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Energy efficiency and the move to renewable energy resources are of vital importance in 

growing profitable and sustainable economies.  In recent years, greater emphasis has been placed 

on institutions, companies and individuals to reduce their electrical energy demand through 

energy management.  In an attempt to reduce the demand, the electrical power utility in South 

Africa, Eskom, has introduced Demand Side Management programs and substantial increases in 

electricity tariffs.  In addition to these, tax incentives have been offered to help off-set the capital 

costs associated with the investments made in replacing old electrical equipment with new 

electrically efficient equipment.  Thus the need for accurate Measurement and Verification of 

electrical energy demand reduction, to substantiate fiscal claims, has become imperative.  The 

main purpose of Measurement and Verification is to investigate the actual monetary performance 

of an energy savings project.  Energy savings assessments, based on purely deterministic 

baseline demand, do not adequately represent the statistical nature of the savings impacts of 

many practical load systems, as disclosed in a reporting period.  This thesis presents the 

development of a generic probabilistic methodology to determine the demand profiles of pre- 

and post-Energy Conservation Measures (ECMs) for practical load systems.  The difference 

between the simulated demand of the pre- and post-ECMs for a particular set of variables 

represent the electrical demand impact.  The electrical demand of the pre- and post-ECMs is 

defined in terms of Probability Density Functions, and derived using a multivariate kernel 

density estimation algorithm.  The approach is tested using a simulation model of a water-

heating geyser implemented in MATLAB.  Three different ECMs are simulated using the geyser 

model and demand density estimation.  The results of the demand impacts of the ECMs are 

presented and evaluated.  With regards to possible future research this methodology could be 

applied to the evaluation of the demand impacts of heat pump technologies and solar water 

heaters. 
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Energiedoeltreffendheid en die skuif na hernubare energiebronne is van deurslaggewende belang  

vir die ontwikkeling van winsgewende en volhoubare ekonomieë.  Onlangs is meer klem geplaas 

op instansies, maatskappye en individue om hul aanvraag na energie te verminder met behulp 

van energiebestuur.  In ‘n poging om die aanvraag te verlaag, het Eskom, Suid-Afrika se 

elektrisiteitsverskaffer, aansienlike elektrisiteitstariefverhogings ingelyf en 

Aanvraagbestuursprogramme van stapel gestuur.  Bykomend hiertoe is belastingaansporings ook 

aangebied, waarteen kapitale kostes, geassosieer met die vervanging van ou elektriese toerusting 

met nuwe elektries doeltreffende toerusting, afgeset kan word.  Derhalwe het die behoefte aan 

akkurate Meting en Verifikasie van elektriese energie aanvraagvermindering, om finansiële eise 

te staaf, noodsaaklik geword.  Die hoofdoel van Meting en Verifikasie is om die werklike 

finansiële prestasie van ŉ energiebesparingsprojek te ondersoek soos bekend gemaak word 

tydens ’n verslagdoeningstydperk.  Energiebesparingassesserings wat slegs gebaseer word op die 

suiwer deterministiese basislyn aanvraag na elektrisiteit, verteenwoordig nie die werklike 

statistiese aard van die besparingsimpakte van baie praktiese lasstelsels nie.  Hierdie tesis stel die 

ontwikkeling van ŉ generiese waarskynlikheids-metodologie voor, om die voor- en na- 

Energiebesparings-maatreëls se aanvraagprofiele vir sulke praktiese lasstelsels, vas te stel.  Die 

verskil tussen die gesimuleerde aanvraag van die voor- en na- Energiebesparings-maatreëls vir ŉ 

spesifieke stel veranderlikes verteenwoordig die elektriese aanvraag impak.  Die voor- en na- 

Energiebesparings-maatreëls van die energieverbruik profieldata word gedefinieer in terme van 

Waarskynlikheidsdigtheidsfunksies en afgelei deur gebruik te maak van ŉ meerveranderlike 

kerndigtheidafskattingsalgoritme.  Die benadering is getoets deur gebruik te maak van ŉ 

simuleringsmodel van ŉ warmwaterstelsel geïmplimenteer in MATLAB.  Drie verskillende 

voor- en na- Energiebesparings-maatreëls is gesimuleer met behulp van die warmwaterstelsel-

model en aanvraag digtheidafskatting.  Die resultate van die elektriese aanvraag impakte van die 

voor- en na- Energiebesparings-maatreëls word vervolgens bespreek en geëvalueer.  Met 

betrekking tot moontlike toekomstige navorsing kan hierdie metodologie toegepas word om die 

aanvraag impakte van hittepomp- en sonwaterverwarmingstegnologieë te evalueer. 

 Opsomming
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1.1 Introduction 

The world continues to face substantial energy challenges.  One of the most significant 

challenges is proving to be the delivery of secure and affordable energy.  As a result of 

population growth and expanding economies, there will be an ever increasing competition for 

diminishing resources [1].  This will naturally lead to increased energy costs and the strategic 

importance of energy.  Economies that are more reliant on fossil fuels are more exposed to 

fluctuation and increased energy costs [2].  Energy efficiency and the move to the use of 

renewable energy resources are of vital importance in growing profitable and sustainable 

economies.  Another significant energy challenge stems from the greenhouse gas emissions that 

result from the production and use of energy [1].  The increased levels of these gases in recent 

times have lead to climate change regionally and globally.  This has the potential risk of 

adversely effecting agriculture production and the increased frequency of natural disasters 

associated with abnormal weather conditions.  These pose substantial risks to the future global 

economy. 

It is evident that the desperate drive to move way from non-renewable fossil fuels as a source of 

energy, is gaining momentum.  The world now looks to renewable energy resources to feed its 

ever increasing need for energy.  In the past, the focus of energy management has been on 

energy load forecasting, so that forward planning could be done to secure more energy in the 

future by advanced purchasing of additional oil and coal [3].  This planning also included the 

building of more coal fired power stations.  Nowadays the focus has shifted.  Energy 

management is placing more emphasis on increasing the efficient use of energy.  Electricity 

remains the preferred medium for the efficient transport of energy.  Dispersed generation from 

renewable energy sources seems to be the logical way forward in securing reliable and cost 

effective electrical energy.  With the imminent advent of electrically powered cars in our cities 

we will become more dependent on electricity and the electricity networks of the world [1].  The 

focus of electrical energy efficiency must not only be limited to the end-use technologies and 

Chapter 1 Probabilistic methodology for demand 

characterization 
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usage practices but must also include the efficient generation transmission and distribution of 

electricity [1]. 

The reality of the increasing importance of energy efficiency in everyday life is well phrased in 

the following excerpt from Time Magazine and it is by no means only applicable to the Unites 

States of America: 

“This may sound too good to be true, but the U.S. has a renewable-energy resource that is 

perfectly clean, remarkably cheap, surprisingly abundant and immediately available. It has 

astounding potential to reduce the carbon emissions that threaten our planet, the dependence on 

foreign oil that threatens our security and the energy costs that threaten our wallets. Unlike coal 

and petroleum, it doesn't pollute; unlike solar and wind, it doesn't depend on the weather; unlike 

ethanol, it doesn't accelerate deforestation or inflate food prices; unlike nuclear plants, it doesn't 

raise uncomfortable questions about meltdowns or terrorist attacks or radioactive-waste 

storage, and it doesn't take a decade to build. It isn't what-if like hydrogen, clean coal and tidal 

power; it's already proven to be workable, scalable and cost-effective. And we don't need to 

import it. This miracle juice goes by the distinctly boring name of energy efficiency, and it's often 

ignored in the hubbub over alternative fuels, the nuclear renaissance, T. Boone Pickens and the 

green-tech economy. Clearly, it needs an agent. But it's a simple concept: wasting less energy” 

[4]. 

1.2 Project motivation 

The purpose of energy management is to ensure the sustainability of energy resources and 

assisting in ensuring the sustainability of the natural environment.  The evaluation of the 

efficiency of energy consumers is at the heart of energy management.  In recent years, greater 

emphasis has been placed on institutions, companies and individuals to reduce their energy 

demand needs through energy management.  The electrical power producer in South Africa, 

Eskom has done this by way of substantial price increases in electricity tariffs and Demand Side 

Management (DSM) programs.  In addition to these, tax incentives have been offered to help off-

set the capital costs associated with the investments made in replacing old electrical equipment 

with new electrically efficient equipment.  This has resulted in the need for accurate 

Measurement and Verification (M&V) of electrical load demand reduction to substantiate the 
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fiscal claims.  The main purpose of M&V is to present the actual monetary performance of an 

energy savings project.  The M&V plan forms part of an energy-performance contract between 

the energy user and the energy savings company (ESCO), who implements the energy savings 

project.  The results of the M&V report is measured against the ESCO’s guaranteed level of 

performance [5]. 

Demand Side Management (DSM) interventions make use of Energy Conservation Measures 

(ECMs) to drive energy savings through increased efficient use of energy.  Two examples of 

DSM initiatives that the South African electricity provider, Eskom, has being rolling out are: the 

compact fluorescent lighting program and the solar water heater replacement program.  Eskom’s 

Standard Product program encourages DSM initiatives by providing rebates for technology 

replacements that result in greater efficient use of energy [6].  Baseline energy profiles of 

electrical consumers form the basis of calculations to determine the impact that DSM initiatives 

and energy savings projects have on the energy demand.  To determine the improvement in 

energy efficiency of an energy consumer, a reference or baseline consumption profile must be 

established against which a future consumption profile is to be evaluated.  The baseline 

consumption profile can also be used for short-term load forecasting. 

In the South African context and possibly many other parts of the world, baseline model 

determination has almost exclusively taken on a deterministic approach.  This approach lacks the 

confidence factors associated with the numerical values of the predicted load.  The International 

Performance Measurement and Verification Protocol (IPMVP) promotes the inclusion of 

confidence factors when reporting demand impacts [5].  This would give the energy manager the 

relative certainty that an energy load will be in a particular range of energy values.  Although 

confidence factors are an important part of the information reported concerning a demand 

impact, the IPMVP fails to present a preferred method on how to calculate this information.  It is 

believed that this may be the reason why M&V reporting has in general lacked this necessary 

information.  The reason why this information is necessary stems from the fact that almost all 

energy conservation measurements require a financial investment.  The main factors that play a 

role in the decision on whether or not to make the investment are: the return on investment (ROI) 

and the risk associated with realising the ROI.  To calculate the risk, confidence factors of 

achieving the expected demand impact are required.  The degree of complexity in calculating the 
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confidence factors increases with the degree of complexity of the energy load [5].  Loads that are 

influenced by multiple independent controlling variables pose the greatest challenge to quantify 

their demand impact that result from ECMs.  It is imperative that in the case of complex load 

systems, the relationship between load and the independent controlling variables be presented 

when energy load impacts are evaluated.  It is suggested in Chapter six that statistical methods 

should be used for the evaluation and interpretation of complex load profiles.  These load 

profiles should rather be represented in the form of multiple Probability Density Functions 

(PDFs) which depict the dependency of the load in relation to its controlling independent 

variables.  From these PDFs, load value ranges and their respective probabilities can be 

determined. 

A conclusion may be drawn at this stage that energy management is of ever increasing 

importance to the built and natural environments and at the heart of energy management is the 

prediction of demand impacts of ECMs.  Such prediction is no easy feat.  As the Nobel Laureate 

Physicist, Neils Bohr, put it 

“Prediction is a very difficult art, especially when it involves the future” 

1.3 Project description 

In South Africa the largest consumer of electricity in the residential sector is the heating of hot 

water.  A conventional hot water heater constitutes 40 to 50 percent of a household’s electricity 

demand, as quoted in the South African Energy Policy Discussion Document [7].  Eskom DSM 

initiatives have been promoting the replacement of conventional hot water heaters with solar 

water heaters and heat pumps.  In 2007, the Eskom board approved a two billion rand investment 

available over five years to subsidise the installation of solar hot water heaters.  Eskom hopes to 

subsidise the installation of 925 000 solar water heaters and in doing so reduce the demand on 

the grid by 578 MW [8]. 

The amount of electrical energy used by a geyser is largely dependent on ambient temperature 

and hot water demand.  It will be seen in Chapter two that hot water demand is also largely 

dependent on ambient temperature.  For this reason, hot water heating is considered a complex 

load with ambient temperature being the stochastic independent variable and electric load the 

dependent variable.  To elevate the performance of DSM initiatives such as the installation of 
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geyser blankets or the replacement of a geyser with solar water heater or heat pump, baseline and 

performance period electrical consumption profiles need to be determined.  As a result of the 

current need to substantiate the performance of DSM initiatives related to hot water heating, it 

was decided to set out the following objectives as per the following chapters of this thesis: 

Chapter two 

• investigation of the M&V methodology in detail; 

• selection of an appropriate method of statistical inference to calculate the confidence 

levels of predicted savings; 

• investigation of the purpose of load forecasting and load modelling; 

• investigation of hot water consumption rates and presentation of technologies that are 

employed in hot water heating, and 

• investigation of a method to predict the inlet water temperature of a geyser. 

A comprehensive investigation is needed to determine the present methodology employed by 

M&V to determine demand impacts that result from DSM interventions.  This investigation 

highlighted the lack of detail that was given by an M&V process on how to determine confidence 

levels of predicted savings impacts.  This resulted in a need to investigate which method of 

statistical inference would be the most appropriate to interpret the geyser demand.  The literature 

study in Chapter two then takes a broader view and investigates the purpose of load forecasting 

and load modelling.  The focus shifts back to hot water heating by investigating the input 

variables to hot water heating technologies and the technologies themselves.  The input variables 

that were investigated were hot water consumption rates and inlet water temperature. 

Chapter three covers the following objectives: 

• development of a methodology to model and quantify the electrical demand of a geyser; 

• development of a geyser model, and 

• development of a method for the statistical interpretation of the electrical demand. 

As a result of the knowledge gained in the literature study, it was decided to develop a 

methodology to predict demand impacts that result from DSM initiatives.  To do this, a so-called 

“sterile” environment was created to evaluate the methodology used to develop the geyser model 
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and statistically interpret its simulated demand.  The geyser model and the code used to analyse 

its simulated demand was developed in MATLAB and SIMULINK.  This model topology 

created a sterile simulation environment where the effectiveness of the proposed methodology 

could be evaluated.  A description is given of the geyser model and the software that was written 

to simulate and analyse the input and output variables of the model. 

Chapter four focuses on the statistical analysis of the input variables to the geyser model and 

includes the following objectives: 

• investigation of the effect data sampling rate has on the simulated electrical demand; 

• statistical analysis of the ambient temperature variable of the geyser model; 

• statistical analysis of the inlet water temperature variable of the geyser model, and 

• statistical analysis of the hot water consumption rate variable of the geyser model. 

Input data to the geyser model may be available at different sampling rates.  The influence of 

these different sampling rates on the simulated data was investigated through statistical methods.  

This was followed by an in-depth statistical analysis of the input variables to the geyser model.  

This was done to determine the effect the geyser model has on the input variables in relation to 

the electrical demand output variable. 

The content presented in Chapter five is two-fold: 

• analysis of the simulated demand data produced by the geyser model, and 

• investigation of the dependency between independent and dependent variables of the 

geyser model as a result of  ECMs. 

The results of the simulations using different input variable sampling periods are presented.  A 

group of simulation results of possible geyser ECMs were then statistically analysed and the 

relationship between dependent and independent variables investigated. 

In closing, Chapter six provides the following achievements and conclusions in respect of the set 

objectives as well as recommendations for future work: 

• conclusions on the appropriateness of the methodology developed to model a geyser; 
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• conclusions on the appropriateness of the methodology to quantify demand impacts as a 

result of intervention, and 

• suggestions on the future scope of work to further develop the load modelling 

methodology.  
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2.1 Overview 

The literature review begins with an explanation of the concept of M&V and the important role it 

plays in the evaluation and planning of ECMs.  A description of the M&V system and process 

are followed by an account of the main purposes of M&V.  The IPMVP is introduced as the 

foremost international protocol for M&V.  The four measurement methodologies advocated by 

the IPMVP are then briefly described.  A method to calculate the cost saving as a result of 

energy saving of an ECM is presented.  A good overall description of M&V is necessary to see 

how the load modelling methodology described in Chapter three compliments the M&V system 

and process.  It is in the author’s opinion that the IPMVP still falls short in its recommended 

approach to the statistical analysis of an energy load and the predicted energy savings of an 

ECM.  It is in this section of M&V where further development is needed. 

The next section of the literature review investigates statistical inference that would prove to be a 

useful tool in the M&V process.  Parametric and non-parametric interference is briefly described 

with reference to their respective advantages and disadvantages.  It was decided to further 

investigate non-parametric univariate and bivariate density estimation.  Kernel density estimation 

is a modern technique used in probability density estimation and its strengths and weaknesses are 

discussed.  The importance and methods used to determine bandwidth selection for kernel 

density estimation is highlighted.  The statistical techniques discussed in this section of the 

literature review are used in the statistical interpretation of the predicted impacts of the geyser 

ECMs in Chapter five. 

Load forecasting is discussed in the next section of the review.  This discussion sets the stage in 

order to highlight the importance of long and short-term load forecasting.  This forecasting is not 

only demand savings but also a forecast of aggregated electrical load from a group to a network 

level of electrical consumers.  Reference is made to a particularly relevant piece of work that was 

done on density estimation which was used to conduct short-term load forecasting. 

The discussion on load forecasting is followed by a section on hot water consumption and hot 

water heating in a residential context.  It was previously mentioned in Chapter one that hot water 

Chapter 2 Literature study
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heating accounts for the largest electrical consumer in the residential sector.  A hot water supply 

device such as a geyser represents a complex electrical load because the electrical consumption 

of the hot water produced is dependent on independent variables such as ambient temperature.  

Hot water consumption is one of the input variables to the geyser model that is developed in 

Chapter three.  A brief presentation of the most common water heating devices follows the hot 

water consumption discussion. 

The other input variable to the geyser model is the inlet water temperature.  In conclusion a 

method is discussed on how to predict the inlet water temperature for different burial depths of 

the water supply pipe at different times of the year. 

2.2 Energy savings in terms of measurement and verification 

2.2.1 Overview 

M&V is defined in the IPMVP as the process of calculating energy savings of a facility that 

result from the implementation of an energy management program [5].  In a document published 

by the South African Bureau of Standards (SABS), M&V is described as “the process of 

quantifying energy savings or the impact by the determination of actual consumption and 

relevant energy-governing factors, and to develop baseline and baseline adjustments” [9].  

Energy savings cannot be measured directly because it represents the absence of energy use.  The 

calculation involves comparing the measured energy use before and after the implementation of 

a project, accounting for the adjustments as a result of changes in conditions [5].  The Australian 

Energy Performance Contracting Association describes M&V methods as “Methods used to 

measure and verify, in a defined and disciplined, rigorous and transparent way, the energy 

savings resulting from implementation of ECMs which have been planned and designed to 

improve the energy performance of a specific facility or group of specific facilities.” [10].  The 

Association of Edison Illuminating Companies Load Research Committee introduces the 

requirement of statistical analysis when calculating an energy savings value when it defines 

M&V as follows: “M&V refers to the application of appropriate statistical and load research 

techniques to measure and verify the load reduction impact that result from the utilization of a 

Demand Response Program.” [11].  The purpose of the statistical analysis is to contribute a level 

of confidence to the calculated energy saving value [11]. 
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The goal of M&V, according to a report produced for the U.S Department of Energy Federal 

Energy Management Program is, “ … to reduce the risk to agencies by providing a mechanism to 

evaluate the performance of a project through the term of the contract.” [12].  The New 

Brunswick Industrial Program claims the objective of M&V is to quantify energy and financial 

savings as a result of ECMs.  This can be a challenging objective to achieve when the 

independent variables that influence the energy used during the performance period vary in 

relation to the baseline period.  This variance can significantly affect the processes to calculate 

energy use [13]. 

M&V and an M&V plan form the basis of the commercial contract between the ESCO and the 

agency, when ECMs are undertaken [14].  An appropriately designed M&V plan reduces the risk 

to which the agency is exposed when investing in an ECM.  A further challenge for M&V is to 

balance the M&V costs with the cost of improving the certainty of the quantity of energy saving 

as a result of the ECM [12]. 

The IPMVP is one of the most important tools used in a M&V process and was developed by the 

Efficiency Valuation Organisation (EVO) in an effort to overcome the challenges associated with 

the M&V process.  One of the most important reasons to manage the M&V challenges, stems 

from the fact that M&V forms the basis of commercial contracts involving ECMs.  IPMVP is 

used by professionals as a framework for preparing savings reports.  EVO promotes and 

encourages the efficient use of natural resources and end use efficiency as an alternative to new 

energy supply [5].  There are four options provided by IPMVP for determining savings and this 

will be discussed in greater detail in section 2.2.5.  The IPMVP does not cover the following 

aspects in any detail [15]: 

• the design of metering systems; 

• the cost estimation of M&V activities; 

• energy engineering, and 

• statistical analysis. 

2.2.1.1 M&V system 

The baseline, performance and savings determination are the three M&V process components 

that work together to form a complete system.  The M&V system deals with the situation that 
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once an ECM has been implemented, the original system is altered to such an extent that it is 

often impossible to conduct M&V retroactively.  It is therefore a system requirement that M&V 

be initiated at the planning and feasibility stages of a project [13].  The energy use profile prior 

to the implementation of an ECM is referred to as the baseline energy use and the energy use 

profile after the implementation is the energy profile of the performance period or reporting 

period.  The M&V system is depicted in Figure 2.2.1. 

 

Figure 2.2.1: Process flow diagram of the M&V system used to quantify energy savings in 

production environments [13]. 
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From this figure it can be seen that the baseline model must be created before the ECM is 

implemented.  The baseline model is intended to describe the mathematical relationship between 

the baseline energy data and the independent variables that drive the energy usage [13].  In 

simple energy consumption systems there may not be any significant independent variables that 

drive baseline energy use.  In these situations a baseline model is not required and the energy 

savings are simply calculated by subtracting the performance period’s energy usage from the 

baseline energy usage, provided the two energy periods are of equal length.  In more complex 

systems where independent variables drive the energy usage, a baseline model is a prerequisite in 

determining the impact the ECM has on energy usage.  Once an ECM has been implemented, a 

baseline model is used to represent the baseline system.  The performance period’s data, 

consisting of independent variables, is then fed into the baseline model.  The output of the model 

represents the calculated adjusted baseline energy usage or, stated differently, the energy that 

would have been used by the energy consumer during the performance period had the ECM not 

been implemented.  The energy saved as a result of the implementation of the ECM is then 

calculated by subtracting the recorded energy usage during the performance period from the 

adjusted baseline energy usage [13].  The IPMVP uses equation 2.2.1 to calculate savings.  The 

Adjustments  accounts for the changes in conditions between the baseline and reporting periods. 

( ) = Savings Baseline - Period Use or Demand Reporting - Period Use or Demand Adjustments− ±

                 2.2.1 

M&V may not be necessary if there is high certainty of the results of a project and if these results 

do not have to be substantiated.  Verification of the impact of the project would, however, still 

need to be performed to make sure the project goals are met. 

2.2.1.2 M&V process 

The following activities form part of the M&V process [5]: 

• installation, calibration and maintenance of metering equipment; 

• collecting and screening of data; 

• development of a method to calculate and estimate project impacts; 

• calculations involving measured data, and 

• third party verification of reports and quality assurance of energy management programs. 
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The New Brunswick Industrial Program maintains that the M&V process has the following 

structure [13]: 

• required data and measurement boundary are specified to substantiate the intent of the 

ECM; 

• measurement hardware is selected and installed; 

• project data collection method is specified (This data is used in the baseline process to 

produce a baseline model.  In the performance process the performance period data is 

used to calculate the adjusted baseline data.), and 

• in the final step of the process, the various M&V tasks to be undertaken are assigned to 

designated people. 

The Best Practice Guide to Measurement and Verification of Energy Savings, advocates the 

following order of approach to basic M&V processes [10]: 

Before an ECM implementation: 

• M&V plan must be developed and a method selected for each of the ECMs based on the 

objectives of the project; 

• relevant energy and operating data from the baseline period must be recorded; 

• computational methods and data to be used to calculate the baseline energy must be 

ascertained, and 

• any special measurement equipment as specified by the M&V plan must be designed, 

installed and tested. 

After the ECM implementation: 

• M&V implementation must be verified and be consistent with the M&V plan; 

• relevant energy and operating data from the performance period must be recorded; 

• energy and cost savings are calculated and reported, and 

• report’s compliance with the M&V plan is then verified. 

In the design and reporting process of M&V the needs of the user must be considered.  Different 

methods are used depending on whether the energy user needs the whole facility to be evaluated 
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or just part thereof.  This is referred to as setting the measurement boundary.  A decision needs to 

be made on what energy-governing factors need to be taken into consideration when determining 

the baseline energy use.  The length of the baseline and reporting period must be decided on [5].  

The M&V process can itself introduce uncertainties such as: 

• measurement and instrument errors; 

• modelling errors; 

• sampling errors, and 

• planned and unplanned assumptions. 

These uncertainties need to be quantified in a statistically meaningful way by taking in to 

account both accuracy and confidence level [10].  The level of uncertainty of the calculated 

savings needs to be appropriately set for a specific project.  The cost of M&V increases along 

with the need for increased certainty with which the energy savings are reported.  The reasons 

for this increase in cost are as follows [10]: 

• measurement and instrument errors can be reduced by making use of more precise 

instruments that are normally more expensive to purchase; 

• sampling errors can be mitigated by increasing sampling size which would again be more 

costly, and 

• data errors and risk can be reduced by measuring, and not assuming, a quantity from a 

manufacturer (This additional measurement requires more time and money.). 

The cost of the level of certainty of the calculated saving must be balanced with the value of the 

savings and be appropriate for the level of complexity of the ECM that was implemented [10]. 

2.2.1.3 Main purposes of M&V 

The main purposes of an M&V process are to increase energy savings through a better 

understanding of the extent and nature of the impacts resulting from an energy management 

program.  A well-developed M&V plan often forms the basis for a performance-based financial 

contract between the energy user, the ESCO and the financier.  This plan also encourages better 

project engineering [10].  M&V also helps reveal and reduce maintenance and operational 

problems.  M&V techniques help account for variances in the budget resulting from changes in 
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the facility’s operating conditions.  An M&V plan helps improve emission reduction reports 

which provide additional value to efficiency projects [5].  The M&V of ECMs helps national and 

industrial organisations promote and achieve resource efficiency and environmental objectives 

[10].  The ability to finance ECMs is based on sound prediction, measurement and verification of 

savings.  These predictions and verification of savings are not only used to calculate the return 

on investment but also the risk associated in achieving the predicted results.  The accuracy and 

confidence by which savings can be forecast play an important role in the financial risk 

management of the project [10]. 

A summary of reasons according to the U.S. Federal Report for using M&V strategies are [12]: 

• necessary level of saving accuracy for an energy management project; 

• risk allocation to the relevant parties; 

• uncertainties are reduced to reasonable levels; 

• performance monitoring of retrofitted energy savings equipment; 

• finding of additional savings; 

• improved operations and maintenance of the plant, and 

• cost savings guarantee is verified. 

2.2.2 Baseline characterization 

Before ECMs are implemented, a system has a characteristic energy usage.  If the ECM 

implementation is successful there would be a reduction in energy usage.  To be able to compare 

the energy usage before and after the ECM implementation, a baseline, characterising the energy 

usage, needs to be determined [5].  This baseline takes into account input variables or energy-

governing factors.  Stated differently, the adjusted-baseline energy is representative of the 

amount of energy the plant would have used had there been no ECM.  In Figure 2.2.2, the 

baseline and reporting periods are depicted for a manufacturing facility.  It can be seen that there 

was an increase in production during the reporting period.  The adjusted baseline takes this 

change in the production volume variable into account.  If this was not the case, the energy 

savings would be under estimated.  The difference between the adjusted baseline energy and the 

measured energy represents the savings or the avoided energy use in the reporting period [5]. 
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Figure 2.2.2: Energy used in a production facility during the baseline and reporting periods [5]. 

2.2.3 Baseline and reporting periods 

Care needs to be taken when selecting a period for baseline and reporting periods.  The baseline 

and reporting periods should include a full operating cycle from maximum energy use to 

minimum.  An example of this is the energy used in a building.  Energy use in a building is 

significantly affected by weather conditions and it is therefore necessary to include a whole 

year’s seasonally dependent baseline data in the baseline period to define a full operating cycle.  

The baseline period should only include time periods in which fixed and variable energy-

governing facts are known for the facility [5]. 

2.2.4 Determination of energy savings 

Performance and usage are the two main factors that drive energy savings [12].  Performance 

refers to the rate of energy used during the performance of a specific task, -and usage refers to 

the time taken to perform the task.  Both of the factors need to be known to calculate the energy 

savings of an ECM.  This is graphically represented in Figure 2.2.3. 
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Figure 2.2.3: Energy performance and usage before and after the implementation of an ECM [12]. 

An ECM will normally aim to increase the energy efficiency and or reduce the time taken to 

perform the task.  The shaded area in Figure 2.2.3 represents the energy saving or the avoided 

energy use [12]. 

Energy savings are calculated by obtaining the difference between the adjusted baseline and the 

actual energy usage.  According to the SABS, energy savings are calculated by the following 

equation [9]: 

s peu peuE B R A= − ±
              2.2.2 

where 

s
E

  
denotes the energy savings; 

peuB  denotes the baseline period energy use; 

peuR  denotes the reporting period energy use and 

A   accounts for adjustments. 
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The adjustments in the calculation allow for any changes in operating conditions that may have 

occurred in the baseline period in comparison to the reporting period.  Two types of adjustments 

are possible, namely routine and non-routine adjustments.  Routine adjustments allow for 

energy-governing factors to change routinely during the reporting period.  Examples of these are 

weather conditions and production volume.  Non-routine adjustments are allocated to energy-

governing factors that are not usually expected to change, for example, facility size and number 

of weekly production shifts [9].  Equation 2.2.3 allows for the calculation of energy savings 

under different operating conditions. 

s peu peu r nE B R A A= − ± ±               2.2.3 

where 

s
E

  
denotes the energy savings; 

peuB
 

denotes the baseline period energy use; 

peuR
 

denotes the reporting period energy use; 

r
A

  
accounts for routine adjustments and 

n
A

  
for non-routine adjustments. 

The calculation method of the adjustment depends on whether the savings are to be reported on 

the energy-governing factors of the reporting period or whether the savings were to be 

normalized according to another set of factors.  Avoided energy use for a reporting period is the 

savings that are reported under the conditions of the reporting period.  This represents the energy 

that would have been used if the ECM had not been instituted.  If savings are reported under 

reporting period conditions, the energy in the baseline period needs to be adjusted to the 

reporting period conditions [9].  These energy savings are calculated by the following equation: 

s a peu nE B R A= − ±               2.2.4 

where 

s
E   denotes the energy savings; 
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a
B   denotes the adjusted-baseline energy; 

peuR  denotes the reporting period energy use and 

n
A   represents non-routine adjustments. 

The adjusted baseline energy is calculated by developing a mathematical model that correlates 

the baseline energy data with the independent variables.  The reporting period’s independent 

variables are then inserted into the model so that the adjusted-baseline energy can be calculated. 

A fixed-conditions basis, or normalized savings, are calculated using the following equation: 

( ) ( )s e r n peu r n
N B A A R A A= ± ± − ± ±             2.2.5 

where 

s
N

  
denotes the normalized savings; 

e
B

  
denotes the baseline energy; 

peuR
 

denotes the reporting period energy use; 

r
A

  
represents routine adjustments and 

n
A

  
represents non-routine adjustments. 

The savings calculated on this basis are referred to as “normalized savings”.  The input variables 

or conditions can represent an average or “normal set of conditions” rather than those of the 

reporting period or baseline period [9]. 

The following factors need to be considered when choosing between avoided energy used and 

normalized savings: 

• Avoided energy used style of savings are dependent on the operating conditions of the 

reporting period.  The savings for the reporting period cannot be directly compared with 

that of the savings predicted under baseline conditions [5]. 
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• Normalized saving are not affected by the reporting periods conditions.  A set of fixed 

conditions have been applied to the savings and can be directly compared with the 

predicted savings under the same set of fixed conditions.  The savings can only be 

reported once a full cycle of reporting period energy use is completed.  This is necessary 

to establish the mathematical correlation between the energy recorded during the 

reporting period and the recorded conditions [5]. 

2.2.5 Measurement methodology 

The IPMVP advocates four options for determining savings [5].  If the performance of only the 

ECM must be determined, option A or B is more suitable, which are retrofit-isolation methods.  

However, if savings at facility level need to be determined option C or D is more appropriate.  

Other criteria for choosing the most appropriate option are [12]: 

• M&V rigor required to achieve the required level of accuracy; 

• complexity of the ECM; 

• potential for changes in the performance of the ECM; 

• ECM’s savings value, and 

• project’s allocation risk. 

The following factors influence the appropriate level of M&V and therefore the associated cost 

[16]: 

• value of the projected savings; 

• complexity of the retrofitted efficiency equipment; 

• amount of efficiency equipment; 

• number of interactive effects related to the energy consuming system; 

• required level of certainty of the savings; 

• risk associated with achieving the savings for the agency and ESCO, and 

• availability and compatibility of an existing energy management system. 

Past experience has shown that each of the IPMVP options has the following associated cost as a 

percentage of the total project cost [16]: 

• Option A = 1-5 percent 
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• Option B = 3-10 percent 

• Option C = 1-3 percent (if metering is already installed) 

• Option D = 3-10 percent 

M&V approaches are divided into two main groups, referred to as retrofit-isolation and whole-

facility methods respectively.  The retrofit-isolation methods consider the equipment in isolation 

with regards to the rest of the facility.  In contrast, whole-facility methods consider the total 

energy used and de-emphasize specific equipment performance [12].  This grouping is depicted 

in Figure 2.2.4 which graphically represents where the boundary of an ECM is drawn for the 

different approach options.  It can be seen in the Figure that for options A and B the energy 

consumer is considered in isolation to the rest of the house, where as for options C and D the 

whole house’s energy consumption is considered. 

 

Figure 2.2.4: Representation of the two main methods of M&V namely, Retrofit Isolation and 

Whole Facility [12]. 

The four options are briefly described in the next four subsections. 

2.2.5.1 Option A 

Option A is a Retrofit in Isolation to the rest of the facility, where key parameters are measured 

and other parameters are estimated [9].  The measurement period ranges from short-term to 

continuous.  This is dependent on the reporting period and the expected variation in the measured 

parameter.  Parameters which are not measured are estimated and are based on historical data, 

manufacturer’s specifications or engineering judgement.  The savings are determined from the 

calculation of the baseline and reporting period energy while taking routine and non-routine 
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adjustments into account.  An example of this option would be the determination of the savings 

made by the retrofitting of lights in a facility [12].  The power draw of the lights would be the 

key parameter measured with the operating hours estimated based on building schedules and 

occupancy behaviour.  Such estimates should only be used where it can be shown that the 

combined uncertainty of the estimates does not significantly affect the overall reported savings 

[9].  This option allows for the narrowing of the measurement boundary which reduces the cost 

of monitoring by reducing the number of independent variables and static factors which would 

have an influence on the retrofit.  This is possible because the measurement boundary only 

includes a section of the facility [5].  This option is appropriate for end-use technologies.  The 

accuracy of this method is generally inversely proportional to the complexity [10].  The savings 

using this option are calculated with equations 2.2.6, 2.2.7 and 2.2.8 which allow for the 

measurement of at least one parameter and the estimation of the others for the baseline and 

reporting periods [9]. 

s peu peuE B R A= − ±               2.2.6
 

( )1 2 1 2, ,..., ,peu est est msd msdB f V V V V=              2.2.7 

( )1 2 1 2, ,..., ,peu est est msd msdR f V V V V=              2.2.8 

where 

s
E

  
denotes the energy savings; 

peuB
 

denotes the baseline period energy use; 

peuR
 

denotes the reporting period energy use; 

A   accounts for the adjustments; 

1estV  denotes the first estimated value; 

2estV  denotes the second estimated value; 

1msdV  denotes the first measured value and 
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2msdV  denotes the second measured value. 

2.2.5.2 Option B 

Option B is a Retrofit in Isolation where all parameters are measured, which means that all 

parameters must be measured to compute the energy saved.  Most ECMs can be calculated with 

this method.  However, this option is more costly when there are complexities involved in the 

measurement of the variables.  This method produces more accurate results when the savings 

patterns are more variable [9].  The savings, using this option, are calculated using the following 

equations: 

s peu peuE B R A= − ±               2.2.9
 

( )1 2,peu msd msdB f V V=             2.2.10 

( )1 2,peu msd msdR f V V=             2.2.11 

where 

sE
  

denotes the energy savings; 

peuB
 

denotes the baseline period energy use; 

peuR
 

denotes the reporting period energy use; 

A   accounts for the adjustments; 

1msdV  denotes the first measured value and 

2msdV  denotes the second measured value. 

No estimates are allowed for in this option.  There may also be no need for adjustments, but this 

depends on the length of the reporting period or the time frame between the reporting and 

baseline periods [9].  This approach is appropriate for savings evaluations of retrofits with 

performance and operation factors at a component or system level where verification of long 

term performance is required [12].  Compared to option A, this option is generally more 

complicated and costly to determine savings [5]. 
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2.2.5.3 Option C 

Option C allows for the whole facility or major sections of the facility to be evaluated for 

collective savings.  Utility meters and sub meters are used to assess the energy impact of the 

ECM [12].  Energy savings for this option are estimated by using statistical models that are 

representative of the whole facility’s energy use [10].  The expected energy savings must be 

greater than the unexplained energy variation that would normally occur at the whole facility.  

Energy savings should exceed the baseline energy by at least 10 percent when the reporting 

period is shorter than two years so that the savings are distinguishable from the baseline energy.  

The most challenging aspect of this option is identifying the changes in the facility that would 

require the inclusions of non-routine adjustments.  This is especially true when the measurement 

periods are long [5].  A mathematical model is developed for each meter’s energy usage pattern; 

this is then used to calculate the routine adjustments for the energy savings calculation.  The 

model often correlates the energy usage to one or more independent variables such as weather, 

production volume and/or occupancy.  An independent variable is a variable that changes 

regularly and has a direct influence on the energy consumption of the facility.  This option 

should also use data for a complete year in the baseline and reporting periods, otherwise it could 

create a bias due to seasonal changes.  Regression analysis can determine the number of 

independent variables that is necessary to include in the baseline data [5].  In general this option 

should be used with complex equipment replacement and for projects where the predicted 

savings are relatively large.  This option is also useful when the ECM has a high degree of 

interaction with the rest of the facility [10]. 

2.2.5.4 Option D 

Option D makes use of a calibrated simulation and simulation software to predict the energy 

usage for the baseline and or reporting period based on actual metered data.  Accurate modelling 

and calibration, to measure energy data, pose the greatest challenges to this option.  Savings are 

based on one or more energy usage estimate [9].  This option is especially useful when a baseline 

energy usage profile does not exist, as in the case of a new facility or a facility that has 

undergone a major retrofit [12].  The accuracy of the predicted saving depends on how well the 

simulation is calibrated to the metered energy data.  The calibration data should include 

measured energy data, independent variables and static factors.  After the calibration of the 

model, energy savings are calculated with two versions of equation 2.2.12.  The first version 
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includes the ECM; the other not [9].  The operating conditions must be the same for both 

versions.  The energy savings equation is as follows: 

s peu peuE B R= −              2.2.12 

where 

sE
  

denotes the energy savings; 

peuB
 

denotes the baseline period energy use and 

peuR
 

denotes the reporting period energy use; 

The calibration model may be replaced by actual energy data for either the baseline or reporting 

periods.  To calculate the savings using calibration data from the reporting period, the equation is 

as follows [9]: 

s peu peu eE B C C= − ±             2.2.13 

where 

sE
  

denotes the energy savings; 

peuB
 

denotes the baseline period energy use; 

peuC  denotes the actual calibration period energy and 

eC
 
 denotes the calibration error. 

This option allows for the assessment of the estimated savings of each individual ECM in a 

multiple ECM project, whereas option C only allows for a single ECM.  In an instance where an 

individual ECM must be evaluated and the metering used to collect the data is too difficult or too 

costly to install, this option may constitute a more feasible approach compared to options A and 

B [5].  When on-going savings reports are required, option D can be used for the first year.  The 

data collected during this year can then be used to calibrate the simulation and to arrange the 

baseline data for option C [9]. 
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The selection of the most appropriate IPMVP option for a particular project is made by the 

designer of the M&V plan.  Figure 2.2.5 maps out the logical decisions that need to be made for 

an M&V option selection. 

 

Figure 2.2.5: Logic diagram for the M&V option selection process [5]. 
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2.2.6 Associated cost savings 

Cost savings are calculated by applying a price to the associated energy saving.  This is done by 

the application of the following equation: 

s b rC C C= −              2.2.14 

where 

sC
  

denotes the cost saving as a result of avoided energy use; 

bC   denotes the cost of the energy used during the baseline period plus any   

  adjustments and 

rC   denotes the cost of the energy used in the reporting period plus any adjustments. 

The same pricing schedule must be applied to bC and rC when calculating cost savings provided 

that the pricing schedule remains the same for both periods [5].  The M&V process advocates the 

practice of stating confidence levels with all estimated saving values but to date, the IPMVP fails 

to give a detailed description of how this should be done.  The following section investigates 

methods of statistical inference that would prove to be a useful tool in the M&V process. 

2.3 Statistical inference 

2.3.1 Parametric and non-parametric inference 

“Statistics is the science that deals with the collection, summarization, presentation and 

interpretation of data.” [17].  The focal point of statistics is data; from this we can make 

inferences.  Statistical inference is the method of using data to infer the distribution that 

generated the data [18].  A statistical model ℑ  is a set of distributions.  A parametric model is a 

set of ℑ  that can be parameterized by a finite number of parameters whereas a non-parametric 

model cannot.  The focus of the two disciplines is different. In a parametric density family

( )|f θ⋅ , such as the two parameter Normal family ( )2,N µ σ  where ( )2,θ µ σ= , the focus is on 

obtaining the best estimator $θ  of θ .  In the non-parametric case the focus is on obtaining ( )f̂ ⋅ , 

a good estimate of the density function ( )f ⋅
 
itself [19].  Parametric models and curves rely on 
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prior knowledge of the equations that describe the data.  Non-parametric models and curves are 

driven by the nature of the data and thus they allow the data to speak for itself.  Non-parametric 

methods negate the need for model specifications and in doing so reduce the risk of 

misinterpretation of the data.  In the parametric approach, strong assumptions are made on the 

formal structure of the data.  This is not only the strength but also the weakness of parametric 

modelling.  From a strength point of view, great gains in efficiency are possible by specifying a 

specific model.  However, when the model is wrongly specified the inferences can be worse than 

useless.  The classical approach to summarising the nature of a data set is to assume a parametric 

model.  Smoothing methods can also be described as a compromise between parametric and non-

parametric inference.  The purpose of smoothing methods such as kernel and spline smoothing is 

to control the variance error, making it easier to see the underlying structure in the data [20]. 

2.3.2 Introduction to univariate density estimation 

Density estimation is a very important concept in statistics and can be described as the 

construction of an estimate for the unknown density function of the recorded data.  Given that a 

random variable X  has a probability density function f , the probability of X  is 

mathematically described as: 

( ) ( )
b

a

P a X b f x dx< < = ∫   for all a b<            2.3.1 

Density estimation can be divided into two groups, namely parametric and non-parametric 

density estimation.  In parametric density estimation, a rigid assumption is made that the data 

comes from a known parametric family of distributions.  In contrast to this, the goal of non-

parametric density estimation is to estimate the density function with as few assumptions of the 

true function as possible.  Non-parametric estimation can uncover features such skewness, 

multimodality and relationships between variables in the multivariate case which parametric 

estimation might not reveal.  The different types of non-parametric density estimation include 

histograms, kernel, frequency polygons, spline estimators, orthogonal series and penalised 

likelihood.  A detailed description of these estimators is discussed in Silverman, Scott and 

Simonoff [21, 19, and 17].  Kernel-based estimators are the most popular non-parametric 

estimators because in comparison, they are easy to interpret and implement. 
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2.3.3 Kernel density estimation 

The univariate kernel density estimation will be discussed first.  Following this discussion, an 

account of multivariate density estimation will be given, of which the bivariate case is of 

particular importance to the work described in this thesis.  The bivariate density estimate draws a 

relationship between the dependent and independent variables. 

A kernel is a smoothing or weight assigning function and satisfies the following condition [17]: 

( ) 1K x dx

∞

−∞

=∫                2.3.2 

where 

 denotes the kernel function. 

In most of the applications, -K will be a unimodal, symmetric probability density function. 

A univariate kernel density estimator for a random sample 1, , nX XK is described mathematically 

as follows: 

( ) 1

1

; ( )
n

h i

i

f x h n K x X
∧

−

=

= −∑              2.3.3 

where 

hK  denotes the scaled kernel function; 

n   denotes the number of samples and 

h   denotes the bandwidth which is a positive, non-random number. 

The scaled and unscaled kernels are related by 

( ) ( )1 1

h
K x h K h x− −=               2.3.4 

This definition could be described in simpler terms as the sum of the bumps at each sample 

point.  K  determines the shape of the bumps and h  determines their width.  Under mild 

conditions, the kernel estimate converges to the true density function.  In Figure 2.3.1, scaled 

K
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density functions are placed at each of the samples which are represented by the red dots.  The 

red line represents f
∧

and is the summation of the individual density functions at that sample 

point.  Samples which are closer in value result in a higher overall density value in that region of 

samples [22]. 

 

Figure 2.3.1: Estimated density function using kernel density estimation [22]. 

In kernel density estimation, two specifications need to be decided on.  The first is the kernel; the 

second is the bandwidth.  The performance of a kernel is measured by its asymptotic mean 

integrated squared error (AMISE) which is a global error criteria of how closely the estimated 

density function matches the true density function.  The Epanechnikov kernel was designed to 

minimise AMISE.  For that reason the Epanechnikov kernel is optimal and the other kernels 

efficiencies are measured relative to it [21].  Figure 2.3.2 depicts plots of different types of 

symmetrical kernel functions. 
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Figure 2.3.2: Different types of symmetrical unimodal kernel density functions [23]. 

A list of kernel functions is summarised in Table 2.3.1 along with their corresponding equation 

and efficiency. 

Table 2.3.1: Equations of the different density functions and their relative efficiency [17]. 

Kernel ( )K x  For Otherwise Efficiency 

Epanechnikov 

23 1
1

4 5

5

x
 

− 
   

5x <  0 1 

Biweight ( )
2

215
1

16
x−  1x <  0 0.9939 

Triangular 1 x−  1x <  0 0.9859 

Gaussian 
21

21

2

x

e
π

 
− 
     0.9512 

Rectangular 
1

2
 1x <  0 0.9295 
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The choice of kernel does not nearly have the same degree of impact on the estimate as the 

choice in bandwidth.  There is a danger of under- or over-smoothing when choosing the 

bandwidth.  It can be seen from Figures 2.3.3 to 2.3.6 that a variation in the bandwidth has a 

significant effect on the density estimation.  The estimated density functions range from over- to 

under-smoothed.  It is therefore necessary to use an automatic data-driven bandwidth selector 

[24].  AMISE and automatic bandwidth selectors are discussed in the next section. 

 

Figure 2.3.3: Estimated density function with a kernel bandwidth of 0.1 (over smoothing) [22]. 

 

Figure 2.3.4: Estimated density function with kernel bandwidth of 0.05 [22]. 
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Figure 2.3.5: Estimated density function with a kernel bandwidth of 0.02 [22]. 

 

Figure 2.3.6: Estimated density function with a kernel bandwidth of 0.005 (under smoothing) [22]. 

The mathematical description of a d - dimensional multivariate kernel density estimate from a 

random sample 1, , nX XK  is as follows [19]: 

( ) 1

1

; ( )
n

H i

i

f x H n K x X
∧

−

=

= −∑              2.3.5 

where 

x   denotes 1, , dx xK ; 

iX   denotes 1, ,i idX XK ; 1, ,i n= K  

Sample value 

P
ro

b
ab

il
it

y
 d

en
si

ty
 

Sample value 

P
ro

b
ab

il
it

y
 d

en
si

ty
 

Stellenbosch University  http://scholar.sun.ac.za



34 
 

HK   denotes the scaled kernel function; 

n   denotes the number of samples and 

H   denotes the d d× bandwidth matrix which is symmetric and positive definite. 

The scaled and unscaled kernels are related by: 

( )
11
22

H
K x H K H x

−−  
=  

 
              2.3.6 

In the bivariate case, the same principle of summing density estimates is applied, as was done in 

the univariate case.  Figure 2.3.7 is produced from the sample data set: 

( ) ( ) ( ) ( ) ( )1 2 3 4 57,3 , 2, 4 , 4, 4 , 5, 2 , 5,5X X X X X= = = =  

and has a bandwidth matrix of [25]: 

1 0.7

0.7 1
H

 
=  
 

 

In Figure 2.3.7, the left plane the individual kernels are placed at the sample data points.  In the 

right plane the individual kernels are summated to give a kernel density estimate. 

 

Figure 2.3.7: In the left plane individual kernels are placed at the sample points and in the right 

plane the individual kernels are summated to give a kernel density estimate [25]. 
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2.3.4 Error criteria for kernel density estimates 

There are methods to measure the discrepancy between the estimated density function and true 

density function.  This measure is also referred to as the performance of the density estimate.  

The bandwidth selector plays a very important part in the performance of the density estimate.  

The most commonly used, and most mathematically tractable, global performance measure over 

the whole real line is the mean integrated square error (MISE) [26]: 

( ) ( ) ( ) ( ) 2ˆ ˆ ˆ; ; [ ; ]
d

R

MISE MISEf H ISEf H f x H f x dx≡ ⋅ = Ε ⋅ = Ε −∫          2.3.7 

where 

MISE  denotes the mean integrated square error; 

EISE  denotes the expected value of the integrated square error and 

H  denotes the positive definite d d× bandwidth matrix. 

The objective is to find H that minimizes the MISE, which can be written as follows: 

( )ˆarg min ;MISEH MSEf H= ⋅              2.3.8 

where 

MISEH  denotes the bandwidth relative to the mean integrated square error and 

arg min denotes the argument minimum. 

It is very difficult to calculate MISEH  because MISE does not have a closed form solution.  The 

exception to this is if f
 is a normal mixture and K  is a normal kernel density [24].  This 

exception will be used to calculate the initial optimum bandwidths for the kernel density 

estimates of the impacts resulting from the simulated geyser ECMs.  In other words, it will be 

assumed for the initial density estimates that the true density functions will have normal 

distributions.  A Gaussian distribution is used as the initial kernel.  The equation for this optimal 

bandwidth will be described in the next section.  The next step is to find a tractable estimate of 

the MISE to overcome the problem of it not having a closed form solution [25]. 
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The MISE can be rewritten in the following form: 

( ) ( )

( ) ( )2

ˆ ˆ; ;

ˆ ˆ; ;

d

d d

R

R R

MISEf H MSEf x H dx

Varf x H dx Bias f x H dx

⋅ =

= +

∫

∫ ∫
          2.3.9 

where 

Var  denotes the variance and 

Bias  denotes the bias. 

The expected value of the kernel density estimated is: 

( ) ( )ˆ ; ( ) ( ) ( )( )
d

H H H

R

f x H K x X K x y f y dy K f xΕ = Ε − = − = ∗∫        2.3.10 

where 

∗   denotes the convolution operator. 

The bias is 

ˆ ( ; ) ( )( ) ( )HBiasf x H K f x f x= ∗ −            2.3.11 

The variance is 

1 2 2ˆ ( ; ) [( )( ) ( )( ) ]H HVarf x H n K f x K f x
−= ∗ − ∗          2.3.12 

Now MISE can be expressed in terms of the bias and variance as follows [25]: 

1 2 2 2

1
1 1 2

2

ˆ ( ; ) [( )( ) ( )( ) ] [( )( ) ( )]

( ) (1 ) ( )( ) 2 ( )( ) ( ) ( )

d d

d d

H H H

R R

n H

R R

MISEf x H n K f x K f x dx K f x f x dx

n R K H n K f x dx K f x f x dx R f

−

−− −

= ∗ − ∗ + ∗ −

= + − ∗ − ∗ +

∫ ∫

∫ ∫
 

               2.3.13

 

where 

2( ) ( )
d

R

R g g x dx= ∫              2.3.14 
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In this form, an asymptotic approximation can be calculated for MISE, which is known as 

AMISE and it is tractable so MISEH  can be calculated.  To be able to derive the asymptotic 

approximation of MISE, the multivariate Taylor expansion must be applied to equation 2.3.13.  

A more detailed explanation of the manipulation of MISE and AMISE can be found in Wand and 

Jones for the univariate and multivariate cases respectively [24]. 

2.3.5 Bandwidth selection 

One way to select a bandwidth is by visual interpretation.  This can be done by selecting a large 

bandwidth and selectively decreasing it until the fluctuation in the density function seems more 

random than structural.  This method assumes that there is a prior knowledge of the true 

structure.  This method is time consuming when many separate density functions need to be 

evaluated.  In most cases it is more beneficial to have automatic bandwidth selection.  In the 

univariate case, a constant bandwidth is described by a scalar value whereas in the multivariate 

version it is described by a matrix.  This bandwidth matrix is responsible for the degree and 

direction of smoothing of the density estimate.  The bandwidth selection will initially be 

constrained to the diagonals of the bandwidth matrix.  This has been the most common practice 

in the past.  Duong developed a method to estimate the off-diagonal elements of the bandwidth 

matrix for multivariate density estimations [26].  Based on the assumption that the density 

estimate will be Gaussian in form, the following mathematical equations were used to select the 

diagonals of bandwidth matrix [27]: 

1 15 2
2 6 612(1 ) (1 )

2
p p

h n
ρ

σ ρ
− −

= − +            2.3.15 

and 

1 15 2
2 6 612(1 ) (1 )

2
T T

h n
ρ

σ ρ
− −

= − +            2.3.16 

where 

ph
 
 denotes the bandwidth for the demand variable; 

T
h   denotes the bandwidth for the ambient temperature variable; 

Stellenbosch University  http://scholar.sun.ac.za



38 
 

pσ  denotes the standard deviation of demand; 

Tσ  denotes the standard deviation of ambient temperature and 

ρ   denotes the correlation coefficient. 

These bandwidth values minimise the MISE of f̂  but only if f and HK
 
are Gaussian [24]. 

2.3.6 Limitations in kernel density estimation 

One of practical limitations of the kernel density estimator is when it is used on data from long 

tailed distributions.  A fixed bandwidth implemented in this case tends to cause spurious noise in 

the tails of the estimate.  If the bandwidth is increased enough to smooth the tail, essential detail 

is lost in the main part of the distribution [21].  There are techniques to overcome this problem of 

which two are the nearest neighbour method and the variable kernel method.  In density 

estimations that are bound, conventional symmetrical kernel causes excessive bias near the 

boundary or boundaries [21].  A method has been developed to alleviate this problem by making 

use of a non-negative kernel such as a gamma or beta distribution near the boundaries.  More 

limitations exist in kernel density estimation, but these two cases would potentially have a 

noteworthy impact on this work. 

2.4 Load forecasting 

2.4.1 Overview 

In past decades, load forecasting was a much simpler task involving only straight-line 

extrapolations of historical energy consumptions.  The required accuracy lay between a high and 

low estimate of predicted future load and the difference between the two increased as the 

forecasted period increased.  According to Meetamehra there is an urgent need for precision in 

demand forecasting [28].  If a load forecast in the past was under estimated, turbine generating 

power plants were built to take care of the shortfall.  The gestation period for such a plant is at 

most three years where as a coal fired plant is seven to twelve years.  These turbine power plants 

run on oil which cost approximately $20 a barrel in the 1990s [29].  One of the ways that Eskom, 

as referred to in Chapter one, solved their immediate power shortfall crisis was to build gas 

turbine peaking plants that ran on fuels that cost approximately $90 a barrel in 2008 [29].  The 
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situation was so severe before the economic recession that these plants at times had to be 

operated as base loads plants which significantly contributed to the questionability of Eskom’s 

solvency in early 2008 [30].  An electrical network operating at under capacity can lead to brown 

outs and even blackouts which can put the whole supply network at risk.  In the other extreme, if 

over capacity was built the power station was moth balled and future growth would utilise this 

capacity.  Presently, base load power stations are enormously expensive to build and finance.  

Environmentally compatible technologies are developing at an unprecedented rate, which means 

that power stations need to be built and commissioned at the exact time that they are required to 

take advantage of this technology and be as environmentally friendly as possible.  Medium term 

forecasts indicate when these power stations must be built.  Medium term forecasts make 

assumptions about technologies as well as social and economic systems locally and globally [3].  

Short-term demand forecasts have the important role of setting the tariff structure.  The nature of 

forecasting has changed in recent times.  It is no longer adequate to only predict the peak demand 

and total energy used.  It is now necessary to predict the whole load shape on an hour to hour 

basis [28].  DSM is used to alter this load shape.  DSM engineers must strike a balance between 

maximum energy conservation and avoiding undue demand restrictions.  Demand forecasting 

models are also used to evaluate the impact which new technologies will have on energy demand 

and to what effect rising energy prices will stimulate energy efficiencies.  Demand forecasts are 

also done for each customer category and voltage level.  This is done to aid social reforms 

whereby larger commercial and industrial customers subsidise low income customers [28]. 

Spatial load forecasts yield information on electrical demand that include location, magnitude 

and timing of the anticipated demand [3].  Table 2.4.1 provides a list of the different levels of 

equipment and their associated planning time frames for short and long range. 

Table 2.4.1: Typical lead times for transmission and distribution system short and long range 

planning [3]. 

Level 
Short range forecasting 

(years ahead) 

Long range forecasting 

(years ahead) 

Large generation 
( > 150 MVA ) 

13 30 

Small generation 
(< 50 MVA ) 

5 20 

Transmission 
( 138 kV and above ) 

9 25 
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Level 
Short range forecasting 

(years ahead) 

Long range forecasting 

(years ahead) 

Sub-transmission 
(34 kV – 138 kV ) 

7 20 

Distribution substations 5 20 

Primary three-phase feeders 3 15 

Single-phase laterals 0.5 n.a. 

Service transformers 0.2 n.a. 

 

The most important aspect of short range planning and subsequent project development is the 

accurate predicting of future load growth.  Typically the planning will only occur at times equal 

to lead times of the planned project.  In contrast to short range planning, long range planning is 

not concerned with system additions being installed in time to meet needs, but rather that system 

additions will have lasting investment and performance value.  For those in charge of planning 

there is always an uncertainty about future development and resulting load growth.  On the one 

hand, they do not want to commit any resources or facilities for load growth that may not happen 

but on the other hand they cannot ignore that there are lead times required to build these facilities 

[3]. 

2.4.2 Density estimation in short-term electrical load forecasting 

In a paper presented by Charytoniuk et al., a statistical model of residential load demand was 

generated by using non-parametric probability density estimation [27].  This method used 

customer demand data which was also used to determine customer classes.  When calculating the 

PDFs for a group of customers, it is important that they all belong to the same customer class.  It 

is then necessary to determine which variables are statistically influential on electricity demand.  

Examples of possible independent variables are: ambient temperature, wind speed, light intensity 

levels and humidity.  The normalized demand and variable data is then divided into time 

intervals such as 30 minutes.  The data is then further grouped together into characteristic day 

type of either weekday or weekend day.  Finally the day type is grouped together into the seasons 

of the year namely: summer, winter, spring and autumn [27]. 
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The PDF for a particular 30 minute period t , within a 24-hour day was generated with a PDF 

estimator with Gaussian kernel function [27].  The PDF is generated using the following 

equation: 

( )

( )( )
( )

( )( )
( )

( ) ( )

2 2

2 2
1

exp
2 2

,
2

n
i i

i p T

t

p T

p p t T T t

h t h t
f p T

nh t h tπ

=

 − −
 − +
 
 =

∑
          2.4.1 

where 

p   denotes the normalized demand; 

T   denotes the ambient temperature in degrees Celsius; 

n   denotes the number of samples; 

ph   denotes the bandwidth for the demand data and 

T
h  

 denotes the bandwidth for ambient temperature data. 

The smoothing parameters ph and Th  are calculated with the following equations respectively 

[27]: 

( ) ( ) ( )( ) ( )
1

2 15 6
2 6121 1

2
p p

t
h t t t n

ρ
σ ρ

−
− 

= − + 
 

           2.4.2 

( ) ( ) ( )( ) ( )
1

2 15 6
2 6121 1

2
T T

t
h t t t n

ρ
σ ρ

−
− 

= − + 
 

           2.4.3 

where 

( )tpσ  denotes the standard deviation of normalized demand data; 

( )tTσ  denotes the standard deviation of temperature data and 

( )tρ  denotes the correlation coefficient. 
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A deterministic value of the normalized demand can be calculated for the 30 minute period from 

the resultant PDF by taking the conditional expected value of it [27]. 

The equation is as follows: 

( ) ( )
^

| . |
t wt t

p E p T p f p T dp= = ∫              2.4.4 

The expected demand in kVA for that period is calculated as follows 

^

. avgP p P=                 2.4.5 

where 

avgP
 

denotes the monthly average demand. 

This result does not give an indication of probability.  From the PDF it can be seen for which 

values of normalized demand the probability density is a maximum.  To find the probability for 

those values of normalized demand, the area under the graph between these values has to be 

calculated.  For this reason it may be more intuitive to view the Calmative Distribution Function 

(CDF) of the particular PDF because the probability can be read directly off the graph for the 

related normalized demand.  These normalized demand values are then multiplied by the average 

demand to get a probability for a particular range of demand values.  The CDF is the integral of 

the PDF and the following equation is used to calculate it: 

( ) ( )
w

W W
F w f dξ ξ

−∞

= ∫               2.4.6 

where 

WF   denotes the cumulative density function and 

Wf   denotes the probability density function. 

Temperature and demand data was obtained for a group of residential electrical consumers.  The 

method described by Charytoniuk et al. was followed and a probability density plot was 

generated as described in the above paragraph [27].  Figure 2.4.1 shows a typical three 

Stellenbosch University  http://scholar.sun.ac.za



43 
 

dimensional surface plot of demand versus time profile for a residential group of customers 

during weekdays in November.  The two daily demand peaks are indicated by the red arrows.  

The morning peak is larger in magnitude with a shorter duration in comparison to the evening 

peak. 

 

Figure 2.4.1: Three dimensional surface plot of demand versus time profile for a residential group 

of customers during weekdays in November. 

Ambient temperature was chosen as the independent variable and demand would then be the 

dependent variable.  Figure 2.4.2 depicts a three dimensional plot of ambient temperature versus 

time of day and day of the year.  The cooler temperatures of the winter months can be seen in the 

plot.  From this demand and temperature data a bivariate probability density function was 

generated for a single 30 minute period of a weekday in November.  Figure 2.4.3 depicts this 

PDF which relates the probability density to ambient temperature and normalized demand.  The 

statistical analysis of the demand for a customer or customer class compares many of these PDFs 

which relate all of the statistically significant variables to probability density and normalized 

demand for specific period of the day, day type and season of the year. 
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Figure 2.4.2: Three dimensional plot of the ambient temperature data that was recorded in close 

vicinity to the demand data of the energy consumers. 

 

Figure 2.4.3: Bivariate probability density plot of normalized demand versus ambient temperature 

for a residential group of customers at 08h30 on a weekday in November. 
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2.5 Hot water consumption and water heaters 

2.5.1 Overview 

For many countries in the world domestic hot water heating is a significant component of the 

energy consumed by the residential sector.  In South Africa, hot water heating is the largest 

energy consumer in the residential sector [31].  Figures as high as 40 to 50 percent of the 

monthly electricity account for middle to upper income households as a result of hot water 

heating have been reported [7].  It is a known fact that different income and housing density 

sectors have different hot water consumption patterns.  This contributes to the different baseline 

electrical demand profiles that exist for the different housing and income sectors.  South Africa 

has diverse climatic regions ranging from subtropical, temperate, semi desert to desert.  The 

climatic regions have different annual ambient temperature profiles.  Ambient temperature has 

an influence on hot water consumption patterns within the residential sectors which is evident in 

the hot water consumption profiles presented later in this section where the lower winter ambient 

temperature is associated with an increase in hot water demand.  The hot water consumption 

drives the electrical consumption of the geyser.  Ambient temperature also influences the 

standing losses and inlet water temperature to a geyser.  The climatic regions in South Africa 

have very different solar radiation profiles which have a great impact on the performance of solar 

water heaters.  Solar water heaters make use of a backup electrical element to heat the water 

when the solar radiation is inadequate to do so.  Varying levels of solar radiation result in 

different baseline electrical demand profiles for hot water heaters based on the location within 

the country.  In Chapter three a model of a conventional hot water heater is presented that was 

developed in SIMULINK to determine the extent which hot water demand and temperature have 

on baseline electrical demand. 

2.5.2 Hot water consumption 

The Central Statistical Service in South Africa maintains that 66.7 percent of dwellings in South 

Africa are defined as houses or parts of houses [32].  In a study that was conducted by Meyer et 

al., the domestic hot water consumption of 300 houses in Johannesburg, South Africa, was 

evaluated for a period of one year.  Each third of the 300 houses represented samples from high-, 

medium- and low-density housing respectively [31].  Medium- and low-density housing are 

indicative of developed communities while high-density housing is indicative of developing 
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communities.  The numbers of occupants for each associated housing density are given in Table 

2.5.1. 

Table 2.5.1: Number of occupants per house and the number of houses per square km for high-, 

medium- and low-density housing [31]. 

Category of house 
Density 

(houses per square km) 
Occupants/house 

Low-density 845 3.1 

Medium-density 2029 3.8 

High-density 3857 6.2 

 

In the Meyer et al. study, hot water consumption profiles were grouped together in four sets.  The 

summer and winter profiles catered for the seasonal consumption changes.  Weekday and 

weekend profiles catered for day of the week changes in consumption.  The study concluded that 

there was an increase of 70 percent in hot water consumption per person per day for the winter 

months compared to the summer months.  It was also concluded that people occupying low-

density housing used 3.6 times more hot water than people that occupied high-density housing 

[31].  This is illustrated in Figure 2.5.1. 

 

Figure 2.5.1: Hot water consumption per person per day for low-, medium- and high-density houses 

[31]. 
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The maximum standard deviation from the recorded monthly average values of hot water 

consumption per person per day was ± 11 percent for summer and ± 22 percent for winter. 

Thirty of these houses were fitted with digital flow meters with logging capabilities just upstream 

of their geyser inlet pipe.  There were ten houses from each density category and the logging 

interval was 60 minutes.  The maximum standard deviation of the averages for the 60 minute 

data was ± 17 percent during summer and ± 30 percent for winter [31].  These values of 

maximum standard deviation are used in Chapter three to generate the hot water consumption 

data.  The average litres of hot water used per person for each hour of the day for each 

characteristic day is given in Figures 2.5.2 to 2.5.5.  It can be seen in Figure 2.5.2 that there were 

two peak consumption periods, namely 06h00 to 08h00 and 19h00 to 21h00, depending on the 

density category. 

 

Figure 2.5.2: 60 minute hot water consumption data, per person per day during weekdays in 

summer [31]. 

The morning peak has a shorter duration than the evening peak.  The time difference between the 

different peaks for the different housing densities is attributed to the time taken to get to work 

from the different housing density locations.  It was found that people in low-density housing 

lived closer to their place of work where as people in high-density housing had to make use of 

public transport.  As a result of this, the people living in high-density housing had to wake up 

earlier and go to bed earlier to get to their places of work [31]. 
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Table 2.5.2 depicts the different average commuting times for people living in different housing 

densities. 

Table 2.5.2: Average commute time from home to place of work for people that live in high-, 

medium- and low-density housing [31]. 

Housing density Time to get to work (minutes) 

Low 21 

Medium 34 

High 85 

 

Figure 2.5.3 shows that the morning peak moved to 09h00 and the evening peak to between 

21h00 and 22h00 on a weekend.  This is attributed to people not having to get up as early during 

a weekend day to get to work [31]. 

 

Figure 2.5.3: 60 minute hot water consumption data, per person per day during weekend days in 

summer [31]. 

In Figure 2.5.4 it can be seen that the average consumption increased substantially during the 

winter months.  The morning peak occurred at the same time as the summer peak.  The winter 

evening peak moved an hour earlier compared to the summer peak for the different housing 

densities [31]. 
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Figure 2.5.4: 60 minute hot water consumption data, per person per day during weekdays in winter 

[31]. 

In Figure 2.5.5, the morning peak moved to 09h00, which is two hours later when compared to 

the winter weekday consumption profile and the evening peak also moved later, to 21h00 [31]. 

 

Figure 2.5.5: 60 minute hot water consumption data, per person per day during weekend days in 

winter [31]. 

DeOreo et al. concluded from flow trace analysis that was conducted, that on average the shower 

accounted for 25.1 percent of hot water used for low-density housing.  This was only exceeded 

by the faucet category which was 34.3 percent of hot water consumed [33].  Household hot water 
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consuming facilities are listed in Table 2.5.3 with their percentage contribution to the total hot 

water demand. 

Table 2.5.3: Household hot water used per person per day [33]. 

 

The data presented in Table 2.5.3 was obtained from the end-use statistics in Table 2.5.4.  It is 

interesting to note that even though the faucet has a relatively short duration of flow, its total 

volume of hot water demand exceeds that of the shower use.  It can be seen that the number of 

times the faucet was used was considerable at 4329 events.  When one takes into account that the 

hot water faucet is purged of cold water almost each time it is used one might conclude that a 

substantial amount of hot water energy is lost during the cooling down of the hot water pipe to 

the faucet.  This would be dependent on the hot water pipe volume leading to the faucet.  An 

energy efficient solution to this energy loss may improve the overall hot water system efficiency. 

Table 2.5.4: Hot water end use statistics for ten Seattle homes over a 14 day period [33]. 
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Figure 2.5.6 shows the 60 minute use of hot water by end-use category as a percentage of the 

total hot water consumption based on the DeOreo et al. study [33]. 

 

Figure 2.5.6: 60 minute use of hot water by end use category [33]. 

In a document produced by the Environmental Protection Agency of the United States (EPA), 

entitled: “Quantification of Exposure-Related Water Uses for Various U.S. Subpopulations”, the 

statistical distributions related to water end-use categories for households were given.  The 

information in this document would prove to be invaluable for the modelling of energy savings 

initiatives.  An example of such an initiative would be the evaluation of energy saving when low 

flow shower heads are retrofitted.  The document indicates that the distribution of shower period 

duration and flow rate should be regarded as lognormal.  The time of use at which a shower 

period occurs is best represented by a normal distribution [34].  Based on this information, 

shower periods can be simulated as part of the total hot water consumption for a household.  The 

standard shower’s hot water consumption could be modelled and from this the lower flow 

shower head’s hot water consumption could be subtracted.  These models could then be 
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calibrated to the recorded data following standard M&V procedures to produce calculated energy 

savings. 

2.5.3 Types of hot water heaters 

In South Africa, the most prolific method to supplying hot water is with a conventional geyser.  

Through DSM projects, Eskom has promoted alternatives to hot water heating by means of 

geysers, such as solar water heating and to lesser extent heat pumps.  In the USA, many more 

types of water heaters are used compared to South Africa.  Table 2.5.5 provides a summary of 

the different types of water heaters, their cost to purchase, their cost to run and their life 

expectancy [35]. 

Table 2.5.5: U.S. Life cycle costs of various types of water heaters [35]. 

 

It is evident from Table 2.5.5 that the conventional electric geyser is by far the most costly way 

to supply hot water.  The solar water heater with backup electrical element is the most costly to 

purchase compared to the other hot water heating methods. 

2.5.3.1 Conventional geyser 

A conventional geyser consists of an insulated hot water cylinder and an electric heater element.  

As hot water is drawn from the cylinder, cold water enters it.  This cold water is at a temperature 

close to soil temperature at which the water supply pipe is buried.  Inlet water temperature will 

be discussed in the last section of this chapter.  The geyser element can range in size from two to 
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five kW depending on the water capacity of the cylinder.  The element is controlled by a 

hysteresis-type relay.  The water in the cylinder is kept between a certain preset temperature 

range by this relay which switches the element on and off.  This range is normally set between 

55 and 65 degrees Celsius.  A study conducted by Bosman et al. evaluated the electrical saving 

achieved by installing additional insulation around the cylinder of a geyser.  An average annual 

saving of approximately 18 percent was realised [36].  The standing losses that were quoted in 

the study were used in the modelling of the geyser in Chapter three. 

2.5.3.2 Demand or instantaneous water heaters 

Demand or instantaneous water heaters do not heat and store hot water like a geyser does.  When 

the faucet is turned on the electric element heats the water directly, thereby eliminating the 

standing losses associated with the conventional geyser.  The one drawback of these water 

heaters is that they have a limited flow rate of between 7 to 15 litres per minute [35]. 

2.5.3.3 Solar water heaters 

A solar water heater captures the solar radiation which is converted to thermal energy which in 

turn heats up the water stored in an insulated cylinder.  In the past, solar water heaters have not 

been a financially feasible option because of their high capital costs, relatively poor performance 

and low electricity tariffs.  This situation has changed.  Eskom has a DSM program in place that 

subsidises a part of the capital cost of the heater.  Electricity tariffs have increased substantially 

over the past couple of years and this has resulted in a substantial reduction in pay-back periods 

for solar water heaters.  The majority of the solar water heaters in South Africa are equipped with 

an electrical element and function similar to a conventional geyser in the way that the electric 

element is off when the water is within the preset range.  In this way, hot water is always 

available provided there is a supply of electricity even if there has been poor solar radiation 

during a day.  Current solar thermal systems can utilise 30 to 60 percent of the solar radiation 

that falls on their collectors.  As a result of this, solar water heaters have improved substantially 

in the past few years and now provide a low maintenance alternative to a conventional geyser.  

There are three main types of solar water heaters namely: vacuum tube, evacuated tube and flat 

plate collectors.  The tube type is able to passively track the sun whereas the flat plate type is 

sensitive to sun position [37].  Figure 2.5.7 depicts an evacuated tube type solar water heater. 
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Figure 2.5.7: Evacuated tube collector type of solar water heater [38]. 

2.5.3.4 Heat pumps 

Heat pumps work on the same principle as an air conditioning unit but just in reverse.  The heat 

energy is transferred from a low temperature heat source to a higher temperature heat sink.  The 

heat pump does not generate the heat directly; instead electricity is used to drive the compressor.  

Figure 2.5.8 shows the flow diagram of an air-type hot water heat pump. 

 

Figure 2.5.8: Flow diagram of an air-type hot water heat pump [39]. 
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For an equivalent amount of energy, a heat pump water heater can heat two to three times more 

water than a conventional geyser [35].  They can also offer the added benefit of space cooling 

because the heat energy is extracted from a living space and transferred to the hot water cylinder.  

Many of these types of heaters have a backup electric element to heat the water when the air 

temperature is too low for efficient operation.  The installation costs of these heaters are higher 

than that of a geyser but the running costs are considerably lower.  Geothermal water heat pumps 

can operate in colder climates than the previously mentioned air heat pump water heaters.  They 

extract heat energy from the ground rather than the air which is colder in winter than the ground.  

The geothermal heat pumps are more costly to install than the air heat pumps water heaters [35]. 

2.6 Geyser inlet water temperature 

2.6.1 Overview 

Inlet water temperature represents a significant source of energy for the energy system of the 

geyser.  Understanding what affects the inlet water temperature and the degree of influence it has 

on the electrical energy consumption for a geyser will possibly assist in the improved design of 

hot water heating systems and DSM programs that are designed to manage their energy 

consumption.  Water enters most residential geysers from the utilities’ underground network of 

water supply pipes.  It is common knowledge that climatic conditions are one of the controlling 

variables that affect the temperature of water stored below ground level.  It will be assumed that 

the inlet water temperature will be in equilibrium with the soil temperature at the depth that the 

water supply pipe is buried below the ground surface.  This assumption is based on the fact that 

the water entering a geyser is relatively small in comparison to the water stored in the 

underground supply pipe.  This means that the temperature of the water in the supply pipe would 

have enough time to be in equilibrium with the surrounding ground temperature.  Based on this 

assumption the soil temperature at the depth of the burial depth of the water supply pipe must be 

predicted to be able to predict the geyser inlet water temperature. 

2.6.2 Prediction of soil temperature as a function of depth and time of year 

Hillel advocates that the simplest mathematical representation of the fluctuation of the thermal 

profile in the soil at a particular depth is to assume that soil temperature oscillates as a pure 

sinusoidal function of time around an average value [40].  At each succeeding depth, the peak 
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minimum and maximum soil temperature values are dampened and shifted progressively in time.  

The degree of dampening of the soil is dependent on the frequencies of the fluctuations and the 

thermal properties of the soil [40].  Soil temperature varies in response to exchange processes 

that take place near the soil surface.  The heat transfer through the soil’s profile is influenced by 

the specific heat capacity, thermal conductivity and thermal diffusivity [41].  The thermal 

conductivity of soil is related to the soil moisture content.  Water is a better thermal conductor 

than air and as a result of this, the thermal conductivity of soil increases as its moisture content 

increases [42]. 

The sinusoidal function that describes the annual variation of daily soil temperature at different 

depths is as follows [40]: 
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where 

( , )T z t  denotes the soil temperature at time t (day of the year) and depth z in meters; 

aT
 
 denotes the average soil temperature in degrees Celsius; 

0A    denotes the annual amplitude of the soil temperature in degrees Celsius; 

d   denotes the damping depth in meters of annual fluctuation and 

0t  
 denotes the time lag in days from an arbitrary starting date (1 January) to the  

  occurrence of the years minimum temperature. 

The dampening depth is calculated by using the following equation [40]: 
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where 

hD   denotes the thermal diffusivity in m2 per second and 
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2

365

π
ω =  denotes the angular frequency of the temperature oscillation in radians per day. 

The sinusoidal temperature equation was derived by solving the following partial differential 

equation [40]: 
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2.6.3 Predicted soil temperatures versus recorded data 

Nofziger used equation 2.6.1 to predict the soil temperature at different depths, this was then 

compared to measured data [43].  The results are depicted in Figure 2.6.1. 

 

Figure 2.6.1: Comparison of measured and predicted soil temperatures at different soil depths 

based on ambient temperature [43]. 

From Figure 2.6.1 it can be seen that at a depth of 0.05 meters there is a higher frequency 

temperature variation imposed on a larger lower frequency sinusoid.  The higher frequency 

variation becomes less significant with an increase in soil depth.  It would seem that the soil acts 

as a high pass filter for increasing soil depths.  The low frequency sinusoid represents the 

temperature variation of the soil as a result of the seasonal temperature fluctuation.  The recorded 
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higher frequency fluctuation in the shallower soil depths is as a result of the day and night 

temperature variations.  Ambient temperature was used to predict the soil temperatures.  The 

predicted temperature values were consistently lower by two degrees Celsius than the observed 

values [43].  It is evident from the above figures that for an increase in soil depth there is a 

decrease in amplitude variation and an increase in phase shift of the soil temperature. 

2.7 Conclusion 

This final section concludes the literature review.  The review was comprehensive and 

endeavoured to cover all aspects of relevance to the thesis topic.  The review outlined a logical 

progression of topics which each proved to be pertinent in developing a thorough research 

methodology.  
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3.1 Overview 

It was mentioned in Chapter one that the largest consumer of electricity in the residential sector 

of South Africa, is hot water heating.  DSM initiatives have been promoting ECMs that reduce 

electrical demand of geysers or their replacement with heat pumps or solar water heaters.  It is 

important for DSM initiatives to be able to predict and verify the change in electrical demand 

when replacing one technology with another.  The impact would naturally be evaluated using the 

M&V process which advocates the need to calculate the confidence factor associated with the 

quoted magnitude of energy saving but the IPMVP does not describe a preferred method on how 

this should be achieved. 

For these reasons it was decided to develop a model of a hot geyser in MATLAB’s SIMULINK, 

which would form part of the overall analysis in which electrical savings and their associated 

confidence levels could be calculated.  This model topology created a sterile simulation 

environment where the effectiveness of the proposed methodology could be evaluated.  The 

geyser model is considered a complex electrical load for which the independent input variables 

are ambient temperature, hot water consumption and inlet water temperature.  Electrical load 

demand is the dependent output variable calculated by the model.  The electrical demand and 

ambient temperature are the input variables to the kernel density function.  The output of this 

function is the bivariate probability density which indicates the statistical dependency between 

the independent variable, ambient temperature, and the dependent variable, electrical demand.  

The non-parametric method of the kernel density estimation as described by Charytoniuk et al. 

was used to generate the PDFs for the statistical interpretation of electrical demand versus 

ambient temperature [27].  The statistical nature of the input variables was also investigated and 

the results are presented in Chapter four.  The flow diagram for simulating and analysing the 

demand of the geyser is depicted in Figure 3.1.1.  In this figure it can be seen that the model of 

the geyser receives ambient temperature, hot water demand and inlet water temperature as input 

variables. 

Chapter 3 Load modelling of a residential geyser
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Figure 3.1.1: Flow diagram of the methodology used to model and statistically interpret the 

simulated electrical demand of the geyser. 

The data for these input variables was either sourced or generated based on availability and is 

described as follows: 

• Nine years’ worth of ambient temperature was sourced from the South African Weather 

Bureau. 

• The average hot water demand results from the Meyer et al. study were used to generate 

nine years of hot water consumption data [31].  This was done because no data source for 

a nine-year period was available. 
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• The inlet water temperature was generated from a function described by Nofziger [43].  

This was done because no data source for a nine-year period was available. 

It is envisaged that these three variables along with solar radiation will be recorded as a data set 

for a particular installation and form part of a future project to supply the much needed data for 

the evaluated hot water ECMs.  The geyser model, rather than a solar water heater model, was 

chosen to evaluate the methodology because it did not need the additional solar radiation variable 

for which there was also limited data available.  The author believes that the true extent of the 

dependency of electrical demand on ambient temperature will only be realised when a data set 

becomes available as the one described above. 

The geyser model takes the input variables and performs a continuous simulation equivalent to a 

period of nine years to produce a simulated electrical demand data set.  From this data set and 

that of the ambient temperature, groups of data were selected by a MATLAB function that was 

written for this purpose.  These groups of data were selected on the bases of characteristic season 

of the year, day of the week, time of day and housing density.  These groups of data formed the 

input data for the MATLAB kernel function which used for the statistical interpretation of the 

case study material.  The probability density estimates produced by the kernel function can be 

used for two purposes.  The first is to predict an electrical load range value with its associated 

probability at a particular ambient temperature for a particular period of the day.  This can be 

used for short-term load forecasting.  The second purpose is to evaluate the anticipated impact of 

an ECM. 

The objective of this chapter is to describe the development of the geyser model and MATLAB 

code which was used for the statistical analysis of the case study.  The MATLAB code used in 

this project is documented in Appendix B.  As part of future development research, the geyser 

model could be replaced with a model of solar water heater or heat pump. 

3.2 Input variables to geyser model 

The geyser model has as input variables: ambient temperature in degrees Celsius, inlet water 

temperature in degrees Celsius and hot water demand in litres per second.  All three variables 

have sampling periods of 1 or 30 minutes.  The model is able to run simulations with different 

input variable sampling rates so that the effect on the simulated output data can be evaluated. 
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3.2.1 Ambient temperature data 

Ambient temperature is the stochastic input variable to the geyser model and the kernel function.  

Nine years of ambient temperature data for Cape Town International Airport (CTIA), was 

sourced from the South African Weather Bureau [44].  This data was imported into the 

MATLAB work space by the txt2mat function [45].  The function reads the data in a text format 

and places it in a matrix.  This matrix has temperature values for days of the years in rows and 

the hours of the day in columns.  A function called inpaintn was used to search for, and 

interpolate, missing data values [45].  The data matrix was then reshaped to an array where each 

data value was assigned a number based on the time it was sampled at.  This was done by 

making use of the MATLAB function datenum.  The temperature data supplied by the South 

African Weather Bureau has a sampling period of 60 minutes.  The data array was then linearly 

interpolated respectively to 1 and 30 minute sampling periods by the resample function.  The 

hhGeyserMod function converted the temperature data arrays to a time series arrays which was 

then ready for input into the geyser model. 

Figure 3.2.1 depicts the CTIA data during 2001.  In this figure the diurnal (daily) and seasonal 

temperature range and fluctuations can be seen. 

 

Figure 3.2.1: Ambient temperature data for Cape Town International Airport during 2001. 
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3.2.2 Hot water consumption data 

Hot water consumption data was generated based on the average hot water consumption profiles 

that were recorded by the Meyer et al. study.  This was done because there was a lack of readily 

available domestic hot water consumption data.  The function HotWgenData was written to 

generate a hot water consumption data set.  This was done by generating a set of random 

numbers for the summer and winter average recorded values.  These two sets of random numbers 

had Gaussian distributions.  These summer and winter random number sets’ standard deviation 

was set to 17 and 30 percent respectively, which was consistent with the standard deviations 

observed in the recorded 60 minute data of Meyer et al study [31].  The random numbers were 

then added to the average 60 minute values of the consumption profiles of the Meyer et al. study.  

The function then allocated a corresponding date-time number to each of the hot water 

consumption rate values and then linearly interpolated the data from 60 minute respectively to 1 

minute and 30 minute periods.  The hhGeyserMod function converted the hot water consumption 

data arrays to time series arrays which were then ready for input into the geyser model.  This was 

done for each of the three housing density hot water consumption profiles.  The generated hot 

water consumption for a period of one year for different housing densities is depicted in Figures 

3.2.2 to 3.2.4.  The difference in seasonal and daily profiles of hot water consumption can be 

seen. 

 

Figure 3.2.2: Hot water consumption generated for high-density housing for a period of one year. 
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Figure 3.2.3: Hot water consumption generated for medium-density housing for a period of one 

year. 

 

Figure 3.2.4: Hot water consumption generated for low-density housing for the period of one year. 
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From the hot water consumption figures the following observations can be made: there is a 

definite change in consumption profile during the seasonal transition.  This is as a result of the 

averaging of the data in the Meyer et al. study.  In reality this hot water consumption profile will 

have a smoother seasonal data transition.  It was assumed the hot water consumption data had a 

Gaussian distribution, which may prove to be different once such data is recorded and analysed.  

However, it is none the less possible to investigate the effect different hot water consumption 

profiles has on electrical demand by specifying different parameters to statistical distributions 

using the HotWgenData function.  In future work, this function could easily be upgraded so that 

monthly statistical parameters and distribution could be specified which would then smooth out 

the seasonal consumption profile.  The generated hot water consumption rate increased from 

high-density housing to low-density housing, which is consistent with the Meyer et al. findings. 

3.2.3 Geyser inlet water temperature data 

The inlet water temperature data was generated based on the equation described by Hille [40].  

This was done because of the lack of readily available geyser inlet water temperature data.  The 

function InWaterTemp that was written used the equation described by Hille to generate the inlet 

water temperature for a specified simulation period.  The variables that needed to be specified for 

this function were: 

• depth at which the water supply pipe is buried; 

• dampening depth of the soil; 

• time period for which the data must be generated, and 

• ambient temperature data set for the specified time period. 

The resample function linearly interpolated the generated data respectively to 30 minute and 1 

minute sampling periods.  The hhGeyserMod function then converted the inlet water data arrays 

to time series arrays which were then ready for input into the geyser model.  The generated inlet 

water temperature data, for a water supply depth of respectively one and seven meters, is shown 

in Figure 3.2.5.  The soil dampen depth was 2.093 meters for these sets of generated data.  It can 

be seen in Figure 3.2.5 that for an increase supply water pipe burial depth the amplitude of the 

seasonal inlet water temperature fluctuations decreases.  The time phase shift also increases for 

an increase in burial depth. 
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Figure 3.2.5: Generated geyser inlet water temperature data for a water supply pipe buried at a 

depth of one and seven meters for the years 2001 to 2009. 

3.3 Geyser model 

The geyser model was developed in SIMULINK and is based on the law of energy conservation 

which states that the total amount of energy in an isolated system remains constant.  This is 

represented by the following equation: 

0in outE E− =                3.3.1 

where 

inE   denotes the energy entering the geyser in joules and 

outE  denotes the energy leaving the geyser in joules. 

This equation can be expanded to yield the following: 

0elec cold hot lossq q q q+ − − =              3.3.2 
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standing losses.  The rate of the energy loss is dependent on the temperature difference between 

ambient temperature and the temperature of the water inside the geyser.  The energy inside the 

geyser is also reduced through hot water demand.  The hot water removed from the geyser is 

replaced by an equal amount of cold water.  In this way the temperature of the water in the 

geyser declines until it reaches the lower temperature setting on the thermostat at which point a 

signal is sent to the relay which in turn switches on the heater element.  As a result, the 

temperature of the water begins to rise again.  The energy in the geyser therefore fluctuates as the 

temperature of the water in the geyser fluctuates between its high and low set points.  The total 

rate of change of energy inside the geyser, tq , is calculated with the following equation: 

t elec cold hot lossq q q q q= + − −              3.3.3 

where tq  is the rate of total energy change in the geyser.  Integrating tq  yields the change of 

energy inside the geyser.  The change in energy in the geyser is therefore given as follows: 

0

t

t t

t

E q dt∆ = ∫                3.3.4 

where 

tE∆  denotes the change in energy in the geyser over a time period t  in joules; 

0t  
 denotes the initial time from which the change is measured and 

t   denotes the time measured in seconds. 

The instantaneous energy value is then divided by the volume of water in the geyser and the 

specific heat capacity of water which gives the instantaneous temperature.  The temperature 

inside the geyser is calculated with the following equation: 

( )initial t

geyser

geyser

E E
T

C V

+ ∆
=

×
              3.3.5 

where 

geyserT  denotes the temperature inside the geyser in degrees Kelvin; 
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C   denotes the specific heat capacity of water in joules per kilogram per degrees  

  Kelvin; 

geyserV  denotes the volume of the geyser in litres; 

initialE  denotes the initial energy inside the geyser in joules and 

tE∆  denotes change in energy inside the geyser over a time period t , in joules. 

The four energy transfers will now be described in the next subsections. 

3.3.1 Electrical energy 

The heater element in the model is set at 3 kW.  The energy rate introduced into the geyser by 

the heater element, elecq , is given by the following equation: 

3 3 1000 3 /elecq kW kJ s= = × =              3.3.6 

The model topology of the geyser element is depicted in Figure 3.3.2 

 

Figure 3.3.2: Model topology of the geyser element and its control. 
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3.3.2 Cold water energy 

The energy flow rate of the cold water that replaced the hot water when the hot water is drawn 

out of the geyser is given by the following equation: 

( )273cold cold hotq C T V= × + ×              3.3.7 

where 

coldq  denotes the energy flow rate of the cold water; 

C   denotes the specific heat capacity of water in joules per kilogram per degrees  

  Kelvin; 

coldT  denotes temperature of the cold water entering the geyser in degrees Celsius and 

hotV   denotes the volume of hot water leaving the geyser in litres per second. 

The model topology for calculating the energy introduced into the geyser when the cold water 

enters is depicted in Figure 3.3.3. 

 

Figure 3.3.3: Model topology for the calculation of cold water energy flow rate. 
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3.3.3 Hot water energy 

The energy flow rate of the hot water demand, hotq , is given by the following equation: 

hot hot hot
q C T V= × ×               3.3.8 

where 

C   denotes the specific heat capacity of water in joules per kilogram per degrees  

  Kelvin; 

hotT
 
 denotes the temperature of the water inside the geyser in degrees Kelvin and 

hotV   denotes the flow rate of hot water demand in litres per second. 

The model topology for calculating the energy withdrawn from the geyser is depicted in Figure 

3.3.4. 

 

Figure 3.3.4: Model topology for calculating the energy flow rate of the hot water withdrawn from 

the geyser. 

3.3.4 Standing losses 

The standing losses, lossq , are accounted for and calculated by the following equation: 

( )( )( )273loss hot a tq T T H E= − + × ×             3.3.9 
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where 

hotT   denotes the temperature of the water inside the geyser in degrees Kelvin; 

aT   denotes the ambient temperature in degrees Celsius; 

H    denotes the heat loss factor and 

tE   denotes the total energy in the geyser in joules. 

The model topology for calculating the rate of energy lost from the geyser through standing 

losses is depicted in Figure 3.3.5. 

 

Figure 3.3.5: Model topology for calculating the rate of standing losses. 

The values for the standing losses were obtained from the study conducted by Bosman et al. [36].  

The losses were measured for geysers with and without geyser blankets.  The model’s standing 

losses were adjusted to reflect the findings of the Bosman et al. study. 
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The entire model topology is depicted in Figure 3.3.6.  The on time of the relay represents the 

time the 3kW heater element is demanding electricity.  This demand is integrated over each 30 

minute period of the simulated days. 

 

Figure 3.3.6: Model topology of a geyser. 

3.4 Generated electrical demand 

The output of the geyser model is the percentage of a 30 minute period the geyser was on.  To 

best illustrate the energy demand data, a two-dimensional image plot is generated, shown in 

Figure 3.4.1.  The coloured traces show the 30 minute period when the geyser was on.  The 

colour bar on the right of the plot indicates the energy demand for the 30 minute period.  It can 

be seen that during the summer months the colour traces are less dense.  The two daily demand 

peak periods are more distinct during the winter months. 
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Figure 3.4.1: Image plot of the electrical energy demand simulated by the geyser model for a period 

of one year. 

3.5 Data selection for input variables to kernel function 

The demand data must be grouped into its characteristic season of the year, day of the week and 

30 minute period of the day as was done in the short-term load forecasting of Charytoniuk et al. 

[27].  The function unixSearchNumHH was written to search for required data.  This data 

included: 

• ambient temperature; 

• simulated electrical demand, and 

• hot water consumption. 

The function first generated all the date-time stamps of required category data by using 

MATLAB’s datenum function.  The selectedData function searched for the ambient temperature 

and electrical demand data that had equivalent date-time stamps.  The located data was inserted 

into arrays, ready for insertion into the Gaussian kernel function.  This combination of input 

variables, with the help of the bivariate kernel function, facilitated the evaluation of the 

relationship between the independent variable ambient temperature and dependent variable 

electrical demand by means of probability density functions.  It was necessary to group the hot 
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water consumption data sets to facilitate its statistical analysis.  The results of this statistical 

analysis are presented in Chapter four. 

3.6 Bivariate Gaussian kernel function 

The PDF for a particular 30 minute period, within a 24-hour day is generated with a PDF 

estimator with a kernel function.  It was mentioned in Chapter two that the type of kernel 

function has much less of an influence on the outcome of the MISE compared to the selection of 

optimum bandwidth.  As a result, the author chose to use a Gaussian kernel described by 

Charytoniuk et al., which allowed relatively simple bandwidth selection by making use of 

optimal bandwidth equations [27]. 

The bivariate Gaussian kernel function is described as follows: 
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where 

p   denotes the normalized demand; 

T   denotes the ambient temperature in degrees Celsius; 

n   denotes the number of samples; 

ph
 
 denotes the smoothing parameter for the demand data and 

T
h  

 denotes the smoothing parameter for ambient temperature data. 

The smoothing parameters ph and Th  are calculated respectively with the following equations 

and obtained from the plug-in method: 
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where 

( )tpσ  denotes the standard deviation of normalized demand data; 

( )tTσ  denotes the standard deviation of temperature data and 

( )tρ  denotes the correlation coefficient. 

These equations minimise the MISE between the estimated density and true density but only if 

the true density function and the kernel used for estimation have Gaussian distributions.  It was 

decided that this would be the simplest and most appropriate approach to initial density 

estimation of the geysers simulated demand.  The function KernelFunction was written to 

calculate the bivariate probability density for the ambient temperature and demand data.  The 

input parameters for this function were ambient temperature, electrical demand, ambient 

temperature bandwidth parameter and electrical demand bandwidth parameter.  The function 

generated a matrix of probability density values.  This matrix could then be plotted with 

MATLAB’s surface function.  Figure 3.6.1 shows a probability density function of the simulated 

normalized electrical demand of a geyser versus the recorded ambient temperature. 

There are different methods of presenting the PFDs.  In the Figure 3.6.1, the normalized demand 

versus ambient temperature is plotted.  Demand, rather than normalized demand may also have 

been used to investigate its interdependency with ambient temperature.  For the geyser 

simulations, it may be more beneficial to know the relationship between the time of day and the 

ambient temperature when the geyser is switched on. 

Figures 3.6.2 and 3.6.3 respectively depict a surface and image plot of the probability density of 

ambient temperature and time of day.  The two peak densities and their dependency on 

temperature can be seen in these figures. 
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Figure 3.6.1: Three dimensional probability density plot of the simulated normalized electrical 

demand versus ambient temperature at 11h30 during a weekday in winter from 2001 to 2009. 

 

Figure 3.6.2: Three dimensional probability density plot of the ambient temperature versus time of 

day when the geyser is switched on, for weekdays during winter from 2001 to 2009. 
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Figure 3.6.3: Two dimensional probability density plot of the ambient temperature versus time of 

day when the geyser is switched on, for weekdays during winter from 2001 to 2009. 

3.7 Statistical analysis of a geyser’s electrical demand 

A description was given in Chapter two of the non-parametric approach to probability density 

estimation by Charytoniuk et al. [27].  This method was used to forecast short-term electrical 

demand.  This same method was adopted to statistically analyse the demand impacts of the 

simulated ECMs of chapter five.  The first decision to be made when following this approach is 

to identify which independent variables are statistically influential on electrical demand for the 

energy consumer.  These variables could be any one of the following: ambient temperature, wind 

speed, light intensity levels and humidity.  The chosen independent variables and electrical 

demand would then be inserted into the kernel function.  The independent input variables must 

be analysed for characteristic patterns.  These groupings must be represented in the statistical 

analysis.  Patterns of time of day, day of the week and season of the year were evident in the hot 

water consumption data variable.  These patterns necessitate a similar grouping of PDFs in the 

statistical analysis to determine the relationship between dependent and independent variables. 

Ambient temperature was the independent variable chosen for representation in the statistical 

analysis because it was evident from the study conducted by Meyer et al. that it has a significant 
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influence on the other input variables to the geyser model which were hot water demand and 

inlet water temperature.  Standing losses are also significantly affected by the difference between 

ambient temperature and the temperature inside the geyser.  From the demand and temperature 

data, a PDF was generated for a single 30 minute period on a specific day of the week and season 

of the year.  In the statistical analysis the PDFs must describe each one of the chosen categories 

of characterization. 

The PDFs can be used to conduct short-term load forecasting.  Alternatively, by changing the 

geyser model’s parameters or adjusting a parameter of one of the generated input variables, it is 

possible to simulate the energy demand that would result from an implemented ECM. 

Finally, a different approach may prove to be feasible in that two separate geyser models could 

be simulated.  One model represents the pre-ECM demand profile and the other the post ECM 

demand profile.  The kernel function of the post ECM could be subtracted from the kernel 

function of the pre-ECM which in theory results in a kernel function of the demand impact. The 

subtraction of the two bivariate kernel functions could be done by the multiplication of the 

Fourier transforms of the pre-ECM kernel function and the negative of the post ECM kernel 

function.  An alternative method to this would be the multiplication of the characteristic 

functions of the kernel functions.  The resultant function of either of these methods could then be 

inverse Fourier transformed to give the savings kernel function which could be used to generate 

the demand impact PDFs.  This is suggested under future work in Chapter six of this thesis. 

3.8 Conclusion 

In summary this chapter on load modelling of a geyser has presented the methodology that was 

adopted to develop a model topology of a complex electrical load and the statistical analysis of 

its simulated demand.  A brief description was given of the MATLAB functions that were 

developed to prepare the data for insertion into the geyser model and the kernel function.  It was 

concluded that the model topology could be used to provide short-term load forecasting and the 

prediction of the impact of an ECM.  A suggestion is finally given on how the pre- and post-

ECM kernel functions could be subtracted from one another to produce an energy savings kernel 

density estimation function.  
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4.1 Overview 

The aim of this chapter is to gain insight into the statistical nature of the input data of the geyser 

model.  To design an effective and efficient DSM intervention, a comprehensive understanding 

is required of how the independent variables of the electrical consumer are related to its 

dependent variables.  In a modelled version of an electrical consumer, a prescribed DSM 

intervention may effectively change the model of the electrical consumer itself or just change 

some of the parameters of the model.  The output data of various simulations of the model is 

modified through the manipulation of the input data, the parameters of the model and/-or the 

model itself.  A greater understanding of the relationship between input and output data is gained 

through their statistical analysis.  The geyser model effectively manipulates the statistical nature 

of the data when processed by the model.  By knowing the relationship and the statistical 

attributes of the input/output data it is possible to engineer the desired results through the optimal 

design of DSM interventions.  As a result of the above information it was deemed necessary to 

statistically analyse the input data to the geyser model. 

The input data sets for the geyser model were: 

• ambient temperature; 

• inlet water temperature, and 

• hot water consumption rate. 

All of these input data sets must have the same sampling period before they are entered into the 

geyser model.  If the data is obtained at a different sampling rate it can be linearly interpolated or 

averaged respectively to a higher or lower frequency.  The effects of this input data manipulation 

are investigated on: 

• statistical parameters of the input data (in this chapter), and 

• simulated output data and its statistical parameters (in Chapter five). 

Chapter 4 Statistical analysis of a case study of a

geyser model’s input data 
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The statistical nature of all the input data sets to the geyser model will vary based on the 

geographical region of the country.  The hot water consumption rate is also influenced by the 

housing density, which is the associated number of occupants in each household.  It was seen in 

Chapter two that the hot water consumption per person was higher during the colder winter 

months compared to the warmer summer months.  The DSM initiatives may need to be 

customised for each geographic region to optimise the desired impacts. 

The hot water demand was generated from a combination of averages of recorded data and 

random number generation with statistical distributions.  This data needed to be statistically 

analysed to see the total combined statistical nature of the hot water consumption.  The analysis 

of the input data will commence with ambient temperature data sets, followed by the inlet water 

temperature data and concluded with the analysis of the hot water consumption data. 

4.2 Analysis of input data through parametric and non-parametric 

methods 

In this chapter parametric and non-parametric methods are used to analyse the input data to the 

geyser model.  The methods chosen for the analysis are described in the next two subsections. 

4.2.1 Parametric methods 

A box plot is a statistical representation of some of the parameters of a data set [46].  This format 

conveys a large amount of statistical information in a compact easy to read form and allows for 

the easy comparison of other data set’s box plots.  With reference to Figure 4.2.1, the line within 

the box represents the median or the 50th percentile of the data group.  The median differs from 

the mean of the data set in that it is more robust against the influence of outlying data samples.  

The top and bottom of the box represent the 25th and 75th percentiles respectively.  The height of 

the box gives the inter-percentile range which is an indication of the variance of the data.  The 

position of the median within the box indicates the degree of skewness of the probability density 

function of the data.  The whiskers attached to the box indicate the distance of 1.5 times the 

inter-percentile range, either side of the 25th and 75th percentiles.  The outlying data beyond the 

range of the whiskers is represented by red plus signs. 
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Figure 4.2.1: Summer and winter box plots of ambient temperature. 

The reason for analysing the medians is to see if the grouping of multiple years of temperature 

data would have a significant effect in its original statistical properties.  Normally, such an 

analysis can be done by means of an ANOVA; an acronym for the analysis of variance.  

However, the latter is misleading because it is in actual fact the analysis of the means of groups 

of data [46].  In an ANOVA three main assumptions are made, namely: 

• sample groups of data are normally distributed; 

• sample groups have equal variance, and 

• all sample observations are mutually independent. 

It will be seen during the statistical analysis of the temperature data that follows, that the second 

assumption is definitely violated.  For this reason ANOVA tests were not performed on the 

temperature data. 

4.2.2 Non-parametric methods 

Histograms and kernel density estimation are two non-parametric methods used to present the 

statistical analysis of the input data.  The MATLAB ksdensity function was used to estimate the 

densities of the data groupings [46].  This function made use of a normally distributed kernel and 

the bandwidth was optimised for normal distributions.  The assumption of the recorded data and 
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generated data being normally distributed are reasonable, based on the central limit theorem and 

the fact that the statistical analysis is primarily searching for evidence of multi-modality and the 

characteristic shape of the density estimates.  Non-optimal bandwidth selection will lead to this 

information being hidden by over- or under smoothing and this will be evident during the 

analysis of the density estimates. 

4.3 Ambient temperature data 

4.3.1 Overview 

The two sets of ambient temperature data are used in the simulations presented in Chapter five 

and are described as follows: 

• Stellenbosch data set (STL) was recorded from January 2009 to December 2009 and had 

an original sampling period of 10 minutes; 

• Cape Town International Airport (CTIA) data set was recorded from January 2001 to 

December 2009 and had an original sampling period of 60 minutes. 

These two sets of data were chosen because they had different original sampling periods.  The 

STL data set was used to investigate the effects of different data sampling periods on simulation 

results as well as the effects that result from the processes of linear interpolation and averaging 

of data.  The CTIA data set was used for all the remaining geyser simulations because the data 

set spanned nine years and thus increased the sample count for all characteristic groupings, 

especially the weekend grouping. 

The first objective of the statistical analysis of the ambient temperature data was to determine 

what effect linear interpolation and averaging of the original data has on its statistical 

parameters.  The second objective was to determine which of the years of the CTIA data set had 

the highest and lowest mean and variance in their data.  These years were then used to test the 

sensitivity of the geyser model simulated data to ambient temperature.  The results of this 

temperature sensitivity are presented in Chapter five.  The third objective was to investigate the 

effect of grouping the original data set into subsets on the statistical parameters of the data.  

These subsets were formed by means of grouping the data according to years, seasons and 30 
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minute periods.  This was necessary because the other input variables such as hot water 

consumption require characteristic groupings to be able to identify patterns in the data. 

A balance needed to be found for the size of the grouped input data.  The group size 

consideration factors were: 

• optimal number of PDFs for effective statistical analysis of the demand data; 

• optimal sample count within the group for statistical analysis, and 

• grouping should show characteristic patterns within all the input data; e.g. hot water 

consumption patterns during summer weekends are different to winter weekends. 

The increase in sample count results in an increase the robustness of the statistical interpretation, 

but this should not be done at the expense of significantly reducing the ability to show detail of 

characteristic patterns in the data.  The aim of the multi-year box plots of the CTIA data is to 

identify the years in which the medians and variances were at the outer limits of their range.  The 

simulated electrical demand data of these same years are then compared in Chapter five to 

ascertain the degree of impact the statistical parametric range of ambient temperature data had on 

the electrical demand. 

4.3.2 Sampling rates of ambient temperature data 

To achieve the first objective of the statistical analysis of the ambient temperature, a test 

environment was created to investigate the effects of linear interpolation and averaging on the 

input data.  This process is depicted in Figure 4.3.1.  This test environment was arranged by 

taking STL data set which had an original sampling period of 10 minutes and linearly 

interpolating it to 1 minute intervals and averaged to 30 minute and 60 minute sampling periods 

respectively.  Subsequently, the 60 minute data set was then linearly interpolated back to 30 

minute and 1 minute period data. 

The purpose of generating the 1 minute and 30 minute data from the 10 minute sampling period 

data, was to investigate the statistical effects when a process of linear interpolation and averaging 

were applied to the data sampled at a higher frequency.  The new data sets in turn generated from 

the data which had a 60 minute sampling period were used to investigate the statistical effects 

when a process of linear interpolation was applied to the data sampled at a lower frequency. 
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Figure 4.3.1: Data set preparation to investigate the effect of data set sampling period manipulation 

on statistical parameters of input variable and simulation results. 

In summary, it was deemed necessary to investigate the sensitivity of the geyser model to the 

input data sampling period because this input data may be available in a variety of sampling 

periods.  For instance the ambient temperature data from the South African Weather Bureau was 

supplied at a sampling period of 60 minutes.  Alternatively, in the collection and processing of 

data, there is added complexity and cost associated with specifying a higher sampling frequency 

for the recorded data. 

The graphical comparison indicated by the red arrows in Figure 4.3.1 of the two 1 minute and 

two 30 minute data sets for a period of 24-hours, are presented in Figures 4.3.2 and 4.3.3 

respectively. 

STL 10 min 

sampling 

period input 

variable data  

60 min sampling 

period data 

originally from 

10 min sampling 

period data 

1 min sampling 

period data 

originally from 

10 min sampling 

period data 

30 min sampling 

period data 

originally from 

10 min sampling 

period data 

1 min sampling 

period data from 

60 min sampling 

data 

30 min sampling 

period data from 

60 min sampling 

data 

Interpolate 

Statistical 

comparison 

of input data 

Interpolate Interpolate 

Average 

Statistical 

comparison 

of input data 

Average 

Stellenbosch University  http://scholar.sun.ac.za



86 
 

 

Figure 4.3.2: Ambient temperature data sets for a period of 24-hours of STL data at a 1 minute 

sampling period. 

 

Figure 4.3.3: Ambient temperature data sets for a period of 24-hours of STL data at a 30 minute 

sampling period. 
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The averaging effect on the data is evident when comparing data sets.  It can be seen that the data 

set produced from the 60 minute sampling period data has a lower variance in comparison to the 

data set with an original sampling frequency of 10 minutes.  Table 4.3.1 shows the correlation 

coefficient and the covariance matrix of the two data sets.  The 1 minute sampling period data is 

more closely correlated and had a greater covariance than the 30 minute sampling period data.  

The covariance between the two data sets is greater for the 1 minute period data because of the 

original sampling period from which the data sets were obtained.  Information is lost during the 

averaging process that is not regained during the linear interpolation process. 

Table 4.3.1: Correlation coefficient and covariance matrix of the two data sets for 1 minute and 30 

minute sampling periods. 

 
Corr. 

coeff. 

Cov. 

[1,1] 

Cov. 

[1,2] 

Cov. 

[2,1] 

Cov. 

[2,2] 

30 minute 
sampling period 

0.9976 35.9922 35.7089 35.7089 35.5975 

1 minute 
sampling period 

0.9991 36.0370 35.7440 35.7440 35.5174 

 

4.3.3 Statistical analysis of various time groupings of ambient temperature 

The CTIA data set was used to investigate the various groupings of the ambient temperature data 

because of its sampling range that spanned nine years. 

4.3.3.1 Statistical analysis of annual data 

The purpose of the following investigation was to meet the second objective of the statistical 

analysis: to find the annual groupings of data with the greatest statistical extremes.  When this 

data is used in the geyser simulation, it will represent the extreme range of the simulated data and 

its statistical nature which will give an indication of the sensitivity of simulated data of the 

geyser model to ambient temperature.  The CTIA data set was grouped into years and the 

medians and variances of the years are plotted in Figures 4.3.4 and 4.3.5 respectively.  This data 

set was linearly interpolated from 60 to 30 minute sampling periods.  A comparison of the 

simulation results will be evaluated in Chapter five for the nine year period with maximum and 

minimum medians and variance. 
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Figure 4.3.4: Annual median for ambient temperature of CTIA data from 2001 to 2009. 

 

Figure 4.3.5: Annual variance for the ambient temperature of CTIA data from 2001 to 2009. 

The temperature median and variance ranges for the data set were 0.7 and 4.2 degrees Celsius 

respectively. 

Years 2002, 2007 and 2009 simulation results will be compared because of their relative range 

value combination of median and variance, described in Table 4.3.2. 
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Table 4.3.2: Selection of years of simulation due to their relative correlation coefficient from 2001 to 

2009. 

Year Median Variance 
Corr. coeff. 

2002 

Corr. coeff. 

2007 

Corr. coeff. 

2009 

2002 Low High 1 0.71 0.14 

2007 High High 0.71 1 0.18 

2009 High Low 0.14 0.18 1 

 

It can be seen in the above table the relative correlation coefficients vary dramatically from 0.14 

to 0.71 for the years 2002, 2007 and 2009. 

The third objective of the statistical analysis of the ambient temperature was to investigate the 

effect which data grouping had on the statistical parameters.  The CTIA data set of ambient 

temperature was divided up into years and this annual data was then box plotted.  The resulting 

plot is depicted in Figure 4.3.6.  It can be seen that the biggest difference between the box plots 

of the nine years is the inter-quartile range - the number and range of the outlying data.  The 

statistical parameters of the entire data set are compared to each of the annual groupings. 

 

Figure 4.3.6: Box plots of CTIA data’s annual recorded ambient temperature from 2001 to 2009. 
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The median for the nine years of CTIA data was 16.6 degrees Celsius and had a variance of 

25.14 degrees Celsius.  The percentage difference between the data set’s median and variance 

and that for each year is tabulated in Table 4.3.3. 

Table 4.3.3: Annual median and variance difference between the median and variance of the entire 

CTIA data set as a percentage. 

Year 2001 2002 2003 2004 2005 2006 2007 2008 2009 

Median -1.2 -2.4 0.3 1.2 -1.2 0 0.6 0 1.8 

Variance -7.3 6.1 8.4 2.1 2.6 -5.2 6.1 -5.5 -8.8 

 

The greatest difference in median and variance was -2.4 percent and -8.8 percent for years 2002 

and 2009 respectively.  The negative sign indicates that the respective annual persentage was 

lower than the average of the entire data set.  The histogram and kernel density estimates of the 

annual ambient temperature of CTIA data are depicted in Figure 4.3.7. 

 

Figure 4.3.7: Probability density plots of the annual ambient temperature in degrees Celsius of the 

CTIA data from 2001 to 2009. 
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Years 2001, 2004, 2008 and 2009 suggest multi modal distributions which could be attributed to 

greater temperature ranges between summer and winter season groupings for those years.  A 

pattern was seen in the correlation coefficient matrix.  The coefficient was at a maximum when 

comparing the annual data with a five year period and at a minimum with a two to three year 

period, suggestive of a five year cycle for ambient temperature. 

4.3.3.2 Statistical analysis of monthly data 

In this section the ambient temperature of the CTIA data from January 2001 to December 2009 

was grouped together into months of the year.  These monthly data sets were then box plotted as 

depicted in Figure 4.3.8.  It can be seen that the outlying data is higher than the median for the 

summer months, namely November to April.  The inter-percentile range is smaller for the winter 

months, May to October, when compared to the summer months.  The inter-percentile range is 

an indication of variance of the data.  It can be seen that the median is not always positioned in 

the centre of the box; an indication of the varying range of skewness in the sampled data. 

 

Figure 4.3.8: Monthly box plot of the CTIA data from 2001 to 2009. 

The monthly histograms and kernel density estimates for summer and winter months are 

depicted in Figures 4.3.9 and 4.3.10 respectively. 
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Figure 4.3.9: Monthly probability density plots of the CTIA ambient temperature data in degrees 

Celsius for the summer months from 2001 to 2009. 

 

Figure 4.3.10: Monthly probability density plots of the CTIA ambient temperature data in degrees 

Celsius for the winter months from 2001 to 2009. 

From Figures 4.3.9 and 4.3.10 it can be seen that January and June’s density estimations are 

skewed above and below the median respectively.  January’s density estimation has a second less 

significant mode which is created by the higher day time average temperatures when compared 

Stellenbosch University  http://scholar.sun.ac.za



93 
 

to the average night time temperatures.  The transition months, representing autumn and spring, 

have little skewness in their density estimates. 

4.3.3.3 Statistical analysis of seasonal grouping of the data 

The data from the months are grouped into two data sets namely summer and winter.  The box 

plots and density estimations are depicted in Figures 4.3.11 and 4.3.12 respectively. 

 

Figure 4.3.11: Box plots of seasonal grouping of the CTIA data from 2001 to 2009. 

 

Figure 4.3.12: Probability density plots of summer and winter seasonal grouping of the CTIA 

ambient temperature data from 2001 to 2009. 
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The summer density estimate is skewed in the direction higher than the median and the opposite 

is true for the winter density estimate.  The degree of skewness is less than that of summer and 

winter peak month namely January and June which can be seen in Figures 4.3.9 and 4.3.10 

respectively.  Temperature variance of summer is greater than that of winter.  The secondary 

mode of January’s density estimate is all but lost in the summer grouping of data. 

4.3.3.4 Statistical analysis of 30 minute data 

The temperature data for the months of January and June from January 2001 to December 2009 

were grouped together into two sets of data.  The 48 30 minute periods in these two data sets 

were box plotted.  These two plots represent the peak summer and winter and are depicted in 

Figures 4.3.13 and 4.3.14 respectively.  The peak median temperature during January is 

experienced in the 26th 30 minute period which is equivalent to 13h00.  The lowest median 

temperature experienced is in the 11th 30 minute which is equivalent to 05h30.  The inter-

percentile range is smallest at sunrise and greatest at midday.  This can be attributed to hot and 

cool day-time temperatures which result in a greater inter-percentile range at approximately 

midday. 

 

Figure 4.3.13: 30 minute box plots of January for the CTIA data from 2001 to 2009. 
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Figure 4.3.14: 30 minute box plots of June for the CTIA data from 2001 to 2009. 

June has relatively few out-lying data below the medians, compared to January.  June also has a 

greater inter-percentile range during the night time hours indicative of a greater variance in night 

time temperatures during the winter months.  The shorter days are also evident in the 30 minute 

box plots of June, compared to January. 

The seasonal data was now grouped into 48 30 minute periods and box plotted for the summer 

and winter months from January 2001 to December 2009.  These are depicted in Figures 4.3.15 

and 4.3.16 respectively.  It can be seen in the summer data grouping that the diurnal (daily) 

median range is reduced when compared to January (refer to Figure 4.3.13).  When comparing 

the box plots of January, June, summer and winter (refer to Figures 4.3.13, 4.3.14, 4.3.15 and 

4.3.16) it can be seen that the seasonal grouping of the months has an averaging effect on the 

statistical parameters for each of the 48 30 minute periods. 
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Figure 4.3.15: 30 minute box plots of the summer months for the CTIA data from 2001 to 2009. 

 

Figure 4.3.16: 30 minute box plots of the winter months for the CTIA data from 2001 to 2009. 

In order to reduce the number of density plots, only four of the 48 30 minute time periods are 

presented for each season of the year.  These four 30 minute periods 00h00, 06h00, 12h00 and 
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18h00 are the most significant for the geyser model.  30 minute periods 06h00 and 12h00 are 

respectively close to minimum and maximum ambient temperature for a 24-hour period, 

representing the respective times when the geyser potentially has its greatest and lowest standing 

losses.  The 06h00 and 18h00 30 minute periods are normally the times at which there are peaks 

in hot water demand and subsequently the geyser thermostat would switch on.  These are the 

times when two of the three input variables to the geyser model equal their extreme values.  The 

distribution plots of summer and winter data sets are depicted in Figures 4.3.17 and 4.3.18 

respectively.  The median for all four summer 30 minute periods were higher than the 

corresponding winter periods.  The direction of skewness of the night time periods is below the 

median and that of midday above the median.  The 18h00 period has a more symmetrical density 

estimate. 

 

Figure 4.3.17: Probability density plots of the CTIA ambient temperature data in degrees Celsius of 

the summer months for time periods 00h00, 06h00, 12h00 and 18h00 from 2001 to 2009. 
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Figure 4.3.18: Probability density plots of the CTIA ambient temperature data in degrees Celsius of 

the winter months for time periods 00h00, 06h00, 12h00 and 18h00 from 2001 to 2009. 

In Chapter five, the bivariate density estimates of ambient temperature and time of day the 

geyser was on will be presented.  It is expected that the temperature density estimates should 

follow the same patterns for the same grouping of PDF plots because of the underlying 

dependency of electrical demand on ambient temperature. 

4.4 Hot water consumption rate data 

4.4.1 Overview 

Two sets of hot water consumption data were generated.  The first set was generated for use in 

the simulations using the STL ambient temperature data set.  This hot water consumption rate 

data had data sampling periods of 1 minute and 30 minutes.  The second set of consumption data 

was generated for use in the simulations that used the CTIA ambient data set.  This second set of 

hot water consumption data had a sampling period of 30 minutes.  The hot water consumption 

for both sets had a winter and summer profile with three different overall demand profiles.  The 

three different overall demand profiles were representative of the different housing densities 

which had different rates of consumption because of the average number of occupants in each 

house and the level of affluence.  A summary of the data sets is given in Table 4.4.1. 
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Table 4.4.1: Summary of the hot water consumption rate data sets. 

Hot water demand Simulation period Sampling period Housing density 

Data set for STL 
simulations 

1 year 1 & 30 min High, medium, low 

Data set for CTIA 
simulations 

9 years 30 min High, medium, low 

 

The statistical parameters and distributions remain the same for both data sets.  The data set for 

the CTIA data simulations has a greater sample count because it was evaluated over nine years.  

A set of random numbers were generated from a normal distribution with zero mean and 17 

percent standard deviation in the summer, and 30 percent standard deviation in the winter, which 

is consistent with the Meyer et al. findings [31].  These random numbers were then added to the 

recorded average values from the Meyer et al. study [31].  The method used to generate the hot 

water consumption rate is described in detail in Chapter three.  Nine years’ worth of hot water 

consumption was generated for the CTIA simulations and the statistical analysis of this data is 

analysed in subsections 4.4.2 to 4.4.4.  During the generation and analysis of the hot water 

consumption data, it was grouped together into four distinct profiles namely: 

• summer weekday; 

• summer weekend day; 

• winter weekday, and 

• winter weekend day. 

4.4.2 Hot water consumption rate during summer 

The box plots of the hot water consumption rates for the three types of housing densities during 

summer are depicted in Figure 4.4.1.  It can be seen in these box plots that the consumption rate 

for low-density housing is more than double that of high-density housing.  The consumption rate 

for low-density housing during weekdays is higher than on weekend days.  The opposite is true 

for the hot water consumption rate in low-density housing.  The box plots also suggest a 

skewness in the data, particularly in the high-density housing category.  It is evident that there is 

a greater inter-percentile range or variance in the data for the low-density housing category 

compared to the other two densities.  These observations are confirmed in the plots of the density 

estimates of the data, depicted in Figure 4.4.2. 
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Figure 4.4.1: Box plots of the hot water consumption rates for the three types of housing densities 

during summer weekdays and weekend days. 

 

Figure 4.4.2: Probability density plots of the hot water consumption rate during summer for 

weekday and weekend day for high-, medium- and low-density housing. 

It can be seen that all of the probability density estimates are bimodal which stems from the fact 

that the hot water consumption profiles had three distinct regions.  There were two high 
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consumption rate periods: one in the morning and one in the evening.  These two periods were 

associated with shower times.  The third period, which occurred between the two periods of high 

consumption, was characterised by lower flow but over a longer period of time.  The first mode 

in the probability density plots accounts for the period of low consumption rate.  Its density is 

highest because it has more associated samples.  The second lower mode is the period associated 

with higher consumption rate caused by demand from shower periods.  Hot water demand from 

the high-density has a much smaller variance when compared to the low-density housing.  There 

is no significant difference between the weekday and weekend day density plots.  It can be 

concluded that the hot water demand volume remains similar for weekdays and weekend days 

but the time, at which the demand occurs, varies. 

4.4.3 Hot water consumption rate during winter 

The box plots of the hot water consumption rates for the three types of housing densities during 

winter are depicted in Figure 4.4.3. 

 

Figure 4.4.3: Box plots of the hot water consumption rates for the three types of housing densities 

during winter for week and weekend days. 

The consumption rate is approximately double for the high-density housing grouping and 

approximately 1.5 times for the medium- and low-density groupings, when comparing the winter 

to the summer periods.  The only noticeable difference between weekdays and weekend days is 

that the consumption rate is higher during weekend days for the high-density housing group, 
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which is evident from the value of the medians.  There is a larger inter-percentile range or 

variance in the low- versus high-density housing hot water consumption rate data.  These 

observations are confirmed in the plots of the density estimates of the data which are depicted in 

Figure 4.4.4.  When the summer time probability density plots are compared to the winter plots it 

can be seen that the variance is greater during the winter period which is consistent with the 

higher demand for hot water for this period.  The bimodal feature in the probability is less 

evident during the winter because of the increased variance in hot water demand.  The only 

difference between week and weekend day, is in the high-density housing grouping where there 

are two modes for the weekend day which was previously attributed to the fact that the working 

class did not have to be at work as early on a weekend day as on a weekday. 

 

Figure 4.4.4: Probability density plots of hot water consumption rate during winter for week and 

weekend days for high-, medium- and low-density housing. 

4.4.4 Hot water consumption rate for the evaluation period 

In this section, the entire hot water consumption rate data is grouped together and statistically 

analysed.  In Figure 4.4.5, the box plots of the three housing density groupings are depicted for 

an all year round hot water consumption rate.  Once again, the high-density housing group’s 
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consumption rate data has a smaller variance when compared to the other two groupings.  Low-

density housing has the largest consumption rate of the three groupings. 

 

Figure 4.4.5: Box plots of the hot water consumption rate for high-, medium- and low-density 

housing groups. 

The probability density estimates of the three housing density groupings are depicted in Figure 

4.4.6. 

 

Figure 4.4.6: Probability density plots of hot water consumption for the evaluation period for high-, 

medium- and low-density housing groups. 
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The probability density estimate of the high-density housing grouping shows a high probability 

for a low consumption rate when compared to the other two groupings.  The variance of this 

grouping is also the smallest.  In the medium- and low-density housing groupings there is 

evidence of a tri-modal probability density estimate which is the result of the combined grouping 

of the seasons and characteristic days of the week. 

4.5 Inlet water temperature data 

4.5.1 Overview 

The inlet water temperature is generated by a function which was described in detail in Chapter 

three.  The advantage of this method is that multiple data sets can be generated by varying the 

input variables to the function.  Utilising the function facilitates the ability to investigate the 

sensitivity of the geyser model simulation results to the inlet water temperature.  The input 

variables to the inlet water temperature function are: 

• depth at which the water supply pipe is buried in the soil; 

• damping depth of the soil, and 

• surrounding ambient temperature. 

Different soil types will have different dampening depths.  The inlet water temperature is 

represented by a sinusoidal function with a period of one year.  The phase angle is dependent on 

the depth at which the water pipe is buried and the date at which the lowest ambient temperature 

was experienced in that year.  The amplitude of the sinusoid is a function of the minimum and 

maximum temperatures recorded in that year.  Its Y axis displacement is equivalent to the 

average ambient temperature.  Geyser simulation sets require inlet water temperature data.  The 

simulations require either a 1 or 30 minute sampling period.  The theoretical depth at which the 

inlet water supply pipe was varies between one and seven meters.  The range in depth should 

indicate the degree of influence the water supply pipe burial depth has on the simulated demand. 

Seven data sets were required for the simulations in Chapter five and are described as follows in 

Table 4.5.1: 
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Table 4.5.1: Description of the data sets generated for inlet water temperature to the geyser model. 

Data set code name 
Depth of supply 

water pipe [m] 

Original ambient 

temperature data 

set 

Original sampling 

rate [minutes] 

Generated 

sampling rate 

[minutes] 

STL-01-10-01 1 STL 10 1 

STL-01-10-30 1 STL 10 30 

STL-01-60-01 1 STL 60 1 

STL-01-60-30 1 STL 60 30 

CTIA-01-60-30 1 CTIA 60 30 

CTIA-07-60-30 7 CTIA 60 30 

CTIA-1&7-60-30 
1 (summer) 

7 (winter) 
CTIA 60 30 

 

Each data set code name is formed by combining: 

the original temperature data set (STL or CTIA)  -  the burial depth of water supply pipe  -  the 

original sampling period of the data  -  the new sampling period of the data. 

4.5.2 Description of the inlet water temperature data sets generated by the STL data set 

The first four inlet water data sets in Table 4.5.1 are used in the geyser simulation sets that are 

designed to investigate the effects of different input data sampling periods generated from 

different original sampling period data.  Data set STL-01-10-01 is depicted in Figure 4.5.1.  The 

average inlet water temperature was just less than 20 degrees Celsius.  The maximum and 

minimum inlet water temperature was 23.8 and 16.5 degrees Celsius respectively.  These 

maximum and minimum temperatures were generated in the months of April and October 

respectively.  The fact that the maximum temperature only occurs in April is confirmed by the 

knowledge of the soil’s ability to store energy resulting in a time delay between the maximum 

ambient temperature recorded and that of the inlet water temperature.  This energy storing ability 

also acts as a high frequency filter which filters out the higher frequency diurnal ambient 

temperature fluctuation and leaves a lower frequency annual temperature fluctuation.  This 

filtering effect becomes greater with an increasing depth below ground level.  At one meter 

below ground level there is no evidence of the higher frequency daily ambient temperature 

fluctuation. 
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Figure 4.5.1: Inlet water temperature to the geyser generated from the STL ambient temperature 

data set at a supply water pipe depth of one meter. 

4.5.3 Description of the data set generated by the CTIA temperature data and a water 

supply pipe burial depth of one meter 

The data set, CTIA-01-60-30, was generated to investigate the effect of the range of inlet water 

temperature on the electrical demand.  The data set was generated using the CTIA ambient 

temperature data set and a supply water pipe burial depth of one meter below ground level.  This 

data set is depicted in Figure 4.5.2.  Nine temperature cycles are plotted for the nine year 

simulation period.  The minimum and maximum temperatures range from 16.8 to 21.8 degrees 

Celsius respectively.  The mean temperature was 18.8 degrees Celsius.  The variables of the 

function that generates the inlet water temperature were obtained by taking the averages of the 

minimum, maximum and mean of the annual temperature data over the nine year period in order 

to generate a continuous sinusoid of inlet water temperature.  The density estimate of this data is 

depicted in Figure 4.5.3.  It can be see that there is a greater density of data at the minimum and 

maximum temperature values. 
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Figure 4.5.2: Inlet water temperature to the geyser with a supply water pipe burial depth of one 

meter using the CTIA temperature data from 2001 to 2009. 

 

Figure 4.5.3: Probability density plot of the inlet water temperature of the geyser at a supply water 

pipe burial depth of one meter. 
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4.5.4 Description of the data set generated by the CTIA temperature data and a water 

supply pipe burial depth of seven meters 

For this data set the burial depth of the water supply pipe was seven meters.  It can be seen in 

Figure 4.5.4 that the amplitude of the temperature fluctuation has reduced from six to 0.35 

degrees Celsius (refer to Figures 4.5.2 and 4.5.4).  The time of year when the maximum 

temperature of the supply water is reached is also later than when the water pipe was buried at 

one meter below ground level.  The average temperature has remained the same for both pipe 

burial depths, due to the fact that the inlet water temperature during summer has been reduced by 

approximately three degrees whereas the winter inlet temperature increased by the same amount.  

It is important to note that the hot water demand is substantially greater during winter and raising 

the inlet water temperature during that time of the year should reduce electrical demand.  The 

extent of this reduction in demand will be documented in Chapter five.  The variables of the 

function that generates the inlet water temperature were again obtained by taking the averages of 

the minimum, maximum and mean of the annual temperature data over the nine year period.  

This was done so that a continuous sinusoid of inlet water temperature could be generated. 

 

Figure 4.5.4: Inlet water temperature to the geyser with a supply water pipe burial depth of seven 

meters using the CTIA ambient temperature data from 2001 to 2009. 
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4.5.5 Description of the data set generated by the CTIA temperature data and a water 

supply pipe burial depth combination of one and seven meters 

Data set CTIA-1&7-60-30 was generated by using a combination water supply burial depth of 

one and seven meters.  This data set was generated based on the knowledge that higher inlet 

water temperature of the summer months are expected at a pipe burial depth of one meter below 

ground level and that higher inlet water temperature of the winter months are expected at a pipe 

burial depth of seven meters below the ground level.  This hypothetical case was designed to 

investigate the outcome if a simple water storage system, which allows for the depth of water 

storage to vary during the course of a year, would make an economically significant impact on 

electrical demand.  The cost of demand saving can then be used to amortise the cost of the 

mechanism installed to achieve the desired inlet water temperature profile.  The generated inlet 

water temperature is depicted in Figure 4.5.5.  The average temperature has been raised and the 

density estimate has been modified by the storage of water at a combination of burial depths. 

 

Figure 4.5.5: Inlet water temperature which was generated from combining a supply water pipe 

burial depth of one and seven meters. 

The density estimate is depicted in Figure 4.5.6 and it can be seen clearly that the density at 19 

degrees Celsius has dramatically increased.  The results of the simulation using this data set for 
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inlet water temperature will give an indication whether it would be economically viable to 

develop a mechanism to achieve this inlet water temperature profile. 

 

Figure 4.5.6: Probability density plot of the inlet water temperature to the geyser which makes use 

of a mechanism to store water at different depths below ground level. 

4.6 Conclusions drawn from the statistical analysis of input data 

The following outcomes with regards to the statistical properties for ambient temperature are 

noteworthy: 

• median temperature was higher for the summer period than for the winter period; 

• variance in ambient temperature was greater in the summer day time than in the winter 

day time, and 

• variance in the ambient temperature for winter night time was greater than that of the 

summer night. 

The following with regards to the statistical properties for the hot water consumption rate are 

noteworthy: 

• average and variance in the consumption rate is greatest for low-density housing; 
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• variance in the consumption rate is greater in the winter for all three groupings of housing 

densities, and 

• in the groupings of season and characteristic day type, the probability density is bimodal. 

The following outcomes with regards to the statistical properties for inlet water temperature are 

noteworthy: 

• average inlet water temperature was approximately equal to the average ambient 

temperature for an evaluation period of one or more years; 

• amplitude of the seasonal temperature fluctuation decreased for an increase water supply 

depth below ground level, and 

• time at which peak inlet temperature occurs during the year is a function of inlet water 

pipe burial depth below ground level. 

4.7 Conclusion 

In the first section of this chapter a detailed account was given of the statistical methods that 

were used to analyse the input data to the geyser model.  This account was followed by the 

analysis of each of the input variables and the data sets that were produced for input into the 

simulations, which are further described in Chapter five.  Finally a summary was given of the 

most noteworthy findings that resulted from the statistical analysis of the geyser input variables. 
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5.1 Overview 

The output demand data of the geyser model simulations are statistically analysed in a similar 

way as was done in Chapter four.  The difference in the approach of the statistical analysis of this 

chapter compared to Chapter four comes by way of the introduction of the bivariate density 

estimates which illustrate the dependency of the simulated demand versus ambient temperature.  

The following objectives are introduced in this chapter: 

1. investigation of the sensitivity of the geyser model’s simulated data to the sampling 

period of the input variable; 

2. investigation of the geyser model’s simulated demand sensitivity to the mean and 

variance of annual ambient temperature, and 

3. evaluation of the geyser model’s demand impact as a result of the following ECMs: 

o the adjustment of the geyser’s thermostat from 65 to 55 degrees Celsius; 

o the retrofitting of low flow shower roses to reduce warm water demand, and 

o modification of the geyser inlet water temperature profile through various 

methods. 

These objectives were addressed as follows: 

• The investigation of the sensitivity of the geyser model’s simulated data to input variable 

sampling period was achieved by a four way comparison of simulated demand data.  The 

details of this comparison are presented in the next subsection.  This analysis technique 

was implemented to determine the most appropriate sampling period for input variables if 

data were to be collected for geyser simulations.  Alternatively, these comparisons are 

also designed to determine the effect interpolation or averaging has on simulated demand 

of the recorded data. 

• The simulations to generate the geyser model’s simulated demand sensitivity to the mean 

and variance of annual ambient temperature were designed to determine if there would be 

Chapter 5 Statistical analysis of a case study of a 

geyser model’s output data 
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any significant implications on the statistical properties of the simulation data if the 

evaluation period’s temperature data were grouped together into seasons.  If the demand 

data were significantly dependent on the variation of annual temperature it may be 

deemed necessary to further group the ambient temperature into characteristic years and 

not just seasons. 

• The evaluation of the geyser model’s demand impact as a result of the ECMs.  This was 

achieved by running two geyser models in parallel.  The one model simulated the pre-

ECM demand profile and the other the post ECM demand profile.  One simulation was 

run with a zero hot water demand profile.  This was done to investigate the dependency 

of the no load losses on ambient temperature. 

All of the other simulations with regards to these three objectives were run with the three 

distinctive hot water demand profiles characteristic of the respective low, medium and high 

housing densities.  These simulations gave an indication of the simulated demand dependency on 

hot water consumption profile.  The results of objectives one and two are presented in the form 

of a comparison of the total kWh demand, correlation and covariance of the different demand 

simulations.  The results of objective three are presented in the form of a kWh demand impact 

values and the PDFs of the pre- and post-ECM demand profiles versus temperature dependency. 

5.2 Sensitivity analysis of the geyser model’s simulated data with 

respect to the sampling period of the input variables 

In order to test the sensitivity of the geyser model with regard to the sampling period of the input 

variables, model simulations were run with four sets of input variables with three different hot 

water consumption profiles. 

5.2.1 Input variable data sets 

A description of each of the input variable data sets is given in the next three subsections. 

5.2.1.1 Ambient temperature 

Four sets of ambient temperature data were generated from the STL data set as described in 

Chapter four.  The methods used to generate the data were described in Chapter four and 

repeated here in Figure 5.2.1, as an adaptation of Figure 4.3.1. 
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Figure 5.2.1: Four sets of ambient temperature data used in the four sets of geyser simulations to 

test the sensitivity of the geyser model to the input variable sampling period. 

5.2.1.2 Hot water demand 

Three sets of hot water demand profiles were generated at 1 and 30 minute sampling periods 

namely: 

• high-density housing hot water demand; 

• medium-density housing hot water demand, and 

• low-density housing hot water demand. 

The hot water consumption profiles were generated at 30 minute sampling periods and then 

linearly interpolated to 1 minute sampling periods. 

5.2.1.3 Inlet water temperature 

A set of inlet water temperature data was generated at a 30 minute sampling period and from this 

a second set of inlet water temperature was generated with a sampling period of 1 minute by 

linearly interpolating the 30 minute data. 
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5.2.2 Description of the simulated demand’s statistical analysis 

Figure 5.2.2 portrays the sampling periods of the input variables that were used in the four sets of 

simulations for the three different hot water consumption profiles.  Each alphabetically labelled 

statistical comparison (refer to Figure 5.2.2 and the list below) of the simulated output data 

investigates the following: 

A. combined effect of using 1 or 30 minutes sampling period input data and the averaging 

process of the temperature data on the simulated demand; 

B. effect of linear interpolation of the ambient temperature data from 60 minute original 

sampling period data on the simulated demand at a simulation sampling period of 30 

minutes; 

C. combined effect of using 1 or 30 minutes sampling period input data and the linear 

interpolating process of the temperature data on the simulated demand, and 

D. effect of linear interpolation of the ambient temperature data from 60 minute original 

sampling period data on the simulated demand at a simulation sampling period of 1 

minute. 

 

Figure 5.2.2: Four way statistical comparison of the geyser simulations using 1 and 30 minute 

sampling period data. 

Ambient temperature: 1 min 
sampling period; interpolated 
from 10 min data. 
Hot water demand: 1 min 
sampling period data. 
Inlet water temperature: 1 
min sampling period data. 

A four way statistical 
comparison of 

simulated demand data 
using the described 

input data sets 

Ambient temperature: 30 min 
sampling period; averaged from 
10 min data. 
Hot water demand: 30 min 
sampling period data. 
Inlet water temperature: 30 
min sampling period data. 

Ambient temperature: 1 min 
sampling period; interpolated 
from 60 min data. 
Hot water demand: 1 min 
sampling period data. 
Inlet water temperature: 1 
min sampling period data. 

Ambient temperature: 30 min 
sampling period; interpolated 
from 60 min data. 
Hot water demand: 30 min 
sampling period data. 
Inlet water temperature: 30 
min sampling period data. 

A 

B 

C 

D 
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5.2.3 Comparison of the results of the geyser simulations at 1 and 30 minute input 

variable sampling periods 

The first set of simulations made use of ambient temperature data that had an original sampling 

period of 10 minutes.  The second set of simulations made use of ambient temperature data that 

was linearly interpolated from a 60 minute sampling period. 

5.2.3.1 Simulations generated by ambient temperature data with an original sampling 

period of 10 minutes 

This section provides a description of the statistical comparison A in Figure 5.2.2.  Six 

simulations were run using three different hot water consumption profiles.  Three of these 

simulations made use of 1 minute sampling period data and the remaining three made use of the 

data with a 30 minute sampling period.  The output of the simulations was in the form of a vector 

of 30 minute averaged electrical demand in kWh.  The output vectors of the 1 minute and 30 

minute sampling period simulations are compared by correlation coefficient and covariance 

matrix.  The results of the six simulations are recorded in Table 5.2.1 

Table 5.2.1: Comparison of the correlation coefficient and covariance of simulated demand results 

using input data at a sampling period of 1 minute and 30 minutes for high-, medium- and low-

density housing with an original ambient temperature sampling period of 10 minutes. 

Housing 

density 

kWh  

(1 min 

data) 

kWh 

 (30 min 

data) 

Corr.  

Coeff.  

Cov. 

 [1,1] 

Cov. 

 [1,2] 

Cov. 

 [2,1] 

Cov. 

 [2,2] 

High 3525.919 3525.269 0.620 0.190 0.118 0.118 0.191 

Medium 4865.042 4864.517 0.628 0.248 0.156 0.156 0.248 

Low 5901.915 5901.321 0.660 0.290 0.191 0.191 0.290 

 

The greatest percentage difference in electrical demand between the 1 and 30 minute sampling 

period simulations was 0.018 percent and this was observed for the high-density housing group.  

The correlation coefficient of the electrical demand vectors varied from 0.628 to 0.660 for the 

different housing density groups.  There was a greater variance in each of the demand vectors 

themselves than the covariance between the vectors.  This variance and covariance was 

determined from the covariance matrix.  This set of simulations showed that the resulting 
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demand vectors were not closely correlated.  The difference in total kWh demand between the 

different sampling period simulations was very small. 

5.2.3.2 Simulations that made use of ambient temperature with an original sampling 

period of 60 minutes 

This provides a description of the statistical comparison C in Figure 5.2.2.  Six simulations were 

again run using three different hot water consumption profiles.  Three of these simulations made 

use of 1 minute sampling period data and the other three made use of the data with a 30 minute 

sampling period.  The results of the simulations are recorded in Table 5.2.2. 

Table 5.2.2: Comparison of the correlation coefficient and covariance of simulated demand results 

using input data at a sampling period of 1 minute and 30 minutes for high-, medium- and low-

density housing with an original ambient temperature sampling period of 60 minutes. 

Housing 

density 

kWh  

(1 min 

data) 

kWh  

(30 min 

data) 

Corr.  

Coeff. 

Cov. 

[1,1] 

Cov. 

[1,2] 

Cov. 

[2,1] 

Cov 

[2,2] 

High  3525.872 3525.294 0.673 0.190 0.128 0.128 0.190 

Medium  4864.396 4864.074 0.613 0.247 0.152 0.152 0.248 

Low  5901.304 5900.552 0.655 0.290 0.190 0.190 0.290 

 

The greatest percentage difference in electrical demand between the 1 and 30 minute sampling 

period simulations was 0.013 percent and this was observed for the low-density housing group.  

The correlation coefficient of the electrical demand vectors varied from 0.613 to 0.673 for the 

different housing density groups.  There was a greater variance in each of the demand vectors 

themselves than the covariance between the vectors.  This variance and covariance was 

determined from the covariance matrix.  This set of simulations showed that the resulting 

demand vectors were not closely correlated.  The difference in total kWh demand between the 

different sampling period simulations was again very small. 

5.2.4 Comparison of the results of the geyser simulations that made use of ambient 

temperature data sets with 10 and 60 minute original sampling periods 

The first set of simulations made use of ambient temperature data with an original sampling 

period of 10 minutes.  The second set of simulations made use of ambient temperature data that 
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was linearly interpolated from a 60 minute sampling period.  In the next subsection the 

simulations that used 30 minute sampling periods are compared, followed by a comparison of the 

simulations that made use of 1 minute sampling periods. 

5.2.4.1 Simulations that made use of input variables with 30 minute sampling periods 

This section provides a description of the statistical comparison B in Figure 5.2.2.  The 

simulations that made use of input variables with 30 minute sampling periods were statistically 

compared and the results are presented in Table 5.2.3. 

Table 5.2.3: Comparison of the correlation coefficient and covariance of simulated demand results 

using input data at a sampling period of 30 minutes for high-, medium- and low-density housing 

with an original ambient temperature sampling period of 10 and 60 minutes. 

Housing 

density 

kWh 

 (10 min 

data) 

kWh  

(60 min 

data) 

Corr.  

Coeff. 

Cov. 

[1,1] 

Cov. 

[1,2] 

Cov. 

[2,1] 

Cov. 

[2,2] 

High 3525.269 3525.294 0.705 0.191 0.134 0.134 0.190 

Medium 4864.517 4864.074 0.790 0.248 0.196 0.196 0.248 

Low 5901.321 5900.552 0.875 0.290 0.254 0.254 0.290 

 

The greatest percentage difference in electrical demand between the simulations that made use of 

the 10 versus 60 minute original sampling period data was 0.013 percent and this was observed 

for the low-density housing group.  The correlation coefficient of the electrical demand vectors 

varied from 0.705 to 0.875 for the different housing density groups.  There was a greater 

variance in each of the demand vectors themselves than the covariance between the vectors.  

This set of simulations showed that the resulting demand vectors were more closely correlated 

than the demand vectors of the simulation sets in Tables 5.2.1 and 5.2.2.  The difference in total 

kWh demand between the different sampling period simulations remained very small. 

5.2.4.2 Simulations that made use of input variables with 1 minute sampling periods 

This section describes the statistical comparison D in Figure 5.2.2.  The simulations that made 

use of input variables with 1 minute sampling periods were statistically compared and the results 

are presented in Table 5.2.4. 
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Table 5.2.4: Comparison of the correlation coefficient and covariance of simulated demand results 

using input data at a sampling period of 1 minute for high-, medium- and low-density housing with 

an original ambient temperature sampling period of 10 and 60 minutes. 

Housing 

density 

kWh  

(10 min 

data) 

kWh  

(60 min 

data) 

Corr. 

Coeff. 

Cov. 

[1,1] 

Cov. 

[1,2] 

Cov. 

[2,1] 

Cov. 

[2,2] 

High 3525.919 3525.872 0.599 0.190 0.114 0.114 0.190 

Medium 4865.042 4864.396 0.796 0.248 0.197 0.197 0.247 

Low 5901.915 5901.304 0.846 0.290 0.245 0.245 0.290 

 

The greatest percentage difference in electrical demand between the simulations that made use of 

the 10 versus 60 minute original sampling period data was 0.013 percent and this was observed 

for the medium-density housing group.  The correlation coefficient of the electrical demand 

vectors varied from 0.599 to 0.846 for the different housing density groups.  There was a greater 

variance in each of the demand vectors themselves than the covariance between the vectors.  

This set of simulations showed that the resulting demand vectors were more closely correlated 

for the medium- and high-density groups compared to the demand vectors of the same housing 

groups in Tables 5.2.1 and 5.2.2.  The difference in total kWh demand between the different 

sampling period simulations was again very small. 

5.2.5 Conclusions drawn from the sensitivity analysis 

Firstly, the kWh demand of the simulations is considered.  The A comparison resulted in the 

greatest difference at 0.018 versus 0.013 percent for comparisons B, C and D.  This difference 

was very small for a simulation period of one year.  No trend could be seen when comparing the 

results of the different housing densities. 

The correlation coefficient of the comparisons of the simulations is considered next.  The 

correlation coefficients for comparisons B and D increased similarly with the increase in 

electrical demand, which in turn was dependent on hot water consumption rate.  The correlation 

coefficients for comparisons A and C showed little variation in magnitude and no note worthy 

dependency on housing density.  The correlation coefficients in the comparisons ranged from 

0.599 to 0.875.  From these observations it is concluded that the correlation coefficient was more 
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dependent on housing density (hot water demand) if the comparison of the 1 and 30 minute input 

sampling period were chosen.  The correlation coefficients were similar in magnitude for the 

simulation that had the same input sampling period but had been manipulated by the processes of 

linier interpolation and averaging.  It is deduced that the correlation coefficient is an indication of 

the time difference between the geyser’s switching time intervals of the simulations.  This 

deduction is based on the fact that the total kWh demands between the simulations varied by a 

small amount and that the correlation coefficient could then only be dependent on the switching 

time of the geyser. 

Finally, the variance and covariance of the simulation comparisons are considered.  For the 

comparisons of simulated demands of similar housing densities it can be seen that the variances 

and covariance remained similar.  The variance and covariance increased as the hot water 

demand increased and this could be seen when the simulated demands of the three housing 

densities were compared.  No further deduction could be made or patterns observed with regard 

to variance and covariance.  The inclusion of the analysis of variance and covariance did not 

prove to be very informative for this set of simulations, but the simulation of a all-recorded input 

variable data set may lead to new conclusions been established with respect to input data 

sampling period and the resultant effect on simulated demand.  It is therefore suggested that the 

analysis of the variance for different input variable sampling rates be included in the 

methodology to determine the effect it has on simulated demand results. 

The total simulated demand was not adversely affected by input variable sampling period.  The 

correlation coefficient of the simulation was dependent on hot water demand profile and the 

input variable sampling period.  These results should not be considered conclusive in their own 

right because two of the three input variables to the geyser model were generated rather than 

recorded values.  The conclusions that would be drawn from applying the same methodology on 

purely recorded input data may be different from these presented here.  The value of this 

investigation lies in the methodology that was developed, to evaluate the effects of input variable 

sampling period and the data manipulation processes on the simulated demand.  It is therefore 

recommended in future work, that the methodology presented in this chapter be followed for 

testing the simulated demand sensitivity to input sampling period and data manipulation for 

recorded data. 
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5.3 Sensitivity analysis of the geyser model’s simulated demand 

with respect to the mean and variance of ambient temperature 

An objective was set to determine the sensitivity of the simulated demand of the geyser model to 

ambient temperature.  In Chapter four the annual mean and variance of the CTIA data was 

compared.  The years with the extreme mean and variance ambient temperature data were 

selected to compare their simulated demand data.  The 2002, 2007 and 2009 simulated demand 

were compared to determine if there would be any adverse effects on the statistical properties of 

the simulated demand if the annual demands were grouped together into seasons only, as 

opposed to seasons and years, for the statistical analysis.  The mean and variance of 2002, 2007 

and 2009 of the CTIA data are listed in Table 5.3.1. 

Table 5.3.1: Mean and variance of the CTIA data for 2002, 2007 and 2009. 

Parameter 2002 2007 2009 

Mean [degrees Celsius] 16.2 16.6 16.9 

Variance [degrees Celsius] 26.5 26.5 23 

 

The simulated demand data of the three different housing densities for the chosen years are 

presented in Table 5.3.2. 

Table 5.3.2: Simulated demand for the three housing densities for the years 2002, 2007 and 2009. 

Housing density kWh demand 2002 kWh demand 2007 kWh demand 2009 

High 3689 3664 3641 

Medium 5079 5044 5049 

Low 6122 6136 6106 

 

The percentage difference from the lowest simulated for each evaluation year demand in each 

housing density is given in Table 5.3.3. 
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Table 5.3.3: Percentage difference from the lowest simulated demand for each evaluation year for 

each housing density category. 

Housing density % demand diff. 2002 % demand diff. 2007 % demand diff. 2009 

High 1.31 0.63 0 

Medium 0.69 0 0.01 

Low 0.26 0.49 0 

 

Of the three years, 2002 had the lowest mean temperature.  For high-density housing, which 

represent the lowest hot water demand profile of the three housing densities, the electrical 

demand increased with a decrease in mean temperature.  A similar trend can be seen for the low-

density housing hot water demand category but to a lesser degree compared to the high-density 

category. 

The percentage difference in simulated demand calculated in Table 5.3.3 is small, and it would 

seem reasonable to group the years of simulated demand together without incurring a significant 

error in the statistical parameters.  However it must be pointed out that the true relationship 

between simulated demand and ambient temperature is not represented in totality because the hot 

water demand and inlet water temperature were generated rather than recorded along with the 

ambient temperature.  It will be seen in the next two subsections that of the three input variables 

to the geyser model, hot water demand has the greatest influence on electrical demand and it is 

therefore necessary to have recorded input variables where the underlying interdependency is 

present when attempting such a sensitivity analysis.  However, significant for this research was 

the testing of the sensitivity of ambient temperature and the testing procedure that was followed. 

5.4 Simulated electrical demand impacts that result from geyser 

ECMs 

5.4.1 Overview 

Three geyser ECMs were simulated as part of the case study of the geyser.  In these ECM 

simulations two geyser models were run in parallel to calculate the resultant electrical demand of 

each model and the demand impact.  The one model simulated the pre-ECM demand profile and 
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the other model the post ECM demand profile.  The standing loss factors of both models were set 

in accordance with the Bosman et al. findings for geyser standing losses [36]. 

The first ECM that was simulated modelled the adjustment of the geyser thermostat’s upper 

temperature limit down from the standard 65 to 55 degrees Celsius.  The hysteresis relay of the 

post ECM’s model was adjusted accordingly.  The first simulation recorded the standing losses 

that resulted from zero hot water demand.  Subsequent simulation made use of the three housing 

densities’ characteristic hot water demand profiles. 

The second geyser ECM that was simulated, modelled the reduction of hot water consumption 

that would result from the retrofitting of low flow shower roses in a household.  The shower’s 

mixed warm water demand was reduced in accordance with the claimed flow reduction figures. 

The final geyser ECM simulation investigated the demand impact that would result from 

modified inlet water temperature profiles.  The modified inlet water temperature profile could be 

realised by storing the inlet water to the geyser at various depths below the ground surface. 

All three ECM simulations made use of the same CTIA ambient temperature data and the three 

characteristic hot water consumption profiles of the different housing densities.  This allowed the 

evaluation of the ECMs’ impacts for different characteristic hot water consumption profiles. 

5.4.2 No load losses of a geyser with the thermostat adjusted from 65 to 55 degrees 

Celsius 

Initially, a description is given of how the pre- and post-ECM models are adjusted and linked 

during the simulations of sections 5.4.2. and 5.4.3.  The upper and lower limits of the hysteresis 

relay of the post ECM’s geyser model were reduced by 10 degrees Celsius from standard factory 

geyser settings.  The upper and lower limit had a factory setting of 65 and 55 degrees Celsius 

respectively.  Both models made use of the same ambient and inlet water temperature data sets.  

In the simulations of section 5.4.2 the hot water demand of the pre-ECM model was set to zero 

(i.e. no load).  This resulted in a zero warm and hot water demand for the post ECM model.  In 

the simulations of section 5.4.3, the pre-ECM model made use of the three characteristic hot 

water consumption profiles of the different housing densities.  This pre-ECM model also 

calculated the warm water demand for the post ECM geyser model at a mixing temperature of 39 

degrees Celsius.  It was necessary to calculate this warm water demand because it was the third 
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input variable to the post ECM model.  Lowering the set point water temperature inside the post 

ECM’s geyser would result in an increase in hot water demand thus maintaining the same warm 

water mixing temperature.  The warm water temperature and volume is related to the hot water 

temperature and volume by equations 5.4.1 and 5.4.2. 

( ) ( )warm warm cold cold hot hotT f C T f C T f C× × = × × + × ×           5.4.1 

warm cold hot
f f f= +                5.4.2 

where 

warm
T

 denotes warm water temperature demand in degrees Celsius. 

warmf  denotes the flow rate of the warm water demand for the pre- and-post ECM model 

  in litres per second; 

hotf  denotes the hot water demand flow rate for the geyser pre-ECM model in litres  

  per second; 

hotT  denotes the temperature of the water inside the geyser pre-ECM model in   

  degrees Celsius, and 

coldT  denotes the inlet water temperature to the pre-ECM model in degrees Celsius. 

C   denotes the heat capacity of water in joules per kilogram per degrees Kelvin; 

The solving of these two equations simultaneously results in equation 5.4.3 which was used to 

calculate the warm water demand of the pre- and post-ECM geyser model. 

( )
( )

hot cold

warm hot

warm cold

T T
f f

T T

−
=

−
              5.4.3 

The post ECM model calculated the post ECMs hot water demand from the warm water demand 

of the pre-ECM model.  This was done by using equation 5.4.4. 

( )

( )
warm cold

hot warm

hot cold

T T
f f

T T

−
=

−
              5.4.4 
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where 

hotf  denotes the hot water demand flow rate for the post ECM model in litres per  

  second; 

warmf  denotes the flow rate of the warm water demand for the post ECM model in  

  litres per second; 

hotT  denotes the temperature of the water inside the post ECM model in degrees  

  Celsius, and 

coldT  denotes the inlet water temperature to the post ECM model in degrees Celsius. 

5.4.2.1 Demand impact table 

The first simulation with this parallel geyser model arrangement investigated the standing losses 

of the pre- and post-ECM periods.  This ECM was simulated by allocating zero hot water 

demand to the pre-ECM model which resulted in zero warm water demand allocation for the post 

ECM’s model.  The geyser had a simulated volume of 150 litres and a heater element rating of 3 

kW.  The electrical demand that resulted from standing losses alone for the pre- and post-ECM 

periods are recorded in Table 5.4.1.  This table also records the differences between the demands 

of the pre- and post-ECM and periods. 

Table 5.4.1: Demand impact in kWh that resulted from the standing losses and the adjustment of 

the geyser’s thermostat for the pre- and post-ECM simulation for the period 2001 to 2009. 

Demand impact [kWh] 

Model 2001 2002 2003 2004 2005 2006 2007 2008 2009 

Pre-ECM 729 732 727 724 729 727 724 726 720 

Post ECM 557 561 559 553 559 555 555 557 550 

Difference 
between 

172 171 168 171 170 172 169 169 170 
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The annual demands that resulted from the standing losses compare favourably with the findings 

of SABS report [47].  The SABS report claimed an equivalent standing loss of 660.65 kWh per 

year for a 150 litre geyser that was subjected to a controlled environment with an ambient 

temperature and an internal geyser temperature of 20 and 69.5 degrees Celsius respectively.  The 

annual demand difference between the pre- and post-ECM simulations also compared favourably 

with the findings of the Bosman et al. study.  The study calculated that the annual difference in 

standing loss demand would be 168.28 kWh for a 100 litre geyser in the Cape Town region [36]. 

The next point of interest to investigate was the demand dependency on annual median and 

variance of ambient temperature.  The annual medians and variances of the ambient temperature 

data set used in the demand simulations are recorded in Tables 5.4.2 and 5.4.3 respectively. 

Table 5.4.2: Annual medians of ambient temperature of the CTIA data for the period 2001 to 2009. 

Annual medians of ambient temperature [degrees Celsius] 

2001 2002 2003 2004 2005 2006 2007 2008 2009 

16.4 16.2 16.7 16.8 16.4 16.6 16.7 16.6 16.9 

 

Table 5.4.3: Annual variances of ambient temperature of the CTIA data for the period 2001 to 

2009. 

Annual variances of ambient temperature [degrees Celsius] 

2001 2002 2003 2004 2005 2006 2007 2008 2009 

23.4 26.6 27.2 25.7 25.8 23.9 26.6 23.7 23.00 

 

The resultant correlation between the demand data and the annual ambient temperature statistical 

parameters are summarised as follows: 

• correlation coefficient of the annual demand versus ambient temperature medians for the 

pre- and post-ECM periods were -0.95 and -0.88 respectively; 

• correlation coefficient of the annual demand versus ambient temperature variances for the 

pre- and post-ECM periods were 0.34 and 0.54 respectively, and 
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• correlation coefficient of the annual demand difference (between pre- and post-ECMs) 

versus ambient temperature median and variance were -0.29 and -0.46 respectively. 

These results show that the median of the ambient temperature for an evaluation period has a 

strong influence on the overall electrical demand of the geyser that results from the no load 

losses.  This result is consistent with the fact that the lower the ambient temperature experienced, 

the greater the resultant standing losses would be because of the greater temperature difference 

between ambient air and water temperature within the geyser.  The post ECM’s variance relative 

to annual demand was more positively correlated than that of the pre-ECM.  This implies that for 

an increase in the variance of ambient temperature there will be a corresponding increase in the 

variance of electrical demand of the geyser.  The stronger negative correlation between demand 

difference and the variance of the ambient temperature suggests the variance has greater negative 

influence on the demand difference of the simulated ECM compared to the median of the 

ambient temperature. 

5.4.2.2 Image plots of demand data 

The image plots of the electrical demand data of the pre- and post-ECM simulations of the year 

2009 are depicted in Figures 5.4.1 and 5.4.2 respectively. 

 

Figure 5.4.1: Image plot of the standing losses of the pre-ECM simulation for the year 2009. 
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Figure 5.4.2: Image plot of the standing losses of the post ECM simulation for the year 2009. 

It is evident from the summer months of the pre-ECM simulation in Figure 5.4.1, that the geyser 

was switching on approximately once a day and in the winter months this period was reduced to 

approximately every 21 hours.  As shown in Figure 5.4.2, upon implementation of the ECM, the 

geyser was switching on approximately once a day in the winter months and during the summer 

months, this period was increased to approximately once every 35 hours.  It is also evident from 

these two image plots that the geyser took about 35 to 40 minutes to recover from the low to the 

high temperature set points. 

5.4.2.3 Probability density estimation of the recovery time of the geyser 

Plots of the density estimates were generated for ambient temperature versus the time taken by 

the geyser to recover from the low to the high point temperature settings.  The density estimation 

of the pre- and post-ECM simulations of the recovery times of the geyser are depicted in Figure 

5.4.3. 

The probability density estimates of the recovery time of the geyser shows its inversely 

proportional to ambient temperature.  It was calculated that the difference between the medians’ 

of the recovery times of the pre- and post-ECM simulations was 0.233 minutes. 
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The recovery time of the geyser is a directly proportional to its energy use in kWh.  The recovery 

time of the geyser is dependent on the volume of water inside the geyser and the kilo watt rating 

of the geyser element.  The high-density estimates of the geyser recovery times over a small 

temperature ranges are characteristic of a geyser with no hot water demand. 

 

Figure 5.4.3: Probability density plots for the pre- and post-ECM recovery times of the geyser for 

the simulation period 2001 to 2009. 

5.4.2.4 Probability density plots of ambient temperature versus time of day for geyser 

on times 

The simulated electrical demand dependency of the geyser models on ambient temperature is 

subsequently investigated.  The dependency of electrical demand versus temperature is depicted 

by means of a three dimensional mesh and a two dimensional image plot of the probability 

density of the ambient temperature versus time of day when the geyser was switched on.  This 

investigation is conducted for both the pre- and post-ECM simulations.  The plots of the PDFs of 

the pre- and post-ECM simulated data for the summer months are depicted in Figures 5.4.4 to 

5.4.6. 
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Figure 5.4.4: Probability density plot of the pre-ECM PDF of the ambient temperature versus time 

of day the geyser was on during the summer months from 2001 to 2009. 

 

Figure 5.4.5: Probability density plot of the post ECM PDF of the ambient temperature versus time 

of day the geyser was on during the summer months from 2001 to 2009. 
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Figure 5.4.6: Probability density plots of the pre- and post-ECM PDFs of the ambient temperature 

versus time of day the geyser was on during the summer months from 2001 to 2009. 

The following is evident when the probability density plots of the pre- and post-ECM are 

compared: 

• These plots show that the electrical demand probability density is characteristically 

bimodal for the pre- and post-ECM simulations.  This can be attributed to the diurnal 

ambient temperature fluctuations and higher summer average temperatures which 

resulted in lower standing losses, allowing the geyser to switch on less frequently over 

the midday period. 

• In the pre-ECM simulation, the probability density is greater for the geyser switched-on 

in the early hours of the morning.  The reason for this is because the pre-ECM simulation 

had a higher set point temperature than the post ECM simulation, resulting in a greater 

temperature difference between the ambient temperature and temperature within the 

geyser for the pre-ECM simulation.  These standing losses were greatest during the low 

ambient temperatures of the early hours of the morning. 

• The reduction in the set point temperatures of the post ECM simulation resulted in the 

electrical demand density shifting to a later part of the morning as a result of the reduced 

standing losses. 
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The plots of the probability density of the pre- and post-ECM simulated data for the winter 

months are depicted in Figures 5.4.7 to 5.4.9. 

 

Figure 5.4.7: Probability density plot of the pre-ECM PDF of the ambient temperature versus time 

of day the geyser was on during the winter months from 2001 to 2009. 

 

Figure 5.4.8: Probability density plot of the post ECM PDF of the ambient temperature versus time 

of day the geyser was on during the winter months from 2001 to 2009. 
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Figure 5.4.9: Probability density plots of the pre- and post-ECM PDFs of the ambient temperature 

versus time of day the geyser was on during the winter months from 2001 to 2009. 

The following is evident when the probability density plots of the pre- and post-ECM are 

compared: 

• The higher density bimodal features from the summer months have substantially reduced.  

There is a higher probability of the geyser being on over a wider temperature range from 

09h00 to 18h00 during the winter months. 

• The most notable feature of the winter month probability density plots is the ‘saddle’ that 

existed at approximately midnight. 

• An equivalent demand density occurred at a lower average temperature during the winter 

months compared to the summer months. 

• The demand density variance across the temperature range was greater during the winter 

months for all hours of the day. 

In summary the patterns of the electrical demand density plots are dependent on ambient 

temperature, the size of the element, the volume of water, and the standing loss factor of the 

geyser. 
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5.4.3 Adjustment of a geyser’s thermostat 

The pre- and post-ECM geyser models were simulated in parallel.  The pre-ECM simulation 

calculated the warm water demand for the post ECM geyser model.  The post ECM geyser 

model’s thermostat set points were set 10 degrees Celsius lower than the pre-ECM geyser model. 

5.4.3.1 Demand impact tables 

The three characteristic housing densities’ hot water consumption profiles were used in the 

simulated demand impacts that resulted from the thermostat adjustment of the post ECM’s 

geyser model and are recorded in Tables 5.4.4 to 5.4.6 for the nine year simulation period. 

Table 5.4.4: Electrical demand impact that resulted from the adjustment of the geyser’s thermostat 

from 65 to 55 degrees Celsius with high-density housing characteristic hot water consumption 

profile for the simulation period 2001 to 2009. 

Demand impact [kWh] 

Model 2001 2002 2003 2004 2005 2006 2007 2008 2009 

Pre-ECM 3679 3689 3682 3666 3663 3669 3664 3660 3641 

Post ECM 3511 3521 3515 3499 3495 3504 3497 3494 3474 

Difference 
between 

168 168 167 167 168 165 167 166 167 

 

Table 5.4.5: Electrical demand impact that resulted from the adjustment of the geyser’s thermostat 

from 65 to 55 degrees Celsius with medium-density housing characteristic hot water consumption 

profile for the simulation period 2001 to 2009. 

Demand impact [kWh] 

Model 2001 2002 2003 2004 2005 2006 2007 2008 2009 

Pre-ECM 5051 5079 5047 5057 5063 5063 5044 5053 5049 

Post ECM 4883 4911 4880 4889 4893 4895 4877 4887 4882 

Difference 
between 

168 168 167 168 170 168 167 166 167 
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Table 5.4.6: Electrical demand impact that resulted from the adjustment of the geyser’s thermostat 

from 65 to 55 degrees Celsius with low-density housing characteristic hot water consumption 

profile for the simulation period 2001 to 2009. 

Demand impact [kWh] 

Model 2001 2002 2003 2004 2005 2006 2007 2008 2009 

Pre-ECM 6136 6122 6143 6125 6150 6140 6136 6134 6106 

Post ECM 5967 5954 5978 5957 5983 5973 5970 5965 5939 

Difference 
between 

169 168 165 168 167 167 166 169 167 

 

From the demand impact tables it is noted that not only did the difference between the calculated 

demand of the pre- and post-ECM simulations remain virtually constant across the years of the 

evaluation period, but also across the three hot water consumption profiles.  These results can be 

expected because the standing loss factor remained the same between the sets of simulations.   

The difference in demand impact between the simulations that did and did not have hot water 

demand was on average 2.9kWh per year.  This result can be explained by the fact that there 

would be a small reduction in standing losses because of the marginally lower average 

temperature in the geyser as a result of the hot water demand. 

5.4.3.2 Image plots of demand data 

To provide a succinct graphical explanation, only the medium-density housing hot water 

consumption simulations were analysed and plotted.  Medium-density housing characteristic hot 

water consumption profile was chosen because it represented the average of the three hot water 

consumption profiles.  In a detailed analysis using the methodology presented in this thesis it is 

strongly recommended than the three hot water consumption profiles’ simulations be analysed in 

detail because hot water consumption has a significant relationship with electrical demand of the 

geyser.  The image plots of the electrical demand data of the pre- and post-ECM simulations for 

the year 2009 are depicted in Figures 5.4.10 and 5.4.11 respectively. 
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Figure 5.4.10: Image plot of the electrical demand data for the pre-ECM simulation for medium-

density housing’s characteristic hot water consumption for the year 2009. 

 

Figure 5.4.11: Image plot of the electrical demand data for the post ECM simulation for medium-

density housing characteristic hot water consumption for the year 2009. 

The higher density geyser on periods can be seen in the winter, compared to the summer months.  

There is also greater demand density surrounding the 09h00 and 19h00 time instances for both 

the pre- and post-ECM simulations.  To draw any further conclusions from the image plots 
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becomes challenging.  For this reason it becomes necessary to use statistical inference to analyse 

the demand data. 

5.4.3.3 Probability density estimation of the recovery time of the geyser 

Probability density plots were generated of the ambient temperature versus time taken by the 

geyser to recover from the low to the high point temperature settings.  The density estimation of 

the pre- and post-ECM simulations of the recovery times of the geyser for the characteristic 

season and day type are depicted in Figures 5.4.12. to 5.4.15. 

 

Figure 5.4.12: Probability density plots for the pre- and post-ECM recovery times of the geyser 

with a medium-density housing characteristic hot water demand profile for summer weekdays for 

the simulation period 2001 to 2009. 

The density estimates of the geyser recovery times of the summer months have three distinct 

areas of interest.  These areas are indicated in Figure 5.4.12.  They are recognised by the 

temperature at which they occur.  The density estimate of the morning and evening peak load 

during the weekend days is lower than that of the weekday.  This observation is consistent with 

the observations made in the analysis of the hot water consumption.  The weekday hot water 

consumption peak in is higher when compared to a similar time period for the weekend day.  

This pattern in the data is attributed to the fact that people don’t have to keep the weekly 

schedule of getting to work at certain period of time and as a result of this the hot water demand 

Morning and 
evening peak 
demand 

Daytime 
off peak 
demand 

Early morning 
standing loss 
demand 
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is spread over a larger time period in the weekend day demand profile.  This results in similar 

patterns in the density estimates of recovery times and electrical demand of the geyser. 

 

Figure 5.4.13: Probability density plots for the pre- and post-ECM recovery times of the geyser 

with a medium-density housing characteristic hot water demand profile for summer weekend days 

for the simulation period 2001 to 2009. 

 

Figure 5.4.14: Probability density plots for the pre- and post-ECM recovery times of the geyser 

with a medium-density housing characteristic hot water demand profile for winter weekdays for 

the simulation period 2001 to 2009. 
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Figure 5.4.15: Probability density plots for the pre- and post-ECM recovery times of the geyser 

with a medium-density housing characteristic hot water demand profile for winter weekend days 

for the simulation period 2001 to 2009. 

During the winter months the three peaks of density estimates of the summer simulation periods 

have reduced to a single mode.  The ambient temperature at which the winter peak density 

occurs is less than that of the summer peak.  In the summer and winter periods, the peak density 

increased by a small margin when comparing the post ECM to the pre-ECM.  It is interesting to 

note that the peak density increased from the weekday to the weekend day density estimates 

during the winter months.  This trend is directly opposite to the trend observed in the summer 

months.  This could be explained by the reduce peak hot water consumption rates during the 

weekend days which results in shorter geyser recovery times. 

5.4.3.4 Probability density plots of ambient temperature versus time of day for geyser 

on times 

The probability density plots of the PDFs of the pre- and post-ECM simulations are depicted in 

Figures 5.4.16 and 5.4.17, respectively for the week and weekend days during the summer 

months. 
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Figure 5.4.16: Probability density plots of the pre- and post-ECM PDFs of the ambient temperature 

versus time of day the geyser was on during the summer weekdays with a medium-density housing 

characteristic hot water consumption profile from 2001 to 2009. 

 

Figure 5.4.17: Probability density plots of the pre- and post-ECM PDFs of the ambient temperature 

versus time of day the geyser was on during the summer weekend days with a medium-density 

housing characteristic hot water consumption profile from 2001 to 2009. 
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The following is evident when Figures 5.4.16 and 5.4.17 are compared: 

• The maximum of the weekend modes are less than that of the weekday modes.  The 

reason for this is the hot water demand during the weekend day was distributed more 

evenly over the given time period. 

• From the weekday PDF plots it is evident that the ECM had reduced the overall demand 

density, especially in the first half of the day. 

• The peak densities of the weekend PDFs occurred approximately an hour later when 

compared to the weekdays.  This pattern in the demand results was influenced by the hot 

water consumption patterns. 

The image plots of the PDFs for the pre- and post-ECMs simulated data are depicted in Figures 

5.4.18 and 5.4.19, respectively for the week and weekend days during the winter months. 

 

Figure 5.4.18: Probability density plots of the pre- and post-ECM PDFs of the ambient temperature 

versus time of day the geyser was on during the winter weekdays with a medium-density housing 

characteristic hot water consumption profile from 2001 to 2009. 
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Figure 5.4.19: Probability density plots of the pre- and post-ECM PDFs of the ambient temperature 

versus time of day the geyser was on during the winter weekend days with a medium-density 

housing characteristic hot water consumption profile from 2001 to 2009. 

It was evident in Figures 5.4.18 and 5.4.19 that the demand peak densities are lower during the 

weekend days and occurred approximately an hour later compared to the weekdays.  For both the 

week and weekend days of the pre- and post-ECM plots, the demand density was shifted later in 

time as a result of the ECM. 

When the summer and winter PDF plots are compared it can seen that the evening density mode 

occurred approximately an hour earlier for the winter months.  It was also interesting to note that 

there was a small mode at approximately 01h00 to 02h00 in the summer months that is 

dramatically reduced in the winter month plots. 

5.4.4 Installation of low flow shower roses 

In the study conducted by DeOreo et al, it was found that the showers were responsible for 25 

percent of the domestic hot water demand [33].  Three independent sources claim that low flow 

shower roses reduce warm water demand on average by between 30 and 50 percent [48, 49 and 

50].  The low flow simulation assumed that there would be a 40 percent reduction in warm water 

demand by the shower.  The shower represents 25 percent of the total hot water demand in a 

household, resulting in a 10 percent overall reduction in hot water demand.  The parallel models 
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that simulated the ECM where the geyser thermostat was adjusted from 65 to 55 degrees Celsius 

were modified by inserting a gain block in the warm water demand signal line to the post ECM 

geyser model.  This gain block was set to reduce the warm water demand by 10 percent.  This 

reduction represents the positive impact which low flow shower roses are claimed to have on 

reducing warm water demand. 

5.4.4.1 Demand impact tables 

The three characteristic housing densities’ hot water consumption profiles were used in the 

simulated demand impacts that resulted from the retrofitting of low flow shower roses.  The pre- 

and post-ECM simulated demands are recorded in Tables 5.4.7 to 5.4.9. 

Table 5.4.7: Electrical demand impact that resulted from the installation of low flow shower roses 

with a high-density housing characteristic hot water consumption profile for the simulation period 

2001 to 2009. 

Demand impact [kWh] 

Model 2001 2002 2003 2004 2005 2006 2007 2008 2009 

Pre-ECM 3679 3689 3682 3666 3663 3669 3664 3660 3641 

Post ECM 3386 3393 3391 3373 3372 3377 3372 3370 3350 

Difference 
between 

293 296 291 293 291 292 292 290 291 

 

Table 5.4.8: Electrical demand impact that resulted from the installation of low flow shower roses 

with a medium-density housing characteristic hot water consumption profile for the simulation 

period 2001 to 2009. 

Demand impact [kWh] 

Model 2001 2002 2003 2004 2005 2006 2007 2008 2009 

Pre-ECM 5051 5079 5047 5057 5063 5063 5044 5053 5049 

Post ECM 4621 4647 4617 4624 4631 4630 4614 4622 4617 

Difference 
between 

430 432 430 433 432 433 430 431 432 
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Table 5.4.9: Electrical demand impact that resulted from the installation of low flow shower roses 

with a low-density housing characteristic hot water consumption profile for 2001 to 2009. 

Demand impact [kWh] 

Model 2001 2002 2003 2004 2005 2006 2007 2008 2009 

Pre-ECM 6136 6122 6143 6125 6150 6140 6136 6134 6106 

Post ECM 5598 5585 5604 5587 5609 5601 5598 5593 5570 

Difference 
between 

538 537 539 538 541 539 538 541 536 

 

From the demand impact tables it is noted that the difference between the calculated demand of 

the pre- and post-ECM simulations remained virtually constant across the years of evaluation for 

each characteristic hot water consumption profile.  The percentage demand impact for each 

characteristic hot water consumption profile was similar, at an average of 8.5 percent. 

5.4.4.2 Probability density plots of ambient temperature versus time of day for on times 

The image plots of the PDFs for the pre- and post-ECM simulated data are depicted in Figures 

5.4.20 and 5.4.21, respectively for the summer week and weekend days. 

 

Figure 5.4.20: Probability density plots of the pre- and post-ECM PDFs of the ambient temperature 

versus time of day the geyser was on during the summer weekdays with a medium-density housing 

characteristic hot water consumption profile from 2001 to 2009. 
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Figure 5.4.21: Probability density plots of the pre- and post-ECM PDFs of the ambient temperature 

versus time of day the geyser was on during the summer weekend days with a medium-density 

housing characteristic hot water consumption profile from 2001 to 2009. 

The following is evident when Figures 5.4.20 and 5.4.21 are compared: 

• The maximum of the weekend modes are less than that of the weekday modes, which can 

be ascribe to the fact that the hot water demand during the weekend day was distributed 

more evenly over the given time period. 

• From the weekday and weekend day PDF plots it is evident that the ECM had reduced 

the overall demand density. 

• The peak densities of the weekend PDFs occurred approximately an hour later when 

compared to the weekdays.  This pattern in the demand results was influenced by the hot 

water consumption patterns. 

The image plots of the PDFs of the pre- and post-ECM simulated data are depicted in Figures 

5.4.18 and 5.4.19, respectively for the week and weekend days during the winter months. 
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Figure 5.4.22: Probability density plots of the pre- and post-ECM PDFs of the ambient temperature 

versus time of day the geyser was on during the winter weekdays with a medium-density housing 

characteristic hot water consumption profile from 2001 to 2009. 

 

Figure 5.4.23: Probability density plots of the pre- and post-ECM PDFs of the ambient temperature 

versus time of day the geyser was on during the winter weekend days with a medium-density 

housing characteristic hot water consumption profile from 2001 to 2009. 
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When Figures 5.4.18 and 5.4.19 are compared it was noticed that demand peak densities are 

lower during the weekend days and occurred approximately an hour later compared to the 

weekdays.  For both the week and weekend days of the pre- and post-ECM simulations, the 

demand density was shifted later in time as a result of the ECM. 

When the summer and winter PDF plots are compared it can seen that the evening density mode 

occurred approximately an hour earlier for the winter months. 

5.4.5 Modification of the geyser inlet water temperature profile 

In the final ECM that was simulated, the geyser inlet water temperature profile was modified.  

This was a hypothetical scenario which endeavoured to investigate the demand impact a 

modified geyser inlet water temperature would have.  The parallel model used in the first ECM 

was modified to take a fourth input variable which was the post ECM geyser model’s inlet water 

temperature.  The upper set points of the thermostats of both models were set at 65 degrees 

Celsius.  A description of how the inlet water profile was generated is given in section 4.5.5. 

5.4.5.1 Demand impact tables 

The three characteristic housing densities’ hot water consumption profiles were used in the 

simulated demand impacts as a result of the modified geyser inlet water temperature profile.  The 

simulated demands of the pre- and post-ECM geyser models are recorded in Tables 5.4.10 to 

5.4.12 for the nine year simulation period. 

Table 5.4.10: Electrical demand impact that resulted from a modified geyser inlet water 

temperature profile with a high-density housing characteristic hot water consumption for the 

simulation period 2001 to 2009. 

Demand impact [kWh] 

Model 2001 2002 2003 2004 2005 2006 2007 2008 2009 

Pre-ECM 3679 3689 3682 3666 3663 3669 3664 3660 3641 

Post ECM 3505 3513 3508 3495 3491 3496 3492 3489 3470 

Difference 
between 

174 176 174 171 172 173 172 171 171 
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Table 5.4.11: Electrical demand impact that resulted from a modified geyser inlet water 

temperature profile with a medium-density housing characteristic hot water consumption for the 

simulation period 2001 to 2009. 

Demand impact [kWh] 

Model 2001 2002 2003 2004 2005 2006 2007 2008 2009 

Pre-ECM 5051 5079 5047 5057 5063 5063 5044 5053 5049 

Post ECM 4803 4829 4800 4806 4814 4812 4795 4806 4800 

Difference 
between 

248 250 247 251 249 251 249 247 249 

 

Table 5.4.12: Electrical demand impact that resulted from a modified geyser inlet water 

temperature profile with a low-density housing characteristic hot water consumption for the 

simulation period 2001 to 2009. 

Demand impact [kWh] 

Model 2001 2002 2003 2004 2005 2006 2007 2008 2009 

Pre-ECM 6136 6122 6143 6125 6150 6140 6136 6134 6106 

Post ECM 5821 5807 5829 5809 5832 5826 5821 5818 5792 

Difference 
between 

315 315 314 316 318 314 315 316 314 

 

From the demand impact tables it is noted that the difference between the calculated demand of 

the pre- and post-ECM simulations remained virtually constant across the years of evaluation for 

each characteristic hot water consumption profile.  The percentage demand impact for each 

characteristic hot water consumption profile was similar, at an average of 5 percent. 

5.4.5.2 Probability density plots of ambient temperature versus time of day for geyser 

on times 

The image plots of the PDFs for the pre- and post-ECMs’ simulated data are depicted in Figures 

5.4.24 and 5.4.25, respectively for the week and weekend days during the summer months. 
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Figure 5.4.24: Probability density plots of the pre- and post-ECM PDFs of the ambient temperature 

versus time of day the geyser was on during the summer weekdays with a medium-density housing 

characteristic hot water consumption profile from 2001 to 2009. 

 

Figure 5.4.25: Probability density plots of the pre- and post-ECM PDFs of the ambient temperature 

versus time of day the geyser was on during the summer weekend days with a medium-density 

housing characteristic hot water consumption profile from 2001 to 2009. 
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The following is evident when Figures 5.4.24 and 5.4.25 are compared: 

• The maximum of the weekend modes is less than that of the weekday modes, which can 

be ascribed to the fact that the hot water demand during the weekend day was distributed 

more evenly over the given time period. 

• From the weekday PDF plots it is evident that the ECM had reduced the overall demand 

density. 

• The peak densities of the weekend PDFs occurred approximately an hour later compared 

to the weekdays.  This pattern in the demand results was influenced by the hot water 

consumption patterns. 

The image plots of the PDFs for the pre- and post-ECMs’ simulated data are depicted in Figures 

5.4.26 and 5.4.27, respectively for the week and weekend days during the winter months. 

 

Figure 5.4.26: Probability density plots of the pre- and post-ECM PDFs of the ambient temperature 

versus time of day the geyser was on during the winter weekdays with a medium-density housing 

characteristic hot water consumption profile from 2001 to 2009. 
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Figure 5.4.27: Probability density plots of the pre- and post-ECM PDFs of the ambient temperature 

versus time of day the geyser was on during the winter weekend days with a medium-density 

housing characteristic hot water consumption profile from 2001 to 2009. 

The following is evident when Figures 5.4.26 and 5.4.27 are compared: 

• The demand peak densities are lower during the weekend days and occurred 

approximately an hour later compared to the weekdays. 

• For both the week and weekend days of the pre- and post-ECM simulations, the demand 

density was shifted later in time as a result of the ECM. 

When the summer and winter PDF plots are compared it can seen that the evening density mode 

occurred approximately an hour earlier for the winter months.  For both seasonal density plots 

the probability density was larger between the morning and evening mode during the weekend 

days. 

5.4.6 Summary of conclusions drawn from simulation results 

A brief summary of the conclusions attained from the three ECM simulations are presented in 

the next subsections. 

5.4.6.1 Conclusions drawn from the demand impact tables 

The conclusions drawn from the demand impact tables are summarised as follows: 
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• These results show that the median of the ambient temperature for an evaluation period 

has a strong correlation with the overall electrical demand of the geyser that results from 

the no load losses.  This result is consistent with the fact that the lower the ambient 

temperature experienced, the greater the resultant standing losses would be because of the 

greater temperature difference between the ambient air and the water within the geyser. 

• From the demand impact tables it was noted that the difference between the calculated 

demand of the pre- and post-ECM remained virtually constant across the years of 

evaluation for each characteristic hot water consumption profile for each of the ECMs. 

• In the first simulated ECM where the geyser thermostat was adjusted from 65 to 55 

degrees Celsius and a zero hot water demand profile was set, an average demand saving 

of 170 kWh was realised annually.  When the three characteristic housing densities’ hot 

water consumption profiles were applied to the models, the annual average demand 

saving was 167 kWh. 

• In the second ECM, where the low flow shower roses were retrofitted, an average 

demand impact of 8.5 percent of pre-ECM demand profile was realised for each of the 

three characteristic housing densities’ hot water consumption profiles. 

• In the third ECM, where the inlet water temperature was modified, an average demand 

impact of 5 percent of pre-ECM demand profile was realised for each of the three 

characteristic housing densities’ hot water consumption profiles. 

5.4.6.2 Conclusions drawn from the probability density estimation of the recovery times 

of the geyser 

The conclusions drawn from the probability density estimation of the recovery times of the 

geyser are summarised as follows: 

• The recovery time of the geyser is directly related to its electrical demand. 

• The probability density estimates of the recovery time as a result of the standing losses of 

the geyser shows it is inversely proportional to ambient temperature. 

• The recovery time of the geyser is dependent on the volume of water inside the geyser 

and the kilo watt rating of the geyser element.  The high-density estimates of the geyser 

recovery times over a small temperature ranges are characteristic of a geyser with no hot 

water demand 
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• Lowering the set point of the geyser thermostat shorten the recovery time of the geyser. 

• The density estimates of the geyser recovery times during the summer months have three 

distinct modes. 

• During the winter months the modes of the summer month simulation period have 

reduced to a single mode 

• It is interesting to note that the peak density increased from the weekday to the weekend 

day density estimates during the winter months.  This trend is directly opposite to the 

trend observed in the summer months.  This could be explained by the reduce peak hot 

water consumption rates during the weekend days which results in shorter geyser 

recovery times. 

5.4.6.3 Conclusions drawn from the image plots of the PDFs of the demand data 

The conclusions drawn from the image plots of the PDFs of the demand data are summarised as 

follows: 

• The maximum of the weekend modes was less than that of the weekday modes, which 

can be ascribed to the fact that the hot water demand during the weekend day was 

distributed more evenly over the given time period. 

• From the weekday PDF plots it was evident that the ECMs had reduced the overall 

demand density. 

• The peak densities of the weekend PDFs occurred approximately an hour later when 

compared to the weekdays.  This pattern in the demand results was influenced by the hot 

water consumption patterns. 

• The demand peak densities were lower during the weekend days and occurred 

approximately an hour later compared to the weekdays.  For both the week and weekend 

days of the pre and post periods, the demand density was postponed a result of the ECMs. 

5.5 Demand probability 

The probability that the geyser will be on (demand at 3kW) can be calculated using equation 

5.5.1 and the PDFs of the geyser on times, for a particular ambient temperature, time of day, day 

type and season of the year.  The probability of the recovery time interval (indication of energy 

used in kWh) can also be calculated by using equation 5.5.1 and the PDFs of the geyser recovery 
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times for the same specified temperature and time interval.  These calculations can be done for a 

pre- and post-ECM simulation.  These calculated results presents the probability of the demand 

impact at a specified period of time and at a particular ambient temperature. 

( ) ( )|
b

t

a

P a X b f x T dx< < = ∫   for all a b<           5.5.1 

where 

( )f x   denotes the probability density function at a specified ambient temperature 

   and time 

( )P a X b< <  denotes the probability of the variable X  being in the range from a to b. 
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6.1 Achievements of set objectives 

The purpose of energy management is to ensure the sustainability of energy resources and 

assisting in ensuring the sustainability of the natural environment.  The evaluation of the 

efficiency of energy consumers is at the heart of energy management.  The DSM program drives 

the efficient use of electrical energy through ECMs.  M&V plays an important role in the 

planning and evaluation of ECMs.  The IPMVP was introduced as the foremost international 

protocol for M&V.  In the author’s opinion, the IPMVP fall short in its recommended approach 

to the statistical analysis of demand and demand impact that results from the implementation of 

an ECM.  Further development is needed in this section of M&V and the IPMVP.  Different 

approaches to statistical inference were investigated so that the most appropriate approach could 

be applied to the M&V process.  The purpose of the statistical inference was to substantiate, with 

confidence levels, the energy impact claims provided by the M&V process as a result of an 

ECM. 

The literature review revealed the importance of long and short-term load forecasting, in that 

load forecasting was not only applicable to savings but also to the forecasting of aggregated 

electrical load from a group to a network level of electrical consumers.  Reference was made to a 

particularly relevant piece of work that was done on bivariate kernel density estimation to 

conduct short-term load forecasting.  Whilst studying the methods advocated by this short-term 

load forecasting work, it became evident that, in the case of complex load systems, the 

relationship between load demand and the independent controlling variables needs to be 

established.  The author deduced that the statistical methods used in load forecasting could be 

used in the evaluation of demand impacts that result from ECMs.  To this end, the primary 

objective was set to develop a methodology in which a complex electrical load could be 

modelled both mathematically and statistically in order to determine the demand impact of an 

implemented ECM and the relationship of the demand impact to its controlling variables.  A 

conventional geyser was chosen as the modelling environment to assist in the development of the 

methodology.  The choice was based on the knowledge that hot water heating contributes 

significantly to the total domestic electrical demand.  Many of the DSM initiatives have targeted 

Chapter 6 Conclusion
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hot water heating and hot water heating technologies in an effort to manage and reduce domestic 

electrical load. 

Through the literature review documented in Chapter two, comprehensive background 

knowledge was gained on hot water heating technologies, domestic hot water consumption 

patterns and the prediction of geyser inlet water temperature.  This knowledge was used to 

develop the geyser model and the MATLAB code for the simulation environment. 

To design an effective and efficient DSM intervention, a comprehensive understanding is 

required of how the independent variables of the electrical consumer are related to its dependent 

variables.  This realisation resulted in the statistical analysis of the input and output variables to 

the geyser model in Chapters four and five.  Parametric box plots and non-parametric univariate 

density estimation methods were used to analyse input variables; ambient temperature, hot water 

demand and inlet water temperature profiles to the geyser model.  This analysis gave a better 

understanding of the statistical nature of the input variables.  The bivariate kernel density 

estimation technique was used to produce the demand PDFs.  Kernel density estimation is a 

modern technique used in probability density estimation and its strengths and weaknesses were 

discussed.  The importance of, and methods used to determine bandwidth selection for kernel 

density estimation, were highlighted.  The PDFs were used to determine the confidence factors 

associated with the predicted impacts of an ECM.  The PDFs were also used to evaluate the 

relationship between the simulated demand and its controlling variable, ambient temperature. 

The effects of input data manipulation to the geyser model were also investigated.  Data 

manipulation in this respect was limited to the altering of the input variable’s sampling period 

through processes of averaging and linear interpolation.  Simulations in which input variables’ 

sampling periods had been manipulated, revealed very little difference in the simulated energy 

demand. 

The sensitivity of the geyser model towards the mean and variance of the ambient temperature 

was investigated.  It was concluded that the method followed to determine the sensitivity was 

appropriate; however, the results would require verification with simulations that made use of 

recorded data sets for all the input variables and not just ambient temperature.  The hot water 

demand and geyser inlet water temperature were generated for the simulations of the geyser 
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model since appropriate input simulation data was not available for the desired simulation 

period.  The author believes that the true extent of the dependency of electrical demand on 

ambient temperature will only be realised when a data set becomes available where all three 

input variables to the geyser model have been recorded in a predetermined environment. 

Finally, two geyser models were run in parallel: the one model simulated the pre-ECM demand 

and the other model simulated the demand of the post ECM period.  This approach effectively 

simulated the demand impact that would result after the implementation of a geyser ECM.  Three 

geyser ECMs were simulated: 

• adjustment of a geyser thermostat to 10 degrees below the factory setting; 

• retrofitting of low flow shower roses in order to reduce the hot water demand profile, and 

• adjustment of the inlet water temperature profile to a geyser. 

The ECM where low flow shower roses were installed proved to be the most effective.  From 

this it was concluded that the hot water demand profile has the greatest influence on the electrical 

demand of the geyser.  However, the Meyer et al. study concluded through evidence given in the 

summer and winter hot water demand profile that ambient temperature had a significant 

influence on hot water demand.  The true dependency of electrical demand on ambient 

temperature will be realised when a data set of recorded input variables are used in this 

methodology that has been developed.  The automatic bandwidth selection method that was used 

during the kernel density estimation of the geyser demand provided realistic results.  A second 

source of bandwidth selection was investigated and a bivariate automatic bandwidth selection 

function was sourced from Mathworks [45].  Very little information was available regarding the 

principle that was used to develop the bandwidth selection for this function.  The author of the 

function claims that it is most accurate when Gaussian distributions are estimated.  The function 

uses recursion to estimate the diagonals of the bandwidth matrix.  The density estimations in 

Chapter five made use of large data sample counts which caused a programmatic error in the 

form of a stack overflow when running the code in MATLAB to estimate the bandwidths.  This 

function did therefore not reliably compare with the bandwidth selection function utilised in this 

thesis. 
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6.2 Recommendations and future work 

Further research is required to find the most appropriate approach to establishing automatic 

bandwidth selection for the methodology developed in this thesis.  The technique developed by 

Doung to estimate the off-diagonal elements of the bandwidth matrix should be further 

investigated [25].  This could prove to be particularly important in determining the dependency 

between the dependent and independent variables.  An investigation regarding the influence 

which bandwidth selection has on the demand impact results would also be prudent. 

The importance of acquiring recorded data sets cannot be stressed enough.  Data is an essential 

component for the effective evaluation of ECMs and investment in data collection is much 

needed. 

Future development based on this work could include the design of a graphical user interface for 

the software that was developed, to enhance the ease with which an ECM can be evaluated. 

With the present level of development of the methodology, the pre- and post-ECM demand 

profiles can be compared with their respective confidence levels.  A different approach may 

prove to be feasible in that the kernel function of the post ECM could be subtracted from the 

kernel function of the pre-ECM which in theory would result in a kernel function of the demand 

impact.  The subtraction of the two bivariate kernel functions could be done by the multiplication 

of the Fourier transforms of the pre-ECM kernel function and the negative of the post ECM 

kernel function.  An alternative method to this would be the multiplication of the characteristic 

functions of the kernel functions.  The resultant function of either of these methods could then be 

inverse Fourier transformed to give the savings kernel function which could be used to generate 

the demand impact PDFs. 

By employing the methodology presented in this thesis on the load modelling of a complex load 

system and the statistical analysis of its input/output variables, one would gain a far greater 

insight into the load system’s relationship between the dependent and independent variables.  It 

is recommended that this methodology be used to evaluated and develop future ECMs for 

reducing and moving load demand in load profiles.  The methodology developed in this thesis is 

of particular importance for assessing the savings impacts of heat pump and solar water heater 

technologies.  
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Table A1: Summary of IPMVP option selection table part I. [5]. 

 

  

 Appendix A – M&V tables 
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Table A2: Summary of IPMVP option selection table part II. [5] 
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Table A3: Overview of M&V options A, B, C and D. [12] 
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Table A4: M&V system approach summary table I. [9] 
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Table A5: M&V system approach summary table II. [9] 
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Main file 

%////////////////////////////////////////////////////////////////////////// 
%////////////////////////////////////////////////////////////////////////// 
%Main script file  

  
%////////////////////////////////////////////////////////////////////////// 
clear all 
close all 
clc 
format long 
memory 
%////////////////////////////////////////////////////////////////////////// 
%Import of Ambient Temperature data 
tic 

  
inMat=txt2mat('Capetown4.txt');     %Import of temperature data 

  
memory 
toc 
%% 
%Formation of Time Temperature matrix 
%Time stamp is attached to each temperature value 
tic 

  
Years=2001:2009;        %range of years to simulate 
numberOfY=length(Years); 
firstDataYear=2001;     %year of first data sample 
firstDataMonth=1;       %month of first data sample 
firstDataDay=1;         %day of first data sample 
unixStartDate=datenum(firstDataYear,firstDataMonth,firstDataDay); 
unixEndDate=datenum(firstDataYear+numberOfY,firstDataMonth,firstDataDay); 
dayOfMonthColom=1; 
firstDataHourColom=2; 
%Function call to generate temperature matrix 

  
[minTemp, hHourTemp,]=dataMatrix(inMat, unixStartDate, unixEndDate,... 
    firstDataYear, firstDataMonth, firstDataHourColom, dayOfMonthColom); 

  
memory 
toc 
%% 
%Geyser inlet water temperature data generation 
tic 
%Function call to generate inlet water temperature 

  
[ Twmin Twhh ] = InWaterTemp( hHourTemp ); 

  
memory 
toc 

 Appendix B – MATLAB code
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%% 

%Hot water consumption generator from shower periods 
tic 
%Function call to generate hot water consumption 

  
[ minConMatWd, minConMatWe, allMinConMat, hHourConMatWd, hHourConMatWe, ... 
    allhHourConMat] = HotWgen(Years, firstDataMonth, numberOfY); 

  
clear Years dayOfMonthColom firstDataHourColom firstDataMonth...  
    firstDataYear numberOfY; 

  
memory 
toc  
%% 
%Hot water consumption generator from collected average data 
tic 
%Function call to generate hot water consumption 

  
[ hHourConMatWd, hHourConMatWe, allhHourConMat] = ... 
    HotWgenData2(Years, firstDataMonth, numberOfY); 

  
clear Years dayOfMonthColom firstDataHourColom firstDataMonth... 
    firstDataYear numberOfY; 

  
memory 
toc 
%% 
%Simulation of half hour hot water consumption data for half hour 
%electricity demand of baseline geyser model 
tic 
%Function call for time series generation of input variables 
[ var, var2, var3 ] = hhGyserMod( allhHourConMat, hHourTemp, Twhh,... 
    unixStartDate );         

  
simTime=60*30*size(allhHourConMat,1);    %simulation time 
EI=208000000;                            %initial energy in geyser 

  
%Call for simulation 
sim('Geiser_model_65C');                 %per half hour simulation 

  
%Demand matrix formation 
Demand=Elec.signals.values; 
elecDemandHHourMat=cat(2,allhHourConMat(1:end,1),Demand(1:end-1)); 

  
clear  var var2 var3 simTime EI; 

  
memory 
toc 
%% 
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%Simulation of per minute hot water consumption data 
%for half hour electricity demand of baseline geyser model 
tic 

  
%Data sampling period adjustment 
allhHourConMat=cat(1,allhHourConMat(:,:),... 
    [unixStartDate+(datenum(0,0,0,0,30,0)*size(allhHourConMat,1))... 
    allhHourConMat(1,2)]); 
allMinConMat=cat(2,(allhHourConMat(1,1):datenum(0,0,0,0,1,0):... 
    allhHourConMat(size(allhHourConMat,1),1))',... 
    (jcbresample(1:1/30:size(allhHourConMat,1),... 
    allhHourConMat(:,2)',1:1:size(allhHourConMat,1))));% 
allMinConMat=allMinConMat(1:end-1,1:2); 

  
%Function call for time series generation of input variables 
[ var, var2,var3 ] = minGyserMod( allMinConMat, minTemp, Twmin,... 
    unixStartDate); 

  

  
simTime=60*size(allMinConMat,1);          %simulation time 
EI=208000000;                             %initial energy in geyser 

  
%Call for simulation 
sim('Geiser_model_65C');                  %per min simulation 

  
%Demand matrix formation 
Demand=Elec.signals.values; 
elecDemandMinMat=cat(2,allhHourConMat(1:end,1),Demand(:)); 

  
clear Elec var var2 var3 simTime EI; 

  
memory 
toc 
%% 
%Parallel model run for first ECM evaluation 
%Thermostat adjustment 
tic 

  
%Function call for time series generation of input variables 
[ var, var2, var3 ] = hhGyserMod( allhHourConMat, hHourTemp, Twhh,... 
    unixStartDate ); 

  
simTime=60*30*size(allhHourConMat,1);    %simulation time 
EI=208000000;                            %initial energy in geyser 

  
%Call for simulation 
sim('Geiser_model_55Cvs65C_NoBla');      %per half hour simulation 

  
%Demand matrix formation 
DemandBas=ElecDemBase.signals.values; 
DemandRp=ElecDemRp.signals.values; 
elecDemandHHourMat=cat(2,allhHourConMat(1:end,1),DemandBas(1:end-1),... 
    DemandRp(1:end-1)); 
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clear  var var2 var3 simTime EI; 

  
memory 
toc 
%% 
%Parallel model run for second ECM evaluation 
%Low flow shower rose 
tic 

  
%Function call for time series generation of input variables 
[ var, var2, var3 ] = hhGyserMod( allhHourConMat, hHourTemp, Twhh,... 
    unixStartDate ); 

  
simTime=60*30*size(allhHourConMat,1);    %simulation time 
EI=208000000;                            %initial energy in geyser 

  
%Call for simulation 
sim('Geiser_model_65C_lowFlow');         %per half hour simulation 

  
%Demand matrix formation 
DemandBas=ElecDemBase.signals.values; 
DemandRp=ElecDemRp.signals.values; 
elecDemandHHourMat=cat(2,allhHourConMat(1:end,1),DemandBas(1:end-1),... 
    DemandRp(1:end-1)); 

  
clear  var var2 var3 simTime EI; 

  
memory 
toc 
%% 
%Parallel model run for second ECM evaluation 
%Modified geyser inlet water temperature 
tic 

  
%Function call for time series generation of input variables 
[ var, var2, var3, var4 ] = hhGyserModInW( allhHourConMat, hHourTemp,... 
    TwhhBas, TwhhRp, unixStartDate ); 

  
simTime=60*30*size(allhHourConMat,1);    %simulation time 
EI=208000000;                            %initial energy in geyser 

  
%Call for simulation 
sim('Geiser_model_varInletTemp_65C_NoBla');      %per half hour simulation 

  
%Demand matrix formation 
DemandBas=ElecDemBase.signals.values; 
DemandRp=ElecDemRp.signals.values; 
elecDemandHHourMat=cat(2,allhHourConMat(1:end,1),DemandBas(1:end-1),... 
    DemandRp(1:end-1)); 

  
clear  var var2 var3 var4 simTime EI; 
memory 

toc 
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%% 
%Sampling period statistics calculations for Chapter 5 from simulated  
%demand data 

  
DemandComp=[((Demand1)*1.5) ((Demand2)*1.5)];     %for a 3kW geyser element 
AnnualDemand=sum(DemandComp)       
correlationCoefficient=corrcoef(DemandComp(:,1),DemandComp(:,2)) 
Covariance=cov(DemandComp(:,1),DemandComp(:,2)) 
Table=[AnnualDemand(1,1) AnnualDemand(1,2) correlationCoefficient(1,2)... 
    Covariance(1,1) Covariance(1,2) Covariance(2,1) Covariance(2,2)]   

  
clear AnnualDemand Covariance Demand1 Demand2 DemandComp... 
    correlationCoefficient 
%% 
%data search engine for half hour data 
tic 

  
%Data window selection 
yArr=2001:2009;             %selected years 

  
mnArr=[11 12 1 2 3 4];      %selected months 

  
dWeekArr=[1 2 4 5 6 7 8];   %selected day of week 

  
hPerArr=1:48;               %selected half hour periods (1st period 00h00) 

  
%Function call for selected data 
[ unixNumHH ] = unixSearchNumHH( yArr, mnArr, dWeekArr, hPerArr ); 

  
clear yArr mnArr dWeekArr hPerArr;  

  
memory 
toc 
%% 
%Search for selected temperature data   
tic 

  
%Function call for selected temperature data 
[ selTempData ] = selectedData( hHourTemp, unixNumHH ); 

  
%Analysis and boxplotting of temperature data 
temp1=reshape(selTempData(:,2),31,[]); 
boxplot(temp1); 

  
memory 
toc 

  
%% 
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%Search for selected electrical demand data 
tic 

  
%Function call for selected demand data 
[ selDemData ] = selectedData( elecDemandHHourMat, unixNumHH); 

  
memory 
toc 
%% 
%Search for hot water consumption data 
tic 

  
%Function call for selected hot water consumption data 
[ selConData ] = selectedData( allhHourConMat, unixNumHH ); 

  
% Analysis of hot water consumption data 
seasonalCon=((sum((reshape(selConData(:,2)',48,[])),2))/... 
    (size(selConData,1)/48)).*(60*60); 

  
%Function call for figure generation 
configure1(seasonalCon); 

  
%distribution fitting 
[~,~,d]=find(selConData(:,2)); 

  
memory 
toc 

  
%% 
%Function call for plotting of the selected consumption data 
plotConData=reshape(selConData(:,2)',48,[]); 

  
%% 
%Function call for plotting of the selected temperature data 
plotTempData=reshape(selTempData(:,2)',48,[]); 

  
%% 
%Function call for plotting of the selected normalized demand data 
plotDemandData=reshape(normDemData(1:end)',48,[]); 

  
%% 
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%Chapter 5 information generating cells 
tic 

  
%Table generating data of the base and reporting periods of 
%yearly electrical demand in kWh 
Data=elecDemandHHourMat; 

  
%Data window selection 
yArr=2001:2009;             %selected years 

  
mnArr=[11 12 1 2 3 4];      %selected months 

  
dWeekArr=[1 2 4 5 6 7 8];   %selected day of week 

  
hPerArr=1:48;               %selected half hour periods (1st period 00h00) 

  
%Function call 
[selDataBas,selDataRp] = YearlyDataCollection(Data,yearArr,monthArr,... 
    dayArr,hhArr); 

  
%Table population Chapter 5 
sumBas=round((sum(selDataBas)).*(1.5)); 
sumRp=round((sum(selDataRp)).*(1.5)); 
sav=[sumBas;sumRp;(sumBas-sumRp)]; 

  
memory 
toc 
%% 
%plotting of the base and reporting periods of yearly temperature 
tic 
Data=hHourTemp; 

  
%Data window selection 
yArr=2001:2009;             %selected years 

  
mnArr=[11 12 1 2 3 4];      %selected months 

  
dWeekArr=[1 2 4 5 6 7 8];   %selected day of week 

  
hPerArr=1:48;               %selected half hour periods (1st period 00h00) 

  
%Function call 
[selDataTemp] = YearlyDataCollectionTemp(Data,yearArr,monthArr,dayArr... 
    ,hhArr); 

  
%Statistics 
medianTemp=median(selDataTemp); 
varTemp=var(selDataTemp); 

  
clear yArr mnArr dWeekArr hPerArr; 

  
memory 
toc 
%% 
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% Image plotting of the selected demand data for the base and reporting 
% periods (a selected year) 
tic 

  
%Data window selection 
yArr=2001:2009;             %selected years 

  
mnArr=[11 12 1 2 3 4];      %selected months 

  
dWeekArr=[1 2 4 5 6 7 8];   %selected day of week 

  
hPerArr=1:48;               %selected half hour periods (1st period 00h00) 

  
%Function call for date time stamps 
[ unixNumHH ] = unixSearchNumHH( yArr, mnArr, dWeekArr, hPerArr ); 

  
%Function call for search for electrical demand data 
[ selDemData ] = selectedData( elecDemandHHourMat, unixNumHH); 

  
plotDemandDataBas=reshape(selDemData(1:end,2)',48,[]); 
plotDemandDataRp=reshape(selDemData(1:end,3)',48,[]); 

  
%Function call for plotting 
demandDataImage(plotDemandDataBas); 
demandDataImage(plotDemandDataRp); 

  
clear yArr mnArr dWeekArr hPerArr; 

  
memory 
toc 
%% 
%Histograms plots for on times of the geyser base and reporting periods  
distDemDataBas=elecDemandHHourMat(find((elecDemandHHourMat(:,2)) > 0),... 
    [1 2]); 
distDemDataRp=elecDemandHHourMat(find((elecDemandHHourMat(:,3)) > 0),... 
    [1 3]); 
%Function call for ploting 
histogramOnper(distDemDataBas(:,2)); 
histogramOnper(distDemDataRp(:,2)); 

  
%% 
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%% 
%////////////////////////////////////////////////////////////////////////// 
%Geyser recovery periods 
%////////////////////////////////////////////////////////////////////////// 
%Window selection 
tic 

  
[ elecDemandHHourPer ]=hhPeriod ( elecDemandHHourMat ); 
[ PreECMrecTime ] = geyserRecover( elecDemandHHourPer(:,[1 2 4])); 
[ PostECMrecTime ] = geyserRecover( elecDemandHHourPer(:,[1 3 4])); 

  
toc 
%% 
%Geyser recovery periods 
tic 

  
%applicable year array 
yArr=2001:2009; 

  
%start month in year of array 
mnArr=[1 2 3 4 5 6 7 8 9 10 11 12]; 

  
%day of week selection 
dWeekArr=[1 2 3 4 5 6 7 8 9]; 

  
%half hour period of the day 
hPerArr=1:48;                   %1st period is at 0h00 

  
[ unixNumHH ] = unixSearchNumHH( yArr, mnArr, dWeekArr, hPerArr ); 

  

  
clear yArr mnArr dWeekArr hPerArr;  
%Search for temperature data 
[ selTempData ] = selectedData( hHourTemp, unixNumHH ); 

  
%Search for recovery data 
[ PreRecData ] = selectedData( PreECMrecTime, unixNumHH ); 
[ PostRecData ] = selectedData( PostECMrecTime, unixNumHH ); 
selRecData=[PreRecData(:,1) PreRecData(:,2) PostRecData(:,2) 

PreRecData(:,4)]; 

  
toc 

  
%% 
%geyser recovery periods 
%Elimination of zero recovery times 
tic 

  
%selection Criteria from data 
%geyser on selection function call 
clear bandwidth PDFTempData PDFDemData selPDFbas selPDFrp 

  
model=2;    %Model =2: base line, Model =3: reporting period 
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[ PDFTempData, PDFRecData ] = recoverData( selTempData, selRecData ,model );  

  
%Smoothing parameters 

  
%Function call for bandwidth selection pre ECM 
% [bandwidth]=kde2d([PDFTempData(:,2) PDFRecData(:,2)]); 
% 'preECM bandwidth' 
% ht=bandwidth(1,1) 
% hd=bandwidth(1,2) 

  
c=corrcoef(PDFRecData(:,2),PDFTempData(:,2)) 
rho=c(2); 
hd = std(PDFRecData(:,2))*(1-(rho)^2)^(5/12)*((1+((rho)^2)/2)^(-

1/6))*(size(PDFRecData,1))^(-1/6) 
ht = std(PDFTempData(:,2))*(1-(rho)^2)^(5/12)*((1+((rho)^2)/2)^(-

1/6))*(size(PDFRecData,1))^(-1/6) 

  
[ selPDFbas ] = KernelFunction2( PDFTempData(:,2),PDFRecData(:,2), hd, ht ); 

  
clear bandwidth PDFTempData PDFDemData 

  
PDF_figure4(selPDFbas);        %3D plot 

  
model=3;    %Model =2: base line, Model =3: reporting period 

  
[ PDFTempData, PDFRecData ] = recoverData (selTempData, selRecData, model ); 

  
%Function call for bandwidth selection post ECM 
% [bandwidth]=kde2d([PDFTempData(:,2) PDFRecData(:,2)]); 
% 'postECM bandwidth' 
% ht=bandwidth(1,1) 
% hd=bandwidth(1,2) 

  
c=corrcoef(PDFRecData(:,2),PDFTempData(:,2)) 
rho=c(2); 
hd = std(PDFRecData(:,2))*(1-(rho)^2)^(5/12)*((1+((rho)^2)/2)^(-

1/6))*(size(PDFRecData,1))^(-1/6) 
ht = std(PDFTempData(:,2))*(1-(rho)^2)^(5/12)*((1+((rho)^2)/2)^(-

1/6))*(size(PDFRecData,1))^(-1/6) 

  
[ selPDFrp ] = KernelFunction2( PDFTempData(:,2),PDFRecData(:,2), hd, ht ); 

  
PDF_figure4(selPDFrp);        %3D plot 

  
PDF_figure5(selPDFbas, selPDFrp);        %image plots 

  
clear bandwidth PDFTempData PDFDemData 
memory 
toc 
%% 
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%////////////////////////////////////////////////////////////////////////// 
%Geyser on time PDF generation 
%////////////////////////////////////////////////////////////////////////// 
tic 

  
[ preMinOnTime ] = geyserOnTime ( hHourTemp, elecDemandHHourMat(:,[1 2]) ); 
[ postMinOnTime ] = geyserOnTime ( hHourTemp, elecDemandHHourMat(:,[1 3]) ); 

  
memory 
toc 

  
%% 
%Geyser on time PDF generation 
tic 

  
%applicable year array 
yArr=2001:2009; 

  
%start month in year of array 
mnArr=[5 6 7 8 9 10]; 

  
%day of week selection 
dWeekArr=[1 2 4 5 6 7 8]; 

  
%half hour period of the day 
hPerArr=1:48; %This must be retained as default values 

  
[ unixNumHH ] = unixSearchNumHH( yArr, mnArr, dWeekArr, hPerArr ); 

  
clear yArr mnArr dWeekArr hPerArr;  

  
[ selPreMinOnMat ] = selectedData( preMinOnTime, unixNumHH ); 
[ selPostMinOnMat ] = selectedData( postMinOnTime, unixNumHH ); 

  
[ selPreMinDataArr ] = minArr ( selPreMinOnMat ); 
[ selPostMinDataArr ] = minArr ( selPostMinOnMat ); 

  
selTempData=selPreMinDataArr(:,1); 
selDemData=[selPreMinDataArr(:,1) selPreMinDataArr(:,2) 

selPostMinDataArr(:,2) selPreMinDataArr(:,3)]; 

  
clear elecDemandHHourMat hHourTemp postMinOnTime preMinOnTime 

selPostMinDataArr selPostMinOnMat... 
    selPreMinDataArr selPreMinOnMat unixNumHH 

  
memory 
toc 
%% 
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%PDF generation for temperature verses minute periods for geyser on 
tic 
%selection Criteria from data 
clear bandwidth PDFTempData PDFDemData 
model=2;    %Model =2: base line, Model =3: reporting period 

  
[ PDFTempData, PDFDemData ] = geyserOn (selTempData, selDemData, model );  

  
%Smoothing parameters 
%Function call for bandwidth selection pre ECM 
% [bandwidth]=kde2d([PDFTempData(:,1) PDFDemData(:,2)]); 
% 'preECM bandwidth' 
% ht=bandwidth(1,1) 
% hd=bandwidth(1,2) 

  
c=corrcoef(PDFDemData(:,2),PDFTempData(:,1)) 
rho=c(2); 
hd = std(PDFDemData(:,2))*(1-(rho)^2)^(5/12)*((1+((rho)^2)/2)^(-

1/6))*(size(PDFDemData,1))^(-1/6) 
ht = std(PDFTempData(:,1))*(1-(rho)^2)^(5/12)*((1+((rho)^2)/2)^(-

1/6))*(size(PDFDemData,1))^(-1/6) 

  
[ selPDFbas ] = KernelFunction1( PDFTempData(:,1),PDFDemData(:,2), hd, ht ); 

  
clear bandwidth PDFTempData PDFDemData %hd ht 

  
PDF_figure2(selPDFbas);        %3D plot 

  
model=3;    %Model =2: base line, Model =3: reporting period 

  
[ PDFTempData, PDFDemData ] = geyserOn (selTempData, selDemData, model ); 

  
%Function call for bandwidth selection post ECM 
% [bandwidth]=kde2d([PDFTempData(:,2) PDFDemData(:,2)]); 
% 'postECM bandwidth' 
% ht=bandwidth(1,1) 
% hd=bandwidth(1,2) 

  
c=corrcoef(PDFDemData(:,2),PDFTempData(:,1)) 
rho=c(2); 
hd = std(PDFDemData(:,2))*(1-(rho)^2)^(5/12)*((1+((rho)^2)/2)^(-

1/6))*(size(PDFDemData,1))^(-1/6) 
ht = std(PDFTempData(:,1))*(1-(rho)^2)^(5/12)*((1+((rho)^2)/2)^(-

1/6))*(size(PDFDemData,1))^(-1/6) 

  
[ selPDFrp ] = KernelFunction1( PDFTempData(:,1),PDFDemData(:,2), hd, ht ); 

   
PDF_figure2(selPDFrp);        %3D plot 

  
PDF_figure3(selPDFbas, selPDFrp);        %image plots 

  
%clear bandwidth PDFTempData PDFDemData 
memory 
toc 
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%////////////////////////////////////////////////////////////////////////// 
%////////////////////////////////////////////////////////////////////////// 

Functions 
 
function y = inpaintn(x,n,y0) 
%  
test4DCTNandIDCTN 

  
if nargin==0&&nargout==0, RunTheExample, return, end 

  
x = double(x); 
if nargin==1, n = 100; end 

  
sizx = size(x); 
d = ndims(x); 
Lambda = zeros(sizx); 
for i = 1:d 
    siz0 = ones(1,d); 
    siz0(i) = sizx(i); 
    Lambda = bsxfun(@plus,Lambda,... 
        cos(pi*(reshape(1:sizx(i),siz0)-1)/sizx(i))); 
end 
Lambda = -2*(d-Lambda); 

  
% Initial condition 
W = isfinite(x); 
if nargin==3 
    y = y0; 
    s0 = 0; 
else 
    if any(~W(:)) 
        [y,s0] = InitialGuess(x,isfinite(x)); 
    else 
        y = x; 
        return 
    end 
end 
x(~W) = 0; 

  
% Smoothness parameters: from high to negligible values 
s = logspace(s0,-3,n); 

  
RF = 2; % relaxation factor 
Lambda = Lambda.^2; 

  
h = waitbar(0,'Inpainting...'); 
for i = 1:n 
        Gamma = 1./(1+s(i)*Lambda); 
        y = RF*idctn(Gamma.*dctn(W.*(x-y)+y)) + (1-RF)*y; 
        waitbar(i/n,h) 
end 
close(h) 
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y(W) = x(W); 

  
end 

  
%% Test for DCTN and IDCTN 
function test4DCTNandIDCTN 
    if ~exist('dctn','file') 
        error('MATLAB:smoothn:MissingFunction',... 
            ['DCTN and IDCTN are required. Download DCTN <a 

href="matlab:web(''',... 
            'http://www.biomecardio.com/matlab/dctn.html'')">here</a>.']) 
    elseif ~exist('idctn','file') 
        error('MATLAB:smoothn:MissingFunction',... 
            ['DCTN and IDCTN are required. Download IDCTN <a 

href="matlab:web(''',... 
            'http://www.biomecardio.com/matlab/idctn.html'')">here</a>.']) 
    end 
end 

  
 

%% Initial Guess 
function [z,s0] = InitialGuess(y,I) 

  
if license('test','image_toolbox') 
    %-- nearest neighbor interpolation 
    [z,L] = bwdist(I); 
    z = y; 
    z(~I) = y(L(~I)); 
    s0 = 3; 
else 
    warning('MATLAB:inpaintn:InitialGuess',... 
        ['BWDIST (Image Processing Toolbox) does not exist. ',... 
        'The initial guess may not be optimal; additional',... 
        ' iterations can thus be required to ensure complete',... 
        ' convergence. Increase N value if necessary.']) 
    z = y; 
    z(~I) = mean(y(I)); 
    s0 = 6; 
end 

  
end 

 
function y = jcbresample(tnew,yori,tori) 
% jcbresample Changes the sampling rate of a signal. 
% y = jcbresamle(tin, yori,tori) resamples the sequence in vector yori at 
% time tori to samples at tnew 
u = 1; 

  
l = length(tnew); 
r  = size(yori,1); 
y = zeros(l,r(1)); 
yori = yori'; 

  
for i=1:l 
    while tnew(i)>tori(u) 
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        u = u+1; 
    end 
     if tnew(i) == tori(1) 
        y(1,:) = yori(1,:); 
     else 
        y(i,:) = ((yori(u,:)-yori(u-1,:))/(tori(u)-tori(u-1)))*(tnew(i)-

tori(u-1))+yori(u-1,:); 
     end 
end 

 
function [ var,var2,var3 ] = hhGyserMod(allhHourConMat,hHourTemp,Twhh,... 
    unixStartDate) 
%Variables preparation for gyser model simulation 
format long 

  
% Time series transformation 
hHourTempTs=timeseries(hHourTemp(1:end,2),1:1800:1800*(size(hHourTemp,1))); 

  
hHourTempTs.TimeInfo.StartDate=datestr(unixStartDate); 
hHourTempTs.TimeInfo.Units='seconds'; 
hHourTempTs.DataInfo.Unit='degrees celcius'; 

  
TwhhTs=timeseries(Twhh(1:end),1:1800:1800*(size(Twhh,1))); 

  
TwhhTs.TimeInfo.StartDate=datestr(unixStartDate); 
TwhhTs.TimeInfo.Units='seconds'; 
TwhhTs.DataInfo.Unit='degrees celcius'; 

   
%time series generation 
allhHourConMatTs=timeseries(allhHourConMat(1:end,2),1:1800:1800*(size(allhHou

rConMat,1))); 

  
allhHourConMatTs.TimeInfo.StartDate=datestr(unixStartDate); 
allhHourConMatTs.TimeInfo.Units='seconds'; 
allhHourConMatTs.DataInfo.Unit='liters per minute'; 

  
%Import structures to simulink for half hour input data simulation  
t1=allhHourConMatTs.Time(1:end); 
t2=hHourTempTs.Time(1:size(t1,1)); 
t3=TwhhTs.Time(1:size(t1,1)); 

  
var.time = t1; 
var2.time = t2; 
var3.time = t3; 

  
var.signals.values=allhHourConMatTs.Data(1:size(t1,1)); 
var2.signals.values=hHourTempTs.Data(1:size(t1,1)); 
var3.signals.values=TwhhTs.Data(1:size(t1,1));                 
clear allhHourConMatTs hHourTempTs TwhhTs t1 t2 t3; 

     
end 
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function [ hHourConMatWd,hHourConMatWe,allhHourConMat] = ... 
    HotWgenData2( evalY,firstDm,NOY) 
%Hot water consumption generator 
%Generate weekday and weekend consumption pattern 
%Variables 
Years=evalY; 
firstDataMonth=firstDm; 
numberOfY=NOY; 

  
%Year month calendar generator 
ca=cal(Years,firstDataMonth,12); 

  
%Week day profile 
selWd=cat(1,ca(:,[1 2 4]),ca(:,[1 2 5]),ca(:,[1 2 6]),ca(:,[1 2 7]),... 
    ca(:,[1 2 8])); 
wdDt=zeros(1,3); 
for i=1:size(selWd,1) 
    if selWd(i,3)==0 
        continue;                   %removing all zero values 
    end 
        wdDt=cat(1,wdDt,selWd(i,:)); 
end 

  
wdDt=wdDt(2:end,:);   
dn=datenum(wdDt); 
wdDt=cat(2,dn,wdDt); 
wdDt=sortrows(wdDt,1); 

  
%Weekend profile 
selWe=cat(1,ca(:,[1 2 3]),ca(:,[1 2 9])); 
weDt=zeros(1,3); 
for i=1:size(selWe,1) 
    if selWe(i,3)==0 
        continue;                       %removing all zero values 
    end 
        weDt=cat(1,weDt,selWe(i,:)); 
end 

  
weDt=weDt(2:end,:);   
dn=datenum(weDt); 
weDt=cat(2,dn,weDt); 
weDt=sortrows(weDt,1); 

  
%random number distribution variables 
%Hot water consumption generator using recorded average data 
%Hot water consumption for low, medium, high density houses 
%Average recorded data input 
%Litres per person per hour 

  
np=6.2;                     %number of people in house hold 

  
%Import of hot water demand data 
inHwMat=txt2mat('hotWaterData.txt'); 
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%Setting up profile arrays 
wdSum=inHwMat(3,:); 
wdSum=wdSum*np./3600; 

  
weSum=inHwMat(6,:); 
weSum=weSum*np./3600; 

  
wdWin=inHwMat(9,:); 
wdWin=wdWin*np./3600; 

  
weWin=inHwMat(12,:); 
weWin=weWin*np./3600; 

  
SumSD=17;                               %percent standard deviation summer 
WinSD=30;                               %percent standard deviation winter 

  
%Summer and winter week day count 
s=0; 
w=0; 

  
for i=1:size(wdDt,1)     

     
    switch wdDt(i,3) 
        case {11 12 1 2 3 4}     %summer 
            s=s+1; 

                                
        case{5 6 7 8 9 10}       %winter 
            w=w+1;             

                                     
        otherwise 
            disp('Error:invalid month allocation'); 
    end   
end 

  
%Weekdays summer 
%Data expation using statistical distribution 
%Resampled to half hour distributions 
%y = jcbresample(tnew,yori,tori) 
%Summer 
[ wdSum48 ] = (jcbresample(1:0.5:24, wdSum, 1:24))'; % Resampled to half  
%hour periods 
wdSum48(1,size(wdSum48,2)+1) = (wdSum(1,1)+wdSum(1,end))/2; % appending  
%the final sample as a result of time rapping 
wdSumMat=zeros(s,size(wdSum48,2)); 
for i=1:size(wdSum48,2) 
    wdSumMat(:,i)=wdSum48(1,i)+((wdSum48(1,i)*(SumSD/100)).*randn(s,1));  
end 

  
%Weekdays winter 
[ wdWin48 ] = (jcbresample(1:0.5:24, wdWin, 1:24))'; % Resampled to half  
%hour periods 

  
wdWin48(1,size(wdWin48,2)+1) = (wdWin(1,1)+wdWin(1,end))/2; % appending  
%the final sample as a result of time rapping 
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wdWinMat=zeros(w,size(wdWin48,2)); 

  
for i=1:size(wdWin48,2) 
    wdWinMat(:,i)=wdWin48(1,i)+((wdWin48(1,i)*(WinSD/100)).*randn(w,1)); 
end 

  
%per weekday hot water consumption profile 
conProfileWd=zeros(1,4+24*2); 
s=0; 
w=0; 

  
for i=1:size(wdDt,1)     
    profile=zeros(1,24*2); 
    switch wdDt(i,3) 
        case {11 12 1 2 3 4}             %summer 
            s=s+1; 
        profile=wdSumMat(s,:);              
        case {5 6 7 8 9 10}              %winter 
            w=w+1;             
        profile=wdWinMat(w,:);                    
        otherwise 
            disp('Error:invalid month allocation'); 
    end 
    dayProfileWd=cat(2,wdDt(i,:),profile); 
    conProfileWd=cat(1,conProfileWd,dayProfileWd); 
end 
conProfileWd=conProfileWd(2:end,:); 

  
%per weekend day hot water consumption profile 
%Summer and winter weekend day count 
s=0; 
w=0; 

  
for i=1:size(weDt,1)       
    switch weDt(i,3) 
        case {11 12 1 2 3 4}       %summer 
            s=s+1;                             
        case {5 6 7 8 9 10}        %winter 
            w=w+1;                                              
        otherwise 
            disp('Error:invalid month allocation'); 
    end   
end 

  
%Weekend day summer 
%Data exspation using statistical distribution 
%Resampled to half hour distributions 
%y = jcbresample(tnew,yori,tori) 

  
[ weSum48 ] = (jcbresample(1:0.5:24, weSum, 1:24))'; % Resampled to half 
%hour periods 
weSum48(1,size(weSum48,2)+1) = (weSum(1,1)+weSum(1,end))/2; 

  
weSumMat=zeros(s,size(weSum48,2)); 
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for i=1:size(weSum48,2) 
    weSumMat(:,i)=weSum48(1,i)+((weSum48(1,i)*(SumSD/100)).*randn(s,1));    
end 

  
%Weekend days winter 
[ weWin48 ] = (jcbresample(1:0.5:24, weWin, 1:24))'; % Resampled to half 
%hour periods 
weWin48(1,size(weWin48,2)+1) = (weWin(1,1)+weWin(1,end))/2; 

  
weWinMat=zeros(w,size(weWin48,2)); 

  
for i=1:size(weWin48,2) 
    weWinMat(:,i)=weWin48(1,i)+((weWin48(1,i)*(WinSD/100)).*randn(w,1)); 
end 

  
conProfileWe=zeros(1,4+24*2); 

  
s=0; 
w=0; 

  
for i=1:length(weDt) 
    profile=zeros(1,24*60); 
    switch weDt(i,3) 
        case {11 12 1 2 3 4} 
            s=s+1; 
            profile=weSumMat(s,:);            
        case {5 6 7 8 9 10} 
            w=w+1; 
            profile=weWinMat(w,:);           
        otherwise 
            disp('Error:invalid month allocation'); 
    end 
    dayProfileWe=cat(2,weDt(i,:), profile); 
    conProfileWe=cat(1,conProfileWe,dayProfileWe); 
end 
conProfileWe=conProfileWe(2:end,:); 

  
clear  SumSD WinSD Years ca dayProfileWd dayProfileWe dn firstDataDay ... 
    firstDataMonth firstDataYear i numberOfY profile s selWd selWe w wdDt... 
    wdSum wdSum48 wdSumMat wdWin wdWin48 wdWinMat weDt weSum weSum48... 
    weSumMat weWin weWin48 weWinMat; 
hour=reshape(cat(1,0:23,0:23),[],1); 
min=reshape(cat(1,zeros(1,24),ones(1,24)*30),[],1); 
second=zeros(48,1); 

  
%Half hour hot water consumption data for week day 
hHourConMatWd=zeros(1,2); 
l=size(conProfileWd); 

  
for i=1:l(1) 
    hHourCon=conProfileWd(i,5:52); 
    

date=cat(2,ones(48,1)*conProfileWd(i,2),ones(48,1)*conProfileWd(i,3),ones(48,

1)*conProfileWd(i,4)); 

Stellenbosch University  http://scholar.sun.ac.za



188 
 

    unixNum=datenum(cat(2,date,hour,min,second)); 
    hHourConMat=cat(2,unixNum,hHourCon'); 
    hHourConMatWd=cat(1,hHourConMatWd,hHourConMat); 
end 

  
hHourConMatWd=hHourConMatWd(2:end,:); 

  
clear l hHourCon date unixNum hHourConMat; 

  
%Half hour hot water consumtion data for weekend 
hHourConMatWe=zeros(1,2); 
l=size(conProfileWe); 

  
for i=1:l(1) 
    hHourCon=conProfileWe(i,5:52); 
    

date=cat(2,ones(48,1)*conProfileWe(i,2),ones(48,1)*conProfileWe(i,3),ones(48,

1)*conProfileWe(i,4)); 
    unixNum=datenum(cat(2,date,hour,min,second)); 
    hHourConMat=cat(2,unixNum,hHourCon'); 
    hHourConMatWe=cat(1,hHourConMatWe,hHourConMat); 
end 

  
hHourConMatWe=hHourConMatWe(2:end,:); 

  
allhHourConMat=cat(1,hHourConMatWd,hHourConMatWe); 
allhHourConMat=sortrows(allhHourConMat,1); 
allhHourConMat=(allhHourConMat);% 

  
clear conProfileWd conProfileWe date hHourCon hHourConMat hour i l min second 

unixNum; 

  
end 

 
function [ PDFTempData, PDFDemData ] = recoverData( selTempData, selDemData 

,model ) 
%Criteria selection function for kernel function input 

  
PDFDemData=selDemData(find((selDemData(:,model)) > 0),[1 model]); %  

    
PDFTempData=selTempData(find((selDemData(:,model)) > 0),:); 

end 
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function [ selPDF ] = KernelFunction1( selVar1, selVar2, h2, h1 ) 
%Kernel Density function 
minVar1=0; 
maxVar1=35;   
stepVar1=0.1; 
minVar2=0; 
maxVar2=1440; 
stepVar2=1; 
selPDF=zeros(((maxVar2-minVar2)/stepVar2),((maxVar1-minVar1)/stepVar1)); 

  
r=1; 
for var2=minVar2:stepVar2:maxVar2                     %for loop for half 

hourly demand 
    c=1; 
    for var1=minVar1:stepVar1:maxVar1                   %for loop for 

temperature 
        pdfValue=0; 
        for hh=1:size(selVar2,1) 
            pdfValue = pdfValue + (exp(-(((var2-

selVar2(hh))^2)/(2*((h2)^2))+(((var1-selVar1(hh))^2)/(2*((h1)^2))))))... 
                /(2*pi*size(selVar2,1)*h2*h1); 
        end 
        selPDF(r,c)=pdfValue; 
        c=c+1; 
    end 
    floor(r/((maxVar2-minVar2)/stepVar2)*100) 
    r=r+1; 
end 

 
function [ selPDF ] = KernelFunction2( selVar1, selVar2, h2, h1 ) 
%Kernel function 
minVar1=0; 
maxVar1=35;   
stepVar1=0.1; 
minVar2=30; 
maxVar2=65; 
stepVar2=0.1; 
selPDF=zeros(((maxVar2-minVar2)/stepVar2),((maxVar1-minVar1)/stepVar1)); 

  
r=1; 
for var2=minVar2:stepVar2:maxVar2                     %for loop for half 

hourly demand 
    c=1; 
    for var1=minVar1:stepVar1:maxVar1                   %for loop for 

temperature 
        pdfValue=0; 
        for hh=1:size(selVar2,1) 
            pdfValue = pdfValue + (exp(-(((var2-

selVar2(hh))^2)/(2*((h2)^2))+(((var1-selVar1(hh))^2)/(2*((h1)^2))))))... 
                /(2*pi*size(selVar2,1)*h2*h1); 
        end 
        selPDF(r,c)=pdfValue; 
        c=c+1; 
    end 
    floor(r/((maxVar2-minVar2)/stepVar2)*100) 
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    r=r+1; 
end 

  
selPDF=selPDF'; 

  
end 

 
function [ timeData ] = selectedData( dataMat, unixNumHH ) 
%Unix numbers from search matrix is used to obtain demand, 
%temperature and consumption data 
format long g 

  
%dataMat=hHourTemp; 
timeData=zeros(length(unixNumHH),size(dataMat,2)); 

  
for i=1:size(unixNumHH,1) 
        timeData(i,:)=dataMat((find((dataMat(:,1))==unixNumHH(i,1))),:); 

     
end 

  
end 

 

 
function [Twmin Twhh ] = InWaterTemp( AmbientTemp ) 
%The calculation of the average soil temperature/water temperature at a 
%Depth of water pipe in soil 
z=7; 

  
%Dampining depth of soil type 
d=2.093; 

  
%Number of days in the year from Jan 1st till annual min temp is recorded 
y=[2001 2002 2003 2004 2005 2006 2007 2008 2009]; 
for a=1:size(y,2) 
    YearNum(a)=datenum(y(a),0,1); 
end 

  
row=0; 

  
for a=1:size(YearNum,2) 
    [row,~,~]=find(AmbientTemp(:,1)>=YearNum(a)&AmbientTemp(:,1)<... 
        (YearNum(a)+365)); 
    YearTemp(:,a)=AmbientTemp(row,2); 
    [c,i]=min(YearTemp(:,a)); 
    DayOfYear(1,a)=floor(i/48);  
end 

  
t0=floor(sum(DayOfYear,2)/size(DayOfYear,2)); 

  
%Average ambient temperature 
Ta=sum(AmbientTemp(:,2))/size(AmbientTemp,1)+2;     %add 2 degrees C 

  
%Annual amplitude 
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[row,~,~]=find(AmbientTemp(:,1)>=YearNum(1)); 
AllTemp(:,1)=AmbientTemp(row,2); 
DayTemp=reshape(AllTemp,48,[]); 
MinDayTemp=min(DayTemp); 
MaxDayTemp=max(DayTemp); 
A0=((sum(MaxDayTemp,2)/size(MaxDayTemp,2))-(sum(MinDayTemp,2)/... 
    size(MinDayTemp,2)))/2; 

  
%Water temperature function 
for t=1:size(AllTemp,1)/48+1 
Tw(1,t)= Ta+A0*exp(-z/d)*sin((2*pi*(t-t0))/365-(z/d)-(pi/2)); 
end 

  
%resample from average daily temperature to perhalf hour temperatures 
% y = jcbresamle(tin, yori,tori) resamples the sequence in vector yori at 
% time tori to samples at tnew 
[Twhh]=jcbresample(1:1/48:size(Tw,2), Tw, 1:size(Tw,2)); 
Twhh=Twhh(1:end-1); 
[Twmin]=jcbresample(1:1/(48*30):size(Tw,2), Tw, 1:size(Tw,2)); 
Twmin=Twmin(1:end-1); 

  
end 

 
function [unixNumHH]=unixSearchNumHH(yArr,mnArr,dWeekArr,hPerArr) 
%search for the required unix numbers 
calMat=zeros(1,9); 
for y=yArr 
    for m=mnArr 
        calMat=cat(1,calMat,cat(2,ones(6,1)*y,ones(6,1)*m,calendar(y,m))); 
    end 
end 

  
calMat=calMat(2:end,:); 
selMat=calMat(:,dWeekArr); 
[r,~,v]=find(selMat(:,(3:(size(dWeekArr,2))))); 
yr=selMat(r(:),1); 
mn=selMat(r(:),2); 
dy=v(:); 

  
selDateMat=cat(2,yr,mn,dy); 
unixDate=datenum(selDateMat); 

  
hr=reshape(cat(1,0:23,0:23),[],1); 
mn=reshape(cat(1,zeros(1,24),ones(1,24)*30),[],1); 
sc=zeros(48,1); 

  
timeMat=cat(2,hr,mn,sc); 
selTimeMat=timeMat(hPerArr,:); 
unixTime=datenum(cat(2,zeros(size(selTimeMat,1),3),selTimeMat)); 

  
unixNumHH=zeros(length(unixDate),length(unixTime)); 

  
for i=1:length(unixDate) 
   unixNumHH(i,:)=unixDate(i)+unixTime;  
end 
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unixNumHH=reshape(unixNumHH,[],1); 
unixNumHH=sort(unixNumHH); 

  
clear calMat dWeekArr dy hPerArr hr i m mn mnArr r sc selDateMat selMat... 
    selTimeMat timeMat unixDate unixTime v y yArr yr; 
end 

 
function [minTemp,hHourTemp] = dataMatrix( 

inMat,unixStartDate,unixEndDate,firstDataYear,firstDataMonth,firstDataHourCol

om,dayOfMonthColom) 
%Time stamp allocation to data 
format long; 

  
countMonth=firstDataMonth-1; 
countYear=firstDataYear; 
dateMat=cat(2,[firstDataYear firstDataMonth 

inMat(1,dayOfMonthColom)],inMat(1,firstDataHourColom:firstDataHourColom+23)); 

  
for i=1:length(inMat(:,1))     
    if isnan(inMat(i,1))==1 
        continue 
    end 
    if inMat(i,1)==1 
        countMonth=countMonth+1; 
        if countMonth==13 
            countYear=countYear+1; 
            countMonth=1; 
        end 
    end 
    loopDate=[countYear countMonth inMat(i,1) 

inMat(i,firstDataHourColom:firstDataHourColom+23)]; 
    dateMat=cat(1,dateMat,loopDate); 
end 

  
dateTimeMat=dateMat(2:length(dateMat),:); 

  
%Unix number temperature array 
tempMat=(dateTimeMat(1:end,4:end))'; 
outMat=zeros(1,8); 

  
for i=1:length(dateTimeMat) 
    date=ones(24,1)*(dateTimeMat(i,1:3)); 
    hour=(0:23)'; 
    min=zeros(24,1); 
    sec=zeros(24,1); 
    unixNum=datenum(cat(2,date,hour,min,sec)); 
    monthTemp=cat(2,date,hour,min,sec,unixNum,tempMat(1:24,i));       
    outMat=cat(1,outMat,monthTemp); 
end    

  
outMat=outMat(2:(unixEndDate-unixStartDate)*24+2,:); 

  
% Interpolating the missing temperature data 
outMat(:,8)=inpaintn(outMat(:,8)); 
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% Resampling  
hHourTemp=cat(2,(outMat(1,7):datenum(0,0,0,0,30,0):outMat(size(outMat,1),7))'

,... 
    (jcbresample(1:0.5:size(outMat,1),outMat(1:end,8)',1:1:size(outMat,1)))); 
hHourTemp=hHourTemp(1:end-1,1:2); 

  
minTemp=cat(2,(outMat(1,7):datenum(0,0,0,0,1,0):outMat(size(outMat,1),7))',..

. 
    

(jcbresample(1:1/60:size(outMat,1),outMat(1:end,8)',1:1:size(outMat,1)))); 
minTemp=minTemp(1:end-1,1:2); 

  
clear date dateMat dateTimeMat hour i loopDate min monthTemp sec tempMat... 
    unixNum outMat inMat; 

  
end 
  

 

 
function [ calMat ] = cal( ya,sm,nm) 
%Callender search 
calMat=[]; 

  
for c=ya 
    smMat=calendar(c,sm); 
    yMat=ones(6,1)*c; 
    mMat=ones(6,1)*sm; 
    smMat=cat(2,yMat,mMat,smMat); 
    calMat=cat(1,calMat,smMat); 
    if nm==1 
        continue; 
    else 
        for i=1:nm-1 
            m=sm+i; 
            y=c; 
            if m>12 
                y=c+1; 
                yMat=ones(6,1)*y; 
                m=m-12; 
            end 
            mMat=ones(6,1)*m; 
            nmMat=calendar(y,m); 
            nmMat=cat(2,yMat,mMat,nmMat); 
            calMat=cat(1,calMat,nmMat); 
        end 
    end 
end   

  
end 

 
function [ PDFTempData, PDFDemData ] = geyserOn( selTempData, selDemData 

,model  ) 
%Criteria selection function for kernel function input 
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PDFDemData=selDemData(find((selDemData(:,model)) > 0),[1 4]); %  

    
PDFTempData=selTempData(find((selDemData(:,model)) > 0),:); 

  
end 

 
function [selDataBas,selDataRp] = 

YearlyDataCollection(Data,yearArr,monthArr,dayArr,hhArr) 

  
selDataBas = zeros(17520,size(yearArr,2)); 
selDataRp = zeros(17520,size(yearArr,2)); 

  
for a=1:size(yearArr,2) 

     
    %applicable year array 
    yArr=yearArr(a); 

     
    %start month in year of array 
    mnArr=monthArr; 

     
    %day of week selection 
    dWeekArr=dayArr; 

     
    %half hour period of the day 
    hPerArr=hhArr;                   %1st perod is at 0h00 

     
    [ unixNumHH ] = unixSearchNumHH( yArr, mnArr, dWeekArr, hPerArr ); 

     
    selDemData=selectedData( Data, unixNumHH); 
    selDataBas(:,a) = selDemData(1:17520,2); 
    selDataRp(:,a) = selDemData(1:17520,3); 

     
end 

 
function [selDataTemp] = 

YearlyDataCollectionTemp(Data,yearArr,monthArr,dayArr,hhArr) 

  
selDataTemp = zeros(17520,size(yearArr,2)); 

  

  
for a=1:size(yearArr,2) 

     
    %applicable year array 
    yArr=yearArr(a); 

     
    %start month in year of array 
    mnArr=monthArr; 

     
    %day of week selection 
    dWeekArr=dayArr; 

     
    %half hour period of the day 
    hPerArr=hhArr;                   %1st perod is at 0h00 
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    [ unixNumHH ] = unixSearchNumHH( yArr, mnArr, dWeekArr, hPerArr ); 

     
    selDemData=selectedData( Data, unixNumHH); 
    selDataTemp(:,a) = selDemData(1:17520,2); 

     

     
end 

 
function [ selMinData ] = minArr ( selMinOnMat ) 
%Geyser on function, per minute PDF simulations 

  
temp=zeros(size(selMinOnMat,1),30); 

  
for col=1:30 
    temp(:,col)=(selMinOnMat(:,2)); 
end 

  
temp=reshape(temp',[],1); 

  
onPos=reshape((selMinOnMat(:,3:32))',[],1); 

  
minPer=(1:1440); 
period=zeros(size(minPer',1),(size(temp,1)/1440)); 
for col=1:(size(temp,1)/1440) 
    period(:,col)=minPer'; 
end 

  
period=reshape(period,[],1); 

  
selMinData=cat(2,temp,onPos,period); 

  
end 

 
function [ minOnTime ] = geyserOnTime( temp, demand ) 
%generation of per minute on values 
minOnTime=zeros(size(temp,1),32); 

  
for pos=1:size(demand,1); 
    minOnTime(pos,[1 2])=temp(pos,[1 2]); 
    if pos==size(demand,1)    
        break; 
    end 

     
    val=(demand(pos,2)); 
    next_val=(demand(pos+1,2)); 

     
    if (val==0)&&(next_val==0) 
        continue 
    elseif (val==0)&&(next_val>0) 
        minOnTime(pos+1,(round(33-(next_val*30)):32))=1; 
        continue 
    elseif (val>0)&&(next_val>0) 
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        minOnTime(pos+1,3:(round(next_val*30)+2))=1; 
        continue 
    else                %(val>0)&&(next_val==0) 
        continue         
    end 
end 
end 

 
function [ recoveryTime ] = geyserRecover( selDemDataECM ) 
%Density estimation of recovery time of geyser 

  
recoveryTime=zeros(size(selDemDataECM,1),4); 
onTime=0; 
recTime=0; 
for pos=1:size(selDemDataECM,1); 
    recoveryTime(pos,[1 4])=selDemDataECM(pos,[1 3]); 
    if pos==size(selDemDataECM,1) 

         
        break; 
    end 

     
    recTime=0;     
    val=(selDemDataECM(pos,2)); 
    next_val=(selDemDataECM(pos+1,2)); 

     
    if (val==0)&&(next_val==0) 
        continue 
    elseif (val==0)&&(next_val>0) 
        onTime=(onTime+next_val); 
        continue 
    elseif (val>0)&&(next_val>0) 
        onTime=(onTime+next_val); 
        continue 
    else                %(val>0)&&(next_val==0) 
        recTime=onTime; 
        onTime=0; 
    end 
    recoveryTime(pos,[2 3])=[(recTime*30) (val*30)]; 
end 

  
end 

  
%% 
%Create a monthly box plot of temperature data from 2001 to 2009 
tic 

  
ti={'January 00h00','January 06h00','January 12h00','January 18h00';... 
    'February 00h00','February 06h00','February 12h00','February 18h00';... 
    'March 00h00','March 06h00','March 12h00','March 18h00';... 
    'April 00h00','April 06h00','April 12h00','April 18h00';... 
    'May 00h00','May 06h00','May 12h00','May 18h00';... 
    'June 00h00','June 06h00','June 12h00','June 18h00';... 
    'July 00h00','July 06h00','July 12h00','July 18h00';... 
    'August 00h00','August 06h00','August 12h00','August 18h00';... 
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    'September 00h00','September 06h00','September 12h00','September 

18h00';... 
    'October 00h00','October 06h00','October 12h00','October 18h00';... 
    'November 00h00','November 06h00','November 12h00','November 18h00';... 
    'December 00h00','December 06h00','December 12h00','December 18h00'}; 

  
for i=1:size(tempData,2) 

     
temp=reshape(tempData(:,i),numMn,[]); 

     
subplot(1, 2, i); 

  
boxplot(temp,'notch','on'); 

  
set(gca,'YGrid','on',... 
    'XTickLabel',{'2001','2002','2003','2004','2005','2006','2007','2008',... 
    '2009'}, 'XTick',[1 2 3 4 5 6 7 8 9],... 
    'YTick',[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ... 
    23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40],...  
    'FontSize',11,... 
    'FontName','Times New Roman'); 

  
xlim([0.5 9.5]); 

  
ylim([4 29]); 

  
box('on'); 

  
% Create xlabel 
xlabel('Years','Units','points','FontSize',12,'FontName','Times New Roman'); 

  
% Create ylabel 
ylabel('Temperature','FontSize',12,'FontName','Times New Roman'); 

  
% Create title 
title(ti(mnArr,i+2),'FontSize',12,'FontName','Times New Roman'); 

  
end 

  
memory 
toc 
%% 
%Creating monthly box plots of temperature over 48 half hour time periods 
tic 

  
%ti={'January','February','March','April','May','June','July',... 
  %  'August','September','October','November','December'}; 

  
boxplot(tempData); 

  
set(gca,'YGrid','on',... 
     'XGrid','on',... 
     'FontSize',20,... 
     'FontName','Times New Roman'); 
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ylim([0 40]); 

  
box('on'); 

  
% Create xlabel 
xlabel('Half hour time periods','FontSize',20,'FontName','Times New Roman'); 

  
% Create ylabel 
ylabel('Ambient temperature [degrees Celsius]','FontSize',20,'FontName',... 
    'Times New Roman'); 

  
% Create title 
title('June','FontSize',20,'FontName','Times New Roman'); 

  
memory 
toc 
%% 
%Creat nonparametric distribution plot and histogram 
%For four half hour time periods in a month  
tic 

  
%Lable matrix 
ti={'January 00h00','January 06h00','January 12h00','January 18h00';... 
    'February 00h00','February 06h00','February 12h00','February 18h00';... 
    'March 00h00','March 06h00','March 12h00','March 18h00';... 
    'April 00h00','April 06h00','April 12h00','April 18h00';... 
    'May 00h00','May 06h00','May 12h00','May 18h00';... 
    'June 00h00','June 06h00','June 12h00','June 18h00';... 
    'July 00h00','July 06h00','July 12h00','July 18h00';... 
    'August 00h00','August 06h00','August 12h00','August 18h00';... 
    'September 00h00','September 06h00','September 12h00','September 

18h00';... 
    'October 00h00','October 06h00','October 12h00','October 18h00';... 
    'November 00h00','November 06h00','November 12h00','November 18h00';... 
    'December 00h00','December 06h00','December 12h00','December 18h00'}; 

  
tk={'Summer 00h00','Summer 06h00','Summer 12h00','Summer 18h00';... 
    'Autumn 00h00','Autumn 06h00','Autumn 12h00','Autumn 18h00';... 
    'Winter 00h00','Winter 06h00','Winter 12h00','Winter 18h00';...  
    'Spring 00h00','Spring 06h00','Spring 12h00','Spring 18h00'}; 

  
% Loop to plot the time periods 
for i=1:size(wdSumCon,2) 

  
% Force all inputs to be column vectors 
tempD = weSumCon(:,i); 

  
% Set up figure to receive datasets and fits 
f_=subplot(2,3,i+3); 

  
legh_ = []; legt_ = {};   % handles and text for legend 
ax_ = newplot; 
set(ax_,'Box','on','FontSize',16,'FontName','Times New Roman'); 
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grid(ax_,'on'); 
%xlim([0 30]); 
%ylim([0 0.2]); 
hold on; 

  
% --- Plot data originally in dataset "January 00h00" 
t_ = ~isnan(tempD); 
Data_ = tempD(t_); 
[F_,X_] = ecdf(Data_,'Function','cdf'... 
              );  % compute empirical cdf 
Bin_.rule = 1; 
[C_,E_] = dfswitchyard('dfhistbins',Data_,[],[],Bin_,F_,X_); 
[N_,C_] = ecdfhist(F_,X_,'edges',E_); % empirical pdf from cdf 
h_ = bar(C_,N_,'hist'); 
set(h_,'FaceColor','none','EdgeColor',[0.333333 0 0.666667],... 
       'LineStyle','-', 'LineWidth',1); 

    
xlabel('Temperature','FontSize',16,'FontName','Times New Roman'); 
ylabel('Density','FontSize',16,'FontName','Times New Roman') 
legh_(end+1) = h_; 
legt_{end+1} = 'Histogram'; 

  
% Nudge axis limits beyond data limits 
xlim_ = get(ax_,'XLim'); 
if all(isfinite(xlim_)) 
   xlim_ = xlim_ + [-1 1] * 0.01 * diff(xlim_); 
   set(ax_,'XLim',xlim_) 
end 

  
x_ = linspace(xlim_(1),xlim_(2),100); 

  
% --- Create fit "Non-parametric" 
t_ = ~isnan(tempD); 
Data_ = tempD(t_); 
y_ = ksdensity(Data_,x_,'kernel','normal',... 
               'support','unbounded',... 
               'function','pdf'); 
h_ = plot(x_,y_,'Color',[1 0 0],... 
          'LineStyle','-', 'LineWidth',2,... 
          'Marker','none', 'MarkerSize',6); 
legh_(end+1) = h_; 
legt_{end+1} = 'Kernel est.'; 
hold off; 
leginfo_ = {'Orientation', 'vertical', 'Location', 'NorthEast'};  
h_ = legend(ax_,legh_,legt_,leginfo_{:});  % create legend 
set(h_,'Interpreter','none'); 
title(tk(3,i),'FontSize',16,'FontName','Times New Roman'); 
end 

  
clear tempD Data_ y_ xlim_ x_ t_ legt_ leginfo_ legh_ h_ f_ ax_ X_ N_ F_ ... 
    E_  C_ Bin_;  
memory 
toc 
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