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Zimerman e José Francisco Gomes por todos esses anos de orientação , pelos ensinamentos e
pelo apoio recebido durante todo este tempo.

Gostaria agradecer especialmete a meus amigos Bruce, Cristhiam, Cristhian, David,
Humberto e Oscar pela grande amizade, apoio nos momentos dif́ıceis e também pelos mo-
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Resumo

Nesta tese discutimos as propriedades de integrabilidade das teorias de campo clássicas
em duas dimensões na presença de descontinuidades ou defeitos tipo-II, principalmente us-
ando a linguagem do formalismo do espalhamento inverso. Um método geral para calcular a
função geradora de um conjunto infinito de grandezas conservadas modificadas para qualquer
equação de campo integrável é apresentado, uma vez que seus respetivos problemas lineares
associados são dados e suas correspondentes matrices do defeito são calculadas. O método
é aplicado no cálculo das contribuições dos defeitos para a energia e o momento para vários
modelos e mostramos a relação entre as condições de defeito integráveis e suas respevtivas
transformações de Bäcklund para cada modelo.

Palavras Chaves: Sistemas Integráveis; Simetrias; Leis de Conservação; Solitons.

Áreas do conhecimento: Teoria de Campos; F́ısica Matemática.
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Abstract

In this thesis we discuss the integrability properties of two-dimensional classical field
theories in the presence of discontinuities or type-II defects, mainly using the language of the
inverse scattering approach. We present a general method to compute the generating function
of an infinite set of modified conserved quantities for any integrable field equation given their
associated linear problems and computing their corresponding defect matrices. We apply
this method to derive in particular defect contributions to the energy and momentum for
several models and show the relationship between the integrable defect conditions and the
Bäcklund transformations for each model.

Keywords: Integrable systems; Symmetries; Conservation Laws; Solitons.

Areas of knowledge: Field Theory; Mathematical Physics.
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CHAPTER 1

Introduction

This thesis aims to investigate integrable classical field theories in (1+1)-dimensional space-
time with internal discontinuities which will be referred to as defects. Two dimensional
integrable field theories possessing soliton solutions constitute, besides their intrinsic beauty,
an interesting laboratory to test ideas and develop exact methods on non-perturbative as-
pects in many areas of physics. In fact, during the twentieth century the original purpose
and implications of the idea of integrability have experienced considerable progress. Besides
the construction of solutions for nonlinear evolution equations in two dimensions, a wide
variety of modern mathematical methods, such as the dressing method and classical and
quantum inverse scattering method, have been developed.

It is well-known that integrable systems are physical systems for which the equations of
motion can (in principle) be solved exactly. A remarkable feature of this particular systems
is the fact that they possess soliton solutions. These solutions are localized non-linear waves
which evolve in time preserving its shape and velocity even after scattering. This kind of
particle-like behaviour is directly related with the existence of a sufficient number (infinity
in the case of field theories) of conserved quantities or integrals of motion, such that all the
relevant quantities of the model can be computed. At this point it is worth pointing out
that in this thesis we will use the definition of “integrability” as the existence of both a
constructive way of finding solutions and an infinite number of conserved quantities.

In the quantum version of this situation, the existence of an infinite number of conserved
charges that are mutually commuting constrain severely the scattering processes implying
in the factorizability of the S-matrix [1]. Such theories are commonly called exactly soluble.
Indeed, the study of integrable field theories on restricted domains was firstly explored within
the quantum framework by Ghoshal and Zamolodchikov in [2], where they considered the
sine-Gordon theory defined on the half-line (−∞, 0). They found that the integrability of

1



Chapter 1. Introduction 2

the bulk theory, that means those which are defined on the infinite real line (−∞,∞), could
be preserved in the boundary theory by choosing carefully the boundary condition.

After that, there was also a great interest in the situation of integrable models in the
presence of defects (or impurities). At this point, a defect is introduced as an internal
boundary condition linking a field theory in the left region (x < 0) with a (not necessarily
the same) field theory in the right region by a set of suitable defect conditions at the position
of the defect x = 0. In a pioneering work by Delfino et.al.[3, 4], it was pointing out that the
factorization of the S-matrix with non-trivial scattering are incompatible with both reflection
and transmission. In fact, some years later it was shown in the case of sine-Gordon model
that this compatibility requires the defect to be purely transmitting [5]. Another point of
view of this situation was also provided recently in [6]. Despite the study of these quantum
aspects related to the presence of defects into integrable models deserves special attention,
in this thesis we will focus mainly on the classical aspects of the integrable defects.

From a Lagrangian point of view, it was noticed some years ago that several integrable
field theories can accommodate defects without spoil the integrability properties of the bulk
theory [7, 8]. In this framework, the usual variational principle from a local Lagrangian
density located at some fixed point, reveals frozen Bäcklund transformations [9] as the defect
conditions for the fields. In addition, it turns out that these kind of defect conditions allow
not only the conservation of the energy but also the conservation of the momentum which
have been suitable modified after including defect contributions. Moreover, their integrability
is provided by the existence of a modified Lax pair involving a limit procedure, but in general
it was only checked explicitly for a few conserved charges. As a novel feature of most of these
models is that only physical fields, namely the fields present in the original bulk Lagrangian
density, were present in the defect description and therefore they were called type-I defects
[10]. However, it was noticed that not all the possible relativistic integrable models could be
accommodate within this framework and then it was proposed a generalization by allowing
a defect to have its own degree of freedom, and after that they are called type-II defects
[10]. Many examples were also discussed in [10] like sine/sinh-Gordon, Liouville, massive

free field, and the a
(2)
2 affine Toda model also known as Tzitzéica, Bullogh-Dodd or Zhiber-

Shabat-Mikhailov equation. In supersymmetric extensions of sine-Gordon model [11, 12]
those auxiliary boundary fields, which correspond to the degree of freedom of the defect
itself, also appear naturally.

In spite of the success of showing the conservation of the energy and momentum in
all of these models, the corresponding Lax pair approach for describing the type-II defects
was necessary. In order to make progress and fill this gap, in this thesis we provided the
Lax formalism where the type-II defect conditions corresponding to frozen type-II Bäcklund
transformations are encoded in a well-known defect matrix [13]. This matrix provided an
elegant way to compute the modified conserved quantities, ensuring integrability of the defect
theories. In particular, we will present the type-II defect matrices for the sine-Gordon,
Tzitzéica-Bullough-Dodd[14], and for the massive Thirring models [15], which constitute
probably one of the most important contributions of this thesis to the program of integrable
defects.
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This thesis will be organized as follows:

• In the next chapter, we will introduce the main ideas of type-II defects in integrable
field theories. Firtsly, by using a Lagrangian description we will derive some conditions
that significantly constrain the form of the defect potentials. Subsequently, the Lax
approach is used to construct an infinite set of conservation laws in the bulk theory and
then these results are showed to be useful to derive a general formula for computing
the defect contributions to the modified conserved quantities for any given m × m
associated linear problem.

• In chapter 3, we will use the tools introduced in chapter 2 in the analysis of the sine-
Gordon (sG) model with type-I and type-II defects. We derive the defect matrices
for the model and then compute the respective defect contributions to the energy and
momentum.

• In chapter 4, we present the analysis of the Tzitzéica-Bullough-Dodd (TBD) model with
type-II defects. We derive the defect matrix and recovered the Bäcklund transformation
derived before by Lagrangian methods. Consequently, we establish the integrability of
the defect theory by computing explictly the corresponding modified conserved energy
and momentum.

• In chapter 5, we will discuss the integrability properties of the Grassmannian massive
Thirring (GMT) model in the presence of the type-II defects, which are related with
its Bäcklund transformation. Firstly, we present some basic aspects of the bulk theory
and construct the conservation laws using the method proposed in chapter 3. Then,
we provide the local Lagrangian density for describing the defect theory and derive the
defect conditions preserving the modified momentum. Finally, we construct the defect
matrix to ensure that the defects does not spoil the integrability.

• In chapter 6, we will present the bosonic version of the massive Thirring model in
the presence of the type-II defects. The motivation for this model is the possibility
of study the interaction of Thirring solitons with defect. We will apply the inverse
scattering method to derive its defect matrix. From this, we derive the Bäcklund
transformation for the Bosonic massive Thirring (BMT), which seems not to have
been reported elsewhere in the literature before [14]. The integrability of defect model
is ensured by computing explicitly the defect contributions to the modified energy and
momentum as well.

• In the last chapter, we conclude with some final remarks and comments on future
directions which emerged from the work contained here.

• In the appendices, we have collected useful information of the algebraic content used
in thesis and we present sketchily boundary theories starting from the defect theories.

• The bibliography presented in this thesis helps to provide reference to some essential
works and is by no means rigorously complete.



CHAPTER 2

Integrable defects

In this chapter we introduce the basics ideas of defects in integrable field theories. Systems
with defects are in some sense more realistic and play an important role of any physical
theory. Usually the introduction of this kind of discontinuities spoils the integrability or
solvability of the models in the bulk. For example, introducing δ-impurities in classical
integrable field theories may have interesting effects in the behaviour of solitons but as a
consequence the integrability is lost [16].

However, some years ago it was pointing out that several integrable field theories permit
defects which are able to preserve the property of classical instegrability from a Lagrangian
point of view. In this description, models like free fields, sine/sinh-Gordon, Liouville models

and a
(1)
n were considered and the conserved momentum required for the integrability of the

whole system were found [7, 8]. In addition, the defect conditions emerged naturally as the
Bäcklund transformation of the model located at the defect position, and then they were
named type-I defects. Despite the success of this approach, it was noticed that not all the
possible relativistic integrable models could be accommodate within this framework and then
it was proposed a generalization by allowing a defect to have its own degree of freedom, and
after that they were named type-II defects [10].

It is the purpose of this chapter to show precisely that the classical integrability can
be preserved after introduction of type-II defects, by deriving firstly some constraints that
determine the explicit form of the defect potentials. Subsequently, the Lax approach is used
to construct an infinite set of conservation laws in the bulk theory and then these results
are showed to be useful to derive a general formula for computing the defect contributions
to the modified conserved quantities for all orders.

4



2.1. General setting 5

2.1 General setting

We will start our discussion on integrable defects from the Lagrangian point of view following
the main ideas of the pioneering work [7]. The defect is introduced as an internal boundary
in a selected point of the x-axis, say x0 = 0, linking a field theory defined in the region x < 0
with a (not necessarily the same) field theory in the region x > 0,

−∞ • +∞Φ1(x, t) x = 0 Φ2(x, t)

where the fields on either side of the defect can interact to each other by a set of defect
conditions given at x = 0. This kind of study was also performed in early works [17],
however in different contexts.

The starting point for the whole construction is to define a Lagrangian density for a
general theory Φ1 = (φ1, ψ1, ψ̄1) in the region x < 0 describing bosonic φ and fermionic∗

ψ, ψ̄ fields, and correspondingly Φ2 = (φ2, ψ2, ψ̄2) in the region x > 0, and a contribution in
x = 0 describing the defect,

L = θ(−x)L1 + θ(x)L2 + δ(x)LD, (2.1)

with

Lp =
1

2
(∂xφp)

2 − 1

2
(∂tφp)

2 + ψ̄p (∂t − ∂x) ψ̄p + ψp (∂t + ∂x)ψp + Vp(φp) +Wp(φp, ψp, ψ̄p), (2.2)

LD =
1

2
(φ2∂tφ1 − φ1∂tφ2)− Λ∂t(φ1 − φ2) + ∂tΛ(φ1 − φ2) +B0 (φ1, φ2,Λ)− ψ1ψ2 − ψ̄1ψ̄2

+2f∂tf +B1(φ1, φ2,Λ, ψ1, ψ2, ψ̄1, ψ̄2, f), (2.3)

where p = 1, 2 and Λ(t) and f(t) are two bosonic and fermionic auxiliary fields respectively.

The bulk potential are given by Vp and Wp, and B0 and B1 are the corresponding defect

potentials which depend on the bulk fields valued at the point x = 0. The auxiliary fields

play the role of Lagrange multipliers and the defects potentials also depends on them. For

the sake of classification, the case without extra degree of freedom received the name of

type-I defects (Λ = 0 = f), otherwise we will call it type-II defects.

Besides the standard fields equations in the bulk regions†,

∂2t φp − ∂2xφp = −∂Vp
∂φp

− ∂Wp

∂φp

,

(∂t + ∂x)ψp = −1
2

∂Wp

∂ψp

, (2.4)

(∂t − ∂x) ψ̄p = −1
2

∂Wp

∂ψ̄p

, p = 1, 2

∗In this presentation we consider Majorana fields, however in chapter 5 we will deal with Dirac fields.
†Where by notation fermionic derivatives act on the left.
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we have the defect conditions at x = 0,

∂xφ1 − ∂tφ2 + 2∂tΛ = − ∂

∂φ1

(B0 + B1) , (2.5)

∂xφ2 − ∂tφ1 + 2∂tΛ =
∂

∂φ2

(B0 + B1) , (2.6)

ψ1 + ψ2 =
∂B1

∂ψ1

= −∂B1

∂ψ2

, (2.7)

ψ̄1 − ψ̄2 = −∂B1

∂ψ̄1

= −∂B1

∂ψ̄2

, (2.8)

∂tf = −1
4

∂B1

∂f
, (2.9)

∂t(φ1 − φ2) =
1

2

∂

∂Λ
(B0 + B1). (2.10)

Notice that these defect conditions are not invariant under a parity transformation, say

Φ1 ←→ Φ2. On the other hand, since the time translation invariance has not been violated,

the total energy is expected to be conserved including a defect contribution. Then, for the

energy we have

E =

∫ 0

−∞
dx

[
1

2
(∂xφ1)

2 +
1

2
(∂tφ1)

2 − ψ̄1∂xψ̄1 + ψ1∂xψ1 + V1 +W1

]
+

∫ ∞

0

dx

[
1

2
(∂xφ2)

2 +
1

2
(∂tφ2)

2 − ψ̄2∂xψ̄2 + ψ2∂xψ2 + V2 +W2

]
. (2.11)

Now by taking its time-derivative, we get

dE

dt
=

[
(∂xφ1)(∂tφ1) + ψ1∂tψ1 − ψ̄1∂tψ̄1 − (∂xφ2)(∂tφ2)− ψ2∂tψ2 + ψ̄2∂tψ̄2

]
x=0

, (2.12)

and using the boundary conditions (2.5)–(2.10) we easily find that the modified conserved

quantity includes a defect contribution given by the following combination,

E = E +
[
(B0 + B1)− ψ̄1ψ̄2 − ψ1ψ2

]
x=0

. (2.13)

without any constraints on the form of the defect potentials B0 and B1. However, from the

above Lagrangian density it is clear that the presence of the defect breaks explicitly the bulk

translational invariance and in principle the conservation of momentum should be violated.

An interesting fact is that it is also possible to add a defect term to the bulk momentum in

order to conserve it by a suitable choose of the defect potentials B0 and B1. To do that, let

us consider the time-derivative of the momentum,

dP

dt
=

d

dt

[∫ 0

−∞
dx

(
∂tφ1∂xφ1 − ψ̄1∂xψ̄1 − ψ1∂xψ1

)
+

∫ +∞

0
dx

(
∂tφ2∂xφ2 − ψ̄2∂xψ̄2 − ψ2∂xψ2

)]
.(2.14)
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and using the field equations, we get

dP

dt
=

[
1

2
(∂xφ1)

2 +
1

2
(∂tφ1)

2 − ψ̄1∂tψ̄1 − ψ1∂tψ1 − V1 −W1

−1
2
(∂xφ2)

2 − 1

2
(∂tφ2)

2 + ψ̄2∂tψ̄2 + ψ2∂tψ2 + V2 +W2

]
x=0

. (2.15)

Now, by using the defect conditions, we obtain

dP

dt
= −(∂tφ2)

∂

∂φ1

(B0 + B1)− (∂tφ1)
∂

∂φ2

(B0 + B1) +

(
∂B0

∂φ1

)(
∂B1

∂φ1

)
−
(
∂B0

∂φ2

)(
∂B1

∂φ2

)
+2(∂tΛ)

(
∂

∂φ1

(B0 + B1) +
∂

∂φ2

(B0 + B1) +
1

2

∂

∂Λ
(B0 + B1)

)
+
1

2

[(
∂B0

∂φ1

)2

−
(
∂B0

∂φ2

)2
]
− (∂tψ̄1)

∂B1

∂ψ̄1

− (∂tψ̄2)
∂B1

∂ψ̄2

+ (∂tψ1)
∂B1

∂ψ1

+ (∂tψ2)
∂B1

∂ψ2

+(V2 − V1) + (W2 −W1) + ∂t(ψ̄1ψ̄2 − ψ1ψ2), (2.16)

where we have assumed that (
∂B1

∂φ1

)2

=

(
∂B1

∂φ2

)2

= 0. (2.17)

Analysing the expression (2.16) to obtain the sufficient conditions for the conservation of

momentum should be quite complicated, so we can consider some simpler cases.

Firstly, for a purely bosonic type-I defect, (2.16) reduces to,

dP

dt
= −(∂tφ2)

∂B0

∂φ1

− (∂tφ1)
∂B0

∂φ2

+
1

2

[(
∂B0

∂φ1

)2

−
(
∂B0

∂φ2

)2
]
+ (V2 − V1), (2.18)

and then it is natural to require that the term without time-derivatives vanishes and the

other terms should be a total time-derivative leading to the following equations,

∂2B0

∂φ2
1

=
∂2B0

∂φ2
2

,

(
∂B0

∂φ1

)2

−
(
∂B0

∂φ2

)2

= 2(V1 − V2), (2.19)

which can be solved by the ansatz B0 = B+
0 (φ+) + B−0 (φ−), where φ± = (φ1 ± φ2)/2. By

substituting this form into the second relation, we get

∂3B±0
∂φ3±

= ζ2
∂B±0
∂φ±

. (2.20)

This is exactly the constraints for the defect potential originally derived in the pioneering

work of Bowcock et.al.[7]. In this case, the modified conserved momentum containing the

bulk and defect contributions is given by P = P + (B+
0 − B−0 )|x=0. An important point to

note is that the possible defect potentials are quite limited by the form of the bulk ones. In

particular, the sine/sinh-Gordon‡, Liouville, massive and massless free fields can be enclosed
‡In the next chapter we will discuss this case in more detail.
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within this setting. The simplest case would be to take both free and massive bulk theories,

Vp =
m2φ2

p

2
, B0 =

mσ

4
(φ1 + φ2)

2 +
m

4σ
(φ1 − φ2)

2 , (2.21)

where σ is a free parameter. Then, we easily find that the modified conserved energy and

momentum are given by,

E = E +
mσ

4
(φ1 + φ2)

2 +
m

4σ
(φ1 − φ2)

2 , (2.22)

P = P +
mσ

4
(φ1 + φ2)

2 − m

4σ
(φ1 − φ2)

2 . (2.23)

Now, for a purely bosonic type-II defect (Λ �= 0) the expression (2.16) becomes,

dP

dt
= −(∂tφ2)

∂B0

∂φ1

− (∂tφ1)
∂B0

∂φ2

+ 2(∂tΛ)

(
∂B0

∂φ1

+
∂B0

∂φ2

+
1

2

∂B0

∂Λ

)
+
1

2

[(
∂B0

∂φ1

)2

−
(
∂B0

∂φ2

)2
]
+ (V2 − V1), (2.24)

so now the last term does not need to vanish, and in fact it can be assumed that exist some

function F0(φ1, φ2,Λ) such that,

1

2

[(
∂B0

∂φ1

)2

−
(
∂B0

∂φ2

)2
]
+ (V2 − V1) = 1

2
F0(φ1, φ2,Λ)

∂B0

∂Λ
. (2.25)

Now, by demanding that the time-derivative of the momentum can be written as a total

derivative, requires

∂2B0

∂φ+∂φ−
= − ∂F0

∂φ+

,
∂2B0

∂φ+∂Λ
= −∂

2B0

∂φ2
+

,
∂F0

∂Λ
= − ∂F0

∂φ+

, (2.26)

from where it is immediately concluded that,

B0 = Π0 (φ+ − Λ, φ−) + Ξ0 (φ−,Λ) , F0(φ+, φ−,Λ) = −∂Π0

∂φ−
, (2.27)

where the function Π0 depends on φ− and φ+−Λ, Ξ0 depends on φ− and Λ, and they satisfy

the following relation,(
∂Π0

∂φ−

)(
∂Ξ0

∂Λ

)
−
(
∂Π0

∂Λ

)(
∂Ξ0

∂φ−

)
= 2(V1 − V2), (2.28)

where, the left-hand side has the form of a Poisson bracket of Π0 and Ξ0 in terms of the

conjugate variables (φ−,Λ). Of course the corresponding modified conserved momentum can

be written as P = P +(Π0−Ξ0). The relation (2.28) imposes strong constraints on the form
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of the Π0, Ξ0 and V1, V2 as well, because all the Λ-dependence contained in the left-hand

side must be totally cancel out. It was also shown in [10] that these type-II defects can

be enclosed within the sine/sinh-Gordon, Liouville, massive and massless free fields, and in

general the untwisted a
(1)
n [18] and the twisted a

(2)
2
§ affine Toda models. For example, an

adequate choice for the massive free fields is,

Π0 = m

(
(φ+ − Λ)2

α
+ βφ2

−

)
, Ξ0 = m

(
Λ2

β
+ αφ2

−

)
, (2.29)

where α and β are two free parameters. Notice, the type-I defect can be recovered as a limit

case by eliminating the auxiliary field Λ.

In [11] it was explored the case of a general theory with bosonic and fermionic case for

Λ = 0 but f �= 0. In this case (2.16) takes the form

dP

dt
= −(∂tφ2)

∂

∂φ1

(B0 + B1)− (∂tφ1)
∂

∂φ2

(B0 + B1) +

(
∂B0

∂φ1

)(
∂B1

∂φ1

)
−
(
∂B0

∂φ2

)(
∂B1

∂φ2

)
+
1

2

[(
∂B0

∂φ1

)2

−
(
∂B0

∂φ2

)2
]
− (∂tψ̄1)

∂B1

∂ψ̄1

− (∂tψ̄2)
∂B1

∂ψ̄2

+ (∂tψ1)
∂B1

∂ψ1

+ (∂tψ2)
∂B1

∂ψ2

+(V2 − V1) + (W2 −W1) + ∂t(ψ̄1ψ̄2 − ψ1ψ2). (2.30)

Following the same reasoning and assuming that the following conditions

∂2B0

∂φ+∂φ−
= 0,

∂2B1

∂φ+∂φ−
= 0,

∂2B1

∂ψ̄+∂ψ−
= 0,(

∂B0

∂φ1

)2

−
(
∂B0

∂φ2

)2

= 2(V1 − V2), (2.31)(
∂B+

1

∂f

)(
∂B−1
∂f

)
+

(
∂B+

0

∂φ+

)(
∂B−1
∂φ−

)
+

(
∂B−0
∂φ−

)(
∂B+

1

∂φ+

)
= 2(W1 −W2),

are satisfied, we then find that the modified conserved momentum is given by the combina-

tion,

P = P +
[
(B+

0 − B−0 ) + (B+
1 − B−1 ) + ψ1ψ2 − ψ̄1ψ̄2

]
, (2.32)

where it has been used the decompositions

B = B+
0 (φ+) +B−0 (φ−), B1 = B+

1 (φ+, ψ̄+, f) +B−1 (φ−, ψ−, f) (2.33)

§This model is also known as Tzitzéica, Bullough-Dodd or Zhiber-Shabat-Mikhailov model, and it will

be studied in more detail in chapter 4.
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after introducing new variables φ± = (φ1± φ2)/2, ψ± = (ψ1±ψ2)/2, and ψ̄± = (ψ̄1± ψ̄2)/2.

The N = 1 super sinh-Gordon model fits into this scheme given the following potentials,

Vp = 4m2 cosh(2φp), Wp = 8mψ̄pψp cosh(φp), (2.34)

B0 = 2m

[
σ cosh(2φ+) +

1

σ
cosh(2φ−)

]
, (2.35)

B1 = 4
√
2m

[√
σ ψ̄+ coshφ+ +

1√
σ
ψ− coshφ−

]
f. (2.36)

Now, returning to the general case in (2.16) we now propose the following ansatz for the

decomposition of the defect potentials,

B0 = Π0(φ+ − Λ, φ−) + Ξ0(φ−,Λ), (2.37)

B1 = B+
1

(
φ+ − Λ, ψ̄+, f

)
+ B−1 (φ− + Λ, ψ−, f) , (2.38)

such that

1

2

[(
∂B0

∂φ1

)2

−
(
∂B0

∂φ2

)2
]
+ (V2 − V1) = −1

2

(
∂Π0

∂φ−

)(
∂B0

∂Λ

)
. (2.39)

Then, after some manipulations we found that the modified conserved momentum can be

written as,

P = P +
[
(Π0 − Ξ0) + (B+

1 − B−1 ) + ψ1ψ2 − ψ̄1ψ̄2

] ∣∣∣
x=0

, (2.40)

if the following set of conditions are satisfied,

∂2B1

∂φ+∂φ−
= 0,

∂2B1

∂ψ̄+∂ψ−
= 0,(

∂Π0

∂φ−

)(
∂Ξ0

∂Λ

)
−
(
∂Π0

∂Λ

)(
∂Ξ0

∂φ−

)
= 2(V1 − V2), (2.41)(

∂B+
1

∂f

)(
∂B−1
∂f

)
+

(
∂Π0

∂φ+

)(
∂B−1
∂φ−

)
+

(
∂B0

∂φ−

)(
∂B+

1

∂φ+

)
= 2(W1 −W2).

It is worth noting that the general set of conditions (2.41) represents a generalized framework

for determining defects potentials. Despite most of the known models that allow type-I and

type-II defects preserving the energy and momentum can be derived from the above setting,

this does not exhaust all possibilities. Here, we had only consider one bosonic and one

fermionic extra degree of freedom, but there is no reason in principle for not considering more

than one of such fields. The generalisation to multicomponent fields is rather straightforward.
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In addition, there is no a supersymmetric relation between the fields Λ and f , even though it

should be interesting to investigate possible supersymmetric extensions of integrable models

with these type-II defects. Finally, it is worth pointing out that the conservation of the

momentum is a sufficient condition to determine the explicit form of the defect potentials,

but is not sufficient to establish integrability of the theory. For such a claim we need to

construct an infinite number of modified conserved quantity and it is done in the next

section using the Lax approach.

2.2 Lax representation and conservation laws

In this section we will discuss one of the most important modern topics in mathematical

physics, namely the Lax formulation. Historically, this approach has been extremely useful

in order to construct infinite set of independent conserved quantities for some integrable

evolution equations. Such equations can be formulated as a compatibility condition of an

associated linear auxiliary problem as follows,

∂tΨ(x, t;λ) = V (x, t;λ)Ψ(x, t;λ), (2.42)

∂xΨ(x, t;λ) = U(x, t;λ)Ψ(x, t;λ), (2.43)

where Ψ(x, t;λ) is in general an m-dimensional vector, λ is a spectral parameter, and

U(x, t;λ), V (x, t;λ) are (m×m) matrices, which usually are named Lax pair or Lax connec-
tions. Then, from the compatibility condition

(∂x∂t − ∂t∂x)Ψ(x, t;λ) = 0, (2.44)

we obtain the zero-curvature condition or Lax-Zakharov-Shabat equation,

∂tU − ∂xV + [U, V ] = 0, (2.45)

which gives the corresponding equations of motion for the integrable model. Now, let us

show how to construct a generating function for the infinite set of conservation laws. Firstly,

for every auxiliary field component Ψj with j = 1, ...,m, we can define a set of (m − 1)

auxiliary functions Γij = ΨiΨ
−1
j with i �= j. Then, considering the linear system (2.42) and

(2.43), it is not so difficult to identify the j-th conservation equation,

∂t

[
Ujj +

∑
i �=j

Uji Γij

]
= ∂x

[
Vjj +

∑
i �=j

Vji Γij

]
, (2.46)
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where each auxiliary functions Γij satisfy coupled Riccati equations for the x-part,

∂xΓij = (Uij − UjjΓij) +
∑
k �=j

[
Uik − Γij Ujk

]
Γkj , (2.47)

and respectively for the t-part,

∂tΓij = (Vij − VjjΓij) +
∑
k �=j

[
Vik − ΓijVjk

]
Γkj, (2.48)

where without loss of generality we have assumed that Ψj is a commuting field and for now

we postpone the discussion about the case of anticommuting fields. Now, by considering

solutions that vanish rapidly as |x| → ∞, we found that the corresponding j-th generating
function of the conserved quantities reads,

Ij =

∫ ∞

−∞
dx

[
Ujj +

∑
i �=j

Uji Γij

]
. (2.49)

A wide group of integrable nonlinear evolution equations can be formulated using this ap-

proach, among which the most of known examples correspond to the particular case m = 2,

e.g, the nonlinear Schrödinger equation (NLS), Korteweg-de Vries (KdV) and the modified

KdV equation (mKdV), Liouville equation, and sine/sinh-Gordon. For a more complete

review of these cases see for example [19].

It is worth noting that if the respective analytic properties of the solutions are considered,

we can expand the functions Γij in positive and negative powers of the spectral parameter λ

and then solve (2.47) and (2.48) recursively for each coefficient. This immediately provides

an expansion of the j-th generating function Ij in powers of λ, obtaining in this way an

infinite set of conserved quantities. For the usual energy and momentum integrals of motion,

commonly also derived from the Lagrangian formalism through variational principle, turn

out to be in general linear combinations of these set of conserved quantities Ij, by taking into

account coefficients for the expansions in both positive and negative powers of λ. However,

these sets of conserved quantities are not functionally independent in the bulk theory because

not all of the auxiliary fields Γij are. Although, it seems that in principle there is no need to

consider all the conservation laws to derive the apparently overdetermined sets of conserved

quantities, we will show in different models supporting type-II integrable defects that the

most general form for the defect potentials is obtained by considering all the conservation

laws. To make it clearer, in the following section we will derive the formula for obtaining

the modified conserved quantities which helps us to compute integrable defect potentials.



2.3. Modified integrals of motion 13

2.3 Modified integrals of motion

In this section, we construct the infinite sets of modified conserved quantities in the presence

of defects using the Lax pair approach. Firstly, let us suppose that we have two different

configurations, namely two column-vector functions Ψ̃ and Ψ corresponding to solutions of

auxiliary linear problems described by Lax pairs (Ũ , Ṽ ), and (U, V ) respectively. Let us now

introduce a matrix polynomial K(x, t;λ) of the spectral parameter λ connecting the two

configurations, namely,

Ψ̃(x, t;λ) = K(x, t;λ)Ψ(x, t;λ), (2.50)

where K, commonly named the defect matrix, satisfies differential equations corresponding

to a gauge transformation [20] as follows,

∂tK = Ṽ K −KV, ∂xK = ŨK − UV. (2.51)

This matrix is expected to generate the auto-Bäcklund transformations of each model, and

consequently the corresponding defect conditions when the transformation (2.50) is consid-

ered in the point of the defect, say x = 0. A simple classification of these defect matrices was

performed and several examples corresponding to the m = 2 linear problem were examined

by choosing a very simple form for this matrix [13].

Let us now consider a defect placed at x = 0, then the generating functions (2.49) in the

presence of the defect take the following form

Ij =

∫ 0

−∞
dx

[
Ũjj +

∑
k �=j

ŨjkΓ̃kj

]
+

∫ ∞

0

dx

[
Ujj +

∑
k �=j

UjkΓkj

]
. (2.52)

Hence, taking the time derivative and using the conservation equation (2.46), we get

dIj
dt

=

[
Ṽjj +

∑
i �=j

ṼjiΓ̃ij

] ∣∣∣∣∣
x=0

−
[
Vjj +

∑
i �=j

VjiΓij

] ∣∣∣∣∣
x=0

. (2.53)

Then, it is not difficult to show from (2.50) that the sets of auxiliary functions Γ̃ij and Γij

satisfy the relation,

Γ̃ij =

⎡⎢⎣Kij +
∑
k �=j

Kik Γkj

Kjj +
∑
k �=j

Kjk Γkj

⎤⎥⎦ . (2.54)
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Inserting the above relation in (2.53), one gets

dIj
dt

=

(
Ṽjj − Vjj −

∑
i �=j

Vji Γij

)(
Kjj +

∑
k �=j

Kjk

)
+
∑
i �=j

ṼjiKij +
∑
i,k �=j

ṼjiKik Γkj

Kjj +
∑
k �=j

Kjk Γkj

. (2.55)

Finally, we consider the equations (2.48) and (2.51) to obtain,

d

dt

[
Ij +Dj

]
= 0, (2.56)

where the defect contribution to the j-th generating function of infinite conserved quantities

is given exactly by

Dj = − ln
[
Kjj +

∑
k �=j

KjkΓkj

] ∣∣∣∣∣
x=0

. (2.57)

This formula was proposed in [13] to be valid for m = 2 and shown for any value of m in

[15]. Notice that expansions in powers of λ provides the defect contributions to the modified

conserved quantities at all orders for every m×m associated linear problem. In particular, it

will be shown that the modified energy and momentum contributions can be computed from

certain linear combinations of the first coefficients of the set of conserved quantities D
(1)
j ,

taking into account all the possible conservation laws, i.e., for j = 1, ...,m. It is worth noting

that an alternative approach was also provided in [21] to prove the classical and quantum

integrability in the case of sine-Gordon model with defects, by using the monodromy matrix

language, by using a matrix Bäcklund tranformation and a matrix Riccati equation.

Before going into the study of the different specific models, we will make some comments

about the relation between the formula presented above and standard results of Liouville

integrability in the framework of the r-matrix.

2.4 Liouville integrability

So far, an infinite set of independent modified conserved quantities arising from the defect

contributions have been systematically constructed through a general formula derived from

a variant of the classical inverse scattering method, which are from our point of view suf-

ficient for these kind of defects to be regarded as integrable. However, we have not made

any comment about the question of the involutivity of such quantities (required to discuss

complete integrability in the sense of Liouville) yet. In this section we present some ideas in

that direction considering a general setting.
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Certainly, the Hamiltonian formulation of the classical inverse scattering method, which

is essentially based on the concept of a classical r-matrix [22], is perhaps the most elegant

and convenient framework to discuss involutivity. Let us start with the main aspects of

the method in order to discuss this issue in the bulk. In the inverse scattering method the

construction of the action-angle variables depends basically on the entries of the monodromy

matrix τ(λ) = T (∞,−∞;λ), where

T (x, y;λ) = P exp

{∫ x

y

U(z;λ)dz

}
, (2.58)

is the transition matrix, U(x;λ) is the x-part of the Lax (2.43) at a given time, and P being

the path ordering. This m×m matrix T (x, y, λ) is the solution on the interval [y, x] of the

following auxiliary problem at a given time,(
∂x − U(x;λ)

)
T (x, y;λ) = 0, T (x, x;λ) = Im. (2.59)

As it was noticed in [22, 23], the existence of the classical r-matrix, an m2×m2 matrix which

satisfies the relation

{U(x;λ1)⊗, U(y;λ2)} = δ(x− y)
[
r(λ1, λ2), U(x;λ1)⊗ Im + Im ⊗ U(y;λ2)

]
. (2.60)

Here {A⊗, B} denotes the m2×m2 matrix whose elements are given by the Poisson brackets

{A⊗, B}ij,kl = {aij, bkl}. Then, from (2.60) we can write down the Poisson brackets between

matrix elements of the transition matrix in the following form,

{T (x, y;λ1)⊗, T (x, y;λ2)} =
[
r(λ1, λ2), T (x, y;λ1)⊗ T (x, y;λ2)

]
, (2.61)

from which it is derived that logarithm of the traces of the monodromy matrix commute for

different values of the spectral parameter, namely{
ln τ(λ1), ln τ(λ2)

}
= 0. (2.62)

Expanding (2.62) with respect to λ1 and λ2, we get the involutivity of the conserved quan-

tities {I(n)j }, which means that τ(λ) is the generating functional for the integrals of motion.
Now, let us discuss how the classical r-matrix approach is modified by including jump-

defect (or point like-defect) in the system. As it was noticed in [21] and more recently in

[24], the description of an integrable defect in the r-matrix approach requires to introduce a

modified transition matrix,

T(x, y;λ) = T (x, 0+;λ)K−1(0;λ) T̃ (0−, y;λ), (2.63)
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which is a combined bulk-defect transition matrix, where T (x, 0+;λ) and T̃ (0−, y;λ) are the

bulk transition matrices corresponding to x > 0 and x < 0 respectively, and K(λ) ≡ K(0;λ)

is the defect matrix whose entries are evaluated in the single point x = 0. The key point in

order to show Liouville integrability is to require that the defect matrix satisfies the Poisson

algebra (2.65), namely,

{K−1(λ1)⊗, K−1(λ2)} =
[
r(λ1, λ2), K

−1(λ1)⊗K−1(λ2)
]
, (2.64)

where r(λ1, λ2) is the same classical r-matrix for the bulk transition matrices. Hence, the

above requirement is a sufficient condition to obtain the important result,

{T(x, y;λ1)⊗, T(x, y;λ2)} =
[
r(λ1, λ2), T(x, y;λ1)⊗ T(x, y;λ2)

]
, (2.65)

which guarantees the existence of the infinite set of modified conserved quantities. Similar to

the bulk theory, the explicit form of these integrals of motion can be extracted by introducing

the following representation for the bulk transition matrix [25],

T (x, y;λ) = (1 +W (x;λ)) eZ(x,y;λ) (1 +W (y;λ))−1 , (2.66)

where W (x;λ) is an off-diagonal and Z(x, y;λ) a diagonal matrix. Then, the logarithm of

the trace of the modified monodromy matrix (2.63) is the generating function of the modified

conserved quantities, where the defect contributions in an appropriate expansion in λ, read

[21, 24]:

D(λ) = ln

[(
1 +W (0+, λ)

)−1
K−1(λ)

(
1 + W̃ (0−, λ)

)]
ii

, (2.67)

where the subscript ii denotes the leading term coming from the trace of the modified

monodromy matrix for the given expansion. At first sight, it seems not to exist a direct rela-

tionship between the above result and the generating function (2.57) what we have derived in

last section. However, note that W (x;λ) satisfy a matrix Riccati equation similar to (2.47),

which permits us to derive recursively its coefficients in an asymptotic series expansion as

λ → ∞ and λ → 0, and to demonstrate order by order that the results are completely

equivalent. This specific analysis deserves more attention than we could give at this moment

and we point out that it is not a goal of this thesis to go forward in this approach.

However, it is worth mentioning that the approach we adopt will use essentially an on-

shell defect matrix which implies that its entries have non-vanishing Poisson brackets with

the bulk monodromy matrices elements. This fact has already been outlined in [10] for the

Hamiltonian formulation of the type-II defects in the sine-Gordon and Tzitzéica models,
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where the defect conditions appear as a set of second class constraints on the fields, which

induces a slight modification of the canonical Poisson brackets. This issue indeed can be

solved by working firstly with the off-shell defect matrix to compute the Poisson brackets and

then derive the constraints as consistency conditions in constructing the time-like operator

in the Lax pair such that the zero curvature condition provides the same equations of motion

as the ones coming from the Hamiltonian evolution derived via Poisson brackets as it has

claimed by Avan and Doikou recently in [24].

Summarising, in this chapter we have presented the Lagrangian and the Lax pair approach

to integrable defects. We have derived a set of conditions to determine the form of the defect

potentials from the Lagrangian point of view. Additionally, we have provided a formula to

derive all the defect contributions to the modified conserved quantities in order to ensure

integrability. In the following chapters we will examine several models and in particular we

will provide their corresponding defect matrices for computing such conserved quantities.



CHAPTER 3

The sine-Gordon model

The sine-Gordon (sG) model provides the simplest example of a two-dimensional classical and

quantum∗ integrable field theory, which like many other integrable models exhibits soliton

solutions that carry topological charge. The study of this model has a quite wide literature

and a lot of exact results are known about it.

It was noted [7] almost a decade ago that, the sine-Gordon model permits type-I integrable

defects such that the defects conditions are its standard Bäcklund transformation [9], however

being frozen at the defect location. Although the defect condition explicitly breaks the

translational invariance, it was shown that the momentum is conserved once it has been

suitably modified and the behaviour of soliton solutions passing through the defect was also

extensively studied [7]. In addition, the extension of these ideas to the quantum sine-Gordon

was investigated by computing and analysing the corresponding transmission matrix both

by solving the Defect Yang-Baxter Equation [27] and using the representation framework

[28, 18].

Some years later [10] this setting was generalized to include degree of freedom in the

defect locations and consequently it was noticed that in fact the sine-Gordon model can

supported also type-II integrable defects, which are related to another kind of Bäcklund

transformation. It was also shown in [10] the conservation of the modified momentum and

its corresponding transmission matrix was provided in [18]. The integrability properties are

ensured by the existence of its defect matrix [14].

∗However, its quantum aspects are not going to be considered in the whole of this thesis.

18
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In this chapter, we firstly present the explicit construction of an infinite set of conserved

quantities in the bulk theory using the inverse scattering approach. Then, we briefly review

how to introduce type-I defects and compute the corresponding modified energy and momen-

tum. Finally, we will investigate the existence of type-II defects in the classical sine-Gordon

model and compute the respective defect contributions to the energy and momentum.

3.1 The bulk theory and the associated linear problem

Let us start by considering the Lagrangian density describing the sG theory, namely

LsG =
1

2
(∂tϕ)

2 − 1

2
(∂xϕ)

2 +
m2

β2
cos(βϕ), (3.1)

where ϕ is a real scalar field, m is the mass parameter and β coupling constant which at

classical level is not relevant and will be absorbed from now just taking ϕ → ϕ/β. The

equation of motion is given by

∂2t ϕ− ∂2xϕ = −m2 sinϕ. (3.2)

Note that the cosine term in the potential introduces the interactions into the theory. This

Lagrangian density is invariant under the Z2 transformation, ϕ → −ϕ, and the potential

possesses multiple vacuum solutions, namely ϕ = πn, n ∈ Z, due to its periodic nature. It is

important also to point out that under analytic continuation ϕ→ iϕ, the sG model becomes

the sinh-Gordon (shG) model which has a non-periodic (hyperbolic) potential and possesses

a unique vacuum solution. In spite of these two models seem almost the same, have very

different properties which can be found in the wide literature (see for instance [29]).

As we have mentioned before the sG bulk theory is classically integrable which means

there are infinitely many conserved quantities that can be constructed. Let us start by con-

sidering the energy and momentum. From the Lagrangian, the total energy and momentum

functionals are directly given by,

E =

∫ ∞

−∞
dx J0 =

∫ ∞

−∞
dx

[
1

2
(∂tϕ)

2 +
1

2
(∂xϕ)

2 −m2 cosϕ

]
, (3.3)

P =

∫ ∞

−∞
dx J1 =

∫ ∞

−∞
dx (∂tϕ) (∂xϕ) . (3.4)

where the respective currents J0 and J1 satisfy the conservation law ∂tJ
0 = ∂xJ

1, and then

trivially we get

dE

dt
=

∫ ∞

−∞
dx (∂tJ

0) =

∫ ∞

−∞
dx (∂xJ

1) =
[
J1
]∞
−∞ = 0, (3.5)
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In general, following [26] the same can be done to achieve higher-order conserved quanti-

ties, which transform in higher representations of the (1 + 1)-dimensional Lorentz group as

J
(i)
s → eαsJ

(i)
s , where the integer s is called the (Lorentz) spin since J

(i)
s rotates s times under

a boost of 2πi. Now, just considering the currents J0
s = Ts+1 + Θs−1 and J1

s = Ts+1 − Θs−1
such that

∂−Ts+1 = ∂+Θs−1, (3.6)

we get

Is =

∫ ∞

−∞
dx Js

0 =

∫ ∞

−∞

(
Ts+1 +Θs−1

)
dx, (3.7)

an infinite set of conserved quantities. Now, to construct explicitly the conserved quantities

we will use the auxiliary linear problem for the sine-Gordon model. As we already have

mentioned, the equation of motion is derived as a compatibility condition for the associated

linear problem,

∂xΨ(x, t;λ) = U(x, t;λ)Ψ(x, t;λ), (3.8)

∂tΨ(x, t;λ) = V (x, t;λ)Ψ(x, t;λ), (3.9)

where the Lax pair is given here by

U =
1

4i
(∂tϕ)H + q(λ)E+ + r(λ)E−, (3.10)

V =
1

4i
(∂xϕ)H + A(λ)E+ + B(λ)E−, (3.11)

where {H,E±} are the generators of the sl(2) finite Lie algebra (see Appendix A.1) and the
following fields have been defined,

q(λ) = −m
4

(
λe

iϕ
2 − λ−1e− iϕ

2

)
, r(λ) =

m

4

(
λe−

iϕ
2 − λ−1e iϕ

2

)
, (3.12)

A(λ) = −m
4

(
λe

iϕ
2 + λ−1e−

iϕ
2

)
, B(λ) =

m

4

(
λe−

iϕ
2 + λ−1e

iϕ
2

)
. (3.13)

As it was described in section (2.2), we can easily derived two conservation equations from

the linear system, which can be written as

∂t

[
qΓ21 − i

4
(∂tϕ)

]
= ∂x

[
AΓ21 − i

4
(∂xϕ)

]
, (3.14)

∂t

[
rΓ12 +

i

4
(∂tϕ)

]
= ∂x

[
BΓ12 +

i

4
(∂xϕ)

]
, (3.15)
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where the auxiliary functions Γ21 = Ψ2Ψ
−1
1 and Γ12 = Ψ1Ψ

−1
2 has been introduced. These

functions satisfy the set of Ricatti equation,

∂xΓ21 = r +
i

2
(∂tϕ) Γ21 − q(Γ21)

2, (3.16)

∂xΓ12 = q − i

2
(∂tϕ) Γ12 − r(Γ12)

2, (3.17)

Firstly, let us consider the equation (3.16) to solve Γ21. Hence, expanding Γ21 as λ→∞

Γ21 =
∞∑
n=0

Γ
(n)
21

λn
, (3.18)

we get,

Γ
(0)
21 = ie−

iϕ
2 , (3.19)

Γ
(1)
21 = − i

m
[∂tϕ+ ∂xϕ] e

− iϕ
2 , (3.20)

Γ
(2)
21 = e−

iϕ
2

[
− 2

m2
∂x (∂tϕ+ ∂xϕ) +

i

2m2
(∂tϕ+ ∂xϕ)

2 + sinϕ

]
, (3.21)

Γ
(3)
21 =

2i

m
e−

i
2
ϕ

[
2

m2
∂2x(∂tϕ+ ∂xϕ)− i

m2
(∂tϕ+ ∂xϕ)(∂x∂tϕ+ ∂2xϕ)− cosϕ(∂xϕ)

− 1

2
(∂tϕ+ ∂xϕ)e

−iϕ
]
. (3.22)

Thus, we have a first infinite set of conserved quantities generated from

I1 =

∫ ∞

−∞
dx

[
qΓ21 − i

4
(∂tϕ)

]
. (3.23)

From the coefficients of the expansion of Γ21, it is very easy to see that the charge I
(+1)
1

trivially vanishes and I
(0)
1 is basically a topological term. So the first non-vanishing charge

is given by

I
(−1)
1 =

1

4mi

∫ ∞

−∞
dx

[
1

2
(∂tϕ+ ∂xϕ)

2 −m2 cosϕ

]
. (3.24)

Now, if we consider the expansion of Γ21 as λ→ 0,

Γ21 =
∞∑
n=0

Γ̂
(n)
21 λ

n, (3.25)
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we obtain the following coefficients,

Γ̂
(0)
21 = ie

iϕ
2 , (3.26)

Γ̂
(1)
21 =

i

m
[∂tϕ− ∂xϕ] e

iϕ
2 , (3.27)

Γ̂
(2)
21 = e

iϕ
2

[
− 2

m2
∂x (∂tϕ− ∂xϕ) + i

2m2
(∂tϕ− ∂xϕ)2 − sinϕ

]
, (3.28)

Γ̂
(3)
21 =

2i

m
e

i
2
ϕ

[
2

m2
∂2x(∂tϕ− ∂xϕ)−

i

m2
(∂tϕ− ∂xϕ)(∂x∂tϕ− ∂2xϕ) + cosϕ(∂xϕ)

−1
2
(∂tϕ− ∂xϕ)e−iϕ

]
. (3.29)

Then, we obtain again one trivial charge, one topological charge, and the first non-trivial

charge which is given by,

Î
(+1)

1 = − 1

4mi

∫ ∞

−∞
dx

[
1

2
(∂tϕ− ∂xϕ)2 −m2 cosϕ

]
. (3.30)

As we can see, this charge is not real and therefore it remains to add the hermitian conjugate

of them for obtaining a real conserved quantity. In fact, we will see that these contributions

naturally rise from the other conservation equation that we have derived in (3.17).

Let us consider then the conservation equation (3.17) to solve Γ12 recursively. Clearly,

using the same scheme we can obtain the first coefficients for the auxiliary function. The

results are listed down,

Γ
(0)
12 = ie

iϕ
2 , (3.31)

Γ
(1)
12 = − i

m
[∂tϕ+ ∂xϕ] e

iϕ
2 , (3.32)

Γ
(2)
12 = e

iϕ
2

[
2

m2
∂x (∂tϕ+ ∂xϕ) +

i

2m2
(∂tϕ+ ∂xϕ)

2 − sinϕ
]
, (3.33)

Γ
(3)
12 =

2i

m
e

i
2
ϕ

[
2

m2
∂2x(∂tϕ+ ∂xϕ) +

i

m2
(∂tϕ+ ∂xϕ)(∂x∂tϕ+ ∂2xϕ)− cosϕ(∂xϕ)

−1
2
(∂tϕ+ ∂xϕ)e

iϕ

]
, (3.34)
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and correspondingly,

Γ̂
(0)
12 = ie−

iϕ
2 , (3.35)

Γ̂
(1)
12 =

i

m
[∂tϕ− ∂xϕ] e−

iϕ
2 , (3.36)

Γ̂
(2)
12 = e

−iϕ
2

[
2

m2
∂x (∂tϕ− ∂xϕ) + i

2m2
(∂tϕ− ∂xϕ)2 + sinϕ

]
, (3.37)

Γ̂
(3)
12 =

2

im
e−

i
2
ϕ

[
2

m2
∂2x(∂tϕ− ∂xϕ) +

i

m2
(∂tϕ− ∂xϕ)(∂x∂tϕ− ∂2xϕ) + cosϕ(∂xϕ)

−1
2
(∂tϕ− ∂xϕ)e−iϕ

]
. (3.38)

Therefore, from the generating function of the infinite conserved quantities, namely,

I2 =

∫ ∞

−∞
dx

[
i

4
(∂tϕ) + rΓ12

]
, (3.39)

we immediately obtain the following non-vanishing charges,

I
(−1)
2 = − 1

4mi

∫ ∞

−∞
dx

[
1

2
(∂tϕ+ ∂xϕ)

2 −m2 cosϕ

]
, (3.40)

Î
(+1)

2 =
1

4mi

∫ ∞

−∞
dx

[
1

2
(∂tϕ− ∂xϕ)2 −m2 cosϕ

]
. (3.41)

Notice that I
(−1)
2 = I

† (−1)
1 and Î

(+1)

2 = Î
† (+1)

1 , which allow us to define two real conserved

quantities, namely,

I
(−1) = i

(
I
(−1)
1 − I

(−1)
2

)
, Î

(+1) = i
(
Î
(+1)

1 − Î
(+1)

2

)
. (3.42)

Therefore, we finally can recover the usual expressions for the energy and momentum of the

bulk sine-Gordon model by adding and subtracting the above results as follows,

E = m
(
I
(−1) − Î

(+1)
)
=

∫ ∞

−∞
dx

[
1

2

{
(∂tϕ)

2 + (∂xϕ)
2

}
−m2 cosϕ

]
, (3.43)

P = m
(
I
(−1) − Î

(+1)
)
=

∫ ∞

−∞
dx (∂tϕ)(∂xϕ). (3.44)

Then, we have recursively constructed some few first conserved quantities in the bulk theory

of the sine-Gordon model through the inverse scattering method techniques. One of the

advantages of this approach is that once the auxiliary functions Γij are computed we can

use them directly to derive the corresponding defect contributions. In the following section,

we will use the results obtained to introduce the defect at a fixed point and consequently to

compute the respective defects contributions to each integral of motion.
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3.2 Review of type-I defect sine-Gordon theory

Just for the sake of completeness, let us review briefly the type-I defect in the sine-Gordon

model following the pioneering work [7]. The starting point is the addition of a local term

to the Lagrangian density, i.e

L = θ(−x)
(
1

2
(∂tϕ̃)

2 − 1

2
(∂xϕ̃)

2 +m2 cos ϕ̃

)
+ θ(x)

(
1

2
(∂tϕ)

2 − 1

2
(∂xϕ)

2 +m2 cosϕ

)
+ δ(x)

(
1

2
(ϕ̃∂tϕ− ϕ∂tϕ̃)− 2m

[
σ cos

(
ϕ̃+ ϕ

2

)
+
1

σ
cos

(
ϕ̃− ϕ
2

)])
, (3.45)

where the defect potential depends on the values of both fields ϕ̃, ϕ at x = 0. The equations

of motion for each region, x < 0 and x > 0, are the sine-Gordon equation for each field ϕ̃

and ϕ respectively, and the equations associated with defect conditions at x = 0 are given

by,

∂tϕ− ∂xϕ̃ = m

[
σ sin

(
ϕ̃+ ϕ

2

)
+
1

σ
sin

(
ϕ̃− ϕ
2

)]
, (3.46)

∂xϕ− ∂tϕ̃ = m

[
σ sin

(
ϕ̃+ ϕ

2

)
− 1

σ
sin

(
ϕ̃− ϕ
2

)]
, (3.47)

where σ is a free parameter. These equations turn out to be “frozen” auto-Bäcklund trans-

formation for the sine-Gordon model. So, we find that if the field ϕ̃ satisfies the sine-Gordon

equation then the field ϕ also does. These transformations are not unique, and in fact in

next sections we will present an alternative Bäcklund transformation for the sine-Gordon.

Using this particular Lagrangian framework, it was also shown in [7] that the energy and

momentum corresponding to this type-I defect are conserved containing bulk and defect con-

tributions. To see that using our approach, which allows us to compute defect contributions

at any order, it is necessary to introduce the corresponding defect matrix.

3.2.1 Modified integrals of motion from the defect matrix

The simplest way to compute the defect matrix connecting the two auxiliary problems,

namely Ψ̃ = KΨ, is obtained by choosing the following ansatz,

K = K0 + λ−1K1, (3.48)

which is solution of the differential equations

∂xK = ŨK −KU, ∂tK = Ṽ K −KV . (3.49)
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Solving grade by grade the above equation, we find that the defect matrix for the type-I case

takes the following simple form,

K =

⎡⎣ e−
i
4
(ϕ̃−ϕ) λ−1 σ e−

i
4
(ϕ̃+ϕ)

−λ−1 σ e i
4
(ϕ̃+ϕ) e

i
4
(ϕ̃−ϕ)

⎤⎦ . (3.50)

Now, by using the defect contribution equation (2.57) to the generating function of infinite

integrals of motion (3.23), modified conserved quantities can be properly computed. In this

case, the equation reads

D1 = − ln
[
K11 +K12 Γ21

]∣∣∣∣
x=0

. (3.51)

Hence, taking into account the both expansion in negative and positive powers of λ and the

explicit form of the defect matrix (3.50), we found that

D
(−1)
1 = −iσe−i(ϕ̃+ϕ)/2, D̂

(+1)
1 =

i

σ
e−i(ϕ̃−ϕ)/2 − 1

m
(∂tϕ− ∂xϕ) . (3.52)

Now, repeating same procedure for the second generating function (3.39), one gets

D2 = − ln
[
K21Γ12 +K22

]∣∣∣∣
x=0

, (3.53)

from which we obtain the following contributions,

D
(−1)
2 = iσ ei(ϕ̃+ϕ)/2, D̂

(+1)
2 = − i

σ
ei(ϕ̃−ϕ)/2 − 1

m
(∂tϕ− ∂xϕ) . (3.54)

As was expected, D
(−1)
2 = D

†(−1)
1 and D̂

(+1)
2 = D̂

†(+1)
1 , which allow us to define two real

defect contributions as follows,

D
(−1) = i[D

(−1)
1 −D(−1)

2 ], D̂
(+1) = i[D̂

(+1)
1 − D̂(+1)

2 ]. (3.55)

Then, the corresponding defect energy and momentum for the sine-Gordon model is recovered

by adding and subtracting all the results obtained as follows,

ED = m
[
D

(−1) − D̂
(+1)

]
= 2m

[
σ cos

(
ϕ̃+ ϕ

2

)
+
1

σ
cos

(
ϕ̃− ϕ
2

)]
, (3.56)

PD = m
[
D

(−1) + D̂
(+1)

]
= 2m

[
σ cos

(
ϕ̃+ ϕ

2

)
− 1

σ
cos

(
ϕ̃− ϕ
2

)]
, (3.57)

which are in complete agreement with the results previously obtained from the Lagrangian

point of view [7] (see also [21] to compare with the r-matrix approach).
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3.3 Type-II defect sine-Gordon theory

The starting point to introduce a type-II defect is the Lagrangian density,

L = θ(−x)Lϕ̃ + θ(x)Lϕ + δ(x)LD, (3.58)

where

LD =

[
1

2
(ϕ̃∂tϕ− ϕ∂tϕ̃) + Λ∂t(ϕ̃− ϕ)− ∂tΛ(ϕ̃− ϕ)− B0(ϕ̃, ϕ,Λ)

]
. (3.59)

Here Λ = Λ(t) is the additional degree of freedom associated to the defect. Besides the bulk

equations for the two fields in their respective regions, the equations associated with the

defect conditions are obtained and can be written as,

∂xϕ̃− ∂tϕ+ 2∂tΛ = −∂B0

∂ϕ̃
, (3.60)

∂xϕ− ∂tϕ̃+ 2∂tΛ =
∂B0

∂ϕ
, (3.61)

∂t (ϕ̃− ϕ) =
1

2

∂B0

∂Λ
. (3.62)

By introducing new variables ϕ+ = (ϕ̃+ϕ)/2 and ϕ− = (ϕ̃−ϕ)/2, we can rewrite them as,

∂tϕ+ − ∂xϕ+ − 2∂tΛ =
1

2

∂B0

∂ϕ−
, (3.63)

∂tϕ− − ∂xϕ− =
1

2

(
∂B0

∂ϕ+

+
∂B0

∂Λ

)
, (3.64)

∂xϕ− + ∂tϕ− = −1
2

∂B0

∂ϕ+

, (3.65)

These equations were originally derived in [10], where the conservation of energy and mo-

mentum was also shown and the defect potential was assumed to take the following form†,

B0(ϕ+, ϕ−,Λ) = −m
2σ

[
e−i(ϕ+−Λ) (eiϕ− + e−iϕ− + η

)
+ 4ei(ϕ+−Λ)]

−mσ
2

[
eiΛ

(
eiϕ− + e−iϕ− + η

)
+ 4e−iΛ

]
, (3.66)

where η, σ are two free parameters. Then, we arrive at the following equations for the defect

conditions,

i∂tϕ+ − i∂xϕ+ − 2i(∂tΛ) =
m

4σ
e−i(ϕ+−Λ) (eiϕ− − e−iϕ−)+ mσ

4
eiΛ

(
eiϕ− − e−iϕ−) , (3.67)

i∂tϕ− − i∂xϕ− =
mσ

4

[
eiΛ

(
eiϕ− + e−iϕ− + η

)− 4 e−iΛ] , (3.68)

i∂tϕ− + i∂xϕ− =
m

4σ

[
e−i(ϕ+−Λ) (eiϕ− + e−iϕ− + η

)− 4 ei(ϕ+−Λ)] . (3.69)

†To fit the notations is necessary to identify iϕ+ → p, iϕ− → q, and iΛ→ λ.
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Notice that, the vacuum solution in the bulk ϕ̃ = ϕ = 0 satisfies the above defect conditions,

if the auxiliary field Λ takes the constant value,

Λ = − i
2
ln

(
4

η

)
. (3.70)

In the next section we will derive two possible forms for the defect matrix in order to compute

the different defect contribution to the infinite set of conserved quantities.

3.3.1 Defect matrices

By considering a simple generalization of the ansatz (3.48) for the defect matrix, we will be

able to derive the type-II Bäcklund transformation for the sine-Gordon which includes the

defect degree of freedom, namely,

Kij = αij + λ−1βij + λ−2γij. (3.71)

In order to determine the explicit form of the defect matrix, we will work with the light-cone

coordinates x± = (t± x)/2, where the differential equations take the following form,

∂±K = KA± − Ã±K, (3.72)

and it has been defined A± = −(V ± U), i.e

A+ =

[
i
4
∂+ϕ

m
2
λe

iϕ
2

−m
2
λe

−iϕ
2 − i

4
∂+ϕ

]
, A− =

[
− i

4
∂−ϕ m

2
λ−1e

−iϕ
2

−m
2
λ−1e

iϕ
2

i
4
∂−ϕ

]
. (3.73)

In terms of the variables ϕ±, we find from (3.71) and (3.72) that equations for the matrices

αij, βij and γij can be grouped into two decoupled subsets and consequently we find two

different forms of the defect matrix:

(a) The first one is spanned by {α11, α22, β12, β21, γ11, γ22} and leads to

α11 = a11e
− i

2
ϕ− , α22 = a11e

i
2
ϕ− , γ11 = c11e

i
2
ϕ− , γ22 = c11e

− i
2
ϕ− . (3.74)

From the form of the respective equations we note that in general it is possible to

parametrize β21 by including an auxiliary field Λ,

β21 = b21e
−i(Λ−ϕ+

2 ), (3.75)
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where b21 as well as a11 and c11 are arbitrary constants. We find then the equations

involving ∂+α11, ∂−γ11, ∂+β21 and ∂−β21 read,

i∂+ϕ− =
m

2a11

(
b21e

−i(Λ−ϕ+) + β12 e
− i

2
ϕ+

)
,

i∂−ϕ− = − m

2c11

(
β12 e

i
2
ϕ+ + b21e

−iΛ
)
,

i∂+Λ = −mc11
2b21

ei(Λ−ϕ+)
(
eiϕ− − e−iϕ−) ,

i∂−(Λ− ϕ+) =
ma11
2b21

eiΛ
(
eiϕ− − e−iϕ−) , (3.76)

together with

∂+β12 = − i
2
(∂+ϕ+) β12 +

mc11
2

e
i
2
ϕ+

(
eiϕ− − e−iϕ−) ,

∂−β12 =
i

2
(∂−ϕ+) β12 − ma11

2
e−

i
2
ϕ+

(
eiϕ− − e−iϕ−) . (3.77)

A solution for (3.77) compatible with (3.76) is found to be

β12 = −b21
4
ei(Λ−

ϕ+
2 )

(
eiϕ− + e−iϕ− + η

)
, (3.78)

where η is also an arbitrary constant. Therefore

K =

⎡⎢⎣ e−
iϕ−
2 − 1

λ2 c11 e
iϕ−
2 − 1

4λ
b21 e

i(Λ−ϕ+
2 )(eiϕ− + e−iϕ− + η)

1
λ
b21 e

−iΛ e
iϕ+
2 e

iϕ−
2 − 1

λ2 c11 e
− iϕ−

2

⎤⎥⎦ , (3.79)
where we have chosen a11 = 1. Here, we pointed out that the type-I Bäcklund transfor-

mation can be rederived by taking ImΛ → ∞, η → 4e2ImΛ and b21 → 0 while holding

b21e
−iΛ constant, say ω. Then, we obtain

K −→

⎡⎢⎣ e−
iϕ−
2 −ω

λ
e
−iϕ+

2

ω
λ
e

iϕ+
2 e

iϕ−
2

⎤⎥⎦ . (3.80)

As expected in this limit (3.76) reduce to

∂−ϕ+ = −m
ω
sinϕ−, ∂+ϕ− = mω sinϕ+. (3.81)

Now, by introducing a new parameter σ = − 2
b21

= b21
2c11

, the equation (3.76) becomes
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(with a11 = 1),

i∂−(ϕ+ − Λ) =
mσ

4
eiΛ

(
eiϕ− − e−iϕ−) ,

i∂+Λ = −m
4σ

e−i(ϕ+−Λ) (eiϕ− − e−iϕ−) ,
i∂−ϕ− =

mσ

4

[
eiΛ

(
eiϕ− + e−iϕ− + η

)− 4 e−iΛ] ,
i∂+ϕ− =

m

4σ

[
e−i(p−Λ)

(
eiϕ− + e−iϕ− + η

)− 4 ei(ϕ+−Λ)] , (3.82)

and the expression for K in (3.79) takes the form

K =

⎡⎢⎣ e−
iϕ−
2 − 1

(σλ)2
e

iϕ−
2

1
2(σλ)

ei(Λ−
ϕ+
2 )(eiϕ− + e−iϕ− + η)

− 2
(σλ)

e−iΛ e
iϕ+
2 e

iϕ−
2 − 1

(σλ)2
e−

iϕ−
2

⎤⎥⎦ . (3.83)

By cross-differentiating the last two equations in (3.82), we find that if the field ϕ

satisfies the sine-Gordon equation then ϕ̃ also does. Additionally by differentiating the

second equation in (3.84) with respect to x−, we obtain

∂−∂+Λ =
im2

16
e−iϕ+

[
4 e2iΛ − (eiϕ− + e−iϕ−)(4− η e2iΛ)] . (3.84)

This equation of motion for the field Λ depends on both fields ϕ̃ and ϕ. Finally, it is

interesting to rewrite the defect matrix in a different and suggestive form, as follows,

K = e
iϕ
4
·H K̄ e−

iϕ̃
4
·H , (3.85)

with

K̄ =

⎡⎣ 1 0

0 1

⎤⎦+ 1

(σλ)

⎡⎣ 0 1
2
eiΛ

(
e−iϕ + e−iϕ̃ + η e−i(ϕ̃+ϕ)/2

)
2 e−iΛ ei(ϕ̃+ϕ)/2 0

⎤⎦

− 1

(σλ)2

⎡⎣ ei(ϕ̃−ϕ)/2 0

0 e−i(ϕ̃−ϕ)/2

⎤⎦ , (3.86)

where H is the generator in the Cartan subalgebra of sl(2).
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(b) The second set of equations is specified by {α12, α21, β11, β22, γ12, γ21}, which satisfy

γ12 = c12e
− i

2
ϕ+ , γ21 = −c12e i

2
ϕ+ ,

α21 = −a12e− i
2
ϕ+ , α12 = a12e

i
2
ϕ+ ,

∂+α12 = − i
2
(∂+ϕ+)α12 +

m

2
e

i
2
(ϕ++ϕ−)β11 − m

2
e

i
2
(ϕ+−ϕ−)β22,

∂+α21 =
i

2
(∂+ϕ+)α21 − m

2
e−

i
2
(ϕ++ϕ−)β22 +

m

2
e−

i
2
(ϕ+−ϕ−)β11,

∂+β11 =
i

2
(∂+ϕ−) β11 − m

2
e−

i
2
(ϕ++ϕ−)γ12 − m

2
e

i
2
(ϕ+−ϕ−)γ21,

∂+β22 = − i
2
(∂+ϕ−) β22 +

m

2
e

i
2
(ϕ++ϕ−)γ21 +

m

2
e−

i
2
(ϕ+−ϕ−)γ12, (3.87)

and

∂−β11 = − i
2
(∂−ϕ−) β11 − m

2
e

i
2
(ϕ++ϕ−)α12 − m

2
e−

i
2
(ϕ+−ϕ−)α21,

∂−γ12 =
i

2
(∂−ϕ+) γ12 +

m

2
e−

i
2
(ϕ++ϕ−)β11 − m

2
e−

i
2
(ϕ+−ϕ−)β22,

∂−γ21 = − i
2
(∂−ϕ+) γ21 − m

2
e

i
2
(ϕ++ϕ−)β22 +

m

2
e

i
2
(ϕ+−ϕ−)β11,

∂−β22 =
i

2
(∂−ϕ−) β22 +

m

2
e−

i
2
(ϕ++ϕ−)α21 +

m

2
e

i
2
(ϕ+−ϕ−)α12. (3.88)

As before, we propose a suitable reparametrization by introducing the auxiliary field

Λ̄,

β22 = b22e
−i(Λ̄+ϕ−

2 ), (3.89)

where b22 as well as a12 and c12 are arbitrary constants. The equations involving

∂−γ12, ∂+β22, ∂−β22 and ∂+α12 yields respectively,

i∂+ϕ+ = − m

2a12

[
b22e

−i(Λ̄+ϕ−) − β11 e i
2
ϕ−
]
, (3.90)

i∂−(Λ̄ + ϕ−) = −m
2

a12
b22

eiΛ̄
[
eiϕ+ − e−iϕ+

]
, (3.91)

i∂+Λ̄ =
m

2

c12
b22

ei(Λ̄+ϕ−)
[
eiϕ+ − e−iϕ+

]
, (3.92)

i∂−ϕ+ =
m

2c12

[
b22e

−iΛ̄ − β11 e− i
2
ϕ−
]
. (3.93)

A solution of β11 compatible with (3.87) and (3.88) can be written as

β11 = −a12c12
b22

ei(Λ̄+
1
2
ϕ−)(eiϕ+ + e−iϕ+ + η̄), (3.94)
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where η̄ is an arbitrary constant. K is then given in the following form

K =

⎡⎣ − 1
λ
a12c12
b22

ei(Λ̄+
1
2
ϕ−)(eiϕ+ + e−iϕ+ + η̄) a12e

i
2
ϕ+ + 1

λ2 c12e
− i

2
ϕ+

−a12e− i
2
ϕ+ − c12

λ2 e
i
2
ϕ+ b22

λ
e−i(Λ̄+

1
2
ϕ−)

⎤⎦ .(3.95)
Here we can also perform the type-I Bäcklund limit by fixing a12 = 1 and taking

ImΛ̄→∞, η̄ →∞ and c12 → 0, while satisfying

b22e
−iΛ̄ = ω̄, −a12c̄12

b22
eiΛ̄ → 0, −a12c̄12

b22
eiΛ̄η̄ = ω̄, (3.96)

where ω̄ is a constant, we recover the structure of type I Bäcklund transformations,

∂+ϕ+ =
mω̄

a12
sinϕ−, ∂−ϕ− = −ma12

ω̄
sinϕ+. (3.97)

Notice that eq. (3.97) and eq. (3.82) are related by the so-called charge conjuga-

tion symmetry C : (soliton) → (antisoliton), or equivalently the Z2 symmetry by

exchanging ϕ→ −ϕ.

3.3.2 Modified integrals of motion

Now, we will concerns with the defect contributions to the integrals of motion of the type-II

Bäcklund transformations for the sine-Gordon model. Firstly, taking into account the type-II

defect matrix K in (3.83) and using (3.51) and (3.53), we obtain the following results:

D
(−1)
1 = − i

2σ
e−i(ϕ+−Λ)(eiq + e−iϕ− + η), D̂

(+1)
1 =

iσ

2
eiΛ(eiϕ− + e−iϕ− + η), (3.98)

D
(−1)
2 =

2i

σ
ei(ϕ+−Λ), D̂

(+1)
2 = −2iσe−iΛ. (3.99)

As before, the corresponding type II defect energy and momentum for the sine-Gordon model

can be expressed by the introduction of the following real quantities,

D
(−1) = i

(
D

(−1)
1 −D(−1)

2

)
, D̂

(+1) = i
(
D̂

(+1)
1 − D̂(+1)

2

)
, (3.100)

leading to

ED = m
(
D
(−1) − D̂

(+1)
)

=
m

2σ

[
4 ei(ϕ+−Λ) + e−i(ϕ+−Λ)(eiϕ− + e−iϕ− + η)

]
+
mσ

2

[
4 e−iΛ + eiΛ(eiϕ− + e−iϕ− + η)

]
,

PD = m
(
D
(−1) + D̂

(+1)
)

=
m

2σ

[
4 ei(ϕ+−Λ) + e−i(ϕ−−Λ)(eiϕ− + e−iϕ− + η)

]
− mσ

2

[
4 e−iΛ + eiΛ(eiϕ− + e−iϕ− + η)

]
.



3.3. Type-II defect sine-Gordon theory 32

The above results are in perfect agreement with the ones obtained from the Lagrangian

approach in [10], simply by identifying f = −mD
(−1) and g = mD̂

(+1).

On the other hand, by considering the type-II defect matrix K in (3.95), we get

D
(−1)
1 = −i c̄12

b22
ei(ϕ−+Λ̄)(eiϕ+ + e−iϕ+ + η̄) +

1

m
(∂t + ∂x)(ϕ+ + ϕ−), (3.101)

D̂
(+1)
1 = −ia12

b22
eiΛ̄(eiϕ+ + e−iϕ+ + η̄)− 1

m
(∂t − ∂x)(ϕ+ + ϕ−), (3.102)

D
(−1)
2 = −i b22

a12
e−i(ϕ−+Λ̄) +

1

m
(∂t + ∂x)(ϕ+ + ϕ−), (3.103)

D̂
(+1)
2 = −ib22

c̄12
e−iΛ̄ − 1

m
(∂t − ∂x)(ϕ+ + ϕ−), (3.104)

yielding in this case

ED = m

[
c̄12
b22

ei(Λ̄+ϕ−)
(
eiϕ+ + e−iϕ+ + η̄

)− b22
a12

e−i(Λ̄+ϕ−) +
b22
c̄12

e−iΛ̄ − a12
b22

eiΛ̄
(
eiϕ+ + e−iϕ+ + η̄

)]
,

PD = m

[
c̄12
b22

ei(Λ̄+ϕ−)
(
eiϕ+ + e−iϕ+ + η̄

)− b22
a12

e−i(Λ̄+ϕ−) − b22
c̄12

e−iΛ̄ +
a12
b22

eiΛ̄
(
eiϕ+ + e−iϕ+ + η̄

)]
.

Notice that the above results reflect again the charge conjugation symmetry, ϕ → −ϕ,
already pointed out with respect to (3.97) and (3.81).



CHAPTER 4

The Tzitzéica-Bullough-Dodd model

It was noticed some years ago that type-I defects can be also supported within the affine

Toda model based on the root data of a
(1)
n [8] from a Lagrangian point of view, where

the simplest example is the sine/sinh-Gordon model based on a
(1)
1 . Its defect matrix was

investigated and a general form for the defect potential was derived. In [30] some aspects of

the quantum description of the type-I defects within these Toda models were also provided.

Additionally, the classical Lagrangian description of the type-II defects within the a
(1)
n Toda

models was proposed in [10], and its corresponding transmission matrix was also provided

from a representation point of view.

Apart from the a
(1)
n series, the type-II defects are also supported within the affine Toda

model based on the twisted algebra a
(2)
2 . This integrable model was firstly introduced by

Tzitzéica in the study of hyperbolic surfaces, and also known as the Bullough-Dodd or

Zhiber-Mikhailov-Shabat equation. This model describes a quite interesting system because

it is the only relativistic two-dimensional theory which involves a single scalar field and is

integrable both at the classical and at the quantum level apart from the sine-Gordon model.

In this chapter, we will present the basic aspects of the bulk theory firstly from the

Lagrangian point of view and then we derive the conservation laws. Then, we discuss the

integrability properties of the model with type-II defects computing explicitly its defect

matrix and consequently establish its integrability by computing the corresponding modified

conserved energy and momentum.

33
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4.1 Bulk theory and associated linear problem

The Tzitzéica-Bullough-Dodd (TBD) model is described by the Lagrangian density∗,

L =
1

2
(∂tφ)

2 − 1

2
(∂xφ)

2 − 1

2

(
2eφ + e−2φ

)
, (4.1)

where φ is a single scalar field satisfying the following equation of motion,

∂2t φ− ∂2xφ = −eφ + e−2φ. (4.2)

It is clear that this model does not possess Z2 symmetry. This integrable field theory

possesses soliton solutions which are complex [31, 32, 33]. The integrability properties of

this model can be seen from its zero curvature representation, where its Lax pair is described

by the twisted affine algebra a
(2)
2 and can be written as follows,

U = −
(
∂−v
2v

)
T3 +

λ

2

(
v√
2
T+ +

1

v2
L−2

)
+

1

2λ

(√
2

2
T− + L2

)
, (4.3)

V =

(
∂−v
2v

)
T3 +

λ

2

(
v√
2
T+ +

1

v2
L−2

)
− 1

2λ

(√
2

2
T− + L2

)
, (4.4)

where we have defined v = eφ for simplicity and the light-cone notations ∂± = ∂t ± ∂x has
been used. The operators T3, T± and L±2 belong to the generators of the twisted affine

algebra a
(2)
2 and its matricial representation are given in appendix A.2. In terms of these,

we can write down the set of differential equations of the auxiliary linear problem as,

∂tΨ1 =

(
∂−v
2v

)
Ψ1 +

(
iλv

2

)
Ψ2 +

(
1

2λ

)
Ψ3, (4.5)

∂tΨ2 =

(
i

2λ

)
Ψ1 +

(
iλv

2

)
Ψ3, (4.6)

∂tΨ3 = −
(
λ

2v2

)
Ψ1 +

(
i

2λ

)
Ψ2 −

(
∂−v
2v

)
Ψ3, (4.7)

and

∂xΨ1 = −
(
∂−v
2v

)
Ψ1 +

(
iλv

2

)
Ψ2 −

(
1

2λ

)
Ψ3, (4.8)

∂xΨ2 = −
(
i

2λ

)
Ψ1 +

(
iλv

2

)
Ψ3, (4.9)

∂xΨ3 = −
(
λ

2v2

)
Ψ1 −

(
i

2λ

)
Ψ2 +

(
∂−v
2v

)
Ψ3. (4.10)

∗Where just for convenience we had dropped out the mass parameter m and the coupling constant β by

reparametrizing φ→ βφ and xμ → mxμ.
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Now, by defining the auxiliary functions Γ21 = Ψ2Ψ
−1
1 and Γ31 = Ψ3Ψ

−1
1 , we can construct

an infinite set of conservation laws from the equations (4.5) and (4.8) as follows,

∂t

[
−(∂−v)

2v
+

(
iλv

2

)
Γ21 − 1

2λ
Γ31

]
= ∂x

[
(∂−v)
2v

+

(
iλv

2

)
Γ21 +

1

2λ
Γ31

]
, (4.11)

where the auxiliary functions satisfy the following coupled Ricatti equations for the x-part,

∂xΓ21 =

(
(∂−v)
2v

)
Γ21 +

(
iλv

2

)(
Γ31 − (Γ21)

2
)− 1

2λ
(i− Γ21Γ31) , (4.12)

∂xΓ31 =

(
(∂−v)
v

)
Γ31 − λ

2

(
1

v2
+ iv Γ21Γ31

)
− 1

2λ

(
iΓ21 − (Γ31)

2
)
, (4.13)

and for the t-part,

∂tΓ21 = −(∂−v)
2v

Γ21 +
iλv

2

(
Γ31 − (Γ21)

2
)
+

1

2λ

(
i− Γ21Γ31

)
, (4.14)

∂tΓ31 = −(∂−v)
v

Γ31 − λ

2

(
1

v2
+ iv Γ21Γ31

)
+

1

2λ

(
iΓ21 − (Γ31)

2
)
. (4.15)

Now, as usual these differential equations can be recursively solved by considering an expan-

sion in non-positive powers of λ,

Γ21 =
∞∑
n=0

Γ
(n)
21

λn
, Γ31 =

∞∑
n=0

Γ
(n)
31

λn
. (4.16)

The lowest coefficients are simply given by,

Γ
(0)
21 = i(μv)−1, Γ

(0)
31 = μv−2, (4.17)

Γ
(1)
21 = −i(∂+v)v−2, Γ

(1)
31 = μ−1(∂+v)v−3, (4.18)

Γ
(2)
21 = −4iμ

3
∂x

(
(∂+v)v

−1) v−1 + iμ

3

(
(∂+v)v

−1)2 v−1 + 2iμ

3

(
1− v−3) , (4.19)

Γ
(2)
31 =

2

3
∂x

(
(∂+v)v

−1) v−2 − 2

3

(
(∂+v)v

−1)2 v−2 − 1

3

(
v−1 − v−4) , (4.20)

where μ is an arbitrary constant satisfying μ3 = −1. Assuming sufficiently smooth decaying
fields as |x| → ±∞ , the corresponding conserved quantities reads

I1 =

∫ ∞

−∞
dx

[
−(∂−v)

2v
+
iλv

2
Γ21 − 1

2λ
Γ31

]
. (4.21)

By substituting the expansion of the auxiliary functions into above definition, we get an infi-

nite number of conserved charges I
(k)
1 . It is very easy to check that the conserved quantities
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corresponding to k = 1 is trivial, and for k = 0 we obtain a topological term. The first

non-vanishing conserved charge is explicitly given by,

I
(−1)
1 =

1

3

∫ ∞

−∞
dx

[
1

2

(
(∂+v)v

−1)2 + (
v +

1

2
v−2

)]
, (4.22)

where without loss of generality, we have chosen μ = −1. Then, repeating this procedure
we can construct another set of conserved quantities corresponding to the expansion of the

auxiliary functions in non-negative powers of λ, namely,

Γ21 =
∞∑
n=0

Γ̂
(n)
21 λ

n, Γ31 =
∞∑
n=0

Γ̂
(n)
31 λ

n. (4.23)

From the Ricatti equations we get,

Γ̂
(0)
21 = iμ, Γ̂

(0)
31 = μ−1, (4.24)

Γ̂
(1)
21 = 0, Γ̂

(1)
31 = −(∂−v)v−1, (4.25)

Γ̂
(2)
21 = −2i

3
∂x

(
(∂−v)v−1

)
+
i

3

(
(∂−v)v−1

)2 − i

3

(
v − v−2) , (4.26)

Γ̂
(2)
31 = −2μ

3
∂x

(
(∂−v)v−1

)
+
μ

3

(
(∂−v)v−1

)2 − μ

3

(
v − v−2) . (4.27)

From these results and chosing μ = −1, the first non-vanishing conserved charge is given by

Î
(+1)

1 =
1

3

∫ ∞

−∞
dx

[
1

2

(
(∂−v)v−1

)2
+

(
v +

1

2
v−2

)]
. (4.28)

Then, we clearly can combine I
(−1)
1 and Î

(+1)

1 in order to obtain the usual energy and momen-

tum quantities. However, it is not enough because we are not considering all the information

coming from the Lax pair. So, it is also possible to construct another infinite sets of con-

served quantities by considering two more conservation equations that can be derived from

the equations (4.6), (4.7), (4.9) and (4.10), namely,

∂t

[
−
(
i

2λ

)
Γ12 +

(
iλv

2

)
Γ32

]
= ∂x

[(
i

2λ

)
Γ12 +

(
iλv

2

)
Γ32

]
, (4.29)

∂t

[(
∂−v
2v

)
−
(
λ

2v2

)
Γ13 −

(
i

2λ

)
Γ23

]
= ∂x

[
−
(
∂−v
2v

)
−
(
λ

2v2

)
Γ13 +

(
i

2λ

)
Γ23

]
(4.30)

where we have introduced some other auxiliary functions Γ12 = Φ1Φ
−1
2 , Γ32 = Φ3Φ

−1
2 , Γ13 =

Φ1Φ
−1
3 , and Γ23 = Φ2Φ

−1
3 . It is quite straightforward that these functions satisfy a set of
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Γ
(0)
12 = iv Γ

(0)
32 = −iv−1 Γ̂

(0)
12 = i Γ̂

(0)
32 = −i

Γ
(0)
13 = −v2 Γ

(0)
23 = iv Γ̂

(0)
13 = −1 Γ̂

(0)
23 = i

Γ
(1)
12 = −i(∂+v) Γ

(1)
32 = 0 Γ̂

(1)
12 = 0 Γ̂

(1)
32 = −i(∂−v)v−1

Γ
(1)
13 = (∂+v)v Γ

(1)
23 = 0 Γ̂

(1)
13 = (∂−v)v−1 Γ̂

(1)
23 = −i(∂−v)v−1

Table 4.1: The zero-th and first order coefficients.

Ricatti equations that can be written for the x-part as follows,

∂xΓ12 =

(
iλv

2

)
−
(
∂−v
2v

)
Γ12 −

(
1

2λ

)
Γ32 −

(
iλv

2

)
(Γ12Γ32) +

(
i

2λ

)
(Γ12)

2, (4.31)

∂xΓ32 = −
(
i

2λ

)
−
(
λ

2v2

)
Γ12 +

(
∂−v
2v

)
Γ32 +

(
i

2λ

)
(Γ12Γ32)−

(
iλv

2

)
(Γ32)

2, (4.32)

∂xΓ13 = −
(
1

2λ

)
−
(
∂−v
2v

)
Γ13 +

(
iλv

2

)
Γ23 +

(
i

2λ

)
(Γ13Γ23) +

(
λ

2v2

)
(Γ13)

2, (4.33)

∂xΓ23 =

(
iλv

2

)
−
(
i

2λ

)
Γ13 −

(
∂−v
2v

)
Γ23 +

(
λ

2v2

)
(Γ13Γ23) +

(
i

2λ

)
(Γ23)

2, (4.34)

and for the t-part,

∂tΓ12 =

(
iλv

2

)
+

(
∂−v
2v

)
Γ12 +

(
1

2λ

)
Γ32 −

(
iλv

2

)
(Γ12Γ32)−

(
i

2λ

)
(Γ12)

2, (4.35)

∂tΓ32 =

(
i

2λ

)
−
(
λ

2v2

)
Γ12 −

(
∂−v
2v

)
Γ32 −

(
i

2λ

)
(Γ12Γ32)−

(
iλv

2

)
(Γ32)

2, (4.36)

∂tΓ13 =

(
1

2λ

)
+

(
∂−v
2v

)
Γ13 +

(
iλv

2

)
Γ23 −

(
i

2λ

)
(Γ13Γ23) +

(
λ

2v2

)
(Γ13)

2, (4.37)

∂tΓ23 =

(
iλv

2

)
+

(
i

2λ

)
Γ13 +

(
∂−v
2v

)
Γ23 +

(
λ

2v2

)
(Γ13Γ23)−

(
i

2λ

)
(Γ23)

2. (4.38)

As was already shown, these equations can be recursively solved by introducing an expan-

sion of the respective auxiliary functions in positive and/or negative powers of the spectral

parameter λ. Doing so, after a lengthy calculation the first few coefficients for these auxiliary

functions can be determined, and the results are shown in tables 4.1 and 4.2.

Now, from equations (4.29) and (4.30) we obtain directly the following two generating
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Γ
(2)
12 = −4

3

[
∂x(∂+v) +

1
2v
(∂−v) (∂+v) + 1

2
(v−1 − v2)]

Γ
(2)
32 = 2

3i

[
∂x(∂+v)v

−2 + 1
2v3

(∂−v) (∂+v) + 1
2
(v−3 − 1)]

Γ̂
(2)
12 = 2

3i

[
∂x(∂−v)v−1 − 1

2v2
(∂−v) (∂+v)− 1

2
(v−2 − v)]

Γ̂
(2)
32 = 4

3i

[−∂x(∂−v)v−1 + 1
2v2

(∂−v) (∂+v) + 1
2
(v−2 − v)]

Γ
(2)
13 = −2

3

[
∂x(∂+v)v +

1
2
(∂−v) (∂+v) + 1

2
(1− v3)]

Γ
(2)
23 = 2

3iv

[
∂x(∂+v)v +

1
2
(∂−v) (∂+v) + 1

2
(1− v3)]

Table 4.2: Second-order coefficients.

functions of the conserved quantities,

I2 =

∫ ∞

−∞
dx

[
−
(
i

2λ

)
Γ12 +

(
ivλ

2

)
Γ32

]
, (4.39)

I3 =

∫ ∞

−∞
dx

[(
∂−v
2v

)
−
(
λ

2v2

)
Γ13 −

(
i

2λ

)
Γ23

]
. (4.40)

Then, by substituting the respective expansion of each auxiliary function and using the

coefficients showed in tables 4.1 and 4.2, we immediately get the first few non-vanishing

conserved quantities, which are explicitly given by,

I
(−1)
2 = I

(−1)
3 =

1

3

∫ ∞

−∞
dx

[
1

2

(
(∂+v)v

−1)2 + (
v +

1

2
v−2

)]
, (4.41)

Î
(+1)

2 = Î
(+1)

3 =
1

3

∫ ∞

−∞
dx

[
1

2

(
(∂−v)v−1

)2
+

(
v +

1

2
v−2

)]
. (4.42)

From the above results, we can notice that there is a simple combination of all these contri-

butions giving us the usual energy and momentum conserved quantities. In fact, if we define

the following conseved quantities,

I
(−1) = I

(−1)
1 + I

(−1)
2 + I

(−1)
3 =

∫ ∞

−∞
dx

[
1

2

(
(∂+v)v

−1)2 + (
v +

1

2
v−2

)]
, (4.43)

Î
(+1) = Î

(+1)

1 + Î
(+1)

2 + Î
(+1)

3 =

∫ ∞

−∞
dx

[
1

2

(
(∂−v)v−1

)2
+

(
v +

1

2
v−2

)]
, (4.44)
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the conserved energy and momentum can be written as

E =

(
I
(−1) + Î

(+1)
)

2
=

∫ ∞

−∞
dx

{
1

2

[(
∂xφ)

2 + (∂tφ
)2]

+

(
eφ +

1

2
e−2φ

)}
, (4.45)

P =

(
I
(−1) − Î

(+1)
)

2
=

∫ ∞

−∞
dx

(∂xv) (∂tv)

v2
=

∫ ∞

−∞
dx (∂xφ) (∂tφ) . (4.46)

4.2 Type-II defect theory

The starting point to discuss the type-II defect in the TBD model is the following Lagrangian

density,

L = θ(−x)L
˜φ
− θ(x)Lφ + δ(x)

[
1

2
(φ∂tφ̃− φ̃∂tφ)− Λ∂t(φ̃− φ) + ∂tΛ(φ̃− φ)−B0(φ̃, φ,Λ)

]
.(4.47)

Here, the defect conditions can be written in terms of the field coordinates φ+ = (φ̃ + φ)/2

and φ− = (φ̃− φ)/2 as follows,

∂tφ+ + ∂xφ+ − 2∂tΛ = −1
2

∂B0

∂φ−
, (4.48)

∂tφ− − ∂xφ− =
1

2

∂B0

∂φ−
, (4.49)

∂tφ− + ∂xφ− = −1
2

(
∂B0

∂φ−
+
∂B0

∂Λ

)
, (4.50)

where the defect potential is given in this case by the following form,

B0(φ+, φ−,Λ) = −ξ
[
2ieφ+−Λ

(
eφ− + e−φ−

)
+ e−2Λ

(
eφ− + e−φ−

)2
]
− 1

ξ

[
1

4
e−2(φ+−Λ) − ieΛ

]
,(4.51)

where ξ is a free parameter. From these follows the equations of motion,

∂tφ+ + ∂xφ+ − 2∂tΛ = ξe−2Λ(e2φ− − e−2φ−) + iξe−Λ+φ+(eφ− − e−φ−), (4.52)

∂tφ− − ∂xφ− = −1
2

(
2i ξ eφ+−Λ (eφ− + e−φ−

)− e−2(φ+−Λ)

2 ξ

)
, (4.53)

∂tφ− + ∂xφ− = −1
2

(
i

ξ
eΛ + 2 ξ e−2Λ

(
eφ− + e−φ−

)2)
. (4.54)

The above defect conditions represent a type-II Bäcklund transformation for the TBD model

frozen at x = 0, firstly reported in [10]†. It is worth noting that this Bäcklund differs from

others found in the literature [34, 35, 36]. Using this Lagrangian setting, it was shown also

in [10] that this Bäcklund conserves the momentum. In addition, the Lax representation was

used in [14] to prove that in fact this defect is integrable, and that will be presented in the

next section.
†By simply associating Λ→ −λ, ∂± → ∂∓, and φ→ −φ
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4.2.1 Defect matrix and modified integrals of motion

Let us now consider the following form for the matrix K [37],

Kij = αij +
1

λ
βij +

1

λ2
δij +

1

λ3
γij. (4.55)

is a solution for the differential equations,

∂±K = KA± − Ã±K, (4.56)

where it has been used the light-cone coordinates and A± is given by,

A+ =

⎛⎜⎝ 0 −i λeφ 0

0 0 −i λeφ
λe−2φ 0 0

⎞⎟⎠ , A− =

⎛⎜⎝ −∂−φ 0 − 1
λ

− i
λ

0 0

0 − i
λ

∂−φ

⎞⎟⎠ , (4.57)

Then, equation (4.56) decomposes into three independent systems of equations. We will

consider the set involving the variables {α11, α22, α33, β13, β21, β32, δ12, δ23, δ31, γ11, γ22, γ33}
such that

K =

⎡⎢⎢⎢⎣
α11 +

1
λ3γ11

1
λ2 δ12

1
λ
β13

1
λ
β21 α22 +

1
λ3γ22

1
λ2 δ23

1
λ2 δ31

1
λ
β32 α33 +

1
λ3γ33

⎤⎥⎥⎥⎦ . (4.58)

Equations (4.56) with K given above are satisfied for

γ11 = γ22 = γ33 = ν, (4.59)

α11 = ξ
(v
ṽ

)
= α, α22 = ξ, α33 = ξ

(
ṽ

v

)
=
ξ2

α
, (4.60)

where we have defined again v = eφ and ν and ξ are in principle two arbitrary constants.

Introducing the following reparametrization,

β21 =
Y

ṽ
=
αY

ξv
, (4.61)

the matrix K given in (4.58) takes the form,

K =

⎡⎢⎢⎢⎣
α + ν λ−3 2 ξ v ν

αY
(α + ξ) λ−2 2 ξ2v2 ν

α2Y 2 (α + ξ )2 λ−1

αY
ξv
λ−1 ξ + ν λ−3 2 ξ v ν

αY
(α + ξ) λ−2

αY 2

2v2ξ2
λ−2 Y

v
λ−1 ξ2 1

α
+ ν λ−3

⎤⎥⎥⎥⎦ . (4.62)
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The fields α and Y satisfy the following partial differential equations,

∂+α− i α Y
ξ
− 2 ν

Y 2
(α + ξ )2 = 0, (4.63)

1

v
∂+Y − Y

v2
∂+v +

2 ν ξ

α v Y
(α + ξ ) + i

Y 2

2 v ξ
= 0, (4.64)

∂−α− i 2 ν v ξ
Y

(α + ξ ) +
α2Y 2

2 v2 ξ2
= 0, (4.65)

∂−Y
v

+ i ξ

(
ξ

α
− 1

)
= 0. (4.66)

We now define the functions

φ+ =
φ̃+ φ

2
, φ− =

φ̃− φ
2

, α = ξe−2φ− . (4.67)

Then, after a few manipulations the equations (4.63) to (4.66) become

∂+φ− = −1
2

(
i

ξ
eΛ + 2 ξ e−2Λ

(
eφ− + e−φ−

)2)
, (4.68)

∂−φ− = −1
2

(
2i ξ eφ+−Λ (eφ− + e−φ−

)− e−2(φ+−Λ)

2 ξ

)
, (4.69)

∂+(φ+ − Λ) = ξe−2Λ(e2φ− − e−2φ−), (4.70)

∂−Λ = iξeφ+−Λ(e−φ− − eφ−), (4.71)

where Y ≡ eΛ and ν is taken to be equal to 1. Note that if the above equations are

considered to be frozen at x = 0, the sum of the equations (4.70) and (4.71) together

with (4.68) and (4.69) we obtain the type-II defect conditions for the TBD model derived

previously by variational principle in (4.52)-(4.54). From these equations it is clear from

(4.70) and (4.71) that the compatibility condition ∂+∂−φ = ∂−∂+φ is satisfied. In addition,

cross-differentiating (4.68) and (4.69) we find the field equation satisfied by Λ, namely

∂+∂−Λ =
1

2

(
e
˜φ + eφ

) (
1 + 8iξ2e−3Λ

)
, (4.72)

which depends on the fields φ̃ and φ as it was expected. Of course, when we just consider

the defect conditions, i.e the frozen Bäcklund transformation, Λ only depends on t and is

defined by the three equations (4.52)-(4.54). Finally, it is worth noting that the vacuum

solution in the bulk φ̃ = φ = 0 satisfies the defect conditions, if the auxiliary field is one of

three roots that satisfies the equation,(
eΛ
)3
= 8iξ2. (4.73)
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Let us now to compute the modified conserved charges coming from the defect contributions

for the Tzitzéica-Bullough-Dodd model. By considering first the set of infinite charges given

by (4.21), we have that the defect contributions are explicitly given by

D1 = − ln
[
K11 +K12Γ21 +K13Γ31

]∣∣∣∣
x=0

. (4.74)

As it was already emphasized, from the above formula we can derive the two sets of defect

contribution by considering the corresponding expansion of the auxiliary functions in positive

and negative powers of λ. In particular for the λ±1-terms, we obtain

D
(−1)
1 = 2ξ e−2Λ

(
eφ− + e−φ−

)2
, D̂

(+1)
1 = 2iξ e(φ+−Λ) (eφ− + e−φ−

)
. (4.75)

As we now know, to obtain the exact form of the corresponding defect contributions to the

energy and momentum, we need to consider the others conservation equations and conse-

quently the other charges given in (4.39) and (4.40). Applying the same steps to derive the

defect contributions, one gets

D2 = − ln
[
K21Γ12 +K22 +K23Γ32

]∣∣∣∣
x=0

, (4.76)

D3 = − ln
[
K31Γ13 +K32Γ23 +K33

]∣∣∣∣
x=0

, (4.77)

leading to

D2
(−1) = − i

ξ
eΛ , D̂

(+1)
2 = 2iξe(φ+−Λ) (eφ− + e−φ−

)
, (4.78)

D3
(−1) = − i

ξ
eΛ , D̂

(+1)
3 =

1

2
e2(Λ−φ+), (4.79)

Now, defining by analogy the following two conserved quantities,

D
(−1) = D

(−1)
1 +D

(−1)
2 +D

(−1)
3 = 2ξ e−2Λ

(
eφ− + e−φ−

)2 − 2i

ξ
eΛ, (4.80)

D̂
(+1) = D̂

(+1)
1 + D̂

(+1)
2 + D̂

(+1)
3 = 4iξe(φ+−Λ) (eφ− + e−φ−

)
+
1

2
e2(Λ−φ+), (4.81)

we can write down the defect energy and momentum as follows,

ED =
(D(−1) + D̂

(+1))

2
= ξe−2Λ

(
eφ− + e−φ−

)2 − i

ξ
eΛ + 2iξe(φ+−Λ)

(
eφ− + e−φ−

)
+

1

4
e2(Λ−φ+),

PD =
(D(−1) − D̂

(+1))

2
= ξ e−2Λ

(
eφ− + e−φ−

)2 − i

ξ
eΛ − 2iξe(φ+−Λ)

(
eφ− + e−φ−

)
− 1

4
e2(Λ−φ+).

These are exactly the defect energy and momentum which are obtained using the Lagrangian

formalism. In particular, we can note that as it was expected ED = −B0 in (4.51).



CHAPTER 5

The Grassmannian massive Thirring model

The massive Thirring model is a two-dimensional exactly solvable quantum field theory which

describes Dirac fermions with local (self-)interaction, namely a current-current interaction

[38]. This model has been widely studied not only because of its purely theoretical relevance

but also because of its interesting connections with the physics of strongly correlated systems

in one spatial dimension[39] and for its quantum equivalence with the sine-Gordon model

[40, 41]. In this thesis we are not concerned with its importance as a solvable quantum field

theory model but rather restrict our attention to its integrability properties from a classical

point of view. The classical version of the model is described by Grassmannian fields and

its integrability properties has already been established in the bulk theory [42, 43].

Some years ago, it was shown that the massive Thirring model can be restricted to the

half-line (−∞, 0), without losing integrability by imposing suitable boundary conditions and
the relation to the boundary sine-Gordon was provided [44, 45]. These ideas motivated to

consider the natural connection between the defect sine-Gordon model and the possible exis-

tence of integrable defects within the Thirring model related to its Bäcklund transformation.

In this chapter, we will discuss the integrability properties of the Grassmannian massive

Thirring (GMT) model in the presence of the type-II defects, which are naturally related with

its Bäcklund transformation [46]. Firstly, we present some basic aspects of the bulk theory

and construct the conservation laws using our method. Then, we provide the Lagrangian

formalism and derive the defect conditions preserving the modified momentum. Finally, we

construct the defect matrix to ensure that the defects do not spoil the integrability.

43
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5.1 The bulk theory and associated linear problem

The massive Thirring model [38] is a theory of self-coupled Dirac fields in two-dimensional

space-time defined by the following Lagrangian density

L = ψ̄
(
iγμ
←→
∂μ −m

)
ψ − g

2
jμj

μ, (5.1)

where g is the coupling constant and jμ = ψ̄γμψ is the fermionic current. In two-dimensional

space-time the γ-matrices are given in terms of the Pauli matrices, namely γ0 = σ1, γ
1 =

−iσ2 and γ5 = σ3. The metric tensor is simply defined by g00 = −g11 = 1 and g01 = 0.

This massive model possesses U(1)-vectorial invariance and the massless case U(1) axial

invariance, i.e

ψ(x, t) −→ ψ′(x, t) = eiαV ψ(x, t), (5.2)

ψ(x, t) −→ ψ′(x, t) = eiαAγ5ψ(x, t), for m = 0. (5.3)

By using the fields components, ψ = (ψ1(x, t), ψ2(x, t)), it is possible to rewrite the La-

grangian density in the following way

L =
i

2
ψ1(∂t − ∂x)ψ†1 +

i

2
ψ†1(∂t − ∂x)ψ1 +

i

2
ψ2(∂t + ∂x)ψ

†
2 +

i

2
ψ†2(∂t + ∂x)ψ2

− m
(
ψ†1ψ2 + ψ†2ψ1

)− g(ψ†1ψ1ψ
†
2ψ2

)
, (5.4)

Then, the equations of motion which are obtained from this Lagrangian have the form,

i(∂t − ∂x)ψ1 = mψ2 + gψ†2ψ2ψ1 , (5.5)

i(∂t + ∂x)ψ2 = mψ1 + gψ†1ψ1ψ2 , (5.6)

i(∂t − ∂x)ψ†1 = −mψ†2 − gψ†2ψ2ψ
†
1 , (5.7)

i(∂t + ∂x)ψ
†
2 = −mψ†1 − gψ†1ψ1ψ

†
2 . (5.8)

These equations can be described as a compatibility condition of the following associated

linear problem,

∂xΨ(x, t;λ) = U(x, t;λ)Ψ(x, t;λ), (5.9)

∂tΨ(x, t;λ) = V (x, t;λ)Ψ(x, t;λ). (5.10)

where the three-wave function Ψ has the form (Ψ1,Ψ2,Ψ3)
T and the Lax pair U, V are 3× 3

matrices belong to the sl(2, 1) Lie algebra (see Appendix A.3), and can be explicitly written

as follows,

U =
igρ−
2

h1 +
im

2

(
λ2 − λ−2) (h1 + 2h2) + r1E−(α1+α2) + r2E−α2 + q1Eα1+α2 + q2Eα2 (5.11)

V = − igρ+
2

h1 +
im

2

(
λ−2 + λ2

)
(h1 + 2h2)− q2E−(α1+α2) − q1E−α2 − r2Eα1+α2 − r1Eα2 ,(5.12)
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where just for simplicity, we have also defined ρ± = (ψ†2ψ2 ± ψ†1ψ1) and the functions

q1 = −i
√
mg

2

(
λψ1 + λ−1ψ2

)
, q2 = i

√
mg

2

(
λψ†1 − λ−1ψ†2

)
, (5.13)

r1 = −i
√
mg

2

(
λψ†1 + λ−1ψ†2

)
, r2 = i

√
mg

2

(
λψ1 − λ−1ψ2

)
. (5.14)

Now, the set of differential equations (5.9) and (5.10) read in components,

∂xΨ1 =

[
ig

2
ρ− +

im

2

(
λ2 − λ−2)]Ψ1 + q1Ψ3, (5.15)

∂xΨ2 = −
[
ig

2
ρ− − im

2

(
λ2 − λ−2)]Ψ2 + q2Ψ3, (5.16)

∂xΨ3 = r1Ψ1 + r2Ψ2 + im
(
λ2 − λ−2)Ψ3, (5.17)

and

∂tΨ1 = −
[
ig

2
ρ+ − im

2

(
λ2 + λ−2

)]
Ψ1 − r2Ψ3, (5.18)

∂tΨ2 =

[
ig

2
ρ+ +

im

2

(
λ2 + λ−2

)]
Ψ2 − r1Ψ3, (5.19)

∂tΨ3 = −q2Ψ1 − q1Ψ2 + im
(
λ2 + λ−2

)
Ψ3. (5.20)

Now, by defining the auxiliary functions Γ21 = Ψ2Ψ
−1
1 and Γ31 = Ψ3Ψ

−1
1 , we obtain a first

conservation law from (5.15) and (5.18), namely,

∂t

[
q1Γ31 +

ig

2
ρ−

]
+ ∂x

[
r2Γ31 +

ig

2
ρ+

]
= 0, (5.21)

where Γ21 and Γ31 satisfy the following coupled Riccati equations for the x-part,

∂xΓ21 = −(igρ−)Γ21 + q2Γ31 − q1Γ21Γ31, (5.22)

∂xΓ31 = r1 + r2Γ21 − i

2

[
gρ− −m

(
λ2 − λ−2)]Γ31, (5.23)

and for the t-part,

∂tΓ21 = (igρ+)Γ21 − r1Γ31 + r2Γ21Γ31, (5.24)

∂tΓ31 = −q2 − q1Γ21 +
i

2

[
gρ+ +m

(
λ2 + λ−2

)]
Γ31 . (5.25)

Now, by firstly considering an expansion in inverse powers of λ for the auxiliary functions

as,

Γij(x, t;λ) =
∞∑
k=1

Γ
(k)
ij (x, t)

λk
, (5.26)
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and inserting this in the Riccati equations (5.22) and (5.23) we find that the first coefficients

of the expansion are given by

Γ
(1)
31 =

√
2g

m
ψ†1, Γ

(2)
31 = −

(√
2g

m
ψ1

)
Γ
(1)
21 , (5.27)

Γ
(3)
31 = −2i

m

[√
2g

m

(
∂xψ

†
1

)
+ i

√
mg

2

(
ψ†2 − ψ1Γ

(2)
21

)
+
ig

2

√
2g

m
(ψ†2ψ2)ψ

†
1

]
, (5.28)

where Γ
(1)
21 and Γ

(2)
21 satisfy the following differential equations,

∂xΓ
(1)
21 = −ig

(
ψ†2ψ2 + ψ†1ψ1

)
Γ
(1)
21 , (5.29)

∂xΓ
(2)
21 = −ig

(
ψ†2ψ2 + ψ†1ψ1

)
Γ
(2)
21 +

2g

m

(
ψ†1∂xψ

†
1

)
+ 2ig ψ†1ψ

†
2. (5.30)

Then, we find out in this case that the associated generating function of the conserved

quantities are given by,

I1 =

∫ ∞

−∞
dx

[
q1Γ31 +

ig

2
ρ−

]
, (5.31)

and substituting the respective coefficients for the auxiliary function Γ31 in the expansion in

λ, we found that the lowest conserved quantities are given,

I
(0)
1 =

ig

2

∫ ∞

−∞
dx

[
ψ†2ψ2 + ψ†1ψ1

]
, (5.32)

I
(2)
1 =

∫ ∞

−∞
dx

[
−2g
m

(
ψ1∂xψ

†
1

)
+ ig

(
ψ†2ψ1 + ψ†1ψ2

)
+
ig2

m

(
ψ†2ψ2ψ

†
1ψ1

)]
. (5.33)

Now, to compute a second infinite set of conserved quantities we have to expand the auxiliary

functions around λ = 0, i.e, in positive powers of λ, as follows

Γij(x, t;λ) =
∞∑
k=1

Γ̂
(k)
ij (x, t)λ

k. (5.34)

By following the same procedure, we obtain that the respective first few coefficients for each

expansion are given by,

Γ̂
(1)
31 = −

√
2g

m
ψ†2, Γ̂

(2)
31 = −

(√
2g

m
ψ2

)
Γ̂
(1)
21 , (5.35)

Γ̂
(3)
31 = −2i

m

[√
2g

m

(
∂xψ

†
2

)− i√mg

2

(
ψ†1 + ψ2 Γ̂

(2)
21

)
− ig

2

√
2g

m
(ψ†1ψ1)ψ

†
2

]
, (5.36)
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with

∂xΓ̂
(1)
21 = ig

(
ψ†2ψ2 + ψ†1ψ1

)
Γ̂
(1)
21 , (5.37)

∂xΓ̂
(2)
21 = ig

(
ψ†2ψ2 + ψ†1ψ1

)
Γ̂
(2)
21 −

2g

m

(
ψ†2∂xψ

†
2

)
− 2ig ψ†1ψ†2. (5.38)

Then, we have that the corresponding first charges associated to this expansion of Γ31 are

given as follows,

Î
(0)

1 = − ig
2

∫ ∞

−∞
dx

[
ψ†2ψ2 + ψ†1ψ1

]
, (5.39)

Î
(2)

1 =

∫ ∞

−∞
dx

[
−2g
m

(
ψ2∂xψ

†
2

)
− ig

(
ψ†2ψ1 + ψ†1ψ2

)
− ig2

m

(
ψ†2ψ2ψ

†
1ψ1

)]
. (5.40)

Clearly, these charges are not totally real and therefore it is necessary to add the hermitian

conjugate terms. To do that, we need to consider other contributions coming from two more

conservation equations that can be derived using (5.16), (5.17), (5.19) and (5.20), namely

∂t

[
q2Γ32 − ig

2
ρ−

]
+ ∂x

[
r1Γ32 − ig

2
ρ+

]
= 0, (5.41)

∂t

[
r1Γ13 + r2Γ23

]
+ ∂x

[
q2Γ13 + q1Γ23

]
= 0, (5.42)

where we have introduced some other auxiliary functions Γ12 = Ψ1Ψ
−1
2 , Γ32 = Ψ3Ψ

−1
2 ,

Γ13 = Ψ1Ψ
−1
3 , and Γ23 = Ψ2Ψ

−1
3 . It is very easy to check that the set of Riccati equations

satisfied by these auxiliary functions can be written as,

∂xΓ12 = (ig ρ−)Γ12 + q1Γ32 − q2Γ12Γ32, (5.43)

∂xΓ32 = r2 + r1Γ12 +
i

2

(
gρ− +m(λ2 − λ−2))Γ32, (5.44)

∂xΓ13 = q1 +
i

2

[
gρ− −m

(
λ2 − λ−2)]Γ13 + r2Γ13Γ23, (5.45)

∂xΓ23 = q2 − i

2

[
gρ− +m

(
λ2 − λ−2)]Γ23 − r1Γ13Γ23, (5.46)

and

∂tΓ12 = −(igρ+) Γ12 − r2Γ32 − r1Γ12Γ32, (5.47)

∂tΓ32 = −q1 − q2Γ12 − i

2

[
gρ+ −m

(
λ2 + λ−2

)]
Γ32 (5.48)

∂tΓ13 = −r2 − i

2

[
gρ+ +m

(
λ2 + λ−2

)]
Γ13 − q1Γ13Γ23 (5.49)

∂tΓ23 = −r1 + i

2

[
gρ+ −m

(
λ2 + λ−2

)]
Γ23 + q2Γ13Γ23. (5.50)
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Now, these equations are solved by expanding each of the auxiliary functions in positive and

negative powers of the spectral parameter λ. Performing similar computations, the first few

coefficients for these auxiliary functions can be determined, and the results read

Γ
(1)
23 =

√
2g

m
ψ†1, Γ

(1)
23 = Γ

(1)
32 =

√
2g

m
ψ1, Γ̂

(1)
13 = −Γ̂(1)

32 =

√
2g

m
ψ2, (5.51)

Γ̂
(1)
23 =

√
2g

m
ψ†2, Γ

(2)
32 =

√
2g

m
ψ†1, Γ̂

(2)
32 = −

√
2g

m
ψ†2, (5.52)

Γ
(2)
13 = Γ

(2)
23 = Γ̂

(2)
13 = Γ̂

(2)
23 = 0, (5.53)

and

Γ
(3)
32 =

2

m

[
i

√
2g

m
(∂xψ1) +

√
mg

2

(
ψ2 + ψ†1 Γ

(2)
12

)
+
g

2

√
2g

m

(
ψ†2ψ2

)
ψ1

]
, (5.54)

Γ̂
(3)
32 =

2

m

[
−i

√
2g

m
(∂xψ2) +

√
mg

2

(
ψ1 − ψ†2 Γ̂(2)

12

)
+
g

2

√
2g

m

(
ψ†1ψ1

)
ψ2

]
, (5.55)

Γ
(3)
13 =

2

m

[
−i

√
2g

m
(∂xψ1)−

√
mg

2
ψ2 − g

2

√
2g

m

(
ψ†2ψ2

)
ψ1

]
, (5.56)

Γ̂
(3)
13 =

2

m

[
−i

√
2g

m
(∂xψ2) +

√
mg

2
ψ1 +

g

2

√
2g

m

(
ψ†1ψ1

)
ψ2

]
, (5.57)

Γ
(3)
23 =

2

m

[
i

√
2g

m
(∂xψ

†
1)−

√
mg

2
ψ†2 −

g

2

√
2g

m

(
ψ†2ψ2

)
ψ†1

]
, (5.58)

Γ̂
(3)
23 =

2

m

[
−i

√
2g

m
(∂xψ

†
2)−

√
mg

2
ψ†1 −

g

2

√
2g

m

(
ψ†1ψ1

)
ψ†2

]
, (5.59)

together with the following relations,

∂xΓ
(1)
12 = ig

(
ψ†1ψ1 + ψ†2ψ2

)
Γ
(1)
12 , (5.60)

∂xΓ̂
(1)
12 = −ig

(
ψ†1ψ1 + ψ†2ψ2

)
Γ̂
(1)
12 , (5.61)

∂xΓ
(2)
12 = ig

(
ψ†1ψ1 + ψ†2ψ2

)
Γ
(2)
12 +

2g

m
(ψ1∂xψ1)− 2ig (ψ1ψ2) , (5.62)

∂xΓ̂
(2)
12 = −ig

(
ψ†1ψ1 + ψ†2ψ2

)
Γ̂
(2)
12 −

2g

m
(ψ2∂xψ2) + 2ig (ψ1ψ2) . (5.63)
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Now, we will compute the corresponding conserved quantities from the conservation equa-

tions (5.41) and (5.42), namely

I2 =

∫ ∞

−∞
dx

[
q2Γ32 − ig

2
ρ−

]
, (5.64)

I3 =

∫ ∞

−∞
dx

[
r1Γ13 + r2Γ23

]
. (5.65)

Therefore, by a straightforward substitution of the each expansion coefficient, we easily get

the following results,

I
(0)
2 = −Î(0)2 = − ig

2

∫ ∞

−∞
dx

[
ψ†2ψ2 + ψ†1ψ1

]
, I

(0)
3 = Î

(0)

3 = 0, (5.66)

and

I
(2)
2 =

∫ ∞

−∞
dx

[
−2g
m

(
ψ†1∂xψ1

)
+ ig

(
ψ†2ψ1 + ψ†1ψ2

)
+
ig2

m

(
ψ†2ψ2ψ

†
1ψ1

)]
, (5.67)

Î
(2)

2 =

∫ ∞

−∞
dx

[
−2g
m

(
ψ†2∂xψ2

)
− ig

(
ψ†2ψ1 + ψ†1ψ2

)
− ig2

m

(
ψ†2ψ2ψ

†
1ψ1

)]
, (5.68)

I
(2)
3 =

∫ ∞

−∞
dx

[
−2g
m

(
ψ†1∂xψ1 + ψ1∂xψ

†
1

)
+ 2ig

(
ψ†2ψ1 + ψ†1ψ2

)
+
2ig2

m

(
ψ†2ψ2ψ

†
1ψ1

)]
,(5.69)

Î
(2)

3 =

∫ ∞

−∞
dx

[
−2g
m

(
ψ†2∂xψ2 + ψ2∂xψ

†
2

)
− 2ig

(
ψ†2ψ1 + ψ†1ψ2

)
− 2ig2

m

(
ψ†2ψ2ψ

†
1ψ1

)]
.(5.70)

Then, from all these conserved quantities together with the ones derived in (5.32), (5.33),

(5.39), and (5.40), we can notice that

I
(n)
1 + I

(n)
2 = I

(n)
3 , Î

(n)

1 + Î
(n)

2 = Î
(n)

3 . (5.71)

Therefore, it is convenient to define the following quantities,

I
(0) = (I

(0)
1 − I

(0)
2 − I

(0)
3 ), Î

(0) =
(
Î
(0)

1 − Î
(0)

2 − Î
(0)

3

)
, (5.72)

I
(2) = (I

(2)
1 + I

(2)
2 + I

(2)
3 ), Î

(2) =
(
Î
(2)

1 + Î
(2)

2 + Î
(2)

3

)
, (5.73)

in order to get the usual conserved number of occupation, energy and momentum for the

GT model by performing a simple combination, namely

N =
1

2ig

[
I
(0) − Î

(0)
]
=

∫ ∞

−∞
dx

[
ψ†2ψ2 + ψ†1ψ1

]
, (5.74)

E =
m

8ig

[
I
(2) − Î

(2)
]
=

∫ ∞

−∞
dx

[
i

2

(
ψ1∂xψ

†
1 + ψ†1∂xψ1 − ψ2∂xψ

†
2 − ψ†2∂xψ2

)
+m

(
ψ†2ψ1 + ψ†1ψ2

)
+ g ψ†2ψ2ψ

†
1ψ1

]
, (5.75)

P =
m

8ig

[
I
(2) + Î

(2)
]
=

∫ ∞

−∞
dx

[
i

2

(
ψ1∂xψ

†
1 + ψ†1∂xψ1 + ψ2∂xψ

†
2 + ψ†2∂xψ2

)]
. (5.76)
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5.2 The defect theory

In this section we introduce a defect placed at the origin x = 0, and then derive the corre-

sponding defect contributions to the modified conserved quantities firstly by implementing

defect conditions on the field through the addition of the respective boundary term to the

bulk action, and secondly by performing a Bäcklund transformation between the two auxil-

iary wave-functions on both sides of the defect.

5.2.1 Lagrangian description

The Lagrangian density for GMT model with jump defect can be written as follows,

L = θ(−x)L−(ψ̃1, ψ̃2) + θ(x)L+(ψ1, ψ2) + δ(x)LD(ψ̃1, ψ̃2, ψ1, ψ2, X) , (5.77)

where L∓ represents the bulk Lagrangian density (5.4) describing the massive Dirac fields

at x < 0 and x > 0 respectively, and the defect conditions can be derived from the local

Lagrangian density,

LD =
ia

2m

[
X†(∂tX)− (∂tX†)X

]
+
i

2

[
ψ̃†1ψ1 − ψ†1ψ̃1 + ψ̃†2ψ2 − ψ†2ψ̃2

]
+

1

2

[
i(ψ1 − ψ̃1) + a(ψ2 + ψ̃2)

]
X† +

1

2

[
i(ψ†1 − ψ̃†1)− a(ψ†2 + ψ̃†2)

]
X

− ga

4m

[
ψ̃†1ψ̃1 + ψ†1ψ1 + ψ̃†2ψ̃2 + ψ†2ψ2

]
X†X, (5.78)

where X and X† are auxiliary fields and a is the Bäcklund parameter. For x = 0, the

equations corresponding to defect conditions are

X = (ψ̃1 + ψ1) +
iag

2m
ψ̃1X

†X = ia−1(ψ2 − ψ̃2)− g

2m
X†Xψ2, (5.79)

X† = (ψ̃†1 + ψ†1)−
iag

2m
ψ̃†1X

†X = −ia−1(ψ†2 − ψ̃†2)−
g

2m
X†Xψ†2, (5.80)

together with their respective time derivatives,

∂tX =
m

2a
(ψ1 − ψ̃1)− im

2
(ψ2 + ψ̃2)− ig

4

[
ψ̃†1ψ̃1 + ψ†1ψ1 + ψ̃†2ψ̃2 + ψ†2ψ2

]
X, (5.81)

∂tX
† =

m

2a
(ψ†1 − ψ̃†1) +

im

2
(ψ†2 + ψ̃†2) +

ig

4

[
ψ̃†1ψ̃1 + ψ†1ψ1 + ψ̃†2ψ̃2 + ψ†2ψ2

]
X†. (5.82)

These equations are the respective “frozen” Bäcklund transformations, and if we also consider

the x-derivatives

∂xX =
m

2a
(ψ1 − ψ̃1) +

im

2
(ψ2 + ψ2)− ig

4

[
ψ̃†1ψ̃1 + ψ†1ψ1 − ψ̃†2ψ̃2 − ψ†2ψ2

]
X, (5.83)

∂xX
† =

m

2a
(ψ†1 − ψ̃†1)−

im

2
(ψ†2 + ψ̃†2) +

ig

4

[
ψ̃†1ψ̃1 + ψ†1ψ1 − ψ̃†2ψ̃2 − ψ†2ψ2

]
X†, (5.84)
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they become exactly the Bäcklund transformations for the classical anticommuting Thirring

model [46]. We notice that although the local Lagrangian density used in [47] appears to differ

from (5.78), they are actually equivalent Lagrangians. Indeed, that the two representations

describe the same problem can be seen by eliminating the quadratic term X†X from (5.78)

using equations (5.79) and (5.80).

As has already been mentioned, this model possesses an infinite family of conserved

charges and now we will derive defect contribution through the Lagrangian formalism. The

lowest integral of motion considered is the number of occupation N given by ,

N =

∫ 0

−∞
dx

(
ψ̃†1ψ̃1 + ψ̃†2ψ̃2

)
+

∫ ∞

0

dx
(
ψ†1ψ1 + ψ†2ψ2

)
. (5.85)

which, by using the Bäcklund tranformations it can be easily shown that the modified number

of occupation is given by [48],

N = N +ND = N +
a

m
X†X. (5.86)

Since N2
D = 0, we can also notice that (5.79) can be rewritten as,

X = ψ̃1 e
igND

4 + ψ1 e
−igND

4 = ia−1
(
ψ2 e

igND
4 − ψ̃2e

−igND
4

)
. (5.87)

Now, the energy can be derived using the Noether theorem, and is given by

E =

0∫
−∞

dx

[
i

2

(
ψ̃1∂xψ̃

†
1 + ψ̃†1∂xψ̃1 − ψ̃2∂xψ̃

†
2 − ψ̃†2∂xψ̃2

)
+m

(
ψ̃†2ψ̃1 + ψ̃†1ψ̃2

)
+ gψ̃†1ψ̃1ψ̃

†
2ψ̃2

]

+

∞∫
0

dx

[
i

2

(
ψ1∂xψ

†
1 + ψ†1∂xψ1 − ψ2∂xψ

†
2 − ψ†2∂xψ2

)
+m

(
ψ†2ψ1 + ψ†1ψ2

)
+ gψ†1ψ1ψ

†
2ψ2

]
. (5.88)

Using just the field equations we find that the time-derivative can be written as,

dE

dt
=

i

2

[
ψ̃1∂tψ̃

†
1 + ψ̃†1∂tψ̃1 − ψ̃2∂tψ̃

†
2 − ψ̃†2∂tψ̃2 − ψ1∂tψ

†
1 − ψ†1∂tψ1 + ψ2∂tψ

†
2 + ψ†2∂tψ2

]∣∣∣∣
x=0

,(5.89)

then, the modified conserved energy is E = E + ED [47], where

ED =
ia

m

(
X∂tX

† − (∂tX)X†)− i

2

(
ψ̃1ψ

†
1 + ψ̃†1ψ1 + ψ̃2ψ

†
2 + ψ̃†2ψ2

)
− ga

2m
ψ̃†1ψ̃1ψ

†
1ψ1 − g

2ma
ψ̃†2ψ̃2ψ

†
2ψ2 . (5.90)

We may eliminate the X field by noting the following relation,

ia

m

(
X†∂tX − ∂tX†X

)
= i

[
ψ̃†1ψ1 − ψ†1ψ̃1 + ψ̃†2ψ2 − ψ†2ψ̃2

]
, (5.91)
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then (5.90) becomes,

ED =
i

2

[
ψ̃†1ψ1 − ψ†1ψ̃1 + ψ̃†2ψ2 − ψ†2ψ̃2

]
− ag

2m
(ψ̃†1ψ̃1ψ

†
1ψ1)− g

2ma
(ψ̃†2ψ̃2ψ

†
2ψ2). (5.92)

Finally, let us consider the canonical momentum,

P =

0∫
−∞

dx

[
i

2

(
ψ̃1∂xψ̃

†
1 + ψ̃†1∂xψ̃1 + ψ̃2∂xψ̃

†
2 + ψ̃†2∂xψ̃2

)]

+

∞∫
0

dx

[
i

2

(
ψ1∂xψ

†
1 + ψ†1∂xψ1 + ψ2∂xψ

†
2 + ψ†2∂xψ2

)]
. (5.93)

Using the field equations (5.5)–(5.8) we obtain

dP

dt
=

[
m(ψ̃1ψ̃

†
2 + ψ̃2ψ̃

†
1)− gψ̃†1ψ̃†2ψ̃2ψ̃1 +

i

2
(ψ̃†1∂tψ̃1 + ψ̃1∂tψ̃

†
1 + ψ̃†2∂tψ̃2 + ψ̃2∂tψ̃

†
2

]
x=0

−
[
m(ψ1ψ

†
2 + ψ2ψ

†
1)− gψ†1ψ†2ψ2ψ1 +

i

2
(ψ†1∂tψ1 + ψ1∂tψ

†
1 + ψ†2∂tψ2 + ψ2∂tψ

†
2)

]
x=0

,(5.94)

Considering the boundary conditions (5.79) - (5.82) the right hand side becomes a total time

derivative. Thus, we found [47]

PD =
ia

m

(
X∂tX

† − (∂tX)X†)− i

2

(
ψ̃1ψ

†
1 + ψ̃†1ψ1 + 3ψ̃2ψ

†
2 + 3ψ̃†2ψ2

)
− ga

2m
ψ̃†1ψ̃1ψ

†
1ψ1 +

g

2ma
ψ̃†2ψ̃2ψ

†
2ψ2 , (5.95)

so that P = P + PD is conserved and by using (5.91) we also find that

PD =
i

2

[
ψ̃†1ψ1 − ψ†1ψ̃1 − ψ̃†2ψ2 + ψ†2ψ̃2

]
− ag

2m
(ψ̃†1ψ̃1ψ

†
1ψ1) +

g

2ma
(ψ̃†2ψ̃2ψ

†
2ψ2). (5.96)

Then, we have derive the defect contributions for the lowest conserved quantities in the

Lagrangian framework. The integrability of the model involves also higher conservation laws

encoded within the Lax pair formalism which will be presented in the following sections.

5.2.2 Modified integrals of motion from the defect matrix

The relation between two different solutions of the respective auxiliary linear problems, say

Ψ̃ and Ψ, is given by

Ψ̃(x, t;λ) = K(x, t;λ)Ψ(x, t;λ), (5.97)
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where the defect matrix K satisfied the gauge transformations,

∂tK = Ṽ K −K V, ∂xK = Ũ K −K U. (5.98)

Here, for the GMT model we assume that the defect matrix can be written by the following

λ-expansion [48],

K = K0 + λK1 + λ−1K−1. (5.99)

After some manipulations we found that a totally consistent solution for K is then given by,

K =

⎡⎢⎢⎢⎢⎢⎣
K− 0

√
2g
m
X

0 K+ −
√

2g
m
X†√

2g
m
X† −

√
2g
m
X −(λ+ i(λa)−1)

⎤⎥⎥⎥⎥⎥⎦ (5.100)

where the elements K± are given by,

K± = λ exp

[
± iga
2m

X†X
]
− i(λa)−1 exp

[
∓ iga
2m

X†X
]

=
[
λ− i(λa)−1]± iga

2m

[
λ+ i(λa)−1

]
X†X, (5.101)

Let us now implement a defect placed at the origin x = 0, the respective auxiliary wave-

functions Ψ̃ in x < 0 and Ψ in x > 0, and then consider the defect contributions to the

conserved quantities. As we have already discussed, the entries of the defect matrix determine

the modified conserved quantities from (2.57). First of all, let us consider the first set of

conserved quantities given by (5.31) in the presence of a defect,

I1 =

∫ 0

−∞
dx

[
q̃1Γ̃31 +

ig

2
ρ̃−

]
+

∫ ∞

0

dx

[
q1Γ31 +

ig

2
ρ−

]
. (5.102)

Then, taking the time-derivative and using the formula we found that I1 +D1 is conserved,

where the defect contribution D1 to this first set of conserved quantities is explicitly given

by

D1 = − ln
[
K11 +K12Γ21 +K13Γ31

]∣∣∣∣
x=0

. (5.103)

Hence, by taking the both expansions for negative and positive powers of λ and the explicit

form of the defect matrix (5.100), we get

D
(0)
1 =

(
iga

2m

)
X†X, D̂

(0)
1 = −

(
iga

2m

)
X†X, (5.104)

D
(2)
1 = − g

m
X†X − 2g

m
Xψ†1, D̂

(2)
1 = −ga

2

m
X†X +

2iag

m
Xψ†2. (5.105)
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In a similar way, repeating the computations for the other two generating functions (5.64)

and (5.65), we find that the respective defect contributions are given by,

D2 = − ln [K21Γ12 +K22 +K23Γ32]

∣∣∣∣
x=0

, D3 = − ln [K31Γ13 +K32Γ23 +K33]

∣∣∣∣
x=0

. (5.106)

Using them, we obtain

D
(0)
2 = −

(
iga

2m

)
X†X, D̂

(0)
2 =

(
iga

2m

)
X†X, D

(0)
3 = 0 = D̂

(0)
3 , (5.107)

D
(2)
2 =

g

m
X†X − 2g

m
X†ψ1, D̂

(2)
2 =

ga2

m
X†X − 2iag

m
X†ψ2, (5.108)

D
(2)
3 = −2g

m
X†ψ1 − 2g

m
Xψ†1, D̂

(2)
3 = −2iag

m
X†ψ2 +

2iag

m
Xψ†2. (5.109)

As it was expected, we also have the relations D
(n)
3 = D

(n)
1 +D

(n)
2 and D̂

(n)
3 = D̂

(n)
1 + D̂

(n)
2 .

Then, defining by analogy the following defect quantities,

D
(0) = D

(0)
1 −D(0)

2 −D(0)
3 =

(
iga

m

)
X†X, (5.110)

D̂
(0) = D̂

(0)
1 − D̂(0)

2 − D̂(0)
3 = −

(
iga

m

)
X†X, (5.111)

D
(2) = D

(2)
1 +D

(2)
2 +D

(2)
3 = −4g

m
X†ψ1 − 4g

m
Xψ†1, (5.112)

D̂
(2) = D̂

(2)
1 + D̂

(2)
2 + D̂

(2)
3 = −4iag

m
X†ψ2 +

4iag

m
Xψ†2, (5.113)

the corresponding defect number of occupation, energy and momentum can be written in

the following way,

ND =
1

2ig

(
D

(0) − D̂
(0)
)
=

a

m
X†X, (5.114)

ED =
m

8ig

(
D

(2) − D̂
(2)
)
=

i

2

[
(X†ψ1 +Xψ†1)− ia(X†ψ2 −Xψ†2)

]
, (5.115)

PD =
m

8ig

(
D

(2) + D̂
(2)
)
=

i

2

[
(X†ψ1 +Xψ†1) + ia(X†ψ2 −Xψ†2)

]
. (5.116)

Notice that by eliminating the auxiliary fields X and X†, we get

ED =
i

2

[
ψ̃†1ψ1 − ψ†1ψ̃1 + ψ̃†2ψ2 − ψ†2ψ̃2

]
− ag

2m
(ψ̃†1ψ̃1ψ

†
1ψ1)− g

2ma
(ψ̃†2ψ̃2ψ

†
2ψ2), (5.117)

PD =
i

2

[
ψ̃†1ψ1 − ψ†1ψ̃1 − ψ̃†2ψ2 + ψ†2ψ̃2

]
− ag

2m
(ψ̃†1ψ̃1ψ

†
1ψ1) +

g

2ma
(ψ̃†2ψ̃2ψ

†
2ψ2). (5.118)

Then, we have particularly derived in an alternative way the defect energy and momentum

for the Grassmannian Thirring model in the presence of type-II defects. These results are

in complete agreement with the ones obtained based on variational principles [47].



CHAPTER 6

The Bosonic massive Thirring model

The classical version of the massive Thirring model is soluble via classical inverse scattering

method in both cases anticommuting (Grassmann) and commuting (or Bosonic) variables

[23, 42, 43]. In this chapter, motivated by the possibility of having Thirring solitons we

shall focus our attention to explore the consequences of integrability of the Bosonic massive

Thirring (BMT) model in the presence of defects. As it was pointed out in [49], there has

been a great interest in the study of physical systems supporting Thirring-like soliton propa-

gation, for instance optical Thirring solitons in quadratic media [50, 51], atomic vapors with

electromagnetically induced transparency [52] and photorefractive media [53]. In addition,

atomic Thirring solitons can be supported in Bose-Einstein condensates [54, 55, 56].

On the other hand, the BMT model is particularly related with the derivative nonlinear

Schrödinger (DNLS) model, which is also an integrable model [57]. In [58] it was shown that

the Lax operator for BMT model can be generated by “fusing” two Lax operators of DNLS

model with different spectral parameters.

In this chapter, after doing a briefly review of the bulk theory, we will derive the Bäcklund

transformations for the BMT model directly from the defect matrix. In addition, we compute

the defect contributions to the modified conserved energy and momentum. The N-soliton

solution for this model was derived in [43] by using the inverse scattering method. Here, we

will construct the one-soliton and two-soliton solutions for the model using the well-known

dressing method [59, 60]. Finally, we verify the Bäcklund transformations by examining the

behavoiur of a single soliton passing through the defect.

55
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6.1 The bulk BMT model and the linear problem

The BMT model is described by the Lagrangian density

L =
i

2
φ1

(
∂t − ∂x

)
φ†1 −

i

2
φ†1
(
∂t − ∂x

)
φ1 +

i

2
φ2

(
∂t + ∂x

)
φ†2 −

i

2
φ†2
(
∂t + ∂x

)
φ2

+ m
(
φ†2φ1 + φ†1φ2

)
+ g

(
φ†1φ1φ

†
2φ2

)
, (6.1)

where m is the mass parameter, g is the coupling constant and φ = (φ1(x, t), φ2(x, t)) is a

two-component massive bosonic field. This Lagrangian density is also invariant under U(1)

transformations as well. The field equations are given by,

i(∂t − ∂x)φ1 = mφ2 + gφ†2φ2φ1, (6.2)

i(∂t + ∂x)φ2 = mφ1 + gφ†1φ1φ2, (6.3)

i(∂t − ∂x)φ†1 = −mφ†2 − gφ†2φ2φ
†
1, (6.4)

i(∂t + ∂x)φ
†
2 = −mφ†1 − gφ†1φ1φ

†
2, (6.5)

As it is well known the BMT model in the bulk is integrable [43] and the associated linear

problem can be formulated by using the two-dimensional representation of the sl(2) algebra

as follows,

∂tΨ(x, t;λ) = V (x, t;λ)Ψ(x, t;λ), (6.6)

∂xΨ(x, t;λ) = U(x, t;λ)Ψ(x, t;λ), (6.7)

where the auxiliary field Ψ = (Ψ1,Ψ2)
T is a two-vector and the Lax pair can be written in

a compact form as,

U =
i

4

[
gρ− −m

(
λ2 − λ−2)] H + q(λ)E+ + r(λ)E−, (6.8)

V = − i
4

[
gρ+ +m

(
λ2 + λ−2

)]
H + B(λ)E+ + C(λ)E−, (6.9)

where for convenience we have defined ρ± = (φ†2φ2 ± φ†1φ1), and the following functions,

B(λ) =
i
√
mg

2

(
λφ1 − λ−1φ2

)
, q(λ) =

i
√
mg

2

(
λφ1 + λ−1φ2

)
, (6.10)

C(λ) = − i
√
mg

2

(
λφ†1 − λ−1φ†2

)
, r(λ) = − i

√
mg

2

(
λφ†1 + λ−1φ†2

)
. (6.11)

Now, we define the auxiliary function Γ21 = Ψ2Ψ
−1
1 . Then, by using the system of linear

equations we have that the conservation equation can be written in the following form,

∂t

[
qΓ21 +

ig

4
ρ−

]
= ∂x

[
BΓ21 − ig

4
ρ+

]
. (6.12)
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The auxiliary function Γ21 satisfies the following Riccati equations

∂xΓ21 = r − i

2

[
gρ− −m

(
λ2 − λ−2)]Γ21 − qΓ2

21, (6.13)

∂tΓ21 = C +
i

2

[
gρ+ +m

(
λ2 + λ−2

)]
Γ21 − BΓ2

21. (6.14)

Now, we expand Γ21 in inverse powers of λ around ∞,

Γ21(x, t;λ) =
∞∑
k=0

Γ
(k)
21 (x, t)

λk
. (6.15)

Using the Riccati equation, each expansion coefficient Γ
(k)
21 (x, t) can be obtained easily in a

recursive way. The first coefficients are given by

Γ
(1)
21 =

√
g

m
φ†1, Γ

(2)
21 = 0, Γ

(3)
21 =

√
g

m

[
−2i
m
(∂xφ

†
1) + φ†2 +

g

m
(φ†2φ2)φ

†
1

]
. (6.16)

Considering, as usual, the bosonic fields φi(x, t) vanish at |x| → ∞, the corresponding
generating function for the conserved quantities reads

I1 =

∫ ∞

−∞
dx

[
qΓ21 +

ig

4
ρ−

]
, (6.17)

and substituting (6.15) in the expression for I1, we get an infinite number of conserved

quantities given by the expansion

I1 =
∞∑
k=0

I
(k)
1

λ2k
. (6.18)

Then, the first two conserved quantities are explicitly given by

I
(0)
1 =

ig

4

∫ ∞

−∞
dx

[
φ†1φ1 + φ†2φ2

]
, (6.19)

I
(2)
1 = − ig

m

∫ ∞

−∞
dx

[
iφ1(∂xφ

†
1)−

m

2

(
φ†2φ1 + φ†1φ2

)
− g

2
(φ†1φ1φ

†
2φ2)

]
. (6.20)

In addition, there is another set of conserved quantities that can be computed taking an

expansion of Γ21(x, t;λ) in positive powers of λ,

Γ21(x, t;λ) =
∞∑
k=0

Γ̂
(k)
21 (x, t)λ

k. (6.21)
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In a very similar way, the first coefficients are,

Γ̂
(1)
21 = −

√
g

m
φ†2, Γ̂

(2)
21 = 0, Γ̂

(3)
21 =

√
g

m

[
−2i
m
(∂xφ

†
2)− φ†1 −

g

m
(φ†1φ1)φ

†
2

]
. (6.22)

Substituting in (6.17), we will now obtain that the conserved quantities read

I1 =
∞∑
k=0

Î
(k)

1 λ2k , (6.23)

where, the first two of them have been computed schematically, and the result is the following

Î
(0)

1 = − ig
4

∫ ∞

−∞
dx

[
φ†1φ1 + φ†2φ2

]
, (6.24)

Î
(2)

1 = − ig
m

∫ ∞

−∞
dx

[
iφ2(∂xφ

†
2) +

m

2

(
φ†2φ1 + φ†1φ2

)
+
g

2
(φ†1φ1φ

†
2φ2)

]
. (6.25)

Then, we have found two infinite set of independent conserved quantities as consequence of

the two possible choices for the λ-expansion of the auxiliary function Γ21(x, t;λ), i.e, around

λ = 0 and λ =∞. Now, by considering the second conservation law from the linear system

(6.6) and (6.7), we get

∂t

[
rΓ12 − ig

4
ρ−

]
= ∂x

[
CΓ12 +

ig

4
ρ+

]
, (6.26)

where we have introduced a new auxiliary function Γ12 = Ψ1Ψ
−1
2 , which satisfies

∂xΓ12 = q +
i

2

[
gρ− −m

(
λ2 − λ−2)]Γ12 − rΓ2

12 , (6.27)

∂tΓ12 = B − i

2

[
gρ+ +m

(
λ2 + λ−2

)]
Γ12 − CΓ2

12. (6.28)

Then, using the same scheme we can obtain recursively the first few coefficients for the

auxiliary function Γ12(x, t;λ) by considering the corresponding expansion in negative and

positive powers of λ. Doing that, the results obtained are:

Γ
(1)
12 =

√
g

m
φ1, Γ

(2)
12 = 0, Γ

(3)
12 =

√
g

m

[
2i

m
(∂xφ1) + φ2 +

g

m
(φ†2φ2)φ1

]
, (6.29)

Γ̂
(1)
12 = −

√
g

m
φ2, Γ̂

(2)
12 = 0, Γ̂

(3)
12 =

√
g

m

[
2i

m
(∂xφ2)− φ1 − g

m
(φ†1φ1)φ2

]
. (6.30)

From the conservation equation (6.26), the second generating function of the conserved

quantities can be written as follows,

I2 =

∫ ∞

−∞
dx

[
rΓ12 − ig

4
ρ−

]
. (6.31)
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Substituting the corresponding coefficients of the auxiliary functions for each expansion in

λ, we obtained the following conserved quantities,

I
(0)
2 = Î

(0)

2 = − ig
4

∫ ∞

−∞
dx

[
φ†1φ1 + φ†2φ2

]
, (6.32)

I
(2)
2 = − ig

m

∫ ∞

−∞
dx

[
iφ†1(∂xφ1) +

m

2

(
φ†2φ1 + φ†1φ2

)
+
g

2
(φ†1φ1φ

†
2φ2)

]
, (6.33)

Î
(2)

2 = − ig
m

∫ ∞

−∞
dx

[
iφ†2(∂xφ2)− m

2

(
φ†2φ1 + φ†1φ2

)
− g

2
(φ†1φ1φ

†
2φ2)

]
. (6.34)

We note that the usual number of occupation, energy and momentum for the BMT model

are then given by,

N =
1

ig

[
(I

(0)
1 − I

(0)
2 )− (Î

(0)
1 − Î

(0)
2 )

]
=

∫ ∞

−∞
dx

[
φ†1φ1 + φ†2φ2

]
, (6.35)

E =
im

2g

[
(I

(2)
1 − I

(2)
2 )− (Î

(2)
1 − Î

(2)
2 )

]
(6.36)

=

∫ ∞

−∞
dx

[
i

2

(
φ1∂xφ

†
1 − φ†1∂xφ1 − φ2∂xφ†2 + φ†2∂xφ2

)
−m(

φ†2φ1 + φ†1φ2
)− g φ†1φ1φ†2φ2] ,

P =
im

2g

[
(I

(2)
1 − I

(2)
2 ) + (Î

(2)
1 − Î

(2)
2 )

]
=

∫ ∞

−∞
dx

[
i

2

(
φ1∂xφ

†
1 − φ†1∂xφ1 + φ2∂xφ

†
2 − φ†2∂xφ2

)]
. (6.37)

6.2 Modified integrals of motion

As it was already shown, in order to compute the defect contributions to each bulk integral

of motion, it is necessary to know the explicit form of the elements of the defect matrix.

Using the following ansatz for λ expansion of K,

K = K0 + λK1 + λ−1K−1, (6.38)

a totally consistent defect matrix can be written in the following form [48]

K =

⎡⎣ −√m
g

[
λe−iα − i(λa)−1eiα

]
X

−X†
√

m
g
[λeiα + i(λa)−1e−iα]

⎤⎦ , (6.39)

where

2α = arcsin
[ ga
2m

X†X
]
, (6.40)
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which it turns to be related to the modified number of occupation by 4α = gND. Here, the

boundary bosonic fields X and X† satisfy the following algebraic relations,

X = φ̃1e
iα + φ1e

−iα =
i

a

[
φ2e

iα − φ̃2e
−iα

]
, (6.41)

X† = φ̃†1e
−iα + φ†1e

iα =
1

ia

[
φ†2e

−iα − φ̃†2eiα
]
, (6.42)

and the respective time-derivatives,

∂tX =
m

2a

(
φ1e

iα − φ̃1e
−iα

)
− im

2

(
φ̃2e

iα + φ2e
−iα

)
− ig
4

[
φ̃†1φ̃1 + φ†1φ1 + φ̃†2φ̃2 + φ†2φ2

]
X, (6.43)

∂tX
† =

m

2a

(
φ†1e

−iα − φ̃†1eiα
)
+
im

2

(
φ̃†2e

−iα + φ†2e
iα
)

+
ig

4

[
φ̃†1φ̃1 + φ†1φ1 + φ̃†2φ̃2 + φ†2φ2

]
X†, (6.44)

together with,

∂xX =
m

2a

(
φ1e

iα − φ̃1e
−iα

)
+
im

2

(
φ̃2e

iα + φ2e
−iα

)
− ig
4

[
φ̃†1φ̃1 + φ†1φ1 − φ̃†2φ̃2 − φ†2φ2

]
X, (6.45)

∂xX
† =

m

2a

(
φ†1e

−iα − φ̃†1eiα
)
− im

2

(
φ̃†2e

−iα + φ†2e
iα
)

+
ig

4

[
φ̃†1φ̃1 + φ†1φ1 − φ̃†2φ̃2 − φ†2φ2

]
X†, (6.46)

where a is a real parameter, φ̃ is the field defined on x < 0 and φ the field defined on

x > 0. The compatibility condition ∂t∂xX = ∂x∂tX can be easily checked to be satisfied.

The expressions (6.41)–(6.46) are identified with the auto-Bäcklund transformations for the

BMT model, which have been reported for the first time in [48].

Once a defect matrix is given by (6.39), the defect contribution to the modified conserved

quantities can be calculated using (2.57). Firstly, let us consider the generating function of

conserved quantities (6.17), then the corresponding defect contributions are given by,

D1 = − ln [K11 +K12Γ21]

∣∣∣∣
x=0

. (6.47)

Now, by considering the corresponding expansions in powers of λ, we find

D
(2)
1 =

i

a
e2iα +

g

m
Xφ†1 e

iα, (6.48)

D̂
(2)
1 = −ia e−2iα − iag

m
Xφ†2 e

−iα. (6.49)
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Performing the same procedure for the generating function (6.31),

D2 = − ln [K22 +K21Γ12]

∣∣∣∣
x=0

, (6.50)

we obtain the following coefficients,

D
(2)
2 = − i

a
e−2iα +

g

m
X†φ1 e

−iα, (6.51)

D̂
(2)
2 = ia e2iα +

iag

m
X†φ2 e

iα. (6.52)

Finally, we find that the defect energy and momentum for the BMT model can be written

in the following way,

ED =
im

2g

[
(D

(2)
1 −D(2)

2 )− (D̂(2)
1 − D̂(2)

2 )
]
= −m

2g

(
a+

1

a

)(
e2iα + e−2iα

)
+
i

2

(
Xφ†1 e

iα −X†φ1 e
−iα

)
− a

2

(
Xφ†2 e

−iα +X†φ2 e
iα
)
, (6.53)

PD =
im

2g

[
(D

(2)
1 −D(2)

2 ) + (D̂
(2)
1 − D̂(2)

2 )
]
=

m

2g

(
a− 1

a

)(
e2iα + e−2iα

)
+
i

2

(
Xφ†1 e

iα −X†φ1 e
−iα

)
+
a

2

(
Xφ†2 e

−iα +X†φ2 e
iα
)
. (6.54)

We can note that it is possible to rewrite these results in an alternative form by using the

Bäcklund transformations (6.41)–(6.46), as follows

ED =
i

2

[(
φ†1φ̃1 − φ̃†2φ2

)
e2iα −

(
φ̃†1φ1 − φ†2φ̃2

)
e−2iα

]
− m

g

(
a+

1

a

)
cos (2α) , (6.55)

PD =
i

2

[(
φ†1φ̃1 + φ̃†2φ2

)
e2iα −

(
φ̃†1φ1 + φ†2φ̃2

)
e−2iα

]
+
m

g

(
a− 1

a

)
cos (2α) . (6.56)

These expressions for the defect energy and momentum seem not to have been reported

elsewhere in the literature before [15], and constitute a very important result in order to

address in future works the question of the Lagrangian formalism as well as quantum aspects

like the transmission matrix.

Since the integrable defect conditions for the BMT model have already been determined

by giving the corresponding auto-Bäcklund transformations, the integrability of the model in

the presence of defects, following the integrability criteria adopted in this thesis, is provided

by the existence of the defect matrix and the explicit computations of the modified conserved

quantities. However, as we have mentioned it is necessary a Lagrangian description of this

type of defects, probably by considering a generalization of the framework presented in

section 2.1, in order to determine the constraints over the defect potential which it is expected

to be related to expression (6.55) in some way.
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6.3 Dressing solutions

In this section, we show how the soliton solutions of the BMT model can be constructed by

using the dressing method. In this formulation we start with the zero curvature representa-

tion using the following Lax pair in the light-cone coordinates∗

L+ = i∂+ + A+, L− = i∂− + A−, (6.57)

where

A+ =
√
mg φ1E

(0)
+ −

√
mg φ†1E

(+1)
− − g

2
(φ†1φ1)H

(0) − m

2
H(+1) + α+C (6.58)

A− = −√mg φ2E
(−1)
+ +

√
mg φ†2E

(0)
− −

g

2
(φ†2φ2)H

(0) − m

2
H(−1) + α−C (6.59)

are the Lax connections taking values in the sl(2) affine Kac-Moody algebra, and α± are two

new fields that do not have any influence in the dynamics of the field φi but are necessary

in the whole construction. From the zero curvature condition
[
L+, L−

]
= 0, we get the field

equations, namely

i∂−φ1 = mφ2 + g(φ†2φ2)φ1 , (6.60)

i∂+φ2 = mφ1 + g(φ†1φ1)φ2 , (6.61)

i∂−φ
†
1 = −mφ†2 − g(φ†2φ2)φ

†
1 , (6.62)

i∂+φ
†
2 = −mφ†1 − g(φ†1φ1)φ

†
2 , (6.63)

together with the following equations

i∂+(φ
†
2φ2)− i∂−(φ†1φ1)− 2m(φ†1φ2 − φ†2φ1) = 0, (6.64)

i∂+α− − i∂−α+ +mg(φ†1φ2) +
m2

2
= 0. (6.65)

Equation (6.64) is a straightforward consequence of the field equations (6.60)-(6.63), and

(6.65) determines the dependence of the fields α± in terms of the massive fields φi.

The key ingredient of the dressing procedure is the existence of two gauge transformations

Θ+ = exp(G≥) and Θ− = exp(G≤) mapping the vacuum in a non-trivial configuration, i.e.

Avac
μ −→ Aμ ≡ Θ−1± i∂μΘ± +Θ−1± Avac

μ Θ±, μ = {±}. (6.66)

As consequence of the graded structure, the form of the Lax connection is preserved by these

transformations. Since Aμ and A
vac
μ satisfy the zero curvature condition, they are of the form

Aμ = iT∂μT
−1, Avac

μ = iT0∂μT
−1
0 (6.67)

∗The light-cone coordinates are defined as x± = 1
2 (t± x).
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where T and T0 are group elements. From the equivalence of the two dressing transformations

(6.66) we find that

Θ−Θ−1+ = T0ρT
−1
0 , (6.68)

where ρ is a constant group element. In order to construct systematically soliton solutions

we now define the vacuum configuration,

φ
(0)
1 = φ

(0)
2 = φ

†(0)
1 = φ

†(0)
2 = 0, α

(0)
± = ∓ im

2x∓
4

. (6.69)

and Lax connections (6.58) and (6.59) become

Avac
+ = −m

2
H(+1) − im2x−

4
C, Avac

− = −m
2
H(−1) +

im2x+
4

C. (6.70)

They are associated to the following linear problem

i∂±T0 = −Avac
± T0, (6.71)

which is solved as follows,

T0 = e−ix−h
−− ix+h+

, with h± ≡ m

2
H(±1). (6.72)

The dressing matrices Θ± are now determined by the gauge transformation (6.66) with

Θ+ = em(0)em(1)em(2) · · · Θ− = el(0)el(−1)el(−2) · · · (6.73)

where Θ+ is constructed from elements m(k) of a subalgebra containing grade k ≥ 0, while

Θ− is constructed from elements l(k) of a subalgebra containing grade k ≤ 0. From (6.66)

we get the following results for the first few elements m(k) and l(k),

m(0) = χ+σ
(0)
3 + ν+C, l(0) = (iπ − χ+)σ

(0)
3 + ν−C, (6.74)

m(1) =

√
g

m

[
φ2E

(0)
+ + φ†2E

(1)
−
]
, l(−1) = −

√
g

m

[
φ†1E

(0)
− + φ1E

(−1)
+

]
, (6.75)

m(2) = a+H
(1), l(−2) = a−H(−1), (6.76)

where the fields φi satisfy the equations of motion (6.60)-(6.63), and the fields χ+, ν±, a±
satisfy the following equations,

i∂+χ+ = −g
2
(φ†1φ1), i∂−χ+ =

g

2
(φ†2φ2), (6.77)

i∂+ν+ = α+ − α(0)
+ , i∂−ν+ = α− − α(0)

− −ma+ −
g

2
(φ†2φ2), (6.78)

i∂−ν− = α− − α(0)
− , i∂+ν− = α+ − α(0)

+ +ma− − g

2
(φ†1φ1). (6.79)
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The (x+, x−)-dependence of the fields is given explicitly by the right-hand-side of eq. (6.68).

In fact, the solutions can be calculated by taking the expectation value between states of

a given representation of Ĝ. As usual, we consider the highest weight representation of the

sl(2) affine Kac-Moody algebra. Firstly, let |λ0〉 and |λ1〉 be the corresponding highest weight
states, satisfying

H(0)|λi〉 = δi,1 |λi〉, C|λi〉 = |λi〉,
H(n)|λi〉 = E

(0)
+ |λi〉 = E

(n)
± |λi〉 = 0, for i = 0, 1, n > 0, (6.80)

and then we define the τ -functions as follows

τi = 〈λi|Θ−Θ−1+ |λi〉 = 〈λi|T0ρT−10 |λi〉, i = 1, 2. (6.81)

The soliton solutions are obtained by choosing the constant element ρ = eV , as the exponen-

tial of an eigenvector V of the elements of algebra h±. This eigenvector can be constructed

in the following way

V±(γ) =
∑
n∈Z

γ−nE(n)
± , (6.82)

satisfying the following commutation relations[
h+, V±(γ)

]
= ±mγ V±(γ), (6.83)[

h−, V±(γ)
]

= ±m
γ
V±(γ). (6.84)

It is clear from (6.83) and (6.84) that V+(γ) and V−(−γ) have the same eigenvalue. From
(6.68) we obtain

T0 e
μ± V±(γ) T−10 = exp

[
e∓Γμ± V±(γ)

] ∼= 1 + μ±e∓Γ V±(γ), (6.85)

where Γ = im (x+γ + γ−1x−) and the vertex operator V± satisfy,

V+(γ1)V+(γ2)→ 0, V−(γ1)V−(γ2)→ 0, as γ1 → γ2. (6.86)

In general, the N-soliton solution is obtained taking ρ = eμ1 V (γ1)eμ2 V (γ2) · · · eμN V (γN ), being

μk some arbitrary parameters and the vertex functions satisfy the commutation relation[
h(n), V (γk)

]
= f(n, γk)V (γk) . (6.87)
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6.3.1 The one-soliton solution

Using the highest weight representation of sl(2) we obtain the one-soliton solution from the

vacuum configuration, as follows

e(ν−−ν+) = τ0, e−2χ+ = −τ1
τ0
, (6.88)

φ1 =

√
m

g

τ2
τ1
, φ2 =

√
m

g

τ4
τ0
, (6.89)

φ†1 =

√
m

g

τ3
τ0
, φ†2 =

√
m

g

τ5
τ1
, (6.90)

where we have introduced the tau-functions

τ0 = 〈λ0|G|λ0〉, τ2 = 〈λ0|E(+1)
− G|λ0〉, τ4 = 〈λ1|GE(0)

− |λ1〉,
τ1 = 〈λ1|G|λ1〉, τ3 = 〈λ1|E(0)

+ G|λ1〉, τ5 = 〈λ0|GE(−1)
+ |λ0〉, (6.91)

with G = T0 ρ T
−1
0 and ρ = eV . Firstly, we can notice that there are two possible solutions

corresponding to the choice of V = μ1V+(γ1), given by

ν+ = ν−, χ+ =
iπ

2
, φ1 =

√
m

g
μ1γe

−Γ1 , φ2 =

√
m

g
μ1e

−Γ1 , φ†1 = φ†2 = 0, (6.92)

and by choosing V = μ2V−(γ2), we obtain

ν+ = ν−, χ+ =
iπ

2
, φ1 = φ2 = 0, φ†1 =

√
m

g
μ2e

Γ2 , φ†2 =
√
m

g

μ2

γ
eΓ2 . (6.93)

These solutions are not really interesting because of the inconsistency with the interpretation

of the dagger fields φ†i as the corresponding complex conjugate of the fields φi. Then, we

construct the one-soliton solution of the system using the fact that V+(γ) and V−(−γ) have
the same eigenvalue. In fact, by choosing ρ = eμ1V+(γ1)eμ2V−(γ2) and computing the matrix

elements we get the following solution,

τ0 = 1 + μ1μ2

[
γ1γ2

(γ1 − γ2)2
]
e−Γ1+Γ2 , τ1 = 1 + μ1μ2

[
γ1

γ1 − γ2

]2
e−Γ1+Γ2 ,

τ2 = μ1γ1e
−Γ1 , τ3 = μ2e

Γ2 , τ4 = μ1e
−Γ1 , τ5 =

μ2

γ2
eΓ2 (6.94)

where Γk = im
(
x+γk + γ−1k x−

)
. Then, we are interested in the case where φ†k corresponds to

the complex conjugate of φk, i.e. in the limit γ2 → −γ1, which provides a suitable one-soliton
solution for the BMT model.
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The result is

e(ν−−ν+) = 1− Ω e−2Γ1 , e−2χ+ = −
[
1 + Ωe−2Γ1

1− Ω e−2Γ1

]
, (6.95)

φ1 =

√
m

g

[
μ1γ1e

−Γ1

1 + Ωe−2Γ1

]
, φ2 =

√
m

g

[
μ1e

−Γ1

1− Ωe−2Γ1

]
, (6.96)

φ†1 =

√
m

g

[
μ2e

−Γ1

1− Ωe−2Γ1

]
, φ†2 = −

√
m

g

μ2

γ1

[
e−Γ1

1 + Ωe−2Γ1

]
, (6.97)

where we have introduced the parameter Ω = μ1μ2

4
. Considering m and g to be real, and

γ1 purely imaginary, from (6.95)-(6.97) one gets that the parameters μ1 and μ2 must satisfy

the following relation,

μ2 = −γ1μ∗1, (6.98)

We can also notice that for an appropriated choice of the parameters, it is possible to show

the equivalence with the one-soliton solution found by Orfanidis [61].

6.3.2 The two-soliton solution

Now let us show that the two-soliton solution can be also calculated from the vacuum solution

(6.69) using the dressing transformation. We will do it using only the algebraic properties

of the sl(2) affine Lie algebra. According to the approach above, there is an element ρ in

the group satisfying (6.81). Consider the constant group element as

ρ = eμ1V+(γ1)eμ2V−(γ2)eμ3V+(γ3)eμ4V−(γ4). (6.99)

The explicit form for the solution is calculated by computing the corresponding matrix

elements from the group element G,

G = 1 + μ1 e
−Γ1V+(γ1) + μ2 e

Γ2V+(γ2) + μ3 e
−Γ3V+(γ3) + μ4 e

Γ4V+(γ4)

+ μ1μ2 e
−Γ1+Γ2V+(γ1)V−(γ2) + μ1μ3 e

−Γ1−Γ3V+(γ1)V+(γ3) + μ1μ4 e
−Γ1+Γ4V+(γ1)V−(γ4)

+ μ2μ3 e
Γ2−Γ3V−(γ2)V+(γ3) + μ2μ4 e

Γ2+Γ4V−(γ2)V−(γ4) + μ3μ4 e
−Γ3+Γ4V+(γ3)V−(γ4)

+ μ1μ2μ3 e
−Γ1+Γ2−Γ3V+(γ1)V−(γ2)V+(γ3) + μ1μ2μ4 e

−Γ1+Γ2+Γ4V+(γ1)V−(γ2)V−(γ4)

+ μ1μ3μ4 e
−Γ1−Γ3+Γ4V+(γ1)V+(γ3)V−(γ4) + μ2μ3μ4 e

Γ2−Γ3+Γ4V−(γ2)V+(γ3)V−(γ4)

+ μ1μ2μ3μ4 e
−Γ1+Γ2−Γ3+Γ4V+(γ1)V−(γ2)V+(γ3)V−(γ4). (6.100)
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The explicit form of the matrix elements is given in Appendix A.4. The solution one obtains

is given as follows,

τ0 = 1− μ1μ2

4
e−2Γ1 − μ3μ4

4
e−2Γ3 − (μ1μ4 + μ2μ3)e

−(Γ1+Γ3)

[
γ1γ3

(γ1 + γ3)2

]
+

1

16
(μ1μ2μ3μ4)e

−2(Γ1+Γ3)

[
γ1 − γ3
γ1 + γ3

]4
(6.101)

τ1 = 1 +
μ1μ2

4
e−2Γ1 +

μ3μ4

4
e−2Γ3 + (γ21μ1μ4 + γ23μ2μ3)e

−(Γ1+Γ3)

[
1

(γ1 + γ3)2

]
+

1

16
(μ1μ2μ3μ4)e

−2(Γ1+Γ3)

[
γ1 − γ3
γ1 + γ3

]4
(6.102)

τ2 = μ1γ1e
−Γ1 + μ3γ3e

−Γ3 − 1

4
μ1μ2μ3e

−(2Γ1+Γ3)

[
γ3(γ1 − γ3)2
(γ1 + γ3)2

]
− 1

4
μ1μ3μ4e

−(Γ1+2Γ3)

[
γ1(γ1 − γ3)2
(γ1 + γ3)2

]
, (6.103)

τ3 = μ2e
−Γ1 + μ4e

−Γ3 +
1

4
μ2μ3μ4e

−(Γ1+2Γ3)

[
γ1 − γ3
γ1 + γ3

]2
+

1

4
μ1μ2μ4e

−(2Γ1+Γ3)

[
γ1 − γ3
γ1 + γ3

]2
, (6.104)

τ4 = μ1e
−Γ1 + μ3e

−Γ3 +
1

4
μ1μ2μ3e

−(2Γ1+Γ3)

[
γ1 − γ3
γ1 + γ3

]2
+

1

4
μ1μ3μ4e

−(Γ1+2Γ3)

[
γ1 − γ3
γ1 + γ3

]2
, (6.105)

τ5 = −μ2

γ1
e−Γ1 − μ4

γ3
e−Γ3 +

1

4
μ2μ3μ4e

−(Γ1+2Γ3)

[
(γ1 − γ3)2
γ1(γ1 + γ3)2

]
+

1

4
μ1μ2μ4e

−(2Γ1+Γ3)

[
(γ1 − γ3)2
γ3(γ1 + γ3)2

]
. (6.106)

Notice that, if m and g are considered to be real constants, there are two possibilities in

order to φ†k corresponds to the complex conjugate of φk: in the case of γ1 and γ3 to be purely

imaginary numbers, and the parameters μk satisfyng the following conditions,

μ2 = −γ1μ∗1, μ4 = −γ3μ∗3. (6.107)

The second possibility corresponds to the situation when γ∗3 = −γ1, and as consequence

Γ∗3 = Γ1. In this case, we need that the parameters μk satisfy the following conditions,

μ∗4 = γ1μ1, μ∗2 = γ3μ3. (6.108)
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6.3.3 The Breather solution

Let us choose the convenient parameters in order to obtain a breather solution of the BMT

model. We know that the space-time dependence of the solutions are given by the exponen-

tials exp Γk, where Γk = im(x+γk+ γ
−1
k x−). Then, to obtain the localized solutions periodic

in time we made the following choice of parameters,

γ1 = −ieiθ, γ∗3 = −γ1, μ1 =
2i

tan θ
, μ2 =

2

tan θ
. (6.109)

Then we have that Γ∗3 = Γ1 and the parameter μ3 and μ4 are given by the conditions (6.108).

In addition, one gets from the form of Γ1 that,

Γ1 = kx+ iωt, Γ3 = kx− iωt, (Γ1 + Γ3) = 2kx, (6.110)

with

k = m cos θ, and ω = m sin θ. (6.111)

Then, if one makes these choices of the parameters, we obtain

χ+ = ±i
(
π

2
± arctan

[(√
m2 − ω2

ω2

)
m2 +

√
m2 − ω2 cos(2ωt)

sinh(2
√
m2 − ω2x)

])
. (6.112)

6.4 Bäcklund solutions

In this section, we want to discuss the type of solutions derived from the auto-Bäcklund

transformations (6.41)-(6.46). Particularly, we are interested to show that these solutions

are in totally consistency with the ones given by the dressing method. Firstly, we noted that

there is a closed relation between the field χ+ appearing in the dressing procedure and the

defect contribution to the number of particle conserved quantity ND. In fact, from (6.77) it

follows that

∂χ+

∂t
=
ig

4
(φ†1φ1 − φ†2φ2). (6.113)

Then, we get the relation

ND =
4i

g
(χ̃+ − χ+)

∣∣∣∣
x=0

, (6.114)

where χ+ is given in general by (6.88). So, this expression gives us a closed relation between

the dressing solutions and the Bäcklund solutions.
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6.4.1 The one-soliton solution

Now, we construct the one-soliton solution for the BMT model by performing the Bäcklund

transformation starting from the vacuum solution,

φ̃1 = φ̃2 = φ̃†1 = φ̃†2 = 0, χ̃+ =
iπ

2
. (6.115)

From the explicit form of χ+ for one-soliton solution given by (6.95) and using the Bäcklund

transformations, we obtained

X =

√
m

g

[
−iμ1a

−1 e−Γ

[1 + |Ω|2e−4Γ] 12

]
, X† =

√
m

g

[
iμ∗1a

−1 e−Γ

[1 + |Ω|2e−4Γ] 12

]
, (6.116)

and

φ1 =

√
m

g

[
iμ1a

−1e−Γ

1 + Ωe−2Γ

]
, φ2 =

√
m

g

[
μ1e

−Γ

1− Ωe−2Γ
]
, (6.117)

φ†1 = −
√
m

g

[
iμ∗1a

−1e−Γ

1− Ωe−2Γ
]
, φ†2 =

√
m

g

[
μ∗1e

−Γ

1 + Ωe−2Γ

]
. (6.118)

where μ1 is an arbitrary constant. Thus, we have found exactly the one-soliton solution for

the BMT model firstly obtained by the dressing method, with γ = ia−1. Then, it shows that

our Bäcklund transformation are compatible not only with the integrability of the model in

the presence of the defect, but also with the soliton solutions obtained by dressing method.

6.4.2 One-soliton/defect interaction

We are now interested in investigating the behaviour of single soliton solution passing through

a defect. The defect condition (6.41), which determines how the soliton scatters with the

defect, can be written in a more convenient way, namely[
τ̃2τ0 + τ2τ̃0

]− σ[τ4τ̃1 − τ̃4τ1] = 0, (6.119)

in terms of the tau-functions,

τ0 = 1− Ω e−2Γ, τ1 = 1 + Ω e−2Γ, τ2 = μ1γ e
−Γ, (6.120)

τ3 = μ2 e
−Γ, τ4 = μ1 e

−Γ, τ5 =
μ2

γ
e−Γ. (6.121)

where σ = ia−1 is the Bäcklund parameter. Then, we get

μ̃1γ̃e
−˜Γ + μ1γe

−Γ − μ̃1γ̃Ω e
−˜Γ−2Γ − μ1γΩ̃ e

−Γ−2˜Γ =

−σμ̃1e
−˜Γ + σμ1e

−Γ − σμ̃1Ω e
−˜Γ−2Γ + σμ1Ω̃ e

−Γ−2˜Γ, (6.122)
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From this relation it is clear that following conditions over the parameters must be satisfied,

γ̃ = γ, μ̃1 =

[
σ − γ
σ + γ

]
μ1. (6.123)

In a similar way, from the defect condition (6.42), we obtain

γ̃ = γ, μ̃2 =

[
σ − γ
σ + γ

]
μ2. (6.124)

Then, it is worth noting that the jump-defect preserves the soliton velocity and the only

effect of the interaction soliton-defect is a phase shift. In addition, we also have that the

limiting cases when μ̃1 = 0 or μ1 = 0 do exist, and correspond to the situation where γ = |σ|
with a > 0, and γ = |σ| with a < 0 respectively. Clearly, these cases indicate creation and

absorption of the soliton. As a → ∞, the parameter μ̃1 → −μ1, which means that if the

defect parameter is large the soliton will invert its shape, changing its character from soliton

to anti-soliton or vice-versa. As a → 0, we obtain μ̃1 = μ1, indicating that there is not

defect and the soliton shape is preserved as expected. In addition, when γ > σ the incoming

soliton is delayed.

6.4.3 Two soliton–two soliton solution

For this time we consider the two soliton solution given explicitely by the equations (6.101)-

(6.106) for both sides of the defect. Then, the two Bäcklund relations are satisfied providing

the following relations between the parameters hold,

μ̃1 =

[
σ − γ1
σ + γ1

]
μ1, μ̃3 =

[
σ − γ3
σ + γ3

]
μ3, (6.125)

μ̃2 =

[
σ − γ1
σ + γ1

]
μ2, μ̃4 =

[
σ − γ3
σ + γ3

]
μ4, (6.126)

defining the corresponding phase shifts. These results clearly show that each soliton ap-

proaching a defect interact with it independently of one another, each being delayed. Notice

also that, given a particular value of the defect (Bäcklund) parameter σ then the defect can

absorb at most one soliton or antisoliton but not both because in general γ1 �= γ3. These

features are similar to the ones pointed out for the soliton solutions of the sine-Gordon model

[62], and based on that we suggest that these soliton solutions of the BMT model might also

be used to model logic gates. A more complete description of transitions of soliton solutions

through a jump-defect was better described in [48], where indirect evidence of the well-known

permutability theorem was outlined as well.



CHAPTER 7

Conclusions and future directions

In this thesis we have studied the classical description of integrable field theories in the

presence of type-II defects. We have shown that the original integrability properties of the

bulk theory is preserved even after the introduction of suitable internal boundary conditions

(defects), using essentially the inverse scattering formalism. As it was mentioned before,

our definition of integrability concerns with the existence of a constructive way of finding

solutions for the equations of motion of the models as well as a sufficient (infinity) number

of integrals of motion. We have focused our attention mainly on the derivation of such

conserved quantities which was achieved principally with the help of a general formula (2.57)

that allowed us to compute the defect contributions to the modified conserved quantities. To

do that, we have solved systematically a set of coupled Ricatti equations for each model. The

contribution of the defect to all orders was explicitly identified in terms of a defect matrix. In

addition, we have derived all the defect matrices for each model studied in this thesis, from

which we have recognized the corresponding integrable defect condition which corresponds to

frozen Bäcklund transformation of the integrable equation. In particular, we have computed

explicitly the defect contribution for the energy and momentum for each model, recovering

previous results derived from their Lagrangian descriptions, except for the BMT model which

surprisingly seems not to be described within any of the Lagrangian frameworks proposed

until now. Then, we might expect that a generalisation of the existing schemes so far

will encompass the BMT model which is interestingly related with the derivative nonlinear

Schrödinger model (DNLS).
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It should be emphasized that the approach adopted in this thesis provides a sufficient

condition to address the question of integrable defects in classical field theories. It is re-

markable that the defect matrices we have derived in this work are essentially “on-shell”,

which means that its components have non-vanishing Poisson brackets with the fields in the

bulk. As it was already pointed out in section 2.4, the natural way to address the question

of involutivity of the modified conserved charges could be to work within the Hamiltonian

formulation of the classical inverse scattering method using essentially the classical r-matrix

of the bulk theory and a modified transition matrix to include the defect contributions. A

recent proposal to achieve this goal was made in [24, 63, 64] for the NLS, sG and sigma

models. In spite of, the results obtained for the integrable defects conditions seem not to

be same of the ones obtained from the Lagrangian and the “on-shell” Lax approaches, in

these works was shown the involutivity of the corresponding modified conserved charges in

a formal way. The analysis following the line of these ideas for the massive Thirring models

using this approach is in progress.

On the other hand, it should be interesting to explore the quantum aspects of integrable

type-II in purely fermionic and supersymmetric field theories. In fact, as it was already

noticed before some results on transmission matrices for type-I and type-II sine-Gordon,

Tzitzéica-Bullough-Dodd and the a
(1)
n affine Toda model, have been obtained [27, 18]. These

transmission matrices are typically infinite dimensional, and there exist two methods at least

to compute them: the first one is by solving quadratic relations appearing in the defect Yang-

Baxter equation (DYBE); and the second one is by solving a linear intertwining condition

between a suitable infinite dimensional representation given in terms of a pair of generalized

creation and annihilation, and a finite dimensional representation of the underlying Borel

subalgebra [28, 18]. In particular, for the massive Thirring model this transmission matrix

has not been studied and then we hope that some of the results discussed in this thesis can

help as guide in that direction.

Finally, it is worth noting that there is not any approach to integrable type-II defects in

non-relativistic models until now. It should be interesting to investigate the consequences of

integrability of this kind of defects for instance in the NLS model. In particular, a study of

the interactions between soliton solutions with type-II defects deserves special attention in

order to provide an interpretation and consequently to identify a possible application of the

extra degree of freedom presents in the type-II defect theory. Some of these questions are

expected to be developed in the near future.



APPENDIX A

Algebraic Notations

A.1 The sl(2) affine Lie algebra

The generators {H(n), E
(n)
± , C,D} of the sl(2) affine Lie algebra satisfy the commutation

relations, [
H(m), H(n)

]
= 2mCδm+n,0,[

H(m), E
(n)
±
]

= ±2E(m+n)
± ,[

E
(m)
+ , E

(n)
−
]

= H(m+n) +mCδm+n,0,[
D, T (n)

]
= nT (n), (A.1)

where T (n) ≡ {H(m), E
(n)
± }. The principal grading for the sl(2) affine Lie algebra is generated

by the operator

Q = 2D +
1

2
H(0), with D ≡ λ

d

dλ
. (A.2)

Then, the above grading operator decomposes the algebra Ĝ into subalgebras generated by

elements of positive, negative and zero grades respectively,

Ĝ = Ĝ+ ⊕ Ĝ0 ⊕ Ĝ−. (A.3)

In addition, we can notice that {H = H(0), E± = E
(0)
± } are the corresponding generators for

the sl(2) finite Lie algebra. For further details see [65].
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A.2 The a
(2)
2 twisted Lie algebra

The generators of the algebra a
(2)
2 are given by Tm

3 , T
m
± , and L

r
j , with m,n ∈ Z, r, s ∈ Z+ 1

2

and j, k = 0,±1,±2, and satisfy the following commutation relations,[
T

(m)
3 , T

(n)
3

]
= 2mδm+n,0C ,

[
T

(m)
+ , T

(n)
−

]
= 2T

(m+n)
3 + 4mδm+n,0C,[

T
(m)
3 , T

(n)
±

]
= ±T (m+n)

± ,[
T

(m)
3 , L

(r)
k

]
= k L

(m+r)
k ,

[
T

(m)
± , L

(r)
k

]
=
√
6− k (k ± 1) L(m+r)

k±1 ,[
L
(r)
k , L

(s)
−k

]
= (−1)k

(
k

2
T

(r+s)
3 + r δr+s,0C

)
[
L
(r)
0 , L

(s)
±1

]
= −

√
6

4
T

(r+s)
± ,

[
L
(r)
0 , L

(s)
±2

]
= 0[

L
(r)
1 , L

(s)
−2

]
=

1

2
T

(r+s)
− ,

[
L
(r)
−1 , L

(s)
2

]
=
1

2
T

(r+s)
+ ,[

L
(r)
1 , L

(s)
2

]
= 0 ,

[
L
(r)
−1 , L

(s)
−2

]
= 0. (A.4)

The principal grading is generated by the operator Q = T
(0)
3 + 6D, decomposing the affine

algebra into elements of positive, negative and zero grades. For a more complete presentation

of this twisted affine Kac-Moody algebra see [33].

We notice that the Lax pair for the TBD model (4.3) and (4.4) is given in terms of the

generators T
(0)
3 ≡ T3 of grade zero, T

(0)
+ ≡ T+ and L

(1/2)
−2 ≡ L−2 of grade +1, T

(0)
− ≡ T− and

L
(−1/2)
+2 ≡ L2 with grade −1. A suitable finite matrix representation is given by,

T3 =

⎛⎜⎝ 1 0 0

0 0 0

0 0 −1

⎞⎟⎠ , T+ =
√
2i

⎛⎜⎝ 0 1 0

0 0 1

0 0 0

⎞⎟⎠ , T− = −
√
2i

⎛⎜⎝ 0 0 0

1 0 0

0 1 0

⎞⎟⎠ ,

L0 =
1√
6

⎛⎜⎝ 1 0 0

0 −2 0

0 0 1

⎞⎟⎠ , L1 =
i√
2

⎛⎜⎝ 0 0 0

0 −1 0

0 0 1

⎞⎟⎠ , L−1 =
i√
2

⎛⎜⎝ 0 0 0

−1 0 0

0 1 0

⎞⎟⎠ ,

L2 =

⎛⎜⎝ 0 0 0

0 0 −1
0 0 0

⎞⎟⎠ , L−2 =

⎛⎜⎝ 0 0 0

0 0 0

−1 0 0

⎞⎟⎠ , (A.5)
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A.3 The sl(2, 1) affine Lie algebra

Consider the ŝl(2, 1) super Lie algebra with its generators given by

h1 = α1 ·H =

⎛⎜⎝ 1 0 0

0 −1 0

0 0 0

⎞⎟⎠ , h2 = α2 ·H =

⎛⎜⎝ 0 0 0

0 1 0

0 0 1

⎞⎟⎠ ,

Eα1 =

⎛⎜⎝ 0 1 0

0 0 0

0 0 0

⎞⎟⎠ , E−α1 =

⎛⎜⎝ 0 0 0

1 0 0

0 0 0

⎞⎟⎠ , Eα2 =

⎛⎜⎝ 0 0 0

0 0 1

0 0 0

⎞⎟⎠ , (A.6)

E−α2 =

⎛⎜⎝ 0 0 0

0 0 0

0 1 0

⎞⎟⎠ , Eα1+α2 =

⎛⎜⎝ 0 0 1

0 0 0

0 0 0

⎞⎟⎠ , E−(α1+α2) =

⎛⎜⎝ 0 0 0

0 0 0

1 0 0

⎞⎟⎠ ,

where α1 is a bosonic root and α2, α1+α2 are the fermionic roots. The sl(2, 1) affine algebra

is decomposed according to the grading operator Q = 2d + 1
2
h1, where d is the derivation

operator satisfying [d, T
(n)
a ] = nT

(n)
a . Here T

(n)
a denotes both H

(n)
i and E

(n)
α . The hierarchy

is further specified by the constant grade one element E = E(1), as follows

E(2n+1) = h
(n+1/2)
1 + 2h

(n+1/2)
2 = K

(2n+1)
2 , (A.7)

The grading operator Q together with the judicious choice of E decomposes the affine su-

peralgebra Ĝ = ŝl(2, 1) into Ĝ = K⊕M, where the Kernel K = {x ∈ Ĝ|[x,E] = 0} of E, and
its complement M are given by

K = {K(2n+1)
1 , K

(2n+1)
2 ,M

(2n+1)
1 ,M

(2n)
2 }, (A.8)

M = {F (2n+3/2)
1 , F

(2n+1/2)
2 , G

(2n+1/2)
1 , G

(2n+3/2)
2 }, (A.9)

where the bosonic generators are

M
(2n+1)
1 = −(E(n)

α1
− E(n+1)

−α1

)
, M

(2n)
2 = h

(n)
1 , (A.10)

K
(2n+1)
1 = −(E(n)

α1
+ E

(n+1)
−α1

)
, K

(2n+1)
2 = h

(n+1/2)
1 + 2h

(n+1/2)
2 , (A.11)

and the fermionic generators are

F
(2n+3/2)
1 =

(
E

(n+1/2)
α1+α2

− E(n+1)
α2

)
+
(
E

(n+1)
−(α1+α2)

− E(n+1/2)
−α2

)
, (A.12)

F
(2n+1/2)
2 = −(E(n)

α1+α2
− E(n+1/2)

α2

)
+
(
E

(n+1/2)
−(α1+α2)

− E(n)
−α2

)
, (A.13)

G
(2n+1/2)
1 =

(
E

(n)
α1+α2

+ E(n+1/2)
α2

)
+
(
E

(n+1/2)
−(α1+α2)

+ E
(n)
−α2

)
, (A.14)

G
(2n+3/2)
2 = −(E(n+1/2)

α1+α2
+ E(n+1)

α2

)
+
(
E

(n+1)
−(α1+α2)

+ E
(n+1/2)
−α2

)
(A.15)
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These generators satisfy the following (anti)-commutation relations (see for instance [66]),[
K

(n)
1 , K

(m)
2

]
= 0, {F (n+ 1

2
)

1 , F
(m+ 1

2
)

2 } = 0, (A.16)

[
F

(n+ 1
2
)

1 , K
(m)
1

]
= F

(n+m+ 1
2
)

2 ,
[
F

(n+ 1
2
)

1 , K
(m)
2

]
= −F (n+m+ 1

2
)

2 , (A.17)

[
F

(n+ 1
2
)

2 , K
(m)
1

]
= F

(n+m+ 1
2
)

1 ,
[
F

(n+ 1
2
)

2 , K
(m)
2

]
= −F (n+m+ 1

2
)

1 , (A.18)

{F (n+ 1
2
)

1 , F
(m+ 1

2
)

1 } = −{F (n+ 1
2
)

2 , F
(m+ 1

2
)

2 } = 2E(n+m+1) (A.19)

{F (n+ 1
2
)

2 , G
(m+ 1

2
)

1 } = −{F (n+ 1
2
)

1 , G
(m+ 1

2
)

2 } = 2M
(n+m+1)
1 (A.20)

{F (n+ 1
2
)

1 , G
(m+ 1

2
)

1 } = −{F (n+ 1
2
)

2 , G
(m+ 1

2
)

2 } = 2M
(n+m+1)
2 (A.21)[

M
(n)
1 , F

(m+ 1
2
)

1

]
= G

(n+m+ 1
2
)

1 ,
[
M

(n)
1 , F

(m+ 1
2
)

2

]
= G

(n+m+ 1
2
)

2 (A.22)

[
M

(n)
2 , F

(m+ 1
2
)

1

]
= −G(n+m+ 1

2
)

2 ,
[
M

(n)
2 , F

(m+ 1
2
)

2

]
= −G(n+m+ 1

2
)

1 (A.23)

[
M

(n)
1 , K

(m)
1

]
= 2M

(n+m)
2 ,

[
M

(n)
1 , K

(m)
2

]
= 0 (A.24)

[
M

(n)
2 , K

(m)
1

]
= 2M

(n+m)
1 ,

[
M

(n)
2 , K

(m)
2

]
= 0 (A.25)

[
G

(n+ 1
2
)

1 , K
(m)
1

]
= −G(n+m+ 1

2
)

2 ,
[
G

(n+ 1
2
)

1 , K
(m)
2

]
= −G(n+m+ 1

2
)

2 , (A.26)

[
G

(n+ 1
2
)

2 , K
(m)
1

]
= −G(n+m+ 1

2
)

1 ,
[
G

(n+ 1
2
)

2 , K
(m)
2

]
= −G(n+m+ 1

2
)

1 , (A.27)

{G(n+ 1
2
)

1 , G
(m+ 1

2
)

2 } = 0 (A.28)

{G(n+ 1
2
)

1 , G
(m+ 1

2
)

1 } = −{G(n+ 1
2
)

2 , G
(m+ 1

2
)

2 } = 2(K
(n+m+1)
2 −K(n+m+1)

1 ) (A.29)[
M

(n)
1 , G

(m+ 1
2
)

1

]
= −F (n+m+ 1

2
)

1 ,
[
M

(n)
1 , G

(m+ 1
2
)

2

]
= −F (n+m+ 1

2
)

2 (A.30)

[
M

(n)
2 , G

(m+ 1
2
)

1

]
= −F (n+m+ 1

2
)

2 ,
[
M

(n)
2 , G

(m+ 1
2
)

2

]
= −F (n+m+ 1

2
)

1 (A.31)

[
M

(n)
1 ,M

(m)
2

]
= −2K(n+m)

1 , (A.32)
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A.4 Matrix elements

Let us consider the constant group element as

ρ = eμ1V+(γ1)eμ2V−(γ2)eμ3V+(γ3)eμ4V−(γ4). (A.33)

The two-soliton solution of the BMT model was obtained from the following matrix elements,

〈λ0|E(+1)
− V+(γ1)|λ0〉 = γ1, 〈λ1|E(0)

+ V−(γ1)|λ1〉 = 1, (A.34)

〈λ0|V−(γ2)E(−1)
+ |λ0〉 =

1

γ2
, 〈λ1|V+(γ1)E(0)

− |λ0〉 = 1, (A.35)

〈λ0|V+(γ1)V−(γ2)|λ0〉 = 〈λ0|V−(γ2)V+(γ1)|λ0〉 = γ1γ2
(γ1 − γ2)2 , (A.36)

〈λ1|V+(γ1)V−(γ2)|λ1〉 = 〈λ1|V−(γ2)V+(γ1)|λ1〉 = γ21
(γ1 − γ2)2 , (A.37)

and

〈λ0|V+(γ1)V−(γ2)V+(γ3)V−(γ4)|λ0〉 =

[
γ1γ2γ3γ4(γ1 − γ3)2(γ2 − γ4)2

(γ1 − γ2)2(γ3 − γ4)2(γ1 − γ4)2(γ2 − γ3)2
]
, (A.38)

〈λ1|V+(γ1)V−(γ2)V+(γ3)V−(γ4)|λ1〉 =

[
γ21γ

2
3(γ1 − γ3)2(γ2 − γ4)2

(γ1 − γ2)2(γ3 − γ4)2(γ2 − γ3)2(γ1 − γ4)2
]
, (A.39)

〈λ0|E(+1)
− V+(γ1)V−(γ2)V+(γ3)|λ0〉 =

[
γ1γ2γ3(γ1 − γ3)2

(γ1 − γ2)2(γ2 − γ3)2
]
, (A.40)

〈λ0|E(+1)
− V+(γ1)V+(γ3)V−(γ4)|λ0〉 =

[
γ1γ3γ4(γ1 − γ3)2

(γ3 − γ4)2(γ1 − γ4)2
]
, (A.41)

〈λ1|E(0)
+ V−(γ2)V+(γ3)V−(γ4)|λ1〉 =

[
γ23(γ2 − γ4)2

(γ2 − γ3)2(γ3 − γ4)2
]
, (A.42)

〈λ1|E(0)
+ V+(γ1)V−(γ2)V−(γ4)|λ0〉 =

[
γ21(γ2 − γ4)2

(γ1 − γ2)2(γ1 − γ4)2
]
, (A.43)

〈λ1|V+(γ1)V+(γ3)V−(γ4)E(0)
− |λ1〉 =

γ24(γ1 − γ3)2
(γ1 − γ4)2(γ3 − γ4)2 , (A.44)

〈λ1|V+(γ1)V−(γ2)V+(γ3)E(0)
− |λ1〉 =

γ22(γ1 − γ3)2
(γ1 − γ2)2(γ2 − γ3)2 , (A.45)

〈λ0|V−(γ2)V+(γ3)V−(γ4)E(−1)
+ |λ0〉 =

γ33(γ2 − γ4)2
γ2γ4(γ2 − γ3)2(γ3 − γ4)2 , (A.46)

〈λ0|V+(γ1)V−(γ2)V−(γ4)E(−1)
+ |λ0〉 =

γ31(γ2 − γ4)2
γ2γ4(γ1 − γ2)2(γ1 − γ4)2 , (A.47)



A.4. Matrix elements 78

So, the tau-functions are explicitly given by,

τ0 = 1 + μ1μ2e
−Γ1+Γ2

[
γ1γ2

(γ1 − γ2)2
]
+ μ1μ4e

−Γ1+Γ4

[
γ1γ4

(γ1 − γ4)2
]

+ μ2μ3e
Γ2−Γ3

[
γ2γ3

(γ2 − γ3)2
]
+ μ3μ4e

−Γ3+Γ4

[
γ3γ4

(γ3 − γ4)2
]

+ μ1μ2μ3μ4e
−Γ1+Γ2−Γ3+Γ4

[
γ1γ2γ3γ4(γ1 − γ3)2(γ2 − γ4)2

(γ1 − γ2)2(γ3 − γ4)2(γ1 − γ4)2(γ2 − γ3)2
]
, (A.48)

τ1 = 1 + μ1μ2e
−Γ1+Γ2

[
γ21

(γ1 − γ2)2
]
+ μ1μ4e

−Γ1+Γ4

[
γ21

(γ1 − γ4)2
]

+ μ2μ3e
Γ2−Γ3

[
γ23

(γ2 − γ3)2
]
+ μ3μ4e

−Γ3+Γ4

[
γ23

(γ3 − γ4)2
]

+ μ1μ2μ3μ4e
−Γ1+Γ2−Γ3+Γ4

[
γ21γ

2
3(γ1 − γ3)2(γ2 − γ4)2

(γ1 − γ2)2(γ3 − γ4)2(γ2 − γ3)2(γ1 − γ4)2
]
, (A.49)

τ2 = μ1γ1e
−Γ1 + μ3γ3e

−Γ3 + μ1μ2μ3e
−Γ1+Γ2−Γ3

[
γ1γ2γ3(γ1 − γ3)2

(γ1 − γ2)2(γ2 − γ3)2
]

+ μ1μ3μ4e
−Γ1−Γ3+Γ4

[
γ1γ3γ4(γ1 − γ3)2

(γ3 − γ4)2(γ1 − γ4)2
]
, (A.50)

τ3 = μ2e
Γ2 + μ4e

Γ4 + μ2μ3μ4e
Γ2−Γ3+Γ4

[
γ23(γ2 − γ4)2

(γ2 − γ3)2(γ3 − γ4)2
]

+ μ1μ2μ4e
−Γ1+Γ2+Γ4

[
γ21(γ2 − γ4)2

(γ1 − γ2)2(γ1 − γ4)2
]
, (A.51)

τ4 = μ1e
−Γ1 + μ3e

−Γ3 + μ1μ2μ3e
−Γ1+Γ2−Γ3

[
γ22(γ1 − γ3)2

(γ1 − γ2)2(γ2 − γ3)2
]

+ μ1μ3μ4e
−Γ1−Γ3+Γ4

[
γ24(γ1 − γ3)2

(γ1 − γ4)2(γ3 − γ4)2
]
, (A.52)

τ5 =
μ2

γ2
eΓ2 +

μ4

γ4
eΓ4 + μ2μ3μ4e

Γ2−Γ3+Γ4

[
γ33(γ2 − γ4)2

γ2γ4(γ2 − γ3)2(γ3 − γ4)2
]

+ μ1μ2μ4e
−Γ1+Γ2+Γ4

[
γ31(γ2 − γ4)2

γ2γ4(γ1 − γ2)2(γ1 − γ4)2
]
. (A.53)

We can check that these tau-functions satisfy the equations (6.60)-(6.63) and (6.77) for any

values of the parameters μk and γk, with k = 1, ..., 4. The two-soliton solution for the BMT

model is obtained by taking the limits γ2 → −γ1 and γ4 → −γ3.



APPENDIX B

Boundaries from Defects

B.1 Type-I and type-II boundary sine-Gordon theory

Firstly, we consider the type-I defect potential for the sine-Gordon model B0 given in (3.45),

B0 = 2m

[
σ cos

(
ϕ+ ϕ̃

2

)
+
1

σ
cos

(
ϕ− ϕ̃
2

)]
. (B.1)

In order to define the sG theory restricted to the half-line (x > 0), we perform a suitable

limit on the left field within the action, by taking ϕ̃ to be a constant k. It is convenient to

redefine the Bäcklund parameter as σ = e−ξ/2. Then, we obtain

B̃0 = 2M cos

(
ϕ− ϕ0

2

)
, (B.2)

for some constants M and ϕ0, which satisfy the following relations,

M sin
(ϕ0

2

)
= 2m sinh

(
ξ

2

)
sin

(
k

2

)
, (B.3)

M cos
(ϕ0

2

)
= 2m cosh

(
ξ

2

)
cos

(
k

2

)
. (B.4)

The boundary potential (B.2) was first found by Ghoshal and Zamolodchikov in [2], and

it was shown that an infinite subset of conserved charges survived after introducing the

boundary by using the inverse scattering method [67].
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From the form of the boundary potential (B.2) we find that the corresponding boundary

condition is given by,

∂xϕ
∣∣
x=0

= M sin

(
ϕ− ϕ0

2

)
, (B.5)

where the UV parameters M and ϕ0 are determined in terms of the Bäcklund parameter σ

and the constant k by the inverse relations of the (B.3) and (B.4), as follows

M2 = m2

(
σ2 +

1

σ2
+ 2 cos k

)
, (B.6)

tan
(ϕ0

2

)
=

(
1− σ2

1 + σ2

)
tan

(
k

2

)
. (B.7)

As it was pointed out in [68], the boundary condition (B.5) is compatible with the Bäcklund

transformation. We can also notice that if we exploit the discrete symmetry of the sG action

under ϕ → ±ϕ when x → −x, we could take ϕ̃(x) = ±ϕ(−x), and in this case we obtain
the following boundary potential,

B0 = 2m
[
σ∓1 + σ±1 cosϕ

] ∣∣
x=0

, (B.8)

with the simple boundary condition,

∂xϕ
∣∣
x=0

= 2mσ±1 sinϕ
∣∣
x=0

, (B.9)

which corresponds to the trivial Dirichlet problem when ϕ0 = 0 or equivalently k = 0. This

boundary condition was proved to be integrable [69, 70, 17]. The behaviour of the soliton

solutions for the sine-Gordon equation with this boundary condition were studied [71].

Now, we consider the type-II defect potential for the sine-Gordon model (3.66),

B0 = −m
2σ

[
e−i(ϕ+−Λ) (eiϕ− + e−iϕ− + η

)
+ 4ei(ϕ+−Λ)]

−mσ
2

[
eiΛ

(
eiϕ− + e−iϕ− + η

)
+ 4e−iΛ

]
, (B.10)

and performing the half-line limit by taking ϕ̃ to be a constant κ, we obtain

LB = 2ϕ(∂tΛ)−
[
f+(ϕ)e

iΛ + f−(ϕ)e−iΛ
]
, (B.11)

with

f+(ϕ) = − m

2σω

[
ωe−iϕ +

(
η + (σω)2

)
e−iϕ/2 + σeiϕ/2 +

(
1 + ηωσ2

)]
, (B.12)

f−(ϕ) = −2m
σ

[
ωeiϕ + σ2

]
, (B.13)

where we have three free constant parameters σ, η, and ω ≡ eiκ/2. Notice that, redefining

Λ→ Λ + Λ̂(ϕ) changes the Lagrangian density (B.11) by a total time derivative. A similar

form for this type-II boundary potential has been recently suggested in [72]
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B.2 The boundary Thirring model

We now are interested in deriving the boundary potential for Thirring model from the type-II

defect potential (5.78), namely

LD =
ia

2m

[
X†(∂tX)− (∂tX†)X

]
+
i

2

[
ψ̃†1ψ1 − ψ†1ψ̃1 + ψ̃†2ψ2 − ψ†2ψ̃2

]
+

1

2

[
i(ψ1 − ψ̃1) + a(ψ2 + ψ̃2)

]
X† +

1

2

[
i(ψ†1 − ψ̃†1)− a(ψ†2 + ψ̃†2)

]
X

− ga

4m

[
ψ̃†1ψ̃1 + ψ†1ψ1 + ψ̃†2ψ̃2 + ψ†2ψ2

]
X†X. (B.14)

To define the Thirring model restricted to the half-line (x > 0), we use the U(1) invariance

of the Thirring action to perform the following transformation on the left fields, namely,

ψ̃1(0
−) −→ eiμ ψ†2(0

+), ψ̃2(0
−) −→ −eiμ ψ†1(0+), (B.15)

ψ̃†1(0
−) −→ e−iμ ψ2(0

+), ψ̃†2(0
−) −→ −e−iμ ψ1(0

+), (B.16)

where μ is just a phase commuting with the components of ψ. By replacing, we obtain

LD −→ Lfree + LB, (B.17)

where

Lfree =
i

2

[
eiμ

(
ψ†2(x)ψ

†
1(0

+)− ψ†1(x)ψ†2(0+)
)
− e−iμ (ψ1(x)ψ2(0

+)− ψ2(x)ψ1(0
+)
)]
,(B.18)

is the Lagrangian density from which the free boundary conditions raise, namely

ψ†1(0) = −e−iμψ2(0), ψ†2(0) = −e−iμψ1(0), (B.19)

which are equivalent to have the fermionic current j0
∣∣
x=0

= ψ†1(0)ψ1(0) + ψ†2(0)ψ2(0) = 0.

On the other hand, the boundary Lagrangian density LB is given by,

LB =
ia

2m

(
X†∂tX − (∂tX†)X

)
+
1

2

[
i
(
ψ1(x)− eiμψ†2(0+)

)
+ a

(
ψ2(x)− eiμψ†1(0+)

)]
X†

+
1

2

[
i
(
ψ†1(x)− e−iμψ2(0

+)
)
− a

(
ψ†2(x)− e−iμψ1(0

+)
)]
X. (B.20)

By varying the total boundary action we obtain the following boundary conditions at x = 0,

X = ψ1 + eiμψ†2 = ia−1
(
ψ2 + eiμψ†1

)
, (B.21)

X† = ψ†1 + e−iμψ2 = −ia−1
(
ψ†2 + eiμψ†1

)
. (B.22)
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and its corresponding time-derivatives,

∂tX =
m

2a

[
(ψ1 − eiμψ†2)− ia(ψ2 − eiμψ†1)

]
x=0

, (B.23)

∂tX
† =

m

2a

[
(ψ†1 − e−iμψ2) + ia(ψ†2 − e−iμψ1)

]
x=0

. (B.24)

The above boundary Lagrangian for the GMT model seems to have the same structure of

the boundary derived in [44, 45]. The auxiliary fermionic field X and X† are expected to be

related with the boundary field operators used in these works.
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Dressing and Bäcklund transformations”, Int. J. Mod. Phys. A8 (1993) 507;

hep-th/9206002.



References 88

[60] L.A. Ferreira, J.L. Miramontes and J. Sanches-Guillen, “Tau-functions and dress-

ing transformations for zero-curvature affine integrable equations”, J. Math. Phys. 38

(1997) 882; hep-th/9606066.

[61] S.J. Orfanidis, “Soliton solutions of the massive Thirring model and the inverse scat-

tering transform”, Phys. Rev. D14 (1976) 472.

[62] E. Corrigan and C. Zambon, “Aspects of sine-Gordon, defects and gates”, J.Phys. A37

(2004) L471; hep-th/0407199 .

[63] J. Avan and A. Doikou, “The sine-Gordon model with integrable defects revisited”;

hep-th/1205.1661.

[64] A. Doikou and N. Karaiskos, “Sigma models in the presence of dynamical point-like

defects”; hep-th/1207.5503.

[65] L.A. Ferreira, J-L. Gervais, J. Sanchez Guillen, M.V. Saveliev, “Affine Toda Systems

Coupled to Matter Fields”, Nucl.Phys. B470 (1996) 236; hep-th/9512105.

[66] H. Aratyn, J.F. Gomes and A.H. Zimerman, “Supersymmetry and the KdV equations

for integrable hierachies with a half-integer gradation”, Nucl. Phys. B676 (2004) 537;

hep-th/0309099.

[67] A. MacIntyre, “Integrable boundary conditions for classical sine-Gordon theory”, J.

Phys. A28 (1995) 1089; hep-th/9410026.

[68] I.T. Khabibullin, “Sine-Gordon equation on the semi-axis”, Thoer. Math. Phys. 114

(1998) 90.

[69] E.K. Sklyanin, “Boundary conditions for integrable equations ”, Funct. Anal. Appl. 21

(1987) 164.

[70] I.T. Khabibullin, “Integrable initial-boundary-value problems”, Theor. Math. Phys. 86

(1991) 28.

[71] R. M. DeLeonardis, S. E. Trullinger and R. F. Wallis, “Theory of boundary effect on

sine-Gordon solitons”, J. Appl. Phys. 51 (1980) 1211.

[72] E. Corrigan and C. Zambon, “Infinite dimension reflection matrices in the sine-Gordon

model with a boundary”, J. High Energy Phys. 06 (2012) 050; hep-th/1202.6016.


	CAPA
	AGRADECIMENTOS
	RESUMO
	ABSTRACT
	SUMÁRIO
	1 INTRODUCTION
	2 INTEGRABLE DEFECTS
	2.1 General setting
	2.2 Lax representation and conservation laws
	2.3 Modified integrals of motion
	2.4 Liouville integrability

	3 THE SINE-GORDON MODEL
	3.1 The bulk theory and the associated linear problem
	3.2 Review of type-I defect sine-Gordon theory
	3.3 Type-II defect sine-Gordon theory

	4 THE TZITZÉICA-BULLOUGH-DODD MODEL
	4.1 Bulk theory and associated linear problem
	4.2 Type-II defect theory

	5 THE GRASSMANNIAN MASSIVE THIRRING MODEL
	5.1 The bulk theory and associated linear problem
	5.2 The defect theory

	6 THE BOSONIC MASSIVE THIRRING MODEL
	6.1 The bulk BMT model and the linear problem
	6.2 Modified integrals of motion
	6.3 Dressing solutions
	6.4 Bäcklund solutions

	CONCLUSIONS AND FUTURE DIRECTIONS
	APPENDIX
	REFERENCES



