
A Framework for Fast and

E�cient Algorithms for Sparse

Recovery Problems

CAI, Sheng

A Thesis Submitted in Partial Ful�lment

of the Requirements for the Degree of

Doctor of Philosophy

in

Information Engineering

The Chinese University of Hong Kong

May 2015

Abstract of thesis entitled:

A Framework for Fast and E�cient Algorithms for Sparse Recovery

Problems

Submitted by CAI, Sheng

for the degree of Doctor of Philosophy

at The Chinese University of Hong Kong in May 2015

The sparse recovery problem aims to reconstruct a high-dimensional sparse

signal from its low-dimensional measurements given a carefully designed

measuring process. This thesis presents a framework for graphical-model-

based sparse recovery algorithms. Di�ering measurement processes lead

to speci�c problems. The sparse recovery problems studied in this the-

sis include compressive sensing, network tomography, group testing and

compressive phase retrieval. For compressive sensing and network tomog-

raphy, the measurement processes are linear (freely chosen, and topology-

constrained measurements respectively). For group testing and compres-

sive phase retrieval, the processes are non-linear (disjunctive, and intensity

measurements respectively). For all the problems in this thesis, we present

algorithms whose measurement structures are based on bipartite graphs.

By studying the properties of bipartite graphs and designing novel mea-

suring process and corresponding decoding algorithms, the number of mea-

surements and computational decoding complexities of all the algorithms

are information-theoretically either order-optimal or nearly order-optimal.

i

摘要

稀疏還原問題旨在通過精心設計的低維度度量重建高維度稀疏信號。這篇論文提

出了一個基於圖模型的稀疏還原演算法的框架。研究的稀疏還原問題包括了壓縮

感知，網路斷層掃描，組測試和壓縮相位恢復。對於壓縮感知和網路斷層掃描，

度量過程是線性的（分別是無約束的度量和拓撲結構約束的度量）。對於組測試

和壓縮相位恢復，度量過程是非線性的（分別是邏輯度量和強度度量）。對於提

到的問題，這篇論文提出的演算法的度量結構基於二部圖。通過學習二部圖的性

質，我們提出了新穎的度量方法和相對應的解碼演算法。對於這些演算法，它們

的度量維度和解碼演算法的運算複雜度都是（或接近於）資訊理論最優解。

ii

Acknowledgement

First, I would like to express my sincere gratitude to my supervisors Prof.

Sidharth Jaggi, Prof. Mayank Bakshi and Prof. Minghua Chen for the

support of my PhD study and research, for their consideration, patience,

motivation, enthusiasm, and immense knowledge. Without their help and

brilliant ideas, I could not have published several research papers, pre-

sented our works in academic conferences, visited California Institute of

Technology, and �nished this thesis.

Besides my supervisors, I would like to thank the co-authors of my pub-

lications: Mohammad Jahangoshahi, Chun Lam Chan and Prof. Vankatesh

Saligrama for their insightful discussions on our works and great e�orts to

improve the quality of this thesis.

Next, I would like to thank the committee members of my thesis defense:

Prof. Anthony Man-Cho So, Prof. Pascal Vontobel, Prof. Kenneth Shum

and Prof. Babak Hassibi for attending my oral examination and providing

useful comments on my thesis.

Also, I would like to thank my labmates in The Chinese University of

Hong Kong. To name a few: Qiwen Wang, Pak Hou Che, Chun Lam Chan,

as well as former members Ziyu Shao, Shaoquan Zhang, Jihang Ye, Zhe

Zhu, Xiangwen Chen, Tan Lu for all the time we have spent together in

the years.

Last but not least, I would like to thank my wife, parents and parents-

iii

in-law. I am sorry for not observing �lial piety as I have been pursuing

PhD degree in Hong Kong and leaving them in Shanghai for more than 4

years. My family always support and encourage me to pursue my dreams.

iv

This work is dedicated to my family.

v

Contents

Abstract i

Acknowledgement iii

1 Introduction 1

1.1 Compressive Sensing � SHO-FA 2

1.2 Network Tomography � FRANTIC 4

1.3 Group Testing � GROTESQUE 5

1.4 Compressive Phase Retrieval � SUPER 6

2 Technical Background 8

2.1 Representation of measurement process 8

2.1.1 Measurement matrix 8

2.1.2 Bipartite graph . 9

2.1.3 Picking/Peeling process 9

2.2 Error-correcting codes . 11

2.3 Big-Oh Notation . 11

2.4 Cherno� Bound and McDiamid's Inequality 12

3 Compressive Sensing � SHO-FA 14

3.1 Introduction . 14

3.1.1 Our contributions . 18

vi

3.1.2 Special acknowledgements 27

3.2 Exactly k-sparse x and noiseless measurements 29

3.2.1 High-level intuition 30

3.2.2 �Approximate Expander� Graph G 33

3.2.3 Measurement design 37

3.2.4 Reconstruction . 40

3.2.5 Decoding complexity 49

3.2.6 Correctness . 50

3.2.7 Remarks on the Reconstruction process for exactly

k-sparse signals . 51

3.2.8 SHO-FA v.s. �2-core� of random hyper-graphs 54

3.2.9 Other properties of SHO-FA 56

3.3 Approximate reconstruction in the presence of noise 61

3.3.1 Key ideas . 63

3.3.2 Measurement Design 66

3.3.3 Reconstruction . 70

3.3.4 Improving performance guarantees of SHO-FA via

Set-Query Algorithm of [118] 72

3.4 Simulation Results . 74

3.5 Acknowledgement . 74

3.6 Conclusion . 75

4 Network Tomography � FRANTIC 78

4.1 Introduction . 78

4.1.1 Our contribution . 79

4.2 Model and problem formulation 84

4.3 High-level Intuition and Main Results 86

4.3.1 Key ideas . 86

4.3.2 Main Theorems . 91

vii

4.4 SHO-FA-INT algorithm for Compressive Sensing 93

4.5 The FRANTIC algorithm 98

4.5.1 Link Delay Estimation 98

4.5.2 Node Delay Estimation 100

4.5.3 Extension of the FRANTIC algorithm 101

4.6 Exploiting network structure 102

4.6.1 Reducing Path Lengths through Steiner Trees: . . . 102

4.6.2 Average length of Steiner Trees: 103

4.6.3 Network decomposition: 103

4.7 Acknowledgements . 105

5 Group Testing � GROTESQUE 106

5.1 Introduction . 106

5.1.1 Our contributions . 110

5.2 High-level overview . 114

5.2.1 GROTESQUE Tests 115

5.2.2 Adaptive Group Testing 117

5.2.3 Non-adaptive Group Testing 119

5.2.4 Two-stage Adaptive Group Testing 121

5.3 Basic Arithmetic Operations 123

5.4 GROTESQUE Tests . 124

5.4.1 Multiplicity testing 127

5.4.2 Localization . 128

5.4.3 Performance Analysis 129

5.5 Adaptive Group Testing . 132

5.5.1 Overview . 134

5.5.2 Formal Description 135

5.5.3 Performance Analysis 138

5.6 Non-adaptive Group Testing 143

viii

5.6.1 Overview . 144

5.6.2 Formal Description 145

5.6.3 Performance Analysis 149

5.7 Two-stage Group Testing . 151

5.7.1 Overview . 152

5.7.2 Formal Description 153

5.7.3 Performance Analysis 155

5.8 Numerical Results for Noiseless Case 157

5.8.1 Deterministic grotesque testing with noiseless tests . 157

5.8.2 Simulation Results 161

5.9 Conclusion . 167

6 Compressive Phase Retrieval � SUPER 169

6.1 Introduction . 169

6.1.1 Our Contribution . 172

6.2 Overview/High-level Intuition 173

6.2.1 Pieces of the puzzle 173

6.2.2 Putting the pieces together 176

6.2.3 Summary of the overview 179

6.3 Highly related work . 180

6.4 Graph properties . 182

6.4.1 Seeding Phase . 182

6.4.2 Geometric-decay phase 183

6.4.3 Cleaning-up phase 186

6.5 Measurement Design . 186

6.6 Reconstruction Algorithm 190

6.6.1 Seeding phase . 190

6.6.2 Geometric-decay and Cleaning-up phases 194

6.7 Choice of Parameters . 195

ix

6.7.1 Seeding phase . 195

6.7.2 Geometric-decay phase: 198

6.7.3 Cleaning-up phase 199

6.8 Performance of the algorithm (Proof of the Main Theorem) . 199

6.8.1 Seeding Phase . 202

6.8.2 Geometric-decay Phase 206

6.8.3 Cleaning-up phase 208

6.9 Conclusion . 209

7 Conclusion 210

A Proofs 212

A.1 SHO-FA . 212

A.1.1 Proof of Lemma 1 . 212

A.1.2 Proof of Lemma 2 . 214

A.1.3 Proof of Lemma 3 . 214

A.1.4 Proof of Lemma 4 . 215

A.1.5 Phase noise . 216

A.1.6 Probability of error 217

A.1.7 Estimation error . 220

A.1.8 Proof of Theorem 3 221

A.2 SUPER . 221

A.2.1 Proof of Claim 1 . 221

A.2.2 Proof of Lemma 12 225

A.2.3 Proof of Theorem 5 227

Bibliography 229

x

List of Figures

1.1 Block diagram for sparse recovery problems. 2

3.1 A comparison of prior work with this work in two parameters

� decoding complexity, and number of measurements. 24

3.2 Property 1 and property 2 of G 35

3.3 Property 1 and property 2 of G 36

3.4 The measurement matrix A corresponding to the graph G . . 40

3.5 Initialization of SHO-FA's reconstruction process 43

3.6 Leaf-Node List 1 (Failed identi�cation) 44

3.7 Leaf-Node List 2 (Passed identi�cation, failed veri�cation) . 45

3.8 Leaf-Node List 3 (Passed identi�cation, passed veri�cation)

and the �rst iteration . 46

3.9 Second iteration and Termination of SHO-FA's reconstruc-

tion process . 47

3.10 An example of a physical system that �naturally� generates

ensembles of sparse A that SHO-FA can use 60

3.11 Approximately sparse signal and truncated reconstruction . 66

3.12 The e�ect of noise on a measurement output. 67

3.13 Repeated measurements . 68

3.14 Exactly sparse signal and noiseless measurements � recon-

struction performance for �xed signal length n 75

xi

3.15 Exactly sparse signal and noiseless measurements � recon-

struction performance for �xed sparsity k 76

3.16 Approximately sparse signal and noisy measurements � re-

construction performance for �xed signal-length n: 76

3.17 Exactly sparse signal (non-zero entries follow standard uni-

form distribution) and noiseless measurements � reconstruc-

tion performance for �xed signal length n 77

4.1 Node Delay Estimation . 87

4.2 General Networks . 87

4.3 Inaccessible Nodes I . 87

4.4 Cancellation . 88

4.5 Edge Delay Estimation . 89

4.6 Inaccessible Nodes II . 89

4.7 Cancellation using weighted measurements 90

4.8 Isolated Node . 101

4.9 Worst-case vs Average length of Steiner trees 104

4.10 Network Decomposition . 105

5.1 Block diagram for GROTESQUE tests. 126

5.2 Adaptive Group Testing . 134

5.3 Single bipartite graph in Non-Adaptive Group Testing 145

5.4 The overall graph G for Non-Adaptive Group Testing 146

5.5 Two-stage Group Testing . 152

5.6 Adaptive algorithm with Noiseless tests - reconstruction per-

formance for varying cadp,rn. 162

5.7 Adaptive algorithm with Noiseless tests - reconstruction per-

formance for varying cadp,deg. 163

xii

5.8 Adaptive algorithm with Noiseless tests - number of tests

required for varying k and m. 164

5.9 Adaptive algorithm with Noiseless tests - running time for

varying k and n. 164

5.10 Non-adaptive algorithm with Noiseless tests - reconstruction

performance for varying cnon,rn. 166

5.11 Non-adaptive algorithm with Noiseless tests - reconstruction

performance for varying cnon,bpt. 166

5.12 Non-adaptive algorithm with Noiseless tests - number of

tests required for varying k and m. 167

5.13 Non-adaptive algorithm with Noiseless tests - running time

for varying k and n. 168

6.1 Implied Graph . 184

6.2 Seeding Phase . 185

6.3 Geometric-decay phase . 187

6.4 Cleaning-up Phase . 187

xiii

List of Tables

1.1 Problems considered in this thesis 3

3.1 Table of notation for the compressive sensing model 18

3.2 Table of notation for SHO-FA algorithm 29

4.1 Table of notation for network parameters 85

4.2 Table of notation for Design Variables 86

5.1 Table of notation used for the general group testing problem 123

5.2 Table of notation used in GROTESQUE tests 124

5.3 Basic operations and corresponding time complexities 125

5.4 Expected number of positive test outcomes in the multiplic-

ity tests. 127

5.5 Table of notation used in our adaptive algorithm 133

5.6 Table of notation used in our Non-adaptive algorithm 144

5.7 Table of notation used in our 2-stage adaptive algorithm . . 152

5.8 Base scenario for multi-stage adaptive algorithm 162

5.9 Base scenario for non-adaptive algorithm 165

6.1 Table of notation for the model 172

6.2 Table of notation used in the design of bipartite graphs in

this chapter. 188

6.3 Table of notation for measurements design 190

xiv

6.4 Table of notation for measurements design 195

xv

Chapter 1

Introduction

In this thesis, we study problems where we wish to estimate a high-dimensional

sparse signal from its low-dimensional measurements. Suppose x is any

length-n input vector. We say x is k-sparse if and only if there are exactly

k (k < n) entries of x are non-zero. The function A(·) is a measurement

process mapping a length-n vector to a length-m (m is typically chosen to

satisfy k < m < n) output vector. The measurement process may be linear

or non-linear for speci�c problems. For compressive sensing and network

tomography, the measurement processes are linear. For group testing and

compressive phase retrieval, the measurement processes are non-linear. The

measurement process may be noiseless or noisy. In this thesis, we study two

sources of noise � source tail and measurement noise. The source tail, z,

is a length-n vector containing small components outside the support of x.

The measurement noise, e, is a length-m vector. In general, the measure-

ment process may be adaptive (the measurement design may depend on

the outcome of a previous measurement) or non-adaptive (each measure-

ment is performed independent of the outcome of other measurements).

The performance of adaptive algorithms is in general better than that of

non-adaptive algorithms, since the decoder has more information. How-

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Block diagram for sparse recovery problems. x is a length-n k-sparse

input vector. y is a length-m measurement vector. z is a length-n source tail.

e is a length-m measurement noise. Here, A is the measurement process and

A−1 is the corresponding reconstruction algorithm taking noisy measurement ỹ

as input and outputting x̂ as the estimate of x.

ever, non-adaptive algorithms are often preferred to adaptive algorithms

in applications, since they allow for parallelizable implementation and/or

the usage of o�-the-shelf hardware. The goal of sparse recovery problems

is �rst to design the measurement process, A, based on constraints for the

speci�c measurement model and second, given measurement (y = A(x) in

the noiseless case and ỹ = A(x + z) + e in the noisy case) to produce a

reconstruction x̂ of x. Here, �+� is not restricted to be arithmetic addition,

especially for the group testing problem introduced below. See Figure 1.1

for a block diagram for sparse recovery problems.

In the rest of this chapter, we introduce four sparse recovery problems

discussed in this thesis. See Table 1.1 for short summary.

1.1 Compressive Sensing � SHO-FA

Suppose x is any exactly k-sparse vector in Rn. We present a class of

�sparse� matrices A, and a corresponding algorithm that we call SHO-FA

(for Short and Fast1) that, with high probability over A, can reconstruct x

from Ax. The SHO-FA algorithm is related to the Invertible Bloom Lookup

Tables (IBLTs) recently introduced by Goodrich et al., with two important

1Also, SHO-FA sho good! In fact, it is all O(k).

CHAPTER 1. INTRODUCTION 3

Problem Operation Algorithm x y z e

Compressive Sensing Arithmetic SHO-FA Rn Cm Gaussian Gaussian

Network Tomography Arithmetic FRANTIC Rn≥0 Rm≥0 No No

Group Testing Logic GROTESQUE {0, 1}n {0, 1}m No Bernoulli

Phase Retrieval Intensity SUPER Cn Rm≥0 No No

Table 1.1: Problems considered in this thesis: For the compressive sensing prob-

lem, although the input signal is a length-n vector over real numbers, the measurements

designed by SHO-FA are over complex numbers. For the network tomography problem,

the linear measurements are constrained by network topology. Further, each measure-

ment is a weighted sum of non-negative real values (represented by R≥0) with positive

integer weights. For the phase retrieval problem, measurements have non-negative values

even if the input signal is over complex numbers since we only measure the intensity

of the linear measurements. In the compressive sensing problem, we analyze the e�ects

of both the source tail and measurement noise. In the group testing problem, we only

consider the e�ect of measurement noise. For the other two problems, while we do

not consider either source tail, or measurement noise, techniques from our analysis of

compressive sensing and group testing can in general be used here.

distinctions � SHO-FA relies on linear measurements, and is robust to noise.

The SHO-FA algorithm is the �rst to simultaneously have the following

properties: (a) it requires only O(k) measurements, (b) the bit-precision of

each measurement and each arithmetic operation is O (log(n) + P) (here

2−P corresponds to the desired relative error in the reconstruction of x),

(c) the computational complexity of decoding is O(k) arithmetic operations

and that of encoding is O(n) arithmetic operations, and (d) if the recon-

struction goal is simply to recover a single component of x instead of all of

x, with signi�cant probability over A this can be done in constant time. All

constants above are independent of all problem parameters other than the

desired probability of success. For a wide range of parameters these proper-

ties are information-theoretically order-optimal. In addition, our SHO-FA

algorithm works over fairly general ensembles of �sparse random matrices�,

CHAPTER 1. INTRODUCTION 4

is robust to random noise, and (random) approximate sparsity for a large

range of k. In particular, suppose the measured vector equals A(x+z)+e,

where z and e correspond respectively to the source tail and measurement

noise. Under reasonable statistical assumptions on z and e our decoding

algorithm reconstructs x with an estimation error of O(||z||2 + ||e||2). The

SHO-FA algorithm works with high probability over A, z, and e, and still

requires only O(k) steps and O(k) measurements over O(log(n))-bit num-

bers. This is in contrast to most existing algorithms which focus on the

�worst-case� z model, where it is known Ω(k log(n/k)) measurements over

O(log(n))-bit numbers are necessary. Our algorithm has good empirical

performance, as validated by simulations.2

1.2 Network Tomography � FRANTIC

We study the problem of link and node delay estimation in undirected net-

works when at most k out of n links or nodes in the network are congested.

Our approach relies on end-to-end measurements of path delays across pre-

speci�ed paths in the network. We present a class of algorithms that we

call FRANTIC .3 The FRANTIC algorithms are motivated by compressive

sensing; however, unlike traditional compressive sensing, the measurement

design here is constrained by the network topology, and the matrix entries

are constrained to be positive integers. A key component of our design is

a new compressive sensing algorithm SHO-FA-INT that is related to the

sho-fa algorithm [10] for compressive sensing, but unlike sho-fa, the ma-

2A preliminary version of this work was presented in [10]. The journal version of this work

has been accepted for publication in the IEEE Transactions on Information Theory. In parallel

and independently of this work, an algorithm with very similar design and performance was

proposed and presented in [112].
3FRANTIC stands for Fast Reference-based Algorithm for Network Tomography vIa

Compressive sensing.

CHAPTER 1. INTRODUCTION 5

trix entries here are drawn from the set of integers {0, 1, . . . ,M}. We show

that O(k log(n)/ log(M)) measurements su�ce both for SHO-FA-INT and

FRANTIC . Further, we show that the computational complexity of de-

coding is also O(k log(n)/ log(M)) for each of these algorithms. Finally,

we look at e�cient constructions of the measurement operations through

Steiner Trees.4

1.3 Group Testing � GROTESQUE

Group-testing refers to the problem of identifying (with high probability)

a (small) subset of k defectives from a (large) set of n items via a �small�

number of �pooled� tests (i.e., tests that have a positive outcome if at least

one of the items being tested in the pool is defective, else have a negative

outcome). For ease of presentation in this work we focus on the regime

when k = O
(
n1−δ) for some δ > 0. The tests may be noiseless or noisy,

and the testing procedure may be adaptive (the pool de�ning a test may

depend on the outcome of a previous test), or non-adaptive (each test is

performed independent of the outcome of other tests). A rich body of lit-

erature demonstrates that Θ(k log(n)) tests are information-theoretically

necessary and su�cient for the group-testing problem, and provides algo-

rithms that achieve this performance. However, it is only recently that

reconstruction algorithms with computational complexities that are sub-

linear in n have started being investigated (recent work by [72, 77, 105]

gave some of the �rst such algorithms). In the scenario with adaptive

tests with noisy outcomes, we present the �rst scheme that is simultane-

ously order-optimal (up to small constant factors) in both the number of

tests and the decoding complexity (O(k log(n)) in both the performance

metrics). The total number of stages of our adaptive algorithm is �small�

4This work has been published in [23]. The journal version of this work can be found in [22].

CHAPTER 1. INTRODUCTION 6

(O(log(k))). Similarly, in the scenario with non-adaptive tests with noisy

outcomes, we present the �rst scheme that is simultaneously near-optimal

in both the number of tests and the decoding complexity (via an algo-

rithm that requires O(k log(k) log(n)) tests and has a decoding complexity

of O(k(log(n) + log2(k))). Finally, we present an adaptive algorithm that

only requires 2 stages, and for which both the number of tests and the

decoding complexity scale as O(k(log(n) + log2(k))). For all three settings

the probability of error of our algorithms scales as O (1/(poly(k)). For

each of the statements above about the order of the number of measure-

ments, decoding complexity, and probability of error, we provide explicitly

computed �small� universal factors in our theorem statements.5

1.4 Compressive Phase Retrieval � SUPER

Compressive phase retrieval algorithms attempt to reconstruct a �sparse

high-dimensional vector� from its �low-dimensional intensity measurements�.

Suppose x is any length-n input vector over C with exactly k non-zero en-

tries, and A is an m × n (k < m � n) phase measurement matrix over

C. The decoder is handed m �intensity measurements� (|A1x|, . . . , |Amx|)
(corresponding to component-wise absolute values of the linear measure-

ment Ax) � here Ai's correspond to the rows of the measurement matrix A.

In this work, we present a class of measurement matrices A, and a corre-

sponding decoding algorithm that we call SUPER, which can reconstruct x

up to a global phase from intensity measurements. The SUPER algorithm

is the �rst to simultaneously have the following properties: (a) it requires

only O(k) (order-optimal) measurements, (b) the computational complex-

5A preliminary version of this work has been published in [26]. The journal version of this

work has been submitted to the IEEE Transactions on Information Theory and can be found

in [27].

CHAPTER 1. INTRODUCTION 7

ity of decoding is O(k log k) (near order-optimal) arithmetic operations, (c)

it succeeds with high probability over the design of A. Our results hold for

all k ∈ {1, 2, . . . , n}.6

2 End of chapter.

6A preliminary version of this work has been published in [24]. The journal version of this

work has been submitted to the IEEE Transactions on Information Theory and can be found

in [25]. In parallel and independently of this work, an algorithm with very similar design and

performance was proposed and presented in [114].

Chapter 2

Technical Background

2.1 Representation of measurement process

2.1.1 Measurement matrix

For all the problems considered in this thesis, the measurement process

can be represented by an m × n measurement matrix, A. Each row of

A corresponds to a measurement, and each column of A corresponds to a

entry of x. To simplify our discussion, we only consider the noiseless case.

For compressive sensing, the measurement y equals Ax which corre-

sponds to the matrix multiplication of A and x. Similarly for network to-

mography, we use matrix multiplication to get the measurement. For phase

retrieval, the measurement model implies that the measurement output is

the result of taking the element-wise magnitude of Ax.

In the group testing problem, the entries of the measurement matrix A

are binary such that if the entry of i-th row and j-th column is 1, then

the j-th item is included in the i-th test/measurement. At the risk of

potential confusion, we follow notation convention in the group testing

literature to also denote entries in the input vector x and the measurement

vector y by 0's and 1's. The physical meanings of these 0's and 1's is as

8

CHAPTER 2. TECHNICAL BACKGROUND 9

follows: 0's and 1's, in x, represent non-defective items and defective items

respectively, and in y, represent negative test outcomes and positive test

outcomes respectively. As per the group testing measurement model, the

test outcome is positive if and only if there exists at least one defective

item in that test. In this model, A(x) therefore represents the composition

of m disjunctive measurements.

2.1.2 Bipartite graph

The structure of a measurement process can also be represented by a bi-

partite graph. Put n nodes on the left and m′ nodes on the right. Each

left node represents an element of x and each right node represents a set

of measurement (in general m′ < m).1 If there is an edge between the j-th

left node and the i-th right node, the j-th entry is involved in the i-th set

of measurements.

Hence, there is a mapping between the structure of measurement matrix

and the bipartite graph. The structure of A is the biadjacency matrix of

the bipartite graph.

2.1.3 Picking/Peeling process

There are three types of right/measurement nodes.

Zeroton/Zero node: A right node is called a zeroton (or a zero node) if

it connects to only left nodes which correspond to zero components of

x. Although such zerotons may provide useful information about the zero

components of x, for reasons pertaining to computation complexity, we will

not use zerotons in our decoding algorithms.

1For reasons that will become clear later, in most of our algorithms we clump together some

�small� constant number of measurements together into a single measurement node. Hence, in

general m/m′ will equal an integer.

CHAPTER 2. TECHNICAL BACKGROUND 10

Singleton/Leaf node: A right node is called a singleton (or a leaf node) if

it connects to exactly one left node which corresponds to non-zero compo-

nents of x. Singletons are the �most important� nodes in our algorithms,

since they allow us to �bootstrap� our decoding algorithms. For SHO-FA,

GROTESQUE and FRANTIC, we only use leaf nodes for decoding. For

SUPER, leaf nodes are used to reconstruct the magnitudes of non-zero

entries.

Multiton/Non-leaf node: A right node is called a multiton (or a non-leaf

node) if it connects to more than one left node which corresponds to non-

zero components of x. Multitons are particularly useful in some types of

non-linear measurement models, for instance, in the phase recovery model,

and our SUPER algorithm exploits multitions critically.

See Algorithm 1 for the meta-algorithm for sparse recovery algorithms.

To guarantee the existence of �useful� right/measurement nodes, we study

di�erent types of bipartite graphs. For the detailed properties used, please

refer to Chapters 3, 4, 5, and 6. However, there are several challenges. One

lies in identifying which type of node (zeroton, singleton, or multition) a

right node belongs to. The second lies in identifying which non-zero com-

ponent of x is measured by the useful node. The third is to be able to

do all this blindingly fast (in time linear in the sparsity k, rather than in

the ambient signal dimension n). One �trick� we use is that we use �struc-

tured� measurements, with potentially several measurements per measure-

ment node. The actual structure of these structured measurements, and the

corresponding decoding algorithms depends critically on the measurement

model under consideration, and is explicated in greater detail in Chapters

3, 4, 5, and 6.

CHAPTER 2. TECHNICAL BACKGROUND 11

Algorithm 1 Meta Algorithm for Sparse Recovery Problems

1: Input: A, y

2: Output: x̂

3: while not all non-zeros of x are recovered do

4: 1. Picking: identify one set of �useful� measurement node, U

5: 2. Decode: x̂ = D(yU , x̂) {D denotes the decoding procedure}

6: 3. Peeling: update y

7: end while

2.2 Error-correcting codes

We can use error-correcting codes to design the robust algorithms. The idea

of using a measurement matrix whose columns are codewords of a linear

code is not new, especially in the context of compressive sensing [28, 45].

However, we only use a linear code as a �sub-routine� to do the estimate if

the right node is leaf node (or singleton).

In this thesis, we use expander codes to design robust and e�cient group

testing algorithms in the scenario of noisy tests. Although in this thesis

this idea is only applied to group testing problem, as future work it can be

further explored for the other three problems.

2.3 Big-Oh Notation

We use Big Oh notation as is standard in computer science. Speci�cally,

f(n) is said to be O(g(n)), Ω(g(n)), Θ(g(n)), o(g(n)), and ω(g(n)) if g(n) is

asymptotically an upper bound, a lower bound, a tight bound, a tight upper

bound, and a tight lower bound for f(n) respectively. For details, please

refer to Chapter 3 of [42]. Speci�cally, O(poly(n)) is de�ned as O (nc) for

c > 0.

CHAPTER 2. TECHNICAL BACKGROUND 12

2.4 Cherno� Bound and McDiamid's Inequality

In this work, exp corresponds to the exponential function base e but loga-

rithms are base 2.

Theorem 1. (Cherno� Bound) Let X1, . . . , Xn be independent but not

necessarily identically distributed random variables. Assume that 0 ≤ Xi ≤
1 for each i ∈ [n]. Let X = X1 + · · ·+Xn. µ = E[X] = E[X1]+ · · ·+E[Xn].

Then for any 0 ≤ ε ≤ 1,

Pr[X ≤ (1− ε)µ] ≤ exp

(
−ε

2

2
µ

)
and

Pr[X ≥ (1 + ε)µ] ≤ exp

(
− ε2

2 + ε
µ

)
;

Pr[X ≤ µ− εn] ≤ exp
(
−2nε2

)
and

Pr[X ≥ µ+ εn] ≤ exp
(
−2nε2

)
.

Theorem 2. [98](McDiarmid's Inequality) Let X1, . . . , Xn be independent

but not necessarily identically distributed random variables all taking values

in the set X . Further, let f : X n → R be a function of X1, . . . , Xn that

satis�es ∀i,∀x1, . . . , xn, x
′
i ∈ X ,

|f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)| ≤ ci.

Then for all ε > 0,

Pr(f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] ≥ ε) ≤ exp

(−2ε2

Σm
i=1c

2
i

)
and

CHAPTER 2. TECHNICAL BACKGROUND 13

Pr(f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] ≤ −ε) ≤ exp

(−2ε2

Σm
i=1c

2
i

)
.

2 End of chapter.

Chapter 3

Compressive Sensing � SHO-FA

3.1 Introduction

In recent years, spurred by the seminal work on compressive sensing of [31,

51], much attention has focused on the problem of reconstructing a length-

n �compressible� vector x over R with fewer than n linear measurements.

In particular, it is known (e.g. [11,34]) that with m = O(k log(n/k)) linear

measurements one can computationally e�ciently1 obtain a vector x̂ such

that the reconstruction error ‖x− x̂‖1 is O(‖x− xk
∗‖1),2 where xk

∗ is the

best possible k-sparse approximation to x (speci�cally, the k non-zero terms

of xk
∗ correspond to the k largest components of x in magnitude, hence

x−xk
∗ corresponds to the �tail� of x).3 A number of di�erent classes of al-

gorithms are able to give such performance guarantees, such as those based

1The caveat is that the reconstruction techniques require one to solve an LP. Though

polynomial-time algorithms to solve LPs are known, they are generally considered to be im-

practical for large problem instances.
2In fact this is the so-called `1 < C`1 guarantee. One can also prove stronger `2 < C`1/

√
k

reconstruction guarantees for algorithms with similar computational performance, and it is

known that a `2 < C`2 reconstruction guarantee is not possible if the algorithm is required to

be zero-error [41], but is possible if some (small) probability of error is allowed [65,119].
3All the notations for the model of compressive sensing are listed in Table 3.1.

14

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 15

on `1-optimization (e.g. [31, 51]), and those based on iterative �matching

pursuit� (e.g. [53,137]). Similar results, with an additional additive term in

the reconstruction error hold even if the linear measurements themselves

also have noise added to them (e.g. [11, 34]). The fastest of these algo-

rithms use ideas from the theory of expander graphs, and have running

time O(n log(n/k)) [16, 17, 64].

The class of results summarized above are indeed very strong � they

hold for all x vectors, including those with �worst-case tails�, i.e. even

vectors where the components of x smaller than the k largest coe�cients

(which can be thought of as �source tail�) are chosen in a maximally worst-

case manner. In fact [9] proves that to obtain a reconstruction error that

scales linearly with the `1-norm of z (the tail of x) requires Ω(k log(n/k))

linear measurements.

Number of measurements: However, depending on the application,

such a lower bound based on �worst-case z� may be unduly pessimistic.

For instance, it is known that if x is exactly k-sparse (has exactly ex-

actly k non-zero components, and hence z = 0), then based on Reed-

Solomon codes [121] one can e�ciently reconstruct x with O(k) noiseless

measurements (e.g. [111]) via algorithms with decoding time-complexity

O(n log(n)), or via codes such as in [89, 101] with O(k) noiseless mea-

surements with decoding time-complexity O(n).4 In the regime where

k = Θ(n) [80] uses the �sparse-matrix� techniques of [16, 17, 64] to demon-

strate that O(k) = O(n) measurements su�ce to reconstruct x.

Noise: Even if the source is not exactly k-sparse, a spate of recent work has

taken a more information-theoretic view than the coding-theoretic/worst-

case point-of-view espoused by much of the compressive sensing work thus

4In general the linear systems produced by Reed-Solomon codes are ill-conditioned over R

and C [121], which causes problems for large n.

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 16

far. Speci�cally, suppose the length-n source vector is the sum of any ex-

actly k-sparse vector x and a �random� source noise vector z (and possibly

the linear measurement vector A(x + z) also has a �random� measurement

noise vector e added to it). Then as long as the noise variances are not

�too much larger� than the signal power, the work of [4] demonstrates

that O(k) measurements su�ce (though the proofs in [4] are information-

theoretic and existential � the corresponding �typical-set decoding� algo-

rithms require time exponential in n). Indeed, even the work of [9], whose

primary focus was to prove that Ω(k log(n/k)) linear measurements are

necessary to reconstruct x in the worst case, also notes as an aside that

if x corresponds to an exactly k-sparse vector plus random noise, then in

fact O(k) measurements su�ce. The work in [143,144] examines this phe-

nomenon information-theoretically by drawing a nice connection with the

Rényi information dimension d̄(X) of the signal/noise. The heuristic algo-

rithms in [88] indicate that approximate message passing algorithms achieve

this performance computationally e�ciently (in time O(n log(n))), and [52]

proves this rigorously. Corresponding lower bounds showing Ω(k log(n/k))

samples are required in the higher noise regime are provided in [63,139].

Number of measurement bits: However, most of the works above focus

on minimizing the number of linear measurements in Ax, rather than the

more information-theoretic view of trying to minimize the number of bits

in Ax over all measurements. Some recent work attempts to �ll this gap

� notably �Counting Braids� [91, 92] (this work uses �multi-layered non-

linear measurements�), and �one-bit compressive sensing� [79,115] (the cor-

responding decoding complexity is somewhat high (though still polynomial-

time in k and n) since it involves solving an LP).

Decoding time-complexity: The emphasis of the discussion thus far has

been on the number of linear measurements/bits required to reconstruct

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 17

x. The decoding algorithms in most of the works above have decoding

time-complexities5 that scale at least linearly with n. In regimes where

k is signi�cantly smaller than n, it is natural to wonder whether one can

do better. Indeed, algorithms based on iterative techniques answer this in

the a�rmative. These include Chaining Pursuit [66], group-testing based

algorithms [44], and Sudocodes [125] � each of these have decoding time-

complexity that can be sub-linear in n (but at least Ω(k log(k) log(n))), but

each requires at least Ω(k log(n)) linear measurements.

Database query: Finally, we consider a database query property that is

not often of primary concern in the compressive sensing literature. That

is, suppose one is given a compressive sensing algorithm that is capable of

reconstructing x with the desired reconstruction guarantee. Now suppose

that one instead wishes to reconstruct, with reasonably high probability,

just �a few� (constant number) speci�c components of x, rather than all

of it. Is it possible to do so even faster (say in constant time) � for in-

stance, if the measurements are in a database, and one wishes to query it

in a computationally e�cient manner? If the matrix A is �dense� (most

of its entries are non-zero) then one can directly see that this is impos-

sible. However, several compressive sensing algorithms (for instance [80])

are based on �sparse� matrices A, and it can be shown that in fact these

algorithms do indeed have this property �for free� (as indeed does our al-

gorithm), even though the authors do not analyze this. As can be inferred

from the name, this database query property is more often considered in

the database community, for instance in the work on IBLTs [70].

5For ease of presentation, in accordance with common practice in the literature, in this

discussion we assume that the time-complexity of performing a single arithmetic operation is

constant. Explicitly taking the complexity of performing �nite-precision arithmetic into account

adds a multiplicative factor (corresponding to the precision with which arithmetic operations

are performed) in the time-complexity of most of the works, including ours.

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 18

Notation De�nition

x Length-n signal over R with sparsity k

A Dimension-n×m measurement matrix over C

P Bits of precision

z Source tail distributed as Gaussian with mean 0 and variance σ2
z

e Measurement noise distributed as complex Gaussian with mean 0 and

variance σ2
e

x∗k Best k-sparse approximation to x

x̂ Estimate of x

y Length-m measurement over C

Table 3.1: Table of notation for the compressive sensing model

Locally decodable codes (LDCs) and locally recoverable codes (LRCs)

also look at similar questions. Both LDCs and LRCs are special classes of

error-correcting codes aiming to recover any individual symbol from access-

ing other r codeword symbols. These codes provide a solution to ensure

reliability against storage node failures in distributed and cloud storage

systems. The main di�erence between LDCs and LRCs is that LDCs aim

to recover any message symbol, while LRCs aim to recover any codeword

symbol. We refer the readers interested in this area to [134,148] for details.

3.1.1 Our contributions

Conceptually, the �iterative decoding� technique we use is not new. Similar

ideas have been used in various settings in, for instance [70, 89, 118, 132].

However, to the best of our knowledge, no prior work has the same per-

formance as our work � namely � information-theoretically order-optimal

number of measurements, bits in those measurements, and time-complexity,

for the problem of reconstructing a sparse signal (or sparse signal with a

noisy tail and noisy measurements) via linear measurements (along with the

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 19

database query property).The key to this performance is our novel design

of �sparse random� linear measurements, as described in Section 3.2.

Exactly k-sparse x and noiseless measurements

First, our results for the case that x is exactly k-sparse and measurements

are noiseless are stated below. We use P as a �precision parameter�, de-

noting the requirement that the relative error between the reconstructed x̂

and the original x be at most 2−P , as de�ned in property i) of the Theorem

below.

Theorem 1. Let k ≤ n. There exists a reconstruction algorithm SHO-FA

for A ∈ Cm×n with the following properties:

i) For every k-sparse x ∈ Rn, with probability 1−O(1/k) over the choice

of A, SHO-FA produces a reconstruction x̂ such that ‖x− x̂‖1/‖x‖1 ≤
2−P ,

ii) The number of measurements m = 2ck for some c > 0,

iii) The number of steps required by SHO-FA is O(k), and

iv) The number of bitwise arithmetic operations required by SHO-FA is

O(k(log(n) + P)).

Theorem 2. Let k ≤ n. There exists a reconstruction algorithm SHO-FA∗

for A ∈ Cm×n with the following properties:

i) For every k-sparse x ∈ Rn, with probability 1−O(1/k) over the choice

of A, SHO-FA∗ produces a reconstruction x̂ such that ‖x− x̂‖1/‖x‖1 ≤
2−P ,

ii) The number of measurements m = 2ck, ∀ c > 1.22,

iii) The number of steps required by SHO-FA is at most 4ck + 14k, and

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 20

iv) The number of bitwise arithmetic operations required by SHO-FA is

O(k(log(n) + P)).

SHO-FA∗ has better reconstruction performance than SHO-FA. The

probabilistic construction of measurement matrix A is the same. The dif-

ference in SHO-FA is that the analysis is self-contained which requires that

the left degree d of the underlying bipartite graph for the construction to be

at least 13 (See Section 3.2.2 for details). The analysis of Theorem 2 mainly

depends on the existence of 2-cores in d-uniform hypergraphs (for d being

at least 3) after exploring its relationship with SHO-FA algorithm. Due to

expositional complexity of the analysis, we omit the proofs of [70, Theorem

1] and Theorem 5 (see Section 3.2.7 for some remarks) and refer the reader

to the original works for the proof.

Approximate reconstruction in the presence of noise

For approximate reconstruction, our results are stated below. We assume

that both the source tail and measurement noise are distributed according

to independent Gaussian distributions.

Theorem 3. Let k = O(n1−∆) for some ∆ > 0. There exists a reconstruc-

tion algorithm SHO-FA-NO for A ∈ Cm×n such that

i) m = ck,

ii) SHO-FA consists of at most 4k iterations, each involving a constant

number of arithmetic operations with a precision of O(log(n)) bits, and

iii) With probability 1− o(1/k) over the design of A and randomness in e

and z,

‖x̂− x‖1 ≤ C
(
‖z‖1 +

√
log(k)‖e‖1

)
for some C = C(σz, σe) > 0.

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 21

Theorem 4. Let k = O(n1−∆) for some ∆ > 0 and let ε > 0. There exists

a reconstruction algorithm SHO-FA-NO∗ for A ∈ Cm×n such that

i) m = ck,

ii) SHO-FA-NO∗ consists of at most 5k iterations, each involving a con-

stant number of arithmetic operations with a precision of O(log(n))

bits, and

iii) With probability 1− o(1/k) over the design of A and randomness in e

and z, and for each l ∈ {1, 2}, ‖x̂− x‖l ≤ (1 + ε) (‖z‖l + ‖e‖l) .

Theorem 4 has better reconstruction performance than Theorem 3. This

is achieved by �rst running the algorithm from Theorem 3 to determine the

support of x and then employing the Set-Query Algorithm of [118] to reduce

the reconstruction error. (See Section 3.3.4 for details.)

To summarize, the desirable properties of SHO-FA are that with high

probability:6

• Number of measurements: For every k-sparse x, with high proba-

bility over A, O(k) linear measurements su�ce to reconstruct x. This

is information-theoretically order-optimal.

• Number of measurement bits: The total number of bits in Ax

required to reconstruct x to a relative error of 2−P is O(k(log(n)+P)).

This is information-theoretically order-optimal for any k = O(n1−∆)

(for any ∆ > 0).

6For most of the properties, we show that this probability can be made as large as 1− 1/kc

for any c > 0, at the cost of increasing both the number of measurements and the decoding

complexities by multiplication factors f1(c) and f2(c), respectively. For ease of exposition, we

explicitly prove only 1−O(1/k).

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 22

• Decoding time-complexity: The total number of arithmetic op-

erations required is O(k). This is information-theoretically order-

optimal.

• �Database-type queries�: With constant probability 1−ε any single
�database-type query� can be answered in constant time. That is, the

value of a single component of x can be reconstructed in constant

time with constant probability.7

• Encoding/update complexity: The computational complexity of

generating Ax from A and x is O(n), and if x changes to some x′ in

O(1) locations, the computational complexity of updating Ax to Ax′

is O(1). Both of these are information-theoretically order-optimal.

• Noise: Suppose z and e have i.i.d. components8 drawn respectively

from N (0, σ2
z) and N (0, σ2

e). For every ε
′ > 0 and for k = O(n1−∆) for

any ∆ > 0, we present in Section 3.3 a modi�ed version of SHO-FA

called SHO-FA-NO that with high probability reconstructs x with an

estimation error of (1 + ε′)(‖z‖2 + ‖e‖2).9

7The constant ε can be made arbitrarily close to zero, at the cost of multiplicative factors

O(1/ε) in the number of measurements and decoding complexities required. In fact, if we allow

the number of measurements and decoding complexity to scale as O(k log(k)), we can support

any number of database queries, each in constant time, with probability of every one being

answered correctly at least 1− ε.
8Even if the statistical distribution of the components of z and e are not i.i.d. Gaussian,

statements with a similar �avor can be made. For instance, pertaining to the e�ect of the

distribution of z, it turns out that our analysis is sensitive only on the distribution of the sum of

components of z, rather then the components themselves. Hence, for example, if the components

of z are i.i.d. non-Gaussian, it turns out that via the Berry-Esseen theorem [129] one can derive

similar results to the ones derived in this work. In another direction, if the components of z are

not i.i.d. but do satisfy some �regularity constraints�, then using Bernstein's inequality [19] one

can again derive analogous results. However, these arguments are more sensitive and outside

the scope of this work, where the focus is on simpler models.
9As noted in Footnote 2, this `2 < `2 reconstruction guarantee implies the weaker `1 < `1

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 23

• Practicality: As validated by simulations (shown in Appendix 3.4),

most of the explicitly calculable constant factors mentioned above are

not large.

• Di�erent bases: As is common in the compressive sensing literature,

our techniques generalize directly to the setting wherein x is sparse

in an alternative basis represented by the n × n matrix B (say, for

example, in a wavelet basis). In this case, our measurement matrix is

then AB−1.

• Universality: While we present a speci�c ensemble of matrices over

which SHO-FA operates, we argue that in fact similar algorithms

work over fairly general ensembles of �sparse random matrices� (see

Section 4.4), and further that such matrices can occur in applications,

for instance in wireless MIMO systems [71] (Figure 3.10 gives such an

example) and Network Tomography [146].

reconstruction guarantee ‖x− x̂‖1 < (1 + ε′)(‖z‖1 + ‖e‖1)

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 24

Decoding)complexity)

Number)of)measurements)

O(k log n)

O(n)

°[16]

°[10]

°[33]

°[5]
°[43]

°[34]
°[32]

°[18,19] °[25] !
This work, [1,2]

Lower&bound&

Lower&bound&

O(k)

Figure 3.1: A comparison of prior work with this work (and that of [112]) in two

parameters � decoding complexity, and number of measurements. Information-

theoretic bounds show that the shaded region is infeasible. Only some of the

many prior results in the �eld of Compressive Sensing are plotted here (some other

works are referenced in the following table). Since k and n do not scale together

in a �xed manner, the position of points in this graph should be interpreted in

a relative rather than absolute manner. The constants α and β are intended to

represent the degrees of low-degree polynomials.

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 25

R
ef
er
en
ce

A
x

z
e

R
ec
o
n
st
ru
ct
io
n

P
e

#
M
ea
su
re
m
en
ts

#
D
ec
o
d
in
g
st
ep
s

P
re
ci
si
o
n

G
o
a
l

R
ee
d
-S
o
lo
m
o
n
[1
2
1
]

D
D

0
0

E
x
a
ct

0
2
k

+
1

O
(n

lo
g
(n

))
[6
]

�

S
in
g
le
to
n
[1
3
0
]

D
/
R

D
0

0
E
x
a
ct

0
≥

2
k

�
�

M
it
ze
n
m
a
ch
er
-V
a
rg
h
es
e
[1
0
1
]

R
D

0
0

E
x
a
ct

O
(1

)
O

(k
)

O
(n

)
�

K
u
d
ek
a
r-
P
�
st
er

[8
9
]

R
D

0
0

E
x
a
ct

o
(1

)
O

(k
)

O
(n

)
�

T
ro
p
p
-G

il
b
er
t
[1
3
7
]

G
D

0
0

E
x
a
ct

o
(1

)
O

(k
lo

g
(n

))
O

(k
2
n

lo
g
(n

))
�

W
u
-V
er
d
ú
'1
0
[1
4
3
]

R
R

R
0

E
x
a
ct

o
(1

)
n
d̄
(x

+
z
)

+
o
(n

)
O

(e
x
p

(n
))

�

D
o
n
o
h
o

e
t
a
l.
[5
2
]

R
R

R
0

E
x
a
ct

o
(1
)

n
d̄
(x

+
z
)

+
o
(n

)
O

(n
3
)

�

R
l 2
<
C

l 2

C
o
rm

o
d
e-
M
u
th
u
k
ri
sh
n
a
n

[4
4
]

R
D

0
0

l 2
<
C

l 2
o
(1

)
O

(k
p
o
ly

(l
o
g
(n

))
)

O
(k

p
o
ly

(l
o
g
(n

))
)

�

C
o
h
en

e
t
a
l.
[4
1
]

D
D

D
0

l 2
<
C

l 2
0

Ω
(n

)
�

�

P
ri
ce
-W

o
o
d
ru
�
[1
1
9
]

D
D

D
0

l 2
<
C

l 2
o
(1

)
θ
(k

lo
g
(n
/
k
))

�
�

B
a

e
t
a
l.
[9
]

D
/
R

D
D

0
l 1
<
C

l 1
O

(1
)

Ω
(k

lo
g
(n
/
k
))

�
O

(l
o
g
(n

))

B
a

e
t
a
l.
[9
]

R
D

R
0

l 2
<
C

l 2
o
(1

)
O

(k
)

O
(e

x
p

(n
))

C
a
n
d
és

[3
4
],

R
D

D
D

l 2
<

C √
k

l 1
o
(1

)
O

(k
lo

g
(n
/
k
))

L
P

�

B
a
ra
n
iu
k

e
t
a
l.
[1
1
]

In
d
y
k

e
t
a
l.
[7
8
]

D
D

D
D

l 1
<

(1
+
ε)

l 1
0

O
(k

lo
g
(n
/
k
))

O
(n

lo
g
(n
/
k
))

�

A
k
ça
ka
y
a

e
t
a
l.
[3
]

R
D

0
R

l 2
<
C

l 2
/

0
O

(k
)

O
(e

x
p

(n
))

�

S
u
p
.
R
ec
.

C
o
n
d
.
o
n
x
m
in

W
u
-V
er
d
ú
'1
1
[1
4
4
]

R
R

R
R

l 2
<
C

l 2
O

(1
)

d̄
(x

+
z
)

O
(e

x
p

(n
))

�

W
a
in
w
ri
g
h
t
[1
3
9
]

N
D

0
R

S
u
p
.
R
ec
.

O
(1

)
Ω

(k
lo

g
(n
/
k
))

�
�

F
le
tc
h
er

e
t
a
l.
[6
3
]

N
D

0
R

S
u
p
.
R
ec
.

o
(1

)
O

(k
lo

g
(n
−
k
))

�
�

A
er
o
n

e
t
a
l.
[1
]

N
D

0
R

S
u
p
.
R
ec
.

O
(1

)
Ω

(k
lo

g
(n
/
k
))

�

P
la
n
-V
er
sh
y
n
in

[1
1
5
]

R
D

0
sg
n

l 2
<
f

(x
,x
k
)

O
(1

)
k
2

lo
g
(n
/
k
)

L
P

1

J
a
cq
u
es

e
t
a
l.
[7
9
]

R
D

0
sg
n

l 2
<
f
′ (
n
,k

)
O

(1
)

k
lo

g
(n

)
ex

p
(n

)
1

S
a
rv
o
th
a
m

e
t
a
l.
[1
2
5
]

R
D

0
0

E
x
a
ct

O
(1

)
k

lo
g
(n

)
k

lo
g
(k

)
lo

g
(n

)
�

G
il
b
er
t
e
t
a
l.
[6
6
]

R
P
.L
.

P
.L
.

0
l 1
<

[1
+
C

lo
g
(n

)]
l 1

O
(1

)
k

lo
g
2
(n

)
k

lo
g
2
(n

)
lo

g
2
(k

)
�

T
h
is
w
o
rk
/
P
aw

a
r
e
t
a
l.
[1
1
2
]

R
D

0
0

E
x
a
ct

o
(1

)
O

(k
)

O
(k

)
O

(l
o
g
(n

)
+
P

)

R
D

R
R

l 1
<
C

l 1
o
(1

)
O

(k
)

O
(k

)
O

(l
o
g
(n

))

Explanations and discussion of the reference table: At the risk

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 26

of missing much of the literature, and also perhaps oversimplifying nuanced

results, we summarize in this table many of the strands of work preceding

this paper and related to it � not all results from each work are represented

in this table. The second to the �fth columns respectively reference whether

the measurement matrix A, source k-sparse vector x, source noise z, and

measurement noise e are random (R) or deterministic (D) � a 0 in a col-

umn corresponding to noise indicates that that work did not consider that

type of noise. An entry �P.L.� stands for �Power Law� decay in columns

corresponding to x and z. For achievability schemes, in general D-type

results are stronger than R-type results, which in turn are stronger than

0-type results. This is because a D-type result for the measurement matrix

indicates that there is an explicit construction of a matrix that satis�es the

required goals, whereas the R-type results generally indicate that the result

is true with high probability over measurement matrices. Analogously, a D

in the columns corresponding to x, z or e indicates that the scheme is true

for all vectors, whereas an R indicates that it is true for random vectors

from some suitable ensemble. For converse results, the opposite is true, i.e.,

0 results are stronger than R-type results, which are stronger than D-type

results. An entry N indicates the normal distribution � the results of [139]

and [63] are converses for matrices with i.i.d. Gaussian entries. An entry

�sgn� denotes (in the case of works dealing with one-bit measurements)

that the errors are sign errors. The sixth column corresponds to what the

desired goal is. The strongest possible goal is to have exact reconstruction

of x (up to quantization error due to �nite-precision arithmetic), but this

is not always possible, especially in the presence of noise. Other possible

goals include �Sup. Rec. � (short for support recovery) of x, or that the

reconstruction x̂ of x di�ers from x as a �small� function of z. It is known

that if a deterministic reconstruction algorithm is desired to work for all x

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 27

and z, then ‖x̂−x‖2 < O(‖z‖2) is not possible with less than Ω(n) measure-

ments [41], and that ‖x̂− x‖2 < O(‖z‖1/
√
k) implies ‖x̂− x‖1 < O(‖z‖1).

The reconstruction guarantees in [79,115] unfortunately do not fall neatly

in these categories. The seventh column indicates what the probability of

error is � i.e. the probability over any randomness in A, x, z and e that

the reconstruction goal in the sixth column is not met. In the eighth col-

umn, some entries are marked d̄(x + z) � this denotes the (upper) Rényi

dimension of x + z � in the case of exactly k-sparse vectors this equals k,

but for non-zero z it depends on the distribution of z. The ninth column

considers the computational complexity of the algorithms � the entry �LP�

denotes the computational complexity of solving a linear program.10 The

�nal column notes whether the particular work referenced considers the

precision of arithmetic operations, and if so, to what level. See Figure 3.1

for a comparison of prior works with this work in number of measurements

and decoding complexity.

3.1.2 Special acknowledgements

While writing the paper [10], we became aware of parallel and

independent work by Pawar and Ramchandran [112] that relies

on ideas similar to our work and achieves similar performance

guarantees. Both the work of [112] and the preliminary version

of this work [10] were presented at the same venue.

In particular, the bounds on the minimum number of measurements

required for �worst-case� recovery and the corresponding discussion on re-

covery of signals with �random tails� in [9] led us to consider this problem

10Of course, if the LP has structure, then general bounds on time complexity might be too

pessimistic. We refer the readers interested in this topic to [15] where the measurement matrix

A is binary and sparse.

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 28

in the �rst place. Equally, the class of compressive sensing codes in [80],

which in turn build upon the constructions of expander codes in [132], have

been in�uential in leading us to this work. While the model in [118] di�ers

from the one in this work, the techniques therein are of signi�cant interest

in our work. The analysis in [118] of the number of disjoint components in

certain classes of random graphs, and also the analysis of how noise propa-

gates in iterative decoding is potentially useful sharpening our results. We

elaborate on these in Section 3.3.

The work that is conceptually the closest to SHO-FA is that of the In-

vertible Bloom Lookup Tables (IBLTs) introduced by Goodrich and Mitzen-

macher [70] (though our results were derived independently, and hence

much of our analysis follows a di�erent line of reasoning). The data struc-

tures and iterative decoding procedure (called �peeling� in [70]) used are

structurally very similar to the ones used in this work. However the �mea-

surements� in IBLTs are fundamentally non-linear in nature � speci�cally,

each measurement includes within it a �counter� variable � it is not ob-

vious how to implement this in a linear manner. Therefore, though the

underlying graphical structure of our algorithms is similar, the details of

our implementation require new non-trivial ideas. Also, IBLTs as described

are not robust to either signal tails or measurement noise. Nonetheless, the

ideas in [70] have been in�uential in this work. In particular, the notion

that an individual component of x could be recovered in constant time, a

common feature of Bloom �lters, came to our notice due to this work.

The rest of this chapter is organized as follows. We �rst present SHO-

FA algorithm for the case that x is exactly k-sparse and measurements are

noiseless in Section 3.2. In Section 3.3, we introduce SHO-FA-NO algorithm

for the case that x is approximately sparse and measurements are noisy. In

Section 3.4, we validate the performance of our algorithms via numerical

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 29

Notation De�nition

G A bipartite graph with n nodes on the left and m′ nodes on the right

d Left regularity of G

S(x) Set of left nodes of G of size less than k

S′(x) Subset of S(x)

S(x)− leaf node A right node of G with exactly one neighbor in S(x)

S(x)− non− leaf node A right node of G with more than one neighbor in S(x)

S(x)− zero node A right node of G with no neighbor in S(x)

a
(I)
i,j The j-th entry of the (2i− 1)-th rows of A for j ∈ [n] and i ∈ m′

a
(V)
i,j The j-th entry of the (2i)-th rows of A for j ∈ [n] and i ∈ m′

y(I) Length-m′ identi�cation measurement over C

y(V) Length-m′ veri�cation measurement over C

L(t) Leaf node list in the t-th iteration

x̂(t) Estimate of x in the t-th iteration

ỹ(I)(t) Residual identi�cation measurement in the t-th iteration

ỹ(V)(t) Residual veri�cation measurement in the t-th iteration

Table 3.2: Table of notation for SHO-FA algorithm

results. Section 3.6 concludes this work.

3.2 Exactly k-sparse x and noiseless measurements

We �rst consider the simpler case when the source signal is exactly k-sparse

and the measurements are noiseless, i.e., y = Ax, and both z and e are

all-zero vectors. The intuition presented here carries over to the scenario

wherein both z and e are non-zero, considered separately in Section 3.3.

For k-sparse input vectors x ∈ Rn let the set S(x) denote its support,

i.e., its set of nonzero values {j : xj 6= 0}. Recall that in our setup, for

some m, a measurement matrix A ∈ Cm×n is chosen probabilistically. This

matrix operates on x to yield the measurement vector y ∈ Cm as y = Ax.

The decoder takes the vector y as input and outputs the reconstruction

x̂ ∈ Rn � it is desired that x̂ equal x (with up to P bits of precision) with

high probability over the choice of measurement matrices .

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 30

In this section, we describe a probabilistic construction of the measure-

ment matrix A and a reconstruction algorithm SHO-FA that achieves the

guarantees stated in Theorem 3.

We present a �simple� and self-contained proof of the Theorem 3 in

Sections 3.2.1 to 3.2.6. In Section 3.2.7 I direct the reader to an alternative,

more technically challenging, analysis (based on the work of [70]) that leads

to a tighter characterization of the constant factors in the parameters of

Theorem 3.

3.2.1 High-level intuition

If m = Θ(n), the task of reconstructing x from y = Ax appears similar

to that of syndrome decoding of a channel code of rate n/m [124]. It is

well-known [74] that channel codes based on bipartite expander graphs, i.e.,

bipartite graphs with good expansion guarantees for all sets of size less

than or equal to k, allow for decoding in a number of steps that is linear

in the size of x. In particular, given such a bipartite expander graph with

n nodes on the left and m nodes on the right, choosing the parity-check

matrix A as an m× n binary matrix with non-zero values in the locations

where the corresponding pair of nodes in the graph has an edge is known

to result in codes with constant rate and minimum distance that is linear

in n.

Motivated by this [80] explores a measurement design that is derived

from expander graphs and shows that O(k log(n/k)) measurements su�ce,

and O(k) iterations with overall decoding complexity of O(n log (n/k)).11

It is tempting to think that perhaps an optimized application of ex-

11The work of [17] is related � it also relies on bipartite expander graphs, and has similar

performance for exactly k-sparse vectors. But [17] can also handle a signi�cantly larger class of

approximately k-sparse vectors than [80]. However, our algorithms are closer in spirit to those

of [80], and hence we focus on this work.

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 31

pander graphs could result in a design that require only O(k) number of

measurements. However, we show that in the compressive sensing setting,

where, typically k = o(n), it is not possible to satisfy the desired expansion

properties. In particular, if one tries to mimic the approach of [80], one

would need bipartite expanders such that all sets of size k on one side of

the graph �expand� � we show in Lemma 2 that this is not possible. As

such, this result may be of independent interest for other work that require

similar graphical constructions (for instance the �magical graph� construc-

tions of [40], or the expander code constructions of [132] in the high-rate

regime).

Instead, one of our key ideas is that we do not really need �true� expan-

sion. Instead, we rely on a notion of approximate expansion that guarantees

expansion for most k-sized sets (and their subsets) of nodes on the left of

our bipartite graph. We do so by showing that any set of size at most k,

with high probability over suitably chosen measurement matrices, expands

to the desired amount. Probabilistic constructions turn out to exist for our

desired property.12 Such a construction is shown in Lemma 1.

Our second key idea is that in order to be able to recover all the k non-

zero components of x with at most O(k) steps in the decoding algorithm, it

is necessary (and su�cient) that on average, the decoder reconstructs one

previously undecoded non-zero component of x, say xj, in O(1) steps in the

decoding algorithm. For k = o(n) the algorithm does not even have enough

time to write out all of x, but only its non-zero values. To achieve such

e�cient identi�cation of xj, we go beyond the 0/1 matrices used in almost

all prior work on compressive sensing based on expander graphs.13 Instead,

12In fact similar properties have been considered before in the literature � for instance [40]

constructed so-called �magical graphs� with similar properties. Our contribution is the way we

use this property for our needs.
13It can be argued that such a choice is a historical artifact, since error-correcting codes based

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 32

we use distinct values in each row for the non-zero values in A, so that if only

one non-zero xj is involved in the linear measurement involving a particular

yi (a situation that we demonstrate happens in a constant fraction of yi),

one can identify which xj it must be in O(1) time. Our decoding then

proceeds iteratively, by identifying such xj and canceling their e�ects on

yi, and terminates after O(k) steps after all non-zero xj and their locations

have been identi�ed (since we require our algorithm to work with high

probability for all x, we also add �veri�cation� measurements � this only

increases the total number of measurements by a constant factor).14 Our

calculations are precise to O(log(n) +P) bits � the �rst term in this comes

from requirements necessary for computationally e�cient identi�cation of

non-zero xj, and the last term from the requirement that we require that

the reconstructed vector be correct up to P bits of precision. Hence the

total number of bits over all measurements is O(k((log(n) + P)). Note

that this is information-theoretically order-optimal, since even specifying k

locations in a length-n vector requires Ω(k(log(n/k)) bits, and specifying

the value of the non-zero locations so that the relative reconstruction error

is O(2−P) requires Ω(kP) bits.

We now present our SHO-FA algorithm in two stages. We �rst use

our �rst key idea (of �approximate� expansion) in Section 3.2.2 to describe

some properties of bipartite expander graphs with certain parameters. We

then show in Section 3.2.3 how these properties, via our second key idea

on expanders were originally designed to work over the binary �eld F2 (Of course, there also

exists similar code over the non-binary �eld [50].) There is no reason to stick to this convention

when, as now, computations are done over R or C.
14The veri�cation-based decoding algorithm in [151] built on LDPC codes has the similar

�avor to ours. The decoding complexity of a check-node operation is linearly with the degree of

check node which scales with n. Therefore, the overall decoding complexity also scales linearly

with n. However, in our SHO-FA algorithm, we implement identi�cation and veri�cation steps

both in constant time.

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 33

(of e�cient identi�cation) can be used by SHO-FA to obtain desirable per-

formance.

3.2.2 �Approximate Expander� Graph G

We �rst construct a bipartite graph G (see Example 1 in the following)

with some desirable properties outlined below. We then show in Lemmas 1

and 3 that such graphs exist (Lemma 2 shows the non-existence of graphs

with even stronger properties). In Section 3.2.3 we then use these graph

properties in the SHO-FA algorithm. To simplify notation in what follows

(unless otherwise speci�ed) we omit rounding numbers resulting from tak-

ing ratios or logarithms, with the understanding that the corresponding

inaccuracy introduced is negligible compared to the result of the compu-

tation. Also, for ease of exposition, we �x various internal parameters to

�reasonable� values rather than optimizing them to obtain �slightly� better

performance at the cost of obfuscating the explanations � whenever this

happens we shall point it out parenthetically. Lastly, let ε be any �small�

positive number, corresponding to the probability of a certain �bad event�.

Properties of G:

1. Construction of a left-regular bipartite graph: The graph G is chosen

uniformly at random from the set of bipartite graphs with n nodes

on the left and m′ nodes on the right, such that each node on the left

has degree d ≥ 13.15 In particular, m′ is chosen to equal ck for some

design parameter c to be speci�ed later as part of code design.

2. Edge weights for �identi�ability�: For each node on the right, the

weights of the edges attached to it are required to be distinct. In

particular, each edge weight is chosen as a complex number of unit

15For ease of analysis we now consider the case when d ≥ 13 � our tighter result in Theorem 2

relaxes this, and works for any d ≥ 3.

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 34

magnitude, and phase between 0 and π/2. Since there are a total of

dn edges in G, choosing distinct phases for each edge attached to a

node on the right requires at most log(dn) bits of precision (though on

average there are about dn/m′ edges attached to a node on the right,

and hence on average one needs about log(dn/m′) bits of precision).

3. S(x)-expansion: With high probability over G de�ned in Property 1

above, for any set S(x) of at most k nodes on the left, the number

of nodes neighbouring those in any S ′(x) ⊆ S(x) is required to be at

least 2d/3 times the size of S ′(x).16 The proof of this statement is the

subject of Lemma 1.

4. �Many� S(x)-leaf nodes: For any set S(x) of at most k nodes on the

left of G, we call any node on the right of G an S(x)-leaf node if it

has exactly one neighbor in S(x), and we call it a S(x)-non-leaf node

if it has two or more neighbours in S(x). (If the node on the right

has no neighbours in S(x), we call it a S(x)-zero node.) Assuming

S(x) satis�es the expansion condition in Property 3 above, it can be

shown that at least a fraction 1/2 of the nodes that are neighbours of

any S ′(x) ⊆ S(x) are S ′(x)-leaf nodes.17 The proof of this statement

is the subject of Lemma 3.

Example 1: We now demonstrate via the following toy example in Fig-

ures 3.2 and 3.3 a graph G (where d is chosen to be 3) satisfying Proper-

16The expansion factor 2d/3 is somewhat arbitrary. In our proofs, this can be replaced with

any number strictly between half the degree and the degree of the left nodes, and indeed one

can carefully optimize over such choices so as to improve the constant in front of the expected

time-complexity/number of measurements of SHO-FA. Again, we omit this optimization since

this can only improve the performance of SHO-FA by a constant factor.
17Yet again, this choice of 1/2 is a function of the choices made for the degree of the left

nodes in Property 1 and the expansion factor 2 in Property 3. Again, we resist the temptation

to optimize these constants.

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 35

ties 1-4.

Figure 3.2: Property 1: Bipartite �approximate expander� graph with n = 5

nodes on the left, and m′ = 4 nodes on the right. Each node on the left has

degree 3. Property 2: The thickness of the edges represents the weights assigned

to the edges. In particular, it is required that for each node on the right, the edges

incoming have distinct weights. In this example, the thinnest edges are assigned

a weight of 1, the next thickest edges have a weight eιπ/6, the next thickest edges

have weight eι2π/6 = eιπ/3, and the thickest edges have weight eι3π/6 = eιπ/2.

2

We now state the Lemmas needed to make our arguments precise. First,

we formalize the S ′(x)-expansion property de�ned in Property 3.

Lemma 1. (Property 3 (S(x)-expansion)): Let k < n ∈ N be arbitrary,

and let c ∈ N be �xed. Let G be chosen uniformly at random from the set

of all bipartite graphs with n left nodes (each of degree d) and m′ = ck

right nodes. Then for any �xed subset S(x) of the left nodes having size

at most k, with probability 1 − o(1/k) (over the random choice G), every
S ′(x) ⊆ S(x) has at least (2d/3)|S ′(x)| neighbors.

Proof. Follows from a standard probabilistic method argument. Given for

completeness in Appendix A.1.1. �

Note here that, in contrast to the �usual� de�nition of �vertex expan-

sion� [74] (wherein the expansion property is desired �for all� subsets of

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 36

!

"

!

#

$

%

$

"

$

%

#

Figure 3.3: Property 3: We require thatmost sets S ′(x) of at most |S(x)| = k = 2

nodes on the left in the graph G in Figure 3.2 have at least 2|S ′(x)| neighbors on

the right.) In the graph in Figure 3.2 it can be manually veri�ed that most sets of

size S ′(x) at most 2 have at least 2|S ′(x)| neighbors. For example, Figure 3.2(a)

focuses on the subset S ′(x) = {1, 5} of nodes on the left side of G in Figure 3.2.

This particular S ′(x) has 4 neighbours, and all its single-node subsets have 3

neighbours. The only S ′(x) set of two or fewer nodes that does not satisfy

Property 3 is {2, 5}, as shown in Figure 3.2(b), since it has only 3 < 2 × 2

neighbours. Property 4: For sets S ′(x) that satisfy Property 3 it can be manually

veri�ed that �many� of their neighbours are S ′(x)-leaf nodes. For example, for

S ′(x) = {1, 5}, two out of its four neighbours (i.e., a fraction 1/2) are S ′(x)-leaf

nodes � which satis�es the constraint that at least a fraction 1/2 of its neighbours

be S ′(x)-leaf nodes. On the other hand, for S ′(x) = {2, 5} (which does not satisfy

Property 3), none of its neighbours are S ′(x)-leaf nodes.

left nodes up to a certain size) Lemma 1 above only gives a probabilistic

expansion guarantee for any subset of S(x) of size k. In fact, Lemma 2

below shows that for the parameters of interest, �for all�-type expanders

cannot exist.

Lemma 2. Let k = o(n), and d > 0 be an arbitrary constant. Let G be

an arbitrary bipartite graph with n nodes (each of degree d) on the left and

m′ nodes on the right. Then for all su�ciently large n, suppose each set

of size k of S(x) nodes on the left of G has strictly more than d/2 times

as many nodes neighbouring those in S(x), as there are in S(x). Then

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 37

m′ = Ω(k log(n/k)).

Proof. Follows from the Hamming bound in coding theory [124] and stan-

dard arguments about expander codes [132]. Proof in Appendix A.1.2.

�

Another way of thinking about Lemma 2 is that it indicates that if one

wants a �for all� guarantee on expansion, then one has to return to the

regime of m′ = O(k log(n/k)) measurements, as in �usual� compressive

sensing.

Next, we formalize the �many S(x)-leaf nodes� property de�ned in Prop-

erty 4. Recall that for any set S(x) of at most k nodes on the left of G,
we call any node on the right of G an S(x)-leaf node if it has exactly one

neighbor in S(x).

Lemma 3. Let S(x) be a set of k nodes on the left of G such that the

number of nodes neighbouring those in any S ′(x) ⊆ S(x) is at least 2d/3

times the size of S ′(x). Then at least a fraction 1/2 of the nodes that are

neighbours of any S ′(x) ⊆ S(x) are S ′(x)-leaf nodes.

Proof. Based on Lemma 1. Follows from a counting argument similar to

those used in expander codes [132]. Proof in Appendix A.1.3. �

Given a graph G satisfying properties 1-4, we now describe our encoding

and decoding procedure.

3.2.3 Measurement design

Matrix structure and entries: The encoder's measurement matrix A is cho-

sen based on the structure of G (recall that G has n nodes on the left and

m′ nodes on the right). To begin with, the matrix A has m = 2m′ rows,

and its non-zero values are unit-norm complex numbers.

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 38

Remark 1. This choice of using complex numbers rather than real num-

bers in A is for notational convenience only. One can equally well choose a

matrix A′ with m = 4m′ rows, and replace each row of A with two consec-

utive rows in A′ comprising respectively of the real and imaginary parts of

rows of A. Since the components of x are real numbers, hence there is a bi-

jection between Ax and A′x � indeed, consecutive pairs of elements in A′x

are respectively the real and imaginary parts of the complex components of

Ax. Also, as we shall see (in Section 3.2.7), the choice of unit-norm com-

plex numbers ensures that �noise� due to �nite precision arithmetic does

not get �ampli�ed�. In Section 3.2.7, we argue that this property enables us

to apply SHO-FA to other settings such as wireless systems that naturally

generate an ensemble of matrices that resemble SHO-FA.

Based on the idea in Remark 1, we get the following corollary.

Corollary 1. Let k ≤ n. There exists a reconstruction algorithm SHO-FA

for A ∈ Rm×n with the following properties:

i) For every k-sparse x ∈ Rn, with probability 1−O(1/k) over the choice

of A, SHO-FA produces a reconstruction x̂ such that ‖x− x̂‖1/‖x‖1 ≤
2−P

ii) The number of measurements m = 4ck for some c > 0

iii) The number of steps required by SHO-FA is O(k)

iv) The number of bitwise arithmetic operations required by SHO-FA is

O(k(log(n) + P)).

Note that Corollary 1 is di�erent from Theorem 3 in that the entries of

measurement matrix A are over real numbers instead of complex numbers.

Therefore, the number of measurements required doubles. The remaining

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 39

of the analysis in this section still focuses on the measurement matrix de-

sign over complex numbers. In particular, corresponding to node i on the

right-hand side of G, the matrix A has two rows. The jth entries of the

(2i − 1)th and 2ith rows of A are respectively denoted a
(I)
i,j and a

(V)
i,j . (The

superscripts (I) and (V) respectively stand for Identi�cation and Veri�ca-

tion, for reasons that shall become clearer when we discuss the process to

reconstruct x.)

Identi�cation entries: If G has no edge connecting node j on the left with

i on the right, then the identi�cation entry a
(I)
i,j is set to equal 0. Else, if

there is such an edge, a
(I)
i,j is set to equal

a
(I)
i,j = eιjπ/(2n). (3.1)

(Here ι denotes the imaginary unit.) This entry a
(I)
i,j can also be thought

of as the weight of the edge in G connecting j on the left with i on the right.

In particular, the phase jπ/(2n) of a
(I)
i,j = eιjπ/(2n) will be critical for our

algorithm. As in Property 2 in Section 3.2.2, our choice above guarantees

distinct weights for all edges connected to a node i on the right.

Veri�cation entries: Whenever the identi�cation entry a
(I)
i,j equals 0, we

choose to set the corresponding veri�cation entry a
(V)
i,j also to be zero.

On the other hand, whenever a
(I)
i,j 6= 0, then we set a

(V)
i,j to equal eιθ

(V)
i,j

for θ
(V)
i,j chosen uniformly at random from [0, π/2] (with O(log(k)) bits of

precision).18

Example 2: The matrix A corresponding to the graph G in Example 1 is

shown in Figure 3.4.

18This choice of precision for the veri�cation entries contributes one term to our expression for

the precision of arithmetic required. As we argue later in Section 3.2.7, this choice of precision

guarantees that if a single identi�cation step returns a value for xj , this is indeed correct with

probability 1− o(1/k). Taking a union bound over O(k) indices corresponding to non-zero xj

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 40

Figure 3.4: This 8× 5 matrix denotes the A corresponding to the graph G. Note

that its primary purpose is expository � clearly, 8 measurements (or indeed,

16 measurements over R) to reconstruct a 2-sparse vector of length 5 is too

many! Nonetheless, this is just an artifact of the fact that n in this example is

small. In fact, according to our proofs, even as n scales to in�nity, the number

of measurements required to reconstruct a 2-sparse vector (or in general a k-

sparse vector for constant k) remains constant! Also, note that we do not use

the assignment for the identi�cation entries a
(I)
i,j speci�ed in (3.2), since doing so

would result in ugly and not very illuminating calculations in Example 3 below.

However, as noted in Remark 2, this is not critical � it is su�cient that distinct

entries in the identi�cation rows of the matrix be distinct.

3.2.4 Reconstruction

Overview

We now provide some high-level intuition on the decoding process.

Since the measurement matrix A has interspersed identi�cation and

veri�cation rows, this induces corresponding interspersed identi�cation ob-

servations y
(I)
i and veri�cations observations y

(V)
i in the observation vector

y = Ax. Let y(I) = {y(I)
i } denote the length-m′ identi�cation vector over

C, and y(V) = {y(V)
i } denote the length-m′ veri�cation vector over C.

gives us an overall 1− o(1) probability of success.

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 41

Given the measurement matrix A and the observed (y(I),y(V)) identi�-

cation and veri�cation vectors, the decoder's task is to �nd any �consistent�

k-sparse vector x̂ such that Ax̂ results in the corresponding identi�cation

and veri�cation vectors. We shall argue below that if we succeed, then with

high probability over A (speci�cally, over the veri�cation entries of A), this

x̂ must equal x.

To �nd such a consistent x̂, we design an iterative decoding scheme.

This scheme starts by setting the initial guess for the reconstruction vector

x̂ to the all-zero vector. It then initializes, in the manner described in the

next paragraph, a S(x)-leaf-node list denoted L(1), corresponding to a set

of indices of S(x)-leaf nodes.

The decoder checks to see whether i is a S(x)-leaf node in the following

way. First, it looks at the entry y
(I)
i and �estimates� which node j on the left

of the graph G �could have generated the identi�cation observation y
(I)
i �.

It then uses the veri�cation entry a
(V)
i,j and the veri�cation observation y

(V)
i

to verify its estimate. After sequentially examining each entry y
(I)
i , the list

of all S(x)-leaf nodes is denoted L(1).

In the tth iteration of the decoding process, the decoder picks a leaf

node in i ∈ L(t). Using this, it then reconstructs the non-zero component

xj of x that �generated� y
(I)
i . If this reconstructed value xj is successfully

�veri�ed� using the veri�cation entry a
(V)
i,j and the veri�cation observation

y
(V)
i),19 then the algorithm performs the following steps in this iteration:

• It updates the observation vectors by subtracting the �contribution� of

the coordinate xj to the measurements it in�uences (there are exactly

13 of them since the degree of the nodes on the left side of G is 13),

• It updates the S(x)-leaf-node list L(t) by removing i from L(t) and

checking the change of status (zero, leaf, or non-leaf) of other indices

19As Ronald W. Reagan liked to remind us, �doveryai, no proveryai�.

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 42

in�uenced by xj (there at most 12),

• Finally the algorithm picks a new index i from the updated list L(t+1)

for the next iteration.

The decoder performs the above operations repeatedly until x̂ has been

completely recovered. We also show that (with high probability over A) in

at most k steps this process does indeed terminate.

Example 3: Figures 3.5�3.9 show a sample decoding process for the matrix

A as in Example 2, and the observed vector y shown in the �gures. The

example also demonstrates each of several possible scenarios the algorithm

can �nd itself in, and how it deals with them.

Formal description of SHO-FA's reconstruction process

Our algorithm proceeds iteratively, and has at most k overall number of

iterations, with t being the variable indexing the iteration number.

1. Initialization: We initialize the algorithm by setting the signal es-

timate vector x̂(1) to the all-zeros vector 0n, and the residual mea-

surement identi�cation/veri�cation vectors ỹ(I)(1) and ỹ(V)(1) to the

decoder's observations y(I) and y(V).

2. Leaf-Node List: Let L(1), the initial S(x)-leaf node set, be the set

of indices i which are S(x)-leaf nodes. We generate the list via the

following steps:

(a) Compute angles θ(I)(i) and θ(V)(i): Let the identi�cation and

veri�cation angles be de�ned respectively as the phases of the

identi�cation and veri�cation entries being considered for index

i (starting from 1), as follows:

θ(I)(i) , ∠
(
ỹ

(I)
i (1)

)
,

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 43

�

�

�

�

�

�

�

�

�

Figure 3.5: Initialization: The (true) x equals (0, 1, 0, 1, 0) (and hence S(x) =

{2, 4}). Also note that nodes 1 and 3 on the right of G are S(x)-leaf nodes, as

de�ned in Property 4. However, all of this is unknown to the decoder a priori.

The decoder sets the (starting) estimate x̂(0) of the reconstruction vector x̂ to the

all-zeros vector. The (starting) gap vector ỹ is set to equal y, which in turn equals

the corresponding 4 pairs of identi�cation and veri�cation observations on the

right-hand side of G. The speci�c values of θ
(V)
i,j in the veri�cation observations

do not matter currently � all that matters is that given x, each of the four

veri�cation observations are non-zero (with high probability over the choices of

θ
(V)
i,j). Hence the (starting) value of the neighbourly set equals {1, 2, 3, 4}. This

step takes O(k) number of steps, just to initialize the neighbourly set. By the

end of the decoding algorithm (if it runs successfully), the tables will be turned

� all the entries on the right of G will equal zero, and (at most) k entries on the

left of G will be non-zero.

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 44

�

�

�

�

�

�

�

�

�

Figure 3.6: Leaf-Node List 1 (Failed identi�cation): The decoder picks the

index i = 2 from the neighbourly set {1, 2, 3, 4}, and checks the phase of the

corresponding gap vector identi�cation observation ỹ
(I)
2 . Since this equals π/4,

which is not in the set of possible phases in the 2nd identi�cation row of A (which

are all multiples of π/6), the decoder declares i = 2 is not a leaf node. This entire

process takes a constant number of steps.

θ(V)(i) , ∠
(
ỹ

(V)
i (1)

)
.

Here ∠(.) computes the phase of a complex number up to

O(max{log(n/k), log(k)}) bits of precision.20

(b) Check if the current identi�cation and veri�cation angles corre-

spond to a valid and unique xj: For this, we check at most two

things (both calculations are done up to the precision speci�ed

in the previous step).

i. First, we check if j , θ(I)(i)(2n/π) is an integer, and the

corresponding jth element of the ith row is non-zero. If so,

we have �tentatively identi�ed� that the ith component of ỹ is

a leaf-node of the currently unidenti�ed non-zero components

of x, and in particular is connected to the jth node on the

left, and the algorithm proceeds to the next step below. If

not, we simply increment i by 1 and return to Step (2a).

ii. Next, we verify our estimate from the previous step. If

20Roughly, the former term guarantees that the identi�cation angle is calculated precisely

enough, and the latter that the veri�cation angle is calculated precisely enough.

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 45

�

�

�

�

�

�

�

�

�

Figure 3.7: Leaf-Node List 2 (Passed identi�cation, failed veri�cation):

In this step, a potentially more serious failure could happen. In particular, sup-

pose the decoder picks the index i = 4 from the neighbourly set {1, 2, 3, 4} (note

that 4 is also not a S(x)-leaf node), and checks the phase of the corresponding

gap vector identi�cation observation ỹ
(I)
4 , it just so happens that the value of x is

such that this corresponds to a phase of π/6. But as can be seen from the matrix

in Figure 3.4, for i = 4 this corresponds to a
(I)
i,j for j = 3. Hence the decoder

would make a �false identi�cation� of j = 3, and estimate that x̂3 equals the mag-

nitude of ỹ
(I)
4 , which would equal

√
3. This is where the veri�cation entries and

veri�cation observations save the day. Recall that the phase of each veri�cation

entry is chosen uniformly at random (with su�cient bit precision) from [0, π/2),

independently of both x and the other entries of A. Hence the probability that
√

3 (the miscalculated value of x̂3) times the corresponding veri�cation entry

a
(V)
4,3 equals ỹ

(I)
4 is �small�. Hence the decoder in this case too declares i = 4 is

not a leaf node. This entire process takes a constant number of steps.

a
(V)
i,j ỹ

(I)
i /a

(I)
i,j = ỹ

(V)
i , the veri�cation test passes, and include

i in L(1). If not, we simply increment i by 1 and return to

Step (2a).

3. Operations in tth iteration: The tth decoding iteration accepts as its

input the tth signal estimate vector x̂(t), the tth leaf node set L(t),

and the tth residual measurement identi�cation/veri�cation vectors

(ỹ(I)(t), ỹ(V)(t)). In O(1) steps it outputs the (t + 1)th signal es-

timate vector x̂(t+ 1), the (t + 1)th leaf node set L(t + 1), and

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 46

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 3.8: Leaf-Node List 3 (Passed identi�cation, passed veri�cation)

and the �rst iteration: Now, suppose the decoder randomly picks the index

i = 1 from the neighbourly set {1, 2, 3, 4} (note that 1 is a S(x)-leaf node). In

this case, the phase of the corresponding gap vector identi�cation observation

ỹ
(I)
1 equals π/3. As can be seen from the matrix in Figure 3.4, for i = 1 this

corresponds to a
(I)
i,j for j = 4. Hence the decoder makes a �correct identi�cation�

of j = 4, and estimates (also correctly) that x̂4 equals the magnitude of ỹ
(I)
1 ,

which equals 1. On checking with the veri�cation entry, the decoder observes

also that 1 (the detected value of x̂4) times the corresponding veri�cation entry

a
(V)
1,4 equals ỹ

(V)
1 . Hence it declares that i = 1 is a leaf node. Similarly, we know

that 3 is a leaf node too. Therefore, the leaf node set equals {1, 3}. The entire

process of making a list of leaf nodes takes O(k) number of steps. Suppose in

the �rst iteration, the decoder picks i = 1. Hence it updates the value of x̂4 to 1,

the neighbourly set to {2, 3, 4}, the leaf node set to {2, 3, 4} and ỹ to the values

shown (only the three indices 1, 3 and 4 on the right need to be changed). At

this point, note that S ′(x) also changes from {2, 4} to the singleton set {4}. This

entire iteration takes a constant number of steps.

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 47

�

�

�

�

� �

�

�

�

�

�

�

� �

�

�

Figure 3.9: Second iteration and Termination: In the second iteration, the

decoder randomly picks i = 4 from the leaf node set {2, 3, 4}. Recall that in the

�rst iteration this choice of i did not aid in decoding. However, now that node

4 on the right of G has been �cleaned up�, it is now a leaf node for S ′(x). This

demonstrates the importance of not �throwing away� information which seems

useless at some point in time. Hence, analogously to the process in Figure 3.8,

the decoder estimates the value of x̂2 to 1, updates the leaf node set to the empty

set, and ỹ to the all-zero vector (all in a constant number of steps). Since the

gap vector is zero, this indicates to the decoder that it should output x̂ as its

estimate of x, and terminate.

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 48

the (t + 1)th residual measurement identi�cation/veri�cation vectors

(ỹ(I)(t+ 1), ỹ(V)(t+ 1)) after the performing the following steps se-

quentially (each of which takes at most a constant number of atomic

steps):

(a) Pick a random i(t) ∈ L(t): The decoder picks an element i(t)

uniformly at random from the tth leaf-node list L(t).

(b) Compute angles θ(I)(t) and θ(V)(t): Let the current identi�cation

and veri�cation angles be de�ned respectively as the phases of

the residual identi�cation and veri�cation entries being consid-

ered in that step, as follows:

θ(I)(t) , ∠
(
ỹ

(I)
i(t)(t)

)
,

θ(V)(t) , ∠
(
ỹ

(V)
i(t) (t)

)
.

(c) Locate non-zero entry j and derive the value of x̂j(t)(t): For this,

we do at most two things (both calculations are done up to the

precision speci�ed in the previous step).

i. First, we calculate j(t) , θ(I)(t)(2n/π). We have identi�ed

that the ith component of ỹ is a leaf-node of the currently

unidenti�ed non-zero components of x, and in particular is

connected to the j(t)th node on the left, and the algorithm

proceeds to the next step below.

ii. Next, we assign the value, ỹ
(I)
i(t)(t)/a

(I)
i(t),j(t) = ỹ

(V)
i(t) (t)/a

(V)
i(t),j(t),

to x̂j(t)(t) and proceeds the algorithm to the next step below.

(d) Update x̂(t+ 1), L(t + 1) ,ỹ(I)(t+ 1), and ỹ(V)(t+ 1): In par-

ticular, at most 13 components of each of these vectors need to

be updated. Speci�cally, x̂j(t)(t+ 1) equals ỹ
(I)
i(t)(t)/a

(I)
i(t),j(t). i(t)

is removed from the leaf node set L(t) and check whether the

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 49

(at most six) neighbours of x̂j(t)(t) become leaf nodes to get the

leaf-node list L(t + 1). And �nally (at most) seven values each

of ỹ(I)(t+ 1) and ỹ(V)(t+ 1) are updated from those of ỹ(I)(t)

and ỹ(V)(t) (those corresponding to the neighbours of x̂j(t)(t)) by

subtracting out x̂j(t)(t) multiplied by the appropriate coe�cients

of A.

4. Termination: The algorithm stops when the leaf node set is empty,

and outputs the last x̂(t).

3.2.5 Decoding complexity

We start by generating L(1), the initial list of leaf nodes. For each node

i, we calculate the identi�cation and veri�cation angles (which takes 2

operations), and then check if the identi�cation and veri�cation angles cor-

respond to a valid and unique xj (which takes 2 operations). Therefore

generating the initial list of leaf nodes takes O(k) (to be precise 4ck) oper-

ations .

In iteration t, we decode a new non-zero entry xj of x by picking a leaf

node from L(t), identifying the corresponding index j and value xj (via 2

arithmetic operations corresponding to the identi�cation and veri�cation

steps, respectively), and updating L(t+1) (since xj is connected to d nodes

on the right, out of which one has already been decoded, this takes at most

2(d− 1) operations � (d− 1) for identi�cation and (d− 1) for veri�cation),

ỹ(I)(t+ 1), and ỹ(V)(t+ 1) (similarly, this takes at most 4(d−1) operations

� 2(d− 1) additions and 2(d− 1) multiplications).

Next we note that each iteration results in recovering a new non-zero

coordinate of x (assuming no decoding errors, which is true with high

probability as demonstrated in the next section). Hence the total number

of iterations is at most k.

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 50

Hence the overall number of operations over all iterations is O(k) (to

be precise, at most 4ck + (6d− 4)k).

3.2.6 Correctness

Next, we show that x̂ = x with high probability over A. To show this,

it su�ces to show that each non-zero update to the estimate x̂(t) sets a

previously zero coordinate to the correct value with su�ciently high prob-

ability.

Note that if i(t) is a leaf node for S(t), and if all non-zero coordinates

of x̂(t) are equal to the corresponding coordinates in x, then the decoder

correctly identi�es the parent node j(t) ∈ S(t) for the leaf node i(t) as

the unique coordinate that passes the phase identi�cation and veri�cation

checks.

Thus, the tth iteration ends with an erroneous update only if

∠

 ∑
p∈N({i(t)})

xpe
ιθ

(I)
i(t),p

 = θ
(I)
i(t),j(t)

for some j such that there are more than one non-zero terms in the sum-

mation on the left. Next, consider

∠

 ∑
p∈N({i(t)})

xpe
ιθ

(V)
i(t),p

 = θ
(V)
i(t),j(t).

Since θ
(V)
i(t),j(t) is drawn uniformly at random from [1, 2, . . . , π/2] (with

Ω(log(n) + P) = O(log(k)) bits of precision), the probability that the

second equality holds with more than one non-zero term in the summation

on the left is at most o(1/ poly(k)). The above analysis gives an upper

bound on the probability of an incorrect update for a single iteration to

be o(1/ poly(k)). Finally, as the total number of updates is at most k,

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 51

by applying a union bound over all updates, the probability of incorrect

decoding is bounded from above by o(1/ poly(k)).

3.2.7 Remarks on the Reconstruction process for exactly k-sparse

signals

We elaborate on these choices of entries of A in the remarks below, which

also gives intuition about the reconstruction process outlined in Section 3.2.4.

Remark 2. In fact, it is not critical that (3.2) be used to assign the identi-

�cation entries. As long as j can be �quickly� (computationally e�ciently)

identi�ed from the phases of a
(I)
i,j (as outlined in Remark 3 below, and spec-

i�ed in more detail in Section 3.2.4), this su�ces for our purpose. This is

the primary reason we call these entries identi�cation entries.

Remark 3. The reason for the choice of phases speci�ed in (3.2) is as

follows. Suppose S(x) corresponds to the support (set of non-zero values)

of x. Suppose yi corresponds to a S(x)-leaf node, then by de�nition y
(I)
i

equals a
(I)
i,j xj for some j in {1, . . . , n} (if yi corresponds to a S(x)-non-leaf

node, then in general y
(I)
i depends on two or more xj). But xj is a real

number. Hence examining the phase of yi enables one to e�ciently compute

jπ/(2n), and hence j. It also allows one to recover the magnitude of xj,

simply by computing the magnitude of yi.

Remark 4. The choice of phases speci�ed in (3.2) divides the set of allowed

phases (the interval [0, π/2]) into n distinct values. Two things are worth

noting about this choice.

1. We consider the interval [0, π/2] rather than the full range [0, 2π) of

possible phases since we wish to use the phase measurements to also

recover the sign of xjs. If the phase of yi falls within the interval

[0, π/2], then (still assuming that yi corresponds to a S(x)-leaf node)

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 52

xj must have been positive. On the other hand, if the phase of yi

falls within the interval [π, 3π/2], then xj must have been negative.

(It can be directly veri�ed that the phase of a S(x)-leaf node yi can

never be outside these two intervals � this wastes roughly half of the

set of possible phases we could have used for identi�cation purposes,

but it makes notation easier.

2. The choice in (3.2) divides the interval [0, π/2] into n distinct values.

However, in expectation over G the actual number of non-zero entries

in a row of A is O(n/k), so on average one only needs to choose

O(n/k) distinct phases in (3.2), rather than the worst case n number

of values. This has the advantage that one only needs O(log(n/k))

bits of precision to specify distinct phase values (and in fact we claim

that this is the level of precision required by our algorithm). However,

since we analyze only left-regular G, the degrees of nodes on the right

will in general vary stochastically around this expected value. If k is

�somewhat large� (for instance k = Ω(n)), then the degrees will not

be very tightly concentrated around their mean. One way around this

is to choose G uniformly at random from the set of bipartite graphs

with n nodes (each of degree d) on the left and m nodes (each of

degree dn/m) on the right. This would require a more intricate proof

of the S ′(x)-expansion property de�ned in Property 3 and proved in

Lemma 1. For the sake of brevity, we omit this proof here.

Remark 5. We can further reduce the number of measurements by com-

bining the identi�cation and veri�cation measurements in the following

way.

1. Measurement design: If G has no edge connecting node j on the left

with i on the right, then the identi�cation entry a
(I)
i,j is set to equal 0.

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 53

Else, if there is indeed such an edge, a
(I)
i,j is set to equal

ai,j = eι(jπ/(2n)+θi,j). (3.2)

Here, θi,j is chosen uniformly at random from [−π/(4n), π/(4n)] (with

O(log(k)) bits of precision).

2. Reconstruction: The reconstruction algorithm proceeds similarly to

the one described earlier. The only modi�cations are in the identi�-

cation and veri�cation steps for each iteration. We describe below the

modi�ed identi�cation and veri�cation steps for the �rst iteration of

the algorithm. The identi�cation and veri�cation steps for the other

iterations proceed similarly by replacing the vector y by the corre-

sponding residual measurement vector ỹ for that iteration. Let b·e be
used to denote the nearest integer function. In the identi�cation step,

the decoder �rst identi�es j = b∠(yi)/(π/(2n))e. Next, the decoder

veri�es that i is indeed a leaf node corresponding to the right node

j by verifying if θi,j equals ∠(yi)− b∠(yi)/(π/(2n))e(π/(2n)). If yes,

the node i is declared to be a leaf node corresponding to the left node

j and the value of xj is decoded.

This more careful design of measurement design leads to the following

corollary.

Corollary 2. Let k ≤ n. There exists a reconstruction algorithm SHO-FA

for A ∈ Cm×n with the following properties:

i) For every k-sparse x ∈ Rn, with probability 1−O(1/k) over the choice

of A, SHO-FA produces a reconstruction x̂ such that ‖x− x̂‖1/‖x‖1 ≤
2−P ,

ii) The number of measurements m = ck for some c > 0,

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 54

iii) The number of steps required by SHO-FA is O(k), and

iv) The number of bitwise arithmetic operations required by SHO-FA is

O(k(log(n) + P)).

Remark 6. In fact, the recent work of [70] demonstrates an alternative

analytical technique (bypassing the expansion arguments outlined in this

work), involving analysis of properties of the �2-core� of random hyper-

graphs, that allows for a tight characterization of the number of measure-

ments required by SHO-FA to reconstruct x from y and A, rather than

the somewhat loose (though order-optimal) bounds presented in this work.

Since our focus in this work is a simple proof of order-optimality (rather

than the somewhat more intricate analysis required for the tight charac-

terization) we again omit this proof here.21

3.2.8 SHO-FA v.s. �2-core� of random hyper-graphs

We reprise some concepts pertaining to the analysis of random hypergraphs

(from [102]), which are relevant to our work.

2-cores of d-uniform hypergraphs: A d-uniform hypergraph with m nodes

and k hyperedges is de�ned over a set of m nodes, with each d-uniform hy-

peredge corresponding to a subset of the nodes of size exactly d. The 2-core

is de�ned as the largest sub-hypergraph (subset of nodes, and hyperedges

de�ned only on this subset) such that each node in this subset is contained

in at least 2 hyperedges on this subset.

A standard �peeling process� that computationally e�ciently �nds the

2-core is as follows: while there exists a node with degree 1 (connected to

just one hyperedge), delete it and the hyperedges containing it.

21We thank the anonymous reviewers who examined a draft version of [10] for pointing out

the extremely relevant techniques of [70] and [118] (though the problems considered in those

works were somewhat di�erent).

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 55

The relationship between 2-cores in d-uniform hypergraphs and SHO-FA:

As in [70] and other works, there exists a bijection between d-uniform

hypergraphs and d-left-regular bipartite graphs, which can be constructed

as follows:

(a) Each hyperedge in the hypergraph is mapped to a left node in the

bipartite graph,

(b) Each node in the hypergraph is mapped to a right node in the bipar-

tite graph, and

(c) The edges leaving a left-node in the bipartite graph correspond to the

nodes contained in the corresponding hyperedge of the hypergraph.

Suppose the d-uniform hypergraph does not contain a 2-core. This

means that, in each iteration of �peeling process�, we can �nd a vertex

with degree 1, delete it and the corresponding hyperedges, and continue

the iterations until all the hyperedges are deleted. Correspondingly, in the

bipartite graph, we can �nd a leaf node in each iteration, delete it and the

corresponding left node and continue the iterations until all left nodes are

deleted. We note that the SHO-FA algorithm follows essentially the same

process. This implies that SHO-FA succeeds if and only if the d-uniform

hypergraph contains a 2-core.

Existence of 2-cores in d-uniform hypergraphs and SHO-FA: We now

reprise a nice result due to [102] that helps us tighten the results of Theo-

rem 3.

Theorem 5. ([102]) Let d + l > 4 and G be a d-uniform random hy-

pergraph with k hyperedges and m nodes. Then there exists a number c∗d,l

(independent of k and m) that is the threshold for the appearance of an

l-core in G. That is, for constant c and m → ∞: If k/m = c < c∗d,l, then

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 56

G has an empty l-core with probability 1 − o(1);If k/m = c > c∗d,l, then G

has an l-core of linear size with probability 1− o(1).

Speci�cally, the results in [70, Theorem 1] (which explicitly calculates

some of the c∗d,l) give that for l = 2 and d = 3, c∗3,2 = 1/1.22 with probability

1 − O(1/k). This leads to Theorem 2, that has tighter parameters than

Theorem 3.

Remark 7. We note that by carefully choosing a degree distribution (for

instance the �enhanced harmonic degree distribution� [93]) rather than con-

stant degree d for left nodes in the bipartite graph, the constant c can be

made to approach to 1, while still ensuring that 2-cores do not occur with

su�ciently high probability. This can further reduce the number of mea-

surements m. However, this can come at a cost in terms of computational

complexity, since the complexity of SHO-FA depends on the average degree

of nodes on the left, and this is not constant for the enhanced harmonic

degree distribution.

Remark 8. The results in Theorem 5 also indicate a �phase transition�

on the emergence of l-cores. These results explain our simulation results,

presented in Section 3.4.

3.2.9 Other properties of SHO-FA

Database queries

A useful property of our construction of the matrix A is that any desired

signal component xj can be reconstructed in constant time with a constant

probability from measurement vector y = Ax. The following Lemma makes

this precise. The proof follows from a simple probabilistic argument and is

included in Appendix A.1.4.

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 57

Lemma 4. Let x be exactly k-sparse. Let j ∈ {1, 2, . . . , n} and let A ∈
Cck×n be randomly drawn according to SHO-FA. Then, (with probability at

least (1− (d/c)d)) there exists an algorithm A such that given inputs (j,y),

A produces an output x̂j such that x̂j = xj with probability 1−o(1/ poly(k)).

SHO-FA for sparse vectors in di�erent bases

In the setting of SHO-FA we consider k-sparse input vectors x. In fact, we

also can deal with the case that x is sparse in a certain basis that is known

a priori to the decoder,22 say Ψ, which means that x = Ψw where w is a

k-sparse vector. Speci�cally, in this case we write the measurement vector

as y = Bx, where B = AΨ−1. Then, y = AΨ−1Ψw = Aw, where A is

chosen based on the structure of the G and w is a k-sparse vector. We can

then apply SHO-FA to reconstruct w and consequently x = Ψw. What

has been discussed here covers the case where x is sparse itself, for which

we can simply take Ψ = I and x = w.

Information-theoretically order-optimal encoding/update complexity

The sparse structure of A also ensures (�for free�) order-optimal encoding

and update complexity of the measurement process.

We �rst note that for any measurement matrix A that has a �high

probability� (over A) of correctly reconstructing arbitrary x, there is a

lower bound of Ω(n) on the computational complexity of computing Ax.

This is because if the matrix does not have at least Ω(n) non-zero entries,

then with probability Ω(1) (over A) at least one non-zero entry of x will

�not be measured� by A, and hence cannot be reconstructed. In the SHO-

FA algorithm, since the degree of each left-node in G is a constant (d),

22For example, �smooth� signals are sparse in the Fourier basis and �piecewise smooth� signals

are sparse in wavelet bases.

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 58

the encoding complexity of our measurement process corresponds to dn

multiplications and additions.

Analogously, the complexity of updating y if a single entry of x changes

is at most d for SHO-FA, which matches the natural lower bound of 1 up

to a constant (d) factor.

Information-theoretically optimal number of bits

We recall that the reconstruction goal for SHO-FA is to reconstruct x up

to relative error 2−P . That is,

‖x− x̂‖1/‖x‖1 ≤ 2−P .

We �rst present a sketch of an information-theoretic lower bound of

Ω (k (P + log(n))) bits which holds for any algorithm that outputs a k-

sparse vector that achieves this goal with high probability.

To see that this is true, consider the case where the locations of k non-

zero entries in x are chosen uniformly at random among all the n, entries

and the value of each non-zero entry is chosen uniformly at random from

the set {1, . . . , 2P}. Then recovering even the support requires at least

log
(
2kP
(
n
k

))
bits, which is Ω(kP + k log(n/k)).23 Also, at least a constant

fraction of the k non-zero entries of x must be be correctly estimated to

guarantee the desired relative error. Hence Ω (k (P + log(n))) is a lower

bound on the measurement bit-complexity.

The following arguments show that the total number of bits used in our

algorithm is information-theoretically order-optimal for any k = O(n1−∆)

(for any ∆ > 0). First, to represent each non-zero entry of x, we need

to use arithmetic of Ω(P + log(k)) bit precision. Here the P term is so

as to attain the required relative error of reconstruction, and the log(k)

23Stirling's approximation(c.f. [94, Chapter 1]) is used in bounding from below the combina-

torial term
(
n
k

)
.

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 59

term is to take into account the error induced by �nite-precision arith-

metic (say, for instance, by �oating point numbers) in O(k) iterations

(each involving a constant number of �nite-precision additions and unit-

magnitude multiplications). Second, for each identi�cation step, we need

to use Ω(log(n) + log(k)) bit-precision arithmetic. Here the log(n) term is

so that the identi�cation measurements can uniquely specify the locations

of non-zero entries of x. The log(k) term is again to take into account

the error induced in O(k) iterations. Third, for each veri�cation step,

the number of bits we use is (say) 3 log(k). Here, by the Schwartz-Zippel

Lemma [127, 154], 2 log(k) bit-precision arithmetic guarantees that each

veri�cation step is valid with probability at least 1− 1/k2 � a union bound

over all O(k) veri�cation steps guarantees that all veri�cation steps are

correct with probability at least 1−O(1/k) (this probability of success can

be directly ampli�ed by using higher precision arithmetic). Therefore, the

total number of bits needed by SHO-FA is O(k(log(n) + P)). As claimed,

this matches, up to a constant factor, the lower bound sketched above.

Universality

While the ensemble of matrices {A} we present above has carefully cho-

sen identi�cation entries, and all the non-zero veri�cation entries have unit

magnitude, as noted in Remark 1, the implicit ideas underlying SHO-FA

work for signi�cantly more general ensembles of matrices. In particular,

Property 1 only requires that the graph G underling A be �sparse�, with a

constant number of non-zero entries per column. Property 2 only requires

that each non-zero entry in each row be distinct � which is guaranteed with

high probability, for instance, if each entry is chosen i.i.d from any distri-

bution with su�ciently large support. An example of such a scenario is

shown in Figure 3.10. This naturally motivates the application of SHO-FA

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 60

Figure 3.10: An example of a physical system that �naturally� generates

ensembles of sparse A that SHO-FA can use: Suppose there are k cellphones

(out of a set of n possible di�erent cellphones in the whole world) in a certain

neighbourhood that has a base-station. The goal is for the j-th cellphone to

communicate its information (xj) to the base-station at least once per frame of

ck consecutive time-slots. The challenge is to do so in a distributed manner,

since multiple cellphones transmitting at the same time i would result in a linear

combination yi =
∑

j aijxj of their transmissions reaching the base-station, where

aij corresponds to the channel gain from the cellphone j to the base-station during

time-slot i. With high probability, such aij satisfying the properties we require

for our algorithm to work � �sparsity� (relatively few transmitters transmit at

any given time) and �distinctness� (with high probability the channel gains from

di�erent transmitters are di�erent). Each cellphone transmits xj to the base-

station a constant (d) number of times in each frame � the set of d time-slots

in each frame that cellphone j transmits in is chosen by j uniformly at random

from the set of all
(
ck
d

)
sets of slots.

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 61

to a variety of scenarios, for e.g ., neighbor discovery in wireless communi-

cation [71].

3.3 Approximate reconstruction in the presence of noise

A prominent aspect of the design presented in the previous section is that

it relies on exact determination of all the phases as well as magnitudes of

the measurement vector Ax. In practice, however, we often desire that

the measurement and reconstruction be robust to corruption both before

and and during measurements. In this section, we show that our design

may be modi�ed slightly such that with a suitable decoding procedure, the

reconstruction is robust to such �noise� (See Figure 3.12 for the e�ect of

noise on a measurement).

We consider the following setup. Let x ∈ Rn be a k-sparse signal with

support S(x) = {j : xj 6= 0}. Let z ∈ Rn have support {1, 2, . . . , n} \ S(x)

with each zj distributed according to a Gaussian distribution with mean 0

and variance σ2
z . Denote the measurement matrix by A ∈ Cm×n and the

measurement vector by y ∈ Cm. Let e ∈ Cm be the measurement noise

with ei distributed as a complex Gaussian with mean 0 and variance σ2
e

along each axis. The vector y is related to the signal as

y = A(x + z) + e.

We �rst propose a design procedure forA satisfying the properties stated

in Theorem 3. We present a �simple� proof of Theorem 3 in Appendix. In

Theorem 4, we outline an analysis (based on the work of [118]) that leads

to a tighter characterization of the constant factors in the parameters of

Theorem 3.

Recall that in the exactly k-sparse case, the decoding step in t-th itera-

tion relies on �rst �nding an S(t)-leaf node, then decoding the correspond-

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 62

ing signal coordinate and updating the undecoded measurements. In this

procedure, it is critical that each iteration operates with low reconstruction

errors as an error in an earlier iteration can propagate and cause potentially

catastrophic errors. In general, one of the following events may result in

any iteration ending with a decoded signal value that is far from the true

signal value:

(a) The decoder picks an index outside the set {i : (Ax)i 6= 0}, but in the

set {i : (A(x + z) + e)i 6= 0}}.

(b) The decoder picks an index within the set {i : (Ax)i 6= 0} that is also
a leaf for S with parent node j, but the presence of noise results in the

decoder identifying (and verifying) a node j′ 6= j as the parent and,

subsequently, incorrectly decoding the signal at j′.

(c) The decoder picks an index within the set {i : (Ax)i 6= 0} that is not a
leaf for S, but the presence of noise results in the decoder identifying

(and verifying) a node j as the parent and, subsequently, incorrectly

decoding the signal at j.

(d) The decoder picks an index within the set {i : (Ax)i 6= 0} that is a leaf
for S with parent node j, which it also identi�es (and veri�es) correctly,

but the presence of noise introduces a small error in decoding the signal

value. This error may also propagate to the next iteration and act as

�noise� for the next iteration.

To overcome these hurdles, our design takes the noise statistics into

account to ensure that each iteration is resilient to noise with a high prob-

ability. This is achieved through several new ideas that are presented in

the following. Next, we perform a careful analysis of the corresponding

decoding algorithm and show that under certain regularity conditions, the

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 63

overall failure probability can be made arbitrarily small to output a re-

construction that is robust to noise. Key to this analysis is bounding the

e�ect of propagation of estimation error as the decoder steps through the

iterations.24

3.3.1 Key ideas

Truncated reconstruction

We observe that in the presence of noise, it is unlikely that signal values

whose magnitudes are comparable to that of the noise values can be suc-

cessfully recovered. Thus, it is futile for the decoder to try to reconstruct

these values as long as the overall penalty in `1-norm is not high. The

following argument shows that this is indeed the case. Let

Sδ(x) = {j : |xj| < δ/k}, (3.3)

and let xSδ be the vector de�ned as

(xSδ)j =

 0, j /∈ Sδ(x),

xj, j ∈ Sδ(x).

Similarly, de�ne xScδ as the projection of x which has non-zero entries only

within the set S(x)\Sδ(x) (See Figure 3.11 for illustration). The following

sequence of inequalities shows that the total `1 norm of xSδ is small:

‖xSδ‖1 =
∑

j∈Sδ(x)

|xj|

24For simplicity, the analysis presented here relies only on an upper bound on the length of

the path through which the estimation error introduced in any iteration can propagate. This

bound follows from known results on size of largest components in sparse hypergraphs [85]. We

note, however, that a tighter analysis that relies on a �ner characterization of the interaction

between the size of these components and the contribution to total estimation error may lead

to better bounds on the overall estimation error. Indeed, as shown in [118], such an analysis

enables us to achieve a tighter reconstruction guarantee of the form ‖x− x̂‖1 = O(‖z‖1 +‖e‖1).

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 64

≤ |Sδ(x)| δ
k

≤ |S(x)| δ
k

= δ. (3.4)

Further, as an application of triangle inequality and the bound in (3.4),

it follows that

‖x̂− x‖1 = ‖x̂− xScδ − xSδ‖1

≤ ‖x̂− xScδ‖1 + ‖xSδ‖1

≤ ‖x̂− xScδ‖1 + δ. (3.5)

Keeping the above in mind, we rephrase our reconstruction objective to

satisfy the following criterion with a high probability:

‖x̂− xScδ‖1 ≤ C1(‖z‖1 +
√

log(k)‖e‖1), (3.6)

while simultaneously ensuring that our choice of parameter δ satis�es

δ < C2‖z‖1 (3.7)

for some C2, with high probability.

Phase quantization

In the noisy setting, even when i is a leaf node for S(x), the phase of yi may

di�er from the phase assigned by the measurement. This is geometrically

shown in Figure 3.12a for a measurement matrix A′. To overcome this,

we modify our decoding algorithm to work with �quantized� phases, rather

than the actual received phases. The idea behind this is that if i is a leaf

node for S(x), then quantizing the phase to one of the values allowed by

the measurement identi�es the correct phase with a high probability. The

following lemma facilitates this simpli�cation.

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 65

Lemma 5 (Almost bounded phase noise). Let x, z ∈ Rn with |xj| > δ/k for

each j. Let A′ ∈ Cm′×n be a complex valued measurement matrix with the

underlying graph G. Let i be a leaf node for S(x). Let ∆θi = |∠yi−∠(A′x)i|.
Then, for every α > 0,

Ez,e(∆θi) ≤
√

2πk2(dnσ2
z/ck + σ2

e)

δ2

and

Pr
z,e

(
∆θi > αEz,e(∆θi)

)
<

1

2
e−(α2/2π).

Proof. See Appendix A.1.5. �

For a desired error probability ε′, the above lemma stipulates that it

su�ces to let α =
√

2π log(1/2ε′). We examine the e�ect of phase noise in

more detail in Appendix A.1.6.

Repeated measurements

Our algorithm works by performing a series of Γ ≥ 1 identi�cation and

veri�cation measurements in each iteration instead of a single measurement

of each type as done in the exactly k-sparse case. The idea behind this is

that, in the presence of noise, even though a single set of identi�cation and

veri�cation measurements cannot exactly identify the coordinate j from

the observed yi, it helps us narrows down the set of coordinates j that can

possibly contribute to give the observed phase. Performing measurements

repeatedly, each time with a di�erent measurement matrix, helps us identify

a single j with high probability.

We implement the above idea by �rst mapping each j ∈ {1, 2, . . . , n}
to its Γ-digit representation in base � = {0, 1, . . . dn1/Γ − 1e}. For each

j ∈ {1, 2, . . . , n}, let g(j) = (g1(j), g2(j), . . . , gΓ(j)) be the Γ-digit repre-

sentation of j. Next, perform one pair of identi�cation and veri�cation

measurements (and corresponding phase reconstructions), each of which is

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 66

intended to distinguish exactly one of the digits. In our construction, we

only need a constant number of such phase measurements per iteration.

See Figure 3.13 for an illustrating example.

Figure 3.11: The black curve corresponds to the magnitudes of x+ z (for ease of

visual presentation, the components of x have been sorted in decreasing order of

magnitude and placed in the �rst k components of the signal, but the components

of z are unsorted. The blue curve corresponds to our reconstruction x̂ of x. Note

that we only attempt to reconstruct components of x that are �su�ciently large"

(that is, we make no guarantees about correct reconstruction of components of

x in Sδ(x), , i.e, those components of x that are smaller than some �threshold"

δ/k. Here δ is a parameter of code-design to be speci�ed later. As shown in

Section 3.3.1, as long as δ is not �too large�, this relaxation does not violate our

relaxed reconstruction criteria (3.6).

3.3.2 Measurement Design

As in the exactly k-sparse case, we start with a randomly drawn left regular

bipartite graph G with n nodes on the left and m′ nodes on the right.

Measurement matrix: The measurement matrix A ∈ C2m′Γ×n is chosen

based on the graph G. The rows of A are partitioned into m′ groups, with

each group consisting of 2Γ consecutive rows. The j-th entries of the rows

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 67

(a) Maximum phase displacement occurs

when the contribution due to noise, i.e.,

(Az)i+ei is orthogonal to the measurement

yi

(b) Maximum magnitude displacement

takes place when the contribution due to

noise is aligned with (Ax)i

Figure 3.12: The e�ect of noise on a measurement output.

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 68

(a) The decoder �ran-

domly� picks y1. Since the

phase of y
(I,1)
1 is between

−π/4 and π/4, the de-

coder can distinguish that

the �rst bit of non-zero

location is 0 since the

decoder can tolerate at

most π/4 phase displace-

ment for y1. So, the non-

zero entry is one of x1, x2,

x3, or x4.

(b) The decoder �ran-

domly� picks y1 again.

Since the phase of y
(I,2)
1

is between 3π/4 and 5π/4,

the decoder can distin-

guish that the second bit

of non-zero location is 1

since the decoder can tol-

erate at most π/4 phase

displacement for y1. So,

the non-zero entry is one

of x3, x4, x7, x8. Comb-

ing the output in the �rst

phase measurement, we

conclude that the non-zero

entry is one of x3 and x4.

(c) The decoder �ran-

domly� picks y1 again.

Since the phase of y
(I,3)
1

is between −π/4 and π/4,

the decoder can distin-

guish that the third bit

of non-zero location is 0

since the decoder can tol-

erate at most π/4 phase

displacement for y1. So,

the non-zero entry is one

of x1, x3, x5, x7. Comb-

ing the outputs in the �rst

and second phase measure-

ment, we conclude that the

non-zero entry is x3.

Figure 3.13: If we were to distinguish each j from 1 to 8 by a di�erent phase, the

decoder can tolerate at most π/14 phase displacement for any output yi. Instead,

we �rst represent each j = 1, 2, . . . , 8 by a length-three binary vector. Next, we

perform three sets of phase assignments � one for each digit. It is easily seen that

by allowing multiple measurements, the noise tolerance for the decoder increases.

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 69

2(i− 1)Γ + 1, (i− 1)Γ + 2, . . . , 2iΓ are denoted by

a
(I,1)
i,j , a

(I,2)
i,j , . . . , a

(I,Γ)
i,j , a

(V,1)
i,j , a

(V,2)
i,j , . . . , a

(V,Γ)
i,j

respectively. In the above notation, I and V are used to refer to identi�-

cation and veri�cation measurements.

For ease of notation, for each γ = 1, 2, . . . ,Γ, we use A(I,γ) (respec-

tively A(V,γ)) to denote the sub-matrix of A whose (i, j)-th entry is a
(I,γ)
i,j

(respectively a
(V,γ)
i,j).

We de�ne the γ-th identi�cation matrix A(I,γ) as follows. For each (i, j),

if the graph G does not have an edge connecting i on the right to j on the

left, then a
(I,γ)
i,j = 0. Otherwise, we set a

(I,γ)
i,j to be the unit-norm complex

number

a
(I,γ)
i,j = eιgγ(j)π/2(|�|−1).

Note here that the construction for the exactly k-sparse case can be recov-

ered by setting Γ = 1, which results in � = {1, 2, . . . , n} and gγ(j) = j.

Next, we de�ne the γ-th veri�cation matrix A(V,γ) in a way similar to

how we de�ned the veri�cation entries in the exactly k-sparse case. For

each (i, j), if the graph G does not have an edge connecting i on the right

to j on the left, then a
(V,γ)
i,j = 0. Otherwise, we set

a
(V,γ)
i,j = eιθ

(V,γ)
ij ,

where θ
(V,γ)
i,j is drawn uniformly at random from {0, π/2(|�| − 1), π/(|�| −

1), 3π/2(|�| − 1) . . . , π/2}.
Given a signal vector x, signal noise z, and measurement noise e, the

measurement operation produces a measurement vector y = A(x + e).

Since A can be partitioned into Γ identi�cation and Γ veri�cation rows,

we think of the measurement vector y as a collection of outcomes from Γ

successive measurement operations such that

y(I,γ) = A(I,γ)(x + z) + e(I,γ)

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 70

and

y(V,γ) = A(V,γ)(x + z) + e(V,γ)

are the outcomes from the γ-th measurement and y = ((y(I,γ),y(V,γ)) : 1 ≤
γ ≤ Γ).

3.3.3 Reconstruction

The decoding algorithm for this case extends the decoding algorithm pre-

sented earlier for the exactly k-sparse case by including the ideas presented

in Section 3.3.1. The total number of iterations for our algorithm is upper

bounded by 4k.

1. We initialize by setting the signal estimate vector x̂(1) to the all-

zeros vector 0n, and for each γ = 1, 2, . . . ,Γ, we set the residual

measurement identi�cation/veri�cation vectors ỹ(I,γ)(1) and ỹ(V,γ)(1)

to the decoder's observations y(I,γ) and y(V,γ).

Let B(1), the initial neighborly set, be the set of indices i for which,

at which the magnitude corresponding to all veri�cation and identi�-

cation vectors is greater than δ/k, i.e.,

B(1) =
Γ⋂
γ=1

{
i : |y(I,γ)

i | > δ

k
, |y(V,γ)

i | > δ

k

}
.

This step takes O(k) steps, since merely reading y to check for the

zero locations of y(V) takes that long.

2. The tth decoding iteration accepts as its input the tth signal estimate

vector x̂(t), the tth neighbourly set B(t), and the tth residual measure-

ment identi�cation/veri�cation vectors

(
(ỹ(I,γ)(t), ỹ(V,γ)(t)) : γ = 1, 2, . . . ,Γ

)
.

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 71

In O(1) steps it outputs the (t+1)th signal estimate vector x̂(t+1), the

(t+ 1)th neighbourly set B(t+ 1), and the (t+ 1)th residual measure-

ment identi�cation/veri�cation vectors

(
(ỹ(I,γ)(t+ 1), ỹ(V,γ)(t+ 1)) : γ = 1, 2, . . . ,Γ

)
after the performing the following steps sequentially (each of which

takes at most a constant number of atomic steps).

3. Pick a random i(t): The decoder picks i(t) uniformly at random from

B(t)

4. Compute quantized phases: For each γ = 1, 2, . . . ,Γ, compute the

current identi�cation angles, θ̂
(I,γ)
t , and current identi�cation angles,

θ̂
(I,γ)
t de�ned as follows:

θ̂
(I,γ)
t =

2(|�| − 1|)
(
∠y(I,γ)

i(t) (mod π)
)

π

 π

2(|�| − 1|) ,

θ̂
(V,γ)
t =

2(|�| − 1|)
(
∠y(V,γ)

i(t) (mod π)
)

π

 π

2(|�| − 1|) .

In the above, [·] denotes the closest integer function. Since there are
Θ(n) di�erent phase vectors, to perform this computation, O(log(n))

bits of precision and O(1) computation steps su�ce.

For each γ = 1, 2, . . . ,Γ, let ĝ
(t)
γ = 2(|�| − 1|)θ̂(I,γ)/π be the current

estimate of γ-th digit and let j(t) be the number whose representation

in � is (ĝ
(t)
1 , ĝ

(t)
2 , . . . , ĝ

(t)
Γ).

5. Check if the current identi�cation and veri�cation angles correspond

to a valid and unique j: This step determines if i(t) is a leaf node for

Sδ(x − x̂(t)). This operation is similar to the corresponding exactly

k-sparse case. The main di�erence here is that we perform veri�cation

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 72

operations on each of the Γ measurements separately and declare i(t)

as a leaf node only if it passes all the veri�cation tests. The veri�cation

step for the γ-th measurement is given by the test:

θ̂
(V,γ)
t

?
= θ

(V,γ)
i(t),j(t).

If the above test succeeds for every γ = 1, 2, . . . ,Γ, we set ∆x(t)

to |ỹ(I,γ)
i(t) (t)| if ∠y(I,γ)

i(t) ∈ (−π/4, 3π/4], and −|ỹ(I,γ)
i(t) (t)| if ∠y(I,γ)

i(t) ∈
(3π/4, 7π/4]. Otherwise, we set ∆x(t) = 0. This step requires at

most Γ veri�cation steps and therefore, can be completed in O(1)

steps.

6. Update x̂(t+ 1), ỹ(t+ 1), and B(t+ 1): If the veri�cation tests in

the previous steps failed, there are no updates to be done, i.e., set

x̂(t+ 1) = x̂(t), ỹ(t+ 1) = ỹ(t), and B(t+ 1) = B(t).

Otherwise, we �rst update the current signal estimate to x̂(t+ 1)

by setting the j(t)-th coordinate to ∆x(t). Next, let i1, i2, i3 be

the possible neighbours of j(t). We compute the residual identi�ca-

tion/veri�cation vectors ỹ(t+ 1) at i1, i2, i3 by subtracting the weight

due to ∆x(t) at each of them. Finally, we update the neighbourly set

by removing i1, i2, and i3 from B(t) to obtain B(t+ 1).

The decoding algorithm terminates after the T -th iteration, where T =

min{4k, {t : B(t+ 1) = φ}}.

3.3.4 Improving performance guarantees of SHO-FA via Set-

Query Algorithm of [118]

In [118], Price considers a related problem called the Set-Query problem.

In this setup, we are given an unknown signal vector x and the objective

is to design a measurement matrix A such that given y = Ax + e (here, e

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 73

is an arbitrary �noise� vector), and a desired query set S ⊆ {1, 2, . . . , n},
the decoder outputs a reconstruction x̂ with having support S such that

x̂−xS is �small�. The following Theorem from [118] states the performance

guarantees for a randomized construction of A.

Theorem 6 (Theorem 3.1 of [118]). For every ε > 0, there is a randomized

sparse binary sketch matrix A and recovery algorithm A, such that for any

x ∈ Rn, S ⊆ {1, 2, . . . , n} with |S| = k, x̂ = A(Ax+e,S) ∈ Rn has support

S(x̂) ⊆ S and

‖x̂− xS‖l ≤ (1 + ε)(‖x− xS‖l + ‖e‖l)

for each l ∈ {1, 2} with probability at least 1 − 1/k. A has O(k) rows and

A runs in O(k) time.

We argue that the above design may be used in conjunction with our

SHO-FA algorithm from Theorem 3 to give stronger reconstruction guar-

antee than Theorem 3. In fact, this allows us to even prove a stronger

reconstruction guarantee of the `2 < `2 form. Theorem 4 makes this pre-

cise.

Proof of Theorem 4: We �rst note that the measurement matrix pro-

posed in [118] is independent of the query set S and depends only on the

size k of the set S. We design our measurement matrix A ∈ Cm×n by

combining the measurement matrices from Theorem 3 and Theorem 6 as

follows. Let A1 ∈ Cm1×n be drawn according to Theorem 3 and A2 ∈ Cm2×n

be drawn according to Theorem 6 for somem1 andm2 scaling as O(k) so as

to achieve an error probability O(1/k). Let A ∈ Cm×n with m = m1 +m2

with the upper m1 rows consisting of all rows of A1 and the lower m2 rows

consisting of all the row of A2.

To perform the decoding, the decoder �rst produces a coarse reconstruc-

tion ˆ̃x by passing the �rst m1 rows of the measurement output y through

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 74

the SHO-FA decoding algorithm. Let δ be the truncation threshold for

the decoder. Next, the decoder computes Sδ(x) to be the support of ˆ̃x.

Finally, the decoder applies the set query algorithm from Theorem 6 with

inputs
(
[ym1+2, . . . , ym2]

T ,Sδ(x)
)
to obtain a reconstruction x̂ that satis�es

the desired reconstruction criteria. �

3.4 Simulation Results

This section describes simulations that use synthetic data. The k-sparse

signals used here are generated by randomly choosing k locations for non-

zero values and setting the non-zero values to 1 for Figures 3.14, 3.15 and

3.16, and to standard uniform random variable for Figure 3.17. The con-

tours in each plot show the probability of successful reconstruction (the

lighter the color, the higher the probability of reconstruction). The prob-

ability of error at each data point in the plots was obtained by running

multiple simulations (400 in Figure 3.14 and Figure 3.15, and 200 in Fig-

ure 3.16 and Figure 3.17) and noting the fraction of simulations which

resulted in successful reconstruction.

3.5 Acknowledgement

We would like to thank Prof. Dongning Guo for pointing out the compres-

sive neighboring identi�cation problem [152] as a motivation. We thank

Prof. Babak Hassibi and Prof. Piotr Indyk for useful discussions � our

work is partially inspired by their prior works. We thank the anonymous

reviewers who pointed out the connection between the �rst version of this

work and [70] and [118]. We thank Prof. Pascal Vontobel for providing

insightful comments on this chapter.

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 75

Sparsity (k)

N
u

m
b

e
r

o
f

M
e

a
s

u
re

m
e

n
ts

 (
m

)

Probability of Successful Reconstruction, n=1000

20 40 60 80 100 120 140

100

200

300

400

500

0

0.2

0.4

0.6

0.8

1
0.98

Figure 3.14: Exactly sparse signal and noiseless measurements � reconstruc-

tion performance for �xed signal length n: The y-axis denotes the number of

measurements m, and the x-axis denotes the sparsity k, for �xed signal length n = 1000.

The simulation results show that the number of measurements m grows roughly pro-

portionally to the sparsity k for a �xed probability of reconstruction error. Also note

that there is a sharp transition in reconstruction performance once the number of mea-

surements exceeds a linear multiple of k. The red line denotes the curve where the

probability of successful reconstruction equals 0.98. For k = 150, the probability of

success equals 0.98 when m = 450 and c = m/k = 3.

3.6 Conclusion

In this chapter we present a suite of algorithms (that we call SHO-FA) for

compressive sensing that require an information-theoretically order-optimal

number of measurements, bits over all measurements, and encoding, up-

date, and decoding time-complexities. As a bonus, with non-zero proba-

bility it can also handle �data-base queries�. The algorithms are robust to

noisy signal tails and noisy measurements. The algorithms are practical

(all constant factors involved are small), as validated by both our analysis,

and simulations. Our algorithms can reconstruct signals that are sparse

in any basis that is known a priori to both the encoder and decoder, and

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 76

Length of Signal (log(n))

N
u

m
b

e
r

o
f

M
e

a
s

u
re

m
e

n
ts

 (
m

)

Probability of Successful Reconstruction, k=20

2 3 4 5
20

40

60

80

0

0.2

0.4

0.6

0.8

1

Figure 3.15: Exactly sparse signal and noiseless measurements � reconstruc-

tion performance for �xed sparsity k: The number of measurementsm are plotted

on the y-axis, plotted against log(n) on the x-axis � the sparsity k is �xed to be 20.

Note that there is no scaling of m with n, as guaranteed by our theoretical bounds.

Sparsity (k)

N
u

m
b

er
 o

f
M

ea
su

re
m

en
ts

 (
m

)

4 6 8 10 12 14 16 18 20

20

40

60

80

100

120

0

0.2

0.4

0.6

0.8

1

Figure 3.16: Approximately sparse signal and noisy measurements � recon-

struction performance for �xed signal-length n: As in Fig 3.14, the y-axis denotes

the number of measurements m, and the x-axis denotes the sparsity k, for �xed signal

length n = 1000. In this case, we set σz = 0.03, and allowed relative reconstruction

error of at most 0.3.

CHAPTER 3. COMPRESSIVE SENSING � SHO-FA 77

Figure 3.17: Exactly sparse signal (non-zero entries follow standard uniform

distribution) and noiseless measurements � reconstruction performance for

�xed signal length n: As in Fig 3.14, the y-axis denotes the number of measurements

m, and the x-axis denotes the sparsity k, for �xed signal length n = 1000. Even if the

non-zero values are set to be standard uniform random variables, the performance of

reconstruction is similar to the case that non-zero values are set to be 1.

work for many ensembles of sparse measurement matrices.

2 End of chapter.

Chapter 4

Network Tomography �

FRANTIC

4.1 Introduction

Monitoring performance characteristics of individual links is important for

diagnosing and optimizing network performance. Making direct measure-

ments for each link, however, is impractical in large-scale networks because

(i) nodes inside the networks may not be available to carry out measure-

ments due to physical or protocol constraints, and (ii) measuring each link

separately incurs excessive control-tra�c overhead and is not scalable.

A viable alternative approach is network tomography [138]. It aims to

infer the performance characteristics of internal links by path measurements

between controllable nodes, where a path measurement is function of the

characteristics of the links on the path. It does not require access to all

the nodes and, more importantly, it allows clever solutions to leverage the

network structure (e.g., topology and graph properties) to jointly infer the

performance characteristics of multiple links via path measurements. Many

existing works have explored such insights to design excellent solutions that

78

CHAPTER 4. NETWORK TOMOGRAPHY � FRANTIC 79

are able to infer the congested links with far fewer measurements than the

direct link measurement approach [21,37,87,107,153]. See [35] for a survey.

Recently, Xu et al. [146] further argue that usually only a small fraction

of network links, say k out of total |E| links (k � |E|), are congested

(i.e., experiencing large congestion delay or high packet loss rate). They

interpret each path measurement as a linear combination of the delays or

loss rates of the k congested links. With this understanding, the problem

of network tomography can be viewed as recovering a k-sparse link vector

from a set of linear measurements.

Exploiting the �sparse congestion structure� insight, Xu et al. [146]

propose a compressive sensing based scheme that can identify any k con-

gested links usingO(TNk log(|E|)) path measurements over any su�ciently-

connected graph. Here, each of the path measurements is a random walk

on the graph, and TN is the mixing time of the random walk. Further, they

show that one can actually recover the performance characteristics of any

k congested links with again O(TNk log(|E|)) path measurements using an

`1-minimization decoder. Similar results are also obtained by [39, 62, 141].

Given all these exciting results, a natural question is whether one can do

better, and if so, how?

4.1.1 Our contribution

Summary

In this work, we build upon our recently developed compressive sensing

algorithm named sho-fa [10] to design a new network tomography solution

that we call FRANTIC . FRANTIC achieves the following performance:

• FRANTIC can identify any k congested links (or nodes) out of n and

recover the corresponding link (or node) performance characteristics

CHAPTER 4. NETWORK TOMOGRAPHY � FRANTIC 80

using O(ρk log(n)/ log(M)) path measurements with a high probabil-

ity. Here, M ∈ � and ρ ∈ Ω(1) ∩ o(n/k) are design parameters. See

Section 4.3.2 for a discussion.

• The FRANTIC decoding algorithm can recover the link (or node)

performance characteristics in O(ρk log(n)/ log(M)) steps.

As compared to the solution in [146], our solution improves both the num-

ber of measurements and the number of recovery steps from O(TNk log(n))

to O(k) (obtainable by setting M = O(n)).

Techniques and results

The main techniques that lead to these improvements are as follows. First,

in Section 4.4, we develop an e�cient compressive sensing algorithm SHO-

FA-INT when the entries of the measurement matrix are constrained to be

positive integers. Our algorithm borrows key ideas from a prior work [10]

that studies compressive sensing in the unconstrained setting. A key tech-

nique here is to group together measurements and choose the �weights� of

the measurement matrix as co-prime vectors. A set of vectors are called

co-prime if any vector is not a multiple of another vector in the set. This

ensures that each network link has a distinct signature in the measurement

output, which allows us to decode the delay values for congested links in

an iterative manner. Theorem 7 states the performance guarantees of our

algorithm. Next, we propose a design for measuring the delay on con-

gested links in a network in Section 4.5.1. An important insight in our

design is that by using local loops at individual edges, end-to-end delay

measurements can be designed to assign di�erent integer weights to delays

for di�erent edges. We start with a compressive sensing matrix given by

SHO-FA-INT and emulate the output of the matrix by �rst designing two

CHAPTER 4. NETWORK TOMOGRAPHY � FRANTIC 81

correlated network paths, and then cancelling out the contribution of un-

wanted links by subtracting one from another. Theorems 8-10 state the

performance guarantees of the FRANTIC algorithms. We also note that

the path lengths required for FRANTIC can be suitably optimized by us-

ing Steiner Trees and network decomposition. Theorem 10 and subsequent

discussions point this out.

CHAPTER 4. NETWORK TOMOGRAPHY � FRANTIC 82

R
ef
er
en
ce

T
y
p
e

#
M
ea
su
re
m
en
ts

D
ec
o
d
in
g
C
o
m
p
le
x
it
y

P
a
th

L
en
g
th

N
et
w
o
rk

T
o
p
o
lo
g
y

[1
4
1
]

N
o
d
e

R
O

(k
lo

g
(|
V
|/
k
))

+
R

+
1

C
S
w
it
h

0
−

1
m
a
tr
ix

�
G
en
er
a
l
g
ra
p
h
,

R
is
th
e
ra
d
iu
s
o
f
th
e
g
ra
p
h

N
o
d
e

O
(r
k

lo
g
(|
V
|/
k
))

+
r

C
S
w
it
h

0
−

1
m
a
tr
ix

�
If
G

h
a
s
a
n
r
-p
a
rt
it
io
n

N
o
d
e

O
(2
k

lo
g
(|
V
|/

2
k
))

+
r

C
S
w
it
h

0
−

1
m
a
tr
ix

�
E
rd
o
s-
R
en
y
i
ra
n
d
o
m

g
ra
p
h
G

(|
V
|,
p
),

w
it
h
p

=
β

lo
g
(|
V
|)
/
|V
|a

n
d
β
≥

2

[1
4
6
]

E
d
g
e

O
(T
N
k

lo
g
(|
E|

))
l 1

m
in
im

iz
a
ti
o
n

O
(|
E
|/
k
)

G
is
a

(D
,c

)-
u
n
if
o
rm

g
ra
p
h
,

D
≥
D

0
=
O

(c
2
k
T

2 N
).

[6
2
]

E
d
g
e

O
(k

lo
g
(|
E|
/
k
))

l 1
m
in
im

iz
a
ti
o
n

�
N
et
w
o
rk

is
1
-i
d
en
ti
�
a
b
le

[3
9
]

N
o
d
e

O
(c4 k

2
T

2 N
lo

g
(|
V
|/
d
))

D
is
ju
n
ct

m
a
tr
ix

O
(|
V
|/

(c
3
k
T
N

))
G

is
a

(D
,c

)-
u
n
if
o
rm

g
ra
p
h
.

E
d
g
e

O
(c

4
k
2
T

2 N
lo

g
(|
E|
/
d
))

D
is
ju
n
ct

m
a
tr
ix

O
(|
V
|D
/
(c

3
k
T
N

))
D
≥
D

0
=
O

(c
2
k
T

2 N
).

N
o
d
e

O
(c

8
k
3
T

4 N
lo

g
(|
V
|/
d
))

D
is
ju
n
ct

m
a
tr
ix

u
n
b
o
u
n
d
ed

(s
in
k
n
o
d
e)

E
d
g
e

O
(c

9
k
3
D
T

4 N
lo

g
(|
E|
/
d
))

D
is
ju
n
ct

m
a
tr
ix

u
n
b
o
u
n
d
ed

(s
in
k
n
o
d
e)

N
o
d
e

O
(k

2
(l

o
g
3
(|
V
|)

))
/
(1
−
p
)2

D
is
ju
n
ct

m
a
tr
ix

O
(|
V
|/

(c
3
k
T
N

))
G

is
D
-r
eg
u
la
r
ex
p
a
n
d
er

g
ra
p
h
o
r

E
d
g
e

O
(k

2
(l

o
g
3
(|
E|

))
)/

(1
−
p
)2

D
is
ju
n
ct

m
a
tr
ix

O
(|
V
|D
/
(c

3
k
T
N

))
E
rd
o
s-
R
en
y
i
ra
n
d
o
m

g
ra
p
h
,
G

(|
V
|,
D
/
|V
|)
,

N
o
d
e

O
(k

3
(l

o
g
5
(|
V
|)

))
/
(1
−
p
)2

D
is
ju
n
ct

m
a
tr
ix

u
n
b
o
u
n
d
ed

(s
in
k
n
o
d
e)

w
it
h
D
≥
D

0
=

Ω
(k

lo
g
2
(|
V
|)

).

E
d
g
e
O

(k
3
D

(l
o
g
5
(|
E|

))
)/

(1
−
p
)2

D
is
ju
n
ct

m
a
tr
ix

u
n
b
o
u
n
d
ed

(s
in
k
n
o
d
e)

T
h
is

N
o
d
e

O
(k

lo
g
(|
V
|)
/

lo
g
(M

))
O

(k
lo

g
(|
V
|)
/

lo
g
(M

))
O

(D
|V
|/
k
)

G
en
er
a
l
G
ra
p
h

p
a
p
er

E
d
g
e

O
(k

lo
g
(|
E|

)/
lo

g
(M

))
O

(k
lo

g
(|
E|

)/
lo

g
(M

))
O

(D
|E
|/
k
)

D
is
th
e
d
ia
m
et
er

o
f
th
e
g
ra
p
h

Partial literature review of reference table: The work of [141]

considers the node delay estimation problem where a set of nodes can be

measured together in one measurement if and only if the induced sub-

CHAPTER 4. NETWORK TOMOGRAPHY � FRANTIC 83

graph is connected and each measurement is an additive sum of values at

the corresponding nodes. The generated sensing matrix is a 0 − 1 ma-

trix, therefore the decoding complexity mainly depends on which binary

compressive sensing algorithm is used. General graphs and also some spe-

cial graphs are studied. The idea of a binary compressive sensing algo-

rithm is borrowed by [62], in which a single edge delay estimation prob-

lem is studied, and estimation is done using l1 minimization. In [146],

a random-walk based approach is proposed to solve the k-edge delay es-

timation problem. TN is the 1
(2c|V|)2 -mixing time of N . Networks with

assumptions of bounded node degrees are studied. Similar to [146], [39]

uses random-walk measurements to solve both node and edge failure lo-

calization problem where group testing (non-linear version of compressive

sensing) algorithms are used. The goal is to generate disjunct matrices

which are suitable for group testing. The starting points of measurements

can be chosen within a �xed set of designated vertices, or, chosen ran-

domly among all vertices of the graph. Separately, the problem of edge

failure localization has also been studied in the optical networking litera-

ture [2, 73, 147]. In [73], which considers the problem of single edge failure

localization, which has the same �avor as [141]. Binary-search type algo-

rithms are proposed for some special graphs. For general graphs, the upper

bound on the number of measurements required for single edge failure lo-

calization is O(D(N)+log2(|V|)) where D(N) is the diameter of the graph.

In [147], the problem of multi-link failure localization is considered. For

small networks, a tree-decomposition based method has the upper bound

on the number of trials is min(O(D(N) log(|V|)),O(D(N) + log2(|V|))).
For large-scale networks, a random-walk based method similar to [39] is

proposed. They also consider �practical� constraints such as the number

of failed links cannot be known beforehand. In [2], the solution proposed

CHAPTER 4. NETWORK TOMOGRAPHY � FRANTIC 84

requires (k + 2)-edge-connected networks so as to guarantee k-link-failure

localization.

4.2 Model and problem formulation

Network and delay model: Let N = (V , E) be a undirected network with

node set V and link set E . In this work, we consider the reference-based

tomography problem where the topology of N is known. We assume that

N is connected. We say that a node v ∈ V has delay xv if every packet

that passes through v is delayed by xv. Similarly, a link e ∈ E has delay xe

if every packet passing through e in any direction is delayed by xe. We say

a node or link is congested if the delay associated with it is non-zero. A

congested node is called isolated if there exists one of its neighbours which

is not congested. Let xV = (xv : v ∈ V) and xE = (xe : e ∈ E). Both xV

and xE are unknown but have at most k non-zero coordinates.

Measurement model: Each measurement is performed by sending test pack-

ets over pre-determined paths1 and measuring the end-to-end time taken for

its transmission. Some nodes (resp. links) may be visited more than once

in a given path. As a result, each measurement output yi, i = 1, 2, . . . ,m,

is a weighted sum of delays involving nodes and links that lie in the mea-

surement path, where the weight of a given node or link is the number of

times it is visited by the measurement path. In this work, we consider two

kinds of measurements � node measurements and link measurements. In the

node (resp. link) measurements, we associate each node (resp. link) with a

real-valued delay and the objective is to reconstruct the node (resp. link)

delay vector xV (resp. xE) given the collection of measurement outputs.

1In present-day networks, this may be accomplished by employing source-based routing

(c.f. [84]) for test packets.

CHAPTER 4. NETWORK TOMOGRAPHY � FRANTIC 85

1. Node measurements: In the node measurement model, we associate each

node with a real-valued delay (see [141], for example). Let S ⊆ V denote a

subset of nodes in N . Let ES denote the subset of links with both ends in

S, then NS = (S, ES) is the induced subgraph of N . A set S of nodes can

be measured together in one measurement if and only if NS is connected.

2. Link measurements: In the link measurement setup, we associate each

link with a real-valued delay. Let T ⊆ E denote a subset of links in N . A

set T of links can be measured together in one measurement if and only if

there exists a path that traverses each link in T .
For each of these models, we express the measurement output as a vector

y ∈ Rm that is related to the delay vector through a measurement matrix

A through matrix multiplication.

n Total number of links (or nodes) in the network

k Number of congested links (or nodes) in the network

M The maximum number of times a test packet may travel over any edge

D The diameter of N

TN The mixing time of the random walk over graph N

ρ A design parameter that controls the tradeo� between the path lengths and

the number of the measurements

N N = (V, E), an undirected network with node set V and link set E

xv Time taken by a test packet to pass through node v ∈ V

xV Node delay vector of length |V|

xe Time taken by a test packet to pass through link e ∈ E in any direction

xE Link delay vector of length |E|

Table 4.1: Table of notation for network parameters

CHAPTER 4. NETWORK TOMOGRAPHY � FRANTIC 86

R R ∈ �+ such that MR/ζ(R) ≥ 3n where ζ(·) be the Riemann zeta function

y Measurement output of length m = Rµ

A Measurement matrix of dimension Rµ× n

a
(r)
ij The r-th row entry in the j-th column of the i-th group of A for r = 1, 2, . . . , R,

i = 1, 2, . . . , µ and j = 1, 2, . . . , n

Gn,m′ A bipartite graph with left vertex set {1, 2, . . . , n} and right vertex set {1, 2, . . .m′}

N(S) The set of right neighbours of a subset of left nodes S in Gn,µ

PPP A path of length T over the network N = (V, E), i.e., a sequence (e1, e2, . . . , eT)

of links from E

W (PPP , e) The multiplicity of a link e ∈ E given a path PPP , i.e., the number of times PPP visits e

∆(PPP) The end-to-end delay for a path PPP

Table 4.2: Table of notation for Design Variables

4.3 High-level Intuition and Main Results

4.3.1 Key ideas

In this section, we present some key observations and challenges that this

work focuses on. We begin with the observation that there is a high-level

connection between the compressive sensing and the network tomography

problem. As noted in the previous section, network tomography can be

treated as a problem of solving a system of linear equations. Under the

assumption that the underlying unknown vector is sparse, it is natural to

think of it as a compressive sensing problem [31, 33, 51, 67, 136]. Building

on this intuition, network tomography can be formulated as the following

compressive sensing problem: i) design a matrix A, ii) obtain delay mea-

surements y = AxV , and iii) reconstruct xV from y. Fig. 4.1 illustrates

this connection. Since each subset of nodes in a complete graph induces

a connected subgraph, we can freely choose the locations of non-zero en-

tries in each row of A. Then, any compressive sensing algorithm with a

0-1 measurement matrix [15, 145] can be applied to recover the vector xV .

However, when we go beyond complete graphs and node measurements, it

CHAPTER 4. NETWORK TOMOGRAPHY � FRANTIC 87

Figure 4.1: Node Delay Estimation: For a complete graph with four vertices.

We can get any measurements we want since each subgraph of a complete graph

is connected. For example, the subgraphs induced by {v1, v3} (covered by red

cycle) and {v1, v3, v4} (covered by green cycle) are connected, therefore we get

the measurements [1 0 1 0]xV and [1 0 1 1]xV , respectively.

is not straightforward to apply compressive sensing directly. The network

topology may impose constraints on implementable measurement matrices

(See Figs. 4.2, 4.3, 4.5, and 4.6).

Figure 4.2: General Networks: If the

link (v1, v3) is removed from the origi-

nal complete graph, we cannot get the

measurement [1 0 1 0]xV any longer.

Figure 4.3: Inaccessible Nodes: If

there is some constraint such that we

can not access to v3 directly, then the

measurements in Fig. 4.1 are not im-

plementable.

Xu et al. [146] get around some of these problems by using random

walks. One drawback of their approach is that it involves a factor of mixing

time TN for both the number of measurements and the path length. For

networks without su�cient connectivity, the mixing time may be very large,

CHAPTER 4. NETWORK TOMOGRAPHY � FRANTIC 88

e.g., for cycle graph, TN = Ω(|E|2). In the following, we propose two news

ideas that enable us to circumvent the above problem.

Idea 1: Cancellation enables selecting disconnected subsets of links and

nodes. The idea here is similar to that used in [141] where they use

structures called �hubs� to get arbitrary measurement matrix. However,

they only consider the node delay model, and special graphs which have

r-partitions. In this work, we expand this approach to both link delay

and node delay models. By considering correlated measurements, we can

cancel out the contribution of undesired links and nodes in a given mea-

surement. Using this approach, we can mimic arbitrary measurements on

general graphs. See Fig. 4.4 as an illustration. One drawback of the can-

cellation based approach is that if the selected measurement has too many

disjoint components, then the number of measurements required is very

large. In Fig. 4.4, the number of cancellations is 2.

Figure 4.4: Cancellation: There are three paths in this graph:{e1e6e3e5}, {e5}

and {e6}. Triangles indicate the source and destination of a path. Correspond-

ingly, we can derive three measurements [1 0 1 0 1 1]xE , [0 0 0 0 1 0]xE , and

[0 0 0 0 1]xE . Subtracting the second and the third measurements from the �rst

measurement, we get the measurement [1 0 1 0 0 0]xE which cannot be obtained

by just one path.

Idea 2: Weighted measurements reduce the number of cancellations re-

quired and allow us to implement arbitrary integer valued matrices. The

CHAPTER 4. NETWORK TOMOGRAPHY � FRANTIC 89

Figure 4.5: Edge Delay Estimation:

We know that we can not get arbi-

trary measurements by one path even

if the graph is complete. (e.g., the mea-

surement [0 0 0 0 1 1]xE cannot be ob-

tained since there is no path just visit-

ing e5 and e6.)

Figure 4.6: Inaccessible Nodes: The

second measurement in Fig. 4.4 cannot

be obtained since the v3 is not accessi-

ble.

insight here is that if we have two paths along the same set of links, we can

assign di�erent weights for each link (or node) on these paths by performing

local loops. Speci�cally, for a given set of weights on a subset of links (or

nodes), we construct two measurements - a spanning measurement, and

a weighted measurement. The spanning measurement is constructed by

�nding any path that visits through all the links (or nodes) in the desired

subset at least once. The weighted measurement, then follows the same set

of edges as the spanning measurement, but visits each link (or node) an

additional number of times in accordance with the desired weight for that

link (or node). Finally, we subtract the end-to-end delay for the weighted

path from that of the spanning path to get an output that is proportional

to the output of the corresponding compressive sensing problem (See Fig.

4.7). These ideas enable us to reduce the network tomography problem to

a compressive sensing problem with integer valued matrices. In the Sec-

tion 4.4, we present an e�cient compressive sensing algorithm with integer

CHAPTER 4. NETWORK TOMOGRAPHY � FRANTIC 90

Figure 4.7: Cancellation using weighted measurements: To get the measurement

[1 0 1 0 0 0]xE , we design the paths as follows. First, we just follow the path

{e1e6e3e5}, we get the measurement [1 0 1 0 1 1]xE . Second, when visiting e1

and e3 for the �rst time, the probe does one more local loop for both links to

get the measurement [3 0 3 0 1 1]xE . Finally, we take the di�erence of these two

measurements and divide the result by 2. Note that 1) Only one cancellation

is required. 2) Even if v3 is inaccessible, we still can obtain the two target

measurements. 3) One additional local loop at e1 in the second step (so that e1

is visited 5 times), allows us to obtain the measurement [2 0 1 0 0 0]xE . Thus,

controlling the number of local loops allows us to implement other ensembles of

measurement matrices.

CHAPTER 4. NETWORK TOMOGRAPHY � FRANTIC 91

entries.

4.3.2 Main Theorems

In this section, we state the main results of this work. Let ρ ∈ Ω(1)

∩ o(|E|/k) be a design parameter.

Theorem 7 (Compressive sensing via integer matrices). Let M ∈ Z+.

There exists a constant c such that whenever m > ckdlog(n)/ log(M)e, the
ensemble of ZM -valued matrices {Am×n} designed in Section 4.4 and the

SHO-FA-INT reconstruction algorithm has the following properties:

i) Given (Am×n, Am×nx) as input, where x is an arbitrary k-sparse vector

in Rn, SHO − FA− INT outputs a vector x̂ ∈ Rn that equals x with

probability at least 1−O(1/k) under the distribution of Am×n over the

ensemble {Am×n},

ii) Given Am×nx, x̂ is reconstructed in O(kdlog(n)/ log(M)e) arithmetic

operations, and

iii) Each row of Am×n has O(n/k) non-zeros in expectation.

Theorem 8 (Network tomography for link congestion). Let N = (V , E)

be an undirected network of diameter D such that at most k links have

unknown non-zero link delays. LetM ∈ Z+ Then, the FRANTIC algorithm

has the following properties:

i) FRANTIC requires O(ρkdlog(|E|)/ log(M)e) measurements,

ii) For every edge delay vector xE ∈ R|E|,FRANTIC outputs x̂E that equals

xE with probability 1−O(1/ρk),

iii) The FRANTIC reconstruction algorithm requires

O(ρkdlog(|E|)/ log(M)e) arithmetic operations, and

CHAPTER 4. NETWORK TOMOGRAPHY � FRANTIC 92

iv) The number of links of N traversed by each test measurement packet

in FRANTIC is O(D|E|/ρk) and the total number of hops for each

packet is O(DM |E|/ρk).

De�nition 1 (Isolated congested node). A congested node is called isolated

if there exists at least one neighbour which is not congested.

Theorem 9 (Network tomography for node congestion). Let N = (V , E)

be an undirected network of diameter D such that at most k have unknown

non-zero node delays and all congested nodes are isolated. Let M ∈ Z+

Then, the FRANTIC algorithm has the following properties:

i) FRANTIC requires O(ρkdlog(|V|)/ log(M)e) measurements,

ii) For every edge delay vector xV ∈ R|V|, FRANTIC outputs x̂V that

equals xV with probability 1−O(1/ρk),

iii) The FRANTIC reconstruction algorithm requires

O(ρkdlog(|V|)/ log(M)e) arithmetic operations, and

iv) The number of links of N traversed by each test measurement packet

in FRANTIC is O(D|V|/ρk) and the total number of hops for each

packet is O(DM |V|/ρk).

Explanation of design parameters

The parameter M denotes the maximum number of times a test packet

may travel over any edge. In many present-day networks, the value of M

is usually �xed to be a small constant. In this setting, our algorithm re-

quires O(k log(n)) measurements and decoding steps. Additionally, if M

is allowed to increase with the network size (possibly, in future genera-

tion networks), the number of measurements and decoding complexity our

algorithms may be decreased to O(k).

CHAPTER 4. NETWORK TOMOGRAPHY � FRANTIC 93

The parameter ρ is a design parameter that controls the tradeo� be-

tween the measurement path lengths and the number of measurements

required. When ρ = 1, we require O(k log(n)/ log(M)) measurements with

path lengths O(nD/k). On the other extreme, if ρ is set to be n/(kω(1)),

we require up to o(n) measurements but with as little as ω(D) path-length.

In our exposition, we prove the correctness of our schemes for the case when

ρ = 1. The results for other values of ρ follow from this analysis by pre-

tending that the network has ρk congested nodes instead of k.

4.4 SHO-FA-INT algorithm for Compressive Sensing

We begin by describing a new compressive sensing algorithm SHO-FA-INT

which has several properties that are desirable for our application.

In the measurement designs presented in Sections 3.2 and 3.3, a key

requirement is that the entries of the measurement matrix may be chosen

to be arbitrary real or complex numbers of magnitude (up to O(log(n))

bits of precision). However, in several scenarios of interest, the entries of

the measurement matrix are constrained by the measurement process.

• In network tomography [146], one attempts to infer individual link de-

lays by sending test packets along pre-assigned paths. In this case, the

overall end-to-end path delay is the sum of the individual path delays

along that path, corresponding to a measurement matrix with only

0s and 1s (or in general, with positive integers, if loops are allowed).

• If transmitters in a wireless setting are constrained to transmit sym-

bols from a �xed constellation, then the entries of the measurement

matrix can only be chosen from a �nite ensemble.

In both these examples, the entries of the measurement matrix are tightly

constrained.

CHAPTER 4. NETWORK TOMOGRAPHY � FRANTIC 94

In this section, we discuss how key ideas from Sections 3.2 and 3.3

may be applied in compressive sensing problems where the entries of mea-

surement matrix is constrained to take values form a discrete set. For

simplicity, we assume that the entries of the matrix A can take values in

the set {1, 2, . . . ,M} for some integer M ∈ N+. For simplicity, we consider

only the exact k-sparse problem, noting that extensions to the approximate

k-sparse case follow from techniques similar to those used in Section 3.3.

Let {Gn,m′}n,m′∈� be an ensemble of left-regular bipartite graphs, where

each Gn,m′ is a bipartite graph with left vertex set {1, 2, . . . , n} and right

vertex set {1, 2, . . . ,m′}. For each left vertex j ∈ {1, 2, . . . , n}, we pick

three distinct vertices uniformly at random from the set of right vertices

{1, 2, . . . ,m′}.
Measurement Design: Let ζ(·) be the Riemann zeta function. Let R ∈ �+

such that MR/ζ(R) ≥ 3n and let [M] denote the set {1, 2, . . . ,M}. Given
the graph Gn,m′ , we design a Rm′ × n measurement matrix A(= ARm′×n)

as follows. First, we partition the rows of A into m′ groups of rows, each

consisting of R consecutive rows as follows.

A =



a
(1)
11 a

(1)
12 . . . a

(1)
1n

...
...

. . .
...

a
(R)
11 a

(R)
12 . . . a

(R)
2n

a
(1)
21 a

(1)
22 . . . a

(1)
2n

...
...

. . .
...

a
(R)
21 a

(R)
22 . . . a

(R)
2n

...
...

. . .
...


Let a

(r)
ij be the r-th row entry in the j-th column of the i-th group and let

aaaij = [a
(1)
ij a

(2)
ij . . . a

(R)
ij]T . First, for each (i, j) not in Gn,m′ , we set aaaij = 0R.

Next, we randomly choose 3n distinct values from the set

C ,
{

[c1, c2, . . . , cR]T ∈ (ZM)R : gcd(c1, c2, . . . , cR) = 1
}

CHAPTER 4. NETWORK TOMOGRAPHY � FRANTIC 95

and use these to set the values of aaaij for each edge (i, j) in Gn,m′ . Note that
vectors in the set C are co-prime. The assumption that MR/ζ(R) ≥ 3n

ensures that such a sampling is possible. We skip the proof of Lemma 6

here and refer the reader to [10] for the proof.

Lemma 6. For M large enough, MR/ζ(R) ≤ |C| ≤MR.

Proof. The upper bound on |C| is trivial, since each element of C is an R

length vector whose each coordinate takes values from the set [M]. To prove

the lower bound, note that a su�cient condition for gcd(c1, c2, . . . , cR) to

be true is that for each prime number p ∈ �, there exists at least one

index r ∈ [R] such that p does not divide cr. Since the number of vectors

(c1, c2, . . . , cR) ∈ [M]R such that for each r, cr is divisible by p is at most

(M/p)R, the number of vectors in [M]R such that at least one component

is not divisible by p is at least MR(1 − p−R). Denoting the set of prime

numbers by P and extending the above argument to exclude all vectors

that are divisible by some prime number greater than or equal to two, we

obtain, for M large enough,

|C| ≥MR
∏
p:p∈P

(1− 1/p−R) = MR/ζ(R).

In the above, the second equality follows from Euler's product formula for

the Riemann zeta function. �

The output of the measurement is a Rm′-length vector y = Ax. Again,

we partition y into m′ groups of R consecutive rows each, and denote

the i-th sub-vector as yi. Note each yi ∈ �R follows the relation yi =

[ai1ai2 . . . ain]x.

Reconstruction algorithm: The decoding process is essentially equivalent

to the �peeling process� to �nd 2-cores of uniform hypergraphs [70, 102].

The decoding takes place over O(k) iterations. The decoding algorithm

is very similar to that of SHO-FA. In each iteration, we �nd one non-zero

CHAPTER 4. NETWORK TOMOGRAPHY � FRANTIC 96

undecoded xj with a constant probability after locating a right node that

is connected to exactly one non-zero left node. After decoding the non-zero

xj for the current iteration, we cancel out the contribution of xj from all

measurements and proceed iteratively. To describe the peeling process,

we de�ne leaf nodes as follows.

De�nition 2 (S-leaf node). A right node i is a leaf node for set of left

nodes S if i is connected to exactly one left node j ∈ S in the graph Gn,m′.

First, the algorithm initializes the reconstruction vector x̂(1) to the all

zeros vector 0n, the residual measurement vector ỹ(1) to y, and the neigh-

bourly set B(1) to be the set of all right nodes for which yi does not equal

0R. In each iteration t, the decoder picks a right node i(t) from the cur-

rent neighbourly set B(t) and checks if only one left node contributes to

the value of (ỹ(t))i(t). If so, it identi�es i(t) as a leaf node, decodes delay

value at the corresponding parent node, and updates B(t+1), ỹ(t+1), and

x̂(t + 1) for the next iteration. The decoder terminates when the residual

measurement vector becomes zero.

Next, we prove the performance guarantees of SHO-FA-INT as claimed

in Theorem 7. Let k = k(n) grow as a function of n. We show that

the algorithm presented above correctly reconstructs the vector x̂ with a

high probability over the ensemble of matrices {ARm′×n}. To this end, we

�rst note that if m′ = Ω(k), the ensemble of graphs {Gn,m′} satis�es the
following �many leaf nodes� as shown in the following lemma.

Lemma 7 (Many leaf nodes). Let S be a subset of the left nodes of the

Gn,m′ and let N(S ′) be the set of right neighbours of a set S ′. If |S| ≤ k

then with probability 1−O(1/k), for every S ′ ⊆ S, N(S ′) contains at least
|N(S ′)|/2 S ′-leaf nodes.

CHAPTER 4. NETWORK TOMOGRAPHY � FRANTIC 97

Proof of Theorem 7: Let S(x) = {j ∈ {1, 2, . . . , n} : xj 6= 0}. By

Lemma 7, with probability (1−O(1/k)), all its subsets S ′ of S(x) have at

least twice as many leaf neighbours as the the number of elements in the

S ′. Therefore, in each iteration, the probability of picking a leaf node is at

least half. Next, we note that in each iteration that we pick a leaf node,

the probability of identifying as one and �nding its left neighbour correctly

is 1. This is true because the weight vectors aaaij's corresponding di�erent

neighbours of a given right node i are di�erent, and for a leaf node i with

the sole non-zero neighbour j, the output value yi exactly equals xjaaaij.

Next, we argue that if i is not a leaf node, then the probability of it

being declared a leaf node in any iteration is O(1/n). Note that for this

error event to occur for a right node i, it must be true that
∑

j′∈N(i) xe′aij′ =

x′′aij′′ for some x′′ ∈ R and j′′ connected to i. Since all the measurement

weights are chosen randomly, by the Schwartz-Zippel lemma [127,154], the

probability of this event is O(1/n), which is o(1/k).

Since the probability of picking a leaf node at any iteration is at least

1/2, the expected number of iterations before a new leaf node is picked is

upper bounded by 2. Since there are at most k non-zero xj's, in expectation,

the algorithm terminates in O(k) steps. Further, since the probability of

�nding a leaf in each iteration is independent across iterations, by applying

standard concentration arguments, the total number of iterations required

is upper bounded by 2k in probability.

Finally, to compute the decoding complexity, note that each iteration

requires a constant number of arithmetic operations over vectors in [M]R,

which in turn can be decomposed into O(R) arithmetic operations over

integers. Therefore, the total number of integer operations required is

O(Rk) = O(kdlog(n)/ log(M)e). Finally, we note that since each left node

in Gn,m′ has exactly 3 right neighbours which are picked uniformly among

CHAPTER 4. NETWORK TOMOGRAPHY � FRANTIC 98

all right nodes and independently across di�erent left nodes, with high

probability, each right node has no more than 4n/m′ left neighbours. This

can be proved by �rst computing the expected number of left neighbours

for a right node and then applying the Cherno� bound to concentrate it

to close to its expectation. This shows that, with high probability, the

number of non-zero entries in each row of A is O(n/k). �

4.5 The FRANTIC algorithm

4.5.1 Link Delay Estimation

We de�ne a path PPP of length T over the network N = (V , E) as a sequence

(e1, e2, . . . , eT) = ((v1, v2), (v2, v3), . . . (vT , vT+1)) such that et ∈ E for t =

1, 2, . . . , T . For a given path PPP , we de�ne the multiplicityW (PPP , e) of a link

e ∈ E as the number of times PPP visits e. Let ∆(PPP) be the end-to-end delay

for a path PPP .

De�nition 3 (www-spanning measurement). Given a measurement weight

vector www = [w1w2 . . . w|E|], a www-spanning measurement is a path PPP =

(e1, e2., . . . eT) in the network N such that PPP visits each e in {e : we 6= 0}
at least once.

De�nition 4 ((www,PPP)-weighted measurement). Given a measurement weight

vector www and a www-spanning measurement PPP = (e1, e2, . . . eT), a (www,PPP)-

weighted measurement is a path QQQ = (e′1, e
′
2, . . . e

′
H) in the network N such

that W (QQQ, e) = W (PPP , e) + 2we for each link e.

Observe that the end-to-end delay for a www-spanning measurement PPP is

equal to ∆(PPP) =
∑

e∈EW (PPP , e)xe, and that for a (www,PPP)-weighted measure-

ment is equal to

∆(QQQ) =
∑
e∈E

W (QQQ, e)xe = ∆(PPP) + 2
∑
e∈E

wexe. (4.1)

CHAPTER 4. NETWORK TOMOGRAPHY � FRANTIC 99

Proof of Theorem 8: To prove Theorem 8, we start with a measurement

matrix A drawn according to the SHO-FA-INT construction for Theorem 7.

For each row of the measurement matrix, we construct two paths in the

network - a spanning measurement and a weighted measurement. Next,

we subtract the end-to-end delay for the spanning measurement from the

weighted measurement to get an output that is exactly twice the measure-

ment output corresponding to the compressive sensing measurement using

measurement matrix A. Thus, we can apply the SHO-FA-INT reconstruc-

tion algorithm from Section 4.4 to reconstruct the delay vector xE . More

precisely, let A be a Rm′×nmatrix drawn from the ensemble of Section 4.4,

where R = O(dlog(n)/ log(M)e) and n = |E|.
Measurement Design: Let aaa(i) = [ai1ai2 . . . ain] be the i-th row of A. Con-

sider network measurements PPP (i) and QQQ(i) de�ned as follows. Let PPP (i)

be an aaa(i)-spanning measurement obtained by picking the links in {e :

aaa(i) 6= 0} one-by-one and �nding a path from one link to another. By

the de�nition of the diameter of the graph, there exists a path of length

at most D between any pair of links. Therefore, there exists a path

PPP (i) = ((v1, v2), (v2, v3), . . . , (vT , vT+1)) of length T = O(Dn/k) that covers

all the O(n/k) vertices that have non-zero components in aaa(i).

Next, let QQQ(i) = (e′1, e
′
2 . . . , e

′
T ′) be a (PPP (i), aaa(i))-weighted measurement

of length T ′ = T + 2
∑

e∈E ae(i) as follows. Let e
′
1 = (v1, v2). If a(v1,v2)(i) 6=

0, we traverse the edge (v1, v2) an additional 2a(v1,v2)(i) times by going in the

forward direction, i.e. on (v1, v2), and the reverse direction, i.e. on (v2, v1),

an additional a(v1,v2)(i) times each. Thus, for τ = 1, 3, 5, . . . , 2a(v1,v2)(i)+1,

we set e′τ = (v1, v2) and for τ = 2, 4, . . . , 2a(v1,v2)(i), we set e′τ = (v2, v1).

Next, if v3 = v1, i.e., we have already visited e2, we traverse the link e2

once more, else we traverse it a(v2,v3)(i) + 1 times in the forward direction

and a(v2,v3)(i) times in the reverse direction. That is, for τ = 2a(v1,v2)(i) +

CHAPTER 4. NETWORK TOMOGRAPHY � FRANTIC 100

2, 2a(v1,v2)(i) + 4, . . . , 2a(v1,v2)(i) + 2a(v2,v3)(i) + 2, we set e′τ = (v2, v3) and

for τ = 2a(v1,v2)(i)+3, 2a(v1,v2)(i)+5, . . . , 2a(v1,v2)(i)+2a(v2,v3)(i)+1, we set

e′τ = (v3, v2). We continue this process for each link (vt, vt+1) in the path

PPP (i). That is, if (vt, vt+1) has been visited already in either the forward

or reverse direction by QQQ(i), we add it to PPP (i) only once, else, we traverse

it an additional a(vt,vt+1)(i) times in each direction. Therefore, QQQ(i) visits

every edge e ∈ E a total of 2ae(i) times more than PPP (i) does.

Reconstructing xE : Next, we measure the end-to-end delays for the paths

PPP (i) andQQQ(i) for each i = 1, 2, . . . , Rm′ and let yi = (∆(QQQ(i))−∆(PPP (i)))/2.

From equation (4.1), it follows that yi =
∑

e∈E aiede. Note that this exactly

equals the output of a compressive sensing measurement with x as the input

vector, A as the measurement matrix, and y and the measurement output

vector. Using this observation, we input the vector y to the SHO-FA-

INT algorithm to correctly reconstruct x with probability 1−O(1/k). The

guarantees on the decoding complexity follow from the decoding complexity

of the SHO-FA-INT algorithm and that on the total number of hops follows

by noting that each link in a measurement path may be visited at most

2M times. �

4.5.2 Node Delay Estimation

The measurement design and the decoding algorithm for node delay esti-

mation proceeds in a similar way to the link delay estimation algorithm of

Section 4.5.1. The di�erence here is that instead of assigning weights to

links in a path, our design assigns weights to nodes in a path by visiting

each node repeatedly. We skip the proof of Theorem 9 here as it essentially

follows from the technique used in the proof of Theorem 8. The only di�er-

ence is that for node delay estimation we add the isolation assumption. If

there exists one congested node, v ∈ V , whose neighbors are all congested

CHAPTER 4. NETWORK TOMOGRAPHY � FRANTIC 101

Figure 4.8: Isolated Node: For a subgraph

with 5 vertices and 4 links, all vertices are

congested. The node v1 is not isolated since

all of its neighbors are congested. Suppose

there is a local loop involving v1, v2, and

e1. For link measurement, only the delay of

e1 is added to the weighted measurement.

However, for the node measurement, the de-

lays of v1 and v2 are both added to the

weighted measurement. The delay of v2 will

not be canceled by the corresponding span-

ning measurement.

nodes, then we are not able to generate the measurement involving v by

subtracting the weighted measurement from the spanning measurement.

The reason is that each local loop involving v adds one more delay corre-

sponding to one of its congested neighbor. However, this problem doesn't

happen in edge delay measurements. (See Fig. 4.8.)

4.5.3 Extension of the FRANTIC algorithm

In fact, the ideas of cancellation and weighted measurements of the FRAN-

TIC algorithm can be applied in any measurement matrix with integer

entries and corresponding compressive sensing algorithm [15, 78, 145, 146]

to generate new algorithms for network tomography problem. The reason

why we stick to our SHO-FA-INT algorithm is that both the number of

measurements and decoding complexity are order-optimal if there is no

constraint on the number of times a packet may travel over any edge.

CHAPTER 4. NETWORK TOMOGRAPHY � FRANTIC 102

4.6 Exploiting network structure

4.6.1 Reducing Path Lengths through Steiner Trees:

One drawback of the approaches presented in the previous section is that

even though on an average, each row of A contains only O(n/ρk) non-zero

entries, our upper bound on the path-length relies on worst-case pairwise

paths for each pair of successive edges to be measured. In this subsection,

we propose a Steiner-Tree-based approach to design the measurement paths

given a measurement matrix A.

De�nition 5 (Steiner Tree). Let U ⊆ V. We say that T ⊆ E is a Steiner

Tree for U if T has the least number of edges among all subsets of E that

form a connected graph that is incident on every v ∈ U . Let L(U) be the

length of a Steiner Tree for U .

For every u ∈ Z+, let

L∗(u) , max
U :U⊆V
|U|≤s

L(U).

Note that, in general, L∗(u) ≤ Du. Further, in many graphs of practical

interest, L∗(u)� Du. For example, in a line graph with n vertices, L∗(u)

is at most n, while Du maybe as large as O(nu). Using this observation, we

may further improve the performance guarantee of our algorithm. We note

that it su�ces to �nd a Steiner Tree that passes through all links speci�ed

by a given row of the measurement matrix A. Also, we already know that,

with high probability, the number of non-zero entries in each row of A is

O(n/ρk). Thus, in general, the number of links traversed by each link (or

node) delay measurement is O(L∗(u)) where s = O(|E|/ρk) (or O(|V|/ρk),

respectively) is the number of non-zero entries in the measurement. This

proves the following assertion.

CHAPTER 4. NETWORK TOMOGRAPHY � FRANTIC 103

Theorem 10 (Network tomography for link/node congestion using Steiner

Trees). For the setting of Theorem 8, the number of links of N traversed by

each measurement of FRANTIC is at most O(L∗(u)) where s = O(|E|/ρk)

is the number of non-zero entries in the measurement and the total number

of hops for each measurement is O(ML∗(u)).

Remark: There exist polynomial-time approximation schemes with a per-

formance ratio decreased from 2 to 1.55 by a series of works [18,75,86,120,

123,133,149,150].

4.6.2 Average length of Steiner Trees:

In Theorem 10, we analyzed the length of measurement paths in terms of

the worst-case length of Steiner trees that contain an arbitrary subset of s

links (respectively nodes). However, on average, however, this may be too

conservative an estimate.

De�nition 6 (Average length of Steiner tree). For every u ∈ N+, let

L(u) ,

∑
U :U⊆V
|U|=u

L(U)

|{U ⊆ V : |U| = u}|

denote the average length of Steiner tree.

In the example shown in Fig. 4.9, we argue that, with high probabil-

ity, the length of paths required is upper bounded by L(u) which may be

signi�cantly smaller than L∗(u).

4.6.3 Network decomposition:

Since we already know the topology of the network, exploring the structure

of the topology may help us to reduce the path length of each measurement.

In Fig. 4.10, we illustrate how to reduce the length of Steiner tree by

network decomposition.

CHAPTER 4. NETWORK TOMOGRAPHY � FRANTIC 104

Clique containing C =O(n1/2) nodes

n0.4 nodes

Figure 4.9: Worst-case vs Average length of Steiner trees: Consider a network

of n links. The network has two parts - a clique consisting of C = (1 +√
1 + 8(n− n0.4))/2 fully connected nodes and a line consisting of n0.4 nodes. Let

the number of congested links in the network be k = n0.95. Thus, each measure-

ment path has to cover a set of links of size O(n0.05) speci�ed by SHO-FA-INT .

In the worst case, such a set can include the two ends of the linear subnetwork.

Thus, in the worst case, the length of the Steiner tree can exceed n0.4. However,

we note that the SHO-FA-INT algorithm picks the measurement nodes uniformly

at random. Thus, the probability of picking even one edge from the linear part of

the network is O(n0.05 × n0.4/n0.5) = O(n−0.05) by the union bound. Therefore,

on an average, the length of Steiner tree is at most O(n−0.05 × n0.4) = O(n0.35),

which is lower than the worst-case length of a Steiner tree covering O(n0.05) links

in the network.

CHAPTER 4. NETWORK TOMOGRAPHY � FRANTIC 105

Figure 4.10: Network Decomposition: The network consists of three parts � two

complete graphs with Θ
(
n0.5

)
vertices and a line graph with Θ

(
n0.4

)
vertices. It

follows that there are Θ(n) links in each of the two complete graphs and Θ
(
n0.4

)
links in the line graph. For each link measurement, with high probability, two

links involved locate in each of two complete graphs. Therefore, the average

length of Steiner tree is at least Θ
(
n0.4

)
. If we decompose the original network

into two subgraphs as shown in the �gure and do the link delay estimation on

them separately, the average length of Steiner tree becomes at most Θ
(
n0.35

)
(shown in Fig. 4.9) which is smaller than Θ

(
n0.4

)
.

4.7 Acknowledgements

This work was partially supported by a grant from University Grants Com-

mittee of the Hong Kong Special Administrative Region, China (Project

No. AoE/E-02/08), a grant from the Microsoft-CUHK Joint Laboratory

for Human-centric Computing and Interface Technologies, and an SHIAE

grant.

2 End of chapter.

Chapter 5

Group Testing � GROTESQUE

5.1 Introduction

Suppose a �large� number (denoted by n) of items contains a �small� num-

ber (denoted by k, where k is assumed to be �much smaller� than n) of

�defective� items. The problem of Group Testing is to identify the defec-

tive items by using as few �group tests� as possible. This problem was

�rst considered by Dorfman in 1943 [54] as a means of identifying a small

number of diseased individuals from a large population via �pooled tests�.

In this scenario, blood from a subset of individuals is pooled together and

tested in one go. If the test outcome was �negative�, then the subset of

individuals tested in that test does not contain a diseased individual, oth-

erwise it contains at least one diseased individual. In the ensuing decades

a rich literature pertaining to the problem has built up and group testing

has found many applications in di�erent areas such as multiple access com-

munication [69,142], DNA Library Screening [38,106,126] � a good survey

of some of the algorithms, bounds and applications can be found in the

books by Du and Hwang [55,56].

Number of tests: A natural information-theoretic lower bound on the

106

CHAPTER 5. GROUP TESTING � GROTESQUE 107

number of tests required to identify the set of defectives is Ω(k log(n/k)).1

One way of deriving this follows by noting that the number of bits re-

quired to even describe a subset of size k from a set of size n equals

log
((
n
k

))
= k log(n/k)(1 + o(1)), hence at least this many tests (each of

which have binary outcomes) are needed. In this work, for ease of pre-

sentation of our results, we focus on the setting where k = O
(
n1−∆

)
for

some ∆ > 0 (though in principle our results hold in greater generality). All

asymptotic notation will be relative to the asymptote n. In this regime,

the number of required tests scales as Ω(k log(n)). Note that this argu-

ment also demonstrates that the decoding complexity of any group-testing

algorithm scales as Ω(k log(n)).2

Group-testing problem comes in di�erent �avours. There are at least

three di�erent design choices for group testing problems depending on the

applications � whether the tests are noiseless or not, adaptive or not, and

the algorithm is required to be zero-error or not.3

• Noiseless vs. noisy tests: If test outcomes are always positive when

tests contain at least one defective item, and always negative oth-

erwise, then they are said to be noiseless tests. In some settings,

however, the test outcomes are �noisy� � a common model for this

noise (e.g., [8, 36, 96]) is when test outcomes are �ipped i.i.d.4 via

1We use standard computer science Big Oh notation in this work. Details are in the Section

2.3.
2A slightly more involved information-theoretic argument is required if the group-testing

procedure is allowed to fail with �small� probability. However, even in this setting, essentially

the same lower bounds can be proven (up to small constant multiplicative factors that may

depend on the allowed probability of error) � e.g., [36, 95].
3Another �avour we do not focus on in this work corresponds to whether the design of

the testing procedure is deterministic or randomized. Recent works � for instance [97, 117]

� provide computationally e�cient deterministic designs. In this work, however, we focus on

�Monte Carlo� type randomized design algorithms.
4A �worst-case� noise model wherein arbitrary (rather than random) errors, up to a constant

CHAPTER 5. GROUP TESTING � GROTESQUE 108

Bernoulli(q) noise.5 It is known in several settings (e.g., [8, 36, 96])

that the number of noisy tests required to reconstruct the set of defec-

tives is at most a constant factor greater than the number of noiseless

tests required (both requiring O(k log(n)) tests). This constant fac-

tor depends on q proportionally with 1/(1−H(q)), where H(q) is the

binary entropy function. In this work we focus on the general setting

with noisy measurements.

• Adaptive vs. Non-adaptive tests: Adaptive group testing refers to a

setting where the design of tests of any stage is allowed to depend on

the test outcomes from prior stages. In contrast, in a �non-adaptive�

algorithm, all tests are designed a priori. Whether the tests are noise-

less and noisy tests, as long as a �small� probability of error is allowed

for the reconstruction algorithm (Monte-Carlo algorithms), it turns

out the number of tests required by even non-adaptive algorithms

meets (up to a constant factor that may depend on q) the information-

theoretic lower-bound of O(k log(n)) (e.g., [36, 38, 48, 49, 99]). Given

this, non-adaptive algorithms are often preferred to adaptive algo-

rithms in applications, since they allow for parallelizable implementa-

tion and/or the usage of o�-the-shelf hardware. Even among the class

of adaptive algorithms, it is preferable to have as few adaptive stages

as possible. In this work we focus on both adaptive and non-adaptive

algorithms. In the case of adaptive algorithms, we further also con-

sider the case of adaptive algorithms with just two stages (i.e., only

one round of feedback).

fraction of tests, has also been considered in the literature (e.g., [8, 105]).
5Other types of noise have also been considered in the literature � another well-analyzed

type called �dilution� noise (e.g., [76]) corresponds to tests with fewer defectives having a higher

chance of resulting in a false positive outcome.

CHAPTER 5. GROUP TESTING � GROTESQUE 109

• Zero-error vs. �small-error� algorithms: Potential goals for group test-

ing algorithms (in the setting with noiseless tests) are to either always

identify the set of defective items correctly, or to output it correctly

�with high probability�. With adaptive tests, it turns out that both

these settings require Θ(k log(n)) tests (e.g., [38] for the former set-

ting and [48] for the latter). With non-adaptive tests, however, it

turns out that requiring zero-error reconstruction implies that at least

Ω(k2 log(n)/ log(k)) tests must be performed [57, 58]. Given this po-

tentially large gap between the number of tests required in the two

setting, in this work we focus on the �small-error� setting. In our

work, our algorithms are said to fail if not all defectives are recovered

� our goal is to design testing procedures that do not fail with high

probability (over the randomness in the set of items that instanti-

ate as defectives). As is common in information theory achievability

arguments, we instead prove that for any speci�c set of k defective

items, with high probability over testing procedures, our algorithms

work as claimed. This implies via standard averaging arguments that

�most� testing procedures also work as claimed.

Decoding complexity:6 The discussion above focused exclusively on the

number of tests required, with no regard to the computational complex-

ity of the corresponding reconstruction algorithms. While many of the

algorithms reprised above are reasonably computationally e�cient, the de-

coding complexity of most still scales at least linearly in n. Some notable

exceptions are the results in [72, 77, 105]. The most recent work in this

line [105] with decoding complexity that is sub-linear in n culminated in a

group-testing algorithm with m = O (k2 log(n)) tests, and decoding com-

6The decoding complexity is de�ned as number of arithmetic operations (see Section 5.3 for

details of what comprises a basic arithmetic operation).

CHAPTER 5. GROUP TESTING � GROTESQUE 110

plexity that scales as poly(m).7 As noted in [77], such algorithms can �nd

applications in data-stream algorithms for problems such as the �heavy

hitter� problem [43] or in cryptographic applications such as the �digital

forensics� problem [68]. Also as noted in [105], �[the group-testing] prim-

itive has found many applications as stand alone objects and as building

blocks in the construction of other combinatorial objects.� We refer the

reader interested in these and other applications to the excellent exposi-

tions in [77,105], and focus henceforth simply on the purely combinatorial

problem of group-testing.

Our starting point is to note that since the sub-linear time algorithms

in [77, 105] require zero-error reconstruction, the penalty paid in terms of

the number of tests is heavy (Ω(k2 log(n)/ log(k)) as opposed toO(k log(n))).

Further, the decoding complexity in [77, 105] is a low-degree polynomial

in m = O(k2 log(n)), leaving a signi�cant gap vis-a-vis the information-

theoretic lower-bound of Ω(k log(n)) decoding steps (since any algorithm

must examine at least O(k log(n)) test outcomes to have a �reasonable�

probability of success). Hence in this work we choose to improve on both

these parameters with respect to [77, 105] � number of measurements and

decoding complexity.

5.1.1 Our contributions

In our work, we consider both the adaptive and non-adaptive group-testing

settings, with noisy or noiseless tests, and decoding error scaling as

O(1/ poly(k)) in both settings.8 We present our theorem statements includ-

ing internal code-design parameters that may be somewhat freely chosen.

Let g(q) = 32
(1−2q)2

+ 256
(1−H(q))3

, where H(·) is the binary entropy function.

7An algorithm with O(k log(n/k)) tests was also presented in the regime where k = Θ(n).
8The term O(1/poly(k)) is de�ned in Section 2.3.

CHAPTER 5. GROUP TESTING � GROTESQUE 111

Multi-stage adaptive algorithm: In the adaptive setting, the given al-

gorithm is the �rst to be simultaneously order-optimal (up to a small con-

stant factor that depends on the noise parameter q) in the number of tests

required as well as in the decoding complexity and achieves Θ(k log(n)) for

both measures. Our adaptive algorithm also does not need �much� adap-

tivity. In particular, our algorithm has O(log(k)) stages, where the tests

within each stage are non-adaptive � it is only across stages that adaptivity

is required. More precisely, the adaptive group testing algorithm achieves

the following guarantees.

Theorem 11. For any set of defectives S⊆I, where |S| = k and |I| = n

are large enough, the Multi-stage Adaptive Group Testing algorithm with

Bernoulli(q) noise produces a reconstruction Ŝ of S such that Ŝ = S. Let

C ≥ (1−H(q))2g(q)
128

, cadp,rn ≥ 0, cadp,deg ≥ 0 be constants. The algorithm has

the following properties:

1) The number of tests m is at most

4e1/2Ck log(n) + cadp,rnC(log(k))2 log(log(k)) log(n),

2) The number of stages is at most 1+log (k/ log(k))/[− log
(
1− e−1/2/2

)
],

3) The decoding complexity is
[
4e1/2k + cadp,rn(log(k))2 log(log(k))

][
32C

(1−2q)2g(q)
log(n) + 2 log

(
32C

(1−2q)2g(q)
log(n)

)
+ tloc

256C
(1−H(q))3g(q)

log(n)
]
for some

positive constant tloc, and

4) The error probability is at most log (D/ log(D))

− log (1−e−1/2/2)
k−1/(4e)+12e1/2kn−

C
g(q) +

(log(k))1−(cadp,rnPleaf) log(k) over the internal randomness in the algorithm.

Here, Pleaf ≥ cadp,dege
−cadp,deg is a constant.

Non-adaptive algorithm: Analogously, in the non-adaptive setting we

present the �rst algorithm that is simultaneously near-optimal in both num-

ber of measurements and decoding complexity (requiringO(k log(k) log(n))

CHAPTER 5. GROUP TESTING � GROTESQUE 112

tests and having a decoding complexity of O(k(log(n) + log2(k))). More

precisely, the non-adaptive algorithm achieves the following guarantees.

Theorem 12. For any set of defectives S⊆I, where |S| = k and |I| = n

are large enough, the Non-Adaptive Group Testing algorithm with

Bernoulli(q) noise produces a reconstruction Ŝ of S. Let cnon,bpt, cnon,rn,

cmul, and cloc ≥ 2
1−H(q)

be positive constants. The algorithm has the follow-

ing properties:

1) The number of tests m equals

cnon,bptcnon,rnk log(k)(cmul log(k) + cloc log(n)),

2) The decoding complexity is

[cmul log(k) + 2 log(cmul log(k))] (cnon,bptcnon,rnk log(k))

+(cnon,bptcnon,rnk log(k)) log(cnon,bptcnon,rnk log(k)) + k[tloccloc log(n)+

2 log(cnon,bptcnon,rnk log(k))(cnon,bpt log(k))] for some positive constant tloc,

and

3) The error probability is at most k1−exp(−1/cnon,rn)cnon,bpt/8+

2cnon,bptcnon,rnk log(k) exp ((−cmul(1− 2q)2/32) log(k)) +

k exp((−cloc(1 − H(q))3/256) log(n)) over the internal randomness in the

algorithm.

Two-stage adaptive algorithm: Finally, combining ideas from the adap-

tive and non-adaptive algorithms, we present the �rst 2-stage algorithm

that is simultaneously near-optimal in both number of measurements and

decoding complexity, with both the number of tests and the decoding com-

plexity scaling as O(k(log(n) + log2(k))). More precisely, the two-stage

adaptive algorithm achieves the following guarantees.

Theorem 13. For any set of defectives S from I (|S| = k and |I| = n

are large enough), the Two-stage Adaptive Group Testing algorithm with

CHAPTER 5. GROUP TESTING � GROTESQUE 113

Bernoulli(q) noise produces a reconstruction of the collection Ŝ of S. Let

cnon,bpt, cnon,rn, cmul, cloc ≥ 2
1−H(q)

be positive constants and let s = kγ with

γ > 3,

1) The number of tests m equals cnon,bptcnon,rn(cmul + γcloc)k(log(k))2 +

clock log(n),

2) The number of stages is 2,

3) The decoding complexity is [cmul log(k) + 2 log(cmul log(k))]

(cnon,bptcnon,rnk log(k)) + (cnon,bptcnon,rnk log(k)) log(cnon,bptcnon,rnk log(k)) +

k[tlocclocγ log(k)+2 log(cnon,bptcnon,rnk log(k))(cnon,bpt log(k))]+tlocclock log(n)

for some positive constant tloc, and

4) The error probability is at most k1−exp(−1/cnon,rn)cnon,bpt/8+

2cnon,bptcnon,rnk log(k) exp ((−cmul(1− 2q)2/32) log(k))+

k exp((−cloc(1−H(q))3/256) log(S))+k3−γ+

k exp(−cloc(1 − H(q))3/256) log(n)) over the internal randomness in the

algorithm.

Remark 9. While in the above theorem, and throughout this work, we

assume that we know the value of k exactly, in reality our algorithms can

be shown to work (with a constant factor loss in performance) even if we

only know the value of k up to a constant factor. Indeed, estimating k up

to a constant factor is the subject of several works on competitive group

testing (CGT) such as [47,131], which are able to generate such an estimate

(with O(log(n)) tests in that extra stage).

One could even envisage models wherein only an upper bound k′′ on k

is known, and measure performance against k′′ log(n) (in terms of number

of tests and decoding complexity). Indeed, this is the paradigm presented

in, for example [36]. We claim (without presenting details) that with suf-

�cient care the algorithms in this work can also be suitably modi�ed to

�t this paradigm. However, for ease of presentation of already complex

CHAPTER 5. GROUP TESTING � GROTESQUE 114

results, we focus on the �clean� case in which k is known precisely. The

challenge in the �full� analysis is primarily in showing suitable concentra-

tion of the probability of error even when the �true� number of defective is

much smaller than the outer bound k - while this can be handled, it would

make the presentation much messier.

The rest of this chapter is organized as follows. We �rst present the

high-level overview of GROTESQUE tests (which is the main tool for our

algorithm designs) and three group testing algorithms in Section 5.2. Sec-

tions 5.4�5.7 contain detailed descriptions and analysis of GROTESQUE

tests and our group testing algorithms. Section 5.9 concludes this work.

5.2 High-level overview

We now preview the key ideas used in designing our algorithms.

We begin by noting that our multi-round adaptive algorithm has de-

coding complexity that is information-theoretically order-optimal (and in

some parameter ranges, for instance when k = O(poly(log(n))), the 2-

round adaptive algorithm does too). If our algorithms are to indeed be as

blindingly fast as claimed above, it'd be very nice to have a �black-box�

that has the following property � with probability 1−O(1/ poly(k)), given

O(log(n)) (noisy) non-adaptive tests on a subset of items that contain ex-

actly one defective item that has not yet been identi�ed, in O(log(n)) time

the black-box outputs the index number of this defective item. Our multi-

stage adaptive group testing algorithm then gives to this black-box sub-

sets of items that, with constant probability, contain exactly one uniden-

ti�ed defective item. Our non-adaptive group testing algorithm, on the

other hand, gives to this black-box subsets of items that, with probability

Ω(1/ log(k)), contain exactly one unidenti�ed defective item. These choices

CHAPTER 5. GROUP TESTING � GROTESQUE 115

lead to the claimed performance of our algorithms.

5.2.1 GROTESQUE Tests

We �rst intuitively describe a non-adaptive testing and decoding procedure

(which we call GROTESQUE9 testing) that implements the �black-box�

described above. Details, with explicit characterizations of constants, are

in Section 5.4.

GROTESQUE �rst performs multiplicity testing � it takes as inputs a

set of n′ items (where n′ may in general be smaller than n), and �quickly�

(in timeO(log(k))) �rst estimates (with �high� probability10) whether these

n′ items contain 0, 1, or more than one defectives. If the n′ items contain

0 or more than 1 defectives, GROTESQUE outputs this information and

terminates at this point. However, if the n′ items contain exactly 1 defec-

tive item, it then performs localization � it �quickly� (in time O(log(n′)))

estimates (with �high� probability) the index number of this item. Both

these processes (multiplicity testing, and localization) are non-adaptive.

• Multiplicity tests: The idea behind multiplicity testing is straight-

forward � GROTESQUE simply performs Θ(log(k)) random tests, in

which each of the n′ items is present in each of the Θ(log(k)) tests

with probability 1/2 (hence these tests are non-adaptive). As Ta-

ble 5.4 demonstrates, if the set of n′ items being tested has exactly

one defective item, then in expectation about half the Θ(log(k)) mul-

tiplicity tests should have positive outcomes, otherwise the number

of tests with positive outcomes should be strictly bounded away from

1/2 (even if the tests are noisy). In fact, the probability of error in

9GROTESQUE is short for GROup TESting QUick and E�cient.
10In this work, the term �with high probability" means that the error probability approaches

0 as k or n grows without bound. The precise error probabilities are carefully calculated in the

a�liated analysis.

CHAPTER 5. GROUP TESTING � GROTESQUE 116

the Multiplicity testing stage can be concentrated to be lower than

exp(−Θ(log(k))) = O(1/(poly(k))).

• Localization tests: The idea behind localization is somewhat more

involved. For this sub-procedure, GROTESQUE (non-adaptively) de-

signs a priori a sequence of binary Θ(log(n))× n′ matrices.11 In par-

ticular, the columns of each such matrix correspond to the collection

of codewords of a constant-rate expander code [132] with block-length

Θ(log(n)). In brief, these are error-correcting codes whose redun-

dancy is a constant fraction of the block-length that can correct a

constant fraction of bit-�ips with �high probability� (for instance,

Barg and Zémor [13] analyze their performance against the �prob-

ability q bit-�ip noise� and demonstrate that the probability of error

decays exponentially in the block-length). Further, expander codes

have the desirable property that their decoding complexity scales lin-

early in the block-length. Conditioning on the event that the mul-

tiplicity of defectives in the n′ items being tested equals exactly 1

(say the i-th item is defective), this means that in the noiseless set-

ting, the binary vector of Θ(log(n)) outcomes of the localization tests

performed by GROTESQUE correspond exactly to the i-th code-

word of the expander code. Even in the noisy setting, the vector

of test outcomes corresponds to the i-th codeword being corrupted

by Bernoulli(q) bit-�ips. In both of these settings, by the guarantees

provided in [13, 132], the GROTESQUE localization procedure out-

puts the incorrect index (corresponding to the defective item) with

probability exp(−O(log(n))) = O(1/(poly(n))) = o(1/(poly(k))).

11As mentioned before, n′ could generally be much smaller than n. However, in our algo-

rithms, n′ could be as large as n in the worst case. Therefore, we choose the block-length of

expander code to be log(n).

CHAPTER 5. GROUP TESTING � GROTESQUE 117

We now present the ideas behind our three algorithms, highlighting the

use of GROTESQUE tests in each.

5.2.2 Adaptive Group Testing

For the adaptive group-testing problem, we now use a few �classical� com-

binatorial primitives��balls and bins problem�, McDiarmid's concentra-

tion inequality, �coupon collector's problem�� combined carefully with the

GROTESQUE testing procedure. We present the intuition here and the

detailed calculations in Section 5.5. Our algorithm works in two phases:

• Random binning: We �rst note that if we randomly partition the

set of all N items into say Θ(k) disjoint pools (each with n/Θ(k))

items, then with �high� probability (via McDiarmid's inequality [98])

a constant fraction of the pools contain exactly one defective item.

Hence GROTESQUE can be used on each disjoint pools as inputs

with n′ = n/(Θ(k)). Thus, in a single stage of Θ(k) pools and cor-

responding Θ(k) · O(log(n)) = O(k log(n/k)) non-adaptive tests, we

can identify a constant fraction of the D defective items (with prob-

ability at least 1− exp(−Θ(k))). In the subsequent O(log(k)) stages,

since the number of unidenti�ed defectives decays geometrically, the

number of pools per stage can be chosen to decay geometrically for

comparable performance. Since the number of tests decay geomet-

rically, the overall number of GROTESQUE tests sum up to O(k).

However, each GROTESQUE test requires at most log(n) tests with

corresponding time-complexity O(log(n)). Hence the overall num-

ber of tests, and time-complexity, of these random binning stages is

O(k log(n)).

However, by the time we're at the O(log(k))-th stage, the number

of remaining unidenti�ed defective items is �small� (at most log(k)).

CHAPTER 5. GROUP TESTING � GROTESQUE 118

Hence concentration inequalities may not provide the desired decay

in the probability of error of that stage (corresponding to the event

that the stage correctly recovers less than a certain constant fraction

of the defective items remaining from the previous stage). The overall

probability of error of all the random-binning stages is dominated by

the probability of error of the last random-binning stage.

• Coupon collection: To compensate for this �problem of small num-

bers�, in the last stage we segue to an alternative primitive, that of

coupon collection [103]. We choose parameters so that at the begin-

ning of this coupon-collection stage, there are less than log(k) uniden-

ti�ed defectives remaining. Rather than partitioning the set of items

into pools as in the previous stages, in this stage we independently

choose O(log2(k) log(log(k))) pools (corresponding to the �coupons�

in the coupon-collector's problem) � note thatO(log2(k) log(log(k))) =

o(k log(n)), hence this coupon-collection stage does not change the

overall number of tests required by more than a constant factor.

Each pool is chosen to be of size so that with constant probability

it contains one of the remaining O(log(k)) unidenti�ed defectives.

Each pool/coupon is given as an input to GROTESQUE. By stan-

dard concentration inequalities on the coupon collection process, after

O(log2(k) · log(log(k))) coupons have been collected, with probability

1−O(1/ poly(k)) all the defectives are decoded.

To summarize the discussion on the number of tests and decoding com-

plexity which form the primary thrust of this work.

• Random binning:

� In the random binning phase there are O(log(k)) stages.

CHAPTER 5. GROUP TESTING � GROTESQUE 119

� In the �rst stage GROTESQUE is called O(k) times. Hence the

number of tests and decoding complexity are both O(k log(n)).

� In i-th stage, the number of GROTESQUE calls is a constant fac-

tor c smaller than in the previous stage. Therefore, the number of

tests and decoding complexity decay geometrically in proportion

to ci.

� Summing the above geometric series, the total number of

GROTESQUE calls is O(k). Hence, the number of tests and

decoding complexity are both O(k log(n)).

• Coupon collection:

� The number of GROTESQUE calls is O(log2(k) log(log(k))).

Therefore, the number of tests and decoding complexity are both

O(log2(k) log(log(k)) log(n)) = o(k log(n)).

5.2.3 Non-adaptive Group Testing

We present the intuition here and the detailed calculations in Section 5.6.

The critical di�erence between adaptive and non-adaptive group testing is

that defective items that have already been identi�ed cannot be excluded

from future tests. This means that if we naïvely use the adaptive pro-

cedure outlined above (after suitably optimizting the parameters) we get

an algorithm with O(k log(k) log(n)) tests and O(k log(k) log(n)) decod-

ing complexity. Instead, we redesign our testing procedure to speed up

the decoding complexity to O(k(log2(k) + log(n))) (though we still need

Ok log(k) log(n) tests). In particular, we �rst non-adaptively choose a set

of O(log(k)) random graphs with the following properties � each graph Gg
is bipartite, has n nodes on the left of Gg and is left-regular with left-degree

1, and has O(k) nodes on the right. Each left node of Gg corresponds to an

CHAPTER 5. GROUP TESTING � GROTESQUE 120

item. Each right node corresponds to a group of O(log(n)) non-adaptive

(GROTESQUE) tests, for a total of O(k log(k) log(n)) non-adaptive tests.

In the rest of this work, we refer to a left node as an item node and to a

right node as a testing node. We show that, with a total of k log(k) testing

nodes, our iterative decoding algorithm identi�es exactly one defective item

in each iteration, and all defectives are identi�ed in k iterations.

A node on the right of Gg is said to be a �leaf node with respect to Gg�
if the item nodes connected to it contain exactly one defective item (or in

other words, GROTESQUE's multiplicity test, run on the items connected

to such a node, would with high probability return a value of 1). It can be

shown via standard concentration inequalities that for each defective item

(on the left of each bipartite graph Gg), a constant fraction of its O(log(k))

right neighbours (over all O(log(k)) graphs) are such that they are �leaf

nodes with respect to Gg�. For each Gg, the items/left-nodes connected to its

testing/right nodes may now be given as an input to GROTESQUE (with

n′ = O(log(n)) tests (however, in our actual algorithm, not all testing nodes

of all Ggs are necessarily chosen as inputs to GROTESQUE � the speedup

in decoding complexity arises crucially from a more careful procedure in

deciding which testing nodes to use to give inputs to the GROTESQUE

testing procedure).

Decoding proceeds by iteratively following the steps below:

1. Initialization of leaf-nodes: We initialize a leaf-node list that contains

all leaf nodes. We do this by picking testing nodes and sequentially

feeding the corresponding item nodes to GROTESQUE's multiplicity

testing procedure (not its localization procedure, at least yet).

2. Localization of a single defective item: We pick a testing node in the

leaf node list, and use GROTESQUE's localization testing procedure

on this node to identify the corresponding defective item.

CHAPTER 5. GROUP TESTING � GROTESQUE 121

3. Updating the leaf-node list: We remove all the right neighbours of

the defective item identi�ed in the previous stage from each of the

O(log(k)) graphs, and update the leaf node list. Finally we return to

Step 2, until all D defectives have been found.

It can be veri�ed that the �rst and third steps of this algorithm both take

O
(
k log2(k)

)
steps, and the second step takesO(k log(n)) steps, thus giving

us the overall desired computational complexity.

To summarize the discussion on the number of tests and decoding com-

plexity:

• The number of testing nodes is O(k log(k)). Therefore, the number

of tests are O(k log(k) log(n)).

• The decoding complexity for initializing a leaf-node list, localizing de-

fectives via �peeling process�, and updating leaf-node list iteratively

are O(k log2(k)), O(k log(n)), and O(k log2(k)), respectively. There-

fore, the decoding complexity is O(k log(n) + k log2(k)).

5.2.4 Two-stage Adaptive Group Testing

We now merge ideas from our previous algorithms to present an adaptive

group testing algorithm with �minimal adaptivity� (just two stages). We

also use in our algorithm a key primitive suggested in Theorem 1 of [48],

speci�cally �birthday paradox hashing�. We present intuition here, with

detailed calculations in Section 5.7.

The main di�erence between our algorithm and the one presented in

Theorem 1 of [48] is that our algorithm is robust to Bernoulli(q) noise,

has decoding complexity scaling as O(k(log(n) + log2(k))), and number of

tests scaling as O(k(log(n) + log2(k))). In contrast, the algorithm in [48]

CHAPTER 5. GROUP TESTING � GROTESQUE 122

requires fewer tests (O(k log(n))), but signi�cantly higher decoding com-

plexity (O(exp(n))), and is not robust to noise in the measurement process.

The high-level intuition behind the algorithm in Theorem 1 of [48] is to

�rst partition the n items into at least k2 groups. The �Birthday Paradox� is

a simple calculation that demonstrate that if k balls are thrown uniformly

at random into more than k2 bins, then the probability of a �collision�

(there being a bin with more than one ball in it) is small.

Using this primitive, it follows that with high probability each group

contains at most one defective item. In the �rst stage, O (k log(k2)) non-

adaptive group tests are performed to identify the k groups (out of k2) that

contain exactly one defective.

In the second stage (that depends adaptively on the outcomes of the

�rst stage), O (log(n/k2)) non-adaptive group tests are performed on the

n/k2 items of each group that has been identi�ed as containing a defective

in the �rst stage. Thus, the total number of tests required for the second

stage is O (k log((n/k2))).

However, the high decoding complexity of the algorithm in Theorem 1

of [48] arises from the fact that the non-adaptive group testing algorithm

used has high decoding complexity. We hence substitute the non-adaptive

group test used in their scheme with the one presented in Section 5.6 re-

sulting in a drastic decrease in the decoding complexity at the cost of a

potential slight increase (an additive factor of O(k log2(k))) in the number

of tests required. Another relatively minor di�erence in our algorithm is

that to get the probability of error to decay as O(1/ poly(k))) as desired

for all our algorithms, we use poly(k) groups (where the polynomial is of

degree at least 3) in the �rst stage instead of the Ω(k2) groups used in the

�rst stage of [48].

To summarize the discussion on the number of tests and decoding com-

CHAPTER 5. GROUP TESTING � GROTESQUE 123

plexity:

• Birthday paradox:

� Since we apply our non-adaptive algorithm in this stage, the

number of tests and decoding complexity are both O(k log2(k)).

• Localization:

� The number of GROTESQUE calls is exactly k. Hence the num-

ber of tests and decoding complexity are both O(k log(n)).

Group Testing

n The total number of items

k The total number of defective items

∆ k = O
(
n1−∆

)
q The pre-speci�ed probability that the result of a test di�ers from the true result

S The set of all k defective items

I The set of all n items

m The total number of tests required to identify the set of defective items

Table 5.1: Table of notation used for the general group testing problem

5.3 Basic Arithmetic Operations

Since in this work we claim computational complexity that is essentially

information-theoretically order-optimal, we have to be careful about our

computation model. We thus discuss the basic arithmetic operations used

in this work and their corresponding time complexities. The usage of Red-

Black trees, a type of binary tree, is speci�cally for our non-adaptive group

testing algorithm to manipulate the leaf-node list in an e�cient manner.

See [14] for the details of Red-Black trees and Section 5.6 for how we use

them.

CHAPTER 5. GROUP TESTING � GROTESQUE 124

GROTESQUE TESTS

I ′ The set of items being tested in GROTESQUE TESTS.

n′ The number of items being tested in GROTESQUE TESTS, n′ = |S|
k′ The total number of defectives of GROTESQUE TESTS input

mmul The number of Multiplicity tests

mloc The number of Localization tests

K The number of positive results of Multiplicity tests

C Expander code

y(M) The length-mmul binary vector
(
y

(M)
1 , y

(M)
2 , . . . , y

(M)
mmul

)T
denoting the

outcomes of the Multiplicity Encoder in the absence of noise.

y(L) The length-mloc binary vector
(
y

(L)
1 , y

(L)
2 , . . . , y

(L)
mloc

)T
denoting the

outcomes of the Localization Encoder in the absence of noise.

ŷ(M) The length-mmul binary vector denoting the actually observed noisy

outcomes of the Multiplicity Encoder.

ŷ(L) The length-mloc binary vector denoting the actually observed noisy

outcomes of the Localization Encoder.

Table 5.2: Table of notation used in GROTESQUE tests

5.4 GROTESQUE Tests

A key component of the algorithms that we present in this work are

GROTESQUE Tests (short for GROup TESting QUick and E�cient).

Given a set I ′ = {j1, j2, . . . , jn′} ⊆ I containing n′ items, and out of

which an unknown number k′ of k are defectives, the GROTESQUE tests

tell us, with high probability, the number of defective items k′ and the

location if there is just one. One way of thinking about the GROTESQUE

module is that it attempts to solve a �reduced� version of the original �k

defectives out of n items� problem, instead solving a �k′ defectives out of

n′ items� problem, where k′ and n′ are generally both much smaller than

k and n, respectively. The input to GROTESQUE tests is a length-

CHAPTER 5. GROUP TESTING � GROTESQUE 125

Name of operation Time complexity

Addition of two bits 1

Comparison of two bits 1

Searching/Insertion/Deletion log(number of elements in the tree)

element in Red-Black trees

Table 5.3: Basic operations and corresponding time complexities

n′ vector, (xj : j ∈ I ′), where xj is 1 if j is defective, and 0 otherwise.

The test outputs are y1, y2, . . . , ym′ . While test outcomes are positive or

negative, for notational convenience we represent the corresponding vector

as a length-m binary vector with 1 representing a positive test outcome,

and 0 representing a negative test outcome. Each of which are �ipped

independently by a Binary Symmetric Channel with transition probability

q to obtain noisy tests ŷ1, . . . ŷm′ . The noisy tests are then processed by

the GROTESQUE decoder to output one of the following possibilities:

1. k′ = 0, i.e., there is no defective.

2. k′ = 1. In this case, the decoder also outputs the location of the

defective in the set S.

3. k′ > 1, i.e., there are at least two defective items.

GROTESQUE consists of two kinds of tests - multiplicity tests and local-

ization tests. Multiplicity tests tell us which of the above three possibilities

it is, and the localization tests tell us which item is defective if there exists

exactly one defective item in the n′ items. See Figure 5.1 for the block

diagram.

CHAPTER 5. GROUP TESTING � GROTESQUE 126

Figure 5.1: The input of a GROTESQUE tests is a set of n′ items with unknown number

of defectives. There are three possible outputs: there exists no defective item, or there

exists exactly one defective item and the corresponding index number, or there exist at

least two defective items (but GROTESQUE does not output the corresponding index

numbers). There are two parts to GROTESQUE Encoding: the Multiplicity Encoder

and the Localization Encoder. For the Multiplicity Encoder, we generate mmul tests.

Each item is included in each test uniformly at random. In the Localization Encoder,

�rst an expander code with n′ codewords is chosen. Next, the j-th item is included in the

i-th test if and only if the i-th bit of the j-th codeword is 1. The inputs to GROTESQUE

Decoding are the results of outputs of GROTESQUE Encoding passing through BSC(q).

Again, GROTESQUE Decoding is divided into two parts: the Multiplicity Decoder and

the Localization Decoder. In the Decoder, we count the number of positive outputs of

the Multiplicity Encoder, compare this number with the expected numbers for three

cases, and decide on the multiplicity according to the rule given in Equation 5.1. We

call the above process THRES(.) (short for threshold detector). To implement the

Localization Decoder, we use EXP_DEC (short for expander code decoder) to do the

decoding. If there exists exactly one defective item, the output should be one of the

codewords of the expander code. This tells us which item is defective. For example,

let mmul = O(log(n′)) and mloc = O(log(n′)). The overall time complexity and error

probability for the GROTESQUE tests are, respectively, O(log(n′)) and O(1/ poly(n′)).

CHAPTER 5. GROUP TESTING � GROTESQUE 127

5.4.1 Multiplicity testing

We generate mmul tests in this part. In each test, the j-th item is included

with probability 1/2. If we represent the tests as an mmul × n′ matrix,

A(M), then each entry of the A(M) is a Bernoulli random variable12 with

parameter 1/2. If the entry in the i-th row and the j-th column is 1, it

means that the j-th item is included in the i-th test. We count the number

of positive outcomes in a multiplicity test and denote it by K. We then use

Equation (5.1) to estimate the multiplicity value of the test. The use of

Equation (5.1) is justi�ed by the values of Table 5.4, which computes the

expected value of the number of positive test outcomes K for both noisy

as well as noiseless settings.

k′ Expected value of K (Noiseless tests) Expected value of K (Noisy tests)

0 0 q ×mmul

1 1/2×mmul 1/2×mmul

≥ 2 ≥ 3/4×mmul ≥ (3/4− q/2)×mmul

Table 5.4: Expected number of positive test outcomes in the multiplicity tests.

When the tests are noisy (as mentioned before, we assume that the noise

follows the output of a BSC(q)), GROTESQUE's multiplicity decoder uses

the following rule to estimate the multiplicity (when the tests are noiseless,

the same equation with q set to zero may be used):

k̂′ =


0, if K ∈

[
0,
(

1
4

+ q
2

)
mmul

)
1, if K ∈

[(
1
4

+ q
2

)
mmul,

(
5
8
− q

4

)
mmul

)
≥ 2, if K ∈

[(
5
8
− q

4

)
mmul,∞

)
.

(5.1)

12One could argue that the idea of using Bernoulli matrices to estimate the number of de-

fective items in a group is very similar to the competitive group testing literature, for instance

the work of Damaschke et al [47]. Our need here is for a very crude version of these tests.

CHAPTER 5. GROUP TESTING � GROTESQUE 128

5.4.2 Localization

If the multiplicity test estimates k′ to be 1, we then use the results of the

mloc localization tests (which have been non-adaptively designed a priori)

to localize the defective item. We represent the tests as an mloc×n′ matrix,

A(L). The di�erence between A(L) and A(M) is that the columns of A(L)

correspond to distinct codewords of an expander code,13 C (while the entries
of A(M) are chosen uniformly at random). Di�erent columns correspond to

di�erent codewords. The j-th item is included in the i-th test if and only if

the i-th bit of the j-th codeword is 1. If there is exactly one defective item,

then the output of the localization tests should be one of the codewords of

C in the scenario with noiseless tests, or the result of one of the codewords

of C XOR'd with a vector whose entries are i.i.d. Bernoulli(q) random

variables in the scenario with noisy tests. By Theorem 14, the Localization

step is correct with error probability ≤ 2−fmloc (where f is a constant for

the code C) and decoding complexity O(mloc).

The following theorem about error-exponents of expander codes is useful

in our construction.

Theorem 14 ([12, 13]). For a given rate R, large enough mloc, and any

ε > 0, there exists a polynomial-time constructible code C of length mloc

such that Pe(C, q) ≤ 2−mlocf(R,q)/2, where

f(R, q) = max
R≤R0≤1−H(q)

E(R0, q)(R0 −R)/2− ε.

Here E(R0, q) is the �random coding exponent� and H(·) is the binary

entropy function. The decoding complexity14 of a sequential implementation
13The idea of using a measurement matrix whose columns are codewords of a linear code

is now new, especially in the context of compressive sensing [28, 45]. However, we only use a

linear code as a sub-module to identify exactly one defective when multiplicity testing outputs

1.
14For details, please refer to [13]. Instead of using big O notation to describe the decoding

CHAPTER 5. GROUP TESTING � GROTESQUE 129

of this decoding is tlocmloc for some tloc > 0 and f(R, q) is positive for all

0 < q < 1/2.

5.4.3 Performance Analysis

In this section, we analyze the error probability and time complexity of

GROTESQUE tests in terms of mmul and mloc. The actual choices of

these parameters are made in Sections 5.5, 5.6 and 5.7, corresponding,

respectively, to adaptive, non-adaptive, and two-stage algorithms.

a) Error probability:

We now bound from above the probability of error of the multiplic-

ity and localization sub-routines of GROTESQUE testing. In Lemma 8

below, we explicitly derive the dependence of the probability of error of

GROTESQUE tests on the value of q. This dependence can be directly

translated into a dependence on the probability of error in each of our al-

gorithms, but for ease of presentation we omit this dependence on q outside

this lemma (and focus only on the dependence on k and n).

Lemma 8. The error probability of GROTESQUE multiplicity testing is

at most 2 exp (−mmul(1− 2q)2/32). Conditioned on k′ being correctly iden-

ti�ed as 1, the error probability of GROTESQUE localization testing is at

most exp(−mloc(1−H(q))3/256) for large enough N and mloc ≥ 2 log(n′)
1−H(q)

.

Proof. Probability of error for multiplicity testing: The outputs of each

individual test in the multiplicity testing are i.i.d. Bernoulli random vari-

ables, with mean depending on the value of k′ and q. There are three

possible error events for multiplicity testing.

1. The true value of k′ equals 0, but GROTESQUE estimates it to be ≥
1. In this scenario the expected number of positive outcomes is qmmul.

complexity, we say that there exists a positive constant tloc such that the decoding complexity

of expander code is tlocmloc.

CHAPTER 5. GROUP TESTING � GROTESQUE 130

To decide on the value of k′ (as either 0 or 1) the threshold that the

multiplicity tester (given in Equation 5.1 is 1
2

(
q + 1

2

)
mmul. Hence the

multiplicity tester makes an error if the true number of positive out-

comes exceeds the expected number by z1 = 1
2

(
q + 1

2

)
mmul − qmmul =

mmul

2

(
1
2
− q
)
.

2. The true value of k′ equals 1, but GROTESQUE estimates it to be

either 0 or at least 2. In this scenario the expected number of positive

outcomes is mmul/2. To decide on the value of k′ (as either 1 or not)

the closest threshold that the multiplicity tester (given in (5.1) is(
5
8
− q

4

)
mmul. Hence the multiplicity tester may make an error if the

true number of positive outcomes di�ers from the expected number

by z2 =
(

5
8
− q

4

)
mmul − mmul

2
= mmul

4

(
1
2
− q
)
.

3. The true value of k′ is greater than or equal to 2, but GROTESQUE

estimates it to be either 0 or 1. In this scenario the expected number of

positive outcomes is at least
(

3
4
− q

2

)
mmul. To decide on the value of k

′

(as either ≥ 2 or not) the closest threshold that the multiplicity tester

(given in (5.1) is
(

5
8
− q

4

)
mmul. Hence the multiplicity tester may

make an error if the true number of positive outcomes di�ers from the

expected number by z3 =
(

3
4
− q

2

)
mmul−

(
5
8
− q

4

)
mmul = mmul

4

(
1
2
− q
)
.

We now use the additive form of the Cherno� bound (see Theorem 1

in Appendix), which states that the probability of mmul i.i.d. copies of a

binary random variable di�ering its expected value by more than z is at

most 2e−2z2/mmul . Noting that z1 > z2 = z3 in the three cases analyzed, we

have the desired bound on the probability of error.

Probability of error for localization testing: This error event corresponds to

the scenario when there is exactly one defective item and we claim that k′ =

1, but we locate the wrong defective item. Here we use the exponentially

CHAPTER 5. GROUP TESTING � GROTESQUE 131

small upper bound on the probability of error of expander codes, as shown

in Theorem 14, to bound our probability of error. The probability of error

of the expander code for mloc ≥ 2 log(n′)
1−H(q)

is bounded as

Pe(C, q) ≤ 2−mlocf(R,q)/2

= 2−mloc maxR≤R0≤1−H(q) E(R0,q)(R0−R)/4−ε

≤ 2−mloc(1−H(q)−R0)2(1−H(q)−R)/8 (5.2)

= 2−mloc(1−H(q)−R)3/32

≤ 2−mloc(1−H(q))3/256,

where for the middle inequality we choose R0 = (R + 1−H(q)) /2, and

the last inequality follows by choosing the rate R(= log(n′)
mloc

) of our expander

code to be smaller than (1−H(q))/2.

Based on the above analysis, setting mmul = cmul log(k) and mloc =

cloc log(n) (recall that k is the total number defective items and n is the

total number of items) where cmul and cloc are constants, we can guarantee

that the error probability of GROTESQUE test is upper bounded by

2 exp
((
−cmul(1− 2q)2/32

)
log(k)

)
+ exp

((
−cloc(1−H(q))3/256

)
log(n)

)
(5.3)

for cloc ≥ 2
1−H(q)

. Speci�cally, in the setting k = O(n1−∆) for ∆ > 0,

which is of primary interest to us, if mmul +mloc = C log(n), then the error

probability, PGR
e , is at most 3n−

C
g(q) by setting mmul = C 32

(1−2q)2g(q)
log(n)

and mloc = C 256
(1−H(q))3g(q)

log(n). Here, C ≥ (1−H(q))2g(q)
128

and g(q) =

32
(1−2q)2

+ 256
(1−H(q))3

. �

b) Decoding complexity:

Multiplicity testing involves counting the total number of positives from

mmul tests. The complexity of counting is mmul. We also need to compare

CHAPTER 5. GROUP TESTING � GROTESQUE 132

the total number of positives to (1
4

+ q
2
)mmul and (5

8
− q

4
)mmul to estimate

the value of k′. The complexity of these two comparisons is 2 log(mmul).

Localization testing involves decoding an expander code of block-length

mloc, which is tlocmloc by Theorem 14.

Algorithm 2 Grotesque Decoding (ŷ(M),ŷ(L))

1: do Multiplicity Decoding

2: if k̂′ == 1 then

3: do Localization Decoding

4: else

5: return ∅

6: end if

Algorithm 3 Multiplicity Decoding (ŷ(M))

1: count the number of 1's in ŷ(M), K

2: if 0 ≤ K <
(

1
4 + q

2

)
mmul then

3: k̂′ ← 0

4: else if K >
(

5
8 −

q
4

)
mmul then

5: k̂′ ← 2 // Could be 2 or more than 2 defectives in this pool. However, it

does not matter since in this event we never use these pools further - the

value 2 is merely a placeholder.

6: else

7: k̂′ ← 1

8: end if

9: return k̂′

5.5 Adaptive Group Testing

In this section, we consider the adaptive group testing problem. The ob-

jective here is to determine an unknown set S of k defective items from

CHAPTER 5. GROUP TESTING � GROTESQUE 133

Algorithm 4 Localization Decoding (ŷ(L), A(L))

1: Ĉ ←expander code decoding given ŷ(L) as an input

2: j ← index of the column of A(L) such that the column = Ĉ

3: return j

Adaptive Algorithm

I ′ Left subset, I ′ ⊆ I
degI′(i) The number of neighbors in left subsets I ′

S-zero nodes {right nodes i:degS(i) = 0}
S-leaf nodes {right nodes i:degS(i) = 1}
S-non-leaf nodes {right nodes i:degS(i) ≥ 2}
T The total number of stages

Λ(t) The set of unrecovered defectives before the t-th stage tests are

performed, Λ(1) = S , t ∈ {1, . . . , T}
k(t) The number of unrecovered defectives before the t-th stage tests

are performed, k(t) = |Λ(t)|, t ∈ {1, . . . , T}
G(t) The bipartite graph for the t-th stage, t ∈ {1, . . . , T}
r(t) The number of defectives recovered in t-th stage,

r(t) = k(t) − k(t+1), t ∈ {1, . . . , T − 1}
cadp,rn a constant related to the number of right nodes for the bipartite

graph in the coupon collection stage

cadp,deg a constant related to the degree of right nodes for the bipartite

graph in the coupon collection stage

Table 5.5: Table of notation used in our adaptive algorithm

a collection I of size n. In this setting, we are allowed to perform tests

sequentially in an adaptive manner, i.e., the subset tested in each test may

depend on the outcome of previous tests. As stated earlier, we assume that

each test outcome may be incorrect independently with probability q.

CHAPTER 5. GROUP TESTING � GROTESQUE 134

Figure 5.2: In each t-th stage (t ≤ T − 1), we generate a bipartite graph with n nodes on the left

representing n items and 2k(t) nodes on the right. The black circular nodes represent defective items and

the white ones represent non-defective items. Each bipartite graph is left-regular with left-degree equal

to 1. The item/left nodes of each such graph are partitioned randomly � di�erent coloured collections

show di�erent �pools� within a partition. Nodes in the same pool connect to the same testing/right

node. Each testing node passes the items connected to it to the GROTESQUE tests. If there exists

only one defective in one pool, then GROTESQUE locates the defective item with high probability. For

example, the second node in the red partition of �rst graph will be detected by the GROTESQUE tests

at the �rst testing node with high probability. In the next iteration, we exclude decoded defective items

(colored blue) and use a similar decoding process. Finally, in the T -th stage, we generate a bipartite

graph with cadp,rn(log2(k))(log(log(k))) right nodes. For each testing node, we pick its cadp,degn/ log(k)

neighbouring item nodes by choosing uniformly from all item nodes with replacement. By the coupon

collection argument, with high probability, we can decode the remaining undecoded defective items.

5.5.1 Overview

Our algorithm has O(log(k)) adaptive stages. In all except the last stage,

we design our tests so that with a high probability, in each stage, we recover

a constant fraction of the remaining defectives. In each of these stages,

the number of tests is roughly proportional to the number of remaining

defectives. Thus, the total number of tests is O(k log(n)). In each of these

stages, the tests are designed by �rst removing the defectives recovered so

far, partitioning the set of remaining items into twice as many sets as the

CHAPTER 5. GROUP TESTING � GROTESQUE 135

number of remaining defectives, performing GROTESQUE tests on each

set from the partition. In our analysis, to guarantee that in each stage we

recover a constant fraction of the remaining defectives with a high enough

probability, we apply concentration inequalities. This works only when the

number of unrecovered defectives be at least Ω(log(k)). Thus, we move on

to the last stage when all but log(k) defectives have been recovered.

In the last stage, we use the coupon collection problem [103] as a prim-

itive, to identify the remaining defectives. First we remove the set of de-

fectives already recovered from the set of items being tested. Next, we

design O(log(k) log(log(k))) non-adaptive tests by picking random subsets

of an appropriate size and performing GROTESQUE tests for that subset.

We view the collection of outcomes from these sets of GROTESQUE tests

as a random process that generates one independent �coupon� with con-

stant probability each time. Thus, O(log(k) log(log(k))) such tests su�ce

by standard coupon collector arguments. See Figure 5.2 for illustration.

Overall, our algorithm requiresO(k log(n)) tests and runs inO(k log(n))

steps.

5.5.2 Formal Description

Let Λ(t), and k(t), respectively, be the set, and the number of unrecovered

defectives before the t-th stage tests are performed. Note that S = Λ(1) ⊇
Λ(2) . . . and k = k(1) ≥ k(2) ≥ . . . since we recover some defectives in

each stage. Let T = inf{t : k(t) ≤ log(D)} denote the number of stages

after which (with high probability) the number of unrecovered defectives

is no larger than log(k). For any testing node i, and subset of item nodes

S ⊆ I we de�ne degS(i) as the number of item nodes in S that neighbor

the testing node i. There are three types of testing nodes: S-leaf nodes,
S-zero nodes and S-non-leaf nodes. A S-leaf node is a testing node i with

CHAPTER 5. GROUP TESTING � GROTESQUE 136

degS(i) = 1 (it is connected to a single defective item), a S-zero node is a

testing node i with degS(i) = 0 (it is connected to no defective items), and

a S-non-leaf node is a testing node i with degS(i) ≥ 2 (it is connected to

multiple defective items). Speci�cally, S-leaf nodes are very helpful in our

quick decoding process since our GROTESQUE black-box shall with high

probability correctly output the location of a defective item if there exists

exactly one defective item among its neighbours.

Note: Even though in all our algorithms, both S-zero nodes and S-non-
leaf nodes contain �potentially useful� information, we do not use them for

decoding. This is because we require our algorithms to work with com-

putational complexity that is comparable (up to constant factors for the

adaptive algorithm, and at most a logarithmic factor in the other algo-

rithms) to the size of the output of our algorithm (that is, O(k log(n))).

To run this �blindingly fast�, we need our algorithms to output �something

interesting� in �very little� time. So, for instance, while the S-zero nodes

tell us which inputs are non-defective, using this information takes �too

long� (since it essentially tells us which items are not interesting rather

than those which are interesting, but there are many more non-interesting

items than interesting ones).

a) Test design:

Conceptually, we design the �rst T −1 stages of our adaptive algorithm

using the idea of �random binning�, and the T -th stage using that of �coupon

collection�.

• Random binning: For each stage t = 1, . . . , T − 1, we consider a

random left regular bipartite graph G(t) with 2k(t) testing nodes and

n − (k − k(t)) item nodes corresponding to the set (I \ S) ∪ Λ(t),

i.e., all items except those already recovered in the previous t − 1

stages. We let each item node of G(t) be of degree one. We choose this

CHAPTER 5. GROUP TESTING � GROTESQUE 137

graph uniformly at random from all possible bipartite graphs having

mentioned properties above. Next, for each testing node of G(t), we

use its set of left neighbours as the input for a GROTESQUE test.

In each stage, for each testing node of G(t), if GROTESQUE detects

it has multiplicity one, it decodes the corresponding defective item.

Else if GROTESQUE identi�es a right-node as having multiplicity

greater than one or zero, it does not further use these test outcomes.

• Coupon collection: In the �nal stage, we consider a left regular

bipartite graph G(T) with item node set (I \ S) ∪ Λ(T) and

cadp,rn(log(k))2 log(log(k)) testing nodes. For each testing node, we

choose its cadp,degn/ log(k) neighbours independently and uniformly at

random with replacement. Next, we design O(log(n)) GROTESQUE

tests at each testing node to test for defectives among its O(n) left

neighbours.

b) Decoding algorithm:

The decoding for each stage corresponds to detection of leaf nodes in

that stage and corresponding localization via GROTESQUE tests. Specif-

ically, in each of the t-th stages for t ≤ T , we sequentially pass the outputs

of each of the testing nodes of G(t) to GROTESQUE, which identi�es leaf

nodes and localized the corresponding defective items. Note that the struc-

ture of G(T) at the T -stage di�ers from the structure of G(t) for t < T , since

they are chosen according to di�erent processes (coupon collection versus

random binning). Nonetheless, the same decoding procedure (leaf detec-

tion and corresponding localization of defectives) is performed in both the

�rst T − 1 stages and the T -th stage. The algorithm makes an error if not

all defective items have been localized by the T -th stage (one can test for

this by passing the set of remaining items to GROTESQUE's multiplicity

CHAPTER 5. GROUP TESTING � GROTESQUE 138

testing subroutine).

Algorithm 5 Adaptive Group Testing (k, n)

1: t← 1

2: Ŝ ← ∅ // Initial list of defectives

3: k(t) ← k // Number of defectives still to be identi�ed

4: // Random binning stages

5: while k(t) > log(k) do

6: for each testing node i of G(t) do

7: do Grotesque Decoding // which returns j (if possible) as the item cor-

responding to the testing node i

8: Ŝ ← Ŝ⋃{j} // Add j to list of defective items

9: end for

10: t← t+ 1

11: end while

12: // Coupon collection stage

13: for each testing node i of G(T) do

14: do Grotesque Decoding // which returns j (if possible) as the item corre-

sponding to the testing node i

15: Ŝ ← Ŝ⋃{j} // Add j to list of defective items

16: end for

17: return Ŝ

5.5.3 Performance Analysis

To analyze the performance of the �rst part of the algorithm, we require

the following lemma.

Lemma 9. Let G be a random bipartite graph with n′ nodes on the left,

and 2k′ nodes on the right side. Let Λ be a subset of the item nodes of size

k′. Also, let each node on the left side of G have degree one. Then, for any

CHAPTER 5. GROUP TESTING � GROTESQUE 139

ε > 0, with probability at least 1− exp(−ε2k′/2), at least (e−1/2− ε)k′ nodes
on the left are connected to Λ-leaf nodes.

Proof. We �rst note that the probability that a node j ∈ Λ on the left of

the bipartite graph is connected to a Λ-leaf node is:

Pr(j is connected to a Λ-leaf) =

(
2k′ − 1

2k′

)k′−1

>

(
1− 1

2k′

)(2k′−1)/2

> e−1/2,

where the last inequality comes from the well-known inequality:
(
1− 1

x

)x−1
>

e−1. Therefore the expected number of nodes from Λ that are connected

to Λ-leaf nodes is at least e−1/2k′. Next, we show a concentration result

for this number by applying McDiarmid's inequality [98] the statement of

which is reprised in Appendix A as follows. First, we label nodes on the

right with numbers from 1 to 2k′ and for each i ∈ 1, 2, . . . , k′, let

Xi , label of the node on the right which is connected to the i-th node in Λ.

Also, de�ne f :
∏k′

i=1{1, 2, . . . , 2k′} → Z as the number of item nodes

connected to a Λ-leaf node i.e.,

f(x1, x2, · · · , xk′) , |{x1, x2, · · · , xk′}|. (5.4)

It is observed that for any �xed x1, · · · , xi−1, xi+1, · · · , xk′ and any

xi, x
′
i ∈ Xi,

|f(x1, · · · , xi, · · · , xk′)− f(x1, · · · , x′i, · · · , xk′)| ≤ 2.

For example, ∃i, j(6= i), xi = xj and x
′
i 6= xi. It is possible that xj-th

and x′i-th testing nodes which initially are not Λ-leaf nodes become Λ-leaf

nodes. Then, f(x1, · · · , xi, · · · , xk′)− f(x1, · · · , x′i, · · · , xk′) = −2. In fact,

we can numerate all possible cases to conclude out result.

CHAPTER 5. GROUP TESTING � GROTESQUE 140

It is clear that Xi's are independent. Therefore, by McDiarmid's in-

equality [98] we have:

Pr (f(X1,X2, · · · ,Xk′)− Ef(X1,X2, · · · ,Xk′) < −εk′) ≤ exp
(
−ε2k′/2

)
.

Hence,

Pr
(
f(X1,X2, . . . ,Xk′)− e−1/2k′ < −εk′

)
≤ Pr (f(X1,X2, . . . ,Xk′)− Ef(X1,X2, . . . ,Xk′) < −εk′)

≤ exp
(
−ε2k′/2

)
.

�

Corollary 3. With probability at least 1−
[

log (k/ log(k))

− log (1−e−1/2/2)
k−1/(4e) + 4e1/2kPGR

e

]
,

in each of the �rst T −1 stages, our decoding algorithm recovers no smaller

than a e−1/2/2 fraction of defectives that have not been decoded up to that

stage.

Proof. The event that we recover fewer than e−1/2/2 fraction of defectives

in t-th stage is a subset of the union of the following two events:

(1) Less than a e−1/2/2 fraction of defectives are connected to a Λ(t)-leaf

node.

(2) The outcome of the GROTESQUE tests is incorrect for any of the 2k(t)

testing nodes.

By Lemma 9, with Λ = Λ(t), n′ = n − k(t), and ε = e−1/2/2, the

probability of event (1) is at most exp(−k(t)/4e). Further, by Lemma 8

and Union bound, with n′ = n− k(t), the probability of event (2) is upper

bounded by 2k(t)PGR
e . For each t, let r(t) = k(t) − k(t+1). Therefore, the

probability that in one of the T − 1 stages, fewer than a e−1/2/2 fraction of

defectives are correctly decoded is bounded from above as

CHAPTER 5. GROUP TESTING � GROTESQUE 141

Pr

(
T−1⋃
t=1

{r(t) < e−1/2k(t)/2}
)

=
T−1∑
t=1

Pr

(
r(t) <

e−
1
2k(t)

2

∣∣∣∣∣
t−1⋂
τ=1

{
r(τ) >

e−
1
2k(τ)

2

})
.

Under the conditioning event for the t-th term, we may bound d(t) from

above by k(1 − e−1/2/2)t−1. Further, by the de�nition of T , there are at

most − log (k/ log(k))/ log
(
1− e−1/2/2

)
terms. The chain of inequalities is

further simpli�ed as

Pr

(
T−1⋃
t=1

{r(t) < e−1/2k(t)/2}
)

≤
− log (k/ log(k))/ log (1−e−1/2/2)∑

t=1

[
exp

(
−k
(
1− e−1/2/2

)t−1
/4e
)

+ 2k(t)PGR
e

]
≤ log (k/ log(k))

− log (1− e−1/2/2)
exp

(
− k

4e

(
1− e−1/2/2

) log (k/ log(k))

− log (1−e−1/2/2)

)

+
∞∑
t=1

2k(1− e−1/2/2)t−1PGR
e

=
log (k/ log(k))

− log (1− e−1/2/2)
k−1/(4e) + 4e1/2kPGR

e .

�

a) Number of tests:

In the Random Binning part of the algorithm, there are 2k(t) test-

ing nodes in the t-th stage, each of which requires 2Ck(t) log(n) tests

for some constant C = C(q) (as determined in Section 5.4). Hence the

total number of tests for the Random Binning part of the algorithm is∑T−1
t=1 2Ck(t) log(n). By Corollary 3, with high probability, in each stage

the algorithms recovers a constant fraction of the undecoded defectives.

Thus, k(t) ≤ (1 − e−1/2/2)t−1k for t ∈ [0, T − 1]. Therefore, the total

number of tests required in the �rst T − 1 stages is at most 4e1/2Ck log(n).

For the Coupon Collection stage, the number of testing nodes is

cadp,rn(log(k))2 log(log(k)). Since we perform GROTESQUE tests for each

CHAPTER 5. GROUP TESTING � GROTESQUE 142

testing node, the total number of tests required is

cadp,rnC(log(k))2 log(log(k)) log(n), which is less than the O(k log(n)) tests

required in the Random Binning part of the algorithm.

Thus our proposed scheme requires at most

4e1/2Ck log n+ cadp,rnC(log(k))2 log(log(k)) log(n) tests overall.

b) Decoding complexity:

Since in each stage our decoding algorithm has to step through all

testing nodes to decode the corresponding GROTESQUE tests, the total

number of testing nodes the algorithm needs to consider is
∑T−1

t=1 2k(t) +

cadp,rn(log(k))2 log(log(k)) = 4e1/2k + cadp,rn(log(k))2 log(log(k)). By the

analysis from Section 5.4.3, decoding each collection of GROTESQUE tests

at a testing node takes

32C

(1− 2q)2g(q)
log(n)+2 log

[
32C

(1− 2q)2g(q)
log(n)

]
+tloc

256C

(1−H(q))3g(q)
log(n)

time. Therefore, our algorithm runs in [4e1/2k+cadp,rn(log(k))2 log(log(k))][
32C

(1−2q)2g(q)
log(n) + 2 log

(
32C

(1−2q)2g(q)
log(n)

)
+ tloc

256C
(1−H(q))3g(q)

log(n)
]
time.

c) Error probability:

We show that the above algorithm succeeds with high probability in

decoding all the defectives in the claimed number of stages.

By the analysis of error events (1) and (2) in Corollary 3, in the �rst part

of the algorithm (random binning) we recover at least k− log(k) defectives

with probability 1−
[

log (k/ log(k))

− log (1−e−1/2/2)
k−1/(4e) + 4e1/2kPGR

e

]
.

To analyze the last (coupon collection) stage of tests, note that an error

may occur only if one of the following events occur,

(3) In the coupon collection process, fewer than log(k) distinct coupons

are collected.

(4) At least one of the collected coupons was incorrectly decoded.

CHAPTER 5. GROUP TESTING � GROTESQUE 143

To bound the probability of event (3), we apply standard concentration

bounds on the coupon collector's problem [103]. Towards this end, we �rst

note that the probability that our algorithm identi�es a testing node i as

a leaf node, Pleaf , may be written as

Pr(i decoded as a Λ(T)-leaf node)

≥ Pr(i decoded as a Λ(T)-leaf node, i is a Λ(T)-leaf node)

= Pr(i decoded as a Λ(T)-leaf node | i is a Λ(T)-leaf node)×

Pr(i is a Λ(T)-leaf node)

≥ (1− PGR
e)× Pr(i is a Λ(T)-leaf node)

= (1− PGR
e)× cadp,degn

log(k)

log(k)

n− k + log(k)

(
1− log(k)

n− k + log(k)

) cadp,degn

log(k)

→ cadp,dege
−cadp,deg , as n→∞.

Since each decoded leaf node is independently chosen and the probabil-

ity of picking a coupon is constant, by tail bounds on the coupon collection

process [103], the probability that at least one coupon has not been col-

lected in cadp,rn(log(k))2 log(log(k)) steps is (log(k))1−cadp,rnPleaf log(k).

Thus, the overall error probability decays is at most log (k/ log(k))

− log (1−e−1/2/2)
k−1/(4e)+

4e1/2kPGR
e + (log(k))1−cadp,rnPleaf log(k).

5.6 Non-adaptive Group Testing

We consider non-adaptive group testing in this section. In non-adaptive

group testing, the set of items being tested in each test is required to be

independent of the outcome of every other test [56].

The objective here is to determine an unknown set S of k defective

items from a collection I of size n. We assume that each test outcome may

be incorrect independently with probability q.

CHAPTER 5. GROUP TESTING � GROTESQUE 144

Non-adaptive Algorithm

Gg g-th sub bipartite graph, g ∈ {1, . . . , cnon,bpt log(D)}
ŷi The length-O(log(N)) binary vector denoting the actually observed noisy

outcomes of the i-th GROTESQUE Encoder

cnon,bpt A constant related to the number of sub bipartite graphs

cnon,rn A constant related to the number of testing/right nodes

for each bipartite graph

P0 The probability that the neighbor of a defective item is a S-leaf node
L(S) Leaf node list which contains all the S-leaf nodes
L(t) Leaf node list for the t-th iteration.

Table 5.6: Table of notation used in our Non-adaptive algorithm

5.6.1 Overview

The structure of group-testing tests is based on left-regular bipartite graphs

{Gg}. We put n items on the left-hand side and cnon,bptcnon,rnk log(k) nodes

on the right-hand side of a bipartite graph. Each node on the right-hand

side of a bipartite graph is called a group-testing node. Group tests cor-

responding to the multiplicity and localization tests of GROTESQUE are

performed as part of the encoding process, but the results are not necessar-

ily used to decode. This is because our decoding algorithm can cherry-pick

the group-testing nodes to decode only the �useful� ones.

The set of S-leaf nodes (see the de�nition in Section 5.5.2) are helpful

for our decoding process since GROTESQUE tests performed on a testing

node output the location of a defective item only if there exists exactly one

defective item among its neighbours. In our iterative algorithm, we claim

that there exists at least one S-leaf node in each iteration, so that we can

decode one defective item.

CHAPTER 5. GROUP TESTING � GROTESQUE 145

Figure 5.3: We generate cnon,bpt log(k) bipartite graphs with n nodes on the left (rep-

resenting n items) and cnon,rnk nodes on the right. The total number of multiplicity and

localization tests done for each testing node is O(log(n)). Take G1 as an example. For

each testing node i, we generate O(log(n)) tests, ŷi, by GROTESQUE tests. The input

of the i-th GROTESQUE TESTS are the items connected to the testing node i. The

size of outputs for each GROTESQUE encoding is O(log(n)). Based on the properties

of GROTESQUE TESTS, we can estimate whether there exists exactly one defective

item and if so, we can estimate its location with high probability.

5.6.2 Formal Description

In this section, we describe a probabilistic construction of the tests and an

iterative Non-Adaptive Group Testing algorithm.

a) Description of graph properties:

We �rst construct a bipartite graph G (Figure 5.4) with some desirable

properties outlined below. We then show that such the random graphs

we choose satisfy such properties with high probability. In Section V-Bb),

we then use these graph properties in the Non-adaptive Group Testing

algorithm.

Properties of G:

CHAPTER 5. GROUP TESTING � GROTESQUE 146

Figure 5.4: After generating cnon,bpt log(k) bipartite graphs as in Figure 5.3, we combine them to

obtain the overall graph G for our non-adaptive group testing algorithm. There are n nodes on the

left representing n items. Collect the testing nodes of all the cnon,bpt log(k) bipartite graphs on the

right side of G and maintain the connectivity between two sides. Di�erent colors show the connectivity

between N items and di�erent right node sets of equal size cnon,rnk. Finally, we get a bipartite graph G

with left regularity equal to cnon,bpt log(k). We can guarantee that, with high probability, each defective

item connects to a S-leaf node.

1. Construction of a left-regular bipartite graph:As in Figure 5.4, we gen-

erate G by combining cnon,bpt log(D) left-regular graphs Gg, for g =

1, . . . , cnon,bpt log(k). For each Gg, there are n items on the left and

cnon,rnk group-testing nodes on the right. The graph Gg has left-

regularity equal to 1 and each edge connects to a testing node uni-

formly at random. After constructing all the cnon,bpt log(k) graphs Gg,
we combine them to form G in the following way. Keep n items on

the left, and collect the testing nodes. Therefore, G has the prop-

erties that it has n nodes on the left with left-regularity equal to

CHAPTER 5. GROUP TESTING � GROTESQUE 147

cnon,bpt log(k), and cnon,bptcnon,rnk log(k) nodes on the right.

2. �Many" S-leaf nodes: For any set S of size k on the left of G, none
of the nodes in S has fewer than a constant fraction of S-leaf nodes.
The proof of this statement is the subject of Lemma 10.

Lemma 10. With probability 1− k1−exp(−1/cnon,rn)cnon,bpt/8, the fraction15 of

cnon,bpt log(k) neighbors of each defective item that are S-leaf nodes is at

least 1
2
e
− 1
cnon,rn .

Proof. De�ne Wi,j as the random variable representing whether the neigh-

bor of a defective item xj is a S-leaf node for the i-th graph Gi.

Wi,j =

 1, if the neighbor item node j is a S-leaf node
0, otherwise.

Then, the total number of S-leaf nodes of xj is
∑cnon,bpt log(k)

i=1 Wi,j.

P0 , Pr(the neighbor of a defective

item xj is a S-leaf node)

=

(
1− 1

cnon,rnk

)k−1

→ exp

(
− 1

cnon,rn

)
, as k →∞,

and W1,j, . . . ,Wcnon,bpt log(k),j are i.i.d. Bernoulli random variables with

parameter P0.

Therefore, by the Cherno� bound, we have

Pr

cnon,bpt log(k)∑
i=1

Wi,j − cnon,bptP0 log(k) ≤ −1

2
cnon,bptP0 log(k)


≤ exp

(
−1

8
cnon,bptP0 log(k)

)
15In fact, one neighbor is S-leaf node is su�cient. Here, we prove a stronger result.

CHAPTER 5. GROUP TESTING � GROTESQUE 148

Hence, the probability for each defective item that it has at least a

constant fraction of S-leaf nodes is 1− k− exp(−1/cnon,rn)cnon,bpt/8.

Then, by the union bound, all defective items have at least constant

fraction of S-leaf nodes with probability at least 1−k1−exp(−1/cnon,rn)cnon,bpt/8.

�

In the following two sections, we describe how to use the properties of

G to perform the encoding and decoding.

b) Test design:

For each node i on the right of G, we design GROTESQUE tests with

degI(i) inputs which are the items connected to testing node i. We choose

the number of multiplicity tests, mmul, to be cmul log(k) and the number of

localization tests, mloc to be cloc log(n). Therefore, the overall number of

tests cnon,bptcnon,rnk log(k)(cmul log(k) + cloc log(n)).

c) Decoding algorithm:

Before the iterative decoding process, we make a leaf node list, L(S),

which contains all the S-leaf nodes based on the multiplicity testing part

of GROTESQUE tests. Based on the properties of graph G, we know

that each defective item has at least a constant fraction of S-leaf nodes.
Denote L(t) as the leaf node list in t-th iteration, t = 1, 2, . . . , k, k + 1.

L(1) = L(S), L(k + 1) = ∅ and L(t) 6= ∅, for t = 1, 2, . . . , k. In the t-th

iteration, we pick a testing node i ∈ L(t) and decode a defective item using

the localization part of GROTESQUE tests of i to locate the corresponding

defective item. After that, we cancel the defective item, its corresponding

edges and its neighbors. If the removed neighbor is a S-leaf node, it is

also removed from L(t). We update the L(t) to L(t+ 1). In the (t+ 1)-th

iteration, we pick another S-leaf node in L(t+ 1). The formal description

of the non-adaptive group testing algorithm is as follows:

1. Initialization: Go through all the testing nodes and use only the mul-

CHAPTER 5. GROUP TESTING � GROTESQUE 149

tiplicity testing part of GROTESQUE-test to initialize L(1) = L(S).

2. Operations in the t-th iteration:

i) Pick any testing node j in L(t);

ii) Use localization part of GROTESQUE-test to decode the corre-

sponding defective;

iii) Remove the decoded defective item, all the edges connected to it,

and all its neighbours;

iv) Update L(t) to L(t+ 1) by removing the leaf nodes removed in

step iii) and return to step i).

3. Termination: The algorithm stops when the leaf node list becomes

empty, and outputs the defective set Ŝ.

5.6.3 Performance Analysis

a) Number of iterations:

If each defective item is attached to at least one S-leaf node, then in

each iteration the algorithm identi�es and removes one defective item and

the number of iterations is exactly k.

b) Decoding complexity:

For each testing node, checking the multiplicity testing part of GROTESQUE-

test costs cmul log(k) + 2 log(cmul log(k)) steps. Therefore, the total compu-

tational cost is [cmul log(k) + 2 log(cmul log(k))] (cnon,bptcnon,rnk log(k)) in the

initialization step. We generate the leaf node list using a Red-Black tree and

inserting the S-leaf nodes into the Red-Black Tree sequentially. The com-

putational cost is at most (cnon,bptcnon,rnk log(k)) log(cnon,bptcnon,rnk log(k)).

In each iteration, the cost of localization is tloccloc log(n) steps. For

the total cnon,bpt log(k) neighbors of the decoded defective item, searching

CHAPTER 5. GROUP TESTING � GROTESQUE 150

Algorithm 6 Non-Adaptive Group Testing (k, n)

1: // Initialization

2: Ŝ ← ∅ // Initial list of defective

3: L(S)← ∅ // Initial list of leaf nodes

4: for each testing node i of G do

5: do Multiplicity Decoding

6: if k̂′ == 1 then

7: L(S)← L(S)
⋃{i} // Found a new leaf node

8: end if

9: end for

10: t← 1

11: L(t)← L(S)

12: // Operations in t-th iteration

13: while t ≤ D do

14: Pick a testing node i in L(t) uniformly at random

15: do Localization Decoding // which returns j as the item corresponding to testing

node i

16: Ŝ ← Ŝ⋃{j} // Add j to list of defective items

17: L(t)← L(t)\Neighbours of j // Update lisft of leaf nodes

18: t← t+ 1

19: end while

20: return Ŝ

whether they are in the leaf node list and removing them from the leaf

node list takes at most 2 log(cnon,bptcnon,rnk log(k))(cnon,bpt log(k)) opera-

tions, where log(cnon,bptcnon,rnk log(k)) is the cost of addressing one neigh-

bour of the decoded defective item. Therefore, the time complexity for the

iterative decoding process is tlocclock log(n) +2 log(cnon,bptcnon,rnk log(k))

(cnon,bptk log(k)).

Hence, we can conclude that the overall time complexity is at most

[cmul log(k) + 2 log(cmul log(k))] (cnon,bptcnon,rnk log(k))+(cnon,bptcnon,rnk log(k))·
log(cnon,bptcnon,rnk log(k)) + k[tloccloc log(n) + 2 log(cnon,bptcnon,rnk log(k))

CHAPTER 5. GROUP TESTING � GROTESQUE 151

(cnon,bpt log(k))] based on the analysis above.

c) Error probability:

Finally, we show that Ŝ = S with a high probability by choosing the

parameters cmul and cloc large enough.

The probability of incorrect multiplicity decoding for each node is at

most

2 exp
((
−cmul(1− 2q)2/32

)
log(k)

)
. (5.5)

Then by the union bound, the probability of incorrect multiplicity decoding

is bounded from above by

2cnon,bptcnon,rnk log(k) exp
((
−cmul(1− 2q)2/32

)
log(k)

)
. (5.6)

The probability of incorrect localization in each iteration is at most

exp ((−cloc(1−H(q))3/256) log(n)). Finally, by applying the union bound

over D iteration, the probability of incorrect decoding is bounded from

above by

k exp
((
−cloc(1−H(q))3/256

)
log(n)

)
. (5.7)

Therefore, the overall error probability of our algorithm is at most

k1−exp(−1/cnon,rn)cnon,bpt/8 + 2cnon,bptcnon,rnk log(k)

exp
((
−cmul(1− 2q)2/32

)
log(k)

)
+

k exp
((
−cloc(1−H(q))3/256

)
log(n)

)
. (5.8)

5.7 Two-stage Group Testing

In this section, we present a 2-stage adaptive group testing problem with

both decoding complexity and number of tests that is nearly order-optimal

(up to a multiplicative factor that is at most O(log(n))). Again, the objec-

tive is to determine an unknown set S of k defective items from a collection

I of size n. In both stages, we perform tests in a non-adaptive manner,

CHAPTER 5. GROUP TESTING � GROTESQUE 152

though the tests of the second stage depend on the outcomes of tests in the

�rst stage. As earlier, we assume that each test outcome may be incorrect

independently with probability q.

5.7.1 Overview

Figure 5.5: In the �rst stage, we generate a bipartite graph with n nodes on the left representing n

items and s nodes on the right. The black circular nodes represent defective items and the white ones

represent non-defective items. Each bipartite graph is left-regular with left-degree equal to 1. The item

nodes of such graph are partitioned randomly � di�erent coloured collections have di�erent �birthdays�.

Nodes in the same partition have the same �birthday�. With high probability, each testing node is

either S-leaf node (black testing node) or S-zero node (white testing node) according to our choice

of s. Applying our non-adaptive algorithm, we identify k leaf nodes. In the second stage, applying

localization testing on each S-leaf node, we identify the corresponding defective items.

Two-Stage Adaptive Algorithm

G A bipartite graph used in the �rst stage

s The number of nodes on the right of G

Table 5.7: Table of notation used in our 2-stage adaptive algorithm

CHAPTER 5. GROUP TESTING � GROTESQUE 153

Our algorithm has 2 adaptive stages.

In the �rst stage, we use the birthday paradox problem as a primitive

to construct a bipartite graph G. G has the following properties - the graph

is bipartite, has n nodes on the left representing n items (n �people�), is

left-regular with regularity equals 1, and s (= poly(k) with degree larger

than 3) nodes on the right (s choices of �birthdays�). We show that with

high probability (1−O(1/ poly(k))), each testing node is either a S-leaf
node or a S-zero node (i.e., no pair of them have the same birthday). We

use the non-adaptive algorithm discussed in Section 5.6 on the s testing

nodes to identify the k S-leaf nodes. In the �rst stage the total number of

tests is O(k log(k) log(s)) = O(k log2(k)) and the decoding complexity is

O(k(log(s) + log2(k))) = O(k log2(k)).

In the second stage, we use the localization procedure of GROTESQUE

with n′ = O(n/ poly(k)), on all S-leaf nodes identi�ed in the �rst stage.

Note that with high probability there are exactly k testing nodes that are

S-leaf nodes, out of poly(k) testing nodes in total � the fact that we test

only k of them is what gives us potentially signi�cant savings in the number

of tests and decoding complexity. In the second stage the total number of

tests is O(k log(n)) and the decoding complexity is O(k log n). See Figure

5.5 for illustration.

Over both stages, our 2-stage adaptive algorithm hence requires

O(k(log(n) + log2(k))) tests and runs in O(k(log(n) + log2(k))) steps.

5.7.2 Formal Description

a) Test design and decoding algorithm:

• Birthday paradox hashing: In the �rst stage, we consider a ran-

dom left regular bipartite graph G with s testing nodes and n item

nodes. We set each item node of G to be of degree one. We choose this

CHAPTER 5. GROUP TESTING � GROTESQUE 154

Algorithm 7 Two-Stage Group Testing (D, N)

1: Ŝ ← ∅ // Initial list of defective

2: // Birthday paradox: getting D S-leaf nodes

3: Randomly pool items into S pools, each with N/S items

4: do Non-Adaptive Group Testing (D, S)

5: // Localization

6: for each positive pool i do

7: Localization Decoding // Given input as pool i, returns item j

8: Ŝ ← Ŝ⋃{j} // Add j to list of defective items

9: end for

10: return Ŝ

graph uniformly at random. The property we required is that, with

high probability, each testing node is either a S-leaf node or a S-zero
node (see the de�nitions in Section 5.5.2). By the �standard birthday

paradox argument� [59], the failure probability scales asO(1/ poly(k))

if we choose s = O(poly(k)) with degree larger than 3 (see Lemma 11

below). To identify all the S-leaf nodes is equivalent to the group

testing problem of �nding k defectives from s items. We apply our

non-adaptive algorithm to all testing nodes. Here if a testing node i

is (respectively is not) included in a test, then all the neighbors of i

are (respectively are not) included in that test. The outcomes of the

�rst stage are all S-leaf nodes.

• Localization: In the second stage, we use the GROTESQUE lo-

calization procedure (with n′ = O(n/ poly(k))) on each S-leaf node
identi�ed in the �rst stage, to decode the corresponding defective

item.

CHAPTER 5. GROUP TESTING � GROTESQUE 155

5.7.3 Performance Analysis

The analyze the performance of the �rst part of the algorithm, we require

the following lemma.

Lemma 11. The probability that no defective items have the same neighbor

(right node) is at least 1− k2−γ, if we choose s = kγ for any γ ≥ 3.

Proof. There are at least two ways to prove the correctness of this lemma.

First, using an argument similar to that in the birthday paradox prob-

lem,

Pr(No defective items have the same neighbor)

=

(
s
k

)
k!

sk

=

(
1− 1

s

)(
1− 2

s

)
. . .

(
1− k − 1

s

)
=

k−1∏
i=1

(
1− i

s

)
.

Using Stirling's approximation,

k−1∏
i=1

(
1− i

s

)
=

(s− 1)!

sk−1(s− k)!

→
√

2π(s− 1)s−1+1/2e−s+1

sk−1
√

2π(s− k)s−k+1/2e−s+k
, as k →∞

= e1−k · (s− 1)s−1+1/2

sk−1(s− k)s−k+1/2

= e1−k · (s− 1)s−1

ss−1
· ss−k

(s− k)s−k
· (s− 1)1/2

(s− k)1/2

≥ e1−k · e−1 · ek−k2/s · e−(k−1)/(2s−2)

= e−k
2/s−(k−1)/(2s−2)

→ e−k
2/s

≥ 1− k2/s.

CHAPTER 5. GROUP TESTING � GROTESQUE 156

Therefore, if we choose s = kγ with γ larger than 3, the probability that

each testing node has no more than two defective items is at least 1−k2−γ.

For an alternative proof, we consider the probability that the event

considered in the statement of this lemma does not happen.

The probability Pr(Any two defective items have the same neighbor)

equals 1
s
. Then, by the union bound, the probability that there exist two

defective items that have the same neighbor is at most
(k2)
s
< k2

s
. Again,

we choose s = kγ with γ larger than 3 to complete the proof. �

a) Number of tests:

The number of tests in the �rst stage is cnon,bptcnon,rnk log(k)(cmul log(k)+

cloc log(s)) = cnon,bptcnon,rn(cmul + γcloc)k(log(k))2 and the number of tests

in the second stage is clock log(n). Overall, the number of tests required is

cnon,bptcnon,rn(cmul + γcloc)k(log(k))2 + clock log(n).

b) Decoding complexity:

The decoding complexity in the �rst stage is (cnon,bptcnon,rnk log k) ·
log(cnon,bptcnon,rnk log(k)) + k[tlocclocγ log(k) + 2 log(cnon,bptcnon,rnk log(k))

(cnon,bpt log(k))] and the decoding complexity in the second stage is

ktloccloc log(n). Overall, the decoding complexity is (cnon,bptcnon,rnk log(k))

log(cnon,bptcnon,rnk log(k)) + k[tlocclocγ log(k) + 2 log(cnon,bptcnon,rnk log(k))

(cnon,bpt log(k))] + tlocclock log(n).

c) Error probability:

There are three events we need to consider.

First, the error probability of constructing bipartite graph G with the

properties we need is k × k2−γ = k3−γ by union bound over k defective

items and Lemma 11.

Second, the error probability of non-adaptive group testing algorithm

is

k1−exp(−1/cnon,rn)cnon,bpt/8 + 2cnon,bptcnon,rnk log(k)

CHAPTER 5. GROUP TESTING � GROTESQUE 157

exp
((
−cmul(1− 2q)2/32

)
log(k)

)
+k exp

((
−cloc(1−H(q))3/256

)
log(s)

)
.

Third, in the second stage, the error probability of each localization

testing is exp ((−cloc(1−H(q))3/256) log(n)). By applying union bound

over total k S-leaf nodes, the probability of incorrect decoding is at most

k exp
((
−cloc(1−H(q))3/256

)
log(n)

)
. (5.9)

Therefore, the overall error probability of incorrect decoding scales as

O(1/ poly(k)).

5.8 Numerical Results for Noiseless Case

In what follows we assume k and n is an integer power of 2; otherwise

small �quantization� correction terms are needed that we do not track in

our analysis.

5.8.1 Deterministic grotesque testing with noiseless tests

Multiplicity testing

In Section 5.4, we design the multiplicity testing by picking each item in

each test with probability 1/2. Actually, we can derandomize the tests by

choosing the matrix A(M) such that each column contains exactly mmul

2
1's,

and requiring all the columns are distinct. Again, we estimate the value

of k̂′ by counting the number of positives in the multiplicity tests. The

value of k′ is 1 if and only if the fraction of positives of multiplicity tests

is exactly 1/2. Since all the columns are di�erent, the fraction must be

strictly larger than half when there is more than 1 defectives involved. To

guarantee that all the columns are di�erent, we choose mmul to be 2 log(N).

This choice works since
(
a
b

)
≥ (a

b
)b, and setting a = mmul, b = mmul

2
we get

CHAPTER 5. GROUP TESTING � GROTESQUE 158

that the number of columns that can thereby be obtained is at least N .

The decision rule given in Equation (5.1) becomes the following:

k̂′ =


0, if K = 0

1, if K = mmul

2

≥ 2, if K > mmul

2
.

(5.10)

After counting the number of defectives, we need to compare the number

withmmul/2. Therefore, the decoding complexity is 2 log(n)+log(2 log(n)).

Note that our deterministic multiplicity testing with noiseless tests has the

added advantage that it is error-free.

Localization testing

With noiseless tests, we no longer need to use expander codes for local-

ization decoding. Di�erent columns of A(L) correspond to the indices of

di�erent items in binary form. We set mloc to be exactly log(n) so that

each item has a distinct signature. If the length of binary number is less

than log(n), 0's are added before the number. If the outcome of multiplic-

ity decoding, k̂′, is 1, then we identify the index of the defective item by

treating the log(N)-bit test outcome vector (treating positive test outcomes

as 1's, and negative test outcomes as 0's) as the binary expansion of the

index of the defective item.

For example, suppose there is exactly one defective item among 8 items.

The columns of A(L) are [0, 0, 1]T through [1, 1, 1]T If the outcome of local-

ization decoding is [0, 1, 0]T , we know that the second item is defective.

Given that the multiplicity decoding is correct, the localization decoding

is correct with probability 1. Also, the decoding complexity of localization

depends on reading the output which costs log(n) computational steps.

Based on the modi�ed design described above of grotesque testing for

CHAPTER 5. GROUP TESTING � GROTESQUE 159

noiseless tests, we have the following corollaries,

Corollary 4. For any set of defectives S from I (|S| = k and |I| = n

are large enough), the Multi-stage Adaptive Group Testing algorithm with

noiseless tests produces a reconstruction of the collection Ŝ of S such that

Ŝ = S for any positive constants cadp,rn, cadp,deg and P
′

leaf ≥ cadp,dege
−cadp,deg .

The algorithm has the following properties:

1) The number of tests m is at most

12e1/2k log(n) + 3cadp,rn(log(k))2 log(log(k)) log(n),

2) The number of stages is at most 1+log (k/ log(k))/[− log
(
1− e−1/2/2

)
],

3) The decoding complexity is

[4e1/2k + cadp,rn(log(k))2 log(log(k))] [3 log(n) + log(2 log(n))] , and

4) The error probability is at most

log (k/ log(k))

− log (1− e−1/2/2)
k−1/(4e) + (log(k))1−cadp,rnP

′
leaf log(k)

over the internal randomness in the algorithm.

Corollary 5. For any set of defectives S from I (|S| = k and |I| = n are

large enough), the Non-Adaptive Group Testing algorithm with noiseless

tests produces a reconstruction of the collection Ŝ of S such that Ŝ = S
for any positive constants cnon,bpt, cnon,rn. The algorithm has the following

properties:

1) The number of tests m equals 3cnon,bptcnon,rnk log(k) log(n),

2) The decoding complexity is

[2 log(n) + log(2 log(n))] (cnon,bptcnon,rnk log(k))+

(cnon,bptcnon,rnk log(k)) log(cnon,bptcnon,rnk log(k))+

k[log(n) + 2 log(cnon,bptcnon,rnk log(k))(cnon,bpt log(k))], and

CHAPTER 5. GROUP TESTING � GROTESQUE 160

3)The error probability is at most k1−exp(−1/cnon,rn)cnon,bpt/8 over the in-

ternal randomness in the algorithm.

Corollary 6. For any set of defectives S from I (|S| = k and |I| = n

are large enough), the Two-stage Adaptive Group Testing algorithm with

noiseless tests produces a reconstruction of the collection Ŝ of S for any

positive constants, cnon,bpt, cnon,rn, and s = kγ with γ > 3. The algorithm

has the following properties:

1) The number of tests m equals 3cnon,bptcnon,rnγk(log(k))2 + k log n,

2) The number of stages is 2,

3) The decoding complexity is

[2γ log(k) + log(2γ log(k))] (cnon,bptcnon,rnk log(k))+

(cnon,bptcnon,rnk log(k)) log(cnon,bptcnon,rnk log(k))+

k[γ log(k) + 2 log(cnon,bptcnon,rnk log(k))(cnon,bpt log(k))] + k log(n), and

4) The error probability is at most k1−exp(−1/cnon,rn)cnon,bpt/8 + k3−γ over

the internal randomness in the algorithm.

Remark 10. Note that for the multi-stage adaptive algorithm, the num-

ber of tests therefore scales as O(k log(n)). The decoding complexity

scales as O(k log(n)). The number of stages scales as O(log(k)). The

error probability scales as O(1/ poly(k)). For non-adaptive algorithm,

the number of tests therefore scales as O(k log(k) log(n)). The decod-

ing complexity scales as O(k log(k) log(n)). The error probability scales

as O(1/ poly(k)). For two-stage adaptive algorithm, the number of tests

therefore scales as O(k log(n) + k log2(k)). The decoding complexity scales

as O(k log(n) + k log2(k)). The error probability scales as O(1/ poly(k)).

In the next section, we run simulations for multi-stage adaptive and

non-adaptive algorithms in noiseless case.

CHAPTER 5. GROUP TESTING � GROTESQUE 161

5.8.2 Simulation Results

We present simulation results to demonstrate a �proof of concept� for our

design principles. We focus on the scenario with noiseless tests; in prin-

ciple similar experiments could also be done for the scenario with noisy

tests. However, the size of k and n required to demonstrate meaningful

performance gains would be somewhat intricate, involving careful choice

of error-correcting codes with good parameters. Since our two-stage adap-

tive algorithm is based on our non-adaptive algorithm, we only focus on

the multi-stage adaptive algorithm and the non-adaptive algorithm in this

section.

Adaptive Algorithm

The parameters values for our �base scenario� are listed in Table 5.8. For

each set of parameters, we run simulations 100 times and interpret the per-

centage of times we successfully decode as our success rate. The decoding

is successful if and only if Ŝ = S. We set the number of items n to be

100, 000. Therefore, we set the number of tests per multiplicity testing,

mmul, as 20 since
((

20
10

)
= 184, 756 > 100, 000

)
and setting the number of

tests per localization testing, mloc, as 17 since (217 = 131, 072 > 100, 000).

Recall that cadp,rn and cadp,deg are constants related to the number of test-

ing nodes and the degree of testing nodes for bipartite graph in coupon

collection stage respectively. For the �rst two sets of simulations, the re-

sults guide us on how to choose the internal parameters cadp,rn and cadp,deg.

Then, we see how the probability of successful decoding changes as the

number of tests varies. Last, we record the running time of our decoding

algorithm for di�erent values of number of defectives.

a) Varying cadp,rn

We keep all the parameters the same as in the base scenario except that

CHAPTER 5. GROUP TESTING � GROTESQUE 162

n 100, 000

k 50

mmul 20

mloc 17

cadp,rn 4

cadp,deg 1

Table 5.8: Base scenario for multi-stage adaptive algorithm

we change the value of cadp,rn from 0.2 to 4. The simulation result is shown

in Fig. 5.6. We observe that when cadp,rn ≥ 2.4 our adaptive group testing

algorithm is successful with probability close to 1.

Figure 5.6: Adaptive algorithm with Noiseless tests - reconstruction performance

for varying cadp,rn.

b) Varying cadp,deg

We keep all the parameters the same as in the base scenario except that

we change the value of cadp,deg from 0.1 to 1. The simulation result is shown

in Fig. 5.7. We observe that when cadp,deg ≥ 0.5 our adaptive group testing

algorithm is successful with probability close to 1.

CHAPTER 5. GROUP TESTING � GROTESQUE 163

Figure 5.7: Adaptive algorithm with Noiseless tests - reconstruction performance

for varying cadp,deg.

c) Number of tests for varying k and n

We keep all the parameters the same as in the base scenario except that

we change the number of defective items from 10 to 100. For multi-stage

adaptive algorithm, it is impossible to get the exact number of tests. In

this set of simulations, for a certain ratio of m/k log(n) (see Fig. 5.8), our

decoding algorithm is successful if and only if Ŝ = S and the number of

tests over k log(n) is less than the ratio. The vertical line atm/(k log(n)) =

12e1/2 ≈ 20 corresponds to the theoretical upper bound.

d) Running time of decoding algorithm for varying k and n

We keep all the parameters the same as in the base scenario except that

we change the number of defective items from 10 to 100 and the number

of items from 1, 000 to 100, 000. For each set of parameters, we estimate

the running time of our algorithm by averaging the running time over 100

simulations. The exact running time can be much improved considering

that the simulator is written in Matlab and not fully optimized, and we

run the algorithm on a laptop.16 Note that the running time is linear in k

16We use a laptop with 1.7GHz Intel Core i5 and 4 GB memory.

CHAPTER 5. GROUP TESTING � GROTESQUE 164

Figure 5.8: Adaptive algorithm with Noiseless tests - number of tests required

for varying k and m.

and running time increases by a small constant factor for larger n.

Figure 5.9: Adaptive algorithm with Noiseless tests - running time for varying k

and n.

Non-adaptive Algorithm

The parameters' values for base scenario are listed in Table 5.8. For each

set of parameters, we run simulation 100 times and use the percentage

CHAPTER 5. GROUP TESTING � GROTESQUE 165

of successful decoding as success rate. The decoding is successful if and

only if Ŝ = S. We set the number of items n to be 100, 000. There-

fore, we set the number of tests per multiplicity testing, mmul, as 20 since((
20
10

)
= 184, 756 > 100, 000

)
and setting the number of tests per localiza-

tion testing,mloc, as 17 since (217 = 131, 072 > 100, 000). Recall that cnon,rn

and cnon,bpt are constants related to the number of bipartite graphs and the

number of testing nodes for each bipartite graph, respectively. For the �rst

two sets of simulations, the results guide us on how to choose the internal

parameters cnon,rn and cnon,bpt. Then, we see how the probability of suc-

cessful decoding changes as the number of tests varies. Last, we record the

running time of our decoding algorithm for di�erent values of number of

defectives.

n 100, 000

k 50

mmul 20

mloc 17

cnon,rn 1.2

cnon,bpt 2

Table 5.9: Base scenario for non-adaptive algorithm

a) Varying cnon,rn

We keep all the parameters the same as in the base scenario except that

we change the value of cnon,rn from 0.1 to 2. The simulation result is shown

in Fig. 5.10. We observe that when cnon,rn ≥ 1.2 our adaptive group testing

algorithm is successful with probability close to 1.

b) Varying cadp,deg

We keep all the parameters the same as in the base scenario except

that we change the value of cnon,bpt from 0.4 to 3.2. The simulation result

CHAPTER 5. GROUP TESTING � GROTESQUE 166

Figure 5.10: Non-adaptive algorithm with Noiseless tests - reconstruction per-

formance for varying cnon,rn.

is shown in Fig. 5.11. We observe that when cnon,bpt ≥ 1.6 our adaptive

group testing algorithm is successful with probability close to 1.

Figure 5.11: Non-adaptive algorithm with Noiseless tests - reconstruction per-

formance for varying cnon,bpt.

c) Number of tests for varying k and n

We keep all the parameters the same as in the base scenario except that

we change the number of defective items from 10 to 100. Note that the

CHAPTER 5. GROUP TESTING � GROTESQUE 167

actual number of tests required to get reasonable decay in probability of

err is signi�cantly smaller than would be implied by Corollary 5.

Figure 5.12: Non-adaptive algorithm with Noiseless tests - number of tests re-

quired for varying k and m.

d) Running time of decoding algorithm for varying k and n

We keep all the parameters the same as in the base scenario except that

we change the number of defective items from 10 to 100 and the number

of items from 10, 000 to 100, 000. For each set of parameters, we estimate

the running time of our algorithm by averaging the running time over 100

simulations.

5.9 Conclusion

In this work we consider three group testing algorithms, speci�cally for

adaptive, nonadaptive, and two-stage adaptive scenarios. In each of these

scenarios, we present the �rst algorithms whose computational complex-

ity is nearly information-theoretically order-optimal. The number of tests

required in our algorithms is also nearly information-theoretically order-

optimal (by the same factor). Our �near optimality� is up to either uni-

CHAPTER 5. GROUP TESTING � GROTESQUE 168

Figure 5.13: Non-adaptive algorithm with Noiseless tests - running time for vary-

ing k and n.

versal constant factors or in some cases factors that are poly-logarithmic

in problem parameters. We present the framework that can indeed lead to

practical, fast algorithms. We do not further explore optimized codes in

this work (for instance, it is likely that a variant of density evolution [122]

may well lead to better constant factor performance. This is a topic of

ongoing research).

2 End of chapter.

Chapter 6

Compressive Phase Retrieval �

SUPER

6.1 Introduction

Phase Retrieval: In many applications of practical interest, it is di�-

cult to measure the phase information of the signal directly. Instead, we

�rst perform intensity measurements based on the underlying signal and

then reconstruct the signal from the measurements. For instance, in X-ray

crystallography, optics [100] and image reconstruction for astronomy [46],

the signal/image is reconstructed from the intensity measurements of its

Fourier transform.

Let A ∈ Cm×n be used to denote the phase measurement matrix, and

x ∈ Cn be used to denote the unknown underlying signal. Instead of linear

measurements of the form Ax as in the compressive sensing literature (for

instance, see [31]) in the phase retrieval problem we have m non-linear

intensity measurements of the form yi = |Aix|. Here the index i is an integer
in {1, . . . ,m} (or [m] for short), Ai is the i-th row of phase measurement

matrix A and |·| is the absolute value.

169

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 170

Problems of this kind have been studied extensively over the last decades.

A good survey of some of the algorithms via non-convex methods can be

found in [60,61]. Recently, two convex optimization methods, PhaseLift [32]

and PhaseCut [140], have been proposed by Candès et al. and Waldspurger

et al. PhaseLift is inspired by �nding low-rank matrices via minimizing the

trace norm of matrices [30]. Speci�cally, for the phase retrieval problem, the

rank of matrices is one. PhaseLift is able to reconstruct x with O(n log(n))

intensity measurements by solving a semide�nite programming (SDP) prob-

lem with high probability. The Ai's are independently sampled on the unit

sphere of Cn. Subsequently, the number of intensity measurements can be

improved to O(n) by choosing Ai's independently and identically from the

uniform distribution on the sphere of radius
√
n, or the complex normal

distribution [29]. PhaseCut is inspired by solving max-cut problem via

SDP. The decoding complexity for both PhaseLift and PhaseCut is O (n3),

which is still computationally costly when n is large.

Recently, besides the SDP-based approach, more computationally e�-

cient algorithms are proposed such as in [7], [104] and [116]. For instance,

in [104], the number of intensity measurements required is O
(
n log3(n)

)
.

However, the decoding complexity is O
(
n2 log3(n)

)
which is less than that

of the SDP-based approach. In [116], the number of measurements re-

quired and decoding complexity of the algebraic reconstrucction algorithm

are 4n − 4 and O(n), respectively. The algorithm works for all signals

except a speci�c 1-dimensional subspace, or a union of subspaces of Cn,

respectively.

Compressive Phase Retrieval:

Suppose x is �sparse�, i.e., the number of non-zero components of x is

at most k, which is much less than the length n of x. This assumption

is not uncommon in many applications like X-ray crystallography. Then,

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 171

given A and y, the goal of compressive phrase retrieval is to reconstruct x

as x̂, where x̂ equals x up to a global phase. That is, x̂ = xeιΘ for some

arbitrary �xed Θ ∈ [0, 2π). Here ι denotes the imaginary unit. The reason

we allow this degeneracy in x̂, up to a global phase factor, is that all such

x̂'s result in the same measurement vector under intensity measurements.

If x̂ does indeed equal x up to a global phase, then we denote this �equality�

as x̂=̂x.

It is shown that 4k − 1 intensity measurements su�ce to uniquely re-

construct x in [108] (for x ∈ Rn) and [5] (for x ∈ Cn). However, no e�cient

algorithm is given. The `1-regularized PhaseLift method is introduced in

the compressive phase retrieval problem in [109]. In [90], it is shown that

if the number of Gaussian intensity measurements is O (k2 log(n)), x can

be correctly reconstructed via `1-regularized PhaseLift.

The works in [128] and the works by Jaganathan et al. [81�83] study the

case when the phase measurement matrix is a Fourier transform matrix.

[110] shows that SDP-based methods can reconstruct x with sparsity up to

o (
√
n). In [83], the algorithm based on reweighted `1-minimization with

O (k2 log(n)) phaseless Fourier measurements is proposed to go beyond this

bottleneck. When the phase measurement matrix is allowed to be designed,

a matrix ensemble and a corresponding combinatorial algorithm is proposed

in [83] such that x is correctly reconstructed with O(k log(n)) intensity

measurements in O(kn log n) time. The Unicolor algorithm in [114] builds

on our work [24] and is able to reconstruct a constant fraction of non-zero

components of x with O(k) measurements in O(k) time. See Section 6.3

for a detailed comparison.

To the best of our knowledge, in the literature, there is no prior construc-

tion of an ensemble of measurement matrices A and a corresponding re-

construction algorithm that correctly reconstructs x with an order-optimal

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 172

number of measurements and with near-optimal decoding complexity si-

multaneously.

Notation De�nition

x Length-n signal over C with sparsity k

A Dimension-n×m phase measurement matrix over C.

y Length-m Intensity measurement vector over R+
0 .

Ai The i-th row of phase measurement matrix A for all ∀i ∈ [m].

yi yi = |〈Ai, x〉|, the i-th intensity measurement ∀i ∈ [m].

k k = ‖x‖0, the number of non-zero components (sparsity) of x.

Table 6.1: Table of notation for the model

6.1.1 Our Contribution

In this work,1 we focus on compressive phase retrieval problem with noise-

less intensity measurements. We propose SUPER,2 which consists of a

randomized design of the measurement matrix and a corresponding decod-

ing algorithm that achieve the following guarantees:

Theorem 3. (Main theorem) There exists a measurement ensemble {A}
and a corresponding decoding algorithm for compressive phase retrieval with

the following performance:

1. For every x ∈ Cn, with probability 1−o(1) over the randomized design

of A, the algorithm exactly reconstructs x up to a global phase

2. The number of measurements m = O(k), and

1While in this work we focus on the �sparse regime", k = o(n), our techniques work for all

k ∈ {1, 2, . . . , n}. If k = ω(1), our algorithm has the same performance stated in Theorem 3. If

k is a constant and error probability of our algorithm is Pe, then the number of measurements

required is f(Pe)k for some function f .
2SUPER stands for Sparse signals with Unknown Phases E�ciently Recovered.

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 173

3. The decoding complexity is O(k log(k)).

The rest of this chapter is organized as follows. We �rst present the high-

level overview of our algorithm in Section 6.2. In Section 6.4, we introduce

the graphs used to induce the measurement structure. Sections 6.5 and

Section 6.7 contain actual measurement design. Section 6.6 and Section

6.8 discuss the reconstruction algorithm and its performance. Section 6.9

provides concluding remarks.

6.2 Overview/High-level Intuition

Our SUPER algorithm is non-adaptive. There are three phases3 in our

decoding algorithm. In the �rst phase (called seeding phase), we are able

to recover the magnitudes and relative phases of a constant fraction of non-

zero components of x. In the second phase (called geometric-decay phase),

there are O(log(log(k))) stages. In each stage, we recover the magnitudes

and relative phases of a constant fraction of unresolved non-zero compo-

nents of x. In the third phase (called cleaning-up phase), the remaining

O(k/ log(k)) unresolved non-zero components are decoded.

6.2.1 Pieces of the puzzle

We �rst de�ne some useful terminology.

Singletons:

If a measurement yi involves only a single non-zero component of x, then

we say that such a measurement is a singleton.4 Singletons are important

3All the measurements are designed before the decoding process, so it is non-adaptive.
4Singletons and multitons in this chapter are interchangeable with leaf-nodes and non-leaf-

nodes in previous chapters. However, a special kind of non-leaf-nodes, doubletons, are exploited

in this chapter. To di�erentiate the di�erent non-leaf-nodes, we stick to using singletons,

doubletons, and multitons in this chapter.

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 174

since they can be used to pin down the magnitude (though not the phase)

of components of x. There are several challenges, however. One lies in even

identifying whether a measurement is a singleton or not. The second lies in

identifying which of the x components being measured in yi corresponds to

the singleton. The third is to be able to do all this blindingly fast, in fact

in constant time (independent of n and k). Each of these challenges can

be handled by using ideas from our prior work on compressive sensing [10].

For details, see Sections 6.5 and 6.6 below.

Doubletons:

Similarly, if a measurement yi involves exactly two non-zero components

of x, then we say that such a measurement is a doubleton. Doubletons,

especially doubletons measuring two non-zero components of x which have

already been measured by singletons (we call such doubletons resolvable

doubletons), are useful since they can be used to deduce the relative phases

of the two non-zero components of x. For example, if one is given the

magnitudes |xi|, |xj|, and |xi + xj|, then one can determine the angle θ

between the phases of the complex numbers xi and xj (up to degeneracy of

sign of θ). In fact, even this degeneracy can be resolved by an additional

judiciously chosen measurement. Similar challenges to those mentioned

above vis-a-vis singletons (identifying whether or not a measurement is

a doubleton/resolvable doubleton, identifying which components of x it

corresponds to, and doing so in constant time) also hold for doubletons.

See Sections 6.5 and 6.6 for details.

Mutual resolvability:

We say our decoding algorithm has thus far mutually resolved two non-

zero components xi and xj of x if the magnitudes of both xi and xj have

been deduced, and also the relative phase between xi and xj has been

deduced (for instance via resolvable doubleton measurements roughly de-

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 175

scribed above). Note that mutual resolvability is an equivalence relation �

it is re�exive, symmetric and transitive. Note therefore that if xi and xi′

have been mutually resolved, it is not necessary that they even are involved

in the same measurement; it is su�cient that xi and xi′ are part of a chain

of non-zero components of x that are pairwise mutually resolved.5 Finally,

we note that as our decoding algorithm progresses, if it is successful, in

fact all the non-zero components of x are eventually mutually resolved.

Hence this property of mutual resolvability is perhaps most interesting in

the intermediate stages of our decoding algorithm.

Giant component:

We say that a subset of the non-zero components of x form a giant

component if it is the largest subset satisfying the two properties:

• The subset is of size linear in k.

• Any pair of components in the subset have been mutually resolved

(thus far) by the decoding algorithm.

Non-zero components of x that have not (yet) been mutually resolved

with respect to an element of the giant component by the decoding algo-

rithm are said to be unresolved.

Essentially, our algorithm proceeds by iteratively enlarging the giant

component until it engorges all the non-zero components of x.

Resolvable multiton:

We say that a measurement yi is a resolvable multiton if it is the case

that exactly one (say xj) of the non-zero components of x involved in the

measurement yi is outside the giant component, and at least one of non-

zero components of x is inside the giant component. Such measurements

are useful since, in the latter parts of our algorithm, there are not enough

5Mutual resolvability is a symmetric and transitive property.

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 176

resolvable doubletons. By carefully choosing the parameters of the algo-

rithm, one can guarantee that a constant fraction of measurements are

resolvable mutitons.

Judiciously designed measurements (see Section 6.5) enable one to mu-

tually resolve the component xi that is outside the giant component, with

the components of x inside the giant component, by solving a quadratic

equation. Care is indeed required in choosing the measurements since the

amplitude measurement process is inherently non-linear, and there may not

be a �clean� manner to mutually resolve xi via arbitrary measurements �

indeed the design of such a measurement process is also one of the intellec-

tual contributions we wish to highlight in this work. We call this process

�cancelling out� the already resolved components of x.

6.2.2 Putting the pieces together

Seeding phase:

In the �rst phase, called the seeding phase, there are O(k) �sparse�

measurements (each measurement involves, in expectation, O(n/k) com-

ponents of x). We demonstrate that by �rst examining the measurements

corresponding to this phase, the decoding algorithm is already able to de-

code a constant fraction (say half)6 of the components of x up to a global

phase. The algorithm is able to do this since we are able to show that a

�signi�cant� fraction of measurements are singletons and resolvable double-

tons. Standard results in percolation theory [20] then lead one to conclude

that the number of non-zero nodes that are mutually resolvable is linear

in k, i.e., that there is a giant component. Hence this phase is called the

6Here, 1/2 is arbitrarily chosen to simplify the presentation of intuition. The actual fraction

of resolved non-zero components in the seeding phase is di�erent from 1/2. See Section 6.8 for

details. Here, the parameter 1/2 for the geometric-decay phase in this section is due to the

same reason.

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 177

�seeding� phase, since the giant component forms the nucleus on which the

remainder of the algorithm builds upon.

Prior work [83] close to our work here comprises essentially only of the

seeding phase, but with O(k log(k)) measurements.7 The reason that prior

work needs this many measurements is essentially due to what happens at

the tail end of a �coupon collection� process [103] (wherein one has to collect

at least one copy of each of k coupons by sampling with replacement) �

when most of the coupons have already been collected/the giant component

is of size close to k, then the growth rate slows down. Speci�cally, this is

because the fraction of resolvable doubletons decays slowly to zero, and an

additional multiplicative factor of log(k) measurements is required so as to

ensure the giant component subsumes all non-zero components of x.

The key technique used in our work, then, is to segue to a di�erent

sampling process outlined below, and using resolvable multitons rather than

doubletons. The challenge is to make the numbers work � unlike [83],

not only do we require only O(k) measurements, but we also require our

decoding complexity to be O(k log(k)).8

Geometric-decay phase:

This phase itself comprises ofO(log(log(k))) separate stages. Each stage

has half the number of measurements compared to the previous stage, but

measurements in each stage are twice as �dense� as the measurements in the

previous stage. So, for instance, if in the �rst stage of the geometric-decay

phase, there are say ck/2 measurements, with each measurement involving

2n/k components of x, then in the second stage of the geometric-decay

7The combinatorial algorithm in [83] can be modi�ed to have O(k log(k)) measurement with

error probability O(1/ poly(k)) instead of 1/n in the paper. Also, based on our reconstruction

algorithm, the decoding complexity can be reduced to O(k log(k)).
8In this section, we focus on the number of measurements and decoding complexity. For the

error probability, please refer to Section 6.8.

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 178

phase, there are ck/4 measurements, but each measurement involves 4n/k

components of x.

There are two reasons for this choice of parameters. Firstly, with such

a geometric decay in the number of measurements in each stage, the over-

all number of measurements in the geometric-decay phase is still O(k).

Secondly, we show that with the geometric increase in the density of mea-

surements, a signi�cant fraction of measurements in each stage lead to

resolvable multitons, and use this to show that the number of unresolved

components decays geometrically.

The reason we run the geometric-decay phase for only O(log(log(k)))

stages is also two-fold. Firstly, after that many stages, with the number of

unresolved components halving at every stage, the number of unresolved

components of x is, in expectation, O(k/ log(k)). Hence the concentration

inequalities (which depend on the number of unresolved components) we

use to control the probabilities of error get progressively weaker (though

they still result in good concentration at the last stage of the geometric-

decay phase). Secondly, and more importantly, the number of non-zero

components in each resolvable multiton increases geometrically as the num-

ber of stages increases. This has implications for the time-complexity of

the decoding algorithm, since the time-complexity depends directly on the

number of non-zero components in each measurement that need to be �can-

celled out�. By terminating the geometric-decay phase after O(log(log(k)))

stages ensures that, in expectation, the number of such �cancellations� is

at most O(log(k)), and hence the overall time-complexity of the algorithm

scales as O(k log(k)).

Cleaning-up phase:

Finally, we segue to what we call the �cleaning-up� phase. As noted

above, after the geometric-decay phase the number of unresolved compo-

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 179

nents of x is, in expectation, k′ , O(k/ log(k)). To �t our budget of

O(k) measurements, and O(k log(k)) decoding time, we now segue to us-

ing �coupon collection� as a primitive. This may be viewed as restarting

the seeding (�rst) phase, but with di�erent parameters. In particular, the

problem dimension has now been signi�cantly reduced (since there are now

only k′ unresolved components of x). Therefore we can now a�ord to pay

the coupon collection penalty that we avoided in the seeding phase by

moving to the geometric-decay phase.

Speci�cally, in this cleaning-up phase we take O(k′ log(k′)) measure-

ments so as to resolve the remaining k′ unresolved components of x. Note

that O(k′ log(k′)) scales as O(k). Each measurement we take has the same

density as the measurements in the last stage of the geometric decay phase,

and hence the time-complexity of resolving measurements also scales in the

same manner. However, since there are many more measurements than in

the last stage of the geometric-decay phase, by standard arguments corre-

sponding to the coupon collection problem we are able to argue that for

each unresolved component of x there is at least one resolvable multiton

that helps resolve it.

6.2.3 Summary of the overview

As the above discussion outlines, to make the numbers work (i.e., to en-

sure O(k) number of measurements and O(k log(k)) time-complexity), one

has to delicately choose the parameters of the measurement ensemble. Our

analysis indicates that having a phase in which the sparsity actually ge-

ometrically increases, at least for a while, signi�cantly improves perfor-

mance. To take advantage of this, however, we have to carefully design

the measurements, so that one can resolve unresolved components of x via

judiciously designed non-linear measurements. In this work we have not

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 180

attempted to optimize the constant factors � we expect further constant-

factor improvements are possible via further careful tuning; indeed, this is

one of the focuses of the work in [114].

6.3 Highly related work

Chronologically, and also logically, the �rst work to focus on phase recovery

via a peeling process was that by [83]. Follow-up work by the authors of

this work in [24] (the conference version of this work) improved on the

parameter space as discussed below. Finally, the work by [114] builds

further on [24] and expands the parameter regime considered.

At highest level, it could be argued that each of the works has the fol-

lowing two similarities. First, the measurement matrices in all the works

can be generated using the structure of bipartite graphs, even if this is

not explicitly mentioned in [83]. Second, all the algorithms use a peel-

ing process to decode. Unlike the peeling process using singletons in the

compressive sensing problem [10, 112], singleton peeling process recovers

only the magnitudes of non-zero components in the phase retrieval prob-

lem. Therefore for the phase retrieval problem, a modi�ed peeling process

using doubletons or multitons helps to recover the relative phases between

non-zero components � this observation was also used in each of [24, 83]

and [114].

Next, we focus on the di�erence between these works. Di�erences in

reconstructions goals, measurement ensembles (in terms of both sparsity

structure of the measurement matrices, and entries of non-zeroes) and cor-

responding subtle changes can lead to large di�erences in provable guar-

antees of algorithms such as the number of measurements and decoding

complexity.

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 181

• Di�ering reconstruction goals: In [83] and [24], the goal is to

resolve all the non-zero components with high probability. However,

the Unicolor algorithm in [114] resolves a constant (close to 1) fraction

of non-zero components. If any missing non-zero component has large

magnitude the Unicolor algorithm leads to catastrophic errors.

• Di�ering measurement ensembles (sparsity structure) lead-

ing to di�ering number of measurements: In [83], the appear-

ance of each edge in the bipartite graph is i.i.d.. As mentioned earlier,

O(k log(k)) measurements are required due to what happens at the

tail end of a �coupon collection� process. Our work re�nes by tweak-

ing tail measurements (in three separate phases � see Section 6.2 for

intuition and Section 6.4 for details) to get information-theoretically

optimal O(k) measurements, at slight cost of decoding complexity

(see the next point). The algorithm in [114] chooses not to tweak tail

measurements, hence gets O(k) measurements and pays a penalty of

potentially catastrophic errors (see the previous point). The bipartite

graph used in [114] is left-regular and density evolution techniques

are used to optimize constant factors in the number of measurements

over [24].

• Di�ering measurement matrix ensembles (entries) leading to

di�ering decoding complexities: In [83], decoding complexity is

dominated by the support-recovery module, which isn't state-of-the-

art. The algorithms in [24] and [114]9 have more nuanced choice of

measurements ensembles (involving carefully chosen speci�c measure-

ments that speed up the recovery modules as in [10], and allow the

9The number of measurements in [114] decreases by a factor of more than 5/4 compared to

that in [24], due to a more careful choice of structured measurements and density evolution to

carefully choose the corresponding degree distribution of nodes.

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 182

non-linear measurements models to be �linearized� in [24] (see Section

6.6.2 for details)) leading to signi�cant savings in decoding complexity

from O(nk log(k)) in [83] to O(k log(k)) in [24]. Further reductions

in decoding complexity to O(k) in [114] results from the fact that

they have di�ering reconstruction goals from [24, 83]. Having seen

the results of [114] (which was published after [24], but before this

manuscript), we note that if we also relaxed our reconstruction goal

to resolving most (but not all) of the non-zero components, we too

could get both decoding complexity and a number of measurements

scaling as O(k) (see Remark 11 in Section 6.7 for that).

• Utility for applications: One nice thing in [114] is that the au-

thors also apply the techniques in [113] to generalize their algorithms

in the scenario where measurements are �Fourier-friendly� � see [114]

for details. Therefore, the algorithms are more practical for applica-

tions such as X-ray crystallography and optics [100] than the ones we

propose.

6.4 Graph properties

We construct a series of bipartite graphs with some desirable properties

outlined in this section. We then use the structure of the bipartite graphs

to generate our measurement matrix A in Section 6.5 and design the cor-

responding reconstruction algorithm in Section 6.6. Each left node of a

bipartite graph represents a component of x, and each right node repre-

sents a set of intensity measurements.

6.4.1 Seeding Phase

The properties of the bipartite graph, GI , in the �rst phase are as follows:

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 183

1. There are n left nodes and ck right nodes, where c is a constant.

2. Each edge in GI appears with probability 1/k. For each right node,

the degree, in expectation, is n/k.

3. Each edge in GI is assigned di�erent weights, as discussed in the mea-

surement design (see Section 6.5).

4. Many singleton nodes: Singleton nodes are right nodes which involves

exactly one non-zero component of x. Singleton nodes help to recover

the magnitude of non-zero component. See Section 6.8 for details.

5. Many resolvable doubleton nodes: Doubleton nodes are right nodes

which involve exactly two non-zero components of x. Resolvable dou-

bletons are the doubletons which involve exactly two non-zero compo-

nents whose magnitudes are recovered by singleton nodes. See Section

6.8 for details.

We also consider a graph H, which is implied by GI and is de�ned as

follows. Each vertex in H represents a non-zero component of x and there

is an edge in H if and only if two left nodes involved are mutually resolved

by a resolvable doubleton node. We prove that the H satis�es the following

property. H has a �giant� connected componentH′ that contains a constant
fraction of nodes from H. This property is formally stated in Section 6.8.

See Figures 6.1 and 6.2 for illustration.

6.4.2 Geometric-decay phase

There are O(log(log(k))) separate bipartite graphs/stages in this phase.

The properties of the l-th bipartite graph, GII,l (l = 1, 2, . . . , L =

O(log(log(k)))), are as follows:

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 184

Figure 6.1: Implied Graph: GI is a bipartite graph with n left nodes. Blue nodes

and black nodes represent k (16 in this example) non-zero components and n−k

zero components, respectively. Green nodes and red nodes on the right represent

singletons and doubletons, respectively. A graph H is implied by GI . Each

vertex in H corresponds to a non-zero component of x. There exists an edge in

H if and only if the corresponding two non-zero components of x are mutually

resolved. For example, in graph GI , x1 and x2 are connected by two singletons

and one doubleton. The magnitudes of x1 and x2 are recovered by these two

singletons. Therefore, the doubleton becomes a resolvable doubleton and x1 and

x2 are mutually resolved. Accordingly, in graph H, x1 and x2 are connected.

1. There are n left nodes and cfII,l−1k right nodes, where fII,l−1 is the

expected fraction of unresolved non-zero components of x after the

(l− 1)-th stage of decoding process in the second phase. fII,0 = fI is

the expected fraction of unresolved non-zero components after seeding

phase. The 0-th stage of geometric-decay phase is called the seeding-

phase. The value of fII,l is discussed in Section 6.7.

2. Each edge in GII,l appears with probability 1/ (fII,l−1k).

3. Each edge in GII,l is assigned di�erent weights, as discussed in the

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 185

Figure 6.2: Seeding Phase: GI is the bipartite graph with n left nodes and ck

right nodes where c is a constant. Each edge in GI appears with probability 1/k.

We prove that, in Section 6.8, there are many singleton and doubleton nodes in

GI and there is a �giant" connected component H′ in H. H′ contains a constant

fraction (1/2 in this example) of nodes from H.

measurement design (see Section 6.5).

4. Many resolvable multiton nodes: Resolvable multiton nodes are right

nodes which involve exactly one unresolved non-zero component of

x and at least one of the resolved non-zero components. Each re-

solvable multiton node helps to recover both the magnitude and the

relative phase of the corresponding unresolved non-zero component

via �Cancelling out� process (see Section 6.6).

For a newly resolved non-zero component, the corresponding node in H is

appended to the giant connected component, H′. In expectation, there are

(fII,l−1 − fII,l) k non-zero components decoded in the l-th stage of decod-

ing. We show in Section 6.8 that we are able to reconstruct a constant

fraction of undecoded non-zero components with high probability at each

stage. After O(log(log(k))) stages, there are O(k/ log(k)) unresolved non-

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 186

zero components of x left. See Figure 6.3 for illustration.

6.4.3 Cleaning-up phase

The properties of the bipartite graph, GIII , in the last phase are as follows:

1. There are n left nodes and c (k/ log(k)) log (k/ log(k)) = O(k) right

nodes.

2. Each edge in GIII appears with probability log(k)/k.

3. Each edge in GIII is assigned di�erent weights, as discussed in the

measurement design (see Section 6.5).

4. Many resolvable multiton nodes.

In this stage, all the resolved non-zero components of size O(k/ log(k)) are

�nally recovered using resolvable multiton nodes by the �Cancelling out�

process and a Coupon Collection argument. See Figure 6.4 for illustration.

6.5 Measurement Design

For each of the bipartite graphs described in the previous section (GI , GII,l's
and GIII), we design a corresponding measurement matrix. In the following,

we describe the design of the measurement matrix A(G) for an arbitrary

bipartite graph G with n right nodes and m′G left nodes. This design is

then used to generate measurement matrices for each of the graphs GI ,
GII,l's and GIII . Let A′(G) be the dimension-m′G ×n adjacency matrix of G
where the entry at i-th row and j-th column equals to 1 if and only if i-th

right node connects to the j-th left node for j ∈ [n] and i ∈
[
m′G
]
. The

dimension-mG × n phase measurement matrix A(G) is designed based on

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 187

Figure 6.3: Geometric-decay phase: There are O(log(log(k))) (2 in this example)

separate bipartite graphs in this phase. The number of right nodes decreases ge-

ometrically (from ck/2 to ck/4) and the density of graphs increases geometrically

(from 2/k to 4/k). We prove, in Section 6.8, that there are a signi�cant fraction

of measurements in each stage leading to resolvable multitons and the number

of unresolved components decays geometrically. At the end of geometric-decay

phase, the number of unresolved components is O(k/ log(k)).

Figure 6.4: Cleaning-up Phase: GIII is a bipartite graph with n left nodes and

O(k) right nodes. Each edge appears with probability log(k)/k. We show, in

Section 6.8, that all the remaining unresolved components (black part of H in

Fig. 6.3) can be resolved using coupon collection argument.

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 188

Notation De�nition

GI The bipartite graph used in the seeding phase with n left nodes and ck

right nodes. Each edge appears with probability 1/k.

H Implied graph by GI .

H′ Giant connected component of H.

GII,l The l-th bipartite graph used in the l-th stage in geometric-decay phase

with n left nodes and cfII,l−1k right nodes for l ∈ [L]. Each edge

appears with probability 1/fII,l−1k.

fI The expected fraction of unresolved non-zero components of x after

the seeding phase.

fII,l The expected fraction of unresolved non-zero components of x after

the l-th stage of the geometric-decay phase. Let fII,0 = fI .

GIII The bipartite graph used in the cleaning-up phase with n left nodes and

c (k/ log(k)) log (k/ log(k)) right nodes. Each edge appears with probability

log(k)/k.

Table 6.2: Table of notation used in the design of bipartite graphs in this chapter.

A′(G) where mG = 5m′G. By appending all the matrices A(G) sequentially,

we get the actual m × n measurement matrix A where m = ΣGmG. For

i-th row A′(G)i of A
′(G), a set of rows (of size 5) of A(G) are designed for

i ∈
[
m′G
]
. If the j-th entry of A′(G)i is zero, then corresponding set of

entries of A(G) are all zero for all j ∈ [n]. In the following measurement

matrix design, we design the entries corresponding to non-zero entries in

A′(G). See Section 6.6 for how these measurements are used for decoding.

1. Trigonometric entries: The j-th entries of the (5i−4)-th and (5i−3)-

th rows of A(G) are denoted by a
(G,1)
i,j and a

(G,2)
i,j . The values are set

as follows:

a
(G,1)
i,j = cos

(
jπ

2n

)
, and

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 189

a
(G,2)
i,j = ι sin

(
jπ

2n

)
,

where ι denotes the positive square root of−1 and π/2n can be treated

as the unit phase of the entry design. In particular, the phase jπ/2n

will be critical for our algorithm. The �rst two entries are used in

singleton node identi�cation and �cancelling out� process of resolvable

multiton nodes respectively.

2. Structured unit complex entries: The j-th entry of the (5i−2)-th row

of A(G) is denoted by a
(G,3)
i,j . The value is set as follows:

a
(G,3)
i,j = exp

(
ι
jπ

2n

)
.

This type of measurement will be used only in �cancelling out� process

of resolvable multiton nodes.

3. Unit entries: The j-th entry of the (5i− 1)-th row of A is denoted by

a
(G,4)
i,j . The value is set to be 1. This measurement is used in resolv-

able doubleton identi�cation and �cancelling out� process of resolvable

multiton nodes.

4. Random unit complex entries: The j-th entry of the 5i-th row of A

is denoted by a
(G,5)
i,j used as veri�cation. The value is set as follows:

a
(G,5)
i,(j) = exp(ιφi,j),

where φi,j is chosen uniformly at random from [0, π/2].10 This mea-

surement is used to resolve potential degeneracies arising from the

10If φi,j is chosen with Ω(log(k)) bits of precision, the error probability of veri�cation and

resolving degeneracy (see relative phase recovery part in Section 6.6) in a single step is at most

O(1/poly(k)). Since the total number of times one needs to verify and resolve degeneracy

is O(k), by applying the union bound over the decoding process, the probability of incorrect

decoding is upper bounded by O(1/ poly(k)).

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 190

solution of quadratic equations when resolvable multitons and resolv-

able doubletons are used for decoding. Also, it helps to verify our

other measurements such as identi�cation measurements, and the es-

timation of magnitude and relative phases.

Notation De�nition

m′G The number of right nodes for the bipartite graph G. G is one of

GI , GII,l for l ∈ [L], and GIII .

A′(G) The dimension-m′G × n adjacent matrix of G.

A′(G)i The i-th row of matrix A(G)′ for i ∈
[
m′G
]
.

A(G) The dimension-mG × n measurement matrix generated by A(G)′.

Here mG = 5m′G .

A The dimension-m× n phase measurement matrix generated by

all A(G)'s. Here, m = ΣGmG .

a
(G,q)
i,j The j-th entry of the [5 (i− 1) + q]-th the rows of A(G).

Here, i ∈ [mG], j ∈ [n], and q ∈ [5].

Table 6.3: Table of notation for measurements design

6.6 Reconstruction Algorithm

Let y
(G,q)
i denote the [5 (i− 1) + q]-th measurement generated by A(G).

Here, G is one of the GI , GII,l's and GIII , i ∈ [mG], and q ∈ [5].

6.6.1 Seeding phase

Overview

1. Preprocessing: Each right node is attached to a list to record its

neighbours (left nodes) in the decoding process.

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 191

2. Singleton Identi�cation and Magnitude Recovery: Check every right

node to see whether it is a singleton node or not. If so, we locate the

corresponding non-zero component and measure its magnitude.

3. Doubleton Identi�cation: After decoding the non-zero components

(only their magnitudes till this step), each list of their neighbours'

(right nodes') is inserted the indices of the decoded non-zero com-

ponents.11 The right nodes with the length-2 lists are identi�ed as

potential resolvable doubletons. Later, we use veri�cation measure-

ments to �gure out actual resolvable doubletons. The reason why we

need the veri�cation step is that the potential resolvable doubletons

may involve other non-zero components which have not been resolved

yet.

So far, we decode the magnitudes of a constant fraction of all the

non-zero components, and also identify the locations of these non-

zero components. We also identify potential resolvable doubletons

by checking whether the list a�liated with right nodes are of size

exactly 2, and the actual resolvable doubletons (by using veri�cation

measurements).

4. Relative Phase Recovery: Each resolvable doubleton is used to resolve

the phase between the two non-zero components whose locations lie

in the neighbour list of the resolvable doubleton.

Breadth First Search (BFS) or Depth First Search (DFS) [135] al-

gorithm allow us to explore a spanning forest for graph H compu-

tationally e�ciently, in time O(k). We only care about the largest

11We do the insertion only if the length of the list is no larger than one. For the list whose

length is 3 after insertion, it will be discarded and won't be considered in the following iteration

since it de�nitely is not a doubleton.

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 192

connected component, H′. After this step, any pair of nodes in H′

are mutually resolved.

The formal description of reconstruction algorithm

1. Initialization: We initialize by setting the signal estimate vector x̂ to

all-zeros vector 0n. Each right node i ∈
[
m′GI

]
is attached to an empty

neighbour listM(i). Let D denote a list of the resolvable doubletons.

Initially, D is empty. Set i = 1.

2. Singleton Identi�cation and Magnitude Recovery:

Compute the ratio of Trigonometric measurements:

si =

arctan

(
y
(GI ,2)
i

y
(GI ,1)
i

)
π
2n

.

If si is not an integer, increment i by 1 and start a new iteration. If

si is an integer, we do the following steps:

(a) Singleton Identi�cation: We tentatively identify that i is a sin-

gleton.

(b) Magnitude Estimation: Assume that the si-th entry of x is non-

zero and

|x̂si | =


y
(GI ,1)
i

a
(GI ,1)
i,si

if a
(GI ,1)
i,si

6= 0

ι
y
(GI ,2)
i

a
(GI ,2)
i,si

if a
(GI ,2)
i,si

6= 0.

(c) Veri�cation: If |x̂si| 6=
∣∣∣y(GI ,5)
i

∣∣∣, the veri�cation fails. We incre-

ment i by 1 and go back to step a) to start a new iteration. If

veri�cation passes, we do the following steps:

i. Updating neighbour List: si is appended to the neighbour

lists of all its neighbours. For i ∈
[
m′GI

]
, it is no longer

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 193

considered in the later process if |M(i)| ≥ 3 since in the

next step we only care about doubleton whose neighbour list

size equals 2.

ii. Increment i by 1 and go back to step a) to start a new iter-

ation.

3. Doubleton Identi�cation: For each i whose neighbour list is of size 2,

it is appended to the resolvable doubleton list D whereM(i)[1] and

M(i)[2] are the two indices of non-zero components whose magnitudes

have been recovered.

4. Relative Phase Recovery:

To compute connected component of H, Breadth �rst search or depth

�rst search for adjacent list representation of H is applied in this step.

For each i ∈ D, the elements inM(i) tell which two vertices in H are

connected. BFS or DFS outputs connected components of graph H.
We run the BFS or DFS, for each edge in H, with additional steps

stated below:

(a) Relative Phase Estimation: Suppose i's two neighbours are de-

noted byM(i)[1] andM(i)[2]. The fourth measurement is used

to derive the phase between M(i)[1]-th and M(i)[2]-th compo-

nents of x, θ =
∣∣θM(i)[1] − θM(i)[2]

∣∣, by Law of Cosine.12

(b) Resolving Degeneracy and Veri�cation: The veri�cation measure-

ment helps to resolve the degeneracy of sign of θ (i.e., whether

θ or −θ is the actual phase di�erence we are interested in.) by

12Given the lengths of two complex number A and B, we can deduce the phase between

A and B, ∆, by Law of Cosine if we also know the length of A + B. To be more explicit,

− cos ∆ = |A|2+|B|2−|A+B|2
2|A||B| .

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 194

checking whether

∣∣∣∣x̂M(i)[1]

∣∣ exp
(
ιφi,M(i)[1]

)
+
∣∣x̂M(i)[2]

∣∣ exp
(
ιφi,M(i)[2] + ιθ

)∣∣
=
∣∣∣y(GI ,5)
i

∣∣∣
or

∣∣∣∣x̂M(i)[1]

∣∣ exp
(
ιφi,M(i)[1]

)
+
∣∣x̂M(i)[2]

∣∣ exp
(
ιφi,M(i)[2] − ιθ

)∣∣
=
∣∣∣y(GI ,5)
i

∣∣∣ .
If neither of the above equations holds, then i is not a resolvable

doubleton. Namely, there is no edge between M(i)[1]-th and

M(i)[2]-th components of x.

For the �rst node in a connected component, its phase is set to be zero.

When the BFS or DFS terminates, we can �nd the largest connected

component of H, H′. For all the node pairs in H′, they are mutually

resolved.

6.6.2 Geometric-decay and Cleaning-up phases

Claim 1. (�Cancelling out� Process) For a bipartite graph G in geometric-

decay phase or cleaning-up phase, if a right node i is a resolvable multiton

node, it involves exactly one (unknown) undecoded non-zero component, xj,

and at least one (known) resolved non-zero components. Then, we are able

to �nd the location of xj, j, and resolve xj (both magnitude and relative

phase).

Proof. Please refer to Appendix A.2.1. �

Note that if �cancelling out� fails (i.e., none of the pairs of j and xj sat-

is�es the last equation in the proof), then i is not a resolvable multiton. In

each stage at geometric-decay phase and cleaning-up phase, we go through

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 195

all the right nodes, �nd resolvable multitons and use them to recover un-

resolved non-zero components by the �cancelling out� process. For a newly

resolved component of x, the corresponding node in H is appended to H′.
In the end, the size of the node set of H′ should be k.

Notation De�nition

y
(G,q)
i The [5 (i− 1) + q]-th intensity measurement generated by measurement

matrix A(G). Here, i ∈ [mG], and q ∈ [5].

D Resolvable doubleton list used in the seeding phase.

M(i) The neighbour list for i-th node in GI for i ∈ [mGI].

Table 6.4: Table of notation for measurements design

6.7 Choice of Parameters

All the parameters designed in this section are calculated based on expecta-

tion. The actual performance of our algorithm will be discussed in Section

6.8.

6.7.1 Seeding phase

Magnitude Recovery by singletons

• The probability of a right node being a singleton node is given by

PS =

(
k

1

)
1

k

(
1− 1

k

)k−1

=

(
1− 1

k

)k−1

.
= e−1.

• The expected number of singletons is equal to ck × PS .
= e−1ck.

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 196

• The expected number of di�erent non-zero components whose mag-

nitudes are recovered is given by the following lemma.

Lemma 12. (Generalized coupon collection) Given V di�erent coupons

and V log
(

V
V−U

)
picks with repetition (U < V), the expected number of

di�erent coupons picked is U for V → +∞. With probability at least 1 −
2 exp

(
−2ε2(V−U)U

V

)
, the number of di�erent coupons picked is between (1−

ε)U and (1 + ε)U for any ε > 0.

Proof. Please refer to Appendix A.2.2. �

By Lemma 12 (let V = k and V log
(

V
V−U

)
= ck × PS), we know that

the expected number of non-zero components of x whose magnitudes are

recovered is k
(
1− e−cPS

)
.

Relative Phase Recovery by resolvable doubletons

• The probability of a right node being doubleton is given by

PD =

(
k

2

)(
1

k

)2(
1− 1

k

)k−2

=
1

2

(
1− 1

k

)k−1

.
=

e−1

2
.

• The expected number of doubletons is equal to ck × PD .
= e−1ck/2.

• The expected number of resolvable doubletons is given by the follow-

ing statement.

Note that only the doubleton which involves two non-zero components

whose magnitudes have been recovered is useful to recover the relative

phase.

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 197

resolvable doubletons =

(k(1−e−cPS)
2

)(
k
2

) × ckPD

.
=

(
1− e−cPS

)2
cke−1

2
.

• The expected number of di�erent pairs of components whose relative

phase is recovered by resolvable doubletons is given by Lemma 12.

Given k
(
1− e−cPS

)
nodes and

(
1− e−cPS

)2
ckPD edges with repetition

in H, there are

(1 +O(1/k))
(
1− e−cPS

)2
ckPD

distinct edges.

The giant connected component

Theorem 4. [20] For a random graph GN,M with N nodes and M edges

chosen at random among the
(
N
2

)
possible edges. Let ZN,M denote the size

of the greatest component of GN,M . If r = 2M/N > 1, we have for any

ε > 0

Pr

(∣∣∣∣ZN,MN − β
∣∣∣∣ < ε

)
= 1−O

(
1

ε2N

)
,

where β is the unique solution to β + exp(−βr) = 1.

We need to �nd the size of giant connected component of a random

graph with k
(
1− e−cPS

)
nodes and

(
1− e−cPS

)2
ckPD edges (with repeti-

tion) and therefore (1 +O(1/k))
(
1− e−cPS

)2
ckPD distinct edges (implied

by Lemma 12). Let's say the size is (1− fI) k where fI is the function of

c.

By Theorem 4, when 2
(
1− e−cPS

)
cPD > 1, the giant connected com-

ponent exists (this inequality holds when constant c is large enough) and

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 198

the size of the giant component is (1− fI) k = βck
(
1− e−cPS

)
where βc is

the unique solution to β + exp
[
−β · 2

(
1− e−cPS

)
cPD

]
= 1.

6.7.2 Geometric-decay phase:

Let fII,l denote the expected fraction of unresolved non-zero components

after the l-th stages in this phase. Let fI = fII,0.

Stage l + 1 (0 ≤ l ≤ L− 1)

• The probability that a right node being a resolvable multiton is given

by

P
(II,l+1)
M

=

(
fII,lk

1

)
1

fII,lk

(
1− 1

fII,lk

)fII,lk−1
[

1−
(

1− 1

fII,lk

)(1−fII,l)k
]

=

(
1− 1

fII,lk

)fII,lk−1

−
(

1− 1

fII,lk

)k−1

.
= e−1 − e−

1
fII,l .

• The expected number of resolvable multitons is equal to cfII,lkP
(II,l+1)
M .

• The expected number of non-zero components which are resolved

(both magnitude and phase) is given by Lemma 12.

Let

fII,lk log

(
fII,lk

fIIk − (fII,l − fII,l+1)k

)
= cfII,lkP

(II,l+1)
M ,

we know that fII,l − fII,l+1 = fII,l

(
1− e−cP (II,l+1)

M

)
.

Therefore, fII,l+1 = e−cP
(II,l+1)
M fII,l. We can compute the value of fII,l

recursively.

Note that P
(II,l)
M increases as l increases. So, P

(II,l)
M is bounded by

e−1 − e−
1
fI (l = 0) and e−1 (l = +∞).

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 199

End of this phase

There are O(log(log(k))) stages in the geometric-decay phase. We already

show that in each step we expect to recover constant fraction of remaining

unresolved non-zero components. In the end of this phase, the number of

unresolved non-zero components is O(k/ log(k)).

Remark 11. If we release our goal to resolve only a constant fraction of

non-zero components, we may only introduce constant number of steps in

the geometric-decay phase and remove the following clear-up phase. In

this way, we are able to mutually resolve constant fraction of non-zero

components and the number of measurements required remains O(k) but

decoding complexity reduces from O(k log(k)) to O(k).

6.7.3 Cleaning-up phase

Recall that, in this phase, each edges appears with probability log(k)/k

and there are c (k/ log(k)) log (k/ log(k)) = O(k) right nodes in GIII .

6.8 Performance of the algorithm (Proof of the Main

Theorem)

Number of measurements:

In Section 6.7, we showed that fII,l+1 = e−cP
(II,l+1)
M fII,l. And P

(II,l)
M

increases as l increases. Therefore,

fII,l+1 = exp
[
−cP (II,l+1)

M

]
fII,l

= exp
[
−cΣl+1

t=1P
(II,t)
M

]
fII,0

= exp
[
−cΣl+1

t=1P
(II,t)
M

]
fI

≤ exp
[
−c(l + 1)P

(II,1)
M

]
fI .

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 200

Using the above, we can bound the total number of measurements in

the three phases as

ck︸︷︷︸
Seeding

+ ΣL
l=1cfII,l−1k︸ ︷︷ ︸

geometric−decay

+ c(k/ log(k)) log(k/ log(k))︸ ︷︷ ︸
cleaning−up

= O(k) +
(
ΣL
l=1cfII,l−1

)
k +O(k)

≤ O(k) +
(

ΣL
l=1 exp

[
−clP (II,1)

M

])
fIck

= O(k).

Decoding complexity:

Almost all the operations take constant time except for DFS in the

seeding phase and �Cancelling out� process in the geometric-decay and

cleaning-up phases.

For DFS, the time complexity is linear in the size of node set and edge

set. Since there are k nodes and O(k) edges involved in the seeding phase,

the time complexity is O(k).

For �Cancelling out� process, the time complexity depends on the num-

ber of resolved non-zero components which corresponds to the resolvable

multiton (See Appendix A.2.1).

In the later stage/phase, more non-zero components are associated with

a measurement. Since the number of measurements is O(k), it su�ces to

show that each measurement involves at most O(log(k)) non-zero compo-

nents (even if they are unresolved) in the cleaning-up phase with probability

at least 1− o(1/k).

Let NZ be the number of non-zero components involved in a measure-

ment in cleaning-up phase. By Cherno� bound (Theorem 1, Appendix C),

for any εNZ ≥ 0, we have

Pr [NZ ≥ (1 + εNZ) k · log(k)/k] ≤ exp

(
− ε2NZ

2 + ε2NZ
k · log(k)/k

)
.

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 201

Therefore,

Pr [NZ = O(log(k))] ≥ 1−O(1/ poly(k)).

Thus, we know that the decoding complexity is at most O(k · NZ) =

O(k log(k)) with probability at least 1 − k · O(1/ poly(k)) = 1 − o(1) by

the union bound.

Correctness:

While we design our measurement matrices by considering the expected

values of unresolved non-zero components, actual number of unresolved

non-zero components may di�er slightly. Here, �slightly� means that the

actual number of resolved non-zero components in each phase/stage devi-

ates from the expected value but it can be concentrated around expectation

with high probability. In the following, we show that this deviation leads

to only a small probability of failure.

Let gI denote the actual fraction of unresolved non-zero components

after seeding phase. Let gII,l denote the actual fraction of unresolved non-

zero components after the l-th stage in geometric-decay phase. Let gII,0 =

gI .

Recall the following properties of the bipartite graphs for measurement

design. In the seeding phase, each edge appears with probability 1/k and

there are ck right nodes. In the geometric-decay phase, each edge appears

with probability 1/fII,lk and there are cfII,lk right nodes in (l+ 1)-th step

for l ≥ 0. In the cleaning-up phase, each edge appears with probability

log(k)/k and there are c(k/ log(k)) log(k/ log(k)) right nodes.

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 202

6.8.1 Seeding Phase

Magnitude recovery

• By Cherno� bound, the probability that the number of singletons is

larger than (1 + εS) ck × PS or smaller than (1− εS) ck × PS is less

than 2e−(εS)2ckPS/2 = O (exp (−ε2Sk)) for any εS > 0.

• By Lemma 12 and the union bound, we know that, for any εDS > 0,

the number of di�erent non-zero components whose magnitudes are

recovered is between

(1− εDS)
[
1− e−(1−εS)cPS

]
k

and

(1 + εDS)
[
1− e−(1+εS)cPS

]
k

with probability

1−O
[
exp

(
−ε2DSk

)
+ exp

(
−ε2Sk

)]
.

Note that (1 + βS)
[
1− e−(1+εS)cPS

]
k and (1− βS)

[
1− e−(1−εS)cPS

]
k

scale as (
1− e−cPS

)
[1 + (εDS + εS) + o(εDS + εS)] k

and (
1− e−cPS

)
[1− (εDS + εS)− o(εDS + εS)] k,

respectively.

Relative phase recovery

• By Cherno� bound, the probability that the number of doubletons is

larger than (1 + εD) ck × PD or smaller than (1− εD) ck × PD is less

than 2e−(εD)2ckPD/2 = O (exp (−ε2Dk)) for any εD > 0.

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 203

• The resolvable doubletons

resolvable doubletons ≤
((1+εDS)

[
1−e−(1+εS)cPS

]
k

2

)(
k
2

)
× (1 + εD) (1 + εRD) ckPD

and

resolvable doubletons ≥
((1−εDS)

[
1−e−(1−εS)cPS

]
k

2

)(
k
2

)
× (1− εD) (1− εRD) ckPD

with probability

1−O
[
exp

(
−ε2DSk

)
+ exp

(
−ε2Sk

)
+ exp

(
−ε2Dk

)
+ exp

(
−ε2RDk

)]
,

for any εRD > 0, by Cherno� bound and the union bound. Again, the

upper bound and the lower bound on the number of resolvable doubletons

scale as

[1 +O (εDS + εS + εD + εRD)]
(
1− e−cPS

)2
ckPD

and

[1−O (εDS + εS + εD + εRD)]
(
1− e−cPS

)2
ckPD,

respectively.

• Number of distinct edges in the giant component: By Lemma 12 and

the union bound, for any εDRD > 0, with probability

1−O [exp (−ε2DSk) + exp (−ε2Sk) + exp (−ε2Dk) + exp (−ε2RDk)

+ exp (−ε2DRDk)] ,

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 204

the number of pairs of relative phase resolved by all the resolvable

doubletons will be bounded from above by

(1 + εDRD) [1 +O (εDS + εS + εD + εRD) /k] ·
[1 +O (εDS + εS + εD + εRD)]

(
1− e−cPS

)2
ckPD,

and bounded from below by

(1− εDRD) [1−O (εDS + εS + εD + εRD) /k] ·
[1−O (εDS + εS + εD + εRD)]

(
1− e−cPS

)2
ckPD,

which scale as

[1 +O (εDS + εS + εD + εRD + εDRD)]
(
1− e−cPS

)2
ckPD

and

[1−O (εDS + εS + εD + εRD + εDRD)]
(
1− e−cPS

)2
ckPD.

The giant connected component

Let N+and N− be the upper and lower bounds respectively on the number

of nodes in the giant component.

Let M+ and M− be the upper bound and lower bound on the number

of edges in giant component. Then, r+ = 2M+/N− is the upper bound on

twice the size of edges over size of nodes and the r− = 2M−/N+ is the lower

bound. β+
c and β−c are the solution to the equation β + exp (−βr+) = 1

and β + exp (−βr−) = 1.

We know that

r+ = 2M+/N−

= 2 [1 +O (εDS + εS + εD + εRD + εDRD)]
(
1− e−cPS

)2
ckPD

/
(
1− e−cPS

)
[1−O(εDS + εS)] k

= 2 [1 +O (εDS + εS + εD + εRD + εDRD)]
(
1− e−cPS

)
cPD

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 205

and

r− = 2M−/N+

= 2 [1−O (εDS + εS + εD + εRD + εDRD)]
(
1− e−cPS

)2
ckPD

/
(
1− e−cPS

)
[1 +O(εDS + εS)] k

= 2 [1 +O (εDS + εS + εD + εRD + εDRD)]
(
1− e−cPS

)
cPD.

Since r = − log(1− β)/β, dr/dβ = (− log(1− β)/β)′β=βc
is a constant.

By Theorem 4,

Pr

(∣∣∣∣ZN,MN − βc
∣∣∣∣ ≤ εGC

)
= O

(
1

ε2GCk

)
,

for any εGC > 0.

Therefore,

β+
c = [1 +O (εDS + εS + εD + εRD + εDRD)] (βc + εGC)

and

β−c = [1−O (εDS + εS + εD + εRD + εDRD)] (βc − εGC) .

The upper bound on the size of giant component is

N+β+
c =

(
1− e−cPS

)
[1 +O(εDS + εS)] k ·

[1 +O (εDS + εS + εD + εRD + εDRD)] (βc + εGC)

= [1 +O (εDS + εS + εD + εRD + εDRD + εGC)] βc
(
1− e−cPS

)
k

and the lower bound on the size of giant component is

N−β−c = [1−O (εDS + εS + εD + εRD + εDRD + εGC)] βc
(
1− e−cPS

)
k,

with probability

1−O [exp (−ε2DSk) + exp (−ε2Sk) + exp (−ε2Dk) + exp (−ε2RDk)

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 206

+ exp (−ε2DRDk) +O (1/ε2GCk)] .

Recall that (1− fI) k = βc
(
1− e−cPS

)
k, we conclude that, with prob-

ability

1−O [exp (−ε2DSk) + exp (−ε2Sk) + exp (−ε2Dk) + exp (−ε2RDk)

+ exp (−ε2DRDk) +O (1/ε2GCk)] ,

there exists εI such that

(1− εI) fI ≤ gI ≤ (1 + εI) fI .

Here, εI scales as O (εDS + εS + εD + εRD + εDRD + εGC). Choose all

the ε's to be k−1/3. Then, εI scales as O
(
k−1/3

)
with probability 1 −

O
(
k−1/3

)
.

6.8.2 Geometric-decay Phase

Stage l + 1 (0 ≤ l ≤ L− 1)

• The probability that a right node being a resolvable multiton:

Q
(II,l+1)
M

=

(
gII,lk

1

)
1

fII,lk

(
1− 1

fII,lk

)gII,lk−1
[

1−
(

1− 1

fII,lk

)(1−gII,l)k
]

=
gII,l
fII,l

[(
1− 1

fII,lk

)gII,lk−1

−
(

1− 1

fII,lk

)k−1
]

.
=

gII,l
fII,l

(
e
−
gII,l
fII,l − e−

1
fII,l

)
.

• The number of resolvable multitons is bounded by(
1 + ε

(II,l+1)
M

)
cfII,lkQ

(II,l+1)
M

and (
1− ε(II,l+1)

M

)
cfII,lkQ

(II,l+1)
M

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 207

with probability 1−O
(

exp

(
−
[
ε

(II,l+1)
M

]2

fII,lk

))
for any ε

(II,l+1)
M >

0.

• The number of non-zero components which are recovered (both mag-

nitude and phase)

Let εII,0 = εI . By Lemma 12, we know that

gII,l+1 − gII,l ≤
(

1 + ε
(II,l+1)
DM

)[
1− e−

(
1+ε

(II,l+1)
M

)
cfII,lQ

(II,l+1)
M /gII,l

]
gII,l

.
=

(
1 + ε

(II,l+1)
DM

)1− e
−
(

1+ε
(II,l+1)
M

)
c

(
e
−
gII,l
fII,l −e

− 1
fII,l

) gII,l
≤

(
1 + ε

(II,l+1)
DM

)1− e
−
(

1+ε
(II,l+1)
M

)
c

(
e
−(1−εII,l)−e

− 1
fII,l

) gII,l
and

gII,l+1 − gII,l ≥
(

1− ε(II,l+1)
DM

)[
1− e−

(
1−ε(II,l+1)

M

)
cfII,lQ

(II,l+1)
M /gII,l

]
gII,l

.
=

(
1− ε(II,l+1)

DM

)1− e
−
(

1−ε(II,l+1)
M

)
c

(
e
−
gII,l
fII,l −e

− 1
fII,l

) gII,l
≥

(
1− ε(II,l+1)

DM

)1− e
−
(

1−ε(II,l+1)
M

)
c

(
e
−(1−εII,l)−e

− 1
fII,l

) gII,l,
with probability

1−O
(

exp

(
−
[
ε

(II,l+1)
M

]2

fII,lk

)
+ exp

(
−
[
ε

(II,l+1)
DM

]2

gII,lk

)
+ k−1/3

)
by Lemma 12 and the union bound for any ε

(II,l+1)
DM > 0.

We conclude there exists ε′II,l+1 such that

e−cP
(II,l+1)
M

(
1− ε′II,l+1

)
gII,l ≤ gII,l+1

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 208

≤ e−cP
(II,l+1)
M

(
1 + ε′II,l+1

)
gII,l.

Here ε′II,l+1 scales as O
[
ε

(II,l+1)
DM + ε

(II,l+1)
M + εII,l

]
.

Since (1− εII,l) fII,l ≤ gII,l = (1 + εII,l) fII,l, we have

e−cP
(II,l+1)
M

(
1− ε′II,l+1

)
(1− εII,l) fII,l ≤ gII,l+1

≤ e−cP
(II,l+1)
M

(
1 + ε′II,l+1

)
· (1 + εII,i) fII,l.

Since fII,l+1 = e−cP
(II,l+1)
M fII,l, we have(

1− ε′II,l+1

)
(1− εII,l) fII,l+1 ≤ gII,l+1

≤
(
1 + ε′II,l+1

)
(1 + εII,l) fII,l+1.

Thus, we get that

(1− εII,l+1) fII,l+1 ≤ gII,l+1

≤ (1 + εII,l+1) fII,l+1.

Here, εII,l+1 scales as O
[
ε

(II,l+1)
DM + ε

(II,l+1)
M + 2εII,l

]
.

Choose ε
(II,l+1)
DM and ε

(II,l+1)
M to be k−1/3 for all l. The error probability

in each stage is O
(
k−1/3

)
(which is the dominant term).

After L stages (L = O(log(log(k)))),

(1− εII,L) fII,L ≤ gII,L ≤ (1 + εII,L) fII,L (6.1)

holds with probability 1 − O
(
log(log(k)) · k−1/3

)
by the union bound.

Here εII,L scales as O
(
log(k) · k−1/3

)
(since each stage εII,l doubles).

6.8.3 Cleaning-up phase

Theorem 5. [Folklore](Coupon Collection) Let the random variable X de-

note the minimum number of trials for collecting each of the V types of

coupons. Then, we have Pr[X > ηV log(V)] ≤ V −η+1 for any η > 0.

CHAPTER 6. COMPRESSIVE PHASE RETRIEVAL � SUPER 209

Proof. Please refer to Appendix A.2.3. �

• The probability that a right node being a resolvable multiton:

QIII
M

.
=

gII,L
fII,L

(
e
−
gII,L
fII,L − e−

1
fII,L

)
.

• fIII = 1/ log(k). The number of resolvable multitons is lower bounded

by (
1− εIIIM

)
cfIIIk log (fIIIk)QIII

M ,

with probability 1 − O
(

exp
(
−
[
εIIIM

]2
k/ log(k)

))
given Equation

(6.1) holds for any ε
(III)
M > 0.

• The number of unresolved components in this phase is O(k/ log(k)).

By Theorem 5, all the components are resolved with probability 1−
O(log(k)/k) for large enough c given Equation (6.1) holds.

By the union bound, the overall error probability is o(1).

6.9 Conclusion

In this chapter, we present the �rst algorithm for compressive phase re-

trieval problem whose number of measurements is order-optimal and com-

putational complexity is nearly order-optimal.

2 End of chapter.

Chapter 7

Conclusion

In this thesis, we present a framework to unify e�cient algorithms for

compressive sensing, network tomography, group testing and phase retrieval

problems. The number of measurements and decoding complexity of all

the algorithms introduced are (or nearly) information-theoretically order-

optimal.

For future work, we aim to design robust and practical algorithms for

these problems and to explore more applications of sparse recovery.

• Robust and practical algorithms:

� Number of measurements: Choosing the node-degree distribu-

tion appropriately via density evolution proves to reduce the

number of measurements required (even if by a constant factor).

� Robust to noise: Instead of using repeated measurements in our

SHO-FA algorithm, sophisticated and computationally e�cient

error-correcting codes can be implemented for leaf nodes to make

the algorithm more robust to noise.

• More applications:

210

CHAPTER 7. CONCLUSION 211

� Sparse recovery over �nite �elds: Many ideas from error-correcting

codes over �nite �elds are borrowed to design novel sparse recov-

ery algorithms over real numbers and complex numbers. In the

reverse direction, the idea from our framework may also be ap-

plied to design di�erent classes of e�cient error-correcting codes

over �nite �elds.

� Other sparse recovery problems: Sparse recovery problems come

in many �avours and are not restricted to the four problems dis-

cussed in this thesis. Some examples of important sparse recov-

ery problems that we have not considered are sparse fast fourier

transform (sFFT), low-rank matrix completion, and sparse prin-

cipal component analysis (sPCA). We may tailor the framework

to these problems.

� Other applications: The sparse recovery algorithms can be ap-

plied to many real applications where sparsity can be exploited

such as image processing (like face recognition), wireless sensor

networks, storage for big data. It would be interesting to see how

our framework may improve the e�ciency in these areas.

2 End of chapter.

Appendix A

Proofs

A.1 SHO-FA

A.1.1 Proof of Lemma 1

Proof. It su�ces to prove the desired property for all S(x) of size exactly

k. Let S ′(x) ⊆ S(x). Let {(s1, t1), (s2, t2), . . . , (sd|S′(x)|, td|S′(x)|)} be the set
of outgoing edges from S ′(x). Without loss of generality, we assume these

edges are drawn in the following manner.

For each i = 1, 2, . . . , d|S ′(x)|, the probability that the edge (si, ti)

reaches an �old� true node (on the right) that is already reached by those

edges generated ahead of (si, ti) is upper bounded as

Pr
G

(ti ∈ {t1, . . . ti−1}) ≤
(i− 1)

ck

≤ d|S ′(x)|
ck

.

Let N(S ′(x)) be the set of all neighboring nodes of the nodes in S ′(x).

The size of N(S ′(x)) is no more than 2d|S ′(x)|/3 if and only if out of

d|S ′(x)| edges, there exists a set of at least d|S ′(x)|/3 edges fail to reach

�new� nodes (on the right). Exploiting this observation, we have

Pr
G

(|N(S ′(x))| ≤ 2d|S ′(x)|/3)

212

APPENDIX A. PROOFS 213

= Pr
G

 ⋃
σ⊆{1,...,d|S′(x)|}
|σ|≥|dS′(x)/3|

⋂
i∈σ

{ti ∈ {t1, . . . ti−1}}



= Pr
G

 ⋃
σ⊆{1,...,d|S′(x)|}
|σ|=d|S′(x)|/3

⋃
σ′⊇σ

⋂
i∈σ′
{ti ∈ {t1, . . . ti−1}}


≤

(
d|S ′(x)|
d|S ′(x)|/3

)(d|S ′(x)|
ck

)d|S′(x)|/3
.

Consequently, the probability that there exists one S ′(x) ⊆ S(x) so that

|N(S ′(x))| ≤ 2d|S ′(x)|/3 can be bounded by

Pr
G

(∪S′(x)⊆S(x){|N(S ′(x))| ≤ 2|S ′(x)|})

≤
∑

S′(x)⊆S(x)

(
d|S ′(x)|
d|S ′(x)|/3

)(d|S ′(x)|
ck

)d|S′(x)|/3

=
k∑
j=1

(
k

j

)(
dj

dj/3

)(dj
ck

)dj/3
≤

k∑
j=1

(ke
j

)j(
3e
)dj/3(dj

ck

)dj/3
(A.1)

=
k∑
j=1

(
ke

j

(
3dje

ck

)d/3)j

≤
d
√
ke∑

j=1

(
ke

j

(
3dje

ck

)d/3)j

+
k∑

j=b
√
kc

(
ke

j

(
3dje

ck

)d/3)j

≤
√
k

(
ke√
k

(
3d
√
ke

ck

)d/3)
+

∞∑
j=b
√
kc

(
e

(
3de

c

)d/3)j

(A.2)

≤
(

3de

c

)d/3
k1−d/6e+ exp(−Θ(

√
k)) (A.3)

= O(k1−d/6). (A.4)

In the above, the inequality in (A.1) follows from Stirling's approximation;

the upper bound in (A.2) is derived by noting that the �rst term in the

sum takes its maximum when j = b
√
kc and the second term is maximum

APPENDIX A. PROOFS 214

when j = k; (A.3) is obtained by noting that the second term is a geometric

progression.

Finally, we plug in the choice of d = 13 to complete the proof. �

A.1.2 Proof of Lemma 2

Suppose each set of of size k of S(x) nodes on the left of G has strictly

more than d/2 times as many nodes neighbouring those in S(x), as there

are in S(x). Then by standard arguments in the construction of expander

codes [132], this implies the existence of a linear code of rate at least

1 − m/n, and with relative minimum distance at least k/n.1 But by the

Hamming bound [124], it is known that codes of minimum distance δ can

have rate at most 1−H(δ), whereH(.) denotes the binary entropy function.

Since k = o(n), δ = k/n→ 0. But in this regime 1−H(δ)→ 1−δ log(1/δ).

Note that m/m′ equals an integer. Comparing (k/n) log(n/k) with m/n

gives the required result. �

A.1.3 Proof of Lemma 3

For any set of nodes S in the graph G, we de�ne N(S) as the set of neigh-

boring nodes of the nodes in S. For any set S ′(x) ⊆ S(x), we de�ne β as

1For the sake of completeness we sketch such an argument here. Given such an expander

graph G, one can construct a n × k binary matrix A with 1s in precisely those (i, j) locations

where the ith node on the left is connected with the jth node on the right. Treating this matrix

A as the parity check matrix of a code over a block-length n implies that the rate of the code

is at least k/n, since the parity-check matrix imposes at most k constraints on the n bits of

the codewords. Also, the minimum distance is at least k. Suppose not, i.e. there exists a

codeword in this linear code of weight less than k. Let the support of this codeword be denoted

S(x). Then by the expansion property of G, there are strictly more than |S(x)|d/2 neighbours

of S(x). But this implies that there is at least one node, say v, neighboring S(x) which has

exactly one neighbor in S(x). But then the constraint corresponding to v cannot be satis�ed,

leading to a contradiction.

APPENDIX A. PROOFS 215

the portion of the nodes in N(S ′(x)) that are S ′(x)-leaf nodes.

First, each node v ∈ N(S ′(x)) is of one of the following two types:

1. It has only one neighboring node in S ′(x), on the left of G. By

the de�nition of β, the number of nodes in N(S ′(x)) of this type

is β|N(S ′(x))|.

2. It has at least two neighboring nodes in S ′(x), on the left of G. The
number of nodes in N(S ′(x)) of this type is (1− β)|N(S ′(x))|.

We have two observations. First, since the degree of each node in S ′(x)

is d, the total number of edges from S ′(x) to N(S ′(x)) is at most d|S ′(x)|
and the number of nodes in N(S ′(x)) is at most d|S ′(x)|.

Second, the total number of edges entering N(S ′(x)) from S ′(x) is at

least

β|N(S ′(x))|+ 2(1− β)|N(S ′(x))| = (2− β)|N(S ′(x))|,

as the number of neighboring nodes for the nodes of Type 1 is one and of

Type 2 is at least two.

Combining the above two observations, we can get the following in-

equality:

(2− β)|N(S ′(x))| ≤ d|S ′(x)|.

According to the setting of the Lemma, we also have |N(S ′(x))| ≥ 2d/|S ′(x)|3.
Therefore, it follows that

2(2− β)d|S ′(x)|/3 ≤ d|S ′(x)|,

and consequently β ≥ 1/2. �

A.1.4 Proof of Lemma 4

Consider the algorithm A that proceeds as follows. First, among the set

of all right nodes that neighbour j, check if there exists a node i such that

APPENDIX A. PROOFS 216

y
(I)
i = y

(V)
i = 0. If there exists such a node, then output x̂j = 0. Otherwise,

check if there exists a S(x)-leaf node among the neighbours of j. This check

can be performed by using veri�cation and identi�cation observations as

described for the SHO-FA reconstruction algorithm. If there exists a leaf

node, say i, then output x̂j = |yi|. Else, the algorithm terminates without

producing any output.

Two see that the above algorithm satis�es the claimed properties, con-

sider the following two cases.

Case 1: xj = 0. In this case, x̂j = 0 is output if at least one neighbour of

j lies outside N(S(x)). Since N(S(x)) has at most dk elements, the prob-

ability that a neighbour of j lies inside N(S(x)) is at most dk/ck = d/c.

Thus, the probability that none of the neighbours of j lie outside N(S(x))

is at least (1 − (d/c)d). The algorithm incorrectly reconstructs xj if all

neighbours of j lie within N(S(x)) and SHO-FA incorrectly identi�es one

of these nodes as a leaf node. By the analysis of SHO-FA, this event occurs

with probability o(1/k).

Case 2: xj 6= 0. For A to produce the correct output, it has to identify one

of the neighbours of j as a leaf. The probability that there exists a leaf

among the neighbours of j is at least (1− (d/c)d) by an argument similar

to the previous case. Similarly, the proabability of erroneous identi�cation

is o(1/k).

�

A.1.5 Phase noise

Proof of Lemma 5: First, we �nd an upper bound on the maximum possible

phase displacement in yi due to �xed noise vectors z and e. Let ∆θi be the

di�erence in phase between the "noiseless" output (A′x)i and the actual

APPENDIX A. PROOFS 217

output yi = (A′(x + z) + e)i. Figure 3.12a shows this geometrically. By a

straightforward geometric argument, for �xed z and e, the phase displace-

ment ∆θi is upper bounded by π|(A′z)i+ ei|/|(A′x)i|. Since i is a leaf node
for S(x), |(A′x)i| ≥ |δ/k|. Therefore,

∆θi ≤ π|(A′z)i + ei|k/δ.

Since each zj is a Gaussian with zero mean and variance σ2
z , (A′z)i is

a Complex Gaussian with zero mean and variance at most nσ2
z . Further,

each row of A′ has at most dn/ck non-zero entries. Therefore, (A′z)i + ei

is a zero mean complex Gaussian with variance at most (dn/ck)σ2
z + σ2

e .

The expected value of ∆θi is bounded as follows:

Ez,e(∆θi)

≤ Ez,e(π|(A′z)i + ei|k/δ)

≤ πk

δ

ˆ ∞
0

√
2

π(dnσ2
z/ck) + σ2

e

le−l
2/2(dnσ2

z/ck+σ2
e)dl

=

√
2πk2(dnσ2

z/ck + σ2
e)

δ2
.

Next, note that

Pr
z,e

(
∆θi > αEz,e(∆θi)

)
≤ Pr

z,e

(
|(A′z)i + ei|k/δ > αEz,e(∆θi)

)
= Pr

z,e

(
|(A′z)i + ei| > αEz,e(∆θi)δ/πk

)
= Prz,e

(
|(A′z)i + ei| > α

√
2(dnσ2

z/ck + σ2
e)

π

)
.

Finally, applying standard bounds on the tail probabilities of Gaussian

random variables, the required probability is upper bounded by e−(α2/2π)/2.

�

A.1.6 Probability of error

An error occurs only if one of the following take place:

APPENDIX A. PROOFS 218

1. The underlying graph G is not an S(x)-expander. This probability

can be made o(1/k) by choosing m = ck, where the constant c is

determined by Lemma 1

2. The phase noise in ỹi(t)(t) leads to an incorrect decoding of θ̂
(I,γ)
t or

θ̂
(V,γ)
t for some γ and t.

Note that the phase noise in ỹi(t)(t) consists:

(a) The contribution due to noise vectors z and e, and

(b) The contribution due to the noise propagated while computing

each ỹi(t)(τ) from ỹi(t)(τ − 1) for τ ≤ t.

The contribution due to the �rst term is bounded by Lemma 5. Thus,

for a target error probability ε′, we choose α =
√

2π log 1/2ε′, giving

a contribution to the phase noise of at most

2π

√
log (1/2ε′)k2(dnσ2

z/ck + σ2
e)

δ2
.

To bound the contribution due to the second term, we note a few

facts about the random graph G. Let Gx be the restriction of G to

S(x) and its neighbours. Denote the smallest disjoint components of

Gx by Cx(1), Cx(2), . . . , Cx(M) and let the number of right nodes in

component Cx(p) be Dx(p). The following properties of the random

sparse graph Gx and its components follow from [85,118].

Lemma 13 ([85, 118]). The random graph Gx satis�es the following

properties:

A. For a large enough choice of c, with probability 1 − o(1/k), Gx
consists almost entirely of hypertrees and unicyclic components.

B. maxpDx(p) = O(log k) with probability 1− o(1/k).

C. EG ((Dx(p))2) = O(1).

APPENDIX A. PROOFS 219

Now, we observe that at each iteration t, any error in reconstruction

of x̂j(t) potentially adds to reconstruction error in all future iterations

t′ for which there is a path from j(t) to j(t′). Thus, if j(t) lies in

the component Cx(pt), then from Property A above, the magnitude

error in reconstruction of x̂j(t) due to noisy reconstructions in previous

iterations is upper bounded by

(Dx(pt))
2
√

2π log(1/2ε′)(nσ2
z/k + σ2

e) (A.5)

with probability at least 1−Dx(pt)ε
′. Thus, the phase displacement

in each y
(I,γ)
i and y

(V,γ)
i is at most

2π(Dx(pt))
2

√
log (1/2ε′)k2(nσ2

z/k + σ2
e)

δ2
.

Next, applying Property B, as long as

(log k)2

√
2π log (1/2ε′)k2(nσ2

z/k + σ2
e)

δ2
= o

(
n−1/Γ

)
, (A.6)

the probability of any single phase being incorrectly detected is up-

per bounded by ε′. Since we there are a total of 8Γk possible phase

measurements, we choose ε′ = 1/Γk2 to achieve an overall target error

probability 1/k.

3. The veri�cation step passes for each measurement in the t-th mea-

surement, even though i(t) is not a leaf node for Scδ(x).

4. D(T) 6= A′, i.e., the algorithm terminates without recovering all xj's.

Note that similar to the exact k-sparse case, in each iteration t, by

Lemma 3, the probability that i(t) is a leaf node for Sδ(x − x̂(t)) at

least 1/2. However, due to noise, there is a non-zero probability that

even when i(t) is a leaf node, it does not pass the veri�cation tests.

We know from the analysis for the previous case that this probability

is O(1/k) for each i(t). Therefore, the probability that a randomly

APPENDIX A. PROOFS 220

picked i(t) passes the veri�cation test is 1/2 − O(1/k). Thus, in

expectation, the number of iterations required by the algorithm is

2k/(1 − O(1/k)). By concentration arguments, it follows that the

probability that the algorithm does not terminate in 4k iterations is

o(1/k) as k grows without bound.

A.1.7 Estimation error

Next, we bound the error in estimating x̂. We �rst �nd an upper bound

on ||x̂ − xScδ ||1 that holds with a high probability. Applying the bound

in (A.5), for each t = 1, 2, . . . , T ,

|xj(t) − x̂j(t)| = O
(

(Dx(pt))
2
√

2π log(1/2ε′)(nσ2
z/k + σ2

e)
)

with probability 1−O(1/k). Therefore, with probability 1−O(1/k),

||x̂− xScδ ||1 =
∑

1≤t≤T
t:j(t)/∈Sδ

|x̂j − xj|+
∑

1≤t≤T
t:j(t)∈Sδ

|x̂j|

≤
∑
j /∈Sδ

|x̂j − xj|+
∑
j∈Sδ

|x̂j − xj|+
∑
j∈Sδ

|xj|

= O

 P∑
p=1

∑
j∈C(p)

(Dx(pt))
2
√

2π log(1/2ε′)(nσ2
z/k + σ2

e)

+ δ.(A.7)

Next, note that ||z||1 =
∑n

j=1 |zj| and ||e||1 =
∑m

i=1 |ei|. Since each zj is a
Gaussian random variable with variance σ2

z , The expected value of |zj| is
σz
√

2/π. Therefore, for every ε′ > 0, for n large enough,

Pr(||z||1 < (1/2)nσz
√

2/π) < ε′. (A.8)

Similarly, for m large enough,

Pr(||e||1 < (1/2)ckσe
√

2/π) < ε′. (A.9)

Combining inequalities (A.7)- (A.9) and Property C of Lemma 13, we have,

with a high probability,

E
(
||x̂− xScδ ||1

)
= O

(
k
√

log(1/ε′)

(||z||1√
nk

+
||e||1
k

))
+ δ

APPENDIX A. PROOFS 221

= O
(√

k

n

√
log (1/ε′)||z||1 +

√
log (1/ε′)||e||1

)
+ δ.(A.10)

Next, applying the bound in (3.4), we obtain

E (||x̂− x||1) = O
(√

k

n

√
log (1/ε′)||z||1 +

√
log (1/ε′)||e||1

)
+ 2δ

= O(

√
k log k

n
||z||1 +

√
log k||e||1) (A.11)

with a high probability.

A.1.8 Proof of Theorem 3

Finally, to complete the proof of Theorem 3, we let δ = min{O(nσz), o(1)}.
By (A.8) with a high probability, δ = O(||z||). Finally, recall the assump-

tion that k = O(n1−∆). Applying these to the bound obtained in (A.11),

we get

||x̂− x||1 ≤ C
(
||z||1 +

√
log k||e||1

)
for an appropriate constant C = C(σz, σ + e).

A.2 SUPER

A.2.1 Proof of Claim 1

Proof. We will use four measurements in the �cancelling out� process,

y
(G,1)
i =

∣∣∣∣A+ xj cos

(
jπ

2n

)∣∣∣∣
y

(G,2)
i =

∣∣∣∣B + xjι sin

(
jπ

2n

)∣∣∣∣
y

(G,3)
i =

∣∣∣∣C + xj exp

(
ι
jπ

2n

)∣∣∣∣
y

(G,5)
i = |D + xj exp (ιφi,j)| ,

APPENDIX A. PROOFS 222

where A, B, C, and D are calculated from the decoded non-zero com-

ponents which connect to right node i in G.
We �nd that by the measurements design

A+B = C

and

xj cos

(
jπ

2n

)
+ xjι sin

(
jπ

2n

)
= xj exp

(
ι
jπ

2n

)
.

Let

jπ

2n
= α

A+ xj cos

(
jπ

2n

)
= U

B + xjι sin

(
jπ

2n

)
= V

C + xj exp

(
ι
jπ

2n

)
= W,

we have

y
(G,1)
i = |U |

y
(G,2)
i = |V |

y
(G,3)
i = |W |

= |U + V | .

Finding the relation between U and V :

We know that

U = V × y
(G,1)
i

y
(G,2)
i

exp (ιψ) ,

or

APPENDIX A. PROOFS 223

U = V × y
(G,1)
i

y
(G,2)
i

exp (−ιψ) ,

where ψ is the phase between U and V and cosψ = |U |2+|V |2−|U+V |2
2|U ||V | .

Finding the relation between x and α:

For simplicity, we only consider the case that

U = V × y
(G,1)
i

y
(G,2)
i

exp (ιψ)

, V ×M.

So,

A+ xj cosα = [B + xjι sinα]M.

We have

xj =
BM − A

cosα− ιM sinα
.

Solving cos2 α by quadratic equation:

Replacing xjin

y
(G,1)
i = |U | ,

we know that

y
(G,1)
i =

∣∣∣∣A+
BM − A

cosα− ιM sinα
cosα

∣∣∣∣
=

∣∣∣∣BM cosα− ιAM sinα

cosα− ιM sinα

∣∣∣∣
=

∣∣∣∣B cosα− ιA sinα

cosα− ιM sinα

∣∣∣∣ |M |
=

∣∣∣∣B cosα− ιA sinα

cosα− ιM sinα

∣∣∣∣ y(G,1)
i

y
(G,2)
i

.

APPENDIX A. PROOFS 224

So,

y
(G,2)
i |cosα− ιM sinα| = |B cosα− ιA sinα| .

Let

A = A1 + ιA2

B = B1 + ιB2

M = M1 + ιM2,

where A1, A2, B1, B2, M1, and M2 are real numbers. We have

y
(G,2)
i |cosα− ι (M1 + ιM2) sinα|

= |(B1 + ιB2) cosα− ι (A1 + ιA2) sinα| .

Squaring both sides, we get

[
y

(G,2)
i

]2 [
(cosα +M2 sinα)2 + (M1 sinα)2]

= (B1 cosα + A2 sinα)2 + (B2 cosα− A1 sinα)2 .

After reorganizing the above equation, we have

([
y

(G,2)
i

]2

− |B|2
)

cos2 α +

([
y

(G,1)
i

]2

− |A|2
)

sin2 α

= 2 cosα sinα

(
A2B1 − A1B2 − 2

[
y

(G,2)
i

]2

M2

)
.

Let

P =
[
y

(G,2)
i

]2

− |B|2

Q =
[
y

(G,2)
i

]2

− |A|2

R = A2B1 − A1B2 − 2
[
y

(G,2)
i

]2

M2

S = cos2 α

APPENDIX A. PROOFS 225

and square both sides, we have

[PS +Q(1− S)]2 = 4R2S(1− S).

After reorganizing the above equation, we get

(
P 2 +Q2 − 2PQ+ 4R2

)
S2

+
(
2PQ− 2Q2 − 4R2

)
S +Q2 = 0.

We are able to solve S (quadratic equation) in constant time and simi-

larly for the case that U = V × y
(G,1)
i

y
(G,2)
i

exp (−ιψ).

Resolving the degeneracy via random unit complex measurements:

After deriving the value of S = cos2 α, we can get the constant (4)

possible value of j and xj (both magnitude and the relative phase in H′)
pairs.

Last, we check which pairs of solution that satis�es the following equa-

tion to resolve the degeneracy

y
(G,5)
i = |D + xj exp (ιφi,j)| .

�

A.2.2 Proof of Lemma 12

Proof. Let Yi be the indicator random variable which represents whether

i-th coupon is picked in M trials. We know that Y ′i s are dependent and

Yi =


1 with probability 1−

(
1− 1

V

)
M

0 with probability
(
1− 1

V

)
M .

Then, Y = Y1+· · ·+YV is the total number of di�erent types of coupons

picked in M trials.

APPENDIX A. PROOFS 226

By the linearity of expectation, we have

E[Y] = ΣV
i=1E[Yi]

= V

[
1−

(
1− 1

V

)M]
.
= V

(
1− e−MV

)
= V

(
1− V − U

V

)
= U.

Let Z1, . . . , ZM be independent random variables all taking values in

[V] uniformly at random representing each pick for V types of coupon.

Let f(Z1, . . . , ZM) be the number of di�erent types of coupons picked.

Then, E[f] = E[Y]
.
= U .

Also, ∀i ∈ [M],

|f (Z1, . . . , Zi, . . . , ZM)− f (Z1, . . . , Z
′
i, . . . , ZM)| ≤ 1.

.

For all β > 0, by McDiarmid's Inequality (Theorem 2), we have

Pr(f − E[f] ≤ −β) ≤ exp

(
−2β2

M

)
and

Pr(f − E[f] ≥ β) ≤ exp

(
−2β2

M

)
.

Thus,

Pr(f ≤ V (1− e−M/V)− β) ≤ exp

(
−2β2

M

)
.

Let M = V log V
V−U and β = εU , we know that

APPENDIX A. PROOFS 227

Pr(f ≤ (1− ε)U) ≤ exp

(
− 2(εU)2

V log V
V−U

)

≤ exp−2(εU)2

V U
V−U

= exp

(
−2ε2U(V − U)

V

)
and

Pr(f ≥ (1 + ε)U) ≤ exp

(
−2ε2U(V − U)

V

)
.

Therefore,

Pr((1− ε)U ≤ f ≤ (1 + ε)U) ≥ 1− 2 exp

(
−2ε2U(V − U)

V

)
.

�

A.2.3 Proof of Theorem 5

Proof. Let Zi be the event that i-th coupon has not yet picked in M trials.

We know that

Pr (Zi) =

(
1− 1

V

)M
≤ exp (−M/V) .

Then,

Pr (X > M) = Pr (∪vi=1Zi)

≤
v∑
i=1

Pr (Zi)

≤ V exp (−M/V) .

APPENDIX A. PROOFS 228

Let M = ηV log V , we get

Pr (X > ηV log V) ≤ V −η+1.

�

2 End of chapter.

Bibliography

[1] S. Aeron, V. Saligrama, and M. Zhao. Information theoretic bounds

for compressed sensing. IEEE Transactions on Information Theory,

56(10):5111 �5130, Oct. 2010.

[2] S. Ahuja, S. Ramasubramanian, and M. Krunz. Srlg failure localiza-

tion in optical networks. IEEE/ACM Transactions on Networking,

19(4):989 �999, Aug. 2011.

[3] M. Akçakaya and V. Tarokh. A frame construction and a universal

distortion bound for sparse representations. IEEE Transactions on

Signal Processing, 56(6):2443�2450, June 2008.

[4] M. Akçakaya and V. Tarokh. Shannon-theoretic limits on noisy

compressive sampling. IEEE Transactions on Information Theory,

56(1):492�504, Jan. 2010.

[5] M. Akçakaya and V. Tarokh. New conditions for sparse phase re-

trieval. e-prints, arXiv:1310.1351[cs.IT], 2013.

[6] M. Alekhnovich. Linear diophantine equations over polynomials and

soft decoding of reed-solomon codes. IEEE Transactions on Infor-

mation Theory, 51(7):2257�2265, July 2005.

[7] B. Alexeev, A. S. Bandeira, M. Fickus, and D. G. Mixon. Phase

retrieval with polarization. e-prints, arXiv:1210.7752[cs.IT], 2012.

229

BIBLIOGRAPHY 230

[8] G. Atia and V. Saligrama. Boolean compressed sensing and noisy

group testing. IEEE Transactions on Information Theory, 58:1880 �

1901, March 2012.

[9] K. D. Ba, P. Indyk, E. Price, and D. P. Woodru�. Lower bounds

for sparse recovery. In Proceedings of the Twenty-�rst Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA), pages 1190�1197,

2010.

[10] M. Bakshi, S. Jaggi, S. Cai, and M. Chen. SHO-FA: Robust com-

pressive sensing with order-optimal complexity, measurements, and

bits. In Proceedings of the 50th Annual Allerton Conference on Com-

munication, Control, and Computing (Allerton), pages 786�793, Oct

2012.

[11] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. A simple

proof of the restricted isometry property for random matrices. Con-

structive Approximation, 28(3):253�263, December 2008.

[12] A. Barg and G. Zemor. Error exponents of expander codes. IEEE

Transactions on Information Theory, 48(6):1725 �1729, June 2002.

[13] A. Barg and G. Zémor. Error exponents of expander codes under

linear-complexity decoding. SIAM Journal on Discrete Mathematics,

17(3):426�445, 2004.

[14] R. Bayer. Symmetric binary b-trees: Data structure and maintenance

algorithms. Acta Informatica, 1(4):290�306, 1972.

[15] R. Berinde, A. Gilbert, P. Indyk, H. Karlo�, and M. Strauss. Com-

bining geometry and combinatorics: A uni�ed approach to sparse

signal recovery. In Proceedings of the 46th Annual Allerton Confer-

BIBLIOGRAPHY 231

ence on Communication, Control, and Computing (Allerton), pages

798 �805, Sept. 2008.

[16] R. Berinde and P. Indyk. Sequential sparse matching pursuit. In Pro-

ceedings of the 47th Annual Allerton Conference on Communication,

Control, and Computing (Allerton), pages 36�43, Sept 2009.

[17] R. Berinde, P. Indyk, and M. Ruzic. Practical near-optimal sparse

recovery in the l1 norm. In Proceedings of the 46th Annual Allerton

Conference on Communication, Control, and Computing (Allerton),

pages 198�205, Sept 2008.

[18] P. Berman and V. Ramaiyer. Improved Approximations for the

Steiner Tree Problem. Journal of Algorithms, 17:381�408, 1994.

[19] S. N. Bernstein. On certain modi�cations of chebyshev's inequality.

Doklady Akademii Nauk SSSR, 17(6):275�277, 1937.

[20] B. Bollobas. Random Graphs. Cambridge University Press, 2001.

[21] T. Bu, N. Du�eld, F. Presti, and D. Towsley. Network tomography on

general topologies. SIGMETRICS Performance Evaluation Review,

30(1):21�30, Jun 2002.

[22] S. Cai, M. Bakshi, S. Jaggi, and M. Chen. FRANTIC: A fast

reference-based algorithm for network tomography via compressive

sensing. e-prints, arXiv:1312.0825 [cs.NI], 2013.

[23] S. Cai, M. Bakshi, S. Jaggi, and M. Chen. FRANTIC: A fast

reference-based algorithm for network tomography via compressive

sensing. In Proceedings of the Sixth International Conference on

Communication Systems and Networks (COMSNETS), pages 1�7,

Jan 2014.

BIBLIOGRAPHY 232

[24] S. Cai, M. Bakshi, S. Jaggi, and M. Chen. SUPER: Sparse signals

with unknown phases e�ciently recovered. In Proceedings of IEEE

International Symposium on Information Theory (ISIT), pages 2007�

2011, June 2014.

[25] S. Cai, M. Bakshi, S. Jaggi, and M. Chen. SUPER: Sparse

signals with unknown phases e�ciently recovered. e-prints,

arXiv:1401.4269[cs.IT], 2014.

[26] S. Cai, M. Jahangoshahi, M. Bakshi, and S. Jaggi. GROTESQUE:

Noisy group testing (quick and e�cient). In Proceedings of the 51st

Annual Allerton Conference on Communication, Control, and Com-

puting (Allerton), pages 1234�1241, Oct 2013.

[27] S. Cai, M. Jahangoshahi, M. Bakshi, and S. Jaggi.

GROTESQUE: Noisy group testing (quick and e�cient). e-prints,

arXiv:1307.2811[cs.IT], 2013.

[28] R. Calderbank, S. Howard, and S. Jafarpour. Sparse reconstruction

via the reed-muller sieve. e-prints, arXiv:1004.2926[cs.IT], 2010.

[29] E. Candès and X. Li. Solving quadratic equations via phaselift when

there are about as many equations as unknowns. Foundations of

Computational Mathematics, 14(5):1�10, Oct 2014.

[30] E. Candès and B. Recht. Exact matrix completion via convex opti-

mization. Communications of the ACM, 55(6):111�119, June 2012.

[31] E. Candes, J. Romberg, and T. Tao. Robust uncertainty principles:

exact signal reconstruction from highly incomplete frequency infor-

mation. IEEE Transactions on Information Theory, 52(2):489 � 509,

Feb. 2006.

BIBLIOGRAPHY 233

[32] E. Candès, T. Strohmer, and V. Voroninski. Phaselift: Exact and

stable signal recovery from magnitude measurements via convex pro-

gramming. Communications on Pure and Applied Mathematics,

66(8):1241�1274, 2013.

[33] E. Candes and T. Tao. Near-optimal signal recovery from random

projections: Universal encoding strategies? IEEE Transactions on

Information Theory, 52(12):5406 �5425, Dec. 2006.

[34] E. J. Candès. The restricted isometry property and its implica-

tions for compressed sensing. Comptes Rendus Mathematique, 346(9-

10):589�592, 2008.

[35] R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu. Network

tomography: recent developments. Statistical Science, 19:499�517,

2004.

[36] C. L. Chan, P. H. Che, S. Jaggi, and V. Saligrama. Non-adaptive

probabilistic group testing with noisy measurements: Near-optimal

bounds with e�cient algorithms. In Proceedings of the 49th An-

nual Allerton Conference on Communication, Control, and Comput-

ing (Allerton), pages 1832�1839, Sept 2011.

[37] Y. Chen, D. Bindel, H. Song, and R. Katz. Algebra-based scal-

able overlay network monitoring: algorithms, evaluation, and appli-

cations. IEEE/ACM Transactions on Networking, 15(5):1084�1097,

2007.

[38] Y. Cheng and D. Du. New constructions of one- and two-stage pooling

designs. Journal of Computational Biology, 15(2):195�205, 2008.

BIBLIOGRAPHY 234

[39] M. Cheraghchi, A. Karbasi, S. Mohajer, and V. Saligrama. Graph-

constrained group testing. IEEE Transactions on Information The-

ory, 58(1):248 �262, Jan. 2012.

[40] H. Y. Cheung, T. C. Kwok, and L. C. Lau. Fast matrix rank algo-

rithms and applications. In Proceedings of the Forty-fourth Annual

ACM Symposium on Theory of Computing (STOC), pages 549�562,

New York, NY, USA, 2012. ACM.

[41] A. Cohen, R. DeVore, and W. Dahmen. Compressed sensing and best

k-term approximation. Journal of the AMS, 22:211�231, 2009.

[42] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Intro-

duction to Algorithms. McGraw-Hill Higher Education, 2nd edition,

2001.

[43] G. Cormode and S. Muthukrishnan. What's hot and what's not:

tracking most frequent items dynamically. ACM Transactions

Database Systems (TODS), 30(1):249�278, March 2005.

[44] G. Cormode and S. Muthukrishnan. Combinatorial algorithms for

compressed sensing. In Proceedings of the 40th Annual Conference

on Information Sciences and Systems, pages 198 �201, March 2006.

[45] W. Dai, O. Milenkovic, and H. V. Pham. Structured sub-

linear compressive sensing via belief propagation. e-prints,

arXiv:1101.3348[cs.IT], 2011.

[46] J. Dainty and J. Fienup. Phase Retrieval and Image Reconstruction

for Astronomy. Chapter 7 In H. Stark, ed., Image Recovery: Theory

and Application, Academic Press, pages 231�275, 1987.

[47] P. Damaschke and A. S. Muhammad. Competitive group testing and

learning hidden vertex covers with minimum adaptivity. In Proceed-

BIBLIOGRAPHY 235

ings of the 17th international conference on Fundamentals of compu-

tation theory (FCT), pages 84�95, 2009.

[48] P. Damaschke and A. S. Muhammad. Randomized group testing

both query-optimal and minimal adaptive. In Proceedings of the 38th

international conference on Current Trends in Theory and Practice

of Computer Science (SOFSEM), pages 214�225, 2012.

[49] A. De Bonis, L. Gasieniec, and U. Vaccaro. Optimal two-stage al-

gorithms for group testing problems. SIAM Journal on Computing,

34(5):1253�1270, 2005.

[50] D. Declercq and M. Fossorier. Decoding Algorithms for Nonbinary

LDPC Codes Over GF (q). IEEE Transactions on Communications,

55(4):633�643, April 2007.

[51] D. L. Donoho. Compressed sensing. IEEE Transactions on Informa-

tion Theory, 52(4):1289�1306, April 2006.

[52] D. L. Donoho, A. Javanmard, and A. Montanari. Information-

theoretically optimal compressed sensing via spatial coupling and ap-

proximate message passing. e-prints, arXiv:1112.0708 [cs.IT], 2011.

[53] D. L. Donoho, Y. Tsaig, I. Drori, and J.-L. Starck. Sparse solution

of underdetermined systems of linear equations by stagewise orthog-

onal matching pursuit. IEEE Transactions on Information Theory,

58(2):1094�1121, Feb 2012.

[54] R. Dorfman. The detection of defective members of large populations.

Annals of Mathematical Statistics, 14:436�411, 1943.

[55] D. Z. Du and F. K. Hwang. Combinatorial group testing and its

applications. World Scienti�c Series on Applied Mathematics, 12,

1999.

BIBLIOGRAPHY 236

[56] D. Z. Du and F. K. Hwang. Combinatorial Group Testing and Its Ap-

plications. World Scienti�c Publishing Company, 2nd edition, 2000.

[57] A. G. Dyachkov and V. V. Rykov. Bounds on the length of disjunctive

codes. Probl. Peredachi Inf., 18:7�13, 1982.

[58] A. G. Dyachkov, V. V. Rykov, and A. M. Rashad. Superimposed

distance codes. Problems Control Inform. Theory, 18:237 � 250, 1989.

[59] W. Feller. An Introduction to Probability Theory and Its Applications.

Vol. I, 2nd ed. Wiley, New York, 1958.

[60] J. Fienup. Phase retrieval algorithms: a comparison. Appl. Opt.,

21:2758�2769, 1982.

[61] J. Fienup. Phase retrieval algorithms: a personal tour [invited]. Appl.

Opt., 52:45�56, 2013.

[62] M. Firooz and S. Roy. Network tomography via compressed sens-

ing. In Proceedings of IEEE Global Telecommunications Conference

(GLOBECOM), pages 1�5, Dec 2010.

[63] A. K. Fletcher, S. Rangan, and V. K. Goyal. Necessary and su�-

cient conditions for sparsity pattern recovery. IEEE Transactions on

Information Theory, 55(12):5758 � 5772, Dec. 2009.

[64] A. Gilbert and P. Indyk. Sparse recovery using sparse matrices. Pro-

ceedings of IEEE, 98(6):937�947, 2010.

[65] A. C. Gilbert, Y. Li, E. Porat, and M. J. Strauss. Approximate

sparse recovery: optimizing time and measurements. In Proceedings

of the 42nd ACM symposium on Theory of computing (STOC), pages

475�484, 2010.

BIBLIOGRAPHY 237

[66] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin. Algo-

rithmic linear dimension reduction in the l1 norm for sparse vectors.

In Proceedings of the 44th Annual Allerton Conference on Commu-

nication, Control, and Computing (Allerton), Sept 2006.

[67] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin. One

sketch for all: Fast algorithms for compressed sensing. In Proceedings

of the Thirty-ninth Annual ACM Symposium on Theory of Computing

(STOC), pages 237�246, 2007.

[68] M. T. Goodrich, M. J. Atallah, and R. Tamassia. Indexing informa-

tion for data forensics. In Applied Cryptography and Network Security

Lecture Notes in Computer Science, volume 3531, pages 206�221.

[69] M. T. Goodrich and D. S. Hirschberg. Improved adaptive group

testing algorithms with applications to multiple access channels and

dead sensor diagnosis. Journal of Combinatorial Optimization, 15:95

� 121, Jan 2008.

[70] M. T. Goodrich and M. Mitzenmacher. Invertible bloom lookup ta-

bles. e-prints, arXiv:1101.2245 [cs.DS], 2011.

[71] D. Guo, J. Luo, L. Zhang, and K. Shen. Compressed neighbor dis-

covery for wireless networks. e-prints, arXiv:1012.1007 [cs.NI], 2010.

[72] V. Guruswami and P. Indyk. Linear-time list decoding in error-free

settings: (extended abstract). Automata, Languages and Program-

ming Lecture Notes in Computer Science, 3142:695�707, 2004.

[73] N. Harvey, M. Patrascu, Y. Wen, S. Yekhanin, and V. Chan. Non-

adaptive fault diagnosis for all-optical networks via combinatorial

group testing on graphs. In Proceedings of IEEE International Con-

BIBLIOGRAPHY 238

ference on Computer Communications (INFOCOM), pages 697 �705,

May 2007.

[74] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their

applications. Bulletin (New series) of the American Mathematical

Society, 43:439�561, 2006.

[75] S. Hougardy and H. J. Prömel. A 1.598 approximation algorithm for

the Steiner problem in graphs. In Proceedings of the Tenth Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 448�

453, Jan 1999.

[76] F. K. Hwang. Group testing with a dilution e�ect. Biometrika,

63(3):pp. 671�673, 1976.

[77] P. Indyk, H. Ngo, and A. Rudra. E�ciently decodable non-adaptive

group testing. Proceedings of the Twenty-First Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 1126�1142, Jan

2010.

[78] P. Indyk and M. Ruzic. Near-optimal sparse recovery in the l1 norm.

In Proceedings of the 49th Annual IEEE Symposium on Foundations

of Computer Science (FOCS), pages 199�207, Oct 2008.

[79] L. Jacques, J. N. Laska, P. T. Boufounos, and R. G. Baraniuk. Ro-

bust 1-bit compressive sensing via binary stable embeddings of sparse

vectors. e-prints, arXiv:1104.3160 [cs.IT], 2011.

[80] S. Jafarpour, W. Xu, B. Hassibi, and R. Calderbank. E�cient and

robust compressed sensing using optimized expander graphs. IEEE

Transactions on Information Theory, 55(9):4299�4308, 2009.

[81] K. Jaganathan, S. Oymak, and B. Hassibi. Phase retrieval for

sparse signals using rank minimization. In Proceedings of IEEE In-

BIBLIOGRAPHY 239

ternational Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 3449�3452, March 2012.

[82] K. Jaganathan, S. Oymak, and B. Hassibi. Recovery of sparse 1-d sig-

nals from the magnitudes of their fourier transform. In Proceedings of

IEEE International Symposium on Information Theory Proceedings

(ISIT), pages 1473�1477, July 2012.

[83] K. Jaganathan, S. Oymak, and B. Hassibi. Sparse phase retrieval:

Convex algorithms and limitations. In Proceedings of IEEE Interna-

tional Symposium on Information Theory Proceedings (ISIT), pages

1022�1026, July 2013.

[84] D. B. Johnson and D. A. Maltz. Dynamic source routing in ad hoc

wireless networks. Mobile Computing, 353:153�181, 1996.

[85] M. Karon±ki and T. �uczak. The phase transition in a random hy-

pergraph. J. Comput. Appl. Math., 142(1):125�135, May 2002.

[86] M. Karpinski and A. Zelikovsky. New Approximation Algorithms for

the Steiner Tree Problem. Journal of Combinatorial Optimizaion,

1:47�65, 1997.

[87] J. Kleinberg. Detecting a network failure. In Proceedings of the 41st

Annual Symposium on Foundations of Computer Science (FOCS),

pages 231�239, Nov 2000.

[88] F. Krzakala, M. Mézard, F. Sausset, Y. Sun, and L. Zdeborová.

Statistical-physics-based reconstruction in compressed sensing. Phys-

ical Review X, 2(2):021005, 2012.

[89] S. Kudekar and H. P�ster. The e�ect of spatial coupling on compres-

sive sensing. In Proceedings of the 48th Annual Allerton Conference

BIBLIOGRAPHY 240

on Communication, Control, and Computing (Allerton), pages 347�

353, Sept 2010.

[90] X. Li and V. Voroninski. Sparse signal recovery from

quadratic measurements via convex programming. e-prints,

arXiv:1209.4785[cs.IT], 2012.

[91] Y. Lu, A. Montanari, and B. Prabhakar. Counter braids: Asymptotic

optimality of the message passing decoding algorithm. In Proceedings

of the 46th Annual Allerton Conference on Communication, Control,

and Computing (Allerton), pages 209 �216, Sept. 2008.

[92] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kab-

bani. Counter braids: a novel counter architecture for per-�ow mea-

surement. In Proceedings of the ACM SIGMETRICS International

Conference on Measurement and Modeling of Computer Systems,

pages 121�132, June 2008.

[93] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spiel-

man. E�cient erasure correcting codes. IEEE Transactions on In-

formation Theory, 47(2):569�584, 2006.

[94] D. J. C. Mackay. Information Theory, Inference and Learning Algo-

rithms. Cambridge University Press, June 2007.

[95] M. B. Malyutov. Separating property of random matrices. Mat.

Zametki, 23:155�167, 1978.

[96] M. B. Malyutov and H. Sadaka. Jaynes principle in testing active

variables of linear model. Random Operators and Stochastic Equa-

tions, 6:311�330, 1998.

BIBLIOGRAPHY 241

[97] A. Mazumdar. On almost disjunct matrices for group testing.

Algorithms and Computation Lecture Notes in Computer Science,

7676:649�658, 2012.

[98] C. McDiarmid. On the method of bounded di�erences. Surveys in

Combinatorics, 141(1):148�188, 1989.

[99] M. Mèdzard and C. Toninelli. Group testing with random pools:

Optimal two-stage algorithms. IEEE Transactions on Information

Theory, 57(3):1736 �1745, March 2011.

[100] R. Millane. Phase retrieval in crystallography and optics. J. Opt.

Soc. Am. A, 7:394�411, 1990.

[101] M. Mitzenmacher and G. Varghese. Bi� (bloom �lter) codes: Fast

error correction for large data sets. 2012 IEEE International Sympo-

sium onInformation Theory Proceedings (ISIT), pages 483�487, July

2012.

[102] M. Molloy. Cores in random hypergraphs and boolean formulas. Ran-

dom Struct. Algorithms, 27(1):124�135, Aug. 2005.

[103] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge

University Press, 1995.

[104] P. Netrapalli, P. Jain, and S. Sanghavi. Phase retrieval using alter-

nating minimization. e-prints, arXiv:1306.0160v1 [stat.ML], 2013.

[105] H. Ngo, E. Porat, and A. Rudra. E�ciently decodable error-

correcting list disjunct matrices and applications. Automata,

Languages and Programming Lecture Notes in Computer Science,

6755:557�568, 2011.

BIBLIOGRAPHY 242

[106] H. Q. Ngo and D.-Z. Du. A Survey on Combinatorial Group Testing

Algorithms with Applications to DNA Library Screening. DIMACS

Series in Discrete Mathematics and Theoretical Computer Science,

55:171 � 182, 2000.

[107] H. Nguyen and P. Thiran. Using end-to-end data to infer lossy links

in sensor networks. In Proceedings of the 25th IEEE International

Conference on Computer Communications (INFOCOM), pages 1�12,

April 2006.

[108] H. Ohlsson and Y. C. Eldar. On conditions for uniqueness in sparse

phase retrieval. e-prints, arXiv:1308.5447[cs.IT], 2013.

[109] H. Ohlsson, A. Yang, R. Dong, and S. Sastry. Compressive phase re-

trieval from squared output measurements via semide�nite program-

ming. e-prints, arXiv:1111.6323v3 [math.ST], 2011.

[110] S. Oymak, A. Jalali, M. Fazel, Y. C. Eldar, and B. Hassibi. Simul-

taneously structured models with application to sparse and low-rank

matrices. e-prints, arXiv:1212.3753[cs.IT], 2013.

[111] F. Parvaresh and B. Hassibi. Explicit measurements with almost

optimal thresholds for compressed sensing. In Proceedings of the In-

ternational Conference on Acoustics, Speech, and Signal Processing

(ICASSP), pages 3853�3856, March 2008.

[112] S. Pawar and K. Ramchandran. A hybrid DFT-LDPC framework for

fast, e�cient and robust compressive sensing. In Proceedings of the

50th Annual Allerton Conference on Communication, Control, and

Computing (Allerton), pages 1943�1950, Oct 2012.

BIBLIOGRAPHY 243

[113] S. Pawar and K. Ramchandran. Computing a k-sparse n-length dis-

crete fourier transform using at most 4k samples and o(k log k) com-

plexity. e-prints, arXiv:1305.0870[cs.IT], 2013.

[114] R. Pedarsani, K. Lee, and K. Ramchandran. PhaseCode: Fast and

e�cient compressive phase retrieval based on sparse-graph-codes. e-

prints, arXiv:1408.0034[cs.IT], 2014.

[115] Y. Plan and R. Vershynin. One-bit compressed sensing by linear

programming. e-prints, arXiv:1109.4299 [cs.IT], 2011.

[116] V. Pohl, F. Yang, and H. Boche. Phase retrieval from low rate sam-

ples. e-prints, arXiv:1311.7045 [cs.IT], 2013.

[117] E. Porat and A. Rothschild. Explicit non-adaptive combinatorial

group testing schemes. Automata, Languages and Programming Lec-

ture Notes in Computer Science, 5125:748�759, 2008.

[118] E. Price. E�cient sketches for the set query problem. In Proceedings

of the Twenty-Second Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 41�56, Jan 2011.

[119] E. Price and D. P. Woodru�. (1 + eps)-approximate sparse recovery.

In Proceedings of the IEEE 52nd Annual Symposium on Foundations

of Computer Science (FOCS), pages 295�304, Oct 2011.

[120] H. J. Prömmel and A. Steger. RNC-approximation algorithms for the

Steiner problem. In Proceedings of the 14th Annual Symposium on

Theoretical Aspects of Computer Science, Lecture Notes in Computer

Science, volume 1200, pages 559�570, 1997.

[121] I. S. Reed and G. Solomon. Polynomial codes over certain �nite

�elds. Journal of the Society for Industrial and Applied Mathematics,

8(2):300 � 304, Jun 1960.

BIBLIOGRAPHY 244

[122] T. Richardson and R. Urbanke. The capacity of low-density parity-

check codes under message-passing decoding. IEEE Transactions on

Information Theory, 47(2):599�618, Feb 2001.

[123] G. Robins and A. Zelikovsky. Improved Steiner tree approximation

in graphs. In Proceedings of the Eleventh Annual ACM-SIAM Sym-

posium on Discrete algorithms (SODA), pages 770�779, Jan 2000.

[124] R. Roth. Introduction to Coding Theory. Cambridge University Press,

2006.

[125] S. Sarvotham, D. Baron, and R. Baraniuk. Sudocodes - fast measure-

ment and reconstruction of sparse signals. In Proceedings of IEEE

International Symposium on Information Theory (ISIT), pages 2804

�2808, July 2006.

[126] A. Schliep, D. Torney, and S. Rahmann. Group testing with dna

chips: generating designs and decoding experiments. In Proceedings

of IEEE Bioinformatics Conference (CSB), pages 84 � 91, Aug. 2003.

[127] J. T. Schwartz. Fast probabilistic algorithms for veri�cation of poly-

nomial identities. Journal of the ACM, 27(4):701�717, 1980.

[128] Y. Shechtman, A. Beck, and Y. C. Eldar. Gespar: E�cient phase

retrieval of sparse signals. e-prints, arXiv:1301.1018[cs.IT], 2013.

[129] I. G. Shevtsova. An Improvement of Convergence Rate Estimates in

the Lyapunov Theorem. Doklady Mathematics, 82(3):862�864, 2010.

[130] R. C. Singleton. Maximum distance q-nary codes. IEEE Transactions

on Information Theory, 10(2):116�118, 1964.

[131] M. Sobel and R. M. Elasho�. Group testing with a new goal, esti-

mation. Biometrika, 62(1):181�193, 1975.

BIBLIOGRAPHY 245

[132] D. A. Spielman. Linear-time encodable and decodable error-

correcting codes. In Proceedings of the Twenty-Seventh Annual ACM

Symposium on Theory of Computing (SOTC), pages 388�397, May

1995.

[133] H. Takahashi and A. Matsuyama. An Approximate Solution for the

Steiner Problem in Graphs. Math. Jap., 24:537�577, 1980.

[134] I. Tamo and A. Barg. A family of optimal locally recoverable codes.

IEEE Transactions on Information Theory, 60(8):4661�4676, Aug

2014.

[135] R. Tarjan. Depth �rst search and linear graph algorithms. SIAM

Journal on Computing, 1(2):146�160, 1972.

[136] J. Tropp and A. Gilbert. Signal recovery from random measurements

via orthogonal matching pursuit. IEEE Transactions on Information

Theory, 53(12):4655�4666, Dec 2007.

[137] J. A. Tropp and A. C. Gilbert. Signal recovery from random mea-

surements via orthogonal matching pursuit. IEEE Transactions on

Information Theory, pages 4655�4666, 2007.

[138] Y. Vardi. Network tomography: Estimating source-destination traf-

�c intensities from link data. Journal of the American Statistical

Association, pages 365�377, 1996.

[139] M. J. Wainwright. Information-theoretic limitations on sparsity re-

covery in the high-dimensional and noisy setting. IEEE Transactions

on Information Theory, 55(12):5728 � 5741, Dec. 2009.

[140] I. Waldspurger, A. d'Aspremont, and S. Mallat. Phase recovery, max-

cut and complex semide�nite programming. Mathematical Program-

ming, 149(1-2):47�81, 2015.

BIBLIOGRAPHY 246

[141] M. Wang, W. Xu, E. Mallada, and A. Tang. Sparse recovery with

graph constraints: Fundamental limits and measurement construc-

tion. In Proceedings of the 31st Annual IEEE International Confer-

ence on Computer Communications (INFOCOM), pages 1871 �1879,

March 2012.

[142] J. Wolf. Born again group testing: Multiaccess communications.

IEEE Transactions on Information Theory, 31(2):185 � 191, Mar

1985.

[143] Y. Wu and S. Verdú. Rényi information dimension: Fundamental

limits of almost lossless analog compression. IEEE Transaction on

Information Theory, 56(8):3721�3748, 2010.

[144] Y. Wu and S. Verdú. Optimal phase transitions in compressed sens-

ing. e-prints, arXiv:1111.6822 [cs.IT], 2011.

[145] W. Xu and B. Hassibi. E�cient compressive sensing with deter-

ministic guarantees using expander graphs. In Proceedings of IEEE

Information Theory Workshop (ITW), pages 414 �419, Sept. 2007.

[146] W. Xu, E. Mallada, and A. Tang. Compressive sensing over graphs. In

Proceedings of the 30th IEEE International Conference on Computer

Communications (INFOCOM), pages 2087 �2095, April 2011.

[147] Y. Xuan, Y. Shen, N. Nguyen, and M. Thai. E�cient multi-link fail-

ure localization schemes in all-optical networks. IEEE Transactions

on Communications, 61(3):1144�1151, March 2013.

[148] S. Yekhanin. Locally decodable codes. Foundations and Trends in

Theoretical Computer Science, 6(3):139�255, 2012.

[149] A. Zelikovsky. An 11/6-Approximation Algorithm for the Network

Steiner Problem. Algorithmica, 9:463�470, 1993.

BIBLIOGRAPHY 247

[150] A. Zelikovsky. Better Approximation Bounds for the Network and

Euclidean Steiner Tree Problem. Technical report CS-96-06, Univer-

sity of Virginia, 1993.

[151] F. Zhang and H. P�ster. Veri�cation Decoding of High-Rate LDPC

Codes With Applications in Compressed Sensing. IEEE Transactions

on Information Theory, 58(8):5042�5058, Aug 2012.

[152] L. Zhang, J. Luo, and D. Guo. Neighbor discovery for wireless net-

works via compressed sensing. Performance Evaluation, 70:475 �477,

July 2013.

[153] Y. Zhao, Y. Chen, and D. Bindel. Towards unbiased end-to-

end network diagnosis. IEEE/ACM Transactions on Networking,

17(6):1724�1737, 2009.

[154] R. Zippel. Probabilistic algorithms for sparse polynomials. In Pro-

ceedings of the International Symposiumon on Symbolic and Algebraic

Computation, pages 216�226, 1979.

	Abstract
	Acknowledgement
	1 Introduction
	1.1 Compressive Sensing – SHO-FA
	1.2 Network Tomography – FRANTIC
	1.3 Group Testing – GROTESQUE
	1.4 Compressive Phase Retrieval – SUPER

	2 Technical Background
	2.1 Representation of measurement process
	2.1.1 Measurement matrix
	2.1.2 Bipartite graph
	2.1.3 Picking/Peeling process

	2.2 Error-correcting codes
	2.3 Big-Oh Notation
	2.4 Chernoff Bound and McDiamid's Inequality

	3 Compressive Sensing – SHO-FA
	3.1 Introduction
	3.1.1 Our contributions
	3.1.2 Special acknowledgements

	3.2 Exactly k-sparse x and noiseless measurements
	3.2.1 High-level intuition
	3.2.2 ``Approximate Expander'' Graph G
	3.2.3 Measurement design
	3.2.4 Reconstruction
	3.2.5 Decoding complexity
	3.2.6 Correctness
	3.2.7 Remarks on the Reconstruction process for exactly k-sparse signals
	3.2.8 SHO-FA v.s. ``2-core'' of random hyper-graphs
	3.2.9 Other properties of SHO-FA

	3.3 Approximate reconstruction in the presence of noise
	3.3.1 Key ideas
	3.3.2 Measurement Design
	3.3.3 Reconstruction
	3.3.4 Improving performance guarantees of SHO-FA via Set-Query Algorithm of Pri:11

	3.4 Simulation Results
	3.5 Acknowledgement
	3.6 Conclusion

	4 Network Tomography – FRANTIC
	4.1 Introduction
	4.1.1 Our contribution

	4.2 Model and problem formulation
	4.3 High-level Intuition and Main Results
	4.3.1 Key ideas
	4.3.2 Main Theorems

	4.4 SHO-FA-INT algorithm for Compressive Sensing
	4.5 The FRANTIC algorithm
	4.5.1 Link Delay Estimation
	4.5.2 Node Delay Estimation
	4.5.3 Extension of the FRANTIC algorithm

	4.6 Exploiting network structure
	4.6.1 Reducing Path Lengths through Steiner Trees:
	4.6.2 Average length of Steiner Trees:
	4.6.3 Network decomposition:

	4.7 Acknowledgements

	5 Group Testing – GROTESQUE
	5.1 Introduction
	5.1.1 Our contributions

	5.2 High-level overview
	5.2.1 GROTESQUE Tests
	5.2.2 Adaptive Group Testing
	5.2.3 Non-adaptive Group Testing
	5.2.4 Two-stage Adaptive Group Testing

	5.3 Basic Arithmetic Operations
	5.4 GROTESQUE Tests
	5.4.1 Multiplicity testing
	5.4.2 Localization
	5.4.3 Performance Analysis

	5.5 Adaptive Group Testing
	5.5.1 Overview
	5.5.2 Formal Description
	5.5.3 Performance Analysis

	5.6 Non-adaptive Group Testing
	5.6.1 Overview
	5.6.2 Formal Description
	5.6.3 Performance Analysis

	5.7 Two-stage Group Testing
	5.7.1 Overview
	5.7.2 Formal Description
	5.7.3 Performance Analysis

	5.8 Numerical Results for Noiseless Case
	5.8.1 Deterministic grotesque testing with noiseless tests
	5.8.2 Simulation Results

	5.9 Conclusion

	6 Compressive Phase Retrieval – SUPER
	6.1 Introduction
	6.1.1 Our Contribution

	6.2 Overview/High-level Intuition
	6.2.1 Pieces of the puzzle
	6.2.2 Putting the pieces together
	6.2.3 Summary of the overview

	6.3 Highly related work
	6.4 Graph properties
	6.4.1 Seeding Phase
	6.4.2 Geometric-decay phase
	6.4.3 Cleaning-up phase

	6.5 Measurement Design
	6.6 Reconstruction Algorithm
	6.6.1 Seeding phase
	6.6.2 Geometric-decay and Cleaning-up phases

	6.7 Choice of Parameters
	6.7.1 Seeding phase
	6.7.2 Geometric-decay phase:
	6.7.3 Cleaning-up phase

	6.8 Performance of the algorithm (Proof of the Main Theorem)
	6.8.1 Seeding Phase
	6.8.2 Geometric-decay Phase
	6.8.3 Cleaning-up phase

	6.9 Conclusion

	7 Conclusion
	A Proofs
	A.1 SHO-FA
	A.1.1 Proof of Lemma 1
	A.1.2 Proof of Lemma 2
	A.1.3 Proof of Lemma 3
	A.1.4 Proof of Lemma 4
	A.1.5 Phase noise
	A.1.6 Probability of error
	A.1.7 Estimation error
	A.1.8 Proof of Theorem 3

	A.2 SUPER
	A.2.1 Proof of Claim 1
	A.2.2 Proof of Lemma 12
	A.2.3 Proof of Theorem 5

	Bibliography

