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Destino, Giuseppe, Positioning in Wireless Networks. Non-cooperative and
cooperative algorithms
University of Oulu Graduate School; University of Oulu, Faculty of Technology, Department of
Communications Engineering; Centre for Wireless Communications; Infotech Oulu, P.O. Box
4500, FI-90014 University of Oulu, Finland
Acta Univ. Oul. C 434, 2012
Oulu, Finland

Abstract

In the last few years, location-awareness has emerged as a key technology for the future
development of mobile, ad hoc and sensor networks. Thanks to location information, several
network optimization strategies as well as services can be developed. However, the problem of
determining accurate location, i.e. positioning, is still a challenge and robust algorithms are yet to
be developed.

In this thesis, we focus on the development of distance-based non-cooperative and cooperative
algorithms, which is derived based on a non-parametric non- Bayesian framework, specifically
with a Weighted Least Square (WLS) optimization. From a theoretic perspective, we study the
WLS problem and establish the optimality through the relationship with a Maximum Likelihood
(ML) estimator. We investigate the fundamental limits and derive the consistency conditions by
creating a connection between Euclidean geometry and inference theory. Furthermore, we derive
the closed-form expression of a distance-model based Cramér-Rao Lower Bound (CRLB), as well
as the formulas, that characterize information coupling in the Fisher information matrix. 

Non-cooperative positioning is addressed as follows. We propose a novel framework, namely
the Distance Contraction, to develop robust non-cooperative positioning techniques. We prove
that distance contraction can mitigate the global minimum problem and structured distance
contraction yields nearly optimal performance in severe channel conditions. Based on these
results, we show how classic algorithms such as the Weighted Centroid (WC) and the Non-Linear
Least Square (NLS) can be modified to cope with biased ranging. 

For cooperative positioning, we derive a novel, low complexity and nearly optimal global
optimization algorithm, namely the Range-Global Distance Continuation method, to use in
centralized and distributed positioning schemes. We propose an effective weighting strategy to
cope with biased measurements, which consists of a dispersion weight that captures the effect of
noise while maximizing the diversity of the information, and a geometric-based penalty weight,
that penalizes the assumption of bias-free measurements. Finally, we show the results of a
positioning test where we employ the proposed algorithms and utilize commercial Ultra-
Wideband (UWB) devices. 

Keywords: estimation error bounds, field trial, mobile positioning, multi-target
positioning, optimization, ultra-wideband, weighted least square





Destino, Giuseppe, Paikannus langattomissa verkoissa. Ei-yhteistoiminnalliset ja
yhteistoiminnalliset algoritmit
Oulun yliopiston tutkijakoulu; Oulun yliopisto, Teknillinen tiedekunta, Tietoliikennetekniikan
osasto; Centre for Wireless Communications; Infotech Oulu, PL 4500, 90014 Oulun yliopisto
Acta Univ. Oul. C 434, 2012
Oulu

Tiivistelmä

Viime vuosina paikkatietoisuudesta on tullut eräs merkittävä avainteknologia mobiili- ja sensori-
verkkojen tulevaisuuden kehitykselle. Paikkatieto mahdollistaa useiden verkko-optimointistrate-
gioiden sekä palveluiden kehittämisen. Kuitenkin tarkan paikkatiedon määrittäminen, esimerkik-
si kohteen koordinaattien, on edelleen vaativa tehtävä ja robustit algoritmit vaativat kehittämistä. 

Tässä väitöskirjassa keskitytään etäisyyspohjaisten, yhteistoiminnallisten sekä ei-yhteistoi-
minnallisten, algoritmien kehittämiseen. Algoritmit pohjautuvat parametrittömään ei-bayesilai-
seen viitekehykseen, erityisesti painotetun pienimmän neliösumman (WLS) optimointimenetel-
mään. Väitöskirjassa tutkitaan WLS ongelmaa teoreettisesti ja osoitetaan sen optimaalisuus
todeksi tarkastelemalla sen suhdetta suurimman todennäköisyyden (ML) estimaattoriin. Lisäksi
tässä työssä tutkitaan perustavanlaatuisia raja-arvoja sekä johdetaan yhtäpitävyysehdot luomalla
yhteys euklidisen geometrian ja inferenssiteorian välille. Väitöskirjassa myös johdetaan suljettu
ilmaisu etäisyyspohjaiselle Cramér-Rao -alarajalle (CRLB) sekä esitetään yhtälöt, jotka karakte-
risoivat informaation liittämisen Fisherin informaatiomatriisiin. 

Väitöskirjassa ehdotetaan uutta viitekehystä, nimeltään etäisyyden supistaminen, robustin ei-
yhteistoiminnallisen paikannustekniikan perustaksi. Tässä työssä todistetaan, että etäisyyden
supistaminen pienentää globaali minimi -ongelmaa ja jäsennetty etäisyyden supistaminen johtaa
lähes optimaaliseen suorituskykyyn vaikeissa radiokanavan olosuhteissa. Näiden tulosten poh-
jalta väitöskirjassa esitetään, kuinka klassiset algoritmit, kuten painotetun keskipisteen (WC)
sekä epälineaarinen pienimmän neliösumman (NLS) menetelmät, voidaan muokata ottamaan
huomioon etäisyysmittauksen harha. 

Yhteistoiminnalliseksi paikannusmenetelmäksi johdetaan uusi, lähes optimaalinen algoritmi,
joka on kompleksisuudeltaan matala. Algoritmi on etäisyyspohjainen globaalin optimoinnin
menetelmä ja sitä käytetään keskitetyissä ja hajautetuissa paikannusjärjestelmissä. Lisäksi tässä
työssä ehdotetaan tehokasta painotusstrategiaa ottamaan huomioon mittausharha. Strategia pitää
sisällään dispersiopainon, joka tallentaa häiriön aiheuttaman vaikutuksen maksimoiden samalla
informaation hajonnan, sekä geometrisen sakkokertoimen, joka rankaisee harhattomuuden
ennakko-oletuksesta. Lopuksi väitöskirjassa esitetään tulokset kokeellisista mittauksista, joissa
ehdotettuja algoritmeja käytettiin kaupallisissa erittäin laajakaistaisissa (UWB) laitteissa. 

Asiasanat: estimoinnin raja-arvot, mobiilipaikannus, monikohdepaikannus, optimointi,
painotettu pienin neliösumma, ultra-laajakaista ja kenttäkoe
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Preface

The research work presented in this doctoral thesis has been carried out at the
Centre for Wireless Communications (CWC), Department of Communications
Engineering (DCE), University of Oulu, Oulu, Finland. This work has been
financially supported by the European projects PULSERS Phase II, EUWB and
BUTLER as well as by the Infotech Oulu Graduate School. I also acknowledge
the foundations Nokia Oyj:n säätiö, Oulun Yliopiston tukisäätiö, Riitta ja Jorma
J. takasen säätiö, Tekniikan edistämissäätiö and Walter Ehström-säätiö, from
which I received personal research grants.

This research started back in September 2005 when, at my first working
day as a Ph.D. student, my advisor Prof. Giuseppe Abreu gave me the article
“Improved MDS-based Localization” and asked me to understand what the
problem of “Positioning in Wireless Networks” is about. It turned out that such
a problem was a fascinating, curious and challenging combination of Euclidean
geometry and estimation theories applied to wireless networks.

Throughout the years of my Ph.D. study, nice and difficult moments occurred.
There have been situations in which the stress was high and the work did not
progress. However, the encouragement from my colleagues as well as from my
family helped me to continue. I am very thankful to those persons and hereby I
would like to express my sincere gratitude.

I thank my advisor and friend Prof. Giuseppe Abreu. I met him during my
first visit in CWC, in 2004, when I was working for my Master thesis. Our
relationship started as a friendship and over time it became also professional. In
2005 he asked me to be his first Ph.D student. The amount of hours spent on
the whiteboard to discuss ideas, formalize problems and derive equations are
countless. His constructive criticism, preciseness and high standard helped me to
produce novel and significant research results. His availability to sit with me
and teach me the technical writing will never be forgotten. If today, I am an
independent, self-critical and creative scientist it is on great part thanks to him.

I thank my supervisor Prof. Jari Iinatti. I have had the opportunity to work
with him only in the last few years, but his contributions have been important
to the accomplishment of this thesis. I would like to thank him for his reinsuring
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words, efficient work planning, availability to supervise my research and all
valuable comments that he gave me to improve the quality of the manuscript.

I also thank my group leader Prof. Markku Juntti for his useful advice during
the years as well as for his guidance in my current research.

A special gratitude goes to my reviewers Prof. José Manuel Fonseca de Moura
and Prof. Sinan Gezici that provided a professional and careful inspection of the
thesis as well as accurate corrections to enhance the level of the content. An
acknowledgement is also directed to Aleksandrs Malinovskis for the proofreading.

I would like to thank also the Head of the DCE, Prof. Matti Latva-aho,
as well as the former and current CWC director, Lisc. Tech. Ari Pouttu and
Dr. Harri Posti respectively, for providing a great working environment. My
gratitude also goes to the administration group, Hanna Saarela, Kirsi Ojutkangas,
Eija Pajunen, Elina Komminaho, Timo Äikäs and Jari Sillanpää for their efficient
and always prompt cooperation in the work-related issues.

Sincere thanks are inexorable to my Friend and office-mate Davide Macagnano,
with whom I did spend a lot of time! More than any other colleague, I shared
with Davide a lot of nice and difficult time at work. If with my advisor I
had countless hours spent on technical problems, then that number must be
exponentially increased when referring to the technical (and loud) discussions
that I had with Davide. His criticism has always been constructive and, his
advice have helped to steer the work into the right direction.

I would like to express my gratitude also to other colleagues for the free-time
spent together: (the brasilian churrascu team) Pedro Nardelli, Carlos Lima and
Hirley Alves; (the lunch-break team) Jani Saloranta, Jari Ylionas, Esa Kunnari
and Markus Myllyla; (the occasianlly party team) Jussi Haapola, Leonardo
Goratti, Marko Härkönen, Brett Kaufman, Stefano Severi and Antti Tölli.
Additional thanks go to Jani Saloranta who helped me with a pre-screen of the
thesis as well as Finnish translations. I also thank Prof. Behnaam Aazhang for
both his professional advice and the nice time spent together outside the office.

My warmest gratitude goes to my dearly loved wife, Miia. This chapter of
my life is also due to her. She was the person that, better than any others, knew
my feelings without me expressing any word. I thank her for all the advice, her
objective considerations, her understanding of my work and her joyfulness for
my successes. I also thank her very much for the precious help to read the text
of this thesis and to provide useful corrections.
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I would like to thank my little step-son Joona who cheered up my personal
life with his young energy and let me forget the problems at work while watching
his exciting football games. Another special thank goes to my little son Alessio,
now, a nine months old baby. During the editing of the thesis, he made sure
that I would wake up at five o’clock in the morning to write a few paragraphs
before going to work.

Finally, I thank my parent-in-law Pentti and Sirpa as well as my brother-in-law
Marko and his fiancé Kati for their kind and always reliable help.

In conclusione, un ringraziamento molto speciale a mio padre Angelo, mia
madre Maria Antonietta, i miei fratelli Luigi e Gianni e le rispettive moglie e
fiancé Antonella e Angela. Loro mi son stati accanto in ogni momento e, anche
se da lontano, hanno sempre saputo consigliarmi per il meglio. A mio padre, che
purtroppo oggi non é più con noi, voglio dedicare questa tesi. Le sue parole e i
suoi consigli mi son serviti per crescere e i suoi sacrifici mi han consentito di
arrivare a questo punto. Grazie.

Oulu, October 24, 2012 Giuseppe Destino
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Symbols and abbreviations

AoA Angle-of-Arrival
AHB Abel Hybrid Bound
BB Battacharyya Bound
BFGS Broyden-Fletcher-Goldfarb-Shanno
CRLB Cramér-Rao Lower Bound
C-WLS Constraint Weighted Least Square
DoA Direction-of-Arrival
DC Distance Contraction
DE Distance Error
EDF Euclidean Distance Function
EDM Euclidean Distance Matrix
FCC Federal Communications Commission
FIM Fisher Information Matrix
GDC Global Distance Continuation
GDOP Geometric Dilution of Precision
GPS Global Positioning System
HCRB Hammersley-Chapmann-Robbins Bound
i.i.d. independent identically distributed
LQ Link-Quality
LBS Location Based Service
LOS Line-of-Sight
LLS Linearised Least Square
LS Least Square
LT Location-Tracking
MDS Multi-Dimensional Scaling
ML Maximum Likelihood
MSE Mean Square Error
MSPE Mean-Squared-Position-Error
MUSIC MUltiple SIgnal Classification
NLOS Non-Line-of-Sight
NLS Non-Linear Least Square
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PE Position Error
PEB Position Error Bound
PSM Positive Semi-definite Matrix
R-GDC Range-Global Distance Continuation
RMSE Root-Mean-Squared-Error
RSS Received Signal Strength
SB Stochastic Bound
SDP Semi Definite Programming
SMACOF Stress-of-a-MAjorizing-Complex-Objective-Function
SNR Signal-to-Noise-Ratio
SQP Sequential Quadratic Programming
SR-GDC Square Range-Global Distance Continuation
SR-LS Squared-Range Least Square
ToA Time-of-Arrival
UWB Ultra-WideBand
WC Weighted Centroid
WLS Weighted Least Square
0η Vector of zeros with η columns
0ηη Matrix of all zeros and size η × η
1N Vector of ones with N rows
‖ · ‖F Frobenius norm
◦ Hadamard product
⊗ Kronecker product
∇x(·) Gradient vector of the function given as the argument derived

with respect to the variable vector x

∇2
x(·) Hessian matrix of the function given as the argument derived

with respect to the variable vector x
d

dx First derivative with respect to the variable x
∂
∂x Partial derivative with respect to the variable x
∂2

∂x∂y Second Partial derivative with respect to the variables x and y
∂n

∂x⊗n Vector of all partial derivatives with respect to the vector x up to
the n-th order

abs(·) Absolute value function

1F1(a; b; ·) Confluent hypergeometric function of parameters a and b
AHBLOS(·) AHB function derived from the LOS assumptions
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C(·) Convex-hull of the coordinate matrix given as argument
CRLBLOS(·) CRLB function derived from the LOS assumptions
CRLBNLOS(·) CRLB function derived from the NLOS assumptions
D(·) Euclidean distance function
diag(·) Diagonal function
dom(·) Domain of the function given as argument
Ex{·} Expectation with respect to the random variable x
Ei(·) i-th eigenvalue of the matrix given as argument
fe(·) General estimator function
fT(·; a) T-distribution of a degree of freedom
fR(·) Weighted least square function
fR
ij (·;λ) ij-th term of the Gaussian transform of fR
fA-R(·) Location ambiguity function
fij(d̃ij |dij) Probability density function of d̃ij parametrised by dij
fFp(ỹ|Xmp) Conditioned probability density function of the fingerprint ỹ

g(·;λ) Gaussian kernel with parameter λ
gm(·) Gaussian mixture function
gmi(·) i-th term of the Gaussian mixture
G(·, ·, ·) Graph function
H(·) Entropy function
HCRBLOS(·) HCRB function derived from the LOS assumptions
Jx(·) Jacobian function of the vector function given as the argument

with respect to the variable vector x

K(·) Double centering Euclidean kernel transformation
K−1(·) Inverse of the double centering Euclidean kernel transformation

L(~̂p|d̃) Generalised Likelihood function of ~̂p given ~̃d

LLOS(~̂p|~̃d) Likelihood function of ~̂p given ~̃d in LOS

LNLOS(~̂p|~̃d) Likelihood function of ~̂p given ~̃d in NLOS
MSE(·) Mean square error function
N (·) Null-space function
O(·) Asymptotic upper bound notation
py(ỹ) Distribution of the observation vector ỹ (general)
Pr{·} Probability of the event described in the argument
Q(·) Tail probability of the standard normal distribution
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rank(·) Rank function
S (·) Minimiser deviation
S1(·;λ) Auxiliary function used in the derivation of the gradient and

Hessian of 〈fR〉λ
S2(·;λ) Auxiliary function used in the derivation of the Hessian of 〈fR〉λ
tr(·) Trace function
T (·) Majorising and integrable function
U(a, b) Uniform distribution defined in the interval (a, b)

Wd(·, ·; γ) Dispersion weighing function parametrized by γ
Γ(·) Gamma function
∆(x1,x2; y) Difference of the likelihood function at a and b, and parametrized

by y

Π(·) Minimisation effectiveness function
φ(·) Generic unbiased ranging distribution
(·)T Transpose operation
(·) � 0 Negative semi-definite
(·) � 0 Positive semi-definite
{· · · } Finite set
〈·〉λ Gaussian transform with the smoothing parameter λ
(·, ·) Pair of elements
[·]ij ij-th element of a matrix
[·]ηij ij-th block-matrix of η × η elements
[·]:i i-th column of a matrix
[·]i: i-th row of a matrix
[·, ·] column-wise concatenation
[·; ·] row-wise concatenation
i, j, k, t, q, s, n Index counter
Ai Label of the i-th anchor node
Agi Multiplicative coefficient of the Gaussian function gmi
ai Coordinate vector of the i-th anchor node
Adc Auxiliary matrix in the distance-contraction algorithm
ASR Auxiliary matrix in the SR-LS algorithm
bi Ranging bias associated to the distance di
b̂i Estimate of the ranging bias bi
bui Upper bound of the ranging bias bi
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bij Ranging bias associated to the distance dij
bMAX Maximum ranging bias
B Hypersphere set
B′ Extended hypersphere set of B
Bi Hypersphere set associated to the i-th anchor
BP Compact set
BD Target feasibility region
bdc Auxiliary vector in the distance-contraction algorithm
bSR Auxiliary vector in the SR-LS algorithm
bx Bias vector on the estimate of a general parameter x

c Speed of light in the vacuum
cij ij-th element of C

Cijq Number of triplets with the elements of the i, j and q sets
~c Vectorised form of C

C Connectivity matrix
di Euclidean distance between the i-th anchor and the target
dR
i Euclidean distance between the i-th anchor and the point pR

dr
ik Euclidean distance between the i-th anchor and the test point rk

dij Euclidean distance between the i-th and the j-th nodes
d̃ij Measurement of the distance dij
d̃

(k)
ij k-th element of a measurement set of the distance dij
d̂i Estimate of di
d̂Bi Distance between the i-th anchor node and the point ẑB

d̂ij Estimate of dij
d̄ij Sample-mean of the set {d̃(k)

ij }
~d Vectorised form of D
~̃
d Vectorised form of D̃
~̂
d Vectorised form of D̂

D Euclidean distance matrix in the natural coordinates of P

D(i) Euclidean distance matrix in the natural coordinates of P(i)

D′ Euclidean distance matrix in the natural coordinates of P′

D◦2 Euclidean distance matrix in the squared coordinates of of P

D̃ Sample of the Euclidean distance matrix D

D̂ Estimate of the Euclidean distance matrix D
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DSR Auxiliary matrix in the SR-LS algorithm
eGij ij-th edge in the network graph G
eij Row-vector with [eij ]i = 1, [eij ]j = −1 and all other elements

equal to 0

E Set of edges of the network graph G
E(i) Set of edges of the network graph G(i)

EF Set all possible edges of the network G
EDMN Cone of the N ×N Euclidean distance matrices in the natural

coordinates
EDMN

2 Cone of the N ×N Euclidean distance matrices in the squared
coordinates

Ek Equivocation matrix associated with the k-th node
E

(i)
k Equivocation matrix associated with the k-th node in the i-th

network
Ēk Block-off diagonal part of the Equivocation matrix
Ĕd Block-diagonal part of the Equivocation matrix
F̂ Matrix form of the weighted distance squared errors
F̂ Matrix form of the weighted distance squared errors
˙̂Fn
i Partial derivative of F̂ with respect to p̂ni

¨̂Fmn
ij Second partial derivative of F̂ with respect to p̂ni and p̂mj

fSR Auxiliary vector in the SR-LS algorithm
Fν Information matrix relative to the information vector ν
FhcrLOS Hammersley-Chapmann-Robbins Information matrix with the

LOS assumptions
FaLOS Hybrid Abel Information matrix with the LOS assumptions
Fd Fisher Information matrix (general ranging model)
F̄d Block-off-diagonal matrix of Fd

F̆d Block-diagonal matrix of Fd

F̆kd k-th diagonal block of F̆d

F
(i)
d Fisher Information matrix associated to P(i)

F̆k,Ad Part of F̆kd associated to the anchor-to-target links
F̆k,Td Part of F̆kd associated to the target-to-target links
F̄ijd ij-th off-diagonal block of F̄d

FLOS Fisher Information matrix with the LOS assumptions
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F̄LOS Block-off-diagonal matrix of FLOS

F̆LOS Block-diagonal matrix of FLOS

F̆kLOS k-th block-diagonal part of FLOS

F̄ijLOS ij-th off-diagonal block of FLOS

FNLOS Fisher Information matrix with the NLOS assumptions
F̄NLOS Block-off diagonal part of FNLOS

F̆NLOS Block-diagonal part of FNLOS

F̆kNLOS k-th block-diagonal part of FNLOS

F̄ijNLOS ij-th off-diagonal block of FNLOS

G Network graph
ĝR
k k-th row-vector of the matrix GR

GP Gram-kernel
Gθ Auxiliary matrix in the angle-based Maximum-likelihood estimator
Gk Upper-left partition of Fd with kη × kη elements
G

(i)
k Upper-left partition of of F

(i)
d with kη × kη

Ga
NR

Upper-left partition of FaLOS with η ×NRη elements
hl Location hypothesis
H0 Null hypothesis
H1 Alternative hypothesis
Ĥ Hessian matrix evaluated at the point ~̂p
H̄ Block-off diagonal part of the Hessian matrix
H̆ Block-diagonal part of the Hessian matrix

H̆
k

k-th block-diagonal part of the Hessian matrix

H̆
ij

ij-th off-diagonal block of the Hessian matrix
ij ij-th link
Ig Number of components in the Gaussian mixture gm
Ii i-th integral used in the derivation of 〈fR〉λ
Ia Identity matrix of a dimensions
J Double centering projection matrix
Jd Inverse of Fd

JcLOS Inverse of FLOS

JhcrLOS Inverse of FhcrLOS

JcNLOS Inverse of FNLOS

JR
di Jacobian of the function ‖pR − ai‖F with respect to pR
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K Double centering Euclidean kernel
K̃ Sample of the double centering Euclidean kernel
K̂ Estimate of the double centering Euclidean kernel
KP Equivalent double centering Euclidean kernel
Kij Number of measurements of the distance dij
KMAX Maximum number of distance measurements
KMIN Minimum number of distance measurements
LKλ Set of K smoothing parameters λ
m Meshness ratio
MH Total number of location hypothesis
MT Total number of tests
MA Total number of algorithms
nij Ranging noise
N Total number of nodes
NA Total number of anchor nodes
NR Total number of test points
NT Total number of target nodes
Nv Number of the vertices of BD
NV Total number of the optimisation variables
~o Centre of the hypersphere
~oBD Centre of BD
~̂oBD Estimate of ~oBD

oi i-th block matrix of ~o
p̂ni n-th component of the vector p̂i

pNLOS Probability of NLOS
Pi Label of the i-th node
PG Realisation of the network graph G
Pij Penalty weight
PFA Probability of NLOS false-alarm
PMD Probability of LOS miss-detection
PEBLOS Position error bound derived from the LOS assumptions
PEBNLOS Position error bound derived from the NLOS assumptions
pi Coordinate vector of the i-th node (i-th row-vector of P)
pBDi Coordinate vector of the i-th intersection point forming BD
p̂i Estimate of the i-th node location
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~p Vectorised form of P

~p(i) Vectorised form of Pi

~̂p Vectorised form of P̂

P Coordinate matrix
Pi Coordinate matrix of the i-th network realisation
P′ Perturbed coordinate matrix
P̂ Estimate of the coordinate matrix P

P̂ML Maximum-likelihood estimate of P

p̂ML(θ̃) Angle-based maximum-likelihood estimate of a node location
pR Reference point
~̂pML Vectorised form of P̂ML
~̂ps Supporting point used in the SMACOF algorithm
Qk Right-upper partition of Fd with kη × η elements
Qk,n Upper partition of Qk with nη × η elements
RMAX Maximum connectivity range
ri i-th test point for the derivation of the hybrid-bound
Ra Real space of a dimensions
R̂h
ik Auxiliary matrix in the expression of H̆k

SN Space of the N ×N symmetric matrices
SN+ Space of the N ×N positive semi-definite symmetric matrices
SNh Space of the N ×N hollow symmetric matrices
Sk Equivalent FIM associated with the k-th node
S

(i)
k Equivalent FIM associated with the k-th node in the i-th network

S̄n Shur-complement of the matrix Gn

tij t-score associated to the statistics d̄ij
TMAX Maximum number of iterations of an iterative optimisation

algorithm
T Matrix of the differences between the test points ri and x̂

ux First component of the variable u

uy Second component of the variable u

u2 Squared norm of u

u Integration variable
UR Auxiliary matrix in the derivation of the Abel hybrid bound
Uη Matrix with the η-th highest left singular-vectors of K̂

vGi i-th vertex of the network graph G
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V Set of vertexes of the network graph G
v̂kj Normalised direction vector
Vη Matrix with the η-th highest right singular-vectors of K̂

wi Weight to the distance di
wij Weight to the distance dij
wDij Dispersion weight to the distance dij
wGij Edge-weight of the ij-th edge in the network graph G
W Set of edge-weights of the network graph G
W Field of the dispersion weighing function
W Weight matrix
x ijq Critical value of the geometric test
x Parameter to be estimated (general)
x̂ Estimate of x

Xhl fingerprint parameters
yij ij-th element of the matrix Y

ỹ observation vector (general)
yf fingerprint observation
ySR Variable of the SR-LS algorithm
Y Hollow symmetric matrix
Zi Label of i-th target node
~z Integration variable
~z Vectorised form of Z

z̄ Local minimum of the function fR(ẑ)
~̂z Vectorised form of Ẑ

ẑ∗ Global minimum of the function fR(ẑ)

zA-R Minimum of the location ambiguity function
ẑB Coordinate vector of a node at the boundary of the set B
ẑ` Solution of the `-th algorithm
zi Coordinate vector of the i-th target node
ẑi Estimate of vector of zi

Ẑ Estimate of the target coordinate matrix
Z Target coordinate matrix
ℵ Auxiliary matrix used for the derivation of λ(1)

αnk Coefficient of Υnk

αink Coefficient of Υik
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α̂z Component of ω̂z
βnk Coefficient of the sum (Υki

nk + Υkn
ik )

βijnk Coefficient of Υkj
ik

γ Confidence bound
γopt Optimum confidence bound
γ̂opt Estimate of the optimum confidence bound
γν Translation matrix
δij Distance error between d̄ij and dij
δTX−RX Measurement of the round-trip time of packet transmission
∆̂x
ij Difference of the coordinates p̂xi and p̂xj

∆̂y
ij Difference of the coordinates p̂yi and p̂yj

∆B Increase of the hypersphere radius %B
∆dij Range-difference
∆tij Time-difference-of-arrival
∆P Perturbation of the coordinate matrix P

ε Tolerance on the sample mean d̄ij
εte Delay of the radio-frequency circuits
εts Delay of synchronisation algorithm
εtl Delay of the leading edge algorithm
εL Threshold on the generalised likelihood function
εq,` Location error of the `-th algorithm for the q-th network
ε̄` Location accuracy of the `-th algorithm
ζij Ranging information intensity
ζe
ij Equivalent ranging information intensity
η Euclidean dimension
θ∗ij Characteristic angle
θ̃ Bearing measurement vector
θR Bearing vector of the reference point
θ̂kj Angle between the vectors centred at p̂k pointing towards p̂j and

p̂k + [1,0]

θ̂iZẑB Differential angle between the vectors ai and ẑB centred at the
target Z

κkjik Information coupling coefficient
λ Smoothing parameter
λ∗ Infimum of the set L
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λ∗S Initial smoothing parameter for source-localisation
λ∗N Initial smoothing parameter for network-localisation
λ(i) i-th smoothing parameter of the set LKλ
ΛSR Diagonal matrix with all anchor-to-target weights
µij Bias of the ranging distribution
µgi Mean of the Gaussian function gmi
m̃uijq Random variable obtained as (d̃ij − d̃iq − d̃jq)
µ̄ijq Sample mean of the random variable m̃uijq
νij Random variable obtained from the generic unbiased ranging

distribution
ν Information vector
νc Information vector associate to the CRLB
ν

(q)
b Information vector associate to the BB of the q-th order
νhcr Information vector associate to HCRB
ν

(q)
a Information vector associate to tha AHB of the q-th order
ξij Cross-scaling of the ranging information intensity
ξH LOS/NLOS decision threshold
Ξ Matrix with the i-th row-vector equals to [cos θiN , sin θiN ]

ξp Quality-of-Location
πhl Probability density function of the location hypothesis
πo Outage of the location accuracy
πs Strong localisability test
$ik Asymptotic eigenvalue of the Hessian matrix
ρi i-th element of the vector ρ
% Module of a vector in the polar coordinates
%b Radius of an hypersphere
ρ Perturbation vector
ρ̂ Estimate of the perturbation vector
σ Standard deviation of a Gaussian distribution
σgi Standard deviation of the Gaussian function gmi
σij Standard deviation of the ranging noise
σ̂ij Estimate of standard deviation of the ranging noise
σ̂µijq Estimate of standard deviation of the random variable µ̃ijq
σMAX Maximum standard deviation of the ranging noise
σMIN Minimum standard deviation the ranging noise
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Σθ Covariance matrix of the bearing measurements
Ση Diagonal matrix with the η-th highest singular values of K̂

τik Scaling of the ranging information intensity
τ i Difference between the i-th test point and the vector x̂

Υkj Ranging direction matrix
Υkj
ik Cross-ranging direction matrix

Υ̂kj Ranging direction matrix derived from p̂k and p̂j

Ῡ Weighted sum of Υ̂kj

φ Angle a vector in the polar coordinates
ϕρi Perturbed-to-estimate distance ratio
ϕi Sample-to-estimate distance ratio
ΦR Auxiliary matrix in the derivation of the AHB
χZ Tolerance on the relative changes of the optimization variable
χF Tolerance on the relative changes of the function value
ωρi Weighing coefficient for the definition of a minimum of fR(ẑ) with

perturbed distances
ωi Weighing coefficient for the definition of the convex-hull
ωWC Weighing vector in the WC algorithm
ωWC-DC Weighing vector in the WC-DC algorithm
ω̂ Component of ω̂z
ω̂z Initialisation variable of the distance-contraction algorithm
Ω Relative angle kernel
Ω̂ Estimate of the relative angle kernel
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1 Introduction

1.1 Positioning in wireless networks: a key technology

The history of wireless positioning dates back to 1994, when the Federal
Communications Commission (FCC) issued a Notice of Proposed Rule-making
(NPRM) for the development of the first location-based emergency service, the
E-911 [1]. Since then, in North America many location platforms were developed
for emergency services, whereas in Europe, Japan and South-Korea, the early
deployment of location platforms focused on commercial services.

Wireless positioning was initially conceived for cellular networks, and mobile
operators were the key partners and the main distribution channels for location-
based applications and services. Nowadays, their central role is being challenged
by the rising of heterogeneous smart-device (mobile phones, computers, tablets,
etc.) ecosystems that in many cases offer self-sustained applications and seemless
interfaces to various wireless networks. Location information has become a
crucial component for a number of mobile context-aware applications, and
companies such as Facebook, Twitter and Google have successfully exploited it
for the implementation of effective market penetration strategies.

In 2011, statistics published by the International Telecommunication Union
(ITU) [2] showed that there are 6 billion mobile phone subscribers worldwide.
The number of mobile-broadband subscriptions have grown 45% annually over
the last four years, and today there are twice as many mobile-broadband as fixed-
broadband subscriptions. Only in Europe, the penetration of mobile-broadband
technology has reached 54%.

Today, the number of mobile applications is countless and covering a vast
variety of services. In particular, market analysts forecast that the revenue
from the Location Based Services (LBS) market in Europe will grow from 205

million Euro in 2010 to about 435 million Euro in 2016 [3]. In addition to this,
we also foresee that the profit from positioning applications will sky rocket
with the coming internet-of-things, machine-to-machine and sensor networks
technologies. The integration of these new ecosystems, commonly referred to near-
field communications, in the world of mobile communications is foreseen within
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the year 2020. By then, over 2.1 billion devices will be interconnected forming
the largest wireless network worldwide [4]. It is considered that positioning
will be one of the fundamental features of this network so as to optimize the
networking and enable smart, personalized and pervasive services.

From all of the above, it is no wonder that wireless positioning has become a
key technology surging the interest of both industry and academia.

1.2 Open challenges

The central problem of positioning is the estimation of physical location. This
information can be provided as geographical coordinates or a semantic position
such as “I am in the room”, “I am at home”, etc. To obtain this information
from a wireless network, it is necessary that devices can communicate, that
position-related information such as distances or angles can be extracted from a
receiving waveform, and that an algorithm (the positioning engine) processes
the measurements to get the sought information. Considering that the network
operates on a wireless channel with multi-paths and fading, several challenges
are met in the design of a positioning system.

Firstly, at the radio-hardware, low power-consumption and robust radios are
necessary to enable communications in harsh environments and over a sufficiently
large coverage area. Secondly, at the physical layer, low-complexity and fast
signal processing is required to extract the position-related information from the
waveform, e.g. ranging [5] or angle-estimation [6] algorithms. Thirdly, at the
link-layer, new positioning-enabling primitives as well as scheduling protocols
are needed to perform contention-free measurements, e.g. ranging functionality
in the IEEE.802.15.4a [5]. Finally, at the middle-ware, a lightweight and robust
localisation algorithm is necessary to estimate node locations.

The research presented in this thesis focuses on the development of low-
complexity and robust positioning techniques. We address the problem from
both theoretical and algorithmic perspectives, and deal with non-cooperative
and cooperative scenarios. We restrict the assumptions to the case where no a
priori information is available about the measurement statistics. The positioning
problem is therefore formulated with a non-Bayesian non-parametric framework,
namely a Weighted Least Square (WLS) optimization problem.
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This approach has been widely considered by many researchers in industry
and academia, and in the pursuit of an optimal and computational efficient
minimization algorithm, several techniques have been proposed in the literature.
The main problem is the non-convexity of the objective function, which becomes
more and more irregular with the increase of measurement errors. To exemplify,
in Figure 1 we illustrate the WLS objective function when distances are free
of – Figure 1(a) – and affected by – Figure 1(b) – errors. It can be noticed
that with imperfect measurements, the global minimum is placed away from
the sought location (indicated with the marker “◦”), and a local minimum
appears. The design of mitigation techniques that circumvent the local minima
problem and minimize the localization error is still an open challenge. The same
problem extended to multi-target positioning becomes even more difficult since a
large number of variables are involved, many more minima can occur and the
complexity of the algorithm can rapidly increase.

From a theoretical perspective, a deep understanding of the fundamental
limits of this type of estimation problem is crucial. Considering the positioning
problem as a mere estimation problem is restrictive. Localization is also an
Euclidean embedding problem, which is governed by other fundamental limits.
How to bundle these two aspects is yet a subject of investigation.

1.3 Outline and author’s contributions

In this thesis we tackle the problem of positioning in a wireless network. We
consider a distance-based approach and, specifically, a multilateration scheme.
Restricting the assumptions to unknown measurement statistics, a non-Bayesian
non-parametric framework is employed, namely a WLS optimisation. The
reminder of the thesis is organised as follows.

In Chapter 2 we provide a comprehensive overview of the state-of-the-art
algorithms for non-cooperative and cooperative positioning. Specifically, we
survey the most common and effective optimisation techniques as well as
mitigation methods to bias errors. Based on simulations, a comparison of the
performance of a selected set of techniques is also provided.

In Chapter 3, we describe the WLS formulation of a distance-based localisation
problem. In addition, we also summarize the alternative matrix-proximity
approach and discuss three different variations.
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Fig 1. Contour plots and surface of the normalised (shifted down by the minimum
value) WLS objective function. The black squares and the white circle indicate the
locations of the anchors and target, respectively.
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In Chapter 4, we derive the fundamental limits of distance-based positioning,
and create a bundle between the positioning estimation problem and the Euclidean
embedding problem. Specifically, we prove that a distance-based positioning
problem is fundamentally solvable if the network is strongly localisable in a
pre-defined Euclidean embedding space. We derive the closed-form expressions
for a distance-model based Cramér-Rao Lower Bound (CRLB) and provide
the formulas for the evaluation of the information-couplings established with
inter-node cooperation. Additionally, we discuss the limitations of the CRLB in
the low-Signal-to-Noise Ratio (SNR) régime and, based on the Abel’s framework
[7], propose a hybrid bound that accounts for large estimation errors.

The remaining part of the thesis is devoted to algorithms and their test.
Specifically, in Chapter 5 we propose two robust non-cooperative positioning
algorithms, both based on the principle of Distance Contraction (DC), which is
one of our contributions whose main idea is explained in Section 5.1. Essentially,
we prove that if the target node lies within the convex-hull formed by the anchors,
the target-to-anchor distances are subject to a negative errors and such errors lie
in the null subspace of the relative angle matrix Ω, then: 1) the associated WLS
objective is a convex function, and 2) its global minimum coincides with the
true target location. The proposed DC-based techniques, namely the WC-DC
and the NLS-DC algorithms, will exploit this principle to improve the location
accuracy in Non-Line-of-Sight (NLOS) scenarios.

In Chapter 6, we address the problem of cooperative positioning. In this
regard, we propose a robust global optimisation algorithm to minimize the WLS
objective function and a weighing strategy to mitigate the effects of ranging
errors. The proposed optimisation method, hereafter referred to as the Range-
Global Distance Continuation (R-GDC) algorithm, solves the WLS problem via
iterative minimisations of smoothed variations of the objective, each obtained by
convolution with a Gaussian kernel of progressively smaller variances. Regarding
the weighing strategy, we propose a non-parametric mechanism to compute a
weight formed by a dispersion and a penalty term. The dispersion component
captures the effect of noise under the assumption of bias-free samples, whereas
the penalty term quantifies the risk of the latter assumption and penalises it
proportionally.
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In Chapter 7 we show the results of an experiment where the aforementioned
algorithms locate the nodes of a real wireless network. The experiment was
performed at the Centre for Wireless Communications of the University of Oulu
using commercial Ultra-WideBand (UWB) devices (Time Domain PulseON 210).
Finally, in Chapter 8 we provide final conclusions and discuss future works.

1.4 Author’s contributions to the publications

The thesis is based on research that has been published in two IEEE journals
[8, 9] and six IEEE international conference papers [10–15] In addition, the
thesis includes novel results that will be submitted to IEEE journals.

In [10], we addressed for the first time the localisation problem as a WLS
optimisation problem. We derived the gradient and the Hessian for the WLS
function with squared ranges and compare the results to a Semi Definite
Programming (SDP)-based optimisation. The analytical tools employed in [10]
are reused in Chapter 3 to derive the closed form expressions of the gradient and
the Hessian for the WLS function without squaring.

In [9, 13], the Range-Global Distance Continuation (R-GDC) optimisation
algorithm was proposed as a nearly optimal solution to a WLS-based positioning.
The derivation of this minimisation algorithm as well as the comparison to
the state-of-the-art optimisation methods, namely the Stress-of-a-MAjorizing-
Complex-Objective-Function (SMACOF), the NLS-Levenberg-Marquardt (LM)
and SDP, are offered in Section 6.1.

In [8, 11] we dealt with the problem of a non-parametric weighing strategy
design for WLS-based positioning. Specifically, in [11] we derived the dispersion
weight and the entropy-based confidence-bound optimisation, whereas in [8] we
proposed the penalty weight as a correction to the dispersion weight in the case
of biased measurements. In Section 6.2, the derivation of such dispersion-penalty
weighing strategy is provided and, the effectiveness of this technique, jointly
with the aforementioned R-GDC algorithm, is shown via simulations.

In [14] we originally proposed the DC principle presented in Chapter 5.
This paper was appointed to the Finalists for the Best Student Paper Contest
in the IEEE 43th Asilomar Conference on Signals, Systems and Computers.
In [15], the DC principle was used to derive an initial version of a DC-based
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algorithm which has been replaced by the WC-DC and the NLS-DC algorithms
proposed in Section 5.2. The performance of these new non-cooperative schemes
are compared to the state-of-the-art and, their advantages are shown in both
Line-of-Sight (LOS) and mixed LOS/NLOS scenarios. Chapter 5 contains novel
results to use in a new IEEE journal publication.

In [12], we utilized state-of-the-art optimisation methods and the dispersion-
penalty weighing strategy to evaluate the performance of cooperative positioning
with UWB devices. In Chapter 7, the measurements are reused to evaluate the
performance of the R-GDC cooperative localisation technique as well as the
DC-based non-cooperative methods.

Finally, Chapter 4 includes novel contributions on the analysis of the Fisher
Information Matrix (FIM) for distance-based positioning. These results will be
used for a new IEEE journal publication.
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2 Literature review

In this chapter, a review on the literature related to the scope of the thesis is
provided. We categorise positioning systems based on the objective (source
and network localisation), the application (self and network-centric positioning)
and algorithm strategy (cooperative and non-cooperative). We survey on the
types of information used for positioning, and classify the localisation techniques
into fingerprinting or profile-based, angle-based and distance-based methods.
Amongst these, we focus on the latter due to the inherent accuracy as well as
theoretical and algorithmic challenges. In this regard, we devote our attention
to WLS based algorithms because of the ease of implementation, minimum
requirements and flexibility to different technologies. We survey on the most
fundamental WLS-based localisation algorithms, and discuss their performance
and limitations via numerical results.

2.1 Overview of positioning technologies

In its most comprehensive form, location information is intended as the knowledge
on the position of all nodes in the network (i.e. network localisation); and in its
simpler form, as the knowledge on the position of a specific node (i.e. source
localisation). This information can be obtained by means of an estimation
technique, commonly referred to as positioning.

In a localisation system, we distinguish two types of devices, namely, anchors
and targets. The former refers to nodes with a fixed known location, while the
latter to nodes whose position is yet to be determined. In practice, an anchor
can be a base station in a cellular network or an access point in a local area
network, or in some application scenarios, a node located via Global Positioning
System (GPS). A target, instead, can be any other device such as laptops,
tablets, mobile phones, tags, etc.

The objective of a positioning algorithm is to estimate the unknown target
locations. In this regard, if a target node can communicate and acquire
information only from the anchors, then the positioning method is considered
non-cooperative. In turn, if all nodes can communicate and exchange information
with each other, then such a system is referred to as cooperative.
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Algorithmically, non-cooperative and cooperative positioning can be per-
formed in a distributed (self-positioning) or centralised (network-centric posi-
tioning) manner. The advantages of distributed methods are essentially the
scalability and low-complexity. Nevertheless, they may not reach optimality in a
global sense [16], they are sensitive to the error propagation due to the exchange
of imperfect information, and they may require a long convergence time [17].
In contrast, centralised methods are fundamentally optimum, stable, but the
computational complexity can grow with the number of nodes. Therefore, the
choice between centralised or distributed is often a matter of the application
scenario and a trade-off between complexity and performance.

One of the key challenges, that has motivated the research of novel positioning
systems, is the accuracy. The inherent uncertainty in localisation arises from
the small number of nodes with known locations (anchors), the large number
of nodes with unknown locations (targets), their limited connectivity and the
harshness of the radio propagation channel where the network is deployed.
Positioning is indeed performed on the basis of wireless measurements of distance,
angle or power-profile. For instance, the angle between a transmitter and a
receiver can be estimated from the Angle-of-Arrival (AoA) of a signal, the
distance between two nodes can be obtained from the receiving power (Received
Signal Strength (RSS), link-quality) or the time-of-flight estimates, and the
power-profile from measurements of Channel Impulse Response (CIR). In severe
radio propagation channel conditions [18–20], distance, angle and power-profile
measurements are typically affected by errors, that in the case of distance and
angle are manifested in the form of noise and bias of unknown statistics, whereas
in the case of power-profile as amplitude fluctuations and jitter [21].

To overcome these short-comings, several technological and algorithmic
solutions can be considered. For instance, accurate CIR can be obtained through
wideband channel sounder, or more pragmatically from the Inverse Fourier
Transform (IFT) of a wideband Orthogonal Frequency-Division Multiplexing
(OFDM) signal spread over a large number of sub-carriers [22]. Angle estimation
can be improved by employing robust estimation algorithms such as MUltiple
SIgnal Classification (MUSIC) [6] and multiple antennas with a large number
of elements. Accurate distance measurements can be achieved with wideband
technologies, e.g. UWB [5] and Direct Sequence Spread Spectrum (DSSS) [23].
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Based on the type of information, different positioning techniques can be
designed upon. To the best of our knowledge, three main categories can be
identified: fingerprinting (based on CIR), angle-based (based on AoA) and
distance-based methods (based on Received Signal Strength Index (RSSI),
Time-of-Arrival (ToA) and Time-Difference-of-Arrival (TDoA)) [21, 24].

In Figure 2 a matrix based chart depicts a technology-wise taxonomy of
wireless positioning systems, where different types of methods are cross-correlated
with the radio technologies and application scenarios [22, 25–32]. For instance,
consider a distance-based wireless positioning system. This solution can be
designed with UWB devices and by employing either a cooperative or a non-
cooperative trilateration technique. Environmental monitoring, for example,
is a typical application scenarios for cooperative positioning since sensors are
connected in a mesh network and are capable to communicate data and perform
ranging. On the other hand, indoor navigation is classic example of a non-
cooperative positioning system since each device is typically connected to fixed
base stations, e.g. cellular base stations, to which can perform ranging.

2.1.1 Fingerprinting positioning

Fingerprinting can be generally described as a multiple hypothesis testing decision
problem, where the objective is to infer the best hypothesis (location of the node)
based on an observation of the fingerprint yf (CIR). The method relies also on
a set of a priori information represented by the hypothesis hl’s, the associated a
priori probability density function (pdf) πhl and the conditioned pdf fFp(y|Xhl)

that models an observation of the fingerprint y and the fingerprint parameters Xhl

associated to the hypothesis hl. Mathematically, the fingerprinting positioning
problem can be formulated as [33]

ĥl = arg max
hl=1,··· ,MH

πhlfFp(yf |Xhl), (1)

where m̂p is the estimated hypothesis and MH the number of hypothesis.
In practice, a fingerprinting positioning method requires two phases: the

training and the localization phases. During the training, fingerprints are
collected in sample locations and, for each location, the parameter Xhl is
estimated [33].
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Fig 2. Taxonomy of current wireless positioning systems.
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During the second phase, positioning is performed in real-time by searching
for the best hypothesis that maximizes the problem defined above.

The main advantage of this technique is the flexibility to any radio interface,
indeed, solutions for narrowband and wideband technologies exist [28, 33–37].
The position accuracy, however, depends on the reliability (quantity and up-to-
date) of the training data, the error in the synthesis of the fingerprint parameters,
and the sensitivity of the algorithm to changes of the environment.

To improve the robustness of the location estimation with respect to the
inaccuracy of training data, several techniques are proposed in the literature.
For instance, in [28] statistical learning is used to design an algorithm based
on support vector machine. In [22] a non-parametric kernel regression method
is adopted to estimate the location from an approximation of the CIR. Other
methods can be found in [34–37].

2.1.2 Angle-based positioning

Angle-based positioning is another class of localisation methods based on the
well-known triangulation principle [38], i.e. intersections of bearing lines from two
or more receivers. In the literature, this type of positioning technique has been
widely investigated and, different formulations have been proposed, such as a
Maximum Likelihood (ML) [39, 40], a Least Square (LS) [41] and a probabilistic
[42, 43]. For instance, the ML solution to the angle-based positioning of a single
target is given by

p̂ML(θ̃) = pR +
(
GT
θ Σ−1

θ Gθ

)−1
GθΣ

−1
θ

(
θ̃ − θR)

)
, (2)

with

Gθ ,


− sin(θR1)/dR1 cos(θR1)/dR1

...
...

− sin(θR1)/dRNA cos(θRNA)/dRNA

 , (3)

and where θ̃ ∈ RNA is the bearing measurement vector, T denotes transpose, Σθ

is the covariance matrix of the bearing measurements, pR are the coordinates
of a reference point (e.g. a point in the middle of the polygon bounded by the
measured bearing lines), NA is the number of anchor nodes, dRi is the distance
between the i-th anchor and the reference point, θR is the vector of the angles
θRi given by
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θRi , tan−1

(
p1
R − p1

Ai
p2
R − p2

Ai

)
, (4)

and pjAi and p
j
R corresponds to the j-th coordinate of the i-th anchor and the

reference point, respectively.
The aforementioned techniques, however, refer to a source localisation

problem. The generalization to network positioning (multi-triangulation) is
indeed more difficult, and as shown in [27, 44], it requires more sophisticated
optimisation with a large number of variables. The key idea is to cast the
angle-based positioning problem into a distance-based localisation by exploiting
the angle properties of a triangle circumscribed by a circle of radius ro. For
instance, from the example illustrated in Figure 3, the distance between the
points A1 and X, denoted by dXA1

can be computed as

dXA1
=
√

2r2
o − (1− cos(2β)), (5)

where β is a measurable angle.

A1 A2

X

O
!c

!

Fig 3. Illustration of the geometric property for the transformation of angle infor-
mation to distance information.
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2.1.3 Distance-based positioning

Distance-based positioning is perhaps the approach that has attracted the most
interest because of the potential high accuracy, the applicability to different
radio technologies and the ease of implementation. Within this category, we
can distinguish between range and range-difference based methods. Specifically,
the former refers to distance-based positioning systems where the information
is a direct measure of the distance (ranging) between two nodes. The latter,
instead, corresponds to systems where the information (range-difference) is
a differential measure of the distances dij and dik that separates the pair of
nodes (i,j) and (i,k), respectively. In practice, range-based positioning can be
designed with the requirement that either ToA or RSS can be measured, while a
range-difference-based localisation needs TDoA estimates [5]. Consequently, the
former method is applicable to both asynchronous and synchronous systems,
while the latter requires a precise synchronisation between any pair of receivers
during the TDoA estimation procedure. Due to this issue, range-difference-
based positioning is rarely used for cooperative schemes since a global network
synchronisation is difficult to achieve. On the other hand, range-difference-based
positioning is often used for non-cooperative localisation schemes, where anchors
are synchronised while the target can also not be.

Given the different type of information (range and range-difference), localisa-
tion algorithms also differ conceptually. In fact, the former and the latter rely on
the trilateration and multilateration principle, respectively.

In a trilateration method, the ranging dij defines a circle for the position of the
j-th node with respect to i-th node. Thus, from a set of ranging {dij , · · · , diN},
multiple circles can be drawn and their intersection coincides with the sought
location. For instance, in Figure 4(a) we show a trilateration scenario where
four ranging (one per anchor) are used to locate the position of the unknown
target. In the multilateration technique, instead, each range-difference defines a
hyperbola where the focal points (foci) are represented by the location of the
receivers, and the curve gives the possible location of the target. The point of
intersection of multiple hyperbolas coincides with the target location. In Figure
4(b), for example, we illustrate a scenario where three range-differences (one per
each pair of anchors (A1,Aj)) are used for positioning.

Mathematically, the trilateration and the multilateration approaches can be
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formulated as follows. Let z and ai denote the coordinate vector of the target
and the i-th anchor locations, respectively. The trilateration can be synthesised
with the non-linear system

‖z− a1‖F = dza1 ,
...
‖z− aNA‖F = dzaNA

,

(6)

where NA is the number of anchors, ‖ · ‖F denotes the Frobenius norm and dzai
is the distance between the target and the i-th anchor.

The multilateration, instead, can be described as
‖z− a1‖F − ‖z− aR‖F = ∆dza1 ,
...
‖z− aNA−1‖F − ‖z− aR‖F = ∆dzaNA−1

,

(7)

where ∆dzai , c∆tzai is the i-th range-difference, c equals to the speed-of-light
and ∆tzai denotes the TDoA measured with respect to a reference anchor AR
and an anchor Ai.

Because of the non-linearity of the norm function, a closed-form solution to
either equation (6) or (7) is difficult to derive. Furthermore, in a real application
scenarios, range and range-difference measurements are affected by errors thus,
only an estimate of the coordinate vector z can be inferred.

In this regard, the estimation problem can be formulated with non-Bayesian
(e.g. ML, LS, etc.) and Bayesian, (e.g. Maximum A Posteriori (MAP), Minimum
Mean Squared Error (MMSE), etc.), frameworks, whether the unknown node
location is considered as a parameter of the system or as a realisation of a
random variable [45], respectively. To the best of our knowledge, none of the
algorithms proposed in the literature can solve optimally the estimation problem
in closed-form. Most of the techniques are either iterative or approximate
solutions.

For instance, in [46] a factor-graph based algorithm is proposed to solve
a Bayesian formulation of a cooperative range-based positioning. In [47],
approximate ML (non-Bayesian parametric) solutions are proposed for the cases
of source range and range-difference positioning.
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Fig 4. Illustration of the trilateration and multilateration principles.
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For the specific case of three co-linear anchors, the exact solutions to ML
range and range-difference localisation problems can be found in [47] and [48],
respectively. In [49], the authors derived a closed-form solution to a LS (non-
Bayesian non-parametric) formulation of a single target positioning problem
with squared range and squared range-difference information. In addition to the
above, many other techniques can be found in [50–58] and reference thereby.

In this thesis, we aim at the development of non-cooperative and cooperative
positioning algorithms with the assumptions that no information on the ranging
statistics and the distribution of the node locations are available. To this end, we
adopt a non-Bayesian non-parametric approach and we formulate the problem
with a non-linear non-convex WLS optimisation [59–61]

min
~̂p∈RηN

N∑
i=1

N∑
j>i

w2
ij

(
d̃ij − d̂ij

)2

, (8)

where ~̂p , [p̂1, · · · , p̂N ] is a row-vector with all the unknown variables p̂i ∈ Rη,
R is the real space, N is the number of the nodes in the network, η is the
Euclidean dimension of the embedding space, w2

ij is a weighing factor that is
proportional to the reliability of the measurement [62], d̃ij and d̂ij , ‖p̂i − p̂j‖F
denote a measurement and an estimate of the distance dij , respectively.

It is well known that this optimisation problem is difficult and with several
pitfalls. Firstly, in spite of the exactness of the ranging, the uniqueness of
the solution may not be guaranteed. In fact, in [54, 63] it is shown that the
connectivity as well as the node locations determine the unique localisability
of the network, i.e. the resolvability and uniqueness of the solution to the
positioning problem. Secondly, there is the local minima problem due to the
non-convexity of the objective function. In [61, 64], it is indeed shown that
the number of minima grows with the increase of the measurement errors, the
number of nodes and the dimensionality of the problem. Finally, there is the
issue of the error on the location estimates due to imperfect measurements.

In light of all the above, the design of an accurate WLS-based positioning
algorithm is a two-fold research problem. First, there is the issue of seeking the
global minimum of the objective function. Second, the challenge of developing
robust error mitigation techniques. In what follows, a survey of the state-of-the-art
optimisation and error mitigation methods is provided.
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2.2 Optimization techniques for WLS-based positioning

In the literature, several techniques are proposed for the minimisation of the
WLS objective function. Generally, an algorithm used for cooperative positioning
can be adopted for non-cooperative methods too. The contrary, instead, is not
typically possible since, the WLS formulation of non-cooperative positioning
posses properties that can not be generalised. For this reason, the following
optimisation techniques will be classified as general methods and approximate
methods for non-cooperative schemes.

2.2.1 General methods

Gradient-based techniques

As any other cost function, the WLS objective function can be minimised
with standard gradient-based algorithms [65]. Amongst all, the least complex
technique is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, where
no matrix inversion is required. In this algorithm, a line-search method is
typically employed for the calculation of the descending step. This technique is
slow-convergent and sensitive to the local minima problem.

Another algorithm, especially designed for NLS problems is the LM method.
This algorithm is typically implemented with a trust region optimization
sub-problem that calculates an appropriate descending step-size. Based on
our experience, this technique offers a good convergence rate and a reliable
performance. However, the computational complexity is higher than that of the
BFGS technique since the inversion of a large matrix (a positive semi-definite
approximation of the Hessian matrix) is required. The utilization of the LM
algorithm for positioning is, for example, proposed in [66].

Majorisation techniques

A low-complexity alternative to the gradient-based methods is the SMACOF
algorithm. This technique is well-known in the Multidimensional Scaling (MDS)
analysis, where the WLS function is referred to as the stress function. The
fundamental idea is to minimize the WLS objective with an iterative procedure,
where at each step a simple convex function (a quadratic function), which
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both bounds the WLS objective from above and touches its surface at a point
~̂ps ∈ RNη (supporting point), is minimised. Based on our experience, the
algorithm converges to a solution, a minimum (maybe global) of the WLS
objective, after a few iterations, e.g. 40.

Likewise the aforementioned gradient-based methods, the effectiveness of the
SMACOF technique depends on the reliability of the initialisation point and the
number of local minima. The advantage, however, is the low-complexity since
the minimisation of the quadratic function can be solved in closed-form through
a Guttman transform. The detail of this algorithms can be found in [59].

Semi-definite programming techniques

Considering global optimisation methods, the most powerful, yet more complex
algorithms are based on SDP. The basic idea of an SDP approach is to consider
the WLS minimisation problem as a matrix proximity optimisation problem,
where the properties of Euclidean embedding space can be exploited [67].

Given the relevance of SDP methods, more details on the general technique
as well as formulations will be provided in Section 3.3. At this point, we can
simply remark that in general, SDP algorithms do not find the minimum of the
WLS objective, but they provide a central (average) solution that yields the
best compromise with respect to the constraints. To achieve a minimum of the
WLS function, a refinement of this solution is necessary and, to this end, any
gradient-based technique can be applied after the SDP optimisation [68].

As mentioned above, the complexity of an SDP-based optimisation for
positioning is high. It depends on the number of constraints used in the
formulation, the noise and the number of unmeasured links. It can be shown
that the computational complexity of this method can reach the order O(N6

T)

[69], (NT is the number of targets) which makes it prohibitive in large-scale
centralised network localisation problems.

Smoothing-continuation methods

Another type of global optimisation algorithm can be obtained with the com-
bination of global smoothing and numeric continuation techniques [70]. The
basic idea is to use a smoothed variation of the original objective to reduce the

50



number of minima, and to apply a continuation method to track a candidate
minimum. The smoothing method can be designed either as local or global
technique. The former is typically adopted to remove local cusps of the objective
function, which come from the utilisation of square-root, absolute value, or,
generally, non-differentiable functions [64]. The latter, instead, can be applied to
minimise the fluctuations of the objective in the whole domain. In this case,
smoothing is performed via a convolution of the original objective with regular
functions, such as the Gaussian kernel [71]. One of the main advantage of global
smoothing with respect to local smoothing is that the former can be designed to
obtain a convex function, which eliminates any sensitivity to initial estimates.
However, a typical problem is to determine the “right” amount of smoothing. In
other words, too much smoothing will yield a convex function that has little
correlation with the original one, and consequently, it will increase the number
of unnecessary iterations. On the other hand, too little smoothing will not be
sufficient to convex the original objective. Thus, a trade-off is necessary.

An example of global smoothing technique for a localisation problem was
proposed in [71]. However, the optimisation algorithm described in [71] – hereafter
referred to as Square Range-Global Distance Continuation (SR-GDC) – relies on
a WLS formulation with squared distances, which is not optimal [72] .

Stochastic techniques

Finally, we discuss global optimisation algorithms based on stochastic search
techniques. A typical example is the Simulated-Annealing (SA) [73].

Briefly, in SA the search of the minimum is performed in a pseudo-random
manner. In other words, the algorithm can move “uphill” or “downhill” with a
certain probability that depends both on the difference between the current and
the new function values and on a global parameter, called the temperature, that
from a high value (hot state) goes to 0 (frozen state) while the randomness of
the search decreases. In [73], SA was applied to the minimisation of the WLS
objective function in a network localisation problem. The authors remarked
that the optimum performance out of the SA technique can be obtained if
the temperature slowly decreases while the minimisation proceeds. Clearly,
this implies that the SA converges after many iterations and this may increase
prohibitively the complexity of the algorithm.
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2.2.2 Approximate solutions for single-target positioning

In the specific case of non-cooperative positioning, i.e. where a target node
exchange information only with the anchors, the WLS optimisation problem
given in equation (8) reduces to

min
ẑ∈Rη

NA∑
i=1

w2
i

(
d̃i − d̂i

)2

, (9)

where ẑ denotes the estimate of the target location, w2
i , d̃i and d̂i refer to the

weight, the ranging and the distance estimate associated with the link between
the i-th anchor and the target.

Typically, this optimisation problem is solved with an iterative algorithm
that, at each iteration, computes the minimum of the linear approximation of
WLS objective given by [39]

NA∑
i=1

w2
i

(
d̃i − d̂i

)2

≈
NA∑
i=1

w2
i

(
d̃i − (dR

i + JR
di(ẑ− pR)T)

)2

, (10)

where dR
i , ‖ai − pR‖F, pR is the approximation point and JR

di , (pR − ai)/d
R
i .

The success of this iterative technique depends on the choice of the initial
approximation point pR as well as the number of minima of the objective. A
reliable point, for instance, can be obtained from the solution of the Squared
Range (SR)-LS minimisation problem

min
ẑ∈Rη

NA∑
i=1

w2
i

(
d̃2
i − (αSR − 2aT

i ẑ + ‖ai‖2F )
)2

, (11)

s.t. ‖ẑ‖2F = αSR,

which can be written in a matrix form as

min
ẑ∈Rη

(ASRySR − bSR)
T

Λw (ASRySR − bSR) , (12)

s.t. yT
SRDSRySR + 2 fT

SRySR = 0,

where Λw ∈ RNA×NA is a diagonal matrix with the i-th diagonal element equals
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to w2
i , ySR , [ẑ, αSR]T and

ASR ,


−2aT

1 1
...

...
−2aT

NA
1

 , bSR ,


d̃2

1 − ‖a1‖2F
...

d̃2
NA
− ‖aNA‖2F

 , (13)

DSR ,

[
Iη 0η

01 0

]
, fSR ,

[
0η

−0.5

]
. (14)

In the literature, exact [49, 74] and approximate [75–77] solutions to the
above optimisation problem exist. The exact solutions are derived from the
Lagrangian function [49, 74], while the approximation, known as the Linearised
Least Square (LLS) solution, are obtained by considering the quadratic constraint
as a part of the objective function [75–77].

2.3 Error mitigation techniques

Notwithstanding that a robust minimisation is necessary for accurate positioning,
the performance of a localisation algorithm, especially in NLOS scenarios, can be
improved with error mitigation techniques. In this regard, WLS based methods
offer two possibilities: a soft-mitigation scheme by means of weights and hard
mitigation scheme by means of constraints.

The calculation of weights is typically costless with respect to the overall
computational complexity of the minimisation algorithm. Indeed, the utilisation
of weights does not modify any part of the optimisation technique, except for
the objective. Obviously, different weighing strategies yield different results, and
the challenge is to derive the best method under scarce information.

On the other hand, constrained minimisations can be more effective than
weight-based methods, but they come with an increase of computational com-
plexity. For this reason, in network (cooperative) localisation, where the number
of variables is large and the complexity is a concern, error mitigation schemes
typically rely on weighing strategies. In contrast, in source (non-cooperative)
positioning, constrained optimisation can be used with no restrictions.
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2.3.1 Weighing strategies

In the words of Stephen Boyd [62, pp. 5] when speaking of least square problems,
“weights are chosen to reflect differing levels of concern about the sizes of the
terms” in the sum of the objective function. This means that the solution of a
WLS optimisation problem can be influenced by emphasizing some terms of
the cost-function over others, so that the higher the weight, the tighter is the
requirement over the corresponding least square error. With this perspective,
the general rule-of-thumb is to give higher weight to accurate measurements, less
to the others and zero to the unmeasured links [78].

In spite of the known benefits of weighing, a few strategies have so far been
proposed for positioning which are applicable to cooperative approaches, can cope
with scarce ranging information, and require no a priori information on either the
ranging error model nor the channel conditions. To the best of our knowledge,
the only weighing strategies proposed in the literature are the following.

In [79, 80] w2
ij is computed as the inverse of the ranging noise variance σ2

ij ,
i.e.

w2
ij = 1/σ2

ij , (15)

This strategy is directly derived from the ML formulation of a distance-based
localisation problem with the assumption that the noise is a random variable
with a zero-mean Gaussian distribution and variance σ2

ij . However, if the real
ranging statistics do not match this assumption, e.g. in the case of NLOS channel
conditions, or if the variance is not known a priori, or if the measurements are
scarce and the variance can not be estimated, than such a strategy may degrade
the localisation accuracy.

An alternative solution was proposed in [81], and in this case, the weights
were derived from the kurtosis, mean excess delay and root-mean-square delay
spread of the received signal. The assumption, which may not be realistic in
unknown environments, is the a priori knowledge of a statistical model of the
multipath propagation.

In [69], the weight was proposed as the inverse of the square of the distance
measurement, i.e.

w2
ij = 1/d̃2

ij . (16)

This strategy was derived from the assumption that the variance of the
ranging error increases proportionally with the distance between the transmitter
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and the receiver. In many application scenarios, e.g. outdoor navigation and
environmental monitoring in large space environments, this assumption is realistic
and this strategy is sufficient to mitigate the errors.

A similar idea, this time based on a non-parametric Locally weighted Scatter
plot Smoothing (LOESS) filtering mechanism, was proposed in [82]. In this
case, there is no assumptions on the measurement model, and the weights are
computed simply to emphasize shorter connections rather than longer ones. The
LOESS-based weight w2

ij is given by

w2
ij = exp

− d̃2
ij

(max
j
{d̃ij})2

 . (17)

In [8], we proposed another alternative, yet over performing, weighing
strategy. In contrast to all of the above, the weight w2

ij is computed without any
assumptions on the ranging statistics, and is derived based on the maximisation
criterion of the measurement diversity as well as geometrical properties. More
details are provided in Section 6.2.

2.3.2 Constrained optimisations

As mentioned in the introduction of Section 2.3.1, constrained optimisations are
typically designed for source localisation where the computational complexity of
the algorithm is not a crucial restriction. Typically, the constraints are derived
from geometric considerations and/or statistical information of the ranging. The
basic idea is to determine a feasibility region of the target location, and force the
optimisation to search in such a region.

For instance, based on the assumption that a range estimate is typically
larger than the true distance, the feasibility region of the target location can
be determined by the intersection of the convex sets BiD , {ẑ|0 ≤ d̂i ≤ d̃i}.
Convex optimisation based on Projection On Convex Sets (POCS) techniques
can be utilised to compute an estimate of z from the intersection of all BiDs
[83, 84]. However, a more accurate solution can be obtained via a constrained
WLS minimisation problem such as

min
ẑ∈Rη

NA∑
i=1

w2
i (d̃i − d̂i)2, (18)

s.t. d̂i ≤ d̃i ∀i,
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which can be solved either with Sequential Quadratic Programming (SQP),
or via barrier methods as described in [85], or approximated with a Linear
Programming (LP) formulation as proposed in [86].

Based on the same considerations, in [87] a two-step LLS-based algorithm,
hereafter referred to as Geometric-constrained Location Estimation (GLE), was
proposed. In this technique, the first step consists of estimating the target
location through a modified LLS method where, the geometric constraints are
incorporated in the LLS formulation by means of a virtual distance, i.e. the
average distance between a reference point and the intersection points of the
circles derived from the ranges. In the second step, the algorithm attempts to
correct the bias by using the solution obtained at the first step.

In [88], another two-step algorithm was proposed. In this case, the first step
is to estimate the target location via a LLS technique, and the second step is to
estimate the bias with an interior-point optimisation. To use this algorithm,
the a priori information on the bias statistics is needed to set the lower and
the upper bounds to the bias estimates. Finally, in [57], a constrained WLS
optimisation, that can be solved with a standard SQP technique, was proposed
to perform a joint estimation of the target location and bias errors. Specifically,
this technique is based on the minimisation problem

min
ẑ∈Rη,{b̂i}

NA∑
i=1

w2
i (d̃i − d̂i − b̂i)2, (19)

s.t. d̂i ≤ d̃i ∀i,
0 ≤ b̂i ≤ bui ∀i,

where b̂i is an estimate of the bias bi and bui denotes an upper bound to b̂i.

2.4 Comparison of the state-of-the-art methods

The objective of this section is to discuss the advantages and disadvantages of
the aforementioned algorithms and mitigation techniques with numerical results.
To this end, we consider non-cooperative and cooperative algorithms separately,
and evaluate their performance in LOS and NLOS scenarios.

For each algorithm we calculate the average location accuracy, which is
defined as the Root-Mean-Squared-Error (RMSE) of the position estimate, i.e.
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ε̄` ,
1

MTNT

√√√√MT∑
q=1

ε2
q,`, (20)

where ε2
q,` , ‖(~̂z

(q)
` −~z(q)‖2F, ~z(q) ∈ RηNT is a row-vector with all target coordinates

and ~̂z(q)
` the corresponding estimate obtained the `-th out of MA algorithms and

the q-th network out of MT realisations.
For non-cooperative positioning, the RMSE will be studied as a function of

the noise variance in LOS and the maximum bias in NLOS channel conditions.
Whereas, in the case of cooperative positioning we also consider the meshness-
ratio1 given by

m ,
(|E| −N + 1)

(|EF | −N + 1)
, (21)

where |·| indicates the cardinal number of a set, E and EF are the set of measured
distances and the set of all pairwise distances in the network, respectively.

2.4.1 Non-cooperative positioning

Consider a network with NA = 4 anchors equispaced around a circle of radius
10 meters and, NT = 10 targets uniformly distributed within the convex-hull
of the anchors2. All anchors are connected to the target (m = 1), and all
anchor-to-target distances are measured once. Assume LOS scenarios, i.e.
ranging errors as random variables with a zero mean Gaussian distribution and
variance σ2.

We evaluate the RMSE obtained with the Squared-Range Least-Square
(SR-LS) method described in [49], the closed-form solutions LLS-1 [75] LLS-2
[76], LLS-3 [77], the Taylor’s Series (TS)-WLS approximation [39] and the
iterative LM-WLS algorithm [65]. Both the TS-WLS and LM-WLS methods are
initialised with the solution obtained from the LLS-1 algorithm. For the sake
of optimality, we also evaluate the RMSE obtained with a global optimisation
performed via exhaustive search and, this performance is indicated as Optimum-
WLS.
1The meshness-ratio is a metric commonly used in algebraic topology and graph-theory [89]
that captures in one number information on the planarity of a graph. In practice, m → 1

indicates that the network is fully connected and, m→ 0 vice versa.
2This scenario typically models a localisation system for indoors as well as cellular networks,
where base-stations surround the target.
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The comparison, shown in Figure 5(a), reveals that all techniques have similar
performance, thus any of them can be utilized for positioning. Nevertheless, we
notice that amongst the LLS methods, the LLS-3 provides the closest result to
the optimum SR-LS. However, due to the squared ranging, the latter cannot
achieve the performance of the Optimum-WLS, which in turn are reached by both
the TS-WLS and the LM-WLS techniques. In light of this test, the TS-WLS
and the LM-WLS can be considered equivalent state-of-the-art solutions for
source-positioning in LOS channel conditions.

Next, we assume NLOS scenarios. In this regard, the ranging error is modelled
as the sum of two random variables, one that models the noise (zero-mean
Gaussian random variable with variance σ2) and the other the bias (positive value
with uniform distribution within 0 and bMAX). The algorithms compared in this
simulation are: the TS-WLS, the Constraint Non-linear Least Square (C-NLS)
[85], the GLE [87] and the C-NLS modified [57]. We assume full connectivity,
one ranging per distance and unknown ranging statistics.

The result illustrated in Figure 5(b) shows that all constrained methods
offer an advantage with respect to the TS-WLS. However, the C-NLS modified
provides the lowest location accuracy since it performs a joint estimation of the
node locations and bias errors.

First we consider LOS scenarios (see description in the previous section), one
ranging per distance and optimal weighing strategy3. We test the gradient-based
method LM-WLS [66], the majorizing technique SMACOF [60], the smoothing-
continuation algorithm SR-GDC [71] and the SDP-based minimisation with
projection on the Euclidean Distance Matrix (EDM) space [69].

2.4.2 Cooperative positioning

Next, we consider cooperative positioning and we evaluate both the difference
amongst optimisation methods and weighing strategies. The typical network
consists of NA = 4 anchors equispaced around a circle of radius 10 meters and,
NT = 10 targets uniformly distributed in the convex-hull formed by the anchors4.

3The optimal weighing strategy with unbiased Gaussian error is given by equation (15) [79–81].
4This scenario typically models a localisation system for indoor positioning, where anchors can
be placed at the outer border of a building.

58



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

 

 Comparison of the State-of-the-art Localization Algorithms

Noise standard deviation, σ [m]

L
o
ca

ti
on

ac
cu

ra
cy

,
ε̄ !

[m
]

LLS-1
LLS-2
LLS-3
SR-LS
TS-WLS
LM-WLS
Optimum WLS

(a) LOS scenario

0 1 2 3 4 5
0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

3.75

 

 

Maximum bias, bMAX [m]

L
o
ca

ti
on

ac
cu

ra
cy

,
ε̄ !

[m
]

TS-WLS
C-NLS
GLE
C-NLS modified

(b) NLOS scenario

Fig 5. Comparison of the state-of-the-art algorithms for source localisation. The
network is deployed in a square of 14.14×14.14 meters. In a) and b) the results refer
to LOS (unbiased measurements) and NLOS (biased measurements) scenarios,
respectively.
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In Figures 6(a) and 6(b) we show the RMSE as a function of the noise
standard deviation σ while m = 1 and, the RMSE as a function the meshness-
ratio5 m while σ = 0.3 meter. From both tests, it can be noticed that the
SDP-based optimisation (which is followed by a refinement) achieves the lowest
RMSE. The SR-GDC algorithm provides a similar result. The difference however
is due to the sub-optimality of the formulation that relies on squared ranges.
Indeed, from Figure 6(a), it can be observed that the gap between the RMSE
achieved with SR-GDC and that obtained with the SDP grows with the increase
of the noise.

On the other hand, the performance of the SMACOF and LM-WLS methods
are in general comparable to those obtained with the SDP. The difference
between the SMACOF, LM-WLS and SDP can be noticed only for m → 0.
This indicates that the MDS-based technique proposed in [90] is a reliable
initial estimate only for high connectivity. Indeed, at m = 1 the MDS solution
is equivalent to the solution obtained with a SDP formulation based on the
projection on the Positive Semi-definite Matrix (PSM) cone (see Section 3.3).
However, we remark that the initialisation method proposed in [90] relies on a
centralised algorithm. For distributed positioning it can be expected that the
performance of the SMACOF and the LM-WLS degrade since an MDS-based
algorithm – which is based on eigendecomposition – is difficult to implement.

From these results, we conclude that the SDP-based solution proposed in
[69] is the best performing optimisation method, but it is also the most complex.
On the other hand, the SMACOF and LM-WLS are less complex than the SDP,
but inaccurate at low meshness. Furthermore, they need a reliable initial point.
The best compromise amongst accuracy, robustness to initial estimate and
complexity, instead, is obtained with the SR-GDC algorithm.

The second set of simulations is devoted to the comparison of different
weighing strategies in NLOS scenarios. Specifically, we compare a connectivity
based (w2

ij = 1 if two nodes are connected and 0 otherwise), the variance-based
(equation (15)), the inverse-distance based (equation (16)) and the LOESS based
(equation (17)) methods. The minimisation is performed with the SDP algorithm
proposed in [69].

5The meshness ratio is varied by assuming that two nodes are connected if dij ≤ RMAX and
by changing RMAX within 8 and 20 meters.

60



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 
Comparison of the State-of-the-art Error Optimization Methods

- cooperative network -

Noise standard deviation, σ [m]

L
o
ca

ti
on

ac
cu

ra
cy

,
ε̄ !

[m
]

SMACOF
LM-WLS
SR-GDC
SDP

(a) RMSE as a function of the noise

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0.2

0.4

0.6

0.8

 

 

Meshness ratio, m

L
o
ca

ti
on

ac
cu

ra
cy

,
ε̄ !

[m
]

SMACOF
LM-WLS
SR-GDC
SDP

(b) RMSE as a function of the meshness

Fig 6. Comparison of the state-of-the-art optimizations for cooperative positioning
in LOS scenarios. The network consists of NA = 4 anchors, NT = 10 targets and it
is deployed in a square of 14.14× 14.14 square meters. In a) and b) the results are
plotted as a function of the noise standard deviation σij = σ ∀ ij with m = 1, and
the mesheness ratio m with σij = 0.3 meters ∀ ij, respectively. 61
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Fig 7. Comparison of the weighing strategies for cooperative positioning in NLOS
scenarios. The network consists of NA = 4 anchors, NT = 10 targets and it is
deployed in a square of 14.14 × 14.14 square meters. In a) and b) the results are
plotted as a function of bMAX with m = 1, and m with bMAX = 5 meters, respectively.
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We assume that a link is in NLOS channel conditions with a probability
pNLOS = 0.3. The noise is modelled with a random variable with a zero-mean
Gaussian distribution and a random standard deviation of σij selected in the
interval (0.01, 0.3) meters, and the bias bij as a random variable with uniform
distribution between 0 and bMAX. A distance can be measured Kij times, where
Kij is also a random variable governed by a uniform distribution defined in
the interval (KMIN,KMAX)6. The average distance d̄ij computed out of the Kij

samples is used in the WLS objective function instead of d̃ij .
In Figures 7(a) and 7(b) we show the RMSE as a function of the maximum

bias bMAX while m = 1 and, the RMSE as a function the meshness-ratio m while
bMAX = 3 meter. From these results, it can be noticed that the variance-based
method, which was optimal in LOS scenario, is the worse strategy in NLOS.
The connectivity based strategy is a good trade-off if all errors follow the same
distribution. The inverse-distance and the LOESS based strategies are instead
the best performing methods. In fact, both strategies penalised longer distances
than short ones.

2.5 Summary and discussions

In this chapter we offered an overview as well as a comparison of existing
positioning algorithms and show that robust non-cooperative techniques can rely
on constrained optimisation problems, whereas efficient cooperative methods can
be developed with global optimisation methods such as the SDP and weighing
strategies. In this thesis, we propose novel solutions to both problems by
developing in Chapter 5 and Chapter 6, robust non-cooperative and cooperative
localisation methods, respectively.

6To minimise the traffic overhead as well as the energy consumption due to ranging, we assume
that (Kmin,KMAX) are small numbers, e.g. Kmin = 2 and KMAX = 5.
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3 Fundamentals of ranging-based positioning

In this Chapter, the distance-based positioning problem is formulated as a WLS
optimisation problem. We derive the gradient and the Hessian of the WLS
objective function in closed form so as to provide the fundamental tools for the
theoretical and algorithmic results shown in the following chapters. In addition,
we also revise the matrix-proximity formulation of the WLS optimization problem
and describe the principles of three SDP formulations. In particular, the technique
referred to as SDP-method 1 will be considered the state-of-the-art optimisation
algorithm.

3.1 Ranging-based positioning system model

Consider a wireless network composed of NA anchor, and NT target nodes
distributed in the Euclidean space of η dimensions. An anchor is a node with
a known fixed location, and a target is a node whose location is yet to be
determined. Let ai ∈ Rη and zj ∈ Rη denote the coordinate vectors of the i-th
anchor and j-th target, respectively. Let P ∈ RN×η with N = NA +NT, be the
matrix with all coordinate vectors of the nodes in the network. Assume that
the first NA rows of P refer to the anchors’ coordinates and the remaining to
coordinates of the targets, i.e.

pj ,

{
ai, 1 ≤ i ≤ NA, and 1 ≤ j ≤ NA,

pi, 1 ≤ i ≤ NT, and NA + 1 ≤ j ≤ N,
(22)

where pj denotes the j-th row-vector of P. The matrix P will be hereafter
referred to as the coordinate-matrix of the network.

The Euclidean distance, or exact ranging, between the i-th and the j-th
nodes is denoted by dij and is computed as

dij , ‖pi − pj‖F, (23)

where ‖‖F is the Frobenius norm7.

7The Frobenius norm of vectors is equivalent to the Euclidean norm (2-norm). Indeed, both
norms can be referred to as the Euclidean norms [91].
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The distance dij is also the ij-th element of a matrix D ∈ RN×N , hereafter,
referred to as the EDM associated with P. Such a matrix can be directly
computed from P as

D = D(P) ,
√

1Ndiag (PPT)
T

+ diag (PPT) 1T
N − 2PPT, (24)

where D : RN×η → RN×N is the Euclidean Distance Function (EDF) [67], T

indicates transpose, 1N ∈ RN is a column vector with all elements equal to one,
and diag() is the diagonal function that returns a column vector containing the
diagonal elements of the matrix given as argument.

The connectivity of the network is described by the connectivity matrix
C ∈ RN×N and the ij-th element of C, denoted by cij , is equal to 1 if and only
if the i-th and the j-th nodes are connected, and 0 otherwise. If cij = 1, it is
assumed that the distance dij can be measured.

Let D̃ denote the EDM-sample, or observation, of the true EDM D. The
ij-th element of D̃, denoted by d̃ij , is referred to as a measurement (ranging) of
dij and it is assumed that d̃ij = d̃ji. For analytical purpose, each ranging is
considered as an independent identically distributed (iid) random variable and
modelled as

d̃ij = dij + nij + bij , (25)

where nij and bij refer to small-scale (noise) and large-scale (bias) ranging errors,
respectively.

The noise nij is governed by a zero-mean Gaussian distribution of variance
σ2
ij . The distribution of the bias bij , instead, is given by a uniform distribution
U(0, bMAX) where bMAX = 0 in LOS and bMAX > 0 in NLOS channel conditions
[86, 92]. In [93, 94], it was shown that such a model is a valid approximation of the
ranging statistics obtained with UWB devices in indoor environments. However,
alternative ranging models that best apply to other application scenarios can be
found in the literature. For instance, in [80, 95] the bias is modelled as a random
variable with exponential distribution, in [56] as an unknown constant value and,
in [96] as a Gaussian mixture whose parameters are derived from measurements.
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3.2 Weighted least square problem formulation

The distance-based positioning problem can be defined as an estimation problem
in which, given an EDM-sample D̃, the variables pi’s are computed to minimise
the distance-based squared error criteria given by

fR(~̂p) ,
∥∥∥C ◦ (D̃− D̂

)∥∥∥
F

=
∥∥∥~c ◦ (

~̃
d− ~̂d)

∥∥∥
F

=
N∑
i=1

N∑
j=1
j 6=i

cij

(
d̃ij − d̂ij

)2

, (26)

where ◦ is the Hadamard product, d̂ij , ‖p̂i − p̂j‖F, p̂i is the estimate of the
i-th node location and corresponds to the i-th row-vector of P̂, D̂ , D(P̂) and
~̂p, ~c, ~̂d, ~̃d are the vectorised forms of the matrices P̂, C, D̂ and D̃, respectively.

In the literature, this problem is known as a LS formulation of the distance-
based positioning problem [51, 58, 69, 97]. The following Theorem provides
the optimality conditions from which the WLS optimisation problem can be
considered a ML estimation problem.

Theorem T1 (Equivalence of WLS-based and LOS ML-based Positioning [69]).
Let d̃ij be an iid random variable with Gaussian distribution of mean dij and

variance σ2
ij. Then the ML formulation of the localisation problem is equivalent

to a distance-based WLS minimisation problem where w2
ij = cij/σ

2
ij.

Proof. Given d̃ij as an iid Gaussian random variable of mean dij and variance
σ2
ij , the likelihood function of the parameters ~̂p is given by

L(~̂p|~̃d) ,
N∏
i=1

N∏
j=1
j 6=i

1√
2πσij

exp

(
− cij(d̃ij−d̂ij)

2

2σ2
ij

)
. (27)

Taking the logarithm of L(~̂p|~̃d) and computing the maximum, it yields

max
~̂p∈RηN

logL(~̂p|~̃d) =

N∑
i=1

N∑
j=1
j 6=i

1√
2πσij

− max
~̂p∈RηN

N∑
i=1

N∑
j=1
j 6=i

cij
2σ2

ij

(
d̃ij − d̂ij

)2

(28)

= min
~̂p∈RηN

N∑
i=1

N∑
j>i

cij
σ2
ij

(
d̃ij − d̂ij

)2

,

where the last equality holds because of the symmetric properties of D̃.
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3.2.1 Analysis of the WLS objective

In this subsection, we carry on an analytical study of the WLS objective function
given in equation (26). We derive closed-form expressions of its gradient and
Hessian, and investigate the convexity of fR(~̂p).

To begin with, rewrite equation (26) in a matrix form as

fR(~̂p) = ‖F̂‖2F, (29)

where
F̂ , W ◦

(
D̃−D(P̂)

)
, (30)

in which W ∈ RN×N is a general weighing matrix (W = C gives the function in
equation (26)) with wij > 0 if cij = 1 and wij = 0 otherwise.

From the above, the gradient and the Hessian of fR(~̂p), respectively denoted
as ∇~̂pfR(~̂p) ∈ RNη and ∇2

~̂p
fR(~̂p) ∈ RNη×Nη, can be derived as follows.

Derivation of the gradient

By definition, the gradient of fR(~̂p) is given by the vector of all first partial
derivatives ∂

∂p̂ni
, where p̂ni denotes the variable in ~̂p corresponding to the n-th

coordinate of the i-th node. Hence, from equation (29) we obtain

∇~̂pfR(~̂p) ,
∂

∂~̂p
fR(~̂p) =

∂tr(F̂F̂
T

)

∂~̂p
(31)

=

[
tr

(
∂F̂F̂

T

∂F̂
∂F̂
∂p̂1

1

)
, · · · , tr

(
∂F̂F̂

T

∂F̂
∂F̂
∂p̂ni

)
· · · , tr

(
∂F̂F̂

T

∂F̂
∂F̂
∂p̂ηN

)]
,

where tr() denotes the trace and ∂
∂F̂ is the partial derivative with respect to F̂

and ∂

∂~̂p
is the vector of all partial derivatives ∂

∂p̂ni
.

From the above, the (n, i)-th element of the gradient, i.e. the derivative with
respect to p̂ni , is given by

∂fR(~̂p)

∂p̂ni
= tr

(
∂F̂F̂

T

∂F̂
∂F̂
∂p̂ni

)
, (32)

where
∂F̂F̂

T

∂F̂
= 2F̂ , (33)
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and

∂F̂
∂p̂ni

, ˙̂Fn
i =



0 · · · −w1i
p̂n1 − p̂ni
d̂1i

· · · 0

...
...

...

wi1
p̂ni − p̂n1
d̂i1

· · · 0 · · · wiN
p̂ni − p̂nN
d̂iN

...
...

...

0 · · · −wNi
p̂nN − p̂ni
d̂Ni

s 0


. (34)

Combining equations (33) and (34) in equation (32), the gradient vector ∇~̂pfR(~̂p)

can be written in a compact form as

∇~̂pfR(~̂p) = 2

 N∑
j=1

w2
1j

d̃1j−d̂1j

d̂1j

(p̂1−p̂j), · · · ,
N∑
j=1

w2
Nj

d̃Nj−d̂Nj
d̂Nj

(p̂N−p̂j)

 . (35)
Considering that an anchor node has a known location, i.e.p̂i = ai, then all
partial derivatives ∂fR(~̂p)

∂p̂ni
with i ≤ NA are equal to 0. Consequently, ∇~̂pfR(~̂p)

can be reduced to ∇~̂pfR(~̂z) ∈ RηNT , where ~̂z is the vectorised form of the
target coordinate-matrix estimate Ẑ ∈ RNT×η, Ẑ , [p̂NA+1; · · · ; p̂N ], where [; ]

indicates a row-wise concatenation of vectors. Furthermore, due to the symmetric
assumption over D̃, equation (35) can be simplified by a factor of 2.

Derivation of the Hessian

The Hessian of fR(~̂p), denoted by ∇2
~̂p
fR(~̂p), is derived as

∇2
~̂p
fR(~̂p) ,

∂2

∂~̂pT~̂p
fR(~̂p) = J~̂p(∇~̂pfR(~̂p)), (36)

where J~̂p(·) denotes the Jacobian of the vector functions given in the argument.

In the equation above, the second partial derivative
∂2fR(~̂p)

∂p̂sj p̂
n
i

is given by

∂2fR(~̂p)

∂p̂sj p̂
n
i

=
∂

∂p̂sj
tr

(
2F̂ ∂F̂

∂p̂ni

)
= tr

(
2
∂F̂
∂p̂sj

∂F̂
∂p̂ni

+ 2F̂ ∂2F̂
∂p̂sj p̂

n
i

)
, (37)

where
∂F̂
∂p̂ni

is given in equation (34) and
∂2F̂
∂p̂sj p̂

n
i

, ¨̂Fmn
ji =

¨̂Fmn
ij ∈ RN×N is
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– for i 6= j,

[
¨̂Fsn
ji

]
tq
=


−wtq
d̂tq

(
(p̂nt − p̂nq )(p̂st − p̂sq)

d̂2
tq

−1

)
, n = s, t = i,

−wtq
d̂tq

(p̂nt − p̂nq )(p̂st − p̂sq)
d̂2
tq

, n 6= s, t = i,

0, otherwise,

(38)

– for i = j,

[
¨̂Fsn
ii

]
tq
=



wtq

d̂tq

(
(p̂nt − p̂nq )(p̂st − p̂sq)

d̂2
tq

−1

)
, n = s, t = i, q 6= i,

wtq

d̂tq

(p̂nt − p̂nq )(p̂st − p̂sq)
d̂2
tq

, n 6= s, t = i, q 6= i,

0, otherwise,

(39)

where [·]tq indicates the tq-th element of a matrix.
Replacing equations (34), (38) and (39) in (37), the ij-the element of the

Hessian reduces to

– for i 6= j,

∂2fR(~̂p)

∂p̂sj p̂
n
i

= 2tr

(
∂F̂
∂p̂sj

∂F̂
∂p̂ni

)
+ 2tr

(
F̂ ∂2F̂
∂p̂sj p̂

n
i

)
(40)

= 4
[

˙̂Fs
j

]
ij

[
˙̂Fn
i

]
ij

+ 4
[
F̂
]
ij

[
¨̂Fns
ij

]
ij

= 4w2
ij

(
(p̂sj − p̂si )(p̂ni − p̂nj )

d̂2
ij

− (d̃ij − d̂ij)
d̂ij

(
1+

(p̂ni − p̂nj )(p̂si − p̂sj)
d̂2
ij

))

= −4w2
ij

(
(d̃ij − d̂ij)

d̂ij
+
d̃ij

d̂ij

(p̂si − p̂sj)(p̂ni − p̂nj )

d̂2
ij

)
,
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– for i = j,

∂2fR(~̂p)

∂p̂si p̂
n
i

= 2tr

(
∂F̂
∂p̂si

∂F̂
∂p̂ni

)
+ 2tr

(
F̂ ∂2F̂
∂p̂si p̂

n
i

)
(41)

= 4
[

˙̂Fs
i

]
i:

[
˙̂Fn
i

]
:i

+ 4
[
F̂
]
i:

[
¨̂Fns
ii

]
:i

= 4
N∑
j=1

w2
ij

(
(p̂si − p̂sj)(p̂ni − p̂nj )

d̂2
ij

+
(d̃ij−d̂ij)

d̂ij

(
1+

(p̂nj − p̂ni )(p̂sj − p̂si )
d̂2
ij

))

= 4
N∑
j=1

w2
ij

(d̃ij − d̂ij)
d̂ij

+ 4
N∑
j=1

w2
ij

d̃ij

d̂ij

(p̂si − p̂sj)(p̂ni − p̂nj )

d̂2
ij

,

where [·]i: and [·]:i indicate the i-th row and the i-th column of a matrix.
As for the gradient, if p̂ni refers to an anchor then all mixed derivative

with ∂
∂p̂ni

are 0. Consequently, also the Hessian ∇2
~̂p
fR(~̂p) can be reduced to

∇2
~̂z
fR(~̂z) ∈ RNTη×NTη. Furthermore, due to the symmetric assumption over D̃,

equations (40) and (41) can be simplified by a factor of 4.

Non-convexity property

It is well-known that the function fR(~̂p) is not convex in its domain dom(fR) ,

RηN . In particular, fR(~̂p) is characterised by a concave surface with support de-
fined in an hypersphere with centre ~o ∈ RNTη given by ~o , [o1, · · · ,oi, · · · ,oNT ]

with ok ∈ Rη, ok = ai and oj = 0η ∀j 6= k. This property can be put as the
following Lemma.

Lemma L1 (Multiple Targets: concavity of fR(~̂p) around anchors).
Let Bi denote the hypersphere {~̂z | ‖~o− ~̂z‖ ≤ %b and ~̂z ∈ dom(fR)}. Then

∃ %b | ∇2
~̂z
fR(~̂z) � 0, ∀ ~̂z ∈ Bi. (42)

Proof. Using equations (40) and (41) the Hessian matrix, hereafter also denoted
by Ĥ, can be decomposed as

Ĥ = H̆ + H̄, (43)

where H̆ ∈ RηN×ηN and H̄ ∈ RηN×ηN are a block-diagonal and a block-off-
diagonal matrices, respectively, defined as

[H̆]ηkj ,

{
[Ĥ]ηkk k = j,

0ηη k 6= j,
(44)
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[H̄]ηkj ,

{
0ηη k = j,

[Ĥ]ηkj k 6= j,
(45)

where 0ηη ∈ Rη×η is a matrix of all zeros, [Ĥ]ηkj ∈ Rη×η denotes the kj-th
block-matrix of Ĥ with size η × η.

The k-th block of H̆, denoted by H̆k ∈ Rη×η, is given by

H̆
k
, [Ĥ]ηkk =

( N∑
j=1

w2
kj
d̂kj−d̃kj
d̂kj

)
Iη +

N∑
j=1

w2
kj
d̃kj

d̂kj
Υ̂kj , (46)

where

Υ̂kj , v̂T
kjv̂kj =

[
cos2 θ̂kj sin θ̂kj cos θ̂kj

sin θ̂kj cos θ̂kj sin2 θ̂kj

]
, (47)

v̂kj , (p̂k − p̂j)/d̂kj , and θ̂kj is the angle between the vectors centred at p̂k

pointing towards p̂j and p̂k + [1, 0], respectively.
The kj-th off diagonal block of H̄, denoted by H̄kj is

H̄
kj

, [Ĥ]ηkj = −
(
w2
kj
d̂kj−d̃kj
d̂kj

)
Iη− w2

kj
d̃kj

d̂kj
Υ̂kj . (48)

Without lost of generality, assume that the k-th target is connected to the
i-th anchor. Then, in equation (46) we isolate the term j = i, which corresponds
to the link between the k-th target and the i-th anchor, in order to obtain

H̆
k

= $̂ik(Υ̂ik − Iη) +

(
w2
ik +

N∑
j 6=i

w2
jk

(
1− d̃jk

d̂jk

))
Iη +

N∑
j 6=i

w2
jk
d̃jk

d̂jk
Υ̂kj ,︸ ︷︷ ︸

R̂h
ik

(49)

where $̂ik , w2
ikd̃ik/‖ai − p̂k‖F.

Notice that ~̂z ∈ Bi implies that the distance ‖ai − p̂k‖F is upper bounded by
%b. Thus, the smaller %b, the smaller ‖ai − p̂k‖F is. Furthermore, we remark
that the eigenvalues of the matrix difference (Υ̂ik − Iη) are −1 and 0, and
that the coefficient $̂ik is positive and grows proportionally with decreasing
%b, therefore $̂ik(Υ̂ik − Iη) � 0, where the notation (·) � 0 indicates that the
matrix on the left-side is negative semi-definite. In contrast, the matrix R̂h

ik is
finite for all ~̂z ∈ Bi as long as there is no aj such that ‖ai − aj‖ ≤ %b, which can
be ensured by a sufficiently small %b. In conclusion, the eigenspectrum of each
H̆

k
can be controlled by %b in such a way that, for a sufficiently small %b, H̆

k
is
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a negative semi-definite matrix with an eigenvalue that decreases boundlessly.
Invoking the generalised Geshgorian theorem to block-diagonal matrices [98],
the eigenspectrum of ∇2

p̂fR(p̂) can be modified by %b such that it includes an
eigenvalue that asymptotically approaches −$̂ik. Specifically, %b can be selected

such that ‖(H̆k
+ $̂ikIη)−1‖−1

F ≤
N∑
j=1

|H̄kj‖F.

In light of the above result, it is proven that regardless of the node locations,
a concave region of the WLS objective function is always located around each
anchor ai. Thus, the objective function fR(~̂p) is not convex.

3.3 Matrix proximity problem formulation

Consider the optimisation problem given in equation (26) and assume D̂ is the
unknown variable to be estimated. In this perspective, a LS-based positioning
problem can be reformulated as a matrix-proximity problem, in which P̂ is
computed from the closest EDM D̂ to the EDM-sample D̃.

Due to unique properties of the EDMs, the matrix D̂ can be obtained as
the solution of a convex optimisation problem based on the SDP formulation
described in [54, 67].

3.3.1 Properties of the Euclidean distance matrices

In equation (24), we generally refer to D as an EDM. However, an EDM is
mathematically defined as a distance matrix where the ij-th element is given
by the squared-distance d2

ij [67, Chapter 6, pp. 493]. For the sake of clarity,
hereafter, the EDM with absolute distances dij , will be denoted by D and referred
to as an EDM in the natural coordinates. An EDM with squared distances
d2
ij , instead, will be denoted by D◦2 and referred to as an EDM in the squared

coordinates.
Respectively, the subspaces of D and D◦2 are named as the EDM-subspace

in the natural and squared coordinates and are defined as

EDMN , {D |D = D(P)}, (50)

EDMN
2 , {D◦2 |D◦2 = D◦2(P)}, (51)

where ◦2 indicates the point-wise squaring and N is the subspace dimensions.
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In [67, Section 6.3, pp 498], it is shown that these subspaces are characterised
by the following properties

i) EDMN
2 is a convex cone

ii) EDMN is a non-convex cone
iii) EDMN ⊆ EDMN

2 .

Furthermore, the subspace EDMN
2 benefits from an injective correspondence

to the cone of the PSM described below.

Lemma L2 (Characterisation of an EDM in square coordinates via a PSM [67]).

Let K denote the double-centring Euclidean Kernel Transformation (EKT)
given by

K = K(D◦2) , −1

2
J · (D)◦2 · JT, (52)

where J is the double-centring projection matrix defined as

J , IN − (1N · 1T
N)/N, (53)

and IN is the identity matrix of N dimensions.
A matrix D◦2 is an EDM in squared-coordinates if and only if

D◦2 ∈ EDMN
2 ⇔

{
K ∈ SN+ ,
D◦2 ∈ SNh ,

(54)

where SN+ and SNh denote the space of positive semi-definite and symmetric-hollow
matrices of N dimensions.

Proof. See [67, Sec. 6.3, pp 498].

The matrix K obtained from equation (52) is referred to as the double-centring
Euclidean kernel. Such a kernel is also associated to an endomorphism on the
space of the Gram-kernel GP , P ·PT, i.e.

K · 1N = 0N ⇔ GP · 1N = 0N. (55)

Therefore, the matrix K preserves the same rank-deficiency property of GP as,
indeed, stated in the following corollary.
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Corollary C1 (Rank-deficiency of the Euclidean Kernel [67]).
Let D = D(P) with P ∈ RN×η. Then

rank(K(D◦2)) = η. (56)

Proof. See [67, Sec. 6.3, pp 498].

3.3.2 Projection techniques

As mentioned above, a LS-based positioning problem can be cast onto a matrix
proximity problem, and specifically to an EDM proximity problem. In [67], four
different approaches are proposed. In this subsection, however, we focus only on
the three main principles on which a large variety of SDP-based positioning
techniques have been developed [54, 68, 69, 78, 99–101].

Method 1: Projection on the EDMN cone

The first approach is to find the closest EDM in EDMN . Specifically, the proximity
problem is formulated as an optimisation constrained to the non-convex cone
EDMN .

Problem PR1 (Projection on the EDMN cone).
Given an EDM-sample D̃, the closest D̂ ∈ EDMN is the minimizer of

min
D̂

∥∥∥W ◦
(
D̃− D̂

)∥∥∥2

F
, (57)

s.t. D̂ ∈ EDMN ,

rank(K(D̂◦2)) = η.

Due to the non-convexity of both the domain and the rank-constraint, which
is used to further refine the search-space of D̂, the above optimization problem is
not convex. To circumvent this issue, the following changes were proposed [69].

Rewrite the ij-th term (d̃ij − d̂ij)2 as a function of d̂2
ij

(d̃ij − d̂ij)2 = d̃2
ij − 2d̃ij

√
d̂2
ij + d̂2

ij , (58)

and replace d̃ij
√
d̂2
ij by a new variable yij .
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Impose the constraint d̃2
ij − 2yij + d̂2

ij ≥ 0, derived from the fact that the
difference (d̃ij − d̂ij) is squared, yields[

d̂2
ij yij

yij d̃2
ij

]
� 0. (59)

Finally, relax the rank-constraint rank(K(D̂◦2)) = η by the semi-definite
property of the kernel, i.e. K(D̂◦2) � 0, (·) � 0 indicates that the matrix on the
left-side is positive semi-definite.

With all the above, the “convexised” formulation of equation (57) is given by

min
D̂◦2,Y

N∑
i=1

N∑
j=1
j 6=i

w2
ij(d̂

2
ij − 2yij), (60)

s.t.

[
d̂2
ij yij

yij d̃2
ij

]
� 0∀i, j,

Y ∈ SNh ,

D̂◦2 ∈ EDMN
2 ,

K(D̂◦2) � 0,

Method 2: Projection on the EDMN
2 cone

The second approach is to find the closest D̂◦2 in EDMN
2 . This time, the

proximity problem is formulated as an optimisation constrained to the convex
cone of EDM in squared coordinates.

Problem PR2 (Projection on the EDMN
2 cone).

Given a EDM-sample D̃, the closest D̂◦2 ∈ EDMN
2 is the minimiser of

min
D̂◦2

N∑
i=1

N∑
j=1
j 6=i

w2
ij(d̃

2
ij − d̂2

ij)
2, (61)

s.t. D̂◦2 ∈ EDMN
2 ,

rank(K(D̂◦2)) = η.

In contrast to the optimisation problem given in equation (57), this formulation
benefits from a strictly convex quadratic objective function in the variable D̂◦2
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and a convex domain given by the EDM cone EDMN
2 . However, the non-convex

rank constraint shown in equation (61) makes the minimisation problem difficult
to solve. In [68], it is proposed to relax such constraint with K(D̂◦2) � 0. This
relaxation changes the non-convex optimisation problem into a convex one,
which can be solved with SDP-based minimisation techniques.

Method 3: Projection on the SN+ cone

The third method is based on the injective correspondence between the subspaces
of EDM and PSM. Specifically, the new objective is to estimate the closest
Euclidean Kernel (EK) K̂ ∈ SN+ to the EK-sample K̃ , K(D̃◦2) [55, 78].

Problem PR3 (Projection on the SN+ cone).
Given an EDM-sample D̃ and the associated EK-sample K̃, the closest kernel

K̂ ∈ SN+ is the minimiser of

min
K̂

∥∥∥W ◦
(
K−1(K̃)−K−1(K̂)

)∥∥∥2

F
, (62)

s.t. K̂ ∈ SN+ ,

rank(K̂) = η,

where K−1 is the Inverse Euclidean Kernel Transformation (I-EKT) given by

K−1(K) = 1N · diag (K)
T

+ diag (K) · 1T
N − 2K. (63)

As in methods 1 and 2, the rank-constraint implies non-convexity. Therefore,
the relaxation K̂ � 0 is necessary to convex the problem. To this end, relax the
equality K̂ = P̂TP̂ to the matrix inequality K̂ − P̂TP̂ � 0. It is well known
that by the Schur’s complement [102], the aforementioned matrix inequality is
equivalent to

K̂P ,

[
Iη P̂T

P̂ K̂

]
� 0. (64)

Based on the above, both constraints in equation (62) can be replaced with
the above convex relaxation to obtain the following convexised formulation of
problem PR3
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min
K̂P

N∑
i=1

N∑
j=1
i6=j

w2
ij(d̃

2
ij − d̂2

ij)
2, (65)

s.t.
[
K̂P

]
1:η,1:η

= Iη,

d̂2
ij = [0, eij ]K̂P[0, eij ]

T ∀i, j,
K̂P � 0,

where eij ∈ RN is a row-vector with [eij ]i = 1, [eij ]j = −1 and 0 elsewhere.
A special case of the minimization shown in equation (62) is obtained when

all distances are measured and d̃ij ≥ 0, ∀ij. The closest kernel, indeed, can be
computed via a spectrum-truncation in which only the η-highest eigenvectors
and eigenvalues are kept, i.e.

K̂ = Uη ·Ση ·VT
η , (66)

where the matrix Ση ∈ Rη×η is a diagonal matrix with
[
Ση

]
ii
corresponding to

the i-th highest singular values of K̂, and Uη ∈ RN×η and Vη ∈ RN×η are the
corresponding left and right singular-vector matrices, respectively.

This algebraic solution is the basis for the class of MDS-based positioning
algorithms proposed in the literature [66, 103, 104].

Graphical interpretation of the SDP-methods

To conclude this subsection, in Figure 8 we offer an illustration of the aforemen-
tioned projection methods.

To begin with, consider all subspaces of interest, namely the EDMN , the
EDMN

2 and the SN+ . The EDM cones (in natural and squared coordinates) are
defined in the intersection SN ∩RN×N+ , where SN and RN×N+ denote the subspace
of symmetric and real-positive matrices of N dimensions, respectively. Following
the EDM properties described in Section 3.3.1, the subspace EDMN is drawn as
a non-convex cone included in the convex cone EDMN

2 . The subspace of the
PSMs, which is defined as a convex subset of SN , is represented by a cone that
intersects EDMN

2 and EDMN only at the origin, i.e. EDMN
2 ∩ SN+ = 0N [67].

The EKT given in equation (52) is represented as a mapping from EDMN
2 to
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SN+ , while the I-EKT goes from SN+ to EDMN
2 . These two functions form a cycle

that is indicated by the black arrows.
The projection of D̃ onto the non-convex EDMN cone (Method 1) is repre-

sented by the blue-arrow, Method 2 by the green arrow and finally, Method 3 is
represented by the red arrows. In the latter, we have specifically illustrated that
the EK-sample K̃ is computed from D̃, that K̃ is approximated with the closest
EK K̂, and that D̂◦2 is obtained from K̂ via the I-EKT projection. Notice that
in Figure 8, we have also indicated that each method finds a solution on the
boundary of the corresponding cone of projection.

The reason is that in most of the cases, D̃ /∈ EDMN , D̃◦2 /∈ EDMN
2 and

K̃ /∈ SN+ , therefore the closest matrices are at the boundary of the cones.
Furthermore, we have also illustrated that D̂ �= D̂◦2 �= K−1(K̂) since each
projection strategy operates on different subspaces where errors are propagated
differently. For this reason, it is difficult to decide a priori which method can be
superior to all the others since the accuracy of the estimation method depends
on the particular scenario and on the perturbation.

Fig 8. Intuitive representation of the SDP Methods 1, 2 and 3.
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3.4 Summary and discussions

In this chapter, we formulated the distance-based positioning problem as a WLS
optimisation. By Theorem T1, we have shown that under the assumptions of
ranging error with zero-mean Gaussian distribution (LOS), such a formulation is
equivalent to a ML estimation problem. We have provided a comprehensive
analysis of the WLS-objective, derived the Gradient and the Hessian in closed-
form and shown that the considered objective function is not convex. Finally,
we have discussed the equivalent matrix-proximity problem formulation of the
problem, which is the basis of the SDP-based algorithms, used as a comparison
to the algorithms proposed in this thesis.
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4 Error analysis of distance-based positioning

In this chapter, we continue the analysis of the positioning problem with the
derivation of its fundamental limits. We investigate the conditions for which the
ML-estimator, or equivalently a WLS-estimator, is asymptotically convergent to
the true parameters, i.e. it is consistent. Specifically, we show that the consistency
of ML estimator can be determined by the condition of strong-localisability of a
network (Theorem T6). In addition to the above, we offer a generalised study on
the fundamental limits to the achievable Mean Square Error (MSE)

MSE(P) , Ed̃

{
(P̂−P)(P̂−P)T

}
, (67)

where E{·}d̃ denotes the expectation with respect to the variables ~̃d.
In contrast to previous works [51, 92, 105–108], we propose a distance-

model dependent CRLB for cooperative positioning (Theorem T7) and derive a
recursive decomposition of the Equivalent Fisher Information Matrix (EFIM)
– information matrix associated to k-th target location – (Theorem T8) that
permits the quantification of the information-couplings established with inter-
node cooperation (Corollary C2) in an arbitrary large network.

We apply these findings to gain useful insights about the coupling/decoupling
effects in a network, to prove that the addition of a cooperative link can not
degrade the location accuracy of any other node in the network (Corollary
C3), and to compute the closed-form expressions of the CRLB of a cooperative
network in LOS (Lemma L3) and NLOS (Lemma L3) scenarios.

In addition to all of the above, we also consider the case of low SNR regimé
(large noise) and study the difference between the CRLB and the performance of
a ML estimator in a simple non-cooperative scenario. We demonstrate that
location ambiguities often occur when the target is outside the convex-hull formed
by the anchors, and that such a problem can be predicted by the Hammersley-
Chapmann-Robbins Bound (HCRB) and the Abel Hybrid Bound (AHB) derived
in the thesis (Section 4.5 as well as by the minimum entropy bound proposed in
[109].
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4.1 Fundamentals of the network localisability theory

We start with a brief review of the fundamentals of the theory of network
localisability [54, 63, 78, 110–122].

Let G = (V,E,W ) be a weighted graph representing the network of coordinate
matrix P, EDM D and connectivity C, where V , {vGi }, E , {eGij} and
W , {wGij} denote the set of nodes, connected links and edge-weights with
wGij = dij , respectively. Let PG denote a realisation of the graph G in the
Euclidean space of η dimensions, such that the distance between a pair of
vertexes vGi and vGj connected by the edge eGij is equal to wGij .

Definition D1 (Localisable Network [63, 115]).
The network of coordinate matrix P, EDM D and connectivity C is localisable

if the corresponding graph realization PG embedded in the Euclidean space of η
dimensions, is uniquely determined up to rotations, translations and reflections.

The problem of recognising the uniqueness of a graph realisation, i.e. to
assert that exists only one PG such that the length of the edge eGij is equal to the
edge-weight wGij , is known in the literature as the graph realisation problem and in
[123], it was proved to be an Non-deterministic Polynomial-time hard (NP-hard)
problem. In [63] and later also in [110, 111], the authors demonstrated that with
the aid of rigidity theory [120] this problem can be solved in polynomial time if
η = 2 and the following theorem holds.

Theorem T2 (Uniqueness of a Graph Realisation [63, 115]).
The realisation of a graph G is unique in the Euclidean space of two dimensions

if and only if PG is tri-connected and redundantly rigid.

Proof. See [63].

Recently, on the basis of the theory of SDP, it was shown that with the
assumptions of a graph (network) with NA ≥ η + 1 known vertices (anchors),
Theorem T2 can be generalised to any η Euclidean dimensions.

Theorem T3 (Network Localisability [54]).
Suppose that a network PG with NA = η + 1 fixed locations is connected.

Then, the following statements are equivalent

1) The network is uniquely localisable
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2) The max rank solution of the SDP problem given in equation (65) with D̃ = D

and modified with the constraints p̂i = ai, has rank η

3) The solution matrix of the problem (65) with D̃ = D and modified with the
constraints p̂i = ai, represented by K̂P, satisfies K̂ = PTP.

Proof. See [54].

Based on the above, the fact that a network is localisable implies that for
a given coordinate matrix P, NA = η + 1 anchors, EDM D and connectivity
C, the positioning problem defined as in equation (65) admits only the exact
solution P̂ = P.

Finally, we introduce the definition of strongly-localisable network and, the
SDP-based theorem used for its characterisation.

Definition D2 (Strongly-localisable network [54]).
We say that a network with coordinate matrix P, NA = η + 1 anchors,

EDM D and connectivity C is strongly-localisable, if the dual of the SDP-based
optimisation problem given in equation (65) with D̃ = D and modified with the
constraints p̂i = ai, has an optimal dual slack matrix with rank NT.

In plain words, a strongly-localisable network is a network that is uniquely
localisable and remains so if the location of the nodes is slightly modified, i.e.
the network with coordinate matrix P′ = P′+ ∆P, where ∆P ∈ RN×η is a small
perturbation, D′ = D(P′) and connectivity C is uniquely localisable.

Theorem T4 (Strong-Localisability [54]).
If a localisation problem contains a sub-problem (sub-graph) that is strongly

localisable, then the sub-matrix solution corresponding to the sub-problem in the
SDP formulation of equation (65) with D̃ = D and modified with the constraints
p̂i = ai has rank η. That is, the SDP relaxation of a positioning problem with
exact distances computes a solution that localises all possibly localisable targets.

Proof. See Theorem 4 of [54].

4.2 Consistency of a ML location estimator

Consider a general formulation of a distance based estimation problem and let ~̂p
be an estimate of ~p. The consistency of ~̂p can be defined as follows.
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Definition D3 (Consistent estimator).
Let ~̂p be an estimate of ~p. We say that ~̂p is consistent if [45]

lim
Kij→∞

Pr{~̂p− ~p} = 0, (68)

where Kij is the number of samples of each ranging dij.

Next, focus on the case of a ML estimator which can be designed over the
following generalised likelihood function.

Definition D4 (Generalised likelihood function of ~̂p).
Consider iid distance measurements {d̃ij} and let fij(d̃ij |dij) denote the pdf

of d̃ij parametrised by dij. The generalised likelihood function of the estimate ~̂p
of ~p, denoted by L(~̂p|d̃), is defined as

L(~̂p|d̃) ,
∏
ij∈E

fij(d̃ij |d̂ij). (69)

Theorem T5 (Properties of a consistent ML estimator [124]).
Let P̂ML (the matrix form of ~̂pML) be the ML estimate of P. Then, P̂ML is

consistent if all the following properties hold

a) Identification, i.e. @P(1) ∈ RN×η with P(1) 6= P such that L
(
~̂p|~d
)

=

L
(
~̂p|~d(1)

)
, where L

(
~̂p|~d
)
is the limiting likelihood function parametrized

by ~d and ~d(1) is the vectorised form of D1 , D(P(1))

b) Compactness, i.e. the limiting likelihood function L
(
~̂p|~d
)
cannot approach

the maximum value arbitrarily close to some other point than ~p(1) 6= ~p,
~p(1) ∈ BP , where BP is a compact set with ~p ∈ BP

c) Continuity, i.e. lnL
(
~̂p|~̃d
)
is continuous with probability one

d) Dominance, i.e. | lnL
(
~̂p|~̃d
)
| < T (~̂p), where T (~̂p) is an integrable function.

Proof. See Theorem 2.5 of [124].

Theorem T6 (Consistency of a ML-based Position Estimator).
Consider a positioning problem in a network with coordinate matrix P,

NA = η + 1 anchors, EDM D and connectivity C. If the network is strongly-
localisable and the likelihood function L(~̂p|d̃) is obtained as the product of
unbiased pdf of d̃ij with maximum in dij, then P̂ is consistent.
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Proof. The continuity and dominance properties of a ML-estimator can be
readily shown by the facts that the lnL

(
~̂p|~̃d
)
is a regular function [45, 124].

To prove the identification and the compactness properties, on the other
hand, we exploit the facts that the distributions fij(d̃ij |dij), ∀ i, j are unbiased
and the network is strongly-localisable. The former implies that ∀ i, j, then for
Kij →∞ the likelihood function L

(
~̂p|~̃d
)
converges to the limiting likelihood

function L
(
~̂p|~d
)
. The latter implies that the network is uniquely localisable [54].

Therefore, by Theorem T3, @P(1) ∈ RN×η with P(1) 6= P such that D(1) = D. In
other words the distances ~d, and consequently, L

(
~̂p|~d
)
are uniquely determined

by P. Hence, the identification property holds.
Finally, we consider the compactness condition. By definition, if a network

with coordinate matrix P is strongly-localisable, then a network with P(1)

obtained from a small perturbation of P, i.e. P(1) = P + ∆P is still uniquely
localisable. This implies that if P is strongly-localisable, P and P(1) ∈ BP ,
and given that L is a regular function, we can derive P(1) such that L

(
~̂p|~d
)
−

L
(
~̂p|~d(1)

)
< εL, with εL arbitrarily small. Finally, since P(1) is uniquely

localisable, @P(2) ∈ RN×η such that ~d(1) = ~d(2), and consequently, L
(
~̂p|~d(1)

)
=

L
(
~̂p|~d(2)

)
> L

(
~̂p|~d
)
− εL. Thus the assumption that the network of coordinate

P is strongly-localisable implies that the compactness property holds.

Notice that in order to verify the aforementioned properties it is required
that the locations of all nodes in the network are known a priori. Clearly,
this is not the case when the objective is to estimate the node locations of
a network. Therefore, the consistency of a ML-based positioning algorithm
can not be guaranteed in real scenarios. However, it is possible to infer about
consistency from measurable metrics, such as the meshness-ratio given by
equation (21). To investigate the relationship between the meshness-ratio and
the strong localisability of a network, we use the definition provided in [54, pp.
11] and derive the empirical cumulative distribution function (cdf) of the strong
localisability test defined as

πs ,

{
1 if the network is strong localisable,
0 if the network is not strong localisable.

(70)

The result shown in Figure 9 illustrates that the cdf of πs increases with m and
that it grows earlier when the number of targets is larger.
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Fig 9. Probability of strong-localizability as a function of the meshness-ratio. Net-
works are randomly generated within a square of 14.14 × 14.14 squared meters,
with anchors at the corner of the square. Meshness is varied by changing the
connectivity range RMAX within [8, 20] meters.

The reason is obviously related to the number of connections in the network,
i.e. the larger the number of connections, the higher the rigidity of the network
[63, 117]. Indeed, comparing a network of NT = 15 targets with a network
of NT = 5 targets, it is noticed that in the former the probability of strong-
localisabile network is equal to 0.95 when m = 0.45, while in the latter the same
probability is achieved with m = 0.65.

4.3 The Cramér-Rao lower bound for range-positioning

The derivation of the CRLB for cooperative and non-cooperative positioning
has been widely addressed in the literature tackling specific scenarios and/or
assumptions. For instance, in [51] the CRLB was derived under the assumptions
that ranging errors are random variables with zero-mean Gaussian distribution.
In [92], the bound was derived from a more generic ranging model, but addressing
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a non-cooperative positioning scenario. In [106, 107], the authors focused on
wideband technologies and derived a generic CRLB based on the information
inherent in the receiving waveform.

In contrast to the aforementioned solutions, the proposed CRLB derivation
relies only on the knowledge of the ranging error pdf (biased or unbiased). There-
fore it can be considered an alternative to [106, 107] as well as a generalisation
of [92].

Theorem T7 (Generalised CRLB for Range-Positioning).
Given a network with coordinate matrix P, NA = η + 1 anchors, EDM D,

connectivity C and likelihood function L(~̂p|d̃), the CRLB on the covariance
matrix of ~̂p is given by

CRLB(P) , Jd, (71)

where Jd is the inverse of FIM Fd given by

Fd , F̆d + F̄d, (72)

with F̆d and F̄d denoting a block-diagonal and a block-off-diagonal matrices,
respectively obtained as

[F̆d]
η
ii = F̆kd ,

N∑
j=1

ζijΥij , (73)

[F̄d]
η
ij = F̄ijd , − ζijΥij , (74)

where

ζij , cij

∞∫
−∞

φ2(νij)

Lij(p̂ip̂j |d̃ij)
dνij , (75)

Lij(p̂ip̂j |d̃ij) = fij(d̃ij |d̂ij) is the likelihood of (p̂i, p̂j) given d̃ij and φ(νij) is
the unbiased distribution of d̃ij, i.e. Eνij{νij − dij} = 0.

Proof. Consider the log-likelihood function of ~̂p given by

ln(L(~̂p|d̃)) ,
N∑
i=1

N∑
j=1
j 6=i

cij ln
(
Lij(pi,pj |d̃ij)

)
. (76)

The FIM, denoted by Fd, is by definition equal to

Fd , Ed̃

{
∇T
~̂p

ln
(
L(~̂p|~̃d)

)
∇~̂p ln

(
L(~̂p|~̃d)

)}∣∣∣
~̂p=~p

, (77)
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where the partial derivative ∂
∂p̂ni

ln
(
L(~̂p|~̃d)

)
is given by

∂

∂p̂ni
ln
(
L(~̂p|~̃d)

)
= −

N∑
j=1

(p̂ni − p̂nj )

d̂ij

cij

Lij(p̂ip̂j |d̃ij)
d

dd̂ij
fij(d̃ij |d̂ij), (78)

where we intentionally used fij(d̃ij |d̂ij) instead of Lij(p̂ip̂j |d̃ij) to explicate the
dependence to d̂ij .

From equation (77), we decompose Fd in a block-diagonal and a block-off-
diagonal matrices, as

Fd = F̆d + F̄d, (79)

where F̆d and F̄d.
In order to compute the CRLB, that is the bound to the covariance matrix

of an unbiased estimator of ~p, we replace d̃ij by the unbiased random variable
νij , d̃ij − µij , where µij , Ed̃ij{d̃ij − dij}. Consequently, the pdf fij(d̃ij |d̂ij) is
also replaced by the unbiased distribution φij(νij).

With these changes, the block-matrices of F̆d and F̄d can be computed as

[F̆d]
η
ii = F̆id , Eν


N∑
j=1

N∑
q=1

cijciqφ(νiq)φ(νkj)(p̂i − p̂j)
T(p̂i − p̂q)

Lij(p̂ip̂j |d̃ij)Liq(p̂ip̂q|d̃iq)d̂ij d̂iq


∣∣∣∣∣∣
~̂p=~p

(80)

=
N∑
j=1

Eν

{
cijciqφ

2(νij)

L2
ij(p̂ip̂j |d̃ij)

}∣∣∣∣∣
~̂p=~p

Υij =
N∑
j=1

ζijΥij ,

[F̄d]
η
ij = F̄ijd , Eν

{
N∑
t=1

N∑
q=1

citcjqφ(νit)φ(νjq)(p̂i − p̂t)
T(p̂j − p̂q)

Lit(p̂ip̂t|d̃it)Ljq(p̂jp̂q|d̃jq)d̂itd̂jq

}∣∣∣∣∣
~̂p=~p

(81)

= − Eν

{
cijcjiφ

2(νij)

L2
ij(p̂ip̂j |d̃ij)

}∣∣∣∣∣
~̂p=~p

Υij = −ζijΥij .

Formulating the CRLB as a function of the ranging error distributions offers
several advantages. First, this approach eases the simultaneous integration of
different ranging models obtained from measurements or practical considerations.
Second, it permits the integration of simultaneously mixed LOS/NLOS scenarios.
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Finally, it offers the possibilities to evaluate the performance of a localisation
system with heterogeneous devices that have different ranging performance.

In fact, for a given network positioning problem, it will be sufficient to define
the pdfs φij(νij), compute ζij and Υij as in equations (75) and (47), respectively.
The parameter ζij , hereafter referred to as Ranging Information Intensity (RII),
will vary upon the pdf φij(νij), while the matrix Υij , referred to as Ranging
Direction Matrix (RDM), will depend on the locations of the i-th and j-th nodes.

In [106, 107], it was also shown that the CRLB of a specific target’s location
estimate, e.g. p̂k with k = N , can be determined as the inverse of the EFIM of
pk, defined as the Schur-complement of Fd with respect to the minor Gk−1, i.e.

Sk , F̆k,Ad + F̆k,Td −Ek, (82)

where

F̆k,Ad ,
NA∑
n=1

ζnkΥnk, (83)

F̆k,Td ,
k−1∑

n=NA+1

ζnkΥnk, (84)

Ek , QT
kG−1

k−1Qk, (85)

and Gk−1 and Qk are obtained by partitioning Fd as

Fd =

[
Gk−1 Qk

QT
k F̆kd,

]
. (86)

The term equivalent indicates that Sk is not a “true” FIM as the one defined
in equation (71), however, its inverse can be used to determine the CRLB of p̂k.

Respectively, the three terms shown in equation (82), namely F̆k,Ad , F̆k,Td
and Ek correspond to the information obtained from the cooperation with the
anchors, the cooperation with the neighbouring8 targets and, in the presence of a
negative sign, the equivocation9 on the information of pk due to the uncertainties
of other target nodes.

8The j-th target is a neighbour of the k-th node if cjk = 1.
9The term equivocation is typically adopted in information theory to refer to the remaining
entropy (i.e. uncertainty) of a random variable.
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Notice that Sk is a positive semi-definite (psd) matrix, i.e. Sk � 0, therefore
F̆k,Ad + F̆k,Td � Ek. This inequality implies that F̆kd , F̆k,Ad + F̆k,Td is the upper
bound to EFIM of the pk. In fact, this Information will be achieved when all
the nodes connected to the k-th target are anchors.

Our objective is to study the equivocation term Ek and the dependency to all
RIIs and RDMs of other nodes in the network. To this end, we first decompose
the EFIM as follows.

Theorem T8 (Decomposition of the EFIM).
Consider a connected network with NA anchors and NT targets, the EFIM

of corresponding to the estimation error of the k-th target node location, with
k = N , can be decomposed as

Sk = F̆k,Ad +
(
ζ1kΥ

T
1k −ΥT

1kS̄
−1
1 Υk1

)
+ (87)

+
k−1∑
n=2

ζnkΥnk −QT
k,n

[
−G−1

n−1Qn

I

]
S̄−1
n

[
−G−1

n−1Qn

I

]T

Qk,n

 ,

where

Qk, [Υ1k; · · · ; Υ(k−1)k], (88)

Qk,n, [Υ1k; · · · ; Υnk], (89)

.Gn, [Fd]1:(N−n)η,1:(N−n)η =

[
Gn−1 Qn

QT
n F̆nd

]
, (90)

S̄n, F̆nd −QT
nG−1

n−1Qn. (91)

and S̄−1
1 = G−1

1 , (F̆1
d)
−1.

Proof. Compute G−1
k−1 with a classic block matrix inversion algorithm [91] as

G−1
k−1 =

[
G−1
k−2 0

0 0

]
+

[
−G−1

k−2Qk−1

I

]
S̄−1
k−1

[
−G−1

k−2Qk−1

I

]T

, (92)

where S̄k−1 is the Schur-complement of Gk−1 with respect to the minor Gk−2.
Replace (92) in equation (85) and rewrite Ek as

Ek=QT
k,k−2G

−1
k−2Qk,k−2+QT

k

[
−G−1

k−2Qk−1

I

]
S̄−1
k−1

[
−G−1

k−2Qk−1

I

]T

Qk. (93)
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Next, apply the inversion algorithm to decompose G−1
k−2 in the sum above

and iterate the decomposition until the matrix Gk−n = F̆1
d.

After N − 2 iterations, the equivocation matrix Ek can be expressed as

Ek = ΥT
1kS̄
−1
1 Υk1 +

k−1∑
n=2

QT
k,n

[
−G−1

n−1Qn

I

]
S̄−1
n

[
−G−1

n−1Qn

I

]T

Qk,n. (94)

Finally, replace equation (94) in equation (82) and reorder the term of the sums
to obtain equation (87).

Based on this result, we can further decompose the equivocation matrix Ek

in order to identify the information-dependency amongst nodes in the network.

Corollary C2 (Decomposition of the Equivocation Matrix).
Consider a connected network with NA anchors and NT targets, the equivoca-

tion matrix of the k-th target node with k = N can be decomposed as

Ek = Ĕk + Ēk, (95)

where

Ĕk ,
k−1∑
i=ma

ζe
ikΥik, (96)

Ēk ,
k−1∑
i=ma

k−1∑
j=ma
j 6=i

κkjikΥkj
ik , (97)

with
ζe
ik, ζ2

ikτik, (98)

κkjik, ζikζkjχij , (99)

τik ,
k−1∑
n=i+1

n−1∑
t=ma

n−1∑
q=1

ζntζnq(vik[G−1
n ]ηiqv

T
nq)(vnqS̄

−1
n vT

nt)(vnt[G
−1
n ]ηtiv

T
ik)

+
(
vikS̄

−1
i vT

ik

)
, (100)

χij ,
j−1∑
t=ma

ζtj
(
vik[G−1

j ]ηitv
T
tj

) (
vtjS̄

−1
j vT

kj

)
+ (101)

k−1∑
n=sa

n−1∑
t=ma

n−1∑
q=ma

ζntζnq(vik[G−1
n ]ηiqv

T
nq)(vnqS̄

−1
n vT

nt)(v
T
nt[G

−1
n ]ηtjv

T
kj),

Υkj
ik, vT

ikvkj , (102)

and ma = NA + 1 and sa = max (i, j) + 1.
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Proof. Consider a matrix product AB, with A ∈ Rnq×mq and B ∈ Rmq×tq. The
ij-th block-matrix of q × q elements of AB is equal to

[AB]qij =
n∑
k=1

[A]qik[B]qkj , (103)

where [A]qik ∈ Rq×q and [B]qkj ∈ Rq×q denote the ik-th and the kj-th blocks of
A and B, respectively.

From the above, the n-th term of equation (94)

QT
k,n

[
−G−1

n−1Qn

I

]
S̄−1
n

[
−G−1

n−1Qn

I

]T

Qk,n, (104)

can be resolved as

ΥnkS̄
−1
n Υnk + QT

k,n−1G
−1
n−1QnS̄−1

n QT
nG−1

n−1Qk,n−1 + (105)

−QT
k,n−1G

−1
n−1Qn−1S̄

−1
n Υkn −ΥknS̄−1

n QT
n−1G

−1
n−1Q

T
k,n−1.

Now, notice that all matrix products similar to Υik[A]ηiqΥqk can be simplified as

Υik[A]ηiqΥqk = ζikζqkv
T
ik(vik[A]ηiqv

T
qk)vqk = ζikζqk(vik[A]ηiqv

T
qk)vT

ikvqk,

where the last equality holds because the term in the brackets is a scalar.
By resolving equation (105) with the rule (73) and applying the above

simplification to each term in the form of Υik[A]ηiqΥqk, it follows that equation
(105) can be reduced to

αnkΥnk+
n−1∑
i=m

αinkΥik +
n−1∑
i=ma

n−1∑
j=ma
j 6=i

βink(Υki
nk + Υkn

ik ) + βijnkΥ
kj
ik , (106)

and the equivocation matrix Ek can be written as

Ek =
k−1∑
n=ma

n−1∑
i=ma

n−1∑
j=ma
j 6=i

αnkΥnk+ αinkΥik + βink(Υki
nk + Υkn

ik ) + βijnkΥ
kj
ik , (107)
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where the coefficients αnk, αink, βink and βijnk are given by

αnk, ζ2
nk

(
vnkS̄

−1
n vT

nk

)
, (108)

αink, ζ2
ik

n−1∑
t=ma

n−1∑
q=1

ζntζnq(vik[G−1
n ]ηiqv

T
nq)(vnqS̄

−1
n vT

nt)(vnt[G
−1
n ]ηtiv

T
ik), (109)

βink, ζikζkn

n−1∑
t=ma

ζtn
(
vnk[G−1

j ]ηitv
T
tn

) (
vtnS̄−1

n vT
kn

)
, (110)

βijnk, ζikζkj

n−1∑
t=ma

n−1∑
q=ma

ζntζnq(vik[G−1
n ]ηiqv

T
nq)(vnqS̄

−1
n vT

nt)(v
T
nt[G

−1
n ]ηtjv

T
kj).(111)

Finally, equations (96) and (97) can be obtained by resolving the sums in
equation (107) and grouping all terms with the same RDM Υik and Cross-
Ranging Direction Matrix (C-RDM) Υkj

ik .

Corollary C2 shows that the equivocation matrix can be decomposed as a
sum of ζe

ik’s and a sum of κkjik ’s, which respectively denote the equivalent ranging
error due to the uncertainty of the i-th node location and the information
coupling between the i-th and j-th node established by fact that also such nodes
cooperate with each other.

This result generalises Theorem 1 of [108], in which the decomposition was
derived for NT = 3. From equation (99), in particular, it is found that the
information coupling between two nodes i and j, namely κkjik is proportional to
the product of the RIIs corresponding to the links ζik and ζkj . The coefficient
of proportionality, namely χij , is given by equation (101), and it is equal to a
weighted sum of the RIIs ζtj with NA + 1 ≤ t < j as well as the products ζ2

ni,
ζ2
nj , ζniζnj and ζnqζnt with n > max(i, j), q 6= {i, j} and t 6= {i, j}.

Based on this result, it is trivial to show that κkjik = 0 can be obtained if
either cik = 0, cjk = 0, or χij = 0. The more interesting case, however, is when
χij = 0, which results either if the j-th node becomes an anchor since S̄j →∞
and [Gn]tj →∞ or, if the location of the nodes are such that in each term of the
sums, at least one of the matrix products written in the form of (vik[A]ηiqv

T
qk) is

0. Without loss of generality, assume j = k − 1 for instance that then the latter
condition implies that

j−1∑
t=NA+1

ζtj
(
vik[G−1

j ]ηitv
T
tj

) (
vtjS̄

−1
j vT

kj

)
= 0. (112)
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Obviously, this is typically a rare fact and, especially can not be controlled a
priori since the locations of the target nodes are not known. More useful insights,
however, can be gained from the example with NT = 3 targets proposed in [108].

In this Thesis, we propose two different examples to learn about the effects
of information coupling/decoupling in more general networks. For instance, in
Figure 10 we consider a small network with NA = 3 anchors and NT = 4 targets
indicated with the labels Zi with 4 ≤ i ≤ 7. We assume σij = σ = 1 meter
∀ij ∈ E and compare the location accuracy, represented by the corresponding
error-ellipse [40], of the node obtained Z7 with and without the information
coupling κ75

67. The scenario corresponding to κ75
67 6= 0 is obtained with a network

fully connected. Based on equation (112), κ75
67 = 0 is achieved, for instance, if

ζ46 = 0 and ζ56 = 0, i.e. the links Z4 −Z6 and Z5 −Z6 are disconnected. In this
case, the lack of information coupling increases the uncertainty represented by
the equivocation matrix (topic addressed in Corollary 3), and therefore decreases
the Position Error Bound (PEB) of the node Z7.
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Fig 10. Study of the information coupling effects on a small network with NA = 4

anchors and NT = 4 targets. The ellipses with solid and dashed lines refer to the
PEB obtained with and without coupling, respectively.
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In Figure 11, we consider a larger network with NT = 17 targets separated
in two sub-networks identified with negative and positive x-coordinates and
referred to the SN1 and SN2, respectively. In contrast to the previous study, we
show that information decoupling (this time caused by the replacement of a
node with an anchor) can improve the average location accuracy of the nodes.
Notice however that this result can not be obtained from the work in [108] since,
their result was developed for a small network of NT = 3 nodes.

For instance, consider the PEB of the node Z22, which can be computed as
the inverse of the EFIM S22 given by equation (82). The equivocation matrix
E22 is obtained from (85), in which we focus on the coupling coefficient κkjik
where the indexes i, j and k refer to the number 20, 21 and 22, respectively.

From equation (99), κkjik = ζikζjkχij , and in particular χij is given by

χij =

j−1∑
t=NA+1

ζtj
(
vik[G−1

j ]ηitv
T
tj

) (
vtjS̄

−1
j vT

kj

)
. (113)

From all of the above, it is shown that κkjik is a function of all the RIIs
corresponding to the nodes connected to Z21 as well as on their uncertainties.
As illustrated in Figure 11(a), this dependence generates a correlation between
the location error of the nodes in SN2 to those in SN1, and vice versa. In fact,
in the example we show that the PEB of all nodes in the network are affected
by a larger uncertainty due to the cancellation of some edges in SN2. Clearly,
this correlation is undesired, especially if the two networks refer to different
application scenarios with different location error requirements.

To decouple SN1 from SN2, while preserving the connectivity, we replace
Z21 with the anchor A6. This replacement implies χij = 0, and therefore the
decoupling of the two networks. The benefits can be appreciated in Figure 11(b),
from which it can be noticed that not only all PEBs are slightly smaller but,
especially that the location errors of the nodes in SN1 are unchanged regardless
of the removal of the links in SN2.

The study of the information coupling and the understanding of its impacts on
the fundamental limits of range based positioning are still subject of investigations.
Indeed, as mentioned in [108], useful insights can be gained from these studies
in order to improve localization techniques as well as to the design of optimal
anchor deployment criteria.
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Fig 11. Study of the error propagation due to information coupling. Sub-figures (a)
and (b) show a coupled and decoupled network, respectively. The PEBs of each
node obtained before and after the removal of the links are represented by the
error ellipses in solid and dashed lines, respectively.
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Finally, we investigate the relationship between the meshness ratio and the
EFIM in order to establish the advantages of network cooperation onto the
location accuracy. To this end, consider the following result.

Corollary C3 (EFIM and Meshness-Ratio).
Consider a network with NA anchors, NT targets and let E1 and E2 be two

sets of connected edges of the same network with E1 ⊂ E2. Let S
(1)
k , S

(2)
k be the

EFIMs of k-th node obtained with the set of edges E1 and E2, respectively. Then,

S
(2)
k � S

(1)
k . (114)

Proof. Consider a network with connectivity matrix C and a set of edges E1,
and assume that the pair of nodes (q, j) are not connected, i.e. cjq = 0. Next,
consider a new set of edges E2 , E1 ∪ jq. The objective of the proof is to verify
that the matrix inequality (114) holds for all following scenarios:

a) j = k and q ≤ NA, i.e. the q-th node is an anchor connected to the k-th
node,

b) j = k and q > NA, i.e. the q-th node is a target connected to the k-th node,
c) j 6= q 6= k, i.e. the j-th and q-th nodes are disconnected from the k-th target.

Scenario a) From equation (82), we compute S
(2)
k and S

(1)
k as

S
(1)
k =

q−1∑
n=1

ζnkΥnk +
k−1∑
n=ma

ζnkΥnk −QT
kG−1

k Qk, (115)

S
(2)
k = S

(1)
k + ζqkΥqk, (116)

from which it follows that

S
(2)
k − S

(1)
k = ζqkΥqk � 0. (117)

Scenario b) Compute S
(2)
k and S

(1)
k as in equation (82), and evaluate the

difference

S
(2)
k − S

(1)
k = ζqkΥqk − (E

(2)
k −E

(1)
k ), (118)

where E
(2)
k and E

(1)
k are calculated as in equation (95).
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Without loss of generality, assume that q = (k − 1), thus

S
(2)
k −S

(1)
k = ζqkΥqk −

QT
k

[
−G−1

q−1Qq

I

]
(S̄(2)
q )−1

[
−G−1

q−1Qq

I

]T

Qk


︸ ︷︷ ︸

Part 1

+ QT
k,q−1G

−1
q−1Qq(S̄

(1)
q )−1QT

q G−1
q−1Qk,q−1︸ ︷︷ ︸

Part 2

, (119)

where both parts are psd. Thus, the inequality shown in equation (114) holds.
Scenario c) In this scenario, the difference of EFIMs is given by

S
(2)
k − S

(1)
k = E

(1)
k −E

(2)
k = QT

k

(
(G

(1)
k )−1 − (G

(2)
k )−1

)
Qk. (120)

The fact that G
(2)
k � G

(1)
k � 0 implies

(G
(1)
k )−1 � (G

(2)
k )−1 � 0, (121)

and, therefore,
(
(G

(1)
k )−1 − (G

(2)
k )−1

)
� 0 and S

(2)
k � S

(1)
k .

The above Corollary proves that despite the location of a new cooperation,
the location accuracy of a generic k-th node improves. However, the impact onto
the PEB of the k-th node can be more or less significant if such a cooperation is
established between the k-th target and an neighbour anchor, or a neighbour
target, or if it is a consequence of a new cooperation between two other nodes. If
the RII are the same for all links, the strongest impact is due to a cooperation
with an anchor since no further uncertainty is introduced in the equivocation
matrix. On the other hand, if the cooperation is established with a neighbouring
node the impact can still be significant if the number of the previous connections
is small. If the cooperation is established between another pair of nodes, the
impact can also be null if the local portion of the network of the k-th node is
decoupled from the rest.

4.4 CRLB in LOS and NLOS channel conditions

Consider the ranging model proposed in Section 3.1, in which the noise and the
bias errors are modelled with the random variables nij and bij that are governed
by a Gaussian and an uniform distribution, respectively.
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With the assumption that all links are in LOS channel conditions, i.e. bij = 0

(no bias), then the likelihood function of ~p can be computed as in equation (27)
and, the CRLB can be derived as follows.

Lemma L3 (Cramér-Rao Lower Bound in LOS [51]).
Assume LOS channel conditions, i.e. bij = 0 ∀ i, j. Let ~̂p ∈ RηN be an

estimator of ~p governed by the likelihood function L(~̂p|~̃d) = L(~̂p|~̃d). Then the
CRLB on the covariance matrix of ~̂p is given by

CRLBLOS(P) , JcLOS, (122)

where JcLOS is the inverse of the information matrix FLOS given by

FLOS , F̆LOS + F̄LOS, (123)

with F̆LOS and F̄LOS denoting a block-diagonal and a block-off-diagonal matrices,
respectively obtained as

[F̆LOS]ηkk = F̆kLOS ,
N∑
j=1

ckj
σ2
kj

Υkj , (124)

[F̄LOS]ηkj = F̄kjLOS , − ckj
σ2
kj

Υkj . (125)

Proof. From Theorem T1, the log-likelihood function lnL(~̂p|d̃) is given by
equation (27) with w2

ij = cij/σ
2
ij .

Invoking Theorem T7, F̂ can be decomposed as in equation (123) with

F̆kLOS , Ed̃


( N∑
j=1

ckj
σ2
kj

d̂kj−d̃kj
d̂kj

)
Iη+

N∑
j=1

ckj
σ2
kj

d̃kj

d̂kj
Υkj


∣∣∣∣∣∣
~̂p=~p

(126)

=

N∑
j=1

ckj
σ2
kj

Υkj =

NA∑
j=1

ckj
σ2
kj

Υkj +

N∑
jm

ckj
σ2
kj

Υkj ,

and,

F̄kjLOS , − Ed̃

{(
ckj
σ2
kj

d̂kj+d̃kj

d̂kj

)
Iη−

ckj
σ2
kj

d̃kj

d̂kj
Υkj

}∣∣∣∣∣
~̂p=~p

=− ckj
σ2
kj

Υkj . (127)

Notice that under the assumption of ranging errors with a zero-mean Gaussian
distribution ζkj = ckj/σ

2
kj .
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Finally, the CRLB is given by

CRLBLOS(P) , JcLOS = F−1
LOS. (128)

Next, we focus on the derivation of the CRLB with the assumptions of NLOS
channel conditions. Specifically, we consider the ranging model described in
Section 3.1 where the noise and the bias are modelled with random variables
governed by a Gaussian and uniform distribution, respectively. Under these
assumptions, the likelihood function of ~p can be computed as in [92] and the
CRLB can be derived as follows.

Lemma L4 (Cramér-Rao Lower Bound in NLOS).
Assume NLOS channel conditions, i.e. bij = U(0, bMAX) ∀ i, j. Let ~̂p ∈ RηNT

be an estimator of ~z governed by the likelihood function L(~̂p|~̃d) = L̄(~̂p|~̃d) given
by

L̄(~̂p|~̃d) ,
∏
ij∈E

L̄ij(~̂pi~̂pj |d̃ij), (129)

where

L̄ij(~̂pi~̂pj |dij) , Q

(
d̃ij − d̂ij − bMAX

σij

)
−Q

(
d̃ij − d̂ij
σij

)
, (130)

and Q(x) , 1√
2π

∞∫
x

exp
(
− t22

)
dt.

Then the CRLB on the covariance matrix of ~̂z is given by

CRLBNLOS(P) , JcNLOS, (131)

where JcNLOS is the inverse of the information matrix FNLOS given by

FNLOS , F̆NLOS + F̄NLOS, (132)

with F̆NLOS and F̄NLOS denoting a block-diagonal and a block-off-diagonal
matrices, respectively obtained as

F̆iNLOS ,
N∑
j=1

ζijΥij , (133)

F̄ijNLOS , − ζijΥii, (134)
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where

ζij , cij

∞∫
−∞

φ2(νij)

L̄ij(~̂pi~̂pj |d̃ij)
dνij , (135)

φ(νij) ,
1√

2πσ2
ij

(
exp
(
−(νij−0.5 bMAX)2

2σ2
ij

)
− exp

(
−(νij+0.5 bMAX)2

2σ2
ij

))
. (136)

Proof. From [92], we obtain that the likelihood function of ~̂p is given by equation
(129). From the definition of the Q-function, it follows that

d

dx
Q(x) = − 1√

2π
exp

(
−x

2

2

)
, (137)

thus

∂

∂p̂ni
ln
(
L̄(~̂z|~̃d)

)
=

N∑
j=1

cij

L̄ij(~̂zi~̂zj |d̃ij)

 1√
2πσ2

ij

exp
(
−(d̃ij−d̂ij−bMAX)2

2σ2
ij

)
+

− 1√
2πσ2

ij

exp
(
−(d̃ij−d̂ij)2

2σ2
ij

) (p̂ni − p̂nj )

d̂ij
. (138)

The FIM is therefore given by

FNLOS , Ed̃

{
∇T
~̂p

ln
(
L̄(~̂p|~̃d)

)
∇~̂p ln

(
L̄(~̂p|~̃d)

)}∣∣∣
~̂p=~p

= F̆NLOS+F̄NLOS,(139)

where F̆NLOS and F̄NLOS are obtained as

F̆kNLOS , Eν


N∑
j=1

N∑
q=1

ckjckqφ(νkq)φ(νkj)(p̂k − p̂j)
T(p̂k − p̂q)

L̄kj(~̂pk~̂pj |d̃kj)L̄kq(~̂pk~̂pq|d̃kq)d̂kj d̂kq


∣∣∣∣∣∣
~̂p=~p

,(140)

=
N∑
j=1

Eν

{
ckjckqφ

2(νkj)

L̄2
kj(
~̂pk~̂pj |d̃kj)

}∣∣∣∣∣
~̂p=~p

Υkj =
N∑
j=1

ζkjΥkj ,

F̆kjNLOS , Eν

{
N∑
t=1

N∑
q=1

cktcjqφ(νkt)φ(νjq)(p̂k − p̂t)
T(p̂j − p̂q)

L̄kt(~̂pk~̂pt|d̃kt)L̄jq(~̂pj ~̂pq|d̃jq)d̂ktd̂jq

}∣∣∣∣∣
~̂p=~p

,(141)

= − Eν

{
ckjcjkφ

2(νkj)

L̄2
kj(
~̂pk~̂pj |d̃kj)

}∣∣∣∣∣
~̂p=~p

Υkj = −ζkjΥkj ,

where νkj = bij + nij − 0.5 bMAX.
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Finally, the CRLB is given by

CRLBNLOS(P) , JcNLOS = F−1
NLOS. (142)

Lemma L4 is the generalisation of the CRLB derived in [92] and the alternative
to the signal-model based bound proposed in [106, 107]. The new formulas,
in fact, can be used to compute the error bounds for large-scale network in
closed-forms relying only on the statistics of the ranging measurements. In
this way, the proposed error analysis framework is flexible and suitable for
heterogeneous scenarios, where ranging errors can have different distributions
due to either diverse channel conditions or dissimilar ranging technologies.

4.5 Alternative bounds to MSE in single-target
positioning

The CRLB is perhaps the most known and utilised tool to benchmark the results
of an estimation algorithm. However, it is also known that in low SNR regimé
(large noise) the CRLB is devalued because it cannot predict the large estimation
errors due to estimation ambiguities. To overcome this issue, alternative bounds
can be derived either based on a deterministic or a Bayesian approach.

For instance, in [109] a Bayesian bound (also referred to as Stochastic
Bound (SB)) was derived from the matrix inequality

Eỹ{(ẑ− z)T(ẑ− z)} � SB(z) ,
∫
Rη

(z − z̄)T(z − z̄) pL
(
z|~d
)

dz, (143)

in which z is the integration variable, z̄ is given by

z̄ ,
∫
Rη

z pL
(
z|~d
)

dz. (144)

and pL(z|~d) is the a posteriori distribution of the estimate ẑ with the minimum
entropy, and it is equal to

pL
(
z|~d
)
,

L
(
z|~d
)∫

Rη
L
(
z|~d
)

dz
. (145)
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This bound, hereafter referred to as SBLOS, can provide an accurate estimate
to the MSE of a ML estimator, however, a closed-form solution of the integral
is difficult to obtain and numeric techniques are needed. On the other hand,
deterministic bounds such as the Bhattacharyya Bound (BB) [125], the HCRB
[126] and the AHB [7] are less precise, but can be derived in closed form. A neat
derivation method, for instance, was proposed by in [7].

Unifying framework for the derivation of deterministic MSE bounds

Let py(ỹ) be the distribution of the observation vector ỹ and x̂ , fe(ỹ) be an
estimate of x ∈ Rn, and fe is the estimation function. Based on the covariance
inequality [127, p. 123], it can be shown that

Eỹ{(x̂− x)T(x̂− x)} � bT
xbx +

(
Eỹ{ξ̂

T
ν̂}Eỹ{ν̂Tν̂}−1Eỹ{ν̂Tξ̂}

)∣∣∣
x̂=x

, (146)

where Eỹ denotes the expectation with respect to the distribution py(ỹ), bx ,

Eỹ{x̂− x}, ξ̂ , x̂− Eỹ{x̂} and ν̂ is a free-choice vector that depends on x̂. Let
ν̂ be referred to as the information vector and let

γ̂ ν̂ , Eỹ{ξ̂
T
ν̂}, (147)

F̂ν̂ , Eỹ{ν̂Tν̂}, (148)

be the information matrix and the translation matrix relative to ν̂, respectively.
Abel proved that the CRLB, the BB, the HCRB and the AHB can be derived

from equation (146) by considering different expressions of the information
vector. Specifically,

i) The CRLB is obtained with

ν̂ = ν̂c ,
1

l(x̂|ỹ)

[
∂l(x̂|ỹ)

∂x̂

]
= ∇x̂ ln l(x̂|ỹ) ∈ Rn, (149)

ii) The m-th order BB is obtained with

ν̂ = ν̂
(q)
b ,

1

l(x̂|ỹ)

[
∂l(x̂|ỹ)

∂x̂
, · · · , ∂

ml(x̂|ỹ)

∂x̂⊗m

]
∈ Rn

m

, (150)

iii) The HCRB is obtained with

ν̂ = ν̂hcr ,
1

l(x̂|ỹ)
[∆(r1, x̂; ỹ), · · · ,∆(rn, x̂; ỹ)] ∈ Rn, (151)
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iv) The AHB is obtained with

ν̂ = ν̂(q)
a ,

[
ν̂

(q)
b , ν̂hcr

]
∈ Rn+nm, (152)

where l(x̂|ỹ) is the likelihood function of x̂ given the observations ỹ, (·)(q)

indicates the order of partial derivatives used in the information vector, ∂m

∂x̂⊗m is
the vector of all derivatives with respect to the vector x̂ up to the m-th order,
the function

∆(ri, x̂; ỹ) , l(ri|ỹ)− l(x̂|ỹ), (153)

and the vector ri ∈ Rη, referred to as the i-th test point, is given by ri ,

Eỹ{x̂}+ τ i where τ i ∈ Rn is an arbitrary vector.
Assuming that the estimator x̂ is unbiased, i.e. Eỹ{x̂} = x, we obtain

Eỹ{(x̂− x)T · (x̂− x)} �
(
Eỹ{ξ̂

T
ν̂}Eỹ{ν̂Tν̂}−1Eỹ{ν̂Tξ̂}

)∣∣∣
x̂=x

, (154)

and ri = x + τ i.
In possession of this framework, the HCRB and the AHB, which are conceived

for large-scale estimation errors, can be derived as follows.

Derivation of the HCRB and AHB

Replace x̂ by ẑ and ỹ = d̃, and for the sake of mathematical convenience,
consider l(x̂|ỹ) = L(ẑ|d̃) (LOS likelihood function).

To derive the HCRB, we compute the information vector ν̂hcr as

ν̂hcr ,
1

L(ẑ|d̃)

[
∆(r1, ẑ; d̃), · · · ,∆(rNR , ẑ; d̃)

]
, (155)

where the i-th test point is given by ri = z + τi.
Next we compute the translation vector γ̂hcr as

γ̂hcr , E~̃
d
{
(
ẑ− E~̃

d
{ẑ}
)T
ν̂hcr} (156)

= E~̃
d
{ẑTν̂hcr} − E~̃

d
{E~̃

d
{ẑT}ν̂hcr}

=
[
τT
1 , · · · , τT

NR

]
,

where we used the fact that E~̃
d
{ẑTν̂hcr} = 0.
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Replacing equation (155) in (148), we obtain that the ij-th element of HCRB
information matrix is equal to

[F̂hcrLOS]ij ,Ed̃

{
L(ri|d̃)L(rj |d̃)

L2(ẑ|d̃)

}
−1 (157)

=

∞∫
−∞

· · ·
∞∫
−∞

NA∏
q=1

exp

(
(d̃q−d̂q)2−(d̃q−drqi)

2−(d̃q−drqj)
2

2σ2
q

)
√

2πσq
dd̃1· · ·dd̃NA− 1

=

NA∏
q=1

exp

(
d̂2q−d

r
qi−d

r
qj

2σ2

)∞∫
−∞

· · ·
∞∫
−∞

NA∏
q=1

exp

(
−d̃q(d̃q+2d̂q−2drqi−2drqj)

2σ2
q

)
dd̃1· · ·dd̃NA−1

=

NA∏
q=1

exp

(
d̂2q+d

r
qid

r
qj−d̂q(d

r
qi+d

r
qj)

σ2
q

)
−1.

Finally, replacing the HCRB information F̂hcrLOS and the translation matrix
(156) in equation (154) yields

HCRBLOS(z) , γ̂hcr ĴhcrLOS γ̂
T
hcr

∣∣∣
ẑ=z

, (158)

where ĴhcrLOS =
(
F̂hcrLOS

)−1

.
To derive the AHB, first we combine the CRLB and the HCRB information

vector to obtain
ν̂a , [ν̂c, ν̂hcr], (159)

where

ν̂c =∇ẑ lnL(ẑ|d̃) =−2

NA∑
i=1


(
d̃i − d̂i

)
σ2
i

[
cos(θ̂i), sin(θ̂i)

] . (160)

Replacing equation (159) in (148), the AHB information matrix is equal to

F̂aLOS , Ed̃{ν̂T
a ν̂a} =

[
F̂LOS ĜT

R

ĜR F̂hcrLOS

]
. (161)

where the matrix ĜR is formed as the stack of the row vectors ĝR
k

ĝR
k , Ed̃

{
∆(rk)

L(ẑ|d̃)

∂L(ẑ|d̃)

ẑ

}
=

NA∑
i=1

[cos θ̂i, sin θ̂i]

σ2
i

(dr
ik − d̂i), (162)

with dr
ik , ‖ai − rk‖F.
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Next, replacing equation (152) in (147), we obtain

γ̂a = [γ̂c, γ̂hcr] , (163)

where γ̂c = Iη.
Finally, replacing equations (163) and (161) in equation (146) we obtain that

the AHB is given by

AHBLOS(z),

[Iη, γ̂hcr] ·
[

F̂LOS ĜT
R

ĜR F̂hcrLOS

]−1

· [Iη, γ̂hcr]T
∣∣∣∣∣∣

ẑ=z

, (164)

which can be rewritten as

AHBLOS(z) =
(
F−1

LOS+UR ·Φ−1
R ·UT

R
)
, (165)

where
UR , F−1

LOS ·GT
R − γ̂hcr, (166)

and
ΦR , FhcrLOS −Ga

NR · F
−1
LOS ·GT

R. (167)

Both the HCRB and the AHB are written as a function of the test points ri’s,
which in fact determine the tightness of the bounds in the low SNR régime. As
suggested by Abel in [7], the test should be chosen near the location ambiguities
of z. Since these points are not known a priori, we propose an estimation method
based on the minimisation of the following location ambiguity function

fA-R(ẑ) ,
fR(ẑ)

‖ẑ− z‖2F
, (168)

where ‖ẑ− z‖2F acts like a pole in z that cancels the zero of the WLS objective
fR(ẑ) positioned in ẑ = z.

Comparing the above function to the ambiguity function proposed in definition
1 of [128], it results that equation (168) is the ratio between the directed divergence
between the distributions of d̃ obtained with ẑ and the a priori function e−‖ẑ−z‖2F ,
and its upper bound, i.e. 1. Therefore, following the procedure in [128], we
estimate the location ambiguity as the minimum of fA-R(ẑ), denoted by zA-R.
Using this result, we define an ambiguity region (grid of NR points around zA-R)
and evaluate the AHB and the HCRB, where for the latter we also include a set
of points around z.
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4.6 Numerical studies and bound comparisons

The objective of this section is to study the behaviour of the fundamental limits
of a range-based positioning in cooperative and non-cooperative (single target)
scenarios. The results will be shown with respect to different system parameters,
namely, the meshness-ratio m defined in equation (21), the noise nij + bij and
the percentage of NLOS links, denoted by pNLOS.

For the specific scenario of a non-cooperative positioning, we use the above
results to remark that also in a localization problem exists the probability of
location-ambiguity and therefore, the well-known problem of large-errors in the
low SNR (large noise) regimé [7, 126, 129].

4.6.1 Studies in cooperative positioning

Consider a typical wireless network with NT = 10 target nodes randomly
deployed in an area of 14.14× 14.14 square meters10. Assume that the anchor
locations form a regular polygon and for simplicity let NA = 4. Targets are
located in the convex-hull formed by the anchors.

We assume that the channel condition of each link ij is in NLOS with
probability pNLOS and, such a probability is independent on the distance dij .
The noise standard deviation is considered identical for all links, σij = σ = 0.3

meters [130, 131] ∀ij, and cij = 1 if dij ≤ RMAX, where RMAX is the maximum
connectivity range. To quantify the overall location accuracy of all nodes in the
network, we define the PEB as the average CRLB, i.e.

PEB ,
√

tr
(
Jd
)
/NT. (169)

In Figure 12, we illustrate the comparison between the PEB derived from
the LOS (PEBLOS) and the NLOS (PEBNLOS) assumptions as a function of the
meshness ratio, which is varied by changing RMAX between 8 and 20 meters. The
results show that the larger the amount of cooperation, the larger the redundancy
of information and the smaller the effect of bias in distance measurements. In
fact, at high meshness-ratio (m > 0.9), the network is nearly fully connected,
almost all nodes cooperate with each other and the difference between the LOS
and NLOS bounds is practically negligible.

10The network deployment area is selected to resemble a typical office environment.
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Fig 12. Comparison of the PEB obtained in LOS and NLOS channel conditions
as a function of the meshness ratio. The result is shown for regular with NA = 4

anchors and NT = 10 targets.

In Figures 13 and 14 we compare the PEBs as a function of the maximum
bias bMAX and the probability of NLOS channel conditions pNLOS, respectively.
In these plots, we also show the PEB computed for an incomplete network,
where the NLOS links have been removed.

Similarly to the results shown in [92], where the case of non-cooperative
positioning was considered, Figures 13 and 14 demonstrate that the PEB obtained
by discarding the NLOS measurements is generally higher than that given with
the NLOS information. This result is justified by the behaviour of the RII as a
function of the noise and bias, as illustrated in Figure 15. The value of ζij is
always bounded between 1/σ2

ij and 0, which implies that the information of an
NLOS measurement is always less then the one of a LOS data, but larger than
a disconnected link. Thus PEBNLOS is lower than PEBLOS with incomplete
information.
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Fig 13. Comparison of the PEB obtained in LOS and NLOS channel conditions
as a function of the maximum bias. The result is shown for regular with NA = 4
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4.6.2 Studies in non-cooperative positioning

In this subsection, we consider the case of non-cooperative positioning and
investigate the problem of location flip-ambiguity due to the high noise (low
SNR) on the distance measurements. For simplicity, it is assumed a ranging
error with a zero-mean Gaussian distribution and standard deviation σ.

Figures 16(a) and 16(b) illustrate the location flip-ambiguity phenomenon
and the corresponding fundamental limits, respectively. It is noticed that with
the considered noise statistics, the ML estimate (marked by “×’s”), which are
obtained from a grid-search based minimisation of the log-likelihood function,
are grouped in two clusters11. The fact that Cluster 2 is not centred in the true
target location (marked by “©”) shows the existence of a location ambiguity. The
point marked by “•” indicates the solution zA-R obtained from the optimisation
of the ambiguity function fR-A. As expected, such a point is located in the
cluster corresponding to the location ambiguities.

11Clusters are computed from the maxclust function of MATLAB. The ellipses, instead, are
derived from the eigenspectrum of the covariance matrices of the ML-samples of each cluster.
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In Figure 16(b), we compare the RMSE obtained from the ML estimates
to the CRLBLOS, the HCRBLOS and the AHBLOS computed from equations
(122), (158) and (164), respectively. The test points are derived as suggested in
Section 4.5. Specifically, for the HCRBLOS we construct two grids that span
symmetrically around z and zA-R, respectively. Whereas, for the AHBLOS we
consider only a grid around zA-R.

The comparison shows that the SB [109] can provide a more accurate estima-
tion of the ML-RMSE since it foregoes entirely the use of a prior distribution
of the target ẑ, replacing it instead by a minimum entropy estimate L(ẑ|~d).
The HCRB and AHB, however, indicate that the location ambiguity problem
exists, but in this specific scenario, the noise threshold is not accurately pre-
dicted. Better performance can be obtained if the bounds are computed from an
optimisation of the bound functions with respect to the test-points.

In Figures 17(a) and 17(b) we show the results obtained with the assumptions
of a regular (anchor nodes at the vertexes of a regular polygon) network and the
target inside or outside12 the convex-hull of the anchors, respectively. It can be
noticed that the performance of ML estimator deviates from the CRLB only
when the noise is large. In fact, all the alternative bounds, namely the SB, the
HCRB and the AHB show also similar behaviour to the CRLB. This indicates
that with a regular location of the anchors, positioning is less sensitive to the
location ambiguity problem despite of the target position. This result suggests
that in the design phase of a location system and, in particular, in the planning
phase of the anchor locations, it is desirable to deploy the anchors as far as
possible to ensure that the target in most likely inside the convex-hull formed by
the anchors, and that the shape of such a convex-hull is as close as possible to a
regular polygon.

12We assume that the target location is within a circle of radius 20 meters and always outside
the convex-hull of the anchors.
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Fig 17. Comparisons of different bounds and the ML RMSE as a function of the
noise standard deviation.
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4.7 Summary and discussions

In this chapter, an error analysis of the distance-positioning problem has been
provided together with several new results and explicative examples. Theorem
T6 is fundamentally important to understand the feasibility of a positioning
problem. As mentioned in Section 1.2, the positioning problem is not a mere
estimation problem. Localisation is also an Euclidean embedding problem, which
is governed by other fundamental limits. The bundle of these two aspects is
provided with the proof of consistency.

The results shown in Theorems T7, T8 and Corollaries C2 and C3 are
new contributions to the understanding of cooperative positioning and the
information-coupling. With the proposed examples, we have shown that the
double effect of decoupling. On the one hand, by decoupling the information
with the disconnection of a link, the location error increases. On the other
hand, the propagation of location uncertainty can be combated by decoupling
two or more portions of the networks, for instance, by introducing anchors.
This consideration opens an entirely new direction for the design of anchor’s
deployment strategies that can minimise the average localisation error in the
whole network.

To conclude, the proposed numerical studies have also revealed that sufficient
cooperation can minimise the average PEB obtained in NLOS scenarios, that
NLOS measurements are informative and therefore can not be discarded. Finally,
we have observed that the location ambiguity problem can be minimised by
deploying the anchors as close as possible to a regular polygon, and that minimum
error can be achieved if the target lies in the convex hull of the anchors.
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5 Non-cooperative positioning

Non-cooperative positioning refers to a localisation system where target nodes
can communicate only with the anchors. The fundamental scenario, therefore,
can be simply described by a star-like network topology, as depicted in Figure 18.

Non-cooperative positioning is primarily considered for application scenarios
such as cellular and Wi-Fi networks, where a target is typically connected to
fixed base-stations (anchors) only. Due to the lack of cooperation with other
targets, the amount of redundant information is little and it is difficult to cope
with NLOS channel conditions. In Chapter 2, we reviewed the state-of-the-art of
the optimisation and mitigation error techniques for non-cooperative positioning,
and showed that in LOS and NLOS scenarios the TS-WLS [39] and the C-NLS
modified [57] are the best performing algorithm, respectively.

In this chapter, we address the specific problem of NLOS mitigation in a
non-cooperative positioning scheme. Starting from an analytical study on the
effects of the ranging errors on the WLS objective function fR(~̂p), we derive the
original principle of DC and propose two bias-robust positioning algorithms.
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Fig 18. Network model for non-cooperative positioning systems.
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5.1 The distance contraction principle

For the sake of clarity, let us simplify the notation by referring to the vector of
the anchor’s coordinates p̂i, with 1 ≤ i ≤ NA, by ai, to the coordinate vector of
the target node p̂N by ẑ and, to the distance measurements diN by di. Therefore,
the WLS objective function fR(~̂p) can be written as a function of ẑ only, i.e.
fR(ẑ), and the gradient and the Hessian are respectively equal to

∇ẑfR(ẑ) =

NA∑
i=1

(ai − ẑ)
d̃i − d̂i
d̂i

, (170)

∇2
ẑfR(ẑ) = Iη

NA∑
i=1

d̂i − d̃i
d̂i

+

NA∑
i=1

d̃i

d̂i
Υi. (171)

The principle of distance contraction is based on the set of Lemmas and
Theorems proposed in the following subsections, which will prove that there
exists a perturbation vector ρ , [ρ1, · · · , ρNA ] such that, with d̃i = di + ρi ∀ i:

a) The WLS objective function is convex, i.e. ∇2
ẑfR(ẑ) � 0∀ẑ ∈ Rη

b) The global minimum ẑ∗ of fR(ẑ) is confined to the true target location z.

5.1.1 Ranging error and function convexity

We start with the analysis of the cost-function f(ẑ) and, in particular, seek the
conditions for the existence of convexity and local minima. To this end, consider
the gradient ∇~̂p and the Hessian ∇2

~̂p
of f(~̂p).

Lemma L5 (Characterization of the convex regions of fR(z)).

Let ϕi , d̃i/d̂i. For all ẑ such that
NA∑
i=1

ϕi ≤ NA, the function fR(ẑ) is convex.

Proof. Replace ϕi in equation (171), and re-write the Hessian as

∇2
ẑfR(ẑ) = 2Iη

NA∑
i=1

(1− ϕi) + 2

NA∑
i=1

ϕiΥi (172)

= 2Iη(NA −
NA∑
i=1

ϕi) + 2

NA∑
i=1

ϕiΥi.

From the above, it follows that if
NA∑
i=1

ϕi ≤ NA, then∇2
ẑfR(ẑ)�0 since ∇2

ẑfR(ẑ)

is given by the positive sum of psd matrices.
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Lemma L5 shows that
NA∑
i=1

ϕi ≤ NA is a sufficient condition to characterize

the local convexity of fR(ẑ). In particular, this result will be utilized as a tool to
determine the regions of dom(fR) where the WLS objective function is convex,
and how they change with imperfect ranging information. Before we address
this, let us provide some topological definitions.

Definition D5 (Convex-hull of the anchors).
The convex-hull defined by the anchors, denoted by C(PA), is the set of points

p ∈ Rη such that

C(PA) ,

{
p =

NA∑
i=1

ωiai

∣∣∣∣∣ωi ∈ R, ωi ≥ 0,

NA∑
i=1

ωi = 1

}
. (173)

Definition D6 (Enclosed point).
A point p ∈ C(PA) is referred to as enclosed.

Now, let us introduce the Lemma on the enclosed set, which establishes the
existence of a convex set around the true target location z.

Lemma L6 (Enclosed set).
Let B ⊆ C(PA) be a non-empty sphere ‖ẑ− ~o‖F ≤ δB, where δB denotes the

radius and ~o ∈ Rη denotes the centre point, i.e. the point that is equidistant from
the boundaries of the set. If z ∈ C(PA) and ρi = 0∀i then,

∃δB ≥ 0 | ~o = z and ∇2
ẑfR(ẑ) � 0, ∀ẑ ∈ B. (174)

Proof. Let ẑ∗ be the global minimum of fR(ẑ). Given that fR(ẑ) is a regular
function, and convex around ẑ∗, fR(ẑ) can be locally approximated at ẑ∗ by
a quadratic function derived from the Taylor series of fR(ẑ) truncated at the
second order [65, pp. 67]. The residual of the approximation is a function of δB ,
therefore it can be arbitrarily small with an infinitesimal δB .

Based on this approximation, we prove that ∇2
ẑfR(ẑ) � 0, ∀ẑ ∈ B where

B is a non-empty sphere with δB ≥ 0 and centre ẑ∗. Furthermore, since the
network is strongly-localisable and ranging information is exact, ẑ∗ = z and the
set B can be uniquely determined within the convex hull C(PA).

Lemma L6 affirms that under the assumption that z ∈ C(PA) and ρi = 0 ∀i, z

can be enclosed in a convex-set where the function is convex. Our main objective,
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however, is to relate the size of the convex set B with the ranging errors. To this
end, we utilize the condition of Lemma L5 and show that negative ranging errors
preserve the enclosed state of z and enlarge the radius of the region B.

Lemma L7 (Preservation of the convex regions with negative perturbations).
Let ẑ ∈ B. If −di ≤ ρi ≤ 0 ∀i, then ∇2

ẑfR(ẑ) � 0.

Proof. Replace d̃i in equation (230) by di + ρi. The assumption −di ≤ ρi ≤ 0 ∀i
implies d̃i ≤ di, and consequently

NA∑
i=1

d̃i

d̂i
≤

NA∑
i=1

di

d̂i
NA. (175)

By Lemma L5, ∇2
ẑfR(ẑ) � 0 ∀ẑ ∈ B and, therefore the size of B is preserved.

Next, we study how the radius of B is modified with −di ≤ ρi ≤ 0 ∀i.

Theorem T9 (Wider convex regions with negative ranging perturbations).
Let B′ be a non-empty sphere with centre ~o and radius δ′B. If z ∈ C(PA) and

−di ≤ ρi ≤ 0 ∀i then,

∃B′⊇B | ∇2
ẑfR(ẑ) � 0, ∀ẑ ∈ B′. (176)

Proof. Let B the convex set obtained with ρi = 0 ∀ i and, construct B′ as

B′ , {ẑ | ‖ẑ− ~o‖F ≤ δ′B } . (177)

where ~o = z and δ′B = %B + ∆B .
Let ẑB be a point on the boundary of B and let d̂Bi denote the distance

‖ẑB − ai‖F. Using trigonometric rules, d̂Bi can be written as

d̂Bi =
√
d2
i + (%B + ∆B)2 − 2(%B + ∆B)di cos θiN ẑB , (178)

where θiN ẑB is the angle between the vectors (ẑB − z) and (ai − z).
The value of d̂Bi is bounded within di ± abs(%B + ∆B), thus

NA∑
i=1

di − abs(ρi)
d̂Bi

≤
NA∑
i=1

di − abs(ρi)
di − abs(%B + ∆B)

, (179)

where abs() is the absolute value function.
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To ensure that ∇2
ẑfR(ẑ) � 0, ∀ẑ ∈ B′, by Lemma L5, it is sufficient that

NA∑
i=1

di − |ρi|
di − abs(%B + ∆B)

NA∑
i=1

−NA ≤ 0. (180)

Solving the inequality with respect to ∆B , it is found that

0 ≤ abs(%B + ∆B) ≤ min({abs(ρi), di}). (181)

Imposing the constraint ∆B > 0, it follows that the radius of B′ is defined
within %B and min({abs(ρi), di}).

By Theorem T9, we established that under negative ranging perturbations,
or equivalently contracted distances, the region B expands. Consequently, the
number of local minima of fR(p̂) may decrease. The next step is to establish the
conditions for convexity in the whole function domain.

Corollary C4 (Full convexity with large negative ranging perturbations).
If ρi ≤ −di ∀i, then ∇2

ẑfR(ẑ) � 0 ∀ẑ ∈ Rη.

Proof. Replace d̃i in equation (171) by di + ρi and rewrite the Hessian as

∇2
ẑfR(ẑ) = 2Iη

NA∑
i=1

d̂i−di − ρi
d̂i

+2

NA∑
i=1

di + ρi

d̂i
Υ̂iN (182)

= 2NAIη + 2

NA∑
i=1

ϕρi

(
Iη − Υ̂iN

)
,

where ϕρi , −di+ρid̂i
≥ 0.

Rewrite the difference Iη− Υ̂iN as

Iη− Υ̂iN =

[
sin2(θ̂iN ) − sin(θi) cos(θ̂iN )

− sin(θ̂iN ) cos(θ̂iN ) cos2(θiN )

]
. (183)

From equation (182), it follows that ∇2
ẑfR(ẑ) � 0 since it is the positive sum

of psd matrices.

Corollary C4 achieves the first objective of the distance contraction principle
defined in the introduction of Section 5.1. In short, by Theorem T9 we
demonstrated that negative errors, or equivalently the condition contracted
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distances, increases the size of the convex regions of fR(ẑ), and that if ρi ≤ −di
∀i such regions extend to the whole function domain.

The next subsection is focused on the second objective of the distance
contraction principle, that is the confinement of ẑ∗ to z.

5.1.2 Ranging perturbation and function global minimum

Consider the first-order condition of a minimum i.e. ∇ẑfR(ẑ) = 0η. Replace d̃i
by di + ρi in equation (170) to obtain

NA∑
i=1

di − d̂i
d̂i

(ai − ẑ) = −
NA∑
i=1

ρi

d̂i
(ai − ẑ). (184)

From the above we derive the following Lemma, which provides the conditions
for the confinement of ẑ∗ in the convex-hull C(PA).

Lemma L8 (Confinement of the WLS minima to the convex-hull of the anchors).
If ρi≤−di ∀i. Then,

∃|z̄ ∈ C(PA) | ∇ẑfR(z̄) = 0η. (185)

Proof. From equation (184), a minimum of fR(ẑ), denoted by z̄, can be found
from the condition

ẑ =

NA∑
i=1

ωρi ai, (186)

where

ωρi ,
(di + ρi − d̂i)/d̂i)
NA∑
i=1

(di + ρi − d̂i)/d̂i
. (187)

Since d̃i = di + ρi ≤ 0∀i then, 0 ≤ ωρi ≤ 1∀i. Therefore, by definition of a
convex-hull, z̄ ∈ C(PA).

Corollary C5 (Global minimum of the WLS objective with contracted distances).
If d̃i = di + ρi ≤ 0∀i, the minimum z̄ is the global minimum of fR(ẑ).

Proof. By Corollary 4 fR(ẑ) in convex ∀ẑ ∈ Rη. Therefore, z̄ is the global
minimum of fR(ẑ), that is z̄ = ẑ∗.
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With Lemma L8 and Corollary C5, we demonstrate that contracted distances
confine the global minimum of fR(ẑ) in the convex-hull C(PA). Now, the last
step is to determine when contracted distances will imply the equality ẑ∗ = z.
To this end, let us introduce two more definitions.

Definition D7 (Null-space function).
Let N : Rn×q → Rq×(q−r) be a function that computes the orthogonal basis of

the null space of a matrix A ∈ Rn×q with column rank r ≤ q [91].

Definition D8 (Relative angle matrix).
Let Ω be the relative angle matrix [67] defined as

O(P) , Ω=


1 cos(θ1N2) . . . cos(θ1NNA)

cos(θ1N2) 1
. . . cos(θ2NNA)

...
. . . . . .

...
cos(θ1NNA) cos(θ2NNA) . . . 1

, (188)

where θiNj is the angle between the vectors (ai − z) and (aj − z), and O(P) is
the relative angle kernel function.

Theorem T10 (Confinement to the true target’s location).
If z ∈ C(PA), ρi ≤ −di and ρ ∈ N (Ω), then ẑ∗ = z.

Proof. Consider equation (184) and assume that ẑ = z. The left part of equation
(184) is 0 since di−d̂i

d̂i
= 0∀i. Rewrite equation (184) in a matrix form as

ρTΞ = 0η, (189)

where Ξ∈RNA×η is a matrix with the i-th row-vector given by [cos θiN , sin θiN ].
Equation (189) implies that ρ ∈ N (ΞT). Notice, however, that the null-space

of Ξ does not change if we consider the matrix product ΞΞT. Now, since the i-th
row-vector of Ξ is equal to [cos θi, sin θi], it follows that ΞΞT = Ω. Therefore,
the condition ρ ∈ N (Ω) implies ∇ẑfR(ẑ)|ẑ=z = 0η, which together with the
assumptions z ∈ C(PA) and ρi ≤ −di imply ẑ∗ = z.

In order to exemplify the distance contraction principle exposed above,
an illustration is provided in Figure 19. Specifically, Figure 19(a) shows the
contour-plot and the convex regions of the WLS objective function (dotted
area) obtained with exact ranging. Figures 19(b) and 19(c), instead, illustrate
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the variations of the WLS objective function when distances measurements
are affected by errors. In particular, the comparison of Figure 19(b) to 19(c),
proves that the convex-regions of the function are much wider (almost the whole
domain) when 0 < d̃i + ρi < di ∀i. Finally, in the Figure 19(d) it is shown that
the contracted distances, computed as in Theorem T10, transform fR(ẑ) into a
convex function with the global minimum confined to the true target location.

Illustration of the Distance Contraction Principle
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(a) Exact ranging
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(b) Positive ranging errors
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(c) Negative ranging errors
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(d) Contracted distances

Fig 19. Figures a), b), c) and d) illustrate the contour plots of the WLS objective
function under 4 different types of ranging errors, specifically, ρ = 0, ρ ≥ 0, −d <

ρ < 0 and ρ ≤ 0 with ρ = N (Ω). The global optimum is found via grid-search.
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5.2 Localisation via distance contraction

Based on the DC-principle previously explained, we propose a modified WC and
NLS-based optimisation algorithms for non-cooperative positioning in NLOS
channel conditions. The original methods are well-known in the literature
because of the low-complexity and ease of implementation [25, 32].

The general framework for a DC-based techniques consists of:

1) Estimation of the relative angle kernel Ω

2) Calculation of the contraction vector ρ̂
3) Minimisation of the WLS-objective function with contracted distances.

Assume that z ∈ C(PA) and that a bias bi > 0 on the ranging of the i-th
target-to-anchor distance exist. As shown in Figure 20 the intersection area
of the circular traces derived from the measurements defines a convex region,
referred to as the feasibility region, with z ∈ BD [57, 87, 132].
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Fig 20. Formation of the feasibility region with biased measurements.

123



The relative angle kernel can be estimated as Ω̂ , O(~oBD), where ~oBD

denotes the centre of BD, and it can be approximated as

~oBD ≈ ~̂oBD ,
1

Nv

Nv∑
i=1

pBDi , (190)

where and Nv are pBDi the number of vertexes and the coordinates of the i-th
vertex of BD, respectively.

If the feasibility region can not be identified (i.e., the intersection of the
circular traces is empty), we may relax the constraint z ∈ BD to z ∈ C(PA) and
compute ~̂oBD as a solution to the least square optimisation problem

min
ẑ∈Rη

NA∑
i=1

(d̃2
i − d̂2

i )
2, (191)

s.t. ẑ ∈ C(PA).

To simplify the optimisation problem, we rewrite the difference (d̃2
i − d̂2

i ) as

d̂2
i − d̃2

i = ‖a1‖2F + ‖ωTPA‖2F − 2aiP
T
Aω − d̃2

i , (192)

where ẑ was replaced by ẑ = ωTPA.
Consider αz , ‖ωTPA‖2F as an additional variable and rewrite the set of

squared distances differences (d̂2
i − d̃2

i ) in a matrix form as Adc − bdc where

Adc ,

 −aT
1 PA 1
...

...
−aT

NA
PA 1

 , bdc ,

 d̃2
1 − ‖a1‖2F

...
d̃2
NA
− ‖aNA‖2F

 . (193)

Then, we reformulate equation (191) as a constrained LS problem

min
ω̂z∈RNA+1

‖Adcω̂z − bdc‖2F, (194)

s.t. 0 ≤ ω̂i ≤ 1∀i,
1T
NA
ω̂ = 1,

where ω̂z , [ω̂; α̂z].
With Ω̂, we compute the contraction ρ̂ as the solution to the quadratic

programming optimisation

min
ρ̂∈RNA

ρ̂ Ω̂ ρ̂T, (195)

s.t. d̃i + ρ̂i ≤ 0∀i,
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where the objective function is derived from the condition ρ̂ ∈ N (Ω̂) and the
constraints from the assumption that d̃i + ρ̂i <= 0.

Finally, the estimation of target location is explained in the next subsections.

Weighted centroid method

In the classic WC algorithm described in [32], the estimate of the target location
is given by

ẑWC , ωWCPA, (196)

where ωWC is the weighing vector with elements

[ωWC]i ,
(

(1/d̃i)
q
)/(NA∑

i=1

(1/d̃i)
q

)
, (197)

with q ≥ 1 (typically q = 2).
This approach simply relies on the fact that z ∈ C(PA), and on the heuristic

that “the longer the measured distance d̃i, the weaker the dependency on ai”.
On the other hand, from equation (187), it is noticed that ωi depends on the

location of ai as well as on the total ranging error ρi. Thus, in the proposed
WC-DC algorithm the vector ẑ will be simply computed as

ẑWC-DC , ωWC-DCPA. (198)

where
[ωWC-DC]i , ρ̂i/d̃i. (199)

NLS optimisation

The exact value of the global minimum of the WLS objective function with
contracted distances can be computed as the solution to the unconstrained
minimization

ẑWC-NLS , arg min
ẑ

NA∑
i=1

(d̃i + ρ̂i − d̂i)2. (200)

The advantage of the contracted distances in a NLS-based minimization is
two-fold. First, the convergence of any standard optimisation algorithm [65] is
guaranteed since the objective function is convex. Second, there is no need for a
constrained optimization to impose z ∈ C(PA), since the contracted distances
implicitly force such constraints.
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5.3 Performance evaluation and comparisons

The objective of this section is to evaluate the performance of the proposed
DC-based algorithms in LOS and mixed LOS/NLOS scenarios. The results
will be compared to those obtained with state-of-the-art non-cooperative non-
parametric localisation techniques, namely, the TS-WLS [39] and the C-NLS
with bias compensation, also referred to as the C-NLS modified [57] as well as
the GLE method [87], which is an efficient and low-complexity technique for
both LOS and NLOS scenarios. To verify the optimality, the results will be also
compared to the PEB derived in the previous chapter.

In addition to the RMSE given by equation (20), we compute the outage of
the location accuracy as

πo , Pr
{√

ε
(q)
` > ξp

}
, (201)

where ξp is a pre-defined Quality-of-Location (QoL).

5.3.1 Performance in pure LOS channel conditions

Consider regular networks with NA = 4 anchors and a target deployed with
uniform distribution in the convex-hull C(PA). All anchors are connected to the
target and each distance is measured once. The ranging error is generated with
the model given in equation (25), and we assume the noise standard deviation
σij = σ ∀ij.

In Figure 21(a), we compare the RMSE as a function of the noise-standard
deviation σ. All algorithms can provide very similar location accuracies and
close to the PEB. This is due to the fact that anchors are well distributed in the
space, the target is in the convex-hull C(PA) and the ranging error is small [133].
The outage of the location accuracy is plotted in Figure 21(b) and from this
result, it can be noticed that all algorithms can also provide similar QoL. For
instance, with an outage of 0.05, all methods can guarantee an approximative
QoL ξp ≈ {0.2, 0.6, 2} meters with a ranging error of σ = {0.1, 0.3, 1} meters,
respectively.
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Fig 21. Comparison of non-cooperative algorithms for a regular network withNA =

4 anchors and NT = 1 target deployed in 14.14× 14.14 squared meters.
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Fig 22. Comparison of different localization algorithms for non-cooperative regu-
lar networks. The noise standard deviation is σ = 0.3 meters. Anchors are equis-
paced in a circle of radius 10 meters.

Finally in Figure 22, the RMSE comparison is plotted as a function of the
number of anchors. Also in this simulation, we assume regular networks and
z ∈ C(PA). The result shows that the RMSE of each algorithm decreases with
the number of anchors. The performance of the TS-WLS and the GLE are the
closer to the PEB. The others, however, differ only for a few centimetres.

5.3.2 Performance in mixed LOS/NLOS channel conditions

In this section, we investigate the performance of the aforementioned positioning
techniques in the presence of mixed LOS/NLOS channel conditions. To begin
with, we consider the case of pNLOS = 1.

In contrast to previous results, both Figures 23(a) and 23(b) show that
the WC-DC and NLS-DC algorithms provide the best location accuracy. From
Figure 23(b), for example, it is found that with a maximum bias of 3 meters, the
proposed DC methods can provide a QoL of 1.6 meters with an outage of 0.05,
which is 20% less than the state-of-the-art technique proposed in [57].
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None of the algorithms, however, is able to provide a performance comparable
to the PEB, which indicates that further improvements can be expected.

In Figure 24, we plot the RMSE as a function of the number of anchors.
From this result, it can be noticed that all techniques benefit from the increase
of NA. In particular, we notice that the NLS-DC has almost a constant gap
with respect to the PEB, which indicates that the algorithm has a behaviour
similar to an unbiased estimator. The WC-DC shows a performance that beyond
7 anchors remains quasi-constant, indicating that there is no need of a large
number of anchors to increase the accuracy.

Finally, in Figure 25 the algorithms are compared with respect to the
probability of NLOS. It is noticed that all techniques but the TS-WLS, whose
performance grows with pNLOS, show a peak in mixed LOS/NLOS scenarios,
i.e. pNLOS 6= {0, 1}. The reason is that the NLS-DC, WC-DC, GLE and C-NLS
modified algorithms do not use any a priori channel state information. This
introduces an uncertainty, which is non-uniform when pNLOS 6= {0, 1}, that
penalises the performance of the algorithms.
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Fig 24. Comparison of non-cooperative algorithms for a regular network withNA =

4 anchors and NT = 1 target deployed in 14.14 × 14.14 squared meters. All links
are in NLOS, i.e. pNLOS = 1, σi = 0.3 meters and bi ∈ (0, 3) meters ∀ i. Anchors are
equispaced in a circle of radius 10 meters.
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5.4 Summary and discussions

In this chapter we focused on the development of ToA-based non-cooperative
positioning techniques. Starting with the assumptions that no a priori information
on the channel state as well on the ranging model are available, we have addressed
the problem as a WLS optimization problem.

Our main contribution is the DC principle explained in Section 5.1. Thereby
we have shown that if the target node lies within the convex-hull formed by the
anchors, the target-to-anchor distance estimates di + ρi, ∀i are negative and the
vector ρ lies in the null subspace of the relative angle matrix Ω, then: 1) the
associated least-square objective is a convex function, and 2) its global minimum
coincides with the true target location. Based on this principle, we proposed two
robust algorithms, namely the WC-DC and the NLS-DC, which can provide
an location error close to the PEB in LOS scenarios, and better performance
than the state-of-the-art non-parametric localisation method, namely the C-NLS
modified algorithm [57].
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6 Cooperative positioning

Cooperative positioning refers to a localisation system where all nodes cooperate
with each other in order to infer their locations by communicating and exchanging
location-related information, e.g. ranging and location estimates. Typically,
cooperative localisation techniques are considered for ad-hoc and sensor network
application scenarios, where in fact, nodes can communicate either via a direct
link or through multi-hop connections. Examples are ad-hoc networks of devices
worn by fire-fighters to optimise rescuing operations; smart-tag networks deployed
in warehouses and hospitals to enable items and equipment to be located and
sensor networks deployed in the wild, where knowledge of node locations can
provide topological information additional to sensed data.

As depicted in Figure 26, these networks can be modelled with a mesh
topology, where each node is connected to many others within the coverage
area. Cooperative positioning algorithms can be more accurate and also more
sophisticated than those utilised for non-cooperative positioning. In fact, these
methods must handle a larger number of variables, a more complicated objective
function, and multiple minima due to the partial network connectivity.

All of these challenges were extensively discussed throughout Chapters 1, 2, 3
and 4, and, specifically, in Chapter 2 it was shown that the state-of-the-art of
non-parametric non-Bayesian methods are either too complex, not optimal, and
yet dependent on a priori information to handle NLOS scenarios. To achieve
optimality, a global optimisation algorithm based on the WLS objective function
with non-squared distances is needed. To minimise the computational complexity,
the optimisation methods should be designed with lightweight techniques, such
as the BFGS algorithm. Finally, to handle bias and noise ranging errors non
parametric weighing strategies are required.

Therefore, in this chapter we propose:

a) A lightweight global optimisation algorithm based on the combination of
Global Distance Continuation (GDC) method and BFGS numeric optimisation

b) A robust non-parametric weighing strategy based on small scale statistics
and statistical-geometry.
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Fig 26. Network model for cooperative positioning systems.

6.1 Optimisation strategy in cooperative positioning

In Section 3.2 we have shown that the WLS objective function is not convex and,
in Chapter 2, we reviewed several optimisation techniques that are proposed to
minimise the objective function either with the aid of reliable initial estimates [82,
134–136] or relying on global optimization methods [68, 69, 71, 73]. Amongst all
those methods, the SR-GDC algorithm proposed in [71], which is fundamentally
an application of global smoothing and numerical continuation methods [137],
provided the best compromise between complexity and performance.

The main characteristic of a GDC method is the fact that the solution of the
localisation problem is found by minimising smoothed WLS-objectives, each
obtained from the convolution of the original WLS-objective with a different
Gaussian kernel. Since the first smoothed WLS-objective can always be made
convex, this technique eliminates any sensitivity to initial estimates. However,
in the form developed in [71], the algorithm was derived from a sub-optimal
formulation of the localisation problem based on squared distances.
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In the following subsections, we return to the principle of the GDC method
for a distance-based localisation problem and propose a variation of the SR-GDC
that can be applied to the WLS minimisation problem without squared distances.
This new algorithm, which will be referred to as R-GDC, is a method to obtain
ML-solutions for both the single target and network localisation problems (like
the LM-WLS and the SMACOF), with insensitivity to initial estimates (like the
convex SDP and the SR-GDC), and at very low complexity (like the SMACOF).

6.1.1 Global distance continuation principle

The principle of a GDC method relies on the following definitions and theorem.

Definition D9 (Gaussian kernel).
The Gaussian kernel is defined as

g(u;λ) , e−u
2/λ2

. (202)

Definition D10 (Smooth function).
Consider a variable z ∈ Rn and a multivariate continuous function f : Rn → R.
The smoothed version (or smoothed function) of f(z), denoted 〈f〉

λ
(z), is

defined as

〈f〉
λ
(z) ,

1

πn/2λn

∫
Rn
f(u) · exp

(
−‖z − u‖

2
F

λ2

)
du, (203)

where λ ∈ R+ is a parameter that controls the degree of smoothing (λ� 0 strong
smoothing).

Theorem T11 (Continuation Principle [71]).
Let LKλ = {λ(k)} with {1 ≤ k ≤ K} be any decreasing sequence of λ’s converging
to zero, i.e. λ(K) = 0. If z(k) is a global minimiser of 〈f〉

λ(k)
(z) and {z(k)}

converges to z∗, then z∗ is the global minimum of f(z).

Proof. See [71].

In light of the above, a numeric optimisation based on the continuation
principle can be concisely described in three steps: smoothing, minimisation
and continuation. In the smoothing step the entire objective is transformed
into a function with a higher degree of differentiability (smoothed), obtained by
means of a convolution with a Gaussian kernel. In the minimisation step each of
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these smoothed functions is minimised using a standard optimisation algorithm,
e.g. the BFGS method [65]. Finally, the continuation refers to the process of
tracing the sought minimum, which in practice is performed by initialising the
minimisation of the next smoothed objective with the latest solution.

In Figure 27, we illustrate the idea of a numeric minimisation performed
with the continuation principle. Specifically, we consider the minimisation of a
non-convex object function given by the Gaussian mixture

gm(x) ,
Ig∑
i=1

Agigmi(x;µgi, σgi), (204)

where

gmi(x;µgi, σgi) ,
Agi√
2πσ2

gi

e
−

(x−µgi)
2

2σ2
gi . (205)

and Ig = 3. The gray lines illustrate the smoothed functions 〈gm〉λ(x) computed
for a decreasing values of the smoothing parameter λ. The marker “©” indicates
the result of the k-th iteration, thus the continuation principle.
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As previously discussed, the advantage of a GDC-based cooperative position-
ing algorithm is two-fold. First, if the first smoothed version is convex, then
the continuation principle ensures insensitivity to initial estimates, which is a
desirable requirement for the minimisation of complexity and location errors
especially in distributed approaches. Second, if the sequence of smoothing
parameters LKλ is properly selected, low-complexity and standard optimisation
techniques, like the BFGS method, are sufficient to guarantee the numeric
convergence at each minimisation step.

However, in order to apply the GDC method to the ML network localisation
problem, two main challenges are met: a closed-form expression for the smoothed
range-WLS objective 〈fR〉λ(~̂p), along with its Gradient and Hessian, needs to be
derived; a least upper bound, or supremum on the initial smoothing parameter
λ(1) needs to be found. The first challenge goes to the implementation of the
numeric optimisation method and by product, to the overall complexity of the
algorithm itself. The second, instead, goes to the applicability of the continuation
principle and its usage for eliminating the sensitivity to initial estimates.

In the following subsections these objectives are addressed in details.

6.1.2 Smoothed WLS-function, gradient and Hessian

Consider the WLS objective function fR(~̂p) given in equation (26), which we
rewrite in the next equation as

fR(~̂p) =
∑
ij∈E

w2
ij(d̃

2
ij − d̂2

ij)
2. (206)

To simplify the derivation of the following results, assume η = 2 (two-dimensional
networks) and let x and y refers to the 1-st and 2-nd element of a coordinate
vector p, e.g pi = [pxi , p

y
i ].

Theorem T12 (Smoothed ML Objective).
The smoothed version of the ML objective defined in equation (26) is

〈fR〉λ(~̂p)=
∑
ij∈E

w2
ij

(
λ2+d̃2

ij + d̂2
ij−λ

√
πd̃ij 1F1

(
3

2
;1;
d̂2
ij

λ2

)
exp

(
−d̂2

ij

λ2

))
, (207)

where E (a) is the gamma function and 1F1(a; b; c) is the confluent hyper-geometric
function [138].
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Proof. Apply equation (203) to the objective function in equation (206)

〈fR〉λ(~̂p) =
1

π

∫
Rη

∑
ij∈E

w2
ij

(
d̃ij − ‖p̂i−p̂j+λu‖F

)2

exp(−‖u‖2F ) du

=
1

π

∑
ij∈E

w2
ij(I1 + I2 − 2d̃ijI3), (208)

where u , [ux, uy] and

I1 ,

+∞∫
−∞

+∞∫
−∞

d̃2
ij exp

(
− ū2

)
dux duy, (209)

I2 ,

+∞∫
−∞

+∞∫
−∞

(
(∆̂x

ij+λu
x)2+(∆̂y

ij+λu
y)2
)

exp
(
− ū2

)
dux duy, (210)

I3 ,

+∞∫
−∞

+∞∫
−∞

√
(∆̂x

ij+λu
x)2+(∆̂y

ij+λu
y)2 exp

(
− ū2

)
dux duy, (211)

in which ū2 , (ux)2 + (uy)2, p̂i− p̂j = [∆̂x
ij , ∆̂

y
ij ] with ∆̂x

ij , p̂xi − p̂xj and
∆̂y
ij , p̂yi − p̂yj .
In the remainder of this proof the subscript ij is temporarily omitted for

notational convenience.
The integrals I1 and I2 shown above admit the following trivial solutions [71]

I1 = πd̃ 2, (212)

I2 = π(d̂2 + λ2). (213)

In turn, I3 can be solved as follows. First, consider the change of variables

∆̂x + λux = % cosφ, (214)

∆̂y + λuy = % sinφ. (215)

The integral I3 can then be rewritten as

I3 =
1

λ2

+∞∫
0

2π∫
0

%2 exp

(
−%2 − d̂2 + 2%(∆̂x cosφ+ ∆̂y sinφ)

λ2

)
d% dφ (216)

=
1

λ2
exp

(
−d̂2

λ2

)+∞∫
0

%2exp

(−%2

λ2

)
d%

2π∫
0

exp

(
2%(∆̂x cosφ+ ∆̂y sinφ)

λ2

)
dφ

︸ ︷︷ ︸
I4

.
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Choosing {a = 0, p = 0, q = 0, b = −2%∆̂x

λ2 , c = −2%∆̂y

λ2 } and performing the
change of variables x = φ + π in [139, Eq. 3.338 − 4.6, pp. 336], yields the
following closed-form solution for I4

I4 ,

2π∫
0

exp

(
2%(∆̂x cosφ+ ∆̂y sinφ)

λ2

)
dφ = I0

(
2%d̂

λ2

)
, (217)

where I0(·) is the modified Bessel function of the first kind and 0-th order.
Using equation (217) into equation (216) yields

I3 = π

∫ +∞

0

%2

λ2/2
exp

(
−(%2 + d̂2)/λ2

)
I0

(
%d̂

λ2/2

)
d%, (218)

It is recognized that the integral above is the first moment of a Rice distribution
(see [140, eq. (2.1-140), pp.46] with {σ2 = λ2/2, s = d̂, r = %}), such that the
closed-form of I3 is

I3 = πλE

(
3

2

)
1F1

(
3

2
; 1;

d̂2

λ2

)
exp

(
−d̂2

λ2

)
. (219)

Substituting equations (212), (213) and (219) into equation (208) finally
yields equation (207).

Since the GDC method requires repeated optimisation of various smoothed
objectives 〈fR〉λ(~̂p) with decreasing λ(k), the complexity of evaluating equation
(207) is of crucial importance. Indeed, as λ → 0, the confluent hyperbolic
function increases boundlessly, while the exponential term vanishes. However
this issue can be circumvented by using the alternative expressions [138, eq.
13.1.2, pp. 504]

1F1

(
3

2
; 1; s

)
= 1 +

+∞∑
q=1

(
sq ·

q∏
t=1

(
1

2t2
+

1

t

))
, (220)

and [138, eq. 13.5.1, pp. 508]

1F1

(
3

2
; 1; s

)
=

2es√
π

P−1∑
p=0

s
1
2−p

p!

p−1∏
t=0

(
t− 1

2

)2

(221)

=
s−3/2

2
√
π

Q−1∑
q=0

(−s)−q
q!

q−1∏
t=0

(
3

2
+ t

)2
+O(|s|−Q)+O(|s|−P ).
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Notice that the product in equation (220) decreases fast with t (and therefore
q), such that the series convergences quickly for small s. In contrast, the residues
O(|s|−Q) and O(|s|−P ) in equation (221) decrease geometrically with Q and
P , respectively (see [138, eq. 13.5.3-4, pp.508]), such that the series converges
quickly for large s. Therefore, using these two expressions with s , d̂2

λ2 , equation
(207) can be evaluated efficiently for any values of d̂2 and λ2.

In order to perform numeric optimisation of the objective in theorem T12,
however, closed-forms of the Gradient and Hessian of 〈fR〉λ(~̂p) are also required.
Thus, the following results are in order.

Lemma L9 (Gradient of the Smoothed ML Objective).
The closed-form of the gradient of the smoothed objective 〈fR〉λ(~̂p), denoted

by ∇~̂p〈fR〉λ(~̂p), is

∇~̂p〈fR〉λ(~̂p) ,
∑
ij∈E

w2
ij·
(

2−
√
πd̃ij
λ

e
−d̂2i
λ2 1F1

(
3

2
; 2;

d̂2
i

λ2

))
×
(
eij ⊗ (~̂pj − ~̂pi)

)
,

where ⊗ indicates the Kronecker product and eij ∈ RN are row-vectors with the
i-th and the j-th element equal to 1 and −1 respectively.

Proof. Define

fR
ij (
~̂p;λ) , λ2 + d̃2

ij + d̂2
ij −λ

√
πd̃ij 1F1

(
3
2 ,1,

d̂2ij
λ2

)
exp

(
−d̂2ij
λ2

)
, (222)

such that 〈fR〉λ(~̂p) =
∑
ij∈Ew

2
ijf

R
ij (
~̂p;λ) and the gradient ∇~̂p〈fR〉λ(~̂p) can be

written concisely as

∇~̂p〈fR〉λ(~̂p) ,
∑
ij∈E

w2
ij∇~̂pfR

ij (
~̂p;λ). (223)

To derive a closed-form expression for ∇~̂pfR
ij (
~̂p;λ), consider the representation

of fR
ij (
~̂p;λ) as a composite function h(g(~̂p);λ), with h : R→ R, g : RNη → R, so

that each element of ∇~̂pfR
ij (
~̂p;λ) can be obtained via the chain rule

∂h(g(~̂p);λ)

∂p̂ni
=

dh(u;λ)

du

∂g(~̂p)

∂p̂ni
, (224)

where u = g(~̂p).
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From equation (224), it is obtained that the gradient of fR
ij (d̂ij ;λ) is

given by a scalar corresponding to the term dh(u;λ)
du , multiplied by the vec-

tor [∂g(
~̂p)

∂p̂11
, · · · , ∂g(~̂p)

∂p̂2N
]. Specifically

∇~̂pfR
ij (d̂ij ;λ) = S1(d̂2

ij ;λ)∇~̂p(d̂2
ij), (225)

where, from gij(~̂p) = d̂2
ij we obtain

∇~̂p(d̂2
ij) ,

[
∂d̂2

ij

∂p̂1
1

, · · · ,
∂d̂2

ij

∂p̂2
N

]
= 2eij ⊗ (~̂pi − ~̂pj), (226)

while from h = fR
ij (u;λ) we have

S1(u;λ),
dfR
ij (u;λ)

du
=1+

√
πd̃ij
λ

exp
(−u
λ2

)(
1F1

(
3
2 ,1,

u
λ2

)
− d

du
1F1

(
3
2 ,1,

u
λ2

))
,(227)

where for simplicity we commit a slight abuse of notation by omitting the
sub-index ij in S1.

Equation (227) can be simplified utilising the recurrence formula [138, pp.508,
13.5.1]

(b− a)

b
1F1 (a; b+ 1;u) =1F1 (a; b;u)− d

du
1F1 (a; b;u) , (228)

such that

S1(u;λ) = 1−
√
πd̃ij
2λ

exp

(−u
λ2

)
1F1

(
3

2
; 2;

u

λ2

)
. (229)

Substituting equations (226) and (229) into (225), and the result into equation
(223) yields (222).

Lemma L10 (Hessian of the Smoothed ML Objective).

The Hessian of 〈fR〉λ(~̂p), denoted by ∇2
~̂p
〈fR〉λ(~̂p), is

∇2
~̂p
〈fR〉λ(~̂p) =

∑
ij∈E

w2
ij ·
(
S1(d̂2

ij ;λ)∇2
~̂p

(d̂2
ij)+S2(d̂2

ij ;λ)∇T
~̂p

(d̂2
ij)∇~̂p(d̂2

ij)
)
,

where ∇2
~̂p

(d̂2
ij) ∈ RηNT×ηNT and it is given by

∇2
~̂p

(d̂2
ij) = 2(eij ⊗ Iη)T(eij ⊗ Iη), (230)

and

S2(d̂2
ij ;λ) =

d̃ij
√
π

8λ3
exp

(
−d̂2

ij

λ2

)
1F1

(
3

2
; 3;

d̂2
ij

λ2

)
. (231)
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Proof. Proceeding as in the proof of Lemma 9, the Hessian of 〈fR〉λ(~̂p) can be
written as

∇2
~̂p
〈fR〉λ(~̂p) ,

∑
ij∈E

w2
ij∇2

~̂p
fR
ij (
~̂p;λ), (232)

where kq-th element of ∇2
~̂p
fR
ij (d̂

2
ij ;λ) is obtained from the chain rule

∂2h(g(~̂p))

∂p̂ni ∂p̂
q
j

=
dh(u)

du

∂2g(~̂p)

∂p̂ni ∂p̂
q
j

+
d2h(u)

d2u

∂g(~̂p)

∂p̂ni

∂g(~̂p)

∂p̂qj
. (233)

From equation (233) it can be seen that the Hessian of fR
ij (d̂

2
ij ;λ) is a sum

of two matrices, the first given by ∇2
~̂p
d̂2
ij ∈ RNη×Nη, multiplied by the scalar

S1(u;λ) found in equation (229); and the second given by the cross-product
of the vector ∇~̂pd̂2

ij described in equation (226), multiplied by another scalar

corresponding to the term d2h(u)
d2u . Specifically

∇2
~̂p
fR
ij (d̂ij ;λ) = S1(d̂2

ij ;λ)∇2
~̂p

(d̂2
ij) + S2(d̂2

ij ;λ)∇T
~̂p

(d̂2
ij)∇~̂p(d̂2

ij), (234)

with
∇2
~̂p
d̂2
ij = 2(eij ⊗ Iη)T(eij ⊗ Iη), (235)

and

S2(u;λ),
d2fR

ij (u;λ)

du2
=
d̃ij
√
π

2λ3
exp

(−u
λ2

)(
d

du
1F1

(
3

2
; 2;

u

λ2

)
−1F1

(
3

2
; 2;

u

λ2

))

=
d̃ij
√
π

8λ3
exp

(−u
λ2

)
1F1

(
3

2
; 3;

u

λ2

)
, (236)

where we again omit the sub-index ij in S2 for simplicity and employed the
recursive relation of equation (228) [138, pp.508, 13.5.1] in the last equality.

Substituting equations (226), (229), (235) and (236) into equation (234) and
the result into (232) finally yields equation (230).

To conclude this subsection, we remark that also in equations (222) and
(230), all partial derivatives (including those of the second order) with respect
to p̂ni with 1 ≤ i ≤ NA are 0, since they refer to the location of an anchor.
Therefore, similarly to the gradient and Hessian of the WLS objective function
given in equations (31) and (36), ∇2

~̂p
〈fR〉λ(~̂p) and ∇2

~̂p
〈fR〉λ(~̂p) can be replaced

by the compact matrices ∇2
~̂z
〈fR〉λ(~̂z) ∈ RNTη and ∇2

~̂z
〈fR〉λ(~̂z) ∈ RNTη×NTη.
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6.1.3 The initial smoothing parameter λ(1)

In this subsection we address the derivation of the least upper bound on the set
of smoothing parameters that ensure ∇2

~̂p
〈fR〉λ(~̂p) � 0, ∀ ~̂p ∈ RηN . To this end,

we introduce the following definitions.

Definition D11 (Set of Convexizing Smoothing Parameters).
The set of convexizing smoothing parameters is defined by

L , {λ|∇2
~̂p
〈fR〉λ(~̂p) � 0, ∀ ~̂p ∈ RNT×η}. (237)

Definition D12 (Critical Smoothing Parameter λ∗).
Let λ∗ ∈ L be a smoothing parameter such that

@λ < λ∗|∇2
~̂p
〈fR〉λ∗(~̂p) � 0, ∀ ~̂p ∈ RNT×η. (238)

The parameter λ∗, which can alternatively be defined as λ∗ , inf{L }, will
hereafter be referred to as the critical smoothing parameter.

A closed-form and simple expression for the critical smoothing parameter λ∗

is hard to determine. However, the GDC method requires that various smoothed
objectives 〈fR〉λ(k)(~̂p) be minimized with decreasing smoothing parameters
λ(1) > · · · > λ(k) > · · · > λ(K) = 0, such that the first smoothed objective
〈fR〉λ(1)(~̂p) is convex and the last 〈fR〉λ(K)(~̂p) = fR(~̂p). Referring to Definition
D11 and to the set LKλ , {λ(k)} defined in Theorem T11, it is sufficient and
necessary that λ(1) ∈ L =⇒ λ(1) ≥ λ∗, such that λ(1) can be referred to as a
majoriser of λ∗. In the sequel, a simple closed-form expression for a majoriser
of λ∗ is derived. To start, consider the following auxiliary result.

Lemma L11 (Properties of S3(a, b, u)).
Define the auxiliary function S3(a, b, u) , exp(−u) · 1F1(a; b;u), where

(a, b, u) > 0. This function has the following properties:

i) Monotonicity: sign( d
duS3(a, b, u)) = sign(a− b)

ii) Confinement: 0 ≤ S3(a, b, u) ≤ 1 for a < b.

Proof. In order to prove the first property, we study the derivative of S3(a, b, u).
Invoking the recurrence relation of equation (228), we obtain

∂S3(a, b, u)

∂u
=

(a− b)
b

exp(−u) ·1F1 (a; b+ 1;u) . (239)
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Since exp(−u) ·1F1(a; b+ 1;u) is always positive, equation (239) implicates in
property i. Finally, recognise [138, pp.514] that S3(a, b, 0) = 1F1(a; b+ 1; 0) = 1

and that exp(−u)·1F1(a; b+1;u) is always positive, such that lim
u→∞

S3(a, b, u) = 0+

for a < b.

Theorem T13 (Initial Smoothing Parameter: Single Target).
Let {d̃it} be the set of ranging measurement between the anchors {ai} and a

single target. Then{
λ ≥

√
π

2

∑NA
i=1 w

2
itd̃it∑NA

i=1 w
2
it

, λ
∗

S

}
=⇒

{
∇2
~̂p
〈fR〉λ(~̂p) � 0, ∀ ~̂p ∈ RηNT

}
. (240)

Proof. Invoking equation (230), and noticing that in the source localisation case
∇T

ẑ (d̂2
it)∇ẑ(d̂2

it) and ∇2
~̂p

(d̂2
it) reduce to

4
d̂2it

Υ̂it and 2Iη, as can be found by setting
eit = 1 in equations (235) and (226), respectively, we obtain

∇2
~̂p
〈fR〉λ(~̂p) �

(
2

NA∑
i=1

w2
it

(
1−
√
π

2λ d̃it

))
Iη︸ ︷︷ ︸

ℵ

+

NA∑
i=1

4w2
it

d̂2
it

S2(d̂2
it;λ) · Υ̂it︸ ︷︷ ︸

Ῡ

, (241)

where Υ̂it are as in equation (47) for η = 2 and can be found in [141] for η = 3,
and the inequality results from the minorisation of S1(d̂2

it;λ) by
(

1−
√
π

2λ d̃it

)
in

light of Lemma L11 and equation (229).
Next, invoke the Wenyl bounds [142, eq. (2.3)], which yields

E1(ℵ + Ῡ) ≥ E (ℵ) + E1(Ῡ), (242)

where Ek(·) denote the k-th smallest eigenvalue of a matrix and E (ℵ) , E1(ℵ) =

· · · = Eη(ℵ), since ℵ has a single eigenvalue of multiplicity η.
Finally, notice that in order for inequality (241) to hold it is sufficient it that

E1(ℵ + Ῡ) is non-negative, which under the fact that Ῡ is positive semi-definite,
i.e. E1(Ῡ) ≥ 0, is equivalent to

NA∑
i=1

w2
it

(
1−
√
πd̃it
2λ

)
≥ 0, (243a)

λ ≥
√
π

2
·
∑NA
i=1 w

2
itd̃it∑NA

i=1 w
2
it

, λ
∗

S, (243b)
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Fig 28. Illustration of the R-GDC method with the example of a single-target locali-
sation in η = 1. The marker “©” indicates the result of the k-th iteration. [9, c©IEEE
2011].

In addition to an analytical and simple expression for the majoriser of λ
∗
,

which can be used as the initial smoothing parameter in the R-GDC algorithm,
Theorem T13 also hints on a strategy to select the remaining λ(k)’s. To elaborate,
let {d̃it} be ordered without loss of generality so that d̃1t ≥ · · · ≥ d̃NAt. Then, a
set LK

λ = {λ(k)} of K = NA + 1 “landmark” smoothing parameters are

λ
∗

S ≥ · · · ≥
√
π

2

∑NA
i=k w

2
itd̃it∑NA

i=k w
2
it

≥ · · · ≥
√
π

2
d̃1t ≥ 0, (244)

such that

λ(k) ,

√
π

2

∑NA
i=k w

2
itd̃it∑NA

i=k w
2
it

, (245)

with 1 ≤ k ≤ NA and λ(K) = 0.

The sequence shown above is monotonically descending, involves less infor-
mation to be evaluated as k increases and, as can be inferred form the proof of
Theorem T13, leads to successively less smooth objectives 〈fR〉λ(k)(~̂p), as desired.
Obviously, arbitrarily many additional smoothing parameters can be selected in
between the ones given above as well, although exhaustively numerical tests
have consistently shown that to be typically unnecessary (see Section 6.3.1).
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An illustration of the effect of choosing the aforementioned landmark smooth-
ing parameters is shown in Figure 28.

The result refers to a scenario with NA = 2 anchors – marked by dark squares
–, one target and exact distances. The curves illustrate various versions of the
smoothed objectives 〈fR〉λ(~̂p) derived from different smoothing parameters,
including those given in the sequence (244) (bold lines) as well as others assuming
intermediary values (grey lines). The minima of corresponding objectives are
marked with a “©,” while the actual target location is marked with a “×,”
which coincides with the last “©” obtained at the last round of the R-GDC
algorithm. It can be observed that the landmark smoothing parameters captures
the progressively less smooth behaviour of 〈fR〉λ(~̂p), allowing for the global
minimum of fR(~̂p) to be attained with a small number of R-GDC continuations.

Theorem T14 (Initial Smoothing Parameter: Multiple Targets).

{λ ≥
√
π

2 max
ij∈ET

d̃ij} =⇒ {∇2
~̂p
〈fR〉λ(~̂p) � 0, ∀ ~̂p ∈ RηNT}, (246)

where ET denotes the set of all links connected to the targets.

Proof. Recall from equation (232) that the Hessian matrix of 〈fR〉λ(~̂p) is given
by a positive sum of the matrices ∇2

~̂p
fR
ij (d̂ij ;λ), such that a sufficient condition

for ∇2
~̂p
〈fR〉λ(~̂p) � 0 is that ∇2

~̂p
fR
ij (d̂ij ;λ) � 0, ∀ij. Next, invoke equation (234)

and notice that the matrices ∇T
~̂p
d̂2
ij∇~̂pd̂2

ij and ∇2
~̂p
d̂2
ij are positive semi-definite

since the first is the Gramian of the gradient vector ∇~̂pd̂2
ij and the second is the

Hessian of a norm function [62].
Therefore a sufficient condition to ensure that ∇2

~̂p
fR
ij (d̂ij ;λ) � 0 is that the

functions S1(u;λ) and S2(u;λ) given in equations (229) and (236), respectively,
are both positive for any u. In order to prove that S1(u;λ) is positive consider
the following inequalities

1 ≥
√
πd̃ij
2λ

exp

(−u
λ2

)
1F1

(
3

2
; 2;

u

λ2

)
, (247a)

λ ≥
√
πd̃ij
2

exp

(−u
λ2

)
1F1

(
3

2
; 2;

u

λ2

)
≥
√
πd̃ij
2 , (247b)

where the last inequality holds due to Lemma L11 ii).
As for S2(u;λ), referring to equation (236), it is clear that S2(u;λ) is positive

since it is a product of positive terms, namely, the exponential function, the
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Hypergeometric function with parameters a = 3/2, b = 3 (see [138, pp.514])
and the coefficient

√
π(8λ3)−1d̃ij , which is positive since negative distance

measurements d̃ij are discarded due to the physical impossibility of dij < 0.
Finally, since the last inequality of (247) must hold for all ij, the implication
(246) requires that

λ ≥
√
π

2 max
ij∈E

d̃ij , λ
∗

N. (248)

Notice that the majoriser given in equation (248) is also a majoriser of the
critical smoothing parameter for the source localisation case. In other words, if
the expression in equation (248) is used for a set of distance measurements {d̃it}
associated to a single target, we have λ

∗

N ≥ λ
∗

S ≥ λ
∗
. Based on Theorem T14,

the set of λ can be defined as LK
λ , {K−k+1

K λ
∗

N} with 1 ≤ k ≤ K + 1.

6.2 Weighing strategy in cooperative positioning

In Chapter 2 we have shown different weighing mechanisms [69, 79–82], which
typically resort to heuristics and/or exterior information related to the mea-
surements. However, we recognise that all methods follow the rule-of-thumb
of assigning weight wij → 0 when d̃ij is to be neglected (with equality if dij
is not measured at all), and wij � 0 when d̃ij is to be relied upon (the more
so, the larger wij). Based on this general idea, we propose a more concrete
weighing strategy that does not rely on any assumptions on the ranging model or
relationship between ranging error and real distance, and attempts to quantify
the reliability of the data. The principle of this strategy is described as follows.

6.2.1 Weighing strategy principle

Let d̃(k)
ij be the k-th measurement of the distance dij , and let d̄ij be the sample

mean of the set {d̃(k)
ij } given by

d̄ij ,
1

Kij

Kij∑
k=1

d̃
(k)
ij . (249)

Under the assumption of LOS channel conditions, d̃(k)
ij = dij + nij with nij

as a zero-mean Gaussian random variable, it is known that d̄ij is an unbiased
estimate of dij [45], thus the WLS optimisation problem given in equation (28),

147



can be reformulated as the constrained feasibility problem [143]

find P̂

s.t. d̄ij−ε ≤ ‖p̂i−p̂j‖2 ≤ d̄ij+ε,∀ij ∈ E
p̂i = ai ∀i = 1, . . . , NA.

(250)

Employing the terminology used in [143], the solution of (250) is referred to
as ε-optimal, meaning that if a solution P̂∗ to the problem (250) exists, then it
is locally true to the observed distances d̄ij within the error ε.

We remark, however, that the localisation error ‖P− P̂∗‖F obtained from
the solution of (250) depends on the quality of the set of distance estimates
d̄ij ’s. In other words, the more accurate are d̄ij ’s, as estimates of dij ’s, the more
reliable is P̂∗, as an estimate of P.

Given a solution P̂∗ of (250) and a confidence bound γ on the distance d̄ij ,
we can determine a confidence region

dij − ε− γ ≤ d̂ij ≤ dij + ε+ γ, (251)

which holds with a probability

Pr{dij − γ ≤ d̄ij ≤ dij + γ}, (252)

since |d̂ij − d̄ij | ≤ ε is ensured by the constraints of the formulation itself, as
shown in equation (250).

Notice that equation (252) is equivalent to

Pr{d̄ij − γ ≤ dij ≤ d̄ij + γ}, (253)

which is the confidence that the true distance dij is in the vicinity (confidence
bound) γ of the observation d̄ij .

This constrained formulation of the network localisation problem (250) shows
that, in the absence of a control mechanism on each term

(
d̄ij − ‖p̂i − p̂j‖F

)2,
the conditions given by equation (251) happen with probability (252) due to the
statistics of d̄ij . This indicates that under the formulation given in equation
(28), the likelihood of satisfying the conditions defined in equation (251) can
be increased by matching the concern over the term

(
d̄ij − ‖p̂i − p̂j‖F

)2 to the
probability (or confidence over d̄ij) as given by equation (252). And under the
assumption that d̄ij is an unbiased estimator of dij – which is true only in LOS
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conditions (bij = 0) – the probability given by equation (252) is a valid measure
of the reliability of d̄ij to estimate dij .

In light of the above, we define

wij , Pr {−γ ≤ εij ≤ γ} · Pij , (254)

where γ is the confidence bound of the observation d̄ij around the true distance
dij , Pij is a penalty imposed over the LOS assumption and δij , dij − d̄ij .

For convenience, we shall hereafter use wD
ij in reference to the probability in

equation (255), such that wij = wD
ij · Pij . The weights wD

ij and Pij will also be
dubbed the dispersion (confidence) weights and penalty weights, respectively.

6.2.2 Dispersion weight

The dispersion weight is mathematically formulated as

wD
ij , Pr {−γ ≤ δij ≤ γ} , (255)

which, under the assumptions that ρij = 0 (LOS channel conditions), and d̃(k)
ij

are independent, can be rewritten in the form

wD
ij = 2 · Pr {δij ≤ γ} − 1, (256)

where we used the symmetric properties of the Gaussian error assumption.
By means of small scale statistics wD

ij can be computed as [144]

wD
ij =Wd(σ̂ij ,Kij ; γ) , −1+2 ·

∫ tij

−∞
fT(t;Kij − 1) dt, (257)

tij , γ ·
√
Kij/σ̂2

ij , (258)

where fT(t;n) is the T -distribution of n degree of freedom and tij is the t-score.
As emphasised by the notation, wD

ij is a function of the sample variance
σ̂2
ij and the number of samples Kij , as well as the confidence bound γ, to be

specified below. Since σ̂2
ij and Kij carry different information about the true

value of dij , it is not surprising that both these parameters impact on the weight
wD
ij . In fact, the plots of Wd(σ̂ij ,Kij ; γ) illustrated in Figures 29(a) and 29(b),

show that wL
ij grows with the inverse of σ̂2

ij (for fixed Kij), and with Kij (for
fixed σ̂2

ij). This is in accordance with the rule-of-thumb of assigning weight
wD
ij → 0 when d̄ij is to be neglected (with equality if dij is not measured at all),
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and wD
ij � 0 when d̄ij is to be relied upon (the more so, the larger wD

ij) since, σ̂2
ij

is proportional to the uncertainty of d̄ij , as a measure of dij , while Kij relates to
the quality of d̄ij and σ̂2

ij as measures of dij and its dispersion, respectively.
Unlike σ̂2

ij and Kij , which are obtained in the process of measuring inter-node
distances, the confidence bound γ is a free choice parameter that allows for
fine-tuning the relative values of wD

ij .
The mechanism to find the optimum γ is given by the following optimisation

problem based on the diversity index or entropy metric

γopt = arg max
γ∈R+

H(γ), (259)

where

H(γ) =−
KMAX∑
k=KMIN

∫ σMAX

σMIN

Wd(s, k; γ)·ln (Wd(s, k; γ)) ds, (260)

where KMIN,KMAX, σMIN and σMAX are the minimum and the maximum number
of observable samples and the minimum and the maximum typical ranging error,
respectively. It is imperative, therefore, to find a mechanism to optimise γ,
which is the topic of the next subsection.

Derivation of the ergodic confidence bound

We seek a mechanism to select an optimum γ, that results in a characterisation
of equation (257) for a broad ensemble of networks. In other words, we are
interested in the derivation of an ergodic13 optimum γ, relying only on weak
assumptions on the design and technological characteristics of the network.

In the pursuit of such a mechanism, we recognize an analogy between our
problem and the one of characterising a population by categorising its individuals,
which is the subject of Categorical Data Analysis [145]. Since Kij and σ̂2

ij carry
different information about the estimate of the distance dij , these parameters
can be used to categorise d̄ij , while wD

ij can be seen as the metric – to be
fine-tuned – that distinguishes d̄ij from all other distance estimates whose
admissible categorical values (Kq`, σ̂

2
q`) lie within a region W . In our context,

the problem of finding an ergodic optimum γ is equivalent to finding the metric
formula that best distinguishes individuals of the population W .

13Ergodic here refers to the fact that the statistics of d̃(k)ij for a fixed (i, j) over many network

realisations is the same as the statistics of d̃(k)ij for a fixed k over all (i, j) of a given realisation.
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A well-known tool of categorical data analysis often employed to solve
similar problems is maximum diversity sampling [146], which establishes that
the optimum way to characterise an entire population given a limited categorical
sample size, is to purposefully select individuals that are maximally distinct.
To draw an analogy, if one wishes to find out the political views of a given
population by interviewing a limited number of individuals, then best results are
achieved by interviewing as distinct individuals as possible (the old, the young,
the rich, the poor, etc.). Brought to our context, this result indicates that the
right criterion to fine-tune the weight function wD

ij is to select the parameter
γ that maximises, across the population W , the diversity of the estimates d̄ij
as measured by their weights wD

ij . A well-known metric of the diversity of a
categorical population W with individual relevance measured by the occurrence
pW(w) of each category w is

H = −
∑
W

pZ(w) · ln pZ(w). (261)

This metric is known in the categorical data analysis [145] and in the
communication theory [147] literatures as the diversity index and the entropy of
W , respectively. These two terms will therefore be hereafter used interchangeably.

Notice, however, that while entropy is commonly defined over probabilistic
measures, the diversity index is also applied to non-probabilistic measures [148],
which is the case at hand since, in general,

∫
W Wd(s, k; γ) 6= 1. In our context,

this leads to pZ(z) =Wd(s, k; γ) and W = [KMIN,KMAX]× [σMIN, σMAX], where
(KMIN,KMAX) and (σMIN, σMAX) are the pairs of minimum/maximum numbers
of samples and noise standard deviation admitted by the system, respectively.
From the preceding arguments and equations (257) and (261), we conclude that
the optimisation criterion14 for γ is to maximise

H(γ) =−
KMAX∑
k=KMIN

∫ σMAX

σMIN

Wd(s, k; γ)·ln (Wd(s, k; γ)) ds, (262)

where the dependence of H on γ is made explicit for clarity.

14While equation (262) is the appropriate expression for an ergodic optimization of γ,
H(γ) = −∑

i

∑
jWd(σ̂ij ,Kij ; γ)·ln(Wd(σ̂ij ,Kij ; γ)) can be used for an adaptive optimisation

specific to a particular network realisation. In the case of large scale networks, however, the
two formulations are equivalent since data evenly span the range [Kmin,Kmax]× [σmin, σmax].
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Thus,
γopt , arg max

γ∈R+
H(γ). (263)

Due to the monotonicity of Wd(s, k; γ) and the convexity of the entropy
function, this optimisation problem can be easily solved via standard optimisation
techniques [65]. For the sake of completeness, in Figure 30 we illustrate γopt as
function of KMAX and σMAX.

Validation of optimum confidence bound

To validate the proposed weight optimisation mechanism, we compare the
RMSE of a WLS-based positioning which utilises the dispersion weight against
those obtained with alternative strategies15, namely, the connectivity-based
(wij = 1 if cij = 1, and wij = 0 otherwise) weight, the inverse-distance based
[69] and the LOESS-based [82] methods. The results illustrated in Figure 31 are

15The result obtained with inverse-variance weighing strategy [79, 80] that leads to the CRLB
will be omitted since, the exact knowledge of σ2

ij at each link is infeasible with the assumptions
that only few ranging samples can be measured.
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obtained with the R-GDC method and, refer to regular networks with NA = 4

anchors equispaced in a circle of radius 10 meters, and NT = 10 targets, meshness
ratio m = 1, zero-mean ranging error (bij = 0), σij ∈ (0.01, 0.3) meters and
Kij ∼ U(2, 5).

An important outcome of this investigation is that the dispersion weight
function with the confidence bound computed as prescribed by equation (263),
yields in fact the best weighing strategy, outperforming all the alternative
approaches. Interestingly, this turns out to be true even when the confidence
bound deviates within a certain range from γopt, which indicates that the overall
mechanism is robust to numerical approximations or errors. As shown in Figure
32, the difference between the inverse-variance weighing strategy and the PEB
with the increase of the number of samples16.
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16The convergence is guaranteed by the fact that for Kij →∞, d̄ij → dij .

154



5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

 

 
Comparison of Different Weighing Strategies

- cooperative network -

Maximum number of samples, KMAX

L
o
ca

ti
on

ac
cu

ra
cy

,
ε̄ !

[m
]

Inverse-distance weights
Connectivity wieghts
LOESS weights
Optimal dispersion weights
PEBLOS

Fig 32. Comparison of different weighing strategies for the localisation of a regular
network with of NA = 4 and NT = 10. It is assumed a full connectivity, i.e. m = 1,
σij ∈ (0.01, 0.3) meters and Kij ∈ (2,KMAX).

6.2.3 Penalty weight

The second term of the proposed weight given in equation (255) is represented
by the penalty weight Pij . As mentioned in the introduction of this section, Pij
is a corrective factor that penalises the hypothesis that link ij is in LOS channel
conditions, as implied in the formulation of the dispersion weighing function
Wd(s, k; γ) given by equation (257).

To be specific, if Pij → 1 then it is considered that d̄ij is obtained from
ranging samples without bias error (as assumed and required when computing
wD
ij). Conversely, if Pij → 0 then it will be assumed that the samples d̃(k)

ij are
likely to be affected by a bias (NLOS channel assumption).

With scarce distance information (Kij → 1), little can be done to infer
whether the link ij is in LOS or NLOS from {d̃(k)

ij } alone. In order to circumvent
this problem, we observe that the risk of the LOS assumption can be inferred
from geometric properties of 3-node cliques.
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In other words, in large-scale networks with power-constrained devices,
where connectivity depends on the radio range Rmax and ranging information is
scarce, the likelihood that 3-node cliques form obtuse triangles is small since
the connected nodes are typically “close” to each other. If we assume that the
bias error due to NLOS condition is positive, its effect onto a set of distance
measurements {d̃(k)

ij } is to increase the likelihood that an obtuse triangle is
observed, despite the fact that the true locations of the 3-connected nodes i, j
and q do not form an obtuse triangle. Therefore, the risk associated with the
LOS assumption over a link ij can be inferred based on the likelihood that the
observations indicate the formation of an obtuse triangle, with the strength of
this relationship inversely proportional to RMAX.

Incidentally, a similar idea to the one summarised above has been put forward
in [149], although several differences between the material thereby and our own
contributions exist. To cite a few, the work in [149] is focused on 4-node cliques,
does not elaborate into concrete algorithms, suggests the application of the
idea only in the form of a potential tool for binary (hard-decision) LOS/NLOS
identification and, of course, does not develop or hint to associated weighing
strategies. Our approach instead exploits the properties of a simpler cliques
(3 node only), translates into LOS/NLOS non parametric soft-identification
method as well as weighing strategy.

Computation of the penalty weights

Consider a network realization P, represented by the graph G = G(V,E, D̄),
where V,E and D̄ are the sets of vertices, of links and weights, respectively.
Focus on a 3-cliques (vGi , v

G
j , v

G
q ) of G, and define two hypothesis H0 and H1 as:{

H0 : the clique(vGi , vGj , vGq ) forms a triangle,
H1 : the clique(vGi , vGj , vGq ) does not forms a triangle.

(264)

Based on the 4-th property of the EDM, namely the triangle inequality

dij − diq − djq ≤ 0, (265)

the hypothesis H0 can be tested from the sets of measurements {d̃(k)
ij }, {d̃iq,k}

and {d̃jq,k} by testing

µ̄ijq
H1

R
H0

0, (266)
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where µ̄ijq is the sample mean of the variable

µ̃ijq = d̃ij − d̃iq − d̃jq, (267)

defined for all Cijq = Kij ·Kiq ·Kjq arranges of estimates taken from the sets
{d̃(k)
ij }, {d̃

(k)
iq } and {d̃

(k)
jq }, such that {ij, iq, jq} ∈ E.

This test belongs to the class of the hypothesis test method with one-side
rejection region, where the critical value is given by

x ijq ,
µ̄ijq − 0

σ̂µijq/
√
Cijq

, (268)

where σ̂µijq is the sample-standard deviation of the variable µ̃ijq. The confidence
that the 3-tuple (vGi , v

G
j , v

G
q ) forms a triangle, given the observations {d̃(k)

ij },
{d̃(k)
iq } and {d̃

(k)
jq }, is therefore expressed by the probability

pijq=1−Pr{z ≤ x ijq}=Q(x ijq). (269)

Since the link ij forms a distinct triangle with each vGq , the penalty Pij can
be defined as

Pij , min
q

pijq ∀
(
eGij , e

G
iq, e

G
jq

)
∈ E, (270)

which ensures that the most conservative decision on the penalty over the LOS
assumption onto the link ij is taken.

As mentioned above, a by-product of the penalty weights Pij calculation is a
non-parametric geometric mechanism for LOS/NLOS channel identification
that relies on few distance observations and exploits the relationship of not only
a pair, but a 3-tuple of nodes. This differs from the majority of LOS/NLOS
identification methods found in the literature (see [21, Sec. IV]) which apply to
each link separately, require large numbers of samples and assume the knowledge
of either the ranging error distribution [150], or other physical layer parameters
such as the delay-spread of the channel [81].

Specifically, compare Pij to a pre-defined threshold ξH . If (Pij ≥ ξH), then
the link ij is recognised as being in LOS and, conversely, if (Pij < ξH), the link
ij is considered to be in NLOS.

To assert the performance of proposed LOS/NLOS identification algorithm
we evaluate the probability of NLOS miss-detection PMD (i.e. misinterpreting a
NLOS as LOS) and the probability of NLOS false-alarm PFA (i.e. misinterpreting
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a LOS as NLOS), respectively given by

PMD(bij ; θ
∗
ij) , Pr{Pij ≥ ξH |bij 6= 0}, (271)

PFA(σij ; θ
∗
ij) , Pr{Pij < ξH |bij = 0}, (272)

where the characteristic angle θ∗ij is the angle that faces the edge ij for which
the penalty weight Pij is computed.

In Figures 33(a) and 33(b), the results obtained with a network of NA = 4,
NT = 10, uneven noise σij ∼ U(0.01, 0.3) meters, 30% of NLOS links with uneven
bias bij ∼ U(0.5, 3) meters and Kij ∼ U(2, 5) are illustrated. Specifically, in
Figure 33(a) it is shown that the LOS/NLOS identification algorithm misses the
NLOS detection when both θ∗ij and bij are relatively small, which corresponds to
the situation of a link ij that is part of acute triangles and affected by a little
error. While a small bias is typically ineffective to the localisation system, the
dominant presence of acute triangles and NLOS miss-detection can introduce
large error on the final node location accuracy. Therefore, to minimise the
location error due to a miss-detection of the bias, it is necessary to either take a
large ξH or increase the occurrence of obtuse triangles by rising the density of
the nodes in the network.
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Fig 33. Probability of NLOS miss-detection and false-alarm. Network of NA = 4, NT = 10,
uneven noise σij ∼ U(0.01, 0.3) meters, 30% of NLOS links with uneven bias bij ∼ U(0.5, 3)

meters and Kij ∼ U(2, 5).

In Figure 33(b), instead, we show that the PFA increases when θ∗ij is larger
(obtuse triangle). Therefore, to minimize the PFA it is necessary to either take a
low ξH or decrease the occurrence of obtuse triangles.

To achieve a trade-off between PMD and PFA we experienced that ξH = 0.45

is sufficient to yield a more selective LOS/NLOS decision and avoids false-alarms
due to the presence of obtuse triangles and large noise.

6.3 Performance evaluation and comparison

In this section, we evaluate and compare the performance of the proposed
cooperative localisation algorithm (R-GDC with the dispersion-penalty weight)
against a SMACOF [59], a LM-WLS [65] and an SDP [69] based positioning
algorithms. To efficiently implement the SMACOF algorithm, we utilise the
Guttman-transform which provides a closed-form expression for the minimum

159



at the k-th iteration [59]. The LM-WLS algorithm can be implemented with a
subspace trust-region method with pre-computed Jacobians [65]. To minimise
this sensitivity, we utilise the combination of the Nyström and shortest-path
completion algorithms [151]. Hereafter, the random and the Nyström-based
initialisation will be distinguished by labelling the name of the algorithm with a
“ ∗ ” when the latter is used. The SDP based optimisation is coded with the cvx
MATLAB package provided by Standford University.

The study will be divided in two parts. In the first one, the R-GDC technique
will be compared to the alternative optimisation methods from a mere minimisa-
tion perspective. In this regard, we assume LOS conditions, optimal weighing
strategy (inverse of the variance) and we evaluate the localisation accuracy, the
minimisation effectiveness defined in the next section), and the computational
complexity. In the second part, we compare the proposed dispersion-penalty
with the alternatives LOESS, inverse-distance and connectivity-based methods.

6.3.1 Comparison of the optimisation methods

Consider a network with NA = 4 anchors equispaced in a circle of radius 10

meters and NT = 10 targets deployed in the convex-hull of the anchors. Without
loss of generality, assume σij = σ ∀ ij and let cij = 1 if dij ≤ RMAX.

Location accuracy

In Figure 34(a), we compare the location accuracy obtained with the aforemen-
tioned algorithms as a function of the noise standard deviation σ while m = 1

(full connectivity). The location accuracy obtained with the SMACOF∗ slightly
deviates from those obtained with the R-GDC, the SDP and the LM-WLS∗,
which in turn achieve the performance of an ideal unbiased estimator. In Figure
34(b), the location accuracy obtained with the same algorithms is plotted as
a function of the meshness ratio m while σ = 0.3 meters. In this case, the
advantage of the R-GDC with respect to the SMACOF∗ and the LM-WLS∗

algorithms is clearly demonstrated. At low meshness ratio (scarce connectivity),
the R-GDC provides a better localization accuracy and it almost achieves the
performance of the SDP. This is an indication that the R-GDC performs a
better minimisation than the LM-WLS and the SMACOF, and it proves a good
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robustness to the local minima problem. The gap between the SDP and the
bound is probably a consequence of the non localisability of the network. Indeed,
these tests were performed only with the assumptions that the node-degree17 is
larger than three, which is not a sufficient condition for localisability.

Minimisation effectiveness

To further investigate the performance of the minimisation algorithms from a mere
optimisation perspective, we define two new metrics, namely the minimisation
effectiveness and the minimisation deviation.

Definition D13 (Minimisation Effectiveness).
The minimisation effectiveness of the `-th algorithm over the set of L

alternatives is defined as

Π(`) , Pr{fR(~̂p∗` ;
~̃
d) = min

∀ q
fR(~̂p∗q ;

~̃
d)}, (273)

where p̂∗` is the solution provided by the ` algorithm, fR(~̂p∗q ;
~̃
d) makes explicit

the dependence of fR(~̂p∗q), with the ranging ~̃d.

Definition D14 (Minimiser Deviation).
The minimiser deviation of the `-th algorithm over the set of L alternatives

is defined as

S (`) , ED̃

[
fR(~̂p∗` ;

~̃
d)−min

∀ q
fR(~̂p∗q ;

~̃
d)

]
. (274)

In plain words, the minimisation effectiveness of a given algorithm is the
likelihood that it is the best minimiser amongst the methods compared ; while
the minimiser deviation, quantifies the average error of the objective at the
solution attained by each algorithm with respect to the that attained by the best
minimiser.

17In graph theory, the node-degree of the i-th node is equal to the number of connections
departing and arriving at that node.
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Fig 34. Comparison of the optimisation algorithms for cooperative positioning in
LOS scenarios. The network consists of NA = 4 anchors, NT = 10 targets and it is
deployed in a square of 14.14× 14.14 square meters.
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The result for a multi-target scenario is offered in Figure 35, where the
ring chart shows that the minimisation effectiveness of the R-GDC method is
generally superior to those observed with the alternative optimisation techniques,
especially for high meshenss ratio. The accompanying Table 1 indeed reveals
that the minimiser deviation of the R-GDC algorithm is typically at the order of
10−5, similar to that of the SDP, and one order smaller than those obtained
with the LM-WLS∗ and SMACOF∗. The failures of the R-GDC methods are
probably a consequence of the lack of consistency in the estimation problem.
Indeed, at low mesheness ratio, the network is rarely strongly-localisable and
therefore, minima with a similar value to the global one can occur.

Share of the Probability of Success - Network Localization

≈100%

m=[0.9−1]

99%

m=[0.5−0.6]

1%

80%

m=[0.2−0.3]

12%

8%

Fig 35. Comparison of the minimisation effectiveness Π(`) of various localisation
algorithms in networks with NA = 4 anchors and NT = 10 under various values of
meshness ratios m ∈ [0, 1] and σij = σ = 0.3 meters. All minimisation techniques
operate under the same tolerances of 10−8 on the variations of the estimates and
the objective function.

163



Table 1. Average minimiser deviation for network localisation.

m SMACOF∗ LM-WLS∗ SDP R-GDC
(0.2,0.3) 1.6e-01 1.3e-01 3.2e-03 2.3e-02
(0.3,0.4) 2.2e-01 1.9e-01 4.1e-03 4.9e-03
(0.4,0.5) 7.6e-02 3.1e-02 1.2e-03 8.5e-05
(0.5,0.6) 5.5e-02 7.3e-03 1.6e-04 7.1e-06
(0.6,0.7) 6.5e-02 1.7e-08 1.6e-09 0
(0.7,0.8) 7.5e-02 4.3e-04 1.3e-09 0
(0.8,0.9) 9.2e-02 8.6e-09 6.9e-10 0
(0.9,1) 1.1e-01 8.6e-09 8.5e-08 8.5e-08

Computational complexity and convergence

The next performance comparison addresses the computational complexity of
the algorithms and the rate of convergence. To this end, we calculate the average
algorithm complexity O(Nϕ

V ), and we use the average complexity exponent.

ϕ , logNV (ED̃,Z

[
C(NV )

]
), (275)

as the metric for comparison, where the subscripts D̃ and Z indicate the
expectations over the random processes of the ranging and networks, respectively.

The complexity of the SMACOF∗ and LM-WLS∗ algorithms, instead, can be
estimated as follows18

CSMACOF ≈ N3 + t
(
N2(2η + 1

2 )−N(η + 1
2 )
)
≈ O(N3), (276)

CLM ≈ t
(
N3
V

η2 +(
N2
V

η2 +NV
η )(2NA−1)+NV

)
+r(t)

(
N3
V +N

2 (N−1)
)
, (277)

≈ O(CLN
3
V ),

CR-GDC ≈ 1

2

K∑
k=1

tk
(
(N2−N)C2+16N2

V−2NV
)
+r(tk)(N2−N)C1, (278)

≈ O(CRN
2
V ),

where t and r(t) refer to the number of iterations of the main and inner loops
of the optimisations, the subscript k refers to the k-th minimisation of the
18In [69] , it is shown that for large scale networks the computational complexity of the SDP
algorithm based on an interior-point minimisation method grows as O(N6

V ) which is way
above the results obtained with the alternative algorithms.
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R-GDC method with λ(k), C1 and C2 are the costs for the calculation of the
Hypergeometric functions of equations (207) and (222), and CL and CR are
cumulative values that account for all iterations. Derivation details are given
in the Appendix A1. Notice that the complexity of the algorithms of interest
depends not only on their structure, which is mostly related to the number
of variables NV , but also on conditions such as noise and robustness to initial
estimates, which in turn are captured by the number of iterations t. Due to
these factors, the computational complexity of the R-GDC algorithm is rarely
O(N2

V ), nevertheless, it is inferior to the LM-WLS method. Indeed, in Figure 36,
the results show that for large networks19 the LM-WLS requires approximately
O(N4

V ) operations, whereas the R-GDC O(N3.5
V ) and SMACOF∗ O(N3

V ).
In Figure 37, we illustrate the localisation error achieved with the R-GDC

algorithm in a large scale network set-up, i.e. NT = 50, NT = 100 and NT = 200

target nodes.
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Fig 36. Comparison of algorithm complexity as a function of NV . All algorithms
operate under the same maximum number of iterations TMAX = 51, tolerances of
10−8 on the variations of objective function and the estimates. [9, c©IEEE 2011].

19To ensure that for any network size, the optimisation problem starts with the same
assumptions, we consider a fully connected network, i.e. m = 1.

165



The results show that the R-GDC algorithm can achieve the PEB along a
wide range of meshness ratio20, hence offering a good scalability property.

Finally, with TMAX = 51, χZ = 10−8 and χF = 10−8, the convergence
behaviour of the R-GDC, SMACOF, LM-WLS, SMACOF∗ and LM-WLS∗

algorithms are shown in Figure 38. Notice that the stair-case convergence
behaviour of the R-GDC (in terms of objective minimisation) seen in Figure
38(a) is consistent with the strategy of the algorithm. This is in fact another
desirable feature of the method since it indicates that further gains in complexity
reduction can be achieved by relaxing the continuation principle (see Theorem
T11) down to a few iterations per smoothed objective. Indeed, in Figure 38(b) it
is shown that the R-GDC outperforms the alternatives (in terms of localisation
accuracy) already after as few as 9 iterations. Based on this and the other
results, it can be safely be stated that the proposed R-GDC algorithm exhibits
superior performance to that of the SDP, with complexity inferior to that of the
classic LM-WLS, and comparable to that of the SMACOF.
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scenarios and σ = 0.3 meters. The networks consist of NA = 4 anchors, and are
deployed in a square of 14.14× 14.14 square meters.

20The divergence of the R-GDC performance at low meshness ratio is a consequence of the
non-localisability of the network.
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Distributed versus centralised approach

In this section we address the distributed implementation of the R-GDC
algorithm. Similar to the distributed SMACOF [82], the ML [97] and the
barycentric-coordinate [152, 153] methods, each node estimates its own location
by cooperating with its neighbours and performing calculations locally.

Specifically, the i-th target starts with a random guess of its location, performs
ranging to the neighbour nodes (connected nodes) and requests their current
location estimates. From this information it constructs the local smoothed
objective function

〈f iR〉λi(p̂i) ,
∑
ij∈Ei

w2
ij

(
λ2
i +d̃2

ij + d̂2
ij−λi

√
πd̃ij 1F1

(
3
2 ;1;

d̂2ij
λ2
i

)
exp

(
−d̂2ij
λ2
i

))
, (279)

where p̂j is not considered a variable, Ei , {ij|cij = 1} and λi is the local
smoothing parameter derived from {d̃ij} with ij ∈ Ei.

Then, it updates its own locations by computing

p̂newi , p̂i + αsδpi, (280)

where i refers to the i-th node, αs is the step-size obtained with a backtracing
method [65] and δpi is the descending direction computed from ∇p̂i〈f iR〉λi(p̂i).

The result is transmitted to the neighbour nodes, and iteratively, each node
repeats the update and dissemination procedures until the total number of
transmissions or the difference ‖p̂newi − p̂i‖F is less than a given threshold.

From a systemic perspective, the SMACOF [82], ML [97] and barycentric
[152, 153] methods are more efficient than the R-GDC since, their convergence
time is shorter and less transmissions are needed to achieve a solution. However,
the proposed R-GDC offers a substantial advantage in terms of performance since
it exploits the smoothing-continuation method to minimise the local minima
problem. In practice, the nodes can select a random initial guess without
compromising the location accuracy. Furthermore, there are no assumptions
on the network topology and geometry that imply the applicability of the
algorithm. In fact, the distributed R-GDC works on random networks, where
node are not necessarily confined in the convex-hull of the anchors as, for instance,
required by the algorithms [152, 153]. In Figures 39(a) and 39(b) we compare the
performance obtained with the centralised and the distributed implementation
of the R-GDC algorithm. Both methods can provide location accuracies that are
close to the PEB despite of the noise and meshness ratio.
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Fig 39. Comparison of the distributed optimisation algorithms for cooperative
positioning in LOS scenarios. The network consists of NA = 4 anchors, NT = 10

targets and it is deployed in a square of 14.14× 14.14 square meters.
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6.3.2 Comparison of the weighing strategies

Consider the same type of network with NA anchors and NT = 20 targets
deployed in the convex-hull of the anchors. Assume a scenario with mix LOS
and NLOS channel conditions, where the noise standard deviation σij , the
bias bij the number of ranging samples Kij are random variables chosen with
uniform distribution in the interval (0.01, 0.3) meters, (0, bMAX) meters and
(2, 5), respectively. A connected link ij is in NLOS with a probability pNLOS and
such a probability is independent from the value of the true distance dij .

Amongst all optimisation methods, we focus on the proposed R-GDC al-
gorithm and compare the localisation accuracy obtained with the proposed
dispersion-penalty (w2

ij = wDijPij) weighing strategy to the alternative tech-
niques, namely, the connectivity-based (w2

ij = cij), the LOESS-based and the
inverse-distance based weighing methods. The performances are measured by
the location accuracy ε̄`, and studied as a function of the meshness ratio m, the
number of anchors NA , the number of targets NT, the maxim bias bMAX and
probability of NLOS pNLOS. Furthermore, the results are also compared with
the PEB computed as in equation (131).

In Figure 40 the comparison of the aforementioned methods is illustrated as
a function of the meshness ratio. The result shows that the proposed dispersion-
penalty weighing strategy provides a lower location accuracy than those obtained
with any other alternative. The fact that a significant gap between the average
PEB and the performance of the R-GDC algorithm exists is an indication that
the bias problem is not totally eliminated. To further improve the performance,
it is necessary to employ a technique that compensates the bias terms, which on
the other hand will increase geometrically the computational complexity of the
algorithm especially for very large scale networks.

Next, in Figure 41 we illustrate the RMSE performance obtained with the
different weighing strategies with respect to the number of anchors. The number
of targets, the probability of NLOS, the maximum bias and the meshness ratio
are fixed parameters with values, NT = 20, pNLOS = 0.3, bMAX = 3 meters and
m = 1, respectively. The result shows that with all weighing strategies the
localisation error computed via the R-GDC optimisation algorithm decreases
with the increase of the number of anchors. The reason is related to the fact that
the amount of information in the network increases with NA (see Chapter 4).
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Fig 40. Performance of different weighing strategies as a function of m.The net-
work is deployed in 14.14× 14.14 squared meters. NA = 4, NT = 20, σij = (0.01, 0.3)

meters, bij = (0, 3) meters and pNLOS = 0.3.
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Fig 41. Performance of different weighing strategies as a function of NA.The net-
work is deployed in 14.14× 14.14 squared meters. m = 1, NT = 20, σij = (0.01, 0.3)

meters, bij = (0, 3) meters and pNLOS = 0.3.
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Thus, the performance of any positioning algorithm improves consequently.
Nevertheless, it is noticed that the proposed dispersion-penalty weighing strategy
provides still the best performance with a gain of approximately 10 centimetres.

In Figure 42 we show the localisation accuracy as a function of the maximum
bias. Also in this case the proposed weighing strategy outperforms the alternatives,
especially when the amount of bias increases. This proves the geometric based
principle that grounds the penalty weight is more effective when the bias and
the connectivity is large.

The next result shows the behaviour of the location accuracy as a function of
the number of targets, while the number of anchors, the probability of NLOS
and the meshness ratio are fixed parameters with values NA = 4, pNLOS = 0.3

and m = 1, respectively. Similar to the previous study, also the plot illustrated
in Figure 43 shows that the location accuracy improves with the increase of the
number of nodes despite of the weighing strategy.
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Fig 42. Performance of different weighing strategies as a function of bMAX. The
network is deployed in 14.14 × 14.14 squared meters. NA = 4, NT = 20, m = 1,
σij = (0.01, 0.3) meters, bij = (0, bMAX) meters and pNLOS = 0.3.
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In particular it can be noticed that by increasing NT, the location accuracy
obtained with the proposed dispersion-penalty weighing technique decreases
faster than those provided by the alternative methods. This is due to the fact that
by increasing NT, the node density grows, the probability of NLOS miss-detection
decreases, and the penalty weight becomes more and more effective. Therefore,
the penalty Pij is generally less than one and the higher the node density, larger
is the likelihood that the NLOS is correctly detected from the proposed geometric
test.

Finally, in Figure 44 we compare the performance of the different weighing
strategies as a function of the probability pNLOS (pNLOS = 0 and pNLOS = 1

indicate that all links in the network are in LOS and NLOS channel conditions,
respectively). In this simulation, we consider NA = 4, NT = 20 and m = 1.

We observe that above a certain pNLOS, that in this simulation is about 0.45,
the usage of the proposed weights in no longer advantageous with respect to the
alternatives.
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Fig 43. Performance of different weighing strategies as a function of NT.The net-
work is deployed in 14.14× 14.14 squared meters. NA = 4, m = 1, σij = (0.01, 0.3)

meters, bij = (0, 3) meters and pNLOS = 0.3.
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Fig 44. Performance of different weighing strategies as a function of pNLOS.

The reason is that by increasing the number of NLOS links, more and more
affected by a bias error. Since the penalty weight is based on a geometric
property (triangle inequality), the test of equation (264) is likely to be unaffected
by the variations of the length of the edges if a positive error is added to all
distances. Consequently, the confidence that a triangle can be formed with the
distance measurements of a 3-clique nodes is higher, and in turn the NLOS error
is miss-detected.

6.4 Summary and discussions

In this chapter, we proposed a centralized cooperative positioning algorithm based
on a WLS optimisation. The contributions have addressed two fundamental parts
of this type of positioning methods, namely, the development of a robust global
minimisation technique and a non-parametric weighing strategy to mitigate the
effects of the ranging errors.

Unlike preceding methods, the proposed optimisation algorithm, dubbed the
Range-Global Distance Continuation (R-GDC), holds true to a ML principle by
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adhering to the formulation directly derived form the likelihood function and by
yielding, given an observation, the same result despite of initialisation. The
R-GDC method is shown via extensive comparison to outperform the best and
most popular alternatives, in particular the SDP, the NLS and the SMACOF
techniques, while exhibiting a computational complexity comparable to that of
the SMACOF algorithm, which is widely known for its efficiency.

The combination of this optimization scheme with an effective weighing
strategy, such as the proposed dispersion-penalty method, has also demonstrated
that sufficient accurate location estimates can be obtained in mixed LOS/NLOS
environments without prior knowledge of error statistics. Specifically, the
proposed weighing strategy is derived with the approach that the disturbances
on distance estimates due to noise and bias can be addressed separately. We first
employ smalls scale statistics to mathematise the concept of weighing with basis
on the reliability of ranging samples, which is commonly invoked in the literature
[51, 58, 68, 78, 82, 135, 154], but had not been previously formalised. This yields
a family of dispersion weighing functions, parameterised by a confidence bound
of choice, which is then optimised under a maximum entropy criterion. Then,
we extend the strategy so as to handle the possibility of NLOS conditions, via
the introduction of a penalty onto the LOS assumption. These penalty weights
would, in principle, require LOS/NLOS identification, which can be difficult to
perform either because of scarce ranging information or because the devices
cannot support this feature.

In order to circumvent this problem, we exploited the assumptions that
biases are positive and that connectivity depends on the radio range Rmax to
establish a connection between the risk of the LOS assumption over a link ij
and the geometry of 3-node cliques. This led to a hypothesis-theoretical method
to quantify the penalty and to perform LOS/NLOS identification.
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7 Positioning in a realistic environment

In this chapter we offer the results of a positioning experiment performed at the
Centre for Wireless Communications of the University of Oulu. We validate the
performance of the proposed non-cooperative and cooperative algorithms and,
compare the results with the state-of-the-art techniques. The test is conducted
with UWB devices, namely the TimeDomain PulseOn 210.

7.1 Wireless network set-up

In Figure 45 we illustrate the floor-map of a section of the Centrer for Wireless
Communication offices located at the 4-th floor of the TF wing of the University
of Oulu. The overall size of the environment is about 10.0×10.0 square meters
and it consists of a corridor of size 1.0×10.0 square meters, four offices of different
size and an electronic laboratory (eLAB).
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Fig 45. Floor map of a section of the Centre for Wireless Communication’s offices
in the TF wing of the University of Oulu.
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Each office-room is equipped with wooden furniture (shelves, desks) and
computers. The laboratory, instead, is equipped of electronic instruments,
metallic shelves, wooden desks and computers.

We interconnect N = 7 the devices, of which four devices are considered
anchors and the remaining targets. The nodes are deployed as illustrated in
Figure 45, in which we adopt a relative reference system to assign a numerical
value to the nodes’ coordinates. Coherently with the notation adopted in this
thesis, the vector-coordinate of the i-th node is denoted by pi where 1 ≤ i ≤ 4

and 5 ≤ i ≤ 7 refers to the indexes of anchors and targets, respectively.

7.2 Ranging measurements

The TimeDomain PulseOn 210 devices are able to perform ranging using a
2-way protocol and a threshold-based algorithm for the estimation of the direct
path. Details are provided in [155] and reference therein. Briefly, the 2-way
ranging protocol consists of exchanging time-stamp information between the
transmitter and the receiver. The transmitter measures the time elapsed between
the transmission of its ranging request packet and the reception of the ranging
response packet, hereafter denoted by δTx−Rx.

The time estimation, however, is also affected by other errors:
a) εte, the time spent by the circuits to generate and send the waveform to the

antenna as well as to receive and forward the signal to the internal logic

b) εtl, the time necessary to the leading-edge algorithm to estimate the first
path

c) εts, the time spent for the synchronisation.

Then, the estimate of time-of-flight performed by the device is given by:

d̃ = 1.5 · 10−4 · (δTX−RX − εTXte − εRXte − εTXtl − εRXtl − εts), (281)

where the superscripts TX and RX , indicates that the time is measured at
transmitter and the receiver, respectively.

Utilising this built-in ranging functionality, 1000 measurements were collected
for each measurable distance. Upon the elimination of those measurements with
negative value, it was found that the distribution of the distance measurement
can be approximated with a mixture of NG Gaussian distributions where NG is
at most equal to five. Each Gaussian function can be associate to a cluster of
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arrival paths, as indeed, shown other research articles [93, 94, 130, 156]. In Table
2, we provide the numerical values of the mean µgi, the standard deviation σgi
and the mixture coefficient Agi associated to each cluster. The data reveals that
most of the measurements are affected by a bias (in average 0.5 meter), and in
some cases, such as the links 37, with a value above two meters. Considering the
nature of the environment as well as the location of nodes, the NLOS channel
conditions are due to the blockage of the direct path because of the walls (e.g.
the link 45) as well as by the strong multi path reflections that occurs in a
corridor environment (e.g. the link 37).

7.3 Experimental results

We utilise the database of ranging information to test off-line non-cooperative
and cooperative algorithms. The estimation of the nodes is performed under the
assumptions that ranging statistics are unknown, that the number of ranging
samples are given by the random variable Kij , with Kij ∼ U(2, 5). From the
set of measurements {d̃(k)

ij }, we compute the sample mean d̄ij , which will be
utilised in the WLS objective function instead of d̃ij , and the weight wij . To
compare the performance of the positioning algorithms, we measure the location
accuracy (RMSE) relative to each node location and, to quantify the dispersion
of the estimates, we utilise the Circular Error Probability (CEP) metric, which
is defined as the radius of a circle centred at the true node location, whose
boundary includes a specified percentage (e.g. 50%) of the estimate population.

In the first test, we compare the performance of the proposed NLS-DC and
WC-DC positioning techniques to those obtained with the C-NLS modified
algorithm [57]. Since the methods are non-cooperative, only the anchor-to-target
ranging is considered available to the algorithms.

In Figure 46, we illustrate the scatter plot of the location estimates obtained
with each method. It can be noticed that the positions of the 5-th and 7-th
targets are estimated with a sufficient accuracy and the estimates are uniformly
spread within a circle of approximately 0.4 meters. The cloud of estimates of the
6-th node location, instead, is approximately centred at the true target position
but, the distribution of the points is stretched towards the location p3. This
indicates that d̃16 and d̃26 are mainly affected by a bias error. In fact, from the
Table 2 we can observe that b16 = 0.78 and b26 = 0.26 meters.
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Fig 46. Scatter plot of a positioning test with non-cooperative methods utilising 11

UWB wireless devices.

Table 4. Numeric results of the non-cooperative positioning test.

Target DC-NLS DC-WC C-NLS modified
Location Accuracy (RMSE) [m]

5 0.30 0.28 0.36
6 0.28 0.22 0.31
7 0.30 0.31 0.46

Circular Error Probability (CEP) 50% [m]
5 0.27 0.26 0.32
6 0.18 0.13 0.20
7 0.27 0.29 0.40

Circular Error Probability (CEP) 95% [m]
5 0.37 0.35 0.46
6 0.53 0.42 0.52
7 0.32 0.33 0.44
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Comparing the numeric values of the RMSE and the CEP, which are provided
in Table 4, it is shown that the proposed DC methods are generally more accurate
than the alternative. The average location accuracy is 0.28 meters, which is 25%

smaller than that obtained with the C-NLS algorithm. Furthermore, comparing
the CEP-50 and CEP-95 figures, it can be noticed that the dispersion of the
location estimates is typically smaller for the DC methods.

Next, we perform a positioning test with cooperative algorithms, namely the
proposed R-GDC technique with the dispersion-penalty weights, the SDP-based
method with the connectivity and the LOESS based weighing mechanisms. For
the sake of clarity, these methods will be referred to as R-GDC - DP, SDP - C
and SDP - LOESS, respectively.

For the optimisation of ergodic confidence bound γopt, we utilize the adaptive
expression

γopt ≈ γ̂opt , arg min
γ∈R+

∑
i

∑
j

Wd(σ̂ij ,Kij ; γ)·ln(Wd(σ̂ij ,Kij ; γ)), (282)

where σ̂ij is the measured sample standard deviation of the noise.
The scatter plot illustrated in Figure 47 shows that the estimates obtained

with the proposed R-GDC - DP are in general less biased than those computed
with the SDP methods, however, they are affected by a large dispersion. In fact,
by comparing the numerical values of the RMSE shown in Table 5, the location
accuracy obtained with the R-GDC is 8 centimetres smaller than those given
by the alternative methods. The CEP-95 instead shows that the dispersion of
estimates is larger, especially for the 6-th node.

This result is due to the fact that network is small and the number of
connections are not sufficient to distinguish LOS and NLOS links with the
proposed geometric test. To verify this argument we repeat the cooperative
positioning test described above with a network of NT = 9 targets.

In this scenario, the ratio between LOS and NLOS links is lower, and as
explained before, the scatter plot illustrated in Figure 48 shows that the R-GDC
method provides the most accurate estimates and with the least dispersion. For
instance, in Table 6 it is shown that the RMSE, CEP-50 and CEP-95 of the
R-GDC-DP with respect to the SDP-LOESS are 13%, 35% and 20% smaller.
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Fig 47. Scatter plot of a positioning test with cooperative methods utilising 7 UWB
wireless devices.

Table 5. Numeric results of the cooperative positioning test with 7 devices.

Target R-GDC - DP SDP - LOESS SDP - C
Location Accuracy (RMSE) [m]

5 0.35 0.44 0.49
6 0.33 0.21 0.21
7 0.48 0.66 0.79

Circular Error Probability (CEP) 50% [m]
5 0.34 0.43 0.49
6 0.20 0.15 0.14
7 0.34 0.64 0.80

Circular Error Probability (CEP) 95% [m]
5 0.48 0.56 0.57
6 0.63 0.32 0.28
7 0.92 0.90 0.85
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Fig 48. Scatter plot of a positioning test with cooperative methods utilising 13

UWB wireless devices.

Table 6. Numeric results of the cooperative positioning test with 13 devices.

Metric R-GDC - DP SDP - LOESS SDP - C
RMSE [m] 0.29 0.33 0.40
CEP-50 [m] 0.16 0.27 0.37
CEP-95 [m] 0.46 0.56 0.63
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7.4 Summary and discussions

In this chapter we described and show the results of non-cooperative and
cooperative positioning experiments performed at the University of Oulu with
commercial UWB devices. The network was deployed in an environment
characterised by LOS and NLOS radio propagation channels.

A measurement campaign for the characterization of the ranging statistics
was carried on, and the results revealed that the distance measurements were
affected by bias. Moreover, it was verified that the arrival paths are governed by
a modified Saleh-Valenzuela model.

The results of the positioning tests showed that the proposed DC-based
non-cooperative and the R-GDC - DP cooperative techniques provide the best
results with respect to the proposed alternatives.
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8 Conclusions and future work

In a broad sense, the aim of the thesis was to study distance-based positioning
techniques for wireless networks. We assumed scarce ranging information,
unknown statistics and focused on a non-Bayesian non-parametric approach,
namely a WLS optimisation problem.

The thesis comprises several theoretical and algorithmic contributions, and
amongst all of them, we highlight the studies of cooperative networks. Specifically,
the error analysis shown in Chapter 4 revealed important insights into the nature
of the node uncertainty and the effect of coupling between cooperative nodes.
The derivation of the equivocation matrix, which in a general sense can be
considered the uncertainty due to cooperation with other target nodes, gave us a
tool to understand the impact of inserting a measurement link or a new anchor.

Chapter 6 was fully dedicated to the development of a low-complexity and
scalable cooperative positioning algorithm. We showed that the non-convex
optimisation problem used in the maximum likelihood formulation of positioning
can be effectively solved via continuation methods. Several quantities, including
Gradient, Hessian, smoothing parameter bounds and weights were derived in
closed-form so as to minimise the overall computational complexity, which was
shown as O(CRN

2).
In addition to the above, the thesis includes other relevant contributions. In

Chapters 3 and 4 we derived

1) The closed-form expression of the WLS gradient and Hessian

2) The equivalence between the WLS and the ML estimator

3) The consistency of a ML estimator

4) A hybrid-bound for the MSE in low SNR régime.

These results can be generally utilised in both theoretical and algorithmic studies
related to positioning. For instance, novel Newton based optimisation methods
can benefit from the closed-form expression of the WLS gradient and Hessian,
whereas new analytical studies can exploit the results in 2)-4).

In Chapters 5 and 6, we proposed:
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5) The DC principle for non-cooperative positioning

6) The WC-DC algorithm that is very-low complexity and robust to bias
errors

7) The NLS-DC algorithm that has the best performance amongst all tested
non-cooperative techniques in NLOS scenarios

8) Dispersion weight that captures the effect of noise under the assumption of
bias-free samples

9) A geometric-based bias detection.

Finally, in Chapter 7 we offered the results of a non-cooperative and a cooperative
positioning test performed at the Centre for Wireless Communications and
demonstrated that:

10) The DC-based algorithms provide an average accuracy of 0.3 meters

11) The R-GDC with the dispersion-penalty weight component provides an
average accuracy of 0.27 meters in a large network.

Based on these results, several directions can be followed for future analysis,
design and development works. For instance, the proposed CRLB offers a general
framework for studying the fundamental limits to the MSE of a distance-based
positioning estimator in realistic environments. In fact, the novel expressions are
derived for generic ranging error distributions, which can be empirically obtained
from measurement campaigns. This provides more flexibility and correctness to
the analysis of a positioning problem in a realistic environment.

Based on the study of the information coupling, novel analysis and design
strategies can be developed. For instance, we showed that anchors can be
strategically placed in the network in order to decouple the information and,
therefore, minimise the average location accuracy of all nodes. This result can
be used to develop planning methods that determine a priori, where and how
many anchors are needed to guarantee a minimum location error.

Yet another future work is envisioned on the basis of the DC principle. In
the thesis we proposed an application to non-cooperative networks with the
assumptions that the target is inside the convex-hull of the anchors. Although
many application scenarios can be related to this system model, the proposed DC

188



principle is not general yet. Therefore, the first step is to relax the assumption
on the location of the target, and following, to develop a generalised technique
to cooperative positioning. Incidentally, in [157] WC-DC like algorithm was
proposed, which links to the DC principle with the fact that the target location is
computed as the weighted average of the anchor nodes, with the weights derived
from null-space of a matrix related to the angle kernel. DC-based cooperative
positioning can instead exploit recent results on POCS-based localisation methods
[83, 158], from which the initial points used to derive the angle-kernel and the
contraction vector can be obtained.

Finally, we conclude with a farther vision of the follow-up work. As mentioned
in the introduction of thesis, positioning can be intended also as semantic
localisation, e.g. “I am at home”, “I am in the office”, etc. In this case, the
objective is to determine not coordinates but pre-defined “location-profiles” from
heterogeneous and not necessarily physical measurements. The author foresees
that such a problem can be addressed with a localisation method defined on
a lattice, where each node is associated to a location-profile and defined in a
multidimensional space. In this regard, the algorithms can be formulated as
integer programming problems, where GDC methods can be applied [71].
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Appendix 1 Algorithm Pseudo-Codes

DC-WC Pseudo-code

Algorithm 1 WC-DC localization

1: Get the matrix D̃ ∈ RN×N ;
2: if BD 6= ∅ then
3: ~̂z0 ← 1

Nv

Nv∑
i=1

pBDi ;

4: else

5: Solve ~̂z0 ← arg min
ẑ∈Rη

NA∑
i=1

(d̃2
i − d̂2

i )
2;

s.t. ẑ ∈ C(PA)
6: end if
7: Ω̂← O([PA; ~̂z0]);

8: Solve ρ̂← arg min
ρ̂∈RNA

ρ̂ Ω̂ ρ̂T;

s.t. d̃i + ρi ≤ 0∀i,
9: [ωdc]i ← ρ̂i/d̃i;

10: ẑ ← ωdcPA.

To evaluate the computational complexity of the WC-DC algorithm we
consider the most relevant operations: a) the calculation of the initial point (line
2-line 6) and b) the estimation of the contraction vector ρ̂ objective function
(line 8). If the feasibility region BD is not empty, then the cost of line 3 can be
neglected since the intersection points pBDi can be computed in closed-form.
On the other hand, if BD is empty the optimization problem can be solved as
in equation (194), which implies a complexity of the order O(N3

A) (size of the
linear system corresponding to the interior point method). The estimation of the
contraction vector also involves a quadratic programming, with a computational
complexity of the order O(N3

A).

203



NLS-DC Pseudo-code

Algorithm 2 NLS-DC localization

1: Get the matrix D̃ ∈ RN×N ;
2: if BD 6= ∅ then
3: ~̂z0 ← 1

Nv

Nv∑
i=1

pBDi ;

4: else

5: Solve ~̂z0 ← arg min
ẑ∈Rη

NA∑
i=1

(d̃2
i − d̂2

i )
2;

s.t. ẑ ∈ C(PA)
6: end if
7: Ω̂← O([PA; ~̂z0]);

8: Solve ρ̂← arg min
ρ̂∈RNA

ρ̂ Ω̂ ρ̂T;

s.t. d̃i + ρi ≤ 0∀i,

9: ẑ ← arg min
ẑ∈Rη

NA∑
i=1

(d̃i − ρ̂i − d̂i)2.

Similar to the WC-DC algorithm, the computational complexity of the NLS-
DC technique can be computed from the relevant operations: a) the calculation
of the initial point (line 2-line 6), b) the estimation of the contraction vector
ρ̂ objective function (line 8) and c) the minimization of the modified WLS
objective function (line 9). Thus, the overall cost can be estimated in the order
O(N3

A).
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R-GDC Pseudo-code

Algorithm 3 R-GDC localization

1: Get the matrices D̃ ∈ RN×N , W ∈ RN×N ;
2: Set the Stop-Criteria χZ = 10−8, χF = 10−8 and TMAX = 51;
3: λ(1) ←

√
π

2 max
ij∈E

d̃ij ;

4: K ← 5;
5: ~̂z← rand(NTη, 1);

6: Ts ← dTMAX/Ke;
7: for k = 0 to K do
8: λ← λ(1) (K−k)

K ;
9: t← 0;

10: H̃
−1

λ ← I; (approximation of the Hessian inverse)
11: repeat
12: t← t+ 1;
13: Evaluate ∇~̂z〈fR〉λ(~̂z);

14: δ(t)
z ← −H̃

−1

λ · ∇~̂z〈fR〉λ(~̂z(t−1)); (search direction)
15: r ← 0;
16: ~̂zold ← ~̂z;
17: repeat
18: r ← r + 1;
19: Select the step-length αz; (backtracking method)
20: ~̂z← ~̂zold + αzδz;
21: ∆f ← 〈fR〉λ(~̂z)−〈fR〉λ(~̂zold);
22: until ∆f < 0;
23: Update H̃

−1

λ ; (Shermam-Morrison-Woodbury formula)
24: ∆z ← ‖~̂z−~̂zold‖F;
25: until (∆z ≤ χZ) && (t≥Ts) && (abs(∆f ) ≤ χF )

26: end for

To evaluate the computational complexity of the R-GDC algorithm we
consider the most relevant operations: a) the calculation of the search direction
(line 14), b) the evaluation of the gradient and the objective function (line 13 and
line 21) and c) the update of the inverse Hessian approximation H̃λ ∈ RNV ×NV

(line 23). Thus, the cost of the R-GDC method can be estimated as
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CR-GDC(NV ; t) ≈
K∑
k=1

tk(N2 (N − 1)C2︸ ︷︷ ︸
line 13

+2N2
V −NV︸ ︷︷ ︸

line 14

+ 6N2
V︸︷︷︸

line 23

) + r(tk) N2 (N − 1)C1︸ ︷︷ ︸
line 21

,

=
1

2

K∑
k=1

tk
(
(N2−N)C2+16N2

V−2NV
)
+r(tk)(N2−N)C1, (283)

where r(tk) is the number of iterations in the inner loop obtained with λ(k),
C1 and C2 are the costs for the calculation of the Hypergeometric functions of
equations (207) and (222), respectively.
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LM-WLS Pseudo-code
Algorithm 4 LM-WLS localisation

1: Get the matrices D̃ ∈ RN×N , W ∈ RN×N
2: Set the Stop-Criteria χZ = 10−8, χF = 10−8, χg = 10−8 and
TMAX = 51;

3: Set the initial estimate Ẑ← Ẑ0 ∈ RNT×η

4: repeat
5: Evaluate the vector function ~̂F
6: Evaluate the Jacobian J ~̂p

(
F̂
)

7: Evaluate the magnitude of the gradient εg ← JT
~̂p

(
F̂
) ~̂F

8: repeat
9: r ← r + 1;

10: Estimate the descending step ∆z

11: ∆f ← fR(Ẑ + ∆z)− fR(Ẑ);
12: until ∆f < 0

13: Ẑ← Ẑ + ∆z;
14: until (∆z ≤ χZ) && (t≥TMAX) && (|∆f | ≤ χF )&& (εg < χg)

The computational complexity of the LM-WLS method is determined by:
a) the total number of flops for the evaluations of the objective function, the
Jacobian and the gradient magnitude and b) the number of elementary operations
required by the estimation of the descending step. In modern LM algorithm the
latter is given by a constrained optimization problem known as the trust-region
sub-problem, which can be solved with the aid of a pre-conditioned conjugate
gradient.

Finally, the computational complexity of the algorithm can be computed as

CLM−WLS(NV ;t) ≈ t(
N2
V

η2 +NV
η (2NA−1)︸ ︷︷ ︸

line5+line6

+
N3
V

η2 +
2N2

V

η (NA−1)+NV︸ ︷︷ ︸
line7

) +

r(t)( N3
V︸︷︷︸

line10

+ N
2 (N − 1)︸ ︷︷ ︸

line11

) (284)

= t(
N3
V

η2 + (
N2
V

η2 + NV
η )(2NA − 1) +NV ) +

r(t)(N3
V + N

2 (N − 1)).
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SMACOF Pseudo-code

Algorithm 5 SMACOF localization

1: Get the matrices D̃ ∈ RN×N , W ∈ RN×N
2: Set the Stop-Criteria χZ = 10−8, χF = 10−8 and TMAX = 51;
3: Compute HS ∈ RN×N as

[HS ]ij ,


N∑
q=1

w2
iq − w2

ii, if i = j,

−w2
ij , i 6= j;

4: Compute H†S ;
5: P̂← [a1; · · · ; aNA ; Ẑ0] ∈ RN×η;
6: t← 0;
7: repeat
8: t← t+ 1;
9: P̂old ← P̂

10: Compute AS ∈ RN×N as

[AS ]ij =


N∑
i=1
i6=j

[AS ]ij , i = j,

w2
ij ·

d̃ij
‖p̂i − p̂j‖F

, i 6= j;

11: P̂← H†S ·AS · P̂old;
12: ∆P ← ‖P̂− P̂old‖F;
13: ∆f ← fR(P̂)−fR(P̂old);
14: until (∆P ≤ χZ) && (t≥TMAX) && (abs(∆f ) ≤ χF )

The complexity of the SMACOF algorithm is determined by: a) the cal-
culation of the pseudo-inverse H†, the update P̂ and c) the evaluation of the
objective function. Specifically,

CSMACOF(M ; t) ≈ N3︸︷︷︸
line4

+t

ηN(2N − 1)︸ ︷︷ ︸
line10

+ N
2 (N − 1)︸ ︷︷ ︸

line11

 (285)

= N3 + t
(
N2(2η + 1

2 )−N(η + 1
2 )
)
.
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