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Abstract

Reuse of  Java libraries and interoperability with platform native components  has 
traditionally been limited to the application programming interface offered by the 
reference implementation of Java, the Java Native Interface.

In  this  thesis  the  feasibility  of  another  approach,  automated  source-to-source 
translation  from Java  to  C++,  is  examined  starting  with  a  survey of  the  current 
research.  Using  the  Java  Language  Specification  as  guide,  translations  for  the 
constructs of the Java language are proposed, focusing on and taking advantage of 
the syntactic and semantic similarities between the two languages. 

Based on these translations, a tool for automatically translating Java source code to 
C++ has been developed and is presented in the text. Experimentation shows that a 
simple application and the core Java libraries it  depends on can automatically be 
translated, producing equal output when built and run. The resulting source code is 
readable  and  maintainable,  and  therefore  suitable  as  a  starting  point  for  further 
development in C++.

With the fully automated process described, source-to-source translation becomes a 
viable alternative when facing a need for functionality already implemented in a Java 
library or application, saving considerable resources that would otherwise have to be 
spent rewriting the code manually.





Sammanfattning

Återanvändning  av  Java-bibliotek  och  interoperabilitet  med  plattformspecifika 
komponenter har traditionellt varit begränsat till det programmeringsgränssnitt som 
erbjuds av referensimplementationen av Java, Java Native Interface.

I  detta  examensarbete  undersöks genomförbarheten av ett  annat  tillvägagångssätt, 
automatisk källkodsöversättning från Java till C++, med början i en genomgång av 
aktuell  forskning.  Därefter  föreslås  med  Java-specifikationen  som  guide 
översättningar för de olika språkkonstruktionerna i Java, med fokus på utnyttjandet 
av de syntaktiska och semantiska likheterna mellan de två språken.

Baserat på dessa översättningar har ett verktyg för att automatiskt översätta källkod 
från Java till C++ utvecklats och detta presenteras i texten. Experiment visar att en 
enkel applikation och de Java-bibliotek den beror på kan översättas automatiskt, och 
att  applikationen  kan  byggas  och  köras  med  ekvivalent  utdata.  Den  översatta 
källkoden är möjlig att läsa och underhålla, och därför lämplig som en utgångspunkt 
för vidare utveckling i C++.

Med den automatiska  process  som beskrivs  blir  källkodsöversättning ett  effektivt 
alternativ då man har behov av funktionalitet som redan implementerats i ett Java-
bibliotek  eller  program,  med  signifikanta  besparingar  av  de  resurser  man  annars 
behövt lägga på att manuellt implementera om den existerande lösningen. 
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Chapter 1.  Introduction

The Java ecosystem ranks as one of the most popular development platforms in 2012 
[1]. Backed by large corporations and a vibrant open source community, there are 
hundreds  of  thousands libraries  available  solving  tasks  in  environments  spanning 
from mobile and embedded devices through desktop systems to large server halls. 

The Java language has its roots in C and C++, but takes a more simple approach in 
its design goals [2]. Where C++ is seen as a multi-paradigm language, Java with its 
class based design is intended to be used in an object oriented setting. 

The simplicity of the language in terms of syntax and features makes it easy to learn 
and  understand,  and  to  build  custom  tools  for  static  analysis  and  source  code 
transformation.  The  syntactic  similarities  between  Java  and  C++  make  for  an 
attractive target for source-to-source translation. It becomes easy to trace the origins 
of  the  translated  C++  code  back  to  the  source  that  produced  it  -  an  important 
characteristic assuming familiarity with the original Java code base.

The  similarity  between  Java  and  C++  is  not  only  syntactic.  Java  programs  are 
typically written following the object oriented paradigm which is also supported by 
C++, improving the fit between translated and native code.

The  benefit  of  automatically  translating  source  code  cannot  be  underestimated. 
Rewriting  code  manually  requires  massive  effort  and  means  having  to  spend 
resources on solving a problem that has already been solved. 

An  automatic  translator  thus  opens  possibilities  to  reuse  libraries  that  would 
otherwise not have been available for consideration, broadening the usefulness and 
extending the lifetime of existing code.

1.1 Questions, goals and methodology

The initial  idea for  this  thesis  was to  investigate  how the  constructs  of  the  Java 
programming language could be translated into C++, what differences need special 
treatment  and what  tradeoffs  need to  be made in  order  to  be able  to  reuse such 
translated code in a C++ context or use it as a base for further development. 

In short, it seeks to answer the question whether source-to-source translation from 
Java  to  C++  is  a  viable  alternative  for  reusing  existing  Java  code  in  a  C++ 
environment, and what the limitations of such a translation would be. 
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As  Terekhov  and  Verhoef  state  [3],  the  problem  statement  for  source-to-source 
translation  is  deceptively simple:  translate  from one language to  another  without 
changing the  external  behavior  of  the  application.  To approach the  problem,  one 
needs  to  inventory  the  language  constructs  that  need  translation  and  provide 
definitions  on how to  translate  each.  This  thesis  will  thus  examine the  language 
constructs of Java and see if these can be translated to C++.

Correctness of translation may seem like an absolute requirement of a source-to-
source  translator,  but  depending  on  the  goals  of  the  translation,  that  must  not 
necessarily be true. Readability and maintainability of the translated code may be 
equally or more important goals and this thesis will examine the tradeoffs involved 
for particular language statements.

During the course of the thesis a Java to C++ converter,  j2c [4], was developed to 

verify the proposed translations and experimentation results will be presented here.

The work has been based on The Java Language Specification,  Third Edition by 
James  Gosling,  Bill  Joy,  Guy Steele  and  Gilad  Bracha  [2] that  covers  the  Java 
language  up  to  version  1.6.  The  translation  targets  C++  2011,  as  specified  by 
ISO/IEC 14882:2011 [5].

1.2 Outline

Chapter 2 starts with a discussion of the problem background and an outline of the 
scarce research done previously in the area. 

Chapter 3 provides an overview section that presents the large picture of source-to-
source translation in general and our solution in particular. 

Chapter 4 is a reference chapter providing translations for the constructs of Java that 
need special  attention.  Where motivated,  the relevant parts  of the Java Language 
Specification are quoted. 

Chapter 5 contains a presentation of the implemented converter

Finally, Chapter 6 contains conclusion and thoughts on future research. 

Appendixes A and B cover bibliography and extended code listings. 

Throughout familiarity with both the Java and C++ languages is assumed.
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Chapter 2.  Background

Code reuse has been a topic of research since before the seventies - it forms the basis 
for modern software engineering practice [6]. Regardless if the reused code remains 
external to an application or the code of an old application can be used to create a  
new  one,  the  gains  are  obvious.  By  reusing  existing  components,  software 
development resources can be redirected to inventing new features and improving 
existing ones, instead of reinventing the wheel.

Translating the source code to a high level language such as C++ offers the distinct 
advantage that the translated code can be read, modified and tightly integrated with 
the rest of the application. Use of a high level language comes at a cost however - the 
abstraction  penalty  for  using  complex  language  constructs  and  features  can  be 
significant. We therefore begin by examining the various techniques for accessing 
Java from C++.

2.1 Code reuse strategies

There are several  strategies to follow when facing a  requirement to  reuse a Java 
software  component  in  a  C++ application,  each  with  its  own tradeoffs.  We will 
briefly describe some of the alternatives to source-to-source translation.

2.1.1 Java Native Interface

The Java Native Interface (JNI) allows C and C++ applications to embed a Java 
Virtual Machine (JVM) and run Java code directly through the use of a well defined 
application programming interface (API) [7]. The API allows the calling application 
to interact with Java by enabling the creation of class instances, calling of methods 
and interpreting of results. The same API also allows Java code to call native code, 
providing a means for calling existing C++ code from Java. 

This  approach  guarantees  that  the  Java  code  will  run  according  to  the  Java 
specification, but becomes impractical for large scale interaction between C++ and 
Java due to verboseness of the bridging code and limited access to common language 
features  such as  inheritance  and  compile-time  error  checking.  This  solution  also 
carries a large overhead in terms of memory use which may be impractical if the 
required component only makes up a small part of the application.

3



SWIG, the Simplified Wrapper and Interface Generator [8], is an application that can 
reduce  the  amount  of  work  needed  to  bridge  Java  and  C++  code.  It  works  by 
automatically generating the JNI glue code and in some cases Java code needed for 
interaction between the two languages based on the content of C and C++ header 
files. 

2.1.2 Compile-to-native

GCJ is a native compiler for Java  [9]. It is able to compile Java source code into 
native libraries which then can be reused by C++ code. GCJ provides special means 
to interface with the generated machine code - it  provides natural C++ access to 
classes, methods, object allocation, exceptions. There are several limitations as well - 
classes that interact with Java may not have non-java members and the support for 
interfaces is very limited. Also, GCJ does not provide the full Java platform library, 
thus incompatibilities arise if the Java code interfaces with unsupported parts of the 
Java platform. 

One  instance  of  abstraction  penalty  in  the  solution  presented  in  the  following 
chapters is the use of virtual inheritance and the relatively expensive dynamic_cast 

operator.  As  an  example  of  reduced  abstraction  penalty  due  to  a  lower  level 
translation, GCJ is able to use a more efficient representation of virtual method call 
tables and by exploiting assumptions about the type of casts that will be made, GCJ 
can avoid some of the overhead associated with dynamic casting in C++.

2.1.3 Rewrite the code manually

Some  projects,  for  example  log4cplus  [10] and  CppUnit  [11],  opt  to  reuse  the 
concepts and architecture of existing Java libraries but rewrite the source code by 
hand.  This  can  be  advantageous  as  it  allows  for  rewriting  the  code using  native 
idioms and language features.  It  is  also a very labor intensive approach prone to 
human  mistakes.  Any  updates  to  the  original  library  must  be  applied  manually, 
making the approach impractical if the Java source code changes frequently.

2.2 Prior art

The  idea  of  translating  between  programming  languages  is  not  new.  Boyle  and 
Muralidharan  [12] showed  how  translating  between  LISP and  Fortran  not  only 
allowed the reuse of existing application code in a new environment, but also how 
the existing code could be made more efficient as part of the transformation process. 
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Varma  [13] describes how translating Java to C can be beneficial when seeking to 
use existing code on embedded platforms, offering small code size compared to other 
native code generation strategies and possibility to execute Java code natively on 
systems where no Java Virtual Machine is available. His work is based on Toba [14] 
which provides Java-to-C translation for early Java versions. However, the semantic 
leap  between  Java  and  C  is  great  -  many  core  Java  features  such  as  classes, 
inheritance  and  exceptions  have  no  native  counterpart  in  C  and  must  thus  be 
simulated leading to code that is difficult to read and even more difficult to maintain.  
Such an approach is therefore only useful when the translation result will only be 
used as an intermediate format for further machine translation.

Peterson,  Downing  and  Rockhold  [15] provided  an  overview  of  a  Java  to  C++ 
translator in 1998. Many of the points they make remain valid today, but much has 
also been outdated by advances in both Java and C++. Most importantly, they are 
successful at producing working C++ translations of several Java programs showing 
that the problem is tractable.

In the context of Java translation, it is interesting to look at efforts to convert between 
Java  and  other  languages.  Trudel  et  al.  investigate  in  their  paper  from 2011 the 
translation of Java to Eiffel [16]. Just like Java, Eiffel is an object oriented language 
featuring  classes,  objects,  methods  and  exceptions.  With  j2eif,  the  translator 

implemented as part of the research, they are able to successfully translate and run 
both  simple  and  GUI  applications.  Nonetheless,  the  authors  note,  differences  in 
semantics  to  these  core  concepts  require  careful  analysis  in  order  to  produce  a 
successful translator. Dynamic loading, serialization, readability and resulting binary 
sizes are cited as problematic areas needing further research. 

An interesting aside is that Eiffel compilers often use C as an intermediate language 
and delegate the generation of machine code to C compilers. Thus j2eif can be used 

to produce a C representation of a Java program with the help of a suitable Eiffel  
compiler. 

On the  commercial  side,  Tangible  Software  Solutions  [17] offers  a  Java  to  C++ 
converter labeled as “Accurate and comprehensive” but lacks support for several key 
Java features such as anonymous and nested classes, static initialization blocks and 
certain  constructors  and  finally  blocks.  Some  attempts  are  made  at  memory 
management  by  inserting  delete  expressions  using  heuristics,  but  support  is 
incomplete  at  best.  Where  manual  intervention  is  required,  the  translator  inserts 
comments noting what must be done. The manual notes that there is also limited 
support for API conversion where Java String:s are converted to C++ string:s and 

arrays to vector:s, but offers no details on the limitations of the feature. 
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The approach of this work differs from the Tangible converter by concentrating on 
providing extensive language support in order to be able to reuse as much existing 
Java  code  as  possible  without  manual  intervention,  including  available 
implementations of the core Java classes. 

The  Tangible  converter  instead  takes  a  more  pragmatic  approach  where  difficult 
cases are left to the user to convert and correct by hand. Heurestics and guesses are 
used in an effort to solve some of the memory management and runtime dependency 
issues, succeeding in some cases but generating incorrect code in others. 
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Chapter 3.  Overview

This  chapter  contains  an  overview  of  the  general  problem  of  source-to-source 
translation, and highlights some of the high-level problems that need solving when 
translating from Java to C++.

3.1 Translation steps

Migrating a code base from one platform to another is a multifaceted problem. There 
are  many  things  to  consider  for  a  successful  translation,  such  as  overall  design 
paradigms used, documentation, idiomatic use of the source and target languages and 
API availability. 

Terekhov and Verhoef outline many of the difficulties encountered when translating 
from COBOL to C and suggest a  three-step approach to  language migration  [3]. 
First, the source code is restructured to minimize friction between source and target 
languages. Then syntax between source and target language is swapped and finally 
the target code is restructured to better fit with its native idioms. 

In  the  case  of  Java  to  C++  conversion,  the  first  and  the  last step  become  less 
important  as  many of  the idioms of  Java naturally carry over  to  C++ with little 
friction. We can thus concentrate on the actual translation step, producing code that 
fits as tightly with C++ idioms as is possible, already here.

Nonetheless, Peterson et al. suggest that certain aspects of Java to C++ conversion 
are  better  carried  out  beforehand,  for  example  to  avoid  name  conflicts  due  to 
differences in name resolution. There are weaknesses to this approach however. It 
may not  always  be  practical  to  carry out  refactoring  of  a  source  library  for  the 
purpose of translation, especially when the library has been developed or continues 
to be developed externally. Thus, the better the translator is able to handle the corner 
cases  of  the source  language,  the more  useful  it  becomes  as  fewer  pre and post 
translation modifications are needed.

In the last step,  knowledge and assumptions about the code being translated could be 
used to rewrite the translated code to fit better with the intentions of the original  
implementation,  but  as  a  general-purpose  translator  is  being  treated  here,  the 
assumption is that such knowledge is not available. 

7



3.2 Intermediate language

The task of a compiler is typically to transform source code written in a high level 
language to a lower level language, often machine code for a particular environment. 
For example,  a  C++ compiler  will  translate  C++ statements and expressions into 
assembly  code  representing  the  machine  instructions  of  a  particular  hardware 
architecture and a Java compiler translates Java source code into bytecode, a stack 
based instruction set suitable for execution on a Java Virtual Machine. 

Modern  compilers  are  often  divided  into  front  and  back  ends.  The  front  end  is 
responsible for translating the particulars of a language into an intermediate format 
while  the back end translates the intermediate  format  into machine code.  To add 
support for another input language, only a new front end is needed, and by adding a 
new back end, all existing front ends can be used on a new architecture. In fact, one 
could see Java bytecode as such an intermediate format - apart from Java, several 
other  languages  have  been  compiled  to  Java  byte  code  such  as  Python  (through 
Jython [18]) and Scala [19]. 

Taking the same approach with a source-to-source translator is problematic. In the 
case of Java and C++, it is the exploitation of the similarities of the languages that 
makes the resulting C++ code useful on its own and not only a vessel for further 
translation. The purpose of an intermediate format is to bring language complexities 
down and to provide a nucleus of features that are easy for the back ends to consume. 
For  meaningful  source-to-source  translation,  an  intermediate  format  would 
necessarily have to be expressive enough to carry the nuances of each language it 
supports, and thus become more complicated than the source language itself. 

Toba  [14],  the  Java  to  C  translator  mentioned  previously,  takes  the  intermediate 
language  approach  by  translating  Java  bytecode  to  C,  but  the  generated  code 
becomes unreadable and unmaintainable as the bytecode instructions are translated 
directly to C without analyzing their meaning in context. This leads to code that loses 
all  the  advantages  a  higher  level  language  has  to  offer,  as  only  the  most  basic 
building blocks of the language are used. Looking for example at Table 1, a sample 
presented in the paper on Toba [14], the translated code produces equivalent results, 
but the intention and clarity of the original Java code is lost in translation. 
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Java Toba (C)
class d
{
    static int div(int i, int j)
    {
        i = i / j;
        return i;
    }
}

Method int div(int, int)
    0 iload_0
    1 iload_1
    2 idiv
    3 istore_0
    4 iload_0
    5 ireturn

Int div_ii_3WIeN(Int p1,Int p2)
{
    Int i0, i1, i2; 
    Int iv0, iv1;
    iv0 = p1; 
    iv1 = p2;
L0:
    i1 = iv0;
    i2 = iv1;
    if(!i2)
        
throwDivisionByZeroException();
    i1 = i1 / i2;
    iv0 = i1; 
    i1 = iv0;
    return i1;
}

Table 1: Java program, Java bytecode and corresponding Toba output in C [14]

3.3 Runtime support

Java comes with an extensive standard library, the Java Platform. C++ also has a 
standard library but it is comparatively small and lacks support for many commonly 
used  technologies  and  tools  such  as  database  access,  XML  processing,  GUI 
programming  and  logging.  Thus,  it  is  not  possible  to  provide  full  native  API 
migration, even should the Java code only use standard components. 

Even for simple cases where classes in the Java and C++ standard libraries match 
conceptually,  such  as  ArrayList in  Java  and  vector in  C++,  the  gap  between 

operations  supported and idiomatic use of the class is  significant,  and translation 
becomes possible only for limited cases where only a subset of the features are used. 

One obstacle is the fact that all classes in Java inherit from the common Object class 

- collections and strings included. Replacing Java  String with C++ STL string:s 

would require converting the C++ string instance to a Java-like Object reference 

whenever  code  depends  on  the  inheritance  properties  of  the  Java  String,  for 

example when storing a reference to the string in a collection. Such a conversion 
would also need to make sure that a single reference is reused to preserve reference 
equality semantics. 
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In short, what seems a simple conversion has many subtle issues that are not easily 
resolved. We must find another option to provide runtime support - three alternatives 
present themselves. Which strategy is the best depends largely on the application or 
library being translated – the relative merits of each must be considered in a larger 
context. 

3.3.1 Implement dependencies manually

The first strategy is to analyze the dependencies of the code and implement them 
natively in C++. As the examples in  Table 2 show, most Java applications directly 
use  only  a  small  subset  of  the  ca  12000  classes  that  the  OpenJDK  [20] 
implementation of the Java Platform consists of.

Library Top level classes Java Platform 
dependencies

SWT 3.7.2, GTK 64-bit edition 532 103

H2 database, 1.3.168 394 266

logback core, 1.0.7 225 143

itextpdf, 5.3.3 414 204

Table 2: Dependency statistics

An important advantage of this method is that it can be applied to any dependency 
where the source code is not available. The class file of a compiled Java dependency 
contains enough information to reconstruct a C++ header with a class declaration. 
Class, method and field signatures are all present - this is precisely the information 
contained in a typical C++ header. This is  also the same information that the Java 
compiler  itself  requires and uses when verifying that  the dependency is  correctly 
referenced. In fact, the Java Development kit itself comes with a tool that extracts 
such information from a Java class file, javap. 

From  the  method  signatures,  stub  files  can  be  generated  that  contain  minimal 
implementations of the dependency - methods with no return type can be left empty, 
and those that return something can return the default constructed value of the return 
type.  Table 3 shows an example of such a generated header and stub file, based on 
information easily retrievable from a Java class file.

This strategy is most beneficial when there are few dependencies in the code being 
converted. An example where this strategy applies could be the implementation of an 
advanced  algorithm,  where  complicated  logic  needs  translation  but  external 
dependencies are scarce.
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Java source C++ header
class Point
{
    public int x;
    public int y;
   
    public Point add(Point rhs) {
         // ???
    }
}

class Point : public virtual 
::java::lang::Object 
{
public:
    int x;
    int y;
    Point();
    Point *add(Point *rhs);
};

javap output based on the class file C++ stub

public class Point 
{
    public int x;
    public int y;
    public Point();
    public Point add(Point);
}

Point() : x(), y() { }

Point *Point::add(Point *rhs) 
{
    return nullptr;
}

Table 3: Generating a stub from a dependency without source.

3.3.2 Convert dependencies

At the other end of the spectrum lies the second alternative. With a Java converter in  
hand, it becomes possible to convert an existing implementation of the Java Platform 
to C++ and use the converted code. 

The obvious advantage is guaranteed compatibility as the exact same implementation 
of the dependency is used. This approach can also be extended to dependencies on 
libraries other than the platform library, for which the source code is available. 

The approach however does not come for free. For example, a single dependency on 
the  String class in OpenJDK pulls  in ca.  1000 other classes as dependencies of 

dependencies are pulled in recursively making a small application increase its binary 
size and load times significantly. 

Also, certain parts of the JDK are implemented as native methods that depend on a 
particular  Java  Virtual  Machine  being  present,  and  such  methods  must  still  be 
implemented manually. In OpenJDK, the  ca.  1000 classes that  String depends on 

contain  ca.  480  such  native  methods,  but depending  on  the  application  being 
translated, only a handful of those are likely to be called. 
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This approach is most useful in cases where the converted code has many external 
dependencies, specially such that have no clear replacement in C++.  One example 
would be an application making heavy use of complicated internet standards such 
SOAP and its companion protocols, where reference implementations exist for Java 
but not necessarily for C++.

3.3.3 Mixed approach

The third way lies in the middle ground. Of the ca. 100 classes that SWT depends on, 
most come from the java.lang and java.util packages that cover core language 

features and collections. The classes of these two packages are used by most Java 
applications,  so  these  are  the  classes  that  carry  the  largest  benefit  of  a  native 
implementation. For example, further examination of SWT and H2 shows that 90 of 
the  dependent  classes  are  shared  between  the  two  libraries.  The  strategy  thus 
becomes to concentrate on the core classes such as Object, String and ArrayList, 

implementing  those  natively  while  taking  the  rest  from  an  existing  platform 
implementation. 

A study on API usage by Lämmel, Pek and Starek [21] that found that out of 1476 
projects,  1374 used the Java collection classes compared to Comm.Logging used 
only by 151 projects. 

By also comparing the number of distinct methods called with the number of calls to 
this  method  for  each  API  category,  an  initial  prioritization  for  the  native 
implementation effort can be obtained. 

For example, in the above libraries, 392 639 calls were made to 406 distinct methods 
of the collection classes giving a ratio of ca 1000 calls per method, compared to the 
usage of JUnit where 71 481 calls were made to 1011 methods, averaging ca 70 calls  
per method. Such numbers suggest that a conversion of the collection classes would 
have larger impact for the same development effort, assuming comparable  average 
effort per method required.

This approach is best used when the natively implemented code can be reused across 
multiple projects, maximizing the benefit of a manual conversion.

3.4 Java Native Interface

The Java Native Interface (JNI) provides an application programming interface (API) 
that  applications  can use to  allow Java code interface with native code and vice 
versa. The use of JNI is discouraged as it breaks platform independence, one of the 
main goals of the Java environment. 
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In the OpenJDK, native calls are used for several reasons:

• Implementing classes that need to make use of operating system services, as 
seen in the file I/O classes. 

• Interaction with  the  Java  Virtual  Machine  (JVM) -  the wait and  notify 

methods  on  the  Object class  are  native as  they require  interacting  with 

locks that are taken by language primitives and implemented in the JVM. 

• Circumvent limitations of the Java language - for example, System.out is a 

final field that represents the standard console output stream and may per its 
final modifier not be assigned after the static initializers have been run. To 
allow  users  to  replace  it  with  another  stream  and  maintain  binary 
compatibility with older Java versions, a native method  setOut is provided 

that circumvents the protection mandated by the final keyword. 

• Enable  hardware  or  platform  specific  optimizations,  such  as  efficient 
interlocked memory access  that  is  used to  implement  for  example atomic 
counters.

Typically, when using JNI to interface with existing code, bridge code is written that 
interacts with Java using a reflection-like API where methods and fields are looked 
up by name using string literals. Apart from being cumbersome, it is also not very 
performant, thus it makes little sense to reuse it directly in a native translation as 
methods and fields are directly accessible in the translated code without the use of 
string literals. 

The use of native code is discouraged in Java as one of its objectives is to maintain 
platform independence which is not possible with native code.  As a consequence, 
JNI is not widely used thus  rewriting JNI calls manually is likely to require little 
effort.

3.5 Execution and threads

Program execution in Java begins with the virtual machine initializing itself and the 
core Java classes needed for loading Java byte code. Then, similar to C++, a  main 

method  is  executed  in  the  class  that  the  user  specifies.  For  each  main method 

encountered in  the original  code,  we can generate  a  special  stub file  that  runs  a 
runtime  initialization  routine  and  translates  command  line  arguments  to  a  Java 
String array.

13



Thread support  in  Java is  split  between the runtime and the language itself.  The 
language provides primitives for synchronization and guarantees about the execution 
environment while the actual management of threads is delegated to the runtime, 
which consists of a virtual machine and a platform implementation. 

Synchronization primitives in Java are an implementation of the monitor model [22]. 
Methods  and  blocks  may  be  declared  as  synchronized  meaning  that  a  mutually 
exclusive lock is taken for the duration of the block. Inside a synchronized block, 
there is support to temporarily release the lock while waiting for notification from 
another thread, but this support is implemented as part of the Object class, not as a 

language feature.

Conceptually,  the  synchronized keyword  is  similar  to  C++  standard  library’s 

std::unique_lock class  template  when  used  with  an  instance  of  the 

std::recursive_mutex class,  while  the  notification  support  in  Object can  be 

implemented using a std::condition_variable. 

It is not possible to take this approach directly however as in C++, an instance of a 
separate  std::recursive_mutex class  is  required  whereas  in  Java,  all  Object 

instances can serve as arguments to the synchronized statement. Since most object 
instances are not used for locking, it would be wasteful to include a mutex instance 
in  every  object.  Instead,  when  translating  synchronized  statements,  calls  to 
unimplemented  lock  and  unlock  functions  are  inserted  where  needed,  and  an 
appropriate implementation can then be chosen based on locking usage patterns in 
the application or library.  This is similar to how a Java compiler outputs lock and 
unlock bytecode instructions as appropriate.

3.6 Memory and other system resources

In contrast to C++ where memory resources must be explicitly released, Java has 
automatic memory management in the form of garbage collection. It is also possible 
to  write  special  code  that  will  be  executed  when  an  instance  is  about  to  be 
deallocated  in  the  form  of  a  finalizer.  The  language  provides  no  means  to 
deterministically release memory - in fact, it is not guaranteed that memory will be 
released  at  all,  also  meaning  that  finalizers  will  not  necessarily  be  run  prior  to 
program termination. 
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Thus a correct implementation never has to release heap allocated memory, and we 
leave it to a future study to examine solutions where memory is reclaimed. Possible 
routes forward would be to use an existing collector such as the Boehm-Demers-
Weiser conservative garbage collector  [23] or  implement  reference counting with 
cycle detection, as is used by the reference implementation of Python. We also note 
that the Boehm-Demers-Weiser collector supports finalizers which are necessary to 
provide emulation of Java garbage collection.

Heap allocation  and thus  garbage collection  can  be avoided altogether  in  certain 
cases. Through the use of interprocedural escape analysis, Choi et al.[24] show how 
in  a  particular  set  of  Java  benchmarks,  a  median  of  20%  of  all  heap  memory 
allocations can be avoided. If the lifetime of a reference type instance can be proven 
to  be  limited  to  a  particular  method,  it  may  safely  be  stack  allocated  and 
automatically deallocated as the method ends, lessening the pressure on the garbage 
collector, and in the case of our C++ code, simplifying the generated code. Similar 
analysis for the locking mechanisms of the benchmark code shows that a median of 
51% of all  locking can be avoided, as the locks are being taken where it  can be 
proven that only one thread has access to the locked resource. 

The lack of explicit memory management has a profound effect on idiomatic use of 
the language, specially when interacting with other system resources such as files, 
network connections and user interface elements. 

In C++, it is common practice to release such resources as the lifetime of an object 
ends, by placing cleanup code in the destructor. The ownership of a system resource 
thus follows the lifetime of the instance that acquired the resource, a design principle 
known as  “resource  acquisition  is  initialization”,  or  RAII [25].  Table  4 shows a 
typical C++ class that owns a database connection that is released when the instance 
of the class goes out of scope.
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class database 
{
    public:
        database(connection *c) : c(c) { c->connect()); }
        ~database() { c->close(); }

     // …

     private:
         connection *c;
};

void f(connection *c)
{
    database db(c);
// use db object
// ...
// Here, connection is closed by the destructor 
}

Table 4: C++ resource management

In Java, when a resource has been acquired, it must explicitly be released, just as 
memory has to be released in C++. There is no natural place for such cleanup code in 
Java, thus it is often spread out in an application. One common technique is to place 
it in finally blocks in every place where the resource is used, to ensure cleanup even 
in the face of abrupt termination, as shown in  Table 5. Using the database class as 
example, there is however no way for the translator to know that close should be 
called to do cleanup based on the local information it has when processing the class. 

Also, if the translator was able to determine that the close function in fact performs 
destruction akin to that of the C++ destructor, it still could not simply call it from the 
C++ destructor without introducing unsafe code that either terminates in the face of 
an exception or silently swallows it.
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class Database
{
     public Database(Connection c) { this.c = c; c.connect(); }
     public void close() { c.close(); }
     private Connection c;
}

...

void f(Connection c)
{
     Database db = null;
     try {
         db = new Database(c);
    } finally {
        // Explicitly have to close database
        if(db != null) db.close();
    }
}

...

Table 5: Java resource management

Our translation follows Java semantics by simulating finally using C++ constructs, 
and makes no attempt at providing destructors which would more naturally fit with 
C++  idioms.  This  approach  follows  naturally  from  the  decision  not  to  manage 
memory  explicitly,  but  to  rely  on  a  library  provided  garbage  collector  such  as 
Boehm-Demers-Weiser.
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Chapter 4.  Language migration

In this section, the details of language migration from Java to C++ will be covered. 
The chapter  is  organized using the Java Language Specification as  a  model,  and 
covers the parts  relevant  to  translation that  are  not  trivially carried over  to C++. 
Throughout, excerpts from the Java Language Specification appear in italics.

4.1 Base assumptions

It is assumed that we have the means to create an accurate representation of the Java 
source code in the form of an abstract syntax tree, where types, fields and method 
calls have been resolved. While an interesting problem, parsing the Java source code 
in accordance with the full specification is not the focus of this work.

The output of a translator must obviously be valid C++ code, and at the lowest level 
that means that it must be encoded in way that conforms to the rules of C++ parsing. 
Digraphs and trigraphs need to be escaped, Unicode characters escaped and so forth. 
Just like we assume that we are able to parse Java code we will assume that we are  
able to output syntactically valid C++ code.

As  Terekhov  and  Verhoef  describe  [3],  each  language  construct  of  the  source 
language  can  either  have  a  native  counterpart  in  the  target  language,  be  easily 
simulated  or  remain  beyond  the  grasp  of  a  simple  translation.  In  some  cases, 
compound constructs in the source language may also have a native counterpart in 
the target language - such conversions improve the quality of the translation but are 
not necessary for correctness assuming that trivial translations exist.

4.2 Lexical structure

The grammar of a language helps decomposing valid source code into logical units 
suitable  for  analysis.  The grammar of both Java and C++ is  defined in  terms of 
tokens, valid sequences of characters, that make up a valid program. Tokens come in 
the form of identifiers, keywords, literals, operators and separators. Whitespace in 
both languages is largely ignored but significant in that it separates other tokens. 

Both  Java  and  C++  programs  are  interpreted  using  the  Unicode  character  set. 
Regardless of the encoding of the source file and use of Unicode escape sequences 
and other representation tricks, the internal representation of names and identifiers in 
the translator is assumed to follow the Unicode standard.
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Comments in Java and C++ are equal in their definitions and can thus be copied 
directly when translating. In both Java and C++ they are ignored by the compiler and 
thus do not affect the correct execution of the program, but are highly relevant for a 
complete translation. 

Identifiers in Java are similar in spirit to those of C++. Both languages essentially 
allow any sequence of letters and numbers to be used as an identifier, excepting those 
that start with a number and those that form a reserved keyword in the language. ‘$’ 
is allowed as an identifier in Java, and although it is not so in C++, many compilers 
accept it anyway. In C++, identifiers starting with two underscore characters, one 
underscore and a capital letter or one underscore and any letter when in the global 
namespace are reserved for the system. A translator will have to provide an encoding 
for those identifiers in Java that would be invalid in C++ due to keyword conflict or 
system use.

4.3 Code organization

The unit-of-work for a Java compiler is the compilation unit, typically stored in a 
single source file.  The compilation unit defines the basic scope for name lookup, 
symbol visibility and access control. In similar fashion, C++ compilers operate on a 
translation unit that provides name lookup and symbol visibility scope.

The Java compiler can make use of class files produced in previous compilations 
when resolving references external  to  the current  compilation unit  and places no 
restrictions on the order in which declarations within a compilation unit appear. 

In contrast, C++ compilers have no provision for using symbols from object files, the 
intermediate  output  of  a  C++  compiler.  Instead,  the  declarations  of  functions, 
variables and classes must be repeated for each translation unit in source code form. 
As a matter of convenience,  such repeated declarations are stored in header files 
which can be reused by multiple source files.

When  resolving  type  references,  the  C++  compiler  may  need  either  a  forward 
declaration that declares the name of the type only or a full declaration depending on 
the context of the resolution. It is therefore practical to split class definitions into 
three  parts  -  forward  declaration,  declaration  and  definition,  each  residing  in  a 
separate  file,  repeating  the  process  for  each  distinct  type  defined  in  the  Java 
compilation unit. The C++ preprocessor will then, among other things, join the files 
back into a single translation unit before passing them on to the compiler. 
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4.3.1 Packages

To prevent name conflicts, Java programs are divided into packages. If the code is 
stored on a file system, the package name also dictates the location of the class file.  
Package names are hierarchical, but when referenced in code, the full name is always 
used.

We will  translate packages to C++ namespaces,  and when qualifying type names 
with a namespace, we will always use the full name and the global qualifier as shown 
in Table 6. This is similar to how package references are used in Java, and necessary 
as unqualified namespace lookup in C++ begins in the current namespace and works 
itself up the hierarchy. Without the global qualifier, a match deep in the hierarchy 
would have precedence over a root namespace with the same name.

Java C++
java.util.ArrayList ::java::util::ArrayList

Table 6: Qualified class names

Fully qualifying namespaces leads to verbose type references, but at least for types in 
the  current  namespace,  unqualified  access  may  safely  be  used.  For  any  other 
namespace, it is not possible to guarantee that the correct type will be chosen without 
global knowledge about the code, and thus a conservative approach is chosen.

In Java,  fully qualifying type names can be avoided by using import  statements, 
which brings one or more type into the current  lookup scope.  In C++, the using 
directive fills the same purpose, but unfortunately, precedence rules of lookup differ 
between  Java’s  import and  C++’s  using leading  us  to  taking  the  conservative 

approach of always fully qualifying names in other namespaces.

Peterson  et  al.  suggest  including  the  package  name  in  the  class  name,  so  that 
java.util.ArrayList becomes  java_util_ArrayList.  This is  worse even than 

our  conservative  approach  as  the  package  name  always  has  to  be  spelled  out, 
whereas using C++ namespaces allows us to avoid using the package name in some 
cases at least.

4.3.2 Names

Names  are  used  to  refer  to  the  declared  packages,  types,  methods,  fields  and 
variables in a program. In Java,  names can either be qualified or simple.  Simple 
names are looked up in the current name scope, and the context of the lookup is used 
to disambiguate between different entities with the same name. Thus it is allowed in 
Java to have types, variables and methods all with the same name, and lookup by 
simple name will continue to work.

21



In C++, there is no provision to disambiguate unqualified names according to the 
semantic context. Further, methods and fields are not allowed to have the same name. 

Peterson et al. suggest that without global knowledge of all names, naming clashes 
can  be  solved either  by prefixing  each name type  with  a  specific  prefix,  i  e  all 
methods are prefixed by ‘m_’, classes by ‘c_’ etc, or by changing the original Java 

code in the cases where local information is not enough [15].

However, by turning unqualified names into qualified names, it is possible to change 
the  C++  name  lookup  scope  and  can  thus  disambiguate  names  with  only  local 
knowledge. The method declaration and recursive call in Table 7, where ‘a’ is both a 

type,  method  and  argument  name  can  be  translated  correctly  by qualifying  type 
names with namespaces and member access with ‘this’. We will still need to apply 

some sort of mangling to fields and methods with the same name within a single 
class, but that decision can be taken locally on a class-by-class basis.

Java method C++ method
a a(a a) { a(a); } ::a a(::a a) { this->a(a); }

Table 7: Avoiding conflicts using qualified names

To solve the problem where a method hides a base class field or vice versa, casts 
need to be inserted when accessing the base class member. Suppose the base class of 
the above example had an ‘a’ field - by casting ‘this’ to the base class type, the field 

can still be accessed.

4.4 Type system

In Java, there are two kinds of types: primitive types and reference types. Primitive 
types are the numeric types such as int and float as well as boolean. Variables of 

primitive type follow value semantics - they hold their value directly and copy the 
value on assignment which is also how fundamental types work in C++.

Variables  of  reference  type  follow  reference  semantics.  The  variable  holds  a 
reference to an instance of the type, an object, somewhere else in memory. When a 
reference type variable is assigned, only the reference is copied - the object pointed 
to remains the same. In C++, the most convenient way to represent reference types is 
through pointers - they follow the same semantics as Java references and pointer type 
relations follow the relations of the type they point to just as as do Java references.
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4.4.1 Primitive types

While the primitive types in Java are similar to the fundamental types of C++, the 
Java types are more strictly defined with respect to size and representation. Where 
Java requires integral types to be represented in 2’s complement and have set sizes 
for each type, the corresponding C++ types have implementation-defined sizes and 
representation. Instead, C++ defines a special header, cstdint, that contains names 

of types that correspond to integral types with 2’s complement representation and 
specific sizes, as seen in Table 8. 

These names are optional - if a particular implementation does not support them, it 
will not be possible to convert a Java program in a meaningful way. Fortunately other 
representations than two’s complement are rare, as are compilers not supporting the 
standard sizes for integers. Table 8 shows the C++ types names corresponding to the 
Java primitive types.

Java defines two floating point types,  float and  double, as 32 and 64-bit floating 

point  numbers  adhering  to  the IEEE 754 standard.  C++ also has  a  float and  a 

double type, but does not define their representation and size. Typically however, 

these  two  types  however  correspond  to  their  Java  counterparts  and  C++  offers 
compile time support to detect if that is the case through the sizeof operator and the 

numeric_limits class template. 

Should a particular implementation lack 2’s complement integral types or IEEE 754 
floating point types, it may be possible to provide emulation using types specially 
crafted  for  the  implementation,  but  we  will  assume  that  the  compiler  and  the 
hardware platform does support them.

Java C++
boolean bool

byte int8_t

char char16_t

double double

float float

int int32_t

long int64_t

short int16_t

void void

Table 8: Primitive type mappings

23



4.4.2 Reference types

In  Java,  there  are  three  kinds  of  reference  types:  classes,  interfaces  and  arrays. 
Variables of reference type are pointers to an object that may be either of class or 
array  type.  Interfaces  serve  to  define  a  contract  -  they  contain  no  actual 
implementation  code  and may not  be  used  to  instantiate  objects,  thus  the  actual 
instance pointed to by a variable of interface type will never itself be of interface 
type. Classes may contain both declarations and definitions, but are limited to inherit 
from only one other class. 

Variables of reference type have reference semantics -  when the value of such a 
variable is copied to another variable, both share the same underlying instance. 

In C++, we will represent classes with  class:es and interfaces with  struct:s. The 

distinction  has  no  effect  on  actual  machine  code  generation  but  serves  as 
documentation - interfaces, whose members must all be public, align more closely 
with  struct:s  whose  members  are  also  public  by  default.  Table  9 contains  an 

overview of the concepts involved during type translation and how they affect the 
output.

Java C++

class class

interface struct

enum class 

abstract make constructors protected

final make methods non-virtual or final

nested static class class (no nesting)

inner class class (no nesting), extra constructor 
parameter for instance

local class class (non-local), extra constructor 
parameter for each closure

annotation declaration struct

annotation use ignore

generics ignore (use erasure)

reference type variable pointer variable

Table 9: Reference type translation overview
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4.4.3 Boxing and unboxing

For each primitive type, Java defines a corresponding reference type that may be 
used to represent the value of the primitive types where reference types are expected, 
for example the collection classes.

The Java language allows implicit  conversions  between primitive types  and their 
respective reference types - boxing and unboxing. A boxing conversion converts a 
primitive value to a reference type with the corresponding value, and vice versa for 
unboxing. Boxing conversions  are guaranteed to  always return a reference to the 
same instance for certain primitive values to maintain identity equality for the most 
commonly used values. 

Had  value  semantics  been  used  for  reference  types  in  the  translated  C++ code, 
implicit  conversion  operators  and  constructors  could  have  provided  a  similar 
syntactic  brevity  for  boxing  and  unboxing,  but  there  is  no  way to  specify  such 
conversions  for  pointers.  Instead,  we translate  boxing conversions  to  calls  to  the 
valueOf method  of  each  reference  type  and  <type>Value calls  for  unboxing 

conversions - these methods guarantee identity equality as required by the language.

4.4.4 Classes

Java allows classes to inherit from multiple interfaces but only one class. Interfaces 
in turn may inherit from other interfaces and there are no restrictions on inheriting 
multiply from the  same interface  in  a  class  hierarchy.  To avoid  ambiguities  and 
duplicates in the C++ class hierarchy, we will use virtual inheritance when translating 
interface inheritance. We note that it is not possible to avoid virtual inheritance for 
interfaces that are only inherited once in a particular hierarchy based on only local 
knowledge  about  the  class  being  translated  except  for  final  classes  -  interface 
inheritance needs to be virtual in all classes that may be used as a base class. 

In  Java,  all  class  and  array  types  inherit  implicitly  from  a  common  root  class,  
Object. Interfaces may not inherit from a class, but throughout the Java language, 

when considering type, interfaces behave as if they did in fact have Object as base. 

Since we’re simulating interfaces  with an ordinary C++  struct,  we will  have it 

inherit  from  Object as well.  Again,  virtual inheritance is needed as  Object may 

appear at several branches in a type hierarchy.

25



Classes in Java may be declared abstract or final. Abstract classes may not be directly 
instantiated and are thus allowed to contain unimplemented, or abstract, methods. 

In C++, there is no need to mark a class as abstract - the language allows classes to 
have unimplemented pure virtual methods as long as they are not instantiated. To 
mark  that  a  class  is  not  intended  for  instantiation,  we  make  its  non-private 
constructors protected which makes them inaccessible for direct instantiation.

Declaring a class to be final means that the language disallows further subclassing of 
that  class.  This  constraint  is  possible  to  simulate  using  private  constructors  and 
special static factory methods in C++, but the syntactic burden of such a translation 
outweighs  the  benefit  as  it  has  no impact  on  runtime behaviour  and requires  an 
additional method for each constructor in the source class.

Methods  in  final  classes  are  implicitly  final,  meaning  that  they  can  either  be 

marked as final in C++ or simply not be declared as virtual, depending on whether 

they already override a base class or interface method or not.

4.4.5 Nested classes

Classes in Java may be nested in other classes or interface. There are two types of 
nested classes, static and non-static. Static nested classes are similar to ordinary top-
level classes except  that  they gain access to private  declarations in  the enclosing 
type. Instances of static nested classes have access to static fields and methods of the 
enclosing type. 

Non-static nested classes, or inner classes, implicitly gain a reference to an instance 
of  the  enclosing  type when being instantiated,  which allows them to  also access 
instance methods and fields of the enclosing type.

The Java compiler handles inner classes by adding a hidden field of the enclosing 
type to the inner class and makes each constructor take an extra argument to initialize 
the hidden field. 

When translating nested classes, we process them as we would an ordinary class, but 
do  not  nest  them.  In  C++,  the  outer  class  remains  an  incomplete  type  in  the 
declaration of the nested type disallowing return covariance and inheritance from the 
outer class, both permitted by Java. 

For inner classes, we add a field that holds a pointer to the enclosing type and modify 
all constructors to take an extra parameter, just like a Java compiler. This parameter 
is then initialized with the value of the enclosing instance whenever an instance of 
the inner class is created with the new operator.
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4.4.6 Local classes

Local classes are classes declared inside a method body. They are accessible only 
from the method in which they are created and as such, gain access to final local 
variables in that method. Local classes in non-static methods also gain access to the 
instance on which the method is being executed, just like inner classes. Local classes 
may also be created as part of an instance creation expression, in which case they are 
called anonymous classes. Such classes become subclasses of the type specified in 
the new expression and remain unnamed.

When translating local classes, for each variable from the enclosing method accessed 
in the local class an extra field and an extra constructor parameter is added. During 
instantiation, the variables and instance, if any, are passed as constructor arguments, 
copying the value of the variable at instantiation time.

4.4.7 Enum types

Enum types in Java are a special kind of class type that may only be instantiated 
during the declaration of an enum constant.  Enum declarations are split  into two 
parts  -  the  constants  and an  optional  body.  In  the  body,  fields,  constructors  and 
methods,  possibly  abstract,  are  defined  as  usual.  Enum  constants  thus  become 
instances of anonymous types that inherit from the enum type and must implement 
any abstract methods.

The Java Language Specification suggest looking at enum types as classes derived 
from the class  Enum, with the constants being represented by static fields that are 

references to the enum type and a few extra methods providing support. 

C++ enum types are not at all similar to the enum construct in Java. Instead, we will 

translate them as the Java language specification suggests - ordinary classes that may 
not  be  instantiated,  and whose  only instances  are  the  ones  available  through the 
constant fields.

This emulation falls short in one area however - in Java, the constants of an enum 
may be used for the case labels of a switch statement. In our C++ emulation, the 
constants are represented by static fields which, due to not being  constexpr, may 

not be used for  case labels. Instead,  switch statements need to be rewritten as a 

series of if statements.
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4.4.8 Interfaces

Interfaces in Java serve to define a contract for a set of operations without providing 
an implementation. Interfaces members are implicitly public, and limited to types, 
constants and abstract methods. Multiple inheritance is allowed among interfaces, 
but they may never inherit from a class, including Object. However, since there are 

no instances of types that do not ultimately inherit from  Object, the specification 

contains special provisions to make interface types behave as though they actually 
did inherit from Object. An interface that has no superinterface will implicitly have 

all members of  Object declared, and when determining type relations for implicit 

conversion, assignment and other relevant areas, Object is considered a supertype of 

any interface without superinterfaces.

There  is  no  direct  equivalent  of  an  interface  in  C++ but  class:es  and  struct:s 

support a superset of the features of an interface. To carry the intent of implic public 
access to all members from Java to C++, we will use struct instead of class when 

translating interfaces. There is no way to express the supertype relation with Object 

other than through inheritance in C++, and such inheritance must then necessarily be 
virtual. As Peterson et al. note, this incurs a performance penalty on the translated 
code as dynamic casting becomes necessary for many cases where it could have been 
avoided. They further suggest that it is possible not to inherit from Object and use 

explicit casts whenever a variable of interface type needs to behave as an  Object 

instance, but with return type covariance added to Java 1.5, such a solution no longer 
covers all cases. 

4.4.9 Arrays

Arrays  in  Java  are  used  to  provied  storage  for  multiple  variables  using  indexed 
access. Array types inherit from Object, as well as Cloneable and Serializable, 

and are based on a component type, that itself may be an array. The length of an 
array  is  available  dynamically  after  the  array  has  been  instantiated  through  the 
length field.

The type relations of arrays follow the type relations of their component type, for 
example an array of String:s will be assignable to a variable of Serializable array 

type, as a String is assignable to a Serializable variable. 

To implement array type  support in C++, a special class can be used that provides 
storage and the required members of all Java array types. 
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However,  due to the relation  between array types,  it  is  not possible  to provide a 
single  generic  class  implementing  array  support  for  all  array  types.  Instead,  a 
separate class must be generated for each encountered array type. Arrays of derived 
types must inherit from the array type of the base of the derived component type to 
allow variable assignment, covariance and other constructs to carry over naturally to 
C++, in addition to inheriting from Object, Comparable and Serializable.

4.4.10 Annotations

Annotation types are special interfaces that are used to provide metadata about types 
and their members to compilers, source analysis tools and programs making use of 
reflection. We will translate annotation type declarations as we translate interfaces, 
but ignore them otherwise.

One potential use for annotations would be to provide additional information about 
types  to  the  source-to-source  translator  itself,  allowing  the  translator  to  generate 
more appropriate code in certain situations. For example, a @NotNull annotation on a 

field could make the translator assume that the field never carries a null value, and 

therefore allow it to skip the null check.

4.4.11 Generics and erasure

Generics  in  Java  are  used to  provide additional  information about  types  that  the 
compiler uses to guarantee type safety, or the absence of runtime casting errors. It 
also allows the compiler to safely insert implicit casts where manual casting would 
have been needed, reducing the syntactic burden of the language.

To  take  advantage  of  generics,  types  and  methods  are  decorated  with  type 
parameters. These type parameters are then reused in the type or method declaration 
providing type guarantees to the compiler. When a generic type or method is used, 
the user must supply actual types for each type parameter which allows the compiler 
to verify the type correctness of expressions that use the type parameters.

Once the compiler has verified type correctness, generic types and methods undergo 
a process called erasure. Type parameters used in type and method declarations are 
replaced by actual types according to rules set out in the specification, and implicit 
casts are inserted where needed to maintain correctness - generic type information is 
erased.

While generics syntactically look similar to C++ templates, and provide some of the 
same convenience to users, the differences are notable as the following examples 
show:
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• In  C++,  classes  are  either  templates  or  not,  whereas  Java  allows  generic 
classes to be used without the extra type parameters (“raw types”)

• In C++, static members of template classes have access to the type parameters 
- in Java they do not

• In C++, static members are distinct in different instantiations of a template 
class - in Java only a single copy exists

• Instantiated class templates in C++ actually are distinct types as casting and 
the typeid operator shows - the class literal of two parameterized types gives 
a reference to the same underlying erased type 

During translation, we will use the erased definition of all types which is enough to 
maintain runtime correctness. Even though we lose some of the syntactic advantage 
generics  offer,  there  is  no  native  generics  support  in  C++,  and simulation  using 
templates would prove complicated, if at all possible. Unless otherwise noted, we 
will assume that types have been erased before further processing.

4.4.12 Class Initialization

Before  a  class  in  Java  may  be  used,  it  needs  to  be  initialized.  During  class 
initialization, static fields get their values and static initialization blocks are run. 

C++ also has the concept of static initialization, but in C++, the order in which static 
initialization happens is not defined, except that it happens before the main program 
starts. There are two problems with this approach.

The  first  is  that  dependencies  between  multiple  initializers  are  not  resolved 
deterministically leading to undefined behaviour. 

The second is that a large code base might consist of thousands of classes. If all their 
initializers were to be run at startup, load times would increase notably even for cases 
where the majority of the classes are not actually used.

Java solves the problem by defining exactly when a class is initialized and in what 
order initialization happens, delaying that initialization as far as is deemed possible 
([2], §12.4.1):

Before a class is initialized, its direct superclass must be initialized, but interfaces 
implemented by the class need not be initialized. Similarly, the superinterfaces of an 
interface need not be initialized before the interface is initialized. 

A class or interface type T will be initialized immediately before the first occurrence 
of any one of the following:
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• T is a class and an instance of T is created.

• T is a class and a static method declared by T is invoked.

• A static field declared by T is assigned.

• A static field declared by T is used and the field is not a constant variable 
(§4.12.4).

• T is a top-level class, and an assert statement (§14.10) lexically nested within  
T is executed.

Class initialization consists of several steps. First, fields are assigned default values 
in accordance with their  type.  Then, fields initialized by constant expressions are 
initialized and finally field initializers and initialization blocks are executed in textual 
order. 

The specification allows the possibility to construct a Java program that observes 
field default values by referencing not yet initialized fields from static initialization 
blocks.

When translating, we coalesce all static initialization code to a single static method. 
To  our  advantage,  the  default  values  given  to  static  variables  during  static 
initialization  in  C++ coincide  with  those  of  Java,  so we can  proceed directly  to 
initializing  those constant  values  that  could  not  be translated  as  C++  constexpr 

expressions. After those follow the field initializers and initialization blocks.

We can  then  insert  calls  to  the  initialization  code  for  each  class  in  each  of  the 
following places:

• The beginning of every static initializer of any subclass

• The beginning of every constructor

• The beginning of every static method

• When reading or writing non-constant fields by replacing field access with a 
special  method that calls  the initializer before returning a reference to the 
field

Peterson et al. suggest calling the initialization of all dependent classes on startup 
[15], arguing that it would be prohibitive from a performance perspective to initialize 
classes lazily, but a downside of such initialization is that startup time grows with the 
number of classes present and that classes will be initialized regardless if they will 
actually be used. 

31



4.4.13 Instance Initialization

Like C++, class instances in Java are initialized using constructors - special methods 
that are called whenever a new instance is created. However, before code contained 
in constructors is executed, fields are assigned default values, then field initializers 
and initialization blocks are run ([2], §12.5):

Whenever a new class instance is created, memory space is allocated for it [...] all 
the instance variables in the new object, including those declared in superclasses, 
are initialized to their default values (§4.12.5). 

…

1. [...]

2. If this constructor begins with an explicit constructor invocation of another 
constructor in the same class (using this), then evaluate the arguments and 
process that constructor invocation recursively using these same five steps 
[and then] continue with step 5.

3. This constructor does not begin with an explicit constructor invocation of 
another constructor in the same class (using this). If this constructor is for a 
class other than Object, then this constructor will begin with an explicit or 
implicit invocation of a superclass constructor (using super). Evaluate the 
arguments and process that superclass constructor invocation recursively 
using these same five steps [and then] continue with step 4.

4. Execute the instance initializers and instance variable initializers for this 
class, assigning the values of instance variable initializers to the 
corresponding instance variables, in the left-to-right order in which they 
appear textually in the source code for the class [and then] continue with 
step 5. 

5. Execute the rest of the body of this constructor. […]

When translating, we thus need to handle default values, make explicit or implicit 
calls to super constructors or chained calls to other constructors and finally run the 
code of the constructor body. Additionally, we need to take static initialization into 
account, which must be run before any instance initializers.

One final difference needs to be addressed. In Java, if a constructor makes a call to a 
virtual method implemented in a subtype of the class currently being constructed, the 
implementation in the subtype will be called with the subtype partially initialized. In 
C++, virtual calls in constructors are resolved as if an instance of the type currently 
being constructed was being used - the final virtual table is not available until the 
object has been fully constructed.
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We translate constructors by dividing the constructor into two parts. The first part, 
the  C++ constructor,  initializes  fields  to  their  default  values  then  calls  the  static 
initializer to make sure the class has been initialized. The second part,  a separate 
init method, is implemented as follows:

1. If the Java constructor begins with an explicit this constructor call, evaluate 

the  arguments  can  call  the  corresponding  init method  in  this  class  then 

continue with step 4.

2. Except for Object, generate a call to the init method from the super class, 

either from an explicit super call in the Java constructor or from the implicit 
call that Java mandates.

3. Run instance initializer, if any

4. Run constructor body

When instantiating an object with the new operator, we thus need to call the  init 

method  on  the  newly  created  object  explicitly  to  complete  the  two-phase 
construction.  This  contrasts  with  idiomatic  use  of  C++  and  should  therefore  be 
considered a significant burden, but is necessary to implement correct behavior in the 
presence of virtual calls in the constructor. It is also not possible to require two-phase 
construction only for those classes that actually make use of virtual calls, as there is 
no way to tell from a Java constructor signature if virtual calls will be made.

However, while it is possible to construct a program that makes use of virtual calls 
during constructors, such programs are rare. If a virtual method is implemented in a 
subclass of the class currently being constructed, that subtype will not yet be fully 
initialized  meaning  its  fields  will  still  have  their  default  values  and  instance 
initializers will not yet have been run. 

Thus,  it  may  be  beneficial  to  sacrifice  correctness  for  convenience  and  run  the 
second phase of construction directly from the C++ constructor. Since it is possible 
to  detect  virtual  calls  during  translation,  a  translator  can  issue  a  warning  or 
deliberately generate code that will fail C++ compilation to notify the library user of 
the semantic deviation.

Another option, often used when two-phase construction is necessary in C++, is to 
make constructors private and supply a static factory method for each constructor 
that performs the new and init calls. Such a solution has the benefit that a reader of 

the converted class will have no opportunity to only partially initialize the object, but  
enforces an unusual syntax for constructing instances.
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4.5 Exceptions

Exceptions in both Java and C++ are used to abruptly break program execution flow 
and transfer control to an exception handling routine. Exceptions in Java come in two 
flavors - checked and unchecked. Checked exceptions thrown in a method body or 
any of the methods called by the body are required to be declared after the method 
signature  while  unchecked  exceptions  require  no  specification.  Further,  all 
exceptions must inherit from a common base, Throwable. 

C++ allows any type to be used in a  throw expression, allowing a straightforward 

conversion of throwing and catching exceptions.  There is  no concept  of checked 
exceptions in C++, but being a compile-time only feature of Java, it can safely be 
ignored.

Additionally to the explicit throw expression some expressions in Java may cause an 
exception  being  thrown  implicitly.  Examples  include  trying  to  dereference  a 
reference variable holding a null reference and accessing array elements outside the 
range of the array. 

For  null reference  checking,  a  naive  approach would  be  to  insert  a  conditional 

statement  whenever  a  variable  is  dereferenced,  but  such  an  approach  would  be 
syntactically cumbersome and difficult to implement for compound expressions. 

Instead, a helper function shown in Table 10 that implements the appropriate check 
and throw exceptions if needed can be used, minimizing the syntactic overhead at the 
check site. A similar function can be used to implement divide-by-zero checking for 
the division and remainder operators.

template<typename T>
static T* npc(T* t)
{

if(!t) throw new ::java::lang::NullPointerException();
return t;

}

Table 10: Null pointer check function

4.6 Methods

In both Java and C++, methods are used to declare code related to a particular class. 
Typically, methods hold the majority of the code that will be executed for any given 
Java program and thus form the center point for most Java applications. 
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A method declaration consists of a signature that declares its name, parameters and 
return  type,  an  optional  exception  specifier  and  an  optional  body containing  the 
executable code. 

Translating  a  method  signature  to  C++ is  mostly  straightforward  -  return  types, 
names and parameter lists follow the same pattern. Several modifiers may be applied 
to the method signature. In both C++ and Java, methods may be static, abstract 

or final though the syntax varies slightly. One important syntactic difference is that 

in  Java,  methods  are  implicitly  virtual  -  this  needs  to  be  made  explicit  in  C++ 
through the virtual keyword. The remaining modifiers, synchronized, native and 

strictfp affect the implementation, or body, of the method, but not the translation 

of the signature. 

Exception specifiers in Java document the checked exceptions a method may throw. 
The exception specifiers are verified at compile time  to be consistent across the type 
hierarchy and with the  exceptions  potentially being  thrown by the  method body. 
They are however not part of the method signature and thus do not participate in 
overload and override resolution, and have no impact on the runtime behavior. 

There is  no equivalent feature in  C++, and while  older  versions of C++ allowed 
runtime checked throw clauses on the method signature, flaws in its specification led 
to the feature being deprecated.  It is however safe and reasonable to simply ignore 
exception specifiers during translation, as they checked at compile-time only in Java. 

4.6.1 Overriding

The concept of overriding the method of a base class in a subclass is one of the  
cornerstones  of the object  oriented approach of Java.  In  Java,  unless  specifically 
disabled through a keyword, methods are virtual and can have overrides. 

Java classes and interfaces implicitly inherit all the methods of their direct superclass 
and direct superinterfaces that are accessible. Whether or not a method in a class 
overrides an inherited method is based on the concept of subsignatures ([2], §8.4.2):

Two methods have the same signature if they have the same name and argument 
types.

Two method or constructor declarations M and N have the same argument types if 
all of the following conditions hold:

• They have the same number of formal parameters (possibly zero)

• They have the same number of type parameters (possibly zero)
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• Let <A1,...,An> be the formal type parameters of M and let <B1,...,Bn> be 
the formal type parameters of N. After renaming each occurrence of a Bi in 
N's type to Ai the bounds of corresponding type variables and the argument 
types of M and N are the same.

The signature of a method m1 is a subsignature of the signature of a method m2 if 
either:

• m2 has the same signature as m1, or

• the signature of m1 is the same as the erasure of the signature of m2.

[...]

A method declaration d1 with return type R1 is return-type-substitutable for another 
method d2 with return type R2, if and only if the following conditions hold:

• If R1 is a primitive type, then R2 is identical to R1.

• If R1 is a reference type then:

◦ R1 is either a subtype of R2 or R1 can be converted to a subtype of R2 by 
unchecked conversion (§5.1.9), or

◦ R1 = | R2 |.

• If R1 is void then R2 is void.

[...]

An instance method m1 declared in a class C overrides another instance method, m2,  
declared in class A iff all of the following are true:

1. C is a subclass of A.

2. The signature of m1 is a subsignature (§8.4.2) of the signature of m2.

3. […]

[…]

If a method declaration d1 with return type R1 overrides or hides the declaration of 
another method d2 with return type R2, then d1 must be return-type substitutable for 
d2, or a compile-time error occurs. [...].

Subsignatures are thus defined in terms of signature and erasure meaning that in the 
presence of generics, a method may actually override base class methods with two 
different  signatures.  Restrictions  are  placed  on  return  type,  but  in  general,  it  is 
allowed to refine the return type of a method with a more specific type.

In C++, as in Java, methods are overridden based on name and parameter types, with 
compatible restrictions on the return type. 
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However,  since there is  no concept of erasure and subsignatures in C++, method 
parameters  must  match  exactly.  Therefore,  for  every  method  whose  signature 
matches the subsignature of another method, but not its signature, a bridge method 
must be added to the translated source code that implements the erased signature of 
the base method and forwards the call to the actual implementation with appropriate 
casts, as shown by Table 11.

Java C++
public interface I<T>
{
   // Erasure: void m(Object t)! 
   void m(T t);
}

public interface J
{
   void m(A t);
}

class A implements I<A>, J
{
   // Overrides m(Object t) 
   // in both I and J!
   void m(A a) { /* … */ }
}

// Forward declaration needed
class A;

struct I 
  : virtual Object
{
   // Erased signature
   void m(Object *t);
};

struct J 
  : virtual Object
{
   void m(A *t);
};

class A 
  : public virtual Object
  , public virtual I
  , public virtual J
{
    // Original method
    void m(A *a);

    // Erasure bridge method
    void m(Object *a)
    { 
        m(java_cast<A*>(a));
    }
};

Table 11: Bridging methods for erased types
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When looking up an implementation of  an interface method,  all  the classes of  a 
hierarchy are searched. When a class implements an interface, the implementation 
may therefore be taken from a base class, even if there is no override equivalent 
method in the subclass itself. This is different from C++ where an implementation 
must exist in the subclass for each pure virtual method. For each method missing 
from the  subclass,  a bridge  method  must  be  generated that  calls  the  base  class 
implementation, as demonstrated by Table 12.

Java C++
interface I
{ 
    void m();
}

class A 
{
    void m() { }
}

class B extends A implements I 
{ 
   // no need for m()
}

struct I 
  : virtual Object
{
    virtual void m();
};

class A 
  : public virtual Object
{ 
    void m() { }
};

class B 
  : public A
  , public virtual I
{
   void m() { A::m(); }
}

Table 12: Bridging interface methods implemented in base classes

4.6.2 Hiding

In C++, if there is a method with the same name but different signature as in a base 
class, the base class method will be hidden. Another way to look at this is that once a 
method with a particular name has been found, methods with the same name from 
base classes are no longer considered for resolving overloading. To use such base 
class methods, they must be brought into the namespace of the current class with a 
using directive, or casts must be introduced at the call site to ensure that the correct 

type is searched.

When translating such cases, using statements can be added to the generated code as 
shown in  Table 13. A limitation of this approach is that should there be a private 
method with the same name in the base class, the generated code will no longer be 
valid and the second approach, a cast at the call site, must be used.

38



Java C++
class A
{ 
    void m() { }
}

class B extends A 
{ 
    void m(int x) { } 
}

class C
{ 
   void m(B b) {
       // Both calls work!
        b.m();
        b.m(5);
   }
}

class A 
  : public virtual Object
{ 
    void m(); 
}

class B
  : public virtual A
{ 
   void m(int x);
   using A::m;
}

class C
{ 
    void m(B *b)
    {
        // Fails without using
        b->m(); 

        // Alternative syntax
        // without using
        static_cast<A*>(b)->m(); 
        b->m(5);
    }
}

Table 13: Overcoming C++ method hiding

4.7 Blocks and statements

Many of the core statements of both Java and C++ have equivalent definitions. In 
both languages, blocks are used to define scope and the basic looping and branching 
statements are the same. As Peterson et al. note, it is the similarity between these 
statements that makes translation between the languages an attractive option  [15]. 
There are however important differences that will be covered in detail.

4.7.1 Labels

Labels in Java are used to identify the target statement for a  break or  continue 

statement. 
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When used as a target for  break statements, execution continues after the labeled 

statement. We replace such break statements with goto and place the label after the 

statement instead of before. 

Labels together with  continue statements are used to begin a new iteration  of the 

labeled loop, regardless of its nesting in other loops. Only labels on loop statements 
may be used with the continue statement. 

A naive translation would be to place a label at the end of the loop block and jump 
there using a  goto statement, in order not to miss the loop invariant check. Such a 

solution however would potentially jump over variable initializations for variables 
that are still live at the end of the loop block which is not allowed in C++. 

Instead, we must choose a different strategy:

• For every label  declared on a looping construct,  define a uniquely named 
bool variable and set it to false

• After every nested loop, if the variable is true, continue execution as normal

• If the loop is directly nested in the loop that the variable belongs to, set the 
variable  to  false and issue a  continue statement  which will  start  a new 

iteration of the outermost loop

• If the block is nested more deeply, issue a break statement which will break 

the execution of the current loop and jump out to the next nesting level where 
a new check on the same variable will happen eventually leading to the point 
above

This strategy resembles the normal way of breaking or continuing nested loops in C+
+, thus this transformation, although more verbose than its Java counterpart, leads to 
idiomatic C++.

4.7.2 Assertions

The  assert statement in Java allows developers to verify internal invariants, with 

the option to turn the checking off at runtime. C++, being statically compiled, does 
not have an equivalent statement which can be controlled at runtime.

Assertions are enabled on a class-by-class basis in Java, which means that in C++, a 
bool would have to be kept for every class and checked at runtime before executing 
the assertion code. This is not idiomatic to C++ - instead we translate the runtime 
enabled  per-class  assertions  to  compile-time  globally  enabled  assertions  that  are 
prevalent in C++. 
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Assertions become a useful tool for verifying that the conversion has introduced no 
incompatibilities with the original code. However, since assertions are meant not to 
impact runtime behaviour in the absence of bugs, they can also safely be removed 
completely.

4.7.3 The switch statement

switch statements in Java and C++ are mostly equivalent. In both languages, the 

switch expression  is  evaluated  once  and  case  labels  determine  what  code  gets 

executed. Without a  break statement, case labels fall through, and a default label 

gathers up cases not covered by case labels. 

One subtle difference is how variable declarations are handled. Although the scoping 
of variables is the same in both languages, in Java, it is valid for a case label to jump 
over the initialization of a variable in a previous case, if the variable is no longer 
used or if it is initialized anew in the new case. Just as with goto in C++, variable 

initializations  in  scope  may  not  be  jumped  over,  so  we  need  to  move  variable 
declarations outside the switch statement. 

Another difference is enumeration support. In Java,  enum constants may be used as 

case expressions, but due to our translation of  enum:s into classes, we also have to 

rewrite  switch statements to the equivalent  if statements. Care must be taken to 

only evaluate the switch expression once and store the result in a temporary variable 
that is then used for the successive if statements.

4.7.4 The for statement

for statements  in  Java  come  in  two  styles,  basic  and  extended.  The  basic  for 

statement is equivalent to that of C++, while the extended  for provides syntactic 

sugar for iterating over collections and arrays.

C++ has a range based for statement similar to the extended for of Java, but it is not 

possible to trivially translate between the two. C++ range based for assumes that a 

begin and end function will return iterators that represent the beginning and end of a 

collection, while in Java, there is no concept of an end iterator that can be used for 
comparison with the current position - instead there is only one iterator that itself 
knows if it has reached the end.

Therefore, instead of emulating C++ iterators using the interface of Java iterators, we 
will simply transform the extended for loop into an ordinary for loop and use that as 
base  for  our  translation.  The  Java  Language  Specification  shows  how  such  a 
transformation is done (§14.14.2):
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If the type of Expression is a subtype of Iterable, then let I be the type of the 
expression Expression.iterator(). The enhanced for statement is equivalent to a basic  
for statement of the form:

for (I #i = Expression.iterator(); #i.hasNext(); ) {
       VariableModifiersopt Type Identifier = #i.next();
   Statement
}

[...]

Otherwise, the Expression necessarily has an array type, T[]. Let L1 ... Lm be the 
(possibly empty) sequence of labels immediately preceding the enhanced for 
statement. Then the meaning of the enhanced for statement is given by the following 
basic for statement:

T[] a = Expression;
L1: L2: ... Lm:
for (int i = 0; i < a.length; i++) {
        VariableModifiersopt Type Identifier = a[i];
        Statement
}

4.7.5 The synchronized statement

The synchronized statement in Java is used to implement language level support of 
mutual  exclusion  locking.  Synchronization  statements  consist  of  an  expression 
yielding  an  Object reference  representing  the  resource  needing protection  and a 

block of statements to be executed while the lock is held. Regardless of how the 
synchronized block is terminated, the lock is automatically released.

To translate  synchronized statements,  and indeed synchronized methods,  a  helper 
class that performs a lock in its constructor and unlock in the destructor will be used. 
A local variable scoped with the synchronized block is added, passing a reference to 
Object retrieved from the expression in the synchronized statement. C++ scoping 

rules ensure that the lock will be taken when the variable is initialized and released at 
block exit. An alternative would have been to make explicit lock and release call, but 
in the presence of exceptions, implicit and explicit, such a solution quickly becomes 
unwieldy.

We  leave  the  lock  and  release  functions  unimplemented,  noting  that  their 
implementation also must be compatible with the wait and notify functions present 
on  each  Object.  As  noted  previously,  the  standard  library  classes 

std::condition_variable and std::recursive_mutex can be used to provide an 

implementation.
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4.7.6 The try statement

try statements in Java are used to enable exception handling for a particular block of 

code.  try statements  begin  with  a  try block,  followed  by  catch and  finally 

blocks. try and catch are equivalent to those of C++ - exceptions originating from 

the try block are caught by the leftmost catch block with a compatible catch type 

and execution continues normally as long as all exceptions have been caught.

C++ however does not support finally blocks. In Java, finally blocks are used to 

clean up resources used in the try statement as there is no other deterministic way to 

ensure that  a resource is  released once it  is  no longer needed in the presence of 
garbage collection.  In  idiomatic  C++,  resources  are  cleaned up as  part  of  object 
destruction which is  deterministic  and therefore,  there is  generally no need for a 
finally block.

It would be tempting to replace the finally block with a class that runs the code in the 
finally  block  upon destruction  and place  a  variable  of  that  class  in  a  block that 
encompasses the rest of the try statement. Such a solution would guarantee that the 

code  in  the  finally  block  is  after  the  try  statement  has  completed,  even  in  the 
presence of exceptions and return statements.

However, if the code of a finally block ends abruptly because of an exception or 
return  statement,  that  termination  takes  precedence  over  the  original  reason  for 
terminating the try statement.  An exception in a destructor in C++ terminates the 
program and  a  return  statement  would  exit  only  the  destructor,  not  the  method 
encompassing the try statement.

Instead,  we have  to  choose  a  more  verbose  solution  where  the  finally code  is 

repeated  at  least  twice.  The  original  try statement  is  surrounded  with  a  try 

statement as shown in Table 14.

Then,  in  the  catch-all  handler  inside  the  if  block,  and at  every  point  where  the 
original try block is left, the finally code is repeated. As Peterson et al. note, there 

exists a surprising number of ways to leave a block, but the example supplied is 
invalid in that it risks running the finally code several times in case of exceptions. 

The finally_done variable is needed in case the code in the  finally block itself 

throws to ensure that it is not executed again in the catch-all handler - it must be set 
to true before running the finally code inside the added try block.
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try {
    bool finally_done = false;

    try {
        if(condition) { // Early return
            // finally_here
            return; 
        }
    } catch(/* original exceptions */) {
        // code
    }

    // finally_here
} catch(...) {
    if(!finally_done) {
         // finally_here
    }
    throw;
}

Table 14: Finally emulation

One final detail is that a try statement with a finally block is not required to have any 
catch handlers. In such cases, the original try block is simply removed as the finally 
emulation replaces it.

4.8 Expressions

Just as with statements, most expressions in the Java language are shared with C++. 

4.8.1 Evaluation order

C++ leaves the order of evaluation of compound expressions implementation defined 
in many cases. Thus, when evaluating a simple expression such as ‘f() + g()’, it is 

not guaranteed that f will be evaluated before g. This is useful for example when ‘+’ 

is a function that takes its arguments on a stack and thus needs the value of g() to be 

pushed first - instead of calculating expressions in order, the C++ compiler is free to 
reorder the calls and put the results directly on the stack. Assuming that  g() was 

evaluated first and results in an exception,  f() will not be evaluated at all, which 

intuitively might not be expected.

44



In contrast,  Java has  an intuitive  and deterministic  definition  of  execution  order. 
Expressions are evaluated as expected, with left-to-right evaluation in general, while 
respecting operator precedence and parentheses. Function arguments are evaluated in 
the  intuitive  left-to-right  order  and  if  any  expression  terminates  abruptly,  later 
expressions are guaranteed not to be evaluated.

Thus,  a  careful  translator  must  split  compound  expressions  into  their  constituent 
parts, assigning intermediate results to temporary variables and then recombine the 
results. 

If the translator is able to determine that a particular expression has no side effects,  
including  being  exception  free,  it  becomes  safe  by  extension  to  allow  the  C++ 
compiler to reorder it with respect to other expressions.

4.8.2 Lexical literals

Java inherited most of its literal syntax from C++, thus most valid Java literals are 
also valid C++ literals. There are however a few smaller differences, for example:

Negative integers in Java are parsed as one entity, whereas in C++ they are treated as 
a positive integer with a negative sign which in C++ leads to the smallest negative 
integer for a 32-bit 2’s complement int being interpreted incorrectly as the positive 

part does not fit in the int:s allowable range (and the same for 64-bits)

Character literals are allowed to take the value of a single part of a surrogate pair 
using the ‘\u’ escape, which is disallowed in C++ and needs to be rewriting using 

‘\x’ escapes instead - the same for string literals.

String literals return a String object in Java, not an array of characters, which in C+

+ can be implemented using user-defined string literals

Floating point literals using binary exponents are not supported in C++ and must 
have their exponents adjusted.

4.8.3 Class literals

Class literals return a reference to the Class object associated with a certain class. In 

C++,  we  simply  put  a  static  function  in  each  class  that  calls  a  runtime-defined 
function with the name of the class - implementing the function is up to the runtime.
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The  Class object  contains  metadata  about  the  requested  class  and is  part  of  the 

reflection  support  in  Java.  Interestingly,  one  of  the  most  common  reflection 
operations  on  the  Class object  is  to  get  the  name of  the  class,  for  example  for 

logging purposes. Implementing this minimal support in C++ is trivial and allows 
many  applications  to  work  as  expected  that  would  otherwise  need  manual 
intervention.

This function can also be used to support an implementation of the getClass method 

inherited from  Object by each Java class - by adding a special virtual method to 

Object and overriding that function in each class to return the translated class literal, 

getClass is guaranteed to return the class instance associated with the actual type of 

an instance.

4.8.4 Class instance creation

In  both  C++ and  Java,  new instances  of  classes  can  be  created  using  the  ‘new’ 

operator. Java allows anonymous classes to be defined as part of the class instance 
creation - such classes are actually subclasses or implementers of the type given to 
the new operator. 

This is similar to how lambda expressions in C++ create a local anonymous type and 
return an instance of that type, with access to the enclosing instance and variables. 
However,  lambda  expressions  in  C++  are  limited  to  a  single  method  and  can 
therefore  not  be  used  generally  to  replace  anonymous  classes  -  instead  we  treat 
anonymous classes as we would  treat normal classes and generate the appropriate 
class definition separately and use the normal new expression to create an instance.

4.8.5 Array creation expressions

Since we are emulating Java arrays using classes, we need to replace array creation 
expressions with expressions that create an instance of the array class. The emulated 
array class has a special constructor taking a  std::initializer_list parameter 

that  allows  the  same array member  initialization  syntax  in  both  languages  using 
member lists delimited by brace symbols.

4.8.6 Field access

Field access follows the same pattern in Java and C++ - at the left hand side there is 
an expression returning an instance of a class while the right hand side contains the 
name of the field. Obviously, since we’re using pointers to represent references, we 
must use the arrow operator instead of the dot.

46



In Java, it is also possible to access the field of a base class using the super keyword - 
x.super.y becomes  the  field  y in  the  superclass  of  the  type  of  x.  By adding a 

typedef named super to each class, we can use similar syntax to access super class 

fields: x->super::y.

Field  access  is  subject  to  null reference  checking  -  if  a  variable  holds  a  null 

reference, an exception should be thrown. We pass the result of the left hand side 
expression through a function that implements the null check, thus “x.a” becomes 

“npc(x)->a” where npc is the null pointer checking function.

4.8.7 Method invocation

Intuitively, method invocation in Java and C++ is very similar. In both cases, a search 
list  of  methods  is  identified  by  examining  method  qualification,  name  and 
parameters, and then the best fitting method is chosen, if possible. 

In both languages,  the static  types  of the parameters is  used to  determine which 
method signature to use when making the call - the dynamic type of the parameters 
has no influence.

In Java, informally, if multiple methods could match the arguments, the most specific 
method is chosen, or in other words, the method requiring the fewest conversions. 
This intuitive rule is similar in C++ when classes and subclasses are involved, but 
different when integer conversions come in play. 

In the example shown in Table 15, Java considers the conversion from int to long to 

be more specific than the same conversion from int to double - the long data type 

is closer to int than double. In C++, both implicit conversions are considered equal 

when  choosing  among  matching  methods,  thus  we  need  to  apply  an  explicit 
conversion to the method arguments to avoid ambiguities:

class C
{
     void m(long x) { }
     void m(double x) { }
     void f() { m(42); }
}

Table 15: Ambiguity in C++, but not in Java

In Java, the method taking a long parameter is chosen over the double overload, 
while in C++, a cast is needed to ensure the correct function being called.

In both languages,  if  the chosen method is  virtual,  it  is  the dynamic type of the 
associated instance that determines the actual implementation being called.
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4.8.8 Array access

In our emulation of Arrays in Java, for reference types, we use an array of Objects to 
store the references. Our  operator[] then returns a copy of that reference, cast in 

accordance with the type of the array. This approach means that there is no way to 
write to arrays using the bracket syntax, as we cannot return a reference to the actual 
storage.  Thus  we  rewrite  all  array  writes  to  use  a  member  method  of  the  class 
implementing arrays, but continue to use the operator for reads.

4.8.9 Cast expressions

Java has a single cast operator whose syntax is inherited from C. It is used both for 
narrowing and widening conversions, and both with reference and primitive types. 
The same operator can be used for cross casting across a hierarchy, and failed casts 
result in a ClassCastException being thrown.

Two of C++’s cast operators are relevant for our translator.  static_cast may be 

used for all widening casts (from subclass to superclass) and all numeric casts. For 
narrowing  class  conversions,  and  for  casting  across  a  hierarchy,  we will  instead 
implement  a  special  function,  java_cast,  using  dynamic_cast to  do  the  actual 

casting. If a pointer cast fails using dynamic_cast, a null pointer is returned which 

our helper function translates into a ClassCastException being thrown.

4.8.10 Remainder operator

Unlike C++, the % operator in Java may be used with floating point operands as well 

as integral. When translating, the operator needs to be turned into a call to the fmod 

standard  C++  function.  Care  must  be  taken  to  throw  an  ArithmeticException 

should the divisor be zero.

4.8.11 String concatenation operator

Java does not  allow operator overloading to  expand the meaning of the standard 
operators but does allow strings to be concatenated using the + operator. Strings may 

also  be  concatenated  with  other  object  and  primitive  types  in  which  case  the 
conversion method toString is used during concatenation.

48



In C++, we are representing string references as pointers, and thus cannot overload 
the  +  operator.  Instead,  we  create  an  instance  of  the  standard  Java  class 

StringBuilder, and use its append method to concatenate the strings, and finally 

call toString() to retrieve the result of the concatenation. This is similar to how the 

operator is implemented in popular Java compilers and guarantees that we will get 
the same string formatting when conversion is involved.

4.8.12 Shift operators

There are three shift operators in Java, left, signed right and unsigned right. Since 
there  are  no  unsigned  primitive  types  in  Java,  there  is  a  special  shift  operator 
allowing unsigned semantics to be used with signed types. We implement the right 
unsigned shift by casting the left operand to its corresponding unsigned type.

4.8.13 Type comparison operator

Dynamic  type  comparison  in  Java  is  done  using  the  instanceof operator.  This 

operator returns true when it is guaranteed that a cast to the given type will succeed 
and the value given is not null. Using the dynamic_cast operator in C++ with the 

given reference, we can achieve the same effect by checking that the result of the cast 
is not null.

4.9 Limitations

There are a few features of Java that have no clear home in a native C++ application. 

In a statically compiled language, it is generally assumed that the code that will be 
executing is  available at  compile time. Dynamic class loading in Java allows the 
virtual  machine  to  load  and  unload  classes  dynamically,  compiling  them  into 
machine code on the spot. The bytecode of the classes may be generated on the fly,  
downloaded from an external  source  or  changed during  the  course  of  execution. 
Supporting such a feature in C++ would essentially mean implementing a full Java 
Virtual  Machine  that  is  able  to  compile  byte  code  into  machine  code  -  if  such 
functionality is required, it seems more beneficial to simply load an existing JVM in 
the first place.
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Closely  related  to  dynamic  class  loading  is  reflection.  Reflection  allows  Java 
programs to discover type information at runtime, and to access fields and methods 
dynamically at runtime. Again, implementing full support for reflection, including 
dynamic method calling and field access, would require functionality close to that of 
a  JVM. Closely related  are annotations  which are  used at  compile  time by code 
analyzers and at runtime to provide additional reflection. Neither use is applicable in 
the converted source code.

Generics in Java have no direct correspondence in C++, and the translator takes the 
same approach as do Java compilers, by simply replacing them with explicit casts 
and  generated  bridge  methods.  In  some  cases,  this  decreases  the  clarity  of  the 
generated code by adding syntactic burden to otherwise simple expressions.

Several features of Java that are central to modern applications are implemented in 
the  virtual  machine  and  runtime  environment  or  standard  library.  Threads, 
synchronization and memory handling are examples of such features, many of which 
are highly platform dependent, and their handling, or lack thereof, has been described 
in earlier sections.

As has been mentioned, Java Native Interface calls are not automatically translated. 
Supporting the Java Native Interface API in the converted code would burden the 
translated code with API details leading to an inefficient solution, and translating JNI 
use would require parsing C or C++ which is beyond the scope of this thesis.

Compared to  the  commercial  Java  to  C++ converter  by Tangible,  the  translation 
techniques described in this thesis offers a more complete language support. Nested 
and anonymous classes are supported as are final variables,  static initializers and 
many of the other features described as limitations in the manual that accompanies 
the translator.  Instead of attempting API conversion for the Java runtime classes as 
does the Tangible converter, the high degree of language support allows the use of an 
existing implementation by converting the referenced classes as well.
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Chapter 5.  Implementation and experimentation

During the course of this thesis, a translator was implemented to verify the soundness 
of the proposed translations. The implementation is written in Java as an Eclipse [26] 
plugin, taking advantage of the Java parser and dependency management bundled 
with Eclipse. It is available as an open-source project and can easily be installed and 
run from within Eclipse. 

Figure 1 provides an overview of the main components of the implementation and its 
interaction with the services offered by Eclipse.

5.1 Implementation overview

The Java parser in Eclipse provides a type-resolved Abstract Syntax Tree (AST) that 
can be used to programmatically inspect a Java compilation unit. From the text of the 
compilation unit, a tree is built where each node roughly corresponds to a production 
in the Java grammar. 

In addition to a tree representation of the source code, type information about each 
node is provided in the form of type bindings. Type bindings contain information 
about a type such as its declared methods, fields and subtypes, and can be generated 
either from source code or class files. For dependencies that have no source code 
available, the type bindings can be used to generate header and stub files that can be 
used as a starting point when providing a manually written implementation. 
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For  the  plugin  to  work  correctly,  a  Java project  must  be  created  in  Eclipse  that 
specifies  the details  of  the code being translated,  such as  dependencies and Java 
version.  The Eclipse  parser  then  processes  each compilation  unit  resulting  in  an 
abstract syntax tree representation. 

The core of the translator itself consists of several tree visitors and code generators, 
as well as a few utility classes that handle common logic such as naming rules.

For each file type written by the translator, i e header and implementation, a separate 
visitor class is used to traverse the tree. The visitor classes contain methods for each 
node type in the tree. Each method analyzes its tree node in its context and writes the 
corresponding C++ code to a string buffer, recording additional information that will 
be  needed  when  writing  the  file  preamble.  The  preamble  consists  of  include 
directives  for  all  dependencies  of  the  class  and  some  helper  definitions  for 
synchronization and casting.

For dependencies that lack source code, stub files are written based on the class type 
binding that includes fields, methods and nested types. For each method in the class, 
an empty implementation is written - this allows the application to be compiled and 
linked without missing references, but to run the application, implementations need 
to be written for the methods that will actually be called.

Stubs are also generated for methods marked as native in the Java source code. As 
there is no automatic translation for the Java Native Interface, such methods must be 
implemented manually.  Table 16 provides an overview of the classes involved for 
processing different inputs and outputs.

File type Source (.java) No source (.class) Common (.java and 
.class)

Header (.hpp) HeaderWriter TypeBindingWriter Header

Implementation 
(.cpp)

ImplWriter StubWriter Impl

Native stubs (.cpp) StubWriter StubWriter -

Common (.hpp 
and .cpp)

TransformWriter - -

Forward 
declaration (.hpp)

- - ForwardWriter

Makefile - - MakefileWriter

Table 16: Implementation class names based on input and output type
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The class MainWriter translates any main method, or entry point, encountered in the 

Java source code into a separate C++ file containing code that converts the traditional 
arguments of a C++ main function into the String array expected by Java.

After writing classes, the class ForwardWriter writes forward declarations on a per-

package  basis  -  this  to  reduce  the  number  of  generated  files.  Finally,  the  class 
MakefileWriter generates a Makefile that can be used together with the make tool 

[27] to build the converted code. 

The generated code is built as a static library, and for each main method, a separate 
executable is generated. Appendix B contains a larger example of a Java class and 
the corresponding files generated by the translator.

5.2 Extending the translator

An additional feature of the plugin is to provide extension points for the translation. 
The plugin is  written with the general  case in  mind, but  by making assumptions 
about the source code being translated, it may be possible to generate better C++ 
code. Such assumptions may be realized use by implementing the Snippet interface 

whose methods are called at certain points of translation.

For example,  OpenJDK contains  a method called  ensureClassInitialized that 

ensures that a particular class has been initialized, as it normally would be when first 
being used. This is a native method that calls the virtual machine to run initialization 
for a particular type, but we know that in the translated code, such initialization is 
handled by a static method named clinit. 

Thus  a  snipped  called  ReplaceInvocation replaces  all  calls  to 

ensureClassInitialized with a call to our generated clinit method, avoiding the 

need  for  a  native  implementation  of  the  ensureClassInitialized method  that 

would have been hard to write with no reflection support.

5.3 Experimentation

Tests carried out show that the translator is  able to successfully convert  the Java 
System class, and all of the ca 1000 top-level classes it depends on in the OpenJDK 

implementation. 

In those dependencies, reflection is used at one point to initialize the encoder used to 
translate Java String:s into bytes of the native platform encoding, for example UTF-

8.  Also,  41  native  methods,  most  of  them trivial,  need  implementing  to  handle 
various tasks related to initialization and platform interaction. 
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With these methods implemented, it is possible to use the  System.out member to 

write text to the console, as shown by the trivial example in Table 17. 

Though  the  example  may  look  trivial,  its  dependencies  are  not.  Before  a  Java 
application can start, many of the features of the Java platform need to be initialized 
and checked. Character conversion, operating system feature discovery and security 
checks are examples of code that will run before control is given to user code. 

Lacking formal verification, the test lends confidence in that our translator produces 
correct  code,  as  the  converted  dependencies contain  examples  of  most  language 
constructs  discussed  in  this  thesis,  including  inheritance,  virtual  methods,  arrays, 
class and instance initializers, exception handling and other advanced features. 

Notable is the lack of use of reflection (with one exception), dynamic classloading 
and other Java-specific features that are mentioned in the section on limitations.

public class Hello
{
    public static void main(String[] args)
    {
        System.out.println(“So long and thanks for the fish”),
    }
}

Table 17: Deceptively simple test application

On a  Linux  test  platform,  when compiled  with  GCC 4.7,  the  application  binary 
weighs ca 14 MB excepting debug symbols, and uses  ca 200 kB of heap allocated 
memory during execution with no garbage collector attached.  The use of pruning 
techniques, such as the ones described by Varma [13] could help reduce the binary 
size of the application, but that kind of optimizations have not been applied  in this 
case.  

In  other  tests,  the  full  source  code  of  several  libraries  such  as  SWT,  the  full 
OpenJDK and H2 have been translated and compiled, but given time constraints and 
the  amount  of  native  methods  present,  it  was  not  possible  to  test  the  resulting 
translation by actually executing the resulting code. 

Performance-wise, the speed of translation is similar to that of compiling Java to 
bytecode, as can be expected. The translation of OpenJDK that consists of  17192 
non-local classes and  2824 interfaces takes approximately  195  seconds on the test 
platform, averaging ca 10 ms/type, with no special attention to performance having 
been paid during the development of the translator. 
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Chapter 6.  Conclusion

In this thesis, the problem of source-to-source translation from Java to C++ has been 
examined,  from  the  perspective  of  being  able  to  reuse  existing  Java  software 
components in a C++ setting.

Through  the  individual  translations  for  the  statements  and  expressions  of  Java 
presented in Chapter 4 and the general principles outlined in Chapter 3, we are able 
to  translate  a  substantial  subset  of  the  features  offered  by  Java  to  readable  and 
maintainable C++ code. 

The generated code offers a high degree of similarity with the original code as most 
Java constructs carry over naturally to C++. Further, no special preparation of the 
original Java code, or manual modification of the generated code, needs to be done to 
achieve  good  conversion  results,  within  the  limits  outlined  in  the  section  on 
limitations, making the process repeatable.

Experimentation shows that even for large projects such as OpenJDK, it is possible 
to generate working code with minimal effort  compared to rewriting the code by 
hand, making the proposed approach a viable alternative when facing a requirement 
to reuse an existing code base. The fact that the converted code produces equivalent 
output after having performed a significant amount of tasks lends confidence in the 
correctness of the proposed translation.

Thus, through extensive language support and  several options for runtime support, 
source-to-source translation becomes an attractive way of reusing Java code in from 
C++. Seen from a C++ perspective, Java code that was previously not available for 
reuse,  because the existing alternatives such as JNI are  not  suitable,  now can be 
accessed and used with little manual intervention. 

In short,  the conclusion is  that source-to-source translation is  a  viable  alternative 
offering distinct advantages over other methods of reusing Java code.

As always, the solution could be improved. Some of the manual intervention needed 
could possibly be avoided, and conversion rules that align better with idiomatic C++ 
could be researched, as outlined in the following section.

6.1 Areas of further research

In this thesis no attempts at performing API conversion have been made, not even of 
the  core  Java  classes.  To  fit  better  with  native  code,  and  to  avoid  unnecessary 
external  dependencies,  it  would  be  interesting  to  examine  at  least  partial  API 
conversion for the java.lang and java.util packages.
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The performance of the generated code has not been examined during the course of 
this work. In general, one might assume that Java code is written with the presence a 
Just-In-Time compiler in mind, meaning that no attention is given to virtual method 
calls,  casting  and  other  aspects  that  a  JIT may provide  optimization  for.  Earlier 
studies show however, that the performance of the translated code largely depends on 
the  programming  techniques  and  compiler  used,  and  that  it  should  be  at  least 
comparable to that of native Java execution [15].

The Java  Virtual  Machine  specification includes  an API for  accessing Java from 
native code and to implement Java methods in native code. If a translator could make 
fruitful use of such native code, there would be obvious benefits as less code would 
have to be manually replaced. 

Although not  required by the standard,  it  is  assumed that  a garbage collector  be 
present  to  reclaim  memory  allocated  dynamically  during  the  course  of  program 
execution. The interaction of a garbage collector with the generated code, and other 
solutions such as reference counting could and should be further studied.

Formal verification of at least a subset of the features supported by the translation 
would lend confidence in that the converted code is indeed equivalent to the source 
code, but considering that the complexity of the source and target languages, such 
verification would require  considerable effort.  Complicating the fact  is  that  there 
exists no complete formal semantics for C++ itself [28], even older versions than the 
one targeted here. Such an analysis would necessarily have to begin with establishing 
the semantics of the constructs we use in C++, for example the reliance on static 
initialization being thread safe that was only recently added.
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Appendix B. Example of converted code

In this appendix, a larger example, a simple merge sort implementation,  is shown 
along with its translation as generated by the j2c translator.

 B.1 Sort.java
public class Sort
{
    public static void mergeSort(Comparable[] a) {
        Comparable[] tmpArray = new Comparable[a.length];
        mergeSort(a, tmpArray, 0, a.length - 1);
    }

    private static void mergeSort(Comparable[] a, 
        Comparable[] tmpArray, int left, int right)
    {
        if (left < right) {
            int center = (left + right) / 2;
            mergeSort(a, tmpArray, left, center);
            mergeSort(a, tmpArray, center + 1, right);
            merge(a, tmpArray, left, center + 1, right);
        }
    }

    private static void merge(Comparable[] a, 
        Comparable[] tmpArray, int leftPos, int rightPos,
        int rightEnd) 
    {
        int leftEnd = rightPos - 1;
        int tmpPos = leftPos;
        int numElements = rightEnd - leftPos + 1;

        // Main loop
        while (leftPos <= leftEnd && rightPos <= rightEnd)
            if (a[leftPos].compareTo(a[rightPos]) <= 0)
                tmpArray[tmpPos++] = a[leftPos++];
            else
                tmpArray[tmpPos++] = a[rightPos++];

        while (leftPos <= leftEnd)
            tmpArray[tmpPos++] = a[leftPos++];

        while (rightPos <= rightEnd)
            tmpArray[tmpPos++] = a[rightPos++];

        // Copy tmpArray back
        for (int i = 0; i < numElements; i++, rightEnd--)
            a[rightEnd] = tmpArray[rightEnd];
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    }

    public static void main(String[] args)
    {
        mergeSort(args);

        String separator = "";
        for (String s : args) {
            System.out.println(separator + s);
            separator = ", ";
        }
    }
}
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 B.2 fwd.hpp
// Forward declarations for 
#pragma once

#include <stdint.h>
#include <limits>

class Sort;
template<typename T> class Array;
typedef Array<char16_t> char16_tArray;
typedef Array<int32_t> int32_tArray;
typedef Array<int8_t> int8_tArray;
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 B.3 Sort.hpp
// Generated from /Sort.java

#pragma once

#include <fwd.hpp>
#include <java/lang/Object.hpp>

struct default_init_tag;

class ::Sort
    : public virtual ::java::lang::Object
{

public:
    typedef ::java::lang::Object super;
    static void mergeSort(::java::lang::ComparableArray *a);

private:
    static void mergeSort(::java::lang::ComparableArray *a,
        ::java::lang::ComparableArray *tmpArray_, int32_t left,
        int32_t right);
    static void merge(::java::lang::ComparableArray *a,
        ::java::lang::ComparableArray *tmpArray_, int32_t leftPos,
        int32_t rightPos, int32_t rightEnd);

public:
    static void main(::java::lang::StringArray *args);

    // Generated
    Sort();
protected:
    void ctor();
    Sort(const ::default_init_tag&);

public:
    static ::java::lang::Class *class_();
    static void clinit();

private:
    virtual ::java::lang::Class* getClass0();
};
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 B.4 Sort.cpp
// Generated from /se.arnetheduck.j2c.test/src/Sort.java
#include </Sort.hpp>

#include <java/io/PrintStream.hpp>
#include <java/lang/Comparable.hpp>
#include <java/lang/NullPointerException.hpp>
#include <java/lang/String.hpp>
#include <java/lang/StringBuilder.hpp>
#include <java/lang/System.hpp>
#include <java/lang/ComparableArray.hpp>
#include <java/lang/StringArray.hpp>

template<typename T>
static T* npc(T* t)
{
    if(!t) throw new ::java::lang::NullPointerException();
    return t;
}

::Sort::Sort(const ::default_init_tag&)
{
    clinit();
}

::Sort::Sort()
    : Sort(*static_cast< ::default_init_tag* >(0))
{
    ctor();
}

void ::Sort::ctor()
{
    super::ctor();
}

void ::Sort::mergeSort(::java::lang::ComparableArray *a)
{
    clinit();
    ::java::lang::ComparableArray *tmpArray_ = 
        (new ::java::lang::ComparableArray(npc(a)->length));
    mergeSort(a, tmpArray_, int32_t(0), 
    npc(a)->length - int32_t(1));
}

void ::Sort::mergeSort(::java::lang::ComparableArray *a,
   ::java::lang::ComparableArray *tmpArray_, int32_t left, 
   int32_t right)
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{
    clinit();
    if(left < right) {
        int32_t center = (left + right) / int32_t(2);
        mergeSort(a, tmpArray_, left, center);
        mergeSort(a, tmpArray_, center + int32_t(1), right);
        merge(a, tmpArray_, left, center + int32_t(1), right);
    }
}

void ::Sort::merge(::java::lang::ComparableArray *a,
    ::java::lang::ComparableArray *tmpArray_, int32_t leftPos, 
    int32_t rightPos, int32_t rightEnd)
{
    clinit();
    int32_t leftEnd = rightPos - int32_t(1);
    int32_t tmpPos = leftPos;
    int32_t numElements = rightEnd - leftPos + int32_t(1);
    while (leftPos <= leftEnd && rightPos <= rightEnd) 
        if(npc((*a)[leftPos])->compareTo((*a)[rightPos]) 
            <= int32_t(0))
            tmpArray_->set(tmpPos++, (*a)[leftPos++]);
        else
            tmpArray_->set(tmpPos++, (*a)[rightPos++]);

    while (leftPos <= leftEnd) 
        tmpArray_->set(tmpPos++, (*a)[leftPos++]);

    while (rightPos <= rightEnd) 
        tmpArray_->set(tmpPos++, (*a)[rightPos++]);

    for (int32_t  i = int32_t(0); i < numElements; i++, rightEnd--)
        a->set(rightEnd, (*tmpArray_)[rightEnd]);

}

void ::Sort::main(::java::lang::StringArray *args)
{
    clinit();
    mergeSort(args);
    ::java::lang::String *separator = u""_j;
    {
        auto _a = npc(args);
        for(int _i = 0; _i < _a->length; ++_i) {
            ::java::lang::String *s = (*_a)[_i];
            {
                npc(::java::lang::System::out())
                   ->println(::java::lang::StringBuilder()
                       .append(separator)
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                       ->append(s)
                       ->toString()
                    );
                separator = u", "_j;
            }
        }
    }
}

extern ::java::lang::Class *class_(const char16_t *c, int n);

::java::lang::Class *::Sort::class_()
{
    static ::java::lang::Class *c = ::class_(u"Sort", 4);
    return c;
}

void ::Sort::clinit()
{
    super::clinit();
}

::java::lang::Class *::Sort::getClass0()
{
    return class_();
}
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 B.5 Sort-main.cpp
#include </Sort.hpp>

extern void init_jvm();

int main(int, char**)
{
    init_jvm();
    
    ::Sort::main(/* TODO convert args to string array */nullptr);
    
    return 0;
}
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