
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

V E N K A T E S H C H E N G E G O W D A

 Two Party Video Calls

Analysis of Queues for Interactive Voice
and Video Response Systems

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Analysis of Queues for Interactive
Voice and Video Response Systems

Two Party Video Calls

Venkatesh Chengegowda
vch@kth.se

Master thesis

16 September 2012

Examiner & Academic Supervisor: Gerald Q. Maguire Jr.
Industry Advisor: Hans-Christer Bergschöld, WX3 Telecom AB (hc@wx3.se)

KTH Royal Institute of Technology
School of Information and Communication Technology

Stockholm, Sweden

i

Abstract
Video conversation on mobile devices is popularizing with the advent of 3G. The enhanced

network capacity thus available enables transmission of video data over the internet. It has been

forecasted by several VOIP service organizations that the present IVR systems will evolve into Voice

and Video Response (IVVR) Systems. However, this evolution has many technical challenges on the

way. Architectures to implement queuing systems for video data and standards for inter conversion of

video data between the formats supported by calling parties are two of these challenges. This thesis is

an analysis of queues and media transcoding for IVVRs.

A major effort in this work involves constructing a prototype IVVR queuing system. The system

is constructed by using an open source server named Asterisk and MySql database. Asterisk is a SIP

based Public Exchange Server (PBX) and also a development environment for VOIP based IVRs.

Functional scenarios for SIP session establishment and the corresponding session setup times for this

queueing model are measured. The results indicate that the prototype serves as a sufficient model for a

queue, although a significant delay is introduced for session establishment. The work also includes

analysis of integrating DiaStar™, is a SIP based media transcoding engine to this queue. However, this

system is not complete to function with DiaStar for media translation. The study concludes with a

mention of the areas for future work on this particular system and the general state of IVVR queuing

systems in the industry.

Keywords: IVVR, Queue, media transcoding, SIP, Asterisk, DiaStar™

iii

Sammanfattning
Videosamtal på mobila enheter är popularisera med tillkomsten av 3G. Den förbättrade

nätkapacitet så tillgänglig möjliggör överföring av videodata över Internet. Det har prognos av flera

VOIP serviceorganisationer att de nuvarande IVR-system kommer att utvecklas till röst och video

Response (IVVR) System. Dock har denna utveckling många tekniska utmaningar på vägen.

Arkitekturer för att genomföra kösystem för videodata och standarder för bland konvertering av

videodata mellan format som stöds för uppringande är två av dessa utmaningar. Denna avhandling är

en analys av köer och media kodkonvertering för IVVRs.

En stor insats i detta arbete innebär att bygga en prototyp IVVR kösystem. Systemet är

konstruerat med hjälp av en öppen källkod-server som heter Asterisk och MySQL-databas. Asterisk är

en SIP-baserad Public Exchange Server (PBX) och även en utvecklingsmiljö för VOIP-baserade IVRs.

Funktionella scenarier för SIP session etablering och motsvarande sessionen inställningar för den

föreslagna kö modell mäts. Resultaten indikerar att prototypen tjänar som en tillräcklig modell för en

kö, även om en betydande fördröjning införs för sessionsupprättandebegäran. Arbetet omfattar även

analys av integrering DiaStar™ är en SIP-baserad media kodkonvertering motor till denna kö.

Emellertid är detta system inte helt att fungera med DiaStar för media translation. The studie avslutas

med ett omnämnande av de områden för framtida arbete med detta system och det allmänna tillståndet

i IVVR kö-system i branschen.

Nyckelord: IVVR , kö , media omkodning , SIP, Asterisk , DiaStar™

v

Acknowledgements
First and foremost, I extend my deep gratitude to Professor Gerald Q. Maguire Jr for mentoring

me throughout my thesis period. His immense knowledge and support provided me the necessary
technical insight and also motivation to carry out this work.

I also thank Hans Christer Berg Schöld, Torbjörn Abrahamsson and Per Åke of WX3 Telecom
AB for providing me an opportunity for working on this project and for the valuable technical inputs
during the execution.

I like to extend my special thanks to my fiancé Anitha Narasimhan for having the patience to
often listen all the technical details I described while I was implementing the prototype and motivating
me throughout.

I want to express my infinite gratitude to my family for providing me moral support.

Stockholm,

Venkatesh Changegowda

vii

Table of Contents

Abstract ... i

Sammanfattning ... iii

Acknowledgements ... v

List of Figures ... ix

List of Tables ... xi

List of Abbreviations and Acronyms .. xiii

1 Introduction ... 1

1.1 Goals ... 1
1.2 Structure of this thesis ... 1

2 Background ... 3

2.1 Queuing Theory ... 3
2.1.1 Terminology ... 3
2.1.2 Little's Law ... 4

2.2 IVVR Systems .. 4
2.2.1 Introduction .. 5
2.2.2 Technical Challenges ... 6

3 Signalling Protocols .. 9

3.1 H.323 ... 9
3.2 Session Initiation Protocol (SIP) .. 9

3.2.1 SIP Components .. 9
3.2.2 SIP Methods .. 10
3.2.3 SIP Status Codes .. 11
3.2.4 SIP Scenarios ... 11

3.3 SDP ... 13
3.4 RTP/RTCP ... 13

3.4.1 RTP .. 14
3.4.2 RTCP ... 15

3.5 DTMF ... 15
3.6 NAT Traversal .. 15

3.6.1 Types of NAT ... 16
3.6.2 SIP-NAT Issues.. 16

viii

4 Component Systems ... 19

4.1 Asterisk .. 19
4.1.1 Dialplan .. 19
4.1.2 SIP Configuration ... 20

4.2 DiaStar ... 20
4.3 SIP Clients ... 22

4.3.1 What are SIP phones? ... 22
4.3.2 Linphone .. 23

5 Methods .. 25

5.1 Queue Architecture .. 25
5.1.1 Development Environment .. 25
5.1.2 Component Diagram.. 25
5.1.3 Scenario 1: DiaStar facing the callers.. 29
5.1.4 Scenario 2: Asterisk facing callers ... 29
5.1.5 Queue Flow Chart .. 30

5.2 DiaStar Integration ... 34
5.2.1 Calls Terminating on DiaStar ... 34
5.2.2 Conferencing with DiaStar ... 34

6 Measurements ... 37

6.1 Basic test cases ... 37
6.1.1 One Agent-One Caller ... 37
6.1.2 One Agent-Many Callers ... 38
6.1.3 Agent Logs in While Callers are in Queue .. 39
6.1.4 Many Agents-One Caller ... 40

6.2 Queue Performance Statistics ... 41
6.2.1 Regular SIP Call Setup .. 41
6.2.2 Queue Call Setup .. 41
6.2.3 Inferences .. 42

7 Conclusion ... 43

7.1 Future work .. 43
7.1.1 NAT Traversal .. 43
7.1.2 Transcoding ... 43
7.1.3 Call back queue ... 43

7.2 Required reflections ... 43
Bibliography... 45

ix

List of Figures
Figure 2-1: An M/M/n queuing model .. 4
Figure 3-1: SIP Methods at the calling UA ... 11
Figure 3-2: SIP Register Scenario ... 12
Figure 3-3: Two Party Call Scenario .. 12
Figure 3-4: RTP Header .. 14
Figure 4-1: DiaStar Asterisk Integration ... 21
Figure 4-2: Ideal Queue Scenario with Transcoding ... 22
Figure 5-1: Component Diagram ... 26
Figure 5-2: DiaStar facing Callers ... 29
Figure 5-3: Asterisk facing Callers ... 29
Figure 5-4: Agent Register Flow .. 31
Figure 5-5: Queue Caller Flow .. 32
Figure 5-6: Basic DiaStar-Asterisk Topology ... 34
Figure 5-7: Conferencing with DiaStar .. 35
Figure 6-1: One Agent One Caller Test ... 38
Figure 6-2: One Agent Many Callers Test-1 .. 38
Figure 6-3: One Agent Many Callers Test-2 .. 39
Figure 6-4: Agent Logs in while Callers are in Queue ... 39
Figure 6-5: Many Agents One Caller-1 .. 40
Figure 6-6: Many Agents One Caller-2 .. 40

xi

List of Tables
Table 2-1: Parameters that describe a queue ... 3
Table 2-2: Bandwidth available in some different types of networks ... 7
Table 2-3: Approximate Data Rates for Video Formats ... 8
Table 3-1: SIP's logical components .. 9
Table 3-2: SIP Methods ... 10
Table 3-3: SIP Status Codes ... 11
Table 3-4: Fields of the SDP protocol .. 13
Table 3-5: Fields of the RTP header .. 14
Table 3-6: RTCP Message Types .. 15
Table 3-7: Types of NATs ... 16
Table 5-1: Test environment .. 25
Table 6-1: Regular SIP Call Setup Time (all times in seconds) ... 41
Table 6-2: SIP Call Setup Time with Queue (all times in seconds) ... 41

xiii

List of Abbreviations and
Acronyms

Acronym/Term Definition
3G 3rd Generation
ACK Acknowledge SIP method
AGI Application Gateway Interface
API application programming interface
ARS Automated Response System
BYE Bye SIP method
CANCEL Cancel SIP method
CentOS Community ENTerprise Operating System
CIF Common Intermediate Format
CODEC Coder/Decoder
CSRC Contributing Source
DTMF Dual Tone Multi Frequency
FIFO First In First Out
G711 An ITU-T audio encoding scheme
G722 An ITU-T audio encoding scheme
G729 An ITU-T audio encoding scheme
H.323 An umbrella protocol for multimedia communication
H.263 An ITU-T video encoding scheme
H.264 An ITU-T video encoding scheme
IAX2 Inter Asterisk Exchange protocol
IETF Internet Engineering Task Force
IMS IP multimedia system
INVITE Invite SIP method
ISDN Integrated Services Digital Network
ISUP ISDN User Part
ITU International Telecommunication Union
ITU-T ITU Telecommunication Standardization Sector
IVR Interactive Voice Response
IVVR Interactive Voice and Video Response
LAN local area network
MGCP Media Gateway Control Protocol
MPEG Motion Picture Experts Group
NAT Network Address Translator
OK Okay
PBX Private Branch Exchange
PSTN Public Switched Telephone Network
Q.931 An ITU-T Recommendation for signalling
QCIF Quarter CIF
REGISTER Register SIP method
REINVITE Reinvite SIP method
RTP Real Time Protocol
SCCP Signalling Connection Control Part
SDP Session Description Protocol
SIP Session Initiation Protocol
SQCIF Sub-Quarter CIF
STUN Simple Traversal of UDP through NATs

xiv

Acronym/Term Definition
UA User Agent
UAC User Agent Client
UAS User Agent Server
VoIP Voice over Internet Protocol
YCrBr Luminance, red chrominance, and blue chrominance color

scheme

1

1 Introduction
A high quality real-time video communication experience over the internet demands high data

transmission rates. Until recently, it was a privilege available only to selected consumers who could
afford the high costs involved in high speed network connections. However, with the increasing
deployment of 3G networks, several commercial operators are providing the infrastructure for high
bandwidth network connections for mobile users at affordable prices. There is already wide
deployment of broadband fixed networks in Sweden and many other countries. The availability of
broadband connectivity is triggering significant changes in the prevailing communication applications.
For example, Voice over Internet Protocol (VoIP) is replacing Public Switched Telephone Network
(PSTN) for calls, and video calls are growing increasingly popular. As a result, Interactive Voice
Response (IVR) systems are expected to be replaced by Interactive Voice and Video Response (IVVR)
response systems in certain business areas. Healthcare systems, where patients contact medical
personnel are a prominent business area demanding IVVR systems. [1]

Along with the demand for enhanced network capacity, widespread usage of IVVR systems
introduces several other technical challenges. Some of these challenges [2]:

• Queuing architectures for IVVR systems are still in an early stage of development.
• If the clients of the calling parties use different video CODECs, there are no standard

protocols to transcode the media.
• A large number of end devices are using private IP addresses that are valid only within a local

area network (LAN). Unfortunately this causes problems for the Session Initiation Protocol
(SIP); a prominent signalling protocol used for IP based media communication.

• Synchronization of voice and video streams and utilization of the available bandwidth are not
optimal.

1.1 Goals
This thesis addresses the need for queuing architectures and mechanisms to handle transcoding

of media between various encoding schemes. Accordingly, this thesis project has explored a number of
related architectural concepts. A simple architecture to implement a queue is proposed and a prototype
IVVR system was implemented using two open source applications (specifically, Asterisk and
DiaStar). Asterisk is a media signalling and call routing application. DiaStar is a media transcoding
engine that has been used to generate, stream and convert video data. Asterisk and DiaStar use the
Woomera protocol to communicate with each other.

1.2 Structure of this thesis
This first chapter defines the context and scope of this thesis. It briefly explains what the

acronym IVVR means and describes what has been implemented and evaluated as a part of this thesis
project.

The second chapter provides the background information necessary to understand the
subsequent chapters of the thesis. It covers the basic concepts of queuing theory, signalling and media
transfer protocols, and gives some practical information about Asterisk and DiaStar . The first section
of this chapter describes the standard metrics used to measure the performance of a queuing system.

The third chapter describes the various protocols that will be utilized throughout the thesis
project. This chapter also presented a means of dealing with the problem of private addresses in the
LAN and how to overcome the problems introduced by network address translators (NATs).

The fourth chapter describes the subsystems that have been combined to implement and test the
prototype system. While the fifth chapter gives a high level architecture of the prototype queue with
emphasis on design decisions and technical hurdles encountered during this thesis project. The sixth
chapter describes the successful deployment of the prototype application using snapshots of the
various subsystems. It also evaluates the performance of the system in terms of the standard queuing
metrics.

2

The final chapter outlines the features and drawbacks of the prototype system. It also describes
what has been learned during the course of this thesis project and suggests additional work that may be
necessary for future IVVR queue applications. This chapter ends with some reflection on the social,
economic, and other issues raised by this thesis project.

3

2 Background
This chapter introduces the reader to all the technical concepts and software applications used in

this thesis. In depth details of certain aspects have been given when this information is directly used in
subsequent sections. It also provides a reader a background in communication networks and TCP/IP
protocols with the additional information that they need to understand the rest of this thesis.

2.1 Queuing Theory
In order to understand a queuing system we use some formal terminology to describes such

systems (see section 2.1.1). Additionally, to understand the replationship between the time that items
spend waiting in a queue and the rate at which requests are services we will utilize Little’s Law (see
section 2.1.2).

2.1.1 Terminology
In the context of communication systems, a queue is a mathematical model where a number of

jobs are waiting to be serviced by one or more servers. Such a queue can be described by 6 parameters
as per Kendell’s notation in the format A/S/N/C/P/D[3]. The variables are given in Table 2-1.

Table 2-1: Parameters that describe a queue

 Description

A Distribution of arrival times of items into the queue

S Distribution of service time for an time

N number of servers

C Queue capacity or the highest possible length of the queue. In the realm of this
thesis, this is assumed to be infinity

P Highest possible number of jobs, this also assumed to be a countable infinite
number in the realm of this thesis.

D Queuing discipline. It defines the order in which the jobs are picked. In the realm of
this thesis, this is assumed to be First In First Out(FIFO)

In the context of this thesis project, the last three parameters have definite fixed values (as

shown in the table). For this reason these parameters are not mentioned in the rest of the thesis. The
first two parameters (namely A and S) are constrained to being Markov distributions (abbreviated as
‘M’). As a result we will only consider M/M/n models in this thesis, where n represents the number of
servers serving a given queue. Such a queuing system is shown in Figure 2-1.

4

N

C = Infinity

=Infinity

A=M

S=M

D=FIFO

Figure 2-1: An M/M/n queuing model

2.1.2 Little's Law
Little's Law says that the average number of items in a queuing system equals the average rate at

which items arrive multiplied by the average time that an item spends in the system. The derivation
and formal proof are given in [4] and [3].

L=AW

Where:
L = average number of items in the queuing system

W = average waiting time in the system for an item

A = average number of items arriving per unit time

2.2 IVVR Systems
An Automated Response System (ARS) offers many advantages to small and large

organizations by providing recorded answers to frequently asked questions. An ARS can provide
answers to callers 24 hours a day, 365 days per year, thus providing high availability while saving the
business both time and money. An Interactive Voice Response (IVR) ARS provides voice only
communication. The concept of an Interactive Voice and Video Response (IVVR) is an evolution of
Interactive Voice Response (IVR) which enables both voice and video communication.

An IVVR ARS enables users to interact with each other (and with services) via a real-time
(audio and) video stream. This is commonly known as a video call. Current 3G mobile devices are
frequently equipped with cameras and color screens, thus enabling use of IVVRs even from mobile
clients. Fixed devices with display screens and SIP soft phones can also be IVVR clients.

5

2.2.1 Introduction
An IVVR generally has these properties:

• A display screen that displays a number of options, so that the user can quickly select their
desired option rather than having to listen to a spoken list of options (as would be the case in
an IVR);

• Alternatively a picture may be displayed that conveys information faster than an audio
description. For instance, an online shopping system might displays the available items and
the number of these items that are in stock;

• A means to send a recorded video stream;
• A means to establish a live audio & video session between two users;
• A means to establish a live session involving multiple users; and
• A means to record and store (audio and) video [5]

2.2.1.1 Business Value
There are three business advantages which drive VoIP and IVR providers to invest in studying

and constructing IVVR systems. These advantages are:
Ease of use IVVR services can use innovative ways of pictorially

presenting information; hence make the interface language
independent, where as an audio-only IVR mandates that
the end user must understand the language in which the
audio messages were recorded.

No installation is needed IVVR systems can be designed to be accessed using
standard SIP clients, thus no separate installation or
configuration is normally needed of the client.

Revenue generation model If the service distributed in an IVVR is commercially
valuable, the user can be billed based upon their usage (for
example, based upon the call duration or the amount to
data streamed). The service can also be deployed through
regular and premium dialing numbers for different kinds
of users.

2.2.1.2 Interactivity using DTMF
The IVVR should provide a mechanism for the user to interact with the system by selecting

their choice from among the available options. This selection can happen at multiple levels in a
sequence. With respect to the current video session, the user should be able to initiate the session,
terminate, pause, or move to a specified location in the video (as desired). A convenient means to
implement this communication is by utilizing the digits 0-9, *, and #. In an IVR system this is
frequently done by using the Dual Tone Multi-Frequency (DTMF)[6] signals generated when the user
presses these buttons on their “Touch-Tone” telephone. In the case of an IVVR system this could also
be implemented by soft-keys, i.e., defined regions of the screen that invoke different functions, or by
specific single or mulitiple finger gestures.

6

2.2.1.3 Sources of Video
An IVVR can obtain its video (and audio) stream from a variety of sources. The following are

some of the common media sources[7]:
Local Video IVVR systems can play audio and video from locally stored video

files. These files can be in standardized formats such as 3GP/MPEG
or can be raw H.261/H.263/H.264 streams.

Video servers External servers can store the audio and video files. In such cases,
RTSP can be used to control video streaming.
RTSP [8] is an application level protocol for controlling the delivery
of data with real-time properties. This protocol allows the user to
pause and navigate to a desired point in the video.

Static image files Static information in the form of images. It is useful to have the
ability to “play” a static file, generating a video stream to the
handset. An example usage scenario can be to show the seating
arrangement in a hall.

Hairpinning If there are two devices participating in a video communication
session and each of them is also a source of video data, the
configuration is commonly known as hairpinning. In simple terms,
any two party calls occurring within the realm of an IVVR can also
be a source of video data.

2.2.2 Technical Challenges
Implementation of an IVVR faces several challenges related to transmission of video data. In

addition to all of these challenges, a queue is also necessary. Before we go further it is necessary to
introduce the standards and principles of video encoding. H.261, defined by the International
Telecommunication Union - Telecommunication Standardization Sector (ITU-T)[9], was the first
practical standard used to describe the format of video data to be encoded as a real time protocol
(RTP) payload (for details of RTP see section 3.4). H.261 encodes a series of pictures that utilize the
YCrBr coloring scheme. The encoded video signal is compressed using a Huffman encoding scheme.
H.261 supports frames with two different resolutions, namely Common Intermediate Format (CIF) and
Quarter Common Intermediate Format (QCIF). These resolutions are:

CIF encodes frames at a resolution of 352 x 288 pixels.

QCIF encodes frames at a resolution of 176 x 144.

H.262, H.263, and H.264 are improved versions of H.261. The prototype application constructed as a part
of this thesis has been tested with H.263. Many popular commercial video encoding formats such as MPEG and
MPEG-4 internally use H.263 [2].

G.711, G.723, G.729, G.726, AMR-NB, AMR-WB, and G.722 are the popular audio encoding formats. In
this thesis project we have primarily used G.711 (pcma) as the audio encoding formats.

2.2.2.1 Queuing
An IVVR Queue is a system wherein a certain number of human operators (known as agents)

accept and establish video calls from a large number of callers in a first in first out (FIFO) order. In
order to provide this ordered delivery of video calls to the operators the queuing system should
implement the following functions:

• An algorithm to service the users in a FIFO fashion;
• A means to identify the state of the agents, i.e., whether they are currently engaged in a session

or are available;
• A means to detect the state change of an agent as they transitioning out of a session; and
• Upon identifying a free agent, a means to establish a video connection between this agent and

the first caller in the FIFO.

7

2.2.2.2 Network Bandwidth
The bandwidth of current networks is not necessarily sufficient for video queuing systems. If

multiple video streams need to pass through the queuing server, then servicing several hundred callers
may not be feasible with common servers. In developing nations where there is no deployment or only
partial deployment of 3G networks, the bandwidth available for video communication is insufficient at
the caller’s end. Table 2-2 shows the relationship between network bandwidth, video terminal type,
encoding schemes, and frame type of various networks.

Table 2-2: Bandwidth available in some different types of networks

Network Bandwidth
available Terminals CODECs Image size

3G 64 kbps Video
handsets

H.263,
MPEG-4,
H.264

QCIF, CIF

3G wireless
data

256-768 kbps Video
handsets,
Smart phones

H.263,
MPEG-4,
H.264

QCIF, CIF

Broadband
IP

768 kbps Smart phones,
soft client on
PC

H.264 QCIF, CIF

Enterprise 2-5 Mbps soft client on
PC

H.264 CIF, 4CIF, HD

WiMAX,
LTE

2-100 Mbps PC, TV,
portable
devices

H.264 CIF, 4CIF, HD

2.2.2.3 Video Quality
Real-time video can have poor quality for several reasons. Some visible quality deterioration

can be due to choice of pixel size, frame rate, erroneous coloring, etc. SIP based video streaming
typically assumes a fixed range of bandwidth. If the underlying link is not capable of providing this
bandwidth, then problems can occur, such as lost frames and the audio may no longer be synchronized
with the picture.

Video encoding schemes generally transmit information in an incremental manner. By taking
into consideration consecutive frames, only the change (or delta) between frames is transmitted. To
present a whole picture on the viewer’s screen, a sequential set of delta frames (called I-frames) are
needed.

2.2.2.4 Video Transcoding
Transcoding is one of the requirements of an IVVR system. Transcoding can convert a video

stream into a video stream suitable for the recipient. One type of transcoding is to convert a video
stream to a lower video resolution than the video resolution at the origin. This transcoding is often
necessary to match the resolution of the recipient’s video client. If a participant is calling from a 3G
network to a callee connect to a broadband access network, then it is likely that the callee’s client can
support a higher resolution and bit rate than the client attached via the 3G network. While the client
attached to the broadband network may be able to receive the video stream originated by the client on
the 3G network, the reverse will not be true. Hence the video going from the broadband access
network attached client will have to be transcoded to reduce its resolution (due to the resolution of the
mobile client’s screen) and to reduce the data rate (due to the more limited data rates of the mobile
client’s access network).

Mobile devices frequently have a small screen and low physical resolution, therefore they
frequently can display fewer pixels than a large desktop computer’s display. QCIF and SQCIF images

8

consist of 176x144 and 128x96 pixels, respectively. These are small compared to a television or a
larger video projector that might have a resolution of 1280x720 pixels. For an IVVR call between two
such devices to be successful, the video resolution has to be reduced significantly to provide the proper
resolution for display on the mobile device. Table 2-3 shows some of the common resolutions and bit
rates of common video formats. [10]

Table 2-3: Approximate Data Rates for Video Formats

Encoder type H.263 QCIF HD 720p HD 1080p

Resolution 175 x 144 at 15 fps 1280 x 720 at 60 fps 1920 x 1080 at 60 fps

Bit rate 64 kbps 20 Mbps 50 Mbps

When different video/audio formats are used by IVVR clients in a given session transcoding
can be used to transform the output format of one client to the preferred input format of another client.
RTP commonly streams video over the Internet using H.264, MPEG-4, or H.263 CODECs. In 3G
mobile network H.264 is widely used for video data. Unfortunately, transcoding is a CPU intensive
operation and it should not introduce significant delay of the media stream, as otherwise the user might
experience a poor quality session.

2.2.2.5 Signalling
End devices use a variety of signalling protocols; hence an IVVR system should handle these

protocols. SIP and H.323 are the two most popular signalling protocols. However, in small-scale
systems, ISDN or Q.931 signalling is commonly used. SS7 is used for establishing calls over the
PSTN. However, an IVVR does not usually need to handle the conversion of all possible signalling
protocols as translation of signalling messages can be done by signalling gateways. For example, SIP
and H.323 signalling messages can be converted to ISUP for use with the PSTN. In this thesis,
signalling protocol conversion is not discussed further, as SIP has been assumed to be the only
signaling protocol that will be used in the prototype. In practice this should not be a major limitation.

2.2.2.6 Client Compatibility
Client devices are assumed to be capable of handling at least one CODEC which is understood

by the media transcoding server. We have assumed that mobile devices will use H.264, while fixed
broadband attached devices will use H.264, MPEG-4, or H.263. If all of the parties use H.264, then
there is no need to perform media transcoding (other than to reduce the frame rate).

2.2.2.7 Call Setup Time
Despite the presence of a queue and signalling gateway, it is desirable that the call setup time for

an IVVR should not exceed the normal video call setup time if there is an available agent. If there is
not an available agent the caller can be notified. If this notification is via a recorded audio or video
message, then the time to set up the session to the server of the recorded message should not exceed
that of a normal video call setup.

9

3 Signalling Protocols
Before the communicating parties establish an audio or video communication, they need to

exchange some basic information between themselves. This phase is called a handshake. A handshake
is necessary to identify each party, negotiate the audio and video formats each client is capable of
handling, and to agree upon the data rate to be used for the combined media streams. The maximum
data rates are generally bounded by the link bandwidth available to each party and the available
bandwidth on the path from one party to another. A signalling protocol handles all these tasks.

Various signalling protocols are used based on the type of network and the nature of the
information transmitted. In this thesis we will not consider the signalling protocols used by the PSTN,
but rather will assume that any communication with parties attached to the PSTN will go through
signaling and media gateways that are attached to an IP network. For this reason in the remainder of
this thesis we will only consider two major signalling protocols, H.323 and SIP. These are described in
the following two sections. After the short description of H.323 in the next section we will focus on
SIP (as this is used in both the 3GPP’s IP multimedia system (IMS) and in most modern clients
attached to various IP networks.

3.1 H.323
The H.323[11] standard was defined by the International Telecommunication Union (ITU). This

is not a single protocol, but rather a large specification defining the possibilities for session
establishment using many other protocols, namely H.225 RAS signalling, H.225.0 Call signalling,
H.245 Control signalling, RTP (Real Time Protocol), RTCP (Real Time Control Protocol), and H.450,
supplementary services and standards for encoding and compression of voice and video. H.323 is a
complex protocol often involving unnecessary message exchanges[12]. It was originally designed to
establish video conferences, hence identifies the network elements as terminals, gatekeepers,
gateways, and multi conferencing units[13].

3.2 Session Initiation Protocol (SIP)
SIP was defined by Internet Engineering Task Force(IETF) and is a simpler than H.323 and

tailored more specifically for session establishment and termination[12]. SIP is a text based application
layer protocol that can operate over any transport layer protocol. It identifies the participating entities
with SIP addresses. These addresses are similar to mail addresses. SIP identifies SIP servers based
upon the domain portion of an address. SIP clients can register with one or more SIP domains[14]. SIP
uses the Session Description Protocol (SDP) (described in section 3.3) in the SIP payload to exchange
information about media encoding formats and end point addresses (including IP address, protocol,
and port number). The SIP clients use RTP for data transfer and RTCP for managing data streams. The
open source implementations of Asterisk and DiaStar used in this thesis project implement SIP and
utilize RTP & RTCP. Additional details of these protocols are provided in the following sections.

3.2.1 SIP Components
SIP identifies several different logical components that can be utilized in a SIP implementation.

Each of these components has a specific function. These logical components and their functions are
listed in Table 3-1. A single physical device can implement one or more of these elements.
Additionally, for scaling multiple physical nodes can also be used to implement each of these logical
components. These logical components simplify the task of establishing a communication session.

Table 3-1: SIP's logical components

User Agent A SIP user agent (UA) can either be a SIP User Agent Server (UAS) or a
SIP User Agent Client (UAC). A physical device such as a phone or a
softphone usually acts as a user agent. The component plays the role of a
User Agent Client when it generates requests. A User Agent Server
processes requests it received from a User Agent Client.

10

SIP Proxy A proxy server aids in identifying the location of a user agent to which a
SIP request has been made by another user agent. A proxy server might
simply be a redirect server that forwards any SIP message it receives to
the appropriate SIP domain. In order to forward request the SIP proxy
requires knowledge of the IP address of the destination. This information
is used by the SIP proxy to handle SIP INVITEs originated by a SIP UAC.
In the destination’s SIP domain a SIP registrar handles this job as
described below.

SIP Registrar Server The SIP registrar maintains a database of SIP users registered in the
respective SIP domain. Registration requests made by SIP UACs are used
to populate the SIP registrar’s database.

Location Server The location server maintains of a mapping of a SIP addresses to the IP
address (or addresses) of the corresponding SIP user agent(s). A SIP user
can utilize many different SIP user agents, hence there can be multiple IP
address associated with a single SIP user’s SIP address. In such cases, the
SIP proxies ensure that the SIP messages reach all the relevant
destinations.

Application Server An application server can be used to provide services, such as presence
and to perform translations between phone numbers and SIP addresses.
This is an optional type of component in a SIP system.

3.2.2 SIP Methods
SIP defines standard messages which are either requests generated by a UAC or responses

generated by UASs. They are called as methods. These methods are listed and briefly described in
Table 3-2. The SIP components exchange these request and response methods.

Table 3-2: SIP Methods

INVITE An invite message initiates a SIP session and is issued by a SIP UAC. It performs
two primary tasks: to identify the location and client capabilities of the session
initiator and to asks a SIP proxy to forward the request to the callee.

OK An OK is a SIP message issued by a client in response to an INVITE. This response
may be given if the callee is capable of handling the corresponding audio and video
CODECs mentioned in the SIP INVITE and if the callee wants to participate in a
session with the caller.

ACK This message is generated by the party issuing the INVITE message to acknowledge
that the CODECs have been successfully negotiated with the INVITE and OK
messages.

BYE This message is issued by the party intending to terminate the session to inform the
other party that it should end its media transmission.

CANCEL The user agent client issues this message to a user agent server to cancel its previous
message. Its most common application is to cancel a pending INVITE for which a
response has not yet been generated.

REGISTER This is issued by a SIP client and the registrar server consumes this message. The
message contains the IP address of the SIP user agent and the registrar server stores
this information in the database managed by the location server.

11

Figure 3-1: SIP Methods at the calling UA

3.2.3 SIP Status Codes
Along with SIP methods, the protocol defines several numerical status codes to convey state

information of a SIP component. These status codes are broadly summarized by the status code
categories shown in Table 3-3.

Table 3-3: SIP Status Codes

Status code Purpose
1xx Provisional/Informational status codes- generally convey that a request is

received and is in continuation to be process
2xx Success: an action was successfully performed or some information was

understood, and accepted
3xx Redirection: to indicate that further action needs to be taken in order to

complete the request;
4xx Client Error: to indicate that the request contains bad syntax or cannot be

fulfilled by this agent
5xx Server Error: to indicate that the server failed to process a request as it is

invalid
6xx Global Failure: the request cannot be fulfilled at any server

3.2.4 SIP Scenarios
The SIP protocol specifies various forms of two party and multiparty communication sessions.

However, in our analysis of a simple queuing system we primarily use two scenarios. These two
scenarios are described below.

12

3.2.4.1 Register Scenario

Figure 3-2 shows the messages exchanged between a SIP UAC and a SIP registrar server when a
client device registers itself.

Figure 3-2: SIP Register Scenario

3.2.4.2 Two Party Call Scenario

Figure 3-3 shows a schematic representation of the SIP components involved during a simple
two-party call. The UAC of the calling party makes requests that are serviced by the SIP UAS of the
called party. SDP identifies if both parties share a common encoding format. After this initial exchange
the location of the parties are known to each other. RTP handles the subsequent transmission of the
actual media packets.

Figure 3-3: Two Party Call Scenario

13

3.3 SDP
The Session Description Protocol (SDP) is a text based application layer protocol that can be

embedded within the body of SIP messages. The purpose of this protocol is to exchange session and
media encoding information between the parties that wish to communicate. SDP specifies the
following details [15]:

• Session name and purpose
• Time and duration for which the session is active
• Media encoding formats used and
• The port numbers and addresses to access the media
• Every entry is of the format: <type>=<value>

An SDP message occurs within the body of a SIP INVITE, REINVITE, or OK methods. The
name and a short description of each SDP field is given in Table 3-5.

Table 3-4: Fields of the SDP protocol

Field Description
V This field identifies the version of SDP
O Username and IP of the originator of the session, a session identifier

and version number
S A textual name for the session
C The network type and address to which the connection is sought
T Start and stop times for the session
M This field indicates the media type and the port number used to

transport. Text, audio, video, application are some common media
types.

A This field is of the form attribute: value. The media encoding scheme
name is one of the most important attributed described in this field

Below is an example SDP message:
v=0
o=KTHUserAgent 7181 811 IN IP4 10.10.10.10
s=SIP Call
c=IN IP4 10.10.10.10
t=0 0
m=audio 18990 RT
c=IN IP4 10.10.10.10
a=rtpmap:0 PCMU/8000
a=rtpmap:19 CN/8000

3.4 RTP/RTCP
Real-time Transfer Protocol provides end-to-end delivery services for audio and video data with

real-time characteristics.RTP internally is a combination of two protocols [16]:
RTP RTP packets contain real-time data and other relevant data

RTCP RTCP messages contain control information for the associated RTP
stream. It monitors the quality of data being transmitted and information
about the participants

RTP and RTCP use port numbers negotiated in the preceding SDP messages. Separate ports are
used for audio and video data streams. Each media stream consists of a separate pair of RTP/RTCP
sessions. By convention, RTP uses only even numbered ports and the next immediate odd port is used
by the associated RTCP session.

14

3.4.1 RTP
The RTP packet header is shown in Figure 3-4. The name, length in bits, and a short description

of each field is given in Table 3-5.

Figure 3-4: RTP Header

Table 3-5: Fields of the RTP header

Field Size Description
version (V) 2 bits This field identifies the version of RTP. RFC 1889 is the latest version

defined and is numbered 2.
padding (P) 1 bit This bit indicates that the packet has octets at the end which are not a

part of the original data. The last octet specifies the number of such
extra octets. This is needed by some encryption algorithms which
require fixed block sizes.

extension (X) 1 bit If the header is followed by exactly one extension, this bit is set.
CSRC count
(CC)

4 bits This is the number of CSRC identifiers following the fixed header.

marker (M) 1 bit This bit is used for framing.
payload type
(PT)

7 bits This field specifies the encoding format of the payload and is used by
the client application consuming the payload.

sequence
number

16 bits The sequence number is incremented by one for every consecutive
RTP packet transmitted. It is used by the receiver to identify packet
loss and for buffering of audio/video in sequence. The initial value is
random.

Timestamp 32 bits The timestamp mentions the instance in time at which the first byte of
information in the RTP payload is generated. It should be derived
from an incremental clock. It allows for synchronization and jitter
calculations.

SSRC 32 bits This field identifies the synchronization source. The value should be a
random number. All RTP packets from a particular application in a
given client have the same SSRC.

CSRC list 0 to 15
items, 32
bits each

The CSRC list identifies the contributing sources for the payload
contained in this packet. The number of identifiers is given by the CC
field. If there are more than 15 contributing sources, only 15 may be
identified. CSRC identifiers are inserted by mixers, using the SSRC
identifiers of contributing sources.

3.4.1.1 Mixer

An RTP mixer is an intermediate RTP component which can take several RTP input streams and
combine them, for video this could be based on scaling them down and presenting the data from
multiple sources at different positions in the video frame[17].

15

3.4.1.2 Translator

A translator is a RTP component need to transmit RTP packets through firewalls.
Firewalls generally block multicast and RTP packets. There could be two translator
components, either of them functioning on each side of the firewall. The source translator
tunnels RTP packets through a secure connection, while the internal translator extracts the
original multicast RTP packets and multicasts them in the internal network.

3.4.2 RTCP
The RTP control protocol (RTCP) can be used in conjunction with RTP. It is to provide

feedback about the reception of RTP payloads at the receiver[18]. This feedback can be used
to learn about the quality of the session and to optimize the choice of CODEC or to adjust
CODEC parameters. A session participant sends information about the data received by sending
report packets back to the sender. RTCP uses a field named CNAME to identify the corresponding
RTP source. This CNAME identifies a particular participant in a session. RTCP may also report
additional information for the participants. Table 3-6 lists various types of RTCP messages that can be
exchanged in an RTCP session.

Table 3-6: RTCP Message Types

RTCP message type Purpose
SR Sender report, statistics from participants that are active senders
RR Receiver report, statistics from participants which only receive

RTP packets and do not generate any
SDES description of source including CNAME
BYE end of participation in the session
APP Application specific functions

3.5 DTMF
To interact with an ARS, it is necessary to choose one option out of the available options. In the

case of an IVVR, each of these options appears on a screen as a visual representation. A standard
protocol to communicate the numbers dialed on a dial pad can be utilized to provide an indication of
the user’s section. Dual Tone Multi Frequency (DTMF) serves this purpose[6]. This protocol identifies
each key on a telephone number pad as a combination of two simultaneously played tones.

The specification of the Dual Tone Multi-Frequency (DTMF) signalling system for transmitters
and receivers is given by ETSI Standard ES 201 235[19]. It follows ITU-T’s recommendation
Q.23[20]. This specification was originally defined for PSTN phones. However, with the adoption of
packet switched IP networks for various applications on mobile handsets, DTMF has emerged as a
mechanism that is also suitable for IP applications. An IVVR is one such application.

The specification for DTMF defines in depth criteria and means to implement robust and
reliable signalling. It covers DTMF signalling in a direct connection between a pair of end devices and
also across a more complex communication network involving several intermediate nodes. In the later
case, the DTMF signaling can be used for routing and other networking functions.

3.6 NAT Traversal
A network address translator (NAT) is used by devices in a private network to share one or more

public IP adresses. A NAT enables devices in an internal private network to access devices with public
IP addresses. This technology was introduced to conserve the rapidly depleting supply of IPV4
network addresses. A NAT acts as the single point of entry to all the internal devices in a private
network. In essence, a NAT’s task is to map an internal IP:port pair to an external IP:port. This
mapping is valid for a pre-specified duration. During this period whenever the NAT receives a packet
on the external IP:port combination, it modifies and then forwards the packet to the corresponding
internal IP:port destination[21].

16

This section introduces NAT terminology and explains only those aspects of NAT which
influence the design decisions in construction of an IVVR queue. This knowledge is necessage
because when a SIP user agent or a SIP component is located behind a NAT there are some difficulties
in the SIP signaling since SIP places IP address and port numbers in the SDP messages.

3.6.1 Types of NAT
There are four types of NAT: Full code, address restricted cone, port restricted cone, and

symmetric cone. These four types of NATs are briefly described in Table 3-7.
Table 3-7: Types of NATs

Full Cone In this configuration, anyone on the Internet can send packets to an
NAT’s IP:port and those packets will be passed on to the
corresponding internal device.

Address Restricted
Cone

In this configuration, any device on the Internet can send packets to
a NAT’s IP:port only if the corresponding internal device has
already transmitted an IP packet to that external device.

Port Restricted Cone This is similar to an address restricted cone with an additional
constraint that a device on the Internet can send packets from an
external IP:port to a NAT’s IP:port only if the corresponding
internal device has already transmitted an IP packet to that external
device and to that specific port (i.e., to this specific destination
IP:port).

Symmetric Cone This configuration is different and more restrictive than all of the
types of NATs listed above. In this case the NAT maintains separate
mappings for an internal IP:port and an external IP:port for every IP
address and every port in the Internet. Thus if an internal device
sends out packets originating from 10.1.1.1:80 packets to both
external IP1:port1 and external IP2:port2, the NAT will maintain
two separate mappings, one for each external IP address.

3.6.2 SIP-NAT Issues
There are two major issues caused by NATs with respect to SIP and RTP. These issues are

described in the following paragraphs.

3.6.2.1 Signalling issues
SIP uses port 5060 as a standard port number for all SIP signalling. However, if there is more

than one SIP component running on a given IP interface of a device, then all but one of the
components will utilize different port numbers (for the same transport protocol). In this case a client
would need to use the appropriate port number to contact the relevant SIP component, such as SIP
registrar or SIP proxy server[22]. Due to the shortage of IP addresses it is preferable to use different
port numbers to indetify the services rather than to have the different services all use port 5060 on
different IP interfaces.

The SIP specification requires that SIP UAs support rport. This is an additional tag in the header
to denote any NAT changes along the way. The example below is an invite method that illustrates the
use of rport. (Note that the line numbers are not part of the message, but have been add to faciliate the
explaination which follows.)

1. INVITE sip:12125551212@211.123.66.222 SIP/2.0

2. Via: SIP/2.0/UDP 211.123.66.223:5060;branch=a71b6d57-507c77f2

3. Via: SIP/2.0/UDP 10.0.0.1:5060;received=202.123.211.25;rport=12345

4. From: <sip:2125551000@211.123.66.223>;tag=108bcd14

5. To: sip: 12125551212@211.123.66.222

17

6. Contact: sip: 2125551000@10.0.0.1

7. Call-ID: 4c88fd1e-62bb-4abf-b620-a75659435b76@10.3.19.6

8. CSeq: 703141 INVITE

9. Content-Length: 138

10. Content-Type: application/sdp

11. User-Agent: Linphone

12. v=0

13. o=deltathree 0 0 IN IP4 10.0.0.1

14. s=deltathree

15. c=IN IP4 10.0.0.1

16. t=0 0

17. m=audio 8000 RTP/AVP 4

18. a=ptime:90

19. a=x-ssrc:00aea3c0

The SIP INVITE header above is as sent by a proxy node after NAT modifications. The third
line shows that the original internal device issuing the INVITE method has the IP 10.0.0.1:5060.
However, the tag received=202.123.211.25;rport=12345 indicates that the after NAT, the IP and port
number for the UAS to use to communicate with this UAC are 202.123.211.25 and 12345.

3.6.2.2 RTP Streaming issues
Unlike signalling, streaming data using RTP via a NAT is more complex than for SIP. The SDP

within the SIP INVITE provides the other party with the IP address and port numbers to be used to
transmit media streams for this session. The client behind the NAT expects the media stream on these
ports. However, in order to receive the media stream(s) on these ports, the NAT must forward packets
to these port numbers after it receives them from the external device. Unfortunately, the NAT
specification does not include interpretation of SDP headers for SIP, thus the NAT will not forward the
streams to corresponding port numbers as expected by the internal client[23].

Unless the internal client is a symmetric cone NAT, there are some simple solutions to handle
this situation. First the client needs to be made aware of the NAT port through which the external
entities will contact it. Then, the client can itself update the SDP header of the SDP that it sends
accordingly to use the appropriate IP address and port numbers of the NAT, so that entities in the
external network can streaming RTP packets via specific NAT IP:port combinations. The NAT will
modify the arriving RTP packets and forward them to the corresponding internal IP:port.

However, if a symmetric cone NAT is used, the SIP solution is straight forward, but requires
network nodes to open up SIP ports by forcing the communicating parties to send a dummy packet in
advance. This solution is implement in a protocol named “Simple Traversal of UDP through NATs”
(STUN) [24]. Another NAT traversal mechanism is described in the TURN Requests for
Comments[25].

The prototype IVVR designed as a part of this thesis does not support external SIP clients.
Hence for this prototype all all SIP clients must be located in the same network. Extending this
prototype to deal with NATs is left for future work.

19

4 Component Systems
This chapter introduces the various software subsystems which have been used to implement the

prototype IVVR system. The description of each system covers only those aspects of the system which
are actually relevant to the construction of the prototype.

4.1 Asterisk
Asterisk® is an open source PBX and a development environment for various

telecommunication applications programmed in C[26]. It provides abstractions of lower level
signalling and session establishment procedures enabling it to manipulate communication sessions in
progress. Asterisk understands the standard protocols: SIP, H.323, MGCP[27], and SCCP[28]. It also
supports partial interoperability for session transformations between these protocols. It can use the
IAX2 protocol [29] to communicate with other Asterisk servers.

4.1.1 Dialplan
Asterisk provides a set of application programming interfaces (APIs) in its own proprietary

language called Dialplan. Each dialplan API takes the session protocol name as a parameter and
transmits the corresponding session messages. Dialplan provides a basic if-else conditional and goto
constructs for implementing applications. Dialplan does not provide any other programming
constructs, i.e., it does not provide for iteration, switching, and procedural or object oriented modules.
Dialplan supports some standard Linux system functions, such as writing to a log file. It uses another
interface called Application Gateway Interface (AGI) to call external executable scripts. Each API
provided by diaplan is called an application, in the Asterisk realm.

Dialplan applications can be used to develop telecommunication utilities such as IVR, queues,
and voice/video mail[30]. All protocol specific configurations are handled in individual .conf files.
The syntax of a dialplan application and an example for the specific application named Dial is:

Syntax : exten => Extension, Priority, Application
exten – a mandatory keyword

The fields of the above dialplan are:
Extension The number dialed on the user keypad and captured through DTMF. It

can be a regular expression too.

Priority This is a numerical value. It is used to specify the order in which the
application should be executed in the presence of more than one
application. If two application calls have the same priority number, a
runtime error is generated.

Application The name of the application to be executed. It can take several
arguments.

An example of such a dialplan is:
exten => 1001, 1, Dial(SIP/sip_user_id)

When a user dials 1001, this snippet of diaplan code simply generates and transmits a SIP
INVITE message to the SIP user with the id “sip_user_id” and returns a TRYING message to the
caller.

The extension field above is of special significance. It can also be a regular expression.
This helps in writing minimal code to handle signalling for a set of numbers dialed and
received through DTMF.

The complete telecommunication utility is defined as sequences of dialplan applications
categorized into separate blocks called contexts. For every SIP user, the default context which should
be considered is defined in the file sip.conf. The following section is a short introduction to the
contents of the sip.conf file.

20

4.1.2 SIP Configuration
All of Astrisk’s SIP signalling is controlled using a dialplan. However, SIP system specific

configuration details are maintained in a file named sip.conf. Below are the main global entries in
this file that are relevant to this thesis.
domain=asterisk The sip realm for this installation. A realm

is similar to a mail domain and it
aggregates all users authorized to be
customers of a particular providers service

bindport = 5060 The port to use for SIP messages, this
should be set to 5060 as per RFC3261, but
is subject to the discretion of the Asterisk
server manager.

register =>
user[:secret[:authuser]]@host[:port][/extension]

The format for SIP user registration.
UACs use this format to contact a specific
SIP user.

The file sip.conf also contains the list of SIP users for this particular domain. This is read by
Asterisk and loaded into memory while the server is running. A minimal SIP user entry in sip.conf
contains all the information relevant to this thesis. Note that the comments follow the line that they are
commenting on.

[example_user]
;This is the SIP User Id.
callerid="Example UserName" <1002>
;This is the user name for display. The convention is to also specify the number used to dial this user.
username=user2
;This is an optional secondary username
secret=pwd2
;The plaintext password for authentication
regexten=1002
;The number which can be used via DTMF to contact this SIP user
dtmfmode=rfc2833
;The specification under usage for DTMF
canreinvite=yes
;Specifies if this SIP user can issue reinvite messages
nat=yes
;If the user can be present within a NAT. In this case, SIP NAT rules as per RFC3581
;are applicable to enable NAT traveral
context=users
;The default dialplan context to be used for this SIP user to process the INVITE
;messages he sends to the asterisk server
audiocodes=ulaw
;The audio encoding schemes this client can recognize
videocodecs=H.263,H.264
; The video encoding schemes this client can recognize

It is not convenient to list all the SIP users in this file. For this reason, Asterisk provides a
feature to run an external script to read the SIP user information into the context of this file at runtime.
This feature has the following syntax:

#exec Filepath/FileName

4.2 DiaStar
DiaStar is an open source media management and streaming server (although it includes access

to proprietary functions of Dialogic®)[31]. DiaStar is coded in C and embedded in a customized
version of the Community ENTerprise Operating System (CentOS)[32]. DiaStar is available for

21

academic and commercial usage for a limited period, after which a paid license is required.The
application is available as an installable operating system. It can perform the following operations:

• SIP and H.323 signalling;
• Conversion of video media from one CODEC to other between H.232, H.264, and MPEG;
• Conversion of audio media between PCMa (alaw), PCMu (μlaw), G.722, G.729, and vox;
• Stream static image, audio, and video files;
• Interpreting DTMF signals;
• Transizing of video frames and partial video conference session management; and
• Establish video conferences, whose identification and layout is statically configured.

In order to configure DiaStar to function in conjunction with Asterisk, the IP address and SIP
port of Asterisk must be configured in a DiaStar configuration file. A plugin named chan_woomera
should be compiled and installed on the Asterisk server[33]. This plugin can interpret signalling
messages in a protocol named woomera, which is used by DiaStar to communicate with Asterisk.
DiaStar can also accept SIP signalling messages and communicate with Asterisk by converting them
into equivalent H.323 signals. However, DiaStar does not use native H.323, but rather tunnels them in
the woomera protocol. By default, DiaStar uses destination port 42420 to connect to Asterisk using
woomera.

DiaStar cannot handle NAT traversal of SIP signals and also cannot communicate with Asterisk
if it is not present in the same LAN. Both Asterisk and DiaStar cannot be run on a single system due to
the fact that they each expect to list to the same SIP port number. While it is possible to configure
Asterisk to use a different port number, the study carried out in this thesisproject assumes that these
two servers are located on different machines.

DiaStar has been designed to stream static voice and video files to client devices on the Internet
by converting them into the respective client specific encoding formats. We assume this is a black box
feature of DiaStar and simply attempt to extend this functionality to establish two party video calls
between clients having asynchronous encoding schemes. Figure 4-1 shows a schematic representation
of how DiaStar and Asterisk can interact. [34]

Figure 4-1: DiaStar Asterisk Integration

The woomera plugin enables Asterisk to accept WOOMERA signals from DiaStar in a dialplan
context. As a result new dialplan applications can stream and transcode media from this context. In
particular the following application is relevant. Upon receiving a WOOMERA packet from DiaStar ,
the application redirects the SIP session establishment back to DiaStar . Although DiaStar can stream
static media files in the caller’s specific encoding scheme, it cannot establish real-time two party calls
between clients using heterogeneous CODECs. The redirection dialplan application is:

exten => expression, n, Dial(WOOMERA/sip,sip_user_id)

22

The ideal scenario of a completely transcoding-capable media server which can perform two
party video calls while also incorporating queues is shown in Figure 4-2.

Figure 4-2: Ideal Queue Scenario with Transcoding

The call is initiated when the first caller (Caller 1) issues a SIP INVITE to DiaStar . This
INVITE is embedded as a WOOMERA message and forwarded to Asterisk. At this stage, the
enqueued caller waits in a queue. When an agent is available, the Asterisk queue signals back to
DiaStar with a WOOMERA message. After receiving this message DiaStar completes the signalling
sequence between the callers and extablishes the RTP flows. All RTP packets are routed through
DiaStar to enable transcoding. In this thesis project we explore if this scenario is possible when using
the static file transcoding and WOOMERA signalling capabilities of DiaStar.

4.3 SIP Clients
The SIP clients (which can acts as both UAC and UAS) can be either hardware phones or

software phones (commonly referred to as softphones). The following subsection will describe these
types of SIP phones and after this a subsection will describe the specific software phone that has been
used when testing the prototype IVVR system.

4.3.1 What are SIP phones?
The SIP phones considered in this thesis are those that are capable of generating IP packets in

accordance with SIP specification and processing voice & video data in order to support real-time
conversations.

There are two types of SIP phones:

1. Hardware SIP phone: These phones are similar to common telephones, but can receive and
make calls using a packet switched network (such as the Internet) instead of the traditional
PSTN. SIP video clients running an embedded UA and mobile phones that support 3G-324M
fall into this category. The 3G-324M standard is specified in two 3GPP technical specs: TS
26.112 (for CS call setup) and TS 26.111 (for 3G-324M initiation and operational
procedures)[10].

2. Software-based: These are software modules which can be installed on computers and can be
used to enable the computer’s video and audio interfaces to be used as a phone. For the
purposes of this thesis project a high speed Internet connection and a connection to a VoIP
service provider are also necessary.

23

SIP phones have different abilities to process video streams and display them. This processing
depends on the processing power of the device’s processors (the system can utilize both a central
processor and one or more additional processors, the later can include special purpose signal
processors and graphics processors), the amount of buffer memory available, audio & video buffering
mechanisms, and the features of the local audio & video processing software. Although there are
several universal standards to implement both hardware and software, they are incomplete in some
aspects and there are a lot of different types of SIP phones. For rendering a streaming video, using a
complex buffer management algorithm interferes with the ability to generate frames at a constant rate.
There is a need to compromise between latency and optimally managing the buffer memory. Streaming
video data at the appropriate frame size and resolution for the destination works better than resizing
the video in a video client with limited capabilities, hence the need for a node elsewhere in the
network to do transcoding.

4.3.2 Linphone
Linphone[35] is a VoIP softphone. This specific VoIP softphone has been used in the

development of the prototype application during this thesis project. Linphone is a open-source VoIP
program that uses SIP for signalling. We have selected Linphone for this project because:

• Linphone works with any SIP VoIP operator.
• Linphone is an open-source software and is available for desktop computers: Linux, Windows,

MacOSX, and for mobile phones: Android, iPhone, Blackberry.
• Linphone uses GTK+ for the graphical user interface. On Linux Linphone can also be run as a

console-mode application
.

25

5 Methods
This chapter explains the realization of a prototype IVVR queue system. It uses only SIP for

signalling and assumes a uniform encoding scheme for all the calls. The chapter also describes several
design alternatives and the actual alternative chosen for implementation. It provides the rationale for
deciding on the particular choice of each alternative.

An attempt to integrate a media translation server was made, but could not be realized. A
description of the technical concepts to integrate transcoding with Asterisk is given. A conceptual
analysis of this integration is also provided in section 5.2.

5.1 Queue Architecture
Realization of a simple IVVR queue includes the tasks of controlling the SIP signalling

methods, configuring the CODEC information of the various SIP agents, creation of SIP accounts at
the SIP registry, data modeling for agent/caller state management, and scripting to perform the
required database operations.

5.1.1 Development Environment
The system was developed using the environment described in Table 5-1.
Table 5-1: Test environment

Fedora Fedora build 2.6.43.8-1.fc15.i686.PAE[36]

Virtual Machine VMware Player version, build 4.0.2[37]

Asterisk Version Asterisk 1.8.12.2

My SQL MySQL and MySQL Workbench version 5.2.42[38]

Perl Perl 5, version 12

Linphone agent instance Running on Windows 7 Home Premium

Linphone caller instance Running on Android OS version 3.2

Wireshark Wireshark version 1.8[39]

All SIP methods have been controlled using an Asterisk dialplan. This dialplan code makes
several calls to the data model to modify and access the state information of agents and queue callers
by calling external perl scripts which run as Linux user processes. Asterisk has been configured to use
H.263, H.264, G.711(A-law) by editing the files sip.conf and asterisk.conf. This
configuration can be performed through the Linphone graphical user interface. This configuration
activity also includes editing the DiaStar file diastar.conf.

MySQL and mysqlphpadmin have been used as the database server and the client to store
information about persistant agents, callers and their session state. Perl 5 provides a database
connection library named DBI[40]. This library has been used to perform all database transactions.

5.1.2 Component Diagram
Figure 5-1 shows a component diagram of the prototype queue. Every component is a logical

entity which can be executing on a separate machine or several components can be run on the same
machine. The functionality of certain components is affected if they are not connected to the same
LAN as certain other components. Specific cases have been addressed in the following section. Each
arrow represents either SIP messages or flow of state information. The paragraphs below describe
every component.

26

Figure 5-1: Component Diagram

5.1.2.1 Agents
Agents are the individual SIP UAs who are assigned to calls by the queue servers. Each agent

has a unique SIP identifier registered in the default Asterisk domain. If agents are outside of the same
network where the Asterisk server is located and there is a symmetric NAT device at the Asterisk end
or the agent end, there is a need for a separate NAT traversal mechanism. To simplify the prototye
system, all agents are located within the same network as the Asterisk server.

When an agent registers with a SIP registrar, the IP address of this agent is stored in a location
database by the registrar. An agent can register multiple devices simultaneously; hence the SIP registry
can have several IP addresses associated with the same SIP identifier.

Every agent can also be a normal caller without being serviced by a queue server. Hence, there
is a need to identify the state of a registered agent, i.e., if this agent wishes to be active and served by
queue server. One way of achieving this state identification is by mandating that the agent to perform
an Asterisk dial operation to a special SIP address. The following dialplan code snippet performs this
task:

exten => 1111,n,AGI(agentInOut.pl,${CALLERID(num)},${EXTEN})

Thus in this example, the agent joins the queue by dialing 1111 – thus logging into the queue
service. When an agent UA initiates a SIP INVITE to this special number, it informs the queue server
of its desired state. This state is persistent (until the agent wishes to no longer be available to the
queue).

27

For every such agent login event, the following information is stored in a MySQL database:
Agent id The agent’s ID can be obtained from the INVITE message sent from

the agent’s UAC to the registry.
Agent status The agent’s status indicates whether the agent is free or occupied in a

SIP session. By default, it is set to free.
Unique_id A unique number is generated by Asterisk to represent a session

which is in progress. By default this value is set to a null. This field is
updated for the corresponding agent when a session is established and
the agent is involved in a SIP session.

Agent logout is performed in a similar manner. The agent calls the same number (“1111”) a
second time to indicate that he or she no longer wishes to be available to the queue server. Upon
receiving an INVITE for this special number, the corresponding agent record is deleted.

5.1.2.2 Callers
Callers are the SIP UACs situated outside the Asterisk network. In the most general scenarios,

these callers are locates behind NATs. However, to simplify the implementation and evaluation of
prototype, all callers are assumed to be in the same network as the Asterisk server. During the design,
implementation, and evaluation of the queue system, Linphone clients installed on my laptop and my
Android phone were used to simulate callers.

Whenever a caller is connected to an agent servicing a queue, the following details are recorded
in the database:
unique_id VARCHAR(100) This is the unique channel id. It is generated by asterisk for every SIP

call upon receiving an INVITE.
epoch INT UNSIGNED The time instant at which the call is established. It is used to sort and

enqueue callers as per their arrival time and hence implement the
logical queue.

queue_num VARCHAR(3) The queue identifier in case there are multiple queues. In this work,
only one queue has been simulated

caller_id VARCHAR(100) The SIP identifier of the caller
These details help in managing the queue’s free-agent status information. Only free agents are

eligible to be assigned to a new caller.

5.1.2.3 Agent Registration Module
Before agents can issue SIP register methods to Asterisk, it is necessary to load their

corresponding SIP IDs into the system. This was performed by calling a perl script from Asterisk to
read the SIP user information from the database. The database was populated using another perl script
to generate agent information. The details below are tracked in the schema and are used at various
points in this work:
agent_sip_id VARCHAR(100) The sip identifier of the agent
secret VARCHAR(100) The password used by the agent to register
ext_num INT UNSIGNED Extension number, upon which the agent can be reached
display_name VARCHAR(100) The visual display name of the agent
nat VARCHAR(1) Indicates whether the agent is behind a NAT device. The value is

assumed to be no for all the agents throughout this thesis project.
video_codecs VARCHAR(100) The video CODECs supported by the agent device. This value is

H.263 or H.264 throughout this thesis project.
audio_codecs VARCHAR(100) The audio CODECs supported by the agent device. This value is

PCMA (alaw) or PCMu (μlaw) throughout this thesis project.

28

5.1.2.4 Database
The MySQL database implantation was used to store all active and static SIP user and session

information. MySQL was chosen since its is an open source implementation. Additionally, MySQL
supports fine grained transaction isolation levels. The MySQL-phpmyadmin client was used since it is
shipped along with MySQL.

5.1.2.5 Logging System
The logging system is an extension to the queuing system. The information recorded by this

looging system could be used for billing purposes in a commercial system. While the prototype is not
a commercial system, the logging system was valuable during the evaluation of this prototype as it
captures accurate queuing statistics with respect to call duration, queue length, and agent productivity.
Certain log information is captured during the following events:

1. A new call into the queue
2. Successful call establishment with an agent
3. An caller abandoning the queue without availing the queue service
4. Teardown of an established call.

For each of these events the following details are captured:
unique_id VARCHAR(100) The unique identifier of the SIP call
epoch VARCHAR(20) The time instant when the call was made
event VARCHAR(50) Is one INVITE, ACCEPT, BYE and ABANDON
detail VARCHAR(50) Simply description of the event
queue_num VARCHAR(2) The queue identifier in case of multiple queues

5.1.2.6 Asterisk
The SIP registry, proxy, user agent server, and the queue functions are running as separate

system processes in the Asterisk environment. The queue is the central focus in this thesis project. A
flow chart of the queue design is provided in section 5.1.5.

5.1.2.7 Media transcoding engine
During this thesis project I have attempted to transcode video data using DiaStar in order to

enable calls supporting asynchronous video CODECs. A study of various DiaStar-Asterisk integration
scenarios was necessary in order to achieve this. Single or multiple instances of DiaStar can be
integrated with one Asterisk instance. A theoretical study of configuration of these systems was
performed, but none of these configurations could be successfully realized due to several configuration
issues faced while establishing a functional DiaStar system. The following systemswere used to install
a DiaStar system. A short description is given for why the system failed to run.

1) Acer 4736Z Laptop : DiaStar’s ISO installer halts during the installation procedure
infinitely without any response.

2) VMWare Player running on a Compaq CQ57 Laptop : CentOS embedded with the DiaStar
system does uses an encryption scheme known as SELINUX in the kernel which requires
support from hardware. However VMWare Player does not provide the hardware simulation
support for systems using SELINUX

3) Oracle VirtualBox[41] running on a Compaq CQ57 Laptop : The DiaStar server installation
procedure successfully ran on this virtual machine. However, the DiaStar server thus
installed is not capable of successfully communicating with the network interface card of
the host operating system.

29

Some of the transcoding scenarios were theoretically only partially valid. Two interesting cases
are presented here. Both of these scenarios assume that an enqueued caller supports CODEC1 and the
agent supports CODEC2.

5.1.3 Scenario 1: DiaStar facing the callers
In the scenario the video CODEC supported by agents is also supported by Asterisk. The

scenario is as depicted in Figure 5-2. The first INVITE originating from the caller is dispatched to
DiaStar. DiaStar forwards this message to the Asterisk queue by changing the From address field to its
own SIP identifier. Asterisk now knows that the INVITE was originated by DiaStar and connects the
DiaStar server to a free agent in the queue. Subsequently a media flow between the connected agent
and DiaStar uses CODEC2. DiaStar knows the original caller and the corresponding unique call
identifier, translates the signals in CODEC1 to CODEC2 and forwards the RTP packets to the agent
(and performs the reverse transformation for traffic going in the reverse direction). This can be
achieved with the dialplan:

[diastar]
exten=>1111,n, Dial(SIP/agent_sip_id)

Figure 5-2: DiaStar facing Callers

However, this mandates that all video data must pass through DiaStar server. Along with
forwarding media packets, the DiaStar system transforms the media from one CODEC to another.
When both the caller and the agent can utilize the same CODE this causes the server to handle
unnecessary traffic. Also the DiaStar server needs a much higher bandwidth connection than is
actually necessary.

5.1.4 Scenario 2: Asterisk facing callers
In this scenario, the INVITE requests originated by callers are received by Asterisk directly into

the queuing system. When a free agent is found, Asterisk forwards this INVITE message to DiaStar for
transcoding the call. Asterisk uses the following dialplan to achieve this:

exten=>1111,n,Dial(WOOMERA/agent_sip_id)

Figure 5-3: Asterisk facing Callers

30

When DiaStar receives a WOOMERA call request from Asterisk, it internally uses H.323
signalling to connect to Asterisk in the background and identifies the location of the agent. Then it
establishes a media session with the agent and another media stream to the original caller (containing
the transcoded signals). DiaStar must be dimensioned to process the desired number of simultaneous
calls. NAT issue will arise if the caller and Asterisk-DiaStar system are in separate networks, which is
the most common case. When the caller initiates the INVITE to Asterisk, the NAT at the caller’s end
opens up a port to communicate with Asterisk. However, the response to this INVITE could be sent
from DiaStar and since the caller is unaware of DiaStar, this response will be filtered out due to port
restrictions. Resolving this is left to future work.

5.1.5 Queue Flow Chart
The flow charts in this section provide further details of all the events realized in the

implemented queue system. The queue itself runs as a dialplan context in Asterisk. This implies that
for two simultaneous callers, there will be two linux processes both executing according to the flow
chart.

There are two call scenarios. The first one details the process of how a registered agent can
indicate himself as an active server for a queue. The second scenario explains the process of
establishing a call between a free agent and a caller in the queue.

All diagrams have be drawn using the free tool Diagram Designer available at [42].

5.1.5.1 Agent Register Scenario
Figure 5-4 shows the flow chart for a user registration event. A registered agent issues a SIP

INVITE to a predetermined SIP address used to indicate that it is an agent that wishes to log into the
queue system (i.e., it wishes to become an activeagent). This is interpreted by the queue as a request to
serve as an agent for the queue. The queue reads the database table IVVR_ AGENTS and authenticates
the caller against a plain text password. Then, another table of IVVR_LIVE_AGENTS is read to
determine if the caller is already logged in. If not, then a record indicating that the agent is online is
created. If the agent is already logged in, then the agent record for this agent is deleted from this table.
The identifier agent_sip_id is the primary key for this table. A column named AGENT_STATUS is of
importance here. Its value is set to FREE by default, for an agent who logins into the queue. It is set to
BUSY if the agent is engaged in an active call and set to FREE again when the call is released. The
events triggering this state change and the method to capture these events are described in the next
section.

31

Figure 5-4: Agent Register Flow

5.1.5.2 Call Scenario
Figure 5-5 shows the flow chart for the scenario of a caller being placed in the queue. Within the

Asterisk context, there is a separate process for every caller to realizing the tasks shown in this
flowchart. There are several states in this transition diagram which need to occur as isolated atomic
events. In other words, if one caller thread is performing these operations, there should be no other
thread performing the same task for a different caller. However, Asterisk’s dialplan does not provide
any API to isolate call handling processes into mutual exclusion. An explanation of the details of every
state and the state information flow to the corresponding software components (such as database and
SIP UAs) is given.

32

Figure 5-5: Queue Caller Flow

Start-Log-Call: A caller sends an INVITE message to Asterisk with the details below. The
caller can be from a different SIP domain. Upon receiving the INVITE message, the event is recorded
in the call logging system. The relevant SIP INVITE header details from the caller are:

INVITE sip:QUEUE_SIP_ID@ASTERISK_IP_ADDRESS SIP/2.0
Via: SIP/2.0/UDP CLIENT_DEVICE_IP:5060; rport=12345
From: CALLER_SIP_ID@CALLER_SIP_DOMAIN
To: sip: QUEUE_SIP_ID @ ASTERISK_IP_ADDRESS

Signal-Trying: Upon receiving an INIVTE, a TRYING message is sent back to the caller.
Assign-Queue-Position: A query to the database is performed to obtain the outstanding queue

number of the latest existing caller. The next queue number is assigned to this caller. If there are no
existing callers, this caller is placed at the first position in the queue and a corresponding entry to the
caller tracking table IVVR_CALLERS is made. The time when the INVITE method was received is
included in the record. This timestamp is used to sequence the callers in the queue and to serve them in
a FIFO order. The timestamp is automatically generated in the Asterisk context and is called as epoch.

33

EnterQueue-QueuePosition=1?: These states handle the task of identifying whether the queue
caller has advanced to the first position in the queue, if so the caller can be connected to an available
agent. This is done by repeatedly querying the table IVVR_CALLERS at regular intervals. The record
in the table with the lowest epoch value is fetched If these values match then this identifies the caller is
at the head of the queue. The table IVVR_CALLERS is simultaneously accessed by other caller
threads, hence the state of the queue as affected by other calls is transparent to this caller’s thread.

QueueWait1: If the caller is not at the head of the queue, then the service thread waits for a
specified interval of time before querying the database again. During this interval, it is possible to
stream a static audio file to the caller in order to play a message, which can also contain the current
position of the caller in the queue. Based on cumulative statistics, an approximate waiting time for the
caller before he or she will be connected to an agent can also be announced. However, algorithms to
estimate this waiting time were not addressed as a part of this thesis project.

QueueFirstPositon-FetchFreeAgents: In this state, the caller is at the head of the queue and
should be connected to an available agent. Hence, the agents table IVVR_LIVE_AGENTS is queried
to fetch the list of all the agents who are registered to service the queue and are available for service.
The column AGENT_STATUS indicates that an agent is available if the value of the column is FREE.
If there are no free agents, then control is transferred to the state QueueWait2. If there are free agents,
the state is transitioned to the DialAllAgents states.

QueueWait2: If no agents are available to serve the caller, the system waits for a certain time in
the idle state. During this period, a message indicating that the caller is at the head of the queue and
that there are currently no callers who can be streamed. After the waiting period, control is transferred
back to the state QueueFirstPosition.

DialAllAgents: When one or more free agents are available, the dialplan forwards the INVITE
method to all the free agents. Asterisk spawns a new thread here to trigger an INVITE for every agent.
It must be noted that all the free agent receive an INVITE generated by the same caller. This means
that until the outstanding caller is connected to an agent, all the other callers wait, although it would be
possible to create subsets of free agents and attempt to connect more callers from the queue (each of
them to a free agent in a different subset). This scheme can reduce the waiting average waiting time
for the callers. An example an INVITE to one of the free agents is:

INVITE sip:AGENT_SIP_ID@ASTERISK_IP_ADDRESS SIP/2.0
Via: SIP/2.0/UDP CLIENT_DEVICE_IP:5060; rport=12345
From: CALLER_SIP_ID@CALLER_SIP_DOMAIN
To: sip: QUEUE_SIP_ID @ ASTERISK_IP_ADDRESS

AgentAction: Upon receiving the INVITE from the SIP proxy, the agent UA can perform three
different operations:

1. Respond with a BYE – the UAC in the dialplan communicating with this agent UAS waits
for an interval to receive either an OK or BYE. If neither of them is received, the event is
logged in the logging table and a CANCEL is sent to the agent.

2. Not respond to the INVITE—in this case, the UAC in the dialplan communicating with the
agent UAS waits for a specified time interval, then it enters this event into the logging system
and cancels the call with this agent UAS with an CANCEL message

3. Respond with an OK – in this case, the dialplan UAC performs a series of operations as
described below. The system transitions to a new state.

AgentBusy-CancelOtherAgents: A transition to this state occurs when the queue flow receives
an OK from one of the agent UAS. The following actions are performed henceforth.

1. If there are more agents who have been sent an INVITE, the SIP session with them is
cancelled with a CANCEL message.

2. The agent who sent an OK is marked as marked as engaged in a session by setting an indicator
in the table IVVR_LIVE_AGENTS.

3. The database record for the caller in the table IVVR_CALLERS is removed. This action
updates the change in the queue state to the other callers.

4. The event is entered into the logging system
5. The OK is forwarded to the caller and a two party call is established.

34

5.2 DiaStar Integration
The previous section described the hurdles encountered in integrating DiaStar with Asterisk for

a two party call. The analysis below considers several additional topologies, although a working
Asterisk-DiaStar system could not be realized during the period of this thesis project. However, the
subsections below analyze these alternative topologies and could be used as the basis for future work.

5.2.1 Calls Terminating on DiaStar
In this scenario, shown in Figure 5-6, each SIP phone sends an INVITE to DiaStar’s IP address

to access the IVVR. DiaStar completes the SIP signalling by internally contacting Asterisk and
tunneling the SIP signalling messages in WOOMERA packets. Asterisk can perform certain IVVR
functions such as playing static audio & video files by using the DiaStar API. As a result DiaStar can
stream the static files located in its file system to the SIP phone in the apprprpiate format for the
calling SIP phone. The SIP phone needs to support at least one of the CODECs supported by DiaStar.
Unfortunately, a two party call cannot be established via the DiaStar API in this configuration.

Figure 5-6: Basic DiaStar-Asterisk Topology

5.2.2 Conferencing with DiaStar
DiaStar provides an API which an Asterisk dialplan can use to initiate and configure multimedia

conferences. Each conference is identified with a conference ID and this ID and session must be
configured statically in a configuration file in DiaStar in advance, i.e., before the DiaStar server is
start. Every conference attendee can call DiaStar using the SIP address of the conference. DiaStar
handles transcoding of media, but the queuing algorithm should still run in the Asterisk context.[43]

If the number of agents servicing the IVVR is constant, then an equal number of conferences
could be pre-configured in DiaStar and IVVR callers can be connected to to these conferences (as
shown in Figure 5-7). However, this is an ad hoc solution of tailoring the original conferencing
capability to a two party call as a sub-task of the IVVR queue. An analysis of the conference set up
mechanism in DiaStar is necessary to realize this scenario.

35

Figure 5-7: Conferencing with DiaStar

37

6 Measurements
This chapter verifies those aspects of the prototype queue system which could be successfully

realized. It describes a set of tests and corresponding SIP signal logs which prove that certain specific
features of the prototype IVVR were realized. In all these tests, all the agent UAs, caller UAs, and the
Asterisk queue were present in the same local network.

6.1 Basic test cases
The objective of these basic tests was to ascertain that the queue was functional. Every case test

a specific decision path in the queuing algorithm. For each test case, a description of the objective of
the test case is provided and a wireshark trace of an example call is provided. Since the
implementation of queue algorithm is mainly consists of generating the correct SIP messages to realize
the agent and caller actions, a wireshark trace is used to capture the result of each test case.

The trace of SIP packets is collected on the same port where the queue is running. It has been
filtered to display only SIP messages and an explanation of the trace with respect to the queue
functionality is provided.

The Asterisk Queue algorithm and MySQL were running on a Fedora system on a virtual
machine by using VMWare’s VMPlayer. To generate call traffic for test measurements the following
devices have been used with a Linphone instance running on them:

1. Windows 7 – running on a Compaq dual core laptop
2. Windows 7 – running on an IBM Lenovo Thinkpad laptop
3. Windows 7 – running on an Acer 4736Z laptop
4. IOS – running on an Apple Iphone
5. Android 3.2 – running on a Samsung XperiaX10 phone

For all these test cases the IP addresses for the respective SIP UAs were as follows:
Asterisk Queue 192.168.1.16

Agents 192.168.1.12(agent1), 192.168.1.3(agent2)

Callers 192.168.1.6(user2), 192.168.1.10(user3)

6.1.1 One Agent-One Caller
The objective of this test case is to ensure that an agent is successfully connected to a caller and

that the SIP signals are properly handled in the queue algorithm.
From the trace shown in Figure 6-1, it can be noticed that line 18 in the trace, is an INVITE

from the caller named user2 to the queue, as identified by the number 5001 in the INVITE header. On
line 19, the queue informs the caller that it is TRYING to connect to an agent. On line 24, the queue
forwards this INVITE to the agent named agent1. On line 25, the agent1’s UAS responds with a
TRYING to the queue. On line 29, the agent1’s device begins RINGING and this the queue is
informed of this. The queue in turn forwards this RINGING message to the caller on line 30. On line
32, the agent accepts the agent leg of the call and responds with an OK to the queue. On line 33, the
agent ACKs the agent. On line 42, the queue forwards the OK to the caller and on line 54, the caller
ACKs it. At this stage, there is an RTP flow between the agent and the caller. Similarly on line 75, the
caller terminates the call with a BYE and the queue responds to the caller with OK. Then, the queue
forwards the BYE to the UAS.

38

Figure 6-1: One Agent One Caller Test

6.1.2 One Agent-Many Callers
The objective of this test case is to ensure that if all the existing agents are engaged in active

RTP sessions, then the queue can accept INVITEs from callers and will keep them waiting with a
TRYING message until a free agent is identified and an assigned to this call.

In the traces shown in Figure 6-2 and Figure 6-3, agent1 is the only SIP user agent servicing the
queue. On line 42 and line 45, two callers user3 and user2 send SIP INVITEs to the queue. User3 is
first caller and hence is connected to the only queue server agent1. This occurs because he had
contacted the queue earlier than user2. The session with User3 ends with a BYE on line 661. Then,
immediately, on line 662, the queue INVITEs agent1 again for a new session with user2 - who is now
at the front of the queue. On line 735 and 780, the OK and ACK packets indicate that user2 is now
connected to the agent. The queue system delays responding to user2 as long as user3 is in a session
with the only available agent1.

Figure 6-2: One Agent Many Callers Test-1

39

Figure 6-3: One Agent Many Callers Test-2

6.1.3 Agent Logs in While Callers are in Queue
The objective of this test case is to ensure that if there are any callers waiting in the queue when

there are no active agents serving the queue, then the callers are kept on hold without being responded
to with an OK until an agent is online. Subsequently when an agent logs into the queue system which
has callers waiting for service, then the queue is able to connect the first caller in the queue to this
agent.

Figure 6-4: Agent Logs in while Callers are in Queue

On line 61 in the above trace, it can be noticed that a callers user2 has sent an invite to the
queue. However, there are no live agents at that moment. Later on line 107, agent1 logs in to the queue
as a server. And on line 146, the outstanding caller user2’s INVITE is forwarded by the queue to
agent1 and they are both connected with further completion of the SIP message handshake.

40

6.1.4 Many Agents-One Caller
The purpose of this test case is to verify that if there are more than one agents, all of them are

INVITE simultaneously to serve the caller. The agent who responds with an OK is connected and the
queue CANCELs the request to other agents. Below is a trace and a detailed description of the
sequence of operations.

Figure 6-5: Many Agents One Caller-1

Figure 6-6: Many Agents One Caller-2

On line 31, user2 calls the queue with an INVITE. On lines 33 and 34, both the agent1 and
agent2 are INVITEd for a session with user2, since both of them are free and available and user2 is at
the head of the queue. On line 71, it can be noted that agent2 responds with an OK and user2 is
connected to this agent for an RTP session. On line, 97 it can be noted that a CANCEL is sent to
agent1, since agent2 has been connected to the current caller.

41

6.2 Queue Performance Statistics
This section describes the implications of the prototype upon the call setup times for SIP session

establishment. The objective is to quantify the delay induced by the prototype over the regular SIP call
establishment time.

Upon receiving an INVITE from a UA, the queue obtains the list of free service agents from the
database and forwards the INVITE to all the UAs of these agents. Upon receiving RINGING from the
first service agent, it forwards this message back to the caller. After this event, the session
establishment sequence for a queue call is analogous to regular session establishment. Hence, the time
captured below is the number of seconds elapsed, from the moment a caller UA initiates an INVITE to
the asterisk server to the moment the UA receives a RINGING from asterisk.

6.2.1 Regular SIP Call Setup
Table 6.1 shows the time taken for regular SIP call establishment between two UAs. Five

sample measurements have been taken. The first column is the trial number. The next column shows
the absolute time at which the caller UA issues an INVITE. The third column is the absolute time
when the time UA receives a RINGING message. The difference between the third and second
column, which is the actual session establishment time is shown in the final column. All values are in
seconds and the average time taken is 0.5039 seconds.

Table 6-1: Regular SIP Call Setup Time (all times in seconds)

Trial
Number

INVITE from
Caller to Queue

RINGING from
Queue to Caller

Call Setup
Time

1 6.4983 6.9546 0.4563

2 14.4655 15.0911 0.6256

3 21.3601 21.7694 0.4093

4 3.9833 4.4877 0.5044

5 8.5071 9.0311 0.5240

Average Call Setup Time: 0.5039

6.2.2 Queue Call Setup
Table 6.2 shows the time taken for SIP call establishment between two UAs when the prototype

queue is used. Each column in this table has the meaning as the corresponding column in Table 6.1.
Since the queue is used in this setup, the measurements include the time take for database look ups for
accessing free agents and free/busy state management of the agents. All times indicated are in seconds
and it can be seen that on average, 1.0867 seconds are needed for session establishment.

Table 6-2: SIP Call Setup Time with Queue (all times in seconds)

Trial
Number

INVITE from
Caller to Queue

RINGING from
Queue to Caller

Call Setup
Time

1 11.3849 12.5742 1.1893

2 10.1654 11.1134 0.9480

3 4.9459 6.2526 1.3067

4 14.7264 15.7918 1.0654

5 6.5069 7.4310 0.9241

Average Call Setup Time: 1.0867

42

6.2.3 Inferences
The time statistics indicate that a significant delay is induced by using an external database to

maintain the state of all the SIP UAs in the queue. However, the functional test cases establish that this
prototype architecture is a sufficient solution to implement a functional IVVR queue. It is also
noteworthy that the database server and asterisk were running on the same machine. Externalizing the
database to a separate machine on the network preserves computational resources for forwarding SIP
signaling messages, but also gives rise to network access delay for accessing the database. This
deployment topology should also be tested for derive complete statistics on this prototype.

43

7 Conclusion
An IVVR system inherits all of the native issues of both two party video call establishment and

streaming static video files. The aim of this thesis project was to explore more precisely the root
causes for these problems. The thesis project also aimed to construct a simple queuing system and use
it as an interface for an IVVR system. While the first objective was met via a theoretical analysis and a
simple queue was constructed, an IVVR with a transcoding video call could not be realized in the time
period allocated for this thesis project.

However, the study of integrating asterisk with DiaStar provided in depth views of the technical
hurdles specific to these two systems and some insights into the underlying SIP and NAT traversal
issues. In particular, the measurements indicate that although a significant delay is introduced by the
database, the prototype architecture is a sufficient for a practical IVVR queue system.

7.1 Future work
The prototype lacks several features and extending this system to include these features will

enhance the system’s functionality. The following subsections describe some proposed future work.

7.1.1 NAT Traversal
The complete system has been evaluated in the same local area network. Moving the IVVR

callers to a public network is an essential enhancement that would be needed before this system could
be used in a real world deployment. As a first step the prototype IVVR should be extended to deal with
NATs when the Asterisk server is facing the callers. The system components should be redesigned to
include NAT traversal according to the relevant IETF RFCs.

7.1.2 Transcoding
DiaStar is capable of streaming static video files to any client device by encoding the native file

format into the destination client’s prefered format. It is also capable of receiving RTP streams from
multiple clients, mixing them in order to render the corresponding specific video format to every
client. However, it is not possible to establish two party calls between clients having heterogeneous
encoding schemes. A study to reuse the conferencing feature and tailor it to establish two party calls is
possible.

As a second step one of the alternative Asterisk-DiaStar topologies could be considered and a
working configuration implemented and evaluated.

7.1.3 Call back queue
In this implementation, there is an active SIP session while the caller waits in the queue. It is

also possible to terminate this session when an active agent is not available, but retain the caller’s SIP
identity and the queue position. These details can be used at a later point of time, when the respective
caller is advanced to the first position in the queue to initiate a new SIP session. This alternate queue
design allows caller’s client device to be free and the caller not manually wait for a connection.

7.2 Required reflections
Widespread deployment of IVVRs can have some social and economic implications. This

section is a summary of such speculations. The greatest benefit is that the hearing impaired can use
customized IVVR systems to avail themselves of support services from banks, electronic-device
online support centers, and shopping centers. If the IVVR visuals are tailored to be independent of the
spoken language, for instance, by representing all menu options in the form of pictures without using
any text, IVVR systems can be reachable by geographically distant and wider audiences.

However, there are certain negative sides to widespread deployment of IVVRs also. Maintaining
the video data generation and processing units requires more investment in hardware and software. So,
only large organizations may be able to provide IVVR services. It may also be possible for back bone

44

network providers and cloud service organizations to supply the resources needed for IVVRs. On a
social note, the employees working as agents in a support centre should be willing to participate in
video communication with callers and the regional law should allow for video communication
between strangers.

It is also notable that the degree to which these implications arise cannot be accurately
determined before actually deploying and using IVVR systems.

45

Bibliography
[1] Soonchul Jung, Moon-Suk Kang, Jae-Dong Lee, Dae-Woo Choi, and Jin Soo Sohn,

“Practical considerations to IVVR based ARS service creation,” presented at the 13th
International Conference on Intelligence in Next Generation Networks, 2009 (ICIN
2009), Bordeaux, 2009, pp. 1–4.

[2] Dialogic Corporation, “IVVR Technology Introduction with Applications Using
Dialogic® PowerMediaTM Host Media Processing Software,” Jul-2010. [Online].
Available: http://www.dialogic.com/~/media/products/docs/whitepapers/12026-ivvr-
hmp-wp.pdf. [Accessed: 30-Jul-2012].

[3] G. Srinivasan, Lec-30 Queueing Models. Department of Management Studies, IIT
Madras: , 2010.

[4] John D. C. Little and Stephen C. Graves, “Little’s Law (chapter 5),” in Building
Intuition: Insights from Basic Operations Management Models and Principles, vol. 115,
Dilip Chhajed and Timothy J. Lowe, Eds. New York, NY, USA: Springer
Science+Business Media, Inc., 2008, pp. 81–100.

[5] Soonchul Jung, Moon-Suk Kang, Jae-Dong Lee, Dae-Woo Choi, Jin Soo Sohn,
“Practical Considerations to IVVR based ARS.” [Online]. Available:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5357088. [Accessed: 31-Jul-
2012].

[6] ITU-T Recommendation Q.23, “ETSI Dual Tone Multi-Frequency (DTMF),”
http://www.etsi.org/WebSite/Technologies/dtmf.aspx, 1963. [Online]. Available:
http://www.etsi.org/WebSite/Technologies/dtmf.aspx. [Accessed: 03-Aug-2012].

[7] “IVVR Technology Introduction with Applications Using Dialogic® PowerMediaTM
Host Media Processing Software.” .

[8] H. Schulzrinne, A. Rao, and R. Lanphier, “Real Time Streaming Protocol (RTSP),”
Internet Request for Comments, vol. RFC 2326 (Proposed Standard), Apr. 1998.

[9] “ITU (International Telecommunication Union) is the United Nations specialized agency
for information and communication technologies – ICTs.” .

[10] Eli Orr, “Understanding the 3G-324M Spec: Part 1,” EE Times, 21-Jan-2003. [Online].
Available: http://www.eetimes.com/electronics-news/4137042/Understanding-the-3G-
324M-Spec-Part-1. [Accessed: 02-Sep-2012].

[11] International Telecommunication Union, “Recommendation ITU-T H.323.” Switzerland
Geneva, 2010.

[12] M. Voznak, “Comparison of H. 323 and SIP Protocol Specification,” in International
Conference" Research in Telecommunication Technology, 2003, pp. 45–47.

[13] “Cisco Voice Gateways and Gatekeepers.” .
[14] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M.

Handley, and E. Schooler, “SIP: Session Initiation Protocol,” Internet Request for
Comments, vol. RFC 3261 (Proposed Standard), Jun. 2002.

[15] M. Handley, V. Jacobson, and C. Perkins, “SDP: Session Description Protocol,” Internet
Request for Comments, vol. RFC 4566 (Proposed Standard), Jul. 2006.

[16] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport Protocol
for Real-Time Applications,” Internet Request for Comments, vol. RFC 3550 (Standard),
Jul. 2003.

[17] C. Perkins and M. Westerlund, “Multiplexing RTP Data and Control Packets on a Single
Port,” Internet Request for Comments, vol. RFC 5761 (Proposed Standard), Apr. 2010.

[18] C. Huitema, “Real Time Control Protocol (RTCP) attribute in Session Description
Protocol (SDP),” Internet Request for Comments, vol. RFC 3605 (Proposed Standard),
Oct. 2003.

46

[19] ITU-T Recommendation Q.23, “ETSI Dual Tone Multi-Frequency (DTMF),”
http://www.etsi.org/WebSite/Technologies/dtmf.aspx, 1963. [Online]. Available:
http://www.etsi.org/WebSite/Technologies/dtmf.aspx. [Accessed: 03-Aug-2012].

[20] “Q.23 : Technical features of push-button telephone sets.” [Online]. Available:
http://www.itu.int/rec/T-REC-Q.23-198811-I. [Accessed: 03-Aug-2012].

[21] F. Audet and C. Jennings, “Network Address Translation (NAT) Behavioral
Requirements for Unicast UDP,” Internet Request for Comments, vol. RFC 4787 (Best
Current Practice), Jan. 2007.

[22] C. Boulton, J. Rosenberg, G. Camarillo, and F. Audet, “NAT Traversal Practices for
Client-Server SIP,” Internet Request for Comments, vol. RFC 6314 (Informational), Jul.
2011.

[23] J. Rosenberg and H. Schulzrinne, “An Extension to the Session Initiation Protocol (SIP)
for Symmetric Response Routing,” Internet Request for Comments, vol. RFC 3581
(Proposed Standard), Aug. 2003.

[24] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, “Session Traversal Utilities for NAT
(STUN),” Internet Request for Comments, vol. RFC 5389 (Proposed Standard), Oct.
2008.

[25] R. Mahy, P. Matthews, and J. Rosenberg, “Traversal Using Relays around NAT
(TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN),” Internet
Request for Comments, vol. RFC 5766 (Proposed Standard), Apr. 2010.

[26] “Asterisk- The Open Source Telephony Projects | Asterisk.” .
[27] B. Foster and F. Andreasen, “Basic Media Gateway Control Protocol (MGCP)

Packages,” Internet Request for Comments, vol. RFC 3660 (Informational), Dec. 2003.
[28] J. Loughney, G. Sidebottom, L. Coene, G. Verwimp, J. Keller, and B. Bidulock,

“Signalling Connection Control Part User Adaptation Layer (SUA),” Internet Request
for Comments, vol. RFC 3868 (Proposed Standard), Oct. 2004.

[29] M. Spencer, B. Capouch, E. Guy, F. Miller, and K. Shumard, “IAX: Inter-Asterisk
eXchange Version 2,” Internet Request for Comments, vol. RFC 5456 (Informational),
Feb. 2010.

[30] M. Spencer, “Introduction to the Asterisk Open Source PBX,” Linux Support Services,
Inc, 2002.

[31] Dialogic Corporation, “ProjectDiaStar.org.” [Online]. Available:
http://www.projectdiastar.org/. [Accessed: 02-Sep-2012].

[32] CentOS Project, “www.centos.org - The Community ENTerprise Operating System.”
[Online]. Available: https://www.centos.org/. [Accessed: 02-Sep-2012].

[33] wiki.projectdiastar.org, “Asterisk Client (chan woomera) - User’s Guide -
ProjectDiaStar,” 16-Nov-2009. [Online]. Available:
http://wiki.projectdiastar.org/index.php/Asterisk_Client_(chan_woomera)_-
_User%27s_Guide. [Accessed: 02-Sep-2012].

[34] “Video Transcoding in DiaStar - ProjectDiaStar.” [Online]. Available:
http://wiki.projectdiastar.org/index.php/Video_Transcoding_in_DiaStar#Streams_for_Pla
y_and_Record. [Accessed: 08-Sep-2012].

[35] Linphone, “Linphone, open-source voip software,” 16-Feb-2012. [Online]. Available:
http://www.linphone.org/. [Accessed: 02-Sep-2012].

[36] “Fedora Project Homepage.” [Online]. Available: http://fedoraproject.org/. [Accessed:
08-Sep-2012].

[37] “Free VMware Player: Run Windows 8, Chrome OS on a Virtual PC.” [Online].
Available: http://www.vmware.com/products/player/. [Accessed: 08-Sep-2012].

[38] “phpMyAdmin.” [Online]. Available:
http://www.phpmyadmin.net/home_page/index.php. [Accessed: 08-Sep-2012].

[39] “Wireshark · Go deep.” [Online]. Available: http://www.wireshark.org/. [Accessed: 08-
Sep-2012].

[40] “Perl DBI - dbi.perl.org.” [Online]. Available: http://dbi.perl.org/. [Accessed: 08-Sep-
2012].

47

[41] “VirtualBox Downloads.” [Online]. Available:
http://www.oracle.com/technetwork/server-storage/virtualbox/downloads/index.html.
[Accessed: 08-Sep-2012].

[42] “Diagram Designer.” [Online]. Available: http://logicnet.dk/DiagramDesigner/.
[Accessed: 08-Sep-2012].

[43] “Asterisk to DiaStar SIP Scenarios - ProjectDiaStar.” [Online]. Available:
http://wiki.projectdiastar.org/index.php/Asterisk_to_DiaStar_SIP_Scenarios. [Accessed:
08-Sep-2012].

www.kth.se

TRITA-ICT-EX-2012:201

