenvalue significantly
larger than the others. The axis scales in Figure 6.5 suggest
that a covariance matrix close to the optimal one is achieved
toward the end of the runs as there is a dominant eigenvalue
while the remaining nine minor eigenvalues are smaller by a fac-
tor of about 108 (about the same value of ↵). Comparing the
two subfigures, using the eigenspace sampling in CMA-ES al-
lows a faster reduction of the magnitude of multiple eigenvalues
than the mechanism in the original strategy does. Using the
eigenspace sampling in this particular case, the improvement
resulting from is almost one third. Due to the nature of the
eigenvalue spectrum, the cigar function is a function for which
using the eigenspace sampling can be expected to be beneficial.

Figure 6.6 shows the median numbers of function evaluations
required to reach fstop for all convex-quadratic test functions.
The dimensions of the search space are from n = to n = 40.
First, we analyze the performance on the sphere function. Com-
paring all mirrored variants to the original CMA-ES, the median
speed-up is from 42% to 56% from n = 3 to n = 40. The medi-
ans of the (1, 2g)-CMA-ES and the (1, 2m)-CMA-ES are almost
identical. The (1, 2u)-CMA-ES has a smaller median number.
Overall, the median speed up of the mirrored variants is ex-
pected. Since the Hessian matrix of the sphere function is an
identify matrix, the optimal number of eigenclusters is therefore
1. The eigenvalue spectrum di in the matrix D can vary slightly
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Figure 6.5: Typical runs of the (1, 2
g

)-CMA-ES using the mirrored eigenspace
sampling method (top), the (1, 2

u

)-CMA-ES using the mirrored sampling
along a principal axis. (middle), and the standard (1, 2)-CMA-ES (bottom)
on the cigar functions. The lines shown are the function values f(x), the
global step size � and the eigenvalues of the covariance matrix of mutation
distribution d

i

when the problem dimension n is 10.
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in the (1,�iid + �g)-CMA-ES. In most cases, a realization of a
sample on an eigenspace is basically a sample on a n-dimensional
space. Sampling on the n-dimensional eigenspace is in fact iden-
tical to mirrored sampling in the (1, 2m)-CMA-ES. This explains
why the median numbers of the (1, 2g)-CMA-ES and the (1, 2m)-
CMA-ES are close. On the other hand, sampling in the (1, 2u)-
CMA-ES is always on the 1-dimensional space. As the sphere
function is invariant, sampling on a 1-dimensional space along a
principal axis would always result in a better solution than the
parental candidate solution.

On ellipsoid function, the median speed up of the (1, 2g)-
CMA-ES is from 18% to 51% for n = 5 to n = 40. The worst
case was when n = 2 with a loss in performance about 69%.
The (1, 2u)-CMA-ES is not perform as the (1, 2g)-CMA-ES does.
In moderate values of n, the median speed up is about 25%.
The performance starts to deteriorate when the problem dimen-
sion is large. The (1, 2m)-CMA-ES performs consistently from
n = 5 to n = 40. Its median speed up is up to 60%. In fact,
the eigenvalue spectrum of the Hessian matrix in the ellipsoid
function is evenly distributed. As there is no dominant eigen-
value, it is therefore right to deduce that there are no eigenclus-
ters. Hence, the optimal number of eigenclusters ne is 1. As
the (1,�iid + �u)-CMA-ES samples on 1-dimensional space, the
learning of covariance matrix becomes relatively slow, compared
with the (1,�iid + �g)-CMA-ES and the (1,�iid + �m)-CMA-ES
that both sample the kth-dimensional eigenspace and all the n-
dimensional search space respectively. It is thus suggested to
have a large eigenvalue clustering factor ✏ which can result in
a decrease in the number of eigenclusters formed. Setting ✏ to
1 will force the (1,�iid + �g)-CMA-ES to always form a single
eigencluster, making it actually behave like the (1,�iid + �m)-
CMA-ES, i.e. sampling all directions of the principal axes.

The cigar, tablet and twoaxes functions are similar in that
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Figure 6.6: Log-log plot of the median number of function evaluations (over
the successful trials out of 21) required to reach the target fitness value of
10�10 for 6 di↵erent benchmark functions on dimensions 3 to 40. For each
graph, the y-axis represents the median numbers of function evaluations and
the x-axis represents the problem dimensions. The legends “Eigenclustering”,
“Uniform”, “Mirroring” and “CMA-ES” represent the median numbers of the
(1, 2

g

)-CMA-ES, (1, 2
u

)-CMA-ES, (1, 2
m

)-CMA-ES and the original (1, 2)-
CMA-ES respectively.
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there are two apparent eigenclusters in their Hessian matrices,
but they are di↵erent in their eigenvalue spectra. In the cigar
function, the eigenvalue spectrum is a relatively small eigenvalue
dominated by all the remaining large eigenvalues. The median
speed up of the (1, 2g)-CMA-ES is from �40% up to 40% for
n = 3 to n = 40. It is relatively higher than that the (1, 2u)-
CMA-ES. The best speed up is about 20%, lower than that of
the (1, 2m)-CMA-ES, which a median gain of 59%. Similarly, we
observe the same behavior among all mirrored variants on the
twoaxes function. The (1, 2m)-CMA-ES achieved the best me-
dian speed up, followed by the (1, 2g)-CMA-ES and the (1, 2u)-
CMA-ES respectively. On the other hand, observations are dif-
ferent in the tablet function. On average, the median speed up
in the (1, 2m)-CMA-ES is about 35%. Both the (1, 2g)-CMA-ES
and the (1, 2m)-CMA-ES appear to underperform with increas-
ing n. In no instance do the savings in the median number of
function evaluations exceed 22%. We believe that the advantage
resulting from the use of eigenvalue clustering to sample on an
eigenspace is related to the ratio of small eigenvalues to large
eigenvalues. We plan to investigate the correlations between
these two. The (1, 2u)-CMA-ES is relatively outperformed by
the other two mirrored variants as sampling on a 1-dimensional
space spanned by one eigenvector is not beneficial.

The last convex quadratic function is the cigtab function,
which has the characteristics of both cigar and tablet functions.
Its eigenvalue spectrum for the Hessian matrix has a relatively
large eigenvalue and a relatively small eigenvalue, all the n� 2
remaining eigenvalues are between the two. The (1, 2m)-CMA-
ES has the best median speed up at 47%. The median speed
up of the (1, 2g)-CMA-ES is up to 19%. The (1, 2u)-CMA-ES
underperforms relative to the original (1, 2)-CMA-ES. The worst
results occur happens when n = 40 with the loss in performance
down to �184%.
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6.5 Future Perspective

In the first part of this chapter, we proposed a modification
to the standard covariance matrix adaptation evolution strate-
gies (CMA-ES) algorithm called ✏-CMA-ES. The objective of
the modification is to improve the performance of the standard
CMA-ES by reducing the number of function evaluations needed
for covariance matrix adaptation. The covariance matrix adap-
tation can be improved if the ✏-CMA-ES can identify the minor
eigenspace in the Hessian matrix of the underlying objective
functions, which have repeated eigenvalues or clustered eigen-
values. While the ✏-CMA-ES always evaluates all the directions
of the dominant eigenspace and the dominated eigenspaces, the
✏-CMA-ES will randomly evaluate each direction in the minor
eigenspace. In this thesis, the ✏-CMA-ES has been investigated
on a set of common unimodal benchmark problems, including
ill-conditioned functions and functions that have a few repeated
eigenvalues in their Hessian matrices. The advantages of the ✏-
CMA-ES are most pronounced on objective functions with a mi-
nor eigenspace that is dominated by one or two eigenspaces, such
as the Cigar function fcigar, Tablet function ftablet and Twoaxes
function ftwoaxes. In these functions, when the ✏-CMA-ES ran-
domly evaluates the minor eigenspace, the variances of the mu-
tation distribution in the directions in the minor eigenspace are
reduced much faster. However, limited benefits were observed
for objective functions with eigenspectra which are more evenly
distributed, such as the Ellipsoid function fcigar and the Rosen-
brock function frosenbrock. When the problem dimension is 80,
the performance advantage of the ✏-CMA-ES ranges from none
(on the Ellipsoid and Rosenbrock functions) to more than 40%
(for default default � = 4 + b3 · ln(n)c on Twoaxes function).

In future works, we plan to study how and when the ✏-CMA-
ES should start to randomly evaluate the dominated eigenspace
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as the current ✏-CMA-ES only randomly evaluates the minor
eigenspace which has the smallest set of eigenvalues. We expect
that the ✏-CMA-ES can be further improved if the dominated
eigenspaces are randomly evaluated with “good” timing during
the course of optimization. Finally, a subject of future investi-
gation is the performance of the ✏-CMA-ES on multimodal test
functions.

In the second part of this chapter, we introduced a new sam-
pling method the (1,�)-CMA-ES. The sampling method samples
search points on the mirrored eigenspace after the eigenspace
associated with the covariance matrix are identified. Whether
using mirrored eigenspace sampling results in a performance ad-
vantage depends on the nature of the objective functions. A
significant improvement can be observed on convex quadratic
functions which have a large number of eigenvalues in their Hes-
sian matrices that are significantly larger than all the remaining
ones. Using the mirrored eigenspace sampling method can en-
able the (1,�)-CMA-ES to quickly reduce the variance of mu-
tations vectors in the eigenspace. We also compared its per-
formance with that of the (1,�iid + �m)-CMA-ES. While it was
slightly worse than the (1,�iid+�m)-CMA-ES, the performance
is still encouraging when we compare it with the original (1,�)-
CMA-ES. Overall the best median speed was up to 56% on the
sphere function, and the worst median speedup was a loss of
40%, happening only when n = 3.

In future works, we plan to investigate the correlation be-
tween eigenspace sampling and the eigenvalue distributions of
the Hessian matrices of underlying optimization functions. We
believe that the CMA-ES can exploit the information of eigen-
value distributions and it can further reduce the number of steps
to learn the covariance matrix to an optimal one. Investigating
the eigenspace sampling in the traditional ES and CMA-ES with
weight recombinations is also one of our interests. Finally, a pos-
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sible subject of future work is applying eigenspace sampling to
the elitist version of the (1 + 1)-CMA-ES.

2 End of chapter.
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Chapter 7

CMA-ES in Dynamic
Environments

I do not know whether I was a men dreaming I was
a butterfly, or whether I am now a butterfly dreaming
I am a man.

Zhuangzi

7.1 Motivations

In recent years, there has been a fair amount of research works
that have contributed to the state-of-the-art covariance matrix
adaptation evolution strategies (CMA-ES) [106, 104, 189, 115]
that are used to solve many black-box optimization problems.
CMA-ES usually optimizes the real-valued objective functions
f : Rn ! R in the continuous domain. On ill-conditioned prob-
lems, covariance matrix adaptation can accelerate the rate of
convergence of evolution strategies by orders of magnitude. For
example, a successful covariance matrix adaptation can enable
strategies to generate candidate solutions predominantly in the
direction of narrow valleys. The CMA-ES is able to learn the
appropriate covariance matrix from successful steps that the al-
gorithm has taken. The covariance matrix is updated such that
variances in directions of the search space that have previously

156
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been successful are increased while those in other directions are
decreased. Even for a small population, the accumulation of in-
formation over a number of successful steps can reliably adapt
the covariance matrix.

However, the problem classes that have been considered in
most of these works are of a static nature. In contrast, many
problems in engineering, computational and biological domains
are dynamic in that the objective functions are not constant,
but vary with time. Examples of dynamic optimization prob-
lems arise in the context of online job scheduling, where new
jobs arrive in the course of optimization. A complete list of
survey and works on the evolutionary algorithms for dynamic
optimization has been reviewed by [118, 46].

There are a few works that focus on evolution strategies in
dynamic optimization. The early work [220] empirically studied
the family of evolution strategies in dynamic rotating problems.
It investigated the performance when evolution strategies em-
ployed di↵erent forms of mutation step size adaptation. The
experimental results show that a simple mutation step size adap-
tation achieves the best results compared to other complicated
adaptation mechanisms, including covariance matrix adapta-
tion. It also suggested the use of small populations in evolution
strategies because using large populations implies a higher de-
gree of dynamism, which is undesirable in dynamic optimization.
Another work [201] studied evolution strategies for the number
of mutation step sizes required when the optima moves in one or
all n coordinates with di↵erent severity. The results showed that
adapting all n mutation step sizes achieves a better performance
than adapting a single mutation step size. The work [29] com-
pares di↵erent variants of mutative self-adaptation and shows
that the lognormal self-adaptation used in evolution strategies
performs better than the variants of self-adaptation commonly
used in evolutionary programming. Obviously all these works
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demonstrate the di�culty of understanding the behavior of evo-
lution strategies, their operators and their parameters in dy-
namic environments.

7.2 Experimental Validation on CMA-ES

7.2.1 Setup

In our setup, we use the same set of problems in [129]. A total
of six dynamic problems F1 to F6 are tested1 . All six problems
are multi-modal, scalable, rotated and have a large number of
local optima. Unless stated otherwise, a change will occur only
after 102 · n number of functions evaluations are used. Fifty in-
dependent runs are executed per problem and per change. All
problems have the global optimum within the given bounds and
there is no need to perform searches outside of the given bounds
for these problems. All algorithms will be terminated when the
number of changes reaches 60. To evaluate the performance of
the algorithms for maximization problems, we record the rela-
tive function error value Elast(t) = f(x

best

(t))
f(x⇤(t)) after each change.

The vector xbest(t) is the best solutions found by the algorithm at
time t and the vector x⇤(t) is the location of the global optimum
at time t. In our experiments, all three variants of CMA-ES and
the (1+1)-ES with the one-fifth success rule are compared on
six benchmark problems. All strategy parameter of evolution
strategies are set to the default values in their original works
[184, 106, 104, 189, 115]. No parameters tuning has been con-
ducted.

7.2.2 Results

The experimental results are shown in Figure 7.1. The graphs
show the relative function error values against the change types.

1For details of functions please reference to [129]
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Figure 7.1: The median performance of the CMA-ES variants and the (1+1)-
ES with the one-fifth success rule on F1 to F6 over the trials of 50. The
dynamic change types are C1 Small step change, C2 Large step change, C3

Random step change, C4 Chaotic change, C5 Recurrent change and C6 Recur-
rent change step with noise. For each change type, from left to right, the bars
represent the (1+1)-ES with the one-fifth success rule (blue), (1+1)-CMA-ES
(green), the standard CMA-ES (yellow) and the sep-CMA-ES (orange).
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Figure 7.2: The median performance of the CMA-ES variants and the (1+1)-
ES with the one-fifth success rule on F1 when the change type is C3 random
step change. The left graph shows the performance against the severity of
the dynamic changes while the right graph shows the performance against
the problem dimensions.

The whiskers in the graphs mark the 10th and 90th percentiles.
We first take a look at the first problem F1 Rotation Peak Prob-
lem. The performances of the (1+1)-ES and the (1+1)-CMA-ES
generally outperform the standard CMA-ES and the sep-CMA-
ES. The results are consistent for all 6 types of dynamic changes.
An elitist evolution strategy using a small population size leads
to the best results compared to all other strategies that are non-
elitist and are in large population sizes. Both the (1+1)-ES and
the (1+1)-CMA-ES are statistically indistinguishable for all 6
types of dynamic changes. Comparing the standard CMA-ES
with the sep-CMA-ES, their performances are also statistically
equivalent. None of our statistical tests is able to show any
significance in these two strategies. Obviously the simple adap-
tation technique like the one-fifth success rule can adapt quickly
to the dynamically changing environments. The more compli-
cated mechanisms that produce very good results in static opti-
mization, are not adapting very well for dynamic optimization.
If we look at the graph for F2, the results are consistent with
those in F1. The (1+1)-ES and the (1+1)-CMA-ES achieve the
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best performance. From functions F3 to F6, the performance
of all strategies becomes worser since the fitness landscapes are
more rugged than the functions F1 and F2. However, the per-
formance di↵erences between the elitist and non-elitist versions
become smaller. In some of the cases in functions F3 and F5, all
four variants are statistically equivalent. In functions F4 and F6,
there are a few cases where the CMA-ES and the sep-CMA-ES
outperform the (1+1) variants. Overall all strategies in most of
the cases are indistinguishable in functions F4 and F6.

We next investigate how robust these strategies are to dy-
namic changes with di↵erent severity and to the problem dimen-
sions. Figure 7.2 shows the median numbers of relative function
errors against the severity when the underlying function is F1

and the change type is C3. The severity �severity is normalized

such that severity is equal to �
severity

|�| where |�| is the range of
the system control parameters. When we increase the severity,
the performance generally becomes worse. The elitist (1+1)-ES
and the (1+1)-CMA-ES are generally better than the non-elitist
strategies in dynamic changes with di↵erent severity. Lastly we
investigate the performance of the strategies when the dimen-
sions are increased. The right graph in Figure 7.2 shows the me-
dian numbers against the problem dimensions. The performance
of elitist strategies becomes worse when the problem dimensions
are scaled up. We believe this is due to the small population
sizes of these point-based (1+1) strategies. In contrast to the
elitist strategies, the non-elitist version of the CMA-ES that are
population-based improves gradually in higher dimensions. The
performance gap between the elitist and non-elitist CMA-ES is
getting smaller. Obviously when we increase the problem di-
mension, the dynamic problems become more challenging and
it is necessary to use the population-based strategies in order to
achieve a reasonable performance.
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7.3 Future Perspective

In this chapter, we investigate the state-of-the-art CMA-ES vari-
ants for dynamic optimization and they include the elitist (1+1)-
CMA-ES, the standard (µ,� )-CMA-ES and the sep-(µ,� )-CMA-
ES. We first briefly review the CMA-ES variants in the context
of static optimization and then we discuss the latest dynamic
optimization benchmark problems that are used in our simula-
tions. In one out of the six dynamic functions, the elitist (1+1)-
ES with the one-fifth rule and the (1+1)-CMA-ES achieve the
best performance. In most of our simulations, these two elitist
strategies are statistically equivalent. The non-elitist strategies,
including the standard (µ,� )-CMA-ES and the sep-CMA-ES,
are outperformed by the elitist variants. The results are consis-
tent for dynamic changes with di↵erent severity. However, the
performance of the elitist strategies, which are pointed-based
search algorithms, becomes worse for higher dimensional prob-
lems. Using the population-based strategies like the standard
(µ,� )-CMA-ES and the sep-CMA-ES can achieve the equiva-
lent performance as what the elitist (1+1) variants can do.

In the future work, it would be interesting to introduce ad-
ditional diversity into the CMA-ES variants. Concentrating the
search near the the current optima in a dynamic environment
could make the strategies miss the important changes in di↵erent
regions of the search space. Adding predictions mechanism and
diversity control methods can be a promising way for CMA-ES
to optimize the dynamic functions.

2 End of chapter.



Chapter 8

CCEA in Dynamic
Environments

I’ve failed over and over and over again in my life
and that is why I succeed.

Michael Jordan

8.1 Motivations

Coevolutionary algorithms are one of the popular evolutionary
algorithms (EAs) and they are fundamentally di↵erent from the
traditional EAs. Fitness evaluations in the coevolutionary algo-
rithms always depend on the outcomes of interactions between
individuals. Traditionally, the coevolutionary algorithms can be
classified into the competitive coevolution [190] and the coop-
erative coevolution [173]. In a competitive coevolutionary algo-
rithm, the individuals compete against others. The increase in
the fitness of an individual will decrease the fitness of another
individual. In a cooperative coevolutionary algorithm (CCEA),
the fitness demonstrates how well the individuals perform when
they collaborate. Higher fitness is given to the individuals when
they perform well. Lower fitness is given when they perform
poorly. Intuitively, one may consider the CCEAs more superior
to the traditional EAs because the CCEAs decompose the search

163
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space when they search the optima for optimization problems.
Each population of a CCEA only requires searching the projec-
tion of a n-dimensional problem and it is therefore natural to
consider that the CCEAs perform better. However, the work
[222] reports that each CCEA population easily searches for
components of candidate solutions that are robust to the other
components. Most importantly, the combinations of all these
components are not always globally optimal. Therefore there
are many works in the literature that aim at understanding the
behaviour of the CCEAs [171] and improving the performance
of the CCEAs for static optimization [161].

While most of these works use the CCEAs to optimize those
problems with the objective functions that remain constant dur-
ing the course of optimization, their behaviour in the dynamic
environments [46, 145, 233] has not yet been explored. A re-
cent empirical investigation [13] has studied the CCEAs in using
the hypermutations [58] and the random immigrant (RI) scheme
[59, 89] to optimize two dynamic problems that are produced by
the problem generator from [143]. These two dynamic problems
are called one moving peak problem and two moving peaks prob-
lem. They basically imitate the typical dynamic environments
that exists in many real world problems. Interestingly, the ex-
perimental results show that using a cooperative coevolutionary
approach achieves a better performance. In particular, using the
random immigrants in a CCEA has prominent advantages over
using them in other EAs.

Following the work [13], Au and Leung extend their works
[14] by investigating the behaviour of a CCEA in the multi-
modal environments where the locations, the coverage and the
heights of the moving peaks are changing during the course of
optimization. Specifically, the work studies a CCEA in using
di↵erent combinations of the collaboration methods in the orig-
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inal individuals1 and the RI individuals. It investigates how the
choices for the collaboration methods can greatly influence the
performance of a CCEA. Using the best collaboration method
in the original individuals shows a better performance in the
moderate-changing and the slow-changing environments. Using
the random collaboration method in the original individuals is
more promising in the fast-changing environments. The best
choice of the collaboration method in the RI individuals, how-
ever, depend on the collaboration methods in the original indi-
viduals. When the original individuals use the best collaboration
method, the collaboration methods used by RI individuals are
no longer significant. When the random collaboration method is
used in the original individuals, the choices for the collaboration
methods in the RI individuals become significant. By choosing
the appropriate collaboration methods in the original individu-
als and the RI individuals, a CCEA using the RI scheme can
consistently outperform an EA using the RI scheme.

We further generalize the works [13, 14] by studying the per-
formance of a CCEA on a new set of the dynamic benchmark
problems. The new dynamic benchmark problems were intro-
duced by [129, 128] and were used in 2009 IEEE Congress on
Evolutionary Computation (CEC) competition to evaluate the
state-of-the-art algorithms for dynamic optimization. Our mo-
tivation is to benchmark the performance of a CCEA and to
provide a more thorough analysis on the performance of the
CCEAs on a wide variety of the problem classes. To our best
knowledge, the understanding of a CCEA in the literature is
very minimal and there is a need to understand how it behaves
in the dynamic environments. We follow the work in [14] in
using the RI scheme. The motivation of using the RI individ-
uals is to provide an additional diversity for the CCEAs and

1In [14], the original individuals referred to the parents and the o↵spring of an evolu-
tionary algorithm.
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this is particularly useful in the changing environments. Since
the RI individuals are randomly generated in the search space
and they have no dependency on the individuals in the current
generation, using the RI individuals can increase the probability
of searching other optima that are not yet explored. However,
there is also a drawback in using the RI individuals. The diver-
sity brought by them will also weakened the selection pressure
and is undesirable for local convergence. In order to balance out
the weaken selection pressure, we introduce the CCEA with a
new type of individuals. It is called the elitist individuals2. We
refer to elitists as individuals having the highest fitness as well
as their o↵spring. The elitist individuals are generated from the
current best individuals of the populations and they can increase
the convergence rate to the local optima. The balance between
the exploration and the exploitation on the search space can be
achieved by combining the use of the RI individuals and the
use of elitist individuals. In the experimental setup, we will
demonstrate that either the use of the RI individuals or the eli-
tist individuals separately cannot improve a CCEA. Only when
both the RI individuals and the elitist individuals are used, a
CCEA can be improved to give its best performance.

We also investigate the e↵ect of various CCEA settings and
study how these settings can influence the performance. The
first setting is related to the choices for the collaboration meth-
ods. It is interesting to re-evaluate whether the best collabora-
tion method is still promising when the new type of the elitist
individuals is used in the new dynamic benchmark problems.
The second setting is about the selection schemas used by the
CCEAs. We use the well-known plus-comma selections in the
CCEAs and investigate if the di↵erent selection pressure in the
plus-comma selections can influence the performance. Another

2In the literature, elitists are generally refer to the individuals having the highest fitness
and they are unmutated from generation to generation
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interesting setting is to investigate the use of the mutative �-
self adaptation in a CCEA. Self-adaptation for the mutative step
sizes is common in the standard ES. Therefore it is interesting
to understand if using the self-adaptation in a CCEA has any
advantage over using the fixed mutative step sizes in a CCEA.
Lastly we will evaluate the CCEA in the high dimensional dy-
namic problems and compare its scalability with that of the
standard ES.

8.2 Algorithms Under study

In this section, we describe how a CCEA is used in dynamic
optimization. We use the well-known (µ +, �)-selection scheme
from evolution strategies (ES), apply them in a CCEA and in-
vestigate its performance in our simulations. Fundamentally, an
ES individual di↵ers from a CCEA individual. In a (µ +, �)-
ES, an individual, a, is a 3-tuple a = [xa,�a, fa(xa)] comprising
its candidate solution vector xa 2 Rn, the mutation step size
�a 2 Rn

+ and the fitness computed by the objective function
being optimized f : Rn ! R,x 7! f(x). In a (µ +, �)-CCEA,
a CCEA individual, b, is a 4-tuple b = [xb, �b, cb, fb(cb)] com-
prising a component of the candidate solution3 xb 2 R, the
mutation step size �b 2 R+, the collaboration vector cb 2 Rn

and the fitness computed by the objective function that takes
the collaboration vector cb as the input argument. The major
di↵erence is that an ES individual directly uses the candidate
solution xa to evaluate its fitness while a CCEA individual has
to first combine the component of its candidate solution xb with
the components of candidate solutions in other individuals to
form a collaboration vector cb and then uses this vector cb to
evaluate the fitness of the CCEA individual b.

3We can define a CCEA individual such that the number of dimensions for a component
of candidate solution is greater than 1, i.e. x

b

2 Rd for d > 1.
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To address dynamic optimization, we introduce two types of
individuals in the (µ +, �)-ES and (µ +, �)-CCEA. They are the
random immigrants (RI) individuals and the elitist individuals.
The common way to generate the RI individuals is to randomly
generate them in the search space. They are independent from
the current populations of the algorithm. The motivation for
the RI individuals is to provide the additional diversity for the
algorithm. Having these RI individuals can definitely increase
the diversity so the algorithms can explore the search space that
is not explored by the current populations. In this way, the al-
gorithm can quickly adapt to the changing environments. In
the literature, there is an early analysis on the random immi-
grant approaches [239] and the study examines di↵erent mecha-
nisms of generating the immigrants that will influence the per-
formance. The immigrant schemes are classified into two cate-
gories: the direct immigrant scheme and the indirect immigrant
scheme. In the direct immigrant scheme, the immigrants are
generated directly from the current populations. One of the
examples is the elitism-based immigrants scheme [231]. In the
indirect immigrant scheme, a model is first built and the immi-
grants are generated based on this model. An example is the
memory-based immigrants [230]. The last type of the immigrant
scheme is a hybrid that combines the direct immigrants and the
indirect immigrants.

Adding diversity by using the RI individuals can provide ad-
ditional exploration for the algorithm. However, this also weak-
ens the selection pressure and is undesirable for the local con-
vergence to the optima. In order to balance the exploration and
the exploitation, we introduce another new type of individuals
“the elitist individuals”. While the RI individuals increase the
diversity to explore the search space, the elitist individuals are
generated by mutating the best individuals in the populations.
This can exploit the search space and can also increase the lo-
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cal convergence rate to the optima. Both the RI individuals and
the elitist individuals are used together in order to provide a bal-
ance between the exploration and the exploitation on the search
space. In the next section, we will show that the use of the RI
or elitist individuals cannot improve the CCEA. We name the
resulting algorithm as [µ +, (� +  + ◆)]-CCEA where  and ◆
are the numbers of the RI individuals and the elitist individuals
respectively.

Algorithm 10 describes the details of the [µ +, (� +  + ◆)]-
CCEA. The CCEA first initializes n number of CCEA popu-
lations Qi

1, 8i 2 1, . . . , n. Each CCEA population Qi
k consists

of µ number of parents that are first evaluated by the random
collaboration method. We are not able to use the best collab-
oration method at the beginning, because we need the “best
individuals” and none of the individuals is evaluated when the
algorithm starts. Algorithm 6 shows how a CCEA individual
selects its collaborators randomly. In step 7 of the Algorithm 6,
the CCEA individual b selects the collaborators from other pop-
ulations by using a uniform distribution U(1, |Qi

k|) where |Qi
k|

represents the population size of Qi
k and U(1, |Qi

k|) uniformly re-
turns the random integer between 1 and |Qi

k|. Every individual
of the same population has the same probability of becoming
the component of the collaboration vector c for the CCEA in-
dividual b. Note that in RandomCollaborate(), the fitness
of individuals is not considered. Another collaboration method
is the best collaboration method and it is shown in Algorithm 7.
The major di↵erence between RandomCollaborate() and
BestCollaborate() is in step 7 where the individuals with
the maximum fitness are selected. Both of the procedures re-
turn the collaboration vector c 2 Rn that is used to evaluate
the fitness of the CCEA individual b. Finally the collaboration
methods are sequential, meaning that the CCEA always uses the
updated individuals in the populations Qi

k, . . .Qn
k .
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After selecting the collaborators in step 5, the CCEA en-
ters the main loop. The parents are re-evaluated because the
objective function may change in every generation and the fit-
ness of the parent evaluated in the last generation can be ir-
relevant in the current generation. Step 10 is calling either
RandomCollaborate(. . .) or BestCollaborate(. . .). Af-
ter reevaluating the parents, it then assigns the parents into the
population for the next generation Qi

k+1 if the plus selection is
used.

The next step is to generate � number of o↵springs sequen-
tially. An o↵spring is first cloned from its parent. If the mutative
�-self adaptation is used, its mutation step size is updated. After
the mutation step size is updated, the o↵spring mutates. This is
done in step 22 where �q0 is the updated mutation step size and
N (0, 1) is a random scalar drawn from a normal distribution.
The collaboration vector cq0 is formed by calling either one of
the collaboration procedures. Then, the o↵spring is added to
the population Qi

k+1.
After the o↵springs are generated,  number of the RI indi-

viduals are generated. In step 28, the RI individuals are ran-
domly generated in the search space. The notation U(li, ui)
represents a random scalar drawn from the uniform distribu-
tion in the ith dimension with a lower bound li and an upper
bound ui. Similarly, the RI individuals collaborate with other
individuals, by calling either RandomCollaborate(. . .) or
BestCollaborate(. . .). Note that there is a di↵erence in the
input arguments when we call these two procedures in step 23
and step 29. In step 23 we use the parental population Qi

k while
in step 29 we use the latest population Qi

k+1 which consists of
both the parents and o↵spring for the plus selection or just the
o↵spring for the comma selection. After the evaluations, the RI
individuals are added to the CCEA populations Qi

k+1 in step 31.
From step 32 to step 41, the elitist individuals are gener-
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ated sequentially. Each elitist individual is first copied from
the best individual b1:|Qi

k+1| and is then mutated by a Gaussian
distributed random scalar. Similar to the generation of the o↵-
spring, the mutation step sizes can be updated by the mutative
�-self adaptation. The elitist individuals collaborate with other
individuals to evaluate the fitness and they are added to the
CCEA populations Qi

k+1.
After all the individuals are generated, the selection takes

place in step 43. According to the fitness, (µ+�++ ◆) number
and (�++ ◆) number of individuals are ordered when the plus
selection and the comma selection are used respectively. The
best µ individuals in each population Qi

k are selected for the
next generation. Finally we go back to step 3 and continue until
the termination condition is met.

There can be many combinations of how the parents, the
o↵springs, the RI individuals and the elitist individuals collab-
orate. Table 8.1 summarizes these combinations. There are two
variants of the CCEA. In the [µ +, (�+ + ◆)]-bCCEA and the
[µ +, (�++◆)]-rCCEA, all individuals use the best collaboration
method and the random collaboration method respectively.

Algorithm 11 describes the [µ +, (� +  + ◆)]-ES that is
used in our simulations. The objective is to investigate if using
the cooperative coevolutionary approach for dynamic optimiza-
tion demonstrates any advantages. The ES first initializes the
parental population P1 that consists of µ number of the parents.
Each parent pi in P is evaluated from step 4 to step 5. The o↵ -
spring are generated from step 10 to step 17. A parent is first
uniformly selected in step 11 and is used to clone a new o↵spring
that is mutated in step 15. If the mutative �-self adaptation is
used, the mutation step sizes are updated before the o↵springs
mutate. The new o↵spring is evaluated in step 16 and is added
to the ES population Pk+1.

The RI individuals are created in a similar way as those in
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Algorithm 10: Pseudo Code of [µ +, (� +  + ◆)] Cooperative Coevo-
lutionary Algorithm (CCEA)

1 Given: f : Rn ! R, x1,N 2 Rn, � > 0
2 Initialise Qi

1, 8i 2 {1, . . . , n},k = 1
3 for i = 1 to n do
4 for j = 1 to µ do
5 c

qij  RandomCollaborate(q
ij

,Q1
k

, . . . ,Qn

k

)

6 f
qij  f

�

c
qij , k

�

7 repeat
8 for i = 1 to n do
9 for j = 1 to µ do

10 c
qij  Collaborate(q

ij

,Q1
k

, . . . ,Qn

k

)

11 f
qij  f

�

c
qij , k

�

12 if Plus-selection then
13 Q

k+1  Q
k

14 else
15 Q

k+1  ;
16 for i = 1 to n do
17 for j = 1 to � do
18 k  U(1, µ)
19 q0  q

ij

2 Qi

k

20 if Self-adaptive then

21 �
q

0  �
qij exp

✓

Ni(0,1)p
2n

+ Nj(0,1)p
2
p
n

◆

22 x
q

0  x
qij + �

q

0 · N (0, 1)
23 c

q

0  Collobrate(. . .)
24 f

q

0  f (c
q

0 , k)
25 Qi

k+1  Qi

k+1 [ {q0}
26 for i = 1 to n do
27 for j = 1 to  do
28 x

q

0  U(l
i

, u
i

)
29 c

q

0  Collobrate(. . .)
30 f

q

0  f (c
q

0 , k)
31 Qi

k+1  Qi

k+1 [ {q0}
32 for i = 1 to n do
33 for j = 1 to ◆ do

34 l 1 : |Qk+1
i

|
35 q0  q

l

2 Qi

k

36 if Self-adaptive then

37 �
q

0  �
qij exp

✓

Ni(0,1)p
2n

+ Nj(0,1)p
2
p
n

◆

38 x
q

0  x
qij + �

q

0 · N (0, 1)
39 c

q

0  Collobrate(. . .)
40 f

q

0  f (c
q

0 , k)
41 Qi

k+1  Qi

k+1 [ {q0}
42 for i = 1 to n do

43 Qi

k+1  
n

b
j:|Qi

k+1||1  j  µ
o

44 k  k + 1
45 until termination condition is met
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Table 8.1: Di↵erent Combinations of Collaboration Methods in Algorithm
10

Collaborate(. . . ) Methods
Algorithms

bCCEA rCCEA
Parents (in line 10) BestCollaborate() RandomCollaborate()

O↵springs (in line 23) BestCollaborate() RandomCollaborate()
RI Individuals (in line 29) BestCollaborate() RandomCollaborate()

Elitist Individuals (in line 39) BestCollaborate() RandomCollaborate()

the CCEA. The major di↵erence is that the candidate solutions
in the RI individuals are assigned with the vector U(l,u) that is
a nth-dimensional random vector with the independent compo-
nents drawn from the uniform distribution with a lower bound
vector l and an upper bound vector u. All RI individuals and
the elitist individuals are added to the current population after
evaluations. In step 30, the algorithm selects the new parental
population Pk+1. The notation pi:|P

k+1| represents the i -th best
individuals in the population Pk+1. Notice that an ES is allowed
to have the self-adaptation on its mutation steps sizes in order
to have a fair comparison when both ES and CCEA use the
mutative �-self adaptation schemas.

8.3 Experimental Study

8.3.1 Benchmark

In the literature, there are many dynamic problem generators,
including the moving peak benchmark (MPB) proposed by Branke
[45], and the DF1 generator proposed by Morrison and De Jong
[143]. Both of them consist of the multi-dimensional landscapes
where the heights, the widths and the positions of the peaks
can be changed during the course of optimization. They gener-
ate a predefined number of peaks in a fixed problem dimensions.
We use the generalized dynamic benchmark generator (GDBG)
[129, 128] to evaluate the performance of the [µ +, (� +  + ◆)]-
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Algorithm 11: Pseudo Code of [µ +, (�+ + ◆)] Evolution Strategies

1 Given: f : Rn ! R, x1,N 2 Rn, � > 0
2 Initialise P1 and k = 1
3 repeat
4 for i = 1 to µ do
5 f

p

i

 f (x
p

i

, k)

6 if Plus-selection then
7 P

k+1  P
k

8 else
9 P

k+1  ;
10 for i = 1 to � do
11 k  U(1, µ)
12 p0  p

k

2 P
k

13 if Self-adaptive then

14 �
p

0  �
p

k

exp

✓

N
i

(0,1)p
2n

+ N (0,1)p
2
p
n

◆

15 x
p

0  x
p

k

+ �
p

0 ·N (0, 1)
16 f

p

0  f (x
p

0 , k)
17 P

k+1  P
k+1 [ {p0}

18 for j = 1 to  do
19 x

p

0  U(l,u)
20 f

p

0  f (x
p

0 , k)
21 P

k+1  P
k+1 [ {a0}

22 for j = 1 to � do
23 l 1 : |P

k+1|
24 p0  p

l

25 if Self-adaptive then

26 �
p

0  �
p

l

exp

✓

N
i

(0,1)p
2n

+ N (0,1)p
2
p
n

◆

27 x
p

0  x
p

l

+ �
p

0 ·N (0, 1)
28 f

p

0  f (x
p

0 , k)
29 Pk+1  Pk+1 [ {p0}
30 P

k+1  
�

p
i:|P

k+1||1  i  µ
 

31 k  k + 1
32 until termination condition is met
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CCEA and the [µ +, (� +  + ◆)]-ES. This benchmark is a gen-
eralized benchmark generator that constructs the dynamic en-
vironments in the continuous space. The benchmark problem
was used in 2009 IEEE Congress on Evolutionary Computation
(CEC) competition to evaluate the state-of-the-art algorithms
for dynamic optimization. It di↵ers from the MPB and the DF1
benchmarks in that it uses the rotation method instead of shift-
ing the positions of the peaks.

8.3.2 Setup

We use the same set of problems in [129]. Table 2.1 summarizes
the parameters used in the rotation DBG and the composition
DBG. A total of six dynamic problems F1 to F6 are tested. All
six problems are multi-modal, scalable, rotated and have a large
number of local optima. Unless stated otherwise, the problem
dimension n is set to 10 and a change will occur only after
100 · n functions evaluations are used. Fifty independent runs
are executed per problem and per change.

An uniform random initialization in the search space will be
used. All algorithms need to detect the non-dimensional change
by itself instead of being informed when a non-dimensional change
occurs. For all the dimensional changes, all algorithms will be
informed when a dimensional change occurs. All algorithms will
be terminated when the environment changes 10 times. To eval-
uate the performance of the algorithms, when each change oc-
curs, we record the ratios of f(x⇤(t))/f(xbest(t)) and f(xbest(t))/f(x⇤(t))
for minimisation and maximisation respectively. The vector
xbest(t) is the best solutions found by the algorithm at time t
and the vector x⇤(t) is the location of the global optimum at
time t.

In all the simulations, we compare the two variants of CCEAs
including the bCCEA and rCCEA and the ES on all six bench-
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Table 8.2: Comparisons on the median performance of ES and CCEAs
using di↵erent population sizes. 1

Algorithms
C1

µ = 1, µ = 10, µ = 10,� = 20,
p-value 2 p-value 3

� = 1 � = 40  = 10, ◆ = 10
ES 0.098 0.149 0.326 1.3E-74 6.9E-1

bCCEA 0.155 0.384 0.461 1.0E-07 3.2E-58
rCCEA 0.150 0.151 0.155 2.4E-01 3.6E-01

Algorithms C2

ES 0.099 0.162 0.344 3.3E-81 5.4E-113
bCCEA 0.148 0.384 0.470 1.3E-07 1.4E-72
rCCEA 0.157 0.151 0.156 1.6E-02 5.0E-01

Algorithms C3

ES 0.110 0.196 0.369 6.7E-69 2.2E-119
bCCEA 0.201 0.403 0.503 4.6E-10 9.9E-44
rCCEA 0.196 0.171 0.171 3.8E-01 1.7E-04

Algorithms C4

ES 0.105 0.165 0.393 2.4E-127 5.7E-141
bCCEA 0.171 0.365 0.502 1.2E-29 1.1E-73
rCCEA 0.171 0.157 0.169 8.7E-09 2.6E-01

Algorithms C5

ES 0.082 0.152 0.147 9.7E-01 9.5E-57
bCCEA 0.165 0.354 0.351 8.2E-01 9.6E-20
rCCEA 0.185 0.145 0.125 1.4E-13 3.2E-28

Algorithms C6

ES 0.084 0.145 0.184 1.4E-11 1.7E-57
bCCEA 0.163 0.310 0.337 1.4E-01 3.9E-12
rCCEA 0.164 0.134 0.118 3.0E-05 2.3E-13

1 Plus selection and self-adaptation were used in all the algorithms.
2 A two-tailed Wilcoxon rank sum test was conducted between popu-
lation sizes (µ = 10,� = 40) and the population sizes (µ = 10,� =
20, = 10, ◆ = 10). If the two results are statistically di↵erent, the
better one was highlighted in bold.

3 Another two-tailed Wilcoxon rank sum test was conducted between
population sizes (µ = 1,� = 1) and the population sizes (µ = 10,� =
20, = 10, ◆ = 10). If the two results are statistically di↵erent, the
better one was highlighted in gray.
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Table 8.3: Comparison of the median performance of ES and CCEAs using the
mutative �-self adaptation.

Algorithms
C1

Plus-selection Comma-selection p-value 4

AD NAD p-value 3 AD NAD p-value 3 AD NAD

ES 0.326 0.260 1.7E-24 0.201 0.201 1.0E+00 4.0E-80 6.9E-53
bCCEA 0.461 0.447 3.2E-01 0.405 0.436 1.4E-01 7.7E-05 1.7E-01
rCCEA 0.155 0.155 9.9E-01 0.140 0.148 1.4E-02 6.7E-06 3.0E-02

Algorithms C2

ES 0.344 0.288 7.8E-21 0.220 0.220 1.0E+00 1.1E-75 2.1E-58
bCCEA 0.470 0.469 7.2E-01 0.411 0.433 4.4E-02 2.5E-05 1.0E-01
rCCEA 0.156 0.156 9.2E-01 0.149 0.153 6.0E-02 9.9E-04 1.0E-01

Algorithms C3

ES 0.369 0.295 6.3E-24 0.218 0.230 2.7E-03 9.3E-81 2.0E-45
bCCEA 0.503 0.515 2.0E-01 0.428 0.500 2.8E-04 2.1E-05 2.2E-01
rCCEA 0.171 0.170 7.0E-01 0.160 0.164 6.9E-02 3.3E-05 8.4E-02

Algorithms C4

ES 0.393 0.310 1.5E-46 0.233 0.236 4.8E-01 8.9E-120 5.8E-104
bCCEA 0.502 0.513 6.3E-01 0.459 0.462 6.0E-01 3.5E-06 9.0E-04
rCCEA 0.169 0.168 5.5E-01 0.162 0.169 2.2E-03 1.7E-04 9.9E-01

Algorithms C5

ES 0.147 0.153 2.7E-02 0.114 0.114 1.0E+00 5.1E-25 5.4E-34
bCCEA 0.351 0.367 8.8E-01 0.324 0.331 7.3E-02 2.2E-02 3.1E-01
rCCEA 0.125 0.127 4.6E-01 0.093 0.106 4.6E-16 1.1E-53 9.5E-23

Algorithms C6

ES 0.184 0.167 3.1E-09 0.126 0.126 1.0E+00 1.3E-45 7.3E-49
bCCEA 0.337 0.352 5.7E-01 0.323 0.330 1.9E-01 6.9E-02 2.3E-01
rCCEA 0.118 0.127 2.8E-01 0.095 0.103 8.4E-05 3.5E-29 6.4E-20

1 AD means that the mutative �-self adaptation was used while NAD means that the mutative
�-self adaptation was not in use.

2 The population sizes µ, �,  and ◆ are 10, 20, 10 and 10 respectively.
3 A two-tailed Wilcoxon rank sum test was conducted between numbers for AD and NAD. If the
two results are statistically di↵erent, the better one was highlighted in bold.

4 Another two-tailed Wilcoxon rank sum test was conducted between numbers for the plus selec-
tion and the comma selection. If the two results were statistically di↵erent, the better one was
highlighted in gray.
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Table 8.4: Comparison of the median performance of ES and CCEAs on six
dynamic functions.

ChgType
F1 F2

ES bCCEA rCCEA p-value 3 ES bCCEA rCCEA p-value 3

C1 0.326 0.461 0.155 3.1E-28 0.056 0.060 0.052 1.4E-01
C2 0.344 0.470 0.156 6.6E-23 0.026 0.026 0.024 1.3E-07
C3 0.369 0.503 0.171 3.1E-26 0.092 0.094 0.081 9.2E-03
C4 0.393 0.502 0.169 4.4E-30 0.102 0.110 0.100 1.2E-05
C5 0.147 0.351 0.125 4.2E-60 0.028 0.045 0.027 3.5E-49
C6 0.184 0.337 0.118 1.0E-28 0.029 0.043 0.027 1.4E-55
C7 0.253 0.397 0.149 2.9E-49 0.074 0.078 0.073 2.5E-02

ChgType
F3 F4

ES bCCEA rCCEA p-value 3 ES bCCEA rCCEA p-value 3

C1 0.026 0.029 0.025 1.2E-05 0.048 0.050 0.046 2.4E-01
C2 0.012 0.014 0.011 2.4E-62 0.022 0.023 0.020 1.8E-06
C3 0.042 0.048 0.039 5.2E-14 0.078 0.080 0.071 8.5E-02
C4 0.044 0.049 0.042 8.2E-32 0.086 0.091 0.084 2.4E-05
C5 0.013 0.016 0.012 1.3E-54 0.024 0.034 0.023 3.7E-53
C6 0.013 0.016 0.013 2.5E-44 0.025 0.033 0.023 2.0E-39
C7 0.039 0.045 0.039 3.2E-14 0.069 0.072 0.067 3.6E-02

ChgType
F5 F6

ES bCCEA rCCEA p-value 3 ES bCCEA rCCEA p-value 3

C1 0.016 0.018 0.013 6.5E-05 0.024 0.025 0.021 8.1E-02
C2 0.007 0.009 0.006 4.5E-21 0.011 0.011 0.009 6.7E-10
C3 0.024 0.029 0.020 5.8E-17 0.038 0.039 0.033 1.3E-03
C4 0.023 0.025 0.020 1.7E-06 0.041 0.040 0.035 9.5E-01
C5 0.008 0.016 0.007 1.5E-124 0.012 0.019 0.012 3.0E-74
C6 0.008 0.015 0.007 6.7E-117 0.012 0.018 0.012 1.6E-73
C7 0.021 0.023 0.019 4.0E-07 0.038 0.040 0.034 1.3E-03

1 The plus selection and the mutative �-self adaptation were used in all the algorithms.
2 The population sizes µ, �,  and ◆ are 10, 20, 10 and 10 respectively.
3 A two-tailed Wilcoxon rank sum test was conducted between for numbers for ES and bC-
CEA. If two results are statistically di↵erent, the better one is highlighted in bold.
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Figure 8.1: Graphs showing the median performance of the ES and the
CCEAs on F1 Rotation Problem when the change frequency ⌧ is 100 ·n ·FES
under the six types of dynamic changes. In all the algorithms, the plus se-
lection and the mutative �-self adaptation are used. The whiskers mark the
25th and 75th percentiles.
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mark problems. The comparison between the use of the best
collaboration method and the random collaboration method is
significant because the use of the RI individuals and the elitist
individuals may influence the best choices for the collaboration
methods. The experiments consist of four major sets of exper-
iments and each of them has a di↵erent objective. In the first
set of experiments, we investigate the e↵ects of using the RI in-
dividuals and the elitist individuals. We demonstrate how these
two new type of individuals can improve the performance of a
CCEA and the standard ES. This is done in our simulations by
setting their population sizes as below:

• µ = 1,� = 1;

• µ = 10,� = 40;

• µ = 10,� = 20, = 10, ◆ = 10.

The first and second sets are the baseline algorithms for com-
parisons. The first setting is to use one parent and one o↵spring
and this is a classical (1+1)-ES that is a point-based search algo-
rithm. Investigating the performance of the point-based search
by using the cooperative coevolutionary approach is of inter-
est to us, particularly in the domain of dynamic optimization.
The second setting attempts to investigate the population-based
algorithms by using 40 o↵springs which are four times the prob-
lem dimension. The third setting addresses the use of the RI
individuals and the elitist individuals by using 10 RI individu-
als and 10 elitist individuals.4 By comparing the performance
when di↵erent population sizes are used, we can understand if
the two new types of individuals can improve a CCEA or an ES
for dynamic optimization.

4 The settings were based on the results of the sensitivity analysis in the final set
of experiments where the optimal performance was achieved when  = 10, ◆ = 10. For
comparisons with the second settings, we also maintained the total number of o↵springs
to 40 and hence � = 20.
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In the second set of experiments, we examine the use of
the mutative �-self adaptation for the mutation step sizes in
a CCEA. Using the self-adaptation for the mutation step sizes
is common in the context of ES. It is interesting to understand
whether the self-adaptation in the context of the CCEA is still
applicable and if it can improve a CCEA for dynamic optimiza-
tion. In addition, we also report the performance when a CCEA
uses the plus-selection and the comma selection. The objective
is to investigate if the plus-selection or the comma selection is
preferable in dynamic environment.

In the third set of experiments, we report the results of the
six dynamic problems. This can give us an overview of how
CCEAs perform in di↵erent dynamic problems. The objective
is to understand how robust the algorithms can be when they are
used to optimize the dynamic problems with rugged landscapes.

In the final set of experiments, we investigate the sensitivity
of the CCEA to the algorithms parameters. These parameters
include the o↵spring population sizes, the RI population sizes
and the elitist population sizes. Another objective in this set of
experiments is to understand how scalable the CCEAs can be
for dynamic problems. This is done by evaluating the CCEA in
the high dimensional dynamic problems and by comparing its
scalability with that in the standard ES.

8.4 Results and Discussion

8.4.1 Performance when RI and elitist individuals are
used

The experimental results of CCEAs that use the RI individuals
and the elitist individuals are shown in Figure 8.1. The me-
dian performance is reported on the F1 rotation problem under
the six types of dynamic changes. In all the algorithms, the
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plus selection and the mutative �-self adaptation are used. The
whiskers mark the 25th and 75th percentiles. We also use the
simple (1 + 1)-CCEA and (µ + �)-CCEA to compare with our
proposed [µ +, (�+ + ◆)]-CCEA.

Comparing the bCCEA and the rCCEA, the bCCEA outper-
forms the rCCEA. The results are consistent across the di↵erent
types of dynamic changes from C1 to C6. This is also aligned
with the results from the work [14]. Apparently using the best
collaboration method in a CCEA is more promising than using
the random collaboration method. If we compare three variants
of the CCEAs with di↵erent population sizes, the results show
that a CCEA using the RI individuals and the elitist individuals
generally outperform a CCEA not using these two types of indi-
viduals. Table 8.2 shows the statistical comparisons on the algo-
rithms using the population sizes (µ = 10,� = 40) and the pop-
ulation sizes (µ = 10,� = 20, = 10, ◆ = 10). For most of the
dynamic changes, the [10+(20+10+10)]-bCCEA is statistically
better than the (10 + 40)-bCCEA. Only when the changes are
the recurrent change C5 or the recurrent change with noise C6,
the median performance of the [10+(20+10+10)]-bCCEA and
the (10+40)-bCCEA are statistically equivalent. Similar results
are also observed for the standard ES : the [10+(20+10+10)]-ES
generally outperforms the (10+40)-ES unless when the dynamic
change is the recurrent change C5. Notice that there is a slight
di↵erence in the results of the rCCEA. Although using the RI
individuals and the elitist individuals can improve a rCCEA for
dynamic changes C2 and C4, there is no prominent advantage
for the rCCEA in other types of the dynamic changes. The per-
formance of the [10+(20+10+10)]-rCCEA in C5 and C6 is even
worse than that of the (10+ 40)-rCCEA. We believe the results
are due to the nature of the elitist individuals. Since the elitist
individuals are generated from the best individuals in the pop-
ulations, using the random collaboration method cannot always
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Figure 8.2: Graphs showing the median performance of the ES and the
CCEAs on F1 rotation problem when the plus-comma selection methods and
the mutative �-self adaptation are used. In all the algorithms, the numbers
of the parents, the o↵springs, the RI individuals and the elitist individuals
are 10, 20, 10 and 10 respectively. The whiskers mark the 25th and 75th
percentiles.
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Figure 8.3: Graphs showing the median performance of the ES and CCEAs
on six dynamic functions. In all the algorithms, the plus selection and the
mutative �-self adaptation are used. The numbers of the parents, the o↵-
springs, the RI individuals and the elitist individuals are 10, 20, 10 and 10
respectively. The whiskers mark the 25th and 75th percentiles.
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provide the best individuals. Another interesting observation is
on the performance for the point-based search algorithm includ-
ing the (1 + 1)-ES and the (1 + 1)-bCCEA. Compared with the
population-based algorithms, the point-based algorithms rela-
tively under-perform. This demonstrates that using the popu-
lation based algorithms is more promising in dynamic environ-
ments.

8.4.2 Performance when mutative �-self adaptation is
used

In this section, we compare the performance of the algorithms
when the mutative �-self adaptations are used. Figure 8.2 shows
the median performance of the standard ES and the CCEAs on
F1 Rotation Problem when the mutative �-self adaptation is
used. The numbers of the parents, the o↵springs, the RI in-
dividuals and the elitist individuals are 10, 20, 10 and 10 re-
spectively. Firstly, we compare a CCEA using the plus selection
with that using the comma selection. For most of the statistical
tests in Table 8.3, a CCEA using the plus selection outperform a
CCEA using the comma selection. Similarly, if we compare the
bCCEA when the mutative �-self adaptation is used, mutative
�-self adaptation does not improve a CCEA significantly. Most
of the statistical comparisons for bCCEA show the insignificance
unless when the dynamic change is the random step change C3.
Similar results are also observed for the rCCEA when it uses
the plus selection. However, when the rCCEA uses the comma
selection, five out of the six comparisons shows that using the
fixed mutation sizes is more promising than using the muta-
tive �-self adaptation. Lastly when the self-adaptation is used
in the standard ES, a significant improvement can be achieved.
The statistical comparisons show that an ES with the use of
self-adaptation outperforms the one using the fixed mutation
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step sizes. From all the results, having the self-adaptation in a
CCEA does not appear to improve its performance in dynamic
environment and our results show that the performances are
insignificant with or without using mutative �-self adaptation.
Unlike the behaviour in the standard ES using the mutative �-
self adaptation, CCEAs show the prominent advantage when
self-adaptation is not used.

8.4.3 Performance in di↵erent dynamic problems

The first and the second sets of experiments focus on the ro-
tation dynamic problem that is relatively smooth in the fitness
landscape. In this section we investigate the dynamic prob-
lems where the landscape is rather rugged. Figure 8.3 shows
the median performance of the ES and CCEAs on six dynamic
functions from F1 to F6. In all the algorithms, we use the plus
selection and the mutative �-self adaptation because the settings
achieve the best results obtained in the previous subsection. The
number of the parents, the o↵springs, the RI individuals and the
elitist individuals are 10, 20, 10 and 10 respectively. Firstly in
the F1 rotation peak function, the bCCEA achieves the best me-
dian performance. The statistical tests in Table 8.4 show that
there are only a few cases in F2, F4 and F6 where the perfor-
mance of the ES and the bCCEA are statistically indistinguish-
able. Comparing the two variants of the CCEAs, the bCCEA
is superior to the rCCEA. Notice that we have conducted the
dimensional changes where the number of the problem dimen-
sions can be changed during the optimization. In this type of
dynamic change C7, the bCCEA generally outperforms the other
two algorithms. We can see from F2 to F6 that the overall per-
formance of all three search algorithms are generally worse. This
can be explained by the fact that these five problems are com-
posed of functions that are more rugged than the first problem



CHAPTER 8. CCEA IN DYNAMIC ENVIRONMENTS 187

F1. There are many cases that the bCCEA is statistically equiv-
alent to the ES but in most of the cases, the bCCEA using the
best collaboration method still outperform the ES.

8.4.4 Sensitivity to population sizes and problem di-
mensions

Investigating the sensitivity to the properties of the search al-
gorithm is important for us to understand how robust the algo-
rithms can be for di↵erent dynamic problems. In this section,
we investigate the performance of a CCEA when it uses di↵er-
ent population sizes. We also report its performance when the
problem dimensions are scaled up.

O↵spring population sizes �

Figure 8.4 plots the median performance of the ES and the
CCEAs against the o↵spring population sizes � from 1 to 160
on F1 rotation problem having C3 random step changes. When
we increase the number of the o↵springs, it cannot improve both
the ES and the rCCEA. The bCCEA can achieve its best median
performance when � is 40. The median performance starts to
degrade when we further increase the number of the o↵springs
to larger than 40. This can be explained by the fact that the
number of function evaluations for a generation is � · n. When
the number of o↵spring is increased, the number of the genera-
tions and hence the number of selection are scaled down by n.
This becomes undesirable in the dynamic environments where
the function evaluations can be constrained and limited, partic-
ularly in the fast changing environment. Therefore the bCCEA
underperforms when we increase the number of the o↵springs.
An ES only requires � number of function evaluations for its
o↵springs. When � is increased, the number of the generations
is decreased linearly with � only.
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RI population sizes 

Figure 8.4 shows the median performance of the ES and the
CCEAs against the RI population sizes on the F1 rotation prob-
lem. The number of the o↵springs � is 40. Comparing these
three algorithms, a large number of the RI individuals generally
does not improve the performance. In the bCCEA, its perfor-
mance becomes worse when more RI individuals are generated.
Similar to the results of the o↵springs, a large number of RI
individuals means a smaller number of generations. Hence the
number of selection is scaled down by n. The other reason is
that the generation of the RI individuals is independent from the
current populations of the algorithms. Therefore the probability
of exploring a promising solution is not improved as expected.
The increased volume of search space means that the algorithms
require more individuals that are randomly distributed in the
search space in order to track the optima. We observe the same
behaviour in the ES, which shows having a larger number of
the RI individuals does not improve its performance. The best
performance of the ES and the bCCEA is around 4.7 and 3.2
respectively, but still they are worse than the performance of the
corresponding mean performance in Table 8.4 that is around 0.5
and 0.37 respectively. This indicates the use of the RI individ-
uals alone is not as promising as the use of the RI individuals
and the elitist individuals together. It also means the additional
diversity brought by the RI individuals cannot improve the al-
gorithms.

Elitist population sizes ◆

Figure 8.5 shows the median performance of the ES and the
CCEAs against the elitist population sizes ◆ on the rotation
problem F1. The number of the o↵spring � is 40 and no RI in-
dividuals are generated during the course of optimization. The
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Figure 8.4: The median performance of the ES and the CCEAs on F1 rotation
problem having C3 random step changes, when the change frequency ⌧ is
100 ·n ·FES. From top to bottom, the x-axis of the graphs represent o↵spring
population sizes and RI population sizes.

bCCEA gives the best median performance over a wide range of
the elitist population sizes ◆ from 2 to 160. One interesting ob-
servation is that increasing the number of the elitist individuals
does not always provide a good performance. Rather, this in-
creases the number of function evaluations as well as the number
of the generations. This is similar to the cases in the last two
subsections where increasing the population sizes will degrade
the performance of the bCCEA. The best median performance
of the ES and the bCCEA is all below 0.4 and 0.2 respectively.
These two values are outperformed by the corresponding one
in Table 8.4. This means that using elitist individuals alone is
not as good as using both RI individuals and elitist individuals
together. This further demonstrates the need to balance the ex-
ploration and the exploitation on the search space by generating
these two types of individuals.
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Figure 8.5: The median performance of the ES and the CCEAs on F1 rotation
problem having C3 random step changes, when the change frequency ⌧ is
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population sizes and problem dimensions.

Problem dimensions n

The last set of experiments is to investigate the scalability of the
algorithms when we increase the number of the problem dimen-
sions. Figure 8.5 plots the median performance of the ES and the
CCEAs against the problem dimensions n 2 {5, 10, 20, 40, 80}
on F1 rotation problem. The number of the o↵springs, the RI
individuals and the elitist individuals are 20, 10 and 10 respec-
tively. Notice that the change frequency is still 100 · n for all
problem dimensions. From the results, the bCCEA is more scal-
able than the rCCEA. This is consistent with the previous set
of experiments. Using the best collaboration method is more
promising than using the random collaboration method. The
performance of the bCCEA in high dimensional dynamic prob-
lems is promising and it is even more scalable than the ES in
our simulations.
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8.5 Future Perspective

We investigated the behaviour of a CCEA on the state-of-the-
art dynamic optimization benchmarks. We first reviewed the
background of the CCEAs for static optimization and then we
discussed the four major approaches used in EAs to address
the dynamic optimization. One major di↵erence between the
CCEA individuals and the EA individuals is that a CCEA indi-
vidual has to collaborate with another n� 1 CCEA individuals
for its fitness evaluation. We formally discussed the two major
collaboration methods used in a CCEA: 1) the best collabora-
tion method in which a CCEA individual always chooses the
best individual in terms of fitness, and 2) the random collab-
oration method in which a CCEA individual always randomly
select other individuals and their fitness is not considered. The
previous study shows that using the best collaborations in static
optimization always yields the best performance. We extended
this study under the context of the dynamic optimization and
investigate if the choices for these two collaboration methods are
same as those in the context of the static optimization. Our sim-
ulation results show that a CCEA using the best collaboration
method outperforms a CCEA using the random collaboration
method. The results are consistent for di↵erent types of the
dynamic changes and the problem dimensions.

We also introduced two types of individuals for the CCEA
to address dynamic optimization: 1) the RI individuals that
increase the diversity of the populations in order to adapt to
the changing environments quickly, and 2) the elitist individ-
uals that increase the local convergence rate to the optima by
generating individuals from the best individuals. Both of these
types of individuals have to be used together in a CCEA because
there is a need to balance the e↵ect of the RI individuals and
that of the elitist individuals. While the RI individuals increase
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the diversity in exploring the search space that has not yet been
explored by the current population, the elitist individuals ex-
ploit the search space by increasing the convergence rate to the
local optima. Our experiments show that the use of the RI in-
dividuals and the elitist individuals not only improves a CCEA
that outperforms the other CCEAs with the o↵springs only, but
it also improves an ES.

We also investigated the behaviour of a CCEA when it uses
mutative �-self adaptation for its mutation step sizes. Using
self-adaptation in the context of the ES is common and well-
developed. Therefore, it is natural to ask whether mutative
�-self adaptation in a CCEA is promising or not. Our results
indicate that using self-adaptation in a CCEA does not appear
to show any advantages, most of the cases using a fixed muta-
tion size in a CCEA can have an equivalent performance. Be-
sides studying the use of self-adaptation in a CCEA, we also
compared the performance of a CCEA using plus selection and
a CCEA using comma selection. Specifically, we were interested
in understanding if the selection method can have any impact
on the performance. Our results show that using plus selection
is more promising than using comma selection; similar results
were also observed in the standard ES.

Lastly we investigated the e↵ect of using di↵erent popula-
tion sizes in a CCEA, as we were interested in understanding
whether the CCEAs are sensitive to population sizes. Obviously,
setting large population sizes for individuals is not desirable in
dynamic environments, because an increase in the population
sizes means a decrease in the number of generations between
dynamic changes. This will lower the number of selections and
therefore decrease the number of the best individuals to be se-
lected, significant for the CCEA, particularly when it uses the
best collaboration method and when it uses elitist individuals.
Both of them depend on the current best individuals in the



CHAPTER 8. CCEA IN DYNAMIC ENVIRONMENTS 193

populations. The scalability of a CCEA is also reported. Com-
paring the bCCEA with the standard ES, its performance is
marginally better than the standard ES. Therefore using the
bCCEA in higher dimensional dynamic problems is promising.

2 End of chapter.



Chapter 9

Conclusion

If you’re going through hell, keep going.

Winston Churchill

This thesis focused on the design of new sampling methods for
optimization algorithms to solve continuous optimization prob-
lems. Continuous optimization problems have a wide range of
applications in many disciplines and these problems are often
hard to solve due to inherent di�culties such as a large dimen-
sionality, multi-modality or other factors which make problems
hard. The new sampling methods were proposed to improve
the state-of-the-art optimization algorithms for continuous opti-
mization problems. The resulting new algorithms are promising
in the standard benchmark problems, encouraging further devel-
opment of new sampling methods for optimization algorithms.

Another goal of this thesis was to study the state-of-the-art
optimization algorithms in dynamic optimization problems. Dy-
namic optimization is an active area of research in the optimiza-
tion community. However, there are still open questions. One
of them is understanding the state-of-the-art optimization al-
gorithms for dynamic optimization problems, as well as their
capabilities and limits. In this thesis, we used the standard
dynamic optimization benchmark and investigated two state-
of-the-art evolutionary algorithms, CMA-ES and CCEA. Their

194
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behavior in optimizing these dynamic problems was experimen-
tally studied.

9.1 Summary of Contributions

In the first part of the thesis, we first discussed why sampling
methods play an important part in evolutionary algorithms.
Samples in evolutionary algorithms are always random and inde-
pendent from each other. Evolutionary algorithms in optimiza-
tion problems with problem-specific properties, which employ a
degree of randomness as part of its logic, can be further improved
by derandomizing their randomness. One popular method is to
replace the independent samples by dependent ones. Samples
for the new candidate solutions can be directly dependent on
previous samples for previous candidate solutions which are of a
good quality. We proposed two novel sampling methods in this
thesis: halfspace sampling and eigenspace sampling.

In Chapter 4, we described how halfspace sampling works in a
simple elitist (1+1) evolution strategies. In halfspace sampling,
the supporting hyperplane going through a parent separates the
search space into a positive halfspace and a negative halfspace.
If an o↵spring lies in the negative halfspace, it will be reflected
with respect to the parent so that it lies in the positive halfs-
pace. We then derive theoretically the log-linear convergence of
a scale-invariant step size (1+1)-ES with halfspace sampling on
spherical functions in finite dimensions and infinite dimensions.
The speed-up factor is derived theoretically when the optimal
halfspace is used on spherical functions. We also introduced a
new concept of evolution halfspaces. Evolution halfspaces accu-
mulate information of the previous successful and unsuccessful
steps so the optimal positive halfspace can be estimated. We
also implemented the halfspace sampling in the state-of-the-art
(1+1)-CMA-ES and the resulting algorithm was benchmarked
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on the BBOB noise-free testbed. Our results showed that the
use of halfspace sampling can improve a (1+1)-CMA-ES on some
unimodal functions, and it does not worsen the algorithms.

Chapter 5 further extended the use of halfspace sampling in
another evolutionary algorithm: Evolutionary Gradient Search
(EGS). In basic EGS, random samples are used to estimate the
true gradient vector with respect to a parent. In an EGS with
halfspace sampling, we proposed to estimate the normal of the
optimal halfspace in an iteration by computing the weight sum
of random vectors with weights proportional to fitness of o↵-
spring. Any random samples that do not lie in the positive
halfspace will be reflected with respect to the parent. We then
proved the log-linear convergence of the scale-invariant step size
EGS with and without halfspace sampling. The convergence
rates were derived, expressed in terms of expectations of random
variables and then numerically compared by means of Monte-
Carlo simulations. The results show an improvement of 42% to
68% asymptotically when the dimension goes to infinity, regard-
less of the number of o↵spring used in the EGS.

Chapter 6 described the use of eigenspace sampling in the
CMA-ES. Using eigenspace sampling reduces the number of
function evaluations for learning the optimal covariance matrix
in the algorithm. In eigenspace sampling, the minor eigenspace
in the Hessian matrix of the underlying objective functions,
which have repeated eigenvalues or clustered eigenvalues, is first
identified. Instead of evaluating all the directions of the dom-
inant eigenspaces, only a direction in the minor eigenspace is
evaluated in an iteration. The resulting algorithm is evaluated
on a set of ill-conditioned functions that have a few repeated
eigenvalues in their Hessian matrices. A significant improve-
ment was observed on functions that have one or two dominating
eigenspaces. Eigenspace sampling does not improve CMA-ES on
functions that have evenly distributed eigenspectra. Eigenspace
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sampling was also implemented in the mirrored variant of (1,�)-
CMA-ES. When an unsuccessful step is found, the direction
of the step is reversed but only the directions in the mirrored
eigenspace are sampled. Using the mirrored eigenspace sam-
pling method can improve a (1,�)-CMA-ES in functions that
have large dominant eigenspace.

The second part of this thesis focused on the empirical investi-
gation of two evolutionary algorithms in dynamic environments.
In dynamic environments, the objective function changes during
the course of optimization. Chapter 7 considers three variants
of CMA-ES including the elitist (1+1)-CMA-ES, the standard
(µ,� )-CMA-ES and the sep-(µ,� )-CMA-ES. On dynamic prob-
lems, the elitist version of CMA-ES has the best performance.
Comparing the conventional (1+1)-ES with one with a one-fifth
success rule, (1+1)-CMA-ES is statistically the same as (1+1)-
ES with one-fifth success rule. On the non-elitist algorithms,
they do not appear to perform better than the elitist variants.
However, when the dimensions of the problem is large, both
non-elitist and elitist algorithms perform statistically the same.
The empirical results suggest that using the elitist variant of
CMA-ES for dynamic problems is more promising than using
the non-elitist variants.

Chapter 8 studied the use of the cooperative coevolutionary
algorithms (CCEA), which were commonly used for static large
scale optimization problems, in the dynamic environments. The
CCEA are investigated on the standard dynamic benchmark
problems. Di↵erent settings of algorithms, including the use of
plus or comma selection and the use of mutative step size adap-
tation, were experimentally compared. Two new individuals
were proposed in CCEA, the elitist individuals and the random
immigrant (RI) individuals. The elitist individuals were used
for local performance of the algorithm to exploit the neighbour-
hood of the previous candidate solutions. The RI individuals
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were used for global performance of the algorithm to explore
the new region of the search space. The resulting algorithm
with these two new individuals was experimentally compared
with the evolution strategies using the same algorithms settings.
The results show that CCEA perform better for most of the dy-
namic problems. The sensitivities of the population sizes for
di↵erent individuals was also investigated, and the empirical re-
sults suggest that using a cooperative coevolutionary approach
for dynamic problems is promising.

9.2 Summary of Future Directions

There are a few promising research directions to extend the work
presented in this thesis. Some of them were already discussed
in the corresponding Chapters and Sections. We can summarize
them as follows:

• Halfspace sampling in Chapters 4 & 5 can be further ex-
tended to multi-membered evolution strategies with the use
of recombinations.

• Chapter 4 proposed the concept of using evolution halfs-
paces to learn the optimal halfspaces. It basically computes
the weighted sum of the successful and unsuccessful steps
in the recent iterations to estimate the normal of the pos-
itive halfspaces. On the other hand, Chapter 5 proposed
using the weighted sum of random vectors in an iteration to
learn the optimal halfspaces. It will be interesting to com-
pare these two methods experimentally and theoretically.

• Chapter 5 has proven theoretically the log-linear conver-
gence of EGS with halfspace sampling and the improve-
ments brought by halfspace sampling when the dimension
goes to infinity. In practice, we plan to implement the halfs-
pace sampling in the CMA-ES which basically an extended
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version of an EGS with the use of the covariance matrix
adaptation.

• Chapter 6 proposed the use of eigenspace sampling to learn
the optimal covariance matrix in the CMA-ES and it was
experimentally evaluated on standard benchmark functions
that were ill-conditioned. It is still open to study whether
the gain brought by eigenspace sampling is closely corre-
lated to the eigenvalue distributions of the Hessian matrices
of the underlying optimization functions. Theoretical inves-
tigations on the eigenspace sampling for evolution strategies
is one of the challenging area for future research.

• Chapter 7 investigated the basic version of CMA-ES for dy-
namic problems. It is natural to extend CMA-ES by intro-
ducing it to the popular approaches for dynamic problems,
including diversity-maintaining methods, multi-population
method and memory-based methods.

• The CCEA in Chapter 8 is a basic version of CCEA. It will
be interesting to investigate the use of decomposition ap-
proaches [238, 132, 156, 138], which are designed for static
optimization, in dynamic problems.

2 End of chapter.
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