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Abstract

With dramatic increase on mobile devices, efficient and inexpensive position-

ing is crucial in various applications. In wireless sensor network, localization

problem is essential as information without location cannot be well utilized. Sen-

sor Network Localization(SNL) is simply determining node positions by using

pairwise information among nodes. However, this problem has been proven NP-

Hard for a fixed dimension.

Several convex-relaxation based algorithms have been proposed yet are not

able to localize all nodes in the required dimension tractably. Semidefinite Pro-

gramming(SDP) is one of these common relaxation tool and its modeling power

to SNL has been demonstrated under various setting. The constraint relaxed by

SDP to SNL is the rank constraint of decision matrix, i.e. rank(X) = d, where d

is usually two or three.However, standard SDP solver would return the maximum

rank solution, thus relaxation cannot be exact.

Based on the work of Biswas and Ye, we proposed a non-convex framework,

namely Schatten p regularization, by introducing a regularizer term to penalize

the high-rank solutions. A polynomial-time potential reduction algorithm will

also be presented to find a global minimizer or an ϵ-first order critical point. Our

numerical results show that the proposed algorithm could perform better and

act as a refinement step for rank reduction. Besides, some practical issues and

heuristic methods, which are combined with some existing methods, would be

described.



摘要 

 

 
隨著手提裝置的數量激增，很多應用都需要高效率和成本低的定位系

統。如果沒有感測器的確實位置，無線感測網路收集得來的資料便不能有效地

使用。簡單來說，無線感測網路的定位問題就是利用感測器之間的數據來找出

每個感測器的位置。然而，這個問題已被証明是非決定性多項式時間困難(NP-

hard)。 

 

 雖然現在已經有數個以凸鬆弛作為基礎的算法發怖，但是卻不是每一個

問題都能找出一個在指定空間下的定位。半正定規劃就是其中一個主要鬆弛的

工具，在很多的設定下，它亦能表達出鬆弛化的問題。可惜，一般半正定規劃

的算法都會傳回最大秩的答案，相反我們一般都是在二維和三維空間定位，秩

需要是二或三才能符合原本的問題。 

 

 我們在半正定規劃鬆弛模型的基礎上提出一個加入了對秩懲罰的非凸性

的模型，希望藉此對可行域中較高秩的點作出處罰。同時，我們亦找到一個可

以在多項式時間內解出一階極值點或極值點的算法。在不同的測試中，這個算

法可以更準確地找出更好的答案。 
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Chapter 1

Introduction

1.1 Background and motivation

A wireless sensor network consists of a large group of distributed sensors, which

can monitor different conditions(temperature, sound levels and light etc.) from

environment. Sensors are equipped with communication power with others, via

short-range Bluetooth and even long-range radio signal. These networks can suit

for many monitoring and controlling applications in various industries, such as

target tracking [33] and mobile advertising [23]. To facilitate the use of infor-

mation, locations of each sensors are essential. However, exact locations of these

sensors usually are unknown due to the distribution method or random nature

of sensors. Although one can install the global positioning system(GPS) on each

sensors, it is surely a costly solution no matter in terms of hardware or power

consumption [13]. Fortunately, sensors can still obtain extra pairwise informa-

tion(distance or angle) by communication with their neighbors. Sensor Network

Localization(SNL) Problem is to localize all nodes in the network using these

pairwise information between nodes. It has been shown to be NP-hard if the

localized dimension is fixed [2] [22]. In our setting, we will consider the pairwise

distances only and assume that we would have some anchors, that are the sensors

4
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with known locations (which may be achieved by GPS).

There are several approaches to SNL, and they can be classified into the

centralized and the distributed [6] [15]. Centralized algorithms, which includes

Atomic Multilateration[21], Multidimensional scaling and Optimization-based

Methods, gather all information and compute the solution in a central computer.

In contrast, distributed algorithms, which includes Beacon-based Localization[17]

and Coordinate System Stitching[31], compute the positions of a subset of nodes

by partial information. Generally speaking, centralized algorithm can give a

optimal solution with higher cost while distributed algorithm can only generate

sub-optimal solution but with less power consumption and hardware requirement.

In particular, optimization-based algorithms have been getting attention for

its precious solution. The main technique that it relies on is the convex relax-

ation, which has been extensively studied[3][4][5][7][12][14][19][20][25][27][28][34].

Convex relaxation aims to relax the original problem into a convex programming,

which is polynomial–time solvable. And the practical performance for these re-

laxations is usually accurate. Still, these relaxations are not always exact as

fixed–dimensional localization problem is NP-hard[2] [22].

We will focus the studies on the Semidefnite Programming Relaxation(SDR)

proposed by Biswas et al.[5]. It first reconstructs the SNL into a rank-constrained

Semidefinite Programming feasibility problem, then further relaxes its rank con-

straint. In other words, if solution of the relaxation is of rank d, which is the

localization dimension needed, the relaxation is exact, i.e. the corresponding SNL

is solved. Moreover, So et al.[27] have developed a notion of localizable graphs and

builded the relationship between the SDP solution and these graphs. However,

in many cases, the solution solved by Semidefinite Programming solver is of rank

greater than d due to the max-rank property of interior–point algorithms[10]. To

achieve a lower rank solution, one can use the regularizer to penalize the high

rank solution. A good rank regularizer should maintain tractability of the prob-
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lem(e.g. convexity) and can assimilate the rank function. Biswas et al. first

introduced the trace regularization to SNL[4]. As well known, trace norm is the

convex envelop of the rank function[8], so it is surely a good candidate for SNL.

However, its performance is not really satisfied especially when the problem is

sparse, i.e. only few pairwise distances are known. It is natural for one to ask if

there are other more effective regularizers.

In fact, for positive semidefinite matrix, rank function is the cardinality func-

tion of the non-zero eigenvalues while trace norm is actually the sum of eigen-

values. Thus, Schatten p–quasi–norm, which is the sum of eigenvalues power to

p for p ∈ (0, 1],would be a possible candidate as the rank regularizer. Moreover,

when p → 0, Schatten p–quasi–norm would tend to the rank function. Besides,

in the context of low rank matrices recovery, Schatten p–quasi–norm regularizer

can take advantages with some theoretical properties. Upon these reasons, we see

that Schatten p–quasi–norm would be a potential regularizer for SNL. However,

the Schatten p–quasi–norm regularizered Semidefinite Programming is NP–hard

i.e. there is no polynomial time algorithm can get global optimum for all in-

stances. Thus, we develope a tractable potential reduction algorithm that can

converge to a ’first-order point’ instead of the global optimizer. This thesis aims

to introduce this algorithm and analyze its performance on SNL.

In Chapter 2, we begin with mathematical models of SNL in various settings.

The first is the SDR proposed by Biswas et al.[5] for the accurate, i.e. exact pair-

wise distance measurements, and anchor-presence setting. Then, we would move

to SDR for the accurate and anchor-absence setting[4]. Third, we would men-

tion the SDR with Gaussian noise measurements and anchor-presence setting[3].

Afterall, we introduce the general framework for Schatten p–quasi–norm regu-

larization of Semidefinite Programming and show that it can be applied for the

aforementioned models. In Chapter 3, we would present the algorithm and define

the notion of first–order critical point. We would further show the correctness
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proof and complexity bound on it. Furthermore, we show some properties main-

tained under Schatten p–quasi–norm regularization. In Chapter 4, we would

present the extensive numerical results on them. Moreover, we suggest some

heuristic methods on SNL with some numerical testing.

1.2 Preliminaries

1.2.1 Basic Notation

We first denote some notations, in particular, for matrices. Let X ∈ Rn×n repre-

sent a real number matrix with dimension n×n while Xij represent the ij entry.

Trace function of X is the sum of its diagonal values i.e.
∑n

i=1Xii, denoted by

tr(X). We denote σi(X) be the largest singular value of X. The Frobenius norm

of X is defined as ‖X‖F =
√∑

i,j X
2
ij.The sets of n × n symmetric, symmet-

ric positive semidefinite and symmetric positive definite matrices are denoted by

Sn, Sn+, Sn++ respectively. Moreover, Y � X represents Y − X is a symmetric

positive semidefinite matrix. For a vector x ∈ Rn, we denote the 2-norm by

‖x‖ :=
√∑n

i=1 x
2
i , where xi is the i-entry of x. For X belongs to Sn++, the nu-

clear norm of X is defined as ‖X‖∗ = tr(X), which is the sum of its all absoluted

eigenvalues.

1.2.2 Semidefinite Programming

As Semidefinite Programming is the basic tool in our dissertation, we review its

standard form and some theory of it. Here is the basic standard form. Here is

the standard form in trace form.

vp = minimize tr(CX)

subject to tr(AiX) = bi for i = 1, . . . ,m,

X ∈ Sn+

(1.1)
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where C, {Ai} ∈ Sn and {bi} are real numbers.

The dual problem of (1.1) is as follows:

vd = maximize bTy

subject to
∑m

i=1 yiAi + S = C

S ∈ Sn+

(1.2)

where b = (b1, . . . , bm)T .

The set of equality constraints in (1.1) can be expressed as A(X) = b with

the linear mapping A(·) : Sn → Rm where A(X) :=
(
tr(A1X), . . . , tr(AmX)

)T
.

Moreover, the linear mapping can be written as multiplication A(X) = Avec(X),

where vec(·) is the Vectorization and A :=
(
vec(A1), . . . , vec(Am)

)T
∈ Rm×n2

.

On the other hand, the equality constraint in (1.2) can be expressed as A∗(y) +

S = C with the adjoint operator A∗ : Rm → Sn of A. Furthermore, A∗(y) :=

mat(ATy), where mat(·) is the Matricization.

Similar to Linear Programming, there is a duality theorem for SDP. However,

this is slightly ”weaker” than that of Linear Programming. First, we denote the

feasible regions of (1.1) and (1.2) as Fp and Fd respectively. Weak duality still

holds, that is, objective value of (1.1) is greater than (1.2).

Lemma 1.1. (weak duality[29][11]) For any X ∈ Fp and (y, S) ∈ Fd,

tr(CX)− bTy = tr(XS) ≥ 0.

However, strong duality is not true in all cases.

Lemma 1.2. Let X ∈ Fp, (y, S) ∈ Fd and tr(XS) = 0. Then (X, y, S) is optimal

for problems (1.1) and (1.2).

In general, extra conditions are sufficient to make strong duality to hold.

Lemma 1.3. (Strong duality[29][11]) Let Fp and Fd be nonempty and have an

interior feasible solution. Then X is optimal for (1.1) if and only if X ∈ Fp and

there exists (y, S) ∈ Fd such that tr(CX)− bTy = tr(XS) = 0.
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To conclude, the duality theorem are as follows:

Theorem 1.1. (SDP duality therorem[29][11])

1. If (1.1) (resp. (1.2)) is strictly feasible, then we have v∗p = v∗d. If (1.1)

(resp. (1.2)) is bounded below(resp. above), then the common optimal value

is attained by some (y∗, S∗) ∈ {(y, S) ∈ Rm × Sn+ : A∗(y) + S = C} (resp.

X∗ ∈ {X ∈ Sn+ : A(X) = b} ).

2. Suppose that both (1.1) or (1.2) are bounded and strictly feasible. Then, we

have v∗p = v∗d. The common optimal value is attained by some primal feasible

X∗ and dual feasible (y∗, S∗). Moreover, each of the following conditions is

necesary and sufficient for optimality of a primal-dual feasible pair.

(a) (Zero Duality Gap) tr(CX) = bTy

(b) (Complementary Slackness) tr(XS) = 0

3. If (1.1) (resp. (1.2)) is unbounded, then (1.2) (resp. (1.1)) has no feasible

solution.

1.2.3 Schatten p–quasi–norm

Given a matrix X ∈ Rn×n, for any given p ∈ (0, 1], the Schatten p–quasi–norm is

defined as ‖X‖pp :=
(∑

i≥1 |σi(Z)|p
)

. In this dissertation, the Schatten p–quasi–

norm is applied on the Positive definite matrices. Given a Z ∈ Sn++, we can get

Z = UΛUT by spectral decomposition of Z. As a result, Schatten p–quasi–norm

of Z can be expressed as ‖Z‖pp = tr(UΛpUT ), where Λp is entrywise power to p.



Chapter 2

The Sensor Network Localization

Problem

Sensor Network Localization Problem can be deemed as class of Graph Real-

ization Problem. Both of them aim to retrieve geometric information of nodes

from some internodes information in an Euclidean space, say Rd. However, as

a practical problem, SNL Problem varies from different settings, including the

forms of given internodes information and existence of anchor. Before explicitly

stating the problem, we assume the graph considered to be simple, undirected

and connected. Any two vertices u, v in a connected graph can be connected,

which the graph contains a path from u to v. Given a graph G = (V,E) with n

vertices and m edges. Vertices Set can be partitioned into two sets, anchor set

Va and sensor set Vs. Anchors are vertices that position are known while sensors

are the unknown vertices. An edge (i, j) ∈ E represents the pairwise Euclidean

distance information between vertex i and vertex j. These pairwise Euclidean

distance information can be exact, contaminated by noise or intervals. With the

presence of anchors, the problem is to assign positions in Rd to sensors that sat-

isfy these pairwise information, while the problem aims to recover the geometric

relationship among vertices if there is no anchors. Let’s begin with the simplest

10
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setting. Assume that we have exact pairwise distances and presence of anchor.

2.1 Exact Measurement with Anchors

2.1.1 Problem Statement

Given a graph in above setting. For i-th anchor, there is a corresponding known

ai ∈ Rd representing the location in d-Euclidean Space. Moreover, each edge

(i, j) ∈ Ess (resp. (i, j) ∈ Eas) is associated with a positive weight dij (resp. d̄ij),

which can be regarded as the measured Euclidean distance between sensor i(resp.

anchor i) and j. The goal is to assign a vector xi for i-th sensor such that the

following distances constraints are satisfied.

‖xi − xj‖2 = d2
ij for (i, j) ∈ Ess,

‖ai − xj‖2 = d̄2
ij for (i, j) ∈ Eas.

(2.1)

2.1.2 Biswas’s Semidefinite Relaxation

The relaxation is based on a traditional trick in SDP, that is mapping the decision

variables to a higher dimension. First, we denote X := [x1 . . . xns ] ∈ Rd×ns . By

introducing a ns×ns matrix Y := XTX. The above problem can be reformulated

to the following rank-constrained Semidefinite Programming model.

Find Z

subject to tr((0; ei − ej)TZ(0; ei − ej)) = d2
ij, ∀(i, j) ∈ Ess

tr((ak;−ej)TZ(ak;−ej)) = d̄2
ij, ∀(i, j) ∈ Eas

Z =

 Id X

XT Y


Y � XTX

rank(Z) = d.

(2.2)

where ei is a vector with all zero except 1 in i entry and Id is d dimensional

identity matrix. Thus, after dropping the rank constraint, one can get a SDR



SNL via Schatten Quasi-Norm Minimization: An Interior-Point Approach 12

of SNL under the aforementioned setting. Similar to all relaxed problems, the

major concern for this relaxation would be the condition for exact relaxation,

i.e., the rank of Z is d. However, as well known, the standard interior-point

algorithms for solving SDP would return the central solution, that is the solution

with maximum rank. In most case, the dimension d we considered is low, says

d = 2 or 3. In other words, this SDR would be exact if and only if the maximum

rank of feasible set is d, which is not frequently happened.

2.1.3 Uniquely Localizable Graph

So et al.[27] showed that if such relaxation is exact, this graph cannot be non-

trivially localized in a higher dimension. And they further defined the notion

of uniquely localizable graph and showed that the rank-d solution in this SDR

corresponds to the d-dimensional localization.

Definition 2.1. The problem (2.1) is uniquely localizable if there is a unique

localization X̄ ∈ Rd×ns| and there is no xj ∈ Rh, ∀j ∈ VS, where h > d, such

that:

‖xi − xj‖2 = d2
ij for all (i, j) ∈ Ess,

‖(ai; 0)− xj‖2 = d̄2
ij for all (i, j) ∈ Eas

xj 6= (x̄j; 0) for some j ∈ {1, ..., ns}

(2.3)

With unique localizability, model(2.2) without the rank constraint would still

have solution in rank d after being solved by SDP solver. On the opposite side, if

the solution of relaxation solved by SDP is rank d, the problem (2.1) is uniquely

localizable. Here is the theorem.

Theorem 2.1. [27] Suppose that the given graph is connected. Then the following

statements are equivalent:

1. Problem (2.1) is uniquely localizable.

2. The max-rank solution matrix of relaxation on (2.2) has rank d.
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3. The solution matrix Z of relaxation on (2.2) satisfies Y = XTX.

2.2 Exact Measurement without Anchor

Sometimes, there may not exist any anchors, i.e., sensors get its position. How-

ever, one may still want to know more about its geometric structure or unknown

distances between some sensors. The localization under this setting could be

subject to rotation, reflection and translation.

2.2.1 Problem Statement

Given a graph in aforementioned setting. However, Va = ∅, thus Eas = ∅. The

problem can be modeled as follows:

minimize
∑ns

i=1 ‖xi‖2

subject to ‖xi − xj‖2 = d2
ij for (i, j) ∈ Ess,

(2.4)

Note the objective function is actually the sum of square on norm of each sen-

sor, which can be thought as pulling the center of gravity to the origin, so the

translation variant can be removed.

2.2.2 Biswas’s Semidefinite Relaxation

Biswas et al.[4] proposed a formulation under such anchor-free setting.

minimize tr(Y )

subject to tr((ei − ej)TY (ei − ej)) = d2
ij, ∀(i, j) ∈ Ess

Y � 0

(2.5)

Similar to anchor-presence case, matrix variable Y is introduced and Y = XTX

is relaxed to semidefiniteness constraint.



SNL via Schatten Quasi-Norm Minimization: An Interior-Point Approach 14

2.2.3 d-localizable

Similar to anchor-presence case, there is also a localizablity result for the anchor-

free case. Here we first state the d-localizable graph.

Definition 2.2. Problem (2.4) is d-localizable if there is no xj ∈ Rh, j =

1, . . . , ns, where h 6= d, such that:

‖xi − xj‖2 = d2
ij, ∀(i, j) ∈ Ess

For h > d, the condition should exclude the trivial case when we set xj = (x̄)j; 0)

for j = 1, . . . , ns.

Theorem 2.2. [4] If Problem (2.4) is d-localizable, then the solution matrix,

Ȳ , of (2.5) is unique minimum-norm localization of the graph with
∑n

j=1 x̄j = 0

(subject to only rotation and reflection).

2.3 Noisy Measurement with Anchors

Practically, the distance measurement is not always accurate. Using the mathe-

matical model in (2.2) may lead to infeasible solution. Thus, the problem would

be an estimation problem.

2.3.1 Problem Statement

Assume the measurement on edge(i, j) ∈ Ess (resp. (i, j) ∈ Eas )is contaminated

by Gaussian noise with known standard deviation σij(resp. σ̄ij). The maximum

likelihood estimation of sensors location would be follow:

min
xi∈Rd, i∈Vs

 ∑
(i,j)∈Ess

1

σ2
ij

(‖xi − xj‖ − dij)2 +
∑

(i,j)∈Eas

1

σ̄ij
(‖ai − xj‖ − d̄ij)2

 . (2.6)

Indeed, Biswas et al.[3] show that such estimation problem can also be relaxed

by Semidefinite Programming, which is shown below.
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2.3.2 Biswas’s Semidefinite Relaxation

minimize
∑

(i,j)∈Ess

1

σ2
ij

εij +
∑

(i,j)∈Eas

1

σ̄2
ij

ε̄ij

subject to tr((0; ei − ej)TZ(0; ei − ej)) = v2
ij, ∀(i, j) ∈ Ess

tr((ak;−ej)TZ(ak;−ej)) = v̄2
ij, ∀(i, j) ∈ Eas

tr((−dij; 1)TDij(−dij; 1)) = εij ∀(i, j) ∈ Ess
tr((−d̄ij; 1)T D̄ij(−d̄ij; 1)) = ε̄ij ∀(i, j) ∈ Eas

Z =

 Id X

XT Y

 � 0

Dij =

 1 uij

uij vij

 � 0 ∀(i, j) ∈ Ess

D̄ij =

 1 ūij

ūij v̄ij

 � 0 ∀(i, j) ∈ Eas

(2.7)

Same as the model in (2.2), the relaxation drops the rank constraints of

Z,Dij and D̄ij. However, it is not in the standard form of SDP. One can com-

bine the decision matrices into a large matrix diagonally and reformulate it into

standard form, which would be shown later. Also, SDP solver(say SDPT3) can

exploit the property of block diagonal matrix and the low rank property of the

matrix coefficient.

2.4 Schatten p–regularized SDP

2.4.1 Regularizers in SNL

We have demonstrated the modeling power of SDP to SNL in various settings,

which is actually only fraction of all cases. However, in above relaxations (2.5),

(2.7) and (2.2) without rank constraint, SNL cannot be exactly solved if the

relaxation is not exact. A best-rank d approximation may help, but it is more

natural to ask whether the high rank solution can be eliminated throughout the
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optimization process. Biswas et al. first proposed the regularizer approach in

achieving low-rank solution for graph realization problem, under the anchor-free

setting. Here, the regularizer they adapted is to maximize the total distances

among all sensors, i.e.
∑
i∈Vs

∑
j∈Vs,j 6=i

‖xi − xj‖2. This regularizer is also named

maximum variance unfolding in non-linear dimensionality reduction in kernel

learning.

Besides, regularizer approach has been studied to find the low-rank matrix in

SDP, especially in application for the low-rank matrix recovery. Nuclear norm

is widely used as regularizer for such setting. In terms of assimilating the rank

function and achieving the convexity, nuclear norm is the best choice as it is the

convex envelope of rank function. On the other hand, Shamsi et al.[26] proposed

some heuristic objective functions to correctly localize for a certain class of graphs.

Recently, there are several algorithms for finding first order point of Schatten

p-minimization [18][16][1], yet without the guarantee of polynomial–time com-

plexity.

2.4.2 Formulation

The Schatten p-regularization for standard SDP (1.1) is:

Γ∗ = minimize π(Z) = tr(CZ) + µ‖Z‖pp

subject to tr(AiZ) = bi for i = 1, . . . ,m,

Z ∈ Sn+

(2.8)

where µ > 0 is the regularizer parameter. We denote that F as the feasible region

of above model.

It is not hard to see that relaxation (2.5) and (2.2) without rank constraint are

already in standard form. We will show that how (2.7) can also be transformed

into standard SDP. Here is the diagonalized version of (2.7) :
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minimize tr(CW )

subject to W =


Z

Diag({D̄ij}(i,j)∈Eas)

Diag({D̄ij}(i,j)∈Eas)

,

Dij =

 1 uij

uij vij

 for (i, j) ∈ Ess,

D̄ij =

 1 ūij

ūij v̄ij

 for (i, j) ∈ Eas,

tr(KijZ) = vij for (i, j) ∈ Ess,

tr(K̄ijZ) = v̄ij for (i, j) ∈ Eas,

Z1:d,1:d = Id, Z ∈ Sd+ns
+ , D ∈ S2|Ess|

+ , D̄ ∈ S2|Eas|
+

(2.9)

where C takes the form C = Diag(0, C0, C1), C0 is the 2|Ess| × 2|Ess| block–

diagonal matrix whose (i, j)–th diagonal block is the 2×2 matrix σ−2
ij (−dij; 1)(−dij; 1)T

(where (i, j) ∈ Ess), and C1 is the 2|Eas| × 2|Eas| block–diagonal matrix whose

(i, j)–th diagonal block is the 2× 2 matrix σ̄−2
ij (−d̄ij; 1)(−d̄ij; 1)T .

It should be noted that each equality of (2.9) is linear in W . Moreover, as

W is block diagonal matrix, we have W ∈ Sd+n+2|Ess|+2|Eas|
+ ⇔ Z ∈ Sd+ns

+ , D ∈

S2|Ess|
+ , D̄ ∈ S2|Eas|

+ . Therefore, (2.9) can be transformed into Standard SDP.

Note that when the relaxation is exact, rank of each Dij and D̄ij is 1 and

rank of Z is d. And extra constraints are needed to add to maintain the block

diagonal structure.



Chapter 3

Potential Reduction Algorithm

In this chapter, we would introduce a tractable algorithm namely potential reduc-

tion for approximating a first–order critical point of the Schatten p–regularized

SDP (2.8). The theoretical results are based on techniques in Ye[32] and Ge et

al.[9]. To describe the whole algorithm, we need to define some components. Ba-

sically, the algorithm aims to reduce value of a potential function in each iterate.

The potential value also plays an essential role in complexity analysis. It had

been shown that either ε-optimal solution or ε-first-order critical point will be

achieved in a finite step if the potential function is under certain value.

3.1 ε–First–Order critical point

Definition 3.1. Let Z̄ ∈ F and ε > 0 be given. Suppose that rank(Z̄) = r, and let

Z̄ = UΛUT be the spectral decomposition of Z̄, where U ∈ Rn×r has orthonormal

columns and Λ ∈ Sr++ is a diagonal matrix. We say that Z̄ is an ε–first–order

critical point of Problem (2.8) if there exists a multiplier ȳ ∈ Rm such that

UTCU + µpΛp−1 −
m∑
i=1

ȳi
(
UTAiU

)
∈ Sr+ (3.1)

18
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and

0 ≤
tr
(
CZ̄ + µpZ̄p −

∑m
i=1 ȳiAiZ̄

)
π(Z̄)

≤ ε. (3.2)

For convienice, 0–first–order critical point will be called as first–order critical

point.

This definition inherits the dual feasibility and the complementarity condition.

Such definition is also used to take care on the marginal region as the objective

function π is non-differentiable on Sr+\Sr++. Besides, we define ε–optimal solution

to (2.8) when π(Z) ≤ Γ∗+ε. We will show that potential reduction algorithm can

achieve either ε–optimal solution or ε–first–order critical point in polynomial–time

of n, m and ε−1.

To approximate the first–order critical point, the above definition onε–first–

order critical point can take care of the non-differentiablility of objective function

π. Moreover, the π(Z̄) in (3.2) also acts as a normalizer to maintain invariance

properties to the middle part of (3.2). Noted that these invarianve properties are

essential to an approximation notion.

3.2 Assumption

To show the complexity analysis, we shall make these assumption:

1. The feasible region F is bounded; i.e., there exists an R < ∞ such that

F ⊂ {Z ∈ Sn : ‖Z‖2
F = tr(Z2) ≤ R2}.

2. A lower bound θ > −∞ on the optimal value of the (unregularized) SDP

problem

min{tr(CZ) : Z ∈ F} (3.3)

is known or can be efficiently estimated.

3. A strictly feasible solution Z ′ to Problem (2.8) (i.e., Z ′ ∈ F satisfies Z ′ ∈

Sn++) is available or can be efficiently constructed.
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For the first assumption, relaxations (2.5) and (2.2) would surely satisfy as

long as sensors are connected. In fact, connectivity is a common assumption in

SNL. On the other hand, there is no upper bound for model (2.9) even the graph

is connected yet one can always put an upper bound on it.

The second assumption is also mild as all objective coefficient matrices C of

three models (2.5), (2.2) and (2.9) are positive semi-definite, which implies that

there is a trivial lower bound 0. We will discuss the third assumption later.

3.3 Algorithm Architecture

Before go through the analysis, we shall define the potential function, which is

actually added a barrier term.

Definition 3.2. The function φ : Sn+ → R is a potential function if

φ(Z) = ρ · log(π(Z))− log det(Z),

where ρ > 0 is a parameter.

Using such potential function with the barrier term − log det(Z) would ensure

that the algorithm iterates within the strictly feasible set of (2.8). We are now

ready to describe the algorithm.

Assume now we have the current iterate Z̄. The next iterate will then be

Z̄+ = Z̄ + DZ̄ where DZ̄ ∈ Sn. We aim to choose DZ̄ to achieve a maximum

reduction on the potential function while satisfying the equality constarint, i.e.,

tr(AiDZ̄) = 0 for i = 1, . . . ,m. We have the following lemma.

Lemma 3.1. Let D = Z̄−1/2DZ̄Z̄
−1/2 and C̄ = Z̄−1/2CZ̄−1/2. If ‖D‖2

F ≤ β < 1,

the following inequality will hold:

φ(Z̄+)− φ(Z̄) ≤ ρ

π(Z̄)
tr
[
(C̄ + µpZ̄p)D

]
− tr(D) +

β2

2(1− β)
. (3.4)
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We refer the proof to our conference paper[24]. Now, to ensure maximum

potential reduction, we can model it as follows:

minimize tr(QD) := tr

[(
ρ

π(Z̄)
(C̄ + µpZ̄p)− I

)
D

]
subject to tr(Z̄1/2AiZ̄

1/2D) = 0 for i = 1, . . . ,m,

‖D‖2
F ≤ β2.

(3.5)

We shall further denote A(D) :=
(
tr
(
Z̄1/2A1Z̄

1/2D
)
, . . . , tr

(
Z̄1/2AmZ̄

1/2D
))
,

and its adjoint operator AT (ν) :=
∑m

i=1 νiZ̄
1/2AiZ̄

1/2. The above model is a

convex problem and satisfies the Slater condition, so we can draw the KKT

conditions, which are both necessary and sufficient for optimality.

2λD = AT (ν)−Q, (3.6a)

A(D) = 0, (3.6b)

‖D‖2
F = β2, (3.6c)

λ ≥ 0. (3.6d)

Furthermore, we can express the optimal D in an explicit form from the above

conditions if we assume A has full row rank.

D = −β ·
(
I −AT (AAT )−1A

)
Q

‖(I −AT (AAT )−1A)Q‖F
. (3.7)

Substituting (3.7) into (3.4), we can get

φ(Z̄+)− φ(Z̄) ≤ −β ·
∥∥(I −AT (AAT )−1A

)
Q
∥∥
F

+
β2

2(1− β)
. (3.8)

Here we come to the stopping criteria.

If
∥∥(I −AT (AAT )−1A

)
Q
∥∥
F
≥ 1, by setting suitable value of β, says 1/3, one

can get φ(Z̄+) − φ(Z̄) ≤ −1/4, i.e. the potential function decreases 1/4 at each

iterate. Here, we shall give a proposition about the ε–optimal solution.
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Proposition 3.1. Let ε > 0 and ρ > n/p be fixed. Suppose that Z̄ is strictly

feasible for Problem (2.8) and satisfies

φ(Z̄) ≤
(
ρ− n

p

)
log(ε) +

n

p
log(µn). (3.9)

Then, Z̄ is an ε–optimal solution to Problem (2.8).

Proof. Using the arithmetic–mean geometric–mean inequality, we have

‖Z‖pp
n

=
1

n

n∑
i=1

(λi(Z))p ≥

(
n∏
i=1

λi(Z)

) p
n

= (det(Z))p/n

for all Z ∈ Sn+. In particular, for any Z ∈ F ,

n

p
log(π(Z))− log det(Z) ≥ n

p
log(µn),

where we use the assumption that tr(CZ) ≥ θ = 0 for all Z ∈ F . Thus, if

condition (3.9) is satisfied, then we have π(Z̄) ≤ ε, which, together with the fact

that Γ∗ ≥ 0, implies the desired result.

In case the ε–optimal solution is not achieved, next iteration will continue.

By the above proposition, the iteration is finite.

Otherwise, if
∥∥(I −AT (AAT )−1A

)
Q
∥∥
F
< 1, we terminate and the current iter-

ate Z̄ is the ε–first–order critical point, which will be shown in the complexity

analysis. Here is the whole algorithm:

3.4 Correctness and Complexity Analysis

In this section, we will show the correctness of the solution. Here is the theorem.

Theorem 3.1. Given the current iterate Z̄. If
∥∥(I −AT (AAT )−1A

)
Q
∥∥
F
< 1,

Z̄ is ε–first–order critical point, i.e. (3.1) and (3.2)
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Algorithm 1 Potential Reduction Algorithm

Require: A strictly feasible solution Z0, C, µ, p, {Ai, bi : ∀i}, β, ε

Ensure: Z̄

1: Z̄ ← Z0

2: ρ← (n+
√
n)/min {p, ε}

3: C̄ ← Z̄1/2CZ̄1/2

4: Q← (ρ/π(Z̄))(C̄ + µpZ̄p)− I

5: A ←
(
vec
(
Z̄1/2A1Z̄

1/2
)
, . . . , vec

(
Z̄1/2AmZ̄

1/2
))T

6: while
∥∥(I −AT (AAT )−1A

)
Q
∥∥
F
≥ 1 do

7: D ← −β · (I−AT (AAT )−1A)Q
‖(I−AT (AAT )−1A)Q‖F

8: Z̄ ← Z̄ + Z̄1/2DZ̄1/2

9: C̄ ← Z̄1/2CZ̄1/2

10: Q← (ρ/π(Z̄))(C̄ + µpZ̄p)− I

11: A ←
(
vec
(
Z̄1/2A1Z̄

1/2
)
, . . . , vec

(
Z̄1/2AmZ̄

1/2
))T

12: end while

Proof. Recall the KKT conditions (3.6a) and (3.6b), we have v = (AAT )−1A(Q).

Thus, we get
∥∥(I −AT (AAT )−1A

)
Q
∥∥
F

= ‖Q−AT (v)‖2
F < 1, more explicitly,∥∥∥∥ ρ

π(Z̄)
(Z̄1/2CZ̄1/2 + µpZ̄p)−AT (v)− I

∥∥∥∥2

F

< 1. (3.10)

Using the Cauchy-Schwarz inequality, we have

n−
√
n

ρ
<

tr
[
Z̄
(
C + µpZ̄p−1 −

∑m
i=1 ȳiAi

)]
π(Z̄)

<
n+
√
n

ρ
,

where ȳ = −(π(Z̄)/ρ)ν ∈ Rm. By setting ρ = (n+
√
n)/min {p, ε}, we have

ρ >
n

p
and 0 <

tr
(
Z̄
(
C + µpZ̄p−1 −

∑m
i=1 ȳiAi

))
π(Z̄)

< ε.

Thus, Z̄ satisfies condition (3.2). For the dual feasibility (3.1), we have to show

S̄ := C + µpZ̄p−1 −
∑m

i=1 ȳiAi ∈ Sn+. It suffices to show that Z̄1/2S̄Z̄1/2 ∈ Sn+.

Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of Z̄1/2S̄Z̄1/2. By (3.10), we have
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∑n
i=1

(
λi − π(Z̄)/ρ

)2 ≤
(
π(Z̄)/ρ

)2
. This implies that λn ≥ 0, i.e.

Z̄1/2S̄Z̄1/2 ∈ Sn+ ⇒ S̄ ∈ Sn+.

Thus, Z̄ is an ε–first–order critical point.

The remainding part would be the complexity analysis, that is, to show that

potential reduction algorithm is polynomial–time implementable.

Theorem 3.2. The potential reduction algorithm described above would terminate

in polynomial time.

Proof. To show the complexity, it is essential to know more about the potential

value of initialized strictly feasible point Z0. With the third assumption, we have

‖Z0‖F ≤ R and λmin(Z0) ≥ r. It can be shown that

φ(Z0) ≤ φ̄ = ρlog(R‖C‖F + µRpn1−p/2)− nlog r.

To conclude, the algorithm would terminates in at most

η =
φ̄− φ
1/4

= O
(
n

∆
log

(
R

εr′
(
‖C‖F + µn1−p/2)))

iterations. As each iteration is polynomial–time implementable, the algorithm

would terminate in polynomial time.

3.5 Initialization and Conversion

Recall the third assumption that we can construct a strictly feasible solution to

(2.8). The initialization can be done by solving the unregularized SDP, which

is polynomial-time solvable. However, there is no guarantee that this solution

is strictly feasible. To tackle this problem, we adapt a conversion technique to

tackle this problem.
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Suppose we solved the unregularized SDP and obtained a solution Ẑ with

rank r̂. Performing the Schur decomposition, we will get Ẑ = VΠ0V
T , where

V ∈ Rn×r̂ and Π ∈ Rr̂×r̂. We converse (2.8) into the following problem:

Γ∗ = minimize tr(V TCVΠ) + µ‖Π‖pp

subject to tr(V TAiVΠ) = bi for i = 1, . . . ,m,

Π ∈ S r̂+

(3.11)

It is clear that Π0 is a strictly feasible point to the above problem. Thus,

we can apply the potential reduction algorithm to (3.11) and get the solution

Π∗. Afterall, we can restore the solution by combining back the decomposition

VΠ∗V T .

Such conversion not only solves the problem of initialization, but also reduces

the problem size, which does shorten the solution time a lot. Moreover, the rank

of final solution should be less or equal to the rank of unregularized problem,

which is very promising in the perspective of rank minimization.

3.6 Localizabiliy Result

Recall that there is a localizability property(Theorem 2.1) of the global solution

of traditional SDP approach to SNL problem with the presence of anchor. It

can also be preserved in the solution of Schatten p–regularized SDP. It is not a

surprising result as the proof of that rely heavily on the feasible set, which is

actually an unique point. We refer reader to [27] for more idea.

For the absence of anchor, we show that for the 0–first–order–critical point of

regularized Problem (2.5) can extend the result of Theorem 2.2.



Chapter 4

Simulation Results

In this chapter, extensive simulation results are presented under different set-

tings. We will demonstrate the effectiveness of the Schatten p–regularization

approach to SNL, especially in the sparse cases, which the information given

is not much. All sensors are uniformly random generated in a unit square

[−0.5, 0.5] × [−0.5, 0.5] while the setting of anchors will be described for each

case. The nodes are connected under two different schemes, with different testing

purpose, will be introduced in the following section. Then, the measure criteria

for performance will be introduced. All simulations are implemented in Mat-

lab(2011b) and run on a 2.66GHz CPU PC with 3 GB memory.

4.1 Graph Generations

4.1.1 Unit-Disk Graphs

In traditional SNL, two nodes can communicate each other if their distances

are with certain threshold, namely radio range (denoted by ρ). This type of

graph is also called Unit-disk graph as intuitively we place a unit-disk on each

vertex and connect it to others that lie on the disk. In fact, the choice of radio

range is one major study in SNL as it is useful to know how large is sufficient to

26
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localize all nodes practically. Recently, there are several results on the bound of

this radio range. During the simulation, radio range would gradually increase to

increase the density. However, unit-disk graphs may have multiple localizations,

especially when the radio range is small. In other words, even the problem is

exactly solved, the localization may still be different to the ground truth. To

further investigate the performance on unique realization case, we would have

another graph generation.

4.1.2 Globally Rigid Graphs

Globally rigid graph in R2 can only have unique localization in R2. To generate

such graphs, one can construct it from the complete graph K4. There are two

operations that preserve the rigidity.

1. Edge Addition

Adding an edge to a pair of non-adjacent vertices.

2. 1-extension

For any edge (i, j) and a new vertex k. We form (i, k) and (k, j) to replace

the (i, j). And one more edge (k, h) to other connected vertex h should be

added to preserve the rigidity.

Although we are generating global rigid graphs, we still aim to preserve the idea

of unit-disk, that is, two nodes are connected if their pairwise distance is small.

After the random generation of vertices, we would pick 4 vertices that are the

closest to the origin and forms a k4. Then we select a new vertex that is closest

to any edge in the connected graph, and perform the 1-extension. With similar

idea, while we are executing the 1-extension, the extra vertex h would be the

closest connected vertex besides i and j.

After all the vertices are connected, Edge Addition would execute gradually.

The adding order of edges is based on their distances. Such generation can greatly
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help in investigating the performance in the sparse case with unique realization.

4.2 Measure Criteria

We have three criteria on measuring the performance. The first one is the tra-

ditional position error(PE). It is the root mean square of the difference between

the computed location and the ground true location of sensors. It is defined as

PE =

√
1

ns

∑
i∈Vs

‖xi − x̄i‖2
2,

where xi, x̄i ∈ Rd are the computed location and true location of sensor i respec-

tively. However, as the realization may not be unique in some settings, e.g. unit-

disk graph, exact realization that satisifies constraints may still induce high PE.

As a result, we would introduce the second criterion, that is the edge error(EE).

It measures the discrepancy between the computed distances and the given dis-

tance measurments. Similar to PE, it is the root mean square of the difference,

i.e. EE =

√√√√√ 1

|E|

 ∑
(i,j)∈Ess

‖xi − xj‖2 − dij

2

+

 ∑
(i,j)∈Eas

‖ai − xj‖2 − d̄ij

2.
The third criterion is the rank of the solution matrix. It represents the dimen-

sion of computed realization. If the rank equals to d, then SNL is exactly solved.

For the computation of the rank, we would base on the singular value decompo-

sition as it is more reliable yet time consuming. The rank of a matrix would be

the cardinality of non-zero singular value. For numerical issue, a tolerance would

be used for counting.
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4.3 Exact Measurement with Anchors

4.3.1 Unit-disk Graph

We begin with the simplest case. We randomly generate 50 sensors and 3 anchors

and employ the unit-disk graph setting with radio range ρ = 0.18, 0.19, . . . , 0.3.

The reason that we started from 0.18 is that the randomly generated vertices

would be connected with a high probability. When the ρ = 0.3, most instances

are uniquely localizable(Definition 2.1), i.e., Biswas’s relaxation can solve them

exactly. Thus, this range of simulation can cover sparse cases to dense cases.

Let’s state a unified framework for the models of problem (2.1) we would

consider.

Minimize µ‖Z‖pp

subject to tr((0; ei − ej)TZ(0; ei − ej)) = d2
ij, ∀(i, j) ∈ Ess

tr((ak;−ej)TZ(ak;−ej)) = d̄2
ij, ∀(i, j) ∈ Eas

Z =

 Id X

XT Y


Y � XTX.

(4.1)

In this experiment, we will compare the following approaches:

SDR: Biswas’s relaxation(i.e. µ = 0) solved by CVX with Solver SeDuMi.

Trace: Trace regularized SDR(i.e. µ = 1, p = 1) solved by CVX with Solver

SeDuMi.

Schatten: Schatten 0.5−regularized SDR(i.e. µ = 1, p = 0.5) solved for ε–first–

order critical point by aforementioned potential reduction algorithm with

the conversion, where the tolerance ε = 10−5.

Lets have a look on a single instance where the radio range ρ = 0.23 in Figure

4.1. When the anchors position are biased or the edge are sparse, the sensors
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are very flexible, i.e. they have high chance to be localized in a high dimension.

Recall the max-rank property of SDP solver, the SDR would return a high rank

solution. The solution is then projected to a lower dimension, resulting high

error. With the regularizer, the solution of rank decreases thus it may incur less

projection error.

We have run 100 simluations with varying radio range ρ = 0.18−0.3. Results

are shown in Figure 4.2 and Figure 4.3a. It can be seen that EE of Schatten

is lower when the radio range is small, i.e., the graph is sparse. Schatten also

plays a better role than others in terms of dimension requirement, i.e., the rank

of solution. In the terms of PE, Schatten perform worse than SDR. Mentioned

before, the unit-disk graph may have multiple realizations. So this may not imply

that SDR is not effective.

One may note that the performance of Schatten will converge to SDR when

the radio range goes larger. It is based on the fact that rank of SDR decreases

with radio range. When the rank is lower, Schatten might be faster to go to

the ε first–order critical point. In fact, numerical results show that the number

of iterations decreases when the radio range increases, see Figure 4.3b. Here

is a remark about the computation time. Although the computation time for

each iteration increases with the number of constraints, the total solution time

decreases with radio range due to the dramatic reduction on iteration number.

4.3.2 Globally Rigid Graphs

To avoid multiple realizations due to graph structure, we start the third sim-

ulations under the globally rigid graph setting. We generate 50 sensors and 3

anchors randomly with varying number of extra edges from 0 to 100 (by Edge

Addition in graph generation). We adapt p = 0.5 for Schatten approach with the

conversion. Again, 100 instances had been under investigated and results are in

Figure. 4.4. Surprisingly, the position error of Schatten is still higher than SDP



SNL via Schatten Quasi-Norm Minimization: An Interior-Point Approach 31

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Original Graph Structure

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Result of SDR

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Result of Trace

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Result of Schatten

 

 

Exact Sensor
Anchor
Estimated Sensor

Figure 4.1: The Graph illustration with 50 sensors and 3 anchors, unit–disk

graphs with ρ = 0.23
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Figure 4.3: The average Rank, number of iteration and time with 50 sensors and

3 anchors, unit–disk graphs with ρ = 0.18− 0.3
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Figure 4.4: The average PE and EE with 50 sensors and 3 anchors,globally rigid

graph with extra edges from 0 to 100

in most of time while Schatten shows its strong reduction in edge error and rank.

To deeply investigate the effect of rank reduction, one can have a look on the

eigenvalues of solutions, See Figure. 4.5. It shows that eigenvalues of solution

obtained by potential reduction algorithm is much small.

4.3.3 Choice of Parameter p

In the above simulation, we choose p = 0.5 for the Schatten approach for illus-

tration. To investigate the effects of choice of p, we start the second simulation

from p = 0.1 to 0.9 with 0.1 increment. We generate 50 sensors and 3 anchors
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Figure 4.5: The eigenvalues of solutions of a single instance

randomly with varying radio range ρ = 0.18− 0.36. Recall that ‖ · ‖pp → rank(·)

when p→ 0. However, as our algorithm only guarantees first order point but not

optimal solution, lower value of p may not help. Indeed, numerical result shows

that a too small p would not be a good choice, in terms of EE and Rank. Again,

we have run 100 simulations and results are shown in Figure 4.6. In Figure 4.6a,

under the perspective of rank reduction, it is clear that the potential reduction

algorithm would perform better when p ∈ [0.2, 0.6]. On the other hand, if one

considers the EE, the best range of p would lie on [0.4, 0.8]. To conclude, one

should select p ∈ [0.4, 0.6] for the potential algorithm, at least under current

setting.

It should be noticed that the extreme values are not the good choice. Also

when the radio range goes larger, their performances converge as they all converge

to SDR’s performance. So far, there is no any theoretical justification on the

choice of p.
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Figure 4.6: Illustration of effect of p with 50 sensors and 3 anchors, unit–disk

graphs with ρ = 0.18− 0.36

4.3.4 Choice of Initial Point

In section 3.5, we mentioned the initialization technique and the conversion of

problem before applying potential reduction. We select the solution of unregu-

larized SDP as the initial feasible piont. However, such starting point is with the

highest rank to other feasible point(if any). We want to investigate the perfor-

mance for different initialization and thus performed the following experiment.

We would consider the following approaches:

SDR and Schatten-SDR Biswas’s relaxation solved by CVX and Schatten-

0.5-regularized approach with initialization with SDR.

Trace and Schatten-Trace Trace regularized SDR solved by CVX and Schatten-

0.5-regularized approach with initialization with Trace.

MVU and Schatten-MVU Maximum variance unfolding regularized SDR solved

by CVX and Schatten-0.5-regularized approach with initialization with MVU.
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It is also the first time that we compare with MVU-regularization. Indeed, MVU

demonstrated its strong regularization power in terms of EE and rank. Again we

run 100 simulations with radio range ρ = 0.18− 0.36 for 50 random sensors and

3 random anchors, and the result is in Figure 4.7.

For each approach in SDR, Trace and MVU, its Schatten version would give

better average edge error and their performances converge to their initialization.

When the graph is very sparse, i.e. ρ = 0.18 and 0.2, Schatten-SDR performs bet-

ter. MVU has beaten others and its Schatten version further refines the solution

and produces even more better result.

This numerical experiment shows that there is a strong relation between first-

order point of Schatten p-regularization and the lower rank and better EE solu-

tion. And this potential algorithm can be deemed as a refinement step to lower

the rank of solution.
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4.4 Exact Measurement without Anchors

It is interesting whether Schatten-p regularization would have similar performance

when anchors are absent. In this section, we would demonstrate the effectiveness

of Schatten-p regularization to such anchor-free case. As the realization is subject

to rotation, reflection and transformation, it is hard to measure its position error.

Thus we would use the edge error and the rank as the metric only. Furthermore,

we use the globally rigid graph so that if the rank of solution is equal to d, the

exact geometric relation is reconstructed. In this experiment we compare two

approaches. To begin, let’s introduce the unified framework we would consider.

minimize µ‖Y ‖pp

subject to tr((ei − ej)TY (ei − ej)) = d2
ij, ∀(i, j) ∈ Ess

Y � 0

(4.2)

And here are the approaches,

Trace: Trace regularized SDR(i.e., µ = 1, p = 1) solved by CVX with Solver

SeDuMi.

Schatten: Schatten 0.5−regularized SDR(i.e. µ = 1, p = 0.5) solved for ε–first–

order critical point by aforementioned potential reduction algorithm with

the conversion, yet choosing initial point from Trace.

We run 100 simulations with varying adding edges from 0 to 150. And we

count number of instances that can be fully recovered, i.e. the rank is d. When

the instance is fully recovered, the global optimizer is achieved. One can find

out that Schatten can fully recover more cases than the Trace in Figure 4.8. We

should remark that more information may not always help under the framework

of rank minimization as there are some recovered instances cannot be exactly

recovered after the edge adding.

Moreover, similar to previous experiment, the rank of Schatten is much lower

to the Trace approach, see Figure 4.9.
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4.5 Noisy Measurement with Anchors

In this section, we would demonstrate the effectiveness of Schatten p-regularization

when the measurement is not accurate. We assume the measurements are per-

turbed by the Gaussian noise, i.e.

dij = d̂ij|1 + εij|, for (i, j) ∈ Ess and εij ∼ N (0, σ2
ij)

d̄ij = ˆ̄dij|1 + ε̄ij|, for (i, j) ∈ Eas and ε̄ij ∼ N (0, σ̄2
ij)

(4.3)

where d̂ij and ˆ̄dij are the true distances.

Lets recall the model (2.9) and we would add the regularizer to it. Let’s

restate the regularized model.

minimize π(W ) = tr(CW ) + µ‖W‖pp

subject to tr(AiW ) = bi for i = 1, . . . ,m,

W =


X1 0 0

0
. . . 0

0 0 Xnb

 ,
W ∈ Sn+

(4.4)

where nb is the number of block diagonal matrices. The number of constraints

is numerous, and the size of decision matrix is large too. If there are 50 sensors

with 3 anchors, the size of matrix and number of constraints will be at least 300,

not even counting the constraints for non-block diagonal entry.

4.5.1 Block Diagonal Structure Preserving Property

For each entry that does not belong to the block diagonal matrices, we need an

equality to force it to be zero, otherwise the whole matrix is no longer positive

semi-definite. Of course, such constraints can be easily handled in some standard

SDP algorithms, such as SDPT3[30], which can exploit the property of sparsity,

block-diagonal decision matrices and low-rank coefficient. However, the potential
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reduction algorithm for Schatten p regularization has not yet be adjusted to do so.

Still, we can show that for some given instances and conditions, block diagonal

structure can be maintained.

Proposition 4.1. For model (4.4), define B := {(j, k)|Wjk 6= 0}. A matrix X

has same block-diagonal structure with W if Xjk = 0, ∀(j, k) 6∈ B. If the follow-

ing statements are true, then the solution returned by aforementioned potential

reduction algorithm preserves the same block-diagonal structure.

1. (Ai)jk = 0, ∀(j, k) 6∈ B for i = 1 to m,

2. Cjk = 0, ∀(j, k) 6∈ B, and

3. An initial point with same block-diagonal structure is given.

Proof. We need two important properties of block diagonal matrix to complete

the proof. Given two block diagonal matrices A,B ∈ S+
n with same block struc-

ture.

1. AB has the same block structure.

2. A+B has the same block structure.

3. Let UΠUT be the singular value decomposition of A. Ap := UΠpUT has

the same block diagonal structure.

Now, we consider the current iterate W̄ with the block diagonal structure men-

tioned in model (4.4). Recall we would update the iterate by W̄+ = W̄ +

W 1/2DW 1/2, where D = β · (I−AT (AAT )−1A)Q
‖(I−AT (AAT )−1A)Q‖F

. By the aforementioned prop-

erties, to show W̄+ has same block diagonal structure, it is sufficient to show D

has same block diagonal structure.

For D, we neglect the scalar term β
‖(I−AT (AAT )−1A)Q‖F

as it would not affect the

block diagonal structure and only consider the matrix part Q−AT (AAT )−1AQ.

As Q = (ρ/π(W̄ ))(W 1/2CW 1/2+µpW̄ p)−I, Q has same block diagonal structure.
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The remained component would be AT
(
(AAT )−1AQ

)
. As the adjoint operator

AT (ν) :=
∑m

i=1 νiW̄
1/2AiW̄

1/2, we can show that AT
(
(AAT )−1AQ

)
has same

block diagonal structure, thus D has same block diagonal structure.

4.5.2 Unit-disk Graph

Due to the complexity problem, we would only test for the cases with 30 sen-

sors and 3 anchors randomly with unit-disk graph setting. We will compare the

following approaches:

SDR Model (4.4) with µ = 0 solved by SDPT3

Schatten Model (4.4) with p = 0.5 and varying µ solved by potential reduction

algorithm

For the regularizer parameter µ, we will select from 1e-2 to 1e2. And we would

use three levels of noisy factor(the standard derviation σ), that is 0.05, 0.15 and

0.25. The result is in the Figure. 4.10. The result shows that Schatten is an

effective estimator only when the noise is low. Moreover, this experiment shows

the effect of µ is not obvious, whatever in terms of rank, EE and PE. However,

one can still find the performance difference in a finer scale. Indeed, the optimal

choice of µ in terms of quality is still unknown as it varies a lot from case to case.

But it would form a nearly U-shape, which can be further investigation later.

In the view of computation complexity, it is easy to observe that the algorithm

would terminate faster when the µ is smaller.

4.5.3 Gradient Descent Method

During the relaxation, the solution would be projected into the required dimen-

sion d. After the projection, a refinement by gradient descent method would

be applied on the solution[3]. Recall the original objective function (2.6), which
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we denote it by f(X). We can would get the following gradient with respect to

sensor xj:

5jf(X) =

 ∑
(i,j)∈Ess

1

σ2
ij

(1− dij
‖xi − xj‖

)(xj − xi) +
∑

(i,j)∈Eas

1

σ̄2
ij

(1− d̄ij
‖ai − xj‖

)(xj − ai)

 .

In each iteration, we update X+ = X − [α51 f(X), . . . , α5n f(X)], where the

step size α ∈ (0, 1] is chosen by back-tracking procedure. We applied the gradient

descent method for 50 iterations to solution of above simulation. And we get the

result in Figure. 4.11 and 4.12.

After the extra refinement by gradient descent method, the PE of Schatten

seems slightly being better than that of SDR. However, the performances are not

stable at all. It should be noted that the gradient descent method is also a local

minimization method. Beside the PE, another essential metric is the objective

value, in the perspective of optimization. In Figure 4.12, Schatten returned better

objective values as Schatten could help in lowering dimension and thus producing

a better initial point for gradient descent method. However, the lower objective

value do not guarentee that the PE would be better, which is related to the

estimation issue. For example, for the case that radio range is 0.55 and noisy

factor is 0.05, although there is improvement in the objective value, the PE is

even worse.

4.6 Heuristic Methods

In this section, we will introduce some heuristic methods, which combine the

existing rank regularizers. For simplicity, we would consider for the simple case,

i.e., model (4.1). Here is the heuristic method we would consider:
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Figure 4.12: The average objective value after gradient descent method, unit-disk

graph and inexact measurement(RR: radio range, nf = noisy factor)
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Minimize µ‖Z‖pp + fr(Z)

subject to tr((0; ei − ej)TZ(0; ei − ej)) = d2
ij, ∀(i, j) ∈ Ess

tr((ak;−ej)TZ(ak;−ej)) = d̄2
ij, ∀(i, j) ∈ Eas

Z =

 Id X

XT Y


Y � XTX,

(4.5)

where fr is other regularizer or heuristic objective function. Mentioned before,

Shamsi et al. proposed various heuristic objective functions for unit-disk graph

setting. However, for simplicity, we would only consider the traditional regular-

izers:

fr1(X) = tr(X) and fr2(X) = −tr(X),

where the former is the trace-norm regularizer and the latter is the MVU regu-

larizer.

The result is very similar to subsection 4.3.4 where the combination of Schat-

ten and other regularizer can help much in reducing rank and EE, especially when

the problem is sparse. Result are shown in Figures. 4.13 and 4.14.
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Figure 4.13: The average rank of heuristic methods, unit-disk graph with radio

range from 0.18-0.3

0.18 0.2 0.22 0.24 0.26 0.28 0.3
0

0.01

0.02

0.03

0.04

0.05

0.06

Radio Range ρ

E
dg

e 
E

rr
or

 

 

SDR
Trace
MVU
Schatten
Schatten + Trace
Schatten + MVU

Figure 4.14: The average EE of heuristic methods, unit-disk graph with radio

range from 0.18-0.3



Chapter 5

Conclusion and Future Works

In this thesis, we proposed the Schatten Quasi-Norm Minimization to the Sen-

sor Network Localization Problem. We presented an interior-point algorithm to

approximate the ε–first–order point of the Schatten regularized Semidefinite Pro-

gramming. Based on the strong modeling power of Semidefinite Programming on

Sensor Network Localization Problem, we believed that such algorithm can be

applied to most cases, which is not only limited to the three cases we covered.

We performed extensive simulations on demonstrating the effect of the Schat-

ten Quasi-Norm Minimization. There is an effective reduction on the rank of

solution. And it also gave improvement in terms of Edge Error, which is a mea-

sure on how the information is recovered. Moreover, we also discussed some

computation issues, such as choice of parameters and a specified conversion pro-

cess to tackle the assumption. However, we believed that there might exist some

theoretical justification on the parameters as the choice of parameters plays an

important role to the algorithm.

At last, we also provided some heuristic methods on combining some existing

regularized methods. It would be interesting to investigate the combinations with

other existing methods.
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