
On the Complexity of Homomorphic Encryption

LEE, Chin Ho

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Master of Philosophy
in

Computer Science and Engineering

The Chinese University of Hong Kong
September 2013



Thesis/Assessment Committee

Professor Pak Ching Lee (Chair)
Professor Andrej Bogdanov (Thesis Supervisor)
Professor Lap Chi Lau (Committee Member)
Professor Alon Rosen (External Examiner)



Abstract

On the complexity of homomorphic encryption

by

LEE, Chin Ho

Master of Philosophy

Department of Computer Science and Engineering

The Chinese University of Hong Kong

Homomorphic encryption was proposed by Rivest, Adleman, and Dertouzos over three

decades ago as a mechanism for secure delegation of computation to an honest but

curious server. This thesis examines the complexity-theoretic aspects of homomorphic

encryption. In particular we are interested in the complexity and provable security of

homomorphic encryption. Our results include the following:

• We propose a new homomorphic encryption scheme based on the hardness of

decoding under independent random noise from certain affine families of codes.

This candidate is later shown to be insecure.

• We give evidence that encryption schemes that support homomorphic evaluation

are inherently more complex than ordinary ones. We show that secure homomor-

phic evaluation of any non-trivial functionality of sufficiently many inputs with

respect to any CPA secure encryption scheme cannot be implemented by constant

depth, polynomial size circuits, i.e. in the class AC0. We view this as evidence

that encryption schemes that support homomorphic evaluation are inherently more

complex than ordinary ones.

• We show that public-key bit encryption schemes which support weak (i.e., com-

pact) homomorphic evaluation of any sufficiently “sensitive” collection of functions

cannot be proved message indistinguishable beyond AM∩coAM via general (adap-

tive) reductions, and beyond statistical zero-knowledge via reductions of constant

query complexity.
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摘摘摘要要要

同態加密的複雜度

李展浩

香港中文大學

計算機科學與工程學系

哲學碩士

同態加密是由 Rivest、Adleman 和 Dertouzos 於三十年前提出，作為安全地委任一

個誠實遵守協議但同時好奇解密的服務器作運算的一個機制。本論文研究同態加密計算

在複雜性理論上的問題，我們特別關注同態加密的複雜度及它的可證明安全性，我們的

研究結果包括：

• 我們提出一個新的同態加密方案，這個方案是基於對帶有獨立隨機雜訊的編碼仿
射族解碼的困難，它後來被證明是不安全的。

• 我們提供證據去證明支持同態運算的加密方案本質上較普通加密方案複雜，我們
證明任何足夠多輸入的非平凡函數的同態運算並不能被一個常量深度和多項式大

小的電路（即 AC0 類）去實現，這可以看作同態加密較普通加密複雜的證據。

• 我們證明如果一個公開密鑰加密方案支持足夠「靈敏」的函數集合的弱（即
緊）同態運算，它的信息不可分辨性不能透過一般（自適應）歸約法去證明在

AM ∩ coAM 以外，及不能透過常量查詢複雜度的歸約法去證明在統計零知識

（SZK）以外。
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Chapter 1

Introduction

This thesis studies the complexity-theoretic aspects of homomorphic encryption, with

the focus on its complexity and provable security. In particular, it attempts to answer

the following questions:

• How complex is homomorphic encryption? Can it be efficient? Does there exist

an homomorphic encryption that admits a parallel implementation?

• How secure is homomorphic encryption? Is it as secure as an ordinary encryption

scheme? Can its security be based on NP-complete problems?

Before delving into these problems, let us give an overview of homomorphic encryption

and the related problems.

1.1 Overview for homomorphic encryption

Homomorphic encryption was proposed in the seminal work of Rivest, Adleman, and

Dertouzos [RAD78] over three decades ago as a mechanism for secure delegation of

computation to an honest but curious server. It allows to take encryptions of some

messages and some functionality f , and produces a ciphertext that decrypts to the

evaluation of f on the messages using only public information.

In the RSA [RSA78] encryption scheme, a public key is generated as follows: First,

choose two random prime numbers p and q and consider their product N = pq, then

output a number e such that gcd(e, φ(N)) = 1. To encrypt a message m, the encryption

algorithm simply outputs me mod N . It is straightforward to see that the scheme is
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multiplicative homomorphic, because

EncPK(m1) ·EncPK(m2) = me
1m

e
2 = EncPK(m1m2).

However, since there is no randomness involved in the encryption algorithm, the RSA

scheme is not semanticlly secure. While there exist several variants of RSA that achieve

semantic security, it remains a open question that whether one can construct an additive

or multiplicative homomorphic encryption scheme based on the RSA assumption.

Some partial progress [GM84, Gam85, Pai99] was made on constructing homomor-

phic encryption schemes based on other assumptions over time. The security of these

candidates relies on the hardness of some computational number theoretic problems such

as the quadratic residuosity problem and the decisional Diffie-Hellman problem [Bon98].

However, none of these candidates are fully homomorphic as they only support homomor-

phic evaluation of restricted classes of functions. For example, the Goldwasser-Micali

(GM) cryptosystem [GM84] only supports homomorphic evaluation of parity. In the

GM cryptosystem, the public key is a pair (N, y), where N is again the product of two

random prime integers, y is a random quadratic non-residue modulo N . To encrypt a

bit b, the encryption algorithm chooses r from ZN uniformly at random and outputs

r2yb mod N . Notice that

EncPK(b1) ·EncPK(b2) = (r2
1y
b1) · (r2

2y
b2) = (r1r2)2yb1+b2 = EncPK(b1 ⊕ b2)

and so this scheme is additive homomorphic over Z2.

Other homomorphic encryption schemes include the ElGamal cryptosystem [Gam85]

and the Paillier encryption scheme [Pai99], which are only multiplicative homomorphic

and additive homomorphic, respectively. The Boneh-Goh-Nissim cryptosystem [BGN05]

supports homomomorphic additions and one level of multiplication. Only a few years

ago, the first fully homomorphic encryption (FHE) schemes were proposed, starting

with the breakthrough work of Gentry [Gen09a, Gen09b] in 2009. Since then, several

such schemes have been proposed [vDGHV10, BV11, GH11, BGV12]. However, current

implementations of these encryption schemes are not practical.

Most of the existing FHE schemes rely their security on the learning with error

(LWE) problem introduced by Regev [Reg05]. In the LWE problem, given a dimension

n, a modulus q and an error distribition χ over Zq, one can ask for arbitrary many

samples in the form of (a, 〈a, s〉+e), where a ∼ Znq and e ∼ χ, and is required to recover

s. The LWE assumption says that any probabilistic polynomial time adversary cannot
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recover s with non-negligible probability. The decision variant of the LWE assumption

(dLWE) assumes the distribution (a, 〈a, s〉+e) is pseudorandom, that is, no probabilistic

polynomial time adversary can distinguish the distribution from uniformly random with

non-negligible probability. It is known that LWE and dLWE are as hard as each other up

to certain settings of parameters [MM11, BLP+13]. Currently, the best known algorithm

for LWE with any B-bounded distribution χ (i.e. Pre∼χ[|e| > B] ≤ 1/poly(n)) runs in

time 2Õ(n/ log(q/B)) [LP11].

1.1.1 Applications of homomorphic encryption

One immediate application of homomomorphic encryption is cloud computing. Suppose

in a university every student’s academic record is encrypted using an ordinary encryption

scheme and is stored in a cloud server. If one is interested to find out the average grades

of the algorithm course last year, one has to download the entire database of the CS

students, decrypt the encrypted data, and carry out the statistical calculation on the

data.

In contrast, if the data is encrypted using a homomorphic encryption scheme that

supports evaluating some specific class of functions (e.g. statistical average) homomor-

phically, then given only the public key and the encrypted data, the cloud server can

output the encryption of average grades of the course, without performing any decryp-

tion during the whole process.

As a result, homomorphic encryption allows the cloud users to, on the one hand,

outsource both the storage and computation to the cloud server. This is particularly

useful when users do not have the resources to perform the computation themselves. On

the other hand, homomorphic encryption also addresses the privacy concerns raised by

the users, because the computation does not reveal any information of their data.

Other applications of homomorphic encryption include constructions of several cryp-

tographic protocols for multiparty computation, private information retrieval, eletronic

voting and zero-knowledge protocol. While there exist more elegant and efficient con-

structions of these protocols, the constructions using homomorphic encryption are usu-

ally conceptually simpler.

As an example, we now give a construction of a two party computation protocol

using homomorphic encryption [IP07].

Two party computation. Alice has an input x and Bob has an input y. Their goal

is to compute f(x, y) for some function f without revealing their input to the other one.

3



Let (Gen,Enc,Dec) be a public key homomorphic encryption scheme that supports

homomorphic evaluation of f . Consider the following protocol:

1. Alice generates a public/secret key pair (PK,SK) and sends (PK,Cx = EncPK(x))

to Bob.

2. Bob computes Cy = EncPK(y) and evaluates f on x and y homomorphically using

PK, Cx, Cy, and the homomorphic evaluator of f . Then he sends the output of

the evaluation C to Alice.

3. Alice decrypts the ciphertext C to get f(x, y) and sends it to Bob.

Since everything in step two is encrypted, it is not difficult to see that provided

the encryption is CPA secure, and Alice and Bob do not deviate from the protocol,

after executing the protocol both of them can get hold of f(x, y), without obtaining any

information about the other’s input.

1.2 Complexity of cryptographic tasks

A central objective in the theory of cryptography is to classify the relative complexity of

various cryptographic tasks. One common way of arguing that task B is of comparable

easiness to task A is to give a black-box implementation of B using A as a primitive.

Notable examples include the construction of pseudorandom generators from one-way

permutations [GL89] and one-way functions [HILL99, HRV10].

But how should we argue that task B is “more complex” than task A? In the generic

setting, one looks for the existence of a black-box separation [IR89, RTV04], or a lower

bound on the query complexity of a black-box reduction [GT00]. However such black

box impossibility results are not always a good indicator of the relative complexity of

the two tasks in the real world (under suitable complexity assumptions). For example,

although collision-resistant hash functions cannot be constructed from one-way functions

in a black-box manner [Sim98], both objects have simple, local (NC0) implementations

under standard assumptions [AIK07].

An alternative way to argue that task B is more complex than task A is to provide

a concrete complexity model in which one can implement A (under plausible assump-

tions), but not B. For example, Applebaum et al. [AIK07] show that under plausible

complexity assumptions, nontrivial pseudorandom generators can be implemented in the

complexity class NC0. However, it is not difficult to see that this class does not contain
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pseudorandom functions; in fact, Linial, Mansour, and Nisan [LMN93] show that pseu-

dorandom functions cannot be implemented even in AC0. Taken together, these results

may be viewed as concrete evidence that pseudorandom functions are more complex

than pseudorandom generators, despite the existence of a black-box reduction [GGM86]

and the lack of lower bounds on the complexity of such reductions [MV11].

1.3 Provable security in cryptography

If P equals NP then computationally secure encryption is impossible. Is the converse

true?

Despite considerable efforts, there is no candidate encryption scheme whose security

can be plausibly reduced to the worst-case hardness of some NP-complete problem.

Neither is there conclusive evidence that rules out constructions of secure encryption

schemes from NP-complete problems, although several obstacles have been pointed out

over the years.

Restricting the encryption Brassard [Bra79] shows that no public-key encryption

scheme can be proved secure beyond NP∩coNP, but under the implicit assumption that

every public key-ciphertext pair (queried by the reduction) can be decrypted uniquely.

Goldreich and Goldwasser [GG98] argue that this assumption is unrealistic by giving

examples of encryption schemes that do not satisfy it. They show that the conclusion

holds under the relaxed assumption that invalid queries to the decryption oracle can be

efficiently certified as such. (If the reduction is randomized, the limitation weakens to

AM ∩ coAM.)

Goldreich and Goldwasser warn that these assumptions are unrealistic as they do not

apply to many known proofs of security. Bogdanov and Trevisan [BT06] point out the

following example of Even and Yacobi [EY80]. They construct a public key encryption

scheme and show how to solve an NP-hard problem using a distinguishing oracle. Their

notion of security is unrealistic, as they require a perfect distinguishing oracle. However,

their example illustrates that the restrictions imposed by Brassard and Goldreich and

Goldwasser do not capture the difficulty of basing cryptography on NP hardness.

Akavia, Goldreich, Goldwasser, and Moshkovitz [AGGM06] rule out reductions from

NP-complete problems to inverting one-way functions (the basis of private-key encryp-

tion) assuming that sizes of preimage sets are worst-case certifiable in NP. The same

considerations apply to their argument. There are natural examples of conjectured

one-way functions (for example, Goldreich’s function [Gol00]) not known to satisfy the
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aforementioned assumptions.

Restricting the reduction Another line of works makes restrictive assumptions

about the type of reduction used to prove NP-hardness. Feigenbaum and Fortnow [FF93]

show that a decision problem cannot be proven NP-hard on average (unless the polyno-

mial hierarchy collapses) by a reduction that is non-adaptive and each of its queries is

uniformly distributed. Bogdanov and Trevisan [BT06] obtain the same conclusion with-

out restricting the distribution of queries, but still under non-adaptive reductions. More

precisely, they show that if there is a non-adaptive reduction from a decision problem

L to a problem in distributional NP, then L must be in AM/poly ∩ coAM/poly. In

particular their result applies to the problem of inverting a one-way function. For this

important case, Akavia et al. improve the limitation to AM ∩ coAM, also assuming the

reduction is non-adaptive.

Haitner, Mahmoody, and Xiao [HMX10] show that collision resistant hash functions

and statistically hiding commitments cannot be proved secure beyond AM ∩ coAM via

reductions that make a constant number of rounds of calls to the adversary.

Lattice-based cryptography provides examples of encryption schemes whose insecu-

rity would imply worst-case solutions to conjectured hard problems, like finding short

vectors in lattices [Ajt96]. The reduction of Regev [Reg09], which gives the most effi-

cient cryptosystems of this kind with a proof of security (against quantum algorithms),

is adaptive. For certain settings of parameters, these cryptosystems support homomor-

phic evaluation of a bounded class of functionalities (and general functionalities under

additional security assumptions) [Gen09b, vDGHV10, BV11].

1.4 Results and organization

We begin this thesis by giving a definition of homomorphic encryption in the next

chapter. In Chapter 3 and 4, we examine the complexity of homomorphic encryption.

Our focus is on the possibility of efficient implementation of homomorphic encryption.

In Chapter 5, we study the provably security for homomorphic encryption. In Chapter 6,

we discuss some open problems for further research.

Chapter 3 – Homomorphic encryption from codes. We attempt to equip known

cryptosystems that admit efficient implementation with homomorphism. Owing to the

simplicity of encryption, the scheme of Applebaum, Barak and Wigderson [ABW10] is

a natural starting point for this study. To this end, we propose a new homomorphic

6



encryption scheme based on the hardness of decoding under independent random noise

from certain affine families of codes. However, this candidate is shown to be insecure

by the independent work of Brakerski [Bra13] and Gauthier et al. [GOT12]. We discuss

their attacks in detail at the end of the chapter.

Chapter 4 – On the depth complexity of homomorphic encryption schemes.

We show that secure homomorphic evaluation of any non-trivial functionality of suffi-

ciently many inputs with respect to any CPA secure encryption scheme cannot be im-

plemented by constant depth, polynomial size circuits, i.e. in the class AC0. In contrast,

we observe that certain previously studied encryption schemes (with quasipolynomial

security) can be implemented in AC0. We view this as evidence that encryption schemes

that support homomorphic evaluation are inherently more complex than ordinary ones.

Chapter 5 – Limits of provable security for homomorphic encryption. We

show that public-key bit encryption schemes which support homomorphic evaluation of

any sufficiently “sensitive” collection of functions cannot be proved message indistin-

guishable beyond AM ∩ coAM via general (adaptive) reductions, and beyond statisti-

cal zero-knowledge via reductions of constant query complexity. Examples of sensitive

collections include parities, majorities, and the class consisting of all AND and OR

functions.

Our techniques also give a method for converting a strong homomorphic evaluator for

essentially any boolean function (except the trivial ones, the NOT function, and the AND

and OR functions) into a rerandomization algorithm: This is a procedure that converts a

ciphertext into another ciphertext which is statistically close to being independent and

identically distributed with the original one. Our transformation preserves negligible

statistical error.

Most of the material in this thesis also appears in the work [BL11, BL12, BL13].
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Chapter 2

Definition of homomorphic

evaluation

In this chapter we give a definition of homomorphic evaluation which will be used

throughout this thesis. There are several variants of the definition of what it means

for an algorithm H to homomorphically evaluate a given functionality f . A fairly weak

requirement is that a homomorphic evaluator for f(m1, . . . ,mk) should take as inputs

encryptions of m1, . . . ,mk and output a ciphertext that decrypts to f(m1, . . . ,mk).

To account for the possibility that the encryption scheme itself may produce incorrect

encryptions with some probability, we will allow for the evaluation algorithm to err on

some fraction of the encryptions.

Definition 2.1. Let (Gen,Enc,Dec) be a private-key encryption scheme over message

set Σ and ciphertext set Ξ. We say H is a homomorphic evaluator of f : Σ∗ → Σ with

error δ if (1) the output length of H is bounded by a function that depends only on the

security parameter and (2) for all n and m ∈ Σn in the domain of f ,

Pr[DecSK(H(EncSK(m1, R1), . . . ,EncSK(mn, Rn))) = f(m)] ≥ 1− δ,

where SK ∼ Gen is a uniformly chosen secret key and R1, . . . , Rn are independent

random seeds.

In the public-key setting, we are given an encryption scheme (Gen,Enc,Dec) and

require that

Pr[DecSK(HPK(EncPK(m1, R1), . . . ,EncPK(mn, Rn))) = f(m)] ≥ 1− δ,

9



where (PK,SK) ∼ Gen is a random key pair.

We point out condition (1) in this definition is necessary in the context of ruling out

the existence of trivial homomorphic evaluators. When k is much smaller than n, con-

dition (2) alone allows for plausible encryption schemes that admit trivial homomorphic

evaluators, by “outsourcing” the homomorphic evaluation to the decryption algorithm.

For example suppose that the meaningful portion of an encryption is only captured

in the first n/k bits of the ciphertext. Then the homomorphic evaluator can simply

copy the meaningful portion of its k encryptions in non-overlapping parts of the output.

Upon seeing a ciphertext of this form, the decryption algorithm can easily compute the

value f(m1, . . . ,mk) by first decrypting the ciphertext corresponding to each of the k

encryptions and then evaluating f .

A stronger notion of homomorphic evaluation will be defined in Chapter 5.

10



Chapter 3

Homomorphic encryption from

codes

3.1 Introduction

In this chapter we propose a new way to achieve homomorphic encryption based on

codes rather than lattices. In both code and lattice based cryptosystems, encryptions

are obtained by applying a transformation to an input and adding some noise. The two

differ in the noise model. In lattice-based encryption schemes, the noise is required to be

of bounded magnitude. In code-based schemes, the noise vector must have sufficiently

small hamming weight, but is otherwise unrestricted.

Our main result is a construction of a homomorphic public-key encryption scheme

from a code-based public-key encryption scheme with some special properties. The code-

based scheme which is the base of our construction is new. We arrived at it by combining

the structure of encryptions of the local cryptosystem of Applebaum, Barak, and Wigder-

son [ABW10] with a “key scrambling” idea of the McEliece cryptosystem [McE78]. We

also provide a definitional framework for homomorphic encryption that may be useful

elsewhere.

The security assumption of the scheme is shown to be false by the independent

works of Brakerski [Bra13], and Gauthier, Otmani and Tillich [GOT12]. We present

their attacks in Section 3.6.

We begin by discussing the proposed scheme and give evidence in favor of its security.

The design is motivated by certain algebraic requirements that enable the implementa-

tion of homomorphic operations. We defer the discussion of these special properties to

Section 3.2.
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3.1.1 The base cryptosystem K

The ciphertexts in our cryptosystem are n-bit vectors over Fq, where q is a power of

a prime. Three additional parameters that enter the description of the cryptosystem

are the amount of randomness r used in the encryption, the size s of the secret key,

and the noise distribution η̃ over Fq. We will discuss the relationships between these

parameters shortly. Conjecture 3.1 at the end of this section summarizes the conclusion

of this discussion. The message set of our encryption scheme is the set Fq.

Public-key encryption scheme K

Key generation: Choose a uniformly random subset S ⊆ {1, . . . , n} of size s and an

n× r matrix M from the following distribution. First, choose a set of uniformly random

but distinct values a1, . . . , an from Fq. Set the ith row Mi to

Mi =

[ai a
2
i · · · a

s/3
i 0 · · · 0], if i ∈ S,

[ai a
2
i · · · a

s/3
i a

s/3+1
i · · · ari ], if i 6∈ S.

The secret key is the pair (S,M) and the public key is the matrix P = MR, where R is

a random r × r matrix over Fq with determinant one. (Such a matrix can be efficiently

sampled.)

Encryption: Given a public key P , to encrypt a message m ∈ Fq, choose a uniformly

random x ∈ Frq and a noise vector e ∈ Fnq by choosing each of its entries independently

at random from η̃. Output the vector Px+m1 + e, where 1 ∈ Fnq is the all ones vector.

Decryption: Given a secret key (S,M), to decrypt a ciphertext c ∈ Fnq , first find a

solution to the following system of s/3 + 1 linear equations over variables yi ∈ Fq, i ∈ S∑
i∈S yiMi = 0∑

i∈S yi = 1
(3.1)

with yi = 0 when i 6∈ S. Output the value
∑

i∈[n] yici.

To understand the functionality of this scheme, let us first assume that no noise is

present, that is η̃ always outputs zero. The decryption of an encryption of m is given by

yT (Px+m1) = (yTM)Rx+m · yT1 =
(∑

i∈S
yiMi

)
Rx+m

∑
i∈S

yi = m

by the constraints (3.1) imposed on yi. We must argue that these constraints can be

12



simultaneously satisfied. This follows from the fact that the matrix specifying the system

of equations (3.1) is an s × (s/3 + 1) Vandermonde matrix, which has full rank and is

therefore left-invertible.

When noise is present in the encryption, the decryption could produce the wrong

answer when at least one of the noisy elements makes it inside the hidden set S. By a

union bound this happens with probability at most ηs, where η = Pr[η̃ 6= 0] is the noise

rate of the scheme.

3.1.2 Relation with other cryptosystems

While we are unable to argue the security of our proposed scheme by formal reduction to

a previously studied one, we describe how our scheme combines ideas from the existing

cryptosystems of McEliece and Applebaum, Barak, and Wigderson (ABW), with an eye

towards inheriting the security features of these schemes. We take some small liberties

in our discussion of these encryption schemes in order to emphasize the parallels to our

proposed scheme.

In the McEliece cryptosystem based on the Reed-Solomon code, the public key looks

exactly like in our scheme, except that the secret subset S is empty (i.e., s = 0). The

syntax and semantics of the encryption, however, are somewhat different. The message

set is Frq and an encryption of a message x ∈ Frq has the form Px + e, which looks like

a noisy codeword of the Reed-Solomon code.1 Decryption is performed by applying an

error-correction algorithm to this codeword. What prevents the adversary from applying

the error-correction himself is the fact that the (randomized) evaluation points of the

Reed-Solomon code are not revealed in the public key, owing to the presence of the “key

scrambling” matrix R.

In our proposed cryptosystem, the vector x ∈ Frq does not represent the message

but is used to randomize the encryption. Since P and M are generator matrices of the

same linear code, the encryption of a message m ∈ Fq can be viewed as an affine shift

of a random codeword of this code by m units in every coordinate. To thwart decoding

by inverting this affine transformation, a noise is injected into some of the coordinates.

The ability to decrypt now relies not on the existence of efficient error-correction for the

Reed-Solomon code, but on the trapdoor S. The submatrix MS of M indexed by the

rows of S has a similar structure to the whole matrix M , but on a smaller scale. The

scale s of this “self-similarity” will be chosen small enough so that noise is unlikely to

make it into the codeword coordinates indexed by S, allowing for very simple decoding

1One security issue is that these ciphertexts are not message indistinguishable.
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via linear algebra.

Thus at a structural level, our proposed cryptosystem is quite similar to the ABW

cryptosystem. Besides the fact that the ABW system operates over the field F2 while

our system will be instantiated over a larger field, the main difference is in the choice of

the public key matrix P . In the ABW system, the choice of this matrix is constrained by

the fact that the encoding needs to be performed in a local manner. In our case, we will

need M (and therefore P ) to have specific algebraic structure that enables homomorphic

operations.

The (private-key) proposals of Armknecht and Sadeghi [AS08] and Armknecht et

al. [AAPS11] also bear similarity to our construction. In these schemes as in ours,

the functional part of the ciphertext (i.e., the part projected onto S) can be viewed as

evaluations of polynomial p that is random conditioned on the value p(0), which encodes

the message m. In this view, addition and multiplication of ciphertexts correspond to

the same operations on the respective polynomials. By construction, these schemes

support a very limited number of homomorphic operations.

3.1.3 Parameters and security

We now turn to arguing the security of our scheme against certain natural attacks. The

form of security that we aim to achieve is the standard notion of (s, ε) (key independent)

message indistinguishability, which asks that for every pair of messages m,m′ ∈ Fq, the

encryptions of m and m′ are indistinguishable with advantage ε by circuits of size s that

are given the public key, where the randomness is taken over the choice of keys.2

We describe the attacks at a somewhat informal level in order to gain intuition about

the setting of parameters n, q, r, s, and η for which the proposed scheme could be secure.

For convenience in further discussion, n will play the role of a security parameter and we

propose values for the other parameters in terms of n. Ultimately all of these parameters

will be polynomially related to n; the exact polynomial dependencies, which are chosen

with some foresight, are described by a constant α > 0, whose significance will become

apparent in Section 3.4.1.

Recover the hidden subset S from the public key. A natural attack for the

adversary is to locate or guess the hidden subset S. A brute-force search would go over

all
(
n
s

)
possible candidates for S. To obtain non-negligible security, one should choose s

to increase asymptotically with n.

2Security can be proved even if m and m′ are allowed to depend on the public key, but to avoid some
technical complications in the definitions we present our results with respect to the weaker notion.
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Here is a more sophisticated kind of attack that attempts to obtain information

about S. A statistical way to distinguish the rows of P that are indexed by S from the

other ones is based on the dimension of the hidden vectors in the matrix P . For the

purposes of describing this attack we can pretend that P = M , as the attack only relies

on the column space of P , which is identical for the two matrices. One can attempt to

locate the rows in MS by calculating the rank of various k × r submatrices D of M . If

D turns out not to be of full rank, then D must contain a vector in S (for otherwise D

would be a Vandermonde matrix and therefore of full rank). By performing such rank

calculations one could expect to find information about the subset S.

In Appendix A we show that for any t× r submatrix D (depending on S) the rank

of D is full with probability at least 1 − O(r2/q), unless D contains at least s/3 +

1 + max{t − r, 0} rows from MS . The probability is taken over the random choice of

a1, . . . , an in the key generation algorithm. A simple calculation shows that if D were

chosen at random (for any choice of t), it would be rank deficient with probability at

most min{O(r2/q), 1/
(
n

Ω(s)

)
}.

Another type of attack our system is potentially vulnerable to is the Sidelnikov-

Shestakov attack [SS92]. Wieschebrink [Wie10] shows that in the McEliece cryptosystem

instantiated with generalized Reed-Solomon Codes, the secret key can be recovered from

the public key in time linear n and cubic in the field size q. This attack gives a way to

compute the scrambled evaluation points from the public key matrix, provided two of

them are known in advance. If q is small, these two points can be guessed efficiently.

One can exploit this attack to recover the matrix M and therefore reveal S.

By setting s = nα/4 and q on the order of 2n
α
, we ensure that these attacks require

exponential time, or only give inverse exponential success probability .

Exploit the special properties of MS in the public key. In our decryption algo-

rithm it was crucial that the rows of the matrix MS satisfy the constraints of the linear

system (3.1). However this special structure of MS could be potentially exploited by an

adversary. For instance, an adversary may set up a system of equations analogous to

(3.1), but over all indices of the ciphertext instead only of those in S. Specifically, the

adversary sets up the following system of equations over variables yi, i ∈ [n]:∑
i∈[n] yiPi = 0∑
i∈[n] yi = 1.

Notice that the solution space of this system does not change if P is replaced by M , and

so in particular it contains all the solutions to the system (3.1) (with yi = 0 for i 6∈ S).
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If the adversary is lucky, the solution space will contain only the solutions to (3.1) so by

solving the system he would gain the ability to decrypt.

By choosing r to be sufficiently smaller than n—we set r = n1−α/8—we can ensure

that the system set up by the adversary has abundantly many solutions, most of which

will be forced to have very large hamming weight. Such solutions are useless for the

decoding, as long as η is not trivially small, because the noise in the ciphertext is likely

to affect some nonzero coordinates of y.

Our homomorphic algorithms rely on one additional property of the matrix MS ,

namely the existence of solutions to the more constrained linear system (3.2) described

in Section 3.2. We can argue that the analogous attack fails by a similar argument as to

the one given here. Generally, our intuition is that we can handle attacks that exploit

the similarity between the matrices M and (the nonzero part of) MS by choosing the

rows-to-columns aspect ratio of M to be substantially larger than the rows-to-columns

aspect ratio of MS , which is constant.

Recover the randomness x used in the encryption. If the noise rate η in the

encryption is too small, the adversary may be able to recover x from, say, an encryption

of 0. For instance, if the noise rate η is smaller than 1/r, then in an encryption of 0

of the form Px + e it would happen with constant probability that no noise makes it

into the first r bits of the encryption. In that case, the adversary could recover the

randomness by inverting the first r bits of the ciphertext.

We set the noise rate η to 1/n1−α/4. Since r = n1−α/8, it follows that any projection

of the bits of a ciphertext of linear length is likely to contain noise, which would make

it exponentially hard to recover the randomness x.

Taking all these factors into consideration, we are now ready to conjecture the secu-

rity of our proposed cryptosystem K.

Conjecture 3.1. For every α > 0 there exists γ > 0 such that the cryptosystem K with

parameters r = n1−α/8, η = 1/n1−α/4, s = nα/4 and q ≥ 2n
α

is (2n
γ
, 2−n

γ
)-message

indistinguishable, for all n that are sufficiently large.

Conjecture 3.1 follows from the possibly stronger pseudorandomness assumption that

the distribution (PK,EncPK(0)) is (2n
γ
, 2−n

γ
)-computationally indistinguishable from

(PK,U), where PK is the public key, EncPK(0) is a random encryption of 0 under

PK, and U is a uniformly random string of length n independent of PK.

We will use Kq(n) to denote an instantiation of the cryptosystem K with the pa-

rameters from Conjecture 3.1 (except for q which we leave as a free parameter).
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3.1.4 Our main result

For technical simplicity we state our definitions and results in the non-uniform setting

(i.e. all components are described as circuits instead of algorithms). An extension to

the uniform setting is straightforward.

In our definition of homomorphic encryption we wish to distinguish between the

standard decryption algorithm, which applies to encryptions of bits, and the homomor-

phic decryption algorithm, which applies to the output of the homomorphic evaluation

circuit. Also, unlike previous homomorphic encryption schemes, ours carries the risk of

a setup error, which we account for in the definition.

Owing to this risk of error, it is possible that some of the inputs provided to the

homomorphic evaluation circuit are themselves corrupted. To provide for this possibility,

we give a somewhat more general definition of homomorphic evaluation: Instead of

requiring that the circuit works well on encryptions of the inputs (which are not even

well-defined in the setting of error-prone probabilistic encryption), we ask that they

work on inputs that decrypt to the correct value. This feature of the definition will be

very useful in the proofs.

Definition 3.2. A homomorphic encryption scheme with setup error κ for circuit class

C = {C : Bm → B} (where B is a subset of the message set) consists of five circuits

(Gen,Enc,Dec,Eval,HDec), where (Gen,Enc,Dec) is a (probabilistic) public-key

encryption scheme (for a formal definition see e.g. [Gol04]), and Eval and HDec are

(deterministic) circuits that satisfy

Pr[HDecSK(EvalPK(C, c1, . . . , cm)) = C(m1, . . . ,mm)] ≥ 1− κ

for every circuit C ∈ C, every message m ∈ {0, 1}m, and every collection of ciphertexts

c1, . . . , cm such that DecSK(ci) = mi for every i. The probability is taken over the

choice of keys (SK,PK) ∼ Gen.

Let C : {0, 1}m → {0, 1} be a boolean circuit with binary addition (i.e. XOR) and

multiplication (i.e. AND) gates of fan-in two. The depth of C is the maximum number

of gates on a directed path of C. We let Ccs,d denote the class of such circuits with

circuit size cs and depth d.

Our main result is a construction of a “layered” homomorphic encryption scheme

HOM based on K, which is fully described in Section 3.5. The following theorem

summarizes the functionality and security properties of our scheme. The parameter k

controls the setup error and can be instantiated to any desired value.
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Theorem 3.3. Let q ≤ 2n be a power of two. Assume that the public-key encryption

Kq(n) is (s(n), ε(n))-message indistinguishable for every n (where s(n) and 1/ε(n) are

nondecreasing functions of n). Then HOM is a (s(n0.1)−dk·poly(n), O(dkn1.8ε(n0.1)))-

message indistinguishable homomorphic encryption scheme for Ccs,d with key length at

most O(dkn), encryption length O(kn), encryption error 2−Ω(k), and setup error d ·
2−Ω(k).

3.1.5 Overview of HOM

To begin, in Section 3.2 we show that the operations of pointwise addition and multi-

plication already enjoy certain somewhat homomorphic properties, which are sufficient

to handle one layer of homomorphic multiplications. We formalize these properties us-

ing the new notion of encryption spaces, which may be a convenient conceptual tool

for studying the functionality of homomorphic encryptions. The analysis relies on the

special structure of the matrix M , specifically on the large redundancy of the constraint

system (3.2).

In Section 3.3 we give a formal definition of recryption, a notion crucial in our and

other constructions. We show that somewhat homomorphic operations together with

secure recryption gives secure homomorphic schemes. We apply an idea of Gentry to

obtain a recryption for our public-key scheme K. Unfortunately, owing to the inherent

noise in our encryptions, the recryption substantially increases the length of ciphertexts,

and the resulting homomorphic scheme has a noticeable setup error.

Section 3.4 contains the main technical contributions of our work which address these

deficiencies. We first give a secure length-preserving recryption based on a recursive

application of the length-increasing recryption from Section 3.3 which we use to obtain

homomorphic noise correction. We then give a generic mechanism for reducing the setup

error, which extends von Neumann’s method of building reliable circuits from unreliable

components [vN56] to the homomorphic setting.

Combining these results, we give the construction of HOM and prove Theorem 3.3

in Section 3.5.

3.2 Encryption spaces and somewhat homomorphic oper-

ations

Since homomorphism of encryptions is a functionality rather than a security requirement,

we feel that it is useful to decouple the functionality and security properties of the
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schemes under discussion. For this purpose we introduce the notion of an encryption

space which is concerned with the set-theoretic properties of encryptions and abstracts

away their statistical properties.

Definition 3.4. An encryption space over message set Σ and ciphertext set Ξ is a triple

(Keys,Enc,Dec), where

• Keys is a set of admissible key pairs (PK,SK),

• EncPK(·) is a function that maps messages m ∈ Σ into subsets of valid encyptions

EncPK(m) ⊆ Ξ, and

• DecSK(·) is a function that maps messages m ∈ Σ into mutually disjoint decrypt-

able ciphertexts DecSK(m) ⊆ Ξ.

with the property that EncPK(m) ⊆ DecSK(m) for every (PK,SK) ∈ Keys andm ∈ Σ.

We will say that a public-key encryption scheme (Gen,Enc,Dec) implements the

encryption space (Keys,Enc,Dec) with encryption error δ if (1) The support of the out-

put distribution of Gen is contained in Keys; (2) For every m and PK, Pr[EncPK(m) ∈
EncPK(m)] ≥ 1− δ; and (3) For every SK and c ∈ DecSK(m), DecSK(c) = m.

An encryption space for K Notice that for the functionality of the scheme K, it

only matters what happens to the part of the ciphertext that falls inside the hidden

subset S. Our definition of the encryption space K = (Keys,Enc,Dec) for K will

capture this intuition. However, we will equip K with an additional property which will

be crucial to achieve somewhat homomorphic encryption.

We set Keys to be the support of the key generation algorithm Gen and EncPK(m)

to be the set of all ciphertexts that take value Mx+m1+f , where fi = 0 when i ∈ S and

fi can be arbitrary when i 6∈ S. We define DecSK(m) as the collection of all ciphertexts

c that satisfy yT c = m for some arbitrary but fixed y that solves the following system

of linear equations: ∑
i∈S yi(Mi ⊗Mi) = 0∑

i∈S yiMi = 0∑
i∈S yi = 1

(3.2)

with yi = 0 when i 6∈ S. Here Mi⊗Mi denotes the tensor product of Mi with itself, which

we view as an s2-dimensional vector (after removing the zero entries) whose (j, k)th entry

is ajia
k
i = aj+ki . Notice that the system (3.2) is more constrained than the system (3.1)

as it includes additional equations. These equations will play a crucial role in enabling

homomorphic multiplication.
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Claim 3.5. K is an encryption space over message set Fq.

Proof. To make sense of the definition of K we must first argue that the system (3.2)

has at least one solution y. Here is where the structure of the Reed-Solomon code comes

in handy: Although the system (3.2) has as many as s2 equations, they all repeat the

following set of 2s/3 + 1 equations:∑
i∈S yia

k
i = 0 for k = 1, 2, . . . , 2s/3∑

i∈S yi = 1.

The matrix of this system is an s × (2s/3 + 1) Vandermonde matrix and is therefore

left-invertible, so the system is guaranteed to have a solution.

The disjointness of the setsDecSK(m) is immediate. We now show that EncPK(m) ⊆
DecSK(m) for every m ∈ Fq. Let c be of the form Mx+m1+f and let y be any solution

to (3.2). Since yT f = 0, we have that

yT c = yT (Mx+m1) =
(∑

i∈S
yiMi

)
x+m

(∑
i∈S

yi

)
= m

which proves the claim.

The next fact follows directly from the definitions of K and K.

Fact 3.6. The encryption scheme K implements the encryption space K with encryption

error ηs.

Somewhat homomorphic operations We now define the notion of homomorphic

and somewhat homomorphic operations on ciphertexts, which plays an important role

in homomorphic constructions.

Definition 3.7. Let (Keys,Enc,Dec) be an encryption space with message set Σ and

ciphertext set Ξ. Let ◦ and } be binary operations on Σ and Ξ, respectively.

• We will say } is homomorphic for ◦ if for every (PK,SK) ∈ Keys and m,m′ ∈ Fq,

EncPK(m) } EncPK(m′) ⊆ EncPK(m ◦m′).

• We will say } is somewhat homomorphic for ◦ if for every (PK,SK) ∈ Keys and

m,m′ ∈ Fq,
EncPK(m) } EncPK(m′) ⊆ DecSK(m ◦m′).
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Here, } is extended to an operation on sets in the natural way. The definitions

extend naturally to unary operations. Now let ⊕ and � denote pointwise addition and

pointwise multiplication over Fnq respectively, and let γ· denote multiplication of a vector

in Fnq by the fixed scalar γ.

Claim 3.8. With respect to the encryption space K, ⊕ is homomorphic for addition, γ·
is homomorphic for multiplication by the scalar γ, and � is somewhat homomorphic for

multiplication.

Proof. Let c = Mx+m1 + f and c′ = Mx′ +m′1 + f ′, where fi = f ′i = 0 when i ∈ S.

Then c⊕ c′ = M(x+ x′) + (m+m′)1 + (f + f ′), which is in EncPK(m+m′), proving

homomorphism for additions. Scalar multiplications are similar. For multiplications, let

y be any solution to (3.2) and notice that

yT (c� c′) =
∑n

i=1
yi(Mx+m1 + f)i(Mx′ +m′1 + f ′)i

=
∑

i∈S
yi(Mx+m1)i(Mx′ +m′1)i

=
∑

i∈S
yi(Mi ⊗Mi)

T (x⊗ x′) +m · yTMx′ +m′ · yTMx+mm′ · yT1

= mm′

since by the constraints (3.2) we have
∑

i∈S yi(Mi⊗Mi) = 0, yTM = 0, and yT1 = 1.

Claim 3.8 already enables homomorphic evaluation under K of circuits that have

at most one layer of multiplication gates. To do more, we need a homomorphic way

of turning ciphertexts of the form DecSK(m) into ciphertexts of the form EncPK(m).

While we will not achieve this—at least not under the desired security assumption—in

the following sections we will show how to convert DecSK(m) into EncPK′(m), where

PK ′ is a different public key. We describe this process of recryption in the following

section.

3.3 Recryption

We now define the functionality and security requirements of recryption. We then prove

a composition theorem which shows how to obtain homomorphic encryption from re-

cryption and a basis of somewhat homomorphic operations.

Intuitively, a recryption circuit takes a decryption under keys (PK,SK) and outputs

an encryption under keys (PK ′, SK ′). To do this the circuit will access some auxiliary

information about the secret key SK which will be “hidden” under PK ′. We model
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this auxiliary information by an auxiliary key information function I(SK,PK ′). One

complication that occurs in our instantiations of recryption is that the function I will

be randomized, and we will have to account for the possibility that it produces incorrect

information about the key pair.

Definition 3.9. Let E = (Keys,Enc,Dec) and E′ = (Keys′, Enc′, Dec′) be encryption

spaces over the same message set. A (deterministic) circuit ReEncI(·)(·) is a recryption

from E to E′ with auxiliary key information I and key error κ if for every admissible

pair (PK,SK) ∈ Keys, (PK ′, SK ′) ∈ Keys′,

PrI [ReEncI(SK,PK′)(c) ∈ EncPK′(m) for every message m

and every c ∈ DecSK(m)] ≥ 1− κ

where the outer probability is taken only over the randomness of I.

To define security, let E and E′ be encryption schemes that implement E and E′

respectively. We will say ReEnc is (s → s′, ε → ε′)-secure provided that for every

pair of messages m1 and m2, if (PK,EncPK(m1)) and (PK,EncPK(m2)) are (s, ε) in-

distinguishable, then (PK,PK ′, I(SK,PK ′),EncPK(m1)) and (PK,PK ′, I(SK,PK ′),

EncPK(m2)) are (s′, ε′) indistinguishable.

We now show how to combine somewhat homomorphic operations and recryption

in order to obtain homomorphic encryption. One small complication is that in our

definition of recryption we allow that the two schemes E and E′ are different. This

is an important feature that will help us achieve the definition initially. So when we

apply d levels of recryption, we will work with a chain of public-key encryption schemes

E0, . . . ,Ed.

Let E0, . . . ,Ed be public-key encryption schemes so that Ei implements encryption

space Ei. Assume ReEnci is a recryption from Ei to Ei+1 with auxiliary information

Ii.

Let C be a circuit with binary gates, each of which has a homomorphic or somewhat

homomorphic implementation in all of the spaces Ei. Abusing terminology, we will

call these gates homomorphic and somewhat homomorphic gates, respectively. The

somewhat homomorphic depth of C is the largest number of somewhat homomorphic

gates on any directed path in any circuit in C. Without loss of generality (by adding some

dummy gates), we will assume that the somewhat homomorphic gates in C are layered,

i.e. every path in every circuit has exactly the same number of somewhat homomorphic

gates. Let C◦cs,d be the class of circuits of size cs and somewhat homomorphic depth d.
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Homomorphic template T(E0, . . . ,Ed) for C◦cs,d
Key generation: Generate key pairs (PKi, SKi) uniformly at random for every i.

Generate auxiliary key information Ii(SKi, PKi+1) uniformly at random for every i.

The secret key is (SK0, SKd). The public key is (PK0, . . . , PKd, I0, . . . , Id−1).

Encryption and decryption are the same as in E0 using the key pair (PK0, SK0).

Homomorphic decryption is the same as in Ed using the secret key SKd.

Homomorphic evaluation: Given a layered circuit C, replace every homomorphic

gate + of C by its homomorphic implementation ⊕. At every somewhat homomorphic

layer i, replace the somewhat homomorphic gates · by their somewhat homomorphic im-

plementations � followed by ReEnci. Add recryption gates ReEnc0 to the input level.

Perform the evaluations of the ciphertext, using auxiliary information Ii for ReEnci.

Output the resulting ciphertext.

The following two statements capture the functionality and security properties of

this scheme; we omit the easy proofs.

Proposition 3.10. Suppose ReEnci has key error at most κ. Then T(E0, . . . ,Ed) is

a homomorphic encryption scheme with setup error at most d · κ.

Claim 3.11. Suppose E0 is (s0, ε0)-message indistinguishable and ReEnci is (si →
si+1, εi → εi+1) secure for every i. Then T(E0, . . . ,Ed) is (sd, εd)-message indistin-

guishable.

3.3.1 Constructing recryption

We now give a construction of a recryption from the family of encryptions Kq(n). Let

Kq(n) and Kq(n
′) be two instantiations of K with a different hardness parameter, specif-

ically with n′ > n. To simplify notation we will identify the two encryption schemes

with their corresponding encryption spaces.

Our construction of a recryption from Kq(n) to Kq(n
′) is based on Gentry’s ingenious

idea of homomorphically evaluating the decryption circuit of Kq(n). The decryption cir-

cuit in our scheme is extremely simple as it only uses homomorphic additions. However,

one important complication in our scheme is the possibility of encryption errors. While

for a single encryption the likelihood of an error occurring is small, when we apply the

encryption to all the coordinates of the “secret key” the error becomes substantial. Our

choice of parameters for Kq(·) is essential for controlling the error; it will allow us to
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tolerate a substantial amount of error provided we choose n′ to be large enough in terms

of n.

We now describe the recryption. Let y be the designated solution to the system

(3.2), which specifies the decryption space of Kq(n). Recall that yi = 0 whenever i

is outside the hidden subset S. The auxiliary key information I(SK,PK ′) consists

of the encryptions z1 = EncPK′(y1), . . . , zn = EncPK′(yn), where all encryptions are

performed independently. Each of these encryptions is a vector in Fn′q . The recryption

is given by

ReEncz1,...,zn(c) = c1z1 + · · ·+ cnzn.

Claim 3.12. ReEnc is a recryption from Kq(n) to Kq(n
1+α) with auxiliary information

I and key error n−α(1−α)/2.

Proof. Recall that zi has the form M ′xi+yi1+ ei, where ei is an error vector with error

rate η′. We will say the output of I(PK ′, SK) is good if for all i ∈ [n], all the entries of

ei that fall inside the hidden subset S′ are zero. By a union bound, the probability that

I(PK ′, SK) is not good is at most

η′s′n = n−(1+α)(1−α/4) · n(1+α)(α/4) · n = n−α(1−α)/2.

We now show that if I(PK ′, SK) is good then ReEncI(c) ∈ EncPK′(m) for every

c ∈ DecSK(m). Recall that EncPK′(m) contains those ciphertexts that take value

M ′S′x + m1 inside S′ (for some x) and can take arbitrary value outside S′. Since I is

good, we know that the projection of zi onto S′ has the form M ′S′xi + yi1. Therefore

the projection of ReEncI(c) to S′ has the form∑n

i=1
ci(M

′
S′xi + yi1) = M ′S′x+ (cT y)1 = M ′S′x+m1

where x =
∑
cixi.

The following security claim can be derived by a hybrid argument.

Claim 3.13. If Kq(n
′) is (s, ε′)-message indistinguishable then ReEnc is (s → s −

poly(n), ε→ ε+ nε′)-secure.

Assume Kq(n) is (s, ε(n))-message indistinguishable for every n, where ε(n) is non-

increasing. Instantiating the template T(E0, . . . ,Ed) with the encryption schemes Ei =

Kq(n
(1+α)i), we obtain a family of homomorphic encryption schemes BASIC(n) for cir-

cuits C : Fmq → Fq with addition, scalar multiplication, and binary multiplication gates
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of size cs and multiplication depth d with key length and encryption length O(n(1+α)d)

and setup error dn−α(1−α)/2 that are (s − d · poly(n), O(n(1+α)d−1
ε(n)))-message indis-

tinguishable.

3.4 Optimizing recryption

We now describe two transformations to recryption. The purpose of the first transfor-

mation is to eliminate the blowup in the security parameter in Claim 3.12. The second

one is a generic technique for reducing the key error.

3.4.1 Improving the key length

Let us revisit the homomorphic scheme BASIC from the previous section. For conve-

nience we will introduce a change of parameters. After performing d layers of homomor-

phic multiplication, the length of the ciphertext went from n0 to n = n
(1+α)d

0 . We will

describe a recryption from Kq(n) to Kq(n).

What we would like to do is use the transformation from Claim 3.12, but without

increasing the length n. As we noted, this is difficult to do owing to the large amount of

encryption error that accumulates into the auxiliary key information. Now let us attempt

to reduce the recryption length by moving from Kq(n) to Kq(n0). This appears even less

reasonable, as Kq(n0) has even greater encryption error than Kq(n). But one advantage

of working with Kq(n0) is that the scheme BASIC already allows us to do homomorphic

evaluation over its ciphertexts. Our idea is to apply BASIC to a “correction circuit”

CORR whose purpose is to eliminate the encryption errors introduced when encrypting

the secret key information about Kq(n) using Kq(n0).

To carry out this idea, we have to be somewhat careful about the design of CORR.

Here, the value of the parameter α will play an important role. If CORR is too deep

the security suffers, as it is dictated by n0, while the encryption length is n� n0. For a

careful choice of the parameters, we can ensure that CORR has constant depth, which

will enable us to produce length-preserving recryptions of size n with security parameter

polynomial in n.

We will assume that q is a power of two. Let d be an even constant (we later set it

to 8). Let (PK,SK) and (PK ′, SK ′) be two admissible key pairs for Kq(n).

Recryption. We generate the auxiliary key information as follows. First, sample a

sequence of independent key pairs (PK0, SK0), . . . , (PKd−1, SKd−1), where (PKi, SKi)

comes from Gen(n
(1+α)i

0 ). Let y ∈ Fnq specify the decryption space of Kq(n). The
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auxiliary information is generated as follows. Let γ be a generator for the field extension

Fq over F2.

1. Encrypt: For each coordinate yi of y, expand as yi = yi0+γyi1+. . .+γlog q−1yi log q−1

with yij ∈ {0, 1}. For every i, j, create 2d independent ciphertexts ckij = EncPK0(yij),

where k ranges from 1 to 2d.

2. Correct: For every i, j, calculate zij = Eval(CORR, c1
ij , . . . , c

2d
ij ), where Eval

is the evaluation algorithm for BASIC when the key generation algorithm is

instantiated with the keys (PK0, SK0), . . . , (PKd−1, SKd−1), (PK ′, SK ′), and

CORR : {0, 1}2d → {0, 1} is the circuit described below.

3. Output: Let zi = zi0+γzi1+. . .+γlog q−1zi log q−1. Output the vector I(SK,PK ′) =

(z1, . . . , zn).

As before, the recryption procedure is ReEncz1,...,zn(c) = c1z1 + · · ·+ cnzn.

We now describe the correction circuit. The purpose of this circuit is to eliminate

the errors accumulated in the encryption, which suggests using majority. However we

also need to have fine control over the depth of the circuit. Since the errors of various

encryptions are independent, it is natural to use a recursive majority-type construction

in order to correct the error from one layer to the next. For our analysis, it will be

convenient to make CORR be a full binary tree of depth d where d is even and all the

gates are of the type G(x, y) = 1 − xy. When restricted over {0, 1} inputs, this is a

NAND tree.

Proposition 3.14. For α ≤ 1/4 and d = 8, ReEnc is a recryption from Kq(n) to

Kq(n) with auxiliary key information I and key error O(n−0.5).

Proof. With probability dn−α(1−α)/2 over the choice of keys, we know that the circuit

Eval makes no mistake on its input. Let us assume this is the case.

We will show that with probability 1 − O(n−0.5), zij ∈ EncPK′(yij) for every pair

(i, j). By the homomorphic property of additions and scalar multiplications, it follows

that zi ∈ EncPK′(yi) for all i. The correctness of recryption then follows by the same

argument as in Claim 3.12.

We fix i and j and for notational convenience we write y = yij , z = zij , c
k = ckij . Let

ŷk denote the unique value in Fq such that DecSK0(ck) = ŷk. Since the encryption of

the yijs was performed at error rate η0, it follows that independently for each y, ŷk = y

with probability 1− η0, and otherwise ŷk could be an arbitrary element in Fq.
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Let us start with the special case d = 2. We will argue that the Pr[z 6∈ EncPK′(y)] ≤
6η2

0. This follows from the design of the circuit CORR. If CORR is given four inputs,

three of which have the same value 0 or 1, its output will also have the same value.

Therefore the event z 6∈ EncPK′(y) can only happen if ŷk 6= y for at least two values of

k, which happens with probability at most 6η2
0.

By induction on (even values of) d, it follows that in general the event z 6∈ EncPK′(y)

can happen with probability at most 62d/2−1η2d/2
0 . We now take a union bound over

all pairs i and j and conclude that the recryption is correct with probability at least

n(log q)(6η0)2d/2 .

Now recall that log q ≤ n and n = n
(1+α)d

0 , which gives an error of

n
2(1+α)d

0 (6η0)2d/2 =
62d/2

n
(1−α/4)2d/2−2(1+α)d

0

≤ 62d/2

n
(15/16)·2d/2−2·(5/4)d

0

= O(n−3.07
0 ) = O(n−0.5)

for d = 8 and α ≤ 1/4.

The following claim follows by a standard hybrid argument and we omit the proof.

Claim 3.15. Fix α ≤ 1/4 and d = 8 and assume Kq(n) is (s(n), ε(n))-message in-

distinguishable for every n, where ε(n) is nonincreasing. Then for every ε0, ReEnc is

(s(n)→ s(n0.1)− poly(n), ε0 → ε0 +O(n1.8 · ε(n0.1))-secure.

3.4.2 Reducing the key error

The final optimization we perform concerns the key error of recryption. The key error

of the recryption ReEnc from the previous section cannot be reduced beyond 1/n. In

the homomorphic template in Section 3.3, the setup error increases linearly with the

number of recryptions, so we cannot apply this scheme to circuits of depth larger than

n. We now introduce a generic technique for reducing this error.

Suppose we are given a recryption ReEnc with key error κ ≤ 1/32. If we apply

ReEnc k times in parallel to the same ciphertext but using independent instantiations

of the auxiliary key information, by large deviation bounds we can expect that with

probability 1− 2−Ω(k), a significant majority—say a 15/16 fraction—of the recryptions

will be correct. However, reapplying recryption over and over again will quickly yield

overwhelming error. This calls for a boosting tool of the following kind: Given k ci-

phertexts out of which, say, 15/16 represent the same value, output k ciphertexts out

of which a larger majority, say 31/32, now represent that value. We implement this
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functionality in a circuit that we call Boost. For later convenience we reencrypt the

outputs of Boost.

Definition 3.16. Let E and E′ be two encryption spaces over the same message set and

(PK,SK), (PK ′, SK ′) be a pair of admissible keys from the respective spaces. A booster

of length k from E to E′ with auxiliary key information I(SK,PK ′) and key error κ is a

circuit Boost with the following property. For every message m ∈ {0, 1} and ciphertexts

c1, . . . , ck out of which at least 15k/16 belong to DecSK(m), BoostI(SK,PK′)(c1, . . . , ck)

outputs ciphertexts c′1, . . . , c
′
k out of which at least 31k/32 belong to EncPK′(m).

We emphasize that we only require the definition holds for messages m ∈ {0, 1}, and

not arbitrary messages in Fq. The security definition for boosters is identical to the one

for recryptions.

Our construction of boosters is based on von Neumann’s idea of robust evaluation

of circuits with faulty gates [vN56]. Let G be a bipartite expander graph with k vertices

on each side. The circuit Boost will apply G to its inputs and perform a homomorphic

majority at each output. Computing each of these homomorphic majorities may require

some recryptions. The auxiliary key information in each of these recryptions will be

independent, ensuring that with very high probability few errors will be introduced in

the recryption.

The construction Assume E is an encryption scheme equipped with ⊕, � and re-

cryption ReEnc over ciphertexts of length n. Let G be an (n, b, λ = 1/32) spectral

expander [HLW06] for a sufficiently large constant b, and let APXMAJb : Fbq → Fq be

a circuit of depth that depends only on b (not on q) so that

APXMAJb(x1, . . . , xb) =

0, if at least 7b/8 of the inputs are 0,

1, if at least 7b/8 of the inputs are 1.
(3.3)

In Appendix B we show the existence of such a circuit of size O(b2) and depth b′ =

O(log b).

Auxiliary key information I(SK,PK ′): Repeat the following independently b′ times,

once for every output j of Boost: First, generate a sequence of keys (PKj
1 , SK

j
1), . . . ,

(PKj
b′−1, SK

j
b′−1) and set SK = SKj

0 , PK
′ = PKj

b′ . Output I ′(SKj
i , PK

j
i+1) for every

i and j, where I ′ is the auxiliary key information for ReEnc.

The circuit Boost: Suppose that output j of G is connected to inputs j1, . . . , jb. For

every output j, apply the homomorphic evaluation to the circuit APXMAJb on inputs
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cj1 , . . . , cjb as described in Section 3.3, but using the auxiliary key information with

superscript j, and with an extra round of recryptions at the output.

Proposition 3.17. Assume ReEnc is a recryption whose key error κ is a sufficiently

small absolute constant (independent of n). Then Boost is a booster with key error

2−Ω(k).

Proof. By Proposition 3.10, each of the homomorphic majority circuits has setup error

at most O(κ log b). Since these setup errors are independent, by Chernoff bounds the

chances that more than k/64 is at most 2−Ω(k). Let us assume this is not the case.

Now let B be the set of inputs of G whose value is different from m ∈ {0, 1}. By

assumption, |B| ≤ k/16. Let S be the set of outputs of G that connect to more than b/8

inputs inside B. Then there are at least |S|b/8 edges between S and B. By the expander

mixing lemma, |S|/8k ≤ |S|/16k + λ
√
|S|/16k, from where |S| ≤ 16λ2k ≤ k/64 by our

choice of λ.

It follows that at most k/64+k/64 = k/32 outputs of Boost will decrypt incorrectly

with probability at most 1− 2−Ω(k).

We now state the security of this construction.

Claim 3.18. If ReEnc is (s → s′, ε0 → ε0 + ε)-secure, then Boost is (s → s′ − k ·
poly(n), ε0 → ε0 +O(kε))-secure.

3.5 The scheme HOM

To obtain our scheme HOM, we will apply the homomorphic template of Section 3.3

to k parallel copies of the base scheme Kq(n), using the booster from Section 3.4.2 to

perform recryptions. Let n denote the security parameter.

Let Kk
q (n) denote the following scheme over message set Fq and ciphertext set Fknq .

The key generation algorithm is the same as in Kq(n). To encrypt a message m, we

output k independent encryptions of m in Kq(n). To decrypt a ciphertext c1 . . . ck, we

apply the decryption of Kq(n) on each ci and output the most frequent answer.

Let K = (Keys,Enc,Dec) denote the encryption space for Kq(n) from Section 3.2.

We now define an encryption space Kk = (Keys,Enck, Deck) for Kk
q (n). We let

EnckPK(m) consists of those ciphertexts c1 . . . ck for which ci ∈ EncPK(m) for at least

31k/32 values of i. We let DeckSK(m) consists of those ciphertexts c1 . . . ck for which

ci ∈ DecSK(m) for at least 15k/16 values of i.
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It is easy to see that if K is an encryption space for Kq(n) with encryption error

1/64, then Kk is an encryption space for Kk
q (n) with encryption error 2−Ω(k). The error

follows from a large deviation bound.

It is also easy to see that pointwise addition ⊕ and pointwise multiplication � are

somewhat homomorphic over message set {0, 1} with respect to Kk. Notice that al-

though ⊕ was homomorphic for K, it is merely somewhat homomorphic for Kk, owing

to the possibility of erroneous encryptions in Enck.

Finally, notice that the booster Boost from Section 3.4.2 (instantiated with the

length-preserving recryption ReEnc from Section 3.4.1) is a recryption for Kk. Now

define

HOM = T(Kk
q (n), . . . ,Kk

q (n)) with recryption Boost

where T is the homomorphic template from Section 3.3. The following two claims prove

Theorem 3.3.

Claim 3.19. The scheme HOM is a homomorphic encryption scheme for Ccs,d with

key length O(dkn) and setup error d · 2−Ω(k).

This claim follows directly froms Proposition 3.10 and Proposition 3.17.

Claim 3.20. Assume Kq(n) (with α ≤ 1/4) is (s(n), ε(n))-message indistinguishable,

where s(n) and 1/ε(n) are nondecreasing. Then HOM is (s(n0.1) − dk · poly(n),

O(dkn1.8ε(n0.1)))-message indistinguishable.

This claim follows by combining Claims 3.11, 3.15, and 3.18.

3.6 Known attacks to the scheme

To evaluate a circuit of depth d, our scheme requires keys of size O((d log d)n), where n

is the security parameter. One important tool in our analysis is the length-preserving

recryption circuit from Section 3.4. There we proved that recryption is secure provided

it is used on independent key pairs. It is tempting to instantiate this construction

over the same key pair, in the spirit of “circular security” prevalent in other works on

homomorphic encryption. This would indeed eliminate the dependence on d (and also

obviate the need for reducing the key error).

While we do not know if the suggested circular security assumption is valid or not,

we are uncomfortable conjecturing it for the following reason. In the auxiliary key

30



information, every one of the n elements yi of the “secret key vector” y is encoded by a

ciphertext ci of length n, so that all the ciphertexts decode without error. In view of the

simplicity of our decryptions, we feel that if such a property holds at all, it should be

achievable by direct construction (possibly using other reasonable security assumptions)

rather than the somewhat complex mechanism of Section 3.3. We were not able to come

up with such a direct construction without suffering a security flaw.

It turns out any encryption scheme with such a simple decryption function cannot be

homomorphic at the same time. Brakerski [Bra13] shows if a scheme supports homomor-

phic evaluation of the majority function, then its decryption cannot be weakly-learnable

(e.g. linear). As a consequence, he gives two specific attacks on the schemes HOM and

BASIC to falsify conjecture 3.1.

On the other side, Gauthier, Otmani and Tillich [GOT12] observes that the public

key in the scheme K can be viewed as a modified Reed-Solomon code obtained by

planting a zero submatrix in the Vandermonde generating matrix defining it. The rows

that define this submatrix are kept secret and form a set S. They next look at the

“square code” generated by the pointwise products of codewords of the public key. By

considering the dimension of the subcode obtained by projecting the square code onto a

subset I of the rows, they are able to show that the dimension of the subcode is directly

related to the cardinality of the intersection of I with S. This gives an attack which

recovers the full set S, breaking K completely.

We now present the attacks on BASIC and K in detail. We say an attack completely

breaks a scheme if there exists a randomized adversary that upon receiving the public

key and EncPK(m) for arbitrary value of m, returns m with probability 1−o(1) in time

polynomial in the security parameter.

3.6.1 An attack on BASIC using homomorphism

First we present Brakerski’s attack on the scheme BASIC.

Theorem 3.21. There exists a polynomial time attack that completely breaks BASIC.

Proof. Consider an instantiation of Kq(n) with keys (PK,SK) and an instantiation of

Kq(n
′) with keys (PK ′, SK ′), for n′ = n1+α. Let y (resp. y′) be the designated solution

to the system (3.1), which specifies the decryption space of Kq(n) (resp. Kq(n
′)).

Let H = Hn′:n ∈ Fn′×nq be an n′ × n matrix that represents the auxiliary informa-

tion I(SK,PK ′), that is, the i-th column of Hn′:n is the encryption EncPK′(yi). By

Claim 3.12, with probability at least 1 − n−Ω(1), Hn′:n is good, in which case it holds
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that

y′TH = yT and Hc = ReEncI(SK,PK′)(c)

where c ∈ DecSK(m) for every m. Note that the rank of H is at most n.

The adversary will be given H and the public key PK, and will be able to decrypt

any vector c = EncPK(m) with high probability, namely compute 〈y, c〉.

The attack. As explained above, the input to the adversary is H, PK and challenge

c = EncPK(m). The adversary will execute as follows:

1. Generate k = n1+ε encryptions of 0, denoted v1, . . . , vk, for ε = α(1− α)/4.

2. For all i = 1, . . . , k, compute v′i = Hvi (the recryptions of the ciphertexts above

through H). Also compute o′ = H1 (the recryption of the all-one vector).

3. Find a vector ỹ′ ∈ Fn′q such that 〈ỹ′, v′i〉 = 0 for all i, and 〈ỹ′, o′〉 = 1. Such a

vector necessarily exists if all vi’s are in DecSK(0), since y′ is an example of such

a vector.

4. Given a challenge ciphertext c, compute c′ = Hc and output m = 〈ỹ′, c′〉 (namely,

m = ỹ′Hc).

Correctness. To analyze the correctness of the attack, we first notice that the space

DecSK(0) is linear (this is exactly the orthogonal space to y). Note that DecSK(m) =

DecSK(0) +m1. We recall that the space EncPK(m) ⊆ DecSK(m) for every m ∈ Σ.

By the definition of recryption, the space EncPK′(0) contains all vectors of the form

Hz such that z ∈ DecSK(0). This is a linear space with dimension at most n.

Consider the challenge ciphertext c = EncPK(m). We can think of c as an encryption

of 0 with an added term m1. We therefore denote c = c0 + m1. Again this yields a c′0
such that c′ = c′0 +mo′.

Now consider the distribution D over EncPK(0), which is the distribution of en-

cryptions of 0 (i.e. the distribution c = EncPK(0), conditioned on 〈y, c〉 = 0). The

distribution D′ is defined by projecting D through H. With probability 1 − n−Ω(1), it

holds that v′1, . . . , v
′
k and c′0 are uniform samples from D′.

It follows from Lemma 3.22 below that c′0 ∈ span{v′1, . . . , v′k} with probability 1 −
n−Ω(1). In such case

〈ỹ′, c′〉 = 〈ỹ′, c′0〉+m〈ỹ′, o′〉 = m.
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We conclude that with probability 1 − n−Ω(1), the adversary correctly decrypts c as

required.

Lemma 3.22. Let D be a distribution over a linear space S of dimension s. For all k,

define

δk = Prv1,...,vk∼S [vk 6∈ span{v1, . . . , vk−1}].

Then δk ≤ s/k.

Proof. Notice that by symmetry δi ≥ δi+1 for all i. Let Di be a random variable that

denotes the dimension of span{v1, . . . , vi}. Note that always Di ≤ s.
Let Ii be the indicator variable denote the event vi 6∈ span{v1, . . . , vi−1}, note that

δi = Pr[Ii]. By definition,

Dk =

k∑
i=1

Ii.

Therefore

s ≥ E[Dk] =
k∑
i=1

Pr[Ii] =
k∑
i=1

δi ≥ kδk,

and the lemma follows.

3.6.2 A structural attack on K

We now present the attack by Gauthier et al. First notice the public key matrix P

defined in (3.1) can be viewed as the generating matrix of the linear code

C = span{Pi | 1 ≤ i ≤ n},

where Pi is the i-th column of P . Define the square code C2 of C to be

C2 = span{Pi � Pj | 1 ≤ i, j ≤ n},

where � denotes the pointwise multplication over Fnq . Note that since P = MR and R

is invertible, we also have

C2 = span{Mi �Mj | 1 ≤ i, j ≤ n}.

We also define C2
I to be the square code of the subcode CI that is obtained by projecting

C onto the coordinates restricted to I. The key observation of the attack is that when I

does not intersect S, the dimension of C2
I is exactly 2r, while in the case I intersects S,
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the dimension of C2
I increases by roughly |I ∩ S|. More precisely, we have the following

proposition.

Proposition 3.23. Let I ⊆ [n] and set J = I ∩S. Suppose |J | ≤ s/3−1 and |I|− |J | ≥
2r. Then

dim(C2
I ) = 2r − 1 + |J |.

Using this proposition, we can construct the following randomized distinguisher to

recover S in polynomial time: Sample a random subset I of size 3r, with probability

1− n−Ω(1) the conditions on |I| and |J | in the proposition are satisfied. For each i ∈ I,

consider I ′ = I − {i}. If dim(C2
I′) < dim(C2

I ), we conclude i ∈ S, otherwise i 6∈ S. To

determine whether a position i′ 6∈ I belongs to S, we can exchange an element in I with

i′ and compare the dimensions of two subcodes.

The proposition follows from the next two lemmas, which give a basis for C2
I that is

of size 2r − 1 + |J |.
For each i ∈ I, define bi = 0 if i ∈ J and bi = ai otherwise. For each t ∈ [r], let at and

bt be two vectors in FIq defined by (at)i = ati and (bt)i = bti for every i ∈ I, respectively.

Lemma 3.24. If t is an integer that satisfies s/3 + |J | + 2 ≤ t ≤ 2s/3, then at ∈
span{as/3+2, . . . , at−1, bs/3+2, . . . , bt}.

Proof. Let p be a polynomial over Fq defined by

p(x) = xt−|J |
∏
i∈J

(x− ai) =

t∑
u=t−|J |

cux
u,

where each cu is some element in Fq. By assumption, p has degree at most 2s/3.

For each i ∈ J , we have p(ai) = 0 by construction and p(bi) = 0 because bi = 0. So

p(ai) = p(bi) for every i ∈ J . For each i 6∈ J , we also have p(ai) = p(bi) because ai = bi.

Therefore for every i ∈ I, we have

t∑
u=t−|J |

cua
u
i =

t∑
u=t−|J |

cub
u
i .

Since ct = 1, at can be written as

at =

t∑
u=t−|J |

cub
u −

t−1∑
u=t−|J |

cua
u,
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Lemma 3.24 implies {a2, . . . , as/3+|J |+1, bs/3+2, . . . b2r} is a generating set of C2
I , the

next lemma shows that it is linearly independent.

Lemma 3.25. Suppose |J | ≤ s/3− 1 and |I| − |J | ≥ 2r. Then

B = {a2, . . . , as/3+|J |+1, bs/3+2, . . . b2r}

is a basis for C2
I .

Proof. It remains to show that B is linear independent. Suppose

s/3+|J |+1∑
t=2

αta
t +

2r∑
t=s/3+2

βtb
t = 0

By setting αt = 0 for s/3 + |J |+ 2 ≤ t ≤ 2r and βt = 0 for 2 ≤ t ≤ s/3 + 1, we have

2r∑
t=2

(αta
t + βtb

t) = 0.

Let p(x) =
∑2r

t=2(αt + βt)x
t be a degree 2r polynomial. Since ati = bti for i 6∈ J and

|I| − |J | ≥ 2r, we have p ≡ 0 and so αt = −βt for every t. Therefore, αti = βti = 0 for

2 ≤ t ≤ s/3 + 1 and s/3 + |J |+ 2 ≤ t ≤ 2r.

In the case of s/3 + 2 ≤ t ≤ s/3 + |J |+ 1, we have bti = 0 for i ∈ J . Hence for i ∈ J
we have

s/3+|J |+1∑
t=s/3+2

αta
t
i = 0.

Let q(x) =
∑s/3+|J |+1

t=s/3+2 αtx
t = xs/3+2r(x), where r(x) =

∑s/3+|J |+1
t=s/3+2 αtx

t−s/3−2 is a

degree |J | − 1 polynomial. Since q(ai) = 0 and ai 6= 0 for every i ∈ J , we have r ≡ 0

and so ati = 0 for s/3 + 2 ≤ t ≤ s/3 + |J |+ 1. Therefore we have αt = βt = 0 for every

t.
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Chapter 4

On the depth complexity of

homomorphic encryption schemes

In this chapter we give concrete complexity-theoretic evidence that encryption schemes

that support homomorphic evaluation of essentially any non-trivial functionality are

more complex than ordinary encryption schemes. Our main result (Theorem 4.2) shows

that homomorphic evaluation of any non-trivial functionality (for example the AND

function) that depends on sufficiently many inputs cannot be implemented by circuits

of constant depth and subexponential size with respect to any CPA secure encryption

scheme. In Section 4.3 we review some proposals of CPA secure private key encryp-

tion schemes of quasipolynomial security that can be implemented in this model. In

the public key setting, we observe that the cryptosystem of Applebaum, Barak, and

Wigderson [ABW10] can be implemented in constant depth.

Thus constant-depth circuits provide sufficient computational power for implement-

ing both private and public-key encryption schemes (under previously studied assump-

tions), but not variants of such schemes that support homomorphic evaluation of any

non-trivial functionality.

4.1 Definitions

Let us recall the definitions of homomorphic evaluation in Chapter 2. For simplicity,

we assume the ciphertext set is over {0, 1}n and state everything in the non-uniform

setting.

Definition 4.1. Let (Gen,Enc,Dec) be a private-key encryption scheme over message

set Σ with ciphertexts in {0, 1}n. We say a circuit H is a homomorphic evaluator of
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f : Σk → Σ with error δ if (1) the output length of H is bounded by a function that

depends only on the security parameter and (2) for all m1, . . . ,mk ∈ Σ,

Pr[DecSK(H(EncSK(m1, R1), . . . ,EncSK(mk, Rk))) = f(m1, . . . ,mk)] ≥ 1− δ,

where SK ∼ Gen is a uniformly chosen secret key and R1, . . . , Rk are independent

random seeds.

In the public-key setting, we are given an encryption scheme (Gen,Enc,Dec) and

require that

Pr[DecSK(H(PK,EncPK(m1, R1), . . . ,EncPK(mk, Rk))) = f(m1, . . . ,mk)] ≥ 1− δ.

where (PK,SK) ∼ Gen is a random key pair.

Our negative result will only apply to functions whose number of relevant inputs

k is sufficiently large in terms of n. Beyond this requirement, we do not make any

assumption on f .

The requirement we make on the encryption scheme is CPA message indistinguisha-

bility. A private-key encryption scheme is (s, d, ε) CPA message indistinguishable if for

every pair of messages m,m′ ∈ Σ and every distinguishing oracle circuit D? of size s

and depth d,

|PrSK,R[DEnc(SK,·)(EncSK(m,R)) = 1]− PrSK,R[DEnc(SK,·)(EncSK(m′, R)) = 1]| ≤ ε.

In the public key setting CPA security follows from ordinary message indistinguishabil-

ity:

|PrPK,R[D(PK,EncPK(m,R)) = 1]− PrPK,R[D(PK,EncPK(m′, R)) = 1]| ≤ ε.

4.2 Homomorphic evaluation requires depth

Theorem 4.2. Suppose (Gen,Enc,Dec) is an (2s+ k +O(1), d+ 1, 1/6(k + 1)) CPA

message indistinguishable private-key (resp. public-key) encryption scheme. Let H be a

homomorphic evaluator of size s and depth d with error at most 1/3 for some f : Σk → Σ

that depends on all of its inputs with respect to this scheme. Then s > 2Ω((k/6n)1/(d−1)).

For notational simplicity, we present the proof for the private key variant. Since f

depends on all its inputs, for every i ∈ [k] there is a pair of messages m and m′ that
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differ only in coordinate i such that f(m) 6= f(m′). Now suppose H is a homomorphic

evaluator for f with error 1/3. Then

Pr[Dec(H(Enc(m1, R1), . . . ,Enc(mi, Ri), . . . ,Enc(mk, Rk))) 6= f(m)] ≤ 1/3 and

Pr[Dec(H(Enc(m1, R1), . . . ,Enc(m′i, R
′
i), . . . ,Enc(mk, Rk))) 6= f(m′)] ≤ 1/3,

where the probability is taken over the choice of secret key SK (which we omit to

simplify notation) and the randomness R1, . . . , Ri, R
′
i, . . . , Rk used in the encryption.

Since f(m) 6= f(m′), it follows that

Pr[Dec(H(Enc(m1, R1), . . . ,Enc(mi, Ri), . . . ,Enc(mk, Rk)))

6= Dec(H(Enc(m1, R1), . . . ,Enc(m′i, R
′
i), . . . ,Enc(mk, Rk)))] ≥ 1/3.

Therefore it must be that

Pr[H(Enc(m1, R1), . . . ,Enc(mi, Ri), . . . ,Enc(mk, Rk))

6= H(Enc(m1, R1), . . . ,Enc(m′i, R
′
i), . . . ,Enc(mk, Rk))] ≥ 1/3.

By CPA message indistinguishability and a hybrid argument, we can replacem1, . . . ,mi,m
′
i, . . . ,mk

by 0 to obtain

Pr[H(Enc(0, R1), . . . ,Enc(0, Ri), . . . ,Enc(0, Rk))

6= H(Enc(0, R1), . . . ,Enc(0, R′i), . . . ,Enc(0, Rk))] ≥ 1/6. (4.1)

Lemma 4.3. Let D1, . . . , Dk be any distributions over {0, 1}n. Let g : ({0, 1}n)k →
{0, 1} be a circuit of size s and depth d where s ≤ 2(εk)1/(d−1)/K for some absolute

constant K. Then

Pr[g(X1, . . . , Xi, . . . , Xk) 6= g(X1, . . . , X
′
i, . . . , Xk)] < ε

where the randomness is taken over the choice of i ∼ [k] and independent samples

X1 ∼ D1, . . . , Xi, X
′
i ∼ Di, . . . , Xk ∼ Dk.

We apply this Lemma with Di equal to the distribution of encryptions of 0 and

ε = 1/6n to each of the n outputs of H and take a union bound to conclude that (4.1)

is violated unless s > 2Ω((k/6n)1/(d−1)).

Proof of Lemma 4.3. Fix any pair Z,Z ′ ∈ ({0, 1}n)k. For any w ∈ {0, 1}k, let Zw ∈
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({0, 1}n)k be the string such that

the i-th block of Zw =

the i-th block of Z, if wi = 0

the i-th block of Z ′, if wi = 1.

Let hZ,Z′(w) = g(Zw). Then h is of size at most s and depth at most d. By Bop-

pana [Bop97], for every Z and Z ′ we have

PrW,i[hZ,Z′(W ) 6= hZ,Z′(W + ei)] ≤ (K log s)d−1/k

for some constant K. Therefore for Z,Z ′ sampled independently from D1× · · ·×Dk we

have

Pr[g(X1, . . . , Xi, . . . , Xk) 6= g(X1, . . . , X
′
i, . . . , Xk)] = EZ,Z′ [PrW,i[hZ,Z′(W ) 6= hZ,Z′(W + ei)]]

= EZ,Z′ [(K log s)d−1/k]

= (K log s)d−1/k.

It follows that if this probability is at most ε, then s ≤ 2(εk)1/(d−1)/K .

A similar lemma was proved by Blais, O’Donnell, and Wimmer [BOW10] for noise

sensitivity of boolean functions. Here we adapted their argument to influence.

4.3 On CPA secure encryption schemes in AC0

In this section we review the depth complexity of some studied candidate CPA secure

encryption schemes. To begin with, we observe that asymptotically superpolynomial

security cannot be achieved by NC0 decryption circuits: If every output of the decryp-

tion circuit depends on at most d bits of the ciphertext, then for any message m the

decryption circuit on the distribution of encryptions of m can be PAC-learned in time

Od(n
d), violating CPA security.

Kharitonov [Kha93] implicitly shows the existence of a “weakly pseudorandom” func-

tion family in AC0 that is 2poly logn hard to predict on a uniformly random input even

from membership queries (assuming Blum integers are sufficiently hard to factor). This

function family can be used to obtain a CPA secure symmetric key encryption scheme

whose encryption and decryption algorithms are in AC0. However, we do not know if key

generation (which involves generating random Blum integers of magnitude 2poly logn) can

be performed in AC0. Gilbert et al. [GRS08] give a probabilistic CPA secure symmetric

40



key encryption scheme whose security can be reduced to the hardness of the Learning

Parity with Noise (LPN) problem. The current best known algorithms for the LPN

problem over {0, 1}m all run in time 2Θ(m/ logm). Assuming this is optimal, by setting

m = (log n)d one can implement all components of this scheme using circuits of size

poly(n) and depth d+O(1), and the scheme has security 2Θ((logn)d/ log logn).

We are not aware of any implementation of a public key encryption scheme with

all but negligible security all of whose components are in AC0. Here we show that the

cryptosystem proposed by Applebaum, Barak and Wigderson [ABW10] can be imple-

mented using circuits of polynomial size and constant depth in the security parameter.

The variant of the cryptosystem we discuss is conjectured to have security nΩ(logn).1

First we review the key generation, encryption and decryption in the ABW encryp-

tion scheme. One can refer to [ABW10] for further details. Then we show how to

implement each operation in constant depth.

The public key is a random bipartite graph G = ((U, V ), E), where |U | = n and

|V | = r = n0.9, generated in the following way. First choose a random subset S ⊆ U and

T ⊆ V of size s and s/3 respectively, where s = O(log n). Each vertex in S is connected

to d (possibly repeated) random vertices in T and each vertex outside S is connected to

d random vertices in V . The secret key SK is an odd size subset of S such that each

vertex in T has an even number of neighbors in SK.

To encrypt a message m ∈ {0, 1}, choose a random subset T ′ of V and output

y + e + m1, where each coordinate of y ∈ {0, 1}n is the degree of the corresponding

vertex in U restricted to T ′ mod2, e ∈ {0, 1}n is a vector with each coordinate sampled

from a distribution η̂ with Pr[η̂ = 0] = η independently, and 1 ∈ {0, 1}n is the all ones

vector.

To decrypt a ciphertext c ∈ {0, 1}n, output
∑

i∈SK ci. Now we give an AC0 imple-

mentation of the cryptosystem.

Implementation of the ABW cryptosystem in AC0

Key Generation: Sample

1. y1, y2, . . . , ys from [n] and w1, w2, . . . , ws/3 from [r] to represent the subsets S ⊆ U
and T ⊆ V , respectively;

2. vi,1, . . . , vi,d from [r] for every i from 1 to n. These are the random neighbors of

each vertex i in U \ S;

1Owing to the existence of a quasipolynomial time algorithm for learning from random exam-
ples [LMN93], if ciphertexts are computationally indistinguishable from the uniform distribution, any
AC0 decryption algorithm can be broken in time 2poly logn.
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3. v̂i,1, . . . , v̂i,d from [s/3] for every i from 1 to s. These become the random neighbors

of the vertices in S after being mapped to the wi’s by the index function ι : [s/3]→
[r] such that ι(i) = wi. This function can be written as

ι(i) =
∨s/3

j=1
[(i = j) ∧ wj ].

The key generation circuit outputs vi,1, . . . vi,d if the vertex i is not in S, and outputs

ι(v̂i,1), ι(v̂i,2), . . . , ι(v̂i,d) otherwise. Now we can output the jth random neighbor of each

vertex i ∈ U by [
δi ∧

∨s

k=1
[(i = yk) ∧ ι(v̂k,j)]

]
∨ (δi ∧ vi,j),

where δi :=
∨s
k=1(i = yk) indicates whether i belongs to S.

To come up with the secret key SK, we enumerate all the possible subsets of S

(recall that s = O(log n)) and output the first one that satisfies the linear dependency.

Given an odd size subset of S indicated by the support of the vector a ∈ {0, 1}s. It is

not difficult to see that the formula

fa =

s/3∨
j=1

⊕
i:ai=1

d⊕
k=1

(v̂i,k = j)

outputs 0 if every vertex in T has an even number of neighbors in the support of a

and outputs 1 otherwise. (Since the XOR involves only O(d log n) inputs, it can be

implemented in depth two and size nO(d).) Thus we can enumerate all the possible

a ∈ {0, 1}s of odd hamming weight and output the first subset a with fa = 0. The

secret key is represented by a vector z containing s entries in [n], where each nonzero

entry corresponds to a vertex in SK. More precisely, we output the ith entry as

zi = ι

(∨
a∈{0,1}s:wt(a) is odd

[
fa ∧

(∧
b<a

fb

)
∧ (ai ∧ i)

])
.

Encryption: Given a public key represented by the neighbors vi,1, . . . , vi,d of each vertex

i in U . To encrypt a message m ∈ {0, 1}, choose a random vector x in {0, 1}r whose

support forms the subset T ′ of V , a noise vector e ∈ {0, 1}n by choosing each of its

entries independently from η̂. The ith bit of the encryption can be written as

ci =
∨

ki 6=kj ,1≤i<j≤d,ki∈[r]
a1,...,ad: a1+···+ad=1

[
∧d

j=1
(vi,j = kj) ∧ (xk1 = a1) ∧ · · · ∧ (xkd = ad)]⊕ ei ⊕m.
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Decryption: Given a ciphertext c and the secret key SK represented by the vector

z ∈ {0, 1}s×logn, output

s⊕
i=1

n∨
k=1

[(zi = k) ∧ ck].

Reducing the encryption error The ABW cryptosystem (as well as the LPN-based

system of Gilbert et al.) has noticeable encryption error. The encryption error can be

made negligible by encrypting the message independently multiple times. While some

of the multiple encryptions may be erroneous, with all but negligible probability at

least 2/3 of them will be correct. The errors can be corrected by taking approximate

majority at the decryption stage, which can be implemented using circuits of depth

3 [Ajt96], thereby preserving the constant depth complexity of the implementation.
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Chapter 5

Limits of provable security for

homomorphic encryption

A promise problem Π = (ΠY ,ΠN ) has an interactive proof if there is a randomized

polynomial-time verifier V that on input x, can exchange at most poly(|x|) messages with

any computational unbounded prover P such that it satisfies the following conditions:

1. If x ∈ ΠY , there exists an honest prover P that makes V accept with probability

at least 2/3.

2. If x ∈ ΠN , for any prover P , V accepts with probability at most 1/3.

We say Π is in AM, if the verifier reveals the randomness used in its computation and

exchanges only constant number of messages with the prover .

In this chapter, our main theorem (Theorem 5.4) shows that any public key en-

cryption scheme that supports efficient weak homomorphic evaluation of any sufficiently

“sensitive” collection of functions cannot be proved message indistinguishable beyond

AM ∩ coAM, even under adaptive reductions. Examples of such functions are parities,

majorities, and the collection of all AND and OR functions.

Examples of encryption schemes that our result applies to include El Gamal encryp-

tion [Gam85], Paillier encryption [Pai99], as well as the more recent somewhat and fully

homomorphic encryption schemes of Gentry [Gen09b], Van Dijk et al. [vDGHV10], and

Brakerski and Vaikuntanathan [BV11] (which build upon the lattice-based cryptosys-

tems of Regev [Reg09] and Peikert [Pei09]).

In Theorem 5.5 we show that if the reduction has constant query complexity, then

message indistinguishability cannot be proved beyond statistical zero knowledge (SZK)1,

1For a formal definition of SZK, we refer the readers to [Gol08].
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which is a subclass of AM ∩ coAM.

The reductions we consider are randomized and meet the following definition: Given

an input, the reduction makes arbitrary (adaptive) queries to a distinguishing oracle for

bit encryptions. We require that for any (not necessarily efficient) distinguishing oracle,

which may depend on the input to the reduction, the reduction outputs the correct

answer. We do not know of any cryptographic reductions that treat the adversary as a

black box which fall outside our definition.

Lemma 5.8, which is used in the proofs of Theorems 5.4 and 5.5, gives a way to

obtain rerandomization of ciphertexts from any homomorphic evaluator for the func-

tion of interest. While rerandomization has been used in constructions of homomorphic

evaluators [Gen09b, vDGHV10], it is not a priori clear that it is necessary for homomor-

phic evaluation. Homomorphic evaluation may be implemented deterministically while

rerandomization requires randomness.

The statistical error of the rerandomization in Lemma 5.8 is noticeable. While this is

sufficient for our main application, a negligible error would be desirable for most appli-

cations of rerandomization in cryptography. In Theorem 5.6 we show a transformation

of a strong homomorphic evaluator for almost any function into a rerandomization that

preserves negligible statistical error. Essentially the only exceptions to which our result

does not apply are that AND, OR, and NOT functions.

5.1 Overview of the proof

From homomorphic evaluation to rerandomization (Section 5.4) To begin

with let’s assume that we have a strong (i.e., distribution-preserving) homomorphic

evaluator H for the majority function majn on n inputs. This is an algorithm that

takes as inputs independent encryptions of x1, . . . , xn and outputs a ciphertext which

is statistically close to an encryption of majn(x1, . . . , xn). We show that H can be

used to obtain an approximate rerandomization Rer: This is a procedure that takes

an encryption as its input and produces an independent and identically distributed

encryption as its output. Our rerandomization will be approximate in the sense that

the input and output of Rer will be only statistically close to independent.

One way to obtain rerandomization is as follows: Given a ciphertext C, generate

(n − 1)/2 independent encryptions of 0, (n − 1)/2 independent encryptions of 1, ran-

domly shuffle them together with C and feed the n resulting ciphertexts to the homo-

morphic evaluator for majority. By the strong homomorphic property, the output of the

homomorphic evaluator will be identically distributed with C. But why should they be
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independent? From the point of view of the homomorphic evaluator, if C is an encryp-

tion of b, then it is indistinguishable from the other (n−1)/2 encryptions of b. Since the

output of the homomorphic evaluator is bounded in length, the evaluator must “forget”

most of the information about most of the ciphertexts it is given as inputs, including C

as it is indistinguishable from the others. Therefore the output is forced to look almost

statistically independent of C.

In Lemma 5.8 we generalize this argument to a much wider class of functions which

we call sensitive (see Section 5.2) and to weak (i.e., compact) homomorphic evaluators,

in which case we obtain a weaker notion of rerandomization.

A strong rerandomization procedure can be used to distinguish encryptions in statis-

tical zero-knowledge by reduction to the ”statistical distance” problem: A rerandomized

encryption of 0 is statistically close to an encryption of 0, but statistically far from an

encryption of 1. Mahmoody and Xiao’s simulation of BPPSZK in AM [MX10] can then

be used to emulate the reduction by a proof system. When only weak one-sided reran-

domization is available, it is not clear that encryptions are distinguishable in statistical

zero-knowledge, and we construct a somewhat different proof system. For the sake of

clarity, however, in the rest of this discussion we will assume the availability of strong

rerandomization.

From rerandomization to a distinguishing protocol (Section 5.5) To turn a

reduction from distinguishing encryptions to L into a proof system for L, we proceed as

in previous works: The verifier plays the role of the reduction and the prover plays the

role of the distinguishing oracle. The challenge is to force the prover to give answers

that are consistent with a specific, fixed distinguishing oracle.

To illustrate the difficulties in the context of public key encryption, let us point

out the deficiencies of some naive proof systems. Suppose the verifier submits a public

key-ciphertext query (PK,C) to the prover, who is supposed to act as a distinguishing

oracle. A natural attempt is to ask the prover to provide the message m and randomness

R such that C is an encryption of m under public key PK with randomness R. This

fails to account for the possibility that C may not be a valid ciphertext at all: Perhaps

there is no pair (m,R) that encrypts to C under PK. It is not clear how a prover can

certify such a statement. Another attempt would be to ask the prover for the secret

key SK associated to PK. Again, it is not clear how to achieve completeness in case

the public key is invalid and there is no corresponding secret key, or soundness in case

the public key can be paired with several different secret keys (the choice of which may

affect how different invalid ciphertexts decrypt).
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Our protocol works as follows: Given a query (PK,C), the verifier asks the prover

for the value b that encrypts to C, together with a proof that the rerandomization

of C is statistically close to encryptions of b but statistically far from encryptions of

b. If the pair (PK,C) is properly distributed, this forces the prover to give a unique

correct answer. But since statistical closeness and statistical farness are both efficiently

verifiable [BBM11, SV03], the prover can now also certify that a pair (PK,C) is not a

valid public key-ciphertext pair. We call this protocol DP (the distinguishing protocol).

One important detail is that the protocols for statistical closeness and statistical

farness are only guaranteed to solve promise versions of these problems: For a given gap

[`, r), they can distinguish distributions that are within statistical distance ` from those

that are at distance at least r, but give no guarantee about the outcome for instances

that fall inside the gap. Therefore DP is only complete and sound provided that none

of the underlying instances fall inside the respective gaps.

The proof system (Section 5.7) Given a reduction R from a decision problem L

to distinguishing encryptions, this suggests the following constant-round proof system

for L: On a given input, the verifier chooses randomness for the reduction and sends

this randomness to the prover. The prover sends back a transcript of the reduction

interacting with a distinguishing oracle, which includes a list of queries (PKi, Ci) made

by the reduction together with an answer ai saying if Ci encrypts 0 or 1 under PKi, or

the pair (PKi, Ci) is invalid (⊥). The verifier and prover then apply the DP protocol

to certify that all the answers ai are correct.

This proof system is complete and sound, provided that all the inputs (PKi, Ci, ai)

to the DP protocol satisfy its promise. But in general the verifier does not know in

advance if the promise is satisfied or not. We resolve this issue by choosing the width of

the gaps [`, r) to be sufficiently small and by having the verifier randomize the location

of the gaps. This should make it unlikely for any of the queries to fall inside the promise

gap of DP .

This approach was also used by Bogdanov and Trevisan [BT06] in the context of

non-adaptive reductions. An additional twist is required when the reduction is adaptive

because the location of the gaps may affect the answers of the honest prover. For

example, imagine an adaptive reduction that does a “binary search” for the gap [`, r):

If the first answer a is to the right of r, its next query will be a/2, and so on until

it hits the gap. To handle such reductions, we want to make the location of the gaps

in each round independent of the answers of the honest prover in the previous rounds.

On the other hand, the locations of these gaps must be consistent with a specific, fixed
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distinguishing oracle that the prover is required to emulate.

To achieve both objectives we specify a randomized family of distinguishing oracles,

where for each query to the oracle the gap location is random, and the gap locations

among the various queries are q-wise independent, where q is an upper bound on the

number of queries performed by the reduction. In the first round of the reduction the

verifier chooses a random oracle from this family and sends its (polynomial length)

description to the prover. The honest prover is then expected to give answers that are

consistent with this instantiation of the distinguishing oracle. By independence, the

probability that any of the queries made by the honest prover falls inside the gap will

be small. In Section 5.6.1 we develop the relevant complexity-theoretic framework and

we prove Theorem 5.4 in Section 5.7.1.

To prevent any of the queries from falling into the gaps [`, r), the size of the gaps

needs to be inverse proportional to the number of queries made by the reduction. Unless

the reduction makes a bounded number of queries, this requires protocols for statistical

closeness and statistical farness where the verifier runs in time inverse polynomial to

the size of the gap and the gap can be at an arbitrary location. Such protocols were

developed by Bhatnagar, Bogdanov, and Mossel [BBM11]2 and we use them in the proof

of Theorem 5.4.3

For reductions that make a constant number of queries, it is sufficient to have statis-

tical closeness/farness protocols over a constant number of disjoint gaps [`, r). Sahai and

Vadhan [SV03] give implementations of such protocols in SZK. Using their protocols

and the closure properties of SZK which we recall in Section 5.6.2, we prove Theorem 5.5

in Section 5.7.2.

Better rerandomization from strong homomorphic evaluation The rerandom-

ization procedure we described above comes with a non-negligible statistical error. It

is not difficult to construct examples showing that this error is inherent, even if the

homomorphic evaluation is perfect, i.e. it induces no statistical error. In Section 5.8

we show that the statistical error can be reduced exponentially by iteratively apply-

ing the rerandomization on its output, provided f is not “exceptional”. This proves

Theorem 5.6.

2Technically their statement is not as strong as the one we need here, but their proof can be easily
adapted. We provide the details in Appendix C.

3Similar issues arise in the work of Mahmoody and Xiao [MX10]. They work with the SZK-complete
problem entropy difference. While their proof can be adapted to our setting, we find it more natural to
work directly with instances of statistical difference.
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5.2 Definitions

In this section we give definitions of homomorphic evaluation and rerandomization. We

will use two notions of homomorphic evaluation. Recall in Chapter 2 we give a fairly

weak definition of homomomorphic evaluation. This corresponds to weak (or compact)

homomorphic evaluation in this chapter. In this section we give the corresponding strong

notions. For the sake of clarify, we give the definition together with the weak one.

Homomorphic evaluation and rerandomization Let (Gen,Enc,Dec) be a bit

encryption scheme. Fix a security parameter s and let (PK,SK) ∼ Gen(1s) the dis-

tribution on key pairs. (We will assume that s is implicit in the public and secret

keys.)

Definition 5.1. Let f : {0, 1}n → {0, 1} be a boolean function. We say H is a strong

homomorphic evaluator for f with error ε if for all m in the domain of f , the random

variables

(PK,HPK(EncPK(m1), . . . ,EncPK(mn))) and (PK,EncPK(f(m)))

(where all encryptions are independent) are within statistical distance ε.

This definition extends to functions from {0, 1}∗ → {0, 1} in a straightforward way.

We omit the details.

Definition 5.2. Let f : {0, 1}∗ → {0, 1} be a boolean function. We say H is a weak

homomorphic evaluator for f with error ε if (1) the output length of H is bounded by a

function that depends only on the security parameter and (2) for all n and m ∈ {0, 1}n

in the domain of f ,

Pr[DecSK(PK,HPK(EncPK(m1), . . . ,EncPK(mn))) = f(m)] ≥ 1− ε,

where all encryptions are independent.4

A bit encryption scheme is efficient if Gen,Enc,Dec all run in time polynomial in

the security parameter s. A homomorphic evaluator H is efficient if it is computable in

time polynomial in s and n and its output length is polynomially bounded in s.

4Some works adopt the terms “distribution preserving” and ”compact” homomorphic evaluation.
We prefer the terms “strong” and “weak” for this chapter, as we are concerned with questions of
computational complexity.
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Definition 5.3. Let Rer be a randomized function that takes as input a public key

and a ciphertext. In the following definitions R and R′ are independent choices of

randomness for Rer.

• We say Rer is a strong rerandomization with error ε if for every m ∈ {0, 1}, the

random variables

(PK,E,RerPK(E,R)) and (PK,E,E′)

where E,E′ ∼ EncPK(m) are independent are within statistical distance ε.

• For b ∈ {0, 1}, we say Rerb is a one-sided weak rerandomization with decryption

error ε and rerandomization error ρ if for every m ∈ {0, 1},

Pr[DecSK(RerbPK(EncPK(m))) = m] ≥ 1− ε

and the random variables

(PK,RerbPK(E,R),RerbPK(E,R′)) and (PK,RerbPK(E,R),RerbPK(E′, R′))

where E,E′ ∼ EncPK(b) are independent are within statistical distance ρ.

We say the rerandomization is efficient if it can be evaluated in time polynomial in

the security parameter.

Sensitivity of boolean functions We will use the following notion of sensitivity for

boolean functions. For x ∈ {0, 1}k let x|i be the string obtained by flipping the i-th bit

of x and leaving the others unchanged. Let f : {0, 1}k → {0, 1} be a boolean function

and b ∈ {0, 1}. We say f has b-sensitivity at least s if there exists an input x ∈ {0, 1}k

and a set S ⊆ [k] of size s such that f(x) = b, xi = b for every i ∈ S, and f(x|i) = b for

every i ∈ S. We call (x, S) a witness that f has b-sensitivity at least s.

We say a family of functions f = {fk : {0, 1}k → {0, 1}} has certifiable polynomial

b-sensitivity if there exists a constant α > 0 so that on input k we can compute in time

polynomial in k a witness that fk has b-sensitivity at least kα.

Examples of functions that have certifiable polynomial 0-sensitivity and 1-sensitivity

include parity and majority. The AND function has certifiable polynomial 0-sensitivity

while the OR function has certifiable polynomial 1-sensitivity.

Examples of functions whose 0-sensitivity and 1-sensitivity is less than s are functions

that depend on at most s− 1 of their inputs, i.e. (s− 1)-juntas. Simon [Sim82] gives an
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example of a function on k bits that depends on all its inputs but has 0-sensitivity and

1-sensitivity O(log k).

5.3 The main theorems

We say (Gen,Enc,Dec) supports weak homomorphic evaluation of f with error ε if it

has an efficient homomorphic evaluator for f with error ε.

A γ-distinguishing oracle for (Gen,Enc,Dec) is a function D such that

Pr[D(PK,EncPK(0)) accepts]− Pr[D(PK,EncPK(1)) accepts] > γ.

A reduction from a decision problem L to γ-distinguishing encryptions in (Gen,Enc,Dec)

is an efficient randomized oracle algorithm R? such that for every valid input x there

exists a γ-distinguishing oracle D such that RD(x) = L(x) with probability at least 8/9.

(For our results the exact constant won’t matter, as long as it is strictly greater than

1/2.)

Theorem 5.4. Let f0 and f1 be functions with certifiable polynomial 0-sensitivity and

1-sensitivity respectively (possibly the same function). Let ε ∈ (0, 1/18) be any constant

and δ ≥ 2
√
ε. Let (Gen,Enc,Dec) be a public key encryption scheme that supports

efficient homomorphic evaluations of both f0 and f1 with error at most ε. If there is a

reduction from L to (1− δ)-distinguishing (Gen,Enc,Dec), then L is in AM ∩ coAM.

We will assume that the reduction is query length regular: On input x, the reduction

first computes a query length m ≥ |x| and only makes queries of length m. The theorem

can be proved without this assumption, but we make it for notational convenience.

In the case when the reduction has constant query complexity, a stronger conclusion

can be obtained.

Theorem 5.5. Let f0 and f1 be functions with certifiable polynomial 0-sensitivity and

1-sensitivity respectively (possibly the same function). Let q be any constant, δ > 0, and

ε = ε(q, δ) a sufficiently small constant. Let (Gen,Enc,Dec) be a public key encryption

scheme that supports efficient homomorphic evaluations of f0 and f1 with error at most

ε. If there is a reduction from L to (1− δ)-distinguishing (Gen,Enc,Dec) that makes

at most q queries, then L is in statistical zero-knowledge.

In particular, Theorems 5.4 and 5.5 apply to the following cases: (1) f0 and f1 are

the parity function; (2) f0 and f1 are the majority function; (3) f0 is OR and f1 is AND.
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Ron Rothblum [Rot11] shows how to turn a private-key encryption scheme into a

public-key one using a homomorphic evaluator for parity. Combining the two results, the

conclusions of Theorems 5.4 and 5.5 can be extended to private-key encryption schemes

that support homomorphic evaluation of parity.

Our last result shows how to obtain strong rerandomization given a homomorphic

evaluator for almost any function. We call a function f : {0, 1}n → {0, 1} exceptional if

it is one of the following functions of the inputs that it depends on: the constant 0, the

constant 1, the identity, the NOT function, the AND function, the OR function.

Theorem 5.6. Assume f : {0, 1}n → {0, 1} is not exceptional. If (Gen,Enc,Dec) is a

public key encryption scheme that supports efficient strong homomorphic evaluation of

f with negligible error, then (Gen,Enc,Dec) has an efficient strong rerandomization

with negligible error.

5.4 One-sided rerandomization from homomorphic evalu-

ation

In this section we show how to convert a homomorphic evaluation algorithm for a sensi-

tive function into a one-sided rerandomization. In Section 5.8 we extend these ideas to

obtain stronger notions of rerandomization under stronger assumptions. Let H denote

entropy and I denote mutual information.

Claim 5.7. Let X1, . . . , Xn be i.i.d. random variables and I ∼ {1, . . . , n} a uniformly

random index. Let F,G,G′ be random variables such that (1) F and G are independent

conditioned on XI , (2) F is independent of I, (3) G and G′ are identically distributed

and (4) F and G′ are independent. Then the random variables (F,G) and (F,G′) are

within statistical distance
√

2 H(F )/n.

Proof.

H(XI | F ) ≥ H(XI | F, I) (conditioning reduces entropy)

=
1

n

n∑
i=1

H(Xi | F ) ≥ 1

n
H(X1, . . . , Xn | F ) ≥ 1

n
(H(X1, . . . , Xn)−H(F )) = H(XI)−

H(F )

n
.

Since F and G are conditionally independent of XI , I(F ;G) ≤ I(F ;XI). Therefore

I(F ;G) ≤ I(F ;XI) = H(XI)−H(XI | F ) ≤ H(F )

n
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and the conclusion follows by Pinsker’s inequality [Pin64].

The following lemma shows how to obtain one-sided rerandomization from homo-

morphic evaluation of a sensitive function. This lemma will be used in the proofs of

Theorems 5.4 and 5.5. In Section 5.8 we give a version of this lemma that applies

to a more restricted class of functions but allows us to achieve a stronger notion of

rerandomization. That version will be used for the proof of Theorem 5.6.

Lemma 5.8. Assume f has certifiable polynomial b-sensitivity and let δ be any function

inverse polynomial in the security parameter. If (Gen,Enc,Dec) has a weak efficient

homomorphic evaluator for f with error ε, then it has a one-sided weak rerandomization

Rerb with decryption error ε and rerandomization error δ.

Proof. Suppose fk has b-sensitivity kα. Choose k = (2c/δ2)1/α, where c is the length of

ciphertexts (for the given security parameter). Let (x, S) be the witness for b-sensitivity

of fk. Given public key PK and ciphertext E define Rerb as follows:

1. Choose a random I ∼ S.

2. Let

Xi =

EncPK(xi, Ri) if i 6= I,

E if i = I.

3. Output F = HPK(X1, . . . , Xk).

We first condition on the choice of the public key PK, letting εPK denote the statistical

distance between the two distributions in the definition of strong homomorphic evaluator

conditioned on PK.

The decryption error of Rerb follows directly from the definition. We now show the

rerandomization error is at most δ. Let F,G be two independent instantiations of Rerb

on the same input E. Conditioned on PK, the random variables Xi : i ∈ S and F,G

satisfy the assumptions of Claim 5.7. It follows that (F,G) and (F,G′), where G′ is i.i.d

with G and therefore with F , are within statistical distance
√

2c/kα, which is at most

δ by our choice of parameters. Averaging over εPK we prove the lemma.

5.5 The distinguishing protocol

In this section we describe a constant-round interactive proof system DP that, given

input (PK,C, b), certifies that C is an encryption of b under PK when b ∈ {0, 1} and
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that (PK,C) is an invalid pair when b = ⊥. The proof system is parametrized by two

gaps [`, r) and [`′, r′), which describe a promise on the inputs.

We will assume we have the following constant-round protocols for statistical close-

ness (SC[`,r)) and statistical farness (SF[`,r)), where 0 ≤ ` < r ≤ 1. The protocols

take as inputs a pair of sampler circuits D,D′ producing distributions over the same set

{0, 1}m with the following completeness / soundness properties:

• If D,D′ are at statistical distance less than `, SC[`,r)(D,D
′) accepts with proba-

bility 1− σ.

• If D,D′ are at statistical distance at least r, SC[`,r)(D,D
′) rejects with probability

1− σ.

• If D,D′ are at statistical distance at least r, SF[`,r)(D,D
′) accepts with probability

1− σ.

• IfD,D′ are at statistical distance less than `, SF[`,r)(D,D
′) rejects with probability

1− σ.

Here σ can be any inverse polynomial in the size of the input. The following two theorems

state the existence of these protocols. The second one is stronger as it provides statistical

zero-knowledge implementation, but makes a stronger assumption about the gaps.

Formally we will view SC and SF as promise problems that take `, r,D,D′ as their

inputs. Theorem 5.9 essentially follows from work of Bhatnagar, Bogdanov, and Mos-

sel [BBM11]. We provide the missing details in Appendix C.

Theorem 5.9. For r > `, the problems SC and SF are in AM where the running time

of the verifier is polynomial in the size of D, the size of D′, and 1/(r − `).

Theorem 5.10 is proved by Sahai and Vadhan [SV03].

Theorem 5.10. For r2 > `, the problems SC and SF are in SZK where the running

time of the verifier is polynomial in the size of D, the size of D′, and 1/`1/ log(r2/`).

The protocol DP will certify that the rerandomization of C is close to an rerandom-

ized encryption of b but far from a rerandomized encryption of b when b ∈ {0, 1}. When

b = ⊥, it certifies that either the rerandomized encryptions of 0 and 1 are close, or the

rerandomized encryption of C is far from both.

For b ∈ {0, 1}, let ZPK,b be the circuit that on inputR,R′ outputs RerbPK(EncPK(b, R),

R′), i.e. a one-sided rerandomized encryption of b.

The distinguishing protocol DP[`,r),[`′,r′)
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On input (PK,C, b), where b ∈ {0, 1,⊥}:
1. If b = 0 or b = 1:

2. Verifier and Prover execute SF[`,r)(ZPK,0, ZPK,1).

3. If the protocol rejects, reject. Otherwise:

4. Verifier and Prover execute SC[`′,r′)(ZPK,b,RerbPK(C)).

5. If the protocol accepts, accept, else reject.

6. If b = ⊥:

7. Verifier and Prover execute SC[`,r)(ZPK,0, ZPK,1).

8. If the protocol accepts, accept. Otherwise:

9. Verifier and Prover execute SF[`′,r′)(ZPK,0,Rer0
PK(C)).

10. Verifier and Prover execute SF[`′,r′)(ZPK,1,Rer1
PK(C)).

11. If both accept, accept, else reject.

The distinguishing oracle We now define an oracle π that distinguishes between

encryptions of 0 and encryptions of 1. This oracle answers ⊥ on all queries (PK,C)

that do not represent valid key-ciphertext pairs and answers bad on all queries that fall

inside the gaps of the underlying protocols SC and SF . We then show that for every

pair (PK,C) that falls outside the gaps, b = π(PK,C) is the unique answer that makes

DP (PK,C, b) accept.

Assume `′ < r/2 and consider the following oracle

π[`,r),[`′,r′)(PK,C) =



⊥, if d < ` or (d ≥ r and d0 ≥ r′ and d1 ≥ r′)

0, if d ≥ r and d0 < `′ (and so d1 ≥ `′)

1, if d ≥ r and d1 < `′ (and so d0 ≥ `′)

bad, if d ∈ [`, r) or d0 ∈ [`′, r′) or d1 ∈ [`′, r′)

where d = sd(ZPK,0, ZPK,1) and db = sd(ZPK,b,RerbPK(C)) (for b ∈ {0, 1}).
Let π = π[`,r),[`′,r′) and DP = DP[`,r),[`′,r′). The following claim shows that π is a

distinguishing oracle.

Claim 5.11. Assume Rer0,Rer1 are one-sided rerandomizations with decryption error

ε < (1 − r)2/2 and rerandomization error ρ < `′2. Then Pr[π(PK,EncPK(b)) = b] ≥
1−
√

2ε−√ρ for every b ∈ {0, 1}.
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Proof. First we show that the statistical distance between the distributions

(PK,Rer0
PK(EncPK(0, R), R′) = ZPK,0) and (PK,Rer1

PK(EncPK(1, R), R′) = ZPK,1)

is at least 1− 2ε. Consider the test T that on input (PK,C), samples SK conditioned

on PK, and outputs DecSK(C). Since Rerb are one-sided rerandomizations with de-

cryption error ε, we have for every b ∈ {0, 1}

Pr[DecSK(RerbPK(EncPK(b))) = b] ≥ 1− ε.

Therefore T distinguishes the two distributions with advantage 1 − 2ε. By Markov’s

inequality, for at least a 1 −
√

2ε fraction of the PK, the statistical distance between

ZPK,0 and ZPK,1 is at least 1 −
√

2ε. Since Rerb has a rerandomization error ρ, the

statistical distance between

(PK,RerbPK(C,R),RerbPK(C,R′)) and (PK,RerbPK(C,R),RerbPK(C ′, R′))

(where C,C ′ ∼ EncPK(b) are independent) is at most ρ. By Markov’s inequality,

for at least a 1 − √ρ fraction of the pairs (PK,C), the statistical distance between

RerbPK(C,R′) and RerbPK(C ′, R′) = ZPK,b is at most
√
ρ < `′. The claim follows by

taking a union bound.

The following claims are immediate from the definitions and the completeness and

soundness assumptions on SC and SF .

Claim 5.12. (Completeness) Assume `′ < r/2 and π(PK,C) 6= bad. Then DP (PK,C,

π(PK,C)) accepts with probability at least 1− 3σ.

Claim 5.13. (Soundness) Assume `′ < r/2. If DP (PK,C, b) accepts with probability

more than 3σ, then π(PK,C) ∈ {b,bad}.

5.6 Complexity theoretic setup

In this section we cover the complexity-theoretic framework for the proofs of Theo-

rems 5.4 and 5.5.

5.6.1 Promise oracles for adaptive reductions

Let Ξ be any finite set of values that includes the special symbol bad. An oracle family

over input length m with size d is a multiset Π of functions π : {0, 1}m → Ξ. We say Π
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is ε-bad if for every input x, Prπ∼Π[π(x) = bad] ≤ ε.
Let F : {0, 1}m → [d] be a function. The oracle ΠF : {0, 1}m → Ξ is given by

ΠF (z) = πF (z)(z). In the lemma below F will be a randomized function of the same

form.

Lemma 5.14. Let R? be a reduction that on an input of length n, makes at most q

queries of length m. Let Π be an oracle family of size d. Assume d is a power of two.

There exists a randomized function F : {0, 1}m → [d] such that:

• F is computable in time (and hence uses randomness) polynomial in m, q, and d.

• For every input x of length n, the probability that RΠF (x) never receives bad as

an answer to any of its queries is at least (1− ε)q.

Proof. Fix m and let F : {0, 1}m → [d] be a q-wise independent function family. Using

standard constructions, F can be described by O(mq) random bits and is computable

in time polynomial in m, q, and d.

Let (Q1, a1), . . . , (Qq, aq) denote the query-answer pairs of the reduction when in-

teracting with the oracle ΠF . We may assume all queries are distinct. We write the

probability that any of the ai’s equals bad as a product of conditional probabilities. Let

pi be the probability that ai 6= bad conditioned on a1, . . . , ai−1 6= bad.

Let’s look at p1 first. Since Π is ε-bad, the probability that a1 is bad is at most ε

and p1 ≥ 1−ε. Now we consider pi. Since F is q-wise independent it follows that condi-

tioned on every possible collection of values of F (Q1), . . . , F (Qi−1) (which in particular

determine the event a1, . . . , ai−1 6= bad), F (Qi) is uniformly distributed in [d]. Since Π

is ε-bad, the conditional probability that ai = bad can be at most ε, and so pi ≥ 1− ε.
Multiplying the conditional probabilities gives the second part of the lemma.

5.6.2 Statistical zero-knowledge

We recall some results about the complexity of statistical zero-knowledge SZK. Sa-

hai and Vadhan [SV03] show that the statistical distance problem SD = SF[1/9,8/9) is

complete for SZK under many-one reductions.

We also need the following result of Sahai and Vadhan [SV03] that states the closure

of SZK under truth-table reductions.

Theorem 5.15. There is a deterministic algorithm that takes as input instances x1, . . . , xk

of SD and a boolean predicate P : {0, 1}k → {0, 1} and outputs an instance x of SD such

that SD(x) = P (SD(x1), . . . , SD(xk)). The running time of the algorithm is polynomial

in 2k and the sizes of x1, . . . , xk.
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We also need the following fact, which says that reductions within SZK can without

loss of generality be assumed deterministic.

Claim 5.16. If there is a randomized many-one reduction R from L to SD such that

Pr[SD(R(x)) = L(x)] ≥ p, where p is any constant above 1/2, then L is in SZK.

Proof. The reduction takes input x and randomness r and produces a pair of circuits

D,D′. Let Ex(r, s) (resp. E′x(r, s)) be the circuits that on input r, s runs the reduction

on input x and randomness r and outputs D(s) (resp., D′(s)).

Assume L(x) = SD(R(x)) with probability at least 8/9 over the randomness of the

reduction. For x ∈ L, the statistical distance between Ex and E′x is at least (8/9)2 ≥ 2/3

because at least 8/9 choices of r contribute at least 8/9 to the statistical distance. If

x 6∈ L, then the statistical distance is at most 8/9 · 1/9 + 1/9 · 1 ≤ 1/3, because for at

least 8/9 choices of r the statistical distance over s is at most 1/9, and for the other

choices it is at most 1. Therefore L reduces deterministically to SF[1/3,2/3), so L is in

SZK by Theorem 5.10.

If Pr[L(x) = SD(R(x))] is any constant above 1/2, the probability can be first

amplified to 8/9 via Theorem 5.15 with the majority predicate.

Combining Theorem 5.15 and Claim 5.16 we get the following corollary.

Corollary 5.17. Suppose there is a randomized algorithm A that on input x of length n

and randomness r computes inputs x1, . . . , xk and a predicate P : {0, 1}k → {0, 1}, where

k = O(log n) and accepts if P (SD(x1), . . . , SD(xk)) is true. If Pr[A(x) = L(x)] ≥ p,

where p is any constant greater than 1/2, then L is in SZK.

5.7 Proofs of the main theorems

5.7.1 Proof of Theorem 5.4

Let Fω : {0, 1}m → [d] be the randomized function from Lemma 5.14, with ω describing

the randomness. We set Ij =
[

1
3 + j−1

3d ,
1
3 + j

3d

)
and I ′j = 1

3Ij , where 1 ≤ j ≤ d.

The decision protocol DL: On input x:

V: Compute the oracle query length m. Let d be the smallest power of two above

90q where q is an upper bound on the number of queries R?(x) makes. Choose

randomness r for the reduction and randomness ω for Fω. Send r, d, ω to the

prover.

P: Send a sequence ((PKi, Ci), bi), 1 ≤ i ≤ q of oracle query-answer pairs.
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V: Verify that the received query-answer pairs determine an accepting computation

of R?(x, r). If not, reject. For every query i, compute j = Fω(PKi, Ci) and let

[`i, ri) = Ij and [`′i, r
′
i) = I ′j .

V, P: Execute in parallel the protocols DP[`i,ri),[`′i,r
′
i)

(PKi, Ci, bi) for 1 ≤ i ≤ q with

completeness/soundness gap σ = 1/9q. If any of them result in rejection, reject.

Otherwise, accept.

Let πj = πIj ,I′j and ΠF be the oracle from Lemma 5.14.

Claim 5.18. The oracle family {πj}1≤j≤d is at most 3/d-bad.

Proof. Query (PK,C) is bad for πj if sd(ZPK,0, ZPK,1) ∈ Ij or sd(ZPK,0,RerPK(C)) ∈
I ′j or sd(ZPK,1,RerPK(C)) ∈ I ′j . Since the intervals Ij are disjoint, and so are the

intervals I ′j , each of the three events occurs with probability at most 1/d, so their union

occurs with probability at most 3/d.

Proof of Theorem 5.4 It is sufficient to prove that L ∈ AM. By applying the same

argument to its complement L we also get L ∈ coAM.

Assume (Gen,Enc,Dec) supports homomorphic evaluation of f with error at most

ε and there is a reduction R? from L to (1− δ)-distinguishing encryptions.

We instantiate the constructions with the following parameters. Let ε be the ho-

momorphic evaluation error and c an upper bound on the length of ciphertexts queried

by the reduction on input x. Let Rerb be the rerandomization from Lemma 5.8 with

parameters chosen so that the decryption error is ε and the rerandomization error is

at most ρ ≤ ε2. The protocol DP is instantiated with the rerandomizations Rer0 and

Rer1.

Claim 5.19. For an appropriate choice of parameters and for every F , ΠF is a (1− δ)-
distinguishing oracle.

Proof. Notice that all the intervals Ij are within [1/3, 2/3) and I ′j are all within [1/9, 2/9).

Since ε < 1/18 and ρ < 1/81, we have for every j, πj satisfies the assumptions of

Claim 5.11, which shows that

Pr[πj(PK,EncPK(b)) = b] ≥ 1−
√

2ε−√ρ ≥ 1− 2
√
ε ≥ 1− δ.

Since ΠF equals some πj on every query, it follows that the same formula is true for ΠF ,

so ΠF is a (1− δ)-distinguishing oracle.
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By Theorem 5.9, the verifier for DL can be implemented in polynomial time. The-

orem 5.4 the follows by the next two claims:

Claim 5.20. (Completeness) If x ∈ L, there exists a prover that makes DL(x) accept

with probability at least 2/3.

Proof. In the second step, the prover will emulate RΠF (x, r). If the oracle returns bad

on any of the queries in this emulation, the prover aborts (causing the verifier to reject).

In the fourth step, the prover emulates the honest prover for DP[`i,ri),[`′i,r
′
i)

.

Let B be the event that RΠF (x, r) rejects or ΠF returns bad on any of the queries in

RΠF (x, r) or any of DP protocols rejects. If B does not happen, then the verifier accepts.

We upper bound the rejecting probability of the verifier by taking a union bound. Since

ΠF is a distinguishing oracle, RΠF rejects with probability at most 1/9. By Claim 5.18

and Lemma 5.14, RΠF returns bad with probability at most 1 − (1 − 3/d)q ≤ 1/9; by

Claim 5.12, each of the step 4 protocols rejects with probability at most 1/9q, so by a

union bound B happens with probability at most 1/3.

Claim 5.21. (Soundness) If x 6∈ L then no prover makes DL(x) accept with probability

at least 1/3.

Proof. Assume x 6∈ L. If DL(x) accepts, then at least one of the following must be true:

1. RΠF (x, r) accepts, or

2. ΠF returns bad on at least one query in RΠF (x, r), or

3. DL(x) accepts, RΠF (x, r) rejects, and ΠF never returns bad.

We upper bound the probabilities of each of these events. Since ΠF is a distinguishing

oracle, the first one occurs with probability at most 1/9. By Claim 5.18 and Lemma 5.14,

the second one occurs with probability at most 1− (1− 3/d)q ≤ 1/9. If the third event

is satisfied, then bi must differ from ΠF (PKi, Ci) = πpi,qi(PKi, Ci) for at least one i. By

Claim 5.13, the i’th instantiation of the DP protocol in then accepts with probability

at most 1/9. By a union bound, DL(x) accepts with probability at most 1/3.

5.7.2 Proof of Theorem 5.5

Let Ij , 1 ≤ j ≤ d be the following collection of intervals: Ij = [`j , rj) where r1 = 1/2,

`j = r2
j/4, and rj+1 = `j . Let I ′j = 1

3Ij . Assume the reduction makes at most q queries

on every input and let d = 27q · 3q.

61



By Theorem 5.10, for every j the problems SCIj , SCI′j , SFIj , SFI′j are all in SZK so

by Theorem 5.15 and the completeness of SD, DPIj ,I′j is also in SZK for every j.

Consider the following algorithm A. On input x, choose randomness r for R and a

random j ∼ [d] and accept if there exists a sequence of answers (a1, . . . , aq) ∈ {0, 1,⊥}q

such that R(x, r) accepts given these oracle answers and DPIj ,I′j (Qi, ai) accepts for all

1 ≤ i ≤ q. Since DPIj ,I′j is in SZK and SD is complete for SZK, A satisfies the

assumption of Corollary 5.17, so if we can prove that Pr[A(x) = L(x)] ≥ 2/3, it will

follow that L is in SZK.

Say j is bad if πj = πIj ,I′j answers bad on any pair (Q, a) queried by A. Since A

makes at most q3q queries, by Claim 5.18 and a union bound the probability that A

answers bad on any of its queries is at most 1/9.

Fix an input x. By our choice of parameters, when ε is sufficiently small and ρ = ε2,

Claim 5.11 guarantees that πj is a (1 − 4ε)-decryption oracle for every 1 ≤ j ≤ d. So

for at least 8/9 fraction of r, Rπj (x, r) = L(x). Therefore with probability at least 7/9,

both Rπj (x, r) = L(x) and πj never answers bad on any of A’s queries. By Claims 5.12

and Claim 5.13, it must then hold that a = πj(Q) for all query-answer pairs (Q, a) made

by A, and so A(x) = L(x).

5.8 Strong rerandomization from strong homomorphic eval-

uation

In this Section we prove Theorem 5.6. We begin by defining “t-symmetric functions”.

t-symmetric functions Let G be a subgroup of the symmetric group Sk and x ∈
{0, 1, ?}k be a string containing exactly one ?. Let t0(G, x) (resp., t1(G, x)) be the

number of transpositions τ ∈ G that transpose a 0 and a ? (resp., a 1 and a ?) when

acting on x. Observe that tb(G, σx) = tb(G, x) for every σ ∈ G.

Let x|?→0, x|?→1 be the string obtained when the ? in x is replaced by a 0 and a 1

respectively. We will say a boolean function f : {0, 1}k → {0, 1} is t-symmetric if there

exist x and G with t0(G, x), t1(G, x) > t and f(σx|?→b) = b for every σ ∈ G.

For example, the majority function on 3 bits is 2-symmetric: TakeG = S3 and let x =

01?. So is parity on 4 bits: Take G = S4 and x = 110?. The DNF (x11∧x12)∨(x21∧x22)

is also 2-symmetric. To see this take x to be the string x11 = ?, x12 = 1, x21 = 0, x22 = 1

and G to be the “wreath product” S2 oS2, which acts on x by first permuting the inputs

in each term of the DNF independently, then permuting the terms.
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Proof of Theorem 5.6 The theorem follows from the next two claims, proved below.

Claim 5.22. Let f : {0, 1}k → {0, 1}, k ≥ 2 be any boolean function that depends on all

its inputs and is not one of OR / AND. If (Gen,Enc,Dec) supports efficient strong

homomorphic evaluation of f with error ε, then (Gen,Enc,Dec) supports efficient

strong homomorphic evaluation of a 2-symmetric function with error at most 12ε.

Claim 5.23. Let f : {0, 1}k → {0, 1} be a 2-symmetric function. If (Gen,Enc,Dec) is

a public key encryption scheme that supports efficient strong homomorphic evaluation of

f with negligible error, then (Gen,Enc,Dec) has an efficient strong rerandomization

with negligible error.

5.8.1 Proof of Claim 5.22

Claim 5.24. Let f : {0, 1}k → {0, 1}, k ≥ 2 be a monotone function that depends on all

its inputs.

1. If f is not the AND function, then f has 0-sensitivity at least 2.

2. If f is not the OR function, then f has 1-sensitivity at least 2.

Proof. We prove (1) by induction on k, the proof of (2) is analogous. The base case

k = 2 follows by inspection.

For the inductive step, let f0 and f1 be f with x1 fixed to 0 and 1 respectively. If

one of f0 or f1 is 2-sensitive, we are done. Otherwise, by inductive hypothesis, both f0

and f1 are AND functions of their relevant variables. Let S0 and S1 be the set of these

relevant variables respectively.

Since f is monotone, either S0 is empty or S0 contains all of S1. Also note that

S0 ∪ S1 = {2, . . . , k} because f depends on all its inputs. If S0 is empty, then S1 =

{2, . . . , k} and so f is the AND function. Otherwise, S0 = {2, . . . , k}.
If S1 also equals {2, . . . , k}, then f does not depend on x1. Otherwise, there exists at

least one variable that is in S0 but not in S1. Without loss of generality let this variable

be x2. In this case the pair (0011...1, {1, 2}) witnesses the 2-sensitivity of f .

Let f : {0, 1}k → {0, 1} be a boolean function. We say f is an extension of g if there

exists a set S ∈ [k] and z ∈ {0, 1}S such that g is the restriction of f to S using z, i.e.

fS|z(x) = g(x) for every x ∈ {0, 1}S .

We omit the proof of the following facts.
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Claim 5.25. Let g be a function with b-sensitivity at least s and f be any extension of

g. Let (Gen,Enc,Dec) be a public key encryption scheme. If (Gen,Enc,Dec) sup-

ports strong (resp. weak) homomorphic evaluation of f with error ε, (Gen,Enc,Dec)

supports strong (resp. weak) homomorphic evaluation of g with error ε.

Claim 5.26. Let g : {0, 1}k → {0, 1} be a boolean function. For every i ∈ [k], let

fi : {0, 1}ki → {0, 1} be a boolean function. Let (Gen,Enc,Dec) be a public key en-

cryption scheme. If (Gen,Enc,Dec) supports strong homomorphic evaluation of g

with error ε and each of the fi’s with error εi, then (Gen,Enc,Dec) supports strong

homomorphic evaluation of g(f1, . . . , fk) with error ε+ ε1 + · · ·+ εk.

Proof of Claim 5.22. First, we show that (Gen,Enc,Dec) supports homomorphic eval-

uation of f0 and f1 with error at most 4ε, where fb has b-sensitivity 2. Consider the 2-

symmetric function g : {0, 1}4 → {0, 1} defined by g(x11, x12, x21, x22) = f0(f1(x11, x12),

f1(x21, x22)). Since g is a composition of f0 and f1, by Claim 5.26 (Gen,Enc,Dec) has

a strong homomorphic evaluation of g with error at most 12ε.

Now we show that (Gen,Enc,Dec) supports homomorphic evaluation of f0 and f1.

This follows from Claim 5.24 and 5.25 if f is monotone. If f is not monotone, there is

an x ∈ {0, 1}k and i ∈ [k] such that xi = 1, f(x) = 0 and f(x|i) = 1. Let g be the

restriction of f to the rest of the bits using xi. Note that g is the NOT function and so

by Claim 5.25 (Gen,Enc,Dec) supports homomorphic evaluation of the NOT function

with error ε. It is easy to see that one can obtain f0 and f1 by composing g with a

restriction of f . The rest follows by Claim 5.26.

5.8.2 Proof of Claim 5.23

We start with the following Corollary of Claim 5.7 for the special case when G = XI .

Corollary 5.27. Let X1, . . . , Xn be i.i.d and I ∼ {1, . . . , n} a uniformly random index

and F be independent of I. Then (F,XI) and (F,X) are within statistical distance√
2 H(F )/n, where X is i.d. with X1, . . . , Xn and independent of F .

The following lemma shows how to obtain strong rerandomization from any t-

symmetric function. The resulting rerandomization error is noticeable.

Lemma 5.28. Let f : {0, 1}k → {0, 1} be any t-symmetric function. If (Gen,Enc,Dec)

has a strong efficient homomorphic evaluator for f with error ε, then it has a strong

efficient rerandomization Rer with error at most ε +
√

2c/t (resp. decryption error ε

and rerandomization error
√

2c/t), where c is the length of ciphertexts.
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Proof. Define Rer to be the following procedure. Let x ∈ {0, 1, ?}k and G be the

subgroup of Sk that witness the t-symmetry of f . Given public key PK and ciphertext

E we define Rer as follows:

1. Let

Xi =

EncPK(xi, Ri) if xi ∈ {0, 1},

E if xi = ?.

2. Choose a random permutation π from G.

3. Output F = HPK(Xπ(1), . . . , Xπ(k)).

We will now assume that E ∼ EncPK(0); the case E ∼ EncPK(1) is similar. We

first condition on the choice of the public key PK, letting εPK denote the statistical

distance between the two distributions in the definition of strong homomorphic evaluator

conditioned on PK.

Let S ⊆ [k] be the set of indices i such that xi = 0 and there is a transposition π

in G which swaps i and the ? coordinate of x. By assumption |S| ≥ t. The random

variables Xi : i ∈ S and F satisfy the assumptions of the Corollary 5.27, so (XI , F )

(where I ∼ S) is within statistical distance
√

2c/t from (E′, F ), where E′ ∼ EncPK(0)

is independent of F . On the one hand, by the randomness of π, (XI , F ) is identically

distributed to (E,F ) = (E,RerPK(E)). On the other hand, by the strong homomorphic

property, (E′, F ) is within distance εPK of a pair of independent random encryptions

of 0 under PK. So conditioned on PK, the statistical distance in rerandomization is at

most εPK +
√

2c/t. Averaging over εPK we prove the strong version of the lemma.

We now show that for strong homomorphic evaluation, the error can be reduced and

prove Theorem 5.6.

For a boolean function f : {0, 1}k → {0, 1}, Let f (r) : {0, 1}kr → {0, 1} be defined

recursively by first applying f (r−1) on k independent tuples of kr−1 inputs and then

applying f to these k values. For the base case we take f (1) = f .

Claim 5.29. If f is t-symmetric, then f (r) is tr-symmetric.

Proof. Let x and G witness the t-symmetry of f . We construct x(r) and G(r) which

show that f (r) is tr symmetric:

• Let x(1) = x and obtain x(r) from x(r−1) by replacing every ? in x(r−1) by x, every

0 by x|?→0 and every 1 by x|?→1.
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• Let G(1) = G and G(r) be the wreath product G oG(r−1). The permutations in G

are obtained by applying any collection of permutations of G(r−1) to each one of

the r inputs to f (r−1) and then applying a permutation of G to the outputs of the

k copies of f (r−1).

It is immediate from the construction that t0(G(r), x(r)) = t0(G, x)r, t1(G(r), x(r)) =

t1(G, x)r, and f(σ(r)x(r)|?→b) = b for every σ(r) ∈ G(r).

Proof of Claim 5.23. Let Rer be the rerandomization of f from the proof of Lemma 5.28.

We define Rer(r) recursively by Rer(1) = Rer and

Rer
(r)
PK(E, (R1, . . . , Rr)) = RerPK(Rer

(r−1)
PK (E, (R1, . . . , Rr−1)), Rr).

where R1, . . . , Rr are independent random strings. We now argue that Rer(r) has the

desired properties.

Let Rer′(r) be the rerandomization obtained by applying the construction of Lemma 5.28

to the function f (r). We claim that the distributions (PK,E,Rer
(r)
PK(E)) and (PK,E,

Rer
′(r)
PK(E)), where E ∼ EncPK(b), are within statistical distance at most εkr−1. We

show this by induction. The base case r = 1 is obvious (the statistical distance is zero).

For the inductive step, we can describe Rer
(r)
PK(E) as follows: First, choose X by

applying a random permutation π to the indices of x ∈ {0, 1, ?}. Then Rer
(r)
PK(E) =

HPK(e1, . . . , ek) where

ei =

EncPK(Xi) when Xi 6= ?

Rer
(r−1)
PK (E) when Xi = ?.

On the other hand Rer
′(r)
PK(E) can be described as follows: First, choose X by ap-

plying a random permutation π to the indices of x ∈ {0, 1, ?}. Then Rer
′(r)
PK(E) =

HPK(e′1, . . . , e
′
k) where

e′i =

Rer
′(r−1)
PK (EncPK(Xi)) when Xi 6= ?

Rer
′(r−1)
PK (E) when Xi = ?.

By inductive assumption, the statistical distance between (PK,Rer
(r−1)
PK (E)) and (PK,

Rer
′(r−1)
PK (E)) is at most εkr−2. Since HPK has error ε, the statistical distance between

(PK,EncPK(b)) and (PK,Rer
′(r−1)
PK (EncPK(b)) can also be bounded by εkr−2 using

an inductive argument. Applying a hybrid argument we conclude that the distributions
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(PK, e1, . . . , ek) and (PK, e′1, . . . , e
′
k) are within distance at most εkr−1 and therefore so

are the distributions (PK,Rer
(r)
PK(E)) and (PK,Rer

′(r)
PK(E)).

By Claim 5.29, f (r) is tr symmetric. It follows from Claim 5.26 that the function

H
(r)
PK defined recursively by H

(1)
PK = HPK and H

(r)
PK = HPK(H

(r−1)
PK , . . . ,H

(r−1)
PK ) is a

homomorphic evaluation of f (r) with error at most εkr. By Lemma 5.28, Rer′(r) has

error krε +
√

2c/tr. Therefore Rer(r) has error at most ε(kr−1 + kr) +
√

2c/tr. Let

α = log t/ log k. By choosing r = 1/(2 + α) · log(2c/ε2)/ log k we get that Rer(r) has

error O(εα/(2+α)), which is negligible when ε is negligible.
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Chapter 6

Conclusion

In this thesis, we have given partial answers to some complexity-theoretic questions con-

cerning homomorphic encryptions. We proposed a code-based homomorphic encryption

scheme, gave evidence that homomorphic encryption is inherently more complex than

ordinary encryption schemes, and showed that its security cannot be proved beyond

AM ∩ coAM under plausible complexity assumption. In this chapter we provide some

relevant open questions whose answers may lead to deeper understanding of homomor-

phic encryption.

• Is code-based homomorphic encryption possible at all? can our ideas for construct-

ing homomorphic encryption from codes be used elsewhere (e.g. other codes)?

Also, all currently known fully homomorphic encryption schemes are based on

lattices. Can we depart from lattices and construct one that is based on other

assumptions?

• We showed that secure homomorphic encryption cannot be implemented in AC0.

Can we find complexity-theoretic evidence that homomorphic evaluation is some-

where above AC0, e.g. it is NC1-hard or L-hard?

• Can we extend our result on limits of provable security to other functionalities?

Is there a public-key encryption scheme that supports homomorphic evaluation

of the “insensitive” functions alone (e.g. only NOT)? Can we extend the result

to show that its security cannot be proven beyond SZK, without requiring the

reduction to have constant query complexity?

• We gave a method for converting homomorphic evaluation of any unexceptional

functions to a rerandomization algorithm. What can we say about the exceptional
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ones? Are there any other applications for ciphertext rerandomization?
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Appendix A

The ranks of submatrices of the

public key

We prove the following proposition, which points to the limitation of an attack on the

public key of M described in the introduction.

Proposition A.1. Let T ⊆ [n], |T | = t be an arbitrary subset of rows of the r×n public

key matrix P such that |T ∩ S| ≤ s/3 + max{t − r, 0}. Then the submatrix PT of P

spanned by the rows indexed by T has full rank with probability at least 1−O(r2/q), where

the randomness is taken over the choice of a1, . . . , an in the key generation algorithm.

Proof. We prove the theorem for the matrix M instead of P . Since P and M have the

same column space and the rank of PT is a property of the column space of P projected

to the coordinates in T , the statement will follow.

Without loss of generality we may assume that MT is a square matrix: If t < r we

can augment the MT by rows from outside S, and if t > r, we can eliminate rows from

MT that come from S (and some extra ones if necessary). Both operations preserve

rank deficiency.

Now suppose MT is a square matrix so that at most s/3 of its rows come from S.

Let us assume, again without loss of generality, that T = {1, . . . , r} and S = {1, . . . , s0},
s0 ≤ s/3. We now argue that with probability 1−O(r2/q), the determinant det(MT ) is

nonzero.

Notice that det(MT ) is a formal polynomial in the variables a1, . . . , ar of degree at

most 1 + 2 + · · · + r = r(r + 1)/2. In our setup, the diagonal term a1a
2
2 . . . a

r
r appears

uniquely in the sum-product expansion of the determinant, and so this formal polynomial

is nonzero. By the Schwarz-Zippel lemma, if a1, . . . , ar were chosen independently at
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random from Fq, det(MT ) would be zero with probability at most 1− r(r+ 1)/2q. Our

ai are not independent since they are required to be distinct, but the statistical distance

between r uniformly independent elements of Fq and r uniform but distinct elements of

Fq is only O(r2/q). It follows that det(MT ) 6= 0 with probability 1−O(r2/q).
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Appendix B

Approximate 0, 1-majorities over

arbitrary fields

In this section we prove the following claim.

Proposition B.1. Let q be the power of a prime. There exists a circuit APXMAJm : Fmq →
Fq of size O(m2) and depth O(logm) with the property (3.3).

The challenge is to make the depth of the circuit independent of q. We show an easy

construction based on a trick of Valiant [Val84].

Proof. Let CORRd be the correction circuit from Section 3.4.1 where d = 2 logm + 4.

We will show that there exists a way to connect the m inputs to the 2d inputs of CORRd

in a way that the resulting circuit computes APXMAJm.

Fix a specific input x so that at least 7/8 of its elements equal b. If each of the

inputs to CORRd is randomly wired to one of the elements in x, then the inputs to

CORRd will take value b independently with probability at least 7/8 each. Recall that

for b ∈ {0, 1}, if each of the inputs to this circuit takes value b with probability 7/8,

then its output takes value b with probability 1− (3/4)2d/2 > 1− 2−m by our choice of

d. Taking a union bound over all such inputs x, we conclude that there must exist a

wiring with the desired property.
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Appendix C

An AM protocol for statistical

closeness

Bogdanov, Bhatnagar and Mossel [BBM11] show the existence of a protocol for statistical

farness (SF ) meeting the specifications of Theorem 5.9. They also give a protocol

for statistical closeness (SC), but they only provide a soundness proof for gaps [`, r)

satisfying r/` ≥ 4. We show how to extend their protocol and analysis to general gaps.

Theorem C.1. For r > `, the problem SC[`,r)(D,D
′) is in AM where the running time

of the verifier is polynomial in the size of D, the size of D′, and 1/(r − l).

Let N(t) = |{ω : |D−1(ω)| ≥ t and |D′−1(ω)| ≥ t}|. From [BBM11], there is a

lower bound protocol for N(t) with completeness 1− δ/20n and soundness δ/20n. More

specifically, they show that the following decision problem is in AM:

Input: A pair of circuits D,D′ : {0, 1}n → {0, 1}, a number 1 ≤ t ≤ 2n, a target

number 0 ≤ Ñ ≤ 2n, and a fraction 0 < δ ≤ 1 (represented in unary).

Yes instances: (D,D′, t, Ñ , δ) such that N(t) ≥ Ñ .

No instances: (D,D′, t, Ñ , δ) such that N((1− δ)t) < (1− δ)Ñ .

Following the ideas of [BBM11] we have the following protocol for statistical close-

ness:

An AM protocol for SC: On input `, r,D,D′: Set δ = (r − `)/4 and

P: Send claims Ñi for the values Ni = N((1− δ)−i), 0 ≤ i ≤ en/δ.

P, V: Run the AM lower bound protocol for Ni on inputs (D,D′, (1 − δ)−i, Ñi, δ) for

every 1 ≤ i ≤ en/δ. If all of them pass accept, otherwise reject.
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V: Accept if
∑en/δ

i=0 (Ñi − Ñi+1)(1− δ)−i ≥ (1− δ)(1− `) · 2n.

The completeness and soundness of the protocol rely on the following approximation

from [BBM11]:

en/δ∑
i=0

(Ni −Ni+1)(1− δ)−i ≤ (1− sd(D,D′))2n ≤
en/δ∑
i=0

(Ni −Ni+1)(1− δ)−(i+1).

Claim C.2 (Completeness). If sd(D,D′) ≤ ` then the protocol accepts with probability

2/3.

Proof. Assume the honest prover claims that Ñi = Ni for every i. By the completeness

of the lower bound protocol and a union bound, with probability at least 2/3 none of

the lower bound protocol rejects. In this case, using the above approximation we have

en/δ∑
i=0

(Ñi − Ñi+1)(1− δ)−i ≥ (1− δ)(1− sd(D,D′)) · 2n.

Claim C.3 (Soundness). If the protocol accepts with probability at least 1/3 then sd(D,D′) ≤
r.

Proof. Assume the verifier accepts with probability at least 1/3. By the soundness of

the lower bound protocol for N(t) and a union bound, there exists at least one setting

of the randomness of the verifier for which Ni−1 ≥ (1− δ)Ñi for all i (where N−1 = N0)

and the verifier accepts. Now (using the fact that the value Nen/δ+1 is zero):

en/δ∑
i=−1

(Ni −Ni+1)(1− δ)−i = N−1(1− δ) +

en/δ∑
i=0

Ni((1− δ)−i − (1− δ)−i+1)

≥ Ñ0(1− δ)2 + (1− δ)
en/δ∑
i=0

Ñi+1((1− δ)−i − (1− δ)−i+1)

= (1− δ) ·
en/δ∑
i=0

(Ñi − Ñi+1)(1− δ)−i+1

≥ (1− δ)3(1− `) · 2n

so we get that 1−sd(D,D′) ≥ 1−` and therefore sd(D,D′) ≤ 1−(1−δ)3(1−`) ≤ `+4δ.

Setting δ = (r − `)/4 proves the claim.
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