
Master's Project at ICT, KTH
Examensarbete vid ICT, KTH

Automated source-to-source translation from Java to C++
Automatisk källkodsöversättning från Java till C++

JACEK SIEKA
jacek@kth.se

Master's Thesis in Software Engineering
Examensarbete inom programvaruteknik

Supervisor and examiner: Thomas Sjöland
Handledare och examinator: Thomas Sjöland

Abstract

Reuse of Java libraries and interoperability with platform native components has
traditionally been limited to the application programming interface offered by the
reference implementation of Java, the Java Native Interface.

In this thesis the feasibility of another approach, automated source-to-source
translation from Java to C++, is examined starting with a survey of the current
research. Using the Java Language Specification as guide, translations for the
constructs of the Java language are proposed, focusing on and taking advantage of
the syntactic and semantic similarities between the two languages.

Based on these translations, a tool for automatically translating Java source code to
C++ has been developed and is presented in the text. Experimentation shows that a
simple application and the core Java libraries it depends on can automatically be
translated, producing equal output when built and run. The resulting source code is
readable and maintainable, and therefore suitable as a starting point for further
development in C++.

With the fully automated process described, source-to-source translation becomes a
viable alternative when facing a need for functionality already implemented in a Java
library or application, saving considerable resources that would otherwise have to be
spent rewriting the code manually.

Sammanfattning

Återanvändning av Java-bibliotek och interoperabilitet med plattformspecifika
komponenter har traditionellt varit begränsat till det programmeringsgränssnitt som
erbjuds av referensimplementationen av Java, Java Native Interface.

I detta examensarbete undersöks genomförbarheten av ett annat tillvägagångssätt,
automatisk källkodsöversättning från Java till C++, med början i en genomgång av
aktuell forskning. Därefter föreslås med Java-specifikationen som guide
översättningar för de olika språkkonstruktionerna i Java, med fokus på utnyttjandet
av de syntaktiska och semantiska likheterna mellan de två språken.

Baserat på dessa översättningar har ett verktyg för att automatiskt översätta källkod
från Java till C++ utvecklats och detta presenteras i texten. Experiment visar att en
enkel applikation och de Java-bibliotek den beror på kan översättas automatiskt, och
att applikationen kan byggas och köras med ekvivalent utdata. Den översatta
källkoden är möjlig att läsa och underhålla, och därför lämplig som en utgångspunkt
för vidare utveckling i C++.

Med den automatiska process som beskrivs blir källkodsöversättning ett effektivt
alternativ då man har behov av funktionalitet som redan implementerats i ett Java-
bibliotek eller program, med signifikanta besparingar av de resurser man annars
behövt lägga på att manuellt implementera om den existerande lösningen.

Acknowledgements

I would like to thank my supervisor Thomas Sjöland at ICT/SCS for his help, advice
and patience over the years.

Thanks to Vladimir Vlassov, also at ICT/SCS, for taking time from his busy schedule
to read and offer comments along the way.

Thanks to Erik Angelin all technical discussions on and off topic that allowed me to
refine and improve what is presented here.

To Oskar and Milla, for reminding me the meaning of curiosity, and Dorota for
patience and love.

Table of Contents
1. Introduction.. 1

1.1. Questions, goals and methodology.. 1

1.2. Outline.. 2

2. Background.. 3

2.1. Code reuse strategies.. 3

2.1.1. Java Native Interface.. 3

2.1.2. Compile-to-native... 4

2.1.3. Rewrite the code manually... 4

2.2. Prior art... 4

3. Overview.. 7

3.1. Translation steps... 7

3.2. Intermediate language.. 8

3.3. Runtime support... 9

3.3.1. Implement dependencies manually.. 10

3.3.2. Convert dependencies... 11

3.3.3. Mixed approach.. 12

3.4. Java Native Interface.. 12

3.5. Execution and threads.. 13

3.6. Memory and other system resources.. 14

4. Language migration... 19

4.1. Base assumptions... 19

4.2. Lexical structure... 19

4.3. Code organization.. 20

4.3.1. Packages... 21

4.3.2. Names... 21

4.4. Type system.. 22

4.4.1. Primitive types.. 23

4.4.2. Reference types.. 24

4.4.3. Boxing and unboxing... 25

4.4.4. Classes.. 25

4.4.5. Nested classes... 26

4.4.6. Local classes... 27

4.4.7. Enum types... 27

4.4.8. Interfaces.. 28

4.4.9. Arrays... 28

4.4.10. Annotations... 29

4.4.11. Generics and erasure... 29

4.4.12. Class Initialization.. 30

4.4.13. Instance Initialization... 32

4.5. Exceptions.. 34

4.6. Methods.. 34

4.6.1. Overriding... 35

4.6.2. Hiding... 38

4.7. Blocks and statements.. 39

4.7.1. Labels... 39

4.7.2. Assertions... 40

4.7.3. The switch statement.. 41

4.7.4. The for statement.. 41

4.7.5. The synchronized statement... 42

4.7.6. The try statement.. 43

4.8. Expressions.. 44

4.8.1. Evaluation order... 44

4.8.2. Lexical literals.. 45

4.8.3. Class literals.. 45

4.8.4. Class instance creation... 46

4.8.5. Array creation expressions... 46

4.8.6. Field access... 46

4.8.7. Method invocation.. 47

4.8.8. Array access.. 48

4.8.9. Cast expressions... 48

4.8.10. Remainder operator.. 48

4.8.11. String concatenation operator... 48

4.8.12. Shift operators.. 49

4.8.13. Type comparison operator.. 49

4.9. Limitations... 49

5. Implementation and experimentation.. 51

5.1. Implementation overview... 51

5.2. Extending the translator... 53

5.3. Experimentation... 53

6. Conclusion... 55

6.1. Areas of further research.. 55

A. Bibliography.. 57

B. Example of converted code... 59

 B.1. Sort.java.. 59

 B.2. fwd.hpp... 61

 B.3. Sort.hpp.. 62

 B.4. Sort.cpp... 63

 B.5. Sort-main.cpp... 66

Chapter 1. Introduction

The Java ecosystem ranks as one of the most popular development platforms in 2012
[1]. Backed by large corporations and a vibrant open source community, there are
hundreds of thousands libraries available solving tasks in environments spanning
from mobile and embedded devices through desktop systems to large server halls.

The Java language has its roots in C and C++, but takes a more simple approach in
its design goals [2]. Where C++ is seen as a multi-paradigm language, Java with its
class based design is intended to be used in an object oriented setting.

The simplicity of the language in terms of syntax and features makes it easy to learn
and understand, and to build custom tools for static analysis and source code
transformation. The syntactic similarities between Java and C++ make for an
attractive target for source-to-source translation. It becomes easy to trace the origins
of the translated C++ code back to the source that produced it - an important
characteristic assuming familiarity with the original Java code base.

The similarity between Java and C++ is not only syntactic. Java programs are
typically written following the object oriented paradigm which is also supported by
C++, improving the fit between translated and native code.

The benefit of automatically translating source code cannot be underestimated.
Rewriting code manually requires massive effort and means having to spend
resources on solving a problem that has already been solved.

An automatic translator thus opens possibilities to reuse libraries that would
otherwise not have been available for consideration, broadening the usefulness and
extending the lifetime of existing code.

1.1 Questions, goals and methodology

The initial idea for this thesis was to investigate how the constructs of the Java
programming language could be translated into C++, what differences need special
treatment and what tradeoffs need to be made in order to be able to reuse such
translated code in a C++ context or use it as a base for further development.

In short, it seeks to answer the question whether source-to-source translation from
Java to C++ is a viable alternative for reusing existing Java code in a C++
environment, and what the limitations of such a translation would be.

1

As Terekhov and Verhoef state [3], the problem statement for source-to-source
translation is deceptively simple: translate from one language to another without
changing the external behavior of the application. To approach the problem, one
needs to inventory the language constructs that need translation and provide
definitions on how to translate each. This thesis will thus examine the language
constructs of Java and see if these can be translated to C++.

Correctness of translation may seem like an absolute requirement of a source-to-
source translator, but depending on the goals of the translation, that must not
necessarily be true. Readability and maintainability of the translated code may be
equally or more important goals and this thesis will examine the tradeoffs involved
for particular language statements.

During the course of the thesis a Java to C++ converter, j2c [4], was developed to

verify the proposed translations and experimentation results will be presented here.

The work has been based on The Java Language Specification, Third Edition by
James Gosling, Bill Joy, Guy Steele and Gilad Bracha [2] that covers the Java
language up to version 1.6. The translation targets C++ 2011, as specified by
ISO/IEC 14882:2011 [5].

1.2 Outline

Chapter 2 starts with a discussion of the problem background and an outline of the
scarce research done previously in the area.

Chapter 3 provides an overview section that presents the large picture of source-to-
source translation in general and our solution in particular.

Chapter 4 is a reference chapter providing translations for the constructs of Java that
need special attention. Where motivated, the relevant parts of the Java Language
Specification are quoted.

Chapter 5 contains a presentation of the implemented converter

Finally, Chapter 6 contains conclusion and thoughts on future research.

Appendixes A and B cover bibliography and extended code listings.

Throughout familiarity with both the Java and C++ languages is assumed.

2

Chapter 2. Background

Code reuse has been a topic of research since before the seventies - it forms the basis
for modern software engineering practice [6]. Regardless if the reused code remains
external to an application or the code of an old application can be used to create a
new one, the gains are obvious. By reusing existing components, software
development resources can be redirected to inventing new features and improving
existing ones, instead of reinventing the wheel.

Translating the source code to a high level language such as C++ offers the distinct
advantage that the translated code can be read, modified and tightly integrated with
the rest of the application. Use of a high level language comes at a cost however - the
abstraction penalty for using complex language constructs and features can be
significant. We therefore begin by examining the various techniques for accessing
Java from C++.

2.1 Code reuse strategies

There are several strategies to follow when facing a requirement to reuse a Java
software component in a C++ application, each with its own tradeoffs. We will
briefly describe some of the alternatives to source-to-source translation.

2.1.1 Java Native Interface

The Java Native Interface (JNI) allows C and C++ applications to embed a Java
Virtual Machine (JVM) and run Java code directly through the use of a well defined
application programming interface (API) [7]. The API allows the calling application
to interact with Java by enabling the creation of class instances, calling of methods
and interpreting of results. The same API also allows Java code to call native code,
providing a means for calling existing C++ code from Java.

This approach guarantees that the Java code will run according to the Java
specification, but becomes impractical for large scale interaction between C++ and
Java due to verboseness of the bridging code and limited access to common language
features such as inheritance and compile-time error checking. This solution also
carries a large overhead in terms of memory use which may be impractical if the
required component only makes up a small part of the application.

3

SWIG, the Simplified Wrapper and Interface Generator [8], is an application that can
reduce the amount of work needed to bridge Java and C++ code. It works by
automatically generating the JNI glue code and in some cases Java code needed for
interaction between the two languages based on the content of C and C++ header
files.

2.1.2 Compile-to-native

GCJ is a native compiler for Java [9]. It is able to compile Java source code into
native libraries which then can be reused by C++ code. GCJ provides special means
to interface with the generated machine code - it provides natural C++ access to
classes, methods, object allocation, exceptions. There are several limitations as well -
classes that interact with Java may not have non-java members and the support for
interfaces is very limited. Also, GCJ does not provide the full Java platform library,
thus incompatibilities arise if the Java code interfaces with unsupported parts of the
Java platform.

One instance of abstraction penalty in the solution presented in the following
chapters is the use of virtual inheritance and the relatively expensive dynamic_cast

operator. As an example of reduced abstraction penalty due to a lower level
translation, GCJ is able to use a more efficient representation of virtual method call
tables and by exploiting assumptions about the type of casts that will be made, GCJ
can avoid some of the overhead associated with dynamic casting in C++.

2.1.3 Rewrite the code manually

Some projects, for example log4cplus [10] and CppUnit [11], opt to reuse the
concepts and architecture of existing Java libraries but rewrite the source code by
hand. This can be advantageous as it allows for rewriting the code using native
idioms and language features. It is also a very labor intensive approach prone to
human mistakes. Any updates to the original library must be applied manually,
making the approach impractical if the Java source code changes frequently.

2.2 Prior art

The idea of translating between programming languages is not new. Boyle and
Muralidharan [12] showed how translating between LISP and Fortran not only
allowed the reuse of existing application code in a new environment, but also how
the existing code could be made more efficient as part of the transformation process.

4

Varma [13] describes how translating Java to C can be beneficial when seeking to
use existing code on embedded platforms, offering small code size compared to other
native code generation strategies and possibility to execute Java code natively on
systems where no Java Virtual Machine is available. His work is based on Toba [14]
which provides Java-to-C translation for early Java versions. However, the semantic
leap between Java and C is great - many core Java features such as classes,
inheritance and exceptions have no native counterpart in C and must thus be
simulated leading to code that is difficult to read and even more difficult to maintain.
Such an approach is therefore only useful when the translation result will only be
used as an intermediate format for further machine translation.

Peterson, Downing and Rockhold [15] provided an overview of a Java to C++
translator in 1998. Many of the points they make remain valid today, but much has
also been outdated by advances in both Java and C++. Most importantly, they are
successful at producing working C++ translations of several Java programs showing
that the problem is tractable.

In the context of Java translation, it is interesting to look at efforts to convert between
Java and other languages. Trudel et al. investigate in their paper from 2011 the
translation of Java to Eiffel [16]. Just like Java, Eiffel is an object oriented language
featuring classes, objects, methods and exceptions. With j2eif, the translator

implemented as part of the research, they are able to successfully translate and run
both simple and GUI applications. Nonetheless, the authors note, differences in
semantics to these core concepts require careful analysis in order to produce a
successful translator. Dynamic loading, serialization, readability and resulting binary
sizes are cited as problematic areas needing further research.

An interesting aside is that Eiffel compilers often use C as an intermediate language
and delegate the generation of machine code to C compilers. Thus j2eif can be used

to produce a C representation of a Java program with the help of a suitable Eiffel
compiler.

On the commercial side, Tangible Software Solutions [17] offers a Java to C++
converter labeled as “Accurate and comprehensive” but lacks support for several key
Java features such as anonymous and nested classes, static initialization blocks and
certain constructors and finally blocks. Some attempts are made at memory
management by inserting delete expressions using heuristics, but support is
incomplete at best. Where manual intervention is required, the translator inserts
comments noting what must be done. The manual notes that there is also limited
support for API conversion where Java String:s are converted to C++ string:s and

arrays to vector:s, but offers no details on the limitations of the feature.

5

The approach of this work differs from the Tangible converter by concentrating on
providing extensive language support in order to be able to reuse as much existing
Java code as possible without manual intervention, including available
implementations of the core Java classes.

The Tangible converter instead takes a more pragmatic approach where difficult
cases are left to the user to convert and correct by hand. Heurestics and guesses are
used in an effort to solve some of the memory management and runtime dependency
issues, succeeding in some cases but generating incorrect code in others.

6

Chapter 3. Overview

This chapter contains an overview of the general problem of source-to-source
translation, and highlights some of the high-level problems that need solving when
translating from Java to C++.

3.1 Translation steps

Migrating a code base from one platform to another is a multifaceted problem. There
are many things to consider for a successful translation, such as overall design
paradigms used, documentation, idiomatic use of the source and target languages and
API availability.

Terekhov and Verhoef outline many of the difficulties encountered when translating
from COBOL to C and suggest a three-step approach to language migration [3].
First, the source code is restructured to minimize friction between source and target
languages. Then syntax between source and target language is swapped and finally
the target code is restructured to better fit with its native idioms.

In the case of Java to C++ conversion, the first and the last step become less
important as many of the idioms of Java naturally carry over to C++ with little
friction. We can thus concentrate on the actual translation step, producing code that
fits as tightly with C++ idioms as is possible, already here.

Nonetheless, Peterson et al. suggest that certain aspects of Java to C++ conversion
are better carried out beforehand, for example to avoid name conflicts due to
differences in name resolution. There are weaknesses to this approach however. It
may not always be practical to carry out refactoring of a source library for the
purpose of translation, especially when the library has been developed or continues
to be developed externally. Thus, the better the translator is able to handle the corner
cases of the source language, the more useful it becomes as fewer pre and post
translation modifications are needed.

In the last step, knowledge and assumptions about the code being translated could be
used to rewrite the translated code to fit better with the intentions of the original
implementation, but as a general-purpose translator is being treated here, the
assumption is that such knowledge is not available.

7

3.2 Intermediate language

The task of a compiler is typically to transform source code written in a high level
language to a lower level language, often machine code for a particular environment.
For example, a C++ compiler will translate C++ statements and expressions into
assembly code representing the machine instructions of a particular hardware
architecture and a Java compiler translates Java source code into bytecode, a stack
based instruction set suitable for execution on a Java Virtual Machine.

Modern compilers are often divided into front and back ends. The front end is
responsible for translating the particulars of a language into an intermediate format
while the back end translates the intermediate format into machine code. To add
support for another input language, only a new front end is needed, and by adding a
new back end, all existing front ends can be used on a new architecture. In fact, one
could see Java bytecode as such an intermediate format - apart from Java, several
other languages have been compiled to Java byte code such as Python (through
Jython [18]) and Scala [19].

Taking the same approach with a source-to-source translator is problematic. In the
case of Java and C++, it is the exploitation of the similarities of the languages that
makes the resulting C++ code useful on its own and not only a vessel for further
translation. The purpose of an intermediate format is to bring language complexities
down and to provide a nucleus of features that are easy for the back ends to consume.
For meaningful source-to-source translation, an intermediate format would
necessarily have to be expressive enough to carry the nuances of each language it
supports, and thus become more complicated than the source language itself.

Toba [14], the Java to C translator mentioned previously, takes the intermediate
language approach by translating Java bytecode to C, but the generated code
becomes unreadable and unmaintainable as the bytecode instructions are translated
directly to C without analyzing their meaning in context. This leads to code that loses
all the advantages a higher level language has to offer, as only the most basic
building blocks of the language are used. Looking for example at Table 1, a sample
presented in the paper on Toba [14], the translated code produces equivalent results,
but the intention and clarity of the original Java code is lost in translation.

8

Java Toba (C)
class d
{
 static int div(int i, int j)
 {
 i = i / j;
 return i;
 }
}

Method int div(int, int)
 0 iload_0
 1 iload_1
 2 idiv
 3 istore_0
 4 iload_0
 5 ireturn

Int div_ii_3WIeN(Int p1,Int p2)
{
 Int i0, i1, i2;
 Int iv0, iv1;
 iv0 = p1;
 iv1 = p2;
L0:
 i1 = iv0;
 i2 = iv1;
 if(!i2)

throwDivisionByZeroException();
 i1 = i1 / i2;
 iv0 = i1;
 i1 = iv0;
 return i1;
}

Table 1: Java program, Java bytecode and corresponding Toba output in C [14]

3.3 Runtime support

Java comes with an extensive standard library, the Java Platform. C++ also has a
standard library but it is comparatively small and lacks support for many commonly
used technologies and tools such as database access, XML processing, GUI
programming and logging. Thus, it is not possible to provide full native API
migration, even should the Java code only use standard components.

Even for simple cases where classes in the Java and C++ standard libraries match
conceptually, such as ArrayList in Java and vector in C++, the gap between

operations supported and idiomatic use of the class is significant, and translation
becomes possible only for limited cases where only a subset of the features are used.

One obstacle is the fact that all classes in Java inherit from the common Object class

- collections and strings included. Replacing Java String with C++ STL string:s

would require converting the C++ string instance to a Java-like Object reference

whenever code depends on the inheritance properties of the Java String, for

example when storing a reference to the string in a collection. Such a conversion
would also need to make sure that a single reference is reused to preserve reference
equality semantics.

9

In short, what seems a simple conversion has many subtle issues that are not easily
resolved. We must find another option to provide runtime support - three alternatives
present themselves. Which strategy is the best depends largely on the application or
library being translated – the relative merits of each must be considered in a larger
context.

3.3.1 Implement dependencies manually

The first strategy is to analyze the dependencies of the code and implement them
natively in C++. As the examples in Table 2 show, most Java applications directly
use only a small subset of the ca 12000 classes that the OpenJDK [20]
implementation of the Java Platform consists of.

Library Top level classes Java Platform
dependencies

SWT 3.7.2, GTK 64-bit edition 532 103

H2 database, 1.3.168 394 266

logback core, 1.0.7 225 143

itextpdf, 5.3.3 414 204

Table 2: Dependency statistics

An important advantage of this method is that it can be applied to any dependency
where the source code is not available. The class file of a compiled Java dependency
contains enough information to reconstruct a C++ header with a class declaration.
Class, method and field signatures are all present - this is precisely the information
contained in a typical C++ header. This is also the same information that the Java
compiler itself requires and uses when verifying that the dependency is correctly
referenced. In fact, the Java Development kit itself comes with a tool that extracts
such information from a Java class file, javap.

From the method signatures, stub files can be generated that contain minimal
implementations of the dependency - methods with no return type can be left empty,
and those that return something can return the default constructed value of the return
type. Table 3 shows an example of such a generated header and stub file, based on
information easily retrievable from a Java class file.

This strategy is most beneficial when there are few dependencies in the code being
converted. An example where this strategy applies could be the implementation of an
advanced algorithm, where complicated logic needs translation but external
dependencies are scarce.

10

Java source C++ header
class Point
{
 public int x;
 public int y;

 public Point add(Point rhs) {
 // ???
 }
}

class Point : public virtual
::java::lang::Object
{
public:
 int x;
 int y;
 Point();
 Point *add(Point *rhs);
};

javap output based on the class file C++ stub

public class Point
{
 public int x;
 public int y;
 public Point();
 public Point add(Point);
}

Point() : x(), y() { }

Point *Point::add(Point *rhs)
{
 return nullptr;
}

Table 3: Generating a stub from a dependency without source.

3.3.2 Convert dependencies

At the other end of the spectrum lies the second alternative. With a Java converter in
hand, it becomes possible to convert an existing implementation of the Java Platform
to C++ and use the converted code.

The obvious advantage is guaranteed compatibility as the exact same implementation
of the dependency is used. This approach can also be extended to dependencies on
libraries other than the platform library, for which the source code is available.

The approach however does not come for free. For example, a single dependency on
the String class in OpenJDK pulls in ca. 1000 other classes as dependencies of

dependencies are pulled in recursively making a small application increase its binary
size and load times significantly.

Also, certain parts of the JDK are implemented as native methods that depend on a
particular Java Virtual Machine being present, and such methods must still be
implemented manually. In OpenJDK, the ca. 1000 classes that String depends on

contain ca. 480 such native methods, but depending on the application being
translated, only a handful of those are likely to be called.

11

This approach is most useful in cases where the converted code has many external
dependencies, specially such that have no clear replacement in C++. One example
would be an application making heavy use of complicated internet standards such
SOAP and its companion protocols, where reference implementations exist for Java
but not necessarily for C++.

3.3.3 Mixed approach

The third way lies in the middle ground. Of the ca. 100 classes that SWT depends on,
most come from the java.lang and java.util packages that cover core language

features and collections. The classes of these two packages are used by most Java
applications, so these are the classes that carry the largest benefit of a native
implementation. For example, further examination of SWT and H2 shows that 90 of
the dependent classes are shared between the two libraries. The strategy thus
becomes to concentrate on the core classes such as Object, String and ArrayList,

implementing those natively while taking the rest from an existing platform
implementation.

A study on API usage by Lämmel, Pek and Starek [21] that found that out of 1476
projects, 1374 used the Java collection classes compared to Comm.Logging used
only by 151 projects.

By also comparing the number of distinct methods called with the number of calls to
this method for each API category, an initial prioritization for the native
implementation effort can be obtained.

For example, in the above libraries, 392 639 calls were made to 406 distinct methods
of the collection classes giving a ratio of ca 1000 calls per method, compared to the
usage of JUnit where 71 481 calls were made to 1011 methods, averaging ca 70 calls
per method. Such numbers suggest that a conversion of the collection classes would
have larger impact for the same development effort, assuming comparable average
effort per method required.

This approach is best used when the natively implemented code can be reused across
multiple projects, maximizing the benefit of a manual conversion.

3.4 Java Native Interface

The Java Native Interface (JNI) provides an application programming interface (API)
that applications can use to allow Java code interface with native code and vice
versa. The use of JNI is discouraged as it breaks platform independence, one of the
main goals of the Java environment.

12

In the OpenJDK, native calls are used for several reasons:

• Implementing classes that need to make use of operating system services, as
seen in the file I/O classes.

• Interaction with the Java Virtual Machine (JVM) - the wait and notify

methods on the Object class are native as they require interacting with

locks that are taken by language primitives and implemented in the JVM.

• Circumvent limitations of the Java language - for example, System.out is a

final field that represents the standard console output stream and may per its
final modifier not be assigned after the static initializers have been run. To
allow users to replace it with another stream and maintain binary
compatibility with older Java versions, a native method setOut is provided

that circumvents the protection mandated by the final keyword.

• Enable hardware or platform specific optimizations, such as efficient
interlocked memory access that is used to implement for example atomic
counters.

Typically, when using JNI to interface with existing code, bridge code is written that
interacts with Java using a reflection-like API where methods and fields are looked
up by name using string literals. Apart from being cumbersome, it is also not very
performant, thus it makes little sense to reuse it directly in a native translation as
methods and fields are directly accessible in the translated code without the use of
string literals.

The use of native code is discouraged in Java as one of its objectives is to maintain
platform independence which is not possible with native code. As a consequence,
JNI is not widely used thus rewriting JNI calls manually is likely to require little
effort.

3.5 Execution and threads

Program execution in Java begins with the virtual machine initializing itself and the
core Java classes needed for loading Java byte code. Then, similar to C++, a main

method is executed in the class that the user specifies. For each main method

encountered in the original code, we can generate a special stub file that runs a
runtime initialization routine and translates command line arguments to a Java
String array.

13

Thread support in Java is split between the runtime and the language itself. The
language provides primitives for synchronization and guarantees about the execution
environment while the actual management of threads is delegated to the runtime,
which consists of a virtual machine and a platform implementation.

Synchronization primitives in Java are an implementation of the monitor model [22].
Methods and blocks may be declared as synchronized meaning that a mutually
exclusive lock is taken for the duration of the block. Inside a synchronized block,
there is support to temporarily release the lock while waiting for notification from
another thread, but this support is implemented as part of the Object class, not as a

language feature.

Conceptually, the synchronized keyword is similar to C++ standard library’s

std::unique_lock class template when used with an instance of the

std::recursive_mutex class, while the notification support in Object can be

implemented using a std::condition_variable.

It is not possible to take this approach directly however as in C++, an instance of a
separate std::recursive_mutex class is required whereas in Java, all Object

instances can serve as arguments to the synchronized statement. Since most object
instances are not used for locking, it would be wasteful to include a mutex instance
in every object. Instead, when translating synchronized statements, calls to
unimplemented lock and unlock functions are inserted where needed, and an
appropriate implementation can then be chosen based on locking usage patterns in
the application or library. This is similar to how a Java compiler outputs lock and
unlock bytecode instructions as appropriate.

3.6 Memory and other system resources

In contrast to C++ where memory resources must be explicitly released, Java has
automatic memory management in the form of garbage collection. It is also possible
to write special code that will be executed when an instance is about to be
deallocated in the form of a finalizer. The language provides no means to
deterministically release memory - in fact, it is not guaranteed that memory will be
released at all, also meaning that finalizers will not necessarily be run prior to
program termination.

14

Thus a correct implementation never has to release heap allocated memory, and we
leave it to a future study to examine solutions where memory is reclaimed. Possible
routes forward would be to use an existing collector such as the Boehm-Demers-
Weiser conservative garbage collector [23] or implement reference counting with
cycle detection, as is used by the reference implementation of Python. We also note
that the Boehm-Demers-Weiser collector supports finalizers which are necessary to
provide emulation of Java garbage collection.

Heap allocation and thus garbage collection can be avoided altogether in certain
cases. Through the use of interprocedural escape analysis, Choi et al.[24] show how
in a particular set of Java benchmarks, a median of 20% of all heap memory
allocations can be avoided. If the lifetime of a reference type instance can be proven
to be limited to a particular method, it may safely be stack allocated and
automatically deallocated as the method ends, lessening the pressure on the garbage
collector, and in the case of our C++ code, simplifying the generated code. Similar
analysis for the locking mechanisms of the benchmark code shows that a median of
51% of all locking can be avoided, as the locks are being taken where it can be
proven that only one thread has access to the locked resource.

The lack of explicit memory management has a profound effect on idiomatic use of
the language, specially when interacting with other system resources such as files,
network connections and user interface elements.

In C++, it is common practice to release such resources as the lifetime of an object
ends, by placing cleanup code in the destructor. The ownership of a system resource
thus follows the lifetime of the instance that acquired the resource, a design principle
known as “resource acquisition is initialization”, or RAII [25]. Table 4 shows a
typical C++ class that owns a database connection that is released when the instance
of the class goes out of scope.

15

class database
{
 public:
 database(connection *c) : c(c) { c->connect()); }
 ~database() { c->close(); }

 // …

 private:
 connection *c;
};

void f(connection *c)
{
 database db(c);
// use db object
// ...
// Here, connection is closed by the destructor
}

Table 4: C++ resource management

In Java, when a resource has been acquired, it must explicitly be released, just as
memory has to be released in C++. There is no natural place for such cleanup code in
Java, thus it is often spread out in an application. One common technique is to place
it in finally blocks in every place where the resource is used, to ensure cleanup even
in the face of abrupt termination, as shown in Table 5. Using the database class as
example, there is however no way for the translator to know that close should be
called to do cleanup based on the local information it has when processing the class.

Also, if the translator was able to determine that the close function in fact performs
destruction akin to that of the C++ destructor, it still could not simply call it from the
C++ destructor without introducing unsafe code that either terminates in the face of
an exception or silently swallows it.

16

class Database
{
 public Database(Connection c) { this.c = c; c.connect(); }
 public void close() { c.close(); }
 private Connection c;
}

...

void f(Connection c)
{
 Database db = null;
 try {
 db = new Database(c);
 } finally {
 // Explicitly have to close database
 if(db != null) db.close();
 }
}

...

Table 5: Java resource management

Our translation follows Java semantics by simulating finally using C++ constructs,
and makes no attempt at providing destructors which would more naturally fit with
C++ idioms. This approach follows naturally from the decision not to manage
memory explicitly, but to rely on a library provided garbage collector such as
Boehm-Demers-Weiser.

17

Chapter 4. Language migration

In this section, the details of language migration from Java to C++ will be covered.
The chapter is organized using the Java Language Specification as a model, and
covers the parts relevant to translation that are not trivially carried over to C++.
Throughout, excerpts from the Java Language Specification appear in italics.

4.1 Base assumptions

It is assumed that we have the means to create an accurate representation of the Java
source code in the form of an abstract syntax tree, where types, fields and method
calls have been resolved. While an interesting problem, parsing the Java source code
in accordance with the full specification is not the focus of this work.

The output of a translator must obviously be valid C++ code, and at the lowest level
that means that it must be encoded in way that conforms to the rules of C++ parsing.
Digraphs and trigraphs need to be escaped, Unicode characters escaped and so forth.
Just like we assume that we are able to parse Java code we will assume that we are
able to output syntactically valid C++ code.

As Terekhov and Verhoef describe [3], each language construct of the source
language can either have a native counterpart in the target language, be easily
simulated or remain beyond the grasp of a simple translation. In some cases,
compound constructs in the source language may also have a native counterpart in
the target language - such conversions improve the quality of the translation but are
not necessary for correctness assuming that trivial translations exist.

4.2 Lexical structure

The grammar of a language helps decomposing valid source code into logical units
suitable for analysis. The grammar of both Java and C++ is defined in terms of
tokens, valid sequences of characters, that make up a valid program. Tokens come in
the form of identifiers, keywords, literals, operators and separators. Whitespace in
both languages is largely ignored but significant in that it separates other tokens.

Both Java and C++ programs are interpreted using the Unicode character set.
Regardless of the encoding of the source file and use of Unicode escape sequences
and other representation tricks, the internal representation of names and identifiers in
the translator is assumed to follow the Unicode standard.

19

Comments in Java and C++ are equal in their definitions and can thus be copied
directly when translating. In both Java and C++ they are ignored by the compiler and
thus do not affect the correct execution of the program, but are highly relevant for a
complete translation.

Identifiers in Java are similar in spirit to those of C++. Both languages essentially
allow any sequence of letters and numbers to be used as an identifier, excepting those
that start with a number and those that form a reserved keyword in the language. ‘$’
is allowed as an identifier in Java, and although it is not so in C++, many compilers
accept it anyway. In C++, identifiers starting with two underscore characters, one
underscore and a capital letter or one underscore and any letter when in the global
namespace are reserved for the system. A translator will have to provide an encoding
for those identifiers in Java that would be invalid in C++ due to keyword conflict or
system use.

4.3 Code organization

The unit-of-work for a Java compiler is the compilation unit, typically stored in a
single source file. The compilation unit defines the basic scope for name lookup,
symbol visibility and access control. In similar fashion, C++ compilers operate on a
translation unit that provides name lookup and symbol visibility scope.

The Java compiler can make use of class files produced in previous compilations
when resolving references external to the current compilation unit and places no
restrictions on the order in which declarations within a compilation unit appear.

In contrast, C++ compilers have no provision for using symbols from object files, the
intermediate output of a C++ compiler. Instead, the declarations of functions,
variables and classes must be repeated for each translation unit in source code form.
As a matter of convenience, such repeated declarations are stored in header files
which can be reused by multiple source files.

When resolving type references, the C++ compiler may need either a forward
declaration that declares the name of the type only or a full declaration depending on
the context of the resolution. It is therefore practical to split class definitions into
three parts - forward declaration, declaration and definition, each residing in a
separate file, repeating the process for each distinct type defined in the Java
compilation unit. The C++ preprocessor will then, among other things, join the files
back into a single translation unit before passing them on to the compiler.

20

4.3.1 Packages

To prevent name conflicts, Java programs are divided into packages. If the code is
stored on a file system, the package name also dictates the location of the class file.
Package names are hierarchical, but when referenced in code, the full name is always
used.

We will translate packages to C++ namespaces, and when qualifying type names
with a namespace, we will always use the full name and the global qualifier as shown
in Table 6. This is similar to how package references are used in Java, and necessary
as unqualified namespace lookup in C++ begins in the current namespace and works
itself up the hierarchy. Without the global qualifier, a match deep in the hierarchy
would have precedence over a root namespace with the same name.

Java C++
java.util.ArrayList ::java::util::ArrayList

Table 6: Qualified class names

Fully qualifying namespaces leads to verbose type references, but at least for types in
the current namespace, unqualified access may safely be used. For any other
namespace, it is not possible to guarantee that the correct type will be chosen without
global knowledge about the code, and thus a conservative approach is chosen.

In Java, fully qualifying type names can be avoided by using import statements,
which brings one or more type into the current lookup scope. In C++, the using
directive fills the same purpose, but unfortunately, precedence rules of lookup differ
between Java’s import and C++’s using leading us to taking the conservative

approach of always fully qualifying names in other namespaces.

Peterson et al. suggest including the package name in the class name, so that
java.util.ArrayList becomes java_util_ArrayList. This is worse even than

our conservative approach as the package name always has to be spelled out,
whereas using C++ namespaces allows us to avoid using the package name in some
cases at least.

4.3.2 Names

Names are used to refer to the declared packages, types, methods, fields and
variables in a program. In Java, names can either be qualified or simple. Simple
names are looked up in the current name scope, and the context of the lookup is used
to disambiguate between different entities with the same name. Thus it is allowed in
Java to have types, variables and methods all with the same name, and lookup by
simple name will continue to work.

21

In C++, there is no provision to disambiguate unqualified names according to the
semantic context. Further, methods and fields are not allowed to have the same name.

Peterson et al. suggest that without global knowledge of all names, naming clashes
can be solved either by prefixing each name type with a specific prefix, i e all
methods are prefixed by ‘m_’, classes by ‘c_’ etc, or by changing the original Java

code in the cases where local information is not enough [15].

However, by turning unqualified names into qualified names, it is possible to change
the C++ name lookup scope and can thus disambiguate names with only local
knowledge. The method declaration and recursive call in Table 7, where ‘a’ is both a

type, method and argument name can be translated correctly by qualifying type
names with namespaces and member access with ‘this’. We will still need to apply

some sort of mangling to fields and methods with the same name within a single
class, but that decision can be taken locally on a class-by-class basis.

Java method C++ method
a a(a a) { a(a); } ::a a(::a a) { this->a(a); }

Table 7: Avoiding conflicts using qualified names

To solve the problem where a method hides a base class field or vice versa, casts
need to be inserted when accessing the base class member. Suppose the base class of
the above example had an ‘a’ field - by casting ‘this’ to the base class type, the field

can still be accessed.

4.4 Type system

In Java, there are two kinds of types: primitive types and reference types. Primitive
types are the numeric types such as int and float as well as boolean. Variables of

primitive type follow value semantics - they hold their value directly and copy the
value on assignment which is also how fundamental types work in C++.

Variables of reference type follow reference semantics. The variable holds a
reference to an instance of the type, an object, somewhere else in memory. When a
reference type variable is assigned, only the reference is copied - the object pointed
to remains the same. In C++, the most convenient way to represent reference types is
through pointers - they follow the same semantics as Java references and pointer type
relations follow the relations of the type they point to just as as do Java references.

22

4.4.1 Primitive types

While the primitive types in Java are similar to the fundamental types of C++, the
Java types are more strictly defined with respect to size and representation. Where
Java requires integral types to be represented in 2’s complement and have set sizes
for each type, the corresponding C++ types have implementation-defined sizes and
representation. Instead, C++ defines a special header, cstdint, that contains names

of types that correspond to integral types with 2’s complement representation and
specific sizes, as seen in Table 8.

These names are optional - if a particular implementation does not support them, it
will not be possible to convert a Java program in a meaningful way. Fortunately other
representations than two’s complement are rare, as are compilers not supporting the
standard sizes for integers. Table 8 shows the C++ types names corresponding to the
Java primitive types.

Java defines two floating point types, float and double, as 32 and 64-bit floating

point numbers adhering to the IEEE 754 standard. C++ also has a float and a

double type, but does not define their representation and size. Typically however,

these two types however correspond to their Java counterparts and C++ offers
compile time support to detect if that is the case through the sizeof operator and the

numeric_limits class template.

Should a particular implementation lack 2’s complement integral types or IEEE 754
floating point types, it may be possible to provide emulation using types specially
crafted for the implementation, but we will assume that the compiler and the
hardware platform does support them.

Java C++
boolean bool

byte int8_t

char char16_t

double double

float float

int int32_t

long int64_t

short int16_t

void void

Table 8: Primitive type mappings

23

4.4.2 Reference types

In Java, there are three kinds of reference types: classes, interfaces and arrays.
Variables of reference type are pointers to an object that may be either of class or
array type. Interfaces serve to define a contract - they contain no actual
implementation code and may not be used to instantiate objects, thus the actual
instance pointed to by a variable of interface type will never itself be of interface
type. Classes may contain both declarations and definitions, but are limited to inherit
from only one other class.

Variables of reference type have reference semantics - when the value of such a
variable is copied to another variable, both share the same underlying instance.

In C++, we will represent classes with class:es and interfaces with struct:s. The

distinction has no effect on actual machine code generation but serves as
documentation - interfaces, whose members must all be public, align more closely
with struct:s whose members are also public by default. Table 9 contains an

overview of the concepts involved during type translation and how they affect the
output.

Java C++

class class

interface struct

enum class

abstract make constructors protected

final make methods non-virtual or final

nested static class class (no nesting)

inner class class (no nesting), extra constructor
parameter for instance

local class class (non-local), extra constructor
parameter for each closure

annotation declaration struct

annotation use ignore

generics ignore (use erasure)

reference type variable pointer variable

Table 9: Reference type translation overview

24

4.4.3 Boxing and unboxing

For each primitive type, Java defines a corresponding reference type that may be
used to represent the value of the primitive types where reference types are expected,
for example the collection classes.

The Java language allows implicit conversions between primitive types and their
respective reference types - boxing and unboxing. A boxing conversion converts a
primitive value to a reference type with the corresponding value, and vice versa for
unboxing. Boxing conversions are guaranteed to always return a reference to the
same instance for certain primitive values to maintain identity equality for the most
commonly used values.

Had value semantics been used for reference types in the translated C++ code,
implicit conversion operators and constructors could have provided a similar
syntactic brevity for boxing and unboxing, but there is no way to specify such
conversions for pointers. Instead, we translate boxing conversions to calls to the
valueOf method of each reference type and <type>Value calls for unboxing

conversions - these methods guarantee identity equality as required by the language.

4.4.4 Classes

Java allows classes to inherit from multiple interfaces but only one class. Interfaces
in turn may inherit from other interfaces and there are no restrictions on inheriting
multiply from the same interface in a class hierarchy. To avoid ambiguities and
duplicates in the C++ class hierarchy, we will use virtual inheritance when translating
interface inheritance. We note that it is not possible to avoid virtual inheritance for
interfaces that are only inherited once in a particular hierarchy based on only local
knowledge about the class being translated except for final classes - interface
inheritance needs to be virtual in all classes that may be used as a base class.

In Java, all class and array types inherit implicitly from a common root class,
Object. Interfaces may not inherit from a class, but throughout the Java language,

when considering type, interfaces behave as if they did in fact have Object as base.

Since we’re simulating interfaces with an ordinary C++ struct, we will have it

inherit from Object as well. Again, virtual inheritance is needed as Object may

appear at several branches in a type hierarchy.

25

Classes in Java may be declared abstract or final. Abstract classes may not be directly
instantiated and are thus allowed to contain unimplemented, or abstract, methods.

In C++, there is no need to mark a class as abstract - the language allows classes to
have unimplemented pure virtual methods as long as they are not instantiated. To
mark that a class is not intended for instantiation, we make its non-private
constructors protected which makes them inaccessible for direct instantiation.

Declaring a class to be final means that the language disallows further subclassing of
that class. This constraint is possible to simulate using private constructors and
special static factory methods in C++, but the syntactic burden of such a translation
outweighs the benefit as it has no impact on runtime behaviour and requires an
additional method for each constructor in the source class.

Methods in final classes are implicitly final, meaning that they can either be

marked as final in C++ or simply not be declared as virtual, depending on whether

they already override a base class or interface method or not.

4.4.5 Nested classes

Classes in Java may be nested in other classes or interface. There are two types of
nested classes, static and non-static. Static nested classes are similar to ordinary top-
level classes except that they gain access to private declarations in the enclosing
type. Instances of static nested classes have access to static fields and methods of the
enclosing type.

Non-static nested classes, or inner classes, implicitly gain a reference to an instance
of the enclosing type when being instantiated, which allows them to also access
instance methods and fields of the enclosing type.

The Java compiler handles inner classes by adding a hidden field of the enclosing
type to the inner class and makes each constructor take an extra argument to initialize
the hidden field.

When translating nested classes, we process them as we would an ordinary class, but
do not nest them. In C++, the outer class remains an incomplete type in the
declaration of the nested type disallowing return covariance and inheritance from the
outer class, both permitted by Java.

For inner classes, we add a field that holds a pointer to the enclosing type and modify
all constructors to take an extra parameter, just like a Java compiler. This parameter
is then initialized with the value of the enclosing instance whenever an instance of
the inner class is created with the new operator.

26

4.4.6 Local classes

Local classes are classes declared inside a method body. They are accessible only
from the method in which they are created and as such, gain access to final local
variables in that method. Local classes in non-static methods also gain access to the
instance on which the method is being executed, just like inner classes. Local classes
may also be created as part of an instance creation expression, in which case they are
called anonymous classes. Such classes become subclasses of the type specified in
the new expression and remain unnamed.

When translating local classes, for each variable from the enclosing method accessed
in the local class an extra field and an extra constructor parameter is added. During
instantiation, the variables and instance, if any, are passed as constructor arguments,
copying the value of the variable at instantiation time.

4.4.7 Enum types

Enum types in Java are a special kind of class type that may only be instantiated
during the declaration of an enum constant. Enum declarations are split into two
parts - the constants and an optional body. In the body, fields, constructors and
methods, possibly abstract, are defined as usual. Enum constants thus become
instances of anonymous types that inherit from the enum type and must implement
any abstract methods.

The Java Language Specification suggest looking at enum types as classes derived
from the class Enum, with the constants being represented by static fields that are

references to the enum type and a few extra methods providing support.

C++ enum types are not at all similar to the enum construct in Java. Instead, we will

translate them as the Java language specification suggests - ordinary classes that may
not be instantiated, and whose only instances are the ones available through the
constant fields.

This emulation falls short in one area however - in Java, the constants of an enum
may be used for the case labels of a switch statement. In our C++ emulation, the
constants are represented by static fields which, due to not being constexpr, may

not be used for case labels. Instead, switch statements need to be rewritten as a

series of if statements.

27

4.4.8 Interfaces

Interfaces in Java serve to define a contract for a set of operations without providing
an implementation. Interfaces members are implicitly public, and limited to types,
constants and abstract methods. Multiple inheritance is allowed among interfaces,
but they may never inherit from a class, including Object. However, since there are

no instances of types that do not ultimately inherit from Object, the specification

contains special provisions to make interface types behave as though they actually
did inherit from Object. An interface that has no superinterface will implicitly have

all members of Object declared, and when determining type relations for implicit

conversion, assignment and other relevant areas, Object is considered a supertype of

any interface without superinterfaces.

There is no direct equivalent of an interface in C++ but class:es and struct:s

support a superset of the features of an interface. To carry the intent of implic public
access to all members from Java to C++, we will use struct instead of class when

translating interfaces. There is no way to express the supertype relation with Object

other than through inheritance in C++, and such inheritance must then necessarily be
virtual. As Peterson et al. note, this incurs a performance penalty on the translated
code as dynamic casting becomes necessary for many cases where it could have been
avoided. They further suggest that it is possible not to inherit from Object and use

explicit casts whenever a variable of interface type needs to behave as an Object

instance, but with return type covariance added to Java 1.5, such a solution no longer
covers all cases.

4.4.9 Arrays

Arrays in Java are used to provied storage for multiple variables using indexed
access. Array types inherit from Object, as well as Cloneable and Serializable,

and are based on a component type, that itself may be an array. The length of an
array is available dynamically after the array has been instantiated through the
length field.

The type relations of arrays follow the type relations of their component type, for
example an array of String:s will be assignable to a variable of Serializable array

type, as a String is assignable to a Serializable variable.

To implement array type support in C++, a special class can be used that provides
storage and the required members of all Java array types.

28

However, due to the relation between array types, it is not possible to provide a
single generic class implementing array support for all array types. Instead, a
separate class must be generated for each encountered array type. Arrays of derived
types must inherit from the array type of the base of the derived component type to
allow variable assignment, covariance and other constructs to carry over naturally to
C++, in addition to inheriting from Object, Comparable and Serializable.

4.4.10 Annotations

Annotation types are special interfaces that are used to provide metadata about types
and their members to compilers, source analysis tools and programs making use of
reflection. We will translate annotation type declarations as we translate interfaces,
but ignore them otherwise.

One potential use for annotations would be to provide additional information about
types to the source-to-source translator itself, allowing the translator to generate
more appropriate code in certain situations. For example, a @NotNull annotation on a

field could make the translator assume that the field never carries a null value, and

therefore allow it to skip the null check.

4.4.11 Generics and erasure

Generics in Java are used to provide additional information about types that the
compiler uses to guarantee type safety, or the absence of runtime casting errors. It
also allows the compiler to safely insert implicit casts where manual casting would
have been needed, reducing the syntactic burden of the language.

To take advantage of generics, types and methods are decorated with type
parameters. These type parameters are then reused in the type or method declaration
providing type guarantees to the compiler. When a generic type or method is used,
the user must supply actual types for each type parameter which allows the compiler
to verify the type correctness of expressions that use the type parameters.

Once the compiler has verified type correctness, generic types and methods undergo
a process called erasure. Type parameters used in type and method declarations are
replaced by actual types according to rules set out in the specification, and implicit
casts are inserted where needed to maintain correctness - generic type information is
erased.

While generics syntactically look similar to C++ templates, and provide some of the
same convenience to users, the differences are notable as the following examples
show:

29

• In C++, classes are either templates or not, whereas Java allows generic
classes to be used without the extra type parameters (“raw types”)

• In C++, static members of template classes have access to the type parameters
- in Java they do not

• In C++, static members are distinct in different instantiations of a template
class - in Java only a single copy exists

• Instantiated class templates in C++ actually are distinct types as casting and
the typeid operator shows - the class literal of two parameterized types gives
a reference to the same underlying erased type

During translation, we will use the erased definition of all types which is enough to
maintain runtime correctness. Even though we lose some of the syntactic advantage
generics offer, there is no native generics support in C++, and simulation using
templates would prove complicated, if at all possible. Unless otherwise noted, we
will assume that types have been erased before further processing.

4.4.12 Class Initialization

Before a class in Java may be used, it needs to be initialized. During class
initialization, static fields get their values and static initialization blocks are run.

C++ also has the concept of static initialization, but in C++, the order in which static
initialization happens is not defined, except that it happens before the main program
starts. There are two problems with this approach.

The first is that dependencies between multiple initializers are not resolved
deterministically leading to undefined behaviour.

The second is that a large code base might consist of thousands of classes. If all their
initializers were to be run at startup, load times would increase notably even for cases
where the majority of the classes are not actually used.

Java solves the problem by defining exactly when a class is initialized and in what
order initialization happens, delaying that initialization as far as is deemed possible
([2], §12.4.1):

Before a class is initialized, its direct superclass must be initialized, but interfaces
implemented by the class need not be initialized. Similarly, the superinterfaces of an
interface need not be initialized before the interface is initialized.

A class or interface type T will be initialized immediately before the first occurrence
of any one of the following:

30

• T is a class and an instance of T is created.

• T is a class and a static method declared by T is invoked.

• A static field declared by T is assigned.

• A static field declared by T is used and the field is not a constant variable
(§4.12.4).

• T is a top-level class, and an assert statement (§14.10) lexically nested within
T is executed.

Class initialization consists of several steps. First, fields are assigned default values
in accordance with their type. Then, fields initialized by constant expressions are
initialized and finally field initializers and initialization blocks are executed in textual
order.

The specification allows the possibility to construct a Java program that observes
field default values by referencing not yet initialized fields from static initialization
blocks.

When translating, we coalesce all static initialization code to a single static method.
To our advantage, the default values given to static variables during static
initialization in C++ coincide with those of Java, so we can proceed directly to
initializing those constant values that could not be translated as C++ constexpr

expressions. After those follow the field initializers and initialization blocks.

We can then insert calls to the initialization code for each class in each of the
following places:

• The beginning of every static initializer of any subclass

• The beginning of every constructor

• The beginning of every static method

• When reading or writing non-constant fields by replacing field access with a
special method that calls the initializer before returning a reference to the
field

Peterson et al. suggest calling the initialization of all dependent classes on startup
[15], arguing that it would be prohibitive from a performance perspective to initialize
classes lazily, but a downside of such initialization is that startup time grows with the
number of classes present and that classes will be initialized regardless if they will
actually be used.

31

4.4.13 Instance Initialization

Like C++, class instances in Java are initialized using constructors - special methods
that are called whenever a new instance is created. However, before code contained
in constructors is executed, fields are assigned default values, then field initializers
and initialization blocks are run ([2], §12.5):

Whenever a new class instance is created, memory space is allocated for it [...] all
the instance variables in the new object, including those declared in superclasses,
are initialized to their default values (§4.12.5).

…

1. [...]

2. If this constructor begins with an explicit constructor invocation of another
constructor in the same class (using this), then evaluate the arguments and
process that constructor invocation recursively using these same five steps
[and then] continue with step 5.

3. This constructor does not begin with an explicit constructor invocation of
another constructor in the same class (using this). If this constructor is for a
class other than Object, then this constructor will begin with an explicit or
implicit invocation of a superclass constructor (using super). Evaluate the
arguments and process that superclass constructor invocation recursively
using these same five steps [and then] continue with step 4.

4. Execute the instance initializers and instance variable initializers for this
class, assigning the values of instance variable initializers to the
corresponding instance variables, in the left-to-right order in which they
appear textually in the source code for the class [and then] continue with
step 5.

5. Execute the rest of the body of this constructor. […]

When translating, we thus need to handle default values, make explicit or implicit
calls to super constructors or chained calls to other constructors and finally run the
code of the constructor body. Additionally, we need to take static initialization into
account, which must be run before any instance initializers.

One final difference needs to be addressed. In Java, if a constructor makes a call to a
virtual method implemented in a subtype of the class currently being constructed, the
implementation in the subtype will be called with the subtype partially initialized. In
C++, virtual calls in constructors are resolved as if an instance of the type currently
being constructed was being used - the final virtual table is not available until the
object has been fully constructed.

32

We translate constructors by dividing the constructor into two parts. The first part,
the C++ constructor, initializes fields to their default values then calls the static
initializer to make sure the class has been initialized. The second part, a separate
init method, is implemented as follows:

1. If the Java constructor begins with an explicit this constructor call, evaluate

the arguments can call the corresponding init method in this class then

continue with step 4.

2. Except for Object, generate a call to the init method from the super class,

either from an explicit super call in the Java constructor or from the implicit
call that Java mandates.

3. Run instance initializer, if any

4. Run constructor body

When instantiating an object with the new operator, we thus need to call the init

method on the newly created object explicitly to complete the two-phase
construction. This contrasts with idiomatic use of C++ and should therefore be
considered a significant burden, but is necessary to implement correct behavior in the
presence of virtual calls in the constructor. It is also not possible to require two-phase
construction only for those classes that actually make use of virtual calls, as there is
no way to tell from a Java constructor signature if virtual calls will be made.

However, while it is possible to construct a program that makes use of virtual calls
during constructors, such programs are rare. If a virtual method is implemented in a
subclass of the class currently being constructed, that subtype will not yet be fully
initialized meaning its fields will still have their default values and instance
initializers will not yet have been run.

Thus, it may be beneficial to sacrifice correctness for convenience and run the
second phase of construction directly from the C++ constructor. Since it is possible
to detect virtual calls during translation, a translator can issue a warning or
deliberately generate code that will fail C++ compilation to notify the library user of
the semantic deviation.

Another option, often used when two-phase construction is necessary in C++, is to
make constructors private and supply a static factory method for each constructor
that performs the new and init calls. Such a solution has the benefit that a reader of

the converted class will have no opportunity to only partially initialize the object, but
enforces an unusual syntax for constructing instances.

33

4.5 Exceptions

Exceptions in both Java and C++ are used to abruptly break program execution flow
and transfer control to an exception handling routine. Exceptions in Java come in two
flavors - checked and unchecked. Checked exceptions thrown in a method body or
any of the methods called by the body are required to be declared after the method
signature while unchecked exceptions require no specification. Further, all
exceptions must inherit from a common base, Throwable.

C++ allows any type to be used in a throw expression, allowing a straightforward

conversion of throwing and catching exceptions. There is no concept of checked
exceptions in C++, but being a compile-time only feature of Java, it can safely be
ignored.

Additionally to the explicit throw expression some expressions in Java may cause an
exception being thrown implicitly. Examples include trying to dereference a
reference variable holding a null reference and accessing array elements outside the
range of the array.

For null reference checking, a naive approach would be to insert a conditional

statement whenever a variable is dereferenced, but such an approach would be
syntactically cumbersome and difficult to implement for compound expressions.

Instead, a helper function shown in Table 10 that implements the appropriate check
and throw exceptions if needed can be used, minimizing the syntactic overhead at the
check site. A similar function can be used to implement divide-by-zero checking for
the division and remainder operators.

template<typename T>
static T* npc(T* t)
{

if(!t) throw new ::java::lang::NullPointerException();
return t;

}

Table 10: Null pointer check function

4.6 Methods

In both Java and C++, methods are used to declare code related to a particular class.
Typically, methods hold the majority of the code that will be executed for any given
Java program and thus form the center point for most Java applications.

34

A method declaration consists of a signature that declares its name, parameters and
return type, an optional exception specifier and an optional body containing the
executable code.

Translating a method signature to C++ is mostly straightforward - return types,
names and parameter lists follow the same pattern. Several modifiers may be applied
to the method signature. In both C++ and Java, methods may be static, abstract

or final though the syntax varies slightly. One important syntactic difference is that

in Java, methods are implicitly virtual - this needs to be made explicit in C++
through the virtual keyword. The remaining modifiers, synchronized, native and

strictfp affect the implementation, or body, of the method, but not the translation

of the signature.

Exception specifiers in Java document the checked exceptions a method may throw.
The exception specifiers are verified at compile time to be consistent across the type
hierarchy and with the exceptions potentially being thrown by the method body.
They are however not part of the method signature and thus do not participate in
overload and override resolution, and have no impact on the runtime behavior.

There is no equivalent feature in C++, and while older versions of C++ allowed
runtime checked throw clauses on the method signature, flaws in its specification led
to the feature being deprecated. It is however safe and reasonable to simply ignore
exception specifiers during translation, as they checked at compile-time only in Java.

4.6.1 Overriding

The concept of overriding the method of a base class in a subclass is one of the
cornerstones of the object oriented approach of Java. In Java, unless specifically
disabled through a keyword, methods are virtual and can have overrides.

Java classes and interfaces implicitly inherit all the methods of their direct superclass
and direct superinterfaces that are accessible. Whether or not a method in a class
overrides an inherited method is based on the concept of subsignatures ([2], §8.4.2):

Two methods have the same signature if they have the same name and argument
types.

Two method or constructor declarations M and N have the same argument types if
all of the following conditions hold:

• They have the same number of formal parameters (possibly zero)

• They have the same number of type parameters (possibly zero)

35

• Let <A1,...,An> be the formal type parameters of M and let <B1,...,Bn> be
the formal type parameters of N. After renaming each occurrence of a Bi in
N's type to Ai the bounds of corresponding type variables and the argument
types of M and N are the same.

The signature of a method m1 is a subsignature of the signature of a method m2 if
either:

• m2 has the same signature as m1, or

• the signature of m1 is the same as the erasure of the signature of m2.

[...]

A method declaration d1 with return type R1 is return-type-substitutable for another
method d2 with return type R2, if and only if the following conditions hold:

• If R1 is a primitive type, then R2 is identical to R1.

• If R1 is a reference type then:

◦ R1 is either a subtype of R2 or R1 can be converted to a subtype of R2 by
unchecked conversion (§5.1.9), or

◦ R1 = | R2 |.

• If R1 is void then R2 is void.

[...]

An instance method m1 declared in a class C overrides another instance method, m2,
declared in class A iff all of the following are true:

1. C is a subclass of A.

2. The signature of m1 is a subsignature (§8.4.2) of the signature of m2.

3. […]

[…]

If a method declaration d1 with return type R1 overrides or hides the declaration of
another method d2 with return type R2, then d1 must be return-type substitutable for
d2, or a compile-time error occurs. [...].

Subsignatures are thus defined in terms of signature and erasure meaning that in the
presence of generics, a method may actually override base class methods with two
different signatures. Restrictions are placed on return type, but in general, it is
allowed to refine the return type of a method with a more specific type.

In C++, as in Java, methods are overridden based on name and parameter types, with
compatible restrictions on the return type.

36

However, since there is no concept of erasure and subsignatures in C++, method
parameters must match exactly. Therefore, for every method whose signature
matches the subsignature of another method, but not its signature, a bridge method
must be added to the translated source code that implements the erased signature of
the base method and forwards the call to the actual implementation with appropriate
casts, as shown by Table 11.

Java C++
public interface I<T>
{
 // Erasure: void m(Object t)!
 void m(T t);
}

public interface J
{
 void m(A t);
}

class A implements I<A>, J
{
 // Overrides m(Object t)
 // in both I and J!
 void m(A a) { /* … */ }
}

// Forward declaration needed
class A;

struct I
 : virtual Object
{
 // Erased signature
 void m(Object *t);
};

struct J
 : virtual Object
{
 void m(A *t);
};

class A
 : public virtual Object
 , public virtual I
 , public virtual J
{
 // Original method
 void m(A *a);

 // Erasure bridge method
 void m(Object *a)
 {
 m(java_cast<A*>(a));
 }
};

Table 11: Bridging methods for erased types

37

When looking up an implementation of an interface method, all the classes of a
hierarchy are searched. When a class implements an interface, the implementation
may therefore be taken from a base class, even if there is no override equivalent
method in the subclass itself. This is different from C++ where an implementation
must exist in the subclass for each pure virtual method. For each method missing
from the subclass, a bridge method must be generated that calls the base class
implementation, as demonstrated by Table 12.

Java C++
interface I
{
 void m();
}

class A
{
 void m() { }
}

class B extends A implements I
{
 // no need for m()
}

struct I
 : virtual Object
{
 virtual void m();
};

class A
 : public virtual Object
{
 void m() { }
};

class B
 : public A
 , public virtual I
{
 void m() { A::m(); }
}

Table 12: Bridging interface methods implemented in base classes

4.6.2 Hiding

In C++, if there is a method with the same name but different signature as in a base
class, the base class method will be hidden. Another way to look at this is that once a
method with a particular name has been found, methods with the same name from
base classes are no longer considered for resolving overloading. To use such base
class methods, they must be brought into the namespace of the current class with a
using directive, or casts must be introduced at the call site to ensure that the correct

type is searched.

When translating such cases, using statements can be added to the generated code as
shown in Table 13. A limitation of this approach is that should there be a private
method with the same name in the base class, the generated code will no longer be
valid and the second approach, a cast at the call site, must be used.

38

Java C++
class A
{
 void m() { }
}

class B extends A
{
 void m(int x) { }
}

class C
{
 void m(B b) {
 // Both calls work!
 b.m();
 b.m(5);
 }
}

class A
 : public virtual Object
{
 void m();
}

class B
 : public virtual A
{
 void m(int x);
 using A::m;
}

class C
{
 void m(B *b)
 {
 // Fails without using
 b->m();

 // Alternative syntax
 // without using
 static_cast<A*>(b)->m();
 b->m(5);
 }
}

Table 13: Overcoming C++ method hiding

4.7 Blocks and statements

Many of the core statements of both Java and C++ have equivalent definitions. In
both languages, blocks are used to define scope and the basic looping and branching
statements are the same. As Peterson et al. note, it is the similarity between these
statements that makes translation between the languages an attractive option [15].
There are however important differences that will be covered in detail.

4.7.1 Labels

Labels in Java are used to identify the target statement for a break or continue

statement.

39

When used as a target for break statements, execution continues after the labeled

statement. We replace such break statements with goto and place the label after the

statement instead of before.

Labels together with continue statements are used to begin a new iteration of the

labeled loop, regardless of its nesting in other loops. Only labels on loop statements
may be used with the continue statement.

A naive translation would be to place a label at the end of the loop block and jump
there using a goto statement, in order not to miss the loop invariant check. Such a

solution however would potentially jump over variable initializations for variables
that are still live at the end of the loop block which is not allowed in C++.

Instead, we must choose a different strategy:

• For every label declared on a looping construct, define a uniquely named
bool variable and set it to false

• After every nested loop, if the variable is true, continue execution as normal

• If the loop is directly nested in the loop that the variable belongs to, set the
variable to false and issue a continue statement which will start a new

iteration of the outermost loop

• If the block is nested more deeply, issue a break statement which will break

the execution of the current loop and jump out to the next nesting level where
a new check on the same variable will happen eventually leading to the point
above

This strategy resembles the normal way of breaking or continuing nested loops in C+
+, thus this transformation, although more verbose than its Java counterpart, leads to
idiomatic C++.

4.7.2 Assertions

The assert statement in Java allows developers to verify internal invariants, with

the option to turn the checking off at runtime. C++, being statically compiled, does
not have an equivalent statement which can be controlled at runtime.

Assertions are enabled on a class-by-class basis in Java, which means that in C++, a
bool would have to be kept for every class and checked at runtime before executing
the assertion code. This is not idiomatic to C++ - instead we translate the runtime
enabled per-class assertions to compile-time globally enabled assertions that are
prevalent in C++.

40

Assertions become a useful tool for verifying that the conversion has introduced no
incompatibilities with the original code. However, since assertions are meant not to
impact runtime behaviour in the absence of bugs, they can also safely be removed
completely.

4.7.3 The switch statement

switch statements in Java and C++ are mostly equivalent. In both languages, the

switch expression is evaluated once and case labels determine what code gets

executed. Without a break statement, case labels fall through, and a default label

gathers up cases not covered by case labels.

One subtle difference is how variable declarations are handled. Although the scoping
of variables is the same in both languages, in Java, it is valid for a case label to jump
over the initialization of a variable in a previous case, if the variable is no longer
used or if it is initialized anew in the new case. Just as with goto in C++, variable

initializations in scope may not be jumped over, so we need to move variable
declarations outside the switch statement.

Another difference is enumeration support. In Java, enum constants may be used as

case expressions, but due to our translation of enum:s into classes, we also have to

rewrite switch statements to the equivalent if statements. Care must be taken to

only evaluate the switch expression once and store the result in a temporary variable
that is then used for the successive if statements.

4.7.4 The for statement

for statements in Java come in two styles, basic and extended. The basic for

statement is equivalent to that of C++, while the extended for provides syntactic

sugar for iterating over collections and arrays.

C++ has a range based for statement similar to the extended for of Java, but it is not

possible to trivially translate between the two. C++ range based for assumes that a

begin and end function will return iterators that represent the beginning and end of a

collection, while in Java, there is no concept of an end iterator that can be used for
comparison with the current position - instead there is only one iterator that itself
knows if it has reached the end.

Therefore, instead of emulating C++ iterators using the interface of Java iterators, we
will simply transform the extended for loop into an ordinary for loop and use that as
base for our translation. The Java Language Specification shows how such a
transformation is done (§14.14.2):

41

If the type of Expression is a subtype of Iterable, then let I be the type of the
expression Expression.iterator(). The enhanced for statement is equivalent to a basic
for statement of the form:

for (I #i = Expression.iterator(); #i.hasNext();) {
 VariableModifiersopt Type Identifier = #i.next();
 Statement
}

[...]

Otherwise, the Expression necessarily has an array type, T[]. Let L1 ... Lm be the
(possibly empty) sequence of labels immediately preceding the enhanced for
statement. Then the meaning of the enhanced for statement is given by the following
basic for statement:

T[] a = Expression;
L1: L2: ... Lm:
for (int i = 0; i < a.length; i++) {
 VariableModifiersopt Type Identifier = a[i];
 Statement
}

4.7.5 The synchronized statement

The synchronized statement in Java is used to implement language level support of
mutual exclusion locking. Synchronization statements consist of an expression
yielding an Object reference representing the resource needing protection and a

block of statements to be executed while the lock is held. Regardless of how the
synchronized block is terminated, the lock is automatically released.

To translate synchronized statements, and indeed synchronized methods, a helper
class that performs a lock in its constructor and unlock in the destructor will be used.
A local variable scoped with the synchronized block is added, passing a reference to
Object retrieved from the expression in the synchronized statement. C++ scoping

rules ensure that the lock will be taken when the variable is initialized and released at
block exit. An alternative would have been to make explicit lock and release call, but
in the presence of exceptions, implicit and explicit, such a solution quickly becomes
unwieldy.

We leave the lock and release functions unimplemented, noting that their
implementation also must be compatible with the wait and notify functions present
on each Object. As noted previously, the standard library classes

std::condition_variable and std::recursive_mutex can be used to provide an

implementation.

42

4.7.6 The try statement

try statements in Java are used to enable exception handling for a particular block of

code. try statements begin with a try block, followed by catch and finally

blocks. try and catch are equivalent to those of C++ - exceptions originating from

the try block are caught by the leftmost catch block with a compatible catch type

and execution continues normally as long as all exceptions have been caught.

C++ however does not support finally blocks. In Java, finally blocks are used to

clean up resources used in the try statement as there is no other deterministic way to

ensure that a resource is released once it is no longer needed in the presence of
garbage collection. In idiomatic C++, resources are cleaned up as part of object
destruction which is deterministic and therefore, there is generally no need for a
finally block.

It would be tempting to replace the finally block with a class that runs the code in the
finally block upon destruction and place a variable of that class in a block that
encompasses the rest of the try statement. Such a solution would guarantee that the

code in the finally block is after the try statement has completed, even in the
presence of exceptions and return statements.

However, if the code of a finally block ends abruptly because of an exception or
return statement, that termination takes precedence over the original reason for
terminating the try statement. An exception in a destructor in C++ terminates the
program and a return statement would exit only the destructor, not the method
encompassing the try statement.

Instead, we have to choose a more verbose solution where the finally code is

repeated at least twice. The original try statement is surrounded with a try

statement as shown in Table 14.

Then, in the catch-all handler inside the if block, and at every point where the
original try block is left, the finally code is repeated. As Peterson et al. note, there

exists a surprising number of ways to leave a block, but the example supplied is
invalid in that it risks running the finally code several times in case of exceptions.

The finally_done variable is needed in case the code in the finally block itself

throws to ensure that it is not executed again in the catch-all handler - it must be set
to true before running the finally code inside the added try block.

43

try {
 bool finally_done = false;

 try {
 if(condition) { // Early return
 // finally_here
 return;
 }
 } catch(/* original exceptions */) {
 // code
 }

 // finally_here
} catch(...) {
 if(!finally_done) {
 // finally_here
 }
 throw;
}

Table 14: Finally emulation

One final detail is that a try statement with a finally block is not required to have any
catch handlers. In such cases, the original try block is simply removed as the finally
emulation replaces it.

4.8 Expressions

Just as with statements, most expressions in the Java language are shared with C++.

4.8.1 Evaluation order

C++ leaves the order of evaluation of compound expressions implementation defined
in many cases. Thus, when evaluating a simple expression such as ‘f() + g()’, it is

not guaranteed that f will be evaluated before g. This is useful for example when ‘+’

is a function that takes its arguments on a stack and thus needs the value of g() to be

pushed first - instead of calculating expressions in order, the C++ compiler is free to
reorder the calls and put the results directly on the stack. Assuming that g() was

evaluated first and results in an exception, f() will not be evaluated at all, which

intuitively might not be expected.

44

In contrast, Java has an intuitive and deterministic definition of execution order.
Expressions are evaluated as expected, with left-to-right evaluation in general, while
respecting operator precedence and parentheses. Function arguments are evaluated in
the intuitive left-to-right order and if any expression terminates abruptly, later
expressions are guaranteed not to be evaluated.

Thus, a careful translator must split compound expressions into their constituent
parts, assigning intermediate results to temporary variables and then recombine the
results.

If the translator is able to determine that a particular expression has no side effects,
including being exception free, it becomes safe by extension to allow the C++
compiler to reorder it with respect to other expressions.

4.8.2 Lexical literals

Java inherited most of its literal syntax from C++, thus most valid Java literals are
also valid C++ literals. There are however a few smaller differences, for example:

Negative integers in Java are parsed as one entity, whereas in C++ they are treated as
a positive integer with a negative sign which in C++ leads to the smallest negative
integer for a 32-bit 2’s complement int being interpreted incorrectly as the positive

part does not fit in the int:s allowable range (and the same for 64-bits)

Character literals are allowed to take the value of a single part of a surrogate pair
using the ‘\u’ escape, which is disallowed in C++ and needs to be rewriting using

‘\x’ escapes instead - the same for string literals.

String literals return a String object in Java, not an array of characters, which in C+

+ can be implemented using user-defined string literals

Floating point literals using binary exponents are not supported in C++ and must
have their exponents adjusted.

4.8.3 Class literals

Class literals return a reference to the Class object associated with a certain class. In

C++, we simply put a static function in each class that calls a runtime-defined
function with the name of the class - implementing the function is up to the runtime.

45

The Class object contains metadata about the requested class and is part of the

reflection support in Java. Interestingly, one of the most common reflection
operations on the Class object is to get the name of the class, for example for

logging purposes. Implementing this minimal support in C++ is trivial and allows
many applications to work as expected that would otherwise need manual
intervention.

This function can also be used to support an implementation of the getClass method

inherited from Object by each Java class - by adding a special virtual method to

Object and overriding that function in each class to return the translated class literal,

getClass is guaranteed to return the class instance associated with the actual type of

an instance.

4.8.4 Class instance creation

In both C++ and Java, new instances of classes can be created using the ‘new’

operator. Java allows anonymous classes to be defined as part of the class instance
creation - such classes are actually subclasses or implementers of the type given to
the new operator.

This is similar to how lambda expressions in C++ create a local anonymous type and
return an instance of that type, with access to the enclosing instance and variables.
However, lambda expressions in C++ are limited to a single method and can
therefore not be used generally to replace anonymous classes - instead we treat
anonymous classes as we would treat normal classes and generate the appropriate
class definition separately and use the normal new expression to create an instance.

4.8.5 Array creation expressions

Since we are emulating Java arrays using classes, we need to replace array creation
expressions with expressions that create an instance of the array class. The emulated
array class has a special constructor taking a std::initializer_list parameter

that allows the same array member initialization syntax in both languages using
member lists delimited by brace symbols.

4.8.6 Field access

Field access follows the same pattern in Java and C++ - at the left hand side there is
an expression returning an instance of a class while the right hand side contains the
name of the field. Obviously, since we’re using pointers to represent references, we
must use the arrow operator instead of the dot.

46

In Java, it is also possible to access the field of a base class using the super keyword -
x.super.y becomes the field y in the superclass of the type of x. By adding a

typedef named super to each class, we can use similar syntax to access super class

fields: x->super::y.

Field access is subject to null reference checking - if a variable holds a null

reference, an exception should be thrown. We pass the result of the left hand side
expression through a function that implements the null check, thus “x.a” becomes

“npc(x)->a” where npc is the null pointer checking function.

4.8.7 Method invocation

Intuitively, method invocation in Java and C++ is very similar. In both cases, a search
list of methods is identified by examining method qualification, name and
parameters, and then the best fitting method is chosen, if possible.

In both languages, the static types of the parameters is used to determine which
method signature to use when making the call - the dynamic type of the parameters
has no influence.

In Java, informally, if multiple methods could match the arguments, the most specific
method is chosen, or in other words, the method requiring the fewest conversions.
This intuitive rule is similar in C++ when classes and subclasses are involved, but
different when integer conversions come in play.

In the example shown in Table 15, Java considers the conversion from int to long to

be more specific than the same conversion from int to double - the long data type

is closer to int than double. In C++, both implicit conversions are considered equal

when choosing among matching methods, thus we need to apply an explicit
conversion to the method arguments to avoid ambiguities:

class C
{
 void m(long x) { }
 void m(double x) { }
 void f() { m(42); }
}

Table 15: Ambiguity in C++, but not in Java

In Java, the method taking a long parameter is chosen over the double overload,
while in C++, a cast is needed to ensure the correct function being called.

In both languages, if the chosen method is virtual, it is the dynamic type of the
associated instance that determines the actual implementation being called.

47

4.8.8 Array access

In our emulation of Arrays in Java, for reference types, we use an array of Objects to
store the references. Our operator[] then returns a copy of that reference, cast in

accordance with the type of the array. This approach means that there is no way to
write to arrays using the bracket syntax, as we cannot return a reference to the actual
storage. Thus we rewrite all array writes to use a member method of the class
implementing arrays, but continue to use the operator for reads.

4.8.9 Cast expressions

Java has a single cast operator whose syntax is inherited from C. It is used both for
narrowing and widening conversions, and both with reference and primitive types.
The same operator can be used for cross casting across a hierarchy, and failed casts
result in a ClassCastException being thrown.

Two of C++’s cast operators are relevant for our translator. static_cast may be

used for all widening casts (from subclass to superclass) and all numeric casts. For
narrowing class conversions, and for casting across a hierarchy, we will instead
implement a special function, java_cast, using dynamic_cast to do the actual

casting. If a pointer cast fails using dynamic_cast, a null pointer is returned which

our helper function translates into a ClassCastException being thrown.

4.8.10 Remainder operator

Unlike C++, the % operator in Java may be used with floating point operands as well

as integral. When translating, the operator needs to be turned into a call to the fmod

standard C++ function. Care must be taken to throw an ArithmeticException

should the divisor be zero.

4.8.11 String concatenation operator

Java does not allow operator overloading to expand the meaning of the standard
operators but does allow strings to be concatenated using the + operator. Strings may

also be concatenated with other object and primitive types in which case the
conversion method toString is used during concatenation.

48

In C++, we are representing string references as pointers, and thus cannot overload
the + operator. Instead, we create an instance of the standard Java class

StringBuilder, and use its append method to concatenate the strings, and finally

call toString() to retrieve the result of the concatenation. This is similar to how the

operator is implemented in popular Java compilers and guarantees that we will get
the same string formatting when conversion is involved.

4.8.12 Shift operators

There are three shift operators in Java, left, signed right and unsigned right. Since
there are no unsigned primitive types in Java, there is a special shift operator
allowing unsigned semantics to be used with signed types. We implement the right
unsigned shift by casting the left operand to its corresponding unsigned type.

4.8.13 Type comparison operator

Dynamic type comparison in Java is done using the instanceof operator. This

operator returns true when it is guaranteed that a cast to the given type will succeed
and the value given is not null. Using the dynamic_cast operator in C++ with the

given reference, we can achieve the same effect by checking that the result of the cast
is not null.

4.9 Limitations

There are a few features of Java that have no clear home in a native C++ application.

In a statically compiled language, it is generally assumed that the code that will be
executing is available at compile time. Dynamic class loading in Java allows the
virtual machine to load and unload classes dynamically, compiling them into
machine code on the spot. The bytecode of the classes may be generated on the fly,
downloaded from an external source or changed during the course of execution.
Supporting such a feature in C++ would essentially mean implementing a full Java
Virtual Machine that is able to compile byte code into machine code - if such
functionality is required, it seems more beneficial to simply load an existing JVM in
the first place.

49

Closely related to dynamic class loading is reflection. Reflection allows Java
programs to discover type information at runtime, and to access fields and methods
dynamically at runtime. Again, implementing full support for reflection, including
dynamic method calling and field access, would require functionality close to that of
a JVM. Closely related are annotations which are used at compile time by code
analyzers and at runtime to provide additional reflection. Neither use is applicable in
the converted source code.

Generics in Java have no direct correspondence in C++, and the translator takes the
same approach as do Java compilers, by simply replacing them with explicit casts
and generated bridge methods. In some cases, this decreases the clarity of the
generated code by adding syntactic burden to otherwise simple expressions.

Several features of Java that are central to modern applications are implemented in
the virtual machine and runtime environment or standard library. Threads,
synchronization and memory handling are examples of such features, many of which
are highly platform dependent, and their handling, or lack thereof, has been described
in earlier sections.

As has been mentioned, Java Native Interface calls are not automatically translated.
Supporting the Java Native Interface API in the converted code would burden the
translated code with API details leading to an inefficient solution, and translating JNI
use would require parsing C or C++ which is beyond the scope of this thesis.

Compared to the commercial Java to C++ converter by Tangible, the translation
techniques described in this thesis offers a more complete language support. Nested
and anonymous classes are supported as are final variables, static initializers and
many of the other features described as limitations in the manual that accompanies
the translator. Instead of attempting API conversion for the Java runtime classes as
does the Tangible converter, the high degree of language support allows the use of an
existing implementation by converting the referenced classes as well.

50

Chapter 5. Implementation and experimentation

During the course of this thesis, a translator was implemented to verify the soundness
of the proposed translations. The implementation is written in Java as an Eclipse [26]
plugin, taking advantage of the Java parser and dependency management bundled
with Eclipse. It is available as an open-source project and can easily be installed and
run from within Eclipse.

Figure 1 provides an overview of the main components of the implementation and its
interaction with the services offered by Eclipse.

5.1 Implementation overview

The Java parser in Eclipse provides a type-resolved Abstract Syntax Tree (AST) that
can be used to programmatically inspect a Java compilation unit. From the text of the
compilation unit, a tree is built where each node roughly corresponds to a production
in the Java grammar.

In addition to a tree representation of the source code, type information about each
node is provided in the form of type bindings. Type bindings contain information
about a type such as its declared methods, fields and subtypes, and can be generated
either from source code or class files. For dependencies that have no source code
available, the type bindings can be used to generate header and stub files that can be
used as a starting point when providing a manually written implementation.

51

Figure 1: High-level overview of j2c

Eclipse
j2c

.java

.class

AST

Type
binding

HeaderWriter

ImplWriter

TypeBindingWriter

StubWriter

.h

.cpp

Compiler

For the plugin to work correctly, a Java project must be created in Eclipse that
specifies the details of the code being translated, such as dependencies and Java
version. The Eclipse parser then processes each compilation unit resulting in an
abstract syntax tree representation.

The core of the translator itself consists of several tree visitors and code generators,
as well as a few utility classes that handle common logic such as naming rules.

For each file type written by the translator, i e header and implementation, a separate
visitor class is used to traverse the tree. The visitor classes contain methods for each
node type in the tree. Each method analyzes its tree node in its context and writes the
corresponding C++ code to a string buffer, recording additional information that will
be needed when writing the file preamble. The preamble consists of include
directives for all dependencies of the class and some helper definitions for
synchronization and casting.

For dependencies that lack source code, stub files are written based on the class type
binding that includes fields, methods and nested types. For each method in the class,
an empty implementation is written - this allows the application to be compiled and
linked without missing references, but to run the application, implementations need
to be written for the methods that will actually be called.

Stubs are also generated for methods marked as native in the Java source code. As
there is no automatic translation for the Java Native Interface, such methods must be
implemented manually. Table 16 provides an overview of the classes involved for
processing different inputs and outputs.

File type Source (.java) No source (.class) Common (.java and
.class)

Header (.hpp) HeaderWriter TypeBindingWriter Header

Implementation
(.cpp)

ImplWriter StubWriter Impl

Native stubs (.cpp) StubWriter StubWriter -

Common (.hpp
and .cpp)

TransformWriter - -

Forward
declaration (.hpp)

- - ForwardWriter

Makefile - - MakefileWriter

Table 16: Implementation class names based on input and output type

52

The class MainWriter translates any main method, or entry point, encountered in the

Java source code into a separate C++ file containing code that converts the traditional
arguments of a C++ main function into the String array expected by Java.

After writing classes, the class ForwardWriter writes forward declarations on a per-

package basis - this to reduce the number of generated files. Finally, the class
MakefileWriter generates a Makefile that can be used together with the make tool

[27] to build the converted code.

The generated code is built as a static library, and for each main method, a separate
executable is generated. Appendix B contains a larger example of a Java class and
the corresponding files generated by the translator.

5.2 Extending the translator

An additional feature of the plugin is to provide extension points for the translation.
The plugin is written with the general case in mind, but by making assumptions
about the source code being translated, it may be possible to generate better C++
code. Such assumptions may be realized use by implementing the Snippet interface

whose methods are called at certain points of translation.

For example, OpenJDK contains a method called ensureClassInitialized that

ensures that a particular class has been initialized, as it normally would be when first
being used. This is a native method that calls the virtual machine to run initialization
for a particular type, but we know that in the translated code, such initialization is
handled by a static method named clinit.

Thus a snipped called ReplaceInvocation replaces all calls to

ensureClassInitialized with a call to our generated clinit method, avoiding the

need for a native implementation of the ensureClassInitialized method that

would have been hard to write with no reflection support.

5.3 Experimentation

Tests carried out show that the translator is able to successfully convert the Java
System class, and all of the ca 1000 top-level classes it depends on in the OpenJDK

implementation.

In those dependencies, reflection is used at one point to initialize the encoder used to
translate Java String:s into bytes of the native platform encoding, for example UTF-

8. Also, 41 native methods, most of them trivial, need implementing to handle
various tasks related to initialization and platform interaction.

53

With these methods implemented, it is possible to use the System.out member to

write text to the console, as shown by the trivial example in Table 17.

Though the example may look trivial, its dependencies are not. Before a Java
application can start, many of the features of the Java platform need to be initialized
and checked. Character conversion, operating system feature discovery and security
checks are examples of code that will run before control is given to user code.

Lacking formal verification, the test lends confidence in that our translator produces
correct code, as the converted dependencies contain examples of most language
constructs discussed in this thesis, including inheritance, virtual methods, arrays,
class and instance initializers, exception handling and other advanced features.

Notable is the lack of use of reflection (with one exception), dynamic classloading
and other Java-specific features that are mentioned in the section on limitations.

public class Hello
{
 public static void main(String[] args)
 {
 System.out.println(“So long and thanks for the fish”),
 }
}

Table 17: Deceptively simple test application

On a Linux test platform, when compiled with GCC 4.7, the application binary
weighs ca 14 MB excepting debug symbols, and uses ca 200 kB of heap allocated
memory during execution with no garbage collector attached. The use of pruning
techniques, such as the ones described by Varma [13] could help reduce the binary
size of the application, but that kind of optimizations have not been applied in this
case.

In other tests, the full source code of several libraries such as SWT, the full
OpenJDK and H2 have been translated and compiled, but given time constraints and
the amount of native methods present, it was not possible to test the resulting
translation by actually executing the resulting code.

Performance-wise, the speed of translation is similar to that of compiling Java to
bytecode, as can be expected. The translation of OpenJDK that consists of 17192
non-local classes and 2824 interfaces takes approximately 195 seconds on the test
platform, averaging ca 10 ms/type, with no special attention to performance having
been paid during the development of the translator.

54

Chapter 6. Conclusion

In this thesis, the problem of source-to-source translation from Java to C++ has been
examined, from the perspective of being able to reuse existing Java software
components in a C++ setting.

Through the individual translations for the statements and expressions of Java
presented in Chapter 4 and the general principles outlined in Chapter 3, we are able
to translate a substantial subset of the features offered by Java to readable and
maintainable C++ code.

The generated code offers a high degree of similarity with the original code as most
Java constructs carry over naturally to C++. Further, no special preparation of the
original Java code, or manual modification of the generated code, needs to be done to
achieve good conversion results, within the limits outlined in the section on
limitations, making the process repeatable.

Experimentation shows that even for large projects such as OpenJDK, it is possible
to generate working code with minimal effort compared to rewriting the code by
hand, making the proposed approach a viable alternative when facing a requirement
to reuse an existing code base. The fact that the converted code produces equivalent
output after having performed a significant amount of tasks lends confidence in the
correctness of the proposed translation.

Thus, through extensive language support and several options for runtime support,
source-to-source translation becomes an attractive way of reusing Java code in from
C++. Seen from a C++ perspective, Java code that was previously not available for
reuse, because the existing alternatives such as JNI are not suitable, now can be
accessed and used with little manual intervention.

In short, the conclusion is that source-to-source translation is a viable alternative
offering distinct advantages over other methods of reusing Java code.

As always, the solution could be improved. Some of the manual intervention needed
could possibly be avoided, and conversion rules that align better with idiomatic C++
could be researched, as outlined in the following section.

6.1 Areas of further research

In this thesis no attempts at performing API conversion have been made, not even of
the core Java classes. To fit better with native code, and to avoid unnecessary
external dependencies, it would be interesting to examine at least partial API
conversion for the java.lang and java.util packages.

55

The performance of the generated code has not been examined during the course of
this work. In general, one might assume that Java code is written with the presence a
Just-In-Time compiler in mind, meaning that no attention is given to virtual method
calls, casting and other aspects that a JIT may provide optimization for. Earlier
studies show however, that the performance of the translated code largely depends on
the programming techniques and compiler used, and that it should be at least
comparable to that of native Java execution [15].

The Java Virtual Machine specification includes an API for accessing Java from
native code and to implement Java methods in native code. If a translator could make
fruitful use of such native code, there would be obvious benefits as less code would
have to be manually replaced.

Although not required by the standard, it is assumed that a garbage collector be
present to reclaim memory allocated dynamically during the course of program
execution. The interaction of a garbage collector with the generated code, and other
solutions such as reference counting could and should be further studied.

Formal verification of at least a subset of the features supported by the translation
would lend confidence in that the converted code is indeed equivalent to the source
code, but considering that the complexity of the source and target languages, such
verification would require considerable effort. Complicating the fact is that there
exists no complete formal semantics for C++ itself [28], even older versions than the
one targeted here. Such an analysis would necessarily have to begin with establishing
the semantics of the constructs we use in C++, for example the reliance on static
initialization being thread safe that was only recently added.

56

Appendix A. Bibliography
1: TIOBE Programming Community Index,
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

2: Gosling, James and Joy, Bill and Steele, Guy and Bracha, Gilad, Java(TM)

Language Specification, The (3rd Edition), 2005

3: Terekhov, Andrey A. and Verhoef, Chris, The Realities of Language Conversions,

2000

4: J2C Java to C++ Converter,
http://code.google.com/a/eclipselabs.org/p/j2c/

5: ISO, International Standard ISO/IEC 14882:2011, 2011

6: Parnas, D. L., On the criteria to be used in decomposing systems into modules,

1972

7: JNI: Java Native Interface,
http://docs.oracle.com/javase/6/docs/technotes/guides/jni/

8: SWIG: Simplified Wrapper and Interface Generator, http://www.swig.org/

9: GCJ: The GNU Compiler for the Java(TM) Programming Language,
http://gcc.gnu.org/java/

10: log4cplus: Logging library, http://log4cplus.sourceforge.net/

11: CppUnit: C++ unit testing framework,
http://sourceforge.net/apps/mediawiki/cppunit/index.php?

title=Main_Page

12: Boyle, James M. and Muralidharan, Monagur N., Program Reusability through

Program Transformation, 1984

13: Ankush Varma , A Retargetable Optimizing Java-to-C Compiler for Embedded

Systems, 2003

14: Proebsting, Todd A. and Townsend, Gregg and Bridges, Patrick and Hartman,

John H. and Newsham, Tim and Watterson, Scott A., Toba: java for applications a

way ahead of time (WAT) compiler, 1997

15: Translating Java Programs into C++ ,
http://jklp.org/public/profession/papers/java2c++/paper.htm

16: Trudel, Marco and Oriol, Manuel and Furia, Carlo A. and Nordio, Martin,

Automated translation of Java source code to Eiffel, 2011

17: Java to C++ Converter,
www.tangiblesoftwaresolutions.com/Product_Details/Java_to_CPlusPlus_

Converter_Details.html

18: Jython: Python for the Java Platform, http://www.jython.org/

19: The Scala Language Specification, http://www.scala-lang.org/

20: OpenJDK: open-source implementation of the Java Platform, Standard Edition,
http://openjdk.java.net/

57

21: Ralf Lämmel, Ekaterina Pek, Jürgen Starek, Large-scale, AST-based API-usage

analysis of open-source Java projects, 2011

22: Hoare, C. A. R., Monitors: an operating system structuring concept, 1974

23: The Boehm-Demers-Weiser conservative garbage collector,
http://www.hpl.hp.com/personal/Hans_Boehm/gc/

24: Choi, Jong-Deok and Gupta, Manish and Serrano, Mauricio and Sreedhar,

Vugranam C. and Midkiff, Sam, Escape analysis for Java, 1999

25: Stroustrup, Bjarne, The Design and Evolution of C++, 1994

26: Eclipse Platform, http://www.eclipse.org/

27: GNU Make, http://www.gnu.org/software/make/

28: Michael Norrish, A Formal Semantics for C++, 2008

58

Appendix B. Example of converted code

In this appendix, a larger example, a simple merge sort implementation, is shown
along with its translation as generated by the j2c translator.

 B.1 Sort.java
public class Sort
{
 public static void mergeSort(Comparable[] a) {
 Comparable[] tmpArray = new Comparable[a.length];
 mergeSort(a, tmpArray, 0, a.length - 1);
 }

 private static void mergeSort(Comparable[] a,
 Comparable[] tmpArray, int left, int right)
 {
 if (left < right) {
 int center = (left + right) / 2;
 mergeSort(a, tmpArray, left, center);
 mergeSort(a, tmpArray, center + 1, right);
 merge(a, tmpArray, left, center + 1, right);
 }
 }

 private static void merge(Comparable[] a,
 Comparable[] tmpArray, int leftPos, int rightPos,
 int rightEnd)
 {
 int leftEnd = rightPos - 1;
 int tmpPos = leftPos;
 int numElements = rightEnd - leftPos + 1;

 // Main loop
 while (leftPos <= leftEnd && rightPos <= rightEnd)
 if (a[leftPos].compareTo(a[rightPos]) <= 0)
 tmpArray[tmpPos++] = a[leftPos++];
 else
 tmpArray[tmpPos++] = a[rightPos++];

 while (leftPos <= leftEnd)
 tmpArray[tmpPos++] = a[leftPos++];

 while (rightPos <= rightEnd)
 tmpArray[tmpPos++] = a[rightPos++];

 // Copy tmpArray back
 for (int i = 0; i < numElements; i++, rightEnd--)
 a[rightEnd] = tmpArray[rightEnd];

59

 }

 public static void main(String[] args)
 {
 mergeSort(args);

 String separator = "";
 for (String s : args) {
 System.out.println(separator + s);
 separator = ", ";
 }
 }
}

60

 B.2 fwd.hpp
// Forward declarations for
#pragma once

#include <stdint.h>
#include <limits>

class Sort;
template<typename T> class Array;
typedef Array<char16_t> char16_tArray;
typedef Array<int32_t> int32_tArray;
typedef Array<int8_t> int8_tArray;

61

 B.3 Sort.hpp
// Generated from /Sort.java

#pragma once

#include <fwd.hpp>
#include <java/lang/Object.hpp>

struct default_init_tag;

class ::Sort
 : public virtual ::java::lang::Object
{

public:
 typedef ::java::lang::Object super;
 static void mergeSort(::java::lang::ComparableArray *a);

private:
 static void mergeSort(::java::lang::ComparableArray *a,
 ::java::lang::ComparableArray *tmpArray_, int32_t left,
 int32_t right);
 static void merge(::java::lang::ComparableArray *a,
 ::java::lang::ComparableArray *tmpArray_, int32_t leftPos,
 int32_t rightPos, int32_t rightEnd);

public:
 static void main(::java::lang::StringArray *args);

 // Generated
 Sort();
protected:
 void ctor();
 Sort(const ::default_init_tag&);

public:
 static ::java::lang::Class *class_();
 static void clinit();

private:
 virtual ::java::lang::Class* getClass0();
};

62

 B.4 Sort.cpp
// Generated from /se.arnetheduck.j2c.test/src/Sort.java
#include </Sort.hpp>

#include <java/io/PrintStream.hpp>
#include <java/lang/Comparable.hpp>
#include <java/lang/NullPointerException.hpp>
#include <java/lang/String.hpp>
#include <java/lang/StringBuilder.hpp>
#include <java/lang/System.hpp>
#include <java/lang/ComparableArray.hpp>
#include <java/lang/StringArray.hpp>

template<typename T>
static T* npc(T* t)
{
 if(!t) throw new ::java::lang::NullPointerException();
 return t;
}

::Sort::Sort(const ::default_init_tag&)
{
 clinit();
}

::Sort::Sort()
 : Sort(*static_cast< ::default_init_tag* >(0))
{
 ctor();
}

void ::Sort::ctor()
{
 super::ctor();
}

void ::Sort::mergeSort(::java::lang::ComparableArray *a)
{
 clinit();
 ::java::lang::ComparableArray *tmpArray_ =
 (new ::java::lang::ComparableArray(npc(a)->length));
 mergeSort(a, tmpArray_, int32_t(0),
 npc(a)->length - int32_t(1));
}

void ::Sort::mergeSort(::java::lang::ComparableArray *a,
 ::java::lang::ComparableArray *tmpArray_, int32_t left,
 int32_t right)

63

{
 clinit();
 if(left < right) {
 int32_t center = (left + right) / int32_t(2);
 mergeSort(a, tmpArray_, left, center);
 mergeSort(a, tmpArray_, center + int32_t(1), right);
 merge(a, tmpArray_, left, center + int32_t(1), right);
 }
}

void ::Sort::merge(::java::lang::ComparableArray *a,
 ::java::lang::ComparableArray *tmpArray_, int32_t leftPos,
 int32_t rightPos, int32_t rightEnd)
{
 clinit();
 int32_t leftEnd = rightPos - int32_t(1);
 int32_t tmpPos = leftPos;
 int32_t numElements = rightEnd - leftPos + int32_t(1);
 while (leftPos <= leftEnd && rightPos <= rightEnd)
 if(npc((*a)[leftPos])->compareTo((*a)[rightPos])
 <= int32_t(0))
 tmpArray_->set(tmpPos++, (*a)[leftPos++]);
 else
 tmpArray_->set(tmpPos++, (*a)[rightPos++]);

 while (leftPos <= leftEnd)
 tmpArray_->set(tmpPos++, (*a)[leftPos++]);

 while (rightPos <= rightEnd)
 tmpArray_->set(tmpPos++, (*a)[rightPos++]);

 for (int32_t i = int32_t(0); i < numElements; i++, rightEnd--)
 a->set(rightEnd, (*tmpArray_)[rightEnd]);

}

void ::Sort::main(::java::lang::StringArray *args)
{
 clinit();
 mergeSort(args);
 ::java::lang::String *separator = u""_j;
 {
 auto _a = npc(args);
 for(int _i = 0; _i < _a->length; ++_i) {
 ::java::lang::String *s = (*_a)[_i];
 {
 npc(::java::lang::System::out())
 ->println(::java::lang::StringBuilder()
 .append(separator)

64

 ->append(s)
 ->toString()
);
 separator = u", "_j;
 }
 }
 }
}

extern ::java::lang::Class *class_(const char16_t *c, int n);

::java::lang::Class *::Sort::class_()
{
 static ::java::lang::Class *c = ::class_(u"Sort", 4);
 return c;
}

void ::Sort::clinit()
{
 super::clinit();
}

::java::lang::Class *::Sort::getClass0()
{
 return class_();
}

65

 B.5 Sort-main.cpp
#include </Sort.hpp>

extern void init_jvm();

int main(int, char**)
{
 init_jvm();

 ::Sort::main(/* TODO convert args to string array */nullptr);

 return 0;
}

66

	Chapter 1. Introduction
	1.1 Questions, goals and methodology
	1.2 Outline

	Chapter 2. Background
	2.1 Code reuse strategies
	2.1.1 Java Native Interface
	2.1.2 Compile-to-native
	2.1.3 Rewrite the code manually

	2.2 Prior art

	Chapter 3. Overview
	3.1 Translation steps
	3.2 Intermediate language
	3.3 Runtime support
	3.3.1 Implement dependencies manually
	3.3.2 Convert dependencies
	3.3.3 Mixed approach

	3.4 Java Native Interface
	3.5 Execution and threads
	3.6 Memory and other system resources

	Chapter 4. Language migration
	4.1 Base assumptions
	4.2 Lexical structure
	4.3 Code organization
	4.3.1 Packages
	4.3.2 Names

	4.4 Type system
	4.4.1 Primitive types
	4.4.2 Reference types
	4.4.3 Boxing and unboxing
	4.4.4 Classes
	4.4.5 Nested classes
	4.4.6 Local classes
	4.4.7 Enum types
	4.4.8 Interfaces
	4.4.9 Arrays
	4.4.10 Annotations
	4.4.11 Generics and erasure
	4.4.12 Class Initialization
	4.4.13 Instance Initialization

	4.5 Exceptions
	4.6 Methods
	4.6.1 Overriding
	4.6.2 Hiding

	4.7 Blocks and statements
	4.7.1 Labels
	4.7.2 Assertions
	4.7.3 The switch statement
	4.7.4 The for statement
	4.7.5 The synchronized statement
	4.7.6 The try statement

	4.8 Expressions
	4.8.1 Evaluation order
	4.8.2 Lexical literals
	4.8.3 Class literals
	4.8.4 Class instance creation
	4.8.5 Array creation expressions
	4.8.6 Field access
	4.8.7 Method invocation
	4.8.8 Array access
	4.8.9 Cast expressions
	4.8.10 Remainder operator
	4.8.11 String concatenation operator
	4.8.12 Shift operators
	4.8.13 Type comparison operator

	4.9 Limitations

	Chapter 5. Implementation and experimentation
	5.1 Implementation overview
	5.2 Extending the translator
	5.3 Experimentation

	Chapter 6. Conclusion
	6.1 Areas of further research

	Appendix A. Bibliography
	Appendix B. Example of converted code
	B.1 Sort.java
	B.2 fwd.hpp
	B.3 Sort.hpp
	B.4 Sort.cpp
	B.5 Sort-main.cpp

