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Abstract

In this thesis we discuss some of the anomalies present in systems with long-range interac-

tions, for instance negative specific heat and negative magnetic susceptibility, and show how

they can be related to the convexity properties of the thermodynamic potentials and non-

equivalence of ensembles. We also discuss the possibility of engineering long-range quantum

spin systems with cold atoms in optical lattices to experimentally verify the existence of non-

equivalence of ensembles. We then formulate an expression for the density of states when

the energy and magnetisation correspond to a pair of non-commuting operators. Finally we

analytically compute the entropy s(ε,m) as a function of energy, ε, and magnetisation, m, for

the anisotropic Heisenberg model with Curie-Weiss type interactions. The results show that

the entropy is non-concave in terms of magnetisation under certain circumstances which in

turn indicates that the microcanonical and canonical ensembles are not equivalent and that

the magnetic susceptibility is negative. After making an appropriate change of variables we

show that a second-order phase transition can be present at negative temperatures in the

microcanonical ensemble which cannot be represented in the canonical ensemble.
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Opsomming

In hierdie tesis bespreek ons van die onverwagte eienskappe wat sisteme met lang afstand wis-

selwerkings kan openbaar, byvoorbeeld negatiewe spesifieke warmte en negatiewe magnetiese

suseptibiliteit. Ons dui ook die ooreenkoms tussen hierdie gedrag en die konveksiteit van

die termodinamiese potensiale en nie-ekwivalente ensembles aan. Hierna bespreek ons die

moontlikheid om lang afstand kwantum spin sisteme te realiseer met koue atome in ’n optiese

rooster. Daarna wys ons hoe dit moontlik is om ’n uitdrukking vir die digtheid van toestande

te formuleer vir sisteme waar die energie en magnetisasie ooreenstem met operatore wat nie

met mekaar kommuteer nie. Uiteindelik bepaal ons die entropie, s(ε,m), in terme van die

energie, ε, en magnetisasie, m, vir die anisotropiese Heisenberg model met Curie-Weiss tipe

interaksies. Die resultate wys dat die entropie onder sekere omstandighede nie konkaaf in

terme van magnetisasie is nie. Dit, op sy beurt, dui aan dat die mikrokanoniese en kanon-

iese ensembles nie ekwivalent is nie en dat die magnetiese suseptibiliteit negatief kan wees.

Nadat ons ’n toepaslike transformasie van veranderlikes maak, wys ons dat ’n tweede orde

fase-oorgang by negatiewe temperature kan plaasvind in die mikrokanoniese ensemble wat nie

verteenwoordig kan word in die kanoniese ensemble nie.
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CHAPTER 1

Introduction

Long-range interacting systems are widely present in nature, with self gravitating systems [1],

non-neutral plasmas [2], free electron lasers [3] and many more [4] [7] [10]. For this reason alone

it is essential that we include these systems in the formulation of equilibrium thermodynamics.

The majority of research within statistical physics on systems with long-range interactions

consider situations where gravity is the dominant interaction between constituent particles.

The reason for this is simply because in systems where interactions are electromagnetic of

kind, screening between positive and negative charges takes place so that interactions of finite

range approximate these systems well. In gravitating systems this is of course not the case

since masses are non-negative.

In general, equivalence of ensembles holds for all systems with short-range interactions.

The proof of this consists of partitioning a system into smaller subsystems and then in the

thermodynamic limit neglecting the boundary interactions of the various subsystems. In

systems with long-range interactions this is not always the case since the boundary effects

cannot be neglected because of the long-range nature of the interactions. This gives rise

to various anomalies unique to systems with long-range interactions, for example negative

specific heat, negative magnetic susceptibility and non-equivalence of ensembles.

The reason why we are interested in studying different statistical ensembles is because they

correspond to different physical situations, realised for example in solid state physics and cold

atomic physics. It would therefore be interesting to study the same long-range model in

these different physical situations and compare the results, since the different ensembles may

be non-equivalent for systems with long-range interactions. In order to do this we need

to consider a model that can be realised in different physical situations that correspond to

different statistical ensembles.

To achieve this goal we will consider a quantum spin system with long-range interactions.

This system should be realisable with cold atoms in optical lattices, where the appropriate

statistical ensemble is the microcanonical one. During this thesis we will calculate the entropy

of this system by taking into account that the energy and magnetisation correspond to a pair

of non-commuting operators. Historically, the model we will consider has been studied in the

canonical setting, so that the canonical results are known [5]. This will enable us to compare

the results obtained in the different statistical ensembles. Although the model we will consider

provides the simplest example of a long-range quantum system that can be realised in the

1
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1. Introduction 2

microcanonical setting, the idea is to illustrate the differences between the two statistical

ensembles for these types of systems in general.

One of the ideas of this thesis is to add to the number of exact calculations of long-

range interacting quantum systems in the microcanonical ensemble. These calculations do

not appear frequently in the literature. The paper by Pflug [6] on gravitating fermions is a

notable example where negative specific heat is found for a certain energy range. For classical

long-range systems, there are numerous microcanonical results reported, for a review on this

see [4] [7] [10]. The reasons for the lack of results reported for long-range quantum systems

in the microcanonical setting are twofold. Firstly, calculating the microcanonical density of

states is generally more difficult than computing the canonical partition function. Secondly,

it is not yet well established how to define a microcanonical density of states in terms of two

variables that correspond to non-commuting operators, which can be the case for quantum

systems.

Throughout the first four chapters we will justify our interest in studying systems with

long-range interactions by discussing some of the unexpected behaviour that might occur in

these systems. We also show the relationship between these anomalies and the convexity

properties of the thermodynamic potentials. During chapter 5 we will propose a possible

experimental concept where long-range quantum spin systems can be engineered with cold

atoms in optical lattices and studied to add to the limited knowledge of these systems. In

chapter 6 we introduce the model we are considering, which is an extension of the model

studied in [26], and proceed to the exact solution of the system in chapter 7 and 8. The

details of the formulation and calculation in chapter 7 and 8 are quite technical in nature.

The results will be discussed in chapter 9 , which show that the canonical and microcanonical

ensembles are not equivalent for certain parameters of the model and that the magnetic

susceptibility of the system can be negative. Additionally we show that phase transitions

may occur at negative temperatures in the microcanonical setting, while in the canonical

setting the temperature is usually assumed to be strictly positive.

These results imply that quantum spin systems can exhibit behaviour in the cold atomic

setting that can not be illustrated in a canonical condensed matter setting. Therefore using

results obtained in the canonical ensemble to try and predict the behaviour of long-range

systems engineered with cold atoms in optical lattices will be insufficient. We conclude the

thesis with a discussion of the main results and provide an outlook for possible research that

could extend on this thesis.
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CHAPTER 2

Long-range interacting systems

Systems with long-range interactions display certain characteristics that seem unexpected.

Throughout this chapter I will mention and give some examples of these anomalies and then in

chapter 3 and 4 explain the physical reason why these anomalies occur. Before we get started

we should define how we distinguish between short- and long-range interactions properly. The

widely accepted [10] [7] definition is that for a interaction potential between two particles that

decay proportionally to 1/rd+α with distance r, the system can be classified as long-range

if −d ≤ α ≤ 0 and short-range if α > 0, where d is the dimension of the system. This

definition might seem arbitrary at this stage but in section 3.2 the reason for this distinction

will become clear.

2.1 Specific heat and magnetic susceptibility

The existence of negative specific heat can be declared as the most unintuitive characteristic

of long-range interacting systems in my opinion. Indeed pumping heat into a system in order to

lower its temperature does not seem to be physically realisable, but for long-range interactions

it is. This concept has long been known in astrophysics [11]. The process relates for instance

to stars who have used up their nuclear fuel and radiate energy to contract and heat up [12].

The relation between negative specific heat and statistical mechanics was proposed much

later, when Thirring showed in [12] that in the region where the microcanonical specific heat

of self-gravitating gas spheres [13] is negative, the statistical ensembles are non-equivalent.

Specific heat may become negative close to a phase transition. For a gravitational system

this corresponds to the transition between a ’clustered’ and a ’gas’ phase. Although the

presence of negative magnetic susceptibility may not seem as spectacular as negative specific

heat it can be regarded as the magnetisation equivalent to it, which is a distinct property

of systems with long-range interactions. As with specific heat, magnetic susceptibility may

become negative close to a phase transition. In magnetic systems, this phase transition is

between a ferromagnetic and paramagnetic phase. Both these quantities can only be negative

in the microcanonical ensemble, as will be shown in chapter 4. This fact indicates that the

microcanonical and canonical ensembles can in some circumstances be non-equivalent.

3
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2. Long-range interacting systems 4

Figure 2.1: An example of a system trapped in a quasi-stationary state for some
order parameter. Here the QSS pointer indicates the quasi-stationary state and
the equilibrium state is indicated by the equilibrium pointer. In the figure the
size of the system is different for every line, with the green dotted line being the
smallest and the black solid line being the largest. Note that the equilibration
time diverges with system size and the system is trapped in the quasi-stationary
state for a large fraction of the equilibration time when the system is large.

2.2 Quasi-stationary states

Recent results for systems with long-range interactions indicate that equilibration time

might diverge with system size. Not only does the equilibration time diverge, but the system

appears to be trapped in quasi-stationary states. These quasi-stationary states can easily

be misinterpreted as equilibrium states when doing experiments. In figure 2.1 a typical ex-

ample of a quasi-stationary state is shown, where the system is trapped in a state before it

equilibrates to the actual equilibrium state. Examples of this phenomenon are the formation

of binary stars and globular clusters in astrophysical systems where the equilibration time

toward gravothermal collapse is much larger than the age of the universe [14]. It should be

noted that equilibration times for short-range systems might also be large. A recent exper-

iment [15] illustrated that, even for a system with short-range interactions, no equilibration

was observed on the time scale of the experiment. Although the equilibration time here is

large, it converges to a finite value in the large system limit. This is an important property we

need to acknowledge when discussing possible experimental realisations in chapter 5. We are

crossing into the domain of out-of-equilibrium dynamics of long-range systems here, which we

will not discuss in any detail. For the remainder of the thesis we will discuss Boltzmann-Gibbs

equilibrium statistical mechanics.

2.3 Non-equivalence of ensembles

The previously mentioned anomalies are striking physical properties of long-range systems.

The presence of these irregularities are related to non-equivalent ensembles. This relation
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2. Long-range interacting systems 5

will be discussed in chapter 4. In short-range interacting systems or long-range tempered

interactions, in the thermodynamic limit, the different statistical ensembles are equivalent.

This is proved in [16]. The significance of this is that no matter in which ensemble the system

is prepared, only one of the thermodynamic potentials has to be calculated (even if it is not

in the appropriate setting) since the other can be recovered by means of the Legendre-Fenchel

transform, discussed in section 4.1. This is a very convenient property, since in most cases

the microcanonical entropy is harder to compute than the canonical free energy. For systems

with long-range interactions this statement and proof do not hold. This property was at first

regarded by skeptics as a flaw in the formulation of equilibrium statistical mechanics, but since

then it has been shown that the existence of non-equivalent ensembles is a physical property

of the setting that the system is prepared in. This statement can be clarified by the fact

that non-equivalent ensembles have non-equivalent equilibrium macrostates [22]. Therefore

if for instance we have a long-range system with fixed energy and particle number, it could

equilibrate to an equilibrium macrostate that does not have a corresponding macrostate for

a system with fixed particle number at any temperature.
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CHAPTER 3

Extensivity and additivity

In thermodynamics, additivity is crucial for a number of fundamental proofs (for instance

proving equivalence of ensembles for short-range systems in the thermodynamic limit). In

this chapter we will show, by an example, that systems with long-range interactions are not

necessarily additive even if they are extensive and that systems with short-range interactions

are usually additive when they are extensive. When making claims about extensivity and

additivity we must be careful since one does not imply the other. Before we go any further

we should define what is meant by extensivity and additivity.

A physical quantity is said to be extensive if it is proportional the size of the system [8]. In

thermodynamics, entropy, energy and free energy are assumed to be extensive. Pressure and

temperature, however, are not extensive (intensive) since these parameters are not dependent

on system size.

Additivity is a property of a system that states that when you divide a system into

macroscopic parts, the total energy is equal to sum of the energies of the macroscopic parts

[8]. Therefore the boundary effects of the macroscopic subsystems are negligible. The energy

for an arbitrary system is given by U = U1 + U2 + Uint, where U1 and U2 are the energies of

the two macroscopic parts and Uint is the interaction energy between the two parts (boundary

effects). If the system is additive we know that U1,U2 � Uint so that U ≈ U1 + U2 in the

thermodynamic limit.

From the definitions given above it is clear that the two properties are related, but not

equivalent. This is a common misperception in the statistical physics community. It can

be said that additivity usually implies extensivity, but a stronger statement cannot be made

since extensivity may be dependent on the scaling factor that is implemented. Systems that

are non-extensive, but that can be made extensive (or vice-versa) by introducing a scaling

factor can be referred to as pseudo-extensive. A well known example of this for mean-field

systems is the so-called Kac prescription, which will be discussed in chapter 3.2.

Long-range systems are not additive, even if they are extensive (or pseudo-extensive). This

is because if you divide a long-range system into macroscopic parts and consider the thermo-

dynamic limit, the interactions between neighbouring subsystems cannot be neglected. This

comes from the long-range nature of the interactions between the particles of the subsystems.

It differs from short-range interactions where the boundary interaction become negligible in

the thermodynamic limit.

6
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3. Extensivity and additivity 7

Figure 3.1: 2N spin-1 particle lattice system. The spins in system 1 (left hand
side) are all pointing upwards and the spins in system 2 (right hand side) are all
pointing downward.

3.1 Examples

To illustrate these concepts, consider the Ising model on a lattice consisting of 2N particles.

This example and explanation is similar to the discussion in [7]. To make it even more

simple consider a configuration where the N particles on the left are all pointing up and the

N particles on the right are all pointing down. Also let us consider the system in a zero

external magnetic field with all the lattice sites assumed to be the same. This configuration

is illustrated in figure 3.1. The Hamiltonian of the system is given by

H = − J

CN

2N∑
i=1

2N∑
j=1

SiSi+j
rαij

(3.1)

Here i, j ∈ {1, · · · , 2N} and i 6= j and S = ±1 depending if the spins are pointing up (+) or

down (-). The denominator in the sum, rij , is the distance between particles at sites i and

j, with α the rate at which the interaction strength decays. If 0 ≤ α ≤ 1 we have long-range

interactions and if α > 1 we have short range interactions according to the definition above.

The lattice sites are numbered from 1 to 2N and are periodic so that i+ 2N = i. The factor

1/CN is the normalization factor and is responsible for making the model extensive. The

choice of this normalization factor will depend on the interaction strength and the exact α

dependence of this factor is shown in section 3.2. We will consider two different scenarios,

one with mean-field type interactions and one with nearest-neighbour type interactions (so

that the sum is only over nearest neighbours). These are two extreme cases of long- and

short-range interactions respectively. We split the system into two N -particle systems labeled

1 and 2 as in figure 3.1.
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3. Extensivity and additivity 8

3.1.1 Mean-field interactions

For the mean-field type interactions (α = 0), each particle is interacting with every other

of the 2N − 1 particles with equal strength so the Hamiltonian can be written as

H = − J

2N

2N∑
i=1

2N∑
j=1

SiSi+j = − J

2N

(
2N∑
i=1

Si

)2

. (3.2)

where CN = 1
2N has already been chosen. The total energy for the configuration in figure 3.1

is therefore given by

U(1 + 2) = 0, (3.3)

since there are an equal number of spins pointing up and down. But if we consider systems

one and two separately we find that system one has energy U(1) = −JN
2 and system two also

has energy U(2) = −JN
2 so that the sum of the energies of the system are

U(1) + U(2) = −JN. (3.4)

Notice that this expression is valid in the thermodynamic limit so we can clearly confirm the

system is not additive,

U(1 + 2) 6= U(1) + U(2), (3.5)

but extensive. Of course this was expected since the boundary effects here are not negligible

3.1.2 Nearest-neighbour interactions

If we now consider the short-range case where each particle only interacts with its nearest-

neighbour (r = 1), we can write the Hamiltonian as

H = −J
∑
〈i,j〉

SiSj . (3.6)

with CN = 1. The triangular brackets in the sum denote the sum over all pairs of nearest

neighbours. In this case our notation is unconventional considering the original Hamiltonian

and deserves some explanation. Because we only consider nearest-neighbour interactions on

the two-dimensional square lattice sketched in figure 3.1 we exclude the interaction distance

term 1
rαij

since the interaction distance is one for nearest neighbours. It is straightforward to

verify that the energy of the total system is given by

U(1 + 2) = −8JN + 10J
√
N, (3.7)
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3. Extensivity and additivity 9

while the energies of the subsystems are given by U(1) = U(2) = −4JN + 4J
√
N , so that

U(1) + U(2) = −8JN + 8J
√
N. (3.8)

If we rewrite these expressions as

U(1 + 2) = −8JN

(
1− 5

4
√
N

)
, (3.9)

U(1) + U(2) = −8JN

(
1− 1√

N

)
, (3.10)

it is now clear that in the limit, N →∞, U(1+2) ≈ U(1)+U(2) ≈ −8JN . Hence the system

is additive. Notice here that the 1/N factor is not present in the Hamiltonian since the energy

is extensive and scales as N without this factor. In the following section, we will discuss the

choice of the scaling factor and why it is necessary for the energy to scale as N .

Although the interactions chosen in this example were two extreme cases of long- and

short-range interactions, it can be shown in general that systems with short-range interactions

are additive and systems with long-range interactions are not necessarily since the interaction

energy between subsystems might scale with the system size. The unique properties of systems

with long-range interactions, that were mentioned in chapter 2, are due to this non-additivity

property.

3.2 Scaling factor and the Kac prescription

In the preceding example there was a scaling factor of 1/N present in the Hamiltonian for

the long-range case which ensured that the energy was extensive and scaled as N . This 1/N

factor was first introduced by Baker [17] for the mean-field Ising model.

To explain the choice of the scaling factor, let us first explain what the aim is when

introducing such a factor. Consider a repulsive potential that is exponentially decreasing

with interaction distance,

φ(x) = −αe−γx. (3.11)

If we take the limit γ → 0 (mean field type interactions) the energy of the system is not

extensive and the usual thermodynamic potentials diverge in the thermodynamic limit. In

[18], Kac et al. show that if you however impose α = α0γ and consider the limit again, the

energy is extensive and the system exhibits a phase transition. This is commonly referred to

as the Kac prescription or Kac’s trick.

The trick mentioned above is analogous, although the limit is not the same, to the 1/N
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factor present in the Hamiltonian for the long-range case. The reason why the system can in

principle exhibit a phase transition in this case has to do with the scaling of the energy. From

the formulation of equilibrium statistical mechanics, the density of states grows exponentially

with system size, which in turn implies that the entropy (which is the logarithm of the density

of states) scales linearly with system size and must therefore be extensive. This statement is

true regardless of the nature of the interactions.

Now consider the expression for the free-energy F = U−TS. The temperature is intensive,

it does not scale with system size. In order to observe a phase transition we need the energy,

U , and entropy, S, to compete. Since the entropy is assumed to be extensive we need to scale

the energy so that it also scales linearly with system size. This is why in [18], Kac’s trick

caused the system to exhibit a phase transition and also why we need the 1/N factor for the

mean field case of the Ising model we considered.

Here we might wonder why there is no scaling factor for the nearest-neighbour case. It is

clear that the energy scales linearly with N without this prefactor but what about the cases

in between? Here the definition of long-range interactions becomes important. In order to

find the exact scaling properties of the system, consider the N particle Hamiltonian for the

Ising model on a one-dimensional periodic lattice,

H = − J

CN

 N∑
i=1

N−1∑
j=1

SiSi+j
jα

 , (3.12)

here the distance between interacting particles is simply j since the lattice is one-dimensional.

Now since SiSj = ±1,

− J

CN

N∑
i=1

N−1∑
j=1

1

jα
≤ H ≤ J

CN

N∑
i=1

N−1∑
j=1

1

jα
. (3.13)

If we consider the limit N →∞ we note

lim
N→∞

N−1∑
j=1

1

jα
→

∞, for 0 ≤ α ≤ 1,

k(α), for α > 1,
(3.14)

where k(α) is a constant independent of N . We see that if we want the energy to scale as N ,

we need the scaling factor CN to be constant in the short-range case. In the long-range case

this scaling factor is a function of N which depends on the parameter α.

The exact α dependence of CN in this case, as introduced in [20], can be computed in the
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3. Extensivity and additivity 11

N →∞ limit which gives

CN ∼


2α−1N1−α

1−α , for 0 ≤ α < 1,

lnN, for α = 1,

ξ(α), for α > 1,

(3.15)

where ξ is the Riemann zeta function. This scaling law is consistent with the definition of

long-range interactions given earlier. When the interactions are long-range, we can classify

the model as pseudo-extensive in terms of energy, i.e the model can be made extensive with

the correct choice of scaling factor. In the short-range case, the model is extensive in terms

of energy for a scaling factor that is independent of N .
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CHAPTER 4

Non-equivalence of ensembles

For short-range systems ensemble equivalence holds in the thermodynamic limit as discussed

in section 2.3. This is a property of systems that are additive and as shown in the previous

section, systems with long-range interactions are not necessarily additive. In this chapter

we will consider the relationship between the canonical free energy and the microcanonical

entropy and more specifically how this relationship is dependent on the convexity properties

of these thermodynamic potentials. To develop this idea, let us first consider the method of

recovering the different thermodynamic potentials from one another.

4.1 The Legendre-Fenchel transform

Before we show the relation between the thermodynamic potentials, we should first properly

define them. The microcanonical density of states for a N-particle system is given by

Ω(u) =

∫
δ(u−HN (x))dx,

while the canonical partition function is given by

Z(β) =

∫
eβHN (x)dx.

From these function we can calculate the entropy, defined as

sN (u) = ln Ω(u)

and the free energy, defined as

φN (β) = lnZ(β).

From these definitions of the microcanonical entropy, s, and the canonical free energy, φ, it

is straightforward to show that the free energy is related to the entropy by

φN (β) = − 1

Nβ
ln

∫
d(Nu) exp(−N [βu− sN (u)]) (4.1)

If we now consider the free energy in the thermodynamic limit, N →∞, this integral can be

approximated by Laplace’s method. This means that only the maximum of the exponent in

the integration interval will give a notable contribution to the integral. The free energy in

12
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4. Non-equivalence of ensembles 13

Figure 4.1: Graphic illustration of the Legendre transform. Since the entropy
and free energy are strictly concave in the case where the entropy is a strictly
concave, the Legendre transform is a mapping between the entropy and the free
energy.

the thermodynamic limit is therefore given by

βφ(β) = inf
u
{βu− s(u)} (4.2)

This is known as the Legendre-Fenchel transform. The Legendre-Fenchel transform geometri-

cally implies lowering a tangent with slope β onto the entropy curve and finding the u where

the curve and the tangent first meet. This is graphically represented in figure 4.1. From this

definition of the free energy it is clear that it is a concave function. It is tempting to try and

recover the entropy by performing a Legendre-Fenchel transform of the free energy,

βs(u) ∼ inf
β
{βu− φ(β)}, (4.3)

but as we will see in section 4.2 the entropy is not necessarily a concave function so that this

would not, in general, yield the correct result.

4.2 Convexity properties of the thermodynamic potentials

In figure 4.1 both the free-energy and entropy are strictly concave functions and performing

the Legendre transform recovers the correct function from the other. This is because the

Legendre transform is a one-to-one mapping here between the function and its family of

tangents at every point. Unfortunately this is not always the case.

Consider a system with long-range interactions that is not additive. The discussion in this

section is similar to the discussion in [7]. In this scenario a non-concave entropy is physically

realizable [7]. In figure 4.2 a non-concave entropy is shown. Note that if the system were

additive, we could split the system in two, at the phase with energy u1 and phase with energy
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Figure 4.2: Non-concave entropy and the corresponding free energy recovered by
the Legendre transform. The correct free energy is obtained by doing a Legendre
transform of the entropy, but doing a Legendre transform of the free energy only
recovers the concave envelope of the entropy. The states between u1 and u2 in
the entropy are not correctly recovered from the free energy.

u2, so that the energy between these phases will be given by the mixed phase,

u = ku1 + (1− k)u2, (4.4)

where k is the fraction of the phase u1 and (1 − k) is the fraction of phase u2. Since the

entropy is extensive and additive, it would then be the tangent between them (shown as the

dotted line in figure 4.2). If the system were additive this splitting up would correspond to

the correct entropy since it is maximal.

In the case of a non-concave entropy (solid line in figure 4.2) the correct free energy is

still obtained from the Legendre transform in the thermodynamic limit since (4.2) is always

valid, with the energy states between u1 and u2 being transformed to a single point βt. This

point will be a point of the free-energy function which corresponds to a discontinuous first

derivative. Note here that doing the Legendre transform of the free-energy only recovers the

concave envelope, s**, of the entropy and that s and s** are not the same [7].

At this stage it is useful to point out the properties of a system with a non-concave entropy,

apart from the non-equivalence of the thermodynamic potentials.

4.3 Negative specific heat

Although it may seem counter intuitive, the specific heat of a system with long range

interactions can be negative. This is counter intuitive in the sense that pumping energy into

the system will lower the temperature. In self-gravitating systems, this usually coincides with

a phase transition from a ’clustered’ to a ’gas’ phase [1]. The explanation as to how negative

specific heat relates to non-equivalence of ensembles was first discussed by Thirring [12] who

used the idea to account for the microcanonical negative specific heat found for self-gravitating

gas spheres by Lynden-Bell and Wood [13].
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Figure 4.3: Non-concave entropy with the region of negative specific heat between
ui and uf . Although the points between u1 and u2 correspond to the ensembles
being non-equivalent, only the points between ui and uf correspond the negative
specific heat since the curvature in this range is positive.

The curvature of the entropy as a function of energy is related to the heat capacity, Cv,

and temperature, T , by
∂2s

∂u2
= − 1

CvT 2
(4.5)

Now if we consider the non-additive system with non-concave entropy in figure 4.3 we note

that the curvature of s in the range {ui, uf} is positive, ∂2s/∂u2 > 0, and since T 2 > 0 this

implies that Cv < 0. This in turn implies that the specific heat cv = Cv/N is negative.

Here we see that the negative specific heat is a direct consequence of the non-concave

entropy, which in turn is related to the non-additivity. However in the canonical ensemble

the specific heat is given by
∂2φ

∂β2
= − cv

T 2
, (4.6)

where φ(β, n) = βf(β, n) is a concave function for fixed particle density n (in the thermody-

namic limit). Therefore cv > 0. The free-energy is always concave by definition.

4.4 Negative magnetic susceptibility

In the same way that the specific heat, cv, describes the response of the temperature in

terms of a change in energy, the magnetic susceptibility, χ, describes the response of the

magnetisation, m, in terms of a change in magnetic field, h. We would therefore expect the

magnetic susceptibility to be positive, so that the magnetization increases as the magnetic

field is increased. For the canonical ensemble the magnetic susceptibility, given by
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Figure 4.4: Non-concave entropy with the region of negative magnetic suscepti-
bility between −m∗ and m∗. Note here we consider m to be the only conserved
quantity so that the region of negative magnetic susceptibility is only determined
by the curvature of s(m).

χ(β, h) =
∂m(β, h)

∂h
≥ 0, (4.7)

is always positive. The proof of this, as shown in [21], follows from rewriting the magnetic

susceptibility as

χ(β, h) = − 1

β

∂2φ(β, h)

∂h2
(4.8)

and by noting φ(β, h) is a convex function ∂2φ(β, h)/∂h2 ≤ 0, so that χ(β, h) ≥ 0.

In the microcanonical ensemble this is not the case, here the proper magnetic susceptibility

[21] to consider is

χ(ε,m) =

(
∂h(ε,m)

∂m

)−1

=

(
∂s

∂ε

)2( ∂2s

∂m∂ε

∂s

∂m
− ∂s

∂ε

∂2s

∂m2

)−1

(4.9)

Note that the magnetic susceptibility is not only dependent on the curvature of the entropy in

terms of the magnetisation, m. This is due to the fact that energy, ε, and magnetisation are

conserved quantities. The same holds for the specific heat when the energy and magnetisation

are conserved. Although it is not sufficient to determine the curvature of the entropy when

making claims about the sign of the magnetic susceptibility, it is clear that the magnetic sus-

ceptibility in the microcanonical ensemble is dependent on the curvature in terms of internal

energy, ε and magnetisation, m.
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4.5 Macro state non-equivalence

In [22] Touchette proves, by following [23], that non-equivalence of the thermodynamics

potentials also corresponds to macro state non-equivalence. Therefore the equilibrium states

that are represented in the non-concave part of the entropy in figure 4.3, where u1 < u < u2,

are not represented in the canonical ensemble. Consider the non-concave entropy in figure

4.3 again. We can split the domain of the entropy in two parts, namely when the energy is

u < u1 or u > u2 and when the energy is u1 < u < u2. This corresponds to the domains

where the entropy is concave and non-concave respectively. These two domains also represent

the domains where there is macrostate equivalence and non-equivalence. There is also the

special case when the entropy is affine. The entropy is affine in terms of the variable u when

it can be represented as linear function in terms of u, s(u) = Au + C, where A and C are

independent of u. In this case we say the macrostates are partially equivalent. This is because

on the affine part of the entropy all the energy states transform to the same β. In figure 4.3

the points u1 and u2 transform to the same β since they have the same slope.

The physical meaning of non-equivalent macrostates is that if we were to prepare a long-

range system experimentally where we fix the particle number and fix the energy to a value

between u1 and u2 the system would equilibrate to a state that would not be present if we

prepared the same system at any temperature with fixed particle number since there is not

a one-to-one correspondence between the microcanonical and canonical macro states. This is

the basis of the possible experimental verification of non-equivalence of ensembles.

4.6 Thermodynamic convexity in small systems

Before concluding this chapter, it is worthwhile mentioning that the entropy can also be

non-concave for systems with short-range interactions close to a phase transition when doing

numerical simulations. This is however a finite size effect and it has been shown that by

increasing the system size, the convex part of the entropy approaches the concave envelope

of the convex part [24]. Therefore in small systems one has to be careful when talking about

non-equivalent ensembles because a non-concave entropy may well be just the signature of a

first-order phase transition, or might even disappear in the thermodynamic limit without a

phase transition occurring.

In [25], Gross proposes the following set of signatures for phase transitions of small sys-

tems in the microcanonical ensemble, that will be used throughout this thesis in the context

of infinite systems.
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(1) A single stable phase if the curvature is positive (strictly concave).

(2) First order phase transition if there is a region where the curvature is negative (’convex

intruder’).

(3) Second order phase transition if there is a line (for which the curvature is zero) where two

neighbouring phases become indistinguishable.

As discussed earlier, signature 2 corresponds to non-equivalent ensembles if the ’convex

intruder’ remains convex in the thermodynamic limit. If this ’convex intruder’ is simply

the sign of a phase transition or a finite size effect, it would converge to an affine region

or disappear in the thermodynamic limit. It should also be remarked that these signatures

of phase transitions are only valid for the curvature of the entropy in terms of extensive

parameters.
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CHAPTER 5

Experimental realization

Experimentally confirming non-equivalence of ensembles would mean preparing a model in a

microcanonical setting and verifying the existence of an equilibrium macrostate that does not

have a corresponding canonical macro state. Ideally the model we would like to prepare in

a microcanonical setting, should be analytically solvable. In this case, the comparison of the

experimental and analytical results would be possible. Following the suggestions in [26], a

promising model in this regard is the anisotropic Heisenberg model, which will be discussed in

chapter 6. Historically the anisotropic Heisenberg model was used to explain the behaviour of

spin chains connected to a heat bath, so that it should be treated in the canonical ensemble.

Recently it has been shown that this model can be engineered with cold atoms in an optical

lattice [27]. In this chapter we will first mention these optical lattices and then look at the

proposed possibilities of engineering long-range interactions and measuring the appropriate

parameters.

5.1 Cold atoms in optical lattices

Optical lattices consist of counter-propagating laser beams, creating a periodic potential

that can trap neutral particles at fixed lattice sites. When these particles are cooled they

congregate to the periodic potential minima which causes a crystal lattice like-structure, see

figure 5.1. Here the neutral particles are, for instance, analogous to electrons in naturally

occurring crystals. Studying optical lattices has two substantial advantages over studying

naturally occurring crystals or other condensed matter systems. Firstly these optical lattices

do not have the imperfections that occur in natural crystals and secondly the interactions

between particles are highly controllable. These optical lattices are therefore ideal ’quantum

simulators’ for studying condensed matter systems. After cooling these optical lattices the

particle number, energy and for certain cases the magnetisation are well conserved. The

appropriate setting is therefore the microcanonical one.

5.1.1 Long-range interactions

In [27], Micheli et al. show that using cold atoms or molecules with permanent electric or

magnetic dipole moments results in dipole-dipole interaction that decay with inter particle

distance as 1/r3. They also show that a model similar in nature to the one we will be

considering in chapter 6 can be engineered in these optical lattices. Alternatively, as shown

19
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5. Experimental realization 20

Figure 5.1: Illustration of a optical lattice with particles trapped by counter-
propagating laser beams creating a periodic potential. The figure on the right
shows the top view of the lattice structure.

in [28], interactions of a 1/r type can be achieved by inducing a dipole moment in atoms

that do not have a permanent dipole moment. Unfortunately with dipole-dipole interactions,

magnetisation is not conserved, which limits the verification of non-equivalence of ensembles

to trying to observe energy states that do not have corresponding temperature states.

5.2 Measurements

In the proposed experiments mentioned in section 5.1.1, the magnetisation is not a con-

served quantity under time evolution. This means that the magnetisation will not in general

approach an equilibrium value so that it is not a useful quantity to characterise an equilib-

rium state, since it will fluctuate. To circumvent this problem we could either map the spin

model to a lattice gas model, or we could maximize the entropy in terms of magnetisation so

that we only have the entropy in terms of energy. The latter of these options is discussed in

section 9.3. If we map the spin model to a lattice gas model, the magnetisation is mapped to

particle density. In optical lattice experiments particle density is well conserved. The lattice

gas equivalent to magnetic susceptibility is compressibility. Although this was not mentioned

in chapter 4, the compressibility can be negative for the microcanonical ensemble and this

also corresponds to non-equivalence of ensembles. An example of this is given in [29].

In section 2.2 we briefly mentioned the existence of quasi-stationary states in systems with

long-range interactions. This property can be an experimental obstacle, since we are interested

in measuring the energy and magnetisation of equilibrium states and not quasi-stationary

states. The optical lattice must therefore be kept intact longer than the equilibration time

needed for the system which, for long-range systems, might diverge with system size.
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CHAPTER 6

Model

In light of the discussion in chapter 5, we have a model that looks appropriate to experimen-

tally study non-equivalence of ensembles. In this chapter we will introduce this model and

the necessary assumption needed to make it analytically solvable.

6.1 The Curie-Weiss anisotropic quantum Heisenberg model

The model we are considering consists of N spin-1/2 particles, interacting via Curie-Weiss

type interactions. This means that each particle interacts with each of the other N − 1

particles at equal strength. The particles are also in the presence of an external magnetic

field, h, orientated in an arbitrary direction. h consists of the components h1,h2 and h3 in

the x,y and z directions respectively. The Hamiltonian of this system is given by

Hh = − 1

2N

N∑
k,l=1

(λ1σ
1
kσ

1
l + λ2σ

2
kσ

2
l + λ3σ

3
kσ

3
l )− h ·

N∑
k=1

σk, (6.1)

where σik is the ith component Pauli spin-1/2 operator acting on the kth factor of the tensor

product of N copies of the spin -1/2 Hilbert space. The constants λ1,λ2 and λ3 act as the

coupling constants in the x,y and z directions respectively. These coupling constants are

non-negative for the ferromagnetic case.

For the sake of convenience we can use the commonly adopted notation of writing the σ

operators as collective spin operators defined by

Si =
1

2

N∑
j=1

σij , (6.2)

with i ∈ {1, 2, 3}. The Hamiltonian can now be written as

Hh = − 2

N
(λ1S

2
1 + λ2S

2
2 + λ3S

2
3)− 2h · S (6.3)

6.2 Special values of the coupling constants

For certain values of the coupling constants the model reduces to important well known

cases. Firstly, when λ1 = λ2 = λ3, it yields the isotropic Heisenberg model. When λ1 = λ2

and λ3 = 0, it gives the Lipkin-Glick model (otherwise known as the XY-model). Finally
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when λ1 = λ2 = 0 it gives the Ising model. In [26], Kastner shows that in these cases (i.e.

λ1 = λ2), if the magnetic field is pointing in the z-direction, the Hamiltonian can be expressed

entirely in terms of the operators S2 and S3 so the model can be solved by straightforward

means. Additionally the exact expression for the canonical free energy for this model has

been computed [5], so that comparing results between the canonical and microcanonical cases

is possible.

6.3 Curie-Weiss type interactions

The choice of the Curie-Weiss type interactions is responsible for making the model an-

alytically solvable (see chapter 7). Although the Curie-Weiss type interactions cannot be

simulated in optical lattice experiments, it is well known that these type of interactions can

be seen as the limiting case of long-range interactions and that they exhibit much of the same

characteristics in terms of phase transitions [30] [31]. Thus we are well justified in think-

ing that if we have regions of negative specific heat or magnetic susceptibility for the model

with Curie-Weiss type interaction it may indeed also appear for the systems with interaction

potential decaying as 1/r3 or 1/r that can be engineered in optical lattices.
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CHAPTER 7

Microcanonical entropy

In this chapter we will discuss the formulation for the entropy in terms of internal energy, ε,

and magnetisation, m. From the entropy, s(ε,m), we can recover the free energy as a function

of inverse temperature, β, and magnetic field, h. The entropy in terms of internal energy

and magnetisation also contains the necessary information to recover the entropy in terms of

external magnetic field, h, and total energy, u, which will be done in section 9.3. After we

have formulated the entropy, we show that we can write this expression for the entropy in an

appropriate form that can be solved by asymptotic evaluation in the thermodynamic limit.

7.1 Formulation

If we want to compute the density of states for a state with energy ε and magnetisation

m, it is as simple as counting number of states, x, with energy ε̄(x) = ε, and m̄(x) = m.

Mathematically this is represented as

Ωclassical(ε,m) =
∑
x

δ∆(ε̄(x)− ε)δ∆(m̄(x)−m), (7.1)

where the summation is over phase space and ε̄(x), and m̄(x) are phase space functions. For

simplicity we assume the phase space is discrete. Here we see that if we pick a state with

energy ε̄(x) ∈ [ε −∆, ε] and m̄(x) is in the interval [m −∆,m] we add one to the sum. The

∆’s are small but arbitrary positive constants which can be seen as achievable experimental

resolution when measuring the energy and magnetisation. This regularisation also avoids

mathematical problems with delta functions. Consider that in the thermodynamic limit the

number of allowed energy states will be dense, so that for instance we can find a value of the

phase space function, ε̄(x) arbitrarily close to an allowed state ε for some x. But the phase

space functions do not necessarily have rational values. Now since there are infinitely many

real numbers (an uncountable set) on any interval on the real line and rational numbers are a

countable subset of these numbers, the density of states will be zero almost everywhere. This

problem is easily solved by adding an arbitrarily small delta regularisation.

When we consider quantum systems, the operators H0 and M will in general not commute

and therefore an eigenvalue of H0 will not have a unique corresponding eigenvalue of M . So

if you measure the magnetisation corresponding to the eigenvalue ε̄, you can get a number

of possible values of m̄, each with a certain probability. For one-dimensional subspaces, this
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probability is given by the overlap |〈ε̄|m̄〉|2. So how can we then define a physically reasonable

density of states? One suggestion is to pick an eigenvalue ε̄ and sum up all the probabilities

for finding an eigenvalue m̄. This is the idea behind the suggestion made by Truong [9] and

the corresponding density of states is then given by

ΩN (ε,m) =
∑
ε̄,m̄

Tr[PH0(ε̄)PM (m̄)]δ∆(ε̄− ε)δ∆(m̄−m), (7.2)

where PH0(ε̄) and PM (m̄) are the eigenprojections of the operators H0 and M with eigenvalues

ε and m respectively. The trace and eigenprojection formulation used here is the higher

dimensional equivalent to the overlap mentioned previously, therefore it gives the probability

of measuring an eigenvalue of ε̄ if given an eigenvalue of m̄. The corresponding entropy is

then given by

sN (ε,m) =
1

N
ln ΩN (ε,m). (7.3)

This entropy does not describe a system with fixed energy and magnetisation for finite sys-

tems since, as discussed earlier, the uncertainty principle resulting from the non-commuting

operators does not allow fixed values of ε and m. Our hope is however that in the thermo-

dynamic limit, N →∞, the corrections due to the commutators will vanish and the entropy

will converge to the description of a system with fixed energy ε and magnetisation m.

Although the formulation of the entropy described in (7.2) is intuitive, it is hard to compute

mathematically. Instead we will assume that in the large N -limit the operators commute and

therefore the eigenprojections in (7.2) are equal to one. We will also not implement the

∆-regularisation as used in the formulation and use unregularised Dirac delta functions and

later perform a mathematical trick to impose an artificial regularisation. The density of states

without this regularisation is then given by

ΩN (ε,m) = Tr

[
δ(ε− H0

N
)δ(m1 −

M1

N
)δ(m2 −

M2

N
)δ(m3 −

M3

N
)

]
. (7.4)

Note that in line with the argument about delta regularisation, this expression does not math-

ematically make sense since the density of states will be zero almost everywhere. Now if we

insert the factors exp[a(Nε−H0)], exp[b1(Nm1−M1)], exp[b2(Nm2−M2)] and exp[b3(Nm3−

M3)] in the trace the value of the density of states remains the same. This technique was

inspired by [26]. Combining these terms in the exponential and expressing the delta’s in their
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Fourier representation leads us to

ΩN (ε,m) =
N4

(2π)4
Tr

∫ ∞
−∞

dk

∫ ∞
−∞

d3l

exp[(a+ ik)(Nε−H0)]
3∏
j=1

exp[(bj + ilj)(Nmj −Mj)]

 .
(7.5)

This expression is still not well defined and in order to recover an expression that is reasonable

we now want to impose some artificial delta regularisation. Although this will not make sense

at the moment, consider the expression for the density of states above with the trace being

evaluated before the integration is performed

ΩN (ε,m) =
N4

(2π)4

∫ ∞
−∞

dk

∫ ∞
−∞

d3lT r

exp[(a+ ik)(Nε−H0)]

3∏
j=1

exp[(bj + ilj)(Nmj −Mj)]

 .
(7.6)

We claim that this imposes an artificial regularisation on the delta functions and that this

expression is mathematically well defined. To justify this I will not give any rigorous proof

but rather show that calculating the density of states in another manner will lead to the same

result.

7.2 Inverse Laplace transform

It is well known that the density of states can be computed by doing an inverse Laplace

transform of the canonical partition function. When doing the resulting integral in the large

N limit we have to be careful, because as shown in [32] if only the leading order terms are

considered this may lead to recovering only the concave envelope of the entropy. Touchette

does however show that this method is a viable option to calculate a non-concave entropy if

the integral in the large N limit is done properly. Consider the partition function,

ZN (β, h) = Tre−β(H0−h·M), (7.7)

now computing the inverse Laplace-transform by using Mellin’s inverse formula [33],

L−1{F (s)} = f(t) =
1

2πi
lim
T→∞

∫ a+iT

a−iT
estF (s)ds,

where a = Re(s), gives

ΩN (ε,m) = L−1{Z(β, h)}
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=
1

(2πi)4

∫ a+i∞

a−i∞
d(Nβ)eNβε

∫ b+i∞

b−i∞
d3(−Nβh)e−Nβh·mTr

[
e−βH0+βh·M

]
=
−N4

(2π)4

∫ a+i∞

a−i∞
d(β)

∫ b+i∞

b−i∞
d3(h̃)Tr{exp

[
β(Nε−H0) + h̃ · (Nm−M)

]
} (7.8)

=
N4

(2π)4

∫ ∞
−∞

dk

∫ ∞
−∞

d3lT r

exp

(a+ ik)(Nε−H0) +
3∑
j=1

(bj + ilj)(Nmj −Mj)

 .

This expression for the density of states is equivalent to the density of states derived earlier

rather crudely if the operators H0 and Mj , j ∈ {1, 2, 3} commute in the large N limit. The

regularisation imposed therefore yields a density of states that is well defined.

Although these formulations of the density of states are constructed from different bases,

they are completely equivalent. By considering the suggestion made by Truong however, we

are given a physical way to think about the formulation of the density of states in terms of

non-commuting operators.

7.3 Calculating the entropy

In order to evaluate expression (7.8) for the Hamiltonian (6.1), we need to rewrite the

density of states so that the N -spin trace is decoupled into the product of one-spin traces.

This method was used similarly in [26] and inspired by [34] for the general canonical case.

The density of states is given by

ΩN (ε,m) =
N4

(2π)4

∫ ∞
−∞

dk

∫ ∞
−∞

d3lT r

exp[(a+ ik)(Nε+
2

N

3∑
j=1

λjS
2
j )]

3∏
j=1

exp[(bj + ilj)(Nmj − 2Sj)]

 .
(7.9)

We can rewrite the first exponential in the trace by using the Lie-Trotter formula, proved in

[35], which is given by

eA+B = lim
N→∞

(
e
A
N e

B
N

)N
,

so that this gives

exp[(a+ ik)(Nε+
2

N

3∑
j=1

λjS
2
j )] = lim

n→∞

[
exp

(
(a+ ik)Nε

n

) 3∏
α=1

exp

(
2(a+ ik)

nN
λαS

2
α

)]n
.

(7.10)

We can now use the Hubbard-Statonovich trick to linearise the exponential in terms of the

operator Sj . This is the crucial part necessary to decouple the trace into the product of
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one-spin traces. For a constant, c, with positive real part and an operator, S, the Hubbard-

Stratonovich trick [36] [37] enables us to rewrite

ecS
2

=
1

n
√
πc

∫
dx exp

(
−x2

cn2

)
exp

(
2xS

n

)
. (7.11)

Using this in (7.10) gives

lim
n→∞

[
N

2πn(a+ ik)
exp

(
(a+ ik)Nε

n

)∫
d3x exp

(
− nx · x

2n(a+ ik)

) 3∏
α=1

exp

(
2xα
√
λαSα
n

)]n
,

(7.12)

where x = (x1, x2, x3). Now we want to make the replacement

3∏
α=1

exp

(
2xα
√
λαSα
n

)
= exp

(
2

n

3∑
α=1

xα
√
λαSα

)
. (7.13)

The equality sign here is of course in general not true since the operators in the exponent do

not necessarily commute, but the corrections given by the Baker-Campbell-Hausdorff formula

are of the order 1
n2 and higher so since we are considering this in the n → ∞ limit the

corrections are considered negligible, so that (7.13) becomes

3∏
α=1

exp

(
2xα
√
λαSα
n

)
= exp

(
− 1

n

N∑
i=1

φi(x)

)
(7.14)

=
N∏
i=1

exp

(
−φi(x)

n

)
, (7.15)

with

φi(x) = −
3∑

α=1

xα
√
λασ

α
i . (7.16)

Here we do not have a problem with replacing the sum in the exponential with a product of

exponentials since φi(x) and φj(y) consist of one-spin operators acting on different factors of

the tensor product Hilbert space, therefore they must commute when i 6= j.

Now using this in (7.12) we have

lim
n→∞

[
N

2πn(a+ ik)
exp

(
(a+ ik)Nε

n

)∫
d3x exp

(
− nx · x

2n(a+ ik)

) N∏
i=1

exp

(
−φi(x)

n

)]n
.

(7.17)

We can substitute this expression into the density of states together with the substitutions
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s = a+ ik and rj = bj + ilj , this gives

ΩN (ε,m) = lim
n→∞

N4

(2π)4

∫ a+i∞

a−i∞
dseNεs

∫ b+i∞

b−i∞
d3reNr·m

(
N

2πns

) 3n
2

×
∫
· · ·
∫
d3x(1) · · · d3x(n) exp

(
− N

2ns

n∑
m=1

x(m) · x(m)

)

× Tr

 n∏
m=1

N∏
i=1

exp

(
−φi(x

(m))

n

)
3∏
j=1

exp(−2riSi)

 . (7.18)

Here we have used the linearity property of the trace. Note that the trace in (7.18) only

acts on the exponentials of one-particle operators. We can therefore rewrite this trace on

the N -spin Hilbert space as the product of traces trq over one-spin Hilbert spaces, where q

labels the different one-spin Hilbert spaces. The two operators in the exponents of the trace

again do not in general commute but, as discussed earlier, the corrections will disappear in

the n→∞ limit so that we can write the trace as

Tr


N∏
q=1

n∏
m=1

exp

− 1

n

φq(x(m)) +

3∑
j=1

rjσ
j
q


=

N∏
q=1

trq


n∏

m=1

exp

− 1

n

φq(x(m)) +
3∑
j=1

rjσ
j
q

 .

Now the trace is decoupled as a product of one-spin traces and this trace can be computed.

If we insert the expression for φq(x) and as before consider the corrections to the commutator

as negligible, we get

N∏
q=1

trq

{
exp

[
1

n

n∑
m=1

3∑
α=1

(x(m)
α

√
λα − rα)σαq

]}
.

Define the function

cα({x(m)
α }, rα) =

1

n

n∑
m=1

(x(m)
α

√
λα − rα). (7.19)

The expression for the trace is then finally

N∏
q=1

trq

{
exp

[
3∑

α=1

cασ
α
q

]}
=

N∏
q=1

trq

exp

 c3 c1 − ic2

c1 + ic2 −c3


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=

tr
 ea 0

0 e−a

N = [2cosh(a)]N , (7.20)

with a({x(m)}, r) =
√
c2

1 + c2
2 + c2

3. Substituting this into the density of states (7.18), yields

ΩN (ε,m) = lim
n→∞

2NN4

(2π)4

∫ a+i∞

a−i∞
ds

∫ b+i∞

b−i∞
d3r

(
N

2πns

) 3n
2

×
∫
· · ·
∫ n∏

m=1

d3x(m) exp
[
NF (s, r, {x(m)})

]
, (7.21)

with

F (s, r, {x(m)}) = εs+ r ·m− 1

2ns

n∑
m=1

x(m) · x(m) + ln[cosh(a({x(m)}, r))]. (7.22)
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CHAPTER 8

Asymptotic evaluation of integral

Following chapter 7 the expression for the density of states is in a form that can be solved by

asymptotic evaluation, since we will use the density of states to evaluate the entropy in the

N → ∞ limit. For a textbook discussion on the asymptotic evaluation of integrals we refer

the reader to [38]. In sections 8.1 and 8.2 we will introduce two methods that seem applicable

and discuss the possible pitfalls these methods might have in the microcanonical setting. In

section 8.3 we will proceed to calculate the entropy in the appropriate manner.

8.1 Method of steepest descent

Consider an integral of the form

I(s, t) =

∫
C
ds

∫
C̃
dteNZ(s,t), (8.1)

where N is a large parameter, s and t are complex variables and C and C̃ are the contours

of integration in the complex plane. If we assume the function Z is analytic, we can split it

into two real valued analytic functions g and h of s and t so that

Z(s, t) = g(s, t) + ih(s, t). (8.2)

For non-constant h, this exponential function is rapidly oscillating in the large N limit, so that

the contributions to the integral are canceled by consecutive oscillations and only the parts

where the integral is not oscillating rapidly gives meaningful contributions to the integral.

The idea behind the method of steepest descent is to use the analyticity of the functions g

and h to deform the contour of integration into contours, C ′ and C̃ ′, where h is constant (and

where the function is not oscillating rapidly), so that Z(s, t) = g(s, t) + ih and

I(s, t) = eiNh
∫
C′
ds

∫
C̃′
dteNg(s,t). (8.3)

Because the function g is real, the remaining integral can be solved in the large N limit by

Laplace’s method which implies that

I(s, t) ∼= eiNheNg(s0,t0), (8.4)

30
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where s0 and t0 are the values of s and t at the absolute minimum of g on the contours C ′

and C̃ ′. In the above equations the approximation is exact in the N to infinity limit. Using

this for the integral we have for the density of states (7.21), it is clear that it can be solved

by deforming the s, r and {x(m)} integration paths so that the integration path corresponds

to a constant imaginary part of F and then finding the maximum of the real part of F on

that specific integration path. Specifically in this case since we know the entropy has to be

a positive real valued function, the value of the imaginary part of F at this maximum has to

be zero. But notice that the function F (s, r, {x(m)}) is not analytic on the whole integration

interval (i.e at s = 0 or a = ± iπ
2 ). So we have to consider an interval where the function is

analytic and look for a maximum of the real part of F in that interval. In general it is not

necessary for the real part of the function to have a single maximum, but nevertheless we have

to choose one of the maxima and hope that either this is the only maximum or that this is

the absolute maximum. In most cases not much attention is paid to this and the justification

of the choice is usually based on the validity of the final solution obtained for the entropy.

An example of this is given in [39], where the author simply shows that the exponent has a

maximum in a certain interval for purely real values of the complex integration variables and

then evaluates the exponent at this maximum. Before we implement this method it may be

worthwhile to look at another possible way to solve this integral that is mathematically more

rigorous, since the above method leaves some room for doubt.

8.2 Convergence of bounds in thermodynamic limit

In [34], Tindemans and Capel show that one can compute the free energy for systems

with separable interactions in the canonical ensemble by proving that a particular choice of

stationary point will lead to the correct result. To discuss this method and its applicability

to the case we are studying, observe the integral obtained for the partition function in the

canonical case after performing much the same steps we did in section 7.3

Z =

(
N

2πn

) 3n
2
∫ ∞
−∞
· · ·
∫ ∞
−∞

n∏
i=1

d3x(i)eNG({x(i)}). (8.5)

The method described above consists of proving three parts namely,

1. For a particular stationary point ({x(m)}) = ({x0}) for all m,

G({x0}) = G0, (8.6)
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where G0 is the absolute maximum of the real part of G.

2. f∞ ≤ G0 ,

3. f∞ ≥ G0 ,

where f∞ is the free energy in the thermodynamic limit,

f∞ = lim
N→∞

1

N
lnZ. (8.7)

From 2 and 3 it follows that f∞ = G0 and therefore that the stationary point in 1 is the

correct one. Note that the first part of the proof is only valid if the imaginary part of the

function G is zero at the stationary point, G2({x0}) = 0. It also implies that the absolute

minimum of the real part of G is at a stationary point of G,
(
∂G2/∂x

(m)
)
min

= 0. The

expression in (8.5) looks identical to the last 3n integrals in the expression for the density of

states in the microcanonical case (7.21), so that it seems like this method could be applied.

8.2.1 Microcanonical ensemble

Consider expression (7.21) for the density of states,

ΩN (ε,m) = lim
n→∞

2NN4

(2π)4

∫ a+i∞

a−i∞
ds

∫ b+i∞

b−i∞
d3r

(
N

2πns

) 3n
2

×
∫
· · ·
∫ n∏

m=1

d3x(m) exp
[
NF (s, r, {x(m)})

]
. (8.8)

To use the method described in section 8.2, we need to show,

(a) that at a certain stationary point (x(m), r, s) = (x0, r0, s0) for all m,

F (x0, r0, s0) = F0, (8.9)

where F0 is the absolute maximum of the real part of F in (7.21).

(b) s∞ ≤ F0 ,

(c) s∞ ≥ F0 ,

where s∞ is the entropy in the thermodynamic limit,
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s∞ = lim
N→∞

1

N
ln Ω. (8.10)

Before we proceed to implement this method we should remark on the differences between

the two ensembles here. The integral for the partition function has 3n real integration variables

whereas the integral for the density of states has 3n real and 4 complex integration variables.

Also the function G in (8.5) is a analytic real valued function for all x(i) whereas the function

F in (7.21) is not a real valued function in general and is not analytic on the whole integration

interval.

8.2.2 (a) Absolute maximum of the real part of F

Following the canonical calculation in [34], we need to construct a function F̃ ,

F̃ (x(m), r, s) =
1

n

n∑
m=1

φ(x(m), r, s), (8.11)

which has the following properties:

F̃ ≥ F1 (8.12)

and

F̃ = F1 iff (x(m), r, s) = (x0, r0, s0), (8.13)

where (x0, r0, s0) is the point where F̃ has a maximum. The function F̃ is therefore always

larger than F1, except at the point, (x0, r0, s0), where F̃ is maximal. Therefore F1 has an

absolute maximum at this point. This function can be constructed by using Hölder’s inequality

[40] and the proof of (8.11) and (8.12) can be done in the same manner as the canonical case,

with the exception that the function F1 is not analytic on the whole integration interval. So

we can at best prove the existence of F̃ on certain subintervals of the integration interval.

Although this is an inconvenience it is not the biggest problem in the microcanonical case. It

is crucial to note that we cannot prove that

F2(x0, r0, s0) = 0, (8.14)

(
∂F2

∂x
(m)
i

)
x0

=

(
∂F2

∂ri

)
r0

=

(
∂F2

∂s

)
s0

= 0, (8.15)
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at the point (x0, r0, s0) where F2 is the complex part of F so that F = F1 + iF2. We require

(8.14) since we know the entropy in the thermodynamic limit has to be a positive real valued

function. From (8.15) we see that the absolute maximum of the real part of F is not necessarily

a stationary point of F and, as discussed in section 8.1, the integral in (8.8) will be rapidly

oscillating so that F0 would give no contribution to the integral.

The reason why these properties cannot be proved for the microcanonical case is because

of the additional 4 complex integration variables. In the canonical case these two properties

follow immediately from (8.12) and (8.13).

Although we cannot prove (a), we hope that if we could prove (b) and (c) we could somehow

circumvent the problem.

8.2.3 (b) Upper bound for the entropy

The upper bound for the entropy can be computed in much the same way as in the canonical

case. To do this we use the fact that the density of states has to be a positive real valued func-

tion (and therefore the entropy is a positive, real valued function) together with the inequality

∣∣∣∣∫ b

a
f(x)dx

∣∣∣∣ ≤ ∫ b

a
|f(x)| dx, (8.16)

to get a bound for the density of states

ΩN (ε,m) ≤ lim
n→∞

2NN4

(2π)4

∫
ds

∫
d3r

(
N

2πn(a2 + k2)

) 3n
2
∫
· · ·
∫ n∏

m=1

d3x(m)
∣∣∣eNF (s,r,{x(m)})

∣∣∣
= lim

n→∞

2NN2

(2π)4

∫
ds

∫
d3r

(
N

2πn(a2 + k2)

) 3n
2
∫
· · ·
∫ n∏

m=1

d3x(m)eNF1
∣∣eiNF2

∣∣
= lim

n→∞

2NN2

(2π)4

∫
ds

∫
d3r

(
N

2πn(a2 + k2)

) 3n
2
∫
· · ·
∫ n∏

m=1

d3x(m)eNF1 . (8.17)

The remaining integral in the bound can be solved by Laplace’s method in the N →∞ limit

to give

Ω∞(ε,m) ≤ CeN(ln 2+F0), (8.18)

where C is a prefactor which is sub-exponential in N and F0 is the absolute minimum of the

real part F1 of F . Substituting this into the entropy and considering the limit N → ∞ we

have the bound
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s∞ ≤ ln(2) + F0. (8.19)

8.2.4 (c) Lower bound for the entropy

In the canonical calculation reported in [34], the lower bound for the free energy is obtained

by using Bogoliubov’s inequality [41] which states

f [H0 +H1] ≤ f [H0] + 〈H1〉H0
. (8.20)

Here f [A] = − 1
β ln tre−βA and 〈A〉B = TrAe−βB

Tre−βB
. This inequality is proved by introducing a

real parameter, λ, in the exponent, A, of f and proving that f is concave in terms of this

parameter. When we then set λ = 1, (8.20) is obtained.

This proof is only valid if the exponent in f is real. In the microcanonical ensemble the

function F , analogous to G in the canonical ensemble, is not necessarily real so that this

inequality is not applicable in the microcanonical ensemble.

As a concluding remark on this method, we notice that there are two problems when trying

to implement this method. Firstly we are not able to prove that a certain stationary point

yields the absolute maximum, F0 of the real part the function F . Secondly we are not able

to show that there exists a lower bound for the entropy s∞ ≥ ln(2) + F0. Therefore we were

not able to apply the method implemented in [34] in the microcanonical case.

8.3 Solution for the entropy

We now resort back to the method of steepest decent. We want to deform the contour of

integration of the complex integrals in (7.21) so that the function F , in (7.21), has a constant

imaginary part, F2, and then look for the maximum of the real part on that contour. This

corresponds to simultaneously solving the following equations for s ,r and {x(m)}

∂F

∂s
= ε+

1

2ns2

n∑
u=1

x(u) · x(u) = 0, (8.21)

∂F

∂rα
= mα +

tanh a

a

(
rα −

√
λα
n

n∑
u=1

x(u)
α

)
= 0, (8.22)

∂F

∂x
(u)
α

= −x
(u)
α

ns
− tanh a

a

(
rα −

√
λα
n

n∑
u=1

x(u)
α

) √
λα
n

= 0, (8.23)

for α = (1, 2, 3). This set of solutions corresponds to the correct result if the real part, F1, does

indeed have a maximum on the contour where the imaginary parts are constant. An interesting

Stellenbosch University   http://scholar.sun.ac.za



8. Asymptotic evaluation of integral 36

observation is that for some initial values used in a numerical routine in Mathematica, no real

solutions were found for the stationary point equations. This indicates that the stationary

point equations may not have real solutions, in contrast to the cases reported in [34] [39].

The relevant question to ask is if this is unique to the microcanonical ensemble, since the

calculations reported in the references are both in the canonical ensemble.

Notice that setting (8.22) into (8.23) and doing some straightforward algebra leads to

x(u)
α −mαs

√
λα = 0, (8.24)

which in turn implies that x
(u)
α = mαs

√
λα = xα ∀ u ∈ {1, · · · , n}. This is the result obtained

for the stationary points in the canonical calculation in [34], which we tried to prove in section

8.2.2. Using this in equations (8.21) - (8.23) leads to

0 = 2εs2 + x · x, (8.25)

0 = amα +
(
rα −

√
λαxα

)
tanh a, (8.26)

0 = xα −mαs
√
λα, (8.27)

We can use this set of equations to simultaneously solve for the variables s, r and x in

terms of ε and m. The calculation is explicitly shown in Appendix A. The resulting expression

for F is then

F (ε,m) = −|m| arctanh|m| − 1

2
ln(1− |m|2), (8.28)

with

|m| =
√
m2

1 +m2
2 +m2

3. (8.29)

Substituting this value of F into the expression for the density of states (7.21), we get

ΩN (ε,m) ≈ C2N exp

[
−|m| arctanh|m| − 1

2
ln(1− |m|2)

]
. (8.30)

Here C is some prefactor which is sub-exponential in N . This prefactor can be neglected

because we want to use the density of states in the expression for the entropy,

s(ε,m) = lim
N→∞

1

N
ln ΩN (ε,m), (8.31)
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where it is clear that terms that are sub-exponential in N will vanish in the N → ∞ limit.

Finally we have

s(ε,m) = ln(2)− |m| arctanh|m| − 1

2
ln(1− |m|2). (8.32)

Although this might seem surprising, since the value of the entropy only depends on the size

of the magnetisation, the energy is intrinsically dependent on the magnetisation through

ε = −1

2

3∑
i=1

λim
2
i . (8.33)

The expression for the entropy is a function which is dependent on three variables, m1, m2

and m3. Depending on what we want to observe it might be useful to use expression (8.33)

for the energy to rewrite

m1 =

√
−2ε+ λ2m2

2 + λ3m2
3

λ1
, (8.34)

so that

|m| =
√

1

λ1
[(λ1 − λ2)m2

2 + (λ1 − λ3)m2
3 − 2ε]. (8.35)

To test if this result for the entropy is correct we compare this result with the calculation

reported in [26] for the same model but with magnetic field only in the z-direction, h =

(0, 0, h). Substituting this into the above expression for m in terms of ε we get

|m| =
√

1

λ12
[(λ12 − λ3)m2 − 2ε]. (8.36)

In this expression λ12 is max{λ1, λ2}. This arises from the fact that we can rewrite m1 or m2

in terms of the energy (8.33), but the correct entropy corresponds to the substitution that

maximizes the entropy and therefore minimizes m. This expression is identical to the result

obtained in [26].
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Results

Now that we have an explicit expression for the entropy we want to see under which circum-

stances the entropy is a non-concave function in terms of the intensive system parameters.

The solution we have for the entropy is as a function of internal energy, ε, and magnetisation,

m. The energy here is not the total energy corresponding to the full Hamiltonian, but only

the internal energy corresponding to the H0 part consisting of the σiσj interactions in (6.1).

This entropy, as discussed in chapter 7, contains all the information of the external magnetic

field dependence of the system. We will use this fact in section 9.3 to make a change of vari-

ables from internal energy, ε, and magnetisation, m, to total energy, u, and external magnetic

field, h. Before we do this, we want to see under which circumstances, if any, the entropy is a

non-concave function in terms of internal energy, ε, or magnetisation, m. Let us consider the

case when we use (8.33) to make the substitution

m3 =

√
−2ε+ λ1m2

1 + λ2m2
2

λ3
, (9.1)

so that

m2
1 +m2

2 +m2
3 =

1

λ3
[(λ3 − λ1)m2

1 + (λ3 − λ2)m2
2 − 2ε]. (9.2)

This we can use in the entropy (8.32) to get it in the following form

s(ε,m1,m2) = ln(2)− α arctanh(α)− 1

2
ln(1− α2), (9.3)

where

α = α(ε,m1,m2) =

√
1

λ3
[(λ3 − λ1)m2

1 + (λ3 − λ2)m2
2 − 2ε]. (9.4)

9.1 Convexity of s(ε,m1,m2)

We want to discuss the convexity properties of s(ε,m1,m2). From previous results [26] we

know that the entropy will be non-concave in terms of mi if λi > λ3 for mj = 0. Since we

are limited graphically to representing the function in terms of two variables let us consider

s(ε,mi)mj , meaning that we consider the function s(ε,mi) at a given magnetisation mj , where

i, j ∈ {1, 2}, i 6= j. In figure 9.1 plots of the entropy in terms of ε and mi are shown for different

values of mj . We observe that the entropy is indeed non-concave in terms of mi, at a fixed

38
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Figure 9.1: Non-concave entropies for (λ1, λ3) = (1, 1/2) with mj = 0, 1/4, 1/2, 4/5
respectively. Note that as mj increases the function remains non-concave but the
allowed domain decreases

value of the internal energy, and remains non-concave with only the allowed domain changing

as mj is increased.

In figure 9.2 the same effect is observed for a concave entropy λ3 > λ1. We can conclude

at this point that the convexity properties of s(ε,mi,mj) in terms of mi are only dependent

on the sign of (λ3 − λi) whereas λj and mj only influence the allowed domain. Although the

discussion here is limited to the convexity properties in terms of mi the exact same argument

holds for the convexity properties in terms of mj so that we only need to determine the sign

of (λ3 − λj).

It is clear from the plots that the entropy is concave in terms of energy at fixed values

of the magnetisation for all combinations of the coupling constants. The entropy is non-

concave in terms of magnetisation at fixed energies for certain combinations of the coupling

constants, therefore the microcanonical and canonical ensembles are non-equivalent in terms

of magnetisation and external magnetic field for these combinations of the coupling constants

at fixed energy, since the entropy is non-concave.

9.2 Magnetic susceptibility

Since we now know that the entropy can be a non-concave function in terms of the magneti-

sation, m, we would like to see if the magnetic susceptibility can be negative and under what
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Figure 9.2: Concave entropies for (λ1, λ3) = (1/5, 1) with mj = 0, 1/4, 1/2, 8/10 re-
spectively. Note that as mj increases the function remains concave but the allowed
domain decreases

circumstances this will be the case. We remind the reader that the magnetic susceptibility

does not necessarily only depend on the curvature of the entropy in terms of magnetisation, so

that we cannot conclude that the magnetic susceptibility is negative even though the entropy

is a non-concave function in terms of m. The magnetic susceptibility, introduced in (4.9), is

given by

χ(ε,m) =

(
∂s

∂ε

)2( ∂2s

∂m∂ε

∂s

∂m
− ∂s

∂ε

∂2s

∂m2

)−1

. (9.5)

Since we have the entropy as a function of energy and magnetisation in two directions

s(ε,mi,mj) where i,j ∈ {1, 2, 3} with i 6= j, we can get the directional magnetic susceptibility

χ(ε,mi) =

(
∂s

∂ε

)2( ∂2s

∂mi∂ε

∂s

∂mi
− ∂s

∂ε

∂2s

∂m2
i

)−1

. (9.6)

Then substituting the expression for the entropy s(ε,mi,mj) in (9.3) into this expression

yields

χ(ε,mi) =
1

λj,k − λi
. (9.7)

where λj,k is max{λj , λk}. This expression is remarkably simple and it is surprising that the
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Figure 9.3: The entropy as a function of magnetisation in the i-direction, the
different lines correspond to different energies, the bottom lines corresponds to
an energy ε = −0.5 and the top line corresponds to ε = 0. The entropy is strictly
concave when λk > λi and the magnetic susceptibility is positive. When λk < λi
the entropy is strictly non-concave and the magnetic susceptibility is negative.

magnetic susceptibility is only dependent on the coupling constants. Note that the magnetic

susceptibility is negative whenever λi > λj,k, and this coincides with the entropy being non-

concave. In figure 9.3 the entropy is shown in terms of the magnetisation for different energies.

This differs from other published results, for instance [21], where there are values of m for

which the entropy is convex for a fixed energy but for stronger magnetisation the entropy is

concave. Therefore magnetic susceptibility has a clear energy and magnetisation dependence

in these cases.

9.3 Changing variables

As mentioned in section 5.2, the magnetisation is not a conserved quantity under time

evolution in the model (6.1) considered, so that it is not a good quantity to distinguish

equilibrium states since it will not be constant. The external magnetic field is a quantity that

is easily controllable and is a better candidate for describing equilibrium states of a long-range

spin model. Therefore in order to compare the behaviour of an experimental system with our

model we need to transform the variables internal energy, ε, and magnetisation, m, to mean

energy, u, and external magnetic field, h. We can use the expression for the total energy of

the N particle system, given by

u = ε− h ·m, (9.8)

to get the entropy in the suitable form. The entropy in terms of magnetisation was computed

(8.32) as

s(m1,m2,m3) = ln(2)− α arctanh(α)− 1

2
ln(1− α2), (9.9)
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where

α = α(m1,m2,m3) =
√
m2

1 +m2
2 +m2

3. (9.10)

Now we want to eliminate one of the magnetisation variables in (9.10) to introduce the mean

energy, u. We can do this by using (9.8) together with (8.33) to get the quadratic equation

3∑
i=1

λim
2
i + 2

3∑
j=1

hjmj + 2u = 0. (9.11)

The solution of one of the magnetisation variables is then given by

mi(u,mj ,mk) = −hi
λi
±

√(
hi
λi

)2

− (λjm2
j + λkm

2
k + 2hjmj + 2hkmk + 2u), (9.12)

for i,j,k ∈ {1, 2, 3} , i 6= j 6= k. We can use this expression for the magnetisation (9.12), to

introduce a new s̃,

s̃h(u,mj ,mk) = ln(2)− α̃h arctanh(α̃h)− 1

2
ln(1− α̃2

h), (9.13)

where

α̃h = α̃h(mi(u,mj ,mk),mj ,mk) =
√
m2
i (u,mj ,mk) +m2

j +m2
k. (9.14)

Here mi((u,mj ,mk),mj ,mk) is the solution to the quadratic equation (9.11) given by (9.12).

To have the entropy only in terms of total energy, u, we need to maximize the entropy, s̃ in

terms of mj and mk,

s̃h(u) = max
mj ,mk

s̃h(u,mj ,mk), (9.15)

for j,k ∈ {1, 2, 3} , j 6= k. This corresponds to finding the values of mj and mk that satisfy

∂s̃

∂mj
=

arctanh(α̃h)

α̃h

∂(α̃2
h)

∂mj
= 0 (9.16)

∂s̃

∂mk
=

arctanh(α̃h)

α̃h

∂(α̃2
h)

∂mk
= 0 (9.17)

These expressions can be simplified since
arctanh(α̃h)

α̃h
6= 0 so we are only left with solving mj

and mk for the equations
∂(α̃2

h)

∂mj
= 0 (9.18)
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∂(α̃2
h)

∂mk
= 0 (9.19)

This might seem like an easy task, but the general solution to the problem is not a closed

form expression. We will look at a few simplified examples.

9.3.1 Isotropic Heisenberg model

The first example we will consider is the isotropic Heisenberg model where λ1 = λ2 = λ3 =

1. The solutions for this model for equations (9.12),(9.16) and (9.17) for i ∈ {1, 2, 3} are

mi = −hi(1±
√

1− u

h2
), (9.20)

where h = |h|. Hence

s̃h(u) = ln(2)− α̃h arctanh(α̃h)− 1

2
ln(1− α̃2

h), (9.21)

where

α̃h =

√
h2

(
1− sgn(h)

√
1− u

h2

)2

. (9.22)

Notice here that the direction of the magnetic field does not matter since the coupling

is equal in all directions. Therefore there is no competition between the coupling term and

magnetic field term in the Hamiltonian (6.1). To have this competition, we need a difference

in the strongest coupling direction and magnetic field, so that the coupling between particles

in one direction dominates at certain energies and the coupling between the magnetic field

and spin in a different direction dominates at different energies. In figure 9.4 the plot of the

entropy as a function of the external magnetic field strength and total energy is shown. Note

that there is a field-driven first order phase transition line (non-continuous first derivative) at

h = 0 for total energy from −0.5 to 0. This phase transition is between the spins aligned in

the positive z-direction or the negative z-direction.

9.3.2 Ising model

The next case we will study is the Curie-Weiss Ising model where λ1 = λ2 = 0 and λ3 = 1.

First we consider the transverse field Ising model where the magnetic field is in the xy-plane,

with θ the angle of the magnetic field between the x- and y-axis, while the coupling is in

the z-direction. In this case there are two sets of solutions for the variables corresponding to

different domains in the u-h plane. If u < −h2 then
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Figure 9.4: The entropy as a function of magnetic field strength, h, and total
energy, u, for the isotropic Heisenberg model. Note that there is a first order
phase transition at the line h = 0 for energies between -0.5 and 0. The system
here only has a ferromagnetic phase since there is no competition between the
coupling and magnetic field.

Figure 9.5: The entropy as a function of magnetic field strength, h, and total
energy, u, for the transverse field Ising model. Note that there is a second order
phase transition at the line u = −h2 between a ferromagnetic and paramagnetic
phase.

m1 = h1 = h cos θ, (9.23)

m2 = h2 = h sin θ, (9.24)

m3 =
√
−2h2 − 2u, (9.25)

so that

α̃h =
√
−h2 − 2u (9.26)

If u > −h2 then
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m1 = 0, (9.27)

m2 = 0, (9.28)

m3 = −u
h
, (9.29)

so that

α̃h =

√
u2

h2
(9.30)

Figure 9.5 shows a plot of the entropy function. Notice, from the definition 3 in section 4.6,

that there is a second order (continuous) phase transition at the line u = −h2, since here two

neighbouring phases (different solutions for the entropy function) become indistinguishable.

For the states that are to the left of the phase transition line the system is in a ferromagnetic

phase and the coupling between the spins are dominant over the influence of the magnetic

field. For a constant, non-zero magnetic field if the energy is increased the magnetic field

term dominates and there is a second order phase transition to a paramagnetic phase.

Notice that for the Ising model if we consider a magnetic field in the z-direction (same direc-

tion as the coupling) the entropy will be equivalent to the entropy of the isotropic Heisenberg

model so this will not be an interesting case to look at. We are instead interested in looking

at a magnetic field that is not pointing along any of the axes, so we expect some behaviour

in between the Heisenberg and the transverse field Ising model. First we need to examine the

influence of the coupling constants.

9.3.3 Varying coupling constants with constant field direction

Consider a system with a magnetic field in the x-direction h = |h| î, where î is the unit

vector in the x-direction and coupling only in the xy-plane (λ3 = 0) with the constraint

λ1 + λ2 = 1. This configuration is depicted in figure 9.6. In figure 9.7 the plots of the

entropy function are shown with the coupling constants λ1 and λ2 being varied. When the

strongest coupling is in the direction of the magnetic field a discontinuous first derivative at

h = 0 appears so that the behaviour of the system is the same as for the isotropic Heisenberg

model. When the strongest coupling is not in the direction of the magnetic field, two possible

solutions for the entropy appear which indicate that a second order phase transition occurs

between a paramagnetic phase and a ferromagnetic phase, as with the transverse field Ising

model. When the strongest coupling is only slightly larger than the coupling in the direction

of the magnetic field the domain of the solution which corresponds to the ferromagnetic phase
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Figure 9.6: Graphic illustration of the two special cases we consider. The first is a
constant magnetic field but with the values of the coupling constants changing in
the x- and y-directions. The second case has constant coupling and the direction
of the magnetic field changing between the x- and the z-axis.

is small (consider figure 9.7).

An important point arises when we discuss the properties of the phase transitions of these

models which can be observed in figure 9.7. Only the direction of the strongest coupling is

necessary to describe the existence and order of the phase transition of the system for an

external magnetic field fixed to one of the axis directions, as seen in figure 9.7. This means

that the existence and order of phase transitions for a system with a magnetic field fixed to

one direction can be determined by considering either the transverse field- or longitudinal

field Ising model.

9.3.4 Ising model with varying field direction

From the previous section we see that we only need to consider the strongest coupling

when we want to determine the existence and order of phase transitions of the system. We

can therefore set the coupling in the other directions to zero. We now want to see what

the influence of the direction of the magnetic field is on the phase transition properties of

the system. So let us consider the Curie-Weiss Ising model again (λ1 = λ2 = 0, λ3 = 1),

with a magnetic field h = |h| cosφî + |h| sinφk̂, where î and k̂ are unit vectors in the x- and

z-directions respectively and φ is the azimuthal angle between the x-axis and the magnetic

field. This configuration is represented in figure 9.6. In Appendix B the explicit solutions are

given for this special case. In figure 9.8 numerous plots of the entropy function are given for

different values of the angle φ.

Here it is noticeable that the first derivative at h = 0 immediately becomes discontinuous

when the field is not orientated along the x-axis. This is intuitive in the sense that when
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Figure 9.7: The entropy as a function of magnetic field strength, h, and total
energy, u, for the special case h = (h, 0, 0) and (λ1, λ2) = (1/10, 9/10), (1/4, 3/4),
(9/20, 11/20), (6/10, 4/10) and (9/10, 1/10) respectively. Here we see that if λ1 < λ2

only the second order phase transition line at u = h2(λ1−4λ2)
2(λ1−2λ2)2

is present and if λ1 > λ2

only the first order phase transition at h = 0 is present.
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Figure 9.8: The entropy as a function of magnetic field strength, h, and total
energy, u, for the special case (λ1, λ2, λ3) = (0, 0, 1) and h = (h cosφ, 0, h sinφ) where
φ = 0, π

20 , π
10 , π

4 and π
2 respectively. Note here that for the two boundary cases

when the field is in a transverse (φ = 0) or longitudinal (φ = π/2) direction only
one phase transition line is present. In the transverse case only the second order
and for the longitudinal only the first order. For the cases in between both phase
transition lines are present: the first order transition line at h = 0 and the second
order transition line at u = −(h cos θ)4 + 1

2(h sin θ)2. When the angle between the
magnetic field and the coupling decreases the magnetic field has to increase to
drive the system to a paramagnetic phase.
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the system is at a ferromagnetic phase (at low energy) the coupling term dominates the

entropy. Since the magnetic field is in a transverse direction, the system at these energies will

equilibrate in the coupling direction and the sign of the direction is only determined by the

initial conditions. In the case when the magnetic field is pointing only slightly in the positive

or negative direction of the coupling, the spins will align in this particular direction, since the

magnetic field will give this direction a slight dominance over the other. Therefore the first

order phase transition line appears.

The second order phase transition, as with the transverse field Ising model, is present

(although not always visible in the plots) for all the graphs except when φ = π/2. This

results from the multiple solutions for m depending on the sign of the square root term as

described in Appendix B. The smaller the angle between the magnetic field and the coupling

direction, the stronger the magnetic field needs to be to drive the system to a paramagnetic

phase. When the field is pointing in the direction of the coupling then only the ferromagnetic

phase exists since there is no competition between the coupling and the magnetic field.

Notice in the fourth plot of figure 9.8 that the second order phase transition line is not

confined to only the domain where the entropy is an increasing or decreasing function of

energy, u, so that the phase transition line can be at positive and negative temperatures

(see definition in section 9.4) depending on the strength of the magnetic field. This will

be discussed in section 9.4. This implies, amongst other things, that the phase transition

properties of the systems where the magnetic field is not fixed to one axial direction cannot

be described by the transverse- or longitudinal field Ising model as was the case in section

9.3.3.

9.3.5 Contradicting results

After the first submission of this thesis, it was noticed that sections 9.3.3 and 9.3.4 give

contradicting results. One should be able to construct rotated Pauli-operators so that the two

scenarios have identical Hamiltonians. Due to rotational invariance, the only quantity that

matters should be the angle between the field vector and the coupling vector. Since in this

section, the field goes from being aligned with the coupling to perpendicular to the coupling

in both cases, the quantitative differences between the two scenarios are not reasonable. This

issue will be resolved in a forthcoming publication.
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9.4 Temperature at the second order phase transition line

In the canonical ensemble the temperature of the system is generally assumed to be positive,

this is because the heat bath a system is coupled to is generally assumed to have positive

temperatures in order to mimic physical situations. In the microcanonical ensemble the

temperature, which is defined as
∂s

∂u
=

1

T
, (9.31)

can be negative. Therefore if we have a phase transition at negative temperature in the mi-

crocanonical ensemble, this phase transition will not be represented in the canonical ensemble

if we consider the above mentioned assumption.

Bearing this in mind, consider in figure 9.8 that the second order phase transition line

appears to be in a region where the temperature is positive if the magnetic field is pointing

predominantly in the direction of the coupling. As the angle, φ, between the magnetic field and

coupling is increased, the phase transition line tends to move to a region where the slope of the

entropy is negative (i.e negative temperature) when the strength of the magnetic field is small.

To investigate this consider the plots in figure 9.9 for the entropy of the Ising model with field

direction varying between 0 and π/2, alongside the value of the inverse temperature at the

second order phase transition line. From the plots we see that the temperature at the phase

transition line is positive when the magnetic field is in the direction of the coupling (φ = 0)

and negative when the magnetic field is in a transverse direction to the coupling (φ = π/2)

and for the cases in between the phase transition line is at positive and negative temperature.

The phase transitions at negative temperatures are not represented in the canonical ensemble

when adopting the usual convention of heat baths with only positive temperatures.

9.5 Concavity of sh(u)

A disappointing aspect of the entropy plots is the lack of a non-concave entropy in terms

of the variable u when the magnetic field h is kept fixed. Since the magnetic field, h, is not a

macrostate of the system, the non-concavity properties of the entropy in terms of h at a fixed

u does not correspond to non-equivalence of ensembles. The presence of the equilibrium states

that correspond to the non concave part of the entropy in terms of u would be the states that

could be experimentally verified, by detecting negative specific heat with cold atoms in optical

lattices. It would be an interesting follow-up to this thesis to try and find other models where

this could be observed.
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Figure 9.9: The entropy as a function of magnetic field strength, h, and total
energy, u, for the special case (λ1, λ2, λ3) = (0, 0, 1) and h = (h cosφ, 0, h sinφ) for
φ = 0.05, 0.8, 1.0 and 1.4 radians respectively. Alongside these plots are the values
of the inverse temperature β = 1/T at the second order phase transition line, u =
−(h cos θ)4+ 1

2(h sin θ)2. Note that when the system approaches the longitudinal field
Ising model, φ→ 0, the phase transition line is only at positive temperature. The
scenarios between the longitudinal (φ → 0) and transverse (φ → π/2) have phase
transitions at positive and negative temperatures. When the angle φ approaches
π/2 (transverse field) the second order phase transition line collapses to the point
(u, h) = (0, 0).
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CHAPTER 10

Conclusions

The main goal of this thesis is to contribute to the understanding of long-range quantum

spin systems, with an emphasis on the different properties these systems exhibit depending

on which physical situation they are realised in. For long-range systems the physical setting

in which the system is considered can be important, since the different statistical ensembles

to which they correspond may be non-equivalent. In short-range interacting systems this is

not the case since the statistical ensembles are generally equivalent [16].

It has been shown that the anisotropic quantum Heisenberg model can be engineered with

cold atoms in optical lattices with algebraically decaying long-range interactions [27]. Since

in optical lattice experiments, the energy and particle number are conserved to a good degree,

the appropriate setting to consider the system in would be the microcanonical one. The results

for this model with Curie-Weiss type interactions in the canonical setting had been reported in

[5] and a simplified variation of this model with Curie-Weiss interactions had been calculated

in the microcanonical setting in [26]. Although this model cannot be engineered with Curie-

Weiss type interactions, previous results indicate that the Curie-Weiss type interactions mimic

long-range interactions to a good degree [30] [31] and therefore we have sufficient reason to

believe that irregularities present for systems with Curie-Weiss type interactions will also be

present in systems with algebraically decaying long-range interactions.

Since we know that the anisotropic quantum Heisenberg model can be physically realised

in a microcanonical setting and that the canonical results of this model are known, we had to

calculate the microcanonical entropy in order to compare the results of the different ensembles.

To do this we discussed a suggestion by Truong [9] to formulate a microcanonical density of

states in terms of variables that correspond to non-commuting operators. We then formulated

the density of states for the Curie-Weiss anisotropic quantum Heisenberg model by doing an

inverse Laplace transform of the canonical partition function. To solve the resulting integral

we used similar techniques applied in [34] to write the expression for the density of states

in a manner which can be solved analytically by asymptotic means in the thermodynamic

limit. The solution for the entropy, s(ε,m), was given in terms of internal energy, ε, and

magnetisation, m, in the thermodynamic limit. From there we recovered the entropy in terms

of total energy, u, and external magnetic field, h.

To investigate the properties of the long-range quantum spin model, the resulting expres-

sion for the entropy, s(ε,m), was discussed. We noted that the entropy, s(ε,m), is concave

52
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in terms of internal energy, ε, for fixed magnetisation for all circumstances. The entropy is

however non-concave in terms of magnetisation, mi, where i ∈ {1, 2, 3} if the coupling in

the ith direction is not the strongest for fixed internal energy, ε. In these circumstances the

microcanonical, with fixed internal energy ε, and canonical ensembles will be non-equivalent.

This means that the magnetisation macro states that are represented in the non-concave part

of the entropy will not be represented by macro states of the same model prepared in the

canonical setting. We also investigated the value of the magnetic susceptibility, which showed

that the system has a magnetic susceptibility, χi, that will be negative when the coupling in

the ith direction is not the strongest and that the magnetic susceptibility is independent of

internal energy and magnetisation. Since the magnetic susceptibility is always positive in the

canonical setting, this feature cannot be realised in a canonical condensed matter setting.

In optical lattice experiments, the magnetisation is not a conserved quantity in general.

Therefore the value of the magnetisation will not be a good quantity to distinguish between

equilibrium states since it will fluctuate. To investigate a more applicable scenario, we changed

the variables internal energy, ε, and magnetisation, m, to total energy, u, and external mag-

netic field, h. The external magnetic field is a quantity which can easily be controlled in

cold atom experiments and is therefore a better candidate to distinguish between equilibrium

states than the magnetisation. The different properties of the entropy in terms of external

magnetic field and total energy, sh(u), were discussed. We noted that we only need to know

the direction of strongest coupling to determine the existence and order of phase transitions

when we consider the magnetic field in some fixed direction. Furthermore we observed that

the entropy is a strictly concave function of total energy, u, so that the the specific heat is

always positive. We noticed however, that a second order phase transition line can be present

at negative temperatures in the microcanonical ensemble.

From the results of this thesis, it is clear that in certain circumstances the canonical

setting will not be able to describe the properties of quantum spin systems prepared in the

microcanonical setting. The properties that are present in the microcanonical ensemble but

not in the canonical ensemble for the model we considered include: all macro states present

in the non-concave parts of the entropy, the negative values of the magnetic susceptibility

and the phase transitions at negative temperatures. Therefore if we want to describe the

properties of a system like cold atoms in optical lattices with long-range interactions, the

predictions of canonical calculations will not be sufficient.
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CHAPTER 11

Outlook

In this chapter we mention some interesting questions that arose during the course of the

thesis, which we were not able to resolve. In chapter 4 we mentioned some possible experi-

ments where long-range quantum spin systems can be engineered with cold atoms in optical

lattices. Unfortunately in the dipole-dipole interactions that were needed for the long-range

interactions, the magnetisation is not a conserved quantity. Since the result of our calculation

for the Curie-Weiss anisotropic quantum Heisenberg model only yielded a non-concave en-

tropy in terms of magnetisation, the proposed dipole-dipole interactions would not be able to

experimentally verify non-equivalence of ensembles. We offer two suggestions, very different

in nature, to circumvent this problem.

The first, and most simple proposition is the formulation of a long-range interacting quan-

tum spin system in an optical lattice where the magnetisation is a conserved quantity. Al-

though it is not clear if this is possible, it would definitely be the most simple solution to

the problem. Something similar to this suggestion is mentioned in section 4.1.1, where we

propose to map the spin system to a lattice gas system. Since the particle density, which is

the equivalent to magnetisation, is well conserved this could also cure this problem.

The second suggestion is to use the same methods we used in chapter 7 and 8 to solve

other similar models, where we might see an entropy that is non-concave in terms of energy.

This seems like the most plausible solution and would certainly be beneficial in more regards

than just the verification of non-equivalence of ensembles, since the number of these type of

solutions are very scarce in the literature.

In chapter 7 we used the same strategy as implemented in [34] to obtain the density of

states for the ferromagnetic model (λ > 0) in a form that is solvable by asymptotic evaluation.

Tindemans and Capel showed in [42] that a routine similar to this can be done for the

antiferromagnetic case (λ < 0). It would be worthwhile to try and implement this method

for the model we discussed for the antiferromagnetic case.

In chapter 8 we hinted at the idea that the stationary point equations do not have any

strictly real solutions. This is in contrast to the canonical ensemble where the applicable

solutions to the stationary point equations are normally on the real line. It may be interesting

to study if this case is unique to the microcanonical ensemble.
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APPENDIX A

Solving the saddle-point equations

Here we want to use equations (8.25),(8.26) and (8.27) to simultaneously solve the variables

s, r and x in terms of ε and m. Substituting these solutions in the function F in (7.22) will

give the solution for the density of states in the N →∞ limit.

We want to solve the variables s, r and x in terms of ε and m by using

0 = 2εs2 + x · x (A.1)

0 = amα +
(
rα −

√
λαxα

)
tanh a (A.2)

0 = xα −mαs
√
λα (A.3)

and then substituting this into

F (s, r, x) = εs+ r ·m− 1

2s
x · x+ ln[cosh(a(x, r))], (A.4)

with a now given by

a(x, r) =

√√√√ 3∑
i=1

(ri −
√
λixi)2 (A.5)

Notice from (A.2) that

(ri −
√
λixi)

2 =
( a

tanh a

)2
m2
i (A.6)

Summing on both sides and taking the square root

√√√√ 3∑
i=1

(ri −
√
λixi)2 =

( a

tanh a

)√√√√ 3∑
i=1

m2
i =

( a

tanh a

)
|m| (A.7)

Set this in (A.5) to yield

a =
( a

tanh a

)
|m| , (A.8)

so that
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a = tanh−1 |m| (A.9)

Now using this in (A.4) together with the identity 2 ln coshx = − ln(1− tanh2 x) gives

F (s, r, x) = εs+ r ·m− 1

2s
x · x− 1

2
ln(1− |m|2) (A.10)

Using (A.1) this becomes

F (s, r, x) = 2εs+ r ·m− 1

2
ln(1− |m|2) (A.11)

Also notice that substituting (A.3) into (A.1) gives

ε = −1

2

3∑
i=1

λim
2
i (A.12)

This gives the closed form expression for the energy in terms of the magnetisation and

coupling constants. Setting this into (A.11) and again using (A.3)

F (s, r, x) = −
3∑
i=1

mi(xi
√
λi − ri)−

1

2
ln(1− |m|2) (A.13)

Use (A.6) with (A.9) in F then this gives

F (s, r, x) = − a

tanh a
|m|2 − 1

2
ln(1− |m|2)

= −|m| tanh−1 |m| − 1

2
ln(1− |m|2) (A.14)
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APPENDIX B

Special cases of the coupling constants

Here we show the solutions to equations (9.12),(9.16) and (9.17) for the two special cases

we considered in section 9.3 to express the entropy in terms of the total energy, u, and the

external magnetic field, h.

B.1 The special case when λ1 = λ2 = 0, λ3 = 1, h = |h| cosφî+ |h| sinφk̂

Using equation (9.12) we can find the expression for m1,

m1 = −
(
m2

3 + 2hm3 sinφ+ 2u

2h cosφ

)2

+m2
3, (B.1)

now substituting this into |m| and solving equations (9.16) and (9.17) gives

m2 = 0 (B.2)

m3 = −hsin[φ] +

(
−2u− 2h4cos[φ]4 + h2sin[φ]2

)
(31/3 + 3−2/3)

/(
9h5cos[φ]4sin[φ]± 1

3

√
729h10cos[φ]8sin[φ]2 + (6u+ 6h4cos[φ]4 − 3h2sin[φ]2)3

)1/3

(B.3)

Note that the choice of the plus or minus sign depends on the sign of

(
6u+ 6h4cos[φ]4 − 3h2sin[φ]2

)3
(B.4)

There are therefore two sets of solutions for (9.12), (9.16) and (9.17) corresponding to the

ferromagnetic and paramagnetic phase. These solutions are not valid when φ = π/2 since

(B.3) then diverges. In this case the solution to m is only a single function that is equivalent

to (9.22) for the isotropic Heisenberg model.
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B.2 The special case when λ3 = 0, λ1, λ2 ∈ [0, 1] and h = |h| î

Here again we can find m1 by using (9.12),

m1 = − h

λ1
±

√(
h

λ1

)2

− λ2m2
2

λ1
− 2u

λ1
, (B.5)

now again if we solve (9.16) and (9.17) we get

m2 =

√
−2u

λ2
+

h2(λ1 − 4λ2)

2λ2(λ1 − 2λ2)2
,

m3 = 0, (B.6)

or

m2 = 0,

m3 = 0, (B.7)

where equations (B.6) correspond to a maximum if λ2 > λ1 and equations (B.7) when λ2 < λ1.

For equation (B.6) the plus or minus sign in m1 depends on the sign of

− u+
h2(λ1 − 4λ2)

2(λ1 − 2λ2)2
(B.8)

There are therefore two sets of solutions for equations (9.12), (9.16) and (9.17). These

correspond to the ferromagnetic- and paramagnetic phases. When λ2 < λ1 the plus or minus

sign in m1 only depends on the sign of h so that only a ferromagnetic phase exists. The

entropy here is equivalent to the isotropic Heisenberg model.
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