&JGC

[TANEIIZTHMIO

[IATPON P lolst Centre

UNIVERSITY OF PATRAS

COMPUTER ENGINEERING AND INFORMATICS DEPARTMENT
MASTER PROGRAM: HARDWARE AND SOFTWARE OF INTEGRATED SYSTEMS

MASTER THESIS

Energy Efficient Instruction
Decoding in Application-Specific
Instruction-Set Processors

Christos 1. Kargas

Supervisor Professor: Constantinos GouTis

Thesis Comumnittee: Constantinos GouTiIs
Dimitrios NiKoLOS
Georgios THEODORIDIS

Patras, 2012

@GC

[TANEIIZTHMIO

[IATPON PP olst Centre

ITANEMIZTHMIO TIATPON

TMHMA MHXANIKON H/Y KAI [IAHPO®OPIKHE

ITPOrPAMMA METAIITYXIAKQN XIIOYAQN
OAOKAHPOMENA X YSTHMATA YAIKOY KAI AOTIZMIKOY

METAIITYXIAKH AITAQGMATIKH EPrasia

Anorwdikonoinon EvioAov yua
XapnAn Katavalwon Evépyelag oe
Eneepyaocteg Zuvodou Eviodov
E181k0U Zromou

Xpnotog I. Kapyag

Em6icnov Kadnynt¢: Kovotaviivog 'KOYTHE

Toweng Enttponn: Kovotavtivog T'KOYTHE
Annurjtplog NIKOAOT
Fewpylog @EOAQPIAHE

[Tatpa, 2012

Energy Eflicient Instruction Decoding in
Application-Specific Instruction-Set Processors

Christos Kargas
Master Thesis

Computer Engineering and Informatics Department

University of Patras, Greece
and

IMEC / Holst Centre
Eindhoven, The Netherlands

Patras, November 2012

Acknowledgements

The hereby presented master thesis, entitled “Energy Efficient Instruction
Decoding in Application-Specific Instruction-Set Processors”, is a description of
the research during the Master Thesis and its results, for the Master of Science
program “Hardware and Software of Integrated Systems” of the Department of
Computer Engineering and Informatics belonging to the Faculty of Engineering
of the University of Patras. The study was conducted in cooperation with
IMEC/Holst Centre in Eindhoven, The Netherlands.

The assignment and supervision of the present study was conducted by
professor Dr. Constantinos Goutis of the Department of Electrical and Computer
Engineering of the University of Patras, whom I'd like to thank warmly for his
scientific guidance and moral support as well as giving me the great opportunity
to perform my thesis abroad.

I would also like to thank deeply principal researcher Jos Huisken for accepting
me in IMEC/Holst Centre and his invaluable guidance and counseling during this
thesis. Our endless talks on many matters both theoretical and technical have
enriched my knowledge, have served me well during my thesis and are sure to be
of much value to me later on.

I would also like to express my sincere gratitude to professor Francky Catthoor
of IMEC-Leuven for selecting me among the candidates, for the valuable advice
and motivation he provided and his inspiring influence. Additionally, senior
researcher Jos Hulzink of IMEC/Holst Centre for his assistance in technical
matters, sharing his technical knowledge on the development framework used for
this thesis and for his accurate and timely suggestions that helped me overcome
many major problems in my thesis.

Special thanks to IMEC/Holst Centre for equipment supply and the facilities
they provided and Target Compilers for allowing the use of the tools and the
feedback on several matters.

I would like to thank senior researcher Mario Konijnenburg of IMEC/Holst
Centre for his assistance in several occasions, PhD candidate Antonio Artés
Garcia for willfully sharing his knowledge, his technical assistance and always
keeping the spirits high along with PhD candidate Bo Liu in the office we shared,
Georgios Selimis and Ioannis Giannis for their advice and helping me adapt to

the Netherlands and of course all the people in the ULP-DSP group of IMEC/Holst
Centre who are always willing to help and for the friendly environment. Finally,
Stefania Dakourou for allowing me to use some of her work for comparisons.

Closing, I would like to thank professor Dr. Dimitrios Nikolos of the
Department of Computer Engineering and Informatics of the University of Patras
and assistant proffessor Dr. George Theodoridis of the Department of Computer
and Electrical Engineering of the University of Patras who along with the
supervisor Dr. Constantinos Goutis, make up the committeee of my master thesis.

Christos I. Kargas
Patras, November 2012

Euyxaplotieg

H napouvoa dimdepatikn epyaoia, pe 9épa "AnoKmO1KOMOiNon eVioOA®V yia XapnAr
Katavaloor) evépyelag oe Enetepyaotég Zuvodou Eviodov E1dikou Zkortou (ASIPs) ©,
eival pia meptypadn g £€peuvag KAtd I S1ApKeld TG PETATTIUXIAKLG SUMAGOPIATIKEAG
£PYAOiag Kal IOV AamoteAeopdtov g, yia to Metammuyiako [poypappa Zroudov
‘OdoxrAnpepéva Zuotrpata YAkou kat Aoytopikou’ tou Tunpatog Mnyxavikov H/Y
kat [TAnpogopikrg tng IToAutexvikng LxoArg tou ITavermotnpiouv Iatpwv. H peAétn
dlevepynOnke oe ouvepyaoia pe 1o epeuvnuko kevipo IMEC/Holst Centre pe Baon
10 Aivtxogpev tng OAAavdiag.

H avdBeon kat n emiBleyn tng rmapovoag epyaciag €ytve aro Tov KaAOnynt
K. Kovotaviivo I'routn, tou tprpatog HAektpodoywv Mnyxavikev kat Texvodoyiag
YrnioAoyiotov tou [Mavermotnpiou Iatpav, tov oroio kat Sa fjBsda va euxaplotow
Seppd ya myv ermotnpovikn tou kabodnynon kat myv opdn, Kabog Kat ya wmyv
€UKA1Pia IOU PoU €600 va MPAYHATOIIO|0® TV £pYacid PoU OT0 EEMTEPIKO.

®a 16ela ertiong 9a euxaploto® ek Pabiwv Tov eTkepaln epeuvntr) Jos Huiken
rou pe dextnke oto IMEC/Holst Centre kabwg kat yla tnyv rmoAutupn kabodnynon
Kat 11§ oupBouAEg katd) dapkela g epyaociag. Ot atedeioteg oudnoeig pag oe
6lagpopa 9épata, 1000 Je@pPnNTUIKA 000 KAl IIPAKTIKA EPMAOUTIOAV TI§ YVOOELG HOU, HE
BorBnoav oAy katd tn didpkela g epyaciag Kat givat oiyoupo o1l Sa pou eivat
AKOPA IO XPIO1EG OTO PEAAOV.

®a 1nbsda akdépn va euxapotjoe tov kabnynt) Francky Catthoor tou IMEC-
Leuven mou pe ernéAede avapeoa otoug UTIOWHPLOUG, yid TG TIOAUTIEG OUNBOUAEG
Katl v evBappuvor) Tou oV TAPEiXe KaBw®g KAl TNV €UITVEUCT) TIOU 10U EVEITVEUOE.
Emniong tov épnelpo epeuvntr Jos Hulzink tou IMEC /Holst Centre yia t) ouvdpopr)
TOU O€ TEXVIKA dEPaAta, yla 11§ TEXVIKEG YVMOOELG TTOU OU PEEd®OE OV avarttudlak
MAATPOPPA TIOU XPEIACTNKE O AUTH TNV £pyaocia Kabwg Kal yld T €UOTOXES Kal
EYKAIPEG OUOTAOELS TOU 10U e BorBnoav va Sermepdom 1moAAd peydda epnoddia otnv
epyaoia pou.

'Eva peydlo suyapot® oto epeuvnuko kévipo IMEC/Holst Centre yua tov
€COTA1010 KAl TI§ £YKATACTACELG ITOU POV Tapeixe Kat otnv etaipia Target Compilers
IOV HOU EMETPEYE VA XPNOIHOIIOI0® TV AVAITIUSIAKY MAATPOpHIA THS KAt yid TtV
andvinon nou pou £éwoav ot diadpopa Jépata otav ermkovovnoa padi toug.

®a 1Bela akoOun va euXaplotron Tov EPnelpo epeuvntr) Mario Konijnenburg tou

IMEC/Holst Centre yia v Borfeia tou oe 81apopeg MeEPITIOOELS, TOV UTIOYPH P10
616axktopa Antonio Artes Garcia yla tnv npofupia Tou 010 va PO1pACTEL TIS YVOOELS
10U 1] va Ponbnoet os texvika Sépata padi pe tov vroyngplo di6aktopa Bo Liu oto
ypageio 1o omoio poipadopaoctav, tov F'eopylo Zedipn kat tov Ieavvn Mavvn yua g
oUpnBoUA£G Toug, T otp1&n Kat tv Bor)Beia 1ou Pou IPocEPePAV OV IIPOCAPHOYT)
owuv OAAavdia kat guoka oAoug otrv opada ULP-DSP tou IMEC/Holst Centre
yla) nipobupia va Bonbrjcouv kat yia to @AKo riepiBaddov. TéAog tnv Ziedavia
Aaxoupou, TOU POU EMETPEYE VA XPNOHIOIOU 06 £va TRNHA g epyaciag mg ya
dragopeg ouykpioeig.

KAetvovtag, 9a r0eda va suxapiloton tov kabnynt) K. Anurjtpto N1koAo tou
mrpatog Mnxavikov H/Y kat [TAnpogopiknig tou [Mavemotnpiovu [atpowv kat tov
kabBnynm K. Tewpylo Oe0dwpidn tou tunpatog HAsktpoddyov Mnyxavikeov rat
TexvoAoyiag YnoAoyilotwv tou Ilavemotnpiou IMatpov mou padi pe tov emBAEnov
Kabnynin K. Kwovotavtivo T'koutn arotedovv v €§€T1A0TIKY EMITPOIT] NG
HETATITUX1aKDG SIMAGPATIKAG Epyaciag pou.

Xpnotog I. Kapyag
[Tatpa, NoépBplog 2012

Abstract

With commercial processor design tools, a designer can quickly design a C-
programmable ASIP for a specific application domain. There are several such
ASIPs available for both wireless (UWB baseband processing), encryption, and
biomedical processing (particularly for ECG beat detection). In traditional CPUs
and DSPs the impact of the instruction-set definition and the complexity of the
instruction decoder can be substantial, especially in terms of power consumption.
Fully orthogonal VLIW processors, do not incur the cost of an instruction decoder
that severely. Instead the instruction word becomes very large, thereby shifting
the (power-)cost to the program memory or instruction cache. For the purposes
of this thesis a SIMD processor is developed and is compared to a soft-SIMD to
observe its area, performance and energy efficiency for a bioimaging benchmark
and how the processor description in the ASIP language nML, defines the
generated HDL. This SIMD processor is turned into orthogonal and using iterative
experiments it is investigated, what is the impact on power while manipulating the
instruction-set architecture in combination with the program memory size. It is
also investigated how instruction-set re-configuration can be exploited to improve
power efficiency. Using this investigation guidelines for low-power ASIP design
can be produced.

Extetapévn IlepiAnyn

Me) ouyxpovn texvoloyia oxebiaopou eme§epyactav, o oxedlaotig propei pe
eukoAla va oyxedidosl éva mpoypappatigopevo Eme€epyaotr) Zuvodou EvioAov
Edwkou Zxomou (ASIP - Application-Specific Instruction-set Processor) yua
€va OUYKEKPIPEVO €UPOS £PAPHOY®V. YIIAPXOUV H1APopol TETOI01l EMECEPYATTESG
61aBéopol yia aocuppateg epappoyeg, Kpumoypddnorn Kat B1olatpikeg epappoyeg
(.X. otov aAyopiBpo eviomopou XTUTIOU NAEKTPOKapdloypadnpatog). Ltoug
napadoolakoug emeepyactég kat emnegepyaoteg onpatog (DSP - Digital Signal
Processor) o op1topdg toUu OUVOAOU €VIOA®V KAl Il MOAUMAOKOTNTA £XOUV HEYAAN
enidpaon, €101ka oV Katavaddwor 1oxvog. Mia rmbavr) Auon o€ autd to npoBAnpa
eivat o1 opBoywviotl emneepyactég peyddou peyéboug AéEng eviodrng (VLIW - Very
Large Instruction Word).

Me tov 0po opdoywuio emelepyaotr, opiletal €vag emnedepyaotrng optdoviiou
OUVOAOU &eVIOAQV, dapa évag Eernegepyaotrg Otov Ooroio propel va urdpet
KGBe H1abéopog ouvduaopog petady v 61a0€01pV eVIOAGV Kal TV Pebodov
dleubuvolodotnong yia mpooBaon oty pvhpn KAt 1o apxeio kataxepntav. Ot
0pBoymVviot eregepyaotég 6ev ermBapuUvouv TO00 TOV ATIOKMSIKOTIONTH] EVIOAGOV. AvTi
autou 1o péyebog tng AEENg g €VIOANG yivetatl oAU peyddo, Kat €10t petatifetat
TO EVEPYELAKO KOOTOG OTNV PVIHUL EVIOAQV IPOypAPpaAtog (program memory)1 tyv
KPU(PI PVHIn eVIoAwv Tipoypappatog (instruction cache).

la toug oxkormoOUg auing NS MMMAePATIKAS epyaociag, avamuyxOnke évag
enegepyaotrig SIMD, o ortoiog ouykpivetat pe évav soft-SIMD yia va peAdetnbouv
Il ATTAITOUPEVH) TIEPLOXY] OTO EVOMUATOHREVO, €MOOO0EIS KAl KATAVAARDOL EVEPYELAG
yla pia Broiatpiky epappoyr), Kabig KAl 10 MKG 1) MEPLypaAdr) £vOg EMESEPYAOTH
ot yAdowooa reptypadng ernesepyaotov ASIP nML opidel v napayoupevn yldwooa
nieptypadng vAikou (HDL - Hardware Description Language). O eneSepyaotr)g autog
HETaTpEnetal oe 0pBoy®OVIo, KAt HE T XP101 EMAVAANTITIKOV TIEIPAPATOV PEAETATAL 1)
enidpaorn otV Kataval®on evépyelag Katd) Sidpkela aAAay®v otV apXltEKTOVIKI)
TOU OUVOAOU €VIOA®V KAl TOU PEYEO0US TG PVIING EVIOA®V MPOYypAppatog. AKOUn
pedetatal nwg propet va ekpetaddeutet o oxedlaotng v avadiapbpworn) 1ou ouvoAou
EVIOA®V Y1d va BeATIO0EL TNV KATAVAA®OT] eveépyelag (smova 1).

Ot ene§epyaotég ASIP eivat oAy 61adebopévol tedeutaia ylati prmopouv Kat
ouvbudalouv ermbooelg, XapunAn KATAvAA®on evépyelag Kat Kuping suediia. Me
aUTOUG HIOPOUHE TI0 €UKOAA va Bpoupe T XPUOoH Toun avapeoa ota didgopa

Optimized
code

AN

Non-
optimized
code

Average power (mW)

Performance req. (MHz)

Ewoéva 1: Méon katavdAwoon 10XU0G KAl OUXVOTTA AE1TOUpyiag enegepyact®v avaloya pe
10 eminebo PeATIOTONOINONG TOU KOS1KA O EPITOPIKOUG eresepyaocteg ASIP

XOAPAKINPIOTIKA TOU €Me§epyaotn) Iou JEAoUpE, Pe Arotédeopa €vav emedepyaotr)
UPKETA 10XUPO KAl EVEPYEIAKA AITOSOTIKO Yld TO €UPOG £PAPHUOY®V ITOU IEAOULIE.
Aev Tipé€riel va §exvape OTL Ot OUYXPOVH ayopd EVOOUATOHEVEV CUCTHHAT®V, n
KatavaAlmorn evépyelag eival éva amno ta peyadutepa npoBAnpata. Qotdco, rKabwg
N TeEXvoAoyia TPOXwPdel pe aApatmdelg pubpoug, HeEpPIKEG amod TG AUOEIG TIOU
€xouv daoel o1 oxedlacteg oe Siadopa mpoBANATA TIOU AVITHETOII{AV OT0 TTapeABoV
pedetouvial §avd, pe okoro va Ppebel pia mo arotedeocpatike Avon.

Ma v avamugn toug, ot enedepyaocteg ASIP ypnowporiolovv €va e181ko
niep1Baddov avarmtuéng pe egedypéva epyaleia avartuéng (ewova 2), pe ta oroia
n avaruén evog enegepyaotr) ASIP propei va yivel oe moAu Atydtepo xpovou
aro 600 xpewadetal €vag Kavovikog erefepyaotng. [Ipoodépouv pia mArpn
oovuita yia 1o oxedlaopd tou erne§epyaotr] aro 10 OXe61AOPO NG APXITEKTOVIKNAG
TOU ermedepyaotr), TOV OPOHRO TOU OUVOAOU EVIOAGOV KAl TQV AEITOUPYI®V
PEXPL TV IIPOOOPOI®ON £PAPHOY®V KAl TV MAPAYRDYI] YA®©OOAg Teplypadns
UAoU. Ot 8wabéopeg duvarodtnieg MPOoOPOi®ong HITOPOUV va ouviuaotouv
pe Tg duvatoinieg avayvoplong xapakinploukev (profiling)yla va epeguvnBouv
d1apopeTikég UAOTIOOEIS KAl PEOR® ETTAVAANIITIKOV AAAAY®OV OTOV APX1KO K®OO1KA
va Bpebel n 18avikr vAomoinorn yla éva CUYKEKRPIHIEVO £UPOG EPAPHIOYOV.

[ToAA£G POPEG 1 KATAVAA®OT) 10XU0G KAl Il KATAVAA®OT] EVEPYELAG OUYXEOVTAL Kal
Yewpeitat ot eivatl 1o 1d10. Auto eivatr Aabog. H xapnAr katavddeoon 1oxuog dev
pag e§aodpaiiler kat xapnAn KatavdAeon evépyelag. Itd oUyXpova EVOOPAT®PEVA
ouotpata, n evépyela eivat o KaBoplotikog mapayoviag rou rmoAAEg opég kabopilet
Vv ermuyia evog enefepyaotr). H xapndr katavddeorn 10XU0G Kal 1 UWPNAEG

"= [euE

RETARGETABLE Data path HDL
COMPILER + e rereeerer e [——— b GENERATOR
Chess Instruction Go
J { set Il
G, _| Processormodel nML | _ "Synthesisable model
[Machlne code] ik " HDL
_ Elf/Dwarf H / \ |
;L W\ | I RETARGETABLE RETARGETABLE
RETARGETABLE| [o. oo o | | INSTRUCTION-SET |. .| TEST-PROGRAM
ity U | USMUATOR || GENERATOR
Darts Bridge Checkers Risk

Ewoéva 2: Eruoxormon v epyadeiov avaruing enefepyaoctwv ASIP tng Target rou
Xpnotporno)fnkav yla auvtr) v epyacia

erudooelg amod poveg Toug dev eival apketeg, KAOMG autd ta SU0 TOAAEG (QOPEG
épxovtat oe avtiBeorn. 'Evag ene§epyaotig mou oxediadetal yia Xapnir Katavadoon
ouyva dev £xel kadég erudooelg 1) avaykadetat va Aettoupyet oe xapndn ocuxvotnta,
pe arotédeopa va Xpelddetal IePloooTePT] EVEPYELA Yid va OAOKANpwOel pia epyaoia.
Apa, évag oxedlaotng ernedepyaot®y IPEMEL va KAVEL éva oupBiB8acid Kat va Kpatroet
pia woopportia avapeoa oty 10XU KAt v emidoorn), avaloya [tv epapioyr) yid tnv
ortoia mipoopiletat. Eutuxag, otoug enedepyaotég ASIP , eival eUKoAO KAl ypriyopo
va yivouv aAdayég rmou aAAdadouv autég TIG 100PPOTTiES.

Yridpxouv S1adopeg teEXVIKEG yia va pewbel 11 Katavddeorn 1oxUog, Kat ot
ortoieg PImopouv va epappootouv oe dadopetika emineda g oxediaong (eriredo
HETAYA®TIOTY], APXIUTIEKTOVIKIG 1] KUKAQUAT®V), OMOG dUVANIKI] KAINAK®ON TAONS
DVS - Dynamic Voltage Scaling, clock gating , 1] kwdikoroinon dsdopevav. Kdabe
pia ano autég £xel ta 61KA T1g TIAEovVEKTNATA Katl eivat ot §1a0eon tou oxedlaotr)
va ermAEEet To1a auTéG va XPT o100 OEL.

ZuvrBwg Yewpeital 6eboEVO OTL 00O TII0 PIKPT] 1] PVIHn TIOU XPNOIO0ITolEl €évag
enegepyaotng, 1000 kadutepa. AAAG auto rou napaBAénetat eivat i) emBapuvor) ou
€XEL N XPNON NG HIKPNG Pvipng ota urndlouna pépn tou oxediou. T'a axkpiBog
auto 1o Adyo, dlepeuvdral oe autn WV €PyaAcia TO0 KATA OO0 pia peyaAutepou
HAKOUG A£En eVIOAng UIopel va arodmoel KaAutepa yla T0 0UVOAO TOU CUCTAHATOG,
apd TO E€MITAL0V KOOTOG Ot PVHHn, Kabag autn Sa enétpene otov oxedlaotr] va
XpPnotponotroet ta erurAéov drabéotpa ynoia tng AE§ng eVvioAng yla va mpooappooet
10 OUVOAO EVIOA®V AKPBOG 0TV EPAPHOYH Y1d TV ortoia poopidetat o eMegepyaoth|q
KA1 KATOImv va enavak®d1kornon el e mo aroteAeoaTiko Tporto.

Meléteg os H1apopeg ouyxpoveg epnopikeg SRAM pvnueg Seixvouv o1l apott
Ol HEYaAUTEPOl TivaKeG PVNE®V (TTIOU armotedouvial aro AAAoug MIKPOTIEPOUS
UTIOTTIVAKEG) TEiVOUV va IIPOOPEPOUV IEPLOCOTEPO AMOONKEUTIKO X®PO Yld TNV
IEPLOXT] TIOU H1EKOIKOUV 0TO0 OAOKANP®UEVO, I KATAVAA®ON 10XU0G (avapopikd pe
mV ouxvotnta Aettoupyiag) teivel va auddvetat pe taxutepoug pubpoug 600 1o
néyebog g AgEng armobBrnkeuong 1 0 OUVOAIKOS XMPOS AroBnKeuong augaverat
(etwova 3). Auto ouvernayetat OTl €V@ Ol HIKPOTEPEG MVIHES £ival KAAUTEPEG
0t KATavaA®orn 10XU0G, Ol HEYaAUTEPES HVIHEG HITOPOUV va IIPOCPEPOUV ITOAU
IEPIO0OTEPO ATTOONKEUTIKO X®WPO Yld AVAAOYIKA AlyOTEPI ATAITOUHEVO XMPO OTO
OAOKANP®UEVO, TO OIOI0 HE T OE1pd TOU €XEl Ao ermibpacn OtV KATAVAA®GON
evépyelag. H kaAutepn Avon eivat pia evdiapeorn tar) peyéboug AéEng kat peyeboug
HVAHNG TIOU €YYUATAL UMTEPAPKETO ATOONKEUTIKO X®WPO (E101KA yla T pvAun tov
EVIOA®V EKTEAEOTG) Y€ AVAAOYIKA PIKPOTEPO EVEPYELAKO KOOTOG.

SRAM power efficiency: Process=Typical

0.040 T T
e o W=32 § §
e o W=64 :) :
0.035 s @ : 8
e o W=48 : ° :
2 ||e o w=s0 i |
Y 0.030 F . ® 4
§ e o W=24 o :
& e » W=16 : . :
E - - : : : : : ®
] : : : : : : : :
& | . ® E
Z N N N N N N N .
g H H H H H] H H H
é : : : : * . . . :
2 TR S S R R B
B 0 0LE e et .
g e ’

» i . . .
0.010 i i S T R A
0_005 1 1 1 1 1 L 1 1 1

25 26 27 28 29 210 211 212 213 214 2]5

Words

Ewodva 3: Méon xkatavddlwon evépyelag pe dtagopetkd péyebog AéEng kat pvnung ya
epropikeg SRAM

H apxttektovikyy tou ouvolou evioAgv eival éva amd ta Kupldtepd Kat
Mo KAOOPIOTIKA XAPAKINPEIOTIKA €VOG ere§epyaotry. AuUTO 10xUel KAl yld TOUG
ene§epyaotég ASIP, o6rou ta epyaleia AOylopikoU tou TapdAAndou oxebiaopou
UAKOU Kat Aoylopikou (hardware/software co-design) mpénet va mpooappootouv
0€ auTO T0 OUVOAO £VIOA®V KAl va TO UTIooTnpi§ouv.

Mia armo TG Mo CNUAVIIKEG APXITEKTOVIKESG EMECEPYAOTOV £1val O1 APXITEKTOVIKEG
SIMD (Single Instruction Multiple Data). Autég ermupénouv tv Kadutepn
adoroinon rmapdAAndev eviodwv ektédeong (instruction-level parallelism).
Ynidpxouv S1dpopeg mpooeyyioelg yia tnyv vAdonoinon piag tétolag apyteKTOVIKIG,

HE KUP10TEPEG TNV UAomoinor tng oe UVAKO (hardware SIMD) 1) Aoylopiko (software
SIMD). H apyttektovikr) hard-SIMD otnpidetat oe moAAarAég povadeg eKtEAeong OTO
UAKO eva 1) soft-SIMD petagépet autr)v v MOAUTTAOKOTTA OTOV PETAYARTTIOTL) TOU
KOOIKA EKTEAEONG KAl TOV ATTOKAOIKOITOTE] TOU GUVOAOU EVIOAGV.

Katd) 6idpkela autng g Srmlepatikig avantuydnke évag enegepyaotijg ASIP
pe apxttektovikn hard-SIMD o oroiog Kat cuykpiOnKe pe évav anlo ene§epyaotn) Kat
évav soft-SIMD pe okoro va diepeuvnBouv o1 eTudO0E1g O EVEPYELA KA ATIATTOUHIEVO
X®WPO 0t OAOKANP®UEVO. Zav epappoyn eAéyxou tng eridoong ypnotpornoieital
pia Broiatpikn epappoyr) Paciopévn oe €va 'kaouoiavo @idtpo. Ta arotedéopata
delxvouv ot kat ot duo vldororoetg ene§epyaotav SIMD £xouv cadpwg KaAutepeg
ermboOoelg aro tov arnlo enesepyaotr) (eucova 4). EQocov priopouv va eKteAEcOUV TV
EQPAPHOY IO YPHYOPA HE HIKPOTEPO AVAAOYia KATavaA®ong 10XU0G KAl OUXVOTNTAS
Aettoupyiag, £XOUV KAl 0APROG HIKPOTEPO EVEPYEIAKO KOOTOG.

5,00E-05
4,50E-05

4,00E-05

3,506-05

3,00E-05 7 M Target's Base

2,50E-05 4 5D

Soft SIMD
2,00E-05

1,50E-05 +
1,00E05 |

5,00E-06

0,00E+00 - T T |"’
Memory Energy Logic Energy Total energy

Ewrova 4 Luykpioelg yia 11§ KATavaA®oelg eVEPYELAS V1A TG PVIHES, Ta HEPT AOYIKNG Kal
OUVOAIKA Y1 TG TPEIG H1aPOPETIKEG APYITEKTOVIKEG

H ouykptlon petalu v Vo uvdoromjoewv hard-SIMD kat soft-SIMD eivat
KATIOG OUOKOAN, KAO®G dapépouv oe TOAAA onpeia, aAAd EMKEVIP@VETAL OTNV
KAtavadmorn evépyelag ylati auto eivat to onpeio rou pag evélapépet ieploodtepo. H
apxttektoviky) hard-SIMD arnattet Atyo pikpdotepo moood evépyelag yla v Blolatpikr)
EPAPHOYT], € PIKPOTEPT TIEPLOYT] ATIAITOUHPEVOV KEALDV OTO OAOKATNp@HEVO. YAortotel
OT0 UAKO NG TE00EPIS MMOAAATIAQOIA0TEG TV 16 Yndpiov yia Tov UTIOAOYIoOHO T®V
Aettoupylev rou xpetddetat n povada MAC (Multiply-Accumulate), ot ortoiot eivat
TOAU amattnuikoi 1000 0€ XWPO OT0 OAOKANPOUEVO 000 Kal ot 1oxU. IlapoAda
autd £Xel €éva OUVOAIKA OXETIKA amAo oxediaopo. H apxitektovikin soft-SIMD
EXEL APKETEG TOAUTMAOKEG PBEATIOTOMOINOEIS HE KUPLOTEPESG €va eCeAYPEVO apXEio

KATaXopnIev yia anodrkeuon dtavuopatikov dedopévav (Vector Vegister File), pia
povada emnedepyaciag Siavuopatkov 6edopévav PEor eMavaAnmukOV 0A100roemv
Katl mpooBécewv (vector shift-add unit) mou umoxkaBiotd toug TOAAATIAACIAOTEG
MAC xkat A€§n eviodrg pnkoug 80 wndiwv mou pmopei va mpooappootel ot
dlapopetikd Peyedn UroAéSemv. Medet®viag ta AroTeAE0PATA PETPHOEWV EVEPYELAS
yia ta dagopa pépn g KAOe apXleKTOVIKNG (etkova 5), eival epdaveg ot
N TOAUMAOKOTINTA TOU €MMBAAAOUV 01 TIPOOONKeEG NG APXITEKTOVIKNG soft-SIMD
ota UmdAouta PEPI TOU EMESEPYAOTH] KAl KUPI®G OTOV ATMOK®OIKOIIOUTL] EVIOADV
(0 oroiog mPEmel va aroK® KOO0l Pia oAU peydAn A&En eviodng tev 80
Ynoeiov) ta ermBapuvel mdpa MOAU He arotédeopa va audaveral Spapatika n
anaitnon og XoPo Kdl KAtavaA®orn 1oxUog. Amnod autd cupnepaivoupe ot kabapd
Amo TV OMTIKY TAEUPA TNG KATAVAA®ONG EVEPYELAG, 1l ApX1TeKTOViKY hard-SIMD
pe tov mo armdo Kat §EKAOapo oxeblaopd g mou e§umnpetel otV ypryopn
avarnuén Kat arnoo@aApdi®orn TOU EMESEPYAOTr] KAl TIAPEXEL TTOAUTIHO XWPO yia
BeAtiwoelg oty oxediaon KAl KUPIRG KOOKOIMOINOI TOU GUVOAOU EVIOA®V HEO®
MEPAPATIKOV BEATIOTOTION)0E®V, KATL TIOU A§loTolel TAHP®S TG Suvatdtnteg v
epyaleiov avarrtuéng ene§epyaotov ASIP.

WSIMD Energy (ul)

W soft SIMD Energy (ul)

Ewodva 5: ZTuykpioelg KATAvAA®ONG eveéPyelag HEtall TV S1apopetikOV TUNUIATOV TV
apxtektovik®v hard-SIMD kat soft-SIMD

H apxuektoviky) hard-SIMD katomv PEIATpATINKE O APXITEKIOVIKI] HE
0pOOYy®OVI0O OUVOAO €VIOA®V, KAl TO PUNKOG NG AEng evioAng amd 16 yneia €ywve
48. H apykn 16éa ftav va yivel 1] apXIEKTOVIKI] TOU GUVOAOU €VIOA®V 000 yivetat

peyalAutepn Kal MANpeg opboyavia, divovtag €10t) duvatdtnta mArpoug eAEyXoU
ota napayopeva ofpata aAdd auto 6ev katéotn Huvatov AOY® TOV TIEPIOPIOPEVEV
duvatot iV TV TpEXOVIEOVY eKEO0E®V TV epyaleinv avarrtuéng. H véa A€8n evioAav
pnxoug 48 ynoinv (eikova 6) mepiexet 17 ynoia yla ty ermAoyr) tg EVIOANS Kat TV
napapérpev Asttoupyiag tng (opcode), 3*3=9 yneia yla toug Tpelg arAoug TeAEOTES,
3*2=6 yn@ia ya toug Hiavuopatikoug teAeoteg Kal 16 yngia ylia dpeon e10aymyn)
Tpev(offset).

Scalar
Operands
(3x3 = 9 bits)

Vector Oper.

(3x2 = 6 bits) Imm/Offset (16 bits)

H opBoy®via apX1teKTOViKI] OUVOAOU €VIOAGV PnKoug 48 ynodiov

H véa opBoyovia apXITeKTOVIKI), TAPA 1O TEOO0EPIS (POPES HUEYAAUTEPO HIIKOG
AEng evioAng kat apa Kat péyebog pvhung eviodov mpoypdappatog eivat 10% 1o
arodoTIKO EVEPYEIAKA O OXEOI HE TV IIPONYOUHEVI] apXlteKToViKY (soft-SIMD),
KAOKOG PEIDVETAL KATA TTOAU 1] KATAVAARDOT] EVEPYELAG TOU ATTOK®OIKOTTIOU)TL] EVIOA®V,
g povadag MAC kat 1oV AAA®V THNPATOV.

Ae§nxbnoav Sagopot mepapatiopoi yua 1o nwg Sa priopovoe va pPelodel
N TOAUTMTAOKOTNTA TOU AMOK®SIKOMOINT] HEO® TG KMOKOMOINong tou ouvolou
EVIOA®V. AUTO meTuXaiveTal P 1) XP1 o1 TOV ApKEIOV YPrdpinv oto priroug 17 ynoiov
opcode 10U dev ¥proornolouvidl, Pe oKOro va PeAtiwbel 1 ypappatky nML nou
IEPTYPAPEL TO OUVOAO EVIOA®V Kal PEO® AUTHG O IIAPAYOREVOS KOSIKAG IeEptypadrg
UAIKOU Kat va yivel melpapatiopog pe dagopetikég pebodoug kwdikoroinong
Kat pnkn A€Eng eviodrlg. Ta epyadeia avartuéng ASIP mapéxouv ermAoyeg
yla mapakoAoubnon tng eKEAeong €vOg MPOYPARHATOS KAl €§ay®yr OTATIOTIK®MV
OTo1XEimV, KUPI®G Yla Ta TT0000Td €KTEAEONG TG KAOs evioArg. Autd ta otoixeia,
oe ouvbuaopo pe 1 Suvatotnia Ypnyopng mapay®yrg vEou KmOIKA TEPYPApNS
UAkoU Tou Sivouv ta epyadeia avamtuéng ASIP, esmuipériouv v egepeuvnon
SAPOPETIKOV ETMAOYOV X®PIKIG 1] XPOVIKNG TOIIKOTNTAS KAl TV EMUITIOOEDV TOUG
OtV APXITEKTOVIKY] KAl TNV KATavadoon evépyelag mou autn amnattei. To povo
nPOBANpa eivatr ot xpeladetal €vag AUTOPATOMOUHPEVOS TPOTIOG yld va HIopet
ypniyopa pia véa rieptypadr nML va epdoet anod ta d1dpopa otddia petaydattiosny,
IIPOCOHOIMOE®V KAl EMAANOEUCEDV PEXPL TNV ITAPAYOYT KOSIKA TEPLYPAPHS UAIKOUG
Kat Kabwg v ouvbeor tou pe otorkeia PBA0ONKOV OAOKANPOPEVOV KUKAQUATOV
KAl MV €§ay®yr] OTOIXEI®V Y1d TNV KATAVAARDOT) EVEPYELAG KAl TNV PETATPOI] AUTOV
0t QUKL KAl €UavAyVveOTn yia Tov Xprotn popdr). Autd Auvetal pe tn) Xpnon
dlapopwv oesvapiav ektédeong (scripts) 1 mpoypappdiov and d1dpopes YADOOES
poypappatiopou.

H teAkr) vAomoinon cav anotédeopa tov npoavapepbeviav 1ebodav, datnpel
tov Paokd meploplopd ot Sev mpémet va yivouv adAdayég otv Paoikn
Aertoupykotta Kat 1o MAN00g 1@V evioA®v, ylati mapoAo rmou autd Sa £61ve TIOAAEG
napandave duvatotnieg, avoiyel tov ‘ackd tou Al0AoU’ yla TV MOAUMAOKOTA

NG APXITEKTOVIKAG KAl T®V MEpapatiopov. Méow g Xpnong S1adopetikng
KOOIKOTIONONG y1a TIS €VIOAEG TTOU AVAKOUV Ot BPOyXoug EMAVAANPERDV TIOU
ektedouvial ndve aro 10 95% oto oUVOAO T®V EVIOA®V, KAl T®V BEATIOTOION)0E®V
MG K®OIKOMOINOoNg TOUG TOOO OUVOAIKA 000 KAl HETA§U TOUG, TPOKUITIEL OTl
UTIdpxel tepaotia peiwon oty Spaoctnpiotnta addayng yneiov (toggling activity)
TOU ATTOK®OIKOTIONTY] EVIOAQV TRV PVNH®OV, TA Oroia He 1 og1pd Toug PeAtiovouy
TNV OUVOAIKY] KATtavaA®mor) evépyelag Katd 8% oe oUyKp1lon He v apXKn opboywvia
apXtteKtovikn kat 15% oe ouykplon pe mv apyttektovikn SIMD (eucova 7).

Total Power Consumption

E"’ - ___--__ B - - - — —
58 7
gl
54
52 1

46 T
44 S

SIMD T
Initial i
Orthogonal Final Orthogonal

Ewkéva 7: ZUVOAIKY] KATAVAAGOT] EVEPYELAG TNV APXITEKTOVIKT SIMD, v apX1Kr Kat v
BeAtioToro €V ApPXITEKTOVIKL] 0pOOY®OVIOU CUVOAOU EVIOAGDV

Eival ipopavég Ot 1 K@S1KOIoinon Tou CUVOAOU £VIOA®V KAl TOU UNKOUG AEENg
EVIOANG ATIOTEAEl €va ONPAVIIKO TTAPAYOVIA OINV EVEPYELA KAl TIS EMMOO0ES £VOG
ene§epyaotry. Me v xprjon tewv epyaleiov oxediaong ASIP kat tov Suvatot)tev
YPNYOPOU emavaoXedlapou Iou pag MapEXOUV HUITOPOUHE va IIPOCAPHOCOUHE TO
OUVOAO €VIOA®V OTnVv &dappoyr] yla tnv oroia mpoopiletal, pe amotédsopa va
HElveTal 5pactikda 1 KatavaAmorn evepyelag Xopis anmisia oug emdooelg. To prjkog
g AEENG eviodwv opilet) oxéon Petady tng MOAUMAOKOTNTAG TOV HUVIIHOV KAl TG
OUVOAIKI)G QPXITEKTOVIKIG (M€0® TOU arOK®SIKOMOUTr) €vioAwv) (stkova 8). Mia
HIKPOTEPOU PNKOUG AEEn €VIOANG XPE1AdeTal PIKPOTEPT PV KAl PETAPEPEL TNV
TMOAUMAOKOTNTA OTOV ATOKKASIKOTIOUTE] EVIOA®V, €VO Pia peyalutepr AEEn evioAng
POUTIOONETEL €vav ATTAOUCTEPO AMMOKMOIKOTIONTY] aAAd peyddeg pvhnpes. 'Opwg,
HEPIKEG OPEG Kal avddoya 1o mebio epappoywv n peiwon tng Spactnpiotntag
toggling tewv evtoA®v eivatl rmo onpaviiki amno amnod 10 PKog toug.

Yuvdbuddoviag ta Oebopéva amo TOUG TEPAPATIONOUS 0TS OlapOPETIKEG
apxutektovikeég ASIP pe ta 6edopéva ano 1§ PEIProelg otlg PVAHES, TIPOKUTITEL TO
oupniépaocpa ot Kabwg n evépyela eivatr kaboplotikog napdayoviag ot oxediaon,
évag enedepyaotng Kat Kuping évag enegepyaotr)g ASIP prnopel va opeAndei niapa

core

Final Orthogonal

vector MAC i
| M First Orthogonal

msinD

Eikova 8: AnaitoUupevog X0pog o€ OAOKANPOPEVO (0 XOPO KEAGV) V1A TV APXITEKTOVIKY)
SIMD xkat 11§ U0 apXIIEKTOVIKEG 1€ 0pBOY®VIO OUVOAO EVIOA®V

TOAU amo éva PeyaAutepo o€ PNKOG A§Ng Kat OX1 UTEPBOAIKA CUPITEOPEVO GUVOAO
EVIOA®V, TO OITOI0 UIOPEl va HEIRNOEL TNV CUVOAIKY] TTOAUMMAOKOTNTA O OAn ta
EMPEPOUG TUNHATA TNG APXITEKTIOVIKLG, dpd KAl TNV AIAITOUHEVI] EVEPYELA XDPO
o€ OAORANP®PEVO, KAl TTAPEXEL T SuvatotnIa BeATIOTONON|0EDV V1A OUYKEKPIHIEVES
EPAPUOYEG XWPIS va ermBapuvel TOAU TG pviueg. [Iapauta, n avdnon tou PrKoug
G AEENG eviodwv mpérel va yivel gdeyyxopeva Aoye g exkOetikd aufavopevng
KATAVAA®ONG 10XU0G TAVR ard 10 NnKog Aédng 64 ynoeiov. Eival oty euxépeia tou
oxeblaotr) va ermAédel 1o katdAAndo peyebog AéEng eVvioArg yia v KaOe nepirmaorn).

Contents

Acknowledgements iii
Evuxaploticg v
Abstract vii
Extetapévn Iepidnyn ix
1 Introduction 1
1.1 Motivation oo 1
1.1.1 Embedded systems 1
1.1.2 Processor design and instruction set architecture 4
1.1.3 Application specific instruction-set processors 7
1.2 Objectives e e e e e 10
1.3 Thesis Outline e 11
2 Background and Related Work 13
2.1 Ultra-low power processordesign 13
2.1.1 Powerdissipation 14
2.1.2 Energy or power focus 14
2.1.3 Low energy metrics 15
2.1.4 The deep sub-micronera. 16

2.1.5 Performance to power consumption ratio in different processor
typeso e 16
2.2 Memory efficiency Lo 18
2.2.1 SRAM e e e 18
2.2.2 Memory power efficiency 18

2.2.3 Memory addressing modes, 20

2.3

2.4
2.5
2.6

2.7

2.2.4 Loopbuffers Lo
Techniques for energy-efficient processors
2.3.1 Low-power techniques in circuitdesign
2.3.2 Low-power techniques in architecturelevel
Code compression and encoding L.
Architecture Description Languages
Design methodologies for ASIP
2.6.1 TargetIP Designer
2.6.2 Tensilica’s Xtensao
2.6.3 LISA and Synopsys Processor Designer
ASIP Case studies 0o s

Development Framework

3.1

3.2

nML Grammaro e e e e
3.1.1 nML Structural Skeleton
3.1.2 nML Rule Definition
3.1.3 Primitives definition and generation language
Target toolflow
3.2.1 Chess e e e e

Development of a SIMD ASIP

4.1
4.2
4.3
4.4
4.5

4.6

Hardware SIMD and Software SIMD
Basic features of the VBase processor
Additions and modifications00 000 L
Gauss loop filteringo oL
Multiply-accumulate unit L0000 oL L
4.5.1 Shifter and overflow prevention
4.5.2 Wrapper and Testbench
4.5.3 Additional instructionsadded
Comparison of the hard-SIMD with a soft-SIMD implementations . .
4.6.1 The Soft-SIMD implementation

41
41
42
43
44
44
44
44
44
45
45

47
47
49
49
50
51
52
53
53
54

4.6.2 Comparisonandresults 56

5 Modifying the Instruction Set for Energy-Efficiency 63
5.1 Analysing the generated control signals for full orthogonality 63
5.2 Creating a wider instruction 65

5.2.1 PowerResults 66

522 AreaResults o000 66

5.3 Optimizing the encoding of the instructionset. 67

5.3.1 Reducing decoder complexity 67
5.3.2 Exploiting methods for energy efficient architectural design

with ASIPtools 70

5.4 Final implementation 71

5.4.1 Finalresults 0. 72

54.2 Conclusions oo 74

6 Conclusions 77
6.1 The quest for the goldenratio 77
6.2 Memory efficiency Lo 78
6.3 ASIP instruction-set architecture L. 78

6.3.1 Hard-SIMD and Soft-SIMD 79
6.3.2 Orthogonality and optimal word size 79
6.4 Futurework oo 81

Bibliography 82

List of Figures

1.1 Relative performance per watt for five embedded processors [Henn06]. 3

1.2 Raw performance for five embedded processors, The performance is

presented as relative to that of the AMD ElanSC520 [HennO6]. . .. 4
1.3 Different design styles target different design metrics [Catth10] . . . 7
1.4 Power consumption for different components of CoolBio executing
ECGvl.Ocode e 8
1.5 Average power and performance depending on the level of code
optimization for a commercial ASIP 9
1.6 VLIW data paths: a) orthogonal b) clustered [LeupOO] 10
2.1 Power versus energy [KeatO7] 15
2.2 MOPS/watt versus flexibility [PiguetO6] 17
2.3 A typical SRAM cell composed of 6 transistors (6T)[Westell] 18
2.4 SRAM area needed for different block sizes[Katevl1l1] 19
2.5 SRAM Power consumption for different block sizes[Katevl1] 20
2.6 Power consumption for different word and block sizes in commercial
SRAM memories oo e 21
2.7 Measured throughput versus energy consumption [Burd0O] 23
2.8 Power gating [Westell] 24
2.9 Latch-based clock gating [PiguetO6] 26
2.10Trees showing the initial data and the results of a simple Huffman
coding. [CormeOl] oo 31
2.11Mapping of MIPS16 compressed instructions [Kiss97] 33
2.12 ASIP hardware/software co-design flow [Liu08] 35
2.13Different design styles target different design metrics [Morg07]. . . . 37
2.14 Overall encoding synthesis flow [Zhang08] 38

2.15Multiple assembly programs optimization flow [Zhang08] 40

3.1 Outline of Target’s Chess/Checkers tool suite flow

4.1 SIMD datapacking

48

4.2 Application of Gauss filter through a coefficient square matrix [Psy10] 50

4.3 The basic MAC unit introduced
4.4 The wrapperoutline
4.5 Soft-SIMD sub-words [Dak11],
4.6 Soft-SIMD processor architecture [Dak11]
4.7 Hard-SIMD power consumption percentage in login components

4.8 Hard-SIMD power type per component

4.9 Target’s Base, Hard-SIMD and Soft-SIMD memory, logic and total
energy consumption comparisons 000

4.10Hard-SIMD and Soft-SIMD area comparison per component
4.11Hard-SIMD and Soft-SIMD energy comparison per component

5.1 A very wide instruction word divided in different parts, each one
containing the control bits for a functional unit

5.2 The 48-bit orthogonal instructionset.

5.3 Comparison of the average power consumption in uW of the original
SIMD (blue) and the orthogonal version (red).

5.4 Decoder component power consumption of the SIMD, first and final
orthogonal implementations

5.5 Total power consumption of the SIMD, first and final orthogonal
implementationso Lo

5.6 Power consumption for every component in the two orthogonal
implementationso Lo Lo

5.7 Cell area required for the SIMD and the two orthogonal
implementations Lo oL

51

List of Tables

2.1 Power reduction techniques [PiguetO6]

4.1 Target’s Base cycle count, area, power and energy needed for the
same filter application

Chapter 1

Introduction

1.1 Motivation

Embedded systems have developed a lot the last decade, with a main research
focus on improving performance and cost and secondary on improving power,
flexibility or reliability. However, the same principles do not apply on the market
anymore. Nowadays, one of the features that has come to pose a big problem is
that of power and energy consumption. By rapidly increasing the performance,
we have increased the energy consumption of the system at an even greater rate.
Application Specific Instruction-set Processors were developed and introduced to
SoC design for their unique feature to combine performance, flexibility and power
efficiency. There has been a lot of work in the field of performance, but in the field
of power there is still a lot of space for improvement.

The motivational framework for this study is summarized in the following
sections, including an introduction to embedded systems, processors and
especially ASIPs that provides the reader with essential information for the next
chapters

1.1.1 Embedded systems

Embedded computer systems are computers inside devices designed to perform
certain functions and are one of the most rapidly growing part of the computer
industry. These devices are everyday machines excluding laptops, desktops or
servers (which are by comparison general purpose) and they range from mobile
phones, hand-held digital devices or video consoles to cars and washing machines.
Their purpose is to perform a specific task as efficiently as possible (perceived by
the common user as “fast” or “responsive”) while providing a certain autonomy
on battery or generally low power consumption. They are usually programmed to
perform just a handful of functions or programmable but within small limits. The

2 Chapter 1. Introduction

parts of the code that are used most often are heavily optimized. More complicated
systems come with firmware which can be updated for bug corrections or added
functionality. That is how they manage to uphold time-to-market deadlines and
reduce the cost.

Compared to desktops, embedded systems differ in a lot of ways. They
have a much broader range of technical characteristics since each one is
developed for a precise function, from low-end and cheap 8-bit or 16-bit
embedded microprocessors to way high-end, efficient and expensive embedded
microprocessors that provide greater functionality and maximum performance.
Also, unlike desktops, each embedded system is developed with predefined
criteria, usually in performance, area, responsiveness, or energy consumption,
with more narrow limits.

Embedded systems are also used for real-time systems where they are
programmed to meet specific real-time constraints, meaning that the time from
certain events until the proper response of the system cannot exceed a set time
limit. Those real-time systems can be either soft or hard. In hard real-time
systems (e.g. in planes), failing to keep up to the deadline results in a complete
system failure, so the design and standards of those systems are far more strict,
or soft real-time systems where a few failures are tolerated but they reduce the
quality of service.

Typically, the purpose of an embedded system is to process information
in the form of signals, so one of the most common embedded systems are
digital signal processors (DSPs). The term “signal” does not necessarily denote
a telecommunication transmission, but it could also be a video, an image, a
sound or any form of data. DSPs are specialized processors optimized for for
digital signal processing algorithms. These algorithms are from many domains,
from transforms (e.g. Discrete Cosine Transform, Fast Fourier Transform), time-
domain filtering (e.g. finite impulse response or infinite impulse response filters)
or convolution to error correction. But in all those the core unit is common: the
multiply-accumulate operation. A characteristic example is the Finite Impulse
Response (FIR) filter:

Y[n] =Y X[n— klh[h]

where X [n] is the sampled input, h[k] are the filter coefficients that characterize
the particular filter and Y'[n] is the output.

As indicated above, the filter is composed of registers, multipliers and an
adder, therefore the core that is repeated is comprised of subsequent additions of
a product. For the DSP to be effective, this core has a dedicated hardware unit to
perform the multiply-accumulate operation (MAC). So a MAC instruction of “MAC
A,B,C” actually implies “A = A + B * C”. There has been a lot of research in trying
to optimize the MAC unit, because in many cases that is where the bottleneck of
the whole system lies. Another common way used to accelerate communication

1.1. Motivation 3

algorithms is by optimizing encoding and decoding forward error correction codes.

Performance versus power consumption

In contrast with the desktop/server market, in the embedded market power
consumption and production cost play a much greater role. Desktop and server
systems have a stable power supply whereas most embedded systems rely on
battery supply. Therefore, embedded systems compared to desktop ones are not
only constrained in terms of cost, physical area and memory size but also in
energy consumption. As a result the designers have to measure carefully the
metrics of their system, weighting performance against energy consumption. For
example, it would be inefficient to produce an embedded system that has great
performance, but drains the battery really fast, or the other way around, one that
has an excellent low power consumption but takes a really long time to perform
its given task.

To measure effectively and accurately the performance and power
consumption, specific benchmarks are used (like EEMBC). Figures 1.1 and
1.2 show the relative performance per watt of typical operating power and raw
performance compared a specific processor respectively. From these two figures
it is very interesting to notice certain points that stand out. For example, the NEC
VR 4122 is probably the best one in terms of performance per watt, especially for
the telecomm benchmark, but is second-last when it comes to raw performance.
On the other hand the PowerPC has the best performance but is draining a lot of
power that makes it unsuitable for battery-powered embedded systems.

PP O AMDElanSC520 |
‘ W AMD K6-2E+

o - B IBM PowerPC 750CX |...............g.....
O NEC VR 5432

30 b B NECVR4122 |l

D5 [

Relative performance perwatt g oo o R

-1‘5 I IR I] o= <N - .
1.0 DA B AR | N

0.5 [SR | W R

Automotive Office Telecomm

Figure 1.1: Relative performance per watt for five embedded processors [HennO6].

4 Chapter 1. Introduction

AL oo
D) [reerecere g sirerereriisniisniisiiisiaiaaaa
(0.0 Lo [AMD Elan SC520
‘ B AMD K6-2E+
Performance gol... N S . B IBMPowerPC750CX
relative to AMD [0 NEC VR 5432
Elan SC520 GOF e ol B NEC VR 4122
40F----EER-----ooo B
20r

Automotive Office Telecomm

Figure 1.2: Raw performance for five embedded processors, The performance is presented
as relative to that of the AMD ElanSC520 [HennOG6].

Embedded multiprocessor systems

Nowadays, mainly in servers but also in desktop systems, using multiprocessors
is a common way to boost performance. Likewise in embedded systems,
multiprocessors are used, with different special-purpose processors. This proves
highly effective, since each specialized processor can handle efficiently specific
functions. A prime example of an embedded multiprocessor is a modern mobile
phone, equipped with one or more ARM cores, several DSPs and even more
dedicated ASIC co-processors for specific tasks, like Viterbi decoding’.

There are also two reasons for the popularity of multiprocessors in the
embedded space. The first one is that they make it easier to exploit the parallelism
that already exists is many applications, by assigning parts of the code to different
special-purpose processors. The second is that, as mentioned before, the parts
that are most commonly used are optimized for each embedded processor, and
that eliminates the problem of binary software compatibility that still troubles
many desktop systems.

1.1.2 Processor design and instruction set architecture

Processor designers today face a complex problem. When designing a processor,
they have to determine which attributes are more important, and in general
try to design a processor with as great performance as possible while at the
same time keeping in line with the constraints in area, power and cost. As

Viterbi decoding uses the Viterbi algorithm to decode a bitstream that is encoded using forward
error correction based on convolutional code. It is resource-consuming but does maximum
likelihood decoding

1.1. Motivation 5

mentioned very precisely on [Catth10], processor design is a game of many trade-
offs, and the designer has to balance the attributes of the processor and many
other aspects including instruction set architecture, organization, logic design
and implementation. The implementation may include integrated circuit design,
packaging, power and cooling. Optimizing the design requires familiarity with a
wide range of technologies, from compilers and operating systems to logic design
and packaging.

The instruction set architecture (ISA) is the most defining part of processor and
what defines the communication between the hardware and the software. The
main characteristics of an ISA[HennO6] are clearly defined as follows:

1. Class of ISA - General or special purpose architecture. Register-memory or
load-store oriented.

2. Memory addressing - All desktop and server computers use byte addressing
to access memory operands. Some ISAs also require that the data has to be
aligned to be read and written correctly.

3. Addressing modes - They specify registers, constant operands and the
address of a memory object.

4. Types and sizes of operands - Common examples for fixed-point are 8-
bit(ASCII character), 16-bit(half-word or unicode character), 32-bit(word or
integer) or 64-bit(double word) and for floating point 32-bit(single precision),
64-bit(double precision) or even 80-bit(extended double precision).

5. Operations - Data transfer, arithmetic, logical, control etc.

6. Control flow instructions - Conditional branches, unconditional jumps,
procedure calls and returns.

7. Encoding an ISA - Usually fixed length or variable length. More about this
on chapter 3.3.

VLIW and vector processors

Very Long Instruction Word (VLIW) processors are multiple-issue processors that
use many, independent functional units to exploit instruction-level parallelism
(ILP). Instead of using multiple instructions for different units, VLIW processors
have a single very long instruction word that contains multiple operation
instructions, one for each of the functional units. Taking full advantage of
a VLIW requires to focus on a wider-issue processor so as to maximize the
issue rate. In order to fully utilize this architecture, the code generated by the
compiler must contain enough parallelism to provide instructions to as many
of the functional units as possible in each cycle. Modern compilers use code

6 Chapter 1. Introduction

transformation techniques like loop unrolling or scheduling techniques like local
or global scheduling to detect and enhance the required parallelism.

Explicitly parallel instruction computing (EPIC) processors were introduced by
HP and Intel to address and overcome some of the common problems of VLIW,
mainly in flexibility, code size and improved software speculation. By using
explicit indicators for possible instruction dependencies and multiple instruction
formats instead of the fixed instruction format of VLIW and so is able to express
parallelism more flexibly and reduce the size of the generated code.

Of course, nowadays there is also the choice of vector processors for some
applications. Vector processors offer operations that can process a lot of data
at the same time in special vector functional units, provided that those data are
vector form, linear arrays of numbers. So vector processors can provide faster
results at the same cost but only for specific applications in structured code that
the vectorization can be applied. Otherwise, VLIW are preferred for their ability to
extract parallelism from less structured code and adapt to all forms of application
data.

One of the most common vector architectures used for both desktop and
embedded systems is Single Instruction Multiple Data(SIMD), as it was classified
by Flynn’s taxonomy. SIMD can exploit data-level parallelism, by applying the
same operation to multiple data in parallel (vectorized data). It is most effective
in applications that show great data-level parallelism, like high performance
applications, graphics acceleration and many digital filters.

Orthogonal instruction set

Orthogonal instruction set is a term used in computer engineering to classify
an instruction set architecture where any instruction can use data of any type
through any addressing. The word orthogonal, meaning “right angle” in greek,
is used in a similar way to geometry and mathematics and implies that the ISA
provides the capability to move along the operations axis independently of the
other addressing mode axis and vice versa, thus enabling all possible operation
and addressing mode combinations but forcing a limited set of operational codes
and addressing modes.

Many CISC based computers generally follow the orthogonal instruction set,
by allowing an instruction to access either the register file or the main memory in
several different ways. There are several fully orthogonal computer systems like
PDP-11 and VAX-11 or others that are nearly orthogonal like DEC PDP-11 and
Motorola 68000.

In RISC architectures, orthogonality is also used, but not full orthogonality
because that would lead to a less efficient architecture, and several instruction
bits are used instead for other purposes. So there is a trade-off that is usually
made for each architecture between orthogonality and enabling other techniques

1.1. Motivation 7

like virtual addresses, longer immediate data or larger register files.

1.1.3 Application specific instruction-set processors

Traditional ASICs (Application Specific Integrated Circuits) have great
performance and low energy consumption but lack flexibility since they are
designed and optimized to perform a specific task. DSPs (Digital Signal
Processors) are flexible and their performance is very good but they are not energy
efficient at all. And that is the reason why ASIPs are developed. They perform
almost equally well and can also be energy efficient, but their strong point is their
flexibility (fig:1.3). The design effort for mapping code on an ASIP is quite low, but
still higher than that of an ASIC [Catth10]. Thankfully, there are many automated
tools that can help in this and make it less of a challenge.

Flexibility

-

s
& ~ -
Performance E=_== === === = B S S u--—+® Energy efficiency
< P

- - Dsp
- - ASIC

ASIP
1/(Design Effort)

Figure 1.3: Different design styles target different design metrics [Catth10]

Application Specific Instruction-set Processors (ASIPs) are nowadays used
increasingly in System-on-Chip design to design a programmable processor with
an instruction-set tailored to fit the needs of a specific application domain.
They bridge the architectural gap between general purpose processors and
ASICs (Application Specific Integrated Circuits) combining the advantages of both
"worlds". They are developed using a user-friendly processor description language
called Architecture Description Language (ADL) (see 2.5), an efficient retargetable C
compiler along with accurate simulation and profiling tools, and so considerably
decrease the time needed to develop a new processor.

In the application domains of image and video processing, ASIPs can use a

8 Chapter 1. Introduction

combination of VLIW and SIMD along with powerful compilers and other tools
and techniques to maximize efficiency and make optimal architectural trade-offs.

Instruction word size against instruction decoder complexity for energy
efficiency

Recent results on the power dissipation figures of various latest processor cores
show an increasing percentage of the overall consumption is due to the instruction
memory and the decoder. As seen both in the ultra-low power biomedical signal
processor CoolBio of IMEC,Holst Centre and NXP and ICORE[Zhang08], the power
consumption attributed to the decoder takes up 28-42% of the total consumption.

misc

m wra
pm_wrap 16%

3%

dmemO
4%

dm_wrap
5%

bsp

6%

clk_mgr

7% pmem0
8%

Figure 1.4: Power consumption for different components of CoolBio executing ECG v1.0
code

In commercial processors in the effort to increase their capabilities their
instruction set contains not only a lot of instructions compared to the small
instruction word, but also these instruction often are very complicated in their
structure and addressing modes they have to support.

Concurrently, as noticed on latest commercial SRAM memories, doubling the
size of the memory width does not incur an equal rise in power consumption.
More about that on a later chapter.

As illustrated in figure 1.5, for a commercial ASIP the average power
consumption and the performance required are included in the shaded area
of the triangle. For different code optimization level there is also a different
different performance required, meaning that better optimized code requires a
lower operational frequency, that results to lower power consumption. This

1.1. Motivation 9

means that the average power drops while the mW/MHz for a task rises. If the
instruction set is tailored for the functions then the code can be executed faster
and more efficiently. Increasing the supply voltage would increase the power
consumption and thus the lines of the triangle would rise in the Y axis, at a
“steeper” angle. Leakage is omitted for now. Therefore, since bigger frequencies
have a negative impact on power consumption and the aim is not simply a low
power consumption but a smaller energy consumption per task. So instead of
mW/MHz, using J/function is more a accurate metric for energy efficiency.

= Optimized

\E, code

5]

=

o

o

)

E‘P Non-
] optimized
>

< code

Performance req. (MHz)

Figure 1.5: Average power and performance depending on the level of code optimization
for a commercial ASIP

So it needs to be looked into whether the energy gains from having a longer,
simpler and more orthogonal instruction set in an ASIP, or even a fully orthogonal
VLIW processor (see fig.1.6) can compensate for the extra energy incurred by the
bigger memories needed.

It also the purpose of this thesis to explore the capabilities of a commercial ASIP
development tool, like the Target tool suite used for the development of several
ASIP cores, investigate the limits of those capabilities and give suggestions for
future additions that could be added. This study also looks into how the ASIP
tools can be fully utilized to exploit the energy effiency dynamics of a design for a
specific application domain.

10

Chapter 1. Introduction

global register file

FU||FU| |FU| |FU| (FU||FU| |FU| [FU

cluster | cluster 2 cluster3 cluster 4

--

"l

- file 1j: file %: file ¥ file

b) i ; i

i{Fu1| |Puz| il Pusl | [Fueli PUS|| [Fusl: (FU7 | [FUS
interconnection network

Figure 1.6: VLIW data paths: a) orthogonal b) clustered [Leup0O]

1.2 Objectives

The main objectives of this thesis are the following:

Investigate how different components and overall power consumption are
affected by changes in the width of the instruction.

Experiment with different encodings for the instruction set of an ASIP and
notice their effect on the instruction decoder.

Find the best trade-off between the width of the instruction and the memory
size for low power consumption, considering that the former has a very
strong impact on the instruction decoder.

Benchmark and provide suggestions for improving and extending existing
designs.

Automate the whole procedure from designing an ASIP processor to
generating the HDL and benchmarking its area and power performance and
provide suggestions and feedback to Target

1.3. Thesis Outline 11

1.3 Thesis Outline

The main body of this report is divided as follows.

Chap. 2 provides related work on the fields of ultra-low power processor design,
code compression and encoding and ASIP methodology which are associated with
this thesis as well as the background information and case studies that are needed
to understand it.

Chap. 3 provides the development framework of Target tool flow, analyzing the
way the nML grammar is used to describe an instruction set architecture and
tools along with the basic options that they offer.

Chap. 4 includes the analysis and implementation of a SIMD processor and
another soft-SIMD and the experimental results of their comparison to a scalar
processor and to each other,

Chap. 5 deals with the basic implementation of an orthogonal processor and
the various experiments conducted on it to achieve power efficiency. It also shows
the results of all the implementations during this thesis.

Finally, Chap. 6 summarizes what’s been achieved, provides the conclusions
of this study, the open questions and what could be done next.

12

Chapter 1. Introduction

Chapter 2

Background and Related Work

The last fifteen years there has been a lot of work about ASIPs and various low-
power design techniques. This chapter provides an insight to several state of the
art approaches to problems and challenges in the field related to this thesis, but
also slightly older ones that can be revisited.

2.1 Ultra-low power processor design

Having a an power efficient processor is of grave importance in most systems,
but it is difficult goal to achieve because improving power consumption
creates a contradiction with other main characteristics of the processor, like
performance or flexibility. There are various techniques that can be used
for efficient ultra-low power processor design [PiguetO6], like CPI (cycles
per instruction) reduction, gated-clock mechanisms, optimal pipeline length,
hardware accelerators, reconfigurable units and techniques for reducing the
leakage power. DSPs are a prime example that helps demonstrate the necessary
tradeoff between flexibility and energy efficiency.

The two main constraints for SoC design are none other than power efliciency
and computation power. When it comes to the portable consumer market, power
efficiency is the defining constraint, particularly in deep submicron technologies,
where designers are coming up against new problems, like very low supply
voltages, high leakage, long wire delays, networks on chip, signal input slopes,
noise and crosstalk effects.

The components that commonly take up a big part of the power pie are
the memories. There are various well-known methods for reducing the power
consumption of memories (more about that on chapter 2.2), but it should be
still kept in mind that the power consumption of the processor itself can also be
improved, and that it is the processor that defines the types and sizes of memories
needed. But coming up with the “ideal” processor, meaning one that is flexible,

14 Chapter 2. Background and Related Work

has great computational power and is also power eflicient is virtually impossible.
So there has to be a tradeoff between those three, and the best criterion for that
would be to base them on the needs of the application of the processor.

2.1.1 Power dissipation

In order to understand how low power techniques work, it is vital to have in mind
the various factors that make up power dissipation.

Power dissipation is divided itself in dynamic and static components. Dynamic
is attributed to the switching activity caused by temporary current paths
(while pMOS or nMOS stacks are partially ON) and charging or discharging
the capacitors as gates switch, so it is directly proportional to the switching
frequency. The static component is the power dissipated due to static conductive
paths between the supply rails or leakage currents, which is there even if
there is no switching activity. Leakage can be either sub-threshold through
OFF transistors, gate leakage through gate dielectric or junction leakage from
source/drain diffusion.

A chip and thus power can be considered to be in one of three modes at any
time: active, standby or sleep. Active is the power consumed while the chip is
working, and is dominated by the switching power. Standby power is consumed
while the chip is idle, so if the clocks are stopped it is mostly leakage power. Sleep
power is consumed when various components are not needed for a certain time
period and their power is turned off to drastically decrease the leakage. However
there is an extra cost in energy and time needed to put a component to sleep or
wake it up, therefore making this a viable solution only if the component is not
going to be used for a long period.

2.1.2 Energy or power focus

The term power consumption defines the amount of energy consumed per
operation and the heat dissipation of a design, and those two in turn affect several
other aspects of the design, like battery life, cooling, placement and packaging.
Therefore, power dissipation plays an important part in the design.

Many times, the power characteristics of a chip are described with power
for a set frequency, i.e. 10mW @ 1GHz. It is easy to calculate the energy but
reporting an energy number makes things much more clear and helps avoid
misunderstandings.

A common misunderstanding in embedded system design on whether a
designer should aim for energy or power optimization, considering that the two
are relative to each other (Energy = Power x Time). But as shown on figure 2.1,
there is a distinct difference between energy and power, considering that power is
the instantaneous power in the device but it is energy (the area under the curve

2.1. Ultra-low power processor design 15

in the figure) that is truly important for portable systems and actually determines
the duration of the battery.

In high performance systems, where the basic focus is performance, there is a
consumption limit set by the technical characteristics of the chip and its cooling
capabilities. However, in portable and embedded systems it is of great importance
to keep a low energy limit, because the focus lies in the maximum number of
computation in the time range between battery charges. So, in portable and
embedded systems having a system with 50% less power consumption that is
compelled to run on 50% its frequency (to keep the power consumption at low
levels) leads to exactly the same energy, since the total energy consumed for the
same task that runs on 50% “low-power” but takes twice the time to complete is
still the same. So low power consumption by itself is clearly not enough.

Power is height of the curve

-
>

Lower power could just be slower

Approach1

Watts
v

Energy is area under the curve
A
| Two approaches require the same Energy
Approach 1

Watts

! Approach 2

B

time

Figure 2.1: Power versus energy [Keat07]

2.1.3 Low energy metrics

In literature normally the power efficiency of processors is indicated with figures
of merit like mW/MHz or pJ/cycle describing the energy cost of processor cycles.
It is interesting to have a low number since that shows the low-power properties
of a processor core. It shows the power dissipation at a predetermined clock
frequency. Using this figure of merit disguises however the more important
aspects of processors for wireless sensor nodes (and other battery-operated)
devices. The amount of energy to do a certain job is a more important metric.
What really needs to be optimized is the amount of energy a task consumes.
Therefore, an important figure of merit would be Joule per task, irrespective of
the number of clock cycles (or clock frequency) a processor core needs.

Another popular way to calculate the performance to power consumption ratio
is in MIPS/w (Million Instruction per Second per Watt) or w/MIPS respectively.
Using this figure it is relatively easy to estimate the energy consumption for a
given application or task.

16 Chapter 2. Background and Related Work

A very important motivation that explains the reason why DSPs and ASIPs
were introduced is due to the large variation in instruction sets. Processors with
large data paths typically need less cycles to complete a task, at a higher J/cycle
cost, but typically consuming less energy for the job. For low energy design this
also is beneficial.

Processor optimization often leads to complicating the instruction set
extensively to keep it small. However the introduced overhead in instruction
decoding can potentially lead to increased area and energy.

2.1.4 The deep sub-micron era

Technology is advancing rapidly, and that has a strong impact on the relative
merits of different circuit techniques, and ultimately the way designers handle
them, with regard to the future. For example, gate delays are improving way
more rapidly than the delays of the interconnecting wiring, and threshold drops
are becoming more dominant of the supply voltage. Also leakage is increasing.
A designer needs to be aware of impending changes like these to ensure the
continuity of his creations.

With the increasing complexity of the digital integrated circuits, it is
anticipated that in future smaller scale technologies the problem of energy
consumption will only get worse. Lower supply voltages are becoming more
attractive, because reducing Vpp has a quadratic effect on the dynamic power
consumption, assuming the same clock rate is sustained.

Many nanometer processes have now reached a point where it is no longer
possible to design a high-performance chip without paying attention to its power
consumption, because high power consumption results to high heat output and
that might prove impossible to cool. Thus, in modern systems designed for speed
that use extra logic to be more efficient, a common method is to simplify them.
So, if for example a core can be simplified in order to have 80% of its performance
for only half of the power consumption, then we can use two cores to have 160%
of the performance for the same power consumption.

Another common problem is that many designers are accustomed to focusing
on dynamic power. But leakage in its various forms (see 2.1.1) is becoming
increasingly important in nanometer processes. Failing to account for that can
very well lead to much higher than expected consumption and also functional
failures in the more sensitive components.

2.1.5 Performance to power consumption ratio in different
processor types

As shown on figure 2.2, there are many different architectures that can be used
for the same purpose. The more specialized the architecture, the better the

2.2. Memory efficiency 17

performance and power efficiency but less flexible the resulting processor. So for
example we can use a general-purpose microprocessor with reduced performance
but high flexibility or a custom ASIC with high performance and no flexibility
whatsoever. The same task on a processor of different level, can have great
variance in execution time. Therefore the right processor, or co-processor should
be picked to handle each task efficiently. For example, the number of clock cycles
executed for the simple task of a counter can vary from one cycle in a hardware
counter or several instructions with each one requiring many clock cycles each.

MOPSiwatt
4

ASICs
100,000 to 1,000,000 MOPS/watt

Ronosigarabis 10,000 to 50,000 MOPS/watt

ASIPs, DSPs
DSP: 3000 MOPShwatt

SA110:

Embedded Processors 400 MOPS/wat

Flexibility

Figure 2.2: MOPS/watt versus flexibility [PiguetO6]

But apart from those two extremes, there are several solutions in between,
mainly reconfigurable processors and the aforementioned DSPs (chap. 1.1.1)
and ASIPs (chap. 1.1.3). Reconfigurable processors prove to be very useful, as
they allow the configuration of specialized instructions and execution units to the
specified application.

The rest of the parameters that need to be defined is matching the data width
of the processor (and subsequently the memory) to the required data. The required
data does not necessarily need to be the same as the processor, so it is possible
for example to execute 16-bit data on a 8-bit processor, but there is an extra
cost and increased execution time for that. Additionally, each processor performs
considerably better when facing the task it was developed for, and no processor
is best for everything. For example, a DSP processor is much better than a
microcontroller in performing a filter, but the microcontroller can handle control
operations more efficiently. That is why we usually use a microcontroller with
several dedicated co-processors to handle everything properly. This way each
task is executed by the smallest and most energy-efficient component, but rarely
all of them are working at the same time in parallel.

18 Chapter 2. Background and Related Work

2.2 Memory efficiency

2.2.1 SRAM

A SRAM is a memory cell array consisted of SRAM cells that are able to read,
store and write data for as long as the power supply is on. A common 6-transistor
SRAM cell(fig2.3) can be an order of magnitude smaller than a flip-flop. This
6T cell is compact, requiring less wiring and so features a small dynamic power
consumption.

Figure 2.3: A typical SRAM cell composed of 6 transistors (6T)[Westel1]

The cell contains a pair of weak cross-coupled inverters holding the state and a
pair of access transistors to read or write it. In order to write in the cell the desired
value and its complement are driven to the bitlines, bit and bit_b and then the
wordline, word is raised. This way bit or bit_b are pulled down to indicate the new
value. The challenge in SRAM design is have as small an area as possible but
ensuring that the state is stong enough to withstand the influence of leakage and
keep the state during a read, but weak enough to be overwritten during a write.

SRAM cells are structured in memory arrays of m address lines and m data
lines. So the size of an SRAM is 2™ words, or 2" X n bits. Memory cells can
have one or more ports for access. These ports may be read-only, write-only
or support both, but not simultaneously. For larger SRAM memories, multiple
smaller arrays are combined so that the wordlines and bitlines can be fast, narrow
and low-power.

2.2.2 Memory power efficiency

There are various well-known techniques for low power consumption of memories.
That usually includes cutting the memory in small pieces and only one piece is
addressed to fetch or to store data (cache, hierarchical, divided workline and
divided bitline).

In the quest to optimize processor cores for energy and performance,
somewhere a bandwidth limitation of memory is hampering further optimization.
Therefore often multiple, local scratchpad, memories are used. We have found
that memory consumption may easily become a power dominating component. If

2.2. Memory efficiency 19

there is a strongly memory-intensive application, the memory accesses can go over
50% or even 60% of the total power budget of a typical DSP processor. As a result
most DSP processors try to exploit the memory hierarchy and the register file
in an effort to reduce the memory acceses. Pre-fetch techniques are particularly
effective in DSP designed for applications with large data objects. Code density
is also very effective, provided that the overhead of encoding and decoding makes
up for the benefits.

The general guidelines followed to reduce memory consumption are turning
on only the necessary subarrays to minimize the dynamic power, keep the other
subarrays in sleep mode to minimize leakage and reduce the voltage levels to
a the minimum required for the memories to function without loss of data or
vulnerability to interference.

Modern SRAM memories have developed a lot during the last decade. As we
can see in figure 2.4, featuring slightly old generation (2008) SRAM memories at
90nm, larger memory block are more area-efficient than smaller ones[Katev11].
Also, the difference between the different word sizes in area starts with a big
overhead for the smaller word sizes, but become negligible in larger block
capacities.

mm>/Mbit, 1-port mm=/Mbit, 2-port

4 16 64 256 O 6 64 286
block capacity (Kbits) block capacity (Kbits)
o—o 16-bit 32-bit O=O 64-bit @ @ 128-bit

Figure 2.4: SRAM area needed for different block sizes[Katev11]

Figure 2.5 shows the power to performance ratio for different block capacities.
Power consumpion is proportional to access frequency (ytW/MHz). It can be
observed that for every single one of the word sizes, the power to perfomance
ratio rises slowly for the first few block capacities (due to increasing word-line
and bit-line capacitance), but as the block capacities increase the average power
increases at a much faster rate (because at some point more sense amplifiers are

20 Chapter 2. Background and Related Work

required). It is also notable that the gap between the power consumpion of each of
the word sizes is getting bigger for larger word sizes and for larger block capacities
as well.

pW/MHz (typical), 1-port pW/MHz/port (typical), 2-port
L T Y
100 o
80 doo
60 d
40 Lo
20 - .
4 16 64 256 4 16 64 256
block capacity (Kbits) block capacity (Kbits)
o—o 16-bit 32-bit O=O 64-bit @=@ 128-bit

Figure 2.5: SRAM Power consumption for different block sizes[Katev11]

There were several measurements taken on the commercial memories available
(fig.2.6) for different word sizes of 25 to 2! and data width sizes of 16 to 80 bits.
We can see that it is possible to double the memory size (and also the instruction
width) without also having a double power cost per memory access.

This shows that that bigger memories can used and despite the extra power
cost, the total design can benefit if this helps the rest of the components of the
processor.

2.2.3 Memory addressing modes

For specific purpose processors like DSP, there needs to be a well defined set of
special addressing modes. These assist the processor in handling special data
types or large data in less clock cycles, so this results in less energy consumed
for the same application.

The design has to balance the benefits of the extra addressing modes against
the extra complexity they introduce. They can be especially effective when it
comes to FFT and other similar computations, however there needs to be careful
planning of both the addressing and the software stack support if they are to
provide efficient data structures that minimize the use of memory.

2.3. Techniques for energy-efficient processors 21

SRAM power efficiency: Process=Typical

0.040 T T
° o W=32 | | |
e o W=64 : o :
0.035 |- - 4
o o W=48 ; g 5
= e o W=80 :
Y 0.030 F _ ® ® i
g e o W=24 o :
8 e o W=16 5 H :
c : : ®
~ 0.025} |
© :
T .) f
= : : : : : : : : ®
g N N N N . N N N
£ e o e o0
7 b ; ; 5 5 i °
R o 0 1 - T S S SRR O RT FOPRSRRE S 4
£ o ; ®
b i
.
’ 55 26 57 28 29 510 511 512 513 14 515
Words

Figure 2.6: Power consumption for different word and block sizes in commercial SRAM
memories

2.2.4 Loopbuffers

Loop buffering[BaratO3] is an effective scheme used to reduce the energy
consumed in instruction memories. In many application domains, eg. multimedia,
a great part of execution time is spent in small program segments that repeat.
Loop buffers are employed in that case to store a small number of instructions,
so as to avoid the relatively much more expensive instruction cache.

2.3 Techniques for energy-efficient processors

There are several techniques that can be applied on a design for power reduction,
and each one of them is usually most effective on a certain level [PiguetO6].
Most of the gain in dynamic power can be saved at the highest levels (see table
2.1). At the system and architecture levels partition, activity, number of steps,
simplicity, data representation, memory hierarchy (cache, distributed memory or
centralized memory) and locality. But these choices depend to a great extend
on the application. At the circuit level the techniques typically focus on dynamic
power reduction with methods like gated clocks, pipelining, parallelization, very
low Vdd, several Vdd, variable Vdd (DVS or dynamic voltage scaling) and Vr,

22 Chapter 2. Background and Related Work
Dynamic Power Static Power

High-level Reduction of the number of | Remove wunits that do
executed tasks, steps and | nothing or nearly nothing
instructions. Processor
types. Processor versus
random logic.
Reconfigurability

Architecture Asynchronous Encoding, | Architectures with less
Parallel Pipeline, Simplicity | inactive gates

Circuit Layout | Gated Clock, Sub 1V, DVS, | Gated Vdd, MTCMOS,

Low V;, Low-power library
and basic cells

VTCMOS, DTMOS, stacked
transistors

Activity
reduction, Vdd reduction,
Capacitance reduction

Table 2.1: Power reduction techniques [PiguetO6]

activity estimation and optimization, low-power libraries, reduced swing. At the
logic and layout levels it is of great importance to choose the right low-power
libraries and the right mapping method. Finally, at the physical level, there is
the choice of layout optimization and technology. Especially in deep submicron
technologies where reducing leakage and static power becomes more difficult, an
effective low-power design has to address all design levels.

For an architectural design strategy for low power to be truly effective, it must
be holistic. Every part of the system needs to be analyzed and designed to be
power efficient and fit to each other perfectly. A careless design could lead to a few
components with greatly reduced power consumption but increased in many of the
other components, therefore a system with an overall worse power consumption.

2.3.1 Low-power techniques in circuit design

There are various techniques that have a beneficial effect to general purpose
processors and consequently to ASIP’s as well. Those techniques cover a great
range from low-level techniques like voltage scaling and clock gating to higher
level ones like code compression algorithms and scheduling optimization.

Since an ASIP is translated in a HDL as a complex finite state machine where
the state transitions are triggered by the input data and the ASIP software, most
of the known techniques for energy efficient hardware design can also be applied
accordingly.

While it is not the purpose of this thesis to analyze extensively low level circuit

2.3. Techniques for energy-efficient processors 23

design, the system designer needs to take them into account, so that they can
later be efficiently applied.

Dynamic voltage and frequency scaling

There are many different applications that may execute on a system but each one
of them has different performance requirements. Additionally, when it comes to
embedded systems there are also power requirements. For example, running
Matlab requires much greater performance than playing Minefield. In these
systems a very useful technique is employed called dynamic voltage scaling (DVS)
or dynamic voltage/frequency scaling (DVFS) [Burd00]. The aim of DVS is to
decrease the power consumption by exploiting the time-varying computational
load of different applications in embedded systems and adjusting the performance
of the system to match the needs of each application when that particular one is
being executed (fig 2.7). Then the supply voltage is reduced to the bare minimum
required for the set frequency. As a result, there are significant gains in power
consumption by up to a factor of 10x without sacrificing peak throughput.

100
"""""""""""" Dynamic Operation|] 7
P I i ynamic U peration g::‘j;‘
== TN I /‘%MMW
E 60 A efficiency|@ higﬂ speed
o CPU f/; _
Y N— OG5 L RS IR S
£ 40 y\>/// System
o ///'
-S A S SSUSUUUSUUUIU ISUORUURRI NUUOURITRIN! SURRRRR
I/
80% cdnverter
oo g Qfficiency @|lowest speey | L
00 1 2 3 4 5 6
Energy (mW/MIP)

Figure 2.7: Measured throughput versus energy consumption [Burd00]

DVS can also prove useful for reducing leakage during periods of low activity,
because sub-threshold and gate leakage are strongly sensitive to the supply
voltage.

Clock gating

Clock gating is a design methodology for reducing ASIC power consumption by
inserting enable signals before the clock signal of a block. This way when the
block is not used it is turned off using the disable and the switching activity of the

24 Chapter 2. Background and Related Work

registers is halted. That reduces the dynamic power consumed to zero but incurs
an overhead for the extra logic required. This technique is fairly simple as long as
we don’t add to the critical path of the design, and provides great gain in systems
when we have idle parts of the design for a long time.

Power gating

One of the biggest problems as the CMOS technology scale keeps getting smaller
is the problem of static leakage. A widely used technique to reduce static current
during sleep mode is to turn off the power supply to the sleeping blocks, known
as Power Gating, originally proposed as Multiple Threshold CMOS (MTCMOS)
[Mutoh95]. In order to accomplice this, special sleep transistors (fig 2.8) are
introduced in the design that connect Vpp and Vppy when the header switch is
ON or cuts off supply to Vppy through Vpp when the header switch is turned
OFF. In the latter case, as Vppy gradually sinks to O, the output of the block
may go to unwanted voltage levels, so the isolation gates are needed to force the
outputs to a valid level during sleep.

Header Switch

V Transistors
T T 2
J
Sleep—4—<F—4¢ :{E%
Vbbov P P

[oo LD

sindinQ

-§ voo| Gated 000
7 Block |
v Output
Isolation

Figure 2.8: Power gating [Westel1]

Activity and optimal total power

In systems with processors that have low or very low activity, the ratio of dynamic
to static power is expected to be really small, because the gates in the system
consume a set amount of static energy while total switching activity is quite low.
Leakage can be considered roughly proportional to the number of gates and the
duration of the clock cycle. Since what we want an optimal total power, there it
is worth looking into whether making better use of a smaller amount of switching
transistors or gates can prove helpful. However, that by itself is not enough.
Because having a smaller architecture has a negative impact on performance in
some cases. so to cope with that the supply voltage is increased and the Vp

2.3. Techniques for energy-efficient processors 25

decreased, resulting in increased total power. So, to actually accomplice the aim,
one would need to take into account various factors, mainly the speed constraints
and the logical depth (LD). Usually this method can be best applied in pipelined
architectures.

2.3.2 Low-power techniques in architecture level

CPI reduction

Most well-known 8-bit microcontrollers are based on CISC (Complex Instruction
Set Computer) architectures, in which every instruction format contains several
bytes and several memory accesses are required for the execution of a single
instruction. This results in a CPI (clocks per instruction) of values 4-20, and
according to the formula that calculates the performance of a processor in MIPS
(millions of instructions per second), MIPS = f/ CPI, in order to achieve a high
performance the processor would have to be clocked in a high f frequency, because
dynamic power is proportional to the frequency that results in a higher dynamic
power consumption. In contrast, RISC architectures may have a similar amount
of transistors but can offer a CPI of almost 1 (usually a bit higher than 1), therefore
offering greater energy efliciency per instruction executed. CPI reduction is the
technique that can bring most of the improvements in a single processor system.

Gated-clock mechanisms

Clock gating as explained in section 2.3.1, can be applied in various components
of a design (or certain parts of those) in a way that allows the designer to disable
the clock and thus the transitions and switching in those parts. For example
in the 3-stage pipeline CoolRISC core it is used on parts of the ALU and also
for the instruction register. As a result, a branch is only executed in the first
pipeline stage and there are no costly (in energy) transitions in the second and
third stages of the pipeline. It is obvious that gated-clock mechanisms can be
used in conjunction with pipelined architectures for better power results. Many
modern CAD tools support automatic gated-clock mechanism insertion.

DFF versus Latch based design

One of the main problems of today’s processor design is clock skew. It is extremely
difficult to design a clock tree with the smallest possible clock skew while avoiding
possible timing violations. This problem has been augmented in deep submicron
technologies, considering that the smaller the technology the larger the wire delays
as compared to gate delays. Most modern processors make use of a single-phase
clock and are based on D flip-flops, and in deep submicron technologies the

26 Chapter 2. Background and Related Work

problems of reliable clock input slopes and clock input capacitance in standard
cell libraries are all parameters that have to be satisfied for a successful design.

A possible solution for these problems could be replacing the conventional
single-phase clock comprised of DFFs with only latches with two non-overlapping
clocks. This clocking scheme proves to be more reliable, more robust to clock skew
and less prone to low voltage timing violations than a DFF based one. In order
to maintain such a clocking scheme, two clocks are needed, each with twice the
frequency intended for the whole system. To ensure there are no timing violations,
the clock skew of each one has to be smaller than half the total period.

This scheme is generally more energy efficient because in DFF-based systems
there is a main clock tree with large costly capacitance while in latch-based there
are two smaller ones with smaller capacitance but more relaxed timing constraints
that more than make up for it, resulting in a smaller total power consumption.
Latch based clocking can also be used to verify the chip functionality and detect
design problems because it eliminates clock skew problems, which are much
harder to accomplice in DFF-based designs. Latch-based design also enables
time borrowing and makes use of timing barriers that stop the propagation of the
clock signal and halt the transitions, thus reducing power consumption. It also
brings a significant reduction in the number of MOS transistors needed and the
total area required because it allows the master part of the registers to be common
for all registers.

Combining latch-based design with clock gating in a pipelined architecture
can greatly reduce the total power consumption, by clock gating each stage
of the pipeline containing a latch register with individual enable signals. This
reduces the number of transitions in the design compared to a DFF-based design
(see figure 2.9), since each DFF is equal to two latches clocked and gated
together. Finally, latch-based design allows for safe clock gating methodology
without glitches in the clock or the need for memory elements (as is in DFFs).
It is estimated that for all of the above reasons, latch-based design bears an
improvement factor of 2 over a similar design with DFFs.

7 Combinatig
—F N
EnableA Circuit
]
Clock A Clock B

Figure 2.9: Latch-based clock gating [PiguetO6]

2.3. Techniques for energy-efficient processors 27

Optimal pipeline length

The number of the pipeline stages that can prove ideal for a processor depends
on the type of the processor and the targeted application domain. A pipelined
microprocessor is designed to execute N-cycle instruction overlapped in a N-
stages pipeline. In each cycle a new instruction enters the pipeline, another one
is completed and the rest just move to the next stage. Ideally this would result in
a CPI of 1, if it wasn'’t for the hazards that cause pipeline stalls.

The most common and unavoidable type of hazard is branch hazards that
occur when the target instruction after a branch is determined in a later stage of
the pipeline. So the pipeline is filled with NOP bubbles until the address of the next
instruction is settled. There are various methods to work around this problem.
Either using a branch delay slot that always executes the following instruction
after a branch, thus reducing the number of lost cycles by one, using a bypass
technique to forward data to a preceding stage before they would normally be
available or finally using branch prediction techniques that attempt to predict the
verdict of conditional branched. Taking into account that more often than not
computation intensive programs contain a lot of loops, it would be safe to assume
that in those programs the most common case for a branch would be for it to be
taken, so that the instruction address is back to the first instruction of the loop.
Of course there has to be a safety mechanism that prevents the instructions from
committing their changes if the prediction was wrong. Another prediction scheme
based on statistics would be to assume that the branch will behave in the same
way as it did last time.

In general pipeline hazards can be solved in a variety of ways, following
different kinds of approach. In a static approach the compiler is responsible
for reorganizing the code and inserting NOP instructions. In a dynamic approach
the processor hardware is in charge of solving the pipeline bubbles at run-time.
If out-of-order execution is a supported then the code is reorganized dynamically.
Other possible approaches include pipelined multi-thread architectures or a short
pipeline (like CoolRISC) where branch instructions are executed in a single cycle.

Whether or not any of the above approached are needed or can be applied
depends on the depth of the pipeline. The need for increased performance has
increased the depth of pipelines in microprocessors from three to five, six or even
eight stages. The more the stages, the better the performance, but the downside
is that we have to employ several of the aforementioned techniques to keep the
performance to power ratio to a healthy level.

Dedicated DSP cores, multi-core systems and multi-threading

General microprocessors are not very efficient with digital filter code. For that
reason support for special DSP instructions was added to the instruction set
of a processor. But this method is not very effective and causes quite an

28 Chapter 2. Background and Related Work

overhead for the processor. Cores having control and DSP instructions result in
lower performance, higher power consumption, approximately a 30% reduction in
maximum frequency and 30% increase in area required. That is why processors
designed and optimized exclusively for DSP tasks were developed. But they in
turn cannot execute control instructions efficiently. The solution for this came
in the form of multi-core system-on-chip, where control instructions are handled
by the microcontroller and DSP instructions but the DSP co-processor. Multi-
core systems claim a better performance to power consumption ratio, less heat
dissipation and smaller area required.

DSP architectures have many advantages. They are dedicated for executing
arithmetic operations and are very energy efficient in DSP algorithms. They can
complete several memory accesses in a single clock. They can fetch an instruction
from the program memory, fetch the operands and store a result in a single
clock cycle. Their memory organization is either the classic load/store used in
processors for increased parallelism or they are designed to fetch directly the data
they need from the memory for a simpler design. Many of them use specialized
addressing modes to address two data RAM through two banks with different
points for the unprocessed and the processed data and circular addressing (for
modulo). This way they can apply a DSP algorithm on arrays of data in an efficient
way. Finally, DSPs can be easily optimized to execute loops with zero overhead.
For all of the above reasons, dedicated DSP cores show increased performance
and can execute a DSP task in a fragment of the time a normal processor would.

To move a step further from multi-core systems, multi-threading is also
employed as a way to enhance the capabilities for parallel execution of instructions
by allowing threads that are independent to each other to execute on different
functional units of the system. Multi-threading is used on high-performance
systems but requires code that supports parallelism for it be fully utilized.

It is yet unclear but a multicore system containing an array of identical
parallel DSP cores could be the answer to leakage increase [PiguetO6]. Pushing
frequencies too high implies lowering the V, which results in increased leakage
power. To counter that, arrays of identical DSP cores with high V; could provide
the same computational power with less leakage. The result is high computational
power whereas the total register count and therefore the leakage is kept small.

VLIW DSP cores

There are also DSP cores in VLIW architectures, e.g. in commercial processors
from Texas Instruments, like the TMS320C6X containing an eight-issue VLIW
16-bit fixed point processor, that also includes two MAC units and six ALU, in
which a maximum of eight instructions can be executed in parallel wth 32-bit
data. Some implementations also include hardware accelerators for Viterbi or
Turbo decoding, which leads to great performance results.

However, the peak performance of these implementations is impossible to

2.4. Code compression and encoding 29

reach due to the nature of the code that can usually be broken to no more than
three or four parallel instructions, instead of the eight that are needed to fill all of
the execution units. Even if they are indeed filled, the energy required to fetch a
256-bit VLIW instruction word from the program memory is way bigger compared
to the cost of a 32-bit instruction word in a superscalar DSP core.

Superscalar DSP cores

Superscalar DSP cores contain multiple MAC execution units, much like the VLIW
DSP cores, but unlike them they take advantage of their small 32-bit program
data size. The problem in these cores is the increased area size and consumption
of the decoder, because a big number of complicated instructions with different
addressing modes have to fit in the instruction set.

Reconfigurable DSP cores

Reconfigurable DSP cores lay in the area between the large power consuming
FPGAs (Field Programmable Gate Arrays) and the programmable (but not
reconfigurable) DSP cores. They can be reconfigured at the functional level and
their interconnections can also be rearranged. Reconfigurable cores resemble
FPGAs in many ways, but have way less potential for reconfigurability. However,
they can be way more power efficient by allowing the reconfiguration of a small
number of execution and addressing units. This way, the power dissipation of
the operands fetch is minimized and the addressing modes can be optimized for
a given DSP task. As a result, it is only the operators of the functions units in the
architecture that end up taking up most of the power consumption.

It should be taken into consideration that the price to pay for a reconfigurable
DSP is the power consumption of the reconfiguration bits added in the
configuration registers of the special hardware. This reconfigurable hardware
is necessarily more complex in terms of transistor count and thus more power
consuming. Reconfigurable DSP cores also have to deal with software issues as
users can define new instructions or addressing modes but the development tools
cannot always support them in an efficient way.

2.4 Code compression and encoding

Data compression is a cost-effective way to increase the throughput in
communication bandwidth or utilize storage capacity without significant
overhead. It removes redundant information inherent in the original data or
simply uses less bits for the same data, thereby enabling a communication link to
transmit the same amount of data in fewer bits. For storage systems, fewer
bits are actually stored thus increasing the effective storage capacity. There

30 Chapter 2. Background and Related Work

are many compression algorithms, but for better results there are specialized
algorithms that can be used for specific tasks. Several data compression
techniques have been implemented in either software or hardware. However,
software implementations are not able to cope with the high requirements in
high-end systems so hardware implementations are used there. They are fixed
hardware and cannot be customized. As a result, it has to be parameterizable and
take into consideration resource constraints, speed of operation and compression
ratio.

In processors and embedded systems having an effective way to compress code
can prove really helpful, because apart from helping utilize the memory better,
using compressed code and therefore a reduced size executable can also affect
beneficially the size and the power consumption of the system. Furthermore,
having a more compact program compared to a non-compressed one reduces
the cache misses for the same cache or allows the use of a smaller one. That
is particularly important, as in modern systems the gap between processor
and memory responses is growing, making the memory response a bottleneck,
especially in large memories that require longer time to respond.

However, to make sure that using compressed code can truly be beneficial
for the system, the designer has to account for the extra cost of the encoding
and especially the decoding of the code. The decoder of the instructions can
be positioned in different places in the system, thus having a different impact
depending on that place. For example, it can be positioned between the cache
and the main memory or between the cache and the instruction pipeline.

Unlike normal data compression, instruction data compression requires a
different approach. Achieving maximum compression but making the encoding
and decoding schemes really complicated, could sometimes result to making the
decompressing component the bottleneck of the whole system.

There are various methods proposed for efficient instruction code
compression. Some of the most common are Huffman coding, dictionary-
based methods, statistical-based methods or various combinations of those
[BeniO2]. There have been also many notable industrial attempts, including
ARM’s Thumb[ARM],[Xu04] and MIPS16 [Kiss97].

There are also methods that can be used for flexible VLIW architectures[XieO7]
or similar with higher compression using LZW-based compression in [Lin0O4].

Huffman encoding

Huffman encoding [Huff52] is a widely used and very effective technique
for compressing data, with gains of 20% to even 90%, depending on the
characteristics of the code being compressed [CormeOl]. Since any data for
compression is considered to be a sequence of characters, Huffman’s greedy
algorithm using a sorted table containing the frequency of occurrences of each

2.4. Code compression and encoding 31

character, comes up with an optimal way to represent each character as a binary
string.

To solve the problem of optimal binary character coding, where each character
is represented with a unique binary string, the algorithm uses a variable-
length code instead of fixed-length. In that variable length-code, the most
frequent characters have priority and are given short codewords while infrequent
characters are given longer ones.

A simple example of Huffman coding can be seen in fig. 2.10. The first tree
shows the initial data and the second is the final result of the coding. Each leaf
is labeled with a character and its frequency of occurrence. Each internal node
is labeled with the sum of the frequencies of the leaves in its subtree. (a) The
tree corresponding to the fixed-length code a = 000, . . . , f = 101. (b) The tree
corresponding to the optimal prefix code a =0, b= 101, ..., {f=1100.

|a:45] [b:13] [c:12] [a:16] [e:9] [£:5]

(a) (b)

Figure 2.10: Trees showing the initial data and the results of a simple Huffman coding.
[CormeO1]

The basic notion of the Huffman code can be successfully applied in
instruction-set encoding, but it is impossible to take full advantage of the variable-
length code in the same way. Nevertheless, it helps a lot in reducing the complexity
of the instruction decoder, by allowing the designer to substitute '0’s and ’1’s with
don’t care bits (’x’s).

In one of the early Huffman-based encoding schemes [Wolfe92], the CCRP
(Compressed Code RISC Processor) was introduced. The basic aim of this
processor was to compress the code so that the processor sees fixed-size, easily
decoded instruction that can keep the pipeline full and can potentially provide
support for an implementation that enables the execution of multiple instructions
per cycle, with a simple addiction of a new cache design. The researchers
chose Huffman encoding over others for combining simplicity and effectiveness,
providing an optimal encoding for a fixed size input alphabet, but they also
modified it a bit to improve its performance. The results showed considerable

32 Chapter 2. Background and Related Work

gains, especially for slower memories. So the processor could benefit from the
dense code, with the cost of a small performance overhead.

Recent implementations using Huffman code[BonnO8] combine it with
statistical or directory schemes for more efficient compression of the data.

Markov modelling

Many mathematical systems have the property that given the present state,
the past states have no influence on the future. This property is called the
Markov property and systems that have it are called Markov chains [Hoel72]. A
Markov chain is the most simple example a Markov model and is characterized by
random variables that satisfy the Markov property and have stationary transition
probabilities. Markov chains are worth looking into because they can model a
large number of mathematical systems, hence have a large number of applications
in many fields.

In [Corma87] a minimum-redundancy code algorithm is used to describe a
message generated by a Markov chain model. Along with an adaptive coding
implementation of Huffman code or Ziv-Lempel, the resulting Dynamic Markov
Compression (DMC) performs quite well compared to earlier techniques.

Other publications[Hatt95],[Leka99],[Maha05] take Markov chains a step
further with Semi-adaptive Markov Compression. In [Leka99] there is a very good
application of an arithmetic coding and instruction compression framework based
on the Markov model. It allows a processor to decompress and use the compressed
code during runtime. The results, as the suggested architecture was tested on
Analog Devices Sharc and ARM’s Thumb show average compression ratios of 41-
48% for Sharc and 56% for ARM (outperforming Thumb’s 68% ratio). Compared
to other implementations, SAMC shows superior compression performance over
all algorithms except Semi-adaptive Dictionary Compression (SADC)[Leka98]. In
terms of speed it cannot match the fast dictionary coding methods, but it can
perform comparably to a Huffman decoder. In area, the requirements are a
bit bigger than a Huffman decoder. So, if the dominant design requirement is
decoding speed, the dictionary methods are preferable. Unless, if it is compression
ratio that we aim for, then SAMC performs best.

ARM’s Thumb

ARM'’s Thumb (T32) instruction set [ARM],[Goud99] provides a subset of the most
commonly used 32-bit ARM instructions which have been compressed into 16-
bit wide opcodes. On execution, these 16-bit instructions are decompressed
transparently to full 32-bit ARM instructions in real time without performance
loss. This way it can offer great code-density for minimal system memory size and
cost by having 32-bit performance from an 8 or 16-bit memory.

2.4. Code compression and encoding 33

Thumb-2 technology, as introduced in 2003, made Thumb a mixed (32-
and 16-bit) length instruction set, and is the instruction set common to all
ARMvV7 compliant ARM Cortex implementations. It provides enhanced levels of
performance, energy efficiency, and code density as compared to the first Thumb
for a wide range of embedded applications. Also, the technology is backwards
compatible with earlier ARM and Thumb instruction sets.

There has also been work on improving the Thumb ISA[Xu04], for further size
reduction and timing performance.

MIPS16

MIPS16[Kiss97] is an architecture extension that was introduced to address the
code density and bandwidth issues of MIPS RISC designs. It was classified as an
"architecture extension", because even though it was the standard mechanism
for code compression in next MIPS RISC CPUs, support for it was not mandatory
for all future implementations. MIPS16 was designed to be fully compatible
with existing 32-bit and 64-bit MIPS architectures. MIPS16 instructions can
be mapped and executed on a standard MIPS architecture, because they can be
translated into 64-bit MIPS-III instructions real-time using simple hardware.

In order to achieve the desired compression, the MIPS16 had to cut down on
the MIPS instruction encoding, in all parts. To accomplice that, statistical data
from MIPS applications were gathered, to exploit the frequency of the instructions
used and also the number of registers. The results showed which instructions
were the most important and also that the compiler-generated code rarely used
more than 8 registers. So the size of the opcode and operand parts were reduced,
thus decreasing instruction flexibility and the number of accessible registers from
32 to 8, but the greatest gain due to reducing the size of the immediate values
from 16 bits to 5 (fig 2.11).

Opcode Source |[Target. [Imm.

MIPS16 | (5 bits) Register| Register| Value
“1 (3 bits) |(3 bits) [(5 bits

Opcode | Source Target.

MIPS-1 (6 bits) | Register Register
(5 bits) (5 bits)

Immediate Value (16 bits)

Figure 2.11: Mapping of MIPS16 compressed instructions [Kiss97]

To overcome the shortcomings caused by the compressed instruction set,
several specialized mechanisms were developed, mainly aimed at PC and SP

34 Chapter 2. Background and Related Work

relative addressing and extra load stores for larger than 5-bit immediate values.

The results from using the MIPS16 instruction set show that even though more
instructions are generated for the same operation and the instructions themselves
are now less flexible and expressive, the net code generated by the compiler for
a range of desktop and embedded applications is decreased by an average of
40%. Furthermore, the higher code density and the smaller instruction memory
contribute to a better hit ratio for the instruction cache and reduced off-chip
bandwidth requirements, that more than make up for the slight increase in the
absolute number of instructions.

2.5 Architecture Description Languages

Architecture Description Languages (ADLs) [Mish08] are used for designing both
hardware and software architectures. Hardware ADLs capture the structure
(hardware components, interconnections) as well as the behavior as it is defined
by the instruction set architecture of a processor. Software ADLs are used to
represent and analyze software architectures. For the purposes of this thesis,
wherever ADLs are mentioned, that refers to hardware ADLs.

ADLs have been used for many years now as a successful way to describe
the specifications and functions of a processor. The ADL description is used
for the generation of several executable models, i.e. the compiler, the hardware
implementation and the simulator. Combining these models enables the designer
to automate tasks like compilation, simulation, synthesis, test generation and
validation. This way the overall time needed for the design is significantly
decreased and the quality of the final output improved.

There are several different kinds of ADLs, each one developed for specific
purposes. They are sorted into three categories, depending on the nature of
the information they describe. Those are: (a) Structural ADLs that capture
the structure in terms of architectural components and their connectivity and
are mostly synthesis and validation oriented, (b) Behavioral ADLs that capture
the behavior of the instruction-set that belongs to a processor architecture
and are compilation and simulation oriented, and finally (c) Mixed ADLs that
capture both the structure and the behavior of the architecture and support all
objective orientations (compilation, simulation, synthesis and validation). Notable
examples of ADLs include MIMOLA (structural), ISDL (behavioral), nML (mixed)
and Lisa (mixed).

2.6 Design methodologies for ASIP

The definition of ASIP as Application Specific Instruction-Set processor was used
since the late 1980’s [Wolfe88], also mentioned as "Application-Specific Integrated

2.6. Design methodologies for ASIP 35

Processor" in other books. An ASIP is often a Silicon Intellectual Property (SIP),
and many SoC solutions use ASIP IP. The main difference between a general
purpose processor and an ASIP is the target application domain that defines an
ASIP. General purpose processors have to be adequately effective for virtually
all possible applications and that is the reason why they cannot by definition
be optimal for all, unlike ASIPs that are designed for a specific application
domain. The term application domain denotes a set of applications that serve
the same purpose in similar ways or similar purposes altogether. They usually
have the same properties and characteristics and usually benefit equally from
certain optimizations. Video decoding, digital radio baseband, or bio-imaging are
characteristic examples of application domains. So, an ASIP is fine tuned to
be optimal for an application domain, aiming for a higher mix of flexibility, low
power consumption and cost and performance than general purpose processors
can provide.

ASIPs use a sophisticated hardware and software co-design as shown in figure
2.12, that combines the instruction-set and the hardware components of the
processor architecture with the compiler and the application code required for that
particular processor. Before each step of the tool flow, the hardware and software
flows interact to assure compatibility with each other and optimal implementation.

ASIP requirement specification

l Early manual partition according to application profiling J
Implement the function as an instruction
Instruction set — t the functi . a subrouti Processor architecture
specification mplement the function as a subroutine specification
, ! : .
Assembly instruction set simulator] [Microarchitecture design
- ' N Implement the function as an instruction I : ~
Benchmarking of o] " Design for HW
instruction set Implement the function as a subroutine acceleration
. S A S
I I ’
Application SW implementation] [Processor HW implementation

} }

[ASIP Integration, final function verification and performance validation]

Figure 2.12: ASIP hardware/software co-design flow [Liu08]

One of the very first Application Specific Instruction-Set Processor (ASIP)
design methodologies that came up was “Cathedral 1I” from IMEC [DeMan86],
[Goos87], [Catth88], [DeMan88]. The innovation of “Cathedral II” was the
development of an application specific silicon compiler for highly complex DSP
algorithms provided that there are defined limitation on the target silicon

36 Chapter 2. Background and Related Work

architecture for a restricted application area. Following a "meet in the middle"
design method, Cathedral II enabled design from a high-level behavioural
language called SILAGE (oriented for DSP), then rule-based synthesis for the
target architecture and generation of the microcode for the controllers and
interprocessor communication through heuristic scheduling.

2.6.1 Target IP Designer

The Target tool flow “IP Designer” is one of the most advanced products for ASIP
design. Target Compilers Technology [Target] provides a fully developed tool flow,
equipped with the nML grammar, a mixed ADL with support for compilation,
verification, application simulation and HDL generation tools.

More about the Target tool flow will be analysed extensively on a later chapter.

2.6.2 Tensilica’s Xtensa

Tensilica’s Xtensa [Tensilica] makes use of an ASIP-like methodology named
DPU. Dataplane processors (DPUs) are designed to provide programmability in
the performance-intensive dataplane of the SOC design. They are a combination
of a DSP and a CPU, but can be customized for maximum efficiency for the target
application. Wide datapaths or instructions can be build into a custom DPU.

Tensilica provides SOC designers with everything needed to quickly design
small, low power and high-speed dataplane processors that exactly match
the required application. By using Tensilica’s Xtensa dataplane processing
units (DPUs), design teams can reduce the development and verification time
required by hand-coding RTL blocks in Verilog or VHDL. As these DPUs provide
programmability into the dataplane, changes can be made in firmware after silicon
production that extend the life of the product as standards develop and market
needs change.

All Xtensa customizable processors have two essential features, configurability
and extensibility. This way, designers are offered a menu of checkbox and drop-
down menu options so they can pick just the features they need - including
multiple pre-verified DSP engines. Also they can add their own instructions,
registers, register files, and much more using the Tensilica Instruction Extension
(TIE) methodology. The designer only has to specify the functional behavior of the
new data path elements in the TIE language (Verilog-like) and then the RTL and
whole tool chain is automatically generated.

2.6.3 LISA and Synopsys Processor Designer

LISA was initially developed by LISATek , afterwards owned by CoWare
and finally now integrated in Synopsys Processor Designer [Synopsys]. The

2.7. ASIP Case studies 37

Synopsys Processor Designer is an automated, application-specific embedded
processor design and optimization environment that can decrease the time
spent on a hardware processor design and the creation of application-specific
software development tools. It is highly automated to enable improved
architectural exploration and application-specific processor development, as well
as consistency checking and individual tool verification. It can be used for the
development of a wide range of processor architectures, including SIMD and VLIW
and can also support DSP and RISC features.

At the “heart” of Processor Designer lies an ADL named LISA 2.0, a Language
of ISAs. LISA 2.0 can use ANSI-C which makes it easy to import existing
C/C++ based models and functionality. It also includes an Instruction Set
Simulator (ISS), and a complete software development suite with assembler,
linker, archiver, C-compiler and synthesizable RTL code. Furthermore, it provides
profiling capabilities in the debugger, rapid analysis and exploration of an ISA.
The instruction set design, the processor’s micro-architecture and the memory
subsystems can be independently optimized.

2.7 ASIP Case studies

There are several case studies published with ASIP being employed to face similar
problems. Some of the most interesting ones due to their innovative ides or
impressive results are analyzed here.

In [MorgO7] a code compression technique is used to make a more compact
instruction. During software analysis, the opcodes dispatched to individual
functional units of a VLIW processor are measured (fig. 2.13. Using that
information, a dictionary-like encoding scheme is created at a more fine-grained
level than other approaches (e.g. [PiguetO1]). To make sure that the lookup table
will be reasonable, instead of encoding all possible opcodes for each functional
unit, only the frequently used opcodes identified from the profile-based analysis
remain in the LUT.

Encoded instruction word — short & full opcodes

I |
bypassed

decode
logic

microcode

[microcode | | microcode |

FU FU FU FU

Figure 2.13: Different design styles target different design metrics [Morg07]

38 Chapter 2. Background and Related Work

Each short opcode within the instruction word is split into two sections. The
selector "address" indicating the functional unit and the encoded instruction. A
Huffman-type encoding is used to allocate variable-width addresses in priority
order of FU usage. This way overburdened FUs have more active opcode bits and
need less address bits. Each FU has its own unique LUT decode logic to decode
its short opcode into microcode, as well as an escape code instruction indicating
that a full opcode should be fetched from the instruction word. The short opcode
usually ends up with a width of 8 to 11 bits for optimal results. If more then
it would require large and inefficient decode logic and if less it would be too
restrictive on the available short opcodes. The algorithm employed dynamically
estimates if the cost of increasing the FU short opcode width by a single bit (thus
doubling the number of available short opcodes) is worth the extra cost.

To make this decision the algorithm compares the benefit of energy gain from
the increase in opcodes against the cost of the extra decode logic. The results
from this implementation show considerable cache area decrease in almost all
tests, 18% decrease in the area and a slight increase in performance (due to the
decrease in clock cycles by 8%). In terms of energy the total energy has dropped
by 20

A very interesting framework for optimizing mainly power-wise the instruction
encoding of an already existing ASIP processor is provided in [Chat07], with
[Zhang08] taking the same project one step further by adding a more automated
algorithmic approach. The focus in this implementation is on how to reduce the
power consumption by emphasizing on both the self and coupling capacitance of
the bus lines, separating the different possible bit transitions and calculating as
precisely as possible the cost of these transitions.

Instruction-Set

| Application "’-‘ ‘ Processor

High-level | Instruction Encoding |
Simulation ! Synthesis

}

Instruction Encodin
Optimization ¢ Processor Decoder
Modification
Assembly Code | Register Opcoda
Modification |' Mama Adjustmant Ra-Assignmant Assembler
Modification

Figure 2.14: Overall encoding synthesis flow [Zhang08]

That power model is then used along with the ADL grammar file describing
the instruction-set and with an assembly program in a series of algorithmic
optimizations (figure 2.14). First the opcode itself is changed to minimize

2.7. ASIP Case studies 39

power consumption with regard to the applications provided by performing the
Opcode Re-Assignment (ORA). The ORA technique breaks down the instruction set,
tracks down the dependencies between the various instructions, simulates the
assembly program and maps the toggling and coupling results to its corresponding
instructions. The directed graphs created this way are then grouped into column
graphs according to each dependent instruction to ensure unique encoding. Also
a hash table is generated from the coupling information between the nodes. To
produce the updated grammar file, first an initial coding is assigned through gray
coding and then a heuristic optimization method is applied attempting to find an
encoding that is most power efficient.

With the updated grammar file the Register Name Adjustment (RNA) is applied
on the application code, rearranging it so that is compatible with the new grammar
and also using the statistics from information extraction to perform a heuristic
approach similar to ORA so that the register file usage is power-efficient as well.

But what happens if instead of a single program there are are more programs,
commonly referred to as an application domain. In that case, as shown on figure
2.15 the columns information is extracted for each different assembly program
and a single set of column graphs and a hash table are created. Those are taken
into account and analyzed with a unique updated grammar file generated through
the ORA technique. That new grammar information is used as the common
grammar information for all the programs. Using that, the RNA technique is
performed for each program individually, and out of each program a register graph
for toggling information and a hash table for coupling information are created for
re-assigning the registers.

40

Chapter 2. Background and Related Work

Instruction Grammar

File
| Program 1 |
Program 2 | I
Program n | | ORA Extraction |
ORA Algorithm
Updated Common
Grammar File

[RNA Extraction 1| [RNA Extraction2] - [RNA Extraction n|

RNA Algorithm ‘ ‘ RNA Algorithm | .. ‘ RNA Algorithm

L v L

Renamed Registers Renamed Registers Renamed Registers
in Program |1 in Program 2 in Program n

Figure 2.15: Multiple assembly programs optimization flow [Zhang08]

Chapter 3

Development Framework

In this chapter the basic development framework that was used for this thesis is
provided, along with the particular ASIP methodology employed to design different
ASIP processor implementations.

The Tools that were used for the purpose of this thesis were Target’s
retargetable tool-suite “IP Designer” for designing, compiling, programming,
simulation and verification of ASIP cores and their applications.

3.1 nML Grammar

The whole tool flow has at its heart the nML grammar (figure 3.1). nML is a
hierarchical and highly structured ADL. It models a processor in a concise way
for a retargetable processor design and software development tool suite. It has
been designed to contain the right amount of hardware knowledge that is required
by the Target tools for high quality results.

A unique feature of Target’s Chess/Checkers tool suite is its architectural
retargetability, based on the nML processor description language. nML is a high-
level language that captures a programmer’s model of the target processor. This
is the abstraction level commonly found in a programmer’s manual of a processor.
Using nML, an architecture designer can quickly define the instruction-set
architecture of a processor or make any changes without wasting much time.
After reading the nML description, the different tools are automatically targeted
to the specific architecture.

It should be made clear that the term Retargetable is used to describe that the
tools (including the C compiler) are targeted towards the architecture so described
in nML. There is no restriction to the type of ISA that can be modelled: RISC, CISM,
SIMD, VLIW, integer and floating-point architectures are supported. All tools take
the nML model into account. and the retargeting process is very fast, since a few
seconds are more than enough to retarget the compiler, simulator and all other

42 Chapter 3. Development Framework

T

Data path

. [Fur[ALOoPD]
Instruction rreess
set FMT[OPD] 5H]

\ | Processor model nML:

[Syn'lheslsable model}

Figure 3.1: Outline of Target’s Chess/Checkers tool suite flow

tools.

Below are listed the basic definitions of the nML grammar[MishO08]:

3.1.1 nML Structural Skeleton

¢ Memory:
mem DM[0..1023,1]<num, addr>;

* Register:
reg X[4]<num,b2u>;

¢ Constant:
cst c2u<uint2>;

e Enumeration:
enum alu{add, sub, and, or};

¢ Transitory:
trn A<num>;

* Pipe Register:
pipe F<acc>;

¢ Functional Unit:
fu alu;

3.1. nML Grammar 43

3.1.2 nML Rule Definition

Example of an ALU definition:

opn alu(op: alu_op, t: rt, r: rr, s: rs) {

action {
stage El:
alur = r;
alus = s;

switch (op) {
case add: alut = add(alur, alus) @alu
case sub: alut sub(alur, alus) @alu

case and: alut = and(alur, alus) @alu
case or: alut = or(alur, alus) @alu
}
t = alut;
}
SyntaX . Op non t n,n r u,n S;

image : op::t::r::s;

}

We have two kind of rules. OR rules (symbolized by "|") alternatives for an
instruction part. These alternatives are mutually exclusive, meaning that only one
of them can be executed at a time. AND rules (symbolized by "::") are the rules
that describe the composition of instruction parts. The composing instruction
parts are orthogonal, meaning that the concatenation of any legal derivation for

every instruction part forms a legal derivation for the AND rule itself.

In the code above, we should pay attention to three attributes:

* The action attribute describes which register transfer actions are performed
by an instruction or instruction part. Each AND rule must have one action
attribute.

* The syntax attribute specifies the assembler syntax (mnemonics) for the
corresponding instruction (part). It must only be present if the intention
is to derive an assembler or disassembler tool from the nML description.
An AND rule may have multiple syntax attributes if needed.

* The image attribute defines the binary encoding for the corresponding
instruction or instruction part. In some cases, multiple image attributes may
be needed.

It should be noted that while an OR rule does not need any explicitly defined
attributes, it implicitly passes attributes between its left and its right-hand sides.

44 Chapter 3. Development Framework

3.1.3 Primitives definition and generation language

To keep in line with the need of the ASIP hardware/software co-design, each of
the operations are matched to a primitive function and subsequently a function
in the Primitives Definition and Generation (PDG) language (.p) file. These
functions provide the functional description of the instruction in C language, so
that the software tools can create the compiler for that particular processor, which
in turn compiles the application code meant for this processor in an assembly that
it can process and execute.

3.2 Target tool flow

The tools as shown in figure 3.1 include the following:

3.2.1 Chess

Chess is a retargetable C compiler that translates C source code into machine
code for the target processor. It uses graph-based modelling and optimization
techniques to generate optimized code for specialized architectures exhibiting
peculiarities such as complex instruction pipelines, heterogeneous register
structures, specialized functional units and in-level parallelism.

The compiler also includes a retargetable assembler and disassembler called
Darts and a retargetable linker called Bridge.

3.2.2 Checkers

A retargetable instruction-set simulator (ISS) generator that produces a cycle-accurate
or bit-accurate ISS for the target processor based on the nML description. The
ISS can be run in stand-alone mode or can be embedded in a co-simulation
environment through an application programming interface (API). This allows
the designer to simulate the C code generated by Chess with the instruction-
set architecture. Checkers also includes a graphical debugger that can connect
both to the ISS and to the available processor hardware for on-chip debugging,
through the JTAG interface. Profiling and instruction trace are also supported.

3.2.3 Go

A hardware description language (HDL) generator that produces a synthesisable RTL
(register-transfer-level) HDL model of the target processor core. Through APlIs,
users can plug in their own HDL implementations of functional units and of the
memory architecture.

3.3. Instuction set encoding 45

3.2.4 Risk

A retargetable test-program generator that can generate assembly-level test-
programs for the target processor with a high fault coverage. These test programs
can then be executed both in the ISS and in the HDL model of the processor, to
check for the consistency of both models.

3.3 Instuction set encoding

In an embedded processor, the way an instruction set is encoded affects directly
the way the instructions themselves are encoded in binary and thus executed by
the processor. Therefore this affects likewise not only the size of the executed code
but the way the instruction decoder itself is build so that it can efficiently decode
these binary instructions, with fast access to the operation and the operands. The
tirst part that refers to the operation is usually referred to as the opcode. The
opcode also includes the information about the addressing modes of the different
operations.

The encoding of the instruction set in a processor has a very strong influence
on the rest of the design. It also defines two important parameters in a processor:
The size of the program memory and the available flexibility. The size of the
program memory is a defining parameter is the overall energy consumption.
So for a smaller instruction width, a smaller program memory is needed, but a
part of the flexibility is sacrificed. Finding a suitable trade-off between flexibility
and code size for an optimal instruction encoding is quite challenging, and also
depends greatly on the application domain.

An option that is especially popular with VLIW processors is the compression
of the instruction set. However, in that case extra area and power is needed to
uncompress and decode the instructions.

When developing an ASIP, some developers tend to overlook the encoding of
the instruction set or simply try to make the instruction set as compact as possible
to reduce the instruction width.

In the Target tool suite, the instruction encoding is defined in the opn rules
of the nML Grammar (sec: 3.1). All of the available encoding schemes can be
applied in the nML, so that they can improve the resulting processor design.
More about that on a later chapter.

46

Chapter 3. Development Framework

Chapter 4

Development of a SIMD ASIP

In order to validate the motivation of this thesis a SIMD processor was developed,
based on an example processor provided by Target, and then compared to a
scalar processor and a soft-SIMD one. The example processor of target is a small
basic SIMD vector processor which exemplifies the ability of the Target tools to
incorporate SIMD instructions in an ASIP and is typically taken as a starting
point for vector processor design. It is also a good starting point for the main
implementation that follows in the next chapter and to explore the percentage
of energy consumed by each component. The evaluated Soft-SIMD processor is
part of a Master Thesis[Dak11] that was conducted in IMEC/Holst Centre very
recently and is used to get an understanding of the differences in performance
and power consumption of SIMD and Soft-SIMD implementations.

41 Hardware SIMD and Software SIMD

Hardware SIMD (Single Instruction Multiple Data), also called hard-SIMD is
a vector architecture that supports operation on several data in parallel or
operations on several narrower data types at the same time by treating a single
register as if it contains multiple data words. For example, four 16-bit data
additions could be executed on a 64-bit ALU in a single cycle in parallel, provided
the carries of the separate additions are isolated. SIMD processors use special
hardware in their data-path for computations on a certain combination of sub-
words of the same lengths. A common example of this would be treating a 32-bit
(word) register as containing two 16-bit (half-word) data or four 8-bit (byte) data,
and then being able to perform an operation on each sub-word. This is what
differentiates SIMD processors from normal vector processors that only support
a single parallel execution mode (e.g. 10 x 32 bits) [Catth10]. This offers new
parallelization options allowing multiple smaller operations to be performed on
each of the smaller data type.

48 Chapter 4. Development of a SIMD ASIP

SIMD operations may require additional hardware but they offer great
performance and can accelerate algorithm operations and applications with
parallel operations or loops that are repeated a lot (e.g. vector operations and
digital filters). Naturally, SIMD processors are ineffective in executing serial code
or code with bad memory locality. Therefore, to enhance the SIMD capabilities
of a processor, extra instructions are needed for packing (or compressing) and
unpacking (or uncompressing) SIMD data in and out of registers (fig. 4.1). The
overhead of this packing and unpacking instructions depends on how many
times the data are used and where they are stored. Even though SIMD operations
increase power consumption, they greatly decrease the number of cycles needed
to perform a task, which depending on the application can sometimes lead to
smaller energy consumption for the same task.

A] I - |]

+
D | CE | - CF |
AT O + B CE - |Ce CFE

Figure 4.1: SIMD data packing

The reason for the classification between hardware and software SIMD is
because hardware SIMD is performed in hardware level and requires extra
hardware, along with all the extra power and area that requires. A Software
SIMD (Soft-SIMD) processor, unlike a hardware SIMD, attempts to do the same
procedure, but it is instead emulated in software and the application code needs
to be prepared by the compiler. This method is fruitful only if the application
code can be parallelized and the processor data width is big enough to support a
sufficient number of sub-words. For example, applying soft-SIMD to enable the
execution of two 8-bit sub-words in 16-bit ALU is not as beneficial as enabling
the execution of eight 8-bit sub-words in a 64-bit ALU. That is because the
overhead of the soft-SIMD implementation is roughly the same, independently
of the number of sub-words executed in parallel.

Unlike Hardware SIMD, Soft-SIMD implementations do not require extra
hardware and for that reason they can be safely assumed to consume less power.
However, to make up for that they have to support extra operations. Evidently,
there is a trade-off that has to be met, and sometimes the overhead of the
extra operations can surpass the one of the extra hardware. Soft-SIMD has
the advantage of being more adaptive, allowing the execution of a variety of
combinations of different types of data sizes. This increases the potential and
the benefits of a Soft-SIMD but also increases the complexity of the design and
the expected gain.

4.2. Basic features of the VBase processor 49

4.2 Basic features of the VBase processor

The VBase example core demonstrates the modelling of SIMD instructions. As
mentioned earlier, SIMD stands for single instruction stream, multiple data
streams. SIMD instructions are also known as vector instructions. In SIMD
parallel processing, a vector of data is stored in a vector register. A SIMD
instruction processes the elements of the vector simultaneously. All elements
are processed in a identical way, as specified by the single instruction. By
processing whole vectors of data at once, SIMD provides a fast and efficient way
to manipulate large amounts of data.

A drawback of SIMD is that it requires the computational kernels of the
applications written in a way to efficiently use the SIMD instructions. However
in the Target tool flow, by using the Chess compiler, this can still be done at
C source code level thanks to the availability of an extended type system and
intrinsics. The vector data types can be used in the C code along with vector
intrinsic functions and operators defined for the vector types.

The VBase core contains:

e 16-bit instruction word
¢ 16-bit data word

¢ Separate instruction and data memory. The vector memory is mapped and
aligned on the data memory using the alias nML grammar option.

e A 128 bit vector unit.
* A 128 bit vector register file.

¢ A 128 bit vector memory data port.

VBase supports vectors of 16 elements of one byte each and vectors of 8 elements
of one word each.

4.3 Additions and modifications

For the purposes of this case study, several modifications were made to the VBase
processor:

* The number of elements processed was changed to 4 elements of one word
each (SIMD slots), so the processor is now able to support a vector of 4
elements of 16 bits each.

* New instructions were added that can control a multiply-accumulate
(MAC) functional unit, divided in two stages (fig. 4.3).

50 Chapter 4. Development of a SIMD ASIP

¢ Also added instruction for initializing or resetting the accumulator, as well
as instructions for extracting the 16-bit MS or 16-bit LS part of an addition
before that is forwarded to the shifter (and then shortened).

¢ Also, extra units were used to handle the accumulator and the rounding.

* New data types were introduced to handle the inputs, outputs and
intermediate data of the MAC. Mainly the vector types, accumulator type,
and a slightly adjusted instruction word type.

¢ Changed the memory management to allow for a separate Vector Memory,
instead of mapping and aligning it to the existing Data Memory.

4.4 Gauss loop filtering

To examine and check the performance of an SIMD implementation the MAC unit
analysed before was tailored to execute the filtering of an image in a bio-imaging
application. The same was also used in the Soft-SIMD design.

The focus of the application is on the critical Gauss loop where the majority
of cycles is spent. The loop is what has the maximum number of constant
multiplications in the whole application. That loop applies the Gauss filter to
a frame in a detection algorithm. In the original code, the Gauss filter is applied
through a 3 x 3 matrix that hold the Gauss coefficients (fig. 4.2).

® [|

Figure 4.2: Application of Gauss filter through a coefficient square matrix [Psy10]

The result of the application of the Gauss filter for one pixel is calculated in
every iteration using the eight neighbouring pixels. Each neighbouring pixel
and the one in the centre are multiplied with the corresponding coefficient. The
results are summed up and the final value replaces the one in the central pixel.
The aim of this application is to reduce the noise in an image to enhance the
detection algorithm of the application which uses an ellipse to detect the location
and posture of the monitored object.

This application is handled in a bit different way by each implementation, and
so the specifics for its execution will be analyzed independently in a later section.

4.5. Multiply-accumulate unit 51

4.5 Multiply-accumulate unit

At the heart of any DSP lies the multiply-accumulate unit, commonly referred to
as MAC. By multiply-accumulate we denote the sum of multiplications used
in digital filters, correlations and Fast Fourier Transforms. Ideally the MAC
operation should be executed in a single cycle (so that the CPI is 1) inside a
pipelined architecture. The accumulator should be big enough to accommodate
the expected growth in size of the result. The result of a multiplication of two 16-
bit integers would be 32 bits and adding another 32-bit integer would normally
result to a 33-bit integer. But because of the range of data that is processed there is
not need for the extra overflow bit (more about that later). Otherwise there would
be a need for guard bits in case of arithmetic overflow. Usually for 16-bit data the
accumulators are 40 bits, with 8 guard bits that help save overflow information.

The schematic of the MAC unit designed for the purposes of this thesis can
be seen in figure 4.3. The MAC unit supports a reset and initialization function
for the 32-bit accumulator. Using the two input ports of the accumulator the 16-
bit data are inserted and the result of their multiplication is added to the current
value of the accumulator. The result of the addition is then stored as the new
value of the accumulator. Depending on the instruction being executed there is
also the option of storing the result of the ALU in the vector register file, provided
it is first saturated in a safe way back to the size of 16 bits.

It should be noted that while the two inputs of the multiplier look alike, the
tirst one comes from a part of the vector register read, so its a 16-bit part of 64-bit
vector register data while the second is the coefficient and is the same for all four
of them.

32

PIPE_REG ACC
32 32
Y Y +

N\ / SHIFTER

16

Y

Vector

32
Register File

Figure 4.3: The basic MAC unit introduced

52 Chapter 4. Development of a SIMD ASIP

It should be noted that as mentioned before this is an SIMD processor,
therefore there are four instances of this MAC unit in the design, giving the
capability to process 4 x 16bit = 64 bit of data.

On each iteration the following procedure is followed for the application of
the filter on 4 pixels at the same time:

reset acc

acc = previous_pixel * coeffl

acc = current_pixel * coeff2 + acc
acc = next_pixel * coeffl + acc
new_current_pixel = shift (acc)

4.5.1 Shifter and overflow prevention

The shifter in the design scales the results of the ALU to avoid overflows. DSP
architectures commonly use saturating arithmetic, so if the result is too large to be
stored and represented then it is set to the largest representable number, which
also depends on whether it is signed or unsigned and if it is signed then the sign
of the number.

To calculate which are the most important bits in the result it is first needed
to calculate the maximum number that it might be. Its helpful to know that the
numbers are unsigned. According to the algorithm followed above the following
function comes up: result = (a + ¢) * coef f1 + b * coef f2, where teach of the
a,b,c is a pixel with a size of 7 bits and the two coefficients have a sign of 10
bits, then the maximum number can fit in 19 bits. The maximum size of the first
multiplication is 18 bits, because (7+7)*10bits = 8*10 = 18 bits) and the one of the
second is (7*10)bits = 17 bits, then 18 bits added with 17 bits need a maximum
size of 19 bits. That means that the rest can be skipped and shift the number 13
bits (since it is unsigned) and keep the MS bits that fit.

4.5. Multiply-accumulate unit 53

4.5.2 Wrapper and Testbench

The wrapper used used in the testing, as shown in figure 4.4, is connecting the
vbase processor with the three different memories used. This way the processor
can access at any time all of the three memories.

Sel
PM_Al—p»
VBASE DM_A—MEM| |
SEL
omD VM AL
PM_D VM_D

'y

Figure 4.4: The wrapper outline

4.5.3 Additional instructions added

MAC instructions, just as the name implies perform the multiply and accumulate
operations in the dvmac FU. They have to be included in the same opn rule as
is shown below, to keep the pipeline intact. In the El stage, the multiply is
performed and the result is stored in the pipe register, and in the E2 stage the
addition is performed using the accumulator and the stored result in the pipeline
register.

opn vec_dvvs(vreg, reg) // MAC operations
{
action {
stage El:
dv_pipe = dv_mul_acc(vreg, reg) @dvmac;
stage E2:
acc = dv_add_acc(dv_pipe, acc) @dvmac;

54 Chapter 4. Development of a SIMD ASIP

Accumulator instructions use the dvmac FU and either return the MS or LS
16-bit part of the 32-bit accumulator or perform the shift operation as it was
explained before to extract the most important data bits and store them in the
vector register file. Also there is an instruction that resets the content of the
accumulator to ensure it is empty when used and won’t pollute the current
iteration with previous ones.

V[x] = acc_ms(accr) @dvmac;
V[x] = acc_ls(accr) @dvmac;
V[x] = vshift(accr) @dvmac;
acc = dvinit () @dvmac;

Packing/Unpacking instructions use the vec FU and allow either the insertion of
a 16-bit data from the register file to a specific one of the four spots in the 64-bit
SIMD data or the extraction of one of them.

V[x] = vec_insert(vector_register , spot, data) @vec;
reg = Vec_extract(Vector_register, spot) @vec;

Naturally, to keep in line with the need of the ASIP hardware/software
co-design, each of these operations were matched to a primitive function and
subsequently a function in the Primitives Definition and Generation (PDG)
language (.p) file.

4.6 Comparison of the hard-SIMD with a soft-SIMD
implementations

4.6.1 The Soft-SIMD implementation

There have been various Soft-SIMD implementations for a solution to the critical
Gauss loop mentioned above (see sec. 4.4) in a series of theses [Krit09], [Psy10],
[Dak11]. The one used for the comparison that follows is the most recent one by
S. Dakourou.

In this particular Soft-SIMD implementation, the designer is taking advantage
of the adaptive features of Soft-SIMD by using three different subword
combinations to execute the Gauss filter application. 6 x 8 bits, 4 x 12 bits and
3 x 16 bits, as shown in figure 4.5, always keeping a total of 48 bits. It is an
architecture aimed for loop dominated domains, exhibiting sufficient data level
parallelism, with signals of multiple word-lengths and a relatively small number
of multiplications.

The outline of the architecture, as illustrated in fig. 4.6, is using a GSAS FU
(Generic Shift Add Shuffle Function Unit) architecture, consisting of a shifter,

4.6. Comparison of the hard-SIMD with a soft-SIMD implementations 55

12b 12b 12b 12b

16b 16b 16b

48bits

Figure 4.5: Soft-SIMD sub-words [Dak11]

an adder and a shuffler. The shuffler is used to handle the required masking
operations needed for the Soft-SIMD. The shuffler is also in charge of choosing
an intermediate subword size instead of using by default the worst-case subword
size. Special repacking operations are applied whenever a change in subword
size is decided. To make the critical Gauss loop Soft-SIMD compatible it is
split into two loops. That reduces the total number of multiplications and also
allows efficient scheduling in the data-path. The shuffler is the component that
maintains the functional correctness by handling the subword manipulations.

Instead of costly hardware multipliers this implementation includes a shift-
add functional unit, which uses a number of shift and add operations to implement
the constant multiplications required by the Gauss filtering within the Soft-SIMD
concept.

The architecture is also making use of a novel asymmetric register file
organization called Very Wide Register File (VWR) or foreground memory
organization. It uses asymmetric interfaces: a wide interface with the memory
and a narrow one to the data-path, so it only has a single port per cell and is more
power efficient.

There are special operations added to handle the packing, repacking and
unpacking of the data, and also guard intervals that guarantee that each subword
does not overwrite nearby subwords and avoid data pollution.

The instruction-set used has an instruction word of 80 bits and is divided as
follows:

¢ Issue slot 1: Target Base core FU, 16 control its
¢ Issue slot 2: Multiplexers network and vector shift-add FU, 37 control bits
e Issue slot 3: Shuffler FU, 11 control bits

¢ Jssue slot 4: Interaction DM & RF, 16 control bits

56 Chapter 4. Development of a SIMD ASIP

Issue Slot 2 Issue Slot 3

ANl Write adr. Muocet, add or sub Shuffler Function

Figure 4.6: Soft-SIMD processor architecture [Dak11]

4.6.2 Comparison and results

The power simulations are performed on a synthesized netlist with a frequency
of 100MHz using the 90nm-LP TSMC libraries. It is not as accurate as a “place
and route” layout would be, but still it can provide the results needed without
going through the trouble and extensive time needed for place and route every
time.

In the wrapper, the Soft-SIMD is using a 1024 x 80-bit program memory, a 1024
x 16-bit data memory and 8 x 1024 x 48-bit vector memories. In the Hard-SIMD
because of the fact that at the time there were no 64-bit memories available for
the vector memory, eight copies of the 1024 x 80-bit memory of the Soft-SIMD
are used instead, and the unused part are set to zeros “0”. For the rest, the 1024
x 80-bit program memory (which is way larger than the 16-bit that should have
been used instead) and the 1024 x 16-bit data memory were kept as they were.
For these reasons, the power consumption of the memories should not be taken
into account, since they are not optimal for each implementation and therefore
not comparable.

The results from the power simulations are shown in the following figures.
Analyzing the figures in a fair way is vital both to understanding the motivation
behind this thesis and also getting an idea of the impact of an architecture on the
synthesized design as it is presented in the ASIP tools.

4.6. Comparison of the hard-SIMD with a soft-SIMD implementations 57

Analyzing the results of the Hard-SIMD implementation

Before looking into any numbers or comparisons and in order to support the
motivation it is essential to look into the percentage of power consumption in
each component of the Hard-SIMD implementation (figure 4.7). The memories
are clearly dominant, but for reasons mentioned before the focus is on the logic
and not the memory part of the design. Therefore, by ignoring the memories
which are anyway too big for this design and could be misleading, the decoder
takes up a 12% of the logic components, which is substantial considering this is a
simple design with a much smaller number of instructions and addressing modes
compared to up-to-date commercial ASIP processors. The instruction set of this
processor is nowhere near as complex as that of a commercial ASIP one.

As for the rest of the components, it is evident that the scalar functional units
along with the data memory are used very rarely and most power consumption
comes from the vector MAC unit (containing four multipliers for four parallel
multiplications as well as the pipeline registers) and the accumulator.

Logic Components Breakdown
Vector MAC Pipe
Reg
10%
Wector ACC Reg File Scalar
6% 1%
Reg FileVector
Other 5%
Special Regs
3%
Scalar ALU
2%
Controller
3%

Figure 4.7: Hard-SIMD power consumption percentage in login components

The same conclusions can by reached by looking into figure 4.8, where the
switching activity is also accounted for and can it be observed where the dynamic
power is spent and which of components are used the most. As would be
expected, the dynamic power dissipation takes place in the vector mac unit and
the accumulator. As part of the total consumption, the leakage power is only a
small fraction, and mostly concentrated in the vector memory.

From the total power consumption, 69% of it is static (internal), 21% is

58 Chapter 4. Development of a SIMD ASIP

dynamic (switching) and 10% is leakage energy.

3
2,5
2 -4
1,5 1
Leakage
1 -4
B Switching
0,5 M Internal
]

Q“;\ Q@\ __\f}) ?\‘}3 @‘\'Z-{ tpbqf‘ (-r' Qgﬁ) ?‘c)c-r'{é-?\‘b“- &}& Q—."‘z"@ ‘t-b-;._,,(-'
» -::f‘\x s ‘i‘da < e »z::'ll -:}\
T T F ST
< & o
<
4

Figure 4.8: Hard-SIMD power type per component

Comparing Target’s Base, Hard-SIMD and Soft-SIMD implementations

The results of the simulations of three different processors can be seen in full in
table 4.1. First is the sample scalar processor provided by Target, which is not the
same as the SIMD processor used for the Hard-SIMD implementation and is used
as a reference point to scalar processors. Then comes the Hard-SIMD processor
developed for this case study and last the Soft-SIMD processor as analyzed before
(section 4.6.1). The same results are also illustrated in figure 4.9, with different
bars for the different types of power consumption.

The scalar processor cannot possibly match the execution time and cycles
needed for this task as the SIMD implementation and needs roughly six times
more cycles than the SIMDs. So even though it has a simple small design with an
area half or a quarter smaller to the Hard-SIMD and Soft-SIMD respectively, the
excessive cycle count also leads to an excessive power consumption almost three
times bigger than the SIMDs.

Before jumping to conclusions for the hard and soft-SIMD implementations,
the different factors that lead to their power consumption shown on table 4.1 need
to be analyzed independently.

The energy consumption and area required for the memories according to the
data is virtually the same. As was mentioned before, these two implementations

4.6. Comparison of the hard-SIMD with a soft-SIMD implementations 59

Processor | Cycles | Area | Total Memory | Logic Total
(Cells) | Power (W) | Energy (J) | Energy (J) | Energy (J)

Target’s 1972170 | 7130 | 2.51E-03 3.80E-05 1.14E-05 4.95E-05
Base
Hard- 300438 | 13332 | 5.87E-03 1.05E-05 0.71E-05 1.76E-05
SIMD
Soft-SIMD | 334032 | 21625 | 5.45E-03 1.14E-05 0.68E-05 1.82E-05

Table 4.1: Target’s Base cycle count, area, power and energy needed for the same filter
application

use almost the same memories, something that proves unfair for the Hard-
SIMD implementation which would normally use much smaller memories and
is therefore ignored for the rest of results.

Looking into the area (in cells) required in each of the two implementations
in figure 4.10, it is evident that the Hard-SIMD with its four 16-bit hardware
multipliers, along with the pipeline registers and the accumulator in the MAC
unit takes up roughly twice the area of the combined area of the vector shift-add
unit and the shuffler of the soft-SIMD implementation. For most of the rest of
the components the area is relatively the same. The surprising results come from
the big difference in the area needed for the decoder and the vector register file.
The decoder of the Hard-SIMD is way smaller than the one of the Hard-SIMD,
because the former is only 16-bits wide whereas the latter is 80-bits wide. The
vector register file of the Hard-SIMD is also much smaller and simpler than the
complicated Soft-SIMD vector register file (VRF). For all these reasons, the total
area of the Hard-SIMD is 13332 cells as compared to the 21625 cells of the Soft-
SIMD. So, the cost (in cells) of the extra hardware multipliers used seems to be
smaller than the cost of the bigger decoder and the bigger and more complicated
vector register file, not taking into account the program memory used that is 5
times larger in the Soft-SIMD. Of course, the cell count is not totally trustworthy,
since modern tools are capable of doing wonders in optimizing area.

Energy consumption, as illustrated in figure 4.11, is the main objective behind
all the comparison. It is of course relative to a certain extend on the area as
explained before. Looking into the main points as they were also explained in
the area analysis before, the four 16-bit hardware multipliers in the Hard-SIMD
MAC unit prove to be way more power-hungry than the Soft-SIMD’s vector shift-
add unit and its shuffler by a factor of 5. But the energy cost of the rest of the
component in the Soft-SIMD, especially the decoder, the register file (in the Hard-
SIMD it is only seldom used) and the vector register file add up to quite a big sum.
This way the total energy consumption of the logic components in the design of
the Hard-SIMD is only a bit larger than that of the Soft-SIMD.

60 Chapter 4. Development of a SIMD ASIP

5,00E-05
4,50E-05 -

4,00E-05 4~

3,50E-05 +

3,00E-05 7 M Target's Base

2,50E-05 W5IMD

Soft SIMD
2,00E-05 +

1,50E-05 +
1,00E-05 +~

5,00E-06

0,00E+00 - T T |"’
Memory Energy Logic Energy Total energy

Figure 4.9: Target’s Base, Hard-SIMD and Soft-SIMD memory, logic and total energy
consumption comparisons

Notes on the comparison from the soft-SIMD development team

Before reaching the conclusions, it is vital to also provide the reasons for these
results according to the development team of the soft-SIMD implementation,
presented by Francky Catthoor and Stefania Dakourou.

The vector register-file (VRF) unit is mimicking the functional behaviour of
the VWR (Very wide register) that should be used in the SoftSIMD processor
datapath. As the VWR cannot currently be modelled in the Target environment,
instead a very simple to model but energy-inefficient register file has been used,
with 6 ports (5R + 1W), 48 bit and 16 words. Every access to such a large multi-
port RF consumes a very large energy [Ragh(09]. That explains why it consumes
8% of the total softSIMD power [Dak11]. However, with the use of the VWR the
energy can be reduced by at least a factor 10 [Ragh07]. That will remove the vector
VREF contribution from the current power pie results for the SoftSIMD processor.

The register file (RF) for this version of the data-path is a normal register
tile, since no special grouping of data is needed. The scalar data-path, needs to
provide only a very limited performance since the instructions are not executed
on multiple data and the frequency of activation is very low. So also the energy
contribution is not critical at all. In particular, even with such an unoptimized
design the scalar RF uses only 2% of the total power [Dakl1]. With some
optimization effort on the mapping and scheduling part of the architecture that
can easily be reduced further. It currently uses a 3-port register-file with 16 words
of 16 bit which is also an overkill in size but which allows an easy scheduling in

4.6. Comparison of the hard-SIMD with a soft-SIMD implementations 61

7000

6000

5000

3000

2000

EsMD

1000 W Soft SIMD

Figure 4.10: Hard-SIMD and Soft-SIMD area comparison per component

the Target environment.

To sum up there are several possible reasons that can explain the results of the
comparison, apart from the apparent differences in the architecture:

¢ The Hard-SIMD handles 64-bit in a 4-way SIMD where the Soft-SIMD 48-
bit data in a seemingly 3-way SIMD, but due to the nature of Soft-SIMD it
is more flexible and can be also used in different ways.

¢ Slightly different tool versions used for synthesis
¢ Soft-SIMD needs Loopbuffers to match SIMD

¢ Simulated at 100MHz, where the Soft-SIMD could take advantage of a
better suited frequency.

* No set limit containing the total critical path in the Soft-SIMD.

The purpose of these comparisons is not to prove one method better than the
other, but to observe the impact of the different implementations in energy and
power consumption.

62

Chapter 4. Development of a SIMD ASIP

WSIMD Energy (ul)

B soft SIMD Energy (ul)

Figure 4.11: Hard-SIMD and Soft-SIMD energy comparison per component

Chapter 5

Modifying the Instruction Set for
Energy-Efficiency

A big part of the main focus also includes a series of experimental simulations
on the SIMD implementation presented and analysed in the previous chapter
(chap. 4). This methodology enables the designer to fully exploit some of greatest
advantages of ASIP design, retargetability and easy architectural exploration
through iterative simulations. The designer can use the profiling data along
with the simulation and power analysis results to come up with several possible
solutions and through the automation of ASIPs he also has the capability to try
all of them and choose the best suited one.

For the following experimentation, one of the basic architectural design
constraints is that there should be no change in the basic functionality of the
instructions or their total number. Even though techniques that change, merge
or remove instructions could prove to the benefit of the design, it is a parameter
that would rapidly increase the complexity of the experimentations, and for the
purposes of this thesis is deemed unnecessary.

5.1 Analysing the generated control signals for full
orthogonality

Before making any changes to the nML code, it is first essential to have an
understanding of how the nML code that describes the instruction set of a
processor is translated as the decoder into HDL code. One of the initial ideas
for potential approaches was to create a very large instruction word divided in
different parts for the different functional units (or instruction “families”). This
would allow the designer to keep a main control over that family and keep it
separate from the rest of the instructions. The extremely compact format exists
already, so it is worth going to the other extreme and then trying from scratch to

64 Chapter 5. Modifying the Instruction Set for Energy-Efficiency

encode and compress the instruction set with various different methods. This
data can be used as a basis for a fully orthogonal instruction set, where the
designer is able to have full and direct access to the SIMD datapath (see figure
5.1) but as it turns out, that may be promising in theory but impossible to achieve
with the current capabilities of the ASIP tools.

Instruction Word

FUS5

Figure 5.1: A very wide instruction word divided in different parts, each one containing
the control bits for a functional unit

Having an instruction word comprised of control bits would virtually remove
the need for decoding or at least a great part of it, as the control bits would simply
have to be forwarded to the right signals, thus transferring the complexity of
the decoder to the compiler that produces the instruction words for the specific
processor. Shutting down a functional unit could be as easy as sending an all
zeros (“0"s) signal or in some other way that would make use of the don’t care
conditions to shut down the functional unit temporarily and additionally reduce
the toggling caused by that part of the instruction word.

Analysing the instruction set of the newly developed SIMD processor shows
that in the decoder the 16-bit instruction uses 137 control bits to control the
memories and the datapath. Naturally, most of the control bits are controlling
the execution E1 stage of the pipeline, and around 28 of them the decode stage.
Very few bits are used for the E2 stage of the pipeline, since that is only used in
the MAC unit and does not require a lot of control bits in the instruction word.

The control bits are analysed and grouped depending on the functional unit
or the purpose they served. Controlling their exact encoding in a very wide
instruction could prove greatly beneficial for a truly energy efficient instruction
set and the experimentation with different encoding.

The instruction control bits are grouped depending on the instruction family
that they serve. For example, for an add instruction it is obvious which signals
the decoder is driving and to exactly what bit sequence they are matches, since
they are generated as a result of an opn rule. The designer can also change that bit
sequence in a way that reduces the toggling between subsequent instructions or
group them for avoiding having to pay multiple times the same area for similar

5.2. Creating a wider instruction 65

decoders.

However, as it turns out, at the current version the Target tools may support
orthogonality on a subword level but not full orthogonality, in a way that the
designer can have complete and direct control over the generated control signals
through the instruction bits. The Target tools do not support that degree of
freedom in the definition of an instruction set. In case of an orthogonal instruction
format the tools allow the construction of different orthogonal sub-classes for the
instruction word.

The root cause of the problem lies in the inability of the nML to describe the
actual control signals. The tools still consider the instruction as encoded and treat
different control signal areas as a single and so they produce the same control
signals all over again. They cannot detect that only certain signals are meant
to drive certain functional units and ignore the rest. There are transitories that
define the inputs and outputs of the functional units in the opn definitions of
the nML. Their use is not compulsory, but defining and using them typically
results to a more robust design and less errors in compiling the code describing
the processor. The whole point of ASIP design is to assist the designer in such
matters, and therefore the designer cannot have full control over the generated
design, but can always intervene manually on the HDL code generated.

Even though this part of the experiments cannot prove as fruitful as
initially expected, the analysis of the control signals assists in getting a better
understanding of how the ASIP tools create the decoder and the control signals
for each processor design, and how the definition of each instruction encoding
can play a small but important part to that. It remains to be seen if such a scheme
could actually be energy-effective, since full orthogonality, and subsequently
a vast number of control signals can either prove favourable or potentially
interfere in a bad way with different components on power-gated or power-
downed regions. It might add implementation and verification challenges and
overcomplicate the design on later stages of the production.

5.2 Creating a wider instruction

Considering that full orthogonality is not within the potential of the tools, the best
approach is to take it step by step in an attempt to widen the instruction width as
possible and see the impact of that on energy consumption.

As a first step towards an orthogonal instruction set, the opcode, the operands
and the immediate value are rearranged and grouped so that each one has its own
specific bit area in the instruction word. That should allow to work more easily
and focus on the opcode part. Additionally, it should drastically decrease the
complexity of the addressing modes in the decoder, since the operand address or
the data has a specified spot in the instruction set.

66 Chapter 5. Modifying the Instruction Set for Energy-Efficiency

The resulting instruction word of this idea is shown in figure 5.2 and has a
total size of 48 bits:

Sl Vector Oper
(3(:§€ra9n;::5) (3x2 = 6 bits) Imm/Offset (16 bits)

Figure 5.2: The 48-bit orthogonal instruction set

e 17 bits for all of the the opcodes.
* 3x3=9 bits for the three scalar operands.
* 3x2=6 bits for the three vector operands.

¢ 16 bits for the immediate value.

The new design might be bigger but provides more freedom for various
favourable changes and optimizations.

To make sure that the generated decoder would be as simple as possible the
unused parts are filled with don’t care "X’s to ensure the decoder would not take
them into account. Additionally, the opcode part that is common in several
instructions is rearranged in order to occupy the same part of the instruction
word. That is especially important for the instructions controlling the MAC unit,
as it is those instructions that are repeated the most.

5.2.1 Power Results

The results of this implementation are surprisingly good. Even though size of the
instruction word used is now three times bigger, the total power consumption is
almost 10% reduced compared to the original implementation. As illustrated in
tigure 5.3, there is significant drop both in internal and switching power.

The total number of toggles throughout the simulation for the same
application has a great reduction of 30%. In the individual components the
greatest drop comes from the MAC unit, which features a drop of around 30%
and the MAC unit is now consuming 32% less power for the same task. Even
though the decoder now has a substantially lower toggling activity, it still has
roughly the same power consumption.

5.2.2 Area Results

Looking into the area there is an increase of 20% in the area the decoder takes
up, which is a very good result considering that the instruction word is now 48

5.3. Optimizing the encoding of the instruction set 67

7
o
5
- 4
E ESIMD
3 B Orthogonal
2 .
1 -
D -
Internal Switching Leakage Total

Figure 5.3: Comparison of the average power consumption in uW of the original SIMD
(blue) and the orthogonal version (red).

bits long instead of 16 bits, but there is a decrease in other parts of the design,
mainly the MAC unit that features a drop of 38%. This leads to an overall area
consumption virtually the same between the two implementations. It should be
noted that these results are the cell area of the rtl compiler, meaning that they are
only an estimation and by no means the final results of the area that the design
would require.

5.3 Optimizing the encoding of the instruction set

The 17-bit opcode of the new orthogonal instruction set in many of the
instructions includes bits that are unused and can be used for the reducing the
decoding of the decoder.

5.3.1 Reducing decoder complexity

The decoder of a processor is defined by the encoding of the instruction set, so the
way each of the instructions are defined, grouped and assigned to bit sequences
has a great influence on the area and power of the decoder and through that on
the whole design. The designer needs to take into account that a sophisticated,
complicated instruction set with many instructions compressed into it can be

68 Chapter 5. Modifying the Instruction Set for Energy-Efficiency

very potent in the tasks it can perform and the available instructions it provides,
however a simpler instruction set reduces the complexity of the decoder leading
to a smaller hardware footprint that consumes less energy. A simpler instruction
set also helps the designer and the retargetability purposes of ASIPs because it
allows for fast compiling and test and simulation and additionally makes it easier
to update the instruction set to meet the needs of a new task.

Simplifying the decoder

To achieve the goal of a simple effective instruction set there are several ways but
not all of them can be combined and they don’t always lead to good results. The
method followed should be one that matches the target application domain of the
processor.

There are various ways to reduce decoder complexity[Target nML]. But to
reduce it one first needs to comprehend what it actually is that builds up the
complexity of an instruction set. To follow a common example, assume there are
three operations on an ALU with the following patterns:

add — 000xxxxx00xx
sub — 000xxxxx01xx
or — 000xxxxx10xx

All the units that work in parallel with the ALU (like a multiplexer connecting
the output of the ALU to a bus or a memory) are only enabled for the instructions
that obey the following pattern:

000xxxxx0xxx
000xxxxxx0xx

The same procedure needs to be followed to create patterns for all the
potential parallel functions that would need to make use of the ALU and the
same method has to be applied for all the rest of the modules in the design. So if
another ALU operation would require the two rightmost bits of the instruction to
be enabled then the new enabling conditions would be:

000xxxxx0x00
000xxxxxx000

The problem arises when the compiling tools for the decoder are trying to
match the enabling conditions for a lot of instructions that would require enabling
control to that functional unit. With each new instruction being introduced, the
complexity of the decoder rises at an exponential rate until it virtually explodes,
resulting in a big or even unmanageable hardware footprint. Therefore the
designer needs to apply optimal encoding in the bit sequences of the instruction

5.3. Optimizing the encoding of the instruction set 69

set encoded to keep the complexity at affordable levels.

nML Complete Image Option

Target also provides the complete_image option. This helps to indicate that an nML
AND rule specifies a complete encoding, and that its fields are orthogonal. For
example:

opn my_rule (a : A, b : B) complete_image
{

action { a; b;}

image : "000"::a::b;
)

This option helps to point out to the nML front-end tools that there
is orthogonality between the instruction parts that specify complete register
transfers (from either the register file or the memories to again either the register
tile or the memories as explained in section 1.1.2).

When this rule is active, only the first part of the opcode “000” is checked,
even if A and B do not have complete encodings. Therefore all the bits that are not
opcode bits are treated as don’t care for rules higher in the nML hierarchy. ..which
unfortunately did not seem to make any difference at all in the design, and during
the decoding of A the nML tool will consider B to have a complete encoding and
vice versa. This can assist the developer reduce the decoder complexity when
there are incomplete definitions, especially when designing a VLIW processor.

Nonetheless, despite the various attempts to employ this option in our
experiments with the processor, the generated rtl code is the same and the tools
are still considering the instruction set to be a non-orthogonal one.

nML code quality

The processor designer should be fully aware of the impact that the way in which
he chooses to describe the instruction encoding has in the transition from nML
grammar to the generated HDL code. Even though the nML grammar provides
a plenty of options that are syntactically correct, the repercussions of a a badly
structured instruction encoding can be severe on the area and power budgets of
the decoder and subsequently to the whole design.

The nML code quality has to be optimal to the match the targeted processor
specifications. Any arbitrary additions to the nML code should be strongly
avoided and the designer by following the methodology previously explained
can quickly develop the required skills through trial and error to avoid the
common pitfalls.

70 Chapter 5. Modifying the Instruction Set for Energy-Efficiency

5.3.2 Exploiting methods for energy efficient architectural
design with ASIP tools

When introducing ASIPs, it was mentioned that one of their key features is
the capability to make quick adjustments to the design and that in each of the
stages of the ASIP design the developer has the choice to generate debugging
information. Using these data can prove vital for the full utilization of the design
for a specific application or application domain.

As analysed on an earlier chapter, Chess is a retargetable C compiler that
translates C source code into machine code for the target processor. The Target
tool-suite also includes Checkers, a retargetable instruction-set simulator (ISS)
that produces a cycle and bit accurate simulator for the target processor.

By combining the Chess tool to produce the machine code of the targeted
application and Checkers tool for simulating and debugging the execution, the
designer is able is to extract various useful data about the statistical usage of the
instructions and the critical functions that will need to run on the processor, and
therefore can focus and experiment with them. It should be noted that for typical
DSP applications, the code is usually characterized with a 20/80 rule, meaning
that 80% of the processor clock cycles are spent on a specific 20% part of the code,
consisting of DSP kernels [Goos04].

Profiling and execution tracing instructions and data accesses

Using the Checkers ISS tool, profiling and execution tracing data can be
extracted for a particular application. These profile data contain information
about which are the parts of the program where most of the cycles are spent.
There are additional profiling options available for instruction classes, primitive
operations, functional units and storage accesses that can be very helpful in
focusing and pointing out the bottleneck of the design.

The execution trace shows the call and return history during the simulation.
That can be really useful in investigating the overall execution of the program,
along with which functions are used in an application and how many times each
function is called. The storage profiling provides information about the access
history of the memories and the register file.

Spatial and temporal locality exploitation

The nML language combined with the Chess and Checkers tools are ideal for
power-conscious architectural design, as they offer an architectural scope wide
enough to allow for experimentation with many different techniques for low
power consumption. A simple and common way to reduce the total energy
consumed for a task would be to reduce the total number of processor cycles
required for the execution. That can be managed by exploiting instruction-level

5.4. Final implementation 71

parallelism, bundling several instructions into a single one, employing special
purpose registers or highly encoded instruction sets.

By taking advantage of the ASIP tools, the designer can make changes in the
nML code and then very soon have the new HDL code and the profiling results
of simulating the new design. So by using the available profiling and execution
trace data the designer can experiment in many different directions and find the
changes that can lead to an optimal instruction encoding and an overall energy
efficient design.

As explained on chapter 2.4, Huffman encoding can be used to take advantage
of the temporal locality of the instructions in order to minimize the cost of
subsequent instructions used in the most common loops. In a loop that is
executed repeatedly hundreds or even million of times in a single application
reducing the toggle of subsequent instructions can prove greatly beneficial.

In a similar way the spatial locality of the memories can be investigated, and the
nML code can be build to suit the needs of the targeted application in a way that
the memory hierarchy can be used to its fullest especially in the most common
loops without repeating the same memory transfers for different iterations over
and over again. Apart from changing the instruction mechanics, the instruction
and data memories along with the register file can also be changed to match the
application.

5.4 Final implementation

The aforementioned methods are employed to the orthogonal processor that was
developed. According to the profiling results, from the 47 instructions that the
filter program was compiled into, 9 of them are used 96,5% of the time. These
instructions are mostly comprised of vector load/store instructions and vector
MAC instructions. In more detail there are 3 vector loads, 1 vector store, 3
multiply-accumulate instructions, 1 accumulator initializing instruction and 1
accumulator shift instruction for storing the right part of the final result.

By making full use of the available ASIP tools, there are many different
experimental changes that can be conducted. There are many attempts to
simplify the decoding procedure of the instructions in an effort to use the spare
bits of the instruction word in a way that would help decrease the decoder
component cost, but that proves only slightly favourable for the whole design at
best. It should not be forgotten that improving the decoder can sometimes lead
to an overhead for other components thus leading to an overall greater energy
cost for the whole design.

On the other hand, what proves evidently fruitful is the attempts to apply
different encodings to the instruction set, to reconstruct it in a way that reduces
both the power consumption of the most commonly used instructions and the

72 Chapter 5. Modifying the Instruction Set for Energy-Efficiency

power consumed due to the toggling between the subsequent instructions of the
main loop.

In order to have a metric on the toggling from one instruction to another,
Hamming distance is introduced. The Hamming distance between two bit vectors
is simply the number of bits that are different between the two bit vectors. So
the aim of the encoding to reduce the toggling would be to reduce the Hamming
distance of each instruction as much as possible with the one that follows it, or

do the same procedure for all the most commonly used instructions to any of the
others.

A simple encoding following the principles of Huffman encoding is employed
to the instruction set with a focus on the instructions that make up for the
main loop of instructions, but always avoiding any encoding that might lead to
problematic HDL. The ASIP tools are very strict in this part, and do not allow the
designer to the make any mistakes or clerical errors in the encoding.

5.4.1 Final results

The results from this final implementation as shown on the following figures, are
very good. Without any major changes to the instructions themselves, only the bit
encoding of the instruction grouping hierarchy and the instructions themselves,
the power consumption of the decoder features a drop of 12% as compared to the
previous orthogonal design and the whole design has a 8% drop.

Decoder Power Consumption

033 — ______-___ T
032 v+ B
0.31 -
03 1
0.29
0.28 4~
027 +
026 ¥

SIMD T TT—— 4
Initial I
Orthogonal Final Orthogonal

Figure 5.4: Decoder component power consumption of the SIMD, first and final
orthogonal implementations

Compared to the first SIMD design, as shown in figures 5.4 and 5.5 there is
now an 8% drop in the power consumption of the decoder and 15% drop in

5.4. Final implementation 73

Total Power Consumption

E . -) i] -' - - - — _ _ _
58+)
56+
54 +
5.2

1

48
45
44

1

SIMD e
Initial I
Orthogonal Final Orthogonal

Figure 5.5: Total power consumption of the SIMD, first and final orthogonal
implementations

the power consumption of the total design. Which is more than was expected,

especially considering that the changes made are exclusively on the encoding of
the instruction set.

Looking into the drop in the toggling activity, as a means to reduce the energy
consumption there is a significant 18% drop in the decoder as compared the first
orthogonal implementation and a 65% drop as compared to the original SIMD

implementation, even though in the SIMD the instruction word is only 16 bits
long.

The component comparison chart (figure 5.6) shows the statistics in the first
and the final orthogonal implementation are quite different from the ones in
the CoolBio or the SIMD implementation. Once again the power consumption
of the memories -that would be dominant- is left out, in order to focus on the
components of the core. Despite the aforementioned drop in the power consumed
by the decoder and the whole design, there is only little change in the decoder
as compared to the other components, with the vector MAC unit taking up the
largest part of the power consumption of the core.

In terms of area, as illustrated in figure 5.7, there is little difference between the
two orthogonal versions, however there is a small drop in the cell area required
for the final orthogonal design and there is also a similar drop in the net area.

There are also other experiments conducted with different instruction word
sizes or more radical changes. But the code generated cannot always be properly
checked and synthesized by the HDL compiler tools due to timing violations or

compiling errors. Especially when using arbitrary bit lengths for the instruction
word other than the usual ones in powers of two.

74 Chapter 5. Modifying the Instruction Set for Energy-Efficiency

5.4.2 Conclusions

To sum up, as analysed on this chapter there is a lot to gain in the research that
of how the length of the instruction word can be changed to suit the application
domain. The ASIP tools offer retargetability and easy architectural exploration
that be used for iterative modifications and simulations on a design, in an attempt
to find the best solution for the targeted application domain.

According to the initial assumption, an orthogonal instruction word with a
width of 48 bits instead of the original 16 bits is build and experimented on to
find the capabilities it can offer. By taking into account all of the parameters
(area, performance, energy consumption, available hardware), the design can be
changed according to the respective needs of the time with great gain and little
effort, as long as certain guidelines are followed.

The results, as shown in the previous figures, reveal a substantial gain in
energy consumption, thus proving that the original idea was a success. Having
a larger instruction word provides the essential space for optimizations in the
instruction encoding that can greatly reduce the energy consumption of the
decoder and the whole design.

5.4. Final implementation 75

wsc First orthogonal
8%

6%
5 ial R
p-ecll :% 8= Decoder
‘ -

o

Final orthogonal

Controller

Misc

Controller

6%
7%
Special Regs Decoder
12% . 16%

Figure 5.6: Power consumption for every component in the two orthogonal
implementations

76 Chapter 5. Modifying the Instruction Set for Energy-Efficiency

core

vector MAC W Final Orthogonal

M First Orthogonal

i ESIMD
decocder
o _"12—____'./____
20000 40000

L

80000

Figure 5.7: Cell area required for the SIMD and the two orthogonal implementations

Chapter 6

Conclusions

The purpose of this study is to find a method that can utilize the available
advanced ASIP tools -like Target’s tool flow- to produce a low-energy processor
for a specific application domain. For that purpose, ASIPs are developed and
used for their distinctive ability to combine energy efficiency, flexibility and
performance. It should not be forgotten that in today’s embedded systems
energy consumption is one of the greatest problems. However, since technology
advances rapidly, some of the solutions to problems that designers used to face
have to be revisited to assess if they can be solved in a move effective way.

The available ASIP tools offer sophisticated tools that enable the development
of an ASIP processor in only a fragment of the time that would be required for the
design of a normal processor. They offer a full suite from processor architecture
design, instruction set description and operation definitions, to application
simulation and HDL generation. The available simulation capabilities can be
combined with the profiling to investigate different implementations through
iterative changes to the original code with the aim to achieve the optimal for the
targeted application domain.

6.1 The quest for the golden ratio

As mentioned before, processor design is a game of many trade-offs. So in order to
achieve the so-called golden ratio, the ideal balance for a processor architecture,
a designer would need to figure out the influence of the different parameters
(i.e. energy, power, performance, flexibility) on each of the components and the
interconnections of a processor and choose the trade-offs that make it as efficient
as possible within the technical characteristics defined.

It is a usual mistake to think that power and energy consumption are one
and the same. Power efficiency does not necessarily guarantee energy efficiency.
In embedded systems nowadays, energy is the decisive factor that can actually

78 Chapter 6. Conclusions

make a processor successful. Low power consumption or high performance alone
are not enough, since the two seem to be in contrast to the other. A processor with
very low power consumption is commonly the goal of the design, however this
usually leads to very low performance (or vice versa), so it takes up more energy
for the processor to perform a task. Therefore, the designer of a processor has
to make a compromise and keep the balance between power and performance,
depending on the application at hand. Thankfully, applying modifications on
ASIPs is much easier and faster compared to normal processor design.

There are several techniques for ultra low-power processor design that be
effectively applied on different levels (compiler, architectural or circuit), like
dynamic voltage scaling, clock gating or encoding. Each one has its own
advantages and disadvantages and does not always lead to energy efficient
design.

6.2 Memory efficiency

It is usually taken for granted that the smaller the memory in a processor, the
better. But what about the overhead that has on the rest of the components in
a design. It is exactly for this reason, that it is investigated whether a larger
instruction word can actually be better for the design, allowing the designer
to use the extra bits of the instruction word to tailor the instruction set to the
application domain and then encode it once again in a more effective way, despite
the extra overhead that the program memory would need.

Studies on the different commercial SRAM memories that are available show
that while bigger memory arrays (comprised of smaller subarrays) tend to offer
more storage for the area that they require, their power consumption (relative
to performance) tends to increase at a faster rate as the word size and the block
capacity increases. That means that while smaller memories may be best in power
efficiency, larger memories can offer multiple times more memory storage for
relatively smaller area, which in turn has a direct impact on power. So the answer
to the energy efficiency problem lies somewhere in between.

A designer can take advantage of these findings, and use relatively larger
(but not too large) memories with word sizes of up to 64-bits that can offer more
storage with relatively smaller power cost.

6.3 ASIP instruction-set architecture

The instruction-set architecture is the most important characteristic and what
defines a processor. That is even more the case in ASIPs where the software
part of the hardware/software co-design tools have to functionally adapt to this
instruction-set and support it.

6.3. ASIP instruction-set architecture 79

6.3.1 Hard-SIMD and Soft-SIMD

One of the most important processor architectures of last decades is SIMD.
It allows the exploitation of instruction-level parallelism. There are several
different approaches to implementing an SIMD, mainly in hardware or software.
Hardware SIMD relies on multiple functional units in hardware while software
SIMD transfers that complexity to the compiler software and the decoder.

A hardware SIMD developed for this thesis is compared to a simple scalar
processor and a software SIMD implementation with the aim to investigate their
energy and area efficiency. A bioimaging application based on a Gauss filter is
used as the benchmark. The results show that both SIMD implementations fare
much better than the scalar processor, mainly in terms of performance. Getting
the job done faster with low power to performance ratio, results to smaller overall
energy consumption.

Comparing the hard and soft-SIMD proves more tricky, as they are
totally different implementations, but what is the main focus here is energy
consumption. The hard-SIMD requires slightly less energy for the biotechnology
benchmark, with a lower cell count as well. The hard-SIMD features four power
and area costly multipliers to perform MAC operations with a 16-bit instruction-
set and an overall simple design, while the soft-SIMD is heavily optimized with
a sophisticated vector register file, a vector shift-add unit (substituting a MAC
with less energy) and an 80-bit instruction word that can adapt to different
subword sizes. Looking into the energy component breakdown (figure 4.11),
it is obvious that the complexity derived from the additions in the soft-SIMD
is also transferred to the rest of the components of the processor, especially the
decoder which is overburdened with the task of decoding an 80-bit word. So from
the energy efficiency perspective, the hard-SIMD with its simpler and cleaner
design, seems to be preferable as it is much faster to develop and debug, and
also provides space for taking advantage of the ASIP tools through experimental
optimization.

6.3.2 Orthogonality and optimal word size

The hard-SIMD implementation had its instruction-set modified from 16-bits
to 48-bits with an orthogonal approach in mind. The initial idea was for the
instruction-set to be much wider and fully orthogonal, being able to fully control
the generated signals and have an instruction-set that provides all operations to
addressing mode combinations, but that is rendered impossible by the ASIP tools
available. Instead a 48-bit orthogonal instruction-set is developed. This includes
a 17-bit opcode, 9 bits for the three scalar operands, 6 bits for the three vector
operands and 16 bits for offsets and immediate values.

This design, even though it requires a four times bigger program memory,
proves to be 10% more energy efficient than the original hard-SIMD design, due

80 Chapter 6. Conclusions

to reducing the power consumption of the decoder, the MAC unit and the rest of
the components.

There are also several experiments conducted on how to reduce the
complexity of the decoder through the instruction-set encoding. That is achieved
by using unused bits in the 17-bit opcode, fine tuning the nML to improve
the quality of the HDL generated and experimenting with different encoding
schemes or instruction word sizes. The ASIP tools provide various instruction
trace and profiling tools that can prove very helpful in combination with the
relatively small time required, in order to exploit the different options in spatial
or temporal and find the best suited for the design. The only problem here is that
there needs to be an automated way to do this and verify the design on each of
the stages from processor nML design to synthesis and power benchmarks, as
well as extracting the results in a user friendly way. This is solved with the use of
several scripts in various programming or scripting languages.

The final implementation is a result of a combination of these methods,
keeping the main constraint of maintaining the instruction functionality and
number the same. It shows that mostly by using a different encoding for the
instructions in the loop kernels which are the ones that are executed the majority
of the time, there can be a major drop in the toggling activity of the decoder and
the memories, which in turn contributes to a drop of 8% as compared to the initial
orthogonal design and 15% compared to the SIMD design.

It is obvious that the instruction-set encoding and its width can have a major
role on the energy and performance of a processor. By using the ASIP tools
and their retargetability, the design can be tailored to perform effectively in an
application domain. The size of the instruction word defines the relation of the
complexity between the memories and the design. A smaller instruction word
requires a small memory and transfers the complexity to the decoder, while a
larger word has a simpler decoder but requires a larger memory. However, there
are times when reducing the toggling activity of the instructions can be more
important than the size of the instruction word.

Combining the results from this experiments on the ASIP implementations
along with the data from memory efficiency, it is suggested that since energy is
now one of the most defining features of a design, a processor and especially
an ASIP can profit from having a larger instruction word size (that is not
highly compressed), which reduces the complexity (and thus the area and
power required) by the decoder and provides the option of many possible
optimizations without incurring a big overhead on the memories and the
processor components. Nevertheless, the increase in the size of the instruction
word should be kept to manageable levels because of the power required by
memories above 64 bits. It is up to the designer to choose the instruction word
size that is the ideal for every situation.

6.4. Future work 81

6.4 Future work

The ASIP tools are ideal for the design of DSP co-processors for Multiprocessor
System-on-Chip (MPSoC). Application domains including audio/video
processing, biotechnology, encryption or baseband systems for next-generation
wireless modems are good candidates for an ASIP implementation, where having
a dedicated co-processor with great performance and low energy cost per task
is crucial for the success of the system. It is in these cases that reconfigurable
architectures like ASIPs are most effective, because of their ability to adapt with
new instructions to new demands.

There should also be an automated procedure that can help use the potential
of iterative experiments for the investigation of ASIP design, in order to find the
optimal conditions (i.e. instruction-set encoding).

Even though the Target tool flow is still developing at a fast rate, Target should
try to emphasize some features which are essential for designers to have more
control over their design as their processor description goes through the various
stages of ASIP flow and is simulated, until it is finally translated into hardware.

82

Chapter 6. Conclusions

Bibliography

[ARM] ARM Holdings plc, November 2011,

WWwW.arm.com

[Artes10] A. Artés Garcia, “Energy Impact of Loop Buffer Schemes for
Embedded Systems”, Master Thesis, Universidad Complutense de
Madrid, 2010.

[BaratO3] F. Barat, M. Jayapala, T. Aa, R. Lauwereins, G. Deconinck, and H.
Corporaal, “Low power coarse-grained reconfigurable instruction set
processor”, Field-programmable logic and applications, 2003.

[BeniO2] L. Benini, D. Bruni, a Macii, and E. Macii, “Hardware-assisted
data compression for energy minimization in systems with embedded
processors”, Proceedings 2002 Design, Automation and Test in Europe
Conference and Exhibition, 2002.

[Bonn08] T. Bonny, J. Henkel, “Efficient code compression for embedded
processors”, Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 16, 2008.

[Braun04] G.Braun, A. Nohl, W. Sheng,]. Ceng, M. Hohenauer, H. Scharwéchter,
R. Leupers, and H. Meyr, “A novel approach for flexible and consistent
ADL-driven ASIP design”, Proceedings of the 41st annual conference on
Design automation - DAC, 2004.

[Burd00] T. Burd, T. Pering, and A. Stratakos, “A dynamic voltage scaled
microprocessor system”, Solid-State Circuits,, vol. 35, 2000.

[Catth88] F. Catthoor,]. Rabaey, G. Goossens et al, “Architectural strategies
for an application-specific synchronous multiprocessor environment”,
Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 36,
1988

[Catth10] E Catthoor, P. Raghavan, A. Lambrechts, M. Jayapala, A. Kritikakou,
and J. Absar, "Ultra-Low Energy Domain-Specific Instruction-Set
Processors", Springer, 2010.

84 Bibliography

[Chat07] A. Chattopadhyay, D. Zhang, D. Kammler, and E. Witte, “Power-
efficient Instruction Encoding Optimization for Embedded Processors",
20th International Conference on VLSI Design held jointly with 6th
International Conference on Embedded Systems (VLSID “07), Jan. 2007.

[Corma87] G. V. Cormack and R. Horspool, “Data compression using dynamic
Markov modelling”, The Computer Journal, vol. 30, 1987.

[Corme01] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. “Introduction
to algorithms”. The MIT press. 2001.

[Dak11] S. Dakourou, “Optimized SIMD architecture exploration and imple-
mentation for ultra-low energy processor architectures”, Master Thesis,
Dept. of Computer Eng. and Informatics, Univ. of Patras and IMEC/Holst
Centre, 2011

[DeMan86] H. De Man, J. Rabaey, P. Six, and L. Claesen, “Cathedral-II: A Silicon
Compiler for Digital Signal Processing”, Design Test of Computers IEEE,
1986.

[DeMan88] H. De Man, J. Rabaey, J. Vanhoof, G. Goossens, P. Six, and L. Claesen,
“CATHEDRAL-II-a computer-aided synthesis system for digital signal

processing VLSI systems”, Computer-Aided Engineering Journal, vol. 5
, 1988.

[Emmet00] F. Emnett, "Power reduction through RTL clock gating ", Synopsis
User Group (SNUG) Conference, 2000.

[Geur05] W. Geurts, G. Goossens, D. Lanneer, and]. Van Praet, “Design of
application-specific instruction-set processors for multi-media, using a
retargetable compilation flow”, Proceedings of Global Signal Processing
(GSPx) Conference, Target Compiler Technologies, Citeseer, 2005.

[Glok04] T. Glokler and H. Meyr, “Design of energy-efficient application-specific
instruction set processors”, Springer Netherlands, 2004.

[Goos87] G. Goossens,]. Rabaey,]. Vanderwalle, and H. De Man, “An efficient
microcode-compiler for custom DSP-processors”, IMEC Laboratory, B-
3030 Leuven, Belgium, 1987.

[Goos04] G. Goossens, D. Lanneer, and P. Dyrtrych, “Design of Low Power
Processor Cores using a Retargetable Tool Flow”, retarget.com, 2004.

[Goud99] L. Goudge and S. Segars, “Thumb: reducing the cost of 32-bit RISC
performance in portable and consumer applications”, COMPCON 1996.
Technologies for the Information Superhighway Digest of Papers. IEEE
Comput. Soc. Press, 1999.

Bibliography 85

[Hatt95] E. Hatton, “SAMC-efficient semi-adaptive data compression”,
Proceedings of the 1995 conference of the Centre for Advanced Studies
on Collaborative research, p. 29, 1995.

[HennO6] J. L. Hennessy and D. A. Patterson, “Computer Architecture: A
Quantitative Approarch”, 4th Edition, Morgan Kaufmann, 2006.

[Hoel72] P. G. Hoel, S. C. Port and C. J. Stone, “Introduction to stochastic
processes”, Houghton Mifflin Company, 1972.

[Huff52] D. Huffman, “A Method for the Construction of Minimum-
Redundancy Codes”, Proceedings of the IRE, 1952.

[Katevll] M. Katevenis, G. Passas, CS-534 Lecture Slides, Computer Science
Department, University of Crete

[Kaxir08] S. Kaxiras, M. Martonosi, “Computer Architecture Techniques for
Power-Efficiency”, Synthesis Lectures on Computer Architecture, Morgan
& Claypool Publishers, 2008.

[Keat07] M. Keating, D. Flynn, and R. Aitken, “Low power methodology
manual: for system-on-chip design”, Springer, 2007.

[Kiss97] K. D. Kissell, “MIPS16: High-density MIPS for the Embedded Market”.
Silicon Graphics MIPS Group, 1997.

[Krit09] A. Kritikakou, “Low cost low energy embedded processor for
online biotechnology monitoring applications”, Master’s thesis, Dept. of
Computer Eng. and Informatics, Univ. of Patras and IMEC, 2009.

[Leka98] H. Lekatsas and W. Wolf, “Code compression for embedded systems”,
Proceedings of the 35th annual Design, 1998.

[Leka99] H. Lekatsas and W. Wolf, “SAMC: a code compression algorithm for
embedded processors”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 18, 1999.

[Leka00] H. Lekatsas and W. Wolf, “Arithmetic coding for low power embedded
system design”, DCC, 2000.

[Leup00] R. Leupers “Code optimization techniques for embedded processors:
methods, algorithms, and tools”, Springer, 2000

[Lin04] C. H. Lin, X. Yuan, and W. Wolf, “LZW-based code compression for
VLIW embedded systems”, Proceedings Design, Automation and Test in
Europe Conference and Exhibition, 2004.

[Liu08] D. Liu, “Embedded DSP processor design: application specific
instruction set processors”, Morgan Kaufmann, 2008.

86 Bibliography

[Maha05] N. Mahapatra, J. Liu, and K. Sundaresan, “A limit study on the
potential of compression for improving memory system performance,
power consumption, and cost”, J. Instruction-Level, vol. 7, 2005.

[Mare06]
H. Maréchal, “ASIP design methodology with Target’s Chess/Checkers
retargetable tools”, Proc. Intl. Signal Processing Conference, Santa Clara,
2006.

[Mish08] P. Mishra and N. Dutt, “Processor description languages: applications
and methodologies”, Morgan Kaufmann, 2008

[Morg07] P. Morgan, R. Taylor, “ASIP Instruction Encoding for Energy and Area
Reduction”, 44th ACM/IEEE Design Automation Conference, 2007.

[Mutoh95] S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J.
Yamada, “1-V power supply high-speed digital circuit technology with
multithreshold-voltage CMOS”, Solid-State Circuits, IEEE Journal of, vol.
30, 1995.

[Parhi99] K. Parhi, “VLSI digital signal processing systems: design and
implementation”. Wiley-India, 1999.

[Piguet01] C. Piguet, P. Volet,]. M. Masgonty, F. Rampogna, and P. Marchal,
“Code memory compression with online decompression”, Solid-State
Circuits Conference, 2001. ESSCIRC 2001, 2001.

[Piguet06] C. Piguet, “Ultra-low power processor design”, High-performance
energy-efficient microprocessor design, Springer, 2006.

[Psy10] G. Psychou, “Optimized SIMD scheduling and
architecture implementation for ultra-low energy bioimaging processor”,
Master’s thesis, Dept. of Computer Eng. and Informatics, Univ. of Patras

and IMEC, 2010.

[Raba03] J. Rabaey, “Digital Integrated circuits: a design perspective”, Prentice-
Hall, 2003.

[Ragh07] P.Raghavan, A.Lambrechts, M.Jayapala,

E.Catthoor, D.Verkest, H.Corporaal, “Very wide register: an asymmetric
register file organisation for low power embedded processors”, Proc. 10th
ACMY/IEEE Design and Test in Europe Conf., Nice, France, April 2007.

[Ragh09] P.Raghavan, A.Lambrechts, M.Jayapala, E.Catthoor,
D.Verkest, “EMPIRE: Empirical Power/Area/Timing Models for Register
Files”, Microprocessors and Microsystems J. Feb. 2009.

Bibliography 87

[Roev04] H. Roeven, J. Coninx, and M. Ade, “CoolFlux DSP-The embedded
ultra low power C-programmable DSP core”, in Proc. Intl. Signal Proc.
Conf.GSPx, 2004

[Synopsys] Synopsys, November 2011

WWW.SYNOpsSys.com

[Target] Target Compiler Technologies, November 2011

www.retarget.com

[Target nML] The nML Processor Description Language 11R1, Target Compiler
Technologies, March 2011.

[Tensilica] Tensilica, November 2011
www.tensilica.com

[Westell] N. Weste and D. Harris, “CMOS VLSI Design: A Circuits and Systems
Perspective”, Addison-Wesley, 2011.

[Wolfe88] A. Wolfe et al., “The white dwarf: a high-performance application-
specific processor”, ACM SIGARCH Computer Architecture News, vol.
16, 1988.

[Wolfe92] A. Wolfe and A. Chanin, “Executing compressed programs on an
embedded RISC architecture”, ACM SIGMICRO Newsletter, vol. 23, 1992.

[Xie07] Y. Xie, W. Wolf, and H. Lekatsas, “Code Decompression Unit Design
for VLIW Embedded Processors”, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 15 2007.

[Xu04] Xu, X., Clarke, C. T.,, and Jones, S. R. “High performance code
compression architecture for the embedded ARM/THUMB processor”.
Proceedings of the 1st Conference on Computing Frontiers. ACM. 2004.

[Zhang08] D. Zhang, A. Chattopadhyay, D. Kammler et al., “Power-efficient
Instruction Encoding Optimization for Various Architecture Classes”,
Journal of Computers, vol. 3 2008.

	Acknowledgements
	Euqarist'iec
	Abstract
	Ektetam'enh Per'ilhyh
	Introduction
	Motivation
	Embedded systems
	Processor design and instruction set architecture
	Application specific instruction-set processors

	Objectives
	Thesis Outline

	Background and Related Work
	Ultra-low power processor design
	Power dissipation
	Energy or power focus
	Low energy metrics
	The deep sub-micron era
	Performance to power consumption ratio in different processor types

	Memory efficiency
	SRAM
	Memory power efficiency
	Memory addressing modes
	Loopbuffers

	Techniques for energy-efficient processors
	Low-power techniques in circuit design
	Low-power techniques in architecture level

	Code compression and encoding
	Architecture Description Languages
	Design methodologies for ASIP
	Target IP Designer
	Tensilica's Xtensa
	LISA and Synopsys Processor Designer

	ASIP Case studies

	Development Framework
	nML Grammar
	nML Structural Skeleton
	nML Rule Definition
	Primitives definition and generation language

	Target tool flow
	Chess
	Checkers
	Go
	Risk

	Instuction set encoding

	Development of a SIMD ASIP
	Hardware SIMD and Software SIMD
	Basic features of the VBase processor
	Additions and modifications
	Gauss loop filtering
	Multiply-accumulate unit
	Shifter and overflow prevention
	Wrapper and Testbench
	Additional instructions added

	Comparison of the hard-SIMD with a soft-SIMD implementations
	The Soft-SIMD implementation
	Comparison and results

	Modifying the Instruction Set for Energy-Efficiency
	Analysing the generated control signals for full orthogonality
	Creating a wider instruction
	Power Results
	Area Results

	Optimizing the encoding of the instruction set
	Reducing decoder complexity
	Exploiting methods for energy efficient architectural design with ASIP tools

	Final implementation
	Final results
	Conclusions

	Conclusions
	The quest for the golden ratio
	Memory efficiency
	ASIP instruction-set architecture
	Hard-SIMD and Soft-SIMD
	Orthogonality and optimal word size

	Future work

	Bibliography

