
A Market for the Smart Environment

PAVEL PODKOPAJEV

Supervisor: Marc-Oliver Pahl
Examiner: Vladimir Vlassov

TRITA xxx yyyy-nn

iii

Abstract

This thesis identifies tools and mechanisms of existing application markets
by presenting features they offer and how they are realized. Design of a market
for the smart environment is proposed, developed and evaluated. The design
targets current issues of smart environments - no convenient ways to extend
functionality of the environment, dealing with heterogeneous base and unat-
tended application execution. Market called Agora is implemented according
to a design. System is evaluated with custom made simulation, simulation pro-
cedures and components are developed.
The system designed in this thesis provides application provisioning, auto-
matic application update mechanism, compatibility check with conflict situa-
tion suggestions, feedback mechanisms including explicit and implicit ratings,
automatic malicious application removal from a market and the smart environ-
ments.
Evaluation of the system in various scenarios shows that proposed system de-
sign provides solution to a given problems of the smart environments. System
is able to provide compatible applications to an end-user and automatically
support developers by sending automatic crash reports. Implicit rating of ap-
plications and removing malicious applications from the system also provides
helpful feedback to developers and market.

iv

Abstract

En typisk hem idag innehåller ett stort antal datorer, var och en med en
dedikerad funktion. Dessa datorer är inbäddade inte bara i högteknologisk
utrustning som smarta telefoner, iPods utan ocksåi de traditionella hushåll-
sapparater, t.ex. spisar, tvättmaskiner och kylskåp. Även detta apparater och
anordningar är användbara som enskilda objekt kan deras användbarhet kan
förbättras avsevärt genom att ansluta dem via ett nätverk för att möjliggöra
kommunikation mellan enheter och apparater. Ett system där kylskåpet har
förmåga att styra de viktigaste hemdator att beställa mjölk online från en
butik, eftersom det slut påmjölk är mycket mer användbar än någon av appa-
raterna ensam.
Denna avhandling identifierar verktyg och mekanismer för befintliga program
marknader genom att presentera funktioner som de erbjuder och hur de förverk-
ligas. Design av en marknad för smarta miljön föreslås utvecklas och utvärderas.
Designen riktar aktuella frågor av smarta miljöer -. Inga praktiska sätt att
utöka funktionaliteten av miljön, som handlar om heterogena bas och obe-
vakad tillämpning utförande
Det system som utformats i avhandlingen ger ansökan provisionering, automa-
tisk programuppdatering mekanism, kompatibilitet kontroll med förslag kon-
fliktsituation, återkopplingsmekanismer inklusive explicita och implicita betyg,
automatisk skadligt program tas bort från en marknad och de smarta miljöer.
Utvärdering av systemet i olika scenarier visar att föreslagna systemet kon-
struktion ger lösning till ett givet problem med de smarta miljöer. Systemet
kan ge kompatibla program till en slutanvändare och automatiskt stöd utveck-
lare genom att skicka automatiska felrapporter. Implicit rating av ansökningar
och ta bort skadliga program från systemet ger ocksåhjälp feedback till utveck-
lare och marknad.

Keyword: application, market, smart environment, appstore

Contents

Contents v

List of Figures vii

List of Tables viii
0.1 Acknowledgements . 1

1 Introduction 3
1.1 Background . 3
1.2 Objective . 4
1.3 Outline . 4

I Analysis 5

2 Analysis 7
2.1 Smart environment . 7
2.2 Application market . 9

2.2.1 General features provided by application markets 14
2.3 How application markets revolutionized software deployment for smart

phones . 20
2.4 Different Platform Strategies . 22
2.5 Users of a market . 26

2.5.1 Developers . 26
2.5.2 Administrators . 27
2.5.3 End-Users . 27

2.6 Information provided by market . 27
2.7 Technical features of market . 28
2.8 Distributed Smart Space Operating System 29
2.9 Questions to be answered . 30

3 Related work 33
3.1 Explicit and Implicit Ratings of application 33
3.2 Content recommendation . 34

v

vi CONTENTS

3.3 Provisioning . 36
3.4 Update management . 38
3.5 Privacy . 40
3.6 Security . 41
3.7 Transparency . 42

II Design 45

4 System Design 47
4.1 Application and information storage 48
4.2 Version control . 49
4.3 Signature/Integrity check . 49
4.4 Malicious applications removal . 49
4.5 Application recommendation . 50
4.6 Dependencies . 50
4.7 User authentication . 51
4.8 Provisioning . 51
4.9 Application control . 52
4.10 Top charts . 52
4.11 Rating . 53

4.11.1 Explicit rating . 53
4.11.2 Implicit rating . 53

4.12 Feedback . 54
4.12.1 Crash report . 54

4.13 Transparency . 55
4.14 Private information filtering . 56
4.15 Compatibility . 56

5 System Implementation 57
5.1 System topology . 57
5.2 Global market . 58
5.3 Local manager . 58
5.4 Implicit rating . 58
5.5 Recommendation . 59
5.6 Malicious application removal . 59
5.7 Test environment . 59

6 Test/Evaluation 61
6.1 Evaluation . 61

6.1.1 Rating . 61
6.1.2 Crash reports . 61
6.1.3 Malicious application removal 62
6.1.4 Update . 63

6.2 Summary . 64

IIIConclusion 65

7 Conclusion & Future Work 67
7.1 Conclusion . 67
7.2 Future Work . 67

Bibliography 69

Appendices 75

Appendices 77

List of Figures

2.1 Users’ place in smart environment [CDS04] 7
2.2 Occupants and appliances of smart environment [CDS04] 9
2.3 Apple App Store . 10
2.4 Items required for sharing apps with testers [app08a] 11
2.5 General view of Google Play Market . 12
2.6 Google Play Market crash report manager for developers 13
2.7 Google Play Market . 13
2.8 Amazon Appstore . 14
2.9 Nokia Ovi Store . 15
2.10 Google Play Market top lists screen . 16
2.11 Google Play Market application description 17
2.12 Google Play Market application statistics 18
2.13 Google Play Market application preview 19
2.14 Enabler platform [Bal09] . 23
2.15 System integrator platform [Bal09] . 24
2.16 Neutral platform [Bal09] . 25
2.17 Broker platform [Bal09] . 25
2.18 Users of a Market . 26
2.19 ds2os layers [PNS+09] . 29
2.20 Knowledge plane . 31

vii

3.1 Google Play Market users rating review screen 34
3.2 Google Play Market content recommendation 36
3.3 Google Play Market remote provisioning guide screen 37
3.4 Google Play Market application compatibility view 38
3.5 Google Play Market application compatibility view with all devices avail-

able to user . 38
3.6 Update Manager Model [HKSS05] . 39
3.7 System Owerview [KWKI03] . 40
3.8 Google Play Market permission screen 43

4.1 Entities of the system . 47
4.2 User interaction with a system . 49
4.3 Provisioning . 51
4.4 Implicit rating . 54
4.5 Crash report . 55

5.1 Agora system topology . 57
5.2 Simulation topology . 60

6.1 Rating distribution without implicit rating feature [App08b] 62
6.2 Automatic crash report contribution . 62
6.3 Bouncer strategy effect . 63
6.4 How fast all environments receive update after a new version is released 64

.1 Version compatibility check before installation 77

.2 Information presented to a user before installation 77

.3 Before uninstalling an application user can mark it as malicious 77

.4 Options available to a user after application is installed 78

.5 Top application list . 79

.6 List of applications that are already installed in the environment 80

.7 Agora login screen . 81

List of Tables

2.1 Features provided by application markets that are relevant to the smart
environment . 21

2.2 Platform strategies: comparison . 23

viii

List of Tables ix

4.1 Application control features and description 52

0.1. ACKNOWLEDGEMENTS 1

0.1 Acknowledgements
I would like to thank my supervisor, Marc-Oliver Pahl and examiner Vladimir
Vlassov for the opportunity to work on this thesis, and for his guidance throughout
the work.
I am grateful to the Technical University of Munich for providing research space
and delicious food, and also to everyone that has provided feedback on my work.
Most of all, I would like to thank my family for their massive support and for having
faith in me.

Chapter 1

Introduction

1.1 Background

A typical home today contains a large number of computers, each with a dedicated
function. These computers are embedded not only in high-tech equipment such
as smart phones, iPods but also in the traditional household appliances such as
cookers, washing machines, and fridges. Although this appliances and devices are
useful as individual items, their utility can be greatly enhanced by connecting them
through a network to allow communication between the devices and appliances. A
system in which the fridge have ability to command the main home computer to
order milk online from a shop, because it is running low on milk is far more useful
than any one of the appliances alone.
Application markets are one of the most important parts of mobile devices today.
Apple App Store, Google Play Market, Amazon Appstore and Nokia Ovi are major
application markets right now. Their main feature is to gather applications from
developers and bring them to end-users in a convenient way. Applications that
are installed from a market can not introduce new sensors or any kind of a new
hardware to a device, but it can bring new features to its users by utilizing existent
sensors that are already installed.
The collection of interconnected, different sensors in a building can be seen as a
smart environment. Currently there are no application markets for such environ-
ments on a market (2012, August). Application markets can be useful for these
environments, since they can bring new features to this environments by introduc-
ing new ways of utilizing sensors that smart environments are built from.
During the past years an abstraction over heterogeneous device zoo at home was
developed (Section 2.8). This abstraction makes it possible to access many sensors
and actuators in a standardized way which is the base for developing applications
for home. From the end-user perspective, each new application adds value to the
platform [ea11]. By introducing a market for the smart environment end-users of
such environments would gain value by being able to extend their environments
features without leaving it.

3

4 CHAPTER 1. INTRODUCTION

1.2 Objective
This thesis is about developing a market for the smart environment. After studying
existing application markets for hand-held devices it was found that these appli-
cation markets already provide some base functionality that can be used in smart
environments. The objective of this thesis is to assess the needs of smart environ-
ment in order to propose a solution for an app store for smart environments that
combining it with solutions that current application markets already provide:

• provides quality applications for end users in a convenient way

• provides necessary feedback for developers to create and support applications

• preserves privacy and security of its users

• is compatible with different environments by dealing with their heterogeneous
base

and the main contribution of the thesis being identification of the needs of smart
environments to extend their functionality by installing different control applica-
tions in a convenient way. Market called Agora is implemented according to a
design. System is evaluated with custom made simulation, simulation procedures
and components are developed.

1.3 Outline
This thesis is structured as follows:
First, in Chapter 2 smart environment and application market are defined, followed
by an overview of tools and mechanisms of existing application markets.
Chapter 3 presents related work; research on possible solutions for problems defined
in Section 2.9.
Chapter 4 describes the system design and Chapter 5 - implementation.
Chapter 6 provides an evaluation of the system.
Finally, in Chapter 7 conclusions and future work are given.

Part I

Analysis

5

Chapter 2

Analysis

2.1 Smart environment
Smart environments are living spaces with embedded sensors that sense and ef-
fectors that react to the occupants [MRK09]. Such environments are designed to
respond, anticipate and adapt to occupants’ needs. Figure 2.1 shows users place in
a smart environment. Goals of such environments are generally to maximize com-
fort and safety, optimize energy usage, enhance general well-being, and eliminate
strenuous repetitive activities [MRK09]. Adaptation of environments refers to the
fact that it learns to recognize and change itself depending on activities that are
made by occupant, doing it by minimal intervention from occupant.

Figure 2.1. Users’ place in smart environment [CDS04]

Miniaturization of devices and sensors, advances in network technologies have made

7

8 CHAPTER 2. ANALYSIS

possible the smart environment. A typical home today contains a large number of
computers, each with a dedicated function. These computers are embedded not
only in high-tech equipment such as smart phones, iPods but also in the traditional
household appliances such as cookers, washing machines, and fridges [MRK09]. Al-
though these appliances and devices are useful as individual items, their utility can
be greatly enhanced by connecting them through a network to allow communication
between devices and appliances. A system in which the fridge has ability to com-
mand main home computer to order milk online from a shop, because it is running
low on milk, is far more useful than any of appliances alone. Smart environments are
typically contain embedded cameras and microphones. There is variety of sensors
used in smart environments (Figure 2.2, to monitor ambient characteristics such as
humidity or temperature in a room, to detect presents of human through motion or
pressure sensors or bio-sensing to monitor health status.
However, if now users of such environments want to extend functionality of their
environments, there is no convenient way to do it. In other words if user wants to
introduce new cooperation between his/her alarm clock and coffee machine, he/she
will have to wait until whole process of development will finish. So there will be no
hot coffee in the morning just after he/she will be ready to have it.
So currently, users of smart environments cannot introduce new software, or update
existing one in their environments or expand their environments and introduce new
experience in a convenient way. Convenient way implies to introduce new function-
ality within a press of a button as this is happening right now in mobile device
(smart phones) environments.
Mobile devices can also be seen as a smart environment. As it is described in further
section 2.3, in the past, mobile devices had similar issues as smart environments
currently face. Software provisioning in a convenient way was introduced to mobile
phone environments, that created a whole ecosystem that is introduced with more
details in section 2.4.
Mobile devices and smart environments are both collection of different sensors that
can be controlled in a variety of ways to provide different outcomes. In mobile
phones, there are sensors like GPS, Wi-Fi, cameras, microphones, gyroscopes, ac-
celerometer and many others, which differ from manufacturers of specific devices.
Same sensors can be found in smart environments.
Difference of smart environments and mobile devices is that appliances presented in
houses are tending to be used for a longer time period than mobile device. Sensor
management software is changed with a new phone model or with a new version of
operating system that manages those devices. Sensors or devices deployed at home,
do not have this opportunity to be updated, or requires expert user or administrator
to perform it locally.
Since mobile phones environment already have solutions for similar issues to the
ones that this thesis is focused on, analysis of such solutions is introduced. Further
Application markets and their features are defined.

2.2. APPLICATION MARKET 9

Figure 2.2. Occupants and appliances of smart environment [CDS04]

2.2 Application market
Application market is a central system that covers different devices and sensors
installed on them. It acts like a mediator for its users (defined in Section 2.5)
by providing applications, an update mechanism, feedback mechanisms including
active user-ratings and passive indicators (most downloaded in time n), quality check
for uploaded applications, and other features to their users that are described in
section 2.2.1. Application markets (figure 2.5) are managed, application distribution
platforms. Different operating system types (iOS, Android, Symbian etc.) that are
used on mobile devices are using benefits of such infrastructures. Specifically this
infrastructure brought solution of how to extend functionality of a mobile device in
a convenient for its users way.
Even though application markets provide same product types to their customers,
applications for their devices, they do it in their own way. They have different
application approval procedures, different way of application deployment on device
and different presentation form to users. Further, application markets and their
main differences are described.

Apple App Store

Apple’s App Store (Figure 2.3) is an application market that is designed and
developed by Apple Inc. It comes built in with their own iOS operating sys-
tem. This operating system can be found on smartphones - iPhone, and tablet
computers - iPad. It’s not allowed to have third party application markets on

10 CHAPTER 2. ANALYSIS

Apple devices, which makes this market the only place where users can get
applications for their devices [cI08]. One of the main differences of Apple’s

Figure 2.3. Apple App Store

App Store with it’s competitors is that Apple will approve only those items
to the market, that will pass application screening phase. Appropriate team
members inside the company will perform this phase. This increases quality
of applications, since low quality applications are not going to be approved.
But these tests increase time period before developed product reach the mar-
ket by several weeks in comparison with other application markets [MLLC10].
Also it is impossible to see for a user, which sensors application is going to
use during its usage, but developers of applications have to define this kind of
information during development process. Only then they are allowed to use
sensors or features of other applications, otherwise, application is not going
to pass the screening phase [MLLC10].
To test developed application outside development team, developers of Ap-
ple App Store have to perform specific steps shown in Figure 2.4. After all
required steps are passed, testers are able to use provided application. If
application crashes during its usage, all crash reports are saved on a mobile
device. When mobile device is connected to a computer, these crash reports
will be saved on a computer. Later, testers are able to send this crash logs to
developers by email [app08a].

Google Play Market

Google Play Market (Figure 2.7) is an application market that is designed
and developed by Google. All devices running Android operating system can
use it, but it is not the only market that Android users can get their appli-
cations from. Amazon Appstore [Inc08a], GetJar [Inc08f], for example, are
other opportunities to get applications for Android devices. After publishing

2.2. APPLICATION MARKET 11

Figure 2.4. Items required for sharing apps with testers [app08a]

application to the market it can take several hours, before application will
be accessible through the market [Inc08i], which is faster than in Apple App
store case. This is happening since Google Play Market screening phase is
done automatically, with no human interaction [Kam08]. The strongest part
of Google Play Market compared to other marketplaces is that it has all the
features that other application markets have to offer, but it also has features
like video preview of applications if developers of that application have one,
possibility to install application on your mobile device remotely, by simply
going to the web page of a market. Also, Google Play Market provides elabo-
rated information to its users. Sensors or other applications that are going to
be involved by application usage are reported. This information is provided
to users during install procedure [Inc08g].
If developers of Google Play Market want to test their application with third
party users, they can simply send applications archive file for a test. Users
that are going to install these archives on their device, have to approve in-
stallation of applications’ from unknown sources on their devices. Otherwise
application is not going to install. All crash reports will be gathered on a mo-
bile phone where application is tested. Later this crash reports can be send
to developers directly from a mobile phone. Developers can review reports in
a convenient way presented in a Figure 2.6

12 CHAPTER 2. ANALYSIS

Figure 2.5. General view of Google Play Market

Amazon Appstore

Amazon Appstore for Android (Figure 2.8) lets their users instantly download
games and mobile applications on their Android device. Currently, Amazon
Appstore is available only to customers from United States. This application
market is a third party application, which users can acquire from Amazon
web page only, since this application is not available on Google Play Market.
It can provide same features as Google’s Play Market except for Auto-Update
and Remote Install features. It is possible to buy applications through a web-
browser and later download acquired applications from a market application,
installed on a device. To install such market on a device, user will have to
follow a step-by-step guide provided by Amazon, where he/she will have to let
device to install applications from unknown sources that can harm security of
a device [Inc08b].

2.2. APPLICATION MARKET 13

Figure 2.6. Google Play Market crash report manager for developers

Figure 2.7. Google Play Market

14 CHAPTER 2. ANALYSIS

Figure 2.8. Amazon Appstore

Nokia Ovi

Ovi store (Figure 2.9) is a marketplace, where users of Nokia Symbian or
Java ME operating systems can get applications, audio and video files, ring-
tones for their mobile devices. This application market provides least features
from all of shops that are compared (Table 2.1).

2.2.1 General features provided by application markets

General features of application markets that are relevant to this thesis topic are
described further. Some of the features that are described are unique to specific
markets that are highlighted in the description of the specific application markets.
Some features of application markets are restricted to specific countries only; fur-
ther list is based on Swedish, Lithuanian and German markets specifications. We
describe only those features of application markets that are relevant to smart envi-
ronments.

Search - allows users to search application market for specific applications by pro-
viding name of application they are looking for, or keywords that could de-
scribe that application. Result of this feature brings list of applications that
match query. In some of application markets search query can be entered by
text or voice. Search feature is one of the most important features of appli-

2.2. APPLICATION MARKET 15

Figure 2.9. Nokia Ovi Store

cation markets, since otherwise it would be almost impossible to find desired
application in market with more than 500 000 applications.

Search with text - allows users to enter query of search by text. User enters
desired application name character by character.

Search with voice - allows users to type in a query for a search by voice. When-
ever a user press search button of application market, he or she is presented
with an option to say a query rather that just type it in. User is asked to
say a query that is converted into a text that is used to search application
database.

Search results prediction - as soon as user starts to type in a query for search,
drop down list appears. It shows user different names of applications that
exist in market, that coincide with user’s query. This feature helps users to
find applications even though they mistype name of it. Also it brings name
of application before user finish to type it in.

Search history - whenever user comes to search for a new applications, he will be
able to see his previous searches, if he or she will leave the search field empty,
otherwise, application markets that have prediction of the search query feature
will start to show predictions for the current query. This feature helps users
to come back to the applications that they were searching later in time (in
case users want to save their mobile traffic, and download the applications

16 CHAPTER 2. ANALYSIS

through WiFi network), without having to type them in again, or in case they
forget the name, it will remind it to them.

Featured apps - every time application market is launched, the first thing that
users see is this list. It provides users with a list of a high quality applications
or information about applications that are currently on sale. Managers of
application market choose these applications. It helps users to find new high
quality applications, or will let them know about available discounts or special
offers on the market.

Top Applications - provides users with different type of top applications: top
free, top paid, top new paid, top new free. These lists are places where users
will search for their new applications. Whenever user will get his new device,
he or she will not search for an application using search feature, but they will
start browsing the lists of top applications.

Top Paid apps - list of most popular paid applications (Figure 2.10) on the mar-
ket. Users can see what other users are paying for and decide on their purchase
easier, since the fact that so many users paid for product shows that the prod-
uct really worth it, otherwise users would not buy it.

Top Free apps - list of most popular free application on market. Helps new users
get free applications that most of users of market are using.

Figure 2.10. Google Play Market top lists screen

Top New apps - this list provides information about new paid/free applications
on market, that immediately got attention by other users of market. It helps
new high quality applications to get to their users faster. This is a new feature
of application markets. Previously there were only "Top Paid Applications",
where users could see old applications that got user support, that would up-
dated slowly, since it would be hard for a new applications to compete with

2.2. APPLICATION MARKET 17

the applications that already have lots of users. This feature, fixes this prob-
lem, by giving new applications their own market, where they can compete
with equal competitors.

New apps - list of applications that provide users with the items that were posted
to a market recently. It helps new applications to get to their users; otherwise
chance that they would be lost (no one would find them) would be higher.
Having this feature in application market will motivate developers, since with
this feature they have more chances to reach customers.

Description - provide users with general idea of features that application is sup-
pose to do (Figure 2.11). It also gives users information about current version
of an application; when it was last updated, what is the size of it and the
maturity level.

Figure 2.11. Google Play Market application description

Feedback - after installing of application, users can share their experience with this
application. Also this experience can be read by other users before installing
application to learn more about item he or she is about to install. This feature
makes developers to support their applications, and react on problems of users
as soon as possible.

Rating of the feedback - users can rate feedback note of application as positive
or negative. Feedback with higher rating will be shown higher than the one
with lower rating; this feature helps users to read most appropriate feedback
notes first skipping the ones with low rate.

Rating of the application - allows users to rate applications. Item can be given
one to five stars rating, that later will be summed up and presented to users
as an average. Developers can react accordingly, if they see that users are not
satisfied with their current solutions, and users can decide on which applica-
tion to download easier.

18 CHAPTER 2. ANALYSIS

Share markets item - users can share application they are about to install or are
already using with their friends, through email client or any other application
that supports sharing (Facebook, Evernote, Dropbox etc.). It will give users
URL that point to the item that was shared with the description and the icon
of the application.

Information on how to reach developers - provides users with information on
how to reach developers of current application. Webpage, email address or
phone number could be used as a reference. This feature is helpful if someone
would like to get support for the application, or even if someone would like to
order an application for him or her self.

Download statistics - provides information for users of a market of different kind
of data (Figure 2.12). How many people shared application with others. How
many users vote on a specific application. When it was updated last time.
Also, users can see number of users that installed this application in last 30
days.

Figure 2.12. Google Play Market application statistics

Preview - allows users to see some screenshots of application (Figure 2.13). At
least two of them are required, if user wants to publish applications to a mar-
ket. Preview feature provides more feeling to customers about an application.

2.2. APPLICATION MARKET 19

Figure 2.13. Google Play Market application preview

Video preview - allows users to see application in action. Developers can record
promotional video of the application, specifically, how it is operated, or how
described functionality is achieved. This provides even more feeling of appli-
cation than flat images.

Update - allows users to update already existent applications on their devices.
By executing update function of a market, application is downloaded, and
previous version is exchanged with a current one. Usually update functionality
saves users data and moves to a new version. If this is not the case, developers
inform their users about this issue a priori.

Auto-Update - application market can automatically update application that are
installed on a device or notify user that there is an update pending for some
applications. It keeps user up to date and saves his or her time on searching
for updates manually.

Related apps viewed - list of applications that are relevant to the one that user
is looking at right now. It provides user with applications that were viewed by
other users when they were searching for same application. Usually this list is
presented at the bottom, after presenting current application. List is aligned
horizontally and will show to user only one row of information with possibility
to see whole list in a new window. This list will help users to find new solutions
to their problems and help developer to promote their applications.

Related apps installed - list of applications that are relevant to the one that
user is looking at right now. It provides to the user, applications that were
installed by other users, when they were searching for the same application
type. Applications are made by other developers but can perform the same
tasks. It helps user to compare the application he or she is about to install with
other applications on a market and find best one for his needs. Usually this
list is presented at the bottom, after presentation of current application. The
list is aligned horizontally and will show to user only one row of information
with possibility to see the whole list in a new window.

20 CHAPTER 2. ANALYSIS

Remote Install - allows users to install applications from a remote location. Users
can use their web browsers, to deploy applications on their mobile devices.
Mobile device is recognized by a username, given on a first start of a device.
Later, using the same username, users can deploy applications remotely.

Mark as inappropriate - gives user an option to report application as inappro-
priate one. If after reading the descriptions and installing the application user
discovers that it has offensive content that was not described in the descrip-
tion field, or it will not work on a device that is actually on the list of the
supported applications, he can report this application to a market team, to
take required measures.

Backup - allows to a user to save his or her application on remote server, so when
user will change his mobile device or reinstall the current one, it will save him
a lot of time, since all the application will be restored automatically. Also, it
can save user a space on the mobile device that application is using, since it
can be removed from the device and restored back, with no need of paying for
it again.

Different features of four application markets are presented here. Further, these
features are used to design a market for the smart environment.

2.3 How application markets revolutionized software
deployment for smart phones

Before application markets hit market, users were searching for applications by us-
ing general search engines like Google, Yahoo, Bing etc. or getting them directly
from developers’ web pages. After applications were acquired, users were moving
executable or archived files to their device manually. When transfer was complete,
user was allowed to install transferred files by locating it in a directory where it was
saved [Inc08j].
Packet managers in operating systems like Linux, Mac or Windows have function-
ality of application markets. For example, if Linux user wants to install a packet
(application) that has some prerequisites (dependencies from other packets (appli-
cations)), he/she can perform it by using APT manager. User can simply request
needed packet by sending "apt-get install name-of-package" command to a packet
manager. If requested packet requires other packets that are not present in the sys-
tem, packet manager will automatically install required dependencies and updates
[Lin08]. These features of packet managers are relevant to the question arrived
earlier - How to bring and manage software in smart environments in a convenient
for its users way.
Currently, Apple App Store, Google Play Market, Amazon Appstore and Nokia Ovi

2.3. HOW APPLICATION MARKETS REVOLUTIONIZED SOFTWARE
DEPLOYMENT FOR SMART PHONES 21

Features Apple App Store Google Play Market Amazon Appstore Nokia Ovi
Search

√ √ √ √

Search with voice
√

Search results prediction
√

Search history
√ √

Related Apps
√ √ √

Featured Apps
√ √ √ √

Top Paid apps
√ √ √

Top Free apps
√ √ √

Top New Paid apps
√

Top New Free apps
√

Top Grossing
√ √

New apps
√ √ √

Related apps viewed
√ √

Related apps installed
√ √ √

Description
√ √ √ √

Feedback
√ √ √ √

Rating of the feedback
√ √

Rating of the application
√ √ √ √

Share markets item
√ √

How to reach developers
√ √ √

Download statistics
√ √ √

Preview
√ √ √ √

Video Preview
√ √

Auto-Update
√ √

Remote Install
√ √

Backup
√ √ √

Mark as inappropriate
√

Table 2.1. Features provided by application markets that are relevant to the smart
environment

22 CHAPTER 2. ANALYSIS

are major application markets on a market for mobile devices. Main task of such
markets, is to bring quality applications in one place to their users in a convenient
way.
By using facilities of these application markets, user is allowed to search, install and
use application from one single place. In general, these application markets are built
into operating systems they are coming with, for example Apple App Store could
be found only on the Apple iOS devices, Google Play comes with Android operat-
ing system only, and Nokia Ovi provides applications for their own platform only.
Even though all of these markets come from different vendors, basic functionality
is same for all of them: user is provided with a market, that helps to find necessary
applications, information about those applications and a convenient way to make
these applications available on a device. After following instructions of application
market, user is able to use applications after an installation process.
In the following section different platform strategies that can be used to build a
market are defined. By looking at these platform strategies different user roles and
topologies of a market are obtained and used in a design section.

2.4 Different Platform Strategies

In the mobile service domain, different (i.e. respectively hardware based, operating
system-based, web-application-based, and portal based) initiatives such as Apple’s
App Store, Nokia’s OVI, Google’s Google Play Market and Windows Phone ex-
ist. All these initiatives can be referred to as platforms, since they usually mediate
between different sides of a market (e.g. developers, advertisers and customers).
Four different types of platforms, oriented around their different control over the
customers relationship and tangible and intangible assets that make up the value
proposition, were suggested [VG10].
By examining these platform types, users of application markets are defined and
further used in a design section.
The first type of platform can be labeled an "Enabler Platform". In this platform
type owner controls many or most of the assets involved in service provisioning, but
the customer relationship is done by the third-party developers.
The second type of platform can be labeled "System Integrator Platform". This
platform represents the case where most of the assets that are related to the value
proposition, customer ownership, are hold in the hands of the platform owner. This
actor - owner will also facilitate entry of the "third parties" to constitute a multi-side
market. In other words, it will allow other service providers to use its platform to
increase the value of the platform (e.g. Apple App Store, Nokia Ovi).
The third type of platform can be labeled a "Neutral Platform". This platform
represents the case in which the platform owner does not control most of the assets
that are used for the value proposition and does not have customer ownership, since
it does not establish a billing relationship with an end-user (e.g. PayPal).

2.4. DIFFERENT PLATFORM STRATEGIES 23

No Control over Customers Control over Customers
Control over Assets Enabler Platform System Integrator Platform

No Control over Assets Neutral Platform Broker Platform
Table 2.2. Platform strategies: comparison

The fourth type of the platform can be labeled a "Broker Platform". Here, platform
relies on other actors that control most of the assets to establish the value proposi-
tion, but it integrates customer ownership (e.g. Ebay, GetJar).

Enabler Platform - it controls the most important assets that brings value. Mo-
bile operating systems are typical examples of enabler platform. Owner of the
platform has the knowledge and experience to develop attractive and success-
ful platform for both, developers and end-users. However, there is no direct
exchange of money between the end-user and the platform owner that means
there is no customer relationship with the end-user. For the success of such
platform, owner will have to be constantly aware of what customers need,
provide rich API and SDK for the third-party developers to facilitate them to
create services that customers need. The drawback of such platform is that
since there is no relationship between platform operator and end-user, it is
hard for the platform operators to keep developers motivated [VG10]. The
overview of this platform is presented in Figure 2.14

Figure 2.14. Enabler platform [Bal09]

24 CHAPTER 2. ANALYSIS

System Integrator Platform - it controls value-adding assets in creating of soft-
ware and hardware, and also controls customers, by having a direct charging
and billing. Platform owner will provide device configurations and software
API for developers, will bill all end-users and share this money to cover plat-
form expenses and pay developers. Success factors are similar to the ones
from enabler platform, where platform owner should attract developers to
adapt his platform by having a market of users and developer community,
transition from development to commercialization. The overview of this plat-
form is presented in Figure 2.15

Figure 2.15. System integrator platform [Bal09]

Neutral Platform - provides the basic set of tools but do not assists in creating
the final service for the end-user, thus not controlling the most important
value-adding assets. There is no financial customer relationship. This type of
platform is used to create collaboration environment between large companies.
Participant should know exactly how joining a consortium would benefit them.
Not having a strong founding group or weak support for a neutral platform can
quickly lead to failure, but extremely useful for working together on a common
standard [VG10]. The overview of this platform is presented in Figure 2.16

Broker Platform - does not control assets that make up the value proposition, but
have a strong customer relationship since the end-users pay for service directly
through the broker platform. In most cases a revenue sharing between broker
and service developers is set up. Since broker platform can provide services
to different kind of OSs and operators, it has to provide support for diverging
devices and OSs and develop technological backend that will make service
provisioning easier for customers (e.g. filtering content based on the handset
model) [VG10]. The overview of this platform is presented in Figure 2.17

By looking at these (Table 2.4) four different platform strategies, three different
types of users can be distinguished (Figure 2.18): Developers who develop applica-

2.4. DIFFERENT PLATFORM STRATEGIES 25

Figure 2.16. Neutral platform [Bal09]

Figure 2.17. Broker platform [Bal09]

tions, Administrators who deploy those applications and End-Users who use them.

26 CHAPTER 2. ANALYSIS

Figure 2.18. Users of a Market

2.5 Users of a market

As described in section 2.4, three basic types of users of smart environments can
be distinguished: developers, administrators and end-users. Users are important
part of a market since they are producers and consumers of what market have to
offer. Even though three different types of users are defined, it is possible that same
user acts as developer, administrator or end-user, if enough knowledge acquired to
perform required actions of specific user type. To support its users, market has to
provide basic functionality for each type of users as it was discovered in Section 2.2
and Section 2.4.

2.5.1 Developers

Developers of market populate markets with applications and provide support for
end-users. To perform these actions they need to test, deploy and receive feedback
from end-users.
Since not every developer can have an opportunity to establish such (smart) envi-
ronment with different sensors at his/her place, there is a way for developers to test
their developed products on remote smart environments. Testing scenarios provide
preliminary feedback for developers.
After developing and testing products, developers bring them to customers. De-
velopers have a way to put applications to a market, so that users would be able
to reach applications through market. Also, since products are updated after some
time, developers have a possibility to update files (applications) on a market.
To update software or fix bugs of a current version, developers get feedback from
users. It is done to understand better which features of a product do not work as
expected and need to be tuned up. Feedback is also needed to motivate developers
to make their products better [Ant11], since feedback from users show to developers
that their products are being used.

2.6. INFORMATION PROVIDED BY MARKET 27

2.5.2 Administrators

Administrators of a market are users, who manage smart environments. They
do it by keeping applications/services up to date, installing or uninstalling ser-
vices/applications and configuring them in such a way so that they would perform
in a desired way. Administrators can be treated as more elaborate end-users, since
they have more responsibilities and actions to perform, that are described further.
Administrators of smart environments manage it by starting or stopping applica-
tions, installing or uninstalling them from environments, performing configurations
of them, if such options are made available by developers.
Also, administrator’s feedback to developers is more detailed than end-users, since
they refer to misbehaviors that occur in configuration or install/uninstall proce-
dures.

2.5.3 End-Users

End-users of smart environments are the one who use already installed and config-
ured applications. Applications are installed and configured by administrators of
such environments.
End-users control their environment by using applications acquired from a mar-
ket. For example by opening window in a room, fan, that was working a priori of
this action (opening window), is stopped if such functionality is provided by appli-
cations currently installed/deployed in environment. End-users rate applications,
write their opinions (comments) about specific applications and ask for support
from developers if necessary.

2.6 Information provided by market
Market manages information, gathered from users and applications. It is done to
support basic functionality and features of a market described in section 2.2.1 that
builds up its value.
To evaluate products on a market, help developers to see how end-users respond to
applications they have created, and help other users to choose better solutions for
their needs, users are able to rate different items of a market. Items that can be
rated are applications and their comments. Ability to rate comments of an appli-
cation, help end-users to get most relevant comments first [SCNSP10] by omitting
spam. Also, voting provides support for different features of an application market
that are described in section 2.2.1
Crash reports are used as a feedback to developers and contributes in implicit rating
of applications. Market constantly reports to developers about crashes in end-users
environments, this helps developers to find solution for problems faster [MLLC10].
Resources in smart environment are limited. Deploying and running applications
on environments cost resources to its users. Memory, capacity of storage unit (hard
drive, solid state drive etc.), bandwidth and CPU usage are resources that we are

28 CHAPTER 2. ANALYSIS

concerned about. These resources needs are classified into two parts: dynamic
and static. Dynamic resources represent current information of environment where
application is going to be installed. Static resources represent information that ap-
plication needs, to run on environment.
Surveillance applications in private environments such as smart houses require pri-
vacy management policy if such systems are to be accepted by the occupants of the
environment. This is due to the invasive nature of surveillance, and the private na-
ture of home [MVW08]. Advances in both simple and complex sensor technologies
have extended the scope of surveillance and monitoring applications beyond pub-
lic spaces. However, such applications invade the privacy of those being surveyed
[CDS04]. Information exchange with a market is needed for feedback, crash reports
and during testing procedures. Administrators that manage smart environment
can be third party people. In both cases, issues of privacy is of serious concern as
sensors that are used (either individually, or in combination) have the ability to
communicate sensitive information to those observing an environment.
Applications are able to use different sensors and functionality of other applications
to perform desired actions defined by developers. If users don’t want to allow new
applications to use some of their sensors, or they want to be sure that application is
going to access only specific devices, there could be a way to provide transparency
on what sensors application is allowed to access.

2.7 Technical features of market

Some smart environments don’t have user interfaces to control applications de-
ployed on environment, thus provisioning and management of applications is done
both remotely and locally. Administrators have possibility to install, uninstall and
configure applications remotely.
Applications are rated by submitting crash reports, by rating them explicitly or
implicitly. Comments are done about issues that are met during application us-
age. This feedback help developers and end-users to evaluate applications. After
receiving crash reports, developers release a new version of their software, that fixes
previous misbehaviors or introduce new features. New versions of applications are
treated separately from its previous releases to differentiate crash reports, feedback
of users and to reflect rating more accurately, since previous versions of applications
could have bugs, that were fixed in a new versions.
Users of a market are distributed around it. Developers publish applications from
one location, while administrators install them from another. To make applications
accessible and store gathered information from different users and provide same
information and application lists to all users, market provides centralized storage.
In this storage all required (applications, ratings, comments etc.) information is
stored.
Rating of applications, crash reports, comments of applications are collected by
market. Crash reports are reported periodically, users rate applications and leave

2.8. DISTRIBUTED SMART SPACE OPERATING SYSTEM 29

their comments without predefined time interval. To make this information avail-
able for other users whenever they need it, for example see average rating of an
application, or read comments that were left by other users, information collection
is done by market not by local environment. Local environments submit their lo-
cally gathered information for evaluation to a global market.
Communication is done between smart environments and market. Malicious ap-
plications exist, that can expose users’ private information, change permission that
users’ gave to an application or use users devices to perform denial of service attacks
[Gee05]. To overcome these issues market keeps track of applications published by
its developers and provide secure communication channel for its users.

2.8 Distributed Smart Space Operating System
Distributed Smart Space Operating System (DS2OS) is a platform (shown in Figure
2.19) that brings connectivity and autonomous functionality into the home context
[Aut08]. It is developed by Technische Universität München.
Application market designed in this thesis is highly dependent on functionality
provided by this operating system. DS2OS consists of four layers, user interface,
services, knowledge plane and control plane, presented below.

 User Interface

 Users

Device
Adapter

Protocol	
 Bridge	
 Device Adapter

 Hardware

Services

 Knowledge

Figure 2.19. ds2os layers [PNS+09]

User Interface The user interface is the part of the platform the end user inter-
acts with. Currently it is a web-based interface, where user can interact with their

30 CHAPTER 2. ANALYSIS

environment, by manipulating their actuators. User interface is located on top of
the service layer that is described further.

Services Services can be seen as software that user is using through the user
interface to manipulate its environment. Services in DS2OS are running on nodes
with sufficient resources inside the network. A service might for instance control
the climate of a room or the energy consumption inside a house. A service might
also take care that the music follows us through the house or even adapts to us and
our mood outside, when we enter an autonomicity ready environment like a pub
where the music might adapt to the guests. Services are logically situated on top
of the big abstraction layer "knowledge agent" that is described further.

Smyrna Smyrna is a service that is running in a smart environment. It is devel-
oped by Cuneyt Caliscan as a master thesis work. This service acts as a mediator
between application market and smart environment. It is responsible for installing
and removing of applications, run applications in an optimal way. It is also re-
sponsible for collecting information about environment and applications that are
currently running on the environment. Smyrna is also responsible for migrating the
services inside the network to provide load balance in the system and make sure
that services get enough resources to perform their tasks. Market that is developed
in this thesis resides between users and service layer of DS2OS.

Knowledge plane The Knowledge Plane (shown in Figure 2.20) is the core of
the architecture. It contains the digital representation of the world. Every entity
(device, service) that wants to profit from control and management architecture has
to connect to the knowledge plane. This happens via the Knowledge Agent.
The Knowledge Agent is the node’s logical communication endpoint for everything
concerning the knowledge overlay. If data from other nodes has to be retrieved this
happens by requesting the data at the local agent. The agent will retrieve the data
then and deliver it to the inquirer.

Control plane The Control Plane connects the hardware to the knowledge plat-
form. In the Figure 2.19 Control plane is presented as Device Adapter layer.

2.9 Questions to be answered

After introducing problems with existing smart environments ??, how mobile phone
environments deal with similar problems and desired properties, we can conclude
to the goal of this thesis. The goal of this thesis is to answer the following central
question that is further decomposed to more detailed sub-questions:

How could a market for the smart environment be designed ?

2.9. QUESTIONS TO BE ANSWERED 31

Figure 2.20. Knowledge plane

The above central question can be split into more detailed and specific questions
that will be answered throughout the thesis.

How can we apply and adapt tools and mechanisms of existing markets to smart
environments ? Application markets already exists, but not for the smart environ-
ments, 2012-04.

How can privacy of a user be preserved ? Exchange of information between local
and global environments exists. Information that is exchanged can be private.

How can analyzed security need be met ? Malicious applications exist, that can
harm environments and user security by exposing private information.

How can described requirements of different user groups be met ? Users with
different rights (defined in section 2.5) are going to use the market. Different user
types are going to perform different actions, that are unique and are not accessible
by other types.

How can market support described character of the smart environment with its
unattended machines ? Not all smart environments have user interfaces to control
it. Applications can crash while performing given tasks.

How to provide compatibility with different environments with their heteroge-
neous base? Smart environments can bullfrog different amount of sensors and their
types. Applications provided by the market have their own requirements to perform
their tasks.

To address these questions, prototype of the market is designed in Chapter
4. Not all solutions of the questions stated above can be simulated. Solution for

32 CHAPTER 2. ANALYSIS

questions that can be simulated and tested, are evaluated in Chapter 6.

Chapter 3

Related work

In this chapter important research that addresses or presents solutions to the cur-
rent issues of smart environments mentioned in this thesis is presented.
Market solution presented in this thesis is based on already existing markets, imple-
mented for different environments, not for smart environments. Review of already
existent solutions is also presented that can be used in market for smart environ-
ments.

3.1 Explicit and Implicit Ratings of application

In order to distribute applications, developers publish them on a centralized por-
tals (market places) from which consumers can directly search, download and then
install applications onto mobile devices [HO09]. At present these marketplaces let
users rate applications by giving rating on a one to five star scale. Explicit rating
are the most common and obvious user interest indicator, with users telling the sys-
tem their opinion about some objects (such as a video clip) or piece of information
(such as a blog post). Even though this rating technique offers a fairly precise way
to measure user interest, it has several serious drawbacks: to enter explicit rating to
the system, users have to alter their reading or browsing behavior, they might even
stop providing ratings unless they perceive a benefit. In general users tend to read
much more articles, than they rate, as it was found through research on the Grou-
pLens system [CBLW01]. Even though explicit ratings are common and trusted,
they might not be as reliable as often presumed. [DN06] found out, that users are
more likely to review applications only if they find them very good, or very bad.
To overcome this limitation, [GM10] introduced a new way to rate applications -
implicitly.
Implicit ratings provide a good alternative, since they remove the cost from a user
associated with examining and rating items. What is more, every user interaction
with a system can be converted to an item evaluation. Events when user update,
install or uninstall application contribute in application rating. Although each im-

33

34 CHAPTER 3. RELATED WORK

Figure 3.1. Google Play Market users rating review screen

plicit rating item can be less accurate than an explicit rating, it can be gathered
for "free".
Every time user install, update or remove an application, these events contribute to
the rating algorithm. The assumption behind this approach is that good applica-
tions are not removed once installed, whereas applications not liked, tending to be
removed from device. AppAware defines acceptance rate v for an application app
as a value going from 0 to 100 computed with the formula in 3.1, where U is a set
of users having at least one event for app [GM10].

v(app) =
∑

user∈U last(app, user)
|U |

(3.1)

last(app, user) =


0 if last event of user for app = removed
90 if last event of user for app = installed
100 if last event of user for app = updated

(3.2)

Formula 3.2 defines that only most recent event of a specific user for a certain ap-
plication is counted. In the process, an update procedure is considered the most
valuable event, even more than installation. The belief is that an application’s up-
date procedure indicated that users interest in that piece of software still exists. At
the same time it indicates that developers put effort to keep application up to date.
It is also possible to include time spans between installations and removals of appli-
cations, to give bonus to programs that remain installed for a longer time. Addition-
ally, due to the nature of certain applications (games, season related applications),
check for possible systematic biases might be useful.

3.2 Content recommendation
With the current amount of information coming to the market - over 500.000 ap-
plications [Inc08c], choosing among so many options is challenging for consumer.
To help users cope with this issue, there exists recommender systems that provide
users with the recommendations of items that are likely to fit their needs [SKKR00].
Association rules mapping can be used to develop recommender system. In [SKKR00]
association rules are defined as: discovering association between two sets of prod-
ucts such that the presence of some products in a particular transaction implies

3.2. CONTENT RECOMMENDATION 35

that products from other set are also present in the same transaction.
One of the most successful systems that provide recommendations to the users
are Collaborative Filtering (CF) systems [KMM+97], [SM95]. Numerous commer-
cial on-line based companies like Amazon.com, Half.com and cdnow.com apply this
technology to provide recommendations to their customers. Unlike content-based
information filtering systems that are based on artificial intelligence or information
retrieval technologies, filtering decisions of content in CF are based on human, not
on machine analysis. Users of CF rate items that they have experienced and build
their own profiles of interests by doing so. CF match together users of similar
interests or tastes. Ratings from similar people are used to generate recommenda-
tions for user. Since CF is not based on error-prone machine analysis of content as
traditional content-based filtering is, it has many significant advantages. Text, art
work, music, video can be filtered for the user by using CF techniques [HKR00].
The drawback of collaborative filtering approaches is that they are computationally
expensive [LSY03].
Recommender systems predict user preferences based on a range of available infor-
mation. For systems where users generate content (applications in our case), users
may rate produced content that they read or used (in this thesis case, applications
are considered to be used), and be given accurate prediction about items they may
also like. Access to such data allows companies that provide content recommen-
dation features to improve their recommendations and also to profile users. Such
profiles can be later monetized, e.g. through advertising.
In the same time, the increased monetization of private data has been met by a
sharp rise in privacy concerns within advocacy groups like the Electronic Frontier
Foundation and regulatory bodies like the US Congress. In [IICM11], distributed
mechanism for predicting user ratings that avoids the disclosure of information to
a centralized authority or an untrusted third party is designed. Users disclose rat-
ings and their evaluations to certain content only, to a user that produced that
content. This content filtering approach helps users to view and access relevant,
interesting content without releasing their private information to untrusted third
parties. At present, when user creates content on Facebook or a Twitter feed, his
profile information (what user liked in the past, who liked his posted content) is
kept centralized. [IICM11] approach to share content and ratings with each other
is in a peer-to-peer fashion. Their collaborative filtering scheme operates under
the constraint that information is shared only between content producers and its
subscribers.
Another profile building technique, used in content recommendation is described
in [KASJ11]. To build an individual user model/profile, tags and ratings are con-
nected to infer user’s topics of interest, in which each topic is composed of tags. To
provide model with more diversity, valuable topics in term of both likes and dislikes
are enriched in collaboration with other similar users.
In [DLL+10], YouTube’s video recommendation system is presented. It delivers
personalized sets of videos to signed in users based on their previous activity on the
YouTube site. This recommendation technique is focused to be recent and fresh,

36 CHAPTER 3. RELATED WORK

and relevant to users recent actions. The set of recommended videos is generated
by using user’s personal activity (watched, favorite, liked videos) as seeds and ex-
panding the set of videos by traversing a co-visitation based graph of videos. The
set of videos’ is then ranked using a variety of signals for relevance and diversity. In
general, content data and user activity data are considered. Content data can be
seen as video metadata, such as title, description etc. User activity data is divided
into two parts, explicit and implicit. Explicit activities include rating a video, favor-
ing/liking a video or subscribing to a specific uploader/content provider. Implicit
activities are datum generated as a result of users watching and interacting with it,
e.g., user watched large portion of a video (long watch). YouTube recommendation
system uses a well-known technique known as association rule mining [AIS93].

Figure 3.2. Google Play Market content recommendation

3.3 Provisioning
Provisioning of applications to a market let their users to upload applications to it,
install to their environments and update if a new version of application was released
by developers.
Currently, users of Google Play, have three ways to deploy/provision applications
to their devices. First way is to download it through markets application on mobile
device. Second way is to download application manually, for example to a personal
computer, than transfer download file to a mobile phone and open it with Markets
package manager that will install application. Third way to install application on
a mobile device, is to do it remotely. Users are allowed to browse for applications
through web browser of their personal computers. Through same web browser
it is possible to send application to one of user devices (Figure 3.3), where it is

3.3. PROVISIONING 37

Figure 3.3. Google Play Market remote provisioning guide screen

automatically installed by local package manager. Smart environment defined in
this thesis, does not have user interface, what makes third way of provisioning
the most interesting for this thesis. In Apples App Store, users are allowed to
remotely provision applications to their devices. To that, special client software is
required, Apple iTunes [Inc08d]. Through this client, users are allowed to download
application to their personal computers, and later synchronize content on client
software with their smart phones (iPhone, iPad). This approach is different from the
one presented by Google Play. In Google Plays’ approach, remote provisioning can
be done purely through Internet, without requiring device to be directly connected
to a personal computer on which provisioning action is performed. In Apples App
Store approach, device on which remote provisioning is done, have to be connected
to a personal computer on which provisioning action is performed. Starting from
iTunes version 10.5 and iOS version 5.0 and above, users of Apples App Store
have possibility to install application to their phones remotely, by using WiFi, if
this option is activated. Whenever iOS device connects to a WiFi network, to
which personal computer is connected to, applications downloaded to iTunes are
transferred to a mobile device [Inc08e].
Different applications can have requirements that are not supported by some of
environments. Some applications are restricted to a specific countries [Inc08h]. In
Google Play market, users are informed a priori if application that they are trying to
install is compatible with their device environment (figure 3.4). If users have several

38 CHAPTER 3. RELATED WORK

Figure 3.4. Google Play Market application compatibility view

devices, they are informed with which devices application is compatible with (figure
3.5).

Figure 3.5. Google Play Market application compatibility view with all devices
available to user

3.4 Update management
Software updates/patching are common in all systems. Tools to help update soft-
ware in traditional systems have been used for a number of years. System ad-
ministrators often need to check for software updates, download them, verify the
integrity and distribute them. There are several tools from different vendors that
help administrators to cope with this problem. Microsoft Systems Management
Server includes support for planning application deployment, selective targeting of
application deployment, security, patch management and the ability to propagate
differential changes to software rather than the entire application image. The Tivoli
Configuration Manager is another tool from IBM, which provides automatic patch
distribution, multicast based software distribution, and pervasive device configura-
tion management. Existing update management (UM) tools are designed to aid
system administrators with two primary problems. First, the diverse set of software
and hardware configurations present in a large network presents a great deal of com-
plexity that cannot be effectively handled by a human. UM tools provide selective
installation based on specific software/hardware combinations to help reduce this
complexity. Second, UM tools provide a mechanism for content distribution in the
network [HKSS05].
Update management model presented in [HKSS05] is focusing on sensor networks.
A sensor node is typically equipped with a low bandwidth radio, an MHz (instead
of GHz) micro-controller, and kilobytes (instead of megabytes) of RAM to provide
prolonged operations under limited power.

3.4. UPDATE MANAGEMENT 39

The model is made up of five main components:

1. Software updates planning, selection of potential targets based on system
parameter and monitoring the progress of the updates is done through User
interface.

2. Database, that is used for marketing software images for updates and their
planning.

3. Data optimizer, that is used to minimize the size of updates before they are
distributed.

4. Distribution protocol, that is used to transmit updates into targeted sensor
nodes.

5. Execution environment, that is used to execute programs on a sensor node.

Figure 3.6. Update Manager Model [HKSS05]

An example of update process that involves all five components could be as follows.
System administrator initializes/plans update through UI. UI pulls new and old
sensor drivers from database and forwards them to data optimizer module. This
module compares two versions and creates a patch of optimal size. This patch is
afterwards passed to distribution protocol to deliver update to nodes. When patch
arrives at a destination node, the execution environment uses patch to update sen-
sor driver.
Another solution to manage home appliance systems is presented in [KWKI03] (Sys-
tem overview is presented in figure 3.7). Bluetooth for a communication medium
and a cellular phone as the control terminal is used in their proposed system. Blue-
tooth is used to establish communication between appliances and mobile device.
Mobile device is used to control appliances and to perform software update. Java
application deployed on a device provides users with further functionality:

• Remote Control

• Program Update

• Fault Diagnostic

40 CHAPTER 3. RELATED WORK

Figure 3.7. System Owerview [KWKI03]

Mobile phone acts as a mediator between service providers, developers of software
and appliances and their users, home occupants. Mobile phone gathers necessary
data, and sends it throughout the Internet.

3.5 Privacy
Smart house environments can store a large amount of data. This data can be
exchanged with a market, to provide test results for developers or any other kind
of feedback from environment occupant. Previous approaches to privacy in ubiqui-
tous computing systems either implement privacy by default, or assess the context
of the environment in order to determine whether privacy should be implemented,
or not. The privacy measure is then implemented by rule-based approach. Each
user had static predefined privacy preferences that were taken into account in rule
appliance. This approach is limited due to the binary influence of the context. If
privacy measures are in place, environment does not influence observer’s view of
data. These results in a single privacy view for a given observer. Smart house envi-
ronments is dynamic and flexible, [MVW08] presents a framework that implements
privacy in such environments. It provides an interface between the implementation
of a privacy and occupants.
The framework dynamically determines what data an observer can access given the
situation, or context of environment. A dynamic approach is required to balance
the needs of occupants with usefulness of the system in achieving its purpose. These
two aspects are in conflict. For an occupant, privacy policy should minimize intru-

3.6. SECURITY 41

sion into occupant’s life (maximize level of privacy experienced). However, for the
system to function adequately, observers, developers for example, should be able to
access sufficient information to perform their duties, that is in this thesis case, to
provide necessary feedback, crash reports and information about user.
Even though information gathered from such environments can bring benefits to
occupant’s life, it also can harm it. Currently, users of other smart environments
(smart phones, tablets) report [Reu08] issues, that violate their privacy. Smart
phones from Apple, iPhone, were transmitting information about users location,
current and in the past, to third party developers, without their permission. By
collecting location information embedded in location-based service queries, an ad-
versary who has compromised the location-based service server can infer sensitive
privacy information about service recipients, such as their home locations, lifestyles,
political/religious associations, and health conditions [SJCH12]. Information like
owners home location, smoker or nonsmoker, coffee drinker or no, or even age; can
be find out from location-based service data.

3.6 Security

Current application markets, before letting users to use their facilities require users
to register in a system. Google Play requires performing first time registration from
a physical device, in this way system will relate specific device to a user. Apple
requires connecting mobile phone to Internet and will allow users to use its device
only after registering it to his Apple account. After performing these steps, users
of both application markets can start using functionality provided by a markets.
Malicious applications started to attack application markets [DCGMV11], [Aim08].
Different application markets have their own approaches to eliminate danger that
this type of applications present to its users. In Apple App Store, all applications
that are submitted to a market are manually processed through application approval
process. In Google Play market, Bouncer application is introduced which monitors
applications published to a market and removes the one that is suspected to be
malicious. After introducing Bouncer application in a Google Play, it was seen a
40 percent drop in malicious apps [Ras08]. While Apple provides safer environment
than Google Play [Aim08] for its users with its manual application approval, it
comes with a price. Application approval takes longer time [MLLC10] comparing
to approval time in Google’s Google Play Market. Money is spent on people who
evaluate software and check if it is malicious or not.
In order to reliably determine whether code that was produced by developers has
been modified by someone or not, code has to be signed [KPS02]. Code signing can
be used to:

• ensure the integrity of the code; that is, it has not been altered

• identify the code as coming from a specific source (the developer or signer)

42 CHAPTER 3. RELATED WORK

To enable signed code to fulfill all of these purposes, a code signature consists of
two parts:

• A seal, which is a collection of checksums or hashes of the various parts of the
program, such as the main executable, the resource files, and so on. The seal
can be used to detect alterations to the code.

• A digital signature, which signs the seal to guarantee its integrity. The signa-
ture includes information that can be used to determine who signed the code
and whether the signature is valid.

It is important to understand that signing code cannot:

• Guarantee that the code is free of security vulnerabilities.

• Guarantee that a program will not load unsafe or altered code such as un-
trusted plug-ins during execution.

3.7 Transparency
Transparency of applications can be seen as a security concern [Meu08], since mar-
ketplaces give user ability to install third-party applications. While existing trans-
parency mechanism in Android allow user to see which resources are required by
application (Figure 3.3), or which resources are going to be accessed (Figure 3.8),
she/he has no choice than to allow access to all requested permissions to use ap-
plication or reject them. What is more, there is no way for a user to grant only
some of permissions, while denying others. There is no way of restricting resources
based on runtime constraints such as the number of time a resource has already
been accessed/used. If user wants to revoke permissions once they were granted,
the only way to do it, is to uninstall the application. While building market for
smart environments, where users can have same issues, it is important to cope with
these issues from the beginning.
Users of Google Play Market have a solution for such problems - Apex [NKZ10].
This application extends functionality of Google Play, by giving users possibility to
dynamically control permissions for their applications. With a help of this applica-
tion, it became possible to limit specific permission for a specific amount of time.
For example, if service requires permission to send SMS, it is possible to limit this
permission to 100 times. In this way customer is confident, that no more than 100
SMS will be send.
Users of smart house environments can have a service, for example, that keeps track
of products in a refrigerator and orders them online. It can be the case that user
want to deny permission to buy groceries online, but still to keep track of products
inside refrigerator. To make sure that service is not ordering anything without users’
permission. Previously granted permission to do it, should be revoked, but other
permission, that grants access to refrigerator, should not. This possible procedure
makes issues described in [NKZ10] relevant to a market for smart environments.

3.7. TRANSPARENCY 43

Figure 3.8. Google Play Market permission screen

Part II

Design

45

Chapter 4

System Design

The following chapter presents the design choices made to solve the problems pre-
sented in Section 2.9. In figure 4.1 entities of the system designed in this thesis
are presented. Functional componenets/modules that are implemented on specific
entities are presented below. Description of these modules is also provided.

Figure 4.1. Entities of the system

Global Market consists of further functionality modules:

• Application and information storage
• Version control
• Signature/Integrity check
• Information collection from users and environments
• Application description
• Application recommendation
• Implicit rating
• Dependencies

47

48 CHAPTER 4. SYSTEM DESIGN

• Malicious application removal

Global Market frontend consists of further functionality modules:

• User authentication
• Publish Application
• Remove Application

Local Manager consists of further functionality modules:

• Signature/Integrity check
• Private information filtering
• Crash reports
• Environment specification gathering
• Transparency of applications
• Compatibility
• Malicious application removal

Local Manager frontend consists of further functionality modules:

• User authentication
• Application preview
• Search
• Top charts
• Application Control

Smart Space entity indicates Smart Space runtime environment. Applications in
the smart environment are deployed and controlled through this entity by the local
manager entity.

4.1 Application and information storage
Global Market entity collects information. Users of the system, comments and rat-
ing they submit, applications that market provides are stored in Global Market
entity’s database.
It markets information about applications and users of a market. Application in-
formation that is stored in a database consists of application description, average
rating, list of users that installed or rated application, preview images and rec-
ommended items for specific application. Preview images and application files are
all stored locally in global market to provide availability. User information that
is stored, consists of usernames and passwords, items owned and rated, ratings of
these items and comments made for those applications.

4.2. VERSION CONTROL 49

Figure 4.2. User interaction with a system

4.2 Version control
Whenever developers release new version of their application, they publish it to the
market with different, increased version number. Previous and current versions of
applications are stored in the market storage. This is done to support users that
may not have compatibility with new version requirements, but still have resources
to work with a previous version of application.

4.3 Signature/Integrity check
Applications that have security issues may damage users environment by exposing
private information to a third parties. In section 4.4 these issues are addressed. Pub-
lic key infrastructure is used to provide digital signature, which provides integrity
of data. Certificate authorities can issue certificates to prove that specific public
key belongs to a specific signer. More information about public key cryptography
and certificate authorities can be found here [KPS02].

4.4 Malicious applications removal
Applications that have security vulnerabilities, load untrusted plug-ins during exe-
cution or perform actions in background that are not described, pose a threat for

50 CHAPTER 4. SYSTEM DESIGN

smart environments. Built in functionality of the market - bouncer, monitors such
applications. Users are allowed to explicitly mark application as malicious, also, it
is implicitly checking for communication of such applications with malicious plug-
ins and services automatically. It is done by applying three different strategies:
popular, not popular and random. If bouncer is executed with random strategy, it
chose one application per round at random, checked if it malicious or not. After
determining application as malicious it is removed from the market, so that other
users won’t be able to get infected. Also environments that have such application
deployed in their environments before it was marched as malicious, are forced to
remove it. It is done by remote method call on local environments. By executing
this method, application is removed by local manager.

4.5 Application recommendation

The market provides number of applications to its users, it is important to have
recommendation system, that helps users to find application that may be useful
for them [SKR01]. There are many different content recommendation techniques
like collaborative filtering, content-based filtering or combination of them [LSY03]
[SKKR00].
In our case we are focusing on collaborative recommendation approach. For each
user we construct a list (item list) that keeps track of all items user rated or have
purchased in a past. Whenever a user consider buying or installing another appli-
cation, we present a list of applications that other users have bought together with
the one user is currently considering acquiring.
This list is updated in background once a day, to lower the load on the system. If
this list would be updated every time new user installs a new application, it would
increase accuracy of recommender system, especially in the beginning, but would
increase system load for a system lifetime. A list with recommendations is stored
in a database.

4.6 Dependencies

If an application that user is trying to install is dependent to another application
or several applications, and user does not have these applications in his local en-
vironment. Application market informs user about missing dependencies. A list
with missing applications is presented with an opportunity to install missing com-
ponents. This helps user to run application that is dependent on other applications
without which it wouldn’t operate.

4.7. USER AUTHENTICATION 51

4.7 User authentication

Users with different roles and rights interact from local environment with a global
market and vice versa. User authentication is required. System authenticates users
by accepting username and password. User database is centralized and stored in
Global Market entity. Authentication is done through Secure Hypertext Transfer
Protocol (HTTPS), which provides encrypted communication. All user informations
are stored in databases that are located in both global and local environments.
Before user is able to use the market, it is asked to enter user name and password.
If match is found, user is granted

4.8 Provisioning

Provisioning is done through Local Manager entity. Users that have access to this
entity can browse applications that are available in Global Storage. Local manager
provides install, remove methods, which are used to install or remove applications
from environment that local manager is responsible for. After collecting configura-
tion options for a specific application, local manager entity send install request to
"Smyrna" (defined in section 2.8), which further installs application with provided
configuration. To remove application, local manager entity sends "remove" request
with an application identifier to "Smyrna" service.

Figure 4.3. Provisioning

52 CHAPTER 4. SYSTEM DESIGN

Action Description
Start To start an application, user selects an application from the list of in-

stalled applications. Start option is available if application is not already
running.

Stop To stop an application, user selects an application from the list of run-
ning applications. Stop option is available to stop an application.

Update To update an application, user selects application from the list of appli-
cations that have update available.

Configure To configure an application, user selects application from the list of in-
stalled applications. Configure option is available if application is con-
figurable.

Table 4.1. Application control features and description

4.9 Application control
Control of application is provided by local manger entity described in Table 4.1.
User is able to start, stop, update and configure applications. This control options
are available to applications that are already installed on the environment. These
requests are sent to "Smyrna" service.

4.10 Top charts
Top charts features are important options of every market, since it helps users to
find solutions that majority of people are using. In our thesis we provide these four
top chart lists:

Top Free
This list provides first ten free, most downloaded applications on the market.

Top Paid
This list provides first ten paid, most downloaded application on the market.

Top Grossing
This list provides first ten, most downloaded during last week application on
the market. This helps new applications that attract attention of user to
be promoted. In this way new or better realization of previous versions of
applications can compete with applications that are in a top list for a long
time.

Featured
This list provides high quality applications. Market staff members select them.

4.11. RATING 53

4.11 Rating

4.11.1 Explicit rating
To rate applications explicitly, we use same concept that current application markets
are using - five star rating scale. User is able to choose value from one to five stars.
This value is summed up from all users that rated their applications, and average
value is presented to other users. Rating option is available only for those users who
have application installed on their environments. This option helps to gather rating
more accurately, since users that didn’t try application, barely know its value. Also,
statistics of how many users voted for a specific rating value is presented.
Comments have only two options to rate - "helpful" or "scam". A ÒNeutralÓ option
is default value for all comments.

• Helpful vote gives 1 point to an overall comment rating value.

• Neutral vote gives 0 points to an overall comment rating value.

• Scam vote gives -1 point to an overall comment rating value.

Every user after reading a comment can decide if information provided was helpful
or related to an application. After gathering ratings for comments, more useful
comments are presented first. This helps new users to get the most useful comments
first, skipping spam or unrelated scam messages. The same technique to evaluate
comments is used in many places where people exchange their opinions, since more
and more spam messages start to appear in such communities.

4.11.2 Implicit rating
As stated in section 3.1 users of markets are tend to review applications if they per-
ceive them as either very good or very bad. To overcome these issues, our market
has implicit rating technique. Which rates applications automatically, depending
on user usage.
In this thesis we are implicitly rating applications according to the last action per-
formed with an application (install, update, uninstall) by its users, keeping in mind
time spans between these actions, and nature of specific appellations.
Application gets positive points for installation and update actions, or zero, for re-
moval action. We treat update mechanism as maximum possible rating - 100 points,
since it shows that user is willing to use application further and developers support
their application. Install of an application gives 80 points. Removal of an appli-
cation contributes with 20 points to an overall rating. These values are changed
from 100, 90 and 0. Value 0 is changed to 20 points to rate application with one
star value, so that it would get negative rating instead of being unrated. Value 90
is changed to 80, so that application would be rated with 4 star value, instead of
4.5. Also, to give some bonus points to those applications that were removed later
(the one that were used for longer period of time), we calculate time spans. Some

54 CHAPTER 4. SYSTEM DESIGN

category of applications are removed because there is no more use of it, for example
user completed all levels of game, or he is moving from demo version of application
to a full version. We deal with such issues by not rating demo applications, even
though it is possible to check for example if user installed full application version
after removing demo version of it. Crash reports described in 4.12.1 also contributes
in implicit ratings. Applications that are running without crashing for longer time
gets bonus points or lose it, if keeps crashing.

Figure 4.4. Implicit rating

4.12 Feedback

A prompt response from an application developer gives strong feelings about the
solidity of the application and the people supporting it [MLLC10]. Our solution
provides two-way communication between users and developers of applications. Not
only users are able to write comments and rate applications, but also developers are
able to reply to comments that users made on their applications.

4.12.1 Crash report

Crash report help developers to improve quality and solve problems in any of appli-
cations they produce. Since applications in smart environment are running unat-
tended, automatic crash report feature exists to submit these reports to developers.
these reports are also used to evaluate quality of application (Section 4.11). These
reports are submitted to Global Market entity from Local Manager entity. After

4.13. TRANSPARENCY 55

this report is submitted to the Global Market entity it is sent to responsible devel-
opers. Crash reports are reported to the local manager entity by "Smyrna" service.
To preserve occupants privacy and save amount of traffic between local and global

Figure 4.5. Crash report

market entities, crash reports are aggregated during the day, and are sent to the
global market once a day. Aggregated crash reports are stored in a local manager’s
database. Report store application id that has crashed, time when the event oc-
curred and environments issues if any. All reports that are stored in the database
are submitted to the global market entity once a day.

4.13 Transparency

To overcome transparency issue defined in section 2.9, the market gives its users
opportunity to review which sensors will be accessed and, if any, applications that
will be interacted. This list of permissions that application requires is presented
during the installation process. List is separated into two parts. First, the most
critical items of permissions are presented, this will help user to focus on the most
critical permissions, without going through the full list of items. Also, if user wants
to review the whole list of permissions, expanding the list can do it. This list is build
from a manifest file, that developers construct while developing application. Devel-

56 CHAPTER 4. SYSTEM DESIGN

opers are allowed to use/access specific sensors or perform actions on environments
appliances only after explicitly defining them in manifest file.

4.14 Private information filtering
Feedback that is submitted by users of the market is saved in global market entity.
To preserve users privacy, information about users is never exchanged and used in
statistics. Only feedback values are exchanged. Also, it is possible for a user to set
up a privacy filter, where he or she can decide which information can be sent to the
global market entity.

4.15 Compatibility
To help market users understand if application that they want to install is compat-
ible with their environment, local manager automatically checks whether required
components are present in the environment. Compatibility status can be of three
different types: green, yellow and red. If all components are present, compatibility
status is displayed as green and user can proceed with the installation. If application
has different versions, and previous versions are compatible with the environment,
compatibility status is yellow, user can change version of an application to the one
that is compatible with the environment. If environment is not compatible with
all versions of application, compatibility status is red. Also user can check which
requirements are missing in his/her environment to consider an upgrade to meet all
requirements.

Chapter 5

System Implementation

This chapter provides implementation specific details about the system presented
in this thesis. First, system topology is presented, what technologies are used in
implementation of the system. Further, implementation of specific functions is
presented.

5.1 System topology
Global and Local market entities are build in PHP language. There are two
databases - one for each entity. Data about users of the market, environments
and applications and its ratings are stored there. MySQL relational database man-
agement system is used to operate with databases.
To communicate between Global and Local entities (Firgure 5.1), JSON is used
to invoke remote methods of the entities. So, for example, whenever Global mar-
ket entity requests local manager entity to remove malicious application, request is
serialized into JSON. On the other side, local manager entity is waiting for a re-
quests, where JSON is deserialized into PHP and necessary function calls are made,
with given parameters. Communication between local manager entity and Smyrna
is done with cURL and Sockets. Local manager entity send requests to Smyrna
through Socket while Smyrna replies through cURL.

Figure 5.1. Agora system topology

57

58 CHAPTER 5. SYSTEM IMPLEMENTATION

5.2 Global market

Global market entity, named Agora in this thesis, is implemented in PHP language.
HTML, CSS and JavaScript were used to create graphical interface. 875 lines of
code is written for it’s functionality part only. It is executed by Apache server.
One database is running on global side of the system. MySQL Server is used to
run the database. phpMyAdmin tool is used for database administration. The
database consist out of 22 tables. Application information and statistics, user in-
formation, environments and their installed/purchased applications, ratings, crash
reports, statistic results for every round and simulations are stored in these tables.
The relation between these tables is control by PHP script that stores or retrieves
information from database when needed.
Initial population of the database was done by utilizing Apple App Store web ser-
vice. JSON was used to transfer applications, their descriptions and all necessary
information from Apple servers.

5.3 Local manager

Local manager entity is also implemented using PHP, HTML, CSS and JavaScript.
One, smaller database is running on local side, to support applications that require
to store data in database. Also, this database is used to store crash report and other
data in case of internet connection is lost during communications, so that data can
be submitted later, when connection is resumed. Local manager entity is build out
of 400 lines of PHP code and 5 tables in MySQL database.

5.4 Implicit rating

Implicit rating is a service that is running on the Global market entity. Whenever
user installs an application, system will log the time that it was installed on, and
a user id that installed application. These values are stored in a separate table in
the database. Whenever system calculates average rating for the application, these
values contribute to it.
If user removes an application, system will log the time it is uninstalled and calculate
the difference with an installed time. Afterwards, this difference is compared to the
time intervals to assign necessary rating. In our system we are using four time
intervals: 0 - 15 minutes, 15 minutes - one day, one day - more than one week
and more than one week. If time difference between install and uninstall of an
application is between the first time intervals, it will give the lowest rating value -
one star. If time difference is in the second interval, it will assign two stars to an
application, for the third time interval it will assign three stars, and for the last
one, it will rate application with four stars.
The highest rating is assigned if application is updated.

5.5. RECOMMENDATION 59

5.5 Recommendation
This recommendation list is build in a following way:
Global Market entity picks all users that have bought or rated specific application,
and looks through all other items they have in their item lists. Whenever system
finds item that two or more users have in common, item is pushed to the recom-
mendation list. Items in recommendation list are sorted according to number of
users that have it. Applications that are repeated in larger number of users are
considered more relevant since more users are using them.

5.6 Malicious application removal
Bouncer feature has three different strategies to choose from: "popular", "not pop-
ular" and "random". When bouncer strategy is set to "popular", every round the
most popular application at that round is tested if it is malicious. When bouncer
strategy is set to "not popular", every round the least popular application at that
round is tested if it is malicious. When bouncer strategy is set to "random", every
round random application at that round is tested if it is malicious.
If application is malicious, it is removed from the market, and all environments
that are using this application are informed. If application is not malicious, it is
remembered to be safe. New version of already checked application is considered to
be new application and is checked again.

5.7 Test environment
To check whether designed prototype of the market address defined issues, simula-
tion is developed. Users of the market are simulated. Developers create and support
applications, Administrators install, update, remove and rate applications and En-
vironments that can make application unstable and crash, or submit specific data
that is described further (topology can be seen in figure 5.2). End-users are not
simulated since end-users are mainly involved in control of an applications, which
is not the case that we want to simulate.
This simulation consists of different modules (that are further presented) and is a
round-based simulation. Modules that are used in simulation are as follows:

• Control script - Script that is executed by shell. This script defines actions
and modules that are used during the simulation.

• Environments - PHP implementation of home module, that is invoked by
control script when action from home is needed. Actions that have to be
performed by different homes are defined with probabilities.

• Developers - PHP implementation of developer module (266 lines of code),
that is invoked by control script when action from developer is needed. Ac-

60 CHAPTER 5. SYSTEM IMPLEMENTATION

tions that have to be performed by different developers are defined with prob-
abilities.

• Agora Global Market - this is the module that our simulation is made to test.
This module is fixed, no random events are happening inside this module. It
is also responsible for outputting necessary data to a csv file, to log necessary
data.

Figure 5.2. Simulation topology

Simulation starts with the population of users and environments. Afterwards system
cycles through rounds.

Chapter 6

Test/Evaluation

In this chapter, the system is evaluated with respect to the thesis problem state-
ments and objectives. Section 5.7 gives an overview of a simulation framework and
Section 6.1 presents the simulations scenarios and their results.

6.1 Evaluation

6.1.1 Rating

In rating test we wanted to test implicit rating feature that we introduced. We were
expecting to have more accurate rating results, that will help to determine quality
of applications more accurate since no applications will be left without rating.
In figure 6.1 current rating distribution of Google Play Market applications is pre-
sented. Almost 50% of all applications are not rated [App08b].

After running the markets simulation, all user events were correctly caught and
correct rating values were assigned. All applications that were installed by at least
one user were rated with according rating values. Implicit rating feature provided
designed market with 50% more rating event if these results are compared with the
current Google Play Market rating distribution.

6.1.2 Crash reports

In Figure 6.2 results of a simulation of automatic crash reports is presented. Simu-
lation was performed in following way:
By default every application that is published to the market has probability of up
to 10% that developers will notice errors of a specific application, even if there are
no crash reports from users. First, the amount of update events was captured if
our system would not have automatic crash report system. Afterwards, automatic
crash report module was added to the simulation. This module, keeps track of crash
reports that users of the market submit to the global market entity, and informs
developers about these events.
Results presented in Figure 6.2 show that after enabling automatic crash report

61

62 CHAPTER 6. TEST/EVALUATION

Figure 6.1. Rating distribution without implicit rating feature [App08b]

Figure 6.2. Automatic crash report contribution

module developer managed to collect 10 times more feedback events on average.
These results show that automatic crash report is working correctly.

6.1.3 Malicious application removal

By testing bouncer feature, we were expecting it to remove malicious applications
from houses that are already infected by them. During this test we tested three
different strategies of a bouncer feature: random, popular and not popular. These

6.1. EVALUATION 63

tests show how well malicious applications are detected with a specific bouncer
strategy.
This test was performed with 100 active environments performing actions during
300 rounds. Out of 264 applications available in the market, 100 of them were set to
be malicious. Simulation was repeated with the same parameters but with different
bouncer strategies, to compare performance results of different strategies.
In figure 6.3 results of a bouncer feature evaluation is presented. During this test

Figure 6.3. Bouncer strategy effect

maximum amount of applications available on the market is 264, and bouncer fea-
ture is set to check one application per round, after 264 rounds number of infections
reaches zero. This is happening because bouncer managed to check all markets
applications.
Simulation results show, that automatic malicious application removal tool man-
ages to cope with its goals - removing malicious application from the system. Also,
strategy rules set to be "popular first" were proven to be the safest strategy, since
it will keep number of infections in the systems on the lowest level.

6.1.4 Update

By testing update mechanism we were expecting to see distribution of houses with
new application version and older versions. To perform this test, system was run-
ning without updating any application for 200 rounds. In round 200, developers
introduced updates for some of their applications. In Figure 6.4 results of this test
are shown.
During this test, update interval of every environment was set to be once every 24
hours. Whenever new environment join the system, starting from this time, every
24 hours environment checks for updates. If new versions were found, environment

64 CHAPTER 6. TEST/EVALUATION

Figure 6.4. How fast all environments receive update after a new version is released

automatically requests required version from the market, and installs it.
Simulation results show, that all environments managed to get latest application
versions in at most 24-hour period. These results showed that automatic update
feature is working.

6.2 Summary
In this section, the implementation of a core functions used in the market design
were evaluated. The evaluation was performed by running simulation using custom
made simulator for this specific system.
The experiments show that introduced implicit rating function provides automatic
feedback from every user that is using the market, thus helping to determine appli-
cations quality more accurate, by rating it according to its algorithms.
Introduced automatic crash report function positively contributes to the application
quality in the system by letting developer know about the crashes of their applica-
tions and helping them assign priorities on which application to update if any.
Evaluation of three different bouncer strategies show, that bouncer strategies set
to random or popular application first helps to find and remove infections from the
market and environments better than strategy policy set to not popular applications
first. It was expected that bouncer strategy policy set to not popular application
first will outperform other strategies, since it will remove infections when it is first
installed on less environments. But, simulation results have proved that this as-
sumption is wrong.
Automatic update mechanism is also showed to be working and helping to bring
quality applications to every environment that uses the market in at most 24 rounds
after a new version is introduced, if update interval of every environment is set to
be once in every 24 hours.

Part III

Conclusion

65

Chapter 7

Conclusion & Future Work

7.1 Conclusion

In this thesis, a market for the smart environment is designed with the main goal to
apply and adapt tools and mechanisms of existing application markets to the smart
environments. The design uses features of already existing application markets for
mobile phone environment, such as Google Play and Apples AppStore, adapted to
work in the smart environment. Since applications in the smart environment are
running unattended, in comparison with mobile phone environment, extra features
are introduced. Automatic crash report feature, to provide more crash events to
developers. Implicit rating feature, that rates applications based on users behav-
ior automatically, thus giving feedback for every installed application. Automatic
malicious applications removal feature, that removes malicious applications from
environments, where such applications are installed, automatically. The system
was evaluated in various simulation scenarios. Automatic crash report feature helps
to get up to ten times more crash reports. Implicit rating feature provided all, at
least once installed, applications with a feedback event, thus providing up to 50%
more feedback events comparing to the current feedback distribution of Android
Play market.
To summarize, the system design proposed in this thesis successfully provides qual-
ity applications to the smart environment by utilizing automatic crash report, im-
plicit rating, automatic update and bouncer features in addition to the tools and
mechanisms adapted from already existing application markets.

7.2 Future Work

System design Current system design does not utilize power of mobile devices
and their mobile browsers. Even though the system operates well on mobile de-
vices, fluid web design techniques combined with HTML5 technologies would make
designed application market more user friendly on all platforms by automatically
adjusting its style and control depending on the system and size of a screen it is

67

68 CHAPTER 7. CONCLUSION & FUTURE WORK

running on.

Application recommendation Application recommendation approach presented
in this thesis can be improved by considering applications of the same categories.
For example when user is navigating through games category, system recommends
him/her only games that other users find out interesting or worth looking at. This
improvement would lower amount of applications systems has to consider during
construction of a recommendation lists.

Implicit rating Implicit rating mechanism can be further improved. If end-user,
after uninstalling demo version of a specific application installs full version of that
application, system should rate demo version with the highest possible option.

Bibliography

[Aim08] Joe Aimonetti. Android malware up 76 percent, nonexistent
on ios - http://reviews.cnet.com/8301-19512_7-20096832-233/
android-malware-up-76-percent-nonexistent-on-ios/, 2012.08.

[AIS93] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules
between sets of items in large databases. In ACM SIGMOD Record,
volume 22, pages 207–216. ACM, 1993.

[Ant11] G. Anthes. Invasion of the mobile apps. Communications of the ACM,
54(9):16–18, 2011.

[app08a] Publishing your app for user testing - https://developer.
apple.com/library/ios/#documentation/Xcode/Conceptual/
ios_development_workflow/35-Distributing_Applications/
distributing_applications.html#//apple_ref/doc/uid/
TP40007959-CH10-SW1, 2012.08.

[App08b] AppBrain. Ratings of apps on the android market - http://www.
appbrain.com/stats/android-app-ratings, 2012.08.

[Aut08] Authone. ds2os - http://pahl.de/?site=__research, 2012.08.

[Bal09] P. Ballon. Control and Value in Mobile Communications: A political
economy of the reconfiguration of business models in the European
mobile industry. PhD thesis, Vrije Universiteit Brussel, 2009.

[CBLW01] M. Claypool, D. Brown, P. Le, and M. Waseda. Inferring user interest.
Internet Computing, IEEE, 5(6):32 –39, nov/dec 2001.

[CDS04] Cook, Diane Das, and Sajal. Smart Environments : Technology, Pro-
tocols and Applications. Wily, Hoboken, NJ, USA, 2004.

[cI08] cnet Inc. Third-party iphone applications to arrive monday - http:
//news.cnet.com/8301-13579_3-9958320-37.html, 2012.08.

[DCGMV11] F. Di Cerbo, A. Girardello, F. Michahelles, and S. Voronkova. Detec-
tion of malicious applications on android os. Computational Forensics,
pages 138–149, 2011.

69

70 BIBLIOGRAPHY

[DLL+10] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi,
S. Gupta, Y. He, M. Lambert, B. Livingston, et al. The youtube video
recommendation system. In Proceedings of the fourth ACM conference
on Recommender systems, pages 293–296. ACM, 2010.

[DN06] C. Dellarocas and R. Narayan. What motivates consumers to review a
product online? a study of the product-specific antecedents of online
movie reviews. In WISE, 2006.

[ea11] Michael Vakulenko et al. Mobile platforms: The clash of ecosystems.
Electronic Commerce Research and Applications, page 68, 2011.

[Gee05] D. Geer. Malicious bots threaten network security. Computer,
38(1):18–20, 2005.

[GM10] A. Girardello and F. Michahelles. Explicit and implicit ratings for
mobile applications. In Workshop “Digitale Soziale Netze” and der,
volume 40, 2010.

[HKR00] J.L. Herlocker, J.A. Konstan, and J. Riedl. Explaining collaborative
filtering recommendations. In Proceedings of the 2000 ACM conference
on Computer supported cooperative work, pages 241–250. ACM, 2000.

[HKSS05] C.C. Han, R. Kumar, R. Shea, and M. Srivastava. Sensor network soft-
ware update management: a survey. International Journal of Network
Management, 15(4):283–294, 2005.

[HO09] A. Holzer and J. Ondrus. Trends in mobile application development.
In Mobile Wireless Middleware, Operating Systems, and Applications-
Workshops, pages 55–64. Springer, 2009.

[IICM11] S. Isaacman, S. Ioannidis, A. Chaintreau, and M. Martonosi. Dis-
tributed rating prediction in user generated content streams. In Pro-
ceedings of the fifth ACM conference on Recommender systems, pages
69–76. ACM, 2011.

[Inc08a] Amazon Inc. Amazon appstore for android - http://www.amazon.
com/b?node=2350149011, 2012.08.

[Inc08b] Amazon Inc. Step 5 in getting started with the ama-
zon appstore - http://www.amazon.com/gp/feature.html?docId=
1000626391, 2012.08.

[Inc08c] Apple Inc. Apple app store - http://www.apple.com/mac/
app-store/, 2012.08.

[Inc08d] Apple Inc. Apple itunes - http://www.apple.com/itunes/, 2012.08.

BIBLIOGRAPHY 71

[Inc08e] Apple Inc. ios: Syncing with itunes - http://support.apple.com/
kb/HT1386, 2012.08.

[Inc08f] GetJar Inc. Getjar - http://www.getjar.com/, 2012.08.

[Inc08g] Google Inc. The androidmanifest.xml file - http://developer.
android.com/guide/topics/manifest/manifest-intro.html,
2012.08.

[Inc08h] Google Inc. Paid app availability - https://support.google.com/
googleplay/bin/answer.py?hl=en&answer=143779, 2012.08.

[Inc08i] Google Inc. Publishing on google play - http://developer.android.
com/guide/publishing/publishing.html, 2012.08.

[Inc08j] Nokia Inc. How to install java me application in mobile
phone - http://www.developer.nokia.com/Community/Wiki/How_
to_install_Java_ME_application_in_mobile_phone, 2012.08.

[Kam08] Andrew Kameka. Google bans about 1http://androinica.
com/2009/08/google-bans-about-1-of-android-market-apps/,
2012.08.

[KASJ11] Heung-Nam Kim, Abdulmajeed Alkhaldi, Abdulmotaleb El Saddik,
and Geun-Sik Jo. Collaborative user modeling with user-generated
tags for social recommender systems. Expert Systems with Applica-
tions, 38(7):8488 – 8496, 2011.

[KMM+97] J.A. Konstan, B.N. Miller, D. Maltz, J.L. Herlocker, L.R. Gordon,
and J. Riedl. Grouplens: applying collaborative filtering to usenet
news. Communications of the ACM, 40(3):77–87, 1997.

[KPS02] Charlie Kaufman, Radia Perlman, and Mike Speciner. Network Secu-
rity: Private Communication In A Public World, 2/e. Prentice Hall,
2002.

[KWKI03] H. Kanma, N. Wakabayashi, R. Kanazawa, and H. Ito. Home appli-
ance control system over bluetooth with a cellular phone. Consumer
Electronics, IEEE Transactions on, 49(4):1049–1053, 2003.

[Lin08] LinuxPlanet. Linux package management: Keeping up with the times
- http://www.linuxplanet.com/linuxplanet/tutorials/4161/1,
2012.08.

[LSY03] G. Linden, B. Smith, and J. York. Amazon. com recommenda-
tions: Item-to-item collaborative filtering. Internet Computing, IEEE,
7(1):76–80, 2003.

72 BIBLIOGRAPHY

[Meu08] P. Meunier. Software transparency and purity. Communications of
the ACM, 51(2):104–104, 2008.

[MLLC10] E. Miluzzo, N.D. Lane, H. Lu, and A.T. Campbell. Research in the
app store era: Experiences from the cenceme app deployment on the
iphone. In Proc. of The First International Workshop Research in
the Large: Using App Stores, Markets, and other wide distribution
channels in UbiComp research, page 4, 2010.

[MRK09] Dorothy Monekosso, Paolo Remagnino, and Yoshinori Kuno. Intelli-
gent Environments Methods, Algorithms and Applications. Springer,
2009.

[MVW08] S. Moncrieff, S. Venkatesh, and G. West. Dynamic privacy assess-
ment in a smart house environment using multimodal sensing. ACM
Transactions on Multimedia Computing, Communications, and Ap-
plications (TOMCCAP), 5(2):10, 2008.

[NKZ10] M. Nauman, S. Khan, and X. Zhang. Apex: Extending android per-
mission model and enforcement with user-defined runtime constraints.
In Proceedings of the 5th ACM Symposium on Information, Computer
and Communications Security, pages 328–332. ACM, 2010.

[PNS+09] Marc-Oliver Pahl, Christoph Niedermeier, Mario Schuster, Andreas
Müller, and Georg Carle. Detection of malicious applications on an-
droid os. Knowledge-Based Middleware for Future Home Networks.
In IEEE IFIP Wireless Days conference Paris, Paris, France, 2009.

[Ras08] Fahmida Y. Rashid. Google bouncer finds, blocks malicious
apps from android market - http://www.eweek.com/c/a/Security/
Google-Bouncer-Finds-Blocks-Malicious-Apps-from-Android-Market-778912/,
2012.08.

[Reu08] Reuters.com. Apple sued over apps privacy issues; google
may be next - http://www.reuters.com/article/2010/12/28/
us-apple-lawsuit-idUSTRE6BR1Y820101228, 2012.08.

[SCNSP10] S. Siersdorfer, S. Chelaru, W. Nejdl, and J. San Pedro. How useful
are your comments?: analyzing and predicting youtube comments and
comment ratings. In Proceedings of the 19th international conference
on World wide web, pages 891–900. ACM, 2010.

[SJCH12] KG Shin, X. Ju, Z. Chen, and X. Hu. Privacy protection for users of
location-based services. Wireless Communications, IEEE, 19(2):30–
39, 2012.

BIBLIOGRAPHY 73

[SKKR00] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Analysis of rec-
ommendation algorithms for e-commerce. In Proceedings of the 2nd
ACM conference on Electronic commerce, pages 158–167. ACM, 2000.

[SKR01] J.B. Schafer, J.A. Konstan, and J. Riedl. E-commerce recommenda-
tion applications. Data mining and knowledge discovery, 5(1):115–153,
2001.

[SM95] U. Shardanand and P. Maes. Social information filtering: algorithms
for automating "word of mouth". In Proceedings of the SIGCHI con-
ference on Human factors in computing systems, pages 210–217. ACM
Press/Addison-Wesley Publishing Co., 1995.

[VG10] Pieter Ballon Vânia Gonçalves, Nils Walravens. How about an app
store? 2010 Ninth International Conference on Mobile Business and
2010 Ninth Global Mobility Roundtable (ICMB-GMR), page 8, 2010.

Appendices

75

BIBLIOGRAPHY 77

Figure .1. Version compatibility check before installation

Figure .2. Information presented to a user before installation

Figure .3. Before uninstalling an application user can mark it as malicious

78 BIBLIOGRAPHY

Figure .4. Options available to a user after application is installed

BIBLIOGRAPHY 79

Figure .5. Top application list

80 BIBLIOGRAPHY

Figure .6. List of applications that are already installed in the environment

BIBLIOGRAPHY 81

Figure .7. Agora login screen

