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Abstract 

Structural design standards based on the principles of structural reliability are gaining 

worldwide acceptance and are fast becoming the new basis of structural safety verification.  

The application of these principles to establish a standardised basis for structural design using 

partial factor limit states design procedures is done in the European Standard for the Basis of 

Structural Design EN 1990 from which it is adapted to the South African Basis of Design 

Standard for Building and Industrial Structures SANS 10160-1.  The basis of design 

requirements stipulated in EN 1990 and SANS 10160-1 apply to all aspects of structural 

design: This includes reliability levels of structural performance and their differentiation and 

management; identification of various limit states and design situations; the specification of 

all the basic variables; separate treatment of actions and material-based resistance.  However, 

application of these requirements is then primarily focused on actions whilst the provision for 

structural concrete is then left to the materials based design standards. 

This two-part thesis describes a systematic assessment of the degree to which the application 

of the reliability framework presented in the basis of design requirements has been achieved 

in the present generation of structural concrete design standards.  More importantly, attempts 

are made to identify ways in which the process can be advanced.  Special attention is drawn 

to issues that are specific to South African conditions and practice in structural concrete. 

Part One of the thesis focuses on the key elements of the reliability framework presented in 

EN 1990 and traces to what extent the requirements have been propelled through the design 

stipulations of the Eurocode Standard for Design of Concrete Structures EN 1992-1-1.  The 

implications of the different reference level of reliability between the Eurocode default value 

of � � 3.8 and that characteristic of South African practice � � 3.0 through various issues 

are highlighted.  The use and advantage of explicit treatment of reliability performance on 

reliability management related to some aspects of quality control are explored.  A critical 

aspect is the shear prediction model providing unconservative estimates of shear resistance. 

Part Two of the thesis focuses on characterising the model factor of the EN 1992-1-1 shear 

prediction model for members requiring design shear reinforcement.  This is done by a 

comparison to a compiled experimental database with special focus on situations with high 

reinforcement ratios.  The significance of the modelling uncertainty in shear prediction is 
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verified by this comparison.  The use of the more conceptually rational modified compression 

field theory (MCFT) to improve on the quality of shear predictions is investigated and proves 

to yield more precise values with lower scatter hence making it a more reliable tool for 

predicting shear.  The MCFT can then be used as reference for the reliability calibration and 

possible improvement for the Eurocode procedure. 
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Opsomming  

Strukturele ontwerpstandaarde gebaseer op die beginsels van strukturele betroubaarheid 

verkry wêreldwye aanvaarding en word vinnig die nuwe basis van strukturele veiligheid 

bevestiging. Die toepassing van hierdie beginsels om ŉ gestandaardiseerde basis vir 

strukturele ontwerp is bevestig deur gebruik te maak van gedeeltelike-faktorbeperkende 

stadiums ontwerpprosedures in die Europese Standaard vir die Basis van Strukturele  

Ontwerp EN 1990 waarvandaan dit herbewerk is na die Suid-Afrikaanse Basis van Ontwerp 

Standaarde vir Bou en Industriële Strukture SANS 10160-1. Die basis van ontwerpvereistes  

bepaal in EN 1990 en SANS 10160-1 is van toepassing op alle aspekte van strukturele 

ontverp: Dit sluit inbetroubaarheidsvlakke van struktureele prestasie en hul diversifikasie en 

bestuur; identifikasie van verskeie beperkende state en ontwerpsituasies; die spesifikasie van 

al die basiese veranderlikes; afsonderlike behandeling van aksies en materiaal-gebaseerde 

weerstand. Desnieteenstaande, die toepassing van hierdie voorwaardes is dan hoofsaaklik 

gefokus op aksies terwyl die voorsiening van strukturele beton is dan gelaat op die materiaal- 

gebaseerde ontwerpstandaarde. 

Hierdie tweeledige verhandeling beskryf  ŉ stelselmatige beoordeling van die graad waartoe 

die toepassing van die betroubaarheidsraamwerk aangebied word in die basis van 

ontwerpvereistes bereik in die huidige generasie van strukturele beton-ontwerp standaarde is. 

Meer belangrik, pogings is aangewend om die maniere hoe die proses bevorder kan word te 

identifiseer. Spesiale aandag word gevestig op kwessies wat spesifiek op Suid-Afrikaanse 

toestande en praktyke in strukturele beton toepaslik is. 

Deel Een van die verhandeling fokus op die sleutel-dele van die betroubaarheidsraamwerk 

aangebied in EN 1990 en skets die mate waartoe die vereistes aangespoor word deur die 

ontwerp voorskrifte van die Eurocode Standard for the Design of Concrete Structures EN 

1992-1-1. Die implikasie van die verskillende verwysingsvlakke van betroubaarheid tussen 

die Eurocode standaardwaarde van � � 3.8 en die eienskap van Suid-Afrikaanse praktyk  

� � 3.0 deur verskillende kwessies word uitgelig. Die gebruik en voordeel van spesifieke 

behandeling van betroubaarheidsuitvoering op betroubaarheidsbestuur verwantskap met 

sekere aspekte van kwaliteit kontrole word ondersoek. ŉ Kritiese aspek is die model vir die 

voorspelling van skuif-weerstand wat die onkonserwatiewe beramings vir skuif-weerstand 

gee. 
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Deel Twee van die verhandeling fokus op karakterisering die modelfaktor van die EN 1992-

1-1 skuif-weerstand voorspellings-model. Dit word gedoen deur ŉ vergelyking na ŉ 

saamgestelde eksperimentele databasis met spesifieke fokus op situasies met hoe 

herbevestigingsvergelykings. Die oorheersing van die modellering- onsekerheid in skuif-

weerstand voorspelling is bevestig deur hierdie vergelyking. Die gebruik van ŉ meer 

konseptuele rasionele gemodifiseerde druk-veld teorie (bekend as MCFT) om die kwaliteit 

van skuif voorspelling te verbeter is ondersoek en verskaf ‘n meer presiese waarde met laer 

verspreiding wat lei tot ŉ meer betroubaree instrument om skuif mee te voorspel. Die MCFT 

word dan gebruik  as verwysing vir die betroubaarheid-samestelling en moontlike verbetering 

van die Eurocode prosedures. 
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.                     Effective depth of member 

�                     Diameter of stirrup or link 

1U                    Principal tensile stress in cracked reinforced concrete 

1E                    Principal compressive stress in cracked reinforced concrete 

18                    Compressive cylinder strength of concrete 

18V                  Characteristic compressive cylinder strength of concrete 

18W                  Principal tensile stress in reinforced concrete at cracking 

120                 Yield strength of stirrups 

X                    Height or depth of a member 

JKL                 Multiplication factor for actions, used as differentiation measure 

�                    Lever arm multiplier term 

�7                    Number of layers of longitudinal reinforcement provided in design 

�                     Probability or fractile estimate required from a distribution 
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M �·�                 Probability argument or statement 

M<                     Probability of failure 

Z                      Function of resistance determined on the basis of design values of individual 

          material properties and geometrical data 

Z#               Function of design resistance determined as for Z (above), but divided by 

  
"# 

4                       Spacing of stirrups 

4V                     Skewness of a distribution 

[\]                     Modified transformed variable of the three-parameter log-normal distribution 

[A                     Standardised �-fractile of a distribution   

[^_W�,A             Fractile of a standardised random variable with a normal distribution 

	                      Standardised variable 

!"#,�&'            Upper limit of shear resistance due to crushing of concrete compressive struts 

!"#,%                Design ultimate shear resistance of member due, solely, to stirrup resistance 

`a�                    Checking point value of basic variable X at the �Ob iteration 

`A                     � cfractile estimate of the distribution 

�a                     Material strengths and/or product properties 

�V,a, �V             Characteristic values of material strengths and/or product properties 

�#,a , �#             Design value of material strengths and/or product properties 

d                       Internal lever arm 

�                      Proportion of variability of concrete strength to that of resistance 

�88                   Coefficient accounting of scale effects of concrete 
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�
                Direction cosine of sensitivity factor of specified variable � 

�                  Reliability index 

�e                 Target level of reliability 

�e,"               Target level of reliability for resistance 


D                  Partial safety factor for concrete 


�,a               Partial safety factor for material strength or product property 


"#                Partial safety factor that covers model uncertainties of resistance and     

   geometrical data variations 


f            Partial safety factor for steel 


f#            Partial safety factor that caters for model uncertainties in actions and action    

           effects 


<                  Partial safety factor for actions catering for uncertainty in representative values 

           of actions 


�           Partial safety factor for material or product properties catering for uncertainty in 

          their representative values 


g                Operational partial factor for material property, assumed as taking some account 

          of model and geometrical uncertainty 


�                  Partial factor due to increased quality control of material strength 

hU                  Principal tensile strain in cracked reinforced concrete 

hE                  Principal compressive strain in cracked reinforced concrete 

h'                  Longitudinal strain in the web of a beam 

h2                  Transverse strain in the web of a beam 

i                   General representation of conversion factor taking scale effects into account 

(                  Angle of inclination of concrete compressive struts relative to horizontal axis 
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?
                    Mean value of the random variable � 

67                     Longitudinal reinforcement ratio 

60                   Web or shear reinforcement ratio 

j
                   Standard deviation of basic variable � 

?
\;  j
\           Transformed normal mean and standard deviation, respectively, of variable � 

l                     Probability density 

Φ                     Probability distribution 

l�n�               Probability density distribution of the vector of basic variables � 

o7                    Longitudinal tension reinforcement index 

oO                    Shear reinforcement index 

Ω<                    Coefficient of variation of material strength 

Ω
                    Coefficient of variation of random variable or material property � 

Ω
�                     Improved (reduced) coefficient of variation of basic variable � due to quality 

   management measures 
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Chapter 1 

 
INTRODUCTION TO THE RELIABILITY BASIS OF STRUCTURAL DESIGN  

2 
 

 

 

1.1 INTRODUCTION 

 

Society expects that the occupants and users of buildings and structures and persons in their 

vicinity are safe.  Further, society anticipates that the failure and adverse performance 

(extensive cracking, excessive deflections or vibrations) of buildings and structures is 

extremely rare.  This then poses the responsibility to design and construction professionals to 

produce structures that are safe and durable.  In addition, robustness, which has to do with 

unidentified structural hazards and the use of integral structural design practice to avoid 

damage disproportionate to the cause, has become a fundamental basis of design requirement.  

To be able to achieve safe and durable structures, design and construction professionals 

require a system of verifying adequate structural performance of buildings and structures by 

applying rational and safe procedures through the different stages of a project: planning, 

design, analysis, detailing, construction, and maintenance of structures.   

 

 

1.2 HISTORY AND EVOLUTION OF BASIS OF DESIGN FORMATS 

 

In general, problems of structural design must be resolved in the face of various uncertainties.  

Uncertainties arise not only in the assessment of actions which the structure has to sustain, 

and from the occasional lack of control during the production processes of the materials and 

components required, but also from incomplete knowledge about the mechanical 

formulations describing the response of the structure and its capacity to sustain those actions.  

Structural reliability techniques, compared to other basis of design formats, are aimed at 

rationally quantifying and assessing the effects of uncertainties associated with all aspects of 

structural design.  The uncertainties in the design and construction process are represented by 

way of mathematical statistics and the assessment of structural performance is conducted 

through probabilistic concepts and analyses.  Such treatment of uncertainties gives a rational 

Stellenbosch University http://scholar.sun.ac.za



3 
 

scientific (decision tool) approach to the calibration of structural design provisions.  A brief 

background and evolution of bases of design formats is given below. 

Past generations of design codes were composed of design philosophies that lacked rational 

basis.  This could result in designs that were highly uneconomical due to treating 

uncertainties in design to arise principally from the resistance part of mechanical 

formulations.  In reality, uncertainty is however inherent not only from both the action and 

resistance part of mechanical formulations, but can arise from aspects such as modelling 

uncertainty and geometrical imperfections.  The oldest of the commendable design 

philosophies, the Permissible Stress Method, was based on elastic material response 

principles and treated uncertainties to arise solely from the resistance side.  Aside from not 

being able to represent the semi-plastic post peak behaviour of concrete, the Permissible 

Stress Method only applied a single factor of safety to the resisting stress.  The stress due to 

the actions was based on an assessment composed of characteristic and nominal action and 

dimension values respectively.  Since this method was based on a stress analysis it can only 

be used as a safety verification technique at local points in a structure and cannot be used to 

verify the safety of cross sections and members.  The subsequent design philosophy, the Total 

Factor of Safety Method, was very similar to its predecessor save for the difference that it 

was aimed at safety verification of cross sections and hence loses ability to directly account 

for the variability of materials.   To achieve this, a factor of safety was applied to resisting 

forces that are determined using the material properties and nominal dimensions of the 

structure whose material will provide resistance to applied actions.  However, both these 

methods were not fully representative of the problem in nature by not treating the 

uncertainties from the action side in any rational manner.  As a result, there was only a single 

measure of reliability reflected by the factor of safety applied to the resistance side in both 

instances.   

The later introduced, and currently widely internationally adopted, design philosophy is the 

Partial Factor Limit States Design Method.  This method applies partial factors to increase 

action values and reduce material property values to generate their design values for use in a 

limit state assessment.  Hence, the introduction of this method achieved significant 

improvement in the economy of structures.   The governing condition of a limit state 

assessment is that the action effects should be less than the available resistance.  In this 

method, dimensions are generally implemented at nominal values, but in some cases (second-

order effects, geometrical imperfections, buckling) can assume design values by applying 
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some tolerance limit.  This method can account for the variability of materials by applying 

partial safety factors to the material properties.  Further, it can also be used for safety 

verification of cross-sections and members since the action effects and resistance force of 

cross-sections are calculated for use in the limit state verification.  Until recently, partial 

safety factors used in limit state design verifications were derived mainly by expert 

judgement and by reference to sound traditional designs, thereby lacking the appropriate 

rational and scientific treatment they require.  Structural reliability techniques arise as an 

attempt or method to represent variability and performance of physical models of structural 

systems by taking account of the distributions of the basic variables in mechanical 

formulations used for limit state verifications.  Basic variables are the most fundamental 

quantities the designer has to consider in mechanical formulations.  Structural reliability 

techniques are consistent with the Partial Factor Limit States Design format in the sense that 

partial factors can be derived from reliability analyses and calibration exercises and then 

applied in limit state verifications.  The application of structural reliability as the theoretical 

basis for limit states design ensures that improved economic performance is achieved 

together with improved safety performance across a wide range of practical design situations. 

 

 

1.3 CURRENT STATE OF STRUCTURAL RELIABILITY IN DESIGN CODES 

 

The probabilistic basis of structural design is developed extensively and continuously 

updated in the Joint Committee on Structural Safety (JCSS) Probabilistic Model Code (JCSS, 

2001).  The current collaborators whose efforts support the JCSS are renowned structural 

engineering bodies; International Association of Bridge and Structural Engineering (IABSE), 

Conseil International du Bâtiment (CIB), Fédération International du Béton (fib), European 

Convention for Constructional Steelwork (ECCS), Réunion Internationale des Laboratories et 

Experts des Matériaux (RILEM).  Each of these constitutive bodies of the JCSS specialises in 

an aspect that is key to structural engineering thus the model code contains a wealth of 

comprehensive information and proposals on various issues in structural design across 

different materials that require reliability treatment.  The systematically presented structural 

reliability principles in the JCSS model code are laid down in a standardised manner in the 

international standard General Principles on Reliability for Structures ISO 2394 (ISO, 1998).  
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The application of these principles to establish a standardised basis for structural design using 

partial factor limit states design procedures is done in the European Standard for the Basis of 

Structural Design EN 1990 (EN 1990, 2002) from which it is adapted to the South African 

Basis of Design Standard for Building and Industrial Structures SANS 10160-1 (SANS 

10160-1, 2010).   

The basis of design requirements stipulated in EN 1990 and SANS 10160-1 apply to all 

aspects of structural design: This includes reliability levels of structural performance and 

their differentiation and management; identification of various limit states and design 

situations; the specification of all the basic variables; separate treatment of actions and 

material-based resistance.  In the process of converting the principles of structural reliability 

into deterministic design rules through a method of calibration, the emphasis is placed to a 

large extent on actions whilst the provision for structural concrete is then left to the materials 

based design standards.  Although a reliability framework is developed also for structural 

resistance in the form of partial factors, model and resistance factors for respective classes of 

failure modes, systematic calibration of the materials standards is limited (Holický, Retief & 

Dunaiski, 2007).   

Parametric studies of representative cases of structural resistance are used to derive 

guidelines for structural resistance performance that could be used as basis-of-structural-

design requirements to be considered in the formulation of the materials standards (Holický 

et al., 2007).  Ideally, all aspects of the basis of design requirements should be considered.  

Such explicit reliability guidelines for the specification of structural resistance should 

improve the unification between the standards for the basis of structural design, actions and 

structural materials. 

 

fib Model Codes (initially established as the CEB-FIP Model Codes) 

The Model Codes; the first of which was published in 1978, the second in 1990 and the 

notable 2010 Draft Model Code which was published mid-2010 for review and is still yet to 

be passed by the general assembly of the fib; are advanced state of the art technical 

documents aimed at synthesising research findings and technical information with a view of 

translating them into practice.  By virtue of their international character, the model codes are 

more general than most national codes and provide more detail to aid in the process of 
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national code development and drafting which should take into account national conditions 

and requirements for structural design (CEB-FIP, 1993).  The Model Codes have served as 

fundamental reference and background documents during the entire building process of the 

structural Eurocodes, since their inception in the mid-seventies to on-going Eurocode writing 

activities at current, and will surely still be used in future.   

The aim of the Model Codes, and of the fib in general, is not to repeat the content in 

subsequent revisions, but to rather collect, record, review and disseminate current state of the 

art research and technical information to encourage their use in practice.  Each subsequent 

revision of the model code may be used as basis for national code development activities of 

its era, where such activity is normally centred on the more mature concepts and well 

understood state of knowledge which has been verified by relevant experience.  On the other 

hand, some of the model codes’ innovative contents may, after further calibration, need 

additional elaboration and this activity continues within the association, with the outcome 

being appropriately published in a series of technical publications referred to as  Bulletins.   

Given the importance of the Model Code presented above, its view and treatment of 

structural reliability is key for consideration by national codes.  Volume 1 of 2 of the 1978 

Model Code, which was compiled by the JCSS, achieved the goal of unifying the basic data 

for design rules for different types of construction and civil engineering materials by use of 

structural reliability techniques (CEB-FIP, 1978).  Volume I, after introducing the general 

reliability framework, then only proceeded to give detail on the implementation for actions 

but with no specific guidance for resistance.  The 1990 Model Code showed no extensions of 

the reliability framework in its provisions, giving reference to the 1978 Model Code for 

guidance on reliability with its focus delving more towards the establishment of more general 

and advanced material characteristics and design models.  The 2010 Draft Model Code has 

shown significant improvements from its predecessor in terms of implementation of the 

reliability framework, with visible trends of reliability aspects considered through different 

methods and cases of the entire design process.  A review of the state of reliability in the 

2010 Draft Model Code is given in Chapter 2. 
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1.4 RESEARCH MOTIVATION AND SIGNIFICANCE 

 

 The European Commission’s initiative to harmonise technical barriers between EU member 

states to allow exchange of information and intensify trade relations has caused each member 

states’ national structural design standards to be replaced by a unified set of Eurocodes.  In 

this transformation, The British Standard The Structural Use of Concrete BS 8110-1 (BS 

8110-1, 1997) on which the currently operational South African standard The Structural Use 

of Concrete SABS 0100-1 (SABS 0100-1, 2000) is based, is being withdrawn and replaced 

by a new operational Eurocode Standard for Design of Concrete Structures EN 1992-1-1 (EN 

1992-1-1, 2004).  For the on-going revision of South Africa’s standard for the design of 

concrete structures, which will be newly referred to as SANS 10100-1, the South African 

Concrete Code Committee has chosen to adopt EN 1992-1-1 as reference.  

 The Eurocodes can be viewed as a general set of reference standards which need to be made 

operational as national standards through the selection of Nationally Determined Parameters 

in National Annexes.  A key parameter for which national choice is allowed and has grave 

effect on matters concerning reliability is the selection of the target level of reliability, of 

which the Eurocode recommends a value of � � 3.8 and South Africa uses a value of  

� � 3.0.  Retief and Dunaiski (2009) propose that the reliability assessment of a future South 

African concrete standard could therefore consist firstly of reviewing the degree to which EN 

1992 complies with and applies reliability principles as set out in EN 1990; and secondly to 

calibrate it in accordance with SANS 10160-1 requirements, including required levels and 

classes of reliability for the restricted scope of building structures. 

Using EN 1990 and EN 1992-1-1 and their relation as base, this two-part thesis describes a 

systematic assessment of the degree to which the application of the reliability framework 

presented in the basis of design requirements has been achieved in the present generation of 

structural concrete design standards.  More importantly, attempts are made to identify ways 

in which the process can be advanced.  Special attention is drawn to issues that are specific to 

South African conditions and practice in structural concrete. 

 

 

 

Stellenbosch University http://scholar.sun.ac.za



8 
 

1.5 OBJECTIVES OF THE STUDY 

 

The general objective of the study is to systematically study and trace the extent that EN 1990 

and EN 1992-1-1 are harmonised in terms of the reliability based framework.  The reliability 

framework and its requirements are identified in EN 1990 and its implementation is traced by 

studying the provisions for structural concrete resistance in EN 1992-1-1.  During this 

process, it is imperative that an assessment is made of the implications for South Africa 

where national choice is allowed.  Further, where abstraction or incompleteness in the 

implementation of the reliability framework is identified in structural concrete provisions, 

improvements or suggested actions to harmonise design practice are recommended.  

Therefore, the specific objectives of the thesis can be outlined as: 

 

1.  To map out and study the reliability framework and requirements as presented in EN 

1990. 

 

2. To trace the extent to which the reliability framework is implemented in deriving the 

EN 1992-1-1 design provisions by use of relevant references and background 

documents. 

 
 

3. To extend the reliability framework where abstraction or incompleteness is found in 

provisions for structural concrete resistance.  Such efforts are made concerning some 

quality aspect of reliability management.  Requirements of the framework are also 

exercised through extensive assessment of the model factor and reliability 

performance of provisions for members requiring design shear reinforcement. 
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1.6 STRUCTURE OF THE THESIS 

 

The thesis is broken down into two parts.  Part One of the thesis focuses on the key elements 

of the reliability framework presented in EN 1990 and traces to what extent the requirements 

have been propelled through the design stipulations of the Eurocode Standard for Design of 

Concrete Structures EN 1992-1-1.  Chapter 2 presents the extensive basis of design 

requirements for all structural materials as set out in EN 1990, with a brief insight into 

reliability implementation and recommendations of the Draft fib 2010 Model Code for 

concrete structures.  Thereafter, an assessment of the reliability-based provisions in EN 1992-

1-1 is presented where their adequacy and completeness are critically reviewed.  Chapter 3 

focuses on resolving inconsistent issues of reliability-base that are identified in the provisions 

for structural concrete. A general summary to Part One is given in Chapter 4. 

Part Two of the thesis focuses on characterising the model factor and reliability performance 

of the EN 1992-1-1 shear prediction model for members requiring design shear 

reinforcement.  Chapter 5 gives all the necessary background and literature on the shear 

prediction model, whereas Chapter 6  gives background on the techniques required for 

statistical and reliability analyses of the shear prediction procedures.  Chapter 7 is dedicated 

to the determination and characterisation of the model factor for the Eurocode shear 

prediction model for members requiring design shear reinforcement.  This chapter culminates 

at the important step of selecting an appropriate distribution of the model factor to be used in 

the reliability analysis procedures that form the base of Chapter 8.  Chapter 8 is concerned 

with the reliability analysis of the EN 1992 shear prediction model for members requiring 

stirrups.   

 

1.7 NOTE ON REFERENCE TO STANDARDS 

Repeated reference is made throughout the thesis to EN 1990 and EN 1992-1-1.  For ease of 

reference and for convenience, EC 0 is adopted to refer to EN 1990 and EC 2 is adopted to 

refer to EN 1992-1-1. 
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OVERVIEW OF THE RELIABILITY FRAMEWORK FOR STRUCTURAL RESISTANCE 

10 
 

 

 

2.1 INTRODUCTION 

 

This Chapter takes a systematic view at the link between the internationally accepted basis of 

design requirements and how they are implemented in current provisions for structural 

concrete design that rely on these concepts.  For this assessment, the case of the structural 

Eurocodes is studied.  Thus, EC 0 is used as reference for the basis of design requirements 

and is further used to map out the reliability framework for structural performance.  EC 2 is 

used as reference to determine to what end the principles of structural reliability, in 

accordance with the framework from EC 0, have been applied in developing the provisions 

for structural concrete resistance. 

EC 0 describes the Principles and requirements for safety, serviceability and durability of 

structures.  The requirements apply to all aspects of structural design: This includes: 

 

1. Reliability levels of structural performance and their differentiation and management,  

2. Identification of the various limit states and design situations, 

3. The specification of all the basic variables, and  

4. Separate treatment of actions and materials-based resistance.   

 

All Eurocodes rely on EC 0 for the basis of structural design.  The provisions of EC 0 are 

therefore applicable to all materials and as such only the requirements that are independent of 

material properties are dealt with therein.  The design philosophy for safety verification is 

based on the limit state concept used in conjunction with the partial factor method.  In the 

case of partial factor limit states design, performance requirements are expressed in terms of 

design situations to be considered, limit state principles and associated reliability levels. A 

significant part of the basis-of-design procedures stipulates action combination schemes for 

the various design situations and limit states.  Provision for structural resistance is then left to 

materials-based design standards; with guidance given for the implementation of the 
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principles of structural reliability in the standardisation process provided in annexes and 

referenced material.   

Parametric studies of representative cases of structural resistance are used to derive 

guidelines for structural resistance performance that could be used as basis-of-structural-

design requirements to be considered in the formulation of materials standards (Holický et 

al., 2007).  Holický et al. (2007) suggest that in the calibration of materials standards in 

accordance with the reliability framework, parameters to be taken into account include the 

specification of characteristic material properties, partial material, model and resistance 

factors, and the nature of failure consequences for the various failure modes.  However, the 

general procedures for concrete design entail the way in which provision is made for 

sufficient reliability of structural resistance.  This is typically done through schemes of partial 

factors and specification of characteristic values for basic variables applicable to design 

procedures. 

 

 

2.2 STRUCTURAL RESISTANCE PERFORMANCE (Based on EC 0) 

 

 2.2.1 Basis of design requirements 

Four basic fundamental basis of design requirements can be summarised from Section 2 of 

EC 0 (Narayanan & Beeby, 2005).  The structure should be designed and executed in such a 

way that it will: 

 

1. During its intended life, with appropriate degrees of reliability and in an economical 

way: 

a. Sustain all actions and influences that are likely to occur during execution and 

use  

b. Remain fit for the intended use 

 

2. Have adequate mechanical resistance, serviceability and durability 

3. In the event of fire, have adequate resistance for the required period of fire exposure 
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4. Not be damaged by accidents (e.g. explosion, impact and consequences of human 

error) to an extent disproportionate to the original cause. 

 

Section 2.1(6) of EC 0 states that the basic requirements should be met by the choice of 

suitable materials, by appropriate design and detailing and by specifying control procedures 

for design, production, execution and use relevant to the particular project.  All these factors 

affect structural resistance and should be considered when specifying the provisions for any 

materials standard.   

 

 2.2.2 Reliability management 

Section 2.2 of EC 0 deals with the important issue of reliability management.  Reliability 

management is concerned with factors that affect the reliability performance of structures.  

Aspects of reliability management form the basis of schemes for reliability differentiation of 

structures.  Reliability management, in simple terms, is concerned with the attainment of 

appropriate reliability levels for structures and the control of construction works attaining 

different reliability levels.  The different reliability levels are linked to different reliability 

classes that are differentiated or adjusted in accordance with stipulated risk principles.  

Quality management is stated, and exercised in informative Annex B in EC 0, as an essential 

component of reliability management.  EC 0 specifies that the choice of the levels of 

reliability for a particular structure should take account of the relevant factors, including: 

 

1. The possible cause and/or mode of attaining a limit state, 

2. The possible consequences of failure in terms of risk to life, injury, potential 

economic losses, 

3. Public aversion to failure, and 

4. The expense and procedures necessary to reduce the risk of failure. 

 

Annex B, which is concerned with the management of structural reliability for construction 

works with regard to ultimate limit states excluding fatigue, is an informative annex that 

provides additional guidance on reliability management.  This annex is also applicable to 
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appropriate clauses in the actions and materials standards, EN 1991 to EN 1999, and is key 

when considering provisions in the materials standards, in this case EC 2, when reviewing its 

provisions related to aspects of reliability differentiation.  In this annex, a framework is 

formulated to allow different levels of reliability to be adopted either between different 

constructions or by classification/differentiation of the components in a single structure.  Two 

procedures are considered effective in controlling attained reliability levels: 

 

1. One allowing for moderate differentiation in the partial factors for actions and 

resistances, 

2. The other allowing for differentiation between various types of construction works in 

the requirements for quality levels of the design and execution process. 

 

Reliability differentiation is an important issue concerning structural performance and in 

formulating the provisions for materials standards and is therefore treated separately in 

Section 2.2.3 below. 

 

2.2.3 Reliability differentiation  

EC 0 defines reliability differentiation as measures intended for the socio-economic 

optimisation of the resources to be used to build construction works, taking into account all 

the expected consequences of failures and the cost of the construction works.  Annex B, 

which gives the framework for reliability differentiation of structures as introduced in Section 

2.2.2 above, is explored in an attempt to assess the requirements that set or affect the 

reliability performance of structures. 

 

Consequence classes 

As a first step into the differentiation process, consequence classes that consider the 

consequences of failure and malfunction of the structure are established.  Consequence 

classes (CCs) are distinguished based on the importance, in terms of consequences of failure, 

of the structure or structural member concerned.  Table 2.1 gives a description of the criteria 
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associated with each Consequence class and examples of civil engineering works where each 

class may be applicable. 

 

Table 2.1.  Definition of consequences classes (EN 1990, 2002) 

Consequence 

Class 

Description Examples of buildings and civil 

engineering works 

 

CC3 

High consequence for loss of human 

life, or economic, social or 

environmental consequences very 

great 

Grandstands, public buildings 

where consequences of failure are 

high (e.g. a concert hall) 

 

CC2 

Medium consequence for loss of 

human life, economic, social or 

environmental consequences 

considerable 

Residential and office buildings, 

public buildings where 

consequences of failure are medium 

(e.g. an office building) 

 

CC1 

Low consequence for loss of human 

life, and economic, social or 

environmental consequences small 

or negligible 

Agricultural buildings where 

people do not normally enter (e.g. 

storage buildings), greenhouses 

 

 

Differentiation by � values 

Reliability classification, and therefore differentiation as well, can be represented by � 

indexes or reliability indices.  Three reliability classes RC1, RC2 and RC3 may be associated 

with the three consequence classes CC1, CC2 and CC3.  This implies that specification of a 

consequence class is directly linked to a specific reliability class and vice versa is true.  Table 

2.2 shows the recommended minimum values for the reliability index  � for the ultimate limit 

states with associated consequence classes. 
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Table 2.2.  Recommended minimum values for reliability index � (ultimate limit states)  

Reliability Class Consequence class Minimum values for β 

1 year reference 

period 

50 years reference 

period 

RC3 CC3 5.2 4.3 

RC2 CC2 4.7 3.8 

RC1 CC1 4.2 3.3 

 

 

Differentiation by measures relating to partial factors 

Reliability differentiation can be achieved by distinguishing classes of partial factor for 

actions, ��, to be used in fundamental combinations for persistent design situations.  A 

multiplication factor, ���, may be applied to the partial factor for actions.  Recommendation 

of the value of ��� to be used for each reliability class are given in Table 2.3.  Load 

combinations and design situations where ��� is applicable to persistent design situations for 

limit state verifications are discussed and considered in Section 2.2.4.   

 

Table 2.3.  ��� factor for actions (EN 1990, 2002) 

KFI factor for actions Reliability class 

RC1 RC2 RC3 

KFI 0.9 1 1.1 

 

 EC 0 states that the multiplication factor, ���, may be used as a differentiation measure for 

the same design supervision and inspection levels i.e. design and supervision levels not 

differentiated but maintained.  However, and in contrast, it is stated that accompanying 

measures such as the level of quality control for the design and execution of the structure, 

may be associated to classes of the multiplication factor.  A three level system for control 

during design and execution is adopted and is expressed by the specification of design 

supervision levels and inspection levels associated with reliability classes.  The quality 
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management and control measures in design, detailing and execution which are given in 

Annex B aim to eliminate failures due to gross errors, and ensure resistances assumed in the 

design.  Though not normally used, it is stated that reliability differentiation may also be 

applied through the partial factors on resistance, ��.  Reference is made to Annex B6 in EC 0 

for further guidance on this issue and is dealt with in the Section Partial factors for resistance 

properties below. 

 

Design supervision differentiation 

Design supervision differentiation consists of various organisational quality control measures 

which can be used together.  Three possible design supervision levels can be prescribed.  

Design supervision levels (DSLs) are linked to reliability classes and are chosen according to 

the importance of the structure and in accordance with National requirements or the design 

brief, and implemented through appropriate quality management measures.  Table 2.4 

presents the different design supervision levels with associated characteristics for each level 

and the minimum recommended requirements for checking of calculations, drawings and 

specifications. 

 

Table 2.4.  Design supervision levels (DSL) (EN 1990, 2002) 

 

Design Supervision 

Levels 

 

Characteristics 

Minimum recommended requirements 

for checking of calculations, drawings 

and specifications 

 

DSL3 

relating to RC3 

 

Extended supervision 

Third party checking: 

Checking performed by an organisation 

different from that which has prepared the 

design 

 

DSL2 

relating to RC2 

 

Normal supervision 

Checking by different persons than those 

originally responsible and in accordance 

with the procedure of the organisation. 

 

DSL1 

relating to RC1 

 

Normal supervision 

Self-checking: 

Checking performed by the person who has 

performed the design 
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Inspection during execution 

As with design supervision levels, three inspection levels (ILs) are defined.  The 

characteristics and requirements, together with associated reliability index classification, for 

inspection levels are given in Table 2.5.  In Annex B it is suggested that the inspection levels 

may be linked to the quality management classes selected and implemented through 

appropriate quality management measures. 

 

Table 2.5.  Inspection levels (IL) (EN 1990, 2002) 

Inspection Levels Characteristics Requirements 

IL3 

relating to RC3 

Extended inspection Third party inspection 

IL2 

relating to RC2 

Normal inspection Inspection in accordance with the 

procedures of the organisation 

IL1 

relating to RC1 

Normal inspection Self inspection 

 

 

Partial factors for resistance properties 

Reduction in the value of partial factors for material, product property or a member resistance 

is warranted if an inspection class higher than that of standard order required is exercised.  

For example, partial factor modification may be warranted if a structure is designed to be of 

RC2 by reliability index classification but IL3 measures are exercised during execution.  It is 

noted in Annex B that such a reduction, which allows for example for model uncertainties 

and dimensional variation, is not a reliability differentiation measure but merely a 

compensation measure exercised in order to keep the reliability level dependent on the 

efficiency of the control measures. Partial factor modification is allowed in an informative 

annex in EC 2 related to aspects of quality control but the provisions of Annex B in EC 0 are 

not fully exercised.  This issue is developed and extensively treated in Chapter 3 of the thesis. 
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 2.2.4 Limit state design 

In this Section the principles of limit state design, basic variables and verification by the 

partial factor method are studied in terms of their implications for structural resistance and 

reliability performance.  These three issues are dealt with in Sections 3, 4, and 6 of EC 0 

respectively.  Annex C, an informative annex addressing the basis for partial factor design 

and reliability analysis in the Eurocodes, provides information and theoretical background to 

the partial factor method described in section 6 of EC 0, and is thus applicable to all the 

structural Eurocodes i.e. EN 1991 to EN 1999. 

 

Principles of limit state design 

The Eurocodes adopt the partial factor method, or limit states semi-probabilistic method, as 

the method for verification of structural safety (European Concrete Platform, 2008).  A limit 

state can be defined as a condition beyond which the structure no longer fills the relevant 

design criteria.  Two categories are defined by the consequences associated with the 

attainment of a limit state: ultimate limit state and serviceability limit state.  Ultimate limit 

states are associated with loss of equilibrium of the whole structure, or failure or excessive 

deformation of a structural member and they generally concern the safety of people.  Table 

2.6 shows the ultimate limit state classification according to EC 0. 

Serviceability limit states correspond to conditions beyond which specified service 

requirements for a structure or structural member are no longer met.  Exceeding these limits 

causes limited damage but means that the structures do not meet design requirements: 

functional requirements (not only of the structure, but also of machines and services), 

comfort of users, appearance, damage to finishes and non-structural members (European 

Concrete Platform, 2008).  EC 0 identifies three different types of combinations for 

serviceability limit states verifications: 

 

1. Characteristic combination applicable to the more severe irreversible limit states, 

2. Frequent combination applicable to reversible limit states, and 

3. Quasi-permanent combination applicable to reversible limit states. 
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Table 2.6.  Ultimate limit state classification 

Notation Definition 

EQU 

Loss of static equilibrium of the structure or any part of it considered as a rigid 

body, where:  

- minor variations in the value or the spatial distribution of actions from a single 

source are significant (e.g. self-weight variations)  

-  the strengths of construction materials or ground are generally not governing 

STR 

Internal failure or excessive deformation of the structure or structural members, 

including footings, piles, basement walls, etc., where the strength of construction 

materials of the structure governs. 

GEO 
Failure or excessive deformation of the ground where the strengths of soil or rock 

are significant in providing resistance 

FAT Fatigue failure of the structure or structural members 

 

Basic variables are to be used in structural and load models that are implemented in limit 

state verifications at their design values.  Design values of basic variables are achieved by the 

use of partial safety factors applied to representative values of the basic variables adopted in 

design calculations. The basic variables relevant to resistance are material or product 

properties and geometrical data.  Limit state verifications are required to be carried out for all 

relevant design situations and load cases.  Design situations refer to sets of physical 

conditions representing the real conditions occurring during a certain time interval for which 

the design will demonstrate that relevant limit states are not exceeded.  In common cases, 

deign situations are classified as: 

 

1. Persistent design situations, referring to conditions of normal use, 

2. Transient situations, referring to temporary conditions of the structure e.g. during 

construction or repair,  

3. Accidental situations, involving exceptional conditions of the structure or its 

exposure, including fire, explosion, impact etc., and 

4. Seismic situations, where the structure is subjected to a seismic event. 
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Each design situation is characterised by the presence of several actions on the structure.  As 

such, much focus in EC 0 is directed towards the treatment of combinations of actions and 

relevant partial and combination of actions for every design situation relevant to each limit 

state. Stipulation of the resistance basis of design requirements are presented at a high level 

of abstraction, providing for the diverse characteristics of structural material, ranging from 

structural steel, through concrete, to geotechnical design. 

 

Specification of basic variables and verification by the partial factor method 

The European Concrete Platform (2008) presents a concise Table, reproduced as Table 2.7 

below, which shows the steps to pass from the characteristic values of individual material 

strengths or product resistances to the design values of structural resistance.  The provisions 

given in Table 2.7 summarise the requirements from Section 4 and 6 of EC 0 that deal with 

basic variables and verification by the partial factor method.  Several material properties are 

involved in structural design.  The main one is strength and it is represented through a 

characteristic value.  For structural stiffness parameters such as moduli of elasticity, creep 

coefficient, thermal expansion coefficient etc, the characteristic value is taken as the mean 

value.  EC 0 defines the characteristic value of a property of a material as the 5 % fractile of 

its statistical distribution where a minimum value of the property is the minimal failure limit 

and as the 95 % fractile where a maximum value is the limiting value.  The minimal failure 

limit is usually applicable to material or product properties in problems of structural design.  

Design values of the basic variables are not introduced directly into the design models used 

for limit state verifications.  Characteristic or some other suitable representative value of the 

basic variable is rather used in combination with the appropriate partial factor to describe the 

design value of the basic variable in the limit state model. 
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Table 2.7.  Procedure to determine the design values of resistances starting from the 

characteristic values of strength (European Concrete Platform, 2008) 

 

 

The provision for model uncertainties as part of resistance safety factors is an important 

development in terms of implications for materials standards that will be based on this 

concept.  In an attempt to explore this requirement, Holický et al. (2007) consider cases in 

research where the model factors are determined statistically from data sets describing 

flexural and shear behaviour of reinforced concrete elements.  It is shown from the results 

Expression Comment 

Xi
Material strengths and product resistances involved in the 
verifications are identified

Xk,i
Characteristic values of material strengths and product 
resistances are introduced

Xd,i = η Xk,i / γm,i 

The design value of a material property is determined on 
the basis of its characteristic value, through the two 

following operations: a) divided by a partial factor γm, to 

take into account unfavourable uncertainties on the 
characteristic of this property, as well as any local defaults; 
b) multiply, if applicable, by a conversion factor η mainly 
aimed at taking into acount scale effects.

R(ηXk,i / γm,i ; ad)
Determine the structural resistance on the basis of design 
values of individual material properties and of geometrical 
data

Rd = 1 / γRd R(ηXk,i / γm,i ; ad )

Following a procedure similar to the one for calculating the 
design value of action effects, the design value of structural 
resistance is determined on the basis of the individual 
material properties and of geometrical data multiplied by a 

aprtial factor γRd that covers the model uncertainties of 

resistance and the geometrical data variations, if these are 
not explicitly taken into account in the model.

Rd = R(ηXk,i / γM,i ; ad )

As for the action effects, factor γRd is often integrated in the 

global safety factor γM,i, by which the characteristic 

material strength is divided: γM,i = f(γRd, γm,i )
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that different model factors are applicable to the different types of failure modes considered, 

namely flexure and shear.  This difference in model uncertainty influences the value of partial 

factors that are applicable for flexure and shear limit state verifications.  Model uncertainties 

for other failure modes should be studied and quantified for derivation of adequate safety 

elements in this regard.  Figure 2.1, reproduced from Annex C in EC 0, gives a schematic 

representation of the factors necessary in calibrating partial factors for action effects, ��, and 

for resistance, ��. 

 

 

 

 

 

 

 

 

 

Figure 2.1.  Relation between individual partial factors (EN 1990, 2002) 

 

Partial factors for different modes of failure should be derived from representative parametric 

studies.  The First order reliability method (FORM), which is elaborated on and applied later 

in the thesis for shear resistance, is prescribed for use in assessing the design values of 

resistance.  This method allows reliability analyses and calibration to be separated for actions 

and resistances.  Partial factors are determined as the ratio between characteristic values of 

resistance (determined by use of characteristic values of basic variables) and design values of 

resistance (determined from FORM analyses).  The specified reliability index, �, is a key 

parameter in the FORM procedure and therefore affects final values of partial factors derived 

from the process.  Partial factors can be considered as direct measures of reliability that are 

tied to limit state verifications for different failure modes.  The reliability index for members 
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and structures is left open for national choice and selecting a different target value implies 

that relevant parametric studies should be conducted to derive values for partial factors for 

resistance as well as action effects.  The target values of reliability indexes as recommended 

by the Eurocodes that are applicable to each of the limit states for specified period is given in 

Table 2.8.  The preceding description of partial factor determination is applicable to the 

ultimate limit states or failure modes. 

 

Table 2.8.  Target reliability index � for Class RC2 structural members 

Limit state 
Target reliability levels 

1 year 50 years 

Ultimate 4.7 3.8 

Fatigue   1.5 to 3.8 

Serviceability (irreversible)  2.9 1.5 

 

For serviceability limit states the partial factors for the properties of materials, ��, should be 

taken as unity (1.0) except if differently specified in EN 1992 to EN 1999. This implies that 

for serviceability limit state verifications, resistance is determined at its characteristic value. 

 

 2.2.5 Summary of the basis of design stipulations 

A summary of the extensive basis of design requirements presented in preceding Sections are 

summarised in a concise manner in Table 2.9 below, which was also used in a paper by 

Mensah, Retief and Barnardo (2010). 

Although EC 0 allows a simple adjustment of actions through an importance factor ��� the 

preferred way to adjust for reliability classes is through quality control measures.  Target 

reliability levels as expressed in terms of the reliability index (��) are given in informative 

annexes, firstly for ultimate limit state class RC2 then for differentiated classes RC1 and 

RC3.  Values are implemented nationally by member states.  Structural resistance 

performance is directly linked to reliability through quantitative partial factor limit states 

procedures only for the ultimate limit state RC2 case.  All other design situations and limit 

Stellenbosch University http://scholar.sun.ac.za



24 
 

states are treated in an indirect manner, with quality control (QC) measures playing a central 

role. 

 

Table 2.9.  Summary of structural performance requirements 

Design situations βT Resistance 

Serviceability Limit State (SLS) 

Long-term   
Action values, combinations 

differentiated                                        

-Resistance Rk 

Reversible   

Irreversible 1.5 

Ultimate Limit State (ULS) - Equilibrium (EQU); Structural (STR); Geotechnical 

(GEO); Fatigue (FAT) 

Reference (Persistent)                     RC2 3.8 βT,R = 0.8 × 3.8 = 3.0 

Reliability Differentiation               RC1 3.3 Actions: γF
.KFI 

                                                        RC3 4.3 
Resistance: Preferred            

 - Quality measures 

Transient - actions n-adjust   No resistance change 

Reliability management   Allow γM adjustment 

Accidental: action specified (PA) - Resistance Rk                    

 - Ductility, ties, etc Robustness: notional action   
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2.3 STRUCTURAL CONCRETE RESISTANCE (Based on EC 2) 

 

This Section gives a brief overview of the state of unification between the basis of design 

requirements stipulated in EC 0 and their implementation in the treatment of the relevant EC 

2 provisions. 

 

 2.3.1 Basis of design 

Section 2 of EC 2 that deals with the basic requirements of the basis of structural concrete 

design states that concrete structures should be designed in accordance with the general rules 

of EC 0 and with actions defined in EN 1991.  However, EC 2 has some additional 

requirements (European Concrete Platform, 2008).  As is expressly stated in EC 2, the basic 

requirements of EC 0 Section 2 are deemed to be satisfied for all concrete structures if: 

 

1.  limit state design is carried out with the partial factor method in accordance with EC 

0,  

2. If actions are defined in accordance with EN 1991,  

3. If combinations of actions in accordance with EN 1990, and finally  

4. If resistance, durability and serviceability are dealt with in accordance with EN 1992. 

 

Harmonisation between the basis of design, loading and concrete code code is implied by this 

requirement. 

 

 2.3.2 Reliability differentiation 

Section 2.1.2 of EC 2 on Reliability management states that a design based on the use of 

partial factors for resistance in EC 2 and the partial factors given in EC 0 annexes for actions 

lead to a structure associated with class RC2.  Throughout the code, no further guidance is 

given on the treatment of other reliability classes that are identified in EC 0 other than 

reference to Annex B and Annex C in EC 0. 
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 2.3.3 Partial factor modification 

A single set of partial factors for concrete and steel, �� � 1.5  and �� � 1.15 respectively, 

which can be viewed to achieve reliability class RC2 when EC 0 and EN 1991 factors are 

applied to actions, are provided for use for resistance verifications of all limit states and 

design situations, save for the distinction of accidental situations.  For accidental design 

situations �� � 1.2 and �� � 1.0 are suggested for use.  Otherwise, lower values of partial 

factors for concrete, ��, and for steel, ��, are allowed for use if justified by measures that 

reduce the uncertainty in the calculated resistance.  These measures are based on the control 

of geometry, particularly of critical sections, and of concrete strength.  Table 2.10 

summarises the scheme for which partial material factors can be reduced which is presented 

in Annex A of EC 2. 

A detailed assessment of how the reliability framework may be used to justify these 

reductions in partial factors for both steel and concrete is given in Chapter 3.  Guidance is 

also given on the implementation of partial factor reduction scheme for South African 

codification efforts, taking into account the reference levels of reliability set by the South 

African basis of design code SANS 10160-1. 
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Table 2.10.  Scheme for partial material factor reduction based on control of geometry and 

control of concrete strength 

 

 

 

 

EC2 clause Subclause Heading EC2 Recommendation Comment

A.2.1 (1)

Reduction based on quality 
control and reduced 

deviations, γS, red1

γS, red1 = 1,1

Execution must be subject to QC system that 
reduces unfavourable deviations of cross-
section dimensions(see EC 2 Table A1, 
Annex A).

(2)

Reduction based on quality 
control and reduced 

deviations, γC, red1

γC, red1 = 1,4

Applicable under condition A.2.1(1) and 
c.o.v of concrete strength must be ≤ 10 %

A.2.2 (1)

Reduction based on using 
reduced or measured 
geometrical data in design, 

γS, red2 & γC, red2

γS, red2 = 1,05 ; γC, red2 = 1,45

Calculation of design resistance based on 
critical geometrical data, including effective 
depth (see Figure A1, Annex A), which are 
either: (1) reduced by deviations, or (2) 
measured in the finished structure.

(2)

Reduction based on using 
reduced or measured 
geometrical data in design,   

γC, red3

γC, red3 = 1,35

Applicable conditions given in A2.2(1) and 
c.o.v of concrete strength must be ≤ 10 %

A.2.3 (1)

Reduction based on 
assessment of concrete 
strength in the finished 

structure, η & γC, red4

η = 0,85 ; γC, red4 = 1,3

Recommended values maintained.  For 
concrete strength values based on testing in a 
finished structure or element, see EN 13791, 

EN 206-1 and relevant product standards, γC 

may be reduced by the conversion factor η.  

The value of γC to which this reduction is 

applied may already be reduced according to 
A.2.1 or A.2.2.  However, the resulting value  

must be ≥  γC, red4

A.3.2 & A.4 -
Partial factors for materials 
& Precast elements

-

Reduced partial factors for materials γC, pcred 

and γS, pcred  may be used in accordance with 

the rules in A.2, if justified by adequate 
control procedures.  The rules given in A.2 
for insitu concrete structures also apply to 
precast concrete elements as defined in 
10.1.1.
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 2.3.4 Summary of the implementation of reliability framework in EC 2 

A minimal system of partial material factors are used to provide for sufficient reliability 

across a wide range of structural concepts (reinforced, prestressed, lightweight, unreinforced, 

composites); configurations (beams, slabs, columns walls, foundations); failure modes 

(flexure, axial, shear, torsion, stability) and their combinations.  Numerous assumptions, 

simplifications, empirical constants and other measures are imbedded in the design 

procedures, without explicit treatment of reliability.  Although provision is made for 

modelling factors to provide for these effects, this is not applied transparently.  Efforts are 

therefore required to properly extend the reliability framework to all the necessary provisions 

for structural concrete resistance to achieve unification of materials, actions and basis of 

design standards. 

 

 

2.4 REVIEW OF RELIABILITY IN THE DRAFT fib 2010 MODEL CODE 

 

The fib 2010 Model Code represents a substantial improvement in terms of the 

implementation of the reliability framework in the preparation of its stipulations, mainly 

introduced and partially developed in the 1978 CEB-FIP Model Code and had not matured 

sufficiently in implementation by the time of print of the CEB-FIP Model Code of 1990 

hence their subtle and superficial treatment therein.  The nature of reliability implementation 

would depend on what aspect of construction practice is being considered, from design 

through to construction and maintenance.  More explicit treatment of reliability is made 

visible from the on-set of the basis of design verification procedures, allowing for full 

probabilistic safety formats, usually preferred in evaluating the residual life of existing 

structures, as well as reliability or probability based partial factor limit states verifications 

which are more commonly adopted for newer designs.  

 Further, the newly incorporated Procedures concerning Robustness can be viewed as related 

to reliability considerations in the sense that it’s an aspect of design concerned with structural 

performance and safety.  Older designs, due to excessive conservatism inherent in the then 

adopted design procedures used for most design cases, led to structures that often possessed 

ample redundancy.  Conversely, newer and improved design methods which now achieve 
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improved economic designs (less material used) by the use of rational design procedures for 

safety verification reduce the robustness enjoyed by older structures (Walraven, 2005).  This 

is particularly the case and of concern for the fast emerging trend of slender and lighter 

structures mainly owing their existence to the increased production and use of higher strength 

concretes and other forms of advancing concrete technology.  Structural and non-structural 

measures to ensuring robustness are also cited in the JCSS Probabilistic Model Code (JCSS, 

2001). 

Any measure or action taken to somewhat enhance structural performance e.g. Increase 

structural resistance, to reduce actions and action effects, protection by design or through 

construction methods against structural hazards, or to increase production efficiency and 

quality etc., can be regarded as done in view of, and to enhance structural reliability 

performance.  Hence, the more detailed performance-based design criteria aim at better 

defining structural service life can be viewed as major improvements in terms of reliability 

aspects relating to more accurate assessment of the real structural behaviour. 

Previous design philosophies or bases prescribed that designs were carried out regarding two 

major stages of a structure’s performance, namely the Ultimate Limit State (ULS) and the 

Serviceability limit state (SLS).  The ULS was usually checked for static loading whereas to 

control the SLS only the deflection and crack width were considered.  Walraven (2005) 

declares that experiences with damage to construction works have indicated that there has not 

been sufficient attention for a number of design criteria.  Therefore, in addition to robustness, 

to better describe the structural performance other explicit design criteria have been 

established in the 2010 Draft Model Code as (fib, 2010): 

 

1. Static and non-static loading (fatigue, impact and explosion, earthquake), 

2. Tightness, 

3. High and low temperatures (fire and cryogenic), 

4. Limit states for durability are established, and 

5. Initial ideas are given regarding design for sustainability. 

 

In a nutshell, the most important aspect introduced by the advent of the new fib 2010 Draft 

Model Code is the introduction of Time as a design parameter.  Due regard of Time provokes 

Stellenbosch University http://scholar.sun.ac.za



30 
 

the awareness that safety and serviceability are not the only requirements of real structures, 

but other aspects as sufficient resistance against deterioration should also be considered.  In 

this regard, a strategy for maintenance must be developed at design in addition to the basic 

activity of ensuring that the intrinsic resistance at the start of the service life satisfies the 

relevant design criteria.  This, coupled with more elaborate performance-based design criteria 

are aimed at better defining service life of a structure during design.  This leads to a more 

life-cycle oriented design basis.   

Section 2.2 in EC 0 on Reliability Management declares that levels of reliability relating to 

structural resistance and serviceability can be achieved by, amongst a combination of other 

issues, the accuracy of the design models used.  Therefore some differentiation of the design 

of structures is possible through the type of design models used in design.  Generally, more 

accurate design models are computationally more involving and require more effort to 

execute.  The benefits of more rigorous design analyses are normally compensated for 

complex structures where such complex analyses can lead to major cost benefits usually tied 

to the allowance of use of less material in design.  Ties to reliability in this regard are visible 

in the 2010 fib Draft Model Code where levels of approximation, I through IV, are suggested 

for use.  The levels differ in the complexity of the applied methods and the accuracy of the 

results as shown by Bentz (2010) in a follow-up fib Bulletin to the Draft of the Model Code.  

The levels of approximation for design for shear allow scope for applying reliability 

differentiation specifically to the shear design of reinforced concrete members in practice. 

Since the quality of construction is of large significance for the durability of structures, 

adequate attention is given to a number of important construction aspects in the Draft fib 

2010 Model Code.  The issue of partial factor modification for resistance, first introduced in 

the CEB-FIP 1990 Model Code and the provisions were repeated unaltered in the fib 2010 

Draft Model Code, is explored in detail in Chapter 3. 

Stellenbosch University http://scholar.sun.ac.za



Chapter 3 
 

IMPLEMENTATION OF THE RELIABILITY FRAMEWORK 

31 
 

 

 

3.1 INTRODUCTION 

 

Various reliability issues, identified from the review of the basis of design requirements and 

their implementation in Chapter 2 and from published research, are explored and addressed in 

this Chapter.  Firstly, the influence the reference level of reliability, �, has on structural 

performance is tackled, with a specific view on how its value affects the choice of operational 

partial safety factors to be adopted in design codes for structural resistance.  The case of 

different levels of reliability stipulated for the design of structures as set by SANS 10160-1 

�� � 3.0� and the recommended value set by EC 0  �� � 3.8� is taken as central to this 

Section.  The reliability classes and associated risk criteria adopted for use by SANS 10160-1 

are briefly reviewed.  

 Parametric studies of representative cases of reinforced concrete members should be 

conducted to identify and characterise the elements that affect the reliability performance 

across the scope of application of concrete in practice.  This would, in effect, form basis of 

design requirements for structural resistance.  These requirements in current design formats 

present themselves by the use of partial factors and characteristic or sufficiently 

representative values of basic variables, the application of quality measures and possible 

limitations concerning the use of any of the aforementioned aspects.   Parametric studies 

performed by Holický, Retief and Wium (2010) which were aimed at assessing partial factor 

requirements for selected concrete members in accordance with South African conditions are 

reviewed.  Some of the results from the research are summarised but critically reviewed as 

they provide evidence that provokes further research to be done for other reinforced concrete 

elements representative of different modes of resistance.  In this regard, the model 

uncertainty for shear resistance of reinforced concrete members requiring stirrups and its 

effect on reliability performance is later investigated in the thesis.  Results from the Review 

of the work by Holicky et al. (2010) provide not only motivation for the work done on shear 

in the thesis but also serve as templates to extend research and fully calibrate the shear 

Stellenbosch University http://scholar.sun.ac.za



32 
 

prediction model in future work.  Other research efforts that provided essential background 

information and motivation for the work carried out in the thesis on shear are outlined. 

Finally, the issue of partial factor reduction in EC 2 and its link to the reliability management 

requirements of resistance presented in EC 0 were explored.  Informative Annex A in EC 2 

allows partial factor reduction if control of geometry, especially at critical sections, and 

control of concrete strength are exercised as measures to reduce resistance uncertainty.  The 

essence of this review emanates from the link between the conditions required for partial 

factor reduction and the effect the application of reliability differentiation has in achieving 

these conditions.   

Reliability can be reflected and managed throughout the design process.  In general, any 

procedure, measure or action aimed at increasing structural performance or increasing the 

quality of constructed works, whether or not they can be quantified, can be viewed as having 

reliability implications.  It is therefore advised that as South Africa reviews EC 2 as reference 

for on-going revisions of the concrete code, the various champions in charge of various 

aspects of codified design as Materials, Structural Mechanics, and Detailing, should be 

responsible to verify the correctness, rationality, and applicability of the provisions in each of 

the respective sections.  Table 3.1 presents a concise summary of the Sections and issues in 

EC 2 to be reviewed by the various champions of the South African concrete code review 

committee responsible for Materials, Structural Mechanics, and Detailing. 
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Table  3.1.  Roles for verification of EC 2 by the South 

 

 

3.2 REFERENCE LEVEL OF RELIABILITY

 

 3.2.1 Choice of reference level of reliability

Member states of the European community and other countries using the Eurocodes

for their standards development are required to set reference reliability levels

referred to as target reliability levels 

for national practice.  Different levels of risk acceptance criteria correspond to a minimum 

reliability.  Table 3.2 presents the classification of reliability classes as described by SANS 

10160-1 with some examples of design situations in which each class may be applicable. 

In a rational analysis the target reliability is considered as a control parameter sub

optimisation (JCSS, 2001).  However, to date

to a long experience of building tradition.  For South African st

reference level of reliability of 

basis of design standard SANS 10160

extensive calibration of structures designed i

Roles for verification of EC 2 by the South African review committee

REFERENCE LEVEL OF RELIABILITY 

Choice of reference level of reliability �	� 

Member states of the European community and other countries using the Eurocodes

for their standards development are required to set reference reliability levels

referred to as target reliability levels �
, based on structural risk acceptance criteria suitable 

Different levels of risk acceptance criteria correspond to a minimum 

presents the classification of reliability classes as described by SANS 

1 with some examples of design situations in which each class may be applicable. 

In a rational analysis the target reliability is considered as a control parameter sub

).  However, to date, national reliability levels are set by calibration 

to a long experience of building tradition.  For South African structural design standards, a 

reference level of reliability of � � 3.0 of class RC2 is prescribed for use by the national 

basis of design standard SANS 10160-1.  This value of reference reliability was set from 

extensive calibration of structures designed in accordance with the now outdated national 
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African review committee 

 

Member states of the European community and other countries using the Eurocodes as base 

for their standards development are required to set reference reliability levels, commonly 

based on structural risk acceptance criteria suitable 

Different levels of risk acceptance criteria correspond to a minimum 

presents the classification of reliability classes as described by SANS 

1 with some examples of design situations in which each class may be applicable.   

In a rational analysis the target reliability is considered as a control parameter subject to 

national reliability levels are set by calibration 

ructural design standards, a 

of class RC2 is prescribed for use by the national 

1.  This value of reference reliability was set from 

n accordance with the now outdated national 
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loading and basis of design code SABS 0160-1989.  The reference level of reliability set for 

use in South Africa is also defendable from recommended values suggested for use by the 

JCSS probabilistic model code and the international standard ISO 2394.    

 

Table 3.2.  Classification of SANS 10160-1 reliability classes 

Class βT 
Accidental Consequence 

Class 
Seismic Class 
(Public safety) 

Geotechnical  
Category 

RC1 2.5 
Single occupancy                             
≤ 3 storeys 

Minor (agriculture) 
Small structure; no 

stability or movement 

RC2 3.0 
Residential, office etc;     

≤ 4 storeys 
Ordinary 

Conventional structure / 
foundation 

RC3 3.5 
Residential, office etc;     

5 - 15 storeys 
Important (schools; 

assembly) 

Ground / structure 
require geotechnical 

input 

RC4 4.0 
Public in large #; 

 stadia > 5000 
Vital (hospital; fire; 

power) 
Large; unusual; 
complex; risky; 

 

 Table 3.3 presents the schemes of recommended levels of reliability, differentiated by risk 

criteria, suggested for use by ISO 2394 and the JCSS probabilistic model code.  South 

Africa’s target level of reliability, �
 � 3.0, can generally be viewed as associated with 

constructions that have moderate consequences of failure, usually determined considering 

loss of human life and environmental concerns, and moderate costs in terms the safety 

measures required to reduce risks. 

It is observable from Table 3.2 that in addition to adopting a different reference level of 

reliability from the value suggested for use by EC 0, SANS 10160-1 also specifies four 

reliability classes, RC1 to RC4, as classifiable for structures.  It should be noted that although 

RC2 serves as reference, with � � 3.0, RC2 and RC3 in fact represent a division of the 

Eurocode RC2, generally at building of four and five storeys (Retief & Dunaiski, 2009).  

Table 3.4 shows the relation between the SANS 10160-1 and EC 0 reliability classes together 

with their associated risk factors. 
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Table 3.3.  Schemes of recommended levels of reliability by ISO 2394 and JCSS PMC based 

risk principles 

  ISO 2394 

Relative cost of safety 
measures 

Consequences of failure 
Small Some Moderate Great 

High  0 1.5 2.3 3.1 
Moderate 1.3 2.3 3.1 3.8 
Low 2.3 3.1 3.8 4.3 

  JCSS Probabilistic Model Code 

Relative cost of safety 
measures 

Consequences of failure 
Minor Moderate Large 

Large 1.7 2.0 2.6 
Normal 2.6 3.2 3.5 
Small 3.2 3.5 3.8 
 

 

Table 3.4.  Reliability classes and associated risk elements for SANS 10160-1 and EC 0 

  Function of facility, probability or consequence of failure   
Class SANS 10160-1 EN 1990 Class 

RC1 
Low loss of life, economic, social 

;                              
 small environmental 

Low for loss of human life, and 
economic, social or 

environmental small or 
negligible 

RC1 

RC2 
Moderate loss of life, economic, 

social; Considerable 
environmental Medium for loss of human life, 

economic, social or 
environmental considerable 

RC2 

RC3 
High loss of human life, very 

great economic, social, 
environmental 

RC4 
Post-disaster function / beyond 

the boundaries 

High for loss of human life, or 
economic, social or 

environmental very great 
RC3 
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 3.2.2 Influence of level of reliability on structural performance 

 

Relation between � and �� 

The level of reliability, �, is related to the probability of failure, ��, by the relation: 

 

�� � Φ����                                                                                                                         [3.1] 

Where Φ is the cumulative distribution function of the standardised Normal distribution.  

Table 3.5 shows some numerical representation of the relation between � and ��.   

 

Table 3.5.  Relation between � and �� 

Pf 10-1 10-2 10-3 10-4 10-5 10-6 10-7 
 β 1.28 2.32 3.09 3.72 4.27 4.75 5.20 

 

It is obvious from inspection of Table 3.5 that increased �-levels imply reduced probability 

of failure.  In terms of practical design requirements, the implication is that when �-levels are 

increased measures that reduce failure of structures should also be increasingly implemented.  

In the design provisions under review, differentiation according to reliability classification is 

expressed through different levels of quality management, mainly to reduce gross errors, and 

partial factor modification aimed at controlling conservatism in design calculations.  The 

following Section treats the probabilistic basis of partial factors for material as described by 

EC 0 in order to portray the effect � has on the value of partial factors adopted for design. 

 

Probabilistic basis of partial factors for material properties 

A concise form of the study herein presented was done as part of an assessment conducted by 

Holický and Retief (2010).  The study is generic and is dealt with elaborately here, giving 

some relevant statistical and probability background where necessary. 
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From Table 2.7 in Chapter 2, the following expression holds for describing the design value 

of any basic resistance variable, ��,�: 

 

��,� � � ��,�
��,�                                                                                                                           [3.2] 

All symbols used in Equation [3.2] are explained in Chapter 2.  Ignoring the conversion 

factor for scale effects, �, and the use of subscript i, the partial factor for materials, ��, may 

be denoted as: 

 

�� � ��
��                                                                                                                                 [3.3] 

In accordance with the basis of design requirements, the characateristic value of a material or 

product property is the 5 % fractile of its statistical distribution.  The concept of fractiles is 

extremely important in understanding how partial factors are derived from probabilistic 

analyses.  In the rest of the discussion, its theory is first briefly introduced and then 

implemented as necessary into the process of defining material partial factors. 

For a given fractile, �, the �-fractile,  !, denotes such a value of the random variable 

(material property), �, for which it holds that values less than or equal to  ! occur with 

probability � (Holický, 2009).  It is however more convenient to represent occurrences of 

random variables in standardised normal form so as to enable the use of commonly available 

tables in literature to calculate exceedance (-or non-exceedance) probabilities.  The 

standardised variable, ", is derived from the actual variable � using the formula: 

 

" � �#$%
&%                                                                                                                               [3.4] 

Where '� and (� denote the mean and standard deviation, respectively, of the actual variable 

�.  By this transformation the original random variable  ! can be converted to the 

standardised variable )!. 
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Therefore, if Φ �)� is the distribution function of the standardised normal variable ", the 

probability of non-exceedance of the stipulated value, )!, can be expressed as: 

 

�*" + )!, � Φ*)!, � �                                                                                                    [3.5] 

Figure 3.2 illustrates the concept of lower fractile estimates, which are more commonly 

applicable to resistance properties, on a Probability density plot.  The probability density or 

random variable ), -�)�, is derived by integrating the distribution function Φ�)�.  Tables of 

the normal probability density plot are commonly available in literature. 

 

 

 

 

 

 

 

 

 

Figure 3.2.  Definition of the fractile for a standardised random variable " 

 

Hence, for a specified probability � of 5 % for characteristic values, )! � ).../.  For the 

standardised normal distribution of ", the fractile ).../ � �1.645.  Substituting )! for " and 

 ! for � into Equation [3.4] and thereafter transposing it to make  ! subject : 
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5 �6 �  .../ � '��1 � 1.645 · Ω��                                                                                    [3.6] 

Where Ω� denotes the coefficient of variation of random variable, or the material property, �.   

Through means of reliability separation for action effects and resistance, EC 0 specifies the 

design value, 8�, of a resistance, 8, using the probabilistic relationship: 

 

��8 + 8�� � Φ��9:��                                                                                                      [3.7] 

Here Φ denotes the distribution function of the standardised Normal distribution, 9: is the 

resistance sensitivity factor for which EC 0 allows approximation 9: � 0.8 and � is the 

reliability index as specified for use at a national level.  Equation [3.7] is fully applicable in 

determining the way in which the design value of material properties are determined, and not 

just resistance as a whole.  As such, the design value of material property, ��, can be 

expressed as: 

 

��� + ��� � Φ��9:��                                                                                                      [3.8] 

By comparing Equation [3.5] and Equation [3.8] it is clear that the design value of a material 

property corresponds to some fractile estimate of the distribution.  It can further be deduced 

that )! � �9:� for the design value of a material property.  ��, as in Equation [3.6] for �6, 

can then be expressed as: 

 

�� �  #;<= � '��1 � 9:�Ω��                                                                                           [3.9] 

Substituting the values of �6 and �� from Equations [3.6] and [3.9] into Equation [3.3] 

results in:  

 

�� � ��
�� � >#>.?@/·Ω%

>#;<AΩ%                                                                                                           [3.10] 

Equation [3.10] is derived based on the assumption that the random variable � is normally 

distributed.  Some resistance properties may be described by the normal distribution.  
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However, it is generally expected (JCSS, 2001) that the resistance of structural members and 

their properties may be described by a two-parameter lognormal distribution with the lower 

bound at the origin.  Holický (2009), in accordance with accepted statistical theory, states that 

it is possible to calculate the fractile for the log-normal distribution from the value of the 

fractile of a standardised random variable with a normal distribution using the relation: 

 

 ! � $%
B>CΩ%D

exp )HIJ�,!Kln�1 3 Ω�N �                                                                                [3.11] 

Where 'HIJ�,! is the fractile of a standardised random variable with a normal distribution.  In 

this instance, the partial safety factor for materials may be summarised and expressed as in 

Equation [3.12] below: 

 

�� � ��
�� �

O
BOPΩ%D

QRSTUV.VWBXY*>CΩ%D ,Z
O

BOPΩ%D
QRSTU[\<ABXY*>CΩ%D ,Z

] QRS�#>.?@/^Ω%�
QRS�#;<=^Ω%�                                                    [3.12] 

Note that the approximation indicated in the last expression in Equation [3.12] is fully 

acceptable for small coefficients of variation, in the order of Ω� _ 0.2. 

Equations [3.10] and [3.12] are plotted in Figures 3.3 and 3.4 respectively.  The graphs show 

the trends of the partial material factor with varying coefficient of variation and varied levels 

of reliability for the separate assumed cases of normal and lognormal distribution of material 

property.  Indications are given in the Figures to show the implication of differently adopted 

reference �-levels by SANS 10160-1 and EC 0 on partial factor requirements.  Figure 3.5 

shows for two separate cases, � � 3.0 and � � 3.8, illustrating how partial factors for 

material are dependent on the coefficient of variation as per SANS 10160-1 and EC 0 

respectively. 
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The following observations can be made from the graphs presented in Figure 3.3 and Figure 

3.4: 

 

1. In each of the two Figures it can be viewed that partial factors for material properties 

are dependent on two factors 

a. The reference level of reliability, �. 

b. The coefficient of variation of the material property, Ω�. 

 

2. Further, by comparison of the two Figures, it can be seen that the values of the partial 

factors will differ for different distributions (in this case normal and lognormal) given 

the same reliability level and coefficient of variation. 

 

 

 

Figure 3.3.  Variation of �� with � for selected coefficients of variation, Ω�, and normal 

distribution of � 
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Figure 3.4.  Variation of �� with 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.  Variation of �� with 
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Based on the observations from Figure 3.3 and Figure 3.4, the following conclusions can be 

logically deduced: 

 

1. Reliability differentiation through specification of different reliability classes each 

associated with specific levels of reliability should have an effect on operational 

partial factors adopted in design 

 

2. Improved quality measures, aimed at reducing uncertainty, can be effective in 

reducing deviations of a material property by efficient control of the production 

process.  Therefore, quality measures and coefficient of variation are related and the 

selection of operational partial factors should be dependent to some extent on quality 

measures. 

 

Theoretical models of random material properties and their statistics affect reliability 

analyses and the choice of operational partial factors.  Models commonly available in 

literature are specified based on assessments of European production quality.  Studies for 

South African derived models for material properties are encouraged in an effort to draft 

provisions that are as representative of local conditions as possible. 

This Section shows how partial factors are derived to cater for unfavourable variations in the 

properties of materials.  However, as presented in Table 2.7 and schematically shown in 

Figure 2.1, partial factors for model uncertainties and important geometrical effects should be 

determined and incorporated into values of global partial factors used in design.  
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3.3 PARAMETRIC STUDIES AND THE CHARACTERISTICS OF RESISTANCE 

FOR  SHEAR  

 

 3.3.1 Parametric study for selected reinforced concrete elements 

 Holický et al. (2010) investigate partial factors for selected concrete members by considering 

parametric studies of two different reinforced concrete members, a slab and a short 

centrically loaded column, as representative examples of flexural and compressive structural 

members.  The study considered South Africa’s reference level of reliability, � � 3.0, as 

basis of evaluation for adequate partial factor schemes for adoption in South Africa’s new 

design code for concrete structures SANS 10100-1.  In addition to some conclusions on 

appropriate values for the partial factors in accordance with the scheme in present use, 

namely the use of partial factors �a for steel and �b for concrete for structural concrete 

resistance verification, important insights from the reliability analyses were gained into 

mechanisms and factors having influence on the reliability performance of the considered 

elements.  This is particularly critical in the cases of model uncertainty and reinforcement 

ratio, c.  Most of the results from the considered elements affecting reliability performance 

for slabs and columns give indications that further studies are required for other types of 

structural elements that are representative of other modes of structural behaviour.  Such 

treatment of reinforced concrete resistance would result in the use of partial factors that 

achieve sufficient reliability in all fields of application of codified provisions.  Some 

important aspects, including those just mentioned, and issues from work done by Holický et 

al. (2010) are summarised in bullet form below: 

1. Various analyses aimed at understanding the influence model uncertainty has on 

structural performance were considered. The model factor was found to have 

significant influence on structural performance with its increasing uncertainty 

reducing reliability performance.  However, the statistics of the model uncertainty 

used in the study were derived from suggestions in the JCSS working documents 

and therefore more convincing data are encouraged for use when available.  By 

means of a sensitivity analysis, the study shows that the reliability for columns is 

dominated by model uncertainty whilst in the case for slabs its effect is second to 

that of steel depth but still has significant influence on reliability performance. Due 

to differences in the influence of model uncertainty on reliability performance, 
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further characterisation of the model uncertainty for different structural elements 

representative of different modes of structural behaviour is thus warranted. 

 

2. In accordance with the findings of a separate study (Holicky et al., 2007) the 

reliability of reinforced concrete members was found to be dependent on the 

reinforcement ratio, c.  The reliability performance for columns increases with 

increasing reinforcement ratio.  This trend is counter-intuitive for slabs, with dipping 

levels of reliability as c increases.  Therefore, the effect of c on the reliability 

performance on other concrete members representative of different modes of 

structural behaviour should be investigated.  The counter-intuitive effect that c has 

on the reliability performance of slabs shows an obvious weakness in the judgment 

based selection of partial factors which further motivates and re-affirms the adoption 

of developing design codes based on probabilistic principles.  

 
3. The study conducts extended reliability analyses to determine suitable partial factors 

that achieve the resistance reliability requirements for the concrete members 

considered.  By way of assessing theoretical partial factors for the slab and the 

column, a difference is shown in partial factors applicable to the same basic 

variables in the different formulations for resistance.  Thus, calibration for concrete 

should include studies for other elements to fully classify partial factor trends across 

the field of application of concrete structures and various structural members to 

achieve consistent performance.  Traditional, and currently in use, limit state design 

formats implement two partial material factors, �a for steel and �b for concrete, for 

resistance verifications.  Though the partial factor for concrete strength at the design 

point (theoretical partial factor) is most significant, it is however shown that partial 

factors are applicable to other basic variables not explicitly considered when 

designing according to codes.  These variables include section breadth and height as 

well as model uncertainty.  The use of two partial factors for resistance verification 

in design codes is thus an oversimplification requiring additional conservatism 

during calibration to provide for the neglected basic variables.  Partial factors 

required for model uncertainty are found to be quite significant compared to other 

basic variables, including that of steel which is explicitly considered in design codes.  

This fact, plus other aspects described in Bullet 1 above, gives strong indications 

that the model uncertainty, which is specific to member type and mode of resistance, 
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requires further characterisation and should be calibrated as part of operational 

partial factors used when designing according to codes of practice. 

 

4. By way of Global resistance factor analysis it is shown that the specification of 

characteristic values of material strengths for steel and concrete, de6 and df6 

respectively, play an important role in achieving sufficient reliability.  In fact, it is 

further shown that the specification of characteristic material properties plays a more 

prominent role than the values of the partial factors in achieving sufficient reliability 

for both slabs and columns.  However, the exact nature of the trends of reliability 

performance with characteristic values of material properties should be characterised 

for each mode of structural resistance, as differences are noticed between the trends 

of the slab and column in this regard. 

 

5. The study clearly demonstrates how partial factors for the resistance cases 

considered are established to meet reliability performance requirements through a 

calibration process that is independent of load considerations i.e. by reliability 

separation for resistance, �
,: � 0.8 ^ 3.0 � 2.4 for South African conditions.  

Hence, the study provides a good guide for similar reliability-based parametric 

analyses of other reinforced concrete members. 

 

 3.3.2 Characteristics of resistance for members requiring design reinforcement for

      shear 

The review in Section 3.3.1 considers partial factor requirements to achieve sufficient 

reliability performance for flexural and compressive failure modes of concrete resistance.   

Stimulation is therein created for efforts to carry out such a study for shear and other modes 

of concrete resistance.  

 Cladera and Mari (2007) performed research that was aimed at characterising the quality of 

shear resistance predictions for members requiring stirrups based on different design models.  

This was done to compare the prediction quality of other commonly used models and some 

from literature to the prediction quality of the EC 2 design model.  Cladera and Mari show 

that the EC 2 design procedure may be slightly unconservative for highly shear-reinforced 

members and may be too conservative for slightly reinforced beams as no concrete 
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contribution is considered.  Shear predictions were characterised by model factor trends, 

where the model factor, gh, is the ratio between the tested failure load, ijklj, to the failure 

load predicted by any design model, i!Jk�.  Therefore: 

 

 mgh � nopqo
nrsp�t                                                                                                                    [3.13] 

Thus, values of gh greater than 1 indicates the design prediction model is conservative and 

vice versa is true.  The average model factor, gh, obtained by comparison of EC 2 

predictions to the total test database, however, exhibits a high conservative bias and a high 

coefficient of variation as compared to other modes of resistance.  Therefore, though there is 

slight unconservatism for highly shear-reinforced members, the EC 2 shear prediction model 

is generally safe.  The scatter of results, shown in Chapter 7, when predictions are compared 

to empirical tests indicates that the design procedure neglects some primary variables 

affecting shear resistance.  Nonetheless, the EC 2 model for shear is in current use and the 

more important issue is therefore how to calibrate the design model, together with its 

associated uncertainty, to achieve acceptable reliability performance.  In terms of reliability, 

the more critical issue would obviously be to calibrate the model to ensure that sufficient 

provision is made to cater for the unconservatism in highly-reinforced concrete members.  

Only then should efforts be directed towards controlling levels of conservative margins for 

lesser reinforced concrete members.  The fact that the EC 2 shear prediction model is already 

in use should, however, not restrict research on the use of other models that better predict 

shear resistance of concrete members with stirrups.  In fact, such research is encouraged for 

the use of more accurate and rational-scientific formulations in future codes of practice. 

Not only has model uncertainty been proven to have important effects on reliability 

performance, but more so for shear, the model factor (which describes model uncertainty) has 

a high coefficient of variation associated with it.  Even more critical, is that the predictions 

are shown to be unconservative for members with high stirrup ratios.  Therefore, much work 

needs to be done to properly calibrate the EC 2 shear prediction model for members requiring 

stirrups.  As a result, Part 2 of the thesis was crafted to first carry out a statistical evaluation 

of model factor realisations to a compiled database and to characterise it for reliability 

modelling.  Thereafter, some reliability analyses were conducted to assess the reliability 

performance of the EC 2 shear prediction model.  It was found that the model factor 
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dominates the reliability performance of shear resistance.  The reliability of EC 2’s design 

method for members with stirrups subjected to shear was found to be of acceptable 

performance and should lead to safe designs when used in South African practice. 

 

 

3.4 RELIABILITY MANAGEMENT AND PARTIAL FACTOR MODIFICATION  

 

Annex A in EC 2 allows partial factor reduction provided it can be justified by measures 

aimed at reducing uncertainty in calculated resistance of members.  As previously 

established, these measures are based on the control of geometry especially at critical sections 

and of concrete strength.  However, no explicit relation is expressed between the 

modification allowed in EC 2 and guidance given in the requirements for such action in EC 0.  

Recall from Section 2.2.3 that Annex B in EC 0 states that although reliability differentiation 

may also be applied through partial factors on resistance, as is recommended for actions, this 

is not normally used.  This implies that the provision has not been fully explored yet.  Further 

guidance in EC 0 states that a partial factor for a material or product property or a member 

resistance may be reduced if an inspection class higher than that required according to Table 

2.5 and/or more requirements are used.  However, EC 0 explicitly states that such a 

reduction, which allows for example for model uncertainty and dimensional variation, is not a 

reliability differentiation measure but serves merely as a compensatory measure in order to 

keep the reliability level dependent on the efficiency of the control measures.  The effects of 

quality control are herein modelled to make an assessment of how reliability management 

could possibly influence the value of operational partial factors used in design. 

For guidance to extend the reliability framework to partial factor modification, reference was 

made to the Draft fib 2010 Model Code.  It was later discovered that the provision for partial 

factor modification in the Draft fib 2010 Model Code was carried over from its predecessor, 

the CEB-FIP 1990 version of the Model Code.  The repetition of the provision implies that, 

perhaps to date, sufficient exploration and implementation of the provision has not been fully 

achieved in codified practice.  The common provision from the Model Codes advises that the 

values of �b and �a should be increased if standard geometrical tolerances in design are not 

fulfilled.  Conversely, �b and �a may be reduced by 0.1 and 0.05 respectively, at the 
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maximum, if standard geometrical tolerances can be reduced by 50 % and are strictly 

controlled.  The provision does not, however, favour the reduction of the set of partial factors 

according to the degree of control of concrete strength.  It argues that such action does not 

seem justified, because the variation of the control of the specimen can more rationally be 

taken into account by the compliance criteria included in the control itself.  It further argues 

that even if a better quality of concrete, characterised by a lower coefficient of variation of 

the strength ensured for a given characteristic strength, would not justify reducing the �u 

values, because this would imply also a lower mean strength.  The Model Codes prefer that in 

instances of very good quality management, e.g. for precast concrete, the conversion factor � 

included in �b, which accounts for scale effects, is adjusted to reduce �b. 

EC 2, on the other hand, allows in informative annex A, the reduction of �a if a quality 

control system that ensures certain geometrical tolerances is implemented.  Corresponding 

reduction of �b is applicable only if the conditions required for the reduction of �a are 

enforced, plus the additional requirement that the coefficient of variation of concrete strength 

should not exceed 10 %.  The concise conditions required for partial modification as given in 

EC 2 are presented in Table 2.10.  To the preference of the Model Codes, EC 2 also suggests 

that the conversion factor � may be adjusted to reduce the value of �b.  This reduction of �b 

may, however, be applied after initial reduction of the partial factor due to quality 

management ensuring reduced deviations in geometry and concrete strength. 

It is therefore clear that EC 2 allows modification of the partial factors due to quality control 

of concrete strength variations, and not just by adjusting the value of � as is preferred by the 

Model Codes.  EC 2 procedures seem to give the benefit of reduced deviations of concrete 

strength to the designer and design process by allowing reduction of the partial factors used 

in design, whereas the Model Codes seem to give the benefit to the concrete producer or 

manufacturer by not adjusting partial factors but increasing the quality of concrete above that 

required by the design.  This should, somewhat, increase structural integrity through superior 

performance of the concrete which boosts the reputation of the concrete producer. 

An investigation was therefore conducted to assess the viability of reducing the operational 

value of partial factors based on control of the deviations of concrete strength.  
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 3.4.1 Investigation of the effect of reduced deviations on partial factors 

The Model Codes argued that quality control may not always achieve a better mean strength 

of concrete, but could rather achieve a better coefficient of variation associated with a given 

characteristic strength, thus reducing the mean.  Therefore, the investigation was conducted 

to determine the effect of keeping either the characteristic strength constant and varying the 

mean, or varying the characteristic strength and keeping the mean constant.  Equation [3.12], 

assuming a log-normal distribution, was used to describe the partial factor for materials, in 

this case concrete.  Operational partial factors for the case of the Eurocode or South African 

reliability requirements could then be read off Figure 3.3 for the appropriate coefficient of 

variation of the material property or resistance.  

 The European Concrete Platform (2008) reports that for EC 2 the coefficient of variation for 

resistance used in determining the partial factors for materials can be thought of as composed 

of the coefficients of variation for material strength, model uncertainty and geometry.  We 

can then define 9 as the ratio of concrete strength variation, Ωb,  to the total coefficient of 

variation of resistance, herein defined as Ω:, expressed below as: 

 

9 � Ωv
Ω<                                                                                                                                 [3.14] 

The coefficient of variation of resistance, Ω:, can be appropriately elaborated as: 

 

Ω: � KΩbN 3 Ω:kljN                                                                                                              [3.15] 

Where Ω:klj  is a representation of the combined coefficient of variation due to model 

uncertainty and geometry, with the coefficient of variation of concrete strength singled out as 

Ωb. 

�w was then established as the value of the partial factor due to reduced deviations of concrete 

strength.  As previously discussed, two definitions of this partial factor, �>w and �Nw,  were 

considered as defined in the cases below. 
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Case 1 – Keeping the characteristic strength constant and varying the mean 

�w is, for this case, defined as: 

 

�w � ��
��w                                                                                                                                [3.16] 

Where �6 remains the same as in Equation [3.12] and: 

 

 ��w � ':w exp��9:�Ω:w �                                                                                                     [3.17] 

Where ��w and µyw  are the adjusted design and mean values of concrete strength, respectively,  

based on the increased quality control.  Ωyw  is the reduced coefficient of variation of concrete 

strength also due to increased quality control.  Since, in this situation, the characteristic 

strength of the materials is kept constant, the following equation applies: 

 

�6 � ': exp��1.645Ω:� � ':w exp��1.645Ω:w �                                                              [3.18] 

Equation [3.18] implies that in this case, even when the mean and coefficient of variation of 

resistance are altered due to quality control, the characteristic value remains the same.  

Transposing Equation [3.18], ':w  can be expressed as: 

 

':w � QRS�#>.?@/ Ω<� 
QRS�#>.?@/ Ω<w � · ':                                                                                                      [3.19] 

Substituting Equation [3.19] into Equation [3.17], and then substituting the result and 

�6 � ': exp��1.645Ω:� into Equation [3.16] and replacing �w by �>w, results in: 

 

�>w � QRS�#>.?@/ Ω<w �
QRS�#;<=Ω<w �                                                                                                               [3.20] 

 

 

Case 2 – Keeping the mean strength constant and varying the characteristic value 

�w is, for this case, defined as: 

 

 

�w � ��w��w                                                                                                                               [3.21] 
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Where �zw � ':exp ��1.645Ω:w �   and    ��w � ':exp ��9:�Ω:w �.  It must be noted that the 

mean value, ':,  is kept constant and the values of �zw  and ��w  are due to the improved 

coefficient of variation of resistance, Ω:w , which is in turn due to improved quality control.    

Therefore, �Nw, or the ratio of �6w to ��w ,   can therefore be defined as: 

 

�Nw � QRS�#>.?@/ Ω<w �
QRS�#;<=Ω<w �                                                                                                               [3.22] 

By comparing Equations [3.20] and [3.22], it is evident that �>w � �Nw.  Hence, it can be 

concluded that whether the mean or characteristic value of concrete strength are 

interchangeably kept constant or varied as a result of quality control, the value of the partial 

factor �w remains unaltered.  

 

Given the unified expression of �w � �>w � �Nw, a parametric study was conducted to 

determine the effect that different levels of quality control of concrete strength would have on 

the value of operational partial factor �b used in design.  The study was conducted to 

determine the scale or order of reduction of partial factors given a specified amount of 

improvement of variation in concrete strength due to improved quality control measures.  The 

scale of partial factor reduction was monitored by the relation:  

 

{|}~� �d �}���}~ d}|��� ���)|���� � �w
�qrp�                                                                    [3.23] 

Where �w is as previously defined and �l!kf is the value of the partial factor for standard 

control of variation of concrete strength as obtained from Equation [3.12] and/or Figure 3.4, 

corresponding to the �-level and coefficient of variation required by the assessment.  For 

purposes of this investigation, the total coefficient of variation for resistance, Ω:,  was 

assumed to be 15 %.  This is a reasonable assumption as the European Concrete Platform 

(2008) suggests a value for variability of concrete resistance of about 16. 58 % for normal 

quality control of aspects concerning resistance during design and execution. 

 

The procedure for plotting the graph of 
�w

�qrp� vs.9 is outlined below. 

 

 

 

Stellenbosch University http://scholar.sun.ac.za



53 
 

Procedure for plotting graph of 
�w

�qrp� vs.9 

 

1. The process was initiated by assuming 9, e.g. 9 � 0, 0.1, 0.2, 0.3 ��|.  9 is the ratio 

of concrete strength variation to the total variation of resistance as defined in Equation 

[3.14]. 

 

2. From Equation [3.14], the value of Ωb was calculated since Ω: was assumed fixed as 

0.15 for the assessment.  This value of Ωb was used to assess partial factor 

requirements for conditions of normal quality control. 

 

3. From Equation [3.15], Ω:klj was calculated.  No improvement due to increased 

quality control was thereafter carried out on Ω:klj.  The idea was to isolate the effect 

improved quality control had in controlling the variation for concrete strength, and 

subsequently to determine the effect this would have on partial factors according to 

Eurocode and SANS requirements. 

 

4. Thereafter, the improved coefficient of variation of concrete strength, Ωbw , was 

improved (reduced) by the following convention: 

 

Ωbw � �>..#% ��!JI�k�kHj
>.. � ^ Ωb                                                                            [3.22] 

Where % ����������� is equivalent to the percentage improvement of concrete 

strength variation due to an effective quality management system. 

 

5. Ωb and Ωbw  were used to determine �l!kf and �bw, respectively, using Equation [3.12] 

and Equations [3.20] or [3.22] for a given � and % ����������� as well as varying 

9. 

 

6. A new 9 is selected and bullets 1 to 5 are repeated for a given � and 

% �����������. 

 

The above process produces downward curves, each for a single � and % �����������, on 

the graph axes 
�w

�qrp� vs.9.  Table 3.6 and Table 3.7 show the values of 
�w

�qrp� at varying 9 and 
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percentage improvement of deviations of concrete strength for � � 3.0 and � �
3.8 respectively.  Figure 3.6, based on data from Tables 3.6 and 3.7, is aimed at 

characterising the trend of 
�w

�qrp� vs.9 for South African �� � 3.0� and European �� � 3.8� 

requirements for resistance.   

 

 

Table 3.6.  Values of 
�w

�qrp� for varying 9 and improvements on deviations of concrete strength 

for  � � 3.0 

γ
*/γspec 

α 
at 5 % 

improved ��w  

at 10 % 
improved ��w  

at 20 % 
improved ��w  

at 30 % 
improved ��w  

at 50 % 
improved ��w  

at 70 % 
improved ��w  

at 90 % 
improved ��w  

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0.1 0.9999 0.9999 0.9998 0.9997 0.9996 0.9995 0.9994 
0.2 0.9998 0.9996 0.9992 0.9988 0.9983 0.9979 0.9977 
0.3 0.9995 0.9990 0.9982 0.9974 0.9961 0.9953 0.9948 
0.4 0.9991 0.9983 0.9967 0.9953 0.9930 0.9915 0.9907 
0.5 0.9986 0.9973 0.9948 0.9926 0.9889 0.9864 0.9851 
0.6 0.9980 0.9961 0.9924 0.9891 0.9836 0.9798 0.9778 
0.7 0.9973 0.9946 0.9896 0.9849 0.9771 0.9715 0.9685 
0.8 0.9964 0.9929 0.9862 0.9799 0.9689 0.9607 0.9563 
0.9 0.9954 0.9910 0.9822 0.9739 0.9586 0.9463 0.9391 
1 0.9944 0.9887 0.9776 0.9666 0.9449 0.9238 0.9031 
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Table 3.7.  Values of 
�w

�qrp� for varying 9 and improvements on deviations of concrete strength 

for  � � 3.8 

γ
*/γspec 

α 
at 5 % 

improved ��w  

at 10 % 
improved ��w  

at 20 % 
improved ��w  

at 30 % 
improved ��w  

at 50 % 
improved ��w  

at 70 % 
improved ��w  

at 90 % 
improved ��w  

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0.1 0.9999 0.9998 0.9996 0.9995 0.9992 0.9990 0.9990 
0.2 0.9996 0.9992 0.9985 0.9979 0.9968 0.9962 0.9958 
0.3 0.9991 0.9982 0.9966 0.9952 0.9928 0.9913 0.9905 
0.4 0.9984 0.9968 0.9939 0.9913 0.9871 0.9843 0.9829 
0.5 0.9974 0.9950 0.9904 0.9863 0.9796 0.9750 0.9726 
0.6 0.9963 0.9927 0.9861 0.9800 0.9700 0.9630 0.9595 
0.7 0.9950 0.9901 0.9808 0.9724 0.9581 0.9479 0.9426 
0.8 0.9934 0.9869 0.9746 0.9632 0.9433 0.9286 0.9207 
0.9 0.9916 0.9834 0.9674 0.9522 0.9248 0.9031 0.8904 
1 0.9896 0.9793 0.9590 0.9391 0.9007 0.8637 0.8283 

 
 
 

 

 

 

 

 

 

  

 

 

Figure 3.6.  Variation of 
�w

�qrp� against 9 for selected % ����������� of concrete strength 

deviations for   � � 3.0 (left) and � � 3.8 (right) 
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Figure 3.6 shows that the partial factor can be reduced based on reduced deviations of 

concrete strength and is thus coherent with the suggestions made in EC 2.  A judgement call 

can be made to state that the material property contribution to the total coefficient of variation 

need not exceed 70 % as modelling uncertainties and geometrical imperfections do 

contribute as well to the total coefficient of variation.  Hence, reduction of partial factors is 

warranted to the maximum limit of α as 70 %, which is less sensitive as compared to the 

partial factor reduction experienced in the unrealistic zone of the Graphs when α is greater 

than 70 %.  For % ����������� of 90 %, at the 70 % cut-off shown in Figure 3.5, partial 

factors can be reduced by roughly 3 % following SANS requirements and about 5 % for the 

case of the Eurocodes. 

The results of the investigation demonstrate that the partial factors can be altered based on 

different levels of quality control.  Section 3.4.2 considers a practical assessment, where the 

effects of differentiated levels of quality control on operational partial factors for Eurocodes 

are established, and some recommendations are made on the subsequent reduction of partial 

factors according to the different reliability classes in EC 2, RC1 to RC3.  The framework is 

then extended to SANS 10160-1 requirements where � � 3.0 and four reliability classes, 

RC1 to RC4, are established. 

 

3.4.2 Modelling of quality control effects 

 

According to the European Concrete Platform (2008) partial factors in EC 2 were determined 

from: 

�u � exp �9: · �
 · Ω: � 1.64 · Ω��                                                                                  [3.23] 

Equation [3.23] is derived by mathematical simplification of Equation [3.12].  Ω: is herein 

defined as: 

Ω: � BΩ�N 3 Ω�N 3 Ω�N                                                                                                       [3.24] 

Where Ω: is the coefficient of variation of resistance, Ω� the coefficient of variation of 

model uncertainty, Ω� the coefficient of variation of geometrical factors and Ω� the 
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coefficient of variation of material strength.  All other variables have been previously defined 

in this Chapter.  Representative models for variability of steel and concrete based on standard 

European practice, as used by the European Concrete Platform, are described under Normal 

Quality Control in Table 3.8.  Models describing the variability of steel and concrete under 

improved quality control, derived largely in accordance with Annex A of EC 2 which is 

summarised in Table 2.10, are also shown in Table 3.8.  It should be noted that the coefficient 

of variation of material strength, Ω�, for steel does not change with improved quality control.  

The manufacture of steel is considered to be already highly controlled and therefore taken to 

be separate from quality control levels on site and at design offices, which are generally of 

concern here and in EC 0. 

 

Table 3.8.  Representative models for variability of steel and concrete 

Material Level of Quality Control Ωm ΩG Ωf ΩR 

Steel 
Normal Quality Control 2.5 % 5 % 4 % 6.87 % 
Improved Quality Control 1.5 % 2.5 % 4 % 4.95 % 

Concrete 
Normal Quality Control 5 % 5 %  15 % 16.58 % 
Improved Quality Control 4 % 2.5 % 10 % 11.06 % 

 

For concrete, an additional factor of 1.15 is multiplied to the value of the partial factor 

determined from Equation [3.23].  This factor, suggested for use by the European Concrete 

Platform is introduced to cover uncertainty arising from the concrete being tested with test 

specimens specially made and cured in laboratories or controlled conditions rather than from 

the finished structure.  This factor is equivalent to the factor � that takes into account scale 

effects as presented in Table 2.7.  The conversion factor must be determined by measures that 

are as credible as possible e.g. being deduced from extensive comparative tests.  The way in 

which the values of such coefficients are determined affects the reliability of resistance 

performance.  Figure 3.7 presents graphs based on Equation [3.23] indicating partial factors 

for concrete, �b, and steel, �a, as a function of the target reliability for the two cases of 

standard practice and Improved quality control (QC) measures in accordance with these 

adjustments.  For the design of reference case RC2 structures, EC 2 recommends use of 

partial factors �b � 1.5 for concrete and �b � 1.15 for steel which are shown in Figure 3.7. 
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The distinction between reliability classes RC2 and RC3 set by EC 0 is taken as central in 

describing the effect reliability differentiation of structures may have on the value of 

operational partial factors.  Moving from RC2 to RC3 represents an increase in target 

reliability of structures from 3.8 to 4.3 for a 50 year reference period.  This has practical 

implications guided by differentiation based on quality measures related to levels 

supervision and inspection of construction works as described in Section 2.2.3.  The 

argument here is that proper implementation of these measures can be effective in achieving 

the level of control required on the control of geometry and on the control of concrete 

strength that warrant partial factor reduction as guided by Annex A in EC 2. 

  

Figure 3.7.  Partial factors for concrete and steel based on the 

(2008) model; showing three reliability classes RC1, RC2 & RC3 according to EC 0 

 

The partial factors are shown in Figure 3.5 specifically for
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The distinction between reliability classes RC2 and RC3 set by EC 0 is taken as central in 

ility differentiation of structures may have on the value of 

operational partial factors.  Moving from RC2 to RC3 represents an increase in target 

reliability of structures from 3.8 to 4.3 for a 50 year reference period.  This has practical 

ided by differentiation based on quality measures related to levels of design 

supervision and inspection of construction works as described in Section 2.2.3.  The 

argument here is that proper implementation of these measures can be effective in achieving 

he level of control required on the control of geometry and on the control of concrete 

strength that warrant partial factor reduction as guided by Annex A in EC 2.  
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1. The target levels of reliability for the two reliability classes, RC2 and RC3 from EC 0, 

and 

2. Adjusted for improved quality control as implied by EC 2. 

 

These two sets of partial factors represent the alternative measures available for reliability 

management.  It is clear that improved QC measures, achievable through upper 

differentiation of structures, are effective in managing reliability.  The values �b for concrete 

and �a for steel of 1.37 and 1.09, respectively, for improved quality control can be compared 

to the values 1.35 and 1.05 indicated in Table 2.5 as derived from Annex A in EC 2.  The 

lower set of partial factors adopted for use by EC 2 indicate that substantial credit is given for 

improved quality control.  A more critical issue is the conversion of EC 2 procedures for RC2 

to other reliability classes, in particular the important case of RC3 structures.  The combined 

effect of upwards adjustment of partial factors for a higher reliability, together with 

implementing quality control measures and taking credit for such, as indicated by the bold 

arrows in Figure 3.7, indicate the effectiveness of the quality control measures in required 

reduced partial factors 1.43 for concrete ��b� and 1.11 for steel ��a� even though the 

reliability class is raised.  It should be noted that this adjustment does not merely represent a 

compensation measure to maintain the reliability level, as stated in Annex B of EC 0.  If 

credit is taken for improved quality control measures, the revised partial factors need to be 

again adjusted upwards for RC3 structures, as indicated in Figure 3.7.  No clear guidance is 

given in EC 2 on this, and in EC 0 only the principles are given. 

A brief assessment of how the developments in this Section would apply to South African 

conditions is presented below. 

 

Provision for South African conditions 

Partial factor modification based on quality measures in accordance with reliability 

classification of structures from SANS 10160-1 is considered.  The most important reliability 

related adaptation is to maintain the local reference target reliability value of �
 � 3.0.  The 

required values of partial factors for concrete and steel for the four reliability classes RC1 to 

RC4 are shown in Figure 3.8. 

Stellenbosch University http://scholar.sun.ac.za



60 
 

The overall results show that partial factors of 1.5 for concrete and 1.15 for steel as 

suggested for use in EC 2 would be conservative, confirming results of the analysis by 

Holický et al. (2010).  This is true even for higher reliability classes, provided that quality 

control measures are applied; as should be the case for more important structures.  Partial 

factors of  �b � 1.4 for concrete and �a � 1.1 for steel should suffice throughout the various 

reliability classes, provided that improved quality control measures are applied to RC3 and 

RC4.  For RC1 there is clearly an option of reducing partial factors. 

 

 

Figure 3.8.  Partial factors for steel and concrete for SANS 10160-1 (RC1 to RC4) based on 

the European Concrete Platform (2008) model  
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The basis of design requirements set by EC 0 are concisely presented, with some key issues 

highlighted, in Chapter 2.  These requirements are in line with internationally accepted 

provisions for the reliability based design of structures and construction works.  Following 

some development in Chapter 2, Chapter 3 dealt with: 

1. The choice of the reference level of reliability and the effect its choice has on the 

value of operational partial factors adopted in design. 

 

2. The importance parametric studies have in specifying basis of design requirements for 

resistance.  This is illuminated by reviewing the results from a study conducted by 

Holicky et al. (2010).  The dominating influence the model uncertainty has on 

reliability performance is an important finding of this study.  This effect does not 

seem to have been calibrated adequately, as per basis of design requirements, as part 

of operational factors prescribed for use.  The modelling uncertainty associated with 

the EC 2 shear resistance prediction model for members requiring stirrups is 

introduced. 

 
3. The link between levels of reliability management presented in EC 0 and partial factor 

modification allowed by Annex A of EC 2.  Though no clear guidance is given in EC 

2, levels of reliability management are proven to be effective in managing reliability 

levels through partial factor modification. 

 

These issues present but a small sample of aspects that require reliability treatment for 

structural concrete resistance.  Much research is still required for reliability aspects related to 

robustness and serviceability of structures.  Model uncertainty across the range of modes of 

resistance of concrete elements has not yet been fully been incorporated in determining 

operational partial factors.  Part 2 of the thesis is therefore concerned with the statistical and 

reliability evaluation of shear reinforced concrete members, as a first step in calibrating the 

EC 2 shear prediction model.  An important advancement of this assessment is that an 

attempt is made to appropriately characterise the model uncertainty of the EC 2 shear 
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prediction model by comparison to a compiled database.  The statistics of the model factor 

are then used for reliability analyses carried out in Part 2 and can further be used to determine 

suitable partial factors for shear reinforced concrete members.  Research conducted by 

Holický et al. (2010), which is critically summarised in Chapter 2, provides important 

guidance for South African efforts to calibrate resistance models for structural concrete to 

suit national conditions and practice.  This guidance was useful for the initial calibration of 

EC 2’s shear prediction model for South African practice. 
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MEMBERS 
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5.1 INTRODUCTION 

 

This Chapter is aimed at providing all the necessary insight and background information on 

1. The design theories for shear dealt with in the thesis.  The EC 2 shear prediction 

model, which is based on the lower bound plasticity theory, and the modified 

compression field theory (MCFT) are the theories herein considered. 

 

2. The statistical and probabilistic techniques that form the base of the theory of 

structural reliability as well as enable its application. 

However, a brief historical background and the focus of the investigation on shear for 

members requiring stirrups are first established in Section 5.1.1 and 5.1.2 below.  This is 

done so as to first demonstrate that accurate predictions of shear resistance has long been an 

issue and further, to provide some logic and premise as to why reliability techniques were 

applied to the EC 2 shear prediction model.  In addition, it is also made clear as to why the 

MCFT was used in the thesis. 

 

5.1.1 Brief historical background of shear design theories for members requiring 

          stirrups 

Proper understanding of shear, both with and without shear reinforcement, seems to elude 

many practitioners and researchers alike.  Research efforts on understanding shear date back 

to as early as 1899 in which Ritter carried out an investigation to determine an effective type 

of stirrup reinforcement (Balázs, 2010).  Inspired by crack patterns typically observed in 

beam tests, Ritter and later Mörsch in 1902 postulated that after a shear reinforced concrete 

beam cracks due to diagonal tension stresses, it can ideally be thought of as a parallel chord 

truss with compression diagonals inclined at 45° with respect to the longitudinal axis of the 
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beam.  The stirrups or bent-up bars and the bottom longitudinal reinforcement act as tensile 

members whilst virtual concrete struts and concrete in the compression zone act as 

compression members. The truss systems proposed by Mörsch are given in Figure 5.1, where 

the shaded concrete strips represent the compressed struts. The tensile forces in the shear 

reinforcement are then obtained by analysis of the truss itself.  This model is easy to 

understand and has ever since been used as the starting point for the development of design 

models.   

 

 

Figure 5.1.  Simple or multiple truss systems with bent-up bars and stirrups (Mörsch, 1908, as 

cited in Balázs, 2010) 

 

Post 1902 to date much research effort has been directed towards the near impossible task of 

matching shear failure with theoretical models.  Fairly recently, in October 2010, a special 

workshop on shear and punching shear in reinforced and fibre-reinforced concrete members 

was held in Salò, Italy, to critically discuss and review the latest research and validate shear 

provisions to be adopted by the new 2010 Model Code. Over the last 50 to 60 years pivotal 

work by Kupfer, Walther, Kani, Leonhardt and Mönig, Thürlimann et al., Walraven and 

Collins and Vecchio, amongst others, has contributed much to better understanding of shear 

in reinforced concrete, including the influence of prestressing on shear behaviour.  The 

important developments concerning design theories that are applicable to non-prestressed 

members with shear reinforcement are highlighted.  

 Following his presentation in 1962 at the Shear Colloquium in Stuttgart (Balázs, 2010), 

Kupfer published a paper in a CEB bulletin in 1964 (ACI-ASCE Committee 445 Report, 

2009) that analysed a truss model consisting of linearly elastic members and neglecting the 
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concrete tensile strength, he provided a solution for the inclination of diagonal cracks.  

Kupfer proposed to select the shear reinforcement with simultaneous yielding of the 

longitudinal reinforcement and suggested to define the inclination of the strut by using the 

principle of minimum deformation work.  In 1973, Leonhardt and Mönig published a 

textbook that gave details on the so-called classic truss analogy by Mörsch with 45° struts as 

well as an improved truss analogy.  They gave experimental evidence that illustrated that a 

lower amount shear reinforcement, expressed as ��, reduces the inclination of cracks in the 

shear span as shown in Figure 5.2.  It can also be observed that more shear reinforcement 

increases the number of cracks developed before failure, thus promoting more behaviour of 

structures.   

 

 

 

 

 

 

 

 

 

 

Figure 5.2.  Crack patterns of T beams with very different amounts of shear reinforcement 

(Leonhardt & Mönig, 1973 as cited in Balázs, 2010) 

 

  Further, Leonhardt and Mönig paid special attention to the possible failure of concrete struts 

in I-sections with large flanges and large amounts of web reinforcement as well as relatively 

thin webs.  It was noticed that for such a beam configuration the compressive struts may 

suddenly fail between inclined cracks, even before the web reinforcement yields as was the 

 

ρw = 0.93 

ρw = 0.38 
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case for the I-beam shown in Figure 5.3.  It was established therein that web compression 

failure should give the upper limit of shear resistance.   

 

 

Figure 5.3.  Sudden web compression failure due to large amounts of shear reinforcement 

(Joint Research Centre, 2008) 

 

Further development of plasticity theories by Nielsen and Braestrup in 1975 extended the 

applicability of the model to non-yielding domains.  In 1987, Schlaich, Schäfer and 

Jennewein extended the truss model for beams with uniformly inclined diagonals.  This 

approach is particularly relevant in regions where the distribution of strains is significantly 

nonlinear along the depth.  Such regions are described as D-regions in Section 5.1.2. 

It must be noted that in 1929, the German engineer H.A. Wagner was the first to describe the 

angle of inclination of diagonal tension whilst solving an analogous problem of shear during 

the design of a stressed-skin aircraft (ACI-ASCE Committee 445 Report, 2009).  Wagner 

assumed that after the thin metal skin buckled, it could continue to carry shear by a field of 

diagonal tension, provided that it was stiffened by transverse frames and longitudinal 

stringers.  In an approach later termed the tension field theory and using the deformations of 

the system, he assumed that the angle of inclination of the diagonal tensile stresses in the 

buckled thin metal skin would coincide with the angle of inclination of the principal tensile 

strain as determined from the deformations of the skin, the transverse frames, and the 

longitudinal stringers.  Kupfer’s work, published in 1964, only presented approaches for 

determining the angle of inclination of the concrete struts assuming that the cracked concrete 
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and reinforcement were linearly elastic.  As an improvement, methods for determining the 

angle of inclination applicable over the full loading range and based on Wagner’s 

developments were established for members in torsion and shear by Collins in 1974 (ACI-

ASCE Committee 445 Report, 2009).  This procedure became known as the compression 

field theory (CFT).   Vecchio and Collins (1986) developed the modified compression field 

theory for reinforced concrete elements subjected to shear, which unlike the CFT, accounts 

for the influence of tensile stresses in the cracked concrete. The MCFT was calibrated to the 

so-called Toronto large panel tests.  Collins et al. (2007), claim that one of the reasons it has 

taken so long to develop an adequate theory for shear is that the traditional type of shear test 

in which a simply supported beam is subjected to one or two point loads, while simple to 

perform, yields results which are difficult to use as the basis of a theoretical model.  The 

modified compression field theory was developed by testing reinforced concrete elements in 

pure shear using the membrane element tester as shown in Figure 5.4. 

 

 

Figure 5.4.  Membrane element tester (Collins et al., 2007) 
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5.1.2 Motivation for the investigation on shear 

In full view of all the developments presented in Section 5.1.1 above, there is no 

internationally accepted design theory for shear.  Some countries still adopt the Ritter-Mörsch 

truss models whilst others such as Canada, USA and Spain, have updated their standards to 

more current and rational models based on the MCFT for shear design.  

 Through the years, a wealth of investigations have been conducted to determine the accuracy 

and precision that unfactored design models can achieve in predicting true shear resistance as 

determined from experiments.  This is reflected by the statistics of the model factor, defined 

in Equation [3.13], which is the ratio of a test result from an experiment to a predicted result 

by an appropriate model.  A model factor greater than 1 implies that the prediction model is 

conservative and vice versa is true.  It has been established from the conclusions of the 

investigations that, in general, both the accuracy and precision of the model factor associated 

with shear predictions are not as consistent and reliable as those for other modes of structural 

resistance, such as flexure and axial deformation.  In contrast, the MCFT has been proven to 

be a powerful tool in predicting shear, even rivalling prediction accuracy obtained from 

flexural calculations is some instances (Bentz, 2010).  This, however, comes as a result of 

using a model that is relatively complex to understand and computationally more involving 

than when conventional truss methods are used, usually requiring iterations to converge to the 

final solution when implemented using a spreadsheet.  To this aid, Bentz (2000) as part of his 

PhD dissertation at University of Toronto, where the MCFT was developed, created a 

program that is able to predict the full load-deformation response to failure of a reinforced 

concrete member by sectional analysis.  Ultimate shear strength of sections can thus be 

predicted which is the main objective of design at this point; where model uncertainty is not 

satisfactory reflecting incomplete understanding of the phenomena.  Once adequate 

prediction of ultimate strength can be made for shear during design, then durability and 

serviceability aspects can be explored so as to optiminise design with an ultimate view of 

cutting costs and excess use of material in construction practice.  These can be viewed as 

benefits from scientific and technological advances. 

With these uncertainties in shear prediction, the question now is how to proceed to design for 

shear as it clearly is a phenomena affecting structural performance?  The answer is twofold: 
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1. By the use of structural reliability techniques, to appropriately calibrate shear models 

with their inherent uncertainties, so as to build in sufficient conservatism into the 

procedures by the use of partial factors and characteristic values to ensure that safe 

designs are achieved with regard to shear resistance every time they are used.   

 

2. To apply rational scientific methods such as non-linear analyses through the use of 

finite elements and use of the MCFT to improve on the model uncertainty inherent in 

the model itself.  In any case, as a requirement of design bases, the model would still 

have to be calibrated to achieve sufficient conservatism that accounts for other 

uncertainties. 

 
 

Narayanan and Beeby (2005) in the Guide to EC 2, state that despite the uncertainties 

associated with shear prediction models, shear design can be carried out with confidence as 

the models in EC 2 have been tested against and adjusted to fit a large set of experiments.  

This is obviously the case for members not requiring shear reinforcement, as EC 2 adopts an 

empirical formula for design and sufficient background on this work is traceable from 

research presented by the European Concrete Platform (2008).  For the case of members 

requiring shear reinforcement, the European Concrete Platform (2008) defends the use of the 

EC 2 prediction model stating that not only does it agree with physical reality, but also 

because it is a simple equilibrium method, giving transparent view of the flow of forces.  

Figure 5.13, in Section 5.2.4, gives some view of how the EC 2 variable angle truss method 

fits with a database consisting of reinforced T- and I-sections with stirrups.  No explicit 

reliability treatment of the model is indicated as was done for members without shear 

reinforcement. 

Interestingly, the EC 2 shear prediction model for shear reinforced members has been shown 

to yield rather conservative estimates of shear strength for members with low amounts of 

shear reinforcement whilst unconservative estimates are realised at high amounts of shear 

reinforcement (Cladera, 2002 and Cladera & Mari, 2007).  These findings have been 

confirmed in Chapter 7 of this thesis to a separately compiled database.  Cladera’s work 

which shows some inconsistent trends in modelling uncertainty of the EC 2 shear predicition 

model compared to other models, has led to Spain adopting an alternative procedure based on 

the MCFT for the design of shear reinforced members (EHE-08, 2010).   
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Since the Eurocode prediction model is already in use and a review of the EC 2 model is 

adequate for the South African adoption of the Eurocodes, Bullet 1 above is taken as central 

to this thesis.  That is, the reliability of the EC 2 shear prediction model is investigated to 

determine the main parameters that affect the structural performance of shear-reinforced 

structures.  This can be considered as a first step into calibrating the EC 2 shear prediction 

model.  The MCFT is, however, also applied in the thesis to reduce the model uncertainty, 

through improvement of the statistics (mean and standard deviation) of the model factor, 

associated with shear prediction.  This motivated the use of the MCFT as the general 

probabilistic model (gpm), or true resistance model, to be used in the reliability analysis of 

the EC 2 procedure.  The concept of the general probabilistic model is explained later in the 

thesis. 

 

5.1.3 Scope and focus of the investigation on shear for members requiring  

         stirrups 

The subject of shear design of reinforced concrete can be divided into two broad categories, 

known as B and D regions, where B stands for beam or Bernoulli, and D stands for 

discontinuous or disturbed (ACI-ASCE Committee 445 Report, 2009).  In B regions the 

distribution of strains is linear, whereas the distribution is nonlinear in D regions.  This thesis 

is concerned with B region shear only.  Design of B-regions for shear is the dominant design 

situation in practice.  Nonetheless, EC 2 does contain separate provisions for the design of D 

regions in shear; those are, punching shear and strut and tie models for arch action.  A 

structural concrete member can consist entirely of a D region though it is the more common 

situation to have B and D regions in the same member or structure.  Figure 5.5 below clearly 

illustrates this concept. 

As shown in Figure 5.5, D regions extend a distance equal to the member depth away from 

any discontinuity, such as change in cross section or the presence of concentrated loads.  

Examples of B regions in shear include normally reinforced beams, prestressed beams, 

columns and slabs of constant cross section.  Conversely, D-regions encompass regions with 

discontinuities in cross section, such as beam to column joints, flat slab to column 

connections, corbels and footings. 
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Figure 5.5.  Typical frame-type reinforced concrete structures.  Left: D regions are shaded 

portions of the structure and the rest are B-regions (Hsu & Mo, 2010).  Right:  D and B 

regions as indicated (ACI-ASCE Committee 445 Report, 2009) 

 

Further, only members requiring vertical shear reinforcement or stirrups are considered in 

this investigation.  That is, members not requiring design shear reinforcement and members 

designed with bent-up bars for shear resistance are not dealt with in the thesis.  In practice, 

most beams are provided with at least minimum shear reinforcement save for those of minor 

structural importance such as lintels.  The primary focus for members requiring design 

stirrups was to determine: 

1. The statistical properties of the model uncertainty, reflected by the model factor 

obtained by comparison to a compiled database, of the EC 2 shear prediction model 

for members requiring stirrups.  By use of the Program Response 2000 (Bentz, 2000), 

the modified compression field theory is applied to the compiled database in order to 

improve the model uncertainty of the shear prediction model, thus motivating its use 

as general probabilistic model in reliability analyses of the EC 2 prediction model.  

This is explained briefly below and elaborated later in the thesis.  Bentz (2010) 

classifies the use of Response-2000 as a Level IV approximation according to the 

system of the draft of the fib 2010 Model Code (fib, 2010).  This is the highest level 
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of approximation possible for shear, achieving the highest precision and accuracy in 

predictions but at the expense of increased computation time and effort as compared 

to lower approximation models. 

 

2. To perform preliminary reliability analyses of a representative test case to determine 

the factors that affect the safety performance of structures in shear. 

Though it is the reliability of the EC 2 shear prediction model that is sought, the MCFT is 

used as the general probabilistic model for shear against which the reliability of the EC 2 

prediction model is sought.  In principle, the general probabilistic model is a model of true 

shear resistance.  In practice, however, the general probabilistic model can be viewed as a 

design model with the least uncertainty in its model factor.  Various research, including work 

done by Bentz (2010) and Yoon, Cook and Mitchell (1996) amongst a wealth of others, 

shows that the MCFT is consistently better at predicting the ultimate shear strengths of 

concrete members as compared to other design models, mainly those adopted by codes of 

practice. 

As already established in Part 1 of the thesis, a review of EC 2 is an important step for South 

African efforts in revising the new national code of practice for concrete design SANS 

10100-1.  The general suite of Eurocodes contains a number of parameters that depend on 

local conditions including climatic conditions and traditionally used construction materials. 

Consequently, the values or specification of the parameters might be considerably diverse in 

different countries.  Due to lack of local data the UK National Annex to Eurocode 2 (2005) 

and the Background Paper to the UK National Annexes to EN 1992-1-1 (2006) are used to 

extract the UK’s nationally determined parameters (NDPs) for use in the investigation on 

shear.  Such dependence on British documents is warranted as the current South African code 

of practice for concrete structures, SABS 0100-1, is based on the now outdated British code 

of practice for concrete structures BS 8110-1.  However, the use of locally determined 

parameters is encouraged where possible and research to determine appropriate NDPs for 

South Africa is a necessary task. 
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5.2 OVERVIEW AND USE OF SHEAR DESIGN THEORIES FOR MEMBERS 

REQUIRING STIRRUPS 

 

5.2.1 Mechanism of shear transfer in members with stirrups 

Shear reinforcement does not prevent cracks from forming in a member.  Its purpose is to 

ensure that the member will not undergo shear failure before the full bending capacity is 

reached.  When inclined cracks form in a member with stirrups, only the bars that cross the 

cracks contribute to the shear resistance of the member as shown in Figure 5.6 below.   

 

 

Figure 5.6.  Shear resistance of member with stirrups.  Elevation showing reinforcement (top) 

and transfer of shear force through the member (bottom) . (O’Brien & Dixon, 1995) 

 

The total shear capacity, ��, provided by the section can be considered as a combination of 

the capacity of the reinforcement and that of the concrete.  Therefore: 

�� 	 �
 � ��                                                                                                                          [5.1] 
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Where �
 is the contribution of the shear reinforcement and ��, the concrete resistance, is the 

contribution from dowel action, aggregate interlock and the shear stresses in the uncracked 

concrete.  The dowel action of the reinforcement results from the resistance of the 

reinforcement to local bending and the resistance of the concrete to localised crushing near 

the reinforcement.  Aggregate interlock occurs in cracked members and results from the 

forces transmitted across the crack by interlocking pieces of aggregate protruding at a crack.  

Shear stresses in the uncracked concrete refers to the resistance provided by the portion of the 

beam where the axial stress is compressive. 

If the applied shear force is sufficiently large, the shear reinforcement will reach its yield 

strength.  Beyond this point, the reinforcement behaves plastically and the cracks open more 

rapidly (O’Brien & Dixon, 1995).  As the cracks widen, the proportion of the shear resisted 

by aggregate interlock is reduced forcing an increase in dowel action and shear stress in the 

uncracked portion of the section.  Failure finally occurs  by crushing of the concrete in the 

compression zone or splitting of the longitudinal tension reinforcement. 

 

5.2.2 Causes and types of shear failure in members without shear reinforcement 

Shear reinforcement is provided to control detrimental cracking behaviour that has been 

experienced in members not reinforced for shear.  As such, the cracking or failure of 

members unreinforced for shear should be well understood as they mostly also affect 

members with shear reinforcement.   

Inclined cracks must develop in a member before complete shear failure can occur (O’Brien 

& Dixon, 1995).  Reinforced concrete structures typically undergo two forms of cracking 

which are shear-web cracking and shear-flexure cracking.  Shear-web cracking occurs at 

sections where the shear stress predominates throughout the depth and bending moments are 

negligible or where the web width of the member is small.  Such situations are not very 

commonly encountered in practice but do sometimes occur.  On the other hand, shear-flexure 

cracking occurs in members that are exposed to significant amounts of both bending and 

shear stresses.  The type of shear failure which occurs in a particular member depends on 

various factors including (ACI-ASCE Committee 445 Report, 2009 and O’Brien & Dixon, 

1995): 
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1. The shape of the cross section 

2. The size of the cross section 

3. The amount of longitudinal tension reinforcement 

4. Maximum moment to shear ratio divided by the effective depth 
�/��� or 

alternatively the �/� ratio 

5. Axial force 

Much of the research into shear behaviour of concrete beams and slabs, including the tests 

compiled to form the shear database in this thesis, have been carried out using a three-point 

of four-point bending test in which shear forces and moments are predominant at different 

locations throughout the length of the beam.  Figure 5.7 shows the typical test arrangement 

and associated bending moment of the four point bending test.  The test setup is applicable to 

members with or without shear reinforcement. 

 

 

Figure 5.7.  Typical test arrangement and bending moment diagram for member without 

shear reinforcement (O’Brien & Dixon, 1995) 

 

Many empirical design formulae for shear to date have been derived based on the 

characteristics of shear potrayed in such tests.  From extensive testing over the years, it is 

well established that the shear capacity of a member is strongly dependent on �/�.  In 

general, the shear capacity decreases with increasing �/�.  As such, shear failures can be 

categorised, according to �/�, as illustrated in Table 5.1 (O’Brien & Dixon, 1995).  For 

different members falling into the same category, the sequence of events and the nature of 

failure are approximately the same. 
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Table 5.1.  Categories of shear failure with associated types of failure based on �/� ratio 

Category a/d Type of failure 

I 0 < a/d ≤ 1 Deep beam failure 

II 1 < a/d ≤ 2.5 Shear bond failure 

III 2.5 < a/d ≤ 6 Shear compression failure 

IV 6 < a/d Diagonal tension failure 

 

Members with very short spans or which have a large effective depth are commonly referred 

to as deep beams and fall into Category I of Table 5.1.  Diagonal shear-web cracks form as 

the load is almost transferred to the reaction by means of compression.  The crack propagates 

away from the support and toward the applied load.  Failure may occur in several ways; by 

anchorage failure, bearing failure at the support or location of the load, or by cracking failure 

of the arch.  Failure may occur at several times the initial cracking load. 

Members that fall into category II behave in a similar manner to Category I members, in that 

shear-web cracks develop in the region between the loaded sections and the supports.  

Thereafter, unlike deep beam failure, the crack propagates along the tension reinforcement 

destroying the bond between reinforcement and concrete in its vicinity.  This form of failure 

is called shear-bond failure.  Alternatively, Category II members may fail owing to dowel 

failure of the longitudinal tension reinforcement at the point of the inclined crack.  Further, 

shear compression failure may also occur which is characterised by crushing failure of the 

concrete at points of load application. 

Category III  members are likely to develop flexural cracks before the compressive force is 

great enough to develop shear-web cracks.  The flexural cracks closer to the support, where 

shear forces are significant compared to moments, develop into inclined shear-flexure cracks 

and propagate towards the applied loads thus splitting the member in the process.  This type 

of failure is usually referred to as diagonal tension failure.  The load at which diagonal 

tension failure occurs is approximately half that for shear compression/shear bond failure 

(O’Brien & Dixon, 1995).  A majority of beams in practice fall into this Category hence 

making diagonal tension the most common type of failure. 
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Category IV members are so slender that shear is hardly ever an issue and as such they tend 

to fail in pure flexure.  This implies that the longitudinal reinforcement yields and the 

concrete above it crushes before shear cracking occurs. 

It should be noted that anchorage failure is not regarded as a shear failure but is rather viewed 

as a consequence of shearing action in beams.  In addition to the types of shear failure 

considered above, web crushing may occur mostly in members with thin webs that are quite 

heavily reinforced for shear with wide flanges.  This type of failure is more prone to 

occurring in T- and I-sections as opposed to occurring in beams of uniform rectangular cross-

section. 

 

5.2.3 Derivation of the EC 2 variable strut inclination method for design of  

          stirrups 

Though not taken into account explicitly, the standard truss model with no concrete 

contribution is explained by the existence of aggregate interlock and dowel forces in the 

cracks, which allow a lower inclination of the compression diagonals and the further 

mobilisation of the stirrup reinforcement (ACI-ASCE Committee 445 Report, 2009).  This is 

shown schematically in Figure 5.6.  However, consistent with the principles of truss models 

first introduced by Ritter and Mörsch, a reinforced concrete beam in shear can be represented 

by an analogous truss as shown in Figure 5.8.  The design equations for shear for members 

requiring stirrups in EC 2 are derived from the relationships depicted in Figure 5.8 (Mosley et 

al., 2007). 

In the variable strut inclination method all the shear force will be resisted by the provision of 

stirrups with no direct contribution from the shear capacity of the concrete itself.  Using the 

method of sections it can be seen that, at Section � � � in Figure 5.8, the design force in the 

vertical link member ���,
 must equal the design shear force ���, that is: 

  

���,
 	 ���
�.��  
� 	 !"�� 
� 	 ���                                                                                      [5.2] 
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Figure 5.8.  Assumed truss model for the variable strut inclination method (Mosley et al., 

2007) 

 

If the links are spaced at a distance s apart, then the force in each link is reduced 

proportionately and is given by: 

 

���,
 

# $%& ' 	 !"�� 
�      

(  ���,
 	 ��� 	 )*+

 , !"�� cot 0                                                                                        [5.3] 

The angle 0 increases with the magnitude of the maximum shear force on the beam and 

hence the compression forces in the diagonal concrete members.  EC 2 limits 0 to occur 

between 21.8° 
cot 0 	 2.5� and 45° 
cot 0 	 1�.  For most cases of predominately 

uniformly distributed loading the angle 0 will be 21.8° but for heavy and concentrated loads 

it can be higher in order to resist crushing of the concrete diagonal members (Mosley et al., 

2007).  The limits placed on 0, which affect the quality and performance of the model’s 

predictions, are set from applying the plasticity theory to the truss model.  An appraisal of 

how the plasticity truss model is implemented in deriving these limits is given in Section 

5.2.4. 

EC 2 provides an upper limit, ���,345, on design shear force that is limited by the ultimate 

crushing strength of the diagonal concrete strut in the analogous truss and its vertical 
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component.  As can be seen from Figure 5.8, the effective cross sectional area of concrete 

acting as the diagonal strut can be taken as 6� 7 , cos 0 and the design concrete stress,!��, is: 

 

!�� 	 9::�:�
;<                                                                                                                            [5.4] 

Where =�� is the coefficient taking account of long term effects on the compressive strength 

and of unfavourable effects resulting from the way the load is applied.  It a parameter open 

for national choice and the UK adopts a value of  0.85.  ?@ is the partial material factor for 

concrete and is open for national determination.  The UK adopts the recommended value of 

?@ 	 1.5  for persistent and transient design situations.  Therefore: 

 

ABCDE�CF GCHFIJCK L! CKF GCHMC 	  MBCDE�CF �FGDJI GCHFGG 7  NHLGG � GFNCDLI�B �HF�      

                                                         	  O�:�
�.�P 7 
6� 7 , cos 0�                                           [5.5] 

(             DCG QFHCDN�B NLERLIFIC 	 SO�:�
�.�P 7 
6� 7 , cos 0�T 7 sin 0                             [5.6] 

So that, ���,345 	 !��6�, cos 0 sin 0                                                                                 [5.7] 

Which by conversion of the trigonometric functions can also be expressed as (Mosley et al., 

2007): 

 

���,345 	 !��6�, 
cot 0 � tan 0�⁄                                                                                       [5.8] 

In EC 2 Equation [5.8] is modified by two factors whose values are subject to national 

choice: the inclusion of a strength reduction factor, Y�, taking account of the fact that the 

beam web, which is transversally in tension, is not as well suited to resist the inclined 

compression as for cylinder tests and a coefficient accounting of compression in the chord, 

and =��, due to prestress.  For cases where there is no prestress, the UK adopts the same 

value of =�� 	 1 as is recommended in EC 2 and is thus not further considered here.  On the 

other hand, the UK adopts in part the recommended value of Y� in EC 2, maintaining: 
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Y 	 0.6 S1 � �:�
[�\T                                                                                                                  [5.9] 

However, in cases where the design stress of the shear reinforcement is below 80 % of the 

characteristic yield stress, UK suggests a value of Y� different from that recommended in EC 

2, which is given in its national annex as: 

 

Y� 	 0.54
1 � 0.5NLG=�                                                             !LH !�] ^ 60 �_�              [5.10a] 

Y� 	 
0.84 � !�] 200⁄ �
1 � 0.5NLG=� ` 0.5                       !LH !�] a 60 �_�               [5.11a]  

For the case of vertical stirrups, = 	 90° and the Expressions above reduce to: 

 

Y� 	 0.54                                                                                       !LH !�] ^ 60 �_�              [5.10b] 

Y� 	 
0.84 � !�] 200⁄ � ` 0.5                                                 !LH !�] a 60 �_�               [5.11b]  

Equation [5.10] and [5.11] were suggested to be altered for the UK in an investigation 

conducted and later presented by Jackson & Salim (2006).  The motivation to alter EC 2’s 

recommended limits was based on a better fit to experimental data under the 80 %  yield rule 

using the limits presented above than those suggested for use in EC 2. 

Section 9.2.2(5) of EC 2 requires that a minimum amount of shear reinforcement, described 

by the shear reinforcement ratio ��, be provided for all members requiring design shear 

reinforcement.  This is a parameter open for national choice and the UK adopts the value 

recommended in EC 2.  For cases with less than minimum shear reinforcement, the 

reinforcement provided is ineffective and the shear resistance is best calculated as for a 

member without shear reinforcement.  This, as part of the general relationship between the 

design shear force and the amount of shear reinforcement, is shown in Figure 5.9.   The 

minimum amount of shear reinforcement, ��,3de, is given in EC 2 as: 

 

��,3de 	 
0.08f!�] � !"]⁄                                                                                                  [5.12] 
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An additional requirement for links, as set by EC 2, is that the stirrup spacing must not 

exceed, in any direction, the lesser of 75 % of the effective member depth, �, and 600 EE. 

 

 

Figure 5.9.  Relationship between the design shear force and the amount of shear 

reinforcement (Narayanan & Beeby, 2005) 

 

It will be noted from Equation [5.3] that the smaller the angle 0, the greater is the shear 

capacity based on the shear reinforcement.  However, the shear capacity based on the 

crushing strength of the strut, given by Equation [5.8], decreases with decreasing values of 0 

below 45°.  Hence the maximum capacity corresponds to the situation where the capacity 

based on the shear reinforcement just equals the capacity based on the strength of the strut 

(Narayanan & Beeby, 2005).  According to Narayanan and Beeby (2005), this implies that 

the actual conditions at failure may be established using Equation [5.13] to estimate the value 

of 0 for which  ���,
 	 ���,345, and then using this value of 0 to obtain the required amount 

of shear reinforcement.  Therefore, at failure 0 can be found by equating Equation [5.3] and 

Equation [5.8], thereby yielding (European Concrete Platform, 2008): 

 

0 	 GDIg�h)*+��+i
j+
kl�:i

                                                                                                           [5.13] 
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Figure 5.10, taken from the European Concrete Platform (2008), depicts the development of 

� ��,
 and ���,345 for decreasing angle of strut inclination 

 

 

Figure 5.10.  Dependence of ���,
 and ���,345 on the strut inclination (European Concrete 

Platform, 2008) 

 

5.2.4 Application of the plasticity theory to the truss model 

For members requiring design shear reinforcement, stirrups in this case, EC 2 incorporates a 

variable angle truss model based on the lower bound theory of plasticity.  It should be noted 

that in this model of shear behaviour all the shear will be resisted by the provision of links 

with no direct contribution from the shear capacity of the concrete itself (Mosley & Bungey, 

2007).  Jensen and Lapko (2009) establish that lower bound solutions are applicable when the 

theory of plasticity is used to find values of the carrying capacity, which are lower than or 

equal to the yield load by creating stress fields, which fulfill equilibrium conditions and are 

safe according to the failure criterions of the materials.  On the other hand, upper bound 

solutions are applicable when a load equal to or greater than the yield load is sought by 

creating failure mechanisms and using the work equation on the mechanisms.  An exact 

VRd,s 

VRd,max 
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solution is found when the highest possible lower bound solution is equal to the lowest 

possible upper bound solution.  In this instance, the yield load or carrying capacity is exactly 

satisfied.  The theory of plasticity assumes the yield plateau as a typical stress-strain curve of 

a plain concrete specimen under compression instead of strain softening as would be more 

representative of highly reinforced or unreinforced concrete structures.   

The plasticity truss model, as is adopted by EC 2, is based on the assumption that both the 

longitudinal and the transverse steel must yield before failure (Hsu & Mo, 2010).  In order to 

ensure this mode of failure, the shear elements are divided into two types: under-reinforced 

and over-reinforced.  The application of the theory of plasticity to under-reinforced concrete 

structures, where failure is governed by yielding of steel reinforcement, seems reasonable.  In 

contrast, it is far less obvious that the theory of plasticity can be applied to over-reinforced or 

unreinforced concrete structures where the behaviour is governed mainly by the concrete 

(Ashour & Yang, 2007).  This intuitive notion is backed by the results of an investigation 

presented by Cladera and Mari (2007) that concludes that the unfactored EC 2 prediction 

model may be slightly unconservative for highly shear-reinforced members and too 

conservative for slightly reinforced concrete beams as no concrete contribution is considered. 

The equations that Ritter and Mörsch derived are applied in the plasticity truss model.  Note 

that the amount of steel in both directions is expressed as a ratio here, and shear stresses are 

used, not forces. 

 

Shear stress at yielding of stirrups: Y
� 	 ��!"� cot 0                                                    [5.14a] 

Shear stress in concrete struts: Y� 	 !� sin 0 cos 0                                                           [5.15] 

Shear stress at yield of longitudinal reinforcement: Y
m 	 �m!"m tan 0                             [5.16a] 

Equilibrium of the beam shear element shown in Figure 5.8 illustrates that the shear force has 

a component in the longitudinal direction as expressed by Equation [5.16]. 

From the plasticity theory’s assumption that the longitudinal and transverse reinforcement 

simultaneously yield at failure, then Y
� 	 Y� 	 Y
m at failure.  Note that the compression 

stress in the concrete struts !� is not equal to the crushing strength of the concrete !�,345.  
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Equation [5.14a] and Equation [5.16a] can be expressed in terms of !� by substituting 

Equation [5.15] into each of the two, as follows: 

 

!� sin 0 cos 0 	 ��!"� $%n '
nop '     q    !� sin[ 0 	 ��!"�                                                    [5.14b] 

!� sin 0 cos 0 	 �m!"m nop '
$%n '  q  !� cos[ 0 	 �m!"m                                                            [5.16b] 

And: 

 

Y� 	 !� sin 0 cos 0                                                                                                              [5.15] 

Now adding the final results from Equation [5.14b] and [5.16b] and utilising the identity 

sin[ 0 � cos[ 0 	 1, it follows that: 

 

�m!"m � ��!"� 	 !�                                                                                                             [5.17] 

The equation can be normalised in terms of the crushing strength of the diagonal compression 

struts, !�,345: 

 

rs��s
�:,tuv � r+��+

�:,tuv 	 �:
�:,tuv q wm � wx 	 �:

�:,tuv                                                                       [5.18] 

Where wm is known as the longitudinal reinforcement index and wx is known as the shear 

reinforcement index.  On this basis, the three failure conditions can be defined as follows: 

 

Under-reinforced elements: wm � wx y 1                                                                          [5.19] 

Over-reinforced elements: wm � wx ` 1                                                                            [5.20] 

Balanced condition: wm � wx 	 1                                                                                      [5.21] 
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Over-reinforced elements do not conform to the assumptions of the plasticity truss model and 

are not considered any further. 

 

The under-reinforced condition  wm � wx y 1 

Substituting Equations [5.14b] and [5.16b] into Equation [5.15], the shear stress at 

simultaneous yield of shear and longitudinal reinforcement is then given by: 

Y 	 hz�m!"m{z� �!"�{                                                                                                         

And dividing both sides by !�,345: 

 

k
�:,tuv 	 fwmwx                                                                                                                   [5.22] 

Dividing Equation [5.14b] by Equation [5.16b], 0 can be calculated by: 

 

tan 0 	 h|}
|s

                                                                                                                        [5.23] 

The variable angle truss model as applied in EC 2 is based on one of the cases of the balanced 

condition presented below. 

 

The balanced condition, wm � wx 	 1 

Three cases are distinguished within the limits of the balanced condition, where: 

 

~�GF 
1�: wm 	 wx 	 0.5  

For this case of the balanced condition, the yielding of both the longitudinal and transverse 

steel occur simultaneously with the crushing of the concrete struts at effective stress.  From 

Equation [5.23], 0 	 45° always for this case. 

Stellenbosch University http://scholar.sun.ac.za



87 
 

~�GF 
2�: wx y 0.5  

In this case the transverse steel has yielded and is followed by the yielding of the longitudinal 

steel with simultaneous crushing of the concrete.  The longitudinal reinforcement index 

becomes wm 	 1 � wx, hence 

k
�:,tuv 	 fwx
1 � wx�                                                                                                         [5.24] 

tan 0 	 h |}

�g|}�                                                                                                                  [5.25] 

tan 0 in Equation [5.23] will always be less than 1, since wx y 0.5, and thus 0 is always less 

than 45° for this case.  EC 2 adopts this Case for use in its variable strut inclination method 

for shear design. 

 

~�GF 
3�: wm y 0.5   

The longitudinal steel has yielded, but the concrete crushes simultaneously with the yielding 

of the transverse steel.  The transverse steel will then be determined by the balanced 

condition, wx 	 1 � wm, therefore: 

 

k
�:,tuv 	 fwm
1 � wm�                                                                                                         [5.26] 

tan 0 	 h
�g|s�
|s

                                                                                                                  [5.27] 

tan 0 in Equation [5.23] will always be greater than 1, since wm y 0.5, and thus 0 is always 

greater than 45° for this case. 

 

Conditions for design 

The balanced condition can also be expressed graphically by a semicircular curve in a 
k

�:,tuv  vs.  ω&.  Squaring both sides of Equation [5.24] and adding 0.5[ on both sides 
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� k
�:,tuv�[ � 
ω& � 0.5�[ 	 0.5[                                                                                          [5.28] 

Equation [5.28] represents a circle with radius 0.5 and centre located on the wx axis at 

wx 	 0.5.  This circle, half of which is shown in Figure 5.11, gives the nondimensional 

relationship between the shear stress Y and the transverse steel stress, ��!"�.  The axis 

pointing to the left, drawn to represent wm,  represents of appropriate values of longitudinal 

steel that satisfies the balanced condition. 

 

 

Figure 5.11.  Relationship for shear stress ratio vs. reinforcement ratios for the balanced 

condition (Hsu, 1993, as cited in Huber, 2005) 

 

Figure 5.11 shows that, for given amounts of transverse or shear reinforcement, much larger 

capacities are predicted than those based on the traditional Mörsch model, which assumes a 

strut inclination of 45°.  Further, it can be noticed that for low amounts of shear 

reinforcement very flat angles of 0 are predicted so that mostly lower limits are given to 

avoid under-reinforced members. 

When Equation [5.22] is substituted into Equation [5.23] and wm  is eliminated, then we get 

that 0 can be calculated from: 

 

� ��,���⁄  
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tan 0 	 |}
k �i,tuv⁄                                                                                                                   [5.29] 

Design of reinforcement within the semicircle will give an under-reinforced element, while 

the region outside the semicircle represents over-reinforcement.  The EC 2 shear prediction 

model requires stirrups to be designed in order to satisfy Case 2 of the balanced condition:  

That is, the case where the shear reinforcement yields before simultaneous crushing of the 

diagonal concrete struts and yielding of the longitudinal reinforcement. 

For Case 2, 0 is always less than45°.  In addition, EC 2 places a lower limit on 0 which 

corresponds to wx of 0.138 as calculated from Equation [5.29].  From Figure 5.11 it is 

evident that the EC 2 shear design procedure is a blend of a constant 0 method and a variable 

angle method.  For reinforced concrete members with wx ^ 0.138, the normalised shear 

resistance Y/!�,345 increases linearly with increasing wx, due to constant value of 0 of 21.8°.  
In the instance that wx exceeds 0.138, 0 gradually increases from 21.8° to 45° in a non-linear 

manner.  This implies that the shear resistance increases non-linearly with increasing amount 

of shear reinforcement. 

In principle, after initial cracking a redistribution of forces occurs in the webs of shear 

reinforced concrete beams, resulting in strut inclinations smaller than 45°.  If the shear 

reinforcement at a crack yields, the truss can, by rotation of the compression struts to a lower 

inclination, activate more stirrups for the transmission of the shear force and, as such, extend 

the zone of failure.  Due to strut rotation, the stress in the concrete struts increases.  

Consequently, rotation can only continue until crushing of the concrete occurs.  This is 

schematically shown in Figure 5.12. 
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Figure 5.12.  Schematic representation of the rotation of the concrete struts as measured on 

the web of beams with shear reinforcement (European Concrete Platform, 2008) 

 

The four steps of strut rotation, shown in Figure 5.12, are further elaborated.  In the beginning 

of shear loading the beams is uncracked in shear so that the principal strain direction is 45°.  
At the formation of inclined shear cracks the principal strain direction decreases.  After 

having reached the stabilised inclined crack pattern, a new type of elastic equilibrium is 

obtained.  At this point, the constant principal strain direction is dependent on the stiffness 

ratio of the concrete member in the cracked state. At yield of the stirrups, through rotation of 

the struts to a lower inclination in which the beam activates more stirrups to carry the load, 

the web searches for a new state of equilibrium.  Simultaneously, the compressive stress in 

the concrete struts increases.  Stress in the concrete diagonal struts will increase until the 

crushing strength is attained and the beam fails in shear.  Some indication of the accuracy of 

this prediction method, as is adopted by EC 2, is given in Figure 5.13. More accurately, 

Figure 5.13 shows a verification of Equation [5.3] and [5.8] with the limit cot 0 	 2.5 to a 

limited database comprising non-prestressed T- and I - beams with stirrups as presented by 

the European Concrete Platform (2008).  Such limited justification that lacks reliability basis 

is not adequately sufficient to defend the model as properly calibrated for use in practice or 

for adoption by design codes.  It is therefore the aim of this thesis to initiate, through 

preliminary reliability analyses done in Chapter 8, a proper calibration of the EC 2 variable 

strut inclination method. 
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Figure 5.13.  Non-prestressed beams with vertical stirrups – relationship between shear 

strength and stirrup reinforcement (European Concrete Platform, 2008) 

 

5.2.5 Background of the Modified Compression Field Theory (MCFT): 

Important aspects and derivations 

The modified compression field theory (MCFT) was developed from the compression field 

theory (CFT) for reinforced concrete in torsion and shear.  In both models, the cracked 

concrete is treated as a new material with its own stress-strain characteristics.  The CFT and 

the MCFT both have an extended rational base as compared to conventional truss models  

that arises from not just considering equilibrium, but additionally treating compatability as 

well as more general stress-strain relationships of the steel and concrete, all of which are 
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formulated in terms of average stresses and average strains.  The angle of inclination of the 

compressive struts, 0, is determined by considering the cross-sectional dimensions of a 

member and its deformations, caused by bending moments concomitant with shear at the 

studied section, of the transverse reinforcement, the longitudinal reinforcement and the 

diagonally stressed concrete (Cladera & Mari, 2007).  With these methods alongside 

equilibrium conditions, compatability conditions, and stress-strain relationships for both the 

reinforcement and the diagonally cracked concrete, the load deformation response of a 

member subjected to shear can be determined.  The MCFT is a further development of the 

CFT that accounts for the influence of tensile stresses in cracked concrete.  It recognises that 

the local stresses in both the concrete and the reinforcement vary from point to point in the 

cracked concrete, with high reinforcement stresses but low concrete tensile stresses occurring 

at crack locations. 

 The MCFT may be explained as a truss model in which the shear strength is the sum of the 

steel and concrete contribution.  As such, it provides itself as a general model for the load-

deformation behaviour of two-dimensional cracked reinforced concrete subjected to shear.  It 

models concrete considering concrete stresses in principal directions summed with 

reinforcing stresses assumed to be only axial.  A key assumption used to simplify the 

development of the MCFT is that the principal strain coincides with the principal stress 

directions.  This assumption is confirmed by experimental measurements, which show that 

the principal directions of stress and strain are parallel within � 10° (Vecchio & Collins, 

1986).   

The MCFT takes into account tensile stresses in the concrete between the cracks, and 

employs experimentally verified average stress-strain relationships for the cracked concrete 

(Vecchio & Collins, 1986).  Concrete stress-strain relationships in compression and tension 

were originally derived from tests performed by Vecchio at the University of Toronto using 

the membrane element tester shown in Figure 5.4 (Bentz, 2000).  The MCFT, unlike the 

conventional plasticity truss models such as the EC 2 model, accounts directly for the 

components of shear failure such as aggregate interlock and friction, dowel action and 

longitudinal steel, and shear carried across uncracked concrete (ACI-ASCE Committee 445 

Report, 2009). 

The most important assumption in the model is that the cracked concrete in reinforced 

concrete can be treated as a new material with empirically defined stress-strain behaviour.  
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This behaviour differs from the traditional stress-strain behaviour as determined from 

conventional cylinder compressive strength tests.  The strains used for these stress-strain 

relationships are average strains, that is, they lump together the combined effects of local 

strain at cracks, strains between cracks, bond-slip, and crack slip (Bentz, 2000).  According to 

Bentz (2000), the calculated stresses are also average stresses in that they implicitly include 

stresses between cracks, stresses at cracks, interface shear transfer on cracks, and dowel 

action.  In contrast, failure of reinforced concrete elements may not be governed by average 

stresses, but rather by considering the steel stress at the crack and the ability of the crack 

surface to resist stresses.  Therefore, an explicit check must be made to ensure that the 

average stresses are compatible with the actual cracked condition of the concrete. 

In accordance with the conceptual scheme of the MCFT presented above, the Equations of 

the MCFT are developed below with reference to Figure 5.14, which shows the free body 

diagrams for stress and strains and their associated Mohr’s circles. 

 

 

Figure 5.14.  Average stress (left) and average strain (right) free body diagrams with 

associated mohr’s circles in a reinforced concrete element (Vecchio & Collins, 1986) 

 

Equilibrium 

By considering force equilibrium, the stress in the transverse and longitudinal reinforcement 

are related to the shear stress and tensile stresses in the cracked concrete by Mohr’s circle for 

concrete stresses. Therefore, shear in the section is resisted by the diagonal compressive 

stresses, ![, together with the diagonal tensile stresses, !�.  The tensile stresses vary from 0 at 

Stellenbosch University http://scholar.sun.ac.za



94 
 

the cracks to a maximum between cracks.  From the left portion of Figure 5.14, the following 

Equations are derived: 

 

�"!
" 	 !" � Y tan 0 � !�                                                                                                  [5.30] 

�5!
5 	 !5 � Y cot 0 � !�                                                                                                   [5.31] 

![ 	 Y
tan 0 � cot 0� � !�                                                                                                 [5.32] 

Where �5 and �" are the reinforcement ratios in the longitudinal and transverse directions, !5 

and !" are the stresses in concrete in the �- and �-directions respectively, and Y is the shear 

stress on the element. 

 

Compatability 

Compatability requires that any deformation experienced by the concrete must be matched by 

an identical deformation of the reinforcement.  Thus, it holds that: 

 

For the transverse direction, �
" 	 ��" 	 �"                                                                    [5.33a] 

For the longitudinal direction, �
5 	 ��5 	 �5                                                                 [5.33b]                 

From the Mohr’s circle on the right of Figure , the strains in the transverse and longitudinal 

directions 
�" and  �5� are related to the principal tensile strain �� and the principal 

compressive strain �[ as follows: 

 

�5 � �" 	 �� � �[                                                                                                               [5.34] 

tan[ 0 	 �vg��
��g��                                                                                                                     [5.35] 

The stress-strain relationship for steel and cracked concrete are needed to relate the stresses 

(Equations [5.30] to [5.32]) to the strains (Equations [5.33a] and [5.33b]) 
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Reinforcement stress-strain relationship 

The reinforcement stress-strain relationship is a typical bilinear diagram, of which linear pre-

yield stresses can be determined from hooke’s law as: 

 

!
5 	 �
�5 ^ !5,"d�m�                                                                                                         [5.36a] 

!
" 	 �
�" ^ !","d�m�                                                                                                        [5.36b] 

Where �
 is the modulus of elasticity of the reinforcement, !5,"d�m� and !","d�m� are the yield 

points of the reinforcement in the � � and � �directions respectively, and !
5 and !
" are the 

service stresses in the reinforcement in the � � and � �directions respectively. 

 

Concrete stress-strain relationship 

It can be observed from Figure 5.14 that the concrete web acts not only in compression in 

direction 2, but also acts in tension in direction 1.  The stress-strain relationships for 

diagonally cracked concrete, applied in the MCFT, are given by the following relationships 

derived from experiments: 

 

�[ 	 �0.002
1 � f1 � ![ ![,345⁄                                                                                      [5.37] 

�KFHF,   ![,345 	 !� 
0.8 � 170���⁄                                                                                  [5.38] 

 I�,   !� 	 �:�
��f�\\�l                                                                                                           [5.39] 

�MC �DCK CKF BDEDC�CDLI CK�C,    !� ^ \.��f�:,tuv x4e '
\.�� ��+

u���l�
                                                      [5.40] 

�KFHF,   � 	 
v

de ' ��                                                                                                          [5.41] 

!�� is the principal compressive stress at initial cracking taken as 0.33f!�,345 in �_� units, 

![,345 is the crushing strength of the diagonally compressed strut, � is the crack width in 

EE, G5 is the perpendicular spacing of cracks inclined at 0.  The concrete and reinforcement 
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stress-strain graphs are presented in Figure 5.15.  Figure 5.15 illustrates that the behaviour of 

cracked concrete subjected to tensile straining differs from that of the cylinder test where no 

tensile straining takes place.  The peak compressive stress is much reduced compared to that 

of the cylinder test where no tensile straining takes place. 

 

 

Figure 5.15.  Stress strain relationship for cracked concrete in compression (left) and tension 

(right).  (Collins et al., 1996, as cited in Huber, 2005) 

 

Crack check 

In checking the conditions at the crack, the actual complex crack pattern is idealised as a 

series of parallel cracks, all occurring at an angle 0 to the longitudinal reinforcement and 

spaced a distance G' apart.  Figure 5.16 depicts, in terms of free body diagram and associated 

mohr’s circle, the equilibrium in terms of local stresses at a crack. 

 

Stellenbosch University http://scholar.sun.ac.za



97 
 

 

Figure 5.16.  Equilibrium in terms of local stresses at a crack (ACI-ASCE Committee 445 

Report, 2009) 

 

From Figure 5.16, the reinforcement stresses at a crack can be determined as: 

 

�5!
5�� 	 !5 � Y cot 0 � Y�d cot 0                                                                                      [5.42] 

�"!
"�� 	 !" � Y tan 0 � Y�d tan 0                                                                                     [5.43] 

The ability of the crack interface to transmit the shear stress, Y�d, depends on the crack width, 

�.  The limiting value of Y�d is given by the inequality (ACI-ASCE Committee 445 Report, 

2009): 

 

Y�d ^ 0.18 f�:,tuv & p '
\.�� ��+

u���l�
                                                                                                        [5.44] 
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5.2.6 Design of members based on the MCFT 

The relationships of the MCFT derived above can be used to predict the shear strength of 

beams.  There are a few simplified methods on the MCFT that have been adopted in a 

number of national design codes.  The design procedure elaborated by the ACI-ASCE 

Committee 445 on shear and torsion (2009) is elaborated in this Section.  Assuming that the 

shear stress in the web is equal to the shear force divided by the effective shear area 6��, and 

that, at failure, the stirrups will yield, equilibrium Equations [5.30] to [5.32] can be 

rearranged to give the following expression for the shear strength, �e (ACI-ASCE Committee 

445 Report, 2009): 

 

�e 	 �� � �
 � �¡                                                                                                                [5.45] 

�e 	 !�6�� cot 0 � )¢��

 � cot 0 � �¡                                                                                 [5.46] 

�e 	 £f!�,3456�� � )¢��

 � cot 0 � �¡                                                                              [5.47] 

Where �� is the shear strength provided by the tensile stresses in the cracked concrete, �
 is 

the shear strength provided by tensile stresses in the stirrups, and �¡ is the vertical component 

of the tension in the inclined prestressing tendon.  The effective shear depth, �, is taken as the 

flexural lever arm and it need not be taken less than 0.9�.  £, in this particular case, is the 

concrete tensile stress factor indicating the ability of diagonally cracked concrete to resist 

shear. 

The shear stress that the web of a beam can resist is a function of the longitudinal straining in 

the web.  For design calculations, �5 can be approximated as the strain in the tension chord of 

the equivalent truss.  From this, it therefore holds that: 

 

�5 	 ¤¥ �¢⁄ �\.�¦¥�\.�§¥ $%& 'g)¨*�̈ ©
�*)*��¨)¨* ^ 0.002                                                                       [5.48] 

Where ��, ��, and ª� can take the value of the factored design forces (moment, shear and 

axial force respectively) or for shear strength evaluations, can be the unfactored forces 

themselves.  !¡« is the stress in the tendon when the surrounding concrete is at zero stress, 
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which may be taken as 1.1 times the effective stress in the prestressing !
� after all loses.   
 

and  ¡
 are the area of nonprestressed and prestressed reinforcement respectively, both 

placed on the tension side of the member. 

If �5 and the crack spacing are known, the shear capacity corresponding to a given quantity of 

stirrups can be calculated.  This is equivalent to finding the values of £ and 0.  On the other 

hand, values of £ and 0 determined from the modified compression field theory (Vecchio & 

Collins, 1986) and suitable for members with at least minimum web reinforcement are given 

in Figure 5.17.  Minimum reinforcement ratios can be set by different countries for use, as 

given in Equation [5.12] for EC 2 and adopted for use in the UK.  The following assumptions 

were made in determining the values presented in Figure 5.17: 

 

1. The amount and spacing of the stirrups would limit the crack spacing to about 

300 EE. 

2. The values of 0 in Figure 5.17 ensure that the tensile strain in the stirrups is at least 

equal to 0.002, and 

3. The compressive stress in the concrete does not exceed the crushing strength 

 

The values of 0 that satisfy these requirements from Figure 5.17 can be considered to result 

in close to the smallest amount of total shear reinforcement being required to resist a given 

shear. 
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Figure 5.17.  Values of £ and 0 for members containing at least the minimum amount of 

stirrups (ACI-ASCE Committee 445 Report, 2009) 

 

5.2.7 Modelling of members for shear using Response 2000 

Response 2000 is a sectional analysis program that calculates the strength and ductility of a 

reinforced concrete cross-section subjected to shear, moment and axial load.  All the three 

loads are considered simultaneously to find the full load-deformation response using the 

latest research based on the MCFT.  The Program was developed at the University of Toronto 

by Evan Bentz in 2000 and is available for free download at: 

http://www.ecf.utoronto.ca/~bentz/r2k.htm 

The following three assumptions are made in Response 2000: 
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1. The beam theory is applicable to all sections modelled, that is plane sections remain 

plane even at the ultimate limit state.  

2. No significant clamping stress is taken as acting through the depth of the beam.  This 

implies that fixed supports cannot be modelled in Response 2000.  If there is 

transverse clamping, the real strength will be higher than that predicted by the 

program. 

3. The MCFT can be used for biaxial stress-strain behaviour throughout the depth of the 

beam. 

Through the use of the assumptions stated above, the generally well known fibre model of 

sectional analysis is extended to include the effects of shear.  In order to carry out an ultimate 

shear strength prediction based on the MCFT using Response 2000 the following input 

parameters have to be specified: 

 

1. Concrete cylinder compressive strength 

a. Aggregate size 

b. Compression softening characteristic equation 

2. Longitudinal steel yield strength 

3. Transverse steel yield strength 

4. Stirrup spacing 

5. Clear cover 

6. Section breadth 

7. Section height 

8. Number of bars and area of top non-prestressed reinforcement 

9. Number of bars and area of bottom non-prestressed reinforcement 

10. Stirrup type (None, single leg, open stirrup, closed stirrup, hoop, T-headed single 

leg, interlocking hoops) 

11. Loading configuration  

 

Some additional parameters are determined automatically based on specific inputs of the 

parameters listed above.  In most cases the automatically determined values are maintained 

for the analysis of ultimate shear strength, save for the case of Aggregate size and 

Compression softening as shown in the bullet list above.  Important aspects and modifications 
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of these settings are discussed below.  Other unaltered parameters are not discussed here and 

reference can be made to the program user manual for default settings. 

Crack spacing 

Response 2000 automatically calculates the crack spacing based on the CEB crack spacing 

provision that has been adopted from work done by Walraven.  However, the program has the 

flexibility of allowing the user to input crack spacing as desired depending on the aim of the 

investigation.  The recommended CEB crack spacing at a given depth , is given by: 

~H�N¬ GR�NDIJ 	 2N � 0.1 �j �⁄                                                                                       [5.49] 

Where N is the diagonal distance to the nearest reinforcement in the section from current 

depth, �j is the diameter of the nearest bar, and � is the percentage of steel within a depth of 

, � 7.5�j.  The recommended value of the crack spacing is maintained in this investigation, 

so as to model as best as possible the real behaviour of the section or member. 

 

Definition of concrete cylinder strength 

On specifying the concrete cylinder compressive strength, other parameters are automatically 

determined as shown in Figure 5.18 

 

Figure 5.18.  Concrete Details tab showing cylinder strength input with associated 

automatically defined parameters 
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The Aggregate Size and Compression softening parameters are altered form default 

specifications.  The basis and the way in which these parameters were altered are discussed. 

 

Aggregate size 

Appropriate aggregate sizes as reported in the literature sources and publications used to 

compile the database were input into Response 2000 for ultimate shear strength analysis.  

Aggregate sizes were not always reported and were reasonably estimated in a select few 

cases.  The estimation of aggregate sizes was centred on the concrete cylinder compressive 

strength values of the tests.  It is common worldwide convention to use larger aggregates for 

normal strength concretes and smaller aggregates for high strength concretes.  For normal 

strength concretes of about 40 �_� characteristic cylinder strength and less, 19 EE 

maximum aggregate size is normally used in the mix design.  For high and very high strength 

concretes above 40 �_� cylinder strength, maximum aggregate sizes are commonly 

specified between 7 and 12 EE.  This reduction in aggregate size affects the interface shear 

transfer mechanism as rough cracks no longer form around the aggregates for high strength 

concrete as in normal concrete.  Rather, for high strength concrete, smooth cracks occur 

through the aggregate.  To appropriately model this effect, the maximum aggregate size was 

linearly reduced to 0 EE in the concrete cylinder strength range between 60 and 80 �_� as 

suggested by the Response 2000 user manual.  Thus, for high strength concretes of 80 MPa 

and above, 0 EE maximum aggregate size was prescribed for use in the analysis regardless 

of the aggregate size in the physical member. 

 

Compression softenining 

As shown in Figure 5.18, the Vechio-Collins 1986 equation is set as the program default 

setting to describe compression softening.  The Response 2000 user manual, however, 

suggests the use of the Porasz-Collins 1988 Equation for very high strength concretes above 

90 �_�.  This recommendation was set for use in the investigation for the sections made 

from high strength concretes. 
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Definition of reinforcement bar yield strength  

On specifying the steel yield strength for the reinforcing bars, both longitudinal and 

transverse, other parameters as shown in Figure are automatically determined by the 

Program.  No alteration was made to any of the parameters based on reinforcement yield 

strength. 

 

 

Figure 5.19.  Reinforcement bar details showing steel yield strength input and other 

automatically determined parameters 

 

Loading, geometry and the specification of other member properties 

For shear analysis, Response 2000 allows the analysis of one or two point loads between 

supports.  This is typical of test setups used for investigating shear.  Figure 5.20 shows the 

Full Member Properties window from the program where loads, some geometry and other 

member properties are specified. 
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Figure 5.20.  Full member properties window showing input of loads and other member 

properties for analysis 

 

Outputs from Response 2000 

Once all the input parameters were adequately specified for analysis, Response 2000 

provided a cross-sectional plot, an example of which is shown in Figure 5.21, to give a clear 

depiction of the section.  As a result, any errors between the modelled cross section and the 

test setup reported in literature were easily recognisable. 
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Figure 5.21.  Cross-sectional plot and parameter output from Response 2000 

 

Upon satisfactory modelling of the cross-section, a member response analysis is conducted 

using the cross section details and the member as described in Section.  The results of the 

analysis are given in Figure 5.22. 

 

 

Figure 5.22.  Results of the member response analysis with ultimate shear load indicated as 

the values enclosed by the ovals 
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6.1 INTRODUCTION AND OVERVIEW OF STRUCTURAL RELIABILITY 

THEORY AND RELIABILITY ANALYSIS 

 

Taerwe (1993) states that every structural design problem is generally reduced to the 

verification of some well-defined limit states which are descriptors of discrete stages in the 

structural behaviour of a structure.  Simply stated, structural design is based on idealised limit 

state models that are aimed at verifying that structural load, and its effects, do not exceed the 

available structural resistance.  The models for use are more or less accurate descriptors of 

undesired states of a structure given a set of boundary conditions like actions, strengths, 

geometrical properties, environmental influence etc.  In most cases the reality behind such 

models is not known in detail; that is, the models are uncertain (König, Hosser & Wittke, 

1985).  Some uncertainties can never be eliminated absolutely and must therefore be taken 

into account when designing or verifying construction works (Holický, 2009).  The following 

type of uncertainties can usually be identified (Holický, 2009): 

 

1. Natural randomness of actions, material properties and geometric data, 

2. Statistical uncertainties due to limited available data, 

3. Uncertainties of theoretical models owing to the simplification of the actual 

conditions, 

4. Vagueness due to inaccurate definitions or performance requirements, 

5. Gross errors in design, execution and operation of the structure, and 

6. Lack of knowledge of the behaviour of new materials in real conditions. 

 

Holický states that the order in which the uncertainties bulleted above are listed corresponds 

approximately to the decreasing amount of current knowledge and availability of theoretical 

tools with which to analyse them and take them into account in design. 
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It is evident that structural design is a task fraught with uncertainty.  For the worst case 

scenario, incorrect estimation and treatment of uncertainties in design may result in structural 

load exceeding structural resistance, thus implying system failure.  According to Ang and 

Tang (1984), in order to explicitly represent or reflect the significance of uncertainty, the 

available supply (structural resistance) and required demand (structural load) may be 

modelled as random variables.  A random variable can be described as a physical quantity or 

state of nature that cannot be determined with certainty through measurements, experiments, 

judgement, prediction models, or some other credible method of parameter estimation.  

Statistical parameters and distributions are used to describe random variables.   

Probability theory, by the use of statistical representations of random variables, describes the 

occurrence of random events.  As such, the occurrence of realisations of the structural load 

relative to the occurrence of realisations of structural resistance is possible by the use of the 

probability theory.  Within the framework of the probability theory, full safety performance 

assessments can be made of structures in terms of exceedance probabilities.  In this light, the 

probability of failure may be defined as the likelihood that the structural load exceeds the 

structural resistance.  Conversely, the probability of survival or safety may be defined as the 

likelihood that the structural resistance exceeds the structural load and its effects.  In these 

terms, therefore, the reliability of a system may be more realistically measured in terms of 

probability.  ISO 2394 (1998) defines reliability as the ability of a structure to comply with 

given requirements under specified conditions during the intended life for which it was 

designed.   

 

    6.1.1 Reliability analysis of the EC 2 shear design method 

In accordance with Holický (2009), the fundamental task of the theory of structural reliability 

is the analysis of a simple requirement that the action effect, �, is smaller than the structural 

resistance, �.  It therefore holds that: 

 

� � �                                                                                                                                    [6.1] 

The reliability of any mode of structural resistance, in this case shear of members with 

stirrups, derives from the difference between the expected values of the resistance and that of 
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the applied loads (Huber, 2005).  Equation [6.1] enables the description of a safe state, limit 

state and failure state of any structural component.  The limit state forms the distinction 

between the safe and failure states of a structure and is defined by the limit state function as: 

 

� � � � 0                                                                                                                             [6.2] 

To reflect uncertainties inherent in design, the resistance and load effect are subject to 

statistical distributions that reflect the central tendencies of occurrence of their mean values 

relative to one another and the dispersion of the respective mean values.  Of particular 

interest is the region of expected failure at which the higher end tails of load models or 

distributions overlap with the lower end tails of the resistance models.  This is illustrated in 

Figure 6.1.  It can be deduced from Figure 6.1 that the probability of failure denoted as �	, 

can be reduced if the difference in the central tendency of occurrence of the mean values of � 

and � were increased or if the spread of realisations around the mean is reduced in either or 

both of � and �.  Further, the concept of the reliability index is illustrated for a case where 

both � and � are assumed to be normally distributed.  This example is applicable to very 

simple cases in reality and is only provided here to aid in defining the reliability index, 
.  In 

general, the reliability index is the distance, expressed in terms of standard deviations, ��
�, 

from the mean value of the safety margin, �� � ��, from the limit state condition or failure 

point � �  � –  � �  0. 
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Figure 6.1.  Probability Density Function of the Limit State function (Huber, 2005) 

 

A general performance function for any mode of resistance can be defined by: 

 

���� � � � �                                                                                                                      [6.3] 

Where � �  ���, ��, … , ��� is vector of basic state (or design) variables on which both the 

load and resistance are dependent.  A structure is safe so long as ����  �  0 and has failed to 

meet its intended function if ����  �  0.  In this general case, the probability of failure can be 

given by: 

  

�	 � ��� ! "#"$% ����� � 0� � &'���()*'��� +�                                                           [6.4] 

Where *'��� denotes the joint probability density distribution of the vector of basic 

variables �.  In practice, evaluation of the joint probability density functions of actions and 

resistances is a formidable task as information is often unavailable or difficult to obtain for 

reasons of insufficient data (Ang & Tang, 1984).  Furthermore, even in cases where the 

required distributions are specified, the determination of Equation [6.4], which requires 

numerical integration, may be impractical as much effort is required.   As such, the First 
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Order Reliability Method (FORM) method is implemented as a practical tool of conducting 

reliability analyses.  An added advantage of the form method is that the reliability index, 
, 

may be measured entirely as a function of the mean and standard deviation of basic variables 

when there is no information on the probability distributions.  The FORM procedure is 

outlined in Section 6.1.2.  The relation between 
 and �	 was established earlier in Equation 

[3.1] and is repeated here for convenience: 

 

�	 � Φ��
�                                                                                                                         [6.5] 

Where Φ is the cumulative distribution function of the standardised Normal distribution. 

Through means of reliability separation, it may be assumed that the overall reliability index 


, may be split into the resistance part, expressed by the resistance index 
� � -�
, and the 

load effects part, expressed by the load effect index 
� � �-�
.  -� and -� are the FORM 

sensitivity factors and were established in Chapter 2 as -� � 0.8 and -� � �0.7 as 

recommended in EC 0.  The most important feature of reliability separation is that material 

codes, or resistance performance, can be calibrated independent of loading codes and loading 

considerations in general.  The mutual relationship between the resistance failure probability, 

��, and the resistance index, 
�, is given as (Holicky et al., 2010): 

 

�� � 1 ��
�� � �2���� � �3��4, 5�6                                                                             [6.6] 

Where ���� is a general probabilistic model (gpm), for shear in this case, representing the 

resistance side of the limit state equation, similar to � in Equation [6.3]. �3��4, 5� is the 

deterministic code design shear resistance for a specific case for which the reliability is to be 

determined.  Therefore, � denotes the vector of basic variables, �4 represents the vector of 

their characteristic values, and 5 the vector of relevant partial factors.   The Modified 

Compression Field theory (MCFT) is adopted for use as the general probabilistic model in 

Chapter 8 of the thesis.  In effect, �3 is the shear resistance of a specific case determined 

using the variable strut inclination method for shear in EC 2 incorporating all necessary 

safety elements for design incorporated in design e.g. partials factors, characteristic values, 

conversion factors etc.  By FORM analysis, the resistance reliability index, 
�, may be 

determined through the assessment of the performance function: 
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���� � ���� � �3��4, 5�                                                                                                  [6.7] 

König et al. (1985) establish that highly sophisticated models, such as general probabilistic 

models, can be used as models of true shear resistance in the absence of valid tests and 

measurements from practice.  The MCFT has proven to be probably the best design model 

available for making accurate predictions of shear resistance and can thus be employed as the 

general probabilistic model. 

 

  6.1.2 First Order Reliability Method (FORM) 

Coupled with easier assessment of the probability of failure through the determination of 
, 

the FORM method is also an effective decision tool as it provides more insight into the 

reliability process than numerical integration or simulation methods.  By the use of numerical 

examples, various reliability elements such as partial factors and direction cosines of basic 

variables can be investigated to determine which basic variables most affect the reliability 

performance for shear or any other mode of structural resistance.  Holicky et al. (2010) 

establish that effective management of reliability performance, in terms of attaining specified 

reliability levels, can be achieved by applying partial factors to the variables that most affect 

reliability performance.  The relative importance of basic variables is reflected by the relative 

values of their direction cosines; that is, the greater the value of the direction cosine, the 

greater the influence of the parameter on reliability performance of the structure considered. 

It should be emphasised that the FORM method is consistent with the equivalent normal 

representation of non-normal distributions.  Only the mean and standard deviation of the 

normal distribution are required for FORM analyses, hence non-normal distributions only 

need to be transformed to normal distributions at specific points where the performance is 

being assessed.  Hence, an essential step in using the FORM method is first transforming the 

basic variables of various distributions into a transformed space of normal variables.  The 

algorithm outlined in Holický (2009) was implemented in a spreadsheet to conduct the 

reliability analysis of the EC 2 shear prediction model.  The steps of the algotirhm presented 

by Holický (2009) and used in the thesis are presented below with necessary inclusions. 
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1. Formulate the of the limit state function ���� � 0 and specify theoretical models for 

basic variables � �  2�7, �8, . . . , �96 .  :   
 

���� � ���� � �3��4, 5� � 0                                                                               [6.8] 

 

More guidance on the specification and treatment of basic variables is given in 

Section 6.2 as the way in which they are specified and treated greatly influence the 

validity of results obtained from reliability analyses. 

 

2. Estimate the design point ;<  �  2=�<, =�<, . . . , =�< 6, for example using the means  of  

> � 1 basic variables, and the value of the last basic variable is calculated from 

��;<�  �  0.  
 

3. Evaluate the equivalent normal distribution for all basic variables at x*.  For an 

individual variate, the equivalent normal dsitribution for a nonnormal variate may be 

obtained  such that the cumulative probability as well as the probability density 

ordinate of the equivalent normal distribution are equal to those of the correspnding 

nonnormal distribution at the appropriate point, =@<, on the failure surface (Ang & 

Tang, 1984).  Hence, equating the cumulative probabilities, we have: 

 

Φ ABC<
DECF
GECF H � IJC�=@<�                                                                                               [6.9] 

Where �JCK  !>+ �JCK  are the mean value and standard deviation, respectively, of the 

equivalent normal distribution for �@.  IJC�=@<� is the original Cumulative Distribution 

Function (CDF) of �@ evaluated at =@< 
Transposing Equation [6.9] and making the equivalent normal mean subject yields: 

 

�JCK � =@< � �JCK Φ
�LIJC�=@<�M                                                                                  [6.10] 

Furthermore, equating the corresponding probability density ordinates at =@< means 

yields, 
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�GECF * ABC<
DECF
GECF H � NJC�=@<�                                                                                        [6.11] 

Transposing Equation [6.11] and making the equivalent normal standard deviation 

subject: 

 

�JCK � OPQRSTUEC�BC<�VW
	EC�BC<�                                                                                                 [6.12] 

Equations [6.9] to [6.12] only give superficial treatment of how basic variables are 

transformed and the specific cases of non-normal distributions adopted in Chapter 8 

are elaborated on in Section 6.2 when the theoretical models of basic variables are 

dealt with. 

 

4. Transformed design point u* = {u1*, u2*, ...un*} of standardized normal variables U = 

{U 1, U2, ...Un} corresponding to x* = {x1*, x2*, ...xn*} is determined using Equation: 

 

XY< � ;Y<
DEFGEF                                                                                                               [6.13] 

 

 

 

Figure 6.2.  Schematic representation of the standard normal transformation process 

(Taken from Dithinde, 2007) 
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5. Partial derivatives of the limit state function with respect to Z �  2[�, [�, . . . , [�6 are 

determined at the design point and denoted as the vector \ � 2]�, ]�, … , ]�6 and: 

 

]@ � ^_^`C � ^_^JC
^JC^`C � ^_^JC · �JK                                                                                 [6.14] 

 

6. The reliability index β is estimated as: 

 


 � � 2b6c2d<6e2b6c2b6                                                                                                         [6.15]    

For non-linear performance functions, as is the case for shear resistance shown in Section 

5.2, there is no unique distance from the failure surface to the origin of the reduced 

varaites but rather a linear approxiamtion by the use of a tangent plane to the failure 

surface at 2=�<, =�<, . . . , =�< 6 to approximate the failure surface. 

 

7. The vector of sensitivity factors is determined as: 

 

- � 2b6e2b6c2b6      ��     -@< � f ghgECi<
j∑ f ghgECi<

lC
                                                                        [6.16] 

 

8. A new design point for n-1 standardized variables and original variables are given as: 

 

m@< � -@
@                                                                                                                     [6.17] 

=@< � �J@K � m@<�J@K                                                                                                          [6.18] 

 

9. A new design point of the remaining variables follows from ��;<�  �  0. 

 

10. Steps 3 to 9 are repeated until β and design point {x*} are specified with a suitable 

accuracy.  
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6.2 THEORETICAL MODELS OF BASIC VARIABLES

 

The proposed models for the basic random variables in the thesis are prescribed considering 

middle values of action variances, common structural conditions and normal quality control 

of material properties (Holický, 2009).  Holický (2009) presents a compilation of several 

theoretical models that can be used for the representation of basic random variables in 

structural reliability assessments.  This is considered a sound compilation as it is 

from renowned sources as the JCSS probabilistic model code, CIB reports, the SAKO report 

and other significant contributions.  Direct cross reference is also made to the JCSS 

probabilistic model code (2001) and to the SAKO report (1999).   The mo

Holický (2009) are given in Table

normal distribution, GU the gumbel

the beta distribution.  Though not shown in the Table, some basic variables that have 

negligible uncertainty or effect on reliability performance may be treated as deterministic 

values.  Deterministic values are defined by a single value with no associated uncertainty of 

statistical distribution to reflect such.

 

Table 6.1.  Conventional models of basic variables for time

THEORETICAL MODELS OF BASIC VARIABLES 

The proposed models for the basic random variables in the thesis are prescribed considering 

middle values of action variances, common structural conditions and normal quality control 

rial properties (Holický, 2009).  Holický (2009) presents a compilation of several 

theoretical models that can be used for the representation of basic random variables in 

structural reliability assessments.  This is considered a sound compilation as it is 

from renowned sources as the JCSS probabilistic model code, CIB reports, the SAKO report 

and other significant contributions.  Direct cross reference is also made to the JCSS 

probabilistic model code (2001) and to the SAKO report (1999).   The mo

Table 6.1 below.  For the distributions, the symbol N denotes the 

normal distribution, GU the gumbel distribution, LN the Log-normal distribution, and BET 

the beta distribution.  Though not shown in the Table, some basic variables that have 

negligible uncertainty or effect on reliability performance may be treated as deterministic 

values are defined by a single value with no associated uncertainty of 

statistical distribution to reflect such. 

.  Conventional models of basic variables for time-invariant reliability analyses 

(Holický, 2009)

 

116 

The proposed models for the basic random variables in the thesis are prescribed considering 

middle values of action variances, common structural conditions and normal quality control 

rial properties (Holický, 2009).  Holický (2009) presents a compilation of several 

theoretical models that can be used for the representation of basic random variables in 

structural reliability assessments.  This is considered a sound compilation as it is extracted 

from renowned sources as the JCSS probabilistic model code, CIB reports, the SAKO report 

and other significant contributions.  Direct cross reference is also made to the JCSS 

probabilistic model code (2001) and to the SAKO report (1999).   The models prescribed by 

below.  For the distributions, the symbol N denotes the 

normal distribution, and BET 

the beta distribution.  Though not shown in the Table, some basic variables that have 

negligible uncertainty or effect on reliability performance may be treated as deterministic 

values are defined by a single value with no associated uncertainty of 

invariant reliability analyses 
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Once the distributions of each of the basic variables have been specified, the next task is to 

understand how they will be transformed into equivalent normal form to be able to be used in 

reliability analysis.  The Sections below treat the non-normal distributions used in Chapter 8 

of the thesis with a view of how they are transformed to equivalent normals.  It is shown in 

Chapter 7 and 8 that the model uncertainty is an important parameter affecting structural 

performance in shear for members requiring stirrups.  To this effect, model uncertainties are 

treated conceptually as well in the Sections to follow. 

 

6.2.1 Background of the general three parameter log-normal distribution 

In general, a random variable � has a three-parameter log-normal distribution if the 

transformed variable, n, has a normal distribution: 

 

n � ln|� � =)|                                                                                                                   [6.19] 

In this relation =) denotes the lower or upper bound of the variable �, which depends on the 

skewness, rs.  If the variable has a mean, �J, and a standard deviation, �J, then the lower or 

upper bound can be expressed as: 

 

=) � �J � GEt                                                                                                                       [6.20] 

Note that for negative skewness, u, is a negative quantity and in that case =) is indicative of 

the upper bound of the distribution.  The coefficient, u, is given by the value of the skewness 

according to the relation: 

 

rs � uv w 3u                                                                                                                       [6.21] 

From which follows an explicit relation for u: 

 

u � yzers� w 4 w rs|�/v � zers� w 4 � rs|�/v~ 2
�/v                                                      [6.22] 
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Thus, when specifying a theoretical model, it is therefore possible to consider the skewness 

rs or alternatively the lower or upper bound of the distribution =) (besides the mean �J and 

standard deviation �J).  In general, the skewness provides better characteristic of the overall 

distribution of the population (particularly of large populations) than the lower or upper 

bounds (Holický, 2009). 

The probability density function and distribution function of the general three-parameter log-

normal distribution may be obtained from the well-known normal distribution using a 

modified (transformed) standardised variable mK�  obtained from the original standardised 

random variable m� � �= � �J� �J⁄  as: 

 

mK� � �� z�d��S��|����|t|√��tl�
e�����tl� r"�>�rs�                                                                                [6.23] 

Where r"�>�rs� equals w1 for rs � 0 and �1 for rs � 0.  The probability density function 

*�K,`�m� and the distribution function Φ�K,`�m� � Φ�K,J�=� of the log-normal distribution 

are given as: 

  

*�K,`�m� � O�dF� �
G�z�d��S��|e�����tl�                                                                                           [6.24] 

Φ�K,J�=� �  Φ�K,`�m� � Φ�mK� �                                                                                       [6.25] 

Where *�mK� � and Φ�mK� � denote the probability density and distribution function of the 

standardised normal variable. 

A special case of the three-parameter log-normal distribution is the log-normal distribution 

with the lower bound at zero (=) � 0�.  This distribution depends on two parameters only – 

the mean, �J, and standard deviation, �J.  In such a case the coefficient, u, is equal to the 

coefficient of variation, ΩJ.  It further follows from Equation [6.21] that: 

 

rs � ΩJv w 3ΩJ                                                                                                                  [6.26] 
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Thus, the log-normal distribution with the lower bound at zero always has a positive 

skewness. 

 

6.2.2 Background of the two-parameter log-normal distribution 

Ang and Tang (1975) give the density function, NB�=�,  and distribution function between 

limits ! and   of an arbitrary random variable, �, that follows the two parameter log-normal 

distribution as: 

 

NB�=� � �√���B �=� y� �� z�� B
�� |�~                  0 � = � ∞                                                    [6.27] 

��! � � �  � � �G√�� & exp y� �� zB
DG |�~ +=  ��                                                                 [6.28] 

Where � � ��ln �� and � � e�!��ln �� are, respectively, the mean and standard deviation 

of ln �, and are the parameters of the distribution.  The mean, �, and the standard deviation, 

�, of ln � are defined as: 

 

� � ln �J � �� ��                                                                                                                  [6.29] 

� � �ln z1 w GElDEl | � eln�1 w Ω���                                                                                     [6.30] 

Note that � will have to be determined before the solution to Equation [6.29] is sought. 

The density function and probability generating function of the two-parameter Lognormal 

distribution can be found by use of the standardised normal distribution: 

 

Let  r � �� B
��                                                                                                                      [6.31]   

Then += � =�+r, and: 

  

Stellenbosch University http://scholar.sun.ac.za



 

120 
 

Then NB�=� � �√���B �=� y� �� z�� B
�� |�~                  0 � = � ∞                                           [6.32]  

��! � � �  � � �√�� & �
�� �⁄ ��l��� �
��/���� �
��/� +r � Φ z�� �
�� | � Φ z�� �
�� |                          [6.33] 

Where Φ��� denotes the cumulative distribution function of the standard normal distribution. 

Ang and Tang (1984) then proceed to represent the density function and distribution function 

of the log-normal distribution in the form of the standardised normal distribution, similar to 

the end results Equation [6.10] and [6.12], as: 

 

Φ�K,J�=@<� � Φ z�� B<
�E�E |                                                                                                  [6.34] 

*�K,J�=<� � �B<�E * z�� B<
�E�E |                                                                                            [6.35] 

Where Φ�K,J�=@<� !>+ *�K,J�=@<� denote the cumulative distribution and probability density 

function of the lognormal distribution of the original variate at the checking point =@<.  
Therefore, for the two-parameter log-normal distribution: 

 

�JCK � O�QRSyQf ¡ ¢<R£E¤E i~¥
S¢<¤EOf ¡ ¢<R£E¤E i � B<�EyOf ¡ ¢<R£E¤E i~

Of ¡ ¢<R£E¤E i � =<�J                                                            [6.36] 

�JCK � =< � =<�J z�� B<
�E�E | � =< � =<�ln =< � �J� � =<�1 � ln =< w �J�                       [6.37] 

 

6.2.3 Upper triangular distribution 

Some basic variables in design are often expressed in terms of lower and upper limit values.  

This is usually the case when the values of variables are fixed on a judgement basis.  

Nonetheless, the variable still requires some statistical parameters to be able to be used in the 

FORM procedure.  Ang and Tang (1984) describe that if there is bias associated with the 

realisation of a given variable within the lower limit, x� and x¦, some form of skewed 

distribution should be adopted.  In this regard, if it is judged or postulated that there is bias 

Stellenbosch University http://scholar.sun.ac.za



 

121 
 

toward the higher values within the specified range, then the upper triangular distribution, as 

shown in Figure 6.3 would be appropriate. 

 

 

 

 

 

 

 

Figure 6.3.  Upper triangular Probability density function between x§ and x¨ 

 

For an arbitrary random variable x, the mean value, �J, can be determined as : 

 

�J � �v �x§ w 2x¨�                                                                                                              [6.38] 

And the corresponding coefficient of variation, Ω�, is: 

 

 Ω� � �√� z ©ª
©«�©ª�©«|                                                                                                               [6.39] 

Since the probability density and cumulative distribution function are not clearly defined the 

mean and standard deviation from the upper triangular distribution can be approximated to 

equal that of a distribution that can take account of the inherent skewness as can be seen from 

Figure 6.3.  In the thesis the three-parameter log-normal distribution was used for this process 

and once the mean and variation were determined by equation [6.38] and [6.39], Equation 

[6.20] to [6.25] can then be applied to treat the variable as log-normally distributed with 

appropriate skewness. 
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    6.2.4 Model uncertainties 

Since in developing a resistance model certain influences are either consciously or 

unconsciously neglected, deviations between analysis and tests are to be expected.  An 

analysis and assessment of uncertainty must include the uncertainties in the design variables 

as well as in the prediction models (Ang & Tang, 1984).  For good models the model factor is 

approximately equal to one.  Since, however, conservative models are used it often results in 

model factor’s greater than one.  For good models, such as bending resistance of concrete and 

even steel, the coefficient of variation is just a few percent, whereas for poor models such as 

shear and punching shear values in the region of 10 to 20 % are typical (Schneider, 2006).  

Taerwe (1993) states that special calibration of the model uncertainty as part of the global 

resistance factor is warranted for coefficients of variation of 20 % and above.  For smaller 

coefficients of variation it could be tentatively suggested that the model uncertainties don’t 

require an additional safety factor if safe side models are used. 

Figure 6.4 gives a schematic overview of how model uncertainties can be treated.  It is 

illustrated in Figure 6.4 that model uncertainties can be treated at different levels of 

refinement ranging from the top of the chart with experience or judgement based treatment 

going down to the more rigorous and rational methods of full probabilistic analysis.  The way 

in which model uncertainties are dealt during calibration exercises is largely dependent on 

whether or not statistical information on the model uncertainty is available, and if thereafter, 

severe trends exist between the model factor and any of the shear parameters.  In the event 

that sufficient information is available for a statistical evaluation of model uncertainty, as is 

the case for shear, and it is found to be dominating or important to structural performance, it 

should be sufficiently accounted for and properly calibrated into the resistance model or the 

global partial safety factor.  
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Figure 6.4.  Flow chart for treatment of model uncertainties (König et al, 1985) 
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DETERMINATION OF THE MODEL FACTOR FOR THE EC 2 AND 

MCFT SHEAR PREDICTION MODELS 
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7.1  INTRODUCTION 

 

 

The central focus of this Chapter is to determine the statistics of the model uncertainty, 

reflected by the Model Factor (��) and its standard deviation, associated with the prediction 

models for shear resistance for members requiring stirrups.  In effect, the statistics of two 

separate cases of the model factor are herein characterised; one case for the EC 2 variable 

strut inclination method and the other case for the MCFT.  Characterisation of the model 

uncertainty was achieved by comparing ultimate shear strengths obtained from physical tests 

on representative members to the unfactored predictions of each of the design models. 

The term ‘Unfactored design model’ refers to the instance when the design model is used to 

make a prediction of true shear resistance by eliminating all conservative bias, done through 

the neglect of safety elements incorporated for design purposes such as partial factors and 

characteristic values.  However, even the unfactored design model cannot accurately predict 

the failure shear strength of beams determined from tests and experimental databases.  This 

implies that uncertainties are not only inherent in the design basic variables, but also arise due 

to some uncertainty associated with the prediction model itself.  It should be noted that 

although tests from experiments are taken to represent true shear resistance, they too have 

some experimental error and uncertainty inhibiting them from being truly representative of 

the actual situation or condition in the structure.  To cater for this, conversion factors are 

sometimes applied to experimentally determined parameters in codified design models. 
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7.2 THE EXPERIMENTAL DATABASE 

 

The experimental database used in determining the model factor was compiled from research 

published in most part by the American Concrete Institute (ACI) Structural Journal over the 

past 50 years.  The different tests, conducted by different researchers, were aimed and hence 

designed to reflect different aspects of performance of shear reinforced concrete beams.  The 

references of the of the published papers used in compiling the database are included after the 

main references at the end of the thesis.  Many of the experimental studies on shear from the 

ACI Structural Journal have resulted in the use of different design rules and approaches 

worldwide.  As a result, the database does provide some representation of beams in practice.  

Detailed statistical properties of the database are given in Section 7.2.2 and 7.2.3.  The 

database, as well all predictions made against it, is provided on the CD attached at the end of 

the thesis. 

Shear strength predictions were provided by the use of the variable strut inclination method 

for the case of EC 2 comparison whilst MCFT predictions were taken from the results of the 

sections from the test database being modelled in Response-2000.  Response-2000 

predictions could not be made against every test result in the compiled experimental database 

owing to the fact that a wealth of data is required for its use, some of which was not reported 

in a number of cases.  Therefore, two subsets of the data were created; the complete database 

to which EC 2 predictions are made, and the other the subset of tests which can be modelled 

in Response-2000.  Statistical comparisons of these subsets are given throughout the 

following discussions. 

 

 7.2.1 Composition of the database 

The entire database consisted of 222 reinforced concrete beams with stirrups which were 

collected from published experimental data from some 24 literature sources.  The 222 tests in 

the database represents a shortlist value from a greater database that was filtered to contain 

members adhering to the following criteria: 

1. All beams had to have at least the minimum amount of stirrups as set by EC 2.  This is 

a parameter left open for national choice and the UK adopts the value given in 
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Equation [5.12].  This relates to the links providing a minimum force governed by the 

following expression: 

��,��� � 	
���� � 0.08��� · �� · �                                                                       [7.1] 

 

Where ��,��� is the resistance force provided by the minimum links.  It should be 

noted in Equation [7.1] that the steel yield strength, ���, and concrete compressive 

strength, ��, are taken at their mean reported values in literature. 

 

2. The maximum spacing limit for stirrups of 0.75 � or 600 �� as set by the Eurocode 

and maintained for use in the UK was adhered to. 

 

3. All beams in the compiled database were simply supported and had predominantly 1 

or 2 gravity point loads between supports, although 4 gravity point loads were placed 

between the supports in four tests.  The tests with four point loads could not be 

modeled in Response-2000 as it models a symmetric half-portion of the beam, 

allowing a single load input with the length of the constant moment zone on the right 

of the load also required as input.  This implies a maximum of two point loads 

between supports for a beam can be modeled in Response 2000. 

 
 

4. Most beams in the database were in the range   2.5 � a �⁄ � 6.0.  Only four beams, 

that had a �⁄ � 2.49, fell outside the aforementioned range.  Beyond an a/� of 6.0, 

the members are governed by flexural failure and an a �⁄  less than 2.5 represents deep 

beams which are characterised under D-region shear, where other methods are 

preferred for their design like the strut and tie approach. 

 

5. For all beams in the database it was ensured, according to the EC 2 truss model, that 

the ultimate crushing strength of the concrete struts, "#$,�%&, was greater than the 

ultimate strength in the stirrups, "#$,
, at predicted failure.  This check promotes 

ductile behaviour by trying to avoid situations where concrete crushes prematurely, in 

this case due to web crushing. 
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6. In so far as was noticeable, possible bending and anchorage failures were eliminated 

from the experimental database.  Qualitative assessments of patterns of shear failure 

made during the tests and reported in literature were reviewed and filtered for suspect 

cases of flexural, deep beam, or anchorage failure. 

 

As hinted in Bullet 3 above, for some reason or the other, some beams could not be modelled 

in Response-2000.  As can be noticed from Section 5.2.7, Response-2000 requires a wealth of 

input data before an ultimate shear strength prediction is made.  A variable such as aggregate 

size was probably not well reported in earlier tests as it was not always identified as 

important for shear resistance.  The implication is that Response-2000 could only be used to 

model a select number of cases where the appropriate data or information for its use was 

deducible.  Thus, two sets of data were created; the first being the complete database of 222 

tests against which the EC 2 model factor is characterised, and a subset of 116 tests against 

which Response-2000 can be modelled and MCFT can be characterised. 

 

 7.2.2 Range and distribution of the shear parameters of the database 

For the model factors obtained and characterised in this Chapter to be of any real value, they 

ought to have been obtained from a database that is at least representative of beams 

constructed in practice or representative of situations in which the code can be applied.  In 

terms of the shear resistance of members with stirrups, the main parameters that are known to 

affect shear strength are investigated in terms of their frequency of occurrence grouped by 

classes of occurrence.  The considered shear parameters are:  

1. Shear span to depth ratio, a/� 

2. Amount of vertical shear reinforcement, expressed as 	'��' ���⁄  in �() 

3. Percentage of longitudinal tension reinforcement, *+ � 100	
/�� 

4. Breadth of the member, �� 

5. Member effective depth, � 

6. Concrete cylinder compressive strength, �� 

 Separate Histogram plots for each of the shear parameters against the entire database of 222 

tests are given in Figure 7.1 to Figure 7.6 below.  The frequencies and relative frequencies of 
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occurrence of each grouped class of data for each shear parameter are also given in the 

respective Figures. 

 

Figure 7.1.  Distribution of a/� for the entire database of 222 tests 

 

 

Figure 7.2.  Distribution of 	
���� ���⁄  for the entire database of 222 tests 
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Figure 7.3.  Distribution of *+ for the entire database of 222 tests 

 

 

Figure 7.4.  Distribution of �� for the entire database of 222 tests 
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Figure 7.5.  Distribution of � for the entire database of 222 tests 

 

 

Figure 7.6.  Distribution of �� for the entire database of 222 tests 
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Recall that MCFT predictions could not be made for the entire database of 222 tests, but were 

rather made to the 116 tests that could be modelled in Response-2000.  Therefore, Figures 7.1 

to 7.6 are not applicable to the subset of 116 tests.  Table 7.1 and 7.2 are presented below to 

show how the maximum and minimum values of some critical parameters related to shear 

varied between the entire database of 222 tests and the subset of 116 tests.  The standard 

deviation of the shear parameters within each of the data sets are also indicated on the 

respective Tables.  

 

Table 7.1.  Descriptive statistics of shear parameters for complete database of 222 tests 

Descriptive statistics bw 

[mm] 
d 

[mm] 
fc 

[mm] 
ρl 

[%] 
Aswfyw/bws 

[MPa] 
a/d 

Minimum 76.20 95.00 12.00 0.50 0.21 2.49 

Maximum 457.20 1200.00 125.40 4.54 2.62 5.40 

Standard Deviation 81.33 184.73 22.57 1.02 0.48 0.62 
 

 

Table 7.2.  Descriptive statistics of shear parameters for subset of 116 tests 

Descriptive statistics bw 

[mm] 
d 

[mm] 
fc 

[mm] 
ρl 

[%] 
Aswfyw/bws 

[MPa] 
a/d 

Minimum 76.20 95.00 20.70 0.50 0.33 2.49 

Maximum 457.20 925.00 125.40 4.54 2.62 5.00 

Standard Deviation  96.06 209.07 23.27 0.91 0.48 0.64 
 

In terms of extreme values, the subset of 116 tests compares well with the entire database.  

However, obvious changes in the standard deviation are observed from the values presented 

in Table 7.1 and 7.2.  The model factor associated with the EC 2 prediction model will later 

be determined to the subset of 116 tests to determine the effect the reduced database size has 

on the character of the model factor. 
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7.3 CALCULATION OF THE MODEL FACTOR 

  

The model factor associated with a single experiment is determined as the ratio of the test 

measured shear strength of a single test to the value of the unfactored shear strength provided 

either by predictions using either the EC 2 model or Response 2000.  In accordance with 

equation [3.13], the model factor is given as: 

 

�� � -./0.
-12/3

                                                                                                                           [7.2]   

A value of �� 4  1 implies that the prediction model yields a lower value of ultimate shear 

strength and is thus conservative, whilst a value of �� 5 1 implies that the prediction model 

yields higher ultimate strength than is actually available in the structure and is thus 

unconservative. 

 

 

 7.3.1 Calculation of the model factor for the EC 2 shear prediction model 

The unfactored shear resistance according to the EC 2 variable strut inclination method may 

be expressed as: 

 

"#$,
 � 607

 8���,�9%
:;9$ cot ?  

Where,    ? � sinCD E607FG7,H/I0J2/3
K7
LMFN,H/I0J2/3

                                                                                  [7.3] 

���,�9%
:;9$ and ��,�9%
:;9$ are the mean measured strengths of the steel yield and concrete 

compressive cylinder O150 P 300 ��R strength respectively.   In cases where cube strength 

tests for concrete compressive strength were reported in literature, the necessary conversions 

to equivalent compressive cylinder strengths were made.  Further, the strengths of non-

conventional cylinder sizes (say, 100 P 200 ��) used in determining compressive strength 

were converted to represent the strength of the conventional 150 S 300 �� cylinder.  These 
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adjustments were carried out with guidance from research by French and 

Mokhtarzadeh(1993); Aïtcin, Miao, Cook and Mitchell (1994); Carrasquillo and Carrasquillo 

(1998); and Mphonde and Frantz (1985). 

No partial safety factors are applied to either the steel or concrete strength.  The coefficient TD 

taking account of the reduced strength of concrete cracked in shear is determined as described 

in Section 5.2.3 with the concrete strength threshold condition implemented as ��,�9%
:;9$ 

when applicable. 

 

 7.3.2 Calculation of the model factor for the MCFT prediction model 

Predictions of ultimate shear resistance according to the MCFT were determined as a result of 

the test section being modeled in Response-2000 and subjected to a constant shear analysis.  

The detailed procedure on the use of Response-2000 to obtain ultimate shear strength 

predictions is given in Section 5.2.7.  To obtain unfactored estimates of the ultimate shear 

strength in Response-2000, mean estimates from samples or unbiased estimates of the input 

parameters outlined in Section 5.2.7 were used in the Program. 

 

 

7.4 STATISTICAL PROPERTIES OF THE MODEL FACTOR 

 

 7.4.1 Basic statistical properties 

The main statistical properties used to characterise model uncertainty are the mean or 

expected value of the model factor, determined by averaging all realisations of the model 

factor for each test in the database, and its standard deviation.  The coefficient of variation is 

an alternative measure of dispersion and is also included in the results.  Three cases of the 

model factor are reported in this Section.  The two main cases are: 

1. The statistics of the model factor associated with the EC 2 shear prediction model as 

determined from comparison to the entire database of 222 tests 
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2. The statistics of the model factor associated with the MCFT predictions from 

Response 2000 from comparison to subset of 116 tests 

The third, somewhat less important case, is the statistics of the model factor associated with 

the EC 2 prediction model as determined from comparison to the subset of 116 tests.  This 

case was considered to serve as comparison of how the statistics of the model factor 

associated with the EC 2 shear prediction model would change if compared to the same 

subset of data to which predictions according to the MCFT were made.  Table 7.3 gives the 

basic descriptive statistical parameters of the model factor associated with the MCFT and EC 

2 prediction models. 

 

Table 7.3.  Results of model factors associated with EC 2 and MCFT prediction models 

 116 tests 222 tests 
Statistics of the Model Factor MCFT EC 2 EC 2 

Average 1.14 1.70 1.65 
Std. Dev. 0.20 0.53 0.51 
C.O.V 0.18 0.32 0.31 

Minimum 0.72 0.59 0.59 

Maximum 1.76 3.21 3.21 

 

From the results presented in Table 7.3, it can be viewed that all models generally provide 

conservative predictions of shear resistance.  The average or mean value of the EC 2 model 

factor and its standard deviation as determined against the entire database and the subset of 

116 tests do not differ significantly.  It should be noted that from here on, the model factor for 

EC 2 based on the entire database of 222 tests will be used in all discussions.  The EC 2 

model factor was only characterised to the 116 tests to determine whether there were serious 

deficiencies in the reduced database so as to significantly change the character of the model 

factor.  No significant changes were detected. 

The EC 2 model factor, together with its large conservative bias of 65 %, also has a large 

standard deviation of 0.51 associated with it.  Such a large deviation implies a large spread of 

values around the mean, implying that great differences in some cases of data may exhibit 

model factor far from 1.65.  The critical cases are, of course, the events in which the model 

factor deviates significantly below 1.65 and close to or even less than 1, and the design 
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situations in which they occur.  Correlation and regression analyses were done to determine 

the trends of the model factor with the shear parameters to assess the relation of the model 

uncertainty to the variation in a given shear parameter. 

The MCFT is clearly the more accurate and precise prediction model for determining the 

shear resistance of members with stirrups.  Not only is it characterised by a lower mean 

conservative bias of 14 %, but it also has a lower standard deviation of 0.20 associated with 

it.  This implies that less variation in the mean can be expected than for the EC 2 shear 

prediction model across the different design situations reflected through a variation in the 

shear parameters. 

 

 7.4.2 Correlation and regression analysis 

Scatter plots of the model factor versus the different shear parameters can be made to 

determine what the general trend a given shear parameter has on the model factor.  A trend in 

the model factor with a shear parameter indicates that the model does not fully take account 

of the effect that the parameter has on the shear resistance of tested beams.  If a trend is 

strong enough, some control on how the model is used in regions of unsafe performance 

should be exercised.  The control may present itself either by limiting the range of 

applicability of the model in such situations, or perhaps specific calibration measures to 

incorporate adequate safety elements in the model that lead to conservative designs even 

when the model is used in such situations.  This basically implies that the model factor be 

appropriately incorporated in partial factor determination to cater for adverse situations. 

Trends in the model factor of the EC 2 design model or the MCFT can be investigated by 

determining their correlation with the shear parameters.  The Pearson’s correlation 

coefficient, V, lends itself as a descriptor of the correlation between two variables and is 

defined as: 

 

V � ∑O&XC&YRO�XC�ZR
�∑O&XC&YR[�∑O�XC�ZR[                  \ 1 � V � 1                                                                     [7.4]            

Where S� and ]� are the ̂_` experimental observation of the S and ] parameters.  SY and ]Z are 

the mean values of all the experimental observations of the S and ] parameters respectively.  
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Two random variables that have a non-zero correlation are said to be correlated.  The 

Pearson’s correlation coefficient measures the strength of the relationship between two 

variables.  An V of \1 indicates a perfect negative linear relationship between variables, an V 

of 0 indicates no linear relationship between variables, and an V of 1 indicates a positive 

perfect linear relationship between variables.  The coefficient of determination, ab, is used to 

judge the adequacy of the regression model.  ab can be closely approximated as the square of 

the correlation coefficient of a given parameter.  Linear regression models were fitted to 

scatter plots of the model factor for each of the design models versus the individual shear 

parameters.  Montgomery and Runger (2007) advise that the ab statistic be used with 

caution, because it is always possible to make ab close to unity by simply adding enough 

terms to the model.  For example, polynomial and power functions can fit complex patterns 

of scatter plots but are analytically more complex to deal with than simple linear regression 

or other models of fit. 

A combination of a relatively strong correlation coefficient and a relatively strong coefficient 

of determination indicate that a strong linear relationship exists between the model factor and 

the shear parameter (Huber, 2005).  If the correlation coefficient is strong but ab is relatively 

weak this indicates that the relationship between the model factor and the shear parameter is 

not linear.  A non-linear regression may be a better fit as would be characterised by a stronger 

ab for such a fit. 

Table 7.4 shows the correlation data of the MCFT with the shear parameters according to the 

subset of 116 tests as well as the correlation the correlation data of the EC 2 shear prediction 

model with the entire shear database of 222 tests.  The correlation data of the EC 2 shear 

prediction model with the shear parameters according to the subset of 116 tests are also 

included in Table 7.4.  Further, Table 7.5 gives a summary of the regression coefficients of 

the regression lines that were fit to the scatter plots of the model factor associated with each 

prediction model against the various shear parameters.  Figure 7.7 and Figure 7.8 show the 

scatter plots and hence illustrate the trends of the EC 2 and MCFT prediction models, 

respectively, against the various shear parameters. 

By visual inspection of Tables 7.4 and 7.5, the amount of shear reinforcement, 	
���� ���⁄ , 

clearly has the strongest relationship with the model factor, with an V of  \0.68 and an ab of 

0.4559 for the EC 2 shear prediction model.  An V of \0.24 and an ab of 0.059 describe the 

relationship between the amount of reinforcement and the model factor of the MCFT 
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prediction model.  It should be noted that the EC 2 prediction model has correlation of V of 

\0.69 with the amount of shear reinforcement when characterised to the subset of 116 tests.  

This corresponds to an ab value of about 0.4761.  Thus, even for the reduced database size 

of 116 tests, the data is sufficiently representative to capture the general correlation trend 

between the model factor and the amount of shear reinforcement. 

 

Table 7.4.  Correlation data of the shear parameters with the EC 2 and MCFT prediction 

models 

 
116 tests 222 tests 

Variab
le  

Correlation coefficient, r 
(MCFT) 

Correlation coefficient, 
r (EC 2) 

Correlation coefficient, 
r (EC 2)  

a/d -0.12 0.14 0.11 
Aswfyw/

bws 
 

-0.24 
-0.69 -0.68 

ρl -0.25 0.06 0.05 
bw 0.25 0.13 0.09 
d 0.07 0.08 -0.05 

fc -0.02 0.20 0.13 
 

 

Table 7.5.  Summary of the linear regression data for the EC 2 and MCFT prediction models 

  MCFT predictions to 116 tests EC 2 predictions to 222 tests 

Variable gradient intercept R2 gradient intercept R2 

a/d -0.0369 1.2599 0.0137 0.0928 1.3374 0.0128 

Aswfyw/bws 
 

-0.1019 1.2282 0.059 -0.7074 2.2431 0.4559 

ρl -0.0559 1.3003 0.0636 0.0239 1.582 0.0023 

bw 0.0005 1.0161 0.0636 0.0006 1.5189 0.0089 

d 0.00007 1.1142 0.055 -0.0001 1.6974 0.0027 

fc -0.0002 1.1513 0.0003 0.003 1.5018 0.0178 

 

By considering the regression data presented in Table 7.5, it can be observed that the gradient 

values of the regression lines are generally very shallow, of decimal significance and much 
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less than 1, implying that no distinct relationship exists between the model uncertainty and 

most of the shear parameters.  However, quite a steep gradient coefficient of \0.7074 is 

realised for the regression line fit to the scatter plot between the model factor and the amount 

of shear reinforcement for the EC 2 prediction model.  This fact, coupled with a higher 

correlation coefficient with the model factor as well as a relatively high coefficient of 

determination provide evidence that there is a trend of some significance between the amount 

of shear reinforcement and the EC 2 prediction model.  The implication is that full account of 

	
���� ���⁄  its effects are not adequately modelled by the EC 2 variable strut inclination 

method for shear.  It should be noted that no alarming trend of results are observed between 

the MCFT shear prediction model and 	
���� ���⁄ , as it is characterised by a lower gradient 

of the regression line of \0.1019 and V and ab as reported above.  Nonetheless, regarding 

the statistics presented in Tables 7.4 and 7.5 and from Figure 7.8, it can be observed that even 

for the MCFT, which is across board a better predictor of shear, the amount of shear 

reinforcement still most affects the performance relative to other shear parameters. 
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Figure 7.7.  Trends of model factor with shear parameters ()/�,  
607FG7

K7
 , *+, ��, �, and ��) 

comparing the  EC 2 prediction model to the complete database 
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Figure 7.8.  Trends of model factor with shear parameters ()/�,  
607FG7

K7
 , *+, ��, �, and ��) 

comparing the MCFT to the database of 116 tests 
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Trends of the model factor with the different shear parameters are discussed systematically 

below. 

 

Trends with a/�, *+, and �� 

It can be observed from Figure 7.7 that there is a net increasing bias of the EC 2 model factor 

with an increase in a/�, *+, and ��.  All the three shear parameters have positive correlations 

with the EC 2 model factor, with V of 0.11 for )/�, 0.05for *+ and 0.13 for ��.  The model 

uncertainty can be viewed as conservative throughout all situations of each of the shear 

parameters considered, with no distinct linear relationship between the model factor and the 

shear parameters as they are characterised by low gradients of their respective regression 

lines together with low coefficients of determination. 

Opposite trends in the model factor of the MCFT prediction model for shear were realised 

with a/�, *+, and �� than for the case of the EC 2 model factor. It can be observed from 

Figure 7.8 that there is a decreasing bias in the model factor with an increase in each of the 

three parameters.  a/� has an V of -0.12, *+ an V of -0.2,5 and �� an V of \0.02 when analysed 

against the MCFT model factor.  For the range of the shear parameters considered, no 

unconservative values of the model factor were realised.  However, adequate conservative 

bias can be viewed as necessary for design models through all design situations hence making 

any decrease in conservative bias of particular interest.  From a practical viewpoint, the 

situations in which the model factor approaches 1 occur less frequently, for example *+ gets 

closest to 1 at a value of 4.5 % whilst most practical design situations are characterised by 

the use of *+ of 0.5 –  1.5 %.  As judged from the relative values of the correlation 

coefficients, even less severe trends occur for a/� as well as ��.   More data points or 

physical tests should be fit to the MCFT prediction model and characterised against the shear 

parameters to intensify and better characterise any underlying trends with the model factor. 

 

Trends with the amount of shear reinforcement, 	
���� ��⁄ � 

From Figure 7.7,considering only the EC 2 model factor, there are clearly much more data 

points for lower amounts of shear reinforcement of less than 1.25 or 1 �() than for higher 

values.  As such, some non-linear regression would definitely better suit the scatter plot, 

Stellenbosch University http://scholar.sun.ac.za



142 
 

especially at providing better representation of the data in regions where more statistical data 

are available.  The model factor decreases with increasing amount of shear reinforcement and 

starts to become unconservative at 	
���� ��⁄ � of about 1.7 �().  Given in Figure 7.9 

below, is a logarithmic trendline or regression fit that better suits the data as suggested by the 

higher coefficient of determination of 0.5011, as opposed to 0.4559 when the linear fit is 

used..  Better fits, as characterised by higher ab values, to the data are possible.  For example, 

better fits were obtained when the power or polynomial regression fits were applied to the 

scatter plot.  However, such models are more complex than the logarithmic fit and in 

exchange for increased complexity, do not prove to result in much increase of the accuracy of 

the regression fit. 

The relation between the amount of shear reinforcement and the MCFT model factor can be 

viewed in Figure 7.8.  The model factor also decreases with an increasing amount of shear 

reinforcement, but starts to become unconservative at a value of about 2.1 �().  It would be 

desirable to see whether this value would increase or decrease if more data points or test 

results were available for consideration.  The net non-linear trend is still observable from the 

scatter plot, but obviously with less strength than for the EC 2 model factor owing to the 

fewer data points used in characterising the MCFT model factor.  A logarithmic regression fit 

of the scatter plot of the MCFT model factor versus the 	
���� ��⁄ � is given in Figure 7.10.  

 

 

Figure 7.9.  Logarithmic regression trendline fit to the scatter plot of the EC 2 model factor 

against the amount of shear reinforcement 
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Figure 7.10.  Logarithmic regression trendline fit to the scatter plot of the MCFT model 

factor against the amount of shear reinforcement 

 

For both cases of the model factor the logarithmic fit improves the limits at which the models 

become unconservative.  However, the logarithmic is not a better regression fit to the data of 

116 tests, shown in Figure 7.10 with an ab of 0.0432, as opposed to the corresponding graph 

from Figure 7.8 which has an abof 0.059.  Thus, the linear trendline fit of data should be 

used when the �� is characterised against 	
���� ��⁄ � for the data set of 116 tests.  On the 

other hand, the logarithmic fit provides better characterisation of the �� trend with 

	
���� ��⁄ � for the full database of 222 tests.  From Figure 7.9 it can be observed that the 

EC 2 model factor now becomes unconservative at a slightly increased value of about 

1.9 �() whereas no unconservative estimates of the model factor are realised for the range 

of data considered in Figure 7.10 for the case of the MCFT, though the general trend of 

decreasing conservative bias with increasing amounts of shear reinforcement is maintained. 

 

Trends with �� 

There is an increase in the conservative bias of the model factor with an increase �� for both 

the EC 2 and MCFT prediction models.  However the correlation of �� with the model factor 

is stronger for the MCFT, with an V of 0.25, than for the EC 2 prediction model, which has a 

V of 0.09.  For both cases, no unconservative values of the model factor were realised over 

the design situations considered.  For the case of the MCFT, as can be seen from Figure 7.8, 
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marginal conservative bias is witnessed for low values of �� approaching 50 ��.  Such 

small widths of beams are not anticipated and rarely occur in practice, owing to the fact that 

their construction would be quite difficult, especially in terms of placing reinforcement and 

achieving adequate cover and can be viewed as an impractical range of the data.  Thus, 

satisfactory performance is expected through all situations of the model factor with variations 

in ��. 

 

Trends with � 

In general, for both the EC 2 and MCFT prediction models and the test data considered in 

each case, adequate account seems to have been taken of the effective depth in regard to 

model uncertainty, or simply the size effect in shear.  The size effect in shear is the 

phenomena where the ultimate shear strength of a member decreases with its increasing size 

and is more pronounced in members without shear reinforcement, where the spacing and 

width of the cracks significantly affects the shear resistance of the member.  The trends, 

however, between � and the model factors are somewhat opposite; the conservative bias 

decreases for the EC 2 model factor with increasing values of �, and vice versa holds for the 

relation of the MCFT with �.  The EC 2 model factor has an V of \0.05 with �, whilst the 

MCFT has an V of 0.07 with �.  No alarming cases or trends of the relationship between the 

model factor and � are observed for both the prediction models. 

 

 

 

 

 

 

 

 

Stellenbosch University http://scholar.sun.ac.za



145 
 

7.5 MODELLING OF THE MODEL FACTOR FOR THE LIMIT STATE 

EQUATION 

 

In this Section, appropriate continuous statistical distributions are sought to represent the 

model factors for the EC 2 and MCFT prediction models.  The respective distributions will be 

used to represent the model factors as basic variables during reliability modelling carried out 

in Chapter 8.  Renowned structural engineering documents such as the JCSS Probabilistic 

Model Code (JCSS, 2001) usually provide guidance that log-normal or normal distributions 

be assumed for model factors in situations where no explicit information on the model factor 

is available.  Holický (2009), whose proposals are given in presented in Table 6.1, 

recommends that the normal distribution be used for representing the model factor. For the 

purposes of reliability modelling using the FORM method, the normal distribution is the 

easiest to manipulate as no transformation of the distribution will have to be undertaken.  

The choice of the normal distribution can be used with confidence where very little skewness 

in the data is observed as zero skewness is reflected when the normal distribution is used.  

Skewness of a distribution is a dimensionless quantity that describes the asymmetry 

associated with a distribution or its bias toward generating higher or lower values of the 

variable.  In this regard, the normal distribution is symmetric and is hence not capable of 

reflecting asymmetry.  The skewness, �d, from a sample of data can be calculated from: 

 

�d �  �
O�CDRO�CbR ∑ e&XC&Y

f gh
                                                                                                    [7.5] 

Where i is the number of tests or data points in the database under evaluation and j is the 

unbiased estimator of the sample standard deviation as obtained from the test results.  

Holický (2009) advises that a skewness of 0.5 can be taken as a relatively high value, thus 

implying its significance should be taken into account in random variables that have an equal 

or higher skewness than 0.5.  The value of �d of the EC 2 model factor was determined to be 

0.482 and that of the MCFT was found to be 0.612.  The value of 0.482 was taken roughly 

equal to 0.5 and as such distributions other than the normal distribution were sought to 

appropriately represent the model factor realisations. 

Stellenbosch University http://scholar.sun.ac.za



146 
 

Easy-Fit software was used to carry out statistical goodness of fit tests to determine which 

distribution would best represent the model factor realistaions for associated with each of the 

Predicition models.  The trial version of the software is available for free download at: 

http://www.mathwave.com/ .  Easy-Fit is a distribution fitting software program has the 61 

continuous distributions, each of which were tested against input data of the model factor 

realisations to determine the distribution of best fit to the data.  The Kolmogorov-Smirnov 

goodness of fit test is the goodness of fit test preferred by the program, although other 

alternatives as the Anderson-Darling and Chi-squared goodness of fit tests can be opted for 

use by the program.   The Kolmogorov-Smirnov test is adopted for use in the thesis.  Table 

7.6 and Table 7.7 show the ranking of suitable distributions that can be used to model the EC 

2 and MCFT model factors respectively.  It is deducible through inspection of the Tables that 

the lower the test statistic of a model according to the Kolmogorov-Smirnov test, the better 

the fit of the continuous distribution considered to the model factor realisations. 

 

Table 7.6.  Results of the Kolmogorov-Smirnov test from Easy-Fit for the EC 2 model factor 

Result of Kolmogorov-Smirnov test 
Distribution Statistic Rank 

General 4-parameter Gamma 0.02813 1 
3-Parameter Log-normal 0.041 9 
2-Parameter Log-normal 0.05517 25 
Normal 0.05768 28 
 

Table 7.7.  Results of the Kolmogorov-Smirnov test from Easy-Fit for the MCFT model 

factor 

Result of Kolmogorov-Smirnov test 
Distribution Statistic Rank 

4-Parameter Burr 0.02813 1 
2-Parameter Log-normal 0.041 4 
3-Parameter Log-normal 0.05517 5 
Normal 0.05768 29 
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Selected models of the model factor for reliability analysis 

The 3-Parameter log-normal distribution will be used to model the model factor associated 

with EC 2’s variable strut inclination method for members requiring stirrups.  On the other 

hand, the 2-Parameter log-normal distribution will be adopted for use in describing the 

occurrence of realisations of the MCFT shear prediction model during reliability analyses in 

Chapter 8.  Problems of structural engineering commonly adopt the normal and log-normal 

distributions to describe basic random variables, especially those concerned with describing 

resistance variables. Thus, the log-normal distributions are preferred for use here.  It should 

be noted that better fits are available, as can be seen from the rankings in Table 7.6 and Table 

7.7, but are more complex to deal with especially in having to transform them to an 

equivalent normal space as is required when the FORM method is used for reliability 

analyses.  Figure 7.11 and Figure 7.12 show histograms from Easy-Fit with the normal and 

log-normal distributions super-imposed to reflect the different trends of the distributions in 

describing model factor realisations of the EC 2 and MCFT prediction models respectively. 
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Figure 7.11.  Normal (top), 2-parameter log-normal (middle), and the 3-parameter log-normal 

distribution (bottom) of the EC 2 model factor 
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Figure 7.12.  Normal (top), 2-parameter log-normal (middle), and the 3-parameter log-normal 

distribution (bottom) of the MCFT model factor 
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MODEL FOR MEMBERS REQUIRING STIRRUPS 
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8.1 INTRODUCTION 

 

A full investigation aimed at establishing the appropriate calculation steps that enable the 

adequate reliability assessment of the EC 2 variable strut inclination method are presented in 

this Chapter.  The FORM method of reliability analysis was used to determine the reliability 

of the EC 2 shear design method in two slightly different procedures, briefly described as: 

1. One in which the EC 2 shear prediction model is converted for use as the general 

probabilistic model, against which the reliability of the EC 2 design procedure is 

sought.  The EC 2 prediction method is converted to a general probabilistic model 

(gpm) when unbiased values of all the basic variables, all of which were initially 

represented as random variables with statistical distributions, are used in the model to 

make a prediction, alongside neglecting the use of any partial safety factors that are 

incorporated for use when the design model is applied in practice.   And, 

 

2. The other in which the more rational-scientific MCFT is adopted for use as the 

general probabilistic model in the reliability analysis.  MCFT predictions of true shear 

resistance are obtained by entering unbiased and unfactored values of the relevant 

basic variables, most of which were initially represented as random variables with 

statistical distributions, into the analysis Program Response-2000. 

 

It can be concluded from the results of the model factor presented in Chapter 7 that the 

MCFT is a better predictor of shear resistance for members requiring stirrups than the EC 2 

variable strut inclination method.  The model factor associated with the MCFT is 

characterised by a lower mean bias of 1.14, as opposed to EC 2’s value of 1.65, as well as a 

lower spread or standard deviation of 0.20, as opposed to EC 2’s value of 0.51.  Furthermore, 

the EC 2 model is sensitive to the amount of shear reinforcement, as shown in Figure 7.7 and 

Figure 7.9.  It is therefore obvious that the MCFT provides more precise and consistent 
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predictions of shear resistance than the EC 2 variable strut inclination method and in this 

regard, strictly speaking, the MCFT should automatically be adopted as the general 

probabilistic model for shear resistance.  However, and in general, any model for shear can 

serve as the general probabilistic model in reliability analyses so long as its model factor can 

be established with reasonable accuracy coupled with it being expressed in its unbiased and 

unfactored form.   

A limited parametric study, conducted considering two representative design situations 

referred to as test cases, was conducted to establish the relative contributions toward the 

reliability performance due to the identified shear parameters.  A further, and arguably more 

important, objective of this Chapter was to determine the reliability indices 	
��
 associated 

with each of the design situations considered; this can be viewed as a rational assessment that 

is in line with modern basis of design requirements and was aimed at analysing how safe the 

shear design provisions are when implemented in practice.  It was found that the EC 2 

variable strut inclination method is adequately safe for the design situations considered, but 

with some concern about its performance in design situations where large amounts of shear 

reinforcement are provided in design.  These issues are discussed later in this Chapter. 

The reliability index, 
, associated with both test cases was determined in two separate 

analyses; one where the EC 2 prediction method is converted to serve as the gpm in the 

probabilisitic model for shear and the other where the MCFT was adopted as the gpm.  For 

both test cases, one of which was representative of a design situation with low amounts of 

shear reinforcement and the other with high amounts of shear reinforcement, it is shown that 

the model factor (��) has dominating influence on the performance of members designed 

according to EC 2 .  In fact, the model factor was found to completely dominate shear 

reliability performance for members with stirrups in the reliability analyses where the EC 2 

prediction model was converted for use as the gpm.  For such instances, this warranted the 

development of a simplified reliability model, in which the model factor is the only basic 

random variable considered in the general probabilistic model and therefore completely 

influences the distribution for the shear of members requiring stirrups, for quick and 

meaningful analyses into the reliability performance of the EC 2 design method.   

When the MCFT was used as the gpm, some noticeable contribution toward reliability 

performance was exhibited by the basic random variables for concrete cover (�), the yield 

strength of the stirrups (���) and the concrete strength (��).  Naturally, the MCFT requires 
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more basic input data to make a prediction of ultimate shear strength than the EC 2 prediction 

model for shear.  Therefore, in these instances, the simplified reliability model represented 

the basic variables ��, �, ���, and �� as the only random variables in the gpm and neglected 

the distributions of the other basic variables, thus treating them deterministically. 

As a result of the full investigation, where two possible general probabilistic models are 

considered for use in reliability modelling, some differences in the results of the reliability 

analysis of the test cases are demonstrated between the two separate analyses.  In general, 

higher 
-estimates are derived for the test cases when the MCFT is used as the gpm as 

compared to corresponding analyses of the test cases when the EC 2 prediction model is 

employed as the gpm in the reliability analysis.  Furthermore, an investigation aimed at 

determining the influence the shear-span-to-depth ratio, a �⁄ , has on shear strength 

predictions showed that the MCFT as is implemented in Response-2000 takes due account of 

changes in ultimate shear resistance for members with varying influences from shear-flexure 

interactions; predicting higher shear resistance for shear-critical members (members loaded 

significantly in shear where a/� is closer to 2.5) to members less heavily loaded in shear 

where even flexure may dominate as the primary load carrying mechanism (higher a/� 

ratios, closer to 6).  

 After an a/� of  4.0, Response-2000 predicts much reduced values of ultimate shear strength 

for the test case herein considered as representative of a design situation with relatively high 

amounts of shear reinforcement  (������ ���⁄ � 1.8 �� ).  This strong trend of results was 

not realised for the test case that was representative of a design situation with low amounts of 

shear reinforcement (������ ���⁄ � 0.4 �� ) where only slight and gradual decrease was 

experienced in the ultimate shear strength predictions as a/� increased.  

The EC 2 prediction model is inert to changes in a/� and is applied in practice for the design 

of shear-critical regions or regions some distance from the support or load points and fails at 

characterising shear behaviour along the full member length.  This finding does not discredit 

the EC 2 prediction model due to the fact that it does not lend itself to describing the full 

shear behaviour of members, but is rather a sectional design method applied to critical shear 

locations that are usually some distance from the support.  Further, by viewing the 

appropriate graph in Figure 7.7, it can be observed that EC 2’s variable strut inclination 

method portrays adequate conservative bias at the different a/� considered.  The design for 

shear from the critical or design section is usually applied throughout the design at all other 
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necessary locations in a member.  The basis of EC 2’s design method is therefore consistent 

with the design approach or philosophy.  In a real beam within the confines of 2.5 !  �⁄ !
6.0,  the shear-flexure interactions that cause diagonal web cracks in a single beam differ 

along the shear span to the extent that the ultimate shear strength is determined by the 

weakest location in shear i.e. the first point along the shear span to fail in shear.  Regions in a 

member prone to shear failure occur where either the design of the section lacks integrity 

when loaded in shear or due to high influence of shear in the moment-shear interaction, a 

situation that usually occurs closer to support points of the member. 

In this investigation, the general approach was that a full probabilistic model was first 

developed to establish the relative contribution the different basic variables that contribute to 

shear resistance have on its reliability performance before the dominating variable(s) is/are 

isolated to represent the resistance probability model.  The inverse process is fully applicable 

and sometimes preferred; building the reliability model by first representing the true shear 

resistance distribution by parameters expected to dominate its performance as reported in 

literature or found from preliminary analyses.    Whichever method is used, the achievement 

of proper basic reliability modelling tools paves the way for full parametric analyses to be 

conducted for a number of design situations which can be chosen to represent different 

situations in practice. 

The flowchart of the complete reliability assessment for the two design situations considered 

in this investigation is presented in Figure 8.1.   
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Figure 8.1.  Flowchart of the parametric reliability investigation for members requiring 

stirrups designed using EC 2’s variable strut inclination method. 
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8.2 RELIABILITY ANALYSIS USING THE EC 2 PREDICTION MODEL AS THE 

GENERAL PROBABILISTIC MODEL (GPM) 

 

In this Section, the EC 2 variable strut inclination method is converted for use as the gpm in 

the development of the performance and limit state function for the shear resistance of 

members requiring stirrups.  The gpm is a descriptor of true shear resistance in nature and 

should thus be modelled by the most accurate prediction method.  The results from Chapter 7, 

as well as general literature on the MCFT, prove that the MCFT is a better predictor of shear 

resistance than most available shear resistance models including the variable strut inclination 

method on which EC 2 is based.  However, any model can be used as the gpm should it be 

expressed in its unbiased and unfactored form, alongside including the statistics of its model 

factor as a basic random variable in the formulation.  The EC 2 variable strut inclination 

method was treated in this manner to enable its use as the gpm in the performance function 

for shear. 

 

8.2.1 Development of the performance function for members requiring stirrups 

 

Defining the Performance Function for the shear of members requiring stirrups 

Recall form Chapter 5 that shear design using the variable strut inclination method is based 

on the contribution of the steel shear reinforcement only, where crushing of the inclined 

concrete struts is checked to avoid situations where premature web crushing may occur.  In 

design situations where the web crushing strength is predicted to be lower than the yield 

strength of the stirrups, the width of the section is normally increased to an extent that the 

web crushing strength exceeds or at least equals the yield strength of the stirrups.  The 

performance function for the reliability analysis is, therefore, based on the steel contribution 

of the stirrups provided during the design of a section or member.  Consistent with the 

background of reliability analysis presented in Chapter 6, the performance function can then 

be defined as: 

 

"	#
 $ %&'()*+	#
 , %&'(-./0)1	#2, 4
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5 "	#
 $ �� · 78/9� :���;<=>? , %&'(-./0)1	#2, 4
                                                           [8.1]     

Where %&'()*+	#
 represents the distribution of ‘true’ shear resistance, based on EC 2’s 

variable strut inclination method for shear, determined using unbiased values of the basic 

deterministic and random variables and neglecting the use of partial factors in the resistance 

model.  %&'(-./0)1	#2, 4
 is the single deterministic value of shear resistance as would be 

determined for a practical design situation in accordance with the stipulations in EC 2.  The 

vectors #2 and 4 imply that the single deterministic value of shear resistance is calculated 

using appropriate characteristic values of all the basic variables, which are all treated 

deterministically when the code method is applied for design, as well as the appropriate 

partial safety factors.  Figure 8.2 shows schematically the probabilistic representation of the 

performance function.   

 

 

Figure 8.2.  Probabilistic representation of the performance function 

 

In simple terms, the performance function represents a problem of supply versus demand; 

where the true shear resistance, which is represented by the general probabilistic model, 

forms the supply of available strength and the demand is represented by the code determined 

value of ultimate shear resistance.  The true shear resistance which truly varies in nature, and 

is represented by the general probabilistic model, is a distribution because it is a function of 
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basic variables which are allowed to assume random statistical distributions as expressed in 

the gpm portion of Equation [8.9]. 

Naturally, the demand side of the performance function is usually represented by a 

combination of actions or action effects, usually determined from critical load cases, to be 

exposed to a particular structure or construction during its lifetime of service.  The value of 

the actions or action effects would have been determined in accordance with national codified 

loading provisions, requirements or considerations.  If the code for actions is established on 

probabilistic bases as modern design formats require, as has been achieved in EC 0 and 

SANS 10160-1, adequate representation of variability of actions can be assumed.  In such 

cases, the reliability analysis would in effect determine the safety performance of a member 

or design section of certain physical parameters which are allowed to assume random 

statistical distributions against the determined action effects introduced into the process as a 

deterministic design value.  

 However, through reliability separation materials-based resistance standards can be 

calibrated independent of loading considerations.  In this scenario, as applied for all 

investigations in this thesis, the ultimate shear resistance determined by the materials-based-

resistance codified procedure is used as the demand side of the performance function.  This is 

in effect a representation of the maximum load the member with stirrups is permitted to carry 

in shear by the code, caused by whatever combination of actions i.e. ultimate limit state for 

shear in that design situation.  The reliability thus characterises the performance of the 

ultimate limit state condition. 

Similar to the definition of characteristic values from the viewpoint of fractiles of statistical 

distributions presented in Chapter 3, %@A�BCD is a discrete force as shown in Figure 8.2 and 

can be considered a fractile of the true shear resistance representing some level of probability 

of exceedance (or non-exceedance) of the density distribution, ECFG	H
, of the general 

probabilistic model.  In the thesis, the extent of exceedance of the mean of true shear 

resistance from the point of ultimate load or resistance determined by the code is determined 

through FORM analysis, in which 
 is the measure of safety performance determined (the 

number of standard deviations from the mean true resistance to ultimate code determined 

resistance) and �I can be determined from Equation [3.1], repeated here as: 

�I $ Φ	,

                                                                                                                         [8.2] 

Stellenbosch University http://scholar.sun.ac.za



158 
 

Different values of %&' (-./0)1 as shown in Figure 8.2 can be considered in independent 

reliability investigations to determine the separate effect on reliability performance caused by 

codified procedures such as the use of characteristic values or the effect of using partial 

factors in determining design resistance.  When no alteration is made to the codified 

procedure, the result of the reliability analysis is a reflection of how much conservative bias, 

created by the combined use of characteristic values and partial factors in the design model as 

well as bias inherent in the prediction model itself, exists between the point of true shear 

resistance in physical reality and that predicted by the code model.  Applying this concept, 

the demand side of the performance function could as well be represented by either: 

1. The characteristic shear resistance where partial factors are neglected in determining 

shear resistance but the characteristic values of the basic variables are used or 

 

2.  By the application of partial factors only, in a situation where the characteristic bias 

of the basic variables is neglected.  In these events, the bias inherent in the 

combination of characteristic or mean values against the point of true shear resistance 

is assessed in the reliability analysis. 

 

Development of the general probabilistic model for the shear resistance of members 

requiring stirrups 

The vector of basic variables # attached to the general performance function in Equation 

[8.1] represents the most basic quantities that are required in evaluating the value of the 

function.  That is, terms as : and > in the performance function, which can be considered as 

secondary variables, should be expressed in their simplest form.  

 Design codes usually prescribe that : be implemented in design as some fixed ratio of the 

effective depth, �, of the section.  EC 2 follows suite and prescribes a value of : $  0.9 � 

under the conditions that the member depth is constant and the member is not under any axial 

stress.  On the contrary, there is design evidence that suggests that the ratio of : to � can be 

as low as 0.75 (Jackson & Salim, 2006), for heavily reinforced concrete beams without 

significant flanges.  The fact that EC 2 prescribes the approximation : $  0.9 � indicates that 

the code will perceivably rarely ever be applied in situations of design of heavily reinforced 

concrete beams.  On the other hand, the general probabilistic model should be all embracing 
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and take account of all possible design situations.  To cater for this purpose, : can reasonably 

be postulated to be constituted of a general multiplier term, say L, and the effective depth, �, 

such that the following general expression holds: 

 

: $ L · �                                                                                                                              [8.3] 

The statistics of � are not explicitly reported in literature and the JCSS Probabilistic Model 

Code (2001) only provides guidance on the mean and standard deviation of the difference (or 

constructional tolerance) between the constructed and nominal value of �.  No direct 

distribution characteristics or statistics of � as a variable are reported in the JCSS model 

code.  For purposes of probabilistic representation, � is then modelled as the difference 

between the height of the section, M, less the summation of; the concrete cover, �, from the 

soffit of the beam to the seal of the bottom-most bar of reinforcement, the diameter of the 

stirrup, N, and some multiple of half the diameter of the longitudinal tension reinforcement, 

denoted as  .  The multiple, herein defined as OP, related to   is concerned with the number 

of layers of longitudinal reinforcement provided in the design.  This concept is illustrated in 

Figure 8.3. 

By viewing Figure 8.3 and taking cognizance that layers of longitudinal bars are usually 

spaced transversely at intervals equivalent to the bar diameter of the reinforcement, it can be 

observed that for a single layer arrangement of longitudinal tension reinforcement OP $ 1, 

whilst for a double layer arrangement of reinforcement OP $ 3.   
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Figure 8.3.  Schematic of the cross-section parameters used for probabilistic representation 

for single (left) and double (right) layer arrangement of longitudinal reinforcement 

 

Taking this into account, the depth of the Section can be expressed as: 

 

� $ M , 	� R OP ·  R N
 $ M , � , OP ·  , N                                                                  [8.4]   

Substituting Equation [8.4] into Equation [8.3] results in the following equation for :: 

 

: $  L · 	M –  � , OP ·  , N
                                                                                             [8.5] 

For the general probabilistic model based on EC 2’s variable strut inclination method, all 

conservative bias in the basic variables and partial safety factors were neglected for use in 

determining the angle of strut inclination, thereby resulting in: 

 

>CFG $ �TOUVW 8/9IX9Y9�Z[\]]I]                                                                                                     [8.6] 
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Where >CFG represents the angle of inclination of concrete compressive struts associated with 

the general probabilistic model.  In contrast to the code design method, >CFG is allowed to 

assume any value determined by the use of Equation [8.6] and is not subject to any 

constraints.  Further, it should be noted that the coefficient, ^��, that takes account of long 

term effects on the concrete compressive strength and of unfavourable effects resulting from 

the way the load is applied, is maintained for use in the general probabilistic model.  ^�� is 

not viewed as a safety element for design but rather a conversion factor applied to the design 

process to better reflect the concrete strength of real structures.   

 

Development of the code determined single deterministic value of shear resistance 

In EC 2, the design value of the angle of inclination, herein denoted as >@, of the concrete 

compressive struts is established in Equation [5.13] and is appropriately repeated here, and 

extended by using Equation [5.4], as: 

 

>@ $ �TOUVW8/9IX9-Y9�Z[I]- $ _ 8/9`IX9a V.Vbc d
Y9�Z[e\]]aI]a V.bc f                                                                         [8.7] 

Where >@ is subject to the constraints 1 ! cot >@ ! 2.5 or 21.8° ! >@ ! 45°.  When >@ is 

determined to be less than the lower limit of 21.8°, the value of 21.8° should be used in 

design so as not to give too much credit to the steel contribution to shear resistance.  Values 

of >@ greater than the upper limit of 45° imply that significant stresses occur in the concrete 

with the risk of crushing of the concrete web.  In this instance, the dimensions of the member, 

particularly the web width, should be increased until the angle >@ falls into its code stipulated 

confines.   

%&'(-./0)1	#2, 4
 is a single deterministic value of shear resistance for members with stirrups, 

which is determined according to EC 2’s variable strut inclination method.  The code design 

procedure incorporates the appropriate characteristic values of the basic variables, 

represented by the vector #2 in Equation [8.8] below, as well as the partial safety material 

factors for steel and concrete resistance, kl and k', which are represented in the same 

Equation by the vector 4.  Therefore: 
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%&'(-./0)1	#2, 4
 $ 8/9� : IX9aV.Vb cot >@                                                                                   [8.8] 

Instances where partial safety factors and characteristic values of the basic variables were 

applied in determining the deterministic resistance, as is proposed by the EC 2 design 

method, can be considered as the base case used for the reliability assessments. 

 

Statement of the full performance function 

Incorporating the developments from Equation [8.3] to [8.8] and substituting them into 

Equation [8.1], the performance function can be expressed as: 

 

"	#
 $ �� · m8/9� L	M , � , OP ·  , N
���cot n�TOUVW 8/9IX9Y9�Z[\]]I]op , %&'(-./0)1	#2, 4
     

                                                                                                            [8.9]    

 

8.2.2Theoretical models of basic variables  

The theoretical models of the basic variables for the general probabilistic model of the 

performance function are presented in Table 8.1 below.  The symbols 3-P LN and 2-P LN 

under the column heading Distribution Type are used to denote the three-parameter and two-

parameter log-normal distribution respectively.  Both the statistics of the �� associated with 

the EC 2 (��&' () and MCFT (��q'rs) prediction models are reported in Table 8.1. 
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Table 8.1.  Theoretical models of the basic variables for the general probabilistic model 

    Basic Statistics   

Var. Xi Unit Distn. 
type 

Mean, µX C.O.V., 
ΩX 

Std. 
Dev., σX 

Bias Source 

MFEC 2 - 3-P LN 1.65 - 0.51 - Thesis 

MFMCF

T 
- 2-P LN 1.14 - 0.20 - Thesis 

Asw 
mm2

  
N nom. Asw 0.02 - 1 JCSS PMC (2001) 

s  mm N nom. s 0.03 - 1 

Mirza & 
MacGregor (1979) 
as cited in Huber 
(2005) 

m 
- 
  

3-P LN 0.85 0.0416 - - Thesis 

h mm  N nom. h 0.01 - 1 Holický (2009) 

C  mm 2-P LN 30 - 9 1 
Holický et al. 
(2010) / Thesis 

a mm2 N nom. a 0.02 - 1 JCSS PMC (2001) 

e mm2 N nom. e 0.02 - 1 JCSS PMC (2001) 

fyw MPa 3-P LN 
fywk + 

1.645σ  
- 30 

1 / (1 – 
1.645ΩX) 

Holický (2009) 

bw  mm N nom. bw 0.01 - 1 Holický (2009) 

αcc  - 2-P LN 0.85 0.1 - 1 
Holický et al. 
(2010) 

fc MPa 3-P LN  Bias * fck 0.18 - 
1 / (1 – 

1.645ΩX)
   

Holický (2009) 

 

From inspection of Table 8.1, it can be seen that the mean values of all the parameters related 

to the geometry of the section e.g. ���, �, M etc., are taken as the nominal quantities of the 

respective variables.  This is due to the fact that in practical design situations the nominal 

values of dimensions and geometrical parameters specified in design drawings are normally 

used as the characteristic or design representative values of the basic variables when used in 

codified equations during the verification of structural resistance. 
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Most of the models presented in Table 8.1 are conventional models that are derived for use 

from recognised sources of literature concerned with the specification of basic variables that 

enable probabilistic assessment of structures.  The basic variables   and N, shown in the 

Table, are concerned with the area of reinforcement and are therefore prescribed the same 

distribution as ���.                                                                             

However, under the Source column heading in Table 8.1, the models for the basic variables 

��, L and � have been indicated to have been developed in the thesis.  The statistics of the 

model factor, as well as its suitable theoretical distribution, were established in Chapter 7 for 

the EC 2 and MCFT shear prediction models.  Thus, only the development of the theoretical 

models for L and � are dealt with in detail.  Comments are also made on the choice of some 

of the statistical moment parameters for the steel yield strength of the stirrups, ���, as well as 

the concrete compressive strength, ��. 

 

Lever arm multiplier term 	L
 
The general concept of this basic variable was introduced in the previous Section.  From the 

background information contained therein, it can reasonably be postulated that L is a random 

variable bound between lower and upper limits of LP $ 0.75 and Lt $ 0.90, respectively.  

It is important that the distribution of the random variable in the postulate exhibits a higher 

likelihood of generating values of L closer to 0.9 than 0.75.  Ang and Tang (1984) propose 

the use of an upper triangular probability density function (PDF), which is introduced in  

Chapter 6, to describe a random variable where the range of values are known to possess a 

tendency (bias) of generating values closer to the upper limit of the distribution as shown in 

Figure 6.3.  A distribution function that has a bias towards the upper limit has a negative 

skewness or is skew to the left.  Consistent with the procedure described in Chapter 6, the 

characteristics of the skewed upper triangular PDF are determined as follows (Ang & Tang, 

1984): 

 

Lu $ vG $ Vw x0.75 R 2	0.90
y $  0.85                                                                             [8.10] 

And, 
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zG $ ΩG $
V√( e }.~}U}.�b(	}.~}
�}.�bf $ 0.041594516                                                                  [8.11] 

For the purpose of reliability modelling, a more defined statistical or theoretical distribution 

of the basic variables is required (e.g. Normal, Lognormal, Beta, Gamma distributions etc).  

To reflect the negative skewness (skew to the left) in the distribution of the random variable, 

the moments of the distribution derived from the upper triangular postulate are taken to equal 

the first and second moments of the general three parameter lognormal distribution with the 

upper bound at 0.9.  

 

Concrete cover 	�
 

A study on Partial factors for reinforced concrete members (Holický et al., 2010) uses the 

moments v' $ 30 LL  and �' $ 9 LL.  Therein, the Gamma distribution is used to 

describe the concrete cover as a random variable.  The same moments are used for the 

concrete cover in this study.  However, attempts to utilise the Gamma distribution in 

describing the realisations of � were futile.  The Gamma distribution was implemented as a 

special case of the three-parameter log-normal distribution by establishing skewness as 

��,'��A� $ (����.�����.�  (Holický, 2009).  The use of the Gamma distribution created an irrational 

model for � that predicted the lower bound of the distribution to be located at about 

,16 LL, hence implying that negative cover exists in practice.  To correct this nonsensical 

result, using the moments aforementioned in this Section, the two-parameter log-normal 

distribution was used to represent the distribution of �.  The two-parameter log-normal 

distribution has its lower bound at zero as well as a high positive skewness associated with it, 

which has the tendency of underestimating the occurrence of negative and overestimating the 

occurrence of positive deviations from the mean (Holický, 2009) and this effect more 

rationally represents the distribution of concrete cover in practice.  Given the statistical 

moments of �, its skewness according to Gamma distribution is 0.6 and that according to the 

two-parameter log-normal distribution is 0.927.   

 

 

 

Stellenbosch University http://scholar.sun.ac.za



166 
 

The yield strength of the vertical link/stirrup reinforcement 	���
 

Recall form Chapter 3 that the common characteristic value of a material property for 

resistance is expressed as: 

 

�� $ H}.}b $ v�	1 , 1.645 · Ω�
                                                                                      [8.12]        

Where, for a five percent characteristic strength or 0.05 fractile, �F $ ,1.645.  However, 

Holický (2009), as indicated in Table 6.1, reports that tests conducted on manufactured steel 

specimens indicate that steel strengths in practice are generally more conservative than the 

five-percent characteristic value and can be seen to conform to the relation: 

 

���� $ ���,b% $ vIX9	1 , 2ΩIX9
                                                                                    [8.13] 

In this study, credit is not taken of the generally more conservative situation in practice and 

the value of the standardised random variable, �F $ ,1.645, is used.  This is a conservative 

choice as compared to what exits in practice as it reduces the bias between the characteristic 

value that is adopted as a representative value in design and the actual or most expected 

(mean) value in practice.  By transposing Equation [8.13], the bias in the random basic 

variable ��� can be expressed as: 

 

��X9IX9a $ VVUV.��bΩ�X9                                                                                                              [8.14] 

Holický (2009) gives two feasible options of log-normal distributions that can be applied to 

describe the basic random variable, ��.  The symbol �� is used to denote the steel yield point 

under the category of Material Properties in one instance, and is then used to denote the 

reinforcement strength under the category of Strength.  The distribution of �� in both cases is 

log-normal and the mean, in both cases, of the random variable, ��, is specified as: 

 

 vIX $ ��� R 2σIX9                                                                                                             [8.15] 
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The two definitions of the basic random variable differ in their specification of the coefficient 

of variation for the distribution.  When �� is considered as a material property the coefficient 

of variation, ΩIX, can be considered to occur between the range 0.07 to 0.10 depending on the 

control of the production/manufacturing procedure.  The lower coefficient of variation 

applies under conditions of high quality control and vice versa is true.  In contrast, when �� is 

considered as a strength parameter for reinforcement a deterministic quantity of 30 ��  is 

recommended for use as the standard deviation.  The coefficient of variation is then evaluated 

according to the mean value of the strength of reinforcement used in the design.  A 

deterministic quantity of the standard deviation is applicable for reinforcement since it is 

produced under workshop conditions that are strictly controlled and viewed as constant in 

terms of production quality.  In this study, the basic random variable ��� denotes the yield 

strength of reinforcement and can therefore also be viewed as having a fixed standard 

deviation of 30 �� .   
The general three-parameter log-normal distribution was used to model ��� as a two-

parameter log-normal distribution when it is implemented under the special condition that its 

skewness, ̂IX9, equal to (Holický, 2009): 

 

��,IX9 $ w��X9��X9                                                                                                                      [8.16] 

 

Compressive strength of concrete 	��
 

Equations [8.12] to [8.16] are all applicable to �� as they are to ���.  The main difference in 

the way the two variables are defined is that for concrete a coefficient of variation is chosen 

from a range of possible values, and not a single deterministic value of the standard deviation 

as is utilised for the case of ���, to reflect the effect the level of quality control and 

workmanship has on the precision and consistency of concrete produced on site. 

Concrete production in practice is widely varied, ranging from precast concrete produced in 

controlled plants to in-situ concrete produced on site by sometimes low-skilled labour.  For 

this reason, a deterministic quantity of the standard deviation is not used for concrete 

compressive strength, ��.  Rather, the coefficient of variation is chosen from the range of 0.05 
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to 0.18 depending on the control of the production procedure.  For this study, the coefficient 

of variation of �� is chosen as 0.18 to reflect poor workmanship and production control.  This 

is a conservative assumption and it can be varied to assess the effect quality control may have 

on reliability performance of structures. 

 

8.2.3 Limit state Equation for reliability analysis 

The limit state Equation is defined when the performance function is set equal to zero.  The 

limit state function is then given by: 

 

" 	#
 $
�� · m8/9� L	M , � , OP ·  , N
��� · cot n�TOUVW 8/9IX9Y9�Z[\]]I]op , %&'(-./0)1	#2, 4
 $ 0  

                                                               [8.17]  

The partial derivatives of the limit state function, " 	#
 $ 0, required for the FORM method 

of reliability analysis were determined using MATLAB.  It should be noted that 

%&'(-./0)1	#2, 4
 is a single deterministic value that is not described by random variables, 

and as such, falls away with differentiation.  MATLAB converts the trigonometric operators 

in the limit state Equation to an equivalent fraction of the appropriate random variables.  

Adequate checks were performed to ensure that the MATLAB simplified form of the 

equation is approximately equivalent to the original form of the equation presented as 

Equation [8.17].  Applying the format from MATLAB, the limit state function and its partial 

derivatives at the checking point can be expressed as: 

 

"	#
 $ �� 8/9� L	M , � , OP ·  , N
��� WVU �/9�X9�9/�[�]]�]
W �/9�X9�9/�[�]]�]

, %&'(-./0)1	#2, 4
 $ 0          [8.18]  

e�C	#
�qr f� $ 8/9� L	M , � , OP ·  , N
��� WVU �/9�X9�9/�[�]]�]
W �/9�X9�9/�[�]]�]

· �qr�                                          [8.19a] 
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e�C	#
�8/9 f� $ [� qr G 	�U'UD�·�UA
IX9	Y9�Z[\]]I]U(8/9IX9

Y9 ��Z[\]]I]W �/9�X9�9/�[�]]�]W�9/�[�]]�] �/9�X9�9/�[�]]�]

· �8/9�                                            [8.19b] 

e�C	#
�� f� $ , [� qr 8/9 G  	�U'UD�·�UA
IX9	Y9�Z[\]]I]U(8/9IX9

Y9 �¡Z[\]]I]W �/9�X9�9/�[�]]�]W�9/�[�]]�] �/9�X9�9/�[�]]�]

· ���                                    [8.19c] 

e�C	#
�G f� $ �� 8/9� 	M , � , OP ·  , N
��� WVU �/9�X9�9/�[�]]�]
W �/9�X9�9/�[�]]�]

· �G�                                      [8.19d] 

e�C	#
�� f� $ �� 8/9�  L ��� WVU �/9�X9�9/�[�]]�]
W �/9�X9�9/�[�]]�]

· ���                                                                  [8.19e] 

e�C	#
�' f� $ , �� 8/9�  L ��� WVU �/9�X9�9/�[�]]�]
W �/9�X9�9/�[�]]�]

· �'�                                                               [8.19f] 

e�C	#
�� f� $ , �� 8/9�  L · OP ·  ��� WVU �/9�X9�9/�[�]]�]
W �/9�X9�9/�[�]]�]

· ���                                                     [8.19g] 

e�C	#
�A f� $ , �� 8/9�  L · OP ·  ��� WVU �/9�X9�9/�[�]]�]
W �/9�X9�9/�[�]]�]

· �A�                                                     [8.19h]                                     

`�C	#
�IX9 d� $ [� qr 8/9 G 	�U'UD�·�UA
	Y9�Z[\]]I]U(8/9IX9

Y9 ��Z[\]]I]W �/9�X9�9/�[�]]�]W�9/�[�]]�] �/9�X9�9/�[�]]�]

· �IX9�                                             [8.19i] 

e�C	#
�Y9 f� $ [� qr 8/9 G 	�U'UD�·�UA
IX9
Y9 �W �/9�X9�9/�[�]]�]W�9/�[�]]�] �/9�X9�9/�[�]]�]

· �Y9�                                                             [8.19j] 

e�C	#
�\]] f� $ [� qr 8/9 G 	�U'UD�·�UA
IX9
\]] �W �/9�X9�9/�[�]]�]W�9/�[�]]�] �/9�X9�9/�[�]]�]

· �\]]�                                                          [8.19k]                                 

 

e�C	#
�I] f� $ [� qr 8/9 G 	�U'UD�·�UA
IX9
I] �W �/9�X9�9/�[�]]�]W�9/�[�]]�] �/9�X9�9/�[�]]�]

· �I]�                                                              [8.19l] 
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8.2.4 Reliability analysis of representative design situations 

The reliability analysis of two representative design situations is presented in this Section.  

The purpose of the analyses conducted was to determine the effects of the relative influences 

of uncertainty that each of the different basic variables has on the reliability performance for 

members subjected to shear with stirrups.  The choice of the test cases for the analyses was 

guided by some of the results presented in Chapter 7.  It is therein shown that the main 

uncertainty in the EC 2 and MCFT prediction models alike, is mainly due to the models’ 

inadequacy of making consistent predictions of shear strength at varying amounts of shear 

reinforcement.  Though the statistics related to the bias of the EC 2 prediction model are 

generally on the conservative side, with a mean value of vqr $ 1.65, it is associated with a 

high standard deviation which implies that significant variations in �� estimates are 

expected, and are observed in the shear database provided on the CD, for some test samples 

in the shear database.   

From Figure 7.9, for the EC 2 prediction model, it can be observed that the ��can be as high 

as 2.5 at ������ ���⁄ � 0.21 �� , progressively decreasing logarithmically to values as 

low as 0.8 at ������ ���⁄ � 2.6 �� .   Further, the �� equals 1 at about 1.9 �� , and 

progressively falls below 1 with increasing amounts of shear reinforcement.  Design 

situations with relatively high amounts of shear reinforcement are clearly the more critical 

region of shear performance as conservatism in the EC 2’s shear predictions reduces with 

increasing amounts of shear reinforcement.  Hence, of the two cases considered in the thesis, 

the design situation with high shear reinforcement had a lower 
-index than the situation with 

low amounts of shear reinforcement.  The characteristics of shear reliability performance 

were considered for the following two design situations: 

 

1. A case where the �� is very conservative (�� � 2.0 from Figure 7.9) i.e. design 

situation with relatively low amount of shear reinforcement, fixed as ������ ���⁄ $
0.45 ��  using unbiased estimates of the basic variables.  EC 2’s minimum amount 

of shear reinforcement to be provided in design was adhered to.  Using 25 ��  

characteristic concrete strength 	���
, as is done for both representative design 

situations, Equation [5.12] yields that a minimum of ������� ���⁄ $ 0.4 be provided 
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in design. For this design situation ����  $  250 �� , implying that  

������� ���⁄ $ 0.37 � 0.4 �� . 

 

2. A case where the �� is expected close to losing conservatism or conservative bias 

with its mean value at approximately 1.04 from Figure 7.9 i.e. design situations with 

relatively high amounts of shear reinforcement, chosen as 1.8 ��  when unbiased 

and unfactored values of the basic variables are used. 

A  Double layer arrangement of longitudinal tension reinforcement was assumed for the both 

design situations; an assumption that affected the value of the effective depth, �, calculated 

for the section which in turn affects the value of : used in Equations [8.8] and [8.9].  Table 

8.2 presents the design or characteristic quantities of the basic variables for both test cases 

used in the reliability investigation. 

 

Table 8.2.  Design specifications of the basic variables for the test case 

Variable Xi 
Characteristic 

quantities 
Test case 1 

Characteristic 
quantities 

 Test Case 2 
Unit / Dimension Bias 

Asw 157.1 157.1 mm2 1 
s 300 125 mm 1 
m 0.9 0.9 , 0.94 
h 500 500 mm 1 
C 30 30 mm 1 
a 16 16 mm 1 
e 10 10 mm 1 

fywk 250 450 MPa 1 + (49.35/fywk) 

bw 350 350 mm 1 
αcck 0.85 0.85 , 1 

fck 25 25 MPa 1.42 
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Procedure of the reliability analysis  

The general framework of the FORM method of reliability analysis, used in the thesis, was 

addressed in Chapter 6.  Consistent with this general approach, some few important aspects 

regarding the implementation of the procedure to the specific case of shear are briefly 

outlined. 

To initiate the reliability evaluation or assessment process, characteristic quantities for the 

test case were specified as would be done for a conventional design situation in practice.  The 

bias associated with these characteristic values specified for the design is given in Table 8.2, 

and are equivalent to the ratio of the mean or expected value of a given basic variable against 

its respective characteristic values adopted in a practical design situation.  The mean 

estimates of the basic variables are used as the initial checking point of failure for the general 

probabilistic model against the design resistance for the test case which is determined using 

characteristic values of the variables and partial safety factors.  The bias shown in Table 8.2 

is therefore equivalent to the ratio of the initial checking point values of the basic variables, 

¢£�, presented in Table 8.3, against each of their respective characteristic values, vector #2, 

given in Table 8.2 and 8.3. 

It should be noted that it was the reliability of the limit state function that was sought in the 

reliability assessment process and as such, the values of the checking point variables in their 

original untransformed space, ¢£�, were ensured at the beginning of each iteration to set the 

performance function equal to the limit state condition of zero.  To achieve such objective, 

and supposing that the performance function is described by O basic variables, the checking 

point values of O , 1 variables were estimated at each iterative step, with the value of the 

O ¤� variable determined so as to set the performance function to zero.  To this effect, it can 

be observed that no characteristic value is prescribed for the �� in the first iteration shown in 

Table 8.3.  The �� was treated as the O ¤� basic variable in the process where its value is 

chosen to obey the limit state condition.  

 Once appropriate values of the checking point are established, they are transformed to their 

equivalent normal statistics, v��and ���, and their direction cosines, ^�, are determined.  The 

FORM procedures performed for the thesis were conducted using an MS Excel spreadsheet 

which is provided on a CD attached at the end of the thesis. 
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Results of the reliability analysis 

Results of the 1�¤ iterations of the FORM analysis process applied to test case 1 and 2 in the 

problem of shear reliability performance of members requiring stirrups are presented in Table 

8.3 and 8.4.  Only the 1st iteration for each test case was presented because the performance 

function for shear is highly non-linear and the limit state surface " 	#
 $ 0 is an O-

dimensional failure surface that would most probably require several iterations before 

convergence of the final result is achieved (Ang & Tang, 1984).  For each of the two test 

cases, some thirteen iterations of the FORM procedure were conducted without reaching 

stable convergence of the 
-estimate, though the values of 
 obtained throughout were close 

to that of the first iterations as indicated in Table 8.3 and 8.4.   Ang and Tang (1984) state 

that unlike the linear case, there is no unique distance 	

 from the failure surface to the 

origin of the reduced variates for non-linear limit state surfaces.  Therefore, increased non-

linearity will only further complicate the process of locating the design point.  

 An additional MS Excel analysis tool was created in an attempt to reduce some of the non-

linearity associated with the performance function.  The action of developing a simplified 

analysis tools was further motivated by the fact that the model factor dominates shear 

reliability performance of the EC 2’s variable strut inclination method.  Further, to validate 

the results from both developed tools, the VaP analysis package was also used to implement 

the FORM process for the test cases.  Acceptable agreement between the solutions from VaP 

and those from the developed Excel tools is demonstrated in the relevant Sections to follow. 
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Table 8.3.  Data acquired from the 1�¤ iteration of the FORM analysis for test case 1 

β = 3.293 

Xi Xk xi
* σX Distn µX

N σX
N ∂g/∂X αX 

MF - 0.33 0.51 3-P 
LN 

1.30 0.29 93802.18 0.9954 

Asw 157.1 157.1 3.14 N 157.10 3.14 1024.05 0.0109 

s 300 300 9 N 300.00 9.00 -1536.07 -0.0163 

m 0.9 0.85 0.04 3-P 
LN 

0.86 0.03 3953.08 0.0419 

h 500 500 5 N 500.00 5.00 1280.80 0.0136 

C 30 30 9 2-P 
LN 

28.71 8.81 -2255.95 -0.0239 

a 16 16 0.32 N 16.00 0.32 -245.91 -0.0026 

e 10 10 0.2 N 10.00 0.20 -51.23 -0.0005 

fywk 250 299.35 30 3-P 
LN 

297.86 29.93 5118.61 0.0543 

bw 350 350 3.5 N 350.00 3.50 543.35 0.0058 

αcck 0.85 0.85 0.085 2-P 
LN 

0.85 0.08 5420.04 0.0575 

fck 25 35.5 6.39 3-P 
LN 

35.49 0.08 129.08 0.0014 

¥∑	^#
(
   = 1.0000 
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Table 8.4.  Data acquired from the 1�¤ iteration of the FORM analysis for test case 2 

β = 2.347 

Xi Xk xi
* σX Distn µX

N σX
N ∂g/∂X αX 

MF - 0.63 0.51 
3-P 
LN 

1.44 0.34 208080.48 0.9897 

Asw 157.1 157.1 3.14 N 157.1 3.14 3342.72 0.0159 

s 125 125 3.75 N 125 3.75 -5014.08 -0.0238 

m 0.9 0.85 0.04 
3-P 
LN 

0.86 0.03 14399.72 0.0685 

h 500 500 5 N 500 5 4665.51 0.0222 

C 30 30 9 
2-P 
LN 

28.71 8.81 -8217.65 -0.0391 

a 6 16 0.12 N 16 0.32 -895.78 -0.0043 

e 10 10 0.2 N 10 0.2 -186.62 -0.0009 

fywk 450 499.35 30 
3-P 
LN 

498.45 29.97 10032.19 0.0477 

bw 350 350 3.5 N 350 3.5 2173.02 0.0103 

αcck 0.85 0.85 0.085 
2-P 
LN 

0.85 0.08 21676.18 0.1031 

fck 25 35.5 6.39 
3-P 
LN 

35.49 0.08 516.24 0.0025 

¥∑	^#
(
   = 1.0000 

 

By comparing the relative magnitudes of the direction cosines, ^#,Table 8.3 and 8.4 show 

that shear reliability performance for members requiring stirrups is completely dominated by 

the �� with ^# $ 0.9954 for test case 1 and ^# $ 0.9897 for test case 2.  Recall that the 

general probabilistic model is a distribution because it is composed of and described by basic 

random variables.  The significance of the dominance of the �� implies that the distribution 

of shear resistance will be heavily influenced by the statistics and distribution of the ��.  A 

direction cosine of more than 0.98 in both test cases indicates that the �� completely 

dominates shear reliability performance in all considered design situations.  As such, a 

simplified reliability model that considered the �� as the only basic random variable in the 

performance function for shear was created and used to further characterise the reliability 
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performance of members subjected to shear and requiring design stirrups.  Considering only 

one basic random variable in the performance function also reduces the complexity of the 

limit state surface which leads to fewer iterations of the checking process until acceptable 

convergence of the 
-estimate is achieved.  At the design point, convergence should also be 

realised in the values of the basic random variables and not just in the value of the 
-

estimate. 

 

8.2.5 Simplified reliability analysis tool 

The fact that the �� completely dominates the shear performance of members requiring 

stirrups provided strong reason to represent the general probabilistic model solely on the 

variability of the ��.  To verify and confirm the action of neglecting the contribution of the 

distributions of the other basic variables in the gpm, an additional investigation was carried 

out and is presented below.  

When the EC 2 variable strut inclination method is converted for use as the gpm in the 

performance function for shear, the limits placed on cot > from the codified procedure are 

lifted and > assumes any value as determined by >CFG defined in Equation [8.6].  It should be 

noted that > can be considered a secondary variable in the analysis process as it is calculated 

based on the quantities of other basic variables, as can be seen in Equation [8.6].   A check on 

how > varied at each checking point or FORM iteration when the full probabilistic model 

was implemented in the reliability analysis was conducted.  Its purpose was to verify that 

calculating > based on deterministic mean value estimates of the basic variables at their first 

iteration values did not severely alter the true character of > when allowed to vary in the gpm 

of the full probabilistic model in Section 8.2.3. 

Furthermore, it was envisaged that the trigonometric expression in the limit state Equation 

[8.18] may lead to excessive non-linearity in the performance function, thus affecting 

linearisation estimates of 
 at the checking point during implementation of the FORM 

method.  A replacement constant, denoted as §, was suggested for use to replace the 

trigonometric expression defining >, cot nsinUV W 8/9IX9Y9�Z[\]]I]o.  Such a replacement was 

justified by two closely related facts that were observed from the full investigation: 
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1. All the basic variables affected by the trigonometric operators in the performance 

function had low sensitivities, judged by assessing the magnitude of the direction 

cosines, implying that minimal changes were experienced in their checking point 

values between iterations.  This motivated the basic variables  , N, ��, ^�� and �� to be 

considered as deterministic quantities during the simplified FORM analysis. 

   

2. As a result of Bullet 1, the value of the >CFG did not change more than 1° through the 

13 iterations considered for the full investigation.  This realisation confirmed the use 

of a constant value of >CFG, which was calculated using checking point quantities of 

the first iteration, through all iterations. 

 
 

The simplified limit state function was established as: 

 

"	#
 $ �� · 78/9,[�
�[� LV�	MV� , �V� , OP ·  V� , NV�
���,V� · §? , %&'(-./0)1	#2, 4
 $ 0        [8.20]        

Where § is a once-off calculated quantity defined as: 

 

§ $ cot `sinUV W 8/9,[� IX9,[�
Y9,[� �[�Z[� \]],[� I],[� d                                                                                       [8.21] 

���,V� , �V�, LV� , ���,V� , MV� , �V�,  V� , NV�, ��,V� , �V�, «V�, ^��,V� , ��,V�  represent the checking point values of 

the basic variables established for the first iteration of FORM analysis which were set as 

equal to the mean value estimate of each of the variables.  The �� is the only random 

variable in Equation [8.20] and thus the only partial derivative of the of the simplified 

performance function was defined as: 

 

e�C	#
�qr f� $ 8/9,[�
�[� LV�	MV� , �V� , OP ·  V� , NV�
 ���,V� · § · �qr�                                            [8.22]                                                          

The same design examples used for the full investigation, and their procedure for analysis as 

described in Section 8.2.4, were adopted for use with the simplified performance function.  
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Quicker convergence of the 
-solution was achieved for both test cases using the simplified 

tool, with a stable 
-result yielded in the two iterations performed per test case.  

 

Table 8.5.  Data acquired from the 1�¤ iteration of the FORM analysis for test case 1 

β = 3.379 

Xi Xk xi
* σX Distn µX

N σX
N αX 

MF 0.307 0.51 3-P LN 1.29 0.29 92597.93 1 

Asw 157.1 3.142 DET - - 0 0 

s 300 9 DET - - 0 0 

m 0.85 0.035 DET - - 0 0 

h 500 5 DET - - 0 0 

C 30 9 DET - - 0 0 

a 16 - DET - - 0 0 

e 10 - DET - - 0 0 

fyw 299.35 30 DET - - 0 0 
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Table 8.6.  Data acquired from the 1st iteration of the FORM analysis for test case 2 

β = 2.485 

Xi Xk xi
* σX Distn µX

N σX
N αX 

MF 0.586 0.51 3-P LN 1.42 0.33 203693.84 1 

Asw 157.1 3.142 DET - - 0 0 

s 125 9 DET - - 0 0 

m 0.85 0.035 DET - - 0 0 

h 500 5 DET - - 0 0 

C 30 9 DET - - 0 0 

a 16 - DET - - 0 0 

e 10 - DET - - 0 0 

fyw 499.35 30 DET - - 0 0 

 

 

8.2.6 VaP validation of MS Excel tools 

A VaP analysis (Schneider, 2006) was conducted to validate the results of the reliability 

analysis obtained from the use of the MS Excel tools that were developed in Section 8.2.4 

and 8.2.5.  When the EC 2 variable strut inclination method was adopted for use as the gpm, 

VaP could be properly used to check the correctness of the calculations as opposed to the 

case when the MCFT is employed for use as the gpm.  In instances where the MCFT was 

used as the gpm, as was done in Section 8.3, numerical differentiation using Response-2000 

was required in determining direction cosines of the basic variables and were not determined 

through analytical partial differentiation of the limit state function, hence VaP could not be 

used to verify the correctness of the execution of calculations of the FORM procedure in  

Section 8.3.  However, the verification of acceptable calculations in this Section implied that 

the general calculation setup and execution of the FORM analysis procedure for the thesis 

was done satisfactorily, even in cases where the MCFT was adopted for use as the gpm. 

As a first attempt to use VaP to validate the MS Excel tools developed for the reliability 

analysis, it was intended/desired to fully represent the distributions of the basic variables in 
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the performance function for shear when EC 2 is used as gpm.  Some difficulties, that led to 

slight differences in the values of the 
-estimate and design point quantities of the basic 

variables, phased out this process.  Firstly, VaP could not implement the 3P-LN distribution 

with negative skewness as it only allowed the use of the 3P-LN distribution with positive 

skewness.  As such, the basic random variable L could not be appropriately represented, and 

for initial purposes of verifying the calculation procedure of the FORM analysis L was 

represented by the 2P-LN distribution in both the Excel and VaP analysis tools.  Even after 

this action, there was still some discrepancy between the values of the 
-estimate and of the 

design point quantities of the basic variables obtained between Excel and VaP tools.  

 Further investigation showed that the differences in the 
-estimate as well as checking point 

values of the basic variables stem mainly from some slight approximation error in the 

implementation of the 2P-LN and 3P-LN distributions.  The results of the investigation are 

presented in Table 8.7.  In the full probabilistic representation of the performance function, 

the 3P-LN distribution with positive skewness was appropriately used to represent the model 

factor associated with the EC 2 prediction model (��&' ( in Table 8.1), ���, and �� whilst the 

2P-LN distribution was used to model basic variables � and �̂�.   

To prove the slight differences in the distributions, simplified VaP analyses were conducted 

that kept the MF as a random variable but represented all other basic variables as 

deterministic quantities.  In one instance, applied to both test cases or design situations, the 

��was represented by the 3P-LN distribution in VaP and this can be compared to the results 

in Table 8.5 and Table 8.6 for the simplified analysis of test case 1 and 2 respectively.  In the 

other, also applied to both test cases, the �� was represented by the 2P-LN distribution; this 

can be considered as an action taken to verify that when the �� was represented by the 2P-

LN distribution, some differences in the 
-estimate or values of the design point quantities of 

the basic variables were still realised.  This implied that, indeed, the differences in the results 

of the FORM analysis between VaP and Excel tools could be ascribed to minor differences in 

implementation of the 2P-LN and 3P-LN distributions.  To verify this finding a mean value 

analysis was conducted to ensure that at least the moments of the distributions were correctly 

input hence confirming the differences in the results to truly arise from slight approximation 

error in the lognormal distributions between the developed Excel tools and VaP.  
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Table 8.7.  Results of the FORM analysis for test case 1 and 2, using VaP and Excel tools and 

considering the MF as a 2P-LN and 3P-LN distribution in separate analyses 

  Results from VaP Results from Excel tools 

¬­ distn. Design situations β Design 

value 

αMF β Design value αMF 

MF as 

3P-LN 

Test case 1 3.28 0.331 1 3.38 0.307 1 

Test case 2 2.34 0.632 1 2.49 0.586 1 

MF as 

2P-LN 

Test case 1 5.17 0.331 1 5.41 0.307 1 

Test case 2 3.03 0.632 1 3.28 0.586 1 

  

 

The results of Table 8.7 confirm that there were slight differences in the 
-estimate of 

comparable test cases when either the 2P-LN or 3P-LN distribution are isolated to represent 

the �� as the only basic variable in separate analyses.  Slight differences, between 

comparable cases, were also observed in the design point value of the �� between VaP and 

the Excel analysis tools.  Figure 8.4 and Figure 8.5 show the performance functions for shear 

implemented in VaP for test case 1 and 2 respectively, in which the results of the expected or 

mean value analysis of the performance function, ®	¯°�±
, are reported in Newtons.  These 

values match those found from the mean or expected value analysis from the Excel tools. 

Using the MS Excel tools, for test case 1 the result of the mean value analysis of the 

performance function was 420166.2 Newtons whilst for test case 2 the analysis yielded 

619435.1 Newtons.  The very slight differences in the mean value analyses can be attributed 

to some rounding error when specifying the quantities of basic variables in VaP.  This implies 

that no differences in the results of the FORM analysis can be attributed to wrong input of the 

mean values of the basic variables, and any differences can be attributed to slight 

approximation error between the two distributions and perhaps some small rounding error. 

The values enclosed by ovals in Figure 8.4 and Figure 8.5 are equivalent to the code 

determined design values of shear resistance in Newtons, %&'(-./0)1	#2, 4
, which were 

calculated using the data specified for the test cases in Table 8.2.  The same values were 

implemented when the MS Excel tools were used for corresponding analyses.  The symbols ² 
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and : shown in the Figures represent the basic variable ^��and �� respectively.  All other 

symbols, some of which are presented without their subscripts, remain as originally defined. 

 

 

 

Figure 8.4.  Expected value analysis for test case 1 

 

 

Figure 8.5.  Expected value analysis for test case 2 

 

8.2.7 Reliability requirements for resistance 

From the principle of reliability separation promoted in modern basis of design formats, as in 

EC 0 and the now fully operational SANS 10160-1, specify that the target 
 for resistance in 

the structural Eurocodes should be  
s,³ $ 0.8 ´ 3.8 $ 3.04 and that for South African 

practice should be 
s,³ $ 0.8 ´ 3.0 $ 2.4.  Hence, For SANS adequate reliability is 

achieved for the design situations represented by test case 1 (
 $ 3.379) and test case 2  

(
 $ 2.485).  In the case of the Eurocode requirements, test case 2 which is representative of 

a design situation with relatively high amounts of shear reinforcement, sufficient reliability is 
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not achieved as it has a 
 below 3.04.  It should be noted that the EC 2 variable strut 

inclination method for members with stirrups can be regarded as adequate for South African 

reliability requirements provided that characteristic values (#2), and more critically, the 

partial material safety factors (4µ and 4¶) stipulated for use by EC 0, EC 2 and the relevant 

British annexes are implemented in determining the deterministic design resistance, 

%&'(-./0)1	#2, 4
.  Any alterations to any of the aforementioned aspects that affect the value 

of the deterministic design resistance would warrant an investigation aimed at determining 

their effect on shear reliability performance for members designed with stirrups.  Naturally, 

any action taken to increase the prediction of the design resistance when the codified method 

is applied in practice would reduce the reliability of the procedures and vice versa is true. 
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8.3 RELIABILITY ANALYSIS USING THE MCFT AS THE GENERAL 

PROBABILISTIC MODEL 

 

The application of the more rational scientific and more accurate MCFT as compared to EC 

2’s variable strut inclination method, as established in Chapter 5 and 7 respectively, as the 

gpm in the performance function for shear can be viewed as the proper manner in which the 

performance or limit state function should be formulated.  This Section outlines the way in 

which the MCFT, whose predictions of ultimate shear resistance were done using Response-

2000, was used in investigating the reliability performance of EC 2’s variable strut inclination 

method.  In this Section, the statistics of the �� specific to the MCFT prediction model, as 

established in Chapter 7 and reported in Table 8.1 as ��q'rs, were used in the reliability 

analysis. 

 

8.3.1 The Performance function 

In cases where the MCFT was used as the general probabilistic model, the performance 

function for shear of members with stirrups was defined by: 

 

"	#
 $ �� · 	%q'rs
 , %&'(-./0)1	#2, 4
                                                                        [8.23] 

Where %q'rsis the value of shear resistance determined from the Test Section being 

modelled in Response-2000.  %q'rs serves as the descriptor of true shear resistance in 

Equation [8.23], making it a distribution and can be viewed in this context as replacing 

%&' ()*+ in Figure 8.2.  %&'(-./0)1	#2, 4
 remains as defined in Section 8.2.  The basic input 

variables that enable %q'rs predictions are allowed to assume random statistical distributions 

with their partial derivatives evaluated using the procedure outlined in Section 8.3.2.    The 

procedure of implementing the FORM algorithm is essentially the same as that presented in 

Section 8.2.4, with the main difference arising from the way in which the partial derivatives 

of the basic variables were determined. 
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8.3.2 Reliability analysis of the representative design situations 

The same representative design situations, test case 1 and 2, as used for the reliability 

analysis in Section 8.2 were employed for use in this Section.  As elaborated in Chapter 5, 

Section 5.2.7, numerous basic variables are required to enable adequate modelling of sections 

or members in Response-2000.  The input data, which were all considered as basic variables 

of which some were treated as random variables, for the design situations are shown in Table 

8.8 below.  Figure 8.6 shows the typical cross-section associated with the design examples 

with some common dimensional parameters illustrated on the diagram.  The beams were 

assumed to be simply supported, with a single gravity point load placed between supports, 

and have a double layer arrangement of longitudinal tension reinforcement. 

 

Table 8.8.  Design specifications of the basic variables for the test cases 

Variable Xi 
Characteristic 

quantities 
Test case 1 

Characteristic 
quantities 
Test case 2 

Unit / 
Dimension 

Bias 

MFMCFT 1.18 1.18 - - 
Asw 157.1 157.1 mm2 1 
s 300 125 mm 1 
m 0.9 0.9 , 0.94 
h 500 500 mm 1 
C 30 30 mm 1 
a 16 16 mm 1 
e 10 10 mm 1 

fywk 250 450 MPa 1 + (49.35/fywk) 

bw 350 350 mm 1 

fck 25 25 MPa 1.42 

Aggregate size (agg) 19 19 mm 1 
As (1 bar) 804.25 804.25 mm2 1 

a/d 2.5 2.5 -  -  
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Figure 8.6.  Schematic representation of cross-section modelled in Response-2000 

 

The user has no control over the analysis process as Response-2000 carries out the analysis 

for ultimate shear strength predictions according to the MCFT.  As a result, partial 

derivatives, and therefore direction cosines as well, of the limit state function cannot be 

determined analytically, except for the �� which is explicitly included in Equation [8.23], 

but are rather determined by the relatively approximate method of numerical differentiation.  

To obtain partial derivatives for the test case, each of the basic input variables, ���BCBD�P, 
were increased in turn by 2 %, �(% BD��A��A, and the change in the ultimate prediction of shear 

strength associated with an increase of the respective parameter was noted.  Thus, for any 

given basic variable from the vector #, the partial derivative at each checking point was 

determined as: 

 

e�C	#
�# f� $ `·̧ �¹º,�% 01]� U·̧ �¹º,��0)�
� �% 01]�.»/.� U���0)01»�� d · ���                                                                            [8.24] 

The partial derivative of the MF can be determined analytically from Equation [8.23] as: 

 

e�C	#
�qr f� $ %q'rs� · �qr�                                                                                                       [8.25] 

Where %q'rs� represents the value of ultimate shear resistance determined by feeding the 

unbiased checking point values of selected basic variables at each iteration into the Response-

2000 program. 
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Significance of the basic variables 

A full investigation was conducted to determine which basic variables dominate the shear 

reliability performance for members requiring stirrups.  Owing to the different conceptual 

basis and theoretical development of the prediction models, the basic variables that affect the 

reliability performance when the EC 2 design model is converted for use as gpm in Section 

8.2 need not be the same as those that affect the reliability performance when the MCFT is 

used as the gpm.  In addition,  Respone-2000 provides the ultimate shear strength for simply 

supported members and is thus sensitive to a/�.  In fact, the value of shear resistance varies 

significantly with changes in a/� at relatively high amounts of shear reinforcement.  The 

shear span, a, was not treated as a basic variable and therefore did not have its partial 

derivative determined according to Equation [8.23],  but was maintained as its original value 

determined from the a/� from the characteristic geometrical quantities of the assumed load 

arrangement.  However, the two test cases were investigated at three different a/� ratios per 

test case; 2.5, 4, and 6.  Except for the basic variable  "", all other basic variables presented 

in Table 8.6 were treated as random variables.   

Assuming  "" as a deterministic quantity was supported by the fact that design procedures 

for structural resistance requiring aggregate size usually specify the use of the maximum 

coarse aggregate size.  Secondly, the Portland Cement Association (2002) emphasise that 

variations in coarse aggregate grading and therefore distribution are difficult to anticipate, 

often making it more economical to maintain uniformity in manufacturing and handling 

coarse aggregates to reduce variations in gradations.  It is therefore promoted to control the 

production quality of aggregates as opposed to intensive statistical modelling of its highly 

variable particle size distribution.  Further, the influence of aggregates on shear resistance 

after initial diagonal cracking in members with shear reinforcement becomes secondary due 

to the fact that the action of stirrups is activated rather than the resistance at the crack being 

solely dependent on the interface shear characteristics.  

The sensitivities or direction cosines, ^#, of all basic variables were determined at each a/� 

ratio per test case so as to capture the relative influence of the basic variables toward 

reliability performance under the given conditions.  The results of the first iteration of the 

FORM analyses performed at each a/� ratio per test case are presented in the following six 

Tables, Table 8.9 to 8.14.  Only the first iteration of the FORM analyses are shown to 

highlight the relative influence that the different basic variables have on the reliability 
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performance when the MCFT is used as gpm or as the descriptor of true shear resistance.  

Note that ��,¤�¤ indicates the total amount of longitudinal tension reinforcement provided for 

the design and ��P denotes the yield strength of the longitudinal tension reinforcement.  All 

other basic variables remain as previously defined.   

Basic random variables with low direction cosines or sensitivities from the first iterations 

presented in Tables 8.9 to 8.14 were treated deterministically in the subsequent iterations so 

as to reduce the number of iterations till convergence, reduce analysis time, and enable a 

directed and meaningful investigation.  Tables 8.9 through to 8.14 can be viewed as 

summarised results from a preliminary analysis aimed at centering the investigation around 

critical basic variables that affect reliability performance for members with stirrups. 
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Table 8.9.  First iteration of the FORM analysis for test case 1 when a/� $  2.5 

 

 

 

 

 

 

 

 

 

β = 3.346 

Xi Xk xi
* σX Distn µX

N σX
N ∂g/∂X αX 

MF - 0.417 0.2 2-P LN 0.83 0.073 18546.08 0.5874 

Asw 157.1 157.1 3.142 N 157.1 3.142 700 0.0222 

s 300 300 9 N 300 9 -2250 -0.0713 

h 500 500 5 N 500 5 -2650 -0.0839 

C (cover) 30 30 9 2-P LN 28.71 8.81 4403.41 0.1394 

fyw 250 299.35 30 3-P LN 297.86 29.93 -22492.92 -0.7124 

fyl 450 499.35 30 3-P LN 498.45 29.97 0 0 

bw 350 350 3.5 N 350 3.5 -3200 -0.1014 

fc 25 35.5 6.39 3-P LN 34.94 6.340 -6250.873 -0.1980 

As,tot 4825.49 4825.49 96.51 N 4825.49 96.51 8100.02 0.2566 

¥∑	^#(
= 1.0000 
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Table 8.10.  First iteration of the FORM analysis for test case 1 when a/� $  4.0 

 

 

 

 

 

 

 

 

 

 

 

β = 3.370 

Xi Xk xi
* σX Distn µX

N σX
N ∂g/∂X αX 

MF - 0.419 0.2 2-P LN 0.83 0.074 18546.08 0.6488 

Asw 157.1 157.1 3.142 N 157.1 3.142 1400 0.0490 

s 300 300 9 N 300 9 -3150 -0.1102 

h 500 500 5 N 500 5 -2250 -0.0787 

C (cover) 30 30 9 2-P LN 28.71 8.81 -10274.61 -0.3594 

fyw 250 299.35 30 3-P LN 297.86 29.93 -18494.17 -0.6469 

fyl 450 499.35 30 3-P LN 498.45 29.97 0 0 

bw 350 350 3.5 N 350 3.5 -2800 -0.0980 

fc 25 35.5 6.39 3-P LN 34.94 6.34 892.98 0.0312 

As,tot 4825.49 4825.49 96.51 N 4825.49 96.51 300.00 0.0105 

¥∑	^#(
= 1.0000 
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Table 8.11.  First iteration of the FORM analysis for test case 1 when a/� $ 6.0 

 

 

 

 

 

 

 

 

 

β = 3.251 

Xi Xk xi
* σX Distn µX

N σX
N ∂g/∂X αX 

MF - 0.444 0.2 2-P LN 0.856 0.078 18546.08 0.6156 

Asw 157.1 157.1 3.142 N 157.1 3.142 2400 0.0797 

s 300 300 9 N 300 9 -2550 -0.0846 

h 500 500 5 N 500 5 3250 0.1079 

C (cover) 30 30 9 2-P LN 28.71 8.81 
-

11742.42 -0.3898 

fyw 250 299.35 30 3-P LN 297.86 29.93 3998.74 0.1327 

fyl 450 499.35 30 3-P LN 498.45 29.97 0 0 

bw 350 350 3.5 N 350 3.5 1050 0.0349 

fc 25 35.5 6.39 3-P LN 34.94 6.34 19645.60 0.6521 

As,tot 4825.49 4825.49 96.51 N 4825.49 96.51 100.00 0.0033 

¥∑	^#(
= 1.0000 
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Table 8.12.  First iteration of the FORM analysis for test case 2 when a/� $ 2.5 

 

 

 

 

 

 

 

 

 

 

β = 2.435 

Xi Xk xi
* σX Distn µX

N σX
N ∂g/∂X αX 

MF - 0.65 0.2 2-P LN 1.01 0.11 67557.04 0.7831 

Asw 157.1 157.1 3.142 N 157.1 3.142 4000 0.0463 

s 125 125 3.75 N 125 3.75 -8700 -0.1009 

h 500 500 5 N 500 5 6000 0.0696 

C (cover) 30 30 9 2-P LN 28.71 8.81 -24952.63 -0.2893 

fyw 450 499.35 30 3-P LN 498.45 29.97 16806.76 0.1948 

fyl 450 499.35 30 3-P LN 498.45 29.97 600.24 0.0070 

bw 350 350 3.5 N 350 3.5 2500 0.0290 

fc 25 35.5 6.39 3-P LN 34.94 6.34 42863.13 0.4969 

As,tot 4825.49 4825.49 96.51 N 4825.49 96.51 400.00 0.0046 

¥∑	^#(
= 1.0000 
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Table 8.13.  First iteration of the FORM analysis for test case 2when a/� $ 4.0 

 

 

 

 

 

 

 

 

 

β = 0.995 

Xi Xk xi
* σX Distn µX

N σX
N ∂g/∂X αX 

MF - 0.91 0.2 2-P LN 1.10 0.16 67557.035 0.8204 

Asw 157.1 157.1 3.142 N 157.1 3.142 0 0 

s 125 125 3.75 N 125 3.75 0 0 

h 500 500 5 N 500 5 7850 0.0953 

C (cover) 30 30 9 2-P LN 28.71 8.81 -24952.63 -0.3030 

fyw 450 499.35 30 3-P LN 498.45 29.97 0 0 

fyl 450 499.35 30 3-P LN 498.45 29.97 6602.65 0.0801 

bw 350 350 3.5 N 350 3.5 2650 0.0322 

fc 25 35.5 6.39 3-P LN 34.94 6.34 38398.22 0.4663 

As,tot 4825.49 4825.49 96.51 N 4825.49 96.51 2700.01 0.0328 

¥∑	^#(
= 1.0000 
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Table 8.14.  First iteration of the FORM analysis for test case 2 when a/� $ 6.0 

 

Results of the preliminary reliability analysis 

The results from the Tables presented above indicate that the �� generally dominates the 

reliability performance for members in shear that require stirrups.  There is however more 

significant dominance of the �� over the influence of other basic variables at high amounts 

of shear reinforcement (test case 2).  At low reinforcement ratio (test case 1), there is 

noticeable influence of the yield strength of the stirrups, ���, even slightly dominating when 

a/� $ 2.5 and equaling dominance of the �� when a/� $  4.0.  ��� has no observable 

influence on the reliability performance for members with high amounts of shear 

reinforcement (test case 2).  When a/� $  6.0 for test case 1, as shown in Table 8.11, the 

concrete compressive cylinder strength �� slighlty dominates the reliability performance over 

the influence of the ��.  �� continues to have noticeable influence, second to that of the ��, 

β = -0.997 

Xi Xk xi
* σX Distn µX

N σX
N ∂g/∂X αX 

MF - 1.36 0.2 2-P LN 1.10 0.240 67557.035 0.9106 

Asw 157.1 157.1 3.142 N 157.1 3.142 0 0 

s 125 125 3.75 N 125 3.75 0 0 

h 500 500 5 N 500 5 5250 0.0708 

C (cover) 30 30 9 2-P LN 28.71 8.81 -16145.82 -0.2176 

fyw 450 499.35 30 3-P LN 498.45 29.97 0 0 

fyl 450 499.35 30 3-P LN 498.45 29.97 4501.81 0.0607 

bw 350 350 3.5 N 350 3.5 1750 0.0236 

fc 25 35.5 6.39 3-P LN 34.94 6.34 25003.49 0.3370 

As,tot 4825.49 4825.49 96.51 N 4825.49 96.51 1800.00 0.0243 

¥∑	^#(
= 1.0000 
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at all a/� for test case 2, the representative design situation for members with high amounts 

of shear reinforcement. 

Further, for both test cases and at all a/� ratios, there is some significance portrayed by the 

concrete cover, �.  Although the influence of the concrete cover never dominates reliability 

performance over the other basic variables, it has unwavering influence at all amounts of 

shear reinforcement and at the different shear spans considered per test case.  Hence it should 

be included in any simplified model of the performance function for shear.  The concrete 

cover, �, can be considered as having a fully dependent relationship with the effective 

member depth, �, hence its noticeable influence on shear resistance. 

From test case 1, the basic variables taken as important were ��, ��� and � whilst from test 

case 2 ��, �� and � were considered as important for reliability performance.  As a result, 

four basic variables ��, ���, �� and � were maintained for use as basic random variables in 

the performance function for shear, whilst all other basic variables were treated 

deterministically. 

For test case 1, which is representative of a design situation with low amounts of shear 

reinforcement, some consistency is shown in the initial 
-estimates for the design situation at 

the different a/� ratios considered.  At all a/� ratios for test case 1, the 
-estimate was 

approximately 3.3.  Such consistency in the 
-estimate at different a/� ratios was not 

realised from the results of test case 2, the design example that is representative of a design 

situation with high amounts of shear reinforcement.  As expected, lower reliability indices at 

specific a/� were found for test case 2 as opposed to test case 1.  However, within test case 2 

at different a/�, the initial reliability indice 
 varied significantly with, 
 $ 2.435 at  

a/� $ 2.5, 
 $ 0.995 at a/� $ 4.0, and 
 $ ,0.997 at a/� $ 6.0.  This implies that for 

test case 2 or design situations with large amounts of shear reinforcement, as the a/� 

increases the mean estimate of shear resistance, indicated as vCFG in Figure 8.7 below, 

provided by the MCFT reduces until the mean prediction is less than the deterministic design 

value that is determined according to the EC 2 design procedure. 
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Figure 8.7.  Probabilistic representation of the performance function when vCFG ¼

% &' (-./0)1 

 

Similar results, predicting a reduction in shear strength with increasing  /� were presented 

by Sang-Yeol (1999).  Sang-Yeol’s findings indicate that the ultimate shear resistance 

predicted by the MCFT reduces slightly at a/� less than 4.0, with a distinct radical decrease 

in ultimate shear strength after  /� of 4.0.  The section modelled was a T-Beam with 

������ ��⁄ � $ 1.74 �� , an amount of reinforcement similar to that chosen for test case 2 

which is representative of a design situation with high amounts of shear reinforcement.  The 

ultimate shear strength prediction provided by the MCFT is indicated as %D	���½
 in Figure 

8.8, whereas the steel contribution to shear resistance determined by the MCFT is denoted as 

%�	���½
 and the concrete contribution determined by the MCFT denoted as %�	���½
.  It 

is observable from Figure 8.8 that the kink in the ultimate shear resistance trend, %D	���½
, 

at a/� $  4.0 is due mainly to a reduction in the steel contribution although there is some 

slight decrease as well in the concrete contribution after an a/� of about 3.5.  Sang-Yeol did 

not proceed to give reasons for the reported trend of results but just presented them as part of 

an extensive parametric investigation comparing the ACI and MCFT prediction models for 

shear resistance. 
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Figure 8.8.  Effect of shear span to depth ratio on the shear strength of members with stirrups 

(Sang-Yeol, 1999) 

 

Evidence presented in this Section clearly suggests that there is some relationship between 

members with relatively high amounts of shear reinforcement, a/�, and the ultimate shear 

resistance of members with stirrups.  It is well known that as a/� increases, the shear-flexure 

interaction changes where flexural resistance begins to dominate and the influence of shear 

resistance subsides.  In fact, after a value of a/� of 6.0 as shown in Figure 8.9, common 

literature reports that flexural failures occur with no critical influence of shear resistance on 

the members performance.  Interestingly, the MCFT by use of Response-2000 also indicates 

that, not only does the shear-flexure interaction change, but the ultimate shear resistance 

reduces as well as a/� increases.  The following questions arise: 
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1. Could this be attributed to the MCFT prediction method, which predicts shear of 2-D 

elements subject to biaxial stress, or to the development theory used to develop 

Response-2000? 

 

2. Why is the radical decrease in ultimate shear resistance prediction, particularly after 

a/� of 4.0, not realised for members with low amounts of shear reinforcement?   

 

3. What is it about members with relatively high amounts of shear reinforcement that 

causes a decrease in the shear resistance prediction, specifically after a/� of 4.0 as 

illustrated in Figure 8.6, and at what amount of shear reinforcement provided in 

design does this trend become noticeable? 

These remain as open issues as it was not the objective of the thesis to find resolve, though it 

is encouraged to characterise this relationship in future work.  According to well known facts 

about shear behavior of reinforced concrete members, post a/� of 2.5, significant decrease in 

shear capacity can expected as shown in Figure 8.9 but with no distinct downward kink in 

ultimate shear resistance experienced between an a/� of 2.5 and 6.0. 

 

 

Figure 8.9.  Variation is shear capacity with a/� for rectangular beams (after McGregor, 

1992, as cited in O’Brien & Dixon, 1995) 

Stellenbosch University http://scholar.sun.ac.za



199 
 

Diagonal tension failures, which are characteristic for members with 2.5 ¼ a �⁄ ¼ 6.0, 

represent the most prevalent types of shear-influenced failures that occur in concrete 

structures.  EC 2’s variable strut inclination method is intended for the shear design of a 

member that falls in the just mentioned confines for a/d.  Alternative procedures are provided 

in EC 2 for the design for shear in D- or discontinuous regions such as punching shear and 

deep beam shear. A decision was made to base the reliability analysis for members with 

stirrups at an a/� of 2.5 when the MCFT, implemented through the use of Response-2000, is 

used as the gpm. 

  The EC 2 prediction model can be considered purely as a sectional design model and does 

not attempt to describe the full shear-flexure behaviour in member.  It is rather applied at a 

shear critical location, in this case the region of the member subject diagonal tension stresses, 

along the member length, usually � or 0.9� from critical shear zones as applied forces and 

reactions at supports, for which the resulting design is applied throughout the member.  

Figure 7.8 in Chapter 7 shows that there is a trend of decreasing bias in �� with increasing 

a/d, thus implying that the MCFT does attempt to reflect the true behaviour of members with 

stirrups with respect to a/d.  In contrast, for EC 2’s variable strut inclination method, Figure 

7.7 shows a large conservative bias in �� with a/� for the EC 2 prediction model.  A slight 

and steady increase in prediction bias is observed as a/� increases.  This implies that the EC 

2 prediction model is not sensitive to a/� but is rather calibrated to be safe when applied at 

all perceivable a/� encountered in design. 

Further, the developments presented above imply that the MCFT does provide rational 

prediction of possible true shear resistance and its trend with a/�, though Figure 7.8 indicates 

the bias associated with �� decreases with increasing a/� where it appears to lose 

conservatism with �� estimates below 1 anticipated after a/� of 6.0. 
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8.3.3 Simplified reliability analysis 

As already established, the reliability analysis was conducted for two test cases.  For both test 

cases, the reliability analysis was conducted at an a/� of 2.5.  The basic variables ��, ���, 

�� and � were considered as random in the simplified reliability model used for analysis when 

the MCFT was used as the gpm.  Twenty iterations of the FORM analysis algorithm were 

completed before convergence of the 
-estimate and the design point values of the basic 

variables were reached for test case 1.  Eight iterations were performed to reach convergence 

of the 
-estimate and design point values of the basic variables for test case 2.  Tables 8.15 

and 8.16 show the summary of the data acquired from the final iteration of the reliability 

analysis for each of the test cases, test case 1 and 2 respectively.  The full procedure and 

information regarding the FORM iteration process from initial checking point to convergence 

is included on the CD attached at the end of the thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University http://scholar.sun.ac.za



201 
 

Table 8.15.  Results of the 20th and final iteration for test case 1 

 

 

 

 

 

 

 

 

 

 

β =5.308 

Xi Xk xi
* σX Distn µX

N σX
N ∂g/∂X αX 

MF - 0.53 0.2 2-P LN 0.93 0.09 18546.08 0.80 

Asw 157.1 157.1 3.142 DET - - 0.00 0.00 

s 125 300 3.75 DET - - 0.00 0.00 

h 500 500 5 DET - - 0.00 0.00 

C (cover) 30 42.73 9 2-P LN 25.78 12.54 -5871.21 -0.25 

fyw 250 253.52 30 3-P LN 294.40 25.36 7001.99 0.30 

fyl 450 499.35 30 DET - - 0.00 0.00 

bw 350 350 3.5 DET - - 0.00 0.00 

fc 25 23.25 6.39 3-P LN 32.75 4.18 10774.85 0.46 

As,tot 4825.49 4825.49 96.51 DET - - 0.00 0.00 

¥∑	^#
(
= 1.0000 
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Table 8.16.  Results of the 8th and final iteration for test case 2 

 

 

Discussion of the results of the reliability analysis  

By observing the direction cosines, ^� or ̂ qr, of the �� presented in Tables 8.15 and 8.16, 

0.80 and 0.84 respectively, it is clear that the MF dominates shear reliability performance for 

members with stirrups.  However, unlike the instance when the EC 2 variable strut inclination 

method is converted for use as the gpm in Section 8.2, other basic variables are found to be of 

some significance to reliability performance.  For test case 1, ��, ���, and � are found, in 

decreasing order, to have significant influence on shear reliability performance for members 

with stirrups.  For test case 2, the same basic variables were found to be of significance 

(^� ¾ |0.1| ) to shear reliability performance, though the influence of � precedes that of ��� 

in order of decreasing significance as compared to test case 1. 

β = 2.876 

Xi Xk xi
* σX Distn µX

N σX
N ∂g/∂X αX 

MF - 0.74 0.2 2-P LN 1.05 0.13 67557.04 0.84 

Asw 157.1 157.1 3.142 DET - - 0.00 0.00 

s 125 125 3.75 DET - - 0.00 0.00 

h 500 500 5 DET - - 0.00 0.00 

C (cover) 30 36.17 9 2-P LN 27.85 10.62 
-

22017.03 -0.27 

fyw 450 483.95 30 3-P LN 498.24 29.05 13806.08 0.17 

fyl 450 499.35 30 DET - - 0.00 0.00 

bw 350 350 3.5 DET - - 0.00 0.00 

fc 25 27.81 6.39 3-P LN 34.17 4.98 35822.56 0.44 

As,tot 4825.49 4825.49 96.51 DET - - 0.00 0.00 

¥∑	^#
(
= 1.0000 
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As anticipated, the design point value of the MF was higher for test case 2 (0.74) than for test 

case 1 (0.52).  Recalling that �� $  ·À./À·*�.-, it implies that, indeed, the EC 2 prediction model 

is more conservative for design situations with low amounts of shear reinforcement (test case 

1) hence the higher 
-estimate and vice versa is true.  As reported in Tables 8.13 and 8.15, a 


-index of 5.308 was found for test case 1 whilst a 
-index of 2.876 was found for test case 

2. 

For comparable test cases, higher 
-estimates were found when the MCFT was used as the 

gpm in the performance function as opposed to when the EC 2 prediction model was 

converted for use as the gpm.  This could most reasonably be ascribed to the fact that the 

MCFT is a better predictor of ultimate shear resistance for reinforced concrete members with 

stirrups.  However, as can be observed from Table 8.17 below, more noticeable differences in 

the 
-estimate were realised for test case 1.  Characteristic values of the �� associated with 

the amount of shear reinforcement, as read from the appropriate graph in Figure 7.8 for the 

MCFT and Figure 7.9 for the EC 2 prediction model, are also reported in the Table.   

 

Table 8.17.  
-estimate of test cases 1 and 2 determined when MCFT and EC 2 prediction 

models are used as gpm 

EC 2 as gpm MCFT as gpm 
Test Case β-estimate Value of MF β-estimate Value of MF 
Test case 1 3.379 2.00 5.308 1.18 
Test case 2 2.485 1.04 2.876 1.04 

 

Recall from Section 8.2 that the choice of design parameters for the test cases was based on 

the trend of the model factor associated with EC 2’s variable prediction model for shear, 

��&' (, with the amount of shear reinforcement, ������ ���⁄ .  This action was taken 

because the �� was found to be critically sensitive to ������ ���⁄ .   Test case 1 was 

designed to represent a design situation with low amounts of shear reinforcement whilst test 

case 2 was designed to represent a design situation with high amounts of shear 

reinforcement������ ���⁄ .  The mean values of the �� for each of the test cases, according 

to the appropriate regression models for the EC 2 and MCFT prediction models, are shown in 

Table 8.17.  Figure 7.9 was used to deduce the mean values of the ��, with respect to 
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������ ���⁄ , for the test cases according to EC 2’s prediction model whereas the appropriate 

graph from Figure 7.8 was used to deduce the mean values of the �� for the test case 

according to the MCFT. 

It is evident form Table 8.17 that the EC 2 and MCFT prediction models have similar bias in 

their prediction of ultimate shear resistance for test case 2, the section that is representative of 

a design situation with high amounts of shear reinforcement.  Conversely, the same cannot be 

said for test case 1, as it can observed form Table 8.17 that EC 2’s prediction model yields a 

more conservative result of the �� (�� $  2.00) than the MCFT (�� $  1.18).  This 

difference in the character of the ��, shown between the two prediction models at low 

amounts of shear reinforcement, is responsible for the rather considerable difference in the 
-

estimates determined for test case 1 when either the EC 2 or MCFT prediction models are 

used as the gpm in the performance function for shear.  For both the EC 2 and MCFT 

prediction models, the general tendency is to underestimate the ultimate shear resistance for 

members with low amounts of shear reinforcement.  However, the MCFT is less conservative 

implying that it generally predicts higher values of ultimate shear resistance than the EC 2 

prediction model for members with low amounts of shear reinforcement.  This implies that 

the distance between the mean of the distribution describing true shear resistance, when 

MCFT is used as the gpm, and the deterministic design determined according to EC 2’s 

stipulated design procedure (characteristic values + partial factors) is greater in terms of the 

number of standard deviations than the instance when the EC 2 prediction model is used to 

describe the distribution of true shear resistance.  Figure 8.2 shows schematically the 

probabilistic representation of the performance function for shear, where 
 is defined as the 

number of standard deviations between the mean of the distribution of true shear resistance 

and the design point of shear resistance. 

The central location parameters or mean moment statistics of the ��are important in 

establishing how close a member’s predictions are to reality, thus quantifying how accurate 

the model is or how well a descriptor of the physical process it is.  However, the spread of the 

distribution for the ��, relative to the central location or mean of the ��, is equally or even 

more important in determining how safe the model is.  Safety, in this context, refers to the the 

number of standard deviations achievable away from the mean before the models’ predictions 

of ultimate shear resistance become unconservative (�� equal to or less than 1.0).  The EC 2 

prediction model has a higher coefficient of variation, reported in Table 7.3 as 0.31, as 
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opposed to 0.18 for the MCFT.  The EC 2 prediction model, due to higher variability, will 

more readily yield undesirable estimates of ultimate shear resistance than the MCFT.  The 

MCFT can therefore be deemed not only the better predictior of true shear resistance in 

physical reality, by virtue of having a lower mean bias associated with its �� than for the EC 

2 prediction model, but can also be viewed as the safer model in its predictions due to the 

lower variability associated with the distribution of its model factor. 

 

8.3.4 Reliability requirements for resistance 

As established in Section 8.2.7, the target reliability for resistance, 
s,³, in the structural 

Eurocodes is 3.04 whilst that for for South African practice as set by SANS 10160-1 is 2.4.  

A 
 of 5.308 was found for test case 1 whilst a 
-value of 2.876 was found for test case 2.  

Therefore, acceptable reliability, against SANS 10160-1 requirements for the reliability of 

resistance procedures, was observed for test cases 1 and 2.  With a 
 of 2.876, test case 2 

yielded a 
 below that stipulated by EC 0 and EC 2 for structural concrete resistance.  

Further, on the basis of these results and those presented in Section 8.2.7, it is comforting to 

note that the results of the 
-estimate are less conservative, or more severe, when the more 

common situation of converting the EC 2 shear prediction model for use as the gpm was 

adopted, as opposed to when the MCFT was used as the gpm in describing the true shear 

resistance for members with stirrups.  In normal situations of reliability analysis, the 

prediction model on which the calibrated design method is based is converted for use as the 

general probabilistic model. 
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Part One of the thesis was aimed at investigating the current state of implementation of 

reliability principles in the provisions for structural concrete in EC 2 and, upon identifying 

some incompleteness, advanced the implementation of reliability differentiation to partial 

factor modification as suggested by informative Annex A in EC 2.  Initial ideas about model 

uncertainties and their significance on reliability performance were introduced with some 

indication from published research warranting further investigation for shear.  

Part Two of the thesis, Chapters 5 to 8, was composed and structured so as to achieve the end 

goal of characterising the reliability performance of reinforced concrete members with 

stirrups subjected to shear; a common design situation in practice.  Throughout Part 2, special 

attention is given to model uncertainties to reflect the influence they have on the accuracy of 

a model’s predictions and therefore have impact on safety of designs in practice.  The �� 

was therefore included as a basic variable that influences model’s predictions of true shear 

resistance.    

Shear behaviour of reinforced concrete members, both with and without design shear 

reinforcement, has long been problematic in achieving accurate modeling of its load 

deformation behaviour as well as ultimate shear resistance predictions.  Due to lack of proper 

conceptual and theoretical understanding of the behaviour of members in shear, prediction 

models are known at times to be safe or unsafe, both situations of which the design method 

should be calibrated against.  

However, the more prominent design situation in practice is that members are provided with 

shear reinforcement to limit shear cracks and other deformations resulting from excessive 

shear related stresses of the concrete, to allow the member to achieve full flexural capacity; a 

more ductile failure mode that provides sufficient warning (cracking + excessive deflections) 

before failure. 

With the prediction of shear being known as problematic and being carried on through the 

years as inconsistent, the method of calibration of the design model then becomes important 

to ensure safe and economic design of structures in practice.  Reliability techniques for 

structural design, to ensure safety of design provisions, have been implemented and 
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recommended for use by the structural Eurocodes.  South Africa has chosen to follow suit.  

Eurocodes are based on general requirements that are made operational in member states by 

specifying and implementing the Nationally Determined Parameters (NDPs).  Therefore, 

reliability-based assessments are necessary to determine the suitability of the design models 

in EC 2 for South African practice. 

The MCFT has proven to be a better descriptor of true ultimate shear resistance than the EC 2 

and other common prediction models.  The MCFT can therefore be more rationally applied 

for theoretical purposes where accurate representation of shear in physical reality is required 

such as being used as the general probabilistic model in reliability modelling.  Unfortunately, 

the MCFT is computationally involving and time consuming, making it unsuitable for routine 

and conventional designs.   The analysis Program Response-2000 can be viewed as an effort 

to make use of the MCFT routine in design.  It is, however, not the objective of the thesis to 

promote the use of the MCFT as design method in practice but to use it to reflect the quality 

of results of the reliability analysis process when different models describing true shear 

resistance are used in the process.  When either the MCFT or EC 2 prediction model were 

used as gpms, the model factor for shear, ��, was found to dominate reliability performance 

for members with stirrups subjected to shear.  Acceptable reliability was achieved for both 

design situations considered in the investigation according to SANS 10160-1 reliability 

requirements for resistance.  On the contrary, the test case representative of a member with 

relatively high amounts of shear reinforcement did not satisfy EC 0’s target reliability for 

resistance of 3.04.  The EC 2 design model, provided that �� 	 1.5 and �� 	 1.15 are used in 

design, is therefore even better suited to South African conditions than in Europe. 

Given the highlights of Part Two of the thesis presented above, a brief breakdown of the 

Chapters 5 to 8 is given in the discussions below. 

Chapter 5 introduced all the necessary background and insight into the conceptual and 

theoretical formulation of the models (MCFT and EC 2 prediction model) for shear.  This 

background was proved vital in understanding the trends of the �� against the shear 

parameters.  Such analyses could lead to theoretical and conceptual improvements and 

development for models for shear. 

Chapter 6 provided a general overview of reliability principles for structures, emphasising the 

use of the First Order Reliability Method (FORM) as was applied to the EC 2 design method 

for shear in the thesis.  The EC 2 design method for members with stirrups is based on the 
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variable strut inclination method for shear.  Important background was given on the non-

normal distributions used in the thesis: two-parameter log-normal distribution (2P-LN) and 

three-parameter log-normal distribution (3P-LN) distribution.  Information on their 

transformation to equivalent normal statistics was relevant as it enabled use of the FORM 

method of reliability analysis.  It was established in Chapter 7 to represent the MF associated 

with the variable strut inclination method for shear used as basis for EC 2’s design method by 

the 3P-LN distribution, whilst to represent that associated with the MCFT by the 2P-LN 

distribution. 

Chapter 7 characterised the model factors associated with the EC 2 and MCFT prediction 

models.  Descriptions were therein given of the databases to which comparisons were done to 

obtain model factor statistics for each of the prediction models. 

Chapter 8 was concerned with the actual reliability analysis of the EC 2 shear prediction 

model for members requiring stirrups.  Some interesting and important developments were 

generated in this Chapter. They are outlined briefly in bullet form below. 

 

1. The development of statistical models describing the internal lever arm, 
, and 

modelling of the concrete cover, �. 

 

2. The MF was shown to dominate reliability performance for the shear resistance of 

members with stirrups. 

 
 

3. Acceptable reliability performance was found for both design situations yielded in 

analysis according to SANS 10160-1 reliability requirements for resistance.  The  

target reliability was however not achieved according to EC 0 requirements when the 

EC 2 design method was used to design test case 2, though not greatly  below ��,�of 

3.04.  The EC 2 variable strut inclination design method is therefore adequate for 

South African practice, given that partial factors �� 	 1.5 and �� 	 1.15 are used and 

appropriate characteristic values of the basic variables are used. Any alternative 

combinations of partial factors and characteristic values would warrant an appropriate 

investigation to determine effect on reliability performance. 
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4. Different gpm’s were used in reliability analyses to establish how the choice of the 

gpm may influence the results of the assessment.  Disparities occurred in the results of 

the analysis due to different prediction models being used.  This affects the 

probability of exceedance of mean shear resistance, ����, as compared to ��� � ������ 

 
 

5. Though not well understood or defined, the MCFT has shown some interesting 

decrease in ultimate shear resistance of members with relatively high amounts of 

shear reinforcement post a/" of 2.5.  In fact, it predicts a distinct downward kink in 

ultimate shear resistance predictions after a/" of 4.0.  This seems to be a sensible 

trend as unbiased MCFT ultimate shear strength predictions agree quite well with 

experimental data as is showcased in Figure 7.8. 
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10.1 CONCLUSIONS 

 

Structural design is a practice which, unfortunately, must be conducted with uncertainties.  

Uncertainties are inherent in the entire life-cycle of a project from design and detailing 

through to construction, and now even extending to maintenance and demolition in modern 

and more advanced design recommendations.  The reasonable action thus suffices as to carry 

out the project process ensuring some rational safety verification of the process.  This is a 

natural requirement, considering that structures, in their failure, pose obvious and serious 

risks to human life and have adverse economic and sometimes political and social 

implications.   

In order to reflect the requirement of the need of safe and dependable structures, modern 

international trends of codified design for structures have chosen to adopt reliability-based 

formats to verify safety.  In this format, actions and resistances are expressed as random 

variables, by way of mathematical statistics, to reflect their randomness in nature and also to 

enable a probabilistic assessment of the modelled physical processes at large.  Probability 

statements about load and resistance are then used to quantify the probability or likelihood 

that the structural load will exceed the structural resistance; an event affectionately referred to 

in the fraternity as the probability of failure, denoted as ��.  Due to uncertainties in both loads 

and actions, and economic constraint amongst others, the probability of failure can’t be 

considered as zero.  This would be an overly conservative assumption as in reality structural 

failures do occur. Structural uncertainty can be attributed to inadequate modelling of the 

physical process showing incomplete understanding of the structure and its behaviour, or 

construction error, or design error, which all affect how the final designed structure would 

perform in service.  The reliability index, �, is therefore introduced into the process of 

reliability assessment.  It is an indirect measure of the probability of failure, ��, of structures.  

� is incorporated in the calibration to reflect some acceptably low failure occurrence of 
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structures based on socio-economic risk principles, when considering the drafting of 

provisions for all aspects of structural design.  This implies that cognizance of the possibility 

of structural failure is taken into account when considering the entirety of the design 

provisions for structural concrete resistance, hence encouraging cautious and conscience 

treatment of safety when drafting design recommendations and provisions. 

The EU has chosen to base their structural standards, the suite of structural Eurocodes, on 

reliability principles, which includes their concrete code, EC 2.  In an effort to update and 

review their structural standards, South Africa has chosen to follow suit and base the revision 

to the new national concrete code SANS 10100-1 on EC 2.  The Eurocodes are based on a 

general set of conditions that aim to cater for the diverse conditions shared amongst EU 

member states.  These varying conditions could be due to different climates, soils, level of 

workmanship as well as different economic and legal requirements for structures in the 

different member states.  Therefore, before the Eurocodes are made operational in any 

member state, they should be supported by relevant annexures that provide country-specific 

guidance on the Nationally Determined Parameters (NDPs).  As South Africa has chosen to 

adopt EC 2 as reference for the national concrete code SANS 10100-1, reliability assessments 

are necessary to determine the suitability of the adoption of EC 2 for South African practice. 

Much work on extending the well-documented reliability framework for structures has at 

current been achieved for actions, with the extension of the framework being nominally 

treated for resistance in the materials-based resistance standards.  Actions for various 

specified design situations, together with an associated set of elaborate partial factors and 

action combination scheme, are specified for use.  On the other, a single set of partial factors 

are used for resistance with its basic variables applied at their characteristic values in design 

formulations to cater for a wide range of design situations and material characteristics.  

Evidently, the implementation of the reliability framework for resistance is not as extensive 

as that for actions and much work still needs to be done to bring the reliability basis of 

resistance to the same level as that for actions, and further, to continue to apply new trends of 

reliability verification formats, to both actions and resistances in future. 

This thesis can be considered as an effort to review what the reliability requirements for 

resistance are, and further, to determine to what extent the reliability requirements for 

resistance are applied in current international standards, specifically the Eurocodes. The basis 

of design requirements are dealt with in EC 0 with some attention therein given to action 
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combination schemes for various identified design situations.  EC 0 can thus be viewed as a 

material independent standard, but however contains the general requirements for reliability 

of resistance which can be applied across the various materials-based resistance standards. 

This first section of this two-part thesis was structured to: 

 

1. Firstly, present the elements of the reliability framework presented in EC 0, with 

reference to essential background documents such as the JCSS Probabilistic Model 

Code, CEB bulletins, and the CEB-FIP and fib Model Codes. 

 

2. In the latter of Part One, present the first part of elaboration and implementation of the 

reliability framework comprising discussions on:  

 
 

a. The influence the reference level of reliability, �, has on structural 

performance with a study given to provide detailed view of how choice of its 

value affects the quantities of operational partial safety factors to be adopted in 

design codes of practice, particularly the case of � � 3.0 for SANS 10160-1 

requirements and � � 3.8 according to EC 0 requirements.  In this light, the 

partial factor set of 	
 and 	� of 1.5 and 1.15, respectively, as recommended 

for use in the Eurocodes can be viewed as conservative for South African 

conditions.  Partial factors of 1.4 and 1.1 for 	
 and 	�, respectively, prove 

sufficient for flexural and compression resistance in the work considered by 

Holický et al. (2010) according to SANS 10160-1 requirements.  These partial 

factors have not been verified as sufficient for shear according to SANS 

requirements is a feasible issue for immediate investigation. 

 

b. A Critical review of a key study by Holický et al. (2010) as it provides 

guidance and serves as template for reliability assessment and subsequent 

calibration of partial factors for other modes of resistance than those 

considered in the study.  The suggestions of this study could be viewed as 

providing some motivation to characterise the model uncertainty associated 

with shear as well as its effects on reliability performance.   
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c. The issue of partial factor modification, particularly reduction of operational 

partial factors, in EC 2 informative Annex A and its link to the reliability 

management requirements of structural resistance presented in EC 0 were 

explored.  It is made clear that improved QC measures, achievable through 

upper differentiation of structures, are effective in managing reliability.  The 

result is possible set of partial safety factors applicable at differentiated levels 

of quality control.  In general, stricter control allows larger reduction of partial 

factors from operational set in Eurocodes of 1.5 and 1.15.  Guidance on how 

to adjust these values, through a differentiated framework, is given in Chapter 

3. 

 

Initial motivation was given in the first part of the thesis to investigate model uncertainty and 

consequently, the reliability performance, for different modes of resistance.  The EC 2 shear 

design method is derived from the variable strut inclination method for shear which is based 

on lower bound theory of plasticity.  The neglect of concrete contribution to shear resistance, 

a very important factor when the steel contribution is low, by the variable strut inclination 

method is responsible for the conservative predictions of shear resistance when model is used 

to predict shear in members that are slightly shear reinforced.  On the other hand, the slightly 

unconservative results for highly reinforced concrete beams are due to the assumption that 

the EC 2 procedure that the angle of the concrete struts can be as low as cot � � 2.5; 

meanwhile for highly reinforced beams cot � may only reach values around 1.10 � 1.30 

according to models based on equilibrium and compatability (Cladera and Mari, 2007).  This 

gives rise to modelling uncertainty associated with the prediction model, greater than that 

associated with other modes of structural resistance.    This proved a ripe issue for reliability 

investigation of the shear performance of members with stirrups.   

First, in Chapter 5 a detailed background of the conceptual and theoretical development of 

the EC 2 and MCFT prediction models for shear were given followed by the background to 

the techniques required to conduct a reliability assessment of EC 2’s design procedure for 

members requiring design shear reinforcement presented in Chapter 6.  The MCFT was 

considered in this thesis, not as a design method, but as a rational-scientific model that better 

predicts the true shear resistance of members with stirrups than the EC 2 and other prediction 
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models.  This motivated its use as the general probabilistic model describing true shear 

resistance during the exercise of reliability modelling.  However, it is more common to 

convert the design prediction model for use as the gpm in reliability modelling and this was 

done first, before the use of the MCFT as the gpm, in Chapter 8. 

From Chapter 7, the model factor (��) associated with the MCFT was characterised by a 

lower mean bias of 1.14, as opposed to EC 2’s value of 1.65, as well as a lower spread or 

standard deviation of 0.20, as opposed to EC 2’s value of 0.51.  The MCFT was used in a 

separate reliability assessment in order to reflect the effect that the use of different predictions 

would have on the results of the process, mainly the achieved �-estimate and the sensitivity 

associated with the model factor, ��.  

 Chapter 8 was concerned with investigating the reliability performance of members with 

stirrups in shear.  Two design situations, referred to as test cases, were taken as central to the 

reliability investigation.  Based on the MF trend with the amount of shear reinforcement for 

the EC 2 prediction model, test case 1 was representative of design situation with low 

amounts of shear reinforcement, ������ ���⁄  0.45 ��", whilst test case 2 was 

representative of a design situation with relatively high amounts of shear reinforcement.  

Chapter 8 can be viewed as important for assessing the adequacy of the design method 

particularly at high amounts of shear reinforcement where the �� was shown to be losing 

conservatism, implying that the EC 2 prediction model has the tendency to over-predict the 

strengths of members in such situations.  The EC 2 model was found to be, on average, 

acceptable for the design of members subjected to shear and requiring design shear 

reinforcement.  A summary of the results for the two test cases against SANS 10160-1 and 

EC 0 requirements is given in Table 10.1. 

 

Table 10.1.  Summary of the results of the reliability analysis 

Test case 
No. 

Amount of shear reinforcement,  
Aswfyw/bws 

β-estimate 
MCFT as gpm EC 2 as gpm 

Test case 1 low: 0.45 MPa 5.308 3.379 
Test Case 2 high: 1.8 MPa 2.876 2.485 

Reliability requirements for resistance:                                                                                                                               
SANS 10160-1:  βT,R= 2.4     EC 0:  βT,R= 3.04 
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The results presented in Table 10.1 show that the calibrated design method for shear in EC 2 

achieved acceptable reliability performance according to SANS 10160-1 and marginally to 

EC 0 requirements, particularly for test case 2; the design situation representative of a 

member with high amounts of shear reinforcement.  Adequate performance is particularly 

essential at high amounts of shear reinforcement where the �� is found systematically to be 

marginally conservative-to-unconservative as reported in Chapter 7.  By observing Table 

10.1, practical validity of EC 2’s shear design method for members with stirrups is ensured 

provided EC 0’s recommended partial factors, 	
 � 1.5 and 	� � 1.15, and appropriate 

characteristic values of the basic variables are used in design.   

 

The �-estimates obtained for test case 2 were, in both cases when the EC 2 prediction model 

was used as the gpm as well as in the case when MCFT was adopted, found to fall below the 

threshold value of � of 3.04 as stipulated in EC 0.  When the EC 2 prediction model was 

used as the gpm � was estimated as 2.485, and when the MCFT was used as gpm, � was 

estimated as 2.876.  The severity of this marginal insufficiency of � for test case 2 could 

possibly be of serious concern.  Traditionally, members are designed to fail in flexure; a 

ductile response that provides enough warning about impending failure.  When low amounts 

of shear reinforcement are provided in design, it could be assumed that the shear stresses in 

the member are not found to be critical compared to flexure.  In this situation, shear 

reinforcement is still provided in design so as to limit shear stresses to allow the member to 

achieve full flexural capacity and not to suffer any major shear stresses.  On the other hand, 

when large amounts of shear reinforcement are provided in design, shear stresses are usually 

found to be high and adequate shear reinforcement must be provided in design to resist the 

shear-moment interaction of which the influence of shear would dominate.  Shear failures are 

brittle and are therefore extremely undesirable occurrences as no safe evacuation time of the 

structure is allowed before failure.  The reliability requirements for such situations should 

therefore be strictly adhered to, with even some slight excceedance of minimum reliability 

requirements desirable.  It is therefore suggested that some upper limit be placed to the 

amount of shear reinforcement to which the EC 2 design method is applied in Europe or a 

different model of justified acceptable performance be applied in practice when designing in 

situations or members requiring high amounts of shear reinforcement. 
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Further, Table 10.1 illustrates that the results of the reliability assessment are dependent on 

the choice of probabilistic model chosen to represent true shear resistance.  It was comforting 

to find that more severe �-estimates were found for the more commonly applied case in 

practice where the design prediction model was converted for use as the gpm, as compared to 

when the more rational scientific MCFT was adopted for use as the gpm.  The Model Factor, 

��, was found to dominate the shear reliability performance for members with stirrups, 

regardless of whether the MCFT or EC 2 prediction model were used as the gpm in the 

reliability assessment. That is, accurate modelling of shear, or lack thereof, poses the biggest 

uncertainty about the safety performance of design provisions and consequently structures as 

well.  On this note, more accurate modelling of shear is called for and considered still an 

open area for research. 

 

 

10.2 RECOMMENDATIONS 

 

The recommendations for the thesis are discussed below as separate bulleted arguments. 

 

1. The data collection from standard tests that characterise the occurrence or realisations of 

the basic variables that are commonly adopted in the design process such as strength, 

cover, construction tolerances and so on, is encouraged for South African conditions and 

practice.  Quite a wealth of European-based references were used in describing the 

theoretical distributions of the basic variables used in reliability modelling in this thesis 

due lack of availability of South African databases concerning basic variables commonly 

used in design. 

 

2. Templates for the advancement of reliability in structural design are pretty well 

documented in recognised publications as the JCSS Probabilistic Model Code, CEB 

Bulletins, and the Model Codes but with not very convincing, or perhaps lack of 

transparent, implementation of reliability in creating the design provisions for national 

codes of practice especially concerning resistance.  The implementation of the principles 

of reliability is therefore an open and on-going process.  More effort is required to fully 
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integrate reliability techniques in design provisions for structural concrete and structures 

in general.  Ways to advance reliability implementation must be continuously identified 

and advanced.  Some improvements can already be seen in some of the stipulations 

presented in the Draft 2010 fib Model Code compared to its predecessor.  Some of these 

include: 

 
 

a. More defined performance based concepts for design 

b. More refined service life concepts centred around maintenance to increase reliable 

service of structures during use 

c. Levels of design for shear, Level I to Level IV, that vary increasingly in computation 

time and effort, as well as accuracy could, in future, possibly be applied through a 

differentiation framework to implement as design provisions, or at least assess the 

viability for such action. 

d. Reliability framework was introduced mostly in CEB-FIP 1978 Model Code and its 

aspects of reliability are increasingly being used as basis for current design 

recommendations as is done in the Draft fib 2010 Model Code. 

 

3. A Limited parametric study, using two test cases each being reprentative of design 

situation with either low or high amount of shear reinforcement was conducted in the 

thesis.  There is still need for a more extensive and general study of design situations 

encountered in practice, not only to assess and achieve adequate safety, but to also 

reduce over conservatism so as to promote economic designs. 

 

4. Theoretically, partial factors are applicable to all basic variables considered in a 

reliability assessment but only the conventional set of 	
 and 	� for concrete and steel, 

respectively, are applied in practice.  A single set of  partial factors	
 and 	� are applied 

across wide range of structural concepts, design situations, etc.  Hence, extensive 

calibration of the partial factors is necessary to include the effects of the other variables 

into the operational set of 	
 and 	� applied in standards or codes of practice.  This 

should not only be done for shear, but for all other modes of structural resistance.  

Holický et al. (2010) conduct a reliability based assessment of partial factor requirements 

for slabs (flexure) and columns (compression) according to South African reliability 
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requirements and as part of their conclusions, state that 	� � 1.10 and 	
 � 1.4 are 

sufficient for the modes of resistance considered, including effects of modelling 

uncertainty and geometry across the operational range of longitudinal tension 

reinforcement, $, provided in design.  There is therefore adequate guidance and need for 

similar assessment to calibrate EC 2’s model for shear in accordance with South African 

reliability requirements.  This thesis can be viewed as the initial steps in calibrating the 

EC 2 design model for members with stirrups to comply with South African conditions 

and requirements. 

 

5. Taerwe (1993) states that special calibration of the model uncertainty as part of the 

global resistance factor is warranted for coefficients of variation of 0.2 and above.  A 

coefficient of variation of 0.31 was reported in Chapter 7 to be associated with the EC 2 

prediction model for members with stirrups.  According to Taerwe, there is, therefore, a 

need to explicitly consider the effect of model uncertainties when calibrating the partial 

factor shear. 

 
 

6. This Thesis showcases the systematic treatment of model uncertainties for structural 

design and can be used as future reference for efforts in treating other modes of 

resistance in this way, where model uncertainties are investigated and modelled in 

reliability assessments.  The steps followed in treating the model uncertainty for shear 

could also be useful in characterising model uncertainties associated with new materials 

as well. 

 

7. This is perhaps not a critical issue, but the sensitivity of members with relatively high 

amounts of shear reinforcement tend to show distinct downward trend of results after 

a/' of 4.0 as presented in the latter parts of Chapter 8.  No direct reason was quoted for 

this finding as it was not the objective of the thesis to investigate the trend.  It would, 

however, be interesting to relate trend to the conceptual development of the MCFT and 

understand why this is so. 
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