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ABSTRACT

The aim of this thesis is to develop the theoretical framework that integrates

airship size minimization, maneuverability quantification and optimal actuator place-

ment for small highly maneuverable airship design.

The size minimization method is proposed in the first part of the thesis. The siz-

ing flow chart is provided along with a comprehensive description and computation

of four principle subsystems in airship sizing. The relationships between different

subsystems are also illustrated. Novel technologies that could be applied for airship

subsystems are discussed and included in the proposed sizing methods. The sizing

method is validated by computing the minimum size of non-rigid airships with and

without fins.

Based on the research to date conducted on ships, aircrafts and airplanes, the

airship maneuverability quantification method is proposed in the second part of this

thesis. The maneuver tests used to assess airship maneuverability include straight

forward maneuver, turning maneuver and zig-zag maneuver. This maneuverability

quantification method is first applied to the small highly maneuverable airship called

ALTAV available in the Aerospace Mechatronics Lab at McGill. Based on above sug-

gested maneuvering tests, four maneuvers are designed to test ALTAV’s performance

with different actuator locations: the 360◦ turning maneuver using PID control, the

zig-zag maneuver using PID control, the straight forward maneuver using optimal

control and 180◦ turning maneuver using optimal control.

In the third part of this thesis, aiming to understand the influence of actuator
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locations and find the optimal actuator locations to provide the best maneuverabil-

ity for ALTAV, the effect of actuator locations on all the elements in the dynamics

model of ALTAV are analyzed, especially the effect on the entries of the inverse

mass matrix are formulated through symbolic equations. Then, in order to explore

the effect of actuator locations on straight forward maneuver and turning maneuver,

the control forces and moments, the maximum available accelerations and angular

accelerations are analyzed. The cost function used to find the optimal actuator lo-

cations is proposed based on these analysis and the optimal actuator locations fit

for equal importance of longitudinal and lateral maneuvers are selected at the end

of the thesis.
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ABRÉGÉ

L’objectif de cette thèse est le développement d’un cadre théorethique qui intègre

la minimisation de taille, la quantification de maniabilité et le placement optimal des

actuateurs pour la conception de petits ballon dirigeables.

Dans la première partie de la thèse une méthode pour la minimisation de la taille

est proposé. Dedans on peut trouver l’organigramme pour le dimensionnement ac-

compagné d’une description complet de quatre sous-systèmes principaux d’un ballon

dirigeable utilisé pour le dimensionnement. Les relations entre les sous-systèmes sont

illustré aussi. En outre nouvel technologies applicables pour le dimensionnement de

ballons dirigeables sont discutés et inclus dans la méthode proposé içi. La méthode

de dimensionnement est validé en calculant la taille minimale de ballons diregeables

non rigides, avec et sans ailerons.

Dans la deuxième partie de cette thèse une méthode pour la quantification de

maniabilité pour avions et ballon dirigeables basée sur des recherches antérieurs est

proposé. Les épreuves utilisés pour l’évaluation de maniabilité de ballon diregeables

inclus des manœuvres tout droit, tournant et zigzag. Cette méthode pour quantifier

la maniabilité est d’abord appliqué à un petit ballon dirigeable nommé ALTAV du

Aerospace Mechatronics Lab à McGill. Basé sur les épreuves d’évaluation indiqués

plus-haut, quatre manœuvres ont été conceptionnés pour évaluer la performance de

l’ALTAV avec différents placements des actuateurs: un manœuvre tournant de 360◦

utilisant contrôle PID, un manœuvre zigzag utilisant contrôle PID, un manœuvre
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tout droit utilisant contrôle optimal et un manœuvre tournant 180◦ utilisant con-

trôle optimal.

Dans la troisième et derniere partie de cette thèse l’influence du placement des

actuateurs est examiné visant pour le placement optimal concernant la maniabilité de

l’ALTAV. Tous les éléments affectés par le placement des actuateurs dans le modèle

dynamique du ALTAV sonts analysé dans les conditions des manœuvres optimal tout

droit et tournant. L’effet du vent sur l’ALTAV et l’effet du placement des actuateurs

sur les éléments de la matrice inverse de la masse sonts analysé. Fondé sur cette

analyse une fonction de coût est proposé pour le placement optimal des actuateurs

au fin de cette thèse.
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and The Terminal Maneuver Time (tf )OSFM of Optimal Straight
Forward Maneuver, case A3aA6, A2A7 and A2A8 . . . . . . . . . . 97

4–5 The Comparison of Maximum Available Yaw Angular Acceleration
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CHAPTER 1

Introduction

1.1 Background

The past few years have witnessed the resurgence of airship technology [14, 22,

30]. Not only a larger number of technical reports and research papers has been pub-

lished than in prior years, but also new conventional and innovative airships have

been designed and delivered for civil and military applications [11]. With the develop-

ment of manufacturing technologies, composite materials, innovative actuators and

various energy sources, airship system characteristics have been improved greatly.

Compared with heavier-than-air (HTA) airplanes, lighter-than-air (LTA) and heavy

lift (HL) airships consume almost no energy to stay aloft, except in the presence

of winds, which gives LTA and HL airships long endurance hovering ability. The

inherent safety makes airships a good choice for security applications. Besides, the

airships are quieter and cheaper to operate than helicopters. A number of research

groups also have investigated the potential of utilizing airships as a flight platform

for long duration flight on Venus or Titan [1, 15].

Airship technologies have developed significantly from the 19th century, the

design methods for small highly maneuverable airships have not caught up with the

technical innovations of the last and current centuries and can not meet the needs

of clients in the most operation-efficient and cost-effective way. Some of the relevant
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(a) Skyship-600 (b) LZ 129 Hindenburg

Figure 1–1: Large airships in twentieth century

issues are: what is the minimum size that can suffice for a given application, what

are the most suitable actuators and their optimal locations on the airship.

Although many possible applications of airships have been proposed in the last

decade [29], the disadvantageous aspects of airships can not be neglected. The most

obvious two disadvantages are their large surface area and the fact that they are

not capable of maneuvering quickly. Before the appearance of technologies used for

unmanned aerial vehicles, airships were mainly designed for cargo transportation or

tourism. Hence, their sizes as exemplified by two prominent systems from the last

century, the Skyship-600 (Fig. 1–1 (a)) and the LZ 129 Hindenburg (Fig. 1–1 (b)),

varied from thousands of cubic meters to hundreds of thousands of cubic meters.

Their large surface area made them very susceptible to wind, and they were poorly

controlled in changeable weather.

1.1.1 Small Highly Maneuverable Airships

The requirements for highly maneuverable and energy efficient robots stimulated

the interest in research on highly maneuverable airships, especially those with small

size that can be used in indoor environment. More research focused on small highly

maneuverable airship technologies, such as a hybrid flight platform constructed by

2



(a) E13 (b) ALTAV

Figure 1–2: Novel small airships

Western Michigan University in [38], the E13 designed by Airship Solutions Com-

pany (Fig. 1–2 (a)), and ALTAV developed by Quanser Technologies (Fig. 1–2 (b)).

ALTAV is the airship at the focus of this thesis.

1.1.2 ALTAV

The motivation for developing ALTAV was to build an aerial vehicle that is

energy efficient and easy to control, which is suitable for multiple indoor and outdoor

usage with high maneuverability. The length of the airship is approximately 4.8 m

and the maximum diameter is roughly 1.5 m. The most distinctive feature of ALTAV

is its lack of aerodynamic control surfaces. Instead of large control surfaces, ALTAV

has four thruster sub-assemblies mounted along the horizontal equator of the hull.

Traditional airships usually have rudders, and are less maneuverable due to these

large control surface area. The absence of these control surfaces makes ALTAV

inherently unstable, however, the use of novel vectored thrusters gives ALTAV higher

maneuverability.
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1.1.3 Thesis Objectives and Motivation

The present airship design methods have not been updated sufficiently quickly

and are not caught up with the technology developments. These out of date de-

sign methods are not fit for designing small highly maneuverable airships that could

satisfy the requirement of new potential applications. In order to adopt novel tech-

nologies in highly maneuverable airship design, the airship sizing methods need to

be revised and new design methods should be proposed. Furthermore, the minimum

airship size could be estimated based on the state-of-the-art technologies.

The maneuverability of the novel highly maneuverable ALTAV airship has not

been investigated systematically until now. Before delving into the study on airship

maneuverability, however, the maneuverability quantification methods for airships

need to be proposed first. Then, further analysis of the maneuverable characteristics

of this small innovative finless airship is required, which could be used to design

future small highly maneuverable airships.

1.2 Literature Review

1.2.1 Airship Sizing

The non-rigid airship sizing is a interdisciplinary research topic. The general

airship system design procedure consists of three steps [29]: the Conceptual Design

Procedure (CDP), the Preliminary Design Procedure (PDP) and the Detail Design

Procedure(DDP). The time required for each step increases from two months for

CDP to six months for PDP, and to more than twenty six months for DDP. The size

of an airship is usually determined in the Conceptual Design Procedure based on

the mission requirements and the system characteristics of the airship, such as the
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Figure 1–3: Airship conceptual design process [29](1999)

cruise altitude and the mass of each subsystem [29]. The general airship conceptual

design procedure is shown in Fig. 1–3, in which the airship sizing is considered to

play the central role. Airship sizing relates to the envelope geometric shape selec-

tion, the preliminary mission determination, the subsystem analysis and synthesis,

the operational requirements, and the constraints with regards to fabrication and

manufacture. At present, the published sizing methods are mainly based on tech-

nologies of the last century, and no clear size boundary has been determined in terms

of current innovative technologies and airship application trends.
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The first well known sizing work was done by Burgess [10]. In 1927, after ana-

lyzing the strength and density characteristics of a three-ply rubberized cotton cloth,

Burgess estimated the maximum non-rigid airship size to be 5664 m3(200000 ft3).

However, this size was soon exceeded by non-rigid airship series K-1 to K-135 between

the years 1931 and 1945 in the U.S..

Prior to 1970, the size of non-rigid airships constructed in the U.S. was mainly

defined by their required cruising altitude, which can be found by analyzing the

statistical data in [31]. The data on the American non-rigid airship sizes before 1970

have been collected and plotted in Fig. 1–4, in which the x-axis is the altitude, while

the y-axis shows the ratio of the air density at a cruise altitude (ρcr) to the mean sea

level value (ρ0) and the ratio of volume discrepancy between airship envelope volume

(VH) and its ballonets volume (VB) to the envelope volume. It is obvious that the

ratio (VH − VB)/VH is almost equal to ρcr/ρ0 at the required cruise altitude, which

means the envelope volume was equal to ρ0VB/(ρ0 − ρcr) at that time.
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Airship sizing method provided by Goodyear Aerospace Corporation is based

on the data for Akron and Macon [31]. However, this sizing method can only be

applied to airships with the similar frame structure, the number of main frames and

the same fineness ratio as of the Akron and Macon airships. This severely limits the

applicability of this sizing method to airship design.

The maximum size of non-rigid airships under specific material and manufac-

turing constraints was studied by Houmard in 1986 [27]. Assuming that the goal

airship has the same geometric structure as Akron airship, the maximum airship size

is estimated to be 97420.8 m3 by using envelope fabric N313A3401 at 1068 Pa, and

173884.8 m3 by using envelope fabric ZX4581 at 1120 Pa.

U.S. Naval Air Development Center conducted research on the relationship be-

tween mission requirements and airship size in the last century. The size trends

are discussed in [2, 32] due to variations in flight altitude, maximum speed, payload

weight, cruise speed, and required endurance.

However, it is hard to use previous airship sizing methods to estimate sizes of

airships with different shapes and a variety of mission profiles. In addition, none

of the existing methods addressed the influence of new technologies used for airship

subsystems in the airship sizing procedure.

Compared with traditional airships, new airships of this century are diverse in

their size, envelope shape, available fuel sources, and they have different structures

and actuators, and also higher maximum flight altitude. Since the useful lift drops

1 Goodyear Code
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quickly with the increase in altitude, airships have historically been considered as

relatively low altitude vehicles. The endurance of airships varied from several hours

to a week for large airships of the last century. However, experiments carried out

with high-altitude [11], long endurance airships [40] have demonstrated the potential

of using airships for such missions. New materials, high performance computers, new

propulsion technologies, new sources of energy and more available experimental data

give us the opportunity to derive novel design methods, in particular, sizing methods

for small highly maneuverable airships.

1.2.2 Maneuverability: Experiments and Measures

High maneuverability is one of the important requirements for many types of

vehicles, and the trade-off between maneuverability and stability is emphasized in

vehicle structure design and controller design. “What constitutes a good maneu-

vering vehicle?”, “How can one design a highly maneuverable vehicle?” and “How

will actuator placement affect vehicle maneuverability?” are the central questions in

theoretical research and engineering practice of vehicles.

Maneuverability Research on Ship Design and Application

Although the superior maneuverability of the English fleets led to its famous

defeat of the Spanish Armada in 1588, very little research on this subject has been

carried out until modern time. In 1966, Nomoto analyzed maneuver responses of

ships and published his research about maneuverability and its impacts on ship de-

sign in [50], where he defined maneuvering parameters of ships for the first time.

Fourteen years later (in 1980), a systematic shipboard maneuverability research was

first presented by Landsburg et al. in [33], where test methods and measurements of
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ship maneuverability were proposed. In [45] (in 1981), Miller et al. researched ma-

neuvers of different water vehicles and the corresponding controllers. The test results

from a turning maneuver and the effect of different number, kind and arrangement

of actuators were described and compared in this paper. In 1983, Barr et al. [6]

published the maneuvering performance standard for commercial vessels larger than

1000 metric tons displacement based on five years of data collection and analysis.

Series of vessel maneuvering problems were analyzed, and maneuvering performance

requirements and measurements were defined in that paper. In addition, maneuver-

ing tests were described. Two years later (in 1985), Landsburg et al. [34] focused

their attention on inherent maneuvering characteristics of existing vessels. In [34],

an elaborate explanation of vessel maneuverability is provided. Li et al. [36], in 2005,

provided the reasons why further maneuvering criteria and standards were required

after emphasizing the importance of controllability and safety, and their relationship

with maneuverability. Further research on ship maneuvering can be found in [60]

(2005), where two maneuvering tasks are defined and an adaptive recursive design

technique is developed for a parametrically uncertain nonlinear plant. However, un-

til today, maneuverability criteria still do not meet the demand for designing highly

maneuverable ships.

Maneuverability Research on Airship Design and Application

The requirements for aerial vehicles with heavy lift and good maneuverability

resulted in a concept of thrust vector controlled heavy lift airships, and research into

conceptual design of heavy lift maneuverable airships began in 1976 at Goodyear

Corp [31]. Achieving high maneuverability of airships by employing thrust vector
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control was first discussed in [53] (1979), where the possibility of improving the low

speed maneuverability of airships and decreasing weight and fuel consumption by us-

ing thrust vector control was emphasized. Using a 6-DOF airship simulation model

for the first time in 1984, Nagabhushan and Faiss at Goodyear Corp. proved that

the low speed maneuverability of airships could be improved by using thruster vec-

tor control [47]. In their paper [47], the steady turns in a horizontal plane, and the

90 deg shifts in a prevailing 10 knot head wind were analyzed under the following

three conditions: 1) the airship was controlled by rudder only; 2) the airship was

controlled by rudder and bow thruster; 3) the airship was controlled by rudder and

stern thruster. The simulation results in [47] showed that the maneuverability of a

conventional airship could be significantly improved by using thruster vector control,

and an auxiliary thruster located at the bow or the stern of the airship could sig-

nificantly improve directional control of the airship, especially with the thruster at

the stern. In 1985, Nagabhushan and Tomlinson conducted simulations on the take-

off, landing, and ground-level maneuvers of a modern airship with twin vectorable

thrusters, which were mounted on each side of the airship gondola [48]. Simulation

results proved that great benefits could be obtained by incorporating a bow or a stern

thruster in the airship design, including a wide range of system mass, a significant

directional control power and high maneuverability at low speeds. As can be seen

from the above review, up until now, only preliminary research has been done on

airship maneuvering characteristics and the methods used to improve airship ma-

neuverability. However, airship maneuverability has not been clearly defined until
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now and different researchers have somewhat differing understanding of the so-called

airship maneuverability.

Maneuverability Research on Aircraft Design and Application

Research on aircraft maneuverability began earlier than that on airships, and

developed faster. This research covers issues such as maneuver measurements, de-

sign of highly maneuverable aircraft, optimal control realization and others. In [57]

(1990), contributions to maneuverability from different parts of the X-31A aircraft

were researched by Robinson and Herbst. In [8] (1993), the time-optimal reorienta-

tion maneuver for a combat aircraft was investigated by Bocvarov et al. The cost

function for the minimum-time rest-to-rest reorientation maneuvers was defined, and

the variational Hamiltonian of the aircraft dynamics was provided in this paper. A

homotopy approach was adopted to solve this optimal problem, so that the time-

optimal reorientation solutions for the simplified aircraft dynamics model could be

utilized to approximate the solutions of the corresponding complex aircraft dynamics

model. In [16] (1995), the time-optimal lateral maneuver of an aircraft was studied

by Lutze et al. The optimal control problems of the minimum time and the minimum

landing distance of an aircraft were defined. The authors provided the optimal con-

trol simulation results for maneuvers with bank-angle and sideslip-angle constraints.

In [59] (2006), the flight controller of the aircraft MuPAL-α for the realization of

arbitrary maneuverability was designed and the test results were provided. In order

to achieve high maneuverability, Tennakoon et al.(2008) designed and simulated a

control system for a unmanned aerial vehicle (UAV) in [63]. The maneuverability

of the UAV was described through its tracking accuracy for different control inputs.

11



In order to develop design guidelines for improving the maneuverability and agility

of an innovative helicopter, Olson et al. [51] assessed the impact of different design

parameters on several maneuvers based on the dynamic flight simulation results of

this helicopter. Eight different maneuvers for their baseline helicopter design were

defined, such as hover bob-up, acceleration, deceleration, climb, turns, high-speed

pull up etc, and six design variables were selected to describe the characteristics of

these maneuvers, including installed power, blade loading and blade lock number.

The response of the helicopter in these maneuvers was measured, and the influence

of design variables on maneuverability was analyzed. Then, the design guidelines for

improving helicopter maneuverability based on this analysis were provided.

1.2.3 Actuator Placement

The actuator placement problem was first suggested by Wu et al. in [66] in 1979.

The motivation for this research was to study the sensor and actuator placement

characteristics for large flexible space structures. The authors used a reduced order

model to represent the original large-scale system. In addition, the controllability and

observability of the reduced order model were considered to determine the minimum

number of actuators and sensors.

In 1981, A. Arbel published his research on controllability measures and actuator

placement in oscillatory systems in [5]. The modal structure of the target system

is adopted in his method and the cost function for the optimal placement of the

actuators is formulated based on the minimum energy problem. However, the target

oscillatory systems in this research are required to be stable, which largely limits the

applicability of the method.
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Research on optimal actuator placement for a 90-bar truss can be referred to

[39] in 1997, in which Liu et al. proposed their integrated structural topology and

actuator placement design method. Simulated annealing (SA) and genetic algorithm

(GA) were used to solve the topological design of discrete structures as before. The

method in [39] used the ground structure approach, and both the structural size and

the locations of actuators and sensors were treated as independent design variables.

Considering the faults of the eigenmode based model reduction method and

the balanced realization method, Mattingly et al. proposed their extended balanced

realization technique to solve optimal actuator placement issue for large scale systems

in [43](1998). One requirement for this method is that the A matrix in the linearized

model should be invertible, which is not satisfied by many real systems.

Stimulated by the development of smart materials, much of the literatures relat-

ed to actuator placement focuses on placement of piezo-electric actuators [23,37,42].

Based on our review, the placement of vectorable thrusters, which are better for

directional control of vessels and aerial vehicles, has not been researched heretofore.

1.3 Thesis Contribution and Organization

Chapter 2 provides a novel size minimization method of airships to be used in

the Airship Conceptual Design Procedure. Based on the airship size minimization

flow chart, four types of relationships in the sizing procedure are illustrated. In these

models, some of the available innovative technologies for airship design are introduced

and adopted in the airship size minimization procedure. The airship size synthesis is

introduced after that. The sizing method validations for airships with and without

fins are provided at the end of this chapter. Chapter 3 proposes three maneuver
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tests and corresponding maneuverability measures based on those proposed to date

for ships, airships and aircraft. The maneuverability of ALTAV is obtained based

on the proposed quantification method with different actuator locations and control

strategies. Chapter 4 focuses on finding optimal actuator locations for ALTAV. First,

the effects on ALTAV dynamics of different actuator locations are discussed. In order

to explore the effect of actuator locations on straight forward maneuver and turning

maneuver, the control forces and moments, the maximum available accelerations

and angular accelerations are analyzed. After that, the optimal actuator placement

cost function is proposed and the optimal actuator locations for equally weighted

longitudinal and lateral maneuverabilities.

Finally, in Chapter 5, conclusions are made on small highly maneuverable airship

design and future potential work is discussed.
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CHAPTER 2

Airship Size Minimization

This chapter focuses on airship size synthesis, aiming to obtain the minimum

airship size which can satisfy operational mission requirements and is based on novel

technologies in modeling, power generation and membrane material in the conceptual

design procedure. For this purpose, four modules associated with airship physical

system construction are presented, followed by airship size minimization function

and size minimization method validation. In order to provide a clear picture of the

process of the size minimization, the size minimization flow chart is provided first in

Fig. 2–1, from which we can see the importance of accurate mass estimation of every

subsystem and the relationships between these subsystems. The Geometric Module

is introduced in Section 2.1, in which the airship envelope and ballonet shapes are

given. Then, the Pressure and Fabric Module is introduced in Section 2.2. The

computation of pressure over the airship envelope is provided in this section so as

to guarantee that the chosen fabric for the envelope and ballonet is strong enough

to maintain the rigidity of the target airship for the desired mission. In Section 2.3,

the Aerostatic Module is proposed, in which the applicable static lift and required

ballonets volume are derived. Next, the Power and Propulsion Module is discussed

in Section 2.4, with the method used to determine the power and the mass of the

propulsion system. The size minimization and airship synthesis are introduced in
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Section 2.5. Finally, in Section 2.6, two airship size minimization examples are

provided to validate the proposed size minimization method.

2.1 Geometric Module

The shape and the size of lighter-than-air aircraft play a very important role

in flight operations, since the shape determines the aerodynamic characteristics and

the size determines both the available buoyancy and the mass of the system.

2.1.1 Envelope volume and surface area

In this thesis, the geometric relationships are constrained to conventional ellip-

soidal shape. There are many mathematical methods that could be used to describe

the geometric relationships [12, 31, 54, 65], most of which are based on the expres-

sions of elliptic curve of the specified envelope shape. In this thesis, the following

expressions are used to represent the volume and surface area of a non-rigid airship

envelope:

VH =
4

3
π(
d

2
)2
l

2
=

1

6
πλd3 , SH =

1

2
πd2(1 + λ2

arccos( 1
λ
)√

λ2 − 1
) (2.1)

where VH and SH are the volume and the surface area of the airship envelope respec-

tively, d is the diameter of the maximum cross section, λ is the fineness ratio, and l

is the length of the airship. We also express the envelope surface area as a function

of the volume of the airship:

SH = 1.651π
1
3λ−

2
3 (1 + λ2

arccos( 1
λ
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2
3
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2.1.2 Ballonet volume and surface area

One of the most important usages of ballonets is to keep the pressure balance

between the inside lifting gas and the outside air if the airship is operated in an

environment where air pressure and density have significant changes.

The number of ballonets typically varies from one to four, and two ballonets are

used most frequently. There are no specific criteria for the shape of the ballonets,

but cylinders and spheres are used widely. Since the sphere has the smallest surface

area for the given volume thus minimizing the mass of the system, we use this shape

as the desirable shape of ballonets in the size minimization process. Therefore, the

volume VB and surface area SB of ballonets are calculated as:

VB = nB(
4

3
πr3B) , SB = nB(4πr

2
B) (2.3)

in which rB is the radius of a ballonet.

2.2 Pressure and Fabric Module

Because non-rigid airships lack a skeletal structure, the envelope must maintain

a positive tension so as to keep its rigidity to resist the bending moments and to

maintain the structural integrity. In this section, we present the envelope pressure

required to maintain rigidity at the proposed flight conditions, and test whether a

selected envelope fabric is strong enough to meet this pressure requirement.

2.2.1 Stress Distribution of Airship Envelope

Before presenting the details of envelope pressure calculation, it is useful to

first study the stress distribution in the airship envelope. First, the envelope of an

airship is assumed to be rigid under equilibrium flight conditions. For the purpose
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of pressure calculation, the shape of the envelope is approximated by a cylindrical

vessel in the middle and two semi-spherical vessels at each end, as shown in Fig. 2–2,

Figure 2–2: Airship Envelope Assumption

The equations used to calculate the stresses in the longitudinal and hoop di-

rections of the cylindrical vessel and stress in the semi-spherical vessel can be found

in [25], from which we find that the maximum stress occurs at the cross section with

maximum radius. According to [31,41,46,64], the longitudinal and the hoop stresses

at the maximum midsection of the envelope can be expressed as functions of radius

rmax:

σL = ∆p
(rmax

2

)

, σH = ∆prmax (2.4)

where ∆p is the pressure difference between the inside and the outside of the cylin-

drical vessel, rmax is the maximum radius of the vessel, σL is the stress in longitudinal

direction, and σH is the stress in the hoop direction.

From the analysis in [29], as well as from airship evolution history [3, 24, 61], it

can be deduced that the location near the maximum diameter of the cross section

has a higher potential to develop kinks, which can lead to further structual damage.

Therefore, in later analysis, we will focus on the stress at the maximum diameter of

the cross-section.

19



2.2.2 Minimum Pressure Required to Maintain Envelope Rigidity

A detailed definition of coordinates used in this thesis is provided in Chapter 3.

For immediate reference, short descriptions of inertial frame and body frame are

given as follows. The inertial frame (AXY Z) is earth-fixed, and its X axis points

toward the geographic north, Y axis points toward the east and Z axis points down.

The center of buoyancy (COB) is the origin of the body-fixed frame (Oxyz). The x

axis points to the nose, the y axis points to the the right side of the airship and the

z axis is downward and perpendicular to the x− y plane.

The following paragraphs will focus on obtaining the minimum pressure required

to maintain the envelope rigidity and on developing the relationship between bending

moment and the internal and external pressure difference of the airship. First, we as-

sume that the engineering theory of bending is valid. Then, the internal longitudinal

force at the top of airship is formulated as [12, 29]:

σLt =
fcross
2πr

− σtopt =
∆pπr2

2πr
− M

I
rmaxt = rmax

(
∆p

2
−M

t

I

)

≥ 0 (2.5)

in which t is the envelope fabric thickness, σtop is the tensile strength at the top of

the cross section, fcross is the compressive force, M is the bending moment applied

at the center of buoyancy, and I is the second moment of the cross section.

Required Minimum Pressure Difference

The minimum pressure difference ∆pmin at which the rigidity is just maintained

without developing a kink could be derived from Eq. (2.5) by enforcing the equality:

∆pmin

2
−M

t

I
= 0 (2.6)
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Since I = πr3t, we can obtain:

∆pmin =
2Mt

I
=

2M

πr3
(2.7)

Based on the findings in [3,24,61], the kinks are more easily developed in x−z plane

in body-fixed frame, and therefore, we mainly discuss the bending moment about

the y-direction. For a non-rigid airship, the necessary minimum pressure difference

can be decoupled into three parts:

∆pmin = psta + pdyn + pdif (2.8)

where psta is the static bending pressure due to the static bending moment Msta,

pdyn is the dynamic bending pressure due to the dynamic bending moment Mdyn,

and pdif is the differential pressure due to the different height of the nose and the

tail of an airship.

Static Bending Pressure

In Eq. (2.8), the static bending moment Msta is required to determine the static

bending pressure psta. The static bending moment is generated by the discrepancy

between the center of gravity and center of buoyancy locations. Using the results

from Li [35], the static bending moment in y-direction is given by:

Msta,y = mg (−zG sin θ − xG cos θ cosφ)− ρgVH (−zV sin θ − xV cos θ cosφ) (2.9)
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where m is the mass of the gross airship, g is the acceleration of gravity, rG =

[xG, yG, zG]
T is the position vector from the origin O of the body-coordinate to the

center of gravity, ρ is the density of the ambient air, rV = [xV , yV , zV ]
T is the position

vector from the origin O to the center of buoyancy, θ and φ are the pitch and the

roll angles respectively. Since we define the center of buoyancy as the origin of the

body-fixed frame, the static bending moment in the y-direction can be simplified to:

Msta,y = mg (−zG sin θ − xG cos θ cosφ) (2.10)

Dynamic Bending Pressure

In Eq. (2.8), the aerodynamic bending moment Mdyn is required in order to

determine the aerodynamic bending pressure pdyn. Understanding of aerodynamic

forces and moments applied on airships took a long time to develop. In this thesis,

the aerodynamic bending moment will be developed based on the airship model

provided by Li in [35]. The aerodynamic bending moment on airships is composed

of five parts:

Mdyn,y =Madm,y +Mvis,y +Mfh,y +Mhf,y +Mcon,y (2.11)

in which Madm,y is the added-mass moment, Mvis,y is the viscous moment, Mfh,y is

the moment due to the force acting on fins, Mhf,y is the moment due to the force

acting on the hull because of fins, andMcon,y is the moment due to the control surface

deflection. For airships without fins, Mfh,y, Mhf,y, and Mcon,y are zero.

1.Aerodynamic Bending Moment Due to Added-mass Moment
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The calculation of added-mass forces and moments relates to complex calculation

of the added-mass terms, details of which can be found in [35]. The added-mass

bending moment in the y-direction is obtained as:

Madm,y = − [w (m11u)− u (m33w +m35q) + r (m44p)− p (m26v +m66r)] (2.12)

where m11 = mh,11, m33 = (mh,33 +mf,33), m35 = mf,35, m44 = mf,44, m26 = mf,26,

and m66 = (mh,66 +mf,66) are the added-mass terms [35]. For airships without fins,

mf,ij = 0. The airship velocity in the body-fixed frame is v = [u, v, w]T , and angular

velocity in body-fixed frame is ωωω = [p, q, r]T .

2.Aerodynamic Bending Moment Due to Viscous Moment

Different methods have been used to calculate airship viscous force and moment

[4,18,26,28,35,54]. In this thesis, the semi-empirical method provided in [26] and [18]

is adopted to calculate the viscous moment. The viscous moment in the y-direction

in the body frame is obtained by:

Mvis,y =MvisN

wv
√
v2v + w2

v

(2.13)

in which:

vv = [uv, vv, wv]
T = v − vw (2.14)

MvisN = −q0 sin 2γ (k2 − k1)

∫ l

εv

dS

dε
(εm − ε) dε+ q0ηCDC sin2 γ

∫ l

εv

2R (εm − ε) dε

(2.15)

where vw is the wind velocity vector, vv is the local velocity, q0 is the local aerody-

namic pressure, k1 and k2 are the added-mass factors, ε is the longitudinal position

from the nose, εm is the position of the origin of body frame from the nose, CCD is
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the cross-flow drag coefficient of an infinite-length circular cylinder, η is the efficiency

factor decided by fineness ratio [35], R and S are the local cross-sectional radius and

area, εv is the location at which the flow ceases to be potential, and γ is the angle

between airship body centerline and local velocity vector at location εv.

3.Aerodynamic Bending Moment Due to Force Acting on Fins

The force acting on fins, which is normal to airship centerline, can produce pitch-

ing moment as well. The resulting moment induced by fins needs to be calculated

for each fin. For one fin, the induced moment in the y-direction is calculated as [35]:

Mfh,y =MFN sinΦF (2.16)

where ΦF is the angle from oxz body-fixed plane to fin surface plane, and

MFN = q0
CLα

Clα

αF

∫ xFe

xFs

∫ b

R

x∆Cpα

(

1 +
rmax

2

s2

)

dsdx (2.17)

in which x and s denote the longitudinal and spanwise position of a point P on the fin

planform, CLα/Clα is the correction factor for 3D effects [44], the factor (1 + r2/s2)

is the influence of the hull on the fins, r and b are the hull’s cross-sectional radius and

the fin semi span, xFs and xFe are the x coordinates of the start and end positions

of the fin, ∆CPα ≡ ∂∆Cp/∂α and ∆Cp is the pressure coefficient of the airfoil, and

αF is the geometric angle of attack.

4.Aerodynamic Bending Moment Due to Force Acting on Hull Because of Fins

Because fins-induce downwash near the airship envelope, the presence of fins can

lead to an additional force and moment on the airship envelope. The pitch moment
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induced by one fin is calculated as:

Mhf,y =MHN sin ΦF (2.18)

where,

MHN = −q0αF

∫ l

0

[

πρr2maxV
dwdF

dx

]

x dx (2.19)

in which V is the air speed, and wdF is the local fin-induced downwash. The down-

wash along the centerline is obtained as [35]:

wdF (x) = V
CLα

Clα

αF

∫ xFe

xFs

∫ b

r

[8πdF (dF − x+ xF )]
−1∆Cpα (xF , s)

(

1 +
r2

s2

)

dsdxF

(2.20)

where dF =
√

(x− xF ) + s2 is the distance from a point on a fin to a point on the

centerline.

5.Aerodynamic Bending Moment Due to Control Surface Deflection

The pitch moment induced by elevator deflection is estimated as:

Mcon,y = − (−L cosα−D sinα)

{

xcp + cm

[

− 2 sin θf − sin 2θf
8 (π − θf + sin θf )

]}

(2.21)

where L and D are the aerodynamic lift and drag generated by elevators respectively,

α is the angle of attack, xcp is the center of pressure, cm is the mean chord of the

fin, and θf = cos−1 (2cf/c− 1), in which cf and c are the flap chord and airfoil chord

respectively. The lift L and drag D are obtained as:

L = 2q0SFS [CLατηdk3Dδ] , D = 2q0SFS

[

1.7
(cf
c

)1.38
(
Sf

SFE

)

sin2 δ

]

(2.22)
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where SFS is the exposed fin area, CLα is the 3D lift curve slope, τ is the theoretical

effectiveness factor derived from the potential flow theory [44], ηd is the correction

factor based on experiments [35], k3D is the efficiency factor used to account for 3D

effects [18], δ is the deflection angle of the control surface, and Sf is the fin flap area.

Differential Pressure

Under some circumstances, the fore and the stern of an airship will not be at the

same level, for example when at a large angle of attack or during kiting motion, where

the tail rises up as the airship appears to perform a nose stand. The internal and

external pressure difference will be slightly changed due to this altitude difference,

and this pressure difference is calculated as:

pdif = ρgh = gρa

(

1− m̃h

m̃a

)

l sinαmax (2.23)

where ρa is the density of ambient air, m̃h and m̃a are the molecular mass of the

lifting gas and the ambient gas respectively, l is the length of the airship and αmax

is the required maximum survival angle between the horizontal line and the airship

body centerline.

Combining Eqs. (2.8-2.9, 2.11, 2.23), the minimum pressure difference of the

airship is obtained as:

∆pmin =
2 (Msta,y +Mdyn,y)

πr3
+ pdiff (2.24)

Setting the above equal to (phi − pa), in which phi and pa are the pressure of

lifting gas and the pressure of ambient air respectively, the internal and external gas
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pressure ratio ηpr of the envelope is calculated as:

ηpr =
phi
pa

= 1 +
∆pmin

pa
(2.25)

2.2.3 Membrane Materials

Having obtained the minimum pressure difference required to keep the target

airship’s rigidity, we now focus on choosing a proper membrane for the airship en-

velope. The desirable properties of envelope materials and ballonet materials are

discussed in [29]. Since those for the envelope impose more constraints than the

desirable properties for the ballonets, most materials used to make envelopes can

also be used for the ballonets. The comparison of the density to tensile strength

of several envelope materials is shown in Fig. 2–3 as obtained by Japan Aerospace

Exploration Agency [29], and the recommended materials for airships are Vectran

and Zylon. However, if decreasing the mass of the target airship is the first property

in airship design, GTS could also be a good candidate for the envelope.

Based on the discussion in Section 2.2.1, in order to guarantee material strength

and maintain rigidity of the airship, the tensile strength of the candidate envelope

membrane should satisfy:

σT ≥ ηTσH = ηT∆pminr (2.26)

where ηT is the fabric safety factor, suggested to be 1.5 according to [17].

2.3 Aerostatics Module

In contrast to HTA vehicles, LTA vehicles depend on the principle of buoyancy

for their primary lift. In this section, the principle of gas expanding while an airship

ascends is described at first. Then the pressure and density of ambient air are given,

27



the compartment with ac and dc generators. A fuel tank and a water
ballast tank are also equipped.

The external compartment is hung under the envelope with
external catenaries made of Vectran. This system was selected to
avoid the interference with ballonets.

E. Propulsion System

The outriggers were protruded from both sides of the external
compartment, to carry motor-driven ducted propellers. The motors
are Pacific Powertec E213G4 and the propellers are MT-Propeller
MTV-7-D-R/152-23. These propulsion systems can tilt upward to
120 deg and downward to .

F. Landing Gear

The single fixed gear was installed underneath the compartment.
This wheel unit can swivel through 360 deg.

IV. Envelope Materials

This blimp has employed new envelope materials, Vectran and
Zylon, which have been developed for the stratospheric platform
system [5,6]. Vectran is made of polyarylate (PA) fibers and is a
product of Kuraray Co., Ltd. Zylon is made of poly-paraphenylene
benzobisoxazole (PBO)fibers and is a trademark of ToyoboCo., Ltd.
Their strength has beenmuch improved from current polyester-based
envelope materials. They were applied to the envelope and the tail
surface. These materials have also been installed on the top of the
envelope, for deterioration monitoring. They were partially cut off
and tested in October 2004. The layer compositions of Vectran and
Zylon are shown in Figs. 7 and 8. Normally, Zylon is layered with
aluminum-evaporated Tedlar to protect against weathering, which
shows good antiweathering properties. However, this layer
composition was chosen for the stationary flight test vehicle and its
accelerated environmental test results were not satisfactory.

A. Mechanical Properties of the Materials

In the early stage of the development, the material development
test was conducted. Twelve mechanical properties, as well as
physical and environmental properties, were measured in this test.
Measured mechanical properties are tensile strength, joint tensile
strength, fatigue strength, joint fatigue strength, creep strength, joint
creep strength, bending strength, joint bending strength, wear
resistance, biaxial tensile strength, crack resistance, and inplane
shear strength.

Figure 9 shows the tensile properties of Vectran and Zylon in the
machine direction (MD) and the transverse direction (TD), as well as
those of the joint section of thesematerials in the transverse direction.
The environmental temperature is varied between and 65 C.
Both materials satisfied the strength requirement of
( ) at room temperature, specified for the stationary flight
test vehicle.

Figure 10 shows a comparison of the tensile properties of various
envelope materials. Vectran and Zylon show very high specific
strength.

Table 1 shows the creep strength of the joint section in the
transverse direction. Both materials show good creep resistance at
room temperature, though at high temperatures, their creep strength
decreases.

B. Physical Properties

Measured physical properties are weight, specific heat, thermal
conductivity, solar absorptance, thermal emittance, helium gas
permeability, surface and volume electric resistance, dielectric
constant, and dielectric loss. All the tests were conducted for
Vectran, but only weight test and permeability test were conducted
for Zylon.

Measuredweight and thickness ofVectran andZylon are shown in
Figs. 7 and 8.

Fig. 7 Layer composition of Vectran.

Fig. 8 Layer composition of Zylon.

Fig. 9 Tensile properties.

Fig. 10 Comparison of envelope materials.

Table 1 Creep strength of joint section

Vectran RT No failure after 300 h
50 C No failure after 300 h
65 C No failure after 300 h
65 C Failed after 5.8, 13.6, and 13.6 h

Zylon RT No failure after 300 h
50 C No failure after 300 h
50 C Failed after 2.7, 3.3, and 3.7 h
65 C No failure after 300 h
65 C Failed after 0.3, 0.4, and 1.5 h
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Figure 2–3: Comparison of Fabric Materials [40]

following with the lifting gas pressure and density obtained according to Ideal Gas

Law. In Section 2.3.3, the required ballonets volume is obtained.

2.3.1 Principle of Gas Expanding While Airship Ascends

At mean sea level, the net lift Ln0 is calculated as:

Ln0 = (ρ0 − ρhi) g (VH − VB) (2.27)

where ρ0 is the density of ambient air, and ρlif is the density of lifting gas inside the

envelope at mean sea respectively. The airship ascent is depicted in Fig. 2–4. The

lifting gas volume changes from (VH − VB) to VH , and the ballonets volume changes

from VB to zero, while the airship ascends from mean sea level to cruise altitude.

Further theoretical analysis of airship ascent can be found in [29]. Then the net
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static lift Ln,cr of the airship at cruise altitude is:

Ln,cr = (ρcr − ρhcr) gVH (2.28)

in which ρcr is the density of ambient air at cruise altitude, and ρhcr is the density

of lifting gas at cruise altitude.

Helium volume:VH

Helium volume:VH −VB

mean sea level

cruise altitude

Ballonets inflates

Ballonets deflates

Figure 2–4: Airship Rising from Mean Sea Level to Cruise Altitude

2.3.2 Gas Pressure and Density

An airship hovers because of lift resulting from the Archimedes Principle. In this

section, we present the equations to obtain the pressure and density of the lifting gas

at the mean sea level and at cruise altitude, which are needed to derive the ballonets

volume. Standard atmosphere model provided in [49] is adopted in this thesis.

According to Ideal Gas Law at mean sea level, if the inside lifting gas pressure is

ηprp0, the density will be ηprρ0. At cruise altitude, the volume of lifting gas increases

from (VH − VB) to VH . Assuming that the inside lifting gas mass is constant, the
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density and volume of lifting gas at mean sea level and at cruise altitude satisfy:

ρh0 (VH − VB) = ρhcrVH (2.29)

Dividing both sides by VH , the following equation can be obtained:

ρhcr = ρh0

(

1− VB
VH

)

= ηprρ0

(

1− VB
VH

)

(2.30)

Assuming that the temperature inside the envelope is the same as that outside the

envelope, thus according to Ideal Gas Law, the following equation can be obtained:

ph0
ρh0T0

=
phcr

ρhcrTcr
(2.31)

where ph0 and T0 are the pressure and temperature at mean sea level respectively,

phcr and Tcr are the pressure and temperature at the cruise altitude respectively.

Multiplying both sides by ρhcr and Tcr, we obtain:

phcr = ph0
ρhcrTcr
ρh0T0

= ηprp0

(

1− VB
VH

)


1−
�

Thcr
T0



 (2.32)

where p0 is the pressure at mean sea level,
�

T = dT/dz is the temperature lapse

constant of Standard Atmosphere, hcr is the cruise altitude. Table 2–1 summarizes

quick reference for the conditions of ambient air and lifting gas at mean sea level and

cruise altitude.
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Table 2–1: Temperature, Pressure, Density of Air and Lifting Gas at Mean Sea Level
and Cruise Altitude

Mean sea level Cruise altitude

(hcr ≤ 11000m)

temperature,K T0 Tcr = T0 −
�

Thcr

Ambient Air [49] pressure,Pa p0 pcr = p0

(
Tcr

T0

) g
�

TRgc

density,kg/m3 ρ0 ρcr = ρ0

(
Tcr

T0

) g
�

TRgc

−1

temperature,K T0 Tcr

Lifting gas pressure,Pa ph0 = ηprp0 phcr = ph0

(

1− VB

VH

)(

1−
�

Thcr

T0

)

density,kg/m3 ρh0 = ηprρ0 ρhcr = ρh0

(

1− VB

VH

)

2.3.3 Required Ballonets Volume

The two most common functions of the ballonets during the airship operation

are balancing the internal and the external pressure, and providing enough net static

lift. Therefore, based on the method proposed in [31, 52], the volume of ballonets

can be derived as:

VB = (νbpc + νbtr) VH (2.33)

where νbpc is the factor indicating the ratio of ballonets volume used for pressure

balancing, and νbtr is the factor indicating the ratio of ballonets volume used for lift.

The value of νbpc can be further derived as:

νbpc =
ph0 − phcr

ph0
= 1− phcr

ph0
(2.34)
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The value of νbtr used for lift is obtained as:

νbtr =
Ln0 − Ln,cr

Ln0
= 1− (ρcr − ρhcr) gVH

(ρ0 − ρh0) g (VH − VB)
(2.35)

Combining Eqs. (2.30), (2.33-2.35) and using ρh0 = ηprρ0, ηBH = VB/VH , we

obtain a quadratic equation in ηBH :

η2BH





�

Thcr
T0



+ηBH



−2

�

Thcr
T0

− ρh0
ρ0 − ρh0

− 1



+





�

Thcr
T0

− ρcr
ρ0 − ρh0

+
ρh0

ρ0 − ρh0
+ 1



 = 0

(2.36)

Solution of this equation yields the ratio ηBH of ballonets volume to envelope volume

from which the ballonets volume is directly obtained as:

VB = ηBHVH (2.37)

From the ballonets volume VB, the radius rB and the surface SB of ballonets

are obtained. Referring to Eq. (2.3), we further develop the relationship between

ballonets surface area and envelope volume as:

SB = (4nBπ)
1
3 (3ηBH)

2
3 V

2
3
H (2.38)

where nB is the number of ballonets.
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2.4 Power and Propulsion Module

Three components must be included in the power and propulsion system: the

engine, the energy source, and the actuator used to produce forces and moments to

propel the airship. In this section, the methods used to obtain the mass of both

conventional and unconventional power and propulsion systems will be discussed.

2.4.1 Drag Determination according to Aerodynamics

Power is required to overcome the aerodynamic force on the airship which oppos-

es the airship velocity. Thus, in order to accurately estimate the mass of the power

and propulsion system, we first need to estimate the drag forces at cruise speed and

at maximum speed. The axial drag on hull and fins of the airship at low angles of

attack is obtained as in [35] at cruise and maximum speeds as:

DHcr = −qcrCDH0SHD cos2 α , DFcr = −qcrCDF0SFD cos2 αF

DHmax = −qmaxCDH0SHD cos2 α , DFmax = −qmaxCDF0SFD cos2 αF

(2.39)

where DHcr and DFcr are the drag forces on the hull and the fins at cruise speed re-

spectively, DHmax andDFmax are the drag forces on the hull and the fins at maximum

speed respectively, qcr and qmax are the aerodynamic pressure at cruise and maxi-

mum speed respectively,α is the angle of attack of the hull and is computed from the

local velocity at the center of buoyancy, CDH0 and CDF0 are the zero-angle axial drag

coefficients of the hull and the fins respectively, which can be found from [44], SHD

and SFD are the corresponding reference areas, and it is assumed that SFD = ηsSHD,

where ηs is a constant.
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The total drag on the airship can be decoupled into skin friction drag, form

drag, trim drag, profile drag and so on [44].The total drag on three airships has been

broken down by Durand (1934) [29]. This data is plotted in Fig. 2–5, from which we

can find that the bare hull contributes about 50% of the total drag, while fins and

rudders contribute approximately 15%.
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Figure 2–5: Drag Breakdown for Three Airships

More empirical data and formulas are required in order to get an accurate ex-

pression for the total drag on an airship. However, since the drag on the hull and the

fins constitute the largest part of the total drag, the following equations are adopted

to estimate the total drag at the conceptual design stage:

Dcr =
DHcr +DFcr

ηD0
, Dmax =

DHmax +DFmax

ηD0
(2.40)
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where ηD0 is the percentage of bare hull and fins drag contribution to the total drag.

Based on Fig. 2–51 , we estimate ηD0 = 0.65.

2.4.2 Conventional Power and Propulsion System

Many kinds of power and propulsion equipment can be used to power an aerial

vehicle. The required engine power is calculated for steady state flight condition, in

which thrust is equal to the drag. In steady state flight, the engine power required

for cruising and maximum forward speed flights are calculated as follows [58]:

Pcr =
1

ηeng
Tengvcr =

1

ηeng
Dcrvcr (2.41)

Pmax =
1

ηeng
Tengvmax =

1

ηeng
Dmaxvmax (2.42)

where Teng is the thrust of the engine and ηeng is the propulsive efficiency. Stinton [62]

plotted the variation of ηeng of propellers and ducted fans with airspeed in Fig. 2–6.

The number of engines is determined as:

neng = ⌈max (Pcr, Pmax)

Peng,1

⌉ (2.43)

where Peng,1 is the power of the candidate engine. Therefore, the total mass of the

engines is:

meng = nengmeng,1 (2.44)

1 For old large traditional airships, the power engines were mounted in different
separate small cars, which were located at the bottom or lateral sides of these airships
and very similar with gondola.
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Figure 2–6: Variation of Propulsive Efficiency with Forward Speed (Based on Fig. 7-
24 in [62])

where meng,1 is the mass of the candidate engine. Then, combining Eqs. (2.1, 2.39-

2.42) together, the fuel needed for engines equals:

mf = (meng,crPcrtcr +meng,maxPmaxtmax)

=
6

2
3π

1
3λ−

2
3

8ηengηD0

(
meng,crρcrv

3
crtcr +meng,maxρ0v

3
maxtmax

)
(CDH0 cos

2 α+

CDF0ηs cos
2 αF )V

2
3
H

(2.45)

where, meng,cr is the cruise specific fuel consumption, meng,max is the maximum spe-

cific fuel consumption, tcr and tmax are the required cruise time and the maximum

speed time for the airship. Then the mass of power and propulsion system is obtained

as:

mprop = meng +mf (2.46)

2.4.3 Unconventional Power and Propulsion System for Small Airships

There are two obvious disadvantages of conventional power and propulsion sys-

tem: one is the heavy mass of conventional engines, and the other is the mass of fuel,
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which increases rapidly with increase of flight duration (as in Eq. 2.45). In the case

of novel small airship designs, their available lift is rather limited because of their

size. Therefore, they cannot support the heavy power and propulsion systems used

in conventional airships.

As an example of small unconventional airship, we consider the ALTAV airship

used for research in the Aerospace Mechatronics Laboratory at McGill University.

ALTAV has four power and propulsion units, mounted along the equator of the hull.

The components of one unit and their masses are listed in Table 2–2.

Table 2–2: Mass Breakdown of Power and Propulsion Unit on ALTAV

Component Type Mass (g)
Brushless motor PJS 3D-1000N 92
Constant pitch propeller APC 0.305m(12”)diameter × 0.1m(3.8”) 51
Electronic speed controller Jeti Adance 30-Plus 15
Servo motor Hitec HS-322HD 43
Battery 12.64v, 4000mAh ThunderPower lithium 338

polymer battery pack
Miscellaneous 150
Total mass 698

The existing methods to calculate the drag for these novel small airships can

still be used. At present, however, there is no standard method to calculate the

available thrust of a given propeller and motor system. The thruster forces in [54]

and [9] are obtained experimentally. In addition to the battery that can provide

enough power and time of flight for the motors, the speed controller and the servo

motor is required. The mass of the unconventional power and propulsion system is

obtained by adding up those of all components.
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2.5 Airship Size Synthesis

Basic parameters and initial values of variables need to be provided as Prelimi-

nary Design Parameters, which will be used in the size minimization iteration. The

input parameters are listed in Table 2–32 .

Table 2–3: Preliminary Design Parameters of a Nonrigid Airship

Input parameters
Structure related λ, AR, nB, l, rB, lcv, xFs, xFe, xFms, xFme,

ΦF

Motion related hcr, vcr, vmax, tcr, tmax, αmax, ω,
trimmed values of [φ, θ, ψ]T , vw

Fabric related mH0, mB0, σH0, σB0, ηT
Mass related meng,1, meng,cr, meng,max, mpay, mstr, msus,

manc

Safety related ηw = 1.5, ηstr = 13.44h, ηsus = 17.03h,
ηanc = 14.9h, ηwH = 20h, ηwB = 60h
ηs = 176h

Initial variable for iteration
Diameter of the maximum cross- d
section of the envelope

2.5.1 System Mass Estimation

In this thesis, the mass of an airship is decoupled into seven parts and is formu-

lated as:

mtotal = mH +mB +mprop +mstr +msus +manc +mpay (2.47)

2 The safety related parameters are from [17, 29], except ηs is from the geometric
ratio of fin area to airship front area of Skyship-500
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where mH is the mass of envelope, mB is the mass of ballonets, mstr is the mass of

structural reinforcement system (including nose group), msus is the mass of suspen-

sion system (including gondola and its contents), manc is the mass of ancillary system

(including components for maintenance, conduits and miscellaneous) and mpay is the

mass of payload.

The first assumption here is that the payload mass mpay will not change with

the increase or decrease of the airship envelope volume. The second assumption is

that during sizing iteration, the mass of the structural reinforcement system, the

suspension system and the ancillary system only change if the required diameter

at the maximum cross section of the envelope is ≥ ±5% different from the initial

diameter value.

Equations for the power and propulsion system mass mprop was developed in

previous sections. Based on Eqs. (2.2) and (2.38), the envelope and ballonets mass

are formulated as functions of the airship volume:

mH = (1 + ηwH)SH = 1.651 (1 + ηwH)mH0π
1
3λ−

2
3 (1 + λ2

arccos( 1
λ
)√

λ2 − 1
)V

2
3
H (2.48)

and:

mB = (1 + ηwB)SB = (1 + ηwB)mB0 (4nBπ)
1
3 (3ηBH)

2
3 V

2
3
H (2.49)

where ηwH = 2% and ηwB = 6% are the recommended envelope and ballonets weight

tolerances respectively [29]. The structural reinforcement system mass mstr, sus-

pension system mass msus and ancillary system mass manc are highly dependent on

mission requirements and designers preferences. However, the data on how they vary

with envelope volume is lacking. Therefore, in this thesis, it is assumed that these
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masses will increase linearly with the envelope volume expansion, and the scale factor

ηstr, ηsus and ηanc is obtained based on the mass decomposition of two different-size

airships in [29]. Therefore, based on above assumptions, when the airship diameter

of maximum cross-section deviates by more than 5% from its initial value, the masses

mstr, msus and manc are calculated as:

mstr = mstr,i

(

1 + ηstr
VH − VH,i

VH,i

)

= mstr,i (1− ηstr) +
ηstr
VH,i

mstr,iVH (2.50)

msus = msus,i

(

1 + ηsus
VH − VH,i

VH,i

)

= msus,i (1− ηsus) +
ηsus
VH,i

msus,iVH (2.51)

manc = manc,i

(

1 + ηanc
VH − VH,i

VH,i

)

= manc,i (1− ηanc) +
ηanc
VH,i

manc,iVH (2.52)

where ηstr = 13.44h is the weight tolerance of the structure reinforce system mass,

ηsus = 17.03h is the weight tolerance of the suspension system mass, ηanc = 14.90h

is the weight tolerance of the ancillary system mass [29], the additional subscript i

denotes the initial quantities in the sizing iteration.

Substituting Eqs. (2.46),(2.48-2.52) into Eq. (2.47), the gross weight of the air-

ship system is obtained as a function of the hull volume:

Wsys (VH) = (mhul +mbal +mprop +mstr +msus +manc +mpay) g

= aVH + bV
2
3
H + c

(2.53)

where a, b and c are defined as:

a =

(
ηstr
VH,i

mstr,i +
ηsus
VH,i

msus,i +
ηanc
VH,i

manc,i

)

g
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b = (1.651 (1 + ηwH)mH0π
1
3λ−

2
3

(

1 + λ2
arccos( 1

λ
)√

λ2 − 1

)

+ (1 + ηwB)mB0

(4nBπ)
1
3 (3ηBH)

2
3 + 0.4127

π
1
3

ηengηD0

(
meng,crρcrv

3
crtcr +meng,maxρ0v

3
maxtmax

)

(CDH0λ
− 2

3 cos2 α+ CDF0ηsλ
1
3 cos2 αF ))g

c = (mstr,i (1− ηstr) +msus,i (1− ηsus) +manc,i (1− ηanc) +meng +mpay) g

2.5.2 Sizing Constraint and Iteration

On the preliminary conceptual design stage, the airship system is required to

generate enough net static lift to overcome the airship weight during flight. For

conventional airships, the net static lift is always larger than or equal to the estimated

system weight. For novel airships, such as the heavy-lift and almost-heavier-than-air

designs, propulsion system can generate part of the lift, and the net static lift can be

slightly smaller than the estimated system weight. Therefore, size minimization of

the airship should lead to minimum discrepancy between the net static lift and the

estimated system weight:

(VH)min = arg
V

min{min{Ln0 (VH) , Ln,cr (VH)} − ηwWsys (VH)} (2.54)

where ηw is the weight tolerance of the system. When ηw ≥ 1, the design is for

conventional airships, and when 0 < ηw < 1, the design is for heavy-lift airships.

In the absence of specific requirements, ηw is equal to 1.5 for conventional airships

according to [17].
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2.6 Validation of Non-rigid Airship Size Minimization

In this section, we apply the proposed sizing method to conventional airships

with and without fins, and heavy-lift airships with and without fins. First, we want to

validate whether the proposed method is effective in obtaining the minimum airship

size in airship conceptual design procedure. Second, we want to compare the sizing

results of airships with fins and without fins, so as to see which one can provide the

smallest size.

To achieve these aims, we propose the same mission requirement, and use the

same membrane and engines for these airships. Based on Table 2–3, we list the

initial input parameters in two groups: one contains the parameters which remain

constant during the sizing procedure, in Table 2–43 ; the other contains the initial

values of parameters which change with size, in Table 2–54 . Based on recent existing

airships, the minimum number of engines is assumed to be two for non-rigid airship

with fins, and four for non-rigid airship without fins. The engine we choose at here is

AR731-38BHP by UAV ENGINES LTD, which is commonly used in contemporary

UAV design [11] because of its high power to weight ratio for a rotary engine.

The sizing algorithm is formulated as showen in the sizing flow chart Fig. 2–

1. The initial maximum diameter is set to 5 m. The sizing results for non-rigid

3 The units used in these tables are International System of Units (SI): ΦF (rad),
hcr(m), vcr(m/s), vmax(m/s), tcr(h), tmax(h), αmax(deg), ω(deg/s), [φ, θ, ψ]

T (deg),
vw(m/s), mH0(kg/m

2), mB0(kg/m
2), σH0(N/m), σB0(N/m)

4 The structure related parameters are calculated based on the geometric relation-
ship of different parts of Skyship-500.
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Table 2–4: Input Parameters That Do Not Change With Airship Size

Structure related Motion related Fabric related Mass related
λ 3.623 hcr 500 mH0 0.15 meng0 AR731-38bhp
AR 1.5083 vcr [8, 0, 0]T mB0 0.15 meng,cr AR731-38bhp
nB 2 vmax [14, 0, 0]T σH0 105 meng,max AR731-38bhp
ΦF [0, 0.5, 1, 1.5]πT tcr 40 σB0 105

tmax 5 ηT 1.5
αmax 30
ω [2.5, 10, 10]T

[φ, θ, ψ]T [0, 10, 0]T

vw [1, 1, 1]T

Table 2–5: Initial Value of Input Parameters That Change With Airship Size

Structure related (m) Mass related (kg)
d 5 xFs 13.11 mpay 30
l 18.12 xFe 16.36 mstr 5
rB [0, 0, 0.05]T xFms 14.01 msus 5
lcv 8.56 xFme 16.36 manc 5

airships with fins are listed in Table 2–6, and the sizing results for non-rigid airships

without fins are listed in Table 2–7, all of which have obtained from the same initial

conditions.

Table 2–6: Output Results of Airship with Fins

P
P
P
P
P
P
P
P
P

ηw

Outputs
d (m) VH (m3) VB (m3) Ln0 (N) Ln,cr (N) ηwWsys (N)

1.5 (conventional) 4.59 182.25 10.11 1710.77 1633.12 1630.81
0.98 (heavy-lift) 3.79 103.27 5.73 969.46 925.46 924.97

From Tables 2–6 and 2–7, we can see that the proposed sizing method resulted in

a decrease of the initial maximum diameter from 5 m to 3.79 m for heavy-lift airship

with fins, to 4.08 m for heavy-lift airship without fins, to 4.59 m for conventional
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Table 2–7: Output Results of Airship without fins

P
P
P
P
P
P
P
P
P

ηw

Outputs
d (m) VH (m3) VB (m3) Ln0 (N) Ln,cr (N) ηwWsys (N)

1.5 (conventional) 4.91 224.55 12.45 2108.00 2012.32 2004.18
0.98 (heavy-lift) 4.08 129.79 7.20 1218.46 1163.15 1156.55

airship with fins, and to 4.91 m for conventional airship without fins. In both tables,

we find that the calculated minimum sizes of these airships provide just enough lift

for their estimated system weights, which shows that the sizing method is effective

at finding the minimum size based on the proposed mission requirements. Both

sets of results show that, the size of heavy-lift airships can be smaller than that of

conventional airships which generate all lift from buoyancy. Since heavy-lift airships

use engines to generate part of the lift, the fuel consumption of heavy-lift airships

increases more quickly with mission time than conventional airships. However, for

a two day mission, heavy-lift airships require smaller size. Furthermore, without

further discussing about the maneuvering advantages of non-rigid airships without

fins, for both conventional and heavy-lift designs using the same membrane and

engine and taking the same mass of payload, airships with fins can achieve smaller

size for the same mission requirements than airships without fins. The main reason

for this result is that three or four, or even more engines need to be adopted for

airship control due to lack of fins, and the mass of the added engines is always larger

than the original fin structures.
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CHAPTER 3

ALTAV Maneuverability Metrics and Tests

As noted in Chapter 1, airship maneuverability has not been clearly defined until

now. In this chapter, the maneuverability quantification method is introduced in the

first two parts of this chapter based on the relevant tests and simulations conducted

to date on ships, aircraft and airships. Then, the method is applied to quantify

maneuverability of the small highly maneuverable airship ALTAV in the third part

of this chapter. In Section 3.1, the reference coordinates and ALTAV dynamics

model are provided. In order to define the airship maneuverability, the definition of

heading angle is provided in Section 3.2. Then, a general airship maneuverability

quantification method is introduced based on three maneuvering tests, in particular

the straight forward maneuver, the turning maneuver and the zig-zag maneuver.

One of the objectives of this thesis is to research the ALTAV maneuverability and

how it is affected by its actuator locations. Furthermore, we wish to determine the

optimal actuator location for ALTAV. Therefore, in Section 3.3, 64 different actuator

locations along the equator of the hull in the x− y body-fixed plane are defined, and

simulations of the 3 aforementioned maneuvers based on the PID control strategy

and the optimal control strategy are performed in order to reveal how ALTAV’s

maneuverability is affected by different actuator locations and control strategies.
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3.1 Dynamic Model of Small Highly Maneuverable Airships

In this section, the dynamic model of a small highly maneuverable airship is

provided. First, the airships researched in this thesis are treated as rigid bodies with

six degrees of freedom (DOFs): three DOFs in translational directions (surge, sway

and heave) and three DOFs in rotation (roll φ, pitch θ and yaw ψ). The inertial

earth-fixed frame (AXY Z) and the local body-fixed frame (Oxyz) are represented

respectively in Fig. 3–1.

Figure 3–1: Small airship degree of freedom

The inertial earth-fixed frame is the geographic North-East-Down (NED) frame

(AXY Z) whose X axis points toward the geographic north, Y axis points toward

the east and Z axis points down. The origin of the body-fixed frame is located at

the center of buoyancy (COB). The x axis points to the nose, the y axis points to the

right side of the airship and the z axis is downward and perpendicular to the x − y

plane. Three Euler angles are used to define the direction cosine matrix (DCM)from
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the geographic NED frame to the body-fixed frame is written as follows,

RIB = RX(φ)RY (θ)RZ(ψ)

=









cosψ cos θ sinψ cos θ − sin θ

cosψ sin θ sin φ− sinψ cos φ sinψ sin θ sin φ+ cosψ cos φ cos θ sin φ

cosψ sin θ cos φ+ sinψ sin φ sinψ sin θ cos φ− cosψ sinφ cos θ cosφ









(3.1)

The equations of motion of the small highly maneuverable airship ALTAV are

expressed in body-fixed frame as [54]:

M̄a






v̇

ω̇̇ω̇ω




 =






−ωωω×Mav +mωωω×r×CGωωω +ωωω×MDavw −MDaωωω
×vw +MDav̇w

−mr×CGωωω
×v −ωωω×Jaωωω − (v − vw)

×MDa(v − vw)






+






fV + fG

nV + nG




+






fT

nT






(3.2)

where v = [u, v, w]T and ωωω = [p, q, r]T denote the translational and rotational ve-

locity vectors in body-fixed frame respectively, rCG is the position vector from the

COG to center of buoyancy (COB), vw and v̇w are wind velocity and acceleration

respectively, M̄a is the 6×6 mass matrix including the added mass, m is airship total

mass, Ma, Ja and MDa are apparent mass, apparent inertia and apparent displaced

mass matrices respectively, r×CG, ωωω
×, and (v− vw)

× are skew-symmetric matrices of

corresponding vectors, fV and nV , fG and nG, and fT and nT are viscous, gravita-

tional, actuator forces and moments respectively. In addition, the transformation of
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the body components [u, v, w, p, q, r]T to [ẋ, ẏ, ż, φ̇, θ̇, ψ̇]T is achieved by:



















ẋ

ẏ

ż

φ̇

θ̇

ψ̇



















=






RIB 0

0 S






−1



















u

v

w

p

q

r



















(3.3)

in which

S =









1 0 − sin θ

0 cosφ sin φ cos θ

0 − sinφ cosφ cos θ









(3.4)

3.2 Airship Maneuverability Quantification

In order to optimize the maneuverability of ALTAV, we need to quantify maneu-

verability first. Three maneuvers are proposed in this thesis based on the previous

research on ships, airships and aircraft: the straight forward maneuver, the turning

maneuver and the zig-zag maneuver. These three maneuvers are frequently used

to test ships, airships or aircraft maneuverability, and they can also be applied for

general airships maneuverability quantification.

Heading angle ψH is one of the most important variables to define in the airship

turning maneuvers. It is defined as the angle between the airship absolute velocity

direction and the North direction. Since the North direction can be directly detected
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by sensors, it is easier to use the North rather than the East as the direction reference.

The heading angle for a full 360◦ clockwise turn is depicted in Fig. 3–2.
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Figure 3–2: Heading angle

3.2.1 Maneuverability Quantification Based on Straight Forward Ma-

neuver

The notion of straight forward maneuver (SFM) was first introduced in ship

maneuverability quantification in [6]. It is also the most common maneuver for

aerial vehicles, and is widely used when aerial vehicles fly in a trimmed condition,

avoid obstacles, and leave or arrive at a hangar etc. An example of ALTAV SFM

path is shown in Fig. 3–3 (a), in which the arrow shows the heading direction of the

airship at the starting point O.

The parameters used to quantify SFM include: the terminal time tf for pre-

requested maneuver distance s (Fig. 3–3 (b), or the terminal distance s for pre-

requested terminal time tf ), the deviation L in the lateral direction from the desired

straight path (Fig. 3–4 (a)), the deviation H in vertical direction from the desired

straight path (Fig. 3–4 (b)). A good SFM should have a small tf for a specified s
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Figure 3–3: ALTAV straight forward maneuver with present actuator locations
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Figure 3–4: ALTAV straight forward maneuver with present actuator locations

(or a large s for a specified tf ), and small lateral and vertical deviations during the

whole maneuver.

3.2.2 Maneuverability Quantification Based on Turning Maneuver

Turning maneuver (TM) is considered as one of the most important maneuvers

for any vehicle. The turning maneuverability tests are widely used for ships, aircraft

and airship assessment and in literature on the subject of maneuverability [6,8,47,48].
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The terminal turning angle ψf in TM tests is usually an integer multiple of 90◦. An

example of ALTAV 360◦ clockwise TM path is shown in Fig. 3–5 (a).
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Figure 3–5: ALTAV 360◦ turning maneuver with present actuator locations
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Figure 3–6: ALTAV 360◦ turning maneuver with present actuator locations

The parameters used to quantify TM include: the terminal time tf for desired

turning angle ψf (ψf = 360◦ in Fig. 3–5 (a)), or the terminal turning angle ψf for

desired terminal time tf , the distance R0 from the turning center C to the starting
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point, the average turning radius Rp, and the vertical deviation H . For a ψf = 360◦

turning maneuver, if the turning trajectory is recorded through N spatial points

(xi, yi, zi)i=1,··· ,N , the coordinate of the center point C(xc, yc, zc)(Fig. 3–5 (b)) of the

TM is calculated as xc =
∑i=N

i=1 xi/N , yc =
∑i=N

i=1 yi/N and zc =
∑i=N

i=1 zi/N . The

points P1, P2, P3 and P4 (see Fig. 3–5 (b)) denote locations where the heading an-

gle first achieves 90◦, 180◦, 270◦ and 360◦. Then R0 is defined as R0 =
√

x2c + y2c + z2c

(Fig. 3–5 (b)), andRp is defined asRp =
∑i=N

i=1

√

(xi − xc)2 + (yi − yc)2 + (zi − zc)2/N

(Fig. 3–5 (b)). The deviation H in the vertical direction is the distance between the

maximum and the minimum deviations from the desired turning plane height zd

(Fig. 3–6). A good turning maneuver should have a small tf for a specified ψf (or a

large ψf for a specified tf), small R0, Rp and H during the entire TM.

3.2.3 Maneuverability Quantification Based on Zig-zag Maneuver

The zig-zag maneuver (ZZM) has not been used as a measure of maneuverability

of airships before, but it has been suggested for ship maneuverability tests in [33,34,

45]. An example of ALTAV ZZM path is shown in Fig. 3–7 (a). A typical ZZM can

be approximated by a series of straight forward maneuvers and turning maneuvers,

following one after the other. The zig-zag maneuver test provides a good mechanism

to assess maneuverability of an airship, and the revealed maneuvering characteristics

of an airship can better reflect its maneuverability in real flight than other maneuvers.

The parameters used to quantify ZZM include: the terminal time tf for desired

number of repeated zig-zag cycles Nf (Nf = 5.5 in Fig. 3–7 (b)), or Nf for desired

terminal time tf , the forward maneuver distance s (Fig. 3–7 (b)), the distance d

between the maximum and the minimum deviations in the lateral direction in the
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Figure 3–7: ALTAV zig-zag maneuver with present actuator locations
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Figure 3–8: ALTAV zig-zag maneuver with present actuator locations

horizontal plane (Fig. 3–8 (a)), and the deviation H between the maximum and the

minimum vertical positions (Fig. 3–8 (b)). A good zig-zag maneuver should have

small tf for a specified Nf (or a high Nf for a specified tf ), small s, d and H over

the whole ZZM.
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3.3 Maneuverability Differences for Changing Actuator Locations

One aim of the thesis is to find the optimal actuator placement that can provide

ALTAV the best maneuverability. As mentioned before, ALTAV has four vectorable

thrusters along the equator of X −Y plane. Two of them are located in the forward

part of ALTAV at the same x-coordinate xact1; the other two are located at the rear

of ALTAV at the same x-coordinate xact2. The coordinates of the four actuators are

denoted as (xact1, yact1), (−xact2, yact2), (−xact2,−yact2) and (xact1,−yact1) respective-

ly (xact1 > 0, xact2 > 0, yact1 > 0, yact2 > 0). From Eq. (3.2), it can be seen that

ALTAV acceleration v̇ and angular acceleration ω̇̇ω̇ω are affected by the actuator loca-

tions. Before determining the optimal actuator locations to provide ALTAV the best

maneuverability, we first choose a set of actuator locations and perform a serious of

simulations, so as to get a general view of how ALTAV’s maneuverability is affected

by different actuator locations.

The set of feasible actuator locations is selected as in Fig. 3–9, where the feasible

location has the same distance to the surface of the airship. In particular, eight

locations are selected in the front of ALTAV (from A1 to A4a) and eight locations

are selected at the rear of ALTAV (from A5a to A9) to give a reasonable refinement

of possible actuator locations (distance between the A-stations is ≈ 0.3 − 0.4 m).

For each simulation, a pair of actuators in the front is combined with a pair of

actuators in the rear of ALTAV. Therefore, there are 8 × 8 = 64 actuator location

combinations used to perform the required maneuverability simulations, from which a

basic understanding of how ALTAV’s maneuverability is affected by different actuator

locations and control strategies can be acquired.
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o  Selected Actuator Location   

Figure 3–9: Selected actuator locations

The effect of control law on ALTAV maneuverability is also taken into account

in this thesis, so as to understand whether the optimal actuator locations will vary

due to different control laws. Four groups of maneuver simulations are used in this

thesis to explore how ALTAV’s maneuverability is affected by actuator placement

and control laws:

• ψf = 360◦ turning maneuver based on PID control strategy;

• Zig-zag maneuver based on PID control strategy;

• Straight forward maneuver based on optimal control strategy;

• ψf = 180◦ turning maneuver based on optimal control strategy.

The original prototype of ALTAV is controlled by PID control strategy. Five

separate PID controllers are used to control the forward speed u, the altitude h, and

the three Euler angles φ, θ and ψ. The outputs of the five controllers are the angle
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and magnitude control commands for the four thrusters in the x − z plane of the

body-fixed frame. A detailed description of ALTAV’s PID controllers can be found

in [54]. The PID parameters used in the turning and zig-zag maneuvers are listed in

Table 3–1.

Table 3–1: PID Parameters in the ψf = 360◦ Turning Maneuver and the Zig-zag
Maneuver

u φ θ ψ h
kP 0.75 0.05 0.28 0.25 0.37
kI 0 0.01 0.01 0 0
kD 0 -0.07 -0.22 -0.1 -0.25

The initial conditions for both 360◦ turning and zig-zag maneuvers are the same,

and the desired ud, φd, θd and hd are also the same in both maneuvers, which are

listed in Table 3–2. In order to better explore ALTAV system responses to actuator

control signals, we conduct all simulations with no wind conditions.

Table 3–2: Initial Conditions (IC) and Desired PID Control Values (DPCV) in the
ψf = 360◦ Turning Maneuver and the Zig-zag Maneuver

IC 360◦ TM ZZM DPCV 360◦TM ZZM
v (m/s) [0.5, 0, 0]T [0.5, 0, 0]T ud (m/s) 0.5 0.5
ωωω (deg/s) [0, 0, 0]T [0, 0, 0]T φd (deg) 0 0
[x, y, z]T (m) [0, 0,−10]T [0, 0,−10]T θd (deg) 0 0
[φ, θ, ψ]T (deg) [0, 0, 0]T [0, 0, 0]T ψd (deg) Algorithm 1 Algorithm 2
vw (m/s) [0, 0, 0]T [0, 0, 0]T hd (m) −10 −10
v̇w (m/s2) [0, 0, 0]T [0, 0, 0]T

The optimal control problem in this thesis is solved by using GPOPS, which

is a MATLAB toolbox written for solving multiple-phase optimal control problems.

GPOPS uses open-loop control strategy. In ALTAV optimal maneuver problem,
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GPOPS is supposed to generate the best control strategy based on provided dynamic

system model, cost function, initial conditions, state constraints, and phase links. In

ALTAV maneuver simulations, GPOPS is very powerful in minimizing the provided

cost function. However, GPOPS consumes a lot of computing resources in searching

a solution, and due to its open-loop character, it is difficult to adapt GPOPS to

ALTAV actual flight control. From [55], given a set of P phases, the optimization

problem is formed as follows. The cost function in GPOPS is defined as:

J = ΣP
p=1J

(p)

= ΣP
p=1

[

Φ(p)
(

x(p)(t
(p)
0 ), t

(p)
0 ,x(p)(t

(p)
f ), t

(p)
f ;q(p)

)

+
∫ t

(p)
f

t
(p)
0

L(p)
(
x(p)(t),u(p)(t), t;q(p)

)
dt

]

(3.5)

subject to the dynamic constraint:

ẋ(p) = f (p)
(
x(p),u(p), t;q(p)

)
, (p = 1, · · · , P ) (3.6)

the boundary conditions:

φmin ≤ φ(p)
(

x(p)(t
(p)
0 ), t

(p)
0 ,x(p)(t

(p)
f ), t

(p)
f ;q(p)

)

≤ φmax, (p = 1, · · · , P ) (3.7)

the inequality path constraints:

C(p)
(
x(p)(t),u(p)(t), t;q(p)

)
≤ 0, (p = 1, · · · , P ) (3.8)
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and the phase continuity constraints:

P(p)
(

x(ps
l
)(tf ), t

(ps
l
)

f ,q(ps
l
);x(psu)(t0), t

(psu)
0 ,q(psu)

)

= 0, (pl, pu ∈ [1, · · · , P ], s = 1, · · · , L)

(3.9)

where x(p)(t) ∈ R
np, u(p)(t) ∈ R

mp , q(p) ∈ R
qp and t ∈ R are the state, control,

static parameters and time in phase p ∈ [1, · · · , P ] respectively. L is the num-

ber of phases to be linked, psl ∈ [1, · · · , P ], (s = 1, · · · , L) are ”left” phase num-

bers, and psu ∈ [1, · · · , P ], (s = 1, · · · , L) are the ”right” phase numbers. The de-

tails of the algorithm used to solve the multi-phase optimal control problem can

be found in [7, 19–21, 56]. In ALTAV optimal control problem, x(p)(t) is the state

[u, v, w, p, q, r, ẋ, ẏ, ż, φ̇, θ̇, ψ̇]T , u(p)(t) is the thruster control signals (fT ,nT ), and q(p)

represents the actuator locations (xact1, xact2, yact1, yact2).

The numerical method which GPOPS uses to solve the optimal control problem

falls into the category of hp-Adaptive Pseudospectral Methods, where h denotes

the segment width and p represents the polynomial degree in each segment. In

this hp-Adaptive Pseudospectral Methods, the number of segments, segment widths,

and polynomial degrees vary throughout the time interval of interest.The iterative

procedure for hp-Adaptive Pseudospectral Method used in GPOPS is summarized

as follows [13]:

1. Initialize the specified optimal control problem and choose M collocation points,

where the number M is determined by the user.

2. Solve the nonlinear programming problem (NLP) with the prescribed grid dis-

tribution.
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3. Check for each segment whether the dynamic constraints, path constraints, and

bounds on the state and control are satisfied to the user-defined tolerance ε in

each segment at the midpoints between collocation points. For all segments

not within the prescribed tolerance, continue to step (4) or step (5).

4. For all segments where the scaled midpoint residual vector β is of ‘uniform-type’

increase the number of collocation points in these segments by the user-specified

amount L.

5. For all segments where the scaled midpoint residual vector β is of ‘nonuniform-

type’, break the segments at all prescribed points and set M=5 in each new

segment.

6. After all segments have been updated, return to step (2).

7. Terminate when the dynamic constraints, path constraints, and bounds on the

state and control are satisfied to the tolerance ε in all segments.

3.3.1 PID Control Strategy: ψf = 360◦ Turning Maneuver

In the ψf = 360◦ PID turning maneuver simulations the initial conditions and

the desired PID control values are listed in Table 3–2. In the ψf = 360◦ PID turning

maneuver simulation, the desired ψd is defined by using Algorithm 1, in which ψd

increases from 10 deg to 360 deg in 10 deg increments. Once the yaw angle achieves

360◦, the simulation stops. An example of ψd and ψ time histories is shown in

Fig. 3–10. The simulated motion of the turning maneuver for the actuator location

combination A3A7 is shown in Fig. 3–11. The length of the arrows in the figure is

the same as the length of ALTAV, and the direction of the head of each arrow is the

same as the direction of the head of ALTAV at the corresponding time instant. The
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corresponding control signals and the states are displayed in Fig. 3–12 and Fig. 3–13

respectively.

Algorithm 1: Algorithm used to generate the current desired ψd for the
Turning Maneuver with ψf = 360◦, k starts from k=1;

Require:

Current ψi

Ensure:

Desired ψd

1: Load array ψdes = [10, 20, 30, ..., 350, 360]T deg;
2: If (ψi >= ψdes(k)) k=k+1;
3: ψd = ψdes(k);
4: If (ψi >= ψdes(36)), exit;
5: return ψd.
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Figure 3–10: Time history of ψd and yaw angle ψ for ψf = 360◦ turning maneuver,
case A3A7

The magnitude and the angle limits on ALTAV’s thrusters are [−11, 11] N and

[−90, 90] deg respectively. From Fig. 3–12 (a), we observe that the actuators are

under utilized with the current PID control strategy. Figure 3–13 shows that the

yaw angle ψ(t) increases to 360◦ as required. However, the yaw angular rate remains

nearly constant at r(t) ≈ 9 deg/s over the maneuver, and hence the yaw angle ψ(t)

only increases linearly based on this PID control strategy. Later in Section 3.3.4,
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Figure 3–11: The maneuver path for ψf = 360◦ TM, case A3A7

with the optimal control strategy, we will observe that the yaw angle increases much

faster.

Even under no wind condition, ALTAV is not able to complete the prescribed

turning maneuver with all 64 actuator location combinations, as defined in the be-

ginning of Section 3.3. With some actuator location pairs, the maneuver responses

exhibit large oscillations in the vertical direction, sometimes resulting in divergence.

Table 3–3 summarizes the maneuver times tf for these maneuvers where the height

deviation of the resulting trajectory is below ±1 m for the desired zd and R0 and RP

are below 5 m.

Based on the results in Table 3–3, ALTAV finishes the required ψf = 360◦ TM

with 33 possible actuator location combinations. The shortest simulated turning time

is 39.94 s, attained with actuator locations A2aA6a and A3aA6a; and the longest

turning time is 40.38 s, obtained with actuator location A1A9. Since the differences

in maneuver time are very small, these results show that the actuator placement
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Figure 3–12: Time history of control signals for ψf = 360◦ TM, case A3A7

does not have a significant effect on the speed of the turning maneuver, although a

trend emerges showing that a large separation between front and rear actuators has

an unfavorable effect on maneuverability. Actuator placement combinations of front
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Figure 3–13: Time history of states for ψf = 360◦ TM, case A3A7

Table 3–3: tf (s) for ψf = 360◦ PID Turning Maneuver (vw = 0 m/s, v̇w = 0 m/s2)

Case A1 A1a A2 A2a A3 A3a A4 A4a
A5a 39.95
A6 39.94 39.96 40.01
A6a 39.94 39.95 40.03 39.95
A7 40.16 40.00 40.03 40.16 39.96
A7a 40.15 40.09 40.09 40.12 40.04 39.95
A8 40.23 40.20 40.18 40.14 40.04
A8a 40.32 40.27 40.16 40.12 40.26
A9 40.38 40.30 40.20 40.20

thrusters near the nose and rear thrusters near the airship middle and the inverse of
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these (front near the middle and rear near the stern) produce an unstable response

of the airship which results in failure of the turning maneuver.

3.3.2 PID Control Strategy: Zig-zag Maneuver

The PID parameters, desired PID control values and initial conditions for zig-

zag maneuver are listed in Tables 3–1 and 3–2. In order to perform an evident zig-zag

maneuver, we require not only that the yaw angle achieves a desired value, but also

the heading angle should achieve a specified value. In this zig-zag maneuver, the

desired ψd is defined according to Algorithm 2, in which ΨH,i is the current heading

angle at discrete-time instant ti and ψd is the desired yaw angle. One example of time

histories of ΨH and ψ over 100 seconds for actuator placement case A3A7 is shown in

Fig. 3–14. The time instant t1 is the time instant when ΨH achieves 20 deg, which is

an important parameter used to reflect ZZM response speed under this PID control

strategy. An example of the trajectory for one circle of ZZM based on PID control

is shown in Fig. 3–15. The corresponding control signals and the state responses are

displayed in Fig. 3–16 and Fig. 3–17 respectively.

Algorithm 2: Algorithm used to get current desired ψd for zig-zag maneuver

Require:

Current heading angle ΨH,i and last iteration ΨH,i−1;
Ensure:

Desired ψd

1: If (ΨH,i−1 < 20 deg and ΨH,i >= 20 deg and ψd = 40 deg) ψd = −40 deg;
2: If (ΨH,i−1 > −20 deg and ΨH,i <= −20 deg and ψd = −40 deg) ψd = 40 deg;
3: return ψd.

From Fig. 3–16(a), we can see that the four actuators are under utilized with

current PID control strategy. Figure. 3–17 shows that the yaw angle ψ(t) increases
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Figure 3–15: The maneuver path for one circle of ZZM, case A3A7

and decreases near linearly, and r(t) oscillate around 9.37 deg/s from 3.4 s to 4.4 s

and around −9.04 deg/s from 12 s to 15.6 s. At the end of 4.4 s, ψ(t) changes from

increase to decrease; and at the end of 15.6 s, ψ(t) changes from decrease to increase.

But ψ(t) increases and decreases no more than linear relationship, which does not

change as fast as that introduced under optimal control in Section 3.3.4.

As was the case with the turning maneuver, not all thruster combinations allow

a successful completion of ZZM under PID control. The completion times of the
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Figure 3–16: Time history of control signals for Nf = 1 ZZM, case A3A7

successful maneuvers for which the height deviations are ≤ ±1 m, s < 20 m and

d ≤ 6 m are recorded in Table 3–4. In all, 30 actuator locations produce the required

zig-zag maneuver. From Table 3–4, the shortest zig-zag maneuver time is 22.93 s,

66



0 10 20
−0.4

−0.2

0

0.2

0.4

0.6

time (s)

ve
lo

ci
ty

 (
m

/s
)

 

 

u(t)
v(t)
w(t)

0 10 20
−15

−10

−5

0

5

10

15

time (s)
an

gu
la

r 
ve

lo
ci

ty
 (

de
g/

s)
 

 

p(t)
q(t)
r(t)

0 10 20
−15

−10

−5

0

5

10

15

time (s)

po
si

tio
n 

(m
)

 

 x(t)
y(t)
z(t)

0 10 20
−50

0

50

time (s)

E
ul

er
 a

ng
le

s 
(d

eg
)

 

 φ (t)

θ (t)

ψ (t)

Figure 3–17: Time history of states for Nf = 1 ZZM, case A3A7

obtained for the actuator location case A3aA6; and the longest zig-zag maneuver

time is 27.42 s for the actuator location case A4A6a. Qualitatively, the results for

ZZM in Table 3–4 are very similar to those for TM in Table 3–3; in particular, the

successful ZZMs are also successful TMs.

3.3.3 Optimal Control Strategy: Straight Forward Maneuver

In order to reveal if ALTAV’s maneuverability is affected by the control strategy,

the optimal controller is also implemented for ALTAV maneuver control. We employ
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Table 3–4: tf (s) for Nf = 1 Zig-zag Maneuver (vw = 0 m/s, v̇w = 0 m/s2)

Case A1 A1a A2 A2a A3 A3a A4 A4a
A5a 22.99
A6 22.93 24.79 27.07
A6a 23.17 25.21 27.42
A7 23.18 23.75 25.18 25.72
A7a 22.94 23.11 23.78 25.43 24.92 26.95
A8 23.19 23.30 23.86 26.06 27.29
A8a 23.47 23.72 26.23 26.82
A9 23.70 26.36 26.52 26.52

GPOPS to solve the optimal straight forward maneuver (OSFM) problem for ALTAV

with the final location along the inertial set to X-direction xf = 10 m. Although

it would be desirable to use GPOPS to also find the optimal actuator locations,

GPOPS is not efficient enough to solve such a complex optimal control problem.

Besides, GPOPS failed to find a solution for multiple-phases maneuver of ALTAV,

for example, the maneuver combining the straight forward flight and the turning

maneuver, due to the complexity of ALTAV dynamics model. In these optimal

maneuver simulations, the actuator locations are the same as before (represented by

64 combinations) as introduced in Fig. 3–9 and q is a constant in each case. There

is only one phase in the straight forward optimal maneuver control, so that, p = 1

in Eq. (3.5). The cost function to be minimized is the maneuver time:

J = tf (3.10)

and the dynamic constraints are given by Eq. (3.2). A boundary of the form Eq. (3.7)

cannot be too wide or too narrow. For the straight forward maneuver, we would like

to ensure the lateral and vertical deviations L and H in Fig. 3–4 remain small, and

68



the forward speed u increases in this straight forward maneuver. After tuning the

boundary conditions by trial and error, the boundary conditions used are listed in

Table 3–5. An example of the trajectory for the straight forward maneuver based

on the optimal control strategy is shown in Fig. 3–18. The corresponding control

signals and the state responses are displayed in Fig. 3–19 and Fig. 3–20 respectively.

Table 3–5: Boundary Conditions for xf = 10 m OSFM (vw = 0 m/s, v̇w = 0 m/s)

Boundary Conditions Path Constraints on
x(t0) x(tf ) x(t)

min max
u (m/s) 0.5 free 0.3 free
v (m/s) 0 free −0.1 0.1
w (m/s) 0 free −0.1 0.1
p (deg/s) 0 free −5 5
q (deg/s) 0 free −16 16
r (deg/s) 0 free −5 5
x (m) 0 10 0 10
y (m) 0 free −1 1
z (m) −10 free −11 −9
φ (deg) 0 free −10 10
θ (deg) 0 free −30 30
ψ (deg) 0 free −10 10

From Fig. 3–19, we observe that the four actuators achieve maximum thrust (11N)

based on optimal control, which is expected for an open-loop control strategy to min-

imize time. The changes of the control signals under the optimal control strategy

are milder than those under previous PID control strategy. Later in Chapter 4, we

will show that due to ALTAV system characteristics, the less oscillatory control sig-

nals are better for ALTAV’s maneuverability. From Fig. 3–20, we observe that the
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Figure 3–18: The maneuver path for xf = 10 m OSFM, case A3A7

forward velocity u steadily increases during the maneuver as we wish, and the other

states of the airship satisfy the constraints imposed on them.

As was the case with the PID control strategy, not all of the 64 actuator combi-

nations allow ALTAV to complete a 10 m SFM under the optimal control strategy.

The results for the terminal time tf for the successful 30 actuator locations are

recorded in Table 3–6.

Table 3–6: tf (s) for xf = 10 m Optimal Straight Forward Maneuver (vw = 0 m/s,
v̇w = 0 m/s2)

Case A1 A1a A2 A2a A3 A3a A4 A4a
A5a
A6 3.03 1.98 1.72
A6a 1.75 1.72 1.73
A7 1.81 1.74 1.72 1.72 1.73
A7a 1.76 1.74 1.73 1.72 1.72 1.72
A8 1.73 1.72 1.72 1.72 1.72 1.73
A8a 1.72 1.72 1.72 1.72 1.73
A9 1.72 1.72 1.72 1.73
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Figure 3–19: Time history of control signals for xf = 10 m OSFM, case A3A7

From this table, the shortest optimal straight forward maneuver time is 1.72 s,

attained with 18 actuator location combinations and most other combinations pro-

duce only slightly larger times. The longest and significantly different optimal s-

traight forward maneuver time is 3.03 s for the actuator location case A3aA6. The
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Figure 3–20: Time history of states for xf = 10 m OSFM, case A3A7

straight forward maneuver does produce the desired displacement in the longitudinal

direction. However, due to the coupling between longitudinal and lateral dynamics,

there are non zero motions in the lateral directions in these simulations. Comparing

the state responses from these simulations, it was found that the roll angular rate

p(t) is quite different between these simulations. The longitudinal velocity and roll

angular rate for cases A3aA6, A4A6, A2A7 and A2A8 are plotted in Fig. 3–21. From

this figure, we can see that the roll rate for case A2A8 never reaches its limits as
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defined in Table. 3–5. However, p(t) for case A3aA6 is at the ±5 deg/s limit dur-

ing most of the maneuver. In Chapter 4, further analysis on the effect of actuator

locations on straight forward maneuver will be provided.
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Figure 3–21: Time history of states of xf = 10 m OSFM

Similarly to the previous PID control simulations, the actuator placement does

not have a significant effect on the speed of the open-loop SFM. There are three

plausible reasons for this. First, because the available maximum forward thrust is

not affected by actuator placements for ALTAV. The four actuators in the horizontal

plane of the body frame can provide 44 N available maximum forward force, and

the corresponding maximum forward acceleration is 6.93 m/s2. With 0.5 m/s initial

velocity, and pure rectilinear, it would take ALTAV 1.63 s to finish the SFM; but

existence of lateral and vertical motions prolong ALTAV’s maneuver time. From
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Fig. 3–21, the absolute values of roll angular rate for cases A2A7, A4A6 and A3aA6

are larger than these for case A2A8 during most of the maneuver, and the tf for these

cases are also longer than that for case A2A8. However, the difference in lateral and

vertical motions of different actuator location combinations are not significant for

ALTAV. Therefore, the difference of tf of different cases is not very significant. The

second reason of the similarity of tf in Table. 3–6 is the short 10 m maneuver distance.

For a more realistic travel distance, the absolute difference in terminal maneuver time

will be more significant for different actuator locations. Finally, we note that in order

to clearly demonstrate the effect of actuator placement on ALTAV’s maneuverability,

the wind is not modeled in these simulations. If the wind velocity and acceleration

are non zero, the differences in tf for simulations with different actuator placements

are expected to be more significant from the results in Table 3–6.

3.3.4 Optimal Control Strategy: ψf = 180◦ Turning Maneuver

GPOPS software is also used to solve the optimal turning maneuver (OTM).

Considered GPOPS computational complexity and simulation time, the final yaw

angle ψf is set to 180◦ in this OTM. The cost function and the dynamics constraints

are the same as those used for OSPF in Section 3.3.3. The boundary conditions for

this optimal turning maneuver are listed in Table 3–7.

An example of the trajectory for the optimal turning maneuver based on the

optimal control strategy is shown in Fig. 3–22. Compared to the turning trajectory

for the ψf = 360◦ PID turning maneuver shown in Fig. 3–11, the maneuver obtained

with the optimal control strategy is ”tighter”, i.e. takes up less space in 3D. The

corresponding control signals and the state responses are displayed in Fig. 3–23 and
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Table 3–7: Boundary Conditions for tf of ψf = 180◦ Optimal Turning Maneuver
(vw = 0 m/s, v̇w = 0 m/s)

Boundary Condition Path Constraints on
x(t0) x(tf ) x(t)

min max
u (m/s) 0.5 free 0 2
v (m/s) 0 free −2 2
w (m/s) 0 free −0.1 0.1
p (deg/s) 0 free −5 5
q (deg/s) 0 free −16 16
r (deg/s) 0 free 0 free
x (m) 0 free −0.001 3
y (m) 0 free −0.001 3
z (m) −10 free −11 −9
φ (deg) 0 free −10 10
θ (deg) 0 free −30 20
ψ (deg) 0 180◦ −1 180

Fig. 3–24 respectively. From Fig. 3–23, we can see that during the OTM, the four

actuators achieve maximum thrust (11N) based on optimal control, which provides

larger yaw angular rate r(t) than the PID control in Section 3.3.1. However, the

optimal control generated by GPOPS also has some disadvantages. We observe

that there are several small cusps in Fig. 3–23, which exceed the [−11, 11] N and

[−90◦, 90◦] control constraints.

In Fig. 3–24, the yaw angular rate r(t) increases almost linearly and ψ(t) in-

creases parabolically during most part of the maneuver. However, in PID turning

maneuver in Section 3.3.1, the r(t) oscillates around 9◦ and ψ(t) increases linearly,

which shows that r(t) and ψ(t) increase slower under PID control and therefore PID

control strategy is less efficient in the turning maneuver control. Other states remain

within the limits in Table 3–7. The control signals and the state responses of this
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Figure 3–22: The maneuver path of ψf = 180◦ OTM, case A3A7

OTM are less oscillatory than those of the previous PID turning maneuver, and the

maneuver time is much shorter since the yaw angular rate increases for the whole

OTM procedure. In Chapter 4, we will further explain how these less oscillatory

control signals are particularly better for ALTAV maneuver.

As was the case with previous control strategies, not all of the 64 actuator com-

binations allow ALTAV complete the 180◦ turning maneuver under optimal control

strategy. The completion times for the successful 36 actuator locations are recorded

in Table 3–8. The shortest maneuver time is 1.31 s for the actuator location case

A4aA5a, and the longest maneuver time is 2.14 s, obtained for the actuator location

case A1A9. The terminal turning time tends to increase with the distance between

the forward and backward pairs of actuators.

The coupling effects between longitudinal and lateral motions are more signif-

icant than those in the straight forward maneuver due to lateral turning motion,

resulting in more obvious time differences for the 180◦ turning maneuver than for
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Figure 3–23: Time history of control signals of ψf = 180◦ OTM, case A3A7

the straight forward maneuver with the same optimal control strategy. The respons-

es of the velocity u(t) and the yaw angular rate r(t) for the 180◦ turning maneuver

of cases A1A9, A1aA8, A2aA7a and A4aA5a are plotted in Figure. 3–25.
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Figure 3–24: Time history of states of ψf = 180◦ OTM, case A3A7

Table 3–8: tf (s) of ψf = 180◦ Optimal Turning Maneuver (vw = 0m/s, v̇w = 0 m/s)

Case A1 A1a A2 A2a A3 A3a A4 A4a
A5a 1.34 1.31
A6 1.52 1.36 1.33 1.34
A6a 1.66 1.51 1.41 1.38 1.38
A7 1.85 1.71 1.59 1.50 1.46 1.44
A7a 1.85 1.71 1.61 1.56 1.52 1.50
A8 1.89 1.78 1.69 1.63 1.58
A8a 2.01 1.88 1.78 1.72
A9 2.14 1.99 1.89 1.81

In these two figures, we observe that the shapes of the u(t) curves are very similar

for the four cases, and so is the case for r(t) curves. Besides, we can see that the
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Figure 3–25: Time history of states of ψf = 180◦ OTM

inflexion points of u(t) curves occur at the same times as those of r(t) curves. Looking

at Figure. 3–25(a), we notice that all u(t) responses are initially constant, then

increase, decrease, and approach zero at the end of the optimal turning maneuver.

Combined with Fig. 3–25(b), we observe that u(t) tends to zero when r(t) no longer

increases. From these responses, it is obvious that the higher maneuverability can

be achieved if ALTAV can increase and decrease its forward velocity efficiently.

Generally speaking, the terminal time differences are very significant between

the two control strategies and actuator placements in each group of simulations.

In most situations, the actuator locations that can be used to finish one type of

maneuver can be also used to finish another form of maneuver. There are 28 actuator

placements for which all four maneuvers can be completed. Moreover, the optimal
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actuator locations based on PID control turning are quite similar to those under

optimal control turning. Furthermore, in each kind of maneuver, the time differences

between the best maneuverability and worst maneuverability is not very large. That

said, the time differences for the zig-zag maneuver are larger than those for the

other three maneuvers, which shows that that the more complex the maneuver is,

the effect of actuator placement is more significant. However, the optimal actuator

locations for the straight forward maneuver are slightly different from those for the

turning maneuver, and those suitable for the zig-zag maneuver are located between

the optimal sections for the straight forward turning maneuvers. In Chapter 4, we

will theoretically analyze how to achieve better maneuverability by changing actuator

locations, and try to find the optimal actuator locations suitable for both straight

forward maneuver and turning maneuver.
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CHAPTER 4

ALTAV Optimal Actuator Locations

Based on ALTAV maneuvering tests in Chapter 3, it is obvious that some ac-

tuator locations result in poor maneuverability of ALTAV and should be avoided.

In this chapter, the influence of actuator locations on maneuverability will be ex-

plained. Then based on the understanding of effect of actuator locations on ALTAV

maneuverability, a method used to find the optimal actuator locations is proposed.

In Section 4.1, the direct influence of actuator locations on ALTAV’s dynamics

model is obtained. Then, in Section 4.2, the influence of actuator locations on entries

of ALTAV inverse mass matrix is discussed, and the method used to nullify some

of off diagonal entries are proposed. In Section 4.3, the effect of actuator locations

on straight forward maneuver and turning maneuver is explained through both the

maximum available control forces and moments, and also through the maximum

available accelerations and angular accelerations. After that, in Section 4.4, the

optimal actuator location cost function is proposed, and the optimal actuator location

for equal maneuverability in longitudinal direction and lateral direction is provided.

4.1 Model Analysis

The ALTAV dynamics model is further analyzed in this chapter, in particular

the terms which are the actuator locations dependent on. Denoting the summations

of all forces and moments on the right hand side of Eq. (3.2) as f̄ and n̄ respectively,
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Eq. (3.2) is simplified to:






υ̇̇υ̇υ

ω̇̇ω̇ω




 =






Ma −mr×CG

mr×CG Ja






−1

︸ ︷︷ ︸

M̄
−1
a






f̄

n̄




 =






mI+Am −mr×CG

mr×CG J+AJ






−1

︸ ︷︷ ︸

M̄
−1
a






f̄

n̄






(4.1)

in which rCG is equal to [xCG, 0, zCG]
T , J is the inertia tensor, and Am and AJ are

the added mass and added inertia tensors respectively. When ALTAV’s actuator

locations q = (xact1, yact1, xact2, yact2) change, the M̄−1
a , f̄ and n̄ will change, as does

ALTAV’s maneuverability. In order to better understand how changing actuator lo-

cations affect ALTAV’s maneuverability, we will classify and analyze the components

of M̄a into two groups: those that are constant and those dependent on actuator

locations.

We observe that the apparent mass Ma only depends on the mass of the physical

structure, the mass of lifting gas and the added mass. By the same token, since the

added mass matrix AJ due to the air displaced by the airship is only a function of

the mass of the displaced air and the geometry of the gas envelope, the added mass

matrix AJ is also not affected by the actuator locations. Therefore, the following

mass and inertial terms are constant in Eqs. (3.2, 4.1): Ma, MDa and AJ , where

Ma = mI + Am, MDa = mDI + Am and mD is the mass of air displaced by the

airship.

When the ALTAV actuator locations (xact1, yact1, xact2, yact2) change, the vector

rCG of the center of gravity and the inertia tensor Ja change as a result: (xCG) → rCG,

(J) → Ja. The changes of these terms not only directly affect the mass matrix M̄a,
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but also the force f̄ and moment n̄ on the right hand side of Eq. (4.1), thus further

affecting ALTAV’s maneuverability.

4.2 Inverse Mass Matrix M̄−1
a Analysis

The inverse matrix of M̄−1
a , most importantly the six diagonal entries mii of

M̄−1
a , can be considered to amplify f̄ and n̄ on the right hand side of Eq. (4.1).

For example, for the given f̄ and n̄, if the corresponding diagonal entries in M̄−1
a

increase due to changes in actuator locations, the corresponding accelerations and

angular accelerations on the left hand side of Eq. (4.1) increase as a result. Then,

the maneuverability in the corresponding directions increase. However, the increase

in off-diagonal entries in M̄−1
a due to actuator locations can result in stronger cou-

pling effects in ALTAV maneuvering, which decreases the maneuverability in most

situations. For example, for the same (nz)n̄ (the component of n̄ in z-direction in

body-fixed frame), if m66 of M̄−1
a increases as a result of a change in actuator loca-

tions, than the corresponding yaw angular acceleration ṙ(t) increases, and so does

turning maneuverability. However, if m26 and m46 increase due to changing actuator

locations, than for the same (nz)n̄, the sway acceleration v̇(t) and the roll angular

acceleration ṗ(t) increase because of the coupling effect. If the aim of ALTAV is to

achieve immediate turning, then the additional maneuvering in sway and roll direc-

tions can increase the turning time since more control force and moments need to be

used to counter balance maneuvering in these two directions.

In this section, we explore the effects of actuator locations on the entries mij

of the inverse mass matrix M̄−1
a in Eq. (4.1), and based on these we optimize the

inverse mass matrix M̄−1
a through changing actuator locations to reduce some of the
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coupling off diagonal entries of M̄−1
a to zero. In order to better understand the effect

of actuator locations on M̄−1
a , we develop the entries of M̄−1

a in symbolic form. Since

M̄a is a symmetric matrix, M̄−1
a of a finless airship can be expressed as:






Ma −mr×CG

mr×CG Ja
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=
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
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
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














(4.2)

whereMa = diag([ma11, ma22, ma22]), −mr×CG = [−b23, 0,−b12]× and Ja = diag([ja11, ja22, ja33]).

In addition, for ALTAV, ma11 = 6.9852, ma22 = 11.0376, b12 = mzCG = 0.7393,

b23 = mxCG = 0.1135 + 1.4xact1 + 1.4xact2, and

ja11 = jap11 + Jy = 0.3265 + 1.4(y2act1 + y2act2),

ja22 = jap22 + Jx = 7.6293 + 1.4(x2act1 + x2act2),

ja33 = jap33 + (Jy + Jx) = 5.9558 + 1.4(x2act1 + x2act2 + y2act1 + y2act2).

japii is the inertial tensor of the added mass and the physical structure except for

actuator parts. Therefore, the entries of M̄−1
a can be expressed as functions of

(maii, bij , jaii), which further equals to function of (xacti, yacti). From Fig. 3–9, the

(xacti, yacti) is along a strip with a certain distance to the equator of ALTAV, and

the corresponding yacti can be derived by the polynomial of the strip once xacti is

determined.
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4.2.1 M̄−1
a With Non-Zero xCG

As mentioned before, mii in M̄−1
a can be considered to amplify the forces and

moments, and mij,i 6=j is the coupling effect between different acceleration directions

on the right hand side of Eq. (4.1). Let us denote the components of f̄ as (fx)f̄ ,

(fy)f̄ and (fz)f̄ ; and the components of n̄ as (nx)f̄ , (ny)f̄ and (nz)f̄ . Therefore, in the

longitudinal direction, the diagonal entries m11, m33 and m55 are the amplifiers from

(fx)f̄ to u̇, from (fz)f̄ to ẇ and from (ny)n̄ to q̇ respectively, and the off diagonal

entries m13, m15 and m35 are the coupling effects from (fz)f̄ ||(fx)f̄ to u̇||ẇ, from

(ny)f̄ ||(fx)f̄ to u̇||q̇ and from (ny)f̄ ||(fz)f̄ to ẇ||q̇ respectively. Themii are the principle

longitudinal maneuvering entries in M̄−1
a ; the m13 is the coupling between the surge

and the heave; the m15 and m35 are the couplings between translation and rotation.

The longitudinal diagonal entries mii are expressed in in terms of maii, bij and jaii

as:

(fx)f̄ → u̇ : m11 = − −b223 + ja22ma22

ma22b212 +ma11b223 − ja22ma11ma22

(4.3)

(fz)f̄ → ẇ : m33 = − −b212 + ja22ma11

ma22b
2
12 +ma11b

2
23 − ja22ma11ma22

(4.4)

(ny)n̄ → q̇ : m55 = − ma11ma22

ma22b212 +ma11b223 − ja22ma11ma22
(4.5)

and the off diagonal entries mij,i 6=j are:

(fz)f̄ → u̇||(fx)f̄ → ẇ : m13 =
b12b23

ma22b212 +ma11b223 − ja22ma11ma22
(4.6)

(ny)n̄ → u̇||(fx)f̄ → q̇ : m15 =
b12ma22

ma22b212 +ma11b223 − ja22ma11ma22
(4.7)
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(ny)n̄ → ẇ||(fz)f̄ → q̇ : m35 = − b23ma11

ma22b
2
12 +ma11b

2
23 − ja22ma11ma22

(4.8)

In the lateral direction, the diagonal entries m22, m44 and m66 are the ampli-

fiers from (fy)f̄ to v̇, from (nx)n̄ to ṗ and from (nz)n̄ to ṙ respectively, and the off

diagonal entries m24, m26 and m46 are the coupling effects from (nx)n̄||(fy)f̄ to v̇||ṗ,

from (nz)n̄||(fy)f̄ to v̇||ṙ and from (nz)n̄||(nx)n̄ to ṗ||ṙ respectively. The mii are the

principle lateral maneuvering entries in M−1
a ; the m24 and m26 are the couplings

between translation and rotation; the m46 is the coupling between the yaw and the

roll. The lateral diagonal entries mii are expressed in terms of maii, bij and jaii as:

(fy)f̄ → v̇ : m22 = − ja11ja33
ja33b212 + ja11b223 − ja11ja33ma22

(4.9)

(nx)n̄ → ṗ : m44 = − −b223 + ja33ma22

ja33b212 + ja11b223 − ja11ja33ma22

(4.10)

(nz)n̄ → ṙ : m66 = − −b212 + ja11ma22

ja33b
2
12 + ja11b

2
23 − ja11ja33ma22

(4.11)

and the coupling mass entries mij,i 6=j are:

(nx)n̄ → v̇||(fy)f̄ → ṗ : m24 = − b12ja33
ja33b

2
12 + ja11b

2
23 − ja11ja33ma22

(4.12)

(nz)n̄ → v̇||(fy)f̄ → ṙ : m26 =
b23ja11

ja33b
2
12 + ja11b

2
23 − ja11ja33ma22

(4.13)

(nz)n̄ → ṗ||(nx)n̄ → ṙ : m46 =
b12b23

ja33b212 + ja11b223 − ja11ja33ma22
(4.14)
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The numerical values of mij for the 64 actuator location combinations in Fig. 3–

9 are calculate based on Eqs. (4.3-4.14), and the maximum and the minimum values,

and the discrepancy between these two for each mij are listed in Table 4–11 .

Table 4–1: Discrepancies Of maxmij And minmij At All Available Actuator Loca-
tions

mij Multiplied by max(mij)−min(mij)
m11 Fx → u̇ max(m11)4a,5a −min(m11)1,9 = 0.1446− 0.1437 = 0.0009
m33 Fz → ẇ max(m33)1,5a −min(m33)∗ = 0.0949− 0.0906 = 0.0043
m55 My → q̇ max(m55)1,9 −min(m55)4a,5a = 0.1291− 0.0498 = 0.0793
m13 Fz → u̇||Fx → ẇ max(m13)4a,9 −min(m13)1,5a = 0.0018− (−0.0019) = 0.0037
m15 My → u̇||Fx → q̇ max(m15)1,9 −min(m15)4a,5a = −0.0053− (−0.0137) = 0.0084
m35 My → ẇ||Fz → q̇ max(m35)1,5a −min(m35)4a,9 = 0.0182− (−0.0172) = 0.0354
m22 Fy → v̇ max(m22)1,5a −min(m22)4a,5a = 0.0967− 0.0919 = 0.0048
m44 Mx → ṗ max(m44)1,9 −min(m44)4a,5a = 0.6819− 0.2847 = 0.3972
m66 Mz → ṙ max(m66)4a,5a −min(m66)1,9 = 0.1065− 0.0508 = 0.0553
m24 Mx → v̇||Fy → ṗ max(m24)1,9 −min(m24)4a,5a = 0.0457− 0.0191 = 0.0266
m26 Mz → v̇||Fy → ṙ max(m26)1,5a −min(m26)4a,9 = 0.0167− (−0.0178) = 0.0345
m46 Mz → ṗ||Mx → ṙ max(m46)4a,9 −min(m46)1,5a = 0.0048− (−0.0053) = 0.0101

Three entries in Table 4–1 need to be discussed here. From Table 4–1, we ob-

serve that the entry m44, which relates to roll motion, has the largest maximum

value, the largest minimum value, and the largest discrepancy value among the 12

entries. This implies that ALTAV is most sensitive in the roll direction maneuver-

ing, and the actuator locations have an obvious effect on m44. Compared to m44,

the entry m11, which relates to straight forward maneuver, displays very different

1 The subscript on max(mij) and min(mij) represents the actuator location combi-
nations, and the additional subscript ∗ signifies that there are more than one actuator
location combination fit for this situation.
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characteristics. m11 has the second largest maximum value and the second largest

minimum value. However, the discrepancy between the maximum and the minimum

is the smallest among the 12 entries. This shows that ALTAV is highly maneu-

verable in the straight forward direction, and that changing actuator locations has

little influence on maneuverability in this direction. Another very important entry is

m66, which relates to the turning maneuver. Compared with all the other diagonal

entries, the maximum and the minimum value of m66 is not so large. However, the

discrepancy between the maximum and the minimum ranks in the third position.

This means that changing actuator locations can significantly increase or decrease

ALTAV’s turning maneuverability.

4.2.2 M̄−1
a With Zero xCG

From Table 4–1, we observe that there are six non zero coupling entries inM−1
a of

ALTAV, m13, m15, m35, m24, m26 and m46. In most situations, the coupling between

different maneuvering directions can decrease the maneuvering efficiency and make

the control of ALTAV more complicated. Therefore, it is desirable to reduce these

coupling entries to zero through the available technology in design process. An

example of M−1
a matrix for Skyship-500 is:

M−1
a =



















0.2071 −0.0075

0.8212 0.1260

0.1683

0.1260 0.0243

−0.0075 0.0014

0.0015



















× 10−3 (4.15)
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and we observe that the entries m13, m35, m26 and m46 are equal to zero in this

inverse mass matrix. Further looking at Eqs. (4.6, 4.8, 4.13 and 4.14), we find that

the numerators of these entries for ALTAV are multiplicative in b23 = mxCG =

0.1135 + 1.4xact1 + 1.4xact2 as mentioned before. This implies that we can make the

m13, m35, m26 and m46 entries for ALTAV equal zero by adjusting actuator locations

and making xCG (b23) equal to zero, thus decreasing the coupling between different

maneuvering directions. When xCG equals to zero, Eqs. (4.3-4.14) reduce to the

following. In the longitudinal direction:

(fx)f̄ → u̇ : m11 =− ja22ma22

ma22b212 − ja22ma11ma22
=

ja22
−b212 + ja22ma11

(fz)f̄ → ẇ : m33 =
−b212 + ja22ma11

(−b212 + ja22ma11)ma22

=
1

ma22

(ny)n̄ → q̇ : m55 =− ma11ma22

ma22b
2
12 − ja22ma11ma22

=
ma11

−b212 + ja22ma11

(4.16)

and the off diagonal entries are:

(fz)f̄ → u̇||Fx → ẇ : m13 =0

(ny)n̄ → u̇||Fx → q̇ : m15 =
b12ma22

ma22b212 − ja22ma11ma22
=

b12
b212 − ja22ma11

(ny)n̄ → ẇ||Fz → q̇ : m35 =0

(4.17)
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In the lateral direction, the diagonal entries of M̄−1
a become:

(fy)f̄ → v̇ : m22 =− ja11ja33
ja33b212 − ja11ja33ma22

=
ja11

−b212 + ja11ma22

(nx)n̄ → ṗ : m44 =− ja33ma22

ja33b
2
12 − ja11ja33ma22

=
ma22

−b212 + ja11ma22

(nz)n̄ → ṙ : m66 =
−b212 + ja11ma22

(−b212 + ja11ma22)ja33
=

1

ja33

(4.18)

and the off diagonal entries are:

(nx)n̄ → v̇||Fy → ṗ : m24 =− b12ja33
ja33b212 − ja11ja33ma22

=
b12

−b212 + ja11ma22

(nz)n̄ → v̇||Fy → ṙ : m26 =0

(nz)n̄ → ṗ||Mx → ṙ : m46 =0

(4.19)

Recalculating mij of ALTAV when xCG equals to zero, the resulting maximum

and minimum values, and the discrepancy between them for each mij are included

in Table 4–22 .

From Table 4–2, we observe that the entries m13, m35, m26 and m46 in M−1
a of

ALTAV have been reduced to zero as expected. On addition, m33 also reduces to

zero when xCG = 0, which means that changing actuator locations has no influence

on m33 for xCG = 0.

2 The subscript on max(mij) and min(mij) represents the value xact1 of the x-
coordinate of the actuator location combination, and the corresponding xact2 is gen-
erated according to xCG = 0; and the yact1 and yact2 can be generated by the poly-
nomial of the strip in Fig. 3–9.
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Table 4–2: Discrepancies Of maxmij And minmij At Actuator Locations with xCG =
0

mij Multiplied by max(mij)−min(mij)
m11 Fx → u̇ max(m11)4a −min(m11)1 = 0.1446− 0.1437 = 0.0009
m33 Fz → ẇ max(m33)∗ −min(m33)∗ = 0.0906− 0.0906 = 0
m55 My → q̇ max(m55)4a −min(m55)1 = 0.1282− 0.0509 = 0.0773
m13 Fz → u̇||Fx → ẇ max(m13)−min(m13) = 0
m15 My → u̇||Fx → q̇ max(m15)4a −min(m15)1 = −0.0054− (−0.0136) = 0.0082
m35 My → ẇ||Fz → q̇ max(m35)−min(m35) = 0
m22 Fy → v̇ max(m22)1 −min(m22)4a = 0.0935− 0.0919 = 0.0017
m44 Mx → ṗ max(m44)1 −min(m44)4a = 0.6572− 0.2850 = 0.3722
m66 Mz → ṙ max(m66)4a −min(m66)1 = 0.1060− 0.0519 = 0.0541
m24 Mx → v̇||Fy → ṗ max(m24)1 −min(m24)4a = 0.0440− 0.0191 = 0.0249
m26 Mz → v̇||Fy → ṙ max(m26)−min(m26) = 0
m46 Mz → ṗ||Mx → ṙ max(m46)−min(m46) = 0

Comparing Table 4–2 with Table 4–1, we observe that the maximum m11 (case

A4aA5) and minimum m11 (case A1A9) and the discrepancy between them do not

change, which implies that the highest maneuverability in straight forward maneu-

vering direction in Table 4–2 is the same as in Table 4–1, and changing actuator

locations with xCG = 0 does not decrease the possibility for ALTAV to achieve it-

s highest maneuverability in straight forward flight. The discrepancy between the

maximum and minimum m66 in Table 4–2 decreases slightly compared to that in

Table 4–1. However, the influence on ṙ is not obvious when xCG turns to zero, un-

less the |nz|n̄ is larger than 1000 Nm (0.0553 of max(m66)−min(m66) in Table 4–1,

0.0541 of max(m66) − min(m66) in Table 4–2, and 0.0553-0.0541=0.0012), which is

hard to be realized by ALTAV actuators. Therefore, xCG does not affect turning

maneuverability significantly.
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4.3 Effects of ALTAVActuator Locations on Straight Forward Maneuver

and Turning Maneuver

In Section 3.3.3, we observed that both the maximum straight forward velocity

u(t) and the roll angular rate p(t) affected the optimal straight forward maneuvering

time, and both the maximum yaw angular rate r(t) and the straight forward velocity

u(t) affected the optimal turning maneuvering time. In this section, we explain

the effect of ALTAV actuator locations on straight forward maneuver through the

analysis of the maximum available straight forward control force max(|fx|fT ) on the

straight forward acceleration u̇(t), and the maximum available roll control moment

max(|nx|nT
) on the roll angular acceleration ṗ(t). We also explain the effect on

turning maneuver through the analysis on the maximum available turning control

moment max(|nz|nT
) on the maximum available turning angular acceleration ṙ(t),

and the maximum available straight forward control force max(|fx|fT ) on straight

forward acceleration u̇(t).

Based on the results in Tables 3–3, 3–4, 3–6 and 3–8, different maneuver mis-

sions have different optimal actuator locations. Therefore, in order to understand

the cause of these differences, the forms of actuator control force fT and moment nT

are expanded in this section. Then, the effect on (|fx|fT , |fy|fT , |fz|fT ) (the compo-

nents of fT in three directions in body-fixed coordinate) and (|nx|nT
, |ny|nT

, |nz|nT
)

(the components of fT in three directions in body-fixed coordinate) due to changing

actuator locations are analyzed. The actuators used for ALTAV are the vectorable

thrusters. The control signals of each actuator include the thruster magnitude Ti

and orientation θi, as illustrated in Fig. 4–1.
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(a) Vectored thruster on ALTAV

iT

i 

(b) Control signals for each actuator

Figure 4–1: Thruster structure and control signals of each actuator of ALTAV [54]

Based on the actuator location definition in Section 3.3, the control force and

moment are derived as:

fT =









T1sθ1 + T2sθ2 + T3sθ3 + T4sθ4

0

−T1cθ1 − T2cθ2 − T3cθ3 − T4cθ4









(4.20)

nT =









yact2(T3cθ3 − T2cθ2) + yact1(T4cθ4 − T1cθ1)

xact1(T1cθ1 + T4cθ4)− xact2(T2cθ2 + T3cθ3)

yact2(T3sθ3 − T2sθ2) + yact1(T4sθ4 − T1sθ1)









(4.21)

in which Ti ∈ [−11, 11] N and θi ∈ [−90, 90] deg.

4.3.1 Available Maximum Straight Forward Acceleration and Effect On

Straight Forward Maneuver

In order to perform the straight forward maneuver as quickly as possible, the

forward acceleration u̇ should be maximum, which requires T1 = T2 = T3 = T4 =

11 N and θ1 = θ2 = θ3 = θ4 = 90 deg. Then, sθ1 = sθ2 = sθ3 = sθ4 = 1, cθ1 = cθ2 =

93



cθ3 = cθ4 = 0, and:

fT =









11× 4

0

0









N, nT =









0

0

0









Nm (4.22)

which shows that the maximum forward control force max(|fx|fT ) is a constant no

matter what xacti and yacti are. Therefore, changing actuator locations does not

affect the feasible maximum forward control force max(|fx|fT ). From Fig. 3–19 in

Chapter 3, we observe that the maximum magnitude thrust of each actuator is

11 N, and these values are maintained for most of the maneuver. As well, the

maximum angle of each actuators is 90◦. We consider here, in Fig. 4–2 the actuator

thrusters and angles of case A3aA6, the one with the longest optimal straight forward

maneuver time.

From Fig. 4–2, we observe that the maximum thrust of 11 N and 90◦ thruster

angles are achieved for this test case as well, which means even case A3aA6, the

one with longest maneuver time, can achieve the maximum straight forward control

force max(|fx|fT ) during the maneuver, which further proves that actuator locations

do not affect the feasible maximum forward control force max(|fx|fT ). Since the first

diagonal entry m11 of the inverse mass matrix M−1
a is different for these 64 actu-

ator location combinations, the maximum available straight forward accelerations

max(u̇(t)) due to the available maximum forward control force max(|fx|fT ) will be

slightly different from one another in these 64 cases. We calculate the available max-

imum straight forward control force max(|fx|fT ), the first diagonal entry m11 of the

inverse mass matrix M−1
a , the available maximum straight forward acceleration u̇(t),
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Figure 4–2: Time history of control signals of xf = 10 m OSFM, case A3aA6

the straight forward maneuver time (tf)OSFM for cases A3aA6, A2A7 and A2A8,

and list them in Table 4–3. From Table 4–3, we can see that even case A3aA6 has

the maximum available straight forward acceleration, it still finishes the OSFM in
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the longest maneuver time. This means that there are still other factors existing and

affecting the terminal time of the OSFM.

Table 4–3: The Comparison of Maximum Available Straight Forward Acceleration
max(u̇(t)) and The Terminal Maneuver Time (tf)OSFM of Optimal Straight Forward
Maneuver, case A3aA6, A2A7 and A2A8

case A3aA6 case A2A7 case A2A8
max(|fx|fT ) (N) 44 44 44
(m11)M−1

a
0.1444 0.1441 0.1439

maximum available straight
forward acceleration max(u̇(t)) (m/s2) 6.3536 6.3404 6.3316
(tf )OSFM (s) 3.03 1.81 1.72

From Fig. 3–21 in Chapter 3, we observed that the roll angular rates are quite

different between cases A3aA6 and A2A8. We further calculate and list the maxi-

mum available roll control moments max(|nx|nT
), the fourth diagonal entry m44 of

the inverse mass matrix M−1
a , the resulting maximum available roll angular acceler-

ation ṗ(t) and the straight forward maneuver time (tf)OSFM for cases A3aA6, A2A7

and A2A8 in Table 4–4. From Table 4–4, we observe that the maximum available

roll angular acceleration ṗ(t) has a significant effect on the optimal straight forward

terminal maneuver time. Changing actuator locations to obtain high roll controlla-

bility, max(|nx|nT
) and high roll angular acceleration ṗ(t) is correlated with a shorter

straight forward maneuver time.

4.3.2 Available Maximum Turning Angular Acceleration and The Effect

On Turning Maneuver

On the other hand, in order to perform a clockwise turning maneuver as quickly

as possible, the angular acceleration ṙ(t) should be maximum, which requires T1 =

T2 = T3 = T4 = 11 N, θ1 = θ2 = −90 deg, θ3 = θ4 = 90 deg (θ1 = θ2 = 90 deg,
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Table 4–4: The Comparison of Maximum Available Roll Angular Acceleration ṗ(t)
and The Terminal Maneuver Time (tf )OSFM of Optimal Straight Forward Maneuver,
case A3aA6, A2A7 and A2A8

case A3aA6 case A2A7 case A2A8
max(|nx|nT

) (Nm) 46.3210 40.7418 37.8224
(m44)M−1

a
0.2966 0.3738 0.4270

maximum available roll
angular acceleration ṗ(t) (deg/s2) 13.7388 15.2293 16.1502
(tf)OSFM (s) 3.03 1.81 1.72

θ3 = θ4 = −90 deg for counterclockwise turning maneuver). Then, sθ1 = sθ2 = −1,

sθ3 = sθ4 = 1, cθ1 = cθ2 = cθ3 = cθ4 = 0, and:

fT =









0

0

0









N, nT =









0

0

22(yact1 + yact2)









Nm (4.23)

which shows that for the clockwise turning maneuver, maximizing the (yact1 + yact2)

is important for ALTAV to achieve maximum turning moments max(|nz|nT
) and

minimum turning time (tf)OTM . As per Fig. 3–9, the case A4aA5a location provides

the maximum (yact1 + yact2), and tf in Table 3–8 supports this claim. In order to

further prove that case A4aA5a can achieve the maximum yaw angular acceleration

max(ṙ(t)), the maximum available turning moment max(|nz|nT
), the sixth entry m66

of M−1
a , the maximum available yaw angular acceleration max(ṙ(t)) and the optimal

turning maneuver time (tf )OTM for cases A1A9, A2aA7a and A4aA5a are calculated

and listed in Table. 4–5.
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Table 4–5: The Comparison of Maximum Available Yaw Angular Acceleration ṙ(t)
and The Terminal Maneuver Time (tf)OTM of Optimal Turning Maneuver, case case
A1A9, A2aA7a and A4aA5a

case A1a9 case A2aA7a case A4aA5a
max(|nz|nT

) (Nm) 28.7210 41.1950 47.3616
(m66)M−1

a
0.0508 0.0752 0.1065

maximum available yaw
angular acceleration ṙ(t) (deg/s2) 1.459 3.0979 5.0440
(tf)OSFM (s) 2.14 1.56 1.31

From Table. 4–5, we can see that the actuator location combination case A4aA5a

has the maximum available turning moment max(|nz|nT
), the maximum sixth entry

m66 of M−1
a , the maximum available yaw angular acceleration max(ṙ(t)) and the

shortest optimal turning maneuver time (tf)OTM . In Section 3.3.4, we observe that

the straight forward acceleration u̇(t) directly affects the turning maneuverability.

In order to further analyze the effect of maximum available straight forward force

max(|fx|fT ) on the terminal turning time, we calculate the available maximum s-

traight forward control force max(|fx|fT ), the first diagonal entry m11 of the inverse

mass matrix M−1
a , the available maximum straight forward acceleration u̇(t), the

straight forward maneuver time (tf )OSFM case A1A9, A2aA7a and A4aA5a, and list

them in Table 4–6. The case A4aA5a has the highest straight forward maneuverabil-

ity, and the higher straight forward acceleration that can help with shortening the

optimal turning maneuver time.

4.4 Optimal Actuator Placement Cost Function

In Section 4.2, we analyzed the effect of actuator location on entries mij of

the inverse mass matrix M̄−1
a , and found out that by changing actuator locations to

satisfy xCG = 0, we can nullify eight, four off diagonal entries of M̄−1
a . Therefore, the
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Table 4–6: The Comparison of Maximum Available Straight Forward Acceleration
max(u̇(t)) and The Terminal Maneuver Time (tf )OTM of Optimal Turning Maneuver,
case case A1A9, A2aA7a and A4aA5a

case A1a9 case A2aA7a case A4aA5a
max(|fx|fT ) (N) 44 44 44
(m11)M−1

a
0.1437 0.1441 0.1446

maximum available straight
forward acceleration max(u̇(t)) (m/s2) 6.3228 6.3404 6.3624
(tf )OSFM (s) 2.14 1.56 1.31

coupling effect between the different maneuver directions can be greatly decreased.

In Section 4.3, we demonstrated how by changing actuator locations and choosing the

proper mij of M̄−1
a can help ALTAV improve straight forward maneuverability and

turning maneuverability. In this section, we focus on finding the optimal actuator

locations through systematically adjusting the effects of actuator locations on mij of

M̄−1
a under the condition xCG = 0.

In order to achieve best maneuverability in both the straight forward and turning

maneuvers, we need to maximize some of the entries mij , and minimize others. First,

to achieve highest controllability in roll direction and shorten airship straight forward

maneuver time, one can minimize m44 according to Table 4–4. Second, it is better

to maximize m11 and m66 so as to maximize the turning maneuverability in yaw

direction. On addition, the pitching maneuverability is also important for an airship,

and therefore maximizing m55 is also required. Second, the absolute values of the

coupling terms |m15| and |m24| should be minimized. In addition, in order to decrease

the sensitivity in the sway direction, in which no control forces can be generated by

ALTAV actuators,the m22 entry needs to be minimized. Therefore, all mij terms can

be cataloged into three groups:
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• mij to be maximized: m11, m55, and m66.

• mij to be minimized: m15, m22, m44, and m24.

• mij to be set to zero: m33, m13, m35, m26, and m46.

Based on above analysis, the cost function for optimal actuator locations can be

formulated as:

Jact = min
x̂CG=0

Fact(xact1, xact2, yact1, yact2) (4.24)

in which

Fact = k1
1

m11
+ k2

1

m55
+ k3|m15|

︸ ︷︷ ︸

longitudinal

+ k4
1

m66
+ k5m22 + k6m44 + k7|m24|

︸ ︷︷ ︸

lateral

(4.25)

where ki are the optimal coefficients in the required direction and
∑7

i=1 ki = 1.

Since yacti depends on xacti and the sum of xact1 and xact2 is a constant (x̂CG =

0.113472 + 1.4(xact1 + xact2) = b23 = 0), xact2 and yacti are functions of xact1, and

furthermore, 1/mii and mij can be considered as functions of xact1. Technically

speaking, the weights ki are determined by the requirements of the mission. For in-

stance,if the maneuver mission emphasizes turning maneuverability, k4 should be set

to a relatively large value. When actuator locations (xact1, yact1, xact2, yact2) change,

the terms 1/mii and mij change in different scales and speeds. Although ki are de-

termined by the mission requirements, the changing scales and speeds of 1/mii and

mij should be considered also. Therefore, the changes of 1/mii and mij with increase

of xact1 are plotted in Fig. 4–3.

From Fig. 4–3, except for |m15|, the terms 1/mii and mij obey a positive re-

lationship with the increase of xact1. Large |m15| value can increase the coupling
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Figure 4–3: The changes of individual items in Fact with increase of xact1

effect between straight forward direction and pitch direction, and decrease ALTAV

straight maneuver and turning maneuver times. Therefore, the coefficient k3 of |m15|

should be carefully chosen. Because the scales of 1/mii and mij in Fig. 4–3 are very

different. We rescale the terms in the function between one and two in Fig. 4–4 and

Eq. (4.25) is reformulated to Eq. (4.26).

F̃act =k1

[
1/m11 −min(1/m11)

max(1/m11)−min(1/m11)
+ 1

]

+ k2

[
1/m55 −min(1/m55)

max(1/m55)−min(1/m55)
+ 1

]

+

k3

[ |m15| −min(|m15|)
max(|m15|)−min(|m15|)

+ 1

]

+ k4

[
1/m66 −min(1/m66)

max(1/m66)−min(1/m66)
+ 1

]

+

k5

[
m22 −min(m22)

max(m22)−min(m22)
+ 1

]

+ k6

[
m44 −min(m44)

max(m44)−min(m44)
+ 1

]

+

k7

[ |m24| −min(|m24|)
max(|m24|)−min(|m24|)

+ 1

]

(4.26)

Considering an equal weighting for all terms in Eq. (4.26), i.e., k1 = k2 = k3 =

k4 = k5 = k6 = k7 = 1/7, the resulting value of F̃act is plotted in Fig. 4–5 and
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Figure 4–4: The changes of individual items in F̃act with increase of xact1

the corresponding optimal actuator locations are shown in Fig. 4–6. This actuator

placement is fit for the OTM but not for the OSFM.
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Figure 4–5: F̃act with k1 = k2 = k3 = k4 = k5 = k6 = k7 = 1/7
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Figure 4–6: Optimal actuator locations of F̃act with k1 = k2 = k3 = k4 = k5 = k6 =
k7 = 1/7

In order to further analyze the roles of the terms in Eq. (4.26), they are grouped

into those related to the longitudinal direction and those related to the lateral direc-

tion as in Eq. (4.27) and Eq. (4.28) respectively:

FLon =k1

[
1/m11 −min(1/m11)

max(1/m11)−min(1/m11)
+ 1

]

+ k2

[
1/m55 −min(1/m55)

max(1/m55)−min(1/m55)
+ 1

]

+

k3

[ |m15| −min(|m15|)
max(|m15|)−min(|m15|)

+ 1

] (4.27)

FLat =k4

[
1/m66 −min(1/m66)

max(1/m66)−min(1/m66)
+ 1

]

+ k5

[
m22 −min(m22)

max(m22)−min(m22)
+ 1

]

+

k6

[
m44 −min(m44)

max(m44)−min(m44)
+ 1

]

+ k7

[ |m24| −min(|m24|)
max(|m24|)−min(|m24|)

+ 1

] (4.28)
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in which
∑3

i=1 ki = 1 and
∑7

i=4 ki = 1. Then, F̃act for optimizing actuator locations

is reformulated as:

F̄act = K1

[
FOSFM −min(FOSFM)

max(FOSFM)−min(FOSFM)
+ 1

]

+K2

[
FOTM −min(FOTM)

max(FOTM)−min(FOTM)
+ 1

]

(4.29)

and Eq. (4.24) becomes:

Jact = min
x̂CG=0

F̄act(xact1, xact2, yact1, yact2) (4.30)

in which
∑2

i=1Ki = 1. First, we study the influence of k1 to k3 on the optimal

actuator cost function, and assume that the longitudinal maneuver is as important

as the lateral maneuver for ALTAV, which yields K1 = K2 = 0.5. Figure. 4–7 shows

the change in F̄act as we vary k1 to k3, with k2 equal to k3, and k1 changing from 1/3

to 0.0.
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Figure 4–7: F̄act (k4 = k5 = k6 = k7 = 0.25, K1 = K2 = 0.5)
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From Fig. 4–7, we observe that the location xact1 in Eq. (4.30) increases with

the decrease of k1. Referring to Table 3–6, k1 = 0 can better reflect the longitu-

dinal characteristics, and the xact1 of Jact in Fig. 4–7 with k1 = 0 is quite close to

caseA2A8 in Table 3–6. Furthermore, for different actuator locations, the differences

in the straight forward maneuverability due to the ability to resist motions in other

directions, and the available maximum straight forward acceleration does not affect

the straight forward maneuvering time.

The influence of k4 to k7 on the lateral direction is studied in Fig. 4–8, where

k1 to k3 are set to 0.0, 0.5 and 0.5 based on the previous analysis. In the lateral

direction, the term 1/m66 is considered to be the most important one. Therefore,

the corresponding k4 value is increased at here, and all the other three coefficients

are set to the same values. From Fig. 4–8, the xact1 of Jact due to different k4 to k7

are almost the same. This variation is in agreement with the positive relationship of

1/m66, m22, m44 and |m24| with increase of xact1 in Fig. 4–4.
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Figure 4–8: F̄act (k1 = 0.0, k2 = k3 = 0.5, K1 = K2 = 0.5)

105



In most real maneuver tasks, however, the percentages of the longitudinal ma-

neuver and the lateral maneuvering are not the same. Additionally, as we observed

from Tables 3–6 and 3–8, the optimal actuator locations for the longitudinal maneu-

vering are different from those for the lateral maneuvering. In order to achieve the

highest maneuverability in the whole maneuver task, the optimal actuator locations

should be selected between those for the longitudinal maneuver and those for the lat-

eral maneuver. In this thesis, this issue is solved by adjustingK1 andK2 in Eq. (4.30).

K1 and K2 are used to represent the percentages of the longitudinal maneuver and

the lateral maneuver in the required maneuver task. In Fig. 4–9, we show the effect

on the objective function as K1 increases from 0% to 100%, and K2 decreases from

100% to 0% with k1 = 0.0, k2 = k3 = 0.5, and k4 = k5 = k6 = k7 = 0.25.

The optimal actuator locations due to different K1 and K2 in Fig. 4–9 are in

good agreement with the simulation results in Table 3–6 and Table 3–8. From Fig. 4–

9, we can see that with the increase of the percentage of longitudinal maneuver, the

xact1 increases from 0.2553 m to 1.2723 m. The optimal actuator locations with equal

K1 and K2 are plotted in Fig. 4–10, which are quite close to the current actuator

locations used for ALTAV.
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Figure 4–9: F̄act (k1 = 0.0, k2 = k3 = 0.5, k4 = k5 = k6 = k7 = 0.25)
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CHAPTER 5

Conclusion

This thesis has focused on the design of highly maneuverable airships. Three

areas were studied in this work, with emphasis on airship size minimization method,

airship maneuverability quantification method that can be applied to ALTAV airship,

and optimal actuator locations for ALTAV that can help ALTAV achieve highest

maneuverability. In the following sections, a summary and concluding remarks are

provided for each of the areas.

5.1 Airship Size Minimization

In chapter 2, a size minimization method for non-rigid airships was proposed.

The size minimization flow chart was provided at the beginning of that chapter,

which could be used for small airship design in the conceptual design phase. Based

on this flow chart, four modules directly relating to airship design were illustrated.

In the Pressure and Fabric Module, the envelope pressure, the required strength of

the envelope and ballonets were obtained according to airship mission profile require-

ments. If the available material is not strong enough, new materials are required or

the mission profile must be changed. The second module was the Geometric Mod-

ule, in which the airship envelope size and surface area were calculated. The mass

of the envelope could be estimated by using the material tested by the Pressure and

Fabric Module. In the third module, the Aerostatic Module, the required ballonets

volume was calculated from the relationship between the atmospheric condition and
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flight mission requirements. After obtaining the ballonets volume, the mass of the

ballonets and the available net lift during flight can be computed. In the fourth mod-

ule, the Power and Propulsion Module, the required engine power is coupled based

on the aerodynamic drag. Then, the number of engines and the mass of the required

fuel are computed, as well as the mass of the propulsion system. After that, the

mass of other subsystems can be estimated. The masses of all subsystems are added

together and compared with the available net lift. The sizing program is iterated in

this manner until the minimum size of the airship that could provide enough lift is

found.

In addition to the size minimization method, new materials and novel propulsion

systems were presented in chapter 2 and adopted in the sizing procedure. The

algorithm validation was given at the end of the chapter, through application to

non-rigid airships sizing with and without fins.

5.2 ALTAV Maneuverability Quantification and Maneuver Tests

In order to improve airship maneuverability and design a small highly maneu-

verable airship, Chapter 3 offered the airship maneuverability quantification method

according to the proposed to date maneuver tests and simulations conducted for

ships, aircraft and airships. The heading angle was defined as the primary variable

for describing airship maneuvering capability. Three maneuver tests were adopted

to explore airship maneuverability: the straight forward maneuver, the zig-zag ma-

neuver and the turning maneuver. The maneuverability quantifications were offered

based on each maneuver test.
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This maneuverability quantification method was applied to ALTAV in Chap-

ter 3. Besides, since improving small airship maneuverability was one of the goals of

this work, a set of 8×8 actuator locations was employed in evaluating each maneuver

test. Considering the influence of control method on ALTAV maneuverability, two

control methods were adopted in ALTAV maneuver tasks: the PID control method

and the open-loop optimal control method. Four maneuvering tasks were designed

for ALTAV, including the ψf = 360◦ turning maneuver under PID control, the zig-zag

maneuver under PID control, the straight forward maneuver with optimal control,

and the ψf = 180◦ turning maneuver with optimal control.

Comparing the simulated responses obtained with PID control and optimal con-

trol, optimal control produced better maneuverability. The simulation results with

optimal control were taken as reference for further analysis on the influence of actu-

ator locations on ALTAV maneuverability.

5.3 ALTAV Optimal Actuator Locations

The aim of Chapter 4 was to find the optimal actuator locations for ALTAV. The

terms in ALTAV dynamics model were analyzed in order to disclose the influence

of actuator locations on ALTAV maneuverability. Then, the symbolic equations

for entries in the inverse mass matrix of ALTAV were developed, and the effect of

actuator location on these entries was analyzed. Based on a comparison with the

inverse mass matrix of a famous airship Skyship-500, the method used to nullify

some of the off diagonal entries was provided. In the simulations which ALTAV

can finish the required maneuvers with certain actuator location combinations, the

control forces and moments play a very important role. In order to explain the effect
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of actuator locations on a straight forward and turning maneuvers, the control forces

and moments were evaluated symbolically and the corresponding maximum available

accelerations and angular accelerations were computed.

Based on the results of the above analysis, the cost function for optimizing

actuator locations was proposed. The coefficients used to weight the maneuverability

in different directions were studied, and the optimal actuator locations to achieve

equal weighting for longitudinal and lateral maneuvering were selected at the end of

that chapter.

5.4 Future Work

Several directions are suggested for further research based on study presented

in this thesis:

• Although the new technologies for the Power and Propulsion Module were

adopted in this thesis, the method used to calculate the available thrust and

corresponding power depends on the specific experimental results of that cer-

tain type of of power and propulsion system. The theoretical method used to

calculate the available thrust and the corresponding power for general novel

power and propulsion system is undeveloped. New theoretical methods that

could be applied to mass estimation of these novel technologies are required.

• The maneuverability quantification method proposed in this thesis is based

on research on ships, aircraft and airships, and may have some limitations

when applied to certain scenarios that are specific to airships, for instance, for

evaluating the ability to resist kiting motion. Therefore, developing methods

that are particular to quantifying special airship maneuvers could be useful.
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• In [17], there are sixteen design maneuver conditions employed for airship de-

sign. In this thesis, only the most important maneuvers, the straight forward

maneuver, the turning maneuver and the zig-zag maneuver are studied. Addi-

tional maneuver conditions can be taken into account to cover the full range

of mission requirements.

• The values of the coefficients in the cost function for optimizing actuator loca-

tions were decided based on the assumed proportions of the straight forward

maneuver and the turning maneuver in the whole maneuver mission. In ad-

dition, the GPOPS is not very efficient when it is used to solve a multi-phase

maneuvering mission of ALTAV, which includes a series of straight forward and

turning maneuvers. Therefore, a more efficient optimization algorithm should

be adopted to validate the selected optimal actuator locations based on the

proposed method in Chapter 4.
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