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Abstract

(English)

Botnets are generally recognized as one of the most challenging threats on the
Internet today. Botnets have been involved in many attacks targeting multi-
national organizations and even nationwide internet services. As more effective
detection and mitigation approaches are proposed by security researchers, botnet
developers are employing new techniques for evasion. It is not surprising that the
Domain Name System (DNS) is abused by botnets for the purposes of evasion,
because of the important role of DNS in the operation of the Internet. DNS
provides a flexible mapping between domain names and IP addresses, thus botnets
can exploit this dynamic mapping to mask the location of botnet controllers.
Domain-flux and fast-flux (also known as IP-flux) are two emerging techniques
which aim at exhausting the tracking and blacklisting effort of botnet defenders
by rapidly changing the domain names or their associated IP addresses that are
used by the botnet. In this thesis, we employ passive DNS analysis to develop
an anomaly-based technique for detecting the presence of a domain-flux or fast-
flux botnet in a network. To do this, we construct a lookup graph and a failure
graph from captured DNS traffic and decompose these graphs into clusters which
have a strong correlation between their domains, hosts, and IP addresses. DNS
related features are extracted for each cluster and used as input to a classification
module to identify the presence of a domain-flux or fast-flux botnet in the network.
The experimental evaluation on captured traffic traces verified that the proposed
technique successfully detected domain-flux botnets in the traces. The proposed
technique complements other techniques for detecting botnets through traffic
analysis.



Sammanfattning

(Svenska)

Botnets betraktas som ett av de svaraste Internet-hoten idag. Botnets har
anvants vid manga attacker mot multinationella organisationer och &ven na-
tionella myndigheters och andra nationella Internet-tjanster. Allt eftersom mer
effektiva detekterings - och skyddstekniker tas fram av sdkerhetsforskare, har
utvecklarna av botnets tagit fram nya tekniker for att undvika upptéackt. Darfor
ar det inte forvanande att domédnnamnssystemet (Domain Name System, DNS)
missbrukas av botnets for att undvika upptéickt, pa grund av den viktiga roll
doménnamnssystemet har for Internets funktion - DNS ger en flexibel bindning
mellan dom&nnamn och IP-adresser. Domain-flux och fast-flux (&dven kallat
IP-flux) ar tva relativt nya tekniker som anvinds for att undvika sparning
och svartlistning av [P-adresser av botnet-skyddsmekanismer genom att snabbt
fordndra bindningen mellan namn och IP-adresser som anvénds av botnets. 1|
denna rapport anvands passiv DNS-analys for att utveckla en anomali-baserad
teknik for detektering av botnets som anvénder sig av domain-flux eller fast-
flux. Tekniken baseras pa skapandet av en uppslagnings-graf och en fel-graf
fran insamlad DNS-trafik och bryter ned dessa grafer i kluster som har stark
korrelation mellan de ingaende doménerna, maskinerna, och IP-adresserna. DNS-
relaterade egenskaper extraheras for varje kluster och anviands som indata till en
klassificeringsmodul for identifiering av domain-flux och fast-flux botnets i nétet.
Utvardering av metoden genom experiment pa insamlade trafikspar visar att
den foreslagna tekniken lyckas uppticka domain-flux botnets i trafiken. Genom
att fokusera pa DNS-information kompletterar den foreslagna tekniken andra
tekniker for detektering av botnets genom trafikanalys.
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Acronyms

Notation Description

ASN Autonomous System Number

C&C Command and Control

CDN Content Distribution Network

DFA Deterministic Finite Automaton
DGA Domain Generation Algorithm

DNS Domain Name System

FFSN Fast-Flux Service Network

GPRS General Packet Radio Service

HTTP HyperText Transfer Protocol

IDS Intrusion Detection System

1P Internet Protocol

IPS Intrusion Prevention System

IRC Internet Relay Chat

ISP Internet Service Provider

NIDS Network-based Intrusion Detection System
NMTF Nonnegative Matrix Tri-Factorization
P2p Peer-to-Peer

TLD Top Level Domain Name

URL Uniform Resource Locator



Glossary

Notation
bot

botmaster
botnet

DGA

DNS failure graph

DNS lookup graph

DNS

domain-flux

fast-flux

URL-flux

Description

a malicious program that infects and recruits
the host to join the botnet

the entity that controls the botnet

a network of compromised computers con-
trolled by a botmaster

an algorithm to automatically generate
domain names that are pseudo-random.
Domain-flux botnets often wuse such an
algorithm to generate their domain names

a bipartite graph represents the mapping
between domain names and the IP addresses
of host interfaces that generated a query, this
graph is constructed from the information
extracted from failed DNS queries

a bipartite graph represents the mapping
between fully qualified domain names and the
IP addresses mapped to them, this graph is
constructed from the information extracted
from successful DNS queries

a hierarchical, distributed naming system
used to map from domain names to their
corresponding IP addresses and for other
mappings

a technique based upon changing the domain
name very frequently with (usually) algorith-
mically generated domain names

a technique for changing the IP addresses
associated with a domain at high frequency

a technique using a username generation
algorithm (so the URLs are associated
with different user profiles) to disguise the
command and control traffic in botnet



Contents

Abstract
Sammanfattning
Preface
Acknowledgements
Acronyms
Glossary

1 Introduction

1.1 Problem Statement and Methodology . . . . .. .. .. ... ...
1.2 Scopeofthe Thesis . . . . . . . . . . ... .. ... . .. ......
1.3 Structure of the Thesis . . . . . . . . ... ... .. ... ......

Background
2.1 Domain Name System . . . . . ... ... ... ... ... ...
2.2 Botnet . . . ..

2.2.1 Structure of a Botnet . . . .. ... ... L.
2.2.2 Operation of a Botnet . . . . ... .. ... 000
2.2.3 Command and Control Model . . . . . . . ... ... ....
2.2.4 Command and Control Channel Evasion . . . . . ... ...
2.3 Fast-flux and Domain-flux . . . . . ... ... ... ... ......
231 Fast-flux. . ... ... ... . ... ..
2.3.2 Domain-flux. . ... .. . ... ... ...
233 URLFlux . ... ... . ... .. . ...
2.4 Intrusion Detection Systems in Fixed and Mobile Networks
2.4.1 Intrusion Detection and Preventation Systems . . ... ..
2.4.2 Network-based Intrusion Detection Systems . . . . . . . ..
2.4.3 NIDS in Mobile Networks . . . . . . . ... .. ... ....
2.5 Related Work . . . . . . . . .. ...

DNS Traffic Analysis

3.1 DNS Graph . . . ... ..
3.1.1 DNS Lookup Graph . . . ... ... .............
3.1.2 DNS Failure Graph . . . . . ... ... ... ... ......
3.1.3 Community Structure of DNS Graph . . . . ... ... ...

3.2 Analysis Procedure . . . . . . ... oo

3.3 Graph Construction Module . . . . . . ... ... ... .......
3.3.1 DNS Data Extraction . . .. ... ... ... ........
3.3.2 Anonymization . . . ... ... L Lo
3.3.3 Data Filtering . . .. .. ... ... ... .. ...
3.3.4 Graph Construction . . .. ... .. ... ... .......

3.4 Graph Decomposition Module . . . . . . .. ... ... .. .....



viii

3.4.1
3.4.2
3.4.3
3.4.4
3.4.5

Graph Decomposition

The NMTF Co-clustering Method

Interpretation of NMTF Results
Obtaining Coherent Co-clusters
Practical Issues

3.5
3.6

Feature Extraction Module
Regression Function Module

Results and Discussion

4.1
4.2

4.3

4.4
4.5

4.6

Prototype Implementation
Data Collection
4.2.1 'Traffic Data
4.2.2 Data Labeling and Filtering
Experimental Scenarios
4.3.1 Offline Scenario
4.3.2 Online Scenario
Goodness Metrics
Results. . . .. ... ... .. ...
4.5.1 Offline Scenario
4.5.2  Online Scenario
Discussion

5 Conclusions and Future Work
Bibliography

A Parameters for Analysis Procedure

34
35
36
38
39
39
43

45
45
46
46
46
48
48
49
49
50
53
55
57

59

61

66



CHAPTER 1

Introduction

Currently internet security is facing an undergoing transformation and evolution
of threats. More sophisticated techniques are being used by attackers, especially
in attacks targeting multinational organizations or nationwide internet services.
The motivation for these attacks are not limited to financial gain, but frequently
include political and ideological purposes. In many attacks, a botnet is utilized
to increase the number of hosts involved in the attack. Such attacks are one of
the challenging threats to internet security today.

1.1 Problem Statement and Methodology

Many methods have been used to detect the presence of a botnet in a network by
analyzing traffic in order to discover correlated activities of hosts in the network.
However, the problem with such methods is that sometimes it is not possible
to analyze the traffic, for example when the traffic is encrypted. As botnets
increasingly use fast-flux and domain-flux, the tasks of analyzing traffic becomes
more complicated, especially when the amount of traffic in the network is large.

In this project we proposed a technique of analyzing the Domain Name System
(DNS) [1, 2] traffic in a network to detect the presence of a botnet in the network.
The proposed technique is an anomaly-based technique, and it can be integrated
into a Network-based Intrusion Detection System (NIDS)[3] to detect incidents
in a network.

DNS is widely used by botnets to locate the Command and Control (C&C)
servers and the DNS traffic is always available*. Thus, DNS analysis is promising
method to detect the presence of a botnet, especially a botnet which uses fast-
flux or domain-flux, two emerging botnet evasion techniques based on DNS
abuse. Of course, DNS traffic analysis alone can not provide highly accurate
detection results. However, DNS can provide complementary evidence that can
be combined with the results of other traffic analysis techniques to increase the
accuracy of botnet detection - as compared to DNS based analysis alone or to
other traffic analysis. More concretely we claim that using the proposed DNS
traffic analysis increases the specificity of the detection of fast-flux and domain-
flux botnets.

*Except for the case of DNSCrypt and DNSSEC which are not (yet) widely deployed, thus
we opted not to consider these types of DNS traffic in our work.
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1.2 Scope of the Thesis

This thesis focuses on detecting the presence of a botnet in a network by
examining the DNS traffic. This thesis does not consider botnets that do not
use DNS as a method to locate their C&C server(s). Furthermore, in this thesis,
encrypted and authenticated DNS traffic such as DNSCrypt [4] or DNSSEC [7]

traffic are not considered?.

1.3 Structure of the Thesis

The rest of this thesis is divided into four chapters. Chapter 2 starts by describing
the background for this thesis including fundamentals of botnets and Network-
base Intrusion Detection Systems (NIDS). Chapter 3 describes in detail of our
proposed approach of inspecting the DNS traffic to detect the presence of a
botnet exhibiting fast-flux and /or domain-flux behaviors. Afterwards, Chapter 4
summarizes our experimental results and discusses the success or failure of our
proposed technique. Chapter 5 concludes the thesis and suggests some future
work.

T DNSCrypt was developed by OpenDNS in order to encrypt regular DNS traffic, while
DNSSEC is a suite of IETF’s specifications to provide authenticity and integrity for DNS, but
not availability or confidentiality.



CHAPTER 2

Background

This chapter gives a brief introduction to the Domain Name System, botnets, and
Intrusion Detection Systems. Additionally, fast-flux and domain-flux, two of the
the emerging botnet detection evasion techniques, are also described. Readers
who are familiar with these topics can skim or skip corresponding sections.

2.1 Domain Name System

Domain Name System (DNS) is a hierarchical, distributed naming system that
provides a critical Internet service of mapping between two principal namespaces
on the Internet: domain name hierarchy and Internet Protocol (IP) address
space [1, 2]. By translating the human-friendly (i.e. easy for human to remember)
domain names into IP addresses, DNS makes it possible to assign domain names
to a group of Internet resources in a meaningful way and independent of entities’
physical location(s). This naming mechanism keeps the names of the Internet
resources remain consistent even if there are changes in the IP addresses of
underlying networks. This is advantageous for the users, machines, and services
because they can cite Internet resources in the meaningful way, but without
having to worry how these resources are actually located.

Figure 2.1: The DNS Tree [0]

The domain name space is structured in hierarchical manner as a tree. Each
domain name consists of multiple domain name labels separated by a “.”. A
domain name identifies a path from the root node of the DNS hierarchy, denoted
by the rightmost “.”, to a node representing the domain name. This node
contains a set of resource information associated with the domain name in the
form of a collection of resource records (RRs). For example a domain name
F.D.B.A. is a path from root node to node F. This node in the DNS tree
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contains information about the domain name F.D.B.A. as shown in Figure 2.1.
The depth of the node in a DNS tree is called the domain level, for example, A.
is a Top Level Domain Name (TLD), B.A. is second level domain, and so on.

The DNS system is split into multiple zones [1] by partitioning the domain name
space between sibling nodes. Each zone is responsible for a group of nodes, hence
their corresponding domain names and associated information for that zone is
authoritative. The zone is identified by the domain name of the node closest to
the root node. Each zone has one or more authoritative name server(s) where RRs
of its domain names are stored. These authoritative name servers have complete
knowledge of the domain names within their zone and serve this information when
requested. The authoritative name servers can further delegate their authority
over part of the zone to other authoritative name servers. This hierarchical model
makes DNS the largest distributed system on the Internet. This model and DNS’s
caching mechanism provides fault-tolerance ability for the DNS system.

The domain name resolution process is depicted in Figure 2.2. A client can resolve
a domain name www.example.com using a stub resolver that is built-in to all
systems that have an Internet connection. This stub resolver sends a DNS query
request to a recursive DNS resolver (RDNS). If RDNS has information about the
queried domain name cached, then this information will be returned to the stub
resolver. Otherwise, the RDNS starts by querying the root name server, then the
root name server redirect the RDNS to the name server that is authoritative for
the TLD “com.”. This process continues until the RDNS reaches a name server
that is authoritative for www.example.com. It will query this name server for
relevant RRs and return a response to the stub resolver on the client. The RDNS
also caches these RRs for the domain name www.example.com for a certain
period of time so that it can immediately respond if there is other request for
these RRs for this domain name. The period of time that the RRs are cached in
RDNS depends on the Time To Live (TTL) value contained in the information
returned for RRs associated with the domain name www.example.com from the
authoritative name server.

@wwexample.com?

. (root)

example.com
(AuthNS)

Figure 2.2: The DNS resolution process [0]
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2.2 Botnet

A botnet is a network of compromised computers [7, 8], called bots or zombies,
which are the under control of a botmaster. These computers, mainly personal
computers, are exploited and infected without the user’s knowledge by a malicious
self-propagated program called a bot. After successfully infecting a host, the
new bot reports its existence to a C&C server in order to join the botnet and
then awaits instructions from this botmaster. The bot may also start to collect
sensitive information such as keystrokes, contact lists, passwords, or financial
information from the compromised host. The information collected is sent to
the C&C server. The population of a botnet gradually increases as the botnet
incorporates new victims. Botnets with thousands or even millions of bots have
been observed in the wild. The botmaster via the C&C server instructs the
botnet to conduct various malicious activities which may include stealing sensitive
information, spreading malware via massive spamming, performing Distributed
Denial of Services attack (DDoS), generating advertisements to commit fraud,
conducting click fraud, or phishing. With a large population and a huge volume
of traffic, botnets can target large multinational companies or even nationwide
internet services. The distributed, dynamic, and anonymous nature of botnets
makes it difficult to detect and defend against them. The fact that there are more
and more attacks involving botnets confirms the danger of botnets and reenforces
their roles in cybercrime. Understanding the structure and operation of botnets
are key factors to effectively detect and mitigate them. The following sections
provide some background knowledge about botnets and their current patterns of
evolution.

2.2.1 Structure of a Botnet

Regardless of architecture, size (in number of nodes), and communication
protocol, all botnets consist of four components: the botmaster, the bots, the
C&C server(s), and the communication channels between them. The basic
structure is shown in the Figure 2.3 and described in the following paragraphs.
In practice, botnets can optionally have one or more layers of proxies between
the C&C server(s) and the bots.

e Botmaster: The botmaster is an entity that controls the operation of
botnet, and decides how the botnet brings benefits to her by performing
attacks, or the botmaster may rent their botnet to others. The botmaster
decides what operation(s) the botnet should perform and when the botmas-
ter’s commands are executed by the botnet, i.e., which instructions are sent
to the bots.

e Bots: Each bot is a piece of software which combines the behaviors of
previously known malware, especially the features of a worm or trojan horse.
A computer infected with such a program is turned into a zombie and is
recruited to the botnet. The term bot is used to indicate both the malicious
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Botmaster

C&C server

C&C Channel

bot

Figure 2.3: Botnet structure

program itself and the computer infected by such a program. The infection
vectors are various, for example the bot could be installed in the victim’s
computer by exploiting the system’s vulnerabilities or by convincing a user
to execute a program attached to an email message. The bots are the
army which directly conducts malicious activities under the control of the
botmaster. The number of bots continuously increases as each bot tries
to infect other computers. For example, each bot may incorporate other
computers in the same physical network or obtain the user’s contact list
and send malware attached to email messages to all of the user’s contacts.
The population of a botnet is one measure of its danger. Upon instruction
by the botmaster or periodically, each bot downloads and updates itself to
a new version which is more resilient, offers new evasion techniques, and/or
new exploits and attack methods. In this manner the botnet can continue
to evolve. It has been observed that some botnets implement an affiliate
program in which the bot includes and operates additional malware within
its “shell” (see for example the TLD-4 bot [9]).

e C&C servers: The C&C servers are intermediates through which the
botmaster controls the botnet and rallies the bots to perform an attack.
C&C servers may also be used to host malicious software to be downloaded
by the bots. Where C&C servers are placed and how they are configured
depend on the C&C model of the botnet. In a centralized model, the
C&C servers are often hosted in hostile sites or a bullet-proof network
(also known as bullet-proof hosting, a service provided by some domain
hosting or web hosting firms that allow their customers to bypass the laws
or contractual terms of service regulating Internet content and service use);
while in a peer-to-peer model, these servers are usually selected among
those bots with public accessibility, high bandwidth connectivity, and high
availability. A variety of communication protocols can be used by the
botnet. For example if the Internet Relay Chat (IRC) protocol is used, then
the C&C server can be installed as an IRC server; while if the botnet uses
the HyperText Transfer Protocol (HTTP) protocol then the C&C server can
be a web server. C&C servers are the only component of the botnet which
communicates with the botmaster (potentially via one or more layers of
proxies in order to circumvent any tracing effort by the authorities). Thus,
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many botnet’s evasion techniques include hiding the identity of the C&C
servers in order to prevent authorities from easily shutting down the botnet
or taking control of the botnet.

e C&C channel: The C&C channel utilizes some communication protocols
to distribute the instructions from the C&C servers to the bots. As
this coordination empowers the botnet, the communication channel plays
the vital role in the existence of the botnet and the effectiveness of the
botnet’s attacks. A botnet’s communication channel can either be a push
or pull channel: in the push channel, the bots wait for the C&C servers to
actively contact them with instructions; while in the pull channel, the bots
periodically contact one of the C&C servers for instructions. The encrypted
IRC protocol was widely used by early botnets for their communication.
This protocol is still used by many current botnets. However, as IRC
becomes a less common protocol and as defenders pay increasing attention
to detection of botnets based upon their communication signatures botnets
are shifting to more sophisticated and agile communication methods. For
example, the communication can be disguised as common and legitimate
network traffic using HTTP or Peer-to-Peer (P2P) protocols. Additionally,
some botnets hide instructions in postings on social network sites. There
is also increasing use of public key cryptography to authenticate the C&C
servers and their instructions, thus making it hard for others to take control
of a given botnet.

e Proxies (optional): Since the C&C servers are the gateways through
which the botmaster controls the botnet, the botnet can be mitigated by
identifying and shutting down the C&C servers which the bots communicate
with. Therefore, adding one or more layer(s) of proxies between the bots and
C&C servers helps to hide the identities of the C&C servers. The presence
of proxies in a botnet’s structure is optional in the sense that these proxies
are not required for the botnet’s operation, but they are useful to evade
detection and mitigation.

Each of the above components plays a different role in the botnet. The C&C
servers and the communication channels are considered the most important
components and also the weakest links of the botnet. Therefore, botnets are
often classified by their communication channels and most of the defenses against
botnets are aimed at detecting and shutting down the C&C servers or breaking
the communication channels. In reality, depending on the purpose and evasion
strategy of the bot’s authors, there could be additional components introduced
into a botnet.

2.2.2 Operation of a Botnet

It is essential to understand how botnets operate in order to implement an
effective defense mechanism against them. Figure 2.4 illustrates a common
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botnet’s operation. There are five specific phases that are of specific concern
to us in the operation of a botnet. These phases are described below.

(1)

In the beginning, suitable victims are infected with malicious code. This code
is often obfuscated by encryption in order to evade signature-based Intrusion
Detection System (IDS). Upon execution in the victim computer, the bot
de-obfuscates itself and performed a number of system calls to disguise itself
(for example by modifying the file system or attaching itself to legitimate
system services). The bot in the infected computer begins to harvest sensitive
information such as keystrokes or the user’s credentials. A comprehensive
case study of Rustock [10], the world-biggest botnet which was taken down in
March 2011 by coordinated effort of both ISPs and software vendors, provides
further details of this phase of a botnet’s operation.

In this second phase the bot contacts the C&C servers to join the botnet.

When the bot receives commands from the C&C server it sends back the
collected information, downloads the latest update, or infects new victims.

The bot finds new victims to infect by exploring the local network or send
the malware attached to email to all of the people in the user’s contact list.
The botnet’s population is gradually growing and the botnet is expanding
across networks.

Given a sufficient number of bots, the botmaster can instruct the botnet
to conduct various malicious activities. This is when the botnet potentially
brings profits to the botmaster. We note that the botnet continues expanding
while it carries out these malicious activities. In practice the botmaster uses
the botnet both to increase the size of the botnet itself [1 1] and to carry out

malicious activities.
new victi/:n@
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Figure 2.4: Basic operation of a botnet

2.2.3 Command and Control Model

The communication between bots and C&C servers plays a vital role in
maintaining a botnet’s existence. Botnets are useless, isolated compromised
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computers without of this communication because the bots cannot join the bots
army or receive instructions from the botmaster to coordinate their malicious
activities. An exception to this is the case of a “fire-and-forget” type of botnet
that has a single purpose and does not receive updates or further commands.
Note that such a botnet’s attack has to be pre-configured and controlled by other
sources - for example in the case of a fictional example via news [12]. This
C&C communication is unique to each botnet and it probably changes between
different variants of a given botnet. Therefore it is an important characteristic
to categorize botnets into different classes. According to their topologies, botnet
C&Cs models can be roughly divided into three types of models: centralized,
Peer-to-Peer (P2P), and unstructured C&C models.

Centralized Model

In the centralized model, there are one or a few C&C servers which act as
rendezvous points for the botnet. Usually, these servers are hosted in some bullet-
proof hosting service providers or in hostile sites, thus they are difficult to take
down. In the first generation of botnets, these C&C servers were IRC servers
with encrypted private channels to communicate with the botmaster. The bots
join the private IRC channel and listen for instructions. The centralized model
is very effective in terms of coordination since it allows the botmaster to easily
control thousands or millions of bots and also guarantees low latency message
delivery. On the other hand, this model has some drawbacks, such as the C&C
servers are a single point of failure, hence if they are detected and taken down
then the botnet ceases to operate. Despite these drawbacks, the centralized C&C
model is still the most prevalent C&C model in practice because this model is
simple to implement and easy to customize via a rich variety of support tools. A
variant of the centralized model is the hierarchical model in which the bots are
divided into different classes with a hierarchical relationship between them. This
variant is more scalable and is more resilient to failure and mitigation.

Peer-to-Peer Model

When multiple organizations, such as Internet Service Providers (ISPs) or
software vendors, started to coordinate their efforts to detect and mitigate
botnets, some botnets circumvented this coordinated effort by shifting to a Peer-
to-Peer (P2P) model. Figure 2.5 illustrates this P2P model for C&C of a botnet.

In contrast to the centralized model, in P2P model, there is no centralized C&C
server, the botmaster can contact and send instructions to any peer (bot). The
communication in this model does not depend on one or a few selected C&C
servers, thus the botnet becomes more resilient to detection and mitigation.
As a result, the defenders can not defeat this type of botnet by taking down
a small number of bots. Nevertheless, implementing a P2P C&C model requires
more work by the bot’s authors because of constraints posed by the P2P model.
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Figure 2.5: Peer-to-Peer Command and Control Model

For example, the underlying P2P model of communications does not guarantee
message delivery, the latency in a P2P network is unpredictable, and a good
management mechanism is required to control the large number of bots in the
botnet in order to prevent bot enumeration and injection. The Storm worm [13]
and Nugache are some examples of botnets using this P2P model. The increase in
the number of botnets using P2P model is evidence that bot authors are finding
appropriate solutions to these constraints. Their effort has been motivated by
the requirement for resilience becoming more vital for their botnets.

Unstructured Model

The bots in an unstructured C&C model do not contact and report to the C&C
server. When the botmaster wants to start an attack, he or she scans the Internet
to learn of available bots and sends instructions to them. This kind of botnet is
the most difficult to discover and take down. Although we have not yet seen any
botnets of this kind in the wild the current rapid evolution of botnets makes it
necessary to study the behaviors of such botnets and figure out effective counter-
measures for this C&C model.

2.2.4 Command and Control Channel Evasion

It is vital for the botnet to hide its communication channel and the identities of
the C&C servers and botmaster. Hence, many techniques have been employed
by bot authors in order to evade the security counter-measures that have been
deployed.

Use of an encrypted communication channel between the C&C servers and bots
is one of the first evasion methods that was utilized in order to avoid being
detected by signature-based IDS. As noted earlier, these bots used an encrypted
IRC channel as their communication channel since IRC is very easy to implement
and deploy and it allows the C&C server to control thousands of bots with
very low latency. However, today IRC traffic now can be easily examined by
an IDS, especially note that it is uncommon to use IRC in the network. For
this reason botnets are shifting to new approaches to disguise their C&C traffic
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as common application traffic, such as HT'TP or P2P traffic. Recently bots are
hiding their communication messages in social network posts, news feeds, or using
steganography. There are observations of bots using cryptography to authenticate
the C&C servers and their instructions.

The techniques used by botnets to hide the identities of the C&C server(s) are
evolving over time. Initially, botnets used a hard-coded list of C&C server IP
addresses to locate their C&C servers. As this hard-coded technique became
less effective and these IP addresses were easily blacklisted, more sophisticated
techniques are employed by botnets providing a stealthier way to locate their
C&C servers. An emerging technique is to use the DNS to provide botnets with
a flexible way of contacting their C&C servers. In the next section, fast-flux and
domain-flux, two DNS-based techniques that have recently begun to be used by
botnets are described in detail.

2.3 Fast-flux and Domain-flux

As blacklisting techniques used by defenders to disrupt malicious activities
became more effective, more sophisticated techniques were employed by bot
authors in order to evade this detection and mitigation effort. DNS is an
essential protocol on the Internet as it provides a convenient mapping between
domain names and their corresponding IP addresses. Ironically, the flexibility
and global availability of DNS is now being abused by botnets to build their
resilient command and control infrastructure. Fast-flux and domain-flux are two
techniques which are now being widely integrated into botnets in order to enhance
their resilience.

These are not new techniques, as the principles underlying these techniques have
been used by legitimate services for a long time. Details of these techniques
are described in the following subsections. Their usage in malicious activities is
evidence of the evolution of techniques used by attackers to create more robust
botnets. This thesis will focus on the approaches to detect botnets which employ
fast-flux and domain-flux.

2.3.1 Fast-flux

Fast-flux (also known as IP-flux) is described by ICANN as [14]:

“rapid and repeated changes to A and/or NS resource records in a DNS
zone, which have the effect of rapidly changing the location (IP address)
to which the domain name of an Internet host (A) or name server (NS)
resolves”

Technically, this rapid change is done by setting a short Time To Live (TTL) for
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a given DNS record and changing the associated IP addresses frequently. This
technique has been used for a long time as a load balancing method by legitimate
systems, e.g. heavy loaded and highly available websites, such as internet search
engines or a Content Distribution Network (CDN).

As cybercrime evolved, this technique is now used in a malicious way by forming
a Fast-Flux Service Network (FFSN), a network of compromised hosts which
share the same domain name(s). The IP addresses of hosts are rapidly swapped
in and out of the DNS entry based on the hosts’ availability and bandwidth.
Usually FFSNs employ a load distribution scheme by appointing some hosts to
check the health of other nodes in the network. With such rapid change of the
IP addresses in FFSNs, it is nearly impossible to disrupt the FFSNs by simply
blocking specific IP addresses. A possible solution is to suspend the domain
names used by FFSNs. However, this is a very tedious task since these domain
names are usually registered at registrars who are resistant to blocking of domain
names.

Another vantage of FFSNs is their high level of anonymity as the compromised
hosts are usually set up as blind proxy redirectors which funnel the traffic to and
from the backend servers which serve the actual, malicious content. By funneling
the traffic, the blind proxy redirectors disrupt any attempt to track and reveal the
identities of the backend servers. Consequently, this increases the life time of the
backend servers and makes it simpler to set up and manage the backend servers.
Even if we can locate these backend servers, it is difficult to take them down
as they normally reside in complicit or hostile networks. Due to the high level
of anonymity and resilience, FFSNs have been observed participating in many
different types of malicious practices, such as illegal content hosting, malware
distribution, online pharmacy shops, or phishing. FFSNs are normally part of the
botnet and the nodes selected to be in the FFSN are selected from compromised
hosts with a globally accessible IP address and high bandwidth. FFSNs hide the
C&C channel and host the malicious code of the bot.

There are two types of FFSN: single-flux and double-flux. In the former, only the
host records are changed while in the latter, both host and name server resources
records are changed. Figure 2.6 illustrates the life cycle of a web request in
a single-flux network compared to that of a normal server. The difference is
although the users believe that they are browsing content from the legitimate
server, the FFSN redirector has redirected the request from the proxy to the
backend server and redirects the response from this backend server to the users.

Listing 2.1 shows results of dig* command for a single-flux service network. We
can see that in the set of IP addresses returned after 30 minutes for the same
domain name, there are two new IP addresses. Furthermore, most of the IP
addresses in the returned IP set are located in home networks.

In the double-flux service network, when the user requests content one more step

*dig (domain information groper) is a network administration command-line tool for
querying DNS name servers. Dig is a built-in tool in almost all Linux distributions.
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Figure 2.6: Web request to a single-flux service network compared to request to
normal network (adapted from [15])

Listing 2.1: Results of dig command for a single-flux domain name [ |

;; WHEN: Sat Feb 3 20:08:08 2007
divewithsharks.hk. 1800 IN A 70.68.187.xxx [xxx.vf.shawcable.net]
divewithsharks.hk. 1800 IN A 76.209.81.xxx [SBIS-AS — AT&T Internet Services]
divewithsharks.hk. 1800 IN A 85.207.74.xxx [adsl-ustixxx-74-207-85.bluetone.cz]
divewithsharks.hk. 1800 IN A 90.144.43.xxx [d90-144-43-xxx.cust.tele2.fr]
divewithsharks.hk. 1800 IN A 142.165.41.xxx [142-165-41-xxx.msjw.hsdb.sasknet.sk
.ca]

divewithsharks.hk. 1800 IN NS nsl.world-wr.com.
divewithsharks.hk. 1800 IN NS ns2.world-wr.com.

nsl.world-wr.com. 87169 IN A 66.232.119.212 [HVC-AS - HIVELOCITY VENTURES CORP]
ns2.world-wr.com. 87177 IN A 209.88.199.xxx [vpdn-dsl209-88-199-xxx.alami.net]

;; WHEN: Sat Feb 3 20:40:04 2007 (730 minutes/1800 seconds later)

divewithsharks.hk. 1800 IN A 24.85.102.xxx [xxx.vs.shawcable.net] NEW

divewithsharks.hk. 1800 IN A 69.47.177.xxx [d47-69-xxx-177.try.wideopenwest.com]
NEW

divewithsharks.hk. 1800 IN A 70.68.187.xxx [xxx.vf.shawcable.net]

divewithsharks.hk. 1800 IN A 90.144.43.xxx [d90-144-43-xxx.cust.tele2.fr]

divewithsharks.hk. 1800 IN A 142.165.41.xxx [142-165-41-xxx.msjw.hsdb.sasknet.sk
.ca]

divewithsharks.hk. 1800 IN NS nsl.world-wr.com.
divewithsharks.hk. 1800 IN NS ns2.world-wr.com.

nsl.world-wr.com. 85248 IN A 66.232.119.xxx [HVC-AS - HIVELOCITY VENTURES CORP]
ns2.world-wr.com. 82991 IN A 209.88.199.xxx [vpdn-dsl209-88-199-xxx.alami.net]

takes place in the process to resolve the authoritative name servers for the domain.
In a double-flux network, the name servers are compromised hosts that redirect
the DNS queries to a backend DNS server and return the responses from this
server to the user’s client. Figure 2.7 depicts the difference between single-flux
and double-flux while resolving the domain name.

Listing 2.2 illustrates results of dig command for a domain-flux service network.
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Figure 2.7: Double-flux domain resolution compared to single-flux (adapted
from [15])

In this example, not only the IP addresses returned for the A records are changed,
but also those for NS records. Note that similar to the single-flux service network,
the set of IP addresses returned are mostly located in an 2DSL! or dial up network.
That means the interfaces associated with these IP addresses are mostly personal
computers located in people’s homes.

2.3.2 Domain-flux

Domain-flux is another approach to frustrate the defenders’ efforts to block access
to backend or C&C servers. As opposed to fast-flux in which the IP addresses
are rapidly swapped, in domain-flux the domain names are changed instead. A
huge number of domains names (or subdomains) are hard-coded into the bot’s
executable or are generated by an algorithm embedded in the bot called a Domain
Generation Algorithm (DGA). The botmaster has the same list of domain names,
but only registers one or a few of them. These domain names point to the C&C
servers. The bots find the address the C&C server by sequently or randomly
resolving domain names in the list until it successfully locates a C&C server at
the domain name registered by the botmaster. An example of domain names
generated by Kraken [16, 17] bot is shown in Listing 2.3.

Botnets using domain-flux vary widely in number of generated domain names, the
algorithm used, and how the algorithm is seeded. For example, the Conficker-
A bot uses the current date and time as a seed to generate 250 domain names
every three hours. This number is increased to 50 thousand domain names in

fXxDSL standard of ADSL, SDSL, VDSL, etc. — all of these are types of digital subscriber
line modems used to connected a customer premises model with an access network operator’s
packet data network over the twisted copper pairs used for analog telephony.
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Listing 2.2: Results of dig command for a double-flux domain name [ |

;; WHEN: Wed Apr 4 18:47:50 2007

login.mylspacee.com. 177 IN A 66.229.133.xxx [c-66-229-133-xxx.hsdl.fl.comcast.
net]

login.mylspacee.com. 177 IN A 67.10.117.xxx [cpe-67-10-117-xxx.gt.res.rr.com]

login.mylspacee.com. 177 IN A 70.244.2.xxx [adsl-70-244-2-xxx.dsl.hrlntx.swbell.
net]

mylspacee.com. 108877 IN NS ns3.myheroisyourslove.hk.
mylspacee.com. 108877 IN NS ns4.myheroisyourslove.hk.
mylspacee.com. 108877 IN NS ns5.myheroisyourslove.hk.

nsl.myheroisyourslove.hk.854 IN A 70.227.218.xxx [ppp—-70-227-218-xxx.dsl.sfldmi.
ameritech.net]

ns2.myheroisyourslove.hk.854 IN A 70.136.16.xxx [adsl-70-136-16-xxx.dsl.bumttx.
sbcglobal .net]

ns3.myheroisyourslove.hk. 854 IN A 68.59.76.xxx [c-68-59-76-xxx.hsdl.al.comcast.
net]

;; WHEN: Wed Apr 4 18:51:56 2007 (74 minutes/186 seconds later)

login.mylspacee.com. 161 IN A 74.131.218.xxx [74-131-218-xxx.dhcp.insightbb.com]
NEW

login.mylspacee.com. 161 IN A 24.174.195.xxx [cpe-24-174-195-xxx.elp.res.rr.com]
NEW

login.mylspacee.com. 161 IN A 65.65.182.xxx [adsl-65-65-182-xxx.dsl.hstntx.
swbell.net] NEW

;7 WHEN: Wed Apr 4 21:13:14 2007 (790 minutes/4878 seconds later)
nsl.myheroisyourslove.hk. 3596 IN A 75.67.15.xxx [c-75-67-15-xxx.hsdl.ma.comcast
.net] NEW
ns2 .myheroisyourslove.hk. 3596 IN A 75.22.239.xxx [adsl-75-22-239-xxx.dsl.chcgil
.sbcglobal.net] NEW
ns3.myheroisyourslove.hk. 3596 IN A 75.33.248.xxx [adsl-75-33-248-xxx.dsl.chcgil
.sbcglobal.net] NEW

Listing 2.3: Domain names generated by Kraken

rbgdxflojkj.mooo.com fvkvwf.dynserv.com
bltjhzgp.dyndns.org duxhvrrb.mooo.com
cffxugijxn.yi.org natiouwx.dyndns.org
etllejr.dynserv.com afmbtgyktty.yi.org
ejfjyd.mooo.com eltxytxurng.dynserv.com
mnkzof.dyndns.org tmuncana.mooo.com
adhbtib.yi.org wafyfrryfzr.dyndns.org
vgsqul.dynserv.com lbimniu.yi.org
dawjjopw.mooo.com fgjhsvsevdy.dynserv.com
jamptmlvrw.dyndns.org zstyderw.mooo.com
ihouxyds.yi.org ouwyrav.dyndns.org

the Confiker-C' bot. Another example is the Torpig bot which seeds the DGA
with one of the most popular trend topics in Twitter [15]. Nevertheless, all of
these bots have some characteristics or requirements in common. Firstly, the
number of domain names generated by bots has to be large enough in order
to successfully exhaust a blacklisting effort. Secondly, the generated domains
should not collide with existing domain names. These characteristics of domain
flux suggest some defenses. For instance, as the number of domain names being
generated increases, before reaching a domain name that is actually registered
by the botmaster, the bots cause a significant number of failed DNS queries in
the network when they query for the nonexistent domain names. This could be
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considered as abnormal behavior in the network, thus suggesting there is domain-
flux [19]. In order to avoid collisions with existing domains, the generated domain
names usually appear to be random strings, i.e., they are unpronounceable usually
have no meaning, unlike legitimate services in which domain names usually
consist of meaningful words from a dictionary and they are pronounceable, thus
this characteristic might indicate domain-flux. Some bots try to overcome this
problem by using algorithms which generate domains from English (or other
language) words. An example is the algorithm used by Kraken bot, which
combines the generated words with common English word suffixes such as -able,
-dom, or -ly. The phonetic features of these words are also exploited by some
algorithms to make the generated words more likely to be pronounceable.

Domain-flux serves the botmaster very well, as the botmaster only needs to
register a few domain names in the list in order to keep the botnet running,
while the defenders have to register or block all the domain names in the list to
stop the botnet’s operation. Furthermore, in the case of algorithmically generated
domain names finding the algorithm requires reverse engineering the bot to know
the list of domain names that can be generated, and this reverse engineering task
takes quite a long time.

A technique similar to domain-flux is also used by some social networks or
blog services such as Wordpresst or Tumblr® to customize the user’s pages by
modifying the subdomain of the Uniform Resource Locator (URL). However,
most of the domain names generated by such services are associated with one or
few base domains and they are more persistent as compared to the domain names
used by domain-flux. The key difference is that the legitimate services generate
many subdomains of a small number of domains, while the botnets try to spread
their usage over a much larger part of the whole domain name space.

In the wild, fast-flux and domain-flux can be combined together to provide a high
level of anonymity, resilience, and availability for the C&C servers.

2.3.3 URL Flux

A similar but more economical approach than domain-flux is URL-flux which
was introduced in the Android bot by Xiang [20]. Instead of using domain
names, URL-flux uses Web 2.0 sites as a mean of communication. Similarly to
domain-flux, the bot in URL-flux has a list of usernames generated by a Username
Generation Algorithm (UGA) from which it selects a username to visit on a Web
2.0 site. If the user exists, then the bot uses a hard-coded public key to validate the
most recent messages for this user. If this validation succeeds, then the message
will be considered as instructions issued by the botmaster. With URL-flux, bots
disguise their C&C traffic as normal HTTP traffic, making it difficult to detect
the bot’s activities in the network. As Web 2.0 is becoming increasingly popular,

fttp://wordpress.com
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further investigations should be conducted in order to figure out how to detect
this C&C communication and defend against this type of evasion. However, a
common practice in Web 2.0 sites is to locate a user’s page based on the relative
path of the URL which is not related to DNS traffic. This investigation is out of
the scope of this thesis, thus we do not consider URL-flux further.

2.4 Intrusion Detection Systems in Fixed and Mobile
Networks

As mentioned in Section 1.1, our proposed technique is developed based on the
principles of an Intrusion Detection System (IDS). Our proposed technique uses
an anomaly-based approach to detect the presence of a botnet in a network, and
it can be integrated in a NIDS to detect incidents in a network.

This section begins by describing what an IDS is and how it can be used to prevent
intrusions from having a large negative impact on the network and the hosts.
Next, NIDS - a type of IDS based on monitoring network traffic is presented.
Finally, we discuss the use of NIDS in mobile networks.

2.4.1 Intrusion Detection and Preventation Systems

Intrusion detection is defined by National Institute of Standards and Technology
(NIST) as [3]:

“the process of monitoring the events occurring in a computer system
or network and analyzing them for the signs of possible incidents,
which are violations of imminent threats of violation of computer security
policies, acceptable use policies, or standard security practices.”

An Intrusion Detection System (IDS) is a software system which automates the
intrusion detection process. An IDS seeks to detect incidents in the system in
advance of the occurrence of a violation of some policy. There are many causes
of incidents in the system, such as malware infection, an attacker gaining access
to the system or probing system for vulnerabilities, or misuses of the system
by authorized users resulting in a violation of security policies. The goal of the
IDS is to alert the system’s administrators about such incidents in their early
stage before they cause any damage and to support the system’s administrators
in their response to malicious incidents. Although many incidents are malicious
in nature, others are not, for instance an user might mistype an address resulting
in an attempt to access a critical system to which he or she is unauthorized.
Therefore an IDS should be able to classify potentially malicious incidents with
reasonable accuracy, i.e., a low rate of false negatives and false positives. A false
negative occurs when a malicious incident is classified as innocent and a false
positive occurs when an innocent incident is classified as malicious.
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An Intrusion Prevention System (IPS) is a system which has all the functionality
of an IDS but also can make some attempt(s) to prevent the incident from
occurring [3]. The extend of the actions taken by an IPS in response to incidents
depends on how aggressive the system is and how the IPS is configured by the
system’s administrators. In practice, the prevention features of IPS are usually
disabled and the system works simply as an IDS because the attempts made
in response to incidents may result in inconvenience for users or interrupt the
services.

A typical IDS uses many approaches to detect incidents in the systems. The
NIST guide to intrusion detection systems [3] describes three common approaches:
signature-based, anomaly-based, and stateful protocol analysis.

e Signature-based: In this approach, incidents are detected by comparing
code or a data fragments to a set of signatures (i.e., patterns) of known
threats. This method is very effective at detecting known threats, however it
is ineffective at detecting unknown threats or new variants of known threats.
Furthermore, a signature-based IDS has to maintain a huge database of
signatures and the recognition process involves searching for matches over
a collection of thousands or even millions of signatures. Thus, an efficient
searching algorithm is very important for signature-based detection method.

e Anomaly-based: Unlike the signature-based approach, in an anomaly-
based method the actual behavior is compared to a collection of pre-
defined “normal” behaviors. If the deviation from normal behavior is out
of acceptable range, then the system will raise an alarm. An advantage
of anomaly-based IDS over signature-based IDS is that an anomaly-based
system can detect unknown threats. However, it may produce a high rate
of false positives, for example when a new service is added to the system.
Furthermore, it takes a period of time to build a profile of the “normal”
behaviors of the system, this period of time is called the training period. The
normal behavior profile can either be static or dynamic. A static profile is
unchanged during the operation period of the IDS until a new “normal”
profile is regenerated. In contrast, a dynamic profile is gradually updated
with observed data during operation. A static profile might be outdated
overtime, while a dynamic profile might produce inaccurate detection results
because of faulty learning.

e Stateful protocol analysis: Stateful protocol analysis detects malicious
activities by comparing the actual behavior to vendor-developed profiles
which specify how a particular protocol should or should not behave. It
provides the ability to track the state of a stateful protocol which allows it
to detect some attacks that other methods cannot detect. However, creating
a universal profile (model) of a protocol is a hard task and sometimes it is
nearly impossible. An additional drawback of this method is that it cannot
detect attacks which are disguised as normal behaviors of the protocol.

In practice, an IDS often uses multiple methods to provide broader and more
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accurate detection results.

2.4.2 Network-based Intrusion Detection Systems

A NIDS monitors the network traffic for particular network segments or devices
and analyzes the network, transport, and application protocols to identify
suspicious activities [3]. NIDS are widely deployed by many organizations at
their network’s boundary. The sensor which collects network data for the NIDS
can be deployed in two modes: in inline mode, the sensor is placed so that all the
traffic goes through it; while in passive mode, the sensor receives a copy of the
network traffic (thus avoiding increasing the delay experienced by the network
traffic).

NIDS provides various ranges of security capabilities. At a minimum it collects
information about the hosts in the network, such as which operating system is
being run on each host and applications. An NIDS generally has extensive logging
and data capturing ability. Most NIDS use multiple detection methods ranging
from signature-based to in-depth stateful protocol analysis of common protocols.
Some NIDS are able to overcome the evasion techniques used by malware, hence
improving the accuracy of the detection results.

There are limitations associated with NIDS as well. Since NIDS monitors all the
traffic in the network, their performance are critical especially in a large network
with high load. In reality, NIDS often employ multiple layers of filters to reduce
the amount of traffic going through the expensive analysis process. This also helps
to increase the accuracy of the detection, as it reduces the noise in the input data.
Another disadvantage of NIDS is that it is susceptible to some attacks involving
a large amount of traffic, such as Denial of Services Attack. Thus, the ability
to resist such kinds of attacks is an important consideration when designing an
NIDS.

2.4.3 NIDS in Mobile Networks

Rapid development of mobile phone industry has led to mobile devices and
equipment with extensive computing capability and connectivity comparable to
those of fixed computers. This growth has led to more attention both from
attackers and security researchers. The ability to download and install third-party
applications in almost all smart-phones increases the probability that malicious
code will be installed in a mobile phone without the user’s knowledge. As the
mobile network now is becoming an all-IP network, it is exposed to many internet
threats including botnets. Therefore it is necessary to integrate an IDS into
the mobile network’s architecture to detect and defend against these traditional
internet threats.
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2.5 Related Work

DNS analysis is an emerging technique for detecting malicious activities in the
network. It has been claimed by many researchers that DNS analysis is an
effective technique for botnets detection, especially those with fast-flux and
domain-flux behaviors.

As one of the first efforts, T. Holz et al. presented the characteristics of FFSN
and introduced a technique to detect a FFSN in a network [21]. Observing the
behaviors of the FFSN, Holz et al. proposed a weighted linear regression for
assigning a fluxz-score for a domain name,i.e., a score that determines how likely
it is that a domain belongs to a FFSN. The regression function is a linear function
of three features: number of unique A records, number of distinct Autonomous
System Numbers (ASNs), and number of unique NS records. However, the
weights in the Holz’s regression function depend on the characteristics of the
network in which the system is deployed.

R. Perdisci et al. proposed a technique to detect in-the-wild FFSNs by analyzing
the passive DNS traces [22] in three steps: first reduce the amount of traffic
using filter rules, then cluster domains into groups using a similarity measure
that is a Jacard Index that compares the set of resolved IP addresses between
two domain names, and finally apply a statistical supervised learning approaches
to a number of passive and active features to determine if a domain belongs to a
FFSN. Perdisci et al. also discussed how spam detection can be benefit from this
technique.

For detecting domain-flux, S. Yadav et al. grouped domain names in the DNS
queries together by their top level domains (TLDs), mapped IP address set, or the
connected component in a bipartite IP-domain graph [18]. The technique is based
on the observation that algorithmically generated domain names have a different
distribution of their alphanumeric characters or bigrams compared to normal
domain names due to the randomness in the generated domain names. They have
proposed metrics to capture the characteristics of the algorithmically generated
domain names, specifically they propose to use Kullback-Leibler divergence on the
distribution of unigrams and bigrams of group of domain names, a Jaccard index
that compares the set of bigrams between a benign domain and a malicious one,
and computing the edit distance to convert a domain name to another in order
to capture the randomness of a group of domain names. Additionally, Yadav et
al. claimed that component analysis of the IP-domain mapping graph increases
the detection rate.

Y. Jin et al. studied network-wide communication patterns by constructing a
bipartite graph of traffic flows between hosts inside a network and hosts outside, a
so called traffic activity graph (TAG) [23]. The authors observed that the graph of
network traffic has a community structure which reflects the social relationships
of these applications’ users, i.e., the network traffic graph consists of multiple
strongly connected components which are isolated from others. Among those
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strongly connected components, there are some giant components which can be
further divided into smaller components which are loosely connected to each other
by a small number of edges. In other words, the giant components consist of a
number of dense subgraphs which show intensive activities between their nodes.
Decomposing such giant connected components using the co-clustering algorithm
tri-Nonnegative Matriz Factorization (also known as Nonnegative Matrix Tri-
Factorization or Orthogonal Nonnegative Matrix Tri-Factorization) [24], the
authors discovered that each application exhibits a different communication
pattern that is represented by different structures of components in the traffic
flow graph. These structures of components can be categorized into four types
that represent different interactions between hosts inside and outside of a network.
This information can be used to detect malicious activities in a network. However,
Jin et al. did not provide any method to use the component structure of the graph
for malware detection. Furthermore, the decomposition algorithm tNMF has high
complexity, and its optimal parameters depend heavily on the characteristics of
the network. Jin et al. only provided a method to statically find the optimal
parameters, even though a dynamic method would be desired in practice [23].

N. Jiang et al. applied the Jin et al. findings to detect suspicious activities in
a network through DNS failure graph analysis [19]. Jiang et al. constructed
a bipartite graph for the failed (or unproductive) DNS queries, based on the
the intuition that a computer usually is infected by more than one instance of
malicious software, and thus they exhibit a correlated communication pattern
in their DNS queries. The tri-Nonnegative Matriz Factorization (also known
as Nonnegative Matrix Tri-Factorization or Orthogonal Nonnegative Matrix Tri-
Factorization) algorithm is used to extract the dense subgraphs from the DNS
failure graph. Afterwards, these subgraphs are categorized and their evolution
tracked over time. Based on their evolution, they are able to determine if hosts
and domains in a subgraph are malicious [19]. However, in their work, Jiang et
al. did not point out the specific method for using this information to detect
malicious activities in a network.

As DNS analysis approach gained more attention from the security research
community, more systematic approaches were developed to utilize DNS to detect
malicious activities. Two domain name reputation systems have been proposed:
Notos by Antonakakis et al. [25] and EXPOSURE by L. Bilge et al. [26]. These
are two large scale passive DNS analysis systems for detecting malicious activities
that have been built and deployed in large ISP’s network. The premise of these
system is that malicious use of DNS service has unique characteristics which
can be use to distinguish malicious use from benign use. Thus, in these two
systems, their respective authors built a model of normal DNS usage based on a
set of features which were extracted from captured DNS traffic. The deviation of
malicious domain names’s behaviors are identified by a machine learning approach
for anomaly detection.

In Notos [25], the statistical features of a domain name is divided into three
different planes: network-based features, zone-based features, and evidence-based
features. While network-based features are used to rule out the benign domain
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names which have stable DNS usage, the zone-based features are extracted from
the domain names themselves (by string analysis or whois information) and are
employed to distinguish malicious domain names and legitimate domain names
that belong to known CDNs. In the evidence-based features plane, the domain
names and their mapped IP addresses are checked against known malicious
domain names and IP addresses. The reputation score of a domain name is
derived by a Decision Tree using Logit-Boost strategy (LAD) reputation function.

Similarly, EXPOSURE [20] uses a set of 15 features that are divided into
four groups: time-based features, DNS answer-based features, TTL value-based
features, and domain name-based features. These features aim to detect different
aspects of the malicious domain names behaviors. The time-based features
capture the short-lived domain names which have regularly repeating patterns
by using the cumulative sum change point detection algorithm. The DNS
answer-based features expose domain names whose mapped IP addresses spread
over multiple autonomous systems (ASs). The TTL value-based features detect
domain names that have short TTL values and if those values are changed
frequently. Finally, the domain name-based features identify domain names that
would be “strange looking” to users. The J48 decision tree algorithm is used
for the classifier to determine whether a domain name is malicious based on its
features [20].

Continuing from previous work on building Notos, a domain name reputation
system [25], Antonakakis et al. proposed Kopis, a system for monitoring a
overview at the high level of the DNS hierarchy in order to discover the anomaly in
malicious DNS activities [6]. Unlike previous detection systems such as Notos [27]
or EXPOSURE [26], that rely on passive monitoring of recursive DNS (RDNS)
traffic at a limited number of RDNS servers, Kopis takes advantages of the
global visibility of DNS traffic at the upper levels of the DNS hierarchy to detect
malicious domain names. The random forest classifier is used as the machine
learning algorithm to build a model for the detector from a number of statistical
features that represent the resolution patterns of legitimate and malicious domain
names.

M. Knysz [27] discussed various forms of mimicry attacks against current FFSN
detection systems. These attacks exploit the fact that almost all current FFSN
detection systems are based on the distinction between the behaviors fo the
FFSN and benign domain names. With the leverage of accurate models for bot
decay, online availability, DNS advertisement, and performance, the botmaster
can construct novel mimicry attacks that can bypass current FFSN detection
systems such as the ones proposed by Holz. et al. [21], Passerini et al. [28], Hu
et al. [29], Huang et al. [30], and Perdisci et al. [22]. These mimicry attacks are
increasing adopted by FFSNs to circumvent simple and fast detection systems,
although botmasters have not managed to produce the accurate models assumed
by this study yet. Nevertheless, it is necessary to develop more sophisticated and
advanced techniques for detecting FFSN.

Hu et al. [31] provides an interesting measurement and analysis at a global scope of
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IP-usage patterns of fast-flux botnets. They deployed a system of 240 lightweight
DNS probing engines spread over multiple geographical locations all over the
world to collect DNS data of both legitimate and malicious domain names. This
data gives an interesting global view of IP-usage patterns, such as the number
of IP addresses employed, the overlap between the IP addresses of the A records
and NS records, and how the IP address set mapped to a domain name grows.
Their insight view provides some interesting features that could be used to detect
FFSN botnets.

Hao et al. [32] study the initial query patterns of malicious domain names during
short period after they are registered. This study revealed a number of interesting
findings related to the initial behaviors of malicious domain names, including the
time between registration and attack, the location of the DNS infrastructure, and
their early lookup behaviors. These findings could be used as a guide for design
and building early warning systems for detecting malicious domain names based
on DNS analysis.



CHAPTER 3

DNS Traffic Analysis

As discussed in Chapter 2, the operation of a botnet which employs fast-
flux and/or domain-flux depends heavily on the use of DNS. Although bots
have behaviors similar to legitimate services, fast-flux or domain-flux botnets
have some characteristics due to their nature. For example, FFSNs are
mostly composed of bots running on personal hosts, thus the botmaster cannot
choose nodes with particular IP addresses; while the TP addresses of legitimate
services are carefully chosen by the service providers to meet their customers’s
requirements. One of the important customer requirements is low delay, hence
the service should be located “near” in the network to the user. In contrast,
the botnet may utilize non-local communication to communicate between the
local bots and the C&C servers. This suggests that there should be a graphical
clustering of IP addresses for legitimate services and a diversity of IP addresses
for the C&C servers. Furthermore, there is no guarantee of the uptime of the
bots because the botmaster does not have physical control of the hosts. Thus,
the hosts in FFSN can come and go any time, much like the nodes in a P2P
network of similar hosts [21]. Or in domain-flux botnets, in order to exhaust the
blacklisting effort, a lot of domain names are generated and most of them are
unregistered domain names. Additionally, as noted in Chapter 2 the queries from
bots for the generated (or listed) domain names of C&C servers will result in
multiple failed DNS queries to a large set of domain names within a short time
window which rarely happens for legitimate services.

A common practice in defending against botnets is to detect and mitigate their
communication infrastructure by inspecting the network traffic and discovering
abnormal patterns such as IRC traffic or the signature of the botnet’s commands.
However, it is not always feasible to access the data at the application layer as
these data may be encrypted. Furthermore, inspecting traffic to and from an
individual endpoint will not uncover the correlation between endpoints that is a
strong evidence of the presence of a botnet in a network, especially botnets that
employ fast-flux and domain-flux.

In this thesis, we proposed to construct an anomaly-based botnet detection
technique based on DNS traffic analysis. The main idea of our approach is to
build a graph from the DNS traffic and then analyze this graph to discover
distinctive features of malicious activities. The DNS graph allows us to observe
the correlation between different endpoints in the network. Furthermore, DNS
traffic is always available® and the amount of DNS traffic is rather small compared
to other traffic in the network. Although DNS traffic analysis alone cannot

* As stated in the scope of the thesis, we did not consider DNSCrypt or DNSSEC traffic.
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produce highly accurate detection results, it can provide complementary evidence
to determine the presence of a botnet in a network. An appropriate combination
with other traffic analysis techniques is needed to provide high accuracy botnet
detection.

3.1 DNS Graph

Inspired by the work of Y. Jin et al. [23], we constructed two graphs from captured
DNS traffic: a DNS lookup graph and DNS failure graph. These two graphs are
expected to capture the correlation between domain names and IP addresses
(or hosts) in a network. This correlation will be used to detect the presence of
fast-flux and domain-flux network in the traffic. As we will see later the former
type of graph helps to detect fast-flux, while the later helps to detect domain-
flux. The DNS lookup graph and DNS failure graph are formally defined in
the following subsections. The DNS lookup graph and DNS failure graph are
constructed for each observation period T (also called an epoch), often an epoch
of one day (T' = 1 day) is used to maximize the number of correlations observed
and eliminate the effect of IP address churn [33]. Although we only considered IP
version 4 (IPv4) [34] in our work, the application of our approach for IP version
6 (IPv6) [35] is analogous.

3.1.1 DNS Lookup Graph

For each epoch T of DNS traffic, we will use D to denote the set of unique
domain names queried by hosts in the network and Z to denote the set of unique
IP addresses returned for those domain names. A DNS lookup graph is a weighted
bipartite graph Gz, := {D x Z,£} where an edge e = (d,i,w) € £ exists between
the domain name d € D and the IP address ¢ € Z if ¢ is returned for d during
the observation epoch and the weight w indicates how many times ¢ is returned
for d in this set of queries. Intuitively, the DNS lookup graph shows the mapping
between domain names and their corresponding IP addresses. Note that the
DNS lookup graph is built only from the successful DNS queries, i.e, those with
a response code of NO_ERROR [1, 2].

3.1.2 DNS Failure Graph

Similar to the DNS lookup graph, the DNS failure graph is built from the failed
DNS queries which have a response code other than NO_ERROR [!, 2] in the
captured network traffic during a epoch T'. Let D denote the set of unique domain
names appearing in failed DNS queries and H be the set of hosts issuing those
failed queries. A DNS failure graph is a weighted bipartite graph Gp := {DxH,E}
where an edge e = (d, h,w) € £ exists between a domain name d € D and a host
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h € H if h issues at least one failed query for d during the observation period and
the weight w indicates the number of failed queries for d originating from h.

3.1.3 Community Structure of DNS Graph

After building a DNS lookup graph and a DNS failure graph, we want to extract
information about the correlations of the vertices and then use this information
for detecting fast-flux or domain-flux botnets. We observed that the DNS lookup
graph and the DNS failure graph exhibit the community structure mentioned in
the work of Y. Jin et al. [23]. Analogous to their findings, both the DNS lookup
graph and the DNS failure graph consist of a number of connected components
that are isolated from each other. Among these connected components, there are
some giant connected components that can be decomposed further into several
loosely connected dense subgraphs. Those dense subgraphs represent the intensity
in the mapping patterns between domain names and their corresponding IP
addresses in the DNS lookup graph, and the intensity in query patterns between
domain names and hosts in the DNS failure graph. Figure 3.1 shows an example
of the community structure in a DNS failure graph generated using Graphviz [30].

Figure 3.1: An example of community structure in DNS failure graph. A red
square represents a host, while a blue circle represents a domain name.

Analogously to the results claimed by Jiang et al. [19] and Jin et al. [23], our
investigation shows that the structure of the dense subgraphs fall into three
main categories: domain star, IP star, and bi-mesh. As stated in [19, 23] these
structures are evidence of the presence of malicious activities in a network.

Domain star: This category contains subgraphs which have some dominant
domain names. These domain names are mapped to a large number of IP
addresses in the case of a DNS lookup graph, or are unsuccessfully queried
for by a large number of hosts in in the case of DNS failure graph.
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IP star: In contrast to domain star subgraphs, in IP star subgraphs, there are
some dominant IP addresses which are associated with a large number of
domain names. In the DNS lookup graph, the same set of IP addresses
are returned for multiple domain names, while in the DNS failure graph
the same set of host interfaces’ IP addresses issued failed DNS queries to a
large set of domain names.

Bi-mesh: The subgraphs in this category have approximately an equal number
of domain names and IP addresses in the DNS lookup graph (or hosts in
the DNS failure graph) which are strongly connected to each other. This
type of subgraph shows intensive correlation between domain names and IP
addresses in the DNS lookup graph (or hosts in the DNS failure graph).

Figure 3.2 shows examples of different structures of subgraphs extracted from a
DNS failure graph.

(a) Domain star (b) Bimesh

(c) IP star (Host star)

Figure 3.2: Example of structures of subgraphs in a DNS failure graph. A red
square represents a host, while a blue circle represents a domain name.

The observation of community structure in the DNS lookup graph and the DNS
failure graph leverages the idea of extracting dense subgraphs from these graphs
and using the subgraphs’s features to discover abnormal behaviors that can
indicate malicious activities within a network. As noted in Chapter 2, in a fast-
flux botnet, the IP addresses in the DNS responses are changed frequently. Thus,
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we expected that the dense subgraphs in the corresponding DNS lookup graph will
exhibit this correlation between domain names and their associated IP addresses.
Conversely, we expected that the correlation between domain names and hosts
caused by a domain-flux botnet will result in dense subgraphs in the corresponding
DNS failure graph. Using different features extracted from these dense subgraphs
as input for a machine learning algorithm allows us to evaluate the probability
that these dense subgraphs are fast-flux and/or domain-flux botnets in a network.
In the following section, the proposed analysis procedure will be described in
detail.

3.2 Analysis Procedure

The analysis procedure for the proposed technique is depicted in Figure 3.3.
The overall procedure takes captured network traffic as input and produces a
maliciousness score associated with a group of domain names and IP addresses (or
hosts) which corresponds to a dense subgraph in the network traffic graph. The
prototype system was implemented and attached to the General Packet Radio
Service (GPRS) Core Network and is fed with network traffic from a mobile
data network in order to detect suspicious activities in the mobile data network.
However, this analysis procedure could be deployed in any network which supports
TCP/IP, hence it can be utilized with to any ISP’s or operator’s network.

The traffic data is captured by sensors at the gateway of the GPRS Core Network
and then processed with multiple modules. Further details on each module are
described in subsequent sections. Below brief descriptions of these modules are
given.

(a) Graph Construction Module: In this module, DNS traffic data is
extracted from the captured data, anonymized, and divided into multiple
epochs with a duration of one day (T = 1 day). Afterwards, a DNS lookup
graph and a DNS failure graph are built from the DNS query responses
as described in Section 3.1. In order to reduce the amount of data to be
processed, this module also performs some filtering of the data to remove
irrelevant data, such as the DNS queries associated with popular sites,
DNS overloading [19], server errors, and malformed queries. Note that this
filtering process is conservative in the sense that it only removes traffic which
is unlikely to be due to suspicious activities. A further description of this
module is presented in Section 3.3.

(b) Graph Decomposition Module: The DNS lookup graph and the DNS fail-
ure graph constructed in previous module are input to a graph decomposition
module. This module first uses the Breath-First Search (BFS) algorithm to
find connected components. Afterwards, those connected components are

TWe used the list of top 2000 domain names in the ranking system of Alexa [37] as the list
of popular sites. The intuition is that although a malicious site can attract a large amount of
queries, it is not possible for this site to be one of the top sites as ranked by Alexa.
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Figure 3.3: Analysis procedure

decomposed into dense, coherent subgraphs using the co-clustering algorithm
Nonnegative Matriz Tri-Factorization (NMTF) [24]. The resulting subgraphs
(or clusters) are passed to the next module for further processing. Details of
the clustering process and the NMTF algorithm is given in Section 3.4.

Feature Extraction Module: For each cluster from the Clustering Module,
a number of network-related features are extracted and computed. These
features were selected based on the distinctive characteristics of fast-flux
and domain-flux botnets observed in our experimental data. Details of
this experimental data and the features that we have utilized are given in
Section 4.2 and Section 3.5 respectively.

Regression Function Module: The input of this module are clusters and
their features as extracted by the previous modules. Utilizing a machine
learning approach, this module computes a maliciousness score for each
cluster. The greater this score, the more malicious a cluster is considered
to be. These scores are stored in a database for future reference. Details of
the machine learning algorithm and the ground truth that we used to train
this algorithm are given in the Section 3.6.
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3.3 Graph Construction Module

This module performs pre-processing of the data and then builds the DNS lookup
graph and the DNS failure graph. The detailed steps are described in following
subsections.

3.3.1 DNS Data Extraction

The DNS data used for the experiments was extracted from traffic captured using
Tshark [38]. Tshark is a command line tool for network data manipulation
and analysis based on the libpcap [39] library. Tshark provides the ability
to capture live network traffic or read a data file saved in 1ibpcap format.
Tshark allows the user to extract the desired data from the traffic using one or
more libpcap filters. In our experiments, we used Tshark to extract all DNS
A and NS records in the captured traffic.

The DNS data is then divided into two datasets: successful DNS queries and
failed DNS queries. This determination is based on the response code in the DNS
query responses. A query with the response code of NO_ERROR is considered to
be successful, otherwise the query failed [, 2].

3.3.2 Anonymization

In order to guarantee privacy, we applied an anonymization process to the
extracted DNS data before processing the data. This anonymization was
performed using Cryptography-based Prefiz-preserving Anonymization (Crypto-
PAn), a tool for anonymizing the IP addresses in traffic traces in a prefix-
preserving manner [10, 41]. Crypto-PAn guarantees a one-to-one mapping
from the original IP address to an anonymized IP address, while preserves the
prefiz [12] shared between any two original IP addresses, i.e., if two IP addresses
in the original trace share a k-bit prefix, their corresponding IP addresses in the
anonymized trace will also share a k-bit prefix [10, 41]. Furthermore, Crypto-
PAn is a cryptography-based anonymization tool, hence it ensures the secrecy
and (pseudo-)randomness of the mapping, while providing a consistent mapping
between the original IP address space and the anonymized IP address space
across traces without requiring a detailed mapping to have been stored, thus the
same IP address in the original trace will be mapped to the same anonymized IP
address even though it appears in a different trace that is processed at a different
time. This property allows Crypto-PAn to operate efficiently. Note that the
mapping provided by Crypto-PAn is a one-way mapping, this is a desired privacy
property for the anonymization process. However, in our experiment, we used a
modified version of Crypto-PAn that allows us to store the mapping between the
original IP address to an anonymized IP address in order to be able to reverse
the anonymization process. This stored mapping allows a network’s operators to
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determine an IP address in their network that may be infected by a botnet based
upon the result of our analysis.

3.3.3 Data Filtering

The data filtering step removes traffic queries for popular sites (e.g. google.com,
facebook.com, amazon.com), traffic caused by DNS “overloading” or server error,
or queries with malformed domain names which is either legitimate or unlikely
to be associated with any malicious activities. These types of traffic account for
a large amount of DNS traffic in a network and they may introduce noises that
affects the accuracy of our analysis process. For this reason, we filtered out this
traffic before any further analysis is performed.

The details of the traffic to be filtered are as follows:

(a)

Queries for popular sites: These are queries for well-known sites operated
by well-known services providers such as Google, Facebook, Amazon, or
Akamai. In order to remove this traffic, we obtained a list of the top popular
sites from Alexa, a well regarded web-site ranking system [37]. Our intuition
is that although a malicious site can attract a lot of queries, it is unlikely to
be among the top sites listed by Alexa. For this reason, we decided to remove
queries from domain names that match subdomains of any domain listed in
Alexa’s top 2000 sites. A threshold of 2000 is chosen based on observation
on the list of popular sites given by Alexa. Furthermore, we skipped all
the sites associated with dynamic DNS services because these dynamic DNS
services may potentially be used by domain-flux botnets (e.g. Kraken). A
Deterministic Finite Automaton (DFA) is built from the top sites listed by
Alexa. This DFA allows us to perform fast matching (with computational
complexity of O(k); where k is the maximum length of a domain name in
Alexa’s top sites), rather than linearly checking the list of popular sites each
time a domain is checked (which would have a computational complexity of
O(n.k); where n is the length of the Alexa’s top sites list (n = 2000) and &
is the maximum length of a domain name in that list).

DNS “overloading”: DNS “overloading” is a new usage of DNS which is
employed by anti-spam or anti-virus software to notify the querying host
that the requested domain name or IP address is in blacklists that they
are maintaining [13, 19]. For example, when a SMTP server receives an
email message from an address in the domain pvrmhn.mooo. com, it checks
if this domain in the blacklist by sending a DNS query to a blacklist
service dnsbl.com with the form pvrmhn.mooo.com.dnsbl.com (or
pvrmhn.mooo.com depending on the blacklisting service provider). If the
domain is in the blacklist, then the DNS server will return an address in the
127.0.0.0/8 network, otherwise it will return a response with a response
code of NXDOMAIN (meaning Non-Existent Domain) [1, 2]. This mechanism
is the same when an IP address is checked, except that the order of the
IP address is reversed before concatenated with another fixed domain name
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(such as “bl.spamcop.net”) to form the domain name in the query to the
blacklist service. A detailed example of DNS “overloading” is depicted in
Listing 3.1.

Listing 3.1: An example of DNS “overloading”

$ dig pvrmhn.mooo.com
pvrmhn.mooo.com. 10800 IN A 127.0.0.2
$ dig 83.22.41.77.bl.spamcop.net

;; —>>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 44794
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: O

In order to filter out DNS “overloading” traffic, we compared the names of
authoritative servers and the queried domain names against a list of blacklist
services provided by well-known anti-spam and anti-virus organizations such
as Spamhaus [14], BitDefender, F-Secure, or McAfee. If the query was found
to have the format of a DNS “overloading” query (i.e., ending with any of
the domain names in the list of the blacklisting services’ domain names), it
was removed from the experimental data. Similar filtering out queries to
popular sites, a DFA was also employed to speed up the process of filtering
DNS “overloading” queries.

(c) Server error: A server error occurs when the domain is temporarily
unresolvable because of the failure of the DNS server itself. The responses in
this case have a response code of SERVERFAILURE [, 2], and they usually
do not have a response field. In order to filter out this type of traffic, we
removed the responses with the response code of SERVERFAILURE and/or
those having no data in the response fields.

(d) Queries with malformed domain names: A query is considered as a
query with a malformed domain name (or malformed query) if the queried
domain name is an invalid domain name. For example, an IP address or
an email address may be used as the domain name in the query, or the
domain name is in an invalid format, or does not have a correct TLDs for use
in the Internet services listed by the Internet Assigned Numbers Authority
(IANA) [15]. To detect such a malformed query, we used a regular expression
to check for the format of a valid domain name as specified in RFCs 1034
and 1035 [1, 2]. We also required that the valid domain names must end with
one of the TLDs in the list published by TANA [15]. We employed the same
approach of using a DFA as in the previous cases to quickly match the TLDs.
Any query with a queried domain name that did not meet the requirements
to be a valid domain name was removed from the captured traffic.

As we can see, the above data filtering processes are conservative in that they
retain all the data related to DNS queries likely to be associated with malicious
activities in the network while removing irrelevant or legitimate DNS traffic that
might introduce noise into our analysis. Table 3.1 summarizes the data filtering
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processes applied to our two data sets of successful DNS queries and failed DNS
queries.

Table 3.1: Data filtering processes applied to each data set

Filters Successful queries | Failed queries
Queries for popular sites Yes Yes
DNS “overloading” Yes Yes
Server error No Yes
Queries with malformed domain names Yes Yes

3.3.4 Graph Construction

After pre-processing (i.e., DNS data extraction and anonymization) and filtering,
the graph construction is straight forward. A DNS lookup graph and a DNS
failure graph are built from the data of successful queries and failed queries
(respectively). Note that during the graph construction process, the associated
attributes of the domain names and IP addresses (or hosts) are also extracted.
The program for constructing a DNS lookup graph and a DNS failure graph
were written in Python [16]. The program takes the extracted DNS data stored
in a textual file format as input, then computes the lookup and failure graphs
for each epoch. These graphs are output to a file for further processing. These
graphs can also be visualized using pygraph, a Python open source interfaces to
Graphviz [36].

3.4 Graph Decomposition Module

The DNS lookup graph and DNS failure graph obtained from the Graph
Construction Module are further processed by the Graph Decomposition Module.
This module first performs a Breath-First Search (BFS) on the graph to find the
connected components of the graph. For components with a significant number
of verticest, the Nonnegative Matriz Tri-Factorization (NMTF) [24] algorithm is
used to decompose these components into dense, coherent subgraphs. The NMTF
algorithm has been claimed to be effective in finding the dense subgraphs of a
network traffic graph in previous studies [23, 19]. The overall procedure for graph
decomposition is given as Algorithm 1.

Further details of the NMTF algorithm, how this algorithm is used to obtain
coherent co-clusters in the graph, and some practical issues with the NMTF
algorithm are described in following subsections.

¥ We considered components with of at least 30 vertices as significant, see Chapter 4 for
further details.
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input : DNS lookup or failure graph G
output: Dense, coherent subgraphs

Find connected components G = J, G; ;
foreach G; do
{Ci} = NMTF (G)) ;
foreach C; do
‘ if density (C;) > threshold then Output C; ;
end
end

Algorithm 1: Graph decomposition procedure

3.4.1 Graph Decomposition

As discussed in the previous sections, the DNS lookup graph and the DNS failure
graph both have a community structure. This community structure reveals the
communication patterns between domain names and IP addresses (or hosts) in a
network. Each community in a graph represents a group of domain names and
IP addresses (or hosts) that communicate extensively to each other. Thus, it
is desirable to extract those communities out of the graph and perform further
analysis on them.

Observations on our data set shows that both the DNS lookup graph and the
DNS failure graph are sparse bipartite graphs with an adjacency matrix in the
form:

0 A

M =
AT 0

where A is a sparse matrix presenting the interaction between domain names and
IP addresses (or hosts)®. The rows and columns of this matrix can be reordered to
reveal some dense blocks in the matrix as illustrated in Figure 3.4. These blocks
correspond to the dense subgraphs in a graph. In other words, the problem of
decomposing a graph into dense subgraphs is equivalent to extracting these dense
blocks in the sub-matrix A. In the next subsection, the NMTF co-clustering
method that we used for graph decomposition is described in detail.

§ For simplicity, from this point on, we use the terms IP address and host interchangeably
when there is no difference between a DNS lookup graph and a DNS failure graph in the discussed
topic. Furthermore, in these cases, we also use the term graph to specify both a DNS lookup
graph and a DNS failure graph.
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Figure 3.4: Examples of dense blocks in a sparse matrix
3.4.2 The NMTF Co-clustering Method

Analogously to [23], the problem of extracting the dense subgraphs from a DNS
lookup graph or a DNS failure graph can be formulated as a co-clustering (also
known as the simultaneous clustering) problem in which the domain names and
IP addresses are jointly clustered into k domain name groups and [ IP address
groups. Co-clustering has been proved to effectively extract the relationship
between the data and its features (i.e., the rows and the columns when the data
is organized as a matrix) [17]. These domain name groups and IP address groups
form k x [ submatrices, each of which is determined by a pair consisting of a
domain name group and a IP address group. Dense subgraphs of the original
graph can be extracted from the subgraphs represented by these submatrices.

As illustrated in [24], the co-clustering problem can be reformulated as a
orthogonal nonnegative matriz tri-factorization problem, which can be solved
using the Nonnegative Matrix Tri-Factorization (NMTF) algorithm. Basically,
the orthogonal nonnegative matriz tri-factorization is defined as follows: Given
a nonnegative matrix A € R™", the aim is to factorize (or more precisely,
approximately decompose) this matrix into three low-rank nonnegative matrices
U e RTXk,S € Rin,V € RT}er (i.e. k,I < min(m,n)) in which U and V are
orthogonal matrices.

A~USVT (3.1)

More precisely, we solve

min  |JA-USVT|?, st. UUT=LVIV =1 (3.2)
U>0,5>0,V>0
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where ||-||? is Frobenius norm-2. The orthogonal constraints for U and V
distinguish NMTF from other algorithms in the Nonnegative Matriz Factorization
(NMF) family, and enable it to simultaneously cluster the rows and columns of a
matrix [17]. As was illustrated in [24] Equation 3.2 corresponds to the equation
to find the solution for simultaneous K-means clustering of rows and columns of
matrix A.

The NMTF solution is obtained using an iterative optimization procedure. The
matrix U, S, and V are first initialized to random positive matrices, then the
following iterative updating rules are applied to decrease the mean square errors:

(ATUS)j
Vi = Vi T AT re) (33)
(AVST)HC
Uik < Uik (FFTATV ST, (3.4)
o (UTAV),
S’LJ A SZ] (UTUSVTV)ZJ (35)

It has been proved in [24] that with the above updating rules, the algorithm will
converge to a local minimum.

3.4.3 Interpretation of NMTF Results

The NMTF result is interpreted in [18] as a probabilistic model that is associated
with optimal co-clustering in a sense that loss of mutual information or correlation
between row-clusters and column-clusters is minimized. The factor matrices U
and V are cluster indicators in which each row contains the probabilities that
a row or a column belongs to a cluster. The matrix S shows how the row-
clusters are related to column-clusters and vice versa. Figure 3.5 illustrates an
example where a matrix A € Rixg is clustered into three row-clusters and two
column-clusters. In this figure a larger square indicates the larger value of the
corresponding element in the matrix. As one can see the the figure, U and V
shown three row-clusters and two column-clusters respectively. Each column in §
tells the relationship between row-clusters and column-clusters. For example, in
this case, row-clusters 1 and 3 contribute to column-cluster 1, while row-clusters
2 and 3 contribute to column-cluster 2.

In the context of our problem of decomposing the DNS lookup graph and the
DNS failure graph, the result is interpreted similar to the approach in [23, 19].
The orthogonal matrices U and V' divide domain names and IP addresses into k
domain name clusters and [ IP address clusters respectively. A pair of a domain
cluster and an IP cluster forms a subgraph (or a co-clusterY) in our graph. As

YWe will use the term subgraph and co-cluster interchangeably from this point forward.
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Figure 3.5: An visual interpretation of NMTF result [1¥]

mentioned above, each element U;, in U indicates the probability that a domain
name ¢ belongs to a domain name cluster p. Similarly, each element v;, in V'
indicates the probability that an IP address belongs to a IP address cluster g.
In other words, matrices U and V naturally form a soft co-clustering in which
a domain name or an IP address can belong to multiple clusters. For simplicity,
in the scope of our work, we transformed this soft co-clustering into a hard co-
clustering in which a domain name or an IP address can belong to only one co-
cluster. This is done by assigning a domain name (or an IP address) to only the
cluster with the highest probability, i.e., the cluster corresponding to highest value
in a row. If all values in a row are zeros, then the domain name or IP address is
not assigned to any cluster. Additionally, if there are multiple clusters associated
with the highest value, then the domain name or IP address is randomly assigned
to one of the candidate clusters. Formally, we transform the matrices U and V
into membership indicator matrices U and V as:

ﬁip _ 1 if p :. argmaxj{Uij : Uij > 0} (3.6)
0 otherwise.

~ 1 if q=argmazx;{Vj :V;; >0}

Vig = . e (3.7)
0 otherwise.

With U and V obtained from above step, we used a generic notation G := {D x
H,E} to denote either a DNS lookup graph or a DNS failure graph. Analogously

to [23, 19], we compute the group density matrix as:
- UTAV
U [Vl

where ||-||! is Frobenius norm-1. We defined the density of a bipartite graph
G:={D x H,E} as:

€1l
DI NI
where ||X|| is the population of the set X. The higher this value is, the more
dense the corresponding bipartite graph is. When the density value reaches 1,

density = (3.9)
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the bipartite graph become a bipartite clique. Based on the density’s definition
above, it is apparently that a element ﬁpq represents the density of a subgraph
Gpq constructed by the domain name cluster p and host cluster ¢q. A larger value
of flpq indicates a strong connection and correlation between the domain names
and hosts in the corresponding subgraph.

3.4.4 Obtaining Coherent Co-clusters

Having the group density matrix H as defined in subsection 3.4. 3, it is straight-
forward to obtain dense subgraphs by setting a threshold d on the density of the
subgraphs. A subgraph corresponding to H pq 18 extracted if and only if Hpq > 6.

However, in practice, it is difficult to determine the number of domain name
clusters k£ and host clusters [ in advance. Multiple methods can be applied to
determine appropriate values of k£ and [ such as trial-and-error or statistical
testing. These methods require running the NMTF algorithm several times.
Unfortunately, the NMTF algorithm has quite high computational complexity.
This results in an expensive computation in practice that is undesirable or even
impractical when the size of the graph increases. Thus, in our work, we employed
a method similar to [19]. Instead of trying to find the “true” values of k and
[, we ran the NMTF algorithm with relatively high valuesl of k and I, which
produces a coarse-grain clustering result. The co-clusters with high density, i.e.,
greater than J, are extracted. Then we merge co-clusters which share either a
common domain name cluster or a common host group. This way we obtain the
coherent subgraphs represented by irregularly shaped adjacency matrices, rather
than just rectangular ones. Formally, we use DG, to denote pth domain name
cluster, HG, to denote gth host cluster, and H := {DG x HG, ﬁ} to denote the
(hyper)graph where an edge (DG, HG)) exists between a domain name cluster
DG\, and a host cluster HG), if and only if ﬁpq > d. In our experiment, § was
set to, see Chapter 4 for further details. The co-clusters merging process can be
formulated as a process of finding the connected components in (hyper)graph H.
This process is depicted in the Figure 3.6.

.t

Figure 3.6: Merging co-cluster [19]

IWe set k = I = min(m,n)/30 in our experiments. Note that this value is based on our
observations of the data as described in Chapter 4.
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Analogously to the result in [19], this method allows us to obtain dense and
coherent subgraphs from both the DNS lookup graph and the DNS failure graph.

3.4.5 Practical Issues

In our proposed method, the NMTF is implemented using the iterative updating
process introduced in [21]. The computation time of the algorithm depends on
the number of iterations that in turn depends on how the matrices U, S, and V are
initialized. In our implementation, we employed the SVD initialization method
that is proposed in [19]. The initialization process of the algorithm is as follows:
at first, we perform a rank-k singular vector decomposition (SVD) on A, then we
projected the rows into a k-dimensional subspace spanned by the top k& principal
components. Then we performed a k-means clustering on the rows to obtain a
row cluster membership indicator matrix as the initial value for matrix U. We
set the value of matrix U = U + € where € is a small positive value in order to
avoid zero entries in U. The same process is used to initialize matrix V. The
matrix S is initialized as S = UT AV. It has been proved in [19] that this SVD
initialization process helps the NMTF algorithm converge faster to the optimal
solution.

3.5 Feature Extraction Module

Given the subgraphs from the Graph Decomposition Module, a number of features
are extracted for each subgraph. These features are expected to capture the
distinctive characteristics of malicious activities in the DNS traffic. Some of the
features are only applied to the DNS lookup graph or the DNS failure graph,
while others are applied to both types of graphs. The detailed descriptions of all
the extracted features are:

(1) Median** life-time of a domain name in the subgraphs: The life-time of
a domain name is defined as the interval from when the domain name
first appears in DNS traffic until the last time the domain name is seen.
This feature aims too detect short-lived domain names which are often
algorithmically generated domain names [20].

(2) Median life-time of an IP address: The life-time of an IP address is analogous
to the life-time of a domain name but is based upon an IP address rather than
a domain name. Similar to the case of a domain name’s life-time, this feature
alms to detect short-lived IP addresses that are often caused by the rapid
swapping of IP addresses in fast-flux botnets [20].

**We opted to use median measures instead of mean measures when computing the features for
the subgraph because the median measure is less sensitive to outliers than the mean measure is.
Furthermore, the size of subgraphs in terms of number of domain names and hosts are relatively
small, thus the median value appears to be more suitable.
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3)

(4)

(9)

Domain name/IP ratio: The domain name to IP address ratio is the total
number of domain names divided by the total number of IP addresses in the
subgraph.

Median number of distinct domain names mapped to an IP address. This
feature is proposed based on the observation that in domain-flux botnets, the
number of queried domain names relative to the number of IP addresses is
relatively large.

Median number of distinct IP addresses mapped to a domain. This feature is
based on the assumption that the total number of distinct IP addresses ever
mapped to a domain name is relative large in fast-flux botnets.

Median number of IP address returned per query. The botmaster does not
have physical control of the bots, thus in order to increase the availability of
his/her botnet, the number of IP addresses returned per query is relatively
high.

Maximum Time To Live (TTL) value of all domains in the subgraph. Similar
to legitimate services such as CDN, in order to be able to rapidly swap IP
addresses in and out, the TTL values in the responses are set to relatively low
values. However, our experimental traffic was captured behind the recursive
DNS (RDNS) server, hence the TTL values were decreased by RDNS server.
Therefore, we use the maximum value of the TTL as an estimate of the
true TTL value returned by the authoritative DNS server. Another possible
solution is to take the average of top N values of the TTL values. However,
this value deviates further from the true value of the TTL value. It is also a
open problem to determine which value of N to use. Thus we opted to use
the maximum value of the TTL values in our analysis.

Network diversity of returned IP addresses: The botmaster does not have
the ability to choose the geographical location of the bots. Thus, when the
IP addresses of these bots are returned in the A or NS records, they spread
over multiple networks and geographical locations. This is different from the
IP addresses returned by legitimate services. These IP addresses are usually
carefully chosen to be “near” to the user and are often located in a particular
IP range of a data center or a hosting service provider. To determine this
diversity in the set of returned IP addresses, we used the whois look up
information provided by the IP to ASN Mapping project that is maintained
by team Cymru [50]. This feature includes following values:

e Median number of Autonomous Systems (ASes) in which IP addresses
reside.
e Median number of IP addresses per AS.
e Median number of countries in which the IP addresses reside.
e Median number of owners of the IP addresses.
Dominant domain ratio (ddr) indicates if there are some dominant domain

names in the cluster which connect to a large number of IP addresses. A ddr
close to 0 means that there are a few dominant domain names that connect
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(11)

to more hosts than other domain names; while a ddr close to 1 means that
all the domain names in the subgraph are queried by approximately equal
numbers of hosts. This value is computed as:

ddr = —(Zpi.logpi.)/logm where p;. 1= Z a;./ Z a; j (3.10)
‘ J 1,J

)

where p;. is the marginal probabilities of the rows, m is number of domain
names, and Ay, xn = {a;;} is the adjacency matrix of a subgraph.

Dominant host ratio (dhr) indicates if there are some dominant hosts in the
subgraph. This value is interpreted analogously to ddr.

dhr := —(Zp.jlogp.j)/logn where p.; := Z a;/ Z a; j (3.11)
j i irj

J

where p;. is the marginal probabilities of the columns, n is number of hosts,
and Ay, xn = {a;;} is the adjacency matrix of a subgraph.

The ddr and dhr together determine the shape a subgraph. This shape may
be either an IP star, a domain star, or a bimesh [19].

Lexical features (metrics) on domain labels: The metrics are proposed
based on the observation that algorithmically generated domain names are
frequently random, thus these metrics aim to capture the characteristics of
domain names that appear to humans to be random. These lexical features
are proposed based upon previous research [18, 51] and observations on our
data. These features includes:

e Symmetric Kullback-Leibler (K-L) divergence metric on unigrams and
bigrams of alphanumeric characters in the domain name’s labels. We
compute the symmetric K-L metric as proposed in [18]:

Do (PQ) = 5(Dxc1(PIQ) + Drcs(PIQ))

where P, Q is two discretized distributions of unigrams or bigrams and
Dy, is defined as:

n

. P(q
Dicu(PIQ)) =Y P(ilog o)
2. POles o
e Jaccard Index (JI) between bigrams [18]: The Jaccard Index indicates

the similarity between two sets and is defined as:

_ANB
~ AUB

JI

In our context, the lexical metric based on JI is computed as followings:
for each test word, we find the candidate words in the database which
have at least 75% of bigrams in common with our test word. Then the
metric is the average of JI values between the test word’s bigram set and
each candidate word’s bigram set.
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(12)

(13)

(14)

e Edit distance: This metric is computed as the average value of all the
Levenshtein edit distances between any two domain names’ labels in the
subgraph.

Query pattern: In a domain-flux botnet, bots tend to have a pattern of
periodic and bursty queries, i.e., all the bots in the network periodically query
the same domain name within a short time window (this occurs when the bots
need to contact the C&C servers). The interval between two consecutive
queries within this time window is relatively short (ranging from a few
hundredths of a second to a few seconds). In order to detect this pattern
of periodic and bursty queries, we employed a method similar to the method
proposed in [52]. The procedure can be briefly described as:

(a) For each host in the subgraph, we first compute the inter-arrival time
between two consecutive queries.

(b) Then we used K-means algorithms to cluster these inter-intervals.

(c) Afterwards, we examined these clusters to determine if there is any large
cluster with a small coefficient of variation (CV) value. This large cluster
indicates a periodic group of queries in the DNS traffic.

(d) Furthermore, if there are multiple small clusters with small CV values,
then we merge these clusters together into a new cluster. If the new
cluster has a small CV value, the same process as in step 12c is applied.

IP overlap: This feature is proposed based on the observation in [31] that
there is an overlap between the IP address set returned for A records and
the one returned for NS records in a fast-flux botnet. This is due to the
fact that a fast-flux has a limited number of bots with high bandwidth and
public availability to use as C&C servers, DNS servers, or proxies to these
servers. Thus, the botmaster has to swap these bots to have a rapid rate of
of change IP addresses. This causes an overlap in the IP addresses returned
for A records and NS records. This feature is computed as the percentage of
the overlap in the set of IP addresses returned for A records and NS records
for domain names in a subgraph.

IP growth rate: This feature reflects how the set of IP addresses returned
for a domain name grows per request. It is computed as the number of
distinct IP addresses returned divided by the total number of IP addresses
returned. As discussed in [31], the set of IP addresses returned for a domain
name in fast-flux botnet will continue to increase over time while this set for
legitimate services such as CDN usually reaches a limit relatively early. The
reason is that in a legitimate service, the servers are rather static and the
DNS mappings to them do not change frequently. When the load-balancing
mechanism is performed to select a set of IP address that is “near” the users,
this set of IP address tends to be stable for a specific user or group of users.
While in a fast-flux botnet, the IP addresses associated with the bots are
usually dynamic, and the set of IP address to be returned is often chosen
randomly among the IP addresses available bots. Thus, this set of IP address
spreads over multiple geographical locations.
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Table 3.2 summarizes the list of extracted features applied to each type of graph,
i.e., a lookup or failure graph.

Table 3.2: Extracted features and their application to each type of graph

No. | Feature Lookup Graph | Failure Graph
1. | Median domain’s life time Yes Yes
2. | Median IP’s life time Yes No
3. | Domain/IP ratio Yes Yes
4. | Median number of distinct domains Yes No
5. | Median number of distinct IPs Yes No
6. | Median number of IPs per query Yes No
7. | Median maximum TTL value Yes No
8. | Network diversity of return IPs Yes No
9. | Dominant domain ratio Yes Yes

10. | Dominant host ratio Yes Yes

11. | Lexical features on domain labels No Yes

12. | Query pattern No Yes

13. | IP overlap Yes No

14. | IP growth rate Yes No

3.6 Regression Function Module

The Regression Function Module takes dense subgraphs and their extracted
features as input. Due to the difference in the ranges of the values of the features,
we first standardized our data using zscore function in MATLAB®. In another
words, we treated all the features with equally importance level. Afterwards,
using a machine learning approach we expect to be able to distinguish malicious
subgraphs from benign subgraphs by assigning to each subgraph a maliciousness
score in the range [0,1]. This maliciousness score indicates the probability that
a subgraph is malicious. In reality, a threshold can be set so that the system
will raise a warning when a subgraph has a maliciousness score greater than the
chosen threshold.

In our prototype system, we decided to use supervised machine learning
algorithms in our Regression Function Module. A common task when working
with a machine learning approach is to select the best algorithm from a list of
candidates based on a goodness metric estimated by a cross-validation process.
The best algorithm (or model) is the one that maximizes the model’s goodness
metric [53].
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The candidates for our model selection process were following!:

e Artificial Neural Network (ANN)

e Decision Tree (DT)

e Decision Tree with AdaBoost (DTA)

e Linear Regression (LR)

e Linear Regression with AdaBoost (LRA)
e Logistic Regression (LOG)

e Logistic Regression with AdaBoost (LOGA)

We used the F-score [53] as the goodness metric in our model selection procedure.
We labeled data using a blacklist obtained from different sources (the details of
which will be described in Chapter 4). A 10-fold cross-validation [53] process
was employed to compute the average goodness metric over all of our data. The
Decision Tree with AdaBoost algorithm gave the best goodness metric, thus it
was selected as our regression function in our prototype system. Additionally,
we employed a sequential forward feature selection [53] procedure to determine
significant features and to remove noisy features from our feature set. Additional
detail of the result of this model selection and feature selection process will be
described in Chapter 4

" Note that some of our candidate algorithms are classification algorithms, i.e., they only
produce a result of 0 or 1 which corresponds to the two classes benign and malicious of our
data, thus here we loosely consider the term regression in order to include these algorithms in
our candidate set.



CHAPTER 4

Results and Discussion

In this chapter, we described the data collected, the experiment scenarios, and the
F-score that we used to measure the quality of our detection technique. Finally,
the experimental results are presented and discussed.

4.1 Prototype Implementation

We developed a prototype system for the experiments with our analysis technique.
In addition to some components of existing open sources tools and libraries, new
code was written in Python 2.7.2 and MATLAB® 2010b to complete our proto-
type. Python and MATLAB® were used because they are suitable programming
languages for rapid prototyping. For the machine learning algorithms, we used
the MATLAB® code from Mgrup and Schmidt’s 02450Toolbox [54]. Table 4.1
summarizes the implementation languages and status of the principal components
in our prototype system. A status of Reused means that a component was reused
without any modification, while a status of Modified means that a component
was modified to meet our purposes. Furthermore, a status of New indicates that
a component was newly developed.

Table 4.1: Summary of the implementation of the prototype system

Module Languages Libs+Tools Status
Extract DNS data C tshark Reused
Anonymization C TraceAnon Modified
Graph Construction Python - New
Data Filtering Python DFA New
Graph Decomposition | Python+MATLAB | mlabwrap New
Feature Extraction Python Cymruwhois New
Regression Function Python+MATLAB | mlabwrap+Toolbox | New
Visualization Python Graphviz+pygraph | New
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4.2 Data Collection

This section describes how we collected the traffic data and how we labeled this
data in order to use it as input to our analysis.

4.2.1 Traffic Data

The data collection used in our experiments consists of two parts: captured traffic
traces from an operator’s network and synthetic bots’ traces that we generated
and merged into the real traces.

The traces include 25 days worth of traffic data collected from a mobile network,
during the period from September 9, 2011 to October 3, 2011. These traces were
captured in an operator’s GPRS Core Network. The sensors were placed behind
the recursive DNS servers in the GPRS Core Network. These sensors captured a
copy of all traffic that goes through these recursive DNS servers. In our analysis,
we only consider the DNS information, thus we decided to decapsulate the GPRS
Tunneling Protocol (GTP) data and then strip off the GTP header from the
captured traffic. This is done by a program written in C based on the 1ibpcap
library [39].

In order to have more data for our experiment, we generated additional synthetic
traces of a fast-flux botnet and a domain-flux botnet (which mimics the DGA of
the Conficker bot [55, 56]). These synthetic traces are time-shifted and merged
into the collected traces. The DNS data were extracted from the merged traces,
anonymized, and then split into two datasets of successful queries and failed
queries. These two datasets were used to build the DNS graphs as was described
in Section 3.3.

4.2.2 Data Labeling and Filtering

In order to label and filter our datasets, we employed both automated and manual
methods of data labeling and filtering. For automated labeling and filtering, we
collected whitelist and blacklist entries from several sources and matched the
domain names in our data against these lists.

Whitelist: To construct the whitelist, we selected the 2000 most popular sites
listed in Alexa’s ranking system [37]. Note that we removed all the dynamic
DNS and URL shortener provider sites from the whitelist because these domain
names are likely to be abused by botnets. This white list is used to filter out
legitimate or unlikely malicious traffic from the traces in order to reduce the
noise of the data that is input to our analysis. Additionally, we collected a list
of well-known anti-virus and anti-spam service providers in order to filter out the
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DNS “overloading” traffic as described in Section 3.3. This whitelist was also used
to build the unigram and bigram database of “good” domain names’ labels that
is used to calculated the lexical features of the domain names’ labels as described
in subsection 3.5 and by Yadav, et al. [18].

Blacklist: The blacklist was constructed from multiple sources. These sources
were:

e A list of malicious domain names from serveral blacklist services, such as
MalwareDomainList [57] and DNS Blackhole [16].

e A list of domain names generated by well-known botnets such as Zeus [58],
Conlficker [59], Kraken [17], and the synthetic bots that we generated.

e We also extracted the domain names in the body of the spam and phishing
emails* collected from Spam Archive [60] and PhishTank [61].

The domain names in the subgraphs are checked against this blacklist. A match
occurs when a domain name is exactly matched or is a subdomain of a domain
name in the blacklist. A maliciousness score of a subgraph is then calculated as
the portion of its domain names in the blacklist, i.e.:

, B Number of matches (4.1)
mal_score = Total number of domain names .

The blacklist is also used to compute the unigram and bigram of malicious domain
names’ labels that will after be used to calculated the K-L and JI of domain names’
labels of a subgraph — described in subsection 3.5 and in [18].

Manual checking was also performed. We checked the domain names of the
subgraphs and looked for those that have strange and random looking domain
names. Then we checked these domains against multiple sources including Norton
Safe Web [62], SiteAdvisor [63], or Web of Trust [(4] to figure out if the domain
names are malicious.

Note that our labeling process is a thorough investigation process, a subgraph is
not labeled as malicious based solely on the randomness of its domain names’
labels. Beside the random-looking domain names, many other factors were
considered such as query patterns of the hosts within a subgraph, reputation
of the registrars where domain names were located, and reputation of the domain
names themselves. We need to check carefully and obtain good reasons before
flagging any subgraph as malicious. Thus, the labeling process is one of the most
time-consuming tasks in this thesis project.

*These domain names are related to fast-flux because they are often hosted on a FFSN
infrastructure created by a (part of a) botnet. Thus, we included these domain names in the
blacklist although they may not resolve to a botnet’s C&C server(s).
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4.3 Experimental Scenarios

Our 25 days worth of data was divided into two datasets in our experiments:

e A training dataset corresponding to 20 days data (the first 80% of the
total data).

e A testing dataset corresponding to 5 days data (the last 20% of the total
data).

The experiments are performed in two scenario: offline and online. These two
scenarios are described in the next two subsections.

4.3.1 Offline Scenario

In this scenario we labeled the data in the training dataset, then we run a 10-
fold cross-validation on this dataset to estimate the goodness metrics of following
machine learning algorithms [53]:

e Artificial Neural Network (ANN)

e Decision Tree (DT)

e Decision Tree with AdaBoost (DTA)

e Linear Regression (LR)

e Linear Regression with AdaBoost (LRA)
e Logistic Regression (LOG)

e Logistic Regression with AdaBoost (LOGA)

This scenario allowed us to select the learning algorithm that produced the highest
goodness metric to use in the subsequent online scenario. In our experiment, we
used the F-score as the goodness metric. The F-score is described in detail in the
next section.

A sequential forward feature selection [53] procedure was also performed in this
step in order to remove any noisy features and to reduce the dimension of the
data.
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4.3.2 Online Scenario

After obtaining the best model from the offline scenario, we ran an experiment
with this model using the testing set consisting of 5 days worth of traffic that was
not yet labeled. The purpose of this experimental scenario was to evaluate how
our technique perform in practice.

4.4 Goodness Metrics

In order to evaluate the performance of our proposed technique, we need to
introduce a goodness metric for a quantitative measurement. Although the goal of
our technique is to produce a maliciousness score for subgraphs, in our evaluation
we considered that our data are classified into two classes: benign and malicious.
This classification scheme can be easily obtained by setting a threshold § on the
maliciousness scores of the subgraphs. This technique of selecting a threshold
is reasonable in a sense that in practice, we also need to set a threshold at
which our system should raise a warning about a malicious subgraph. Thus, the
evaluation of our technique is similar to the evaluation of a binary classification
with malicious and benign classes corresponding to positive and negative cases
respectively. In our data, the number of malicious subgraphs are smaller than the
number of benign subgraphs. Moreover, the correct detection of malicious class
is more important that of benign class. Thus, we employed the F-score, because
it is suitable for the case when there is imbalance between two classes [53]. The
F-score definition is derived from the definitions of Precision and Recall. These
definitions are

TP

P'I"eCZ.SZ.OTL = m

TP
Recall = m

F-score
Precision *x Recall _ 2xTP

Precision + Recall 2+xTP + FN + FP

F=2x

where True Positive(TP), False Positive (F'P), and False Negative (F'N) are
defined as:

Precision represents the proportion of subgraphs that are actually malicious in all
subgraphs that are predicted as malicious. The higher the precision is, the lower
the number of false positive errors produced by the classifier. Recall reflects the
proportion of subgraphs that are predicted to be malicious from all the actually
malicious ones. Recall is equivalent to the true positive rate of the classifier.
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Table 4.2: Definition of TP, FP, and FN

Actual class | Predicted class
True Positive (T'P) Malicious Malicious
False Positive (F'P) Benign Malicious
False Negative (F'NV) Malicious Benign

There is often a inverse relationship between precision and recall when building
a classifier, where it is possible to increase one at the cost of reducing the other.
A key challenge in machine learning is to build a model that maximize both
precision and recall. Thus, the F-score was introduced to present a weighted
harmonic mean of both precision and recall [53]. A F-score value close to 1 means
that both precision and recall are relatively high, hence the technique produces
a good detection result.

4.5 Results

Both training and testing datasets were processed through the procedure
described in Section 3.2. In total, 50 graphs are built, a DNS lookup graph
and a DNS failure graph were computed for each day of this dataset. Table 4.3
summarizes the 95% confidence interval of the number of domain names, hosts,
and edges in a lookup graph and a failure graph for one day of data.

Table 4.3: Summary statistics of graphs (with a confidence interval of 95%)

Graph | Domains Hosts Edges Density
Lookup | 9787044686 | 56528+2076 | 1509746904 | 0.000028=+0.000001
Failure 26924271 1407£79 4002+316 0.001087+0.000064

Using a breath first search to find the connected components of the graphs, we
found that although there are some large components with a significant number
of vertices, a major portion of the components were small ones that contain only
a few domain names and a few hosts. In the DNS lookup graph these components
are related to some small sites that are not very popular and that are mapped
to a stable set of only a few IP addresses. While in the DNS failure graph, these
small components are DNS failures caused by issues associated some particular
sites being down or are due to misconfigurations. Thus, we do not look into
those small components, but rather we opted to set a threshold min_comp on the
number of vertices in order to filter out these small components from our further
analysis. We set min_comp = 10 in our experiments. Note that this number is
based on our observations on the data and our interest in accurately detecting
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fast-flux and domain-flux.

Table 4.4 shows the total number of connected components and the number of
remaining components after removing all small connection components from our
data with the confidence interval of 95%.

Table 4.4: Remaining connected components of graphs after removing the small
components (with min_comp = 10 and a confidence interval of 95%)

Components
Graph Remaining/Total Percentage (%)
Lookup | 1257+64/46449+1911 2.701+0.03
Failure 33+£3/702+32 4.734+0.40

Table 4.5 shows the remaining percentages of domain names, hosts, and edges
after removing small connected components. FEven though the remaining
percentages of the number of connected components are small, the remaining
percentages of domain names, hosts, and edges are high. Thus, the remaining
components have relatively large size (in terms of the number of domain names,
hosts, and edges) compared to the ones that have been removed.

Table 4.5: Percentages of the remaining domain names, hosts, and edges (with a
confidence interval of 95%)

Percentage (%)

Graph Domains Hosts Edges
Lookup | 35.76+0.54 | 13.26+0.34 | 54.97+0.40
Failure | 61.55+2.24 | 41.88+1.38 | 70.37+1.53

After removing the small connected components, among the remaining compo-
nents, there are some with a large number of vertices as shown in Table 4.6. This
result is analogous to the community structure discussed in Section 3.1.

Inspecting the connected components, we found that most of the components
with relative small numbers of vertices are already dense and coherent bipartite
graph themselves. Thus, we opted to apply the graph decomposition only to
components that have a significant number of vertices. In our experiments, we
set this threshold to 30 (min_decompose = 30) based on our observations of
the data and our expectation of having subgraphs with a reasonable number of
vertices due to our interest in detecting fast-flux and domain-flux. For the same
reason, we set k = [ = min(m,n)/30 as the coarse-grain number of subgraphs
in our NMTF algorithm. The graph decomposition’s result shows that with this
setting of coarse-grain number of subgraphs and merging process, our Graph
Decomposition Module successfully extracted the dense and coherent subgraphs



4.5 Results 52

Table 4.6: Ten largest connected components of a failure graph (min_comp = 10)

Comp# | # Domains | # Hosts | # Edges | Density
1 845 536 2280 0.0050
2 7 92 98 0.1522
3 66 3 68 0.3434
4 62 2 91 0.7339
5 33 5 72 0.4364
6 35 1 35 1.0000
7 28 6 56 0.3333
8 27 1 27 1.0000
9 27 1 27 1.0000

10 22 1 22 1.0000

from the giant components. Listing 4.1 shows an example extracted subgraph in
a DNS failure graph.

Listing 4.1: An example extracted subgraph from a failure graph

sfcg023a.adl.seb.net.
sfcg023a.corpl.adl.seb.net.
sfcg023a.seb.net.
smcg093v.adl.seb.net.
smcg093v.corpl.adl.seb.net.
smcg093v.seb.net.
smcr038v.adl.seb.net.
smcr038v.corpl.adl.seb.net.
smcr038v.seb.net.
smcr090v.adl.seb.net.

Given the extracted subgraphs, we computed their features and ran the experi-
ments in the two scenarios described in Section 4.3.

Note on the lookup graphs: During our experiments, we checked the domain
names against the blacklist, but we did not find any matches in our lookup graph.
This lack of data makes it difficult to train our machine learning method during
training phase, even though we had a bot examples that we generated. Another
reason is that although our data was collected from September to October,
2011, when we performed whois lookup for IP addresses, some of the whois
information was already out of date. Furthermore, previous research [6, 25, 2]
produced relatively good results by building domain name reputation systems.
Thus, at this point in our project, we opted to only concentrate on running the
experiment on the failure graphs, and to focus on the detection of the domain-flux
botnets.
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4.5.1 Offline Scenario

Using both automated and manual methods for labeling data as described in
Section 4.2, we discovered some domain-flux botnets in our training dataset,
and some other suspicious subgraphs. Note that flagging these subgraphs as
malicious were based on a thoroughly investigation, not solely based on the fact
that the domain names of these subgraphs were random-looking as mentioned in
Section 4.2. Table 4.7 summarizes these subgraphs that were labeled as malicious
in our training dataset. These subgraph have random-looking domain names with
different lengths as shown in the first column by their domain name patterns.
For example, the domain name pattern [a-z]{5-11}.ws means that these are
domain names that have the TLD of ws, and the second-level domain labels
are random strings containing from 5 to 11 letters. The second column shows a
sample of the domain names in the subgraphs, and the third columns shows the
number of subgraphs with these patterns.

Table 4.7: Botnet related and suspicious subgraphs in training dataset

Domain pattern Sample domains # Note
www.[a-z]{5-8}.info www.aucyuod.info
www.[a-z]{5-8}.com www.acromtohk.com
www.[a-z]{5-8}.cc www.ahdlmwu.cc 23 | Synthetic
www.[a-z]{5-8}.ws www.azlbx.ws

www.[a-z]{5-8}.cn www.aplwaci.cn

www.[a-z]{5-8}.0rg www.vwplcy.org

[a-z]{12}.com ucozktgezixg.com 2
[a-z0-9]{7}.co.tv ibye6ig.co.tv

[a-z0-9]{7}.uni.cc ntcgoyv.uni.cc )
[a-z0-9]{7}.hopto.org titvm.hopto.org

[a-z0-9]{7}.one.pl vdspnxf.one.pl

[a-z]{5-11}.ws btrstpcxmw.ws 1
[a-z]{5-10}.com twxjhaezo.com

[a-z]{5-10}.net cypuovqq.net 1 | Conficker?
[a-z]{5-10}.ws uuikdtzw.ws

[a-z]{5-10}.cc uxkwedrz.cc

[a-z]{6-11}.dynserv.com | dexklv.dynserv.com
[a-z]{6-11}.yi.org dfdblcu.yi.org . Kraken
[a-z]{6-11}.mooo.com exotxrdxj.mooo.com
[a-z]{6-11}.dyndns.org | dhsmkdf.dyndns.org

The first row in Table 4.7 are the synthetic bots that we generated and mixed
into the captured traffic. The remaining were labeled using different sources. The
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last row shows the Kraken bot found in the trace. The second last row is a bot
that has very similar behaviors to Conficker bot’s. The other malicious subgraphs
were inspected and verified manually.

As mentioned in Section 3.6, we standardized the values of the extracted features
before applying a Principal Component Analysis (PCA) process to the training
dataset. Figure 4.1 shows the fraction of the variation in the training dataset
explained by principal components.

02 Variance explained by principal components
. T T

Variance explained value
o
=
T
1
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0 5 10 15 20 25

Principal component

Figure 4.1: Variance explained by principal components of the training dataset

The coefficients of the principal components show that some features such as
lexical features on domain name labels, domain names to hosts ratio, and query
patterns (see Table 3.2) account for significant portion of the variation in the
training dataset. Inspecting the regression function algorithms, we observed
that these algorithms could split the training dataset into two classes of benign
and malicious subgraphs using some of the projections of the proposed features
into the subspace of principal components. Thus, we performed a sequential
forward feature selection procedure, a standard procedure in machine learning
to determine the significant features and noisy features in a feature set. The
result showed that we cannot remove any of the features. This means that our
selected feature set does not contain any noisy features. Thus, although some
features such as lexical features on domain name labels, domain names to hosts
ratio, and query patterns account for significant portion of the variation in the
data, these features alone were not sufficient to classify our training data. In
other words, other features beside these features also contribute in determining
whether a subgraph is malicious.

All the labeled training set was used for a 10-fold cross-validation procedure to
select the machine learning algorithm and estimate the F-score. The detailed
F-score for each model is depicted in Table 4.8.



4.5 Results 55

Table 4.8: F-score for each model

Fold | ANN | DT DTA LR LRA | LOG | LOGA
11 0.6667 | 1.0000 | 1.0000 | 0.6667 | 0.1000 | 0.6667 | 0.1000

2 | 0.6667 | 0.8571 | 1.0000 | 0.8571 | 0.2667 | 0.8571 | 0.2667

3 | 1.0000 | 1.0000 | 0.8000 | 1.0000 | 0.0714 | 1.0000 | 0.0714

41 0.7273 | 1.0000 | 1.0000 | 0.7500 | 0.1500 | 0.7500 | 0.1500

5 | 0.6000 | 0.4444 | 0.7500 | 0.3333 | 0.3478 | 0.3333 | 0.3478

6 | 0.8571 | 1.0000 | 1.0000 | 1.0000 | 0.1429 | 1.0000 | 0.1429

7 | 0.6667 | 1.0000 | 1.0000 | 1.0000 | 0.2963 | 1.0000 | 0.2963

8 | 0.6667 | 0.6667 | 0.7500 | 0.4000 | 0.2609 | 0.4000 | 0.2727

9 | 1.0000 | 0.6667 | 1.0000 | 0.8000 | 0.1111 | 0.8000 | 0.1081

10 | 0.8000 | 0.8000 | 0.7273 | 0.8000 | 0.2222 | 0.8000 | 0.2222
Mean | 0.7651 | 0.8435 | 0.9027 | 0.7607 | 0.1969 | 0.7607 | 0.1978

The result of the cross-validation procedure shows that the Decision Tree with
AdaBoost (DTA) is the model that provides the highest average F-score of
0.9027. A t-test showed that the F-scores produced by this algorithm (DTA)
is significantly different from the F-scores produced by the second algorithm —
Decision Tree (DT). Thus, we selected this algorithm for our Regression Function
Module. The DTA is an extended version of the original DT algorithm in which
there are multiple decision trees instead of only one decision tree. Note that
this algorithm computes the weighed average of the scores produced by all the
decision trees, therefore the final score is a continuous value in the range of [0, 1].
Thus, our requirement of a continuous maliciousness score is satisfied with this
algorithm.

4.5.2 Online Scenario

The selected model with Decision Tree with AdaBoost algorithm was used to
run the experiment on our test dataset that was not labeled. The result of this
experiment shows that our model is able to detect some malicious subgraphs
in the test dataset. We configured our experiment so that it raises positive
detection results when a subgraph has a maliciousness score greater than 0. 5.
The subgraphs that were detected by our technique are listed in the Table 4.9.

We can see in Table 4.9 our technique was able to detect all the synthetic bots in
our test dataset (the first group of six malicious subgraphs found in Table 4.9).
Furthermore, another suspicious subgraph was also flagged as malicious (the
second group of one subgraph found in Table 4.9).

An interesting case in the detected subgraph is the az.pl and co.cc domain



4.5 Results 56

Table 4.9: Subgraphs detected as malicious in the test dataset (with a warning
threshold of 0.5)

Domain pattern Sample domains # Note

www.[a-z]{5-8}.info www.knubgenvh.info

www.[a-z]{5-8}.com www.kzglnyjo.com

www.[a-z]{5-8}.cc Www.hzafr.c‘c 6 | Synthetic

www.[a-z]{5-8}.ws WWW.gazmni. ws

www.[a-z]{5-8}.cn www.fxiyasmv.cn

www.[a-z]{5-8}.org www.khuwewv.org
0-9]{1-4}.|a-z0-9]{4-11}.az.pl | 145.rick ker.az.pl
[0-9]{1-4}.]a-z0-9]{4-11}.az.p 5.rickenbacker.az.p 1 | Unknown
[0-9]{1-4}.]a-z0-9]{4-11}.co.cc | O.rypeygf.co.cc

names (shown is the Listing 4.2). All the domain names in this subgraph are
subdomains of the second level domain name az.pl or co.cc. The third labels
of these domain names appear to be random and are likely generated by a DGA.

Listing 4.2: Domain names of a detected subgraph with az.pl and co.cc domain
names

0.rypeygf.co.cc. 183.ecphonesis.az.pl. 873.pblrlj.az.pl.
l.aiyg.co.cc. 1838.k8mmr.az.pl. 882.xg7fai2.az.pl.
10.pytovkj.co.cc. 1859.6t9she.az.pl. 884.0aflh02.az.pl.
102.9wmo.az.pl. 19.7h9vszb.az.pl. 885.vuer92.az.pl.
18.16st.az.pl. 190.ramiro.az.pl. 890.zzxool5.az.pl.
1804 .ecuk.az.pl. 191.contour.az.pl. 891.gxhslxl.az.pl.
1806.39%z6u9%.az.pl. 1941.0545mnu.az.pl. 90.dogori.az.pl.

Further investigation led us to a forum on the Internet. The posts on this forum
look like a list of instructions for a botnet to conduct fraudulent manipulation
of search engine’s results in order to redirect users to malicious sites hosted on
a botnet. Thus, we have very good reason to classify these domain names as
malicious. Figure 4.2 shows an example of a message posted on this forum.

Figure 4.3 depicts the detection result in the subspaces of the first two principal
components. We can see from this figure that our synthetic bots appear to stick
out further from the benign group compared to other newly detected malicious
ones (these are marked with the purple circles). This suggests that we need
to refine our generated bot to better mimic the behaviors of a real botnet.
Nevertheless, this result confirms that our synthetic bot has succeeded at a
certain level in mimicking a real bot. Additionally, our technique produced good
detection result.
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Figure 4.2: An example message posted on the forum related to az.pl and
co.cc domain names
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Figure 4.3: Visualization of the detection results in the subspace of the first two
principal components. A red square represents a malicious subgraph, while a
green circle represents a benign subgraph. Note that one malicious subgraph
(circled in the figure) is near the benign subgraphs.

4.6 Discussion

As mentioned in Section 4.5, we opted to put aside the lookup graphs and only
focus on the failure graphs for several reasons (in addition to the limited time
available for our project). These reasons included:

e Checking against the blacklist did not return any matches. Even though
we generated traffic that mimics a fast-flux botnet, this data represents
only one botnet, and there are not enough malicious examples to train our
regression function and to perform cross-validation.

e Our data was collected from September 9, 2011 to October 3, 2011 and when
we perform our analysis in March, 2012 the whois data corresponding to
the IP addresses in the traces were out of date. This outdated data had a
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strong influence on the analysis because one of the important characteristics
of fast-flux botnets is that they have very high diversity in their IP address
set. We contacted ISC DNSDB to get access to the Global Passive DNS
(pDNS) [65] in order to learn about the mapping in the past of these domain
names and IP addresses. However, we did not succeed in getting access to
this data.

e Previous research [0, 25, 26] produced impressive results by building domain
name reputation systems. These results to some extent have included
fast-flux botnet detection. Furthermore, it has been shown in this earlier
research that access to a high level of the DNS hierarchy plays an important
role in generating meaningful results. Furthermore, information of the
domain names from registrars such as the whois information of the domain
names provides significant evidence. In our case, we did not have access to
such high level of the DNS hierarchy. We did not have access to information
of the domain names from registrars either. Even though we can perform
an active probes to get this information, it is a time-consuming task. Thus,
we are focused on the open question of detecting domain-flux botnets from
the DNS failure graph.

While working on our project, we found that one of the biggest obstacles when
proposing an analysis technique for detecting botnets or malware in general is
the lack of malware examples. The lack of observations of how the malware
actually behaves makes it difficult to produce a good technique. Even though
we generated synthetic bots in our work, this limited number of examples does
not represent the diversity in the behaviors of different botnets in the wild.
Thus, a malware example collection process should be performed in parallel with
development of new detection techniques, either by using a honeynet or artificially
generating meaningful and representative data. Furthermore, one of the most
time-consuming task in our work is to manually label the dataset for training
purposes. Although some subgraphs appear to have similar characteristics to
a fast-flux or domain-flux botnet, classifying them as malicious still requires
evidence and this requires further (manual) investigation. Thus, it is necessary
to develop a reliable and automated technique for labeling the collected dataset.

Despite the good results in detecting domain-flux, the proposed technique also
has some limitations. It may produce a false negative when the number of
domain names in a malicious subgraph is relatively small. In this case, the
malicious characteristics exhibited by the subgraph are not distinctive enough for
the technique to capture. For example, it is difficult to identify the randomness
of the domain name labels if the number of domain names are few. On the
other hand, the proposed technique may produce a false positive when a benign
subgraph contains a large number of random-looking domain names.
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Conclusions and Future Work

In this project we have proposed a technique for detecting a domain-flux botnet in
a network by analyzing DNS data traffic, particularly the failed DNS queries. This
thesis is, according to the author’s knowledge, the first thoroughly investigated
method that has been proposed to detect the domain-flux based on DNS analysis.
Although there was some earlier related research [18, 19], these researchers did
not propose any specific procedure to detect malicious activities based upon the
failed DNS queries.

The main contributions of this thesis are:

(1) Proposed and thoroughly investigated a new method to detect domain-flux
and fast-flux by analyzing DNS traffic.

(2) We have taken into consideration the correlation between domain names and
IP addresses by using the concept of a dense subgraph. This allows the
proposed method to capture one of the most distinctive features of the fast-
flux and domain-flux botnets, that is the strong correlation between domain
names and IP addresses.

(3) The thesis provides a comprehensive list of features and a procedure to apply
machine learning approaches in order to detect malicious activities related to
fast-flux and domain-flux botnets.

(4) An experimental evaluation of the proposed technique has been made using
the DNS failure graph. The proposed technique was able to successfully
detect domain-flux botnets in experimental traces.

The results of our proposed technique can be easily integrated in any NIDS
without significant effort. For example, a set of rules can be derived from the
malicious domain names flagged by our techniques. This set of rules can be
configured in a NIDS to block these domain names.

Due to some limitations, the analysis was only performed on the DNS failure
graph. We decided to leave the experiments on DNS lookup graph for future
work.

Within the limited time of the project, there still some open problems that the
author has not considered in this thesis. These are possible topics for future
research:
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e To collect longer traces and develop a reliable technique for automatically
labeling in order to have more malicious examples. Alternatively one needs
to develop a technique for generating meaningful synthetic botnet data.
The goal is to build an experimental dataset that represents the diversity
of behaviors of different botnets. This dataset could be used to evaluate
the technique proposed in this thesis for using the DNS traffic to detect
fast-flux botnets. Furthermore, a technique to reliably and automatically
label a dataset is desirable. It is also interesting to mix the data in the
training dataset in different order other than the chronological order to see
how this mixing would affect the detection model.

e To study further and propose a technique to make NMTF more robust, or
to propose and evaluate a new algorithm for extracting dense graphs from
DNS graphs.

e To investigate sophisticated machine learning algorithms, such as semi-
supervised learning algorithms, that required less training data and produce
higher accuracy.

e To further study a technique to build and analyze a DNS traffic on-the-fly.

e In our study, we did not consider the problem with the queries issued by
internal recursive DNS servers, or Network Address Translation (NAT)
servers in the examined network. These queries may cause the incorrect
mapping in the DNS failure graph because multiple queries are only mapped
to IP addresses of the recursive DNS servers or NAT servers. Thus, it is
interesting to study these open problems to get a more correct picture of
the network.

In summary, this thesis leverages the use of DNS analysis in detecting botnets in
particular and detecting malware in general. The results of this thesis confirms
that DNS analysis can complement other network-based techniques to produce
good malware detection results.
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APPENDIX A

Parameters for Analysis
Procedure

Some important parameters of the analysis procedure are described as the
following. This appendix can be used as the references to tune the analysis
procedure. The values of these parameters are set based on the observations on
the data, hence they should be adjusted accordingly in order to obtain the best
detection results.

Table A.1 summarizes the information of such parameters. The details on these
parameters are described in the following paragraph.

Table A.1: Parameters for analysis procedure

Parameter Default | Var./Param. | Source file
Connected components threshold 10 mingsize main.py
Decomposition threshold 30 clusterthres | main.py
Density threshold 0.5 dmin main.py
Maximum iterations 3000 opt.iter othnmf.m
Malicious threshold 0.5 ——threshold main.py

(1)

Connected component threshold (default 10): the minimum number of
vertices of interested connected components in DNS graphs. This parameter
can be adjusted by changing the value of the global variable mingsize in
the main program main.py.

Decomposition threshold (default 30): the minimum number of vertices of
a connected component that need to be decomposed. The default value is
set to 30 based on our expectation of having subgraphs with reasonable
number of vertices due to our interest in detecting fast-flux and domain-flux.
This parameter can be adjusted by changing the value of the global variable
clusterthres in the main program main.py.

Density threshold (default 0.5): this value indicates the minimum density
of the extracted subgraphs in the Graph Decomposition Module. This
parameter can be changed by setting value of the global variable dmin in
the main program main.py.
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(4) Maximum iterations (default 3000): the maximum number of iterations of
NMTF algorithm. This parameter can be adjusted in the matlab/orthnmf.m
script. Note that set this parameter to a large value can help the algorithm
to converge and produce the optimal clustering, but also increase the running
time of the algorithm.

(5) Malicious threshold (default 0.5): the threshold to raise a warning about a
malicious subgraph. In our Regression Function Module, the maliciousness
scores produced are continuous in the range from 0 to 1. However, in practice
we need to set a threshold to raise a warning about a malicious subgraph.
This parameter can be set by the option ——threshold of the main program
main.py.

For information on other parameters and options, refer to the file README . html
in the prototype package.
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