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Sammanfattning 
 
Ett av flera huvudsyften med ett gränssnitt mellan hjärna och datorer är att förbättra 
livskvaliteten för förlamade personer. I tidigare studier har betydande ansträngningar gjorts för 
att känna igen en användares avsikter. Dock finns inga tidigare studier som visar varför detta är 
viktigt. De system som idag ligger i framkant gällande gränssnittet mellan hjärna och dator har 
dessvärre låg bandbredd vilket leder till en hög kognitiv belastning på användaren. Ett gränssnitt 
mellan hjärna och dator som är designat med dynamisk anpassning kan minska ansträngningen 
som krävs av användaren för att använda systemet samt ge denna en förkroppsligande känsla. 
Utgående för detta försöker denna rapport att utveckla ett intelligent system för gränssnittet 
mellan hjärna och användare. Detta system baseras på lärandet av en användares beteende samt 
att förutspå användarens intention när det kommer till att navigera en semiautonom robot. Vidare 
har arbete lagts på att modellera en användare samt att bygga en robot för att träna den 
utvecklade algoritmen. Simulerade tester av den utvecklade algoritmen bekräftar möjligheterna 
att använda ett sådant användare anpassat system för interaktionen mellan hjärna och dator. 
 
Även med en adaptiv gränssnitt mellan hjärna och dator så är systemet utsatt för fel på grund av 
felaktig klassificering av användarens avsikt. Detta fel kan leda till felaktigt beteende hos en 
robot eller felaktig förflyttning av en rullstol för en funktionshindrad person. Flera fysiologiska 
studier har visat att fel-relaterade potentialer framkallas i hjärnan när ett fel begås av ett system 
som agerar som gränssnitt mellan människa och maskin. Erkännande av fel-relaterade potentialer 
i de inspelade elektroencefalografi data kan utnyttjas för att förhindra felfortplantning till 
genomförande och därmed fungera som en kontrollmekanism för att känna igen användarens 
intention. Således i den sista delen fokuserar denna uppsats på att utveckla en klassificerare för 
detektering av fel-relaterade potentialer genom användning av Support Vector Machine och 
resultatet visar jämförbar klassificerings prestanda för Support Vector Machine som för de bästa 
Gauss klassificerare. 
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Abstract 

Among several, one of the main goals of Brain-computer interface (BCI) system is to improve 
the quality of life for paralyzed persons. While significant effort has been made to recognize user 
intention, the necessity of predicting user intention in the context of BCI for navigational tasks to 
design a dynamic interface, has not been addressed yet. State-of-the-art BCI system has low 
bandwidth because of which the user is subjected to much cognitive or interaction load. However 
a BCI system designed with dynamic customization feature to adapt as per individual user, 
would indeed reduce the interaction load and provide embodiment feeling to the user. Therefore 
this thesis attempts to develop an intelligent BCI system based on reinforcement learning 
approach to learn the user behaviour and predict the intentions in the context of a semi-
autonomous robotic navigational task. 

In addition, an effort has also been made towards modeling a user or to build an agent, in order 
to train the developed algorithm. Simulated testing of the developed algorithm confirms the 
potential of using such a user adapted brain-computer interface system. 

Even with an adaptive brain-computer interface, the system is prone to errors due to 
misclassification of the user's intention. Propagation of this classification error could lead to 
wrong execution of a robotic avatar or movement of a wheel-chair in use by a paralyzed person. 
Several physiological studies have shown that error-related potentials are elicited in the brain 
when an error is committed by the BCI system. Recognition of error-related potentials in the 
Electroencephalography recorded data could be exploited to prevent error propagation till 
execution and hence act as a verification mechanism for the classifier devoted for recognizing 
user intention in the context of BCIs. Thus in the last part, this thesis focuses on developing a 
classifier for detection of error-related potentials using Support Vector Machine and the result 
shows comparable classification performance of Support Vector Machine to that of state-of-the-
art classifiers such as Gaussian classifier and Bayesian filter method. 
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NOMENCLATURE 

Abbreviations 

 

AUI Adaptive User Interface 

BCI Brain-Computer Interface 

BMI Brain-Machine Interface 

EEG Electroencephalography 

ERP Event-related Potentials 

ErrP Error-related Potentials 

IErrP Interaction Error-related Potentials 

KKT Karush-Kuhn-Tucker 

LS Least Square 

MDP Markov Decision Process 

noErrP no Error-related Potentials 

POMDP Partially Observable Markov Decision Process 

QP Quadratic Programming 

RBF Radial Basis Function 

RL Reinforcement Learning 

ROS Robot Operating System 

SMO Sequential Minimal Optimization 

SNR Signal-to-Noise Ratio 

SSVEP Steady State Visually Evoked Potential 

SVM Support Vector Machine 
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During the choice task in both of these paradigms, if the interface interprets user intention 
wrongly and the interface recognized option is displayed on the screen to the user, then an error-
related potentials (ErrP) is elicited in the brain. ErrP is a component of an event-related potential 
and time-locked to commission of error. 

1.3 Problem Description 
Semi-autonomous navigation is a flexible task sharing system and the user could assist the robot 
with low level navigation whenever needed and the system allows the robot to specify goals 
autonomously and maintain high level path planning. The communication between user and 
robot, when BCI is used in this context is accomplished by EEG signals. With the help of 
sensory information and a topological map of the environment, the robot is able to recognize 
situations when a decision should be made. Decisions are made either by the robot autonomously 
or by the user, depending on the level of sharing in use. In case it is recognized by the robot that 
a decision need to be made by the user, the interface should provide with navigational options 
from which the user selects. These options could be intended goal locations or low level 
commands such as turn left or move forward. 

 

BCIs have low bandwidth or bit-rate with maximum information transfer rates of 5–25 bits/min 
at best, which depend both on speed and accuracy [10]. Present BCI interfaces are based on fixed 
policy where the user, environment and the interface start always at a specific state, and based on 
the user input; the interface deterministically updates its contents and presents them to the user. 
This method of presentation to the user is often time consuming and involves much interaction 
load to the user and thereby diminishing the embodiment feeling of the user in commanding a 
robot avatar or wheel-chair in use. Therefore the first objective is to build a brain-computer 
interface based on adaptive policy with automatic customization feature as per individual user 
for a navigational task, which is needed to make the best use of the scarce resources, i.e. with 
available options or bit-rate. The robot should be able to learn routines in user behaviour and 
propose the navigational actions to the user in a way to optimize user interaction. The developed 
adaptive interface needs to be tested with the help of a Gazebo simulated environment where the 

                                                 
5 http://www.etsu.edu/cas/bcilab/ETSU  
6 http://de.wikipedia.org/wiki/Ereigniskorrelierte_Potentiale 

Standard 6x6 P300 speller matrix  
           (ETSU BCI Lab) 

    (Birbaumer & Schmidt, 2006, S. 481) 

Figure 4: P300-based BCI 
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robot would receive commands from the user through Robot Operating System (ROS) 7. The 
Gazebo simulator is a primary tool used for robots and robotic applications in ROS community 
to simulate indoor and outdoor environments 8. Generating a user model is also required to train 
and test the algorithm. The BCI system in this case is simulated by a Graphical User Interface. 

 

In both fixed and adaptive policy based BCI system, the user intention recognition rates of 
classifier is subjected to error due to misclassification [11] and flows down till execution as a 
command unless prevented. The detection of ErrP in the EEG signal could be exploited to 
prevent possible error propagation as shown in Figure 5 below. Error-related potentials raise 
many challenges in terms of classification due to low signal-to-noise ratio, especially in the case 
of single trials [12]. In Figure 6 the average of Error-related Potentials and no Error-related 
Potentials (noErrP) signals over number of trials are visible to the naked eyes with clear 
distinction. Averaging the signal over number of trials is not a feasible method to detect ErrP as 
it is generated only once within a certain duration after seeing the erroneous response of the 
interface. For the case of single trial, the difference between the two signals is not clear to the 
naked eyes as shown in Figure 7. This results in big challenge to classify and categorize the 
scalp-recorded EEG data for detection of ErrP.  

 

Therefore the second objective is to recognize user’s cognition state that reflects user awareness 
to errors committed by the interface or in other words, is to develop a classifier for detection of 
possible ErrP in the EEG data and hence prevent misclassified user intention or command from 
being executed. 

 

 

 

                                                 
7 Willow Garage, Robot Operating System (ROS) 
8 http://gazebosim.org/about.html 

Figure 5: EEG Data Classifiers 
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2  PART ONE (ADAPTIVE BCI) 

In this chapter the state-of-the-art adaptive user interface, brain-computer interface manager, 
the algorithms for learning and markov decision process for prediction of user intention along 
with the training and testing results of the algorithm have been presented. At last the future 
works related to adaptive brain-computer interface have been described. 

 
 

2.1 State-of-the-Art Adaptive User Interface 

An adaptive user interface also known as AUI, is a user interface which adapts or changes, its 
layout and elements to the needs of the user or context and is similarly alterable by each user. 
Alternatively an adaptive user interface is a software artefact that improves its ability to interact 
with a user by constructing a user model based on partial experience with that user [13]. An 
adaptive interface should have a property to only show relevant information to a user as per the 
context. The area of intelligent and adaptive user interfaces has been of interest to the research 
community for a long time [14]. “To date, research in this field has not led to a coherent view of 
problems, let alone solutions” [14]. Several studies including the work by Gajos et al. [15] which 
generate different interface renditions in response to different usage patterns, mention benefits of 
adaptive systems. Machine learning is an emerging field which could be exploited for their 
possible uses in designing adaptive interfaces, as has been examined in Pat Langley’s work [16]. 
To mention, machine learning has been successfully incorporated in cell phone devices [17]. 
Reinforcement Learning (RL) [18], a machine learning paradigm, stands as a promising 
approach under the situation where the exact dynamics of the environment are not known. The 
learning problem is to find an optimal policy that maps states to actions, through a trial-and-error 
process of repeated interaction with the user. It has been successfully utilized in many 
applications including the problem of dialogue management [19]. RL has also been used to 
permit the robot to learn and optimize appropriate control policies from its interaction with the 
user [20, 21]. An interesting piece of work by Liu et al. [22] mentions how a mobile phone could 
learn context and user preferences via RL to adapt and set its alarm type automatically based on 
context information obtained from a variety of sensors. At another instance, the power of RL 
algorithm has been demonstrated [23] with application to a real-world problem as complex as 
controlling an autonomous helicopter. Partially Observable Markov Decision Process (POMDP) 
is another engineering framework that integrates Reinforcement Learning and Bayesian belief 
tracking and the benefits of this approach are demonstrated by the example of a simple gesture-
driven interface to an iPhone application [13]. 

 

With regard to application of machine learning techniques in Brain-Machine Interface (BMI), a 
group of researchers have exploited RL algorithm to illustrate how BMI learns to complete a 
reaching task using a prosthetic arm based on the user's neuronal activity [24]. For the case of 
brain-computer interface system, Chavarriaga et al. have mentioned how the performance of user 
intention classifier could be improved with the help of RL [25]. Also POMDP model has been 
utilized to compute an optimal sequence of stimuli in P300 based BCI task [26]. In the case of a 
navigational task, it is interesting to see the research work by Perrin et al. [27] that demonstrates 
a method for the robot to propose low level actions to the user, like turn left or move forward, at 
the decision making points where the user could either accept or reject the proposition. In an 
unknown environment, the robotic system first extracts features so as to recognize places of 
interest where a human-robot interaction should take place (e.g. crossings). Based on the local 
topology, relevant actions are then proposed. It is to be noted that with this above methodology, 
only low level actions as analysed from the environment, are proposed one by one and Error-
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related potentials in case of disapproval were used for this purpose. The dialogue management 
strategy continued as long as the user chooses no. Even for a single user, utilizing ErrP to record 
user choice poses the problem that ErrP classifier is often subjected to recognition error due to 
single trial classification and therefore multiple recordings (until the probability difference 
between the two most probable actions exceeds a given threshold) need to be performed to 
confirm the classification result. If the cardinality of goal space is large, this method seems to be 
time consuming and involves much interaction workload to the BCI user and thus poses the risk 
of diminishing the embodiment feeling of the user in commanding a robot avatar or wheel-chair 
in use. Further, the work doesn’t take care of change in user behaviour and possible outlier, or in 
other words, it doesn’t take care of uncertainties in user behaviour to predict the appropriate 
action and propose them to the user, which often is the case for a navigational task [28]. 

 

State-of-the-art-BCI interface is based on fixed policy which would be explained in the 
following section. Virtually all existing user interfaces, not only in BCI, follow the finite-state 
machine model [13]. The area of designing an adaptive brain computer interface with dynamic 
customization for navigational tasks is still not explored and is being addressed through this 
thesis work. Several success stories of RL algorithms to many domains, motivates us to design 
an adaptive BCI system for navigational task with the help of RL, by treating the interface 
adaptation as an optimization problem. Further, the uncertainties in user behaviour such as 
change in behaviour and outlier could also be tackled as described in the following sections of 
our work. The key contribution of this thesis is to design a reinforcement learning algorithm to 
learn user behaviour including possible uncertainties in behaviour and predict the user intentions 
in a BCI based navigational task which could provide robotic embodiment feeling to the user. 

 

2.2 Brain-Computer Interface Manager 
As mentioned earlier, a paralysed person could command a robot avatar or wheel-chair using 
brain-computer interface system. A BCI system designed on fixed-policy interface is a finite-
state automaton that mediates between the user and the robot avatar of the user. For a limited 
user goal-space, every goal can be mapped into one of the available BCI controls. In the case of 
large goal-spaces, though it is still possible to use the fixed policy approach but it is not 
convenient for the user due to several of the following factors. A user always starts from a 
starting interface and then goes down in a well-designed hierarchy which is defined by task 
experts till reaching the intended command, which might be a long and tedious trajectory, 
leading to a negative impact on the embodiment feeling. Another drawback of this approach is 
the requirement of a detailed task description and the fact that it imposes strong assumptions 
about the user and the environment by ignoring dynamics of both. Figure 8 depicts an interface 
designed as a finite-state automaton with three masks. Using this approach, in case the user 
intended option lies in the third mask, then the user needs to select ‘Next’ buttons in the first 
mask and second masks and in the third mask the user needs to select the intended option. So in 
this case, three interactions are required to decode a single user intention. 
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                                   Figure 8: Example of a Finite State Automaton 

 

 
2.2.1 Adaptive Interface with Dynamic Policy 

As a fixed-policy interface only depends on the task description and model, the time needed to 
select a goal with a fixed-policy interface is user, situation and context independent. Therefore 
customization of the interface according to user preferences is necessary to reduce the interaction 
workload and consequently increase the robotic embodiment feeling. This originates the 
necessity of designing a dynamic interface where the options proposed to the user are no longer 
fixed but are dynamically customized for individual user automatically. Therefore the policy 
based on which the interface would be designed and managed is desired to be an optimized 
policy. This could be formulated as an optimization problem where decision needs to be made by 
the interface manager to propose the optimized set of options to the user at every decision 
making situation.  

 

2.3 Markov Decision Process and Reinforcement Learning 

Although humans have the potential for relatively random patterns of behaviour, there are easily 
identifiable routines in every person’s life [28]. Based on this, the proposition of best set of 
actions to the user could be modelled as a Markov Decision Process (MDP). MDP provide a 
mathematical framework for modelling decision making in situations where outcomes are partly 
random and partly under the control of a decision maker. More precisely MDP is “a decision-
theoretic model capable of taking into account both uncertainty in the effects of its actions and 
trade-offs between competing short-term and long-term objectives when making decisions” [29]. ࡿ is the set of all states,  is the set of all possible actions and ࡼ is the set of all state to action 
selection probabilities. At each time step, the process is in a state  ∈  and the decision maker ,࢚ࡿ
may choose any action ܽ ∈  with probability ݏ that is available in state ,࢚ ∈  .from that state ࢚ࡼ
The process responds at the next time step by randomly moving into a new state ݏ′ ∈  and ,ࡿ
giving the decision maker a reward ࡾ. The next state ݏ′ depends on the current state ݏ and the 
decision maker's action ܽ. But given ݏ and ܽ, it is conditionally independent of all previous 
states and actions for first order Markov model; in other words, the state transitions of a MDP 
possess the Markov property. MDP is modelled with ሼࡿ, , ,ࡼ ,ࡾ ,ሽࢽ  is the future ࢽ	݁ݎ݄݁ݓ
discount factor for rewards, with a value typically close to 1. In case the dynamics of the 
environment or state transition probabilities are not known in prior, the system should learn these 
transitions explicitly by interacting with the environment. Therefore this learning mechanism 
which gains knowledge of environment by virtue of interacting with its environment falls under 
the category of Reinforcement Learning (RL) scheme. The learning of the algorithm should lead 
to a policy that would map a state to an action for all possible states. 

  

 

1st Mask 2nd Mask 3rd Mask 
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In our present work a P300 interface based on fixed policy has been implemented that presents, 
in a predefined order, to the BCI user a sequence of command options sets to choose from. It is 
worth mentioning that the total number of possible command options exceeds the maximum 
number of goal locations that can be hosted by a P300-based BCI mask. The user is modelled as 
a MDP and the interface should learn the user behaviours or actions carried out from every state 
and propose a set of best possible actions to the user as per the capacity of P300-based BCI 
mask. The in other words, it should capture the user intentions. Here action ܽ ∈  is the 
proposition of an action to the user. It is to be noted that actions here are propositions with 
respect to the interface manager, i.e. what set of commands should be presented to the user at 
each decision making situations. The scenario used is a pure navigation scenario, where all user 
goal-oriented commands are of the form “move to location x” or low level commands such as 
turn “left” or move “forward” as shown is Figure 9 for few states and action pairs.           

 

                                            Figure 9: State-action Mapping 

 

Additionally, RL-based algorithm has been developed thereby aiming at finding an optimal 
policy for the interface adapted as per individual user. The results of both approaches have been 
compared in terms of user interaction workload which is measured by the time needed to get user 
intention decoded by the system. In both cases, i.e. adaptive and fixed-policy interface, however, 
user input is mapped into user commands that trigger the transition to new states and interface 
actions without considering classification errors. For tasks with available detailed description 
and model or where the adaptive policy assigns same priorities to multiple actions, fixed policy 
will be used for those tasks or actions as it is intuitive to go for fixed policy if no concrete 
decision could be made regarding the possible user intended actions. This results in a system 
with mixed policy considering both fixed and adaptive policies. Therefore the interface proposes 
actions to the user as per the mixed policy. Figure 10 relates the adaptive interface manager to 
other system components such as EEG decoder to recognize user intention ࢛ࡵ and present the 
decoded intention to the user by the help of interface manager. The noise ࡺ is due to the 
disturbances in the EEG signal as it is captured from the electrodes placed at the scalp of the user 
and also includes the user intention classification error or noise by the classifier. The recognised 
user intention in P300-based or SSVEP-based BCI, is sent as a robotic command to the robot 
avatar or wheel-chair in use. 
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Figure 10: Adaptive Interface Manager and its Relation to Other Components of the 
Embodiment System 

 
2.3.1 Learning User Behaviour and Prediction of User Intention 

Decision-making model is used here to first observe and learn the user behaviour and then 
predict the user intention in the context of a navigational task. The underlying pattern in user 
behaviour could be of first, second or higher orders, though no assumption is made with respect 
to the order of the dynamics. Modeling user behaviour with second or higher order Markov 
Decision Process, pose the problem of increased memory consumption. Therefore a first order 
MDP is considered to solve the navigation problem. The knowledge of the user model is 
incomplete which means that the action selection probabilities from a state are not known in 
advance and they need to be explicitly learned from the user behaviour using the strategy of 
reinforcement learning. 

 

States are defined as every possible goal locations in the map. Actions are propositions of next 
states or low level commands to the user. These low level commands include commands like 
moving forward or turning left etc. Thus the actions are more in numbers than the states. Both 
the number of states and the number of possible actions are known in prior. The number of state-
action pairs thus rises to number of states times’ number of actions. The objective is to find a 
policy which could map each state to a best possible action. As P300 mask could contain not just 
one but a set of possible actions or propositions, therefore for each state the policy should rank 
all user intended actions and show a set of most probable actions in the first mask depending 
upon the capacity of the designed P300 mask which is available in different variants. 

 
2.3.2 Learning Behaviour 

The learning mechanism associated with navigation task is a continuous process having finitely 
large goal state space S	 ∈ ሼs1, s2, s3, … , snሽ of the robot and interface action space A	 ∈ሼa1, a2, a3, … , anሽ. Every goal state is considered as a location in the map which is fully 
observable. The user action is fully observable but the action probability P from a state is not 
known in prior. The algorithm has the opportunity to learn regarding user behaviour after every 
interaction with the user. It is interesting to note, as every state here is a goal location and 
therefore the problem of predicting with finitely large goal spaces could be divided into sub-
problems each consisting of only two goal locations or states, one as a starting and the other as 
ending state. In other words each sub-problem could be considered as an episodic task where the 
episode ends after every transition. Based on the interface action, the interface receives an 
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immediate reward ݎ, which is considered here as the needed time or number of interactions with 
the user. Though there are several possible actions from a state, the user only performs one 
action every time and thus reaching from a starting state to a goal state in one step. The user 
behaviour is stochastic with actions having a probability distribution from each state. For the 
purpose of learning a stochastic user model, sampling is done from the probability distributions 
of actions in a state and a trajectory generated is made available to the algorithm. The algorithm 
is expected to learn the user model from this generated trajectory. As the sampled trajectory is 
made available to the algorithm, bootstrapping method is not used in this case, where a guess is 
made depending upon another guess as done in Temporal Difference prediction method [18]. It 
is to be observed that here every transition in the trajectory involves a learning step for the 
algorithm. 

 

The state of the robot (location) at time ݐ is defined as ݏ ∈ ܽ Taking action .࢚ࡿ ∈ ݏ from state  ∈ will either make the robot move to a state s′if a ࡿ ∈  is the set of all high levelࢎ where ,ࢎ
commands or, in other words, the set of all goal locations or will make no change to s if a ∈  ,
where  is the set of all low level action commands. More formally, ࢚ࡿis defined to be a random 
variable referring to current state and ࢚ࡿା refers to next state. ࢚ is a random variable that refers 
to an action at time ݐ and hence; 																																										࢚ࡿା ൌ ܽ if ࢚ࡿ ∈ ା࢚ࡿ																																										      ് ܽ if ࢚ࡿ ∈ ܽ or ࢎ ∈   ା         (1)࢚ࡿ

 

I assume that that robot executes all command deterministically, which means that if I know ܽ 
then I know ݏ′deterministically. Therefore the problem of predicting user next state is exactly the 
same as predicting the next user action. Based on this transition, the state-action pair receives a 
positive reward of ݎ ൌ 1. A term defined as frequency of selecting an action ܽfrom a state ݏ is 
the accumulated rewards over time and updated for the occurred state-action pair as follows: 																																																									ܨሺܽ/ݏሻ ൌ  ܨሺܽ/ݏሻ 	  ݎ               (2) 

As the robot has no initial knowledge of the dynamics of the environment, the value of each 
state-action pair is termed as: 																																									ܳሺݏ, ܽሻ ൌ 	ݏ	∀	݁ݎ݄݁ݓ	 0 ∈ ܽ∀ and	ࡿ ∈  (3)                                         

 

It is worth mentioning that frequency of a state-action pair ܨሺܽ/ݏሻ represents the ܳሺݏ, ܽሻ value 
of that state-action pair and therefore the below assignment holds true for our case: 																																														ܳሺݏ, ܽሻ ൌ  ሻ                    (4)ݏ/ሺܽܨ

 

A policy is defined as a mapping from every state ݏ to an action ܽ. Policy improvement is done 
by making the policy greedy with respect to the current value function. For any state-action 
value function ܳ, the corresponding greedy policy is the one that, for each ݏ ∈  , ࡿ
deterministically chooses an action with maximal ܳ value: 																																																							ߨሺݏሻ ൌ ,ݏܳሺݔܽ݉݃ݎܽ ܽሻ            (5)
  

 

The reward ݎ is a form of motivation for the occurred state-action pair and is likely to increase 
the chances of occurrence of the action ܽ while the robot visits the state ݏ next time. As an 
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example, after first interaction with the user, the ܳ value of the occurred state-action pair at time ൌ 1 , is updated to: 																																																														ܳሺݏ, ܽሻ ൌ 1               (6) 

 

Matrix of dimension equal to number of states times number of actions, is memorized which 
contains the ܳሺݏ, ܽሻ values ∀ݏ ∈ ܽ∀ and ࡿ ∈  and the values are updated after every ,
interaction with the user. 

 
2.3.3 Change in Behaviour 

Humans have potential for relatively random patterns of behaviour and hence the behaviour 
could be termed as stochastic [28]. The amount of randomness regarding behaviour of a user 
corresponds to its entropy. Entropy (in bits) of a discrete random variable ࢄ is defined by Claude 
Shannon in the equation below. 

 
ሻࢄሺࡴ                                               ൌ 	െ	∑ ୀሻ࢞ሺࢍሻ࢞ሺ                                             (7) 

 

People who live less entropic lives are easier to predict and but who live entropic lives tend to be 
more variable and harder to predict. One such case of user behaviour could be related to change 
in behaviour after certain number of interactions with the interface where the user jumps from a 
policy ߨ to another policy ߨᇱ and continues following policy ߨᇱ thereafter. In order to handle this 
situation of changed behaviour by increasing the convergence rate of the algorithm or learn the 
altered behaviour faster, another form of reward is incorporated. Separate interaction counter or 
local timer for each state is defined and an action executed in a state increments the timer 
associated with that state by one. This local timer value is rewarded to the occurred action of the 
corresponding state. Therefore this timer associated reward function ܶሺݏ, ܽሻ for a state-action 
pair is intuitively a function of the time the action a happened last in the corresponding state ݏ. It 
is worth noting that the timer associated reward function ܶሺݏ, ܽሻ is equal in magnitude to the 
marginal count ܨ௧ೌሺݏሻ of the state ݏ at the time of last occurrence of the action ܽ in the same 
state ݏ. Hence each state-action pair was time stamped with a reward value equal to the marginal 
count of the corresponding state when the respective action was seen last occurring in that same 
state and hence defined mathematically as below: 																																																ܶሺݏ, ܽሻ ൌ ݏ∀	݁ݎ݄݁ݓ ሻݏ௧ೌሺܨ ∈ ܽ∀ and ࡿ ∈  (8)                  				

 

Therefore the modified ܳሺݏ, ܽሻ, when the possibility of changed behaviour pattern of a user is 
included, takes the form: 																																															ܳሺݏ, ܽሻ ൌ ݓ ∗ ሻݏ/ሺܽܨ 		ݓ௧ ∗ ݓ	݁ݎ݄݁ݓ ሻ                   (9)ݏ௧ೌሺܨ  is the weight of Frequency based reward, ݓ௧  is the weight of Timer based reward 

 

While the first term on the right hand side of the above equation favors frequent actions as it is 
related to frequency of taking an action in a state, the second term favors recent actions in a state. 
The intuition behind the second term on the right hand side of the equation is that in a state the 
action that occurred recently is assigned higher timer value than the action occurred earlier in the 
same state. Therefore the recent action or user behaviour is given higher priority compared to 
previous action from the same state. 
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It could be noted that use of a global timer or interaction counter as a reward function is avoided 
here though it seems easier with regard to implementation. It is due to the fact that using a global 
timer would assign a large value to a recent action that occurred from a less visited state in which 
case the reward associated with the global timer would be more dominant than the reward 
associated with the frequency term in spite of having the weighting terms for each of timer and 
reward. Hence for the case of a global timer, finding a weight that would compensate for both 
less visited as well as frequent states would be difficult and may lead to wrong prediction of user 
intentions. Also if there is no change in user behaviour observed then also a global timer based 
reward function would perform poor in terms of prediction, compared to a local timer based 
reward. 

 
2.3.4 Outlier in Behaviour 

Outlier is defined as completely random pattern in user behaviour or action for certain short 
period of interactions such as visiting a ‘Friend’ once in a month etc. In other words, the user 
follows a policy ߨ and after certain number of interactions the user started following or switched 
to another policy ߨᇱ, with having completely random state-transition probabilities for few 
number of interactions and then again goes back to the original policy ߨ. The difference between 
change in behaviour and outlier is that in the case of first one the user never goes back to the 
original policy ߨ after changing the behaviour to follow another policy ߨᇱ, while for the latter 
case the user goes back to the original policy ߨ after certain number of interactions. The weight 
of timer ݓ௧ introduced in equation (9) above helps the algorithm to learn outlier as it assigns 
higher timer associated reward to recent transition but in order to increase the rate of learning 
during outlier period and also after completion of it, another reward function is defined which 
assigns a reward ݎ ∈ ሼ0,1,2ሽ, based on the number of interactions needed to select user intended 
action ܽ available in a state ݏ. Here the number of interactions mean the number of masks that 
are needed to be shown to the user for selection of an action from a given state. Hence ݎis a 
measure of the immediate reward from user to the interface policy. The cumulative interaction 
reward function for a state-action pair ܫሺݏ, ܽሻ is memorized in a table, which is simply the 
accumulated immediate interaction rewards for an action ܽ that occurs in state ݏ and is updated 
after every interaction with the user as shown below: 																																ܫሺݏ, ܽሻ ← ,ݏሺܫ ܽሻ  ݏ∀	݁ݎ݄݁ݓ  ,ݎ ∈ ܽ and ࡿ ∈  (10)                              

 

In our experimental setup if the user intended option appears in the first mask then immediate 
interaction reward ݎ for that state-action pair is assigned a value 0 and similarly if it happens to 
be in second or third mask, it is rewarded with values 1 and 2 respectively. The intuition behind 
introduction of this interaction based reward function is to allow the algorithm to converge 
faster, mainly after outlier period is over, by motivating the user intended actions that need 
greater number of masks to be shown to the user. 

Combining above described three kinds of situations, i.e. considering a stochastic user behaviour 
with change in pattern as well as presence of outlier, the ܳሺݏ, ܽሻ could be reformulated as a 
combination of reward based on state-action frequency, local timer and number of needed 
interactions, as follows: 																																		ܳሺݏ, ܽሻ ൌ ݓ ∗ ሻݏ/ሺܽܨ  ௧ݓ ∗ ሻݏ௧ೌሺܨ  ݓ ∗ ,ݏሺܫ ܽሻ                  (11) ݁ݎ݄݁ݓ	ݓ is the weight of Frequency based reward, ݓ௧ is the weight of Timer based reward and ݓ is the weight of needed Interaction based reward 
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2.3.5 Prediction of User Intention 

Decision needs to be made as per the optimal policy of interface that imitates the user hidden 
policy. The action based on optimal policy ߨ∗, is searched in the look-up table of ܳሺݏ, ܽሻ. As in 
the case of P300-based BCI, there is possibility of displaying a set of actions in the mask, 
therefore the optimal policy ߨ∗ in this case ranks all the actions with higher ܳ valued actions at 
the top for every state and proposes the actions to the user as per the capacity of the mask. 
Mathematically: 																																																		ߨ∗ሺݏሻ ൌ arg݉ܽݔ௦௧	∈ܳሺݏ, ܽሻ         (12)  

 

As the actions are ranked as per the relative values of ܳሺݏ, ܽሻ, therefore the expression: 																																ܳሺݏ, ܽሻ ൌ ݓ ∗ ሻݏ/ሺܽܨ  ௧ݓ ∗ ሻݏ௧ೌሺܨ 	ݓ ∗ ,ݏሺܫ ܽሻ, 
could be transformed into ܳᇱሺݏ, ܽሻ ൌ ሻݏ/ሺܽܨ  ᇱ௧ݓ ∗ ሻݏ௧ೌሺܨ  ᇱݓ ∗ ,ݏሺܫ ܽሻ              (13) 

In the following sections, ܳᇱሺݏ, ܽሻ is mentioned as ܳሺݏ, ܽሻ for simplification. 

 

The process of learning and prediction steps could be viewed together as in the Figure 11 and the 
algorithm is also mentioned below. 

 

 

         

 

  

 

 

   

   

  
 

                                           Figure 11: Process of Learning and Prediction 
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 ܾ݁݃݅݊ 

,ሻݏ/ሺܽܨ	݁ݖ݈݅ܽ݅ݐ݅݊ܫ  ,ሻݏ௧ೌሺܨ ,ݏሺܫ ܽሻ ← ,ݏ	∀			0   ݊݅ݐܽݎ݁ݐ݅	݄ܿܽ݁	ݎ݂	ݐܽ݁݁ݎ	 ܽ

ݎ	݁ݖ݈݅ܽ݅ݐ݅݊ܫ  ← ܣ,0 ←  ݀ݎܽݓ݁ݎ	݊݅ݐܿܽݎ݁ݐ݊݅	݁ݐܽ݅݀݁݉݉݅	ݏ݅	ݎ	//																																			ݏ݊݅ݐܿܽ	݈݈ܽ	݂	ݐ݁ݏ

 						 
 																								ܳሺݏ, ܽሻ ൌ ሻݏ/ሺܽܨ  ௧ݓ ∗ ሻݏ௧ೌሺܨ  ݓ ∗ ,ݏሺܫ ܽሻ						//	݊݅ݐܿ݅݀݁ݎ	݁ݐݏ 														ݎ݂	݅ ൌ 1: ூܣ																								 							 3 ൌ ሻݏሺ∗ߨ ൌ																					ܽ݃ݎ	ݔܽ݉∈ಲ	 	∑ ܳሺݏ, ܽሻ			ݏ. .ݐ ݊݊	ݏ݊݅ܽݐ݊ܿ	ூܣ		 െ∈																																																																																																															݀݁ݐܽ݁݁ݎ	ݏݐ݈݊݁݉݁݁	݀݊ܽ	ܣ|ூ| ൌ																																																																																																															ܲ300	݉ܽ݇ݏ	ݕݐ݅ܿܽܽܿ	 
 																										݂݅	ܽ௨⊂	ܣூ																																																															//	ݎ݁ݏݑ	݀݁݀݊݁ݐ݊݅	݊݅ݐܿܽ 

 ݇ܽ݁ݎܾ																																			 

௨ܽ	݂݅	݁ݏ݈݁	                        ← ܲݎݎܧܫሺ	ݐݔ݁݊ ൌ 1ሻ 
 1	ݕܾ	ݎ	ݐ݊݁݉݁ݎܿ݊݅																																			 

ܣ																																		  ← ܣ െ  ூܣ
 ݈	݂݅	݀݊݁																										 

 ݈	ݎ݂	݀݊݁											 

ሻݏ/ሺܽܨ																							  ← ሻݏ/ሺܽܨ  1 

 ሻݏ௧ೌሺܨ	݁ݐܽ݀ݑ																							 
,ݏሺܫ																						  ܽሻ ← ,ݏሺܫ ܽሻ   ݎ

 ݁ݑ݊݅ݐ݊ܿ          

 ݁݊݀ 

                              Table 1: Learning and Prediction Algorithm 

 

 

2.4 Training of the Algorithm Parameters and Testing 

A map of the environment is built in Gazebo with several goal locations. Each of the locations 
like ‘Office’, ‘Hostel’ etc., are assumed to be goal locations or states of the PR2 willow garage 
robot 9, in this case. In total, thirty nine states are defined in the map. Actions are thirty nine high 
level goal based and four low level commands with total of forty three actions to choose among. 
Robot Operating System is used to publish the desired goal location as a ROS topic to PR2 
navigational stack or to command the robot through low level navigation. The path planning 
algorithm is made available with PR2 navigational stack. A top-view snap shot of the simulated 
Gazebo world with PR2 robot is shown below in Figure 12. 

 

                                                 
9 http://www.willowgarage.com/pages/pr2/overview 
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                       Figure 12: Simulated Robot World in Gazebo Environment 

 

As described earlier the user model includes stochastic behaviour. The probability of each action 
in a state are defined for the purpose of developing a user model. The user was modeled as first 
order MDP and implemented as shown in Appendix A. Three different user models are 
developed in order to test the performances of the algorithm with different kinds of models. The 
first model which is a high entropic model, has uniform distribution with average of maximum 
probabilities around 0.04 while in the second user model with medium entropy, it is assigned a 
maximum state-action probability as 0.5 on an average. The last user model had 80% 
deterministic behaviour and thus lower entropic model, to prefer a particular action from a state. 
In order to introduce changed behaviour mode, the user model had the provision to define 
number of training instances after which the behaviour pattern is changed. Two modes for 
changed behaviour pattern are considered. During strong change in behaviour mode, all the state-
action probabilities are redefined with high entropy while during weak change in behaviour 
mode; only the action with maximum probability from each state is swapped with another action 
available in the same state. In the user model, there is also provision of defining outlier period 
during which the user follows a completely random policy. All together, the three user models 
are equipped with different maximum state-action probability distributions and simulate change 
in behaviour and outlier. For fixed policy interface, the user model was used to evaluate the 
testing performance while for adaptive policy it was used both for training and testing. 

 

 

 

 

PR2
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2.4.1 Fixed Policy Interface 

For our test case, I have defined an environment with 39 states and 4 low level commands and 
this sum up to 43 actions in total to simulate a P300-based BCI with 3 masks. Each mask could 
contain at most 16 options including options such as ‘next’, ‘back’ or ‘repeat’ buttons. As it is 
expected, there was no ‘back’ button for the first mask which means it had 15 possible actions 
including the initial robot pose which is displayed as ‘Robo_initial_Pose’. The ‘Repeat_Options’ 
is dedicated only for the mask that comes in the last. In the case of fixed policy interface, the 
BCI masks have predefined options in a specified sequence. I have used the map of the 
environment to define a fixed policy. The masks designed in QT platform used for fixed policy 
P300-based BCI is shown in Figure 13 below. 

 

(a) 1st Mask  (b) 2nd Mask  

  

 

                                                 (c) 3rd Mask 

Figure 13: (a), (b) and (c) Simulated BCI with 3 Masks Used for Testing of Fixed 
Policy P300-based BCI 

 
2.4.2 Adaptive Policy Interface 

In order to train the algorithm, the trajectory developed with the help of a user model as 
described earlier, is used. The transitions in the trajectory are used as training instances, 
sequentially starting from an initial state till the length of the trajectory. After each instance of 
training, the algorithm is tested against the number of interactions needed in order to capture the 
immediate next action while following the trajectory. 
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2.4.3 Results of Fixed and Adaptive Policy Interfaces 

 For the user model without incorporating change in behaviour and outlier, result could be seen 
below in Figure 14. 

                       (Note: The abscissas of the following plots have different ranges)  

                                (a)                                (b) 

 

 

 

 

 

 

 

 

 
                                                                   

                                                               (c)                                                    

Figure 14: User Behaviour: (a) Highly Entropic Behaviour, (b) Medium Entropic 
Behaviour and (c) Low Entropic Behaviour 

 

For the fixed policy case, the average number of needed interactions is higher than the 
interactions needed for adaptive policy in any of the three kinds of user models described above. 

It could be seen for the model with higher entropy which is a measure of randomness, the 
learning rate is slow and it approaches a higher value after certain number of trainings, while in 
the case of medium entropic behaviour it attains a lower steady state value. As expected, in that 
third case with low entropic behaviour, the steady state value reaches near to the ideal interface 
which requires only one interaction to capture user intention. So from the results above, it could 
be stated that a higher entropy in user behaviour leads to a lower convergence rate of the learning 
algorithm or higher average per time per interaction. It means that if there is no routine in user 
behaviour, there is no learning of the algorithm. 

 

Different values of timer weights have been analyzed and the results are displayed both for weak 
and strong change in behaviour in Figure 15 separately. 
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                               (a)                            (b) 

Figure 15: Changed Behaviour Mode: (a) Weak Change at 500 number of trainings, (b) 
Strong Change at 250 number of trainings 

 

As was in the previous case, fixed policy performs poorer than the adaptive policy even in the 
case of change in behaviour. It is worth noticing that in the case of weak change in behaviour, 
the algorithm quickly converges even after the changed behaviour pattern is introduced and 
approaches a value close to the steady state value before there is change in behaviour. But for a 
strong behaviour change, the learning curve approaches towards the case of completely random 
behaviour as shown in Figure 14 (a). Different timer weights affect the learning rate which is 
visible in Figure 15, above. 

 

For the situation where there are outliers in user behaviour pattern, the results are as follows in 
Figure 16. 

                      (Note: The abscissas of the following plots have different ranges) 

                                         (a)                               (b) 

Figure 16: User Behaviour with Outliers (a) from 50 to 300 number of trainings and (b) 
from 500 to 750 number of trainings 

 

As expected, there is loss of information for the cases of early occurrence of outlier and also for 
later occurrence of outlier in user behaviour. After the outlier period is over, learning curves in 
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both cases approach towards the same value. Again, different weights for cumulative interaction 
reward contribute to different convergence rates and steady state values. An attempt was made to 
analyze the performance of the algorithm where there are both change in user behaviour and 
outlier and the results for two completely different user models, are as follows: 

 

         

                               (a) 

 

                          (b) 

                                                        

                      Figure 17: Both Outlier and Change in Behaviour: (a) and (b) 

 

Even with these combination or outlier and change in behaviour cases, fixed policy was observed 
to be performing poor compared to adaptive policies evaluated based on different combinations 
of weight for timer and interaction reward. It could be stated that if the outlier period is longer, 
the loss of information is more. However different weights could be set with regard to timer and 
interaction reward, which affect the convergence rate and steady state value or steady state error. 
It is worth noting that setting positive values for w t and w r helps the algorithm to converge faster 
both during changed behaviour mode and also during outlier period but they need to be set 
individually in order to lower the steady state error. Therefore designing individual weights is a 
trade-off between convergence rate and steady state error of the learning algorithm. For 
particular user behaviour, these weights are set manually after observing the steady state value of 
the algorithm for different set of weights. The algorithm could further be enhanced by automatic 
adaptation of the weights for different users. In order to provide this enhanced capability, 
number of iterations need to be carried out and the weight values need to be selected which 
satisfy the convergence criteria, i.e. to select those weight values which help the algorithm to 
converge within specified number of iterations and within a defined steady state value. 

 

The training and testing method mentioned above could be viewed as an on policy training and 
testing, because prediction is done after every interaction with the user model. However, testing 
was also carried out after the learning period is over or the algorithm was exposed to a specified 
number of instances. Thereafter, it was tested for a trajectory of length twenty and the observed 
average number of interactions closely matched the interaction values seen from the above 
figures. Adaptive policy again performed better with a needed average interaction value of 24 
compared to the fixed policy which was 38 on average for lower entropic user behaviour of 
Figure 14 (c) above. 

 

 

Outlier (50-300 number of trainings) and weak 
behaviour change at 500 number of trainings 

Outlier (250-750 number of trainings) and weak 
behaviour change at 900 number of trainings 
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2.4.4 Extension of the Learning Scheme 

The first order markov decision model is extended to second order markov decision model, as it 
is believed that implementing a higher order markov model may better predict the user behaviour 
which could be of any order in reality. However a higher order markov model increases the 
memory consumption rapidly. As an example, in a second order markov model, the next state of 
the user not only depends on the present state but also on the immediate state prior to the present 
state. It consumes memory of approximately ሺ|ࡿ|ሻ , where |ࡿ| is the cardinality of the state 
space. Therefore due to increased memory consumption and also due to unavailability of second 
order MDP of user model, this learning algorithm has not been tested. There is an attempt made 
to extend the definition of state to include time schedule, in order to have better prediction of 
user behaviour which is dependent not only on current state but also on time of the day, e.g. a 
finite number of temporal values, twenty four in our case considering an entire day with twenty 
four hours, is used to discretize each state which is originally a goal location into finite number 
of states in order to include both location and time of the day in the definition of a state. Separate 
track of locations along with hour of the day is memorized. However testing of the algorithm 
with time schedule would need a more complex user model than implemented here and increased 
memory usage due to state discretization. 

 

2.5 Future Work on Adaptive Brain-Computer Interface 

As part of the future work, this algorithm could also be enhanced with the ability to distinguish a 
goal location to a sub-goal location where a sub-goal might be triggered due to external events 
such as ringing of a bell etc. This could be implemented by ignoring the look-up table ܳ value 
update rule when a sub-goal is recognized as an external event. The Markov Decision Model 
could be extended to include partially observability of user state which might arise due to 
misclassification of user intention in the BCI task. Another improvement in the algorithm might 
be related to current memory requirement of the algorithm as it is evident that the memory 
requirement increases rapidly depending upon the number of states because of the fact that the 
look-up table memorizes values for each state-action pair. In order to reduce the memory 
requirement, sparse representation might be implemented. Also the definition of state could 
further be enhanced by including additional sensory information that might be input to the 
learning algorithm such as environmental temperature condition, light intensity etc. in order to 
better predict user behaviour as these parameters as well affect user behaviour and hence user 
intention. But it would require additional memory for implementation. Further to enhance the 
optimality of this BCI, the reward in terms of cognitive load of the user could also be considered. 
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standard deviation of 6.6 and 7.0 percentages for true negative and true positive respectively, as 
shown below in Table 2. In their statistical classifier, every Gaussian unit represents a prototype 
of one of the classes to be recognized. 

 

Chavarriage et al. Ferrez et al. 

Subject ErrP (%) noErrP (%) Subject ErrP (%) noErrP (%) 1 73.5 92.01 1 87.3 േ 11.3 82.8 േ 7.22 58.91 83.82 2 74.4 േ 12.4 75.3 േ 10.03 66.29 86.86 3 78.1 േ 14.8 89.2 േ 4.9 

Avg 66.23 87.56 Avg 79.9 േ 6.6 82.4 േ 7.0 

 

 

3.2 Support Vector Machine 

Support vector machine is a method that uses supervised learning for analysing and recognizing 
patterns in data both for classification and regression. SVM emerged in mid-1990 from the area 
of statistical learning theory developed by Vapnik in the late 1970's [33]. SVM has several 
benefits compared to other classification techniques [34]. Today SVM are widely used in many 
areas, for handwritten digit recognition, object recognition and many others. “Support Vector 
Machines are among the best (and many believe is indeed the best) “off-the-shelf” supervised 
learning algorithm” [35] and therefore among various available methods of classification, SVM 
was chosen to classify EEG signal for detection of error-related potentials elicited in the brain 
after observing erroneous response. SVM is a representation of the examples as points in space, 
mapped so that the examples of the separate categories are divided by a clear gap that is as wide 
as possible as shown in Figure 20. It constructs a hyperplane or set of hyperplanes in a high or 
infinite-dimensional space, which is used for classification. Intuitively, a good separation is 
achieved by the hyperplane that has the largest distance to the nearest training data point of any 
class, also called as functional margin; since in general the larger the margin the lower the 
generalization error of the classifier. A functional margin is defined as follows: 																																																																	࢟ሺ࢚࢞࢝   ሻ                                                      (14)࢈
 is the weight vector with ܾ as ࢚࢝ ,is the corresponding class ࢟ ,is the training instance ࢞	݁ݎ݄݁ݓ         
the intercept term. 

 

 

 

Table 2: State-of-the-art results of Error related Potentials classification 
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New examples are then mapped into that same space and predicted to belong to a category based 
on which side of the gap they fall on. For linearly separable data, a Linear SVM classifier works 
well. In addition to performing linear classification, SVMs can efficiently perform non-linear 
classification using what is called the kernel trick, implicitly mapping their inputs into high-
dimensional feature spaces. Whereas the original problem may be stated in a finite dimensional 
space, it often happens that the sets to discriminate are not linearly separable in that space. For 
this reason, it was proposed that the original finite-dimensional space be mapped into a much 
higher-dimensional space, presumably making the separation easier in that space. To keep the 
computational load reasonable, the mappings used by SVM schemes are designed to ensure that 
dot products may be computed easily in terms of the variables in the original space, by defining 
them in terms of a kernel function ࡷሺ࢞,  ሻ selected to suit the problem. Therefore selection of࢟
kernel function is an important step in the process of classification. This problem of kernel and 
kernel parameter selection could be simplified because simple kernels have proved to be 
sufficient enough and appropriate parameters can be found using grid or pattern search. Among 
various, one of the advantages of SVM is that it could find a boundary between the classes even 
for data which are not linearly separable, by projecting them into higher dimensions. Also SVM 
provide a good out-of-sample generalization, if the kernel parameters are appropriately chosen. 
For the sake of these above mentioned advantages, SVM classifier was chosen for classification 
of EEG data to detect presence of error-related potentials. 

 

3.3 Data Set Used for Classifier 
In this simulated BCI experiment similar to the one described in [32], it has been tried to explore 
interaction ErrPs in case of erroneous keyboard interactions. Thereby the user tries to push a ball 
into a hole which is located on the same horizontal line as the ball using keyboard left and right 
arrow keys only. The user input is translated by the interface into movements of the ball; thereby 
it moves the ball into the wrong direction with a probability of error P as shown in Figure 21. 
The recognition of the ErrPs is challenging due to the low signal-to-noise ratio (SNR) inherent in 
single trials, as opposed to averaging number of trials in the case of P300. 

 

Figure 20: Support Vector Machine Example [36] 
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(a) t=T (b) t=T+1 (c) t=T+2 

Figure 21: Experimental setup for interaction ErrPs. Using left and right arrow keys, the user 
should bring the ball (red circle) into the hole (blue rectangle). As an example, the initial 
positions of the ball and the hole, are shown in (a). The user hits the left arrow button to move 
the ball closer to the hole, and the result is shown in (b). Interaction ErrPs are evoked when the 
user hits the left arrow button and the ball goes to the right as shown in (c). Erroneous 
interactions reduce the information transfer rate ITR, e.g. ITR=0 for this example. 

 

Ignoring user interactions, which are followed by IErrPs, leads to higher information transfer 
rates [30, 32, 37]. As a pilot study, data was recorded from one subject using a 32-channel 
acquisition system (from g.tec company 10). Based on the extended 10-20 system, 32 active 
electrodes were placed at the following positions: FP1, FP2, F7, F8, F3, F4, T7, T8, C3, C4, P7,  
P8, P3, P4, O1, O2, AF3, AF4, FC5, FC6, FC1, FC2, CP5, CP6, CP1, CP2, Fz, FCz, Cz, CP, Pz, 
Oz. One additional passive ground electrode was placed at Fpz. Signals were referenced to the 
right earlobe. The signal was sampled with frequency of 256 Hz. EEG data is often subjected to 
noise which may arise due to blinking of eyes or movement of body parts. EEG data therefore 
need to undergo pre-processing, before it could be used for classification. Pre-processing 
includes operations like artefact removal which is a noise with high magnitude. Then the signal 
is re-sampled which applies an anti-aliasing filter or low pass finite impulse response filter to the 
signal and changes the sampling rate to one fourth of original sampling value, i.e. to a sampling 
frequency of 64 Hz. Among several available channels, data from channel 'Cz' which is located 
near the parietal lobe that has strong signal content is used to train the classifier. Over 5 sessions 
total of 74 and 260 instances of ErrP and noErrP were captured respectively for training, 
validation and testing of classifier. A parameter 'time of interest' was used to extract each signal 
portion of interest which was set between 0 and 650ms here. Implementation of SVM was 
carried out the following way. 

 

3.4 Feature Extraction and Training of Classifier 
 
3.4.1 Method of Feature Extraction 

It is one of the most important steps in the recognition process [38]. Mentioned below, several 
categories of iterations that were performed in order to estimate a suitable way for feature 
selection to distinguish ErrP from noErrP instances, in the EEG data. 

 
a) Each Data Point as an Instance 

In this category, single trial ErrP and noErrP signal portion of interest have forty two data points 
as shown in Figure 22 (a) Each of these data points are considered as independent instances that 
either belong to ErrP or noErrP class without considering the temporal dimension of the signal. 
For example each ErrP and noErrP signal portion of interest has in total forty two instances 
belonging to ErrP and noErrP classes respectively. Therefore with this approach, each signal is 
transformed into forty two instances of one dimensional feature vectors. After the classification 
result is obtained, a voting scheme is used to have the result for entire test signal, e.g. if more 

                                                 
10 http://www.gtec.at/Products/Complete-Solutions/g.BCIsys-Specs-Features 
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than 50% data points of a signal are classified as ErrP, then the test signal is classified as ErrP 
signal else it is recognized as noErrP signal. 

 
b) Dimensionality Reduction of Each Signal 

In this method, dimensions or features in signal portion of interest are reduced depending upon 
the following scheme. For each individual signal, the data points are compared against each 
other and if they fall in neighbourhood of each other i.e. lie within a pre-set threshold value, then 
those points are considered as redundant. Redundant points are discarded keeping only one of 
those points or in other words they are merged to a single value. Hence the remaining data points 
of each signal are considered as important features and each of these points are treated as 
independent instances neglecting the temporal dimension. Similarly this dimensionality 
reduction scheme is carried out for testing data as well, i.e. it reduces data points which fall in 
neighbourhood of each other considering all of them as a single point. The threshold is set here 
as 0.01μv. Similar to the previous category mentioned above, the voting procedure is again 
carried out here to classify an entire test signal depending upon the classification result of all of 
its important constituting features. 

 
c) Each Data Point in the Time Series Signal as a Feature 

As mentioned earlier, every signal portion of interest contains forty two data points here. Each of 
these data points is considered as a feature of the signal and therefore each instance of ErrP and 
noErrP has a feature vector of forty two dimensions. 

 
d) Addition of Temporal Feature 

It is observed that the time difference between maximum and minimum of average ErrP signals 
are different from that of average noErrP which could be seen in Figure 22 (b). This temporal 
difference is considered as a feature of the signal and proportional to the difference in index of 
maximum and minimum value of the respective signal. Therefore, this index difference is 
estimated for each signal and considered as a feature along with the other forty two features 
mentioned earlier. Therefore these sums up to a feature vector of forty three dimensions in each 
instances of both ErrP and noErrP. 

 
e) Important Features Only 

Among the earlier mentioned forty three features extraction method, a technique is implemented 
to retain only important features of a signal and use only those selected important features during 
classification. Classifiers in sequence are developed based on only one feature of all signals 
followed by another until all the features are used in separate classifiers. Each classifier is 
validated using the validation data set. If a classifier contributes to at least a pre-set percentage 
which is set as 30%, for correct classification of both true negative and true positive, then the 
feature associated with that classifier is considered as biased to correct class feature. Feature 
might also exist that are biased to opposite class which means feature that helps in classifying the 
opposite class for both categories of signals instead of predicting the class they belong to. 
Therefore to detect possibilities of these opposite class biased features, the classifier should have 
an opposite class classification result above a defined value which is set as 70% for both true 
negative and true positive signals. Among total of forty three features including the temporal 
dimension, those which are biased to correct and opposite classes need to be determined. For the 
sake of it, a set of forty three linear classifiers are trained separately using only one feature 
followed by another feature of the signal. All of those classifiers are checked individually against 
their performances with the validation set. A classifier is considered as poor classifier if it 
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doesn’t contribute to either above 30% or above 70% for correct and opposite class classification 
respectively, for both ErrP and noErrP signals in validation set. The corresponding feature 
associated with the poor classifier is regarded not important and hence is discarded before 
training the final classifier to be verified with test data. Important features of average ErrP and 
noErrP signals are shown in Figure 22 (b). 

  

 

 
 
 
3.5 Support Vector Machine Classifier Training 
 
a) Randomization of Data 

True negative and true positive data are randomized separately, 10 times, in order to test the 
result for different set of training, validation and testing sets. The final test result is calculated as 
the average outcome of each randomized set of data. 

 
b) Normalization of Data 

Each feature needs to be normalized in order to keep the feature values bounded within unity, for 
the sake of assigning equal weight or importance to all of the features. Also keeping the values 
within a small range allows the kernel to occupy less memory during kernel function operations 
which essentially uses calculations like dot product of vectors. 

 
c) Labelling of Data 

All of the available data are labelled as -1 if it belongs to ErrP and as 1 if it belongs to noErrP. 

 
d) Splitting of Data 

The ErrP and noErrP data are split into 80, 10 & 10 ratio for training, validation and testing 
respectively. 

 
e) Kernel and Kernel Parameter Selection 

Among several varieties of classifiers, Linear classifier tries to linearly separate data while a 
Radial Basis Function (RBF) kernel or Gaussian kernel maps the limited set of features to 
infinite number of features in order to obtain a hyperplane separating both classes of data when 
the data is not linearly separable. By doing so, there are better chances of finding a separating 

(a) (b) 

Figure 22: ErrP (Error trial) and noErrP (Correct trial) signals (a) Avg ErrP & noErrP with Important 
Features, and (b) Average ErrP & noErrP with Temporal Difference Feature 
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hyper plane than finding it with limited available features. RBF classifier is generally considered 
having better performance due to this infinite dimension mapping, compared to other classifiers 
like Polynomial kernels [39]. Among various available techniques like Quadratic Programming 
(QP), Sequential minimal optimization (SMO) and Least Square (LS), SMO method is selected 
to find out the separating hyperplane. The SMO algorithm, gives an efficient way of solving the 
dual problem arising from the derivation of the SVM. It was invented by John Platt in 1998 at 
Microsoft Research [40]. SMO is widely used for training support vector machines. The 
publication of the SMO algorithm in 1998 has generated a lot of excitement in the SVM 
community, as previously available methods for SVM training were much more complex and 
required expensive third-party QP solvers [41]. 

 
f) Training 

During the step of important features selection, only linear classifier was used as it was quicker 
and also had comparable results with RBF kernel. After selection step of important features, both 
Linear and RBF classifiers are trained using the features. In general, the performance of 
classifier is very much dependant on the choice of parameters [42]. In the case of RBF classifier 
these crucial parameters used in the kernel function are box constraint and sigma value. Initially 
a coarser and later a finer grid search are generally performed on these parameters. These 
parameters are chosen depending upon the cross-validation accuracy, after iterating on different 
values of the parameters. Cross-validation, sometimes called rotation estimation [43], is a 
technique for assessing how the results of a statistical analysis generalize to an independent data 
set. It is mainly used when determining the tuning parameters and also the method can estimate 
the bias of the excess error in prediction [44]. In k-fold cross-validation, the original sample is 
randomly partitioned into k subsamples. Of the k subsamples, a single sub-sample is retained as 
the validation data for testing the model, and the remaining (k – 1) subsamples are used as 
training data. The cross-validation process is then repeated k times or k folds, with each of the k 
subsamples used exactly once as the validation data. The k results from the folds then are 
averaged to produce a single estimation. The advantage of this method over repeated random 
sub-sampling is that all observations are used for both training and validation, and each 
observation is used for validation exactly once. Classification parameters used during training of 
classifier are listed in Appendix B. 

 

3.6 Classification Performance of Support Vector Machine 

Test instances are recognized using both Linear and RBF classifiers separately and the 
performances are compared against each other. Test results for each data set generated because 
of randomization, are produced and the average performance is estimated. Also calculated are 
the standard deviations for both ErrP and noErrP classification accuracy. Mentioned below is the 
average result of SVM classification for different categories of iterations that is developed in this 
thesis work. Among the five different categories used for feature extraction mentioned earlier, 
the first “Each Data Point as an Instance” and the second “Dimensionality Reduction” categories 
have similar performances with average classification rate around 70% for both ErrP and noErrP. 
“Each Data Point in the time series signal as a Feature” which is third in the category list and the 
next “Addition of Temporal Feature” both have better performances but average classifications 
are below 75% for both ErrP and noErrP. The result obtained from the last category of iteration 
“Important Features Only” defined above, is superior to all other categories mentioned. Twenty 
three features are found to be important after following the procedure mentioned under 
“Important Features Only” category, among the forty three available features for each signal 
portion of interest and there is no such feature found which is biased to opposite class. The 
average classification results of this category are 71% with standard deviation of 12% for ErrP 
and 73% with standard deviation of 9% for noErrP with a linear classifier. As expected, 
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performance seems to increase for RBF classifier with average ErrP classification of 88% with 
8% standard deviation and 75% with 7% standard deviation for noErrP. The RBF classifier while 
considering only important features from data is the best performer among other types of feature 
extraction methods and choice of classifiers mentioned. The result of SVM classifier and 
Gaussian classifier for the same data produces ErrP and noErrP average classification accuracies 
as mentioned below in Table 3, for 10 fold cross-validations. 

 

SVM Gaussian 

Linear RBF  

ErrP (%) noErrP (%) ErrP (%) noErrP (%) ErrP (%) noErrP (%) 71 േ 12 73 േ 9 88 േ 8 75 േ 7 95 േ 5 72 േ 13 

 

 
3.6.1 Timing Performance of Support Vector Machine Classifier 

The time consumed during training and validation of the linear classifier is around 70 seconds 
while that of RBF classifier is approximately 110 seconds, for around 300 instances of ErrP and 
noErrP in total. Both linear and RBF classifier produced test results within 0.1 second for a 
single test instance. 

 

3.7 Future Work on Support Vector Machine Classification 
Method 

The work could be extended to perform a BCI experiment using either P300 or SSVEP paradigm 
to record user intention with more number of participants and thereafter training SVM with large 
data set. A finer grid search could be performed in order to estimate better values of box 
constraint and sigma which would produce higher recognition rate of ErrP and no ErrP in the 
EEG data, when radial basis function (RBF) kernel is used for SVM classification. Advanced 
feature extraction methods from ErrP and noErrP signals in the EEG data, may lead to even 
better performance of the SVM classifier. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: ErrP Classification Rate for SVM and Gaussian Classifiers 
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4  SUMMARY 

This is the last chapter of this thesis and it concludes with the summary of the entire thesis work 
of part 1 (Adaptive BCI) and part 2 (Classification of Error-related Potentials). 

 

The future generations of user interfaces need to consider uncertainties in user behaviour and 
should be able to adapt as per the user, in order to provide increased user satisfaction while using 
the interface. This study shows a novel use of machine learning technique, to be specific 
reinforcement learning to develop an algorithm for adaptive Brain-Computer Interface system in 
application to navigational tasks. The learning algorithm used here also takes care of change in 
behaviour of the user and outliers in user behaviour. As a future work of this learning algorithm, 
the reward function defined in the algorithm could be enhanced by considering cognitive load of 
the user. I have shown that such an adaptive BCI is indeed possible and could provide 
embodiment feeling to the user as if the robot body is an avatar of the user, compared to 
conventional fixed policy based BCI systems. 

 

Further this thesis tackles the detection of single trial error-relate potentials in the EEG data 
using Support Vector Machine. As expected, it is observed that feature selection plays a decisive 
role for classification accuracy. SVM is found to work well, in parallel with other classifiers such 
as Gaussian classifier or Bayesian filter method and could have higher ErrP recognition rate for 
RBF kernel with tuned kernel parameters. The timing performance shows that SVM could be 
considered for real-time BCI applications. Successful detection of error-related potentials 
indicates the possibility of increasing the reliability and also improving the information transfer 
rates of BCI systems. 
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Appendix A: Markov Agent for Training and Testing of the 
Algorithm 
 
 

begin 
    Define number of actions, trajectory length             // Number of training instances 

    Initialize current state, state→action probabilities 

    Calculate cumulative state→action probabilities 

 

     while    training index < trajectory length    do 

               Generate random number                         // Normalize the random number 

 

       while    action index < number of actions    do  

      if    random number >  cumulative probability (current state → action)    then 
 

            if        random number = 1    then    next action  ← action index 

      else    next action ← action index + 1 

      end if 
 

       else 

   next action ← action index 

      end if 
            end while 

   trajectory [training index] ← next action 

   if        action = low level    then    do nothing 

 else    current state ← action 

 end if 
 

     end while 
end 
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Appendix B: Parameters for Support Vector Machine 
Classification 

 
 

Karush-Kuhn-Tucker (KKT) violation level 0.01 

KKT Tolerance Limit 0.01 

Maximum Number of Iterations 20000 

Kernel Catch Limit 10000 

RBF Sigma 29 

RBF Box Constraint 2 

Matlab Version (svmtrain) R2011b 

Operating System Ubuntu 10.10 

 


