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Abstract

Due to the increasing complexity of Web applications and emerging HTML5 stan-

dards, a large amount of runtime state is created and managed in the user’s browser.

While such complexity is desirable for user experience, it makes it hard for devel-

opers to implement mechanisms that provide users ubiquitous access to the data

they create during application use. This paper presents our research into browser

session migration for JavaScript-based Web applications. Session migration is the

act of transferring a session between browsers at runtime. Without burden to devel-

opers, our system allows users to create a snapshot image that captures all runtime

state needed to resume the session elsewhere. Our system works completely in the

JavaScript layer and thus snapshots can be transferred between different browser

vendors and hardware devices. We report on performance metrics of the system

using five applications, four different browsers, and three different devices.
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Chapter 1

Introduction

The World Wide Web was originally designed around the notion of uniquely iden-

tifiable resources. Using the URL of a resource, the user could point to and load a

specific state of a website into their browser [14]. This simple stateless client/server

interaction contributed to the success and adoption of the Web. However, due to

the increasing complexity of web applications (referred to as apps), considerable

effort on the part of developers is now required to achieve state persistence.

With the evolution of web technologies, browsers, and HTML5 [4] a great deal

of application state is being offloaded to the client-side. In order to achieve more

responsive apps, JavaScript is increasingly used to incrementally mutate the Doc-

ument Object Model (DOM) in the browser to represent a state change, without

requiring a URL change. Additionally, with new HTML5 APIs apps can feature

advanced graphics, animation, audio, and video. Therefore, capturing and migrat-

ing a particular state of an app is not as simple as saving and loading a URL any

longer. It requires developers to manually implement code for persisting the tran-

sient browser state (i.e. state that normally would be lost once a user closes a

browser tab). While some libraries and APIs [3, 6, 29] provide support for ob-

ject persistence, developers are still obliged to register and track individual objects

programmatically, which can be tedius and error-prone. Since persistence is well-

known to be a crosscutting concern [31, 33], adding it to existing code is difficult

because it requires changes scattered across various modules. Furthermore, such

libraries only support persistence of simple JavaScript objects, and not other appli-
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cation state such as function closures, event-handlers, or HTML5 media objects.

In this paper, we investigate the use of session migration to address this prob-

lem. Session migration is the act of transferring a session between browsers, pos-

sibly on different platforms, at runtime. We propose a novel technique and tool,

called IMAGEN1, for migrating client-side session state of web apps across differ-

ent browsers and devices. Our technique enables end-users to seamlessly capture

the runtime client-side browser state at a desired instance, and later restore that

state in a different browser and continue using the app from there. While previ-

ous work [2, 26] on event-logging of JavaScript could theoretically be applied for

session migration, that work was intended for the purpose of development-time de-

bugging, and we show in our evaluation that it is not practical for end-user session

migration.

IMAGEN works through a combination of novel JavaScript transformations.

Such transformations can be applied in two different ways: developer-initiated or

user-initiated. The developer-initiated transformation is applied by a software de-

veloper to their code prior to application deployment. Alternatively, end-users can

enable the transformation themselves by using a provided transformation HTTP

proxy. Either way, no extra coding is required to achieve migration of sessions. To

the best of our knowledge, IMAGEN is the first tool to support client-side session

migration without requiring modifications to a web browser or operating system.

This paper makes the following main contributions:

• We propose an automated generic and transparent approach for persisting

and migrating the transient session states of JavaScript web apps;

• We illustrate how entire client-side states, including those in JavaScript func-

tion closures, event-handlers, and HTML5 media objects can be captured and

serialized;

• We describe how the serialized session state can be brought back to life in a

different browser;

• We present the implementation of our approach in a tool called IMAGEN2;

an online video provides a demonstration3

1IMAGEN means image in Spanish.
2Source code is available at: http://www.cs.ubc.ca/∼wohlstad/imagen.html
3Video is available at: http://www.cs.ubc.ca/∼wohlstad/imagenVideo.html

2
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• We report the efficiency of our approach through an empirical evaluation

using five existing apps. Our results indicate that IMAGEN adds less than

10% execution overhead to all our test apps and less than 2% in most cases.
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Chapter 2

Motivating Examples

Robots Are People Too [34] (RAPT) is a side-scrolling two player platform game.

The game features different challenges, drones, and rewards. It invites gamers to

invest sufficient time and effort to finish levels and make progress. A gamer may

want to persist or migrate her session of gameplay for any of the following reasons:

• Strategy: She perceives a risky move ahead and wants to seamlessly try again

when it fails without repeating previous effort.

• Time: She has to work on something else and wants to close this game com-

pletely from the browser. A reason could be to free up some system resources

since the game can be performance intensive.

• Location: She is going somewhere and wants to continue the game at another

location or on another device.

The current version of RAPT does not provide a feature for saving progress

during a game. By using IMAGEN, end users can persist and migrate such game

state without requiring developers to provide any additional coding.

SketchPad [12] is a painting app that makes use of the HTML5 <canvas> tag.

Once the painter has chosen to save, the image gets saved to the Portable Network

Graphics format (PNG); however there is no option in the app to load a PNG later

for further editing. By saving their browser session using IMAGEN, a user can re-

sume editing some picture at any later time. IMAGEN also remembers and migrates

all the many configurable settings that SketchPad has, e.g. the color palette, gra-
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dient, pattern, and tools settings. In the current version of SketchPad all of these

settings are lost when a user closes their browser.
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Chapter 3

Design

Figure 3.1: IMAGEN Architecture: (top) Starting up an app and saving a
snapshot; (bottom) Loading a previously saved snapshot to a different
device.

We start by presenting an overview of some challenges in session migration

(Section 3.1), followed by a high-level architectural overview of the components

involved in our approach (Section 3.2).
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1 //Attempt (and fail) to serialize the
2 //user’s session by JSONizing ’window’
3 var snapshot = JSON.stringify(window);
4
5 //Attempt (and fail) to unserialize a
6 //user’s session by assigning
7 //parsed string to ’window’
8 window = JSON.parse(snapshot);

Sample Code 3.1: Essence of Snapshot Imaging. This code fails horribly on
regular apps but becomes possible using IMAGEN.

3.1 Challenges
In order to explain the technical challenges for session migration, we start from an

incorrect strawman implementation of saving/loading a snapshot image of some

browser session (shown in Sample Code 3.1). In JavaScript, the global vari-

able window provides a context from which both native browser APIs (such as

the DOM) and application-specific state (in the form of JavaScript objects) can

be accessed by programmers. JSON [21] is the popular serialization format of

JavaScript and can be used to serialize (JSON.stringify) and unserialize ob-

jects (JSON.parse). Thus it would seem reasonable that to migrate a user’s

session, one might be able to simply stringify the whole window object (line

3). Ideally, this would return a string capturing all runtime state needed for migra-

tion. Then later, on another browser, the stringified snapshot could be parsed back

into window (line 8) and the user’s session would resume. Unfortunately, this will

not work in practice.

Capturing a snapshot for migration is much more challenging, for a number of

reasons:

1. Function Closures. In addition to objects, JavaScript state includes function

instances called function closures. This kind of function/object hybrid is not

easy to serialize.

2. Event-handler state. Event-handlers are the driving force of execution in

JavaScript. They create a schedule of activity that is not supported by exist-

ing serialization mechanisms.

3. HTML5 rich-media objects. Modern web applications make use of rich-
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media objects from the HTML5 standard which have unique serialization

requirements.

All of these problems need to be solved without introducing burden on the

developer or end-user, in particular IMAGEN should be:

1. Generic and Interoperable: End users should be able to migrate a variety of

apps and should have the freedom to use a snapshot in any device of their

choice.

2. Automatic: Enabling session migration should not require additional coding

for developers and only minor setup configuration.

3. Efficient and Scalable: End users should experience the same level of in-

teractivity as the original app. This means IMAGEN’s overhead to the app’s

execution should be minimal.

In Section 4, we describe each challenge and our corresponding solution in

detail but first we cover an overview of the architecture of our system.

3.2 Architecture
We describe the components involved in the migration of a running app, as depicted

in Figure 3.1. The figure is divided into two: the top half (Save Snapshot Flow),

the bottom half (Load Snapshot Flow). First, a user starts to load an app in their

browser and execute it as usual (1); e.g. entering the URL or navigating from a

search page. In order to make migration possible, the JavaScript source code of an

application must be transformed and instrumented with additional code. This can

be done by the developers using a source code processor, prior to deployment. Al-

ternatively, instrumentation can be transparently injected by an end-user by making

use of a provided HTTP proxy which runs on the user’s own machine (shown as

(2) in the figure). Our technique supports both, and either way, no manual changes

to the application code is necessary.

Ideally, there should be no noticeable change in the app’s behavior after instru-

mentation. Using a simple GUI button (added to the bottom of each web page by

the instrumentation) a user can take a snapshot at any point during execution (3).

This snapshot is then saved to a secondary storage (4), either on a remote web ser-

vice (Snapshot Storage in the figure), or on the user’s local drive. Either way, the
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user is provided with a URL, which can be used to retrieve and load the snapshot.

Sometime later, the user opens a new browser, which can be on a different de-

vice. In the example figure, the user migrates the application from their desktop

to a tablet (e.g., iPad). The user then enters the previously given URL in the new

browser (5). If instrumentation was provided by the application developer, step (6)

is not necessary. Otherwise at (6), the proxy redirects the user’s browser to the

original URL where the snapshot was taken. However, rather than returning the

content at that URL, it returns the saved snapshot instead. This step allows the re-

stored app to run in the same browser security domain as the original application1.

After the app is loaded into the new browser, it seamlessly continues exactly where

it had left off (7).

1We assume the user trusts the proxy so new security threats are created by this technique
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Chapter 4

Technical Details

We continue to describe the challenges laid out in Section 3.1 and the solutions we

implemented.

4.1 Migrating Function Closures
The basic idea for capturing an app’s execution state is to traverse and serialize its

object graph [19]. However, certain “edges” in this graph cannot be traversed by the

application itself and are kept as internal browser state. These “edges” correspond

to the links between functions and closure-bound variables. In this subsection,

we describe the problem of closure-bound variables and our solution through an

example. We have made this example as simple as possible, just to focus on the

essential problem created by closures.

4.1.1 Example of Closure Usage

In JavaScript, functions act as both executable code and objects. Like objects, func-

tions can have properties assigned to them and they can be assigned as values to

properties of other objects. Also, there can be many instances of the same function

type. Whereas in static languages such as Java, we may assume that functions exist

when a program first starts, in JavaScript, function instances are created dynami-

cally when the statement where they are defined is executed. At the moment when

they are created, they also become associated with certain variables that were in
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scope when they were created. This is referred to as creating a function closure [1]

(i.e. closure). While JavaScript has been critisized for some poor language design

decisions, closures have been recognized as one of its good qualities [10].

Sample Code 4.1 presents a simple counter using a function closure. On line

1, a function is defined called CreateCounter, which takes as an argument a

count val to be used as the counter’s initial value. On line 2, a new object is

created for the counter, and on line 3 a function is added to the object. This function

(lines 3-6) takes an argument to increment and then prints the counter to the screen.

The counter state is captured as a closure-bound variable count val simply by

referring to the name of the argument passed to CreateCounter (on line 1).

Closure-bound variables allow programmers to create references between: (a)

variables in a created function and (b) objects that are referenced in the scope

that the function is created. For example, in Sample Code 4.1 we see (a) inc

being created on line 3 with the closure-bound variable count val on line 4 and

5. These references on line 4 and 5 refer to (b) the object passed as parameter

count val on line 1. This link is simply achieved by using the same variable

name in the created function as some variable that appears in the scope it is created.

Closure-bound variables are different from local variables because they exist

for the lifetime of a function object, not simply during one execution of the func-

tion. For example, when some execution of CreateCounter goes out of scope,

the created function inc will still refer to the object that had been passed as the

parameter to CreateCounter.

Suppose the example code in Sample Code 4.1 on lines 11-12 is executed. At

this point a counter object is easily accessible through window.myCounter.

Furthermore, the inc function can be accessed as window.myCounter.inc.

However, interestingly, it is not possible to access the counter’s actual state (re-

ferred to as count val). Thus there is no straightforward way to serialize this

counter so that it can migrate or persist for another browser session. It is important

to note that this is true for any closure-bound variable and is not specific to this

example.

To solve this problem we instrument JavaScript code to monitor the use of clo-

sures in an application so that we can reliably serialize and unserialize execution.

We describe this solution in five parts: (i) explicit scope, (ii) monitoring changes to

11



1 function CreateCounter(count_val) {
2 var count = new Object();
3 count.inc = function(add) {
4 count_val += add;
5 alert(count_val);
6 };
7 return count;
8 }
9

10 //Example usage
11 window.myCounter = CreateCounter(10);
12 window.myCounter.inc(5); //prints ‘15’

Sample Code 4.1: Example use of closures.

1 function CreateCounter(count_val) {
2 var CreateCounterScope = new Object();
3 CreateCounterScope.count val = count val;
4 var count = new Object();
5 count.inc = function(add) {
6 count_val += add;
7 CreateCounterScope.count val = count val;
8 alert(count_val);
9 };

10 count.inc.parentScope = CreateCounterScope;
11 return count;
12 }

Sample Code 4.2: Example of closure instrumentation for CreateCounter.

closure variables, (iii) associating scopes with functions, (iv) closure serialization,

and (v) closure loading.

4.1.2 Closure Saving

First, to deal with (i), we make closure-bound variables available to our system by

instrumenting the code. This is done to explicitly keep track of a scope object for

each function execution which has variables that will be referenced by closures.

This is demonstrated in Sample Code 4.2. Our instrumentation code is shown in

italic. On line 2 we create an object that will track the scope of CreateCounter

executions. Notice that for the function count.inc there is no corresponding

explicit scope object. This is because that function has no variables that will be ref-

12



erenced by closures (this is clear because it has no functions defined in its scope).

Once a scope object is created, all of the variables that will be referenced by clo-

sures are added to the object, so we can keep track of their values. This occurs for

example on line 3, where the variable count val is added to the newly created

scope object.

Second, to monitor changes to closure variables (ii), whenever a variable that

has been added to an explicit scope object is assigned to, we assign the same value

to the property of the scope object which is responsible for monitoring that variable.

This is shown on line 7. When count val is incremented by add we change

the explicit scope object to the updated value. This ensures that the values in the

explicit scope object are always an accurate reflection of the actual program state.

Third, at this point we have a “mirror” of the closure-related program state. Es-

sentially, by keeping a copy of this state in the application, we now have access to

it for serialization. However we still need to keep track of which scope objects are

used by which function objects. To assign our scope objects to functions (iii), we

attach the explicit scope objects directly to the functions that use them. Since func-

tion definitions form a tree-like hierarchy, each function is matched to the scope

object of its parent function (immediately enclosing function). This is shown in

line 10, immediately after the function count.inc is created, we bind the explicit

scope object of its parent to the function with a special property (parentScope).

Fourth, now that we have a data-structure modeling the closure-bound vari-

ables, their values, and the relationships between the function scopes, dealing with

serialization of closures (iv) is straightforward. Whenever a function object is en-

countered by our serializer, the following information is serialized: the name of the

function and the hierarchy of explicit scope objects reachable through the special

parentScope property.

4.1.3 Closure Loading

Finally, this serialized closure information needs to be restored (v), possibly on

another browser. However, it is not trivial to recreate the binding between each

closure-bound variable and the value it had at the time of serialization. For exam-

ple, consider the example code at the end of Sample Code 4.1. Imagine we take

13



1 function CreateCounterScope_1() {
2 var count_val = 15;
3
4 objIndex[ID].inc = function(add)
5 {
6 count_val += add;
7 alert(count_val);
8 };
9 }

Sample Code 4.3: Example of generated code for closure restoration after
migration.

a snapshot of this program after these two lines execute, in browser A, and then

restore it on another browser B. Now if a call to window.myCounter.inc(2)

is made in B, it must respond with an alert of ‘17’. But how do we get the variable

count val in the restored version of window.myCounter.inc to reference

its properly restored value of 15, which was taken at browser A? Or in other words,

how does a generic tool-driven transformation provide this without understanding

the semantics of the program?

A naive solution would be for our tool to call the function CreateCounter

passing an argument of 15. In this particular case, it would create a new counter

object with the initial value 15. However, a tool could not discover these semantics

of the program in the general case because it would require a sound and complete

static data-flow analysis, which is known to be undecidable [23, 28]. Furthermore,

if CreateCounter had side effects, these side-effects would be triggered upon

session migration, which would violate the original program semantics. For ex-

ample, if the function CreateCounter issued an XMLHttpRequest (XHR)

request, then calling the function for the purpose of restoring a previous program

state would cause the XHR to be duplicated.

Instead, our solution involves generating new code that causes closure-bound

variables in functions to become bound to their properly restored values. We unse-

rialize the explicit scope object for the execution of a function by generating a new

function, as shown in Sample Code 4.3. We generate one variable declaration for

each value saved in the scope object. For example, on line 2, the count val vari-

able is defined and assigned to its current value. Recall that this code is generated

14



so we can insert whatever values are necessary into the text of the code to initialize

variables. In this case, count val is assigned its current value of “15”.

When a snapshot is restored, this code is evaluated by the target browser, recre-

ating the closures and binding their closure-bound variables to the proper values.

We can see this in lines 4-8. We keep a map called objIndex, which contains

all objects that are being restored during deserialization. This map is indexed by

a unique ID assigned to each object, in our example objIndex[ID] points to

our counter object. In order to restore the function property inc for our example

counter, the function definition for inc is generated inside the scope of our gener-

ated function that models its parent scope CreateCounterScope 1. Now the

new copy of inc has its count val variable bound to the appropriate value of

‘15’ using the standard mechanism for binding closure-bound variables. If a call

to this counter is made now with an argument of ‘2’, it will appropriately respond

with ‘17’.

4.2 Event-Handlers
In order for a web app’s state to migrate, we need to capture and restore its event

state. To explain this challenge and our solution, we first start with a brief expla-

nation of the salient details of the JavaScript event-model.

Relevant JavaScript Event Basics

Browser embedded JavaScript provides a single-threaded concurrency model for

handling the browser’s user interface. Programmers register event-handler func-

tions with some event type that should trigger them, e.g. when a button is clicked

by the mouse. When such an event occurs, any corresponding event-handlers be-

come queued for execution. Since handling of events is single-threaded, event-

handlers may not actually begin execution immediately when their corresponding

event is triggered. If another event-handler is executing at that time, other event-

handlers are placed on an active queue and are serviced by the browser generally

using a first-in-first-out (FIFO) policy.

In order to monitor event handler registration, we instrument the APIs that are

used to register events (e.g. addEventListener). Additionally, when each
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handler function is registered, we wrap that function with a Decorator [16], that

records when the handler execution begins and when it completes. This is needed

so we can monitor which events have completed and which are still pending (fur-

ther details described below). Since our transformation for closures allows func-

tions to be included in a snapshot it is easy to include each event-handler function

as well. However, some types of events (especially timer events) require special

treatment, so we divide them into three categories and describe the differences be-

low.

Event Categories

Based on the HTML5 specification, we divide event types into three categories

with differing behavior from the perspective of migration.

UI Events: When a relevant event occurs on a given UI element, any correspond-

ing handler function is added to the end of the active queue. UI Events do not

require any technical solution because of the FIFO policy of browsers. When IM-

AGEN is asked to save a snapshot by the user, this request is added to the end of the

active queue, so any relevant event handlers already queued because of previous

UI interactions are guaranteed to execute before the snapshot is taken.

Asynchronous I/O Events: JavaScript uses an asynchronous model for handling

I/O requests that could potentially have high latency (such as XHR). For this pur-

pose JavaScript requires a callback function to be registered to receive a result

from an I/O request. Results which are pending at the time of a snapshot can pose

a challenge. For this reason, we capture all requests for I/O in our instrumentation

of JavaScript. If a snapshot is taken when a response for some request has not yet

occurred, we record the request in the snapshot. Later, when a snapshot is loaded,

we replay such requests so that the result can arrive at the migrated location.

Timer Events: Event-handlers can be registered to start executing after some given

time has elapsed. We refer to the time that a handler is registered at as treg and the

time to elapse as interval. Such handlers come in two flavors, (1) setTimeout

causes a handler to execute one time only. At time treg + interval, the browser will

add the corresponding handler function to the active queue; (2) setInterval
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Figure 4.1: setInterval example. Time flows from left to right along the
axis (top) at Browser 1, and (bottom) at Browser 2.

causes a handler to execute periodically for a given interval. Here, the browser

will add the handler function at time treg + interval ∗ x for all integers x > 0. If

any timers are scheduled to execute when a snapshot is requested, this schedule

needs to be saved. Dealing with timers is more complicated than for the other two

categories, so we describe our solution in more detail below.

4.2.1 Saving and Loading for Timers

We describe here how we handle the case of setInterval timers as

setTimeout is a simpler case of this general behavior. As in the illustration of

Figure 4.1, suppose a script registers a setInterval in some browser (Browser

1) at some time, treg. Let the time of the interval registered be interval. Now sup-

pose the user requests a snapshot at some time, timg, where timg > treg. This scenario

is illustrated on the top timeline of the figure.

At this point, the registered event-handler needs to be activated at some time in

the future. Since the future time may occur when the app has migrated to another

browser, IMAGEN must handle this case. To handle this, we record the residual

time, ((treg− timg) mod interval), in the snapshot, labeled as r in the figure. This

represents the time remaining until the handler should be activated.

Later, suppose a snapshot is transferred to another browser (Browser 2), de-

picted by the dotted line in the figure. At this time, t0, IMAGEN automatically
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1 img = document.createElement("img");
2 img.src = "http://example.com/img.jpg";
3 pattern = canvas.createPattern(img);

Sample Code 4.4: Example of CanvasPattern (an opaque HTML5 object).

re-registers a setTimeout handler in the new browser but setting the timeout to

the recorded residual value. This will cause this shorter interval to activate only

once after restoration. After the handler has executed once on the short interval,

it then needs to resume on the original interval at time trereg. To achieve this, we

use our injected decorator code to re-register the original setInterval imme-

diately after the handler has executed once on the short residual interval. Now the

interval will continue executing seamlessly without unexpected changes in runtime

behavior.

4.3 HTML5
A traditional JavaScript object is simply a set of key-value pairs (i.e. a map or

dictionary). However, native browser objects such as those commonly provided

by the newer HTML5 APIs include some objects which have differing behavior

from traditional objects. In our research, we first implemented our solutions to the

problems of function closures and event-handlers described in Sections 4.1 and 4.2.

We then attempted to use our prototype on existing web sites. This trial uncovered

two new problems related to HTML5. These observed problems are related to

“opaque” objects and stream resources.

4.3.1 Opaque Objects

Traditionally, the entire state of an object can be accessed through its properties. So

including the state of an object in a snapshot simply requires enumerating property

values (i.e. as would be done by JSON). However, some HTML5 objects include

state which is not accessible through its properties. These objects are referred to as

“opaque” in HTML5 specifications (e.g. [7]).

An example is illustrated in Sample Code 4.4 with an HTML5

CanvasPattern object. On line 1, an HTML <img> is created and the source
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URL is set on line 2. On line 3, an image pattern is created from this image. Such

patterns are used, for example, to create a tiled background from a single image tile.

The function call on line 3 yields our result assigned to the pattern variable.

If we are to save a snapshot for an app which includes the pattern, we need to

know which image URL is to be used by the pattern. Unfortunately, although the

API uses an image to construct the pattern, there is no corresponding “getter” in

the API to interrogate which image was responsible for the pattern. In other words,

we would like to use something like pattern.img to determine this association

since this is how traditional JavaScript objects maintain properties. However, in

this case such state simply becomes hidden to JavaScript behind the native imple-

mentation of the browser, i.e. pattern is opaque and hides its internal structure.

To deal with this problem, our instrumentation intercepts HTML5 API func-

tions which construct or mutate opaque state. We record both the function name

being called and all of its arguments. We associate these records with the opaque

object being created or mutated. This yields a log associated with the opaque ob-

ject in our snapshot. Later, when we load a snapshot, to recreate the object state,

we replay this log of function calls.

Note that theoretically, we could use the same log replay approach for all ob-

jects (not just the opaque HTML5 objects). However, this would yield a log size

which is impractical. We evaluate this further in Section 5.4.

4.3.2 Stream Resources

Similar to “opaque” objects, streaming media objects, such as <audio> and

<video> objects, do not behave like traditional objects. This is because the state

of the object consists of a data stream which is progressively buffered over time.

Such buffers are generally too large to include in a snapshot, so it is more practical

to reload them from their original location after migration. However, since loading

of these objects is an asynchronous operation, resuming execution of a snapshot

that includes them creates difficulties synchronizing their playback with the script

execution.

An example of this problem occurred when we applied one of our earlier pro-

totypes to the ColorPiano app [11]. ColorPiano is a piano teaching animation.
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As a song is played, the app animates a slider of sheet-music notes and animates

keys playing each note. Session migration would be useful here as it allows pi-

ano students to pause and resume at any particular positions in any songs they

are practicing. ColorPiano does not include this feature in its current implementa-

tion. However, when we loaded a saved snapshot of ColorPiano, we noticed that

the animation and the audio became out of synch. This is because upon loading

the snapshot in a new browser, the audio stream was not yet ready to play at the

position of the song where we had left off. The problem is clearly not specific

to ColorPiano but is general for any applications using IMAGEN with such media

objects.

To deal with this, we make use of support for random seeking in HTML5 and

modern media servers. This allows scripts to initiate buffering at any position in

a stream. When a snapshot is saved, we record the stream position of each media

object and its status (whether it is playing or paused). Then when a snapshot is

loaded we request that playback for these objects resume at the position recorded

in the snapshot. We are able to use a function in the HTML5 specification called

seekable to determine when the buffer for these objects is playable at the speci-

fied position. Once all the playing objects are playable at their previously recorded

snapshot position, we allow the original execution to resume, as it is now synchro-

nized with media.

For example, in ColorPiano, this creates an additional delay of a few seconds

when loading a snapshot (specific data provided in the evaluation). However, once

the snapshot resumes, the sheet music animation and the corresponding audio re-

sume seamlessly.

4.4 Other implementation details
Our implementation consists of two main parts: a source code transformation for

JavaScript (written in Java) and a library of JavaScript functions.

The Java-based transformer is built on top of Mozilla’s Rhino open-source

project. It provides us JavaScript in the form of abstract syntax trees (ASTs) which

we then analyze and transform with our own code. Our own Java code is 6,923

lines. The transformer can be run by a developer through the command-line to
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transform their JavaScript code. Alternatively, the transformer can be hosted in an

HTTP proxy by any user. We added a plugin to the WebScarab [35] proxy for this

purpose. In the future we plan to implement this proxy feature as a browser plugin

also.

Our JavaScript library is injected into a web app by the transformer (by in-

serting a <script> tag into the DOM). The library performs most of the work of

saving and loading snapshots. It retrieves information that was stashed away by the

instrumentation. This information is combined with other data available through

window to build a JSON formatted snapshot file consisting of: function closures,

plain JavaScript objects, event-handlers, media objects, the DOM, and optionally

any cookies for the web app. To JSONize the DOM we make use an existing library

called JsonML [22]. Our own JavaScript library is 5,028 lines of code.

Cookies can be included so the same app can continue running without inter-

ruption on another browser even when cookie data is used by the app. Since users

are in control of their own snapshot data, this does not leak the user’s cookies to

any third-party. However, since some users may want to share their snapshot with

others, this feature is optional. In our experience, if cookies are required by the

app, but they are stripped from the snapshot, the app will treat the user as though

their session had timed out. In that case, a user would simply need to provide

any credentials (such as username and password) another time when they load a

snapshot.
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Chapter 5

Evaluation

We evaluated IMAGEN from the perspective of a number of research questions:

1. Is it possible to serialize a snapshot of the execution state of a running

JavaScript app and resume execution on another browser? This is evaluated

by using five different apps from three domains: gaming, data visualization

and multimedia.

2. Is the performance of Snapshot efficient enough for practical use? This is

evaluated through a number of performance metrics divided into three cate-

gories: Instrumentation (Section 5.1), Execution Overhead (5.2), and Snap-

shot Lifecycle (5.3).

3. To what extent can this work for different browsers, and devices? This is

evaluated by performance metrics for one app across four browsers and three

devices.

4. For the purpose of session migration, how does the approach of IMAGEN

compare to MugShot’s approach of event logging [26]? This is evaluated by

a comparison of snapshot (or log) size for each approach (Section 5.4).

Evaluation was performed on a number of different browsers and devices. Un-

less otherwise stated, measurements come from Google Chrome v.23, running on

a Windows 7 quad-core 2.8GHz laptop with 8GB of RAM.
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We evaluated metrics across five HTML5 apps:

1. Robots are people too (RAPT): A side-scrolling game as described in Sec-

tion 2.

2. Convergence: A puzzle strategy game [8].

3. SketchPad: An image editor as described in Section 2.

4. Genoverse: A genome browser [17]. Session migration is important for

Genoverse because of the magnitude of data that users need to navigate.

While Genoverse allows users to tag certain locations in a gene sequence

for reference in navigating data, such tags are not saved across sessions.

IMAGEN allows tags and other session-specific data to be saved in Genoverse

without any additional programming labor.

5. ColorPiano: A piano teaching animation program as described in Sec-

tion 4.3.2.

5.1 Instrumentation Overhead

App JS Size JS Size Instrumentation
Name Original Increase Time

(kB) (%) (ms)
RAPT 225 24% 702
Convergence 381 18% 780
SketchPad 200 13% 566
Genoverse 349 14% 801
ColorPiano 236 16% 636

Figure 5.1: Instrumentation metrics for a number of apps.

Figure 5.1 shows several metrics related to our JavaScript instrumentation.

This occurs at item (2) in the Save Snapshot Flow (Figure 3.1). The table includes

columns for: the application tested, the aggregate size of JavaScript files, the in-

crease in size due to our instrumentation, and the time of instrumentation. From the

third column (JS Size Increase) we can see that our instrumentation adds less than

25% to the aggregate file size in all cases. We could reduce this size somewhat in

the future if we implemented JavaScript minification. The number varies between

applications because the instrumentation depends on which language features or
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APIs are used. In the fourth column, we see time taken by our proxy to instrument

JavaScript files. In the case where JavaScript is transformed on-the-fly this extra

time is likely to be noticeable by the end-user, however, it was less than one second

in all cases. For cases where a developer applies our transformation offline, this

instrumentation time is not perceived by the end-user.

5.2 Execution Overhead
Since our approach requires JavaScript code to be instrumented, it will have some

overhead during execution. This metric measures that overhead by profiling ap-

plications with and without our instrumentation. This corresponds to overhead in-

curred at steps (3) or (7) in Save Snapshot Flow or Load Snapshot Flow. Execution

times are measured by wrapping each event handler execution with a Decorator that

records clock time before and after the handler. These elapsed times for handler

execution are aggregated over one minute of program activity to record the time

spent by the browser executing JavaScript. These measurements are averaged over

10 trials, then compared for the case of instrumented and uninstrumented versions

of the app.

The execution overhead could be affected by both: (i) the browser used to

host the application or (ii) the particular application which is running. This yields

three-dimensions of data (metric, browser, and application). However, while it is

interesting to see how the metrics are affected for each browser or each application,

there is not much useful information to be gleaned for each combination of browser

and application together. So we present the data in two different two-dimensional

tables. First, for the case of varied browsers and device1 (Table 5.2) with the ap-

plication chosen as RAPT. Then, second, we present the data for the case of varied

applications (Table 5.3), with the browser chosen as Chrome.

In Figure 5.2 we see the execution overhead for RAPT in the fourth column.

We performed the same test case for each row2. Clearly, the device and browser

has an effect on this overhead, but in all cases it was less than 10%. The reason

this number is fairly low is because, although features like closures, events, and

1The Mac is a 2.2GHZ i7 with 8GB RAM running OS X 10.7.3
2We simply move the character in one direction continuously since this is easily repeatable
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App Browser Device IMAGEN

Name Type Type Exec. Overhead
(%)

RAPT Chrome PC 1.4%
RAPT Firefox 17 PC 3.8%
RAPT IE 9 PC 9.5%
RAPT Safari 6 Mac 2.9%
RAPT Safari 5.1.1 iPad 2 8.0%

Figure 5.2: Execution Overhead for RAPT across a number of browsers and
devices.

HTML5, are important, the majority of JavaScript statements are not using these

features directly. Our instrumentation only needs to be added for those statements

directly using these features. Since the overhead was very small for Chrome on

our PC laptop, we hope that this level of overhead could be achieved for the other

platforms through further optimization. We chose RAPT to evaluate on several

platforms as it was the most CPU intensive app in our group.

Figure 5.3 shows the overhead for the other apps on our PC using Chrome.

Here the overhead is even lower which is likely due to the fact that they simply use

less of those aforementioned features, per line of JavaScript, than RAPT. To ensure

the same test case is used for the instrumented and uninstrumented version, we

use a UI recorder/playback program [20]. For all 5 apps we we verified success-

fully through simple inspection that the program execution resumed after migration

without errors.

App IMAGEN

Name Exec. Overhead
(%)

Convergence 0.97%
SketchPad 0.21%
Genoverse 0.43%
ColorPiano 1.2%

Figure 5.3: Execution Overhead for apps on PC Chrome.
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Figure 5.4: Snapshot Save Time (solid) and Load Time (striped) for: RAPT,
Convergence (Conv.), SketchPad, Genoverse (Geno.), and ColorPiano
(Piano).

5.3 Snapshot Lifecycle
The metrics related to the snapshot lifecycle are:

• Snapshot Save Time: The time it takes to create a serialized snapshot of the

running application’s execution state, in milliseconds. This occurs immedi-

ately before step (4) in the Save Snapshot flow.

• Snapshot Load Time: The time it takes to recreate a running application from

a given serialized snapshot of the execution state, in milliseconds. This takes

place immediately before step (7) in the Load Snapshot Flow.

• Snapshot size: The size of the serialized snapshot which would need to be

transferred over the network for migrating between devices, in megabytes.

This is the amount of data which needs to be transferred during step (4) or

(6) in either Save Snapshot or Load Snapshot Flow.

In Figure 5.4 data is provided for the time to save and load a snapshot for each

of the apps. The first bar in each column shows the save time, with the second bar

showing the load time. Unsurprisingly the time to save and the time to load appear

to be correlated, for example, ColorPiano has both the highest save and load time.

Examining Figure 5.5 we see this correlation carries over somewhat to the snapshot
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size, although not precisely. On one hand, it makes sense that ColorPiano has both

the highest save time and the largest snapshot size. On the other hand, RAPT has

the fastest save-time but not the smallest snapshot size. This is likely due to the fact

that RAPT carries most of its state in one large canvas object so there are few

objects in RAPT for our tool to process, whereas other apps have their state spread

across many more fine-grained objects which each require separate processing.

App Snapshot
Name Size

(MB)
RAPT 2.037
Convergence 2.417
SketchPad 1.953
Genoverse 1.379
ColorPiano 8.329

Figure 5.5: Snapshot Size for a number of apps.

Figure 5.5 shows the size of a snapshot taken for each of these apps after we

used the application for a short period, for example, playing RAPT or scribbling

on the SketchPad for a minute. These actions taken by a user do have some effect

on the snapshot size, but for the most part, the size does not vary greatly over time

(this is shown further in Section 5.4). This is true unless a large amount of new data

is actually generated by the user, e.g. finishing a detailed painting in Sketchpad.

However, it that case we expect the user would want that data saved anyway, so it

probably wouldn’t be considered as an overhead imposed by IMAGEN. For three

of the four apps, the snapshot size was about 2MB or less. This amount of data

is likely to be saved and transferred by any user without any problem. We believe

even the case of ColorPiano at 8MB is still modest. It is certainly possible other

apps we have not tested vary greatly from these numbers although these apps do

cover a range of different web app use cases.
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5.4 Snapshot Size vs. Mugshot Log Size
In theory there are two ways to recreate the state of a program: state-capture or

event-playback. IMAGEN works through state-capture: at a given instant in time

the complete state is recorded to stable storage. On the other hand, Mugshot is an

existing approach that provides event-playback for Web applications: each event

that occurs during program execution is recorded in a log and the log can be used

later to playback the application to some state. State-capture has the advantage that

recording size is limited by the size of the application state. Event-playback has

the advantage that a user can return to any point in the history of execution.

Here we address our fourth research question and demonstrate why state-

capture is a more practical solution for supporting browser session migration. The

evaluation is not intended to show that IMAGEN is better than Mugshot, because

Mugshot was not even designed as a tool for session migration. Mugshot uses

event-playback because that approach is useful for the purpose of debugging. Re-

gardless of this evaluation, Mugshot would continue to be a better tool for its in-

tended purpose of debugging. However, since our focus is on migration, we show

why IMAGEN is practical in this regard.

The problem with event-playback, which we demonstrate here, is that the event

log grows without bound as execution continues. For the purpose of session mi-

gration, this would create a limit on the amount of time a user can use an app

before migration became intractable. The only way to avoid this problem is to cre-

ate a checkpoint which captures the state at some point, relieving the need for the

event-log up to that checkpoint. This is precisely what IMAGEN does.

In a previous paper on Mugshot, measurements were provided which show the

growth rate of the size of the event logs for some apps. Here we compare the size

of a IMAGEN snapshot for the same apps versus the size of those logs as they grow

over time.

The first comparison is provided for a PacMan clone [9]. The log growth rate

during gameplay was given by Mugshot as 75kB per minute. This means that

after four minutes the log size for Mugshot would already be 300kB whereas in

our measurements the IMAGEN the snapshot size continues to be roughly 25kB

regardless of how long the game is played. While 300kB is not large, this trend
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places an unnecessary time limit on the user. Also, this size is modest because

this application only relies on keyboard events which are usually less frequent than

mouse events (mouse events must continuously track screen position). The next

comparison shows how the case is worse for these commonly used event types.
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Figure 5.6: IMAGEN snapshot vs. Mugshot Log Size for Canvas Painter.

This second comparison is provided for a paint program called Canvas

Painter [32]. The log growth rate was given by Mugshot as 795kB per minute.

This is shown in Figure 5.6 interpolated over the period of four minutes. For IMA-

GEN, we took the snapshot size at each one minute interval, over a period of four

minutes. The activity provided as input is simply random pencil drawing on the

canvas. Now we see a large difference as the Mugshot log grows to 3MB in only

four minutes, whereas for IMAGEN the snapshot size grows slowly. After only

thirty minutes, the event logging approach would most likely be impractical for

session migration. While difficult to see in the graph, the IMAGEN snapshot grows

from 23kB to 26kB over the four minute interval.

While it is possible for an event log to be more efficient than a state snapshot at

the early part of program execution, event logs will always grow without bound. A

combination of checkpointing and event logging could possibly bring some bene-

fits for session migration, however, this was not needed for any of the applications

we looked at and IMAGEN’s approach never resulted in a snapshot larger than 9MB.
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This evidence suggests that for the specific case of session migration, state capture

is a more practical approach.
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Chapter 6

Related Work

6.1 State Synchronization
State synchronization can be seen as a special form of state migration. For instance,

Amazon Kindle’s WhisperSync and Chrome browser’s sync support synchroniz-

ing bookmarks across different devices. Online tools for collaborative editing or

browsing synchronize the DOM’s tree structure [5, 15, 18, 25]. Sync Kit [3] and

Replets [36] replicate server data of apps to the browser but do not handle other

runtime state such as closures or events. WedPod [30] offers cross-device brows-

ing by implementing a special purpose Linux-based browser that persists a session.

IMAGEN runs in JavaScript on existing browsers across multiple devices.

6.2 Deterministic Replay
Deterministic replay is primarily used by event-capture/replay testing and debug-

ging tools. These tools allow advanced developers to revisit any recorded program

state to track down bugs. However, deterministic replay also requires constantly

logging the application’s dispatched events. Our evaluation indicates that these

logs are not likely to be practical for use by end users in session migration.
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6.3 Object Serialization and Persistence
As described in the introduction, using a persistence library [3, 6, 29], the pro-

grammer still has to manually register and manage individual objects. Moreover,

persistence is a cross-cutting concern, so scattered changes are need over the ap-

plication’s code, making it less maintainable.

The automated and generic nature of our instrumentation makes our approach

transparent and helps developers keep their original source code intact. While

our previous work [6] helped to automate database tasks related to persistence of

JavaScript objects, it did not handle function closures, event-handlers, media ob-

jects, or the other challenges we addressed in this paper related to the migration of

running browser sessions.

6.4 Server Side Process Migration
Server side process migration [13, 24, 27] transfers a system level process be-

tween two machines and is used for administration tasks such as load balancing

and fault-resilience. Process migration happens in the kernel so implementation is

quite complex. Such systems work at a lower-level of abstraction handling issues

such as memory page allocation and thread scheduling. Our work focuses on a

new domain where the Web browser becomes the “operating system”. Traditional

process migration which suffered from slow adoption due to difficulty adapting to

different platforms. Since technologies such as HTML5 are being standardized,

interoperability for browser session migration is easier to achieve.
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Chapter 7

Future Work and Conclusion

We have presented a generic solution to session migration, which works in the

JavaScript layer and also targets some HTML5 APIs. However there are still other

APIs which are not covered by our current implementation, such as WebWorkers

and GeoLocation. WebWorkers provides support for background computational

tasks but since each worker has an isolated memory and cannot respond to UI

events, our assumptions made in this paper that depend on a single-threaded model

still apply. While additional effort will be required to enable support, the fact that

such APIs are being standardized should help making migration support feasible.

While we have not focused on debugging in this paper, it may be possible to

use IMAGEN so that when an end user requires urgent assistance, she can instantly

duplicate and share a session snapshot with developers who could inspect the state

in a web developer tool such as FireBug. We plan to investigate such debugging

support also in our future work. We hope to combine IMAGEN with the Mugshot

approach to bring checkpointing functionality to an event-logging debugger.

In this research, we tackled technical challenges that arise in the context of web

technologies where state is created and managed at the user’s browser. This occurs

frequently in apps that make use of Ajax and HTML5. In order to make such state

data ubiquitously available to users, we investigated an approach based on session

migration, a conceptual descendant of previous research on process migration. Our

solution using JavaScript transformation has the advantage that it does not require

additional coding. From the evaluation the overhead seems reasonable and quite
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low on several apps and browsers. We also showed that an approach to session

migration based on event-playback is not likely to be practical compared to our

state-capture approach.
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