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Abstract of thesis entitled: 

Ideally, many application systems for distributed users should be 

designed without requiring a centralized controller, for example cloud 

computing or wireless sensor networks. A fundamental challenge to 

developing distributed algorithms for these systems is load balancing, 

which is the focus of study in this thesis. A common feature of these 

distributed algorithms is that routing decisions should be derivable without 

requiring much information from the system, probabilistic routing is one 

example coming to mind. In this thesis, we propose a new routing strategy 

based on the idea of shift-invariant protocol sequences.  We study this load 

balancing approach in the context of a queuing model of multi-server 

system. Our model and strategy can be applied to many practical systems, 

including wireless networks. Numerical studies were carried out to compare 

our strategy with other routing strategies such as probabilistic routing and 

random sequences routing. The results show that the proposed algorithm 

has better performance than these strategies. We also implement a 

simulation for multiple server system with practical assumptions such as 

Poisson job arrival time and exponential job service time. Different 

strategies are applied in this system and numerical results show that our 

strategy has better performance than others. To overcome some limitations 

of shift-invariant protocol sequences, new sets of protocol sequences based 

on Chinese Remainder Theorem are used and numerical results show that 
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its performance is suboptimal. 

 

Keywords - Wireless sensor network; Multiple server system; Distributed 

load balancing; Shift- Invariant Protocol Sequences 
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論文摘要：理論上，中央控制器不應該出現在許多擁有分散用戶的實際系統中，例如雲

計算和無線傳感器網絡。為這些系統設計分佈式算法的一個重要的問題是如何做到負載

平衡，而這一點正是本篇論文所要研究的。這些分佈式算法的共同點是不需要大量的系

統信息，就可以完成任務分配，按概率分配正是其中的一種算法。在本篇論文中，我們

根據移位不變性協議序列的思想提出了一個新的任務分配算法。本文在一個多服務器系

統的排隊模型中去研究這個負載平衡的方法。這個模型和算法可以應用到很多包括無線

網絡在內的實際系統中。本文通過數字模擬對比了我們的算法和其他算法，比如按概率

分配和隨機數列分配。結果顯示這個算法比其他算法有更好的性能。同時我們也建立了

一個有著跟實際系統類似的假設的多服務器系統模擬程序，這些假設包括泊松分佈的任

務到達時間和指數分佈的任務需求服務時間。在這個模擬程序中，我們應用了多個算法，

結果顯示我們的算法同樣有更好的性能。為了克服一些移位不變性協議序列的限制條件，

我們應用了基於中國餘數定理而得來的新的協議序列。數字模擬結果顯示它的性能和最

優方法很接近。 

關鍵詞：無線傳感器網絡；多服務器系統；分佈式負載平衡算法；移位不變性協議數列 
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I. Introduction 

1. Objectives 

The idea of employing deterministic protocol sequences instead of 

probabilistic random accessing is first proposed in [1] for collision channel 

without feedback in wireless communication. A protocol sequence is a periodic 

binary sequence assigned to each user, which succinctly captures the information 

of when a user can transmit (sequence values equal to 1) and when to remain 

silent (sequence value equal to 0). The main property of protocol sequence is that 

even users are not synchronized and their relative time offsets are unknown to 

each other, the number of collisions in one period is bounded and certain level of 

throughput is guaranteed for each user in all possibilities of relative time offsets. 

Detail knowledge of protocol sequences will be introduced in the following 

section.  

Protocol sequences can also be applied to other systems where there is no 

communication among users to replace probabilistic strategies. The objective of 

this thesis, in particular, is to apply the idea of protocol sequences into distributed 

load balancing problems where users try to distribute incoming jobs evenly to 

different servers without communication among each other. Similar to wireless 

communication, probabilistic routing strategies are well studied in previous works 

and background of load balancing problems will be presented in section I.3. We 

will show that using routing strategies derived from protocol sequences, the 
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throughput of all users can be guaranteed in all situations and the performance are 

improved compared to probabilistic routing strategies.  
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2. Background of Protocol Sequences 

Protocol sequences are first proposed in [1] to be applied in collision channel 

without feedback in wireless communication. In wireless communication, many 

researches are done about random accessing due to its simplicity and effectiveness 

in different systems and applications [2]–[6]. In a shared channel, when users 

transmit without communication, collisions will occur generally. For system 

simplicity, it is desirable to have a simple multiple access protocol which does not 

require stringent time synchronization, frequent channel monitoring, and 

complicated processing such as backoff algorithm or random number generation 

[1]. The result will be particularly useful in emerging communication systems 

such as impulse radio [7] and wireless sensor networks [8] in which 

well-coordinated transmissions and time offsets may be too costly to devices with 

constrained resource. The idea of using protocol sequence to define random 

accessing in a collision channel without feedback is proposed in [9]. In this case, 

senders are not synchronized and their relative time offsets are unknown to each 

other due to a lack of feedback link. Besides, packet retransmission and backoff 

mechanisms are not employed. Each sender will just transmit packets at the times 

governed by his own protocol sequence. 

A time-slotted system is considered in [1], consisting of a number of 

transmitters and one receiver. A user sends a packet within the boundaries of a 

time slot. The packet is received successfully only when exactly one user is active 
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at that time slot. A collision occurs when two or more users transmit 

simultaneously and the packets are assumed unrecoverable. If no user transmits in 

a time slot, that time slot is idle. Each user repeats his assigned binary protocol 

sequence periodically, and transmits a packet if and only if the value of the 

protocol sequence at that time slot equals one. The transmission schedule is 

independent of the data being sent and there is no cooperation among the users. 

The advantages of employing deterministic protocol sequences instead of 

probabilistic random accessing is that theoretically, we can derive the zero-error 

capacity region for the collision channel without feedback when deterministic 

protocol sequences are employed. Provided that the protocol sequences are 

properly designed, it can be guaranteed that, with probability one, the throughput 

of each user is greater than a positive constant regardless of their relative delay 

offsets.  

Under the model of collision channel without feedback, Massey and Mathys 

[9] have shown that a reliable multi-access communication is indeed achievable 

and a corresponding scheme with carefully designed protocol sequences was 

presented in [9]. More general sequence constructions using constant-weight 

cyclically permutable codes are reported in [10], [11] afterwards. A recent survey 

is also presented in [12] on coding for multiple access channel without feedback. 

Built on the concept of prime sequences, a family of protocol sequences, called 

wobbling sequences [1], is designed to support multi-rate service and a large 
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number of active users. They are suitable to serve as random access protocols, in 

particular for applications in some wireless ad hoc or sensor networks. 

Optimal protocol sequence sets are proposed in [13]. The “cross correlation” 

of these sequences which is defined as the number of collisions of the sequences 

in [1], are the same no matter how they are shifted and the variance of the 

throughput is 0. This kind of protocol sequence is called shift invariant protocol 

sequences (SIS). In section IV, we will employ this SIS protocol sequence to the 

distribute load balancing problem. 
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3. Background of Load Balancing Problems 

Load balancing problem has been studied in many previous works. Chow and 

Kohler [14] present a queuing model for a heterogeneous multiple server system. 

In the model, an arriving job is routed by a job dispatcher to one of parallel 

servers. Different routing strategies are also studied in [14], classified into two 

categories: deterministic and nondeterministic. As shown in figure 1, in 

deterministic strategies, an incoming job is sent to a particular server to minimize 

or maximize the expected performance of a related criterion function, such as 

minimizing response time, minimizing system time or maximizing throughput. In 

nondeterministic strategies in figure 2, an arriving job is sent to a server with 

certain probability, where the routing decision is usually based on independent 

probability distinctions. Performance of these strategies are analyzed and 

compared in [14]. 

Fig.1 Deterministic routing 
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  Chow and Kohler [14] show that deterministic strategies have better 

performance than nondeterministic strategies. However, in deterministic strategies, 

there must be a central controller to optimize their criterion function and the 

computational complexity is usually high, especially in systems with large number 

of servers. On the contrary, in nondeterministic strategies, the packets are routed 

based on a probabilistic routing matrix, which can be distributed to users who are 

sending jobs to the multiple server system and no central controller is needed. In 

this thesis, we are focus on the latter class of problems, which can be defined as 

“distributed load balancing”.  

Load balancing problems can be viewed as a trade-off between performance 

and the cost of information. As shown in figure 3, probabilistic routing and 

deterministic routing with central controller lie on the two ends of this trade-off. 

Probabilistic routing only requires information about the number of servers, but 

Fig.2 Nondeterministic routing 
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the throughput of this strategy is low. On the contrary, central controller requires 

all information about the system, including number of users, number of servers, 

packets arrival time, packets service time and queuing patterns of all servers and it 

can reach high throughput in turn. Researches about the load balancing in recent 

years can also be viewed in two ways.  

 

 

Ni and Hwang [15] propose a recursive probabilistic routing algorithm. It 

uses parameters of the system such as job incoming rate and service rate to form a 

nonlinear programming problem with linear constraints. An optimal probabilistic 

load balancing algorithm is proposed to solve this nonlinear programming 

problem. The proposed load balancing method is proven globally optimum in the 

sense that it results in a minimum overall average job response time on a 

Fig.3 Trade-off between throughput and information 
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probabilistic basis. 

Some other previous works such as [16] are focused on how to exchange 

information among users and servers to distribute jobs evenly to all servers. It can 

be viewed as estimating the calculation of central controller. A pre-emptive 

load-balancing algorithm is proposed in [16] for a multicomputer having 

homogeneous node architecture with a communication network that completely 

connects all the nodes by allowing direct communication between any pair of 

nodes. New jobs may arrive at any node and jobs execute equally well on any 

node, independent of the node where they arrive. We also assume that no 

information about the execution time of the process is available. The 

load-balancing policy consists of two algorithms. The first, called the information 

exchange algorithm, is responsible for the continuous exchange of the load 

information between the processors. The second algorithm, called the processor 

load, is used by each processor to monitor its own local load on a continuous basis. 

This load is based on the ability of the processor to provide services to user’s 

processes; thus it can be used to estimate the response time of that processor.  

There are also many previous work about distributed load balancing for cloud 

computing. An algorithm called honeybee foraging algorithm is proposed in [17].  

In this algorithm, idle servers follow one of two behavior patterns: a server that 

reads the advert board will follow the chosen advert, and then serve the request; 

thus mimicking harvest behavior. A server not reading the advert board reverts to 
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forage behavior; servicing a random virtual server’s queue request. A server 

successfully fulfilling a request will calculate profitability of the just-served job 

and post it on the advert board with a probability. The completed server influences 

system behavior by comparing its calculated profit with the colony profit on the 

advert board, and then adjusts the probability to post and colony profit 

accordingly. Given a robust profit calculation method, this behavior pattern 

provides a distributed and global communication mechanism; ensuring “profitable” 

jobs appear attractive to and are allocated to available servers. 

Biased random sampling algorithm is proposed in [18]. In this approach, the 

load on a server is represented by its connectivity in a virtual graph. The initial 

network is constructed with virtual nodes to represent each server node, with each 

in-degree mapped to the server’s free resources or some measure of desirability. 

As such, a number (consistent with its available resources) of inward edges are 

created, connected from randomly-selected nodes. This approach creates a 

network system that provides a measure of initial availability status, which as it 

evolves, gives job allocation and usage dynamics. Edge dynamics are then used to 

direct the load allocation procedures required for the balancing scheme. When a 

node executes a new job, it removes an incoming edge; decreasing its in-degree 

and indicating available resources are reduced. Conversely, when the node 

completes a job, it follows a process to create a new inward edge; indicating 

available resources are increased again. In a steady state, the rate at which jobs 

arrive equals the rate at which jobs are finished; the network would have a static 
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average number of edges. 

Active Clustering is considered in [19] as a self aggregation algorithm to 

rewire the network. This procedure is intended to group like (i.e. similar service 

type) instances together. Active Clustering consists of iterative executions by each 

node in the network: 1. At a random time point a node becomes an initiator and 

selects a matchmaker node randomly from its current neighbors; the only 

condition being that the matchmaker is of a different type. 2. The matchmaker 

node then causes a link to be formed between one of the matchmaker’s neighbors 

that match the type of the initiator node. 3. The matchmaker removes the link 

between itself and the initiator. 

In this thesis, a model is presented to study the distributed load balancing 

problem. There are three basic assumptions: (1) users independently distribute 

their tasks to servers according to pre-assigned binary sequences, which will be 

explained in following section; (2) no real-time synchronization is required; (3) 

there is no centralized controller after the initial sequences assignment. These 

assumptions usually hold in wireless networks without a centralized controller or 

base station and do not provide guarantee that users are synchronized. Based on 

these assumptions, a new strategy is proposed.  It can be shown that the 

performance of the proposed strategy is better than probabilistic routing. 

The strategy has many applications in practical systems. For example, in 

some wireless sensor network, users transfer data through different frequencies. 
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As long as several users are transmitting on the same frequency, packet collision 

may occur and additional techniques such as slotted aloha should be used to 

resolve the contention and the effective transmitting time will increase. The 

different frequencies can be viewed as different “servers” and the extra 

transmitting time when frequency collision occurs can be estimated by queuing 

model. Thus, the frequency allocation in a wireless sensor network can be 

analyzed in the context of load distribution in our multi-server model, and our 

strategy can help distribute different frequencies to users evenly in order to reduce 

the transmission time.  

Section II presents the model of distributed load balancing problems. Section 

III analyzes the model and defines the optimization function to make the system 

performance robust. Section IV applies the shift invariant protocol sequences in 

the distributed load balancing problems. Section V shows the numerical results 

and the comparison among different strategies. Section VI compares performances 

of different strategies in a practical simulation. Section VII introduces a 

suboptimal strategy to overcome some limitations of shift invariant protocol 

sequences and shows its performance in the simulation. Section VIII concludes 

the thesis. 
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II. System Model 

Following the model of multiple server system [14], there are L servers in the 

multiple server system and K users are sending jobs to the system. We assume that 

each user sends the same number of jobs to servers each time slot and we use N

to denote it. The pattern for one user at one time slot can be represented by a 

binary sequence, where the positions of 1s denote the servers selected to send jobs 

to by this user. For example, if there are 6 servers, user i sends 2 jobs at time slot 

t to server 1 and 2, we can use the sequence (1,1,0,0,0,0)i

ts   to represent the 

case.  

In order to distribute the jobs evenly, each user is required to send jobs to 

different servers in different time slots, until all servers are used once. Therefore, 

each user will follow a series of sequences to send jobs and the positions of 1s in 

these sequences should not overlap with each other. After using all servers once, 

the user will go back to follow the same pattern of sequences and thus the series is 

periodical. We define the period as /P L N and to simplify the model, we 

assume L  is divisible by N . We define this series of sequences as iS  for user 

i  

1 2 1 2( , ,..., , , ,..., ,...).i i i i i i

i P pS s s s s s s                     (1) 

For example, suppose there are 6 servers and 2 users and each user sends 2 jobs 

every time slot. User 1 selects server 1 and 2 at the first time slot, server 3 and 4 at 

the second time slot and server 5 and 6 at the third time slot. This scenario can be 



14 
 

represented as 1 ((1,1,0,0,0,0),(0,0,1,1,0,0),(0,0,0,0,1,1),......)S  . Similarly, user 

2 may follow 2 ((1,0,0,1,0,0),(0,1,0,0,1,0),(0,0,1,0,0,1),......)S  . 

 Figure 4 is an illustration of the system. The two users follow sequence sets 

1S  and 2S  correspondingly as mentioned above for two time slots to send jobs 

to 6 servers and jobs queue in front of each server. 

 
Fig.4 Illustration of multi-server system model 



15 
 

As there is no communication among different users, jobs from different users 

may arrive at the same server in one time slot. If more than one jobs are sent to 

the same server in a time slot, we assume the queuing order for these jobs are 

determined randomly. In our model, we only consider the simplest case where one 

server will serve exactly one job per time slot. Under this assumption, a stationary 

condition is that K N L   and /P L N K  . 

Moreover, as the users are independent, the time to start sending jobs are not 

synchronized and thus we need to introduce a time difference for each user when 

the whole system starts. We define the rotation iRS of iS  by 

2 3 1 2 3( , ,..., , , , ,......).i i i i i i

i PRS s s s s s s                    (2) 

Then we introduce the concept of a time difference [0, 1]i P    for user i  so 

that when the system starts, user i follows i  rotations of iS  

1 2 1 2( , ,..., , , ,......).i

i i

i i i i i

i PR S s s s s s


                     (3) 

In the previous example, if 1 0   and 2 0  , two users will just follow the 

sequences in 1S  and 2S . However, if 1 0   and 2 2  , the sequences for user 

2 will become ((0,0,1,0,0,1),(1,0,0,1,0,0),(0,1,0,0,1,0),......)  because user 2 

already goes to the third sequence in 2S  when the system starts. Therefore, 

different combinations of 1 2( , ,..., )K     result in different queuing patterns 

for servers. 

 Under this system model, we can derive the average waiting time for all jobs 
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from all users in terms of sequence sets and time difference for the users. The 

average waiting time is an important parameter to describe the performance of the 

whole system. 
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III. Analysis and Results 

For a particular combination of  , we can determine the queuing pattern for 

all servers by the following notations. We use ( )i

ts l  to represent the value of 

position l  in i

ts . It is just the number of job user i  send to server l at time t  

(either 1 or 0). Note that ( )i

ts l is dependent of  , and we use ( )i

ts l  instead of 

1 2( , , ,..., )i

t Ks l     here for short form; notations of ( )tA l  and ( )tQ l  which are 

defined later should be interpreted similarly. As one user only sends one job to a 

particular server in one period, we have 

1 1( ) ( ) ... ( ) 1.i i i

t t t Ps l s l s l                         (4) 

One user sends N jobs each time slot in total to all servers in one period, so 

( ) .i

t

l

s l N                        (5) 

We further use ( )tA l  to denote the number of jobs server l  receives from 

all users at time t, thus ( )tA l  can be computed directly from ( )i

ts l . 

( ) ( ).i

t t

i

A l s l                        (6) 

Similarly, we have 

1 1( ) ( ) ... ( ) ;t t t PA l A l A l K                         (7) 

( ) .t

l

A l N K                        (8) 

As ( )i

ts l  is periodical,  
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( ) ( ).t t PA l A l                        (9) 

( )tQ l  is defined as the number of jobs queuing in server l at time t, it can be 

expressed by the following formula, provided that we let new jobs come and get 

served immediately, then compute ( )tQ l by 

1( ) ( ( )+ ( ) 1) .t t tQ l Q l A l 

                        (10) 

( )tQ l  is also periodical except for the first P time slots. The proof of this is given 

in Appendix A. That is, 

( ) ( ).t t PQ l Q l  when t P                      (11) 

Finally, we can define an average waiting time for a random job by  

2

1 2

1
1 2

( , , ,..., )

( , ,..., ) .

P

t K

l t P
w K

Q l

T
P N K

  

    
 

 
                  (12) 

As ( )tQ l  is computed under one particular combination of shifts as defined by 

 , 1 2( , ,..., )w KT     can be represented as a function of  . 

We can use 1 2( , ,..., )w KT     to evaluate the performance of the whole system 

and a desirable goal is to minimize 1 2( , ,..., )w KT    . Obviously, 1 2( , ,..., )w KT   

can assume different values for different combinations of  , for a fixed set of 

sequences allocated to users. Moreover, we cannot predict the time differences   

for all users in practice. Therefore, we try to find a set of sequences to minimize 

the possible maximum value of 1 2( , ,..., )w KT     among all combinations of time 
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differences  . That is, our goal is to determine the 

1 2

1 2
, ,...,

arg min(max( ( , ,..., ))).
K

w K
S S S

T


                       (13) 

For example, suppose 1 ((1,1,0,0,0,0),(0,0,1,1,0,0),(0,0,0,0,1,1),......)S   

and 2 ((0,0,1,1,0,0),(0,0,0,0,1,1),(1,1,0,0,0,0),......)S  , when 1 0   and 

2 0  , no jobs will go to the same server at any time slot and thus the waiting 

time (1,1) 0wT  . However, when 1 2   and 2 4  , the sequences that two 

users follow are exactly the same and the waiting time becomes much worse 

(1,3) 0.5wT  . To determine the optimal strategy, we only need to consider the 

worst case for each sequence set. For example, in this example, the worst case 

over all shifts is  (1,3) 0.5wT   and this set of 1S  and 2S  is not the optimum. 

To find the solution for the optimization problem (13), we rely on the 

following theorem: 

Theorem:
1 2

1 2

, ,...,

( , ,..., )
K

w KT C
  

    where C is a constant for any sequences 

1 2, ,..., KS S S . 

The proof is as following.  

We can compute the average waiting time 1 2( , ,..., )w KT     from another 

direction. We define l

i  as the time slot at which server l  receives a job from 

user i  in one period P, which means 

( ) 1l
i

is l


 , 1,2,...,l

i P   
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The jobs sent to server l  in one period can be represented by the sequence 

1 2( , ,......, )l l l

K    and ( )tA l  can be computed by counting the number of t s that 

appear in 
1 2( , ,......, )l l l

K   . ( )tQ l  can further be computed from ( )tA l  by (8). 

Therefore, the total waiting time for jobs on server l  is a function of l

i . 

1 2 1 2( , , ,..., ) ( , ,......, )l l l

w K KT l g                  (16) 

1 2( , ,..., )w KT    can be further computed by 

1 2

1 2

( , , ,..., )

( , ,..., )
w K

l
w K

T l

T
L K

  

   



            (17) 

Therefore, 

1 2 1 2

1 2

1 2

1 2

, ,..., , ,...,

1 2

, ,...,

( , , ,..., )

( , ,..., )

( , ,......, )

K K

K

w K

l
w K

l l l

K

l

T l

T
L K

g

L K

     

  

  

  

  








 

 
 

For example, if 1 ((1,1,0,0,0,0),(0,0,1,1,0,0),(0,0,0,0,1,1),......)S   and 

2 ((0,1,0,0,1,0),(0,0,1,0,0,1),(1,0,0,1,0,0),......)S  , when 1 0   and 2 0  , 

server 1 will receive one job from user 1 at the first time slot and one job from 

user 2 at the third time slot, thus 
1

1 1   and 
1

2 3  .  

As user i  will send exactly 1 job to server l  in one period P, we can always 

find a i   where user i  sends the job to server l  at the first time slot, which 

means 1l

i  . Then if 1i   , 2l

i  . In this way, as the domain size of i  

and 
l

i  are both P, we can always find exactly one i  correspond to one value 
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of 
l

i . Therefore i  and 
l

i  are one to one mapping. Thus, summing up i  

from 1 to P is the same as summing up 
l

i  from 1 to P. Meanwhile, time 

differences for different users are independent and  
l

i  is only affected by i , 

we have 

1 2

1 2

1 2

1 2

, ,...,

1 2

1 2

( , ,......, )

... ( , ,......, )

... ( , ,......, )

K

K

l l l
K

l l l

K

l

l l l

K

l

l l l

K

l

g

L K

g

L K

g

L K

  

  

  

  

  

  









 

 

 

 

Which is the same no matter what sequences are used. 

For example, if 1 ((1,1,0,0,0,0),(0,0,1,1,0,0),(0,0,0,0,1,1),......)S   and 

2 ((0,1,0,0,1,0),(0,0,1,0,0,1),(1,0,0,1,0,0),......)S  , when we fix 2  and only 

consider server 1, we can find that 
1

1 1   when 1 0  , 
1

1 2   when 1 2   

and 
1

1 3   when 1 1  . Therefore, when summing up all possibilities for 1 , it 

is the same as summing up all possible values for 
1

1 . Similarly, all values of 
1

2  

are included once when summing up 2 . Patterns on other servers can also be 

computed in this way and thus  

1 2 1 2 1 2

2 2 6 3 3

1 2 1 2 1 2

, 0 0 1 1 1

( , ) ( , ) ( , )
l l

l l

w w

l

T T g
     

     
    

     

6

1

[ (1,1) (1,2) (1,3) (2,1) (2,2)

(2,3) (3,1) (3,2) (3,3)]

l

g g g g g

g g g g



    

   


                 (18) 
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When we change sequences to

1 ((0,1,0,0,0,0),(0,0,1,0,0,1),(1,0,0,1,0,0),......)S  and 

2 ((1,0,1,0,0,0),(0,1,0,1,0,0),(0,0,0,0,1,1),......),S  we can find that the 

relationship changes to 
1

1 1   when 1 2  , 
1

1 2   when 1 1   and 
1

1 3   

when 1 0  . However, when we sum 1  and 2  up, we still get the same 

expression as (18) and the result is irrelevant to what sequences used. Therefore, 

1 2

1 2

, ,...,

( , ,..., )
K

w KT C
  

     where C is a constant for any sequences 1 2, ,..., KS S S . 

Based on this theorem, as the sum of 1 2( , ,..., )w KT     is constant, a shift 

invariant sequence set that yields the same value for all  , if it exists, is optimal. 

In the next section, we will show that such solution exists for some system 

parameters. 
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IV. Applications of Shift Invariant Protocol Sequences 

The conditions of the collision channel is quite similar to the distributed load 

balancing model, so we try to apply the protocol sequences to solve the 

optimization problem in our model.  

As the cross correlation of shift invariant protocol sequences are the same 

among different shifts, and the response time is related to the cross correlation, we 

find that shift invariant protocol sequence is one of the sequence sets that can 

make the response time equal among all shift patterns. In other words, shift 

invariant protocol sequence is one of the optimal solutions to (13).  

Figure 5 shows one set of shift invariant protocol sequences and the resulting 

routing patterns for different users. Table I shows the response time for all  s, 

which is constant. We further studied the case when all users use the sequences for 

user 3 in previous case. Although the respond times for some  s are smaller than 

that of shift invariant sequences, the maximum one is much larger. Therefore, shift 

invariant sequences set is one of the optimal solutions to (13) and thus has a 

robust performance. 
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Time Differences (0,0,0) (0,0,1) (0,0,2) (0,1,0) (0,1,1) (0,1,2) … (2,2,2) 

Average waiting 

time for shift 

invariant sequences 

 

0.444 

 

0.444 

 

0.444 

 

0.444 

 

0.444 

 

0.444 

 

… 

 

0.444 

Average waiting 

time for same 

sequences 

 

1 

 

0.333 

 

0.666 

 

0.333 

 

0.666 

 

0 

 

… 

 

1 

 

Shift Invariant Protocol Sequences 

 

(1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0) 

(1,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0) 

(1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 

 

User 1: 

 

(1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0) 

(0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0) 

(0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1) 

 

User 2: 

 

(1,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0) 

(0,0,0,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0) 

(0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,1,1,1) 

 

User 3: 

 

(1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 

(0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0) 

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1) 

Fig.5 Example of shift invariant protocol sequence. Adapted from [20] 

Table 1 Average Response Time for Different 𝜏. Adapted from [20] 
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However, the existence of shift invariant protocol sequences depends on the 

value of server number L and period P . For P users, the minimum value of L  

is PP .  

When the number of servers does not satisfy the requirements of shift 

invariant sequences, we propose a simple way to generate a suboptimal sequence 

set. Note that if there are two sequence sets 1S and 2S with same user number K

and period P , suppose their server numbers are 1L and 2L , we can append 2S at 

the end of 1S  and let them shift in their own range with period P . In this way, 

we construct a new sequence set for 1 2L L  servers with the same user number 

K  and period P .  

Therefore, if there is a shift invariant sequence set LS for server number L , 

we can generate optimal sequence set for n L  (where n is an integer) by adding n 

LS  together. Based on it, for any server number PL P , we can firstly find the 

shift invariant sequence set PS for PP  servers, and then define a minimal shift 

invariant sequence set for L  by adding Ln  PS  together where Ln  is the 

maximal integer that satisfies P

Ln P L  . For the remaining part, we currently 

append a sequence set with same sequences for all users.  

Figure 6 shows an example. For L = 30, K = 3 and P = 3, we find the shift 

invariant sequence set for L = 27 and append the same sequences for L = 3 at the 

end of sequences allocated to each user. 
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L = 30 

 

User 1: 

 

(1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0) 

(0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0) 

(0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1) 

 

User 2: 

 

(1,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,1,0,0) 

(0,0,0,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,1,0) 

(0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,1,1,1,0,0,1) 

 

User 3: 

 

(1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0) 

(0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0) 

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,1) 

 

Fig.6 sequences allocated to users (L = 30, K = 3, P = 3). Adapted from [20] 
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V. Numerical Results 

1. Simulation Settings  

The settings of our simulation are the same as mentioned in section II. There 

are 27 servers and 3 users in the system and each user sends 9 jobs to different 

servers every time slot. We further introduce a parameter sT to denote how long a 

single job needs to be served. It is assumed to be one time slot in previous part 

and it can vary from 1 to 1/3 in our simulations. (Jobs will not cumulate if sT is 

less than 1/3, because even if a server receives 3 jobs in one time slot, it can serve 

them all in that time slot). We compute average response time for one job which 

equals average waiting time defined by (12) plus the service time of one job. 

Three routing strategies are compared in our simulation: probabilistic routing, 

random sequence routing and shift invariant sequence routing.  

In probabilistic routing, each user selects 9 different servers out of 27 with 

equal probabilities among all servers in each time slot to send jobs. Users behave 

independently among different time slots and their routing strategies are not 

affected by previous selections.  

In random sequence routing, sequence sets defined by (1) are generated 

randomly and allocated to users at the beginning. Users send jobs following the 

sequence sets in one period P = 3 time slots. Then new sequence sets will be 

generated randomly in next period. The effect of this strategy is equivalent to 

probabilistic routing with memory, which means that users send jobs randomly to 
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all servers at the beginning, memorize the selected servers and send jobs 

randomly to remaining servers in next time slots. 

In shift invariant routing, we allocate the shift invariant sequences for L = 27, 

K = 3 and P = 3, as shown in figure 2, to users instead of random sequences in 

previous case to do routing.  
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2. Results 

Figure 7 shows the comparison result. The triangle line is probabilistic 

routing and the performance is the worst. The system is even not robust as sT  

goes to 1 and the average response time tends to infinity. Diamond line represents 

the performance of random sequence routing. We can see its average response 

time is larger than that of shift invariant sequences routing, which is denoted by 

star line.  

 

 

In practice, users usually divide one piece of job into several parts and 

distribute them to servers and the total waiting time is determined by the part that 

returns latest. It is exactly the property of protocol sequences to guarantee the 

 

Fig.7 comparison of average response time. Adapted from [20] 
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throughput of the worst case. To simulate this, in previous system we further 

compare the maximum respond time for jobs sent in one time slot from one user. 

Figure 8 shows that the shift invariant sequences routing performs much better 

than others in this case. 

 

 

  

 

Fig.8 comparison of maximal response time in one time slot. Adapted from [20] 
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VI. Practical Simulation 

1. Simulation Settings 

In section II, a model is proposed to study the distributed load balancing 

problems and optimization functions are provided to find the best routing strategy. 

However, the assumptions are quite strong in order to do mathematical derivations. 

Therefore, a simulation with more practical conditions is presented in this section. 

The assumptions are as following: 

1. The job arrival time for each user follows Poisson Process with parameter 

i  for user i . 

2. The job service time follows exponential distribution with parameter  . 

3. There are 27 servers and 3 users. When a packet arrives at one user, it will 

divide the job into 9 pieces and send them to the servers based on different 

routing strategy. The response time is defined to be the time when all the 

pieces of this packet are served, which is the same scenario as the second 

simulation in section IV. 

4. The arrival time and service time for all jobs are pre-generated and all 

routing strategies use this same set of data in one run to guarantee a fair 

comparison. The average response time for 10000 runs of simulation with 

different arrival and service time sets are taken and compared. 
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5. The ratio between the overall job incoming rate and the overall server 

capacity 
i




 varies from 1 to 0.1. 

Four routing strategies are compared in the simulation: probabilistic routing, 

random sequence routing, shift invariant protocol sequence routing and same 

server routing. The first three routing strategies are basically the same as the 

settings in section IV. The only difference is that in this simulation, the time is 

continuous instead of slotted, thus sequences are used only when new jobs arrive.  

In same server routing, each user is just assigned 9 servers and it will always 

send jobs to them without shift. The reason to show its performance is that in the 

model in section II, the waiting time is 0 and the performance is the best if we use 

the same server routing. However, we argue that users should shift to different 

servers in practice. The reason is that in the previous model, the service time is 

equal to the job arrival interval and thus if one user always send jobs to the same 

set of servers, jobs do not cumulate. On the contrary, in this simulation, as well as 

in practice, job arrival time and service time are randomly distributed and it is 

highly possible that the former jobs are not completed when new jobs come. 

Therefore, if we use same server routing and other servers are idle in such case, 

the waiting time must be longer comparing to those routing strategies that shift the 

servers.  

Another important issue is that in practice, the number of users is much larger 



33 
 

and we may assign the same set of sequences to a group of users. With same 

server routing, if this group of users are active simultaneously, the server is highly 

congested. However, if these users are assigned the same set of sequences, they 

still can distribute jobs to different servers and the response time is smaller. 
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2. Results 

Figure 9 shows the result with the same job arrival rate for all users. The circle 

line is same server routing and the triangle line is probabilistic routing. Their 

response times are both much larger than other strategies. Diamond line represents 

the performance of random sequence routing. We can see its average response 

time is larger than that of shift invariant sequences routing, which is denoted by 

star line. The performance of all routing strategies tends to be the same as the ratio 

between job arrival rate and job service time 
i




 goes to 0, because the system 

is not congested and collision seldom occurs. Moreover, the same server routing 

performs better when 
i




 is small, because there is few collision from the 

same user as mentioned in section V.1. 

 
Fig.9 comparison of average response time with same λ 
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Figure 10 shows the result with different job arrival rate for different users. 

The ratio of arrival rate for 3 users is 1:2:3 and the overall arrival rate remains the 

same as in figure 9. We can see that in this case, same server routing performs 

even worse, because with different i  for different users, there are many jobs 

arrives at user 3 with largest arrival rate when the other two users are not active 

and same server routing cannot distribute jobs evenly to all users in this case. It is 

also shown that the shift invariant protocol sequence routing still performs much 

better than others in this case. 

 

 

 

  

Fig.10 comparison of average response time with different λ 
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VII. Suboptimal Strategy 

1. CRT Protocol sequences 

As mentioned in section III, there is a limitation on the number of servers L 

and period P. To relax the limitation and to apply the routing strategy to arbitrary 

number of servers in practice, a new set of protocol sequences called CRT 

protocol sequences is presented in this section.  

 

 

CRT protocol sequence is proposed in [21], which is based on the bijective 

mapping between one-dimensional sequence and two-dimensional array by the 

Chinese Remainder Theorem (CRT). The cross-correlation, as defined in section 

I.2, between these sequences are highly concentrated around the mean value under 

different shifts of the sequences. It is equivalent to say that the differences among 

1 2( , ,..., )w KT    , defined by function (12), under all possible  s are limited. 

Therefore, the CRT sequence is a suboptimal solution to the optimization function 

(13).  

Another important property is that the relationship between number of servers 

CRT Protocol Sequences 

 

User 1: (1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0) 

 

User 2: (1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0) 

 

User 3: (1,0,0,1,0,0,0,1,0,0,0,1,0,0,1,1,0,0,1,0,0,0,1,0,0,0,1,0,0,1) 

Fig.11 An example of CRT protocol sequences 
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L and period P is L P Q   where Q is a positive integer that is relative prime to 

P. Therefore, the limitation for the number of servers L is relaxed to 2( )L O P , 

thus it is much easier to find this kind of sequences for given number of servers.  

CRT protocol sequence can be generate by computing linear operations in 

modular arithmetic and the detail algorithm to generate such sequences can be 

found in [21]. An example of CRT protocol sequences for 15 servers and 3 users 

is shown in figure 11 and performance comparison among CRT protocol sequence 

and previous routing strategy will be shown in next section.  
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2. Numerical Results 

The simulation with same assumptions as section V is done to compare the 

performance of the suboptimal strategy by CRT protocol sequences with other 

strategies. In this simulation, there are 30 servers and 3 users and we use the CRT 

sequence as shown in figure 11 to do routing. Other strategies including same 

server routing, probability routing and random sequence routing are the same as 

mentioned in section V and the job arrival rate for all users are the same. 

Moreover, we compare the performance of a suboptimal routing strategy 

derived from shift invariant protocol sequences as shown in figure 6. The reason 

is that as mentioned above, the relationship between the number of servers L and 

period P for CRT sequences is L P Q   where Q is a positive integer that is 

relative prime to P, while for SIS sequences, PL P . Therefore, we cannot find 

an L to satisfy both condition and there is no L that has both CRT sequences and 

SIS sequences. Thus we compare the performance of the suboptimal routing 

strategy derived from SIS sequences to give a rough idea of the differences 

between CRT and SIS sequences. 

We can see in figure 12, the performances of CRT protocol sequence routing is 

slightly worse than the suboptimal SIS sequence, both better than that of all other 

strategies. 
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Fig.12 comparison of average response time 
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VIII. Conclusions 

In this thesis, we present a model of distributed load balancing problem, 

which can be applied to many applications including frequency channel allocation 

in wireless sensor networks.  We define an optimization problem in order to 

minimize the maximal response time for all combinations of time differences 

among the users. Under suitable technical conditions, we derive optimal solutions 

to the problem, which are based on shift invariant protocol sequences.  

Numerical results show that our algorithm performs better than other strategies 

such as probabilistic routing and random sequences. However, there are some 

limitations on the number of users. A simulation with practical conditions proves 

that our algorithm can improve the performance, as predicted in our mathematical 

model. A suboptimal routing strategy is also proposed based on CRT protocol 

sequences to relax the limitation on the number of users.  

Further investigation about other optimal solutions for (13) is required to see 

whether there are better sequence sets that are easier to generate and have fewer 

limitations. Moreover, there is not always an optimal solution for every number of 

servers L and a practical routing algorithm for arbitrary number of servers need to 

be developed. A simplest version of routing algorithm is proposed in section III.2, 

but obviously we can achieve better performance by merging existing optimal and 

suboptimal sequences and it worth a closer look in the future. 

Besides, it is common that users have different job arrival rates in practice 
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and employing protocol sequences with different duty factors may give better 

throughput comparing to the result in section V. Such sequences have yet not been 

studied in previous researches.  

Another direction of future work is to study the performance of our load 

balancing algorithm in real applications such as frequency channel allocation in 

wireless sensor networks and cloud computing. Practical implementations suitable 

for those systems are required and routing algorithms can be developed 

accordingly. 
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APPENDIX A 

Considering one particular server, I use ( )Q t  to represent the queue length at 

time t and ( )A t  to represent number of jobs arrive at time t. 

Define ( )D t  as the number of jobs served at time t. (At time t, new jobs come 

first, then get served immediately. ( )Q t  is computed after that.) 

( ) ( 1) ( ) ( );Q t Q t A t D t                         (14) 

1 ( 1) ( ) 0
( ) .

0 ( 1) ( ) 0

Q t A t
D t

Q t A t

  
 

  
                    (15) 

from (13), 
1 1

( ) ( ) ( ) (0)
P P

t t

Q P A t D t Q
 

     

1

( )
P

t

A t K


 , if (0) 0Q   and ( )Q K b , then 
1

( )
P

t

D t K b


  . As ( )D t  is 

either 1 or 0, ( )P K b   of ( )D t  are 0s and others are 1s.  

Let 1 2 ( )( ) ( ) ... ( ) 0P K bD t D t D t     
 

( 1 2 ( )... P K bt t t     ), we can divide the scenario into several parts.  

from (14), 1 1 1( ) 0 ( 1) ( ) 0D t Q t A t      

1 11 1

1

1 1

( 1) ( ) ( ) (0) 0
t t

t t

Q t A t D t Q
 

 

       and 

 

Appendix A and have been published in [20].   
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1 1( ) ( ) 0Q t A t   

1 1

1

1

( ) 1
t

t

D t t




   because only  

1 2 ( )( ) ( ) ... ( ) 0P K bD t D t D t       

similarly,  

2 2 2( ) 0 ( 1) ( ) 0D t Q t A t      

2 2

1 1

1 1

2 1

1 1

( 1) ( ) ( ) ( ) 0
t t

t t t t

Q t A t D t Q t
 

   

      and  

2 2( ) ( ) 0Q t A t   

2

1

1

2 1

1

( ) 1
t

t t

D t t t


 

    because only  

1 2 ( )( ) ( ) ... ( ) 0P K bD t D t D t       

Now, I change the original condition (0) 0Q   to '(0)Q b  and consider 

the same points as before. 

1 11 1

1

1 1

'( 1) ( ) ( ) '(0)
t t

t t

Q t A t D t Q b
 

 

      , 1'( ) 1D t   and 1'( ) 1Q t b   

(because ( )A t  does not change, 
1 1

1

( )
t

t

D t




 cannot be larger.) 

similarly,  
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2 2

1 1

1 1

2 1

1 1

'( 1) ( ) ( ) '( ) 1
t t

t t t t

Q t A t D t Q t b
 

   

       , 2'( ) 1D t   and 2'( ) 2Q t b   

…… 

As P K , ( )b P K b   ,  

1 1

1 1

1

1 1

'( 1) ( ) ( ) '( ) 1
b b

b b

t t

b b

t t t t

Q t A t D t Q t
 

 



   

      , '( ) 1bD t   and '( ) 0bQ t 
 

1 2 ( )'( ) '( ) ... '( ) 0b b P K bQ t Q t Q t        

exactly b time points when ( ) 0D t   become '( ) 1D t    for ( )P K bt t    and 

1

'( )
P

t

D t K


  

therefore,  

1 1

'( ) ( ) ( ) '( ) '(0) (0)

0

K K

t t

Q K Q K D t D t Q Q

b b

 

    

   

   

'( ) ( )Q K Q K b   
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