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Abstract

Stabilisering av handeldvapen med bildanalys

Stabilization of handheld firearms using image analysis

Alexander Lindstedt

When firing a handheld weapon, the shooter tries to aim at the point where he wants
the bullet to hit. However, due to imperfections in the human body, this can be quite
hard. The weapon moves relative to the target and the shooter has to use precise
timing to fire the shot exactly when the weapon points to the intended target
position. This can be very hard, especially when shooting at long range using a
magnifying rifle scope.

In this thesis, a solution to this problem using image analysis is described and tested.
Using a digital video camera and software, the system helps the shooter to fire at the
appropriate time. The system is designed to operate in real-time conditions on a PC.
The tests carried out have shown that the solution is promising and helps to achieve
better accuracy. However it needs to be optimized to run smoothly on a smaller scale
embedded system.
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1 Popularvetenskaplig sammanfattning

Da en skytt avfyrar ett handhallet vapen forsoker skytten sikta mot den punkt
dér han vill att kulan ska traffa. Eftersom den ménskliga kroppen inte ar helt
stabil kommer vapnet att rora sig runt denna punkt och skytten maste forsoka
avfyra skottet precis vid den tidpunkt da vapnet pekar mot réatt punkt. Detta &r
sarskilt svart vid stora avstand, da sma vinkelskillnader i vapnets pipa ger storre
utslag med 6kande avstand till malet. I denna uppsats beskrivs och utvéirderas
ett system konstruerat for att minimera inverkan av de ofrivilliga rérelserna.
Systemet anvéander sig av en videokamera monterad i siktet och en dator med
mjukvara som utfor analys och behandling av videostrommen for att avgora nar
vapnet bor avfyras. Tanken &r att i ett fardigt system implementera algoritmen
i ett portabelt inbyggt system som kan monteras i kikarsiktet tillsammans med
kameran. Mjukvaran kan sedan styra avfyrningen elektroniskt efter att skyt-
ten gett sitt godkdnnande genom att lagga tryck pa avtryckaren. Testen som
genomforts visar att angreppsséittet dr lovande. Systemet fick i samtliga fall
béttre resultat &n da skyttarna avfyrade skott manuellt.
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2 Introduction

2.1 Background

Since the mid 1800’s, telescopic sights have been used to extend range and
improve accuracy when firing handheld weapons. The use of these sights is
widespread in military, law enforcement and hunting applications. These sights
help the shooter by magnifying the field of view, typically by a factor 3 to 20.

Shooting at a long range introduces problems that need to be solved in order
to achieve good accuracy. Since the bullet travels a long distance before reaching
the target, many outside forces such as wind and gravity have to be taken into
account. Also, the high level of magnification and the long distance to the target
make even very small angular movements of the weapon have a large effect on
the point of aim.

Since their introduction, several features have been added to telescopic sights
to help the shooter achieve better results. Bullet drop compensation helps the
shooter by compensating for the force of gravity, which acts on the bullet when
traveling the distance to the target.

With the development of large scale integrated circuits, the possibility to
integrate electronics into scopes without adding too much bulk has become
reality. Several companies now offer features such as integrated rangefinders
for estimation of the distance to the target. There are also complete ballistic
systems, which calculate the ballistics of the bullet, taking into consideration
ammunition type, air density and other factors relevant to the bullet path.

The rapid development of processing speed allows for more complex calcula-
tions to be carried out in integrated systems. This makes new features feasible
for implementation.

One problem that still needs to be solved is how to compensate for the unin-
tentional movements the shooter makes when trying to aim at a target. These
movements become especially noticeable when the target is at long range. One
of the most important factors that plays a role in where the bullet hits is how well
the shooter is able to time his shot. Perfect timing is very hard, since the finger
movement to pull the trigger cannot be very fast without introducing unwanted
movement in the rifle. The system described in this thesis tries to compensate
for this human imperfection by using image analysis and signal processing to
help the shooter fire at the time when the weapon points at the intended target.
The demonstrator system is based on a pending patent application by Goéran
Backlund and Gert Johansson at Combitech AB.

2.2 Specifications

The system developed is a technology demonstrator built to test the possibilities
of using this approach to increase accuracy. The system consists of a digital
camera mounted on a rifle scope, and connected to a computer. The computer
does all the calculations and simulates shooting, so that the precision of the
system can be evaluated. The system should be as fast and computationally
effective as possible taking into consideration the possible future implementation
in a smaller embedded system.



2.3 Delimitations

The proposed system is a demonstrator for a possible future product. It is not
finished for implementation in an embedded enviroment, nor is it adequatly
tested to be safe or reliable enough for use in a commercial product. It is a
proof of concept and a test to see whether the proposed method is good enough
to continue development toward a commercial product. The system is limited
to handling stationary (non-moving) targets.



3 Pre-study and system overview

The proposed solution uses a digital video camera as its only sensor and the
output of the system is an electrical signal telling the weapon to fire. The system
is initiated by the shooter pressing the trigger and can be aborted at any time
by releasing pressure from the trigger.

To be able to determine when to fire the weapon, the information from the
camera needs to be analyzed. The information obtained from the camera is the
same as the field of view of the shooter trying to aim at the target as seen in
figure 2.

Figure 1: System functionality

Video stream Firing signal

Input Output

Figure 2: The field of view as seen by the digital camera

For the purpose of finding the optimal time at which to fire the weapon,
several parameters need to be estimated. The target position in the image
needs to be known, and we need to know where the shooter is currently aiming.
In addition to this, due to the sampling interval not being infinitesimally small
and due to delays in the system, we also need an estimate of the velocity with
which the current aiming point is moving. This is necessary in order to predict
the aiming position until the next sample is received from the sensor.



3.1 Finding the target or tracking the motion

For the target position estimation problem, two main approaches were evalu-
ated. The first approach would be to try to find the target in each image using
a template matching technique to find the target in the image as has been done
in [1]. The second approach is to follow the motion of the weapon only and
not make any assumptions about the target itself or try to recognize it in any
way. To determine which approach is the best in this case, the strengths and
weaknesses of each approach were analyzed.

3.1.1 Pattern recognition

This approach relies on the assumption that we have information about the
target that makes it recognizable. Features or a template image that describe
the characteristics of the target are required to be able to match the target.

Although very information-demanding, there are clear advantages with this
approach. It is fast, since in the ideal case we would only need to process one
frame to be able to obtain a good estimate of the target position in relation to
the current aiming position.

If the system is designed to be applied for very specific cases, e.g. to shoot
down aircraft, this could be realizable. However in our case the system needs
to be more general, since the target could be almost any type of object in a real
life situation. It would also be very hard to distinguish a camouflaged target
against a background that is extremely similar to the target itself. Problems
would also occur if the target is almost completely occluded, which would not
be an unusual situation especially in hunting and military applications.

3.1.2 Image stabilization

The image stabilization approach instead relies on the assumption that we
should be able to obtain a good estimate of the position of the target using
knowledge of the motion of the weapon during the aiming period. In this case
we can view the problem of finding the target position as a signal filtering prob-
lem, where the true signal (target position) is estimated from a series of noisy
measurements. The problem of finding the global motion in a video stream has
been solved for other applications such as digital video stabilization [2].

The main drawback of this approach is that we may need quite a few samples
of the position of the weapon to be able to obtain a good estimate of the target
position. This could make the system slow and unresponsive.

The biggest advantage of using image stabilization is that the system would
be completely independent on the enviroment in which it is used as long as the
motion can be tracked. Since the only information needed is the motion of the
shooter, this would be a better approach in the sense that it could be used in a
much wider range of applications.

3.2 Initial system layout

To get a good overview of what needed to be implemented, an initial flowchart
of the demonstrator system was created. This chart describes the general func-
tionality of each step that needs to be taken in order to reach the final goal of
firing the weapon at the best time possible.



The first step in the process is to capture the current frame from the video
camera. This frame contains all the information needed to perform the analysis.

The second step is to estimate the motion of the aiming point. This motion
is needed to be able to estimate where the target is and where the shooter is
currently aiming.

From this motion, we need to estimate the point where the shooter intends
to aim. This can be interpreted as a problem of finding the original signal
(the motion of the target point) that is hidden in noise. Here, we define the
unintentional motion as noise. This way the problem can be viewed as a pure
signal processing problem, and solved with existing signal processing techniques.

When we have an estimate of the target point, we need to know when the
weapon will pass this point the next time, so that the firing process can be
initiated at the correct time. This means that we have to implement a short
term prediction of the motion and an algorithm that decides when the time is
right to fire the weapon.

This initial analysis of the system will be the basis for the development. A
flowchart of this process is presented in figure 3.

Figure 3: Initial system flowchart

Image Motion Target Firing
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3.2.1 Hardware

To obtain the data needed to perform the image analysis, a video stream needs
to be captured from the telescopic sight. A mount needs to be designed that
makes it possible to capture video while the shooter is still able to aim through
the sight.



4 System description

4.1 Hardware platform

To be able to obtain video from the telescopic sight, a camera mount had to
be designed. A rough design of this mount was already available at Combitech
AB, but some modifications had to be made to make the system more reliable
and easy to use.

The mount uses a semi-transparent mirror placed at a 45 degree angle to the
optical axis. This mirror acts as a beamsplitter. Approximately 50 percent of
the light is transmitted through the mirror and into the eye of the shooter and
the other 50 percent is reflected to the camera, which is placed orthogonal to the
optical axis. This way the shooter can aim normally through the sight, while
the camera can provide a digital video stream of the same view. The downside
of this approach is that the scene will be a bit darker. A schematic illustration
of the beamsplitter (figure 4) and the entire mount (figure 5) is shown below.
The angle between the incident ray and the surface normal equals the angle
between the reflected ray and the surface normal due to the law of reflection.

Figure 4: Beamsplitter, I = incident ray, R = reflected ray, T = transmitted
ray

Y

Figure 5: Mount schematic
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The image sensor used in the system is a modified Sony Playstation 3 eye
camera. The original optics for the Playstation 3 eye only supports two zoom
levels corresponding to 56 or 75 degrees field of view. To be able to control the
zoom level more exactly, the sensor is mounted on the back of the optical system
of an old video camera. This makes it possible to adjust the focus and zoom of
the optics manually using two small screws. These adjustments are necessary
to be able to obtain a good image.

The reasons this camera was chosen were because of its low cost compared to
professional camera options and high configurability and performance compared
to most other consumer-grade miniature USB-cameras. There is a strong point
in showing that the system can be built without the use of expensive equipment.

There is also a third-party API available for the camera from code laborato-
ries. This makes it possible to adjust parameters such as exposure, frame rate
and resolution directly in the program code by sending commands to the cam-
era. Most other cheap consumer cameras don’t have this kind of configurability
but rely on general APIs such as Microsoft DirectShow, which offer a lot less
flexibility when programming.

Initially, the system was tested using a cheap Logitech webcam. This proved
to be a bad solution, since it was not possible to fix the frame rate. The frame
rate could drop from 30fps to 10fps if lighting conditions changed slightly.

The Playstation 3 camera is able to output an uncompressed video stream
of 640x480 pixels at a maximum 60 frames per second or a 320x200 pixel stream
at 120 frames per second. The frame rate can be fixed.

The real-world resolution measured in meters per pixel depends on the zoom
level (field of view) of the rifle scope and the distance to the target. In the tests
carried out in this project, one pixel corresponds to approximately 3 mm at the
target distance.

Figure 6: Absolute resolution field of view and distance dependence
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4.2 Software platform

The choice of software platform was made considering that the system should
operate on a PC but be easily ported to an embedded platform in the future.
One other important factor to consider is that the software should be as fast as
possible, as higher computational speed and efficiency can be used to increase
the precision of the system. Thus a low-level programming language was used
to utilize the hardware as efficiently as possible.
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To be able to satisfy both the speed and portability demands of the system,
the system is developed in the C++ programming language.

Many of the image analysis and image processing algorithms that will be
tested and used in this project are widely used and implementations in C++
are already available. This makes the design process a lot quicker and more
time can be spent looking at this specific implementation, as a smaller amount
of time has to be spent implementing algorithms and functions.

One of the most widely used libraries for these implementations today is
OpenCV [3], an open source library developed by Intel Corp. It contains a lot
of advanced image analysis functions and is generally regarded as efficient and
stable. It is also cross-platform and is free for both commercial and academic
use. This library is used for most of the calculations in this project.

The developing enviroment chosen was Visual C++ 2010 Express on a win-
dows XP laptop. The laptop is equipped with a single-core Intel Pentium M
processor and 1GB of RAM.

4.3 Physical model

4.3.1 Pinhole camera model

The simplest way to describe the projection of the three-dimensional world
into the image plane of a digital camera is the pinhole camera model. This
model describes the aperture of the camera as an infinitely small point and
neglects all lens effects. The drawbacks of using this approximation is that the
effect of lens distortion is ignored. This effect should however be small enough
not to cause any big problems in this case. It can also be reversed by using
a transformation before doing the analysis. However this functionality is not
implemented here. By using the pinhole camera approximation, calculations
are simplified compared to using a more advanced camera model. This is a
big advantage in this case, since the developed algorithm has to be as fast as
possible to be able to run at high enough frame rates on the target hardware.

Figure 7: Pinhole camera model

The projection of a point in the real world on the image plane will be de-
pendent on the angle to the aperture. Two objects at the same angle will be
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projected on the same pixel in the image sensor.

4.3.2 2-D motion model

When aiming at the target, the shooter is assumed to be stationary. The main
motion that is to be estimated is the pan and tilt of the gun barrel. Pan is
rotation around a vertical axis and tilt is rotation around a horizontal axis
perpendicular to the optical axis. The translational motion of the gun and the
roll (rotation around the optical axis) are assumed to be small.

For small angles, the pan and tilt motion of the camera can be approximated
as a translational motion of the field of view. In this case that assumption
should be valid, since the angular motion when trying to aim steadily at a
target should be small enough. Each pixel in the image then corresponds to a
certain angle in the pan and tilt directions. The pan and tilt angular motion
can thus be interpreted as moving the image plane left and right. This is a
pure translational motion in the image plane. The motion can be described as
Ty41 = x4 + d; , where z; is the x- and y-coordinate of a pixel at time t and
d, is the global motion of the frame. This is an approximation and won’t be
true for all pixels in the image. However the effects of this can be minimized by
using techniques described in the next section.

4.4 Motion estimation

To be able to estimate the position where the shooter intends to aim, a good
estimation of the motion of the point of aim has to be obtained. The sensor
information available in this system is the video stream captured by the camera,
so the motion estimation should be based on image analysis. Lots of work has
been done in the field of estimating motion between subsequent frames in a
video stream. The idea is to use information in two subsequent frames to be
able to determine how much the scene has moved.

Two of the most common applications of inter-frame motion estimation in
video streams are digital image stabilization and video compression. In our case
we need to find an algorithm that is fast enough to run in real time on limited
hardware and accurate enough to provide reliable estimates.

In digital image stabilization, the inter-frame camera motion is estimated in
much the same way as will be the case in our system. So this was a natural
starting point when trying to find good motion estimation algorithms.

The task of finding the motion vector field in a stream of images is referred
to as optical flow estimation. The optical flow of an image is a vector field
describing the motion of each pixel from one frame to another. In [4] and [5]
several optical flow algorithms are thoroughly evaluated and compared consid-
ering processing speed and accuracy. In both papers, the Lucas-Kanade optical
flow algorithm is concluded to have the best overall performance. This tracker
was chosen for this project due to its low computational cost and high relia-
bility. The version implemented is the one described in [6], which is a version
of the Lucas-Kanade algorithm applied to image pyramids. This provides bet-
ter performance when large inter frame motion is involved, and leads to higher
robustness in the system.

The first approach to estimating the optical flow field of the field of view
would be to simply try to estimate the optical flow for each pixel in the original
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image. However, this approach would be highly computationally intensive, since
one 640x480 image contains more than 300 000 pixels. Many pixels would also be
impossible to track reliably. If the neighborhood around the pixel contains little
or no intensity variation, there is no information that can be used to distinguish
one pixel from another. This would lead to a lot of erroneous motion vectors
that would make the estimated motion unreliable.

Instead, an approach that is widely used is to find the points in the image
that are most suitable for tracking and only applying the optical flow algorithm
in these points. This, however, can also be computationally intensive if the
feature finding algorithm itself is slow. Two feature detectors were evaluated
for use in this application. The good features to track algorithm by Shi and
Tommasi as described in [7] was tried first, due to the fact that it finds the
optimal features for use together with the Lucas-Kanade optical flow algorithm.

However, the Shi-Tommasi feature detector proved not to be fast enough to
run smoothly in real time, especially on a low power embedded microprocessor.
Instead, another feature detector called FAST, developed by Edward Rosten
and Tom Drummond and described in [8], [9] was implemented. This lead to a
huge performance increase. In the timing tests presented by Rosten/Drummond
comparing the speed of FAST to several other feature datectors, including Shi-
Tommasi, the increase in performance was drastic. FAST was able to process
179MPix/s while Shi-Tommasi only processed 6.50MPix/s. The percentage of
successfully tracked features was comparable to the other, much slower detec-
tors.

FAST is an abbreviation for features from accelerated segment test. It works
by evaluating pixel values on a Bresenham circle of radius r around the point
of interest. The point of interest is considered a feature point if n pixels on the
circle differ by a threshold t from the intensity value of the point of interest.
The version of the detector used uses a value of r = 3 and n = 9. The algorithm
has been optimized using machine learning to minimize the number of logical
statements that have to be evaluated for each pixel.

Figure 8: FAST feature detector illustration. Original image by Edward Rosten

The main drawback of this feature detector is that it is hard to control the
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amount of features detected, due to the requirement of a threshold for deciding
what is a feature and what is not. Since a stable execution time is desired, this
can pose a problem if too many features are found and tracked.

The issue of limiting the amount of tracked features could be resolved by
choosing a random subset of the detected features and pass them on to the
tracking algorithm. However, it is desirable to use the most prominent features
to make the tracking as reliable as possible. The solution to this problem is to
make the threshold adaptive in the way that if too many features are found,
the threshold is set to a higher value telling the algorithm to be more selec-
tive and vice versa. This way, the number of features do not vary too much
and the highest scoring features are always used. The threshold is set using a
proportional controller [10]. The threshold is increased or decreased by a value
proportional to the error, e(t), which is the difference between the number of
detected features and the desired amount of detected features.

u(t) = Kpe(t)
Where K, is a constant. u(t) is then added to the current threshold, T
Tt+1)=T(t) + u(t)

Since T needs to be an integer, the value is also rounded off to the closest
integer value. The new threshold is then used in the next iteration.

The constant K, determines how fast the threshold adapts to changes in
the image. If K, is large, the system will compensate more and if it is small
the system will be slower. If K, is large, the risk of overcompensation will
also be greater, which means that the system changes the threshold too much
resulting in too many or too few feature points being found. The choice of the
constant K, is therefore a tradeoff between speed and overcompensation. The
value for K, was set using manual tuning to a value of 0.1. For this value, the
overshoot was not too big and the system responded fast enough to changes in
the scene. In reality, these changes are small due to the system being used only
for a few seconds at a time in a set environment that does not change much
during this limited period. The same algorithm is used for initial calibration of
the threshold before the algorithm starts.

These two algorithms form the base of the inter-frame global motion esti-
mation technique applied in this project. The simplest way to use them would
be to apply the feature detector to a full frame of video and use the tracking
algorithm to find the motion for these features from that frame to the next.
Then the mean of all the motion vectors could be used as the global motion
estimate. However, if an object in the frame is moving, the motion estimation
would be affected in a negative way if features are assigned to pixels on the
moving object. This way, leaves blowing in the wind or a bird flying past could
affect the accuracy of the tracking.

The way this problem is addressed is to divide the frame into four sub-
frames, where each sub-frame has its own threshold value. The global motion
for each of these four sub-frames is then estimated in the way described above.
The global motion for the entire frame is then calculated as the median of the
four sub-frame motion vectors. This is similar to the method applied in [11].
This way if there is an object in one part of the image that is moving differently
compared to the stationary background, this does not affect the inter-frame
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motion estimate. The sub-frame division also makes sure that the detected
features are spread out in all parts of the image. The general stucture of the
inter-frame global motion estimation is depicted in figure 9.

Figure 9: Motion Estimation Algorithm
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4.5 Motion pattern analysis

To be able to make correct assumptions when designing the system, the motion
patterns that were obtained when performing tests on the system were analyzed
to see if the assumptions were correct and to draw some conclusions regarding
the speed of convergence of the estimates. Figures 10, 11 and 12 show some
of the interesting characteristics of three different motion patterns produced by
different users. The data from the algorithm was imported and analyzed in
MATLAB to produce the plots.
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Figure 12: Motion pattern for user 4 shot 2
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In the top left plots of each figure the motion pattern is shown in the x-y
image plane. It looks like a distribution of points around the mean. The distri-
butions look like they could be quite well approximated by a two dimensional
gaussian distribution, since the points are denser around the mean and sparser
further away from the mean.

In the bottom two plots, the x- and y-position and the x- and y-mean respec-
tively are plotted as a function of time. From these plots it can be concluded
that the mean seems to stabilize after around two to four seconds. Since we
want to have a high reliability in the system, the system can be fired some time
after the mean has stabilized. This time will be a limit for how quick the system
can be from the time the user starts pressing the trigger to the time the system
initiates the firing procedure.

In the top right plot, the distance from the mean to the current position
is shown as a function of time. It can be seen that the current position passes
close to the mean approximately one to two times per second when the mean has
stabilized. These are the points in time when the weapon could be fired, since
the goal is to fire the weapon when passing as close to the mean as possible.

4.6 Point of aim estimation

When trying to aim at a target, stationary or moving, there is always more
or less unintentional motion added to the intentional motion of the shooter
following the target. This motion is caused by forces originating from the body
of the shooter and external forces such as wind. When studying these motions
around the aiming point, one can see that they are approximately randomly
distributed around the point at which the shooter tries to aim. A plot of these
motions is depicted in figure 10. A small error is also introduced in the motion
estimation algorithm. This error should also be normal distributed around the
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true target point. We can therefore add these two distributions together to a
single zero mean gaussian distribution, since they are independent.

The measured point of aim at a certain time, z(t), can therefore be approxi-
mated by the position of the target, (¢) with additive gaussian noise, v(t) with
mean zero and a certain covariance that depends on the skill and stability of
the shooter and external influences.

y(t) = a(t) +v(t)

All of the variables in this equation are in this case two-dimensional vectors
containing the x- and y-coordinates in the image plane.

The goal of our algorithm is to filter the noise v(¢) and estimate z(t) from
the noisy measurements z(t).

In our case, where the target is assumed to be stationary, one can see that
a good estimator would be the mean of the measurements, since the noise is
randomly distributed with zero mean. As the number of measurements reach
infinity, the mean of the samples would converge to the target position according
to the law of large numbers.

4.7 Motion prediction

Since we don’t have access to continuous measurements of the motion, only
discrete samples taken with a small time difference, we need to be able to predict
the motion between the samples. This is necessary to be able to fire the weapon
at points in time that are between two samples.

To do this, a model has to be used to describe the motion that occurs between
two subsequent samples. The model used in this system is a constant velocity
model. This means that the velocity is assumed to be constant for the short
period of time between two frames. So the aiming position one sampling interval
ahead in time is predicted as

Ti41 = Tt +£Ué x dt

where z; is the 2-D vector describing the aiming position at time t, x} is its
derivative and dt is the sampling interval.

4.8 Firing decision

This part of the system is responsible for making the critical decision whether
to fire the weapon or not. The two main concerns to be taken into account are
safety and precision. It is crucial that the system does not fire without active
action taken by the operator, and that the system has a good enough estimate
not to fire in the wrong position. In this section criteria that are not possible
to implement in the demonstrator system, but could be implemented in a final
version of the system, are also discussed.

4.8.1 Criteria

The first and foremost criterium that has to be fulfilled in order for the system
to initiate firing procedure is that the shooter has given the signal to the system
to fire. In this case this is represented by the action of applying pressure on the
trigger, slowly moving it inwards. As long as the trigger is moving inwards, the
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system is in a state where it is cleared to fire. If the shooter at any point stops
pulling the trigger or releases it quickly, the system is reset and can not fire.
This is a very important safety feature and makes sure the shooter is always in
control of the system.

The second criterium is also related to safety, but even more to accuracy.
Before firing the weapon, the system needs to know that the estimated target
position is reliable enough. This is implemented by looking at the derivative
of the estimated target position. If the derivative is small enough, the target
position is considered stationary and the shot can be fired.

Figure 13: Firing decision proximity criterium

Predicted position

Current position

The third criterium concerns the position in which the shooter is currently
aiming, and the speed at which the weapon is moving. A line is drawn from the
current aiming position to the position where it is predicted to be when the next
frame will be received from the camera. If this line passes within a threshold
distance to the estimated target position, firing will be initiated. The firing will
be initiated with a delay, so that the weapon fires at the point on the line where
it is closest to the estimated target position. This is illustrated in fig. 13.

4.9 Error sources

When estimating the motion of the weapon using the optical flow algorithm,
there are always a percentage of the motion vectors that are not correctly com-
puted. Using the outlier elimination algorithm most of these erroneous vectors
can be filtered out. However, if the difference between the erroneous vector and
the correct vectors is small enough, the global motion estimate will be influ-
enced by vectors that deviate from the true motion in the system. If the motion
between two frames is too big, the motion estimation algorithm will fail, since
the window where the algorithm looks for features is limited. This window can
be set to be bigger, but this influences the computation speed in a negative way.
Currently there is no way for the system to tell if it looses the tracking because
of too big motions. This has to be implemented in a finished product to ensure
that it is safe to operate.

The firing decision is based on the assumption that the weapon moves with
approximately constant velocity between two frames. If the shooter for some
reason abruptly changes speed in the time between the frame when firing is
initiated and the time when the weapon fires, the estimated position where the
weapon fires will be wrong. However, if the sampling interval is short enough,
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this error will be small.

The assumptions made in the physical model of the system introduces errors.

If the global motion between frames is wrongly estimated, the coordinate
system will drift away from its original position, causing the reference point of
the entire system to be shifted. This shift is generally small, in the order of a
few pixels. This corresponds to a few millimeters up to a few centimeters. It
would be possible to compensate for this effect by doing some kind of image
matching between frames with larger intervals to see how the frame has moved
in a longer time perspective. This has not been implemented, but is possible to
do in a future version of the system.

4.10 User interface

The user interface of the software was designed so that the tracking could be
followed in real time and be easy to evaluate. The output window (fig. 14)
shows the view through the scope and the information needed to follow the cal-
culations of the algorithm. For each of the four tracking windows, the number
of tracked features and the threshold level is displayed in each corner. The red
dot represents the current estimated target position and the green dot repre-
sents the starting point of the tracking. The current time is also displayed for
reference.

Figure 14: Screenshot of the GUI
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When the shot is fired, the window stops and one more frame is grabbed. A
line is drawn between the position of the last two frames and the position where
the shot was fired is marked.

The input of the software can be either a recorded movie file or real time
video from a camera. The output data is saved to a file in a format that can be
easily imported into other software such as MATLAB for further analysis.
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5 System evaluation

In this chapter, the methods for testing the system are described. Results from
the tests are also presented.

5.1 Test method

The system was evaluated by letting four different persons with varying expe-
rience of firing hunting rifles try to shoot as well as possible at a target in a
shooting range. Each of the four persons shot three series of five shots using no
assistance from the system and one series each that was filmed for later testing
with the system. Due to lack of time, user 4 shot only two series without as-
sistance. The filmed series were run through the algorithm and the shots fired
were simulated by the software so that the performance of the system could be
compared to the performance of the same persons firing a weapon without use
of assistance.

The performance of both methods is measured by looking at the scores the
shooters were able to achieve when shooting at the target (fig. 15). The maximal
score for one shot is 10 points. This test should give a good indication of whether
the system is able to improve the performance.

Figure 15: Target
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The point where the virtual shot hits is simulated by using the image before
the shot was fired by the algorithm and the image after the shot would have
been fired. The motion between these frames is then measured using the same
algorithm the system uses for stabilization. The velocity of the vector field
between the two frames is assumed to be constant, and the point where the
shot hit is calculated by interpolating the distance which the weapon would
move between the first frame and the delay set by the algorithm.

The test area was set up to be as close to a normal operating enviroment
as possible. The test was carried out in a forest area, and the shots were fired
from a hunting rifle. The distance to the target was 50 meters and the shots
were fired from a standing position.
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5.2 Results

The total scores of the shooting tests are presented in table 1.

Series 1 | Series 2 | Series 3 | With Assistance
User 1 28 14 24 39
User 2 36 32 18 43
User 3 18 5 0 39
User 4 1 8 - 31

Table 1: Total score for all users with and without assistance

The individual scores of users 1, 2, 3 and 4 are presented in tables 2, 3, 4,
and 5. Observe that the shots are not in chronologic order for the series without
assistance, since the shots were fired on the same target and there was no way
of telling which shot was fired first.

Series 1 | Series 2 | Series 3 | With Assistance
Shot 1 8 6 5 9
Shot 2 7 5 6 8
Shot 3 8 2 7 7
Shot 4 5 1 6 7
Shot 5 0 0 0 8
Sum 28 14 24 39

Table 2: User 1 scores

Series 1 | Series 2 | Series 3 | With Assistance
Shot 1 10 9 6 8
Shot 2 9 9 6 8
Shot 3 9 6 6 8
Shot 4 4 5 0 10
Shot 5 4 3 0 9
Sum 36 32 18 43

Table 3: User 2 scores

Series 1 | Series 2 | Series 3 | With Assistance
Shot 1 7 5 0 6
Shot 2 5 0 0 7
Shot 3 6 0 0 8
Shot 4 0 0 0 7
Shot 5 0 0 0 9
Sum 18 5 0 37

Table 4: User 3 scores
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Series 1 | Series 2 | Series 3 | With Assistance
Shot 1 1 7 - 6
Shot 2 0 1 - 5
Shot 3 0 0 - 5
Shot 4 0 0 - 10
Shot 5 0 0 - 5
Sum 1 8 - 31

Table 5: User 4 scores

6 Discussion and conclutions

6.1 System performance

In the tests carried out in the scope of this project, the system performed
considerably better than what the users could achieve without using the aid
of the system. The results were pretty clear and the conclusion that can be
drawn from this is that the concept is good and should be a worthy candidate
for further development and testing. One really interesting part of the results
is the fact that the shots fired by the system were never worse than a score of 5,
while the manually fired shots often missed the target completely. This implies
that the system is very good at eliminating the shots that would otherwise have
been bad hits or even misses. It is a very good property, since this could mean
a big difference in real world situations.

However, due to lack of time, only a few tests were performed. To be able
to achieve higher certainty regarding the performance of the system it should
be more thoroughly tested with a wider range of scenarios and users.

One aspect of the tests that is hard to know the impact of is the psychological
effect. Since the weapon was not fired when doing the tests with the system, the
shooters might have been more calm and relaxed when performing that part of
the test compared to the test using live ammunition. This could have affected
the results in favor of the assisted shots.

6.2 Physical limitations

As was shown in the motion pattern analysis, the motion pattern has an irregular
pattern with some periodic characteristics in the x- and y- direction when viewed
over time. The periodic nature of the motion can probably be attributed to the
way the human body and brain compensates for its own instability. When the
point of aim moves away from the target a force is applied to move the point of
aim back to the target. The frequency of the periodic component of the motion
is around 3-4Hz. To be able to obtain a good and stable estimate of the target
position, the system must follow the motion for around 1-4 seconds depending
on the stability of the user. This time is a lower limit for how fast the system
can be ready to fire in a safe way. When the mean is stable, in most cases there
will be less than 0.5 seconds delay until the weapon is fired, due to the frequency
of the oscillating motion with which the weapon moves.
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6.3 Real-Time properties

The system was able to run in real time with a frame rate of 60fps on the
hardware platform used during the tests. However, this hardware differs con-
siderably from the target platform. To be able to run the system in real time on
embedded processors further optimization must be performed to increase speed
while maintaining good accuracy and robustness.

This should be possible to achieve, especially if the system is implemented on
dedicated hardware. The algorithms used are easy to parallelize and it has been
shown that performance can be increased a lot by doing so. In [12] a speed
increase by a factor 100 was achieved when implementing the Lukas-Kanade
optical flow algorithm with highly parallel computations on an NVIDIA GPU.
This implies that a high degree of optimization can be made to further increase
the speed of the computations.

6.4 Robustness

As the system is designed, there is always the possibility of the system losing
the tracking of the motion. This will result in a displacement of the reference
coordinate system. When this happens, the estimate will be faulty and the
weapon could fire in a position that was not intended by the user. This problem
needs to be addressed either by aborting execution when this happens or by
finding a solution that eliminates this problem.

The optical system of the demonstrator system is not optimized for handling
low light conditions and the system does not work very well in these conditions.
If a more light sensitive camera sensor is used and an optical system that is
more well suited for the application is designed, the system could be made more
robust when it comes to lighting conditions. It would also be possible to use
an infrared sensor to capture heat radiation instead of using the visible light
spectrum without having to modify the system much.

6.5 Safety

Safety is always an important aspect to take into consideration when working
with weapon systems. It is crucial that the system works as expected at all
times and that the user is never surprised by the actions taken by the system.
The user should always control the system and not the opposite. Since the
system only operates and is able to fire when the user explicitly tells it to do so
by applying pressure to the trigger, this should not be a problem. To further
increase the perceived control, the estimated target position could be presented
to the user while aiming by using a projected dot in the scope. Some kind
of feedback could also be used to tell the user when the system has a stable
estimate and is ready to fire.

6.6 Recommendations for future work

The most important step to take in order to evaluate the system further is
to build a more robust mount for the camera that is safe to have attached to
the gun while firing live ammunition. This way the uncertainty regarding the
psychological effects of knowing that no shot will be fired will be eliminated.
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Another important aspect to investigate is the real time behavior when running
the system on an embedded platform. Implementation on either a DSP, FPGA
or small processor would be a good step to take in order to make the system
work without the need of using a PC to do the computations.
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